

The Blacksburg Continuing Education™ Series

The Blacksburg Continuing Education SeriesT
" of books provide a Laboratory-or experiment

oriented approach to electronic topics_ Present and forthcoming titles in this series include:

• Circuit Design Problems for the TRS-80

• DBUG: An 8080 Interpretive Debugger

• Design of Active Filters, With Experiments

• Design of Op-Amp Circuits, With Experiments

• Design of Phase-Locked Loop Circuits, With Experiments

• Design of Transistor Circuits, With Experiments

• Design of VMOS Circuits, With Experiments

• The 8080A Bugbook®: Microcomputer Interfacing and Programming

• 8080/8085 Software Design (2 Volumes)

• 8085A Cookbook

• 555 Timer Applications Sourcebook, With Experiments

• Guide to CMOS Basics, Circuits, & Experiments

• How to Program and Interface the 6800

• Interfacing and Scientific Data Communications Experiments

• Introductory Experiments in Digital Electronics and 80BOA Microcomputer Programming

and Interfacing (2 Volumes)

• Logic & Memory Experiments Using TTL Integrated Circuits (2 Volumes)

• Microcomputer-Analog Converter Software and Hardware Interfacing

• Microcomputer Interfacing With the B255 PPI Chip

• NCR Basic Electronics Course, With Experiments

• NCR Data Communications Concepts

• NCR Data Processing Concepts Course

• NCR EDP Concepts Course

• Programming and Interfacing the 6502, With Experiments

• 6B01, 6B701, and 6B03 Microcomputer Programming and Interfacing

• 6502 Software Design

• TEA: An 80BO/B085 Co-Resident Editor/Assembler

• TRS-80 Interfacing (2 Volumes)

• Z-BO Microprocessor Programming & Interfacing (2 Volumes)

In most cases, these books provide both text material and experiments, which permit one to

demonstrate and explore the concepts that are covered in the book_ These books remain among

the very few that provide step-by-step instructions concerning how to learn basic electronic con

cepts, wire actual circuits, test microcomputer interfaces, and program computers based on popu

lar microprocessor chips_ We have found that the books are very useful to the electronic novice

who desires to join the "electronics revolution:' with minimum time and eflort_

Additional information about the "Blocksburg Group" is presented inside the rear cover_

Jonathan A _ Titus, Christopher A. Titus, and David G_ Larsen

"The Blacksburg Group"

Bug symbal trademark Nanatran, Inc., Blacksburg, VA 24060
Bugbaak is a registered Trademark af E & L Instruments, Inc ., Derby, CT 06418

6502 Software Design

By

Leo J. Scanlon

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright© 1980 by Leo J. Scanlon

FIRST EDITION
SECOND PRINTING-1980

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every preca11tio11 has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-21656-6
Library of Congress Catalog Carel Number: 79-67131

Printed in the United States of Am.erica.

Preface

The 6502 integrated circuit is a very popular microprocessor. It
is currently used in general-purpose microcomputers, video games,
and personal computers such as the Apple and the Pet 2001. Many
of these microcomputers are programmed in the BASIC" program
ming language, which makes it very easy to write programs that
will perform complex calculations or play games. However, the
BASIC language also has its disadvantages. It is relatively slow
(only a few hundred statements can be executed every second) and
it is not very suitable for controlling peripheral devices. Therefore,
if you have a high-speed data-processing or peripheral-control re
quirement, assembly language programs will probably have to be
written.

Once you have decided that assembly language is the language
to use, you will need a 6502-based microcomputer that you can use
to generate and test your programs. The microcomputer that has
been used as the basis for this book is the AIM 65. It is manufac
tured by Rockwell International. The AIM 65 has a 54-key keyboard,
a 20-character alphanumeric LED display, a 20-column thermal
printer, a teletypewriter I/O port and two audio cassette I/0 ports.
As such, it is a very powerful, inexpensive microcomputer system.
Even though we have used this microcomputer in our examples,
most of the programs listed in this book can be used on all 6502-
based microcomputers. However, they may have to be slightly
altered to reflect the memory and I/O devices that are wired to
your microcomputer.

This book has nine chapters. Chapter 1 discusses the character
istics of the 6502 integrated circuit and the AIM 65 microcomputer.

0 BASIC is a registered trademark of the trustees of Dartmouth College.

6502 SOFTWARE DESIGN

This includes a description of the various registers contained within
the 6502 integrated circuit. These registers are important because
you will use them time and time again in your programming. Chap
ter 2 presents descriptions of the instructions that the 6502 inte
grated circuit can actually execute. However, you will not find
long detailed programs in this chapter, since you will not have
enough familiarity with all of the important instructions to under
stand long complex programs. Then, Chapter 3 discusses subrou
tines, which are instruction sequences that are designed to be used
at several places in a program.

Chapters 4 through 6 present techniques needed to process struc
tured data (such as lists and tables), perform mathematical opera
tions, and convert data from one number base to another. Finally,
Chapters 7 through 9 describe how the 6502 instructions can be
used to transfer information between the 6502 integrated circuit
and the peripheral input/ output devices.

This chapter arrangement, starting with very fundamental ma
terial and gradually introducing more complex topics, is intended
to increase your understanding of the 6502 integrated circuit in an
orderly manner.

LEO J. SCANLON

This book is dedicated to my wife, Pat,
and my sons, Roger and Ryan.

Acknowledgments

On a personal note, it is only proper to mention that although the
only name on the title page is that of the author, this book reflects
the efforts of many people. In particular, the author is indebted to
Dr. Christopher A. Titus of Tychon, Inc., the editor (and reader's
advocate) for this book, for his keen insight and many constructive
suggestions. Special thanks must also go to Dr. Lance A. Leventhal
of Emulative Systems, who gave of his valuable time with infectious
enthusiasm. Finally, the author owes thanks to many dedicated peo
ple at Rockwell International in Anaheim, California, with particular
appreciation for the management support of Bob Anslow and Scotty
Maxwell and the technical contributions of Gordon Smith, Dick
Anderson and Leo Pardo.

Contents

LIST OF PROGRAM EXAMPLES

CHAPTER 1

AN INTRODUCTION TO THE 6502 MICROPROCESSOR

Why the 6502?-The 6502 Microprocessor-Machine Code and As
sembly Language-The AIM 65 Microcomputer-Conventions Used
in This Book-References

CHAPTER 2

THE 6502 MICROPROCESSOR INSTRUCTION SET

Summary of the Instruction Set-How This Chapter Is Arranged-
6502 Addressing Modes-Load and Store Instructions-Arithmetic
Instructions - Increment and Decrement Instructions - Logical In
structions-Jump, Branch, Compare, and Bit-Test Instructions-Shift
and Rotate Instructions-Register Transfer Instructions-Stack In
structions-The No Operation Instruction-Summary

CHAPTER 3

SUBROUTINES

Subroutine Instructions-Subroutine Nesting-Moving Data in Mem
ory-Time-Delay Subroutines-Summary

9

13

27

75

CONTENTS

CHAPTER 4

LISTS AND LOOK-UP TABLES .

Unordered Lists-A Simple Sorting Technique-Ordered Lists-Look
Up Tables-Jump Tables-References

CHAPTER 5

MATHEMATICAL ROUTINES

Integer Addition - Integer Subtraction - Integer Multiplication -
Integer Division-BCD Mathematics-Floating-Point Mathematics
Square Root

CHAPTER 6

NUMBER-BASE CONVERSION .

Two Simple 1/0 Devices-Two-Digit ASCII-Based Hexadecimal-to
Binary Conversion-An 8-Bit Binary-to-ASCII-Based Hexadecimal
Conversion-Three-Digit ASCII-Based Decimal-to-Binary Conversion
- Five-Digit ASCII-Based Decimal-to-Binary Conversion - An 8-Bit
Binary-to-ASCII-Based Decimal Conversion - A 16-Bit Binary-to
ASCII-Based Decimal Conversion-Two-Digit ASCII-Based Decimal
to-BCD Conversion-Two-Digit BCD-to-ASCII-Based Decimal Con
version-Leading Zero Suppression-Summary

CHAPTER 7

INTERRUPTS AND RESETS .

The 6502 Microprocessor Interrupts-Interrupt Request (IRQ)-Re
turn From Interrupt (RTI) Instruction-Summary of IRQ-Gener
ated Interrupts-N onmaskable Interrupt (NMI)-The Break (BRK)
Instruction-AIM 65 Breakpoints-Reset Considerations-Summary
References

CHAPTER 8

GENERAL-PURPOSE INPUT I OUTPUT DEVICES

The 6520 Peripheral Interface Adapter (PIA)-PIA Register Addres
sing-PIA Control Registers-Configuring the PIA-Data Transfers
Using a PIA-The 6522 Versatile Interface Adapter (VIA)-VIA
Register Addressing-Parallel Data Transfers Using a VIA-VIA

92

114

140

164

180

6502 SOFTWARE DESIGN

Peripheral Control Register (PCR)-VIA Interrupt Requests-VIA
Auxiliary Control Reginster (ACR)-VIA Timers-A 24-Hour Clock
for the AIM 65-VIA Shift Register-References

CHAPTER 9

MICROCOMPUTER INPUT I OUTPUT

The 6502 Microprocessor and Simple 110 Devices-Another Simple
Input Device-The 6502 Microprocessor and Keyboards-Unencoded
Keyboards-Encoded Keyboards-Interfacing With Teletypewriters
-The 6502 Microprocessor and Seven-Segment LED Displays
Summary-References

APPENDIX A

219

ASCII CHARACTER SET (7-B1T CooE) . 244

APPENDIX B

SUMMARY OF THE 6502 INSTRUCTION SET . 245

INDEX . 26.5

List of Program Examples

CHAPTER 1

1-1 A Typical 6502 Program, in Binary and Hexadecimal
Notation 22

CHAPTER 2

2-1 A Double-Precision Addition Routine 46
2-2 A Double-Precision Subtraction Routine 47
2-3 A Six-Byte Memory Move Routine . 49
2-4 Testing Two Locations for Equality 60
2-5 Arranging Two Numbers in Order of Value 60
2-6 A Three-Way Decision Routine 60
2-7 A Multiple-Byte Move Routine . 61
2-8 Waiting for a Memory Bit to Become Logic 0 62
2-9 Waiting for Any of Three Memory Bits to Become

Logic 0 63
2-10 A Left-Shift Routine for Multiple-Precision

Unsigned Numbers 67
2-11 A Left-Shift Routine for Multiple-Precision

Signed Numbers 67
2-12 A Right-Shift Routine for Multiple-Precision

Signed Numbers 69
2-13 Accessing Nonconsecutive Elements in a List . 69
2-14 Initializing the Stack Pointer to $FF 71
2-15 Saving All Registers on the Stack 73

9

10 6502 SOFTWARE DESIGN

CHAPTER 3

3-1 The Subroutine Call and Return Sequence 78
3-2 Subroutine Nesting 80
3-3 A Data-Block Move Subroutine . 82
3-4 A Time-Delay Subroutine 85
3-5 A 30-Second Time-Delay Subroutine 88
3-6 A Simplified 30-Second Time-Delay Subroutine 89
3-7 A One-Minute Time-Delay Subroutine 89
3-8 A One-Hour Time-Delay Subroutine That Calls the

ONEMIN Subroutine 90

CHAPTER 4

4-1 Adding an Entry to an Unordered List 93
4-2 Deleting an Entry From an Unordered List 95
4-3 Find the Minimum and \1aximum Values in an

Unordered List . 96
4-4 An 8-Bit Bubble-Sort Subroutine 98
4-5 A 16-Bit Bubble-Sort Subroutine 99
4-6 An 8-Bit Binary Search Subroutine 103
4-7 Adding an Element to an Ordered List 105
4-8 Deleting an Element From an Ordered List 107
4-9 Conversion From Degrees Celsius to Degrees

Fahrenheit 110
4-10 A BCD-to-Seven-Segment Conversion Subroutine 110
4-11 A Multiuser Selection Subroutine 112

CHAPTER 5

5-1 A Multiple-Precision Addition Subroutine 115
5-2 A Multiple-Precision Subtraction Subroutine 115
5-3 An 8-Bit by 8-Bit Unsigned Multiplication

Subroutine 120
5-4 Integer Multiplication With a Negative Multiplier 120
5-5 An 8-Bit by 8-Bit Signed Multiplication Subroutine 122
5-6 A 16-Bit by 16-Bit Multiplication Subroutine

(With 32-Bit Result) 124
5-7 Binary Division 126
5-8 An 8-Bit by 8-Bit Unsigned Division Subroutine 127
5-9 An 8-Bit by 8-Bit Signed Division Subroutine . 130
5-10 A 16-Bit by 16-Bit Unsigned Division Subroutine 132
5-11 A Multiple-Precision BCD Addition Subroutine . 134

LIST OF PROGRAM EXAMPLES 11

5-12 Obtaining a Square Root by Using Odd-Number
Subtractions 138

5-13 A Simple 8-Bit Square Root Subroutine 138
5-14 A Simple 16-Bit Square Root Subroutine 139

CHAPTER 6

6-1 A Simple Keyboard Input Subroutine 141
6-2 A Simple Printer Output Subroutine 142
6-3 An ASCII-Based Hexadecimal-to-Binary

Conversion Subroutine 144
6-4 The AIM 65 Version of the AH2B Subroutine 145
6-5 An 8-Bit Binary-to-ASCII-Based Hexadecimal

Conversion Subroutine 146
6-6 A Three-Digit ASCII-Based Decimal-to-Binary

Conversion Subroutine 148
6-7 A Five-Digit ASCII-Based Decimal-to-Binary

Conversion Subroutine 152
6-8 An 8-Bit Binary-to-ASCII-Based Decimal

Conversion Subroutine 154
6-9 A 16-Bit Binary-to-ASCII-Based Decimal

Conversion Subroutine 156
6-10 An ASCII-Based Decimal-to-BCD Conversion

Subroutine 158
6-11 A BCD-to-ASCII-Based Decimal Conversion

Subroutine 159
6-12 A 16-Bit Binary-to-ASCII-Based Decimal Conversion

Subroutine, With Leading Zero Suppression 161

CHAPTER 7

7-1 Interrupt Polling Sequence 169
7-2 Determining Whether BRK or IRQ Caused an

Interrupt . 173
7-.3 Using BRK to Overlay a Three-Byte Instruction 174
7-4 A 6502 Microprocessor Reset Program . 177

CHAPTER 8

8-1 Clearing PIA Status Bits After a Write . 193
8-2 A Simple VIA Input Routine 198

-----------··--·---- -------------

12 6502 SOFTWARE DESIGN

8-3 A Simple VIA Output Routine . 198
8-4 An Input Data Transfer With One Control Signal 202
8-5 An Output Data Transfer With One Control Signal 202
8-6 An Input Data Transfer With Handshaking 202
8-7 An Input Data Transfer That Produces a

Data-Accepted Pulse 203
8-8 Interrupt Polling Sequence for a VIA 205
8-9 A I-Millisecond Time Interval Using Timer 2 209
8-10 Pulse Counting Using Timer 2 . 211
8-11 A I-Millisecond Time Interval Using Timer I . 209
8-I2 A 6-Millisecond Time Interval With I-Millisecond

Pulses on PB7 2I3
8-I3 A 24-Hour Clock for the AIM 65 2I6

CHAPTER 9

9-I Read Switch Settings and Display Them on LEDs 223
9-2 Check for Closure of Push-Button Switch . 223
9-3 Counting Push-Button Switch Closures, With

De bouncing 225
9-4 Waiting for a Key to be Pressed 229
9-5 Routine to Identify a Key 23I
9-6 Reading Data From an Encoded Keyboard 232
9-7 A Teletypewriter Receive Subroutine . 235
9-8 A Teletypewriter Transmit Subroutine . 236
9-9 A Seven-Segment Display Conversion and Output

Subroutine 239
9-IO A Two-Digit Seven-Segment Display Subroutine for

Use With Hardware Decoders 239
9-11 The Software for a Multiplexed 10-Digit Seven-

Segment Display 242

An Introduction to the
6502 Microprocessor

1

The purpose of this chapter is to introduce the 6502 microproc
essor to those readers who are unfamiliar with its operation. This
introduction is sufficiently detailed so that you will gain an under
standing of the 6502 integrated circuit and how it functions in a
computer system.

WHY THE 6502?

To understand where the 6502 fits in the microprocessor spec
trum, a brief look must be taken at the evolution of 8-bit micro
processors. The first 8-bit microprocessor to make a significant im
pact on the industry was the 8008 produced by Intel Corporation.
Fabricated with p-channel metal-oxide semiconductor (PMOS)
technology, the 8008 is considered the foremost "first-generation"
8-bit microprocessor. The 8008 was designed with a calculatorlike
architecture, and had six scratch-pad registers, an internal stack
register, and special instructions to perform input and output. In
1973, Intel Corporation introduced a "second-generation," silicon
gate, NMOS version of the 8008 microprocessor, and called it the
8080.

The 8080 is essentially an improved 8008, with more addressing,
more instructions, and faster instruction times. The internal organi
zation is better too, but the overall 8008 architectural philosophy is
maintained in the 8080. The 8080 is historically the second-genera
tion de facto standard in microprocessors; the circuit that many
people think of first when microcomputers are mentioned. Intel
Corporation got a head start on the industry with the 8008, and

13

14 6502 SOFTWARE DESIGN

preserved it with the 8080 through the early 1970s. Until Motorola,
Inc. introduced the 6800 microprocessor in 1974, Intel Corporation
had virtually no competition.

Motorola, Inc. saw the tremendous microprocessor market poten
tial evolving, and decided to make an entry of their own. They had
essentially two ways to go: (1) they could challenge Intel Corpo
ration on their own ground, by producing a new and improved
8080 (as Zilog, Inc. did in 1976 with the Z80), or (2) they could
ignore that approach and design a more advanced microprocessor.
Realizing that it would be extremely difficult to establish a strong
market position (not to mention a leading position) by going after
Intel Corporation with a "me too" product, Motorola, Inc. decided
to challenge with a superior product.

The resulting product, the 6800 microprocessor, was organized
along the lines of classic computer architectural concepts, with
input and output devices accessed as memory. In the 6800 micro
processor, the load and store instructions used to access memory
are the same instructions used to perform input (read) and output
(write) operations on peripheral devices. This technique, called
memory-mapped I/0, eliminates the performance bottlenecks that
are associated with having to pass all the data handling and manip
ulation through a working register, as in the register-based architec
ture of the 8080.

The preceding brief overview was necessary in order to set the
stage for introducing our subject microprocessor, the 6502. The
6502 device was designed by eight ex-employees of Motorola who
saw that advances in processes, coupled with a few architectural
and software changes, could result in a potentially highly market
able 6800-like microprocessor. They joined a calculator-chip com
pany called MOS Technology.

The MOS Technology design team had two objectives in mind
for their next-generation 1 microprocessor-low cost and high per
formance. Since there is a direct correlation between the manu
facturing cost and the die size (the size of the piece of silicon that
contains the transistors and resistors which make up the micro
processor), they reduced the complexity of the basic 6800 design
as much as possible to minimize the amount of silicon required.
Other design decisions included eliminating one of the two accu
mulators in the 6800 and its tri-state address output buffers. They
also replaced the 16-bit index register of the 6800 microprocessor
with two separate 8-bit index registers, and they discarded some
of the lesser-used instructions of the 6800.

The elimination of instructions opened up some instruction-de
code space and permitted the designers to provide the 6502 micro
processor with 13 addressing modes, 7 more modes than the 6800

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 15

device has. These modes give the 6502 device capabilities that are
normally found only in larger computers. Additionally, the design
team realized that although computers are binary machines, man
is inherently a decimal-thinking animal, so they added a mode
selection instruction and control bit that allows the 6502 micro
processor to operate on either binary or decimal data. This means
that the programmer does not have to remember to write in "deci
mal adjust" instructions after addition or subtraction operations.
For electrical efficiency, the design team employed the newer de
pletion-load technology, which gives the 6502 clean switching
characteristics, low-power dissipation (250 mW typical for the
6502 versus 600 mW typical for the 6800), and good noise immunity.

The 6502 device is one of 10 software-compatible microproces
sors that MOS Technology introduced in 1975 as the 6500 Series.
Through second-source agreements, the 6500 Series is also produced
by Rockwell International and Synertek. All 10 microprocessors
have the same instruction set and the same basic architecture, vary
ing only in size and hardware options. The 6500 Series has been
very popular since its introduction, and by the end of 1978, more
6500-Series microprocessors were being shipped than all other 8-bit
microprocessors, including the 8080 and 6800.

Today, the best-selling 8-bit microprocessors are divided into two
distinct families2-the 8080/Z80 family, with its register-oriented
architecture, and the 6500/6500 family, with its memory-mapped
architecture. Which architecture will be the more favored in the
1980s? It is impossible to know which at this time, but the manu
facturers of the 6800 and 6500 devices are banking solidly on their
opinion that the more minicomputer-like architecture holds the
greatest potential for advanced circuits. Intel Corporation has not
yet shown signs of sharing this opinion, but it may be significant
to note that the latest 16-bit microprocessor from Zilog, Inc., the
Z8000, represents a solid break with the 8080/Z80 design concept
by including memory-mapped 1/0.

THE 6502 MICROPROCESSOR

The 6502 microprocessor can be combined with memory and
input/ output integrated circuits to form a microcomputer. As the
"heart" of the microcomputer, the 6502 regulates all operations of
the microcomputer, based on the sequence of instructions (the
program) that it is executing. The 6502 can execute 56 different
types of instructions. The various combinations of addressing that
are available for use by individual instruction types give the micro
processor a total of 151 executable instructions. The 6502 instruc
tion set is described in detail in subsequent chapters of this book;

16 6502 SOFTWARE DESIGN

for now, let us focus our attention on the internal organization
(the architecture) of the 6502 and find out how it operates.

Fig. 1-1 is a block diagram of the internal architecture of the
6502. It shows the elements of the microprocessor and the buses

AO

Al

A1

A3

"
Al

A&

AS--

i\9

Al 1

~: 2

Ai<

!\14

ASL

, \-GE.ND

llo--SBTdiE_

- REGISTER SECTION

-1

CONTROL SECTION -

RES IRQ NMi

---RDY

Courtesy Rockwell International

Fig. 1-1. Block diagram of the 6502 microprocessor.

by which they communicate with each other and with external
circuits. The 6502 contains most of the control and decision-making
logic, so only a few additional circuits are required to configure a
small microcomputer system. One of the functions of this additional
control logic is to provide the 6502 microprocessor with a clock

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 17

signal that the internal clock generator will use to generate its
two-phase system clock. The 6502 also requires a single +5-volt de
power supply. All of the other inputs and outputs of the 6502
integrated circuit are compatible with standard transistor-transistor
logic (TTL).

Communication With External Devices

The 6502 is an 8-bit microprocessor, which means that the basic
unit of the information, the byte, is 8 bits wide. Further, all infor
mation is transferred to and from memory and the input/ output
(I/ 0) devices 8 bits at a time. To transfer more than 8 bits requires
additional transfer operations. All information transfers between
the 6502 and external devices are conducted on the 8-line data bus.
The data bus is bidirectional so the same lines are used to transfer
information both into and out of the 6502 microprocessor.

Since a 6502-based system can include a variety of memory and
1/0 circuits, how does the microprocessor specify whether it wants
to communicate with memory or with an 1/0 circuit? The answer
to that is that the 6502 microprocessor, unlike many other micro
processors, makes no differentiation between memory and 1/0 de
vices-it treats every external device as memory!

Does that mean that the 6502 microprocessor does not have special
input or output instructions in its instruction set? Yes, that is so; the
6502 does not have any such instructions. However, since the 6502
does not know whether it is addressing a memory location or periph
eral device, the same instructions that read from. or write to, memory
can be used to input from, or output to, peripheral devices. If you
want to read the contents of a memory location or input a data
byte from a peripheral, a load instruction is executed. Similarly,
if you want to write a data byte into a memory location or output
it to a peripheral, a store instruction is executed. Each peripheral
devices as well as each memory location has a uniaue address. The
6.502 microprocessor uses this unique address to select one memory
location or one peripheral device; therefore, it can exchange with
either the memory location or the peripheral device.

The 6502 transmits addresses to all memory and peripheral de
vice over 16 lines that are collectively known as the address bus.
Being 16 bits wide, the address bus can select any of 65,536 (64K)
locations. All external devices, both memory circuits and 1/0 cir
cuits, must be connected to the address bus.

How can an addressed external device know whether the 6502
wants to input (read) information from or output (write) infor
mation to it? The external device knows this by sensing the state
of a Read/Write control line (R/W) which is high (a logic l;
+2.4 V to +5 V) when a load instruction (read) is executed and

18 6502 SOFTWARE DESIGN

low when a store instruction (write) is executed. The R/W signal
is one of six signals available on the control bus of the 6502. Quite
often, the term Read/Write is pronounced "read-write bar." In this
and all future discussions, if a signal has a "bar" over it, the signal
is active low; that is, it is active when it carries a voltage between
0 (ground) and +0.8 V de.

How the 6502 Executes a Program

The 6502 microprocessor executes programs by fetching an in
struction from memory, executing it, and then fetching the next in
struction. A special register, called the program counter, determines
which memory location will be accessed next. The program counter
is automatically incremented after each memory access so that it
addresses the next consecutive memory location. Because the pro
gram counter is 16 bits wide, it can address any location in the
64K-byte address space of the 6502.

Instructions are comprised of one, two, or three bytes. The first
byte always holds the machine-code equivalent of the operation
code (op code), so this byte is directed into the instruction register
and routed to the instruction decode logic. The instruction decode
logic issues appropriate internal-control signals to all other ele
ments of the microprocessor, and possibly to external circuits in
the microcomputer system. The second and third bytes, if the in
struction has them, are gated into the data bus buffer, from which
they are routed into either the Arithmetic Logic Unit (ALU) if they
represent data, or into the program counter if they represent an
address.

How fast can the 6502 microprocessor process data or commu
nicate with peripheral devices? This·will depend on the instructions
that are executed. All instructions require a known number of clock
cycles in order to be executed, so the speed at which the instructions
are executed depends on which version of the 6.502 is being used.
The microprocessor is available in 1 MHz, 2 MHz, and 3 MHz
versions. With a 1-MHz 6502 microprocessor, the simplest instruc
tion will be executed in 2 microseconds (2 µ,s) and the most com
plex instruction will require about 7 µ,s. In general, most instruc
tions require about 3 or 4 µ,s to be executed. The execution time
of all instructions will be listed in Chapter 2.

General-Purpose Registers

The 6502 microprocessor has three 8-bit registers that your pro
grams can use to save temporary data values, to communicate with
memory, to maintain counters, and for a variety of other applica
tions. These three registers are the accumulator, the X register and
the Y register.

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 19

The accumulator is the only register in which arithmetic and
logical operations can be performed, and it holds one of the oper
ands for each add, subtract, AND, OR, and Exclusive-OR instruction.
The 6502 also has instructions to logically shift the contents of the
accumulator to the right or to the left.

The X and Y registers are primarily employed as index registers
(to access sequential data values in memory), but the fact that they
can be incremented and decremented under program control also
makes them popular as general-purpose counters.

The Processor Status Register

The processor status register (Fig. 1-2) contains seven usable
bits. Five of these bits are status flags; they provide information on
the result of a previously executed instruction (in most cases, the
preceding instruction). The two other usable bits are control bits.

Let us look at the status Rags first. The Carry flag (C) is used to
save any carry produced by an add operation, any borrow produced
by a subtract operation, or the value of a bit after a shift operation.
The Carry also reflects the result of a compare operation. The Zero
flag (Z) indicates whether or not the result of an operation is zero.
The Break Command flag (B) indicates whether an interrupt re
quest to the 6.502 microprocessor was caused by a "break" instruc
tion or by an externally generated interrupt. The Overflow flag (V)
is applicable only to arithmetic operations on signed numbers. It
is set if the addition of two like-signed numbers or the subtraction
of two unlike-signed numbers produces a result greater than + 12710

or less than -12810 . The Negative flag (N) indicates whether or
not the result of a signed arithmetic operation produced a negative
result. This bit is also used as a general-purpose indicator of the
state of the most-significant bit position in the accumulator.

The 6502 can be programmed to test the condition, or state, of
each of these Rags. Based on the results of these tests, the 6502 can

0

N V B D PROCESSOR STATUS REG 'P"

CARRY
~--ZERO

~--- IRQ DISABLE
~---- DECIMAL MODE

'---------- BRK COMMAND
~--------OVERFLOW

'-------------- NEGATIVE

1 = TRUE
1 = RESULT ZERO
1 = DISABLE
1 = TRUE
1 = BRK
1 = TRUE
1 = NEG.

Courtesy Rockwell International

Fig. 1·2. The processor status register.

20 6502 SOFTWARE DESIGN

decide whether or not to execute one of two possible sequences of
instructions. All flags remain set or cleared after these "test" opera
tions are performed. Therefore, not all 6502 instructions affect the
fiags.

Now, let us discuss the control bits in the processor status reg
ister. The first one is the IRQ Disable bit (I) which is used to
"lock out" external interrupts to the 6502 at times when, for some
reason, the microprocessor is not prepared to service an interrupt.
Interrupts are automatically disabled by the 6502 while it is being
reset or when it is servicing a previous interrupt. Programs can
also disable interrupts during periods when a certain sequence of
instructions must be permitted to be executed uninterrupted.

The second control bit is the Decimal Mode bit (D) which con
trols whether the internal Arithmetic Logic Unit (ALU) of the
6502 is to operate as a straight binary adder or as a decimal adder.
In the binary mode, the ALU treats arithmetic operands as 8-bit
binary numbers. In the decimal mode, the ALU treats arithmetic
operands as two BCD (Binary-Coded Decimal) digits packed
into one 8-bit byte.

Reset and Interrupt Signals

There are three separate input signals by which external devices
can cause an executing program in the 6502 microprocessor to be
interrupted. These signals (RES, IRQ, and NMI) are shown in
the top right-hand portion of Fig. 1-1, wired to the Interrupt Logic
Section. Although they are functionally different, all three signals
produce the same general result; they load the program counter
with the contents of two consecutive memory locations, which con
tain the starting address of a progr,am that is unique to that par
ticular signal.

The Reset (RES) input pin is used to initialize the 6502 micro
processor to a known state, or to start the 6502 when power is first
applied to the microcomputer. While RES is grounded, the 6502
can neither transmit nor receive information. When the ground is
removed, the microprocessor loads the program counter with the
contents of memory locations FFFC and FFFD (hexadecimal), the
address from which the very first (or initial) instruction will be
fetched.

Interrupt Request (IRQ) is the input pin by which most periph
eral devices request service from the 6502 microprocessor. "Request"
is the keyword here. Unlike the Reset signal, which interrupts the
6502 unconditionally, IRQ simply informs the microprocessor that
some peripheral device in the system (keyboard, printer, etc.) is
waiting to send or receive information. An interrupt request will
be acknowledged only if the Interrupt Disable bit (I) of the proc-

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 21

essor status register is reset to a logic zero. If "I" is reset, the 6502
will load the contents of the two uppermost memory locations,
FFFE and FFFF (hexadecimal), into the program counter. If 'T'
is set when the interrupt request is received, the microprocessor
ignores the request, and continues executing as if no request has
been made. The 6502 does not "remember" the request, but when
the "I" bit is reset, the 6502 is interrupted.

The name of the third signal, Non-Maskable Interrupt (NMI),
gives a clue as to its nature. The IRQ input is maskable; that is,
it can be enabled or disabled, depending on the state of the "I"
bit in the processor status register. However, NMI is nonmaskable
it cannot be disabled. Like RES, NMI does not merely request to
interrupt the microprocessor, it does interrupt the microprocessor
each time it is activated. The NMI line is designed to interrupt the
6502 microprocessor under some condition that requires immediate
attention, such as a power failure. The address of the sequence of
instructions that service the NMI interrupt is stored in two con
secutive memory locations, FFF A, and FFFB (hexadecimal).

The Stack Pointer Register

The 6502 microprocessor can be programmed so that at some
point in a program, program execution can be transferred to another
sequence of instructions that is stored in another part of memory.
Before this transfer actually occurs, the 6502 saves the address of
the next instruction in its current sequence of instructions. After
the new sequence of instructions has been executed, control can
be returned to the point that is just after the instruction that caused
the first transfer operation. The return address is saved for use later
in an area of memory called a stack.

There is nothing mystical about the stack; it is simply a portion
of memory that is designated to accept these return addresses.
However, the stack must be implemented in Page 1 of the 6502
address space-the addresses from 0100 to OlFF (hexadecimal).
Since this design restriction. ensures that the high-order two digits
of the address are always 01, the address register for the stack
the Stack Pointer-is only 8 bits wide.

Information is entered onto, and extracted from, the stack of the
6502, in memory, the same way that we stack dishes in the kitchen.
The last item to be placed on the stack is also the first item to be
removed from it. This type of stack is usually referred to as "last in,
first out." As return addresses are entered onto the stack, they are
really stored in R/W memory at lower and lower memory addresses;
the stack "builds" toward address 0. The Stack Pointer, therefore,
is automatically decremented by 1 as each new address byte is
pushed onto the stack, and is automatically incremented by 1 as

22 6502 SOFTWARE DESIGN

each address byte is pulled off of the stack. The accumulator and
the processor status register can also be saved on the stack, if
desired.

MACHINE CODE AND ASSEMBLY LANGUAGE

For the 6502 microprocessor to perform a specific task, it must
be programmed to do so. A program is nothing more than a se
quence of instructions stored in sequential memory locations. The
6502 executes the program, one instruction at a time. It fetches an
instruction from memory, decodes it, performs the decoded com
mand, and then fetches the next instruction. This cycle is repeated
until all instructions in the program have been executed.

What do these instructions look like? Since the 6502 microproc
essor is simply a collection of electronic circuits (albeit in micro
scopic form), the instructions are composed of binary numbers
(l's and O's) that cause some internal electrical signals to be turned
on, others to be turned off. The 6502 is an 8-bit microprocessor, so
these binary instructions are comprised of multiples of 8 binary bits.

In early computers, all programming was done in the binary
form, normally with switches controlling the individual bits-to
set a bit to "l," turn the switch on; to reset a bit to "O," turn the
switch off. But a string of l's and O's presents such a confusing mess
that the computer industry soon realized the need for decimal
loaders, which allowed the instructions to be written in decimal
form. Decimal loaders were eventually replaced by hexadecimal
loaders, which allowed the instructions to be written in hexadecimal
form. Example 1-1 shows both binary and hexadecimal forms of
typical program instructions.

Example 1·1. A Typical 6502 Program, in Binary and Hexadecimal Notation

Binary Hexadecimal

10100101 AS
00100001 21
11000101 cs
00100000 20
10110000 BO
00101011 2B
10100110 A6
00101100 2C

Hexadecimal representation is some help to the programmer be
cause it frees him from using all those error-prone 8-bit binary
numbers. Further, hex instructions do not contain quite so many dig
its in them, making them somewhat easier to memorize. U nfortu
nately, though, a hexadecimal number gives no hint as to the function

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 23

of an instruction. Does a "CS" instruction perform an addition, a sub
traction, store a value in memory, or none of these? Even when
using hexadecimal numbers, it is still difficult to program the 6.502
microprocessor. Before you enter a hexadecimal number into the
microcomputer, you would first have to find the instructions, that
you want to store in the memory of the 6502, on a list provided by
the microcomputer manufacturer. The appropriate hexadecimal
number (op code) can then be found next to the instruction. The
time spent in looking up the instructions and op codes could be
very costly in developing a program, not to mention the possibilities
of errors.

The next higher level of programming permits the programmer
to write instructions in an abbreviated form, something closer to
a human language, using abbreviations called mnemonics that can
be correlated directly to the function of the instruction. A com
puter program can then be executed so that these mnemonics are
actually converted to the sequence of l's and O's that the 6502 can
execute. The program that converts these abbreviations into ma
chine code (l's and O's) is called an assembler, so this form of pro
gramming is called assembly language programming. An instruc
tion that increments the X register by one has a hexadecimal form
of ES and an assembly language mnemonic of INX. Which do you
think is easier to remember? Table 1-1 lists the assembly lang·~age
mnemonics for several 6502 instructions.

How does the assembler translate instruction mnemonics to binary
codes that the 6502 can execute? The assembler contains a large table
(the permanent symbol table) that contains all the mnemonics
(represented by strings of ASCII characters) and their binary
equivalents. The assembler compares the mnemonic in your pro
gram (a string of ASCII characters) to each ASCII character
string in the permanent symbol table. When a "match" occurs,
the assembler fetches the binary code associated with the mnemonic,
and uses this value during the assembly process. Therefore, the
assembler translates the mnemonic INX (Increment X by 1) to ES,
and the mnemonic CLC (Clear Carry flag) to lS. In this book,
all example programs will be written using the standard mnemonics;

Table 1-1. Some 6502 Mnemonics

Mnemonic Instruction

ADC Add memory to accumulator with Carry
CLC Clear Carry flag
JNX Increment index X by 1
LDA Load accumulator with memory
TAX Transfer accumulator to index X

24 6502 SOFTWARE DESIGN

these are the mnemonics that are defined in the literature of the
manufacturers.

THE AIM 65 MICROCOMPUTER

The 6502 microprocessor is used in several popular microcom
puters, including the Apple II (Apple Computer, Inc.), the Pet
2001 (Commodore Business Machines, Inc.), the Challenger C2
(Ohio Scientific, Inc.), the KIM-1 (MOS Technology) and the
SYM-1 (Synertek). In 1978, Rockwell International introduced the
AIM 65 as its entry in the 6502-based microcomputer marketplace.
The AIM 65 is shown in Fig. 1-3.

The AIM 65 (an acronym for Advanced Interactive Microcom
puter R6500) is primarily intended as an educational tool for in
dividuals who are interested in learning about microcomputers,
rather than just playing with a sophisticated toy. Its features also
make the AIM 65 attractive as a low-cost development system for
design engineers.

The features of the AIM 65 are indeed impressive. Perhaps the
most exciting feature is the on-board alphanumeric printer, for

,

Courtesy Rockwell International

Fig. 1-3. The AIM 65 microcomputer.

AN INTRODUCTION TO THE 6502 MICROPROCESSOR 25

generating hard-copy listings. The printer can produce up to 120
lines per minute, with up to 20 characters per line. Characters are
represented by 5-wide X 7-high dot matrices, and are "printed"
on heat-sensitive roll paper. The printer is complemented by a 20-
character, 16-segment, alphanumeric display. The printer and dis
play can be used with all 64 upper-case ASCII characters. Like the
more expensive Apple II and Challenger C2 microcomputers, the
AIM 65 has a 54-key typewriter-style keyboard, which is easier to
use and less fatiguing in lengthy programming sessions than the
calculator keypads of other microcomputers.

The operating software of the AIM 65 resides in on-board read
only memory (ROM) circuits, and includes a monitor and a
symbolic text editor. A portion of the monitor is a pseudo-assembler,
which allows instructions to be entered in mnemonic form, rather
than in hexadecimal machine codes (as in the KIM-1 and the
SYM-1) . The monitor also has a disassembler that translates the
machine code in memory to its mnemonic form, for printout or
display. Rockwell International also offers a two-pass symbolic
assembler as a ROM option, which gives you the capability of
using symbolic labels in your programs.

The AIM 65 has 1024 bytes of read/write (R/W) memory in
stalled, that can be optionally expanded on-board to 4096 bytes.
If desired, the user can interface additional R/W or ROM inte
grated circuits, up to 64K, to the AIM 65. Also included in the AIM
65 is a 6522 Versatile Interface Adapter (VIA) circuit, which is en
tirely user-dedicated. The VIA has two I/0 ports for off-board ex
pansion, an 8-bit shift register, and two 16-bit timer/counters. One
nice feature of the 16-bit timer/ counters is that once they are
started, they need no further intervention by the 6502 micro
processor.

The AIM 65 seems ideal to use for educating the readers of a
book on 6502 software design and has, therefore, been selected as
the demonstration microcomputer for the remainder of this book.
Because the AIM 6.5 is equipped with a 1-MHz 6502 microprocessor,
all program times quoted in this book refer to the time of a 1-MHz
microprocessor. If you are programming while using a 2-MHz 6502
(6502A) microprocessor, divide the program times by two.

CONVENTIONS USED IN THIS BOOK

Given the proper type of loader, numbers using any base could
be entered into the 6502 microprocessor. This includes the octal
(base 8), hexadecimal (base 16), or even decimal (base 10) set of
numbers. Since most 6502 microprocessor programming is con
ducted with hexadecimal numbers, they appear extensively through-

26 6502 SOFTWARE DESIGN

out this book. Sometimes they will be preceded by the word "hexa
decimal" or its shortened form "hex," but more often a dollar sign
($) prefix will be used. The dollar sign prefix is the assembler prefix
that indicates a hexadecimal operand. For example, hexadecimal
address 14FB will be written $14FB.

Another way of indicating the base of a number is by applying a
subscript to it. For example, 14FB16 is equivalent to $14FB and
"hexadecimal 14FB." There are times when even a decimal number
will be subscripted, if there is a possibility of an ambiguity. For
example, the sentence "Addresses $1400 through $140F constitute
1510 locations" eliminates any uncertainty about whether the num·
her 15 is a decimal number or a hexadecimal number.

REFERENCES

1. Cushman, R. H. "2;.2-generation µF's-$10 parts that perform like low-end
mini's," EDN, September 20, 1975, pp. 36-41. (This contains an excellent
comparison between the 6800 and the 6502 microprocessors, and includes
historical details about the devices.)

2. Cushman, R. H. "µC Support Chip Directory: Solutions keep pouring forth"
EDN, November 20, 1977, pp. 91-100. (This provides details on micro
processor "families" and the battle being waged on the support-chip front.)

3. R6500 MicTocomputer System Hardware Manual, Sections 1 and 2. Rockwell
International, Anaheim, CA, 1978. (Equivalent documents are also available
from MOS Technology and Synertek.)

The 6502 Microprocessor
Instruction Set

2

The 6502 microprocessor has 56 different instructions and 13
modes of addressing, making it one of the most versatile micro
processors ever designed. Table 2-1 is a complete list of the in
structions, showing both their formal names and the abbreviations
(or mnemonic) that you will be using to write your programs.

SUMMARY OF THE INSTRUCTION SET

Table 2-2 is a summary table to which you will be frequently
referring in the course of your reading and programming. The
Mnemonic columns (one on the left of the table, the other on the
right of the table) list the instructions alphabetically. The Operation
column gives a symbolic representation of the operation of each
instruction. In this column, the internal registers of the 6502 are
identified with a single letter-A for Accumulator, X for X Register,
Y for Y Register, and S for Stack Pointer, etc. The "M" stands for
Memory; not all of the memory, just the memory location being
accessed by the instruction. A right-arrow (~) means "replaces,"
so A ~ M means that the contents of the accumulator (A) replaces
the contents of the addressed memory location (M). The Opera
tion column also uses single-letter identifiers for flags in the Proc
essor Status Register-C for Carry, N for Negative, Z for Zero and
V for Overflow.

27

28 6502 SOFTWARE DESIGN

The next 13 columns (Immediate, Absolute, etc.) represent the
13 addressing modes of the 6502. Each of these 13 columns is sub
divided into three smaller columns:

• The OP in the first column is short for operation code. (It is
usually called op code.) OP gives the hexadecimal equivalent
of the binary code that is stored into memory to represent each
instruction. Note that the OP value for a particular instruction
is different for each addressing mode. For example, the ADC

Table 2-1. 6502 Instruction Names

ADC Add to Accumulator with Carry LDA Load Accumulator with Memory
AND AND Memory with Accumulator LDX Load,lndex X with Memory
ASL Accumulator Shift Left LDY Load Index Y with Memory

LSR Logical Shift Right
BCC Branch on Carry Clear
BCS Branch on Carry Set NOP No Operation
BEQ Branch on Result Equal to Zero
BIT Test Bits in Memory with ORA OR Memory with Accumulator

Accumulator
BMI Branch on Result Minus PHA Push Accumulator on Stack
BNE Branch on Result Not Equal to PHP Push Processor Status on Stack

Zero PLA Pull Accumulator from Stack
BPL Branch on Result Plus PLP Pul I Processor from Stack
BRK Force Break
BVC Branch on Overflow Clear ROL Rotate Left
BVS Branch on Overflow Set ROR Rotate Right

RTI Return from Interrupt
CLC Clear Carry Flag RTS Return from Subroutine
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit SBC Subtract from Accumulator
CLV Clear Overflow Flag with Carry
CMP Compare Memory and SEC Set Carry Flag

Accumulator SED Set Decimal Mode
CPX Compare Memory and Index X SEI Set Interrupt Disable Status
CPY Compare Memory and Index Y STA Store Accumulator in Memory

STX Store Index X in Memory
DEC Decrement Memory by One STY Store Index Yin Memory
DEX Decrement Index X by One
DEY Decrement Index Y by One TAX Transfer Accumulator to

Index X
EOR Exclusive-OR Memory with TAY Transfer Accumulator to

Accumulator Index Y
TSX Transfer Stack Pointer to

INC Increment Memory by One Index X
INX Increment Index X by One TXA Transfer Index X to
INY Increment Index Y by One Accumulator

TXS Transfer Index X to Stack
JMP Jump Pointer
JSR Jump to Subroutine TVA Transfer Index Y to

Accumulator

THE 6502 MICROPROCESSOR INSTRUCTION SET 29

instruction with immediate addressing has an op code value
of 69, while the same instruction with absolute addressing has
an op code value of 6D.

• The n column contains the number of machine cycles that the
instruction requires in order to be executed when using the
specific listed addressing mode.

• The # column contains the number of memory locations that
the instruction occupies.

The Processor Status Codes column, on the right of the page,
reflects the flags in the Processor Status Register which may be al
tered by the instruction. Flags that can be either set or cleared,
depending upon operational variations, are identified with the
letter code for that flag (e.g., an N indicates that the instruction
may alter the Negative flag). Flags that are unconditionally set or
cleared by an instruction are identified with a "l" or a "O."

Instruction Formats

All programs in this book are given in the AIM 65 assembler
format. This format divides each line in the program (i.e., each
line of program code) into four fields: label, op code, operand and
comments.

The label field is used to assign a symbolic name or label to the
location of an instruction, so that it can be referenced by other
instructions in the program. For example, the instruction JMP
THERE will cause the program counter to be unconditionally
loaded with the memory address that has been assigned the label
THERE. The instruction at label THERE will be the next instruc
tion to be executed after the JUMP (JMP) instruction is executed.
The label field is always optional. In fact, most instructions will
not be labeled. However, if an instruction is labeled, the label must
begin in the leftmost column of the line (Column 1), must begin
with an alphabetic character (A through Z), and must be no longer
than six characters.

The op code field is mandatory for every line in the program that
contains an instruction, and must contain one of the 56 valid mne
monics listed in Table 2-1 or Table 2-2. The op code may begin in
any column except Column 1, and must be separated from a label
(if a label is present) by at least one space.

The operand field is used to specify data or an address for in
structions that require an operand. (This subject will be discussed
shortly.) The operand must be separated from the op code by at
least one space. The assembler will accept operands in any of five
forms. The form is specified by applying an appropriate prefix
character to the operand, as follows:

M
N

EM
O

N
IC

A
D

C

A
N

D

A

S

L

B
C

 C

B
C

 S

B
E

 Q

T
ab

le
 2

-2
.

R
65

02
 I

n
st

ru
ct

io
n

 S
et

 S
u

m
m

ar
y

1'
-IS

TR
U

C
llO

N
S

I

I
I

I
I

1
I

A
B

S
.

Y

I R

EL
AT

11
1E

I 1

N
o1

R
E

cr

I z

 P,
\G

E
..,
I ~

~~
i~
ss
oA
 ST

A
TU

S

IM
P

L
lr

n

\
!IN

D
.

X
i

I
W

rt0
1.

Y

I

l
PA

G
E.

 X
 \

AB

S
X

IM

M
ED

IA
TE

 I
 A

B
SO

Ll
!T

E
\Z

E
R

O
 P

A
G

E
\

AC
 C

U
M

O
PE

R
AT

IO
N

o~
I
•

IO

P

It
IO

P

. I

·
A

·M
··

·C
·A

14

i1
11

69
12

12

11
1

29
12

2

B~~
~;~

 ON
 c

0

12
1

I
·'

60
1'1

31
6'1

3
2

2
0

4

]
2C

.,
J

2

O
E

6
J

06

5
2

A
;,

 M

·A

B
R

A
N

C
H

 O
N

 C

~
1

12
\

B
R

A
N

C
H

 O
N

 Z

"
1

12
1

A
.,

 M

O
P

[
cl
~~
r.
i;
;;
,r
~l
 •

[C
W

11

[O
P

()P

l '
 I

• I
O

P

•
IO

P
I

n
I

•
IO

P

51
 I

o

I
2

,, I
 ,

1
1

\
'J

I?

2
1

1
1

5

1
2

l

7
5

1
4

1
2

Y
:i

I
4

I?

16
 I

 6
 I

 2

4
j
I''

4
J

]9

1E

l
J

'13

'
J

I I

I !

!
1:1

 :!
~

I
ri

'I
'

· I
 • lo

PI
··I

·

llll l

11

7
-

6
5

4
J

2
1

0
'rM

ff
M

O
N

!C

N
V

•
B

D
!
Z

C

N
'

Z
C

,A
D

C

N

Z

•
A

N
D

N
.

Z
C

A

S
L

B
C

 C

B
C

 S

B
E

 Q

B

C

T

B
M

c

'
,,

,
I

I
.\

2
I

IJ
2

!

M
.

M
,·

•
•
•

z
. I

 8
I

T

8
M

 '

B
 N

E

.
,

•
•

1
R

P

i

B
N

E

B
R

A
N

C
H

O
N

Z

c
cl

I

I
1

1
c)

2

z
I

B

P

L
B

R
A

N
C

H
 O

N
 N

0

12
1

1
+

--
+

-+
+

-+
-+

-+
-''

"-
+

-'c
.-

C
'+

-+
I ~
-
+
-
"
~
-
I
-
-
-
-
-
-
-
+
-
-
-
<

8
R

 K

B
R

E
A

K

i
1

B

R
 K

s
v·

 c

B
R

A
N

C
H

 O
N

 v

o
50

2

2
I

B

v

c

B

V

S

B
R

A
N

C
H

 O
N

 V

-
'

12
1

70

?
B

V

S

C
L

C

O
·C

•

0
C

L
C

\,

l
[l

U

 •
 0

C

L.

D

c
L

I
0

•
i

i
I

c
l

I

C
L

V

O
·V

I

i
I

I
C

L
V

c M
P

A

M

C

Y
·,

2
j

2
col

' 4

J
c'

:il

<
 1

,,
2

ou!
 .i

I
J

ogl
 4

<

N

•
z c

c

M
P

c
p

)(
M

E:

O
I

<:
I

2
E

C

4
3

E
4

I
J

i
I

N

z
c

c
p

x
c

p
y

M

co

2
I

2
c
c

4
!3

(,
4

J

'
N

z

c
c

p
y

0
E

 C

M

'
.
 M

l

N

Z

D
E

C

D
 E

:_
x

1
N

Z

•

0
E

X

D
 E

 Y

N

Z

0
E

Y

E
 0

R

1

!/
4

9

N

Z

•
E

C
R

A

'I

M

•A

M

•
1

·M

N

I
N

C

I
N

X

)(

•
1

•
x

'
N

•

•
•

I
I

N

x

C

N

'
N

•

I
N

Y

J
M

p

lb
(!

"
J

M

o

,J
S

R

J
U

M
P

S
U

B

J
S

H

L
0

A

M

·A

}
:

__
! __

__

"<
•

•
l

·
l

D

A

'"' 0 ... "' 0 ~ "' 0 ==
 >
 "' '" c '" "' Q z

L
D

<

c
D

 '

L
S

R

N
 0

P

0
H

A

P

H

A

p
H

p

P
l

A

p
l

p

R
O

l

R
 0

H

H

T

I

R

T

S

S
 B

C

S

E

C

S

E

U

S

E

I

S

T

A

S

T

X

S

T

Y

~
A

y

T

S

X

'
'

s

M

-
'

N
O

 C
J P

f
R

A
 T

IC
N

A
\/

 !
JI

·A

A

·!
JI

-,

p
-

'vi
<:>

s
.

1
•
s

s
~

1
•

s

R
T

R
N

 I
N

T

W
R

N
 S

U
B

M

(
·
A

1
•
c

•
D

s
. x

11
;

l·
\2

'
2

1
I:.

IA

I)

AE
 I

 '

j
IA

6'
!

I
2

l
}

IA
C

J

j
A

J
'

. s

. s

M
~
,

•
A

""
~

•
p

I 1_
1q

4
f

6
J

46

2
! C

D
I

4
31

 D"
>

i
l
I ,

.

I
I

I

2
f

i
6

i
J

I
"

2
j2

A
:

2

6
E

]
t!

J
lh

6
.'

.
2

l6
A

;2

''
 ·

l(

o
i

2
<'

IE
 :.

i
4

i
I

IE
'

8
[)

4

T'
8E

4

_\
~h

 I

l:
K

4

1
.
~
4
'

A
l1

L
_1

1'

~<

IF

f-
'A

t1
f-

b
l)

v
"
J
L

4
H

i

r.
•f

-
t
\
H
A
"
J
·
·
~
.
_
,

·
~
A
M
t

~
'
T
U

N

f
R
R
A
'
-
<
'
-
~
j

c
,

r
F

f
f-

lt
~.

'

A
H

H
Y

 N
C

T

B
O

FH
-1

(_

'~
>J

U

t(
iM

A
L

\r

iU
U

f
1

,M
U

L
A

 ··
-J

f-
J

M
U

',
.

i<
f

',
l,

LA
I
'!

'
I

!
I

Tl
.T
-[
~

I
,,

I.
:,

/.

,

"
·r

l
ne

 '

:~
,

68
 I

J
1

I

A

I I 1 f_
I!

I,

.i
i-

.,
·

I
,,

I

I
t'

i

•·

A
A

A
t'

,'
:

I

I
F

1
! I

•_
l'

t

I

I i

8-
E

-
4
r j

r
-
-
~
-
:
-
-

b
J

4
i

.'
18C

4

'.i
h

r-
I

,
"E

:

''
-

4
I

!94
m

J
I

j

I
i

I

.,

.
I

:t
;

,]

J,
!
1·'4

 !
~

i
•

!
~

I
, I

'"

it
+

I
I

i
_L

l_
u

"
<

[·
[•

V
IV

''°

'
''
f

,_,
 f

'
~

l
•

~.
'
t

~,
'
f

'
-
-
~
~
-
,
~
1
~
-

I

'
y

T

~
h

J

t•
 _

l,
_I

'.-
,

·,
i:

,p
f:

_
S

T
Q

R
E

D
•

1
R

E
S

T
U

R
E

0
1

z
'

l
0

'

l
'

l
0

y

l
l

L
S

R

N

0
P

z
'

0
R

A

P
H

A

P
l

A

p
l

p

Z

C

I
R

 0

L

Z
C

I
R

O
R

R

T

I

H

•
S

,3,1

S

B

C

s
f

c

S

E
 l

J

s
r

S

T

A

'.)

T

X

S

T

:
A

'

T

S

A

M
E

 M
(l

P
Y

8

1
'

'v
'f

::
M

l_
";

lq

6

-T
'

~
(
)

(Y
C

L
E

'>

~
o

an
t:

::
,

C
o

u
rt

es
y

 R
oc

kw
el

l
ln

te
rn

at
io

n~
I

... :c

m
 8: s ~
 n
 ~ ~ :I
 0 "" z ;! a 0 z "' !!l !:!

32

Prefix
(none)

$
@

%

6502 SOFTWARE DESIGN

Operand Form
Base 10 (Decimal)
Base 16 (Hexadecimal)
Base 8 (Octal)
Base 2 (Binary)
ASCII

The mnemonic entry mode of the AIM 65 accepts only a hexa
decimal input, so AIM 65 users who are entering programs from the
keyboard should ignore the preceding operand prefix list and write
all operands as unprefixed hexadecimal numbers.

The comment field is always optional, and is used to add an
explanatory note to a statement. The contents of the operand field
are not executed, so you can write any kind 0f comment that you
choose. However, the text of the comment should be preceded by
a semicolon (;). Comments may be used alone, too, without being
appended to a line that contains an instruction.

HOW THIS CHAPTER IS ARRANGED

This chapter gives a detailed description of the 13 addressing
modes of the 6502 microprocessor, followed by descriptions of the
instructions. Many books treat the instructions individually, dis
cussing them one by one, alphabetically. Although this approach
has definite merit in a reference book, it tends to leave the reader
bewildered (and probably bored) after the fifth or sixth instruction.
In this book, instructions are grouped by function, with similar in
structions together. This approach is designed to aid understanding,
and will (hopefully) avoid boring the reader. By the time you've
finished this chapter, Table 2-2 should provide sufficient reference
material for most of your programming. Alternatively, you may
refer to Appendix B, where the 6502 instruction set is summarized
in more detail.

The instructions that are grouped in this chapter consist of:

1. Load and Store instructions.
2. Arithmetic instructions.
3. Increment and Decrement instructions.
4. Logical instructions.
5. Jump, Branch, Compare and Bit-Test instructions.
6. Shift and Rotate instructions.
7. Register Transfer instructions.
8. Stack instructions.
9. The No Operation instruction.

THE 6502 MICROPROCESSOR INSTRUCTION SET 33

6502 ADDRESSING MODES

One reason for the increasing popularity of the 6502 microproc
essor is the minicomputer-like flexibility it offers in addressing.
The 6502 has 13 addressing modes. This is six more addressing
modes than the Motorola 6800 microprocessor has, eight more than
the Intel 8080 or 8085, three more than the Zilog Z80, and five
more than the Texas Instruments 9900. Table 2-3 lists the addressing

Table 2-3. The 6502 Addressing Modes

Mode Operand Format

Immediate #aa
Absolute aaaa
Zero Page aa
Implied
Indirect Absolute (aaaa)
Absolute Indexed, X aaaa,X or aaaaX
Absolute Indexed, Y aaaa,Y or aaaaY
Zero Page Indexed, X aa,X or aaX
Zero Page Indexed, Y aa,Y or aaY
Indexed Indirect (aa,X) or (aaX)
Indirect Indexed (aa),Y or (aa)Y
Relative aa or aaaa

Accumulator A

modes, in the order that they are described in this section, and it
also gives the assembler form of their operands (which is how the
addressing modes are differentiated). In this table, "a" represents
a hexadecimal address digit, so "aaaa" is the general form for a
four-digit hexadecimal address, such as 34FB.

Immediate Addressing

In immediate addressing, the operand resides in the second byte
of the instruction. An immediate operand is specified by placing
a # prefix before the operand. For example,

LDA #$3F

is an instruction that loads hexadecimal 3F (decimal 127) into the
accumulator. All instructions that use immediate addressing are
two bytes "long."

Absolute Addressing

Absolute addressing allows the direct addressing of any of the
65,536 memory locations in the address space of the 6502. All in
structions that use absolute addressing require three consecutive
memory locations for storage. The first byte is the op code of the

34 6502 SOFTWARE DESIGN

instruction, the second and third bytes are the low-order and high
order bytes of the operand address, respectively. For example,

LOA $l2B4

is an instruction that loads the contents of memory location $12B4
into the accumulator. If memory location $12B4 contains hexa
decimal 3F (decimal 127) when the LDA instruction is executed,
the accumulator will contain hexadecimal 3F after the LDA in
struction is executed. The example instruction looks like this in
memory:

Location

nnnn

nnnn + 1
Illlllll + 2

Contents

$AD

$B4
$12

Zero Page Addressing

Description

Op code for LDA with
absolute addressing
Low-order byte of address
High-order byte of address

Zero page addressing is a form of absolute addressing in which
the 6502 microprocessor accesses only the first 256 locations in
memory. These are hexadecimal addresses 0000 through OOFF
(decimal addresses 0 through 255). Because the high-order byte of
a zero page address is always zero, instructions that use zero page
addressing are two-byte instructions; the first byte is the op code,
the second byte is the low-order byte of a zero page address (00
through FF). The 6502 microprocessor will treat a two-digit oper
and as a zero page address. For example,

LOA $2A

loads the contents of memory location 002A into the accumulator.
Except for two instructions, JMP (Jump) and JSR (Jump to

Subroutine), all 6502 instructions that can use absolute addressing
can also use zero page addressing. Considering the inherent sav
ings in both storage space and execution time, the zero page
should be used, whenever possible, to hold frequently accessed
data. ("Zero page" instructions occupy one less byte in memory
and take one less cycle to execute than their "absolute address"
counterparts.) The zero page is also useful to store temporary
data values.

Implied Addressing

Roughly half of the instructions in the 6502 instruction set per
form simple workmanlike tasks such as setting or clearing a bit
in the processor status register, incrementing or decrementing a
register, or copying the contents of one register into another. These

THE 6502 MICROPROCESSOR INSTRUCTION SET 35

instructions need no operand-the 6502 receives enough information
from the op code alone-and employ what is called (appropri
ately) "implied addressing." Some examples are:

Mnemonic

CLC
DEX
TAX

Description

.clear Carry flag.
Decrement the X register.
Transfer Accumulator to X register

All implied addressing instructions occupy one 8-bit memory lo
cation.

Indirect Absolute Addressing

Indirect absolute addressing is used by only one 6502 instruction
-the Jump (JMP) instruction. The JMP instruction loads the pro
gram counter with a new address at which the 6502 is to fetch its
next instruction. The JMP instruction can use either absolute ad
dressing or indirect absolute addressing. With absolute addressing,
the operand of the JMP instruction is the destination address that
is to be put into the program counter. With indirect absolute ad
dressing, the operand of the JMP instruction is the address of the
first of two memory locations that contain the 16-bit destination
address.

An indirect absolute operand is specified by enclosing it in paren
theses. For example,

JMP ($0203)

causes the program counter to be loaded with the low-order ad
dress contained in memory location $0203 and the high-order ad
dress contained in memory location $0204. Fig. 2-1 illustrates this
example, with $04BC as the final (effective) address and with the
instruction stored in memory locations $0110, $0111, and $0112.

You may be asking yourself, "Why all this rigamarole?" If your
destination is address $04BC, why not just use absolute addressing
to store it in the program counter? The answer is that indirect
absolute addressing allows us to work with variable destination
addresses. For example, if the 6502 is installed in a system in which
it must service several peripheral devices, an indirect absolute ad
dressing JMP instruction can be used to access a sequence of in
structions appropriate to the peripheral that requires service. In
this case, the indirect absolute JMP instruction would always fetch
the 16-bit address from the same pair of memory locations, but
the 6502 would change the contents of these locations, depending
upon which peripheral device requires servicing.

36 6502 SOFTWARE DESIGN

$0110 S5C JMP INDIRECT ABOLUTE

$0111 $03

$0112 $02

$0203

$0204 .____so4 ___.l~~I ~
. $04BC

PROGRAM COUNTER

Fig. 2-1. Indirect absolute addressing.

In a data processing application, a single 6502 microprocessor
might be accepting data from operators at several keyboards. In
this case, the destination address that the 6502 is to jump to depends
upon which keyboard the 6502 is accepting data from at any par
ticular time. Input from Keyboard No. 1 will be stored in one place,
input from Keyboard No. 2 will be stored in another place, and
so on. Indirect absolute addressing also allows the effective address
to be in R/\V memory (changeable memory) even when the pro
gram is in ROM or PRO.\I (fixed memory).

Absolute Indexed Addressing

In absolute indexed addressing, the effective address of the
operand is computed by adding the contents of the X or Y Register
to the absolute address in the instruction. That is,

Effective address= Absolute address+ X
or

Effective address= Absolute address+ Y

All absolute indexed instructions occupy three consecutive mem
ory locations. Absolute indexed operands are specified by attaching
a ",X" or a ",Y" to the address. For example, if the X register con
tains $03, the instruction

LDA $1284,X

loads the contents of memory location $12B7 (i.e., $12B4 + $03) into
the accumulator.

