
rodnay zaks 6502
VOLUME IV

6502
GAMES

RODNAY ZAKS

6502 SERIES — VOLUME 4

ACKNOWLEDGEMENTS

The author would like to acknowledge the contributions of Chris Williams and Eric

Novikoff, who thoroughly checked all of the games programs and contributed numerous

ideas for improvements.

The author is particularly indebted to Eric Novikoff for his valuable assistance through-

out all phases of the manuscript’s production, and for his meticulous supervision of the

final text.

Notice

SYM is a trademark of Synertek Systems, Inc.

KIM is a trademark of MOS Technology, Inc.

AIM65S is a trademark of Rockwell International, Inc.

**“COMPUTEACHER” and ‘‘GAMES BOARD” are trademarks of Sybex, Inc.

Cover Design by Daniel Le Noury

Technical Illustrations by Guy S. Orcutt and J. Trujillo Smith

Every effort has been made to supply complete and accurate information. However,

Sybex assumes no responsibility for its use, nor for any infringements of patents or other

rights of third parties which would result. No license is granted by the equipment manu-

facturers under any patent or patent rights. Manufacturers reserve the right to change

circuitry at any time without notice.

Copyright © 1980 SYBEX Inc. World rights reserved. No part of this publication

may be stored in retrieval system, transmitted, or reproduced in any way, including but

not limited to photocopy, photograph, magnetic or other record, without the prior

agreement and written permission of the publisher.

Library of Congress Card Number: 80-50896

ISBN 0-89588-022-9

Printed in the United States of America

Printing 10987654321

CONTENTS

1. INTRODUCTION cece cece cece cece eccee ll

The Games Board.

MUSIC PLAYER.......... ccc ccc cece reece reese eee ee BO

Play a sequence of up to 255 notes (13 different notes) and record it auto-

matically.

TRANSLATE ccc ccc ccc ccc ccc ccc ccc ccc cece cee e Fh

The computer displays a binary number. Each player in turn must press the

hexadecimal equivalent as quickly as possible. The first to score 10 wins.

Designed for two players.

HEXGUESS cece reece cece cence cece ec ccc ee odd

Guess a 2-digit hex number generated by the computer. The computer will

tell you how far off your guess is. You are allowed up to 10 guesses.

MAGIC SQUARE cece cece cece cree ccesecesee ID

Light up a perfect square on the board. Each key inverts some LED pattern.

Skill and logic are required.

SPINNER 2.0... cc cece ccc ccc cc cece sensccscesccecc Bl

A light is spinning around a square. You must catch it by hitting the cor-

responding key. Every time you succeed, it will spin faster. A game of skill.

SLOT MACHINE. ccc cccc cece cece ccc cn ence WD

A Las Vegas type slot machine is simulated, with three spinning wheels. Try

your luck.

i

10.

11.

Recognize and duplicate a sound/light sequence (also known as SIMON—a

manufacturer trademark).

MINDBENDER ccc ccc ccc ccccececcecces 162

Play against the dealer (the computer) with a deck of 10 cards. You may hit

or stay. Don’t bust!

BLACKJACKcccccccccccccccccccccccccsecese 189

Guess a sequence of numbers generated by the computer. It will tell you how

many digits are correct and in the right position (also known as MASTER-

MIND—a manufacturer trademark).

TIC-TAC-TOE .. 0... ccc ccc cece cece cece rece cerns 218

Try to achieve three in a row before the computer does in this favorite game

of strategy. The computer’s ability improves with yours. Can you outsmart it?

APPENDICES cc ccc cc cee ccc c ence ccc c sc cceenccee cor

A.

B.
6502 Instructions—Alphabetic

6502—Instruction Set: Hex and Timing

iv

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure | .4:

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 1.8:

Figure 1.9:

Figure 1.10:

Figure 1.11:

Figure 1.12:

Figure 1.13:

Figure 1.14:

Figure 1.15:

Figure 1.16:

Figure 1.17:

Figure 1.18:

Figure 1.19:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 5.1:

Figure 5.2:

Figure 5.3:

ILLUSTRATIONS

The Games Board

Speaker Has Been Mounted in Enclosure

Two Wires Must Be Connected to the Power Supply

The Games Board is Connected to the SYM with 2 Connectors

Connecting the Cassette Recorder

The System is Ready to be Used

Games Board Elements

The LEDs

Decoder Connection to Keyboard

Detecting a Key Closure

LED Connection

LED Arrangement on the Board

Detail for LED Connection to the Ports

Games Board Detail

VIA Connection to Keyboard Decoder

GETKEY Flowchart

GETKEY Program

‘*Production’’ Games Board

Removing the Cover

Playing Music on the Keyboard

Simple Tunes for Computer Music

Generating a Tone

Low Memory: The Tables

Frequency for the Middle C Octave

Note Constants

Music Flowchart

PLAYIT Flowchart

Music Program

Entering a Note in the List

Prompt Signals the Right Player to Play

Bottom Row of LEDs Displays Number to be Guessed

It is Player 2’s Turn (Left Player)

Translate Flowchart

LED Connections

Translate Program

Random Number Generation

Hexguess Flowchart

Hexguess Program

6522 VIA Memory Map

Collecting the Player’s Guess

Creating the LED Pattern

Magic Square Flowchart

Complementation Table

Magic Square Program

ww In A UAW” ww Ww

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 7.5:

Figure 7.6:

Figure 7.7:

Figure 7.8:

Figure 7.9:

Figure 7.10:

Figure 7.11:

Figure 7.12:

Figure 8.1:

Figure 8.2:

Figure 8.3:

Figure 8.4:

Figure 8.5:

Figure 8.6:

Figure 9.1:

Figure 9.2:

Figure 9.3:

Figure 9.4:

figure 9.5:

Figure 9.6:

Figure 9.7:

Figure 9.8:

Figure 9.9:

Figure 9.10:

Figure 9.11:

Figure 9.12:

Figure 9.13:

Figure 10.1:

Figure 10.2:

Figure 10.3:

Figure 10.4:

Figure 10.5:

Figure 10.6:

Figure 10.7:

Figure 10.8:

Figure 10.9:

Figure 10.10:

Figure 10.11:

Figure 10.12:

Figure 11.1:

Figure 11.2:

vi

Spinner Flowchart

Dual Counter

Spinner Program

The Slot Machine

A Win Situation

Slots Flowchart

DISPLAY Flowchart

EVAL Flowchart

Evaluation Process on the Board

An Evaluation Example

The Score Table

Slot Machine Program

Spinning the Wheels

Evaluating the End of a Spin

Creating the LED Pattern

Specify Length of Sequence to Duplicate

Enter Your Guess

Follow Me

Echo Flowchart

Echo Program

Frequency and Duration Constants

Enter Length of Sequence

Enter Your Guess

Player Enters Wrong Guess

One Correct Digit in the Correct Position

Mindbender Flowchart

Low Memory Map

High Memory Map

6522 VIA Memory Map

Detailed Mindbender Flowchart

Interrupt Registers

6522 Auxiliary Control Register Selects Timer |

Operating Modes

Timer | in Free Running Mode

Mindbender Program

Indicating the Winner

First Hand

Player Receives A Second Card: Blackjack

End of Turn: Dealer Loses

Second Hand

Blackjack Again

Dealer Busts

Final Score Is 7

Blackjack Flowchart

Low Memory Map

High Memory Map

Blackjack Program

Tic-Tac-Toe Winning Combinations For a Player

First Computer Move

Figure 11.3:

Figure 11.4:

Figure 11.5:

Figure 11.6:

Figure 11.7:

Figure 11.8:

Figure 11.9:

Figure 11.10:

Figure 11.11:

Figure 11.12:

Figure 11.13:

Figure 11.14:

Figure 11.15:

Figure 11.16:

Figure 11.17:

Figure 11.18:

Figure 11.19:

Figure 11.20:

Figure 11.21:

Figure 11.22:

Figure 11.23:

Figure 11.24:

Figure 11.25:

Figure 11.26:

Figure 11.27:

Figure 11.28:

Figure 11.29:

Figure 11.30:

Figure 11.31:

Figure 11.32:

Figure 11.33:

Figure 11.34:

Figure 11.35:

Figure 11.36:

Figure 11.37:

Figure 11.38:

Figure 11.39:

Figure 11.40:

Figure 11.41:

Figure 11.42:

Figure 11.43:

Figure 11.44:

Figure 11.45:

Figure 11.46:

Figure 11.47:

Figure 11.48:

Figure 11.49:

Figure 11.50:

Our First Move

Second Computer Move

After the Computer’s Third Move

After the Computer’s Fourth Move

After the Computer's Fifth Move

Move 1

Move 2

Move 3

Move 4

Move I

Move 2

Move 3

**We Win!”’

The Six Combinations

Evaluation Grid

Test Case !

Evaluation Grid: Row 1 Potential

Evaluating the Horizontal Potential

Evaluating the Vertical Potential

Evaluating the Diagonal Potential

The Final Potential

Evaluation for ‘‘O”’

Potential Evaluation

Move for Highest Score

Finishing the Game

An Alternative Ending for the Game

Test #1 Evaluation for ‘‘X’”’

Test #1 Evaluation for ‘‘O”’

Test #2

Moving to the Center

A Simple Situation

A Reverse Situation

Trap 3

End of Game

A Correct Move

Row-sums

A Trap Pattern

Board Analysis Flowchart

The Diagonal Trap

Falling Into the Diagonal Trap

Playing to the Side

Actual Game Sequences

Tic-Tac-Toe Flowchart

Tic-Tac-Toe Row Sequences in Memory

Tic-Tac-Toe: Low Memory

Tic-Tac-Toe: High Memory

FINDMV Flowchart

Tic-Tac-Toe Program

220
220

220

22)

22!

222

222

222

223

223
223

224

224

227

227

228

229

229

230

230

230

231

232

232

236

236

237

237

vii

THE 6502 SERIES

BOOKS

Vol. 1—Programming the 6502 (Ref. C202)

Vol. 2—Programming Exercises for the 6502 (Ref. C203)

Vol. 3—6502 Applications Book (Ref. D302)

Vol. 4—6502 Games Book

SOFTWARE

6502 Assembler in BASIC

Games Cassette for SYM

Application Programs

8080 Simulator for 6502 (KIM and APPLE versions)

EDUCATIONAL SYSTEM

Computeacher™

Games Board™

PREFACE

“Complex algorithms can be fun!”’

Programming is often treated by programmers as a game, although

they may not readily admit it. In fact, using and programming a com-

puter may well be one of the ultimate intellectual games devised to

date.

A program is a projection of one’s intelligence and skills. Writing

games programs adds an essential ingredient to it: fun. However, most

interesting games are fairly complex to program, and demand specific

programming skills.

This book will teach you how to program a complete array of games

ranging from passive ones (Music) to strategic ones (Tic-Tac-Toe). In

the process of learning how to program these games, you will sharpen

your skills at using input/output techniques, such as timers and in-

terrupts. You will also use various data structures, and improve or

develop your assembly-level programming skills.

This book has been designed as an educational text. After reading it
you should be able to create programs for additional games and to use

your programming skills for other applications.

If you have access to a microcomputer board, you can also enjoy

the results of your work in a very short time. The programs presented

in this book are listed for the SYM board (from Synertek Systems),

but can be adapted to other 6502-based microcomputers. Playing the

games will require building a simple, low-cost ‘‘Games Board,’’ which

is described in Chapter 1. To facilitate game playing, a ‘‘Games

Cassette’’ is also available in SYM format.

The many games studied in this book include: musical games

(MUSIC), educational games (TRANSLATE and HEXGUESS will

teach you hexadecimal), games involving the use of logic (MAGIC

SQUARES), games involving coordination (SPINNER), memory

games (ECHO), games of chance (SLOT MACHINES), games involv-

ing strategy (TIC-TAC-TOE), and games involving various combina-

tions of skills (BLACKJACK).

A basic format has been followed in presenting each game program.

It includes:

1. The rules of the game

2. Instructions for playing a typical game

6502 GAMES

3. The algorithm(s) (theory of operation)

4. The program: data structures, programming techniques,

subroutines.

Variations and exercises are also suggested throughout the book.

Thus, you will first learn how to play the game, and then how to de-

vise a possible solution (the algorithm). Finally, you will actually

implement a complete, programmed version of the algorithm in 6502

assembly-level language, paying specific attention to the required data

structures and techniques used for efficient programming.

Learning to program in assembly-level language has traditionally

been unappealing or difficult. It need not be. It can be fun. If you are

familiar with elementary programming techniques on the level of

reference text C202—Programming the 6502, this book will teach you

practical programming techniques in a game context. It will both inte-

grate theoretical concepts into complex programs and present a simple

step-by-step analysis of program development. These same concepts

and techniques can be applied to any programming problem, from

industrial control to business applications.

It is hoped that you will have as much fun learning how to program

as you will have playing the games. If you have invented, developed,

or know of other games that you would like to see included in a games

book, please write to me.

RODNAY ZAKS

1

INTRODUCTION

PURPOSE

This book has been designed for the programmer who wants to

learn advanced programming techniques by using the 6502. It can, of

course, also be used by those who simply wish to play games with their

6502-based board. When using this book for educational purposes,

the reader should be familiar with the 6502 instruction-set as well as

basic programming techniques on the level of the reference text C202
— Programming the 6502. A basic knowledge of input/output tech-

niques is also recommended. (See reference D302 — 6502 Applica-

tions Book.)

The games presented in this book range from simple programs to

highly complex ones. In order to implement game programs,

algorithms will be proposed, and data structures will be designed. This

is the process any disciplined computer programmer must go through

when designing a programmed solution for a given problem. Game

programs usually do not present any serious input/output problems,

as some industrial control programs might; however, they often repre-

sent a serious intellectual challenge in terms of devising an efficient

solution strategy. In addition, all the algorithms and programs

presented in this book have been designed to be terse so that they can

reside within less than 1K of available memory.

All of the programs presented in this book have been tested on ac-

tual hardware by several users and have been found to be error-free in

the conditions under which they were tested. As in any large program,

however, inadequacies or improvements may be found. The author

will be grateful for any comments or suggestions from interested

readers.

The programs in this book can be used to play real games. They re-

quire using a 6502-based board such as the SYM board (manufactured

and trademarked by Synertek Systems) and they require building a sim-

ple ‘‘Games Board.’’ A complete description of the Games Board will

be provided in this chapter. The Games Board is shown in Figure 1.1.

The programs in this book will all run as they are presented on a

SYM board, but they can easily be adapted to any other 6502-based

computer. The input/output lines available, however, are usually

specific to the microcomputer used. The input/output segments of the

various programs must then be modified accordingly. Naturally, the

algorithms themselves as well as the programming techniques used to

implement them normally remain unchanged.

After reading this book, especially if you should try to run the pro-

grams on the Games Board, you will probably agree that:

‘‘Complex algorithms can be fun!’’

HARDWARE REQUIRED

In order to run the programs presented in this book on an actual

microcomputer, a SYM or other 6502-based board should be used.

Additionally, a Games Board will be required to play the games. A

photograph of the Games Board is shown in Figure 1.1. The Games

Board is the input/output board on which the games will be played. The

keyboard on the right is used to provide an input to the microcom-

puter board, while the LEDs on the left are used to display the informa-

tion sent by the program. The use of the keys and the LEDs will be ex-

plained for each game in this book. A speaker is also attached for

sound effects. It has been mounted in an enclosure (box), for im-

proved sound quality. (See Figure 1.2.)

The Games Board may easily be built at home from a small number

of low-cost components, or may be obtained from Sybex. Since its

assembly is quite simple, the reader interested in obtaining a better

understanding of the hardware is strongly encouraged to purchase the

parts and build the board. On the other hand, building the Games

Board is not a required action in order to use this text. It simply offers

additional depth of understanding.

CONNECTING THE SYSTEM

It is assumed here that you own a 6502-based microcomputer

board, such as a SYM board, and that you have built or obtained a

INTRODUCTION

o
e
n
e
e
t
e

wceerere

weeeaaceorarene

S
e
r
s
e
a

e
e

O
R
O

P
m

a
e

.

hee

>
Paste Rennates

ee ee ee ee ee ee |
TP + te H ESP ERS EES

. SReee seers Sess ase ee seeareeet ee ee ee ee ee ee ee as

The Games Board

1877 :

Fig. 1.2: Enclosure May Be Used for improved Sound

6502 GAMES

Games Board. This section will describe how to interconnect the

elements of the system so that you can actually play the games which

will be described in the following chapters. If you do not have access
to this hardware, it is not essential that you read through this section.

However, you may wish to refer to it later, in order to implement the

games described in this book, or to understand the interfacing and in-

put/output techniques.

Four essential components are required:

1 - the power supply

2 - the SYM board

3 - the Games Board
4 - (preferably) a cassette recorder

The first requirement is to connect the wires to the power supply. If
it is not already so equipped, two sets of wires must be connected to it.

(See Figure 1.3.) First, it must be connected to a power cord. Second,
the ground and plus 5V wires must be connected to the SYM power

connector, as per the manufacturer’s specifications.
Next, the Games Board should be physically connected to the SYM.

Two edge connectors are required for the SYM: both the A connector
and the AA connector are used. (See Figure 1.4.) There is also a power

source connector.
Always be careful to insert the connectors with the proper side up

(usually the printed side). An error in inserting the power connector,
in particular, will have highly unpleasant results. Errors in inserting

the I/O connectors are usually less damaging.

Finally, if a cassette recorder is to be used (highly recommended),

the SYM board must be connected to a tape recorder. At the

minimum, the ‘‘monitor’’ or ‘‘earphone’’ wires should be connected,

and preferably the ‘‘remote’’ wire as well. If new programs are going

to be stored on tape, the ‘‘record’’ or ‘‘microphone’’ wire should also
be connected. (See Figure 1.5.) Details for these connections are given
in the SYM manual.

At this point the system is ready to be used. (See Figure 1.6.) If you

have one of the games cassettes (available separately from Sybex),

simply load the cassette into the tape recorder. Press the RST key after

powering up your SYM, and load the appropriate game into your

SYM. You are ready to play.

Otherwise, you should enter the hexadecimal object code of the
game on the SYM keyboard. All games are started by jumping to
location 200 (‘GO 200’).

INTRODUCTION

e4
RS232 CONNECTOR

N FOR RECORDER

Fig. 1.4: The Games Board is Connected to the SYM with 2 Connectors

(Note also Power and Cassette Connectors)

6502 GAMES

P
O
C
O
S
C
O
L
e
C
e
O
R
S
E

S
e
e
o
c
e
e
s
e
c
e
s
e
e
o
s

t
e
s
e

,

S
b
S
e
e
e
e
e
s
e
s
e
e
s
s
o
o
s

Wi
bs
ih
is
ma
pe
la
nt
ie
ns
en
ee
en
at
ee
s

~

6 PP patna PARSON
Mus? 5 “ = =] < 2

sreec

Fig. 1.5: Connecting the Cassette Recorder

a Ls 2 ; FS H 4 -

me

;

'

B
e
e
s

(FINAL VERSION CF GAMES BOARD)

Fig. 1.6: The System is Ready to be Used

INTRODUCTION

GAMES BOARD INTERCONNECT

The Keyboard

The board’s components are shown in Figure 1.7. The LED ar-

rangement used for the games is shown in Figure 1.8. The keyboard

used here is of the ‘‘line per key’’ type, and does not use a matrix ar-

rangement. Sixteen keys are required for the games, even though more

keys are often provided on a number of ‘‘standard keyboards,’’ such

as the one used in the prototype of Figure 1.7. On this prototype, the

three keys at the bottom right-hand corner are not used (keys H, L,

and ‘‘shift’’).

Figure 1.9 shows how a 1-to-16 decoder (the 74154) is used to iden-

tify the key which has been pressed, while tying up only four output

lines (PBO to PB3) — four lines allow 16 codes. The keyboard scan-

ning program will send the numbers 0-15 in succession out on lines

PBO-PB3. In response, the 74154 decoder will decode its input (4 bits)

into each one of the 16 outputs in sequence. For example, when the

number ‘‘0000’’ (binary) is output on lines PBO to PB3, the 74154
decoder grounds line | corresponding to key ‘‘0’’. This is illustrated in

Figure 1.9. After outputting each four-bit combination, the scanning

program reads the value of PA7. If the key currently grounded was

not pressed, PA7 will be high. If the corresponding key was pressed,

PA7 will be grounded and a logical ‘‘0”’’ will be read. For example, in

Fig. 1.7: Games Board Elements (Prototype)

6502 GAMES

O O O

0900
000

209000
Fig. 1.6: The LEDs

Figure 1.10, a key closure for key 1 has been detected. As in any scan-
ning algorithm, a good program will debounce the key closures by im-
plementing a delay. For more details on specific keyboard interfacing

techniques, the reader is referred to reference C207 — Microprocessor

Interfacing Techniques.

In the actual design, the four inputs to the 74154 (PBO to PB3) are con-
nected to VIA #3 of the SYM. PA7 is connected to the same VIA. The

3.3 K resistor on the upper right-hand corner of Figure 1.9 pulls up
PA7 and guarantees a logic level ‘‘1’’ as long as no grounding occurs.

The GETKEY program, or a similar routine, is used by all the pro-

grams in this book and will be described below.

The LEDs

The connection of the fifteen LEDs is shown in Figure 1.11. Three
7416 LED drivers are used to supply the necessary current (16 mA).

The LEDs are connected to lines PAO to PA7 and PBO to PB7, ex-
cepting PB6. These ports belong to VIA #1 of the SYM. An LED is lit
by simply selecting the appropriate input pin of the corresponding

driver. The resulting arrangement is shown in Figure 1.12 and Figure
1.13.

INTRODUCTION

~mOoOnwe> 09 Oar oOo wn Aa WO ND

+5V

0

1 (CLOSED)

PAT ag
(CLOSURE DETECTED)

Fig. 1.10: Detecting a Key Closure

6502 GAMES

VIA #1 LED AO

3202 x
PAO 4 LED |

~ ey ERS ERD (i
ae any) ae ee ea
ie RAS Aes See ny
oe ars ae ae

a io ean I (rt

—— WN

+5 +5

LED Aé

3302

PA6 LED 7
PA7 LED 8

PBO LED 9

PBI LED 10
PB2 LED 11

P83 LED 12

= +5

LED B4
3302 /M

PBA 2 < LED 13

i HE eee ee es

LED B7

+5

Fig. 1.113: LED Connection

10

INTRODUCTION

G G ©

ei
wei

OOOO”
Fig. 1.12: LEO Arrangement on the Board

@) G

@ @

The resistors shown in Figure 1.11 are 330-ohm resistors designed as

current limiters for the 7416 gates.

The output routines will be described in the context of specific

games.

Required Parts

One 6’ x 9”’ vector-board
One 4-to-16 decoder (74154)
Three inverting hex drivers (7416)
One 24-pin socket

Three 14-pin sockets (for the drivers)

One 16-key keyboard, unencoded

Fifteen 330-ohm resistors
One 3.3 K-ohm resistor
One decoupling capacitor (.1 mF)

Fifteen LEDs
One speaker

One 50-ohm or 110-ohm resistor (for the speaker)

Two 15’’-20”’ long 16-conductor ribbon cables
One package of wire-wrap terminal posts
Wire-wrap wire

Solder
A soldering iron and a wire-wrapping tool will also be required.

11

6502 GAMES

VIA NUMBER |

O GO ©&
2

PORT 3 © © (Cs \
1A j

5

OBCERO
7

0

: () MM) YW &
2

PORT 3
1B

4

5

6

7

Fig. 1.13: Detail of LED Connection to the Ports

Assembly

A suggested assembly procedure is the following: the keyboard can

be glued directly to the perf board. Sockets and LEDs can be posi-

tioned on the board and held in place temporarily with tape. All con-

nections can then be wire-wrapped. In the case of the prototype, the
connections to the keyboard were soldered in order to provide reliable

connections since they were not designed as wire-wrap leads. Wire-

wrap terminal posts were used for common connections.

Additionally, on the prototype two sockets were provided for con-
venience when attaching the ribbon cable connector to the Games

Board. They are not indispensable, but their use is strongly suggested
in order to be able to conveniently plug and unplug cables. (They ap-

pear in the top left corner of the photograph in Figure 1.14.) A 14-pin
socket and a 16-pin socket are used for this purpose. Wire-wrap ter-

minal posts can be used instead of these sockets to attach the ribbon

cable directly to the perf board. The other end of the ribbon cable is

12

INTRODUCTION

Fig. 1.14: Games Board Detail

simply attached to the edge connectors of the SYM. When connecting

the ribbon cable at either end, always be very careful to connect it to

the appropriate pins (do not connect it upside down). The Games

Board derives its power from the SYM through the ribbon cable con-

nection. Connecting the cable in reverse will definitely have adverse

effects.

The speaker may be connected to any one of the output drivers

PB4, PBS, PB6, or PB7 of VIA #3. Each of these output ports is
equipped with a transistor buffer. A 110-ohm current-limiting resistor

is inserted in series with the speaker.

The Keyboard Input Routine

This routine, called ‘‘“GETKEY,”’ is a utility routine which will scan

the keyboard and identify the key that was pressed. The correspond-
ing code will be contained in the accumulator. It has provisions for

bounce, repeat, and rollover.

Keyboard bounce is eliminated by implementing a 50 ms delay upon

detection of key closure.

The repeat problem is solved by waiting for the key currently

13

6502 GAMES

pressed to be released before a new value is accepted. This cor-

responds to the case in which a key is pressed for an extended period

of time. Upon entering the GETKEY routine, a key might already be

depressed. It will be ignored until the program detects that a key is no
longer pressed. The program will then wait for the next key closure. If

the processing program using the GETKEY routine performs long

computations, there is a possibility that the user may push a new key

on the keyboard before GETKEY is called again. This key closure will

be ignored by GETKEY, and the user will have to press the key again.

Most of the programs described in this book have audible prompts

in the form of a tone which is generated every time the player should

respond. Note that when a tone is being generated or during a delay

loop in a program, pressing a key will have absolutely no effect.

(ACO1)

(INPUT)

(OUTPUT)

DDR 38
(ACO2)

VIA #3

Fig. 1.15: VIA Connection to Keyboard Decoder

14

INTRODUCTION

Fig. 1.16: GETKEY Flowchart

15

6502 GAMES

The hardware configuration for the GETKEY routine is shown in

Figure 1.9. The corresponding input/output chip on the SYM is

shown in Figure 1.15. VIA #3 of the SYM board is used to com-
municate with the keyboard. Port B of the VIA is configured for out-

put and lines 0 through 3 are gated to the 74154 (4-to-16 decoder),

connected to the keyboard itself. The GETKEY routine will output

the hexadecimal numbers ‘‘0’’ through ‘‘F,’’ in sequence, to the

74154. This will result in the grounding of the corresponding output

line of the 74154. If a key is pressed, bit 7 of VIA #3 of Port A will be
grounded. The program logic is, therefore, quite simple, and the cor-

responding flowchart is shown in Figure 1.16.

The program is shown in Figure 1.17. Let us examine it. The

GETKEY routine can be relocated, i.e., it may be put anywhere in the

memory. In order to conserve space, it has been located at memory
locations 100 to 12E. It is important to remember that this is the low
stack memory area. Any user programs which might require a full

stack would overwrite this routine and thus destroy it. To prevent this
possibility, it could be located elsewhere. For all of the programs that

will be developed in this book, however, this placement is adequate.

The first four instructions of the routine condition the data direction

registers of VIA #3. The data direction register for Port A is set for in-

put (all zeroes), while the data direction register for Port B is set for

output (all ones). This is illustrated in Figure 1.15.

LDA #0
STA DDR3A
LDA #$FF
STA DDR3B

Two instructions are required to test bit 7 of Port 3A, which in-
dicates whether a key closure has occurred:

START BIT PORT3A
BPL START

The key counter is initially set to the value 15, and will be decremented
until a key closure is encountered. Index register X is used to contain

this value, as it can readily be decremented with the DEX instruction:

RSTART LDX #15

This value (15) is then output to the 74154 and results in the selection

16

INTRODUCTION

§‘GETKEY’ KEYBOARD INPUT ROUTINE
‘READS AND DEBOUNCES KEYBOARDs RETURNS WITH KEY NUMBER
¢IN ACCUMULATOR IF KEY DOWN,
SOPERATION! SENDS NUMBERS 0-F TO 74154 (4 TA 14
sLINE DECODER)» WHICH GROUNDS ONE SIDE OF KF YSWITCHES
sONE AT A TIME. IF A KEY IS DOWNr PAZ OF VIA 63 WII! RE
sGROUNDED» AND THE CURRENT VALUE APPLIED TO THE 74154 W
SBE THE KEY NUMBER. WHEN THE PROGRAM DETECTS A KEY CI.0S
SCHECKS FOR KEY CLOSURE FOR SO MS. TO ELTMINATE BOUNCE.
sNOTE: IF NO KEY IS PRESSED>s GETKEY WItt. WATT.
5

«=6100 SNOTE:S GETKEY I8 IN LOW STACK
DDR3A = =6ACO3 IDATA DIRECTION REG A FOR VIA 83
DDR3B =8ACO2 SDATA DIRECTION REG B FOR VIA $3
PORT3A =8ACO1 SVIA@S PORT A IN/OUT REGS
PORT3B =$ACOO sVIAGZS PORT BR IN/OUT REGS
’

0100; LDA #0
0102; STA DDRIA SSET KEY STROBE PORT FOR INFUT
0105: LDA OSFF
01072 STA DDRSB sSET KEY@ PORT FOR OUTPUT
O10A3 BIT PORTIA #SEE IF KEY IS STILL BOWN FROM

*LAST KEY CLOSURE: KEYSTOBE IN ‘N‘
sSTATUS BIT.

010D; BPL START SIF YES» WAIT FOR KEY RELFASF
O10F 3 RSTART LDX 615 sSET KEY@ COUNTER TO 15
01118 NXTKEY STX PORTSB sOUTPUT KEY @ TO 74154
01143 BIT PORTIA $SEE IF KEY DOWN! STROBE IN ’N’
01173 BPL BOUNCE sIF YES» GO DEBOUNCE
01193 DEX SDECREMENT KEY 6
O11A3 BPL NXTKEY $NO» DO NEXT KEY
011C: BMI RSTART sSTART OVER.
O11E3 BOUNCE TXA SSAVE KEY NUMBER IN A
O11F 3 LDY #612 sOUTER LOOP CNT LOAD FOR

‘DELAY OF SO HS.
01213 LP1i LDX @8FF sINNER 11 US. LOOP
01233 LP2 BIT FPORT3A SSEE IF KEY STILL DOWN
0126! BMI RSTART SIF NOTs KEY NOT VALID»? RESTART
01263 DEX
01293 BNE LP2 ‘THIS LOOP USES 211545 US
012B% DEY
012C: BNE LP1 sHUTER LOOP: TOTAL IS 50 AS.
012E3 RTS SDONE: KEY@ IN A.

SYMBOL TABLE:
DDRIA aACOS DDRSB PORTIA
PORTSB acoo START RSTART
NXTKEY 0111 BOUNCE LPt
LP2 0123

DONE

Fig. 1.17: GETKEY Program

of line 17 connected to key 15 (‘‘F’’). The BIT instruction above is

used to test the condition of bit 7 of Port 3A to determine whether this
key has been pressed.

NXTKEY STX PORT3B
BIT PORT3A
BPL BOUNCE

If the key were closed, a branch would occur to ‘‘SBOUNCE,”’ and a

17

6502 GAMES

delay would be implemented to debounce it; otherwise, the counter is
decremented, then tested for underflow. As long as the counter does

not become negative, a branch back occurs to location NXTKEY.

This loop is repeated until a key is found to be depressed or the

counter becomes negative. In that case, the routine loops back to loca-

tion RSTART, restarting the process:

DEX
BPL NXTKEY
BMI RSTART

Note that this will result in the detection of the highest key pressed
in the case in which several keys are pressed simultaneously. In other

words, if keys ‘‘F’’ and ‘‘3’’ were pressed simultaneously, key ‘‘F’’

would be identified as depressed, while key ‘‘3’’ would be ignored.

Avoiding this problem is called multiple-key rollover protection and
will be suggested as an exercise:

Exercise 1-1: Jn order to avoid the multiple-key rollover problem,
modify the GETKEY routine so that all 15 key closures are monitored.

Uf more than one key is pressed, the key closure is to be ignored until

only one key closure is sensed.

Once the key closure has been identified, the corresponding key

number is saved in the accumulator. A delay loop is then implemented
in order to provide a 50 ms debouncing time. During this loop, the key

closure is constantly monitored. If the key is released, the routine is

restarted. The delay itself is implemented using a standard two-level,

nested loop technique.

BOUNCE TXA
LDY #$12

LP1 LDX #$FF
LP2 BIT PORT3A

BMI RSTART
DEX
BNE LP2
DEY
BNE LP1

Exercise 1-2: The value used for the outer loop counter (‘‘$12,’’ or 12
hexadecimal) may not be quite accurate. Compute the exact duration

18

INTRODUCTION

of the delay implemented by the instructions above, using the tables

showing the duration of each instruction in the Appendix.

SUMMARY

Executing the games programs requires a simple Games Board which

provides the basic input/output facilities. The required hardware and

software interface has been described in this chapter. Photographs of
the assembled board which evolved from the prototype are shown in

Figures 1.18 and 1.19.

Fig. 1.19: Removing the Cover

19

2

MUSIC PLAYER

THE RULES

This game allows music to be played directly on the keyboard of a

computer. In addition, the program will simultaneously record the

notes that are played, and then automatically play them back upon re-

quest. Keys ‘‘0’’ through ‘‘C’’ on the keyboard are used to play the

musical notes. (See Figure 2.1.) Key ‘‘D’’ is used to specify a rest. Key

‘*E”’ is used to play back the musical sequence stored in the memory.
Finally, key ‘‘F’’ is used to clear the memory, i.e., to start a new

game. The following paragraph will describe the usual sequence of the

game.

8

9

A

B

c

D

E

F

Fig. 2.1: Playing Music on the Keyboard

20

MUSIC PLAYER

—6—5—4—3—3—4_—5_5_4—4—D—5—
e§ a9 9 a
—3—4—6—5_4—3—4_—D

3—3—3—D—2—D—5—5—_5—_D—3_—D—3—5—8—D—D—
8—6—5—4—D—D—D—4—5—6—D—6-— D— 5— 4— 5—_ D—
ee ec ee Se an J ee pe

Frere Jacques:

3— 4—5—3—3—4—5—_3—5—6—8—D—5— 6-— 8— D-— 8—

A—8—6—5—D—3—D—8—A—8— 6— 5— D—3—D—3—D—

2—D—3—D—D—D—3—D—2-—D—3

Jingle Bells:

5§—5—5—D—5—5—5—D—5-— 8— 3—4—5—_D—D—D—6—

6—6—6—6—5—5— 5— 8—8—6—4—3

6—8—D—4—5—6—D-—5—6—8—D—8— oe

—6—8—D—4—D—8—D_—5—3

Mary Had a Little Lamb:

5—4—3—4—5—5—5—D—4—4—4—D— 5— 88 D— 5—
4—3—4—5—5—5—5—4—4—5_ 4-3

Row Row Row Your Boat:

3—D—3—D— 3— 4— §— D— §— 4—5— 6—8—D—D—D-C—

C—8—8— 5— 5— 3— 3— 8—6—5— 4-—3

Silent Night:

8—D—D—A—8—D—5—D—D—D—8— D— D— A— 8—_ D— 5—
D—D—D—3—D—D—3—D-—B—D—D-—D—C—D—D—c—
D—8—D—D—C—D—8— 5— 8—_D—6-—D_—4—D~_—3

Twinkle Twinkle Little $ter:

3—3—8—8—_A—A—8—D—6—6—5—5— 4— 4—3_D—8—
8—6—6—5—5—4—D—3—3_.8_8_A—_A—8—D—6— 6—
5—5—4—4—3

Fig. 2.2: Simple Tunes for Computer Music

21

6502 GAMES

A TYPICAL GAME

Press key ‘‘F’’ to start a new game. A three-note warble will be
heard, confirming that the internal memory has been erased. Play the

tune on keys ‘‘0’’ through ‘‘D’’ (using the notes and the rest features).

Up to 254 notes may be played and stored in the memory. At any
point, the playback key (‘‘E’’) may be pressed and the notes and rests

that were just played on the keyboard (and simultaneously stored in

the memory) will be reproduced. The musical sequence may be played

as many times as desired by simply pressing key ‘‘E.’’ Examples of

simple tunes or musical sequences that can be played on the computer

are shown in Figure 2.2.

THE CONNECTIONS

This game uses the keyboard plus the speaker. The speaker is con-

nected in series to one of the buffered output lines of PORT B of VIA

#3, via a 110-ohm current limiting resistor. PB4, PBS, PB6, or PB7 of
VIA #3 are used, as they are driven by a transistor buffer on the SYM.

For higher quality music, it is recommended that the speaker be placed

in a small box-type enclosure. The value of the resistor may also be

adjusted for louder volume (without going below 50-ohm) to limit the
current in the transistor.

THE ALGORITHM

A tone (note) is simply generated by sending a square wave of the

appropriate frequency to the speaker, i.e., by turning it on and off at
the required frequency. This is illustrated in Figure 2.3. The length of

time during which the speaker is on or off is known as the half-period.

In this program, the frequency range of 195 to 523 Hertz is provided.

If N is the frequency, the period T is the inverse of the frequency, or:

T = 1/N

Therefore, the half-periods will range from 1/(2 x 195) = .002564 to

UU
=e

V2

SQUARE WAVE SPEAKER

Fig. 2.3: Generating a Tone

22

MUSIC PLAYER

1/(2 x $23) = .000956 microseconds. A classic loop delay will be used
to implement the required frequency.

Actual computations for the various program parameters will be
presented below.

THE PROGRAM

The program is located at memory addresses 200 through 2DD, and

the recorded musical sequence or tune is stored starting at memory

location 300. Up to 254 notes may be recorded in 127 bytes.

Data Structures

Three tables are used in this program. They are shown in Figure 2.4.
The recorded tune is stored in a table starting at address 300. The note
constants, used to establish the frequency at which the speaker will be

toggled, are stored in a 16-byte table located at memory address 2C4.
The note durations, i.e., the number of half-cycles required to imple-

ment a uniform note duration of approximately .21 second, are stored

in a 16-byte table starting at memory address 2D1. Within the tune

table, two ‘‘nibble’’-pointers are used: PILEN during input and PTR

during output. (Each 8-bit byte in this table contains two notes.) In

order to obtain the actual table entry from the nibble-pointer, the
pointer is simply shifted one bit position to the right. The remaining
value becomes a byte-pointer, while the bit shifted into the carry flag

specifies the left or the right half of the byte. The two tables called
CONSTANTS and NOTE DURATIONS are simply reference tables
used to determine the half-frequency of a note and the number of
times the speaker should be triggered once a note has been identified

or specified. Both of these tables are accessed indirectly using the X
register.

Some Music Theory

A brief survey of general music conventions is in order before

describing the actual program. The frequencies used to generate the

desired notes are derived from the equally tempered scale, in which the
frequencies of succeeding notes are in the ratio:

be 2

The frequencies for the middle C octave are given in Figure 2.5.
When computing the corresponding frequencies of the higher or the

23

Fig. 2.4: Memory Mep

lower octave, they are simply obtained by multiplying by two, or

dividing by two, respectively.

Generating the Tone

The half-period delay for the square wave sent to the speaker is im-

plemented using a program loop with a basic 10 ys cycle time. In the
program, the ‘‘loop index,’’ or iteration counter is used to count the

number of 10 ys cycles executed. The loop will result in a total delay

of:

(loop index) x 10 — 1 microseconds

MUSIC PLAYER

A

A#

B

Cc

C#

D

Ow

E

F

FW
G

Gé

Fig. 2.5: Frequencies for the Middle C Octave

On the last iteration of the loop (when the loop index is
decremented to zero), the branch instruction at the end will fail. This
branch instruction will execute faster, so that one microsecond

(assuming a 1 MHz clock) must be subtracted from the total delay

duration. The tone generation routine is shown below:

TONE STA FREQ
LDA #$FF
STA DDRB
LDA #$00
LDX DUR

FL2 LDY FREQ
FLI DEY

CLC INNER
BCC .+2 LOOP
BNE FL!
EOR #$FF
STA OPB
DEX
BNE FL2
RTS

OUTER
LOOP

Note the ‘‘classic’’ nested loop design. Every time it is entered, the
outer loop adds an additional thirteen microseconds delay: 14

microseconds for the extra instructions (LDY, EOR, STA, DEX, and

25

6502 GAMES

BNE), minus one microsecond for responding to the unsuccessful in-
ner loop branch. The total outer loop delay introduced is therefore:

(loop index) x 10 + 13 microseconds

Remember that one pass through the outer loop represents only a half-

period for the note.

Computing the Note Constants

Let ‘‘ID’’ be the inner loop delay and ‘‘OD’’ be the outer loop addi-

tional delay. It has been established in the previous paragraph that the

half-period is T/2 = (loop index) x 10 + 13 or,

T/2 = (loop index) x ID + OD

The note constant stored in the table is the value of the ‘‘index’’ re-

quired by the program. It is easily derived from the equation that:

note constant = loop index = (T — 2 x OD)/2 x ID

The period may be expressed in function of the frequency as T = 1/N

or, in microseconds:

T = 10°/N

Finally, the above equation becomes:

note constant = (10°/N — 2 x OD)/2 x ID

For example, let us compute the note constant corresponding to the
frequency for middle C. The frequency corresponding to middle C is
shown in Figure 2.5. It is 261.62 Hertz. The ‘‘OD’’ delay has been

shown above to be 13 microseconds, while ‘‘ID’’ was set to 10
microseconds. The note constant equation becomes:

note constant = (10°/N — 2 x 13)/2 x 10

1000000/261.62 - 26
20

= 190 (or BE in hexadecimal)

It can be verified that this corresponds to the fourth entry in the table

26

MUSIC PLAYER

ABOVE

7 .

at address NOTAB (see Figure 2.9 at the end of the listing, at address

02C4). The note constants are shown in Figure 2.6.

Fig. 2.6: Note Constants

Exercise 2-1: Using the table in Figure 2.6, compute the corresponding

Srequency, and check to see if the constants have been chosen correctly.

Computing the Note Durations

The DURTAB table stores the note durations expressed in numbers

equivalent to the number of half-cycles for each note. These durations

have been computed to implement a uniform duration of approximately
.2175 second per note. If D is the duration and T is the period, the
following equation holds:

D x T = .2175

where D is expressed as a number of periods. Since, in practice, half-

periods are used, the required number D’ of half-periods is:

D’ = 2D =2 x .2175 x N

For example, in the case of the middle C:

D =2 x .2175 Xx 261.62 = 133.8 ~ 114 decimal (or 72 hexadecimal)

Exercise 2-2: Compute the note durations using the equation above,
and the frequency table in Figure 2.5 (which needs to be expanded).
Verify that they match the numbers in table DURTAB at address 2D1.
(See Figure 2.9)

27

6502 GAMES

Program Implementation

The program has been structured in two logical parts. The cor-
responding flowchart is shown in Figure 2.7. The first part of the pro-

gram is responsible for collecting the notes and begins at label

Fig. 2.7; Music Flowchart

MUSIC PLAYER

TE NUMBER
™ KEY NUMBER

PLAY NOTE

NUMBER YES

NO
3 BEEPS FOR
WARNING

SHIFT PILEN
LOW ORDER BIT
INTO CARRY

TEMP = PILEN
SHIFTED RIGHT ONE

POSITION

Fig. 2.7: Music Flowchart (Continued)

29

6502 GAMES

““NUMKEY.”’ (The program is shown in Figure 2.9). The second part
begins at the label ‘‘PLAYEM’’ and its function is to play the stored

notes. Both parts of the program use the PLAYNOTE subroutine
which looks up the note and duration constants, and plays the note.

This routine begins at the label ‘‘PLAYIT,’’ and its flowchart is

shown in Figure 2.8.

LOOP FROM 0 TO
NOTE CONSTANT
TO WASTE TIME

Fig. 2.8: PLAYIT Flowchart

02003
02028
02043
02053
02083
O20A8
020C!
O20F 3
02113
02133
02153
02163
02193

021B;
021B;
02203
0222:
0224:
0226?
02293
02283
022C3

022D3
022F 3

02313
02333
02363
0238:
O23A%
O23B:
023C:
O23D:
O23E%
02413
02443
9246!

Ag
8s
18
20
cy
bo
20
90
Cc?
BO
20
16
90

65
20
AS
c9
BO
20
90
4A
AB

AS
BO

29
99
Eé
90
0A
OA
0A
OA
19
99
E4é
90

01

02

02

02

02

03

03
o3

MUSIC PLAYER
oe

$ MUSIC PLAYER PROGRAM
3 USES 14 - KEY KEYBOARD AND RUFFERED SPEAKER
§PROGRAM PLAYS STORED MUSICAL NOTES.
STHERE ARE TWO MODES OF OPERATION: INPUT AND PLAY.
SINPUT MODE IS THE DEFAULT» AND ALL NON-COMMAND KEYS
SPRESSED (O-D) ARE STORED FOR REPLAY. IF AN OVERFLOW
sOCCURS» THE USER IS WARNED WITH A THREE-TONE WARNING,
§THE SAME WARBLING TONE IS ALSO USED TO SIGNAL A
SRESTART OF THE PROGRAM.
i)
GETKEY =$100
PILEN =$00 SLENGTH OF NOTE LIST
TEMP =$01 s TEMPORARY STORAGE
PTR =$02 SCURRENT LOCATION IN LIST
FREQ =$03 STEMPORARY STORAGE FOR FREQUENCY
BUR =$04 sTEMP STORAGE FOR DURATION
TABEG =8$300 *TABLE TO STORE MUSIC
OPB =#AC00 SVIA OUTPUT FORT B
DDRB =$ACO2 §VIA PORT B DIRECTION REGISTER
° = $200 sORIGIN
,
ICOMMAND LINE INTERPRETER
’ $F AS INPUT MEANS RESET POINTERS» START OVER.

$E MEANS PLAY CURRENTLY STORED NOTES
ANYTHING ELSE IS STORED FOR REPLAY.

TART LDA $0 ‘CLEAR NOTE LIST LENGTH
STA PILEN
CLC SCLEAR NIBBLE MARKER

NXKEY JSR GETKEY
CMP #15 $IS KEY #15?
BNE NXTST #NOr DO NEXT TEST
JSR BEEPS STELL USER OF CLEARING
BCC START ICLEAR POINTERS AND START OVER

NXTST CHP #14 $IS KEY #147?
BNE NUMKEY SNO» KEY IS NOTE NUMRER
JSR PLAYEM sPLAY NOTES
cLCc
BCC NXKEY §GET NEXT COMMAND

5
S$ROUTINE TO LOAD NOTE LIST WITH NOTES
$
NUMKEY STA TEMP SSAVE KEY» FREE A

JSR PLAYIT sPLAY NOTE
LDA PILEN #GET LIST LENGTH
CMP @6FF SOVERFLOW?
BNE OK §NOe ADD NOTE TO LIST
JSR BEEPS SYES» WARN USER
BCC NXKEY PRETURN TO INPUT MODE

OK LSR A sSHIFT LOW BIT INTO NIBBLE POINTER
TAY sUSE SHIFTED NIBBLE FOINTER AS

SBYTE INDEX
LBA TEMP SRESTORE KEV#
BCS FINBYT 3IF BYTE ALREADY HAS 1 NIBBLE,

SFINISH IT AND STORE
AND #2%00001111 #1ST NIBBLE» MASK HIGH NIBBLE
STA TABEGrY ‘SAVE UNFINISHED 1/2 BYTE
INC PILEN IPOINT TO NEXT NIBBLE
BCC NXKEY SGET NEXT KEYSTROKE

FINBYT ASL A #SHIFT NIBBLE 2 TN HIGH ORDER
ASL A
ASL A
ASL A
ORA TABEGrY *JOIN 2 NIBBLES AS BYTE
STA TABEGrY $eee AND STORE.
INC PILEN POINT TO NEXT NIBBLE IN NEXT BYTE
BCC NXKEY #RETURN

Fig. 2.9: Music Program

31

6502 GAMES

024B%
024A!
024C3
024E%
O24F 3

025038
02533
02353
02573
0259
025B%
O25C 3
O25D:
O25E 3
O25F 3
02623
02643
0267;
02693
026B3
02633
O26F 3

02703
02723
02743
02762
02793
027A!
027B?
O27E!
02803
02833
0286!

02873
0289:
O28RB:
026D3
029703
02923
029353
02971
O29A2
0298

029C?
O29E?
O29F $
O2A13
02A2’
O02A43
02A5?
02A73

32

FF

00

FA

FS

03

02

02

02

02

02
02

02

02

02

’
§ ROUTINE TO PLAY NOTES
6
PLAYEM L.DX

STXx
LDA

LooP LSR
TAX

LDA
BCS
AND
BCC

ENDRYT AND
I.SR
LSR
LSR
LSR

FINISH JSR
LDX
JSR
INC
LDA
CHP
BCC
RTS

9

#0
PTR
PTR
A

TABEG +X
ENDBYT
#%00001111
FINISH
#%11110000
A
Aa
A
A
PLAYIT
#620
DELAY
PTR
PTR
PILEN
LOOP

§CLEAR POINTER

§LOAD ACUM W/CURRENT PTR VAL
ISHIFT NIBBLE INDICATOR INTO CARRY
SUSE SHIFTED NIBBLE POINTER
sAS BYTE POINTER
§LOAN NOTE TO PLAY
71.00 NIBBLE USED» GET HIGH

sMASK OUT HIGH BITS
sPLAY NOTE

‘THROW AWAY 1-0W NTBBLE
SSHIFT INTO tow

SCALCULATE CONSTANTS & PLAY :
SRETWEEN-NOTE DELAY

sONE NIBBLE USED

SEND OF LIST?
sNOr GET NEXT NOTE
+ DONE

PROUTINE TO DO TABLE LOOK UPs SEPARATE REST
U
PLAYTT CMP

BNE
t.DX
JSR
RTS

SOUND TAX
LDA
STA
LDA
JSR
RTS

5

#13
SOUND
¢854
DELAY

DURTAB?X
BUR
NOTAB eX
TONE

SREST?
§NO.
SDELAY=NOTE LENGTH=. 21SEC

SUSE KEY# AS INDEX...
§.+eTO FIND DURATION.

ISTORE DURATTON FOR USE
SLOAD NOTE VALUE

#ROUTINE TO MAKE 3 TONE SIGNAL
$
BEEF3 LDA

STA
LDA
JSR
LDA
JSR
LDA
JSR
cLC
RTS

OSFF
DUR
0648
TONE
#938
TONE
€64B
TONE

SDURATION FOR BEEPS

*CODE FOR E2
$1ST NOTE
‘CODE FOR D2

,

sVARTABLE-LENGTH DELAY
§
DELAY LDY
DLY NOP

BNE
DEY
BNE
DEX
BNE
RTS

$

esFF

ot2

DLY

DELAY

$10 US LOOP

SLOOP TIME = 2556e0X]

sROUTINE TO MAKE TONE? @ OF 1/2 CYCLES IS IN ‘DUR’,
SAND 1/2 CYCLE TIME IS IN A. LOOP TIME=208CAI1424 US

Fig. 2.9: Music Program (Continued)

O2A8!
O2AAE
O2AC:
O2AF
02B13
02B33
O2B5!
O2B6:
O2B73
O2R9:
O2BB:
O2BD!
02C0:
02C1i!
02C3!

