
14.95

Beyond Games:
Systems Software for Your

mputer

■ commodore PET profcs'^ionul
computer

POQ1 Sknlcs

_ 1

Systems Software for Your

Personal Computer

Ken Skier

BYTE/McGraw-Hill, Book Division, 70 Main St, Peterborough NH 03458

Beyond Games: Systems Software for Your 6502 Personal Computer

Copyright © 1981 BYTE Publications Inc. All Rights Reserved. No part of this
book may be translated or reproduced in any form without the prior written
consent of BYTE Publications Inc.

The author of the programs provided with this book
has carefully reviewed them to ensure their perfor¬
mance in accordance with the specifications described
in the book. Neither the author nor BYTE Publica¬
tions Inc, however, makes any warranties concerning
the programs and assumes no responsibility or liability
of any kind for errors in the programs, or for the con¬
sequences of any such errors. The programs are the
sole property of the author and have been registered
with the United States Copyright Office.

Library of Congress Cataloging in Publication Data

Skier, Ken.
Beyond games.

Includes index.
1. 6502 (Computer)—Programming. I. Title.

QA76.8.S63S59 001.64'2 80-28512
ISBN 0-07-057860-5

Cover photo by Bob Hamor

Text set in Paladium
by BYTE Publications

Edited by Blaise Liffick

Design and Production Supervision
by Ellen Klempner

Copy Edited by Rich Friedman

Printed and bound using 50#MH Matte

Table of Contents

Introduction.... I

Chapter I: Your Computer... 3

Chapter 2: Introduction to Assembler..8

Chapter 3: Loops and Subroutines. 20

Chapter 4: Arithmetic and Logic .. 32

Chapter 5: Screen Utilities. 44

Chapter 6: The Visible Monitor ...60

Chapter 7: Print Utilities...84

Chapter 8: Two Hexdump Tools. 98

Chapter 9: A Table-Driven Disassembler.. 114

Chapter 10: A General MOVE Utility.134

Chapter 11: A Simple Text Editor.145

Chapter 12: Extending the Visible Monitor. 160

Chapter 13: Entering the Software Into Your System. 163

Appendices:

Al: Hexadecimal Conversion Table ..171

A2: ASCII Character Codes.172

A3: 6502 Instruction Set — Mnemonic List.173

A4: 6502 Instruction Set — Opcode List.175

A5: Instruction Execution Times. 178

A6: 6502 Opcodes by Mnemonic and Addressing Mode.181

Bl: The Ohio Scientific Challenger l-P.185

B2: The PET 2001.188

B3: The Apple II. 196

B4: The Atari 800 . 204

CI: Screen Utilities .. 211

C2: Visible Monitor (Top Level and Display Subroutines).223

C3: Visible Monitor (Update Subroutine). 233

C4: Print Utilities. 243

C5: Two Hexdump Tools ..257

C6: Table-Driven Disassembler (Top Level and Utility Subroutines)-275

C7: Table-Driven Disassembler (Addressing Mode Subroutines).287

C8: Table-Driven Disassembler (Tables).299

C9: Move Utilities.317
C10: Simple Text Editor (Top Level and Display Subroutines).329

CM: Simple Text Editor (EDITIT Subroutines).337

Cl2: Extending the Visible Monitor.349

Cl 3: System Data Block for the Ohio Scientific C-IP.355

C14: System Data Block for the PET 2001. 361

C15: System Data Block for the Apple II.367

C16: System Data Block for the Atari 800'.•.373

Dl: Screen Utilities.389

D2: Visible Monitor (Top Level and Display Subroutines).390

D3: Visible Monitor (Update Subroutine)..... 391

D4: Print Utilities.392

D5: Two Hexdump Tools.393
D6: Table-Driven Disassembler (Top Level and Utility Subroutines)-395

D7: Table-Driven Disassembler (Addressing Mode Subroutines).396

D8: Table-Driven Disassembler (Tables).397

D9: Move Utilities.399

D10: Simple Text Editor.400

Dll: Extending the Visible Monitor.401

El: Screen Utilities.403

E2: Visible Monitor (Top Level and Display Subroutines).405

E3: Visible Monitor (Update Subroutines).407

E4: Print Utilities. 409

E5: Two Hexdump Tools.411
E6: Table-Driven Disassembler (Top Level and Utility Subroutines)-.413

E7: Table-Driven Disassembler (Addressing Mode Subroutine).415

E8: Table-Driven Disassembler (Tables).417

E9: Move Utilities...419

EI0: Simple Text Editor...421

Ell: Extending the Visible Monitor..423

E12: System Data Block for the Ohio Scientific C-IP.424

E13: System Data Block for the PET 2001. 425

El4: System Data Block for the Apple II. 426

E15: System Data Block for the Atari 800 . 427

ndex.429

Objectives

Sometimes I hear people talk about how smart computers have become. But
computers aren't smart: programmers are. Programmers make microprocessors act
like calculators, moon landers, or income tax preparers. Programmers must be
smart, because by themselves microprocessors can't do much of anything.

Sound programming, then, is fundamental to successful computer use. With
this principle in mind, this book has two objectives: first, to introduce newcomers to
some of the techniques, terminology, and power of assembly-language program¬
ming in general, and of the 6502 in particular; and second, to present a set of soft¬
ware tools to use in developing assembly-language programs for the 6502.

Chapter 1 takes you on a quick tour of your computer's hardware and soft¬
ware; Chapters 2 thru 4 comprise a short course in assembly-language programming
for those readers new to the subject. The rest of the book presents source listings,
object code, and assembler listings for programs that you may enter into your com¬
puter and run.

Programmers have long sought to develop small and fast programs with the un¬
fortunate result that occasionally code has been written that is unreadable (and even
unworkable) simply because a programmer wanted to save a few bytes or a few
cycles. In certain instances when memory space is particularly tight or execution
time is critical, readability is sacrificed for performance. But today the average pro¬
grammer is not forced to make this choice. Of course, all other things being equal, I,
too, value programs that are quick and compact.

But how often are all other things equal?
While developing the programs that appear in this book, I had a number of ob¬

jectives, most of them more important than the speed or size of a block of code. I
designed these programs to be:

Useful: No program is presented simply to demonstrate a particular program-

INTRODUCTION 1

ming technique. All of the programs in this book were written because I needed cer¬
tain things done — usually something I didn't want to be bothered with doing
myself. The monitor monitors, the disassembler disassembles, and the text editor
lets me enter and edit text strings. These programs earn their keep.

Easy to Use: Simply by glancing at the screen you can tell which program is
running and what mode it is in. When a program needs information, it asks you for
it and allows you to correct mistakes you might make while answering. This soft¬
ware doesn't require you to remember the addresses of programs or of variables.
Functions are mapped to individual keys, and you can assign functions to keys in
any way that makes sense to you.

Readable: A beginning 6502 programmer should be able to understand the
workings of every program in this book. The labels and comments in the listings
were carefully chosen to reveal the purpose of each variable, subroutine, and line of
code. I am writing first and foremost for you, the reader, not for the 6502.

Portable: The book's software runs on an Apple II, an Atari 400 or 800, an
Ohio Scientific (OSI) Challenger I-P, or a PET 2001. With proper initialization of
the System Data Block, it should run on any 6502-based computer equipped with a
keyboard and a memory-mapped, character-graphics video display.

Compatible: These routines are very good neighbors. As long as the other soft¬
ware in your system does not use the second 4 K bytes of memory (hexadecimal
memory locations 1000 thru 1FFF), there should be no conflict between your soft¬
ware and the software in this book. In particular, most of the software in this book
preserves the zero page, so your software may use the zero page as much as you like,
and you won't be bothered with having to save and restore it before and after calls
to the software presented herein.

Expandable: The programs in this book are highly modular, and you may ex¬
tend or restructure them to meet your individual needs. System-specific subroutines
are called indirectly, so that other subroutines may be substituted for them, and
most values are treated as variables, rather than as constants hard-wired into the
code. There are no monolithic programs in this book; they're all subroutines and
may be combined in many ways to build powerful new structures.

Compact: I know that every personal computer has exactly the same available
memory; too little. I also know ways to write a program in ten or twenty percent
less space. But if doing so required sacrificing readability, portability, or expand¬
ability, I did not do so. In many cases I feared that to save a byte, I might lose a
reader's clear understanding of how a program works. I considered that too great a
price to pay for a somewhat smaller program.

Fast: Assuming that the above objectives have been met, the software in this
book has been developed to operate as quickly as possible. But in any trade-off be¬
tween speed and the other objectives, speed loses. A fast program that you can't
understand holds little value. None of the programs in this book are likely to make
you complain about how long you have to wait. I can't tell if I'm waiting an extra
millisecond. Can you?

So go ahead. Read. Program. Enjoy!

Chapter I:

Your Computer

The software in this book can run on a number of computers because it assumes
very little about the host machine. Lets examine these assumptions and in so doing

take a quick tour of your computer.

The 6502 Microprocessor

Well start with the 6502 microprocessor, the component in your system that
actually computes. By itself, the 6502 can't do much. It has three registers (special
memory areas for storing the data upon which the program is operating), called A,
X, and Y, which can each hold a number in the range of 0 to 255. Different registers
have different capabilities. For example, if a number is in A (the accumulator), the
6502 can add to it, or subtract from it, any value up to 255. But if a number is in the
X register or the Y register, the 6502 can only increment or decrement that number
(ie: add or subtract one from it).

The 6502 can also set one register equal to the value of another register, and it
can store the contents of any register anywhere in memory, or load any register
from any location in memory. Thus, although the 6502 can only operate on one
number at a time, it can operate on many numbers, just by loading registers from
various locations in memory, operating on the registers, and then storing the results
of those operations back into memory.

Types of Memory

You may have heard that a computer stores information as a series of ones and

YOUR COMPUTER 3

zeros. This is because the computers memory is simply an elaborate array of
switches, and an individual switch can have only two states: closed or open. These
two states may also be expressed as on and off, or as one and zero.

Not all memory switches are the same. Some, in what is called ROM (read-only
memory), are hard-wired into your computer's circuitry and cannot be changed ex¬
cept by physically replacing the ROM circuits containing those switches. Others, in
what is called RAM (random-access memory) or programmable memory, can be
changed by the processor. The 6502 can open or close any of the switches, called bits
(binary digits), in its programmable memory, and later on read what it "wrote" into
that memory. Figure 1.1 shows how the processor has access to read-only memory
and programmable memory.

Figure 1.1: How the 6502 interacts with memory. The arrows indicate the flow of data.

A third kind of memory is set by some external device, not by the 6502. Such

memory switches are called input ports, and may be connected to keyboards, ter¬
minals, burglar alarms — virtually anything that can generate an electrical signal.
The 6502 perceives these externally generated signals by reading the appropriate in¬
put ports.

Yet another kind of memory switch, called an output port, generates a high or a
low voltage on some particular wire depending on whether the 6502 sets a given
memory switch to a one or a zero. One or more of these output ports can enable the
6502 to "talk" to the outside world.

Now don't jump up and think I'm going to show you how to synthesize speech
in this book. 'Talk" is just my way of anthropomorphizing the 6502. It will happen
elsewhere in this book, when the 6502 "sees," "remembers," and "knows" what to
do. Of course the 6502 doesn't see, remember, or know anything, but I often find it
helpful to put myself in its place. That way I can better understand how a program
will run, or why a program doesn't run, and I do see, remember, and know things.

But don't take such verbs too literally. The 6502 doesn't talk. It causes signals to
be generated that may be sensed by other devices, such as cassette recorders,
printers, disk drives — and yes, even speech synthesizers. But not in this book.

Some peripheral devices are actually connected to both an input and an output
port. Examples of these devices are cassette tape machines and floppy-disk drives,

4 BEYOND GAMES

which are mass-storage or secondary-storage devices. Figure 1.2 summarizes the
processor's access to memory and to peripheral devices.

PERI PH E R A L S MEMORY PROCESSOR

Figure 1.2: A summary of the 6502 microprocessors access to data in main memory and
through I/O (input and output) ports. The arrows indicate the flow of data.

A video screen connected to your computer looks like memory to the 6502, so
the 6502 can read from and write to the screen. The keyboard is scanned by I/O (in¬
put/output) ports that are decoded to look like any other programmable memory

YOUR COMPUTER 5

address, so the 6502 can look at the keyboard just by looking at a particular place in
memory. Thus, the 6502 can interact directly with memory only, but because all
I/O devices are mapped to addresses in memory, the 6502 can interact with the user.
See figure 1.3.

>1

VIDEO
SCREEN _^ V,_.

MEMORY 6502

Figure 1.3: How the 6502 interacts with the user. Arrows indicate the flow of data.

The Operating System

Thus far we have discussed your machine's hardware. But the Apple, Atari
OSI, and PET computers feature more than hardware. For example, all these com¬
puters have an operating system (stored in ROM) which includes the I/O software
routines that are needed to use the screen and the keyboard. We are not particularly

concerned with how these subroutines work, but I assume your system does have
such routines.

There are many other subroutines in your computer's operating system. Your
system's documentation should tell you what subroutines are available and provide
their addresses. All of this means power for you, the programmer. The more you
know about your computer, the more you can make it do. Because the software in
this book was developed to run on a number of systems, I chose not to use routines
available in your machine's ROM, no matter how powerful they might be, unless I
could be sure that they would be available in the operating systems of the Apple, the
Atari, the OSI, and the PET computers. In other words, the software in this book
does not take full advantage of the power in your operating system. But the software
you write, which need only run on your system, should exploit to the fullest the
power of your computer's ROM routines.

6 BEYOND GAMES

BASIC

One of the most important features of your computer is the BASIC interpreter
in ROM. This interpreter is a program that enables your computer to understand
commands given in BASIC. Your system's documentation should tell you what
commands are legal in the particular dialect of BASIC implemented on your
machine. BASIC is an easy language to learn and you can do a lot with it.

Unfortunately, not every dialect of BASIC is the same. A program written in
BASIC that runs on machine A may not run on machine B. BASIC is a common
language, but not a standard one. Is there any language that is standard from

system to system?

6502 Code

The central processor is the computer's heart. The Apple, Atari, OSI, and PET
computers all use the 6502 microprocessor. Every microprocessor has a certain in¬

struction set, or group of instructions, which the microprocessor can execute. These
instructions are at a much lower level than the BASIC commands with which you
may be familiar. For example, in BASIC you can have a single line in a program to
PRINT "HELLO." It would take a sequence of many 6502 instructions to perform

the same function.
However, a sequence of microprocessor instructions will run on any computer

featuring that microprocessor. Thus, if you write a program consisting of 6502 in¬
structions to perform some function, that program should run on any 6502-based
computer. It won't run on an 8080-based computer, a Z80-based computer, or a
6800-based computer, but it should run on an Apple, a PET, an Atari, an OSI, or
any other system built around a 6502. 6502 programs can also run much faster than
equivalent programs written in BASIC and can be smaller than BASIC programs.
The programs presented in this book are all written in 6502 code, and require only
half of the memory available on a computer containing 8,000 bytes of program¬
mable memory, thus leaving more than enough room for your own programs.

YOUR COMPUTER 7

Chapter 2:

Introduction to Assembler

Ever watch a juggler or a good juggling team? The balls, pins, or whatever are
in the air in such intricate patterns that you can hardly follow them, let alone
duplicate the performance yourself. It's beautiful, but not magic; just an application
of some simple rules. Ive learned to juggle recently, and although I'm still a rank
beginner, I've taught my two hands to keep three balls moving through the air. Yet
neither hand knows very much. A hand will toss a ball into the air, and then it will
catch a ball. The other hand will toss a ball into the air, and then it will catch a ball.
That's all. My hands perform only two operations: toss and catch. Yet with those
two primitive operations I can put on a pleasant little performance.

Assembly-language programming is not so different from juggling. Like jug¬
gling, programming enables you to put on an impressive or baffling performance. In
its simplest terms, juggling is nothing more than taking something from one place
and putting it someplace else. The same thing is true of the central processor: the
6502 takes something from one place and puts it someplace else.

In fact, programming the 6502 is easier than juggling in several ways. First, the
6502 is obviously much faster than even the most skillful juggler. In the time it takes
me to pick up a ball with one hand and place that ball somewhere else, the 6502 can
get something from one place and put it someplace else hundreds of thousands of
times. Sleight of hand requires quickness, and the 6502 is quick.

The 6502 even gives me a helping hand. When I try to juggle, I must keep the
balls moving with nothing but my two hands. But my home computer has three
hands (registers A, X, and Y in the 6502) and thousands of pockets (8,000 bytes or
more of programmable memory).

A byte is 8 bits of data that may be loaded together into a register. A register
holds 1 byte. Each location in memory holds 1 byte. The 6502 can affect only 1 byte
in one operation. But because the 6502 can perform hundreds of thousands of opera-

8 BEYOND GAMES

tions each second, it can affect hundreds of thousands of bytes each second.

Binary

In the final analysis, any value is stored within the computer as a series of bits.

If we wish, we may specify a byte by its bit pattern: such a representation uses only
ones and zeroes, and is called binary. For example, the number 25 in binary is
00011001.

In binary, each bit indicates the presence or absence of some value. Each bit
represents twice as much value, or significance, as the bit to its right, so the right¬
most bit is the least significant, and the left-most bit is the most significant. Table 2.1
gives the significance of each bit in an 8-bit byte:

Table 2.1: Bit significance in an 8~bit byte.

Bit Number: b7 b6 b5
Bit Significance: 128 64 32

b4 b3 b2 bl bO
16 8 4 2 1

The right-most bit (called bit 0) tells us whether we have a one in our byte. The
bit to its left (bit 1) tells us whether we have a two; the bit to its left tells us whether

we have a four...and the leftmost bit (bit 7) tells us whether we have a 128 in our
byte.

To determine the bit pattern for a given value — say, 25 — determine first what
powers of two must be added to equal your value. For instance, 25 = 16 + 8 + 1,
so 25 in binary is 00011001.

Twenty-five can be expressed in other ways as well. Rather than specify every
number as a pattern of eight ones and zeros, we often express numbers in hexa¬
decimal representation.

Hexadecimal

Unlike binary, which requires a group of eight characters to represent an 8-bit
value, hexadecimal notation allows us to represent an 8-bit value with a group of
only two characters. These characters are not limited to 0 and 1, but may include
any digit from 0 to 9, and any letter from "A" to "F." That gives us a set of sixteen
characters, which is just right because we want to represent numbers in base 16.

INTRODUCTION TO ASSEMBLER 9

(Hexadecimal stands for 16: hex for six, and decimal for ten. Six plus ten equals six¬
teen.)

To represent a byte in hexadecimal notation, divide the 8-bit byte into two 4-bit
units (sometimes called nybbles). Each of these 4-bit units has a value of from 0 to 15
(decimal), which we express with a single hexadecimal digit. A decimal 10 is a hexa¬
decimal $A. (The dollar sign indicates that a number is in hexadecimal representa¬
tion.) Table 2.2 gives the conversions of decimal to hexadecimal for decimal
numbers 0 thru 15.

Table 2.2: Hexadecimal character set.

Hexadecimal Character
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

Decimal Equivalent
0
1
2
3
4
5
6
7
8
9

10
11 i
12
13
14
15

Appendix Al, Hexadecimal Conversion Table, shows the hexadecimal
representation of every number from 0 to 255 decimal.

In this book, object code, the only code that the machine can execute directly,
will generally be presented in hexadecimal, and a thorough understanding of hexa¬
decimal will help you to interpret instructions and follow some of the 6502's actions.
Even the sketchiest understanding of hexadecimal math, however, should be suffi¬

cient for you to follow and use the programs in this book.

10 BEYOND GAMES

ASCII Characters

Instead of a number from 0 to 255, an 8-bit byte can be used to represent an up¬
per or lower case letter of the alphabet, a punctuation mark, or a printer-control
character such as a carriage return. A string of such bytes may represent a word, a
message, or even a complete document. Appendix A2, ASCII Character Codes,
gives the hexadecimal value for any ASCII character. ASCII stands for American
Standard Code for Information Interchange, and is the closest thing the industry has
to a standard set of character codes. If you want to store the letter "A" in some loca¬
tion in memory, you can see from Appendix A2 that you must store a $41 in that
location.

Whether a given byte is interpreted as a number, an ASCII character, or
something else depends entirely on the program using that byte. Just as beauty is in
the eye and mind of the beholder, so is the meaning of a given byte determined by

the program that sees and uses it.

The Instruction Cycle

A microprocessor such as the 6502 can't do anything without being told. It only
knows 151 instructions, called opcodes (operation codes). Each opcode is 1 byte
long. An opcode may command the 6502 to take something from one register and to
put it someplace in memory, to load some register with the contents of some loca¬
tion in memory, or to perform some other equally simple operation. See Appendix

A4 for a list of opcodes for the 6502 microprocessor.
What do 6502s do all day? They work while programmers play. The 6502 gets

an opcode, performs the specified operation, gets the next opcode, performs the
specified operation, gets the next opcode, performs the...

You get the picture.
How does the 6502 know where to find the next opcode? The 6502 has a 16-bit

register called the PC (program counter). The PC holds the address of some location
in memory. When the 6502 starts its instruction cycle, it gets the opcode stored at
the memory location specified by the PC. Then it performs the operation specified
by that opcode. When it has executed that instruction, it makes the PC point to the
next opcode and starts on a new instruction cycle by getting the opcode whose ad¬

dress is now in the PC.
Figure 2.1 shows a flowchart for the instruction cycle of the 6502

microprocessor.
"That's it? That's all the 6502 does?" you ask.
That's it. But with the right program in memory, we can make the 6502 dance.

INTRODUCTION TO ASSEMBLER 11

Figure 2.1: The 6502 instruction cycle.

Machine Language

A machine-language program is nothing more than a series of machine-
language instructions stored in memory. If the PC in the 6502 can be made to hold
the address of the start of your program, then we say that the PC is pointing to your
program. When the 6502 starts its instruction cycle, it will fetch the first opcode in
your program, and then perform the operation specified by that opcode. At this
point, we say that your program is running.

Each machine-language instruction is stored in memory as a 1-byte opcode,
which may be followed by 1 or 2 bytes of operand. Thus, a 6502 machine-language
program might be "A9 05 20 02 04 A2 F5 60."

Just a bunch of numbers! (Hexadecimal numbers, in this case.) But it is exactly
these numbers that the machine understands; hence the term, machine language.

Assemblers

Machine language is easy to read — if you're a machine. But programmers are
people. So programming tools called assemblers have been developed, which take
more readable assembly-language source code as input and produce listings and ob¬
ject code as output. The listing is the assembler's output intended for a human
reader. The object code is a series of 6502 machine-language instructions intended to
be stored in memory and executed by the 6502,

12 BEYOND GAMES

For each chapter in this book that presents a program, there is an appendix at
the back of the book containing an assembler listing and a hexdump of the same pro-
gram. The assembler listing includes both source and object code, making it easy for
you to read the program; the hexdump shows you what the object code for that pro¬
gram actually looks like in your computer's memory. Figure 2.2 shows how an
assembler is used to produce an assembler listing for the programmer and object
code for the processor.

SOURCE OF INPUT:

input:

PROGRAM:

output:

INTENDED FOR: PROGRAMMER 6502

Figure 2.2: From programmer to object code. The assembler takes source code as input and
produces an assembler listing and object code as output.

The programs in this book have all been produced on the OSI 6500
Assembler/Editor, running under the OSI 65-D Disk Operating System, on an OSI
C-IP machine with 24 K bytes of programmable memory and one 5-inch floppy
disk. It is likely that the source code presented in this book will assemble immedi¬
ately or with only minor modification on other 6500 assemblers. (Incidentally, the
source code in each chapter of this book should fit into the workspace of a computer
with much less than 24 K bytes of user memory, if you delete many of the com¬
ments. But then, of course, your listings will be a lot less readable.)

But you don't write a listing; an assembler produces a listing. What you write is
assembly-language source code.

Source Code

An assembly-language source program consists of one or more lines of

INTRODUCTION TO ASSEMBLER 13

assembly-language source code. A line of assembly-language source code consists of
up to four fields:

LABEL MNEMONIC OPERAND COMMENT

The mnemonic, required in all cases, is a group of three letters chosen to suggest
the function of a given machine-language instruction. For example, the mnemonic
LDA stands for LoaD Accumulator. LDX stands for LoaD X register. TXA means
Transfer the X register to the Accumulator. 6502 mnemonics are not nearly as mean¬
ingful as BASIC commands, but they're a big improvement over the machine-
language opcodes. See Appendix A3 for a list of 6502 mnemonics.

Some operations require an operand field. For example, the operation load ac¬

cumulator requires an operand, because the line of source code must specify what
you wish to load into the accumulator.

The label and comment fields are optional. A label lets you operate on some
location in memory by a name that you have assigned to it. Comments are not in¬
cluded in the object code that will be assembled from your program, but they make
your source code and your listings much more meaningful to a human reader. When

you write a program, even if no one but yourself will ever read it, try to choose your
labels and comments so that someone else can understand the purpose of each part
of the program. Such careful documentation will save you a lot of time weeks or
months down the road, when you might otherwise reread your program and have
no idea why you included some unlabeled, uncommented line of source code.

Loading a Register

Let's write a simple program to load a register with a number — say, to load the
accumulator with the number "10." Since we want to load the accumulator, well use
the LDA instruction. (If we wanted to load the X register, we would use the LDX in¬
struction, and if we wanted to load the Y register, we'd use LDY.) We know what
mnemonic to write into our first line of source code. But a glance at Appendix A6,
6502 Opcodes by Mnemonic and Addressing Mode, shows that LDA has many ad¬
dressing modes. What operand shall we write into this line of source code?

We know that we want to load the accumulator with a "10," and not with any
other number, so we can use the immediate addressing mode to load a "10" directly
into the accumulator. Well use a "#" sign to indicate the immediate mode:

Example I

LDA #10

14 BEYOND GAMES

Example 1 is a legitimate line of source code containing only two fields: a
mnemonic and an operand. The mnemonic, LDA, means "load the accumulator."
But load it with what? The operand tells us what to load into the accumulator. The

sign specifies that this operation is to take place in the immediate mode, which
means we want to load the accumulator with a constant to be found in this line of
source code, rather than with data or a variable to be found in some location in
memory. Then the operand specifies the constant to be loaded into the accumulator,
in this case "10."

Constants

A constant is any value that is known by the programmer and "hard-wired" in¬
to the code. A constant does not change during the execution of a program. If a
value changes during the execution of a program, then it is a variable, and one or
more memory locations must be allocated to hold the current value of each variable.

There are several kinds of constants. Any number is a constant. The number
"7," for example, is a constant: a seven now will still be a seven this afternoon. A
character is another kind of constant: the letter "A" will still be the letter "A" tomor¬
row. But a variable, such as one called FUEL, will change during the course of a pro¬
gram (such as a lunar lander simulation), so it is not a constant.

In Example 1, note that the sign is the only punctuation in the operand field.
In the absence of special punctuation marks (such as the dollar sign indicating a
hexadecimal number and the apostrophe indicating an ASCII character representa¬
tion), any numbers given in this book are in decimal.

What object code will be assembled from this line of source code? Let's hand-
assemble it and see. Appendix A6 shows us that the opcode for load accumulator,
immediate mode, is $A9. So the first byte of object code for this instruction will be
$A9. The second byte must specify what the 6502 should load into the accumulator.

We want to load register A with a decimal 10, which is $0A. So the object code

assembled from Example 1 is: A9 0A.
When these 2 bytes of object code are executed by the 6502, it will result in the

accumulator holding a value of $0A, or decimal 10. In effect, we've just told a jug¬

gler: put a "10" in your right hand.
What if we wanted to load the accumulator with the letter "M," rather than

with a number? We'd still use LDA to load the accumulator, and we'd still use the
immediate mode of addressing, specifying in the operand the constant to be loaded
into the accumulator. Either of the following two lines of source code will work:

INTRODUCTION TO ASSEMBLER 15

Example 2

LDA f M

or

LDA #$4D

In each line of source code above, the mnemonic and the sign tell us we're
loading the accumulator in the immediate mode — ie: with a constant. The operand
following the sign specifies the constant. An apostrophe indicates that an ASCII
character follows, whereas a "$" sign indicates that a hexadecimal number follows.
Appendix A2 shows that an ASCII "M" = $4D; they are simply two representations
of the same bit pattern. So the two lines of source code above are equivalent; they
will both assemble into the same object code: A9 4D.

Which of the two lines of source code is more readable? If a constant will be
used in a program as an ASCII character, then represent it in your source code as an
ASCII character.

Storing the Register

Now let's say we want to store the contents of the accumulator someplace in
memory. Every location in memory has a unique address (just like houses do), rang¬
ing from $0000 to $FFFF. Suppose we decide to store the contents of the accumulator

at memory location $020C. We could do it with the following line of source code:

Example 3

STA $020C

Example 3 will assemble into these 3 bytes of machine language: 8D 0C 02.
According to the Appendix A6, the 6502 opcode for "store accumulator, ab¬

solute mode" (STA) is $8D.

When the 6502 fetches the opcode "8D," it knows that it must store the contents
of the accumulator at the address specified by the next 2 bytes. This is why it is
called absolute mode. Absolute mode is used when specifying an exact memory
location in an instruction.

In the example above, that address seems wrong. It looks like the machine-
language operand is specifying address $0C02, because the bytes are in that order:
"0C" followed by "02." But we want to operate an address $020C. Is something
wrong here?

16 BEYOND GAMES

Low Byte First

You and I might think something is wrong when the address $020C is written as
an "OC" followed by an "02" but you and I are people. We don't think like the 6502.
When you and I write a number, we tend to write the most significant digit first and
the least significant digit last. But the 6502 doesn't work that way. When the 6502 in¬
terprets two sequential bytes as an address, the first byte must contain the less
significant part of the address (the "low byte"), and the second byte must contain the
more significant part of the address (the "high byte"). All addressing modes that re¬
quire a 2-byte operand require that the 2 bytes be in this order: less significant byte

first, followed by the more significant byte.
However, not all addressing modes require a 2-byte operand.

Zero-Page Addressing

Memory is divided into pages, where a page is a block of 256 contiguous ad¬
dresses. The page from $0000 to $00FF is called the zero page, because all addresses
in this page have a high byte of zero. The zero-page addressing mode takes advan¬
tage of this fact. Source code assembled using the zero-page addressing mode re¬
quires only 1 byte in the operand, because the opcode specifies the zero page mode
of addressing, and the high byte of the operand is unnecessary because it is
understood to be zero. Thus, you can specify an address in the zero page by the ab¬
solute or by the zero-page addressing mode, but the zero-page mode will let you do
it using one less byte.

If you want to use some location in the zero page to hold a number, you might
decide to use location $00F4. We could write:

Example 4

STA $00F4

or

STA $F4

We could then assemble either line of source code using the absolute addressing
mode: 8D F4 00. Or we could assemble either line of source code using the zero-

page mode: 85 F4.
The opcode "85" means "store accumulator, zero page." Where in the zero

page? At location $F4 in the zero page, the same location whose absolute address is
$00F4.

INTRODUCTION TO ASSEMBLER 17

Symbolic Expressions

Let's say you want to copy the 3 bytes at memory locations $0200, $0201, and
$0202 to $0300, $0301, and $0302, respectively. We could write these lines of source
code:

Example S

LDA $0200
STA $0300
LDA $0201
STA $0301
LDA $0202
STA $0302

This alternately loads a byte into the accumulator, then stores the contents of the ac¬
cumulator into another byte in memory. Note that loading a register from a location
in memory changes the register, but leaves the contents of the memory location un¬
changed.

Or we could write the following code, which refers to addresses as symbolic ex¬
pressions:

Example 6

1 ORIGIN = $0200
2 DEST - $0300
3 LDA ORIGIN
4 STA DEST
5 LDA ORIGIN + 1
6 STA DEST + 1
7 LDA ORIGIN + 2
8 STA DEST + 2

In Example 6, lines 1 and 2 are assembler directives, which equate the labels
'ORIGIN" and "DEST" with the addresses $0200 and $0300, respectively. Other
lines of source code following these equates may then refer to these addresses by
their labels, or refer to any address as a symbolic expression consisting of labels and,
optionally, constants and arithmetic operators. The source code above will cause an
assembler to generate exactly the same object code as the source code in Example 5,

but Example 6, whose operands consist of symbolic expressions, is much more

18 BEYOND GAMES

readable than Example 5, whose operands are given in hexadecimal.

Some Exercises

1) Write the 6502 instructions necessary to load the accumulator with the value
127, to load the X register with the letter "r," and to load the Y register with the con¬
tents of address $13092.

2) Write the 6502 instructions necessary to copy the byte at address $0043 to the
address $0092.

INTRODUCTION TO ASSEMBLER 19

Chapter 3:

Loops and Subroutines

Indexed Addressing

Although readable, Example 6 is not very efficient, because it requires two lines
of source code to move each byte. If we want to move 50 or 100 bytes must we then
write 100 or 200 lines of source code?

Indexed addressing comes in quite handily here. Instead of specifying the ab¬
solute or zero-page address on which an operation is to be performed, we can
specify a base address and an index register. The 6502 will add the value of the
specified index registers to the base address, thereby determining the address on
which the operation is to be performed. Thus, if we want to move 9 bytes from an
origin to a destination, we could do it in the following manner, using the indexed ad¬
dressing mode with X as the index register:

Example 7

ORIGIN = $0200
DEST = $0300

INIT LDX #0

GET LDA ORIGIN,X
PUT STA DEST,X

ADJUST INX

Initialize X register to zero, so well start
with the first byte in the block.
Get Xth byte in origin block.
Put it into the Xth position in the
destination block.

Adjust X for next byte by incrementing
(adding 1) to the X register.

20 BEYOND GAMES

TEST CPX #9
BRANCH BNE GET

Done 9 bytes yet?
If not, go back and get next byte...

We will use Example 7 in the following sections to introduce several new in¬
structions and addressing modes. Example 7 includes six lines of source code to
move 9 contiguous bytes of data. If we tried to move 9 bytes of data with the tech¬
niques used in Examples 5 and 6, it would have taken eighteen lines of source code.
So with indexed addressing, weve saved ourselves twelve lines of code. But how do
these lines work? The lines are labeled so we can look at them one-by-one.

The instruction labeled INIT loads the X register in the immediate mode with
the value zero. After executing the line INIT, the 6502 has a value of zero in the X
register. We don't know anything about what's in the other registers.

GET loads the accumulator with the Xth byte above the address labeled
ORIGIN. The first time the 6502 encounters this line, the X register will hold a value
of zero, so the 6502 will load the accumulator with the zeroth byte above the address
labeled ORIGIN (ie: it will load the accumulator with the contents of the memory

location ORIGIN).
In any line of source code, a comma in the operand indicates that the operation

to be performed shall use an indexed addressing mode. A comma followed by an "X"
indicates that the X register will be the index register for an instruction, whereas a
comma followed by a "Y" indicates that the Y register will be the index for an in¬
struction. There are a number of indexed addressing modes. Two of these are ab¬
solute indexed and zero-page indexed. The line GET in Example 7 uses the absolute
indexed addressing mode if ORIGIN is above the zero page; if ORIGIN is in the zero
page then the line labeled GET can be assembled using the zero-page indexed ad¬
dressing mode. Zero-page indexed addressing, like zero-page addressing, requires

only 1 byte in the operand.
In zero-page indexed and in absolute indexed addressing, the operand field

specifies a base address. The 6502 will operate on an address it determines by adding
to the base address the value of the specified index register (X or Y). Only if the
specified index register has a value of zero will the 6502 operate on the base address
itself; in all other cases the 6502 will operate on some address higher in memory.

So we've loaded the accumulator with the byte at ORIGIN. Now the 6502
reaches the line labeled PUT in Example 7. This line tells the 6502 to store the ac¬

cumulator in the Xth byte above DEST. We haven't done anything to change X since
the line INIT set it to zero, so X still holds a value of zero. Therefore, the 6502 will
store the contents of the accumulator in the zeroth byte above DEST (ie: in DEST

itself).
At this point, we have succeeded in moving 1 byte from ORIGIN to DEST. X is

still zero. Now comes the part that makes indexing worthwhile. The line labeled
ADJUST is the shortest line of source code we've seen yet, consisting only of the
mnemonic INX, which means "increment the X register." Since the X register was
zero, when this line is executed the X register will be left holding a value of one.

LOOPS AND SUBROUTINES 21

Compare Register

In Example 7, the line labeled TEST compares the value in the X register with
the number "9." There are three compare instructions for the 6502, one for each
register. CMP compares a value with the contents of the accumulator; CPX com¬
pares a value with the contents of the X register, and CPY compares a value with the
contents of the Y register.

We can use these compare instructions to compare any register with any value
in memory, or, in the immediate mode, to compare any register with any constant.
Such comparisons enable us to test for given conditions. For example, in Example 7,
the line labeled TEST tests to see if we've moved 9 bytes yet. If the X register holds
the value "9," then we have moved 9 bytes. (Walk through the loop yourself. When
you have moved the zeroth through the eighth bytes above ORIGIN to the zeroth
through the eighth positions above DEST, then you have moved 9 bytes.)

A compare instruction never changes the contents of a register or of any loca¬
tion in memory. Thus, the X register does not change when the line labeled TEST is
executed by the 6502. What may change, however, are some of the 6502 s status
flags.

Status Flags

In addition to the 6502's general-purpose registers (A, X, and Y), the 6502 con¬
tains a special register P, the processor status register. Individual bits in the pro¬
cessor status register are set or cleared each time the 6502 performs certain opera¬

tions. These bits, or hardware flags, are:

C
Z
I
D
B

V
N

bit 0: Carry Flag
bit 1: Zero Flag
bit 2; Interrupt Flag
bit 3: Decimal Flag
bit 4: Break Flag
bit 5: Undefined
bit 6: Overflow Flag
bit 7: Negative Flag

In this book, we will not discuss the use of all the flags in the processor status
register. In this quick course in assembly-language programming, and in the soft¬
ware subsequently presented in this book, the three flags we will deal with are C, the

00 RFYOND GAMES

carry flag; Z, the zero flag; and N, the negative flag.
A compare operation (CMP, CPX, or CPY) does not change the value of

registers A, X, or Y, but it does affect the carry, zero, and negative flags.
For example, if a register is compared with an equal value, the zero flag, Z, will

be set; otherwise, Z will be cleared. If an instruction sets bit 7 of a register or an ad¬
dress, the negative flag of the status register will also be set; conversely, if an instruc¬
tion clears bit 7 of a register or an address, the negative flag will be cleared. Similar¬
ly, mathematical and logical operations set or clear the carry flag, which acts as a
ninth bit in all arithmetic and logical operations. Table 3.1 summarizes the effects of

a compare instruction on the status flags.

Table 3.1: Status flags affected by compare instructions. Note that if you wish to test the
status of the carry flag after a compare, you must set it (using the instruction SEC) before
the compare. When testing the N flag, think of the inputs as signed 8-bit values.

Carry Flag* Negative Flag Zero Flag

Compare a register
with an equal value and you set C, clear N, and set Z.

Compare a register
with a greater value and you clear C, clear N, and clear Z.

Compare a register
with a lesser value and you set C, clear N, and clear Z.

Conditional Branching

We can have a program take one action or another, depending on the state of a
given flag. For example, two instructions, BEQ, (Branch on result EQual) and BNE
(Branch on result Not Equal) cause the 6502 to branch, or jump to a new instruction,
based on the state of the zero flag. An instruction which causes the 6502 to branch
based on the state of a flag is called a conditional branch instruction. Other condi¬
tional branch instructions are based on the state of other status flags and are given in

table 3.2.

*If you wish to test the status of the carry flag after a compare, you must set it (using
the instruction SEC) before the compare.

LOOPS AND SUBROUTINES 23

Table 3.2: Conditional branch instructions.

Flag Instruction Description Opcode

C BCC Branch if carry clear. 90

C BCS Branch if carry set. B0

N BPL Branch if result positive. 10

N BMI Branch if result negative. 30

Z BEQ Branch if result equal,
(Zero Flag set). F0

Z BNE Branch if result not equal.
(Zero flag clear.) DO

V BVC Branch if overflow flag clear. 50

V BVS Branch if overflow flag set. 70

The line labeled TEST in Example 7 compares the X register to the value "9;"
this sets or clears the zero flag. The line labeled BRANCH then takes advantage of
the state of the zero flag, by branching back to the line labeled GET if the result of
that comparison was not equal. But if Y did equal "9," then the result of the com¬
parison would have been equal, and the 6502 would not branch back to GET. In¬
stead, the 6502 would execute the instruction following the line labeled BRANCH.

Loops

Example 7 shows a program loop. We cause the 6502 to perform a certain
operation many times, by initializing and then incrementing a counter, and testing
the counter each time through the loop to see if the job is done.

There's a lot of power in loops. What would we have to add or change in
Example 7 so that it moves not 9, but 90 bytes from one place to another? Happily,
we wouldn't have to add anything, and we'd only have to change the operand in the
line labeled TEST. Instead of comparing the X register with 9, we'd compare it with

90. See Example 8.

Example 8

Move 90 bytes from origin to destination.

ORIGIN = $0200
DEST = $0300

24 BEYOND GAMES

INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN,X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

ADJUST INX Adjust X for next byte.

TEST CPX #90 Done 90 bytes yet?

BRANCH BNE GET If not, get next byte...

Writing loops lets us write code that is not only compact, but easily tailored to
meet the demands of a particular application. We couldn't do that, however,

without indexing and branching.
Loops can be tricky, though. Whats wrong with this loop?

Example 9

ORIGIN - $0200
DEST = $0300

INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN,X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

TEST CPX #9 Done 9 bytes yet?

BRANCH BNE GET If not, get next byte...

Examine Example 9 very carefully. How does it differ from Example 7? It lacks
the line labeled ADJUST, which increments the X register. What will happen when
the 6502 executes the code in Example 9? It will initialize X to zero; it will get a byte
from ORIGIN and move it to DEST. Then it will compare the contents of register X
to 9. Register X won't equal 9, so it will branch back to GET, where it will do exactly
what it did the first time through the loop, because X will still equal zero. Until the X
register equals 9, the 6502 will branch back to GET. But nothing in this loop will
ever change the value of X! So the 6502 will sit in this loop forever, getting a byte
from ORIGIN and putting it in DEST and determining that the X register does not

hold a 9...
Now look at Example 10. Will it cause the 6502 to loop, and if so, will the 6502

ever exit from the loop? Why, or why not?

LOOPS AND SUBROUTINES 25

Example 10

ORIGIN = $0200
DEST = $0300

EMIT LDX §0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN,X Get Xth byte in origin block.
PUT STA DEST,X Put it into the Xth position in the

destination block.

ADJUST INX Adjust X for next byte.
TEST CPX#9 Done 9 bytes yet?
BRANCH BNE INIT If not, get next byte...

Relative Addressing

All conditional branch instructions use the relative addressing mode, and they
are the only instructions to use this addressing mode. Like the zero page and zero-
page indexed addressing mode, the relative addressing mode requires only a 1-byte

operand. This operand specifies the relative location of the opcode to which the 6502
will branch if the status register satisfies the condition required by the branch in¬
struction. A relative location of 04 means the 6502 should branch to an opcode 4
bytes beyond the next opcode, if the given condition is satisfied. Otherwise, the 6502
will proceed to the next opcode.

Because the operand in a conditional branch instruction is only 1 byte, it is not
possible for a conditional branch instruction to cause a branch more than 127 bytes
forward or 128 bytes backward from the current value of the program counter. (A
branch backward is indicated if the relative address specified is negative; forward if
it's positive. A byte is negative if bit 7 is set. A byte is positive if bit 7 is clear. Thus,
a value of 00 is considered positive.) However, an instruction called JMP allows the
programmer to specify an unconditional branch to any location in memory.
Therefore, if we have a short conditional branch followed by an unconditional
jump, we may achieve in two instructions a conditional branch to any location in
memory.

Unconditional Branch

Just as BASIC has its GOTO command, which causes an unconditional branch
to a specified line in a BASIC program, the 6502 has its JMP instruction, which un-

26 BEYOND GAMES

conditionally branches to a specified address. A program may loop forever by
JMP'ing back to its starting point.

Look at Example 11. Unless a line of code within the loop causes the 6502 to
branch to a location outside of the loop, the 6502 will sit in this loop forever.

Example 11

Endless Loop:

START xxxxxxxxxx some
xxxxxxxxxx instructions
xxxxxxxxxx
JMP START

Indirect Addressing

A JMP instruction may be written in either the absolute addressing mode or the
indirect addressing mode. Absolute addressing is used in Example 11. The operand is
the address to which the 6502 should jump. But in the indirect mode (which is
always signified by parentheses in the operand field) the operand specifies the ad¬
dress of a pointer. The 6502 will jump to the address specified by the pointer; it will
not jump to the pointer itself.

The line of code "JMP (POINTR)'' will cause the 6502 to jump to the address

specified by the 2 bytes at POINTR and POINTR+1. Thus, if POINTR = $0600,
and the 6502 executes the instruction "JMP (POINTR)" when memory location
$0600 holds $00 and $0601 holds $20, then the 6502 will jump to address $2000.
(Remember, addresses are always stored in memory with the low byte first.)

How Branching Works

Incidentally, all branches, whether relative, absolute, or indirect, work by
operating on the contents of the PC (program counter). Before any branch instruc¬
tion is executed, the PC holds the address of the current opcode. A branch instruc¬
tion changes the PC, so that in the next instruction cycle the 6502 will fetch not the
opcode following the current opcode, but the opcode at the location specified by the
branch instruction. Then execution will continue normally from the new address.

LOOPS AND SUBROUTINES 27

Relocatability

Often I implement short unconditional branches as:

rather than as:

CLC
BCC PLACE

JMP PLACE

This is because the first method (relying as it does on relative rather than ab¬
solute addressing) will still work even if you relocate the code in which it is con¬
tained. Making your code relocatable will save you time and trouble when you try
to move your programs around in memory and still want them to work.

To relocate code containing the second example, you'd have to change the
operand field because the absolute address of PLACE will have changed. To relocate
code containing the first example, you wouldn't have to change a thing.

Subroutines

Perhaps the two most powerful instructions available to the assembly-language
programmer are the JSR (Jump to Subroutine) and the RTS (Re Turn from
Subroutine). These instructions (equivalent to GOSUB and RETURN in BASIC)
enable us to organize chunks of code as building blocks called subroutines.

Think of the subroutine as a job. Your computer can do more work for you if it
knows how to do more jobs. Once you teach the 6502 how to do a given job, you
won't have to tell it twice. Let's say you're writing a program in which the same
operation must be performed at various times within a program. In every location
within your program where the operation is required, you could include code to per¬
form that operation. On the other hand, you could write code in one place to per¬
form that operation, but write that code as a subroutine, and then call that
subroutine whenever necessary from the main, or calling program. A call to a
subroutine causes that routine to execute. When finished, it returns to the instruc¬
tion following the call in the main program.

It only takes one line of code to call a subroutine. JSR SUB will call the
subroutine located at the address labeled SUB. After the 6502 fetches and executes
the JSR opcode, the next opcode it fetches will be at the address labeled SUB, in this
example. So far it looks like an unconditional JMP. The 6502 will fetch and execute
opcodes from the addresses following SUB, until it encounters an RTS instruction.

28 BEYOND GAMES

When the 6502 fetches an RTS instruction, it returns to its caller, jumping to the
first opcode following the JSR instruction that called the subroutine. In effect, when
a line of code calls a subroutine, the 6502 remembers where it is before it jumps to
the new location. Then when it encounters an RTS instruction, it knows the address
to which it should return because it remembers where it came from. It then continues
to fetch opcodes from the point following the JSR instruction. Figure 3.1 illustrates
this procedure. Note that the same subroutine may be called from many different
points in the same program, and will always return to the opcode following the JSR

instruction that called it.

main * * * * *
JUMP TO SUBROUTINE

SUB * $ % :Jc &

CALL JSR SUB

LAST

NEXT *****

RETURN FROM SUBROUTINE

RTS

Figure 3.1: Jump to and return from subroutine. When the processor encounters a JSR (jump
to subroutine) instruction, the next instruction executed is the first instruction of the
subroutine. Here, the subroutine SUB is called from MAIN. The last instruction executed in a
subroutine must be an RTS (return from subroutine) instruction. Here, the instruction at label
LAST in subroutine SUB returns control to the next instruction following the call to the
subroutine in the main program, the instruction labeled NEXT. The subroutine SUB can be
called anywhere in the program MAIN when the particular function of SUB is needed.

Subroutines allow you to structure your software. With structured software,
you can make changes to many programs just by changing one subroutine. If, for
example, all programs that print characters do so by calling a single-character-print
subroutine, then any time you improve that subroutine you improve the printing
behavior of all your programs. Changing something only once is a tremendous ad¬
vantage over having to change something in many different (usually undocumented)
places within a piece of code. For these reasons, all of the software in this book uses

subroutines.

LOOPS AND SUBROUTINES 29

Dummies

A dummy subroutine is a subroutine consisting of nothing but an RTS instruc¬
tion. A line of code in a program can call a dummy subroutine and nothing will hap¬
pen; the 6502 will return immediately, with its registers unchanged.

So why call a dummy subroutine?
A call to a dummy subroutine provides a '"hook," which you may use later to

call a functional subroutine. While developing a program, I may have many lines of
code that call dummy subroutines. Later, when I write the lower-level subroutines,
it's easy to change my program so that it calls the functional subroutines rather than
the dummy subroutines. Trying to insert a subroutine call to a program lacking such
a hook can make you wish for a 'memory shoehorn/' which might let you squeeze 3
extra bytes of code into the same address space.

The Stack

In addition to the addressing modes that enable the 6502 to access addressable
memory, one addressing mode lets the 6502 access a 256-byte portion of memory
called the stack.

You may think of this stack as a stack of trays in a cafeteria. The only way a
tray can be added is to place it on top of the existing stack. Similarly, the only way
to get a tray from the stack is to remove one from the top. This is the LIFO (Last-In,
First-Out) method. The last tray placed onto the stack must be the first tray re¬
moved.

In our case, when an item is placed onto the top of the stack, it is called a push,
and when an item is removed from the top of the stack, it is called a pop. The last
item onto the stack is said to be at the top of the stack.

For example, let's say we want to place two items onto the stack. (Each item has
an 8-bit value, perhaps a number or an ASCII character; see figure 3.2a.) First we
push item 1 onto the stack, as illustrated in figure 3.2b. All positions above item 1 on
the stack are said to be empty, the item 1 is on the top of the stack.

Now, push item 2 onto the stack (see figure 3.2c). What happens? Item 2 is now
at the top of the stack, not item 1, although item 1 is still on the stack.

Next, to get item 2 back off the stack, we do a pop (see figure 3.2d). This makes
item 1 the top of the stack again. Finally, another pop will remove item 1 from the
stack, leaving the stack completely empty. Note that we had to pop item 2 from the
stack before we could get to item 1 again. This is the LIFO principle.

The instruction PHA lets you push the contents of the accumulator onto the
stack. PLA lets you load the accumulator from the top of the stack (a pop). PHP lets
you push the processor status register onto the stack. PLP lets you load the pro¬
cessor status register from the stack.

30 BEYOND GAMES

9

&

9 d)

—-fr. j JjjT 2 EMPTY EMPTY — - 2

--TOP OF STACK

«-TOP OF STACK

ITEM 2 / EMPTY /

ITEM 1 ITEM 1

STACK STACK

Figure 3.2: Pushing and popping the stack.

The stack is a very convenient “pocket" to use when you want to store one or a
few bytes temporarily without using an absolute place in memory. Subroutines may
pass information to the calling routines by using the stack, but be careful: if a
subroutine pushes data onto the stack, and fails to pop that data from the stack
before executing an RTS instruction, then that subroutine will not return to its
caller. This happens because when the 6502 executes a JSR instruction, it pushes the
return address—that is, the address of the opcode following the JSR instruc-
tion—onto the stack, A subroutine can return to its caller only because its return ad¬

dress is on the stack. If its return address is not at the top of the stack when the
subroutine executes an RTS, it will not return to its caller. So a subroutine should

always restore the stack before trying to return.

LOOPS AND SUBROUTINES 31

Chapter 4:

Arithmetic and Logic

Character Translation

As demonstrated by Examples 7 and 8, indexed addressing is handy for
performing a given operation (such as a move) on a contiguous group of bytes. But
it also has another important application: table lookup. For example, let's say you
and a friend have decided to write notes to one another using a substitution code.
For every letter, number, and punctuation mark in a message, you've agreed to
substitute a different character. A "W" will be replaced with a "Y;" a semicolon may
be replaced with a "9," etc.

You each have the same table showing you what to substitute for each character
that may appear in a message. So you write a note to your friend in English, and
then, using this table (which might be in the form of a Secret Agent Decoding Ring)
you code, or encrypt, your note. You send the note in its encrypted form to your
friend. Anyone else looking at the note would just see garbage, but your friend
knows that a message can be found in it. So he gets his copy of the character transla¬
tion table (which may be in his Secret Agent Decoding Ring), and he translates the
encrypted message back into English, looking up the characters that correspond to
each character in the coded message.

Children often enjoy coding and decoding messages in this way, but I find it
about as much fun as filling out forms — which is no fun at all. Unfortunately, pro¬
gramming often involves character translation. Fortunately, I don't have to do it
myself. I let my computer perform any necessary character translation by having it
do what our two secret agents were doing: look up answers in a table.

32 BEYOND GAMES

Example 12
Character Translation Subroutine

XLATE TAX Use character to be translated as an in¬
dex into the table.

LDA TABLED Look up value in table.
RTS Return to caller, bearing translated

character in A and original character in

X.

Transfer Register

In Example 12, the subroutine XLATE assumes when it is called that the ac¬

cumulator holds the byte to be translated. This byte might be a letter, a number, a
punctuation mark, a control code, or a graphic character, but however you think of
it, it's an 8-bit value. Line 1 of XLATE transfers that 8-bit value from the ac¬
cumulator to the X register, using the register-transfer instruction TAX.

Register-transfer instructions operate only on registers; they do not affect ad¬
dressable memory. These instructions allow the contents of one register to be
copied, or transferred, to another. The results of a transfer leave the source register
unchanged, and the destination register holding the same value as the source

register. The 6502's register-transfer instructions are:

TAX Transfer accumulator to X register.
TAY Transfer accumulator to Y register.
TXA Transfer X register to accumulator.
TYA Transfer Y register to accumulator.

Register transfers do not affect the status flags.
These instructions let you transfer A to X or Y, or to transfer X or Y to A. But

how would you transfer X to Y, or Y to X? (Hint: it will take two lines of source

code, each line an instruction from the list above.)

Table Lookup

In Example 12, line 2 of XLATE actually performs the character translation by
looking up the desired data in a table. The label, TABLE, identifies the base address
for a table that weve previously entered into memory. The indexed addressing

ARITHMETIC AND LOGIC 33

mode allows line 2 to get the Xth byte above the base address (ie: to get the Xth byte
of the table). When that line is executed, the table lookup is complete. The 6502 has
looked up and now holds in the accumulator the Xth byte in the table. Now all the
6502 must do is return to its caller, bearing the translated character in A and the
original character in X. It accomplishes this with the RTS instruction.

Now you can perform this character translation at any point in any program

with just one line of source code:

JSR XLATE

Table lookup gives me great flexibility as a programmer. If a program uses a
table lookup and for some reason I want the program to behave differently, I will
probably only have to change some values in the table; it's unlikely that I'll have to
change the table lookup code itself. If I've set up my table well, I might not have to
change anything in the program except the data in the table.

Table lookup is therefore a very fast and flexible means of performing data
translation. But the cost of that speed and flexibility can be size. You might be able
to solve any problem with the right tables in memory, but not if you can't afford the
memory necessary to hold all those tables. It's great when a program can just look
up the answers it needs, but sometimes a program will actually have to compute its

answers.

Arithmetic Operations

The 6502 can perform the following 8-bit arithmetical operations:

Shift
Rotate
Increment
Decrement
Add
Subtract

To understand how the 6502 operates on a byte, you must think of the bits in
that byte. Even if the byte represents a number or a letter, don't think about what
you can do to that number or letter. Think about what you can do to the pattern of

bits in that byte.
What can you do to those bits?

34 BEYOND GAMES

Shift

You can shift the bits in a byte one position to the left or to the right. An ASL
(Arithmetic Shift Left) operates on a byte in this manner: it moves each bit one bit to
the left; it moves the leftmost bit (bit 7) into the carry flag, and it sets the rightmost
bit (bit 0) to zero. See figure 4.1.

BITS

7 6 5 4 3 2 10

For example, if the byte at location TMP has the following bit pattern:

address TMP 01010110

then after the instruction 'ASL TMP" is executed, the data would look like:

address TMP 10101100

with the carry flag being set to the previous value of bit 7, in this case 0. If the same

instruction is again executed, the data becomes:

address TMP 01011000

and the carry flag is set to 1.
A LSR (Logical Shift Right) has just the opposite effect of the ASL. All bits are

shifted to the right towards the carry flag, introducing zeroes through bit 7. See

figure 4.2.

BITS
7 6 5 4 3 2 1 0

Figure 4.2: Effect of the LSR instruction.

ARITHMETIC AND LOGIC 35

For example, if the byte at location TMP is as originally given above, then after
the instruction "LSR TMP" is executed, the data at TMP becomes:

address TMP 00101011

with the carry flag being set to the previous value of bit 0, in this case zero. If the
same instruction is executed again, the data becomes:

address TMP 00010101

with the carry flag set to 1.
Because a number is represented in binary (each bit represents a successive

power of two), some arithmetic operations are simple. To divide a byte by two,
simply shift it right; to multiply a value in a byte by two, simply shift it left.

Rotate

You can also rotate the bits in a byte to the left or to the right through the carry
flag. Unlike shifting, rotating a byte preserves all the information originally con¬

tained by a byte.
Figure 4.3 shows how a ROL (rotate left) instruction works. For instance, let's

say the data at address TMP is originally the same as in previous examples:

address TMP 01010110

and let's say that the carry flag is set (ie: it holds a 1).
After a "ROL TMP" instruction is executed, the data becomes:

address TMP 10101101

BITS

36 BEYOND GAMES

and the carry bit is set to the previous value of bit 7, namely 1. Notice that bit 0 in
TMP now holds the original contents of the carry flag, and the carry flag holds the
original contents of bit 7. Otherwise, everything looks just the same as in the ASL
operation. After a second execution of the instruction "ROL TMP," the data

becomes:

address TMP 01011011

with the carry flag set to 1.
In a rotate left instruction, bit 0 is always set from the carry flag. (In the ASL in¬

struction, bit 0 is always set to 0.) If this had been an ASL instruction, what would
the bit pattern at TMP be?

Figure 4.4 shows how a ROR (rotate right) instruction works. It is similar to
ROL, except that the carry flag is set from bit 0, and bit 7 is set from the carry flag.

BITS

7 6 5 4 3 2 1 0

Rotate a byte left nine times and you'll still have the original byte. The same is
true if you rotate a byte right nine times. But shift a byte left nine times, or right nine

times, and you know what you've got left? Nothingl

Increment, Decrement

You can increment or decrement a byte in three ways: using the INC and DEC
instructions to operate on a byte in memory, using INX and DEX to operate on the X
register, or using INY and DEY to operate on the Y register. None of these instruc¬
tions affects the carry flag. They do affect the zero flag: Z is set if the result of an in¬
crement or decrement is zero; otherwise Z is cleared. The negative flag is set if the
result of an increment or decrement is a byte with bit 7 set; otherwise N is cleared.

Note that if you increment a register or address holding $FF, it will hold zero.
And similarly, if you decrement a register or address holding a zero, it will hold $FF.

ARITHMETIC AND LOGIC 37

You cannot increment or decrement the accumulator, but you can add or sub¬

tract a byte from the accumulator.

Addition

Example 13 shows how to add a byte from the location labeled NUMBER to the

accumulator:

Example 13

CLC Clear the carry flag.
ADC NUMBER Add the contents of location

NUMBER to the accumulator.

After these instructions are executed, the accumulator will hold the low 8 bits of
the result of the addition. If, following the addition, the carry flag is set, then the
result of the addition was greater than 255; if the carry flag is clear, then the result
was less than 256, and, therefore, the accumulator is holding the full value of the
result. Remember, the carry flag must be cleared before performing the ADC in¬

struction.

Subtraction

Subtraction is as easy as addition. To subtract a byte from the accumulator,
first set the carry flag (using the SEC instruction) and then subtract from the ac¬
cumulator a constant or the contents of some address, using the instruction SBC

(subtract with carry):

SEC Set the carry flag.
SBC OPERND Subtract from accumulator the value of

OPERND.

If the operand is greater than the initial value of the accumulator, the subtract
operation will clear the carry flag; otherwise the carry flag will remain set. In either

case, the accumulator will bear the 8-bit result.
Thus, you clear the carry flag before adding and set the carry flag before sub-

38 BEYOND GAMES

tracting. If the carry flag doesn't change state, then the accumulator bears the entire
result. But if the addition or subtraction changes the state of the carry flag, then
your result is greater then 255 (for an addition) or less than zero (for a subtraction).

Decimal Mode

The processor status register includes a bit called the decimal flag. If the decimal
flag is set, then the 6502 will perform addition and subtraction in decimal mode. If
the decimal flag is clear, then the 6502 will perform addition and subtraction in
binary mode. Decimal mode means the bytes are treated as BCD (Binary Coded
Decimal), meaning that the low 4 bits of a byte represent a value of 0 thru 9, and the
high 4 bits of the byte represent a value of 0 thru 9. Neither nybble (4 bits) may con-
tain a value of A-F. So, each nybble represents a decimal digit.

The instructions SED and CLD set the decimal flag and clear it, respectively.
Unless you'll be operating with figures that represent dollars and cents, you won't
need to use the decimal mode. All software in this book assumes that the decimal

mode is not used.
Decimal 255 is the biggest value that can be represented by a binary-coded byte,

but decimal 99 is the biggest value that can be represented by a byte using Binary

Coded Decimal.

Logical Operations

What if you want to set, clear, or change the state of one or more bits in a byte
without affecting the other bits in that byte? Input and output operations often de¬
mand such "bit-twiddling," which can be performed by the 6502's logical operations

ORA, AND, and XOR.

Setting Bits

The ORA instruction lets you set one or more bits in the accumulator without
affecting the state of the other bits. ORA logically OR's the accumulator with a
specified byte, or mask, setting bit n in the accumulator if bit n in the accumulator is
initially set or if bit n in the mask is set, or if both of these bits are set. A logical OR
will leave bit n of the accumulator clear only if bit n is initially clear in both the ac¬

cumulator and the mask. Table 4.1 shows a truth table for the logical operator OR.
A truth table gives all possible combinations of 2 bits that can be operated upon (in
this case, ORed) and the results of these combinations.

ARITHMETIC AND LOGIC 39

Table 4.1: Truth table for the logical OR operand.

Bit 1 Bit 2 Result

0 OR 0 = 0
0 OR 1 1
1 OR 0 = 1
1 OR 1 = 1

For example, suppose we executed the instruction 7/ORA #$80." Here the mask
is $80, or the bit pattern 10000000. This instruction would therefore set bit 7 of the
accumulator while leaving all other bits unchanged. So, if the accumulator had a
value of 00010010 before the above instruction was executed, it would have the

value of 10010010 afterwards.
Another example would be "ORA #3." Since a decimal 3 becomes 00000011

when converted to an 8-bit binary mask, the above instruction would set bits 0 and 1
in the accumulator, leaving bits 2 thru 7 unchanged.

How would you set the high 4 bits in the accumulator? The low 4 bits?

Clearing Bits

You can clear one or more bits in the accumulator without affecting the state of
the other bits through the use of the AND instruction. AND performs a logical AND
on the accumulator and the mask specified by the operand. AND will set bit n of the
accumulator only if bit n of the accumulator is set initially and bit n is set in the
mask. If bit n is initially clear in the accumulator or if bit n is clear in the mask, then
AND will clear bit n in the accumulator. Table 4.2 gives the truth table for the
logical AND operation.

Table 4.2: The truth table for the logical AND.

Bit 1 Bit 2 Result

0 AND 0=0
0 AND 1=0
1 AND 0=0
1 AND 1=1

*r\ ncvown riAMPQ

For instance, the line of source code "AND #1" will clear all bits except bit 0 in
the accumulator; bit 0 will remain unchanged. "AND #$F0" will clear the low 4 bits
of the accumulator, leaving the high 4 bits unchanged. Select the right mask, and
you can clear any bit or combination of bits in the accumulator without affecting the
other bits in the accumulator.

Toggle Bits

The exclusive OR operation, XOR, lets you "flip," or toggle, one or more bits in
the accumulator (ie: change the state of one or more bits without affecting the state
of other bits). XOR will set bit n of the accumulator if bit n is set in the accumulator
but not in the mask, or if bit n is set in the mask but not in the accumulator. If bit n
has the same state in both the accumulator and in the mask, then XOR will clear bit
n in the accumulator. Table 4.3 shows the truth table for this operation.

Table 4.3: The truth table for the exclusive OR (XOR).

Bit 1 Bit 2 Result

0 XOR 0=0
0 XOR 1=1
1 XOR 0=1
1 XOR 1=0

To toggle bit n in the accumulator, simply XOR the accumulator with a mask
which has bit n set but all other bits clear. Bit n will change state in the accumulator,
but all other bits in the accumulator will remain unchanged.

The logical operators, combined with the 6502's relative branch instructions,
make it possible for a program to take one action or another depending on the state
of a given bit in memory. Let's say you want a piece of code that will take one action
(Action A) if a byte, called FLAG, has bit 6 set; yet take another action (Action B) if
that bit is clear. The code of Example 14 shows one way to ignore all other bits in
FLAG, and still preserve FLAG.