Absolute indexed addressing is particularly useful for accessing
data in a list. For this application, you would use the starting ad
dress of the list as the operand of the instruction and use the index
register (X or Y) to specify the particular element in the list that

THE 6502 MICROPROCESSOR INSTRUCTION SET 37

you want to access. If you establish a loop in which X is incre
mented after each access, you can access a series of consecutive
elements in the list. Lists will be discussed in more detail in Chap
ter 4.

Zero Page Indexed Addressing

Zero page indexed addressing is to zero page addressing as ab
solute indexed addressing is to absolute addressing. vVith zero
page indexed addressing, the effective zero page address of the
operand is computed by adding the contents of the X or Y register
to the zero page base address contained in the second byte of the
instruction.

All zero page indexed instructions are two-byte instructions (one
byte less than their absolute-indexed counterparts). Zero page in
dexed operands are specified by attaching a ",X" or a ",Y" to the
address. For example, if the X register contains $03, the instruction

LDA $2A,X

loads the contents of location $002D (i.e., $002A + $03) into the
accumulator.

Like absolute indexed addressing, zero page indexed addressing
offers the potential for list applications. By using zero page indexed
addressing, the instruction requires only two memory locations for
storage, while absolute indexed addressing instructions require
three memory locations for storage. There is also the possibility
that the zero page indexed addressing instruction will require one
less clock cycle to be executed.

One important point to stress is the effective address is restricted
to Page 0 (locations 0 through $FF). If the addition of the index
register produces an address larger than $FF, the 6502 will disre
gard any carry out of the low-order byte. In the previous example,
X is restricted to values of $D5 (decimal 213) or less; X = $D5 will
produce an effective address of $FF, while X = $D6 will produce
a "wrap-around" address of $00.

Indexed Indirect Addressing

Indexed indirect addressing is a combination of two addressing
options that have already been discussed in this section-indexed
addressing and indirect addressing. Recall that indexed addressing
involves adding an index register displacement to a base address
contained in the instruction to arrive at a second address-the ef
fectii;e address of the data. In indirect addressing, the operand
contained in the instruction is the address of the first of two memory
locations that contain the address of the data, rather than the data
itself.

38 6502 SOFTWARE DESIGN

These two concepts can be combined. With indexed indirect
addressing, a displacement in the X register is added to the zero
page operand in the instruction to produce an indirect zero page
address. The effective absolute address is contained in the memory
location addressed by the computed indirect address (low-address
byte) and the next consecutive memory location (high-address
byte). I

Because the operand address is a zero page address, all indexed
indirect instructions occupy only two bytes in memory. Further,
since the X register is 8 bits long, it can provide a displacement of
up to decimal 255, but (as with zero page indexed addressing) the
indirect address is restricted to Page 0-locations 0 through $FF.
The beauty of indexed indirect addressing is that since the effective
address is a 16-bit absolute address, the full 65K-byte memory space
of the 6502 microprocessor can be accessed with a two-byte in
struction! Nothing comes free, though. All the indexed indirect in
structions take six cycles to execute, three more than the zero page
form of the same instruction and two more than the absolute form.

Indexed indirect operands are of the form (aa,X). For example,
if the X register contains $4B, the instruction

LOA ($2A,X)

causes the 6502 microprocessor to compute an address of $75
($2A + $4B) and fetch the effective memory address from zero
page locations $75 (low address) and $76 (high address). If
memory location $75 contains $B4 and location $76 contains $12,
the contents of location $12B4 will be loaded into the accumulator.
Fig. 2-2 illustrates this example.

The very nature of indexed indirect addressing, adding a dis
placement to a zero page base address to fetch an address, hints
at one of its uses-selecting one address from a list of addresses in

LDA ($2A.X)--------

..._., + INDIRECT ADDRESS

x I $4B ,_______.... ""'

$0075 $B4

A l._ __ $E_A __ $0076 $12

DATA $EA

fig. 2·2. Indexed indirect addressing.

THE 6502 MICROPROCESSOR INSTRUCTION SET 39

the zero page. Of course, since each address occupies two memory
locations, the contents of the X register must be doubled before
it is applied to the base address.

Indirect Indexed Addressing

Indirect indexed addressing combines the same two addressing
concepts as indexed indirect addressing (indexed addressing and
indirect addressing), but applies them in reverse order. In indexed
indirect addressing, the index is added to the zero page address in
the second byte of the instruction before the indirect addressing is
performed. This technique is called pre-indexing. In indirect in
dexed addressing, the index is added to the 16-bit memory address
after the indirect addressing is performed. This technique is called
post-indexing.

Indirect indexed operands are of the form (aa) ,Y. For example,
if the Y register contains $4B, the instruction

LDA ($2A),Y

fetches its base address from zero page locations $2A (low ad
dress) and $2B (high address). So, if location $2A contains $B4
and location $2B contains $12, the base address of the data table
is $12B4. The value to be loaded into the accumulator is at location
$12B4 + $4B, which means that the contents of location $12FF
will be loaded into the accumulator. Fig. 2-3 illustrates this example.

Indirect indexed addressing is handy for accessing a certain
known element in one of a number of like-structured data tables.
For instance this mode might be used in an instruction sequence
that is shared by several users. Before executing the indirect in-

LDA i$2A Yi
'--'~DIRECT ADDRESS

y I $ 4 B _, \ ----------

$002A $84 }
A 1 $EA 1 S002B t----$1-2 --1 r l

$1284 J I 1--------1 BASE ADDRESS

+

\ $12FF 1---$-E-A----tEFFECTIVE ADDRESS

Fig. 2·3. Indirect indexed addressing.

40 6502 SOFTWARE DESIGN

dexed instruction, the calling program of the user stores a unique
base address into the zero page operand location (and the next
consecutive location), so that the instruction ends up using the
correct data table.

Relative Addressing

Relative addressing is just what the name implies. The effective
address is specified relative to the address of the next instruction
to be executed. That is, the effective address is computed by adding
a positive or negative displacement to the current value of the pro
gram counter. A positive displacement will address a location fol
lowing the current instruction (i.e., higher in memory). A negative
displacement will address a location preceding the current in
struction (i.e., lower in memory).

Relative addressing is used only by the eight branch instructions
of the 6502 microprocessor. The branch instructions cause program
control to transfer forward or backward if a certain condition is
met (e.g., if the preceding arithmetic operation produced a zero
result); otherwise, execution proceeds to the next sequential in
struction. For example, the Branch on Carry Clear (BCC) in
struction

BCC NEXT
NOTNXT LOA #$3F

will cause the 6502 microprocessor to branch to the instruction at
label NEXT if the Carry hit is clear (reset). If the Carry hit is
set, the branch is not performed, so the 6502 executes the LDA in
struction at label NOTNXT.

All branch instructions occupy two bytes in memory, with the
second byte containing the displacement. Being only 8 bits long,
the displacement is limited to the range of + 127 bytes (forward)
to -128 bytes (backward) from the branch instruction.

Accumulator Addressing

The 6502 microcomputer has four instructions that allow shifting
or rotating the contents of the accumulator or a memory location
one bit position to the right or to the left. If an A operand is specified
for these instructions, the 6502 shifts or rotates the accumulator,
rather than the memory. Clearly then, accumulator addressing is
nothing more than an implied type of addressing that is unique
to the four shift and rotate instructions. For example,

ASL A

shifts the A contents of the accumulator to the left by one hit po
sition.

THE 6502 MICROPROCESSOR INSTRUCTION SET 41

LOAD AND STORE INSTRUCTIONS

Having a memory-oriented architecture, the most fundamental
operations of the 6502 microprocessor involve moving information
into and out of memory. All such transfers are made via three reg
isters-the Accumulator (A) Register, the X Register, and the Y
Register.

The process of transferring information from memory into one
of the registers of the 6502 microprocessor is called loading the
information. There are three Load instructions:

Instruction

LDA
LDX
LDY

Description

Loa.d Accumulator with Memory
Load X Register with Memory
Loa.d..Y Register with Memory

The source location in memory is unaffected by the load operation,
but two flags in the processor stah1s register are altered to provide
some information about the value that has been loaded into the
register. The Negative flag (N) of the processor status register will
be set if Bit 7 (the most-significant bit) of the loaded value is a 1,
and will be reset if Bit 7 of the loaded value is a 0. Further, the
Zero flag (Z) will be set if the loaded value is O; otherwise it will
be reset. For example,

LDA $1234

loads the contents of memory location $1234 into the accumulator.
The process of transferring information from one of the registers

of the 6502 microprocessor into memory is called storing the in
formation. There are three Store instructions:

Instruction
STA
STX
STY

Description
Store Accumulator in Memory
Store X Register in Memory
Store Y Register in Memory

The store instructions do not change the contents of the source
register (A, X, or Y), nor do they alter the processor status register.
The simplest way of storing a value in memory is with a Load im
mediate and Store combination, such as

LOA #OO
STA $21

which stores a zero in zero page memory location $0021, effectively
clearing that location.

42 6502 SOFTWARE DESIGN

ARITHMETIC INSTRUCTIONS

The 6502 microprocessor has instructions for adding and sub
tracting both binary-coded and binary-coded-decimal numbers. All
add and subtract operations involve two operands, one in the accu
mulator and the other in memory (or in the second byte of the
instruction, if immediate addressing is used) .

Representation of Numbers

The 6502 microprocessor can be used to add and subtract both
unsigned and signed numbers. The form makes no difference to the
microprocessor, but you, as the programmer, should know how to
interpret both forms.

In an unsigned number, each data bit carries a certain binary
weight, according to its position within the number. Data bits are
numbered from right to left, with the rightmost bit labeled as Bit
0 and the leftmost bit labeled as Bit 7. Further, the bit numbering
scheme has a direct correlation to the binary weights in that Bit
0 has a weight of 2° (decimal 1), Bit 1 has a weight of 21 (decimal
2), etc. Thus, Bit 7 has a weight of 27 (decimal 128). The assign
ments can be summarized as follows:

7 6543210
27 26 25 24 2~ 22 21 2°

128 64 32 16 8 4 2 1

Bit Position
Binary Weight
Equivalent Decimal Weight

As you can see, a single byte can represent an unsigned number from
0 (binary 00000000) to decimal 255 (binary 11111111).

In a signed number, the seven low-order bits (Bit 0 through Bit
6) represent data, and have the same weights as with unsigned
numbers. The most-significant bit (Bit 7) represents the sign of
the number. If the number is positive, Bit 7 is a logic 0. If the num
ber is negative, Bit 7 is a logic 1. Positive signed numbers may be
within the range of 0 (binary 00000000) to + 127 (binary 01111111).
Negative signed numbers may be within the range of -1 (binary
11111111) to -128(binary10000000).

At this point, some readers may be puzzled and wonder why -1
is represented by binary 11111111, rather than by 10000001. The
answer is that negative-signed numbers are represented in their two's
complement form. The two's complement form was introduced to
eliminate the problems that are associated with allowing zero to
be represented in two forms, binary combination 00000000 (the
positive form) and binary 10000000 (the negative form). Using
two's complement, zero is represented by only one form, the binary
combination 00000000. To derive the negative two's complement

THE 6502 MICROPROCESSOR INSTRUCTION SET 43

form of a binary number, you simply take the positive form of the
number and reverse the sense of each bit. You change each 1 to a
0, and each 0 to a 1, and add 1 to the result. The following ex
ample shows the steps required in deriving the binary representa
tion of -32 (in two's complement form).

00100000
11011111

+ 1

11000000

Decimal Mode Instructions

+3210
One's complement
Add 1

Two's complement

The 6502 microprocessor has instructions that can cause its in
ternal Arithmetic Logic Unit to operate as either a binary adder
or as a decimal adder during addition and subtraction instructions.
When operating as a binary adder, the ALU treats both 8-bit oper
ands as binary numbers, with values from 00000000 to 11111111
(hex FF, decimal 255) . When operating as a decimal adder, the
ALU treats both operands as Binary-Coded Decimal (BCD) num
bers, with two 4-bit BCD digits packed into each 8-bit operand.

Since decimal digits range from 0 to 9, BCD digits have values
from binary 0000 (hex 0, decimal 0) to binary 1001 (hex 9, decimal
9). Binary combinations 1010 through 1111 are not allowed. Table
2-4 contains the BCD-to-binary relationships.

Table 2-4. The Binary Equivalents
of BCD Digits

BCD Binary

0 0000
l 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

How do you control the binary and decimal modes of the ALU?
It is done with two instructions, Set Decimal Mode (SED) and
Clear Decimal Mode (CLD). The Set Decimal Mode (SED) in
struction causes the ALU to function as a decimal (BCD) adder,
so that the 8-bit operands of all subsequent add and subtract instruc
tions are treated as packed two-digit BCD numbers. The SED in-

44 6502 SOFTWARE DESIGN

struction also sets the Decimal Mode (D) control bit of the processor
status register. The Clear Decimal Mode (CLD) instruction causes
the ALU to function as a binary adder, and clears the Decimal Mode
(D) bit in the processor status register. At the time when power is
applied, the state of the Decimal Mode (D) bit is undefined, and
it must be either set or cleared by the initialization program of your
system. The monitor program of the AIM 65 clears the D bit when
power is applied.

Addition

Most microprocessors have two add instructions-one that simply
adds the operands and another that includes a carry in the addition.
The former instruction is used to add single-byte numbers and to
add the low-order bytes of two multibyte operands. The latter in
struction is reserved for adding the higher-order bytes of two multi
byte operands.

The designers of the 6502 microprocessor recognized that since
most additions involve multibyte numbers, they could save valuable
coding space (and add other functions) in their microprocessor by
eliminating the add-without-carry instruction. As a result, the
6502 has only one add instruction. This is Add to Accumulator with
Carry (ADC), in which "Carry" is the Carry flag (C) in the proc
essor status register.

Symbolically, the operation of the ADC instruction can be repre
sented as:

A=A+M+C
where,

A is the accumulator,
M is the memory (or an immediate value),
C is the Carry.

If Carry is set to a logic 1 when the ADC instruction is executed,
the addition becomes

A=A+M+l.

If Carry is reset to a logic 0 when the ADC instruction is executed,
the addition becomes

A=A+M+O.

What is the procedure for adding single-byte numbers, or adding
the least-significant bytes of two multiple-byte numbers? For these
situations, the Carry flag (C) must be reset to zero before performing
the addition. The instruction that resets the Carry flag is Clear
Qarry flag or CLC. With the clear Carry requirement, single-byte
add operations usually look like the following:

THE 6502 MICROPROCESSOR INSTRUCTION SET 45

CLC
ADC $21

In this case, the contents of zero page memory location $0021 is
added to the accumulator.

There is one situation in which you do not need to precede an
ADC instruction with a CLC instruction. If an immediate value is
being added to the accumulator (e.g., ADC #36), and the Carry
flag has been set by some previous operation, the state of the Carry
can be accounted for by using an immediate operand that is one
less than the value you want to add. For instance, to add 36 to the
accumulator and the Carry is set to one, code an ADC #35. The
result will be identical to coding CLC followed by ADC #36.

All ADC instructions are two bytes long except the ADC in
structions that use absolute addressing (indexed or unindcxed).
These are three bytes long. The ADC instruction affects the follow
ing four flags in the processor status register:

• The Carry flag (C) is set if the sum of a binary addition ex
ceeds decimal 2.5.5 (hex FF), or if the sum of a binary-coded
decimal addition exceeds decimal 99 (hex 99); otherwise, it
is reset.

• The Zero flag (Z) is set if the sum is zero; otherwise, it is reset.
• The Negative Hag (N) is set if Bit 7 of the result is a logic l;

otherwisf' it is rf'set. If signed numbers arc bf'ing added. the N
flag is set if the result is negative and reset if it is positive.

• The Overflow flag (V) is set if two like-signed numbers (both
positive or both negative) are added and the result exceeds
+ 12710 or ~ 12810, which causes Bit 7 of the accumulator to be
changed; otherwise it is reset.

For add operations, the status of the N and V flags is pertinent
only if signed numbers are being added.

To add multiprecision numbers, simply clear the Carry flag be
fore adding the low-order bytes, and then execute a series of LDA
(load), ADC (add), and ST A (store) instructions, once for each
byte to be added. Example 2-1 shows a routine that adds two
double-precision (16-bit) binary numbers. The same routine can
be used to add two double-precision decimal (BCD) numbers, by
simply inserting a Set Decimal mode (SED) instruction between
the CLC instruction and the LDA $20 instruction.

Subtraction

Most microprocessors have two subtract instructions, one that
simply subtracts the operands and another that includes a borrow
in the subtraction. The former instruction is used to subtract single-

46 6502 SOFTWARE DESIGN

Example 2-1: A Double-Precision Addition Routine

;THIS ROUT! NE ADDS TWO 16-BIT NUMBERS. ONE NUMBER IS
;STORED IN LOCATIONS $20 AND $21, THE OTHER IS STORED IN
;LOCATIONS $22 AND $23. THE SUM REPLACES THE NUMBER IN
;LOCATIONS $20 AND $21.

DPADD CLC ;CARRY = 0
LDA $20 ;ADD LOW-ORDER BYTES
ADC $22
STA $20
LDA $21 ;ADD HIGH-ORDER BYTES
ADC $23
STA $21

byte numbers and, also, to subtract the low-order bytes of two
multibyte operands. The latter instruction is reserved for subtract
ing the higher-order bytes of two multibyte operands.

For the same space-saving reasons given for the single add in
struction in the preceding Addition section, the 6502 has only one
subtract instruction. This is the 1!u2tract from Accumulator with
Borrow (SBC) instruction, in which "Borrow" is contributed by
the Carry flag (C) of the processor status register. With borrow
always included in the subtraction, you must observe the following
rule:

Preceding a subtraction operation, the Carry flag (C) must be
set to a 1 or accounted for in the subtraction. The instruction
that sets the Carry flag is Set Carry flag (SEC).

Why set the Carry to 1 if it is to be included in the subtraction?
The answer is given in the implementation of the instruction, in
which the complement of the Carry, rather than its true value, is
included in the subtraction. It is given here, in a symbolic repre
sentation of the operation of the SBC instruction:

where,
A is the Accumulator,
Mis the memory,
C is the Carry.

A=A-M-C

\Vith the Carry set requirement, single-byte subtraction operations
look like the following:

SEC
SBC $21

In this case, the contents of zero page location $0021 are subtracted
from the accumulator. The SBC instruction occupies two bytes in
memory if a zero page or an immediate addressing mode is used, and
three bytes in memory if an absolute addressing mode is used.

THE 6502 MICROPROCESSOR INSTRUCTION SET 47

The SBC instruction affects four flags in the processor status
register:

• The Carry flag (C) is set if the result is positive or zero, and
is reset if the result is negative (indicating a borrow).

• The Zero flag (Z) is set if the result is zero; otherwise, it is
reset. Note that if Carry and Zero are both set, the result is
zero. If Carry is set and Zero is reset, the result is positive.

• The Negative flag (N) is set if Bit 7 of the result is a logic l;
otherwise it is reset. If signed numbers are being subtracted,
the N flag is set if the result is negative and reset if it is
positive.

• The Overflow flag (V) is set if two unlike-signed numbers
(one number positive, the other number negative) are sub
tracted, and the result exceeds + 12710 or -12810 . This causes
Bit 7 of the accumulator to be changed.

To subtract multiple-precision numbers, you simply set the Carry
flag before subtracting the low-order bytes, then execute a series
of LDA, and ST A instructions, once for each bvte to be subtracted.
Example 2-2 shows such a subtraction on 16-bit binary numbers.
The same routine can be used to subtract two double-precision
decimal (BCD) numbers, by simply inserting a Set Decimal mode
(SED) instruction between the SEC instruction and the LDA $20
instruction.

Example 2-2: A Double-Precision Subtraction Routine

;THIS ROUTINE SUBTRACTS A 16-BIT NUMBER STORED IN LOCATIONS
;$22 AND $23 FROM ANOTHER
;NUMBER STORED IN LOCATIONS $20 AND $21. LOCATIONS $20
;AND $22 HOLD THE LOW-ORDER BYTES OF THE NUMBERS. THE RESULT
;REPLACES THE NUMBER IN LOCATIONS $20 AND $21.

DPSUB SEC ;CARRY = l
LOA $20 ;SUBTRACT LOW-ORDER BYTES
SBC $22
STA $20
LDA $21 ;SUBTRACT HIGH-ORDER BYTES
SBC $23
STA $21

The SBC instruction can also be used to negate a number (to
put it into two's complement form). You do this by subtracting
the positive form of the number from zero. For example, the follow
ing routine negates the contents of zero page location $21:

SEC'
LDA #OO
SBG $21
STA $21

;CARRY = l
;ACCUMULATOR = 0
;SUBTRACT $21 AND
; AND RETURN TO MEMORY

48 6502 SOFTWARE DESIGN

Signed Number Arithmetic

We have just concluded a brief discussion of the addition and
subtraction capabilities of the 6502 microprocessor, but no mention
has been made of how the addition or subtraction of unsigned
numbers differs from the addition or subtraction of signed numbers.
The reason for this is that as far as the actual addition or subtraction
operation is concerned, ii makes no difference whether the numbers
are signed or unsigned. All information given in the preceding Ad
dition and Subtraction sections applies to operands of either form.

That does not mean, though, that every addition and subtraction
routine can be used with numbers from both numbering systems,
but only that the mechanics of the add and subtract portions of
these routines are universal. The signed arithmetic routine may
include some additional instructions that will cause a negative re
sult to be treated differently from a positive result. An operation
that produces an overflow condition (i.e., the sign bit is altered
by the operation) may be treated differently from one in which no
overflow occurs.

The resulting sign and overflow status of the final result is re
flected by the state of two flags in the processor status register
the Negative (N) and Overflow (V) flags. Signed arithmetic rou
tines often use the final status of these two flags to make some de
cision about how to process the result. The Negative flag merely
reflects the sign of the result (positive or negative), but the Over
flow flag indicates whether the accumulator contains a valid result
or an invalid result.

The Overflow (V) flag will be set only if the result in the Accu
mulator is invalid. You will recall that the V flag is set if the addi
tion of two like-signed numbers, or the subtraction of two unlike
signed numbers, produces a result more positive than + 12710 or
more negative than -128 10 ; otherwise, the V flag is reset. Once set,
the Overflow flag can be reset (cleared) with a special one-byte,
two-cycle instruction:

Instruction
CLV

Description
Clear Overflow (V) Flag

The Overflow flag will also be reset automatically at the beginning
of the next ADC or SBC instruction.

INCREMENT AND DECREMENT INSTRUCTIONS

The 6502 microprocessor has instructions that increment and
decrement the contents of the X register, the Y register, or a memory
location.

THE 6502 MICROPROCESSOR INSTRUCT!ON SET 49

Increment/ Decrement Registers

In the 6502 Addressing Modes section of this chapter, we dis
cussed the use of the X and Y registers as index registers. These
two registers can also function as general-purpose counters in a
variety of applications.

The designers of the 6502 microprocessor made it easy to access
consecutive memory locations, and to count up or down by one, by
providing increment and decrement instructions for both of these
general-purpose registers. They are:

Instruction

DEX
DEY
INX
INY

Description

Decrement Index X by One
Decrement Index X by One
Increment Index X by One

.fucrement Index .X.. by One

These implied address instructions each occupy one byte in memory
and take two cycles to execute. Further, they affect two flags in the
processor status register:

• The Negative flag (N) is set if the register contains a negative
result after being incremented or decremented (Bit 7 = 1);
otherwise, N is reset.

• The Zero flag (Z) is set if the result of the increment or decre
ment operation is zero; otherwise, it is reset.

Example 2-3 shows a routine that copies the contents of six con
secutive bytes in memory (starting at location $20) into another
portion of the memory (starting at location $0320). In this routine,
the X register acts as an index register and the Y register acts as
the byte counter. The final instruction, BNE, has not been described
yet, but all it does is make the 6502 loop back and load another
byte (via the $20,X instruction at label NXTBYT) until the byte
counter-the Y register-has been decremented to zero.

Example 2-3: A Six·Byte Memory Move Routine

;THIS ROUTINE COPIES A SIX-BYTE BLOCK OF MEMORY,
;STARTING AT LOCATION $20, INTO ANOTHER PART OF
;MEMORY, STARTING AT LOCATION $0320.

LDX #OO ;INDEX = 0
LDY #06 ;BYTE COUNT = 6

NXTBYT LDA $20,X ;LOAD NEXT BYTE
STA $0320,X ;STORE NEXT BYTE
INX ;INCREMENT INDEX
DEY ;DECREMENT BYTE COUNT
BNE NXTBYT ;LOOP UNTIL All BYTES COPIED

50 6502 SOFTWARE DESIGN

Increment I Decrement Memory

In some applications, counters are maintained in memory, rather
than in the X or Y registers. Two instructions allow you to perform
a simple increment-by-I or decrement-by-I operation on memory
without using an ADC or SBC instruction. They are:

Instruction

DEC
INC

Description

~rement Memory by One
.ln.Qrement Memory by One

Both instructions permit four addressing modes-absolute, zero
page, absolute indexed X, and zero page indexed X. The absolute
addressed instructions occupy three bytes in memory, and the zero
page-addressed instructions occupy two bytes in memory. Further,
these instructions affect the same flags in the processor status reg
ister-Negative (N) and Zero (Z)-as the register increment and
decrement instructions.

Unlike the arithmetic add and subtract instructions (ADC and
SBC), the INC and DEC instructions do not affect the Carry flag.
Does this make them worthless for multibyte counting in memory?
No! It simply means that if a multibyte counter is being incre
mented, you must check the Z flag (rather than the C flag) to de
termine whether or not to increment the next higher byte; if Z
is set, increment. Similarly, if a multibyte counter must be decre
mented, you must check the N flag to determine whether or not to
decrement the next higher byte; if the DEC instruction has caused
N to switch from a logic 0 state of a logic 1 state, decrement.

LOGICAL INSTRUCTIONS

There will be situations in which you will want to examine just
one or more bits in a memory location or register, rather than the
entire 8-bit byte. For instance, you may want to test certain bits
in a status byte, or perhaps operate on the lower four bits or the
upper four bits of some data byte. The logical instructions of the
6502 microprocessor are useful for these situations.

There are three logical instructions. All operate on the accumu
lator, using the contents of a memory location (or an immediate
value) specified in the operand. The logical instructions are:

Instruction

AND
EOR
ORA

Description

Mill Memory with Accumulator
Exclusive-OR Memory with Accumulator
.Q!! Memory with Accumulator

THE 6502 MICROPROCESSOR INSTRUCTION SET 51

All three logical instructions occupy two bytes in memory if a
zero page or immediate addressing mode is used, and three bytes
in memory if an absolute addressing mode is used.

Further, all three logical instructions affect two flags in the proc
essor status register:

• The Negative flag (N) is set if the result is negative (Bit
7 = 1); otherwise, it is reset.

• The Zero flag (Z) is set if the result is zero; otherwise, it is
reset.

AND Instruction

The AND Memory with Accumulator (AND) instruction is pri
marily used to filter, mask, or strip out (set to zero) certain bits
in the accumulator so that some form of processing can be performed
on the remaining bits. For each bit position in which both memory
and the accumulator contain a 1, the bit in the accumulator is set
to l; otherwise that bit is reset to 0. Table 2-5 summarizes the AND
conditions.

Table 2-5. Logical AND Operation

Memory Bit Accumulator Bit Result Bit in Accumulator

0 0 0
0 1 0
l 0 0
1 1 1

The AND instruction is best suited for testing selected accumu
lator bits for a 1 value (to check a status byte, perhaps, to find out
which bits are "on"), or to mask out bits that are of no interest in a
particular program application. For example, in the American
Standard Code for Information Interchange (ASCII), the char
acters 0 to 9 are assigned the values listed in Table 2-6. Assume
that the most-significant bit (MSB) is always a logic 0.

If the four most-significant bits are masked out of the ASCII
values so that they are reset to zero, the binary-coded decimal
(BCD) value for each character will remain in the four least
significant bits. Examine the number 5.

510 =ASCII 00l10101 2 and 000001012 = 05 (BCD)

How can the four most-significant bits be masked to logic O? It
can be easily done with a logical AND. If you refer to Table 2-5, you
will see that any bit that is ANDed with a 0 will be cleared to 0 and
any bit that is ANDed with a 1 will retain its original value. Therefore,
ASCII 5 in the accumulator can be easily converted to BCD by

52 6502 SOFTWARE DESIGN

Table 2-6. The ASCII Values for Characters 0 Through 9

ASCII

Character Hex Binary BCD

0 30 00110000 0000
l 31 00110001 0001
2 32 00110010 0010
3 33 00110011 0011
4 34 00110100 0100
5 35 00110101 0101
6 36 00110110 0110
7 37 00110111 0111
8 38 00111000 1000
9 39 00111001 1001

ANDing its four most-significant bits with Os and its four least
significant bits with ls. This can be done with the instruction AND
#$OF. What will be contained in the accumulator when the in
structions

LOA #$38
AND #$OF

are executed? The accumulator will contain 00001000, or BCD 8.

Exclusive-OR Instruction

The Exclusive-OR Memory with Accumulator (EOR) instruction
is primarily used to determine which bits differ between two oper
ands, but it can also be used to complement selected accumulator
bits. Each bit position that contains a 1 in either memory or the
accumulator (but not both) is set to l; all other bit positions are
cleared to 0. Table 2-7 summarizes the EOR conditions.

Table 2-7. Logical Exclusive-OR Operation

Memory Bit Accumulator Bit Result Bit in Accumulator

0 0 0
0 l l
l 0 l
l l 0

The way the EOR operates on a particular bit can be likened to a
radio operator waiting for two radio messages. If neither message
arrives, it is a zero night. If either message arrives, the night is a
success. However, if both signals arrive at the same time (cancelling
each other), it also results in a zero night. As an example, the in
struction

EOR #$OF

THE 6502 MICROPROCESSOR INSTRUCTION SET 53

will complement the four least-significant bits of the accumulator
and clear to zero the four most-significant bits of the accumulator.
The EOR instruction is also used to determine whether two values
are identical; EOR will set the Zero flag (Z) if, and only if, the con
tents of memory are identical to the contents of the accumulator.

OR Instruction

The OR Memory with Accumulator (ORA) instruction produces
a logic 1 result in each accumulator bit position for which both
memory and accumulator contain a logic 1. Table 2-8 summarizes
the ORA conditions. The ORA instruction is usually used to set
bits to a logic 1. For example,

ORA #BO

sets the most-significant bit (Bit 7) to a logic 1, and leaves all other
bits unchanged.

Table 2-8. Logical OR Operation

Memory Bit Accumulator Bit Result Bit in Accumulator

0 0 0
0 1 1
1 0 1
1 1 1

JUMP, BRANCH, COMPARE, AND BIT-TEST INSTRUCTIONS

Up to this point, all of the program examples (except Example
2-3) have been straight line programs; instructions were executed
in the order in which they appeared in the program. Control has
not been transferred to another section of a program based on
the results received by executing an instruction or a series of in
structions. The next group of instructions that we will discuss
demonstrate how program execution can be transferred from one
section of a program to another section, and why this is useful.

The Jump Instruction

Whether you know it or not, you are already familiar with the
basic concepts of jump operations. Have you ever read a set of
instructions for something or other and come across a direction
like "Jump to Step 5"? Well, that is a jump operation. Similarly,
when an income tax form says "Go to Step 36a," that is also a jump
instruction. As in these everyday situations, the jump instruction of
the 6502 microprocessor causes the next operation to take place at a
point other than the next consecutive memory location. A further

54 6502 SOFTWARE DESIGN

similarity with everyday "jump situations" is that the jump instruc
tion of the 6502 is unconditional; it occurs every time the 6502 en
counters it in a program.

The 6502 jump instruction, Jump, has the mnemonic JMP. The
operand of a JMP instruction is frequently a label, so you will often
see JMP instructions being used in the following context:

ADC $20
INX
JMP THERE

HERE STA $24

THERE SEC
SBC $22

In the preceding example, the program increments the X register
(via INX), and then jumps to the instruction assigned to THERE.
It executes that instruction (SEC), then the SBC $22 instruction,
and then whatever follows. Will the ST A $24 instruction located
at label HERE ever be executed? Yes, but only if an instruction in
some other portion of the program transfers control (using perhaps
a JMP HERE instruction) to that location.

The JMP instruction is used typically to skip over a group of
instructions that are executed under some alternative set of con
ditions, or a group of instructions that are executed during some
other part of the program. The JMP instruction can operate with
absolute addressing or with indirect absolute addressing. Since
both modes are absolute, the jump can be to any place in memory.
We might add that although the JMP THERE instruction in the
preceding example caused a jump to a location following it in
memory, it could just as easily have jumped to a location preced
ing it in memory.

The JMP instruction occupies three bytes in memory and takes
three cycles to execute with absolute addressing and five cycles
to execute with absolute indirect addressing. Further, the JMP
instruction does not affect any flags in the processor status register.

The Branch Instructions

Branch instructions, like the JMP instruction, cause the program
execution to be transferred to a specific memory location. \Vhereas

THE 6502 MICROPROCESSOR INSTRUCTION SET 55

the JMP instruction transfers control to some absolute address in
memory, the branch instructions transfer control a specified number
of memory locations forward or backward from the next instruction
after the branch instruction. Another dissimiliarity between the JMP
and branch instructions is that the branch instructions are decision
making instructions. Each of the branch instructions tests the status
of a single flag in the processor status register. If the state of the
flag meets the requirements specified by the branch instruction, the
instruction is executed; otherwise, execution continues with the next
consecutive instruction in the program. Branch instructions, and
the flags they test, are summarized in Table 2-9.

Table 2-9. The Branch Instructions

Instruction Description Causes a Branch If

BCC Branch on Carry Clear Carry = 0
BCS Branch on Carry Set Carry = 1
BEQ Branch on Result Equal to Zero Zero (Z) = 1
BNE Branch on Result Not Equal to Zero Zero {Z) = 0
BMI Branch on Result Minus Negative {N) = 1
BPL Branch on Result Plus Negative (N) = 0
BYS Branch on Overflow Set Overflow (V) = 1
BVC Branch on Overflow Clear Overflow (V) = 0

As you can see from Table 2-9, the branch instructions are based
on the status of four flags in the processor status register-Carry
(C), Zero (Z), Negative (N), and Overflow (V). In general:

• The Carry flag reflects conditions where the result cannot be
contained in the specified resulting register or memory loca
tion. It is affected by the arithmetic instructions, the logical
shift instructions, the compare instructions, and the SEC and
CLC instructions.

• The Zero and Negative flags arc set by conditions in which the
result is zero or has Bit 7 = 1, respectively. These flags can be
affected by about half of the 6502 instructions.

• The Overflow (V) flag is affected by the arithmetic instruc
tions (ADC and SBC), and by the BIT and CLY instructions.

After reading that the branch instruction transfers are taken
relative to the branch instruction, you may have already guessed
that these instructions operate in only one addressing mode, rela
tive addressing. For this reason, the branch can span up to 127
bytes forward, or 128 bytes backward, from the branch instruction.
This does not impose as much of a restriction as you might think,
because you can always combine a JMP instruction with the branch
instruction to branch anywhere in memory. For example, here is

56 6502 SOFTWARE DESIGN

how a program might execute a branch on the Carry-set condition
to an instruction (at CSET) that is more than 127 locations past, or
128 locations ahead of, the BCC instruction:

BCC CCLEAR ;GO TO CCLEAR ON CARRY = 0
JMP CSET ;GO TO CSET ON CARRY = 1

CCLEAR LDA $20

Table 2-10 gives the hexadecimal equivalents for the full range
of branches, both forward and backward. If you have an AIM 65
and are using the mnemonic entry mode, you can ignore this table

Table 2-10. Hexadecimal Operands for Branch Instructions

Forward Relative Branch Table

~ D 0 1 2 3 4 5 6 7 8 9 A B c D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Backward Relative Branch Table

I~ D 0 1 2 3 4 5 6 7 8 9 A B c D E F

8 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
9 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97
A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
B 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
c 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
D 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
F 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

and enter the absolute (16-bit) address itself, rather than the rela
tive displacement. Otherwise, here is how you can use Table 2-10.
If you want to code a Branch on Carry Clear (BCC) instruction
that will branch 72 bytes backward if the condition is met, you
would look up 72 in the Backward Relative Branch Table. Position
72 is in column 8 and row B. The column gives the least-significant
hexadecimal digit (LSD) value and the row gives the most-sig
nificant hexadecimal digit (MSD) value, so the BCC instruction
should be coded like this:

BCC $BB

YHE 6502 MICROPROCESSOR INSTRUCTION SET 57

All branch instructions occupy two bytes in memory. (The first
byte holds the op code, and the second byte holds the relative
displacement.) These instructions are executed in two cycles if the
condition is not met and three cycles if the condition is met (four
cycles if the branch crosses a page boundary).

If we assume that a given condition is met 50% of the time, then
the 6.502 microprocessor will average 2.5 cycles to test a single
status Rag. The coding of two branch instructions to test a com
bination of two Rags will be executed on the average in 3.75 cycles.

The following are a few examples of branch instructions:

1. The sequence

ADC $24
BCS TOOBIG

branches to label TOOBIG if the add operation produces a
carry.

2. The sequence

SBC $24
BCC TOOSML

branches to label TOOSML if the subtract operation produces
a borrow.

3. The sequence

ADC $24
BEQ DONE

branches to DONE if the add operation produces a zero result
in the accumulator.

4. The sequence

LOOP

DEX
BNE LOOP

will loop (to LOOP) until the X register has been decremented
to zero. You will see this sort of sequence in many programs
that use the X or Y register as a counter.

.5. The sequence

SBC $24
BMI MINUS

branches to MINUS if the subtract operation produces a neg
ative result in the accumulator.

Note that except for Example 4, each of the preceding examples
employs a bit of inverted logic in which the more expected circum-

58 6502 SOFTWARE DESIGN

stance is executed if the branch fails, rather than succeeds. That is,
the instructions that immediately follow the branch instruction
represent the usual flow of the program, and the instructions at
the branch target are executed as an exception. (Parents use this
same approach when they tell a daughter or son, "If it looks like
rain tomorrow, take your raincoat to school," or "If you say one
more word, you're going to bed.") In fact, this approach should be
used whenever possible, because a branch test that fails takes one
less cycle to execute than a branch test that succeeds.

To this point, our branch instruction examples base the branch
test on the state of a status flag that reflects the result in an arith
metically altered register. There are many situations, however,
where you would like to base a branch decision on the contents of
a register or memory location in its unaltered state. For example,
you might want to branch if a certain location contains 0, or -3,
or a number larger than +6. The 6502 microprocessor has three
instructions for that purpose. These instructions are called compare
instructions.

Compare Instructions

The compare instructions set or clear three of the status flags
(Carry, Zero and Negative) that can be tested with branch instruc
tions, without altering the contents of the operand. There are three
compare instructions:

Instruction

CMP
CPX
CPY

Description

Compare .\1emory and Accumulator
Compare .\1emory and Index X
Comgare Memory and Index..Y.

The C.\1P instruction supports eight different addressing modes,
the same ones supported by the ADC and SBC instructions. Since
the X and Y registers function primarily as counters and indexes,
the CPX and CPY instructions do not require this elaborate address
ing capability and operate with just three addressing modes (im
mediate, absolute, and zero page).

The compare instructions subtract an immediate value or the
contents of a memory location from the addressed register, but do
not save the result in the register. The only indications of the result
are the states of three status flags-Negative (N), Zero (Z), and
Carry (C). The combination of these three flags indicate whether
the register contents are less than, equal to (the same as) or greater
than the operand "data" (the immediate value or contents of the
addressed memory location). Table 2-11 summarizes the result in
dicators for the compare instructions.

THE 6502 MICROPROCESSOR INSTRUCTION SET 59

Table 2-11. Compare Instruction Results

N z c
A, X, or Y < Memory 1 * 0 0
A, X, or Y = Memory 0 1 1
A, X, or Y > Memory O* 0 1

*Valid only for "two's complement" compare.

The compare instructions serve only one purpose; they provide
information that can be tested by a subsequent branch instruction.
For example, to branch if the contents of a register are less than an
immediate or memory value, you would follow the compare instruc
tion with a Branch on Carry Clear (BCC) instruction, as shown by
the following:

CMP $20 ;ACCUMULATOR LESS THAN LOCATION $20?
BCC THERE ;YES, BRANCH TO THERE

THERE ;NO, CONTINUE EXECUTION HERE

HERE ;EXECUTE THIS IF A IS LESS THAN LOCATION $20

Table 2-12 lists the branch instruction (s) that should follow the
compare instruction, for each register/ data relationship. In this
table, THERE represents the label of the instruction executed if
the branch test succeeds and HERE represents the label of the in
struction executed if the branch test does not succeed. Besides
comparing a memory location and a register, the compare instruc
tions are handy for comparing one memory location with another,
by loading one into a register (A, X, or Y) .

Example 2-4 contains a routine that tests whether the contents
of two memory locations are identical, and sets a flag in memory

Table 2-12. Use of Branch Instructions with Compare

Follow compare instruction with

For unsigned For signed
To Branch If numbers numbers

Register is less than data BCC THERE BMI THERE
Register is equal to data BEQ THERE BEQ THERE
Register is greater than data BEQ HERE BEQ HERE

BCS THERE BPL THERE
Register is less than or equal to data BCC THERE BMI THERE

BEQ THERE BEQ THERE
Register is greater than or equal to data BCS THERE BPL THERE

60 6502 SOFTWARE DESIGN

Example 2-4: Testing Two locations for Equality

;THIS ROUTINE SETS MEMORY LOCATION $22 TO "ONE" IF THE CONTENTS
;OF LOCATIONS $20 AND $21 ARE EQUAL, AND TO "ZERO" IF OTHERWISE.

LDX #OO ;INITIALIZE FLAG TO ZERO
LDA $20 ;GET FIRST VALUE
CMP $21 ;IS SECOND VALUE IDENTICAL?
BNE DONE
INX ;YES, SET FLAG TO ONE

DONE STX $22 ;STORE FLAG

to so indicate. Example 2-5 contains another memory-to-memory
comparison routine. It stores the larger of the two values in the
higher memory location. Example 2-6 contains a register-to-constant
comparison routine in which two branch instructions are used with

Example 2-5: Arranging Two Numbers in Order of Value

;THIS ROUTINE ARRANGES TWO NUMBERS IN LOCATIONS $20 AND $21 IN
;ORDER OF VALUE, WITH THE LOWER-VALUED NUMBER IN LOCATION $20.

LDA $21 ;LOAD SECOND NUMBER INTO ACCUMULATOR
CMP $20 ;COMPARE THE NUMBERS
BCS DONE ;DONE IF FIRST IS LESS THAN OR EQUAL

; TO SECOND,
LDX
STA $20 ;OTHERWISE SWAP THEM
STX $21

DONE

one compare instruction, so that the "less than," "equal to," and
"greater than" conditions are tested. Since the branch instructions
do not affect any flags in the processor status register, BNE GT3
is basing its branch decision on the same flag that the BCS EQGT3
based its branch decision on!

Example 2·6: A Three-Way Decision Routine

;THIS ROUTINE STORES THE CONTENTS OF THE ACCUMULATOR INTO LOCATION
;$20, $21 OR $22, DEPENDING UPON WHETHER THE ACCUMULATOR HOLDS
;A VALUE LESS THAN 3, EQUAL TO 3, OR GREATER THAN 3, RESPECTIVELY.

CMP #03 ;COMPARE ACCUMULATOR TO 3
BCS EQGT3
STA $20 ;ACCUMULATOR LESS THAN 3
JMP DONE

EQGT3 BNE GT3
STA $21 ;ACCUMULATOR EQUAL TO 3
JMP DONE

GT3 STA $22 ;ACCUMULATOR GREATER THAN 3
DONE

THE 6502 MICROPROCESSOR INSTRUCTION SET 61

Thus far, our discussion has concentrated on the CMP instruc
tion, which compares the accumulator with memory. Of what value
are the other compare instructions (CPX and CPY)? Their primary
value is to monitor the contents of X or Y when these registers are
being employed as count-up counters. In these cases, CPX or CPY
is used to compare the count against a maximum value of 25.510 in
memory. Example 2-7 is a routine that will move up to 256 consecu
tive memory bytes, with the CPX instruction doing the "all bytes
moved" check each time a byte is moved. You may have noted that
Example 2-7 is an expanded version of the six-byte move routine
given in Example 2-3.

Example 2-7: A Multiple-Byte Move Routine

;THIS ROUTINE MOVES UP TO 256 BYTES OF MEMORY, STARTING AT
;LOCATION $20, TO ANOTHER PORTION OF MEMORY, STARTING AT LOCATION
;$0320. THE BYTE COUNT IS CONTAINED IN LOCATION $1F.

LDX #OO ;INDEX = 0
NXTBYT LDA $20,X ;LOAD NEXT BYTE

STA $0320,X ;STORE NEXT BYTE
INX ;INCREMENT INDEX
CPX $1F ;ALL BYTES MOVED?
BNE NXTBYT ;IF NOT, MOVE NEXT BYTE

The compare instructions compare two "entire" 8-bit values.
There are situations, however, when you will need to test one or
more individual bits in a memory location. It has already been
shown how this can be done by masking out the unwanted bits
with an AND instruction. However, in the process of masking-out
the unwanted bits, the A:\'D instruction destroys the mask contained
in the accumulator. Certainly, the mask could be reloaded, but this
requires additional processor time and additional instructions. The
same job can be done, without altering the accumulator, by execut
ing a BIT instruction.

The BIT Instruction

The 6502 microprocessor has an instruction that allows you to
test the value of individual bits in memory, by logically ANDing
the contents of the memory location with a bit selection mask in the
accumulator. This instruction, Test Bits in Memory with Accumu
lator (BIT), alters neither accumulator nor memory, and, like the
compare instructions, records status information in the processor
status register. Here is how the status flags are affected.

• The Negative flag (N) receives the initial (un-ANDed) value
of Bit 7 of the memory location being tested.

• The Overflow flag (V) receives the initial (un-ANDed) value
of Bit 6 of the memory location being tested.

62 6502 SOFTWARE DESIGN

• The Zero flag (Z) is set if the AND operation generates a zero
result; otherwise, it is reset.

The BIT instruction supports only absolute and zero page ad
dressing. It is a three-byte, four-cycle instruction in the absolute
mode and a two-byte, three-cycle instruction in the zero page mode.

It is important to note that only the Zero flag (Z) reflects the
result of the simulated AND operation; the Negative and Overflow
flags (N and V) indicate the values of the two high-order memory
bits in their unaltered state. In reality, then, the BIT instruction
performs two very distinct types of test functions. These test func
tions will be discussed individually, beginning with the AND
function.

From the previous description of the AND instruction, you will
recall that for each bit position in which both memory and the ac
cumulator contain a 1, the AND instruction sets the corresponding
accumulator bit to l; otherwise that bit is reset to 0. The BIT in
struction performs the same operation as the AND instruction, but
it does not enter the ANDed result in the accumulator. Further,
whereas the AND instruction affects two status flags (N and Z), and
both flags reflect the post-AND status, the BIT instruction affects
three flags (N, V, and Z), but only the Z flag reflects the post-AND
status.

The bit-testing sequence in a program is comprised of three in
structions-an LDA instruction (usually with immediate address
ing) that loads the bit selection mask into the accumulator, a BIT
instruction that specifies the absolute or zero page location to be
tested, and a BEQ or BNE branch instruction. The bit selection
mask must have a logic 1 in the bit position to be tested and a logic
0 in all other bit positions. Example 2-8 shows a program sequence
that tests the state of Bit 2 of memory location $2340, and waits
for it to become a logic 0. Bit 2 might represent a motor or a relay
which must be off before the program can proceed to its next
operation. Note that the sequence in Example 2-8 could just as
easily test for a logic 1 in Bit 2, if the BNE LOOP were a BEQ
LOOP.

Can a BIT instruction test more than one bit at a time? Yes, but
with some limitations. When two or more bits are set in the accu-

Example 2-8: Waiting for a Memory Bit to Become Logic 0

LDA #04
LOOP BIT $2340

BNE LOOP
HIT

;MASK OFF ALL BITS BUT BIT 2
;BIT 2 = O?
;KEEP CHECKING UNTIL IT IS
; THEN CONTINUE HERE

THE 6502 MICROPROCESSOR INSTRUCTION SET 63

mulator mask, a subsequent BIT instruction will set the Zero flag
(Z) only if both test bits are logic 0 in memory, but will reset Z if
either or both test bits are logic 1 in memory.

These multiple-bit testing limitations disappear, however, if only
one of the test bits is in the Bit 0 to Bit 5 range, and the other test
bit(s) are either or both of the Bit 6 and 7 positions. Since Bits 6
and 7 provide AND-independent status indications, they can be tested
with their own branch instructions (BVS and BVC for Bit 6, BMI
and BPL for Bit 7).

Example 2-9 is similar to Example 2-8, but instead of waiting for
just one memory bit to become logic 0, we are waiting for any of
three memory bits (Bits 2, 6, and 7) to become logic 0. Note that
the mask only selects Bit 2 (LDA #04) for ANDing; if we had
mask-selected Bits 2, 6, and 7 (LDA #$C4), the Z flag would be
set only if all three hits were logic 0.

Example 2-9: Waiting for Any of Three Memory Bits to Become Logic 0

LDA #04 ;SELECT BIT 2 FOR TESTING WITH MASK
LOOP BIT $2340 ;TEST MEMORY

BEQ HIT ;BRANCH ON BIT 2 = 0
BVC HIT ;BRANCH ON BIT 6 = 0
BMI LOOP ;LOOP IF BIT 7 = l

HIT ;CONTINUE HERE WHEN 2, 6, OR 7 0

We have just seen how the AND-independent nature of the Neg
ative (N) and Overflow (V) bits allows you to test several memory
bits with a single BIT instruction. Although that facility is useful
in many program applications, most programmers will be even
more pleased by the fact that the N and V flag design of the BIT
instruction allows them to obtain important information about the
contents of a memory location without loading it into a register.

Since the BIT instruction is restricted to absolute and zero page
addressing, it is of little use if you are testing elements of tables,
or any other indexed or indirect-accessed data. However, the
BIT instructions can often replace a compare instruction for data
at known addresses. The easy access to Bits 6 and 7 (via the
V and N Hags) makes these bits ideal for storing status information.
And, with two bits, you get four testable combinations of status;
binary 00, 01, 10, and 11.

Perhaps the most widespread use of the N and V flags relates to
the interrupt request scheme of the input/ output structure of the
6.500 system. An interrupt request is simply the way for a periph
eral device to tell the 6502 microprocessor, "I am ready to send
data," or "I am ready to receive data." Interrupt requests are often
stored in the most-significant bit (Bit 7) of an interrupt status byte

64 6502 SOFTWARE DESIGN

in memory, so the presence of the Bit 7 in the N flag of the BIT
instruction is an indicator of the interrupt status, not the sign of a
number. Further, the presence of Bit 6 in the V flag is designed to
accommodate the 6520 Peripheral Interface Adapter (PIA), which
has interrupt sense bits in the Bit 6 and 7 positions of its status
word. Further discussion of input/ output is reserved for Chapters
7, 8, and 9.

SHIFT AND ROTATE INSTRUCTIONS

The 6502 microprocessor has four instructions that cause the
8-bit contents of an operand (a memory location or the accumu
lator) to be displaced 1 bit position to the left or to the right. Two
of these instructions "shift" the operand, the other two "rotate" the
operand.

For all four instructions, the Carry flag of the processor stah1s
register acts as a "ninth bit" extension of the operand in that it re
ceives the value of the bit that is displaced out of one end of the
accumulator or memory location (Bit 0 for a right shift, Bit 7 for
a left shift). In a shift operation, the vacated bit position at the op
posite end of the operand (Bit 7 for a right shift, Bit 0 for a left
shift) is reset to "O." In a rotate operation, the vacated bit position
at the opposite end of the operand receives the prerotate value of
the Carry flag. These are the shift and rotate instructions:

Instruction

ASL
LSR
ROL
ROR

Description

Accumulator 2hift Left
Logical ~hi ft Right
Hotate Left
Rotate Right

The operations of these instructions are illustrated in Fig. 2-4.
As previously mentioned, the shift and rotate instructions can

operate on either the accumulator or a location in memory. To op
erate on the accumulator, you simply put an "A" in the operand
field of the instruction, like this:

ASL A

Operations on memory can be conducted in any of four addressing
modes-absolute, zero page, zero page indexed X, and absolute in
dexed X. The following are the ASL instruction formats for each
mode:

ASL
ASL
ASL
ASL

$1234
S2A
$2A,X
$1234,X

(Absolute)
(Zero Page)
(Zero Page Indexed, X)
(Absolute Indexed, X)

THE 6502 MICROPROCESSOR INSTRUCTION SET 65

Fig. 2-4. Diagram of the Shift and
Rotate instructions.

CARRY 7 0

ASL:~O

7 Q CARRY

LSR: O~

ROL:

CARRY

ROR: q;._____+=E]
CARRY

These instructions occupy one byte in memory for accumulator ad
dressing, two bytes for either zero page addressing mode, and three
bytes for either absolute addressing mode.

In addition to their effect on the Carry flag (see Fig. 2-4), the
shift and rotate instructions affect two other flags in the processor
status register.

• ASL, ROL, and ROH cause the Negative flag (N) to be set
if Bit 7 of the shifted result is set to logic l; otherwise, it is
reset. The LSR instruction always causes the Negative flag to
be reset, since it shifts a "O" into Bit 7.

• The Zero flag (Z) is set if the shifted result is O; otherwise, it
is reset.

To show how these instructions work, consider an operand that
contains hexadecimal 34 (binary 00110100, decimal 52). The Carry
flag is set to l. Here is how the operand and Carry flag would be
altered for each of the four shift and rotate instructions:

Carry Bit Position
Flag 7 6 5 4 3 2 l 0

1 0 0 1 1 0 1 0 0 Before shift (hex 34, decimal 52
0 0 1 1 0 1 0 0 0 After ASL (hex 68, decimal 104
0 0 0 0 1 1 0 1 0 After LSR (hex IA, decimal 26
0 0 1 1 0 1 0 0 1 After ROL (hex 69, decimal 105)
0 1 0 0 1 1 0 1 0 After ROR (hex 9A, decimal 154)

66 6502 SOFTWARE DESIGN

One of the most common applications for shift and rotate in
structions is in multiplying and dividing numbers. \Vith a closer
examination of the preceding example, you will see why. Look at
the decimal equivalents. The unshifted operand has a decimal value
of 52. After being left-shifted by ASL, its decimal value is 104. After
being right-shifted by LSR, its decimal value is 26. Observe that
each left shift multiplies the operand by two, each right shift di
vides the operand by two.

Shift and rotate instructions can also be used to perform serial
to-parallel and parallel-to-serial conwrsions when the 6502 is com
municating with serial-based peripheral devices such as teletype
writers and CRTs.

Shifting Unsigned Numbers

Single-byte numbers can be shifted using only the shift instruc
tions, ASL and LSH. ;viultiple-byte numbers require a combina
tion of these shift instructions and the rotate instructions, ROL and
ROR. In multiple-byte shift operations, the Carry flag is used to
propagate bit values that have been displaced out of previously
shifted bytes.

Left shifts must operate on multiple-byte numbers in right-to-left
order, wherein the low-order byte is shifted first, with an ASL in
struction. Each remaining, higher-order byte is shifted with an ROL
instruction. Consider, for example, a 24-bit (three-byte) unsigned
number that is stored in locations $20 (low-order byte), and $21 and
$22 (high-order byte). This number can be left-shifted with the
following sequence of instructions:

ASL $20 ;SHIFT LOW-ORDER BYTE

ROL $21 ;SHIFT MIDDLE BYTE

ROL $22 ;SHIFT HIGH-ORDER BYTE

Right shifts must operate on multiple-byte numbers in left-to-right
order, wherein the high-order byte is shifted first, with an LSR in
struction. Each remaining lower-order byte is shifted with an BOR
instruction. The right-shift routine for the three-byte number start
ing at location $20 is:

LSR $22 ;SHIFT HGH-ORDER BYTE

ROR $21 ;SHIFT MIDDLE BYTE

ROR $20 ;SHIFT LOW-ORDER BYTE

Example 2-10 is a routine that left-shifts an unsigned number of
variable length, and can accommodate numbers from two bytes up
to 256 bytes long. This routine brings the byte count out of memory,
and puts it into the Y register. Actually, it could be retained in
memory, and decremented with the DEC instruction, but DEY

THE 6502 MICROPROCESSOR INSTRUCTION SET

Example 2-10: A Left-Shift Routine for Multiple-Precision Unsigned Numbers

;THIS ROUTINE LEFT-SHIFTS A MULTIPLE-PRECISION UNSIGNED NUMBER
;STORED IN MEMORY STARTING AT LOCATION $30. THE LENGTH OF THE
;NUMBER, IN BYTES, IS CONTAINED IN LOCATION $2F.

LDY $2F ;LOAD BYTE COUNT INTO Y
ASL $30 ;SHIFT LOW-ORDER BYTE
LDX #Ol ;BYTE INDEX = 1
DEY ;DECREMENT BYTE COUNT

NXTBYT ROL $30,X ;SHIFT NEXT BYTE
INX ;UPDATE BYTE INDEX
DEY ; AND BYTE COUNT
BNE NXTBYT ;LOOP UNTIL ALL BYTES SHIFTED

67

is a one-byte instruction that takes two cycles to execute, whereas
DEC is a two-byte instruction that takes five cycles to execute. If
you take the time to go through a speed and space comparison of
the two approaches, you will discover that the LDY $2F instruc
tion and two DEY instructions will occupy four bytes in memory
and will take seven cycles to execute. Conversely, two DEC in
structions occupy four bytes in memory and take ten cycles to ex
ecute. Thus, the memory approach is 30% slower than the Y reg
ister approach, and that ignores the fact that one of the decrement
instructions falls within the NXTBYT loop!

Shifting Signed Numbers

Our four shift and rotate instructions perform what are known as
"logical" shifts. That is, they treat the operand as a pattern of 8
bits. without regard to sign. Consequently, if a signed number is
right-shifted, the sign bit will be displaced I bit position to the

Example 2-11: A Left-Shift Routine for Multiple-Precision Signed Numbers

;THIS ROUTINE LEFTSHIFTS A MULTIPLE-PRECISION SIGNED NUMBER
;STORED IN MEMORY STARTING AT LOCATION $30. THE LENGTH OF
;THE NUMBER, IN BYTES, IS CONTAINED IN LOCATION $2F.

LDY $2F ;LOAD BYTE COUNT INTO Y
ASL $30 ;SHIFT LOW-ORDER BYTE
LDX #Ol ;BYTE INDEX = l
DEY ;DECREMENT BYTE COUNT

NXTBYT ROL $30,X ;SHIFT NEXT BYTE
INX ;UPDATE BYTE INDEX
DEY ; AND BYTE COUNT
BNE NXTBYT ;LOOP UNTIL All BYTES SHIFTED

;THE CODE THAT FOLLOWS RESTORES THE SIGN TO THE MOST-SIGNIFICANT
;BYTE (MSBY)

MSBO
SO VER

DEX ;MAKE INDEX POINT TO MSBY
LDA
BCC
ORA
JMP
AND
STA

$30,X
MSBO

#$80
SO VER

#$7F
$30,X

;LOAD MSBY INTO ACCUMULATOR
;SIGN = 1?
;YES. PUT ONE IN SIGN BIT

;NO. PUT ZERO IN SIGN BIT
;RETURN MSBY TO MEMORY

68 6502 SOFTWARE DESIGN

right (like every other bit), and its value will be replaced with a
0. If a signed number is left-shifted, the sign will be displaced
into the Carry flag, and its value will be replaced by the value of
Bit 6. Obviously, your program must somehow restore the displaced
sign value. The following discussion will explain how to do it.

As mentioned previously, in a logical le~ shi~, the sign is shifted
out the left end of the operand into the Carry flag. You can restore
the sign by simply setting up a mask with Bit 7 equal to the new
value of the Carry flag, and, then, oRing (if Carry = 1) or ANDing
(if Carry = 0) that mask into the shifted operand. Example 2-11
performs just such an operation in left-shifting a multiple-precision
signed number of variable length. You will note that this routine
is nothing more than the unsigned number routine (Example 2-10),
with seven instructions added to restore the sign.

In a logical right sh*, the sign is vacated by the operation. You
can preserve the sign by recording its original value in the Carry
flag and by using an ROR instruction to shift it into the most-sig
nificant byte. Example 2-12 is a routine that employs this technique.

REGISTER TRANSFER INSTRUCTIONS

Although the 6502 microprocessor has a memory-oriented archi
tecture, it also has 6 one-byte instructions that allow you to copy
the contents of one register into another, without disturbing the
source register. The register transfer instructions are:

Instruction

TAX
TAY
TSX
TXA
TXS
TYA

Description

Transfer Accumulator to Index X
Iransfer Accumulator to Index X
Transfer ~tack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to ~tack Pointer
Transfer Index X to Accumulator

The TXS and TSX instructions are specific to stack operations, so
their description will be deferred until later in this chapter. The
other four instructions do not have one specific applie:ation, but they
are useful from time to time in conserving space and in reducing
execution time.

Arithmetic Operations on the X and Y Registers

Since the 6502 microcomputer can only increment and decrement
the X and Y registers, the transfer instructions provide a simple
way to copy X and Y into the accumulator for a more complex
arithmetic operation and, then, have the result returned. Consider

THE 6502 MICROPROCESSOR INSTRUCTION SET

Example 2-12: A Right-Shift Routine for Multiple-Precision Signed Numbers

;THIS ROUTINE RIGHT-SHIFTS A MULTIPLE-PRECISION SIGNED NUMBER
;STORED IN MEMORY STARTING AT LOCATION $30. THE LENGTH OF THE
;NUMBER, IN BYTES, IS CONTAINED IN LOCATION $2F.

CLC ;PREPARE FOR SIGN = 0 SHIFT
LDX $2F ;LOAD BYTE COUNT INTO X
DEX ;SET INDEX FOR MSBY
LDA $30,X ;LOAD HIGH-ORDER BYTE
BPL MSBO ;SIGN = 1?
SEC ;YES. PREPARE FOR SIGN = 1 SHIFT

MSBO ROR A ;SHIFT HIGH-ORDER BYTE
STA $30,X ; AND RETURN IT TO MEMORY
DEX ;DECREMENT INDEX FOR NEXT BYTE

NXTBYT ROR $30,X ;SHIFT NEXT HIGHEST BYTE
DEX
BPL NXTBYT ;LOOP UNTIL ALL BYTES SHIFTED

69

a case in which you need to access every fifth element in a list,
rather than consecutive elements. The access instruction would be
an indexed instruction, such as LDA LIST,Y, in which LIST is a
label assigned to the starting location of the list. To access every
fifth element, you must add 5 to the index register (Y) between
load operations.

How can you add 5 to the Y register? One way is to code five
consecutive INY instructions. A more efficient way of doing this
is to transfer Y to the accumulator, add 5 (immediate), and return
the sum to Y for the next list access. The routine in Example 2-13
uses every fifth element of an existing list to construct a new list
elsewhere in memory. This routine employs the accumulator to
update the index register.

What has the four-instruction add-5-to-Y sequence in Example
2-13 saved us over five INY instructions? The five INY instructions

Example 2-13: Accessing Nonconsecutive Elements in a List

;THIS ROUTINE USES EVERY FIFTH ELEMENT (0, 5, 10, ETC.) OF A
;LIST THAT STARTS AT LOCATION $0501 TO CONSTRUCT A NEW LIST,
;STARTING AT LOCATION $21. THE LENGTH OF THE SOURCE LIST, IN
;BYTES, IS CONTAINED IN LOCATION $0500. THE BYTE LENGTH OF
;THE NEW LIST IS ENTERED INTO LOCATION $20.