0204;
o2C5:
02C63
02073
02C8:
02093
O2CA3
02CB:
O2CC3
o2cD:
O2CE:
O2CF:
O2n0:

O2D15
O2n23
02033
02043
O2D33
O2N63
O2n7%
0208;
02D93
O2DA!
O2DB:
O2DC%
O2nDt

FE
E2
Cc?
BE
Ag?
96
BE
84
7E
7?
790
64
SE

35
60
6B
72
B80
8F
94
Al
AA
BS
BF
Bb?
E4

ac

ac

SYMBOL TABLE:
GETKEY
FTR
TABEG
START
NUMKEY
FLAYEN
FINISH
BEEFS
TONE
NOTAB

x

MUSIC PLAYER

sSINCE TWO RUNS THROUGH THE OUTER LOOP MAKES
#ONE CYCLE OF THE TONE.
;
TONE STA FREQ sFREQ IS TEMP FOR @ OF CYCLES

LDA $&6FF SSET UP DATA DIRECTION REG
STA DDRB
LDA #800 9A IS SENT TO PORT, START HI
LDX DUR

FL2 LDY FREQ
FL1 DEY

CLC
BCC .+t2
BNE FL1i SINNER? 10 US LOOP
EOR #¢$FF @COHPLEMENT I/0 FPORI
STA OPB 3e¢+AND SET IT
DEX
BNE FL2 SOUTER LOOF
RTS

STABLE OF NOTE CONSTANTS
§CONTAINS:
SCOCTAVE BELOW MIDDLE C] & GrArB
#COCTAVE OF MIDDLE Cl] : CeDeEvFrF@eoGrGtrArk
#COCTAVE ABOVE MIDDLE CC) °: C
,
NOTAB .BYT SFE? S$E27$C9+ SBE 2 6A97$96> SBF

sBYT $867$7E29779$707 $647 $5E

‘TABLE OF NOTE DURATIONS IN # OF 1/2 CYCLES
§SET FOR A NOTE LENGTH OF ABOUT .21 SEC.
3
DURTAB .BYT $557$602$682$722880>» SBF + $94

BYT $A1°tAAs8BS>6BRF 1 9N758E4

0100 PILEN 0000 TEMP 0001
0002 FREQ 0003 DUR 0004
0300 OPB ACOO DDRB ACO2
0200 NXKEY 0205 NXTST 0211
O21B OK 022k FINBYT O23A
0248 oor 024E ENDEYT 0259
O25F CfLAYTT 0270 SOUND Q27A
0287 DELAY 029C DLY 029E
O2AB FL2 02B3 FL 0285
02C4 DURTAB 02B1

Fig. 2.9: Music Program (Continued)

33

6502 GAMES

The main routines are called, respectively, NXKEY, NUMKEY,
and BEEP3 for the note-collecting program, and PLAYEM and
DELAY for the note-playing program. Finally, common utility
routines are TONE and PLAYIT.

Let us examine these routines in greater detail. The program resides
at memory addresses 200 and up. Note that the program, like most
others in this book, assumes the availability of the GETKEY routine

described in Chapter 1.

The operation of the NXKEY routine is straightforward. The next
key closure is obtained by calling the GETKEY routine:

START LDA #0
STA PILEN Initialize length of list to 0
CLC

NXKEY JSR GETKEY

The value read is then compared to the constants ‘‘15’’ and ‘‘14’’ for

special action. If no match is found, the constant is stored in the note

list using the NUMKEY routine.

CMP #15
BNE NXTST
JSR BEEP3
BCC START

NXTST CMP #14
BNE NUMKEY
JSR PLAYEM
CLC
BCC NXKEY

Exercise 2-3: Why are the last two instructions in this routine used in-
stead of an unconditional jump? What are the advantages and disad-

vantages of this technique?

Every time key number 15 is pressed, a special three-tone routine

called BEEP3 is played. The BEEP3 routine is shown at address 0287.
It plays three notes in rapid succession to indicate to the user that the

notes in the memory have been erased. The erasure is performed by

resetting the list length PILEN to zero. The corresponding routine ap-
pears below:

34

-~

MUSIC PLAYER

BEEP3 LDA #$FF Beep duration constant
STA DUR
LDA #$4B Code for E2

JSR TONE lst note

LDA #$38 Code for D2

JSR TONE 2nd note
LDA #$4B - Code for E2

JSR TONE 3rd note

CLC
RTS

Its operation is straightforward.
The NUMKEY routine will save the code corresponding to the note

in the memory. As in the case of a Teletype program, the computer
will echo the character which has been pressed in the form of an audi-

ble sound. In other words, every time a key has been pressed, the pro-
gram will play the corresponding note. This is performed by the next

two instructions:

NUMKEY STA TEMP
JSR PLAYIT

The list length is then checked for overflow. If an overflow situation is
encountered, the player is advised through the use of the three-tone se-
quence of BEEP3:

LDA PILEN Get length of list

CMP #$FF Overflow?
BNE OK No: add note to list

JSR BEEP3 Yes: warn player
BCC NXKEY Read next key

Otherwise, the new nibble (4 bits) corresponding to the note identifica-
tion number is shifted into the list:

OK LSRA Shift low bit into
nibble pointer

TAY Use as byte index
LDA TEMP Restore key #

Note that the nibble-pointer is divided by two and becomes a byte in-

dex. It is then stored in register Y, which will be used later to perform

35

6502 GAMES

an indexed access to the appropriate byte location within the table

(STA TABEG, Y).
Depending on the value which has been shifted into the carry bit, the

nibble is stored either in the high end or in the low end of the table’s
entry. Whenever the nibble must be saved in the high-order position of

the byte, a 4-bit shift to the left is necessary, which requires four in-
structions:

BCS FINBYT Test if byte has a nibble
AND #%00001111 Mask high nibble
STA TABEG,Y Save

INC PILEN Next nibble

BCC NXKEY

FINBYT ASL A

ASL A
ASL A

ASL A

Finally, it can be saved in the appropriate table address,

ORA TABEG,Y
STA TABEG,Y

The pointer is incremented and the next key is examined:

INC PILEN
BCC NXKEY

Let us look at this technique with an example. Assume:

PILEN = 9 (length of list)

TEMP = 6 (key pressed)

The effect of the instructions is:

OK LSRA A will contain 4, C will con-

tain |

TAY yY=4

LDA TEMP A=6
BCS FINBYT C is 1 and the branch occurs

MUSIC PLAYER

The situation in the list is:

BYTE
DISPLACEMENT

TABEG

PILEN

Fig. 2.10: Entering a Note In the List

Shift ‘‘6”’ into the high-order position of A:

FINBYT ASL A
ASL A
ASL A
ASL A A = 60 (hex)

Write A into table:

ORATABEG,Y A = 16X (where X is the

previous nibble in the table)

STA TABEG,Y Restore old nibble with new

nibble

The Subroutines

PLAYEM Subroutine

The PLAYEM routine is also straightforward. The PTR memory
location is used as the running nibble-pointer for the note table. As
before, the contents of the running nibble-pointer are shifted to the
right and become a byte pointer. The corresponding table entry is then

loaded using an indexed addressing method:

37

6502 GAMES

PLAYEM LDX #0
STX PTR PTR = 0

LOOP LSR A

LDA TABEG,X
BCS ENDBYT
AND #%00001111
BCC FINISH

ENDBYT AND #% 11110000
LSR A
LSRA
LSRA
LSRA

Depending upon the value of the bit which has been shifted into the

carry, either the high-order nibble or the low-order nibble will be ex-
tracted and left-justified in the accumulator. The subroutine PLAYIT

described below is used to obtain the appropriate constants and to

play the note:

FINISH JSR PLAY IT Play note

A delay is then implemented between two consecutive notes, the run-
ning pointer is incremented, a check occurs for a possible end of list,

and the loop is reentered:

LDX #$20 Delay constant
JSR DELAY Delay between notes

INC PTR One nibble used

LDA PTR

CMP PILEN Check for end of list

BCC LOOP No: get next note

RTS Done

PLAYIT Subroutine

The PLAYIT subroutine plays the note or implements a rest, as
specified by the nibble passed to it in the accumulator. This subroutine

is called ‘‘PLAYNOTE”’ on the program flowchart. It merely looks

up the appropriate duration for the note from table DURTAB, and

saves it at address DUR (at memory location 4). It then loads the ap-

propriate half-period value from the table at address NOTAB into the

38

MUSIC PLAYER

A register, using indexed addressing, and calls subroutine TONE to
play it:

PLAYIT CMP #13 Check for a rest

BNE SOUND No
LDX #$54 Delay = .21 sec (note duration)

JSR DELAY Lf rest was specified
RTS

SOUND TAX Use key # as index

LDA DURTAB,X_ To look up duration

STA DUR

LDA NOTAB,X
JSR TONE
RTS

TONE Subroutine

The TONE subroutine implements the appropriate wave form

generation procedure described above, and toggles the speaker at the

appropriate frequency to play the specified note. It implements a
traditional two-level, nested loop delay, and toggles the speaker by

complementing the output port after each specified delay has elapsed:

TONE STA FREQ

A contains the half-cycle time on entry. It is stored in FREQ. The loop

timing will result in an output wave-length of:

(20 x A + 26) us

Port B is configured as output:

LDA #$FF
STA DDRB

Registers are then initialized. A is set to contain the pattern to be out-
put. X is the outer loop counter. It is set to the value DUR which

contains the number of half cycles at the time the subroutine is called:

LDA #$00
LDX DUR

39

6502 GAMES

The inner loop counter Y is then initialized to FREQ, the frequency

constant:

FL2 LDY FREQ

and the inner loop delay is generated as usual:

FL1 DEY

CLC
BCC .+2

BNE FL! 10 zs inner loop

Then the output port is toggled by complementing it:

EOR #$FF
STA OPB

and the outer loop is completed:

DEX
BNE FL2
RTS

The DELAY subroutine is shown in Figure 2.9 at memory location 29C
and is left as an exercise.

SUMMARY

This program uses a simple algorithm to remember and play tunes.

All data and constants are stored in tables. Timing is implemented by
nested loops. Indexed addressing techniques are used to store and

retrieve data. Sound is generated by a square wave.

EXERCISES

Exercise 2-4: Change the note constants to implement a different range

of notes.

Exercise 2-5: Store a tune in memory in advance. Trigger it by pressing

key ‘0.’’

Exercise 2-6: Rewrite the program so that it will store the note and

duration constants in memory when they are entered, and will not
need to look them up when the tune is played. What are the disadvan-
tages of this method?

40

3

TRANSLATE

THE RULES

This is a game designed for two competing players. Each player tries to

quickly decipher the computer’s coded numbers. The players are alter-
nately given a turn to guess. Each player attempts to press the hexa-

decimal key corresponding to a 4-bit binary number displayed by the
program. The program keeps track of the total guessing time for each

player, up to a limit of about 17 seconds. When each player has correctly
decoded a number, the players’ response times are compared to deter-

mine who wins the turn. The first player to win ten turns wins the match.
The program signals each player’s turn by displaying an arrow

pointing either to the left or to the right. The player on the right will be

signaled first to initiate the game. The program’s ‘‘prompt’’ is shown

in Figure 3.1.

A random period of time will elapse after this prompt, then the bot-

tom row of LEDs on the Games Board will light up. The left-most

LED (LED #10) signals to the player to proceed. The four right-most

LEDs (LEDs 12, 13, 14, and 15) display the coded binary number.

This is shown in Figure 3.2. In this case, player 1 should clearly press

key number 5. If the player guesses correctly, the program switches to
player 2. Otherwise, player 1 will be given another chance until his or

her turn (17 seconds) is up. It should be noted here that for each
number presented to the player, the total guessing time is accumulated

to a maximum of about 17 seconds. When the maximum is reached,

the bottom row will go blank and a new number will be displayed.
The program signals player 2’s turn (the player on the left) by

displaying a left arrow on the LEDs as shown in Figure 3.3. Once both

players have had a turn to guess a binary digit, the program will signal

41

6502 GAMES

“0 -@ -@ “O -@ ~O

-O

3
"s

Fig. 3.1: Prompt Signals the Right Player to Play

0 WW 13h

@®ode@eod @
“Go BINARY NUMBER

Fig. 3.2: Bottom Row of LEDs Displays Number to be Guessed

Fig. 3.3: i¢ is Player 2's Turn (Left Player)

the winner by lighting up either the left-most or the right-most three
LEDs of the bottom row. The winner is the player with the shortest

guessing time. The game is continued until one player wins ten times.

He or she then wins the match. The computer signals the match win-
ner by blinking the player’s three LEDs ten times. At the end of the
match, control is returned to the SYM-1 monitor.

A TYPICAL GAME

The right arrow lights up. The following LED pattern appears at the

bottom: 10, 13, 14, 15. The player on the right (player 1) pushes key

42

TRANSLATE

“*C,’’ and the bottom row of LEDs goes blank, as the answer is incor-
rect. Because player 1 did not guess correctly and he or she still has

time left in this turn, a new number is offered to player 1. LEDs 10,
13, 14, and 15 light up and the player pushes key ‘‘7.’’ He or she wins
and now the left arrow lights up, indicating that it is player 2’s turn. This
time the number proposed is 10, 12, 15. The left player pushes key ‘‘9.”’

At this point, LEDs 10, 11, and 12 light up, indicating that the player

is the winner for this turn as he/she has used less total time to make a

correct guess than player 1.
Let us try again. The right arrow lights up; the number to translate

appears in LEDs 10, 13, 14, and 15. Player 1 pushes key ‘‘7,’’ and a
left arrow appears. The next number lights LEDs 10 and 14, Player 2

pushes key ‘‘2.”’ Again, the left-most three LEDs light up at the bot-

tom, as player 2 was faster than player 1 at providing the correct

answer.

THE ALGORITHM

The flowchart corresponding to the program is shown in Figure 3.4.

A first waiting loop is implemented to measure the time that it takes for
player 1 to guess correctly. Once player 1 has achieved a correct guess,

his or her total time is accumulated in a variable called TEMP. It is

then player 2’s turn, and a similar waiting loop is implemented. Once

both players have submitted their guesses, their respective guessing
times are compared. The player with the least amount of time wins,

and control flows either to the left or to the right, as shown by labels 1
and 2 on the flowchart in Figure 3.4. A secondary variable called

PLYRI1 or PLYR2 is used to count the number of games won by a

specific player. This variable is incremented for the player who has
won and tested against the value 10. If the value 10 has not been

reached, a new game is started. If the value 10 has been reached, the

player with this score is declared the winner of the match.

THE PROGRAM

The corresponding program uses only one significant data struc-
ture. It is called NUMTAB and is used to facilitate the display of the
random binary numbers on the LEDs. Remember that LED #10 must

always be lit (it is the ‘‘proceed’’ LED). LED #11 must always be off.

LEDs 12, 13, 14, and 15 are used to display the binary number.

Remember also that bit position 6 of Port 1B is not used. As a result,

displaying a ‘‘0’’ will be accomplished by outputting the pattern

43

6502 GAMES

NTI =O
NT 2 = 0 i

SHOW THAT IT IS
PLAYER 1's TURN

SHOW THAT IT 1S
PLAYER 2's TURN

INCREMENT PLAYER
1's WINCOUNT

GET PLAYER 2’s
GUESS WHILE
TIMING INPUT

SHOW PLAYER
V's WIN

YES

Fig. 3.4: Translate Flowchart

- TRANSLATE

“90000010.’’ Outputting a ‘‘1”’ will be accomplished with the pattern

‘*10000010.’’ Outputting ‘‘2’’ will be accomplished with the pattern

*690100010.’’ Outputting ‘‘3’’ will be accomplished with the pattern
‘*10100010,”’ etc. (See Figure 3.5)

The complete patterns corresponding to all sixteen possibilities are

stored in the NUMTAB table of the program. (See Figure 3.6.) Let us
examine, for example, entry 14 in the NUMTAB (see line 0060 of the

program). It is ‘00111010.’ The corresponding binary number to be

displayed is, therefore: ‘‘00111.”’

It is ‘1110’? or 14. Remember that bit 6 on this port is always ‘‘0.’’

Low Memory Area

Memory locations 0 to 1D are used to store the temporary variables
and the NUMTAB table. The functions of the variables are:

TEMP Storage for random delay-length
CNTHI,CNTLO _ Time used by a player to make

his or her move

CNT1H,CNTIL _ Time used by player | to make
his or her move (permanent
storage)

PLYRI Score for Player 1(number of

games won so far, up to a
maximum of ten)

PLYR2 Same for player 2
NUMBER Random number to be guessed
SCR and following Scratch area used by the

random number generator

In the assembler listing, the method used to reserve memory loca-

tions in this program is different from the method used in the program

in Chapter 2. In the MUSIC program, memory was reserved for the
variables by simply declaring the value of the symbols representing the

45

6502 GAMES

VIA #1 LED AO

3202 TVA
PAO < LED 1

PA2 eee LED 3

oe De fay
a ir ee ae (ee
a Ase eee ey

[i. oe
+5 +5

LED Aé

3302 JM

ies At > aes een pc
PBO <4 LED9

PB2 C| LED 11

va Say Ay aime eae

W, B3

= +5

LED B4

3309 /M4
PB4 LED 13

PB5 LED 14

PB7 LED 15 |
LED 87

= +5

Fig. 3.5: LED Connections

TRANSLATE

variable locations with the statement: ,

<VARIABLE NAME> = (MEMORY ADDRESS >

In this program, the location counter of the assembler is incremented

with expressions of the form:

=>+n

Thus, the symbols for the variable locations in this program are

declared as ‘‘labels,’’ while, in the MUSIC program, they are ‘‘sym-

bols’’ or ‘‘constant symbols.”’

The program in this chapter consists of one main routine, called

MOVE, and five subroutines: PLAY, COUNTER, BLINK, DELAY,

RANDOM. Let us examine them. The data direction registers A and B

for the VIA’s #1 and #3 of the board must first be initialized. DDRIA,

DDRI1B, and DDR3B are configured as outputs:

START LDA #$FF
STA DDRIA
STA DDRI1B
STA DDR3B

DDR3A is conditioned as input:

LDA #0
STA DDR3A

Finally, the variables PLYR1 and PLYR2, used to accumulate the

number of wins by each player, are initialized to zero:

STA PLYRI
STA PLYR2

The main body of MOVE is then entered. A right arrow will be
displayed to indicate that it is player 2’s turn. A reminder of the LEDs
connections is shown in Figure 3.5. In order to display a right arrow,

LEDs I, 4, 5, 6, and 7 must be lit (refer also to Figure 3.1). This is ac-
complished by outputting the appropriate code to Port 1A:

MOVE LDA #%01111001
STA PORTIA Display right arrow

47

6502 GAMES

The bottom line of LEDs must be cleared:

LDA #0
STA PORTIB

Finally, the counters measuring elapsed time must be cleared:

STA CNTLO
STA CNTHI

We are ready to play:

JSR PLAY

The PLAY routine will be described below. It returns to the calling

routine with a time-elapsed measurement in locations CNTLO and

CNTHI.
Let us return to the main program (line 0082 in Figure 3.6). The

time-elapsed duration which has been accumulated at locations
CNTLO and CNTHI by the PLAY routine is saved in a set of perma-
nent locations reserved for player 1, called CNTIL, CNT1H:

LDA CNTLO
STA CNTIL
LDA CNTHI
STA CNT1H

It is then player 2’s turn, and a left arrow is displayed. This is ac-

complished by turning on LEDs 3, 4, 5, and 6:

LDA #%000111100 Display left arrow
STA PORTIA

Then LED #9 is turned on to complete the left arrow:

LDA #1
STA PORTIB

As before, the time-elapsed counter is reset to zero:

LDA #0
STA CNTLO
STA CNTHI

48

CODE

& 333

z 3

TRANSLATE

LINE

§ ’ TRANSLATE’
SPROGRAM TO TEST 2 PLAYER’S SPEED
IN TRANGLATING A BINARY NUNBER TO A SINGLE
sHEXADECIMAL DIGIT. EACH PLAYER I6 GIVEN A
sTURNe AS SHOWN BY A LIGHTED LEFT OR RIGHT
SPOINTER. THE NUMBER WILL SUDDENLY FLASH ON
SLEDS 12-15» ACCOMPANIED BY THE LIGHTING
SOF LED @10. THE PLAYER MUST THEN
SPUSH THE CORRESPONDING BUTTON. AFTER
#BOTH PLAYERS TAKE TURNS. REGULTS ARE
#SHOWUN ON BOTTOM ROW. AFTER 10 WINSe
JA PLAYER‘’S RESULTS WILL FLASHe
}SHOWING THE BETTER PLAYER. THEN
ITHE GANE REGTARTS.
é
#3703
3
PORTIA © #A001 bLEDS 1-6
PORTIB = $0000 ILEDS 9-15
DDRIA = $A003
DDR1B = $A002 :
PORT3A = 6ACOL SKEY STROBE INPUT.
PORT3B = $AC0O INEY @ OUTFUT.
DDR3A = SACO3
DDR3B = 6AC02
i]
OVARIABLE STORAGE!
$

x= 80
6
TEMP ments
CNTHI B=e8+1 STEMPORARY STORAGE FOR AMT. OF

STIME PLYR USES TO GUESS.
CNTLO 85841
CNTIH S=8+1 bAMT. OF TINE PLYRI UBES TO GUESS.
CNTiL | Sa841
PLYRI Best
PLYR2 80841
NUMBER 8=8+1
SCR Bas+6
3
OTABLE OF ‘REVERSED’ NUMBERS FOR DISPLAY
sIN BITS 3-8 OF PORTIBe OR LEDS 12-15.

+GCORE OF @ WON FOR PLYR1.
IPLAYER 2 SCORE.
OSTORES NUMBER TO BE GUESSED.

SSCRATCHPAD FOR RND. @ GEN.

‘
NUMTAB .BYTE Z%00000010

»BYTE 210000010
«BYTE 200100010
-BYTE 210100010
»BYTE Z%00010010
«BYTE 210010010
BYTE %00110010
oBYTE Z10110010
»BYTE 200001010
oBYTE 210001010
-BYTE 200101010
eBYTE 210101010
»BYTE Z00012010
-BYTE 210011010
BYTE 200111010
»BYTE 210111010

6
SHAIN PROGRAM
6

& = 8200
8
START LDA OSFF

STA DORIA
STA DDRIB
STA DDR3IB
LDA 60
STA DDRIA
STA PLYR1 OCLEAR NO. OF WING.
STA PLYR2

MOVE LDA @Z01111001
STA PORTIA sSHOW RIGHT ARROW.
LOA 60
STA FORTIB
STA CNTLO SCLEAR COUNTERS.
STA CNTHI
JER PLAY SGET PLAYER 1°S TIME.

sSET UP PORTS

LDA CNTLO tXFER TEMP COUNT TO PERMANENT STORAGE.
STA CNTIL
LDA CNTHI

Fig. 3.6: Translate Program

49

3 3

02

ao

02

02
02
02

ao
ao
02

ao
ao
02

a8

EQUAL

PLR1

PLR2

#SUBROUT INE

CNT1H
2000111100

PLR1I
@Z21110000
PORTIB
0
PORTIA
e840
DELAY
PLYR1I
010
PLYRI
MOVE
0%11110000
BLINK

@%1110

@x1110
BLINK

“PLAY’

0SHOW LEFT ARROW.

CLEAR COUNTERS.

GET PLAYER 2°S TIME.
SOET PLAYER 2°S COUNT AND...
SCOMPARE TO PLAYER 1°S.
SCHECK LOW ORDER BYTES TO REGOLVE WINNER.
SPLAYER 2 HAS SNALLER COUNT, SHOW IT.
sPLAYER 1 HAG SNALLER COUNT, SHOW IT.
OHI BYTES WERE EQUAL,» 60

‘: tCHECK LOW BYTES.
ICOMPARE SCORES.
bPLAYER 2 WING. SHOW IT.
#PLAYER 1 WINGe SHOW IT.
#LIGHT RIGHT GIDE OF BOTTOM ROW
iTO SHOU WIN.

sCLEAR LOW LEDS.
JWAIT A WHILE TO SHOW WIN.

JPLAYER 1 WINS ONE HORE...
boeeHAS HE WOM 107

#I€ NOTs PLAY ANOTHER ROUND.
sYES - GET BLINK PATTERN.
IBLINK WINNING SIDE.
SENDGAME! RETURN TO MONITOR.
SLIGHT LEFT SIDE OF BOTTOM,

OCLEAR LOW LEDS.
IUAIT A WHILE TO SHOW WIN.

IPLAYER 2 HAG WON ANOTHER ROUND....
$eeceHAS HE YOM 107

SIF NOTe PLAY ANOTHER ROUND.
SYES-GET PATTERN TO BLINK LEDS.
SBLINK THEM
sEND.

9GETS TIME COUNT OF EACH PLAYER: AND IF
SBAD GUESSES ARE MADE»
SGIVEN ANOTHER CHANCE,
STHE OLD.
§
PLAY JSR

#GUBROUTINE

RANDOM
DELAY
RANDOM
@tOrF
NUMBER

NUMTAB?X
PORTIB
PORTIS
CNTSUB
NUMBER
DONE
001
PORT1B
PORT1B
PLAY

‘COUNTER’

THE PLAYER I8
THE NEW TINE ADDED TO

SGET RANDOM NUMBER.
SRANDOM - LENGTH DELAY.
OGET ANOTHER.
0KEEP UNDER 146 FOR USE AS
ONUMBER TO GUESS.
SUBE AS INDEX TO....
§..-GET REVERSED PATTERN FROM TABLE ...
§...70 DISPLAY IN LEDS 12-15.

GET KEYSTROKE & DURATION COUNT.
$18 KEYSTROKE CORRECT GUESS?
OTF GOe DONE.
#NO: CLEAR OLD GUESS FROM LEDS.

STRY AGAIN W/ANOTHER NUMBER.
SRETURN U/ DURATION IN CNTLOSCNTHI

GETS KEYSTROKE WHILE KEEPING TRACK OF AMT OF
STIME BEFORE KEYPRESS.
U
CNTSUB LDY
KEYLP 8TY

BIT
BPL
DEY
BPL
INC

oor
PORT3B
PORT3A
FINISH

KEYLP
CNTLO

#SET UP KEY@ COUNTER.
SOUTPUT KEY@ TO KEYBOARD HPXR.
SKEY DOUNT
OIF YESe DONE.
#COUNT DOUN KEY @.
STRY NEXT KEY.
SALL KEYG TRIED?s INCREMENT COUNT.

Fig. 3.6: Translate Program (Continued)

TRANSLATE

0164 0204 BO EF BNE CNTSUD STRY KEYS AGAIN IF NO OVERFLOW.
0167 0206 Eé 01 INC CNTHI SOVERFLOW, INCREMENT HIGH BYTE.
01468 O2C® BO EB BNE CNTSUB TRY KEYS AGAIN.
0169 O2CA 60 FINIGH RTS DONE? TIME RAN OUT OR KEY PREGGED.
0170 ©602CR i)
0171 «=+O02CB SSUPROUTINE ‘BLINK’
0172 O2CB BLINKS LEDS WHOSE BITE ARE SET IN ACCUMULATOR
0173 «402CB OM ENTRY.
0174 02CD ’
0175 O2CB AZ 14 BLINK LDX 620 920 BLINKS.
0174 O2CD G6 01 STX CNTHI SET BLINK COUNTER.
0177 +O2CF 63 02 STA CNTLO OBLINK REGISTER.
0178 4O2D1 AS 602 BLOGP LDA CNTLO 8GET BLINK PATTERN,
0179 0283 4D 00 Ad EOR PORTIS sBLINK LEDS.
0100 0204 GD 00 Ad STA PORTIB
0262 O2D9 AP OA LDA 010 SSHORT DELAY.
0162 O2DB 20 E3 02 JER DELAY
0183 O2DE Cé 01 DEC CNTNI
0164 O2E0 BO EF BME BLOOP SLOOP IF NOT DONE.
0183 0262 40 RTS
0186 02E3 9
0167 O2E3 SSUBROUTINE ‘DELAY’
018@ O02E3 SCONTENTS OF REG. A DETERMINES DELAY LENGTH.
0189 O2E3 ’
0190 O2E3 85 00 DELAY STA TEMP
O191 O2ES AO 10 DLt LDY @610
0192 O27 A2 FF DL2 LBX OOFF
0193 O2E9 CA oL3 DEX
0194 O2EA DO FD BME DL3
0195S O2EC 668 DEY
0196 O2ED BO FA BNE OL2
0197 O2EF Cé 00 DEC TEMP
0198 O2F1 DO F2 DME DL?
0199 O2F3 460 RTS
0200 02F4 8
0201 O2F4 SSUBROUTINE ‘RANDON’
0202 02F4 SRANDOM NUMBER GENERATOR.
0203 02F4 SRETURNS RANDOM NUMBER InN ACCUM.
0204 02F4 9
0205 O2F4 38 RANDOM SEC
0206 O2FS AS OF LDA SCR
0207 O2F7 435 OC ADC GCRt4
0206 O2F9 65 OD ADC GCRES
0209 O2FB 6S 08 STA GCR
0210 O2FD A2 04 LDX 64
0211 O2FF BS 08 RNDLP LBA SCReX
0212 0301 93 09 GTA SCR+1 eX
O213 0303 CA DEX
0214 0304 10 F9 BPL RNDLP
0215 0306 40 RTS
0216 0307 END

SYMBOL TABLE

GYMBOL = VALUE

BLINK o2cRB 8 8=6t.OOP 0231 38CNTIH 0003 «= CNTIL 0004
CNTHI 0008 4 8©6CNTLO 0002 «6CNTSUB) 0 060023BS)=— ss DRA &003
DOR1D €002 = BDRIA Aco3 DDRID aco2 DELAY O2E3
DLi o2mts = 62 027, OLS O2E9 DONE 0234
EGUAL 024A FINISH O2CA KEYLP 02B7 MOVE 0214
NUMBER 0007 NUNTAB COOE 8 PLAY 026C 3=—s PLRI1 0232
PLR2 O26F PLYRI 0005) = PLYR2 0006 PORTIA A001
PORTIB AGOO 8 6—PORTSA 8 606ACO1 = =60—PORTSB 6 60ACOO 8=CiéRANDOM 0s OF 4
RNDLP O2FF BCR 0008 86 START 0200 8 86TEMNP 0000

END OF ASSEMBLY

Fig. 3.6: Translate Program (Cont

51

6502 GAMES

and player 2 can play:

JSR PLAY

The time elapsed for player 2 is then compared to the time elapsed for
player 1. If player 2 wins, a branch occurs to PLR2. If player 1 wins, a

branch occurs to PLR1. The high bytes are compared first. If they are
equal, the low bytes are compared in turn:

LDA CNTHI
CMP CNT1H Compare high bytes
BEQ EQUAL
BCC PLR2 Player 2 has lower time?

BCS PLR] Player 1 does

EQUAL LDA CNTLO Compare low bytes
CMP CNTIL
BCC PLR2

CMP CNTIL
BCC PLR2
BCS PLR1

Once the winner has been identified, the bottom row of LEDs on his
or her side will light up, pointing to the winner. Let us follow what

happens when PLR] wins, for example. Player 1’s right-most three

LEDs (LEDs 13 through 15) are lit up:

PLRI LDA #% 11110000
STA PORTIB

The other LEDs on the Games Board are cleared:

LDA #0
STA PORTIA

A DELAY is then implemented, and we get ready to play another

game, up to a total of 10:

LDA #$40
JSR DELAY

The score for player 1 is incremented:

INC PLYRI1

52

TRANSLATE

It is compared to 10. If it is less than 10, a return occurs to the main

MOVE routine:

LDA #10
CMP PLYRI
BNE MOVE

Otherwise, the maximum score of 10 has been reached and the game is

over. The LEDs on the winner’s side will blink:

LDA #%11110000 Blink pattern

JSR BLINK
RTS

The corresponding sequence for player 2 is listed at address PLR2

(line 117 on Figure 3.6):

PLR2 LDA #%1110
STA PORTIB
LDA #0
STA PORTIA
LDA #$40
JSR DELAY
INC PLYR2
LDA #10
CMP PLYR2
BNE MOVE
LDA #%1110
JSR BLINK
RTS

The Subroutines

PLAY Subroutine

The PLAY subroutine will first wait for a random period of time

before displaying the binary number. This is accomplished by calling

the RANDOM subroutine to obtain the random number, then the
DELAY subroutine to implement the delay:

PLAY JSR RANDOM
JSR DELAY

53

6502 GAMES

The RANDOM subroutine will be described below. Another random

number is then obtained. It is trimmed down to a value between 0 and

15, inclusive. This will be the binary number displayed on the LEDs. It
is stored at location NUMBER:

JSR RANDOM
AND #0F Mask off high nibble
STA NUMBER

The NUMTAB table, described at the beginning of this section, is then

accessed to obtain the correct pattern for lighting the LEDs using in-

dexed addressing. Register X contains the number between 0 and 15 to

be displayed:

TAX Use X as index

LDA NUMTAB,X Retrieve pattern

The pattern in the accumulator is then stored in the output register in

order to light the LEDs. Note that the pattern is OR’ed with the

previous contents of the output register so that the status of LED 9 is
not changed:

ORA PORTIB
STA PORT1B

Once the random number has been displayed in binary form on the

LEDs, the subroutine waits until the player presses a key. The

CNTSUB subroutine is used for this purpose:

JSR CNTSUB

It will be described below.
The value returned in register Y by this subroutine is compared to

the number to be guessed, which is stored at memory address

NUMBER. If the comparison succeeds, exit occurs. Otherwise, all

LEDs are cleared using an AND, to prevent changing the status of
LED 9, and the subroutine is reentered. Note that the remaining time

for the player will be decremented every time the CNTSUB subroutine

is called. It will eventually decrement to 0, and this player will be given

another number to guess:

54

TRANSLATE

CPY NUMBER Correct guess?
BEQ DONE
LDA #01 No: clear old guess

AND PORTIB
STA PORTIB
JMP PLAY Try again

DONE RTS :

Exercise 3-1: Modify PLAY and/or CNTSUB so that, upon timeout,

the player loses the current round, as if the maximum amount of time

had been taken to make the guess.

CNTSUB Subroutine

The CNTSUB subroutine is used by the PLAY subroutine previous-
ly described. It monitors a player’s keystroke and records the amount

of time elapsed until the key is pressed. The key scanning is performed

in the usual way:

CNTSUB LDY #$F
KEYLP STY PORT3B

BIT PORT3A
BPL FINISH
DEY Count down key #

BPL KEYLP Next key

FINISH BNE CNTSUB

Each time that all keys have been scanned unsuccessfully, the time

elapsed counter is incremented (CNTLO,CNTHI):

INC CNTLO
BNE CNTSUB
INC CNTHI
BNE CNTSUB

FINISH RTS

Upon return of the subroutine, the number corresponding to the key

which has been pressed is contained in index register Y.

Exercise 3-2: Insert some ‘“‘do-nothing”’ instructions into the CNTSUB

subroutine so that the guessing time is longer.

55

6502 GAMES

BLINK Subroutine

The LEDs specified by the accumulator contents are blinked

(turned on and off) ten times by this subroutine. It uses memory loca-
tion CNTHI and CNTLO as scratch registers, and destroys their

previous contents. Since the LEDs must alternately be turned on and

off, an exclusive-OR instruction is used to provide the automatic on/
off feature by performing a complementation. Because two com-

plementations of the LED status must be done to blink the LEDs

once, the loop is executed 20 times. Note also that LEDs must be kept

lit for a minimum amount of time. If the ‘‘on’’ delay was too short,

the LEDs would appear to be continuously lit. The program is shown
below:

BLINK LDX #20 20 blinks

STX CNTHI Blink counter

STA CNTLO Blink register
BLOOP LDA CNTLO Get blink pattern

EOR PORTIB Blink LEDs

STA PORTIB
LDA #10 Short delay
JSR DELAY
DEC CNTHI

BNE BLOOP Loop if not done
RTS

DELAY Subroutine

The DELAY subroutine implements a classic three-level, nested
loop design. Register X is set to a maximum value of FF

(hexadecimal), and used as the inner loop counter. Register Y is set to
the value of 10 (hexadecimal) and used as the level-2 loop counter.

Location TEMP contains the number used to, adjust the delay and is
the counter for the outermost loop. The subroutine design is

straightforward:

DELAY STA TEMP
DLI1 LDY #$10
DL2 LDX #$FF
DL3 DEX

BNE DL3
DEY

TRANSLATE

BNE DL2
DEC TEMP
BNE DL!1
RTS

Exercise 3-3: Compute the exact duration of the delay implemented by

this subroutine as a function of the number contained in location

TEMP.

RANDOM Subroutine

This simple random number generator returns a semi-random

number into the accumulator. A set of six locations from memory ad-

dress 0008 (‘‘SCR’’) have been set aside as a scratch-pad for this
generator. The random number is computed as | plus the contents of
the number in location SCR + 1, plus the contents of the number in

location SCR + 4, plus the contents of the number in location SCR

+ 5:

RANDOM SEC
LDA SCR + 1
ADC SCR + 4
ADC SCR + 5
STA SCR

The contents of the scratch area (SCR and following locations) are

then shifted down in anticipation of the next random number genera-

tion:

LDX #4
RNDLP LDA SCR,X

STA SCR + 1,X
DEX
BPL RNDLP
RTS

The process is illustrated in Figure 3.7. Note that it implements a

seven-location circular shift. The random number which has been
computed is written back in location SCR, and all previous values at

memory locations SCR and following are pushed down by one posi-

tion. The previous contents of SCR + 5 are lost. This ensures that the

numbers will be reasonably random.

$7

6502 GAMES

Fig. 3.7: Random Number Generation

SUMMARY

This game involved two players competing with each other. The

time was kept with nested loops. The random number to be guessed
was generated by a pseudo-random number generator. A special table
was used to display the binary number. LEDs were used on the board
to indicate each player’s turn to display the binary number, and to
indicate the winner.

Exercise 3-4: What happens in the case in which all memory locations

Srom SCR toSCR + 5 were initially zero?

58

4

HEXGUESS

THE RULES

The object of this game is to guess a secret 2-digit number generated
by the computer. This is done by guessing a number, then submitting

this number to the computer and using the computer’s response (in-
dicating the proximity of the guessed number to the secret number) to

narrow down a range of numbers in which the secret number resides.
The program begins by generating a high-pitched beep which signals

to the player that it is ready for a number to be typed. The player must

then type in a two-digit hexadecimal number. The program responds

by signaling a win if the player has guessed the right number. If the

player has guessed incorrectly, the program responds by lighting up

one to nine LEDs, indicating the distance between the player’s guess

and the correct number. One lit LED indicates that the number
guessed is a great distance away from the secret number, and nine lit
LEDs indicate that the number guessed is very close to the secret
number.

If the guess was correct, the program generates a warbling tone and
flashes the LEDs on the board. The player is allowed a maximum of

ten guesses. If he or she fails to guess the correct number in ten tries, a
low tone is heard and a new game is started.

A TYPICAL GAME

The computer beeps, notifying us that we should type in a guess.

Our guess is: ‘*40’’

The computer lights 4 LEDs We are somewhat off

59

6502 GAMES

Next guess: ‘‘C0’’

Computer’s answer: 3 LEDs We are going further away

Next guess: ‘‘20”’

Computer’s response: 3 The number must be between

CO and 20
Next guess: ‘‘80’’
Response: 5 We are getting closer

Next guess: ‘*75’’

Response: 5 It’s not just below 80

Next guess: ‘‘90’’

Response: 4 We’re wandering away

Next guess: ‘*65”’

Response: 7 Now we're closing in

Next guess: ‘‘60”’

Response: 9

Next guess: ‘‘5F’’
Response: 8

Next guess: ‘‘61”’

We win!!! All the LEDs flash and a high warbling tone is heard.

THE ALGORITHM

The flowchart for Hexguess is shown in Figure 4.1. The algorithm is

straightforward:

— a random number is generated

— a guess is entered

— the closeness of the number guessed to the secret

number is evaluated. Nine levels of proximity are
available and are displayed by an LED on the board.
A closeness or proximity table is used for this pur-

pose.
— a win or a loss is signaled

— more guesses are allowed, up to a maximum of

ten.

THE PROGRAM

Data Structures

The program consists of one main routine called GETGES, and two

subroutines called LITE and TONE. It uses one simple data structure

HEXGUESS

e

Fig. 4.1: Hexguess Flowchart

61

6502 GAMES

— a table called LIMITS. The flowchart is shown in Figure 4.1, and

the program listing appears in Figure 4.2.

The LIMITS table contains a set of nine values against which the
proximity of the guess to the computer’s secret number will be tested.

It is essentially exponential and contains the sequence: 1,2,4,8,16,32
64,128,200.

Program Implementation

Let us examine the program itself. It resides at memory address 200

and may not be relocated. Five variables reside in page zero:

GUESS is used to store the current guess
GUESS+# is the number of the current guess
DUR and FREQ are the usual parameters re-
quired to generate a tone (TONE subroutine)

NUMBER is the secret computer number

As usual, the data direction registers VIA #1 and VIA #3 are condi-

tioned in order to drive the LED display and read the keyboard:

LDA #$FF
STA DDRIA OUTPUT
STA DDR1B OUTPUT
STA DDR3B OUTPUT

Memory location DUR is used to store the duration of the tone to be

generated by the TONE subroutine. It is initialized to ‘‘FF’’ (hex):

STA DUR

The memory location GUESS is used to store the number of guesses.

It is initialized to 10:

START LDA #$0A
STA GUESS#

The LEDs on the Games Board are turned off:

LDA #00

STA PORTIA
STA PORTIB

62

02003
02023
0205:
0206:
020B;:
020D3
O20F %
92113
0213:
02146:
02195
021C3
O21E?

92203
02232
02263
O227%
022B%
02293
O22A8
O22C%
O22F 3
O231%
02333
O235 8
023738
02383

O23AE
O023C%
92363
O23F 3

ag
xe
ay

AQ
AO

O1

HEXGUESS ~

’ “HEXGUESS’
sHEXADECIMAL NUMBER GUESSING GAME.
STHE OBJECT OF THE GAME IS TO GUESS A HFXANECIMAL.
SNUMBER THAT THE COMPUTER HAS THOUGHT UF.
WHEN THE COMPUTER °BEEPS» & GUESS SHOUD
sRE ENTERED. GUFSSES ARE TWO DIGIT HEXADECTMAI.
SNUMBERS. WHEN TWO DIGITS HAVE BEEN RECEIVED,
STHE COMPUTER WILL UISPIAY THE NEARNESS
‘OF THE GUESS RY LIGHTING A NUMBER OF
SLEDS PROPORTIONAL TO THE CLOSENESS OF
‘THE GUESS. TEN GUESSES ARE ALLOWED.
‘TF & GUESS IS FORRECTe THEN THE COMPUTFR
SWILL FLASH THE LEDS AND MAKE A WARBL.ING
3’ TONE.
3THE ENTRY LOCATION IS $200.
9
GETKEY = $100
946522 VIA #1 ADDRESSES:
TTMER = $A004 *LOW LATCH OF TIMER 1
ONRIA = $Anng sPOFTA DATA DIRECTION REG.
DORIB i $A002 PPORTR DATA DIRECTION REG.
FORTIA «= SA001 FPORT A
FORTIR = $A000 sPORT &
845°? VIA @3 ADDRESSES:
UNK 4B = ¢$ACO2 sFORTH DATA PTIRECTION REG.
PORTSR = $ACTOQO SPORT Re
*+STORADES:
GUESS = $00
GUCSS@ = 401
TUR = $02
FREQ = $03
NUMBER = $04

» = $200
LDA &$FF 7SET UF DATA DTRECTION REGUSTERS
STA DNRIA
STA DRKIR
STA DORSR
STA DUR sSET UF TONE DURATIONS.

START LDA 940A 710 GUESSES ALLOWED
STA GUESS#
nA #00 *BI ANK LEDS
STA PORTIA
STA PORTIRB
LIA TIMER ‘GET RANDOM NUMBER TO GUESS
STA NUMBER eo. ANT! SAVE.

GETGES LIA €$20 eSET UF SHORT HIGH FONT TO
*STGNAL USER TO TNFIIT GUESS,

ASR TONE ‘MAKE KEEP.
ASR GETKEY sOFT HIGH ORDER USER GUESS
ASL A *SHIFT INTO HIGH ORDER FOSTTION
ASI. A
ASI. A
ASL. A
STA GUESS 5 SAVE
JSR GETKEY sGET LOW ORDER USER GUESS
ANT #%00001111 sMASK HIGH ORDER BITS.
ORA GUESS sANC HIGH ORDER NIBBLE.
STA GUESS sFINAL PRFORUCT SAVER.
LDA NUMBER *GET NUMBER FOR COMPARE
SEC
SBC GUESS sSUBTRACT GUESS FROM NUMBER

$T0) DETERMINE NEARNESS OF GUESS.
HCS: ALRIGHT sPOSTTIVE VALUE NEEDS NO FIX.
ENR @c1abbiaal *MAKE DISTANCE. ABSOLUTE
SEC sMAKE IT A TWO’S COMPLEMENT
Ant #00 3,...N0T JUST A ONES COMPLEMENT.

Fig. 4.2: Hexguess Program

6502 GAMES

02413
0243:

0246:

0248:
02493
0248?
02428
O024F 3
O2513
A253%
92563
92593
0258!
O25E3
924603
0263?
9264:
924693
02683
92603
O26F 3

02703
02723
0273!
027B2

O27R:
O27N8
Q27F ?
0282 %
O2R43
02862
02883
O28B:

O26F t
02903
02913
02923
02933
92951

92963
92988
OOPAS
A29C%
O29E3
O29F 3
02A0:
02A23
92A4;
O2A463
O2A9%
O2AAE
O2AC?

A?
pn

RO

EA
FO
to
Ag

85
AD

an
8D
Ag
20
Ag
4D
aD
80
Cé
DO
FO
E6@

A?
8D
20
an
90
A?
8D
Cé
to
A?
20
4c

Aa?
38
2A
ca
ho

40

85
Ag?
A&
A4
88
18
90
bo
49
8D
Ca
po
60

00
AD

27

09
FS
OR
00
FF
01
00
32
96
FF
01
01
00
00
EC
9E

00
00
SE
01
05
01
00
O1
98
RE
946
00

oo

FE

02

Ao
02
Ao

AO

02
02

AC

ALRIGHT LOX
oor CMF

BCS

TNX

CPX
BNE

WIN LDA
RTA
IBA
STA
STA

wow I.DA
JSR
(na
EOR
STA
STA
NEC
BNE
BEQ

SIGNAL IWNX

tna
STA
ISK

STA
kee

tA
STA

ce DEC
BNE
LDA
JSR
JAP

sROUTINE TO

61S REACHED.

LITE IDA
SHIFT SFC

ROI.
NE X
BNE
RTS

8

#00
(TMITS x

GTGNAL

69

t noP
O11
GUESS
esFF
PORTIA
FORTIB
#30
TONE
OCFF
PORTIA
PORTIA
PORTIB
GUESS
WOW
START

£0
CORTILR
LITE
FORTIA
cc
#01
PORTIB
GUESS¢@
GETGES
6$BE
TONE
START

SSET CLOGENESS COUNTER TO DISTANT
SCOMPARE NEARNESS OF GUESS TO

STABLE OF LIMITS TN SEF HOW MANY
SLIGHTS TO I TGHT.
sNEARNESS 1S BIOGER THAN LIMIT? SO
§GO LIGHT INDICATOR.
sLOOK AT NEXT CLOSENESS LEVEL.
FALL NTNE LEVEILS TRIEQ?
sNN»e TRY NEXT LEVEL.
SYES! WIN! (LOAD NUMBER OF BL TNKS
sISE GUESS AS TEMP
sLIGHT LEDS

*TONE VALUE
SMAKE WIN SIGNAL

sCOMPLEMENT PORTS

IBLINKS/TONES BONE?
INO>s DO AGATN
sYES» START NEW NAME.
STNCREMENT CLOSENFSS (FVUEI
sCOUNTER SO AT LEAST 1 LRM FS ttT.
sCLEAR HIGH LED PORT

‘GET LEN PATTERN
sSET LFOS
¢IF CARRY SET FRO =~ 1

sONF GUESS USED
SSOMF ItFT» GET NEXT.
SLOW TONE STGNALS LOSE

sNEW OAME.

MAKE PATTERN OF LTT IFRS BY SHTFTING A
sSTRING OF ONES TO THF IFFT IN THE ACCUMULATOR UNTII
STHE BIT FOSTTION CORRESPONDING TQ THE NUMBER IN X

#9

A

SHIFT

PCLEAR ACCUMULATOR TOR FATTFRN
*MAKE LOW RIT HIGH.
SSHTFT IT IN
sONE BRIT OONF...
$ LOOP YF NOT TONF.
sPETURN

STONE GENERATION ROUNTING.
'
TONE STA

LDA
LDXx

FL? LDY
Fill DEY

cu.c
RCC
BNE
EOR
STA
nex
BNE
RTS

FREQ
$400
DUR
FREQ

ot2
FL1
@SFF
PORT3B

mi?

‘
STAPLE OF LIMITS FOR CIOSENFSS LEVFLS.
3

Fig. 4.2: Hexguess Program (Continued)

HEXGUESS

O2AL? C CIMITS BYTE FOOT PMMA We 1b Be 4e ol

O2AE:

O2AF :
O20:
O2B1s
OPR23
O?HSi
OON4:

OPRS:

SYMBOL TABLE:
GETKEY TIMER UREA
DMRLB FORTIA PORTE
NORIB PORT IR GUESS
GUESS®@ QUR rREQ
NUMBER START 2 GOR TGFS

ALRIGHT LoOOoF Wn
wow STGNAI cc
tTTe SHITE T TONE
Fi? mud (I TMTTS

Fig. 4.2: Hexguess Program (Continued)

The program will generate a random number which must be guessed
by the player. A reasonably random number is obtained here by

reading the value of timerl of VIA #1. It is then stored in memory ad-

dress NUMBER:

LDA TIMER Low latch of timer 1

STA NUMBER

A random number generator is not required because requests for ran-

dom numbers occur at random time intervals, unlike the situation in

most of the other games that will be described. An important observa-
tion on the use of TICL of a 6522 VIA is that it is often called a

‘‘latch’’ but it is a ‘‘counter’’ when performing a read operation! Its
contents are not frozen during a read as they would be with a latch.
They are continuously decremented. When they decrement to 0, the

counter is reloaded from the ‘‘real’’ latch.

Note that in Figure 4.3 T1L-L is shown twice — at addresses 04 and
06. This is a possible source of confusion and should be clearly

understood. Location 4 corresponds to the counter; location 6 cor-

responds to the latch. Location 4 is read here.
We are ready to go. A high-pitched tone is generated to signal the

player that a guess may be entered. The note duration is stored at

65

1/0 data, port A

Used for control-affects handshoke

02 DDR B
Dota direction

04 THL-L/TIC-L Counter-low

Timer 1

06 TUL-L Latch-low

08 T2L-L/T2C-L sige
Counter-low Timer 2

= PR Auxiliary Function

oc] PCR (CAI,CA2,CB2,CB1) Peripheral or

of FR | Frogs arog
tr

OF] RA OntputrogintorA (does not affect handshake)

Fig. 4.3: 6522 VIA Memory Map

memory location DUR while the note frequency is set by the contents

of the accumulator:

GETGES LDA #$20 High pitch
JSR TONE =

Two key strokes must be accumulated for each guess. The GETKEY
subroutine is used to obtain the number of the key being pressed,

which is then stored in the accumulator. Once the first character has

been obtained, it is shifted left by four positions into the high nibble

position, and the next character is obtained. (See Figure 4.4.)