Example 14

LDA FLAG Get flag byte.
AND #$40 Clear all bits but bit 6.
BEQ PLAN.B

ARITHMETIC AND LOGIC 41

PLAN. A xxxxx Take Action A, since bit 6 was set
in flag.

PLAN.B Take Action B, since bit 6 was
clear in flag.

What good are flags? Let me give an example. The flag on a rural mailbox may
be either raised or lowered to indicate that mail is or is not awaiting pickup. Raising
and lowering those flags requires a little bit of effort (no pun intended), but it
enables the mail carrier to complete the route much more quickly than would be
possible if every mailbox had to be checked every time around. Presumably, this
provides better service for everyone on the route.

That mail carrier's routine is a very sophisticated piece of programming. If we
think of the mail carrier as a person following a program, then we can see some of
the power and flexibility that come from the use of flags.

The mail carrier's program has two parts: What must be done at the post office
and What must be done on the route. At the post office, the mail carrier sorts the
mail, bundles letters for the same address and puts the bundles for a given route into
a mail sack in some order. This sorting at the post office means the mail carrier on
the route can make his or her rounds more quickly, because no further sorting and
searching is required. (We won't go into sorting and searching in this book; that's a
volume in itself. For a helpful reference see Donald E Knuth's Searching and

Sorting.)
Now comes the second part of the mail carrier's program: What must be done

on the route. The mail carrier picks up the mail sack and leaves the post office. Driv¬
ing down country roads, the mail carrier sees a mailbox ahead. Do I have any mail
for the people at this address? If so, the mail carrier's mental program says. I'll slow
down and deliver it. But what if I don’t have any mail now for these people? Do I

just keep driving? Do I go to the next address?
Not if I want to keep my job.
The mail carrier looks a little more closely at the mailbox. Is the flag up or

down? If it's down, I can just drive by, but if the flag is up I must stop and pick up
the outgoing mail.

A flag is just a single bit of information, but by interpreting and responding to
the state of flags, even a simple program can respond to many changing conditions.
If your computer has 8,000 bytes of programmable memory, that means it has

64,000 bits of memory. Conceivably, you could use most of those bits as flags,
perhaps simulating the patterns of outgoing mail in a community of more than

50,000 households.
But you didn't buy a computer to play post office. And you know enough now

to follow the programs presented in the following chapters. These programs will in-

42 BEYOND GAMES

elude examples of all the instructions and programming techniques presented in this
very fast course in assembly-language programming. The programs in the following
chapters will also give you some tools to use in developing your own programs.

(Incidentally, there is one 6502 instruction which doesn't do anything at all. The
instruction NOP performs NO operation. Why would you want to perform no
operation? Occasionally, it's handy to replace an unwanted instruction with a dum¬
my instruction. When you want to disable some code, simply replace the unwanted
code with NOP's. A NOP is represented in memory by $EA.)

ARITHMETIC AND LOGIC 43

Chapter 5:

Screen Utilities

Now let's consider how to display something on the video screen. On the Ap¬
ple, Atari, OSI, and PET computers, the video-display circuitry scans a particular
bank of memory, called the display memory. Every address in the display memory
represents, or is mapped to, a different screen location (hence the term memory-
mapped display). For each character in the display memory, the display circuitry
puts a particular image, or graphic, on the screen (hence the term character
graphics). To display a character in a given screen location, you need only store that
character in the one address within display memory that corresponds to the desired
screen location.

To know which address corresponds to a given screen location you must con¬
sult a display-memory map. Appendices B1 thru B4 describe how display memory is
mapped on the Apple, Atari, OSI, and PET computers. Note that two different
systems may have two different addresses for the same screen location. Also note
how burdensome it can be to look up the addresses of even a few screen locations
just to display a few characters on the video screen.

Rather than address the screen in an absolute manner, we'd like to be able to do
so indirectly. Ideally, we'd like a software-controlled "hand" that we can move
about the screen. Then we could pick up the character under the hand, or place a
new character under the hand, without being concerned with the absolute address of
the screen location under the hand at the moment. Such a hand can be implemented

quite easily as a zero-page pointer.

44 BEYOND GAMES

Pointers

A pointer is just a pair of contiguous bytes in memory. Since 1 byte contains 8
bits, a pointer contains 16 bits, which means a pointer can specify any one of more
than 65,000 (specifically: 216) different addresses.

A pointer can specify, or point to, only one address at a time. The low byte of a
pointer contains the 8 LSB (least-significant bits) of the address it specifies, and the
high byte of the pointer contains the 8 MSB (most-significant bits) of the address it

specifies.
Let's say we want a pointer at location $1000. We must allocate 2 bytes for the

pointer, which means it will occupy-the bytes at $1000 and $1001. $1000 will hold
the low byte, and $1001 will hold the high byte. If we want this pointer to specify
address $ABCD, then we may set it as follows:

POINTR - $1000

LDA #$CD A9 CD
STA POINTR 8D 00 10
LDA #$AB A9 AB
STA POINTR+1 8D 01 10

This assembler directive equates the label
POINTR with the value $1000. (It's POINTR
and not POINTER only because the assembler
used in preparing this book chokes on labels
longer than six characters — a common, if

arbitrary, limitation.)
Set the
low byte.
Set the
high byte.

Now POINTR points to $ABCD.
Although a pointer may be anywhere in memory, it becomes especially power¬

ful when it's in the zero page (the address space from 0000 to $00FF). The 6502's in¬
direct addressing modes allow a zero-page pointer to specify the address on which
certain operations may be performed, A zero-page pointer must be located in the
zero page, but it may point to any location in memory. For example, a zero-page
pointer may be used to specify the address in which data will be loaded or stored.
Since display memory looks like any other random-access memory to the processor,
we may implement our television hand as a zero-page pointer.

TV.PTR

We want a zero-page pointer that can point to particular screen locations. Let's
call it TV.POINTER, or TV.PTR for short. Whenever we examine or modify the

screen, we'll do it through the TV.PTR.

SCREEN UTILITIES 45

Because the TV.PTR must be in the zero page, let's place it at $0000, meaning it
will occupy the bytes at $0000 and at $0001. We can do that with the following

assembler directive:

TV.PTR = $0

TV.PUT

The TV.PTR always specifies the current location on the screen. Thus, to
display a graphic at the current location on the screen, we need only load the ac¬
cumulator with the 8-bit code for that graphic and then execute the following two

lines of code:

LDY #0 A0 00
STA (TV.PTR),Y 91 00

The two lines of above code are sufficient to display a given graphic in the cur¬

rent screen location. But what if you want to display a given character in the current
screen location? The ASCII code for a character is not necessarily the same as your
system's display code for that character's graphic. To display an "A" in the current
screen location, we cannot simply load the accumulator with an ASCII "A" (which
is $41) and then execute the two lines of above code, because the graphic "A" may
have a different display code on your system. Instead of displaying an "A," we
might display something else. Of the four computers considered in this book, only
the Ohio Scientific Challenger I-P has a one-to-one correspondence between any
character's ASCII code and that character's graphic code. The Atari, the PET, and
the Apple computers lack such a one-to-one correspondence.

How then can we display a given ASCII character in the current screen loca¬

tion? We can do it by assuming that there exists a subroutine called FIXCHR, which
will "fix" any given ASCII code, by translating it to its corresponding graphic or
display code. FIXCHR will be different for each system, so we won't go into its
details here (see the appendix pertaining to your computer for a description and
listing of FIXCHR for your system). At this point we will assume only that FIXCHR
exists, and that if we call it with an ASCII character in the accumulator, it will return
with the corresponding display code in the accumulator.

We already know how to display a given graphic in the current screen location.

With FIXCHR we now know how to display any given ASCII character in the cur¬
rent screen location. And since displaying any given ASCII character in the current
screen location is something we're likely to do more than once, let's make it a
subroutine. Well call that subroutine TV.PUT since it will let us put a given ASCII

46 BEYOND GAMES

character up on the TV screen:

TV. PUT JSR FIXCHR

LDY #0
STA (TV.PTR), Y
RTS

Convert ASCII character to your
system's display code for that character.
Put that graphic in the
current screen location.
Return to caller.

The Screen Location

However, these examples of modifying and examining screen locations through
the TV.PTR will work only if the TV.PTR is actually pointing at a screen location.

Therefore, before executing code such as the examples given above, we must be sure
the TV.PTR points to a screen location.

There are several ways to do this. If you want to write code that will run on
only one machine (or on several machines whose display memory is mapped the
same way), then you can use the immediate mode to set the TV.PTR to a given
address on the screen. Let's say you want to set the TV.PTR to point to the third col¬
umn of the fourth row (counting right and down from an origin in the upper-left cor¬
ner). If you have an Ohio Scientific Challenger I-P, then you can consult your
system's documentation and determine that address $D062 in display memory cor¬
responds to your desired screen location. $D0 is the high byte of this screen location;
$62 is the low byte of this screen location. Thus, you can set TV.PTR with the
following lines of code:

LDA #$62 A9 62 Set
STA TV.PTR 85 00 low byte.

LDA #$D0 A9 DO Set

STA TV.PTR+1 85 01 high byte.

This code is fast and relocatable. But it's not very convenient to have to look up
a display address every time we write code that displays something on the screen. It

SCREEN UTILITIES 47

would be much more convenient if we could address the screen as a series of X and Y
coordinates. Why not have a subroutine that sets the TV.PTR for us, provided we
supply it with the desired X and Y coordinates?

TVTOXY

TVTOXY is a subroutine that sets the value of the TV.PTR to the display ad¬

dress whose X and Y coordinates are given by the X and Y registers. (Note that we
count the columns and rows from zero.) To make the TV.PTR point to the third col¬
umn from the left in the fifth row from the top, a calling program need only include
the following code:

LDY #2

LDY #4

JSR TVTOXY

The leftmost column is column zero, so the third column is
column two.
The topmost row is row zero, so the fifth row is row four.
Set TV.PTR to screen location whose X and Y coordinates are
given by the X and Y registers.

How will TVTOXY work? We could have TVTOXY do just what we were

doing: look up the desired address in a table. A computer can look up data in a table
very quickly, but the speed may not be worth it if the table requires a lot of memory.
If we don't mind waiting a little longer for TVTOXY to do its job, we can have
TVTOXY calculate the desired value of TV.PTR, rather than look it up in a table.
But how can you calculate the address of a given X and Y location on the screen?

You can't do it without data. But you don't need a large amount of data to
determine the address of a given X,Y location in screen memory; you need only have
access to the following facts:

HOME The address of the character in the upper-left corner of the
screen (ie: the lowest address in screen memory).

ROWINC ROW INCrement: the address difference from one row to the
next.

48 BEYOND GAMES

Knowing the values of HOME and ROWINC for a given system, you can
calculate the address corresponding to any X,Y location:

HOME Address of character in upper-left corner

+ X Register + X coordinate
+ (Y Register) X ROWINC + (Y coordinate) X ROWINC

TV.PTR Address of screen location at column X, row Y.

Run through this calculation for several screen locations and compare the
results with the addresses you look up in the display-memory map for your system.
(Remember that we count columns and rows from zero, not from one.) Now if
TVTOXY can run through this calculation for us, well never have to look at a
display-memory map again; we can write all our display code in terms of cartesian
coordinates.

But we shouldn't be satisfied with TVTOXY if it only runs through the above
calculation. After all, what happens if TVTOXY is called and the Y register holds a
very large number? If the Y register is greater than the number of rows on the screen,
then the above calculation will set the TV.PTR to an address outside of display

memory. We don't want that. Maybe a calling program will have a bug and call
TVTOXY with an illegal value in X or in Y. If TVTOXY doesn't catch the error, the
calling program may end up storing characters in memory that is not display
memory. It might end up over-writing part of itself, which would almost certainly
invite long and arduous debugging.

I hate debugging. I know I'm going to make mistakes, but I'd like my software
to catch at least some bugs before they run amuck. So let's have TVTOXY check the
legality of X and Y before blindly calculating the value of TV.PTR.

How can TVTOXY check the legality of X and Y? How big can X or Y get

before it's too big? We need some more data;

TVCOLS The number of columns on the display screen, counting
from zero.

TVROWS The number of rows on the display screen, counting from
zero.

Now TVTOXY requires the following four facts about the host computer:

SCREEN UTILITIES 49

HOME
ROWINC
TVROWS
TVCOLS

If we store these facts about the host system in a particular block of memory,
thenTVTOXY need only consult that block of memory to learn all it needs to know
about the screen. TVTOXY can then work as follows:

TVTOXY

TVTOXY SEC
CPX TVCOLS

Is X out of range?

BCC X.OK If not, leave it alone.
If X is out of range, give

LDX TVCOLS it its maximum legal value.
Now X is legal.

X.OK SEC
CPY TVROWS

Is Y out of range?

BCC Y.OK If not, leave it alone.
If Y is out of range, give

LDY TVROWS it its maximum legal value.
Now Y is legal.

Y.OK LDA HOME
STA TV.PTR
LDA HOME+1
STA TV.PTR+1

Set TV.PTR - HOME.

TXA
CLC
ADC TV.PTR

BCC COLSET

INC TV.PTR+1
CLC

Add X to TV.PTR.

COLSET CPY #0
BEQ EXIT

Add Y*ROWINC to TV.PTR.

LOOP CLC
ADC ROWINC
BCC NEXT

50 BEYOND GAMES

INC TV.PTR+1
NEXT DEY

BNE LOOP
EXIT STA TV.PTR

RTS Return to caller.

TVDOWN, TVSKIP, TVPLUS

Using TVTOXY, we can set TV.PTR to a screen location with any desired X,Y

coordinates. But it would also be convenient to be able to modify TV.PTR relative
to its current value. For example, after placing a character on the screen, we might
want to make TV.PTR point to the next screen location to the right, or perhaps to
the screen location directly below the current screen location. We might even want
to make TV.PTR skip over several screen locations to make it point to "the nth
screen location from here," where "here" is the current screen location. For these oc¬
casions, the subroutines TVDOWN, TVSKIP, and TVPLUS come in handy.

TVDOWN, TVSKIP, TVPLUS

TVDOWN LDA ROWINC
CLC
BCC TVPLUS

Move TV.PTR down by one row.

Unconditionally branch.

TVSKIP LDA #1 Skip one screen location by increment¬
ing TV.PTR.

TVPLUS CLC

ADC TV.PTR
BCC NEXT
INC TV.PTR+1

Add the contents of the accumulator

to the two zero-page bytes
comprising the TV.PTR.

NEXT STA TV.PTR

RTS Return to caller.

Note that the routines TVDOWN and TVSKIP make use of the routine
TVPLUS, which assumes that the accumulator has been set to the number of loca¬
tions to be skipped. For TVDOWN and TVSKIP, the accumulator is set to
ROWINC and 1, respectively.

Right now TVPLUS might not seem long enough to be worth making into a

SCREEN UTILITIES 51

subroutine. Any program that calls TVPLUS could perform the addition itself, at a
cost of only a few bytes, and at a saving of several machine cycles in the process.
However, we may make TVPLUS more sophisticated later on.

For example, we could enhance TVPLUS so it performs error checking auto¬
matically, to ensure that TV.PTR will never point to an address outside of screen
memory. Such error checking would be very burdensome for every calling program
to perform, but if and when we insert it into TVPLUS, every caller will auto¬
matically get the benefit of that modification.

VUCHAR

With TV.PUT we can display an ASCII character in the current screen location,
and with TVSKIP we can advance to the next screen location. So why not combine
the two, creating a subroutine that displays in the current screen location the graphic
for a given ASCII character, and then automatically advances TV.PTR so it points
to the next screen location? This would make it easy for a calling program to display
a string of characters in successive screen positions. Since this subroutine will let the
user view a character, let's call it VUCHAR:

VUCHAR JSR TV.PUT Display, in the current screen location,

the graphic for the character whose
ASCII code is in the accumulator.

JSR TVSKIP Advance to the next screen location.
RTS

We could even squeeze VUCHAR into the code presented above for
TVDOWN, TVSKIP, and TVPLUS, by inserting one new line of source code im¬
mediately above TVSKIP. (See Appendix Cl, the assembler listing for the Screen
Utilities, which also includes some error checking within TVPLUS.)

VUBYTE

With the screen utilities presented thus far, we can display a character on the
screen in the current location, but we don't have a utility to display a byte in hexa¬
decimal representation. Let's make one.

Well call this utility VUBYTE, since it will let the user view a given byte. With

VUBYTE, a calling program must take only three steps to display a byte in hexa¬
decimal representation anywhere on the screen:

52 BEYOND GAMES

1) Set a zero-page pointer (TV.PTR) to point to the screen location where the
byte should be displayed; 2) load the accumulator with the byte to be displayed; and

then 3) call VUBYTE.

Figure 5.1: Flowchart of the routine VUBYTE, which displays a byte in hexadecimal represen¬
tation on the video screen.

SCREEN UTILITIES 53

VUBYTE will display the given byte as two ASCII characters in the current
position on the screen, and when VUBYTE returns, TV.PTR will be pointing to the
screen location immediately following the two screen locations occupied by the dis¬

played characters.
VUBYTE need only determine the ASCII character for the hexadecimal value of

the 4 MSB (most-significant bits), store that ASCII character in the screen location
pointed to by TV.PTR, then display the ASCII character for the hexadecimal value
of the accumulator's 4 LSB (least-significant bits) in the next screen location. See

figure 5.1 for a flowchart outlining this.
VUBYTE seems to be asking for a utility subroutine to return the ASCII char¬

acter for a given 4-bit value. Let's call this subroutine ASCII. ASCII will return the
ASCII character for the hexadecimal value represented by the 4 least-significant bits
in the accumulator. It will ignore the 4 most-significant bits in the accumulator.

If we assume that ASCII exists, then we can write VUBYTE:

VUBYTE

VUBYTE PHA Save accumulator.

LSR A Move 4 MSB

LSR A into positions

LSR A occupied by

LSR A 4 LSB.

JSR ASCII Determine ASCII for accumulator's 4
LSB (which were its 4 MSB).

JSR VUCHAR Display the ASCII character in the cur¬
rent screen location and advance to next
screen location.

PLA Restore original value of accumulator.

JSR ASCII Determine ASCII for accumulator's 4
LSB (which were its 4 LSB).

JSR VUCHAR Display this ASCII character just to the
right of the other ASCII character and
advance to next screen location.

RTS Return to caller.

54 BEYOND GAMES

Of course, ASCII doesn't exist yet. So let's write it, and then VUBYTE should

be complete.

ASCII

ASCII AND #$0F Clear the 4 MSB in accumulator.

Is accumulator greater than 9?

If so, it must be A thru F. Add $36 to
accumulator to convert it to correspond¬
ing ASCII character. (We'll add $36 by
adding $6 and then adding $30.)

DECIML ADC #$30 If accumulator is 0 thru 9, add $30 to it
to convert it to corresponding ASCII

character.

RTS Return to caller, bearing the ASCII char¬
acter corresponding to the hexadecimal
value initially in the 4 LSB of the ac¬
cumulator.

CMP #$0A
BMI DECIML
ADC #6

TVHOME, CENTER

Now we can display a character or a byte at the current screen location, and we
can set the current screen location to any given X,Y coordinates or modify it relative
to its current value. It would also be handy if we could set the TV.PTR to certain
fixed locations: locations that more than one calling program might need as points
or origin. For example, a calling program might need to set the TV.PTR to the
HOME location (position 0,0), or to the CENTER of the screen:

TVHOME, CENTER

TVHOME LDX #0 Set TV.PTR to the leftmost column

LDY #0 of the top row
JSR TVTOXY of the screen.

RTS Then return to caller.

SCREEN UTILITIES 55

CENTER LDA TVROWS
LSR A
TAY

LDA TVCOLS
LSR A
TAX

JSR TVTOXY

RTS

Load A with total rows.
Divide it by two.
Y now holds the number of the central
row on the screen.

Load A with total columns.
Divide it by two.
X now holds the number of the central
column on the screen.

Now X and Y registers hold X, Y coor¬
dinates of center of screen.

Set the TV.PTR to X,Y coordinates.

Return to caller.

TVPUSH, TV.POP

The screen utilities presented thus far enable us to set or modify the current
position on the screen. We might also want to save the current position on the screen
and then restore that position later. We can do this by pushing TV.PTR onto the

stack and then pulling it from the stack:

TVPUSH

TVPUSH PLA Pull return address from stack.

TAX Save it in X...

PLA
TAY ...and in Y.

LDA TV.PTR+1 Get TV.PTR
PHA and save
LDA TV.PTR it on
PHA the stack.

TYA Place return

PHA address back...

TXA
PHA ... on stack.

RTS Then return to caller.

56 BEYOND GAMES

TYPOP

TV. POP PLA Pull return address from stack.

TAX Save it in X...

PLA
TAY ...and in Y.

PLA Restore...
STA TV.PTR ...TV.PTR
PLA ...from
STA TV.PTR+1 ...stack.

TYA Place return

PHA address back...
TXA
PHA ... on stack.

RTS Then return to caller.

Now a calling program can save its current screen position with one line of
source code: "JSR TVPUSH." That calling program can then modify TV.PTR and
later restore it to its saved value with one line of source code: "JSR TV.POP."

CLEAR SCREEN

Now that we can set TV.PTR to any X,Y location on the screen, and display
any byte or character in the current location, let s write some code to clear all or part
of the screen. One subroutine, CLR.TV, will clear all of the video screen for us while
preserving the zero page. A second routine, CLR.XY, will start from the current

screen location and clear a rectangle, whose X,Y dimensions are given by the X,Y
registers. Thus, a calling program can call CLR.TV to clear the whole screen; or a
calling program can clear any rectangular portion of the screen, leaving the rest of
the screen unchanged, just by making TV.PTR point to the upper left-hand corner of
the rectangle to be cleared, and then calling CLR.XY with the X and Y registers
holding, respectively, the width and height of the rectangle to be cleared.

CLR.TV JSR TVPUSH

JSR TVHOME

Save the zero-page bytes that will be
changed.
Set the screen location to upper-left cor¬

ner of the screen.

SCREEN UTILITIES 57

LDX TVCOLS Load X,Y registers with

LDY TVROWS X,Y dimensions of the screen.
JSR CLR.XY Clear X columns, Y rows from current

screen location.

JSR TV.POP Restore zero-page bytes that were
changed.

RTS Return to caller, with screen clear and

with zero page preserved.

CLR.XY STX COLS

TYA

Set the number of columns to be
cleared.

TAX Now X holds the number of rows to be
cleared.

CLRROW LDA BLANK Load accumulator with your system's
graphic code for a blank.

LDY COLS Load Y with number of columns to be

cleared.

CLRPOS STA (TV.PTR),Y Clear a position by writing a blank into
it.
Adjust index for next position in the
row.

DEY

BPL CLRPOS If not done with row, clear next posi¬
tion...

JSR TVDOWN If done with row, move current screen

location down by one row.

DEX Done last row yet?

BPL CLRROW If not, clear next row...

RTS If so, return to caller.

COLS .BYTE 0 Variable: holds number of columns to
be cleared.

There are many more screen utilities you could develop, but the utilities pre¬
sented in this chapter are a good basic set. Now programs can call the following
subroutines to perform the following functions:

ASCII:
CENTER:
CLR.TV:
CLR.XY:

TVDOWN:

Return ASCII character for 4 LSB in A.
Set current screen position to center of screen.
Clear the entire video display, preserving TV.PTR.
Clear a rectangle of the screen, with X,Y dimensions specified

by the X,Y registers.
Move current screen position down by one row.

58 BEYOND GAMES

TVHOME:

TVPLUS:
TV.POP:
TVPUSH:
TV.PUT:
TVSKIP:
TVTOXY:

VUBYTE:

VUCHAR:

. Set current screen position to the upper-left corner of the

screen.
Add A to TV.PTR.
Restore previously saved screen position from stack.
Save current screen location on stack.
Display ASCII character in A at current screen location.
Advance to next screen location.
Set current screen position to X,Y coordinates given by X,Y
registers.
Display A, in hexadecimal form, at current screen location.
Advance current screen location past the displayed byte.
Display A as an ASCII character in current screen location;

then advance to next screen location.

With these screen utilities, a calling program can drive the screen display with¬
out ever dealing directly with screen memory or even with the zero page. The calling
program need not concern itself with anything other than the current position on the
screen, which can be dealt with as a concept, rather than as a particular address

hard-wired into the code.

SCREEN UTILITIES 59

Chapter 6:

The Visible Monitor

Hand Assembling Object Code

An assembler is a wonderful software tool, but what if you don't have one? Is it

possible to write 6502 code without an assembler?

You betl
Not only is it possible to write machine code by hand, but all of the software in

this book was originally assembled and entered into the computer by hand. In fact, I
hand assembled my code long after I had purchased a cassette-based assembler,
because I could hand assemble a small subroutine faster than I could load in the en¬
tire assembler.

Hand assembling code imposes a certain discipline on the programmer. Because
branch addresses must be calculated by counting forward or backward in hexa¬
decimal, I tried to keep my subroutines very small. (How far can you count back¬
ward in hexadecimal?) I wrote programs as many nested subroutines, which I could

assemble and test individually, rather than as monolithic, in-line code. This is a
good policy even for programmers who have access to an assembler, but it is essen¬

tial for any programmer who must hand assemble code.
Yet once you've written a program consisting of machine-language instructions,

how can you enter it into memory? You can read your program on paper, but how

can you present it to the 6502?
A program called a machine-language monitor allows you to examine and

modify memory. It also allows you to execute a program stored in memory. The
Apple and Ohio Scientific computers each feature a machine-language monitor in
ROM (read-only memory). The Atari computers feature a machine-language
monitor in a plug-in program cartridge. Your system's documentation should tell
you how to use the features of your monitor, but let's take a closer look at one

60 BEYOND GAMES

monitor in particular, the Ohio Scientific 65V monitor. Because it is stored in read¬
only memory in the OSI Challenger I-P, I will refer to it as the OSI ROM monitor.

A Minimal Machine-Language Monitor

You can invoke the OSI ROM monitor quite easily by pressing the BREAK key
and then the "M" key. The monitor clears the video screen and presents the display

shown in figure 6.1.

Figure 6.1: Ohio Scientific ROM (read-only memory) monitor display.

The display consists of two fields of hexadecimal characters: an address field
and a data field. Figure 6.1 indicates that $A9 is the current value of address $0000.

The OSI ROM monitor has two modes: address mode and data mode. When
the monitor is in address mode, you can display the contents of any address simply
by typing the address on the keyboard. Each new hexadecimal character will roll in¬
to the address field from the right. To display address $FE0D, you simply type the

keys F, E, 0, and then D.
To change the contents of an address, you must enter the data mode. When the

THE VISIBLE MONITOR 61

OSI ROM monitor is in the data mode, hexadecimal characters from the keyboard
will roll into the data field on the screen. For your convenience, when the monitor is
in the data mode you can step forward through memory (ie: increment the displayed
address) by depresssing the RETURN key. Unfortunately, this convenience is not
available in address mode, and neither mode allows you to step backward through
memory (ie: to decrement the address field).

Beware: the OSI ROM monitor can mislead you. If the monitor is in the data
mode and you type a hexadecimal character on the keyboard, that character will roll

into the data field on the screen. Presumably that hexadecimal character also rolls
into the memory location displayed on the screen. Yet, this might not be the case. In
fact, the OSI ROM monitor displays the data you intended to store in an address,
rather than the actual contents of that address. If you try to store data in a read-only
memory address, for example, the OSI ROM monitor will confirm that you've
stored the intended data in the displayed address, yet if you actually inspect that ad¬
dress (by entering address mode and typing in the address), you'll see that you
changed nothing. This makes sense — you can't write to read-only memory. But the

OSI ROM monitor leads you to think that you can.
The OSI ROM monitor can be confusing in other ways. For example, the dis¬

play does not tell you whether you're in data mode or address mode; you've got to
remember at all times which mode you last told the monitor to use. Furthermore, to
escape from address mode you must use one key, while to escape from data mode
you must use another key. Therefore you must always remember two escape codes
as well as the current mode of the monitor.

Furthermore, the OSI ROM monitor does not make it very easy for you to enter
ASCII data into memory. To enter an ASCII message into memory, you must con¬
sult an ASCII table (such as Appendix A2 in this book), look up the hexadecimal re¬
presentation of each character in your message, and then enter each of those ASCII

characters via two hexadecimal keystrokes. Then, once you've got an ASCII
message in memory, the OSI ROM monitor won't let you read it as English text;
you'll have to view that message as a series of bytes in hexadecimal format, and then
look up, again in Appendix A2 or its equivalent, the ASCII characters defined by
those bytes. That won't encourage you to include a lot of messages in your soft¬
ware — even though meaningful prompts and error messages can make your soft¬

ware much easier to maintain and use.
Finally, it is worth examining the way the OSI ROM monitor executes pro¬

grams in memory. When you type "G" on the Ohio Scientific Challenger I-P, the
OSI ROM monitor executes a JMP (unconditional jump) to the displayed address.
That transfers control to the code selected, but it does so in such a way that the code
must end with another unconditional jump if control is to return to the OSI ROM
monitor. This forces you to write programs that end with a JMP, rather than

subroutines that end with an RTS.
Programs that end with a JMP are not used easily as building blocks for other

programs, whereas subroutines are incorporated quite easily into software struc¬
tures of ever-greater power. So wouldn't it be nice if a machine-language monitor

62 BEYOND GAMES

executed a JSR to the displayed address? This would call the displayed address as a
subroutine, encouraging users to write software as subroutines, rather than as code

that jumps from place to place. Such a monitor might actually encourage good pro¬
gramming habits, inviting the user to program in a structured manner, rather than
daring the user to do so. In this chapter well develop such a monitor.

Objectives

If you've spent any time using a minimal machine-language monitor, you've
probably thought of some ways to improve it. Based on my own experience, I knew

that I wanted a monitor to be:

1) Accurate
The data field should display the actual contents of the displayed address, not

the intended contents of that address.

2) Convenient
It should be possible to step forward or backward through memory, in any

mode. It should also be possible to enter ASCII characters into memory directly
from the keyboard, without having to look up their hexadecimal representations
first, and it should be possible to display such characters as ASCII characters, rather
than as bytes presented as pairs of hexadecimal digits.

3) Encourage Structured Programming
The monitor should call the displayed address as a subroutine, rather than jump

to the displayed address. This will encourage the user to write subroutines, rather

than monolithic programs that jump from place to place.

4) Simplify Debugging
The monitor should load the 6502 registers with user-defined data before calling

the displayed address. Thus a user can initially test a subroutine with different
values in the registers. Then, when the called subroutine returns, the monitor should
display the new contents of the 6502 registers. Thus, by seeing how it changes or
preserves the values of the 6502 registers, the user could judge the performance of

the subroutine.
Because my objective was to make the 6502 registers visible to the user by dis¬

playing the 6502 registers before and after any subroutine call. I've chosen to call
this monitor the Visible Monitor. Figure 6.2 shows its display format.

THE VISIBLE MONITOR 63

FIELD 0 1 2 3 4 5 6

Figure 6.2: Visible Monitor Display with fields numbered.

VISIBLE MONITOR DISPLAY

The Visible Monitor Display

Notice that the display in figure 6.2 has seven fields, not two as in the OSI ROM
monitor display. The first two fields (fields 0 and 1) are the same as the two fields in
the OSI ROM monitor — that is, they display an address and a hexadecimal
representation of the contents of that address. Field 2 is a graphic representation of
the contents of the displayed address. If that address holds an ASCII character, then
the graphic will be the letter, number, or punctuation mark specified by the byte.
Otherwise, that graphic will probably be a special graphic character from your com¬
puter s nonstandard (ie: nonASCII) character set.

Fields 3 thru 6 represent four of the 6502 registers: A (the Accumulator), X (the
X Register), Y (the Y Register), and P (the Processor Status Register). When you type

64 BEYOND GAMES

G to execute a program, the 6502 registers will be loaded with the displayed values
before the program is called; when control returns to the monitor, the contents of
the 6502 registers at that time will be displayed on the screen.

In addition to the seven fields mentioned above, the Visible Monitor's display
includes an arrow pointing up at one of the fields. In order to modify a field, you
must make the arrow point to that field. To move the arrow from one field to
another, I've chosen to use the GREATER THAN (>) and LESS THAN (<) keys.
Touching the GREATER THAN key will move the arrow one field to the right, and
depressing the LESS THAN key will move the arrow one field to the left. (If my
computer had a cursor pad, I would use the cursor-left and the cursor-right keys to
move the arrow from field to field, but it doesn't have a cursor pad, so GREATER
THAN and LESS THAN have to fill the bill. You may assign the field-movement
functions to any keys on your system, but GREATER THAN and LESS THAN are
reasonable choices, because they look like arrows pointing right and left, respective¬

ly-)
I've chosen to use the space bar to step forward through memory and the return

key to step backward through memory, but you may choose other keys if you prefer
(eg: the " + " and keys). The space bar seems reasonable to me for stepping for¬
ward through memory, because on a typewriter I press the space bar to bring the
next character into view; RETURN seems reasonable for stepping backward through
memory because RETURN is almost synonymous with "back up," and that's what I
want it for: to back up through memory. With such a display and key functions, we

ought to have a very handy monitor.

Data

Before we develop the structure and code of the Visible Monitor, let's decide

what variables and pointers it must have.
The Visible Monitor must have some way of knowing what address to display

in field 0. It can do this by maintaining a pointer to the currently selected address.
Because it will specify the currently selected address, let's call this pointer SELECT.
Then, when the user presses the spacebar, the Visible Monitor need only increment
the SELECT pointer. When the user presses RETURN, the Visible Monitor need only
decrement the SELECT pointer. That will enable the user to step forward and back¬

ward through memory.
The user will also want to modify the 6502 register images. Since there are four

register images shown in figure 6.2, let's have 4 bytes, one for each register image. If

we keep them in contiguous memory, we can refer to the block of register images as
REGISTERS, or simply as REGS (since REGISTERS is longer than six characters, the
maximum label length acceptable to the assembler used in the preparation of this

book).
Finally, the Visible Monitor must keep track of the current field. Since there can

THE VISIBLE MONITOR 65

only be one current field at a time, we can have a variable called FIELD, whose value
tells us the number of the current field. Then, when the user wants to select the next
field, the Visible Monitor need only increment FIELD, and when the user wants to
move the arrow to the previous field, the Visible Monitor need only decrement
FIELD. If FIELD gets out of bounds (any value that is not 0 thru 6), then the Visible
Monitor should assign an appropriate value to FIELD. The following code declares

these variables in the form acceptable to an OSI 6500 Assembler:

Variables

SELECT .WORD 0 This points to the currently selected

byte.

REG. A .BYTE 0 REG.A holds the image of Register A

(the Accumulator).

REG.X .BYTE 0 REG.X holds the image of Register X.

REG.Y .BYTE 0 REG.Y holds the image of Register Y.

REG.P .BYTE 0 REG.P holds the image of the Processor

Status Register.

FIELD .BYTE 0

REGS = REG. A

FIELD holds the number of the current

field.

Structure

I want to keep the Visible Monitor highly modular, so it can be easily extended
and modified. I have therefore chosen to develop the Visible Monitor according to
the structure shown in figure 6.3. Clearly, the Visible Monitor loops. It places the
monitor display on the screen. It then updates the information in that display by get¬
ting a keystroke from the user and performing an action based on that keystroke. It

does this over and over.

Figure 6.3: A simple structure for interactive display programs.

66 BEYOND GAMES

With this flowchart as a guide, we can now write the source code for the top

level of the Visible Monitor:

VISMON

VISMON PHP
LOOP JSR DSPLAY

JSR UPDATE
CLC

BCC LOOP

Save caller's status flags.
Put monitor display on screen.
Get user request and handle it.

Loop back to display...

This is only the top level of the Visible Monitor; it won't work without two sub¬
routines: DSPLAY and UPDATE. So it looks as if we've traded the task of writing
one subroutine for the task of writing two. But by structuring the monitor in this
way, we make the monitor much easier to develop, document, and debug.

Which subroutine should we write first? Let's start with the DSPLAY module,

since the display is visible to the user, and the Visible Monitor must meet the user's

needs. Once we know how to drive the display, we can write the UPDATE routine.

Monitor Display

Figure 6.2 shows the display we want to present on the video screen. As you can
see, this display consists of three lines of characters: the label line, the data line, and
the arrow line. The label line labels four of the fields in the data line, using the char¬
acters A, X, Y, and P. The data line displays an address, the contents of that address
(both in hexadecimal representation and in the form of a graphic), and then displays
the values of the four registers in the 6502. Underneath the data line, the arrow line
provides one arrow pointing up at one of the fields in the data line.

Since the display is defined totally in terms of the label line, the data line, and
the arrow line, we are ready now to diagram the top level of monitor display. See
figure 6.4.

With the flowchart in figure 6.4 as a guide, we can now write source code for

the top level of the DSPLAY subroutine:

THE VISIBLE MONITOR 67

Figure 6.4: Routine to display the monitor information.

DSPLAY

DSPLAY JSR CLRMON Clear monitor's portion of screen.

JSR LINE.l Display the Label Line.

JSR LINE.2 Display the Data Line.

JSR LINE.3 Display the Arrow Line.

RTS Return to caller.

Now instead of one subroutine (DSPLAY), it looks as if we must write four sub¬

routines: CLRMON, LINE.l, LINE.2, and LINE.3. But as the subroutines grow in

number, they shrink in difficulty.
Before we put up any of the monitor's display, let's clear that portion of the

screen used by the monitor's display. Then we can be sure we won t have any gar¬

bage cluttering up the monitor display.
Since we already have a utility to clear X columns and Y rows from the current

location on the screen, CLRMON can just set TV.PTR to the upper-left corner of the

screen, load X and Y with appropriate values, and then call CLR.XY. Here's source

code:

68 BEYOND GAMES

CLRMON LDX #2
LDY#2
JSR TVTOXY
LDX #25
LDY #3
JSR CLR.XY
RTS

Set TV.PTR to column 2, row 2 of
screen.

We'll clear 25 columns
and 3 rows.
Here we clear them.
Return to caller.

Display Label Line

The subroutine LINE.l must put the label line onto the screen. We'll store the
character string "A X Y P" somewhere in memory, at a location we may refer to as
LABELS. Then LINE.l need only copy 10 bytes from LABELS to the appropriate

location on the screen. That will display the LABEL line for us:

LINE.l

LINE.l LDX #13
LDY #2
JSR TVTOXY

LDY #0
STY LBLCOL

LBLOOP LDA LABELS,Y
JSR VUCHAR
INC LBLCOL
LDY LBLCOL
CPY #10
BNE LBLOOP
RTS

LABELS .BYTE 'A X'

.BYTE *Y P'
LBLCOL .BYTE 0

X-coordinate of Label "A".
Y-coordinate of Label "A".
Place TV.PTR at coordinates given by

X,Y registers.
Put labels on the screen:
Initialize label column counter.
Get a character and
put its graphic on the screen.
Prepare for next character.
Use label column as an index.
Done last character?
If not, do next one.
Return to caller.
These are the characters
to be copied to the screen.
This is a counter.

Display Data Line

Displaying the data line will be more difficult than displaying the label line, for
two reasons. First, the data to be displayed will change from time to time, whereas
the labels in the label line need never change. Second, most fields in the data line dis-

THE VISIBLE MONITOR 69

play data in hexadecimal representation. To display 1 byte as two hexadecimal
digits requires more work than is needed to display 1 byte as one ASCII character.
However, we have a screen utility (VUBYTE) to do that work for us. In fact, we
have enough screen utilities to make even the display of seven fields of data quite
straightforward. Following, then, is the display data-line routine:

LINE.2

LINE.2

VUREGS

LDX #2 Load X register with X-coordinate for
start of data line.

LDY#3 Load Y register with Y~coordinate for
data line.

JSR TVTOXY Set TV.PTR to point to the start of the
data line.

LDA SELECT+1 Display high byte of the

JSR VUBYTE currently selected address.

LDA SELECT Display low byte of the

JSR VUBYTE currently selected address.

JSR TVSKIP Skip one space after address field.

JSR GET.SL Look up value of the currently selected

byte.

PHA Save it.
JSR VUBYTE Display it, in hexadecimal format, in

field 1.
JSR TVSKIP Skip one space after field 1.

PLA Restore value of currently selected byte.

JSR VUCHAR Display that byte, in graphic
form, in field 2.

JSR TVSKIP

LDX #0

Skip one space after field 2.
Display 6502 register images in fields 4

thru 7:

LDA REGS,X Look up the register image.

JSR VUBYTE Display it in hexadecimal format.

JSR TVSKIP Skip one space after hexadecimal field.

INX Get ready for next register...

CPX#4 Done 4 registers yet?

BNE VUREGS If not, do next one...

RTS If all registers displayed, return.

70 BEYOND GAMES

Get Currently Selected Byte

Note that the subroutine LINE.2, which puts up the second line of the Visible
Monitor's display, does not itself "know" the value of the currently selected byte.

Rather, it calls a subroutine, GET.SL, which returns the contents of the address
pointed to by SELECT. That makes life easy for LINE.2, but how does GET.SL

work?
If SELECT were a zero-page pointer, GET.SL could be a very simple subroutine

and take advantage of the 6502's indirect addressing mode:

GET.SL LDY #0 Get the zeroth byte above
LDA (SELECT),Y the address pointed to by SELECT.

RTS Return to caller.

However, SELECT is not a zero-page pointer; it's up in page $12. And the 6502
doesn't have an addressing mode that will let us load a register using any pointer not
in the zero page. So how can we see what's in the address pointed to by SELECT?

We can do it in two steps. First, we'll set a zero-page pointer equal in value to
the SELECT pointer, so it points to the same address; and then, since we already
know how to load the accumulator using a zero-page pointer, we'll load the ac¬
cumulator using the zero-page pointer that now equals SELECT. Let's call that zero-
page pointer GETPTR, since it will allow us to get the selected byte. Using such a

strategy, GET.SL can look like this:

GET.SL LDA SELECT
STA GETPTR
LDA SELECT+1
STA GETPTR+1
LDY #0
LDA (SELECT),Y
RTS

Set GETPTR equal to
SELECT: first the low byte;

then the
high byte.
Get the zeroth byte above
the address pointed to by GETPTR.
Return Fo caller, with A bearing the con¬

tents of the address specified by

SELECT.

This second attempt at GET.SL will load the accumulator with the currently
selected byte, even when SELECT is not in the zero page. However, beware because
by setting GETPTR equal to SELECT, GET.SL changes the value of GETPTR. This
can be very dangerous. What, for example, if some other program were using

GETPTR for something? That other program would be sabotaged by GET.SL's ac¬
tions. If we let GET.SL change the value of GETPTR, then we must make sure that

THE VISIBLE MONITOR 71

no other program ever uses GETPTR.
Such policing is hard work — and almost impossible if you want your software

to run on a system in conjunction with software written by anyone else. Since I want
the Visible Monitor to share your system's ROM input/output routines, and since I
have no way of knowing what zero-page addresses those routines may use, I must
refrain from using any of those zero-page bytes myself. When I have to use zero-
page bytes — as now, so that GET.SL can use the 6502 s indirect addressing mode —
I must restore any zero-page bytes I've changed.

Therefore, GET.SL must be a four-part subroutine, which will: 1) save
GETPTR; 2) set GETPTR equal to SELECT; 3) load the accumulator with the con¬
tents of the address pointed to by GETPTR; and finally, 4) restore GETPTR to its
original value. This larger, slower, but infinitely safer version of GET.SL looks like
this:

LDA GETPTR Save GETPTR

PHA on stack and

LDX GETPTR+1 in X register.

LDA SELECT Set GETPTR

STA GETPTR equal to

LDA SELECT+1
STA GETPTR+1

SELECT.

LDY #0 Get the contents of the

LDA (GETPTR),Y byte pointed to by SELECT,

TAY and save it in Y register.

PLA Restore GETPTR

STA GETPTR from stack

STX GETPTR+1 and from X register.
TYA Restore contents of current byte from

temporary storage in Y to A.

RTS Return with contents of currently
selected byte in accumulator and with

the zero page preserved.

Display Arrow Line

This routine displays an up-arrow directly underneath the current field:

72 BEYOND GAMES

LINE.3

LINE.3 LDX #2 Set TV.PTR to

LDY #4 beginning of

JSR TVTOXY arrow line.
LDY FIELD Look up current field.
SEC If it is out of bounds.
CPY #7 set it to
BCC FLD.OK default field

LDY #0
STY FIELD

(the address field).

FLD.OK LDA FIELDS,Y Look up column number for current
field.

TAY Use that column number as an index in¬
to the row.

LDA ARROW Load accumulator with your system's
graphic code for up-arrow.

STA (TV.PTR),Y Store up-arrow code in the Yth column
of the arrow line.

RTS Return to caller.

FIELDS .BYTE 3,6,8 This data area shows which column

.BYTE $0B,$0E should get an up-arrow to indicate

.BYTE $11,$14 any one of fields 0 thru 6. Changing one
of these values will cause the up-arrow
to appear in a different column when in¬
dicating a given field.

Now that we have all the routines we need for the monitor display, let us look
at how they fit together to form a structure. Here is the hierarchy of subroutines in

DSPLAY:

MONITOR DISPLAY
DISPLAY LABEL LINE
DISPLAY DATA LINE

GET.SL
VUBYTE

ASCII
TVPLUS

TVSKIP
DISPLAY ARROW LINE

THE VISIBLE MONITOR 73

When DSPLAY is called, it will clear the top four rows of the screen, display
labels, data, the arrow, and then return. How long do you think it will take to do all

this? The code may look cumbersome, but the display is quickl

Monitor Update

The UPDATE routine is the monitor subroutine that executes functions in
response to various keys. The basic key functions we want to implement are as

follows:

Key Function

GREATER THAN Move arrow one field to the right.
LESS THAN Move arrow one field to the left.
SPACEBAR Increment address being displayed.

(Step forward through memory.)
RETURN Decrement address being displayed.

(Step backward through memory.)

If the arrow is in fields 1, 3, 4, 5, or 6, then, for

keys 0 thru 9, A thru F Roll a hexadecimal character into the field pointed

to by the arrow.

If the arrow is under field 2 (the graphic field) then, for

All keys Enter the key's character into field 2 (ie: enter the
key's character into the displayed address).

Since the video display need not be refreshed (redisplayed within a given time)
by the processor, the UPDATE routine need not return within a given amount of
time. The UPDATE routine, therefore, can wait indefinitely for a new character

from the keyboard, and then take appropriate action. >
We can diagram these functions as shown in figure 6.5. You add additional

functions to this routine by adding additional code to test the input character. You
then call the appropriate function subroutine which you write.

74 BEYOND GAMES

THE VISIBLE MONITOR 75

Get a Key

First we need a way to get a key from the keyboard. I assume that your system
has a read-only memory routine to perform this function. Place the address of that
routine (see the appropriate appendix for your system) into a pointer called
ROMKEY located at address $1008. Once you have set the ROMKEY pointer, you
can get a key by calling a subroutine labeled GETKEY, which simply transfers con¬
trol to the ROM routine whose address you placed in ROMKEY:

GETKEY JMP (ROMKEY)

Now that we have a way to get a key from the keyboard, we should be able to

write source code for the monitor-update routine:

Update

UPDATE JSR GETKEY

IF.GRTR CMP f>
BNE IF.LSR

NEXT.F INC FIELD
LDA FIELD
CMP #7
BNE EXIT.l
LDA #0
STA FIELD

EXIT.l RTS

IF.LSR CMP #'<
BNE IF.SP

PREV.F DEC FIELD
BPL EXIT.2
LDA #6
STA FIELD

EXIT.2 RTS
IF.SP CMP #SPACE

BNE IF.CR

INC.SL INC SELECT

BNE EXIT.3
INC SELECT+1

EXIT. 3 RTS

IF.CR CMP #CR
BNE IFCHAR

Get a character from the keyboard.
Is it the GREATER THAN key?
If not, perform next test.
If so, select the next field.
If arrow was at the right-most field,
place it underneath the left-most

field.

Then return.
Is it the LESS THAN key?
If not, perform next test.
If so, select previous field:
the field to the left of the
current field. If arrow was at
left-most field, place it under
right-most field.
Then return.
Is it the space bar?
If not, perform next test.
If so, step forward through
memory, by incrementing the
pointer that specifies the displayed

address.
Then return.
Is it carriage return?
If not, perform next test.

76 BEYOND GAMES

DEC.SL LDA SELECT
BNE NEXT.l
DEC SELECT+1

NEXT.l DEC SELECT
RTS

IFCHAR LDX FIELD
CPX #2
BNE IF.GO

PUT.SL TAY

LDA TV.PTR

PHA
LDX TV.PTR+1

LDA SELECT
STA TV.PTR
LDA SELECT+1
STA TV.PTR+1
TYA

LDY #0
STA (TV.PTR),Y
STX TV.PTR+1
PLA
STA TV.PTR
RTS

RTS

IF.GO CMP #'G
BNE IF.HEX

GO LDY REG.Y
LDX REG.X
LDA REG.P
PHA
LDA REG.A
PLP
JSR CALLSL

PHP
STA REG.A
STX REG.X

If so, step backward through
memory by decrementing the
pointer that selects the
address to be displayed.
Then return.
Is arrow underneath the
character field (field 2)?
If not, perform next test.
Put the contents of A into the currently
selected address.
Use Y to hold the character we'll put in
the selected address.
Save zero-page pointer TV.PTR
on stack and in X before we
use it to put character in selected ad¬

dress.
Set TV.PTR equal to SELECT,
so it points to the
currently selected
address.
Restore to A the character we'll put in
the selected address.

Store it in the
selected address.
Restore TV.PTR to
its original value.

Return to caller, with character origi¬
nally in A now in the selected address
and with zero page unchanged.
Then return.

Is it 'G' for GO?
If not, perform next test.
If so, load the 6502 registers
with their displayed images.

Call the subroutine at the selected ad¬
dress.
When subroutine returns,
save register values in register

images.

THE VISIBLE MONITOR 77

STY REG.Y
PLA
STA REG.P
RTS Then return to caller.

CALLSL JMP (SELECT) Call the subroutine at the selected ad¬
dress.

IF.HEX PHA Save keyboard character.
JSR BINARY If accumulator holds ASCII character

for 0 thru 9 or A thru F, BINARY
returns the binary representation of that
hexadecimal digit. Otherwise BINARY
returns with A = FF and the minus flag
set.

BMI OTHER

TAY
PLA
TYA

If accumulator did not hold a hexa¬
decimal character, perform next test.

ROLLIN LDX FIELD Roll A into a hexadecimal field.

BNE NOTADR Is arrow underneath the address field
(field 0)? If not, the arrow must be
under another hexadecimal field.

ADRFLD LDX #3 Since arrow is underneath the address

LOOP.l CLC field, roll accumulator's hexadecimal

ASL SELECT digit into the address field by rolling it

ROL SELECT+1 into the pointer that selects the

DEX
BPL LOOP.l
TYA
ORA SELECT
STA SELECT

displayed address.

RTS Then return.

NOTADR CPX#1 Is arrow underneath field 1?

BNE REGFLD If not, it must be underneath a register
image.

ROL.SL AND #$0F Roll A's 4 LSB into contents

PHA of currently selected byte.

JSR GET.SL Get the contents of the selected

ASL A
ASL A
ASL A
ASL A
AND #$F0

address and shift left 4 times.

STA TEMP Save it in a temporary variable.

78 BEYOND GAMES

PLA Get original A's 4 LSB and

ORA TEMP OR them with shifted contents of

selected address.

JSR PUT.SL Store the result in the selected

RTS address and return.

TEMP .BYTE 0 This byte holds the temporary variable

used by ROL.SL.

REGFLD DEX The arrow must be underneath a

DEX
DEX
LDY#3

register image — field 3, 4, 5, or 6.

LOOP.2 CLC Roll accumulator's hexadecimal digit

ASL REGS,X
DEY
BPL LOOP.2
ORA REGS,X
STA REGS,X

into appropriate register image,..

RTS ...Then return.

OTHER PLA Restore the raw keyboard character that

we saved on the stack,

CMPfQ Is it 'Q' for Quit?

BNE NOT.Q If not, perform next test.

PLA If so, return to

PLA
PLP

the caller of

RTS VISMON.

NOT.Q JSR DUMMY Replace this call to DUMMY with a call
to any other subroutine that extends the
functionality of the Visible Monitor,

DUMMY RTS Return to caller.

ASCII to BINARY Conversion

The Visible Monitor's UPDATE subroutine requires a subroutine called
BINARY, which will determine if the character in the accumulator is an ASCII 0
thru 9 or A thru F, and, if so, return the binary equivalent. On the other hand, if the

accumulator does not contain an ASCII 0 thru 9 or A thru F, BINARY will return an

error code, $FF. Thus:

THE VISIBLE MONITOR 79

If accumulator holds

$30 (ASCII "0")
$31 (ASCII "1")
$32 (ASCII "2")
$33 (ASCII "3")
$34 (ASCII "4")
$35 (ASCII "5")
$36 (ASCII "6")
$37 (ASCII "7")
$38 (ASCII "8")
$39 (ASCII "9")
$41 (ASCII "A")
$42 (ASCII "B")

$43 (ASCII "C")
$44 (ASCII "D")
$45 (ASCII "E")
$46 (ASCII "F")
Any other value

BINARY will return

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$FF

We could solve this problem with a table, BINTAB, for BINary TABle. If
BINTAB is at address $2000, then $2000 would contain a $FF, as would $2001,
$2002, and all addresses up to $202F, because none of the ASCII codes from $00 thru
$2F represent any of the characters 0 thru 9 or A thru F. On the other hand, address
$2030 would contain 00, because $30 (its offset into the table) is an ASCII zero, so
$2030 gets its binary equivalent: $00, a binary zero. Similarly, since $31 is an ASCII
'1,' address $2031 would contain a binary 1:' $01. $2032 would contain a $02; $2033

would contain a $03, and so on up to $2039, which would contain a $09.
Addresses $203A thru $2040 would each contain $FF, because none of the

ASCII codes from $3A thru $40 represent any of the characters 0 thru 9 or A thru F.
On the other hand, address $2041 would contain a $0A, because $41 is an ASCII 'A'
and $0A is its binary equivalent: a binary 'A.' By the same reasoning, $2042 would

contain $0B; $2043 would contain $0C, and so on up to $2046, which would contain

$0C, and so on up to $2046, which would contain $0F. Addresses $2047 thru $20FF
would contain $FFs because none of the values $47 thru $FF is an ASCII 0 thru 9 or
A thru F.

To use such a table, BINARY need only be a very simple routine:

BINARY TAY Use ASCII character as an index.
LDA BINTAB,Y Look up entry in BINary TABle.
RTS Return with it.

80 BEYOND GAMES

This is a typical example of a fast and simple table lookup code. But it requires a
256-byte table. Perhaps slightly more elaborate code can get by with a smaller table,
or do away altogether with the need for a table. Such code must calculate, rather
than look up, its answers. Lets look closely at the characters we must convert.

Legal inputs will be in the range $30 thru $39 or the range $41 thru $46. An in¬
put in the range $30 thru $39 is an ASCII 0 thru 9, and subtracting $30 from such an
input will convert it to the corresponding binary value. An input in the range $41
thru $46 is an ASCII A thru F, so subtracting $36 will convert it to its corresponding

binary value. For example, $41 (an ASCII 'A') minus $36 equals $0A (a binary A').
Any value not in either of these ranges is illegal and should cause BINARY to return

a $FF.
Given these input/output relationships, BINARY need only determine whether

the character in the accumulator lies in either legal range, and if so perform the ap¬
propriate subtraction, or, if the accumulator is not in a legal range, then return a

$FF.
Here's some code for BINARY which makes these judgments, thus eliminating

the need for a table:

BINARY SEC
SBC #$30
BCC BAD

CMP #$0A

BCC GOOD

SBC #7
CMP #$10

BCS GOOD

BAD LDA #$FF
RTS

GOOD LDX #0
RTS

Prepare to subtract.
Subtract $30 from character.
If character was originally less than $30,
it was bad, so return $FF.
Was character in the range $30 thru
$39?
If so, it was a good input, and we've
already converted it to binary by sub¬

tracting $30, so well return now with
the character's binary equivalent in the
accumulator.
Subtract 7.
Was character originally in the range
$41 thru $46?
If so, it was a good input, and we've
already converted it to binary by sub¬
tracting $37, so we'll return now with
the character's binary equivalent in the
accumulator.
Indicate a bad input by returning
minus, with A holding $FF.
Indicate a good input by returning
plus, with A holding the character's
binary equivalent.

THE VISIBLE MONITOR 81

Visible Monitor Utilities

The Visible Monitor makes the following subroutines available to external

callers:

BINARY

CALLSL
DEC.SL
GETKEY

GET.SL
GO

INC.SL
PUT.SL
VISMON

Determine whether accumulator holds the ASCII represen¬
tation for a hexadecimal digit. If so, return binary represen¬
tation for that digit. If not, return an error code ($FF).
Call the currently selected address as a subroutine.
Select previous address, by decrementing SELECT pointer.
Get a character from the keyboard by calling machine's
read-only memory routine indirectly.
Get byte at currently selected address.
Load registers from displayed images and call displayed ad¬
dress. Upon return, restore register images from registers.
Select next byte (increment SELECT pointer).
Store accumulator at currently selected address.
Let user give the Visible Monitor commands until user

presses 'Q' to quit.

Figure 6.6 illustrates the hierarchy of the various routines of the Visible Monitor,

some of which are detailed in later chapters.

VISIBLE MONITOR

Figure 6.6: A hierarchy of the routines of the Visible Monitor.

82 BEYOND GAMES

Using the Visible Monitor

Use the minimal machine-language monitor on your computer to enter the Visi¬
ble Monitor into memory; then have your monitor pass control to the Visible
Monitor. The Visible Monitor display should appear in the upper portion of your
video display. If it's not fully visible, adjust the value HOME in the screen para¬
meters (HOME is the pointer at $1000). Use the GREATER THAN and LESS
THAN character keys to move the arrow from field to field. Place the arrow under
field 0 and roll hexadecimal characters into the address. Select an address in the
lower portion of screen memory and use the Visible Monitor to place characters on
the screen. Enter characters to the screen using both field 1 (the hexadecimal data
field), and field 2 (the character field).

Select the address of the TVT routine in your system. Press G to call that sub¬
routine. You should see the character in the accumulator print on the screen. Try ex¬
ploring other memory locations. Try writing to a read-only memory address. Why
doesn't that work? Try writing to the upper portion of the screen. Why doesn't that
work?

THE VISIBLE MONITOR 83

Chapter 7:

Print Utilities

The Visible Monitor is a useful tool for examining and modifying memory, but
at the moment it's mute: it can't "talk" to you except through the limited device of
the fields in its display. You can use the Visible Monitor's character entry feature to
place ASCII characters directly into screen memory, thus putting messages on the
screen manually. However, as yet we have no subroutines to direct a complete
message, report, or other string of characters to the screen, to a printer, or to any

other output device. ^
Most programs require some means of directing messages to the screen, thus

providing the user with the basis for informed interaction, or to a printer, thus pro-
viding a record of that interaction. This chapter presents a set of print utilities to per-

form these functions.
Fortunately, there are subroutines in your computer's operating system to per¬

form character output. The Apple, Atari, OSI and PET computers each feature a
routine to print a character on the screen, thus simulating a TVT (Television
Typewriter), and they each feature another routine to send a character to the device
connected to the serial output port: usually a printer. I don't plan to reinvent those
wheels in this chapter. Rather, the chapter's software will funnel all character output
through code that calls the appropriate subroutine in your computer's operating
system. And since we're going to have code that calls the two standard character
output routines, why not provide a hook to a user-written character output routine,
as well? Such a feature will make it trivial for you to direct any character output (eg:
messages, hexdumps, disassembler listings, etc) to the screen and the printer, or to
any special output device you may have on your system, provided that you ve writ¬

ten a subroutine to drive that device.

84 BEYOND GAMES

Selecting Output Devices

It should be possible for any program to direct character output to the screen,
and/or to the printer, and/or to the user-written subroutine. Therefore, well need
subroutines to select and deselect (stop using) each of these devices and to select and
deselect all of these devices. Let's call these routines TVT.ON, TVTOFF, PR.ON,
PR.OFF, USR.ON, USR.OFF, ALL.ON, and ALLOFF. With these subroutines, a
calling program can select or deselect output devices individually or globally.

The line of source code which will select the TVT as an output device follows:

JSR TVT.ON

This line will deselect the TVT:

JSR TVTOFF

That's a pretty straightforward calling sequence.
The select and deselect subroutines will operate on three flags: TVT, PRINTR,

and USER. The TVT flag will indicate whether the screen is selected as an output
device; the PRINTR flag will indicate whether the printer is selected as an output
device; and the USER flag will indicate whether the user-provided subroutine is
selected as an output device.

For convenience, well have a separate byte for each flag and define a flag as
"off" when its value is zero, and "on" when its value is nonzero.

Using this definition of a flag, we can select a given device simply by storing a
nonzero value in the flag for that device; we can deselect a device simply by storing a
zero in the flag for that device.

The definitions for the flags and listings of the select and deselect subroutines

follow:

TVT

Device Flags

OFF = 0 When a device flag — zero, that device
is not selected.

ON = $FF When a device flag = $FF, that device is
selected.

.BYTE ON This flag is zero if TVT is not selected;
nonzero otherwise. Initially, the TVT is
selected.

PRINT UTILITIES 85

PRINTR

USER

TVT.ON

TVTOFF

PR.ON

PR.OFF

USR.ON

USROFF

ALL.ON

ALLOFF

BYTE OFF This flag is zero if the PRINTR is not
selected; nonzero otherwise. Initially,
the printer is not selected.

BYTE OFF This flag is zero if the user-provided
output subroutine is not selected;
nonzero otherwise. Initially, the user-
provided function is deselected.

Select and Deselect Subroutines

LDA #ON
STA TVT
RTS
LDA #OFF

STA TVT

RTS
LDA #ON
STA PRINTR

RTS
LDA #OFF
STA PRINTR

RTS
LDA #ON
STA USER

RTS

LDA #OFF
STA USER

RTS

JSR TVT.ON
JSR PR.ON
JSR USR.ON

RTS
JSR TVTOFF
JSR PR.OFF
JSR USROFF
RTS

Select TVT as an output device
by setting the flag that indicates
the "select" state of the TVT.
Deselect TVT as an output device

by clearing the flag that indicates

the "select" state of the TVT.
Select printer as an output device
by setting the flag that indicates
the "select" state of the printer.
Deselect printer as an output device
by clearing the flag that indicates
the "select" state of the printer.
Select user-written subroutine as an
output device by setting the flag that
indicates the "select" state of the output

routine provided by the user.
Deselect user-written subroutine
as an output device by clearing the flag
that indicates the "select"
state of the output routine provided by

the user.
Select all output devices by selecting
each output device individually.

Deselect all output devices by
deselecting each output device

individually.

86 BEYOND GAMES

A General Character-Print Routine

Now that a calling routine can select or deselect any combination of output
devices, we need a routine that will output a given character to all currently selected
output devices. Let's call this routine PR.CHR, because it will PRint a CHaRacter.

All the software in this book that outputs characters will do so by calling
PR.CHR; none of that software will call your system's character-output routines
directly. That makes the software in this book much easier to maintain. If you ever
replace your systems TVT output routine or its printer-output routine with one of
your own, you won't have to change the rest of the software in this book. That soft¬
ware will continue to call PR.CHR. However, if many lines of code in many places
called your system's character-output routines directly, then replacing a read-only
memory output routine with one of your own would require you to change many
operands in many places. Who needs to work that hard? Funneling all character
output through one routine, PR.CHR, means we can improve our character output
in the future without difficulty.

When it is called, PR.CHR will look at the TVT flag. If the TVT flag is set, it
will call your system's TVT output routine. Then it will look at the PRINTR flag. If
the PRINTR flag is set, it will call your system's routine that sends a character to the
serial output port. Finally, it will look at the USER flag. If the USER flag is set, it will
call the user-provided character-output routine. Having done all of this, PR.CHR
can return. Figure 7.1 is a flowchart for PR.CHR.

Figure 7.1; To print a character to all
currently selected output devices
(PR. CHR, a general character-output
routine).

PRINT UTILITIES 87

Output Vectors

If the character output routines are located at different addresses in different

systems how can PR.CHR know the addresses of the routines it must call? I can .

C r >0 ?

have not written a special character-output subroutine, USROUT should pouwro ■
routine which is nothing but an RTS instruction.) Then, it you^»do; ate

your TVT output routine, your printer-output routine, Por

routine, you'll only have to change one output vector, ROMTVT, ROMPK1,

TISROIJT Everything else in this book can remain the same.
ROMTW ROMPRT, and USROUT need not be located anywhere near

PR CHR That means we can keep all the pointers and data speci ic o your sy

fn o" We can store the output vectors with the screen parameterrs in a sm^

block of memory called SYSTEM DATA. See Appendix Bl, B2, B3, or B4 for you

computer the PR.CHR routine follows:

PR.CHR

IF.PR

IF.USR

EXIT

CHAR

STA CHAR

BEQ EXIT

LDA TVT

BEQ IF.PR

LDA CHAR

JSR SEND.l

LDA PRINTR

BEQ IF.USR

LDA CHAR

JSR SEND.2

LDA USER

BEQ EXIT
LDA CHAR

JSR SEND.3

RTS

.BYTE 0

PR.CHR

Save the character.
If it's a null, return without printing it.

Is TVT selected?

If not, test next device.

If so, send character indirectly to

system's TVT output routine.

Is printer selected?