LDY #OO ;SOURCE LIST INDEX = 0
LDX #OO ;NEW LIST INDEX = 0

GET EM LDA $0501,Y ;LOAD NEXT SOURCE BYTE
STA $21,X ; AND STORE IT INTO NEW LIST
INX ;UPDATE NEW LIST INDEX BY ONE
TYA ;UPDATE SOURCE LIST INDEX BY FIVE
CLC
ADC #05
TAY
CMP $0500 ;FINISHED WITH SOURCE LIST?
BCC GETEM ;NO. GET NEXT ELEMENT
STX $20 ;YES. STORE NEW LIST BYTE COUNT

70 6502 SOFTWARE DESIGN

would occupy five bytes in memory and take a total of ten cycles to
execute. In the four-instruction sequence, CLC, TYA, and TYA will
each take one byte and two cycles, and ADC #05 will take two bytes
and two cycles, for a total of five bytes and eight cycles. Thus, the
transfer method takes the same amount of memory, but it is two
cycles faster in execution. Therefore, the conclusion of this exercise
is self-evident: To increment or decrement the X or Y register by
five or more, do the arithmetic in the accumulator; for increments
and decrements of less than five, do it with the increment and
decrement instructions.

STACK INSTRUCTIONS

You will recall from Chapter 1 that the stack of the 6502 micro
processor is of the "last-in-first-out" variety. That is, the last item
(a data byte, in this case) that is entered onto the stack is the first
item to be extracted from the stack. Conversely, the first item that
is entered onto the stack is the last item to be extracted from the
stack. This scheme causes data to be retrieved in the reverse order
from which it was stored.

Stack information is accessed by a dedicated stack address reg
ister called the Stack Pointer, which always points to the next free
memory location "on" the stack. The Stack Pointer is automatically
decremented after a byte is pushed onto the stack, and is auto
matically incremented before a byte is pulled from the stack, so
the stack "builds" in the direction of address 0.

In the 6502 microprocessor, the stack is implemented in Page 1
(locations $0100 through $01FF) of the address space. Thus, the
Stack Pointer must be initialized by the user's program to address
$01FF, when the power is turned on. (This is accomplished auto
matically when using an AL\.1 6.5.) Since a page is comprised of
256 byte locations, the stack can hold up to 256 bytes of information.
What kinds of information can it hold? The stack is normally used
for two purposes: (1) to save interrupt or subroutine return ad
dresses and (2) to temporarily save register contents. We will
explain how and why addresses are saved on the stack when sub
routines are discussed in Chapter 3. For now, let us discuss in
structions that are used to initialize the Stack Pointer and to save
the register contents.

Stack Pointer Instructions

The contents of the Stack Pointer are undefined when power is
turned on, and must be initialized by the user's program. The 6502
microprocessor has a special instruction to initialize the Stack
Pointer:

THE 6502 MICROPROCESSOR INSTRUCTION SET

Instruction

TXS

Description

Transfer Index~ to .§tack Pointer

71

This instruction uses implied addressing, so it occupies just one
byte in memory and takes two cycles to execute.

Since the stack starts at memory location $01FF, most system
programs initialize the Stack Pointer to $FF (recall that the high
order address byte, $01, is automatically supplied by the 6502
microprocessor). Example 2-14 initializes the Stack Pointer to $FF.

Example 2-14: Initializing the Stack Pointer to $FF

;THESE INSTRUCTIONS INITIALIZE THE STACK POINTER TO ADDRESS

;THE "TOP" LOCATION IN PAGE l, $01FF.

LDX #$FF ;LOAD $FF INTO X REGISTER

TXS ;TRANSFER X REGISTER TO STACK POINTER

The contents of the Stack Pointer can also be "read" by a pro
gram, using another implied-addressing instruction:

Instruction Description

TSX Iransfer ~tack Pointer to Index~

Although this instruction is available, it is rarely used. Why? Be
cause, in most cases, you do not care where in the stack information
is being stored. However, the TSX instruction is unique in that it is
the only instruction that permits you to access the current value of
the Stack Pointer, if needed.

Push and Pull Instructions

The 6502 microprocessor has instructions that permit the contents
of both the accumulator and the processor status register to be
saved on the stack. They are:

Instruction

PHA
PHP
PLA
PLP

Description

Push bccumulator on Stack
Push Processor Status on Stack
fulf ~ccumulator from Stack
Pull Processor Status from Stack

Aside from the fact that they push different registers onto the
stack, the PHA and PHP instructions work identically. In each
case, the contents of the register are pushed onto the stack at the
location being pointed to by the Stack Pointer. Then, the Stack
Pointer is decremented by one, to the next lower address. Neither
instruction alters the contents of its source register. Similarly, the
PLA and PLP instructions increment the Stack Pointer to the next

72 6502 SOFTWARE DESIGN

higher address, and load the contents of the memory location ad
dressed by the Stack Pointer into the appropriate destination register.

All four instructions are implied-address instructions that occupy
one byte in memory. Since the previously discussed Load and Store
instructions (LDA and STA) require two bytes of memory in their
shortest form (zero page addressing mode). saving the accumulator
on the stack rather than in memory means that our instruction se
quence is one byte shorter. It should be noted, too, that the PHP
and PLP instructions represent the onlu way that the processor status
register can be saved.

Fig. 2-.'5 shows the effect of the PHA instruction on •he stack.
In Fig. 2-.SA, the Stack Pointer (S) is pointing to the top of the
stack (location SOlFF), and the accumulator contains So.3. After
PHA is executed 1, Fig. 2-.SB , the Stack Pointer has been decre
mented to SFE and the contents of the accumulator have been
stored in location SOlFF. If we were to execute a PLA instruction
after the push, the Stack Poillter would be incremented to point to
SOlFF, and the accumulator would he loaded with the contents of
location ~01 FF.

So far. there has been a lot of talk about how the stack instruc
tions work but virtuaily nothing has been sai<l aLout u;hy someone
wonld want to save registers on the stack. There is really only one
reason why these \·alues would be sa\·ed. to preserve their contents
vvhilc they are being manipulated by other programming operations.
This is particularly true in subroutines, but it is equally applicable
to routines where registers are serving two functions, or where
the final contents of a register are unpredictable.

MEMORY

REGISTERS $AA $01FC

s I $FF J $XX $01FD

A~~ $YY $01FE

$ZZ $01FF

(A) Before PHA.

MEMORY

REGISTERS $AA $01FC

s I SFE I~ $XX $01FD

SYY $01FE

A I $03 I $03 $01FF

(B) After PHA.

Fig. 2-5. How a register is pushed onto the stack.

THE 6502 MICROPROCESSOR INSTRUCTION SET 73

With only four instructions, it looks as if only the accumulator
and the processor status register can be saved on the stack. That is
true as far as the instructions go, but by using the register transfer
instructions we can move the X and Y registers into the accumulator,
push them onto the stack, and later pull them off and restore them
with additional register transfer instructions. Example 2-15 shows
the coding required to save not only the accumulator and the proc
essor status register, but also the X and Y registers on the stack.
Note that the registers are pulled in the reverse order from which
they were pushed. Incidentally, the AIM 65 ~Ionitor contains a
subroutine that can be called to push the contents of the X and Y
register onto the stack. It is called PHXY (entry address $EB9E),
and there is another subroutine that pulls the contents of these
registers from the stack, PLXY (entry address $EBAC).

Does it make any difference in which order register contents are
saved on the stack? In most cases, it does. The Accumulator con
tents must always be pushed onto the stack before either X or Y is
pushed, because the X and Y pushes must be preceded by a TXA
or TYA instruction, which destroys the contents of the Accunmlator.
Furthermore, if the Processor Status Register is to be saved, it
must also be pushed onto the stack before either X or Y is pushed,
because both TXA and TYA affect the Processor Status Register's
Negative (N) and Zero (Z) flags.

Example 2·15: Saving All Registers on the Stack

PHP ;SAVE PROCESSOR SATUS REGISTER
PHA ;SAVE ACCUMULATOR
TXA ;SAVE X REGISTER
PHA
TYA ;SAVE Y REGISTER
PHA

Some routine is executing here

PLA ;RESTORE Y REGISTER

TAY
PLA ;RESTORE X REGISTER

TAX
PLA ;RESTORE ACCUMULATOR

PLP ;RESTORE PROCESSOR STATUS REGISTER

THE NO OPERATION INSTRUCTION

The No Operation (NOP) instruction is a simple one-byte im
plied addressing instruction that is generally used during program
development. The NOP instruction performs no operation-it does
not alter any status flags, registers, or memory locations, but it
does perform the very useful function of reserving space in memory.

74 6502 SOFTWARE DESIGN

Many programmers code NOP instructions into a program under
development, to leave room for instructions that may have to be
added at a later time. Since each NOP instruction occupies only
one byte in memory, at least two NOPs should be inserted at the
spot where space is to be reserved.

NOP instructions may also be used to replace instructions that
have been deleted, without requiring all of the branch and jump
instruction addresses to be changed.

SUMMARY

So far, the following instructions have been discussed:

1. Load and store instructions LDA, LDX, LDY, ST A, STX,
and STY.

2. Addition and subtraction instructions ADC and SBC.
3. Status bit clear and set instructions CLC, CLD, CLV, SEC,

and SED.
4. Decrement and increment instructions for registers (DEX,

DEY, INX, and INY) and for memory (DEC and INC).
5. Logical instructions AND, EOR, and ORA.
6. Unconditional jump instruction JMP.
7. Conditional branch instructions BCC, BCS, BEQ, BNE, BMI,

BPL, BVS, and BVC.
8. Compare instructions CMP, CPX, and CPY.
9. Bit test instruction BIT.

10. Shift and rotate instructions ASL, LSR, ROL, and ROR.
11. Register transfer instructions TAX, TAY, TSX, TXA, TXS,

and TYA.
12. Stack push and pull instructions PHA, PHP, PLA, and PLP.
13. No operation instruction NOP.

3

Subroutines

Up to this point, all of the examples have contained instructions
that can be included in a program in order to perform a specific
function once. It has been implied (but not stated) that if a
specific operation must be performed at more than one place in
the program, the entire sequence of instructions must be repeated
in the program at each one of these places. Obviously, repeating
a sequence of instructions in a program at many places would not
only be frustrating and time-consuming for the programmer, but
it would also make programs much longer than they would be if
this repetition could be avoided.

As a matter of fact, all microprocessors do eliminate this needless
repetition by defining the repeated code as a subroutine. A sub
routine is a sequence of instructions that is written just once, but
which can be executed as needed, at any point in the program.
The process of transferring control from a program to a subroutine
is defined as calling. Therefore, subroutines are called. Once called,
the 6502 microprocessor executes the sequence of instructions con
tained in the subroutine and, then, returns control to the calling
program.

This description invites two questions: "How is a subroutine
called?" and "How does the 6502 microprocessor return to the
proper point in the program?" These questions will be answered in
the following discussion of two subroutine-related instructions,
Jump to Subroutine (JSR) and Return from Subroutine (RTS).

75

-------------.. -~~-----------------

76 6502 SOFTWARE DESIGN

SUBROUTINE INSTRUCTIONS

From the description :just given, it is apparent that instructions
that cause subroutines to be called must perform three functions:

1. They must include some provision for saving the contents of
the program counter. Once the subroutine has been executed,
this address will be used to return to the program. This ad
dress is often called a return address.

2. They must cause tlie microprocessor to begin executing the
subroutine.

3. They must use the stored contents of the program counter to
return to the program, and continue executing the program
at this point.

These three functions are performed by two 6502 instructions, Jump
to ,Sub!outine (JSR) and Be.turn from .Subroutine (RTS). -

Jump to Subroutine (.JSR)

The JSR instruction performs the return-address-storing and
begin-executing functions (requirements 1 and 2). The return
address stored is the address of the third byte of the JSR instruc
tion. (Clearly, this is not the address to which the return will ul
timately be made, but this address will be incremented upon return
to provide the proper destination. This will be discussed in more
detail when we examine the RTS instruction.) Where is the return
address stored? It is stored on the stack, which means that the JSR
instruction operates like the PHA and PHP push instructions that
we encountered in the section on Stack Instructions in Chapter 2.
However, unlike the PHA and PHP instructions, which pushed one
byte of data onto the stack (the accumulator contents and the
processor status register contents, respectively), the JSR instruction
pushes two bytes onto the stack-the two-byte address in the pro
gram counter. After storing the program counter on the stack, the
JSR instruction loads the program counter with the absolute ad
dress contained in its second and third bytes, which transfers control
to the starting address of the subroutine.

The JSR instruction occupies three bytes in memory-one op
code byte and two subroutine address bytes (the low-address byte
and high-address byte, respectively). The subroutine address is an
absolute address in memory or, for assembler source code, the
label of an absolute address. The 6502 needs six cycles to execute
the JSR instruction because of the stack operations involved.

Now, consider a typical Jump to Subroutine instruction, JSR
$0503, that is located in memory at locations $0201, $0202, and
$0203. Thus:

SUBROUTINES

Memory Location

$0201
$0202
$0203

$0503

JSR
$03
$05

Instruction

(First subroutine instruction)

77

Fig. 3-1 shows the contents of the Stack Pointer (S), the program
couter (PC) and the stack in memory both before and after the
instruction JSR $0503 is executed. In the drawing of Fig. 3-lA, the
program counter is pointing to the first byte of the JSR instruction
($0201) and the Stack Pointer is pointing to the next free location
on the stack (the top location of the stack, $01FF, is assumed). In
the drawing of Fig. 3-lB, after the JSR $0503 instruction has been
executed, the program counter is pointing to the starting address
(the entry address) of the subroutine ($0503), the Stack Pointer
is pointing to a new "next stack location" ($01FD), and the two top
bytes on the stack are the MSBY and LSBY addresses of the third
byte of the JSR instruction. As previously mentioned, the 6502 mi
croprocessor must return to the instruction that immediately follows
the JSR instruction. For our example, the 6502 must return to the
instruction that starts in location $0204.

Return from Subroutine (RTS)

The Return from Subroutine (RTS) instruction causes the 6502
microprocessor to return from the subroutine to the calling program

$01FC ----- $01FD i------
$01FE t------
$01FF

$01FC
1-------1

$01FD
1-------1

$01FE t------
$01FF

Fig. 3-1. How a return address is saved on the stack when a JSR instruction is executed.

78 6502 SOFTWARE DESIGN

(the program that contains the JSR instruction). The only differ
ence between a sequence of instructions stored in memory and a
subroutine stored in memory is the fact that an RTS instruction is
always the last instruction that is executed in a subroutine.

In essence, the RTS instruction causes the 6502 microprocessor
to continue program execution at an absolute address that is one
greater than the address on the last two bytes of the stack. Recall
that before loading the subroutine address into the program counter,
the JSR instruction pushed two address bytes onto the stack. These
were the least-significant address byte (LSBY) and the most-sig
nificant address byte (MSBY) of the memory location that contains
the high-address byte (the third byte) of the JSR instruction. In
our example, this was address $0203. To retrieve that address, the
RTS instruction increments the Stack Pointer, loads the LSBY
address into the lower half of the program counter and, then, in
crements the Stack Pointer again and, then, loads the MSBY ad
dress into the upper half of the program counter. The program
counter is then incremented so that it addresses the next instruction
after the JSR instruction.

There is an implied requirement, of course, that when an RTS
instruction is executed, the Stack Pointer is addressing the stack
location used or established by the JSR instruction. Therefore, if
any push operations are performed in the subroutine, there must
be an equal number of pull operations before the RTS is executed.
(The RTS instruction occupies one byte in memory, takes six
cycles to execute, and affects no bits in the processor status register.)

How JSR and RTS are Used Together

Having described the two subroutine instructions, JSR and RTS,
let us look at an example of how they are used together. Example
3-1 shows the Jump to Subroutine instruction that was diagrammed
in Fig. 3-1. The instruction JSR $0503 is being used to call a sub
routine that simply doubles the value in the Y register. The JSR

Example 3· 1: The Subroutine Call and Return Sequence

Memory Location Mnemonic Operand Comment

$0201
$0204

$0503

$0508

JSR $0503

PHA
TYA
ASL A
TAY
PLA
RTS

;SUBROUTINE CALL INSTRUCTION
;SUBROUTINE RETURNS HERE

;SAVE ACCUMULATOR ON STACK
;TRANSFER Y INTO ACCUMULATOR,

; DOUBLE IT,

; TRANSFER RESULT BACK TO Y

;RETRIEVE ACCUMULATOR
;RETURN

SUBROUTINES 79

$AA $01FC

s I $FD I- $XX $01FD

$03 $01FE

PC I $05 $08 I $02 $01FF

(A) Before executing RTS.

$AA $01FC

s I $FF I"\ $XX $01FD

$03 $01FE

PC I $02 $04 I $02 $01FF

(B) After executing RTS.

Fig. 3-2. How the RTS instruction pulls an address from the stack.

instruction starts in location $0201. The subroutine starts in loca
tion $0.503 and ends in location $0508, with the RTS instruction.

To what location must the 6.502 microprocessor return? The
6502 must return to the location that follows the JSR $0503 instruc
tion. Since the JSR instruction occupies three bytes in memory, the
return will be to location $0204. Fig. 3-2 shows the configuration of
the Stack Pointer (S), the program counter (PC), and the memory
stack before and after the RTS instruction is executed.

SUBROUTINE NESTING

A subroutine may include one or more JSR instructions that call
other subroutines. For example, a subroutine that is called to input
a keyboard character from a terminal may very well decode that
character and then call one of several other subroutines, based on
the decoded result. The process of calling a subroutine from within
a subroutine is usually referred to as nesting. Example 3-2 shows
the JSR and RTS instructions for a program in which subroutine
SUB2 is called from within subroutine SUB 1 (i.e., SUB2 is nested
within SUBl).

Nesting is usually described in terms of levels. An application
like the one shown in Example 3-2, in which the nesting extended
only to the JSR to SUB2 (SUB2 did not call another subroutine),
is said to have one level of nesting. There is no reason, though, why
SUB2 could not have called another subroutine (SUB3), with
SUB3 calling SUB4, and so on. Considering that each JSR instruc
tion pushes two address bytes onto the stack, only the capacity

80 6502 SOFTWARE DESIGN

of the stack limits the amount of nesting. Since the stack can utilize
all 256 bytes of page one in memory, a 6502 program can have up
to 127 ievels of subroutine nesting. However, very few applications
will require nesting even approaching this limit!

Example 3·2: Subroutine Nesting

• /SUBJ •

I
SUB2 •

• • •
•

SUBJ/

•
SUB2~

•
JSR JSR •
•

~
•

~
•

• • •
• • RTS

RTS

MOVING DATA IN MEMORY

Let us continue this discussion using a subroutine that performs
an operation that we have already covered in this book-moving a
block of data from one portion of memory to another. Chapter 2
includes two examples of this operation; Example 2-3 is a routine
that moves the contents of six locations, starting at location $20, to
the portion of memory that starts at location $0320. Example 2-7
is a more generalized form of Example 2-3; it moves the contents
of a specified number of locations (up to 2.56) from the same start
ing address ($20) to the same destination address ($0320) as
Example 2-3 did.

In this section, we will develop a subroutine that offers a more
generalized solution to the move-data problem. It allows up to 256
bytes of data that are residing any place in memory to be moved to
any other place in memory.

Many novice programmers attack this problem by writing a simple
loop that fetches the first data byte from the source block, stores
it into the first destination block location, decrements a byte
counter, and repeats this procedure until all bytes have been
moved (byte counter = 0). That approach works very well if the
source block does not overlap the destination block, or if the des
tination block begins at a lower address than the source block.
However, that approach is unacceptable if the first destination
block location lies u;ithin the source block, because it will cause
data bytes to be overlayed before they have been moved.

SUBROUTINES

Fig. 3-3. Data block
move algorithm.

START

LOAD BYTE
COUNT INTO
X REGISTER

DISPLACEMENT =
DESTINATION ADDRESS

SOURCE ADDRESS

NO

YES

MOVE BYTE
!STARTING WITH

LAST BYTE!

X = X-1

DONE

NO

MOVE BYTE
!STARTING WITH

FIRST BYTE!

81

i l 18 ...

82 6502 SOFTWARE DESIGN

vVhat is needed, then, is a program or subroutine that has two
separate paths-one for moving data downward (toward address
$0000) and the other for moving data upward (toward address
$FFFF). Fig. 3-3 is a flowchart for an algorithm that includes this
two-path approach. This algorithm loads the byte count into the X
register, and calculates the difference between the destination ad
dress and the source address (the displacement). This calculation
is not performed to find the displacement, however, but only the
direction of the move--upward (positive displacement) or down
ward (negative displacement). A positive displacement will cause
the block to be moved in last-byte-to-first-byte order; a negative
displacement will cause the block to be moved in first-byte-to-last
byte order.

Example 3-3 is a subroutine (MOVES) that can be used to move
any block of data (up to 256 bytes) anywhere in memory, using
the Bowcharted algorithm. The starting address of the data block
is contained in locations $40 and 841, and the starting address of its
destination is contained in location $42, and the lower address holds
the low byte of the address in both cases. Further, the number of
data bytes to be moved is specified by the contents of location $44.

Example• 3-3: A Data-Block Move Subroutine

;THIS SUBROUTINE MOVES A BLOCK OF DATA IN MEMORY. THE STARTING
;ADDRESS OF THE DATA IS CONTAINED IN LOCATIONS $40 (LOW ADDRESS
;BYTE) AND $4 l (HIGH ADDRESS BYTE). THE START! NG ADDRESS OF
;THE DESTINATION OF THE DATA IS CONTAINED IN LOCATIONS $42 (LOW
;ADDRESS BYTE) AND $43 (HIGH ADDRESS BYTE). THE NUMBER OF BYTES
;TO BE MOVED IS CONTAINED IN LOCATION $44.

MOVES LDX $44 ;LOAD BYTE COUNT INTO X REGISTER
SEC ;CALCULATE MOVE DISPLACEMENT
LDA $42
SBC $40
LDA $43
SBC $41
BM! DISPN ;DISPLACEMENT NEGATIVE?
LDY $44 ;NO. START MOVE WITH LAST BYTE

CON Tl DEY

LDA ($40),Y ;LOAD BYTE FROM SOURCE LOCATION
STA ($42),Y ; AND STORE IT AT DESTINATION LOCATION

DEX ;DECREMENT BYTE COUNT
BNE CONTl ;LOOP UNTIL ALL BYTES MOVED
RTS

DISPN LDY #OO ;START MOVE WITH FIRST BYTE
CONT2 LDA ($40),Y ;LOAD BYTE FROM SOURCE LOCATION

STA ($42),Y ; AND STORE IT AT DESTINATION LOCATION
!NY ;INDEX TO NEXT BYTE
DEX ;DECREMENT BYTE COUNT
BNE CONT2 ;LOOP UNTIL ALL BYTES MOVED
RTS

SUBROUTINES 83

When a data value is loaded into a register or a section of mem
ory for subsequent access by a subroutine, it is called passing an
argument. Argument passing is a common practice in programming
with subroutines. The values loaded into locations $40 through $44
are the arguments being passed to the subroutine MOVES (Ex
ample 3-3).

Here is how the MOVES subroutine works. After loading the
byte count into the X register (LDX $44), the source address is
subtracted from the destination address to produce a displacement.
Neither displacement byte is saved, but the sign of the most-sig
nificant byte of the result is tested by BMI DISPN. If the displace
ment is negative, BMI DISPN causes a branch to label DISPN;
otherwise the 6502 executes a sequence that moves the block up
ward in memory, starting with the last byte in the block.

The sequence beginning at label DISPN (initiated by a nega
tive displacement) performs a similar move operation, but starts
the move with the first byte of the block and moves the block down
ward in memory.

TIME-DELAY SUBROUTINES

\Ve will now discuss a type of subroutine that is common in
computer applications-a subroutine that generates a time delay.
Time delays are important in synchronizing the 6502 microprocessor
to specific external events, such as transferring information between
a microcomputer and a peripheral I/O device. Time delays are
also essential during interactions between a very fast microcom
puter and a (relatively) slow human operator. The need for a time
delay is evident here if you consider that in the time that it takes
you to press a key on a terminal, a microprocessor can execute
several thousand machine cycles!

How can a time delay be programmed? Certainly the simplest
way to program a time delay is by using one or more No Operation
(NOP) instructions. Since. each NOP instruction requires two
cycles to be executed (two microseconds when using a 1-MHz
6502 microprocessor), a brief time delay can be generated by
executing several successive NOP instructions. In reality, however,
very few applications are so time-critical that they deal in delays
of only a few microseconds. Most applications require delays of at
least 50 or 100 microseconds.

Delays of these, and longer, durations are usually programmed
using a subroutine. With a subroutine, we can take advantage of
the fact that each 6502 instruction requires a known number of
clock cycles to be executed. These clock cycle times are summarized
in the "n" columns of Table 2-2 for each addressing mode of the

84 6502 SOFTWARE DESIGN

6502 instruction set. To determine the time required to execute
an instruction, the number of clock cycles (n) listed in Table 2-2
must be multiplied by the cycle time of the microprocessor. As
mentioned in Chapter 1, all execution times in this book are refer
enced to a 1-MHz clock, so each cycle is one microsecond long.
Thus, a two-cycle instruction requires two microseconds to be ex
ecuted, a three-cycle instruction requires three microseconds to be
executed, and so on.

Flowchart for a Time-Delay Subroutine

The time required to execute a sequence of instructions in the
6502 microprocessor is the sum of the times required to execute
each instruction in the sequence. This total time can be effectively
multiplied by causing the microcomputer to loop through the in
struction set a number of times. Both increment and decrement
instructions are particularly useful for this task. Fig. 3-4 contains
the flowchart for a time-delay subroutine that contains two loops;
in one the contents of the X register is decremented to zero, in the
other the Y register is incremented to zero. These registers receive
their count values from two zero page locations ($20 and $21,
respectively) that must be initialized by the user before the time
delay instructions are executed.

NO

NO

LOAD X WITH $20
LOAD Y WITH $21

RETURN

Fig. 3-4. Flowchart for a
time-delay subroutine.

SUBROUTINES 85

In this flowchart, the X register is decremented until it contains
zero. When this occurs, the Y register is decremented. If Y is decre
mented to a non-zero value, the 6502 microprocessor branches back
to the decrement-X-register loop. Since the X register already con
tains zero when this branch occurs, the next decrement will cause
the X register to contain $FF (binary 11111111), which means that
the decrement-X-register loop will be executed 255 times before the
Y register is again decremented.

Decisions in this algorithm are based on whether or not the con
tents of a register (X or Y) have been decremented to zero. These
decision-making steps are represented by the diamonds in the flow
chart (Fig. 3-4). Which instruction could be used to make the actual
decision in a program? The BNE instruction is the logical candidate
for use in this application.

A Two-Loop Time-Delay Subroutine

Example 3-4 is a subroutine (DELAYl) that is constructed using
the algorithm that is flowcharted in Fig. 3-4. At the beginning of
the DELAYl subroutine, the X register is loaded with the contents

Example 3-4: A Time-Delay Subroutine

;THIS SUBROUTINE CAN BE USED TO GENERATE TIME DELAYS BETWEEN 26
;MICROSECONDS AND 329 MILLISECONDS, WITH A RESOLUTION OF 5
;MICROSECONDS. THE CONTENTS OF LOCATIONS $20 AND $21 SELECT THE
;DURATION OF THE TIME DELAY.
;A VALUE OF ONE IN $20 AND $21 GENERATES THE MINIMUM TIME DELAY,
;26 MICROSECONDS. EACH ADDITIONAL COUNT INCREMENT IN LOCATION $20
;GENERATES A 5-MICROSECOND TIME DELAY. EACH ADDITIONAL COUNT
;INCREMENT IN LOCATION $21 GENERATES A 1284-MICROSECOND TIME DELAY.

DELAYl LOX $20 ;LOAD X WITH 5-µSEC COUNT
LOY $21 ;LOAD Y WITH 1284-µSEC COUNT

WAIT DEX
BNE WAIT ;LOOP UNTIL X IS ZERO
DEY
BNE WAIT ;LOOP UNTIL BOTH X & Y ARE ZERO
RTS

of memory location $20 and the Y register is loaded with the con
tents of memory location $21. When the 6502 microprocessor exe
cutes the DEX instruction at WAIT, the contents of the X register
are decremented by 1. If this decrementation produces a non-zero
result, the BNE WAIT instruction causes a branch back to WAIT,
to decrement the X register again. When the X register has finally
been decremented to zero, the 6502 executes the DEY instruction.
If the result of this operation is non-zero, the second BNE WAIT
instruction branches back to WAIT, which initiates the first of 255

- .

86 6502 SOFTWARE DESIGN

decrement-X-register operations. When the Y register contents
have finally been decremented to zero, the RTS instruction causes
the 6502 to return from the subroutine.

What range of time delays can be generated by the DELAYl
subroutine? This range can be calculated by examining the execu
tion times of each instruction in the subroutine, and of the JSR
instruction that calls the subroutine, for the minimum and maximum
count values in locations $20 and $21. Execution times for all in
structions in the DELAYl subroutine are summarized in Table
3-1, for a 6502 microprocessor with a 1-MHz clock.

Table 3·1. Execution Times of Instructions in the DELAYl Subroutine

Execution Time
Instruction (Microseconds)

JSR DELAYl 6
LDX $20 3
LDY $21 3
DEX 2
BNE WAIT

Branch not executed 2
Branch executed 3

DEY 2
RTS 6

You will note in Table 3-1 that the BNE WAIT instructions in
the subroutine will require either two cycles or three cycles to be
executed, depending upon whether the branch occurs or does not
occur. Therefore, the minimum execution time for the subroutine
(and the minimum time delay generated) occurs when neither BNE
WAIT instruction generates a branch. The branches will be by
passed when the first execution of both DEX and DEY cause their
respective registers (X and Y) to be decremented to zero. The
minimum time delay is, then, generated when locations $20 and
$21 are both initialized to a 1. For this condition, the JSH DELA Yl
instruction, and the DELAYl subroutine that it calls, will require
a total of 26 cycles to be executed. Therefore, the DELAYl sub
routine can generate a minimum time delay of 26 microseconds.

If a value of a 1 in memory locations $20 and $21 generates a
26-microsecond time delay, how much additional time will be used
by the subroutine as the contents of these two memory locations
are increased? That is, how much of a time delay is generated if
location $20 contains a value of 2, 3, or 4? A similar inquiry could
be made concerning various count values in location $21. Let us
find out how much time is generated by each count increment,
for each of these locations.

SUBROUTINES 87

Let us first look at the time delay contributed by the count in
location $20. The first instruction in the DELAYl subroutine (LDX
$20) causes the contents of location $20 to be loaded into the X
register. If the DEX instruction at WAIT does not cause the X reg
ister to be decremented to 0, the DEX instruction will generate a
2-microsecond time delay and the next instruction, BNE WAIT,
will contribute a 3-microsecond time delay. Therefore, each count
increment in location $20 will generate an additional 5-microsecond
time delay.

The time delay contributed by each count increment in location
$21 is a bit more complicated, as we shall see. The second instruc
tion in the DELA YI subroutine (LDY $21) causes the contents
of location $21 to be loaded into the Y register. If the DEY instruc
tion does not cause the Y register to be decremented to 0, the next
instruction, BNE WAIT, will produce a branch to WAIT, which
will cause the 6.502 microprocessor to execute the two-instruction
DEX and BNE WAIT loop 2.56 times. The second loop, DEY and
BNE WAIT, will generate a 5-microsecond time delay for each
additional count increment in location $21 (2 microseconds for
DEY and 3 microseconds for BNE WAIT). In decrementing the
X register contents from a value of 0 to a value of $FF down to a
value of $01 ($00, $FF, $FE, ... $02, $01), the second loop, DEY
and BNE WAIT, will generate a 1275-microsecond time delay (2.55
times .5 microseconds). When the contents of the X register are
decremented from $01 to 0, an additional 4-microsecond time delay
will be generated. Adding these three time-delay contributions
(5 microseconds plus 127.5 microseconds plus 4 microseconds), we
discover that each count increment in location $21 will generate
an arlditional 1284-microsecond time delay.

What is the maximum time delay that can be generated by the
DELAY! subroutine? Quite obviously, the maximum time delay
will be the delay that is generated when locations $20 and $21 con
tain their maximum count values. The maximum count value for
both locations is 0, which represents a count increment of 255 above
the minimum count value (I). The maximum time delay can be
calculated as follows:

TD11 ... x = 26 + (255 X 5) + (255 X 1284) microseconds

= 328, 721 microseconds

= 328.721 milliseconds

Therefore, the maximum time delay that can be generated by the
DELAYJ subroutine i~ approximately 329 milliseconds.

In summary, the rules for generating a specific time delay using
the DELAY! subroutine are:

88 6502 SOFTWARE DESIGN

1. A value of $01 in memory locations $20 and $21 generates a
minimum time delay of 26 microseconds.

2. Each additional count increment in location $20 generates
an additional 5-microsecond time delay.

3. Each additional count increment in location $21 generates an
additional 1284-microsecond time delay.

As an example, let us calculate the values that must be stored in
locations $20 and $21 to generate a 300-millisecond time delay.
Since location $21 provides the larger time delay, we will begin by
finding out how many times 300,000 microseconds (300 millisec
onds) can be divided by 1284 microseconds. The answer is 23310,

with a remainder of 828 10• The hexadecimal equivalent of 23310 is
$E9, so a value of $EA must be stored in location $21 (recall our
$01 "minimum," which must be ;1dded to increments for both $20
and $21). Of the 828-microsecond remainder, 26 microseconds are
contributed by the minimum time delay, so the count vahw in loca
tion $20 must generate an 802-microsccond delay. How many times
can 802 he divided by ,5·,i The result is 16010 ($A4), so $A5 must be
stored into location $20 (the $01 minimum count had been added).
Note that the remainder of 210 has been ignored, so the subroutine
actually generates a time delay of 299.998 milliseconds; this error
is certainly acceptable for most applications.

A 30-Second Time-Delay Subroutine

Suppose you want the 6.302 microprocessor to produce a time
delay of 30 seconds. Could the DELAYl subroutine (Example 3-4)
be used to generate this time delay? Yes it could, by simply storing
the values for a 300-millisecond deiay into locations $20 and $21
and, then, calling the DELA YI subroutine 100 times. A subroutine
that generates a delay of 30 seconds is listed in Example 3-5.

Example 3·5: A 30-Second Time-Delay Subroutine

;THIS SUBROUTINE GENERATES A 30-SECOND TIME DELAY, BY CALLING

;THE DELAYl SUBROUTINE 100 TIMES

HAFMIN LOA #$A5 ;PREPARE DELAY l TO GENERATE A
STA $20 ; 300-MSEC TIME DELAY
LDA #$EA
STA $21
LDA #100 ;LOAD ACCUMULATOR WITH DECIMAL 100

CDELAY JSR DELAYl ;CALL DELAYl
SEC
SBC #Ol ;DECREMENT THE TIMING BYTE

BNE CDELAYl ;LOOP UNTIL ACCUMULATOR IS ZERO

RTS ;RETURN AFTER 30 SECONDS

SUBROUTINES 89

In Example 3-5, the accumulator is used to hold a timing byte.
The timing byte is really a counter for the number of times that
the 300-millisecond time-delay subroutine is to be called. Since
the accumulator is loaded with 10010, the DELAYl subroutine is
called 100 times. The HAFMIN subroutine in Example 3-5 can be
simplified by incorporating the DELA Yl instructions into it, as
shown in Example 3-6.

Example 3-6: A Simplified 30-Second Time-Delay Subroutine

HAFMIN LOA #100 ;LOAD ACCUMULATOR WITH DECIMAL 100
GENDLY LDX #$A5 ;LOAD X AND Y FOR A 300-MSEC TIME DELAY

LOY #$EA
WAIT DEX

BNE WAil' ;LOOP UNTIL X IS ZERO
DEY
BNE WAIT ;LOOP UNTIL BOTH X AND Y ARE ZERO
SEC
SBC #Ol ;DECREMENT THE TIMING BYTE
BNE GENDLY ;LOOP UNTIL ACCUMULATOR IS ZERO
RTS ;RETURN AFTER 30 SECONDS

Other Time-Delay Subroutines

A one-minute time-delay subroutine can be produced by simply
replacing the instruction LDA # 100 in Example 3-6 with the
instruction LDA #200. A one-minute time-delay subroutine,
ONEMIN, is shown in Example 3-7.

Example 3-7: A One-Minute Time-Delay Subroutine

ONEMIN LOA #200 ;LOAD ACCUMULATOR WITH DECIMAL 200
GENDLY LOX #$A5 ;LOAD X AND Y FOR A 300-MSEC TIME DELAY

LOY #$EA
WAIT DEX

BNE WAIT ;LOOP UNTIL X IS ZERO
DEY
BNE WAIT ;LOOP UNTIL X AND Y ARE ZERO
SEC
SBC #Ol ;DECREMENT THE TIMING BYTE
BNE GENDLY ;LOOP UNTIL ACCUMULATOR IS ZERv

RTS ;RETURN AFTER ONE MINUTE

Note that the instructions in Examples 3-6 and 3-7 that begin
at GENDLY constitute a general-time-delay subroutine (GENeral
Qe!,.aX) in which the duration of the delay depends upon the
contents of the accumulator when the calling instruction (JSR
GENDLY) is executed. If the accumulator contains 110 when
GENDLY is called, the subroutine will generate a 0.300-second
time delay before the 6502 microprocessor returns to the calling
program. As has been seen in Examples 3-6 and 3-7, if the accumu
lator contains 10010 or 20010 when GENDLY is called, the sub
routine will generate a 30-second or I-minute time delay, respec-

90 6502 SOFTWARE DESIGN

tively. The maximum time delay that GENDLY can generate is
76.8 seconds, if the accumulator contains a 0 when GENDLY is
called.

Longer delays are also obtainable, by calling the HAFMIN or
ONEMIN subroutine (Examples 3-6 and 3-7), or the GENDLY
subroutine, a number of times. For instance, to generate a one
hour time delay, the one-minute time-delay subroutine (ONEMIN)
could be called 60 times. Example 3-.S shows how this is done, in a
subroutine called ONEHR. This subroutine uses the accumulator
to hold a timing byte, and must store this timing byte on the stack
while ONEMIN is executing, since ONEMIN also uses the accu
mulator to hold a timing byte of its own.

Example 3-8: A One-Hour Time-Delay Subroutine That Calls the ONEMIN Subroutine

ONEHR LOA #60 ;LOAD TIMING BYTE INTO ACCUMULATOR
DELAY2 PHA ; AND SAVE IT ON THE STACK

JSR ONEMIN ;CALL ONE-MINUTE DELAY SUBROUTINE
PLA ;PULL TIMING BYTE FROM STACK
SEC ; AND DECREMENT IT
SBC #01
BNE DELAY2 ;LOOP UNTIL TIMll\IG BYTE IS ZERO
RTS ;RETURN AFTER ONE HOUR

You have now seen a number of time-delay subroutine examples.
You have also seen how the duration of the time delay can be
calculated, by knowing the cycle time of the 6502 microprocessor
that will execute the subroutine, and the number of clock cycles
required by each instruction. Knowing this, there is no reason why
you could not write a time-delay subroutine that would produce
a delay of 4.505 milliseconds or a delay of 23 days, 5 hours, 26
minutes, and 19 seconds.

AIM 65 Time-Delay Subroutine

Owners of the AIM 65 microcomputer have a subroutine in the
monitor that can be employed to generate programmed time delays.
This subroutine, DEB Kl (entry address $ED2C), produces a 5-
millisecond time delay each time it is called. The AIM 65 uses the
DEBKl subroutine to "de bounce" key depressions (more on this
topic in Chapter 9), but it is certainly available for use by your
programs.

A Note about Clock Frequency

An important point to remember about the time-delay subrou
tines listed in this chapter is that the time delay generated is de
pendent upon the clock frequency of your 6502 microprocessor.
The time-delay values generated by these subroutines are based
on the assumption that the system clock is providing a cycle time

SUBROUTINES 91

of exactly one microsecond. The accuracy of the cycle time depends
on the accuracy of the crystal that is supplying its time base; if
your crystal is somewhat faster or slower than its nominal value,
you may have to increase or decrease the timing-byte values in your
subroutines. The crystal on the AIM 65 microcomputer has a fre
quency of 4 MHz (it is divided by four by external circuitry), with
an accuracy to ±0.00015 MHz, so AIM 65 owners can use the
subroutine examples without modifying the timing-byte values.

SUMMARY

The examples presented in this section represent only a small
sampling of the applications of subroutines. You will encounter
many others in subsequent chapters, and you will certainly find
many other uses of subroutines in the programs that you design.
Among the essential points to remember about subroutines are
these:

I. Each subroutine has an overhead of 12 execution cycles (6
for the JSR, 6 for the RTS) and 4 instruction bytes (3 for the
JSR, 1 for the RTS), so you must consider the time and storage
tradeoffs in deciding whether to repeat a coding sequence at
several points in a program or use a subroutine.

2. Subroutines save only return addresses on the stack, and do
not preserve the contents of internal registers other than the
program counter. If you wish to preserve the contents of the
accumulator, X register, Y register, or processor status register
while a subroutine is being executed, you must save those
contents on the stack, in some other portion of R/W memory,
or in unaffected registers until a return is made to the calling
program.

3. An RTS instruction will always cause a return to the instruc
tion which follows the JSR that called the subroutine, if the
Stack Pointer has not been altered in the interim.

4. Subroutines can be nested. That is, one subroutine can in
clude a call (a JSR) to another subroutine. Since the stack
contains 256 locations, and each JSR pushes two address bytes
onto the stack, the 6502 microprocessor supports nesting of
up to 128 subroutines.

·-----------~~~_,,~,---------,---~~

4

Lists and Look-Up Tables

There are many ways in which information in memory can be
organized for processing. These organizational techniques vary
with the application, and are categorized with such names as lists,
arrays, strings, look-up tables,. and vectors. As expected, the sub
ject can (and does) fill many volumes, but we will concentrate on
just two types of organization, lists and look-up tables.

Lists are probably the most fundamental data storage technique.
They consist of units of data (one or more bytes) called elements,
arranged sequentially in memory. The sequence can be consecu
tive, in which each element occupies one or more adjoining memory
locations; or the sequence can be linked, in which each data element
is followed by a pointer to the next element in the list. Further,
the elements can be arranged randomly, or in ascending or de
scending order.

Look-up tables are data structures that have one specific pur
pose-to find information (either data or addresses) that has a
defined relationship to a known value. A telephone directory is a
good example of a look-up table; knowing a name, you can look up
an associated telephone number.

UNOR:DERED LISTS

In our ordered society, where telephone-book listings are ar
ranged alphabetically and where house numbers increase (or de
crease) systematically as you go up or down a street, unordered
anythings seem somehow inferior to us. Unordered lists are the
bane of the programmer too because they are often difficult to proc
ess. To find out whether a certain value is in an unordered list,
you must search the list from the beginning, element by element,

92

LISTS AND LOOK-UP TABLES 93

until you either find the value or you reach the end of the list. But
like it or not, unordered lists are a fact of life in many applications,
and represent a common way to store random, chronologically de
rived, or dynamically changing data (especially data from an
experiment).

Adding An Entry to an Unordered List

Subroutine ADD2UL, given in Example 4-1, is a sample of the
kind of program that you will be using to process an unordered
list. This subroutine simply searches the list, element by element,
for the occurrence of a value (the contents of memory location $2F).
If this value is already in the list, the subroutine does nothing;
otherwise, it adds the value to the end of the list, as a new element.
The starting address of the list is contained in zero page locations
$30 (low-address byte) and $31 (high-address byte), so all ele
ments are accessed with indirect indexed addressing. The first
location of the list contains an unsigned number that represents
the length of the list, in bytes; if the entry is added to the list, this
location is incremented by one.

Example 4-1: Adding an Entry to an Unordered List

;THIS SUBROUTINE ADDS THE CONTENTS OF LOCATION $2F TO AN UNORDERED
;LIST, IF IT IS NOT ALREADY IN THE LIST. THE STARTING ADDRESS
;OF THE LIST IS IN LOCATIONS $30 AND $31. THE LENGTH OF THE
;LIST IS IN THE FIRST BYTE OF THE LIST.

ADD2UL LDY #OO ;FETCH ELEMENT COUNT
LDA ($30),Y
TAX ;TRANSFER LENGTH INTO X
LDA $2F ;LOAD ENTRY INTO ACCUMULATOR

NXTEL INY ;INDEX TO NEXT ELEMENT
CMP ($30),Y ;ENTRY AND ELEMENT MATCH?
BEQ ITSIN ;YES, DONE
DEX ;NO, DECREMENT ELEMENT COUNT
BNE NXTEL ;ANY MORE ELEMENTS TO COMPARE?
INY' ;NO, ADD ENTRY TO END OF LIST
STA ($30),Y
TVA ;UPDATE ELEMENT COUNT
STA ($30,X) ;X IS NOW EQUAL TO ZERO

ITSIN RTS

There is nothing particularly unusual about the design of this
subroutine. It gets the element count from the first location of the
list, and then searches the list, element by element, for the occur
rence of the entry value (the contents of $2F). If the entire list
has been searched without finding the contents of $2F, the BNE
NXTEL test fails and the entry is tacked on to the end of the list.
The entire search is conducted using indirect indexed addressing
(via the Y register) ; however, the subroutine reverts to indexed

94 6502 SOFTWARE DESIGN

indirect addressing to update the element-count byte. Why? The
element count could certainly be updated with indirect indexed
addressing, by loading the Y register with 0 and executing an ST A
($30),Y instruction, but instead it eliminates the LDY #00 instruc
tion and updates the element--count byte with ST A ($30,X). This
technique takes advantage of the fact that since BNE NXTEL has
failed, the X register must contain a 0.

How long does it take to search an unordered list? In an N-ele
ment unordered list, it takes an average of N/2 comparisons to find
a match. (One-half of all search values will lie in the lower half
of the list, the other one-half will lie in the upper half of the list.)
Since the NXTEL loop in Example 4-1 takes 14 microseconds to
execute if no match is found, and 10 microseconds to execute if
a match is found, searching a 100-element list will take about 700
microseconds on the average.

Deleting an Element From an Unordered List

To delete an element from a list, you must find the element to be
deleted and, then, move all the remaining elements in the list up
one location (to eradicate the deleted element). Then, the element
count of the list is decremented. The DELUEL subroutine given in
Example 4-2 performs just such an operation, using the contents
of location $2F to specify the element to be deleted. As in Example
4-1, the list address is defined by the contents of locations $30
(low-address byte) and $31 (high-address byte).

The first portion of the subroutine (DEL UEL to DELETE)
simply searches for the first occurrence of the desired element (the
contents of $2F) in the list. If a matching element is found, the
last portion (DELETE to the RTS instruction) moves all sub
sequent elements up one location and decrements the element
count. The element-count update instructions use indexed indirect
addressing to access the first byte of the list, taking advantage of
the fact that the X register must contain a 0 because branch in
struction BEQ DECCNT failed.

Finding the Minimum and Maximum Values in an Unordered List

The need to find the minimum and maximum values on a list is
a requirement in many applications, particularly when test data or
statistical information is being processed. One method that can be
used to find these values without ordering the list is to initially es
tablish the first element as both the minimum and maximum value,
and then sequentially compare each of the remaining elements
in the list to that minimum and maximum value. If an element
is found that is less than the minimum value, that element becomes
the new minimum value unit. Likewise, if an element is found that

LISTS AND LOOK-UP TABLES 95

Example 4-2: Deleting an Entry from an Unordered List

;THIS SUBROUTINE DELETES THE CONTENTS OF LOCATION $2F FROM AN

;UNORDERED LIST, IF IT IS IN THE LIST. THE STARTING ADDRESS OF

;THE LIST IS IN LOCATIONS $30 AND $31. THE LENGTH OF THE LIST IS
;IN THE FIRST BYTE OF THE LIST.

DELUEL LDY #OO ;FETCH ELEMENT COUNT
LDA ($30),Y

TAX ;TRANSFER LENGTH INTO X
LDA $2F ;LOAD ENTRY INTO ACCUMULATOR

NEXTEL INY ;INDEX TO NEXT ELEMENT

CMP ($30),Y ;DO ENTRY AND ELEMENT MATCH?

BEQ DELETE ;YES. DELETE ELEMENT

DEX ;NO. DECREMENT ELEMENT COUNT

BNE NEXTEL ;ANY MORE ELEMENTS TO COMPARE?

RTS ;NO. ELEMENT NOT IN LIST. DONE

;THE INSTRUCTIONS TO FOLLOW DELETE AN ELEMENT, BY MOVING ALL ELEMENTS
;UP ONE LOCATION.

DELETE DEX ;DECREMENT ELEMENT COUNT
BEQ DECCNT ;END OF LIST?
INY ;NO. MOVE NEXT ELEMENT UP
LDA ($30),Y

DEY

STA ($30),Y

INY

JMP DELETE

DECCNT LDA ($30,X) ;UPDATE ELEMENT COUNT OF LIST

SBC #Ol
STA ($30,X)
RTS

is greater than the maximum value, that value becomes the new
maximum.

Subroutine MIN.MAX in Example 4-3 applies these rules to
an unordered list whose starting address is contained in locations
$30 (low-address byte) and $31 (high-address byte). The first 7
instructions in the MINMAX subroutine load the element count
into the X register and store the value of the first element into both
the "minimum" memory location ($32) and the "maximum" mem
ory location ($33). At label AGAIN, the element count in the X
register is decremented and the next element is loaded into the
accumulator. This value is compared to the minimum in $32, and
becomes the new minimum value (ST A $32), if appropriate. If
the element has a value equal to or greater than the minimum, it
is compared to the maximum in $33, and becomes the new maximum
value if appropriate.

When the list has been examined entirely, the X register is decre
mented to zero at label AGAIN. This will cause the branch in
struction BEQ BOTHIN to produce a branch to the RTS instruction.

96 6502 SOFTWARE DESIGN

Example 4-3: Find the Minimum and Maximum Values in an Unordered List

;THIS SUBROUTINE FINDS THE MINIMUM AND MAXIMUM VALUES IN AN UN
;ORDERED LIST, STORING THE MINIMUM VALUE INTO LOCATION $32 AND
;THE MAXIMUM VALUE INTO LOCATION $33. THE STARTING ADDRESS OF
;THE LIST IS IN LOCATIONS $30 AND $31. THE LENGTH OF THE LIST
;IS IN THE FIRST BYTE OF THE LIST

MINMAX LDY #OO
LDA ($30),Y
TAX
INY ;INDEX TO FIRST ELEMENT
LOA ($30),Y ; AND LOAD IT INTO ACCUMULATOR
STA $32 ;MAKE FIRST ELEMENT THE INITIAL MIN
STA $33 ; AND MAX VALUE

AGAIN DEX ;DECREMENT ELEMENT COUNT
BEQ BOTHIN ;END OF LIST?
INY ;NO. INDEX TO NEXT ELEMENT
LOA ($30),Y ; AND LOAD IT INTO ACCUMULATOR
CMP $32 ;IS ELEMENT A NEW MIN':'
BCS CHKMAX ;NO. CHECK WHETHER IT'S A MAX
STA $32 ;YES. THIS ELEMENT IS NEW MIN
JMP AGAIN

CHKMAX CMP $33 ;IS THIS ELEMENT A NEW MAX?
BCC AGAIN
BEQ AGAIN
STA $33 ;YES. THIS ELEMENT IS NEW MAX
JMP AGAIN

BOTH IN RTS ;LIST HAS 13EEN CHECKED. RETURN

A SIMPLE SORTING TECHNIQUE

Although unordered data are perfectly acceptable for many
applications, ordered data are often easier to analyze, and it cer
tainly makes it much easier to locate an element. How can an un
ordered list be ordered? A considerable amount of literature exists
on the subject. (Two good sources are References l and 2.) How
ever, one of the simplest techniques is called the bubble sort.

Just as bubbles rise upward into the sky, list elements rise up
ward in memory during a bubble sort. (Data can be sorted in an
increasing or decreasing order; we will discuss only increasing
order). During a bubble sort, elements of a list are accessed se
quentially, starting with the first element, and are compared to
the next element in the list. If an element is greater than the next
sequential element in the list, the elements are exchanged. The next
pair of elements is compared, exchanged if required, and so on. By
the time the 6502 microprocessor gets to the last element of the
list, the largest element in the list will have "bubbled up" to the
last element position of the li~t.

If the bubble-sort algorithm is used, the microcomputer usually
requires several passes to sort a list, as can be seen by the following

LISTS AND LOOK-UP TABLES 97

example. Consider a 5-element list that is initially arranged in the
following order:

05 03 04 01 02

After one pass through the list, the elements will be in the following
order:

03 04 01 02 05

Element 05, the largest element of the list, has "bubbled up" to the
top of the list. The next pass will produce the order:

03 01 02 04 05

Element 04 is bubbled up the list to a position that is just before
element 05. The result of the final pass is:

01 02 03 04 05

This example not only demonstrates how the bubble sort algo
rithm operates, but it also gives an indication of what type of per
formance you can expect from it. Note that three passes were re
quired to sort a partially ordered, 5-element list. If the list were
totally ordered at the outset, it would still take one pass through
the algorithm to deduce this fact. Conversely, if the list were ini
tially arranged in descending order (the worst case), the bubble
sort algorithm would require 5 passes to order the list, 4 passes
to sort, and 1 additional pass to detect that no additional elements
need to be exchanged. From this observation, we can state that
the 6502 microprocessor will have to make from 1 to N number
of passes through an N -element list, in order to sort it. On the
average, N /2 passes are required to sort an N-element list.

What constitutes a "pass" in terms of instructions and time?
This can be found out by examining two typical bubble-sort sub
routines; one operating on a list containing 8-bit elements, the other
operating on a list containing 16-bit elements. The basic principles
that you learn in these two examples should allow you to develop
bubble-sort subroutines for lists having even longer elements.

Sorting lists Having 8-Bit Elements

The subroutine (SORT8) given in Example 4-4 sorts unordered
lists that are comprised of 8-bit elements. As in the previous ex
amples in this chapter, the starting address is contained in locations
$30 (low-address byte) and $31 (high-address byte). The length
of the list is contained in the first byte of the list. Since a byte is 8
bits wide, the list can contain up to 255 elements.

98 6502 SOFTWARE DESIGN

Example 4·4: An !!·Bit Bubble Sort Subroutine

;THIS SUBROUTINE ARRANGES THE 8-BIT ELEMENTS OF A LIST IN ASCENDING

;ORDER. THE STARTING ADDRESS OF THE LIST IS IN LOCATIONS $30 AND
;$31. THE LENGTH OF THE LIST IS IN THE FIRST BYTE OF THE LIST. LOCATION

;$32 IS USED TO HOLD AN EXCHANGE FLAG.
SORTS LDY #OO ;TURN EXCHANGE FLAG OFF (= Oi

NXTEL

CHKEND

STY $32
LDA ($30),Y
TAX
INY

DEX
LDA
INY
CMP
BCC

BEQ

PHA
LDA
DEY
STA
PLA
INY
STA
LDA
STA
DEX
BNE
BIT
BMI
RTS

($30),Y

($30).Y

CHKEND

CHKEND

($30),Y

($30),Y

($30),Y

#$FF
$32

NXTEL
$32
SORTS

;FETCH ELEMENT COUNT
; AND FUT IT INTO X
;POINT TO FIRST ELEMENT IN LIST
;DECREMENT ELEMENT COUNT

;FETCH ELEMENT

;IS IT LARGER THAN THE NEXT ELEMENT?

;YES. EXCHANGIE ELEMENTS IN MEMORY

BY SAVING I.OW BYTE ON STACK.
THEN GET HIGH BYTE AND
STORE IT AT LOW ADDRESS

;PULL LOW BYTE FROM STACK

; AND ~,TORE IT AT HIGH ADDRESS

;TURN EXCHANGE FLAG ON {= -1)

;END OF LIST?
;NO. FETCH NEXT ELEMENT
;YES. EXCHANGE FLAG STILL OFF?
;NO. GO THROUGH LIST AGAIN
;YES. LIST IS NOW ORDERED

Subroutine SORTS begins by initializing an exchange -flag. The
exchange flag is an indicator in memory location $32 that can be
interrogated upon completion of a sorting pass to find out whether
any elements were exchanged during that pass (flag = -1) or if
the pass was executed with no exchanges (flag = 0). The latter
case indicates that the list is completely ordered and needs no
further sorting.

After loading the element count into the X register, the 6502
microprocessors enters an element compare loop at NXTEL. As
each element is fetched, it is compared to the next element in the
list, with CMP ($30),Y. If this pair of elements are of equal value,
or are in ascending (sorted) order, the subroutine then branches to
CHKEND, to see if the element count in the X register has been dec
remented to zero (the end-of-list condition). Otherwise, the elements
are exchanged (if the element pair is in the wrong order). The
stack is used to save the lower-addressed element while the higher
addressed element is being relocated in memory. A zero page mem
ory location could have been used to save the element, but it was

LISTS AND LOOK-UP TABLES 99

observed that PHA and PLA both execute in one less cycle than
their LOA and STA counterparts. Upon completion of an exchange
operation, the exchange flag is turned on, by loading it with -1.

Following the exchange, the element count is decremented with
a DEX instruction (label CHKEND) and the subsequent BNE
NXTEL instruction branches to NXTEL if the pass has not yet
been completed. When the pass is completed, BIT $32 checks
whether the exchange is still off (Bit 7 = 0), or has been turned on
(Bit 7 = 1) by an exchange operation during the pass. If an ex
change occurred, the subroutine is reinitiated at ORDERS, other
wise RTS causes a return, with a now ordered list.

Sorting Lists Having 16-Bit Elements

The sort subroutine discussed in the preceding section was rela
tively simple because the elements were 8-bit values, and could be
compared with a CMP instruction and exchanged without too much
difficulty. Unfortunately, the 6502 microcomputer has no 16-bit
compare instruction, so a comparison must be made by actually
subtracting the elements and testing the status of the result; if a
borrow occurs, the elements must be exchanged, otherwise the
elements can remain in their present order. The SORT16 subroutine
given in Example 4-5 sorts 16-bit elements using the bubble-sort
algorithm and a 16-bit "compare" sequence.

Example 4-5: A 16-Bit Bubble-Sort Subroutine

;THIS SUBROUTINE ARRANGES THE 16-BIT ELEMENTS OF A LIST IN
;ASCENDING ORDER. THE STARTING ADDRESS OF THE LIST IS IN LOCATIONS
;$30 AND $31. THE LENGTH OF THE LIST IS IN THE FIRST BYTE OF THE LIST.
;LOCATION $32 IS USED TO HOLD AN EXCHANGE FLAG.

SORT16 LOY #OO ;TURN EXCHANGE FLAG OFF (= 0)
STY $32
LOA ($30),Y ;FETCH ELEMENT COUNT
TAY ; AND USE IT TO INDEX LAST ELEMENT

NXTEL LOA ($30),Y ;FETCH MSBY
PHA ; AND PUSH IT ONTO STACK
DEY
LOA ($30),Y ;FETCH LSBY
SEC
DEY
DEY
SBC ($30),Y ; AND SUBTRACT LSBY OF PRECEDING ELEMENT

PLA ;PULL MSBY FROM STACK

INY
SBC ($30),Y ; AND SUBTRACT MSBY OF PRECEDING ELEMENT

BCC SWAP ;ARE THESE ELEMENTS OUT OF ORDER?

CPY #02 ;NO. LOOP UNTIL ALL ELEMENTS COMPARED

BNE NXTEL

------------------·-·" _____ _

100 6502 SOFTWARE DESIGN

BIT $32 ;EXCHANGE FLAG STILL OFF?
BMI SORT16 ;NO. GO THROUGH LIST AGAIN
RTS ;YES. LIST IS NOW ORDERED

;THE ROUTINE BELOW EXCHANGES TWO 16-BIT ELEMENTS IN MEMORY

SWAP LDA ($30),Y ;SAVE MSBYl ON STACK
PHA

DEY
LDA ($30),Y ;SAVE LSBYl ON STACK

PHA
INY
INY

INY
LDA ($30),Y ;SAVE MSBY2 ON STACK

PHA
DEY
LDA ($30),Y ;LOAD LSBY2 INTO ACCUMULATOR

DEY
DEY
STA ($30),Y ; AND STORE IT AT LSBYl POSITION

LDX #03
SLOOP INY ;STORE THE OTHE~ THREE BYTES

PLA ($30),Y

STA
DEX
BNE SLOOP ;LOOP UNTIL THREE BYTE STORED
LDA #$FF ;TURN EXCHANGE FLAG ON (= -1)

STA $32
CPY #04 ;WAS EXCHANGE DONE AT START OF LIST?
BEQ SORT16 ;YES. GO THROUGH LIST AGAIN
DEY ;NO. COMPARE NEXT ELEMENT PAIR
DEY
JMP NXTEL

The SORT16 subroutine is designed with the same algorithm as
SORTS, so the two subroutines naturally have several character
istics in common. For example, both SORTS and SORT16 have an
exchange flag (in the same location, $32) that indicates whether
or not an exchange occurred during the last pass through the list.
Like SORTS, the SORT16 subroutine also compares adjacent ele
ments (albeit with a 16-bit subtraction, as opposed to the simple
S-bit comparison of the SORTS) and has an exchange routine that
interchanges misordered elements in memory.

Aside from the fact that SORTS and SORT16 operate on different
size elements, the only other real difference between them is that
SORT16 processes the list from the end and works upward, whereas,
SORTS processes the list from the beginning and works downward.
Why the difference in procedure? There is no good reason, other
than to demonstrate that a bubble sort can operate in either di
rection.

LISTS AND LOOK-UP TABLES 101

SORT16 starts by initializing the exchange flag to zero, and
fetching the element count from the first byte of the list. Using
that value to point Y at the last element, the 6502 microprocessor
executes "compare" (subtraction) instructions. These instructions,
which start with the NXTEL instruction, perform a double-pre
cision subtraction. (If your recall of double-precision subtraction
is hazy, you should briefly refresh your memory by going back to
Chapter 2 and studying Example 2-2 and its associated text.) In
this subtraction, the least-significant bytes (LSBYs) are subtracted
first, and any borrow from that operation is passed, via the Carry,
to the subtraction of the most-significant bytes (MSBY s).

Operations on multiple-precision elements typically require a
lot of pointer manipulation, as you can see by the instructions that
follow the NXTEL label. To get to the higher-addressed LSBY,
the Y register must be decremented from its MSBY position. Before
decrementing the Y register, however, the higher-addressed MSBY
is pushed onto the stack for later use. With several more Y register
decrements, the two LSBYs are addressed and subtracted. The
result of the subtraction is not saved, since we are only interested
in the final status of the operation, not the numerical result.

ADDR LSBYI ADDR LSBY2

ADDR + I MSBYI ADDR + I MSBY2 ----- 1-------t
ADDR + 2 LSBY2 ADDR + 2 LSBYI ----- -----ADDR + 3 MSBY2 ADDR + 3 MSBYI

1-------t

(A) Before Swap. (B) After swap.

Fig. 4-1. Swapping two 16-bit values in memory.

The most-significant bytes (MSBYs) are subtracted next, by
retrieving the higher-addressed MSBY from the stack and subtract
ing the lower-addressed MSBY from it. With this subtraction, we
can make the exchange/ no-exchange decision based on the state
of the Carry flag. If Carry is set (no borrow occurred), the ele
ments are in the correct order; if Carry is reset (a borrow occurred),
the elements must be exchanged.

Fig. 4-1 shows what the SWAP routine actually does, by present
ing "before" and "after" diagrams of the exchanged 16-bit elements.
The higher-valued element initially resides in symbolic addresses
ADDR +2 and ADDR +3, and its bytes are designated as LSBY2
and MSBY2. The lower-valued element initially resides in symbolic
addresses ADDR and ADDR + 1, and its bytes are designated
LSBYl and MSBYl. The sequence of the SW AP routine will be

102 6502 SOFTWARE DESIGN

more easily understood if you refer to Fig. 4-1 while studying the
instructions of the routine.