66

HEXGUESS

A

i
PRESERVE AT ’’GUESS”’ SHIFT BY 4

GUESS |

FINAL 2 DIGIT GUESS

Pig. 4.4: Collecting the Player's Guess

JSR GETKEY
ASLA
ASL A
ASLA
ASL A
STA GUESS
JSR GETKEY

Once the second character has been transferred into the accumulator,
the previous character, which had been saved in memory location

GUESS, is retrieved and OR’ed back into the accumulator:

AND #%00001111

ORA GUESS

It is stored back at memory location GUESS:

STA GUESS

67

6502 GAMES

Now that the guess has been obtained, it must be compared against the

random number stored by the computer at memory location

NUMBER. A subtraction is performed:

LDA NUMBER
SEC
SBC GUESS

Note that if the difference is negative, it must be complemented:

BCS ALRIGHT Positive?
EOR #% 11111111 Itis negative: complement

SEC Make it two’s complement
ADC #00 Add one

Once the ‘‘distance’’ from the guess to the actual number has been

computed, the ‘‘closeness-counter’’ must be set to a value between |

and 9 (only nine LEDs are used). This is done by a loop which com-
pares the absolute ‘‘distance’’ of the guess from the correct number to
a bracket value in the LIMITS table. The number of the appropriate

bracket value becomes the value assigned to the proximity or closeness

of the guessed number to the secret number. Index register X is initial-

ly set to 0, and the indexed addressing mode is used to retrieve bracket

values. Comparisons are performed as long as the ‘‘distance’’ is less
than the bracket value, or until X exceeds 9, i.e., until the highest table

value is looked up.

ALRIGHT LDX #00
LOOP CMP LIMITS,X Look up limit value

BCS SIGNAL

INX Closeness is less

CPX #9 Keep trying 10 times

BNE LOOP

At this point, unless a branch has occurred to SIGNAL, the distance

between the guess and the actual number is 0: it is a win. This is sig-
naled by blinking the LEDs and by generating a special win tone:

WIN LDA 411

STA GUESS Scratch storage

LDA #FF

6502 GAMES

STA PORTIA

STA PORTIB
WOW LDA #50 Tone pitch

JSR TONE Generate tone

The blinking is generated by complementing the LEDs repeatedly:

LDA #$FF
EOR PORTIA Complement ports

STA PORTIA

STA PORTIB

The loop is executed again:

DEC GUESS
BNE WOW

Finally, when the loop index (GUESS) reaches zero, a branch occurs

back to the beginning of the main program: START:

BEQ START

If, however, the current guess is not correct, a branch to SIGNAL

occurs during bracket comparison, with the contents of the X register
being the proximity value: i.e., the number of LEDs to light. Depend-
ing on the closeness of the guess to the secret number, LEDs #1 to #9

will be turned on:

SIGNAL INX Increment closeness level

LDA #0 Clear high LED port

STA PORTIB

JSR LITE Get LED pattern
STA PORTIA

BCC CC If carry set, PBO = 1

LDA #01

STA PORTIB

The number of LEDs to turn on is in X. It must be converted into the

appropriate pattern to put on the output port. This is done by the

LITE subroutine, described below.

If LED #9 is to be turned on, the carry bit is set by LITE. An ex-

69

6502 GAMES

plicit test of the carry for this case is done above (the pattern 01 is then
sent to PORTIB). The number of the current guess is decremented

next. If it is 0, the player has lost: the lose signal is generated and a

7 0 Cc

A ; 00000000 z Fy JUST BEFORE 1st ROTATION

0

7 0 Cc

A & 00000001 x x BEFORE 2nd ROTATION

0

7 0 Cc

A i 00000011 i‘ a BEFORE 3rd ROTATION

0

7 0 Cc

. oe sot Hs OTATON
0 <a

7 0 Cc

Fig. 4.5: Obtaining the LED pattern for 6 LED's

70

HEXGUESS

new game is started; otherwise, the next guess is obtained:

CC DEC GUESS#

BNE GETGES Any guesses left? :

LDA #$BE Low tone

JSR TONE

JMP START New game

The Subroutines

LITE Subroutine

The LITE subroutine will generate the pattern required to light up

LEDs #1 to #8, depending on the number contained in register X. The
required ‘‘1’’ bits are merely shifted right in the accumulator as
register X is being decremented. An example is given in Figure 4.5.

Upon exit from the subroutine, the accumulator contains the cor-

rect pattern required to light up the specified LEDs. If LED #9 is in-
cluded, the pattern would consist of all ones, and the carry bit would

be set:

LITE LDA #0
SHIFT SEC Starting ‘‘1’’

ROL A Rotate the ‘‘1”’ to position

DEX Done?

BNE SHIFT
RTS

TONE Subroutine

The TONE subroutine will generate a tone for a duration specified

by a constant in memory location DUR, at the frequency specified by

the contents of the accumulator. Index register Y is used as the inner
loop counter. The tone is generated, as usual, by turning the speaker

connected to PORT3B on and off successively during the appropriate

period of time:

TONE STA FREQ
LDA #$00
LDX DUR

FL2 LDY FREQ
FL1 DEY

71

6502 GAMES

CLC
BCC .+2
BNE FL1
EOR #$FF
STA PORT3B
DEX
BNE
RTS

SUMMARY

This time, the program used the timer’s latch (i.e., a hardware register)

rather than a software routine as a random number generator. A simple
‘‘LITE’’ routine was used to display a value, and the usual TONE

routine was used to generate a sound.

EXERCISES

Exercise 4-1: Improve the Hexguess program by adding the following
Seature to it. At the end of each game, if the player has lost, the pro-
gram will display [the number which the player should have guessed]

Sor approximately 3 seconds, before starting a new game.

Exercise 4-2: What would happen if the SEC at location 290 hex-

adecimal were left out?

Exercise 4-3: What are the advantages and disadvantages of using the

timer’s value to generate a random number? What about the suc-

cessive numbers? Will they be related? Identical?

Exercise 4-4: How many times does the above program blink the lights
when it signals a win?

Exercise 4-5: Examine the WIN routine (line 24D). Will the win torte

be sounded once or several times?

Exercise 4-6: What is the purpose of the two instructions at addresses

29F and 2A0? (Hint: read Chapter 2.)

Exercise 4-7: Should the program start the timer?

Exercise 4-8: Is the number of LEDs lit in response to a guess linearly
related to the closeness of a guess?

72

3

MAGIC SQUARE

THE RULES

The object of the game is to light up a perfect square on the board,
i.e., to light LEDs 1, 2, 3, 6, 9, 8, 7, and 4 but not LED #5 in the

center.
The game is started with a random pattern. The player may modify

the LED pattern on the board through the use of the keyboard, since

each of the keys complements a group of LEDs. For example, each of

the keys corresponding to the corner LED positions (key numbers: 1, 3,

9, and 7) complements the pattern of the square to which it is attached.
Key #1 will complement the pattern formed by LEDs 1, 2, 4, 5.
Assuming that LEDs 1, 2, and 4 are lit, pressing key #1 will result in
the following pattern: 1-off, 2-off, 4-off, 5-on.

@® @ O O

@® 0 O O

O 0 O O 0 O

The pattern formed by LEDs 1, 2, 4, and 5 has been complemented
and only LED #5 is lit after pressing key #1. Pressing key #1 again will

result in: 1, 2, and 4-on with 5-off. Pressing a key twice results in two

73

6502 GAMES

successive complementations, i.e., it cancels out the first action.
Similarly, key #9 complements the lower right-hand square formed

by LEDs 5, 6, 8, and 9.
Key #3 complements the pattern formed by LEDs 2, 3, 5, and 6.

Key #7 complements the pattern formed by LEDs 4, 5, 7, and 8.
The ‘‘edge keys’’ corresponding to LEDs 2, 4, 6, and 8 complement

the pattern formed by the three LEDs of the outer edge of which they
are a part. For example, pressing key #2 will complement the pattern

for LEDs 1, 2, and 3. Assume an initial pattern with LEDs 1, 2, and 3

lit. Pressing key #2 will result in obtaining the complemented pattern,

i.e., turning off all three LEDs. Similarly, assume an initial pattern
on the left vertical edge where LEDs 4 and 7 are lit.

O O O

@® 00

@® 0 O

Pressing key #4 will result in a pattern where LED 1 is lit and LEDs 4

and 7 are turned off.

® 00

+O O O

OO O
KEY 4 HAS BEEN PRESSED

Likewise, key #8 will complement the pattern formed by LEDs 7, 8,

and 9, and key #6 will complement the pattern formed by LEDs 3, 6,

and 9.

14

MAGIC SQUARE

Finally, pressing key #5 (the center LED position) will result in com-

plementing the pattern formed by LEDs 2, 4, 5, 6, and 8. For exam-
ple, assume the following initial pattern where only LEDs 6 and 8 are

lit: 5

O 0 O

OO ®@

O @ O

Pressing key #5 will result in lighting up LEDs 2, 4, and 5:

0@O0

@-e 0

000

The winning combination in which all LEDs on the edge of the square
are lit is obtained by pressing the appropriate sequence of keys.

ee @

@® 0 ®@

eo @ @

15

6502 GAMES

The mathematical proof that it is always possible to achieve a ‘‘win’’
is left as an exercise for the reader. The program confirms that the
player has achieved the winning pattern by flashing the LEDs on and

off.
Key ‘‘0’’ must be used to start a new game. A new random pattern

of lit LEDs will be displayed on the board. The other keys are ignored.

A TYPICAL GAME

Here is a typical sequence:

The initial pattern is: 1-3-4-6-9.

® 0 ®@

@® 0 ®@

OO ®@

Move: press key #8.

The resulting pattern is: 1-3-4-6-7-8.

@® 0 ®@

® 0 ®@

Next move: press key #2.

The resulting pattern is: 2-4-6-7-8.

716

MAGIC SQUARE

® 0 ®@

® @0

Next move: press key #3.

The resulting pattern is: 3-4-5-7-8.

O —_—_—

e

@® @ 0

Next move: press key #2.

The resulting pattern is 1-2-4-5-7-8.

77

6502 GAMES

Next move: press key #6.

The resulting pattern is 1-2-3-4-5-6-7-8-9,

@ @ =

Note that this is a ‘‘classic’’ pattern in which all LEDs on the board

are lit. It is not a winning situation, as LED #5 should be off. Let us

proceed.

Next move: the end of this game is left to the mathematical talent of

the reader. The main purpose was to demonstrate the effect of the

various moves.

Hint: a possible winning sequence is 2-4-6-8-5!

General advice: in order to win this game, try to arrive quickly at a

symmetrical pattern on the board. Once a symmetrical pattern is ob-

tained, it becomes a reasonably simple matter to obtain the perfect

square. Generally speaking, a symmetrical pattern is obtained by hit-
ting the keys corresponding to the LEDs which are off on the board

but which should be ‘‘on’’ to complete the pattern.

THE ALGORITHM

A pattern is generated on the board using random numbers. The

key corresponding to the player’s move is then identified, and the ap-

propriate group of LEDs on the board is complemented.

A table must be used to specify the LEDs forming a group for each

key.

The new pattern is tested against a perfect square. If one exists, the

player wins. Otherwise, the process begins anew.

The detailed flowchart is shown in Figure 5.1.

78

MAGIC SQUARE

i :

g 31

: : g $
KEY NUMBER

Cal
Fig. $.1: Magic Square Flowchart

719

6502 GAMES

THE PROGRAM

Data Structures

The main problem here is to devise an efficient way to complement

the correct LED pattern whenever a key is pressed. The complementa-
tion itself may be performed by an Exclusive-OR instruction. In this

case, the pattern used with the EOR instruction should contain a ‘‘1”’
in each LED position which is to be complemented, and ‘‘0’’s

elsewhere. The solution is quite simple: a nine-entry table, called
TABLE, is used. Each table entry corresponds to a key and has 16 bits
of which only nine are used inasmuch as only nine LEDs are used.

Each of the nine bits contains a ‘‘1’’ in the appropriate position, in-

dicating the LED which will be affected by the key.
For example, we have seen that key number | will result in com-

plementing LEDs 1, 2, 4, and 5. The corresponding table entry is
therefore: 0, 0, 0, 1, 1, 0, 1, 1, where bits 1, 2, 4, and 5 (starting the

numbering at 1, as with the keys) have been set to ‘‘1.’’ Or, more

precisely, using a 16-bit pattern:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1

The complete table appears below in Figure 5.2.

00011011

00000111

00110110

0100100)

10111010

00100100

11011000

11000000

10110000

1

2

3

4

5

6

7

8

9

Fig. 5.2: Complementation Table

Program Implementation

A random pattern of LEDs must be lit on the board at the beginning
of the game. This is done, as in the previous chapter, by reading the

value of the VIA #1 timer. If a timer were not available, a random

number-generating routine could be substituted.

02003
02023
0203:
0208:
020B:
O20E:
02113
02133
0216;
02193
O21B?
O21D;
O21F3

02213
0222:
02243

02233
9226:
02293
022C:
022F 3
02323
02353
02373

O23A!
O23B3
O23D?
02403
02423

Aa?
aD
6D
aD
BD
AD
29
6D
20
ce?
FO
Cc?
10

38
Ee?
OA

AA
AD
SD
8D
aD
SD
29
8D

4A
90
AD
Cc?
bo

FF
03
02
04
01
04
01
00
00
00
EB
OA
FS

01

AO
AO
AO
AO
Ao

ao
01

AO
02
AO
AO
02

AO

AO

MAGIC SQUARE

§ “MAGIC EQUARE’ PROGRAM
SKEYS 1-9 ON THE HEX KEYBOARD ARE EACH ASSOCIATED
SWITH ONE LED TN THE 3X3 ARRAY. WHEN A KEY JS PRESSED»
$IT CHANGES THE PATTERN OF THE LIT LEDS IN THE ARRAY.
STHE OBJECT OF THE GAME FS TO CONVERT THE RANDON
sPATTERN THE GAME STARTS WITH TO A SQUARE OF LTT
jLEDS BY PRESSING THE KEYS. THE LEDS WII FLASH WHEN
sTHE WINNING PATTERN TS ACHIEVEN,
SKEY @0 CAN BE USED AT ANY TIME TO RESTART
sTHE GAME WITH A NEW PATTERN,
8

GETKEY =6100
Tice =$A004 sLOW RFGIGTER OF TIMER IN 4522 VIA
PORT1 =$A001 946522 VIA PORT A

FORT2 =$A000 $4522 VIA PORT B
TEMP =$0000 STEMPORARY STORAGE
DDRA £=$A003 SDATA DIRECTION REGISTER NF PORT A
NDRB z$A002 SSAME FOR FORT 8B

+=$200

COMMENTS: THIS PROGRAM USES A TIMER FEGISTIFR FOR A
RANDOM NUMBFR SOURCE. IF NONE IS AVATIAELEs A
RANDOM NUMBER GENERATOR COULD BE USED> BINT
DUE TO ITS REPEATABILITY: IT WOULD NOT MORK AS
WELL. THIS PROGRAM USFS PORT A‘S RENISTERS FOR
STORAGE OF THE LED PATTERN. SINCE WHAT IS REAU
BY THE PROCESSOR [S THE POLARITY OF THE.
OUTPUT LINES» AN EXCESSIVE LOAD ON THE LINES WOULD
PREVENT THE PROGRAM FROM WORKING CORRECTLY.

D_vweewmwwewwewD eww we

LDA O@SFF ‘SET UP PORTS FOR OUTPUT
STA DDRA
STA DDRB

START LDA TI1Ct. sGET 1ST RANDOM NUMBER
STA PORTI
LDA TI1Cl 3++eAND SECOND,
AND #01 sMASK OUT BOTTOM ROW LF DS
STA PORT2

KEY JSR GETKEY
CMP #0 #KEY MUST RE 1-9: IS UT 0?
BEQ START sYESr RESTART GAME WITH NEW BOARD.
CMP #10 #18 IT LESS THAN 107
BPL KEY $+ IF KEY >=10+ SO GET ANOTHER

3
SFOLLOWING SECTION USES KEY NUMBER AS INDEX TO FIND IN
STARLE A BIT PATTERN USED TO COMPLEMENT LED‘S
a

SEC sDECREMENT A FOR TABLE Access
SBC @1
ASL A PMULTTPLY Ak2» SINCE EACH FNTRY IN

‘TABLE IS TWO RAYTES.
TAX sUSE A AS INDEX
LDA PORTL sGET PORT CONTENTS FOR COMPI.EMENT
EOR TABLE +X sEOR PORT CONTENTS W/PATTFERN
STA PORT1 #RESTORE FORT1
LDA PORT2 §DO SAME WITH PORTZ,
EOR TABLE+12 +X §..-USING NEXT TARLF ENTRY,
AND #01! 6MASK OUT BOTTOM ROW LETS
STA PORT2 §.+ AND RESTORE.

6
PTHIS SECTION CHECKS FOR WINNING PATTERN IN LENS

LSR A SSHIFT BIT O OF PORT 1 INTO CARRY.
BCC KEY tIF NOT WIN PATTERN: GET NEXT MOVE
LDA PORTI SLOAD PORT1 FOR WIN TEST
CHP O@Z19101111 sCHECK FOR WIN FATTER
BNE KEY #NO WENs BET NEXT HOVE

Fig. 5.3: Magic Square Program

6502 GAMES

6
§WIN BLINK LED’S EVERY 1/2 SEG, 4 TIMES
]

02441 AY OE LDA 414
0246! 85 00 STA TEMP #LOAD NUMBER OF BLINKS
02483 AZ 20 BLINK LDX #$20 SDELAY CONSTANT FOR .Of SEC
O24A?% AO FF DELAY LDY @SFF sOUTER LOOP OF VARIABLE DELAY

SROUTINEs WHOSE DFLAY TIME
§TS 2556 ® (CONTENTS OF X ON FNTER

O24C: EA DLY NOP $10 MICROSEC (.NOP VU
024D: DO 00 BNE .+2
O24F?: 86 DEY
0250: DO FA BNE DLY
0252: CA nex
0253! DO FS BNE DELAY
0255! AD 01 AO LDA PORTt sGET PORTS AND COMPLEMENT THM
0258! 49 FF EOR 6$FF
O25A$ 8D OL AO STA PORT1
O25D% AD 00 AO LDA PORT2
02603 49 O1 EOR #41
0262! BD 00 AO STA PORT2
0265: Cé 00 nec TEMP SCOUNT DOWN NUMBER OF Ul INKS
02673 DO DF BNE BLINK ‘DO AGAIN TF NOT DONE
0269: FO AB BEQ KEY §GET NEXT MOVE

$
STABLE OF CODES USED TO COMPLEMENT LEDS
,

O26B: 18 TABLE eBYT X00011011»+%00000000
O26C? 00
O26D? 07 eBYT 400000111 2%00000000
O26E? 00
O26F? 36 eBYT 2001101107 %00000000
02703 00
02713 49 eBYT 201001001 »%00000000
02723 00
0273! BA «BYT 2%101110107%00000000
02742 00
02753 24 eBYT Z%00100100»%00000001
0276! O1
0277% DS eBYT X11011000» 200000000
0278: 00
02793 CO eBYT 411000000» %00000001
O27A3 01
O27B3 BO eRYT Z210110000+%00000001
027C3 O1

SYMBOL TABLE:
GETKEY 0100 TACL A004 PORTI ADOL
PORT2 A000 TEMP 0000 NRA A003
DDRB A002 START 0208 KEY 02716
BLINK 0248 DELAY 024A mM.yY 024C
TABLE 026B

y4

Fig. 5.3: Magic Squere Program (Continued)

82

MAGIC SQUARE

The data direction registers for Ports A and B of the VIA are con-

figured for output to drive the LEDs:

LDA #$FF
STA DDRA
STA DDRB

The ‘‘random’’ numbers are then obtained by reading the value of
timer 1 of the VIA and are used to provide a random pattern for the

LEDs. (Two numbers provide 16 bits, of which 9 are kept.)

START LDA TICL Get Ist number

STA PORTI Use it
LDA TICL Get 2nd number

AND #01 Keep only position 0

STA PORT2 Use it

An explanation of the use of TICL has been presented in the

previous chapter. The program then monitors the keyboard for the

key stroke of the player. It will accept only inputs ‘‘0’’ through ‘‘9’’

and will reject all others:

KEY JSR GETKEY
CMP #0 Is key 0?

BEQ START
CMP #10
BPL KEY If key = 10 get another

If the player has pressed key ‘‘0,’’ the program is restarted with a new
LED display. If it is a value between ‘‘1’’ and ‘‘9’’ that is pressed, the

appropriate change must be performed on the LED pattern. The key
number will be used as an index to the table of complementation
codes. Since the keys are labeled 1 through 9, the key number must

first be decremented by | in order to be used as an index. Since the

table contains double-byte entries, the index number must also be

multiplied by 2. This is performed by the following three instructions:

SEC

SBC #1 Subtract 1

ASL A Multiply by 2

83

6502 GAMES

Remember that a shift left is equivalent to a multiplication by 2 in the
binary system. The resulting value is used as an index and stored in in-

dex register X:

TAX

The LED pattern is stored in the Port A data registers. It will be com-
plemented by executing an EOR instruction on Port 1, then repeating

the process for Port 2:

LDA PORT]

EOR TABLE,X Complement Port]

STA PORT1

LDA PORT2 Same for Port2
EOR TABLE + 1,X

AND #01 Mask out unused bits

STA PORT2

Note that assembly-time arithmetic is used to specify the second byte

in the table:

EOR TABLE + 1,X

Once the pattern has been complemented, the program checks for a
winning pattern. To do so, the contents of Port 2 and Port 1 must be

matched against the correct LED pattern. For Port 2, this is ‘‘0, 0, 0,

0, 0, 0, 0, 1.’’ For Port 1, this is ‘1, 1, 1, 0, 1, 1, 1, 1.’’ Bit O of Port 2
happens presently to be contained in the accumulator and gan be

tested immediately after a right shift:

LSR A Shift bit 0 of Port 2
BCC KEY

The contents of Port 1 must be explicitly compared to the appropriate

pattern:

LDA PORT
CMP #% 11101111
BNE KEY

MAGIC SQUARE

To confirm the win, LEDs are now blinked on the board. TEMP is
used as a counter variable; X is used to set the fixed delay duration. Y

is used as a counter for the innermost loop. Each port is com-

plemented after the delay has elapsed.

LDA #14
STA TEMP

BLINK LDX #$20

DELAY LDY #$FF

DLY NOP
BNE .+2
DEY
BNE DLY
DEX
BNE DELAY
LDA PORTI

EOR #$FF
STA PORT]
LDA PORT2
EOR #1
STA PORT2
DEC TEMP
BNE BLINK
BEQ KEY

SUMMARY

Load number of blinks

Delay constant for .08 sec

Outer loop of variable
delay routine, whose delay
time is 2556 x (Contents

of X onentry) 10 ys loop

Get ports and complement
them

Count down number of blinks

Do again if not done

Get next key

This game of skill required a special table to perform the various

complementations, The timer is used directly to provide a pseudo-
random number, rather than a program. The LED pattern is stored
directly in the I/O chip’s registers.

EXERCISES

Exercise 5-1: Rewrite the end of the program using a delay subroutine.

Exercise 5-2; Will the starting pattern be reasonably random?

6502 GAMES

Exercise 5-3: Provide sound effects.

Exercise 5-4: Allow the use of key ‘‘A’’ to perform a different change
such as a total complementation.

Exercise 5-5 (more difficult): Write a program which allows the com-

puter to play and win.

Exercise 5-6: Add to the previous exercise the following feature:
record the number of moves played by the computer, then play against

the computer. You must win in fewer moves. You may specify an

identical starting pattern for yourself and the computer. In this case,
you should start, then let the computer “show you.’’ If the computer

requires more moves than you do, you are either an excellent player, a
lucky player, or you are a poor programmer. Perhaps you are using

the wrong algorithm!

86

6

SPINNER

THE RULES

A light spins around the square formed by LEDs 1, 2, 3, 6, 9, 8, 7,
and 4, in a counterclockwise fashion.

The object of the game is to stop the light by hitting the key cor-

responding to the LED at the exact time that the LED lights up. Every

time that the spinning light is stopped successfully, it will start spin-
ning at a faster rate. Every time that the player fails to stop the LED

within 32 spins, the light will stop briefly on LED #4, then resume
spinning at a slower pace. The expert player will be able to make the

light spin faster and faster, until the maximum speed is reached. At

this point, all the LEDs on the Games Board (LEDs 1 through 15)

light up simultaneously. It is a win, and a new game is started.

Each win is indicated to the player by a hesitation of the light on the
LED corresponding to the key pressed. When a complete game is won,

all LEDs on the Games Board will be lit.

6502 GAMES

This game can also be used to sharpen a player’s reflexes, or to test

his or her reaction time. In some cases, a player’s reaction may be too
slow to catch the rotating LED even at its slowest speed. In such a

case, the player may be authorized to press two, or even three, con-

secutive keys at once. This extends the player’s response time. For ex-

ample, with this program, if the player would press keys 7, 8, and 9
simultaneously, the light would stop if it was at any one of those posi-
tions (7, 8, or 9).

THE ALGORITHM

The flowchart is presented in Figure 6.1. The game may operate at

eight levels of difficulty, corresponding to the successive speeds of the
‘‘blip’’ traveling with increased rapidity around the LED square. An

8-bit counter register is used for two functions simultaneously. (See

Figure 6.2.) The lower 3 bits of this register are used as the ‘‘blip-

counter’ and point to the current position of the light on the LED

square. Three bits will select one of eight LEDs. The left-most 5 bits of
this register are used as a ‘‘loop-counter’’ to indicate how many times

the blip traverses the loop. Five bits allow up to 32 repetitions. LEDs
are lit in succession by incrementing this counter. Whenever the blip-

counter goes from ‘‘8’’ to ‘‘0,’’ a carry will propagate into the loop-

counter, incrementing it automatically. Allocating the 8 bits of
register Y to two different conceptual counters facilitates program-

ming. Another convention could be used.

Every time that an LED is lit, the keyboard is scanned to determine
whether the corresponding key has been pressed. Note that if the key

was pressed prior to the LED being lit, it will be ignored. This is ac-

complished with an ‘‘invalid flag.’’ Thus, the algorithm checks to see
whether or not a key was initially depressed and then ignores any fur-

ther closures if it was. A delay constant is obtained by multiplying the

difficulty level by four. Then, during the delay while the LED is lit, a

new check is performed for a key closure if no key had been pressed
at the beginning of this routine. If a key had been pressed at the begin-
ning it will be treated as a miss, and the program will not check again
to see if the key was pressed as the ‘‘invalid flag’’ will have been set.

Every time the correct key is pressed during the delay while the LED

is on (left branch of the flowchart in the middle section of Figure

6.1), the value of the difficulty level is decremented (a lower difficulty
number results in a higher rotation speed). For every miss on the part

SPINNER

of the player, the difficulty value is incremented up to 15, resulting in

a slower spin of the light. Once a difficulty level of 0 has been reached,

if a hit is recorded, all LEDs on the board will light to acknowledge
the situation.

THE PROGRAM

Data Structures

The program uses two tables. The KYTBL table stores the key

numbers corresponding to the circular LED sequence: 1,2,3,6,9,8,7,4.

It is located at memory addresses OB through 12. See the program

listing in Figure 6.3.

The second table, LTABLE, contains the required bit patterns

which must be sent to the VIA’s port to illuminate the LEDs in se-

quence. For example, to illuminate LED #1, bit pattern ‘‘000000001,

or 01 hexadecimal, must be sent. For LED #2, the bit pattern

‘**00000010’’ must be sent, or 02 hexadecimal. Similarly, for the other

LEDs, the required pattern is: 04, 20, 00, 80, 40; OB in hexadecimal.
Note that there is an exception for LED #9. The corresponding pat-

tern is ‘‘0’’ for Port 1, and bit 0 of Port 2 must also be turned on. We

will need to check for this special situation later on.

Program Implementation

Three variables are stored in memory page 0:

DURAT Is the delay between two successive

LED illuminations
DIFCLT Is the ‘‘difficulty level’? (reversed)
DNTST Is a flag used to detect an illegal

key closure when scanning the keys

As usual, the program initializes the three required data direction

registers: DDR1 on both Port A and Port B for the LEDs, and

DDR3B for the keyboard:

START LDA #$FF
STA DDRIA
STA DDRIB
STA DDR3B

89

6502 GAMES

NO

7 ==

DURAT = 128

DELAY CONST =
4X DIFFICULTY

DELAY ACCORDING
TO DELAY CONST

Fig. 6.1: Spinner Flowchart

SPINNER

ves

DIFFICULTY =
OIFFICULTY — |

EXCEED 15

Fig. 6.1: Spinner Flowchart (Continued)

91

6502 GAMES

LOOP BLIP
COUNTER COUNTER

Fig. 6.2: Dual Counter

The difficulty level is set to 8, an average value:

LDA #8
STA DFCLT

The keystrobe port is conditioned for input:

STA DDR3A

The Y register, to be used as our generalized loop-plus-blip-counter, is

set to‘‘0”’:

NWGME LDY #0

The key-down indicator is also set to ‘‘0’’:

LOOP LDA #0

STA DNTST

LED #9 is cleared:

STA PORTIB

The lower 3 bits of the counter are extracted. They contain the blip-

counter and are used as an index into the LED pattern table:

TYA Y contains counter

AND #$07 Extract lower 3 bits

TAX Use as index

The pattern is obtained from LTABL, using an indexed addressing

92

CODE

Ao
ac

ao

SPINNER

LINE

U “BP INNER’
SPROGRAM TO TEST REACTION TIME OF PLAYER.
'BLIP OF LIGHT SPINS AROUND EDGE
$O0F 3X3 LED MATRIX» AND USER MUST PRESS
§CORRESPONDING KEY. IF» AFTER A NUMBER OF
$SPINGs CORRECT KEY HAS NOT BEEN PRESSED»
#BLIP SPINS SLOWER. IF CORRECT KEY HAS BEEN
IPRESSED, BLIP SPINS FASTER. ALL
#LEDS LIGHT WHEN SUCCESSFUL KEYPRESS
imeeuee ON MAXIMUM SPEED.

$170 3
U
PORTIA = 6A001 sLEDS 1-6
PORTIB = 8A000 #LEDS 8-15
DDRIA = 8A003
DDRiB = $A002
PORTIA = SACOl sKEY STROBE INPUT.
PORT3B = SACOO0 #KEY @ OUTPUT.
DDRIA © SACO
DDRIB = $ACO2
U
SVARIABLE STORAGE:
$

x = 90
$
DURAT &t=8t1 SDURATION OF INTER-MOVEMENT DELAY.
DIFCLT s=8t1 SDIFFICULTY LEVEL.
BNTST *=k+1 sSET TO $01 IF KEY DOWN AT START

3OF EINTER-MOVEMENT DELAY.
i)
STABLE OF PATTERNS TO BE SENT TO LED
SHATRIX AT EACH LOOP COUNT.
$SET FOR CLOCKWISE ROTATION STARTING AT LED $1.
U
LTABLE .BYTE 901178027604 26207 90016801 9407908

'
STABLE OF PATTERNS TO BE SENT TO KEYBOARD
‘TO TEST IF LEDS ARE ON AT EACH LOOP COUNT.
6
KYTBL .BYTE 102030609289 704

$
tMAIN PROGRAM
’

i)
START LDA @SFF §G6E1 I/0 REGISTERS.

STA DIFCLT SSET DIFFICULTY.
STA DBR3IA)SET KEYSTROBE PORT.

NWOME LDY 60 sRESET LOOP/BLIP COUNTER.
Loop LDA 60

STA DNTST SCLEAR KEYDOWN INDICATOR.
STA PORTIB OCLEAR HI LED PORT.
TYA SUSE LOWER 3 BITS OF MAIN COUNTER
AND 0607 §AS INDEX TO FIND LED PATTERN
TAX #IN TABLE OF PATTERNS.
LDA LTABLE +X §GET PATTERN FOR LED TO

Fig. 6.3: Spinner Program

93

6502

SYMBOL

SYMBOL

CHECK
DDRSB
DL2
INVALD
LP2
OK
PORTSB
END OF ASSEMBLY

GAMES

0293

TABLE

VALUE

022B
aco2
0242
0235
0284
0263
acoo

DORIA
DELAY
DNTST
KYTBL
LTABLE
PORTIA
START

CHECK

noTSsT

OK

HIT

BNE NOT
SDELAY»
BIT

PORTIA
CHECK
61
PORT1IB
KYTBL Xx
PORTSB
PORTSA
DELAY
601
DNTST
#660
DURAT
DIFCLT
a
re)

DNTST
DNTST

DL2
DNTST

ST

PORTSA
HIT
BURAT
DLi

Loor
DIFCLT
sEASTER.

16
OK
15
DIFCLT
WAIT
NUGME
WAIT
DIFCLT
NNGMHE

SBE TURNED ON.
SSTORE IN LED PORT.
¢IF PATTERN <- Or SKIP.
tPATTERN=0r SO SET HI BIT.

1GET KEve TO TEST FOR.
sSTORE IN KEYPORT.
sSTROBE HI?
9IF NOT, SKIP.
sSTOBE HI: SET KEY DOWN MARKER.

sGET @ OF LOOP CYCLES (DELAY LENGTH)

SMULTIPLY DIFFICULTY COUNTER ,
pBY FOUR TO DETERMINE DELAY
SLENGTH.

SDELAY ACCORDING TO DIFCLT.

#LOOP ‘TIL COUNT = 0
$GET KEY DOWN FLAG.
$IF KEY WAS DOWN AT BEGINNING OF

DON’T TEST IT.
SCHECK KEY STROBE.
#KEY HAS CLOSED DURING DELAY?!
sCOUNT DELAY LOOP DOWN.
#LOOP IF NOT O.
SINCREMENT MAIN SPIN COUNTER.
#IF 32 LOOPS NOT BONEs BDO NEXT LOOP
#NO HITS THIS TIME: MAKE NEXT

HIT.

SMAKE SURE DIFFICULTY DOES NOT
sEXCEED 15

sPAUSE A BIT.
SSTART NEW ROUND.
sPAUSE A BIT.
SMAKE NEXT GAME HARDER.
SIF DIFFICULTY NOT O (HARDEST),

#PLAY NEXT GAME.
esFF
PORTIA
PORT1B
WAIT
START

,
#SUBROUTINE ‘WAIT’
SGHORT DELAY.
»
WAIT
LP1
LP2

A003
0239
0002
0008
0003
a001
0200

LDY O6FF
LDX @SFF
ROR BDURAT
ROL DURAT
ROR DURAT
ROL BURAT
DEX
BNE LP2
DEY
BNE LP1
RTS
«END

DOR1B A002
DIFCLT 0001
BURAT 0000
LooP 0214
NOTST 0252
PORT1B A000
WAIT 0280

¢PLAYER HAS MADE IT TO TOF
SDIFFICULTY LEVEL» LIGHT ALL LEDS.

IPAUSE A BIT.
SPLAY ANOTHER GAME.

DBRIA ACO3
DLi O23
HIT 0268
LP 0262
NWGHE 0212
PORTIA ACOL

Fig. 6.3: Spinner Program (Continued)

SPINNER

mechanism with register X, and this pattern is output on Port 1A to

light up the appropriate LED:

LDA LTABLE, X_ Get pattern
STA PORTIA Use it to light up LED

As we indicated in the previous section, an explicit check must be

made for the pattern ‘‘0,’’ which requires that bit 0 of Port B be
turned on. This corresponds to LED #9:

BNE CHECK Was pattern = 0?

LDA #1 If not, set LED #9

STA PORTIB

Once the correct LED has been lit, the keyboard must be inspected to

determine whether the player has already pressed the correct key. The
program only checks the key number corresponding to the LED being

lit:

CHECK LDA KYTBL,X X contains correct pointer

STA PORT3B Select correct key
BIT PORT3A Strobe hi?
BMI DELAY If not, skip

If the corresponding key is down (a strobe high on Port 3A is

detected), the key-down flag, DNTST, is set to ‘‘1”’:

INVALD LDA #01
STA DNTST

This is an illegal key closure. It will be ignored. A delay to keep the

LED lit is implemented by loading a value in memory location
DURAT. This location is used as a loop-counter. It will be

decremented later on and will cause a branch back to location DLI to

occur:

DELAY LDA #$80
STA DURAT

The difficulty counter, DIFCLT, is then multiplied by four. This is ac-
complished by two successive left shifts:

6502 GAMES

DLI LDA DIFCLT
ASL A
ASL A
TAX

The result is saved in index register X. It will determine the delay
length. The lower the ‘‘difficulty-level,’’ the shorter the delay will be.

The delay loop is then implemented:

DL2 ROL DNTST

ROR DNTST
DEX

BNE DL2 Loop til count = 0

The key-down flag, DNTST, is then retrieved from memory and
tested. If the key was down at the beginning of this routine, the pro-

gram branches to location NOTST. Otherwise, if a closure is detected,

a hit is reported and a branch occurs to location HIT:

LDA DNTST
BNE NOTST

BIT PORT3A Check key strobe

BPL HIT

At NOTST, the external delay loop proceeds: the value of DURAT is
decremented and a branch back to location DL1 occurs, unless

DURAT decrements to ‘‘0.’’ Whenever the delay decrements to ‘‘0’’

without a hit, the main counter (register Y) is incremented by 1. This

results in advancing the blip-counter (lower three bits of register Y) to
the next LED. However, if the blip-counter was pointing to LED #4

(the last one in our sequence), the loop-counter (upper 5 bits of
register Y) will automatically be incremented by 1 when the blip-

counter advances. If the value 32 is reached for the loop-counter, the
value of register Y after incrementation will be ‘‘0’’ (in fact, an

overflow will have occurred into the carry bit). This condition is tested
explicitly:

NOTST DEC DURAT

BNE DL1 Loop if not 0
INY Increment counter

BNE LOOP 32 loops?

SPINNER

Once the Y register has overflowed, i.e., 32 loops have been executed,

the difficulty value is increased, resulting in a slower spin:

LDX DIFCLT No hits. Make it easier

INX

The maximum difficulty level is 15, and this is tested explicitly:

TXA Only A may be compared

CMP #16
BNE OK
LDA #15 Stay at 15 maximum

OK STA DIFCLT

Finally, a brief pause is implemented:

JSR WAIT

and a new spin is started:

JMP NWGME

In the case of a hit, a pause is also implemented:

HIT JSR WAIT

then the game is made harder by decrementing the difficulty count

(DIFCLT)

DEC DIFCLT

The difficulty value is tested for ‘‘0’’ (fastest possible spin). If the ‘‘0”’
level has been reached, the player has won the game and all LEDs are

illuminated:

BNE NWGME If not 0, play next game
LDA #$FF Itis a win

STA PORTIA Light up

STA PORTIB

The usual pause is implemented, and a new game is started:

6502 GAMES

JSR WAIT
JMP START

The pause is achieved with the usual delay subroutine called ‘“WAIT.”’
It is a classic, two-level nested loop delay subroutine, with additional
do-nothing instructions inserted at address 0286 to make it last longer:

WAIT LDY #SFF
LP1 LDX #$FF
LP2 ROR DURAT

ROL DURAT
ROR DURAT
ROL DURAT
DEX
BNE LP2
DEY
BNE LP!
RTS

SUMMARY

This program implemented a game of skill. Multiple levels of diffi-

culty were provided in order to challenge the player. Since human

reaction time is slow, all delays were implemented as delay loops. For
efficiency, a special double-counter was implemented in a single register:

the blip counter—loop counter.

EXERCISES

Exercise 6-1: There are several ways to ‘‘cheat’’ with this program.
Any given key can be vibrated rapidly. Also, it is possible to press any
number of keys simultaneously, thereby massively increasing the

odds. Modify the above program to prevent these two possibilities.

Exercise 6-2: Change the rotation speed of the light around the LEDs
by modifying the appropriate memory location. (Hint: this memory
location has a name indicated at the beginning of the program.)

Exercise 6-3: Add sound effects.

98

7

SLOT MACHINE

THE RULES

This program simulates a Las Vegas-type slot machine. The rota-

tion of the wheels on a slot machine is simulated by three vertical rows
of lights on LED columns 1-4-7, 2-5-8, and 3-6-9. The lights ‘‘rotate’’
around these three columns, and eventually stop. (See Figure 7.1.) The

final light combination representing the player’s score is formed by
LEDs 4-5-6, i.e., the middle horizontal row.

At the beginning of each game, the player is given eight points. The
player’s score is displayed by the corresponding LED on the Games

Board. At the start of each game, LED #8 is lit, indicating this initial

score of 8.
The player starts the slot machine by pressing any key. The lights

start spinning on the three vertical rows of LEDs. Once they stop, the

combination of lights in LEDs 4, 5, and 6 determines the new score. If

either zero or one LED is lit in this middle row, it is a lose situation,
and the player loses one point. If two LEDs are lit in the middle row,

the player’s score is increased by one point. If three LEDs are lit in the

middle row, three points are added to the player’s score.

Whenever a total score of zero is obtained, the player has lost the

game. The player wins the game when his or her score reaches 16

points. Everything that happens while the game is being played pro-
duces tones from the machine. While the LEDs are spinning, the
speaker crackles, reinforcing the feeling of motion. Whenever the

lights stop rotating, a tone sounds in the speaker, at a high pitch if it is

a win situation, or at a low pitch if it is a lose situation. In particular,
after a player takes his or her turn, if there are three lights in the mid-

99

6502 GAMES

SCORE ’

WHEEL 1 WHEEL 2 WHEEL 3

Fig. 7.1: The Slot Machine

dle row (a win situation), the speaker will go beep-beep-beep in a high

pitch, to draw attention to the fact that the score is being incremented

by three points. Whenever the maximum of 16 points is reached, the

player has obtained a ‘‘jackpot.’’ At this point all the LEDs on the

board will light up simultaneously, and a siren sound will be generated

(in ascending tones). Conversely, whenever a null score is reached, a

siren will be sounded in descending tones.

Note that, unlike the Las Vegas model, this machine will let you win

frequently! Good luck. However, as you know, it is not as much a

matter of luck as it is a matter of programming (as in Las Vegas ma-

chines). You will find that both the scoring and the probabilities can
be easily modified through programming.

A TYPICAL GAME

The Games Board initially displays a lit LED in position 8, in-

dicating a starting score of 8. At this point the player should select and

press a key. For this example let’s press key 0. The lights start spin-

ning. At the end of this spin, LEDs 4, 5, and 9 are lit. (See Figure 7.2.)

This is a win situation and one point will be added to the score. The

high-pitch tone sounds. LED #9 is then lit to indicate the total of the 8
previous points plus the one point obtained on this spin.

100

SLOT MACHINE

000
® @ 0o--
00 @
Fig. 7.2: A Win Situation

Key 0 is pressed again. This time only LED 5 in the middle row is lit

after the spin. The score reverts back to 8. (Remember, the player

loses 1 point from his or her score if either zero or only one LED in the

middle row is lit after the spin.)

Key 0 is pressed again; this time LEDs 5 and 6 light up resulting in a
score of nine.

Key 0 is pressed again. LED 4 is lit at the end of the spin, and LED 8

lights up again.
Key 0 is pressed. LED 6 is lit. The score is now 7, etc.

THE ALGORITHM

The basic sequencing for the slot machine program is shown in the

flowchart in Figure 7.3. First, the score is displayed, then the game is

started by the player’s key stroke and the LEDs are spun. After this,

the results are evaluated: the score is correspondingly updated and a

win or lose situation is indicated.
The LED positions in a column are labeled 0, 1, 2, from the top to bot-

tom. LEDs are spun by sequentially lighting positions 0, 1, 2, and then

returning to position 0. The LEDs continue to spin in this manner and

their speed of rotation diminishes until they finally come to a stop.

This effect is achieved by incrementing the delay between each suc-
cessive actuation of an LED within a given column. A counter-register

is associated with each ‘‘wheel,’’ or column of three LEDs. The initial
contents of the three counters for wheels 1, 2, and 3 are obtained from

a random number generator. In order to influence the odds, the ran-

dom number must fit within a programmable bracket called (LOLIM,

HILIM). The value of this counter is transferred to a temporary

memory location. This location is regularly decremented until it

reaches the value ‘‘0.”” When the value 0 is reached, the next LED on

101

6502 GAMES

Fig. 7.3: Slots Flowchart

102

SLOT MACHINE

the ‘‘wheel’’ is lit. In addition, the original counter contents are in-

cremented by one, resulting in a longer delay before lighting up the

next LED. Whenever the counter overflows to 0, the process for that

wheel stops. Thus, by using synchronous updating of the temporary

memory locations, the effect of asynchronously moving LED ‘‘blips’’

is achieved. When all LEDs have stopped, the resulting position is

evaluated.
The flowchart corresponding to this DISPLAY routine is shown in

Figure 7.4. Let us analyze it. In steps1, 2, and 3 the LED pointers are

initialized to the top row of LEDs (position 0). The three counters
used to supply the timing interval for each wheel are filled with num-

bers from a random number generator. The random number is selected

between set limits. Finally, the three counters are copied into the tem-
porary locations reserved for decrementing the delay constants.

Let us examine the next steps presented in Figure 7.4:

4. The wheel pointer X is set at the right-most column: X = 3.

5. The corresponding counter for the current column (column 3

this time) is tested for the value 0 to see if the wheel has stopped.
It is not 0 the first time around.

6,7. The delay constant for the column of LEDs determined by
the wheel pointer is decremented, then it is tested against the
value 0. If the delay is not 0, nothing else happens for this
column, and we move to the left by one column position:

16. The column pointer X is decremented: X = X — 1
17. X is tested against zero. If X is zero, a branch occurs to

step 5. Every time that X reaches the value zero, the same

situation may have occurred in all three columns. All
wheel counters are, therefore, tested for the value zero.

18. If all counters are zero, the spin is finished and exit oc-
curs. If all counters are not zero, a delay is implemented,

and a branch back to (4) occurs.

Back to step 7:

7. If the delay constant has reached the value zero, the next

LED down in the column must be lit.

8. The LED pointer for the wheel whose number is in the wheel

pointer is incremented.

9. The LED pointer is tested against the value 4. If 4 has not
been reached, we proceed; otherwise, it is reset to the value 1.
(LEDs are designated externally by positions 1, 2, and 3 from

103

6502 GAMES

1 | LED POINTERS = 0

Fig. 7.4: DISPLAY Flowchart

104

SLOT MACHINE

=I

12

13

OUTPUT [(LTMSK1)
14] OR (LTMSK2)OR

(LTMSK3)) TO LEDs

15
DONE: RETURN

Fig. 7.4: DISPLAY Flowchart (Continued)

105

6502 GAMES

top to bottom. The next LED to be lit after LED #3 is LED

#1.)

10,11. The LED must be lit on the board, and a table LIGHTABLE

is utilized to obtain the proper pattern.
12. The counter for the appropriate wheel is incremented. Note

that it is not tested against the value zero. This will occur only

when the program moves to the left of wheel 1. This is done

at location 18 in the flowchart, where the counters are tested

for the value zero.
13. The new value of the counter is copied into the delay constant

location, resulting in an increased delay before the next LED

actuation.

14. The current lighting patterns of each column are combined

and displayed.
15. As each LED is lit in sequence, the speaker is toggled (ac-

tuated) .

16. As usual, we move to the column on the left and proceed as

before.

Let us go back to the test at step 5 in the flowchart:

5. Note that whenever the counter value for a column is zero,

the LED in that column has stopped moving. No further ac-
tion is required. This is accounted for in the flowchart by the
arrow to the right of the decision box at 5: the branch occurs

to 16 and the column pointer is decremented, resulting in no

change for the column whose counter was zero.

Next, the evaluation algorithm must evaluate the results once all

LEDs have stopped and then it must signal the results to the player.
Let us examine it.

The Evaluation Process

The flowchart for the EVAL algorithm is shown in Figure 7.5. The
evaluation process is also illustrated in Figure 7.6, which shows the

nine LEDs and the corresponding entities associated with them. Refer-
ring to Figure 7.6, X is a row-pointer and Y is a column- or wheel-

pointer. A value counter is associated with each row. It contains the

total number of LEDs lit in that row. This value counter will be con-
verted into a score according to specific rules for each row. So far, we
have only used row 2 and have defined a winning situation as being
one in which two or three LEDs were lit in that row. However, many

other combinations are possible and are allowed by this mechanism.

106

SLOT MACHINE

Exercises will be suggested later for other winning patterns.
The total for all of the scores in each row is added into a total called

SCORE, shown at the bottom right-hand corner of Figure 7.6.

Let us now refer to the flowchart in Figure 7.5. The wheel- or col-
umn pointer Y is set initially to the right-most column: Y = 3.

2: The temporary counters are initialized to the value zero.

3: Within the current column (3), we need only look at the row
which has a lit LED. This row is pointed to by LED-

POINTER. The corresponding row value is stored in:
X = LED POINTER (Y)

4. Since an LED is lit in the row pointed to by X, the value

counter for that row is incremented by one.

Assuming the LED situation of Figure 7.7, the second value counter

has been set to the value 1.

5: The next column is examined: Y = Y — 1.

If Y is not 0, we go back to (3); otherwise the evaluation process

may proceed to its next phase.

Exercise 7-1: Using the flowchart of Figure 7.5, and using the example
of Figure 7.7, show the resulting values contained in the value counters
when we finally exit from the test at (6) in the flowchart of Figure 7.5.

The actual number of LEDs lit in each row must now be trans-

formed into a score. The SCORETABL is used for that purpose. If the

scoring rules contained in this table are changed, they will completely
modify the way the game is played.

The score table contains four byte-long numbers per row. Each

number corresponds to the score to be earned by the player when 0, 1,

2, or 3 LEDs are lit in that row. The logical organization of the score

table is shown in Figure 7.8. The entries in the table correspond to the

score values which have been selected for the program presented at

the beginning of this chapter. Any combination of LEDs in rows 1 or

3 scores 0. Any combination of 2 LEDs in row 2 scores 1, but, three

LEDs score 3. Practically, this means that the score value of row 1 is
obtained by merely using an indexed access technique with the number

of LEDs lit as the index. For row 2, a displacement of four must be

added for table access. In row 3, an additional displacement of four

must be added. Mathematically, this translates to:

SCORE = SCORETABL[(X — 1) x 4 + 1 + Y]

107

6502 GAMES

2 | VALUE COUNTERS,

(X-1xKa+

Fig. 7.5: EVAL Flowchart

108

SLOT MACHINE

INCREMENT SCORE 20

SIGNAL GAME
WON WITH RISING YES

NO
16 272

WARBLE, LIT LEDs
PLAY HIGH TONE, SCORE = 07
SHOW NEW SCORE

NO

17

SCORTMP = 0? 23 SOUND

FALLING TONE

Yes

RETURN:
NEXT SPIN

Fig. 7.5: EVAL Flowchert (Continued)

109

6502 GAMES

VALUE
COUNTER

Fig. 7.6: Evaluation Process on the Board

VALUE
COUNTER

Fig. 7.7: An Evaluation Example

where X is the row number and Y is the number of LEDs lit for that

row. Since this technique allows each of the three rows to generate a

score, the program must test the value counter in each row to obtain

the total score.

This is accomplished by steps 7 and 8: the row pointer is initialized

110

SLOT MACHINE

NUMBER LEDs LIT 0 3

Fig. 7.8: The Score Table

to 3, and a score table displacement pointer is set up:

9.

TEMP = (X - 1) x 4+ 1

Next, the value of the score is obtained from the table:

Q = SCORTABL (value counter (X), TEMP)

The value of that row’s score is obtained by accessing the score

table indexed by the number of LEDs lit, contained in the value counter
for that row, plus a displacement equal to TEMP. The intermediate

score is obtained by adding this partial score to any previous value:

ll.

13.

14.
15.

SCORTMP = SCORTMP + Q
Finally, the row number is decremented, and the process is

repeated until X reaches the value 0.

Whenever X reaches the value 0, the score for this spin has

been computed and stored in location SCORTMP.