If not, test next device.

If so, send character indirectly

to system's printer driver.

Is user-written output subroutine

selected?
If not, test next device.
If so, send character indirectly

to user-written output subroutine.

Return to caller.
This byte holds the last character passed

to PR.CHR.

oo DirvnNln naMFS

Vectored Subroutine Calls

SEND.l JMP (ROMTVT)

SEND.2 JMP (ROMPRT)

SEND.3 JMP (USROUT)

Specialized Character-Output Routines

Given PR.CHR, a general character-output routine, we can write specific

character-output routines to perform several commonly required functions. For ex¬

ample, it's often necessary for a program to print a carriage return and a line feed,
thus causing a new line, or to print a space, or to print a byte in hexadecimal format.

Let's develop several dedicated subroutines to perform these functions. Since each of

these subroutines will call PR.CHR, their output will be directed to all currently

selected output devices.

Here are source listings for a few such subroutines: CR.LF, SPACE, and

PR. BYT:

PRINT A CARRIAGE RETURN-LINE FEED

CR = $0D ASCII carriage return character.

LF = $0A ASCII line feed character.

CR.LF LDA #CR Send a carriage return and a

JSR PR.CHR line feed to the currently selected

LDA #LF device(s).

JSR PR.CHR

RTS Return.

PRINT A SPACE

SPACE LDA #$20 Load accumulator with ASCII space.

JSR PR.CHR Print it to all currently selected output

devices.

RTS Return.

PRINT BYTE

PR.BYT PHA Save byte.

LSR A Determine ASCII for the 4 MSB (most-

PRINT UTILITIES 89

LSR A

LSR A

LSR A

JSR ASCII

JSR PR.CHR

PLA

JSR ASCII

JSR PR. CHR

RTS

significant bits) in the

byte:

Print that ASCII character to the current

device(s).
Determine ASCII for the 4 LSB (least-

significant bits) in the

byte that was passed to this subroutine.

Print that ASCII character to the current

device(s).

Return to caller.

Repetitive Character Output

Since some calling programs might need to output more than one space, a new

line, or other character, why not have a few print utilities to perform such repetitive

character outputs? In each case, the calling program need only load the X register

with the desired repeat count. Then it would call SPACES to print X spaces, CR.LFS

to print X new lines, or CHARS to print the character in the accumulator X times.

Calling any of these routines with zero in the X register will cause no characters to be

printed. To output seven spaces, a calling program would only have to include the

following two lines of code:

LDX #7

JSR SPACES

To output four blank lines, a program would require these two lines of code:

LDX #4

JSR CR.LFS

To output ten asterisks, a program would need these three lines of code:

LDA #'*
LDX #10

JSR CHARS

90 BEYOND GAMES

In order to support these calling sequences, we'll need three small subroutines,
SPACES, CR.LFS, and CHARS:

Print X Spaces; Print X Characters

SPACES LDA #$20 Load accumulator with ASCII space.
CHARS STX REPEAT Initialize the repeat counter.
RPLOOP PHA Save character to be repeated.

LDX REPEAT Has repeat counter timed out yet?
BEQ RPTEND If so, exit. If not.
DEC REPEAT decrement repeat counter.
JSR PR.CHR

PLA

Print character to all currently selected
output devices.

CLC Loop back to repeat
BCC RPLOOP character, if necessary.

RPTEND PLA Clean up stack.
RTS Return to caller.

Print X New Lines

CR.LFS STX REPEAT Initialize repeat counter.
CRLOOP LDX REPEAT

BEQ END.CR
Exit if repeat counter has timed out.

DEC REPEAT Decrement repeat counter.
JSR CR.LF Print a carriage return and line feed.
CLC
RCC CRLOOP

Loop back to see if done yet.

END.CR RTS If done, return to caller.
REPEAT .BYTE This byte is used as a repeat counter b>

SPACES, CHARS, and CR.LFS.

Print a Message

Some calling programs might need to output messages stored at arbitrary places
in memory. So let's develop a subroutine, called PR.MSG, to perform this function.
PR.MSG will print a message to all currently selected output devices. It must get
characters from the message in a sequential manner and pass each character to
PR.CHR, thus printing it on all currently selected output devices.

But how can PR.MSG know where the message starts and ends?
We could require that the message be placed in a known location, but then

PRINT UTILITIES 91

PR.MSG would lose usefulness as it loses generality. We could require that a pointer

in a known location be initialized so that it points to the start of the message. Bu

that would still tie up the fixed 2 bytes occupied by that pointer. Or we could have a

register specify the location of a pointer that actually points to the start of the

message. Presumably a calling program can find some convenient 2 bytes m the zero

page to use as a pointer, even if it must save them before it sets them. The calling

program can set this zero-page pointer so that it points to the beginning of the

message, and then set the X register so that it points to that zero-page pointer. Hav¬

ing done so, the calling program may call PR.MSG. Using the indexed indirect ad¬

dressing mode, PR.MSG can then get characters from the message
When PR.MSG has printed the entire message, it will return to its caller.
How will PR.MSG know when it has reached the end of the message? We can

mark the end of each message with a special character: call it ETX, for End of TeXt.

And for reasons which will become clear in Chapter 10, A Disassembler, we 11 also

start each message with another special character: TEX, for TEXt follows.

If we can develop PR.MSG to work from these inputs, then it won t be hard tor

a calling program to print any particular message in memory. Let s look at the re-

quired calling sequence.
A message, starting with a TEX and ending with an ETX, begins at some ad¬

dress. We'll call the high byte of that address MSG .Hlandthelow bye of that ad¬

dress MSG.LO. Thus, if the message starts at address $13A9, MSG.HI - $13 and

MSG.LO = $A9. , . , Tf.,
MSGPTR is some zero-page pointer. It may be anywhere in the zero page, it the

calling program does not have to preserve MSGPTR, it can print the message to the

screen with the following code:

JSR TVT.ON

LDA #MSG.LO

STA MSGPTR

LDA #MSG.HI

STA MSGPTR+1

LDX #MSGPTR

JSR PR.MSG

Select TVT as an output device. (Any other currently

selected output device will echo the screen output.)

Set MSGPTR

so it points

to the start

of the message.
Set X register so it points to MSGPTR.

Print the message to all currently selected output

devices.

If the calling program must preserve MSGPTR, it will have to save MSGPTR

and MSGPTR+1 before executing the above lines of code and restore MSG1 i K and

MSGPTR+1 after executing the above lines of code.
That looks like a reasonably convenient calling sequence. So now let s turn our

attention to PR.MSG itself and develop it so it meets the demands of its callers.

92 BEYOND GAMES

Print a Message

PR.MSG STX TEMP.X Save X register, which specifies message

pointer.

LDA 1,X

PHA

Save message pointer.

LDA 0,X

PHA

LOOP LDX TEMP.X Restore original value of X, so it points

to message pointer.

LDA (0,X) Get next character from message.

CMP #ETX Is it the end of message indicator?

BEQ MSGEND If so, handle the end of the message...

INC 0,X If not, increment the message pointer

BNE NEXT so it points to the next

INC 1,X character in the message.

NEXT JSR PR.CHR Send the character to all currently

selected output devices.

CLC Get next character

BCC LOOP from message.

MSGEND PLA

STA 0,X

PLA

STA 1,X

Restore message pointer.

RTS Return to caller, with MSGPTR pre¬

served.

TEMP.X .BYTE 0 This data cell is used to preserve the ini¬

tial value of X.

Print the Following Text

Even more convenient than PR.MSG would be a routine that doesn't require

the caller to set any pointer or register in order to indicate the location of a message.

But if no pointer or register indicates the start of the message, how can any

subroutine know where the message starts?

It can look on the stack.

Why not have a subroutine, called Print-the-Following, which prints the

message that follows the call to Print-the-Following. Since Print-the-Following is

longer than six characters, let's shorten its name to "PRINT:", letting the colon in

"PRINT:" suggest the phrase "the following." A calling program might then print

"HELLO" with the following lines of code:

PRINT UTILITIES 93

JSR TVT.ON
Select TVT as an output device. (Other currently

selected output devices will echo the screen output.)

JSR PRINT:

.BYTE TEX

.BYTE "HELLO"

.BYTE ETX

(6502 code follows the ETX)

Whenever the 6502 calls a subroutine, it pushes the address of the subroutine s

caller onto the stack. This enables control to return to the caller when the subroutine

ends with an RTS, because the 6502 knows it can find its return address on the stack.

The subroutine PRINT: can take advantage of this fact by pulling its owni retu)r

dress off the stack, and using it as a pointer to the message that should be pnnted.

When it reaches the end of the message it can place . «
stack an address that points to the end of the message. Then PRINT, can execute a

RTS Control will then pass to the 6502 code immediately following the ETX at the

end of the message. The source code for PRINT: follows:

PRINT: PLA
TAX

PLA

TAY

JSR PUSHSL

STX SELECT

STY SELECT+1

JSR INC.SL

LOOP JSR INC.SL

JSR GET.SL

CMP #ETX

BEQ ENDIT

JSR PR.CHR

CLC

BCC LOOP

ENDIT LDX SELECT
LDY SELECT+1

Pull return address from

stack and save it in

registers X and Y.

Save the select pointer, because we're

going to use it as a text pointer.

Set SELECT = return address.

Increment SELECT pointer so it points

to TEX character.
Increment select pointer so it points to

the next character in the message.

Get character.
Is it end of message indicator?

If so, adjust return address and return.

If not, print the character to all current¬

ly selected devices.

Then loop to get

next character...

nrvAur\ n AMCC

JSR POP.SL Restore select pointer to its original

value.

TYA Push address

PHA of ETX

TXA onto the stack.

PHA

RTS Return (to byte immediately following

ETX).

Saving and Restoring the SELECT Pointer

Now that a number of subroutines are accessing the contents of memory with

the SELECT utilities (GET.SL, PUT.SL, INC.SL and DEC.SL) we should provide yet

another pair of SELECT utilities to enable the subroutines to save and restore the

SELECT pointer. With such save and restore functions, any subroutine can use the

SELECT pointer to access memory, without interfering with the use of the SELECT

pointer by other subroutines. PUSHSL will push the SELECT pointer onto the stack

and POP.SL will pop the SELECT pointer off the stack. PUSHSL and POP.SL will

each preserve X,Y, and the zero page.

PUSHSL

Save Select Pointer
(Preserving X,Y, and the Zero Page)

PLA

STA

PLA
STA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

RTS

RETURN

RETURN+1

SELECT+1

SELECT

RETURN+1

RETURN

Pull return address from stack and

store it temporarily in RETURN.

Push select pointer onto stack.

Push return address back onto stack.

Return to caller. (Caller will find select

pointer on top of the stack.)

PRINT UTILITIES 95

Restore Select Pointer
(Preserving X,Y, and the Zero Page)

POP.SL PLA
STA RETURN

PLA
STA RETURN+1
PLA
STA SELECT
PLA
STA SELECT+1
LD A RETURN+1

PHA
LDA RETURN

PHA
RTS

RETURN .WORD 0

Save return address temporarily.

Restore select pointer from stack.

Place return address back on stack.

Return to caller.
This pointer is used by PUSHSL and
POP.SL to preserve their return ad¬

dresses.

Conclusion

With the print utilities presented in this chapter, it should be easy to write the
character-output portions of many programs, making it possible for calling pro¬
grams to select any combination of output devices and to send individual characters,
bytes, or complete messages to those devices. The calling programs will be com¬
pletely insulated from the particular data representations used by the print utilities.
The calling programs do not need to know the nature or location of the output-

device flags or the addresses of the output vectors; they need only know the ad-

dresses of the print utilities.
Similarly, although the print utilities use subroutines that operate on the

SELECT pointer, the print utilities themselves never access the SELECT pointer
directly. They are completely insulated from the nature and location of the SELECT
pointer. As long as they know the addresses of the SELECT utilities, the print
utilities can get the currently selected byte, select the next or the previous byte, save
the SELECT pointer onto the stack, and restore the SELECT pointer from the stack.
If at some point we should implement a different representation of "the currently
selected byte," we need only change the SELECT utilities; the print utilities, and all

other programs which use the SELECT utilities need never change. .
Insulating blocks of code from the internal representation of data in other

blocks of code makes all the code much easier to maintain.The following print

utilities are available to external callers:

96 BEYOND GAMES

CHARS Send the character in the accumulator "X" times to all current¬
ly selected output devices.

CR.LF Cause a new line on all currently selected devices.
CR.LFS Cause "X" new lines on all currently selected devices.
PR.BYT Print the byte in the accumulator, in hexadecimal representa¬

tion.
PR.CHR Print the character in the accumulator on all currently selected

devices.
PR.MSG Print the message pointed to by a zero-page pointer specified

by X.
PRINT: Print the message following the call to "PRINT:".
SPACE Send a space to all currently selected output devices.
SPACES Send "X" spaces to all currently selected output devices.

Exercises

1) Write a printer test program, which sends every possible character from $00
to $FF to the printer.

2) Rewrite the printer test program so that it prints just one character per line.

PRINT UTILITIES 97

Chapter 8:

Two Hexdump Tools

The Visible Monitor allows you to examine memory, but only 1 byte at a time.
You'll quickly feel the need for a software tool that will display or print out the con¬
tents of a whole block of memory. This is especially useful if you wish to debug a
program. You can't debug a program if you're not sure what's in it. A hexdump tool
will show you what you've actually entered into the computer, by displaying the

contents of memory in hexadecimal form.
I've developed two kinds of hexdump programs, each for a different type of

output device. When I'm working at the keyboard, I want a hexdump routine that
dumps from memory to the screen, a line or a group of lines at a time. But for
documentation and for program development or debugging away from the

keyboard, I want a hexdump routine that dumps to a printer.
Most of the code required to dump from memory will be the same, whether we

direct output to the screen or to the printer. However, there are enough differences
between the two output devices that it is convenient to have two hexdump pro¬
grams, one for the screen and one for the printer. Let's call them TVDUMP and

PRDUMP.

TVDUMP

TVDUMP should be very responsive: when you are using the Visible Monitor,
a single keystroke should cause one or more lines to be dumped to the screen. But
how can TVDUMP know what lines you want to dump? Since the Visible Monitor
allows you to select any address by rolling hexadecimal characters into the address
field or by stepping forward and backward through memory, we might as well have

98 BEYOND GAMES

TVDUMP dump memory beginning with the currently selected address.
Since we're basing TVDUMP on the Visible Monitor's currently selected ad¬

dress, we can use some of the Visible Monitor's subroutines to operate on that ad¬
dress. GET.SL will get the currently selected byte, and INC.SL will increment the
SELECT pointer, thereby selecting the next byte. The print utilities TVT.ON and
PR.BYT will let us select the screen as an output device and print the accumulator in
hexadecimal representation.

We ought to have TVDUMP provide a dump that will be easily readable, even
on the narrow confines of a twenty-five- or forty-column display. That means we
can't display a full hexadecimal line (16 bytes) on one screen line if we want to have
a space between each byte. We can provide hexdumps that split each hexadecimal
line into two screen lines. See outputs A and B in figure 8.1.

Output A:

0200 HH HH HH HH HH HH HH HH HH
0208 HH HH HH HH HH HH HH HH HH

0210 HH HH HH HH HH HH HH HH HH
0218 HH HH HH HH HH HH HH HH HH

-29 columns-

Output B:

0200

HH HH HH HH HH HH HH HH

0208
HH HH HH HH HH HH HH HH

0210
HH HH HH HH HH HH HH HH
0218
HH HH HH HH HH HH HH HH

-23 columns-

Figure 8.1: Two TVDUMP formats.

TWO HEXDUMP TOOLS 99

One way to provide such a hexdump is shown by the flowchart in figure 8.2.
Using this flowchart as a guide, let's develop source code to perform the TVDUMP

function:

Figure 8.2: Flowchart of the screen Hexdump Program.

100 BEYOND GAMES

CR = $0D
LF - $0A

GET.SL
INC.SL

PR.BYT

SELECT

COUNTR

HEXLNS

TVDUMP

DUMPLN

CONSTANTS

Carriage return.
Line feed.

REQUIRED SUBROUTINES

Get currently selected byte.
Increment the pointer that specifies the currently selected

byte.
Print the accumulator to currently selected devices, in
hexadecimal representation.
Pointer to currently selected address.

VARIABLES

.BYTE 0

.BYTE 4

TVDUMP

Select TVT as an output device.
(Other devices will echo the dump.)
Set COUNTR to the number of lines
to be dumped by TVDUMP.
Set SELECT to beginning
of a screen line (8 bytes)
by zeroing 3 LSB in SELECT.
Skip two lines on the screen.

Print the selected address.
Advance to a new line on the screen.
(This call to CR.LF may be replaced
with a call to SPACE on systems with
screens more than 27 columns wide.
This will yield the Output A rather than

JSR TVT.ON

LDA HEXLNS
STA COUNTR
LDA SELECT
AND #$F8
STA SELECT
LDX #2

JSR CR.LFS
JSR PR.ADR
JSR CR.LF

This byte counts the number of lines
dumped by TVDUMP.
Number of hexadecimal lines to be
dumped by TVDUMP. (Set this to any
number you like. To dump a single
hexadecimal line [16 bytes] , set

HEXLNS = 1.)

TWO HEXDUMP TOOLS 101

DMPBYT JSR SPACE
JSR DUMPSL
JSR INC.SL

LDA SELECT
AND #07
BNE DMPBYT
JSR CR.LF

LDA SELECT

AND #$0F
BNE IFDONE
JSR CR.LF

IFDONE DEC COUNTR
BNE DUMPLN
JSR TVTOFF
RTS

Output B.)
Print a space.
Dump currently selected byte.
Select next address by incrementing
select pointer.
Is it the beginning of a new
screen line? (3 LSB = 0?)
If not, dump next byte...
If so, advance to a new line on the
screen.
Does this address mark the beginning of
a new hexadecimal line?
(4 LSB of SELECT = 0?)

If so, skip a line on the screen.
Dumped last line yet?
If not, dump next line.
Deselect TVT as an output device.
Return to caller.

DUMP CURRENTLY SELECTED BYTE

This subroutine gets the currently selected byte (the byte pointed to by
SELECT) and prints it in hexadecimal format on all selected devices.

DUMPSL JSR GET.SL
JSR PR.BYT
RTS

Get currently selected byte.
Print it in hexadecimal format.
Return to caller.

PRINT ADDRESS

This subroutine prints, on all selected devices, the currently selected address (ie:
the value of the SELECT pointer).

PR.ADR LDA SELECT+1
JSR PR.BYT
LDA SELECT
JSR PR.BYT
RTS

Get the high byte of SELECT...
...and print it in hexadecimal format.

Get the low byte of SELECT...
...and print it in hexadecimal format.
Then return to caller.

102 BEYOND GAMES

PRDUMP

With the subroutine presented thus far in this chapter, we can dump to the
screen just by calling TVDUMP. But what if we want to print a hexdump? Is a hex-
dump program that prints any different from one that dumps to the screen? Can we
simply select the printer instead of the TVT and leave the rest of the code the same?

We could. But then we wouldn't be taking full advantage of the printer.
TVDUMP produces an output that is easily read within the twenty-five or forty col¬
umns of a video display. Most printers can output sixty-four columns or more. We
should take advantage of the extra width offered by a printer.

We should also recognize the difference in responsiveness between a screen and
a hard-copy device. When I'm using a screen-based hexdump, I don't mind hitting a
single key every time I want some lines dumped to the screen. But with a printing
hexdump, I don't want to strike a key repeatedly to continue the dump. I don't mind
striking a number of keys at the beginning in order to specify the memory to be
dumped, but once I've done that I don't want to be bothered again. I want to set it
and forget it.

When called, a printing hexdump program should announce itself by clearing
the screen and displaying an appropriate title (eg: "PRINTING HEXDUMP"). Then
it should ask you to specify the starting address and the ending address of the
memory to be dumped.

Once it knows what you want to dump, PRDUMP should print a hexdump of
the specified block of memory. For your convenience, PRDUMP should tell you
what block of memory it will dump; then it should provide a header for each column

of data and indicate the starting address of each line of data, (See the "D" appen¬
dices.)

Using the flowchart of figure 8.3 as a guide, we can write source code for the
top level of the PRINTING HEXDUMP:

Figure 8.3: To print a Hexdumpf

TWO HEXDUMP TOOLS 103

PRDUMP JSR TITLE
JSR SETADS

JSR GOTOSA
JSR PR.ON

JSR HEADER
HXLOOP JSR PRUNE

BPL HXLOOP
JSR CR.LF
JSR PR.OFF
RTS

TITLE JSR CLR.TV
JSR TVT.ON
JSR PRINT:

.BYTE TEX

.BYTE CR,'PRINTING '

.BYTE 'HEXDUMP ',CR

.BYTE LF,LF,

.BYTE ETX
RTS

Display the title.
Let user set start address and end ad¬
dress of memory to be dumped.
(SETADS returns with SELECT=EA,
the end address.)
Set SELECT = SA, the starting address.
Select printer as a output device. (Other
selected devices will echo the dump.)
Output hexdump header.
Dump one line. (PRLINE returns minus
if it dumped through ending address;
otherwise it returns PLUS.)
Done yet? If not, dump next line.
If so, go to a new line.
Deselect printer.
Return to caller. Specified memory has
been dumped.
Clear the screen.
Select screen as an output device.
Display "Printing Hexdump" on all
selected output devices.
Text string must start with a TEX
character...

...and end with an ETX character.
Return to caller.

Get Starting, Ending Address

The printing hexdump program must secure from the user the starting address
and the ending address of the memory to be dumped. The subroutine, SETADS, will
perform these functions. It will place an appropriate prompt on the screen ("Set
Starting Address" or "Set Ending Address") and then allow the user to specify an ad¬
dress.

Putting a prompt on the screen is easy: just select the TVT by calling TVT.ON,
call "PRINT:" and follow this call with a TEX (start of text) character, the text of the
prompt, and then an ETX (end of text) character. How can we allow the user to
specify an address? We could make a subroutine, called GET ADR, which gets an ad¬
dress by enabling the user to set some pointer. That sounds mighty familiar — that's
what the Visible Monitor does. Conveniently, the Visible Monitor is a subroutine,
which returns to its caller when the user presses Q for Quit. Therefore, after putting

104 BEYOND GAMES

the appropriate prompt on the screen, SETADS will call the Visible Monitor. When
the Visible Monitor returns, the SELECT pointer will specify the requested address.

SET STARTING ADDRESS, ENDING ADDRESS

SETADS JSR TVT.ON Select TVT as an output device. All
other selected output devices will echo
the screen output.

JSR PRINT:
.BYTE TEX
.BYTE CR,LF,LF

Put prompt on the screen:

.BYTE 'SET STARTING ADDRESS '

.BYTE

.BYTE ETX
'AND PRESS "Q'7

JSR VISMON Call the Visible Monitor, so user can

specify a given address.

JSR SAHERE Set starting address equal to address set

by the user.

SET.EA JSR PRINT:
.BYTE TEX
.BYTE CR,LF,LF

Put prompt on the screen:

.BYTE 'SET ENDING ADDRESS '

.BYTE

.BYTE ETX
'AND PRESS "Q'7

JSR VISMON Call the Visible Monitor, so user can
specify a given address.

SEC If user tried to set an

LDA SELECT+1 ending address less than

CMP SA+1 the starting address,
BCC TOOLOW make user do it over.
BNE EAHERE

LDA SELECT
CMP SA
BCC TOOLOW

If SELECT is greater than SA, set
EA=SELECT. That will make EA
greater than SA.

EAHERE LDA SELECT+1
STA EA+1
LDA SELECT
STAEA

Set EA=SELECT...

RTS ... and return.

SAHERE LDA SELECT+1
STA SA+1

Set SA=SELECT...

TWO HEXDUMP TOOLS 105

LDA SELECT
STASA
RTS

TOOLOW JSR PRINT:
.BYTE STX,
.BYTE CR,LF,LR
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE ETX
JSR PR.SA

JMP SET.EA

SA .WORD 0

EA .WORD $FFFF

...and return.
Since user set ending address
too low, print error message:

'ERROR! '
'END ADDRESS LESS '
THAN START ADDRESS, '
WHICH IS '

Print starting address. ...and let the user
set
the ending address again.
Pointer to starting address of memory to
be dumped.
Pointer to ending address of memory to
be dumped.

Now that the user can set the starting address and the ending address for a hex-
dump (or for any other program that must operate on a contiguous block of
memory), we should have utilities that print out the starting address, the ending ad¬
dress, or the range of addresses selected by the user. If the user set $D000 as the start¬
ing address and $D333 as the ending address, we should be able to call one
subroutine that prints "$D000," another that prints "$D333," and a third that prints

"$D000 — $D333."
Let's call these subroutines PR.SA, to print the starting address; PR.EA, to print

the ending address; and RANGE, to print the range of addresses.

Print Starting Address

The following subroutine prints the value of SA, the starting address, in hexa¬

decimal format:

PR.SA LDA #'$
JSR PR.CHR
LDA SA+1
JSR PR.BYT
LDA SA
JSR PR.BYT
RTS

Print a dollar sign to
indicate hexadecimal.
Print high byte of starting address.

Print low byte of starting address.

Return to caller.

106 BEYOND GAMES

Print Ending Address

The following subroutine prints the value of EA, the ending address, in hexa¬
decimal format:

PR.EA LDA #'$
JSR PR.CHR
LDA EA+1
JSR PR.BYT
LDA EA
JSR PR.BYT
RTS

Print a dollar sign to
indicate hexadecimal.
Print high byte of ending address.

Print low byte of ending address.

Return to caller.

RANGE

Print Range of Addresses

JSR PR.SA
LDA #'-
JSR PR.CHR
JSR PR.EA
RTS

Print starting address.
Print a hyphen.

Print ending address.
Return to caller.

HEADER

We want a routine to print an appropriate header for the hexdump. It should
accomplish two tasks: identify the block it will dump, and print a hexadecimal digit
at the top of every column of hexdump output. Thus, HEADER should produce the
output shown between the following lines:

DUMPING HHHH-HHHH

0123456789ABCDEF

Notice the blank line following the line of hexadecimal characters. This will in¬
sure a blank line between the header and the dump itself, making for a more

TWO HEXDUMP TOOLS 107

readable output. (See the hexdumps in the D series of appendices which were pro¬

duced with PRDUMP.)
Here are a few lines of code to print the first line of the header:

JSR PRINT:
.BYTE TEX,CR,LF
.BYTE 'DUMPING ’
.BYTE ETX
JSR RANGE
JSR CR-LF

What about the rest of the header? Since all we want to do is print the hexa¬
decimal digits 0 thru $F, with appropriate spacing between them, the rest of
HEADER can just be some code to count from 0 to $F, convert to ASCII, and print:

PRINT HEXADECIMAL DIGITS (Version I)

LDX #7
JSR SPACES
LDA #0
STA COLUMN

HXLOOP LDA COLUMN
JSR ASCII
JSR PR.CHR
LDX #2
JSR SPACES
INC COLUMN
LDA COLUMN
AND #$F0
BEQ HXLOOP

LDX #2
JSR CR.LFS
RTS

COLUMN .BYTE 0

Print seven spaces.

Initialize column counter

to zero.
Convert column counter to

an ASCII character and

print it.
Space twice after the character.

Increment the column counter.
Loop if counter not greater

than $0F.

Otherwise, skip two lines

after the header.
Then return.
This 1-byte variable is used to count

from 00 to $0F.

Version 1 of PRINT HEXADECIMAL DIGITS will work, and in only 49 bytes.
But that's 49 bytes of code, which among other things must count and branch, and if
for some reason one of those bytes is wrong. Version 1 of PRINT HEXADECIMAL
DIGITS will probably go directly into outer space. But we could write PRINT

108 BEYOND GAMES

HEXADECIMAL DIGITS in a much more straightforward manner, which, though
somewhat more costly in terms of memory required, will be more readable and less

likely to run amuck.
PRINT HEXADECIMAL DIGITS need only call "PRINT:", and follow this call

with a text string consisting of the desired hexadecimal digits.

PRINT HEXADECIMAL DIGITS (Version 2)

JSR PRINT:
.BYTE TEX
.BYTE ' 012 3 4567
.BYTE '8 9 A B C D E F'

.BYTE CR,LF,LF

.BYTE ETX
RTS

Version 2 of PRINT HEXADECIMAL DIGITS requires 60 bytes. But it's more
readable than Version 1 of PRINT HEXADECIMAL DIGITS, and it can be modified
much more easily: just change the text in the message it prints. You don't have to
calculate branch addresses or test the terminal condition in a loop. This is just one
example of a programming problem that may be solved in a computation-intensive
or a data-intensive manner.

Where other factors are about equal, I prefer data-intensive subroutines,
because they're more readable and easier to change. Even in this case. I'm willing to
pay the extra 20 bytes for a version of PRINT HEXADECIMAL DIGITS that I don't
have to read twice. Hence, PRINT HEXADECIMAL DIGITS Version 2, and not

Version 1, will appear in the assembler listings of HEADER in Appendix C5.

PRLINE

Clearly, most of the work of PRDUMP will be performed by the subroutine
PRLINE, which dumps one line of memory to the printer. It will stop when it has
dumped 16 bytes (one hexadecimal line) or has dumped through the ending address

specified by the user.
As we did for TVDUMP, let's use SELECT as a pointer to the first byte that

must be dumped by PRLINE. When PRLINE is called, it must see if the currently
selected byte (the byte pointed to by SELECT) is at the start of a hexadecimal line. A
byte is at the beginning of a hexadecimal line if the 4 LSB (least-significant bits) of its
address are zero. Thus, $4ED8 is not the start of a hexadecimal line, but $4ED0 is.

If the currently selected byte is not the beginning of a hexadecimal line, PRLINE
should space over to the appropriate column for that byte. If the currently selected

TWO HEXDUMP TOOLS 109

byte is at the beginning of a hexadecimal line, PRUNE should print the address of
the currently selected byte and space twice.

Once it has spaced over to the proper column, PRUNE need only get the cur¬
rently selected byte, print it in hexadecimal format, space once, and then do the
same for the next byte, until it has dumped the entire line or has dumped the last

byte requested by the user.
Figure 8.4 gives a flowchart for the following routine:

110 BEYOND GAMES

PRUNE

PRUNE JSR CR.LF
LDA SELECT
PHA
AND #$0F
STA COLUMN

PLA
AND #$F0
STA SELECT
JSR PR.ADR
LDX #3
JSR SPACES
LDA COLUMN
BEQ COL.OK

LOOP LDX #3
JSR SPACES
JSR INC.SL
DEC COLUMN
BNE LOOP

COL.OK JSR DUMPSL
JSR SPACE
JSR NEXTSL

BMI EXIT

NOT.EA LDA SELECT
AND #$0F
CMP #0

BNE COL.OK
EXIT RTS

Advance printhead to a new line*
Determine starting
column
for this dump.
Now COLUMN holds the number of the
column in which we will dump the first
byte.
Set SELECT pointer to
beginning of a hexadecimal line.

Print the selected address*

Space three times — to the
first column.
Do we dump from the first column?
If so, were at the correct column now.
If not, space three
times for each byte not
dumped.

Dump the currently selected byte.
Space once.
Select the next byte in memory, unless
we've already dumped through the end
address.
(MINUS means weve dumped through
the end address.)
Dumped entire line?
(4 LSB of SELECT = 0?)

If so, we Ve dumped the entire line. If
not,
select the next byte and dump it...
PRLINE returns MINUS, with A=$FF,
if it dumped through ending address.
Otherwise it returns PLUS, with A—0.

Select Next Byte

NEXTSL tests to see if SELECT is less than the ending address. If so, it in¬
crements SELECT and returns PLUS (with zero in the accumulator). If not, it

TWO HEXDUMP TOOLS 111

preserves SELECT and returns MINUS (with $FF in the accumulator).

NEXTSL

NEXTSL SEC Prepare to compare.

LDA SELECT+1 Is high byte of SELECT less than

CMP EA+1 high byte of end address (EA)?

BCC SL.OK If so, SELECT is less than EA, so it may
be incremented.

BNE NO.INC If SELECT is greater than EA, don't
increment SELECT.
SELECT is in the same page as EA,

SEC prepare to compare low bytes:
LDA SELECT Is low byte of SELECT less than
CMP EA low byte of EA?
BCS NO.INC If not, don't increment it.

SL.OK JSR INC.SL Since SELECT is less than EA, we may
increment it.

LDA #0 Set "incremented" return code and
RTS return.

NO.INC LDA #$FF Set "not incremented" return code
RTS and return.

Go to Start of Block

GOTOSA sets SELECT = SA, thus selecting the first byte in the block defined

by SA and EA:

GOTOSA LDA SA
STA SELECT
LDA SA+1
STA SELECT+1
RTS

Set SELECT
equal to
START ADDRESS
of block.

Now the two hexdump tools are complete. You may invoke either tool directly
from the Visible Monitor by displaying the start address of the given hexdump tool

and pressing "G." This will work fine for PRDUMP: youll get a chance to set the
starting address and the ending address that you want to dump, and then youll see
the dump on both the printer and the screen. If you start TVDUMP with a "G" from
the Visible Monitor, youll only get a dump of TVDUMP itself. You won't be able to
use TVDUMP to dump any other location in memory. Why? Because TVDUMP
dumps from the displayed address, and to start any program with a "G" from the
Visible Monitor, you must first display the starting address of that program. Prob-

112 BEYOND GAMES

ably you'd like to be able to use TVDUMP to dump other areas in memory. To do
so, you must assign a Visible Monitor key (eg: "H") to the subroutine TVDUMP, so
that the Visible Monitor will call TVDUMP whenever you press that key. See
Chapter 12, Extending the Visible Monitor.

TWO HEXDUMP TOOLS 113

Chapter 9:

A Table-Driven Disassembler

With the Visible Monitor you can enter object code into your computer. With

hexdump tools you can dump that object code to the screen or to a printer.
However, you still can't be sure you've entered the instructions you intended to
enter unless you refer back and forth from your hexdump to Appendix A4, The 6502

Opcode List. You must verify that every opcode you entered is for the instruction
and the addressing mode that you had intended. You must count forward or
backward in hexadecimal to make sure that the operands in your branch instruc¬
tions are correct. If you entered one opcode or operand incorrectly, then even
though your handwritten program may be correct, the version in your computer's
memory will be wrong.

A disassembler (the opposite of an assembler) can make your life a lot easier by
displaying or printing the mnemonics represented by the opcodes you entered into
your computer, and by showing you the actual addresses and addressing modes
represented by your operands. The disassembler can't know that address 0000 has
the label "TV.PTR," but it can let you know that a given instruction operates on ad¬
dress 0000.

A disassembled line includes the following fields:

Field Field
Number Description

1. Mnemonic,
2. Operand.
3. Address of opcode.

4, Opcode in hexadecimal.

114 BEYOND GAMES

5. First byte of operand (if present) in hexadecimal.
6. Second byte of operand (if present) in hexadecimal.

Here's a disassembled line, with each of the fields numbered:

1 2 3 4 5 6 (Field Numbers)

JSR 0400 08AC 20 00 04 (Disassembled Line)

As with hexdump tools, I find it convenient to have two disassemblers: one for

the screen and one for the printer. The screen-oriented disassembler should direct a
certain number of disassembled lines to the screen whenever it is called. On the other
hand, the printing disassembler should get a starting address and an ending address
from the user and print a continuous disassembly of that portion of memory. As
before, when I direct output to a printer I want to set it and forget it.

Whether we disassemble to the screen or to a printer, we will disassemble one
line at a time. How can a program disassemble a line? The same way a person does.
You look at an opcode in memory and then consult a table such as Appendix A4 to
determine the operation represented by that opcode. Each operation has two at¬
tributes, a mnemonic and an addressing mode. The procedure is simple. Write the
mnemonic; then, from the addressing mode determine whether this opcode takes no
operand, a 1-byte operand, or a 2-byte operand. If it takes an operand, look at the
next byte or two in memory and then write the operand for the mnemonic.

Thus, if you wish to disassemble object code from some place in memory, and
you find an $8D at that location, you can determine from Appendix A6 that $8D
represents "store accumulator, absolute mode." Therefore, you'll write: "STA,"
which is the mnemonic for store the accumulator.

The absolute mode requires a 2-byte operand, so you'll look at the 2 bytes

following the $8D. If $36 follows the $8D and is itself followed by $D0, then the

disassembled line will look like this:

STA $D036

That's a lot easier to read than the original 3 bytes of object code:

8D 36 DO

A TABLE-DRIVEN DISASSEMBLER 115

DISASSEMBLY

JSR 0400 1E00 20 00 04
JSR 04A0 1E03 20 AO 04
LDA (0021),Y 1E06 Bl 21

CLC 1E08 18

BCC 1E00 1E09 90 F5

HEXDUMP

0123456789ABCDEF

1E00 20 00 04 20 AO 04 Bl 21 18 90 F5

Figure 9.1: Disassembly and hexdump of the same object code.

TO DISASSEMBLE ONE LINE:

Figure 9.2: Algorithm for disassembling one line of code.

116 BEYOND GAMES

That looks pretty simple. We can use the SELECT pointer to indicate the cur¬
rent byte within memory, and we'll assume that lower-level subroutines exist or will
exist to do the jobs required by DSLINE, which disassembles one line. With those
assumptions, we can write source code for DSLINE:

DISASSEMBLE ONE LINE

DSLINE JSR GET.SL
PHA
JSR MNEMON

JSR SPACE
PLA
JSR OPERND

JSR FINISH

JSR NEXTSL
RTS

Get currently selected byte.
Save it on stack.
Print the mnemonic represented by that
opcode.
Space once.
Restore opcode to accumulator.
Print the operand required by that op¬
code.
Finish the line by printing fields 3 thru

6.
Select next byte.
Return to caller, with SELECT pointing
at the last byte of the operand (or at the
opcode, if it was a 1-byte instruction).

Print Mnemonic

We need a subroutine called MNEMON which prints the three-letter mnemonic
for a given opcode. How can MNEMON do this? How do we do it? We look it up in
a table such as Appendix A4. We could have a similar table in memory and then
have MNEMON sequentially look up from the table the three characters comprising
the desired mnemonic. That would require a 3-byte mnemonic for each of 256 possi¬
ble opcodes: a 758-byte table. That's a lot of memory! Perhaps if we organize our

data better we'll need less memory.
For example, why include the same mnemonic more than once in the table?

Eight different opcodes use the mnemonic LDA; why should I use up 24 bytes to
store "LDA" eight times? We could have a table of mnemonic names, which is
nothing more than an alphabetical list of the three-letter mnemonics. There are only
fifty-six different mnemonics; if we add one pseudo-mnemonic, "BAD," to mean
that a given opcode is not valid, then we still have only fifty-seven mnemonics. The
table of mnemonic names will therefore require only 171 bytes.

If you have a given opcode, how can you know which mnemonic in the table of
mnemonic names corresponds to your opcode? A mnemonic code is some number
that uniquely identifies a given mnemonic. Let's assume that we have a table of

mnemonic codes which gives the mnemonic code for each possible opcode.

A TABLE-DRIVEN DISASSEMBLER 117

Now you can look up in the table of mnemonic codes the mnemonic code cor¬
responding to a given opcode, and then use the mnemonic code as an index to the
table of mnemonic names. The three sequential characters located in the table of
mnemonic names will comprise the mnemonic for your original opcode.

This method requires not one but two tables. The two together, however, re¬
quire considerably less memory than our first table did. The table of mnemonic
codes will be 256-bytes long, since it must have an entry for every possible opcode,
including invalid ones. The table of mnemonic names, on the other hand, will be
only 171-bytes long, so the two tables together require only 427 bytes. That's 331
bytes or 43 percent less memory than our first table required.

Space saved in tables may not be worth it if large or complicated code is re-

quired as an index to those tables, but in this case the code is quite simple:

MNEMON LDX#3 There are three letters in a mnemonic.

STX LETTER Well keep track of the letters by count¬
ing down to zero.

TAX Prepare to use the opcode as an index.

LDA MCODES,X Look up the mnemonic code for that op¬

code. (MCODES is the table of
mnemonic codes.)

TAX Prepare to use that mnemonic code as
an index.

MNLOOP LDA MNAMES,X Get a mnemonic character. (MNAMES
is the list of mnemonic names.)

STX TEMP.X Save X register (since printing will
almost certainly change the X register).

JSR PR.CHR Print the character to all currently
selected devices.

LDX TEMP.X Restore X register to its previous value.

INX Adjust index for next letter.

DEC LETTER If three letters not yet printed,
BNE MNLOOP loop back to handle the next one.

RTS Otherwise, return to caller.

TEMP.X .BYTE 0
LETTER .BYTE 0

As you can see, MNEMON requires only 30 bytes of code in machine language:
2 bytes to hold variables and 427 bytes for the two tables (MNAMES and
MCODES). The entire subroutine requires 459 bytes, but since most of those bytes
are data in tables, comparatively little can go wrong with the program. If the wrong
bytes are keyed into the table of mnemonic names, then the disassembler will print
one or more incorrect characters in a mnemonic. But MNEMON won't crash! Bad

118 BEYOND GAMES

data in means bad data out, but at least MNEMON will run, and a running program
is a lot easier to correct than one that crashes and burns.

So again we have a data-intensive, rather than a computation-intensive,
subroutine. The tables required by MNEMON are included in Appendix C8.

Print Operand

Now we come to the tricky part: printing the right operand given an opcode at
some location in memory. When I disassemble object code by hand, I write the
operand in two steps: first I determine the addressing mode of the given opcode, and
then, if that addressing mode takes an operand, I write down the proper operand in

the proper form. Proper form means including a comma and an X or a Y for every
indexed instruction, including parentheses in the proper places for indirect instruc¬
tions, and printing out all addresses high byte first, since that makes it easier to read

an address.
OPERND (the subroutine that prints an operand for a given opcode in a given

location in memory) will therefore determine the addressing mode for a given op¬
code, and then call an appropriate subroutine to handle that addressing mode:

OPERND

OPERND TAX Look up addressing mode code for

LDA MODES,X this opcode.
TAX X now indicates the addressing mode.
JSR MODE.X Call the subroutine that handles address¬

ing mode "X."
RTS Return to caller.

MODES is a table giving the addressing mode for each opcode.
Note that OPERND can work only if we have a routine called MODE.X which

somehow transfers control to the subroutine that handles addressing mode "X."
How can MODE.X do this? One way is to have a table of pointers, in which the Xth
pointer points to the subroutine that handles addressing mode "X." MODE.X must
then transfer control to the Xth subroutine in this table. It would be nice if the 6502
offered an indexed JSR instruction, which would call the subroutine whose address
is the Xth entry in the table. Unfortunately, the 6502 doesn't offer an indexed JSR in¬
struction, so well have to simulate one in software.

Fortunately, the 6502 does offer an indirect JMP. If a pointer, called SUBPTR,
can be made to point to a given subroutine, then the instruction JMP (SUBPTR) will
transfer control to that subroutine. Therefore, MODE.X need only set SUBPTR
equal to the Xth pointer in a table of subroutine pointers, and with the instruction

A TABLE-DRIVEN DISASSEMBLER 119

JMP (SUBPTR), it can transfer control to the Xth subroutine in the table.

HANDLE ADDRESSING MODE “X”

Get low byte of Xth pointer in the table

of subroutine pointers.
Set low byte of subroutine pointer.
Adjust index to get next byte.
Get high byte of Xth pointer in the table

of subroutine pointers.
Set high byte of subroutine pointer.
Jump to the subroutine specified by the
subroutine pointer. That subroutine will
then return to the caller of MODE.X,
not to MODE.X itself.
This is a table of pointers, in which the
Xth pointer points to the subroutine tha

handles addressing mode X.

Disassembler Utilities

Given MODE.X, OPERND can call the right subroutine to handle any give

addressing mode. Now all we need are thirteen different subroutines, one for each c

the 6502's different addressing modes.
Before writing those subroutines, however, let's think for a moment about whc

they must do, and see if we can't write a few utility subroutines to perform thos
functions. With a proper set of utilities, the addressing mode subroutines themselv*

need only call the right utilities in the right order.
The following set of utilities seems reasonable:

Print a 1-byte operand.
Print a 2-byte operand.
Print a right parenthesis.
Print a left parenthesis.
Print a comma and then the letter "X."
Print a comma and then the letter "Y."

• ONEBYT:
• TWOBYT:
• RPAREN:
• LPAREN:
• XINDEX:
• YINDEX:

MODE.X LDA SUBS,X

STA SUBPTR

INX
LDA SUBS,X

STA SUBPTR+1
JMP (SUBPTR)

SUBS

120 BEYOND GAMES

Print a 1-Byte Operand: ONEBYT

Advance to byte following opcode.

Print it in hexadecimal.
Return to caller.

Print a 2-Byte Operand: TWOBYT

A 2-byte operand always specifies an address with the low byte first. To print a
2-byte operand high byte first, we must first print the second byte in the operand
and then print the first byte in the operand; each, of course, in hexadecimal format.

ONEBYT JSR INC.SL
JSR DUMPSL
RTS

TWOBYT JSR INC.SL
LDA GET.SL
PHA
JSR INC.SL
JSR DUMPSL
PLA
JSR PR.BYT

RTS

Advance to first byte of operand.
Load that byte into accumulator.

Save it.
Advance to second byte of operand.
Print it in hexadecimal format.
Restore the operand's first byte to the
accumulator, and print it in hexa¬

decimal.
Return to caller.

ONEBYT and TWOBYT each leave SELECT pointing at the last byte of the

operand.

Print Right, Left Parenthesis: RPAREN, LPAREN

RPAREN prints a right parenthesis to all currently selected devices. LPAREN
prints a left parenthesis to all currently selected devices.

RPAREN LDA #') Load accumulator with ASCII code for
right parenthesis.

BNE SENDIT Send it to all currently selected devices.

LPAREN LDA #'(Load accumulator with ASCII code for

left parenthesis.

SENDIT JSR PR.CHR Send it to all currently selected devices.

RTS Return to caller.

A TABLE-DRIVEN DISASSEMBLER 121

Index with Register X: XINDEX

XINDEX prints a comma and then the letter "X

XINDEX LDA #',

JSR PR.CHR
LDA #'X

JSR PR.CHR

RTS

Load accumulator with ASCII code for a
comma; then print it to
all currently selected devices.
Load accumulator with ASCII code for
the letter "X;" then print it
to all currently selected devices.
Return to caller.

Index with Register Y: YINDEX

YINDEX prints a comma and then the letter "Y:"

YINDEX LDA #',

JSR PR.CHR
LDA f Y

JSR PR.CHR
RTS

Load accumulator with ASCII code for a
comma; then print it to all
currently selected devices.
Load accumulator with ASCII code for
the letter "Y;" then print it
to all currently selected devices.
Return to caller.

So much for the disassembler utilities. Now with a single subroutine call we can
print a 1-byte or a 2-byte operand (and, of course, we can print a no-byte operand),

and we can print any of the frequently used characters and character combinations.
Okay, let's write some addressing mode subroutines;

Addressing Mode Subroutines

Because the 6502 has thirteen different addressing modes, well need thirteen
different addressing mode subroutines:

Subroutine Addressing Mode

ABSLUT Absolute

122 BEYOND GAMES

ABS.X
ABS.Y
ACC
IMPLID
IMMEDT
INDRCT
IND.X
IND.Y
RELATV
ZEROPG
ZERO.X
ZERO.Y

Absolute,X
Absolute^Y
Accumulator
Implied
Immediate
Indirect

Indirect,X
Indirect,Y
Relative
Zero Page
Zero Page,X
Zero Page,Y

The main job for each subroutine will be to print the operand in the proper
form. Although a given addressing mode will always have the same number of
characters in its operand, unfortunately, different addressing modes may have
operands of different lengths. For example, implied addressing mode has no
characters in its operand, whereas indirect indexed addressing requires eight
characters in its operand, if leading zeros are included.

But no matter how many characters appear in an operand, we want to make
sure that field 3 (the address field) always begins at the same column. Therefore,
every addressing-mode subroutine will return with A holding the number of
characters in the operand, with X holding the number of bytes in the operand, and
with SELECT pointing at the last byte in the operand (or at the opcode, if it was a

1-byte instruction). Then FINISH can print an appropriate number of spaces before
printing fields 3 thru 6.

Absolute Mode: ABSLUT

To print the operand for an instruction in the absolute mode, we need only
print a 2-byte operand. Thus, 8D B2 04 will disassemble as:

STA 04B2 8D B2 04

ABSLUT JSR TWOBYT
LDX#2 X holds number of bytes in operand.
LDA#4 A holds number of characters in

operand.
RTS

A TABLE-DRIVEN DISASSEMBLER 123

Absolute, X Mode: ABS.X

To print the operand for an instruction in the absolute, X mode, we must print a
2-byte operand, a comma, and then an "X:"

LDA D09A,X BD 9A DO

ABS.X JSR ABSLUT
JSR XINDEX
LDX #2
LDA #6

RTS

Print the 2-byte operand.
Print the comma and the "X."
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.

Abolute, Y Mode: ABS.Y

To print the operand for an instruction in the absolute, Y mode, we must print a
2-byte operand, a comma, and then a "Y:"

ORA 02FE,Y 19 FE 02

ABS.Y JSR ABSLUT Print the 2-byte operand.
JSR YINDEX Print the comma and the "Y."
LDX #2 X holds number of bytes in operand.
LDA #6 A holds number of characters in

operand.
RTS Return to caller.

Accumulator Mode: ACC

To print the operand for an instruction in the accumulator mode, we need only

print the letter "A

RORA 6A

124 BEYOND GAMES

ACC LDA fA Load accumulator with ASCII code for
the letter A.

JSR PR.CHR Print it on all currently selected devices.
LDX #0 X holds number of bytes in operand.
LDA #1 A holds number of characters in

operand.
RTS Return to caller.

Implied Mode: IMPLID

Implied mode has no operand, so just return:

CLC 18

IMPLID LDX #0 X holds number of bytes in operand.

LDA #0 A holds number of characters in

operand.

RTS

Immediate Mode: IMMEDT

Immediate mode requires a 1-byte operand, which well print in hexadecimal

format. Thus, it should disassemble the two consecutive bytes "A9 41" as follows:

LDA #$41 A9 41

IMMEDT LDA f#
JSR PR.CHR

Print a sign.

LDA #'$
JSR PR.CHR

Print a dollar sign.

JSR ONEBYT Print 1-byte operand in hexadecimal for¬
mat.

LDX #1 X holds number of bytes in operand.
LDA #4 A holds number of characters in

operand.
RTS Return to caller.

A TABLE-DRIVEN DISASSEMBLER 125

Indirect Mode: INDRCT

To print the operand for an instruction in the indirect mode, we need only print
an absolute operand within parentheses. Thus, the three consecutive bytes
"6C 00 04" will disassemble as:

JMP (0400) 6C 00 04

INDRCT JSR LPAREN Print left parenthesis.
JSR ABSLUT Print the 2-byte operand.
JSR RPAREN Print the right parenthesis.
LDX #2 X holds number of bytes in operand.
LDA #6 A holds number of characters in

operand.
RTS Return to caller.

Indirect, X Mode: IND.X

To print the operand for an instruction in the indirect, X addressing mode, we
need to print a left parenthesis, a zero-page address, a comma, the letter "X," and
then a right parenthesis. Thus, the two consecutive bytes "Al 3C" will disassemble
as:

LDA (3C,X) A13C

IND.X JSR LPAREN
JSR ZERO.X

JSR RPAREN
LDX#1
LDA #8

RTS

Print a left parenthesis.
Print a zero-page address, a comma, and
the letter "X."
Print a right parenthesis.
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.

126 BEYOND GAMES

Indirect, Y Mode: IND.Y

To print the operand for an instruction in the indirect, Y mode, we must print a
left parenthesis, a zero-page address, a right parenthesis, a comma, and then the let¬
ter "Y." Thus, the two consecutive bytes "B1 AF" will disassemble as:

LDA (AF),Y Bl AF

IND.Y JSR LPAREN
JSR ZEROPG
JSR RPAREN
JSR YINDEX
LDX #1

LDA #8

RTS

Relative Mode: RELATV

Relative mode can be tricky. A relative branch instruction specifies a forward
branch if its operand is plus (in the range of 00 to $7F), but it specifies a backward
branch if its operand is minus (in the range of $80 to $FF). Therefore, in order to
determine the address specified by a relative branch instruction, we must first deter¬
mine whether the operand is plus or minus, so we can determine whether we're
branching forward or backward. Then we must add or subtract the least-significant
7 bits of the operand to or from the address immediately following the operand of
the branch instruction; the result of that calculation will be the actual address
specified by the branch instruction.

RELATV JSR INC.SL Select next byte in memory.

JSR PUSHSL Save SELECT pointer on stack.
JSR GET.SL Get operand byte.
PHA Save it on the stack.
JSR INC.SL Increment SELECT pointer so it points

to the opcode following the relative
branch instruction. (Relative branches
are relative to the next opcode.)

PLA Restore operand byte to accumulator.
CMP #0 Is it plus or minus?

Print a left parenthesis.
Print a zero-page address.
Print a right parenthesis.

Print a comma and then the letter "Y."
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.

A TABLE-DRIVEN DISASSEMBLER 127

BPL FORWRD

DEC SELECT+ 1

FORWRD CLC
ADC SELECT
BCC RELEND
INC SELECT+ 1

RELEND STA SELECT

JSR PR.ADR
JSR POP.SL
LDX #1
LDA #4

RTS

If plus, it means a forward branch.
Since operand byte is minus, well be
branching backward.
Branching backward is like branching
forward from a location 256 bytes lower
in memory.
Add operand byte to the address
of the opcode following the
branch instruction.

Now SELECT points to the address
specified by the operand of the relative
branch instruction. Let's print it.

Restore SELECT pointer.
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller, with SELECT pointer
once again pointing to the operand byte
of the relative branch instruction.

Zero-Page Mode: ZEROPG

To print the operand of an instruction that uses the zero-page addressing mode,

we could simply print a 1-byte operand. But I find listings more readable when all
zero-page addresses are shown with the leading zeros (eg: "OOFE" rather than "FE"
to represent address $00FE). Therefore, let's print all zero-page operands with a
leading zero. That simply requires us to print two ASCII zeros and then to print the
1-byte operand. This will cause the bytes "85 2A" to be disassembled as:

STA 002A 85 2A

ZEROPG LDA #0
JSR PR.BYT
JSR ONEBYT
LDX #1
LDA #4

RTS

Print two ASCII zeroes to all
currently selected devices.
Print the 1-byte operand.
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.

128 BEYOND GAMES

Zero-Page Indexed Modes: ZERO.X, ZERO.Y

To print the operand of an instruction that uses the zero-page X or zero-page Y
addressing mode, we need only print the zero-page address, a comma, and then an
"X" or a "Y." Thus, "B5 6C" will disassemble as:

LDA 006C,X B5 6C

and "B6 53" will disassemble as:

LDX 0053,Y B6 53

ZERO.X JSR ZEROPG
JSR XINDEX
LDX #1
LDA #6

RTS
ZERO.Y JSR ZEROPG

JSR YINDEX
LDX #1
LDA #6

RTS

Print the zero-page address.
Print a comma and the letter "X."

X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.
Print the zero-page address.
Print a comma and the letter "Y."
X holds number of bytes in operand.
A holds number of characters in
operand.
Return to caller.

A Pseudo-Addressing Mode for Embedded Text

Now we have subroutines to disassemble machine code in any of the 6502's
thirteen legal addressing modes. But what about text embedded in a machine-
language program? We know that our programs already include text strings, where
each text string begins with a TEX character ($7F) and ends with an ETX ($FF). The
disassembler, however, doesn't know anything about embedded text. If we try to
disassemble a machine-language program that includes embedded text, the
disassembler will assume that the TEX character, and the text string itself, are 6502
opcodes and operands; because it doesn't know about text, it will misinterpret the
text string.

Wouldn't it be nice if the disassembler could recognize the TEX character for
what it is, and then print out the text string as text, rather than as opcodes and
operands? When it has finished printing a text string, the disassembler could then

A TABLE-DRIVEN DISASSEMBLER 129

resume treating the bytes following the ETX as conventional 6502 opcodes and

operands.
Such behavior is not hard to implement. We need only define a pseudo¬

addressing mode, called TEXT mode, and say that the TEX character is the only op¬
code that has the TEXT addressing mode. Then we'll write a special addressing mode
subroutine, called TXMODE, to print operands that are in the TEXT mode.
TXMODE will print an operand in the TEXT mode by printing the text that follows

the TEX character and ends with the first ETX character.
Here's some source code to implement such behavior:

TXMODE PLA Pop return address

PLA to OPERND.

PLA Pop return address

PLA to DSLINE.

TXLOOP JSR NEXTSL Advance past TEX pseudo-opcode.

BMI TXEXIT Return if reached EA.

JSR GET.SL Get the character.

CMP #ETX Is it the end of the text string?

BEQ TXEXIT If so, we've finished disassembling this
line.

JSR PR.CHR If not, print the character.

CLC Branch back to get

BCC TXLOOP the next character.

TXEXIT JSR CR.LF Advance to a new line.

JSR NEXTSL Advance to next opcode (if SELECT is

less than EA).

RTS Return to the caller of DSLINE, with
SELECT at the first opcode following
the text string.

Now that we have the desired addressing mode subroutines, we can make up

the table of addressing mode subroutines:

SUBS .WORD ABSLUT
.WORD ABS.X
.WORD ABS.Y
.WORD ACC
.WORD IMPLID
.WORD IMMEDT
.WORD INDRCT

130 BEYOND GAMES

.WORD IND.X

.WORD IND.Y

.WORD RELATV

.WORD ZEROPG

.WORD ZERO.X

.WORD ZERO.Y

Each addressing mode subroutine will return with SELECT pointing at the last
byte in the instruction, with A holding the number of characters in the operand
field, and with X holding the number of bytes in the operand (0,1, or 2). Each ad¬
dressing mode subroutine will return to OPERND, which will finish the line by call¬

ing FINISH.

Finishing the Line: FINISH

FINISH must space over to the proper column for field 3, which will hold the
address of the opcode. Then it must print the address of the opcode and dump 1, 2 or
3 bytes, as necessary. FINISH will end by advancing the printhead to a new line and
by advancing SELECT so that it points to the first byte following the disassembled
line (unless it has disassembled through EA, the ending address, in which case it will
return with SELECT = EA). FINISH returns PLUS if more bytes must be
disassembled before EA is reached; it returns MINUS if it disassembled through EA.

FINISH STA OPCHRS
STX OPBYTS
DEX
BMI SEL.OK

LOOP.l JSR DEC.SL
DEX
BPL LOOP.l

SEL.OK SEC
LDA ADRCOL
SBC #4
SBC OPCHRS
TAX
JSR SPACES

JSR PR.ADR
LOOP.2 JSR SPACE

JSR DUMPSL

JSR INC.SL

Save the length of the operand,
in characters and in bytes.
If necessary, decrement the
SELECT pointer so it
points to the opcode.

Space over to the
column for the address field:
Operand field started in column 4...

... and includes OPCHRS characters.
So now we need X spaces.
Send enough spaces to reach address
column.
Print address of opcode.
Space once.
Dump selected byte.
Select next byte.

A TABLE-DRIVEN DISASSEMBLER 131

DEC OPBYTS Completed last byte in instruction?

BPL LOOP.2 If not, do next byte.

JSR DEC.SL Back up SELECT to last byte in
operand.

FINEND JSR CR.LF Advance to a new line.

RTS Return to caller.

OPBYTS .BYTE Number of bytes in operand.

OPCHRS .BYTE 0 Number of characters in operand.

ADRCOL .BYTE 16 Starting column for address field.

Now we can disassemble a line. So let's write the disassemblers, one for the

printer and one for the screen. These routines will have much the same structure as
TVDUMP and PRDUMP, which direct hexdumps to the printer or to the screen.

Disassemble to Screen: TV.DIS

TV.DIS LDA DISLNS
STA LINUM
LDA #$FF
STA EA
STA EA+1
JSR TVT.ON

Initialize line counter with
number of lines to be disassembled.
Set end address to $FFFF,
so NEXTSL will always increment
the SELECT pointer.
Select TVT as an output device. (Other
selected devices will echo the
disassembly.)

TVLOOP JSR DSLINE
DEC LINUM
BNE TVLOOP
RTS

Disassemble one line.
Completed last line yet?
If not, disassemble next line.
If so, return.

DISLNS .BYTE 5 DISLNS holds number of lines to be
disassembled by TV.DIS. To disassem¬
ble one line, set DISLNS = 1.

LINUM .BYTE 0 This variable keeps track of the number
of lines yet to be disassembled.

Printing Disassembler: PR.DIS

The printing disassembler (PR.DIS) will announce itself by displaying "PRINT¬
ING DISASSEMBLER" on the screen, but not on the printer. It will then let the user
set the starting and ending addresses, in the same manner as PRDUMP. When the
user has specified the block of memory to be disassembled, the PR.DIS will print a
disassembly of the specified block of memory, echoing its output to the screen.

132 BEYOND GAMES

PR.DIS

PRLOOP

JSR PR.OFF Deselect printer.
JSR TVT.ON Select TVT.
JSR PRINT:
.BYTE TEX
.BYTE CR,LF

Display title:

.BYTE PRINTING DISASSEMBLER'

.BYTE CR,LF,ETX
JSR.SETADS Let user set starting address

and end address.
JSR GOTOSA Set SELECT = Start address.
JSR PR.ON Select the printer.
JSR DSLINE Disassemble one line.
BPL PRLOOP If it wasn't the last line, disassemble the

next one.
RTS Return to caller.

With PR.DIS and TV.DIS, you can disassemble any block of memory, direct¬
ing the disassembly to the screen or to the printer. See Chapter 12 for guidance on
mapping these two disassemblers to function keys in the Visible Monitor.

A TABLE-DRIVEN DISASSEMBLER 133

Chapter 10:

A General MOVE Utility

Many computer programs spend a lot of time moving things from one place to
another. Such programs should be able to call a move utility for most of this work.
A move utility should:

• Be general enough to move anything of any size from any place in memory
to anywhere else,

• Not be upset when the origin block overlaps the destination.
• Have entry points with input configurations convenient to different callers,
• Preserve its inputs,
• Be fast.
This routine will be called often. A calling program doesn't want to spend all its

time here. The cost of that speed is size, because well use straight-line, dedicated
code to handle each of several special cases, but even so this move code will weigh in
at less than 200 bytes. That's less than three percent of the memory available on a
system with 8 K bytes of programmable memory.

Input Configurations

Different callers may find different input configurations convenient, so let's
provide more than one entry point, each requiring different parameters to be set.
The following two subroutine entry points are likely to meet the needs of most
callers;

MOV.EA Move a block, defined by its starting address (SA), its ending

134 BEYOND GAMES

MOVNUM
address (EA), and its destination address (DEST).
Move a block, defined by its starting address, the number of
bytes in the block (NUM), and the destination of the block.

MOV.EA will simply be a “front end" for MOVNUM. It will set NUM = end¬
ing address — starting address of the source block.

Handling Overlap

There will be no problem with overlap if we always move from the leading edge
of the source block — that is, copy up beginning with the highest byte to be moved,
and copy down beginning with the lowest byte to be moved. This way, if a byte in
the source block is overwritten it will already have been copied to its destination.

Going Up?

To avoid overlap, MOVNUM must determine whether it's copying up or
down. Therefore, before moving anything it must see if the destination address is
greater or lesser than the starting address. Then it can branch to MOVE-UP or
MOVE-DOWN as appropriate.

Figure 10.1: Top level of block move.
Flowchart of MOVE.EA and MOV¬
NUM routines.

Using the flowchart of figure 10.1 as
level of MOV.EA and MOVNUM:

guide, let's write source code for the top

A GENERAL MOVE UTILITY 135

GETPTR = 0 This is the input-page pointer.
PUTPTR = GETPTR+2 This is the output-page pointer.

MOV.EA SEC
LDXEA+1
LDA EA
SBC SA
STA NUM
BCS MOVE.l
DEX
SEC

Set NUM = EA — SA

MOVE.l TXA
SBC SA+1
STA NUM+1
BCS MOVNUM Now NUM - EA - SA.

ER.RTN LDA #ERROR If EA less than SA,

RTS return with error code.

MOVNUM LDY#3 Save the 4 zero-page

SAVE LDA GETPTR,Y
PHA
DEY
BPL SAVE

bytes well use.

SEC
LDA SA+1
CMP DEST+1

Is DEST less than START?

BCC MOVEUP If so, well move down.

BNE MOVEDN If not, well move up.

LDA SA SA, destination are in the same
page.

CMP DEST If SA more than destination, well
BCC MOVEUP move down. If SA less than destina¬

tion.
BNE MOVEDN well move up. If they are equal, well

return bearing okay code.

OK.RTN LDY#0 Restore 4 zero-page bytes that were

RESTOR PLA
STA GETPTR,Y
INY

used by the move code.

CPY #4 Restored last byte yet?
BNE RESTOR If not, restore next one. If so,

RTS return, with move complete and zero
page preserved.

NUM .WORD 0 This 16-bit variable holds the number of
bytes to be moved.

136 BEYOND GAMES

Optimizing for Speed

Moving a page at a time is the fastest way to move data, and for large blocks we
can move most of the bytes this way. Therefore, when moving data well move one
page at a time until there is less than a page to move; then well move a byte at a time
until the entire source block is moved. MOVE-UP and MOVE-DOWN must test to
see if they have more or less than a page to move, and then branch to dedicated code
that either moves a page or moves less than a page.

Figure 10.2: Move a block up.
Flowchart of the MOVEUP routine.