Due to the previous subtraction routine, the Y register index is
pointing at MSBYl when the SW AP routine is initiated. Taking
advantage of this pointer, SW AP saves MSBYl and the adjacent
byte, LSBYl, on the stack. Recalling that information is retrieved
from a stack in the opposite order from which it was entered on the
stack, the MSBYl-then-LSBYl push sequence implies which byte
will be the next to be pushed onto the stack-it will be MSBY2.
With these three bytes on the stack, the final byte LSBY2 is moved
from ADDR +2 (again, refer to Fig. 4-1) to ADDR. A short loop
(SLOOP) pulls bytes MSBY2, LSBYl, and MSBYl off the stack
and stores them in the locations following LSBY2. The SW AP
routine ends by turning on the exchange flag in location $.32. If
Elements 1 and 2 were exchanged, a BEQ SORT16 instruction
branches to the top of the subroutine; otherwise, control jumps to
NXTEL for the next comparison.

ORDERED LISTS

Now that we have learned how to order a list, let us discuss how
to search the list for a known value and, then, see how two common
operations-adding elements and deleting elements-can be pro
grammed.

Searching an Ordered List

Earlier in this chapter we learned that in order to locate a
given value in an unordered list, the list must be searched sequen
tially, element by element. For an N-element list, this requires an
average of N/2 comparisons. If a list is ordered, however, any of a
number of search techniques can be employed. For all but the
shortest lists, most of these techniques will be faster and more effi
cient than the sequential search technique.

One of the most widely known search techniques for ordered
lists is called the binary search. Its name is derived from the fact
that it divides the list into a series of progressively narrower halves,
to eventually "zero in" on one element location in the list. A binary
search starts in the middle of the list and determines which half
of the list the entry value is in. It then takes that half of the list
and divides it into halves ... , and so on.

Example 4-6 shows a subroutine (FINDS) that searches an
ordered list for the value contained in location $2F. The start
ing address of the list is contained in zero page locations $30 (low
address byte) and $31 (high-address byte). The first byte in the
list contains the element count. If the search entry is found in the

LISTS AND LOOK-UP TABLES 103

list, the matching element number is returned in location $32; if
the entry cannot be found in the list, $32 contains zero upon return.

Example 4-6: An 8-Bit Binary-Search Subroutine

;THIS SUBROUTINE SEARCHES FOR THE CONTENTS OF LOCATION $2F IN AN
;ORDERED LIST WHOSE STARTING ADDRESS IS CONTAINED IN LOCATIONS
;$30 AND $31. THE LENGTH OF THE LIST IS IN THE FIRST BYTE OF THE LIST
;(AND IS RETURNED IN LOCATION $33).
;LOCATION $32 HOLDS THE SEARCH RESULT UPON RETURN. IF THE ENTRY
;WAS FOUND, $32 WILL CONTAIN THE NUMBER OF THE MATCHING ELEMENT;
;IF NOT, $32 WILL CONTAIN ZERO.

FINDS LDY #OO
LDA ($30),Y
STA $32
STA $33
INY

NXTCHK LSR $32
BNE NOTDUN
BCS EVEN
RTS

NOTDUN BCC EVEN
INC $32

EVEN LDA ($30),Y
CMP $2F
BEQ FOUND
BCS GOLOW

TYA
ADC $32
CMP $33
BEQ YO Kl
BCS NXTCHK

YOKl TAY
JMP NXTCHK

GOLOW TYA
SBC $32
BEQ NXTCHK
BCS YOK2
BMI NXTCHK

YOK2 TAY
JMP NXTCHK

FOUND STY $32
RTS

;FETCH ELEMENT COUNT

; AND STORE IT IN LOCATIONS $32
; AND $33
;INDEX TO FIRST ELEMENT
;CUT SEARCH INCREMENT BY ONE-HALF
;SEARCH INCREMENT = O?
;ONE LAST COMPARE IF INCREMENT WAS
;NO MATCH. RETURN WITH $32 = 0
;WAS SEARCH INCREMENT ODD?
;YES. ROUND UPWARD
;LOAD ELEMENT INTO ACCUMULATOR
;DOES THIS ELEMENT MATCH ENTRY?
;YES. GO RETURN
;NO. ELEMENT > ENTRY. SEARCH LOWER.
;NO. ELEMENT < ENTRY. SEARCH HIGHER.
;ADD INCREMENT TO Y INDEX

; BUT LIMIT Y TO UPPER BOUND OF LIST

;SUBTRACT INCREMENT FROM Y INDEX

; BUT LIMIT Y TO LOWER BOUND OF LIST

;ELEMENT NUMBER OF MATCH IS IN LOCATION $32

The search-by-halves technique of the binary-search algorithm
is started by loading the element count into memory location $32,
and applying a right-shift instruction (LSR $32) to it with each
comparison. You will recall from Chapter 2 that a right shift divides
a number by two.

104 6502 SOFTWARE DESIGN

If the right-shifting step produces a search increment of 0 (i.e.,
if the last search increment was a 1), the BNE NOTDUN test fails
and the subroutine returns with location $32 containing a 0. Other
wise, the BCC EVEN instruction at label NOTDUN rounds the
new search increment upward if the preshift increment was odd,
and then proceeds into the comparison routine (at label EVEN).

The comparison routine is very straightforward. If the element
in the accumulator matches the search entry in $2F, the subroutine
branches to FOUND, to store the element number, and to return.
If the element is greater than the entry, the branch to GOLOW
will cause the search increment to be subtracted from the Y index
and will cause the search to continue lower in the list. Otherwise
BCS GOLOW fails, and the search increment is added to Y so
that the search will continue higher in the list.

How much more efficient is a binary search than a straight se
quential comparison, the kind we used in Example 4-1? A mathe
matical analysis1 has shown that whereas a sequential search of
an N-element list requires an average of N/2 comparisons, a binary
search requires log~ N comparisons. For a 100-element list, a se
quential search will average 50 comparisons, but a binary search
will do the same job with about 7 comparisons!

Adding an Entry to an Ordered List

The process of adding an entry to an ordered list can be divided
into four basic steps:

1. Find out where the entry must be added.
2. Clear a location for the entry, by moving all higher-valued

elements down one position, to the next higher-address lo
cation.

3. Insert the entry at the newly vacated element position.
4. Update the list length, by adding one to it.

Certainly one way to locate the insert position is to compare
each element of the list with the entry, sequentially. When an
element is found with a greater value than the entry, the search is
over, and the entry can be inserted immediately ahead of that ele
ment. This approach will get the job done, but as you will recall from
the discussion of unordered lists, it will average N / 2 comparisons for
an N-element list.

As a more efficient alternative, the FINDS subroutine (Example
4-6) can be employed to do the searching. The FINDS subroutine
returns three separate items of information:

• Location $32 contains a 0 if the entry is not already in the
list; otherwise, it contains the number of the matching element.

LISTS AND LOOK-UP TABLES 105

• Location $33 specifies the number of elements in the list.
• The Y register reflects the number of the last element to be

processed in the search routine of FINDS.

The subroutine in Example 4-7 (ADD20L) shows how the 6502
microprocessor is used to add an entry to an ordered list, if it is not
already present in the list. Like FINDS, the ADD20L subroutine
operates on a list whose starting address is contained in locations
$30 (low-address byte) and $31 (high-address byte). The entry
value is contained in location $2F.

The subroutine ADD20L begins by calling FINDS with a JSR
instruction. If the entry is not in the list, the index value in the Y

Example 4-7: Adding an Element to an Ordered List

;THIS SUBROUTINE ADDS THE CONTENTS OF LOCATION $2F TO AN ORDERED LIST,

;IF IT IS NOT ALREADY IN THE LIST. THE STARTING ADDRESS OF THE LIST
;IS IN LOCATIONS $30 AND $31. THE LENGTH OF THE LIST IS IN THE

;FIRST BYTE OF THE LIST.
;THE FINDS SUBROUTINE (EXAMPLE 4-6) IS CALLED TO PERFORM THE SEARCH.

ADD20L JSR FINDS ;SEARCH LIST FOR ENTRY
LDA $32 ;IS ENTRY IN THE LIST?
BNE ITISIN ;YES. RETURN
STY $32 ;NO. SA VE Fl NAL Y OF THE SEARCH

SEC ;CALCULATE NUMBER OF BYTES TO END OF LIST

LDA $33 ; AS DIFFERENCE BETWEEN LIST LENGTH

SBC $32 ; AND FINAL SEARCH Y
TAX ;PUT BYTE COUNT IN X
LDA $2F ;LOAD ENTRY INTO ACCUMULATOR
CMP ($30),Y ;ENTRY > FINAL SEARCH ELEMENT?
BCS GRTR ;YES. INSERT ENTRY AFTER ELEMENT
INX
JMP MOVEM

GRTR INC $32
CPX #OO ;IS BYTE COUNT = O?
BEQ INSERT ;YES. TACK ENTRY ON TO END OF LIST

MOVEM LDY $33 ;INDEX TO LAST ELEMENT IN LIST
MOVNXT LDA ($30),Y ;LOAD ELEMENT

INY
STA ($30),Y ; AND STORE IT IN NEXT LOCATION
DEY ;BACKTRACK TO PRECEDING ELEMENT

DEY
DEX ;DECREMENT BYTE COUNT
BNE MOVNXT ;LOOP UNTIL ALL ELEMENTS MOVED

INSERT LDA $2F ;INSERT ENTRY INTO LIST
LDY $32
STA ($30),Y
INC $33 ;UPDATE ELEMENT COUNT
LDA $33

LDY #OO
STA ($30),Y

ITISIN RTS ;RETURN

106 6502 SOFTWARE DESIGN

register is saved in location $32, replacing the "not found" indicator.
As mentioned above, the Y register points to the list element at
which FINDS concluded its search. This parameter is very mean
ingful because it indicates the element at which FINDS expected
to find the entry if it had been in the list. What does this mean to us?
It means that the entry must be inserted immediately preceding or
immediately following the element to which the Y register points.

The value of the Y register also gives an indication of how many
elements must be moved to make room for the insertion. Specifi
cally, if the entry is to follow the last search element, the number
of elements to be moved is given by:

Elements to be moved = List Length - Y

If the entry is to precede the last search element, the number of
bytes to be moved is given by:

Elements to be moved = List Length - Y + 1

Therefore, after saving the final search value of the Y register in
$32, the subroutine calculates the number of bytes to be moved,
by subtracting the Y value in $32 from the list length in $33, and
then puts the result in the X register.

The subroutine then addresses the question of whether the entry
must be inserted ahead of or after the final search element. It does
this by comparing the entry value to the element value at the final
search value of Y. If the entry is greater than the final search value,
BCS GRTR branches to label GRTR where the insert Y value in
location $32 is incremented (so that the entry will be inserted
after the final search element). The routine at label GRTR also
checks whether the entry falls outside the upper bound of the list,
in which case, it is inserted at the end of the list (without moving
any elements).

Returning to the compare operation, if the entry is less than the
final search value, the element count in the X register is incre
mented before jumping to the move routine at MOVEM. The
M OVEM routine indexes to the last element in the list (LDY $33),
and then moves the preceding elements in the list up one, to a
higher memory location, until the X register has been decremented
to zero. At that point, the entry in location $2F is stored in the list.
With this new element in place, the subroutine adds one to the
element count (the first byte in the list), and returns.

Deleting an Element from an Ordered List

It is much easier to delete an element from an ordered list than
it is to add one, because deleting only entails finding the proper

LISTS AND LOOK-UP TABLES 107

element, moving all subsequent elements down to lower memory
locations in the list (one location), and decrementing the list length
byte.

Example 4-S shows a typical delete subroutine (DELOL), that
uses the FINDS subroutine (Example 4-6) to locate the position
of the intended deletion element. As in all previous examples in
this chapter, the starting address of the list is contained in locations
$30 (low-address byte) and $31 (high-address byte). The value
of the element is in location $2F.

If FINDS locates the element in the list, the DELOL subroutine
addresses the next consecutive element and enters a MOVMOR
routine that moves all subsequent elements down to one lower
memory location. At the end of the move operation, the element
count in the first byte of the list is decremented by one to reflect
the deletion.

Example 4-8: Deleting an Element From an Ordered List

;THIS SUBROUTINE DELETES THE CONTENTS OF LOCATION $2F FROM AN ORDERED
;LIST, IF IT IS IN THE LIST. THE STARTING ADDRESS OF THE LIST IS IN
;LOCATIONS $30 AND $31. THE LENGTH OF THE LIST IS IN THE
;FIRST BYTE OF THE LIST.
;THE FINDS SUBROUTINE (EXAMPLE 4-6) IS CALLED TO PERFORM THE SEARCH.

DELOL JSR FINDS ;SEARCH LIST FOR ENTRY
LDA $32 ;IS ENTRY IN THE LIST?
BEQ ITSOUT ;NO. RETURN
INY ;YES. ADDRESS NEXT ELEMENT,

MOVMOR LDA ($30),Y LOAD IT INTO THE ACCUMULATOR,
DEY
STA ($30),Y AND MOVE IT DOWN ONE LOCATION IN LIST
INY
INY
CPY $33 ;HAVE ALL ELEMENTS BEEN MOVED?
BCC MOVMOR ;NO. GO MOVE ANOTHER ELEMENT
BEQ MOVMOR
LDA $33 ;YES. DECREMENT ELEMENT COUNT
SBC #Ol
LDY #OO
STA {$30),Y

ITSOUT RTS

LOOK-UP TABLES

Many microprocessor programs include applications that require
a particular value to be obtained before processing can resume.
This value may be a mathematical derivative of a test or calculation
result, such as the sine of a calculated angle or the centigrade
equivalent of a temperature that has been measured in Fahrenheit.
Or, the required value may be a parameter that has some defined

108 6502 SOFTWARE DESIGN

relationship to a program input, but which cannot be calculated,
such as a telephone number that corresponds to a name. Applica
tions like these usually call for a look-up table. As the name implies,
a look-up table is used to obtain an item of information (an argu
ment) based on a known value (a function).

Look-up tables often replace complicated or time-consuming
conversion operations, such as calculating the square root or cube
root of a number, or deriving a trigonometric function (sine,
cosine, etc.) of an angle. Look-up tables are especially efficient
when a function is limited to a very small range of arguments. By
using a look-up table, the microcomputer does not have to perform
complex calculations each time a function is obtained. In fact,
you will find that as a rule, look-up tables reduce execution time
in all but the most trivial of relationships. (You would not use a
look-up table to store arguments that are always twice the value
of a function, for instance.) But since look-up tables typically re
quire large amounts of memory storage space, they are most
efficient in applications where storage space can be sacrificed for
execution speed.

Look-Up Tables Can Replace Equations

You can save processing time and program development time
by implementing the results of complicated equations in look-up
tables. In this section, we will examine one common application,
that of finding the degrees Celsius equivalent of a temperature that
is expressed in degrees Fahrenheit.

The Celsius-to-Fahrenheit conversion is based on the familiar
relationship

or

°F=il-(°C)+32
5

°F = 1.8(°C) + 32.

To make this conversion in software, a microcomputer program
must perform a multiplication followed by an addition. Since the
6502 microprocessor does not have a multiplication instruction, the
multiplication operation must be performed by an add-and-shift
sequence that can be time-consuming. (This will be discussed
further in Chapter 5.) Applications that require very precise con
version results will have to make the conversion using a program,
but applications that have less stringent requirements can use a
Celsius-to-Fahrenheit look-up table.

Example 4-9 is a Celsius-to-Fahrenheit conversion subroutine
(C2F) that is based on the look-up table approach. It can convert

LISTS AND LOOK-UP TABLES 109

Celsius temperatures between 0 and 100°, and it resolves all tem
peratures to an accuracy of 1 °. In this subroutine, the Celsius value
is assumed to be in the accumulator at entry. The Fahrenheit result
is returned in both locations $40 and in the accumulator.

The C2F subroutine begins by checking whether the Celsius
value is too large (equal to or greater than 10110). If it is, 0 is
entered into result location $40 followed by a return to the calling
program. With a valid temperature (between 0 and 100° Celsius),
the subroutine transfers the Celsius temperature to the Y register
and uses it as an index to address the proper Fahrenheit value in
the FTEMP look-up table. This table has 100 elements, one for
each valid Celsius temperature. Note that the elements are defined
by a series of .BYT assembler directives. Each of these directives
stores one 8-bit value in memory; the first element ($40) is stored
in location FTE~f P, the second element ($42) is stored in location
FTEMP + 1, and so on.

After looking up the appropriate Fahrenheit value in FTEMP
and loading it into the accumulator, the subroutine stores this
value at location $40 and returns. Note the speed at which the
conversion is made using a look-up table; the C2F subroutine takes
only 20 microseconds to execute, including the 6-microsecond RTS
instruction.

Look-Up Tables for Code Conversion

Look-up tables are also used to hold coded data, such as display
codes, printer codes, and messages. As an example of this type of
application, let us look at how a microcomputer can communicate
with a seven-segment display. Fig. 4-2 shows the components of
the seven-segment display and the codes that it recognizes in form
ing display characters. Each bit of the code controls the "on" or
"off" state of a particular segment of the display; Bit 0 controls
Segment a, Bit 1 controls Segment b, and so on. Bit 7 is unused,

DIGIT CODE

0 3F
1 06
2 58
3 4F
4 66
5 6D
6 70
7 07
8 7F
9 6F

(A) Codes. (B) Diode segments.

Fig. 4·2. Seven-segment arrangement.

110 6502 SOFTWARE DESIGN

Example 4-9: Conversion From Degrees Celsius lo Degrees Fahrenheit

;THIS SUBROUTINE CONVERTS A CELSIUS TEMPERATURE VALUE IN THE
;ACCUMULATOR TO A FAHRENHEIT TEMPERATURE IN LOCATION $40. THE
;CELSIUS VALUE MUST RANGE BETWEEN 0 AND 100; IF IT IS GREATER
;THAN 100, LOCATION $40 WILL CONTAIN 0 UPON RETURN.

C2F CMP #101 ;CELSIUS TEMPERATURE GREATER THAN 100?
BCC COK ;NO. PROCEED WITH CONVERSION

LDA #OO ;YES. ENTER ZERO INTO $40

STA $40
RTS ; AND RETURN

COK TAY ;USE CELSIUS TEMPERATURE AS INDEX

LDA FTEMP,Y ;LOOK UP FAHRENHEIT TEMPERATURE

STA $40 ; AND STORE IT IN $40

RTS
FTEMP .BYT $40 ;O C 32 F

.BYT $42 ;1 c 34 F

.BYT $44 ;2 c 36 F
(Remainder of look-up table is stored here,
100 elements total)

.BYT $D2 ;99 C = 210 F

.BYT $D4 ;100C=212F

and is always off (logic 0). A code of $3F turns on Segments a, b,
c, d, e, and f, forming a 0. Similarly, a code of $SB turns on Seg
ments a, b, d, e, and g, forming a 2.

Example 4-10 is a subroutine that uses a look-up table to convert
a binary-coded decimal (BCD) digit in location $40 to a seven
segment code, and stores the code in location $41. This subroutine,

Example 4-10: A BCD-to-Seven-Segment Conversion Subroutine

;THIS SUBROUTINE CONVERTS A BCD DIGIT IN LOCATION $40 TO A
;SEVEN-SEGMENT DISPLAY CODE IN LOCATION $41. IF LOCATION $40
;DOES NOT CONTAIN A DIGIT BETWEEN ZERO AND NINE, LOCATION
;$41 CONTAINS ZERO UPON RETURN.

BCD2SS LDA #OO
STA $41 ;INITIALIZE RESULT LOCATION TO ZERO
LDY $40 ;LOAD DIGIT INTO INDEX REGISTER Y
CPY #10 ;IS DIGIT GREATER THAN NINE?
BCS SSDUN ;YES. RETURN WITH ZERO IN $41
LDA SSEG,Y ;NO. LOOK UP SEVEN-SEGMENT CODE
STA $41 ; AND STORE IT IN $41

SSDUN RTS

SSEG .BYT $3F,$06,
$5B,$4F,
$66

.BYT $6D,$7D,
$07,$7F,
$6F

LISTS AND LOOK-UP TABLES 111

BCD2SS, initializes output location $41 to zero, which will produce
an error if the contents of $40 are not in the range of 0 to 9. Two
instructions, LDY $40 and CPY # 10, check the validity of the BCD
numbers ($00 to $09). An invalid (greater than 9) digit will cause
a branch to the RTS instruction. With a valid digit, the BCD value
in the Y register will be used to address the appropriate seven
segment display code in the SSEG look-up table.

Incidentally, the 16-segment display of the AIM 65 is an "intelli
gent" display that internally converts ASCII inputs to the proper
display codes, without having to resort to the aid of a look-up
table.

JUMP TABLES

Look-up tables can contain more than just data. In many cases,
the elements of the table are addresses. An error routine, for ex
ample, can use a look-up table to find the starting address of an
operator error message, based on a code in the accumulator. Sim
ilarly, an interrupt routine can use a look-up table to call one of
several service routines, based on which device in the system gen
erated the interrupt service request. Another routine may use a
look-up table to call one of several control programs, based on a
control key pressed by an operator. In all of these applications
(there are many more as well), the look-up table containing the
addresses is referred to as a jump table. Jump tables are used in
applications where the control path is dependent on the state of a
specific condition.

Example 4-11 illustrates how a jump table can service the needs
of five different users in a multiterminal microcomputer system.
This subroutine (SELUSR) interprets the contents of zero page
location $40 as a user identification code, and uses this code to select
and execute one of five user service subroutines. SEL USR checks
the validity of the user identification code. and returns to the
calling program if the code is greater than a four. However, with a
valid code, the subroutine will fetch the appropriate user subroutine
address from the jump table at UADDR.

The jump table is formed with a Word (.WOR) directive fol
lowed by five subroutine labels, USEHO through USER4. Each of
these labels represents an absolute address that will occupy two
bytes in memory, a low-address byte followed by a high-address
byte. For example, the address of USERO will occupy locations
UADDR and UADDR+ 1, the address of USERl will occupy loca
tions UADDR+2 and UADDR+3, and so on. For this reason, the
user code in the accumulator is doubled (ASL A) before being
transferred to the Y register.

112 6502 SOFTWARE DESIGN

You might expect that at this point the user subroutine can be
called with one simple instruction, JSR (UADDR,Y). Unfortu
nately, this addressing option is not implemented on the 6502
microprocessor. In fact, the JSR instruction can operate only with
absolute addressing. How then can the user subroutine be called?
As you can see, the situation is not hopeless; we still call the user

Example 4-11: A Multiuser Selection Subroutine

;THIS SUBROUTINE CALLS ONE OF FIVE USER SERVICE SUBROUTINES,
;BASED ON A USER IDENTIFICATION CODE (0, 1, 2, 3, OR 4) IN LOCATION
;$40. LOCATIONS $41 AND $42 ARE USED AS SCRATCH MEMORY.

SELUSR LDA $40 ;GET USER l.D. CODE
CMP #OS ;IS IT GREATER THAN 4?
BCS USRDN ;YES. RETURN
ASL A ;NO. DOUBLE VALUE OF l.D. CODE
TAY ; AND USE IT AS INDEX IN Y
LDA UADDR,Y ;FETCH LSBY OF USER ADDRESS
STA $41 ; AND STORE IT IN $41
!NY
LDA UADDR,Y ;FETCH MSBY OF USER ADDRESS
STA $42 ; AND STORE IT IN $42
JMP ($0041) ;GO EXECUTE USER SUBROUTINE

USRDN RTS ;RETURN ON l.D. CODE ERROR

UADDR .WOR USERO,USERl,
USER2,USER3,
USER4

subroutine with one instruction, but the instruction is a JMP rather
than a JSR! It works like this. Once the index has been calculated,
the low- and high-address bytes from the jump table arc loaded
into the accumulator (with the LDA UADDR,Y instruction) and
stored in locations $41 and $42, respectively. The instruction JMP
($0041) "calls" the subroutine using the address in $41 and $42.
Since this "call" did not push a return address onto the stack, the
RTS in the user subroutine will cause a return to the calling pro
gram, rather than to the SELUSR subroutine. This technique is a
valid, but tricky, "code saver." Some additional examples of jump
tables are contained in References 3 and 4.

REFERENCES

l. Bentley, J. B. "An Introduction to Algorithm Design," Computer, February
1979, pp. 66-78.

2. Knuth, D. E. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley Publishing Co., Inc., Reading, MA, 1973. (This
is a comprehensive treatment of sorting and searching.)

LISTS AND LOOK-UP TABLES 113

3. Leventhal, L. A. "Cut your processor's computation time," Electronic Design,
August 16, 1977, pp. 82-89.

4. Titus, J. A., Titus, C. A., Rony, P. R., and Larsen, D. G. "Interfacing
Fundamentals: Lookup Tables," Computer Design, February 1979, pp. 130-
134.

5

Mathematical Routines

In this chapter we will discuss the four basic mathematical op
erations-addition, subtraction, multiplication, and division-and
show how these operations are performed using the 6502 instruc
tion set. We do not intend to present a "cookbook" that will cover
every situation, but (hopefully) you will have sufficient informa
tion to develop your own mathematical subroutines.

The first part of the chapter covers mathematics on fixed-point
integer and binary-coded decimal (BCD) numbers. By "fixed
point," we mean that the decimal point is in a fixed location, re
gardless of the size of the numbers being processed. Fixed-point
numbers have no exponents. The final part of the chapter will cover
floating-point numbers, which do have exponents.

INTEGER ADDITION

In Chapter 2, we discussed how the add instruction (ADC) of
the 6502 microprocessor is used to add one- and two-byte numbers.
It is nearly as easy to add numbers of any length, signed or
unsigned. Example 5-1 is an addition subroutine (MP ADD) that
adds two multiple-precision numbers (signed or unsigned) whose
least-significant bytes (LSBY s) are in locations $21 and $51, re
spectively. The length of the operands (the number of 8-bit bytes)
is contained in location $20.

Subroutine MPADD uses the indexed addressing capability of the
6502 microprocessor to fetch a byte of one operand (LDA $21,X),
add the corresponding byte of the other operand to it (ADC $51,X),
and then store the result in the first operand location (ST A $21,X).
This sequence of operations is repeated for each byte of the oper
ands, with the index located in the X register and the byte count

114

MATHEMATICAL ROUTINES

Example 5-1: A Multiple-Precision Addition Subroutine

;THIS SUBROUTINE ADDS TWO MULTIPLE-BYTE NUMBERS, ONE STARTING

;IN LOCATION $21, THE OTHER STARTING IN LOCATION $51. THE
;RESULT REPLACES THE NUMBER THAT STARTS IN LOCATION $21. THE
;BYTE COUNT IS CONTAINED IN LOCATION $20.

MPADD LDY $20 ;FETCH BYTE COUNT
LDX #OO ;AT START, INDEX 0
CLC ; AND CARRY = 0

NXTBY LOA $21,X ;ADD 8 BITS
ADC $51,X
STA $21,X ;STORE 8 BITS
INX ;UPDATE INDEX AND COUNT
DEY
BNE NXTBY ;LOOP UNTIL ALL BYTES DONE
RTS

115

in the Y register. Since the X and Y registers are eight bits wide, the
operand can be up to 256 bytes long. Note that a slightly modified
version of the MPADD subroutine can be used to add two data
tables, element by element, if the Carry flag is reset before each
operation; that is, if the NXTBY label is assigned to the CLC in
struction rather than to the LDA $21,X instruction.

INTEGER SUBTRACTION

In Chapter 2, the subtract instruction (SBC) of the 6502 micro
processor was used to subtract one- and two-byte numbers. As with
integer addition, it is nearly as easy to subtract numbers of any
length, signed or unsigned. Example 5-2 is a subtraction sub
routine (MPSUB) that subtracts a multibyte number starting in
location $51 from another multibyte number starting in location
$21. The number of bytes in the operands is contained in location
$20.

Example 5-2: A Multiple-Precision Subtraction Subroutine

;TH1S SUBROUTINE SUBTRACTS A MULTIPLE-BYTE NUMBER STARTING IN
;LOCATION $51 FROM A MULTIPLE-BYTE NUMBER STARTING IN LOCATION
;$21. THE RESULT REPLACES THE NUMBER THAT STARTS IN
;LOCATION $21. THE BYTE COUNT IS CONTAINED IN LOCATION $20.

MPSUB LDY $20 ;FETCH BYTE COUNT
LOX #OO ;AT START, INDEX = 0
SEC ; AND BORROW = 0

NXTBY LOA $21,X ;SUBTRACT 8 BITS
SBC $51,X
STA $21,X ;STORE 8 BITS
INX ;UPDATE INDEX AND COUNT
DEY
BNE NXTBY ;LOOP UNTIL ALL BYTES DONE
RTS

116 6502 SOFTWARE DESIGN

Subroutine MPSUB uses the indexed addressing capability of
the 6502 microprocessor to fetch a byte of the minuend (LDA
$21,X), subtract the corresponding byte of the subtrahend (SBC
$51,X), and replace the minuend byte with the result (ST A $21,X).
This sequence is repeated for each byte of the operands, with the
index in the X register and the byte count in the Y register.
Since the X and Y registers are eight bits wide, the operands can
be up to 2.56 bytes long. Note that a slightly modified version of the
MPSUB subroutine can be used to subtract two data tables, element
by element, if the NXTBY label is assigned to the SEC instruction
rather than to the LDA $21,X instruction.

INTEGER MULTIPLICATION

Before discussing binary multiplication, let us review the me
chanics of decimal multiplication-the kind we do by hand using
pencil and paper. As you will recall (in these days of calculators,
it may be a bit hazy), you write the multiplicand with the multi
plier below it and perform a series of multiplications-one for each
digit in the multiplier. Each partial product is written directly below
its multiplier digit, causing it to be displaced one digit position to
the left of its predecessor. vVhen all of the partial products have
been calculated, they are added to produce the final product.

For example, the multiplication of the number 124 by the number
103 looks like this:

124
xl03

372
000

124

12772

Multiplicand
Multiplier

Partial Product 1
Partial Product 2
Partial Product 3

Final Product

Of course, you do not normally write clown the all-zeroes partial
product. We wrote it down in the above problem to emphasize one
essential principle of multiplication. A zero multiplier causes a skip
to the next digit position, without producing a partial product. Re
member that:

103 x 124 = (100 x 124) + (0 x 124) + (3 x 124)

or

103 x 124 = (1 x 102 x 124) + (0 x 101 x 124) + 3 x 10° x 124).

With this groundwork, let us discuss binary multiplication. Binary
multiplication is much simpler than decimal multiplication because

MATHEMATICAL ROUTINES 117

binary multipliers consist of only the digits 0 and 1. Therefore, the
partial product is a repetition of the multiplicand if the multiplier
digit is 1, and the partial product is zero if the multiplier digit is 0.

The binary equivalent of our previous 103 X 124 example looks
like the following:

01111100
X01100111

01111100
01111100

01111100
00000000

00000000
01111100

01111100
00000000

011000111100100

Multiplicand (= 124)
Multiplier (= 103)

Final Product (= 12772)

Like most microprocessors, the 6502 has no multiply instruction,
so the multiplication must be performed as was just demonstrated.
There are some important differences, however. When performing
a multiplication by hand, you record the value of the multiplicand if
the multiplier bit is 1, and you record eight zeroes if the multiplier
bit is 0. You then add the columns to generate a final product. The
entry procedure is similar with a computer program, but instead of
waiting until the individual partial products are calculated -before
generating the final product, computer programs update the partial
product after each multiplier bit is examined. By doing this, the
final product is generated when the last bit of the multiplier has
been processed.

Moreover, when multiplying by hand, the digits in the multiplier
are examined from right to left, so each digit is ten times (for
decimal numbers) or two times (for binary numbers) more sig
nificant than the preceding digit. Therefore, the partial result of the
multiplication is shifted to the left before it is recorded on paper.
In a computer, it is easier to shift the sum of the partial product and
the multiplicand, thereby aligning it to receive the contribution of
the next multiplier bit. The partial product may be shifted either
right or left, depending on whether the multiplier bits are being
examined from right to left (low-order to high-order) or from
left to right (high-order to low-order). For purposes of this dis
cussion, we will process the multiplier in right-to-left order, the
way you would do it by hand. In summary, the following applies
when multiplying binary numbers by a computer:

118 6502 SOFTWARE DESIGN

If the multiplier is examined from right to left and a digit is
a 1, add the multiplicand to the partial product, and then shift
the sum one bit position to the right. If the multiplier bit is a
0, shifr the current partial product one bit position to the right,
with no addition.

This chapter includes subroutines that perform the two most
common multiplication operations-multiplying two 8-bit numbers
and multiplying two 16-bit numbers. The principles given can be
used to develop any additional higher-precision routines that your
own application might require. In these subroutines, the addition
will be performed with the only add instruction of the 6502 micro
processor-Add to Accumulator With Carry (ADC). The shifting
will be performed with the Shift Right (LSR) or Rotate Right
(ROR) instruction.

Multiplying Unsigned Numbers

Fig. 5-1 is a flowchart for a subroutine that multiplies an 8-bit
unsigned multiplicand (in memory) by an 8-bit unsigned multiplier
(in memory), and then stores the 16-bit product in two consecutive
memory locations. The multiplier bits are processed by shifting
them right, into the Carry bit, and then performing either an add
and-shift (if the Carry contains a 1) or just a shift (if the Carry
contains a 0).

Example 5-3 is a subroutine (ML T8) that uses the flowcharted
algorithm (Fig. 5-1) to multiply the contents of location $21 by the
contents of location $20. The product LSBY is returned in location
$22, the product MSBY is returned in location $23. The X register
is used to hold the number of unprocessed bits in the multiplier (the
bit count).

In the MLT8 subroutine (Example 5-3), the LSR $20 instruction
causes the multiplier in memory location $20 to be shifted one bit
at a time, into the Carry. If the shifted bit is a 1, the CLC and
ADC $21 instructions add the multiplicand to the most-significant
byte of the partial product, and the LSR A and ROR $22 instruc
tions shift the new partial product to the right into the least-sig
nificant byte, stored in location $22. If the shifted bit of the multi
plier is a 0, BCC ALIGN bypasses the add operation by branching
to the right-shift sequence at ALIGN. The NXTBT loop is executed
eight times, once for each bit in the multiplier.

Multiplying Signed Numbers

The basic principles of the "add-and-shift" method of multiplica
tion that was demonstrated in Example 5-3 can be applied to signed,
as well as unsigned, multiplication. A few changes must be made

MATHEMATICAL ROUTINES

Fig. 5-1. An 8-bit X 8-bit
multiplication algorithm.

NO

START

SHIFT MULTIPLIER
RIGHT. INTO CARRY

PROOUCT = PRODUCT
+ MULTIPLICAND

NO

END

119

120 6502 SOFTWARE DESIGN

Example 5-3: An 8-Bit by 8-Bit Unsigned Multiplication Subroutine

;THIS SUBROUTINE MULTIPLIES AN 8-BIT UNSIGNED MULTIPLICAND
;IN LOCATION $21 BY AN 8-BIT UNSIGNED MULTIPLIER IN LOCATION
;$20, AND RETURNS THE 16-BIT UNSIGNED PRODUCT IN
;LOCATIONS $22 (LOW BYTE) AND $23 (HIGH BYTE).

MLT8 LOA #OO ;CLEAR MSBY OF PRODUCT
LOX #OB ;MULTIPLIER BIT COUNT = 8

NXTBT LSR $20 ;GET NEXT MULTIPLIER BIT
BCC ALIGN ;MULTIPLIER = l?
CLC ;YES. /\DD MULTIPLICAND
ADC $21

ALIGN LSR A ;SHIFT PRODUCT RIGHT
ROR $22
DEX ;DECREMENT BIT COUNT
BNE NXTBT ;LOOP UNTIL 8 BITS ARE DONE
STA $23 ;STORE PRODUCT MSBY
RTS

for signed (two's complement) multiplication, though, since the
8-bit operands now represent seven data bits prefixed by one sign
bit.

The first modification involves the multiplier. You will recall that
in "add-and-shift" multiplication, the bits of the multiplier deter
mine whether the multiplicand is added to the partial product be
fore the product is shifted. In signed multiplication a problem
arises if the multiplier is negative, since its bits cannot be used in this
add-multiplicand function. Example 5-4 shows what happens when
510 (binary 00000101) is multiplied by -3 10 (binary 11111101).

Example 5-4: Integer Multiplication With a Negative Multiplier

00000101 = 5
11111101 = -3

00000101 Part;al Product
00000000

000000101 Partial Product
00000101

0000011001 Partial Product
00000101

00001000001 Partial Product
00000101

000010010001 Partial Product
00000101

0000100110001 Partia I Product
00000101

00001001110001 Partial Product
00000101

000010011110001 = 1265

MATHEMATICAL ROUTINES 121

The final product is not the expected -1510 (binary 11111111
11110001), but is 126510 (binary 00000100 11110001) ! Therefore,
to multiply signed numbers, the multiplier must always be positive.

Now, consider the four sign possibilities for the multiplier and
multiplicand. They are:

1. Multiplier and multiplicand are both positive.
2. Multiplier is positive, multiplicand is negative.
:3. Multiplier is negative, multiplicand is positive.
4. Multiplier and multiplicand are both negative.

Since the multiplier is positive for combinations 1 and 2, our posi
tive-multiplier requirement is satisfied for these cases. For com
bination 3, the multiplier is not positive, but you can get a positive
multiplier (without affecting the result) by simply exchanging the
multiplier and the multiplicand. For combination 4, the result
will be positive, so you can get a positive multiplier by taking the
two's complement of both operands before performing the multi
plication.

Another difference between unsigned and signed multiplication
arises from the fact that if a logical right shift is performed on a
negative partial product, the shift causes the sign bit (most-signifi
cant bit of the product) to be set to zero. Clearly then, for a signed
multiplication, the sign of the product must he retained after
the shift. In the next example, this is done by recording the sign
of the multiplicand during the sign checks at the beginning of the
routine, and then oRing this value (I or 0) into the most-significant
bit of the partial product after it has been right shifted.

Example 5-5 is a subroutine (MLT8S) that multiplies two 8-bit
signed integer numbers. The first part of the subroutine (MLT8S
through GOMPY) makes any necessary alterations to ensure that
the multiplier is positive, and stores a multiplicand sign mask in
memory location $24. The mask is 80 if the multiplicand is nega
tive and 00 if the multiplicand is positive. The second part of the
subroutine (GOMPY to the RTS instruction) performs the multi
plication and ORS the multiplicand sign mask with the partial
product. Note that this latter portion is very similar to the MLT8
subroutine in Example 5-3, except for the ORA $24 instruction that
follows the LSR A instruction at ALIGN.

Double-Precision Multiplication

Double-precision (16-bit) multiplication is a little more compli
cated than single-precision (8-bit) multiplication due to the addi
tional memory involved, but the basic add-and-shift procedure is
still used. With a double-precision multiplication, the multiplier
and multiplicand are both 16-bit values, so each occupies two mem-

122 6502 SOFTWARE DESIG)I

Example 5-5: An 8-8it by 8-Bit Signed Multiplication Subroutine

;THIS SUBROUTINE MULTIPLIES AN S-BIT SIGNED MULTIPLICAND IN
;LOCATION $21 BY AN S-BIT SIGNED MULTIPLIER IN LOCATION $20.
;THE 16-BIT PRODUCT IS RETURNED IN LOCATIONS $22 (LOW BYTE)
;AND $23 (HIGH BYTE). LOCATION $24 IS USED TO HOLD A MULTl
;PLICAND SIGN BIT MASK.

MLTSS LDA #SO
BIT $20 ;MULTIPLIER POSITIVE?
BPL MPOS
BIT $21 ;NO. MULTIPLICAND POSITIVE?
BPL SWAP ;IF SO, SWAP OPERANDS

;BOTH OPERANDS ARE NEGATIVE-NEGATE THEM
ASL A ;CLEAR A, BY LEFT-SHIFTING #SO
STA $24 ;MASK SIGN BIT = 0
SBC $20 ;NEGATE MULTIPLIER
STA $20
LDA #OO ;CLEAR ACCUMULATOR AGAIN
SEC ; AND NEGATE MULTIPLICAND
SBC $21
STA $21
JMP GOMPY

;MULTIPLIER NEG, MULTIPLICAND POS-SWAP THEM
SWAP STA $24 ;MASK SIGN BIT = 1

LDX $20 ;SWAP OPERANDS
LDA $21
STX $21
STA $20
JMP GOMPY

;MULTIPLIER POS. IF MULTIPLICAND NEG, SET MASK SIGN BIT
MPOS BIT $21 ;MULTIPLICAND POSITIVE?

BMI MSKl ;IF NOT, MASK SIGN BIT = l
ASL A ;OTHERWISE, MASK SIGN BIT = 0

MSKl STA $24
;THE MULTIPLICATION ROUTINE FOLLOWS
GOMPY LDA #OO ;CLEAR MSBY OF PRODUCT

LDX #OS ;MULTIPLIER BIT COUNT = S
NXTBT LSR $20 ;GET NEXT MULTIPLIER BIT

BCC ALIGN ;MULTIPLIER BIT = l?
CLC ;YES. ADD IN MULTIPLICAND
ADC $21

ALIGN LSR A ;SHIFT PRODUCT MSBY RIGHT
ORA $24 ;APPLY SIGN BIT MASK
ROR $22 ;SHIFT PRODUCT LSBY RIGHT
DEX ;DECREMENT BIT COUNT
BNE NXTBT ;LOOP UNTIL S BITS ARE DONE
STA $23 ;STORE PRODUCT MSBY
RTS

ory locations. Further, multiplying a 16-bit value by another 16-bit
value produces a 32-bit product, which occupies four memory
locations.

Fig. 5-2 is a flowchart for a double-precision multiplication sub
routine for unsigned numbers. The two bytes of the multiplicand

MATHEMATICAL ROUTINES

Fig. 5-2. A 16-bit X 16-bit
multiplication algorithm.

NO

123

START

NO

END

124 6502 SOFTWARE DESIGN

are represented by the symbols MO (low-order byte) and Ml
(high-order byte). The four bytes of the product are represented
by the symbols PO (low-order byte), Pl, P2, and P3 (high-order
byte).

The double-precision algorithm shown in Fig. 5-2 operates in a
manner similar to the single-precision algorithm that we just dis
cussed. That is, the multiplicand is added to the high-order half of
the partial product (P2 and P3) if Carry is a 1. The result is then
right-shifted into the low-order half of the partial product (PO
and Pl). With double-precision, however, the multiplicand is
added in four steps:

1. Add low-order byte of multiplicand (MO) to P2.
2. Store P2.
3. Add high-order byte of multiplicand (Ml) to P3, with any

Carry out of P2.
4. Store new value of P3.

Shifting the partial product involves four separate operations:

1. Shift P3 right.
2. Shift P2 right, with Carry from P3.

Example 5-6: A 16-Bit by 16-Bit Multiplication Subroutine (With 32-Bit Result)

;THIS SUBROUTINE MULTIPLIES THE UNSIGNED CONTENTS OF LOCATIONS
;$22 (LOW) AND $23 (HIGH) BY THE UNSIGNED CONTENTS OF LOCATIONS
;$20 (LOW) AND $21 (HIGH), PRODUCING A 32-BIT UNSIGNED PRODUCT
;IN LOCATIONS $24 (LOW) THROUGH $27 (HIGH).

MLT16 LDA #OO ;CLEAR P2 AND P3 OF PRODUCT
STA $26
STA $27
LDX #16 ;MULTIPLIER BIT COUNT = 16

NXTBT LSR $21 ;SHIFT TWO-BYTE MULTIPLIER RIGHT
ROR $20
BCC ALIGN ;MULTIPLIER = l?
LDA $26 ;YES. FETCH P2
CLC ; AND ADD MO TO IT
ADC $22
STA $26 ;STORE NEW P2
LDA $27 ;FETCH P3
ADC $23 ; AND ADD Ml TO IT

ALIGN LSR A ;SHIFT FOUR-BYTE PRODUCT RIGHT
STA $27 ;STORE NEW P3
ROR $26
ROR $25
ROR $24
DEX ;DECREMENT BIT COUNT
BNE NXTBT ;LOOP UNTIL 16 BITS ARE DONE
RTS

MATHEMATICAL ROUTINES 125

3. Shift Pl right, with Carry from P2.
4. Shift PO right, with Carry from Pl.

Since the multiplier contains 16 bits, the add-and-shift loop will
be performed 16 times.

Example 5-6 is a subroutine (MLT16) that uses the flowcharted
algorithm in Fig. 5-2 to perform a double-precision (16-bit) multi
plication. The multiplier is in locations $20 and $21, the multipli
cand is in locations $22 and $23, and the 32-bit product is returned
in locations $24 (LSBY) through $27 (MSBY). As mentioned ear
lier, the subroutine performs two add operations in order to add
the 16-bit multiplicand to the two high-order bytes of the product.
It also performs four shift operations (one shift for each byte in
the product), and passes data between bytes by means of the Carry.

INTEGER DIVISION

Integer division involves calculating the number of times that
one integer number (the divisor) can be subtracted from another
integer number (the dividend). The resulting number of subtrac
tions is called the quotient, and the "leftover" amount is called
the remainder. For example, the pencil-and-paper division of the
number 1265 by the number 13 would look like the following:

0097
131126.5

-0

12
- 0

126
-117

95
-91

4

The division consists of a series of trial subtractions, beginning
with the leftmost (most significant) digit of the dividend. The
steps are:

I. How many times can 13 be subtracted from l? The answer is
zero, so a 0 is entered in the quotient and the next digit, a 2,
is brought down to form 12.

2. How many times can 13 be subtracted from 12? Again the
answer is zero, so another 0 is entered in the quotient and
the next digit, a 6, is brought down to form 126.

126 6502 SOFTWARE DESIGN

3. How many times can 13 be subtracted from 126? The answer
is nine, so a 9 is entered in the quotient and 117 (9 times 13)
is subtracted from 126.

4. The subtraction leaves a remainder of 9, so the final digit of
the dividend, a 5, is brought down to form 95.

5. How many times can 13 be subtracted from 95? The answer
is seven, so a 7 is entered in the quotient and 91 (7 times 13)
is subtracted from 95.

6. All of the digits of the dividend have been tested, so the
division is complete. The quotient is 97 (the leading zeroes
are ignored) and the remainder is 4.

The dividing of binary numbers is similar to the dividing of deci
mal numbers, but it is much easier. With binary numbers, you
never have to worry about multiples in the trial subtractions; if
the divisor is less than or equal to the dividend, the appropriate
quotient bit will be a 1, otherwise it will be a 0. The binary equi
valent of the 1265--;-- 13 problem is shown in Example 5-7. As with
decimal division, a new quotient digit (1 or 0 for the binary ver
sion) is always entered to the right of the previously entered quo
tient digits. In a computer program, this is accomplished by slhift-

Example 5-7: Binary Division

000011 0000 1

1101 110011110001
-0

10
- 0

100
- 0

1001
0

10011
- 1101

1101
-1101

01
- 0

010
- 0

0100
0

01000
0

010001
- 1101

100

MATHEMATICAL ROUTINES 127

ing the old partial quotient to the left and entering a new quotient
digit into the vacated least-significant bit position.

The computer implementation requires the dividend to be left
shifted, too, to form a partial dividend to which the divisor is com
pared (and, if possible, subtracted). The fundamental operations
for dividing binary numbers by a computer are:

1. Shift the quotient left (initially zero) to provide a (least-sig
nificant) bit position for the next quotient digit.

2. Shift the dividend left, so that another bit from the partial
dividend is tested.

3. Compare the divisor to the partial dividend.
4. If the divisor is less than or equal to the partial dividend,

subtract the divisor from the partial dividend and enter a 1
in the quotient.

5. If any digits remain in the dividend, return to Step 1.

Dividing Unsigned Numbers

The flowchart shown in Fig. 5-3 applies these rules in dividing an
8-bit unsigned dividend in memory by an 8-bit unsigned divisor
in memory. The 8-bit quotient and the 8-bit remainder are then

Example 5-8: An 8-Bit by 8-Bit Unsigned Division Subroutine

;THIS SUBROUTINE DIVIDES AN 8-BIT UNSIGNED DIVIDEND IN LOCATION
;$21 BY AN 8-BIT UNSIGNED DIVISOR IN LOCATION $20. THE 8-BIT
;QUOTIENT IS RETURNED IN LOCATION $21, REPLACING THE DIVIDEND,
;AND THE 8-BIT REMAINDER IS RETURNED IN LOCATION $22.

DIVSU LDA #OO ;CLEAR PARTIAL DIVIDEND
LDX #OS ;DIVIDEND BIT COUNT = 8

NXTBT ASL $21 ;SHIFT DIVIDEND/QUOTIENT LEFT
ROL A ; INTO PARTIAL DIVIDEND
CMP $20 ;COMPARE DIVISOR TO PARTIAL DIVIDEND
BCC CNTDN ;DIVISOR > PARTIAL DIVIDEND?
SBC $20 ;NO. SUBTRACT DIVISOR
INC $21 ; AND SET BIT IN QUOTIENT

CNTDN DEX ;DECREMENT BIT COUNT
BNE NXTBT ;LOOP UNTIL 8 BITS ARE DONE
STA $22 ;STORE REMAINDER
RTS

stored in two consecutive memory locations. Note that no action
is required to enter a 0 into the quotient (required if the divisor
is greater than the dividend); left-shifting the quotient at the be
ginning of the algorithm automatically does this for you!

Example 5-8 illustrates a subroutine (DIV8U) that uses the
flowcharted algorithm of Fig. 5-3 to divide the contents of loca
tion $21 by the contents of location $20. It then returns the product

128

START

PARTIAL DIVIDEND = 0
COUNT = 8

PARTIAL DIVIDEND =
PARTIAL DIVIDEND -

DIVISOR - CARRY

NO

END

6502 SOFTWARE DESIGN

YES

Fig. 5-3. An 8-bit binary division flowchart.

and remainder to locations $21 and $22, respectively. The X register
is used to maintain the dividend bit count.

The ASL $21 and ROL A instructions cause location $21 and
the accumulator to function as a 16-bit shift register, as illustrated
in Fig. 5-4. Location $21 is used to store both the dividend and

MATHEMATICAL ROUTINES 129

ACCUMULATOR CA.RRY $20

PARTIAL DIVIDEND DIVIDEND/QUOTIENT 0

!THIS CARRY IS IGNORED;

Fig. 5-4. Using the accumulator and location $20 as a 16-bit shift register.

the quotient, with quotient bits replacing dividend bits that have
been vacated during shifting. The accumulator is used to store the
partial dividend.

The C~IP $20 instrnction compares the divisor in loc:atiou $20
to the partial dividend in the accumulator. If the divisor is larger
than the partial dividend, the Carry is cleared to 0 and BCC
C:\"TDN causes a branch past the SBC $20 instruction. Othenvise,
the Carry is set to a l and the BCC CNTDN instruction test fails,
continuing execution at SBC $20. At SBC $20, the divisor is sub
tracted from the partial dividend and a l is entered into the quo
tient (INC $21). After the NXTBT loop is executed eight times
(once for each bit in the dividend), STA $22 stores the remainder
in location $22.

Dividing Signed Numbers

Tiecall that in signed multiplication, the multiplier must always
be positi\·e. ln signed division, both operands, the divisor and the
air.;idend, must be positir.;e. Th(' easiest way to do this in software
is to convert both the divisor and dividend to positive numbers.
perform the division operation, and then com·e1t the quotient and
the remainder to the proper sign. If the operands are of the same
sign (both positive or both negc1tive). the quotient wili be positin';
otherwise, it will be negative. The remainder \vill always have the
same sign as the dividend. The four possible sign combinations
of quotient and remainder. after a division has been performed, are
given in the following list.

Dividend Divisor Quotient Remainder

+ + + -,--

+ -1

+
+

Example 5-9 sho\vs a subroutine (DIV8S) that performs an
8-bit signed division, using the divisor in $20 and the dividend in
821. This subroutine is comprised of three sections. The first section
(DI\'8S through GOD IV) checks the sign of the divisor and div
idend. If either opPrand is negative, the operand is subtracted
from zero, which makes it positive. Further, since the original

130 6502 SOFTWARE DESIGN

Example 5-9: An 8-Bit by 8-Sit Signed Division Subroutine

;THIS SUBROUTINE DIVIDES AN B-BIT SIGNED DIVIDEND IN LOCATION $21

;BY AN B-BIT SIGNED DIVISOR IN LOCATION $20. THE B-BJT QUOTIENT IS
;RETURNED IN LOCATION $21, REPLACING THE DIVIDEND, AND THE B-BJT
;REMAINDER JS RETURNED JN LOCATION $22. LOCATION $23 IS USED TO HOLD

;A DIVISOR/DIVIDEND SIGN FLAG.

DIVBS LOY #OO ;SIGN FLAGS = 0
BIT $20 ;DIVISOR POSITIVE?
BPL CHKDD
TYA ;NO. CLEAR ACCUMULATOR
SEC ; AND NEGATE DIVISOR
SBC $20
STA $20
LOY #BO ;SIGN FLAG BIT 7 =

;IF DIVIDEND IS NEGATIVE, MAKE IT POSITIVE
CHKDD BIT $21 ;DIVIDEND POSITIVE?

BPL GODIV

LOA #OO
SEC

SBC $21

STA $21
TYA

ORA #40
TAY

;THE DIVISION
GODIV STY

LDA
LOX

NXTBT ASL
ROL
CMP
BCC
SBC
INC

CNTDN DEX

ROUTINE
$23

#OO
#OB
$21
A
$20
CNTDN
$20
$21

BNE NXTBT
STA $22

;NO. CLEAR ACCUMULATOR
; AND NEGATE DIVIDEND

;SIGN FLAG BIT 6

FOLLOWS
;STORE SIGN FLAGS

;DIVISION COMPLETE. PUT QUOTIENT AND REMAINDER IN PROPER FORM

LOA #$CO ;TEST SIGN FLAGS
BIT $23 ;QUOTIENT AND REMAINDER IN PROPER FORM?
BEQ NOMOR ;YES. RETURN
BVS NEGR ;NO. NEGATE REMAINDER

NEGQ LOA #OO ;NO. NEGATE QUOTIENT
SEC
SBC $21
STA $21
RTS

NEGR LDA #OO ;NEGATE REMA! NDER

SEC

SBC $22
STA $22
BIT $23 ;DOES QUOTIENT NEED NEGATING TOO?

BPL NEGQ ;YES. GO NEGATE QUOTIENT
NOMOR RTS ;NO. RETURN

MATHEMATICAL ROUTINES 131

signs of the operands detcrmi1w the signs of the quotient and re
mainder, these signs are recorded in the Y register. The original
sign of the divisor is recorded in Bit 7, and the original sign of the
dividend is recorded in Bit 6. These particular bits were selected
hcca11Se they are readily testable by a BIT instruction (following
division).

The second section of the subroutine (GOD IV through the
";DIVISION C0\1PLETE" comment) is nothing more than the
DI\'SU subroutine. It is preceded by an instruction that stores the
Y register sign flags in memory (STY $2:3). If DIV8U is already
in memory, this entire sequence of instrndions can be replaced
hy just two instructions-STY $2.3 ancl JSH DIV8U.

The final section of the DI\'8S subroutine uses the BIT $2.3 in
struction to determine the state of the original signs of the divisor
and dividend. It then alters the quotient and remainder. if required
to put them in proper form.

Multiple-Precision Division

The '"shift and subtract" method described for single-precision
division can he modified for multiple-precision division. The hm
darnental operations of the division algorithm-shift, compare, and
subtract-are unchanged with mnltiple-precision division, hut some
instructions must he added so that the multiple bytes of the divisor
and quotient arc accessed properly.

The DIVl6 subroutine in Example .5-10 operates with a 16-bit
unsigned divisor and dividend, each occupying two consecutive
memory locations (with the LSRYs stored in low-address memory).
As with the single-byte unsigned division subroutine (Example
5-8), the dividend will be replaced by the quotient as it is shifted
to the left.

After clearing the 16-bit partial dividend and loading the divi
dend bit count into the X register, the subroutine performs a four
byte left shift on the dividend and the partial dividend. You will
recall that in the single-precision DIV8 routine, the left shift was
followed by a comparison of the divisor to the partial dividend.
Because the CMP instruction can compare only single bytes, we
must use a different technique to compare a multibyte divisor to a
multibytc dividend, The approach used in the DIV16 subroutine is
to actually perform a 16-bit subtraction, but enter the result into
memory only if the divisor is less than or equal to the partial div
idend.

The low-order bytes are subtracted first, with the sequence LDA
$24, SEC and SBC $20. The result is saved in the Y register (by
TAY). The high-order bytes are then subtracted, with LDA $2.5
and SBC $21. If the subtraction of the \1SBYs generates a borrow

132 6502 SOFTWARE DESIGN

Example 5-10: A 16-Bit by 16-Bit Unsigned Division Subroutine

;THIS SUBROUTINE DIVIDES A 16-BIT UNSIGNED DIVIDEND IN LOCATIONS
;$22 AND $23 BY A 16-BIT UNSIGNED DIVISOR IN LOCATIONS $20 AND
;$21. THE 16-BIT QUOTIENT REPLACES THE DIVIDEND. THE 16-BIT
;REMAINDER IS RETURNED IN LOCATIONS $24 AND $25. THE LOW-ORDER
;BYTE OCCUPIES THE LOW ADDRESS IN ALL CASES.

DIV16 LOA #OO ;CLEAR PARTIAL DIVIDEND
STA $24
STA $25
LOX #16 ;DIVIDEND BIT COUNT = 16

NXTBT ASL $22 ;SHIFT DIVIDEND/QUOTIENT LEFT
ROL $23
ROL $24 ;SHIFT PARTIAL DIVIDEND LEFT
ROL $25
LOA $24 ;SUBTRACT LOW BYTES
SEC
SBC $20
TAY ;SAVE LOW RESULT IN Y
LOA $25 ;SUBTRACT HIGH BYTES
SBC $21
BCC CNTDN ;DIVISOR > DIVIDEND?
INC $22 ;NO. SET BIT IN QUOTIENT
STA $25 ; AND ENTER SUBTRACTION RESULT
STA $24 ; INTO PARTIAL DIVIDEND

CNTDN DEX ;DECREMENT BIT COUNT
BNE NXTBT ;LOOP UNTIL 16 BITS ARE DONE
RTS

(Carry= 0), then BCC CNTDN causes a branch to DEX, and
BNE NXTBT loops back to test the next bit. In the absence of a
borrow (Carry = 1), BCC CNTDN fails, setting the quotient bit
(INC $22) and entering the 16-bit result of the subtraction into
the partial dividend (ST A $25 and ST A $24).

Although DIV16 is designed for 16-bit division, larger numbers
can be divided in a similar fashion, but the low-order results of
their subtraction will have to be saved either on the stack or in
separate memory locations. Which is more efficient? Let us in
vestigate the alternatives.

Using memory for temporary storage will require one STA in
struction to store a byte (2 instruction bytes, 3 cycles) and, if the
byte must be entered into the partial dividend, an LDA instruc
tion to fetch the byte (2 bytes, 3 cycles). Also, another ST A in
struction is needed to store it into the partial dividend (2 bytes,
3 cycles). Therefore, using memory for temporary storage will
take up to 6 instruction bytes and 9 execution cycles.

Using the stack for temporary storage will require one PHA in
struction to push the byte onto the stack (1 byte, 3 cycles) and,
if the byte must be entered into the partial dividend, a PLA in
struction to pull it from the stack (1 byte, 4 cycles). Then, an ST A

MATHEMATICAL ROUTINES 133

instruction (2 bytes, 3 cycles) is needed to store it into the partial
dividend. Therefore, using the stack for temporary storage will
take up to 4 instruction bytes and 10 execution cycles.

With both approaches (memory and stack), if the subtraction
result is not entered into the partial dividend (i.e., if BCC CNTDN
succeeds, causing a branch to CNTDN), the subtraction result
can be ignored-it can either be left on the stack or stored in mem
ory. Leaving this result in memory is normally no problem, but
leaving it on the stack will cause the subroutine to return to an
improper location. However, you can remedy this by saving the
initial Stack Pointer value of the calling program in memory (with
a TSX and STX combination) at the beginning of the subroutine,
and then restoring the Stack Pointer (with LDX and TXS) before
executing the return.

BCD MATHEMATICS

Until now, we have been performing mathematical operations on
binary numbers. Although a substantial amount of programming is
done with binary numbers (usually in their hexadecimal form),
there are certain situations when it is advantageous to use decimal
numbers.

If numbers are entered into the 6502 microprocessor using a
terminal or teletypewriter (or the AIM 65 keyboard), the micro
processor will receive an ASCII code for each key that is pressed.
Since the 6502 is not designed to add, subtract, multiply, or divide
ASCII coded data directly, the ASCII data must be converted into
either binary or binary-coded decimal (BCD) form, which can be
processed by the 6502 microprocessor. Chapter 6 will discuss how to
convert ASCII decimal digits to their BCD equivalents but, for now,
assume that the conversion has been made and that the data is
stored in memory in BCD form.

Because we have been raised in a decimal world, the minor in
convenience of dealing with binary bit patterns can be softened
considerably if they are converted to a nice, easy-to-understand
decimal number. If you have worked with hexadecimal numbers
in your programming up to this point, you have probably cursed
the fact that a binary pattern like llOI does not convert to any
thing rational like a 6 or a 9, but instead converts to a D. Then,
you had to mentally calculate, "What is a D in the real world?
Well, if A is a 10, then B is an ll, C is a 12, and D must be a 13."
By using BCD numbers in our calculations, this type of conversion
does not have to be performed.

The designers of the 6502 recognized a need for dealing with
BCD numbers, and they answered this need with two special in-

134 6502 SOFTWARE DESIGN

strnctions that were designed exclusively for BCD arithmetic. These
instructions, Set Decimal \fode (SED) and Clear Decimal Mode
(CLD), cause the Arithmetic Logic Unit of the 6502 to operate
as a decimal adder when BCD data is being processed. In a deci
mal adder, the contents of a half-byte (a nibble) will not exceed
binarv 1001. Therefore. if the nibble contains binarv 1001 and is
incre~ented, its new value will be binary 0000 (with ~ Carry to the
next nibble) and not binary 1010.

As was discussed in Chapter 2, the Set Decimal Mode (SED)
instruction causes the 6502 microprocessor to interpret the operands
of all subsequent Add with Carry (ADC) and Subtract with Carry
(SBC) instructions as BCD operands. The Clear Decimal Mode
(CLD) instruction causes the ALU to revert to functioning as a
straight binary adder. Therefore, the addition and subtraction
subroutines given in Examples .5-1 and 5-2 can be used to operate
on BCD numbers by simply preceding the arithmetic operation
with an SED instruction and follmving it with a CLD instruc
tion. Example 5-11 is the BCD equivalent of our previous multi
precision integer addition routine (Example 5-1). Note that the
SED and CLD instructions are inserted outside of the NXTBY
addition loop.

Example 5-11 can be converted into a multiple-precision sub
traction subroutine by simply replacing the CLC with an SEC
and the ADC $51,X with an SBC $51X. BCD nnmbers can be
multiplied and divided too, but because bits rather than bytes
are being processed in these operations, BCD representation makes
them very complicated. For multiplication and division, it is much
easier to convert the operands to binary (see Chapter 6) before
performing either of these operations.

Example 5-11: A Multiple-Precision BCD Addition Subroutine

;THIS SUBROUTINE ADDS TWO MULTIPLE-BYTE BCD NUMBERS, ONE STARTING
;IN LOCATION $21, THE OTHER STARTING IN LOCATION $51. THE RESULT
;REPLACES THE NUMBER THAT STARTS IN LOCATION $21. THE BYTE
;COUNT IS CONTAINED IN LOCATION $20.

MPAB SED ;SET DECIMAL MODE
LDY $20 ;FETCH BYTE COUNT
LDX #oo ;AT START, INDEX 0
CLC ; AND CARRY = 0

NXTBY LDA $21,X ;ADD 8 BITS
ADC $51,X
STA $21,X ;STORE 8 BITS
INX ;INCREMENT INDEX AND COUNT
DEY
BNE NXTBY ;LOOP UNTIL ALL BYTES DONE
CLD ;CLEAR DECIMAL MODE
RTS

MATHEMATICAL ROUTINES 135

FLOATING-POINT MATHEMATICS

The integer and BCD routines covered earlier in this chapter are
fine for simple everyday arithmetic, but how would you use them
to operate on a very large number such as 16,000,000,000,000, or on
a very small number (a fraction) such as 0.00000000000367 4? With
enough memory, numbers like these could be stored and processed
by the methods that we have already discussed. However, our
"large" number is 14 digits long, which (at two BCD digits per
memory location) would require seven memory locations for stor
age. The situation is just as gloomy for our "small" fraction.