At this point, the score computed above (SCORTMP) is ex-
amined by the program, and two possibilities exist: if the

SCORTMP is 0, a branch occurs to 20, where the game score
is decremented. If SCORTMP is not 0, the game score will be

increased by the score for this spin — SCORTMP. Let us

follow this path first.

The total game score is incremented by one.

It is then tested for the maximum value of 16.

111

6502 GAMES

16. If the maximum score of 16 is reached in step 15, a special

audible and visual signal is generated to reward the player. A

new game may be started.
17. If 16 is not reached in step 15, the updated game score is

shown to the player, accompanied by a high-pitched tone.

18. |The amount by which the game score must be increased,

SCORTMP, is decremented.

19. If SCORTMP is not zero, more points must be added to the
game score, and a branch occurs to 14. Otherwise, the player

may enter the next spin.

Let us now follow the other path from position thirteen on the

flowchart, where the total score had been tested:

20. Thescore for this spin is 0, so the game score is decremented.

21. ‘It is displayed to the player along with a low tone.

22. The new score is tested for the minimum value 0. If this

minimum value has been reached, the player has lost. Other-

wise, the player may keep playing.

23. A descending siren-type tone is generated to indicate the loss,

and the game ends.

THE PROGRAM

Data Structures

Two tables are used by this program: 1) the score table is used to

compute a score from the number of LEDs lit in each row — this has

already been described; 2) the LTABLE is used to generate the ap-

propriate code on the I/O port to light the specified LED. Each entry

within this table contains a pattern to be OR’ed into the I/O register to

light the specified LED.

Vertically, in the memory, the table entries correspond to the first

column, the second column, and then the third column of LEDs.
Looking at the program on lines 39, 40, and 41, the rows of digits cor-
respond respectively to the columns of LEDs. For example, the third

entry in the table, i.e., 64 decimal, or 40 hexadecimal (at address

001C) corresponds to the third LED in the first column on the Games
Board, or LED 7.

Page Zero Variables

The following variables are stored in memory:
— TEMP is a scratch location

112

CODE

A? FF

SLOT MACHINE

LINE

§SLOT MACHINE SIMULATOR PROGRAM.
SPRESS ANY KEY TO START ‘SPIN’.
SSCORE DETERMINED BY ARRAY ‘SCORTB’.
58 POINTS INITIAL SCORE? ONE POINT PENALTY
SFOR EACH BAD SPIN.

x = $0
TEMP = Bat STEMPORARY STORAGE.
SCORTP t=2+1 S TEMPORARY SCORE STORAGE.
SCORE s=%+1 sSCORE.
DUR eesti sDURATION OF TONES.
FREQ Set+1 tFREQUENCY OF TONES.
SPEEDS #=843 sSPEEDG OF REVOLUTION FOR LEDS

#IN COLUMNS
INDX ee8+3 ‘DELAY COUNTERS FOR LED REVOLUTIONS.
INCR = &e8+3 SPOINTERS FOR LED POSITIONS?

SUSED TO FETCH PATTERNS OUT OF TABLES.
LTMSK &=kt+3 JPATTERNS FOR LIT LEDS
VALUES #=4&+3 oNO. OF LIT LEDS IN EACH ROW.
RND eubté SSCRATCHPAD FOR RND @ GEN.
$
#170
’
PORTIA = 8A001 #VIAG1 PORT A 1/0 REG (LEDS)
DDRIA = $A003 #VIAG1 PORT A DATA BIRECTION REG.
PORTIB = A000 #VIAOG1 PORT B I/0 REG. (LEDS)
DDRiB = $A002 SVIAGL PORT B DATA DIRECTION REG.
PORTSB = SAaCoo SVIAGS PORT B 1/0 REG. (SPKR)
DDR3IB == SACO2 sVIACS PORT B DATA DIRECTION REG.
TACL ® $A004
$
sARRAYS
$
BARRAY OF PATTERNS TO LIGHT LEDS.
VARRAY ROWS CORRESPOND TO COLUMNS OF LED
sARRAYe AND COLUMNS TO ROWS. FOR EXAMPLE? THIRD
SBYTE IN ROW ONE WEILL LIGHT LED 7.
LTABLE .BYTE 176744

«BYTE 29167128

eBYTE 493270

SARRAY OF SCORES RECEIVED FOR CERTAIN
SPATTERNS OF LIT LEDS.
sROWS CORRESPOND TO ROWS IN LED ARRAY.
SCOLUMNS CORRESPOND TO NUMBER OF LEDS
SLIT IN THAT ROW.
6I1.E.*e 3 LEDS IN MIDDLE ROW IS 3 PTS.
SCORTB .BYTE 0707070

BYTE 0700123

BYTE 0907070

5
SRSER MAIN PROGRAM 88084
$
GETKEY = 6100

& = 6200
LDA 9SFF sSET UP PORTS.

Fig. 7.9: Slot Machine Program

113

0057 0202 @D 03 AO STA DDRIA
0058 0205 @D 02 AO STA DDRIB
0059 0208 @D 02 AC STA DDR3B
0060 0208 AD 04 AO LDA TICL SGET SEED FOR RANDOM @ GEN.
0061 020E 85 15 STA RND#+1
0062 0210 a9 08 START LDA #6 SINITIAL SCORE IS EIGHT.
00463 0212 985 02 STA SCORE
0064 0214 Aa TAY 9SHOW INITIAL SCORE
0065 0215 20 3D 03 JSR LIGHT
0066 0218 20 00 01 KEY JSR GETKEY FANY KEY PRESSED STARTS PROGRAM.
00467 021B 20 27 02 J8R DISPLY bSPIN WHEELS
0068 O21E 20 a7 02 JSR EVAL SCHECK SCORE AND SHOW IT
0069 0221 AS 02 LDA SCORE
0070 0223 DO F3 BNE KEY SIF SCORE <> Or GET NEXT PLAY.
0071 0225 FO EP BEQ START #IF SCORE = Or RESTART.
0072 0227 ’
0073 0227 IGUBROUTINE TO DISPLAY ‘SPINNING’ LEDS,
0074 0227 YFIND COMBINATION TO USED TO DETERMINE SCORE.
0075 0227 ;
0076 0227 LOLIM = 90
0077 0227 HILIM = 135
0078 0227 SPDPRM = G0
0079 0227 A® 00 DISPLY LDA @0 FRESET POINTERS.
0080 0229 8&5 OB STA INCR
0081 0228 85 oc STA INCR+1
0082 022D 95 oD STA INCR+2
0083 022F Ao 02 LDRND LDY @2 ‘SET INDEX FOR 3 ITERATIONS.
0084 0231 20 60 03 GETRND JSR RANDOM $GET RANDOM @.
008S 0234 C9 67 CNP @HILIN STOO LARGE?
0086 0236 BO F9 BCS GETRND +IF SOs GET ANOTHER.
0067 0238 C9 SA CMP @LOLIN #TOO SMALL?
0088 023A 90 FS BCC GETRND #IF SOs GET ANOTHER.
0089 023C 99 08 00 STA INDXrY #SAVE IN LOOP INDEXES AND
0090 023F 99 05 00 STA SPEEDS» Y *LOOP SPEED COUNTERS.
0091 0242 88 DEY
0092 0243 10 EC BPL GETRND 1GET NEXT RND @.
0093 0245 A2 02 UPDATE LDX ¢2 #SET INDEX FOR THREE ITERATIONS.
0094 0247 B4 0S UPDTLP LDY SPEEDS» X #IS SPEED(X)@0?
0095 0249 FO 44 BEQ NXTUPD SIF SO» DO NEXT UPDATE.
0096 024B Dé 08 BEC INDX»X SDECRENENT LOOP INDEX(x)
0097 024D DO 40 BNE NXTUPD 31F LOOPINDEX(X) <> 0»
0098 024F #DO NEXT UPDATE.
0099 024F B4 OB LDY INCRX SINCRENENT POINTER(X).
0100 0251 ce INY
0101 0252 CO 03 CPY 03 sPOINTER = 37
0102 0254 DO 02 BNE NORST SIF NOT SKIP...
0103 0256 Ad 00 LDY 60 0.» eRESET OF POINTER TO 0.
0104 0258 94 OB NORST STY INCR?»X FRESTORE POINTER(X).
0105 025A 66 00 STX TEMP)MULTIPLY X BY 3 FOR ARRAY ACCESS.
0106 025C 8A TXA
0107 025D OA” ast A
0108 O2S5E 18 cic
0109 O25F 65 00 ADC TENP
0110 0261 75 OB ADC INCR>X SADD COLUMN® TO PTR(X) FOR ROWE,
0111 0263 ae TAY SXFER TO Y FOR INDEXING.
0112 0264 B9 1A 00 LDA LTABLE?Y 9GET PATTERN FOR LED.
0113 0267 95 0€ STA LTMSKeX . §STORE IN LIGHT MAGK(X).
0114 0269 B4 0S SPDUPD LDY SPEEDS+X #INCREMENT SPEED(X).
0115 026_ ce INY
0116 026C 94 05 STY SPEEDS» xX NRESTORE.
0117 026€ 94 08 STY INDX»X SRESET LOOP INDEX(X).
0118 0270 a9 00 LEDUPD LDA @0 SUPDATE LIGHTS.
0119 0272 6D 00 ao STA PORT1B SRESET LED @9
0120 0275 aS 10 LDA LTMSK+2 SCOMBINE PATTERNS FOR OUTPUT.
0121 0277 DO 07 BNE OFFLDY sIF MASK@3 <> Or LED 9 OFF.
0122 0279 a 01 LDA 001 #TURN ON LED 9.
0123 0278 @D 00 ao STA PORTIB
0124 027E A 00 LDA @0 #RESET A SO PATTERN WON’T BE BAD.
0125 0280 0S OE OFFLD9 ORA LTMSK ICOMBINE REST OF PATTERNS.
0126 0202 05 OF ORA LTWSK+1
0127 0264 6D 01 AO STA PORTIA ISET LIGHTS,
0128 0287 AD 00 ac LDA PORT3B STOOGLE SPEAKER.

Fig. 7.9: Slot Machine Program (Continued)

114

0129
0130
0131
0132
0133
0134
0138
0136
0137
0136
0139
0140
0141
0142
0143
0144
0143
0146
0147
01468
0149
0150
0151
0152
0153
0154
01353
0156
0157
0158
01359
0140
0161
0142
0163
0164
0165
01466
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0163
0184
0165
0186
0187
0186
0169
0190
0191
0192
0193
0194
0198
0196
0197
0198
0199
0200
0201

11

23

SLOT MACHINE

EOR 6S6FF
ac STA PORTIB

NXTUPD DEX sBDECREMENT X FOR NEXT UPDATE.
BPL UPDTLP sIF X>=0, DO NEXT UPDATE.
LDY éSPDPRHK #DELAY A BIT TO SI.OW

WAIT DEY #FLASHING OF LEDS.
BNE WAIT
LDA SPEEDS SCHECK IF ALL COLUMNS OF

SLEDS STOPPED.
ORA SPEEDS+1
ORA SPEEDS+2
BNE UPDATE sIF NOT» DO NEXT SEQUENCE

SOF UPDATES.
LDA OSFF
STA DUR SDELAY TO SHOW USER PATTERN.

03 JER DELAY
RTS SALL LEDS STOPPED» DONE.

SGUBROUTINE TO EVALUATE PRODUCT OF SPIN» AND
SDIGPLAY SCORE W/ TONES FOR WIN, LOSEr WINtENDGAME,
SAND LOSEFENDGAME.
$
HITONE = $20
LOTOGNE = SFO
EVAL LDA 60 SRESET VARIABLES.

STA VALUES
STA VALUES+1
STA VALUES+2
STA SCORTP
LDY @2 sSET INDEX Y FOR 3 ITERATIONS

sTO0 COUNT @ OF LEDS ON IN EACH ROW.
CNTLP LDX INCRY $CHECK POINTERC(CY)» ADDING

INC VALUES +X ‘UP @ OF LEDS ON IN EACH ROW.
DEY
BPL CNTLF SLOOP IF NOT DONE.
LDX @2 SET INDEX X FOR 3 ITERATIONS.

¢OF LOOP TO FIND SCORE.
SCORLP TXA SMULTIPLY INDEX BY FOUR FOR ARRAY

sROW ACCESS.
ASL A
ASL A
cLc sADD @ OF LEDS ON IN ROWC(X) TO...
ADC VALUES +X §. ARRIVE AT COLUMN ADDRESS IN ARRAY.
TAY SUSE AS INDEX

0° LDA SCORTRrY SGET SCORE FOR THIS SPIN.
cLc
ADC SCORTP jADD TO ANY PREVIOUS SCORES

SACCUMULATED IN THIS LOOF.
STA SCORTP SRESTORE
DEX
BPL SCORLP sLOOF IF NOT DONE
LDA 0660 SET UP DURATIONS FOR TONES.
STA DUR
LDA SCORTP #GET SCORE FOR THIS SFIN.
BEG LOSE #IF SCORE IS Or LOSE A FOINT.

WIN INC SCORE SRAISE OVERALL SCORE BY ONE.
LDY SCORE #GET SCORE
CPY @16 sWIN W/ 16 PTS?
BEG WINEND $YES $ WIN+ENDGAME.

03 JSR LIGHT s8HOW SCORE.
LDA ¢HI TONE jPLAY HIGH BEEF.

03 JSR TONE
03 JSR DELAY sSHORT DELAY.

BEC SCORTF #DECREMENT SCORE TO BE ADDED TO...
SOVERALL SCORE By ONE.

BNE WIN sLOOP IF SCORE XFER NOT COMPLETE.
RTS SRONEs RETURN TO MAIN PROGRAM.

WINEND LDA O8FF STURN ALL LEDS ON TO SIGNAL WIN.
Ad STA PORTIA
ao STA PORTLE

STA TEMP sSET FREQ PARM FOR RISING WARBLE.
LDA $0
STA SCORE sCLEAR TO FLAG RESTART.

Fig. 7.9: Slot Machine Program (Continued)

115

6502 GAMES

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0216
0219
0220
0221
0222
0223
0224
0225
0226
0227
0226
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
02350
0231
0252
0253
0234
0255
02356
02387
0256
0239
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273

116

RISE LDA
03 JSR

LOSE DEC

03 JSR

03 JSR

LOSEND LDA
s

Ao STA

FALL LDA
03 JSR

04
DUR $SHORT DURATION FOR INDIVIDUAL

SBEEPS IN WARBLE.
TEMP
TONE
TEMP
RISE

SCORE
SCORE
LIGHT
OLOTONE
TONE
SCORE
LOGEND

#GET FREQUENCY....
$eeeeFOR BEEP.
sNEXT BEEP WILL BE HIGHER.
$DO NEXT BEEP IF NOT DONE.
SRETURN FOR RESTART.
SIF SPIN BAD, SCORE=SCORE-1
+SHOW SCORE

+PLAY LOW LOSE TONE.

*GET SCORE TO SEE
SIF GAME IS OVER.
SIF NOTr RETURN FOR NEXT SPIN.
sSET TEMP FOR USE AS FREQ PARN
sIN FALLING WARBLE.
6CLEAR LED @1.

sPLAY BEEP.
6NEXT TONE WILL BE LOWER.

sRETURN FOR RESTART.

SVARIABLE LENGTH DELAY SUBROUTINE.
sDELAY LENGTH = (20468CCONTENTS OF DURJ+10) US.
$
DELAY LDY
DL1 LDX
DL2 BNE

DUR
Serr
at2

DL2

DBL1

sGET DELAY LENGTH.
SSET CNTR FOR INNER 2040 US. LOOF
#+WASTE TIME.
SDECREMENT INNER LOOP CNTR.
SLOOP ‘TILL INNER LOOP DONE.
SDECREMENT OUTER LOOP CNTR.
SLOOP ‘TILL DONE.
SRETURN.

SSUBROUNTINE TO LIGHT LED CORRESPONDING -
$TO THE CONTENTS OF REGISTER Y ON ENTERING.
e

LIGHT LDA
STA

AO STA
Ao STA

LTSHFT ROL

tTcc 8 6—DEY

Ao LOBYTE STA

Ao HIBYTE STA

00
TEMP
PORTIA
PORT1B
615
at3

A
urce

sCLEAR REG. A FOR BIT SHIFT.
SCLEAR OVERFLOW FLAG.
éCLEAR LOW LEDS.
sCLEAR HIGH LEDS.
sCODE FOR UNCONNECTED BIT?
SIF SO» NO CHNG.
*DECRENENT TO MATCH,
¢SET BIT TO BE SHIFTED HIGH.
SSHIFT BIT LEFT.
$I1F CARRY SET» OVERFLOW HAS

sOCCURRED INTO HIGH BYTE.
SeFF
TEMP
a

LTSHFT
TEMP
HIBYTE

§SET OVERFLOW FLAG.

sMOVE BIT OUT OF CARRY.
sONE LESS BIT TO BE SHIFTED.
#SHIFT AGAIN IF NOT DONE.
$GET OVERFLOW FLAG.
$IF FLAG<>O,r OVERFLOW: A CONTAINS

¢HIGH BYTE.
PORTIA

PORT1IB

*+STORE A IN LOW ORDER LEDS.
sRETURN.
SSTORE A IN HIGH ORDER LEDS.
sRETURN.

;
STONE GENERATION SUBROUTINE.
5
TONE STA

LBA
ac STA

LDA

FREQ
OsFF
PORT3IB
$00

Fig. 7.9: Slot Machine Program (Continued)

SLOT MACHINE

0274 036D LOX DUR
0275 O36F LDY FREQ
0276 0371 DEY
0277 90372 CLC
0278 0373 BCC ¥+2
0279 0375 BNE FL1
0280 0377 EOR @8FF
0281 0379 STA PORT3B
0282 037C DEX
0283 037D BNE FL2
0284 037F RTS
0285 0380)
0286 0380 sRANDOM NUMBER GENERATOR SUBROUTINE.
0287 0360 ‘
0288 0380 RANDOM SEC
0289 0381 LDA RND+1
0290 03863 ADC RND+4
0291 0385 ADC RND+S
0292 0367 STA RND
0293 0389 LDX ¢4
0294 O36B LDA RND+X
0295 O38D STA RND+10X
02946 O36F DEX
0297 0390 BPL RNDSH
0298 0392 RTS
0299 0393 END

SYMBOL TABLE

VALUE

02B3 DDR1LA DDRiB DDRIB
0330 DISPLY DL1i DL2
0003 EVAL FALL FL1i
O36F FREQ GETKEY GETRND
0360 HILIN HITONE INCR
0008 KEY LDRND LEDUPD
O33D LOBYTE LOLI LOSE
O31B LOTONE LTABLE LTcCc
OOOE CLTSHFT NORST NXTUPD
0280 PORTIA PORTIB PORT3B
0380 RND RNDSH
0002 SCORTB SCORTP
0050 SPEEDS START
A004 TONE UPDATE
0247 YALUES WAIT WIN
O2EE

END OF ASSEMBLY

Fig. 7.9: Slot Machine Program (Continued)

— SCORTP is used as a temporary storage for the score gained or
lost on each spin

— SCORE is the game score
— DUR and FREQ specify the usual constants for tone generation

— SPEEDS (3 locations) specify the revolution speeds for the three

columns
— INDX (3 locations): delay counters for LED revolutions

— INCR (3 locations): pointers to the LED positions in each column
used to fetch patterns out of tables

— LTMSK (3 locations): patterns indicating lit LEDs
— VALUES (3 locations): number of LEDs lit in each column
— RND (6 locations): scratch-pad for random number generator.

117

6502 GAMES

Program Implementation

The program consists of a main program and two main subroutines:
DISPLY and EVAL. It also contains some utility subroutines: DELAY
for a variable length delay, LIGHT to light the appropriate LED,

TONE to generate a tone, and RANDOM to generate a random

number.

The main program is stored at memory locations 200 and up. As

usual, the three data-direction registers for Ports A and B of VIA#1
and for Port B of VIA#3 must be conditioned as outputs:

LDA #$FF
STA DDRIA
STA DDRIB
STA DDR3B

As in previous chapters, the counter register of timer 1 is used to pro-

vide an initial random number (a seed for the random number generator).

This seed is stored at memory location RND + 1, where it will be used
later by the random number generation subroutine:

LDA TICL
STA RND + 1!

On starting a new game, the initial score is set to 8. It is established:

START LDA #8
STA SCORE

and displayed:

TAY Y must contain it

JSR LIGHT

The LIGHT subroutine is used to display the score by lighting up the

LED corresponding to the contents of register Y. It will be described

later.

The slot machine program is now ready to respond to the player.
Any key may be pressed:

KEY JSR GETKEY

118

SLOT MACHINE

As soon as a key has been pressed, the wheels must be spun:

JSR DISPLY

Once the wheels have stopped, the score must be evaluated and

displayed with the accompanying sound:

JSR EVAL

If the final score is not ‘‘0,’’ the process is restarted:

LDA SCORE
BNE KEY

and the user may spin the wheels again. Otherwise, if the score was

‘‘0,’’ a new game is started:

BEQ START

This completes the body of the main program. It is quite simple

because it has been structured with subroutines.

The Subroutines

The algorithms corresponding to the two main subroutines DISPLY
and EVAL have been described in the previous section. Let us now

consider their program implementation.

DISPLY Subroutine

Three essential subroutine parameters are LOLIM, HILIM, and

SPDPRM. For example, lowering LOLIM will result in a longer spin-

ning time for the LEDs. Various other effects can be obtained by vary-

ing these three parameters. One might be to include a win almost every
time! Here LOLIM = 90, HILIM = 134, SPDPRM = 80.
Memory location INCR is used as a pointer to the current LED

position. It will be used later to fetch the appropriate bit pattern from

the table, and may have the value 0, 1, or 2 (pointing to LED positions
1, 2, or 3). The three pointers for the LEDs in each column are stored
respectively at memory locations INCR, INCR + 1, andINCR + 2.

They are initialized to 0:

119

6502 GAMES

DISPLY LDA #0
STA INCR
STA INCR + 1
STA INCR + 2

Note that in the previous examples (such as Figure 7.7), in order to
simplify the explanations, we have used pointers X and Y to repre-

sent the values between | and 3. Here, X and Y will have values rang-

ing between 0 and 2 to facilitate indexing. The wheel pointer is set to

the right-most wheel:

LDRND LDY #2

An initial random number is obtained with the RANDOM subroutine:

GETRND JSR RANDOM

The number returned by the subroutine is compared with the accep-

table low limit and the acceptable high limit. If it does not fit within
the specified interval, it is rejected, and a new number is obtained until
one is found which fits the required interval.

CMP #HILIM Too large?
BCS GETRND If so, get another

CMP #LOLIM Too small?
BCC GETRND If so, get another

The valid random number is then stored in the index location INDX

and in the SPEEDS location for the current column. (See Figure 7.10.)

STA INDX,Y
STA SPEEDS,Y

The same process is carried out for column 1 and column 0:

DEY

BPL GETRND Get next random #

Once all three columns have obtained their index and speed, a new

iteration loop is started, using register X as a wheel counter:

120

SLOT MACHINE

Fig. 7.10: Spinning the Wheels

UPDATE LDX #2 Set counter for 3 iterations

The speed is tested for the value 0:

UPDTLP LDY SPEEDS,X _Is speed (X) = 0?
BEQ NXTUPD If so, update next column

As long as the speed is not 0, the next LED in that column will have to

be lit. The delay count is decremented:

DEC INDX,X Decrement loop, index (X)

121

6502 GAMES

If the delay has not decremented to 0, a branch occurs to NXTUPD
which will be described below. Otherwise, if the delay counter INDX

is decremented to 0, the next LED should be lit. The LED pointer is

incremented with a possible wrap-around if it reaches the value 3:

BNE NXTUPD If loop index(X) < > 0, do
next update

LDY INCR,X Inc pointer

INY

CPY #3 Pointer = 3?

BNE NORST If not, skip

LDY #0 Reset to 0

NORST STY INCR,X Restore pointer (X)

The new value of the LED pointer is stored back into INCR for the

appropriate column. (Remember that within the UPDATE routine, X

points at the column.) In order to light the appropriate LED, a bit pat-
tern must be obtained from LTABLE. Note that LTABLE (and also

SCORTB) is treated conceptually,as if it was a two-dimensional array,

i.e., having rows and columns. However, both LTABLE and

SCORTB appear in memory as a contiguous series of numbers. Thus,

in order to obtain the address of a particular element, the row number

must be multiplied by the number of columns and then added to the
column number.

The table will be accessed using the indexed addressing mode, with
register Y used as the index register. In order to access the table, X

must first be multiplied by 3, then the value of INCR (i.e., the LED
pointer) must be added to it.

Multiplication by 3 is accomplished through a left shift followed by

an addition, since a left shift is equivalent to multiplication by 2:

STX TEMP Multiply X by 3

TXA

ASL A Left shift

CLC

ADC TEMP Plus one

The value of INCR is added, and the total is transferred into register Y

so that indexed addressing may be used. Finally, the entry may be
retrieved from LTABLE:

122

SLOT MACHINE

ADC INCR,X
TAY
LDA LTABLE,Y Get pattern for LED

Once the pattern has been obtained, it is stored in one of three

memory locations at address LTMSK and following. The pattern is
stored at the memory location corresponding to the column currently

being updated, where the LED has ‘‘moved.’’ The lights will be turned

on only after the complete pattern for all three columns has been im-

plemented. As a result of the LED having moved one position within
that column, the speed constant must be incremented:

STA LTMSK,X
SPDUPD LDY SPEEDS,X

INY
STY SPEEDS,X

The index is set so that it is equal to the new speed:

STY INDX,X

Note that special handling will now be necessary for LED #9. The
pattern to be displayed on the first eight LEDs was stored in the
LTABLE. The fact that LED #9 must be lit is easily recognized by the

fact that the pattern for column #3 shows all zeroes; since one LED
must be lit at all times within that column, it implies that LED #9 will

be lit:

LEDUPD LDA #0
STA PORTIB Reset LED 9

Next, the pattern for the third column is obtained from the location
where it had been saved at LTMSK + 2. It is tested for the value of 0:

LDA LTMSK + 2
BNE OFFLD9

If this pattern is 0, then LED #9 must be turned on:

LDA #01

123

6502 GAMES

STA PORTIB

Otherwise, a branch occurs to location OFFLD9, and the remaining

LEDs will be turned on. The pattern contained in the accumulator
which was obtained from LTMSK + 2, is successively OR’ed with the

patterns for the second and first columns:

LDA #0
OFFLD9 ORA LTMSK

ORA LTMSK + 1

At this point, A contains the final pattern which must be sent out in

the output port to turn on the required LED pattern. This is exactly

what happens:

STA PORTIA

At the same time, the speaker is toggled:

LDA PORT3B
EOR #$FF
STA PORT3B

It is important to understand that even though only the LED for one
of the three columns has been moved, it is necessary to simultaneously

turn on LEDs in all of the columns or the first and second columns

would go blank!

Once the third column has been taken care of, the next one must be

examined. The column pointer X is therefore decremented, and the

process is continued:

NDTUPD DEX

BPL UPDTLP If X>= 0 do next update

Once the second and the first columns have been handled, a delay is

implemented to avoid flashing the LEDs too fast. This delay is con-
trolled by the speed parameter SPDPRM:

LDY #SPDPRM
WAIT DEY

BNE WAIT

124

SLOT MACHINE

Y= 0 J 2 VALUES

Fig. 7.11: Evaluating the End of A Spin

Once this complete cycle has been executed, the speed location for

each column is checked for the value 0. If all columns are 0, the spin is

finished:

LDA SPEEDS

ORA SPEEDS + 1

ORA SPEEDS + 2

BNE UPDATE

Otherwise, a branch occurs at the location UPDATE. If all LEDs

have stopped, a pause must be generated so that the user may see the

pattern:

LDA #$FF
STA DUR
JSR DELAY

and exit occurs:

RTS

125

6502 GAMES

Exercise 7-2: Note that the contents of the three SPEEDS locations
have been OR’ed to test for three zeroes. Would it have been equivalent
to add them together?

EVAL Subroutine

This subroutine is the user output interface. It computes the score

achieved by the player and generates the visual and audio effects. The
constants for frequencies for the high tone generated by a win situation
and the low tone generated by a lose situation are specified at the
beginning of this subroutine:

HITONE = $20
LOTONE = $F0

The method used to compute the number of LEDs lit per row has been

discussed and shown in Figure 7.7. The number of LEDs lit for each

row is initially reset to 0:

EVAL LDA #0
STA VALUES
STA VALUES + 1
STA VALUES + 2

The temporary score is also set to 0:

STA SCORTP

Index register Y will be used as a column pointer, and the number of
LEDs lit in each row will be computed. The number of the LED lit for

the current column is obtained by reading the appropriate INCR en-

try. See the example in Figure 7.11. The value contained in each of the

three locations reserved for INCR is a row number. This row number

is stored in register X, and is used as an index to increment the ap-

propriate value in the VALUES table. Notice how this is accomplished

in just two instructions, by cleverly using the indexed addressing feature
of the 6502 twice:

CNTLP LDY #2 3 iterations

LDX INCR,Y
INC VALUES,X

126

SLOT MACHINE

Once this is done for column 2, the process is repeated for columns |
and 0:

DEY
BPL CNTLP

Now, another iteration will be performed to convert the final numbers

entered in the VALUES table into the actual scores as per the

specifications of the score table, SCORTB. Index register X is used as

a row-pointer for VALUES and SCORTB.

LDX #2

Since the SCORTB table has four one-byte entries per row level, in
order to access the correct byte within the table the row number must

first be multiplied by 4, then the corresponding ‘‘value’’ (number of
LEDs lit) for that row must be added to it. This provides the correct

displacement. The multiplication by 4 is implemented by two suc-

cessive left shifts:

SCORLP TXA
ASLA
ASL A

The number presently contained in the accumulator is equal to 4 times

the value contained in X, i.e., 4 times the value of the row-pointer. To
obtain the final offset within the SCORTB table, we must add to that

the number of LEDs lit for that row, i.e., the number contained in the

VALUES tables. This number is retrieved, as usual, by performing an
indexed addressing operation:

CLC
ADC VALUES,X Column address in array

This results in the correct final offset for accessing SCORTB.
The indexed access of the SCORTB table can now be performed.

Index register Y is used for that purpose, and the contents of the ac-
cumulator are transferred to it:

TAY

127

6502 GAMES

The access is performed:

LDA SCORTB,Y Get score for this spin

The correct score for the number of LEDs lit within the row pointed to

by index register X is now contained in the accumulator. The partial

score obtained for the current row is added to the running total for all
rows:

CLC

ADC SCORTP Total the scores

STA SCORTP Save

The row number is then decremented so that the next row can be ex-

amined. If X decrements from the value 0, i.e., becomes negative, we

are done; otherwise, we loop:

DEX
BPL SCORLP

At this point, a total score has been obtained for the current spin.

Either a win or a lose must be signaled to the player, both visually and

audibly. In anticipation of activating the speaker, the memory loca-

tion DUR is set to the correct tone duration:

LDA #$60
STA DUR

The score is then examined: if 0, a branch occurs to the LOSE routine:

LDA SCORTP
BEQ LOSE

Otherwise, it is a win. Let us examine these two routines.

WIN Routine

The final score for the user (for all spins so far) is contained in
memory location SCORE. This memory location will be incremented

one point at a time and checked every time against the maximum value
16. Let us do it:

128

SLOT MACHINE

WIN INC SCORE
LDY SCORE
CPY #16

If the maximum value of 16 has been reached, it is the end of the game

and a branch occurs to location WINEND:

BEQ WINEND

Otherwise, the score display must be updated and a beep must be
sounded:

JSR LIGHT

The LIGHT routine will be described below. It displays the score to

the player. Next, a beep must be sounded.

LDA #HITONE
JSR TONE

The TONE routine will be described later.

A delay is then implemented:

JSR DELAY

then the score for that spin is decremented:

DEC SCORTP

and checked against the value 0. If it is 0, the scoring operation is com-

plete; otherwise, the loop is reentered:

BNE WIN
RTS

WINEND Routine

This routine is entered whenever a total score of 16 has been
reached. It is the end of the game. All LEDs are turned on

simultaneously, and a siren sound with rising frequencies is activated.

Finally, a restart of the game occurs.

129

6502 GAMES

All LEDs are turned on by loading the appropriate pattern into Port
1A and Port IB:

LDA #$FF

STA PORTIA Turn on all LEDs

STA PORTIB

Variables are reinitialized: the total score becomes 0, which signals to
the main program that a new game must be started, the DUR memory

location is set to 4 to control the duration of time for which the beeps
will be sounded, and the frequency parameter is set to ‘‘FF’’ at loca-

tion TEMP:

STA TEMP Freq. parameter

LDA #0
STA SCORE Clear for restart
LDA #4
STA DUR Beep duration

The TONE subroutine is used to generate a beep:

RISE LDA TEMP Get frequency

JSR TONE Generate beep

The beep frequency constant is then decremented, and the next beep is

sounded at a slightly higher pitch:

DEC TEMP
BNE RISE

Whenever the frequency constant has been decremented to 0, the siren

is complete and the routine exits:

RTS

LOSE Routine

Now let us examine what happens in the case of a lose situation. The

events are essentially symmetrical to those that have been described
for the win.

In the case of a loss, the score needs to be updated only once. It is
decremented by 1:

130

SLOT MACHINE

LOSE DEC SCORE

The lowered score is displayed to the user:

LDY SCORE
JSR LIGHT

An audible tone is generated:

LDA #LOTONE
JSR TONE

The final value of the score is checked to see whether a ‘‘0”’ score has

been reached. If so, the game is over; otherwise, the next spin is
started:

LDY SCORE
BEQ LOSEND
RTS

Let us look at what happens when a ‘‘0’’ score is reached (LOSEND).

A siren of decreasing frequencies will be generated. All LEDs will go
blank on the board:

LOSEND LDA #0
STA TEMP
STA PORTIA Clear LED #1

The beep duration for each frequency is set to a value of 4, stored at

memory location DUR:

LDA #4
STA DUR

The beep for the correct frequency is then generated:

FALL LDA TEMP
JSR TONE Play beep

Next, the frequency constant is increased by 1, and the process is
restarted until the TMP register overflows.

131

6502 GAMES

INC TEMP Next tone will be lower

BNE FALL

RTS

This completes our description of the main program. Let us now ex-
amine the four subroutines that are used. They are: DELAY, LIGHT,

TONE, and RANDOM.

DELAY Subroutine

This subroutine implements a delay; the duration of the delay is set
by the contents of memory location DUR. The resulting delay length

will be equal to (2046 x DUR + 10) microseconds. The delay is im-

plemented using a traditional two-level, nested loop structure. The

inner-loop delay is controlled by index register X, while the outer-loop
delay is controlled by index register Y, which is initialized from the

contents of memory location DUR. Y is therefore initialized:

DELAY LDY DUR

The inner loop delay is then implemented:

DLI LDX #$FF
DL2 BNE * +2 Waste time

DEX Inner loop counter

BNE DL2 Inner loop

And, finally, the outer loop is implemented:

DEY

BNE DLI
RTS

Exercise 7-3: Verify the exact duration of the delay implemented by

the DELAY subroutine.

LIGHT Subroutine

This subroutine lights the LED corresponding to the number con-
tained in register Y. Remember that the fifteen LEDs on the Games

132

SLOT MACHINE

Board are numbered externally from | to 15 but are connected to bits 0

to 7 of Port 1A and 0 to 7 of Port 1B. Thus, if a score of 1 must be

displayed, bit 0 of Port 1A must be turned on. Generally, bit N of Port

1A must be turned on when N is equal to the score minus one. However,
there is one exception. To see this, refer to Figure 1.4 showing the
LED connections. Notice that bit 6 of Port 1B is not connected to any

LEDs. Whenever a score of fifteen must be displayed, bit 7 of Port 1B
must be turned on. This exception will be handled in the routine by

simply not decrementing the score when it adds up to fifteen.
The correct pattern for lighting the appropriate LED will be created

by shifting a ‘‘1’’ into the accumulator at the correct position. Other
methods will be suggested in the exercise below. Let us first initialize:

LIGHT LDA #0
STA TEMP
STA PORTIA
STA PORTIB

We must first look at the situation where the score contained in Y is

15 and where we do nothing (no shift):

CPY #15 Code for uncorrected bit?

BEQ *+3 If so, no change

For any other score, it is first decremented, then the shift is per-

formed:

DEY Decrement to internal code

SEC Set bit to be shifted

LTSHFT ROL A

The contents of the accumulator were zeroed in the first instruc-

tion of this subroutine. The carry is set to the value 1, then shifted into

the right-most position of A. (See Figure 7.12.) This process will be

repeated as many times as necessary. Since we must count from | to
14, or 0 to 13, an overflow will occur whenever the ‘‘1”’ that is rotated

in the accumulator ‘‘falls off?’ the left end. As long as this does not

happen, the shifting process continues, and a branch to location

LTCC is implemented:

BCC LTCC

133

6502 GAMES

7 0

T 0000000 ele

0

7 00000001 Loon

0

ig 0000001 0 tins AFTER 2 ROTATIONS

0

AFTER 9 ROTATIONS A 00000000 pa

Fig. 7.12: Creating the LED Pattern

However, if the ‘‘1’’ bit does fall off the left end of the accumulator,

the value ‘‘FF’’ is loaded at memory location TEMP to signal this oc-

currence. Remember that the value was cleared in the second instruc-

tion of the LIGHT subroutine.

LDX #$FF
STX TEMP

The ‘‘1”’ bit is then moved from the carry into the right-most position
of the accumulator. Later, the value contained in memory location

TEMP will be checked, and this will determine whether the pattern
contained in the accumulator is to be sent to Port 1A or to Port 1B.

134

SLOT MACHINE

The shifting process continues. The counter is decremented, and, if

it reaches the value ‘‘0,’’ we are done; otherwise, the process is

repeated:

ROL A
LTCC DEY

BPL LTSHFT

Once the process is completed, the value of memory location TEMP is

examined. If this value is ‘‘0,’’ it indicates that no overflow has oc-

curred and Port 1A must be used. If this value is not ‘‘0,’’ i.e., it is

“‘FF,’’ then Port 1B must be used:

LDX TEMP Get overflow flag

BNE HIBYTE
LOBYTE STA PORTIA A sent to low LEDs

RTS Return

HIBYTE STA PORTIB A sent to high LEDs

RTS

TONE Subroutine

This subroutine generates a beep. The frequency of the beep is

determined by the contents of the accumulator on entry; the duration

of the beep is set by the contents of the memory location DUR. This

has already been described in Chapter 2.

RANDOM Subroutine

This is a simple random number generator. The subroutine has
already been described in Chapter 3.

Exercise 7-4: Suggest another way to generate the correct LED pattern

in the accumulator, without using a sequence of rotations.

Game Variations

The three rows of LEDs supplied on the Games Board may be inter-
preted in a way that is different from the one used at the beginning of

this chapter. Row 1 could be interpreted as, say, cherries. Row 2 could

be interpreted as stars, and row 3 could be interpreted as oranges.

Thus, an LED lit in row 1 at the end of a spin shows a cherry, while

135

6502 GAMES

two LEDs in row 3 show two oranges. The resulting combination is
one cherry and two oranges. The scoring table used in this program

can be altered to score a different number of points for each combina-

tion, depending upon the number of cherries, oranges, or stars present
at the end of the spin. It becomes simply a matter of modifying the

values entered into the scoring table. When new values are entered in-

to the scoring table a completely different scoring result will be im-

plemented. No other alterations to the program will be needed.

SUMMARY

This program, although simple in appearance, is relatively complex

and can lead to many different games, depending upon the evaluation
formula used once the lights stop. For clarity, it has been organized into

separate routines that can be studied individually.

136

ECHO

THE RULES

The object of this game is to recognize and duplicate a sequence of

lights and sounds which are generated by the computer. Several varia-
tions of this game, such as ‘‘Simon’’ and ‘‘Follow Me’’ (manufacturer

trademarks*), are sold by toy manufacturers. In this version, the player

must specify, before starting the game, the length of the sequence to be

recognized. The player indicates his or her length preference by press-

ing the appropriate key between 1 and 9. At this point the computer
generates a random sequence of the desired length. It may then be

heard and seen by pressing any of the alphabetic keys (A through F).

When one of the alphabetic keys is pressed, the sequence generated
by the program is displayed on the corresponding LEDs (labeled 1
through 9) on the Games Board, while it is simultaneously played

through the loudspeaker as a sequence of notes. While this is happen-

ing, the player should pay close attention to the sounds and/or lights,

and then enter the sequence of numbers corresponding to the sequence

he or she has identified. Every time that the player presses a correct

key, the corresponding LED on the Games Board lights up, indicating

a success. Every time a mistake is made, a low-pitched tone is heard.
At the end of the game, if the player has guessed successfully, all

LEDs on the board will light up and a rising scale (succession of notes)

is played. If the player has failed to guess correctly, a single LED will

light up on the Games Board indicating the number of errors made,

and a descending scale will be played.

If the player guessed the series correctly, the game will be restarted.
Otherwise, the number of errors will be cleared and the player will be
given another chance to guess the series.

***Follow Me’ is a trademark of Atari, Inc., “‘Simon"’ is a trademark of Milton Bradley Co.

137

6502 GAMES

At any time during a game, the player may press one of the

alphabetic keys that will allow him or her to hear the sequence again.

All previous guesses are then erased, and the player starts guessing

again from the beginning.
Two LEDs on the bottom row of the LED matrix are used to com-

municate with the player:

LED 10 (the left-most LED) indicates ‘‘computer ready — enter the

length of the sequence desired.”’
LED 11 lights up immediately after the player has specified the

length of the sequence. It will remain lit throughout the game and it

means that you should ‘‘enter your guess.’’

At this point, the player has three options:

1. To press a key corresponding to the number in the sequence that

he or she is attempting to recognize.

2. To press key 0. This will result in restarting the game.

3. To press keys A through F. This will cause the computer to play

the sequence again, and will restart the guessing sequence.

Variations

The program provides a good test for your musical abilities. It is
suggested that you start each new game by just listening to the se-

quence as it is played on the loudspeaker, without looking at the LEDs.
This is because the LEDs on the Games Board are numbered, and it is
fairly easy to remember the light sequence simply by memorizing the

numbers. This would be too simple. The way you should play it is to

start with a one-note sequence. If you are successful, continue with a
two-note sequence, and then with a three-note sequence. Match your

skills with other players. The player able to recognize the longest se-

quence is the winner. Note that some players are capable of recogniz-

ing a nine-note sequence fairly easily.

After a certain number of notes are played (e.g., when more than

five notes are played), in order to facilitate the guessing you may

allow the player to look at the LEDs on the Games Board. Another
approach might be to allow the player to press one of the alphabetic keys

at any time in order to listen to the sequence again. However, you may

want to require that the player pay a penalty for doing this. This could

be achieved by requiring that the player recognize a second sequence
of the same length before trying a longer one. This means that if, for

example, a player attempts to recognize a five-note sequence but
becomes nervous after making a mistake and forgets the sequence,

138

ECHO

that player will be allowed to press one of the alphabetic keys and hear
the sequence again. However, if the player is successful on the second

attempt, he or she must then recognize another five-note sequence

before proceeding to a six-note one.
You can be even tougher and specify that any player is allowed a

replay of the stored pattern a maximum of two, three, or five times

per game. In other words, throughout the games a player may replay

the sequence he or she is attempting to guess by pressing one of the

alphabetic keys, but this resource may be used no more than n times.

An ESP Tester

Another variation of this game is to attempt to recognize the se-

quence without listening to it or seeing it! Clearly, in such a case you
can rely only on your ESP (Extra Sensory Perception) powers to

facilitate guessing. In order to determine whether you have ESP or

not, set the length of the initial sequence to ‘‘1.’’ Then, hit the key in

an attempt to guess the note selected by the program. Try this a
number of times. If you do not have ESP your results should be ran-

dom. Statistically, you should win one out of nine times which is only
one-ninth of the time, or 11.11% of the time. Note that this percent-

age is valid only for a large number of guesses.

If you win more than 11% of the time, you may have ESP! If your

score is higher than 50%, you should definitely run for political office
or immediately apply for a top management position in business. If
your score is less than 11%, you have ‘‘negative ESP’’ and you should

consider looking both ways before crossing the street.

The following is an exercise for readers who have a background in

Statistics.

Exercise 8-1: Compute the statistical probability of guessing a correct
two-number sequence, and a correct four-number sequence.

A TYPICAL GAME

The program starts at location 200. As usual, LED 10 lights up as

shown in Figure 8.1. We specify a series of length two by pushing key

**2”” on the keyboard. The LED display as it appears in Figure 8.2,
means ‘‘enter your guess.”’

We want to hear the tunes so we push key ‘‘F.’’ In response, LEDs 5

and 2 light up briefly on the Games Board and corresponding tones

139

6502 GAMES

are heard through the speaker. This is illustrated in Figure 8.3. We
must now enter the sequence we have recognized. We push ‘‘5’’ on the

keyboard. In response, LED 11 goes blank and LED 5 lights up briefly.
Simultaneously, the corresponding note is played through the speaker.

It is a successful guess!

Next, we press key ‘‘2.’’ LED 2 lights up, and the speaker produces

the matching tone indicating that our second guess has also been suc-
cessful. A moment later, all LEDs on the board light up to con-

gratulate us and the rising scale is sounded. It is a sequence of notes of

increasing frequencies meant to confirm that we have guessed suc-

140

6502 GAMES

cessfully. The game is then restarted, and LED 10 lights up, as shown

in Figure 8.1.
Let us now follow a losing sequence: LED 10 is lit at the beginning

of the game, as in Figure 8.1. This time we press key ‘‘1’’ in order to

specify a one-note sequence. Led 11 lights up, as shown in Figure 8.2.

We press key ‘‘F,’’ and the note is played on the speaker. (We do not

look at the Games Board to see which LED lights up, as that would be

too easy.) We press key ‘‘3.”’ A ‘‘lose’’ sound is heard, and LED 1

lights up indicating that one mistake has been made. A decreasing

scale is then played (notes of decreasing frequencies) to confirm to the
unfortunate player that he or she has guessed the sequence incor-
rectly. The game is then continued with the same sequence and length,

i.e., the situation is once again the one indicated in Figure 8.2.
If at this point the player wants to change the length of the se-

quence, or enter a new sequence, he or she must explicitly restart the

game by pressing key 0. After pressing key 0, the situation will be
the one indicated in Figure 8.1, where the length of the sequence can

be specified again.

THE ALGORITHM

The flowchart for this program is shown in Figure 8.4. Let us ex-

amine it, step-by-step:

1. The program tells the player to select a sequence length by

lighting LED 10 on the Games Board.
2. The sequence length is read from the keyboard. (Keys 0 and

A-F are ignored at this point.)

3. The two main variables are initialized to ‘‘0,’’ i.e., the number

of guesses and the number of errors are cleared.

4. A sequence table of the appropriate length must then be

generated using random numbers whose values are between |

and 9.

. Next, LED 11 is lit, and the player’s keystroke is read.

. Ifit is ‘0,’ the game is restarted. Otherwise, we proceed.

. If the keystroke value is greater than or equal to 10, it is an

alphabetic character and we branch off to the right part of the

flowchart into steps 8 and 9. The recorded sequence is displayed

to the player, all variables are reinitialized to 0, and the guess-

ing process is restarted. If the keystroke was a number between

1 and 9, it must be matched against the stored value. We go to

10 on the flowchart.

AA

141

6502 GAMES

Fig. 8.4: Echo Flowchart

142

ECHO

LIGHT LED (KEY

TONE (KEY NUMBER)

17 | GUESS NUMBER = 0
ERRORS = 0

Fig. 8.4: Echo Flowchart (Continued)

143

6502 GAMES

10. If the guess was correct, we branch right on the flowchart to

step Il.

11. Since the key pressed matches the value stored in memory, the

corresponding LED on the Games Board is lit, and the tone

corresponding to the key that has been pressed is played.

12. The guessed number is incremented, and then it is compared to

the maximum length of the sequence to be guessed.

13. A check is made to see if the maximum length of the sequence

has been reached. If it has not, a branch occurs back to step 5

on the flowchart, and the next keystroke is obtained. If the

maximum length of the sequence has been reached, we proceed

down the flowchart to the box labeled 14.

14. The total number of errors made by the player is checked. The

variable ERRORS is tested against the value ‘‘0.”’ If it is ‘‘0”’ it

is a winning situation and a branch occurs to box 15.

15. All LEDs on the board are lit, a sequence of ascending tones is

played, and a branch occurs back to the beginning of the game.

Let us now go back to box 14. If the number of errors was greater

than zero, this is a ‘‘lose’’ situation and a branch occurs to box 16.

16. The number of errors is displayed, and a sequence of descend-

ing tones is played.

17. All variables are reset to 0, and a branch occurs to box 5, giving

the player another chance to guess the series.

Now we shall turn our attention back to box 10 on the flowchart,

where the value of the key was being tested against the stored value.

We will assume this time that the guess was wrong, and branch to the

left of box 10.

18. The number of errors made by the player is incremented by

one.
19. A low tone is played to indicate the losing situation. The pro-

gram then branches back to box 12 and proceeds as before.

THE PROGRAM

The complete program appears in Figure 5.1. The program uses two
tables, and several variables. The two tables are NOTAB used to

specify the note frequencies, and DURTAB used to specify the note

durations. Both of these tables were introduced in Chapter 2, and will

not be described here. Essentially, they provide the delay constants re-

quired to implement a note of the appropriate frequency and to play it

for the appropriate length of time. Note that it is possible to modify

144

LINE

0002
0003
0004
0005
0006
0007
0008
0009
0010
0012
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070

Loc

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0200
0200
0202
0205
0208
020B
020D
0210
0212
0214
0217
0219
O21B
0210
0220
0223
0228
0227
0229
0228

cone

AO
0}

ECHO

LINE

§ “’ECHO’
SPATTERN/TONE RECALL. AND ESP TEST PROGRAM.
§THE USER GUESSES A PATTERN OF ITT LEMS Amn
sTHEIR ASSOCTATFP TONES. THE TOME /LIGHT
ICOMBINATION CAN BF PLAYFRr SO THAT THE USER
§MUST REMEMBER TY AND RFFNTER YT CORRECTLY.
5 OPERATING THE PROGRAM:
sTHE STARTING APMRESS TE #300
ITHE BOTTOM ROW OF LEDS TE AN THNTICATOR
§FOR PROGRAM STATUS: THE LEFTMORT

IONE (#10) INDICATES THAT THE PROGRAM
#I1S EXPECTING THE USER TO INPUT THE LENGTH
sOF THE SEQUENCE TO BF GUESSED.
§THE LED SECOND FROM THE LEFT (#11) INETCATES
sTHAT THE PROGRAM EXPECTS EITHER A QUESS (1-9 +
$THE COMMAND TO RESTART THE GAME (9) OR
JTHE COMMANDER TO PLAY THE SEQUENCE (A-F).
#THE KEYS 1-9 ARE ASSOCTATFD WITH THE
sLEDS 1-9.
sLOOKING AT THE SEQUENCE WHTIF YS THE MYNDLe
4OF GUESSING IT WILL ERARF ALI PREVIOUS
‘GUESSES (RESET GESNO ANTIt FRRE TO 9).
sAFTER A WIN? THE PROGRAM RFSTARTS.
4
sLINKAGES:
GETKEY = $100
§
SVARIABLE STORAGES:
DIGITS = $00 SMURBER OF NTGTTS tT! SEQuURMer
GESNO ~- €01 SNUMRER OF CURRENT BuEee.