MOVE-UP

Using figure 10.2 as a guide, we can write source code for MOVE-UP:

A GENERAL MOVE UTILITY 137

MOVEUP LDANUM+1 More than one page to move?

BEQ LESSUP If not, move less than a page up.
To move more than a page, set the page
pointers GETPTR and PUTPTR to the
highest pages in the source and destina¬
tion blocks. To do this, treat X as the
high byte and Y as the low byte of a
pointer, which well call (X,Y). First set
(X,Y) = NUM - $FF, the relative ad¬
dress of the highest page in the block.

LDYNUM+1 Now Y is high byte of block size.

LDA NUM Now A is low byte of block size.

SEC Prepare to subtract.

SBC #$FF. Now A is a low byte of (block size —
$FF.)

BCS NEXT.l
DEY

NEXT.l TAX Now (X,Y) = NUM - $FF.
X is low byte, Y is high byte of NUM —
$FF.

STY PUTPTR+1
TXA
CLC
ADC SA
STA GETPTR
BCC NEXT.2
INY

Prepare to add.

NEXT.2 TYA
ADC SA+1
STA GETPTR+1 Now GETPTR = SA + NUM - $FF

(the last page in the origin block).

TXA
CLC
ADC DEST
STA PUTPTR
BCC NEXT.3
INC PUTPTR+1

Prepare to add.

NEXT.3 LDA PUTPTR+1
ADC DEST+1
STA PUTPTR+1 Now PUTPTR = DEST + NUM - $FF

(the last page in the destination block).
Now the page pointers (GETPTR and
PUTPTR) point to the last page in, respec¬
tively, the origin and destination blocks.

138 BEYOND GAMES

LDX NUM+1 Load X with number of pages to move.

PAGEUP LDY #$FF Move a page up.

UPLOOP LDA (GETPTR),Y Get a byte from origin block.

STA (PUTPTR),Y Put it in destination block.

DEY Adjust index for next byte down.

BNE UPLOOP Loop if not the last byte.

LDA (GETPTR),Y
STA (PUTPTR),Y

Move last byte.

DEC GETPTR+1
DEC PUTPTR+1

Decrement page pointers.

DEX Still more than a page to move?

BNE PAGEUP If so, move up another page.

LESSUP JSR LOPAGE Set GETPTR, PUTPTR to bottom of
origin and destination blocks.

LDYNUM Set index to number of bytes to be

moved.

SOMEUP LDA (GETPTR),Y
STA (PUTPTR),Y

Move a byte.

DEY
CPY #$FF

About to move last byte?

BNE SOMEUP If not, move another.

JMP OK.RTN If so, return bearing "OK" code.

LOPAGE LDA SA Set page pointers to the bottom

STA GETPTR of the origin and destination

LDA SA+1
STA GETPTR+1
LDA DEST
STA PUTPTR
LDA DEST+1
STA PUTPTR+1

blocks.

RTS Return to caller.

Move-Down: MOVEDN

Figure 10.3 shows an algorithm for moving a block of data down through
memory.

A GENERAL MOVE UTILITY 139

Using figure 10.3 as a guide, we can write source code for the move-down

routine:

MOVEDN JSR LOPAGE

LDY#0

LDX NUM+1
BEQ LESSDN

PAGEDN LDA (GETPTR),Y
STA (PUTPTR),Y
INY

Set page pointers to bottom of origin

and destination blocks.
Y must equal zero whether we move
more or less than a page.
More than one page to move?
If not, move less than a page down.
Move a page down.
Get a byte from origin block
and put it in destination block.
Moved last byte in page?

140 BEYOND GAMES

BNE PAGEDN
INC GETPTR+1

INC PUTPTR+1

Increment page pointers.

DEX Still more than a page to move?
BNE PAGEDN If so, move another page down.
LDY #0 Move less than a page down starting at

the bottom.
LESSDN LDA (GETPTR),Y Get a byte from origin...

STA (PUTPTR),Y and put it in destination block.

INY Adjust index for next byte.

SEC
CPYNUM Moved last byte yet?
BCC LESSDN If not, move another.

JMP OK.RTN If so, return to caller, bearing "OK"
code.

Speed

For large blocks of data, most bytes will be moved by the page-moving code:
PAGE-UP and PAGE-DOWN. Since the processor spends most of its time in these
loops, let's see how long they will take to move a byte. (Appendix A5, Instruction
Execution Times, provides information on the number of cycles required for each
6502 operation.) Ordinarily I would not go into great detail concerning the speed of
execution of a small block of code, but these two loops form the heart of the move
utility, because they move most of the bytes in any large block. By making those
two loops very efficient, we can make the move utility very fast. In fact, these loops
will let us move blocks bigger than one page, at a rate approaching 16 cycles/byte
moved. (By way of a benchmark, that's more than twice as fast as the time required
to move large blocks with MOVIT, a smaller move program published in The First
Book of KIM. * MOVIT, made tiny [95 bytes] to use as little as possible of the KIM's
limited programmable memory, requires at least 33 cycles/bytes moved.)

MOVE.EA and MOVNUM are move utilities because they have input con¬
figurations and performance suitable for many calling programs. But they are not
very convenient to the human user who simply wants to move something. With the
Visible Monitor and the move utility, you can move something from one place to

^Butterfield, et al, The First Book of Kim, Rochelle Park, NJ: Hayden
Book Company, 1977.

A GENERAL MOVE UTILITY 141

another, but you have to know what addresses to set and you have to know the ad-

dress of the move utility itself. ,
That's too much for me to remember. I want a tool, which will know the ad¬

dresses and won't require me to remember them.
When I'm developing programs with the Visible Monitor and I want to move

some data or code from one place to another. I'd like to be able to call up a move
tool with a single keystroke — say "M." It's easier for me to remember for
Move" than it is to remember the address of the move utility and the addresses of its

inputs.^ ^ using the Visible Monitor and I press "M." This invokes the move

tool. The first thing it should do is let me know that it's active. What if I hit the "M"
key by mistake? The computer should let me know that I've invoked a new pro-

§ramit should put up a title: "MOVE TOOL." Then it should let me specify the start,
end, and destination addresses of a given block in memory. When these addresses
are set, the move tool can call MOV.EA, which will actually perform the move,

based on the addresses set by the user. ^ ,
The top level of the move tool is therefore quite simple. Figure 10.4 shows the

flowchart for the following routine:

Figure 10.4: A move tool Flowchart of MOVER routine.

142 BEYOND GAMES

MOVER

MOVER JSR TVT.ON
JSR PRINT:
.BYTE TEX,CR
.BYTE ' MOVE TOOL'
.BYTE CR,LF,LF
.BYTE ETX
JSR SETADS

JSR SET.DA
JSR MOV.EA

RTS

Select screen as an output device.
Put a title on the screen.

Get starting address,
ending address, and
destination address from user.
Move the block specified by those
pointers.
Return to caller, with requested block
moved and with zero page preserved.

Of course, MOVER can work only if we have a routine that lets the user set the
destination address. Let's write such a routine, and well be all set to move whatever
we like, to wherever we want it.

Set Destination Address: SET.DA

SET.DA JSR TVT.ON Select TVT as an output device. All
other selected output devices will echo
the screen output.

JSR PRINT:

.BYTE TEX

.BYTE CR,LF,LF

Put prompt on the screen:

.BYTE "SET DESTINATION ADDRESS "

.BYTE

.BYTE ETX
"AND PRESS Q."

JSR VISMON Call the Visible Monitor, so user can
specify a given address.

DAHERE LDA SELECT Set destination address equal to
STA DEST
LDA SELECT+1
STA DEST+1

address set by the user.

RTS Return to caller.
DEST .WORD 0 Pointer to destination of block to be

moved.

A GENERAL MOVE UTILITY 143

See Chapter 12, Extending the Visible Monitor, to learn how to hook the
move tool into the Visible Monitor by mapping it to a given key. Then to move
anything in memory to anywhere else, you need only strike that key and the move

tool will do the rest.

144 BEYOND GAMES

Chapter I I:

A Simple Text Editor

With the Visible Monitor you can enter ASCII text into memory by placing the
arrow under field 2 and striking character keys. But you must strike two keys for
every character in the message: first the character key, to enter the character into the
displayed address, and then the space bar, to select the next address. Furthermore, if
you want to enter an ASCII space or carriage return into memory, you'll have to
place an arrow under field 1 and enter the hexadecimal representation of the desired
character: $20 for a space; $0D for a carriage return. Then, of course, you'll have to
hit the space bar to select the next address, and the "greater than" key to move the
arrow back underneath field 2, so that you can enter the next character into
memory.

If you only need to enter up to a dozen ASCII characters at a time, then the Vis¬
ible Monitor should meet your needs. When you need to enter longer messages into
memory, you'll find yourself wanting a more suitable tool — a simple text editor.

Text editors come in many different shapes, sizes and formats. A line-oriented

editor, suitable for creating and editing program source files, requires that you enter
and edit text a line at a time. Usually each line must be numbered when it is entered;
then, in order to edit a line, you must first specify it by its line number.

On the other hand, a character-oriented editor allows you to overstrike, insert,
or delete characters anywhere in a given string of characters. Character-oriented
editors are frequently found in word processors for office applications, but don't get
your hopes up; this chapter will not present software nearly as sophisticated as that
available in even the humblest of word processors. However, it will present a very
simple character-oriented editor that will enable you to enter and edit text strings,
such as prompts, anywhere in memory.

A SIMPLE TEXT EDITOR 145

Structure

The text editor will have the three-part structure shown in figure 11.1. From this
we can write source code for the top level of the text editor:

Figure 11.1: Structure of simple text editor.

EDITOR JSR SETBUF

EDLOOP JSR SHOWIT

JSR EDITIT

CLC
BCC EDLOOP

Initialize pointers and variables required
by the editor.
Show the user a portion of the text
buffer.
Let the user edit the buffer or move
about within it.

Loop back to show the current text.

Look familiar? It should. This is essentially the same structure used in the Vis¬
ible Monitor. It's a simple structure, well-suited to the needs of many interactive dis¬

play programs.

SETBUF

The text editor will operate on text in a portion of memory called the text buf¬
fer. Because the editor must be able to change the contents of the text buffer, the buf¬
fer must occupy programmable memory and may not be used for any other pur¬
pose. This exemplifies a problem familiar to programmers: how to allocate memory
in the most effective manner. Memory used to store a program cannot be used at the
same time to store text; nor can memory allotted to the text buffer be used for stor-

146 BEYOND GAMES

ing programs or variables.
How do you get five pounds of tomatoes into a four-pound-capacity sack —>

without crushing the tomatoes or tearing the sack? You don't. If you want to store a
lot of text in your computer's programmable memory, you might not have room for
much of a text editor. On the other hand, an elaborate text editor, requiring a good
deal of programmable memory for its own code, may not leave much room in your
system for storing text.

Therefore, this text editor leaves the allocation of memory for the text buffer to
the discretion of the user. A subroutine called SETBUF sets pointers to the starting
and ending addresses of the text buffer. The rest of the editor then operates on the
text buffer defined by those pointers.

SETBUF sets the starting and ending addresses of the edit buffer. If you always
want to enter and edit text in the same buffer, then substitute your own subroutine
to set the starting and ending addresses to the values you desire. Otherwise, use the
following version of SETBUF, which lets the user define a new text buffer each time
it is called.

For testing purposes, you might even want to set the text buffer completely in¬
side screen memory. This allows you to see exactly what's happening inside the text
buffer.

SETBUF

GETADS

SETBUF

JSR TVT.ON Select TVT.

JSR PRINT: Display "SET UP EDIT BUFFER."
.BYTE TEX,CR,LF,LF
.BYTE 'SET UP EDIT BUFFER'
.BYTE CR,LF,LF,ETX
JSR SET ADS Let user set starting address and end ad¬

dress of edit buffer.
JSR GOTOSA Now SELECT = starting address of edit

buffer.

RTS Return to caller.

This version of SETBUF allows the user to set the text buffer anywhere in mem¬
ory, provided that the ending address is not lower in memory than the starting
address. It returns with the SELECT pointer pointing at the starting address of the
buffer.

A SIMPLE TEXT EDITOR 147

SHOWIT

Now that SETBUF has set the pointers associated with the text buffer, let's
figure out how to display part of that buffer.

Figure 11.2 shows the simple 3-line display to be used by the text editor. "X"
marks the home position of the edit display. Everything in the edit display is relative
to the home position. Thus, to move the edit display about on your screen (ie: from
the top of the screen to the bottom of the screen), you need only change the home

position, which is set by SHOWIT.

LINE 1: X

LINE 2: SOME CHARACTERS FROM TEXT BUFFER GO HERE

LINE 3: M t HHHH

Figure 11.2: Three-line display of simple text editor.

Line 1 is entirely blank. Its only purpose is to separate the text displayed in line

2 from whatever you may have above it on your screen.
Line 2 displays a string of characters from the edit buffer. The central character

in line 2 is the current character. The current character is indicated by an upward-
pointing arrow as in line 3. The address of the current character is given by the four
hexadecimal characters represented by "HHHH" in line 3.

The letter "M" in line 3 shows you where a graphic character will indicate the
current mode of the editor.

Modes

This editor will have two modes: overstrike mode and insert mode. In over¬
strike mode you overstrike, or replace, the current character with the character from
the keyboard. In insert mode, you insert the keyboard character into the text buffer
just before the current character. How one sets these modes, a function for the
subroutine EDITIT, will be discussed later. But SHOWIT must know the current
mode in order to display the proper graphic in line 3 of the editor display.

Since we're going to have two modes, let's keep track of the current mode of the
editor with a 1-byte variable called EDMODE. Well assign the following values to

EDMODE:

148 BEYOND GAMES

EDMODE = 0 when the editor is in overstrike mode.
EDMODE — 1 when the editor is in insert mode.

Any other value of EDMODE is undefined and therefore illegal. If SHOWIT
should find that EDMODE has an illegal value, then it should set EDMODE to some
legal default value — say, zero. That would make overstrike the default mode for
the editor.

We'll also need two graphics characters, INSCHR and OVRCHR, to indicate in¬
sert and overstrike modes, respectively. In this chapter, the character to indicate a
given edit mode will simply be the first initial of the mode name: "0” for overstrike
mode, "I" for insert mode.

SHOWIT

SHOWIT JSR TVPUSH Save the zero-page bytes we'll use.

JSR TVHOME Set home position of the
edit display.

LDX TVCOLS Clear 3 rows for the
LDY #3
JSR CLR.XY

edit display.

JSR TVHOME Restore TV.PTR to home position of
edit display.

JSR TVDOWN Set TV.PTR to beginning of

JSR TVPUSH line 2 and save it.

JSR LINE.2 Display text in line 2.
JSR TV.POP Set TV.PTR to beginning
JSR TVDOWN of line 3.
JSR LINE.3 Display line 3.
JSR TV.POP Restore zero-page bytes used.

RTS Return to caller, with edit display on
screen, rest of screen unchanged, and

zero page preserved.

Of course, SHOWIT can work only if it can call a couple of routines (LINE.2
and LINE.3) to display lines 2 and 3 of the editor display, respectively. Let's write

those routines.

A SIMPLE TEXT EDITOR 149

Display Text Line

To display the text line, we simply need to copy a number of characters from
the text buffer to the second line of the editor display. Since the screen is TVCOLS
wide, we should display TVCOLS number of characters in such a way that the cen¬
tral character in the display is the currently selected character. We can do that if we
decrement SELECT by TVCOLS/2 times, and then display TVCOLS number of

characters:

LINE.2

LINE.2

LOOP.l

LOOP.2

JSR PUSHSL Save SELECT pointer.

LDA TVCOLS Set X equal

LSR A to half the width

TAX of the screen.

DEX
DEX
JSR DEC.SL Decrement SELECT X times.

DEX
BPL LOOP.l
LDA TVCOLS Initialize COUNTR. (We're

STA COUNTR going to display TVCOLS characters.)

JSR GET.SL Get a character from buffer.
JSR TV.PUT Put it on screen.

JSR TVSKIP Go to next screen position.

JSR INC.SL Advance to next byte in buffer.

DEC COUNTR Done last character in row?

BPL LOOP.2 If not, do next character.

JSR POP.SL Restore SELECT from stack.

RTS Return to caller.

Display Status Line

Line 3 of the editor display provides status information: identifying the current
mode of the editor, pointing at the current character in line 2 of the edit display, and

providing the address of the current character.

150 BEYOND GAMES

LINE.3

LINE.3 LDA TVCOLS
LSR A A = TVCOLS/2
SBC #2 A = (TVCOLS/2) - 2
JSR TVPLUS Now TV.PTR is pointing 2 characters to

the left of center of line 3 of the edit
display.

LDA EDMODE What is current mode?
CMP #1 Is it insert mode?
BNE OVMODE If not, it must be overstrike mode.
LDA #INSCHR
CLC
BCC TVMODE

If so, load A with the insert graphic.

OVMODE LDA #OVRCHR Load A with the overstrike graphic.
TVMODE JSR TV.PUT

LDA #2
Put mode graphic on screen.

JSR TVPLUS Now TVPTR is pointing at the center of
line 3 of the edit display.

LDA ARROW Display an up-arrow here,
JSR TV.PUT
LDA #2

pointing up at the current character.

JSR TVPLUS Now TV.PTR is pointing at the position
reserved for the address of the current
character.

LDA SELECT+1 Display address of current
JSR VUBYTE
LDA SELECT
JSR VUBYTE

character.

RTS Return to caller.

We've chosen to define the editor's current character as the character pointed to
by SELECT. We've already developed some subroutines that operate on the SELECT
pointer and on the currently selected byte, so we won't have to write many new
editor utilities; instead, we can use many of the SELECT utilities presented in earlier
chapters.

Edit Update

Now we can display the three lines of the edit display. What else must the editor
do? Oh, yes: it must let us edit, Here's a reasonably useful, if small, set of editor
functions;

A SIMPLE TEXT EDITOR 151

Allow the user to move forward through the message.
Allow the user to move backward through the message.
Allow the user to overstrike the current character.
Allow the user to delete the current character.
Allow the user to delete the entire message.
Allow the user to insert a new character at the current character position.
Allow the user to change modes from insert to overstrike and back again.

Print the message.
Allow the user to terminate editing, thus causing the editor to return to its

caller.

What keys will perform these functions? Ill leave that up to you by treating the
editor function keys as variables and keeping them in a table called EDKEYS (see
Appendix Cll). To assign a given function to a given key, store the character code
generated by that key in the appropriate place in the table:

EDITIT

EDITIT JSR GETKEY Get a keystroke from the user.

CMP QUITKY Is it the “quit" key?
BNE DO.KEY If not, do what the key requires.

PHA

JSR GETKEY

Save the key on the stack. If the user
gives us 2 "quit" keys in a row, we
should exit the editor. So let's see if
another QUITKY follows:

CMP QUITKY Is this key a "quit" key?

BNE NOTEND If not, then this is not the end of the
edit session, so we'd better handle both
of those keys, and in their original
order.
End the edit session:

ENDEDT PLA Pop first "quit" key from stack.

PLA Pop from stack the return address to

PLA the editor's top level.

RTS Return to the editor's caller.

NOTEND STA TEMPCH Save the key that followed the "quit"
key.

PLA Pop first 'quit" key from stack.

JSR DO.KEY Handle it.

LDA TEMPCH Restore to the accumulator the key that
followed the "quit" key.

152 BEYOND GAMES

DO.KEY

DO. END
IFNEXT

IFPREV

IF. RUB

IF.PRT

IFFLSH

CHARKY

STRIKE

CMP MODEKY
BNE IFNEXT
DEC EDMODE
BPL DO.END
LDA #1
STA EDMODE
RTS
CMP NEXTKY
BNE IFPREV

JSR NEXTCH

RTS
CMP PREVKY
BNE IF.RUB
JSR PREVCH

RTS
CMP RUBKEY
BNE IF.PRT
JSR DELETE
RTS
CMP PRTKEY
BNE IFFLSH
JSR PRTBUF
RTS
CMP FLSHKY
BNE CHARKY
JSR FLUSH
RTS

LDX EDMODE
BEQ STRIKE
JSR INSERT
RTS
JSR PUT.SL

"DO.KEY" does what the key in the ac¬
cumulator requires:
Is it the "change mode" key?
If not, perform the next test.
If so, change the editor's mode...

and return.
Is it the "next" key?
If not, perform the next test.
If so, advance the current position by
one character...
and return.
Is it the "previous" key?
If not, perform the next test.
If so, back up the current position by
one character...
and return.
Is it the "delete" key?
If not, perform the next test.
If so, delete the current character...
and return.
Is it the "print" key?
If not, perform the next test.
If so, print the buffer...
and return.
Is it the "flush" key?
If not, perform the next test.

If so, flush all text in the edit buffer...
and return.
OK. It's not an editor function key, so it
must be a regular character key. There¬
fore, if we're in overstrike mode we'll
overstrike the current character with the
new character, and if we're in insert
mode well insert the new character at
the current character position.
Are we in overstrike mode?
If so, overstrike the character.
If not, insert the character...
and return.
Put the character into the currently
selected address, which is the address of

A SIMPLE TEXT EDITOR 153

JSR NEXTSL

the current character.
Advance to the next character position.

RTS and return to caller.

INSERT PHA Save the character to be inserted, while

JSR PUSHSL

we make space for it in the edit buffer.,*
Push the address of the current character

LDA SA+1

onto the stack.
Push starting address of the buffer

PHA onto stack.

LDA SA
PHA
LDA EA+1 Push ending address of the buffer

PHA onto stack.

LDA EA
PHA
JSR SAHERE Set SA “ SELECT, so current character

JSR NEXTSL

will be the start of the block well move.
Advance to next character position in

BMI ENDINS
the text buffer.
If we're at the end of the buffer, well

JSR DAHERE

overstrike instead of inserting.
Set DEST = SELECT, so destination of

LDA EA

block move will be 1 byte above block's

start address (ie, well move a block up

by 1 byte).
Decrement end address

BNE NEXT so we won't move text

DEC EA+1 beyond the end of

NEXT DECEA the text buffer.

OPENUP JSR MOV.EA

Now the starting address is the current
character, the destination address is the
next character, and the ending address is
one character shy of the last character in
the buffer. Were ready now to move a
block.
Open up 1 byte of space at the current

ENDINS PLA

character's location, by moving to DEST
the block specified by SA and EA.
Restore EA so it points to the last byte

STAEA in the edit buffer.

PLA
STA EA+1
PLA Restore SA so it points to the first byte

STASA in the edit buffer.

154 BEYOND GAMES

PLA
STASA + 1
JSR POP.SL Restore SELECT so it points to the cur¬

rent character.
PLA Reload the accumulator with the

character to be inserted. Since we've
created a 1-byte space for this character,
we need only overstrike it.

JSR STRIKE
RTS Return to caller.

EDITIT looks like it will do what we want it to do — provided that it may call
the following (as yet unwritten) subroutines:

NEXTCH — Select next character.

® PREVCH— Select previous character.
® FLUSH — Flush the buffer.
• PRTBUF — Print the buffer.

Let's write them.

Select Next Character

We want to be able to advance through the text buffer, but we don't want to be
able to go beyond the end of the buffer or beyond the end of the message. The end of
the message will be indicated by one or more ETX (end-of-text) characters. ETX
characters will fill from the last character in the message to the end of the buffer. So
if the current character is an ETX, we shouldn't be allowed to advance through
memory. Or, if the current character is the last byte in the edit buffer, we shouldn't
be allowed to advance through memory. But if we aren't at the end of our text for
one reason or another, select the next character by calling the NEXTSL subroutine:

NEXTCH JSR GET.SL
CMP #ETX
BEQ AN.ETX

NEXTCH

Get currently selected character.
Is it an ETX?
If so, return to caller, bearing a negative
return code.

A SIMPLE TEXT EDITOR 155

JSR NEXTSL
RTS

AN.ETX LDA #$FF

RTS

If not, select next byte in the buffer, and
return positive if we incremented
SELECT; negative if SELECT already
equaled EA.
Since we are on an ETX, we won't incre¬
ment
SELECT; well just return with a
negative return code.

Select Previous Character

The PREVCH (select-previous-character routine) should work in a manner
similar to that used by NEXTCH. NEXTCH increments the SELECT pointer and
returns plus, unless SELECT is greater than or equal to EA, in which case NEXTCH
preserves SELECT and returns minus. Conversely, PREVCH should decrement
SELECT and return plus, unless SELECT is less than or equal to SA, in which case it

should preserve SELECT and return minus:

PREVCH

PREVCH SEC Prepare to compare.

LDA SA+1
CMP SELECT+1

Is SELECT in a higher page than SA?

BCC SL.OK If so, SELECT may be decremented.

BNE NOT.OK If SELECT is in a lower page than SA,
then it's not okay. Well have to fix it.
SELECT is in the same page as SA.

LDA SA
CMP SELECT

Is SELECT greater than SA?

BEQ NO.DEC If SELECT = SA, don't decrement it.

BNE NOT.OK If SELECT is less than SA, it's not okay,
so well have to fix it.

SL.OK JSR DEC.SL SELECT is OK, because it's greater than
SA. Thus, we may decrement it and it
will remain in the edit buffer.

LDA #0 Set a positive return code...

RTS and return.

NOT.OK LDA SA Since SELECT is less than SA, it is

STA SELECT not even in the edit buffer. So give

LDA SA+1 SELECT a legal value, by setting
it - SA.

156 BEYOND GAMES

ST A SELECT+1
LDA #0
RTS.

NO.DEC LDA #$FF
RTS

Set a positive return code...
and return.
SELECT = SA, so change nothing. Set
a negative return code and return.

Flush Buffer

To flush the buffer, well just fill the buffer with ETX characters:

FLUSH

FLUSH JSR GOTOSA Set SELECT to the first character posh
tion in the buffer.

FLOOP LDA #ETX Load accumulator with an ETX
character...

JSR PUT.SL and put it into the buffer.
JSR NEXTSL Advance to next byte.

BPL FLOOP If we haven't reached the last byte in the
buffer, let's repeat the operation for this

byte.

JSR GOTOSA If we have reached the last byte in the
buffer, let's set SELECT to the beginning
of the buffer...

JSR RTS and return.

Print Buffer

To print the buffer, we must print the characters in the edit buffer up to, but not
including, the first ETX. Even if there is no ETX in the buffer, we must not print

characters from beyond the end of the buffer:

PRTBUF

PRTBUF JSR GOTOSA
PRLOOP JSR GET.SL

CMP #ETX

BEQ ENDPRT

Set SELECT to the start of the buffer.
Get the currently selected character.

Is it an ETX character?

If so, stop printing and return.

A SIMPLE TEXT EDITOR 157

JSR PR.CHR

JSR NEXTCH

BPL PRLOOP

ENDPRT RTS

If not, print it on all currently selected

devices.
Advance SELECT by 1 byte within the

buffer.
If we haven't reached the end of the buf¬
fer, let's get the next character from the

buffer, and handle it.
Since we reached the end of the buffer,

let's return.
When this routine returns, the current
character is at the end of the message.

Delete Current Character

To delete the current character, we'll take all the characters that follow it in the
text buffer and move them to the left by 1 byte. Here's some code to implement such

behavior:

DELETE JSR PUSHSL
LDA SA+1
PHA
LDA SA
PHA
JSR DAHERE

JSR NEXTSL

JSR SAHERE

JSR MOV.EA

PLA
STASA
PLA
STA SA+1

Save address of current character.
Save buffer's start address.

Set DEST = SELECT, because well
move a block of text down to here, to
close up the buffer at the current
character.
Advance by 1 byte through text buffer,
if possible.
Set SA = SELECT, because the block
well move starts 1 byte above the cur¬
rent character. (Note: the end address of
the block well move is the end address

of the text buffer.)

Move block specified by SA, EA, and

DEST.
Restore initial SA (which
is the start address of the
text buffer, not of the block
we just moved).

158 BEYOND GAMES

JSR POP.SL Restore SELECT — address of the cur¬
rent character.

RTS Return to caller.

Thats the last of the utilities we need. We now have enough code to comprise a
simple text editor. Appendices CIO and Cll are listings of this text editor, showing
key assignments that work on an Ohio Scientific C-IP. If you have a different system
or prefer your editor functions mapped to different keys, simply change the values
of the variables in the key table. If you don't want to have a given function, then for
that function store a key code of zero. You'll find this editor very handy for entering
tables of ASCII characters into memory, and for entering, editing, and printing
short text strings such as titles for your hexdumps and disassembler listings.

A SIMPLE TEXT EDITOR 159

Chapter 12:

Extending the Visible Monitor

At this point you have the Visible Monitor, the print utilities, two hexdump
tools, a table-driven disassembler, a move tool, and a simple text editor. Wouldn't it
be nice if they were all combined into one interactive software package? Then you
could call any tool or function with a single keystroke. Since the Visible Monitor
already uses several keys (0 thru 9; A thru F; G; Space; Return; and Rubout or
Clear-Screen), we'll have to map these new functions into unused keys.

Here's a list of keys and the functions they will have in the extended monitor;

H Call a HEXDUMP tool (TVDUMP if the printer is not selected;
PRDUMP if the printer is selected).

M Call MOVER, the move tool.
P Toggle the printer flag.

T Call the text editor.

U Toggle the user output flag.
? Call the disassembler (TV.DIS if the printer is not selected; PR.DIS if the

printer is selected).

With this assignment of keys to functions, we can select or deselect the printer
at any time just by pressing "P," and likewise the user-driven output device just by
pressing "U." We can print or display a hexdump just by pressing "H" and print or
display a disassembly just by pressing "7" (which is almost mnemonic if we think of
the disassembler as an answer to our question, "What's in the machine?"). We can
move anything from anywhere to anywhere else by pressing "M" for move, and we

can enter and edit text just by pressing "T" for text editor.

160 BEYOND GAMES

Here's some code to provide these features. Since we want to extend the
monitor, this subroutine is called EXTEND:

EXTEND

When EXTEND is called by the Visible

Monitor's UPDATE routine, a character
from the keyboard is in the ac¬
cumulator.

EXTEND CMP #'P Is it the "P" key?
BNE IF.U If not, perform the next test.

LDA PRINTR If so, toggle the

EOR #$FF
STA PRINTR

printer flag...

RTS and return to caller.

IF.U CMP#U Is it the "IT key?

BNE IF.H If not, perform the next test.

LDA USR.FN If so,

EOR #$FF toggle the user-output
STA USR.FN flag...
RTS and return.

IF.H CMP #'H Is it the "H" key?
BNE IF.M If not, perform the next test.

LDA PRINTR Is the printer selected?

BNE NEXT.l If so, print a hexdump.

JSR TVDUMP If not, dump to screen...

RTS and return.

NEXT.l JSR PRDUMP Print a hexdump...

RTS and return.

IF.M CMP #M Is it the "M" key?
BNE IF.DIS If not, perform the next test.

JSR MOVER If so, call the move tool.

RTS ...and return.

IF.DIS CMP #'? Is it the "?" key?
BNE IF.T If not, perform the next test.

LDA PRINTR Is the printer selected?

BNE NEXT.2 If so, print a disassembly.

JSR TV.DIS If not, dump to screen...
RTS and return.

NEXT.2 JSR PR.DIS Print a disassembly...

RTS and return.

IF.T CMP #'T Is it the "T" key?

BNE EXIT If not, return.

EXTENDING THE VISIBLE MONITOR 161

EXIT

JSR EDITOR
RTS
RTS

If so, call the text editor,.,

and return.
Extend this subroutine by adding more
test-and-branch code here.

The only remaining step is to modify the Visible Monitor s UPDATE routine so
that it calls EXTEND, rather than DUMMY, before it returns. Currently, the Visible
Monitor's UPDATE routine calls DUMMY just before it returns, with the bytes $20,
$10, and $10 at addresses $13D1, $13D2, and $13D3, respectively. To make the Visi¬
ble Monitor's UPDATE routine call EXTEND (instead of DUMMY), you must

change $13D2 from $10 to $B0.
You can change this byte with the Visible Monitor itself, provided that you are

very careful not to touch any key except the keys that are legal to the unextended
Visible Monitor. Once you have changed $13D2, you may strike any key, but while
you are changing $13D2, striking a key that is not legal within the unextended Visi¬
ble Monitor will cause the Visible Monitor to crash. Be careful. Once you have
changed $13D2, try out your new extensions of the Visible Monitor by pressing the

now legal keys: "H," 'M," "P," "U," and T.'

162 BEYOND GAMES

Chapter 13:
Entering the Software into
Your System

Chapters 5 thru 12 present software that will do useful work for you, but only if
you can get it into your computer's memory. How you do that will depend on the
system you have.

If you have an Apple II, you have an extended machine-language monitor built
into your system. If the monitor doesn't come up on RESET, you can invoke it from

BASIC with the following BASIC command:

POKE 0,0:CALL 0 [RETURN]

(The string "[RETURN]" means press the carriage return key.)
This writes a 6502 BRK instruction into location $0000, and then executes a call

to a machine-language subroutine at location $0000. The 6502, upon encountering

the BRK instruction, will pass control to the Apple II ROM monitor. You'll know
you're in the Apple II monitor because you'll see an asterisk (*) on the screen. Your
Apple II documentation should tell you how to use this monitor to enter data into
memory, dump memory, etc.

The Ohio Scientific C-IP has a much simpler monitor than the Apple II built in¬
to its ROM (read-only memory). Press BREAK on the Ohio Scientific C-IP and then
press "M." You'll get the ROM monitor display and can use the ROM monitor to
enter hexadecimal object code into memory. Unfortunately, although the Ohio
Scientific ROM monitor lets you enter a machine-language program into memory
by hand, or even from a cassette file in the proper format, it provides no facility for

ENTERING THE SOFTWARE INTO YOUR SYSTEM 163

recording a machine-language program onto a cassette. So unless you plan to key
the Visible Monitor into memory and then leave your computer on forever, you're
out of luck. However, you can SAVE a BASIC program on cassette, and then
LOAD it from cassette. And that's the key: we'll use the OSI C-lP's ROM BASIC in¬
terpreter to help get machine-language programs into memory.

And what if you have an Atari or a PET Computer? Each of these systems fea¬
tures a BASIC interpreter in ROM (read-only memory), but lacks a machine-lan¬
guage monitor. How can you enter hexadecimal object code into memory using only
a BASIC interpreter? Perhaps more importantly, even if we manage to enter that ob¬

ject code into memory, how can we save that object code onto a cassette? If all we
have is a BASIC interpreter, the simplest solution is to make our object code look

like a BASIC program.
That's not so hard. A BASIC program may contain DATA statements, so a

simple BASIC program can contain a number of DATA statements, where the
DATA statements actually represent, in decimal, the values of successive bytes in
the object code. Then the BASIC program can READ those DATA statements and
POKE the values it finds into the appropriate section of memory.

Using BASIC to Load Machine Language

The software in this book can be entered into your computer by RUNning just
such a series of BASIC programs. Each of these programs consists of an OBJECT
CODE LOADER followed by some number of DATA statements. The first two
DATA statements specify the range of DATA statements that follow. Each of the
following DATA statements contains ten values: the first value is the start address at

which object code from the line is to be loaded; the next eight values represent bytes
to be loaded into memory, beginning at the specified address; and the tenth value is
the checksum. The checksum is simply the total of the first nine values in the DATA
statement. Of these ten values, the first and the tenth will always be greater than

4000, and the others will always be less than 256.
Appendices El through Ell contain this book's object code in the form of such

DATA statements. You must type each of these DATA statements into your com¬
puter, but the BASIC OBJECT CODE LOADER is designed to let you know if
you've made a mistake. It won't catch any error you might make while typing, but it
will catch the most likely errors. How? The answer is in the checksum. If you make a
mistake while typing in one of these DATA lines, the checksum will almost certainly
fail to match the sum of the address and the 8 bytes in the line. Then, when the
OBJECT CODE LOADER detects a checksum error, it will identify the offending
data statement by printing its line number as well as the address specified by the
offending line.

The object code loader will use the following variables:

164 BEYOND GAMES

A

BYTE

CHECK
FIRST
LAST
LINE

SUM

TEMP

The address specified by a data line. Object code from that data
line is to be loaded into memory beginning at that address.
An array of DIMension 8, containing the values of 8 consecutive
bytes of object code as specified by a data line.
The checksum specified by a data line.
The number of the first DATA statement containing object code.
The number of the last DATA statement containing object code.
A line counter, tracking the number of data lines of object code
already loaded into memory.

The calculated sum of the 8 bytes of object code and the address
specified by a given data line. If SUM equals the checksum specified
by that data line, then the data is probably correct.
A temporary variable.

Here is the object code loader:

100
110

120
130
140
150
160
170
180
190
200
210
220
230
240
300
310
320
321
330
340
341
350
360
370
380

REM
REM
DIM BYTE(8)
READ FIRST
REM
READ LAST
REM
FOR LINE=FIRST TO LAST
GOSUB 300
NEXT LINE

PRINT "LOADED LINES",FIRST
END
REM
REM
REM
READ A
SUM=A
FOR J=1 TO 8
REM
READ TEMP: BYTE(J)=TEMP
SUM=SUM + BYTE(J)
REM
NEXT J
REM
READ CHECK
IF SUM < > CHECK THEN 500

OBJECT CODE LOADER by Ken Skier

:REM Initialize BYTE array.
:REM Get the line number of the first
DATA statement containing object code.
:REM Get the line number of the last
DATA statement containing object code.
:REM Read the specified DATA lines.
:REM Load next data line into memory.
:REM If not done, read next DATA line.

/THROUGH",LAST, "SUCCESSFULLY."
:REM If done, say so.

Subroutine at 300 handles one
DATA statement.
:REM Get address for object code.
:REM Initialize calculated sum of data.
:REM Get 8 bytes of object code from
data.
:REM Put them in the byte array, and
:REM add them to the calculated sum of
data.
:REM Now we have the 8 bytes, and we
have calculated the sum of the data.
:REM Get checksum from data line.
:REM If checksum error, handle it.

ENTERING THE SOFTWARE INTO YOUR SYSTEM 165

390 FOR J=1 TO 8 :REM Since there is no checksum error.

400 POKE A +J—1,BYTE(J) :REM poke the data into the specified
410 NEXT J :REM portion of memory,

420 RETURN :REM and return to caller.

430 REM
440 REM Checksum error-handling code follows.
500 PRINT "CHECKSUM ERROR IN DATA LINE",LINE
510 PRINT "START ADDRESS GIVEN IN BAD DATA LINE IS", A
520 END
530 REM The next two DATA statements specify

540 REM the range of DATA statements that

550 REM contain object code.

570 REM
600 DATA ???? :REM This should be the number of the

610 REM first DATA statement containing object

611 REM code.

612 REM
620 DATA ???? :REM This should be the number of the

630 REM last DATA statement containing object

631 REM code.

Once you've entered the BASIC OBJECT CODE LOADER into your
computer's memory, SAVE it on a cassette. Remember that by itself the BASIC
OBJECT CODE LOADER can do nothing; it needs DATA statements in the proper
form to be a complete, useful program. When you're ready to create such a pro¬
gram, LOAD the BASIC OBJECT CODE LOADER from cassette back into
memory. Now you're ready to append to it DATA statements from one of the E Ap¬

pendices — for example, from Appendix El. Do not append DATA statements from
more than one appendix to the same BASIC program. Append as many DATA lines
as you can, without using memory above $0FFF (decimal 4095). You can insure that
you don't run over this limit by setting 4095 as the top of memory available to your
system's BASIC interpreter. How do you set the top of memory available to the
BASIC interpreter? That varies from system to system, so consult the B Appendix
for your system.

Before you can append to the OBJECT CODE LOADER all the DATA
statements from Appendix El, your BASIC interpreter may give you an OUT OF
MEMORY error (MEMORY FULL). When that happens, delete the last DATA line
you appended to the OBJECT CODE LOADER. Let's say you've appended DATA

166 BEYOND GAMES

lines 1000 thru 1022 when you get an OUT OF MEMORY error. Delete DATA line
1022. Now enter the line numbers of the first and last of the object code DATA
statements into DATA lines 600 and 620, like this:

600 DATA 1000
620 DATA 1021

DATA lines 600 and 620, the very first DATA lines in your program, tell the
BASIC OBJECT CODE LOADER how many DATA lines of object code follow.
Now the OBJECT CODE LOADER can "know" how many DATA lines to read,
without reading too few or too many. In this case, DATA lines 600 and 620 tell the
OBJECT CODE LOADER that the object code may be found in DATA lines 1000

thru 1021.
Note that DATA lines 600 and 620 each contain one value, whereas the remain¬

ing DATA lines each contain ten values.
Now you are ready to RUN the OBJECT CODE LOADER. Unless you re a bet¬

ter typist than I am, you probably made some mistakes while typing in the DATA
lines from Appendix El. Don't worry; the incorrect data will not be blindly loaded
into memory. If the BASIC OBJECT CODE LOADER detects a checksum error, it
will tell you so, like this:

CHECKSUM ERROR IN DATA STATEMENT 1012
START ADDRESS GIVEN IN BAD DATA LINE IS 4442

This means that data statement 1012 has a checksum error: ie, bad data. To
help you double check, the second line of the error message specifies the start ad¬
dress given by the bad data line: this is the first number in the offending data line.
These two items of information should make it easy for you to find the bad data
line—just look for the DATA statement whose line number is 1012 and whose first
value is 4442. That's the DATA statement you entered incorrectly. Now you need
only eyeball the ten numbers in that line, comparing them to the corresponding
DATA statement in Appendix El, and you should quickly find the number or
numbers you entered incorrectly. Fix that DATA statement, and RUN the LOADER
again.

When you have entered all of the DATA statements correctly, RUNning the
LOADER will load the object code they specify into memory. The OBJECT CODE
LOADER will then print:

LOADED LINES aaaa THROUGH bbbb SUCCESSFULLY

ENTERING THE SOFTWARE INTO YOUR SYSTEM 167

where 'aaaa' is the number of the first DATA line of object code, and 'bbbb' is the
number of the last DATA line of object code in the program. This message tells you
that the BASIC OBJECT CODE LOADER has read and POKE'd the indicated range
of DATA statements into memory.

When you see this message, you have verified the program, so SAVE it on a
cassette. Then make up a new BASIC program, containing the OBJECT CODE
LOADER and the next group of DATA statements from an E Appendix. (Remember
not to append DATA lines from more than one E Appendix to the same BASIC pro¬
gram.) Store in lines 600 and 620 the line numbers of the first and last DATA
statements you copied from the E Appendix. Verify and SAVE this program as well,
and then continue in this manner until you have entered, verified, and SAVE'd
BASIC programs containing all of the DATA statements in Appendices El thru E10,
as well as the DATA statements in the E Appendix containing system data for your
computer (one of the Appendices Ell thru E14). RUNning all of those BASIC pro¬
grams will then enter all of the software presented in this book into your computer's
memory.

At this point, you should be ready to transfer control from your computer's
BASIC interpreter to the VISIBLE MONITOR.

Activating the Visible Monitor

Once you have entered the object code for the Screen Utilities, the Visible
Monitor, and the System Data Block into your system, you can activate the Visible
Monitor by causing the 6502 in your computer to execute a JSR (jump to subroutine)
to $1207.

Using the Ohio Scientific C-IP ROM monitor, you can activate the Visible
Monitor simply by typing:

1207G

Using the Apple II ROM monitor, you can call the Visible Monitor with the
command:

G1207 [RETURN]

Using the Atari 400 or 800 with its BASIC cartridge plugged in, you can invoke
the Visible Monitor with the BASIC command:

168 BEYOND GAMES

X=USR(4615) [RETURN]

In Atari BASIC, you can call a machine-language subroutine by passing the ad¬
dress of that subroutine as a parameter to the USR function. Since $1207 is 4615 in
decimal, the command X=USR(4615) causes Atari BASIC to call the subroutine at
$1207. (The value returned by that subroutine will then be stored in the BASIC
variable X — not in the 6502's X register. But that doesn't concern us because the
Visible Monitor isn't designed to return a value to its caller.)

Using the PET 2001, you can invoke the Visible Monitor from BASIC in the im¬
mediate mode with the following BASIC command:

SYS (4615)

When you press (RETURN), you'll see the Visible Monitor display, because SYS
(4615) causes BASIC to call the subroutine at address 4615 decimal, which is
$1207—the entry point for the Visible Monitor.

If and when you press "Q" to quit the Visible Monitor, the Visible Monitor will
return to its caller — PET BASIC. (The Visible Monitor doesn't leave much room for
a PET BASIC program, since your BASIC program and its arrays, variables, etc
cannot require memory beyond $0FFF, but the Visible Monitor should work very
well with a small PET BASIC program. In any case, it's reassuring to have a new
program such as the Visible Monitor return to a familiar one such as the PET BASIC
interpreter.)

Once you have activated the Visible Monitor, you should see its display on the
screen. If you don't see such a display, then the Visible Monitor has not been entered
properly into your system's memory; perhaps you failed to enter the display code

properly.
If you do see the Visible Monitor display on the screen, press the space bar. The

display should change — specifically, the displayed address should increment, and
fields 1 and 2, immediately to the right of the displayed address, may also change.

If nothing changes when you press the space bar, then the display code prob¬
ably works fine, but you failed to enter the UPDATE code properly.

If the space bar does change the display, then test out the other functions of the
Visible Monitor: press RETURN to decrement the selected address; press hexa¬
decimal keys to select a different address; then select an address somewhere in screen
memory and place new data into that address. If you picked a place in display mem¬
ory that is not cleared by the Visible Monitor (ie: a place not in the top five rows of
the screen), then you should be able to place arbitrary characters on the screen just
by using the Visible Monitor to store arbitrary values in the selected address.

If your Visible Monitor fails to perform properly, you may have entered it into
memory incorrectly. Compare the DATA statements you appended to the OBJECT

ENTERING THE SOFTWARE INTO YOUR SYSTEM 169

CODE LOADER with the DATA statements in the E Appendices. Remember: if
even 1 byte is entered incorrectly, then in all likelihood the Visible Monitor will fail
to function.

To extend the Visible Monitor as described in Chapter 12, store a $BO in ad¬
dress $13D2, To disable the features described in Chapter 12, store a $10 in address
$13D2. Now you're really getting your hands on the machine, reaching into memory
and operating on the bytes, and with that kind of control, you can do almost
anything.

NOTE:
The author intends to provide the software in this book for sale on cassettes

compatible with the Apple II, Atari, Ohio Scientific, and PET computers. If you
prefer to load your software from cassette, rather than enter it in by hand, contact
the author through BYTE Books.

&

170 BEYOND GAMES

Appendix Al:
Hexadecimal Conversion Table

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 00 000

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 158 2304 36864

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

Code Char

Appendix A2:
ASCII Character Codes

Code Char

00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
OD CR
OE SO
OF SI

10 DLE
11 DCl
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
IB ESC
1C FS
ID GS
IE RS
IF US

Code Char

20 SP
21 !
22
23 #
24 $
25 %
26 &
27
28 (
29)
2A
2B +
2C
2D
2E
2F /

30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D
3E >
3F ?

Code Char

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D 1
5E A
5F _

60 \

61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C 1
6D m
6E n
6F 0

70 P
71 q
72 r
73 s
74 t
75 u
76 V
77 w
78 X

79 y
7A z
7B f

7C 1 1
7D 1
7E ~
7F DEL

172 BEYOND GAMES

Appendix A3:
6502 Instruction Set — Mnemonic List

ADC Add Memory to Accumulator with Carry

AND "AND" Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator

BMI Branch on Result Minus

BML Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Register X

CPY Compare Memory and Register Y

DEC Decrement Memory

DEX Decrement Register X

DEY Decrement Register Y

EOR '"Exclusive Or" Memory with Accumulator

INC Increment Memory

INX Increment Register X

INY Increment Register Y

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Register X with Memory

LDY Load Register Y with Memory
LSR Shift Right One Bit (Memory or Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

PH A Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)

ROR Rotate One Bit Right (Memory or Accumulator)

RTI Return from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory

STX Store Register X in Memory

STY Store Register Y in Memory

TAX Transfer Accumulator to Register X

TAY Transfer Accumulator to Register Y

TSX Transfer Stack Pointer to Register X

TXA Transfer Register X to Accumulator

TXS Transfer Register X to Stack Pointer

TYA Transfer Register Y to Accumulator

174 BEYOND GAMES

Appendix A4:
6502 Instruction Set — Opcode List

00 - BRK

01 — ORA — (Indirect,X)

02 — Future Expansion

03 — Future Expansion

04 — Future Expansion

05 — ORA — Zero Page

06 — ASL — Zero Page

07 — Future Expansion

08 — PHP

09 — ORA — Immediate

0A — ASL — Accumulator

0B — Future Expansion

0C — Future Expansion

qD — ORA — Absolute

0E — ASL — Absolute

OF — Future Expansion

10 — BPL

11 — ORA — (Indirect),Y

12 — Future Expansion

13 — Future Expansion

14 — Future Expansion

15 — ORA — Zero Page,X

16 — ASL — Zero Page,X

17 — Future Expansion

18 — CLC

19 — ORA — Absolute,Y

1A — Future Expansion

IB — Future Expansion

1C — Future Expansion

ID — ORA — Absolute, X

IE — Future Expansion

IF — Future Expansion

20 — JSR

21 — AND — (Indirect,X)

22 — Future Expansion

23 — Future Expansion

24 — Bit — Zero Page

25 — AND — Zero Page

26 — ROL — Zero Page

27 — Future Expansion

28 — PLP

29 — AND — Immediate

2A — ROL — Accumulator

2B — Future Expansion

2C — BIT — Absolute

2D — AND — Absolute

2E — ROL — Absolute

2F — Future Expansion

175

30 - BMI
31 _ AND - (Indirect),Y

32 — Future Expansion

33 — Future Expansion

34 — Future Expansion

35 — AND — Zero Page,X

36 — ROL — Zero Page,X

37 — Future Expansion

38 — SEC

39 — AND — Absolutely

3A — Future Expansion

3B — Future Expansion

3C — Future Expansion

3D — AND — Absolute,X

3F — Future Expansion

40 — RTI

41 — EOR — (Indirect,X)

42 — Future Expansion

43 — Future Expansion

44 — Future Expansion

45 — EOR — Zero Page

46 — LSR — Zero Page

47 — Future Expansion

48 — PHA

49 — EOR — Immediate

4A — LSR — Accumulator

4B — Future Expansion

4C — JMP — Absolute

4D — EOR — Absolute

4E — LSR — Absolute

4F — Future Expansion

50 _ BVC

51 — EOR — (Indirect),Y

52 — Future Expansion

53 — Future Expansion

54 — Future Expansion

55 — EOR — Zero Page,X

56 — Zero Page,X

57 — Future Expansion

58 — CLI

59 — EOR — Absolute,Y

5A — Future Expansion

5B — Future Expansion

5C — Future Expansion

5D — EOR — Absolute,X

5E — LSR — Absolute,X

5F — Future Expansion

60 — RTS

61 — ADC — (Indirect,X)

62 — Future Expansion

63 — Future Expansion

64 — Future Expansion

65 — ADC — Zero Page

66 — ROR — Zero Page

57 — Future Expansion

68 — PLA

69 — ADC — Immediate

6A — ROR — Accumulator

6B — Future Expansion

6C — JMP — Indirect

6D — ADC — Absolute

6E — ROR — Absolute

6F — Future Expansion

70 _ BVS

71 — ADC — (Indirect), Y

72 — Future Expansion

73 — Future Expansion

74 — Future Expansion

75 — ADC — Zero Page,X

76 — ROR — Zero Page,X

77 — Future Expansion

78 — SEI
79 — ADC Absolute,Y

7A — Future Expansion

7B — Future Expansion

7C — Future Expansion

7D — ADC — Absolute,X

7E — ROR — Absolute,X

7F — Future Expansion

176 BEYOND GAMES

80 — Future Expansion
81 — STA — (Indirect,X)
82 — Future Expansion
83 — Future Expansion
84 — STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — Future Expansion
88 - DEY
89 — Future Expansion
8A - TXA
8B — Future Expansion
8C — STY — Absolute
8D — STA — Absolute
8E — STX — Absolute
8F — Future Expansion

90 — BCC
91 — STA — (Indirect),Y
92 — Future Expansion
93 — Future Expansion
94 — STY — Zero Page,X
95 — STA — Zero Page,X
96 — STX — Zero Page,Y
97 — Future Expansion
98 — TYA
99 — STA — Absolute,Y
9A — TXS
9B — Future Expansion
9C — Future Expansion
9D — STA — Absolute,X
9E — Future Expansion
9F — Future Expansion

AO — LDY — Immediate
Al — LDA — (Indirect,X)
A2 — LDX — Immediate
A3 — Future Expansion
A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 — Future Expansion

A8 - TAY
A9 — LDA — Immediate
AA-TAX
AB — Future Expansion
AC — LDY — Absolute
AD — LDA — Absolute
AE — LDX — Absolute
AF — Future Expansion

BO - BCS
Bl — LDA — (Indirect),Y
B2 — Future Expansion
B3 — Future Expansion
B4 — LDY — Zero Page,X
B5 — LDA — Zero Page,X
B6 — LDX — Zero Page,Y
B7 — Future Expansion
B8 - CLV
B9 — LDA — Absolute,Y
BA — TSX
BB — Future Expansion
BC — LDY — Absolute,X
BD — LDA — Absolute,X
BE — LDX - Absolute, Y
BF — Future Expansion

CO — CPY — Immediate
Cl - CMP - (Indirect,X)
C2 — Future Expansion
C3 — Future Expansion
C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC — Zero Page
C7 — Future Expansion
C8 — INY
C9 — CMP — Immediate
CA - DEX
CB — Future Expansion
CC - CPY - Absolute
CD — CMP — Absolute
CE — DEC — Absolute
CF — Future Expansion

DO — BNE
D1 — CMP — (Indirect),Y
D2 — Future Expansion
D3 — Future Expansion
D4 — Future Expansion
D5 — CMP — Zero Page,X
D6 — DEC — Zero Page,X
137 — Future Expansion

D8 - CLD
D9 — CMP — Absolute^
DA — Future Expansion
DB — Future Expansion
DC — Future Expansion
DD — CMP — Absolute,X
DE — DEC — Absolute,X
DF — Future Expansion

EO — CPX — Immediate
El — SEC — (Indirect,X)
E2 — Future Expansion
E3 — Future Expansion
E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — Zero Page
E7 — Future Expansion

E8 - INX
E9 — SBC — Immediate
EA - NOP
EB — Future Expansion
EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute
EF — Future Expansion

FO — BEQ
FI - SBC - (Indirect)/*
F2 — Future Expansion
F3 — Future Expansion
F4 — Future Expansion
F5 — SBC — Zero Page,X
F6 — INC — Zero Page,X
F7 — Future Expansion

F8 — SED
F9 — SBC — Absolute,Y
FA — Future Expansion
FB — Future Expansion
FC — Future Expansion
FD — SBC — Absolute,X
FE — INC — Absolute,X
FF — Future Expansion

178 BEYOND GAMES

Appendix A5:
Instruction Execution Times (in clock cycles)

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR

179

U
O

4-1 Oj cu 60

X
QJ
60

><
qjr
60 a>

X
aT

><
aT 0)

_>

X ><
4-4

"3
g T?

03
PU

03
CU

03
CU 3

4-1 4-<

J2 T3 u
£

u QJ
s u u
<

OJ
£
s HH

O w qj
N

O Sh <U
N

O u cu
N

3 C/5

<!

3 CO

<:

'o C/5 a
£

4-1

t 03
3 c £

INC • 5 6 6 7 .
INX f . . • • ♦ . 2 f » *

INY • f , . t . « . 2 t

JMP t f , . • 3 . •

JSR 9 • . . ♦ 6 .

LDA 2 3 4 ♦ 4 4* 4* 6 5^

LDX 2 3 . 4 4 . 4*

LDY 2 3 4 4 4*

LSR 2 9 5 6 6 7

NOP , • . 2

ORA 2 3 4 4 4* 4* . 6 5'

PHA * f , • . 3

PHP f . . . 3

PLA 9 . 4

PLP , f . . 4

ROL 2 5 6 6 7 .

ROR 2 5 6 6 7 ♦

RTI , 6

RTS 9 , 6

SBC 2 3 4 4 4* 4* . 6 5

SEC , 2

SED t * , 2

SEI , t

STA 3 4 4 5 5 . 6 6

STX* 3 , 4 4 .

STY** 3 4 4 .

TAX , 9 2

TAY . f f 2 *

TSX , , 2 f f

TXA , , 2 f 9

TXS , • 2 •

TYA , , . 2 t . .

* Add one cycle if indexing across page boundary
** Add one cycle if branch is taken, Add one additional if branching operation

crosses page boundary

180 BEYOND GAMES

A
b
so

lu
te

 I
n

d
ir

ec
t

Appendix A6:
6502 Opcodes by Mnemonic and
Addressing Mode

Addressing Modes

Pd

w
H

3

O

W X X

H
U
w

w
X
PJ

>*
PJ

w
H

3

w
H

3

5 < HH
Q

D
w

H
U
w

H
U
w

w
> HH
Lh

u

2

u
<
Pp

o
<
Ph

o o o
u

w h-H
l-J Pd Pd Pd M < o 0 o

CO CO CO 2 pH Q Q Q hP Pd Pd Pd
CO
< <

CO
<

u
< 2 i—(§ M 2 >—(2 M 2 h—<

pp
Pd

PP
N

PP
N

pp
N

Mnemonics = = = — — === — = = = = = = = = = = = — — — — - — = sss = =

ADC 6D 7D 79 69 f 61 71 65 75 ?

AND 2D 3D 39 29 f 21 31 . 25 35
ASL 0E IE 0A ,

f ♦ , 06 16

BCC t- • • f * • 90 - t

BCS f f + BO ♦ f

BEQ f • f f F0 t f

BIT 2C jf f f , 24 •f *

BMI ♦ * * f * f 30 •? f

BNE •f . * f * • DO f

BPL ♦ * f f 10 ,

BRK _ f 00 .f f f

BVC * * -♦ * » f 50 * f

BVS • • 70 f *

CLC „ f 18 * , f f

CLD ♦ D8 f *

CLI t ' f ♦ » 58 t , f f

181

Addressing Modes

&

Xv X*
o
H
< w X w

X
pd pd

w

£ ►J

pd E
3

pd

S
H-J
P
§

t—<

D
P
w

H
U
w

H
U
w

H
U W

w
>
p

O
<
PU

u

2S <
P,

o o O D r i w 3 p£
t-H

P^ M P<
i—< < O o o

CO CO CO LJ g Pu Q Q P p p4 P4 p^

<
PD
< <

U
< 1

h-H
i t—» g

i—<
g 2)—l

w
P4

w
N

w
N

PJ
N

Mnemonics = == = = = = = = — = = = = = = as =s= = = = = = = = = = = = as = = =

CLV . . B8 . • . . •

CMP CD DD D9 C9 . Cl Dl C5 D5

CPX EC . E0 • , . E4 .

CPY cc • • CO • • • C4 *

DEC CE DE . C6 D6

DEX # . . CA • . . .

DEY , . 88 . . • •

EOR 4D 5D 59 49 * 41 51 45 55

INC EE FE E6 F6

INX , .. E8 . .

INY , . C8 • .

JMP 4C • • • • 6C • •

JSR 20 . .
LDA AD BD B9 A9 # Al B1 A5 B5

LDX AE BE A2 A6 .

LDY AC BC • AO • A4 B4

LSR 4E 5E 4A 46 56

NOP # , . . EA • .

ORA 0D ID 19 . 09 . 01 11 05 15

PHA • • • • • 48 • •

PHP 08 m #

PLA # . , 68 • •

PLP # 28 . .

ROL 2E 3E • 2A * • 26 36

ROR 6E 7E 6A 66 76

RTI . . 40 . •

182 BEYOND GAMES

Addressing Modes

X X
o
< w X >- w

X
w W

w
H
D

w
H
D

w
H

3 i 5 i—i
p

D
pa

H
U
w

H
U

H
U
w

w >
c

<
Pu

U s <
P-.

O 0 o p r i pa w—(mJ • P£5 p< ►—< P4 M < O o o
CO CO CO 2 Ph Q p p i-J p4 P4 p^
CQ
<

CQ
< <

u
< § 1 H—< 2 ►—i § §

w
P4

w
N

w
N

w
N

Mnemonics = = = = = = = = = = ====== = = = = = ** == = == = —

RTS . , . . • 60

SBC ED FD F9 • E9 • El FI . E5 F5

SEC 38 . a • a ,

SED . . . F8 . . . * •
SEI , , , . 78 . . • • *
STA 8D 9D 99 . • 81 91 . 85 95

STX 8E . . • ■ 86 ,

STY 8C , , . . . 84 94

TAX . « » AA . • . . .

TAY • * • A8 . • * • •

TSX BA . m ,

TXA # . , . 8A . , . • . •

TXS * . • . 9A •
TYA , , , 98 . . • • • .

Appendix BI:
The Ohio Scientific Challenger l-P

The Ohio Scientific Challenger I-P is the simplest of the systems considered in
this book. Its screen is mapped in the manner described in Chapter 5: the lowest
screen address is in the upper left corner, and the screen addresses increase uniform¬
ly as you move to the right and down the screen. Any ASCII character stored in
screen memory will be displayed properly on the video screen; it is not necessary to
replace the ASCII character with a system-specific display code. Therefore, the
system data block may be initialized as shown in Appendices C13 and E12.

Incidentally, the OSI C-IP's screen TVT subroutine at $BF2D stores the relative
location of the cursor in $0200. Modify $0200 and you change the next location at
which a character will be printed to the screen.

If you have an Ohio Scientific BASIC-in-ROM system other than the
Challenger I-P, it may have different character input/output routines. If so, examine
the following locations:

BASIN $FFEB

BASOUT $FFEE

General character-input routine for OSI
BASIC-in-ROM.
General character-output routine for
OSI BASIC-in-ROM.

For example, in the OSI C-IP you can get a character from the keyboard by call¬
ing $FEED, or you may call OSIs general character-input routine at $FFEB. This
routine gets a character from the keyboard unless the SAVE flag is set, in which case
it gets a character from the cassette input port. Similarly, in the OSI C-IP you can
print a character to the screen by calling $BF2D, or send a character to the cassette
output port by calling $FCBl. Or, you can simply call OSTs general character-
output routine at $FFEE, which outputs the accumulator to the screen and, if the
SAVE flag is set, echoes to the serial port as well.

Thus/even if you don't know the addresses of your OSI system's specific I/O
routines, you can set ROMKEY=$FFEB and ROMTVT=$FFEE. When you RESET

your system, the Ohio Scientific Operating System will automatically hook those
routines to your keyboard for input and to your screen for output.

Setting the Top of Memory

If you wish to load object code using the BASIC OBJECT CODE LOADER (see
Chapter 13) you must first set the top of memory available to your BASIC inter¬
preter to $0FFF. Do this as part of cold-starting BASIC. To cold-start BASIC, turn
on your OSI computer, press the (BREAK) key, and then press 'C\ The screen will
prompt, "Memory Size?" Type "4095" and then press (RETURN). Now BASIC will
use the lowest 4K of RAM, leaving memory from $1000 and up available to

machine-language programs.
With the top of memory set to $0FFF, you may enter and RUN the BASIC pro¬

grams that load object code into your computer's memory.

Calling Machine-Language Code from BASIC

To call a machine-language subroutine from BASIC, first set the pointer at
$000B, 000C so it points to the subroutine, and then call that subroutine with
BASIC's USR function, either in the immediate mode or from within a BASIC pro¬
gram. For example, let's say you wish to call the Visible Monitor from BASIC. The
Visible Monitor's entry point is at $1207, so we must make $000B,000C point to
$1207. This means storing 07 in $000B, and storing $12 (decimal 18) in $000C. The

following line will do that for us:

POKE ll,7:POKE 12,18

Now we may invoke the Visible Monitor with the line:

X = USR(X)

or with any other line that uses the USR function.
Note that the USR function does not set a BASIC variable equal to the contents

of some register in the 6502; in fact, the line X = USR(X) will not change the value of
the BASIC variable X at all. Thus, the USR function lets you activate any desired
machine-language subroutine, but it doesn't let you capture a value returned by such

186 BEYOND GAMES

a subroutine. If you want a machine-language subroutine to return some value
which you can then use in a BASIC program, you'll have to make the machine-
language subroutine store its value or values somewhere in memory, and then have
the BASIC program PEEK that memory location after it has called the machine-
language subroutine via the USR function.

187

Appendix B2:
The PET 2001

Display Memory

The PET screen is mapped conventionally, with the HOME address at $8000
(32,768 decimal). It has 25 rows, each consisting of 40 characters. The address of
each screen location is 40 ($28) greater than the address of the screen location direct¬

ly above it. Thus, the screen parameters for the PET 2001 are:

HOME .WORD $8000,
ROWINC .BYTE $28
TVCOLS .BYTE 39 (We count columns from zero,)
TVROWS .BYTE 24 (We count rows from zero.)

PET Character Set

However, although the PET screen buffer is mapped conventionally, you can¬
not simply store an ASCII character in screen memory if you wish to see that ASCII
character on the screen. The PET character generator introduces a few wrinkles and
you must compensate carefully if you are to display ASCII characters properly on

tine screen.
For example, if you store $31 (the code for an ASCII 1) in the PET s display

memory, then you will see a "1" displayed on the screen. So far, so good. The same
is true for all ASCII digits and for some ASCII punctuation marks. But if you store
$45 (ASCII code for an upper case "E") in screen memory, then you won't see an "E"
on the screen: you'll see either a lowercase "e" or else a horizontal line segment much

longer than a hyphen. What's happening?
The PET 2001 features a memory location, $E84C (59468) which has a special

effect on the video-display circuitry. The value stored in that address selects for the

video display one character set or another.