Of course, nobody goes to the extremes of writing out a 16 and
12 zeroes to represent 16 trillion, much less trying to store it in
memory that way. Rather, a shorthand notation is usually used in
which very large (or very small) numbers are written as a frac
tional number multiplied by some power of 10. Realizing that
101 = 10, 102 = 100, 103 = 1000, and so on, we can quickly observe
that each positive exponent of 10 has a direct correlation to the
number of digits to the left of the decimal point in a number.
Similarly, each negative exponent of 10 (10- 1, l0- 2 , and so on)
has a direct correlation to the number of digits to the right of the
decimal point. Thus, by using this short form of notation, our
"large" number can be written in any of several equivalent forms:

16.000 x 1012 1.6000 x 1013 0.16000 x 1014

Similarly, our fractional number can also be written in a number
of equivalent forms:

36.74 x 10-13 3.674 x 10- 12 0.3674 x 10-11

The numbers shown in the center and on the right in the preced
ing examples represent two common notational forms. The center
number is given in a format that is commonly called "scientific no
tation." In scientific notation, numbers are written with one signifi
cant (nonzero) digit to the left of the decimal point. The number
shown on the right is written in "floating-point notation." In float
ing-point notation, all digits are written to the right of the decimal
point; thus, the numbers are written as fractional numbers.

When calculating by hand, most people use a form of scientific
notation, probably because we feel a bit uncomfortable about
working with fractions. However, floating-point notation is much
better suited for use with computer software. Why? Because a
fractional number can be processed with the same arithmetic in
structions that are used to process integer numbers; to the arith
metic logic of a computer, there is no difference between the inte
ger 1234 and the fractional number 0.1234.

---------------------·--····-··-·-·······-·

136 6502 SOFTWARE DESIGN

However, before discussing floating-point programming, let us
look closely at how floating-point numbers are operated on using
a pencil and paper. To start, consider the following addition:

0.10376 x IOH = 103,76010
+0.84860 x 101 = 8,48610

The addition cannot yet be performed because the exponents are
different; one number is multiplied by 10';, the other is multiplied
by 104 . To make the exponents agree. and still keep both numbers
fractional, the exponent of the smaller number is incremented by
one and the number is shifted to the right until the exponents are
the same. Thus, the smaller number in our example will require two
such increment-and-shift operations. Therefore:

0.84860 x 104 = 0.084B60 x 10" = 0.0084860 x 10"

After doing the above increment-and-shift operations, the addition
becomes:

0.103760 x 108

+0.003486 x ion
0.112246 x 101:

The same tvpe of exponent adjustment must be made if floating
point numbers are to he subtracted. In summary, we can state
this rule: Before adding or subtracting fl.oating-point numbers, the
exponents must be identical. (To make them identical, shift the
number with the smaller e'\ponent to the right, incrementing the
exponent with each ~hift, until the exponents agree.) \\'hile \Ve
are on the subject of rules. here is one more: If an addition pro
duces a Carry. shift the sum right one position and increment
the exponent. The Carry here represents an overflow out of the
fractional number position, and the shift and increment pull it
back to the right of the decimal point.

:\1ultiplying and dividing Boating-point numbers is simpler in
at least one respect-there is no need to align the exponents. To
multipl1J fl.oating-point numbers, simply multiply the fractions and
add the exponents. The following is an example:

(0.5011 x 1012) x 0.3764 x 108)

= (0.5011 x 0.3764) x (1012+s)
= 0.18816404 x 10~"

To divide floating-point numbers. divide the dividend by the divisor
and subtract the exponent of the dicisor from the exponent of the
dicidend. The following is an example:

MATHEMATICAL ROUTINES

(0.1936 x 106) -7- (0.1017 x 104)

= (0.1936 + 0.1017) x (106-4)
= 1.9036381 x 102

= 0.19036381 x lffl

137

Most floating-point routines also normalize the result (and us
ually the operands). Normalizing merely means adjusting the
fractional number so that the high-order digit has a nonzero value.
For example,

0.00635.5 x IQ-l:i

would be normalized to

0.63.5.5 X I0- 15

As you can see, to normalize a floating-point number, shift the
fractional number left, and decrement the exponent by one for
each position shifted.

That is enough of the basic principles. Let us see how you would
store floating-point numbers in memory. For each floating-point
number, four separate items of information must be stored-the
sign of the fractional number, the value of the fractional number, the
sign of the exponent, and the value of the exponent. You are free
to use any configuration that feels comfortable to you. The follow
ing are two variation:

S,.SrEEE .FFFF
EE S,.Sr.FFF

FFFF
FFFF

(First variation)
(Second variation)

In both cases, S,. and Sr represent the 1-bit signs of the exponent
and the fractional number, respectively. A 'T' in the sign bit indi
cates a negative exponent or fractional number, a "O" in the sign
bit represents a positive exponent or fractional number. Further,
each "E" represents one digit in the exponent and each "F" repre
sents one digit in the fractional number.

You will recall, from the BCD portion of this chapter, that BCD
digits can be stored in a "packed" form, two digits per memory
byte. Therefore, the upper example (First variation) will occupy
six bytes-four for the fractional number and two for the exponent.
The two sign bits (S" and Sr) are stored in Bits 7 and 6 of the
location that contains the high-order exponent digit (Bit positions
5 and 4 are used). The lower example (Second variation) will oc
cupy five bytes-four for the fractional number and one for the
exponent-with the sign bits residing in Bits 7 and 6 of the loca
tion containing the high-order fractional number digit. Which is
better? There is no "correct" answer; it will vary with the require
ments of each particular application.

--------------·----·-----

138 6502 SOFTWARE DESIGN

SQUARE ROOT

An interesting observation made a few years ago provides us
with a simple way of calculating square roots. The observation is
this: The square root of an integer is equal to the number of suc
cessively higher odd numbers that can be subtracted from it. Ex
ample 5-12 shows how the square root of 25 can be extracted

Example 5· 12: Obtaining a Square Root by Using Odd-Number Subtractions

25
- l Partial square root

24
- 3 Partial square root 2

21
- 5 Partial square root 3

16
- 7 Partial square root 4 -

9
- 9 Square root 5

0

using this method. (Sceptics will want to try a few additional cases
of their own.) In this example, a total of five odd numbers-I, 3,
5, 7, and 9-can be subtracted from 25, yielding a square root of 5.

Subroutine SQRT8 (Example 5-13) employs this algorithm to
take the square root of the unsigned integer in location $20. Since
the square root accumulates at a rate of one count per pass through
the AGAIN loop, this subroutine is not particularly fast, but it
occupies only 27 bytes in memory.

Example 5· 13: A Simple 8-Bit Square Root Subroutine

;THIS SUBROUTINE TAKES THE SQUARE ROOT OF THE UNSIGNED INTEGER
;IN LOCATION $20. THE SQUARE ROOT IS RETURNED IN LOCATION $20,
;THE REMAINDER IN LOCATION $21.

SQRTB LOY #OO ;SQUARE ROOT = 0
LDA #Ol ;FIRST ODD NUMBER =
STA $21
LDA $20 ;FETCH INTEGER NUMBER

AGAIN CMP $21 ;CAN A SUBTRACTION BE MADE?
BCC NOMORE
SBC $21 ;YES. MAKE THE SUBTRACTION
INY ;INCREMENT SQUARE ROOT
INC $21 ; AND GO TRY NEXT ODD NUMBER
INC $21
JMP AGAIN

NOMORE STY $20 ;ALL DONE, STORE SQUARE ROOT
STA $21 ; AND REMAINDER
RTS

MATHEMATICAL ROUTINES 139

Example 5-14: A Simple 16-Bit Square Root Subroutine

;THIS SUBROUTINE TAKES THE SQUARE ROOT OF A DOUBLE-PRECISION
;INTEGER IN LOCATIONS $20 (LOW) AND $21 (HIGH). THE 8-BIT

;SQUARE ROOT IS RETURNED IN LOCATION $20, THE REMAINDER IN
;LOCATION $21.

SQRT16 LDY #OI ;LSBY OF FIRST ODD NUMBER
STY $22
DEY

STY $23 ;MSBY OF FIRST ODD NUMBER

; (AND SQUARE ROOT) = 0
AGAIN SEC

LDA $20 ;SAVE REMAINDER IN X REGISTER
TAX ;SUBTRACT ODD LO FROM INTEGER LO
SBC $22
STA $20
LDA $21 ;SUBTRACT ODD HI FROM INTEGER HI
SBC $23
STA $21 ;IS SUBTRACT RESULT NEGATIVE?
BCC NOMORE ;NO. INCREMENT SQUARE ROOT
INY

LDA $22 ;CALCULATE NEXT ODD NUMBER
ADC #Ol
STA $22
BCC AGAIN
INC $23
JMP AGAIN

NOMORE STY $20 ;ALL DONE, STORE SQUARE ROOT
STX $21 ; AND REMAINDER

RTS

Subroutine SQRT16 (Example .S-14) is a double-precision ver
sion of SQRT8. It uses locations $20 and $21 to hold the 16-bit
integer and locations $22 and $23 to hold the odd numbers as they
are accumulated. Because a two-byte number is involved, a true
subtraction, rather than a compare, must be performed. Since the
final subtraction will destroy the remainder, the remainder (in the
low-order integer location) is saved in the X register prior to the
byte subtract operation.

The calculation of a new odd number involves the use of a little
programming trick After fetching the low-order byte of the odd
number (LDA $22), it seems to be increasing by one (ADC #01),
rather than by two. It is, however, actually increased by two, since
the branch BCC NOMORE drops through to INY only if the Carry
flag is set-so ADC #01 is adding a 'T' immediate and a Carry= l.
This trick saves clearing the Carry before the ADC instruction.

6

Number-Base Conversion

In all computer systems, there must be a way of communicating
digital information between the processor and the external devices.
That is, there must be a way to input data from a teletypewriter,
a card reader, a digital cassette, a floppy disk, or a keyboard or
numeric keypad. There must also be a way to output data to a
printer, a display, a card punch, a digital cassette, a floppy disk,
or a teletypewriter.

The data must, of course, be in a form that is recognizable to
the recipient (either the peripheral device or the 6502 microproc
essor). Depending on its design, a preipheral device can operate
on data in one of any number of forms, including ASCII (~merican
~tandard Qode for Information !nterchange), EBCDIC (gxtended
.§inary-Qoded !,?ecimal Interchange Qode), binary, or Gray Code.
The 6502 microprocessor operates on numeric data in either of two
forms, binary or BCD (Binary-Coded Decimal), depending on the
state of the Decimal Mode bit (D) in the processor status register.

Although many computer systems convert data with special
electronic circuits, most smaller systems use subroutines to perform
this conversion. This chapter presents a number of typical number
base conversion subroutines. The discussion will be limited to
ASCII, the most commonly used data type for peripheral devices,
and to BCD and binary numbers, but the principles learned here
can be used to develop conversion subroutines for other data forms
and number bases. Furthermore, we will assume all of our character
coded data to be 7-bit ASCII, with the most significant bit zero
(see Appendix A).

TWO SIMPLE 1/0 DEVICES

Up to this point in the book, there has not been any detailed
discussion on how data are input or output by the microprocessor,

140

NUMBER-BASE CONVERSION 141

nor has there been any discussion about how a peripheral device
can be interfaced (electrically connected) to the 6502 microproc
essor. Neither topic will be given an extensive treatment in this
chapter either, but it is necessary to introduce a small amount of
input/ output programming here in order to put the conversion
subroutines into perspective. After all, data are not entered into the
6502 out of "thin air;" they come from real devices that communi
cate with the 6502 microprocessor in a definite fashion.

A Simple Input Device (Keyboard)

A keyboard has been selected to represent a typical input device.
Let us assume that this keyboard communicates with the 6502
microprocessor through two addresses, $A275 and $A276. When the
6502 places either of these addresses on the address bus while a
read (i.e., load) operation is being performed, the keyboard inter
face hardware places information on the data bus of the microcom
puter. This information is usually read into the accumulator. As
far as the 6502 microprocessor knows, it is reading information
from memory; however, we know that the information is being
read from an I/0 (peripheral) device-the keyboard. Therefore,
we have just described memory-mapped I I 0. Of course, we can also
"write information out" to a peripheral by placing an address on
the address bus and data on the data bus while performing a
memory write (i.e., store) operation.

However, to return to our keyboard example, address $A275
represents an 8-bit keyboard status register in which only the most
significant bit (Bit 7) is used. Bit 7 represents a status indicator
that is set to logic 1 when a key (any key) is pressed. When a key
is pressed, a hardware device in the interface identifies the key
and loads its ASCII value into a second 8-bit register, which has
been assigned the address $A276.

Example 6-1 shows a subroutine (KEYIN) that inputs ASCII
characters from the keyboard into the accumulator. This subroutine
simply waits for a key to be pressed (waits for Bit 7 of $A275 to
become logic 1), and then loads the ASCII character into the ac-

Example 6-1: A Simple Keyboard Input Subroutine

;THIS SUBROUTINE INPUTS AN ASCII CODE FROM LOCATION $A276 TO
;THE ACCUMULATOR. LOCATION $A275 CONTAINS A "KEY PRESSED"
;STATUS FLAG IN BIT 7.

KEVIN BIT $A275 ;KEY PRESSED?
BPL KEVIN ;NO. WAIT UNTIL IT IS.
LOA $A276 ;YES. FETCH ASCII CODE
LSR $A275 ; AND CLEAR STATUS FLAG
RTS

142 6502 SOFTWARE DESIGN

cumulator. It then clears the status flag and returns. An AIM 65
owner who wishes to convert ASCII characters from the keyboard
of the microcomputer can use the READ or REDOUT subroutine
of the AIM 65 Monitor in place of the KEYIN used for each of
the examples in this chapter. The READ subroutine (entry address
$E9.3C) just inputs the keyboard character into the accumulator.
The REDO UT subroutine (entry address $E973) not only loads
the character into the accumulator, but it also displays and prints it.

A Simple Output Device (Printer)

A printer has been selected to represent a typical output device.
Assume that the 6502 microcomputer communicates with the
printer through two addresses, $A277 and $A278. Address $A277
represents the 8-bit printer status register, in which only the most
significant bit (Bit 7) is used. Bit 7 holds a status indicator that
is set to logic 1 when the printer is ready to receive an ASCII
character for printing. When Bit 7 is a logic 1, the ASCII character
must be stored into location $A278.

Example 6-2 shows a subroutine (PTROUT) that outputs the
contents of the accumulator to the printer. This subroutine waits
for the printer to signal that it is ready to accept an ASCII char
acter (Bit 7 of $A277 is a logic 1), stores the character into loca
tion $A278, and returns. The OUTPUT subroutine (entry address
$E97 A) in the Al:\1 65 ~Ionitor outputs the accumulator contents
to both the display and the printer.

Example 6-2: A Simple Printer Output Subroutine

;THIS SUBROUTINE OUTPUTS AN ASCII CODE FROM THE ACCUMULATOR TO
;LOCATION $A278. LOCATION $A277 CONTAINS A "PRINTER READY"
;STATUS FLAG IN BIT 7.

PTROUT BIT

BPL
STA
LSR

RTS

$A277 ;PRINTER READY?
PT ROUT ;NO. WAIT UNTIL IT IS

$A278 ;YES. OUTPUT ASCII CODE

$A277 ; AND CLEAR STATUS FLAG

TWO-DIGIT ASCII-BASED
HEXADECIMAL-TO-BINARY CONVERSION

A substantial amount of 6.502 microprocessor programming is
done using hexadecimal data. If this data is entered from a key
board, it might be input in ASCII form. Since the 6502 microproc
essor operates on binary data, some way is needed to convert ASCII
based hexadecimal characters to 8-bit binary values. Table 6-1
shows the binary and ASCII form for each of the 16 hexadecimal
characters.

NUMBER-BASE CONVERSION 143

Table 6-1. The Hexadecimal Numbering System

Hexadecimal Character Binary Value ASCII Value

0 0000 30
1 OJOl 31
2 0010 32
3 0011 33
4 0100 34
5 0101 35
6 0110 36
7 0111 37
8 1000 38
9 1001 39
A 1010 41
8 1011 42
c 1100 43
D 1101 44
E 1110 45
F 1111 46

This table shows us what conversion is needed, and gives us a
few ideas about how to do it. For starters, note that for the values
0 to 9, the low-order hex digit of the ASCII value is identical to
the hex character. Obviously, all we will have to do for this range
of values is to mask out the high-order hex digit of the ASCII
value, which is a 3. If we mask out the high-order hex digit, the 4,
of the ASCII value for the remaining values of A to F, the low
order digit is exactly nine less than the required hex value ($1 +
$9 = $A, $2 + $9 = $B, etc.) .

Subroutine AH2B in Example 6-3 converts two consecutive
ASCII-based hexadecimal characters that are entered on the key
board into an 8-bit binary number. Why two characters? Because
each hexadecimal character converts to a four bit binary value
(0000 through 1111) rather than converting one 4-bit binary value
in memory (and thus wasting four bits in every memory location),
we convert two ASCII characters and pack the two resulting 4-bit
values into a single memory location. One digit is stored in the
four most-significant bits, the other digit is stored in the four least
significant bits.

The AH2B subroutine begins by calling an input subroutine,
NEWHD, to get the most-significant digit. The NEWHD subrou
tine uses keyboard input subroutine KEYIN (Example 6-1) to
load the keyboard character into the accumulator. It then checks
to see whether this character represents one of the 16 valid hexa
decimal characters, 0 to 9, or A to F. The ASCII values for hexa
decimal characters range from $30 to $39 (0 to 9), and from $41
to $46 (A to F), as can be seen in Table 6-1. Therefore, NEWHD

144 6502 SOFTWARE DESIGN

Example 6-3: An ASCII-Based Hexadecimal-to-Binary Conversion Subroutine

;THIS SUBROUTINE CONVERTS A TWO-DIGIT STRING OF HEXADECIMAL ASCII

;CHARACTERS TO AN 8-BIT BINARY VALUE IN THE ACCUMULATOR. LOCATION

;$30 IS USED FOR TEMPORARY STORAGE.

AH2B JSR NEW HD ;INPUT MOST-SIGNIFICANT DIGIT

ASL A ;SHIFT IT INTO THE FOUR MSB'S

ASL A
ASL A
ASL A
STA $30 ;SAVE THIS DIGIT IN LOCATION $30

JSR NEW HD ;INPUT LEA$T-SIGNIFICA~lT DIGIT

ORA $30 ; ,;ND !NSERT MOST-SIGNIFICANT DIGIT

RTS

;THE SUBROUTINE BELOW INPUTS THE NEXT VALiD HEXADECIMAL DIGIT,

;AND RETURNS WITH THIS DIGIT IN THE FOUR LSB'S OF THE ACCUMULATOR.

NEW HD JSR KEYIN ;FETCH DIGIT
CMP #$30 ;CHARACTER LESS THAN $30?
BCC NEWHD
CMP #$47 ;NO. iS IT MORE THAN $46?
BCS NEWHD
CMP #$3A ;NO. IS IT BETWEEN 0 AND 9?
BCS A2F
AND #$OF ;YES. MASK OFF 1HE FOUR MSB'S
RTS

A2F CMP #$41 _,CHARACTER BETWEEN A AND F?
BCC NEW HD
S3C #$37 ;YES. SUBTRACT $37
RTS

determines whether the keyboard character falls \vithin one of
these two ranges (and is, therefore, a valid hex digit), or is not in
either range (and, thus, is not a hex digit). If the character is valid
and represents a hexadecimal digit between 0 and 9, the subroutine
masks off the four most-significant bits. leaving the hexadecimal
digit in the four least-significant bits. If the character is valid and
represents a hexadecimal digit between A and F, the subronbne
subtracts S.37 from the ASCII value. If the character is invalid,
it is ignored, and the subroutine branches to the JSR KEYil\ instruc
tion at l\'E\\'HD to fetch another keyboard entry. The branch-on
error operation is arbitrary; the subroutine could have been designed
to perform some other operation on an invalid entry, such as return
ing to the calling program with some type of error indication. like
setting the carry flag.

If the keyboard entry represents a valid hexadecimal character,
the value in the four LSBs of the accumulator is left-shifted
four times (ASL A) when the 6.502 microprocessor returns from
!\EWHD. This moves the digit into the most-significant digit posi-

NUMBER-BASE CONVERSION 145

tion, where it is stored in location $30. The NEWHD subroutine
is then called again, to input the least-significant hexadecimal digit.
All that remains is to combine these two digits. This is performed
by the instruction ORA $30. The 6502 microprocessor then returns
from the AH2B subroutine, with the 8-bit binary value in the
accumulator.

ASCII-Based Hexadecimal-to-Binary Conversion Using the AIM 65

AIM 65 owners have a hexadecimal-to-binary conversion sub
routine at their disposal, in the Monitor. This subroutine, PACK
(entry address $EA84), converts an ASCII character in the accu
mulator to a 4-bit binary value in the four LSBs, and resets the
four .MSBs to zero. If PACK is called a second time, this subrou
tine will move the first (most-significant) digit to the four :MSBs,
and will place the new (least-significant) digit in the four LSBs.
The PACK subroutine also checks each ASCII character to deter
mine whether or not it represents a hexadecimal digit, and sets the
Carry flag if a nonhexadecimal character is entered.

Example 6-4: The AIM 65 Version of the AH2B Subroutine

;THIS SUBROUTINE CONVERTS A TWO-DIGIT STRING OF HEXADECIMAL

;ASCII CHARACTER TO AN 8-BIT BINARY VAcUE IN THE ACCUMULATOR.

AH2B JSR DIGIT ;CONVERT DIGIT TO BINARY
DIGIT JSR REDO UT ;INPUT KEYBOARD CH.A.RACTER

JSR PACK ;CONVERT IT TO BINARY

BCS DIGIT ;LOOP IF DIGIT IS NOT HEX
RTS

Example 6-4 shows how the PACK subroutine can be used, with
the keyboard input subroutine REDOUT of the AU,1 65, to form
a 5-instruction equivalent of the 22-instruction AH2B subroutine
shown in Example 6-3. The subroutine in Example 6-4 executes the
final four instructions twice, once for each input character. The
instruction JSR DIGIT produces the first execution sequence. The
sequence is executed a second time because the JSR DIGIT in
struction caused the address at DIGIT to be placed on the stack,
so the HTS returns to the JSR REDOUT instruction. Of course,
upon completion of the second pass, RTS returns control to the
calling program.

AN 8-BIT BINARY-TO-ASCII-BASED HEXADECIMAL CONVERSION

Subroutine B2AH in Example 6-5 works the opposite of subrou
tine AH2B (Example 6-3) by converting the 8-bit binary contents
of the accumulator into two ASCII hexadecimal characters and then
outputting them, one by one, to the printer. Because the printer

146 6502 SOFTWARE DESIGN

prints left to right, the digit in the four most-significant bits must
be output first. Therefore, the subroutine begins by saving the
other digit on the stack. A four-bit right-shift (four LSR A instruc
tions) places the first digit in the four least-significant bit positions.

The actual conversion from binary to ASCII is performed by
the CB2AH subroutine. If the digit is between 0 and 9, the CB2AH
subroutine uses an ORA instruction to insert 3 as the most-signifi
cant digit. (See Table 6-1 for the binary/ ASCII relationships.) If
the digit is between A and F, the CB2AH subroutine adds $37
(ADC #$36 with Carry set) to the contents of the accumulator.

Upon return from CB2AH, the B2AH subroutine outputs the
ASCII character for the most-significant digit to the printer by call
ing the PR TOUT subroutine (Example 6-2). At this point, the sec
ond digit is pulled off the stack and the instruction AND #$OF masks
off its most-significant four bits. This 4-bit value is converted to
ASCII (with JSR CB2AH), then output to the printer (with JMP
PTROUT). The use of the JMP instruction to call PTROUT the
second time is not a typographical error; it permits the elimination
of an RTS instruction from the B2AH subroutine, so that the RTS
instruction in the PTROUT subroutine will cause a return to the
calling program rather than to the conversion subroutine.

The AU\'! 65 Monitor has a subroutine that performs essentially
the same function as the B2AH subroutine; it is called NUMA, and
has an entry address of $EA46. This completes the discussion of

Example 6-5: An 8-Bit Binary-to-ASCII-Based Hexadecimal Conversion Subroutin"

;THIS SUBROUTINE CONVERTS AN 8-BIT BINARY VALUE IN THE ACCUMULATOR
;TO A TWO-DIGIT ASCII STRING THAT IS OUTPUT TO THE PRINTER.

B2AH PHA ;SAVE BINARY VALUE ON STACK
LSR A ;SHIFT FIRST DIGIT INTO FOUR LSB'S
LSR A
LSR A

LSR A
JSR CB2AH ;CONVERT IT TO ASCII

JSR PTROUT ; AND OUTPUT IT TO PRINTER

PLA ;PULL SECOND DIGIT FROM STACK

AND #$OF ;MASK OFF THE FOUR MSB'S

JSR CB2AH ;CONVERT IT TO ASCII

JMP PT ROUT ; AND OUTPUT IT TO PRINTER

;THE BINARY-TO-ASCII SUBROUTINE FOLLOWS

CB2AH CMP #$OA ;IS DIGIT BETWEEN 0 AND 9?

BCC Z29
ADC #$36 ;NO. DIGIT IS BETWEEN A AND F.

RTS
Z29 ORA #$30 ;YES. ADD MSD = $3

RTS

NUMBER-BASE CONVERSION 147

hexadecimal number-base conversions. Now, we will describe the
conversions that are required if decimal values are being used.

THREE-DIGIT ASCII-BASED DECIMAL..:TO-BINARY CONVERSION

In some respects, it is easier to convert ASCII-based decimal
numbers to binary than to convert ASCII-based hexadecimal num
bers to binary. However, as we shall see, the conversion process is
also more complex. The ASCII/binary correlations are summarized
in Table 6-2. As you can see from this table, the only ASCII values
that are of interest to us in this section are those that fall between
$30 and $39; all values below $30 and above $39 will be ignored.
Before proceeding further with this discussion, we must call your
attention to the fact that the binary equivalent of a decimal digit is
nothing more than the four least-significant bits of the ASCII char
acter.

As you already know, decimal numbers can be expressed as a
series of integers multiplied by powers of 10. For example,

237 = (2 x 102) + (3 x 101) + (7 x 10°)

or

237 = (2 x 100) + (3 x 10) + (7 x 1)

Since only one digit of a number can be entered into the 6502
microprocessor at one time, there will have to be a multiply-by-IO
routine or subroutine in a general-purpose ASCII-based decimal
to-binary conversion subroutine. In this type of conversion routine,
when the number 93 is entered, the 9 must be multiplied by 10
before being added to the 3.

Example 6-6 shows a subroutine (A3D2B) that converts three
ASCII-based decimal digits from the keyboard to an 8-bit binary
value in the accumulator. Since the accumulator is eight bits wide,
only numbers in the range of 0 to 255 can be properly converted.

Table 6-2. The ASCII-Based Decimal Characters

ASCII Value Binary Value

30 0000
31 0001
32 0010
33 0011
34 0100
35 0101
36 0110
37 0111
38 1000
39 1001

148 6502 SOFTWARE DESIGN

Example 6-6: A Three-Digit ASCII-Based Decimal-to-Binary Conversion Subroutine

;THIS SUBROUTINE CONVERTS A THREE-DIGIT STRING OF DECIMAL ASCII
;CHARACTERS TO AN 8-BIT BINARY VALUE IN THE ACCUMULATOR.
;CARRY IS SET IF THE ACCUMULATOR CANNOT HOLD THE RESULT.

A3D2B JSR NEWDIG ;FETCH HIGH-ORDER DIGIT
STA $30 ; AND STORE IT AS PARTIAL RESULT
JSR NEWDIG ;FETCH SECOND DIGIT
JSR MULTlO ; AND ADD IT TO PARTIAL RESULT
JSR NEWDIG ;FETCH LOW-ORDER DIGIT
JMP MULTlO ; AND FORM FINAL RESULT

;THIS SUBROUTINE INPUTS THE NEXT VALID DECIMAL DIGIT, AND RETURNS
;WITH THIS DIGIT IN THE FOUR LSB'S OF THE ACCUMULATOR.

NEWDIG JSR KEVIN ;FETCH DIGIT
CMP #$30 ;CHARACTER LESS THAN $30?
BCC NEWDIG
CMP #$3A ;NO. IS IT GREATER THAN $39?
BCS NEWDIG
AND #$OF ;NO. MASK OUT THE FOUR MSB'S
RTS

;THIS SUBROUTINE MULTIPLIES THE PARTIAL RESULT BY 10, THEN ADDS
;THE NEW DIGIT TO THE LEAST-SIGNIFICANT DIGIT POSITION.

MULT10 STA $31 ;SAVE DIGIT
LDA $30 ;FETCH PARTIAL RESULT
ASL A ;MULTIPLY IT BY TWO
ASL A ;MULTIPLY IT BY TWO AGAIN (TOTAL X4)
ADC $30 ;ADD ORIGINAL RESULT TO IT (TOTAL XS)
ASL A ;MULTIPLY BY TWO (TOTAL = XlO)
ADC $31 ;ADD NEW DIGIT
STA $30 ; AND UPDATE PARTIAL RESULT
RTS

If a number between 256 and 999 is entered, it will not be con
verted to its proper binary equivalent, and the Carry will be set
to indicate the error condition.

The first instruction in the A3D2B subroutine calls another sub
routine, NEWDIG. The NEWDIG subroutine is essentially a key
board input subroutine, but it accepts only valid decimal digits.
This subroutine begins by calling KEYIN, the familiar keyboard
subroutine from Example 6-1. After the digit is input by KEYIN,
the NEWDIG subroutine checks whether it falls outside of the
decimal digit range of ASCII characters ($30 to $39). If the char
acter is not a decimal digit, program control branches back to
NEWDIG to await a new keyboard entry. If the character is a
decimal digit, the instruction AND #$OF masks out its four most
significant bits.

Upon return from NEWDIG, the binary value of the digit is
stored in location $30, as a first partial result. The second digit is

NUMBER·BASE CONVERSION 149

then input by another call to NEWDIG. Upon this return from
NEWDIG, another subroutine, MULTIO, is called. The MULTIO
subroutine multiplies the partial result by IO, and then enters the
4-bit binary value of the new digit. The multiply-by-IO operation
takes advantage of the fact that left-shifting a number doubles the
value of the number. Therefore, MULTIO left-shifts the partial
result twice (i.e., multiplies it by 4), adds the original value (mul
tiply by 5) and left-shifts that result (multiply by IO).

Upon return from MULTIO, the A3D2B subroutine makes a third
call to NEWDIG to input the low-order digit, and then ;umps to
MUL TIO to update the result. The use of the JMP instruction here,
rather than a JSR instruction, eliminates the need for an RTS in
struction in the A3D2B subroutine, by allowing the RTS instruc
tion of the MUL TIO subroutine to cause a return to the calling
program.

FIVE-DIGIT ASCII-BASED DECIMAL-TO-BINARY CONVERSION

As mentioned previously, one of the difficulties with the three
digit ASCII-based decimal-to-binary conversion subroutine in Ex
ample 6-6 is the fact that numbers larger than 255 cannot be con
verted. What will the contents of the accumulator be after the
number 256 is entered? The contents of the accumulator will be
zero (and the Carry flag will be set). Remember, an 8-bit binary
number can only represent the decimal numbers 0 through 255.
Therefore, 256 would be too large to be entirely contained in the
accumulator.

There are many, many cases in which we need to work with
numbers larger than decimal 255. This means that an ASCII-based
double- or triple-precision conversion subroutine that will provide
16- or 24-bit results (0-65,535 or 0-1.67 X I07) is very desirable.
Let us look at a double-precision conversion that produces a 16-bit
result for decimal numbers up to 65,535. You will recall that we
observed at the beginning of this section that decimal numbers
can be expressed as a series of integers multiplied by powers of
IO. For example,

M~7=(6xl~)+(4xl~)+(2xl~)+
(3 x I01) + (7 x I0°)

Clearly, a 16-bit version of the MULTIO subroutine given in
Example 6-6 could be written, and it could be called with four
consecutive JSR instructions for the first (most-significant) digit,
three consecutive JSR instructions for the next digit, and so on,
but this would take a large amount of program space in memory.
An obvious alternative is to write a loop that calls the multiply-

150 6502 SOFTWARE DESIGN

by-10 subroutine once for each digit entered. Fig. 6-1 is the flow
chart for a five-digit ASCII-based decimal-to-binary conversion
subroutine that uses the loop approach.

The flowchart in Fig. 6-1 begins by initializing the most-signifi
cant byte (MSBY) of the result to zero. It then inputs the high
order digit from the keyboard and converts it to a 4-bit binary
value. (These steps were performed earlier using the NEWDIG
subroutine in Example 6-6.) The 4-bit binary value is stored in

START

CONVERT TO
4-BIT VALUE

PARTIAL RESULT =
PARTIAL RESULT X 10

PARTIAL RESULT =
PARTIAL RESULT
+ NEW DIGIT

COUNT = COUNT - 1

NO

END

Fig. 6· 1. Flowchart for a five-digit
ASCII-based decimal-to-binary

conversion subroutine.

NUMBER-BASE CONVERSION 151

memory as the initial value of the least-significant byte (LSBY)
of the partial result. At this point, four more digits must be input,
converted, and entered into the partial result, so a digit count is
initialized with the value of 4. The remaining blocks in the flow
chart represent a loop to process the four low-order digits that are
entered from the keyboard. As a digit is input, it is converted to
a 4-bit binary value, in the same manner the high-order digit was
converted. In order to prepare the partial result to accept this new
digit value, the two-byte partial result is multiplied by IO. The new
digit value can now be added to the partial result, to update it.
The final two flowchart operations simply involve decrementing
the count and looping back for a new keyboard entry if all five
digits have not been entered.

The subroutine in Example 6-7 is the program version of the
flowchart given in Fig. 6-1. This subroutine (A5D2B) uses locations
$32 and $33 to accumulate the partial result as keyboard digits are
entered and processed. The subroutine begins by clearing the
MSBY of the partial result (location $33), and then calling the
keyboard input subroutine NEWDIG to accept and convert the
first (high-order) digit from the keyboard. The NEWDIG sub
routine in Example 6-7 is the same subroutine that was contained
in Example 6-6; it is reproduced here for your convenience. Upon
return from NEWDIG, the 6502 microprocessor stores the 4-bit
binary code in the LSBY of the partial result (location $32). The
next instruction, LDX #04, establishes a remaining-digit count in
the X register.

The remaining instructions in the A5D2B subroutine, the instruc
tions that start at NXTDIG, constitute a simple counting loop to
process the remaining four ASCII-based decimal digits from the
keyboard. This loop includes a call to a subroutine that has not
yet been described, MPYIO, which performs the same kind of
multiply-by-IO function as was provided by the MULTIO sub
routine in Example 6-6. However, MPYlO operates on a double
precision result. Admittedly, MPYlO is quite a bit longer than
MUL TIO, but the sequence of operations is identical. As with
MULTIO, the MPYIO subroutine left-shifts the partial result twice
(i.e., multiplies it by 4), adds the original value (multiply by 5)
and left-shifts that result (multiply by IO). Because the partial
result is a two-byte value, each left-shift requires two instructions,
ASL $32 and ROL $33.

AN 8-BIT BINARY-TO-ASCII-BASED DECIMAL CONVERSION

Although computers process numbers in their binary (or BCD)
form, it is often desirable to print results in their decimal represen-

152 6502 SOFTWARE DESIGN

Example 6-7: A Five-Digit ASCII-Based Decimal-to-Binary Conversion Subroutine

;THIS SUBROUTINE CONVERTS A FIVE-DIGIT SERIES OF ASCII DECIMAL
;CHARACTERS FROM THE KEYBOARD TO A 16-BIT BINARY VALUE IN LOCATIONS
;$32 (LSBY) AND $33 (MSBY). CARRY IS SET IF THE RESULT CANNOT
;BE CONTAINED IN THESE TWO LOCATIONS.
;LOCATION $31 IS ALSO USED BY THE SUBROUTINE, FOR TEMPORARY STORAGE.

A5D2B LDA #OO ;PARTIAL RESULT MSBY = 0
STA $33
JSR NEWDIG ;FETCH HIGH-ORDER DIGIT
STA $32 ;STORE IT AS PARTIAL RESULT LSBY
LDX #04 ;REMAINING DIGITS = 4

NXTDIG JSR NEWDIG ;FETCH NEXT DIGIT
JSR MPYlO ; AND ADD IT TO PARTIAL RESULT
DEX
BNE NXTDIG ;LOOP UNTIL 5 DIGITS CONVERTED
RTS

;THIS SUBROUTINE INPUTS THE NEXT VALID DECIMAL DIGIT, AND RETURNS
;WITH THIS DIGIT IN THE FOUR LSB'S OF THE ACCUMULATOR.

NEWDIG JSR KEVIN ;FETCH DIGIT
CMP #$30 ;CHARACTER LESS THAN $30?
BCC NEWDIG
CMP #$3A ;NO. IS IT GREATER THAN $39?
BCS NEWDIG
AND #$OF ;NO. MASK OUT THE FOUR MSB'S
RTS

;THIS SUBROUTINE MULTIPLIES THE PARTIAL RESULT IN $32 AND $33
;BY TEN, THEN ADDS THE NEW DIGIT TO IT.

MPYlO STA
LDA
PHA
LDA
PHA
ASL
ROL
ASL
ROL
PLA
ADC
STA
PLA
ADC
STA
ASL
ROL
LDA
ADC
STA
LDA
ADC
STA
RTS

$31
$33

$32

$32
$33
$32
$33

$32
$32

$33
$33
$32
$33
$31
$32
$32

#OO
$33
$33

;SAVE DIGIT JUST ENTERED IN $31
;SAVE PARTIAL RESULT ON STACK

;MULTIPLY PARTIAL RESULT BY TWO

;MULTIPLY IT BY TWO AGAIN (TOTAL X4)

;ADD ORIGINAL RESULT TO IT (TOTAL = X 5)

;MULTIPLY RESULT BY TWO (TOTAL X 10)

;ADD DIGIT JUST ENTERED

NUMBER-BASE CONVERSION 153

tations, rather than in binary or hexadecimal, to aid in understand
ing by decimally oriented human beings. Let us discuss how to con
vert binary numbers to their ASCII-based decimal equivalents.

Earlier we observed that decimal numbers can be expressed as a
series of integers multiplied by powers of 10. For example,

237 = (2 x 102) + (3 x 101) + (7 x 10°)

With this in mind, the primary job of converting an 8-bit binary
number to a decimal number reduces to finding out how many lOOs,
10s and ls are contained in the number. \Ve can make this determi
nation by performing a series of successive subtractions on the
binary value. The number of times that 100 can be subtracted from
the binary value tells us the lOOs digit of the decimal representation.
Similarly, the number of times that 10 from that remainder tells us
the 10s digit of the decimal representation. And the remainder of
that operation tells us the ls digit of the decimal representation.

For example, to determine the number of lOOs in the decimal
number 237, we will subtract 100 from 237 until the result of the
subtraction is negative. A negative result signifies we have gone "too
far," so 100 must be added back in before continuing. Each time 100
can successfully be subtracted (no negative result), the lOOs count
is incremented by 1. For the number 237, the sequence is:

237
-100

137
--100

37
-100

- 63
+100

37

lOOs count = 1

lOOs count = 2

Now that the number of lOOs is known, we can calculate a 10s
count with a similar subtraction sequence. ·working with our pre
vious remainder, 37, the sequence is:

37 17
-10 -10

27 10s count= 1 7 10s count= 3
-10 --10

-
17 10s count= 2 - 3

+10
-·

7

154 6502 SOFTWARE DESIGN

Example 6-8: An 8-Bit Binary-to-ASCII-Based Decimal Conversion Subroutine

;THIS SUBROUTINE CONVERTS AN 8-BIT BINARY VALUE IN THE ACCUMULATOR
;TO A THREE-DIGIT ASCII DECIMAL STRING THAT IS OUTPUT TO THE
;PRINTER.

B2AD
ClOO

OUTl

ClO

OUT2

LOX
CMP
BCC
SBC
INX
JMP
JSR
LOX
CMP
BCC
SBC
INX
JMP
JSR
CLC
ADC
JMP

#OO
#100
OUTl
#100

ClOO
PUTOUT
#OO
#10
OUT2
#10

ClO
PUTOUT

#$30
PTROUT

;INITIALIZE HUNDREDS COUNTER
;BINARY VALUE = OR GREATER THAN 100?
;NO. GO PRINT DECIMAL DIGIT
YES. SUBTRACT 100
;INCREMENT DECIMAL COUNT

; AND COMPARE AGAIN
;GO PRINT DECIMAL DIGIT
;INITIALIZE TENS COUNTER
;BINARY VALUE = OR GREATER THAN 10?
;NO. GO PRINT DECIMAL DIGIT
;YES. SUBTRACT 10
;INCREMENT DECIMAL COUNT
; AND COMPARE AGAIN
;GO PRINT DECIMAL DIGIT
;CONVERT REMAINDER TO ASCII

; AND PRINT IT

PUTOUT PHA ;SAVE REMAINDER ON STACK
TXA ;MOVE DECIMAL COUNT TO ACCUMUCATOR,
ADC #$30 ; CONVERT IT TO ASCII,
JSR PTROUT ; AND PRINT IT
PLA ;RETRIEVE REMAINDER
RTS

In order to determine the number of units, a 1 could be sub
tracted from the remainder of the 10s subtraction. However, the
remainder already represents the number of units in the number
being converted. Example 6-8 lists an 8-bit, binary-to-decimal con
version subroutine (B2AD) that uses the successive subtraction
technique that we have just described.

The B2AD subroutine is very straightforward. It uses the succes
sive subtraction technique to calculate the lOOs count value, convert
that count to ASCII code, and then output the ASCII character to the
printer. It performs the same compare-and-subtract operation for
the 10s count and, finally, it converts the remainder to ASCII code
and outputs it to the printer. The B2AD subroutine operates in
the following manner. The subroutine starts by initializing the
lOOs count to zero in the X register. The next instruction, CMP
100, compares the binary contents of the accumulator to decimal
100. If the accumulator contains a value that is equal to or greater
than 100 (hexadecimal 64), the Carry flag will be set and the in
struction BCC OUTl will allow execution to sequence to the sub
traction instruction SBC # 100. Following the subtraction, the lOOs
count in the X register is incremented by one and the instruction

'---~ .. ·--~~--~..._·~-~--~~--------------

NUMBER-BASE CONVERSION 15S

JMP ClOO transfers execution back to the compare instruction.
When the accumulator finally contains a value of less than 100, the
Carry flag will be clear, and BCC OUTI will branch to the JSR
PUTOUT instruction at label OUTl. The PUTOUT subroutine calls
the printer output subroutine PTROUT (Example 6-2), but before
doing so, saves the remainder on the stack, and then transfers the
X register contents to the accumulator and converts it to an ASCII
decimal character (by adding $30) . Before returning, the PUTOUT
subroutine pulls the remainder off the stack.

The 10s count is calculated with the same instruction types as
the lOOs count, execpt 10 (rather than 100) is used as the operand
in the compare-and-subtract instructions. Once the 10s count has
been calculated and output to the printer, no further subtractions
are required. Therefore, the remainder is converted to an ASCII
character by adding $30 to it. With the ls count in the accumulator
in ASCII form, a final jump to PTROUT completes the B2AD sub
routine. Why a JMP. rather than a JSR, to PTROUT? A JMP is
used rather than a JSR so that the RTS instruction in the PTROUT
subroutine will return to the calling program, rather than to the
B2AD subroutine. This same "trick" was used earlier in Examples 6-5
and 6-6.

A 16-BIT BINARY-TO-ASCII-BASED DECIMAL CONVERSION

In Example 6-8, it was demonstrated that it is fairly easy to con
vert an 8-bit binary value to an ASCII-based decimal by calculat
ing the lOOs count, then the 10s count, and then the ls count using
individual sequences of instructions. However, if your program
must convert binary numbers of double- or triple-precision (or
more), this individualized approach would require many more
instruction sequences than the task warrants. For these higher
precision numbers, we should be thinking in terms of one loop
that can be executed for each decimal weight.

What types of instructions can be used to form this loop? Can
we use a compare instructiOn, as we did in Example 6-7? No, a
compare instruction can only operate on 8-bit numbers. To calcu
late a digit count using a higher-precision number requires a
series of trial subtractions. What is being subtracted? The number
to be subtracted must be the power of 10 that corresponds to that
particular decimal weight. For example, double-precision (16-bit)
binary values can contain numbers from 0 to decimal 65,535. To
find the decimal equivalent of this number, you must see how
many times 10,000 can be subtracted from it (that will give the
10,000s count), and then see how many times 1000 can be sub
tracted from the remainder (the 1000s count). From the remainder

156 6502 SOFTWARE DESIGN

of that operation, you must subtract 100 one or more times, and
then 10 one or more times. The remainder that results after all of
these subtractions have been made represents the ls count, and you
are through.

Example 6-9 lists an actual 16-bit binary-to-decimal conversion
subroutine. This subroutine, DPB2AD (Qouble-~recision ~inary
to ,&SCH-Based ;Decimal), uses a look-up table, called SUBTBL,
to hold the subtraction values for the four most-significant counts.
The binary value to be converted is contained in two zero page

Example 6-9: A 16-Bit Binary-to-ASCII-Based Decimal Conversion Subroutine

;THIS SUBROUTINE CONVERTS A 16-BIT BINARY VALUE IN MEMORY LOCATIONS
;$31 (LSBY) AND $32 (MSBY) TO A FIVE-DIGIT ASCII DECIMAL STRING
;THAT IS OUTPUT TO THE PRINTER.

DPB2AD LDY #OO INITIALIZE TABLE POINTER TO ZERO
NXTDIG LDX #OO ;INITIALIZE DIGIT COUNT TO ZERO
SUBEM LDA $31 ;FETCH LSBY OF BINARY VALUE

SEC ;SUBTRACT LSBY OF TABLE VALUE
SBC SUBTBL,Y
STA $31
LDA $32
INY
SBC
BCC
STA
INX
DEY
JMP

SUBTBL,Y
AD BACK
$32

SUBEM

; AND RETURN RESULT TO MEMORY
;FETCH MSBY OF BINARY VALUE
;SUBTRACT MSBY OF TABLE VALUE

;IF RESULT IS NEGATIVE, RESTORE LSBY
;OTHERWISE, STORE MSBY OF RESULT,

INCREMENT DIGIT COUNT,
POINT TO LSBY IN TABLE,
AND GO SUBTRACT AGAIN

;THE INSTRUCTIONS BELOW RESTORE THE LSBY VALUE IF THE SUBTRACTION
;PRODUCES A NEGATIVE RESULT, THEN OUTPUT THE DIGIT COUNT

AD BACK DEY ;POINT TO LSBY IN TABLE
LDA $31 ;FETCH LSBY OF BINARY VALUE
ADC SUBTBL,Y ;AND ADD LSBY OF TABLE VALUE
STA $31
TXA ;PUT DIGIT COUNT IN ACCUMULATOR
ORA #$30 ;CONVERT IT TO ASCII
JSR PT ROUT ; AND PRINT IT
INY ;POINT TO NEXT TABLE VALUE
INY
CPY #OB ;END OF TABLE?
BCC NXTDIG ;NO. CONTINUE WITH NEXT DECIMAL WEIGHT
LOA $31 ;YES. PUT REMAINDER IN ACCUMULATOR
ORA #$30 ;CONVERT IT TO ASCII
JMP PTROUT ; AND PRINT IT

SUBTBL .WOR $2710 ;10,000
.WOR $03E8 ;1,000
.WOR $0064 ;100
.WOR $000A ;10

NUMBER-BASE CONVERSION 157

memory locations, $31 and $32. The DPB2AD subroutine operates
in the following manner. It begins by initializing a look-up table
pointer in the Y register, and a digit count in the X register, to
zero. In Example 6-9, the instruction LDA $31 at SUBEM rep
resents the first instruction in a loop that extends down to AD
BA CK.

This loop subtracts the appropriate 16-bit value in SUBTBL from
the binary value in locations $31 (LSBY) and $32 (MSBY). If
the result of the subtraction is negative (i.e., if Carry is clear), the
instruction BCC ADBACK causes the 6502 microprocessor to
branch to ADBACK, in order to add the LSBY from the table
back into location $31. There is no need to restore location $32
(the MSBY), since the MSBY result of the subtraction is not
stored unless the branch test indicates a nonnegative (positive or
zero) result. On a nonnegative result, the MSBY of the subtraction
result is returned to memory (ST A $32), and the 6502 micropro
essor increments the decimal digit count (INX), decrements the
table pointer (DEY), and then jumps to SUBEM to subtract the
table value again. In summary, this loop repeatedly subtracts the
table value (10,000 for the first count, for instance) from the bi
nary value in $31 and $32 until the result is negative, at which
point it executes a branch to ADBACK.

The instructions at ADBACK start by restoring the value of the
binary value's LSBY (location $31), and then they execute a three
instruction sequence that outputs the digit count to the printer,
using the PTROUT subroutine from Example 6-2. The output
operation completes the processing of that particular decimal
weight, so the 6502 microprocessor increments the Y register twice
in order to point to the next look-up table value. If there are any
more table values remaining, compare instruction CPY #08 causes
the Carry to be cleared and, then, BCC NXTDIG branches the con
trol back to NXTDIG, the digit count initialization point. If all
table values have been processed, location $31 holds the ls count.
This count is loaded into the accumulator, converted to ASCII
code, and output to the printer. As in Examples 6-5 and 6-8, the
final call to the printer subroutine PTROUT is performed with a
JMP instruction so that the RTS instruction of PTROUT will re
turn to the calling program, rather than to the conversion sub
routine.

As you already know, the 6502 microprocessor has the capability
of performing addition and subtraction operations on binary-coded
decimal (BCD) data directly, without converting these data to
their binary forms. The next two subroutines that will be dis
cussed convert ASCII-based decimal characters to BCD digits,
and vice versa.

158 6502 SOFTWARE DESIGN

TWO-DIGIT ASCII-BASED DECIMAL-TO-BCD CONVERSION

The first 10 decimal digits, 0 to 9. are actually a subset of the
16 hexadecimal digits (0 to 9 and A to F), so the subroutine that
converts ASCII-based decimal entries from the keyboard into bi
nary-coded decimal (BCD) entries should be similar to the ASCII
based hex-to-binary conversion subroutine presented in Example
6-3. Indeed, these conversion subroutines are similar, as we shall
see in this section. If you do not recall the relationships between
the ASCII-based decimal characters and the 4-bit BCD values,
they are smnarized in Table 6-2.

Example 6-10 lists an ASCII-based decimal-to-BCD conversion
subroutine (AD2D) that is similar to. but simpler than. the ASCII
based hexadecimal-to-binary conversion subroutine of Example
6-3. The AD2D subroutine begins by calling a subroutine labeled
NE\VDIG, which is the same subroutine that vvas used to input
keyboard characters in Example 6-7. After receiving the keyboard
character, the subroutine left-shifts it four times (ASL A) in order
to place it in the four MSBs of the accumulator, and then stores
the result temporarily in location $30. The second (least-significant)
digit is input via the same subroutine (NE\VDIG), and is then
converted to a 4-bit code and merged with the most-significant
digit from memory location 830.

Example 6-10: An ASCII-Based Decimal-to-BCD Conversion Subroutine

;THIS SUBROUTINE CONVERTS A TWO-DIGIT STRING OF DECIMAL ASCII
;CHARACTERS TO TWO BINARY-CODED DECIMAL DIGITS IN THE ACCUMULATOR:.
;THE SUBROUTINE USES LOCATION $30 FOR TEMPORARY STORAGE.

AD2D JSR NEWDIG ;INPUT MOSTSIGNIFICANT DIGIT
ASL A ;SHIFT IT INTO T~E FOUR MSB'S
ASL A
ASL A
ASL A
STA $30 ;SAVE THIS DIGIT IN LOCATION $30

JSR NEWDIG ;INPUT LEAST-SIGNIFICANT DIGIT

ORA $30 ; AND ADD MOST-SIGNIFICANT DIGIT

RTS

;THE FOLLOWING SUBROUTINE INPUTS THE NEXT VALID DECIMAL DIGIT, AND
;RETURNS WITH THIS DIGIT IN THE FOUR LSB'S OF THE ACCUMULATOR

NEWDIG JSR KEYIN ;FETCH DIGIT
CMP #$30 ;CHARACTER LESS THAN $30?
BCC NEWDIG
CMP #$3A ;NO. IS IT GREATER THAN $39?
BCC NEWDIG
AND #$OF ;NO. MASK OFF THE FOUR MSB'S

RTS

NUMBER-BASE CONVERSION 159

TWO-DIGIT BCD-TO-ASCII-BASED DECIMAL CONVERSION

In the preceding section, it was demonstrated that converting
ASCII-based decimal characters to BCD is similar to, but easier
than, converting ASCII-based hexadecimal characters to binary.
In this section, we will demonstrate that converting BCD digits
to ASCII-based decimal characters is similar to, but easier than,
converting binary data to ASCII-based hexadecimal characters.
The relationships between the 4-bit BCD codes and the ASCII
based hexadecimal characters are summarized in Table 6-2.

If your application requires converting binary values to ASCII
based hexadecimal characters, you can also use the binary-to-hex
conversion subroutine B2AH given in Example 6-3 to perform your
BCD-to-decimal conversions as well. Otherwise, you should use
the BCD-to-ASCII-based decimal conversion subroutine that is
listed in Example 6-11. This subroutine (D2AD) begins by storing
the contents of the accumulator in location $30, which saves the
least-significant BCD digit while the most-significant BCD digit
is being processed. The ST A $30 instruction is followed by four
consecutive right-shift instructions (LSR A) that move the most
significant BCD digit to the four least-significant bit positions. The
most-significant BCD digit is then converted into ASCII code by
ORing $30 into the four most-significant bit positions. A call to the
printer subroutine PTROUT outputs this ASCII character to the
printer.

Once the most-significant digit is output, the least-significant
digit is retrieved from location $30 and stripped of its four most
significant bits (AND #$OF). The digit is converted to ASCII
code by using ORA #$30, and is then output to the printer by a
second call to the PTROUT subroutine. This second call is per
formed with a JMP instruction so that the RTS instruction of the

Example 6-11: A BCD-to-ASCII-Based Decimal Conversion Subroutine

;THIS SUBROUTINE CONVERTS TWO BINARY-CODED DECIMAL DIGITS IN THE
;ACCUMULATOR TO A TWO-DIGIT ASCII STRING THAT IS OUPUT TO THE
;PRINTER. LOCATION $30 IS USED FOR TEMPORARY STORAGE.

D2AD STA $30 ;SAVE ACCUMULATOR IN LOCATION $30
LSR A ;SHIFT MOST-SIGNIFICANT DIGIT INTO THE
LSR A ; FOUR LSB'S
LSR A
LSR A
ORA #$30
JSR PTROUT
LDA $30
AND #$OF
ORA #$30
JMP PTROUT

;CONVERT THIS DIGIT TO ASCII
; AND PRINT IT
;GET LEAST-SIGNIFICANT DIGIT
;MASK OFF THE FOUR MSB'S
;CONVERT THIS DIGIT TO ASCII
; AND PRINT IT

160 6502 SOFTWARE DESIGN

PTROUT subroutine returns control to the calling program, rather
than to the D2AD subroutine. The AIM 65 Monitor has a subrou
tine NUMA (entry address $EA46) that performs the same func
tion as the D2AD subroutine.

LEADING ZERO SUPPRESSION

Quite often, when numbers are printed on a printer, teletype
writer, or display, the leading zeroes are not printed. They are
suppressed. This means that instead of printing the number 00302,
the number 302 is printed. In the previous output conversion sub
routines (Examples 6-.5, 6-8, 6-9, and 6-11), a number such as
00302 or 01579 would be printed. Instructions can be easily added
to these subroutines that will suppre~s the printing of the leading
zeroes.

For leading-zero suppression, there has to be some type of a
fiag to indicate when the first nonzero character has been printed.
After this Hag is set by the nonzero character, any zeroes that are
encountered in the lesser-digit positions are printed. If a number
such as 00302 is to be printed, it is not sufficient to just suppress
all ASCII zeroes since, then, the nu1nber would be printed as 32.
Example G-12 is a new version of the HJ-bit binary-to-ASCII-based
decimal com·ersion subroutine DPB2AD (Example 6-9), that sup
presses the printing of leading zeroes by using a Hag in location 840.

Example 6-12 has se\·en more instructions than Example 6-9.
The first of these additional instructions, STY $40, clears the lead
ing zeroes Hag at the beginning of the subroutine; the other six
instructions are added to the ADBACK routine. You \Vil] recall
from the discussion of Example 6-9 that the ADBACK routine is
executed when the subtraction of a S CBTBL value from the binary
remainder produces a negative result. The function of ADBACK
is to restore tlw subtracted table value to the remainder, print the
decimal count for that particular digit, and the11 branch Lack to
NXTDIG if additional digits must be calculated.

The ADBACK routine in Example 6-12 still performs the re
mainder-restoration and branch-to-NXTDIG operatiom, but per
forms the print operation only if the digit does not represent a
leading zero. The first five instructions of the ADBACK routine
in Example 6-12 are the same instructions used in the ADBACK
routine in Example 6-9. In both cases, these instructions restore
the LSBY of the binary remainder (location $31) to its value prior
to the subtraction, and transfer the digit count from the X regiister
to the accumulator. At this point, tlw BN E SETLZF instruction
determines whether or not the digit count is zero. If it is nonzero,
the 6502 microprocessor branches to SETLZF to set Bit 7 of the

NUMBER-BASE CONVERSION 161

Example 6-12: A 16-Bit Binary-to-ASCII-Based Decimal Conversion Subroutine, With
Leading Zero Suppression

;THIS SUBROUTINE CONVERTS A 16-BIT BINARY VALUE IN MEMORY LOCATIONS

;$31 (LSBY) AND $32 (MSBY) TO A FIVE-DIGIT .ASCII DECIMAL STRING

;THAT IS OUTPUT TO THE PRINTER. LEADING ZEROES ARE SUPPRESSED,
;USING A FLAG IN LOCATION $40.

DPB2AD LDY #OO ;INITIALIZE TABLE POINTER TO ZERO
STY $40 ; AND CLEAR LEADING ZEROES FLAG

NXTDIG LDX #OO ;INITIALIZE DIGIT COUNT TO ZERO

SUB EM LDA $3 l ;FETCH LSBY OF Bl NARY VALUE
SEC ;SUBTRACT LSBY OF TABLE VALUE
SBC SUBTBL,Y
STA $31 ; AND RETURN RESULT TO MEMORY
LDA $32 ;FETCH MSBY OF BINARY RESULT
INY ;SUBTRACT MSBY OF TABLE VALUE
SBC SUBTBL,Y
BCC ADBACK ;IF RESULT IS NEGATIVE, RESTORE LSBY

STA $32 ;OTHERWISE, STORE MSBY OF RESULT,
INX INCREMENT DIGIT COUNT,

DEY POINT TO LSBY IN TABLE,

JMP SUB EM AND GO SUBTRACT AGAIN

;THE INSTRUCTIONS BELOW RESTORE THE LSBY VALUE IF THE SUBTRACTION
;PRODUCES A NEGATIVE RESULT, THEN OUTPUT THE DIGIT COUNT

ADBACK DEY ;POINT TO LSBY IN TABLE

LDA $31 ;FETCH LSBY OF BINARY VALUE

ADC SUBTBL,Y ; AND ADD LSBY OF TABLE VALUE
STA $31
TXA ;PUT DIGIT COUNT IN ACCUMULATOR
BNE SETLZF ;IF IT IS NONZERO, GO PRINT IT
B!T $40 ;IS THIS ZERO A LEADING ZERO?
BMI CNVTA ;NO. GO PRINT IT
BPL UPTBL ;YES. BYPASS PRINT OPERATION

SETLZF LDX #$80 ;SET LEADING ZEROES FLAG
STX $40

CNVTA ORA #$30 ;CONVERT DIGIT TO ASCII
JSR PTROUT ; AND PRINT IT

UPTBL INY ;POINT TO NEXT TABLE VALUE
INY
CPY #08 ;END OF TABLE?
BCC NXTDIG ;NO. CONTINUE WITH NEXT DECIMAL WEIGHT

LDA $31 ;YES. PUT REMAINDER IN ACCUMULATOR

ORA #$30 ;CONVERT IT TO ASCII
JMP PT ROUT ; AND PRINT IT

SUBTBL .WOR $2710 ;10,000
.WOR $03E8 ;1,000
.WOR $0064 ;100

.WOR $000A ;10

leading zeroes flag (location $40), then converts the 4-bit code
to ASCII code and prints it (JSR PTROUT). If the digit count
is zero, the next two instructions, BIT $40 and BMI CNVT A, de-

162 6502 SOFTWARE DESIGN

Table 6-3. Conversion Subroutines and Their Characteristics

Memory
Registers locat~ons

Name Operation Example Affected Affected

AH2B Converts two hex characters from 6-3 A $30
keyboard to binary value in
accumulator.

B2AH Converts 8-bit binary contents of 6-5 A None
accumulator to two ASCII hex
characters, and outputs them to
printer.

A3D2B Converts three decimal digits 6-6 A $30, j;31
from keyboard to binary value
in accumulator. The Carry is set
if a number greater than 255 is
entered.

A5D2B Converts five decimal digits 6-7 A,X $31, $32,
from keyboard to 16-bit binary $33
value in $32 and $33. The Carry
is set if a number greater than
65,535 is entered.

B2AD Converts 8-bit binary contents of 6-8 A,X None
accumulator to three ASCII deci-
mal characters, and outputs them

to printer.

DPB2AD Converts 16-bit binary contents 6-9, A,X,Y $31,$32
of $31 and $32 to five ASCII 6-12
decimal characters, and outputs
them to printer.

AD2D Converts two decimal digits from 6-10 A $30
keyboard to two BCD digits in
accumulator.

D2AD Converts two BCD digits in accu- 6-11 A $30
mulator to two ASCII decimal
characters, and outputs them to
printer.

termine whether or not that zero represents a leading zero. If Bit
7 of location $40 is set to logic 1, the 6502 microprocessor branches
to CNVTA, where the digit count is converted to ASCII code and
output to the printer. If Bit 7 of location $40 is reset to logic 0, the
BPL UPTBL instruction causes the 6502 microprocessor to bypass
the printing operation. One subtle point is worth mentioning here.
If the binary value is $0000, printing is suppressed for all but the
final zero. This zero is deliberately allowed to be printed in order
to inform the user that he has converted a binary value that is equal
to zero.

NUMBER-BASE CONVERSION 163

Table 6-4. AIM 65 Conversion Subroutines

Entry Registers
Name Operation Address Affected

HEX Converts ASCII hex character in accumula- $EA7D A
tor to a 4-bit binary value in the four LSBs
of the accumulator. The four MSBs of the
accumulator contain zeroes on return.

NOUT Converts binary value in the four LSBs of the $EA51 A
accumulator to an ASCII hex character, and
outputs it to the active output device.

NUMA Converts 8-bit binary contents of the accu- $EA46 A
mulator to two ASCII hex characters, and
outputs them to active output device.

PACK Converts ASCII hex character in the accumu- $EA84 A
lator to a 4-bit binary value in the four LSBs
of the accumulator. The result of the last call
to HEX or PACK is placed in the four MSBs
of the accumulator.

SUMMARY

The number-base conversion subroutines in this chapter are not
intended to serve as a "cook-book" for every application, but they
should provide a sufficient foundation from which other similar
subroutines can be designed. Table 6-3 lists the number-base con
version subroutines that have been given in this chapter, and sum
marizes their characteristics. Table 6-4 includes similar informa
tion for some conversion subroutines that are included in the AIM
65 monitor.