#(WHERE THE 'SSER TE TM THE SERIES’
ERRS - $02 SMUMRER OF ERRAPS MADF TM

FGUESSTNG CURRENT SFRUFHMCF.
nUR ~- $03 STEMP RTOFAGF FOR MOTE PHRATTION.
FREQ - $04 STEMF STANRARE FOR MOTE FRENYEMRY.
TEMP - $03 sTEMPORARY STNRAGE FOR “ RES.
TABLE - $06 SSTORAGF FOR SEQUENCE
RND = 60F ISCRATCHPAR FOR RANTOM § GEM.
66522 VIA #1 ADDRESSES:
PORTIA = $A001
BDRIA Fr €A003
PORTIB = ¢AN00C
DDRLIB = €A002

TIC. - €n004
64522 VTA #3 ADDRESSES
PORTSR ~ $ACoo
DDR3R - $ACO2
$

x - $200
9

START IDA t8FF
BTN ODRIN
STA DDRIE
STA DDRIB
ihA £9 SCLEAR VARIABLE STOPAGFS
STA PORTIA ¢+..-AND LEE
STA ERRS
STA GESHN
(DA TIChL §¢GET SEER FOR RMD ft GEN.
STA KND+1 AND STORE IN RND SCRATCH.
STA RNIN+4
IDA #2010 FTURN LEP #19 OM TO INDICATE
STA PORTIB FNEED FOR LENGTH INPUT.

DIGKEY JSR GETMEY SGET LEMGTH OF SERTFS,
CHP #4 ‘TS TT 0 ?
BEQ NIGKEY #IF YES- GET ANCTHER.
CHP #10 SLENGTH GREATER THAN 9?
BPI BIGKFY FIF-YESs GET AMCTHFR.
STA DIGITS #SAVE VALTD LENGTH

FSET OUP HATA PYRECTIOM REFFTOTERS.

Fig. 8.5: Echo Program

145

146

05

AO

AO
01

02
02

03

02
02

02

02

TAX
DEX

FILL STXx
JSR
Lpx
SED
cic
ADC
CLO
AND

#USE LENGTH-! AS INDEX FOR FTI! TNG...
#..SERTES W/RANDOM VAI UFS.

TEMP ISAVE X FROM ‘RANDOM’
RANDOM
TEMP #RESTORE X

sDO A DEIMAL ANJUST

#0

@COF FREMOVE UPPER MYBBLE SO
SNUMBER TS ~10
BEQ
STA
DEX
BPL

KEY LDA
STA
LDA
STA
JSR
CMuP

STRTJF BEQ
CMP
BUI

6

FILL §@ CAN‘’T RE ZERO.
TABLE»X #STORE @ IN TABLE

sDECREMENT FOR NEXT
FILL #LOOP IF NOT PONE
60 sLEAR LEDS
PORTIA
#%0100 #ITURN INPUT INDICATOR ON.
PORT1IB
GETKEY IGET GUESS OR PLAY CKD.
#0 sIS ITO ?
START ¢IF YES» RESTART.
$10 JINUMBER ~ 10 ?
EVAL 3IF YES» EVALUATE GUESE.

SROUTINE TO DISPLAY SERIES TO BE GUESSED BY
#LIGHTING LEDS AND PLAYING TONES IN SEQUENCE.
3
SHOW LDXxX

STX
STX

SHOWLP LDA
STX
JSR
JSR
LDY

DELAY ROR
ROL
ney
BNE
LDXx
INX
CPX
BNE
BEQ

#0
GESNO SCLEAR ALL CURRENT GUESSES.
ERRS #CLEAR CURRENT ERRORS.
TABLE »X #GET X%TH ENTRY IN SERIES TABLE.

TEMP SSAVE X
LIGHT #LIGHT LED#(TABLE ‘X))
PLAY SPLAY TONE@CTABLE(X))
#9FF ¢SET LOOP CNTR. FOR DELAY
DUR sWASTE TIME
BUR

sCOUNT DOWN...
DELAY #IF NOT DONEs LOOP AGATR.
TEMP SRESTORE X

#INCREMENT INDEX 19 SHOW MEXT
DIGTTS #ALL DIGITS SHOWN?
SHOWLF #IF NOTs SHOW NEXT.
KEY #DONE: GET NEXT INPUT.

$
SROUTINE TO EVALUATE GUESSES OF PLAYER.
i
EVAL LOX

cHe
BEQ

WRONG INC
LBA
STA
LTA
J&R
BEQ

CORECT JER
JSR

ENDCHK INC
LDA
CMP
BNE
LDA
CMP
BEQ

LOSE JSR
LDA

LOSELP PHA
JSR
PLA

GESNO SGET NUMBER OF SUESS.
TABLE?+X #GUESS = CORRESPONDING LIGIT?
CORECT SIF YES» SHOW PLAYER.
ERRS sGUESS WRONGr ANOTHER ERROR.
¢880 FDURATION FOR LOW TONE TO IFNDICATE
DUR BAD GUESS.
SSFF #FREQUENCY CONSTANT
PLYTON *PLAY IT
ENDCHK #CHECK FOR ENDGAME
LIGHT sVALINATE CORRECT GUESS.
PLAY
GESNO *ONE MORE GUESS TAKEN.
DIGITS
GESNO #ALL DIGITS GUESSED?
KEY «IF NOTr GET NEXT.
ERRS #GET NUMBER OF ERRORS.
#9 #ANY ERRORS?
WIN #IF NOTr PLAYER WINS.
LIGHT §SHOW NUMBER OF ERRORS.
#9 #PLAY 6 DESCENDING TONES

Fig. 8.5: Echo Program (Continued)

ECHO

0142 O2AC 38 sec

0143 O2AD €E€9 O01 SBC #1

0144 O2AF DO F4 RNE | OSFLF
0145 0281 985 01 STA GESNON FCILFAR YARTARIFS

01446 O2B3 85 02 STA ERRS
0147 O285 FO eD BEQ KFY #GET NEYT GUESS Sheva &
0148 O2B7 AD FF WIN LDA OFF #TURN ALE TENS AN PAR WIM

0149 O2B9 46D 01 AO STA PORTIA
0150 O28C 8D 00 ao STA PORTLB
0181 O2BF ag O1 LRA @1 SPLAY @ ASCE MEIMNG TONES

0132 02C1 48 WINLP PHA
0153 O2C2 20 FA 02 JSR PIAY
01834 O2CS 68 PLA
0188S 02C46 18 CIC
0136 O2C7 69 O1 anc $01
01357 O2C9 C9 OA CHP @10
0138 O2CB bo F4 BNE WINLP
0159 O2CD FO 84 REQ STRTIP FUSE GOA F- 1UMe Ok RESTART
0160 O2CF ;
01461 O2CF sROUTINE TO IITGHT NTH LEDs WHERE w OIC

0162 O2CF THE NUMBER PASSED AB A PARAMFITFI IN
0163 O2CF STHE ACCUMULATOR.

0164 O2CF)
0163 O2CF 46 LIGHT PHA *SAVE A
0166 O2D0 Ae TAY SUSE A AS COUNTER IN Y
0167 O2D1 Av 00 LDA 60 sCLEAR A FOR BIT SHTFT

0168 O2D3 8D OO AO STA PORTIB *¢CLEAR HI LEDS.

0169 O2D46 38 SEC GENERATE HT RIT TO SHIFT IFFT.
0170 O2D7 2A LTSHFT ROL A sMOVE HI BIT LEFT.
0171 #O2D8 «4s DEY sRECREMENT COUNTER
0172 O2D9 DO FC BNE LTSHFT #*SHIFTS DONE?

0173 O2DB 8D 01 AO STA PORTIA SSTORE CORRECT PATTERN
0174 O2DE 90 0S BCC LTCC ¢RIT 9 NOT HI> DONE.
0175 O2EO Av O1 LDA @1
0176 O2E2 8h 00 AO STA PORTIB #*TURN LED 9 ON.

0177 #O2ZES 68 Lrce PLA sRESTORE A
0178 O2E4 640 RTS sDONE.
0179 O2E7 F)
0180 02E7 BRANDOM NUMBER GENERATOR: RETURNS W/ NEW
01861 O2E7 SRANDOM NUMBER IN A.

0182 02E7 ’
0163 O2E7 36 RANTOM SEC
01864 O2E8 AS 10 LDA RND+1
0185 O2EA 65 13 ADC RND+4
0186 O2EC 65 14 ADC RND+S

0187 O2EE 8S OF STA RAND
0188 O2FO A2 04 LDX €4
0189 O2F2 BS OF RNDLP LDA RND?X
0190 O2F4 95 10 STA RND4+19X
0191 O2F6 CA DEX
0192 O2F7 10 F9 BPL RNDLP

0193 O2F9 60 RTS
0194 O2FA ;
0195 O2FA SROUTINE TO FLAY TONE WHOSE NUMBER IS PASSER

0196 O2FA SIN BY ACCUM. IF ENTERFI AT PLYTON? IT WILL

0197 O2FA PPLAY TONE WHOSE LENGTH [S [IN DUR» FREQUENTY

0198 O2FA SIN ACCUMULATOR.
0199 O2FA 4
0200 O2FA AB PLAY TAY SUSE TONE¢ AS INDEX...

0201 O2FB 68 DEY SNECREMENT TO MATCH TABLES

0202 O2FC B9 27 03 LDA TNURTAR*SY GET DURATION FOR TOMER N.

0203 O2FF 85 03 STA DUR #SAVE IT.

0204 0301 B89 1E 03 LIRA NOTAB?Y #GET FREQ. CONST FOR TUNER N

0205 0304 435 04 PLYTON STA FREQ sSAVE IT.
0206 0306 Av 00 LDA ¢0 sSET SPKR PORT 1.0.
0207 0308 @D 00 AC STA PORT3E
0208 O30B Aé6 03 LOX DUR #GET RURATION IN @# OF 172 CYCIIs.

0209 O30D A4 04 FL? LDY FREQ *GET FREQUENCY

0210 O30F sé Fil DEY sCOUNT DOWN TELAY...
0211 0310 18 CLC #WASTE TIME
0212 O311 70 00 BCC "+2

Fig. 8.5: Echo Progrem (Continued)

147

6502 GAMES

0213 0313 BNE Fit <sLOOP FOR DELAY
O214 0315 FOR @$FF COMPLEMENT FORT
O215 0317 STA FORT3E
0216 O31A DEX sCOUNT DOWN DURATION...
O217 O318 : BNE FL? FLOOF TII. NOTE OVER.

0218 O31n RTS *PONE,
O219 O31E 3
0220 OIE *TABLE FOR NOT FREQUENCEFS.
0221 O31E 3

0222 O31E NOTAB .RYTE SCO SRE + A921 S94 e SAE STF PB IO- F445 95F
0222 O31F
0222 0320
0222 0321
0222 0322
0222 0323
0222 0324
0222 0325
0222 0326
0223 0327 i

0224 0327 sTARLR FOF NOTE PUEATIONS.
O225 0327 ,
0226 0327 TWIRTAK CRYTE SSR re S72 SEOS BEE EPA HAN- SNE POT GEA

0224 0328
0226 0329
0226 032A

0226 0328
0226 032C
0226 032D
0226 O32F
0226 O32F
0227 0330

SYMBOL TABLE

SYMBOL VALUE

CORECT O28E DOR 1A AN03 DIPRTR AND RMR IR ACO?
DFIAY 076K DIGITS 0009 DIGKEY 02290 Der Ooor
DURTAR 0327 ENDCHK O29A ERRS 900% EVA! No7k
FILL 022F Flt O30OF FLL O7On FRFO 004
GESNO 0001 GETKEY o100 KEY ODAA Liner QVC
LOSE O2A2 1.OSELF O2A7 LTec OPES L PSHE T A Bi
NOTAR O31€ PLAY O2FA FLY TON 0504 FOFTIA Ane y
FORTIB A000 PORTSB ACNE RANTION O2E?7 ReTe COOK

RANDLE O2F2 SHOW 0259 SHOWI.F QQSF STARI H200
STRT JP 02353 TACL A004 TARIE 006 TEM oan
WIN 0267 WINLF 021 WRONG 9°81

END OF ASSEMBLY

Fig. 8.5: Echo Program (Continued)

the difficulty of the game by increasing or decreasing the duration

during which each note is played. Clearly, reducing the duration

makes the game more difficult. Increasing the duration will usually

make it easier, up to a point. You are encouraged to try variations.

The main variables used by the program are the following:

DIGITS contains the number of digits in the sequence to be

recognized.

GESNO indicates the number of the current guess, i.e., which of the

notes in the series the user is attempting to recognize.

ERRS indicates the number of errors made by the player so far.
TABLE is the table containing the sequence to be recognized.

148

ECHO

A few other memory locations are reserved for passing parameters

to subroutines or as scratch-pad storage. They will be described within

the context of the associated routines.
As usual, the program starts by setting the data direction registers

for Port 1A, Port 1B and Port 3B to an output configuration:

START LDA #$FF

STA DDRIA

STA DDRIB

STA DDR3B

Next, all LEDs on the board are turned off:

LDA #0
STA PORTIA

and the two variables, ERRS and GESNO, are set to 0:

STA ERRS
STA GESNO

The random number generator is primed by obtaining a seed and stor-
ing it at locations RND + 1 and RND + 4:

LDA TICL Read timer counter.

STA RND + 1

STA RND + 4

The game is now ready to start. LED 10 must be turned on to indicate

to the player that the game is ready:

LDA #%010 Pattern for LED 10

STA PORTIB Specify length

The keyboard is scanned for the player input using the usual GETKEY

subroutine (described in Chapter 1):

DIGKEY JSR GETKEY

It is checked for the value ‘‘0’’:

149

6502 GAMES

CMP #0
BEQ DIGKEY If = 0, get another one

If the entry was ‘‘0,”’ the program waits for another keystroke. Other-

wise, it is compared to the value 10:

CMP #10 Sequence longer than 9
BPL DIGKEY

If the sequence length is greater than 9, it is also rejected. Accepting

only valid inputs, using a bracket is known as ‘‘reasonableness
testing’’ or ‘‘bracket-filtering.”’

If all is fine, the length of the sequence to be recognized is stored at

memory location DIGITS:

STA DIGITS Length of sequence

A running pointer is then computed and stored at location TEMP. It

is equal to the previous length minus 1:

TAX Use X for computation
DEX Decrement

FILL STX TEMP

The RANDOM subroutine is then called to provide a first random

number:

JSR RANDOM

The position pointer in the series of notes now being generated is
retrieved from TEMP, and stored in index register X in anticipation

of storing the new random number in TABLE:

LDX TEMP

The value of the random number contained in the accumulator is then

converted to a decimal value between 0 and 9. This process can be per-
formed in various ways. Here, we take advantage of the special
decimal mode available on the 6502. The decimal mode is set by speci-

fying:

SED Set decimal mode

150

ECHO

Note that the carry flag must be cleared, prior to an addition:

CLC Clear carry

The trick used here is to add ‘‘0’’ to the random number contained in

the accumulator. The result in the right part of A is guaranteed to be a

digit between 0 and 9, since we are operating in the decimal mode.
Naturally, any other number could also be added to A to make its con-

tents ‘‘decimal’’; however, this would change the distribution of the
random numbers, and some numbers in the series such as 0, 1, and 2
might never appear. Once this conversion has been performed, the
decimal mode is simply turned off:

ADC #0 Add ‘‘0”’ in decimal mode

CLD Clear decimal mode

This is a powerful 6502 facility used to a great advantage in this in-

stance. In order to guarantee that the result left in A be a decimal

number between 0 and 9, the upper nibble of the byte is removed by
masking it off:

AND $#0F

Finally, a value of ‘‘0’’ is not allowed, and a new number must be ob-

tained if this is the current value of the accumulator:

BEQ FILL

Exercise 8-2; Could we avoid this special case for “0” by adding a
value other than ‘0’ to A above?

If this is not the current value of the accumulator, we have a decimal
number between | and 9 that is reasonably random, which can now
be stored in the table. Remember that index register X has been
preloaded with the current number’s position in the sequence (re-
trieved from memory location TEMP). It can be used, as is, as an in-

dex:

STA TABLE,X Store # in table

The number pointer is then decremented in anticipation of the next
iteration:

151

6502 GAMES

DEX

and the loop is reentered until the table of random numbers becomes

full:

BPL FILL

We are now ready to play. LED 12 will be turned on, signaling to the

player that he or she may enter a guess:

KEY LDA #0
STA PORTIA
LDA #0100
STA PORTIB

The player’s guess is then read from the keyboard:

JSR GETKEY Get guess

It must be tested for ‘‘0’’ or for an alphabetic value. Let us test for
stg”?

CMP #0 Is it 0?
STRTJP BEQ START If yes, restart

If it is ‘‘0,’’ the game is restarted, and a branch occurs to location
START. If it is not ‘‘0,’? we must check for an alphabetic character:

CMP #10 Number <.10?

BMI EVAL If yes, evaluate correctness

If the value of the input keystroke is less than ten, it is a guess and is

evaluated with the EVAL routine. Otherwise, the program executes
the SHOW routine to display the series.

The SHOW Routine

We will assume here that an alphabetic key has been pressed. BMI
fails, and we enter the SHOW routine. This routine plays the

computer-generated tune and lights up the corresponding sequence of
LEDs. Also, whenever this routine is entered, the guessing sequence is

152

ECHO

restarted and the temporary variables are reset to 0:

SHOW LDX #0
STX GESNO
STX ERRS Reset all variables

The first table entry is obtained, the corresponding LED is lit, and the

corresponding tone is played:

SHOWLP LDA TABLE,X Get Xth entry in table
STX TEMP Save X

JSR LIGHT Light LED # TABLE (X)

JSR PLAY Play tone # TABLE (X)

An internote delay is then implemented using Y as the loop counter

and two dummy instructions to extend the delay:

LDY #$FF

DELAY ROR DUR Dummy instruction
ROL DUR Dummy

DEY Count down

BNE DELAY End of loop test

We are now ready to perform the same operation for the next note in

the current table. The index pointer is restored and incremented:

LDX TEMP Restore X

INX Increment it

It is then compared to the maximum number of digits stored in the
table. If the maximum has been reached, the display operation is com-

plete and we go back to label KEY. Otherwise, the next tone is sound-

ed, and we go back to label SHOWLP:

CPX DIGITS All digits shown?

BNE SHOWLP

BEQ KEY Done, get next input

The EVAL Routine

Let us now examine the routine which evaluates the guess of the

153

6502 GAMES

player. It is the EVAL routine. The value of the corresponding entry in
TABLE is obtained and compared to the player’s input:

EVAL LDX GESNO Load guess number into X
CMP TABLE,X Compare guess to number

BEQ CORECT If correct, tell player

If there is a match, a branch occurs to location CORECT; otherwise,
the program proceeds to label WRONG. Let us examine this case. If
the guess is wrong, one more error is recorded:

WRONG INC ERRS

A low tone is played:

LDA #$80
STA DUR
LDA #$FF
JSR PLYTON Play it

A jump then occurs to location ENDCHK:

BEQ ENDCHK Check for end of game

Exercise 8-3: Examine the BEQ instruction above. Will it always result
in a jump to label ENDCHK? (Hint: determine whether or not the Z

bit will be set at this point.)

Exercise 8-4: What are the merits of using BEQ (above) versus JMP?

Now we shall consider what happens in the case of a correct guess.

If the guess is correct, we light up the corresponding LED and play the

corresponding tone. Both subroutines assume that the accumulator

contains the specified number:

CORECT JSR LIGHT Turn on LED
JSR PLAY Play note to confirm

We must now determine whether we have reached the end of a se-

quence or not, and take the appropriate action. The number of

guesses is incremented and compared to the maximum length of the

154

ECHO

stored tune:

ENDCHK INC GESNO One more guess

LDA DIGITS
CMP GESNO All digits guessed?

BNE KEY If not, get next key closure

If we are not done yet, a branch occurs back to label KEY. Otherwise,

we have reached the end of a game and must signal either a ‘‘win’’ or a
‘‘lose’’ situation. The number of errors is checked to determine this:

LDA ERRS Get number of errors

CMP #0 No error?

BEQ WIN If not, player wins

If a ‘‘win’’ is identified, a branch occurs to label WIN. This will be
described below. Let us examine now what happens in the case of a

‘‘lose’’:

LOSE JSR LIGHT Show number of errors

The number of errors is displayed by lighting up the corresponding
LED. Remember that the accumulator was conditioned prior to enter-

ing this routine and contained the value of ERRS, i.e., the number of

errors so far.

Next, a sequence of eight descending tones is played. The top of the
stack is used to contain the remaining number of tones to be played:

LDA #9 Play 8 descending tones
LOSELP PHA Save A on stack

JSR PLAY Play tone

PLA Restore A

Once a tone has been played, the remaining number of tones to be

played is decremented by one and tested for ‘‘0’’:

SEC Set carry (for subtract)

SBC #1 Subtract one

BNE LOSELP

Exercise 8-5: Note how the top of the stack has been used as a tem-

155

6502 GAMES

porary scratch location. Can you suggest an alternative way to achieve
the same result without using the stack?

Exercise 8-6: Discuss the relative merits of using the stack versus using
other techniques to provide temporary working locations for the pro-
gram. Are there potential dangers inherent in using the stack?

Eight successive tones are played. Then the two work variables,

GESNO and ERRS, are reset to ‘‘0,’’ and a branch occurs back to the
beginning of the program:

STA GESNO Clear variables
STA ERRS
BEQ KEY Get next guess sequence

Let us examine now what happens in a ‘‘win’’ situation. All LEDs on
the Games Board are turned on simultaneously:

WIN LDA #$FF It is a win: turn all LEDs on

STA PORTIA

STA PORTIB

Next, a sequence of eight ascending tones is played. The tone number
is stored in the accumulator and will be used as an index by the PLAY
subroutine to generate an appropriate note. As before, the top of the

stack is used to provide working storage:

LDA #1 A will be incremented to 9

WINLP PHA Save A on the stack

JSR PLAY

PLA

The number of tones which have been played is then incremented by 1
and compared to the maximum value of 9:

CLC Clear carry for addition

ADC #01

CMP #10

As long as the maximum of 9 has not been reached, a branch occurs

back to label WINLP:

156

ECHO

BNE WINLP

Otherwise, a new game is started:

BEQ STRTJP Double jump for restart

This completes the description of the main program. Three

subroutines are used by this program. They will now be described.

The Subroutines

LIGHT Subroutine

This subroutine assumes that the accumulator contains the number

of the LED to be lit. The subroutine will light up the appropriate LED
on the Games Board. It will achieve this result by writing a ‘‘1’’ in the

appropriate position in the accumulator and then sending it to the ap-
propriate output port. Either Port 1A will be used (for LEDs 1 through

8) or Port 1B (for LED 9). The ‘‘1’’ bit is written in the appropriate
position in the accumulator by performing a sequence of shifts. The

number of shifts is equal to the position of the LED to be lit. Index
register Y is used as a shift-counter. The number of the LED to be lit is

saved in the stack at the beginning of the subroutine and will be

restored upon exit. Note that this is a classic way to preserve the con-

tents of an essential register during subroutine execution so that the

contents of the accumulator will be unchanged upon subroutine exit.
If this was not the case, the calling program would have to explicitly

preserve the contents of the accumulator prior to calling the LIGHT

subroutine. Then it might have to load it back into the accumulator
prior to using another one of the routines, such as the PLAY routine.

Because LIGHT and PLAY are normally used in sequence, it is more

efficient to make it the subroutine’s responsibility to save the contents

of the accumulator. Let us do it:

LIGHT PHA Preserve A

The shift-counter is then set up:

TAY Use Y as shift counter

and the accumulator is initialized to ‘‘0’’:

157

6502 GAMES

LDA #0 Clear A

LED 9 is turned off in case it was lit:

STA PORTIB

The shifting loop is then implemented. The carry bit is initially set to

**1,”’ and it will be shifted left in the accumulator as many times as
necessary:

SEC Set carry

LTSHFT ROLA
DEY
BNE LTSHFT

The correct bit pattern is now contained in the accumulator and dis-

played on the Games Board:

STA PORTIA

However, one special case may arise: if LED 9 has been specified, the
contents of the accumulator are ‘‘0”’ at this point, but the carry bit has

been set to ‘‘1”’ by the last shift. This case must be explicitly tested for:

BCC LTCC Is bit 9 set?

If this situation exists, the accumulator must be set to the value

**00000001,’’ and output to Port 1B:

LDA #1
STA PORTIB Turn LED 9 on

We finally exit from the routine without forgetting to restore the ac-

cumulator from the stack where it had been saved:

LTCC PLA Restore A

RTS

Exercise 8-7: List the registers destroyed or altered by this subroutine

every time it is executed.

158

ECHO

Exercise 8-8: Assume that register Y must be left unchanged upon

leaving this subroutine. What are the required program changes, if

any?

RANDOM Subroutine

This subroutine generates a new random number and returns its
value in A. Its operation has been described in Chapter 4.

PLAY Subroutine

This subroutine will normally play the tone corresponding to the

number contained in the accumulator. Optionally, it may be entered

at location PLYTON and will then play the tone corresponding to the
frequency set by the accumulator and corresponding to the length

specified by the contents of memory location DUR. Let us examine it.

Index register Y is used as an index to the two tables required to
determine the note duration and the note frequency. In this game, up

to 9 notes may be played, corresponding to LEDs and keys 1 through
9. Index register Y is first conditioned:

PLAY TAY Use tone # as index

DEY Decrement to internal value

Note that the index register must be decremented by one. This is
because key 1 corresponds to entry number 0 in the table, and so on.

The duration and frequencies are obtained from tables DURTAB and
NOTAB using the indexed addressing mode. They are stored respec-
tively at locations DUR and FREQ:

LDA DURTAB,Y Get duration
STA DUR Save it

LDA NOTAB,Y — Get frequency

PLYTON STA FREQ Save it

The speaker is then turned off:

LDA #0
STA PORT3B Set speaker Port 3B

Two loops will now be implemented. An inner loop will use register Y

as the delay-counter to implement the correct frequency for the note.

159

6502 GAMES

Register X will be used in the outer loop and will generate the tone for
the appropriate duration of time.

Let us condition the two counter registers:

LDX DUR Get duration in # of “% cycles

FL2 LDY FREQ Get frequency

Next, let us implement the inner loop delay:

FL1 DEY
CLC Waste time

BCC *+2
BNE FL1 Delay loop

Note that two ‘‘do-nothing’’ instructions have been placed inside the
loop to generate a longer delay. At the end of this inner loop delay the

contents of the output port connected to the loudspeaker are com-

plemented in order to generate a square wave.

EOR #$FF Complement port

Note that, once more, EOR #$FF is used to complement the contents
of a register.

STA PORT3B

The outer loop can then be completed:

DEX

BNE FL2 Outer loop

RTS

SUMMARY

This program demonstrates how simple it is to implement electronic

keyboard games that sound for input/output and that are challenging
to adult players.

Exercise 8-9: The duration and frequency constants for the nine notes

are shown in Figure 8.6. What are the actual frequencies generated by
the program?

160

ECHO

1

2

3

4

5

6

7

8

9

Fig. 8.6: Frequency and Duration Constants

161

9

MINDBENDER

THE RULES

This game is inspired by the commercial game of MasterMind

(trademarked by the manufacturer, Invicta Plastics, Ltd.). In this

game, one or more players compete against the computer (and against
each other). The computer generates a sequence of digits — for exam-

ple, a sequence of five digits between ‘‘0’’ and ‘‘9’’ — and the player

attempts to guess the sequence of five numbers in the correct order.

The computer responds by telling the player how many of the digits
have been guessed accurately, and how many were guessed in their

correct location in the numerical sequence.
LEDs 1 through 9 on the Games Board are used to display the com-

puter’s response. A blinking LED is used to indicate that the player’s

guess contains a correct digit which is located in the right position in
the sequence. A steadily lit LED is used to indicate a digit correctly

guessed but appearing out of sequence. Several players can match
their skills against each other. For a given complexity level — say, for
guessing a sequence of seven digits—the player that can correctly guess

the number sequence with the fewest guesses is the winner.

The game may also be played with a handicap whereby a given

player has to guess a sequence of n digits while the other player has to

guess a sequence of only n — 1! digits. This is a serious handicap, since
increasing the level of difficulty by one is quite significant.

A TYPICAL GAME

Both audio and visual feedback are used to play this game.

162

MINDBENDER

The Audio Feedback

Every time that a player has entered his or her sequence of guesses,
the computer responds by sounding a specific tone. A low tone in-
dicates an incorrect guess; a high tone indicates that the sequence was

guessed correctly.

The Visual Feedback

At the beginning of each game, LED #10 is lit, requesting the length

of the sequence to be guessed. This is shown in Figure 9.1. The player
then specifies the sequence length as a number from 1 through 9. Any

other input will be ignored.

@®00000
W 12 13 14 LE)

Fig. 9.1: Enter Length of Sequence

As soon as the length has been specified, for example, let’s say the
length ‘‘2’’ has been selected, LED #11 lights up. This means ‘‘Enter

your guess.’’ (See Figure 9.2.) At this point the player enters his or her

guess as a sequence of two digits. Let us now play a game.

[344% % VW 12

Fig. 9.2: Enter Your Guess

The player types in the sequence ‘‘1,2.’’ A low tone sounds, LEDs

10 and 11 go out briefly, but nothing else happens. The situation is in-
dicated in Figure 9.3. Since LEDs 1 through 9 are blank, there is no

correct digit in the guess. Digits ‘‘1’’ and ‘‘2’’ must be eliminated. Let

us try another guess.
We type ‘‘3,4.’’ A low tone sounds, but this time LED #1 is steadily

on, as indicated in Figure 9.4. From this we know that either ‘‘3”’ or

163

6502 GAMES

Fig. 9.4: One Correct Digit In the Correct Position

**4”’ is one of the digits and that it belongs in the other position. Con-

versely, the sequence ‘‘4,3,’’ must have one good digit in the right

position. Just to be sure let us perform a test.

We now type ‘‘4,3.’’ A low tone sounds, indicating that the se-

quence is not correct, but this time LED #1 is on and blinking.

This proves that our reasoning is correct, and we proceed.
We now try ‘‘4,5.”’ A high-pitched sound is heard and LEDs 1 and 2

164

MINDBENDER

light up briefly, indicating that those digits have been guessed correct-

ly and that we have won our first game.
At the end of the game, the situation reverts to the one at the begin-

ning, as indicated in Figure 9.1. Note that typing in a value other than

‘*1’’ through ‘‘9”’ as a guess will restart the game.

There is a peculiarity to the game: if the number to be guessed con-

tains two identical digits, and the player enters this particular digit in

one of its two correct locations, the computer response will indicate

this digit as being both the right digit in the right place and the right

digit in the wrong place!

THE ALGORITHM

The flowchart for Mindbender is shown in Figure 9.5. Interrupts are

used to blink the LEDs. Interrupts will be generated automatically by
the programmable interval timer of VIA #1 at approximately 1/15th-

of-a-second intervals.

Referring to Figure 9.5, all of the required registers and memory loca-
tions will be initialized first. Next (box 2 on the flowchart), the length
of the sequence to be guessed is read from the keyboard. The validity

bracket ‘‘1’’ to ‘‘9”’ is used to ‘‘filter’’ the player’s input.
Next, a random sequence must be generated. In box 3 of the

flowchart, a sequence of random numbers is generated and stored in a
digit table, starting at address DIGO.

In box 5, the computer’s sequence of numbers is compared — one
number at a time — with the player’s guess. The algorithm takes one
digit from the computer sequence and matches it in order against

every digit of the player sequence. As we have already indicated, this
may result in lighting up two LEDs, if ever there are two or more iden-

tical digits in the number to be guessed and the player has specified

only one digit. One digit may be flagged as being in the right place,

and also as being correct but in the wrong location(s).

Note that, alternatively, another comparison algorithm could be
used in which each digit of the player’s sequence is compared in turn

with each digit of the computer’s sequence.

Once the digits have been compared, the resulting score is displayed
on the LEDs (box 6). Finally, a test is made for a win situation (box 7),

and the appropriate sound is generated (box 8).

165

6502 GAMES

Fig. 9.5: Mindbender Flowchart

166

MINDBENDER

THE PROGRAM

Data Structures

Two tables of nine entries are used to store, respectively, the com-
puter’s sequence and the player’s sequence. They are stored starting at

addresses DIGO and ENTRYO. (See Figure 9.6.)

The Variables

Page 0 is used, as usual, to provide additional working registers,
i.e., to store the working variables. The use of page 0 is indicated as a
‘‘memory map’’ in Figure 9.6. The first nine locations are used for the

program variables. The function of each variable is indicated in the il-

lustration and will be described in detail as we examine the program
below. Locations ‘‘09”’ through ‘‘OE’’ are reserved for the random

table used to generate the random numbers. Locations ‘‘OF’’ through

‘17’ are used for the DIGO table used to store the computer-
generated sequence of random numbers. Finally, locations ‘‘18’’ and

following are used to contain the sequence of digits typed by the user.

The memory locations used for addressing input/output and for in-

terrupt vectoring are shown in Figure 9.7. Locations ‘‘A000’’ through

‘*A005’’ are used to address Ports A and B of VIA #1 as well as timer

Tl. The memory map for a 6522 VIA is shown in Figure 9.8.

Location ‘‘AOQOB’’ is used to access the auxiliary control register,

while location ‘‘AOQOE’’ accesses the interrupt-enable register. For a

detailed description of these registers the reader is referred to the 6502
Applications Book (reference D302).

Memory locations ‘‘A67E’’ and ‘‘A67F’’ are used to set up the in-

terrupt vector. The starting address of the interrupt-handling routine

will be stored at this memory location. In our program, this will be ad-

dress ‘‘03EA.’’ This is the routine in charge of blinking the LEDs. It
will be described below. Finally, Port 3 is addressed at memory loca-

tions ‘‘AC00’’ and ‘‘AC02.”’

Program Implementation

A detailed flowchart for the Mindbender program is shown in

Figure 9.9. Let us now examine the program itself. (See Figure 9.13.)

The initialization block resides at memory addresses 0200-0239 hex-

adecimal and conditions interrupts and I/O. First, interrupts are con-
ditioned. Prior to modifying the interrupt vector which resides at ad-

167

6502 GAMES

DIGITS

XTEMP

YTEMP

Length of Sequence

Tone Duration Constant

Temporary X Register

Temporary Y Register

Number of Matches

Pattern for Blinking LEDs on A

Pattern for Blinking LEDs on B

Tone Frequency Constant

Correct Digits Correct Place

Random Numbers

0c A

Up to 9 Digits of Numbers to Guess

V7
opie

17

Up to 9 Digits

Fig. 9.6: Low Memory Map

MINOBENDER

PORTIB

PORTIA

DDRIB

DDRIA

PESERSEEEEREEEEEE

ACOO PORT3B

a
AC02 DOR3B

Fig. 9.7: High Memory Map

169

6502 GAMES

€& & & 8 8

g

PCR (CA1,CA2,CB2,CB!)

8888 & $F SB

I/O data, port A

Used for control-affects handshake

} Data direction registers

Counter-low

Counter-high
Timer 1

Latch-low

Latch-high

Latch-low

Counte:-low
Timer 2

Counter-high

Shift register

Auxiliary

Peripheral
Function control

Flags
Interrupt control

Enable

Output register A
(does not affect handshake)

Fig. 9.8: 6522 ViA Memory Map

dresses ‘‘A67E’’ and ‘‘A67F’’ (see Figure 9.7) access to this protected
area of memory must be authorized. This is performed by the AC-

CESS subroutine, which is part of the SYM monitor:

JSR ACCESS

Next, the new interrupt vector can be loaded at the specified location.

The value ‘‘03EA’’ is entered at address IRQVEC:

LDA #SEA
STA IRQVECL
LDA #$03
STA IRQVECH

170

Low interrupt vector

High interrupt vector

MINDBENDER

Now the internal registers of the 6522 VIA #1 must be conditioned

to set up the interrupts. The interrupt-enable register (IER) will enable

or disable interrupts. Each bit position in the IER matches the cor-

responding one in the interrupt flag register (IFR). Whenever a bit
position is ‘‘0,’’ the corresponding interrupt is disabled. Bit 7 of IER

plays a special role. (See Figure 9.10.) When IER bit 7 is ‘‘0,’’ each

‘*i’’ in the remaining bit positions of IER wil clear the corresponding

enable flag. When IER bit 7 is ‘‘1,’’ each ‘‘1’’ written in IER will play

its normal role and set an enable. All interrupts are, therefore, disa-

bled by setting bit 7 to ‘‘0’’ and all remaining bits in the IER to ones:

LDA #$7F
STA IER

Next, bit 6, which corresponds to the timer 1 interrupt, is enabled. In

order to do this, bit 7 of IER is set to ‘‘1,’’ as is bit 6:

LDA #$CO
STA IER

Next, timer 1 will be set in the ‘‘free-running mode.’’ Remember that,
with the 6522, the timer can be used in either the ‘‘one-shot’’ mode or

the ‘‘free-running mode.’’ Bits 6 and 7 of the auxiliary control

register are used to select timer 1 operating modes. (See Figure 9.11.)

In this instance, bit 7 is set to ‘‘0’’ and bit 6 is set to ‘‘1”’:

LDA #$40
STA ACR

Prior to using the timer in the output mode, its counter-register must

be loaded with a 16-bit value. This value specifies the duration of the
square pulse to be generated. The maximum value ‘‘FFFF’’ is used

here:

LDA #$FF
STA TILL
STA TICH

The actual wave form from timer | is shown in Figure 9.12. In order

to compute the exact duration of the pulse, note that the pulse dura-

171

6502 GAMES

Fig. 9.9: Detalled Mindbender Flowchart

172

MINDBENDER

Yu vt+i

Y = NUMBER
DIGITS?

YES

LIGHT LEDs 3 CNT)
THROUGH CNT! + NO J «= NUMBER ves

5&

Onl
Fig. 9.9: Detailed Mindbender Flowchart (Continued)

173

Fig. 9.10: interrupt Registers

tion will alternate between n + 1.5 cycles and n + 2 cycles, where n is

the initial value loaded in the counter register.

Next, interrupts are enabled:

CLI

and the three ports used by this program are configured in the ap-

propriate direction:

STA DDRIA Output

STA DDRIB Output

STA DDR3B Output

All LEDs are then cleared:

GENERATE INT AND OUTPUT PULSE ON PB7 EVERYTIME T1 IS
LOADED = ONE-SHOT AND PROGRAMMABLE WIDTH PULSE

1 GENERATE CONTINUOUS INT AND SQUARE WAVE
(FREE RUN) OUTPUT ON PB7

Fig. 9.11: 6322 Auxiliary Control Register Selects Timer 1 Operating Modes

pee GENERATE CONTINUOUS INT P87 DISABLED

174

MINOBENDER

N+1.5

(N) (N — 1) (0) (.5)
fee Ee ake nteY jo —er-fon-}

$2 es =

WRITE
TIC-H a =:
PB7
OUT ee

N + 1.5 CYCLES N + 2 CYCLES IRQ
OUT == ----

Fig. 9.12: Timer 1 In Free Running Mode

KEY] LDA #0
STA PORTIA
STA PORTIB

and the blink masks are initially set to all 0’s:

STA MASKA
STA MASKB

LED 10 is now turned on in order to signal to the player that he or she

should specify the number of digits to be guessed:

LDA #%00000010 Select LED 10

STA PORTIB Turn it on

The key pressed is read using the usual GETKEY routine:

JSR GETKEY Get # digits

A software filter is implemented at this point. The value of the key

read from the keyboard is validated as falling within the range ‘‘1”’
through ‘‘9.”’ If it is greater than 9, or less than 1, the entry is ignored:

CMP #10
BPL KEY]
CMP #0
BEQ KEY!

175

6502 GAMES

Once validated, the length specified for the sequence is stored at

memory location DIGITS:

STA DIGITS

A sequence of random numbers must now be generated.

Generating a Sequence of Random Numbers

The initial random number is obtained from the counter and used to
start the random number generator. The theory behind this technique

has been described before.

Locations RND + 1, RND + 4, and RND + 5 are seeded with the
same number:

LDA TILL
STA RND + 1
STA RND + 4
STA RND + 5

Then a random number is obtained using the RANDOM subroutine:

LDY DIGITS Get # of digits to guess

DEY Count to 0

RAND JSR RANDOM Filling them with values

The resulting random number is set to a BCD value which guarantees

that the last digit will be between 0 and 9:

SED
ADC #00 Decimal Adjust

CLD

It is then truncated to the lower 4 bits:

AND #$00001111

Once the appropriate random digit has been obtained, it is saved at
the next location of the digit table, using index register Y as a running
pointer:

176

MINOBENDER

STA DIGO,Y

The counter Y is then decremented, and the loop executed until all re-

quired digits have been generated:

DEY
BPL RAND

Collecting the Player’s Guesses

Index register X will serve as a running pointer for the ENTRY
table used to collect the player’s guess. It is initialized to the value
**0,”’ and stored at memory location XTEMP:

EXTRA LDA #0 Clear pointer

STA XTEMP

LEDs 10 and 11 are then turned on to signal the player that he or she

may enter his or her sequence:

LDA #$00000110
STA PORTIB

The key pressed by the player is read with the usual GETKEY routine:

KEY2 JSR GETKEY

If the key pressed is greater than 9, it is interpreted as a request to
restart the game:

CMP #10
BPL KEY!

Otherwise, the value of the index register X is retrieved from memory
location XTEMP and is used to perform an indexed store of the ac-

cumulator to the appropriate location in the ENTRY table:

LDX XTEMP

STA ENTRYO,X Store guess in table

The running pointer is then incremented, and stored back in memory:

177

6502 GAMES

INX
STX XTEMP

Then, the value of the running pointer is compared to the maximum
number of digits to be fetched from the keyboard and, as long as this
number is not reached, a loop occurs back to location KEY2:

CPX DIGITS All numbers fetched?
BNE KEY2 If not, get another

Once the player has entered his or her sequence, the digits must be
compared to the computer-generated sequence. In anticipation of the

display of a possible win the LEDs on the board are blanked and the
masks are cleared:

LDX #0
STX PORTIA
STX PORTIB
STX MASKA
STX MASKB

Two locations in memory will be used to contain the number of cor-

rect digits and the number of correct digits in the correct location.

They are initially cleared:

STX CNT Number of matches
STX CNT1 Number of correct digits

Each entry of the DIGO table will now be compared in turn to all en-
tries of the ENTRYO table. Each digit is loaded from the DIGIT table

and immediately compared to the corresponding ENTRY contents:

DIGLP LDA DIGO,X
CMP ENTRYO,X

If it is not the right digit at the right place, there is no exact match. We
will then check to see if the digit appears at any other place within the

ENTRY table:

BNE ENTRYCMP

178

MINDBENDER

Otherwise, one more exact match is recorded by incrementing location

CNT1, and the next digit is examined:

INC CNT1
BNE NEXTDIG

Let us examine now what happens when no match has occurred. The
digit (of the number to be guessed) which has just been read and is
contained in the accumulator should be compared to every digit within

the ENTRY table. Index register Y is used as a running pointer, and
the contents of the accumulator are compared in turn to each of the
digits in ENTRY:

ENTRYCMP LDY #0
ENTRYLP CMP ENTRYO,Y

BNE NEXTENT

If a match is found, memory location CNT is incremented and the
next digit is examined:

INC CNT
BNE NEXTDIG

Otherwise, index register Y is incremented. If the end of the sequence

is reached, exit occurs to NEXTDIG. Otherwise a branch back occurs
to the beginning of the loop at location ENTRYLP:

NEXTENT _INY Increment guess # pointer

CPY DIGITS All tested?

BNE ENTRYLP No: try next one

The next digit in table DIG must then be examined. The running

pointer for DIG is contained in index register X. It is incremented and
compared to its maximum value:

NEXTDIG INX Increment digit # pointer

CPX DIGITS All digits checked

If the limit has not been reached, a branch occurs back to the begin-

ning of the outer loop at location DIGLP:

179

6502 GAMES

BNE DIGLP

At this point, we are ready to turn on the LEDs to display the results

to the player.

Displaying the Resuits to the Player

The total number of LEDs which must be turned on is obtained by

adding the contents of CNT to CNT1:

CLC Get ready for add

LDA CNT

ADC CNTI1

The total is contained in the accumulator and transferred into index

register Y where it will be used by the LITE routine:

TAY
JSR LITE

The operation of the LITE routine will be described below. Its effect is

to fill the accumulator with the appropriate number of ones in order

to turn on the appropriate LEDs.

The pattern created by the LITE subroutine is then stored in the

mask:

STA PORTIA

For the special case in which the result is 9, the carry bit will have been

set. This case is explicitly tested:

BCC CC If carry 0, don’t light PBO.

and if the carry had been set to 1, Port B will be set appropriately so

that LED #9 is turned on:

LDA #1 Turn PBO on

STA PORTIB

Recall that once masks A and B have been set up, they will

automatically be used by the interrupt handling routine which will

180

MINDBENDER

cause the appropriate LEDs to blink.

CC LDY CNT!
JSR LITE
STA MASKA
BCC TEST
LDA #01
STA MASKB

The program must now test for a win or lose situation.

Testing for a Win or Lose Situation

The number of correct digits in the right places is contained in

CNT1. We will simply compare it to the length of the sequence to be
guessed:

TEST LDX CNT!
CPX DIGITS

If these numbers are equal, the player has won:

BEQ WIN

Otherwise, a low tone will be sounded. The tone duration constant is

set to ‘*72,"’ and its frequency value to ‘‘BE’’:

BAD LDA #$72

STA DUR
LDA #$BE

The TONE subroutine is then used to generate the tone, as usual:

JSR TONE

Then a return occurs to the beginning of the program:

BEQ ENTER

If a win has occurred, a high-pitched tone will be generated. Its dura-

tion constant is set to ‘‘FF’’ and its pitch is controlled by setting the

181

6502 GAMES

frequency constant to ‘‘54’’:

WIN LDA #$FF
STA DUR
LDA #$54

As usual, the TONE subroutine is used to generate the tone:

JSR TONE

The game is then restarted:

JMP KEY]

The Subroutines

Four routines are used by this program. They are: LITE, RAN-
DOM, TONE, and INTERRUPT HANDLER. The RANDOM and
TONE routines have been described in previous chapters and will not
be described again here.

LITE Subroutine

When entering this subroutine, index register Y contains the

number of LEDs which should blink. In order to make them blink it
is necessary to load the appropriate pattern into the mask patterns

called MASKA and MASKB. The appropriate number of 1’s has to be

set in these two locations. A test is first made for the value ‘‘0’’ in Y.

If that value is found, the accumulator is cleared, as well as the carry

bit (the carry bit will be used as an indicator for the fact that Y con-

tained the value ‘‘9’’):

LITE BNE STRTSH Test Y for zero

LDA #0

CLC

RTS

Otherwise, the accumulator is initially cleared, and the appropriate

number of 1’s is shifted left into the accumulator through the carry

bit. They are introduced one at a time by setting the carry bit, then

performing a left shift into A. Each time, index register Y is decre-

mented and the loop is executed again as long as Y is not ‘‘0”’:

182

MINDBENDER

LDA #0

SHIFT SEC

ROL A Shift into position

DEY

BNE SHIFT Loop

RTS

Note that a rotation to the left is used rather than a shift. If Y did
contain the value ‘‘9,’’ the accumulator A would be filled with 1’s and

the carry bit would also contain the value ‘‘1’’ upon leaving the
subroutine.

The Interrupt Handler

This subroutine complements the LEDs each time an interrupt is
received, i.e., every time timer 1 runs out. It is located at memory ad-

dresses ‘‘03EA’’ and following. Since the accumulator is used as a
working register by the subroutine, it must be preserved upon entry

and pushed into the stack:

PHA

The contents of Ports 1A and 1B will be read and then complemented.

Recall that there is no complementation instruction on the 6502, so

an exclusive OR will be used instead. MASKA and MASKB specify

the bits to be complemented:

LDA PORTIA
EOR MASKA
STA PORTIA
LDA PORTIB
EOR MASKB
STA PORTIB

Also recall that the interrupt bit in the 6522 has to be cleared explicitly
after every interrupt. This is done by reading the latch:

LDA TILL

Finally, the accumulator is restored, and a return occurs to the main

program:

183

6502 GAMES

PLA
RTI

SUMMARY

In this program, we have used two new hardware resources in the

6522 I/O chip: the interrupt control and the programmable interval
timer. Interrupts have been used to implement simultaneous processing
by blinking the LEDs while the program proceeds, testing for a win or
lose situation.

Exercise 9.1: Could you implement the same without using interrupts?

SMINDBENDER PROGRAM
SPLAYS MINDBENDER GAME? USER SPECIFIES LENGTH OF NUMBER
§TO BE GUESSED, THEN GUESSES DIGITS» AND COMPUTER TELLS
#PLAYER HOW MANY OF THE DIGITS GUESSED WERE RIGHTs AND
§HOW MANY OF THOSE CORRECT DIGITS WERE IN THE CORRECT
$PLACE, UNTIL THE PLAYER CAN GUESS THE NUMBER. ON THE
#BOARD?s BLINKING LEDS INDICATE CORRECT VALUE 8 CORRECT
SDIGIT» AND NONBLINKING LEDS SHOW CORRECT DIGIT VALUE»
$BUT WRONG PLACE.
$THE BOTTOM ROW OF LEDS IS USED TO SHOW THE MODE OF
$THE PROGRAM? IF THE LEFTMOST LED IS LIT» THE
$PROGRAM EXPECTS THE USER TO ENTER THE LENGTH
sOF THE NUMBER TO BE GUESSED. IF THE TWO LEFTMOST
SLEDS ARE LITe THE PROGRAM EXPECTS A GUESS.
STHE PROGRAM REJECTS UNSUITABLE VALUES FOR A NUMBER
SLENGTH» WHICH CAN ONLY BE 1-9. A VALUE OTHER THAN
*0-9 FOR A GUESS RESTARTS THE GAME.
$A LOW TONE DENOTES A BAD GUESS» A HIGHT TONE» A WIN.
SAFTER A WIN» THE PROGRAM RESTARTS.
sAN INTERRUPT ROUTINE IS USED TO BLINK THE LERS.
$

«™$200
GETKEY =6100
ACCESS =$8B06 SROUTINE TO UNPROTECT SYS MEM
DIGITS =600 SNUMBER OF DIGITS TO BE GUESSED
DUR =$01 STONE DURATION CONSTANT
XTEMP =$02 ITEMP STORAGE FOR X REG.
YTEMP =$03 STEMP STORAGE FOR Y REG.
CNT #904 sKEEPS TRACK OF @ OF MATCHES
MASKA =605 *CONTAINS PATTERN EOR’ED WITH LED

*STATUS REGISTER A TO CAUSE BI. INK
MASKB =$06 *LED PORT B BLINK MASK
FREQ =$07 *TEMP STORAGE FOR TONE FREQUENCY
CNT1 =608 §@ OF CORRECT DIGITS IN RIGHT PLAC
RND =809 sFERST OF RANDOM @ LOCATIONS
DIGO =60F sFIRST OF 9 DIGIT LOCATIONS
ENTRYO =618 sFIRST OF 9 GUESS LOCATIONS
IRQVECL =6A67E sINTERRUPT VECTOR LOW ORDER BYTE
IRQVECH =6A67F §eeAND HIGH ORDER

$6522 VIA #1 REGISTERS:

Fig. 9.13: Mindbender Program

184

02003
02033
02055
0208:
020A5
020D?
O20F $
02123
02143
02173
02193
021C?
O21E3
02213
02243
022353
02282
02283
O22E%
02303
02335
02363
02383

O23A$
023C3
O23F 3
02425
0244:
02463
0248:
024A:
024C;
O24F :
02513
02533
02535
02573

02583
O25B3
O25C3
O25E 3
O2S5F 3
02613
02643
0265:

OB

Aé

A6

Ao

Ao

Ao

ao
AO

Ao
Ao
ac

AO
AO

AO
01

AO

02

00

IER
ACR
TALL
TicH
PORTIA
DDR1A
PORTIB
DDR1B
PORT3B
DDRIB
’

sROUTINE

KEV!’