188 BEYOND GAMES

To see how the choice of character set affects the display, enter the following
BASIC program into your PET:

100 REM DISPLAY PET CHARACTER SET

110 REM IN 16 BY 16 MATRIX
120 REM
130 HOME=32768
140 CHAR=0
150 FOR ROW=0 TO 15
160 FOR COL=0 TO 15
170 POKE (HOME+COL) + (40*ROW),CHAR
180 CHAR=CHAR+1
190 NEXT COL
200 NEXT ROW
210 END

Before running this program, clear the screen by holding down the PET's SHIFT
key at the same time that you depress the CLR/HOME key. When the screen is
clear, use the CRSR SOUTH key to move the cursor down seventeen rows. Then
type RUN and press RETURN. You'll see one PET character set appear in a 16 by 16
matrix in the upper left portion of your PET's screen.

What you'll see on your screen will look like table B2.1 (without the labeled
axes).

Table B2.1: The PET character set.

RIGHT NYBBLE OF CHARACTER
-0 -1 -2 -3 -4 -5 -6 — 7 — 8 -9 -A -B -C -D -E -F

LEFT NYBBLE
OF CHARACTER

0- @ A B C D E F G H I J K L M N O
1- P Q R s T U V W X Y Z I \ 1 —

2- i " # $ % & ' () * + * — * /
3— 0 l 2 3 4 5 6 7 8 9 : ; < = > ?
4— - a b c d e f g h i j k 1 m n o
5 — P q r s t u V w X y z _ _ _
6— _ _ _ _ _ _ _ _ __
7— — — — — — — — — — — — — — — — —

8- @ A B C D E F G H i J K L M N O
9- P Q R S T U V W X Y Z [\ 1 1
A- ! " # $ % & * ()

* + /
B- 0 1 2 3 4 5 6 7 8 9 : J < = > 7

C— - a b c d e f g h i j k 1 m n O

D- p q r s t u V w X y z _ _ _ _ _
E-
F- _ _ _ __ ___ __

189

In this chart, special graphic characters are indicated by an underline. Look at
your PET screen to see those special graphics in all their glorious detail.

Note that the characters for $80 thru $FF are the same as for $00 thru $7F, but in
reverse intensity. The low 128 characters ($00 thru $7F) are "normal" — that is,
white characters on a dark background; whereas the high 128 characters ($80 thru
$FF) are in reverse video — dark characters in a white background. An "A" in nor¬
mal intensity may be displayed by storing an $01 somewhere in the screen memory;
a reverse intensity "A" may be displayed by storing an $81 somewhere in screen
memory. From this pattern we can derive a handy corollary: to reverse the intensity
of any character on the screen, simply reverse its bit 7. You don't even have to know
what the character represents; just toggle bit 7 and you change its intensity.

The chart in figure B2.1 (and on your PET screen) shows one complete
character set because the BASIC program stores every 8-bit value, from $00 thru
$FF, into the screen buffer. But I mentioned two character sets. What must you do to
see the second character set?

If the cursor is within three rows of the bottom of the screen, move it up so that
it is at least three rows above the bottom of the screen. This will insure that you
don't scroll part of the character set up off the screen when you execute the following

BASIC command in the immediate mode:

POKE 59468,12

Did that change the display? If not, then execute the following BASIC com¬
mand in the immediate mode (again being sure that the cursor is at least three rows

from the bottom of the screen):

POKE 59468,14

Depending on the value stored in 59468 ($E84C), one or another character set
will be displayed. The values of the bytes stored in screen memory will not change
when you change the contents of $E84C, but in some cases the displayed characters
will change. In the ranges 00 thru $3F and $80 thru $BF, the two character sets are
identical. But in the ranges $40 thru $7F and $C0 thru $FF, they differ.

Both character sets include numbers, uppercase letters, and certain punctuation
marks; but only one character set includes lowercase letters and the remaining punc¬
tuation marks. The second character set lacks lowercase letters and these punctua¬
tion marks, offering instead a set of special graphics characters, including playing-
card suits. POKE 59468,14 to select the former character set (thereby making possi¬
ble the display of all printable ASCII characters); POKE 59468,12 to select the latter

character set (thereby making possible the display of the gaming graphics).

190 BEYOND GAMES

FIXCHR

Note that neither character set corresponds directly to ASCII. If you have an
ASCII character in the accumulator and you want to display the appropriate graphic
character on the screen, you must first call FIXCHR (as TV.PUT does, in Chapter 5).
When an ASCII character is passed in the accumulator, FIXCHR must return in the
accumulator the proper PET display code for that character. FIXCHR's caller may
then store this display code in memory, thereby placing on the screen an appropriate

image of the original ASCII character.
How will FIXCHR work? By examining the PET character set and comparing it

to Appendix A2, ASCII codes, we can see a solution in the form of the following
algorithm:

• If a character is in the range $40 thru $5F, subtract $40 and return.

• If a character is in the range $20 thru $3F, return.
If a character is in the range $60 thru $7A, store a decimal 14 in 59468 to select

the character set that has lower case letters; and return.
All other input characters are either ASCII control codes, for which there are

no agreed-upon graphics, or else PET special graphics characters, so just

return.

Examine the tables yourself to see if this algorithm will work.

FIXCHR

FIXCHR AND #$7F Clear bit 7, so the character will be in
the legal ASCII range.

SEC Prepare to compare.

CMP #$40
BCC FIXEND

If it's less than $40, return.

Okay. The character is greater than $40.

CMP #$60 Is it greater than $5F?

BCS LOWERC If so, handle it as lowercase.
Okay, The character is in the range

$40-$5F.

SBC #$40
RTS

Subtract $40 for proper display code.

LOWERC LDX #14 Since we have a lowercase letter, lets
select the character set that

STX 59468 has lowercase letters.

FIXEND RTS Return, bearing PET display code for
character originally in accumulator.

191

Call FIXCHR with an ASCII character in the accumulator. FIXCHR will return
with the corresponding PET display code in the accumulator. When it returns, its
caller may store the accumulator anywhere in screen memory, thus displaying an
image of the original ASCII character.

PET Keyboard Input Routine

To get an ASCII character from
subroutine:

PETKEY JSR $FFE4
CMP #0
BEQ PETKEY

AND #$7F

RTS

the PET keyboard, call the following

Call PET ROM key scan routine.
Zero means no key.
If no key, scan again.
A new key is in the accumulator. If the
shift key was down, bit 7 is set.
So clear bit 7, just to be sure we've got
a legal ASCII character.
Return with ASCII character in the ac¬
cumulator.

This subroutine yields the uppercase ASCII code for any letter key that you

depress, and the proper ASCII code for any digit key or punctuation key.

PET TVT Routine

To print an ASCII character to the screen, call $FFD2, a PET ROM routine I

will refer to as PETTVT.
Any printable ASCII character passed to $FFD2 (or, apparently, to $E3EA or

$F230) will be printed properly to the screen at the PET's current TVT screen loca¬
tion. You may change the PET's current TVT screen location (which is not the same
as the current location used by the screen utilities in Chapter 5) by calling PETTVT
with the accumulator holding any of the control codes from Table B2.1.

192 BEYOND GAMES

Table B2.1: Control codes that affect the next character to he printed by PETTVT.

Character Name Code Function

CURSOR NORTH $91 Move current location up by one row.
CURSOR EAST $1D Move current location one column to the right.
CURSOR SOUTH $11 Move current location down by one row.
CURSOR WEST $9D Move current location left by one column.
INSERT $94 Move current character, and all characters to its

right, one column to the right.
DELETE $14 Move current character, and all characters to its

right, one column to the left.
HOME $13 Set current location to upper left of screen.

CLEAR $93 Set current location to the upper left corner and
clear the screen.

REVERSE $12 Select reverse video for following characters.
REVERSE-OFF $92 Select normal video mode for following

characters.

These control codes may be passed directly to PETTVT, or they may be in¬
cluded within a string of characters to be printed by TRINT:" or "PR.MSG." For
example, if you wish to clear the screen before printing a message, just put the
CLEAR character ($93) at the beginning of your message string, immediately follow¬
ing the STX. The message-printing subroutine will get the CLEAR character and
pass it to PR.CHR, which, in turn, will pass it through the ROMTVT vector on to

the PETTVT routine. The PETTVT routine will then clear the screen and set the cur¬
rent location to the upper left corner of the screen.

The next character in the string will then be printed in the upper left comer of a
clear screen. If, instead of printing your message at the top row of a clear screen,
you'd prefer to print it in the fifth row of a clear screen, just follow the CLEAR
character with four CURSOR-SOUTH characters ($11, $11, $11, $11), and follow
the four cursor-south characters with the text of your message. Following the text of
your message, of course, you must include an ETX ($FF).

You might never use the PETTVT control codes, but it's good to know they're
available, should you ever want your PET's display screen to perform as something
more than a glass teletype.

System Data Block

To run on a PET 2001, the software in this book requires the system data block
shown in Appendices C14 and E13.

193

Setting the Top of Memory

Before you can use the BASIC OBJECT CODE LOADER (presented in Chapter
12) to load object code into your PET's memory, you must insure that your PET's
BASIC interpreter leaves undisturbed all memory above $0FFF (4095 decimal). The
PET BASIC interpreter will do as we wish if we set its top-of-memory pointer ap¬
propriately. The top-of-memory pointer specifies the highest address that may be
used for the storage of BASIC program lines, variables, and strings. Memory above

that address is off-limits to BASIC.
As you may know, there is more than one version of the PET 2001 by Com¬

modore. Some PET's have software in "old" ROMS (REV 2 ROMS), and others
have software in "new" ROMS (REV 3 ROMS). As far as the software in this book is
concerned, old ROM PETS and new ROM PETS are the same, since the ROM
routines we care about are accessible from the same addresses in both old and new
ROM PETS. Therefore, until now I haven't even mentioned that the PET 2001
comes in two flavors. But now you must discover whether you have an old ROM or
a new ROM PET, because otherwise you won't be able to set the top of memory.

Old ROM and new ROM PETS each contain a machine-language subroutine to
clear the screen, but in new ROM PETS that subroutine is at $E229 (57897 decimal),
and in old ROM PETS that subroutine is as $E236 (57910 decimal). To see what
ROMS are in your PET, use the PET's screen editor to place some characters on the

screen, and then type:

SYS (57897)

and press (RETURN). Does the screen clear? If so, you've got a new ROM PET. If
not, turn off your PET, turn it on, place some characters on the screen, and then

type:

SYS (57910)

and press (RETURN). Does the screen clear? If so, you've got an old ROM PET. If
not, then your PET contains neither Rev 2 ROMS nor Rev 3 ROMS, and you'll have
to consult your system's documentation carefully to discover the address of the top-

of-memory pointer.
On old ROM PETS, the top-of-memory pointer is at 134 and 135 ($86,87). On

new ROM PETS, the top-of-memory pointer is at 52 and 53 ($34,35). Regardless of
the location of the top-of-memory pointer, we want to set the low byte of that
pointer equal to $FF (255 decimal), and the high byte of that pointer equal to $0F (15
decimal), so that the pointer itself points to $0FFF. That will leave memory from

194 BEYOND GAMES

$1000 and up available to machine-language programs.
Thus, we set the top of memory on an old ROM PET with:

POKE 134,255 :POKE 135,15

Similarly, we set the top of memory on a new ROM PET with:

POKE 34,255 :POKE 35,15

Once you have set the top of memory available to your PET’s BASIC inter¬
preter, you may enter the BASIC OBJECT CODE LOADER and the DATA
statements from Appendices El thru Ell, and from Appendix E13. Remember to set
the top of memory not only when typing in these DATA statements, but when
RUNning the OBJECT CODE LOADER, as well.

195

Appendix B3:
The Apple II

Apple Display

The display memory of the Apple II is mapped in a manner that is much more
complex than the Ohio Scientific or PET computers. On each of these other systems,

only one portion of memory is mapped to the screen. The screen cannot display the
contents of any other bank of memory (unless, of course, you copy the contents of
another bank of memory into the display memory). But the Apple II may display the
contents of any of four banks of memory: Low-Resolution Graphics and Text Page
1, Low-Resolution Graphics and Text Page 2, High-Resolution Graphics Page 1, and
High-Resolution Graphics Page 2. Table B3.1 summarizes the locations of these

pages in memory.

Table B3.1: Banks of display memory in the Apple II.

Low-Resolution Graphics

Hexadecimal Decimal

and Text Page 1:
Low-Resolution Graphics

$0400-$07FF 1024-2043

and Text Page 2:
Hi-Resolution Graphics

$0800-$0BFF 2048-3071

Page 1:
Hi-Resolution Graphics

$2000-$3FFF 8192-16383

Page 2: $4000-$5FFF 16384-24575

Note that each of these display pages takes up much more than one hexadecimal
page (256 bytes). A display page is simply an area of any size memory, whose con¬
tents may be displayed on the screen. Each low-res display page occupies four hexa¬
decimal pages, and each hi-res display page occupies 32 hexadecimal pages. Why are
the hi-res display pages bigger than the low-res display pages? Hi-res means high-

resolution, and higher resolution requires more information.

196 BEYOND GAMES

How do you make the video screen show the contents of a given display page?
You need only store a zero in a particular address. Certain addresses in the Apple II
signal the video-display circuitry whenever data are written to them. The video¬
display circuitry responds to these signals by displaying the contents of a given bank
of memory. These special addresses, or display selectors, are given in Table B3.2.

Table B3.2: Addresses that affect the APPLE II Display.

Hexadecimal Decimal Label Purpose of Address

$C050 -16304 TXTCLR Store a 0 here to set graphics

mode.

$C051 -16303 TXTSET Store a 0 here to set text mode.

$C052 -16302 MIXCLR Store a 0 here to set bottom
four lines to graphics.

$C053 -16301 MIXSET Store a 0 here to select text/
graphics mix (bottom four lines
text).

$C055 -16299 HISCR Store a 0 here to select Page 2.

$C056 -16298 LORES Store a 0 here to select low-
resolution graphics and text
page.

$C057 -16297 HIRES Store a 0 here to select high-
resolution graphics.

Space limitations prohibit a discussion in this book of the power of high-
resolution graphics. The Apple II documentation, however, provides an excellent
step-by-step guide to the design, display, saving, and loading of high-resolution im¬
ages. I must stress, however, that the software in this book expects the host system
to have low-resolution graphics, so you'd better tell your Apple II to have low-
resolution graphics. The software in this book uses the Apple's low-resolution
graphics with text page 1 as the screen memory. To select this display page, simply
press the RESET button on your Apple. If, on the other hand, you wish to select this
display page under software control, you can do it by calling the subroutine

LORESl:

LORESl PHP Save processor flags.

PHA Save accumulator.

LDA # 0 Store a 0 in
STA LOWSCR LOWSCR to select Page 1,
STA LORES and in LORES to select low-resolution

PLA

graphics.
Restore accumulator.

PLP Restore processor flags.

RTS Return to caller.

This subroutine will select low-resolution graphics and text page 1. It preserves

all flags and registers, and is completely relocatable.
Even when you've configured your Apple II to low-resolution graphics, your

job isn't done. The low-res display of the Apple II is mapped in an unusual manner.
For any other system you can assume that the address of a given location on the
screen is simply the address of the location above it, plus some row increment. On
the Apple II this is not always true. See Table B3.3, Apple II low-res display memory

map.

Table B3.3: Apple II low-resolution display.

Page 1

Row

Number

Address of Address of

Leftmost Column Rightmost Column

$00
$01
$02
$03
$04
$05
$06
$07

$400
$480
$500
$580
$600
$680
$700
$780

$427
$4A7
$527
$5A7
$627
$6A7
$727
$7A7

$08
$09
$0A
$0B
$0C
$0D
$0E
$0F

$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8

$44F
$4CF
$54F
$5CF
$64F
$6CF
$74F
$7CF

$10
$11

$12
$13
$14
$15
$16
$17

$450
$4D0
$550
$5D0
$650
$6D0
$750
$7D0

$477
$4F7
$577
$5F7
$677
$6F7
$777
$7F7

198 BEYOND GAMES

Page 2

Row Address of Address of

Number Leftmost Column Rightmost Column

$00 $800 $827

$01 $880 $8A7

$02 $900 $927

$03 $980 $9A7

$04 $A0O $A27

$05 $A80 $AA7

$06 $B00 $B27
$07 $B80 $BA7

$08 $828 $84F
$09 $8A8 $8CF
$0A $928 $94F
$0B $9A8 $9CF
$oc $A28 $A4F
$0D $AA8 $ACF *
$0E $B28 $B4F
$QF $BA8 $BCF

$10 $850 $877
$11 $8D0 $8F7
$12 $950 $977
$13 $9D0 $9F7
$14 $A50 $A77
$15 $AD0 $AF7
$16 $B50 $B77
$17 $BD0 $BF7

Note that the display addresses do not increase uniformly as we move down,
row-by-row, through low-res display page 1 or 2. The addresses increase uniformly
from row 0 thru row 7, but from row 7 to row 8 the display addresses do not in¬
crease; they decrease! Then they increase uniformly through line $0F (15 decimal),
but from line $0F to line $10 (15 to 16 decimal), the display address plummets again.
Then from row $10 to row $17 (16 thru 23) the display addresses again increase
uniformly.

If you'd like to take a visual tour of the Apple II's low-res display memory, run

the BASIC program in listing B3.1. This program will simply poke a blank into each
address in low-res display page 1, starting at the lowest address and moving to the
highest address. You'll see that the screen does not fill with blanks in a contiguous
manner, but follows a pattern of three interleaved parts.

199

Listing B3.1: APPLE 11 low-resolution display, memory-mapper program.

100 REM APPLE II LOW-RESOLUTION DISPLAY, MEMORY-MAPPER

105 REM
108 REM BY KEN SKIER

110 REM
120 FIRST=1024: REM START OF LOW-RESOLUTION PAGE 1.
130 LAST=2043: REM END OF LOW-RESOLUTION PAGE 1.
140 CHAR=32: REM CHARACTER TO BE POKED INTO SCREEN

150 REM WILL BE A WHITE BLANK.

160 REM
170 FOR X=FIRST TO LAST
175 REM FOR EACH ADDRESS IN LOW-RESOLUTION PAGE 1.

180 POKE X,CHAR
185 REM POKE A WHITE BLANK. THEN,

190 GOSUB 1000: REM WAIT A MOMENT...
200 NEXT X: REM BEFORE POKING NEXT ADDRESS.

210 END
220 REM
230 REM
1000 FOR WAIT=0 TO 100
1005 REM THIS IS A WAIT SUBROUTINE.
1010 NEXT WAIT: REM IT SLOWS DOWN PROGRAM SO YOU
1020 RETURN: REM CAN FOLLOW THE ACTION.

Must we now write a whole new set of display procedures to accommodate the
unusual mapping of the Apple II low-res display pages? We could. But the screen
utilities presented in Chapter 5 will work for the Apple II if we think of the Apple
low-res screen as three separate screens: the top eight rows are one screen, the
middle eight rows are another screen, and the bottom eight rows are a third screen.

Each of these "screens" has a set of screen parameters.
The sceen utilities in this book will work fine if you limit their scope to a given

third of the screen. Use TVTOXY only to set a relative screen position within the
third of the screen that you have selected. Use the screen utilities only for the top
third of the screen. The middle and bottom thirds of the screen may still be used by

the PRINT utilities. ,.
To limit the screen utilities to the top third of low-res display page 1, initialize

the screen parameters as follows:

SCREEN .WORD $0400
TVCOLS .BYTE $27
TVROWS .BYTE $07
ROWINC .BYTE $80

200 BEYOND GAMES

If you want to keep text from scrolling into the upper third of the screen, store
$08 in address $0022. (In BASIC you may do this with the command POKE 34,8.)

There's one more quirk to the Apple display. If you store an ASCII character in
display memory, then you will display a blinking or inverse version of the character.
Setting bit 7 in an ASCII character code will cause that character to be displayed in
normal mode (a white character on a black background), rather than as a black
character on a white background or as a blinking character.

You may experiment with this feature of the Apple II by using the Apple II
monitor to store $41 (an ASCII "A") in a location in low-res display page 1. Youll
see a blinking “A” Now store $Cl in a location in low-res display page 1. Youll see
a normal "AWhy? Because $C1 is $41 with bit 7 set. To understand what's hap¬
pening here, look at the Apple II's character set given in Table B3.4.

Table B3.4: The Apple II character set.

RIGHT NYBBLE OF CHARACTER
_-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 - A-B-C-D-E -F
LEFT NYBBLE
OF CHARACTER

o- @ A B c D E F G H I j K L M N o
1- p Q R s T U V W X Y z [\] —
2- ! tt

$ % () ★ + t — . /
3- 0 1 2 3 4 5 6 7 8 9 r < = > ?

4- @ A B c D E F G H I J K L M N o
5- p Q R s T U V W X Y Z [\ 1 —
6- ! rr

$ % r
() * + , — . /

7- 0 1 2 3 4 5 6 7 8 9 • r < = > ?

8- @ A B c D E F G H I J K L M N o
9- p Q R s T U V W X Y z [\] —
A- ! rr

$ % ' () ★ + r — /
B- 0 1 2 3 4 5 6 7 8 9 • f < = > ?

C- @ A B C D E F G H I J K L M N o
D- p Q R s T U V W X Y z [\] —
E- I " # $ %

r
() * + t — . /

F— 0 l 2 3 4 5 6 7 8 9 : f < = > ?

The Apple II really has only 64 characters in its character set, but it has four

ways of displaying each character. Thus, the table shows a set of characters at $00
thru $3F; the same characters, in the same sequence, appear again at $40 thru $7F, at
$80 thru $BF, and at $C0 thru $FF. These represent what I call the first, the second,
the third, and the fourth quadrants of the character set.

Character codes in this first quadrant ($00 thru $3F) will be displayed in reverse
video: as black characters on a white background. Character codes in the second
quadrant ($40 thru $7F) will be displayed in a blinking mode. Character codes in the
third and fourth quadrants ($80 thru $BF and $C0 thru $FF) will be displayed in nor¬

mal mode: as white characters on black background.
Before we store any ASCII character in screen memory, we must first call FIX-

CHR, to convert, if necessary, the ASCII character to the host system's correspond¬

ing display code. In the Apple II, FIXCHR is very simple:

FIXCHR ORA #$80 Set bit 7, so character will be displayed
in normal mode.

RTS Return appropriate display code to

caller.

I/O Vectors

The Apple II has a subroutine in read-only memory to get a character from the
keyboard, and another subroutine to print a character on the screen. However, the
key-in routine at $FD35 does not return an ASCII code when you press the key for
an ASCII character; instead, it returns the appropriate ASCII code with bit 7 set.
Similarly, the screen-printing routine at $FBFD will print an ASCII character to the
screen, but the character will be in reverse video or blinking. In order to print an
ASCII character to the screen, you must first set bit 7 and then call $FBFD. Con¬
versely, to get an ASCII character from the keyboard, you must first call $FD35 and

then clear bit 7. Therefore, the following patches are offered:

Subroutine to Print an ASCII Character to Apple II Screen

APLTVT ORA #$80
JSR $FBFD
RTS

Set bit 7 in the ASCII code.
Call the ROM screen printer.
Return to caller, now that ASCII
character originally in accumulator has
been printed to screen in normal mode.

Subroutine to Get an ASCII Character from Apple II Keyboard

APLKEY JSR $FD0C Get ASCII character from keyboard
with bit 7 set. (Note: you may call

$FD35 instead of calling $FD0C.)

202 BEYOND GAMES

ORA #$80 Clear bit 7, leaving the accumulator
holding a conventional ASCII code.

RTS Return to caller, bearing ASCII
character code for depressed key.

Apple II System Data Block

The I/O vectors ROMTVT and ROMKEY should be initialized to point to
APLTVT and APLKEY, respectively. This has been done in the Apple II system data
block. You must enter the Apple II system data block into your system's memory if
any of the software in this book is to run on your Apple II. See Appendices CIS and
E14.

203

Appendix B4:
The Atari 800

Screen

The Atari 800 microcomputer has the most flexible — and, perhaps the most
confusing — video-display hardware of any system discussed in this book. Unlike
the other systems, almost any portion of the Atari computer's memory may be
mapped to the screen. Furthermore, there are many different screen-display modes.
When the Atari computer is powered-up, the screen is in text mode zero. That's
comparable to the Apple II's low-resolution graphics and text display, which is com¬
parable to the only video-display mode available on the Ohio Scientific or PET com¬

puters.
The Atari computer makes other screen modes available to the programmer,

but the software in this book assumes a low-resolution text display, so you'd better
leave your Atari in screen mode zero if you expect to see any of the displays driven
by the software in this book. In other words, if you change the screen mode, the

Visible Monitor may well become invisible.
I mentioned that the screen buffer may be almost anywhere in memory. If that's

true (and it is), how can you determine the HOME address upon which all the
displays in this book are based? It's easy. A pointer at $58,$59 (88,89 decimal) points
to the lowest address in screen memory: the address we refer to as HOME. Before
running any of the software in this book, you must set HOME properly for your
system. Simply set HOME equal to the value of that pointer. HIP AGE, the value of
the highest page in screen memory, is equal to (the high byte of HOME) plus three.

Once we've set HOME and HIPAGE properly, we're home free. The other

screen parameters are fixed:

ROWINC .BYTE 40
TVCOLS .BYTE 39
TVROWS .BYTE 23
SPACE .BYTE $20
ARROW .BYTE $7B

204 BEYOND GAMES

Note that the top of screen memory is always at the top of programmable
memory, so if you add more programmable memory to your Atari 800, you'll move

the screen memory up higher in the address space.

Proper Display of ASCII Characters

Like the PET, and to a lesser extent the APPLE II, the Atari screen requires that
we perform a conversion before we can properly display an ASCII character on the
screen. To determine the nature of this conversion, let us first look at the ATARI

character set in Table B4.1.

Table B4.1: The Atari character set AT ASCI.

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9-A-B-C-D-E -F

0— space !"#$%&' ()* + , — . /
1- 0 123456789: ;<=>?
2- @ABCDEFGHI JKLMNO
3- P QRSTUVWXYZ[\]
4 -special graphics characters-
5 -special graphics characters-
6— abcdefghi j klmno
7- p qr s tuvwxyz -graphics-

A quick examination shows that ASCII characters $20 thru $5F are ATASCI
(Atari's character set) characters $00 thru $3F. Thus, if an ASCII character is in the
range of $20 thru $5F, we can convert it to the appropriate ATASCI character sim¬
ply by subtracting $20.

Further inspection reveals that ASCII characters $61 thru $7A correspond to
ATASCI characters $61 through $7A. Thus, if an ASCII character is in the range of
$61 thru $7A, it needs no conversion to ATASCI; it already is the corresponding

ATASCI character.
Finally, if an ASCII character is not in the range $20 thru $5F or $61 thru $7A,

it's not a printable character and has no agreed-upon graphic representation. For

those cases we'll just leave them alone.

Figure B4.1 flow-charts this algorithm.

Figure B4.1: Flowchart of routine to convert an ASCII character for display on Atari screen.

Using the flowchart in figure B4.1 as a guide, we can write source code for FIX-
CHR, which takes an ASCII character as input and returns an Atari display code so

that the character may be properly displayed on the video screen.

FIXCHR AND #$7F

SEC
CMP #$20

FIXCHR

Clear bit 7 so character is a legitimate

ASCII character.
Prepare to compare.
Character less than $20?

20fi BEYOND GAMES

BCC BADCHR If so, it's not a printable ASCII
character, so return a blank.

CMP #$60 Character less than $60?

BCC SUB$20 If so, subtract $20 and return.

CMP #$7B Character less than $7B?

BCC EXIT If so, return with the character.
If not less than $7B,

BADCHR LDA BLANK the character is not a printable ASCII
character, so return a blank.

EXIT RTS
SUB $20 SBC #$20 Subtract $20 and

RTS return.

Keyboard Input

If no key has been pressed, then address $02FC (764 decimal) contains $FF. But
whenever you depress a key on the Atari keyboard — even if a program is not scan¬
ning the keys — an electronic circuit will sense that a key has closed and will store
the hardware code for that key in address $02FC. However, the code in $02FC will
be a hardware code, not obviously related to ASCII or AT ASCI.

Table B4.2: Atari Hardware Key-Codes.

Hex Decimal Key Hex Decimal Key

$00 0 L $20 32 r

1 1 J 1 33 SPACE

2 2 t 2 34 .
3 3 3 35 N

4 4 4 36
5 5 K 5 37 M

6 6 + 6 38 /
7 7 * 7 39 ATARI

8 8 0 8 40 R

9 9 9 41
A 10 P A 42 E

B 11 U B 43 Y

C 12 RETURN C 44 TAB

D 13 I D 45 T
E 14 — E 46 W

F 15 = F 47 Q

207

$10 16 V $30 48 9
1 17 1 49
2 18 C 2 50 ss
3 19 3 51 7
4 20 4 52 BACKS
5 21 B 5 53 8
6 22 X 6 54 <
7 23 Z 7 55 >
8 24 4 8 56 F
9 25 9 57 H

A 26 3 A 58 D
B 27 6 B 59
C 28 ESC C 60 LOWR
D 29 5 D 61 G
E 30 2 E 62 S
F 31 1 F 63 A

The Hex and Decimal Columns give the low 6 bits of the hardware key-code stored
in address $02FC (764 decimal) when the given keys are pressed. Either SHIFT key
sets bit 6. CTRL key sets bit 7.

In order to convert that hardware code to ASCII, we need to understand its
nature. The six low-order bits of the hardware key-code uniquely identify the key.
(See Table B4.2.) Bits 6 and 7 identify its shift state. Bit 6 is set if the key is
typewriter-shifted; bit 7 is set if the key is control-shifted. The key is typewriter-
shifted if either SHIFT key is down; the CAPS/LOWR key has no effect on the
typewriter-shift state as reflected in the hardware key-code. The keyboard is
control-shifted if the CTRL key is down.

If you don't care about the keyboard's shift state, but merely want to determine
which physical key has been pressed, then you can clear the two high-order bits in
the hardware key-code and you'll be left with a number from 0 to 63 decimal (00 to
$3F) uniquely identifying the key most recently depressed. If you care about the
keyboard's typewriter-shift state but are indifferent to its control-shift state, then
you can clear bit 7 in the hardware key-code and you'll be left with a number from 0
to 127 decimal (00 to $7F), which means the keyboard can generate twice as many
characters as it has physical keys. To enable control-shifting, simply preserve the
hardware key-code, and you double once again the number of characters that the
keyboard (and hence the user) may generate.

Since the simple text editor presented in Chapter 11 assigns certain functions to
control-shifted keys, and since you never know when you might need some addi¬
tional character codes from your keyboard, Appendix Cl6 presents a key-handling
subroutine for the Atari. This subroutine is capable of generating different

208 BEYOND GAMES

characters in each of the four different shift-states (unshifted, typewriter-shifted,
control-shifted, typewriter- and control-shifted).

It's a simple matter to use the eight-bit hardware keycode as an index into a
keyboard definition table. For any given hardware key-code, we may assign any
character we like. The keyboard definition table presented in Appendix C16 assigns
standard ASCII characters to all letter, number, and punctuation keys, in both the
unshifted and typewriter-shifted states. Other keys are assigned values consistent
with their expected use by the software in this book (eg: Control-P generates a $10,
thus making it a PRINT key in the eyes of the simple text editor). All keys and shift
states that have no special meaning to this software have been assigned character
codes of zero; feel free to change these character codes to any values you desire.

Assuming that we have in memory a keyboard definition table called ATRKYS,
we can get an ASCII character from the Atari keyboard with the following
subroutine, ATRKEY:

ATRKEY LDA $02FC
CMP #$FF
BEQ ATRKEY

TAY
LDA ATRKYS,Y

RTS

Has a key been depressed?
$FF means no key.
If not, look again. A key has gone down
and the accumulator holds its hardware
key-code.
Prepare to use that code as an index.
Look up character for that key and shift
state.
Return with ASCII character
corresponding to that key and shift
state.

Print a Character to the Screen

The Atari 400 and 800 computers each provide a powerful I/O (input/output)
routine which allows the programmer to get characters from virtually any source,
and to send characters to virtually any device — the screen, the printer, the cassette
recorder, and the disk. But, as in the case of Atari's varied screen modes, power
breeds complexity. I have found it easier to substitute my own simple routine to
print a character on the TV screen, bypassing the Atari I/O routines entirely.

Incidentally, this routine will work with any 6502-based computer that has a
low-resolution memory-mapped display. If you need a simple TVT simulator for
your home-brew 6502-based system with a video display, TVTSIM might meet your
needs. In any event, it prints characters to the screen, and avoids the necessity of
plumbing the depths of the many modes and data structures associated with Atari's
central I/O routine.

With your system data block initialized as shown in Appendices C16 and E15
(which includes the TVT simulator as the subroutine to print characters to the
screen), you are almost ready to run the software in this book on your own system.

Setting the Top Of Memory

Address $2E6 (742 decimal) holds the number of pages of RAM available to the
BASIC interpreter. Store a $0D (13 decimal) in that location and BASIC will use
memory up to $0DFF, but will not use $0E00 and up.

NOTE: On the Atari, the software in this book uses memory from $0E80 to
$1FFF, which is the address space required by the ATARI DOS (Disk Operating
System) and the ATARI RS-232 serial interface, so you may not use DOS or RS-232
if you expect to use the software in this book. Flowever, there should be no conflict
between software in this book and the cassette-based Atari 800.

Thus, we may set the top of memory with the following BASIC command:

POKE 742,13

When you have used the OBJECT CODE LOADER to READ and POKE object
code from all the appropriate E appendices into your Atari computer, run the
following BASIC program. It will initialize screen parameters and the top of
memory, and then pass control to the Visible Monitor.

100
110

120
130
140
150
160
165

170
180
190
200
210
220
230
240
250
260

REM
REM
REM
REM
REM
LO=PEEK(88):
HI=PEEK(89):
IF HI < 32 THEN PRINT
OR DISASSEMBLER"
POKE 4096,LO:
POKE 4097, HI:
POKE 4101,HI+3:
REM
REM
POKE 742,13:
REM
REM
X = USR(4615):
END

Visible Monitor Start-Up Program for the Atari.

First, set the screen parameters.

A pointer at 88,89 points to lowest screen address.
REM Set LO to the low byte of HOME.
REM Set HI to the high byte of HOME.

ON AN 8 K ATARI YOU MAY NOT USE EDITOR

REM Set Low byte of HOME.
REM Set High byte of HOME.
REM Set HIP AGE = Highest page in screen memory.

Now set the top of memory available to BASIC.
Tell BASIC to use only memory up to $0DFF.

Now call the Visible Monitor.
REM Call the Visible Monitor as a subroutine.

210 BEYOND GAMES

Appendix C l:

Screen Utilities

211

10

20

30

40

50

63

73

83

S8

100

110

120

133

143

153

163

170

188

190

200

218

223

233

243

258

269

273

283

280

383

313 8833=

320

339

353

368

373

389

393

430

418

428

430

448

459

468

478

468

433

538 1003=

518

520

530

543

553

560

570

588 1000=

APPENDIX Cl: ASSEMBLER LISTING OF

SCREEN UTILITIES

SEE CHAPTER 5 OF BEYOND GAMES:, SYSTEMS

SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

BY KEN SKIER

ZERO PAGE BYTES

TU.PTR=0 THIS POINTER HOLDS THE

ADDRESS OF THE CURRENT

SCREEN LOCATION.

SCREEN PARAMETERS

FARAMS=:$1030 THE FOLLOWING ADDRESSES

MUST BE INITIALIZED TO HOLD

DATA DESCRIBING THE SCREEN

ON YOUR SYSTEM.

HOME=FARAMS HOME IS A POINTER TO CHARACTER

213

POSITION IN UPPER LEFT CORNER 530

600

610 1302=

620

630

643

653

660 1003=

670

683

633

703

718 1004=

728

738

743

753

760 1035=

770

780

790

830

810 1006=

820

830

S40 1007=

850

860

878 1011=

880

8S0

900

910

923

930

943

953

960

973 1100

ROWINC=PARRMS+Z

ROWINC IS A BYTE GIUING

ADDRESS DIFFERENCE FROM ONE

ROW TO THE NEXT.

TUC0L5=FARRMS+3

TUCOLS IS R BYTE GIUING

NUMBER OF COLUMNS ON SCREEN.

(COUNTING FROM ZERO.)

TUR0W5=PRRAMS+4

TUR0W5 IS R BYTE GIUING

NUMBER OF ROWS ON SCREEN,

(COUNTING FROM ZERO.)

HIPRGE=PRRRMS+5

HIPRGE IS THE HIGH BYTE OF

THE HIGHEST RDDRESS ON SCREEN

BLANK=PARAMS+S YOUR SYSTEM' 5 CHRRRCTER

CODE FOR R BLANK.

ARR0W=PARAf1S+7 YOUR SYSTEM'S CHRRRCTER

FOR AN UP-ARROW.

FIXCHR=PARAMS+S11
FIXCHR IS A SUBROUTINE THAT

RETURNS YOUR SYSTEM' S

DISPLAY CODE FOR ASCII.

CODE.

•$-=$1103

390

1808

1010

1020

1030

1040

1350

I860

1070

1030

1090

1100

1110

1120

1133

1140

1150

1160

CLEAR SCREEN

%&%%*&&&*&**&&****&***&****#***&*********<**

214 BEYOND GAMES

CLEAR SCREEN, PRESERVING THE ZERO. PAGE.

1133 ZGC411 CLR.TV JSR TVFUSH

1133 232B11

1106 RE0310

1139 AC3413

110C 231311

110F 20B311

JSR TVHOME

LBX TVCQLS

LDY TVROWS

JSR CLR.XY

JSR TV.POP

SAVE ZERO PAGE BYTES THAT

WILL BE CHANGED. ;

SET SCREEN LOCATION TO UPPER

LEFT CORNER OF THE SCREEN.

LOAD X,Y REGISTERS WITH

X,Y DIMENSIONS OF SCREEN.

CLEAR X COLUMNS, Y ROWS

FROM CURRENT -SCREEN LOCATION.

RESTORE ZERO PAGE BYTES THAT

WERE CHANGED.

RETURN TO CALLER, WITH ZERO

PAGE PRESERVED.

CLEAR PORTION OF SCREEN

1113 BE2AI1 CLR.XY STX COLS

1116 98

1117' AA

CLEAR X COLUMNS, Y ROWS

FROM CURRENT SCREEN LOCATION.

MOVES TV.PTR DOWN BY Y ROWS.

SET THE NUMBER OF COLUMNS

TO BE CLEARED.

NOW X HOLDS NUMBER OF ROWS

TO EE CLEARED.

11IE RC2A11

11IE 3133

1118 AB3610 CLRROW LDA BLANK WE'LL CLEAR THEM BY

; WRITING BLANKS TO THE

; SCREEN.

LDY COLS LOAD Y WITH NUMBER OF

COLUMNS TO EE CLEARED.

CLRPOS STB (TV.PTR),Y CLEAR A POSITION BY

; WRITING A BLANK INTO IT.

ADJUST INDEX FOR NEXT

215

1121 13FB

1750

1760

177E

1780

1780

1689 1123 207611

ISIS

1820

1830

1840 1126 CR

1127 13EF

1123 60

1858

1860

1870

1880 112R 03

1833

1380

1913

1923

1930

1940

1953

i960

1973

1983

1399

2083

2010

2028

2830

2849

2350

2068

2373

2383

2090

COLS

BFL CLRPOS

JSR TUDQWN

DEX

BPL CLRROW

RTS

.BYTE 0

POSITION ON THE ROW.

IF MOT DONE WITH ROW,

CLERR NEXT POSITION...

IP DONE WITH ROW, MOVE

CURRENT SCREEN LOCRTION

DOWN BY ONE ROW.

DONE LR5T ROW YET?

IF NOT, CLERR NEXT ROW...

IF 50, RETURN TO CRLLER.

DRTR CELL: HOLDS NUMBER OF

COLUMNS TO BE CLERRED.

TUHOME

2100 112B R233

2113 liZB RS83

2120

2130 112F IS

2143 1130 S88R

2150

2163

2173

2189

2130

2283

2213

2220
2230

2243

2253

2263

2273

2283

2253

2303

2313

2320

TUHOME LBX #3

LBY #3

5
CLC

BCC TOTOXY

SET TV.PTR TO UPPER LEFT

CORNER OF SCREEN, BY

ZEROING X RND Y RND THEN

GOING TO X,Y COORDINRTES:

CENTER

SET TU.PTR TO SCREEN'S

CENTER:

216 BEYOND GAMES

2330 ?
2340 H32 BD0410 CENTER

2350 1135 4R

2360 1136 FIS

2370 5

2380 ;
23S0 1137 RD0310

2400 113R 4fi

2410 I13B RR

2420

2430

2440

2450

2460

2470

24S3

2450

2600

2510

2520

2530

2540

2550

25S0

2570

2580

25S0

2680

2610

2620

2633

2640

2650

2650

2670

2683

26S0

2700

2710

2720

2730

2740

2750 113B EC0310

2760 1140 3083

2773 ;

2780 1142 RE0310

27S0 ;

2800

2818 1145 3S X.OK

2820 1146 CC0410

2839 1143 3003

2843

2850 ;

2863 114S RC0418

2873

2889 ;

2830 ;

2S80 114E RD0010 Y.OK

LORD R WITH TOTRL ROWS.

DIUIDE IT BY TWO.

Y NOW HOLDS THE NUMBER OF

THE SCREEN' 5 CENTRRL ROW.

LORD R WITH TOTRL COLUMNS.

DIUIDE IT BY TWO.

X NOW HOLDS THE NUMBER OF

THE SCREEN' S CENTRRL COLUMN

X RND Y REGISTERS NOW HOLD

X,Y COORDINRTE5 OF CENTER

OF SCREEN.

SO NOW LET'S SET THE SCREEN

LOCRTION TO THOSE X,Y

COORDINRTES:

SET CURRENT SCREEN LOCRTION

TO COORDINRTES GIVEN BY

THE X RND Y REGISTERS.

IS X OUT OF RRNGE?

IF NOT, LERUE IT RLONE.

IF X IS OUT OF RRNGE, GIUE

IT ITS HIGHEST LEGRL VfiLUE.

NOW X IS LEGRL.

IS Y OUT OF RRNGE?

IF NOT, LERUE IT RLONE.

IF Y IS OUT OF RRNGE, GIUE

Y ITS HIGHEST LEGRL URLUE.

NOW Y IS LEGRL.

SET TU.PTR = LOWEST SCREEN

LDR TUROWS

LSR R

TRY

LDR TUCOLS

LSR R

TRX

113C 38

TUTOXY

&********&&************************>***

TUTOXY SEC

CPX TUCOLS

BCC X.OK

LDX TUCOLS

SEC

CPY TUROWS

BCC Y.OK

LDY TUROWS

LDR HOME

217

2310 1151 8580 STA TU.PTR ADDRESS.

2320 1153 BD0110 LDA HOME*I

2930 1156 S501 STA TU.PTR+1

2340 5
2353 1158 98 PHP SAUE CALLER' S DECIMAL FLAG.

2353 1153 DS CLD CLEAR DECIMAL FOR BINARY

2370 5 ADDITION.

2389 *

2330 USA 8A TXA ADD X TO TU.PTR

3000 USB 18 CLC

3318 115C 6500 ADC TU.PTR

3820 USE 9003 BCC COLSET

3330 1163 E601 INC TU.PTR+1

3048 1162 18 CLC

3050 5
3P.c?3

*

3078 1163 ceee C0L5ET CPY #0 ADD Y+ROWINC TO TU.PTR:

3088 1165 F00B BEQ TU.SET

3030 1167 18 ADDROW CLC

3103 1168 GD0210 ADC ROWING

3110 116B S302 ECC *+4

3120 116D E601 INC TU.PTR+1

3130 116F 88 DEY

3140 1170 D0F5 BNE ADDROW

3153 5

3160 ;

3170 1172 8530 TU.SET STA TU.PTR

3180 1174 28 FLP RESTORE CALLER'S DECIMAL FLAG

3133 1175 69 RTS RETURN TO CALLER

3200

3210

3229

3230
3243

3250

3258

327Q

3233

3233

33G8

3310

3329

3333

3348

3350

3360

TVDOWN, TUSKIP, and TUPLU5

********^**^$*****^***********,*************

3370

3380 ;

3330 ;

3499 1176 AD8210 TUDOWN.LDA ROWINC

3410 1173 13 CLC

3420 117A 3005 BCC TUPLUS

MOUE TU.PTR DOWN BY ONE ROW.

3430 ;

3443

3450

3460

117C 233B11 UUCHBR

«

»

JSR TU

3470

3480

117F A301 TUSKIP

>

LDA #1

PUT PUT CHARACTER ON SCREEN

AND THEN

SKIP ONE SCREEN LOCATION

BY INCREMENTING TU.FTR

218 BEYOND GAMES

3490 5
3500 5

3510 1131 Q8 TUPLUS PH P

3520 1132 D8 CLD

3538 1133 18 CLC

3540 1134 6500 ADC TO.PTR

3550 1185 9002 BCC ++4

3560 1183 E601 INC TU.PTR+1

3570 USA 8500 ST A TU.PTR

3582 118C 33 SEC

3530 118D AD0510 LDA HIPAGE

3682 1133 C501 CMP TU.PTR+1

3610 1132 B035 BCS TO. OK
3623 5
3630 1134 AD0110 LDA HOME+1
3640 1137 8501 STB TO.PTR+1

3650 »
3668 1199 28 TO. OK PL P

3S70 USA 60 RTS

TUPLUS ADDS ACCUMULATOR
TO TU.PTR, KEEPING TU.PTR
WITHIN SCREEN MEMORY•

IS CURRENT SCREEN LOCATION
OUTSIDE OF SCREEN MEMORY?

IF SO, WRAP AROUND FROM
BOTTOM TO TOP OF SCREEN.

RESTORE ORIGINAL DECIMAL
FLAG AND RETURN TO CALLER.

3680
3633
3703
3713
3720
3730
3740

3752
3768
3773
37 S3
3738
3633
3610
3623
3830
3843
3850
3863
3870
3880
3630 II9B 28II10 TO.PUT JSR FIXCHR
3300
3310
3320
3330
3940
3350
3S60
3370
3330
3330
4080
4010
4020
4030
4040
4850
4360

TO.PUT

**

119E R800
11R0 3100
liAZ 60

CONOERT R5CII CHARACTER
TO YOUR SYSTEM' S DISPLAY
CODE.

LDY #0 PUT CHARACTER AT CURRENT
STB C TO.PTR),Y SCREEN LOCATION.
RTS THEN RETURN.

219

4070 DISPLfiY fi BYTE IN HEX FORNRT

4880

4030

4100

4110

4120

4133

4143

4150 11R3 43 UUBYTE FHR SAVE BYTE TO BE BISPLRYEB.

4160 1104 4fi LSR R MOUE 4 MOST SI6MIFICP.NT

4170 HRS 4R LSR fl BITS INTO POSITIONS

4183 11RS 4R LSR ft FORMERLY OCCUPIED BY 4

4130 11R7 4R LSR R LERST SIGNIF1CRNT BITS.

4203 5

4213 11R8 20B611 JSR RSCII DETERMINE RSCII CHRR FOR

4220 5 HEX DIGIT IN ft'5 4 LSB.

4230 5
4240 11RB 207C11 JSR VUCHRR BISPLRY THAT RSCII CHAR ON

4253 9 SCREN RND RD'JBNCE TO NEXT

4260 3 SCREEN LOCRTION.

4270 5

4280 11RE 63 PLR RESTORE ORIGINAL BYTE TO R

4290 llfiF 23B611 JSR RSCII DETERMINE RSCII CHRR FOR

4303 5 R- S 4 LSB.

4310 9

4320 11B2 Z07CI1 JSR UUCHAR STORE THIS RSCII CHRR JUST

4330 5 TO THE RIGHT OF THE OTHER

4340 9 RSCII CHRR, RND RDURNCE TO

4350 9 NEXT SCREEN POSITION.

4360 9

4378 9

4380 11B5 60 RTS RETURN TO CRLLER.

4390 9

4400 9

4410 9

4420 9

4430 9

4440 9

4453 9

4453 9

4470 3
4480 5
4490 3
4533 3
4510 5 HEX-TG- RSCII

4520

4530 5
4540 3

4553 9 *

4580 5

4570 5
4580 5

4590 11BS 03 R5CII PHP THIS ROUTINE RETURNS ASCII

4500 11B7 B3 CLD FOR 4 LSB IN RCCUMULRTOR,

4610 11B8 290F AND #S3F CLERR HIGH 4 BITS IN ft.

4620 HER C33R CMP «0fl IS BCCUNULftTOR GREATER

4630 9 THAN S?

4640 11BC 3332 EMI DECIML IF NOT, IT MUST BE 3-9,

220 BEYOND GAMES

IIEE SS06 RDC #6

11C0 6333 EECIML RDC #&33

11C2 28

ir SO, IT MUST BE fi-F,

RDD 36 HEX TO CONVERT IT.

TO.CORRESPONDING RSCII CHAR.

IF R IS 0-9, RDD 30 HEX

TO CONVERT IT TO

CORRESPONDING RSCII CHAR.

RESTORE ORIGINRL DECIMRL

FLAG, AND

RETURN TO CALLER

11C4 68

lies RR

lies 68

i1C7 as

TVFU3H PLR

TRX

PLR

TRY

SAVE CURRENT SCREEN LOCATION

ON STACK, FOR CRLLER.

PULL RETURN RDDRESS FROM

STACK AND SAVE IT IN X AND

Y REGISTERS.

11C8 R59I

IICR 48

11CB A503

11CD 43

LDR TV.PTR41 GET TV.PTR AND

FHA
LDR TV.PTR PUSH IT ONTO THE STACK.

PHA

1ICE S3

11CF 43

11D3 8R

11D1 48

PLACE RETURN ADDRESS

BACK ON STACK.

THEN RETURN TO CALLER.

221

5233 ? CRLLER WILL FIND TU.PTR ON

5240 ? STRCK, LOW BYTE ON TOP.

5*250 5

5250 I

5270 5

5280 9

5290 *

5303 ?

5313 5

5323 5
5333 *

5343 9

5353 9 **#:fc***4fc***#*********^*^** **#*******-*■&**►****

5360 5

5370 5 TU .POP

5380 ?

5390 5

5403 5

5410 9

5423 9

5430 9 RESTORE SCREEN LOCRTION

5443 ? PREUIOU5LY 5RUED ON STRCK.

5453 9

5463 9

5470 9

5483 11D3 68 TU. .POP PLR PULL RETURN RDDRE55 FRON

5493 11D4 RR TRX STRCK, SfiUING IT IN X...

5590 11D5 68 PLR

5513 11B5 88 TRY ...RNB IN Y

5520 ?

5533 9

5540 11D7 63 PLR RESTORE...

5550 11E8 8833 5TR TU.PTR ...TU.PTR

5563 HDfl 68 PLR . . . FRON

5570 11DB 85G1 STR TU.PTR+i ...STRCK.

5583 S

5530 9

5500 HDD 98 TYR PLRCE RETURN RDDRESS

5613 11DE 48 PHR BRCK ...

5623 11DF 8R TXR

5638 11E0 48 PHR ...ON STRCK.

5648 9

5653 5
5660 11E1 63 RTS RETURN TO CRLLER.

222 BEYOND GAMES

Appendix C2:

Visible Monitor (Top Level and
Display Subroutines)

18

20

30

40

50

60

70

S3

93

100

110

120

133

140
153

163

173

163

130

200

210

223

233

243

253

2S3

273

233
2S3

333

313

323

333

343

353

3SS

37©

383 0833=

390

433 3332=

410

423

433 1330=

443

450

463

470 1007=

4S0

433

503

513

528 1333=

533

540

550

568

570

580 0820=

APPENDIX C2= ASSEMBLER LISTING OF

THE VISIBLE MONITOR

TOP LEVEL AND DISPLAY SUBROUTINES

SEE CHAPTER 6 OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

***********^*******************************;$

EQUATES

TV.PTR = 0

GETPTR * 2

PARAMS =$1083 ADDRESS OF SYSTEM DATA

BLOCK-

ARROW = PARAMS+7

THIS DATA BYTE HOLDS YOUR

SYSTEM' S CHARACTER CODE

FOR BN UP-ARROW.

ROMKEY = PRRAMS+8

ROMKEY IS A POINTER TO

YOUR SYSTEM' S SUBROUTINE

TO GET AN ASCII CHARACTER

FROM THE KEYBOARD.

SPACE = $23

225

593

603 007F=

610

6Z0 000D=

630

640

650.

6601:

670

680

690

703

710

720

730

740

750

.760

770

780

790

800

810

820

830 1100=

840 1100=

850 1113=

860 11ZB=

870 113C=

880 1176=

890 1170=

900 117F=

910 1181=

920 11R3=

930 11B6=

940 11C4=

950 1103=

960

970

980

990 1200

1000 '

1010

10Z0

1030 12E3=

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

RUBOUT = $7F

CR = $0D RSCII FOR CflRRIRGE RETURN.

REQUIRED SUBROUTINES

**********************^*************$*******

TUSUBS =

CLR.TU =

CLR.XY -

TUHOtlE =

TUTOXY =

TUDOWN =

UUCHRR =

TUSKIP =

TUFLUS =

UUBYTE =

RSCII =

TUPUSH =

TO.POP =

351100

TUSUBS

T05UB5+S13

T05UB5+S2B

T0SUB5+S3C

T0SUBS+S76

TUSUBS+$7C

T0SUBS+S7F

TUSUBS+3531

TUSUB5+35B3

T05UBS+SB6

TUSUB5+SC4

T05UBS+SD3

* = $1200

UFDRTE = *+$E3

226 BEYOND GAMES

,******************************>********

USER-MODIFIABLE DATR

**

FIELD .BYTE 0 HUMBER OF CURRENT FIELD,

(MUST BE 0-6.)

REG. A .BYTE 0 IMAGE OF ACCUMULATOR.

REG.X .BYTE 0 IMAGE OF X-REGISTER.

REG.Y .BYTE 0 IMAGE OF Y-REGISTER.

REG.P .BYTE 0 IMAGE OF PROCESSOR STATUS

REGISTER.

REGS - REG.A

1205 0003 SELECT .WORD 0 POINTER TO CURRENTLY-

SELECTED ADDRESS.

**

THE VISIBLE MONITOR

**

1207 03

1203 D3

0I5M0N PHP

CLD

1209 201212 JSR DSPLAY

SAME CALLER'S STATUS FLAGS.

CLEAR DECIMAL MODE, SINCE

ARITHMETIC OPERATIONS IN THIS

BOOK ARE ALWAYS BINARY.

PUT MONITOR DISPLAY ON

SCREEN.

120C 20E312

120F ie

1213 S0F6

JSR UPDATE GET USER REQUEST AND

HANDLE IT.

BCC VISMON+1 LOOP BACK TO DISPLAY...

227

1750

1760

1770

1780

1780

1800

1810

1820

1830';

1840

1850

I860

1870

1880

MONITOR-DISPLAY

.1890

1800

1310 1212 28C411 BSPLAY JSR TOPUSH

1820

1330

1340 1215 202512 JSR CLRMON

19501218.203412 JSR LINE.l

I960 121B 205C12 JSR LINE.2

1970 1Z1E Z8RFT2 JSR LINE.3

1380 •

1390 1221 20D311 JSR TO.POP

2000.

2010

2020 1224 60 RTS

SRUE ZERO PRGE BYTES THRT

WILL BE MODIFIED.

CLERR B PORTION OF SCREEN.

DISPLRY LRBEL LINE.

DISPLRY DfiTR LINE.

DISPLRY RRROW LINE.

RESTORE ZERO PRGE BYTES

THAT WERE SROED ABOVE.

RETURN TO CALLER.

2030.

2040;

2050'

2060.

2070

2880

2030

2100

2110

2120

2130

2140

2150

2160

2170

2180

2130

2200

2210

2220

2230 122S R202

2240 1227 R002

2250 1229 203C11

2280

2270 1Z2C R213

2280

2290

2300 122E R003

2310

2320

CLEAR PORTION OF SCREEN

CLRMON LDX #2

LDY #2

JSR TOTOXY

LDX #25

LDY #3

SET TV.PTR TO COLUMN 2,

ROW 2.

LORD X WITH NUMBER OF

COLUMNS C25) TO BE CLERRED.

LORD Y WITH NUMBER OF

ROWS (3) TO EE CLERRED.

228 BEYOND GAMES

2330 1230 201311 JSR CLR.XY Clear x columns, y rows.

2340 *

2350 1233 60 RTS RETURN TO CALLER.

2360 5

2370 9

2380 5

2330 ?

2400 9

2410 9

2420 9

2430

244S »

2450 9

2460

2470 *

2488 ; DISPLRY LfiBEL LINE

245'3 *

2530

2510 9

2528 9

2530 9

2548 9

2558 9

2560 1234 9200 LINE.1 LDX #13 X-COORDINRTE OF LRBEL "A".

2570 1236 9002 LDY #2 Y-COORDINATE OF LfiBEL "A".

2580 1238 203C11 JSR TVTOXY SET TU.PTR TO POINT TO

2590 5 SCREEN LOCATION'OF LABEL TR

2683 ?

2618 123B 9880 LDY #0 PUT LRBELS ON SCREENi

2628 123D 8C5112 STY LBLCOL INITIRLIZE LRBEL COLUMN

2630 9 COUNTER.

2643 ;

2650 1240 ES5212 LBLOOP LD9 LABELS,Y GET R CHRRRCTER AND

2663 1243 237C11 JSR UUCHAR PUT IT ON THE 5CREEN.

2678 1246 EE5112 INC LBLCOL PREPRRE FOR NEXT CHARACTER.

2688 1243 9C511Z LDY LBLCOL DONE LAST CHRRRCTER?

2638 124C C089 CPY #10

2780 124E B0F0 BNE LBLOOP IF NOT, DO NEXT CHRRRCTER.

2710 ?
2728 1253 60 RTS RETURN TO CRLLER.

2738 1251 00 LBLCOL .BYTE 0 DATA CELL: HOLDS COLUMN

2740 9 OF CHRRRCTER TO BE COPIED.

2750 5

2760 5

2778 9

2780 9
2738 1252 41 LRBELS .BYTE ' R X Y P'

2733 1283 20

2730 1254 20

2793 1255 58

2730 1256 20

2730 1257 20

2738 1253 53

2733 1259 20

2790 1259 20

2790 125B 58

2803

2810 5

229

2820

2830

2840

28S0

2860

2870

2880

2890

2900

2310

2920

2930

2940

2950

2960

2978

2980

2990

3000

3010

3020

125C A202 LINE.2 LDX #2

5

5

LORD X WITH STARTING

COLUMN OF DRTR LINE.

3030

3040

3850

125E R003 LEY #3

9

9

LORD Y WITH ROW NUMBER

OF DRTR LINE.

3060

3070

3088

1260 203C11 JSR TUTOXY

s

?

SET TU.PTR TO POINT TO

THE STRRT OF THE DRTR LIME.

3090 1263 RD0612 LDR 5ELECT+1 DISPLRY HIGH BYTE OF

3100 1266 20R311 JSR UUBYTE CURRENTLY-SELECTED REDRESS.

3118 1269 RD051Z LDR SELECT DISPLRY LOW BYTE OF

3123

3130

126C 20R311 JSR UUBYTE

5

CURRENTLY-SELECTED REDRESS.

3149

3150

3160

126F 207F11 JSR TUSKIF

5

9

SKIP ONE SPACE RFTER

RDDRESS FIELD.

3170

3180

3190

1272 209412 JSR GET.SL

9

5

GET CURRENTLY-SELECTED

BYTE.

3200

3210

1275 48 PHR

»

5RUE IT.

3228

3230

3240

1276 20R311 JSR UUBYTE

5

5

DISPLRY IT, IN HEX FORMAT,

IN FIELD 1.

3250

3269

3270

1273 207F11 JSR TUSKIF

9

5

SKIP ONE SPACE RFTER FIELD

1.

3288

3290

3300

127C 63 FLR

9

5

RESTORE CURRENTLY-SELECTED

BYTE TO ACCUMULATOR.

3310

3320

3330

127D 207C11 JSR UUCHRR

9

5

DISPLRY IT IN CHARACTER

FORMAT, IN FIELD 2.

3340

3358

3360

3370

3380

3398

1288 207F11 JSR TUSKIP

9

9

9

5

9

SKIP ONE SPACE RFTER FIELD 2

DISPLAY 6502 REGISTER

IMAGES IN FIELDS 3-6:

DISPLAY BATA LIRE

230 BEYOND GAMES

3400

3410

1283 A200

5

LDX #0

3420 1285 BD0112 VUREGS LDfl REGS,X

3430 1288 20A311 JSR UUBYTE

3440

3450

128B 207F11

9

JSR TVSKIP

3460

3470 128E E8
;

I NX

3480 128F E004 CPX #4

3490 1291 D0F2 ENE UUREGS

3580

3510 1293 60
5

RTS

3520

3530

3540

3550

3560

3570

3580

35S0

3608

3618

3620

3830

3640

3650

3660

3670

3680

36S0

3708

3710

3723

3733

3740

3758

3760

3773

3780

3730

3830

3810

3820

3830

3840

3850

3860

3870

3880

3830

3900

3910

3320

3930

3340

3950

3360

3370

START WITH ACCUMULATOR

IMAGE.

LOOK UP THE REGISTER IMRGE.

DISPLAY IT IN HEX FORMAT.

SKIP ONE SPACE AFTER HEX:

FIELD.

GET READY FOR NEXT REGISTER..

DONE FOUR REGISTERS YET?

IF NOT, DO NEXT ONE.••

IF ALL REGISTERS DISPLAYED,

RETURN.

GET SELECTED BYTE

1294 A502 GET.SL LDA GETPTR GET BYTE POINTED TO BY

1236 48 FHB THE SELECT POINTER

1237 A603 LDX GETPTR+1 (PRESERVING THE ZERO PAGE)

12S9 AD0512
i

LDA SELECT

123C 8582 STA GETPTR

123E AD0512 LDA SELECT+1

12A1 8503 STA GETPTR+1

12 A3 R003
5

LDY #0

12A5 B132 LDA CGETPTR),Y

12A7 A8 TRY

12A8 68 FLA

12A9 8502 STA GETPTR

1ZAB 8603 STX GETPTR+1
1ZAB 98 TYA
12AE 60 RTS RETURN TO CALLER.

231

3S83

3983

4000

4013

40Z3

4030

4043

4058

4368

4073

4080

4090

4180

4110

**************************************&*****

DISPLAY ARROW LINE

**

4123 12AF A202 LINE.3 LDX #2 LOAD X WITH STARTING COLUMN.

4133 12B1 A804 LDY #4 LOAD Y WITH ROW NUMBER.

4143 12B3 203C11 JSR TUTOXY SET TU.PTR TO BEGINNING

4153 ? OF ARROW LINE.

4163 5

4170 I2BS AC0012 LDY FIELD LOOK UP CURRENT FIELD.

4183 12B9 38 SEC

41S0 IZBA C007 CPY #7

4280 12BC 9885 BCC FLD.OK

4210 12BE A000 LDY #3

4228 12C0 8C001Z STY FIELD

4230 12C3 B9CD1Z FLD.OK LDA FIELDS,Y LOOK UP COLUMN NUMBER FOR

4243 * CURRENT FIELD.

4253 5

4260 12C6 AS TRY USE THAT COLUMN NUMBER AS

4273 * AN INDEX INTO THE ROW.

4283 5

4293 12C7 AD0710 LDA ARROW PLACE AN UP-ARROW IN

4300 12CA 9130 STB CTU.PTR),Y COLUMN OF THE ARROW LINE.

4313 12CC 68 RTS RETURN TO CALLER.

4328 *

4333 5

4343 12CD 03 FIELDS .BYTE 3,6,8 THIS DATA AREA SHOWS WHICH

4343 12CE 86

4343 12CF 88

4353 12D0 0B .BYTE $0B,$0E COLUMN SHOULD GET AN UP-

4353 12D1 0E
4360 12D2 11 .BYTE $11,514 ARROW TO INDICATE ANY ONE

4363 12D3 14
4370

4380

43S0

4400

4410

4428

4430

OF FIELDS 0-S. CHANGING

ONE OF THESE UALUES WILL

CAUSE THE UP-ARROW TO APPEAR

IN A DIFFERENT COLUMN WHEN

INDICATING A GIUEN FIELD.

232 BEYOND GAMES

Appendix C3:

Visible Monitor (Update Subroutine)

233

APPENDIX C3: ASSEMBLER LISTING OF

THE VISIBLE MONITOR
10

20

30

40

50
60

70

80

S3

100

110

120

133

140

150

163

170

183

130

208

210

. 220

238

240

250

260

270

280

2S0

300

310

323

330

348

350 0880=

360

370 0382=

333

3S3

403 1000=

410

420

433

443 1007=

450

460

470

480

4S0 1008=

503

510

523

539

540

55G 1010=

563

573

UPDATE SUBROUTINE

SEE CHAPTER 6 OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

EQUATES

TU.PTP = 0

GETPTR = 2

PARAMS = SI000 ADDRESS OF SYSTEM DATA

BLOCK.

ARROW = PRRAMS+7
THIS DATA BYTE HOLDS YOUR

SYSTEM' 5 CHARACTER CODE

FOR AN UP-ARROW.

ROMKEY = PARAMS+3

ROMKEY IS A POINTER TO

YOUR SYSTEM' S SUBROUTINE

TO GET AN ASCII CHARACTER

FROM THE KEYBOARD.