7

Interrupts and Resets

Up to this point in the book, we have discussed various aspects
of the 6502 microprocessor, without considering how its operation
is influenced by external devices in a microcomputer system. Ad
mittedly, the number-base conversion subroutines in Chapter 6
demonstrated input from, and output to, two idealized peripheral
dedces (a keyboard and a printer), but these devices were in
cluded only to establish a realistic context in which the subroutines
would normallv be found. Other than that brief excursion into the
"real world" e;wiroument, \Ve have purposely anJided discussing
how the 6.502 microprocessor is affected by the other elements of
a microcomputer system. The remaining chapters in this book are
de,·oted to discussing those external influences on the 6.502 micro
processor, the programs that deal with them, and the fumlameutals
of interfacing the 6502 microprocessor to external devices in a
microcomputer system. This chapter covers two distinct, but func
tionally similar, topics-interrupts and resets.

There are two types of interrupts, maskable (interrupts that can
be temporarily ignored) and nonmaskable (interrupts that require
immediate attention). The word "interrupt" is familiar to all
readers. \Vehster defines it as "to break into or in upon." \Ve have
encountered both types of interrupts in our everyday life. Suppose,
for instance, that you are driving your car and notice that the
muffier sounds louder than usual. That is a maskable interrupt;
it can be temporarily disregarded (perhaps by turning up the
volume on your car radio), hut the need for your attention still
exists. However, if one of your tires blows out, that constitutes a
nonmaskable interrupt; it requires your immediate attention. The
6.502 microprocessor provides for both types of interrupts, mask
able and nonmaskable. Both types will be discussed in this chapter.

164

INTERRUPTS AND RESETS 165

A reset is the operation by which a microcomputer is initialized
to some known state. All microprocessors are designed to be reset
when the system power is turned on. Further, most, if not all, micro
processors are designed to allow the internal registers of the micro
processor to be initialized at other times by an external signal. We
have just defined two separate conditions, reset at power-up time
and restart at all other times. Both conditions will be covered in
this chapter.

vVe have said that interrupts and resets are functionally similar,
but we did not elaborate on that statement. Interrupts and resets
are functionally similar because they use vector pointers to deter
mine the memory address from which the next instruction will be
fetched. When an interrupt or a reset is activated, the 6502 micro
processor loads the program counter with the contents of a par
ticular pair of memory locations. These locations hold the address
(the vector pointer) of the next instruction to be executed. The
6502 microprocessor uses locations $FFF A through $FFFF to hold
vector pointers. Locations $FFF A and $FFFB hold the vector
pointers for the nonmaskable interrupt, locations $FFFC and
$FFFD hold the vector pointers for the reset, and locations $FFFE
and $FFFF hold the vector pointers for the maskable interrupt
request.

THE 6502 MICROPROCESSOR INTERRUPTS

Interrupts are externally generated signals which temporarily
suspend the program that is being executed by the microprocessor,
and cause program control to be transferred to a subroutine that
is designed to service that particular interrupt. Peripheral devices
use interrupts to "inform" the microprocessor that they have data
to be input, or that they need data from the microprocessor. This
technique eliminates the need for the microprocessor to waste valu
able execution time polling the status of the peripheral devices of
the system when none of the devices require servicing. In the last
chapter, the 6502 microprocessor polled the status indicator of the
ASCII keyboard. As we saw, the 6502 microprocessor stayed in the
KEYIN loop (Example 6-1) until a key was pressed.

Interrupts are also used to signal some condition that requires
the immediate attention of the microprocessor, such as a power
failure. The 6502 integrated circuit has separate interrupt pins to
handle each of these applications. Peripheral devices request in
terrupt service from the 6502 microprocessor by activating the IRQ
(J.nterrupt Request) line. The critical situations (again, such as
power failure f force immediate service from the 6502 microproc
essor by activating the NMI (N on-Maskable Interrupt) line. (The

166 6502 SOFTWARE DESIGN

"bar" over the IHQ and NMI signal names indicates that these
signals are active when they are pulled to ground.) Both types of
interrupt signals will now be discussed, beginning with IRQ.

INTERRUPT REQUEST (IRQ)

In all of the previous examples in this book, the microprocessor
was in control of fetching the next instruction to be executed.
:Most of the time, the next instruction was fetched from the memory
locations that followed the current instrnction. Instances were dis
cussed, however, where the next instruction was fetched from some
other place in memory. This occurred when a branch, Jump (JMP),
Jump to Subroutine (JSR), or Return from Subroutine (RTS)
instruction was executed. In all cases, though, the instruction
fetching was based on the logic of the particular program being
executed.

How can the 6502 microprocessor "know" whether peripheral
devices in the system need servicing? One way is to design the
main program so that every so often it stops processing data and
polls every device in the system to see whether any devices re
quires servicing. In Example 6-1, the keyboard was constantly
polled (once every few microseconds) to see if a key was pressed
and, in Example 6-2, the printer was constantly polled to see if
it was "ready." Obviously, this is very inefficient, and is somewhat
analagous to picking up a telephone receiver every so often to see
if anyone is calling you. 1 As an alternative, the 6502 microprocessor
has an IRQ input that permits external devices to request servicing
from the microprocessor. In our telephone analogy, the IRQ line
functions as the bell and indicates to the 6502 microprocessor that
some device in the system is "calling." Also, like a telephone bell,
the IRQ can be ignored until the 6502 microprocessor is prepared
to respond to it.

Interrupt Control Instructions

The IRQ Disable bit (I) in the processor status register deter
mines whether or not the 6502 microprocessor will respond to an
interrupt request on the IRQ line. The two instructions that control
this bit are:

Instruction
CLI
SEI

Description
Clear Interrupt Disable Bit
Set Interrupt Disable Bit

The first instruction, CLI, clears the Interrupt Disable bit (I),
which will cause an extt'rnal interrupt request to be serviced as
soon as it is sensed by the 6502 microprocessor. (The description

INTERRUPTS AND RESETS 167

of how the 6502 microprocessor responds to an IRQ will be dis
cussed in the next section.) The second instruction, SEI, sets the
Interrupt Disable bit (I) , which will cause the 6502 microprocessor
to ignore all subsequent IRQ interrupt requests. The Interrupt
Disable bit (I) is automatically set by the 6502 microprocessor
when power is turned on.

How the 6502 Microprocessor Responds to an IRQ

If the Interr~ Disable bit (I) is clear and some external device
activates the IR Q signal (pulls it low), the 6502 microprocessor
finishes executing the current instruction to complete execution, and
then automatically initiates an eight-cycle interrupt sequence. Dur
ing this sequence, the 6502 microprocessor pushes three bytes of
"return" information onto the stack (the high and low bytes of the
program counter and the contents of the processor status register).
It then loads the contents of the dedicated IRQ vector low
($FFFE) and high ($FFFF) into the program counter. The 6502
microprocessor also sets the IRQ Disable bit (I) in the processor
status register, to temporarily "lock out" subsequent interrupt
requests.

Fig. 7-1 summarizes how the 6502 microprocessor responds to
an IRQ, by showing both "before" and "after" diagrams of the
Stack Pointer (S), the program counter (PC), the processor status
register (S), and the first four locations in the stack ($01FC
through $01FF). In the diagram of Fig. 7-lA, the Stack Pointer
is pointing to the next free stack location (assumed to be $01FF
for this example), the program counter contains the address of
the next instruction in the main-line program (high-address is
PCH, low-address is PCL), and the processor status register is
represented by a binary bit pattern in which the I bit is clear
(zero). In the diagram of Fig. 7-lB, it is shown that following IRQ,
the program counter and processor status register are now on the
stack, and the Stack Pointer is pointing to location $01FC. Further,
the low-order and high-order bytes (PCL and PCH) of the program
counter now contain the contents of memory locations $FFFE and
$FFFF, respectively, and the I bit has been set to a l in the proc
essor status register. The I bit is the only processor status register
bit that was altered by this operation.

At this point, the program counter contains the starting address
of a program designed to service IRQ-generated interrupts. This
program is called an interrupt service routine or, in some literature,
an interrupt handler. The interrupt service routine must perform
two functions; it must identify the device that generated the in
terrupt request (if there is more than one such device in the
system) and it must perform the operation required by that device.

168 6502 SOFTWARE DE!ilGN

s I SFF I"" $AA $01FC

I~ PCL PCH PCL

$XX $01FD

$YY $01FE

$ZZ $01FF

p I nnnnnOnn

(A) Before IRQ.

s I S FC I~ $AA $01FC

PC I i1FFFF1 1$FFFE1 I iP1 $01FD

1PCLi $01FE

p I nnnnnlnn 1PCH1 $01 FF

(B) After fRQ

Fig. 7-1. How the 6502 microprocessor responds to an iRO.

How does the interrupt service routine identify the interrupting
device? It usually identifies this device by polling the status reg
ister of each device in the system, to find out which device has its
interrupt request bit set. Once the interrupting device is identified,
the interrupt service routine must fetch a new address-the start
ing address of the interrupt service routine for the interrupting
device. The 6500-compatible devices maintain their interrupt re
quest bits in either Bit 6 or 7 of a register, so that the polling
sequence can be performed with a series of BIT and branch
instructions.

Example 7-1 shows a polling sequence for a system that contains
four devices. Devices 1, 2, and 4 can generate only one interrupt
request, and will indicate this request in Bit 7 of their respective
status registers (locations SDEVl, SDEV2, and SDEV4). Device
3 can generate t\VO separate interrupt requests, and can indicate
these requests in Bits 6 and 7 of its status register (location
SDEV3). The interrupt status of Devices 1, 2, and 3 in the system
is interrogated with a BIT instruction, which loads the state of
Bit 6 and 7 into the processor status register's Overflow (V) and
Negative (N) flag, respectively. For Devices 1 and 2, a B.MI in
struction determines whether or not the device has an active in
terrupt request. Device :3 requires two branch instructions (BMI
and BVS), since this device is capable of generating either of two
separate interrupt requests. Device 4 requires no interrogation,
since it must have generated the interrupt request if Device 1, 2.

INTERRUPTS AND RESETS 169

Example 7-1: Interrupt Polling Sequence

BIT SDEVl ;INTERRUPT REQUEST FROM DEVICE l?
BM! JISRl ;IF SO, BRANCH TO JISRl
BIT SDEV2 ;INTERRUPT REQUEST FROM DEVICE 2?
BM! JISR2 ;IF SO, BRANCH TO JISR2
BIT SDEV3 ;INTERRUPT REQUEST FROM DEVICE 3?
BMI JISR3A ;IF SO, BRANCH TO JISR3A
BVS JISR3B ; OR TO JJSR3B
JMP ISR4 ;GO SERVICE DEVICE 4 INTERRUPT

JISRl JMP ISRl ;GO SERVICE DEVICE l INTERRUPT

JISR2 JMP ISR2 ;GO SERVICE DEVICE 2 INTERRUPT
JISR3A JMP ISR3A ;GO SERVICE DEVICE 3 INTERRUPT "A"

JISR3B JMP ISR3B ;GO SERVICE DEVICE 3 INTERRUPT "B"

or 3 did not. You will note that the polling sequence in Example
7-1 assigns priorities to the devices in the system; Device l has
the highest priority, Device 4 has the lowest priority. Although it
appears that the 6.502 microprocessor needs a large amount of time
to get to the Device 4 interrupt service routine, due to the number
of instructions that are executed before a Device 4 interrupt re
quest can be serviced, the polling takes only six cycles for Devices
l and 2, and eight cycles for Device 3. Therefore, the 6502 micro
processor needs only 20 cycles (20 microseconds) before it can
service Device 4.

Instructions in an Interrupt Service Routine

Besides the instructions that actually transfer information be
tween the interrupting peripheral device and the 6502 microproc
essor, what other instructions make up an interrupt service routine?
Most interrupt service routines begin with instructions that save,
on the stack, the current values of registers that will be altered by
the service routine. Of course, the end of the subroutine must
have complementary instructions that pull those register values off
the stack. Further, most interrupt service routines also include a
CLI (Clear Interrupt Disable Bit) instruction, to allow other
higher-priority interrupt requests to be serviced. The location of
CLI in the interrupt service routine will vary with the priority of
the device being serviced. Jn the interrupt service routine for the
lowest-priority device, CLI may follO\v the instructions that save
register values on the stack. Conversely, the interrupt service nm
tine for the highest-priority device may not even include a CLI
instruction, and will allow interrupt requests to be enabled only

170 6502 SOFTWARE DESIGN

on return from the interrupt service routine. The instruction that
performs the return from an interrupt service routine is a special
instruction called RTI. The RTI instruction must be the final in
struction to be executed in every interrupt service routine. Let us
now look at that instruction in detail.

RETURN FROM INTERRUPT (RTI) INSTRUCTION

The final instruction to be executed in every interrupt service
routine is:

Instruction
RTI

Description
.Be.turn fromlnterrupt

This RTI instruction causes the processor status register and the
program counter to be reinitialized with their preinterrupt values
from the stack. Execution of the RTI instruction will automatically
enable IRQ interrupt requests, since the Interrupt Disable bit (I)
of the processor status register was clear when this register was
pushed onto the stack.

The RTI instruction is, you will note, quite similar to the RTS
(Re.turn from ~ubroutine) instruction that was first encountered
in Chapter 3. Both instructions return from a subroutine to the
program from which the subroutine was called. For RTI, the call
was made automatically, by an externally generated interrupt re
quest. For RTS, the call was made under software control by a
JSR (Jump to ~ubroutine) instruction. Like RTS, the RTI instruc
tion iS an implied-address instruction that occupies one byte in
memory and requires six cycles to be executed. From a purely op
erational standpoint, the only difference between RTS and RTI is
that RTS pulls two bytes of information from the stack (the low
byte and high byte of the program counter), whereas, RTI pulls
three bytes of information from the stack (the processor status
register, and the low byte and high byte of the program counter).
In fact, if you had a subroutine that needed to save the presub
routine value of the processor status register, you could use a
PHP (.£us!! j>rocessor Status on Stack) as the first instruction in
the subroutine, and use an RTI, rather than an RTS, as the return
instruction for the subroutine.

SUMMARY OF IRQ-GENERATED INTERRUPTS

In the preceding sections, it has been shown that the 6502 micro
processor has an intermpt request line (IRQ) which, when low,
indicates that one of the system devices connected to this line
requires service. If the IRQ Disable bit (I) of the processor status

INTERRUPTS AND RESETS 171

register is clear when IRQ is pulled low, the 6502 microprocessor
will complete the currently executing instruction, push the contents
of the program counter and the processor status register onto the
stack and then fetch the address of the next instruction from two
dedicated memory locations, $FFFE and $FFFF. This address is
the starting address of an interrupt service routine.

The interrupt service routine must poll all of the devices in the
system, to find out which device issued the interrupt request. ·when
the interrupting device has been identified, the 6502 microprocessor
jumps to a device-dependent service routine. The device-dependent
service routine must perform the proper data transfers to, or from,
the peripheral device and clear the IRQ Disable bit so that higher
prioritv devices can interrupt, if required. The final instruction in
the service routine is RTI, which returns control to the program
that was being executed when the interrupt occurred.

NONMASKABLE INTERRUPT (NMI)

The other interrupt line of the 6.502 microprocessor, Nonmask
ahle Interrupt (NMI), provides interrupts for high-priority devices
ancl events (such as a power failure) that cannot afford to wait
dnring the time that the interrupt requests are disabled. Unlike
IRQ, N\11-generated interrupts cannot he masked out or disabled;
the 6502 microprocessor will begin processing an N:\11 interrupt
upon completion of the currently executing instruction.

In the 6.500 system, an N:\11 interrupt always has priority over
an IRQ interrupt. If an interrupt request and a nonmaskable in
terrupt occur simultaneously, the 6502 microprocessor will process
the nonmaskable interrupt. Other than these differences, how does
the operation of NMI differ from that of IRQ? They differ very
little. The 6502 microproc~ performs an eight-cycle sequence
for either type but, for the NMI, the vector pointer is fetched from
locations $FFF A (low-address byte) and $FFFB (high-address
byte), rather than from locations $FFFE and $FFFF (as for the
IRQ). In fact, Fig. 7-1 also illustrates how the 6.502 microprocessor
responds to NMI as well, except that for the NMI, the post-inter
rupt value of the program counter would be ($FFFB) and
($FFFA).

Since the NMI line is dedicated to servicing high-priority events,
it is important to know just how fast the 6502 microprocessor can
he expected to respond to the interrupt. Let us find out by taking
a look at the "worst case." The worst case occurs if the NMI is
activated just as the 6502 microprocessor has fetched the op code
of one of its longest instructions-a seven-cycle instruction such as
INC (Increment ,\femory) or DEC (Decrement Memory) with

172 6502 SOFTWARE DESIGN

absolute indexed addressing. The NMI interrupt will not be ac
cepted until completion of this instruction six cycles later, at which
time the 6.502 microprocessor will initiate an eight-cycle interrupt
sequence. In the eighth cycle of this sequence, the 6.502 micro
processor will fetch the op-code byte of the first instruction in the
interrupt service routine. This instruction can be either the input
(LDA) or output (STA) instruction that transfers data from or to
the peripheral device, in which case, it will be executed in no
less than four cycles. Adding these execution cycle values, we see
that tcith an N1TT interrupt, data can be transferred to or from a
peripheral device in no more than 17 cycles (17 microseconds for
a 1-MHz 6.502 microprocessor).

In the AIM 65, the NMI vector pointer ($FFF A and $FFFB)
holds the address $E075. This address contains a jump indirect
instruction, JMP (NMIV2). The parameter NMIV2 is automatically
initialized at power-up with the entry address of the Monitor NMI
interrupt service routine $E07B. However, NMIV2 is user-alterable,
so AIM 65 owners can modify this parameter to address an NMI
interrupt service routine of their own.

Before concluding this discussion of interrupts, let us look at
an instruction that permits a programmer to simulate an interrupt
under program control. This instruction, BRK, is used to halt the
6502 microprocessor so that the current contents of memory and
registers can be examined. The BRK instruction is primarily used
only during the debugging stage of program development.

THE BREAK (BRK) INSTRUCTION

The Break (BRK) instruction causes the 6502 microprocessor to
execute an interrupt sequence under program control. When BRK
is executed, the 6502 microprocessor sets the BRK Command flag
(B) in the processor status register, increments the program counter
by one, and then pushes three bytes of information onto the stack
(the high and low bytes of the program counter and the contents
of the processor status register). At this point, the 6502 microproc
essor loads the contents of the IRQ vector low ($FF.FE) and high
($FF.FF) into the program counter.

Since the BRK instruction causes a vector to the same location
as an IRQ-generated interrupt, the IRQ interrupt service routine
must have an additional attribute that was not mentioned in the
previous discussion of that routine. The IRQ interrupt service
routine must include instructions that determine whether the rou
tine is being executed due to an external IRQ or due to a BRK
instruction. The easiest way to make this determination is to inves
tigate the state of the BRK Command bit (B) in the processor

INTERRUPTS AND RESETS 173

status register value on the stack. If the B bit is a 1, the routine
is being executed due to a BRK instruction; otherwise, the routine
is being executed due to IRQ. Example 7-2 shows such a decision
making sequence.

Example 7-2: Determining Whether BRK or IRQ Caused an Interrupt

PLA ;PULL STATUS REGISTER FROM STACK

PHA ; AND RESTORE IT

AND #$10 ;ISOLATE B FLAG

BNE BREAK ;BRANCH IF CAUSED BY BRK

;OTHERWISE, PROCESS I RQ

\Vhere are BRK instructions used? Usually BRK instructions are
inserted at one or more points in a program wherever you would
like to halt the 6.'502 microprocessor and "take stock" of what your
program has done to that point. Perhaps you might want to check
the status of a flag in memory, or examine the current value in a
counter; BRK instructions provide the halts that are necessary to
make these checks. These BHK instructions can also function as
program flow indicators to trace the path a program takes as it is
executed; a well-placed scattering of BRK instructions in a program
provides a good "road map" to compare against the flowchart of
the program. ln this application, BRK instructions are often used
to identify sequences that are not being executed by the program;
if the BRK never occurs, you can be sure that that particular por
tion of code is not being executed.

How are BHK instructions put into a program? Since BRK in
structions are temporary instructions, they must over/al) an existing
instruction. BHK is a one-byte instruction, so it will overlay only
an op-code byte; if a multihyte instruction is overlayed with BRK,
its operand bvtc (s) will remain intact. The designers of the 6502
microprocessor assumed that. in most cases, the BRK instruction
would be used to overlay a multibyte instruction, so the program
counter value on the stack (the return address) addresses the sec
ond byte a~er the BRK instruction. This presents no problem if
BRK replaces a two-byte instruction, but what if you want BRK
to replace a three-byte instruction? If you simply overlay the op
code of a three-byte instruction with a BRK instruction, the inter
rupt service routine will return to the third byte of the instruction
(the high-order byte of the operand), and the 6502 microprocessor
will attempt to execute that byte as an instruction op code. There
fore, if you wish to break at a three-byte instruction, you must
code tu;o temporary instructions into the program-ERK to over
lay the op code and NOP to overlay the high-order operand

174 6502 SOFTWARE DESIGN

Example 7-3: Using BRK to Overlay a Three·Byte Instruction

The Code is written as follows:

location Instruction

$45F9 INX
$45FA LDA $0503
$45FD JMP $4706

In memory, it is arranged like this:

location Instruction

$45F9 INX
$45FA LDA ~ BRK is to be inserted here
$45FB $03
$45FC $05
$45FD JMP
$45FE $06
$45FF $47

After BRK and NOP are overlayed, it looks like:

location Instruction

$45F9 INX
$45FA BRK ~ BRK overlays LDA op code
$45FB $03
$45FC NOP ~ RTI causes return to here
$45FD JMP
$45FE $06
$45FF $47

byte. Example 7-3 shows the overlays required for a three-byte
instruction.

Break-Related Instructions in an Interrupt Service Routine

We previously discussed the interrupt service routine instruc
tions needed to process IRQ interrupts (the device-polling se
quence, the CLI instruction, and so on), and the instruction se
quence that determines whether the routine was initiated by an
active IRQ signal or a BRK instruction. What type of instructions
should be included in the break-processing portion of the interrupt
service routine? Since the BRK instruction is used to examine pro
gram status with the 6502 microprocessor halted, the break-process
ing instructions must output summary information (the contents of
registers, a binary listing of the processor status register, etc.) to a
printer, a CRT, or some other type of visual display device.

AIM 65 owners can gain some insight to this by studying the
IRQ interrupt service routine of the AIM 65, IRQV3 (entry address
$El54). This routine begins by determining whether BRK or IRQ
caused the routine to be executed, and uses the same instruction

INTERRUPTS AND RESETS 175

sequence shown in Example 7-2 to make this determination. If
IHQ initiated the routine, the instruction JMP (IHQV 4) causes a
jump indirect through parameter IRQV4 (location $A400) to an
IRQ interrupt routine. This parameter, IRQV 4, is not initialized
hy the AIM 65, so the user must initialize it to address an IRQ
interrupt routine of his own.

If a BHK instruction initiated the IRQ interrupt service rcm
tine IRQV3 of the AIM 6.5, the execution of the routine continues
at label IRQI. At IHQI, the processor status register is pulled from
the stack and stored in memory, along with the contents of the X
register and the Y register. Next, the program counter is pulled
from the stack and decremented by one, so that it addresses the
location immediately following the BRK instruction. The program
counter and the Stack Pointer are then stored in memory. \Vith all
register contents stored the routine initiates a long sequence in
which the instruction following BRK is disassembled and printed.
If the HUN/STEP switch is set to RUN, return is to the Monitor;
otherwise return is to the instruction following BRK.

AIM 65 BREAKPOINTS

The Al\1 6.5 microcomputer includes a breakpoint feature that
allows you to emulate the BRK instruction without modifying any
instructions. \Vith this feature, you can specify up to four different
instruction addresses as "breakpoint" addresses. The breakpoint
feature operates in the following manner. \Vith the AIM 6.5 in the
Step mode, the 6502 microprocessor will halt each time that it is
about to execute an instruction whose address has been specified as
a breakpoint. At this time, the disassembled form of the break
point instruction will he displayed (and printed, if the printer is
on) and the 6502 microprocessor will return to the Monitor. If the
Hegister Trace mode is enabled (via the Z command), the register
values will also be displayed. \Vith the 6.502 microprocessor halted,
the contents of any memory location can also be examined, using
the M command. As you can see, the breakpoint feature provides
you with meaningful information at selected points in a program.
Breakpoints are not only useful for examining the status of the
program at these points, but they also indicate whether or not a
program instruction is ever being executed. That is, breakpoints can
be used to trace the flow of a program, in order to tell you whether
or not the program is operating as you intended it to operate!

To resume execution from a breakpoint, you need only to enter
a new G command from the keyboard. In addition to eliminating
the need to modify existing program instructions, the hreakpoint
feature allcncs uou to hreak at any address, including those in ROM.

176 6502 SOFTWARE DESIGN

The only disadvantage of the breakpoint feature is that since it re
quires the AIM 65 to be in single-step mode, breakpoints cannot be
used to debug real-time programs. The AIM 65 breakpoints can also
be disabled (but retained intact), using the Monitor's 4 command,
in case you want to execute the program without them.

RESET CONSIDERATIONS

As you know, the contents of the program counter determine
the memory location from which the 6502 microprocessor will fetch
the next instruction to be executed. In previous chapters, we dis
cussed how the program counter is incremented after each instruc
tion byte is fetched in a sequentially executing program, and how
the program counter can be changed if a branch, Jump (JMP),
Jump to Subroutine (JSR), Return from Subroutine (RTS), or
Return from Interrupt (RTI) instruction is executed, but nowhere
have we mentioned how the program counter is initialized. That
is, how it receives its initial contents when power is applied to the
system. This omission is comparable to describing a trip without
mentioning where the trip originated!

The signal that initializes the program counter and, thereby,
initiates 6502 microprocessor operation, is an externally generated
signal called RES (~et). This signal must be applied to Pin 40 of
the 6502 integrated circuit, and is used to reset or start the micro
processor from a power-down condition. While RES is held low
(to ground), the 6502 microprocessor is in a "disabled" state; in
formation can be neither written to nor read from it, and the con
tents of the internal registers are undefined.

After power has reached the +5-volt level on RES, the 6.502
microprocessor will immediately initiate a six-cycle start sequence2 •

During this sequence, the 6502 microprocessor sets the IRQ Dis
able bit (I) of the processor status register to "lock out" external
interrupts while the microprocessor is being initialized, and loads
the contents of memory locations $FFFC and $FFFD into the
low-order and high-order bytes, respectively, of the program
counter. These two locations, $FFFC and $FFFD, must contain
the address of the first instruction to be executed bv the 6502 micro
processor. This is the starting address of an initialization program.
(Since the contents of these locations must be preserved while the
power is off, they must reside in ROM. In fact, the initialization
program that these locations address must also reside in ROM.)

Example 7-4 shows a typical sequence of instructions in a reset
program. This program begins by initializing the Stack Pointer.
The Stack Pointer is normally initialized to point to location $01FF,
as it is here, because that is the starting location of the stack, but

INTERRUPTS AND RESETS 177

there is no reason why a different reset program could not initialize
the Stack Pointer to some other page one location. vVhy is the
Stack Pointer initialization assigned the highest priority in this
program? It is assigned this priority so that an immediate non
maskable interrupt (NMI). such as a power failure, can be prop
erly serviced. After initializing the Stack Pointer, the program
should initialize the registers of the various peripheral I/ 0 devices
in the svstem. The I/O initialization instructions are not shown
hecause they depend on the configuration of the svstem. The next
three instructions (LDA #00, TAX, and TAY) load zeroes into
the accumulator, the X register, and the Y register, respectively.

Example 7-4: A 6502 Microprocessor Reset Program

;THIS PROGRAM INITIALIZES A 6502-BASED MICROCOMPUTER SYSTEM

;FOLLOWING POWER-ON OR RESET

RESET LDX #$FF ;INITIALIZE STACK POINTER TO $01FF
TXS

Configure I/ 0 devices in the system

LDA #OO ;INITIALIZE REGISTERS TO ZERO
TAX

TAY

CLD ;CLEAR DECIMAL MODE
CLC ;CLEAR CARRY

CLI ;ENABLE INTERRUPTS

JMP USE RP ;EXECUTE USER PROGRAM

Some system reset programs do not include register initialization,
but we did it here to emphasize that the contents of these registers
at power-up are undefined. The 6502 microprocessor does not clear
them to zero during its six-cycle start sequence. The next two in
structions, CLD and CLC, are arbitrary; some reset programs may
set one or both of these bits, other reset programs may clear one
and set the other. vVith the stack and all registers now established,
the next instruction, CLI, enables IRQ interrupt requests. (You
will recall that these interrupts were disabled as part of the start
sequence of the 6502 microprocessor.) The final instruction in the
reset program executes a jump to the program of the user, which
is assigned the label USERP in this example.

Restarting a System

There are times other than power-up when you will want to be
able to initialize the microcomputer system to a known state. These
include instances in which a program has somehow entered an
endless loop, or the malfunction of some device causes the system
to "hang up." As an alternative to turning the power off, which

178 6502 SOFTWARE DESIGN

will cause information in R/vV memory to be lost, most microcom
puter systems allow the RES signal to be activated by a pushbutton
(as with the AIM 65) or by some other means.

Regardless of the source of the RES signal, the response of the
6502 microprocessor will be the same. It will execute the six-cycle
start sequence and fetch the address of the reset program from
locations $FFFC and $FFFD. Our sample reset program (Ex
ample 7-4) contained no provision to differentiate a power-up
reset from an externally initiated restart, but there is no reason
why you cannot design such a provision into a system reset pro
gram. For example, the reset program of the AIM 65 Monitor
(RSET, entry address $EOBF) does contain such a provision. In the
AIM 65 Microcomputer User's Guide:i, a power-up reset is referred
to as a "cold" reset and a RESET-button-initiated restart is referred
to as a "warm" reset.

A "cold" reset (power-up) produces the following results:

• The processor status register, the program counter, the accu
mulator, the X register, and the Y register all contain a value
of zero.

• The Stack Pointer contains a value of $FF, which causes it
to point to location $01FF.

• The register trace and instruction trace are off.
• The printer is enabled.
• AIM 65 breakpoints are disabled.
• The on-board printer, display, and keyboard devices are in

itialized.
• Two Monitor cassette-tape parameters (NPUL and TIMG) in

locations $A40A through $$A40D are initialized.
• Five user-alterable Monitor parameters (NMIV2, IRQV2,

DILINK, TS PEED, and GAP) in locations $A402 through
$A409 are initialized.

A "warm" reset produces the same results, except that it does not
alter the contents of the user-alterable Monitor parameters; these
parameter locations will contain the same values that they had
before the RESET button was pressed.

SUMMARY

In this chapter, we discussed interrupts and resets, and an in
terrupt-related topic, breaks. There are two types of interrupts
maskable interrupt requests and nonmaskable interrupts. External
devices use the IRQ line to present interrupt requests to the 6502
microprocessor. These requests are recognized only if the IRQ

INTERRUPTS AND RESETS 179

Disable bit (I) of the processor status register is zero, otherwise,
they are ignored. The 6502 microprocessor is notified of high-pri
ority events, such as a power failure, on the NMI line. These inter
rupts cannot be disabled (ignored) and are accepted immediately
after the current instruction has been executed.

Resets also come in two forms-power-up reset and restart. Both
are initiated by the RES line of the 6.502 microprocessor, and differ
only in the software used to service them. The 6502 microprocessor
services interrupts, reset, and the BRK instruction through vector
pointers-these are dedicated pairs of memory locations that hold
the starting address of the appropriate service routine. Table 7-1
summarizes the vector pointers.

Table 7-1. The 6502 Vector Pointers

Vector Pointer

Parameter Low Address High Address

NMI $FFFA $FFFB
RES $FFFC $FFFD
IRQ $FFFE $FFFF
BRK $FFFE $FFFF

REFERENCES

1. The idea of comparing "interrupts" to telephones was obtained from an
article by Atkins, R. T. "What Is an Interrupt," BYTE March 1979, pp. 230-
236. This excellent introduction to interrupts is highly recommended.

2. For details of the start sequence, see the R6500 Microcomputer System Pro
gramming Manual, Section 9.2, Rockwell International, Anaheim, CA, 1978.

3. The "warm" reset and "cold" reset of the AIM 65 are described in the
AIM 65 Microcomputer User's Guide, Sections 1.9.1, 7.3, and 7.6, Rockwell
International, Anaheim, CA.

General-Purpose
Input/Output Devices

8

Interfacing a microprocessor with peripheral input/ output de
vices is 11sually one of the biggest stumbling blocks for system
designers. If the interfaces are constructed \\~ith discrete compo
nents (resistors, capacitors, registers, logic gates, ancl so on), they
can easily occupy one or more printed-circuit boards, and can take
months to debug so that everything is \\·orking properly. Hccog
nizing this problem, the manufacturers of the 6.500-family products
have attempted to lessen the design load hy offering a variety of
general-purpose I I 0 circuits, or devices. These devices arc not
specific to any one peripheral but, instead, they include various
com hi nations of features (parallel interface ports, counters, timers,
and mixes of read/write and ROM memory storage) that are com
mon to many different interfaces. This allows the system designer
to quickly implement an interface for a particular peripheral by
selecting one general-purpose I/0 device and configuring that de
vice to communicate with his peripheral.

How is a general-purpose I/0 device configured for use with
a particular peripheral? It is configured physically, by making the
proper \viring interconnections and, perhaps, by adding a few sup
port components (line drivers or multiplexors, for example). It is
also configured by writing software programs that "talk" to the
peripheral. :\fter completing these two steps, the general-purpose
I/ 0 device becomes a keyboard interface, cassette-recorder inter
face, display interface, or an interface for some other peripheral

180

GENERAL-PURPOSE INPUT/OUTPUT DEVICES 181

Such an interface is usually not only cheaper and more reliable
than the comparable interface constructed with discrete compo
nents, hut it also cuts the design cycle time to a fraction of the
time that it would take to do the job using discrete components.

The 6.500 family includes two types of general-purpose I/0 de
vices-1/0 interface adapters and memory-I/0-timer combination
devices. There are two I/0 interface adapters:

• 6520 Peripheral Interface Adapter (PIA)-The PIA has two
8-bit bidirectional l/O ports and four peripheral control/in
terrupt lines (two control lines for each port). Each of the 16
lines that forms the two I/0 ports can be selected, under pro
gram control, to function as either an input line or an output
line.

• 6522 Versatile Interface Adapter (VIA)-The VIA has all of
the features of the PIA, hut it also includes two 16-bit program
mable interval timers/ counters and an 8-bit shift register for
serial-to-parallel and parallel-to-serial conversion.

Since this book deals with software design, rather than with hard
ware interfacing, our <liscussion in this chapter of the PIA and
the VIA will focus on the programming aspects of these devices.
For hardware interfacing considerations, see Reference 1.

There are currently four different memory-I/0-timer combina
tion devices in the 6500 family. They are:

• 6530 ROM-RAM-I/0-Timer (RRIOT)-The RRIOT includes
a 1024 X 8 ROM, a 64 X 8 static Read/Write memory, two
8-bit bidirectional I/ 0 ports, and an 8-bit interval timer.

• 6531 ROM-RAM-l/0-Counter (RRIOC)-The RRIOC in
cludes a 2048 X 8 ROM, a 128 X 8 static Read/Write memory,
an 8-bit serial channel, two bidirectional I/0 ports (eight lines
on one port, seven lines on the other), and a 16-bit timer/
counter.

• 6532 RAM-l/0-Timer (RIOT)-The RIOT includes a 128 x 8
static Read/Write memory, two 8-bit bidirectional I/0 ports,
and a programmable 8-bit interval timer.

• 6534 ROM-l/0-Counter (RIOC)-The RIOC includes a
4096 x 8 ROM, an 8-bit serial channel, two bidirectional l/O
ports (14 data lines total), and a 16-bit counter I latch with
interval timer, pulse generator, and event counter modes.

Due to space considerations, the memory-I/0-timer combination
devices are not covered in this book. Interested readers should
consult References l and 2 for descriptions of the 6530 RRIOT
and the 6532 RIOT devices, and should contact Rocbvell Interna-

182 6502 SOFTWARE DESIGN

tional, Synertek, or MOS Technology for literature on the 6531
RRIOC and the 6534 RIOC devices.

Integrated circuit manufacturers also offer four peripheral con
troller devices:

• 6541 Programmable Keyboard/Display Controller (PKDC).
• 6545 CRT Controller (CRTC).
• 6592 Printer Controller.
• 6551 Asynchronous Communication Interface Adapter (ACIA).

Again, interested readers should contact the individual manufac
turers for details on their products.

THE 6520 PERIPHERAL INTERFACE ADAPTER (PIA)

The 6520 IC is one of the most commonly used 1/0 devices in
the 6500 family. A pin-compatible equivalent of the Motorola
MC6820, the 6520 PIA provides virtually all of the necessary cir
cuitry to interface a 6500-family microprocessor to a printer, dis
play, keyboard, bank of switches, or any variety of other peripheral
devices. The PIA communicates with the microprocessor on the
system buses (data, address, and control), and it communicates
with attached peripherals via two 8-bit ports, called Port A and
Port B. Port A is usually an input port and Port B is usually an
output port, but each of the 16 lines that comprise the two ports
can be independently programmed to function as either an input
or an output port. Each port also has two control lines; one is an
input line that presents peripheral status to the PIA, and the other
can be selected as either an input line or as a multimode output
line.

Fig. 8-1 shows the internal block diagram of the PIA. The micro
processor side of the interface contains:

• Data Bus Buffers that transfer the contents of the system Data
Bus to and from the microprocessor.

• A Data Input Register that latches data from the microproc
essor during the cp2 clock pulse, for subsequent transfer to one
of the six addressable registers of the PIA.

• Chip Select and R/W Control Logic that accepts address and
control information from the microprocessor.

Each bidirectional port (Port A and Port B) is supported by:

• A Data Direction Register. Each hit of the data direction reg
ister determines whether its corresponding port line shall func
tion as an input (0) line or an output (1) line.

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES

IRQA -+---------------------1

DO
01
02
03
04
05
06
07

CS!
CS2
CS3
RSO
RS!
R/W

ENABLE
RESET

DATA BUS
BUFFERS

1DBB1

DATA INPUT
REGISTER

1DIRI

CHIP SELECT
AND R/W
CONTROL

CONTROL
REGISTER A

1CRA1

PERIPHERAL
OUTPUT

REGISTER A
10RA1

PERIPHERA~
OUTPUT

REGISTER B
10RB1

CONTROL
REGISTER B

1CRBI

IRQB---------------------t

INTERRUPT STATUS
CONTROL A

DATA DIRECTION
REGISTER A

!DORAi

PERIPHERAL
INTERFACE
BUFFER A

PERIPHERAL
INTERFACE
BUFFER B

DATA DIRECTION
REGISTER 8

1DDRB1

INTERRUPT STATUS
CONTROL B

183

CA!
CA2

PAO
PA!
PA2
PA3
PA4
PA5
PA6
PAI

PBO
PB!
PB2
PB3
PB4
PB5
PB6
PB/

CB!
CB2

Courtesy Rockwell International

Fig. 8-1. Block diagram of the 6520 Peripheral Interface Adapter.

• A C antral Register that holds the interrupt status flags of the
port and selects internal logic connections within the PIA.

• A Peripheral Output Register that holds data being transferred
from the microprocessor to the attached peripheral.

• Two control lines that are configured by the contents of the
Control Register.

• A Peripheral Interface Buffer that drives the I/0 port lines.

184 6502 SOFTWARE DESIGN

PIA REGISTER ADDRESSING

Six of the internal registers of the PIA arc addressable-periph
eral interface buffers A and B, data direction registers DDRA and
DDRB, and control registers CH.A and CH.13. The register address
ing is performed by register select lines H.SO and HSl, \vhich are
normally tied to low-order address lines AO and Al, respectively.
As you know, two address lines can address only four locations in
memory. Two of these six locations are slwrecl by the peripheral in
terface buffers and the control registers. Bit 2 of the control register
determines whether the peripheral interface buffer (1) or the data
direction register (0) is addressed by register select lines H.SO and
RSl. This address sharing presents no inconvenience to the pro
grammer because the data direction registers must be accessible
only at power-up initialization time, when they are used to con
figure the individual port lines as inputs or outputs. Once the data
direction registers have been initialized, their contents remain con
stant and the shared addresses are used to write data into, or read
data out of, the peripheral interface buffers. Table 8-1 summarizes
register addressing for the PIA.

Table 8-1. Addressing PIA Internal Registers

Register Select Co'ltrol Register
(Address) Lines DOR Access Bit

RSI RSO CRA-2 CRB-2 Register Selected
-·

0 0 1 x Peripheral interface buffer A.

0 0 0 x Data direction register A.
0 1 x x Control register A.
1 0 x 1 Peripheral interface buffer B ..
1 0 x 0 Data direction register B.
1 1 x x Control register B.

--
X = 0 or 1.

\Vith register select lines H.SO and RSl tied to address lines AO
and Al, the four PIA register addresses represent four consecutive
memory locations. For the remainder of this section, we will use
four symbolic labels to denote the four addresses:

• PIAD represents the address shared hy peripheral interface
buffer A and data direction register A.

• PIAC represents the address of control register A.
• PIBD represents the address shared by peripheral interface

buffer B and data direction register 13.
• PIBC represents the address of control register B.

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 185

7 6 5 I 4 I 3 2 1 I 0

CRA IRQAl IRQA2 CA2 CONTROL DORA CAI CONTROL ACCESS

7 6 5 I 4 I 3 2 l I 0

CRB IRQBI IRQB2 CB2 CONTROL DDRB CB! CONTROL ACCESS

Fig. 8-2. Organization of the PIA control registers.

PIA CONTROL REGISTERS

Fig. 8-2 shows the organization of the PIA control registers CRA
and CRB. As can be seen, each of these registers is divided into
five fields:

•Bits 0 and 1, CAl (CBl) Control-These bits determine
whether the interrupt status bit in Bit 7, IRQAl (IRQBl), is
set on the high-to-low or low-to-high transition of the control
line CAl (CBl), and whether the status bit setting will also
activate the interrupt request line, IRQA (IRQB). Table 8-2
sumarizes the combinations of Bits 0 and 1.

• Bit 2, DD RA (DD RB) Access-This bit selects the data direc
tion register (0) or the peripheral interface buffer (1), as pre
viously described.

• Bits 3, 4, and 5, C A2 (C B2) C antral-The CA2 (CB2) control
line can function as either an input to the PIA or as an output

Table 8-2. Control of Interrupt Inputs CAl and CBl

Transition of Bit 7,
CRA (CRB) Interrupt Input Interrupt Flag Interrupt Request

Bit 1 Bit 0 CAl(CBl) IRQAl (IRQBl) IRQA (IRQB)

0 0 i Active Set on i of CA 1 (CB 1) Disabled-IRQ remains
high.

0 1 i Active Set on i of CA 1 (CB 1) IRQ goes low when /RQA 1
(IRQBl) goes high.

--
1 0 1' Active Set on t of CA 1 (CB 1) Disabled-IRQ remains

high.

1 1 1' Active Set on t of CA 1 (CB 1) IRQ goes low when /RQA 1
(IRQBl) goes high.

Notes:
1. 1' indicates positive transition (low to high).
2. i indicates negative transition (high to low).

186 6502 SOFTWARE DESIGN

Table 8-3. Control of CA2 and CB2 as Interrupt Inputs (CRAS, CRBS are low)

Transition of Bit 6,
CRA (CRB)

Interrupt Input Interrupt Flag Interrupt Request
Bit 5 Bit 4 Bit 3 CA2 (CB2) IRQA2 (IRQB2) IRQA (IRQB).

0 0 0 .j, Active Set on .j, of CA2 Disabled-iRQ remains
(CB2) high.

0 0 1 .j, Active Set on .j, of CA2 I RQ goes low when I RQA2
(CB2) (IRQB2) goes high.

0 1 0 j Active Set on j of CA2 Disabled-IRQ remains
(CB2) high.

0 1 1 j Active Set on j of CA2 iRQ goes low when IRQA2
(CB2) (I RQB2) goes high.

Notes:
1. j indicates positive transition (low to high).
2 . .j, indicates negative transition (high to low).

to the peripheral, based on the state of Bit 5. If CA2 (CB2) is
configured as an input (Bit 5 = 0), the four combinations of
Bits 3 and 4 produce the same effect on IRQA2 (IRQB2) that
Bits 0 and I produced on IRQAI (IRQBI). These combina
tions are summarized in Table 8-3.

If CA2 (CB2) is configured as an output (Bit 5 = 1), the
combinations of Bits 3 and 4 can cause CA2 (CB2) to func
tion in one of four different modes-as a "handshake" acknowl
edgment to the peripheral, as a one-cycle pulse for counting
or shifting, as a low-level signal, or as a high-level signal.
Tables 8-4 and 8-5 summarize these combinations for CA2 and
CB2, respectively.

• Bit 6, IRQA2 (IRQB2)-This is an interrupt status flag that is
set by an active transition on control line CA2 (CB2). If CA2
(CB2) is configured as an input, it is cleared by reading pe
ripheral interface buffer A (B). If CA2 or CB2 is configured
as an output, the clear conditions are defined in Table 8-4 or
8-.5, respectively.

• Bit 7, IRQAl (IRQBl)-This is an interrupt status flag that
is set by an active transition on control line CAI (CBI) and
is cleared by reading peripheral interface buffer A (B).

It is the various combinations of the two control lines of each
port that give the PIA true versatility for input/ output. Through
the control registers, you can specify which signal transition (low
to-high or high-to-low) will set the status Hag of the control reg
ister and, whether or not, the setting of a status Hag will generate
an interrupt request (IRQA or IRQB) to the 6502 microprocessor.
Further, if CA2 or CB2 is specified as an output signal, the control

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 187

Table 8-4. Control of CA2 as an Output (CRAS is high)

CRA

Bit 5 Bit 4 Bit 3 Mode Operation of CA2

1 0 0 Handshake on Read CA2 is set high on an active transition
of the CA l signal and set low when the
6502 microprocessor reads Peripheral
Interface Buffer A. This allows positive
control of data transfers from the pe-
ripheral to the 6502 microprocessor.

--
1 0 1 Pulse output CA2 goes !ow for one cycle after the

6502 microprocessor reads Peripheral
Interface Buffer A. This pulse can be
used to signal the peripheral that data
was taken.

l l 0 Level output CA2 goes low when the 6502 micro-

processor writes a 0 into CRA3, and
stays low until the 6502 microprocessor
writes a 1 into CRA3.

1 l 1 Level output CA2 goes high when the 6502 micro-
processor writes a l into CRA3, and
stays high until the 6502 microproces-
sor writes a 0 into CRA3.

register allows you to choose one of four different modes in which
this control signal will operate-a handshake mode, a pulse output
mode, and two level output modes. Since Port A is normally used
as an input port and Port B is normally used as an output port, the
handshake and pulse output modes differ between the two ports.

The handshake mode is used to control peripheral devices whose
operation must be synchronized to the program being executed by
the 6502 microprocessor (Fig. 8-3). Such devices include a paper
tape reader (input) and a paper-tape punch (output). On Port
A (the input port), CAI acts as a data ready signal to the 6502
microprocessor and CA2 acts as a data not taken signal to the
peripheral (a paper-tape reader, in our example). \-Vhen the 6502
microprocessor reads the input data from the PIA, data not taken
(CA2) is cleared, notifying the peripheral that the 6.502 microproc
essor is ready to accept a new data byte, if there is one.

On Port B (the output port), CBI acts as a peripheral ready
signal to the 6502 microprocessor and CB2 acts as a data not avail
able signal to the peripheral (a paper-tape punch, in our example).
\-Vhen the 6502 microprocessor writes the data byte to the PIA,
data not available (CB2) is cleared. notifying the peripheral that
data is available.

The pulse output mode is used to inform a peripheral device
that data has been rC'ad from the PIA or written to the PIA. On

188 6502 SOFTWARE DESIGN

Port A (the input port), CA2 acts as a one-cycle data taken strobe
to the peripheral device. On Port B (the output port), CB2 acts
as a one-cycle data available strobe to the peripheral device.

The level output modes use CA2 and CB2 to provide an active
high or active-low pulse, of arbitrary length, to the attached pe-

NO

ACTIVE TRANSITION
ON CA!

SET IRQAl IN
CONTROL REGISTER

IRQA LOW
TO 6502

END

NO

DATA READY
SIGNAL TO PIA

DATA READY -
SIGNAL TO 6502
MICROPROCESSOR

DATA NOT TAKEN -
SIGNAL TO PERIPHERAL

INTERRUPT REQUEST TO
6502 MICROPROCESSOR

CLEAR DATA
NOT TAKEN

Fig. 8-3. Handshaking on Port A of a PIA.

GENERAL-PURPOSE INPUT f OUTPUT DEVICES 189

Table 8-5. Control of CB2 as an Output (CRBS is high)

CRB

Bit 5 Bit 4 Bit 3 Mode Operation of CB2

l 0 0 Handshake on Write CB2 is set high on an active transition
of the CB l signal and set low when the
6502 microprocessor writes to Peri-
pheral Interface B. This allows positive
control of data transfers from the 6502
microprocessor to the peripheral.

l 0 l Pulse output CB2 goes low for one cycle after the
6502 writes data to Peripheral Interface
Buffer B. This can be used to signal the
peripheral that data is available.

l l 0 Level output CB2 goes low when the 6502 micro-

processor writes a 0 into CRB3, and
stays low until the 6502 microprocessor
writes a l into CRB3.

l l l Level output CB2 goes high when the 6502 micro-

processor writes a l into CRB3, and
stays high until the 6502 microprocessor
writes a 0 into CRB3.

ripheral device (s). These modes can he used to load registers,
turn de\ ices on or off, or control operating modes.

CONFIGURING THE PIA

At power-up, the system reset signal (RES) automatically clears
the internal registers of the PIA to zero. \\'hat configuration has
this produced? It has produced the following:

• Port A and Port B are both input ports.
• Each of the four interrupt flags (IR QA I, IRQA2, IRQBI, and

IRQB2) is an input that will set on the high-to-low transition
of its associated interrupt input (CAI, CA2, CBI, and CB2).

• Interrupt requests IRQA and IRQB arc disabled.
• The four registers that can be addressed at this time are the

data direction register A, the control register A, the data direc
tion register B, and the control register B.

This configuration can be modified to reflect your particular system
by writing into the four addressable registers, beginning with data
direction register A.

As described previously, the 0 or I state of each data direction
register bit causes the associated line on the port to function as
either an input (0) or an output (I). Some simple examples for
Port A are:

190 6502 SOFTWARE DESIGN

LOA #$FF ;ALL LINES OUTPUTS
STA PIAO ;PROGRAM DATA DIRECTION REGISTER A

and

LDA #$FO ;MAKE LINES 0-3 INPUTS, 4-7 OUTPUTS
STA PIAO ;PROGRAM DATA DIRECTION REGISTER A

The data direction registers have a one-to-one correlation with the
port pins, and are easy to configure.

A bit more thought must go into configuring the control registers
of the PIA. Let us take a look at a few Port A examples, followed
by some Port B examples. In all thB examples, you will note that
Bit 2 of the control register is set to a logic I, once the data direc
tion register has been initialized. This allows the 6502 microproc
essor to address the peripheral interface buffer on subsequent
accesses of the PIAD or PIBD address.

1. Port A is a simple output port, with no control lines:

LOA #$FF ;ALL LINES OUTPUTS
STA PIAO
LOA #%00000100 ;SELECT PERIPHERAL INTERFACE BUFFER A
STA PIAC

2. Port A is an input port. A high-to-low transition on CAI gen
erates an interrupt request on IRQA.

LDA #%00000101 ;SELECT NEGATIVE TRANSITION, WITH IRQA
STA PIAC

The data direction register (PIAD) was not altered, since
RES configured it as an input port.

3. Port A is an input port. A high-to-low transition on CAI
enables CA2 to output a one-cycle pulse to the peripheral on
the next read operation.

LDA #%00101101 ;SELECT NEGATIVE TRANSITION, WITH IRQA,
; AND CA2 PULSE OUTPUT

STA PIAC

The one-cycle Input Completed pulse will follow a read in
struction such as:

LOA PIAO

Note that this instruction is reading peripheral interface
buffer A, since Bit 2 of the control register is now a 1.

4. Port A is an input port. A high-to-low transition on CAI sets
CA2 high, as a handshake input acknowledge strobe.

LOA #%00100101 ;SELECT NEGATIVE TRANSITION, WITH IRQA,
; AND CA2 HANDSHAKE ON READ

STA PIAC

GENERAL-PURPOSE INPUT f OUTPUT DEVICES 191

The handshake acknowledgment on CA2 will go high with
the negative transition of CAI, and will stay high until a read
operation such as:

LDA PIAD

Some Port B examples are:
1. Port B is an output port. A low-to-high transition on CBI

enables CB2 to output a one-cycle pulse to the peripheral on
the next Write operation.

LDA #$FF ;ALL LINES OUTPUTS
STA PIBD
LDA #%00101111 ;SELECT POSITIVE TRANSITION, WITH IRQB,

; AND CB2 PULSE OUTPUT
STA PIBC

The one-cycle Data Ready pulse will follow a Write instruc
tion such as:

STA PIBD

Note that this instruction is writing to peripheral interface
buffer B, since Bit 2 of the control register is now a 1.

2. Port B is an output port. A low-to-high transition on CBI
sets CB2 high, as a handshake output request strobe.

LDA #$FF ;ALL LINES OUTPUTS
STA PIBD
LDA #%00100111 ;SELECT POSITIVE TRANSITION, WITH IRQB,

; AND CB2 HANDSHAKE ON WRITE
STA PIBC

The handshake signal on CB2 will go high with the positive
transition of CBI, and will stay high until a Write operation
such as:

STA PIBD

3. Port B is an output port. A low-to-high transition on CBI sets
CB2 high.

LDA #$FF ;ALL LINES OUTPUTS
STA PIBD
LDA #%00111111 ;SELECT POSITIVE TRANSITION, WITH IRQB,

; AND LEVEL OUTPUT ON CB2
STA PIBC

This signal will stay high until the 6502 microprocessor writes
a zero into Bit 3 of control register B (CRB3).

192 6502 SOFTWARE DESIGN

DATA TRANSFERS USING A PIA

Once the data direction registers and the control registers have
been properly configured, the PIA is ready to participate in data
transfer operations between the 6502 microprocessor and its at
tached peripheral devices. You will recall that, in each of the pre
ceding examples, we set Bit 2 of the control register. Setting that
bit automatically causes the peripheral interface buffers to "oc
cupy" the memory addresses that were previously "occupied'' by
the data direction registers. Therefore, the registers assigned to our
symbolic labels are:

• PIAD represents the address of peripheral interface buffer A.
• PIAC represents the address of control register A.
• PIBD represents the address of peripheral interface buffer B.
• PIBC represents the address of control register B.

\Vhich instructions are used to transfer data using a PIA? To
output data to a peripheral device, you could use any one of the
store instructions. For example, to output data to a peripheral on
Port A, you could use STA PIAD, STX PIAD, or STY PIAO. To
input data from a periph~ral device, you could use any one of
the load instructions. For example, to input data from a peripheral
on Port A, you could use LOA PIAD, LDX PIAO, or LDY PIAD.

Your programs must also include instructions to interrogate the
status bits in the control register (IRQAl, IRQA2, IRQBl, and
IRQB2). Since these bits occupy Bits 6 and 7, they are readily
testable using the BIT instruction, which loads the state of Bit 6
and Bit 7 into the Overflow flag (V) and the Negative flag (N),
respectively, of the proces~;or status register. For example, to inter
rogate the Peripheral Ready status on Bit 7 of Port A, you might
use the sequence:

PNOTRD BIT PIAC ;IS PERIPHERAL READY?

BPL PNOTRD ;NO. LOOP UNTIL IT IS

One subtle point that was mentioned in our description of the
control register fields, but never emphasized thereafter is:

The control register status hits, Bits 6 and 7, can be cleared
only by reading the peripheral interface buffer.

For this reason, programs that write data to the peripheral device
must include a "dummy" Read instruction-to clear the status bits.
The "dummy" Read may either precede or follow the \Vrite (store)
instruction. This requirement can be illustrated by updating the
peripheral readu sequence just given, as shown in Example 8-1.

GENERAL-PURPOSE INPUT f OUTPUT DEVICES 193

Example 8· 1: Clearing PIA Status Sits After a Write

PNOTRD BIT PIAC ;IS PERIPHERAL READY?

BPL PNOTRD ;NO. LOOP UNTIL IT IS

STA PIAD ;YES. OUTPUT DATA TO PERIPHERAL

LDA PIAD ; THEN CLEAR READY FLAG

THE 6522 VERSATILE INTERFACE ADAPTER (VIA)

The 6522 Versatile Interface Adapter (VIA) provides all of the
capability of the 6520 PIA, but, in addition, it contains a pair of
interval timers, a shift register, and input data latching on the
peripheral interface ports. The expanded handshaking ~apability
also allows control of data transfers behveen VIAs in multiple-proc
essor configurations.

Like the 6520 PIA, the 6522 VIA has two bidirectional program
mable ports. However, several I/O lines of the VIA can be con
trolled from the interval timers for generating square waves and for
counting externally generated pulses. Fig. 8-4 shows the internal
block diagram of the VIA. The internal elements include:

• Data Bus Buffers that transfer the contents of the system data
bus to and from the microprocessor.

• Interrupt Control Logic that is capable of generating an in
terrupt request signal (IRQ) to the microprocessor. This logic
contains two 8-bit registers, an interrupt flag register (IFR),
and an interrupt enable register (IER). The interrupt flag
register maintains interrupt request flags for seven different
conditions in the VIA. The interrupt enable register permits
the interrupt request flags of the IFR to be selectively enabled
or disabled (masked).

• Function Control Logic that contains two 8-bit control registers,
a peripheral control register (PCR), and an auxiliary control
register (ACR). The peripheral control register provides tran
sition and control-line direction functions similar to those pro
vided by the control register in the 6520 PIA. The auxiliary
control register provides control over the timers and shift
register of the VIA, and performs latch enable/disable selec
tion for the two ports.

• Two interval timers (Timer 1 and Timer 2). Each timer has
a 16-bit counter and a latch that holds the count value.

• An 8-bit Shift Register (SR) that can perform serial-to-parallel
and parallel-to-serial conversions.

• Two 8-bit bidirectional ports (Port A and Port B), similar
to those provided in the PIA, but with several valuable en
hancements.

194

iRQ

DATA
BUS

iDO·Dli

RES
RJiii
02

CS!
CS2
RSO
RS!
RS2
RS3

6502 SOFTWARE DESIGN

INTERRUPT PORT A REGISTERS
CONTROL

INPUT
INTERRUPT REGISTER A

FLAG llRAI
REGISTER ---------

ilfRI OUTPUT PORT A
--------- REGISTER A PERIPHERAL PORT A

INTERRUPT !ORAi BUFFERS IPAO·PA7)

ENABLE ---------
REGISTER DATA DIR.

(IER) REGISTER A
!DORA)

PORT A CA!

FUNCTION CONTROL HANDSHAKE
CONTROL CAZ

---------PERIPHERAL
CONTROL PORT B

REGISTER tPCRI HANDSHAKE
CONTROL

AUX I LARY
CONTROL

REGISTER !ACRI

SHIFT CB!

TIMER 1 REGISTER
ISRI CB2

LATCH ' LATCH I
HIGH ' LOW

t'lLH) I
iTllll I

I -------r-----
COUNTER : COUNTER

HIGH 1 LOW
PORT B REGISTERS

tllC·Hi I ITICli INPUT I
REGISTER B

llRB)

OUTPUT PORT B

REGISTER B PERIPHERAL PORT B

10RBI BUFFERS IPBO·PB7)

DATA DIR.

REGISTER B
iDDRBI

Courtesy Rockwell International

Fig. 8-4. Block diagram of the 6522 Versatile Interface Adapter {VIA).

Since the VIA is basically an enhanced PIA, the discussion of
the VIA will begin with a description of register addressing and
data transfers using the two ports of the VIA. We will then proceed
to a discussion of two VIA-unique features-the timers and the
shift register. The differences between the VIA and the PIA will
also be identified where appropriate.

VIA REGISTER ADDRESSING

You will recall that the PIA occupied four locations in memory
that were shared by six registers, and that register addressing was
based on two register select lines and (for sharing) a bit in the
control register. The VIA occupies 16 locations in memory, through
which 12 registers (and each 8-bit byte of the 16-bit timers) can
be accessed. The register is uniquely addressed by the four register

GENERAL-PURPOSE INPUT/OUTPUT DEVICES 195

select lines, RSO through RS3, of the VIA. Table 8-6 summarizes
the addresses for each of the registers of the VIA.

At this point, you need not worry too much about the meanings
of all the addressing combinations, but you should note that timer
addressing is varied, based on whether a Read or Write operation
is taking place. You should also note that the Port A output register
(ORA) occupies two locations-one which will cause the hand
shaking control lines to be changed (select code OOOI2) and an
other in which the handshaking control lines are not changed
(select code llib).

PARALLEL DATA TRANSFERS USING A VIA

Three different VIA registers are used to transfer parallel data
between the 6502 microprocessor and a peripheral-the data direc
tion register (DDRA, DDRB), the input register (IRA, IRB), and
the output register (ORA, ORB). The VIA data direction registers
perform the same function as they do in the PIA; they specify
whether each I/ 0 line on the port is to act as an input (0) or an
output (I) . As in the PIA, the data direction registers of the VIA
are normally initialized at power-up, and remain unaltered there
after. The input regi~ters provide temporary storage for peripheral
data that the 6502 microprocessor will read into its accumulator,
X register, or Y register with a load instruction. Similarly, the out
put registers provide temporary storage for microprocessor data
that the 6502 microprocessor writes into the VIA with a store in
struction. The VIA permits input data on both ports, and output
data on Port B, to be latched. In order to understand how the input
registers and the output registers operate during data transfers,
a brief overview of latching will now be presented.

Some peripheral devices generate a strobe signal when valid
information is output on their data lines, or when they are ready
to accept data from the microprocessor. This type of strobe signal
has already been described in the PIA section of this chapter in
the discussion on handshaking (Fig. 8-3 and the accompanying
text). You will recall that during an input operation, the peripheral
device informs the 6502 microprocessor that it has sent data to
the PIA by making an "active transition" on control line CAI or
CBI. This transition causes an interrupt status Hag, IRQAI or
IRQBI, to be set in the control register.

The VIA operates in a manner similar to the PIA. In the VIA,
the active transition on CAI or CBI causes a bit to be set in the
interrupt fiag register (IFR) of the VIA; CAI causes the CAI
interrupt Hag (IFRI) to be set, CBI causes the CBI interrupt Hag
(IFR4) to be set. The VIA gives you the option of using these

196 6502 SOFTWARE DESIGN

Table 8-6. Addressing the VIA Internal Registers

Select Lines Register Selected

RS3 RS2 RSI RSO Write Operations Read Operations

0 0 0 0 Write output register B (ORB). Read input register B (IRB).
Clear CB2 and CB l inter- Clear CB2 and CB 1 intE!r-
rupt flags (IFR3 and IFR4). rupt flags (IFR3 and IFR4).

0 0 0 1 Write output register A Read input register A (I RA),
(ORA), with effect on with effect on handshak·
handshaking. Clear CA2 ing. Clear CA2 and CA 1
and CA 1 interrupt flags (IFRO and I FR l).
(IFRO and IFRl).

0 0 1 0 Write data direction register Read data direction register
B (DDRB). B (DDRB).

0 0 1 1 Write data direction register Read data direction register
A (DDRA). A (DDRA).

0 l 0 0 Write Timer l latch low byte. Read Timer l counter low
byte. Clear Tl interrupt
flag (IFR6).