MINDBENDER

™=SAQOE s INTERRUPT ENABLE REGISTER
=$A00B SAUXILIARY CONTROL REGISTER
=$A004 sTIMER 1 LATCH LOW
=8A005 ITEMER 1 COUNTER HIGH
=$A001 $VTA 1 PORT A IN/OUT REG
2S$A003 sVIA 2 PORT A DATA DIRECTION REG.
#$A000 sVIA 1 PORT B IN/OUT REG
=$A002 #VIA 1 PORT B DATA DIRECTION REG.
=6ACOO SVIA 3 PORT B IN/OUT REG
=$ACO02 sVIA 3 PORT B DATA DIRECTION REG

TO SET UP VARIABLES AND INTERRUPT TIMER FOR
sL.E.D. FLASHING

JSR
t.DA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
CLI
STA
STA
STA
LDA
STA
STA
STA
STA

ACCESS SUNPROTECT SYSTEM MEMORY
#SEA ‘LOAD LOW INTERRUPT VECTOR
IRQVECL §.-eAND STORE AT VECTOR LOCATION
#303 FILOAD INTERRUPT VECTOR...
IRQVECH %eeceAND STORE.
#$87F SCLEAR INTERRUPT ENABLE REGISTER
IER
#$CO sENABLE TIMER 1 INTERRUPT
TER
#340 #ENABLE TIMER 1 IN FREE-RUN MODE
ACR
#SFF
TALL ‘SET LOW LATCH ON TIMER 1
TiCH $SET LATCH HIGH & START COUNT

SENABLE INTERRUPTS
DDRIA ‘SET VIA 1 PORT A FOR OUTPUT
DDR1B sSET VIA 1 PORT B FOR OUTPUT
DDRIB SSET VIA 3 PORT B FOR OUTPUT
#0 ICLEAR LEDS
PORTIA
PORT18
MASKA SCLEAR BLINK MASKS
MASKB

sROUTINE TO GET NUMBER OF DIGITS TO GUESS» THEN
sFILL THE DIGITS WITH RANDOM NUMBERS FROM 0-9

RAND

LDA
STA
JSR
CMP
BPL
CMP
BEQ
STA
LDA
STA
STA
STA
Lby
DEY

JSR
SED
aBC
CLD
AND
STA
DEY
BPL

#$%00000010 SLIGHT LED TO SIGNAL USER TO
PORT1B sINPUT OF @ OF DIGITS NEEDED.
GETKEY sGET ¢ OF DIGITS
#10 5IF KEY@ >9* RESTART GAME
KEY1
#0 *CHECK FOR O DIGITS TO GUESS
KEY1 $eee0 DIGITS NOT ALLOWED
DIGITS SSTORE VALID # OF DIGITS
TALL §GET RANDOM @»
RND+1 sUSE IT TO START RANDOM
RND+4 sNUMBER GENERATOR.
RND4S
DIGITS sGET # OF DIGITS TO BE GUESSED,

§.eAND COUNT TO O» FILLING
$THEM WITH VALUES.

RANDOM §GET RANDOM VALUE FOR DIGIT

#00 s+DECIMAL ADJUST

@%00001111 sKEEP DIGIT <10
DIGO»Y sSAVE IT IN DIGIT TABLE.

RAND SFILL NEXT DIGIT

Fig. 9.13: Mindbender Program (Continued)

185

6502 GAMES

02673
02693
O26Bt
0263:
02703
02733
02763
02783
O27A$
027C?
O27E 3
O27F 3
02812
02833

02833
02873
028A;
028D:
O28F 3
02913
02932
02953
02973
02992

O29B3
O29D2
O29F t
O2A13
02A4;
O2A6;
O2AB:
O2AA!
O2AB!
O2AD3
O2AF 3
02B03
02823
O2B4;
02BS?
02B7%
02B93
O2BA;
O2BD3
02C0:
02C23
02C4!
02C73
02C9;
02CC3
O2CE:
02B0?
02023

186

AQ
AO
01

AO
AO

00

02
AO

AO

02

SROUTINE TO FILL GUESS TABLE W/USERS‘S GUESSES
$
ENTER LDA @¢0 ‘CLEAR ENTRY TABLE POINTER

STA XTEHP
LDA #Z%00000110 jLET USER KNOW THAT GUESSES
ORA PORT1B SSHOULD BE INPUT...
STA PORTIB §+eeWITHOUT CHANGING ARRAY

KEY2 JSR GETKEY §GET GUESS
CMP $10 sIS IT GREATER THAN 9?
BPL KEY1 SIF YES» RESTART GAME
LDX XTEMP §GET POINTER FOR INDEXING
STA ENTRYOeX sSTORE GUESS IN TABLE
INX SINCREMENT FOINTER
STX XTEMP
CFX DIGITS sCORRECT # OF GUESSES FETCHED?
RNE KEY2 SIF NOT» GET ANOTHER

i]
*THIS ROUTINE COMPARES USERS’S GUESSES WITH QOIGITS
SOF NUMBER TO GUESS. FOR EACH CORRECT DIGIT IN THE
sCORRECT PLACE» A BLINKING LED IS LITs AND FOR EACH
sCORRECT DIGIT IN THE WRONG PLACE» A NONBLINKING
SLED IS LIT.
é

LDX 60 SCLEAR FOLLOWING STORAGES:
STX PORTIA sLEDS
STX PORT1B
STX MASKA *BLINK MASKS
STX MASKB
STX CNT SCOUNT OF MATCHES
STX CNT1 sCOUNT OF RIGHT DIGTIS

DIGLP LDA DIGO»XxX sLOAD 1ST DIGIT OF @ FOR COMPARES
CMP ENTRYO?X *RIGHT GUESS/RIGHT PLACE?
BNE ENTRYCMP éNO? ([& GUESS RIGHT DIGIT

SWRONG PLACE?
INC CNT1 §ONE MORE RIGHT GUESS/RIGHT PLACE
BNE NEXTDIG SEXAMINE NEXT DIGIT OF NUMBER

ENTRYCHP LDY #0 SRESET GUESS# PTR FOR COMPARES
ENTRYLP CHP ENTRYO*Y SRIGHT NIGIT/WRONG PLACE?

BNE NEXTENT #NO> SEE IF NEXT DIGIT IS.
INC CNT SONE MORE RIGHT DIGIT/WRONG PLACE
BNE NEXTDIG sEXAMINE NEXT DIGIT OF NUMBER

NEXTENT INY sINCREMENT GUESS@ PTR
CPY DIGITS sALL GUESSES TESTED?
BNE ENTRYLF sNO» TRY NEXT GUESS.

NEXTOIG INX sINCREMENT DIGIT#@ FTIR
CPX DIGITS SALL DIGITS EVALUATED?
BNE DIGLF sNO»e CHECK NEXT DIGIT.
cLC sGET READY FOR ADD....
LDA CNT 30F TOTAL MATCHES TO DETERMINE
ADC CNT1 sNUMBER OF LEDS TO LIGH)
TAY SXFER A TO Y FOR ‘LIGHT’ ROUTINE
JSR LITE SGET PATTERN TO LIGHT LEDS
STA PORTIA STURN LEDS ON
BCC CC SIF CARRY=0» DON’T LIGHT PBO
LDA #1
STA PORT1B #TURN PBO ON.

cc LOY CNT1 sLOAD @ OF LEDS FO RLINK
JSR LITE §GET PATTERN
STA MASKA SSTART TO BLINK LENS
BCC TEST dIF CARRY =O» PBO WON‘T BLINK
LDA #1
STA MASKB

5
SROUTINE TO TEST FOR WIN BY CHECKING IF @ OF CORRECT

Fig. 9.13: Mindbender Program (Continued)

02D4?
02063
0206:
O2DAt
02DC!
O2DE%
O2E03
O2E33
O2ES3
02E73
O2E93
O2EB:
O2EE?

O2F 13
O2F 33
O2FS;
O2F 46;
O2F 73
O2F93
O2FAS
O2FB:

O2FC?
O2FE%

O2FF 3
03003
03023
03043
0306;
03083
O30A3
030C?
O30E 3
O30F 3
03113

03122
03143
0316:
03193
O31B3
O31D!

A6
E4
FO
Ag?
85
A?
20
FO
Ag?
8s
Ag
20
4c

BO
ag
16
60
ag
38
2A
88

bo
60

85
ag?
8D
A?
Aé
A4

04
00

00

FB

07
FF
00
00
ol
07

03

03
02

aC

MINDBENDER

SDIGITS IN CORRECT PLACES = NUMBER OF DIGITS. IF WIN?
$A HIGH PITCHED SOUND IS GENERATEDs AND IF ANY
SDIGIT IS WRONG» A LOW SOUND IS GENERATED.
$
TEST LDX CNT1 LOAD NUMBER OF CORRECT DIGITS

CPX DIGITS sALL GUESSES CORRECT?
BEG WIN SIF YES» PLAYER WINS

BAD LDA $872
STA DUR #SET UP LENGTH OF LOW TONE
LDA @$BE sTONE VALUE FOR LOW TONE
JSR TONE SSIGNAL BAD GUESSES W/TONE
BEQ ENTER sGET NEXT GUESSES

WIN LDA &SFF sDURATION FOR HIGH TONE
STA DUR
LDA #$54 ¢TONE VALUE FOR HIGH TONE
JSR TONE sSIGNAL WIN
JMP KEY1 sRESTART GAME

$
sROUTINE TO FILL ACCUMULATOR WITH ‘1° BITS? STARTING
SAT THE LOW ORDER END» UP TO AND INCLUDING THE
sBIT POSITION CORRESPONDING TO THE @ OF LEDS TO
sBE LIT OR SET TO BLINKING.
’

LITE BNE STRTSH sIF ¥Y NOT ZERO» SHIFT ONES IN
LDA ¢0 SSFECIAL CASES RESULT IS N0) ONES.
CLC
RTS

STRTSH LDA #0 sCLEAR A SO PATTERN WILL SHOW
SHIFT SEC §MAKE A BIT HIGH

ROL A §SHIFT IT TO CORRECT POSITION
DEY SBY LOOPING TO # OF GUESS/IIGIT

IMATCHESs AS PASSED IN Y
BNE SHIFT sLOOP ‘TIt DONE
RTS

‘
sRANDOM NUMBER GENERATOR
sUSES NUMBERS AvyBrCeDeErF STORED AS RND THROUGH
SRNDtS3 ADDS BtEtF+1 AND PLACES RESULT IN Ar THEN
sSHIFTS A TO Be B TO C» ETC. THE NEW RANDOM NUMBER
$WHICH IS BETWEEN O AND 255 INCLUSIVE IS IN THE
FACCUMULATOR ON EXIT
$
RANDOM SEC sCARRY ADDS VALUE 1

LDA RND+1 #ADD Ar BrE AND CARRY
ADC RND+4
ABC RNDtS
STA RND
LDX #4 sSHIFT NUMBERS OVER

RPL LBA RND?PX
STA RNDt1+X
DEX
BPL RPL
RTS

*TONE GENERATOR ROUTINE.
sDURATION OF TONE (NUMBER OF CYCLES TO CREATE)
SHOULD BE IN ‘DUR’ ON ENTRY AND THE NOTE VALUE
SCFREQUENCY) IN THE ACCUMULATOR.
7
TONE STA FREQ

LDA $6FF
STA PORTSB
LDA #800
LDX DUR

FL2 LDY FREQ

Fig. 9.13: Mindbender Program (Continued)

187

O3EA:
O3EB3
O3EE3
O3F 0?
OSF 33
O3F 6!
O3F 8:
O3F B:
O3FE 3
O3FF

PORTSB
RAND
DIGLP
NEXTENT
TEST
LITE
RANDOM
FL2

BONE

188

DEY
CLC
BCC .t2
BNE FL1i
EOR #sFF
STA PORTSR
DEX
BNE FL2
RTS

)
SINTERRUPT-HANDLING ROUTINE
SCOMPLEMENTS LEDS AT EACH INTERRUPT
$

+ & 63EA

PHA

LDA PORTIA
EOR MASKA
STA PORTIA
LDA PORT1B
EOR MASKB
STA PORTLB
LBA TILL
PLA
RTI

ACCESS
XTEMP
MASKA
CNT1
ENTRYO
TER
T1CH
PORT1B
DDRIB
ENTER
ENTRYCMP
NEXTDIG
BAD
STRTSH
RPL
Fl.l

Fig. 9.13: Mindbender Program (Continued)

sLOCATE ROUTINE IN HIGH MEMORY
SSAVE ACCUMULATOR
§GET PORT FOR COMPLEMENTING

‘COMPLEMENT NECESSARY BITS
sSTORE COMPLEMENTED CONTENTS
$DO SAME WITH PORT1B

#CLEAR INTERRUFT BIT IN VIA
sRESTORE ACCUMULATOR
§DONEs RESUME PROGRAM

DIGITS
YTEMP
MASKB
RND
TRQVECL
ACR
PORTIA
DDR1B
KEY1
KEY2
ENTRYLF
cc
WIN
SHIFT
TONE

10

BLACKJACK

THE RULES

The standard game of Blackjack or ‘‘21,’’ is played in the following
way. A player attempts to beat the dealer by acquiring cards which,

when their face values are added together, total more points than

those in the dealer’s hand but not more than a maximum of 21 points.

If at any time the total of 21 is achieved after only two cards are

played, a win is automatically declared for the player; this is called a

Blackjack (the name of the game). Card values range from 1 through

11. In the standard version of Blackjack the house rules require the
dealer to ‘‘hit’’ (take a card) if his/her hand equals 16 or fewer points,
but prohibits him/her from taking a ‘‘hit’’ when his or her hand totals
17 or more points.

The version of Blackjack played on the Games Board differs slight-
ly from the standard game of Blackjack. The single ‘‘deck of cards’’

used here contains cards with values from 1 through 10 (rather than 1
through 11), and the number of points cannot exceed 13 (as opposed to
21). The dealer in this variation of the game is the computer.

At the beginning of each hand, one card is dealt to the dealer and

one to the player. A steady LED on the Games Board represents the

value of the card dealt to the dealer (the computer). A flashing LED
represents the card dealt to the player. If the player wants to be “‘hit’’

(i.e., receive another card) he/she must press key ‘‘C.’’ The player

may hit several times. However, if the total of the player’s cards ever
exceeds 13, the player has lost the round (‘‘busted’’) and he/she can

no longer play. It is then the dealer’s turn. Similarly, if the player
decides to pass (‘‘stay’’), it becomes the dealer’s turn. The dealer plays
in the following manner: if the dealer’s hand totals fewer than 10

189

6502 GAMES

points, the computer deals itself one more card. As long as the hand

does not exceed 13, the computer will check to see if it needs another

card. Like the situation with the player, once the total of the com-

puter’s cards exceeds 13, it loses. No provision has been made for a

bonus or an automatic win, which occurs whenever the player or the
dealer gets exactly 13 points with only two cards (a Blackjack). This is

left as an exercise for the reader. Once the dealer finishes its turn,

assuming that it does not bust, the values of both hands are compared.
If the dealer’s total is greater than the player’s, the player loses. Other-
wise, the player wins. At the beginning of each series the player is
allocated 5 chips (5 points). Each loss decreases this total by one chip;

each win increases it by one. The game is over when the player goes

broke and loses, or reaches a score of 10 and wins. After each play the

resulting score is displayed as a number between 0 and 10 on the
appropriate LED. Each time a player wins a hand, the left-most three

LEDs of the bottom row light up. If the dealer wins the hand, the right-

most LEDs light up. (See Figure 10.1.)

099 990

PLAYER WINS COMPUTER WINS

Fig. 10.1: indicating the Winner

A TYPICAL GAME

When playing a game against the dealer, the player will press key
**A’’ to be “‘hit’’ (receive an additional card) until either a total of 13 is

exceeded (a ‘‘bust’’), or until the player decides that his or her total is
close enough to 13 that he or she might beat the dealer. When the

player makes this decision to stay, he or she must press key ‘‘C.’’ This

will start the dealer’s turn, and all other keys will then be ignored.

190

BLACKJACK

LEDs will light up in succession on the board as the computer deals
itself additional cards until it goes over ten, reaches 13 exactly, or

busts. Once the computer has stopped playing, any key may be
pressed; the player’s score will be displayed and the winner will be in-
dicated through lit LEDs on the winner’s side. The display will appear

for approximately one second, then a new hand will be dealt.

Note that once the value of the computer’s hand has reached a total

greater than or equal to 10, it will do nothing further until a key is

pressed. Let us follow this ‘‘typical game.”’
The initial display is shown in Figure 10.2. A steady LED is shown

as a black dot, while a blinking LED is shown as a half dot. In the in-

itial hand the computer has dealt itself a 1 and the player a 4. The

player presses key ‘‘A’’ and receives an additional card. It is a 9. The

situation is shown in Figure 10.3. It’s a Blackjack and the player has
won. The best the dealer can hope for at this point is to also reach 13.

@00
990
99 9

191

6502 GAMES

Let us examine its response. To do this we must pass by hitting ‘‘C.”’

A moment later LED #3 lights up. The total of the computer’s hand
now is 1 + 3 = 4. It will deal itself another card. A moment later.
LED #7 lights up. The computer’s total is now 4 + 7 = 11. It stops.

Having a lower total than the player, it has lost. Let us verify it. We

press any key on the keyboard (for example, ‘‘0’’). The result appears

on the display: LEDs 10, 11 and 12 light up indicating a player win,
and LED #6 lights up, indicating that the player’s score has been in-
crease from 5 to 6 points. This information is shown in Figure 10.4. The

Fig. 10.4: End of Turn: Dealer Loses

LED display then goes blank and a new hand is displayed. When there

is a draw, none of. the LEDs in the bottom row light up and the score
is not changed. A new hand is dealt. (If the player busts, the dealer
wins immediately and a computer win is displayed.)

Let us play one more game. At the beginning of this hand the com-
puter has dealt itself a 5, and the player has a 6. The situation is shown
in Figure 10.5. Let us ask for another card. We hit key ‘‘A’’ and are

given a 7. This is almost unbelievable. We have thirteen again!! The

situation is shown in Figure 10.6 It is now the computer’s turn. Let us
hit ‘‘C.’? LED #10 lights up. The computer has 15. It has busted. The

situation is shown in Figure 10.7. Let us verify it. We press any key on

the keyboard. The three left-most LEDs on the bottom row (LED 10,

11, and 12) light up and a score of 7 is displayed. This is shown in

Figure 10.8. A moment later the display goes blank and a new hand is
started.

192

BLACKJACK

O#
:

02

O-

Ov

@

O-

O-

O-

Om

Fig. 10.5: Second Hand

Ov @- Ov

O~

@

O-

O-

O-~

@

Fig. 10.6: Blackjack Again

Fig. 10.7: Dealer Busts

193

6502 GAMES

Fig. 10.8: Final Score is 7

THE PROGRAM

The detailed flowchart for the Blackjack program is shown in
Figure 10.9, and the program is listed at the end of the chapter. As

usual, a portion of page 0 has been reserved for the variables and flags

which cannot be held in the internal registers of the 6502. This area is
shown in Figure 10.10 as a ‘‘memory map.”’’ These variables or flags

are:
DONE: This flag is set to the value ‘‘0’’ at the beginning of the

game. If the player goes broke, it will be set to the value ‘‘11111111.’’ If

the player scores 10 (the maximum), it will be set to the value ‘‘1.”’
This flag will be tested at the end of the game by the ENDER routine

which will display the final result of the game on the board and light

up either a solid row of LEDs or a blinking square.

CHIPS: This variable is used to store the player’s score. It is initial-
ly set to the value ‘‘5.’’ Every time the player wins a hand it will be in-

cremented by 1. Likewise, every time the player loses a hand, it will be

decremented by 1. The game terminates whenever this variable reaches

the value ‘‘O’’ or the value ‘‘10.’’

MASKA, MASKB: These two variables are used to hold the masks
or patterns used to blink the LEDs connected respectively to Port A

and Port B on the Games Board.

PHAND: It holds the current hand total for the player. It is incre-
mented every time the player hits (i.e., requests an additional card).
card).

CHAND: This variable holds the current hand total for the com-

puter (the dealer).

194

BLACKJACK

DRAW FIRST CARDS
FOR EACH HAND

HIT COMPUTER'S
HAND

Fig. 10.9: Blackjack Flowchart

195

6502 GAMES

TEMP: This is a temporary variable used by the RANDOM routine

to deal the next card to either player.

RND through RND + 5: These six locations are reserved for the
random number generating routine called RANDER.

WHOWON: This status flag is used to indicate the current winner

of the hand. It is initially set to ‘‘0,’’ then decremented if the player

loses or incremented if the player wins.

At the high end of memory the program uses VIA #1, the ACCESS

subroutine provided by the SYM monitor, and the interrupt-vector at

address A67E, as shown in Figure 10.11.

Let us now examine the program operation. For clarity it should be
followed on the flowchart in Figure 10.9.

CO Status flag for end of game

Cl CHIPS Player score

\ Masks used to flash the LEDs

Total for player

CHAND Total for computer

Random numbers

8R BF eegeee eke Besa Status for current winner

Fig. 10.10: Low Memory Map

196

BLACKJACK

a ee
~~ LLL
— oom Via Cora
a

nom LL
weg ZZ

Fig. 10.11: High Memory Map

6502 GAMES

Program Initialization

The timer on 6522 VIA #1 will be used to generate the interrupts

which blink the LEDs. These interrupts will cause a branch to location
03EA where the interrupt-handling routine is located. The first step is,

therefore, to load the new value into the interrupt vector, i.e.,

‘*03EA,”’ at the appropriate memory location:

BLJACK JSR ACCESS Unprotect system memory

LDA #$EA Load low interrupt vector

STA INTVECL
LDA #$03 High vector

STA INTVECH

As described previously, the interrupt-enable register is first loaded
with the value ‘‘O1111111,’’ and then with the value ‘‘11000000”’ in

order to enable the interrupt for timer 1:

LDA #$7F Clear timer interrupt-enable
STA IER
LDA #$CO Enable timer 1 interrupt
STA IER

Loading the value ‘‘7F’’ clears bits 0 through 6, thereby disabling all

interrupts. Then, loading the value ‘‘CO’’ sets bit 6, which is the
interrupt-bit corresponding to timer 1. (See Figure 9.10.) As in the
previous chapter, timer | is put in the free-running mode. It will then

automatically generate interrupts which will be used to blink the
LEDs. In order to set it to the free-running mode, bit 6 of the ACR

must be set to ‘‘1’’:

LDA #$40 Put timer !

STA ACR In free run mode

The latches for timer 1 are initialized to the highest possible value, i.e.,

FFFF:

LDA #$FF
STA TILL Low latch of timer 1
STA T1CH High latch and start timer

198

BLACKJACK

Finally, now that the timer has been correctly initialized, interrupts

are enabled on the processor:

CLI

LED Ports A and B configured as outputs (remember that the ac-

cumulator still contains the value ‘‘FF’’):

STA DDRA
STA DDRB

Enable interrupts

As a precaution, the decimal flag is cleared:

CLD

The player’s score is initialized to the value 5:

LDA #5 Set player’s score to 5

STA CHIPS

The DONE flag is initialized to the value ‘‘0’’:

LDA #0 Clear done flag

STA DONE

The LEDs on the board are cleared:

STA MASKA
STA MASKB

STA PORTA Clear LEDs
STA PORTB

And the WHOWON flag is also initialized to ‘‘0’’:

STA WHOWON _ Clear flag

Dealing the First Hand

We are now ready to play. Let us deal one card to both the dealer
and the player. The LIGHTR and the BLINKR subroutines will be
used for that purpose. Each of these subroutines obtains a random

199

6502 GAMES

number and lights the corresponding LED. LIGHTR lights up a

steady LED while BLINKR blinks the LED. These two subroutines
will be described later. We set one LED blinking for the player:

JSR BLINKR Set random blinking LED

and we save the first total for the current player’s hand:

STA PHAND Store player’s hand

then we do the same for the computer:

JSR LIGHTR Set random steady LED

STA CHAND Store computer’s hand

Hit or Stay?

We will now read the keyboard. If the player presses ‘‘A,’’ this in-

dicates a requested hit and one additional card must be dealt to the
player. If ‘‘C’’ is pressed, the player ‘‘stays’’ (passes) and it becomes

the computer’s turn to play. All other keys are ignored. Let us first ob-

tain the key closure from the keyboard:

ASK JSR GETKEY

The key value must now be compared to ‘‘A’’ and to ‘‘C’’:

CMP #S0A
BEQ HITPLR
CMP #$0C Is it computer’s turn?
BEQ DEALER

If any other key has been pressed, it will be ignored and a new key will

be read:

JMP ASK Invalid key, try again

At this point in the program, we will assume the situation warrants
a ‘‘hit.’” One more card must be dealt to the player. Let us set one

more LED blinking. Naturally, the BLINKR subroutine, as well as the
LIGHTR subroutine, are careful not to deal a card that has already

BLACKJACK

been dealt. How this is achieved will be described later (this is the pur-

pose of the SETBIT subroutine).

HITPLR JSR BLINKR Set random LED

As soon as a new card has been dealt to the player, we compute the

player’s new total for the current hand:

CLC
ADC PHAND Tally player’s hand

STA PHAND

The new total must be checked against the value ‘‘13.’’ As long as the

player has 13 or less, he or she may play again, i.e., either be hit or

stay. However, if the player’s score exceeds ‘‘13,’’ he or she busts and

loses the play. Let us check:

CMP #14 Check for 13

BCC ASK Ask ifg= 13

JMP LOSE Busted

It is now the dealer’s turn. Since the computer is much faster than the

player in deciding whether it wants to hit or to stay, we will first slow it

down to provide more suspense to the game:

DEALER JSR DELAY

The delay subroutine also extends the period of time between the suc-
cessive decisions made by the computer to make the computer appear

more ‘‘human-like.’’

Before dealing another card to the computer (the dealer), let us ex-

amine its total. The house rule is that the dealer’s total cannot exceed

**10.”’ (Naturally, other algorithms are available from Blackjack ex-

perts.) The computer hand is therefore checked against the value

‘*10.’’ If this value is exceeded, a branch occurs to location WINNER

where the winner will be decided. Otherwise, a new card will be dealt

to the computer:

LDA CHAND
CMP #10 Check hand for limit

BCS WINNER Yes. Decide winner.

201

6502 GAMES

As long as the hand totals less than ‘‘10,’’ the dealer requests a hit. A
new card is dealt to the dealer in exactly the same way that it was dealt
previously to the player:

JSR LIGHTR Set random LED

The dealer’s new total is computed:

CLC
ADC CHAND Tally computer’s hand

STA CHAND

Just as in the case of the player before, it is compared against the value

‘*13? to determine whether or not the dealer has busted:

CMP #14 Is hand <= 13?
BCC DEALER Yes: another hit?
JMP WIN Busted: player wins

If the computer has busted, a jump occurs to location WIN which in-

dicates a ‘‘win’’ by the player. Otherwise, a branch back to location

DEALER occurs, where the computer will determine whether or not it

wants to receive an additional card. Let us now determine the winner.

Both hands are compared:

WINNER LDA CHAND
CMP PHAND Compare hands

There are three possible cases: equal scores, player wins, and player

loses.

BEQ SCORER
BCC WIN

In the case that both scores are equal, a jump occurs to location

SCORER which will display the current status. If the player wins, a
branch occurs to location WIN and the sequence will be described
below. First, let us examine what happens when the player loses.

The Player Loses

A special flag, called WHOWON, is used to store the status at the

202

BLACKJACK

end of each play. It is decremented to indicate a loss by the player:

LOSE DEC WHOWON

The player’s score is decremented:

DEC CHIPS

The player’s score must be compared to the value ‘‘0.’’ If the player’s
score has reached ‘‘0,”’ he or she is broke and has lost the game. In
this case, the DONE flag is set to ‘‘11111111;’’ otherwise, it is not

changed. Finally a jump occurs to SCORER where the final score will
be displayed:

BNE SCORER Player broke?

DEC DONE Yes: set lose flag
JMP SCORER Finish game

Player Has Won

Similarly, when the player wins, the WHOWON flag is set to ‘‘1”’:

WIN INC WHOWON

The score is incremented:

INC CHIPS

It is then compared to the value ‘‘10"’:

LDA CHIPS
CMP #10 Chips = 10?

If the maximum score of ‘‘10’’ has been reached, the DONE flag is set.

BNE SCORER
INC DONE Set done flag

Displaying the final status is accomplished by the SCORER routine.
Remember that the final status will be displayed only at the player’s
request — when any key is pressed on the keyboard. Let us wait for

203

6502 GAMES

this:

SCORER JSR GETKEY

Before displaying the status, all LEDs on the board are turned off:

LDA #0
STA MASKA
STA MASKB
STA PORTA
STA PORTB

The player’s score must now be displayed on the board. Let us read it:

LDX CHIPS
BEQ ENDER

If the player has no more chips, a branch occurs to location ENDER
and the game will be terminated. Otherwise, the score is displayed.
Unfortunately, LEDs are numbered internally ‘‘0’’ through ‘‘7,’’ even
though they are labeled externally ‘‘1’’ through ‘‘8.”’ In order to light

up the proper LED, the score must therefore first be decremented:

DEX

then a special subroutine called SETMASK is used to display the ap-

propriate LED. On entry to the SETMASK routine, it is assumed that

the accumulator contains the number of the LED to be displayed.

TXA
JSR SETMASK

Now that the proper mask has been created to display the score, we

must indicate the winner. If the player won, the three left-most LEDs

in the bottom row will be lit; if the computer won, the three right-most
LEDs will be lit. If it was a tie, no LEDs will be lit on the bottom row.

Let us see who won:

LDA WHOWON
BEQ ENDER Tie: do not change LEDs

BMI SC

204

BLACKJACK

If the player lost, a branch occurs to address SC. If, on the other

hand, the player won, the three left-most LEDs in the bottom row are

lit:

LDA #$0E Player won: set left LEDs
JMP SCO

If the player lost, the three right-most LEDs are lit:

SC LDA #$B0 Player lost: set right LEDs

Contained in the accumulator is the appropriate pattern to light the
bottom row of LEDs, and this is sent to the Games Board:

SCO ORA PORTB
STA PORTB

End of a Play

The ENDER routine is used to terminate each play. If the score was
neither ‘‘0’’ nor ‘‘10,’’ a new hand will be dealt:

ENDER JSR DELAY2
LDA DONE
BNE ENO
JMP START

Otherwise, we check the DONE flag for either a player win or a player
loss. If the player lost the game, the bottom row of LEDs is lit and the

program ends:

ENO BPL ENI1 $01: Jump on win condition
LDA #$BE Solid row of LEDs
STA PORTB
RTS Return to monitor

In the case of a player win, a blinking square is displayed and the pro-

gram is terminated:

EN1 LDA #$FF
STA MASKA

6502 GAMES

LDA #$01

STA MASKB

RTS

Subroutines

SETBIT Subroutine

The purpose of this subroutine is to create the pattern required to

light a given LED. Upon entering the subroutine, the accumulator

contains a number between ‘‘0’’ and ‘‘9’’ which specifies which LED
must be lit. Upon exiting the subroutine, the correct bit is positioned

in the accumulator. If the logical LED number was greater than ‘‘7,”’

the carry bit is set to indicate that output should occur on Port B

rather than on Port A. Additionally, Y will contain the external value

of the LED to be lit (1 to 10).
Let us examine the subroutine in detail. The LED number is saved

in index register Y:

SETBIT TAY Save logical number

It is then compared to the limit value ‘‘7.”’

CMP #8
BCC SBO

If the value was greater than 7, we subtract 8 from it:

SBC #8 Subtract if >7

Exercise 10-1: Recall that SBC requires the carry to be set. Is this the
case?

Now we can be assured that the number in the accumulator is be-

tween ‘‘Q’’ and ‘‘7.’” Let us save it in X:

SBO TAX

A bit will now be shifted into the correct position of the accumulator.

Let us first set the carry to ‘‘1’’:

SEC Prepare to roll

BLACKJACK

We clear the accumulator:

LDA #0

then we roll in the bit to the correct position:

SBLOOP ROL A
DEX
BPL SBLOOP

Note that index register X is used as a bit-counter. The accumulator is

now correctly conditioned. The external number of the LED to be lit is

equal to the initial value which was stored in the accumulator plus
one:

INY Make Y the external #

If LEDs 9 or 10 must be lit, the carry bit must be set to indicate this
fact. Port B will have to be used rather than Port A:

CPY #9 Set carry for Port B

RTS

Exercise 10-2: Compare this subroutine to the LIGHT subroutine in

the previous chapter.

Exercise 10-3: How was the carry set for LED #9 at the end?

LIGHTR Subroutine

This subroutine deals the next card to the dealer (computer). It must
obtain a random number, then make sure that this card has not

already been dealt, i.e., that it does not correspond to a card which
has already been displayed on the board. If it has not already been
displayed, the random number can be used as the value of the next

card to be dealt. A steady LED will then be lit on the board.

Let us first get a random number:

LIGHTR JSR RANDOM

It will be shown below that the RANDOM routine does not just ob-

207

6502 GAMES

tain a random number but also makes sure that it does not correspond
to a card already used. All we have to do then is position the correct
bit in the accumulator and display it. Let us use the SETBIT routine
we have just described in order to position the bit in the accumulator:

JSR SETBIT

We must determine whether Port A or Port B must be used. This is

done by testing the carry bit which has been conditioned by the SET-
BIT subroutine:

BCS LLO

We will assume that Port A must be used. The new bit will be added to

the display by ORing it into Port A:

ORA PORTA
STA PORTA

The value of the card must be restored into the accumulator. It had

been saved in the Y register by the SETBIT routine:

TYA
RTS

In case Port B is used, the sequence is identical:

LLO ORA PORTB

STA PORTB

TYA Restore value

RTS

BLINKER Subroutine

This subroutine operates exactly like LIGHTR above except that it
sets an LED flashing. Note that it contains the SETMASK subroutine

which will set the proper LED flashing and exit with a numerical value
of the LED in the accumulator:

BLINKR JSR RANDOM Get random number

SETMASK JSR SETBIT

BLACKJACK

BCS BLO Branch if Port B

ORA MASKA

STA MASKA

TYA Restore value

RTS

BLO ORA MASKB

STA MASKB

TYA

RTS

RANDOM Subroutine

This subroutine will generate a random number between ‘‘0’’ and

**9’? which has not already been used, i.e., which does not correspond
to the internal number of an LED that is already lit on the Games
Board. The value of this number will be left in the accumulator upon
exit. Let us obtain a random number:

RANDOM JSR RANDER Get 0-255 number

The RANDER subroutine is the usual random number generator
which has been described in previous chapters. As usual, we must re-
tain only a number between ‘‘0’’ and ‘‘9.’’ We will use a different
strategy here by simply rejecting any number greater than ‘‘9’’ and

asking for a new random number if this occurs:

AND #S0F

CMP #10
BCS RANDOM

Exercise 10-4: Can you suggest an alternative method for obtaining a

number between ‘0”’ and ‘‘9’’? (Hint: such a method has been described

in previous chapters.)

A random number between ‘‘0’’ and ‘‘9’’ has now been obtained.

Let us obtain the corresponding bit position which must be lit and save
it in location TEMP:

JSR SETBIT Set bit in position
STA TEMP

We will now check to see if the corresponding bit is already lit on either

209

6502 GAMES

Port A or Port B. Let us first check to see if it is Port A or Port B:

BCS RNO Determine Port A or B

Assuming that it is Port A, we must now find which LEDs in Port A
are lit. This is done by combining the patterns for the blinking and
steady LEDs, which are, respectively, in Mask A and Port A:

LDA MASKA

ORA PORTA Combine Port and Mask

Then a check is made to see whether or not the bit we want to turn on

is already on:

JMP RNI

If it is on, we must obtain a new random number between ‘‘0’’ and
ss”.

RN1 AND TEMP
BNE RANDOM

If the bit was not already on, we simply exit with the internal value of
the LED in the accumulator:

DEY
TYA
RTS

Similarly, if an LED on Port B had to be turned on, the sequence is:

RNO LDA MASKB
ORA PORTB
AND TEMP
BNE RANDOM
DEY
TYA
RTS

RANDER Subroutine

This subroutine generates a random number between ‘‘0’’ and

**255.”" It has already been described in previous chapters.

210

BLACKJACK

DELAY Subroutines

Two delay loops are used by this program: DELAY, which provides
approximately a half-second delay and DELAY2, which provides

twice this delay or approximately one second. Index registers X and Y
are each loaded with the value ‘‘FF.’’ A two-level nested loop is then

implemented:

DELAY2 JSR DELAY
DELAY LDA #$FF

TAY
DO TAX
D1 DEX

LDA #$FF
BNE D1
DEY
BNE DO
RTS

Exercise 10-5: Compute the exact duration of the DELAY subroutines.

Interrupt Handler

The interrupt routine is used to blink LEDs on the board, using
MASKA and MASKB, every time that the timer generates an inter-

rupt. No registers are changed. The operation of this routine has been

described in the preceding chapter:

PHA
LDA PORTA
EOR MASKA
STA PORTA
LDA PORTB
EOR MASKB
STA PORTB
LDA TILL
PLA
RTI

SUMMARY

This program was more complex than most, despite the simple strategy

211

6502 GAMES

used by the dealer. Most of the logical steps of the algorithm were

accompanied by sound and light effects. Note how little memory is re-

quired to play an apparently complex game.

Exercise 10-6: Note that this program assumes that the contents of

memory location RND are reasonably random at the beginning of the
game. If you would like to have a more random value in RND at the

beginning of the game, can you suggest an additional instruction to be
placed in the initialization phase of this program? (Hint: this has been
done in previous programs.)

Exercise 10-7: In the ENDER routine are the instructions “BNE

ENO” and “‘JMP START’? both needed? If they are not, under what
conditions would they be needed?

Exercise 10-8: ‘“‘Recursion’’ describes a routine which calls itself. Is

DELAY 2 recursive?

BLJACK PROGRAM
= $G6R84

SAG67E
SA67F
$AO0E
SA0OB
$A004
$AO00S
$A003

$A002
$aAool
$A000

$C2
tC3
$C1

$Co
$C4
$C3

$Cé
$C7
scD

$100
$200

3 a ae
ACCESS
INTVECL
INTVECH
IER
ACK
TALe
TiCH
DDRA
DDRB
PORTA
PORTB

MASKA
MASKB
CHIPS

DONE
PHANE!
CHAND
TEMP
RND
WHOWON
GETKEY

Ht nen waht wnt #R H WH oo fh

’

sBLACKJACK GAME? USES A ‘DECK’ OF 10 CARDS. CARDS DEALT
#TO THE PLAYER ARE FLASHING LED’S. ONES IN THE COM-
sPUTER‘’S HAND ARE STEADY. CARDS ARE DEALT HY A RANIIOM

*NUMBER GENERATOR WHICH IS NON-REPETITVE. NUMERICAL.
*TOTALS ARE KEFT IN ZERO PAGE LOCATIONS ‘PHAND’ AND
¢°CHAND’. FORTA AND PORTH ARE THE OUTFUT FORTS TO THE
sLET) DISPLAY. MASKA AND MASKB ARE USED BY THE INTERRUPT
PROUTINE TO FLASH SELECTED LED’S. ‘DONE’ AND
P’WHOWON’ ARE STATUS FLAGS TO DETERMINE END OF GAME AND
WHO WON THE CURRENT HAND.

Fig. 10.12: Blackjack Program

212

0200:
02033
02055
02083
020A;
020D:
O20F ?
02123
0214?
02173
02193
021C3
O21E:
02213
022413
02253
02283
022B;
022C? 4
O22E!
02303
02323

02343
0236:
0238?

02383
O23E?
02403
02438
02453
02483

024A3
024D3
O24F 3
02513
02533
02553

0258!
025B3
025C3
O2S5E3
02603
02623
026423

026738
026A!
026C3
O26E$
02703
02733

85
85
8D
8D
85
20
85
20
85

20
c?
FO
Cc?
FO
4c

20
18
65
83
Cc?
90
4c

20
AS
c9
BO
20
18

8B

A6

A6

Ao

AO

AO

Ao
AO

AO
AO

AO

Ao

03

02

01

03

0?

03

02

BLACKJACK

‘ PROGRAM STARTS BY INITIALIZING THE TIMER AND THE
SINTERRUPT VECTOR.
sAND THE STATUS FLAGS ARE CLEARED.
’

BLJACK JSR
LDA
STA
LDA
STA
(.DA
STA
LDA
STA
LDA
STA
LDA
STA
STA
cLI
STA
STA
CLD
LDA
STA
LDA
STA

sNEW HANDS

access
$tEA
INTVECL
$803
INTVECH
$67F
TER
#300
IER
#940
ACR
#$FF
TILL
TiCcH

DDRA
DDRB

05
CHIPS
$0
DONE

THE OUTPUT PORTS ARE TURNED ON,»

SUNPROTECT SYSTEM MEMORY
$LOAD LOW INTERUPT VECTOR

SLOAD HIGH INTERUPT VECTOR

SCLEAR TIMER INTERUFT ENABLE

sENABLE TIMER 1 INTERUPT

jPUT TIMER 1 IN FREE RUN MODE

*SET LOW LATCH ON TIMER 1}
#SET HIGH LATCH & START TIMER
sENABLE PROCESSOR INTERUPTS
SSET LED PORTS TO OUTPUTS

sSET PLAYER’S SCORE TO 5

sCLEAR DONE FLAG

§
DISPLAY IS CLEARED» BOTH HANDS ARE

SARE SET WITH START VALUES+ AND THE CORRESPONDING
6LED’S ARE SET.
$
START STA

STA
STA

STA
STA
JSR
STA
JSR
STA

#KEY INPUT?
sALL OTHERS
UD
ASK JSR

CMP
BEa
CHP
BEQ
JMP

HITPLR J&R
CLC
ADC
STA
CMP
BCC
JMP

DEALER JSR
LBA
CMP
BCS
JSR
cLc

MASKA
MASKB
PORTA
PORTB
WHOWON
BLINKR
PHAND
LIGHTR
CHAND

ICLEAR BLINKER MASKS IT IS
JASSUMED THAT ACC. CONTAINS ZERO
sCLEAR LED‘S

sCLEAR FLAG FOR HAND
ISET RANDOM BLINKING LED
SSTORE PLAYER’S HAND
§SET A STEADY RANDOM LED
SSTORE COMPUTER’S HAND
j

‘A’ IS A HITs °C’ IS COMPUTER’ TURN
ARE IGNORED

GETKEY
$30A
HITPLR
@s0C
DEALER
ASK

BLINKR

PHAND
PHAND
#14
ASK
LOSE

DELAY
CHAND
$10
WINNER
CLIGHTR

sGET A KEY INPUT
sDOES PLAYER WANT A HIT?
9YES» BRANCH
‘IS IT ‘COMP TURN’ KEY?
sYES
$BAD KEY* TRY AGAIN
3
)SET A RANDOM LED

‘TALLY PLAYER’S HAND

SCHECK HAND
bIS <=13» OK
SBUSTED»s GO TO LOSE ROUTINE
9
SDELAY EXECUTION OF ROUTINE
41S COMP OVER HOUSE LIMIT?

SYES» FIGURE WINNER
SNO*SET RANDOM LED

Fig. 10.12: Blackieck Program (Continued)

213

6502 GAMES

0274: 65 CS ANC CHAND STALLY COMPUTER‘’S HAND
02762 6S CS STA CHAND
0278: C9 OE CMP #14 §IS HAND <=137
027A: 90 EB BCC DEALER ¢YES» ANOTHER HIT?
027C: 4€ 92 02 JMP WIN ‘BUSTED? PLAYER WINS

9

sFIGURE WINNER! ‘WIN’ AND ‘LOSE’ TALLY SCORE,»
sAND DETERMINE IF THE PLAYER HAS WON OR LOST
STHE GAME. THE ‘WHOWON’ FLAG IS SET TO SHOW WHO
bWON THE PARTICULAR HAND. IF THE HANDS ARE EQUAL,»
SNOTHING IS AFFECTED.
3

O27F% AS CS WINNER LDA CHAND SCOMPARE HANDS
0281: CS C4 CMP PHAND
02833 FO 19 BEQ SCORER SARE EQUAL» NO CHANGE
02853 90 OB BCC WIN PPLAYER’S HANT GREATER
0287: Cé CD LOSE DEC WHOWON ‘LOSE ROUTINE
0289: Cé C1 DEC CHIFS sTALLY SCORE
O2GB? DO 11 BNE SCORER *IS PLAYER BROKE?
028D: C4 CO DEC BONE SYESe SET END OF GAME FLAG? LOSE
O28F: 4€C 9E 02 JMP SCORER
0292: E46 CD WIN INC WHOWON PWIN ROUTINE
02943 E46 C1 INC CHIPS STALLY SCORE
02963 AS C1 LDA CHIPS sADD WINNINGS
0298: C9 OA CMP @10 6IF CHIPS=10+ SET END OF GAME FLAG
029A: DO O02 BNE SCORER
O29C: Eé CO INC DONE *SET END OF GAME FLAG: WIN

6
sDISPLAY SCORE BY LIGHTING 1 OF 10 LED’S. THE
#BOTTOM ROW OF LED’S IS SET TO SHOW WHETHER THE FLAYER
7OR THE COMPUTER WON THE HAND. THE DISPLAY IS HELD
*THUS» THEN A TEST IS MADE FOR AN END OF GAME CONDITION
$IF SUCH A CONDITION EXISTS: THE LED’S ARE
#SET ACCORDINGLY» AND THE PROGRAM IS TERMINATED.
*IT IS ASSUMED THAT THE ADDRESS OF THE MONITOR IS
50ON THE STACK.
id

O29E? 20 00 01 SCORER JSR GETKEY pHOLD LAST STANDINGS OF CARDS
O2A13 AP 00 LBA ¢0 PCLEAR LED’‘S
O2A3;3 O85 C2 STA MASKA
O2AS: 85 C3 STA MASKB
O2A7t 8D 01 AO STA PORTA
O2AA: BD 00 AO STA PORTB
O2AD?3 AS Ci LDX CHIPS POISPLAY NUMBER OF CHIPS
O2AF: FO 18 BEQ ENDER bADJUST SO SUBROUTINE SETS
O02B13 CA DEX ‘THE RIGHT LED
O2823 BA TXA
O2B3? 20 12 03 JSR SETHASK

®

0286: AS CD LDA WHOWON sSEE WHO WON HAND
0288: FO OF BEG ENDER sTIE- DO NOT AFFECT LED‘S
O2BA: 30 O05 BMI SC
O2BC: AY OE LDA #$0E SPLAYER WON- SET THREE LEFT LED‘S
O2BE: 4C C3 02 JMF SCO .
02C13 AD BO sc LDA #$B0 SPLAYER LOST- SET THREE RIGHT LED’
02C3: OD 00 AO SCO ORA PORTB sSET LED PORT
02C4é: 8D 00 AO STA PORTB
O02C9% 20 SA O03 ENDER JSR DELAY2 sHOLD DISPLAY

)
O02CC% AS CO LDA DONE sCHECK FOR END OF GAME CONDITION
Q2CEt DO O03 BNE ENO
O2D03 4C 34 02 JMP START sZEROr START NEW HAND
O2D3? 10 06 ENO BPL EN1 $601» WIN CONDITION
O2DS53 AY RE LDA #$BE sSET SOLID ROW LEDS
02D7;3 8D 00 Ao STA PORTB
O2DA: 60 RTS SRETURN TO MONITOR

Fig. 10.12: Blackjack Program (Continued)

214

BLACKJACK

O2DB? AS FF EN1 LDA O$FF sSET RLUNKING SQUARE
O2DD: 85 C2 STA MASKA
O2DF% Ag O1 LDA #$01
O2E1? 85 C3 STA MASKB
O2E3: 60 RTS RETURN TO MONITOR ;

j
;
$ ~-~SUBROUTINES--
‘

5
sSET A BIT IN ACCUMULATOR! ENTER WITH A LOGICAL VALUE»
sI.E. O-9- IN ACC. EXITS WITH A NUMERICAL VALUEC1-10)
§TN Yr AND THE BIT POSTTTANEN IN ACC. THE CARRY FLAG
J

O2E4! AS SETBIT TAY sSAVE LOGICAL NUMBER
O2ES: C9 08 CMP #6 *BRACKET O-7 VALUE
O2E7:3 90 02 BCC SBO
O2E9: EF 08 SAC #8 §ee SUBTRACT IF >7
O2EBS AA SBO TAX $SET INDEX REG
O2EC; 38 SEC SPREPARE BIT TO ROLL
O2ED? A? 00 LDA #0
O2ZEF: 2A SBLOOP ROL A SMOVE BIT TO POSITION
O2F0? CA DEX
O2F1: 10 FC BPL SBLOOP
O2F3! C8 INY SHAKE Y NUMERICAL? NOT LOGICAL
O2F 43 CO 09 CPY #9 SET CARRY. FOR PORTBy C=1
O2F 6: 60 RTS

§
sLIGHTR! SETS A RANDOM STEADY LED THAT HAS NOT BEEN
sPREVIOUSLY SET. IT GETS A RANDOM NUMBER» THEN SETS
sTHE BIT IN THE PROPER PORT. THE NUMERICAL VALUE OF
‘BIT SET IS IN THE ACCUMULATOR ON EXIT.
‘

O2F7: 20 23 03 LIGHTR JSR RANDOM ‘GET RANDOM NUMBER
O2FA: 20 E4 02 JSR SETBIT ‘%GET BIT POSITIONED IN ACC.
O2FD: BO 08 BCS LLO BRANCH IF PORT B DESIGNATED
O2FF: OD 01 AO ORA PORTA #SET LED IN PORTA
0302! BD 01 AO STA PORTA
0305! 98 TYA *RESTORE NUMERICAL VALUE
0306: 60 RTS
03073 OD 00 AO LLO ORA PORTB *SET LED IN PORTB
030A! 8D 00 AO STA PORTB
030D: 98 TYA *RESTORE NUMERICAL VALUE
O30E! 60 RTS

i

sBLINKR? SETS A RANDOM FLASHING LED THAT HAS NOT BEEN
SPREVIOUSLY SET. THE NUMERICAL VALUE OF THE LED IS IN
‘THE ACCUMULATOR ON EXIT. IT GETS A RANDOM NUMBER?
STHEN DROPS INTO THE SETMASK ROUTINE TO FLASH THE
*PROPER LED.
,
sSETMASK! ENTER WITH A LOGICAL VALUE» AND ROUTINE
sSETS THE PROPER FLASHING LED. EXITS WITH NUMERICAL
SVALUE OF LED SET IN ACCUMULATOR
$

O30F? 20 23 03 BLINKR JSR RANDOM sGET RANDOM NUMBER
03123 20 E4 02 SETMASK JSR SETBIT
0315? BO 06 BCS BLO #BRANCH IF PORTB DESIGNATED
03173 05 C2 ORA MASKA s5SET MASKA
Q03193 8S C2 STA MASKA
031B: 98 TYA SRESTORE NUMERICAL VALUE
O31C3 460 RTS
031B? OS C3 BIO ORA MASKB §SET MASKB
O31iF3 85 C3 STA MASKB

Fig. 10.12: Blackjack Program (Continued)

215

6502 GAMES

03213
03223

03233
03261
03283
O32A3
032C?
O32F t
03323
03332
03358
0338:
O33B3
O33D3
03403
03423
03443
0345:
03463

03473
03483
03443
O34C3
O34E;
03503
03328
03543
03563
03575
03595

035A;
O35D3
O35F :
034603
03613
03623
03643
03663
0367:
03693

OSEA3
O3EB?