DUMMY = PARAMS+S10

DUMMY RETURNS WITHOUT DOING

ANYTHING.

235

S83

530

600 0020=

610

620 007F=

630

640 000D=

650

660

670

6S0

630

700

710

720

730

740

750

760

770

7S0

730

S00

810

820

833

843

850

863

870 1183=

880 1130=

830
900

S10 1200=

320

330

343 1204=

953

360

973

980

930

1030

1010

1020

1030

1040

1850

1880

1870

1383

1098

1100

1110

1120

1130

1140

1150

SPACE = $20

RUBOUT = $7F

CR = $0B BSCII FOR CARRIAGE RETURN.

REQUIRED SUBROUTINES

*****************■&Mf'*%***&&&&****tt***&**>*>:k:&:&:&

TUSUBS = $1100

CLR.TU * TUSUBS CLR.TU CLEARS THE SCREEN.

UNSUBS « $1203 STARTING PAGE OF UI5IBLE

MONITOR CODE.

GET.SL = UMSUES+SS4

GET.SL GETS THE CURRENTLY-

SELECTED BYTE.

USER-MODIFIABLE DATA

236 BEYOND GAMES

1160

1170

1180

1190

1200 1200 * « UM5UB5

1210

1220

1230

1240

1250 1200 00 FIELD .BYTE 0 NUMBER OF CURRENT FIELD.

1260 } C MUST BE 0-6.)

1270

1280 1201 08 REG. B .BYTE 0 INBGE OF BCCUNULBTOR,

1230

1300 1202 00 REG. X .BYTE 0 IflfiGE OF X-REGISTER.

1310

1320 1203 00 REG. Y .BYTE 0 IMAGE OF Y-REGISTER,

1330 '

1340 1204 00 REG.P .BYTE 0 IMBGE OF PROCESSOR STBTUS

1350 REGISTER.

1363

1370 1201s = REGS « REG.R

13S0 9

1333 1205 0000 SELECT .WORD 0 POINTER TO CURRENTLY-

1480 SELECTED RDDRESS.

1410

1420

1433

1440

1453

1460

1470

1480

1430

1580

1510

1520

1530 KEYBOBRD INPUT ROUTINE

1540

1550 #******&&&***&*********************■**%******

1560 i
1570 \

1580 12E0 * = OMSUBS+SE0

1590 1
1603 s

1610 12E0 6C0810 GETKEY JMP CROflKEY) JSR GETKEY CBLLS YOUR

1620 SYSTEM" S KEYBOBRD INPUT

1630 ROUTINE INDIRECTLY.

1640

1650

1560 ;
1670 ;
1688 *
1630 ;
1700

1710

1720

1730

237

1740 ?

1753

1760

1770
9

MONITOR- UPDATE

1780 ;

1738

18S0 ;

1813 9

1828 9

1833 9

1848 ;

1858 12E3 20EG12 UPDATE JSR GETKEY GET R CHRRRCTER FROM THE

1880 5 KEYBOARD.

1878

1883 12E6 C33E
9

cmp =r > IS IT THE ' >' KEY?

1830 12ES D818 ENE IF.LSR IF NOT, PERFORM NEXT TEST.

1303

1310 lZEFi EE0012

9

NEXT. F INC FIELD IF SO, SELECT NEXT FIELD.

1923 12ED RD0012 LDR FIELD

1S30 12F8 C307 CMP #7 IF ARROW WRS UNDER RIGHT¬

1943 12F2 E805 BNE UP.EXI MOST FIELD, PLACE IT UNDER

1350 12F4 R300 LDR 40 LEFT-MOST FIELD.

13E3 12F6 8D8012 STA FIELD

1370 12F3 60 UP.EXi RTS THEN RETURN TO CALLER.

1350

1SS0

»

9

2G80 12FA C33C IF.LSR CMP #' < IS IT THE ' <' KEY?

2010 12FC D80B BNE IF.SP IF NOT, PERFORM NEXT TE5T.

2020 ;

2030 12FE CE0812 PREU.F DEC FIELD IF SO, SELECT PREVIOUS

2040 1381 1305 EPL UP.EXZ FIELD: THE FIELD TO THE

2050 13B3 RS8S LDR #S LEFT OF THE CURRENT FIELD.

2060 1385 SD8012 STfl FIELD

2973 1308 S3 UP.EX2 RTS THEN RETURN

2088

2033 \

2180 1383 C328 IF.5P (CMP 4SPACE IS IT THE SPACE BfiR?

2118 130B D009 BNE IF.CR IF NOT, PERFORM NEXT TEST.

2128 5

2130 130D EE8512 INC.SL INC SELECT IF SO, STEP FORWARD THROUGH

2143 1310 D003 BNE -*+5 MEMORY BY INCREMENTING

2150 1312 EE0612 INC SELECT+i THE POINTER THAT SELECTS

2188 1 THE ADDRESS TO BE DISPLAYED.

2170 1315 S3 RTS THEN RETURN TO CALLER.

2188 9

2130 9

2203 1318 C33D IF. CR CMP #CR IS IT THE CARRIAGE RETURN?

221S 1318 DS0C BNE IFCHRR IF NOT, PERFORM NEXT TEST.

2223

2233 131R RD8512
?

DEC.SL LDR SELECT IF SO, STEP BACKWARD THROUGH

2248 131D D003 BNE ++5 MEMORY BY DECREMENTING THE

2253 13IF CESS12 DEC SELECT+i POINTER THAT SELECTS THE

2280 1322 CE8512 DEC SELECT ADDRESS TO BE DISPLAYED.

227U 1325 60 RTS THEN RETURN.

22b£t ;

2230 ;
2300 1326 AE3812 IFCHAR LDX FIELD IS ARROW UNDER CHRRflCTER

23IU 1323 E002 CPX #2 FIELD (FIELD 2)?

238 BEYOND GAMES

Z3Z0 132B DS1B BNE IF. GO

Z330 ;

2340 132D AS PUT.SL TAY

Z350 132E A500 LDA TV.PTR

Z360 1330 43 FHA

Z370 1331 RS01 LDX TV.PTR+1

Z3S0 1333 AD0512 LDA SELECT

Z3S3 1336 8500 STfi TV.PTR

2400 1338 AD0612 LDA SELECT*1

2410 133B 8501 STA TV.PTR+1

2420 I33D 98 TYA

2430 133E A000 LDY #3

2440 1340 3180 STA (TV.PTR),

2450 1342 8601 5TX TV.PTR+I

2460 1344 68 PLA

2470 1345 8500 STA TV.PTR

2480 1347 60 RTS

2430 *

2500 5

2510 1348 C947 IF.GO CMP #' G

2520 134A D823 BNE IF.HEX

2530 t

2540 134C AC0312 GO LDY REG.Y

2550 134F AE0212 LDX REG. X

2560 1352 AD0412 LDA REG. P

2570 1355 48 PHA

2580 1355 AD0I12 LDA REG. B

2530 1353 23 PLP

2600 135A 206C13 JSR CALLIT

2510 135D 03 PHP

2620 135E 8B0112 STA REG. A

2S30 1361 8EB212 STX REG. X

2640 1364 8C0312 STY REG.Y

2550 1367 63 PLA

2660 1368 8D0412 STA REG.P

2670 136B 60 RTS

2530 ;

2690 ;

2700 136C 6C0512 CALLIT JMP (SELECT)

2710 5

2720 9

2730 9

2740 5

2750 13SF 48 IF.HEX PHA

2760 1370 20D513 JSR BINARY

2770 ;

2780 5

27S0 9

2800 1373 304B BMI IF.CLR

2810 ;

2820 9

2830 ;

2840 1375 A3 TAY

2853 1376 63 PLA

2860 1377 98 TYA

2870 5

2880 1378 AE0012 LDX FIELD

2830 137B D014 BNE NOTADR

IF NOT, PERFORM NEXT TEST.

IF SO,

STORE THE

CHARACTER IN THE CURRENTLY-

SELECTED ADDRESS.

(PRESERVING THE ZERO PRGE.)

THEN RETURN.

IS IT ' G' FOR GO?

IF NOT, PERFORM NEXT TEST.

IF SO, LORD REGISTERS

FROM REGISTER IMAGES...

AND CALL SELECTED ADDRESS.

WHEN THE SUBROUTINE RETURNS.

SAVE REGISTER VALUES IN

REGI5TER IMAGES.

THEN RETURN TO CALLER.

JSR CALLIT CALLS THE

CURRENTLY-SELECTED ADDRESS,

INDIRECTLY.

SHOE KEYBOARD CHARACTER.

IS IT ASCII CHAR FOR 0-3 OR

A-F? IF SO, CONVERT TO BINARY

IF KEYBOARD CHAR WAS N

0-3 OR A-F, PERFORM NEXT

TEST.

PULL KEYBOARD CHARACTER

FROM STACK. WHILE SAVING

BINARY EQUIVALENT IN H AND Y.

IS ARROW UNDER ADDRESS

FIELD (FIELD Q)?

239

2SG0

2310 137D A2S3 ADRFLD LDX #3

2920 137F IS ADLOOP CLC

2930 1388 GE8512 ASL SELECT

2340 1383 2E0S12 ROL SELECT+1

2S53 1386 Cft DEX

2860 1337 10FS BPL ADLOOP

2370 1389 ss TYA

29S0 138 A 0DS512 ORA SELECT

23S3 138D 8D8512 STfi SELECT

3000 1390 S3 RTS

3010 *
3020 V

3030 1391 E001 NOTADR CPX #1

3049 1333 D818 BNE REGFLD

3050 5
30S0 5

3370 139S 290r ROL.SL AND #$0F

3080 1397 48 PHR

3099 13SS 203412 JSR GET.SL

3103 I3SB 0fl ASL A

3110 13SC 0A ASL A
3128 133D 3A ASL A

3130 I39E BA ASL A

314U 139F 2SF0 AND #$F0

31 S3 13A1 8DBC13 STA TEMP

3168 13A4 63 PLA

3170 13 AS 0DAC13 ORA TEMP

3188 13 AS 282013 JSR PUT.SL

31 S3 13AB 63 RTS

3280 5

3218 13 AC 83 TEMP .BYTE 8

3228 '
3228 \

32*10

3Z58 13AD CA REGFLD DEX

32SB 13AE CA DEX

3278 13RF CA DEX

3280 13B0 8033 LDY #3
3233

3380 1352 18 RGLOOP CLC

3318 13B3 1E8112 ASL REGS,X

3323 13E8 89 DEY

3330 13E7 18FS BPL RGLOOP

3349 13B3 ID011Z ORA REGS,X

3350 13 SC SD0112 STA REGS,X

3363 13BF 60 RTS

3378 ■
3380

3330 13C9 69 IF.CLR PLA

3403 13C1 CS7F CMP &RUBQUT

3410

3428

3438

344b

346©

3468 I3C3 15004 BNE NOTCLR

3470

SINCE ARROW IS UNDER ADDRESS

FIELD, ROLL HEX DIGIT INTO

ADDRESS FIELD BY ROLLING IT

IT INTO THE POINTER THAT

SELECTS THE DISPLAYED

ADDRESS.

THEN RETURN.

IS ARROW UNDER FIELD 1?

IF NOT, IT MUST BE UNDER

A REGISTER FIELD.

ROLL 4 LSB IN A INTO

CURRENTLY-SELECTED BYTE.

GET THE CURRENTLY-SELECTED

BYTE AND SHIFT LEFT 4 TIMES..*

PUT IT IN CURRENTLY-SELECTED

ADDRESS AND RETURN.

THE ARROW MUST BE UNDER A

REGISTER IMAGE: FIELD 3,

4, 5, OR 6.

ROLL HEX DIGIT INTO

APPROPRIATE REGISTER IMAGE.

RESTORE KEYBOARD CHARACTER.

15 IT RUEOUT? CIF YOUR

SYSTEM DOESN' T HAUE A

RUEOUT KEY, SUBSTITUTE THE

CODE FOR THE KEY YOU' LL USE

TO CLEAR THE SCREEN.)

IF IT I SIT T THE ' CLEAR

SCREEN' KEY, PERFORM NEXT

240 BEYOND GAMES

TEST

IF IT IS, THEN CLERR THE

SCREEN RHD RETURN.

IS IT ' Q' FOR QUIT?

IF MOT, PERFORM NEXT TEST.

IT IS 'Q' FOR QUIT. THE

USER WANTS TO RETURN TO THE

CRLLER OF THE VISIBLE

MONITOR. SO LET'S DO THRT:

POP UPDATE' S RETURN fiDDRESS.

RESTORE INITIAL 6S02 FLAGS.

VISMON' S RETURN ADDRESS IS

NOW ON THE STACK.

SO RETURN TO CALLER OF

VISMON. IN THIS WAY,

VISMON CAN BE USED BY ANY

CALLER TO GET BN ADDRESS

FROM THE USER.

REPLACE THIS CALL TO

DUMMY WITH A CALL TO ANY

SUBROUTINE THAT EXTENDS

FUNCTIONALITY OF THE

VISIBLE MONITOR.

THEN RETURN.

3S0S

3810

3323

3830

3843

3S5S

3SSQ

3870

3880

3830

3S30

3310

3323

3933

3940

3350

3380

3370

3980

3330

4380

4313

4320

4033

4040

4053

ASCII TO BINARY

$$**$$$$*$*3i***&***&**W*&% $**&*&**&&&

IF ACCUMULATOR HOLDS ASCII

0-9 OR A-F. THIS ROUTINE

RETURNS BINARY EQUIVALENT-

OTHERWISE, IT RETURNS $FF,

241

4068 13D5 33

4073 13D6 6338

4880 13D8 980F

4088 I SDR CS0R

4183 13DC 300E

4113 13DE ES37

4120 13E0 C910

4139 13E2 BOSS

4149 13E4 38

4150 13E5 C90R

4160 13E7 B803

4173 13E3 R3FF

4180 13EB 60

4190

4200 13EC R203

4210 13EE 60

BINARY SEC

SBC #$30

ECC BHD

CMP #$0R

BCC GOOD

SBC #7

CMP #$10

ECS ERD

SEC

CMP #$0R

ECS GOOD

ERD LDR #$FF

RTS

?
GOOD LDX #0

RTS

242 BEYOND GAMES

Appendix C4:

Print Utilities

243

APPENDIX C4: ASSEMBLER LISTING OF
PRINT UTILITIES

10
2Q

33
40
50
60
70
83

33

133
110

123
133
140
153
163
170
180
130
23G
ZIS

220

233
243
253
268
270
238
230
330
310 388D=
323
330 00FF”
348
353
3S3 033A—
378
383 8800=
333
480 80FF=
418
420
438
448
458
460
473
483
433
580
518
520
538
543
550
580
570
5S3

SEE CHAPTER 7 OF BEYOND GAMES: SYSTEMS
SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

CONSTANTS

CARRIAGE RETURN.

THIS CHARACTER MUST
TERMINATE ANY MESSAGE STRING.

LINE FEED.

OFF = 0

ON = SFF

EXTERNAL ADDRESSES

CR * SSD

ETX - SFF

LF - $0A

PflRfiMS = $1800 ADDRESS OF SYSTEM DATA BLOCK

S30

600

610

620

630

640

6S0

660 1000=

670

6S0

690

700 10SC=

710

720

730

740

750

760 103R=

770

780

730

800

810

820 100E=

830

840

850

868

870

880

SS3 1100=

S00 1166=

310

920

930

940

950 1200=

960.

970

980 1205=

990 1234=

1000 130D=

1010
1020

1030

1040

1050

1863

1078

1880

1890

1100

1110

1120

1130

1140

1150

1160

ROMPRT = PARAMS+$0C
POINTER TO ROM ROUTINE THAT

SENDS CHAR TO SERIAL OUTPUT.

ROMTUT - PARBM5+S0A

POINTER TO ROM ROUTINE THAT

PRINTS A CHAR TO THE SCREEN.

USROUT = PARAMS+S0E
POINTER TO USER-WRITTEN

CHARACTER OUTPUT ROUTINE.

TUSUSS = SI103

ASCII = TUSUBS+SB6

UMPBGE = $1200 UI3IBLE MONITOR STARTING

PAGE

SELECT = UMPAGE+5

GET.5L = VMPAGE+S94

INC.SL = UMPAGE+$10D

***************>**-£**** if,******************* **

VARIABLES

246 BEYOND GAMES

* * $1400

PRINTR .BYTE OFF PRINTER OUTPUT FLRG.

TUT .BYTE ON TUT OUTPUT FLRG.

1402 09 USER .BYTE OFF OUTPUT FLRG FOR USER-

PROUIDED OUTPUT SUBROUTINE.

1403 00 CHRR .BYTE 0 CHRRRCTER HOST RECENTLY

PRINTED BY PR.CHR.

CHRR=00 HERNS PR.CHR HRS

NEUER FRINTED R CHRRRCTER.

1404 00 REPERT .BYTE 0 THIS BYTE IS USED RS R

COUNTER BY SPRCES, CHRRS,

RND CR.LFS.

1405 00 TENF.X .BYTE 0 DRTR CELL: USED BY FR.NSG.

1406 0000 RETURN .WORD 0 THIS POINTER IS USED BY

PUSHSL RND POP.SL.

DEMICE SELECT SUBROUTINES

1408 RSFF TUT. ON LDR #ON

140R 8BSI14 STR TUT

14BB 68 RTS

SELECT SCREEN FOR OUTPUT

BY SETTING ITS DEUICE FLRG.

140E RS08 TUTOFF LDR 40FF

1410 SB0114 STR TUT

1413 60 RTS

DE-SELECT SCREEN FOR

OUTPUT BY CLERRING ITS

DEUICE FLRG.

247

1750

17B0

1770

1783

1798

1303

1310

1820

1830

1340

1350

1860

1870

1880

1830

1900

1910

1920

1930

1340

1950

1SS0

1970

1383

1930

2000

2010

2020

2830

2040

2050

2060

2070

2080

2093

2100

2110

2120

2130

2140

2153

2163

2170

2163

2130

2203

2210

2223

2230

2240

2250

2260

2270

2283

2230

2300

2313

2323

1414 R9FF PR.ON

1416 8D0014

1413 60

141R A900 PR.OFF

141C 8D0314

141F 60

LDR #ON

STfl PRINTR

RTS

LDR #OFF

STR PRINTR

RTS

1420 R9FF USR.ON

1422 8D0214

1425 60

1426 R300 USROFF

1423 8D0214

142B 60

142C 200814 RLL.ON

142F 201414

1432 202014

1435 63

1436 200E14 RLLOFF

1439 201R14

143C 202S14

143F 60

LDR #ON

STR USER

RTS

LDR #OFF

STR USER

RTS

JSR TUT.ON

JSR PR.ON

JSR USR.ON

RTS

JSR TUTOFF

JSR PR.OFF

JSR USROFF

RTS

SELECT PRINTER FOR OUTPUT

BY SETTING ITS DEUICE FLRG.

DE-SELECT PRINTER FOR OUTPUT

BY CLERRING ITS DEUICE FLRG.

SELECT USER-WRITTEN

SUBROUTINE BY SETTING

USER' S DEUICE FLRG.

DE-SELECT USER-WRITTEN

OUTPUT SUBROUTINE BY

CLERRING ITS DEUICE FLRG.

SELECT RLL OUTPUT DEUICES

BY SELECTING ERCH OUTPUT

DEUICE' INDIUIBUfiLLY.

DE-SELECT RLL OUTPUT DEUICES

BY DE-SELECTING ERCH ONE

INDIUIDUALLY.

248 BEYOND GAMES

B GENERBL CHBRRCTER PRINT ROUTINE

PRINT CHRRBCTER IN ACCUMULATOR

ON ALL CURRENTLY-SELECTED OUTPUT DEUICES.

CS00 PR.CHR CNP #0

FQZ4 BEQ EXIT

5TR CHRR

TEST CHBRBCTER.

IF IT'S R NULL, RETURN

WITHOUT PRINTING IT.

SRUE CHBRRCTER.

BD0114 LDB TUT IS SCREEN SELECTED?

F00S BEQ IF.PR IF NOT, TEST NEXT DEUICE.

BD3314

Z0SSI4

LDB CHBR

JSR SEND.1

BD0014 IF.PR LDB PRINTR

F0QS BEQ IF.USR

IF SO, SEND CHBRBCTER

INDIRECTLY TO SYSTEM'S

TUT OUTPUT ROUTINE.

IS PRINTER SELECTED?

IF NOT, TEST NEXT DEUICE.

BQ0314

Z0SCI4

LDB CHRR

JSR SEND.Z

BD0Z14 IF.USR LDB USER

EEQ EXIT

IF SO, SEND CHBRRCTER

INDIRECTLY TO SYSTEM'S

PRINTER DRIUER.

IS USER-WRITTEN OUTPUT

SUBROUTINE SELECTED?

IF NOT, RETURN,

BD0314

2B6F14

LDB CHBR IF SO, SEND CHBRBCTER

JSR SEND.3 INDIRECTLY TO USER-WRITTEN

SUBROUTINE.

EXIT RTS

2840 ; UECT

2850

2883 ;

2870 ;

2880 1469 6C0B10 SEND.l JMP CRONTUT)

28S0 ;

2900 146C SC0C10 SEND.2 JMP CRQMPRT)

RETURN TO CBLLER.

UECTORED SUBROUTINE CBLLS

249

2913 ;

2920 146F 6C0E10 SEND.3 JMP OJSROUT)

2333

2S40

2950

2S60

2370

2330

2990

3000

3010

3023

3330

3040

3353

3060

3073

3333

3030

3100

3110

3120

3133 1472 A90D CR.LF LDA #CR SEND A CARRIAGE RETURN

3143 1474 204014 JSR PR.CHR

3150 1477 A30A LDA #LF AND A LINE-FEED TO ALL

3160 1478 284014 JSR PR.CHR CURRENTLY-SELECTED DEOICES

3170 147C 60 RTS THEN RETURN.

3180 5
3193 •
3200 i

3210 5

3220 5

3230 S PRINT A SPACE:

3243 5

3250 5

3260 ?
3270 147D A320 SPACE LDA #£Z0 LOAD ACCUMULATOR WITH AN

3283 147F 284014 JSR PR.CHR ASCII SPACE AND PRINT IT.

3238 1482 60 RTS THEN RETURN.

3300 5
3313 *
3320 5
3330 5

3343 9

3350 S
3363 5
3370 •

3380 9

SPECIALIZED CHARACTER OUTPUT ROUTINES

PRINT A CARRIAGE RETURN-LIME FEED

3390

3403

3410

3423

3433

3440

3450

3460

3470

3480

PRINT BYTE

■250 BEYOND GAMES

PR.BYT OUTPUTS THE RCCUMULATOR, IN HEX,

TO FILL CURRENTLY-SELECTED DEVICES.

1483 43 PR.BYT PHA

1484 4R

1485 4A

1486 4A

1487 4R

1488 Z0BS11

148B 204014

148E 6B

148F 28BS11

1492 204014

1495 60

LSR fi

LSR R

LSR R

LSR R

JSR RSCII

JSR PR.CHR

PLR

JSR RSCII

JSR PR.CHR

RTS

SAVE BYTE.

DETERMINE RSCII FOR 4 MSB.

...IN THE BYTE.

PRINT THRT RSCII CHRR TO

CURRENT DEVICECS).

DETERMINE RSCII FOR 4 LSB

IN THE ORIGINRL BYTE.

PRINT THRT CHRRRCTER.

RETURN TO CRLLER.

REPETITIVE CHRRRCTER OUTPUT

****#******##**********************$*****>*>**

PRINT X SPRCES:

1436 A9Z0 SPRCES LDR #$Z3 LORD R WITH RSCII SFRCE.

PRINT IT X TIMES:

PRINT X CHARACTERS:

14S8 SE0414 CHRRS STX REPEAT

143B 48 RPLOOP PHA

149C AE8414 LDX REPEAT

149F F00A BEQ RPTEND

14R1 CE0414 DEC REPEAT

14R4 ZB4314 JSR PR.CHR

PRINT CHRR IN A X TIMES.

SAVE CHAR TO BE REPEATED.

REPEAT COUNTER TIMED OUT?

IF SO, EXIT. IF NOT,

DECREMENT REPEAT COUNTER.

PRINT CHARACTER.

14A7 68

14R8 18

14A3 90F0

PLA RESTORE CHARACTER TO A.

CLC LOOP BACK TO PRINT IT

BCC RPLOOP AGAIN IF NECESSARY.

251

4370

4088

4090

4100

4110

4X20

4130

4140

4150

14RB 63

MAC 60

RPTEND PLA

RTS

CLEAN UP STACK AND

RETURN TO CALLER.

PRINT X NEWLINES

4160 14RD 8E0414 CR.LFS STX REPEAT INITIALIZE REPEAT COUNTER

4170 14B0 RE0414 CRLOOP LDX REPEAT EXIT IF REPEAT COUNTER

4130 14B3 F009 EEQ END.CR HAS TIMED OUT.

4130 14B5 CE0414 DEC REPEAT DECREMENT REPEAT COUNTER.

4200 14B3 207214 JSR CR-LF PRINT A CARRIAGE RETURN

4210 5 AND A LINE FEED.

4220 14BB 18 CLC LOOP BACK TO SEE IF DONE

4230 14EC 90F2 BCC CRLOOP YET.

4240 5

4250 14BE 60 END.CR RTS RETURN TO CALLER.

4260

4270

4230

42S0

4330

4310

4323

4330

4340

4353

4360

4370

4380

4330

4430

4410

4420

4430

4448

4450

4460

4470

PRINT R MESSAGE

Xth POINTER IN ZERO PAGE

POINTS TO THE MESSAGE.

4480 14BF 8E6514 PR-MSG STX TEMP.X SAME X REGISTER, WHICH

4490 ; SPECIFIES MESSAGE POINTER.

4500 »

4510 14C2 B501 LDA 1,X SAME MESSAGE POINTER.

4520 14C4 43 PHA

4530 14C5 B5S0 LDA 8, X

4540 14C7 43 PHA

4550 ?
4563

CO
u

^r BEB514 LOOP r

to

X

TEMP.X RESTORE ORIGINAL X, SO IT

4570 ? SPECIFIES MESSAGE POINTER.

4580 14CB A100 LDA C0,X) GET NEXT CHARACTER FROM

4530 14CD C3FF CMP #ETX MESSAGE. IS MESSAGE OUER?

4680 14CF F00C BEQ MSGEND IF SO, HANDLE END OF MESSAGE

4610 ;

4620 14B1 F600 INC 0,X IF NOT, INCREMENT POINTER.

4630 14D3 B002 BNE NEXT SO IT POINTS TO NEXT

4640 14D5 F601 INC 1,X CHARACTER IN MESSAGE.

252 BEYOND GAMES

4853 14B7 234014 NEXT JSR FR.CHR PRINT THE CHRRRCTER.

4660 14BR 18 CLC LOOP BfiCK FOR NEXT

4678 I4DB S3EB BCC LOOP CHRRRCTER. . .

4688 9

4693 !

4700 14BB 68 MSGEND PLR RESTORE ORIGINRL NESSRGE

47IB 14BE 9583 5TR 0,X POINTER.

47Z3 14E0 68 PLR

4730 14E1 9501 STfi l.X

4748 14E3 60 RTS RETURN TO CRLLER, .WITH

4750

4760

4770

4760

47S0

4300

4810

4823

4S33

4S40

4853

4863

4873

4883

4890

4933

4310

4920

4933

4943

MESSRGE POINTER PRESERVED.

PRINT THE FOLLOWING TEXT

4950 14E4 68 PRINT: FLR PULL RETURN RBDRESS FROM

43S3 14E5 RR TRX STRCK RNB SHOE IT IN X RND

4973 14E6 68 PLR Y REGISTERS.

4380 14E7 R8 TRY

4330 j

5083 14E8 281215 JSR PUSHSL SRVE THE SELECT POINTER.

5010 14EB 8E0512 5TX SELECT SET SELECT-RETURN RDDRESS.
5023 14EE 8CSS12 STY SELECT+1
5038 5

5040 ;

5353 14F1 208D13 JSR INC.SL RDVRNCE SELECT TO STX.
5060 ;

5078 14F4 Z08DI3 NEXTCH JSR INC.SL SELECT NEXT CHRRRCTER.
5083 14F7 283412 JSR GET.SL GET IT.

5330 14FR CSFF CMP #ETX IS IT END OF NESSRGE?
5100 14 PC FS05 EEQ ENBIT IF SO, RETURN.
5X10 14FE 204814 JSR FR.CHR IF NOT, PRINT CHRRRCTER.
5129 1501 18 CLC LOOP BfiCK FOR NEXT
5130 1502 90F0 BCC NEXTCH CHRRRCTER.. .
6140 ;

5158 ;

5163 1504 RE8512 END IT LBX SELECT
5170 1507 RC0B12 LBY SELECT+1
5188 I53R 202B15 JSR POP.SL RESTORE SELECT POINTER.
5198 153D 98 TYR PUSH RDDRESS OF ETX ONTO
5200 150E 48 PHR
5218 153F ofl TXR ...THE STRCK.
5220 1510 48 PHR

253

RTS RETURN CTO EYTE IMMEDIATELY

FOLLOWING THE ETX.)
SZ30 1511 60

5240

5250

5260

5270

5280

5290

5300

5310

5320

5330

5340

5350

5360

5370

5380

53*30

SAVE, RESTORE SELECT POINTER

**
5400 5

5410 5

5420 5

5430 5

5440 5

5450 1512 68 PUSHSL PLA

5460 1513 8D0614 STA RETURN

5470 1516 68 PLA

5480 1517 8D0714 STB RETURN+1

5430

5500

5510 151A AD0S1Z LDA 5ELECT+1

5520 151D 48 PHA

5530 151E AD0512 LDA SELECT

5540 1521 48 PHA

5550

5560

5570 1522 AD0714 LDA RETURN+i

5580 1525 48 FHA

5590 1526 AD0614 LDA RETURN

5600 1523 43 FHA

5610 5

5620 5

5630 152A 60 RTS

5640

5650

5660

5670

5680

5630

PULL RETURN RDBRESS FROM

STRCK AND SAVE IT IN RETURN.

PUSH SELECT POINTER ONTO

THE STACK.

PUSH RETURN ADDRESS BACK

ON THE STACK.

RETURN TO CALLER. CALLER

WILL FIND SELECT ON STACK.

5700

57X0 ;

5720 ;
5730 152B 63 POP.SL PLfl

5743 152C 8D0614 STA RETURN

5750 152F 68 PLA

5760 1530 8D0714 STA RETURN+1

5770 ;

5780

5790 1533 68

5800 1534 8D0512

PLA

STA SELECT

SAVE RETURN ADDRESS.

LOAD SELECT FROM STACK

254 BEYOND GAMES

5S10 1537 68

5820 1538 SB0612

5830

5340

5850 153B RD0714

5360 153E 48

5870 153F RD0614

5880 1542 48

5830

5300

5310 1543 60

5320

PLR

STfl SELECT+1

LDR RETURN+1 PLACE RETURN ADDRESS BACK

FHR ON STACK.

LDR RETURN

PHA

RTS RETURN TO CRLLER.

255

Appendix C5:

Two Hexdump Tools

10 ; APPENDIX C5: ASSEMBLER LISTING OF

20 ; two HEXDUNP TOOLS

30 f
40 9

50 9

60 SEE CHAPTER 8 OF BEYOND GAMES: SYSTEMS
70 ; SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

60 5
30 5

100 » BY KEN SKIER
110 ?
120 »
130 5
140 *
150 >
160 • f
170 5

180 5
130 5
203 »
210 5
220 5
230 5
243 5
253 ?
260
270 ;
280 ; CONSTANTS
233 9

300 ; *,**#*************•* ***4,*#$***$*********,#*****

310 »
323 5
330 *
343 $
350 5
360 0SQD“ CR - S0D CARRIAGE RETURN.
370 5

3S0 0G0A= LF * $0A LINE FEED.
393 5

400 *
413 007F= TEX = %7F THIS CHARACTER MUST START
420 • ANY MESSAGE.
430 »
440 03FF= ETX = $FF THIS CHARACTER MUST END
450 * ANY MESSAGE.
460 >
473 5
480 9

430 5
500 i
510 5

520 ?
530 5
543 »

553 ?
560 *

570 5

259

SS0

530

500

610

S20

630

640

650

660

670

6S0

6S0

700

710

720

730

743 1108=

7S0

760 1100=

773 1 IBS-

768

7S0

600 120 3=

810

823 1235=

833 1287=

840 1234=

850 13QD=

863

870

883 1488=

830
300 148o=

310 i4DE=

920 1414=

338 141A-

940 1440=

350 1472=

S6S 147D=

370 1435=

SS3 1483=

SS0 14E4=

10.00 1512=

1013 15ZB=

1023

1033

1048

1080

I860

1078

1080

1030

1180

ill3

1128

1138

1140

1150

EXTERNAL ADDRESSES

TUSUBS-SI100 STARTING PAGE OF DISPLAY

CODE.

CLR.TV=TVSUBS

ASCII —TVSUBS+ftBS

UMPRGE=$1208 STARTING PAGE OF VISIBLE

MONITOR CODE.

SELECT=VHPAGE+5

VISM0N=VMPflGE+7

GET.SL=VMPAGE+$94

INC.SL=VMPAGE+£10D

PRPAGE=S1480 STARTING PAGE OF PRINT

UTILITIES.

TUT.ON=PRPAGE+S

TVTOFF“PRPAGE+S0E

PR.ON =PRPAGE+$14

PR. 0FF=PRPAGE4S.IA

PR.CHR=PRPAGE+S40

CR.LF =PRPAGE+$72

SPACE =FRFAGE+$7D

SPP.CES—PRPAGE+$9S

PR.BYT—PRPAGE+SS3

PRINT:-PRPAGE+SE4

PUSHSL=PRPAGE+$112

POP.SL=PRPAGE+$12B

VARIABLES

260 BEYOND GAMES

1160

1170

1180

1180

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1378

13S0

1390

1480

1410

1428

1438

1440

1468

1468

1470

14 S3

1490

1500

1518

1520

1530

1543

1553

1563

1570

1580

1553

1550 00

1551 04

1552 0000

1554 FFFF

1556 03

5

5

5

5

*=$1550

9

5

j
COUNTR

5

.BYTE 0 THIS BYTE COUNTS THE LINES

DUMPED BY TVDUMP•

7

NUMLNS

5

» *

.BYTE 4 NUMBER OF LINES TO BE

BUMPED BY TUDUMF.

*

sa • WORD 8 POINTER TO STRRT OF MEMORY

TO BE DUMPED BY PRDUMP.

ER

9

.WORD SFFFF POINTER TO LRST BYTE TO

BE DUMPED BY PRDUMP.

9

COLUMN .BYTE 0 BRTR CELL: USED *BY PRLINE

^#^^&**^**********************************

TVDUMP

1533 1557 230814 TUBUMP JSR TUT.ON SELECT TUT BS OUTPUT DEUICE

16G0 155R RD5115 LDR NUMLNS SET COUNTR TO NUMBER OF

1610

1628

155D 8D5015

?

STB COUNTR LINES TO BE DUMPED.

1633 1560 RD0512 LDR SELECT SET SELECT TO BEGINNING OF

1648 1563 29F8 RND #$F3 fi SCREEN LINE, BY ZEROING

1658

1650

1565 8D0512

7

STB SELECT 3 LSB IN SELECT.

1670 1568 207214 JSR CR.LF 5KIP TWO LINES ON THE

1683

1690

156B 207214

9

JSR CR.LF SCREEN.

1780

1710

156E 28R115 DUMPLN

9

JSR PR.RDR PRINT THE SELECTED BDDRESS.

1720

1730

1571 207214

5

JSR CR.LF RDUBNCE TO R NEW LINE ON

SCREEN. (NOT NEEDED ON

261

1740

1750

1750

1770

1780

1790

1800

1810

1820

1830

1840

1850

i860

1870

1880

1890

1900

1910

1920

1330

1940

1950

i960

1970

1980

1930

2G8B

2010

2020

2030

2040

2050

2860

2070

2080

2090

2100

2110

2120

1574 207D14 BMPBYT

»

1577 209815

9

157fl 208D13

*

157D RD051Z

1580 2307

1582 D0F0

»

5

1584 207214

1587 RD0512

158R 290F

158C D003

153E 207214

JSR SPRCE

JSR BUMPSL

JSR INC.SL

LDR SELECT

RND #07

BNE DfIPBYT

JSR CR.LF

LBR SELECT

RND #$0F

BNE IFDONE

JSR CR.LF

1591 CE5815 IFDONE

1594 D0DS

1596 200E14

DEC COUNTR

BNE DUMPLN

JSR TUTQFF

15SS 69 RTS

SYSTEMS WITH SCREENS MORE

THRN 27 COLUMNS WIDE.)

FRINT R SFRCE TO THE SCREEN.

DUMP SELECTED BYTE.

SELECT NEXT BYTE.

IS IT THE BEGINNING OF R

NEW SCREEN LINE C3 LSB~0?)

IF NOT, DUMP NEXT BYTE...

IF SO, RBORNCE TO R NEW LINE

ON THE SCREEN.

DOES THIS RDDRESS MRRK THE

BEGINNING OF R NEW HEX LINE?

C 4 LSB « 0?)

IF SO, RDURNCE TO R NEW

LINE ON SCREEN.

DUMPED LRST LINE YET?

IF NOT, DUMP NEXT LINE.

DE-SELECT TOT RS OUTPUT

DEOICE.

RETURN TO CRLLER.

2139

2140

2150

2160

2170

2180

2199

2200

2210

2220

2230

2240

22S0

\%,***

DUMP SELECTED BYTE

2260 ;
2270 1S9R 209412 BUMPSL JSR GET.SL

2280 153D 208314 JSR PR.BYT

2290 15R0 63 RTS

2300

GET CURRENTLY-SELECTED EYTE

RND PRINT IT IN HEX FORMflT.

RETURN TO CRLLER.

2310

262 BEYOND GAMES

PRINT SELECTED ADDRESS

JL5A1 AD0612 PR.ADR LDA SELECT+1 FIRST PRINT THE HIGH BYTE..

15A7 P.D05IZ

1SAA 208314

IBRD sa

JSR PR.BYT

LDR SELECT

JSR PR.BYT

RTS

...THEN PRINT THE LOW BYTE.

PRINTING HEXDUMP

15AE 20C915 PRDUNP JSR TITLE

1S31 20ES15 JSR SETADS

15B4 20AQI7

15B7 201414

JSR GOTOSA

JSR PR.OH

DISPLAY THE TITLE

LET USER SET START RDDRESS

AND END RDDRESS OF MEMORY TO

BE DUMPED.

(SETRDS RETURNS W/SELECT-Efi.)

SET 5ELECT-SA.

SELECT PRINTER FOR OUTPUT.

LSEA Z0EEIS JSR HERDER OUTPUT HEXDUMP HERDER.

15ED 204217 HXLOOP JSR PRLINE

15CQ 10FE BPL HXLOOP

DUMP ONE LINE.

DUMPED LAST LINE? IF NOT,

DUMP NEXT LINE.

263

2300

2813 I5C2

5

207214 JSR CR-LF

2920

2333 15C5

S

201R14 JSR PR.OFF

2340

2350 15C8

*

60 RTS

29S0 ?

IF SO, GO TO A NEW LINE.

DE-SELECT PRINTER FOR OUTPUT.

RETURN TO CALLER.

2970

29S0

2990

3030

3010

3023

3030

3040

3053

3060

3070

3083

3830

3100

3118

3120

3133

3140

PRINT THE HEXDUHP TITLE TO SCREEN

3150 15C9 208011 TITLE JSR CLR.TU CLEAR THE SCREEN.

3160 15CC 203614 JSR TUT.ON SELECT SCREEN FOR OUTPUT.

3173 15CF 20E414 JSR PRINT: OUTPUT THE FOLLOWING TEXT:

3183 15D2 7F .BYTE TEX TEXT STRING MUST START

31S8 > WITH A START OF TEXT CHAR.

3280 15D3 0D -BYTE CR,'1 PRINTING HEXEUNF' ,CR,LF,LF

3280 15D4 50

3230 I5D5 52

32S3 15D6 49

3283 15B7 4E

3200 15BS 54

3280 15D3 49

3200 15DA 4E

3203 15EB 47

3283 15DC 23

3200 ISDD 48

3200 15DE 45

3280 15DF 58

3200 15E0 44

3203 15E1 55

3280 15E2 4D

3280 15E3 53

3200 15E4 3D

3200 15E5 0A

3200 15Eo 0R

3210 15E7 FF -BYTE ETX TEXT STRING MUST END WITH

3220 ; AN END OF TEXT CHARACTER.

3230 15ES 63 RTS RETURN TO CALLER.

3243

3253

3260

3273

3283

264 BEYOND GAMES

3290

3390

331G

3323

3330

3343

3353

3353

3373

3363

3390

3433

3410

3420

3433

3443

3453
3463 15E9 200814

3470 1SEC 20E414

3480 15EF 7F

34S3 15F0 0D

3433 15F1 0ft

3490 15F2 53

3490 15F3 45

34S0 15F 4 54

3430 15F5 20

3433 15FS 53

3483 15F7 54

3480 15F5 41

3480 15FS 52

3483 iSFft 54

34S8 15FE 43

3490 15FC 4E

34S0 15FD 47

3433 15FE 20

3430 1SFF 41

3430 1530 44

3483 1631 44

3430 1602 52

3480 1503 45

3490 1504 53

3433 1635 53

3438 1605 23

3890 1607 41

350O 1688 4E

3580 1603 44

LET USER SET STARTING ADDRESS AND

END BDDRE5S OF ft BLOCK OF MEMORY:

SETftDS JSR TUT.ON SELECT SCREEN FOR OUTPUT

JSR PRINT: PUT PROMPT ON SCREEN:

.BYTE TEX

.BYTE CR,LF,' SET STARTING ADDRESS '

.BYTE # AND PRESS "Q".'

3583 160ft 20

3583 1S8E 53

3500 168C 52

3500 150D 45

3500 160E 53

3503 163F 53

3508 1S10 20

3580 1511 22

3500 1612 51

3500 1613 22

3530 1614 2E

3510 1615 FF .BYTE ETX

265

35ZR

353Q

35*40

3550

3560

3570

3580

353Q

3600
3610

3620
3630

36*40

3650

3650

3673

3680

3SS0

3700

3710

3723

3730

3743

3740

3743

3740

3740

3740

3743

3740

3740

3743

3743

3740

3740

3740

3740

3740

3748

3740

3750

3753

3758

3750

3750

3758

3750

3750

3750

3750

3750

3750

3750

3758

3758

3760

3770

3738

1516 200712

1619 286716

JSR UISMON CRLL UISIELE MONITOR, SO
USER CRN SELECT STRRT REDRESS

OF THE BLOCK.

JSR SRHERE SET STRRT REDRESS CSR)=SELECT

HRUING SET THE STRRT REDRESS,

SR, LET'S SET THE END flDDRESS,

ER.

1S1C

161F

1622

1623
1624

1625

1626

1627

1628

1623

1S2R

162S
162C

162D

1SZE
16ZF

1633

1631

1632

1633

1634

1635

1636

1637

1633

1633

163R

163B

163C

163D

163E

163F

1540

1641

1642

1643

280314 SET

20E414

7F

8D

0R

53

45

54

23

45

4E

44

20

41

44

44

52

45

53

53

23

41

4E

44

23

50

52

45

53

53

20

22

51

22

2E

FF

SELECT SCREEN FOR OUTPUT.

PUT PROMPT ON SCREEN:
,ER JSR TUT.ON

JSR PRINT:

.BYTE TEX

.BYTE CR,LF,' SET END RDDRESS

.BYTE ' RND PRESS “Q".' ,ETX

1644 200712 JSR VISMON LET USER SELECT END RDDRES5.

266 BEYOND GAMES

1647 38

1648 RB0612

164B CD5315

154E 9324

1650 B003

1652 RB0512

1655 CB5215

1658 S01R

SEC

LBR SELECT+1

CMP SR+i

ECC TOOLOW

ENE ERHERE

LBR SELECT

CMP SR

BCC TOOLOW

IF USER TRIED TO SET RN

REDRESS LESS THRN THE

STRRTING RDDRESS,

MRKE USER DO IT OUER.

IF SELECT>SR, SET ER=SELECT.

THRT WILL MRKE £R>SR,

165R RB0612 ERHERE LBR SELECT+1 SET ER=SELECT.

165D 8D551S

1660 RD0512

1663 8D5415

1666 60

SIR ER+1

LDR SELECT

STR ER

RTS

1667 RD3612 ^SPHERE LBR SELECT+i

166R 8B5315 * STR SR+1

166D RD0512 LDR SELECT

1670 6B5215 STR SR

1673 63 RTS

RETURN WITH ER SET BY CRLLER

CJSR ERHERE); ER 5ET BY USER

CJSR SET.ER); OR SR RND ER

SET BY USER CJ5R SETRDS).

SET SR=SELECT.

RETURN WITH SR=SELECT.

TOOLOW JSR PRINT:

.BYTE TEX

SINCE USER SET ENDING

RDDRESS TOO LOW, PUT R

PROMPT ON THE SCREEN:

.BYTE CR,LF,LF,LF,' ERROR!!!

.BYTE 'END RDDRESS LESS THRN STRRT RDDRESS,

267

*1150 1SSF 53

415S 1650 53

4150 1631 20

4150 1632 4C

4150 1633 45

4150 1694 S3

4150 1635 53

4150 1696 20

4150 1637 64

4153 1538 48

4150 1633 41

4153 1698 45

4150 169B 20

4150 16SC 53

4150 169D 54

4150 163E 41

4150 163F 52

4150 JL6fi0 54

4150 16R1 20

4150 1682 41

4158 1683 44

4153 1584 44

4150 1685 52

4153 1686 45

4150 1687 53

4158 1688 53

4150 1689 2C

4160 1688 20

4163 1683 57

4163 168C 48

4163 1S8D 43

4160 168E 43

4188 168F 48

4168 16B0 20

4168 1631 43

4169 I6E2 53

416Q 1633 20

4168 1634 FF

4170 15B5 205B16
4180

4133 1SS8 4C1C16

4200

4210

4220

4233

4248

4258

4260

4270

4280

4230

4380

4310

4328

4338

4343

4358

4360

.BYTE ' WHICH IS ' ,ETX

JSR PR.SR PRINT 5TRRT RDDRESS.

JMP SET.E8 RND LET THE USER SET 8

HEW END 8DDRESS.

PRINT ST8RT 8DDRES5

268 BEYOND GAMES

4373
4383
4383
4480
4410
4420
4433
4443
4450
4450
4470
4483
4433
4500
4510
4523
4530
4543
4550
45S0
4573
4580
45S3
4630
4618
4623
4630
4643
4658
4663
4673
4683
45S3
47S3
4713
4720
4730
4743
4753
4760
4770
4780
4730
4833
4810
4820
4830
4840
4850
4860
4870
4880
4830
4930
4310
4920
4333
4940

163E A324 PR.SR LDR *'l
15BD 284014 JSR PR.CHR

16C0 RD5315
16C3 208314

1SC6 RB5215
16C9 208314
16CC 68

LDR 5R4-1
JSR PR.BYT

LDR SR
JSR PR.BYT
RTS

PRINT R BOLLRR SIGH, TO
INDICATE HEXADECIMAL.

PRINT HIGH BYTE OF STRRT
ADDRESS. t

PRINT LOW BYTE OF STRRT

RETURN TO CRLLER.

PRINT END REDRESS

1SCD R324 PR. ER LDR =T $
JSR PR.CHR
LDR ER41

1SCF 234014
16D2 RD551S
ISD-5 208314
16B8 RD5415
I6DB 208314
15DE 60

JSR PR.BYT
LBR ER
JSR PR.BYT
RTS

PRINT R BOLLRR SIGH, TO
IHDICRTE HEXADECIMAL.
PRINT HIGH BYTE OF END
RDDRESS.
PRINT LOW BYTE OF END
REDRESS.
RETURN TO CRLLER.

9

S PRINT RANGE OF ADDRESSES
5
5

16DF 20BB16 RANGE
16E2 R92D
16E4 204014

JSR PR.SR
LDR #' -
JSR PR.CHR

PRINT STARTING RDDRESS,
PRINT R HYPHEN.

269

4358 16E7 Z0CD16 JSR PR.Eft PRINT END RBDRESS.

4360 lSEft 60 RTS RETURN TO CftLLER.

4S7f8

4380

4330

5G00

5018

50 Z 8

5033

5840

5050

5k3b0

5070

5080

5333

5183

5113

5120

5133

5140

5150

5160
5170 1SEE 20E414 HERDER JSR PRINT:

5188 1SEE 7F .BYTE TEX

5130 16EF 8D .BYTE CR,LF,LF,' DUMPING

5130 16F0 0ft

5130 ISFi 8ft

S1SG 1SF2 44

5130 16F3 55

5130 16F4 4D

5130 15F5 58

5139 16F6 43

5130 16F7 4E

5138 16F8 47

5138 16FS 20
5203 ISFfi FF .BYTE ETX

5218 16FB 20DF16 JSR RftNGE

5ZZ0 16FE 287214 JSR CR-LF

5230 1701 28E414 JSR PRINT:

524G 1704 7F .BYTE TEX,LF,LF

5248 1705 8ft

5240 1706 8ft
5250 1707 28 .BYTE ' 01234567"

5250 1788 28

5250 1783 28

5258 178ft 28

5258 170B 28

5258 170C 28

5258 170D 20

5250 170E 20

5250 178F 38

5250 1718 20

5250 1711 28

5Z58 1712 31

5250 1713 20

5250 1714 20

5250 1715 32

5258 1718 20

PRINT HERDER

**

270 BEYOND GAMES

5250 1717 20

5250 1718 33

5250 1719 20

5250 171R 28

5250 171B 34

5250 171C 20

5250 17ID 20

5250 171E 35

5250 171F 20

5250 1720 20

5250 1721 35

5250 1722 20

5250 1723 20

5250 1724 37

5250 1725 20

5250 1726 20

5260 1727 38

5260 1728 20

5268 1723 20

5260 17ZR 33

5260 172B 20

5260 172C 20

5268 172D 41

5260 172E 28

5269 172F 20

5260 1730 42

5269 1731 20

5250 1732 20

5260 1733 43

52S3 1734 20

5260 1735 20

5260 1736 44

5263 1737 20

5263 1738 20

5260 1733 45

5260 173R 20

5268 173B 20

5260 173C 46

5270 173B 0B

5270 173E 0R

5279 173F SR

5270 1740 FF

5280 1741 60

5230

S393

5310

5320

5330

5343

5353

5380

5370

5380

5330

5400

5410

5420

5430

.BYTE'S 9 R B C B E F'

.BYTE CR,LF,LF,ETX

RTS

DUMP ONE LINE TO FRINTER

271

5440

5450

5460

5470

54S0

5430 1742 207214 PRLINE JSR CR.LF

5500 1745 AD0512 LDA SELECT

5510 1748 48 FHA

5520 1743 290F AND #&0F

5530 174B 8D5615 5TA COLUMN

5540 ;

5550 »

5560 174E 68 PLA

5570 174F Z9F0 AND #£F0

5580 1751 8D0512 STA SELECT

5530 1754 20A11S JSR PR.ADR

5600 1757 A203 LDX #3

5610 1759 289614 JSR SPACES

5623 ;

5630 ;

5640 175C BD5615 LDA COLUMN

5650 9

5660 175F F00D BEQ COL.OK

5670 9

5680 5

5690 1761 A203 LOOP LDX #3

5700 1763 209614 JSR SPACES

5710 1766 200D13 JSR INC.SL

5720 1769 CE5615 DEC COLUMN

5733 176C D0F3 ENE LOOP

5740 ;

5750 176E 209A15 COL.OK JSR EUMPSL

5760 1771 207D14 JSR SPACE

5770 1774 208317 JSR NEXTSL

5780 5

5790 1777 3009 BMI EXIT

5800 ;
5810 5
5820

5830 1779 ADB512 NOT.EA LDA SELECT

5840 177C 230F AND #S3F

5850 177E C300 CMP #8
5860 *

5870 1780 D0EC ENE COL.OK

5380 1782 60 EXIT RTS

5830

5300

5910

5920

5S30

5S40

5350

5360

5970

5980

5990

6880

6813

DETERMINE STARTING COLUMN.

FOR THIS DUMP.

NOW COLUMN HOLDS NUMBER OF

HEX COLUMN IN WHICH WE BUMP

THE FIRST BYTE.

SET SELECT=EEGINNING OF R

HEX LINE.

PRINT LINE' S START ADDRESS.

SPACE 3 TIMES--TO THE

FIRST HEX COLUMN.

DO WE DUMP FROM THE FIRST

HEX COLUMN?

IF SO, WERE AT THE CORRECT

COLUMN NOW.

IF MOT, SPACE 3 TIMES FOR

EACH BYTE NOT DUMPED.

DUMP SELECTED BYTE.

SPACE ONCE.

SELECT NEXT BYTE

MINI© MEANS WE' UE DUMPED

THROUGH TO THE END ADDRESS.

DUMPED ENTIRE LINE?

C4LSB OF SELECT-0?)

IF SO, WE'ME DUMPED THE

ENTIRE LINE. IF NOT,

SELECT NEXT BYTE AND DUMP IT

RETURN MINUS IF EH DUMPED;

RETURN PLUS IF EA NOT DUMPED

272 BEYOND GAMES

6823 ? SELECT NEXT BYTE CIF < END ADDRESS)

6030 ;
0040 ; *****#**$***#***#,4i****$*^*^****^***^******

6053 ;
6060 ;

6070 5

6080 ; ■
6033 ;

61S0 1783 33 NEXT5L SEC

5110 1784 AD0S12 LDA SELECT+1 HIGH BYTE OF SELECT LESS

6120 1787 CD5515 CNP EA+1 THAN HIGH BYTE OF EA?

6130 17SA 9B0B BCC SL.OK IF SO, SELECT<END ADDRESS.

6140 178C D00F BNE NO.INC IF SELECT>EA, DON' T

6150 5 INCREMENT SELECT.

6160 »

6170 178E 38 SEC SELECT IS IN SANE PAGE AS EA.

6180 17SF AD0S12 LDA SELECT

6198 1732 CD5415 CNP EA

6200 1735 B00S DCS NO.INC

6210 *

6220 1737 230D13 SL.OK JSR INC.SL SINCE SELECT <« EA, WE NAY

6230 * INCREMENT SELECT.

6240 5

6250 179A 6300 LDA #0 SET "INCREMENTED* RETURN

6260 17SC 60 RTS CODE AND RETURN.

6278 ;

5280 173D ASFF NO.INC LDA #$FF SET "NO INCREMENT' ’ RETURN

6253 I7SF 60 RTS CODE AND RETURN.

6300 ;

6310 ;

6320 ;

S333 ;

6340 ;

6350 ;
S36Q ; x****^^***#*******************************

6370 ;
6380 5 SELECT START ADDRESS

6330 ;

SAW ; ***4MMt*****H|H**4M^*********************'******
6410 ;

6420 ;

6430 ;

6440 ;

6450 ;

6460 17A0 AD5215 GOTOSfl LDA SB SET S£LECT=SA.

6478 17A3 8D0512 STB SELECT

6430 I7AS ADS315 LDA S6+1

6430 17A3 8DSS12 STA SELECT+1

6500 17RC 60 RTS RETURN W?SELECT=SA.

273

Appendix C6:

Table-Driven Disassembler (Top
Level and Utility Subroutines)

10

28

33

48

50

68

70

80

38

183

113

120

130

140

150

163

173

188

133

283

210

220

23G

243

253

268

270

283

290

308

318

323

330

348

35B 000D-

368

373 0088=

380

393

400 3B7F=

413

RPPENDIX CS: R55EHBLER LISTING OF

TRBLE-BRIUEN DISfiSSEMBLER

TOP-LEUEL RNB UTILITY SUBROUTINES

SEE CHRPTER 9 OF BEYOND GRMES: SYSTEM

SOFTWRRE FOR YOUR 6502 PERSONfiL COMPUTER

BY KEN SKIER

**

CONSTRNTS

**

CR - S0B CRRRIRGE RETURN,

LF = S0R LINE FEED.

TEX « S7F THIS CHRRRCTER MUST 5TRRT

RNY ME5SRGE.

420

438 00FF*

440

458

460

470

480

490

503

510

520

530

540

550

560

570

583

EXX = %fp THIS CHRRRCTER MUST END

RNY MESSRGE.

EXTERNRL RDDRESSES

277

590 5

600 5

610 5

620 »

630 5

640 1200= UMPRGE=$1280 STRRTING PRGE OF UI5IBLE

650 3 MONITOR CODE.

660 1205= SELECT=UMP9GE+5

670 1207= UISM0N=UMPRGE+7

680 1234= GET.5L=UMPfiGE+«94 6S0 130D= INC.SL=UMPRGE+$10Q

700 1319= DEC.SL=UMPRGE+$11R

710 5

720 9

730 1403= PRPRGE=$1400 STRRTING PRGE OF PRINT

740 9 UTILITIES.

750 1408= TUT.ON=PRFRGE+S

760 140E= TUT OFF=PRPRGE+$B£

770 1414= PR.ON =PRPRGE+S14

780 1419= PR.OFF=PRPRGE+S1R

733 1440= PR.CHR=PRPRGE+340

803 1472= CR.LF “PRPRGE+S72

810 147D= SPRCE =PRPRGE+S7D

820 1496= SPRCES=PRPRGE+$36

830 1483= PR.BYT=PRPRGE+$83

843 14E4= PRINT:=PRPRGE+SE4

850 1512= PU5HSL=PRPRGE+S112

es0 152E= POP.SL=PRPRGE+$12B

870 9

880 9

833 1500= HEX.FG=$1580 REDRESS OF PRGE IN WHICH

S00 ; HEXDUMP CODE STRRTS.

910 3
920 1552= SR=HEX.PG+S52

930 1554= ER=SR+2

940 1538= DUMPSL=HEX.PG+S9R

950 1591= PR.RDR=HEX.PG+SR1

963 16BF= RRNGE=HEX.PG+S1DF

973 15E3= SET RDS=HEX.PG+&E3

980 1783= NEXTSL=HEX.PG+S233

990 17R0= G0T05R=HEX.PG+&ZR0 1000 3 1010 9

1820 9

1030 5
1043 5
1053 5 DISBSSEMBLER TRBLES:

1083 3
1070 9

1090 5

1090 1300= DSPRGE=flS00 STRRTING PRGE OF DISRS5EI1BL.ER 1100 9 1110 1B1B= SUBS =BSPRGE+$2IB 1120 1B59= MNRMES=BSPRGE+$250

1130 1C00= MCODES=BSPRGE+S300

1140 1D00- MODES =B3PRGE+$400

1150 9

1160 3

278 BEYOND GAMES

1170

1180

1130

1230

1213

1223

1233

124B

j 250 1 280

1270 1303

1280

1230

1300

1313

1323

1333 1S03 05

1340

1353

1369 1901 03

1378

1388 1332 00

1390

1430

1410 1933 30

1420

1439 1384 6300

1440

1450

146G 1906 83

1473

148Q 1S87 30

1493

1503 1338 13

1510

1523

1533

1540

1550

1563

1570

1583

1538

16G3

1610

1620

1630

1640

1650

1668

1670

1680

1630

i78Q

17 i0

1720

1733

VARIABLES

*=DSFRGE

DISLNS .BYTE 5 NUMBER OF LINES TO EE

DISASSEMBLED BY TU.DIS.

LINUN .BYTE 0 DATA CELL: USED BY TU.DIS.

LETTER .BYTE 0

TEMP.X .BYTE 0

SUBPTR .WORD 0

OPBYTS .BYTE 0

OPCHRS .BYTE 0

COUNTS LETTERS PRINTED IN

A MNEMONIC. USED BY MNEMON.

DATA CELL USED BY MNEMON.

POINTER TO A SUBROUTINE.

SET, USED BY MGDE.X

DATA CELL: USED BY FINISH.

DATA CELL: USED BY FINISH.

ADRCOL .BYTE IS STARTING COLUMN FOR ADDRESS

; FIELD. OSI C-IP OWNERS: 5 FOR NARROW FORMAT, SET

; ADRCOL=$0B. SEE NOTES

; IN LISTING FOR ADDRESS MODE

SUBROUTINES.)

; TU-DISASSEMBLER

; ***************************£*****#^***^*4i***

;
;

1743 1983 208814 TU.DIS. JSR TUT.ON SELECT SCREEN FOR OUTPUT.

279

1758 133C AD0019 LDR DISLNS INITIALIZE LINE COUNTER WITH

1763 190F SD0119 STB LINUM # OF LINES TO DISASSEMBLE.

1770

1780 1912 A9FF
»

LDR #$FF SET END ADDRESS TO SFFFF,

1730 1914 8D5415 STB EA SO NEXTSL WILL ALWAYS

1830 1917 8D5515 STft EB+1 INCREMENT SELECT POINTER.

1810 191A 207214 JSR CR.LF ADVANCE TO A NEW LINE.

1829 >
1830 191D 207D19 TVLQOP JSR DSLINE DISASSEMBLE ONE LINE.

1840 1920 CE0119 DEC LINUM DONE LAST LINE ' i'ET?

1850 1323 D0F8 BNE TOLOOP IF NOT, DO NEXT ONE.

I860

1870

1325 60

5

RTS IF SO, RETURN.

1880

1890

1900

1910

1920

1930

1940

1953

19S0

1970

1983

1993

2083

2010

2020

2830

2840

2050

2083

2070 1S2S 201A14 PR.BIS"JSR PR.OFF

2880 1929 200814 JSR TUT.ON

2030 192C 20E414 JSR PRINT: 2100 1S2F 7F .BYTE TEX,<
2108 1930 0D

2103 1931 0A 2110 1932 20 -BYTE ' 2110 1333 20 2110 1934 20 2110 1935 20 2110 1936 20
2113 1937 50 2110 1938 52 2110 1939 49 2110 193A 4E 2110 193B 54 2110 193C 49 2110 1S3D 4E 2110 193E 47 2110 193F 20 2110 1940 44 2110 1341 49 2110 1942 S3 2110 1343 41 2110 1944 S3 2110 1S45 53

PRINTING DISASSEMBLER

DE-SELECT PRINTER

SELECT SCREEN FOR OUTPUT.

DISPLAY TITLE.

PRINTING DISASSEMBLER.'

280 BEYOND GAMES

2110 1346 45 2110 1347 4B 2110 1348 42 2110 1943 4C 2110 194R 45 2110 134B 52 2110 194C 2E 2120 5

2130 194D 0D .BYTE CR,LF,ETX

2130 134E 8R

2130 194F FF

2140 9

2153 1950 20E915 JSR SETRBS LET USER 5ET STRRT, END

2160 9 RDBRESSE5 OF MEMORY TO BE

2170 9 BISRSSEMBLED.

2130 1953 231414 JSR PR.ON SELECT PRINTER FOR OUTPUT.

21S0 1SSS 28E414 JSR PRINT: 2200 1S53 7F .BYTE TEX,CR »LF 2200 1S5R 0D 2200 195E 8R 2210 1S5C 44 .BYTE ' BISRSSEMBLING ' 2210 195D 43 2210 135E 53 2210 iSSF 41 2210 1350 53 2210 1361 53 2210 1962 45 2210 1363 4D 2210 1364 42 2210 1365 4C 2210 1SSS 43 2210 1367 4E 2210 1968 47 2210 1963 20 2ZZ0 196R FF .BYTE ETX

2230 136B 20QF16 JSR RRNGE PRINT RRNGE OF MEMORY TO

2240 9 BE BISRSSEMBLED.

2250 1SSE 20R817 JSR GOTOSR SET SELECT=STRRT OF BLOCK.

2260 f
2270 1371 237214 JSR CR.LF RDURNCE TO R HEM LINE.

2280 1874 207D19 PRLOOP JSR DSLIME DISR5SEMBLE ONE LINE.

2230 1377 10FB BPL PRLOOP IF IT WRSN'T THE LRST LINE,

2300 ? BISRSSEMBLE THE NEXT ONE.

2310 5
2320 5

2330 1979 20IR14 JSR PR.OFF BE-SELECT PRINTER FOR OUTPUT.

2340 5

2350 137C 68 RTS RETURN TO CRLLER.

23S3 ?
2370 J
2388 5
2330 *

2400 5
2418 »
2420 9

2430 9

2440 9

2453 9

281

2460

2470

2480

2488

2500

2519

2520

2538

2540

DISfiSSEMBLE one line.

2558

2558 197D 209412

2579 1980 43

2583 1331 203219

2530

2630 1984 237D14

2810 1987 63

2629 1888 20BF13

DSLINE JSR GET.SL

PHR

JSR MNEMON

»

JSR SPRCE

FLR

‘JSR OPERNB

2638

2648 1S8E 20011R

2650

2660

26 $ 0

2680

2633 133E 208317

2708

2718 1SS1 60

2729

2740

2750

2763

2778

2780

2730

JSR FINISH

JSR NEXT5L

RTS

GET CURRENTLY-SELECTED BYTE.

SRUE IT ON 5TRCK.
FRINT MNEMONIC REPRESENTED

BY THRT OPCODE.

SPRCE ONCE.

RESTORE OPCODE.

PRINT OPERfiNB REQUIRED BY

THRT OPCODE.
FINISH THE LINE BY PRINTING

FIELDS 3-6. FINISH LEAVES

SELECT FOINTING TO LRST

BYTE OF INSTRUCTION.

SELECT NEXT BYTE, IF

SELECT < ER.
RETURN W/RETURNCODE FROM

NEXTSL. SELECT POINTS TO

NEXT OPCODE, OR SELECT-Efi.