0 l 0 1 Write Timer l latch high byte. Read Timer l counter high
Clear Tl interrupt flag byte.
(IFR6). Initiate counting.

0 l 1 0 Write Timer l latch low byte. Read Timer l latch low byte.
0 l l l Write Timer l latch high byte.

Clear Tl interrupt flag
(IFR6).

l 0 0 0 Write Timer 2 latch. Read Timer 2 counter low
byte. Clear T2 interrupt
flag (IFRS).

l 0 0 1 Write Timer 2 counter high Read Timer 2 counter high
byte. Clear T2 interrupt byte.
flag (IFRS). Initiate count-
ing.

l 0 1 0 Write shift register (SR). Clear Read shift register (SR). Clear
SR interrupt flag (I FR2). SR interrupt flag (IFR2).

1 0 l l Write auxiliary control Read auxiliary control
register (ACR). register (ACR).

1 1 0 0 Write peripheral control Read peripheral control
register (PCR). register (PCR).

1 l 0 1 Write interrupt flag register Read interrupt flag register
(IFR). (IFR).

l 1 1 0 Write interrupt enable Read interrupt enable register
register (I ER). (IER).

l l l l Write output register A Read input register A (I RA),
(ORA), with no effect on with no effect on hand·
handshaking. Clear CA2 shaking. Clear CA2 and
and CA l interrupt flags CA l interrupt flags (I FRO
(IFRO and IFRl). and I FRl).

interrupt flags to latch the data into the input register or (for Port
B) the output register of the port, based on whether a latch enable
bit in the auxiliary control register (AC R) of the VIA is set to
logic 0 (latching disabled) or logic 1 (latching enabled). Bit 0

GENERAL-PURPOSE INPUT f OUTPUT DEVICES 197

of the auxiliary control register is the Port A latch enable and Bit
I of the auxiliary control register is the Port B latch enable. Fig.
8-5 illustrates input data latching on Port A. We will now summarize
Read and Write operations on both Port A and Port B. At this
point, we will not describe how to select the polarity of the active
transition (high-to-low or low-to-high) or the four control modes
(handshake, pulse output, and the two level outputs) , but will
cover these topics later in the section, when we discuss the periph
eral control register of the VIA.

Reading data from a peripheral port causes the contents of the
input register (IRA or IRB) to be transferred onto the data bus.
With latching disabled on Port A (ACRO = 0), IRA reflects the
data that is currently on the Port A I/0 lines. With latching enabled
on Port A (ACRO =I), IRA reflects the state of the Port A 1/0
lines at the time that the CAI interrupt flag (IFRI) was set by
an active transition on control line CAL

Similarly, with latching disabled on Port B (ACRI = 0), IRB
reflects the data that is currently on the Port B I/0 lines. With
latching enabled on Port B (ACRI = I), IRB reflects the state of
the Port B I/ 0 lines at the time the CBI interrupt flag (IFR4)
was set by an active transition on control line CBI.

CAI
I

76543210 7654321

INTERRUPT FLAG AUXILARY CONTROL
REGISTER llFRI REGISTER (ACRI

IFR I AGRO

TO 6502 FROM
MICROPROCESSOR PERIPHERAL

DATA BUS
BUFFERS

INPUT
REGISTER A

(IRA)

PORT A
BUFFERS (PAI

Fig. 8-S. Input data latching on Port A.

198 6502 SOFTWARE DESIGN

Example 8-2: A Simple VIA Input Routine

LOA #FF ;MAKE PORT A INPUTS
STA $A003
LOA $A001 ;INPUT DATA
STA $40 ; AND STORE IT

Output register A cannot be latched, so during the time that
data is being written to a peripheral attached to Port A, this reg
ister always reflects the data that is on the Port A I/0 lines, re
gardless of the state of the Port A latch enable (ACRO). With
latching disabled on Port B (ACRI= 0), however, ORB reflects
the data that is currently on the Port B I/0 Lnes. This condition
allows proper data to be read if the output pin is not permitted
to attain full voltage (for example, driving transistors), because
the input register B (IRB) reflects the contents of ORB, rather
than the I/0 pin. With latching enabled on Port B (ACRI== 1),
ORB reflects the state of the Port B I/0 lines at the time that the
CB 1 interrupt flag (IFR4) was set by an active transition on control
line CBI.

Before concluding this introduction to VIA data transfers, we
should look at a couple of fundamental programming examples.
Example 8-2 shows an instruction sequence that fetches data from
a simple input device (e.g., a set of switches) and stores it in
memory location $40. Example 8-3 shows an instruction sequence
that sends data to a simple output device (e.g., a set of LEDs or
relays) from location $40. Both examples assume that the VIA
occupies addresses $AOOO through $AOOF. (The author did not
pull this address range out of thin air; it happens to be the addresses
that are occupied by the user-dedicated 6522 VIA on the AIM 6.5
microcomputer board.)

Example 8-3: A Simple VIA Output Routine

LOA #FF ;MAKE PORT B OUTPUTS
STA $A002
LOA $40 ;FETCH DATA
STA $AOOO ; AND OUTPUT IT

VIA PERIPHERAL CONTROL REGISTER (PCR)

The VIA Peripheral Control Register (PCR) provides one of the
functions of the PIA control register-specifying the operation of
the port peripheral control lines-but you will see that the control
features of the VIA are much more versatile than those of the PIA.
Specifically, the VIA gives the option of preventing the interrupt
status flags in the interrupt Bag register (IFR) from being cleared
by data transfer operations (unlike the PIA, in which a data

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 199

transfer operation automatically clears the interrupt status flag).
The VIA also provides Read and Write handshaking on Port A
and Write handshaking on Port B (the PIA has no Write hand
shaking on Port A). Fig. 8-6 shows the organization of the periph
eral control register of the VIA. As you can see, the PCR has four
fields:

• Bit 0 CAl Control-This bit determines whether the CAl
interrupt flag (IFRl) will be set by a high-to-low (0) or
low-to-high (1) transition of control line CAL

• Bits 1, 2, and 3, CA2 Control-The CA2 control line can func
tion as either an input to the VIA or as an output to the pe
ripheral device, based on the state of Bit 3. If CA2 is config
ured as an input (Bit 3 = 0), then Bit 2 determines whether
the CA2 interrupt flag (IFRO) will be set on a high-to-low (0)
or low-to-high (1) transition of control line CA2. Bit 1 will
determine the conditions under which the CA2 interrupt flag

7 I 6 I 5 4 3 I 2 I I 0

CB2 CONTROL CBI CA2 CONTROL CAI
CONTROl CONTROl

Fig. 8-6. Organization of the VIA peripheral control register.

(IFRO) will be cleared. The CA2 interrupt flag will always
be cleared if you write a logic 1 into IFRO, but Bit 1 of the
PCR allows you to specify whether or not IFRO shall also be
cleared when output register A (ORA) is accessed with a
Read or a Write. If PCRl = 1, IFRO can be cleared only by
writing a logic 1 into IFRO; if PCRl = 0, IFRO will be cleared
by reading or writing ORA using either of its select codes
(OOOb or 11112), as well as by writing a logic 1 into IFRO.
Table 8-7 sumarizes these conditions.

If CA2 is configured as an output (Bit 3 = 1), the combina
tions of Bits 1 and 2 can cause CA2 to function in one of four
different modes-as a "handshake" signal to the peripheral
during Read and Write operations, as a one-cycle pulse for
counting or shifting, as a low-level signal, or as a high-level
signal. Table 8-8 summarizes these conditions. Note that in
the handshaking and pulse output modes, CA2 is affected only
by a Read or Write to output register A (ORA) using the
OOOlz select code. CA2 is unaffected if ORA is accessed via
its alternate select code, lllb

• Bit 4, C Bl C antral-This bit determines whether the CBl in-

200 6502 SOFTWARE OF.SIGN

Table 8-7. Control of CA2 as an Input (PCR3 is low)

PCR CA2 Interrupt Flag (IFRO)

Bit 3 Bit 2 Bit I Set by Cleared by

0 0 0 J, of CA2 Read or Write of ORA, or by writing
logic l into IFRO.

0 0 l J, of CA2 Writing logic l into I FRO.

0 l 0 t of CA2 Read or Write of ORA, or by writing
logic l into IFRO.

0 l l t of CA2 Writing logic l into IFRO.

Notes:
l. 1' indicates positive transition (low to high).
2. J, indicate negative transition (high to low).

terrupt flag (IFR4) will be set by a high-to-low (0) or low
to-high (1) transition of control line CBI.

• Bit 5, 6, and 7, CB2 Control-The CB2 control line can func
tion as either an input to the VIA or as an output to the periph
eral device, based on the state of Bit 7. If CB2 is configured as
an input (Bit 7 = 0), then Bit 6 determines whether the CB2

Table 8-8. Control of CA2 as an Output (PCR3 is high)

PCR

Bit 3 Bit 2 Bit I Mode Operation of CA2

l

l

l

l

0 0 Handshake on CA2 is set high on an active transi-
Read or Write tion of the CA l signal and set low

when the 6502 microprocessor

Reads or Writes output register A
(code 0001 2).

0 l Pulse output CA2 goes low for one cycle after
the 6502 microprocessor Reads or
Writes output register A (code
0001,).

l 0 Level output CA2 is held low in this mode.

l l Level output CA2 is held high in this mode.

interrupt flag (IFR3) wil be set on a high-to-low (0) or low
to-high (1) transition of control line CB2. Bit 5 determines the
conditions under which the CB2 interrupt flag (IFR3) will be
cleared. The CB2 interrupt flag will always be cleared if you
write a logic 1 into IFR3, but Bit 5 allows you to specify
whether or not IFR3 shall also be cleared on an access (a
Read or a Write) of output register B (ORB). If PCR5 = 1,
IFR3 can be cleared only by writing a logic 1 into IFR:3; if
PCR5 = 0, IFR3 will be cleared by reading or writing ORB,

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 201

Table 8-9. Control of CB2 as an Input (PCR7 is low)

PCR CB2 Interrupt Flag (IFRJ)

Bit 7 Bit 6 Bit S Set by Cleared by

0 0 0 J, of CB2 Read or Write of ORB, or writing

logic l into IFR3.

0 0 l J, of CB2 Writing logic l into I FR3.

0 l 0 t of CB2 Read or Write of ORB, or writing
logic l into IFR3.

0 l l t of CB2 Writing logic l into I FR3.

Notes:

l. t indicates positive transition (low to high).
2. J, indicates negative transition (high to low).

as well as by writing a logic l into IFR3. Table 8-9 summarizes
these conditions.

If CB2 is configured as an output (Bit 7 = l), the combina
tions of Bits 5 and 6 can cause CB2 to function in one of four
different modes-as a "handshake" signal to the peripheral
during \Vrite operations, as a one-cycle pulse for counting or
shifting, as a low-level signal, or as a high-level signal. Table
8-10 summarizes these conditions.

Table 8-10. Control of CB2 as an Output (PCR7 is high)

PCR

B:t 7 Bit 6 Bit 5 Mode Operation of CB2

l 0 0 Handshake on Write CB2 is set high on an active

transition of the CBl signal

and set low when the 6502
microprocessor Writes output
register B.

l 0 l Pulse output CB2 goes low for one cycle
after the 6502 microprocessor
Reads or Writes output register
B.

l l 0 Level output CB2 is held low in this mode.

l l l Level output CB2 is held high in this mode.

Programming Examples For the VIA Control Modes

It is time now to look at several simple examples of the types of
instruction sequences that one would use with the VIA control
modes that have just been discussed. For these examples, assume
that the VIA occupies addresses $AOOO through $AOOF.

202 6502 SOFTWARE DESIGN

Example 8-4: An Input Data Transfer With One Control Signal

LDA #OO ;MAKE PORT A INPUTS

STA $A003
STA $AOOC

CHKCA l LDA $AOOD

;SET CA l INTERRUPT FLAG ON
; NEGATIVE TRANSITION

;FETCH IFR

AND #2
BEQ CHKCAl
LDA $A001
STA $40

;DATA READY?
;LOOP UNTIL DATA READY

THEN INPUT DATA
; AND STORE IT

The routine in Example 8-4 fetches data from an input device
that produces an active high-to-low data ready signal, and stores
the data in memory location $40. Example 8-5 is a similar routine
that illustrates an output operation. The routine in this example
sends data to an output device that produces an active low-to
high peripheral ready signal; the data is contained in memory loca-

Example 8-5: An Output Data Transfer With One Control Signal

LDA #$FF ;MAKE PORT B OUTPUTS
STA $A002
LDA #$10 ;SET CBl INTERRUPT FLAG ON

; POSITIVE TRANSITION
STA $AOOC

CHKCBl LDA $AOOD ;FETCH IFR
AND #$10 ;PERIPHERAL READY?
BEQ CHCKBl ;LOOP UNTIL PERIPHERAL READY
LDA $40 THEN FETCH DATA
STA $AOOO ; AND OUTPUT IT

tion $40. Example 8-6 shows a routine that is identical to the rou
tine given in Example 8-4-input from a device that produces an
active high-to-low data ready signal-except that Example 8-6
assumes that the input device requires a handshake signal. Adding
handshaking requires only one additional instruction, LDA #08.
Example 8-7 illustrates the programming required for another one
of the four control modes of the VIA, the pulse output mode. The
routine in Example 8-7 fetches data from an input device that re-

Example 8-6: An Input Data Transfer With Handshaking

LDA #OO ;MAKE PORT A INPUTS
STA $A003
LDA #08 ;SET CA2 HANDSHAKE MODE WITH
STA $AOOC ; CA l INTERRUPT FLAG SET ON

; NEGATIVE TRANSITION
CHKCAl LDA $AOOD ;FETCH IFR

AND #02 ;DAT A READY?
BEQ CHKCAl ;LOOP UNTIL DATA READY
LDA $A001 THEN INPUT DATA

STA $40 ; AND STORE IT

GENERAL·PURPOSE INPUT/OUTPUT DEVICES 203

Example 8·7: An Input Data Transfer That Produces a Data-Accepted Pulse

LDA #OO ;MAKE PORT A INPUTS
STA $A003
LDA #$OA ;SET CA2 PULSE OUTPUT MODE WITH
STA $AOOC ; CA l INTERRUPT FLAG SET ON

; NEGATIVE TRANSITION
CHKCAl LDA $AOOD ;FETCH IFR

AND #02 ;DATA READY?
BEQ CHKCAl ;LOOP UNTIL DATA READY
LDA $A001 ; THEN INPUT DATA
STA $40 ; AND STORE IT

quires a brief data accepted pulse (for multiplexing or control
purposes), and stores the data in memory location $40.

We have thus far discussed register addressing on the VIA, and
have described several aspects of configuring the VIA to perform
parallel data transfers. In the course of this description, we learned:

I. The direction of the port I/0 pins is defined by the contents
of the data direction registers (DDRA and DDRB).

2. Input data can be latched on both ports and output data can
be latched on Port B. Latching is enabled or disabled based
on a bit in the auxiliary control register (ACR).

3. The polarity, direction, and operation of the port peripheral
control lines (CAI, CA2, CBI, and CB2) are defined by the
contents of the peripheral control register (PCR).

VIA INTERRUPT REQUESTS

The VIA has only one interrupt request line to the 6502 micro
processor. This line, IRQ, can be activated (driven low) by any of
seven different conditions, but in order for one of these conditions
to activate IRQ, two conditions must be met:

I. The interrupt flag register (IFR) bit that represents that
condition must be set to logic I.

2. The associated bit in the interrupt enable register (IER)
must also be set to logic I.

Fig. · 8-7 shows the organization of the interrupt flag register for
the VIA, and summarizes the conditions that set and clear each
bit. The seven potential interrupt conditions are represented by
the seven low-order bits of IFR. The most-significant bit, IRQ Has
Occurred, will be set if one or more of the IFR bits is set to logic
I when its corresponding bit in the interrupt enable register is also
set to logic I. This most-significant bit, IRQ Has Occurred, activates
the IRQ interrupt request signal. (Of course, IRQ from a VIA, or
any other component in the system, will not be recognized by the

204

BIT

0
I

2

3

4

5

6

7

SET BY

ACTIVE TRANSITION ON CA2

ACTIVE TRANSITION ON CAI

COMPLETION OF EIGHT SHIFTS

ACTIVE TRANSITION ON CB2

ACTIVE TRANSITION ON CBI

TIMEOUT OF TIMER 2

TIMEOUT OF TIMER I

ANY IFR BIT WITH CORRESPONDING
IER BIT ALSO SET

6502 SOFTWARE DESIGN

CA2 INTERRUPT FLAG
CAI INTERRUPT FLAG
SR INTERRUPT FLAG
CB2 INTERRUPT FLAG
CBI INTERRUPT FLAG
T2 INTERRUPT FLAG
Tl INTERRUPT FLAG
IRQ HAS OCCURRED

CLEARED BY (WITH SELECT CODE)

READING OR WRITING ORA 100012 OR llll21
READING OR WRITING ORA 100012 OR 111121

READING OR WRITING SR 1101021

READING OR WRITING ORB 1000021

READING OR WRITING ORB 1000021

READING TIMER 2 COUNTER LOW BYTE 1100021
OR WRITING TIMER 2 COUNTER HIGH BYTE
1100121

READING TIMER I COUNTER LOW BYTE 101002)
OR WRITING TIMER I COUNTER HIGH BYTE
1010121

WRITING LOGIC 0 TO APPROPRIATE BITISI
IN IFR 1110121 OR IER 1111021

Fig. 8-7. Organization of the VIA interrupt flag register.

6502 microprocessor unless the IRQ disable bit of the 6502 processor
status register is set to logic 0.)

Fig. 8-8 shows the organization of the interrupt enable register
(IER). The interrupt enable register can be used to enable or
disable individual interrupt requests, based on the state of Bit 7.
If you Write to the IER with Bit 7 = 1, each 1 in the Bits 0 through
6 positions will enable the interrupt request that is represented by

CA2 INTERRUPT ENABLE
CAI INTERRUPT ENABLE
SR INTERRUPT ENABLE
CB2 INTERRUPT ENABLE
CBI INTERRUPT ENABLE
T2 INTERRUPT ENABLE
Tl INTERRUPT ENABLE
IER SET/CLEAR CONTROL

Fig. 8-8. Organization of the VIA interrupt enable register.

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 205

that bit position. For example, you could enable CA2 interrupt
requests and Tl (Timer 1) interrupt requests by Writing 110000012

($Cl) to the IER. If you write to the IER with Bit 7 = 0, each
1 in the Bits 0 through 6 positions will disable the interrupt re
quest represented by that bit position. For example, you could
disable CAI interrupt requests and SR (Shift Register) interrupt
requests by Writing 000001102 ($06) to the IER. Bit 7 of the IER
is active only during Write operations; if you Read the IER, Bit 7
will always appear as a logic l. As you can see, initializing the
IER requires two Write operations, one to select the enabled
conditions, the other to select the disabled conditions. This dual
control permits the enabled/ disabled status of individual condi
tions to be easily changed during system operation, without alter
ing the status of any other condition in the register.

Since the VIA can cause an interrupt request (IRQ) to be gen
erated by any of seven different conditions, a single VIA may re
quire up to seven different interrupt service routines to be present
in memory. In order to know u;hich interrupt service routine to

Example 8-8: Interrupt Polling Sequence For a VIA

;THIS SEQUENCE IDENTIFIES THE HIGHEST-PRIORITY INTERRUPT REQUEST
;IN A VIA THAT OCCUPIES ADDRESSES $AOOO THROUGH $AOOF.

LDA $AOOD ;DOES VIA HAVE AN ACTIVE IRQ?
BPL NXTDEV ;NO. GO CHECK NEXT DEVICE
AND $AOOE ;YES. LOGICALLY AND IFR WITH IER
ASL A ;CHECK FOR Tl INTERRUPT
BMI JTl
ASL A ;CHECK FOR T2 INTERRUPT
BMI JT2
ASL A ;CHECK FOR CBl INTERRUPT
BMI JCBl
ASL A ;CHECK FOR CB2 INTERRUPT
BMI JCB2
ASL A ;CHECK FOR SR INTERRUPT
BMI JSHR
ASL A ;CHECK FOR CA 1 INTERRUPT
BMI JCAl
ASL A ;CHECK FOR CA2 INTERRUPT
BMI JCA2
JMP ERROR

JTl JMP ISRTl ;GO SERVICE Tl INTERRUPT
JT2 JMP ISRT2 ;GO SERVICE T2 INTERRUPT
JCBl JMP ISRCBl ;GO SERVICE CBl INTERRUPT
JCB2 JMP ISRCB2 ;GO SERVICE CB2 INTERRUPT
JSHR JMP ISRSR ;GO SERVICE SR INTERRUPT
JCAl JMP ISRCAl ;GO SERVICE CA 1 INTERRUPT
JCA2 JMP ISRCA2 ;GO SERVICE CA2 INTERRUPT
NXTDEV

(Interrupt polling for next device)

206 6502 SOFTWARE DESIGN

call, the 6502 microprocessor has to know which of the seven in
terrupt conditions of the VIA caused the interrupt request. Maybe
more than one condition has an active interrupt request. Perhaps
all seven conditions have active interrupt requests! How do we
identify active interrupt requests? Active interrupt requests are
identified by polling the interrupt conditions. You will recall that
interrupt polling was discussed earlier in Chapter 7, and an example
of an interrupt polling sequence was given (Example 7-1) . How
ever, in Chapter 7, we were concerned with identifying which of
several devices in a system caused an interrupt request, and made
little or no mention of devices with multi-interrupt capability, such
as the 6520 PIA and the 6522 VIA. Also from Chapter 7, we know
that the order in which interrupt conditions are polled establishes
a priority structure; you always want to poll the most critical con
dition first, and go down the line from there, in order of decreas
ing priority. This applies to interrupt conditions in a single device
as well as interrupting devices in a system.

In polling a VIA for an active interrupt request, the system in
terrupt polling sequence must first find out whether any condition
in the VIA is generating an interrupt request. How does it do this?
This is accomplished by interrogating the state of the most-signifi
cant bit (Bit 7) of the interrupt flag register of the VIA. If
IFR7 = 1, at least one condition in the VIA is generating an active
interrupt request (IRQ is low). If the VIA has an active interrupt
request, how do you identify the highest-priority condition that has
an active interrupt request? Can you identify this condition by
checking only the state of the bits in the interrupt flag register?
No, the interrupt flag register does not provide sufficient informa
tion. Remember, in order for a condition in the VIA to generate
an interrupt request, two things must be true:

1. The interrupt flag register bit must be set.
2. The corresponding bit in the interrupt enable register must

be set.

Therefore, if the VIA is generating an interrupt request, the in
terrupt polling sequence must logically AND the interrupt Hag reg
ister with the interrupt enable register to extract the "qualified"
conditions from the seven interrupt conditions of the VIA, before
proceeding with the identification procedure. After the AND oper
ation is performed, the priority structure of your particular system
will determine which interrupting condition is checked first, which
is checked second, and so on. For illustration purposes, let us as
sume that we have a VIA whose high-to-low priority corresponds
with the left-to-right organization of the interrupt flag register (as

GENERAL-PURPOSE INPUT/OUTPUT DEVICES 207

shown in Fig. 8-7). That is, Timer 1 has the highest priority and
CA2 has the lowest priority. Example 8-8 shows an interrupt poll
ing sequence for that VIA. You will note that this particular priority
structure allows us to check the interrupting conditions using a
series of left-shift and branch instructions.

VIA AUXILIARY CONTROL REGISTER (ACR)

The Auxiliary Control Register (ACR) controls three functions
within the VIA-latching on the ports, the shift register, and the
two timers of the VIA. Fig. 8-9 shows the organization of the aux
iliary control register. Port latching has already been discussed
earlier in this chapter. The timers of the VIA and its shift register
will now be described.

7 I 6 5 4 I 3 I 2 1 0

TIMER I TIMER 2 SHIFT REGISTER PORT B PORT A
CONTROL CONTROL CONTROL LATCH LATCH

ENABLE ENABLE

Fig. 8·9. Organization of the VIA auxiliary control register.

VIA TIMERS

The VIA has two separate 16-bit timer/ counters, Timer 1 and
Timer 2, that can be used to:

• Generate a single time interval, based on an cf>2-system clock
count loaded into the timer.

• Count high-to-low transitions on Pin PB6 (Timer 2 only), up
to a pulse-count value loaded into the timer.

• Generate continuous time intervals (Timer 1 only), based
on a clock-pulse count per interval loaded into the timer.

• Produce a single pulse or a continuous series of pulses on Pin
PB7 (Timer 1 only), based on a count loaded into the timer.

Timer 2

Let us look first at Timer 2, which can only be used to generate
a single time interval (the so-called one-shot mode) or used to
count pulses on Pin PB6. Bit 5 of the auxiliary control register se
lects the operating mode of Timer 2; ACR5 = 0 selects the one-shot
mode and ACR5 = 1 selects the pulse-counting mode.

Timer 2 occupies only two addresses in memory (see Table 8-11).
These are the addresses associated with select codes 10002 and
10012 • Select code 10002 is used to Read or Write the eight least
significant bits of the clock pulse count; Reading from the location

208 6S02 SOFTWARE DESIGN

Table 8-:11. Timer 2 Select Codes

Select Lines Register Selected

RS3 RS2 RSl RSO Write Operations Read Operations

l 0 0 0 Write Timer 2 latch. Read Timer 2 counter low
byte. Clear T2 interrupt
flag (IFR5).

l 0 0 l Write Timer 2 counter high Read T2 counter high byte.
byte. Clear T2 interrupt
flag (llFR2). Initiate count-
ing.

at this select code also clears the T2 interrupt flag (IFR5). Select
code lOOI2 is used to Read or Write the eight most-significant bits
of the clock pulse count; W'riting to the location at this select code
loads the counter, clears the T2 interrupt flag (IFR5), and initiates
the count operation. The completion of the count-down operation
sets the T2 interrupt flag (IFR5) .

As an interval timer (ACR5 = 0), Timer 2 sets the T2 interrupt
flag (IFR5) after counting a specified number of <f>2-system clock
pulses. In a I-MHz 6502 microprocessor, each count will generate
a I-microsecond time interval, so a count of $0010 will generate a
16-microsecond time interval, a count of $03E8 will generate a
1000-microsecond time interval, a count of $FFFF will generate a
65,53.5-microsecond time interval, and so on. To perform an interval
timer operation with Timer 2, your program must:

1. Write to the auxiliary control register (select code 10112),

with ACR5 set to logic 0.
2. \Vrite the LSBY of the interval count value into the Timer 2

latch (select code 10002).

3. Write the MSBY of the interval count value into the high
byte of the Timer 2 (select code lOOh).

4. Clear the T2 interrupt flag (IFR5) upon completion of the
interval.

Example 8-9 presents a routine that generates a I-millisecond
(i.e., 1000-microsecond) time interval, using the one-shot interval
timer mode of the Timer 2. This routine assumes that the VIA
occupies addresses $AOOO through $AOOF, the addresses of the user
dedicated VIA in the AIM 65. Note that the final instruction, LDA
$A008, is a "dummy Read" that is needed for only one reason, to
clear the T2 interrupt flag (IFR5). You might also observe that
Timer 2 of the VIA can provide the same time-delay functions that
were demonstrated in the Time-Delay Subroutines section of
Chapter 3.

GENERAL-PURPOSE INPUT/OUTPUT DEVICES

Example 8-9: A 1-Millisecond Time Interval Using Timer 2

;THIS ROUTINE SETS THE T2 INTERRUPT FLAG AT THE END OF A ONE
;MILLISECOND TIME INTERVAL

LDA #OO ;SET T2 ONE-SHOT INTERVAL TIMER MODE
STA $AOOB
LDA #$EB ;WRITE COUNT LSBY
STA $A008
LDA #$03 ;WRITE COUNT MSBY AND START TIMER
STA $A009
LDA #$20

CHKT2 BIT $AOOD
BEQ CHKT2
LDA $AOOB

;SET T2 INTERRUPT MASK
;HAS T2 COUNTED DOWN?
;NO. CHECK AGAIN
;YES. CLEAR T2 INTERRUPT FLAG

209

As a pulse-counter (ACR5 = 1), Timer T2 sets the T2 interrupt
flag (IFR5) after counting a specified number of negative (high
to-low) transitions on Pin PB6. To perform a pulse-counting opera
tion, the program must supply the same functions as for the in
terval timer mode, except that PB6 must be specified as an input
and ACR5 must be set to logic 1 (Step 1). Example 8-10 counts 10
pulses on PB6, and assumes that the VIA occupies addresses $AOOO
through $AOOF.

Example 8-10: Pulse Counting Using Timer 2

;THIS ROUTINE SETS THE T2 INTERRUPT FLAG AFTER 10 PULSES HAVE
;BEEN COUNTED ON PB6

LDA #OO ;MAKE PORT B INPUTS
STA $A002

LDA #Ol ;SET T2 PULSE-COUNTING MODE
STA $AOOB
LDA #OA ;WRITE COUNT LSBY
STA $A008
LDA #OO ;WRITE COUNT MSBY AND START COUNTING
STA $A009
LDA #$20 ;SET T2 INTERRUPT MASK

CHKT2 BIT $AOOD ;HAS T2 COUNTED DOWN?
BEQ CHKT2 ;NO. CHECK AGAIN
LDA $A008 ;YES. CLEAR T2 INTERRUPT FLAG

Timer

Timer 1 is somewhat more complex than Timer 2 because it
has four operating modes that are selected by Bits 6 and 7 of the
auxiliary control register (shown in Table 8-12). Timer 1 can be
used to generate a single time interval (a one-shot mode) or a con
tinuous series of intervals (a free-running mode). Furthermore,
each time-out can generate an output pulse on Pin PB7.

Timer 1 occupies four addresses in memory (see Table 8-13).
These are the addresses associated with select codes 01002, 01012,

210 6502 SOFTWARE DESIGN

Table 8-12. Timer 1 Control

ACR

Bit 7 Bit 6 Mode Operation

0 0 One shot Set the Tl interrupt flag (I FR6) once,

upon time-out. Output to PB7 is dis-

abled.

0 l Free running Continually set the Tl interrupt flag
(IFR6), following each time-out cycle.
Output to PB7 is disabled.

l 0 One shot Output a low-level signal on PB7 for
the time interval, and then set the Tl
interrupt flag (I FR6).

l l Free running Continually set the Tl interrupt flag
(IFR6), and toggle the output on PB7,
following each time-out cycle.

01102 , and Ollh Select code 01002 is used to Read and Write the
eight least-significant bits of the count value; Reading from the
location at this select code also clears the Tl interrupt flag (IFH.6).
Select code 01012 is used to Read or Write the eight most-signifi
cant bits of the count value; Writing to the location at this select

Table 8-13. Timer 1 Select Codes

Select Lines

RS3 RS2 RSl RSO Write Operations Read Operations

0 1 0 0 Write Timer l latch low Read Timer l counter low
byte. byte. Clear Tl interrupt

flag (IFR6).

0 l 0 l Write Timer 1 latch high Read Timer 1 counter high
byte. Clear Tl interrupt byte.
flag (IFR6). Initiate count-
ing.

0 1 1 0 Write Timer l latch low Read Timer l latch low
byte. byte.

0 l l l Write Timer l latch high Read Timer l latch high
byte. Clear Tl interrupt byte.
flag (IFR6).

code loads the counter, clears the Tl interrupt flag (IFR6), and
initiates the count operation. Select codes 01102 and 01112 are
used to Read or Write the latches of the Timer without affecting a
count-down that is in progress. This allows generation of complex
waveforms in the free-running mode. Writing the most-significant
byte of the latches also clears the Tl interrupt flag (IFR6).

GENERAL-PURPOSE INPUT/OUTPUT DEVICES 211

In the one-shot mode, Timer 1 sets the Tl interrupt flag (IFR6)
after counting a specified number of cf>2-system clock pulses. If
ACR7 is set to logic 1, PB7 will output a low-level signal for the
duration of the count-down. To perform a one-shot operation with
Timer 1, your program must:

1. Write to the auxiliary control register (select code lOlb),
with ACR6 = 0 and ACR7 = 0 (PB7 disabled), or ACR7 = 1
(PB7 enabled).

2. Write the LSBY of the interval-count value into the Timer 1
latch low byte (select code 01002).

3. Write the MSBY of the interval-count value into the Timer 1
latch high byte (select code 01012).

4. Clear the Tl interrupt flag (IFR6) upon completion of the
interval.

Example 8-11 presents a routine that generates a I-millisecond
(i.e. 1000-microsecond) time interval, using the one-shot mode of
Timer 1. The routine in Example 8-11 is essentially the Timer 1
equivalent of the I-millisecond Timer 2 routine given in Example
8-9. There is one minor difference, however, in that Timer 1 has
a 1 ~~-cycle "overhead" on the time interval, so that the count value
loaded into the timer must he two counts less than the interval de
sired. That is why $03E6 (rather than $03E8) was loaded into
Timer 1 in Example 8-11.

Example 8· 11: A I-Millisecond Time Interval Using Timer 1

;THIS ROUTINE SETS THE Tl INTERRUPT FLAG AT THE END OF A ONE
;MILLISECOND TIME INTERVAL, WITH NO OUTPUT TO PB7.

LDA #OO ;SET Tl ONE-SHOT MODE, WITH NO PB7
STA $AOOB
LDA #$E6 ;WRITE COUNT LSBY
STA $A004
LDA #$03 ;WRITE COUNT MSBY AND START TIMER
STA $A005
LDA #$40 ;SET Tl INTERRUPT MASK

CHKTl BIT $AOOD ;HAS Tl COUNTED DOWN?
BEQ CHKTl ;NO. CHECK AGAIN
LDA $A004 ;YES. CLEAR Tl INTERRUPT FLAG

In the free-running mode, Timer 1 counts down continuously,
reloading the counter with the latch values each time the counter
has decremented to zero. Further, the Tl interrupt flag (IFR6)
will be set at the end of each count-down cycle. If ACR7 is set to
logic 1, the level on PB7 will be inverted at the beginning of each
interval (it will go low when the first interval starts). In the free
running mode, timing intervals are usually generated with the in
terrupts enabled to save the program from polling the Tl interrupt

212 6502 SOFTWARE DESIGN

flag throughout the duration of the time interval. To perform a
free-running operation with Timer 1, the program must:

1. Enable the Timer 1 interrupt by writing to the interrupt
enable register (select code 11102), with IER6 and IER7
both set to logic 1.

2. Write to the auxiliary control register (select code 1011z),
with ACR6 = 1 and ACR7 = 0 (PB7 disabled) or ACR7 = 1
(PB7 enabled).

3. Write the LSBY of the interval count value into the Timer 1
latch low byte (select code 01002).

4. Write the MSBY of the interval count value into the Timer 1
latch high byte (select code OlO!z).

Step 4 initiates the timing operation. At the end of each time
interval, an IRQ will be generated with the Tl interrupt flag
(IFR6) set. If system interrupt requests are enabled, the interrupt
polling program (Example 7-1) of the 6502 microprocessor iden
tifies the VIA as the interrupting device, and then determines
which of the seven VIA interrupt conditions activated IRQ (Ex
ample 8-8). In the VIA interrupt polling sequence (Example 8-8),
a Tl interrupt produces a jump to a Timer 1 interrupt service
routine labeled ISRTl (Interrupt Service Routine for Timer 1).
What operations should the ISRTl routine perform? Since the
free-running mode of the VIA will generate continuous time in
tervals until halted, the ISRTl must count the time intervals. If
the interval times are to change at some point, the ISRTl routine
must also then load the new count values into the latches at the
proper time.

Example 8-12 shows a routine that generates a 6-millisecond
time interval, in which time the output of PB7 is invented 6 times,
once each millisecond, to produce a square-wave output. Example
8-12 also includes the interrupt service routine that is called 6 times
in the course of this routine. All the interrupt service routine does
is clear the Tl interrupt flag (IFR6) and decrement a counter (in
location $40) . When the counter has decremented to zero, the timer
is disabled by clearing the Tl interrupt enable (IER6) and setting
PB7 as an input.

A 24-HOUR CLOCK FOR THE AIM 65

The free-running mode of Timer 1 gives this timer potential
value as a time-of-day clock. Let us take a brief look at the opera
tions that the 24-hour clock must perform, and then discuss a pro
gram that will implement the clock.

GENERAL-PURPOSE INPUT f OUTPUT DEVICES

Example 8-12: A 6-Millisecond Time Interval With I-Millisecond Pulses on PB7

;THIS ROUTINE GENERATES A SIX-MILLISECOND TIME INTERVAL IN WHICH
;PB? INVERTS EACH MILLISECOND. LOCATION $40 IS USED TO HOLD A
;TIME INTERVAL COUNT.

LDA #$80 ;MAKE PB? AN OUTPUT
STA $A002

LDA #$CO ;SET Tl FREE-RUNNING MODE, WITH PB7 OUTPUT
STA $AOOB

STA $AOOE ;ENABLE TIMER l INTERRUPT
LDA #$E6 ;WRITE COUNT LSBY
STA $A004

LDA #$03 ;WRITE COUNT MSBY AND START TIMER
STA $A005

LDA #06 ;INITIALIZE TIME INTERVAL COUNT = 6
STA $40
CLI ;ENABLE INTERRUPTS IN 6502

;FOLLOWING IS THE TIMER l INTERRUPT SERVICE ROUTINE.

ISRTl LDA $A004 ;CLEAR Tl INTERRUPT FLAG
DEC $40 ;DECREMENT INTERVAL COUNT
BNE CNTNZ ;SIX MILLISECONDS COUNTED?
LDA #$40 ;YES. DISABLE TIMER l INTERRUPT
STA $AOOE
LDA #oo ; AND DISABLE OUTPUT ON PB7
STA $A002

CNTNZ RTI ;RETURN

213

Basically, a 24-hour clock must maintain separate counts for
seconds, minutes, and hours. At the end of each 60-second time
interval, it must clear the seconds count and increment the min
utes count. Similarly, at the end of each 60-minute time interval,
it must clear the minutes count and increment the hours count.
And at the end of each 24-hour time interval, it must clear the hours
count.

As mentioned, the Timer I can be used to generate the time inter
vals for the 24-hour clock. You will recall that Timer I bases its
time interval on the cycle count that is loaded into it, and that the
cycle count must have a value of two counts less than the required
time interval. Since Timer I contains a 16-bit counter, it can gen
erate time intervals of as little as three cycles (with a count value
of $000I), and as much as 65,537 cycles (with a count value of
$FFFF). With a I-MHz clock, such as the AIM 65 has, each cycle
is equivalent to a I-microsecond time interval. This means that
Timer I will not be able to generate a I-second time interval directly,
but must generate this interval with multiple count-downs. For this
example, we will use the free-running mode of Timer 1 to con
tinuously generate 50,000-microsecond (0.05-second) time intervals,

214 6502 SOFTWARE DESIGN

and to increment the "seconds" count each time the Timer has
counted-down 20 times. A 50,000-microsecond time interval re
quires a count of $C34E to be loaded into Timer l. At this point,
we can draw a flowchart of the required operation for a 24-hour
clock; it is shown in Fig. 8-10.

The flowchart shown in Fig. 8-10 defines the sequence of opera
tions that should occur when Timer 1 times out. Clearly, the 24-
hour clock program must perform two additional functions.

l. It must initialize the Timer 1 of the VIA, and start the timing
operation.

2. It must output the clock value to the AIM 65 display.

Example 8-13 shows a 24-hour clock program that performs these
three functions. The main program, CLK24, performs the required
initialization; it includes the display sequence, DPYCLK. Example
8-13 also includes the 24-clock interrupt service routine, CLKINT,
which was flowcharted in Fig. 8-10. Let us discuss the details of
these three functions.

Example 8-13 assumes that the initial value of the clock has been
stored into locations $21 (seconds), $22 (minutes) , and $23
(hours) in BCD form. For instance, an initial time of 08:13:36
would be renresented as $36 in location $21, $13 in location $22
and $08 in l~cation $23. The main program, CLK24, begins by dis
abling IRQ interrupts so that the clock can be initialized. The next
four instructions store the address of the 24-hour clock interrupt
service routine, CLKINT, into the system IRQ vector locations,
$A404 and $A405. (Note that we have employed assembler oper
ators < and > here, to truncate the address of CLKINT to its
LSBY and MSBY values, respectively. AIM 65 owners who are
not using the assembler can replace these LDA instruction oper
ands with the actual address bytes of the CLKINT routine.) Next,
Timer 1 is loaded with its count value, $C34E. While Timer 1 is
counting, instructions LDA #20 and ST A $20 establish an 0.05-
second interrupt in counter location $20. With initialization thus
completed, the IRQ disable is removed (CLI) and BRK causes
a return to the AIM 65 Monitor. The Monitor will return two bytes
past the BRK instruction, so a NOP is inserted as a "spacer" be
tween the main program and the output routine DPYCLK.

The display output routine DSPCLK uses two AIM 65 Monitor
subroutines, CRLF and NUMA. The first subroutine, CRLF (entry
address $E9FO), outputs a CR (.Qarriage Return) character to the
active output device. Unless you have altered the OUTFLG param
eter of the AIM 65, location $A413, the display will be the active
output device. When the display receives a CR character, its pointer
is reset to select position 0, the leftmost character position. The

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES

Fig. 8·10. Flowchart for a 24-hour
clock program.

NO

START

0.05-SECOND COUNT =
0.05-SECOND COUNT -1

END

215

NUMA subroutine converts two hex numbers in the accumulator
from binary to ASCII code, and outputs them to the active output
device, the most-significant digit first. In the DSPCLK routine,
NUMA is called three times-to output the hours count, the min
utes count, and the seconds count, in that order. The DPYCLK is

216 6502 SOFTWARE DESIGN

Example 8-13: A 24-Hour Clock for the AIM 65

;THIS SUBROUTINE DISPLAYS A 24-HOUR CLOCK ON THE AIM 65. UPON
;ENTRY, THE INITIAL BCD VALUES OF SECONDS, MINUTES, AND HOURS MUST
;BE CONTAINED IN LOCATIONS $21, $22, AND $23, RESPECTIVELY. THE
;SUBROUTINE ALSO USES LOCATION $20 TO HOLD A l /20-SECOND COUNT.

CLK24 SEI ;DISABLE IRQ INTERRUPTS
LOA #<CLKINT ;CLOCK INTERRUPT VECTOR CLKINT
STA $A404
LDA # >CLKINT
STA $A405
LDA #$CO ;SET Tl FREE RUNNING MODE
STA $AOOB
STA $AOOE ;ENABLE TIMER l INTERRUPT
LOA #$4E ;WRITE COUNT LSBY
STA $A004
LDA #$C3 ;WRITE COUNT MSBY AND START CLOCK
STA $A005
LOA #20 ;INTERRUPT COUNT = 20
STA $20
CLI
BRK
NOP

;ENABLE IRQ INTERRUPTS
;RETURN TO MONITOR

;FOLLOW I NG IS THE ROUTINE THAT DISPLAYS THE 24-HOUR CLOCK.

DPYCLK JSR CRLF
LDA $23
JSR NUMA
LOA $22
JSR NUMA
LDA $21
JSR NUMA
JMP DPYCLK

;RESET DISPLAY
;LOAD HOURS COUNT
; AND OUTPUT IT TO DISPLAY
;LOAD MINUTES COUNT
; AND OUTPUT IT TO DISPLAY
;LOAD SECOUNDS COUNT
; AND OUTPUT IT TO DISPLAY
;REFRESH THE DISPLAY

;FOLLOWING IS THE 24-HOUR CLOCK INTERRUPT SERVICE ROUTINE.

CLKINT PHA ;SAVE ACCUMULATOR ON STACK
DEC $20 ;20 INTERRUPTS YET?
BNE INTDUN ;NO. INTERRUPT DONE
SED ;YES. SET DECIMAL MODE
CLC ;INCREMENT SECONDS COUNT
LDA $21
ADC #Ol
STA $21
CMP #$60 ;SECONDS = 60?
BCC RES20 ;NO. REINITIALIZE INTERRUPT COUNTER
LDA #DO ;YES. CLEAR SECONDS COUNT
STA $21
ADC $22 ;INCREMENT MINUTES COUNT
STA $22
CMP #$60 ;MINUTES = 60?
BCC RES20 ;NO. REINITIALIZE INTERRUPT COUNTER
LDA #OD ;YES. CLEAR MINUTES COUNT
STA $22
ADC $23 ;INCREMENT HOURS COUNT
STA $23

GENERAL-PURPOSE INPUT/ OUTPUT DEVICES 217

CMP #$24 ;HOURS = 24?

BCC RES20 ;NO. REINITIALIZE INTERRUPT COUNTER

LDA #OO ;YES. CLEAR HOURS COUNT

STA $23
RES20 LDA #20 ;INTERRUPT COUNTER = 20

STA $20
INTDUN LDA $A004 ;CLEAR Tl INTERRUPT FLAG

CLD ;CLEAR DECIMAL MODE

PLA ;RESTORE ACCUMULATOR

RTI

a closed loop, and will execute continuously until an interrupt
occurs. An interrupt will occur each time Timer l times out (i.e.,
every 0.05 second), and will cause control to be transferred to the
interrupt service routine CLKINT.

Readers who have studied Fig. 8-10 long enough to understand
what is being done will have no difficulty understanding the 24-
hour clock interrupt service routine CLKINT. In fact, CL KINT
includes only a few features that were not included in the flowchart.

l. It saves the contents of the accumulator at the beginning of
the routine (PHA) and restores these contents at the end of
the routine (PLA).

2. It updates the seconds, minutes, and hours counts using dec
imal arithmetic, by enclosing all calculations with an SED
instruction at the beginning and a CLD instruction at the end.

3. It clears the Tl interrupt flag at the end of interrupt process
ing, with a "dummy" Read instruction, LDA $A004.

Like the time-delay subroutines given in Chapter 3, the accuracy
of the 24-hour clock depends on the accuracy of the crystal on your
particular AIM 65. Although crystals on recent AIM 65 units have
been found to be accurate to ±0.00015, you should check your
clock program against a reliable source, such as Station \VW'V,
and modify the LSBY count value contents of Timer 1 as necessary.

VIA SHIFT REGISTER

The shift register of the VIA can be used to convert data between
serial and parallel forms. Bits 2, 3, and 4 of the auxiliary control
register (ACR) control the operation of the shift register, as shown
in Table 8-14. As you can see from this table, there is one disable
mode, three input (serial-to-parallel) modes, and four output
(parallel-to-serial) modes. The shift register occupies one location
in memory; this is the location whose address is represented by
select code 1010~.

218 6502 SOFTWARE DESIGN

Table 8-14. Shift Register Control

ACR

Bit 4 Bit 3 Bit 2 Mode

0 0 0 Shift register disabled.

0 0 l Shift in, under control of Timer 2.

0 l 0 Shift in, under control of ¢2.

0 l l Shift in, under control of external clock on CBl.

l 0 0 Free-running output, at rate determined by Timer 2.

l 0 l Shift out, under control of Timer 2.

l l 0 Shift out, under control of cp2.

l l l Shift out, under control of external clock on CB 1.

The shift register is rarely used because the serial/parallel con
version function is more readily available using a UART (1[niversal
Asynchronous B.eceiver-Iransmitter) device. Readers who plan to
use the shift register should refer to the manufacturers' literature.

REFERENCES

1. Hardware interfacing information for the 6520, 6522, 6530, and 6532 inte
grated circuits is contained in the R6500 Microcomputer System Hardware
Manual, Rockwell International, Anaheim, CA, 1978.

2. For a description of 6530 RRIOT programming, see Chapter 11 of the R6500
Microcomputer System Programming Manual, Rockwell International, Ana
heim,, CA, 1978.

9

Microcomputer Input/Output

In this chapter, we will explore the area of interfacing external
(or peripheral) devices to the 6502 microprocessor. In previous
chapters, it has been assumed that these peripheral devices were
properly interfaced to the 6502 microprocessor, and we concen
trated on the design and development of the software that is needed
to communicate with them. At this point, it is pertinent to explore
the design and implementation of the interfacing hardware. Hard
ware is a broad term that describes the electrical components, re
sistors, gates, drivers, and latches that are used to electrically con
nect a peripheral device to the buses of the microcomputer. A
discussion of interfacing may seem unusual for a book on assembly
language programming, but we believe that assembly language
programmers are not only interested in using software to commu
nicate with peripheral devices, but that they are also interested in
learning how peripheral devices are actually interfaced to the
microcomputer. All of the interfaces in this chapter are imple
mented with a 6522 VIA (and, in most cases, the addresses of the
VIA are those of the AIM 65's user-dedicated VIA). However, sim
ilar interfaces could be implemented with a 6520 PIA, or one of
the other I/O devices in the 6500 family.

THE 6502 MICROPROCESSOR AND SIMPLE 1/0 DEVICES

Let us begin this discussion of interfacing by looking at how
two very simple I/0 devices can be interfaced to the 6502 micro
processor. Perhaps the simplest input device is the two-position
spdt toggle switch and the simplest output device is the LED
(light-emitting diode). For illustrative purposes, let us develop
the circuit that will interface eight spdt switches to the input port

219

220 6502 SOFTWARE DESIGN

of a 6522 VIA and eight LEDs to the output port of the same VIA.
Our program should simply read the switch settings into the ac
cumulator of the 6502 microprocessor and display the setting of
each switch on its associated LED. The LED must be on if its
corresponding switch is on.

Spdt Switch Interface

Fig. 9-1 illustrates the connection of a single spdt toggle switch
to the VIA. With the connection shown, the switch presents a logic
1 (+5 V) to its VIA input port pin when the switch is in the N.O.
(normally open) position. It presents a logic 0 (ground) to the
same pin when the switch is in the N.C. (normally closed) position.

+5V

N.C

---~~~~~---~~~---<~
TO VIA N.O. =

Fig. 9-1. An spdt toggle switch.

Fig. 9-2 shows a group of eight spdt toggle switches connected
to Port A of a VIA. Which instructions would be used to read the
switch settings into the accumulator? Only three instructions are
needed, as we know from our "simple VIA input routine" that was
given in Chapter 8 (Example 8-2). These instructions are:

LOA #OO ;MAKE PORT A INPUTS
STA $A003
LOA $A001 ;INPUT SWITCH SETTINGS

Note that, as in Chapter 8, we are assuming that the VIA occupies
addresses $AOOO through $AOOF, the locations occupied by the
user-dedicated VIA on the AIM 65.

LED Display Interface

Fig. 9-3 shows the circuitry necessary to interface a single LED
to a 6522 VIA. With this type of connection, the LED turns on
when it receives a logic 0 signal from the VIA. The LED is brightest
when it operates from currents of between 10 to 50 mA. Since the
VIA can (at best) sink a current of 1.6 mA, it cannot drive LEDs
directly and needs a supporting transistor-driven circuit and some
current-limiting resistors.

MICROCOMPUTER INPUT/ OUTPUT

¢= TO
6502

MICROPROC ESSOR

6522

VIA

+SV

IK

9
-

8 ,r

7

6

5

4

3 ,r

2 ,r

Fig. 9-2. Interfacing eight toggle switches to a VIA.

221

SPOT
SWITCHES

Fig. 9-4 is an expanded version of Fig. 9-2, showing a group of
eight LEDs and their driver circuits that are connected to Port B
of the VIA. With the interface now defined, we can write a simple
instruction routine that Reads switch data from Port A and then
outputs it to the LEDs on Port B. Example 9-1 shows such a routine.
This routine simply clears the peripheral control register, initializes
Port A as an input port and Port B as an output port, and then loads

Fig. 9-3. Basic LED circuitry.

FROM VIA

SN7407
DRIVER

+5 v

222 6502 SOFTWARE DESIGN

+5V

lK

9 0--
MSB

8 ·o--

7 ·.,._

6 ·.,._

5 .I
~

"" 0
4 "' . .,._

"' UJ
'-' 6522 0 3 "" .lo--<>-

VIA 0

"" '-' 2 .lo--:E LSB

\== +5 v ~

17 22on

"' - , MSB
~

16 «>
0 - , ,_

!L_ SN7407
LED ,

14 DRIVERS
- ,

.!!__ ~ ,

12 . ,_____ .
Jl__ .

,

10 . LSB ,_____ .

Fig. 9-4. Interfacing eight toggle switches and LEDs to a VIA.

the switch data into the accumulator. Since the LEDs operate with
active-low logic (a 0 turns them on), the switch data is saved in the
X register, and the accumulator is then complemented (EOR #$FF).
The result is sent to the LEDs, and the switch data is returned to
the accumulator for subsequent processing. In some applications,
the inversion is performed by the drivers, which saves a few in
structions.

ANOTHER SIMPLE INPUT DEVICE

We have just discussed one of the two main types of switches
that are found in computer systems-the two-position spdt toggle
switch. The other main type of switch is the spst push-button switch.
Push-button switches are commonly used to start or stop a device,
to manually initiate a system reset, to enter data, and many other

MICROCOMPUTER INPUT f OUTPUT

TO 6502
MICROPROCESSOR

6522
VIA

+5V

IK

L PUSHBUTTON r SWITCH

Fig. 9-5. Interfacing a push-button switch to a VIA.

Example 9-1: Read Switch Settings and Display Them on LEDs

;THIS ROUTINE READS THE CURRENT SETTINGS OF EIGHT SWITCHES THAT
;ARE CONNECTED TO PORT A OF A VIA, AND SENDS THEM TO EIGHT LED'S
;THAT ARE CONNECTED TO PORT B OF THE VIA.

LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
STA $A003 ;MAKE PORT A INPUTS
LDA #$FF ;MAKE PORT B OUTPUTS
STA $A002
LDA $A001
TAX
EOR #$FF
STA $AOOO
TXA

;READ SWITCH DATA
; AND SAVE THEM IN X
;COMPLEMENT SWITCH DATA
; AND DI SPLAY ON LED'S
;RETURN SWITCH DATA TO ACCUMULATOR

223

similar functions. The keys on keyboards and the keypads of tele
typewriters, terminals, and single board microcomputers are also
push-button switches.

Fig. 9-5 shows how a single push-button switch can be interfaced
to one of the pins on a VIA input port. As you can see from this
drawing, the button presents a logic 0 to the VIA if it is pressed
(closed) and a logic I if it is not pressed (open). Example 9-2
shows a routine that first checks whether or not the button has been

Example 9-2: Check for Closure of Push-Button Switch

;THIS ROUTINE CHECKS TO SEE WHETHER A PUSH-BUTTON SWITCH ATTACHED TO
;PIN PA2 OF A VIA IS PUSHED. IF IT IS, LOCATION $40 IS SET
;TO A ONE.

DONE

LDA
STA
STA
STA
LDA
AND
BNE
INC

#OO
$AOOC
$A003
$40
$A001

#04
DONE
$40

;CLEAR PERIPHERAL CONTROL REGISTER

;MAKE PORT A INPUTS
;BUTTON FLAG = 0
;READ PORT A
;IS BUTTON PUSHED (PA2 = O)?

;NO. DONE.
;YES. SET BUTTON FLAG =0 l

224 6502 SOFTWARE DESIGN

pressed, and then sets a flag in memory location $40 to a 1 (pressed)
or a 0 (not pressed), based on the test.

The Key Bounce Problem

If your program is simply checking whether a button is pushed
(closed) or not pushed (open), the software is fairly straightfor
ward, as you can see from Example 9-2. However, if you are in
terested in the counting of several separate key closures, most
switches, including push-button switches will present a special
problem because they cause electrical bounce. \Ve all know that
if a rubber ball is dropped onto a hard floor, it will bounce a few
times, at decreasing heights, before finally coming to rest. Similarly,
when you press a push-button switch or a key, you are causing
metal contacts to strike together, and they will bounce off each
other a few times before settling into their final positions. The
bouncing action will cause a series of logic ls and Os to be gen
erated, which a microprocessor program may interpret as a se
quence of separate key closures, rather than just a single closure.
One of the most common ways of avoiding this problem is to insert
a time delay into the software that will prevent the program from
testing for a second key closure until the first key has been re
leased. The key-bounce period varies from one type of push
button switch to another, but it will probably not exceed 10 milli
seconds.

Since the average human key-push period last between ;10 sec
ond and 1 second, the 10-millisecond key-debouncing time delay
will not prevent the program from interpreting the present key
closure as a new closure. Clearly, the program must include not
only time-delay software, but it mu~t also detect that the key has
been released before testing for a new key closure.

Let us now demonstrate how these two techniques, the 10-milli
second debounce time delay and the waiting for key release, could
be used in a real application. Assume that a system has a VIA to
which two push-button switches are connected. Your task is to
write a short program that counts the key closures on push-button
switch No. 1 (connected to PA2) until push-button switch No. 2
(connected to PA 7) is pushed. Example 9-3 shows a program that
will do the job. It uses Timer 1 of the VIA to generate a IO-milli
second time delay, through a subroutine labeled DLYlO (derived
from Example 8-11), and it maintains the closure count in memory
location $40. Note that push-button switch No. 2 is not debounced,
since we are only concerned with its first closure, and do not care
whether it is held down or pushed more than once. Incidentally,
we could just as easily have used a time-delay subroutine, such
as the one given in Example 3-4, to provide the debouncing delay,

MICROCOMPUTER INPUT f OUTPUT 225

Example 9-3: Counting Push-Button Switch Closures, With Debouncing

;THIS ROUTINE COUNTS CLOSURES ON PUSH-BUTTON SWITCH NO. l UNTIL PUSH
;BUTTON SWITCf-l NO. 2 IS PUSHED. PUSH-BUTTON SWITCH NO. l IS CONNECTED
;TO VIA PIN PA2, PUSH-BUTTON SWITCH NO. 2 IS CONNECTED TO VIA PIN PA7.

;THE CLOSURE COUNT IS HELD IN MEMORY LOCATION $40.

LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
STA $A003 ;MAKE PORT A INPUTS
STA $40 ;CLOSURE COUNT = 0

CH KB TN LDA $AOOl ;READ PORT A
BPL DONE ;DONE IF BUTTON NO. 2 IS PUSHED (PA? 0)
AND #04 ;IS BUTTON NO. l PUSHED (PA2 = 0)?
BNE CH KB TN ;NO. WAIT UNTIL IT IS.
INC $40 ;YES. INCREMENT CLOSURE COUNT.
JSR DLYlO ;WAIT 10 MILLISECONDS TO DEBOUNCE

CH KR EL LDA $A001 ;READ PORT A AGAIN
AND #04 ;IS BUTTON NO. l STILL CLOSED?
BEQ CH KR EL ;YES. WAIT FOR RELEASE
JSR DLYlO ;NO. DEBOUNCE THE KEY OPENING
JMP CH KB TN ; AND WAIT FOR NEXT CLOSURE

DONE

;THE FOLLOWING SUBROUTINE USES TIMER l TO GENERATE A JO-MILLISECOND
;DEBOUNCE TIME DELAY, BY WRITING 10,000 ($2710) INTO THE COUNTERS.

DLYlO LDA #OO ;SET Tl ONE-SHOT MODE, WITH NO PB7
STA $AOOB
LDA #$10 ;WRITE COUNT LSBY
STA $A004
LDA #$27 ;WRITE COUNT MSBY AND START TIMER
STA $A005
LDA #$40 ;SELECT Tl INTERRUPT MASK

CHKTl BIT $AOOD ;HAS Tl COUNTED DOWN?
BEQ CHKTl ;NO. WAIT UNTIL IT HAS
LDA $A004 ;YES. CLEAR Tl INTERRUPT FLAG
RTS ; AND RETURN

but chose instead to use Timer 1 to further demonstrate the ver
satility of the 6522 VIA.

THE 6502 MICROPROCESSOR AND KEYBOARDS

Virtually every microcomputer system includes some type of
keyboard. Keyboards vary in size, shape, and number of keys,
but whatever their physical characteristics, every keyboard can be
looked upon as simply a collection of push-button switches in
which there is a unique code associated with each button (key).
As a programmer, your task will be to detect when a key has been
pressed, and then identify which key is pressed so that its code can
be entered into the microprocessor. Some keyboards include the

226 6502 SOFTWARE DESIGN

internal circuitry to identify the key that was pressed and to gen
erate its code; these are encoded keyboards. Other keyboards pro
duce only electrical signals that must be processed entirely by
software; these are unencoded keyboards. In choosing a keyboard
for a microcomputer system, you must consider the trade-off be
tween the convenience of the encoded keyboard and the lower
cost of the unencoded keyboard. We will discuss both types of
keyboard, unencoded and encoded, and the software that is re
quired to service them.

UNENCODED KEYBOARDS

Realizing that keyboards are simply collections of push-button
switches, it is apparent that one way of interfacing a keyboard to a
general-purpose I/ 0 device (such as a PIA or a VIA) is to connect
each push-button switch to an input line of an 1/0 device port.
This technique would produce a circuit that resembles the circuit
shown in Fig. 9-2, in which we interfaced eight toggle switches
to a VIA. Moreover, this technique permits a push-button switch
to be identified quickly and easily because it involves merely
finding out which of the input port lines is in the logic 0 state.
With 16 port lines, a VIA can be wired to as many as 16 keys. What
happens if we use a keyboard that has more than 16 keys? With the
technique just described, we would need one additional VIA for a
keyboard with 17 to 32 keys, two additional VIAs for a keyboard
with 33 to 48 keys, and so on. Although VIAs are fairly inexpensive,
there is a much more cost-efficient way to interface unencoded
keyboards. Each of the keys can be wired in a matrix, as shown in
Fig. 9-6.

As you can see in Fig. 9-6, a 3 X 3 keyboard requires only six
VIA 1/0 pmt lines, three lines of an output port and three lines
of an input port. Similar circuits could be constructed for a key
board of size n X m, where n represents the number of rows and
m represents the number of columns. Note that a 4 X 6 keyboard
requires 4 rows (output port lines) and 6 columns (input port
lines), and an 8 X 8 keyboard requires 8 rows and 8 columns. This
latter size, 8 x 8, is the largest keyboard configuration that can be
interfaced to the 6502 microprocessor using a single VIA, since
the VIA has 16 1/0 lines.

A program can determine whether any key in a matrix has been
pressed by grounding all rows simultaneously (logic zeroes in the
output register) and by examining the column lines of the input
register. If any key in a column has been pressed, its bit position
in the input register will be read as a logic 0. Further, if the pro
gram determines that one of the keys in the matrix has been pressed,

MICROCOMPUTER INPUT/ OUTPUT 227

it can find out which key has been pressed by performing a "row
scan" operation. A row scan is a polling technique in which the
program begins by grounding only Row 0 and examining the
column lines. If any key was pressed in that row, its column line
will also be grounded and the corresponding bit position of the in
put register will be read as a logic 0. If no column line is grounded,
the program proceeds to Row 1 and repeats the operation, and then
proceeds to Row 2, if necessary.

MICROPROCESSOR

COLUMN 0 COLUMN I COLUMN 2

KEY I

VIA
OUTPUT i--:---..--E----+------E--- ROW I

PORT

lo

VIA
INPUT
PORT

TO 6502
MICROPROCESSOR

lz
IK

Fig. 9-6. Matrix connections for an unencoded keyboard.

+5V

The program we have just described must perform two separate
functions:

(1) It must determine whether any key in the matrix was pressed.
(2) Upon sensing a key closure, it must identify the key that

was pressed.

The flowchart in Fig. 9-7 shows the sequence of operations for a
program that will perform both functions. Let us begin by looking
at the instructions for Function 1, those instructions that determine
whether any key was pressed. As shown in the flowchart, this por-

228 6502 SOFTWARE DESIGN

tion of the program must initialize the peripheral control register
and the data direction registers, and then ground all rows to see
if any column is inputting a logic 0. The routine given in Example
9-4 performs those operations for the circuit shown in Fig. 9-6. It

START

NO

NO

WAIT UNTIL
ANY KEY

IS PRESSED

IDENTIFY KEY

END -------------

Fig. 9-7. Flowchart for processing key closures.