216

98
60

20
29
Cc?
BO
20
85
BO
AS
on
4c
AS
oD
25
BO
88
98
60

48

47
OF
OA
F?
E4
cé
08
C2
01
40
c3
00
cé
BF

ce
CR
cc
C7
04
C7
C6

F9

SD
FF

FF
FB

F7

o3

03

AD 01 AO

TYA
RTS

5
SGENERATES A RANDOM NUMBER FROM 0. TO 9 THAT IS NOT
‘THE NUMBER OF AN LED ALREADY SET. RESULT IS IN ACC ON
sEXIT.
$
RANDOM JSR RANDER $GET 0-255 NUMBER

AND $$0F ¢MASK HIGH NIBBLE
CMP $10 *BRACKET 0-9
BCS RANDOM
JSR SETBIT §SET BIT IN POSITION
STA TEMP SSAVE IT
BCS RNO SDETERMINE PORT A OR B
LDA MASKA ICOMBINE PORT AND MASK
ORA PORTA
IMP RNI

RNO LDA MASKB SCOMBINE PORT AND MASK
ORA PORTB

RN1 AND TEMP sLOOK AT SPECIFIC BIT
BNE RANDOM $IF BIT SET ALREADY» TRY AGAIN
DEY sMAKE Y LOGICAL
TYA sEXIT WITH VALUE IN ACCUMULATOR
RTS

’

sGENERATES A RANDOM NUMBER FROM 0-255. USES NUMBERS
SA ,BeCeDreE>F STORED AS RND THROUGH RND+S. ADDS BtE+F +1
SAND PUTS RESULT IN Ar THEN SHIFTS A TO Be B TO Ce ETC.
SRANDOM NUMBER IS IN ACCUMULATOR ON EXIT.
;
RANDER SEC ‘CARRY ADDS 1

LDA RND+1 sADD BoDoF
ADC RNDtA
ADC RND+S
STA RND
LOX $4 pSHIFT NUMBERS DOWN

RDLOOP LDA RNDsX
STA RND+1+X
DEX
BPL RDLOOF
RTS

’
sCELAY LOOPS DELAY2 [S SIMPLY TWICE THE Timt. DELAY
sOF DELAY. GIVEN LOOF [S AFFROX. oh SEO. WELAY.
9

DELAY2 JSR DELAY
DELAY LDA #$FF sSET VALUE FOR 1.00PS

TAY
DO TAX
D1 nex

LDA SSFF
BNE D1
DEY

BNE DO
RTS

y

La

sINTERRUPT ROUTINE: EXCLUSIVE OR’S THE OUTPUT
sPORTS WITH THE CORRESPONDING BILINKER MASKS EVERY
STIME THE TIMER TIMES OUT TO FLASH SELECTED LED’S.
§NO REGISTERS ARE CHANGED, AND THE INTERRUFT
§FLAG IS CLEARED BEFORE EXIT.

,

ry =¢03EA

PHA §SAVE ACCUMULATOR

LDA PORTA SCOMPLEMENT FORTS WITH MASKS

Fig. 10.12: Blackjack Program (Continued)

BLACKJACK

OSEE:
O3FO:

O3F3:
O3F 6!
O3F 83

O3FB% sCLPAR TIMER INTURKUPT BET
O3FE: RESTORED ACCUMUL ON TUR
OSFF

SYMBOL TABLE:
ACCESS INTVECL AG7t. TATVECH Aé/t
TER ACR AOOnh Tac. A004
T1iCH DDRA AOGS PLRR ADD?

PORTA PORTB A000 AASKA 900?

MNASKB CHIPS 00! TONE 00ro
PHAND CHAND 00CS TEMF 000d

RND WHOWON ooch GETKEY 0100
BLJACK START 0234 ASK 024A

NEALER 0267 WINNT O27F

WIN 0292 SUORER O29E
Sco 0204 ENT ts oecy
ENt O?Lk StETBIS OPE 4

SBLOOP OOFL bruh ODF?

BLINKR O30F St TMASK 0.412?
RANDOM OFA KING O43

RANDER 034/ ROL Ur agny
DELAY Oss no 0.540

Fig. 10.12: Blackjack Program (Continued)

217

11

TIC-TAC-TOE

THE RULES

Tic-Tac-Toe is played on a three-by-three sectioned square. An ‘‘O”’
symbol will be used to represent a move by the player and an ‘‘X’”’ will

be used to display a move by the computer. Each player moves in turn,

and on every turn each player strategically places his or her symbol in

a chosen section of the board. The first player to line up three symbols

in a row (either horizontally, vertically or diagonally) is the winner.

An example of the eight possible winning combinations is shown in

Figure 11.1. Using our LED display, a continuously lit LED will be
used to display an ‘‘X,’’ i.e., a computer move. A blinking LED will

be used to display an ‘‘O,”’ i.e., the player’s move.

Either the player or the computer may make the first move. If the
player decides to move first, he or she must press key ‘‘F.’’ If the com-

puter is to move first, any other key should be pressed and the com-

puter will start the game. At the end of each game a new game will
start automatically. The computer is equipped with a variable IQ (in-

telligence) level ranging from one to fifteen. Every time the computer
wins, its IQ level is reduced one unit. Every time the player wins, the

computer’s IQ level is increased by one unit. This way, every player

has a chance to win. A high tone is sounded every time the player wins

and a low tone is sounded every time that the player loses.

A TYPICAL GAME

The display is initially blank. We will let the computer start. We do
this by pressing any key but the key ‘‘F.”’ (If we press key ‘‘F,’’ then
the player must go first.) Let us begin by pressing ‘‘0.’’ After a short

pause the computer responds with a ‘‘chirp’’ and makes its move. (See

Figure 11.2.)

218

TIC-TAC-TOE

O O|O;O

O

Fig. 11.1: Tic-Tac-Toe Winning Combinations For a Player

Fig. 11.2: First Computer Move

An ‘‘X’’ is used to denote the computer’s moves. ‘‘O’’ will be used
to denote our moves. Blank spaces are used to show unlit LEDs. Let

we = 9

6502 GAMES

us move to the center and occupy position 5. (See Figure 11.3.) We

press key ‘‘5.”? A moment later, LED #1 lights up and a chirp is heard

that indicates it is our turn to play. The board is shown in Figure 11.4,

X

Fig. 11.3: Our First Move

X

X

Fig. 11.4: Second Computer Move

It is now our turn and we should block the computer to prevent it

from completing a winning column: let us occupy position 4. We press

key ‘‘4.”’ A moment later, LED #6 lights up and a chirp is heard. The

situation is shown in Figure 11.5.

X

O X

X

Fig. 11.5: After the Computer's Third Move

220

TIC-TAC-TOE

We play in position 2. The computer reacts by playing in position 8.
This is shown in Figure 11.6. We prevent the computer from com-
pleting a winning row by playing in position 9. The computer responds
by occupying position 3. This is shown in Figure 11.7. This is a draw
situation. Nobody wins, all the LEDs on the board blink for a mo-

ment, and then the board goes blank. We can start another game.

Fig. 11.6: After the Computer's fourth Move

X|O|X

O X

X|XjO
(DRAW)

Fig. 11.7: After the Computer's Fifth Move

Another Game

This time we are going to start and, hopefully, win! We press ‘‘F’’

to start the game. A chirp is heard, confirming that it is our turn to
play. We play in position 5. The computer responds by occupying
square 3. The chirp is heard, announcing that we can play again. The

situation is shown in Figure 11.8. We play in position 4. The computer

responds by occupying square 6. This is shown in Figure 11.9. This
time we must block the computer from completing the column on the

221

6502 GAMES

Fig. 11.86: Move 1

Fig. 11.9: Move 2

Fig. 11.10: Meve 3

right and we move into position 9. The computer responds by moving

to square 1, thus preventing us from completing a diagonal. This
situation is shown in Figure 11.10. We must prevent the computer
from completing a winning row on top; therefore we occupy position

2. The computer responds by occupying position 8. This is shown in

Figure 11.11. We make our final move to square 7 to finish the game.

This is a draw: we did not beat the computer.

222

TIC-TAC-TOE

X|O]} X

O X

X|O

Pig. 11.11: Move 4

Since the computer was ‘‘smart enough’’ to move into a diagonal

position after we occupied the center position, we did not win. Note: if

we keep trying, at some point the computer will play one of the side

positions (2, 4, 6, or 8) rather than one of the corners and we will then

have our chance to win. Here is an example.

We move to the center. The computer replies by moving into posi-

tion 6. The situation is shown in Figure 11.12. We move to square 1;

the computer moves to square 9. This is shown in Figure 11.13. We

Fig. 11.12: Move 1

O

X

X

Fig. 11.13: Move 2

223

6502 GAMES

move to square 3; the computer moves to square 7. This is shown in
Figure 11.14. This time we make the winning move by playing into

square 2. The situation is shown in Figure 11.15. Note that if we start
playing and if we play well, the result will be either a draw or a win.

With Tic-Tac-Toe, the player who starts the game ‘cannot lose if he or

she makes no mistakes.

Fig. 11.14: Move 3

O;O;O

X

X X

Fig. 11.15: “We Win!"

THE ALGORITHM

The algorithm for the Tic-Tac-Toe program is the most complex of

those we have had to devise so far. It belongs to the domain of so-

called ‘‘artificial intelligence.’’ This is a term used to denote the fact
that the functions performed by the program duplicate the mental ac-
tivity commonly called ‘‘intelligence.’’ Designing a good algorithm

for this game in a small amount of memory space is not a trivial prob-
lem. Historically, many algorithms have been proposed, and more can

be found. Here, we will examine two strategies in detail, and then

select and implement one of them. Additional exercises will suggest

other possible strategies.

224

TIC-TAC-TOE

Strategy to Decide the Next Move

A number of strategies may be used to determine the next move to

be made by the computer. The most straightforward approach would

be to store all possible patterns and, the best response in each case.

This is the best method to use from a mathematical point of view as it

guarantees that the best possible move will be made every time. It is

also a practical approach because the number of combinations on a 3

x 3 board is limited. However, since we have already learned to do

table lookups for other games, such an approach would not teach us

as much about programming. It might also not be considered ‘‘fair.”’
We will, therefore, investigate other methods applicable to a wider

number of games, or to a larger board.
Many strategies can be proposed. For example, it is possible to con-

sider a heuristic strategy in which the computer learns by doing. In
other words, the computer becomes a better player as it plays more

games and learns from the mistakes it makes. With this strategy the
moves made by the computer are random at the beginning of the

game. However, provided that a sufficient amount of memory is

available, the computer remembers every move that it has made. If it

is led into a losing situation, the moves leading to it are thrown out by
the computer as misjudged moves, and they will not be used again in

that sequence. With time and a reasonable ‘‘learning’’ algorithm this
approach will result in the construction of decision tables. However,

this approach assumes that a very large amount of memory is

available. This is not the case here. We want to design a program
which will fit into 1K of memory. Let us look at another approach.

Another basic approach consists of evaluating the board after each

move. The board should be examined from two standpoints: first, if

there are two ‘‘O’’s in a row, it is important to block them unless a win

can be achieved with the current move. Also, the win potential of

every board configuration should be examined each time: for exam-

ple, if two ‘‘X’’s are in a row, then the program must make a move in

order to complete the row for a win. Naturally these two situations are

easy to detect. The real problem lies in evaluating the potential of
every square on the board in every situation.

An Analytical Algorithm

At this point, we will show the process used to design an algorithm
along very general guidelines. After that, as we discover the weakness-

es of the algorithm, we will improve upon it. This will serve as an ex-

225

6502 GAMES

ample of a possible approach to problem-solving in a game of
Strategy.

General Concept

The basic concept is to evaluate the potential of every square on the

board from two standpoints: ‘‘win’’ and ‘‘threat.’’ The win potential
corresponds to the expectation of winning by playing into a particular
square. The threat potential is the win potential for the opponent.
We must first devise a way to assign a numerical value to the com-

binations of ‘‘O’’s and ‘‘X’’s on the board. This must be done so that
we can compute the strategic value, or ‘‘potential,’’ of a given square.

Value Computation

For each row (or column or diagonal), four possible configurations
may occur — that is, if we exclude the case in which all three positions

are already taken and we cannot play in a row. These configurations
are shown in Figure 11.16. Situation ‘‘A’’ corresponds to the case in

which all three squares are empty. Clearly, the situation has some
possibilities and we will start by assigning the value ‘‘one’’ to each

square in that case. The next case is shown in row ‘‘B’’ of Figure
11.16; it corresponds to the situation in which there is already an ‘‘X”’
in that row. If we were to place a second ‘‘X”’ in that row, we would

be very close to a win. This is a desirable situation that has greater
value than the preceding one. Let us add ‘‘one’’ to the value of each
free square because of the presence of the ‘‘X’’; the value of each
square in that instance will be ‘‘two.’’

Let us now consider case ‘‘C’’ in Figure 11.16, in which we have one
‘*X’’ and one ‘‘O.”’ The configuration has no value since we will never
be able to win in that particular row. The presence of an ‘‘O’’ brings

the value of the remaining square down to ‘‘zero.”’

Finally, let us examine the situation of row ‘‘D’’ in Figure 11.16,

where there are already two ‘‘X’’s. Clearly, this is a winning situation

and it should have the highest value. Let us give it the value ‘‘three.”’
The next concept is that each square on the board belongs to a row,

a column, and possibly a diagnoal. Each square should, therefore, be

evaluated in two or three directions. We will do this and then we will

total the potentials in every direction. For convenience, we will use an
evaluation grid as shown in Figure 11.17. Every square in this grid has

been divided into four smaller ones. These internal squares are used to
display the potential of each square in each direction. The square

226

) LL ot

CT)

Fig. 11.16: The Six Combinations

Fig. 11.17: Evaluation Grid

TIC-TAC-TOE

227

6502 GAMES

labeled ‘‘H’’ in Figure 11.17 will be used to evaluate the horizontal
row potential. ‘‘V’’ will be used for the vertical column potential.
‘“*—D’’ will be used for the diagonal potential. ‘‘T’’ will be used for the

total of the previous three squares. Note that there is no diagonal
value shown for four of the squares on the board. This is because they

are not placed on diagonals. Also note that the center square has two

diagonal values since it is at the intersection of two diagonals.

Once our algorithm has computed the total threat and win poten-

tials for each square, it must then decide on the best square in which to

move. The obvious solution is to move to the square having the

highest win or threat potential.

Now we shall test the value of our algorithm on some real examples.
We will look at some typical board configurations and evaluate them
by using our algorithms to check if the moves it generates make sense.

A Test of the Initial Algorithm

Let us look at the situation in Figure 11.18. It is the player’s turn
(‘‘O’’) to play. We will evaluate the board from two standpoints:

potential for ‘‘X’’ and threat from ‘‘O.’’ We will then select the

square that has the highest total in each of the two grids generated and

make our move there.

O

O

Fig. 11.18: Test Case 1

Let us first complete the evaluation grid for the first row. Since
there is an ‘‘O’’ in the first row, the horizontal potential for the player
is zero (refer to row C, Figure 11.16 and look up the value of this con-

figuration). This is indicated in Figure 11.19. Let us now look at row

2: it contains two blank squares and an ‘‘X.’’ Referring to line B of
Figure 11.16, the corresponding value is ‘‘two.’’ It is entered at the ap-
propriate location in the grid, as shown in Figure 11.20. Finally, the

228

TIC-TAC-TOE

Fig. 11.20: Evaluating the Horizontal Potential

third row is examined, and since there is an ‘‘O”’ in it, the row poten-

tial is ‘‘zero,’’ as indicated in Figure 11.20. The process is then repeat-

ed for the three columns. The result is indicated in Figure 11.21.

The value of each square of column | is ‘‘zero,’’ since there is an

**O”’ at the bottom. Similarly, for column 2 the value is also ‘‘zero,”’
and for column 3 it is ‘‘one’’ for each square, since all three squares
are open (blank). (Refer to line A in Figure 11.16.)

The process is repeated for each of the two diagonals and the results
are shown in Figure 11.22. Finally, the total is computed for each

square. The results are shown in Figure 11.23. Remember that the
total appears in the bottom right-hand corner of each square.

It can be seen that at this point, two squares (indicated by an arrow
in Figure 11.23) have the highest total, ‘‘three.’’ This indicates where

229

6502 GAMES

HIGHEST
SCORE

Fig. 11.23: The Final Potential

TIC-TAC-TOE

we should play. But wait! We have not yet examined the threat, i.e.,

the potential from our opponent ‘‘O.”’
We will now evaluate the threat posed by ‘‘O’’ by again computing

the potential of each square on the board, but this time from ‘‘O’s’’

standpoint. The position values for the six meaningful combinations

are indicated in Figure 11.24. When we apply this strategy to our

evaluation grid, we obtain the results shown in Figure 11.25. The

square with the highest score is the one indicated by the arrow. It

scores ‘‘four,’’ which is higher than the two previous squares that

were determined when we evaluated the potential for ‘‘X.”’

Using our algorithm, we decide that the move we should make is to

play into square 1, as indicated in Figure 11.26.

Let us verify whether this was indeed the appropriate move, assum-

ing that each player makes the best possible move. A continuation of

the game is shown in Figure 11.27. It results in a draw.

VALUE 1

CD) we
([ToTx] »
TxD] we

VALUE 2

Fig. 11.24: Evaluation for ’O"

231

6502 GAMES

HIGHEST
SCORE :

Fig. 11.25: Potential Evaluation

X| O

O
Fig. 11.26: Move for Highest Score

xX

O (DRAW)

O

Fig. 11.27: Finishing the Game

232

TIC-TAC-TOE

Let us now examine what would have happened if we had not

evaluated the threat and played only according to the highest potential

for ‘‘X’’ as shown in Figure 11.23. This alternative ending for the
game is shown in Figure 11.28. This game also results in a draw. In

this instance, then, the square with the value ‘‘four’’ did not truly

have a higher strategic value than the one with the value ‘‘three.”’

However, our algorithm worked.

Let us now test our algorithm under more difficult circumstances.

O O X}O

O| X|X| }O;X| xX (DRAW)

O O| |O|X]O

Fig. 11.28: An Alternative Ending for the Game

Improving the Algorithm

In order to test our algorithm, we should consider clear-cut situa-

tions in which there is one move that is best. To begin, we will assume
that it is the player’s turn. The first test situation, evaluated for ‘‘X,’’

is illustrated in Figure 11.29, and the potential for ‘‘O’’ is shown in
Figure 11.30. This time we have a problem. The highest overall poten-

tial is ‘“‘four’’ for ‘‘X’’ in the lower right corner square. If the com-
puter moved there, however, the player would win! At this point our

algorithm should be refined.
We should note that whenever there are already two ‘‘X’’s in a row

the configuration should result in a very high potential for the third

square. We should therefore assign it a value of ‘‘five’’ rather than

233

6502 GAMES

Fig. 11.29: Test #1 Evaluated for "X"

Fig. 11.30: Test #1 Evaluated for "O"

ae wi = > =

Pig. 11.31: Test #2

TIC-TAC-TOE

‘‘three’’ to ensure that we move there automatically. We have thereby

identified and made our first improvement to the algorithm.

The second test situation is shown in Figure 11.31. Our algorithm

assigns the value ‘‘six’’ to the lower right corner square (as indicated

by an arrow in Figure 11.31). This is clearly the correct move. It
works! Now, let us test the improvement we have made.

The First Move

When the board is empty, our algorithm must decide which square

should be occupied first. Let us examine what this algorithm does.

(The results are shown in Figure 11.32.) The algorithm always chooses

to move to the center. This is reasonable. It could be shown, however,

that it is not indispensable in the game of Tic-Tac-Toe. In fact, having

the computer always move to the center makes it appear ‘‘boring,’’ or

simply ‘‘lacking imagination.’’ Something will need to be done about
this. This will be shown in the final implementation.

Fig. 11.32: Moving to the Center

Another Test

Let us try one more simple situation. This situation is shown in

Figure 11.33. Again, the recommended move is a reasonable one. The

reverse situation is shown in Figure 11.34 and does, indeed, lead to a

certain win. So far, our algorithm seems to work. Let us try a new

trap.

A Trap

The situation is shown in Figure 11.35. It is now ‘‘X’s’’ turn to play.
Using our algorithm, we will move into one of the two squares having

235

6502 GAMES

Fig. 11.34: A Reverse Situation

the total of ‘‘four.’’ This time, however, such a move would be an er-

ror! Assuming such a move, the end of the game is shown in Figure

11.36. It can be seen that ‘‘O”’ wins. The move by ‘‘X’’ was an incor-

rect choice if there was a way to get at least a draw. The correct move

that would lead to a draw is shown in Figure 11.37. This time, our

algorithm has failed. Following is a simple analysis of the cause: it

moved to a square position of value ‘‘four’’ corresponding to a high
level of threat by ‘‘O,’’ but left another square with an equal threat

value unprotected (see Figure 11.35). Basically, this means that if ‘‘O”’

is left free to move in a square whose threat potential is equal to

‘*four,’’ it will probably win. In other words, whenever the threat

posed by ‘‘O”’ reaches a certain threshold, the algorithm should con-

sider alternative strategies. In this instance, the strategy should be to

place an ‘‘X’’ in a square that is horizontally or vertically adjacent to

236

TIC-TAC-TOE

Pig. 11.33: Trap 3

O xX

ofx
O;X}O O|X|O

Fig. 11.36: End of Game

the first one in order to create an imminent ‘“‘lose threat’’ for ‘‘O,”’

and thereby force ‘‘O”’ to play into the desired square. In short, this
means that the algorithm should analyze the situation further or better
still, analyze the situation one level deeper, i.e., one turn ahead. This

is called two-ply analysis.

237

6502 GAMES

O O

O| x xX O|xX|x (DRAW)

xX O

Pig. 11.37: A Correct Move

In conclusion, our algorithm is simple and generally satisfactory.

However, in at least one instance, Trap 3 in Figure 11.35, it fails. We
must therefore, include either a special consideration for this case, or

we must analyze the situation one turn ahead every time and look at
what would happen if we were to place an ‘‘X’’ or an ‘‘O”’ in every

one of the available squares. The latter is actually the ‘‘cleanest’’ solu-
tion. Ideally, we should analyze all of the possible sequences until an

end-of-game situation is obtained. The programming complexity, the

storage required, and the time that would be needed to analyze the

situations would, however, make this approach impractical. In a more

complex game, such as chess or checkers, it would be necessary to use

such a multi-ply analysis. For example, using only a two-ply analysis

technique to design a simple chess game would not make it very in-

teresting or very good. It would be necessary to use three-ply, four-ply

or even more detailed analysis in order to make the game challenging.

If it is not possible to push the evaluation to a sufficient depth, the

algorithm must be equipped with specific procedures that can detect
special cases. This is the case with ad hoc programming, which can

be considered ‘‘unclean’’ but actually results in a much shorter pro-

gram and/or a lesser memory requirement. In other words, if the

special situations in a game can be recognized in advance, then it is

238

TIC-TAC-TOE

possible to write a special-purpose program which will take these
situations into account. The resulting program will usually be shorter
than the completely general one. This type of program, however,

can only be constructed if the programmer has an excellent initial
understanding of the game.

In the game of Tic-Tac-Toe, the number of combinations is limited.

This makes it possible to examine all possible combinations that can
be played on the board and to devise a procedure that takes all of these

cases into account. Since we are primarily limited here by the amount

of available memory, we will construct an ad hoc algorithm that fits

within IK of memory. Alternative techniques will be proposed as
exercises.

The Ad Hoc Algorithm

This algorithm assigns a value to each square on the board depend-
ing on who has played there. Initially a value of ‘‘zero’’ is assigned to

each square on the board. Every time the player occupies a square,

however, the corresponding value of the square becomes ‘‘one.’’

Every time the computer occupies a square, the value of that square

becomes ‘‘four.’’ This is illustrated in Figure 11.38. The value of

‘*four’’ has been chosen so that it is possible to know the combination

of moves in that row just by looking at the total of every row. For ex-

ample, if a row consists of a move by the player and two empty

squares, its ‘‘row-sum’’ is ‘‘one.”’ If the player has played twice, its

row-sum is ‘‘two.’’ If the player has played three times, the row-sum is

“‘three.’’ Since ‘‘three’’ is the highest total that can be achieved in

rows where only the player has played, the value of ‘‘four’’ has been

assigned to a computer move. For example, if the value of a row is
‘*five,’’ we know that there is one computer move (‘‘X’’), one player

move (‘‘Q’’), and one empty square. The six possible patterns are

shown in Figure 11.38. It can readily be seen that the row-sum values

of ‘‘two’’ or ‘‘eight’’ are winning situations. A row-sum value of
**five’’ is a blocked position, i.e., one that has no value for the player.

If a win situation is not possible, then the best potentials are represent-

ed by either a value of ‘‘one’’ or a value of ‘‘four’’ depending on

whose turn it is to play.

The algorithm is based on such observations. It will first look for a
win by checking to see if there is a row-sum of value ‘‘eight.’’ If this is

the case, it will play there. If not, the algorithm will check for a so-

called ‘‘trap’’ situation in which two intersecting rows each have a

computer move in them and nothing else (the algorithm is always used

239

6502 GAMES

PATTERN ROWSUM

:
x = a

XTX] +
ox]] + =

for the computer’s benefit). This is illustrated in Figure 11.39. By ex-

amining Figure 11.39, it becomes clear that each unoccupied square
that belongs to two rows having a row-sum of ‘‘four’’ is a trap posi-
tion where the algorithm should play. This is exactly what it does.

The complete flowchart for the board analysis is shown in Figure

11.40. Now, let us examine it in more detail. Remember that it is

always the computer’s turn when this algorithm is invoked.

First, it checks for a possible immediate win. In practice, we will ex-
amine all row-sums and look for one which has a total of ‘‘eight.’’

This would correspond to a case where there are two computer moves
in the same row with the last square being empty. (Refer to Figure

11.38.)
Next, we will check for a possible player win. If the player can win

with the next move, the algorithm must block this move. To do so, it

should scan the row-sums and look for one that has a total of ‘‘two,’’

240

TIC-TAC-TOE

ROWSUM

Fig. 11.39: A Trap Pattern

which would indicate a winning combination for the player. (Refer to

Figure 11.38.)

At this point the algorithm should check to see if the computer can

play into any of the trap positions defined above. (See Figure 11.39 for

an example.)

One more feature has been built into the algorithm: the computer is

equipped with a variable IQ level, i.e., with a variable level af in-

telligence. The above moves are ones that any ‘‘reasonable computer’’
must make. From this point on, however, the algorithm can let

the computer make a few random moves and even possible mistakes if

its intelligence level is set to a low level. In order to provide some

variety to the game, we will obtain a random number, compare it to
the IQ, and vary our play depending upon the results. If the IQ is set

to the maximum, the program will always execute the right branch of

the flowchart; however, if the IQ is not set to the maximum, it will
sometimes execute the left branch. Let us follow the right branch of
the flowchart. At this point, we will check for two special situations

that correspond to moves #1 and #4 in the game.
For the first situation, i.e., the first move in a game, the algorithm

will occupy any position on the board. That way, its behavior will be

different every time and, thus, appear ‘‘intelligent.’’

241

6502 GAMES

a

>

<>"

>

RETURN W/
WINNING MOVE

IN X

RETURN W/
BLOCKING MOVE

IN X

TAN COMPUTER Sy_YES
PLAY TRAP?

NO RETURN
W/ MOVE

INX
GET RANDOM

NUMBER

RANOOM NO
NUMBER >>

1.0.7

ves (NEXT PAGE)

GET RANDOM
MOVE, CHECKING

FOR SPACE
OCCUPIED

RETURN
W/ MOVE

NX

Fig. 11.40: Boord Analysis Flowchart

For the next situation we must look at move #4. It is the computer’s

turn. In other words, the player started the game (move #1), the com-
puter responded (move #2), then the player made his or her second
move (move #3), and it is now the computer’s turn. In short, in the

game thus far, the player has played twice and the computer has

242

TIC-TAC-TOE

YES

NO

MOVE ves
NUMBER 47

RETURN

NO

Fig. 11.40: Board Analysis Flowchart (Continued)

played once. At this point, we want to check to see if the first three
moves have all been made along one of the diagonals. If so, since the
player has made two moves and the computer has made one, the row-

sum of one of the diagonals will be ‘‘six.’’ The algorithm must check
explicitly for this. If the first 3 moves have all been made along a

243

6502 GAMES

diagonal, the computer must move to a side position. This is a special

situation which must be built into the algorithm, or it cannot be

guaranteed that the computer (assuming the highest IQ level) will win

every time. This situation is illustrated in Figure 11.41. Note that if
straightforward logic was used, the algorithm would play into one of

the free corners since a threat exists from the player that he or she

might play there, and thereby set up a trap situation. The results of

such an action are shown in Figure 11.42. By looking at this illustra-

O

O

Fig. 11.41: The Diagonal Trap

PLAYER

O o| |x
X|X X| X
O| |o 0] Oo] O

COMPUTER PLAYER
(WINS)

Pig. 11.42: Falling Into the Diagonal Trap

244

TIC-TAC-TOE

tion, it can be seen that such a move would result in a loss. However,

let us examine what happens if we play on one of the sides. This situa-
tion is illustrated in Figure 11.43; it results in a draw. This is clearly the

move that should be made. This is a relatively little-known trap in the
game of Tic-Tac-Toe, and a provision must be built into the algorithm

so that the computer will win.

o| |x
< X|x]o| |x} x]o

O
COMPUTER COMPUTER

— x| |OlolxX

X|X|O XIXIO| |x|xlo

O|x!lo| |o|xlo
PLAYER COMPUTER PLAYER

Fig. 11.43: Playing to the Side

If it was not the fourth move, or if there was not a diagonal trap set,

the next thing the computer should do is to check to see if the player

can set a trap. (Refer to the flowchart in Figure 11.40.) If the player

can set a trap, the computer plays in the appropriate square to block

it. Otherwise, the computer moves to the center square, if available; if

that is not possible, it moves randomly to any position.

Since this algorithm was built in an ad hoc fashion, it is difficult to

prove that it wins or achieves a draw in all cases. It is suggested that you
try it on a board or that you try out the actual program on the Games

Board. You will discover that in all conditions under which it has been

tested, the computer always wins or achieves a draw. If the computer

keeps winning, however, its IQ level will drop, and eventually it will

allow the player to win. As an example, some sequences obtained on

the actual board are shown in Figure 11.44.

6502 GAMES

courora] raven
4 5

7 1

9 8

2 (DRAW)

Fig. 11.44: Actual Game Sequences

TIC-TAC-TOE

Suggested Modifications

Exercise 11-1: Designate a special key on the Games Board that, when

pressed will display the computer's IQ level.

Exercise 11-2: Modify the program so that the IQ level of the com-

puter can be changed at the beginning of each game.

Credits

The ad hoc algorithm which was described in this section is believed
to be original. Eric Novikoff was the main contributor. ‘‘Scientific
American’”’ (selected issues from 1950 through 1978), as well as Dr.

Harvard Holmes must also be credited with having provided several
original ideas.

Alternative Strategies

Other strategies can also be considered. In particular, a short pro-
gram can be designed by using tables of moves that correspond to

various board patterns. The tables can be short because when sym-

metries and rotations are taken into account, the number of situations

that can be represented is limited. This type of approach results in a

shorter program, however, the program is somewhat less interesting to
design.

Exercise 11-3: Design a Tic-Tac-Toe program using this type of table.

THE PROGRAM

The overall organization of the program is quite simple. It is shown

in Figure 11.42. The most complex part is the algorithm that is used to
determine the next move by the computer. This algorithm, called

‘““FINDMOVE,”’ was previously described.

Let us now examine the overall program organization. The cor-
responding flowchart is shown in Figure 11.45.

1. The computer IQ level is set to 75 percent.

2. The user’s keystroke is read.
3. The key is checked for the value ‘‘F.’’ If it is an ‘‘F,’’ the player

starts; otherwise the computer starts. Depending on the value
of the key pressed, the flowchart continues into boxes 4 or 5,
then to 6.

247

6502 GAMES

Pig. 11.45: Tie-Tac-Toe Flowchart

TIC-TAC-TOE

INCREMENT 1.Q.
(NOT ABOVE 15)

21 DECREMENT 1.Q.
(NOT LESS THAN 1)

Fig. 11.45: Tie-Tac-Toe Flowchart (Continued)

If the player starts (PLAYER is not equal to ‘‘0’’), then we move to
the left side of the flowchart.

7. The key, pressed by the player specifying his or her move, is
read and the move is displayed on the board.

8. The corresponding LED is lit on the board. It then becomes the
computer’s turn to play and the variable PLAYER is set to
**0’’ in box 9.

When exiting from box 6, if it is the computer’s turn, we move to
box 10.

11. The next move to be made by the computer must be computed
at this time.

This is the complex algorithm we have described above.
11. Next, the computer’s move is displayed.

12. PLAYER is reset to ‘‘one’’ to reflect the fact that it is now the
player’s turn.

After either party has moved, the board is checked for a winning se-

249

6502 GAMES

quence of lights in box 13. If there is not a winning sequence of lights,
we move to the left on the flowchart.

14. We next check to see if all moves have been exhausted: we

check for move #9. If the ninth LED is lit and a winning situa-
tion has not been detected, it is a draw, and all lights on the

board must be flashed.

15. We flash all the LEDs on the board. Then, we return to box 6
and the next player plays.

When exiting from box 13, if there is a win situation, this fact must

be displayed:

16. All of the lights are blanked except for the winning three LEDs.

Next, it must be determined by the algorithm whether the
player or the computer has won.

17. A determination is made as to whether it was the player or the

computer who won. If the computer has won, we branch to the
right on the flowchart.

18. A low frequency tone is sounded.
19. The computer’s IQ is decremented (to a minimum of 0).
The situation for a player win, shown in boxes 20 and 21, is analo-

gous.
The general program flow is straightforward. Now, we shall examine

the complete information. The subroutine which analyzes the board
situation is called ‘‘ANALYZE”’ and uses ‘‘UPDATE’’ as a subroutine

to compute the values of various board positions.

Data Structures

The main data structure used by this program is a linear table with

three entry points that are used to store the eight possible square
alignments on the board. When evaluating the board, the program

will have to scan each possible alignment for three squares every time.

In order to facilitate this process, all possible alignments have been

listed explicitly, and the memory organization is shown in Figure

11.46.
The table is organized in three sections starting at RWPTI,

RWPT2, and RWPT3 (RWPT stands for ‘‘row pointer’’). For exam-
ple, the first elements RWPT1, RWPT2, and RWPT3, for the first

three-square sequence are looked at by the evaluation routine. The se-

quence is: ‘‘O, 3, 6,’’ as indicated by the arrows in Figure 11.43. The
next three-square sequence is obtained by looking at the second entry
in each RWPT table. It is ‘‘1, 4, 7,”’ which is, in fact, the second col-
umn on our LED matrix.

250

TIC-TAC-TOE

RWPT2

-
_

-

-

-

—
l
U

O
r

~
~

=
=

E z

Fig. 11.46: Tic-Tac-Toe Row Sequences in Memory

251

6502 GAMES

The table has been organized in three sections in order to facilitate
access. To be able to access all of the elements successfully, it will be
necessary to keep a running pointer that can be used as an index for ef-

ficient table access. For example, if we number our generalized rows
of sequences from 0 to 7, ‘‘row’’ 3 will be accessed by retrieving

elements at addresses RWPT1 + 3, RWPT2 + 3, RWPT3 + 3. (Itis

the sequence ‘‘0, 1, 2,’’ as seen in Figure 11.46.)

Memory Organization

Page 0 contains the RWPT table which has just been described, as
well as several other tables and variables. The rest of the low memory

is shown in Figure 11.47.

The GMBRD table occupies nine locations and stores the status of
the board at all times. A value of ‘‘one’’ is used to indicate a position
occupied by the player, and a value of ‘‘four’’ indicates a position oc-

cupied by the computer.

The SQSTAT table also occupies nine words of memory and is used
to compute the tactical status of the board.

The ROWSUM table occupies eight words and is used to compute
the value of each of the eight generalized rows on the square.

The RNDSCR table occupies six words and is used by the random

number generator.
The remaining locations are used by temporary variables, masks, and

constants, as indicated in Figure 11.47. The role of each variable or con-
stant will be explained as we describe each routine in the program.

High Memory

High memory locations are essentially reserved for input/output

devices. Ports 1 and 3 are used, as well as interrupts. The correspond-
ing memory map is shown in Figure 11.48. The interrupt-vector
resides at addresses A67E and A67F. It will be modified at the begin-
ning of the program so that interrupts will be generated automatically

by the interval timer. These interrupts will be used to blink the LEDs

on the board.

Detailed Program Description

At the beginning of each game, the intelligence level of the com-

puter is set at 75 percent. Each time that the player wins, the IQ level

252

GMBRD/CLRST

SQSTAT

ROWSUM

RNOSCR

CLREND

INIT

TIC-TAC-TOE

04 = COMPUTER
9 bytes

18 | BOARD STATUS |
01 = PLAYER

2) TACTICAL STATUS

' EMPTY = 0 6 bytes
! COMPUTER = 4

31 eee
32] SCRATCH PAD FOR RANDOM

| NUMBERGENERATOR 1 6 bins

Temporaries for FINDMV
routine (A and X Registers) SS
Number of current move

Indicates whose turn it is

Blink mask, high

Blink mask, low

Duration constant for tone

Frequency constant for tone

Used to force an odd result

IQ number (intelligence)

50 PROGRAM AREA

Fig. 11.47: Tic-Tac-Toe: Low Memory

253

6502 GAMES

oe HH//// TZ
———

"I

= :
it - -
ITIL.

0000 MMMM SG

Fig. 11.48: Tic-Tac-Toe: High Memory

TIC-TAC-TOE

will be raised by one point. Each time that the player loses, it will be

decremented by one point. It is initially set at the value 12 decimal:

START LDA #12
STA INTEL Set IQ at 75%

Initialization occurs next:

RESTRT JSR INIT

Let us examine the INIT subroutine which has just been called. It
resides at address 0050 and appears on lines 0345 and following on the

program listing. The first action of the initialization subroutine is to

clear all low memory locations used by program variables. The loca-

tions to be cleared are those between CLRST and CLREND (see lines
41 and 57 of the program listing). Note that a seldom-used facility of

the assembler — multiple labels for the same line — has been utilized

to facilitate the clearing of the correct number of memory locations.

Since it may be necessary to introduce more temporary variables in the

course of program development, a specific label was assigned to the
first location to be cleared, CLRST (memory location 18), and

another to the last location to be cleared (CLREND). For example,

memory location 18 corresponds both to CLRST and to GMBRD.

The clearing operation should start at address CLRST and proceed

forward fourty locations (CLREND-CLRST). Thus, we first load the

number of locations to be cleared into index register X, then we use

a loop to clear all of the required locations:

INIT LDA #0
LDX #CLREND-CLRST

CLRALL STA CLRST,X Clear location
DEX
BPL CLRALL

After low memory has been cleared, the two starting locations for the
random number generator must be seeded. As usual, the low-counter

of timer 1 is used:

LDA TILL
STA RNDSCR + 1
STA RNDSCR + 4

255

6502 GAMES

Ports 1A, 1B, and 3B are then configured as outputs. The appropriate

pattern is loaded into the data direction registers:

LDA #$FF
STA DDRIA
STA DDR1B
STA DDR3B

All LEDs on the board are turned off:

LDA #0
STA PORTIA
STA PORTIB

Next, the interrupt vector’s address must be loaded with a new

pointer. The address to be deposited there is the address of the inter-
rupt handler, which has been designed to provide the regular blinking

of the LEDs. (This process has already been explained in previous
chapters.) The interrupt handler resides at address INTVEC. The high

byte and the low byte of this address will be loaded in memory loca-
tions IRQVH and IRQVL, respectively. A special assembler symbol is

used to denote the low byte of the interrupt vector: #<C INTVEC. Con-

versely, the high byte is represented in assembly language by #>
INTVEC. The new interrupt vector is loaded at the specified memory
locations:

JSR ACCESS
LDA #<INTVEC
STA IRQVL Low vector
LDA # >INTVEC
STA IRQVH High vector

As usual, the interrupt-enable register must first be cleared, then the

appropriate interrupt must be enabled:

LDA #$7F
STA IER Clear register

LDA #$CO
STA IER Enable interrupt

Timer 1 is set to the free-running mode:

256

TIC-TAC-TOE

LDA #$40
STA ACR

The latch for timer 1 is loaded with the highest possible count,

“‘FFFF’’:

LDA #$FF
STA TILL
STA T1CH

Finally, interrupts are enabled, the decimal mode is cleared as a

precaution, and we terminate the initialization stage:

CLI
CLD
RTS

Back to the Main Program

We are now at line 69 of the program listing. We read the next key
closure on the keyboard:

JSR GETKEY

It is the first move. We must determine whether it is an ‘‘F’’ or not. If
it is an ‘‘F,’’ the player moves first; otherwise the computer moves

first. Let us check it:

CMP #$F
BNE PLAYLP

It is the player’s turn and this information is stored in the temporary
variable PLAYR, shown in Figure 11.44:

LDA #01
STA PLAYR

It is time for a new move, and the move counter is incremented by

one. Variable MOVNUM is stored in low memory. This is shown in

Figure 11.44. It is now incremented:

PLAYLP INC MOVNUM

257

TIC-TAC-TOE

At this point, PLAYR indicates whose turn it is to play. If it is set at

‘*zero,’’ it is the computer’s turn. If it is set at ‘‘one,’’ it is the player’s

turn. Let us check it:

LDA PLAYR
BEQ CMPMU

We will assume here that it is the player’s turn. PLAYR is reset to

‘*zero’” so that the computer will make its move next:

DEC PLAYR

The player’s move is received by the PLRMV subroutine which will be

described below. Let us allow the player to play:

JSR PLRMV

The move made by the player is specified at this point by the contents
of the X register. Since it was the player’s move, the corresponding

code on the board’s representation should be ‘‘01,’’ which will be

deposited in the accumulator:

LDA #01

We will now display the move on the board by blinking the proper

LED. In addition, the corresponding ROWSUM will automatically be

updated:

JSR UPDATE

The UPDATE routine will be described in detail below. Once the
move has been made, we should check for a possible win. In the case
of a win, the player has three blinking LEDs in a row, and the cor-

responding row total is automatically equal to ‘‘three.’’ We will

therefore simply check all eight rows for a ROWSUM of three:

LDA #03
BNE WINTST

At address WINTST a test is performed for a winning configura-

tion. Index register Y is loaded with ‘‘seven’’ and used as a loop

258

TIC-TAC-TOE

counter. All of the rows, 7 through 0, are checked for the value
‘‘three’’:

WINTST LDY #7
TSTLP CMP ROWSUM,4

BEQ WIN
DEY
BPL TSTLP

Let us now continue with the player’s move. We will examine the

computer’s move later. (The computer’s move corresponds to lines

83-88 of the program listing, which have not been described yet.) A
maximum of nine moves is possible in this game. Let us verify whether

or not we have reached the end of the game by checking the value of

MOVNUM, which contains the number of the current move:

LDA MOVNUM
CMP #9
BNE PLAYLP

This is the end of our main loop. At this point, a branch occurs back
to location PLAYLP, and execution of the main program resumes.

If we had reached the end of the game at this point, the game would

be a tie, since there has not been a winner yet. At this point all of the

lights on the board would be set blinking and then the game would

restart. Let us set the lights blinking:

LDA #$FF
STA LTMSKL
STA LTMSKH
BNE DLY

The delay is introduced to guarantee that the lights will be blinked for

a short interval. Let us now examine the end-of-game sequence.

When a win situation is found, it is either the player’s win or the

computer’s win. When the player wins, the row total is equal to
‘“*three.’’ When the computer wins, the row total is equal to ‘‘twelve.”’

(Recall that each computer move results in a value of ‘‘four’’ for the
Square. Three squares in a row will result in 3 x 4 = 12.) If the com-

puter won, its IQ will be decremented:

259

6502 GAMES

WIN CMP#12
BEQ INTDN

At this point a jump would occur to INTDN, where the intelligence
level will be decreased (intelligence lowered).

A losing tone will be generated to indicate to the player that he or
she has lost. The corresponding frequency constant is ‘‘FF,”’ and it is
stored at address FREQ:

INTDN LDA #$FF
STA FREQ

The intelligence level will now be decreased unless it has already

reached ‘‘zero”’ in which case it will remain at that value:

LDA INTEL
BEQ GTMSK
DEC INTEL

For a brief time the winning row will be illuminated on the board, and
the end-of-game tone will be played. First, we clear all LEDs on the
board:

GTMSK LDA #0
STA PORTIA
STA PORTIB

At this point, the number of the winning row is contained in index
register Y. The three squares corresponding to that row will simply be

retrieved from the RWPT table. (See Figure 11.43.) Let us display the
first square:

LDX RWPT1,Y
JSR LEDLTR

The LEDLTR routine will be described below. It lights up the

square whose number is contained in register X. Let us now display

the next square:

LDX RWPT2,Y
JSR LEDLTR

TIC-TAC-TOE

Then, the third one:

LDX RWPT3,Y
JSR LEDLTR

At this point, we should turn off all unnecessary blinking LEDs on the
board. The new pattern to be blinked is the one with the winning row

and we must, therefore, change the LTMSKL mask:

LDA PORTIA
AND LTMSKL
STA LTMSKL

We now do the same for Port 1B:

LDA PORT1B
AND LTMSKH
STA LTMSKH

Exercise 11-4: Subroutine LEDLTR on line 125 of the program listing

has just lit the third LED on the board for the winning row. Im-
mediately after that, we start reading the contents of Port LA, and

then Port 1B.
There is, however, the theoretical possibility that an interrupt might

occur immediately after LEDLTR, that might change the contents of
Port LA. Would this be a problem? If it would not be a problem, why
not? If it would, modify the program to make it always work correct-
ly.

At this point, Ports A and B contain the appropriate pattern to light

the winning row. If the player has won, the blink masks LTMSKL and

LTMSKH contain the same pattern, and will blink the row. We are
now ready to sound the win 07 lose tone. The duration is set at ‘‘FF’’:

LDA #$FF
STA DUR

The frequency, FREQ, was set above. We simply have to play it:

LDA FREQ
JSR TONE

261

6502 GAMES

A delay must be provided:

DLY JSR DELAY

We are now ready to start a new game with the new intelligence level

of the computer:

JMP RESTART

Back to WIN

Let us now go back to line 103 of the program listing and examine

the case in which the computer did not win (i.e., the player won). A

different frequency constant is loaded at location FREQ:

LDA #30
STA FREQ

Since the player won, the intelligence level of the computer will be

raised this time. Before it is raised, however, it must be checked

against the value ‘‘fifteen,’’ which is our legal maximum:

LDA INTEL
CMP #$0F
BEQ GTMSK
INC INTEL

The sequence was exactly analagous to the one in which the computer

wins, except for a different tone frequency, and for the fact that the

intelligence level of the computer is increased rather than decreased.

The Computer Moves

Let us now go back to line 83 of the program listing and describe
what happens when the computer makes a move. Variable PLAYR is

incremented, then a delay is provided to simulate ‘‘thinking time’’ for
the computer:

COMPMV INC PLAYR
JSR DELAY

The computer move is determined by the ANALYZ routine described

262

TIC-TAC-TOE

below:

JSR ANALYZ

The computer’s move is entered as a ‘‘four’’ at the appropriate

location on the board:

LDA #04
JSR UPDATE

Next, we check all of the rows for the possibility of a computer win,

i.e., for a total of ‘‘twelve’’:

LDA #12
WINTST LDY #7

and so on. We are now back in the main program described previous-

ly.

When the program segment outlined above is compared to the one

that is used for the player’s move, we find that the primary difference
between the two is that the move was specified by the ANALYZ

routine rather than being picked up from the keyboard. This routine is
the key to the level of intelligence of the algorithm. Let us now ex-

amine it.

Subroutines

The ANALYZE Subroutine

The ANALYZ subroutine begins at line 143 of the program listing.

The corresponding conceptual flowchart is shown in Figure 11.40. In
the ANALYZ subroutine the ODDMSK is first set to ‘‘zero.’’

ANALYZ LDA #0
STA ODDMSK

We now check for the possibility of a computer win during its next
turn. If that possibility exists, we clearly must play into the winning

square. This will end the game. A winning situation is characterized by
a total of ‘‘eight’’ in the corresponding row; therefore let us deposit

the total ‘‘eight’’ into the accumulator:

6502 GAMES

LDA #08

A winning situation will occur when the squares in rows 1, 2, or 3 all

total ‘‘three’’ at the same time. Let us set our filter variable, X, for the
number of rows that qualify, to ‘‘three’’:

LDX #03

We are now ready to use the FINDMV routine:

JSR FINDMV

The FINDMV routine will be described below. It must be called with

the specified ROWSUM in A and with the number of times a match is

found in X. It will systematically check all of the rows and squares. If

a square is found, it exits with a specified square number in X and the

Z flag is set to ‘‘0.’” Let us test it:

BNE DONE

If a winning move has been found, the ANALYZ routine exits. Unfor-

tunately, this is not usually the case, and more analysis must be done.

The next special situation to be checked is to see if the player has a
winning move. If so, it must be blocked. A winning situation for the

player is indicated by a row total of ‘‘2.’’ Let us load ‘‘2’’ into the ac-

cumulator and repeat the previous process:

LDA #02
LDA #03
JSR FINDMV
BNE DONE

If the player could make a winning move, this is the square where the
computer should play and we exit to DONE; otherwise, the situation

should be analyzed further.

We will now check to see if the computer can implement a trap. A
trap corresponds to a situation in which a computer move has already

been made in the same row. We would like to play at the intersection

of two rows containing computer moves. This was explained above
when the algorithm was described. This situation is characterized by A

= 4and X = 2. Let us load the registers with the appropriate values

264

TIC-TAC-TOE

and call the FINDMYV routine:

LDA #04
LDX #02
JSR FINDMV
BNE DONE

If we succeed, we exit to DONE; otherwise, we proceed down the

flowchart diagrammed in Figure 11.40.
It is at this point that the computer can demonstrate either in-

telligent or ill-advised play. The behavior of the computer will be

determined by its intelligence level. We will now obtain a random
number and compare it to the computer’s IQ. If the random number

exceeds the computer’s IQ, we will proceed to the left side of the

flowchart in Figure 11.40 and make an ill-advised move (i.e., a random
one). If the random number does not exceed the computer’s IQ, we

will make an intelligent move on the right side of the flowchart. Let us

generate the random number:

JSR RANDOM

We truncate the random number to its right byte so that it does not ex-

ceed fifteen:

AND #$0F

and we compare it to the current IQ of the computer:

CMP INTEL
BEQ OK

BCS RNDMV

If the random number is higher than the IQ level stored in INTEL, we
branch to RANDMV and play a random move. At this point, we will

assume that the random number was not greater than the IQ level, and

that the computer will play an intelligent move. We now proceed from

line 162 (location ‘‘OK’’).

We will first check to see if this is move #1; then we check to see if

this is move #4. Let us check for move #1:

OK LPX MOVNUM
CPX #1

265

6502 GAMES

If it is move #1, we occupy any square:

BEQ RNDMV

Let us now check for move #4:

CPX #4

If it is not move #4, we will check to see if the player can set a trap.
This will be performed at location TRAPCK. Let us assume here that
it is move #4.