2B08

2810

2820

2830

2840

2850

2853

2870

2833

PRINT MNEMONIC

28SQ

2930

2313

2320

2S30
2940

2353

2369

2370

2389

2390

3890
3010

3020
3830

1392
1334
1337

R233
SE0219
fifi

MNEMON

*

LEX
STX
TfiX

#3
LETTER

1283 ED901C
5

5

LDfi MCOBES,X

153B fifi

5

»

TfiX

193C ED501B MNLOOP LDfi MNfiMES,X

WE'LL PRINT THREE BETTERS.

PREPRRE TO USE OPCODE RS RN

INDEX.

LOOK UP MNEMONIC CODE FOR

THRT OPCODE. MCOBES IS

TRBLE OF MNEMONIC CODES.

PREPRRE TO USE THRT MNEMONIC

CODE RS RN INDEX.

GET R MNEMONIC CHRRRCTER.

282 BEYOND GAMES

3040

3050

3060

3070

3080

193F 8E0319 STX TEMP.X

3090 13A2 204814 JSR PR.CHR

3100 19 AS AE0319 LDX TEMP.X

3110 19A8 E3* I NX

3120 19A9 CE0219 DEC LETTER

3130 19AC D8EE BNE MNLOOP

3140 15AE 60 RTS

3153

3160

3170

3180

3190

3200

3210

3220

3230

3240

3250

3268

3270

3280

(MNAMES IS 0 LIST OF

MNEMONIC NfiMES.)

SRUE X-REGISTER, SINCE

PRINTING MAY CHANGE X.

PRINT THE MNEMONIC CHARACTER.

RESTORE X,

ADJUST INDEX FOR NEXT LETTER.

PRINTED 3 LETTERS YET?

IF NOT, PRINT NEXT ONE.

IF SO, RETURN TO CALLER.

PRINT OPERAND

3290

3300

3310

3320

3330

3340

3350

3360

3370

3330

3390

3408

3410

3420

19AF RA OPERND TAX

1SB0 BD001D LDA MODES,X

13B3 AA
»

5
TAX

19B4 2BB819
9

JSR MODE.X

13B7 60 RTS

LOOK UP ADDRESSING MODE

CODE FOR THIS OPCODE.

X NOW INDICATES ADDRESSING

MODE.

HANDLE THAT ADDRESSING MODE.

RETURN TO CALLER.

3433

3440

3458

3460

3470

3480

3430

3500

3510

3520

3538

3548

3558

3560

3570

3580

3590

3600

3610

HANDLE ADDRESSING MODE "X"

****************************$*fc*************

283

3623

3630

3643

3650

3660

3670

3688

3680

3780

3713

3720

3733

3740

3750

3760

3770

3783

3783

3808

3818

3820

3830

3840

3850

3360

3870

3383

3330

3900

3910

3923

3930

3940

3350

3380

3378

3888

39S0

4008

4010

4020

4030

4048

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4130

4190

13B8 BD1B1B

13BB 8B0413

19BE E3

19BF BD1B1B

1SC2 8D0519

13C5 6C0419

MODE.X LBB

STB

j
INX

LDA

STB

JMP

SUBS, X

SUBPTR

SUBS,X

SUBPTR+1

(SUBPTR)

GET LOW BYTE OF Xth POINTER

IN TfiBLE OF SUBROUTINE

POINTERS.

RDJU5T INDEX FOR NEXT BYTE.

GET HIGH BYTE OF POINTER.

JUMP TO SUBROUTINE SPECIFIED

BY SUBROUTINE POINTER.

THBT SUBROUTINE WILL RETURN

TO THE CALLER OF MODE.X,

NOT TO MODE.X ITSELF.

DISASSEMBLER UTILITIES

PRINT ONE-BYTE OPERAND

1SC3 200D13 ONEBYT JSR INC.SL

19CB 209A15

19CE 60

JSR DUMPSL

RTS

ADVANCE TO BYTE FOLLOWING

OPCODE.

DUMP THAT BYTE.

RETURN TO CALLER.

PRINT TWO-BYTE OPERAND:

19CF 200D13 TWOBYT JSR INC.SL

19D2 203412

19B5 48

19D6 20QD13

19D9 209A15

19DC 68

JSR GET.SL

PHA

JSR INC.SL

JSR DUMPSL

PLA

ADVANCE TO FIRST BYTE OF

OPERAND.

LORD THAT BYTE INTO ACC.

SAVE IT.

ADVANCE TO 2ND BYTE OF

OPERAND.

DUMP IT.

RESTORE FIRST BYTE TO ACC.

284 BEYOND GAMES

4280

4218

4220

4230

4240

4250

4260

4270

42S0

4230

19DD 208314

19E0 60

JSR PR.BYT

RTS

DUMP IT.

RETURN TO CALLER.

PRINT LEFT, RIGHT PARENTHESES

4300

4310 19E1 A928
5

LPAREN LDA =r c

4320 1SE3 D302 BNE SENDIT

4330

4340

4353 1SE5 A929

9

RPAREN LDA #' 3

4360

4370 13E7 204014 SENDIT JSR PR.CHR

4380

4330

19EA 60

5

RTS

4400

4410

4420

4430

4440

4450

4460

4470

4483 13EB A32C XINDEX LDA ,
4433 13ED 204014 JSR PR.CHR

4500 13F0 A 95 8 LDA #' X

4510 1SF2 204014 JSR PR.CHR

4520 13F5 60 RTS

PRINT A COMMA AND BN “X"

PRINT A COMMA.

PRINT AH "X".

4530

4540

4553

4560

4570

4580

4530

4603

4610

PRINT A COMMA AND A

4620 19F6 A92C YINDEX LDA *' p
4630 13F8 204014 JSR PR.CHR PRINT COMMA

4640 13FB A959 LDA =r Y

4650 19FD 204014 JSR PR.CHR PRINT A "Y“

4660 1A00 60 RTS

4670

4683

4630

4700

4710

4720

4730

4740

4750

4760

4770

235

FINISH THE LINE
4780
4730

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

4300

4910

4920

4330

4340

4350

4960

4370

4380

4330

5000

5010

5020

5030

5040

5050

5050

5070

5080

5030

5100

5110

5120

S130

5140

5150

5160

5170

5180

5130

5200

5210

5220

5230

5240

5250

5260

5270

5280

5230

5300

5310

5320

5330

5340

5350

NOTE: EUERY ADDRESSING NODE

SUBROUTINE MUST END BY

SETTING X=# OF BYTES IN

OPERAND, AND AGO# OF

CHARACTERS IN OPERAND.

1A04 8E0613

1A07 CA

1A0S 3006

1A0A 201A1

1A0D CA

1A8E 10FA

IA10 08

1 Ai 1 D8

1A12 38

1A13 AD0819

1A1S E304

1A18 ED0719

1AIB 28

1A1C Afl
IBID 203514

1R20 20A115

1A2S 289A15

1B29 200D13

1A2C CE6619

1A2F 10F2

*
FINISH STB OPCHRS SAUE THE LENGTH OF THE

STX OPBYTS OPERAND, IN CHARACTERS AND

IN BYTES. 0 HERNS NO

5 OPERAND.

5
DEX IF NECESSARY, DECRENENT THE

. SELECT FOINTER SO IT POINTS

BMI SEL.OK TO THE OPCODE.

LOOP.1 JSR DEC.5L

DEX

BPL LOOP.1

5
NOW SELECT POINTS ' TO OPCODE.

f

SEL.OK PHP SAME CALLER'S DECIMAL FLAG.

CLD PREPARE FOR BINARY ADDITION.

SEC SPACE OUER TO THE COLUMN

LDA ADRCOL FOR THE ADDRESS FIELD*.

SBC #4 OPERAND FIELD STARTED IN

. COLUMN 4...

SBC OPCHRS AND INCLUDES OPCHRS

. CHARACTERS.

PLP RESTORE CALLER' S DECIMAL FLAG

TAX

JSR SPACES PRINT ENOUGH SPACES TO

. REACH ADDRESS COLUMN.

JSR PR.ADR PRINT ADDRESS OF OPCODE.

LOOP. 2 : JSR SPACE SFACE ONCE.

> JSR DUNPSl DUMP SELECTED BYTE.

JSR INC.SL SELECT NEXT BYTE.

) DEC OFBYTS DUMPED LAST BYTE IN

INSTRUCTION?

BPL LOOP.2 IF NOT, DUMP NEXT BYTE.

3 JSR DEC.SL BACK UP SELECTf SO IT POINiS

TO LAST BYTE IN OPERAND.

1A34 207214 FINEND JSR CR.LF

9

1A37 60 RTS

IF SO, GO TO A NEW LINl:

HAUING DISASSEMBLED ONE LINE,

GO TO A HEW LINE.

RETURN TO CALLER.

286 BEYOND GAMES

Table-Driven Disassembler
(Addressing Mode Subroutines)

10
Z0

30

40

53
60

78

80

90

180
110
1Z0

133

140

153

160

173

183

198

203

21B

223

230

240

250

26Q

270

280

233

383

310

323

330

343

358

363

373

380

393

463

413

423 GS8D«

433

448 8008=

450

480

478 097F=

488

430

509 80FF=

513

820

538

548

550

5S0

570

APPENDIX C7: ASSEMBLER LISTING OF

TABLE-DRIVEN DISASSEMBLER:

ADDRESSING MODE SUBROUTINES

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

#***************************^***********

CONSTANTS

**

CR = S0D CARRIAGE RETURN.

LF - S0A LINE FEED.

TEX = $7F THIS CHARACTER MUST START

ANY MESSAGE.

ETX = SFF THIS CHARACTER MUST END

ANY MESSAGE.

289

580

550 6«0
618

628

638 1
640

650

660

670 EXTERNAL ADDRESSES

680 6S0 **

780

710

720

730

748

758 '

760

778

760

780

800

818 1209= UMPAGE=$1230 STARTING PAGE OF UISIELE

820 MONITOR CODE.

83Q 1205= SELECT=UMPAGE+5

840 1297= UISMON=VMPAGE+7

859 1294= GET.SL=UMPAGE+$94

SS0 1300= INC.SL=UMPAGE+$10D

878 1319= DEC.5L=UNPAGE+S11A

889 f

880 •

90Q 1480= PRPfiGE=31400 STARTING PAGE OF PRINT

910 ; UTILITIES.

929 1448= PR.CHR=PRPAGE+$40

S30 1472= CR.LF =PRPAGE+$72

340 147D= SPACE =FRPAGE+$7D

958 1496= SPACES=PRPAGE+S9S

S60 1483= PR.BYT=PRPAGE+S83

378 14E4= PRINT:=PRPAGE+SE4

980 1512= PUSHSL=PRPAGE+S112

990 152B= POP.5L=PRPAGE+$12B

1880

1810 ?

1028 1508= HEX.PG=S1508 ADDRESS OF PAGE IN WHICH

1030 ; HEXDUMP CODE STARTS.

1040

1050 1591 = PR.ADR-HEX.PG+SA1

I860 1783= NEXTSL=HEX. PG+35283

1070 *

1080

1090 1100 1908= DSPAGE=$1900 START OF DISASSEMBLER CODE

t 1110 19C8= 0NEBYT=DSPAGE+$C8 1120 19CF= TWOBYT=DSPAGE+$CF

1130 19Ei= LPRREM=DSPAGE+3E1

1140 19E5= RPAREN-DSPAGE+SE5

1150 13EB= XINDEX-DSPAGE+SEB

290 BEYOND GAMES

1X60 1966= YINDEX-DSPAGE+SF6

1170 ;
use ;
use ;
1288

1210 ;
1220

1230 ;
12-48 1A40 *=DSPAGE+$143

1250

1260

1270

1280

1293

1303

1310

1320

1330

1343

1350

1363

1370

1383

1393

1400

1413

**

ADDRESSING MODE SUBROUTINES

1423

1433

1443

1450

1463

1470 5 RESOLUTE MODE

1483 5

1430 »

1500

1518 1R40 20CF1S ABSLUT JSR TWOBYT PRINT R TWO-BYTE OPERAND

1520 1A43 R202 LDX #2 OPERRND HRS TWO BYTES...

1533 1A45 R984 LOR #4 ...AND FOUR CHARACTERS.

1540 1R47 60 RTS RETURN TO CALLER.

1553

1560

1573

1580

1533

1600 5 RBSOLUTE X MODE

1610 ?
1620 5
1630 *

1640 1A48 20401A RBS.X JSR ABSLUT

1650 1R4B 23EB19 JSR XINDEX PRINT A COMMA AND AH “X".

i860 1A4E A202 LDX #2 OPERAND HAG 2 BYTES...

1670 1R50 RS0S LDA #6 ...AND SIX CHARACTERS.

1683 1R52 60 RTS RETURN TO CALLER.

1690

1783

1710

1720

1739

291

RESOLUTE.Y MODE 1740

1750 ;

1763 ;

1770 ;

17SG IA53 23401R RBS.Y

1730 IriES 2SFSI3

1333 IRS3 R202

1810 IR5B R90S

1823 1A5D S3

1830

1840 ;

18S8 ;

i860 ;

1873 ;

1880 ;

1830 ;
1S00

1313 1RSE RS41 RCC

1S2© 1R83 204Q14

1930 lflS3 A283

1940 1RS5 RS01

1350 1R87 60

JSR RBSLUT

JSR YINDEX

LDX #2

LBR 46

RTS

ACCUMULATOR MODE

LBA 4' fl

JSR PR.CHR

LDX #0

LDR #1

RTS

PRINT THE LETTER "A“

OPERAND HRS NO BYTES...

...RND ONE CHRRRCTER.

RETURN TO CALLER.

i960

1370

1380

1930

2380

2310

2023

2030

2840

2850

206G

2070

IMPLIED MODE

1R6S R280 IMPLID LDX #0

1R6R A380 LDR 40

1RBC 63 RTS

OPERAND HRS NO BYTES.

...RND NO CHARACTERS.

2880
2030

2180

2113

2120

2130 IMMEDIATE MODE

2148

2150

2160

2170 IA5D R323 IMMEDT LDR 4' 4 PRINT R "4“ CHRRRCTER.

2180 1AEF 284814 JSR PR.CHR

21S0 •

2200 1A72 A324 LDR r # PRINT fi DOLLAR SIGN TO

2210 1A74 284814 JSR PR.CHR INDICATE HEXRDECIMRL.

2223 1R77 20C819 JSR ONEEYT PRINT ONE-BYTE OPERAND IN

2238 1 HEXRDECIMRL FORMRT.

2240 1A7A R281 LDX 41 OPERAND HRS ONE BYTE...

2253 1A7C R904 LDR #4 ...RND FOUR CHARACTERS.

2268 1A7E 60 RTS RETURN TO CRLLER.

2278

2288

2298

2380

2318

292 BEYOND GAMES

INDIRECT NODE

1A7F 20EI13

IA82 204Bl.fi 1B8S 20E519

1B88 R306

1ABA fi202

INDRCT JSR LPBREN

JSR fiBSLUT

JSR RPfiREN

LDR 46

PRINT LEFT PfiRENTHESIS.

PRINT TWO-BYTE OFERfiND.

PRINT RIGHT PfiRENTHESIS.

fi HOLDS NUMBER OF CHfiRfiCTERS

IN OFERfiND.

X HOLDS NUMBER OF BYTES IN

OPERAND.

RETURN TO CALLER.-

INDIRECT,X MODE

lfiSD 20E119

1RS0 20E81A

IfiSB 20E519

ifiSS R201

1R9B B908

IND.X JSR LPBREN

JSR ZERO.X

j

JSR RPfiREN

LDX #1

LBfi #8

PRINT fi ZERO PAGE ADDRESS,

fi COMMA, AND THE LETTER "X"

ONE BYTE IN OPERAND. 8 CHfiRfiCTERS IN OPERAND.

(C-IP OWNERS: B3 0S, NOT

A3 08, FOR NARROW FORMfiT.)

INDIRECT,Y MODE

1PI9B 28E119

1A3E 20DB1A

lfifii 20E519

lfifi4 20FS13

1AA7 A201

iflfiS B383

IND.Y JSR LPBREN

JSR ZEROPG

JSR RFAREN

JSR YINDEX

LDX 41

LDR 48

PRINT fi ZERO PAGE ADDRESS.

PRINT fi COMMA AND fi "Y".

OPERAND HAS 1 BYTE...

...AND 8 CHARACTERS.

CC-IP OWNERS: A3 06, NOT

A3 G8, FOR NARROW FORMfiT.)

RELATIVE MODE

1AAC 200D13 RELfiTV JSR INC.SL SELECT NEXT BYTE.

293

2900 1AAF 201215
2910 1RB2 209412
2920 1RB5 48
2930 1RB6 280D13
2940
2950
2960
2970 1RB9 68
2980 1RBR C900
2390 1RBC 1003
3800
3010
3020
3830
3040 1ABE CE0612
3050
3060
3070
3080
3090 1RC1 03
3180 1RC2 D3
3110
3120 1RC3 18
3130 1RC4 6D0512
3140 1RC7 9003
3150 1RC9 EE0612
3168 1RCC 8D0512
3170
3180
3130 1RCF 28
3200
3210 1RD0 20R115
3220
3230 1RD3 202B15
3240
3250 1RD6 R201
3260 1RD8 R904
3270 1RDR 60
3280
3230

J5R PU5H5L
JSR GET.SL
PHR
JSR INC.SL

PLR
CMP #0
BPL FORWRD

DEC SELECT*1

FORWRD PHP
CLD

CLC
RDC SELECT
BCC RELEND
INC SELECT*1

RELEND 5TR SELECT

PLP

JSR PR.RDR

JSR POP.SL

LDX #1
LDR #4
RTS

SAVE SELECT POINTER ON 5TRCK.
GET OPERRND BYTE.
5RUE IT ON STRCK.
INCREMENT SELECT POINTER
SO IT POINTS TO NEXT OPCODE.
(RELATIVE BRANCHES RRE
RELATIVE TO NEXT OFCODE.)
RESTORE OPERRND BYTE TO RCC.
IS IT PLUS OR MINUS?
IF PLUS, IT MEANS R FORWARD
BRANCH.

OPERAND IS MINUS, SO WE' LL
BRANCH BACKWARD.
BRANCHING BACKWARD IS LIKE
BRANCHING FORWARD FROM ONE
PAGE LOWER IN MEMORY.

SAVE CALLER' S DECIMAL FLAG.
CLEAR DECIMAL MODE, FOR
BINARY ADDITION.
PREPARE TO ADD.
ADD OPERAND BYTE TO SELECT.

NOW SELECT POINTS TO ADDRESS
SPECIFIED BY RELATIVE
BRANCH INSTRUCTION.
RESTORE CALLER' S DECIMAL
FLAG.
PRINT ADDRESS SPECIFIED
BY INSTRUCTION.
RESTORE 5ELECT=ADDRESS OF
OPERAND.
OPERRND HAD ONE BYTE...
RND FOUR CHARACTERS.
RETURN TO CALLER.

ZERO PAGE MODE

3300
3310
3320
3330
3340
3350
3360
3370 1ADB A900 ZEROPG LB A #0

3380 1ADD 208314 JSR PR.BYT

3390 9

3400 9

3410 9

3420 1AE0 20C819 JSR ONEBYT

3430 1AE3 A201. LDX #1
3440 IRES A934 LDR #4

3450 ;
3460 *
3470 1AE7 60 RTS

PRINT TWO ASCII ZERO' S TO
ALL SELECTED BYTES.
CC-IP OWNERS: SUBSTITUTE NOPS
--EA Efi EA--FOR JSR PR.BYT,
TO GET NARROW FORMAT.
PRINT ONE-BYTE OPERAND.
OPERAND HAS ONE BYTE...
...AND FOUR CHARACTERS.
CC-IP OWNERS:A3 02,
NOT A3 04, FOR HARROW FORMAT.)

294 BEYOND GAMES

ZERO PAGE, X MODE

3480

3430

3500

35X0

3520

3530

3540

3550

3583

3570

3580

3590

3600

3610

3820

3630

3840

3650

3660

3670

3680

3693

3700

3710

1AE8 20DB1A ZERO.X JSR ZEROPG

1AEB 20EB19

1AEE A201

1AF0 A306

lflFZ 60

JSR XINDEX

LDX #1

LDA #6

RTS

ZERO PAGE

PRINT THE ZERO PAGE RDDRESS.

PRINT A COMMA AND AN "X".

OPERAND HAS 1 BYTE...

...AND SIX CHARACTERS.

CC-IP OWNERS: A3 04,

NOT A3 06, FOR NARROW FORMAT.)

RETURN TO CALLER.

,Y MODE

3720

3730 1AF3 28DB1B ZERO. .Y JSR ZEROPG

3740 1HF6 20F619 JSR YINDEX

3750 1AF9 A201 LDX 41

3750 lfiFB R306 LDA #6 CC-IP OWNERS: A9 04

3770

3780 1AFD

5

60 RTS

FOR NARROW FORMAT.)

3790

3883

3810

3829

3630

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3340

3350

3360

3970

3389

3930

4000

4010

4320

4030

4840

4G50

A PSEUDO-ADDRESSING MODE

FOR EMBEDDED TEXT: TEXT MODE.

THE PSEUDO-OPCODE TEX (S7F) BEGINS ANY

STRING OF TEXT AND PRINT CONTROL CHARACTERS.

THE PSEUDO-TEXT CHARACTER ETX CSFF) ENDS ANY

295

4860

4070

40G0

4030

4100

4110

4120

4130

4140

4150

4160

4170

4180

4130

SUCH STRING. TEX HRS ft PSEUDO-ADDRESSING

MODE: TEXT MODE. IN TEXT MODE, WE PRINT THE

STRING ftHD RETURN, WITHOUT DUMPING THE LINE

IN HEX. THE STRING MftY BE OF fiNY LENGTH.

4200

4210 iftFE 68 TXMODE PLft POP RETURN ftDDRESS TO

4223 1RFF 68 PLft OPERND.

4230 '

4240 1B00 68 PLft POP RETURN ftDDRESS TO

4253 1B01 68 PLft DSLINE.

4263

4273 ' NOW DSLINE' S CftLLER IS ON

4280 THE STACK.

4283

4303

4310 1B02 208317 JSR NEXTSL ftDURNCE PftST TEX PSEUDO-OP

4328 1B0S 300D BMI TXEXIT RETURN IF REftCHED Eft.

4333 1B37 203412 JSR GET.SL GET THE CHftRftCTER.

4340 1B0R C9FF CMP #ETX IS IT END OF TEXT?

4358 1B8C F00S BEQ TXEXIT IF SO, STRING ENDED.

436Q 1B3E 204814 JSR PR.CHR IF NOT, PRINT CHftRftCTER.

4370 1B11 18 CLC BRANCH BACK TO GET NEXT

4383 1B12 S3EE BCC TXMODE+4 CHftRftCTER.

43-53

44G0 1

4418 !Bi4 237214 TXEXIT JSR CR-LF RDUftNCE TO ft NEW LINE.

4423 1B17 208317 JSR NEXTSL flDUBNCE TO NEXT OPCODE.

4430 1B1R 60 RTS RETURN TO CftLLER OF DSLINE

4443

4450

4463

4473

4460

4493

4530

4510

4520

4533

4543

4550

4560

4570

4580

4533

4600

4610

4620

4633

TRBLE OF RDBRESSIHG MODE SUBROUTINES

296 BEYOND GAMES

4640 1516 681R SUBS .WORD IMPLID

4650

4663 IBID

5
5E1R .WORD RCC

4670 1B1F 6D1R .WORD IMMEDT

46S0 1521 DB1R . WORD ZEROPG

4S90 1BZ3 EBlfl .WORD ZERO.X

4700 1B25 F3IR .WORD ZERO.Y

4710 1B27 40IR .WORD ftBSLUT

4723 1BZS 481R .WORD RBS.X

4733 1B2B 531R .WORD BBS. Y

4740 IB 2D 681ft . WORD IMPLID

4750 1E2F RClft .WORD RELRTU

4760 IB31 8D1R .WORD IND.X

4770 1B33 9B1R .WORD IND.Y

4780 1B35 7Flfi .WORD INDRCT

47SQ 1B37 FElft .WORD TXMODE

REDRESSING MODE 0 IS INVRLIB,

HENCE IMPLIED.

297

Appendix C8:

Table-Driven Disassembler (Tables)

10

23

33

40

50

60

70

60

80

100
110

123

130

140

150

160

170

180

190

200

210

220

233

240

250

268

270

280

283

303

313

APPENDIX C8: ASSEMBLER LISTING OF

TABLE-DRIVEN DISASSEMBLER

TABLES

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

CONSTANTS

**

330

340

359

360

370 307F—

388

3S0

400 80FF=

410

420

433

440

450

468

470

480

490

500

518

520

530

540

550

560

570

TEX - S7F THIS CHARACTER MUST START

ANY MESSAGE-

ETX - SFF THIS CHARACTER MUST END

ANY MESSAGE.

301

580

5S0

600 1980-
DSPRGE=$13Q0 STRRTING PRGE OF DISR5SEMBLER

610

6Z0

630

648
650

660

670

680

630

703

710

7Z0

730

740 1E53

750

760

778

LIST OF MNEMONICS

**

*=BSPAGE+$250

780

790
880 IE58 7F

9

MNRME5 .BYTE TEX

810

820

830

840 lB5i 42 . BYTE ' BRD'

840 1E52 41

843 1B53 44

853 1B54 41 .BYTE ' RDC'

853 1B55 44

858 IB56 43

863 1B57 41 . BYTE ' AND'

863 1B58 4E

868 1B53 44

878 1B5R 41

870 1B5B 53

.BYTE ' RSL'

873 1B5C 4C

863 1B5D 42 . BYTE ' BCC'

880 1BSE 43

883 1BSF 43

830 1E63 42 . EYTE ' ECS'

890 1361 43

830 1B62 53

903 1B63 42 . BYTE ' BEQ'

900 1B64 45

900 1BBS 51

910 1BSS 42 .BYTE ' BIT'

910 1E67 49

910 IE88 54

S2S IB69 42

920 1B6R 4D

.BYTE ' EMI'

920 1E6B 49

938 1B6C 42

S3Q 1BSD 4E

. EYTE ' BNE'

930 1E6E 4S

940 1B6F 42

S40 1E73 50

.BYTE ' E-PU

SINCE THIS TRBLE IS R
STRING OF CHRRRCTERS, STRRT

IT WITH THE TEX PSEUDO-OP.

302 BEYOND GAMES

940 1B71 4C

950 1B72 42

950 1B73 52

950 1B74 4B

9S0 1B75 42

S60 1B76 55

960 1B77 43

970 1B7S 42

970 1B79 56

970 1B7R 53

980 1B7B 43

980 IB7C 4C

980 1B7D 43

980 1B7E 43

990 1B7F 4C

990 1BS0 44

1000 1B81 43

1080 1B82 4C

1000 1B83 49

1010 1B84 43

1010 1B85 4C

1010 1B86 56

1020 1B87 43

1820 1E88 4D

1020 1E83 58

1030 IBSfi 43

1838 1B8B 50

1838 1E8C 58

1048 1B8D 43

1349 1E8E 50

1840 1B8F 53

1858 1B30 44

1053 1B91 45

185G 1BS2 43

I860 1E93 44

1050 1B34 45

I860 1B95 53

1078 1B36 44

1078 1ES7 45

1079 1B98 53

10B0 1B33 45

1880 1B9R 4F

1880 1B9B 52

1090 1B3C 43

1830 1B9B 4E

1098 1BSE 43

1180 1BSF 43

li00 1BP.0 4E

1100 1EB1 58

1110 1BFS2 43

1110 1BR3 4E

1110 1BR4 59

1120 1BR5 4R

1120 1ER6 4B

1120 1BR7 50

1138 1ER8 4R

1138 1ER3 53

1130 1BRR 52

. BYTE ' ERK'

. BYTE ' BUG'

. BYTE ' BUS'

. BYTE ' CLC'

. BYTE ' CUT

. BYTE ' CLI'

, BYTE ' CLU'

.BYTE 'CMP'

. BYTE ' CPX'

. BYTE ' CPY'

. BYTE ' DEC'

. BYTE ' DEX'

. BYTE ' BEY'

. BYTE ' EOR'

. BYTE ' INC'

.BYTE ' INK'

.BYTE ' I NY'

. EYTE ' JMP'

. BYTE ' JSR'

1148 1BRE 4C

1148 1BRC 44

1148 IBRD 41

1153 IE RE 4C

1150 1BRF 44

1153 1BB0 53

11G0 1BB1 4C

11S8 1BB2 44

1168 1BB3 53

1170 1BB4 4C

1170 iBB5 53

1170 1BB6 52

1130 1EB7 4E

1180 1BB8 4F

1180 1BB3 50

1130 1EBR 4F

1130 1BBB 52

1133 1BBC 41

1200 1B3D 50

1208 1BBE 48

1203 1BBF 41

1210 1BC0 53

1210 1EC1 48

1210 1BC2 50

1220 1BC3 53

1220 1BC4 4C

1220 1BC5 41

1238 1ECS 50

1230 1BC7 4C

1233 1BC8 50

1240 1BC9 52

1243 1ECR 4F

1248 1ECB 4C

1250 1BCC 52

1253 1BCD 4F

1250 1ECE 52

1260 IBCF 52

1260 1BD0 54

1260 1ED1 49

1270 1ED2 52

1270 1BD3 54

1270 1BD4 53

1280 1ED5 53

1280 1BBS 42

1280 1ED7 43

1290 1BD8 53

1238 1BB3 45

1283 1EBR 43

1390 1BBB 53

13G0 1BDC 45

1300 1BDD 44

1310 1BDE 53

1310 1BDF 45

1310 1BE0 43

1320 1EE1 53

1320 1EE2 54

1328 1BE3 41

1330 1BE4 53

.BYTE ' LBR'

.BYTE ' LDX'

. BYTE ' LDY'

. BYTE ' L5R'

.BYTE 'NOP'

.BYTE ' ORfi'

.BYTE ' PHR'

. BYTE ' PHF'

. BYTE ' PLR'

.BYTE 'PLP'

. BYTE ' ROL'

.BYTE 'ROR'

.BYTE ' RTI'

.BYTE ' RTS'

. BYTE ' SBC'

.BYTE * SEC'

. BYTE ' SED'

. BYTE ' SEI'

, BYTE ' STR'

.BYTE ' STX'

304 BEYOND GAMES

1330 1BE5 54

1333 1BES 53

1340 1BE7 53

1340 1BES 54

1340 1BE9 59

1350 1BEA 54

1350 1BEB 41

1350 1BEC 53

1360 1BED 54

1350 IEEE 41

1360 1BEF 59

1370 1BF0 54

1373 1BF1 53

1370 1BF2 53

1330 1BF3 54

1333 1BF4 53

1330 1BF5 41

1330 1BFS 54

1390 1BF7 58

1390 1BF3 53

1400 1BF9 54

1400 1BFA 59

1430 1BFB 41

1410 1BFC 54

1410 1BFB 45

1410 1BFE 53

1420

1433 1BFF FF

1443

1453

1463

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1603

1610

1623

1630

1640

1653

1660

1670

1683

1693

1733

1710

1720 1C03 22

1720 1C01 6ft

.BYTE ' STY'

.BYTE 'TAX'

.BYTE 'TRY'

.BYTE 'TSX'

.BYTE ' TXft'

.BYTE * TXS'

.BYTE *TYft'

.BYTE * TEX'

.BYTE ETX SINCE THIS IS THE END OF ft

STRING OF CHBRftCTERS, USE

ETX TO INDICftTE END OF TEXT.

TABLE OF MNEMONIC CODES

************#***#****#**#****#************-&*

ft MNEMONIC' 5 CODE IS ITS OFFSET INTO

MNftMES, THE LIST OF MNEONIC NAMES.

MCODES .BYTE $22,$6A,1,1,l,$SA,$8ft,1,$73

305

1720 1CQ2 01

1720 1C03 01

1720 1C04 01

1720 1C85 SB

1720 1C06 0B

1720 1C07 01

1720 1C08 70

1730 1C03 6ft

1730 ICQft 0ft

1730 1C03 01

1730 1C0C 01

1730 1C0D 6ft

1730 1C0E 0ft

1730 1C0F 01

17-40 1C10 IF

1740 1C11 6ft

1740 1C12 01

1740 1C13 01

1740 1C14 01

1740 1C15 6ft

1740 1C16 0ft

1740 1C17 01

1750 1C18 2B

1750 1C13 6ft

1750 lClft 01

1750 1C1B 01

1750 1C1C 01

1750 1C1D SB

1750 1C1E 0ft

1750 1C1F 01

1768 1C28 53

1760 1C21 07

1760 1C22 01

1760 1C23 01

1768 1C24 16

1768 1C25 07

1760 1C26 79

1760 1C27 01

1778 1C23 76

1770 1C29 07

1770 1C2R 79

1770 1C2B 01

1770 1C2C 16

1770 1C2D 07

1770 1C2E 79

1770 1C2F 81

1780 1C30 19

1780 1C31 07

1788 1C32 01

1788 1C33 01

1788 1C34 01

1780 1C35 07

1783 1C36 73

1780 1C37 01

1790 1C38 88

1730 1C39 07

1730 lC3ft 01

1790 1C3B 01

.BYTE $6fi,$0ft,1,lf$6ft,$0ft,1

.BYTE S1F,$6ft,1,1,1,$6f),$0ft,1

.BYTE $2B,$6ft,1,1,1,$6ft,$0ft,1

.BYTE $58,7,1,1,$16,7,$79,1

.BYTE $76,7,$73,1,$16,7,$79,1

.BYTE $13,7,1,1,1,7,$79,1

.BYTE $88,7,1,1,1,7,$79,1

306 BEYOND GAMES

1790 1C3C 01

1790 1C3D 07

1730 1C3E 73

1730 1C3F 01

1600 1C43 7F

1800 1C41 49

1830 1C4Z 01

1800 1C43 01

1800 1C44 01

1800 1C45 43

1800 1C46 64

1800 1C47 01

1810 1C43 6D

1810 1C49 43

1818 1C4R 64

1810 1C4B 01

1810 1C4C 55

1810 1C4D 49

1810 1C4E 64

1810 1C4F 01

1820 1C50 25

1820 1C51 49

1820 1C52 01

1829 1C53 01

1820 1C54 01

1820 1C55 49

1320 1C56 64

1823 1C57 01

1830 1C58 31

1330 1C59 49

1830 1058 01

1833 1C5B 01

1830 1C5C 01

1830 1C5D 43

1830 1C5E 64

1830 1C5F 01

1840 1C60 82

1840 1C61 04

1843 1C62 01

1840 1C63 01

1840 1C64 01

1840 1C65 04

1840 1CGG 7C

1840 1C67 01

1850 1CS8 73

1850 1C69 04

1850 1C6R 7C

1850 1C6B 01

1859 ICBC 55

1850 ICED 04

1850 1CSE 7C

1850 1C6F 01

1860 1C70 23

I860 1C71 04

1863 1C72 01

18E0 1C73 01

1880 1C74 01

1863 1C75 04

.BYTE $7F,$49,1,1,1,$49,$64,1

.BYTE $6D,$49,$64,1,$55,$49,$64,1

.BYTE $25,$49,1,1,1,$49,$64,1

.BYTE $31,$49,1,1,1,$43,$64,1

.BYTE $82,4,1,1,1,4,$7C,1

-BYTE $73,4,$7C,1,$55,4,$7C,1

.BYTE $23,4,1,1,1,4,$7C,1

307

i860 1C76 7C

i860 1C77 01

1870 1C78 SE

1870 1C79 04

1870 1C7R 01

1870 1C7B 01

1870 1C7C 01

1870 1C7D 04

1870 1C7E 7C

1870 1C7E RC

1880 1CB0 01

1880 1C81 31

1880 1C82 01

1880 1C83 01

1880 1C84 37

1880 1C8S 31

1880 1C86 34

1880 1C87 01

1830 1C88 48

1830 1C89 01

1830 1C8R R3

1890 1C8B 01

1890 1C8C 37

1830 1C8B 91

1830 1C8E 94

1893 1C8F 01

1900 1C90 0D

1900 1C91 31

1303 1C32 01

1300 1C33 01

1903 1CS4 37

1903 1C35 91

1330 1C96 94

13S0 1C97 01

1910 1C9S R9

1910 1C33 91

1910 1C3R R3

1910 1CSB 01

1910 1CSC 01

1310 1C3D 91

ISIS 1CSE 01

1910 1C9F 01

1320 1CR0 61

1920 1CR1 5B

1920 1CR2 5E

1923 1CR3 01

1920 1CR4 61

1320 ICRS 5B

1920 1CR6 5E

1920 1CR7 01

1333 1CR8 SB

1930 1CR9 SB

1933 ICAR SR

1933 1CRB 01

1930 1CRC 61

1933 1CRB SB

1S33 1CRE SE

1330 1CRF 01

.BYTE $3E,4,1,1,1,4,$7C,$RC

.BYTE 1,$91,1,i,$37,$91,$94,1

.BYTE S-46,1,SR3,1,$97,$91,$34, 1

.BYTE $0D,$91,1,1,$97,$91,$34,1

.BYTE $R3,$31,$R3,l,i,$91,i,l

.BYTE $61,$5B,$5E,1,$S1,$5B,$5E,1

. BYTE $3D,$5B,$9R,1,$61,$5B,$5E,1

308 BEYOND GAMES

1940 1CB0 10

1940 1CB1 5B

1940 1CB2 01

1340 1CB3 01

1940 1CB4 61

1940 1CB5 5B

1340 1CBS 5E

1943 1CB7 01

1950 1C-B8 34

1950 1CB9 5B

1950 lCBfl 9E

1350 1CBB 01

1950 ICBC 61

1950 1CBD 5B

1350 1CBE 5E

1953 1CBF 01

1560 1CC9 3B

I960 1CC1 37

1960 1CC2 01

i960 1CC3 01

1350 1CC4 30

1360 1CC5 37

I960 1CC6 49

1360 1CC7 01

1370 1CC8 52

1970 1CC3 37

1970 1CCR 43

1970 1CCB 01

1370 1CCC 3D

1970 1CCD 37

1970 1CCE 43

1873 1CCF 01

1983 1CD0 1C

1380 1CD1 37

1380 1CB2 01

1983 1CD3 01

1380 1CD4 01

1380 1CD5 37

1380 1CB6 40

1980 1CD7 01

1930 1CD8 2E

1990 1CD9 37

1390 lCBfl 81

1990 1CBB 01

1990 1CDC 01

1390 1CDD 37

1990 1CDE 40

1930 1CDF 01

2000 1CE0 3R

2030 1CE1 85

2000 1CE2 01

2000 1CE3 01

2033 1CE4 3R

2000 1CE5 85

2030 ICES 4C

2000 1CE7 01

2010 ICES 4F

2010 1CE9 85

.BYTE $10,$5B,l,i,$61,$5B,$5E,l

.BYTE $34,S5B*$9E,1,$61,S5B,S5E,1

.BYTE S3B,S37,1,1,$3D,$37,$40,1

.BYTE $52,S37,$43,1,S3D,$37,$40,1

.BYTE SIC,$37,1,1,1,$37,$40,1

. EYTE $2E,$37,1,1,1,$37* $40,1

.BYTE S3R,$85,1,1,S3R,$85,S4C,1

.BYTE S4F,$85,$67,1,$3R,$85,$4C,1

309

2010 1CEA 67

2010 1CEB 01

2010 1CEC 36

2010 ICED 65

2010 1CEE 4C

2010 1CEF 01

2020 1CF0 13

2020 1CF1 85

2020 1CF2 01

2020 1CF3 01

2020 1CF4 01

2020 1CF5 85

2020 1CF6 4C

2020 1CF7 01

2030 1CF8 8B

2030 1CF9 85

2030 lCFfi 01

2030 1CFB 01

2030 1CFC 01

2030 1CFD 85

2030 1CFE 4C

2030 1CFF 01

2040

2050

2060

2870

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330 1D00 12

2330 1D01 16

2330 1D02 00

2330 1L03 00

2330 1D04 00

2330 1D05 06

2330 1D0S 06

.BYTE $13,385,1,1,1,385,34C,1

.BYTE $8B,$BS,1,1,1,$85,34C,1

TABLE OF ADDRESSING NODE CODES

**************************^*****************

AN ADDRESSING NODE' 5 CODE IS ITS OFFSET

INTO SUBS, THE TABLE OF ADDRESSING NODE

SUBROUTINES.

MODES .BYTE 18,22,0,0,0,6,6,0

310 BEYOND GAMES

2330 1D07 00

2340 ID03 12

2340 J.D03 04

2348 ID03 82

2348 1DBB 00

2340 1D0C 80

2340 1B0D 0C

2340 1D0E 0C

2348 1D8F 03

2350 1D10 14

2350 IDi1 18

2350 1D12 00

2350 1D13 80

2350 1D14 00

2350 1D15 0E

2350 IDIS 3E

2350 1D17 00

23S3 1D18 12

j 2360 1D19 10

2360 1D1R 00

2360 1D1B 03

2360 1D1C 00

2360 1D1D 16

2360 IDIE 16

2360 1D1F 00

2370 1D20 0C

2370 1D21 16

2378 1D22 03

2370 1D23 03

2370 1D24 86

2370 1D25 06

2370 1D26 G6

2373 1D27 03

2380 1D28 12

2380 ID23 34

2380 1D2R 82

2388 1D2B 00

2330 1D2C 0C

2380 1D2D 0C

2388 1D2E 0C

2380 1D2F S3

2330 1D30 14

2330 1D31 18

2330 1D32 03

2330 1D33 30

2390 1D34 B0

2330 1D35 83

2330 1D3S 88

2330 1D37 80

2480 1D38 12

2480 1D33 18

2400 1D3R 00

2480 1D3B 03

2400 1D3C 00

2400 ID3D 8E

2400 1D3E 0E

2400 1D3F 08

241B 1D40 12

.BYTE 13,4,2,0,0,12,12,0

.BYTE 20,24,0,0,0,14,14,0

.BYTE 18,18,0,0,0,22,22,0

.BYTE 12,22,0,0,6,6,6,0

.BYTE 18,4,2,0,12,12,12,0

.BYTE 28,24,0,0,0,8,8,0

.BYTE 18,16,0,0,0,14,14,0

.BYTE 18,22,0,0.0,6,6,0

311

2410 1B41 16

2410 1D42 03

2410 1D43 S3

2410 1D44 00

2418 ID45 36

2410 1B46 86

2410 ID47 ©0

2428 1D43 12

2420 1D4S 0C

2420 iD4fl ©2

2428 1D4B 80

2420 1D4C ©C

2428 1B4D 0C

2428 1B4E SC

2428 1D4F 80

2430 1D53 14

2430 1D51 IS

243S 1D52 80

2430 1D53 88

2430 1D54 88

243G 1D55 03

2438 1D55 0S

2430 1D57 00
2440 1D53 12

2440 1B53 10

2440 IBSfi 03

2440 1B5B 00

2443 iB5C 03

2440 1B5B 8E

2440 1B5E 8E

2448 1B5F 83

2458 1B68 12

2459 IDS! 16

2450 1B52 03

2450 IB63 80

2453 1B64 08

2453 1D65 06

2450 1B66 06

2458 1B67 00

2460 1B68 12

2460 1B6S 64

2450 IDSfl 02

2468 1B6B 00

2468 1B6C lft

2468 1B6B SC

2460 1B6E BC

2460 1BSF 83

2470 1B78 14

2478 1B71 IS

2470 1B72 80

2478 1B73 83

2473 1B74 08

2473 1D75 03

2470 1D76 08

2473 1B77 80

2480 1D78 12

2480 1D73 10

2483 1D7R 03

.BYTE 18,12,2,0,12,12,12,0

.BYTE 20,24,0,0,0,3,8,0

.BYTE 18,16,0,0,0,14,14,0

.BYTE 18,22,0,0,8,6,6,0

.BYTE 18,4,2,0,26,12,12,0

.BYTE 20,24,0,0,0,8,8,0

.BYTE 18,16,0,0,0,14,14,28

312 BEYOND GAMES

248Q 1D7B 00

2483 1D7C 00

2483 1E7D BE

2480 1D7E 0E

2433 1B7F 1C

2450

2593 1DS0 03

2508 ID31 IB

2500 1D82 03

2530 1D33 38

2503 1D84 06

2503 1D85 86

2503 1D8S 06

2503 1D87 80

2510 1D83 12

2510 1D33 03

2513 1D8R 12

2510 1D3B S3

2518 1B3C BC

251B 1D8D 0C

2513 1D8E 0C

2513 1DSF 00

2529 1BS0 14

2523 1D31 18

2523 1D32 03

2523 1D93 90

2520 1D94 38

2520 1D35 03

2528 1D96 3A

2528 1D37 00

2530 1D98 12

2538 1D33 13

2538 I DB A 12

253B 1DSB 03

2530 1D3C 03

2539 1D9B BE

2530 1DSE 08

2533 1BSF 03

2540 1DR3 04

2540 1DR1 16

2543 1BA2 B4

2543 1DR3 03

2543 1DA4 05

2548 1DR5 86

2540 1DRS 0S

2543 1DR7 00

2550 1DA8 12

2558 1DA9 04

2550 1DAA 12

255B 1BAB S3

2553 1BRC 0C

2550 1DRB SC

2550 1EAE BC

2553 1DAF 80

256Q 1DBB 14

2580 1DB1 18

2563 1BB2 00

2568 1BB3 33

.BYTE 0,22,0,3,6,6,6,0

.BYTE 18,0,18,3,12,12,12,0

.BYTE 20,24,0,3,8,8,10,0

.BYTE 18,16,18,3,0,14,0,0

.BYTE 4,22,4,0,6,6,8,8

.BYTE 18,4,18,0,12,12,12,0

.BYTE 20,24,0,3,8,8,10,0

313

2560 1DB4 08

2560 1DB5 08

2560 1DBS 0R

25SQ 1DB7 33

2573 1DB3 14 . BYTE 20,16,IS,0,14,14.16,0

2570 1DB9 10

2570 1BBR 1Z

2570 1DBB 03

2570 1DBC 0E

2570 1DBB 0E

2570 1BBE 13

2570 1DBF 00

2580 1BC0 04 .BYTE 4,22,0,0,6,6,6,0

2580 1BC1 16

2583 1DC2 00

2583 1DC3 00

2580 1DC4 06

2580 1DC5 06

2580 1DC6 06

2580 1DC7 00

2530 1DC8 12 . BYTE 18,4,18,0,12,12,12,0

2590 1BC9 04

2590 1DCR 12

25S0 1DCB 00

2550 1DCC 0C

25S0 1DCD 0C

2590 1DCE 0C

2590 1DCF 03

2600 1DD0 14 , BYTE 20,24,0,0,0,8,8.0

2600 1DD1 18

2600 1BD2 .00

2600 1DB3 00

2603 1DD4 00

2600 1BB5 08

2603 1BDS 08

2600 1DD7 00

2610 1DB3 12 . BYTE 18,16,0,8.0,14,14,0

2610 1DD9 10

2610 1DDR 03

2613 1DDB 00

2610 1DDC 00

2610 1DDD 0E

2618 1DDE BE

2610 1DDF 30

2620 1DE0 04 .BYTE 4,22,0,0,6,6,6,0

2620 IBEi 16

2620 1DE2 00

2620 1DE3 00

2620 1DE4 06

2620 1DE5 06

2620 IDES 06

2620 1DE7 03

2633 1BE8 12 . BYTE 18,4,13,0,12,12,12,0

2633 1DE9 04

2633 1DER 12

Z630 1DE3 83

2630 1DEC 0C

2630

:||!j

1DED 0C

314 BEYOND GAMES

2630 IDEE 0C

2630 1DEF 00

2640 1DF0 14 .BYTE 20,24,0,0,0,8,8,0

2640 IDF1 18

2640 1DF2 00

2640 1DF3 00

2640 1DF4 00

2640 1DF5 08

2640 1DF6 03

2640 1DF7 00

2650 1DF8 12 .BYTE 18,16,0,0,0,14,14,0

2650 1DF3 10

2650 IDFfi 00

2650 1DFB 00

2650 1DFC 00

2650 1DFD 0E

2650 1DFE 0E

2650 1DFF 00

i
r

S

:
'

f
315

Appendix C9:

Move Utilities

317

10

29
39
40
50
59
79
60

90
100

113
120

130
140
150
160
179
180
193
208
210

220

230
248
Z50
260 089D-
270 808A=
289 007F=
239 GGFF=
3G9
318
323
330
340
359
368

APPENDIX C3: ASSEMBLER LISTING OF
PIQUE UTILITIES

SEE CHAPTER 10 OF BEYOND GAMES: SYSTEMS
SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER-1

BY KEN SKIER

CONSTANTS

;,**#************♦*********************$

CR—S0D CARRIAGE RETURN.
LF=S0A LINE FEED.
TEX=$7F START OF TEXT CHARACTER.
ETX=SFF END OF TEXT CHARACTER.

389
399
403
418
420
433
440
450
460
47Q
480
4S0 1208=
580
510
528 1205=
538 1207=
540
550
560
578 1408=
580

EXTERNAL ADDRESSES

UMPRGE=$i280 STARTING PAGE OF VISIBLE
MONITOR CODE.

SELECT=UMPAGE+5
UISMON=VMFfiGE+7

PRPAGE=S1403 STARTING PAGE OF PRINT CODE.

319

590 1408— TUT.0N=PRPRGE+8

500 14E4= PRINT:=PRPRGE+$E4

610 1512= PUSHSL=PRPAG£+$112

620 I5ZB= POP.SL=PRPRGE+S12B

530 5

640 5

650 1500= HEX.PG=S1500 RDDRESS OF PRGE IN WHICH

660 ; HLXBUNP CODE STRRT5.

670 ; (HEXDUMP CODE STRRT5 RT

680 ; $1550, BUT IT'S EASIER TO

690 COUNT FROM $1500.)

700 5
710 1569= SETADS=HEX.PG+SE9

720 5
730 9

740 9
750 9

760 9

770 9

780 5

730 9

800

810 9

820 ; URRIRBLES

830 9
840

850 9

860 9

870 9

880 5

890 9

S00 17B0 *=$17B0

910 5

920 5

930 1552= SA=HEX.PG+S5Z POINTER TO START RDDRESS

940 ; OF ELOCK TO BE MOUED.

950 9

960 1554= Efi=Sfl+2 POINTER TO END OF BLOCK TO

970 ; BE MOUED.

1000 9

1010 17B0 0000 NUN .WORD 0 NUMBER OF BYTES IN BLOCK

1020 ; TO BE MOUED. ZERO MEANS

1030 ; BLOCK C0NTRIN5 1 BYTE.

1040 5

1850 5

1060 17B2 0000 BEST .WORD 0 POINTER TO BLOCK'S

1070 DESTINATION.

1080 9

1030 9
1100 5
1110 5
1120 9

1130 5

1140 9

1150 0000= GETPTR-0 THESE TWO "PRGE POINTERS"

1160 0802= PUTPTR=GETPTR+2 GET RND PUT BYTES.

1170 *

1180 . ;

320 BEYOND GAMES

1190

1209

1210

1220

1230

12-40

1250

12S0

1279

1280

12S0

1383

1310

1323

1333

1340

1350

1360

1370 17B4

1388 17B7

1390 17BA

13S0 17EB

1330 17BC

1400 17BD

1488 17BE

1488 17EF

1480 17C0

1403 17C1

1403 17C2
1430 17C3

14G0 17C4

1438 17C5

1403 17C6

1488 17C7

1403 17C3

1430 17CS

1488 17CA

1480 17CB

1410 I7CC

1418 17CD

1410 17CE

1410 17CF

1420

1438 1703

1443

1483

14G8 17D3

1473

14S0

1493

1508

1518

1520

1530

1540

1550

1563

1570

MOVE TOOL

2313814 MOVER

20E414

7F

0D

0A

20

20

23

20

28

4D

4F

56

45

23

54

4F

-IF

4C

2E

80

8A

0R

FF

JSR TUT.ON SELECT SCREEN FOR OUTPUT.

JSR PRINT: DISPLfiY B TITLE.

.BYTE TEX,CR,LF

.BYTE ' MOVE TOOL.'

.BYTE CR,LF,LF,ETX

20E915

?

JSR SETRDS GET START ADDRESS, END

ADDRESS FROM USER.

20B918

5

5

5

JSR SET.DR GET DESTINATION ADDRESS

FROM USER.

WITH THOSE POINTERS SET,

WE'RE READY TO EXECUTE MOV.EA

321

15B0

1593

1603

1613

16Z3

1630

1640

1650

1660

1670

1683

1693

1700

1710

1730

1740

1753

1760

1770

1780

1790

1803

1810

1820

1830

1840

1853

1860

1873

1880

1833

1900

1310

1920

1930

1940

1950

1960

1970

1380

1330

2000

2010

2023

2830

2043

2053

MOV.Eft: MOVE BLOCK SPECIFIED BY SR, ER, DEST

**

RETURN CODES:

0000=

00FF=

17D6

17D3

17DR

17DD

17E0

17E3

17E5

I7E6

17E7

17E8

17EB

17EE

17F0

17F2

ERR0R=3

0KAY='5FF

RE5515 MOV.ER

38

RD5415

ED5215

8DB317

B802

CR

38
8R MOVE.1

ED5315

8DB117

B003

LDX ER+1

SEC

LDR ER

SBC SR

STR HUM

BCS MOVE.I

DEX

SEC

TXR

SBC SR+1

STR NUM+1

BCS MOVMUM

R900

60

ER.RTN LDR tERROR

RTS

THIS RETURN CODE MERNS

SR < ER, SO MOVE RBORTED.

THIS RETURN CODE MERNS

MOVE RCCOMPLISHED.

SET NUN ER - SR:

IF ER < SR,

RETURN WITH ERROR CODE.

17F3

17F5

**

MOVNUM: MOVE BLOCK SPECIFIED BY SR, NUN, DEST.

**

R303 MOVNUM LDY #3 SAVE ZERO PRGE BYTES THAT

699303 LOOP.I LDR GETPTR,Y WILL BE CHANGED.

2360 I7F8 48

2870 17F9 88

2880 17FR 10F9

2093

2100

2113 17FC 38

2130 17FD RD5315

2140 1800 CDB317

2150 1803 9040

2160 1805 D318

2170

PHR

DEY

BPL LOOP.1

SEC IF DEST>SA, BRANCH TO MOVE-UP

LDR SR+i

CMP DEST+i

BCC MOVEUP

ENE MOVEDN
IF DESTC5A, BRANCH T

322 BEYOND GAMES

MOVE-DOWN 2133 ;

2190 1887 AD5215 LDR Sfi

2200 180R CDB217 CMP DEST

2213 180D 9336 BCC MOOEUP

2220 18GF B00E BNE MOOEDN

2230 1811 R0G3 OK.RTN LDY #0

2240 *

2250 1813 68 LOOP,2 PLfi

226G 1814 S90030 STfi GETPTR,Y

2270 1817 C8 INY

2230 1818 C004 CPY #4

22S3 iSlfi D0F7 BNE LOOP.2

2300 181C R3FF LDfi #OKAY

2310 181E 60 RTS

2320 5

2333

2340 *

23S0 1S1F 20R41S MOOEDN JSR LOPRGE

2360 5

2370

j

2380 5

2333 1322 B000 LDY #0

2403 ;

2410 5

2423 1824 fiEBl17

5

LDX NUM+1

2430 1827 FG0E

5

BEQ LESSDN

2443 •

2450 »

24 S3 »

2470 1829 B100 PRGEDN LDfi C GETPTR),

2480 182B 3102 STfi CPUTPTR)

2433 182D C8 INY

25Q0 182E DBFS BNE PRGEDN

2510 9

2523 8

2530 1833 E601 INC GETPTR+1

2540 1832 E603 INC PUTPTR+i

2553 1834 Cfi DEX

2560 1835 D0F2 BNE PRGEDN

2570 9

2583 f

2533 1837 88 LESSDN DEY

2680 1838 CS INY

2613 1839 B133 LDR C GETPTR)

2620 183B 9102 5TR (PUTPTR)

2630 183D CCE017 CPY NUM

2640 1849 D0F6 BNE LESSDN+1

2650 1842 4Ciil3 JMP OK.RTN

2660 ;

2670

2680

2630 ;

2700 1645 RDB117 MOVEUP LDA NUM+1

2710 134S F048 BEQ LE5SUP

2720 t

IF DEST-Sfl,

RETURN BEARING "OKAY* CODE.

RESTORE ZERO PfiGE BYTES

THRT WERE CHRNGED.

RETURN W/"OKRY" CODE.

SET PRGE POINTERS TO LOWEST

PAGES IN ORIGIN, DESTINATION

BLOCKS.

INITIALIZE PRGE INDEX TO

BOTTOM OF PfiGE.

USE X TO COUNT THE NUMBER

OF PRGES TO MOVE. MORE THfiN

ONE PRGE TO MOVE?

IF NOT, MOVE LESS THfiN ft

PfiGE.

IF SO,

Y MOVE fi PfiGE DOWN,

Y STARTING AT THE BOTTOM.

INCREMENT PfiGE INDEX.

IF PfiGE NOT MOOED, MOVE

NEXT BYTE...

INCREMENT PAGE POINTERS.

DECREMENT PfiGE COUNT.

IF fi PRGE LEFT TO MOVE,

MOVE IT RS R PRGE.

MOVE LESS THfiN fi PfiGE

Y DOWN. STARTING AT THE

Y BOTTOM.

MOOED LAST BYTE?

IF NOT, MOVE NEXT BYTE...

IF SO, RETURN BEARING

"OKAY" CODE.

MORE THfiN fi PfiGE TO MOVE?

IF NOT, MOVE LESS THfiN R

PfiGE.

323

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2830

2890

2900

2910

2920

2930

2340

2950

2960

2970

2980

2990

3003

3010

3020

3030

3040

3050

3050

1B4R RCB117

184D RDB017

1850 33

1851 E9FF

1853 B001

1855 83

1856 PR NEXT .

1857 8403

1859 8fi

1S5R 18

185B 6D5215

185E 8500

1860 9801

1362 CS

LDY NUM+1

LBA NUM

SEC

SBC #$FF

ECS NEXT.1

DEY

1 TRX

STY PUTPTR+1

TXR

CLC

RDC SR

STR GETPTR

BCC NEXT.2

I NY

3070

3080 «

3090 1863 98 NEXT.

3100 1864 6D5315

3110 1857 8501

3120

3130

3140

3150

3160

2 TYR

RDC Sfi+1

STR GETPTR+1

PTR=SA+NUM-$FF.

3170 1869 8R TXR

3180 1Q6R 18 CLC

3190 186B SDB217 RDC DEST

3200 186E 8502 STR PUTPTR

3218 1878 8002 BCC NEXT.3

3220 1872 E683 INC PUTPTR+1

3230 5
3240 5
3250 1874 R503 NEXT. .3 LDR PUTPTR+1

3260 1878 6DB317 RDC DEST+1

3270 1873 8503 STR PUTPTR+1

3280

3290

3300

TO MOVE MORE THRN R PfiGE,

SET PfiGE POINTERS TO

HIGHEST PRGES IN ORIGIN,

DE5TINRTI0N BLOCKS.

TO DO THIS, FIRST

SET (X, Y) * NUM - SFF,

(RELfiTIUE RDDRESS OF

HIGHEST PRGE IN R BLOCK.)

NOW (X,Y) - NUM - $FF.

X 15 LOW BYTE, Y IS HIGH BYTE

(LAST PAGE IN SOURCE BLOCK.5

NOW PUTPTR=DEST+NUM-$FF.

(LAST PRGE IN BEST BLOCK.1

324 BEYOND GAMES

LDX HUM+1 LORD X WITH NUMBER OF

PRGES TO NOME.

PAGEUP LDY #$FF SET PAGE INDEX TO TOP OF

; PAGE.

LOOP.3 LB A (GETPTR),Y MOVE ft PAGE UP, STARTING

STB C PUTPTR),Y AT THE TOP OF THE BLOCK.

DEY DECREMENT PAGE INDEX.

; ABOUT TO MOUE LAST BYTE

; IN PAGE?

ENE LOOP.3 IF NOT, HANDLE NEXT BYTE.

; AS BEFORE.

LDA (GETPTR),Y IF SO, MOUE THIS BYTE FROM

STB <PUTPTR),Y SOURCE TO DESTINATION.

DEC GETPTR+1

DEC PUTPTR+1 DECREMENT PAGE POINTERS.

DEX DECREMENT PAGE COUNTER.

BNE PAGEUP IP A PAGE LEFT TO MOUE.

MOUE IT AS A PAGE-

H0R418 LESSUF JSR LOPAGE

ACE017 LDY NUM

MOUE LESS THAN A PAGE UP,

STARTING AT THE TOP.

3I0Z

88

C0FF

DBF7

4C111S

MOUE.6 LDA CGETPTR),Y COPY A BYTE FROM ORIGIN

STA CPUTPTR),Y TO DESTINATION.

DEY DECREMENT PAGE INDEX.

CPY #SFF COPIED THE LAST BYTE?

BNE MOUE.S IF NOT, HANDLE AS BEFORE.

JMP OK.RTN IF SO, RETURN BEARING

“OKAY" CODE.

****^**********.****************************

SET PAGE POINTERS TO BOTTOM OF

ORIGIN, DESTINATION BLOCKS.

«♦*♦*♦*♦******♦***♦♦**********♦♦♦*♦♦

325

3900 18B4 BD5Z15

3910 18fl7 8503

3S20 ISR9 RDS315

3933 18BC 8501

3340

3950

3960 1SRE RDB217

3970 18B1 8502

3980 18B3 BDB317

3393 18B6 8583

4000

4010

4020 18B3 60

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4150

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

4270

4280

4290 18B9 200814

4300 18BC 20E414

4310 18BF 7F

4310 18C0 ED

4310 1SC1 0fi

4320 18C2 53

4320 13C3 45

4320 18C4 54

4320 18C5 20

4320 18C6 44

4320 18C7 45

4320 18C8 53

4320 18C9 54

4320 18CB 43

4328 13CB 4E

4320 18CC 41

4320 18CD 54

4320 1SCE 49

4320 1SCF 4F

LOPBGE LDB SB

STB GETPTR

LDB SR4-1

STB GETPTR+1

LDB DEST

STB PUTPTR

LDB DEST+i

STB PUTPTR+1

RTS

**

LET USER SET DESTINRTION BDDRESS

SET.DB JSR TUT.ON LET USER SET DESTINRTION

JSR PRINT:

.BYTE TEX,CR,LF

BYTE 'SET DESTINRTION RNB PRESS Q.'

326 BEYOND GAMES

4320 1SD0 4E

4320 16D1 20

4320 18D2 41

4320 18D3 4E

4320 18B4 44

4320 18D5 20

4320 13BS 50

4320 X8D7 52

4320 18B8 45

4320 JLBD3 53

4320 loDR 53

4320 1SDB 20

4320 18DC 51

4320 18BD 2E

4330 1SDE FF .BYTE ETX

4340 18DF 200712 JSR VI3M0N
4359 1BE2 RD0512 DRHERE LDR SELECT

4360 18E5 8DB217 STR BEST

4370 16E8 6DOS12 LDR SELECT*1

433Q 18EJ6 8DB317 STR DEST-rl

4330 5

4400 18EE SB RTS

LET USER SET fiN fiDDRESS

SET DEST-SELECT.

RETURN WITH BEST-SELECT

Appendix CIO:

Simple Text Editor (Top Level and
Display Subroutines)

10
20

30

40

53

60

70

80

50

100

110

123

133

140

153

160

173

180

150

203

210

220

233

240

250

260

270

283

2S0

380

310

323

333

APPENDIX C10: ASSEMBLER LISTING OP

A SIMPLE TEXT EDITOR

TOP LEOEL AND DISPLAY SUBROUTINES

SEE CHAPTER II OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

**

CONSTANTS

**

340 S

353 800D= CR = S0D

360 »

370 080R= LF - $0A

380 ;

3S0 5

430 307F= TEX = S7F

413 5

420 5

438 80FF- ETX = SFF

440 ?

4SB 5

460 3049= INSCHR-' I

470 *004F= OURCHR*' 0

CARRIAGE RETURN.

LINE FEED.

THIS CHARACTER MUST START

ANY MESSAGE.

THIS CHARACTER MU5T END

ANY MESSAGE.

GRAPHIC FOR INSERT MODE

GRAPHIC FOR OUERSTRIKE MODE

480

493

500

510

520

530

540

550

560 ************#***,****************************

570

583 EXTERNAL ADDRESSES

530

600

510

623

630

640 0030=

650 1080=

660

670

680 1803=

693 1084=

700 1007=

718

720

730

740 1100=

750 1113=

760 112B=

770 1130

780 1176=

730 117F=

800 1181=

810 11SB=

820 1183=

830 1104=

848 1103=

850

860

870 1230=

883

830 1205=

933 1234=

310 1300=

S23 1318=

930

S40

350 1408=

960

970 1408=

S80 140E=

990 1414=

1000 141R=

1010 1440=

1020 14E4=

1030 1512=

1040 152B=

1050

I860

1070 1580=

1038

1030

1100 1552=

1110 1554=

1120 15E3=

1130 1783=

1140 1788=

1150

1168

^*^****^*^****^**************************

TO. PTR=0 POINTER TO 8 SCREEN B0DRES5.

P8R8MS=31000 SYSTEM D8T8 BLOCK.