MICROCOMPUTER INPUT/ OUTPUT

Example 9-4: Waiting For a Key to Be Pressed

;THIS ROUTINE CHECKS WHETHER ANY KEY IN A 3 X 3 UNENCODED KEY

;BOARD HAS BEEN PRESSED. THE KEYBOARD ROW CONNECTIONS ARE
;ASSUMED TO BE INTERFACED TO PB5 (ROW 0), PB6 (ROW 1), AND PB7
;(ROW 2). THE KEYBOARD COLUMN CONNECTIONS ARE ASSUMED TO BE
;INTERFACED TO PA5 (COLUMN 0), PA6 (COLUMN l), AND PA7 (COLUMN 2).

LDA #$FF ;MAKE PORT B OUTPUTS
STA $A002
LDA #OO
STA $AOOC
STA $A003
STA $AODO

CHK4GD LOA $A001

CMP #$EO
BCS CHK4GD
JSR DLYlO

;CLEAR PERIPHERAL CONTROL REGISTER

;MAKE PORT A INPUTS
;GROUND ALL OUTPUTS
;GET COLUMN DATA
;IS ANY COLUMN GROUNDED?
;NO. WAIT UNTIL ONE IS
;YES. DEBOUNCE THE KEY

(Identify the key)

229

assumes that the rows are connected to Bits 5, 6, and 7 of Port
B and that the columns are connected to Bits 5, 6, and 7 of Port A.

After configuring the ports (Port B is an output port, Port A is
an input port) and clearing the peripheral control register, the
routine in Example 9-4 grounds all three rows of the keyboard by
writing logic zeroes into output register B. It then checks whether
the column data is less than $EO, since that is the only condition
under which Bit 5, 6, or 7 is a logic 0. If none of these three bits is a
logic 0, t:1e program waits until a logic 0 is sensed; otherwise, it
calls the IO-millisecond time-delay subroutine DL YlO that was
included in Example 9-3.

Once a key closure has been sensed and debounced, the next
task is to identify the key through row scanning. Example 9-5
constitutes the complete sequence of instructions for identifying
a key closure. The first 10 instructions in this routine are the in
structions from Example 9-4 (repeated here for your convenience),
and are followed by the row-scanning sequence. Before conducting
the row scanning, the routine establishes a row off set in memory
location $40. This offset is used to hold a count of keys in the rows
that have been previously scanned, and is initially zero. After
initializing the row off set, the routine grounds the outputs on Row
0 and reads the column data for that row. If any column contains
a logic 0, the BCC IDKEY test will cause the 6502 microprocessor
to branch to the key identification routine, IDKEY. Otherwise, the
row offset is updated by three (ADC #02 is used because the
Carry must be set to a logic 1 at this point). Row 1 is tested in a
similar manner. If no key in Row 1 is pressed, we assume that
Row 2 contains the key that is pressed.

230 6502 SOFTWARE DESIGN

The key identification subroutine, IDKEY, examines the state of
the three column lines one-by-one, beginning with Column 2, by
left-shifting the input data in the accumulator. When the logic 0
(grounded) column is found, its column number is added to the
row offset (in location $40) to produce the key code.

ENCODED KEYBOARDS

The software for encoded keyboards is much simpler than for
unencoded keyboards, because encoded keyboards provide a unique
code for each key that is pressed. Encoded keyboards have internal
electronics that perform all of the scanning and key identification
procedures that unencoded keyboards require you to perform with
software. Encoded keyboards typically provide key debouncing
and rollover (accepting only one key closure when two or more
keys are pressed simultaneously), and often include RO Ms or
PROMs with look-up tables that generate a code in ASCII,
EBCDIC, or some other coding format.

Encoded keyboards also provide a data ready strobe with each
key code transferred, allowing the design of a simple keyboard
interface with a single VIA, as shown in Fig. 9-8. An active transi
tion of the keyboard strobe on CAI will cause the CAI interrupt
flag of the interrupt flag register to be set (IFRI), with the polarity
of this transition specified by the CAI control bit of the peripheral
control register (PCRO). Therefore, the keyboard service routine
must simply wait for IFRI to be set, and then read the key code
into the accumulator. You will recall from Chapter 8 that reading
the data from input register A automatically clears the CAl inter
rupt flag. Example 9-6 presents a simple routine to communicate
with an encoded keyboard.

A

(
TO 6502

MICROPROCES
~

SOR

PAO-PA7

CAI

6522
VIA

A

•
KEYBOARD

DATA

KEYBOARD STROBE
(DATA READY)

Fig. 9·8. Encoded keyboard interface with a VIA.

MICROCOMPUTER INPUT/ OUTPUT

Example 9-5: Routine to Identify a Key

LOA #$FF ;MAKE PORT B OUTPUTS
STA $A002
LOA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
STA $A003 ;MAKE PORT A INPUTS
STA $AOOO ;GROUND ALL OUTPUTS

CHK4GD LOA $A001 ;GET COLUMN DATA
CMP #$EO ;IS ANY COLUMN GROUNDED?
BCS CHK4GD ;NO. WAIT UNTIL ONE IS
JSR DLYlO ;YES. DEBOUNCE THE KEY

;FOLLOWING ARE THE ROW-SCANNING INSTRUCTIONS.

LOA #OO ;ROW OFFSET = 0
STA $40
LOA #$CO
STA $AOOO
LOA $A001
CMP #$EO
BCC IDKEY
LOA $40
ADC #02
STA $40
LOA #$AO
STA $AOOO
LOA $A001
CMP #$EO
BCC IDKEY
ASL $40
LOA #$60
STA $AOOO

;GROUND ROW 0

;GET COLUMN DATA FOR ROW 0
;IS ANY COLUMN GROUNDED?
;YES. IDENTIFY KEY PRESSED
;NO. ADD 3 TO ROW OFFSET

;GROUND ROW l

;GET COLUMN DATA FOR ROW l
;IS ANY COLUMN GROUNDED?
;YES. IDENTIFY KEY PRESSED
;NO. ROW OFFSET = 6
;GROUND ROW 2

LOA $A001 ;GET COLUMN DATA FOR ROW 2

;THE FOLLOWING INSTRUCTIONS IDENTIFY THE KEY.

IDKEY

KEY147

KEY036
DONE

ASL
BCS
LOA
JMP
ASL
BCS
LOA
JMP
LOA
ADC

A ;IS KEY 2, 5, OR 8 PRESSED?
KEY147 ;NO. CHECK KEY l, 4, OR 7 PRESSED
#02 ;YES. CALCULATE KEY CODE
DONE
A ;IS KEY l, 4, OR 7 PRESSED?
KEY036 ;NO. KEY 0, 3, OR 6 IS PRESSED
#Ol ;YES. CALCULATE KEY CODE
DONE

#OO
$40

INTERFACING WITH TELETYPEWRITERS

231

A teletypewriter is a serial I/O device; it sends and receives
information as strings of logic ls and Os that are bounded by con
trol bits. Whereas the basic unit of data transfer is 8 bits of infor
mation for parallel devices, the basic unit of data transfer for the
teletypewriter is 11 bits of information. These 11 bits are comprised
of one start bit (always logic 0), a 7-bit ASCII character (trans-

232 6502 SOFTWARE DESIGN

Example 9-6: Reading Data From an Encoded Keyboard

;THIS ROUTINE READS A KEY CODE FROM AN ENCODED KEYBOARD ON
;A HIGH-TO-LOW TRANSITION OF A DATA-READY STROBE ON CAl.

LOA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
STA $A003
LOA #02

CHKKB BIT $A002
BEQ CHKKB
LOA $A00l

;MAKE PORT A INPUTS
;SELECT CA l INTERRUPT FLAG
;IS THERE KEYBOARD DATA?
;NO. WAIT UNTIL THERE IS
;YES. FETCH DATA

mitted LSB first), a parity bit and two stop bits (both logic 1).
This format is illustrated in Fig. 9-9. Most teletypewriters transmit
information at a rate of ten 11-bit characters per second, or at a
110-baud rate. Therefore, each bit has a width of Yi.10 of a second,
or 9.09 milliseconds.

LOGIC 1

LOGIC 0

START
BIT

DATA BITS PARITY STOP STOP
BIT BIT BIT

Fig. 9-9. The data format for a teletypewriter.

Hardware Interface

For purposes of discussion, let us examine an existing teletype
writer interface-the interface that is built into the AIM 65 (Fig.
9-10). This interface uses a single VIA, connected in AIM 65 socket
Z32, which occupies addresses $A800 through $A80F. Teletype
writer keyboard data is received on application connector pin Jl-T
(TTY KYBD), buffered by transistor Q2 and associated compo
nents, and is presented to the VIA on input line PB6. The teletype
writer printer data originates on VIA output line PB2 and is output
to the teletypewriter on application connector pin Jl-U (TTY
PTR). Application connector pin Jl-Y (SERIAL IN) accommodates
serial-bit streams at rates of up to 9600 baud, and can be used
when the teletypewriter is not operating.

During the system initialization sequence for power-up and
reset, the 6502 microprocessor must configure the VIA port lines
of the teletypewriter by permanently assigning PB2 as an output
and PB6 as an input. These assignments will be made by the in
structions

LOA #04 ;PB2 = l, PB6 = 0
STA $A802 ;WRITE INTO DATA DIRECTION REGISTER B

MICROCOMPUTER INPUT/ OUTPUT 233

+5V +5 v

CR9 1N914B JI APPLICATION

C21 I lµF
R25 TTY KYBD +24 v R

RTN I+) 820 11

R23

PB6
16 SERIAL IN

3K
Q2 CR8 1N914B

2N2222

Z32 TTY KYBD

VIA R22 Cl +5 v CR5 R6522
3.9K R8 220 11 I 0.33µF 1N4001

PB2
12 u TTY PTR

CR7 1N4001 RI
TTY PTR +5V

150 n RTN 1+1

Courtesy Rockwell International

Fig. 9-10. An AIM 65 teletypewriter interface.

Receiving Data From a Teletypewriter

The basic task in receiving information from a teletypewriter is
extracting the data from the 11-bit character that the VIA receives
with each data transfer operation. Fig. 9-11 presents a flowchart
for a teletypewriter receive program. Here are the steps shown in
the flowchart:

I. Wait for a start bit (a logic 0) on the data input line.
2. Delay a I-bit time (9.09 milliseconds), to skip the start bit.
3. Delay a ¥!-bit time (4.545 milliseconds), so that the 6502

microprocessor samples the data stream in the middle of the
next data bit.

4. Input seven data bits (least-significant bit first), waiting I-bit
time between bits. Assemble the bits into a data byte by right
shifting input register B with each bit received.

5. Delay I%-bit times, to skip the parity bit.
6. Load ASCII data byte into accumulator.

Example 9-7 shows a subroutine that uses the flowcharted algo
rithm. This subroutine (GETTTY) employs Timer 2 of the VIA to
generate I-bit and %-bit time delays (with the DELAY and
DEHALF subroutines, respectively) by initializing the counters
with a value of $233F. This count value accounts for the inherent

234

NO

START

['WiiiT ONE HALF
LBIT TIME

~f INPUT BIT
AND

FT IT RIGHT

DELAY ONE
BIT TIME

lcouNT =
l__.!:OUNT -I

END

6502 SOFTWARE DESIGN

Fig. 9· 11. Flowchart for teletypewriter
receive operation.

time delays that are induced by the instructions of the delay sub
routine and by the JSR and RTS instructions that call and return
from the subroutine. Incidentally, AIM 65 owners should be in
terested in the fact that the GETTTY subroutine given in Example
9-7 is a slightly modified version of the GETTTY subroutine of
the AIM 65 Monitor (entry address $EBDB). Likewise, the DELAY
and DEHALF subroutines that are included in Example 9-7 are

MICROCOMPUTER INPUT/ OUTPUT

Example 9-7: A Teletypewriter Receive Subroutine

;THIS SUBROUTINE INPUTS AN ASCII CHARACTER FROM THE TELETYPEWRITER
;INTO THE ACCUMULATOR. LOCATION $40 IS USED TO ASSEMBLE THE
;SERIAL DATA AS IT IS RECEIVED.

GETTTY LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER

GETl

GET3

STA $A80C

LDX #07
STX $40
BIT $A800
BVS GETl
JSR DELAY
JSR
LOA
AND
LSR
ORA
STA
JSR
DEX
BNE
JSR
LOA
RTS

DEHALF
$A800
#$40
$40
$40
$40
DELAY

GET3
DELAY
$40

;DATA BIT COUNT = 7
;CLEAR MSB OF DATA STORAGE LOCATION
;HAS START BIT BEEN RECEIVED?
;NO. WAIT UNTIL IT IS.
;YES. WAIT ONE BIT TIME.
;WAIT ONE-HALF BIT TIME, TO CENTER
;FETCH INPUT DATA REGISTER B
;MASK OUT ALL BITS EXCEPT BIT 6
;RIGHT-SHIFT DATA BYTE,
; COMBINE IT WITH NEW BIT,
; AND STORE UPDATED BYTE.
;WAIT ONE BIT TIME
;DECREMENT DATA BIT COUNT
;IF COUNT IS NOT ZERO, GET NEXT BIT
;WAIT ONE BIT TIME, TO SKIP PARITY
;FETCH DATA BYTE

;THE FOLLOWING SUBROUTINE GENERATES A ONE-BIT TIME DELAY.

DELAY LDA #$3F ;INITIALIZE TIMER 2 LOW COUNT
STA $A808
LDA #$23
STA $A809

DE2 LDA $A80D
AND #$20
BEQ DE2
RTS

;INITIALIZE TIMER 2 HIGH COUNT
; AND START TIMER
;FETCH INTERRUPT FLAG REGISTER
;T2 INTERRUPT FLAG SET?
;NO. WAIT UNTIL IT IS
;YES. RETURN

;THE FOLLOWING SUBROUTINE GENERATES A ONE-HALF BIT TIME DELAY.

DEHALF LOA #$23 ;LOAD TIMER 2 HIGH COUNT
LSR A ; AND SHIFT IT RIGHT, INTO CARRY
LOA #$3F ;LOAD TIMER 2 LOW COUNT
ROR A ; AND DIVIDE IT BY 2, WITH CARRY FROM

; HIGH COUNT
STA $A80B ;INITIALIZE TIMER 2 LOW COUNT
LOA #$23 ;INITIALIZE TIMER 2 HIGH COUNT,
LSR A ; DIVIDE IT BY 2,
STA $A809 ; AND START TIMER.
JMP DE2 ;GO WAIT FOR TIME-OUT

235

slightly modified versions of the DELAY and DEHALF subrou
tines of the AIM 65 Monitor (entry addresses $ECOF and $EC23,
respectively).

Transmitting Data to a Teletypewriter

From a programming standpoint, transmitting data to a tele
typewriter is quite a bit simpler than receiving it. All the program

236 6502 SOFTWARE DESIGN

must do is output the 11 bits that comprise a teletypewriter char
acter, in the following order:

1. Transmit a Start bit (a logic 0) on the data output line.
2. Transmit the seven data bits, with the least-significant bit

first.
3. Transmit the Parity bit (a logic 0).
4. Transmit two Stop bits (logic ls).

The program must generate a 1-bit time delay between the bits
being transmitted. Further, since PB2 is being used as the output
line, the ASCII character in the accumulator must be initially
aligned so that its least-significant bit is in Bit 2 (this can be done
by rotating the character left two bit positions). Each subsequent
transmit operation must be preceded by a 1-bit right-shift. Fig.
9-12 is a flowchart of the teletypewriter transmit operation.

Example 9-8: A Teletypewriter Transmit Subroutine

;THIS SUBROUTINE TRANSMITS AN ASCII CHARACTER IN THE ACCUMULATOR

;TO THE TELETYPEWRITER. LOCATION $40 IS USED FOR TEMPORARY STORAGE.

OUTTTY PHA ;SAVE ASCII CHARACTER ON STACK

OUTBIT

STA $40 ; AND IN MEMORY

LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
$A80C STA

STA

JSR
LDX

LDA
ROL
ROL
STA
ROR

JSR
DEX

BNE

LDA

STA

JSR

JSR
PLA

RTS

$A800
DELAY

#OS
$40
A
A

;TRANSMIT START BIT (LOGIC 0)

;WAIT ONE BIT TIME
;DATA BIT COUNT = 8
;FETCH ASCII CHARACTER

;ALIGN LSB WITH BIT 2

$A800 ;TRANSMIT DATA BIT
A ;SHIFT NEXT BIT INTO BIT 2

DELAY ;WAIT ONE BIT TIME
;ALL BITS TRANSMITTED?

OUTBIT ,NO. TRANSMIT NEXT BIT

#04 ;TRANSMIT STOP BITS (LOGIC l'S)

$A800
DELAY

DELAY
;RESTORE ACCUMULATOR CONTENTS

; AND RETURN

Example 9-8 shows a subroutine that uses the Howcharted algo
rithm. This subroutine (OUTTTY) calls the DELAY subroutine
from Example 9-7 to generate the 1-bit time delays between the bit
transmit operations. Anf 65 users will note that the example
subroutine is similar to the teletypewriter transmit subroutine of
the AIM 65, (OUTTTY, entry address $EEA8), but it does not
include all of the overhead instructions that are required by the
AIM 65 Monitor.

MICROCOMPUTER INPUT/ OUTPUT

Fig. 9-12. Flowchart for teletypewriter
transmit operation.

NO

START

END

THE 6502 MICROPROCESSOR AND SEVEN-SEGMENT
LED DISPLAYS

237

At some point in your programming, you may want the 6502
microprocessor to output data to a peripheral device. As we have
discussed previously, this device could be a teletypewriter, a CRT,

238 6502 SOFTWARE DESIGN

a digital cassette recorder, or a floppy disk. However, one of the
devices that is most often interfaced to a microcomputer is some
form of low-cost display. Some microcomputer systems have very
simple displays, such as a group of eight LEDs that will display
only binary values (as described at the beginning of this chapter).
Other microcomputer systems have 5 X 7 LED matrix displays or
sophisticated 16-segment alphanumeric displays, such as the AIM
65 has. However, one of the devices most often interfaced to a
microcomputer is the simple seven-segment LED display. This is
the same type of display that is used in hand-held calculators and
digital clocks. For this reason, we should discuss how to interface
seven-segment LED displays to a 6502-based microcomputer.

As we learned in Chapter 4 (Example 4-10 and the accompany
ing text), the individual segments of a seven-segment LED dis
play are controlled by a set of specific codes. In that chapter, we
showed those codes (Fig. 4-2) and presented a subroutine that
converted a BCD digit in location $40 to the proper display code
in location $41. If the display code is output to a general-purpose
I/ 0 device, such as a VIA, that is connected to a set of drivers and
a seven-segment display, the interface circuit becomes as simple
as the circuit illustrated in Fig. 9-13.

------"
6502" FROM

MICROPR OCESSOR

PB6

PB5

PB4
6522
VIA

DRIVERS
PB3

PB1

PB!

PBO

Fig. 9-13. Interfacing to a seven-segment display.

a

, I b

g

· I I ,
d

~

Seven-segment displays are available in two varieties, called
the common-anode type and the common-cathode type. If a com
mon-anode display is used, the anodes will be connected to +5
volts and a logic 0 will turn a segment on. If a common-cathode dis
play is used, the cathodes would be connected to ground and a
logic 1 would turn a segment on. Example 9-9 shows a subroutine
that can be used to communicate with a common-cathode seven
segment LED display (Fig. 9-13). This subroutine, DISPL, con
verts a BCD value in location $40 to a seven-segment display code,
and then displays that code if it represents a decimal digit (0 to 9);
otherwise, it blanks the display (turns all segments off).

MICROCOMPUTER INPUT/ OUTPUT

Example 9-9: A Seven-Segment Display Conversion and Output Subroutine

;THIS SUBROUTINE CONVERTS A BCD DIGIT IN LOCATION $40 TO A

;SEVEN-SEGMENT CODE AND DISPLAYS IT, IF THE BCD DIGIT REPRESENTS
;A DECIMAL DIGIT (0 TO 9). IF THE BCD DIGIT DOES NOT CONVERT
;TO A DECIMAL DIGIT, THE SUBROUTINE BLANKS THE DISPLAY.

DISPL LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
LDA #$FF
STA $A002
LDY $40
CPY #10
BCC CONV7
LDA #OO
JMP OUT?

;MAKE PORT B OUTPUTS

;FETCH BCD DIGIT INTO Y
;IS DIGIT GREATER THAN NINE?
;NO. GO CONVERT AND OUTPUT
;YES. BLANK DISPLAY

CONV7 LDA SSEG,Y ;LOOK UP SEVEN-SEGMENT CODE
OUT7 STA $AOOO ;OUTPUT TO DISPLAY

RTS

SSEG .BYT $3F,$06,
$5B,$4F,
$66

.BYT $6D,$7D,
$07,$7F
$6F

239

A more common way of interfacing seven-segment LED displays
is to perform the decoding function in hardware, using a BCD-to
seven-segment decoder/driver, such as a 7447 or a 7448. The 7447
decoder I driver interfaces to common-anode displays (a logic 0
lights a segment) and the 7 448 interfaces to common-cathode dis
plays (a logic 1 lights a segment). Both types of decoders have a
lamp-test input that turns all segments on and, also, blanking in
puts and outputs for suppressing leading zeroes. In addition to
saving software conversion code, these decoders permit an 8-bit
VIA port to service two displays directly (see Fig. 9-14), with one
display controlled by the four low-order bits and the other display
controlled by the four high-order bits. Since 4-bit BCD digits are
normally packed two per byte, the use of two decoders makes the
display subroutine considerably simpler, as you can see by looking
at Example 9-10. The subroutine in this example, DISPLl, displays
two digits that are packed into location $40.

DISPLl

Example 9-10: A Two-Digit Seven-Segment Display Subroutine for Use With
Hardware Decoders

LDA #OO ;CLEAR PERIPHERAL CONTROL REGISTER
STA $AOOC
LDA #$FF ;MAKE PORT B OUTPUTS
STA $A002
LDA $40 ;FETCH TWO BCD DIGITS
STA $AOOO ; AND DISPLAY THEM
RTS

240 6502 SOFTWARE DESIGN

To study a more complex problem, let us discuss the hardware
and software necessary to display a 10-digit BCD number that is
stored in memory. We could certainly construct such an interface
by using five of the previous circuits (such as Fig. 9-14), but this
would require 5 VIAs, 10 type-7448 decoders, and 70 resistors,
which would prove relatively expensive. An easier, and more eco
nomical way to construct this interface is by multiplexing our

FROM 6502
MICROPROCESSO

----"

~

6522
VIA

6

2

~

PB7 .!_2
_}__

FB6 16 -
PBS 1.L_

PB4 14

PB3 Q__

PB2 l.L_

PB! lL
.__§__

PBO ~
_.?__

l

7

15

14

13

7448 12

ll

10

9

15

14

13

7448 12

11

10

9

2
a

11

1 I b

13 g

10
e c

8

7 d

I

2
a

11

1 I b

13 g

10 . I , ,
8

7 d

22on
I

Fig. 9·14. A two-digit seven-segment LED display interfaced to a 6522 VIA.
~

single VIA and two decoders, as shown in Fig. 9-15. The interface
in Fig. 9-15 uses a count-by-five circuit to select the LED displays
in pairs. A brief strobe on control line CB2 clocks the counter and
directs data to the next pair of displays. Reset (RES) initializes
the counter to five, so that the first output operation clears the
counter and directs data to the first pair of digits.

Example 9-11 shows a routine that could be used to drive the
display circuit given in Fig. 9-15. This routine assumes that 10
BCD digits are packed two per byte into locations $40 through
$44. Each digit pair is displayed for 3 milliseconds, generated by
a subroutine called DLY3. The 3-milliseconds time period is such
a short interval that you would not be able to notice that the dis-

MICROCOMPUTER INPUT/ OUTPUT

FROM 6501
MICROPROCESSOR

6522
VIA

CB1

CUUNT BY 5
COUNTER

RESET

Fig. 9-15. A multiplexed 10-digit LED display.

DIGIT
DECODER1DR IVE RS

241

plays are blinking on and off. Each pair of digits will be on for
only 3 milliseconds, which means that all 10 digits (5 pairs) will
be displayed once every 15 milliseconds. This means that all of the
digits will be turned on and off at a rate of slightly more than 60
times per second. At this rate, your eyes will not be able to detect
that the displays are Hashing on and off.

SUMMARY

This chapter was not intended to present an exhaustive treat
ment of interfacing, but is rather an introduction to the funda-

242 6502 SOFTWARE DESIGN

Example 9-11: The Software for a Multiplexed 10-Digit Seven-Segment Display

;THIS ROUTINE DISPLAYS THE CONTENTS OF MEMORY LOCATIONS $40
;THROUGH $44 ON A 10-DIGIT SEVEN-SEGMENT DISPLAY.

LDA #$AO ;SET CB2 TO PULSE OUTPUT MODE
STA $AOOC
LDA #$FF ;MAKE PORT B OUTPUTS
STA $A002

RECYCL LDX #OO ;POINT TO FIRST LOCATION
LDY #OS ;NUMBER OF DIGIT PAIRS 5

OUTMUX LDA $40,X ;FETCH NEXT TWO DIGITS
STA $AOOO ; AND DISPLAY THEM
JSR DLY3 ;WAIT 3 MILLISECONDS
INX
DEY ;ANY MORE DIGITS?
BNE OUTMUX ;YES. GO FETCH THEM
BEQ RECYCL ;NO. CYCLE THROUGH AGAIN

;THE FOLLOWING SUBROUTINE USES TIMER l TO GENERATE A 3-MILLISECOND
;DELAY, BY WRITING 3000 ($0BB8) INTO THE COUNTERS.

DLY3 LDA #OO ;SET Tl ONE-SHOT MODE, WITH NO PB?

CHKTl

STA $AOOB
LDA
STA
LDA
STA
LDA
BIT
BEQ
LDA
RTS

#$BB
$A004
#$OB
$A005
#$40
$AOOD
CHKTl
$A004

;WRITE COUNT LSBY

;WRITE COUNT MSBY AND START TIMER

;SELECT Tl INTERRUPT MASK
;HAS TIMER l COUNTED DOWN?
;NO. WAIT UNTIL IT HAS
;YES. CLEAR Tl INTERRUPT FLAG
; AND RETURN

mental concepts of interfacing. Indeed, there are many types of
devices that were not covered at all, such as cassette recorders,
CH.Ts, analog-to-digital converters, digital-to-analog converters,
and a variety of other devices. Readers who are interested in
further information on interfacing should read the books listed in
Heferences 1 through 5.

REFERENCES

1. De Jong, M. L. Programming and Interfacing the 6!502. Howard W. Sams &
Co., Inc., Indianapolis, IN, 1979.

2. Larsen, D. C. and Hony, P. H. Interfacing and Scientific Data Communica
tions Experiment.1'. Howard W. Sams & Co., Inc., Indianapolis, IN, 1978.
(An excellent book for interfacing information on U AHT and USAHT.)

.'3. Larsen, D. C. and Hrmy, P. H. Logic and Memory Experiment.1· Using TTL
Integrated Circuits. Howard W. Sams & Co., lnc., Indianapolis, IN, 1978.
(This is a very good volunw for the reader who wants to know more about
gates, logic counters, decoders, multiplexers, llip-llops, LED displays, and
the like.)

MICROCOMPUTER INPUT/ OUTPUT 243

4. Titus, J. A., Titus, C. A., Rony, P. R., and Larsen, D. G. Microcomputer
Analog Converter Sofrware and Hardware Interfacing. Howard W. Sams &
Co., Inc., Indianapolis, IN, 1978. (Analog-to-digital and digital-to-analog
converters are discussed in this book.)

5. Peatman, J. Microcomputer-Based Design. McGraw-Hill, New York, NY,
1977.

APPENDIX A

ASCII Character Set
(7 -Bit Code)

~ 0 1 2 3 4 5
D 000 001 010 011 100 101

0 0000 NUL OLE SP 0 @ p
1 0001 SOH DC1 ! 1 A a
2 0010 STX DC2 " 2 B R
3 0011 ETX DC3 # 3 c s
4 0100 EOT DC4 $ 4 D T
5 0101 ENO NAK O/o 5 E u
6 0110 ACK SYN & 6 F v
7 0111 BEL ETB 7 G w
8 1000 BS CAN (8 H x
9 1001 HT EM) 9 I y
A 1010 LF SUB . J z
B 1011 VT ESC + '

K [
c 1100 FF FS

' < L \
D 1101 CR GS - = M I
E 1110 so RS • > N t
F 1111 SI vs I ? 0 +-

6 7
110 111

p
a q
b r
c s
d t
e u
f v
g w
h x
i y
j z
k {
I I

m }
n rv

0 DEL

Courtesy Rockwell International

244

APPENDIX B

Summary of the 6502
Instruction Set

The following notation applies to this summary:

A Accumulator
X, Y Index registers
M Memory
P Processor status register
S Stack Pointer
j Change

No change
+ Add
/\ Logical AND

Subtract
V Logical Exclusive-on
->, <-- Transfer to
¥ Logical (inclusive) OR

PC Program counter
PCH Program counter high
PCL Program counter low
#dd 8-bit immediate data value (2 hexadecimal digits)
aa 8-bit zero page address (2 hexadecimal digits)
aaaa 16-bit absolute address (4 hexadecimal digits)
t Transfer from stack (Pull)
t Transfer onto stack (Push)

245

246 6502 SOFTWARE DESIGN

ADC

Add to Accumulator with Carry
Operation: A+ M + C ~A, C

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Immediate ADC #dd 69 2
Zero Page ADC aa 65 2
Zero Page, X ADC aa,X 75 2
Absolute ADC aaaa 6D 3
Absolute, X ADC aaaa,X 7D 3
Absolute, Y ADC aaaa,Y 79 3
(Indirect, X) ADC (aa,X) 61 2
(Indirect), Y ADC (aa),Y 71 2

•Add 1 if page boundary is crossed.

AND

AND Memory with Accumulator
Logical AND to the accumulator
Operation: A /\ M ~ A

Addressing Assembly Language
Mode Form

Immediate AND #dd
Zero Page AND aa
Zero Page, X AND aa,X
Absolute AND aaaa
Absolute, X AND aaaa,X
Absolute, Y AND aaaa,Y
(Indirect, X) AND (aa,X)
(Indirect), Y AND (aa),Y

•Add 1 if page boundary is crossed.

OP No.
CODE Bytes

29 2
25 2
35 2
2D 3
3D 3
39 3
21 2
31 2

NZCIDV
jjj--j

No.
Cycles

2
3
4
4
4*
4*
6
5*

NZCIDV
jj----

No.
Cycles

2
3
4
4
4*
4*
6
5*

SUMMARY OF THE 6502 INSTRUCTION SET

ASL

Accumulator Shift Left
Operation: C ~ I 71 6 I 5 I 4 I 3 I 2 I 1 I 0 I ~ 0

Addressing Assembly Language OP
Mode Form CODE

Accumulator ASL A OA
Zero Page ASL aa 06
Zero Page, X ASL aa,X 16
Absolute ASL aaaa OE
Absolute, X ASL aaaa,X lE

BCC

Branch on Carry Clear
Operation: Branch on C = 0

Addressing Assembly Language OP
Mode Form CODE

Relative BCC aa 90

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

No.
Bytes

1
2
2
3
3

No.
Bytes

2

247

NZCIDV
///---

No.
Cycles

2
5
6
6
7

NZCIDV

No.
Cycles

2*

Note: AIM 65 will accept an absolute address as the operand (instruction format BCC aaaa), and
convert it to a relative address.

BCS

Branch on Carry Set
Operation: Branch on C = l

Addressing Assembly Language OP
Mode Form CODE

Relative BCS aa BO

*Add l if branch occurs to same page.
Add 2 if branch occurs to next page.

NZCIDV

No. No.
Bytes Cycles

2 2*

Note: AIM 65 will accept an absolute address as the operand (instruction format BCS aaaa), and
convert it to a relative address.

248 6502 SOFTWARE DESIGN

BEQ

Branch on Result Equal to Zero
Operation: Branch on Z = 1

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Relative BEQ aa FO 2

*Add 1 if branch occurs to same page.

NZCIDV

No.
Cycles

2*

Add 2 if branch occurs to next page.
Note: AIM 65 will accept an absolute address as the operand (instruction format BEQ aaaa), and

convert it to a relative address.

BIT

Test Bits in Memory with Accumulator
Operation: A M, M 7 ~ N, M 6 ~ V

Bit 6 and 7 are transferred to the Status Register. If the
result of A M is zero then Z = 1, otherwise Z = 0

Addressing Assembly Language OP
Mode Form CODE

Zero Page BIT aa 24
Absolute BIT aaaa 2C

BMI

Branch on Result Minus
Operation: Branch on N = 1

Addressing

I
Assembly Language OP

Mode Form CODE

Relative I BMI aa 30

*Add l if branch occurs to same page.
Add 2 if branch occurs to different page.

N Z C I D V
M1 j - - -M6

No. No.
Bytes Cycles

2 3
3 4

NZCIDV

No. No.
Bytes Cycles

2 2*

Note: AIM 65 will accept an absolute address as the operand (instruction format BMI aaaa}, and
convert it to a relative address.

SUMMARY OF THE 6502 INSTRUCTION SET 249

BNE

Branch on Result Not Equal to Zero
Operation: Branch on Z = 0

NZCIDV

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BNE aa DO 2 2*

*Add l if branch occurs to same page.
Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BNE aaaa), and
convert it to a relative address.

BPL

Branch on Result Plus
Operation: Branch on N = 0

NZCIDV

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BPL aa 10 2 2*

*Add J if branch occurs to same page.
Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand {instruction format BPL aaaa), and
convert it to a relative address.

BRK

Force Break
Operation: Forced Interrupt PC+ 2 i Pi

Addressing Assembly Language
Mode Form

Implied BRK

OP
CODE

00

No.

BNZCIDV
1---1--

No.
Bytes Cycles

1 7

250 6502 SOFTWARE DESIGN

BVC

Branch on Overflow Clear
Operation: Branch on V = 0

Addressing Assembly Language OP
Mode Form CODE

Relative BVC aa 50

*Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

NZCIDV

No. No.
Bytes Cycles

2 2*

Note: AIM 65 will accept an absolute address as the operand (instruction format BVC aaaa), and
convert it to a relative address.

BVS

Branch on Overflow Set
Operation: Branch on V = 1

NZCIDV

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BVS aa 70 2 2*

*Add l if branch occurs to same page.
Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BVS aaaa), and
convert it to a relative address.

CLC

Clear Carry Flag
Operation: 0 ~ C

Addressing Assembly Language OP
Mode Form CODE

Implied CLC 18

No
Bytes

l

NZCIDV
--0---

No.
Cycles

2

SUMMARY OF THE 6502 INSTRUCTION SET

CLD

Clear Decimal Mode
Operation: 0 ~ D

Addressing Assembly Language OP
Mode Form CODE

Implied CLD 08

CLI

Clear Interrupt Disable Bit
Operation: 0 ~ I

Addressing Assembly Language OP
Mode Form CODE

Implied cu 58

CLV

Clear Overflow Flag
Operation: 0 ~ V

Addressing Assembly Language OP
Mode Form CODE

Implied CLV BS

No.
Bytes

1

No.
Bytes

1

No.
Bytes

1

251

NZCIDV
----0-

No.
Cycles

2

NZCIDV
---0--

No.
Cycles

2

NZCIDV
-----0

No.
Cycles

2

252 6502 SOFTWARE DESIGN

CMP

Com pare Memory and Accumulator
Operation: A - M

Addressing Assembly language OP No.

Mode Form CODE Bytes

Immediate CMP #dd C9 2
Zero Page CMP aa cs 2

Zero Page, X CMP aa,X DS 2

Absolute CMP aaaa CD 3
Absolute, X CMP aaaa,X DD 3
Absolute, Y CMP aaaa,Y D9 3
(Indirect, X) CMP (aa,X) Cl 2
(Indirect), Y CMP (aa),Y Dl 2

*Add l if page boundary is crossed.

CPX

Com pare Memory and Index X
Operation: X - M

Addressing Assembly language OP No.
Mode Form CODE Bytes

Immediate CPX #dd EO 2
Zero Page CPX aa E4 2
Absolute CPX aaaa EC 3

CPY

Compare Memory and Index Y
Operation: Y - M

Addressing Assembly language OP No.
Mode Form CODE Bytes

Immediate CPY #dd co 2
Zero Page CPY aa C4 2
Absolute CPY aaaa cc 3

NZCIDV
.)//---

No.
Cycles

2

3
4
4
4*
4•

6
5*

NZCIDV
.).)/---

No.
Cycles

2
3
4

NZCIDV
!/./---

No.
Cycles

2
3
4

SUMMARY OF THE 6S02 INSTRUCTION SET

DEC

Decrement Memory by One
Operation: M - 1 ~ M

Addressing Assembly language OP
Mode Form CODE

Zero Page DEC aa C6
Zero Page, X DEC aa,X D6
Absolute DEC aaaa CE
Absolute, X DEC aaaa,X DE

DEX

Decrement Index X by One
Operation: X - 1 ~ X

Addressing Assembly language OP
Mode Form CODE

Implied DEX CA

DEY

Decrement Index Y by One
Operation: Y - 1 ~ Y

Addressing Assembly language OP
Mode Form CODE

Implied DEY 88

No.
Bytes

2
2
3
3

No.
Bytes

1

No.
Bytes

1

253

NZCIDV
//----

No.
Cycles

5
6
6
7

NZCIDV
//----

No.
Cycles

2

NZCIDV
//----

No.
Cycles

2

254 6502 SOFTWARE DESIGN

EOR

Exclusive-0 R Memory with Accumulator
Operation: A V M ~ A

Addressing Assembly Langu~ge OP
Mode Form CODE

Immediate EOR #dd 49
Zero Page EOR aa 45
Zero Page, x EOR aa,X 55
Absolute EOR aaaa 4D
Absolute, X EOR aaaa,X 5D
Absolute, Y EOR aaaa,Y 59
(Indirect, X) EOR (aa,X) 41
(Indirect), Y EOR (aa),Y 51

*Add 1 if page boundary is crossed.

INC

Increment Memory by One
Operation: M + 1 ~ M

Addressing Assembly Language OP
Mode Form CODE

Zero Page INC aa E6
Zero Page, x INC aa,X F6
Absolute INC aaaa EE
Absolute, X INC aaaa,X FE

INX

Increment Index X by One
Operation: X + 1 ~ X

Addressing Assembly Language OP
Mode Form CODE

Implied INX ES

No.
Bytes

2

2
2

3
3
3
2
2

No.
Bytes

2
2
3
3

No.
Bytes

l

NZCIDV
./ ./----

No.
Cycles

2

3
4
4
4*
4*
6
5*

NZCIDV
./ ./----

No.
Cycles

5
6
6
7

NZCIDV
./ ./----

No.
Cycles

2

SUMMARY OF THE 6502 INSTRUCTION SET

INY

Increment Index Y by One
Operation: Y + 1 ~ Y

Addressing Assembly language
Mode Form

Implied INY

JMP

Jump
Operation: (PC + 1) ~ PCL

(PC +2) ~ PCH

Addressing Assembly language
Mode Form

Absolute JMP aaaa
Indirect JMP (aaaa)

JSR

OP
Code

ca

OP
CODE

4C
6C

Jump to Subroutine
Operation: PC+ 2 i, (PC+ 1) ~ PCL

(PC+ 2) ~ PCH

Addressing Assembly Language OP
Mode Form CODE

Absolute JSR aaaa 20

No.
Bytes

1

No.
Bytes

3
3

No.
Bytes

3

255

NZCIDV
./ ./----

No.
Cycles

2

NZCIDV

No.
Cycles

3
5

NZCIDV

No.
Cycles

6

256 6502 SOFTWARE DESIGN

LDA

Load Accumulator with Memory
Operation: M-+ A

Addressing Assembly language OP No.
Mode Form CODE Bytes

Immediate LOA #dd A9 2
Zero Page LOA aa AS 2
Zero Page, X LOA aa,X BS 2
Absolute LOA aaaa AD 3
Absolute, X LOA aaaa,X BO 3
Absolute, Y LOA aaaa,Y B9 3
(Indirect, X) LOA (aa,X) Al 2
(Indirect), Y LOA (aa),Y Bl 2

*Add l if page boundary is crossed.

LDX

Load Index X with Memory
Operation: M-+ X

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Immediate LOX #dd A2 :2
Zero Page LOX aa A6 2
Zero Page, Y LOX aa,Y B6 rz
Absolute LOX aaaa AE 3
Absolute, Y LOX aaaa,Y BE 3

*Add 1 when page boundar v is crossed.

NZCIDV
jj----

No.
Cycles

2
3
4
4
4*
4*
6
S*

NZCIDV
jj----

No.
Cycles

2
3
4
4
4*

SUMMARY OF THE 6502 INSTRUCTION SET

LDY

Load Index Y with Memory
Operation: M ~ Y

Addressing Assembly Language OP
Mode Form CODE

Immediate LOY #dd AO
Zero Page LDY aa A4
Zero Page, X LDY aea,X B4
Absolute LDY aaaa AC
Absolute, X LDY aaaa,X BC

*Add 1 when page boundary is crossed.

LSR

Local Shift Right
Operation: 0 ~ I 1 I 6 I 5 I 41312 I 1 I 0 I ~ C

Addressing Assembly Language
Mode Form

Accumulator LSR A
Zero Page LSR aa
Zero Page, X LSR aa,X
Absolute LSR aaaa
Absolute, X LSR aaaa,X

NOP

No Operation
Operation: No Operation (2 cycles)

Addressing Assembly Language
Mode Form

Implied NOP

OP
CODE

4A
46
56
4E
SE

OP
CODE

EA

No.
Bytes

2
2
2
3
3

No.
Bytes

l
2
2
3
3

No.
Bytes

1

257

NZCIDV
//----

No.
Cycles

2
3
4
4
4*

NZCIDV
0//---

No.
Cycles

2
5
6
6
7

NZCIDV

No.
Cycles

2

258 6502 SOFTWARE DESIGN

ORA

0 R Memory with Accumulator
Operation: AV M ~ A

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Immediate ORA #dd 09 2
Zero Page ORA aa 05 2
Zero Page, X ORA aa,X 15 2
Absolute ORA aaaa OD 3
Absolute, X ORA aaaa,X JD 3
Absolute, Y ORA aaaa,Y 19 3
(Indirect, X) ORA (aa,X) 01 2
(Indirect), Y ORA (aa),Y 11 2

*Add 1 on page crossing.

PHA

Push Accumulator on Stack
Operation: A J,

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied PHA 48 l

PHP

Push Processor Status on Stack
Operation: P,j,

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied PHP 08 l

NZCIDV
//----

No.
Cycles

2
3
4
4
4*
4*
6
5*

NZCIDV

No.
Cycles

3

NZCIDV

No.
Cycles

3

SUMMARY OF THE 6502 INSTRUCTION SET

PLA

Pull Accumulator from Stack
Operation: At

Addressing Assembly language OP No.
Mode Form CODE Bytes

Implied PLA 68 1

PLP

Pull Processor Status from Stack
Operation: Pt

Addressing Assembly language Of' No.
Mode Form CODE Bytes

Implied PLP 28 1

ROL

Rotate Left

Operation: 4 7 I 6 I 5 ~ r3l 211 Io I~ [Q] :J
Addressing Assembly language OP No.

Mode Form CODE Bytes

Accumulator ROL A 2A 1
Zero Page ROL aa 26 2
Zero Page, X ROL aa,X 36 2
Absolute ROL aaaa 2E 3
Absolute, X ROL aaaa,X 3E 3

259

NZCIDV
j)----

No.
Cycles

4

NZCIDV
From Stack

No.
Cycles

4

NZCIDV
jjj---

No.
Cycles

2
5
6
6
7

260

ROR

Rotate Right

Operation: L@] ~ 11161s'4rti2111 o~

Addressing Assembly Language OP
Mode Form CODE

Accumulator ROR A 6A
Zero Page ROR aa 66
Zero Page, X ROR aa,X 76
Absolute ROR aaaa 6E
Absolute, X ROR aaaa,X 7E

RTI

Return from Interrupt
Operation: Pf PCf

Addressing Assembly Language OP
Mode Form CODE

Implied RTI 40

RYS

Return from Subroutine
Operation: Pq, PC+ 1 ~PC

Addressing Assembly Language OP
Mode Form CODE

Implied RTS 60

6502 SOFTWARE DESIGN

No.
Bytes

l
2
2
3
3

No.
Bytes

1

No.
Sytes

l

NZCIDV
!!/---

No.
Cycles

2
5
6
6
7

NZCIDV
From Stack

No.
Cycles

6

NZCIDV

No.
Cycles

6

SUMMARY OF THE 6502 INSTRUCTION SET

SBC

Subtract from Accumulator with Carry
Operation: A - M - C ~ A

Note: C =Borrow

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Immediate SBC #dd E9 2
Zero Page SBC aa E5 2
Zero Page, X SBC aa,X FS 2
Absolute SBC aaaa ED 3
Absolute, X SBC aaaa,X FD 3
Absolute, Y SBC aaaa,Y F9 3
(Indirect, X) SBC (aa,X) El 2
(Indirect), Y SBC (aa),Y Fl 2

*Add 1 when page boundary is crossed.

SEC
Set Carry Flag

Operation: 1 ~ C

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied SEC 38 1

SED

Set Decimal Mode
Operation: 1 ~ D

Acldressing Assembly Language OP No.
Mode Form CODE Bytes

Implied SED FB l

261

NZCIDV
I//-- I

No.
Cycles

2
3
4
4
4*
4*
6
5*

NZCIDV
--1---

No.
Cycles

2

NZCIDV
----1-

No.
Cycles

2

262

SEI

Operation: I~ I

Addressing
Mode

Implied

STA

Operation: A~ M

Addressing
Mode

Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

STX

Operation: X ~ M

Addressing
Mode

Zero Page
Zero Page, Y
Absolute

6502 SOFTWARE DESIGN

Set Interrupt Disable Status

Assembly language OP
Form CODE

SEI 7S

Store Accumulator in Memory

Assembly Language OP
Form CODE

STA aa SS
STA aa,X 95
STA aaaa SD
STA aaaa,X 90
STA aaaa,Y 99
STA (aa,X) Sl
STA (aa),Y 91

Store Index X in Memory

Assembly language OP
Form CODE

STX aa S6
STX aa,Y 96
STX aaaa SE

No.
Bytes

1

No.
Bytes

2
2
3
3
3
2
2

No.
Bytes

2
2
3

NZCIDV
---1--

No.
Cycles

2

NZCIDV

No.
Cycles

3
4
4
5
5
6
6

NZCIDV

No.
Cycles

3
4
4

SUMMARY OF THE 6502 INSTRUCTION SET

STY

Store Index Y in Memory
Operation: Y ~ M

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Zero Page STY aa S4 2
Zero Page, X STY aa,X 94 2
Absolute STY aaaa SC 3

TAX

Transfer Accumulator to Index X
Operation: A~ X

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TAX AA 1

TAY

Transfer Accumulator to Index Y
Operation: A~ Y

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TAY AS 1

263

NZCIDV

No.
Cycles

3
4
4

NZCIDV
jj----

No.
Cycles

2

NZCIDV
jj----

No.
Cycles

2

264 6502 SOFTWARE DESIGN

TSX

Transfer Stack Pointer to Index X
Operation: S ~ X

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TSX BA 1

TXA

Transfer Index X to Accumulator
Operation: X ~ A

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TXA SA 1

TXS

Transfer Index X to Stack Pointer
Operation: X ~ S

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TXS 9A 1

TYA

Transfer Index Y to Accumulator
Operation: Y ~A

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Implied TYA 98 1

NZCIDV
jj----

No.
Cycles

2

NZCIDV
jj----

No.
Cycles

2

NZCIDV

No.
Cycles

2

NZCIDV
jj----

No.
Cycles

2

A

Absolute
addressing, 33-34
indexed addressing, 36-37

Accumulator addressing, 40
Adding

entry to ordered list, 104-106
entry to unordered list, 93-94
multiprecision numbers, 45

Addition, 44-45
integer, 114-115

Address
bus, 17
unique, 17

Addressing
absolute, 33-34
accumulator, 40
immediate, 33
implied, 34-35
indexed

absolute, 36-37
indirect, 37-39

indirect
absolute, 35-36
indexed, 39-40

relative, 40
zero page, 34

indexed, 37
AIM 65

breakpoints, 175-176
microcomputer, 24-25
time-delay subroutine, 90
24-hour clock, 212-217

AND instruction, 51-52
Arithmetic

instructions, 42-48

Index

Arithmetic-cont
Logic Unit (ALU), 18
operations on X and Y registers,

68-70
signed number, 48

ASCII-based hexademical-to-binary
conversion using the AIM 65,
145

Assembler, 23
Assembly language programming, 23

B

BCD mathematics, 133-134
Binary search, 102-104

efficiency of, 104
Bit

Decimal Mode, 20
instruction, 61-64
IRQ Disable, 20

Branch instructions, 54-58
Break (BRK) instruction, 172-175

where used, 173
Break command flag, 19
Breakpoints, AIM 65, 175-176
Bubble sort, 96-97
Buffer, data bus, 18
Byte, timing, 89

c
Carry Hag, 19
Clear Decimal Mode (CLD), 43
Clock frequency, note about, 90-91
Code

conversion with look-up tables,
109-111

operation, 28

265

266

Cold reset, 178
Comment field, 32
Common

-anode display, 238
-cathode display, 238

Communication with external devices,
17-18

Compare instructions, 58-61
Configuring the PIA, 189-191
Control

instructions, interrupt, 166-167
registers, PIA, 185-189

Conversion
8-bit binary-to-ASCII-based

decimal, 151-155
8-bit binary-to-ASCII-based

hexadecimal, 145-147
five-digit ASCII-based decimal-to

binary, 149-151
16-bit binary-to-ASCII-based

decimal, 155-157
three-digit ASCII-based decimal-to

binary, 147-149
two-digit ASCII-based decimal-to

BCD conversion, 158
two-digit ASCII-based hexadecimal

to-binary, 142-145
two-digit BCD-to-ASCII-based

decimal, 159-160
Counter, program, 18

D

Data
bus buffer, 18
ready strobe, 230
transfers using a PIA, 192-193

Decimal mode
bit, 20
instructions, 43-44

Decision-making instructions, 55
Deleting element from

ordered list, 106-107
unordered list, 94

Display
common-anode, 238
common-cathode, 238
interface, LED, 220-222

Dividing
floating-point numbers, 136
signed numbers, 129-131
unsigned numbers, 127-129

Division
integer, 125-133
multiple-precision, 131-133

6502 SOFTWARE DESIGN

Double-precision multiplication,
121-125

E

Efficiency of a binary search, 104
8-bit binary-to-ASCII-based

decimal conversion, 151-155
hexadecimal conversion, 145-147

Encoded keyboards, 230-231
Equations, replaced by look-up

tables, 108-109
Exclusive-OR instruction, 52-53
External devices, communication with,

17-18

Field
comment, 32
label, 29
op code, 29
operand, 29

F

Finding minimum and maximum
values in unordered list, 94-96

Five-digit ASCII-based decimal-to
binary conversion, 149-151

Flag
break command, 19
carry, 19
negative, 19
overflow, 19
zero, 19

Floating-point
mathematics, 135-137
numbers

dividing, 136
multiplying, 136

Flowchart for time-delay subroutine,
84-85

Formats, instruction, 30-32

G

General-purpose registers, 18-19

H

Handshake mode, 187
Hardware interface, 232
Hexadecimal numbering system, 143
How the 6502 executes a program, 18

Immediate addressing, 33

INDEX

Implied addressing, 34-35
Increment and decrement

instructions, 48-50
memory, 50
registers, 49

Indexed
addressing, absolute, 36-37
indirect addressing, 37-39

Indirect
absolute addressing, 35-36
indexed addressing, 39-40

Input device, simple, 222-225
keyboard, 141-142

Instruction (s)
AND, 51-52
arithmetic, 42-48
BIT, 61-64
branch, 54-58
break, 172-175
compare, 58-61
decimal mode, 43-44
decision-making, 55
decode logic, 18
exclusive-OR, 52-53
formats, 30-32
increment and decrement, 48-50
in interrupt service routine, 169-170
jump, 53-54
load and store, 41
logical, 50-53
names, 28
No Operation (NOP), 73-74
OR,53
push and pull, 71-73
register, 18

transfer, 68-69
return from interrupt, 169
set, summary of, 27-32
shift and rotate, 64,-68
stack, 70-73

pointer, 70-71
subroutine, 76-79

Integer
addition, 114-115
division, 125-133
multiplication, 116-125
subtraction, 115-116

Interface
hardware, 232
LED display, 220-222
spdt switch, 220

Interfacing with teletypewriters,
231-237

Internal architecture of 6502, 16
Interrupt(s)

Interrupt(s)-cont
control instructions, 166-167
handler, 167
nonmaskable, 171-172
Request (IRQ), 20-21, 166-170
VIA, 203-207
6502 microprocessor, 165-166

1/0 devices, simple, 140-142
types of, 164

IRQ disable bit, 20

267

-generated interrupts, summary of,
170-171

J

JSR and RTS used together, 78-79
Jump

instruction, 53-54
tables, 111-112
to subroutine (JSR), 76-77

K

Key bounce problem, 224-225
Keyboards

encoded, 230-231
6502 microprocessor, 225-226
unencoded,226-230

L

Label field, 29
Leading zero suppression, 160-162
LED display interface, 220-222
Level output mode, 188-189
Lists

ordered, 102-111
unordered, 92-96

Load and store instructions, 41
Logical

instructions, 50-53
shifts, 67

Look-up tables, 107-111
for code conversion, 109-111
replace equations, 108-109

M

Machine code and assembly language,
22-24

Mathematics
BCD, 133-134
floating-point, 135-137

268

Memory
increment/ decrement, 50
-mapped I/O, 141
moving data in, 80-83

Microcomputer
AIM 65, 24-25
using the 6502, 15

Microprocessor, 6502, 15-22
Mnemonics, 23
Mode(s)

addressing, 33-40
handshake, 187
level output, 188-189
pulse output, 187-188

Moving data in memory, 80-83
Multiple-precision

division, 131-133
numbers, subtracting, 47

Multiplication
double precision, 121-125
integer, 116-125

Multiplying
floating-point numbers, 136
signed numbers, 118-121
unsigned numbers, 118

Multiprecision numbers, adding, 45

N

Names, instruction, 28
Negative flag, 19
Nesting, subroutine, 79-80
Nibble, 134
Non-Maskable Interrupt (NMI), 21,

171-172
No Operation (NOP) instruction,

73-74
Note about clock frequency, 90-91

signed, 42
Number(s)

representation of, 42-43
unsigned, 42

Numbering system, hexadecimal, 143

0

Op code field, 29
Operand field, 29
Operation code, 28
OR instruction, 53
Ordered list (s), 102-111

adding entry to, 104-106
deleting element from, 106-107
searching, 102-104

Output device, simple printer, 142

6502 SOFTWARE DESIGN

Overflow flag, 19

p

Parallel data transfers using a VIA,
195-198

PIA
configuring, 189-191
control registers, 185-189
register addressing, 184

Polling, 168
Post-indexing, 39
Pre-indexing, 39
Problem, key bounce, 224-225
Processor status register, 19-20
Program

counter, 18
execution by the 6502, 18

Programming
assembly language, 23
examples for the VIA control modes,

201-203
Pulse output mode, 187-188
Push and pull instructions, 71-73
Push-button switch, spst, 222-223

R

Read/Write, 18
Receiving data from a teletypewriter,

233-235
Register(s)

addressing
PIA, 184
VIA, 194-195

general-purpose, 18-19
increment/ decrement, 49
instruction, 18
processor status, 19-20
stack pointer, 21
transfer instructions, 68-69

Relative addressing, 40
Representation of numbers, 42-43
Reset (RES), 20, 165, 176

and interrupt signals, 20-21
cold, 178
considerations, 176-178
warm, 178

Restart, 165, 177-178
Return from

interrupt instruction, 169
subroutine (RTS), 77-78

s

Search, binary, 102-104

INDEX

Searching an ordered list, 102-104
Set Decimal Mode (SED), 43
Shift

and rotate instructions, 64-68
logical, 67
register, VIA, 217-218

Shifting
signed numbers, 67-68
unsigned numbers, 66-67

Signals, reset and interrupt, 20-21
Signed number, 42

arithmetic, 48
dividing, 129-131
multiplying, 118-121
shifting, 67-68

Simple
input device, 222-225
1/0 devices, 140-142

for 6502 microprocessor, 219-223
keyboard input device, 141-142
printer output device, 142
sorting technique, 96-97

16-bit binary-to-ASCII-based decimal
conversion, 155-157

6502
addressing modes, 33-40
in a microcomputer, 15
internal architecture, 16
microprocessor

and keyboards, 225-226
and seven-segment LED displays,

237-241
and simple 1/0 devices, 219-223
interrupts, 165-166
responds to an IRQ, 167-169

6520 peripheral interface adapter
(PIA), 182-183

6522 versatile interface adapter
(VIA), 193-194

Sort
bubble, 96-97
lists having 8-bit elements, 97-99
lists having 16-bit elements, 97-99

Sorting technique, simple, 96-97
Spdt switch interface, 220
Spst push-button switch, 222-223
Square root, 138-139
Stack pointer

instructions, 70-71
register, 21

Strobe, data ready, 230
Subroutine (s)

AIM 65 time-delay, 90
instructions, 76-79
nesting, 79-80

Subroutine (s)-cont
30-second time-delay, 88-90
time-delay, 93-91
two-loop time-delay, 85-88

Subtracting multiple-precision
numbers, 47

Subtraction, 45-47
integer, 115-116

Summary of

269

IRQ-generated interrupts, 170-171
the instruction set, 27-32

Suppression, leading zero, 160-162
System, restarting, 177-178

Tables
jump, 111-112
look-up, 107-111

Teletypewriter

T

and interfacing, 231-237
receiving data from, 233-235
transmitting data to, 235-236

The 6502 microprocessor, 15-22
30-second time delay subroutine, 88-90
Three-digit ASCII-based decimal-to-

binary conversion, 147-149
Timer 1, 209-212
Timer 2, 207-209
Timers, VIA, 207-212
Timing byte, 89
Time-delay subroutines, 83-91
Time-delay subroutine

AIM 65, 90
flowchart for, 84-85
30 second, 88-90
two-loop, 85-88

Transmitting data to a teletypewriter,
235-236

24-hour clock for AIM 65, 212-217
Two-digit

ASCII-based
decimal-to-BCD conversion, 158
hexadecimal-to-binary conversion,

142-145
BCD-to-ASCII-based decimal

conversion, 159-160
Two-loop time-delay subroutine, 85-88
Types of interrupts, 164

u

Unencoded keyboards, 226-230
Unique address, 17

270

Unordered lists, 92-96
adding entry to, 93-94
deleting element from, 94
finding minimum and maximum

values in, 94-96
Unsigned number, 42

dividing, 127-129
multiplying, 118
shifting, 66-67

Using a VIA for parallel data transfers,
195-198

Using the PIA for data transfers,
192-193

v

VIA
Auxiliary Control Register (ACR),

207
control modes, programming

examples, 201-203

6502 SOFTWARE DESIGN

VIA-cont
interrupt requests, 203-207
Peripheral Control Register (PCR),

198-203
register addressing, 194-195
shift register, 217-218
timers, 207-212

x

X and Y registers, arithmetic
operations on, 68-70

Zero
flag, 19
page

z

addressing, 34
indexed addressing, 37

TO THE READER

This book is one of an expanding series of books that will cover the field of basic
electronics and digital electronics from basic gates and flip-flops through microcomputers
and digital telecommunications. We are attempting to develop a mailing list of individ
uals who would like to receive information on the series. We would be delighted to
add your name to it if you would fill in the information below and mail this sheet to us.
Thanks.

1. I have the following books:

2. My occupation is: D student D teacher, instructor D hobbyist

O housewife D scientist, engineer, doctor, etc. 0 businessman

D Other:

Name (print):

Address

City State

Zip Code

Mail to:

Books
P.O. Box 715
Blacksburg, Virginia 24060

The Blacksburg Group

According to Business Week magazine (Technolagy July 6, 1976) large scale integrated circuits

or LSI "chips" are creating a second industrial revolution that will quickly involve us all. The

speed of the developments in this area is breathtaking and it becomes more and more difficult to

keep up with the rapid advances that are being made. It is also becoming difficult for newcomers
to IIget on board/'

It has been our objective, as The Blacksburg Group, to develop timely and effective educational

materials and aids that will permit students, engineers, scientists and others to quickly learn how

to apply new technologies to their particular needs. We are doing this through a number of

means, textbooks, short courses, and through the development of educational "hardware" ar

training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of
southwestern Virginia . While we didn't actively start our group collaboration until the Spring

of 1974, members of our group have been involved in digital electronics, minicomputers and

microcomputers for some time.

Some of our past experiences and on.going efforts include the following:

-The development of the Mark·S computer, an SOOS·based device that was featured in Radio·

Electronics magazine in 1974, and generally recognized as the first widely available hobby

computer. We have also designed several SOSO·based computers, including the Mini·Micro De·

signer (MMD·1). More recently we have been working with SOS5·based computers and the TRS·SO.

-The Blacksburg Continuing Education Series™ covers subjects ranging from basic electronics

through microcomputers, operational amplifiers, and active filters . Test experiments and examples

have been provided in each book. We are strong believers in the use of detailed experiments and

examples to reinforce basic concepts. This series originally started as our Bugbook series and many

titles are now being translated into Chinese, Japanese, German and Italian.

-We have pioneered the use of small self·contained computers in hands·on courses aimed at

microcomputer users. The solderless breadboarding modules developed for use in circuit design

and development make it easy for people to set up and test digital circuits and computer inter·

faces . Some of our technical products are marketed by Group Technology, Ltd., Check, VA 24072,

USA. (703) 651·3153.

-Our short course programs have been presented throughout the world, covering dig ital elec·

tronics through TRS·SO computer interfacing. Programs are offered through the Blacksburg Group

and the Virginia Tech Extension Division . Each course offers a mix of lectures and hands·on

laboratory sessions . Courses are presented on a regula r basis in Blacksburg, and at various t imes

to open groups, companies, schools, and other sponsors.

For additional information about course offerings, we encourage you to write or call Dr. Chris

Titus at The Blacksburg Group, Box 242, Blacksburg, VA 24060, (703) 951·9030, or Dr. Linda

Leffer at the Center for Continuing Education, Virginia Tech, Blacksburg, VA 24061, (703) 961·

5241.

Mr. David Larsen is an the faculty of the Department of Chemistry at Virginia Polytechnic Insti·

tute and State University. Dr. Jonathan Titus and Dr. Christopher Titus are with The Blacksburg

Group, Inc., all of Blacksburg, Virginia.

The 6502 integrated circuit is a very popular microprocessor
that is currently being used in general-purpose microcom·
puters, video games, and personal computers. Chapter 1
discusses the characteristics of the 6502 integrated circuit
and the AIM 65 microcomputer.

Although the AIM 65, a 6502-based microcomputer
manufactured by Rock'tve ll Internat ional, has been used to
generate and test the program examples given in this book,
most of the programs listed can be used on aH 6502-based
micr)computers. However, they may have to be slight ly
altered to reflect the memory and I/O devices that are wi~ed

to your microcomputer.
Chapters 2 and 3 discuss subrout ines and present

descript ions o f the instructions that t he 6502
mic roprocessor can execute. Then, Chapters 4 through 6
present techniques needed to process lists and tables, per
form mathematical operations, and convert data. Final ly, a
descri ption of ways to transfer in formation between the
microprocessor and the input/output devices by using the
6502 instruct ions is given in Chapters 7 through 9.

Leo J. Scanlon is Documentation Manager for the
Microelectronic Devices business segment of Rockwell
International, in Anaheim, CA. He received his bachelor
of Science degree in Aeronautical Engineering from St.
Lou is University. He nas done graduate studies in Elec·
trical Engineering and Computer Sc ience at the Universi·
ty of Californ ia, in Berkeley, CA.

Leo's experience includes technical writi ng in the
min icompute r and microcomputer industries, and
eng ineering programming in the aerospace industry. Before JOII,I :1g
Rockwel l Internat ional, he served as Technical Publications Manager
with Computer Automation , Inc., in Irvine, CA.