BNE TRAPCK

This section will check both diagonals for the possibility of the se-

quence player-computer-player. If this sequnce is found, we will play

to the side. Otherwise, we will go back to the mainstream of this
routine and check to see if the player can set a trap. The combination

player-computer-player in a row is detected when the row totals

**six.’? Therefore, we load the value ‘‘six’’ into the accumulator and

check the corresponding diagonal. By coincidence, diagonals corre-

spond to the sixth and seventh entires in our RWPT table. (See

Figure 11.46.) Let us do it:

LDX #6
TXA
CMP ROWSUM,X
REQ ODDRND

If a match is found, we branch to address ODDRND, where we will

play to the side. This will be described below. If a match is not found

we check the next diagonal:

INX

CMP ROWSUM,X
BEQ ODDRND

If, at that point, the test also fails for the second diagonal, we will

check to see if the player can set a trap.

266

TIC-TAC-TOE

Checking To See If the Player Can Set a Trap (TRAPCK)

The possibility of a trap for the player is identified (as in the case of
the computer), when two intersecting rows each contain only a

player’s move. This has been explained in the description of the

algorithm above. The value of a row which is a candidate for a trap is

thereby equal to ‘‘one’’ (one player’s move). The parameters must,
therefore, be set to A = 1, and X = 2 before we can call the

FINDMV routine:

TRAPCK LDA #1
LDX #2
JSR FINDMV
BNE DONE

If the proper location for a trap can be found, the next move is to play

there. Otherwise, if possible, the computer moves to the center or, if
the center is occupied, it makes a random move on the side.

LDX GMBRD + 4
BNE RNDMV
LDX #5
BNE DONE

Playing a Random Move on the Side

The four sides on the board are numbered externally 2,4,6 and 8, or

internally 1,3,5, and 7. Any odd internal number specified for a move
will result in our occupying a side position. If we want to occupy a side

position, we simply load the value ‘‘one’’ in ODDMSK, and we
guarantee that the random number generated will be one of the four

corners. This is performed by entering at address ODDRND:

ODDRND LDA #1
STA ODDMSK

Generally, however, we may want to make a random move. This will

be accomplished by generating and using any random number that is

reasonable, i.e., by setting ODDMSK to ‘‘0’’ prior to entering at ad-
dress RNDMV. Let us obtain a random number:

267

6502 GAMES

RNDMV JSR RANDOM

Let us strip off the left byte:

AND #$0F

Then let us OR this random number with the pattern stored in ODDMSK.
If the mask had been set to ‘‘0,”’ it would have no effect on the random
number. If the mask had been set to ‘‘1,’’ however, it would result in

our playing into one of the corners (the center is occupied here):

ORA ODDMSK

Since the random number which was generated was between ‘‘0’’ and

**15,”’ we must check to be sure that it does not exceed ‘‘9’’; other-
wise, it cannot be used:

CMP #9
BCS RNDMV

We must now check to make sure that the space into which we want

to move is not occupied. We load the square’s number into index
register X and verify the square’s status by reading the appropriate en-

try of the GMBRD table (see the memory map in Figure 11.47):

TAX
LDA GMBRD,X

If there is any entry other than ‘‘0’’ in this square, it means that it is

occupied and we must generate another random number:

BNE RNDMV

We have selected a valid square and will now play into it. When we ex-
it from this routine, the external LED number should be contained in
X. It is obtained by adding ‘‘1’’ to the current contents of X, which

happens to be the internal LED number:

INX
DONE RTS

TIC-TAC-TOE

FINDMV Subroutine

This subroutine will evaluate the board until it finds a square which

meets the specifications in the A and the X registers. The accumulator

A contains a specified row-sum that a row must meet in order to

qualify. Index register X specifies the number of times that a par-
ticular square must belong to a row whose row-sum is equal to the one

specified by A.

The FINDMV subroutine starts with a square status of ‘‘0’’ for

every square on the board. Every time it finds a square that meets the

row-sum specification, it will increase its status by ‘‘1.’’ Thus, at the

end of the evaluation process, a square with a status of ‘‘1”’ is a square

which meets the row-sum specifications once. A square with a status

of ‘‘2’’ is one that meets the specification twice, etc.

The final selection is performed by FINDMV, which checks the

value of each square in turn. As soon as it finds a square whose status

matches the number contained in register X, it selects that square
as one that meets the initial specification.

The complete flowchart for FINDMV is shown in Figure 11.49.
Essentially, the subroutine operates in three steps. These steps are in-

dicated in Figure 11.49. Step 1 is the initialization phase. Step 2 cor-
responds to the selection of all squares that meet the row-sum
specifications contained in register A. The status of every empty

square in a row that meets this specification is increased by one as all

the rows are scanned. Step 3 is the final selection phase. In this phase,
each square is looked at in turn until one is found whose status match-

es the value contained in X. As soon as one is found, the process

stops. That square is the one that will be played by the computer. Ifa
square is not found, the routine will exit, with the index X having

decremented to ‘‘0,”’ and this will be used as a failure flag for the call-

ing routine.

Let us now examine the corresponding program. It starts at line 204
in the program listing.

Step 1: Initialization

Index registers X and A will be used in the body of this subroutine.
Their initial contents must first be preserved in temporary memory

locations. Addresses TEMP 1 and TEMP2 are used for that purpose.

(See Figure 11.47 for the memory map.)
Let us preserve X and A:

269

6502 GAMES

STEP 1 pie: e
INITIALIZATION

CHECK ROWSUM
AGAINST SPECIFIED

INCREAAENT ITS
STATUS

STEP 2
COMPUTING

STATUS CHECK 2ND SQUARE
(A-SELECTION)

STEP 3
FINAL SELECTION SQUARES

(AAND Rerun)
YES

NO

PLAY THIS =n
SQUARE

Fig. 11.49: FINDMV Flowchert

270

TIC-TAC-TOE

FINDMV STX TEMP2
STA TEMP!

The status of the board is then cleared. Each square’s status must be

set to ‘‘0.’’ This is accomplished by loading the value ‘‘0’’ into the ac-
cumulator, then going through a nine cycle loop that will clear the

status of each square in turn:

LDA #0
LDY #8

CLRLP STA SQSTAT,4
DEY
BPL CLRLP

Step 2: Computing the Status of Each Square

Each of the eight possible row-sums will now be examined in turn.

If the row-sum matches the value specified in the accumulator on

entry, each empty square within the specified row will have its status

incremented by ‘‘1.’’ If the row-sum value does not meet the minimum,

the next one will be examined. Index register Y is used as a row pointer.
The RWPT table described at the beginning of this program and shown
in Figure 11.46 will be used to successively retrieve the three squares
that form every row. Let us first initialize our counter:

LDY #7

Now, we will check the value of the corresponding row-sum:

CHEKLP LDA TEMP!
CMP ROWSUM, Y
BNE NOCHEK

Let us assume at this point that the row-sum is indeed the correct one.

We must now examine each of the three squares in the row. If the

square is empty, we increment its status. The first step is to obtain the

square’s value by looking it up in the table, using index register Y as a
displacement, and using addresses RWPT1, RWPT2, and RWPT3

successively as entry points into the row table. Let us try it for the first

square:

271

6502 GAMES

LDX RWPT1,Y

Index register X now contains the square number. If the square is

empty, a new subroutine, CNTSUB, is used to increment its status:

JSR CNTSUB

It will be described below.
Let us now do the same for the second and third squares:

LDX RWPT2,Y
JSR CNTSUB
LDX RWPT3,Y
JSR CNTSUB

We have now completely scanned one row. Let us look to see if any

more rows need to be checked:

NOCHEK DEY
BPL CHECKLP

The process is repeated until all the rows have been checked. At this

point, we enter into step 3 of FINDMV. (Refer to the flowchart in

Figure 11.49.)

Step 3: Final Selection

Index register X will be used as a square pointer. It will start with
square #9 and continue to examine squares until one is found that
meets the additional X register specifications, i.e., the number of
times that the given square belongs to a row with the appropriate row-

sum value. Let us initialize it:

LDX #9

Now, we compare the value of the square status with the value of the

specified X parameter:

FNMTCH — LDA TEMP2
AND SQSTAT-1,X

272

TIC-TAC-TOE

If the square status matches the value of the parameter, we select this

square:

BNE FOUND

Otherwise, we try the next one:

DEX
BNE FNMTCH

FOUND RTS

Exercise 11-5: Why are “‘AND”’’ and “‘BNE”’ rather than ‘“‘CMP’’ and

*‘BEQ’’ used to find a matching square above? (Hint: decide what the

difference in the program’s strategy would be.)

COUNTSUB Subroutine

This subroutine is used exclusively by the FINDMV subroutine and

increments the status of the square whose number is in register X, if
the square is empty. First, it examines the status of the square by look-

ing for its code in the GMBRD table:

CNTSUB LDA GMBRD,X
BNE NOCNT

If the square is occupied, an exit occurs. If it is not, the status value of

the square is incremented:

INC SQSTAT,X

NOCNT RTS

UPDATE Subroutine

Every time a move is made, it must be displayed on the board.

Then, the appropriate code must be stored in the board representa-

tion, i.e., in the table GMBRD. Finally, the new ROWSUMs must be

computed and stored at the appropriate locations. These functions are
accomplished by the UPDATE subroutine.

The player’s code is contained in the accumulator. The position into
which the move is made is contained in register X. Since the number in
index register X is the value of an external LED, it is first decremented

in order to match the actual internal LED number:

273

6502 GAMES

UPDATE DEX

The value must now be stored in the appropriate location of the GMBRD
table which contains the internal representation of the board:

STA GMBRD,X

Note that the value of X is simply used as a displacement into the
table. However, the accumulator happens to contain the appropriate

code that is merely written at the specified location. At this point, UP-
DATE would like to display the move on the LEDs. It must first

decide, however, whether to light a steady LED or make it blink. To

do this, it must determine whether it is the player’s move or the com-

puter’s move. It does this by examining the code contained in the ac-

cumulator. If the code is ‘‘four,’’ it is the computer’s move. If the

code is ‘‘1,”’ it is the player’s move. Let us examine it:

CMP #04
BEQ NOBLNK

If it is the computer’s move, a branch will occur to address NOBLNK;

otherwise, we proceed. Let us assume for the time being that it was the

player’s move:

JSR LIGHT

The LIGHT subroutine is used to set the bit blinking and will be

described below. Upon exit from LIGHT, the accumulator contains

the bit in the position that is required to set the LED blinking. At this
point, the blink masks should be updated:

ORA LTMSKL
STA LTMSKL

If the carry was ‘‘zero’”’ upon completion of LIGHT, one of the bits
zero through seven had been set and we are done:

BCC NOBLNK

Otherwise, if the carry had been set to 1, it would mean that LED #9
had to be set, i.e., that the high order part of the mask had to be

274

TIC-TAC-TOE

modified. Let us do it:

LDA #01
STA LTMSKH

At this point, the LED masks are properly configured and we can give

the order to light the LEDs:

NOBLNK JSR LEDLTR

The LEDLTR routine lights up the LED specified by register X. Note

that if it was a computer move, this LED will remain steadily on. If it
was a player’s move, this LED will be turned off and on automatically

as interrupts occur.

Next, we must update all row-sums. Index register X is used as a
row pointer. We will look at all eight rows in turn. In anticipation of
the addition, the carry bit is cleared:

LDX #7
ADDROW CLC

The first square of row eight is examined first:

LDY RWPTI1,X

Note that index register Y will contain the internal square number
following this instruction. This will immediately be used for another
indexed operation. The contents of the square will be read so that the

new row-sum may be computed. (The row-sum for that row may or

may not be the same as before. No special provision has been made

for restricting the search to the two or three rows affected.) All rows
are examined in turn, and all row-sums are re-computed to keep the

program simple.

Let us obtain the current square’s value:

LDA GMBRD,Y

The GMBRD table is accessed using index register Y as a displace-
ment. Note that the two instructions shown above implement a two-

level indexing operation. This is a most efficient data retrieval tech-

nique. At this point, the accumulator contains the value of the first

275

6502 GAMES

square. It will be added to the value of the two following squares. The

process will now be repeated:

LDY RWPT2,X
ADC GMBRD,Y

The number of the second square has been looked up by the LDY in-

struction and its value stored in Y. The addition instruction looks up

the actual value of that square from GMBRD, and adds that value to

the accumulator. This process is performed one more time for the

third square:

LDY RWPT3,X
ADC GMBRD,Y

The final value contained in the accumulator is then stored in the

ROWSUM table at the position specified by the value of index register

X (the row index):

STA ROWSUM,X

The next row will now be scanned:

DEX
BPL ADDROW

If X becomes negative, we are done:

RTS

LED LIGHTER Subroutine

This subroutine assumes upon entry that register X contains the in-
ternal LED number of the LED on the board which must be turned on.
The subroutine will therefore turn that LED on using the LIGHT

subroutine, which converts a number in register X into a bit pattern in

the accumulator for the purpose of turning on the specified LED:

LEDLTR JSR LIGHT

At this point, either Port 1A or Port 1B must be updated. Let us

276

TIC-TAC-TOE

assume initially that it is Port 1A (if it is not Port 1A, which we can

find out by examining the carry bit below, then the pattern contained

in the accumulator is all zeroes and will not change the value of Port

1A):

ORA PORTIA
STA PORTIA
BCC LTRDN

The carry bit is tested. If it has been set to 1 by the LIGHT subroutine,

then LED #9 must be turned on. This is accomplished by sending a

**1”? to Port 1B:

LDA #1
STA PORTB
RTS

PLRMV Subroutine (Player's Move)

This subroutine obtains one correct move from the player. It chirps

to get his or her attention and waits for a keyboard input. If a key
other than !| through 9 is pressed, it will be ignored. Whenever the

subroutine gets a move, it verifies that the square on the board is in-

deed empty. If the square is not empty, the subroutine will ignore the
player’s move. Let us first generate a chirp in order to get the player’s
attention:

PLRMV LDA #$80
STA DUR
LDA #$10
JSR TONE

Now, let us capture the key closure:

KEYIN JSR GETKEY

We must now check to see that the key that is pressed is between 1 and

9. Let us first check to see that it is not greater than or equal to 10:

CMP #10
BCS KEYIN

Let us now verify that it is not equal to ‘‘zero’’:

277

6502 GAMES

TAX
BEQ KEYIN

Finally, let us verify that it does not correspond to a square that is

already occupied:

LDA GMBRD-1,X
BNE KEYIN
RTS

Exercise 11-6: Modify the PLRMV subroutine above so that a new

chirp is generated every time a player makes an incorrect move. To tell

the player that he or she has made an incorrect move, you should

generate a sequence of two chirps, using a different tone than the one

used previously.

LIGHT Subroutine

This subroutine accepts an LED number in register X. It returns
with the pattern to be output to the LEDs in the accumulator. If LED

9 is to be lit (X = 8), the carry bit is set. This subroutine is straightfor-

ward and has been described previously:

LIGHT STX TEMP!
SEC
ROL A
DEX
BPL SHIFT
LDX TEMP!
RTS

DELAY Subroutine

This is a classic delay subroutine that uses two nested loops that

have a few extra instructions within the loop that are designed to waste
time:

DELAY LDY #$FF
DL1 LDX #$FF
DL2 ROL DUR

ROR DUR

278

TIC-TAC-TOE

DEX
BNE DL2
DEY
BNE DL1
RTS

Interrupt Handling Routine

Every time that an interrupt is received, the appropriate LEDs will

be complemented (turned off if on, or on if off). The positions of the

LEDs to be blinked are specified by the contents of the LTMSK

masks. Two bytes are used in memory for the low and high halves,
respectively. (See Figure 11.47 for the memory map.)

Turning the bits on or off is accomplished by an exclusive-OR in-

struction that is the equivalent of a logical complementation. Since

this routine uses the accumulator, the contents of A must be preserved

at the beginning of the routine. It is pushed onto the stack and

restored upon exit. The subroutine is shown below:

INTVEC PHA
LDA PORTIA
EOR LTMSKL
STA PORTIA
LDA PORTIB
EOR LTMSKH
STA PORTIB
LDA TILL
PLA
RTI

Exercise 11-7: Notice the LDA TILL instruction above. The next in-
struction in this subroutine is PLA. It will overwrite the contents of

the accumulator with the words pulled from the stack. The contents of
the accumulator, as read from TILL, will therefore be immediately

destroyed. Is this a programming error that was accidentally left in

this program? If not, what purpose does it serve? (Hint: this situation

has been encountered before. Refer to one of the earlier chapters.)

INITIALIZE Subroutine

This subroutine was described in the body of the main program

above.

279

6502 GAMES

RANDOM and TONE Subroutines

These two subroutines were described in previous programs.

SUMMARY

This program was the most complex we have developed. Several
algorithms have been presented, and one complete implementation of
an ad hoc algorithm has been studied in great detail. Readers interested
in games of strategy and programming are encouraged to implement
an alternative algorithm.

LINE

, *TICTAC’
’ PROGRAM TO PLAY TIC-TAC-TOE ON SYM-1
SCOMPUTER WITH 3X3 LED MATRIX AND HEX KYBD.
5 AT BEGINNING OF GAME, IF ‘F’ KEY IS
SPRESSEDe PLAYER GOES FIRST» ANY OTHER KEY»
#COMPUTER GOES FIRST. THEREAFTER» TO MAKE
sA MOVEr PRESS KEY CORRESPONDING TO NUMBER
SOF SQUARE DESIRED.
$
bt INKAGES:
U
GETKEY = #100
ACCESS = 66584
$
91/0:
$
PORTIA
NDRIA
PORT1B
DDR1iB
IER
ACR
TALL
T1CH
PORTSB
NORIB
ITRAVL
TRQVH

tA001 eB 4522 VIA F1..56
$a0o3
$A000
#A002
S@AOOE #INTERRUPT ENABLE REGISTER.
SA00B SAUXTLIARY CONTROL REGISTER.
A004 STIMER 1 LATCH |OW.
$A005 ‘TIMER 1 LATCH HIGH.
$ATOO FERAG522 VIA B83...
SACO2
$A67E
SA67F

t4t038240891

1

3
*TABLE OF SQUARES IN BOART’S @ ROWS.

x- 0

BYTE Orl1e2eOer Sehr Or2

RYTE 3e4rSe le 4972404

RWPTS .RYTE 627298970578 8eS

Fig. 11.50: Tic-Tac-Toe Program

0037
0037
0037
0037
0037
0037
0037
0038
0039
0040
0041
0042
0043
0044
0045
0044
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0040
0061
0062
0063
0064
0065
0066
0047
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0065
0006
0087
ooee
0089
0090
0092
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102

0011
0012
0013
0014
0015
0016
0017
0018
0018
0018
0018
0018
0021
0021
002A
0032
0032
0032
0038
0039
003A
0038
003C
003D
0o03E
OO3F
0040
0040
0041
0041
0042
0042
0042
0042
0200
0200
0202
0204
0207
0204
020C
O20€
0210
0212
0214
0216
0218
O21A
021D
021F
0222
0224
0226
0228
022B
O22E
0230
0233
0235
0237
O23A
023C
0230
023F
0241
0243
0245
0247
0249
024B
024D
024F

07
08
02
0S
08
oe
06

00
01

03

o3

03
02

03

00

TIC-TAC-TOE

§
sVARTABLE STORAGES:
U
CLRST 91ST LOC. TO BF CLEARFD BY ’INIT’.
GMBRD kex+9 IGAME BOARD: PLAYER’S POBTTIONS ON

§BOARD AG SO1=PLAYER, 804*COMPUTER.
SQSTAT #=%+9 #SQUARE‘’S TACTICAL STATUS.
ROWSUM &=<5+8 §SUM OF VALUES OF SQUARES IN

SROWs WHERE 1=PLAYER>,
§4=COMPUTER: O-EMPTY.

RNDSCR 8=k+6 SRND @ GEN. SCRATCHPAD.
TEMP1 Bakt+1
TEMP2 Beet1
MOUNUM 87x+1
PLAYR @e+t
LTMSKH &-8+1
LTMSKL t-¥41

INUMBER OF CURRENT MOVE.
sWHO’S TURN IT IS.
‘HIGH ORDER BLINK MASK FOK |! ED’S
jLOW ORDER SAME.

BUR e~et+i SDURATION FOR TONES.
FREQ kek+1 SFREQUENCY OF TONES.
CLREND SLAST LOC TO BE CLEARED BY ‘INTT’,
ODDMSK #=k+1 #MAKES PRODUCT OF RANDOM HOVE

§GENERATOR ODD TO PICK CORNER.
INTEL #=8+1 ¢INTELLIGENCE QUNTIENT,
6
¢ &SSRES MAIN PROGRAM BeeeeE
i)

* = $200
’
START LDA $12

STA INTEL #SET I.Q. AT 752%
RESTRT JSR INIT #INITIALIZE PROGRAM.

JSR GETKEY 9GET FIRST MOVE DETERMINER.
CMP #¢F TS IT ‘FF’?
BNE PLAYI.F
LDA #01 SYESs PLAYER FIRST.
STA PLAYR

PLAYLP INC HOVNUN sCOUNT THE MOVES.
LDA PLAYR bWHO’S TURN?
BEQ COMPHY ¢TF Or COMPUTER’S MOVE.
DEC PLAYR sPLAYER’S TURN» COMPUTER NFXT.
JSR PLRAYV SRET PLAYER’S MOVE.
LDA #01 SSTORE PLAYER‘’S PIECE.
JSR UPNATE SPLAY ITs AND UPDATE ROWSUMS.
LDA #03 §LOAD PATTERN FOR WIN SEARCH.
BNE WINTST ICHECK FOR WIN.

COMPMY INC PLAYR sCOMPUTER’S TURNs PLAYER NEXT.
JSR DELAY sTIME FOR COMPUTER TO ’THINK’.
JSR ANALYZ SFIND COMPUTFR’S MOVE.
LDA $04 #STORE COMPUTER’S FIECE.
JSR UPDATE SPLAY TT.
LDA #12 SIL.OAD PATTERN FOR WIN SEARCH.

WINTST LDY $7 SLONOF 7X 10 CHECK ROWSUMS
TSTLF CHP ROWSUMY #FOR WINNING FATTERN.

BEQ WIN SWIN TF PATTERN FOUND.
DEY §LOOP ANI
BPL TSTLP ITRY AGAIN.
LBA MOVNUM STF MOVE NUMAFR — 9
CHP 89 sTHFN GAME IS TIF.
BNE PLAYIL.P sKEFP PLAYING TF NOT.
LDA tOFF #SET ALL LIGHTS TO HI INKING.
STA LTMSKL
STA |. TMSKH
FNE [WY #KEEP THEM SLTINKING A UHIIF.

WIN CMP #12 SCOMPUTER WIN?
BEQ INTIN OIF YES» 1.Q. DOWN.

Fig. 11.30: Tic-Tac-Toe Program (Continued)

281

6502 GAMES

0103
0104
01038
0106
0107
01086
0109
0110
0111
0112
0113
0114
0115
0116
0117
0116
0119
0120
0121
0122
0123
0124
0123
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
91486
0149
0150
9151
0152
0153
0154
0155
0154
0157
oma
0159
0340
0161
0162
0143
0144
0165
0166
0167
0168
0149
0170
0171
0172
0173
0174

282

0251
02353
0255
0257
0259
02S5B
025D
025F
0261
02463
02465
0267
0269
0268
026E
0271
0273
0273
0273
0276
0278
0278
0270
0260
0263
0283
0267
026A
0286C
028€
0290
0292
0294
0297
029A
0290
029D
0290
0290
0290
029D
O29F
O2A1
02A3
02A5
0248
O2AA

O2AF.
OP AF
O>K1
O?7K3
O2RS
02k?
OOKA

02kC

O2RF

0O2C1

02c3
02Cc5

02C7

02c9
02CB

o2cD
O2CF
02D1
02D3

0204

02D4
o?De
0209
OODR

Oonn

AO
Ao

03

03

Ao

00
03
02

03

03

90

LDA #30 SLOAD FREQ. CONST FOR WIN TONF.
STA FREQ
LDA INTEL
CHP O80OF #I1.Q0. AS HIGH AS POSSIBLE?
BEQ GTMSK SIF YES» DON’T CHANGE IT.
INC INTEL #RAISE 1.2.
BNE GTMEK #00 FLASH ROW.

INTIN UDA SOF sh.0AN FREQ. CONST. FOR LOSE TONF.
STA FREQ
LDA INTFI. $T.Q- - 0?
REQ GTMEK #TF YFSe TON’) NECREMENTS
NEC INTEI-. 77.0. DOWN,

GTMSK IDA #0 SCLEAK ALI LENS.
STA FORTIA
STA PORT1iB
LDX RUFT1+Y sGET BIT IN ACCUM. 10 I TOHT
sLED CORRESPONDING TO 1ST SQUARF
bIN WINNING ROW.
JSR LEDLTR
LDX RWPT2rY sGET SECOND BIT.
JSK LEDLTR
LDX RWPTI,Y SGET 3RN HIT.
JSR LEDLTR
LDA FORTIA SMASH. ONT UNNFETCFSSARY BITS TN
AND LTHSKL sBLIMP. MASKS.
STA LTMSKL
LDA PORTIB
ANT! L-TMSKH
STA | THSKH
LDA t6FF ISET WIN/LOSE TONF NURATION,
STA DUR
LDA FREQ sGET FREQUENCY.
JSR TONE SPLAY TONNE.

BLY JSR DELAY SDELAY TO SHOW WIM OK TIF.
JMP RERTRT BSTART NEW GAME, DON’T CHNG. T.Q.

$
¢ &8kSKR GUBROUTINE “ANALYZES Skeere
#NOES A STATIC ANALYSIS OF GAME BOARIs ANI
#RETURNS WITH A MOVE IN REGISTER X.
i)
ANALYZ LDA #0 #SET MASK THAT MAKFS RANNDM MNUFS

STA ODDMSK SBE SIMFS To Oo.
LDA 608 §CHECK FOR WINNING MOVE FOR
inx @03 ICOMPUTFR.
JSR FINDMY
BNE. NONE sIF FOUND, RETURN.
LDA €92 sCHECK FOR WINNING MNYVE FAR
nx €03 SPL AYFR.
J8R FINIMY
RNE DONE STE FOUND. FFTURN-
1liA #04 3CAN COMPUTFR SFT A TRAP?
Lx #02
JSR FINDMY
BNF TONF SIF YFGe FIAY Tt.
ISR RANDOM #GET A FANDNM NUMEER...
AND #60F #.. ANT MAKE TT 0-15...
CMP INTEL sFOR USE AS STUPTD/SMART DETERMIMFR.
BEO OK STF ROTH ARF FONALs EKIF TEC)
ACS FPNTMY 7TF RNP INTER PLAY A TMH MOVE.

OK CX MOVNUM
Cex +1 FIST MAE?
BEQ RNDMY #IF YES* PLAY AMY SOLAFF.
CPX #4 54TH MOVE?
BNE TRAFCH. ¢TF NOTs CONTINUE.
LNX #5 s10AD TMDEX TA IST NEAG. FOWSIIM
TXA SLOAD StiM OF FOW HAVING F-C-F.
CMF ROWSUMe¥ CHECK TF tT BIAG. IS &-f-b
BEM ONURNP sIF YESe PLAY SIGE,
TNX ARHFCK NEYT DTAG. ROWS
CHP ROWSUM,Y
BFQ OMNRNE

TRAFCA LTA Ft! sCAN PLAYFR SFT A TRAE?

Fig. 11.50: Tic-Tac-Toe Program (Continued)

TIC-TAC-TOE

0175 O2DF A2 02 LDX @2
O76 O2E1 20 04 03 JSR FINDMY
0177 O2E4 DO 1D BNE DONE SIF YFSs PLAY FILOCK.
0176 O2E4& Aé 1C (-DX% GMBRD+4 §TS CENTER
0179 O2E8 bo 08 BNE. RNDAV sOLCUPTRD®
0180 O2EA A2 OS I-DX #5 NO: PLAY TT.
0161 O2EC DO 15 BNE MONE
01862 O2EE Ag O01 ODDRND IDA #1 *8ET ODBMASK TO 1> SC
0183 O2FO 65 40 STA ODDASK SMOVE WILL BE A SIDE.
0184 02F2 20 9A 00 RNDMY JSR RANIIOM sGET RANDOM ® FOR MOVE.
0185 O2FS 29 OF ANI! @60F *MAKE IT 0-15.
0166 O2F7 OS 40 ORA ODDMSK #HAKE ODN ¢ TF CORMER MEEGED,
0167 O2F9 C9 09 CMF e@9 sNUMBER TNO HIGH?
0166 O2FB BO FS RCS RNDMY SIF YESe GET ANOTHER.
0189 O2FD AA TAX
0190 O2FE BS 18 LDA GMBRI s+ xX SSFACE OCCUPIED?
0191 O300 ho FO RNF RNDMY 3IF YES* GET ANOTHER MOVE.
0192 0302 €E8 TNX * INCREMENT % TO MATCH OUTPUT OF F tepeaate
0193 0303 60 DONE. RIS SRETURN W/ MOVE TM ¥.
0194 0304 ;
0195 0304 6 &RERKK SUBROUTINE °FIND MOVE’ verere
0196 0304 sFINDS A SQUARE MEFTVING SPECTFICATIONS
0197 0304 *PASSED IN IN A AND X,
0198 0304 STNDEX REGISTER X CONTATMNE
0199 0304 sMASK THAT? WHFN OR’FD WITH
0200 0304 sNUMBER OF TIMFS A SQUARE FITS ROWS WITH
0201 0304 sROWSUM IN ACCUM.» MUST YIELD A ONE
0202 0304 sFOR SQUARE TO QUALIFY.
0203 0304 i]
0204 0304 86 39 FINDMY STX TEMP2 #SAUVE FFGISTERS.
0205 03046 83 38 STA TEMP!
0206 0308 AP? 00 LDA #0 sClEAR SQUARE STATUS FEGISTERS.
0207 O30A AO 08 LpY #6
0208 O30C 99 21 00 CLRLP STA SQSTAT?Y
0209 O30F 986 DEY
0210 O310 10 FA BPL CLRLP
0211 0312 AO 07 LDY #7 HLONP 7%
0212 0314 AS 38 CHENLP UDA TEMP1 IDOES ROWSUM
O213 03146 DY 2A 00 CMP ROWSUH?Y #MATCH PARAMETER?

0214 0319 DO OF BNE. NOCHEK eIF NOT: TRY NEXT.
0215 O31B Bé 00 LOX RWPT1sY #CHECK 1ST SAUARE IM ROW.
0216 031D 20 39 03 JSR CNTSUB SINCREMENTITS STATUSIF I7°S EMPTY.
0217 0320 Bé 08 LDX RWPT27Y IDN ONT SAUARE.
0218 0322 20 39 03 JSR CNTSUB
0219 0325 B86 10 LDX RWPT3rY sAND THIRD.
0220 0327 20 39 03 JSF CNTSUB
0221 O32A 88 NOCHEK DEY STRY NEXT ROW.
0222 O32B 10 E7 RPL CHEKLP
0223 O32R A2 OF LDX ¢9
0224 O32F AS 39 FNMTCH LDA TEMP2 'LOAD PARAMETER...
0225 0331 35 20 ANT SQSTAT-29X FCEQUARE EIATUE SAND EPARAM YO?
0226 0333 DO O03 BNE FOUND SIF YESe PLAY X AG MOWF.
0227 0335 CA DEX *DECREMENT AND TRY MEXT EQSTAT.
0228 0336 DO F7 BNE FNMTCH
0229 O338 60 FOUND RTS
0230 0339 §
0231 90339 § KEKEER SUBROUTINE ‘“COUNTSUB’ ¢eensY
0232 0339 sINCREMENTS SQSTAT OF EMPTY SQUARES.
0233 0339 '
0234 0339 BS 18 CNTSUB LIA GHBRD:X §GET SQUARE.
0235 O33B DO 02 BNE NOCNT tIF FULLe SKIP.
0236 O33D Fé 271 INC SOSTAT FX + INCREMENT SQSTAT
0237 O33F 40 NOCNT RTS Ss DONE.
0238 0340 5
0239 0340 6 Bkekee SUBROUTINE ‘UPIATE’ xeentre
0240 0340 SPLAYS MOVE BY STORING CODE PASSED IM IN ACCUM.
0241 0340 #AT SQUARE SPECIFIED BY X REG.
0242 0340 #ALSO LIGHTS/SETS BLINKING PROPER LEDs
0243 0340 sAND COMPUTES ROWSUMS.
0244 0340 5
0245 0340 CA UPDATE DEX #DECREMENT MOVE TO MATCH THDEXING
0246 0341 95 18 STA GMBRD»X SPLAY MOVE.

Fig. 11.50: Tic-Tec-Toe Progrem (Continued)

03

03

00

00

00

00

Fig. 11.30: Tic-Tac-Toe Program (Continued)

& €$0%
BEQ NOBLNK
JSR LIGHT

‘TO LEN TO BE SET TO BLINKING.
ORA LTMSKI. #PLACE BIT- IN BLINK MAGES.

ICOMPITER’S MOVE?

STA LTHMSKI
RCC NOBLAK SIF C£-O- DON’T SET PIT 9.
LDA #0) #SET BYY 9 TO BLINKING.
STA LTMSKH

MOBLNAK JSR LEDLTR PLIGHT LEP.
LOX ¢7 SLCOF 10 COMPUTE ROWSUMS.

ADHROW CLEC
LDY RWPT1,%
LDA GMBRD:Y
LDY RUFT2,%
ADC GMBRDrY
LDY RWETIrX
ADC GMBRDrY
STA ROWSUM,X

sPREFAPE FOR ANDITIAN,
SRET FIRET SQUARE APRESS.
SGET COMTENTS OF SMUARE.
FADD SECOND SQCUARF IN FOU,

PARD FINAL SQUARE.

SSAVE ROWS!IM

BPL ADDROW *GET NEXT ROWSIM.

3
+ MEEKKR SURROUTINE ‘LEN LIGHTER’ eerrrr
sGIVEN AN ARGUMENT IN X% REG, LIGHTS
SLED (0-8) CORRESFOHNING TO THAT ARGH eT

i

LEDLTR JSR LIGHT
ORA PORTIA
STA POARTIN

st [GHT LED,

BCC LTRIIN 7TF LEM @9 MOT TO RREORITT:
LDA #3 #1.IGHT ! FD #9
STA PORTIP

'TRKAN RTS + DONE.
U
3 Seeeee SUBROUTINE “RU AYER’S MAE! verte

iGETS PLAYER’S MONVF- CHECKS FOR ERROFS.
'
PLRMY LDA #$A87 SMAKE SHOFPT RFEP TP STR!

STA DUR FREYROASH FNPUT MEP PET.

LDA #914
JSR TONE

KEYIN JSR GETKEY 76ET MANVE.,
CMP #10 HOUT AF RAUNT?
RCS KEVIN STF YES: GET AMOTHER

TAX
REQ KFYIN fF MOVE - OF FT ANOTHER
t.DA GMRRD-1,% sSMUINRE FMETY? :
BNE. Kt YTM tthe NOT. TRY ACAIM

RTS
;
§ ¥FEKTE SUBROUTINE ‘LIGHT’ terete
sSHIFTG A ONE BIT LEFT IM ACCUMULATOR IN
#A POSTTION CORRESPONDING 10 THE
sARGUMENT PASSED TM TH REG. X. TF “er

SCARRY I6 CET.
'
1! 3GHT STY TEMP1 SSAVF Y.

LnA #0 CLEAR ACCUM FOR CUFT.

SEC (BET BIT TO KE CHTETEO
GHIFT ROL A sSHIFT BIT IFT.

DEX
RPL SHIFT “COUNT HOWM AMI: 1 oe.

1.DX TEMP1 sRFSTONMF ¥.

KIS

*

+ ¥RRVEH SURKOUTINE “RFI AY’ freee?

'

MWlAY bY 6FF
met LY ttFF
nM? PM TUR SWASTE T1Mt

ROR LOR

s1F YES: DON’T SET LED BLINKING.
FPLAYER’S MOVE SGETAIY COSSESPONDING

PORT PIT I! CORRECT SNMSry yee

0319
0320
0321
0322
0323
0324
0323
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0336
0357
0358
0359
0360
0361
0362
0363
0364
03465
03646
0367
.0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
03680
0381
0382
0383
0384
0385
0386
0387
0388
0369
0390

O3AC
O3AD
OJAF
O3BO0
O3B2
0353
O3B3
O3B3
O3B3
O3B3
03B3
03B4
03B7
O3B9
o3BC
O3BF
03C1
03C4
03C7
o3ce
03C?
03C9
03C9
03C9
03C9
0050
0050
0052
0054
0036
0037
0059
ooSc
OOSE
0060
0062
0045
0066
0068
0062
0070
0073
0073
0073
0076
0076
0078
007k
007D
0080
0082
0085
0087
008A
00sec
OosF
0091
0094
0097
0098
0099
009A
009A
009A
007A
009A
009A
0098
009D
OO9F
OOAL
00A3

cA
bo
868
DO
60

48
AD
4s
6D
AD
4s
8D
AD
68
40

F9

F4

ot
an
01
00
3C
00
04

33
36
37
32
04

AO

Ao
Ao
Ac

AO
AO

3]

Aé

Ad

AO

Ao

AO

AO
AO

TIC-TAC-TOE

DEX
HWE DL2
DEY
PNE DLJ
RTS

$
§ BEREKE INTERRUPT HANDLING ROUTINE wtrerry
sAT EACH INTERRUPT? 1EDS WHOSE POSTTIONS IM
)THE BLINK MASKS HAVE QNES IN THEM ARF TURNED
SON IF OFF» OFF IF ON.
INTVEC PHA

LDA PORTIA
EOR LTMSKI.
STA PORTIA
LBA FPORTIB
FOR LTHSRH
STA PORTIS
fA TWH
FLA
RTT

3
$ €RRRKR SUBROUTINE ‘TMITIALEZE’ verery
BINITIALIZES PRORRAM.

& = $50
5
INIT LDA #0 SCLFAR CTORAGFS.

LOX BCLREMD-CLARST
CLRALL STA CLRET?X

DEX
RPL CILRALL
(DA Tl §GET RANDOM MUMPER SEMERATOR SEEN.
STA RNDSCR+1
STA RNTSCR+A
LDA &6FF

STA DMRIA ?SFT ut 1°O
STA DDRIE
STA DNRIE
LDA tO FCLEAR LENS
STA PARTIA
STA FORTIB

sSET UP TIMER FOR INTERRUPTS WHICH
SRLINK LEDS.

JSR ACCESS sUMPROTECT SYM-1 SYSTEM MEMORY TO
ISET UP TNTERRUPT VECTORS.

LDA #<INTNEC FLOAD LOW BYTE INTERRUPT VECTOR.
STA TRONL #BTQORE AT INTERRUPT VECTOR LOCATION,
LDA @>INTVEC *LOAD HI BYTF IMTERRUPT VECTOR.
STA YRQVH sETORE.
LDA #97F SCLEAR INTERRUPT ENABILE REGISTER.
STA IER
LDA #$CO0 SENARLE TIMER! INTERRUPT.
STA TER
LDA #840 SENABLE TIMER) IN FREE-RUM MODE.
STA ACR
LDA @¢SOFF
STA TILL §SET LOW LATCH ON TIMER 1.
STA TiCH bSET HIGHLATCHE START TNTFRRUPT COUNT
CLI SENARIE INTERRUFIS.
cin
RTS

3
§ RBEREE SUBROUTINE ‘RANDOM’ Sakeee
IRANDOM NUMBER GENERATOR: RETURNS NEW
SRANDOM NUMBER [N ACCUMULATOR.
5
RANDOM SEC

LDA RNDSCR+I1
ANC RNNSCRt 4
ALC RNDSBCR+S
STA RNNSCR
LOX #4

Fig. 11.50: Tic-Tac-Toe Program (Continued)

6502 GAMES

0391 OAS RWNTLe LDA RNIBCR>X
0392 00A7 STA RNISCR+1 2X
O393 0A DEX
0394 O0AA BPL RNDLF
0393 Od0AC RTS
0396 OOAD 6
0397 OOAD ¢ @8Seek SUBROUTINE ‘TONE’ &keere
0396 OOAD SGENERATES A TONE? NO. OF 1/77 CYCIES
0399 OOAD sMUST BE IN DURs AND
0400 OOAD SWAVELENGTH CONST. IN ACCUMULATOR.
0401 OOAD 6
0402 O0OAD TONE STA FREQ
0403 OOAF LDA ¢6FF
0404 OOB1 STA PORTSB
0405 0084 LDA #00
0406 0086 LDX DUR
0407 0088 LDY FREQ
0408 OOBA DEY
0409 OOBB cL_ec
0410 OOBC BCC #+2
0411 OGOOBE BNE FLt
0412 0OO0Cco FOR OSFF
0413 00C2 STA PORT3B
0414 00CS DEX
0415 00C6 BNE Fi?
04146 00Ce RTS
0417 OOC? ~END

SYMBOL TABLE

SYMBOL VALUE

ACCESS 6BB6 ACR ADDROW ANAL Y7
CHEKLP 0314 CLRALL CLREND CILLRLP
CLRST 00186 CNTSUB COMPHY DDRiLA
DDR1B A002 DDR3B DEL.AY DtL1
DL2 03A8 DLY DONE BUR
FINDMV 0304 FL1 FL2 FNMTCH
FOUND 0338 FREO GETKEY GMBRD
GTMSK 0269 IER INIT INTDN
INTEL 0041 INTVEC IRGVH TRAVEL
KEVIN 0389 LEDLTR LIGHT LTMSKH
LTM6KL 0o3D LTRDON MOVNUM NOBLNK

O32A NOCNT ODDMSK ODDRND
02C7 PLAYLP PLAYR FLAMY
A001 PORTIB PORTSBE RANDOM
0204 RNDLP RNDMV KNDSCR
002A RWPT1 RUPTO RWPTS
039D SQSTAT START TICH
A004 TEMP1 TEMP? TONF.
O2DD TSTLP UPDATE WIN

WINTST 0235
END OF ASGEMBLY

<

Fig. 11.30: Tie-Tac-Toe Program (Continued)

APPENDIX A

Add with carry
Logical AND
Arithmetic shift left
Branch if carry clear
Branch if carry set
Branch if result = 0
Test bit
Branch if minus
Branch if not equal to 0
Branch if plus
Break
Branch if overflow clear

Branch if overflow set
Clear carry
Clear decimal flag
Clear interrupt disable
Clear overflow
Compare to accumulator
Compare to X
Compare to Y
Decrement memory
Decrement X
Decrement Y
Exclusive OR
Increment memory
Increment X
Increment Y
Jump

JSR

LDX

NOP

PHP

PLP
ROL
ROR

6502 INSTRUCTIONS—ALPHABETIC

Jump to subroutine
Load accumulator
Load X
Load Y
Logical shift right
No operation
Logical OR
Push A
Push P status
Pull A
Pull P status
Rotate left
Rotate right
Return from interrupt
Return from subroutine
Subtract with carry
Set carry
Set decimal
Set interrupt disable
Store accumulator
Store X
Store Y
Transfer A to X
Transfer A to Y
Transfer SP to X
Transfer X to A
Transfer X to SP
Transfer Y to A

6502 GAMES

APPENDIX B

6502—INSTRUCTION SET: HEX AND TIMING

Cc
Cc
Cc
o
0
0
€
|

l

Ld
PX

Py

EC
ex
tv
oR

NC

oc

48

BA

8A
9A
98

(t) Add ! to n if crossing poge boundory

66
ua

APPENDIX

eROcessoe@

STATUS CODES

(2) Add 210 nif branch withun page

Add 3 to nif branch to onother page

6502 GAMES

INDEX

ACCESS, 170 Decision tables, 225

Ad hoc algorithm, 239 DELAY, 56, 132, 211, 278
Ad hoc programming, 238 Delay constant, 103

Analytical algorithm, 225 Diagonal trap, 244

ANALYZE, 263 Diagonals, 266

Array, 122 — DISPLAY, 118

Artificial intelligence, 224 DISPLY, 119

Assembler, 47 Do-nothing, 55

Assembly, 12 Draw, 222

Audio feedback, 163 Dual Counter, 92

Auxiliary Control Register, 174 Duration, 148

BEO, 154 DURTAB, 144

Binary number, 41 ECHO, 137

Blackjack, 189 Echo, 35

Blackjack Program, 212 Echo Program, 145

BLIN ESP Tester, 139

Blink masks, 175 EVAL, 118, 126, 153

BLINKER, 208 Evaluating the board, 225

Blinking, 274 Extra Sensory Perception, 139

Blinking LEDs, 261 FINDMV, 264, 269

Blip counter, 92 FINDMV flowchart, 270

Board analysis flowchart, 242 First move, 235

Bounce, 13 Free run, 198

Bracket-filtering, 150 Free-running, 198

Carry, 206 Free-running mode, 171, 256

Cassette recorder, 4 Frequencies, 25

CLI, 174 Frequency, 22, 261

CNTSUB, 55 Frequency and duration constants, 161

Complement, 73 Games Board, 2, 7

Complementation Table, 80 GETKEY, 13, 149

Computing the Status, 271 GETKEY Program, 17

Constant symbols, 47 GMBRD, 252

Counter, 65, 101 Heuristic strategy, 225

COUNTSUB, 273 Hexadecimal, 41

Current limiters, 11 Hexguess Program, 63

Decimal mode, 151 IER, 171

290

IFR, 171

Illegal key closure, 95

Index, 159
Indexed addressing, 37, 39, 122, 126

Initialization, 198

INITIALIZE, 279

Intelligence level, 252, 260

Interconnect, 4

Interrupt, 198, 252, 261

Interrupt Handler, 183, 211

Interrupt handling, 198, 279

Interrupt Registers, 174

Interrupt-enable register, 256

Interrupt-enabler, 171, 179, 256

IQ level, 245, 265

Jackpot, 100

JMP, 154

Key closure, 277

Keyboard, 7

Keyboard input routine, 13
Labels, 47

Latch, 65

LED #9, 123

LED Connection, 10

LEDs, 8

Levels of difficulty, 8

LIGHT, 118, 132, 157, 274, 278

LIGHTER, 276

LIGHTR, 207

LITE, 70, 182

Loop counter, 92

LOSE, 130

Magic Square, 73

MasterMind, 162

Middle C, 23

Mindbender, 162

Mindbender Program, 184

MOVE, 47

Multiplication, 122

Music Player, 20

Music Program, 31

Music theory, 23

Nested loop delay, 39

Nested loop design, 25

NOTAB, 144

Note duration, 159

Note frequency, 159

Note sequence, 139

Parameters, 149

INDEX

Parts, 11

Perfect square, 73

PLAY, 48, 53

PLAYEM, 37

Playing to the side, 24

PLAYIT, 30, 38

PLAYNOTE, 30

PLRMV, 277

Potential, 225

Power supply, 4

Programmable bracket, 101

Prompt, 42

Protected, 170

Protected area, 170

Pulse, duration, 171

RANDER, 210

RANDOM, 57, 135, 150, 159, 209

Random moves, 241

Random number, 54, 65, 78, 118, 267

Random number generator, 57, 118,

149

Random pattern, 73

Random move, 267

Recursion, 211

Repeat, 13

Resistors, 11

RNDSCR, 252

Row sequences, 251

Row-sum, 239, 271

SBC, 206

Scratch area, 57

Score, 107, 128

Score table, 107, 111, 112

SCORTB, 127

Seed, 118, 149
74154, 8

7416, 8
Shifting loop, 158

SHOW, 152

Side, 267

Simple tunes, 21

Siren, 100

Slot Machine, 99

Slot Machine Program, 113

Software filter, 175

Special decimal mode, 150

Spinner, 87

Spinner Program, 93

SQSTAT, 252

291

6502 GAMES

Square status, 269

Square wave, 22

Strategy, 225

SYM, 4

TICL, 6, 83

TIL-L, 65

Threat potential, 226

Tic-Tac-Toe, 218

Tic-Tac-Toe Flowchart, 248

Tic-Tac-Toe Program, 280

TIMER, 65

Timer, 65, 83, 198, 256

Timer 1, 175

TONE, 39, 70, 130, 135
Translate, 41

Translate Program, 49

Trap, 235, 239, 264, 267

Trap pattern, 241

Two-level loop, 211

Two-ply analysis, 237

Unprotect system, 198

UPDATE, 273

Value computation, 226

VIA, 8

VIA memory map, 66

Visual feedback, 163

WAIT, 98

Wheel pointer, 103, 120

WIN, 128

Win, 259

Win potential, 225

WINEND, 129

292

SYBEX BIBLIOGRAPHY

VIDEO COURSES

Microprocessors - 12 hours (Ref. VI)

Military Microprocessor Systems - 6 hours (Ref. V3)

Bit-Slice - 6 hours (Ref. V5)
Microprocessor Interfacing Techniques - 6 hours (Ref. V7)

AUDIO COURSES

Introduction to Microprocessors - 2’ hours (Ref. $1)

Programming Microprocessors - 2% hours (Ref. $2)

Designing a Microprocessor - 2% hours (Ref. $3)

Microprocessors - 12 hours (Ref. SB1)

Programming Microprocessors - 10 hours (Ref. $82)

Military Microprocessor Systems - 6 hours (Ref. S83)

Bit-Slice - 6 hours (Ref. SB5)

Industrial Microprocessor Systems - 4% hours (Ref. SB6)

Microprocessor Interfacing Techniques - 6 hours (Ref. S87)

Introduction to Personal Computing - 2% hours (Ref. B10)

REFERENCE TEXTS

Practical Pascal (Ref. C102)

Introduction to Personal and Business Computing (Ref. C200)
Microprocessors (Ref. C201)

The 6502 Series

Volume-1: Programming the 6502 (Ref. C202)
Volume-2: Programming Exercises for the 6502 (Ref. C203)
Volume-3: 6502 Applications Book (Ref. D302)

Volume-4: 6502 Games (Ref. G402)
Microprocessor Interfacing Techniques (Ref. C207)

Programming the Z8O (Ref. C280)

Programming the Z8OOO (Ref. C281)
CP/M Handbook - with MP/M (Ref. D300)
Intemational Microprocessor Dictionary - 10 languages (Ref. IMD)

Microprocessor Lexicon (Ref. X1)

Microprogrammed APL Implementation (Ref. Z10)

SOFTWARE

BAS 65™ 6502 Assembler in Microsoft BASIC (Ref. BAS 65)
8O80O Simulator for KIM - Cassette Tape or 5” Diskette (Ref. S658O-KIM)

8080 Simulator for APPLE - Cassette Tape or 5” Diskette (Ref. $6580-APL)

SELF-STUDY SYSTEM

Computeacher™ (Ref. CPT)
Games Board! (Ref. CPTG)

FOR A COMPLETE CATALOGUE
OF OUR PUBLICATIONS

U.S.A
2344 Sixth Street

Berkeley, California 94710
Tel: (415) 848-8233

Telex: 336311

EUROPE
18 rue Planchat

75020 Paris, France
Tel: (1) 3703275

Telex: 211801

2

6502 GAMES

Learn how to play sophisticated games in the powerful 6502 assembly-level

language—and learn the assembly language as well.

6502 Games lets you play the ten games shown below, but it does much more:

it teaches assembly language programming in a straightforward and enjoyable

manner. You will learn the techniques of algorithm design and data structures

so you can program your 6502 not only to play games but also to perform a

variety of tasks, from home applications to industrial controls.

With a minimum of external hardware, you will be able to play:

Magic Squares Slot Machine Music

Hexguess Spinner Translate

Echo Mindbender Blackjack
Tic-Tac-Toe

THE AUTHOR

Dr. Rodnay Zaks has taught courses on programming and microprocessors

to several thousand people worldwide. He received his Ph.D. in Computer

Science from the University of California, Berkeley, developed a micropro-

grammed APL implementation, and worked in Silicon Valley, where he

pioneered the use of microprocessors in industrial applications. He has authored

several best-selling books on microcomputers, now available in ten languages.
This book, like the others in the series, is based on his technical and teaching

experience.

ISBN 0-89588-023-9

ae

$3

6
5
0
2

G
A
M
E
S

<p
G402