T0C0LS=PRRRMS+3

TUR0WS=P8R8MS+4

8RR0W=PfiRRMS+7

TOSUBS=$1100

CLR.XY=TOSUBS+$13

TOHOME=TOSUBS+$2B

T0T0XY=TUSUBS+&3C

TUDOWM=TOSUBS+S <6

T0SKIP=T0SUBS+$7F

T0PLUS=T0SUBS+$81

TO.PUT=T0SUBS+S9B

0UBYTE=T0SUB5+S83

T0PUSH=T0SUBS+$C4

TO.P0P=T0SUBS+$D3

OMP8GE=$1200 STARTING P8GE OF OISIBLE

MONITOR CODE.

SELECT =UMPRGE+5

GET.SL=0MP8GE+$94

INC.SL=OMPRGE+$100

DEC.SL=0MP8GE+S118

PRP8GE=$1400 5T8RTING P8GE OF PRINT

UTILITIES.

TOT.0N=PRP8GE+8

TUTOFF=PRPRGE+$0E

PR. ON =PRPftGE+S14

PR.0FF=PRP8GE+$lfl
PR.CHR=PRPRGE+$49

PRINT:=PRP8GE+SE4

PUSH5L=PRP8GE+S112

POP.SL=PRPRGE+$I2B

HEX.PG=S1500 BDuRESS OF PRGE IN WHICH

HEXDUMP CODE ST8RT5.

5R=HEX.PG+$52

E8=Sfi+2

SET 80S=HEX.PG+3E9

NEXTSL=HEX.PG+S283

GOTOSfi=HEX.PG+S283

332 BEYOND GAMES

1170 1E00=

1180 lECo=

1190

1Z00

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330 1E03

1340

1350

1360

EDPAGE=$1E00 STARTING FAGE OF EDITOR.

EDITIT=EDPAGE+&C3

VARIABLES

*=EDPAGE

1370

1380

1390

1400

1410

1420

1430

1443

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

I860

1570

1580

15S8

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1E00

1E01

00

00

COUNTR .BYTE 0

EDtIODE .BYTE 0

COUNTER USED BY LINE.2.

FLAG: 0—OUERSTRIKE,

1=INSERT•

TEXT EDITOR: TOP LEVEL

*,********************************'**************

1EB2

1E05

200F1E EDITOR JSR SETEUF

2037IE EDLOOP JSR SHOWIT

1E08 20C81E

1E3B

1E0C

1E0D

18

18

90F6

JSR EDITIT

CLC

CLC

BCG EDLOOP

INITIALIZE BUFFER POINTERS.

SHOW USER A PORTION OF

EDIT BUFFER.

LET THE USER EDIT THE BUFFER

OR MOVE ABOUT WITHIN IT.

LOOP BACK TO SHOW THE

CURRENT TEXT.

INITIALIZE BUFFER POINTERS

333

*************#.******************************

1E0F 200814 1

1E12 20E414

1E15 7F

1E16 0D

IE17 0fi

1E18 0R

1E19 53

lEifi 45

1E1B 54

1E1C 29

1E1D 55

1E1E 50

1E1F 20

1E20 45

1E21 44

1E22 49

1E23 54

1E24 20

1E25 42

1E26 55

1E27 46

1E28 46

1E29 45

1E2R 52

1E2B 2E

1E2C 0D

1E2D 0R

1E2E 0R

1E2F FF

1E30 20E915

1E33 Z0R0I7

IE36 60

SETBUF JSR TUT.ON SELECT SCREEN.

JSR PRINT: DISFLRY "SET UP EDIT BUFFER.

.BYTE TEX,CR,LF.LF

.BYTE ' SET UP EDIT BUFFER.

.BYTE CR,LF,LF,ETX

JSR 5ETRDS

JSR GOTOSfl

RTS

LET USER SET LOCRTION RND

SIZE OF EDIT BUFFER.

SET SELECT-STfiRT OF BUFFER.

RETURN TO CRLLER.

BISPLRY R PORTION OF EDIT BUFFER

IE37 20C411 SHOWIT JSR TUPUSH SRUE THE ZERO PRGE BYTES

HE'LL USE.

334 BEYOND GAMES

2100 1E3R Z02B11

2110 ?

2120 ;

2130 ;
2140 1E3D RE0310

2150 1E40 R003

2160 1E42 201311

2170 ;

2180 ;
2130 1E45 202B11

2200 ;

2210 1E48 287611

2220 1E4B 20C411

2230 1E4E 205E1E

2240 5

2250 ;

2260 1E51 20D311

2270 1E54 207611

2280 >

2230 1E57 20331E

2380 5

2310 ;

2328 1E5R 23B311

2330 1E5D 60

2340

2350

2360

2370

2380

2399

2400

2410

2420

2430

2443

2450

2450

2470

2480

2483

2500

2510

2523

2530 1E5E 201215 LIME.2

2540 1E61 RD0310

2550 1ES4 4fl

2560 1E65 RR

2570 1E6S CR

2580 1E67 CR

2530 ;
2680 1E68 Z01R13 LOOP.1

2610 1E6B CR

2620 1E6C 10FR

2639

2643 1E6E RD0310

2650 1E71 3D001E

2660 ;

2670 1E74 283412 LOOP.2

SET HOME POSITION OF EDIT

DISPLRY.

CLERR THREE ROWS FOR

THE EDIT DISPLRY.

RESTORE TU.PTR TO HOME

POSITION OF EDIT DISPLRY.

SET TU.PTR TO BEGINNING

OF LINE TWO FIND SRUE IT.

DISPLRY TEXT IN LINE TWO.

SET TU.PTR TO BEGINNING OF

OF THIRD LINE OF EDIT

DISPLRY.
DISPLRY THIRD LINE OF EDIT

DISPLRY.

RESTORE ZERO PRGE BYTES USED

RETURN TO CRLLER, WITH EDIT

DISPLRY ON SCREEN, REST OF

SCREEN UNCHRNGED, RND ZERO

PRGE PRESERUED.

SRUE SELECT POINTER.

SET X EQUfiL TO

HRLF THE WIDTH

OF THE SCREEN.

DECREMENT SELECT...

...X TIMES.

INITIRLI2E COUNTR.

(WE'LL DISPLRY TUCOLS

CHRRRCTERS.)

GET fl CHRRfiCTER FROM BUFFER

JSR DEC.SL

DEX

BPL LOOP.1

LDR TUCOLS

STR COUNTR

JSR GET.SL

JSR TUHOME

LDX TUCOLS

LDY #3

JSR CLR.XY

JSR TUHOME

JSR TUDOWN

JSR TUPUSH

JSR LINE.2

JSR TU.POP

JSR TUDOWN

JSR LINE.3

JSR TU.POP

RTS

DISPLRY TEXT LINE

JSR PUSHSL

LDR TUCOLS

LSR R

TRX

DEX

DEX

335

2B30 1E77 209B11 JSR TV.PUT
2690 1E7A 207F11 JSR TVSKIP
2700 1E7D 200D13 JSR INC.SL
2710 5
2720 1E60 CESSIE DEC COUNTR
2730 1E83 13 EF BPL LOOP.2
2740 5
2750 5
2760 1E85 202B15 JSR POP.SL
2770 1E88 60 RTS
2780
27SQ
2300
2310
2320
2830
2840
2850
2868
2870
2830
2833
2380
2910
2320
2338 1E83 AD3310 LINE.3 LDA TVCOLS
2340 1 ESC 4A LSR A
2SS0 1ESD E332 SBC #2
2350 1E8F 238111 JSR TVPLUS
2970. 5
2983 5
2330 5
3000 1E92 AD011E LDA EDMODE
3310 1E35 C981 CMP #1
3023 1E37 D005 BNE 0VNODE
3030 5
3040 1ES3 A949 LDA fcINSCHR
3058 1E9B 18 CLC
3060 1E3C S082 BCC TVMODE
3070 1ESE A94F CVMODE LDA #OVRCHR
33BQ 1EA0 203B11 TVMODE JSR TV.PUT
38S3 IE A3 A902 LDA #2
3100 1EA5 208111 JSR TVPLUS
3110 ?
3120 5
3130 IE AS AD0710 LDA ARROW
3148 IE AS 209B11 JSR TV.PUT
3158 »
3163 1EAE A302 LDA #2
3170 1EE0 208111 JSR TVPLUS
3180 ;
3190 ;
3200 1EB3 BD0S12 LDA SELECT*1
3210 1EB6 20A311 JSR VUBYTE
3228 1EE3 AD0512 LDA SELECT
3233 1EEC 20B311 JSR VUBYTE
3248 »

3250 1EEF 60 RTS

PUT IT ON SCREEN.
GO TO NEXT SCREEN POSITION.
ADVANCE TO NEXT BYTE IN
BUFFER.
DONE LAST CHARACTER IN ROW?
IF NOT, DO NEXT CHARACTER.

RESTORE SELECT FROM STACK.
RETURN TO CALLER.

SELECT CENTER POSITION...
A=TVCOLS/2
A=C TUC0L5/2)~Z
NOW TV.PTR IS POINTING TWO
CHARACTERS TO THE LEFT OF
CENTER OF LINE 3 OF THE
EDIT DISPLAY.
WHAT IS CURRENT NODE?
IS IT INSERT NODE?
IF NOT, IT MUST BE OVERSTRIKE
NODE.
IF SO, GET INSERT GRAPHIC.

LOAD A W/OVERSTRIKE CHARACTER.
PUT MODE GRAPHIC ON SCREEN.
MOVE TWO POSITIONS TO THE
RIGHT, SO TV.PTR POINTS TO
CENTER OF LINE 3 OF EDIT
DISPLAY.
DISPLAY AN UP-ARROW HERE.

GO TWO POSITIONS TO THE
RIGHT, SO TV.PTR POINTS TO
FIELD RESERVED FOR THE
ADDRESS OF THE CURRENT CHARACTER
DISPLAY ADDRESS OF CURRENT

RETURN TO CALLER.

DISPLAY STATUS LINE

336 BEYOND GAMES

Appendix CM:

Simple Text Editor (EDITIT
Subroutine)

10

20

30

4G

50

60

70

80

30

1G0

110

120

130

143

150

160

170

180

190

200

210

229

230

243

250

2B0

270

288

280

380

318

320

330

340

350 080D=

363

373 000R—

380

330

488 007r"=s

410

420

430 00FF=

440

450

460

478

480

490

5B0

510

520

530

540

550

560

570

APPENDIX Cli: ASSEMBLER LISTING OF

A SIMPLE TEXT EDITOR

EDITIT SUBROUTINE

SEE CHAFTER II OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BY KEN SKIER

CONSTANTS

CR - S8D

LF = S0A

CARRIAGE RETURN.

LINE FEED.

TEX - $7F THIS CHARACTER MUST START

ANY MESSAGE.

ETX = $FF THIS CHARACTER MUST END

ANY MESSAGE.

**********.*******+*****************-*******•**

EXTERNAL ADDRESSES

******&**&**&*******>**********************&* 580

5S0

600

610

620

630

6*40 1200=

650

ESQ 1205—

670 1207=

630 1234=

699 1220=

700 130B=

710 1316=

72S 1320=

738

740

758 1400=

769

765 1414=

767 1416=

770 1448=

780 1424=

73G 1512=

808 152E=

810

828

83D 1503=

840

858

853 1552=

878 1554=

838 1667=

830 1783=

S88 1768=

918

928

33G 17B0=

940 1752=

950 17E6=

960 1822=

970

980 1288=

330 12C0=

1000

1310

1023

1330

1G4Q

1053

1853

1070

1G80

1358

1180

1110

1123

1133

VMPRGE=S120S STARTING PAGE OF VISIBLE

MONITOR CODE.

SELECT=VMPRGE+5

VISM0N=VMPRGE+7

GET.SL=VMPRGE+$94

GETKEY=VMPRGE+$E0

INC.SL=VMPRGE+$10D

DEC.SL=UMPfiGE+$116

PUT.SL=VMPRGE+&12B

PRPRGE=$1400 ST6RTING PRGE OF PRINT

UTILITIES.

PR.ON HPRPRGE+&14

PR.0FF=PRPRGE+$1R

PR.CHR=PRPRGE+$40

PRINT:=PRPRGE+SE4

PUSH5L=PRPRGE+$112

P0P.SL=PRPRGE+$12B

HEX.PG=$1500 RBDRESS OF PRGE IN WHICH

HEXDUMP CODE STRRTS.

SR=HEX.PG+$52

ER=Sfi+2

SRHERE=HEX.PG+S167

NEXTSL=HEX.PG+SZ83

GOTOSfl=HEX.PG+S2R0

MQVERS=$17B0 STRRT OF MOVE OBJECT CODE.

DEST =MOVERS+Z

MOV.ER=M0VERS+SZ6

DfiHERE=MOVERS+$132

EDFRGE=S1E00 STRRTING PRGE OF EDITOR.

EDKEYS=EDPRGE+$C0

**

VARIABLES

**

340 BEYOND GAMES

*=EDFRGE 1148 1E83

1153

1163

1173

1183 1E31=

1133

1200

121Q 1EC3

1228

1238

1240

1250

1263

1270

1280

1230

1300

1313

1320

1330

1340 1EC3 06

1350

1360

1370

1380

1330

1460 1EC1 03

1410

1420

1438

1440

1450

1468 1EC2 3E

1470

1480

1490

1500

1510

1520 1EC3 3C

1530

1540

1550

1560

1570 1EC4 10

1580

1530

1630

1610 1EC5 7F

1628

1630

1640

1650

1660

1670

1680 1EC6 51

1690

1700

1710

EDMOEE=EDPRGE+i 0=OUER5TRIKE MODE.

1=INSERT.

*=EDKEYS

EDIT FUNCTION KEYS

THE" EDITOR RECOGNIZES THE

FOLLOWING KEYS AS FUNCTION KEYS.

RESIGN R FUNCTION TO R KEY

BY STORING THE DESIRED KEY

CODE FROM YOUR SYSTEM' S

KEYHRNDLER INTO ONE OF THE

FOLLOWING DRTR BYTES:

FLSHKY .BYTE $06 THIS KEY FLUSHES THE

; BUFFER OF RNY TEXT. $06 IS

; CONTROL-F. THUS, CONTROL-F

; TO FLUSH THE BUFFER.

mo: BEKY .BYTE $83

NEXTKY .BYTE ' >'

PREUKY .BYTE ' <'

PRTKEY .BYTE $10

RUBKEY .BYTE $7F

THIS KEY CRUSES THE EDIT

TO CHfiNGE MODES. FROM INSERT

TO OUERSTRIKE, RND UICE UERSft,

$03 IS CGNTROL-C. THUS,

CONTROL-C TO Change modes.

THIS KEY SELECTS THE NEXT

CHfiRflCTER IN THE BUFFER.

SUBSTITUTE RIGHT-RRROW IF

YOUR KEYBORRD HRS IT.

SELECT PREVIOUS CHRRRCTER

IN THE BUFFER. SUBSTITUTE

LEFT-RRROW IF YOUR KEYBORRD

HRS IT.

THIS KEY PRINTS THE BUFFER.

CONTROL-P

to Print the buffer.

THIS KEY RUES OUT THE

CURRENT CHRRRCTER, IF YOU

HftUE DELETE KEY BUT NOT RUBOUT,

USE YOUR SYSTEM'S CODE FOR

THE DELETE KEY.

QUITKY .BYTE ' Q' TWO QUIT KEYS IN ft ROW

CRUSE THE EDITOR TO RETURN

; TO ITS CRLLER.

1720

1730

1740

1750

1760

1770

1780 1EC7 00

1790

1800

1810

1820

1830

1840

1850

i860

1870

1880

1830

1300

1910

1320

1930

1949

i960

i960

1370

1580

1930

; OTHER VRRIRBLES:

*

TEMPCH .BYTE 0 THIS BYTE USED BY EDITIT.

TEXT EDITOR: UPDRTE SUBROUTINE

2B00

2010 1EC8 28E012 EDITIT JSR GETKEY

2020 5
2030 1ECB CDC61E CMP QUITKY

2840 1ECE D017 BNE DO.KEY

2050 5

2060 9

2070 1ED0 48 PHR

2080 1ED1 20E012 JSR GETKEY

2030 9

2100 1ED4 CDC61E CMP QUITKY

2110 1ED7 D004 BNE NOTEND

2120 9

2130 5

2140 f

2150 1ED9 68 ENDEDT PLfi

2160 ;

2170 1EDR 68 PLR

2180 1EDB 68 PLR

21S0 1EDC 60 RTS

2200 ;

2210 1EDD SBC71E NOTEND STR TEMPCH

2220 9

2230 1EE0 68 PLR

2240 1EE1 20E71E JSR BO.KEY

2250 1EE4 RDC71E LDfl TEMPCH

2260

2270

2280

2290

GET R KEYSTROKE FROM USER

USER.

IS IT THE "QUIT" KEY?

IF NOT, DO WHRT THE KEY

REQUIRES.

IF IT IS THE "QUIT" KEY, SPUE

IT RND GET R NEW KEY FROM

USER.

IS THIS R “QUIT" KEY, TOO?

IF NOT, THEN THIS IS NOT THE

END OF THE EDIT SESSION.

END THE EBT SESSION?

POP FIRST "QUIT” KEY FROM

STRCK.

POP RETURN RDDRESS TO

EDITOR'S TOP LEUEL.

RETURN TO EDITOR'* S CRLLER.

SRUE TH KEY THRT FOLLOWED

THE "QUIT" KEY.

POP FIRST “QUIT" KEY FROM STRCK

DO WHRT IT REQUIRES.

RECOVER THE KEY THfiT FOLLOWED

THE "QUIT" KEY.

"DO.KEY" DOES WHRT THE KEY

IN THE RCCUNULRTOR REQUIRES:

342 BEYOND GAMES

2300

2318 1EE7 CDC11E DO .KEY CMP MODEKY IS IT THE "CHfiNGE MODE" KEY?

2320 1EER D00B BHE IFNEXT IF NOT, PERFORM NEXT TEST.

2330 1EEC CEOilE DEC EDMODE IF SO, CHRNGE THE EDITOR'S

2340 1EEF 1005 BPL DO.END MODE.

2350 1EF1 6381 LDR #1

2360 1EF3 8D011E STR EDMODE

2370 1EF6 60 DO.END RTS RETURN TO CRLLER.

2330 ;

2330

2400 1EF7 CDC21E IFNEXT CMP NEXTKY. IS IT THE "NEXT1’ KEY?

2410 1EFR D804 BNE IFPREV IF HOT, PERFORM NEXT TEST.

2420 ;

2430 1EFC 20731F JSR NEXTCH IF 50, RDVRNCE TO NEXT

2440 * CHRRRCTER...

2453 1EFF 60 RTS ...RND RETURN.

2460 5

2470 ;

24 30 IF 80 CDC31E IFPREV CMP PREVKY IS IT THE "PREVIOUS" KEY?

2430 1F03 B004 BNE IF.RUB IF NOT, PERFORM NEXT TEST.

2500 1F85 20871F JSR PREV5L IF SO, BRCK UP TO PREVIOUS

2510 IF 03 60 RTS CHRRRCTER RND RETURN.

2528 1

2530 •

2540 1F89 CBCS1E IF.RUB CMP RUEKEY IS IT THE "RUBOUT" KEY?

2550 1F8C B084 BNE IF.PRT IF NOT, PERFORM NEXT TEST.

2560 1F0E Z0DD1F JSR DELETE IF SO, DELETE CURRENT

2573 1F11 60 RTS CHRRRCTER RND RETURN.

2580 !
25RQ

2600 IF 12 CBC41E IF.PRT CMP PRTKEY IS IT THE "PRINT" KEY?

2810 IF 15 D804 BHE IFFLSH IF NOT, PERFORM NEXT TEST.

2628 IF 17 20C51F JSR PRTBUF IF SO, PRINT THE BUFFER...

2630 IF 1ft 60 RTS ...RND RETURN.

2640

2850

2660

2678 1F1B CDC01E IFFLSH CMP FLSHKY IS IT THE "FLUSH" KEY?

2680 1F1E D004 BNE CHRRKY IF NOT, IT MUST BE R CHRRRCTER

2630 KEY.

2700 1F20 28B41F JSR FLUSH IF SO, FLUSH THE BUFFER.

2710 1F23 68 RTS RND RETURN.

2720

2730

2740

2758

2763 OK. IT' S NOT RN EDITOR FUNCTION KEY, SO IT

2770 MUST BE R CHRRRCTER KEY. DEPENDING ON THE

2763 CURRENT MODE, WE' LL EITHER INSERT OR OVERSTRIKE

2730 THE CURRENT CHRRRCTER.

2860

2810 1F24 RE011E CHfiRKY LDX EDMODE RRE WE IN OVERSTRIKE MODE?

282G 1F27 FG04 BEQ STRIKE IF SO, OVERSTRIKE THE CURRENT

2830 CHRRRCTER.

2840 1F29 2034IF JSR INSERT IF NOT, INSERT THE CHRRRCTER.

2850 1F2C 60 RTS RETURN.

2868 !

2878 1F2D 202D13 STRIKE J5R PUT.SL REPLRCE CURRENT CHRRRCTER

2880 5
2890 1F30 208317 JSR NEXTSL

2900 1F33 60 RTS

2910 ?
2920
2930 ;
2940 >
2950 5

2963 1F34 43 INSERT PHA
2970
2983 s

2990 1F35 201215 JSR PUSHSL
3000 1F38 AD5315 LDA Sft+1
3010 1F3B 48 PHA

3020 1F3C AD5215 LDA SA

3030 1F3F 48 PHA
3040 ?
3050 »
3063 IF40 AD5515 LDA EA+1

3070 1F43 48 PHA
3080 1F44 BD5415 LDA EA
3090 1F47 48 PHA
3100 5
3110 5
3120 1F48 206716 JSR SAHERE

3130 5

3140 5
3150 ?
3160 *

3170 5
3180 1F4B 208317 JSR NEXTSL

3190 5
3200 1F4E 3311 EMI ENDINS

3210 ;
3223 ;
3230 ?
3240 5
3250 1F50 20EZ18 JSR DAHERE

3260 5

3270 5
3280 ?
3290 5
3300 5
3310 1F53 AB5415 LDA EA

3320 1F5S D004 BNE -&+S

3330 1F5S CE551S DEC EA+1

3340 1F5B CE5415 DEC EA
3350 5
3360 5
3370 »

3380 iFSE 20D617 OPENUP JSR MOV.EA

3393 f

3400 l

3410 ?
3420 ;
3433 ?
3440 1F61 68 ENDING ; PLA
3450 1F62 8D5415 STA EA

WITH HEW CHARACTER.
SELECT NEXT CHARACTER.
RETURN.

SAVE THE CHARACTER TO BE
INSERTED, WHILE WE MAKE ROOM
FOR IT IN THE BUFFER...
SAME THE CURRENT ADDRESS.
SAVE THE BUFFER/ S ADDRESS.

SAVE BUFFER'' S END ADDRESS.

SET SA=SELECT, SO CURRENT
LOCATION WILL BE START OF
THE BLOCK WE' LL MOVE.

ADVANCE TO NEXT CHARACTER
POSITION IN THE BUFFER.
IF WE' RE AT THE END OF THE
BUFFER, WE' LL OVERSTRIKE
INSTEAD OF INSERTING.

SET DEST=5ELECT.
DESTINATION OF BLOCK MOVE
WILL BE ONE BYTE ABOVE
BLOCK'S INITIAL LOCATION.

DECREMENT END ADDRESS

OPEN UP ONE BYTE OF SPACE
AT CURRENT CHARACTER' S
LOCATION, BY MOVING TO DEBT
THE BLOCK SPECIFIED EY SR, EA.

RESTORE EA 50 IT POINTS
TO END OF BUFFER.

344 BEYOND GAMES

3460 1F65 68 PLA

3470 1F66 8D5515 STB EA+1

3480

3430 »

3500 1F69 68 PLR

3510 1FGA 8D5215 STA SB

3520 1FED 68 PLA

3530 1F6E 8D5315 STA SA+i

3540 !

3550

3560 1F71 202B15 JSR POP.SL

3570 t

3580 1

3593 !

3603 1F74 68 PLA

3S10 *

3620 5
3630 1F75 202D1F JSR STRIKE

3640 1F78 60 RTS

3650 1F79 209412 NEXTCH J5R GET.SL

3660 1F7C C9FF CMP #ETX

3670 1F7E F004 BEQ AN.ETX

3683

3690 ?

3783 1F88 208317 JSR NEXTSL

3710

3720 1F83 68 RTS

3730 !

3743 i
3750 1

3760 1F84 A9FF AN. ETX LDA #$FF

3770 1F86 60 RTS

3780

3790

3800

3810

3820

3830 1F87 38 PREMSL SEC

3840 1F88 AD5315 LDA 5A+1

3850 1F8B CD3S12 CMP SELECT+1

3860 1F8E 900C BCC SL.OK

3870 1F30 D010 ENE NOT.OK

3883

3830

3300

3910 1F3Z AD5215 LDA SB

3920 1F95 CD0512 CMP SELECT

3330 1F98 F017 BEQ NO.DEC

3340 1

3350 1F9A B006 BCS NOT.OK

3960 i
3370 1F9C 201A13 5L .OK JSR DEC.SL

3380 >

3330 i
4000 1F9F A330 LDA #0

4010 1FA1 S3 RTS

4820 !

4330 5

RESTORE SB SO IT POINTS TO

STfiRT OF BUFFER.

RESTORE SELECT SO IT POINTS

TO CURRENT CHfiRBCTER POSITION.

RESTORE NEW CHRRfiCTER TO

ACCUMULATOR. WE' ME CREATED

B ONE-BYTE SPBCE FOR IT, SO

WE NEED ONLY OMERSTRIKE IT

BND RETURN.

GET CURRENT CHARACTER.

IS IT END OF TEXT CHARACTER?

IF SO, RETURN TO CALLER,

BEARING A NEGBTIME RETURN CODE.

IF NOT, SELECT NEXT BYTE IN

BUFFER.

RETURN PLUS IF WE INCREMENTED

SELECT; MINUS IF SELECT

BLREADY EQUALLED EA.

SINCE WE' RE ON AN ETX, WE

WILL RETURN MINUS, WITHOUT

INCREMENTING SELECT.

PREPARE TO COMPARE.

IS SELECT IN A HIGHER PAGE

THAN START OF BUFFER?

IF SO, SELECT MAY BE DECREMENTED

IF SELECT IS IN A LOWER

PAGE THAN SB, IT'S NOT OK.

SELECT IS IN SAME PAGE AS SB.

IS SELECT>5A?

IF SELECT-SA, DON' T DECREMENT

SELECT.

IF 5ELECT<SA, DON'T DECREMENT

SELECT.

SELECT>SA, 50 WE MAY

DECREMENT SELECT AND IT

WILL REMAIN IN THE BUFFER.

SET A POSITIME RETURN CODE.,. .

...AND RETURN.

345

4040 1FR2 RD5215 NOT.OK LDR SR

4050 1FR5 8DOS12 STR SELECT

4060 1FR8 RD5315 LDR SA+i

4070 1FRE SD0S12 STR SELECT+1

4083 1FRE R3S0 LDR #0

4090 1FE0 60 RTS

4100 *
4110

4120 1FE1 RSFF NO.DEC LDR t$FF

4130 1FB3 60 RTS
4143 5
4159 5
4160 5
4170 ?
4180 1FB4 20A817 FLUSH JSR GOTOSR
4193 1FB7 R8FF FLOOP LDR =8= ETX

4200 1FE9 202D13 JSR PUT.SL

4213 1FBC 208317 JSR NEXTSL

4223 »

4233 1FBF 10F6 BPL FLOOP

4243 5
4250 5
4260 9

4270 1FC1 2BR017 JSR GOTOSR

4283 9

4230 ?
4303 1FC4 60 RTS

4310 1FC5 20R317 FRTBUF JSR G0T05R

4323 1FC8 201414 JSR PR. ON

4330 1FCB 203412 FRLOOP JSR GET.SL

4343 1FCE C3FF CMP 4 ETX

4350 1FD0 F008 BEQ ENBPRT

4360 1FDZ 284014 JSR PR.CHR

4370 1FD5 208317 JSR NEXTSL

4383 1FD8 10F1 BPL PRLOOF

4390 9

4400 5

4418 1FDR 4C1A14 ENDFRT JMP PR.OFF
4420 ;

4430 J
4440 ?
4453 5
4463 *

4478 1FDD 201215 DELETE JSR FUSHSL

4480 1FE0 RD5315 LDR 5A+1

4499 1FE3 48 PHR

4530 1FE4 RD5215 LDR SR

4510 1FE7 48 FHR

45Z8 1
4530 1FE3 28E218 JSR DRHERE
4540 5
4550 9

4560 9

4570 9

4580 1FEB 203317 JSR NEXTSL
4590 5
4600 1FEE 206716 JSR SRHEPE
4610 9

SINCE SELECT<SR, IT IS NOT

EVEN IN THE EDIT BUFFER. SO

MAKE SELECT LEGRL, BY SETTING

IT EQUfiL TO SR.

SET A POSITIVE RETURN CODE...

...AND RETURN,

SELECTOR, SO CHANGE

NOTHING. RETURN WITH

NEGATIVE RTURN CODE.

SET SELECT=SR.

PUT BN ETX CHRRRCTER

INTO THE BUFFER.

ROMANCE TO NEXT POSITION IN

BUFFER.

IF WE HAVEN' T RERCHED END

OF BUFFER, PUT RN ETX INTO

THIS POSITION, TOO.

HRUING FILLED BUFFER WITH

ETC CHRRRCTERS, RESET SELECT

TO BEGINNING OF BUFFER.

RETURN.
SET SELECT TO STRRT OF BUFFER

SELECT PRINTER FOR OUTPUT.

GET CURRENT CHRRRCTER.

IS IT ETX?

IF SO, WE'RE DONE.

IF HOT, PRINT IT.

SELECT NEXT CHRRRCTER

IF WE HAVEN' T RERCHED THE

END OF THE BUFFER, HRNDLE

THE CURRENT CHRRRCTER RS BEFORE.

HRUING RERCHED END OF MESSAGE

OR END OF BUFFER, RETURN TO

CRLLER OF EDITIT, DESELECTING

THE PRINTER RS WE DO SO.

SRUE CURRENT RDDRESS.

SRUE BUFFER' S START RDDRESS.

SET DEST-SELECT, BECAUSE

WE' LL MOVE R BLOCK OF TEXT

DOWN TO HERE, TO CLOSE UP

THE BUFFER RT THE CURRENT

CHRRRCTER.

ROMANCE BY ONE BYTE THROUGH

BUFFER, IF POSSIBLE.

SET SA=SELECT, BECAUSE THIS

IS THE STRRT OF THE BLOCK WE' LL

346 BEYOND GAMES

4S20

4830

4640

4650

4663 IFF 1 2SD617 JSR MOU.ER

MOUE DOWN.

NOTE: THE ENDING RDDRESS OF

THE BLOCK IS THE END RDDRESS

OF THE TEXT BUFFER.

MOUE BLOCK SPECIFIED BY

4670

4683

4680

4700 IFF 4 68 PLR

SR, ER TO DEST.

RESTORE INITIAL SR (WHICH

47iQ 1FF5 SB5215 SIR SR IS THE STRRT RDDRESS OF THE

4720 1FFS 68 PLR TEXT BUFFER, NOT OF THE BLOCK

4730 1FF9 8B5315 STR Sfi+i WE JUST MOUED.)

4743 1FFC 202315 JSR POP,SL RESTORE CURRENT RDDRESS.

4753 1FFF 60 RTS RETURN TO CRLLER.

347

Appendix C12:

Extending the Visible Monitor

APPENDIX C1Z: ASSEMBLER LISTING OF

VISIBLE MONITOR EXTENSIONS
10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

178

180

130

20 0

210

220

230

240

250

263

273

283

293
303

310

32Q

33Q

340

358

3S0

370

SEE CHAPTER 12 OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR 6582 PERSONAL COMFUTER

EXTERNAL ADDRESSES

330

400

410

420

430

448 1400= PRPAGE=S1480 STARTING PAGE OF PRINT

458 5 UTILITIES.

460 1408= PRINTR-FRPAGE

478 1482= USER =PRFAGE+2

480 9

498 5

509 1588= HEX.PG=$1508 ADDRESS OF PAGE IN WHICH

518 9 HEXDUMP CODE STARTS.

528 9

530 1557= TUBUMP=HEX.PG+S57

543 15AE= PRDUMP=HEX.PG+SAE

550 ;

563 5

570 1300= BSPA6E=31903 STARTING PAGE OP DISASSEMBLER

TV.DIS=B5PAGE+9

PR.DIS=BSPAGE+£26
530 '1903=

590 1925=

600

613 17B0=

620 17B4=

630

640

650 1EB0=

663

670 1E02=

680

690

700

710

720

738

740

758

760 10B0

770

780

730

800

810

820

833

840

858

MOVERS=$17B0 START OF MOVE OBJECT CODE.

MOVER “MOVERS*4

EBPfi6E=SlE00 ADDRESS OF PAGE IN WHICH

EDITOR CODE BEGINS.

EDITOR=EDPAGE+2

*=S10E0

****$************************************■***

EXTENSIONS TO THE VISIBLE MONITOR

869

870 10B3 C950

880 I0B2 B00S

8S8 10E4 AD3014

S00 10B7 4SFF

310 18B9 8D3014

S20 18BC 60

EXTEND CMP #' P

ENE IF.U

LB A PRINTR

EOR #$FF

STfi PRINTR

RTS

IS IT THE 'P' KEY?

IF NOT, PERFORM NEXT TEST.

IF SO, TOGGLE THE PRINTER

FLAG...

AND RETURN TO CALLER.

930

940 10BD C°SS

950 10BF D009

960 10C1 AD0214

370 I0C4 49FF

380 10C6 SB0Z14

393 I0C3 60

IF.U CMP #'U

BNE IF.H

LDA USER

EOR #£FF
STA USER

RTS

IS IT THE ' U' KEY?

IF NOT, PERFORM NEXT TEST.

IF SO, TOGGLE THE USER-

PROVIDED OUTPUT FLAG...

AND RETURN.

1080
1018 10CA C948 IF.H

1020 10CC DS0D

1030 10CE AB8014

1040 10D1 D034

1050 I0B3 205715

1060 10D6 60

1073 10B7 20AE15 NEXT

1083 10DA 60

1098 ;

1108 10BB C94D IF.M

1110 10DD B034

1120 10BF 28B417

1130 10E2 SQ

CMP #' H

BNE IF. M

LDA PRINTR

BNE NEXT.1

JSR TVDUMP

RTS

1 JSR PRDUMP

RTS

CMP #' M

BNE IF.BIS

JSR MOVER

RTS

1140 ;

1150 10E3 CS3F IF.BIS CMP #'?

IS IT THE ' H' KEY?

IF NOT, PERFORM NEXT TEST.

IS THE PRINTER SELECTED?

IF SO, PRINT A HEXDUMP.

IF NOT, DUMP TO SCREEN...

AND RETURN.

PRINT A HEXDUMP...

...AND RETURN.

IS IT THE ' IT KEY?

IF NOT, PRFORM NEXT TEST.

IF SO, LET USER SPECIFY AND

AND MOVE A BLOCK OF MEMORY.

15 IT THE ' ?' KEY?

.352 BEYOND GAMES

1160 10ES B60D BNE IF.T

1170 10E7 AD0014 LBA PRINTR

11S0 10EA D004 ENE NEXT.2

1190 10EC 200919 JSR TV.DIS

1200 10EF 60 RTS

1210 10F0 202619 NEXT. 2 JSR PR.DIS

1220 I0F3 60 RTS

1230 *

1240 10F4 C954 IF.T CMP #' T
1250 10F6 DS34 BNE EXIT

1260 10F8 20S21E JSR EDITOR

1270 10FB 68 RTS

1280 5
12S3 10FC cn

Q

EXIT RTS

1300 3
1310 3
1320 3

IF NOT, PERFORM NEXT TEST.

IS THE PRINTER SELECTED?

IF SO, PRINT A DISRSSEMBLY.

IF NOT, DISASSEMBLE TO THE

SCREEN AND RETURN.

PRINT R DISASSEMBLY...

RND RETURN.

IS IT THE ' T' KEY?

IF NOT, RETURN.

IF SO, CALL THE SIMPLE

TEXT EDITOR RND RETURN.

EXTEND THE VISIBLE MONITOR

EVEN FURTHER BY REPLACING

THIS ' RTS' WITH R ' JMP' TO

MORE TEST-AND-BRANCH CODE.

353

Appendix Cl 3:

System Data Block for the Ohi
Scientific C-1P

10

20

30

Am
50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350 1000

360

370

380

390

400

410 1000 65B0

420

430

440

450

460

470

480

490

500

510

520 1002 20

530

540 1003 18

550

560 1004,18

570

APPENDIX CIS: ASSEMBLER LISTING OF

SYSTEM DATA BLOCK

FOR THE OHIO SCIENTIFIC C-IP

SEE APPENDIX BT OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR S502 PERSONAL COMPUTER

BY KEN SKIER

*******#,******#***********^****************

SCREEN PARAMETERS

^=$1080

HOME .WORD 3SD0S5 THIS IS THE ADDRESS OF THE
CHARACTER IN THE UPPER LEFT

I CORNER OF THE SCREEN. THE

; ADDRESS OF HOME WILL VARY AS

; A FUNCTION OF YOUR VIDEO MONITOR

! I SET MINE TO &D065. IF YOU

CAN" T SEE THE VISIBLE MONITOR

DISPLAY, ADJUST THE LOW EYTl.

ROWINC .BYTE 32

TUCOLS .BYTE $18

TVR0W5 .BYTE $18

ADDRESS DIFFERENCE FROM ONE

ROW T0 THE NEXT.

NUMBER OF COLUMNS ON SCREEN,

COUNTING FROM ZERO.

NUMBER OF ROWS ON SCREEN,

COUNTING FROM ZERO.

580 1805 D3

580 1006 20

600 1007 10

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810 1008 EDFE

820

830

840

850

860

870

880

830 100fl 2DBF

900

910

920

930

940

950

960 100C B1FC

970

980

390

1000

1010 100E 1010

1020

1030

1040

1050

1060
1070

1080 1010 60

1090

1100

1110

1120

1130

1140

1150

HIPRGE .BYTE *D3 HIGHEST PRGE IN SCREEN MEMORY.

BLfiNK .BYTE $23 OSI BISPL8Y CODE FOR R BLRNK.

RRROW .BYTE *10 OSI DISPLAY CODE FOR RN UP-fiRROW

**

INPUT/OUTPUT UECTORS

ROMKEY .WORD SFEED POINTER TO ROUTINE THRT GETS
RN RSCII CHRRRCTER FROM THE

; KEYBORRD. CNOTE: SFFEB IS

; the GENERRL CHRRRCTER-INPUT

! ROUTINE FOR 051 BftSIC-IN-ROM

COMPUTERS.)

ROMTUT .WORD SBF2D POINTER TO ROUTINE TO PRINT
; RN RSCII CHRRRCTER ON THE SCREEN

I C NOTE: SFFEE IS THE
; CHRRRCTER-OUTPUT ROUTINE FOR

OSI BRSIC-IN-ROM COMPUTERS.)

ROMPRT .WORD SFCBl POINTER TO ROUTINE TO SEND RN
RSCII CHRRRCTER TO THE PRINTER

C RCTURLLY, TO THE CRSSETTE .PORT.

USROUT .WORD DUMMY POINTER TO USER-WRITTEN OUTPUT
ROUTINE. CSET HERE TO DUMMY

; UNTIL YOU SET IT TO POINT

! TO YOUR OWN CHRRRCTER-OUTPUT

; ROUTINE.)

DUMMY RTS THIS IS R DUMMY SUBROUTINE.

IT DOES NOTHING BUT RETURN.

358 BEYOND GAMES

1160

1170

1180

1130

1200

1210

1220

1230

1240

1250

1260 1011 60

1270

1230

1230

CONVERT ASCII CHARACTER TO DISPLAY CODE

FIXCHR RTS SINCE OSI DI5FLAY CODES ARE

; THE SANE AS THE CORRESPONDING

; ASCII CHARACTERS, NO CONVERSION

; IS NECESSARY; FIXCHR IS A DUMMY.

359

Appendix C14:

System Data Block for the PET 2001

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

18Q

190

200

210

220

230

240

250

260

270

280

233

300

310

APPENDIX C14: ASSEMBLER LISTING OP

SYSTEM DATA BLOCK

FOR THE PET 2001

SEE APPENDIX B2 OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR S502 PERSONAL COMPUTER

BY KEN SKIER

SCREEN PARAMETERS

**

320 ;

330 ;

349 ;

353 1030 **$1000

368 ;

373 ;

380 ;

350 ;

400 ;

410

420

430

1000 0080 HOME

5

5

.WORD $S0(

470

483

1002 2S ROWINC

9

.BYTE $28

490

500

1003 27 TUCOLS

9

.BYTE 39

516

520

1004 18 TUROWS

9

. BYTE 24

530 1305 83 HIPAGE . BYTE $83

540

550

1086 20 BLANK

5

. BYTE $20

56Q

570

1007 IE ARROW

5

. BYTE $1E

THIS IS THE ADDRESS OF THE

CHARACTER IN THE UPPER LEFT

CORNER OF THE SCREEN.

ADDRESS DIFFERENCE FROM ONE

ROW TO THE NEXT.

NUMBER OF COLUMNS ON SCREEN,

COUNTING FROM ZERO.

NUMBER OF ROWS ON SCREEN,

COUNTING FROM ZERO.

HIGHEST PAGE IN SCREEN MEMORY

PET DISPLAY CODE FOR A BLANK.

(IN NORMAL UIDEO MODE.)

PET DISPLAY CODE FOR UP-ARROW

580

SS0

600

363

610

620

633

640

650

660

670

680

680

700

710

720

730

740

750

760

770 1038 2610

780

730

800

810

820

830

840

850 100R DZFF

860

870

880

890 100C 1010

900

910

920

930

840

950

980

970 100E 1010

S80

990

1000

1010

1020

1030

1040 1010 60

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

***•&**

INPUT/OUTPUT VECTORS

********* ***********************************

ROMKEY .WORD PETKEY POINTER TO ROUTINE THAT GETS

; 6H RSCII CHARACTER FROM THE

; KEYBOARD. (NOTE: PETKEY

CALLS A RON SUBROUTINE, BUT

; PETKEY IS NOT A PET RON

SUBROUTINE.)

RONTUT .WORD SFFD2 POINTER TO ROUTINE TO PRINT

; BN ASCII CHARACTER OH THE SCREEN

RQMPRT .WORD DUNNY POINTER TO ROUTINE TO SEND AN

; ASCII CHARACTER TO THE PRINTER

; (SET TO DUNNY UNTIL YOU NAKE

; IT POINT TO THE CHARACTER-

OUTPUT ROUTINE THAT DRIVES

; YOUR PRINTER.)

U5R0UT .WORD DUNNY POINTER TO USER-WRITTEN OUTPUT

; ROUTINE. (SET HERE TO DUNNY

; UNTIL YOU SET IT TO POINT

; TO YOUR OWN CHARACTER-OUTPUT

; ROUTINE.)

DUNNY RTS THIS IS A DUNNY SUBROUTINE.

IT DOES NOTHING BUT RETURN.

***********************************^********

CONVERT ASCII CHARACTER TO DISPLAY CODE

**********************************$****** *'**

364 BEYOND GAMES

FIXCHR P.ND

FIXEND

CLEAR BIT 7, TO MAKE IT

R LEGRL ASCII CHARACTER.

PREPARE TO COMPARE.

IS IT LESS THAN $40? f(IS

IT A NUMBER OR PUNCTUATION

,MARK?)

IF SO, NO CONUERSION NEEDED.

IS IT BETWEEN $40 AND $60?

IF “SO, 5UBTRACT $40 TO

CONVERT FROM.ASCII TO PET.

A20E

SD4CES

IT'S >= $60, SO WE MUST

#14 5ET PET DISPLAY MODE FOR

5S468 CHARACTER SET THAT INCLUDES

LOWER CASE ALPHA CHARACTERS.

#$20 SUBTRACT $20 TO CONVERT

LOWER CASE ASCII TO PET CODE.

FIXEND

SUB.49 SEC

SBC

FIXEND RTS

PREPARE TO SUBTRACT.

SUBTRACT $40 TO.CONVERT ASCII

UPPER CASE CHAR TO PET CODE.

RETURN, WITH A HOLDING

PET DISPLAY CODE FOR ASCII

ORIGINALLY IN A.

GET AN ASCII CHARACTER FROM THE KEYBOARD

20E4FF PETKEY JSR $FFE4

Z97F AND #$7F

S
F8FS BEQ PETKEY

SCAN THE PET KEYBOARD

CLEAR BIT 7, TO BE SURE

IT' S A LEGAL ASCII CHARACTER.

ZERO MEANS NO KEY. SO

SCAN AGAIN.

RETURN WITH ASCII CHARACTER

FROM THE KEYBOARD.

365

System Data Block for the Apple II

10

23

30

40

50

60

73

80

90

100

113

123

130

140

150

163

170

180

193

233

210

220

233

240

253

268

273

283

2S3

333

310

320

333

340

350 1800

383

370

380

333

400

410 1000 8004

420

433

443

450

4 S3

470 1082 80

483

490 1003 27

5B0

510 1004 07

520

530 1005 07

540

550 less m
560

570

APPENDIX C15: ASSEMBLER LISTING OP

SYSTEM DATA BLOCK

FOR THE RPPLE II

SEE RPPENDIX B3 OF BEYOND GRME5: SYSTEM

SOFTWARE FOR YOUR 5502 PERSONRL COMPUTER

BY KEN SKIER

**************************************■£*****

SCREEN PARAMETERS

*^**********************************^******

*=$1080

HOME -WORD $0480

ROWING .BYTE $83

?
TUCOLS .BYTE 33

5

TVROWS .BYTE 7

5

HIPRGE .BYTE $07

5

BLANK .BYTE $R0

THIS IS THE ADDRESS OF THE

CHARACTER IN THE UPPER LEFT

CORNER OF THE SCREEN.

C WHEN YOU ARE DISPLAYING

LOW-RESOLUTION GRAPHICS RNB

TEXT PAGE i.)

ADDRESS DIFFERENCE FROM ONE

ROW TO THE NEXT.

NUMBER OF COLUMNS ON SCREEN.

COUNTING FROM ZERO.

NUMBER OF ROWS ON SCREEN,

COUNTING FROM ZERO.

HIGHEST PAGE IN SCREEN MEMORY.

(WITH LOW-RES PAGE 1 SELECTED.)

APPLE II DISPLAY CODE FOR

A BLANK: A DARK EOX, USED AS

A SPACE WHEN APPLE II IS IN

583 NORMftL DISPLftY MODE (WHITE

590 CHRRftCTERS ON ft DfiRK

603 BftCKGROUND.1

618 1007 DE ARROW .BYTE $DE RPPLE II DISFLRY CODE FOR

623 R CftRftT (USED BECAUSE ftPPLE

630 II HftS HO UP-ARROW.)

640

650

669

670

680

690

703

710

723

730 *****$*******************************'*******

740

750 INPUT/OUTFUT VECTORS

760

770 **

760

793

880

810

823

833

840 1008 1410 ROMKEY .WORD ftPLKEY POINTER TO ROUTINE THftT GETS

850 RN RSCII CHRRRCTER FROM THE

863 KEYBOARD. (NOTE: ftPLKEY

870 CALLS ft ROM SUBROUTINE, BUT

880 ftPLKEY IS NOT AN APPLE ROM

890 SUBROUTINE.)

900

910

828 100ft lftl0 RQMTVT -WORD APLTVT POINTER TO ROUTINE TO PRINT

933 ftN ftSCII CHARACTER ON THE SCREEN

940

950

960 100C 1010 ROMPRT .WORD DUMMY POINTER TO ROUTINE TO SEND ftN

973 ASCII CHARACTER TO THE PRINTER

980 (SET TO DUMMY UNTIL YOU MAKE

930 IT POINT TO THE CHARACTER-

1800 OUTPUT ROUTINE THAT DRIVES

1010 YOUR PRINTER.)

1020 YOU MAY WISH TO

1030 SET ROMPRT SO IT POINTS TO

1B40 35FDED, THE APPLE II' S

1059 GENERAL CHARACTER OUTPUT

1060 ROUTINE. SFBED WILL PRINT TO

1070 A PRINTER IF YOU TELL

1080 YOUR APPLE II ROM SOFTWARE

1090 TO SELECT YOUR PRINTER AS

1100 AN OUTPUT DEVICE. DO THAT

1110 IN BASIC BY TYPING "PR *N“,

1123 WHERE N IS THE NUMBER OF THE

1130 SLOT HOLDING THE CIRCUIT CARD

1140 THAT DRIVES YOUR PRINTER.

370 BEYOND GAMES

115k!
1183

11 TO
1183 130E 1013 USROUT .WORD DUMMY

1160 ;

1200

1810 ;

12Z3 5

1233 ;

IE**© ;
1250 1010 B0 DUMMY RTS

1260
12T8

1280

1293

1330

1313

1320

1330

1340

1353

1360

1370

1380

1330

1400

1410

1423

POINTER TO USER-WRITTEN OUTPUT

ROUTINE. C SET HERE TO DUMMY

UNTIL YOU SET IT TO POINT

TO YOUR OWN CHftRftCTER-OUTPUT

ROUTINE.>

THIS 15 ft DUMMY SUBROUTINE.

IT DOES NOTHING BUT RETURN.

***************^********&**************&***

CONVERT ftSCII CHftRftCTER TO BISPLftY CODE

1430 1811 8980 FIXCHR ORfi #S83

1440 ;

1453 1313 68 RTS

SET BIT 7, SO CHftRftCTER

WILL BISPLftY IN NORMftL MODE

RETURN.

1463

1473

1483

14S8

1580
1510

1523

1S30

1548

1550

I860

1570

GET ftN ftSCII CHftRftCTER FROM THE KEYBOftRD

1583

1S33

1680 1014 Z035FD RPLKEY J5R SFD35

1610

1628 1317 237F

1630

1640 1019 68

1650

1660

1673

1680

1630

FIND #$7F

RTS

GET KEYBOftRD CHftRftCTER WITH

BIT 7 SET.

CLEfiR BIT 7.

RETURN WITH ftSCII CHftRftCTER

FROM THE KEYBOftRD.

1793
1710

1720

371

1730

1740

1750

1760

1773

1780

1733

1800

1810

1820

1833

1840 1018 0883

1850

1863 101C 20FDFB

1870

1880 101F 60

; PRINT BN BSCII CHBRRCTER ON THE SCREEN

BPLTUT ORB #$80 SET BIT 7 50 CHBRBCTER WILL

; PRINT IN NORNBL NODE.

JSR SFBFD CBLL BPPLE II ROM ROUTINE TO

; PRINT B CHBRBCTER TO SCREEN.

RTS RETURN TO CBLLER.

372 BEYOND GAMES

Appendix C16:

System Data Block for the Atari 800

10

20

30

50
60

70

80

90

103

113

129

133

140

150

160

ITS

160

190

200

210

223

233

240

260

270

289

29EJ

300

310

323

333

340

350

3S0

370 3003*

380

399 1100*

400 1113=

410 112B=

420 113C=

439 1176=

443 11C4=

450 1ID3=

469 117C=

470

480 1500=

493 1552=

530 1554=

5H3

523 1730=

538 17B2=

540 17DS=

550

560

570

APPENDIX C16: RSSEMBLER LISTING OF

SYSTEM CRTft BLOCK

FOR THE BTftRI 803

SEE fiPPENDIX B.4 OF BEYOND GftMES: SYSTEM

SOFTWftRE FOR YOUR 6592 PERSONRL COMPUTER

BY KEN SKIER

EXTERNRL REDRESSES

TO.PTR=0

TU5UBS=$1100

CLR.XY=T05UES4$13

TOHOME=TOSUBS+$ZB

TOTOXY=TOSUE5+S3C

TOB0WN=TOSUBS+$7S

T0PUSH=T05UBS+$C4

TO.P0P=T0SUBS+SD3

UUCHftR=T0SUB5+$7C

HEX.FG=31530

Sft=HEX.PG+S52

ER=SR-r2

MOO.PG=$1700

BE5T=M00.PG+SB2

MOO.ER=MOO.PG+SD6

375

580

590

600

610

620

630
640

650

660

670

683

630

700

719 1830

720

730

740

750

760 1083 427C

770

780

790

880

810

828

830

840

858

860

878

830

830

330

910

323

330

840

950

960

970

880 1002 28

BS0

1000 1803 27

1010

1020 1004 17

1030

1043 1085 7F

1053

1060

1070

1080

1093

1100

1110

1120

113© 1806 00

1140 1007 7B

1150

^,*******************************^***-&***

SCREEN PARAMETERS

*—£1803

HOME -WORD S7C42 ADDRESS OF THE
CHRRRCTER IN THE UPPER LEFT

CORNER OF THE SCREEN.

(FOR RN RTRRI 880 W/3ZK RRM,

IN SCREEN MODE 0.)

YOU MUST USE SCREEN NODE 0.

RPPENDIX B4 INCLUDES R BRSIC

FROGRAM TO STRRT THE VISIBLE

9
MONITOR. IT SETS HOME FOR

5 YOUR SYSTEM.

NOTE: IF HOME IS LESS THRN £2003

(8132 DECIMAL), THE SCREEN

WILL INTERFERE WITH THE

5 SOFTWARE IN THIS BOOK.

9

IF YOU TRY TO RUN THIS

SOFTWARE ON BN 8K SYSTEM, DON'T

USE THE DISASSEMBLER OR THE

SIMPLE TEXT EDITOR, BECAUSE

SCREEN OPERATIONS WILL WRITE

5 OVER THEM, AND THEY' LL CRASH.

f

ROWING .BYTE 40 ADDRESS DIFFERENCE FROM ONE

ROW TO THE NEXT.

TVCOLS .BYTE 33 NUMBER OF COLUMNS ON SCREEN,

. COUNTING FROM ZERO.

TURGWS .BYTE 23 NUMBER OF ROWS ON SCREEN,

COUNTING FROM ZERO.

HIPHGE .BYTE £7F HIGHEST PAGE IN SCREEN

MEMORY. LIKE HOME,.HIPRGE

. VARIES ACCORDING TO THE

. AMOUNT OF RAM IN YOUR ATARI.
« HIPRGE IS SET FOR YOUR SYSTEM

. WHEN YOU RUN THE BASIC PROGRAM

. IN APPENDIX B4 TO START

* THE VISIBLE MONITOR.

r

BLRNK .BYTE 0 ATARI DISPLAY CODE FOR A BLANK

RRROW .BYTE S7B ATARI DISPLAY CODE FOR

; AH UP-ARROW.

376 BEYOND GAMES

1168

1178

1188

11 S3
1288
1218
1228

1230

1248

1258

1288

1278

1288

1238

1300

1318

1323

1338

1343

1358 10SS 2810

1

1370

1388

1330

1489 183A 3S1S

1410

1428

1439

I44G 190C ISIS

1458

1463

1470

1483

1493

1500

1510

1520

1533 180E 1810

1543

1558

1B6B
1873

1583

1530

1608 1010 60

ISIS

1620

1630

1640

1850

1663

1670

1680

1690

1793

1710

1720

1730

INPUT/OUTPUT VECTORS

^************************************

ROMKEY .WORD 8TRKEY POINTER TO ROUTINE THAT GETS

AN RSCII CHRRRCTER FROM THE

KEYBOARD.

ROMTVT .WORD TVTSIN POINTER TO ROUTINE TO PRINT

; AN RSCII CHRRRCTER ON THE SCREEN

ROMPRT .WORD DUMMY POINTER TO ROUTINE TO SEND RN

; RSCII CHRRRCTER TO THE PRINTER

; CSET TO DUMMY UNTIL YOU MAKE

; IT POINT TO THE CHRRRCTER-

; OUTPUT ROUTINE

; THRT DRIVES YOUR PRINTER.

USROUT -WORD DUMMY POINTER TO USER-WRITTEN OUTPUT

; ROUTINE. (SET HERE TO DUMMY

; UNTIL YOU SET IT TO POINT

; TO YOUR OWN CHRRRCTER-OUTPUT

; ROUTINE.)

DUMMY RTS THIS IS fl DUMMY SUBROUTINE.

; IT DOES NOTHING BUT RETURN.

CONVERT RSCII CHRRRCTER TO DISPLAY CODE

1740

1750

17B0

1770

1783 1011 297F FIXCHR AND #$7F

1790 5
1800 1013 33 SEC

1810 1014 C920 CMP #$20

1820 IBIS 9808 BCC BRDCHR

1830 *

1840 ?

1850 »

1880 1018 CSS0 CMP #$30

1870 101A 9003 BCC SUB.20

1880 101C C97B CMP #$7B

1898 101E 9007 BCC FIXEND

1SS3 9

1910 1020 RD0S10 BRDCHR LDR BLANK

1920 5
1933 1023 60 RTS

1940 1024 38 SUB.20 SEC

1950 1825 E928 SBC #$20

I960 5
1970 1027 63 FIXEND RTS

1380

1390

2503

2010

2823

2033

2343

2050

2063

2070

2083

2090

2100

2110

2120

2i30

2143

2150

2160

2170

2180

2133

2283

2218 1028 ABFC02 RTRKEY LDR S82FC

2220 10ZB C9FF CMP #SFF

2233 102D F0F3 BEG RTRKEY

CLEfiR BIT 7 SO CHRRRCTER IS

R LEGITIMRTE RSCII CHRRRCTER.

PREPRRE TO COMPRRE.

IS CHRRRCTER < $20?

IF SO, IT' S HOT R VIEWABLE

RSCII CHRRRCTER, SO RETURN

fi BLRHK.

IS CHRRRCTER < $68?

IF SO, 5UBTRRCT S2S AND RETURN

CHRRRCTER < S7B?

IF SO, NO CONVERSION IS NEEBED

THE CHRRRCTER IS NOT R

VIEWAELE RSCII CHRRRCTER,

SO RETURN R BLRHK.

PREPRRE TO SUETRRCT.

SUBTRRCT $20 TO CONVERT RSCII

TO RTRRI DISPLRY CODE.

RETURN WITH RTRRI DISPLRY

CODE FOR ORIGINAL RSCII

CHRRRCTER.

HRS R KEY BEEN DEPRESSED?

$FF HERNS NO KEY.

IF NOT, LOOK AGAIN.

GET AN RSCII CHRRRCTER FROM THE KEYBOARD

2240 ;

2250 ;

22S0

2270 ;

2280 102F R8 TRY

2290 ;

2380

2310 ;

R KEY HRS GONE DOWN.

ACCUMULATOR HOLDS ITS

.HARDWARE KEY - CODE.

PREPRRE TO USE THAT CODE RS

R5 RH INDEX.

378 BEYOND GAMES

1039 B9000F LDfl RTRKYS,Y LOOK UP CHRRRCTER FOR THRT

KEY RND SHIFT 5TRTE.

RTS RETURN WITH RSCII CHRRRCTER

FOR THRT KEY RND SHIFT STRTE.

PRINT RN RSCII CHRRRCTER ON THE SCREEN

CR=$0D

LF=$$0R

TOCHRR .BYTE 0

U.COL .BYTE 0

1038 CS3D T0T5IM CMP #CR

1038 D00S

103R R880

103C 8D3510

103F 60

BNE LFTEST

LDR #0

STR TU.COL

RTS

RSCII CRRRIRGE RETURN.

RSCII LINEFEED CHRRRCTER.

THIS BYTE HOLDS CHRRRCTER

TO BE DISPLRYED. CRLSO,

CHRRRCTER MOST RECENTLY

DISPLRYED, USING TUT5IM.)

THIS BYTE HOLDS COLUMN IN

WHICH CHRRRCTER WILL NEXT

RPPERR. WE MRY THINK OF IT

RS THE POSITION OF RN

ELECTRONIC "PRINT-HERD"•

IS CHRRRCTER RN RSCII

CRRRIRGE RETURN?

IF NOT, PERFORM NEXT TEST.

RESET TO COLUMN TO

LEFT MRRGIN RND

RETURN.

1040 CS0R LFTEST CMP #LF

104Z D883 BNE CHSRVE

1044 4C8S0E JMP SCROLL

IS IT R LINEFEED CHRRRCTER?

IF NOT, HRNDLE IT RS R CHRRRCTER

SCROLL TEXT UP FOR R LINEFEED.

1047 8D34I0 CH5R0E STR TOCHRR

1B4R Z0C411 JSR TOPUSH

SINCE IT' S NOT CR OR LF,

LET'S SRUE IT.

SRUE ZERO PRGE BYTES WE' LL USE.

104D RCG410

1050 RE3510

1053 ZG3C11

LDY TUROWS

LDX TO.COL

JSR TOTOXY

SET TU.PTR TO CURRENT

POSITION OF "PRINT-HERD"

105S RD3410

1053 Z07C11

105C EE3510

LDR TOCHRR GET CHRRRCTER TO BE DISPLRYED.

JSR OUCHRR SHOW IT.

INC TO.COL RDORNCE "PRINT-HERD" TO NEXT

379

2300

2310

2820 I05F RD3510 LDR TU.COL

2830 1062 CD0313 CMP TUCOLS

2940 »

2350 1065 D086 ENE TUTEND

2968 1867 203B10 JSR RESET

2970 105R 28800E JSR SCROLL

2888 106D 20D311. TUTEND JSR TU.POP

2880 5

3000 1070 63 RTS

3010

3020

3038

3043

38S0

3060

3078

3888

3838

3100

3113

3123

3133

3140

3158

3160 8E8B *=S8E83

3170 5

3183 5

3is0 ;

3283 ;

3210 ;
3220 0E38 28C411 SCROLL JSR TVPUSH

3238 ;

3240 ;

3250 ;

3268 ?

3270 5

3280 ;

3233 ;

3389 ;

3318 0E83 ADB317 LDR BEST+1

3328 0E86 43 PHR

3330 0E37 RDE217 LDR DEST

3343 8E3R 48 PHR

3350 3E8B AD5515 LDR ER+1

3368 8E8E 48 PHR

3370 0E8F AB5415 LDR ER

3380 8E32 48 FHR

3380 0E33 RD5315 LDR SR+1

3483 0E86 48 PHR

3410 8ES7 RD5215 LDR SR

3420 BESA 43 PHR

3433 5
3440 5
3450 0E9B 202B11 JSR TUHOHE

3468 0E8E R5B0 LDR TU.PTR

3470 0ER0 8DB217 STR DEST

SCREEN POSITION.

HRS "PRINT-HEP.B" RERCHED

RIGHT EDGE OF SCREEN?

IF NOT, PREPRRE TO RETURN.

IF SO. RESET "PRINT-HERD” TO

LEFT MARGIN RND SCROLL TEXT,

RESTORE ZERO PRGE BYTES

WE USED, RND RETURN.

SRUE ZERO PRGE BYTES WE' LL

USE.

SCROLLING IS SIMPLY MOOING

THE CONTENTS OF SCREEN MEMORY

UP BY ONE ROW. BEFORE WE

MOUE ANYTHING, HOWEVER, LET' S

SRUE SR, ER, RND BEST—

THE MOUE PARAMETERS.

MOW SR, EA, AMD BEST ARE SRUED.

SET TU.PTR TO HOME POSITION.

SET DEST=HOME, SINCE WE'LL

MOUE THE CONTENTS OF SCREEN

SCROLL TEXT UP ON SCREEN

380 BEYOND GAMES

3480 0EA3 A501

3430 0ER5 8DB317

3500

3510 0ER8 207611

3520 0EAB R500

3530 0ERB 8D5215

3540 0EB0-R501

3550 0EB2 8D5315

3560

3570 0EB5 RE0310

3580 0EB8 RC0410

3580 0EBB Z03C11

3600 0EBE R500

3610 0EC0 8B5415

3620 0EC3 R501

3630 0EC5 8B5515

3640

3650

3660

3670

3680 0EC8 20D617

3690 0ECB RC0410

3700 0ECE R200

3710 0ED0 203C11

3720 0ED3 RE0310

3730 0EB6 R001

3740 0ED8 201311

3750 0EDB 68

3760 0EBC 8B5215

3770 0EDF 68

3780 0EE0 8D5315

3730 0EE3 68

3800 0EE4 8B54I5

3810 0EE7 68

3820 0EE8 8D5515

3830 8EEB 68

3840 0EEC 8DB217

3850 BEEF 68

3860 0EF0 8DB317

3870 0EF3 20D311

3880

3880 0EF6 60

3800

3810

3320

3830

3840

3350

3360

3370

3380

3330

4000

4010

4020

4033

4040

4050

LDR TU.PTR+1 MEMORY TOWARDS THE HOME

STfi DEST+1 RDDRE5S.

JSR TUDOWN

LDR TU.PTR

STR SR

LDR TU.PTR+1

STR 5A+1

SET SA=ADBRESS OP SCREEN

POSITION RT COLUMN 0, ROW 1.

THRT MfiRKS THE STRRT OF

OF THE BLOCK TO BE MOOED.

LDX TUCOLS

LDY TUROWS

JSR TUTOXY

LDR TU.PTR

STR Efl

LDR TU.PTR+1

STR EA+1

SET EA^ABDRESS OF POSITION

IN BOTTOM RIGHT CORNER OF

THE SCREEN.

ER WILL MRRK THE END OF

THE BLOCK TO BE MOUED.

JSR MOU.ER

LDY TUROWS

LDX #0

JSR TUTOXY

LDX TUCOLS

LDY #1

JSR CLR.XY

PLR

STR Sfl

PLR

STR SA+1

PLR

STR EA

PLA

STR EA+1

PLR

STA BEST

PLA

STB DEST+1

JSR TU.POP

RTS

NOW SA, EA, AND BEST SPECIFY

THE BLOCK TO BE MOUED, AND

ITS DESTINATION.

MOUE THE BLOCK-

SET TU.PTR TO BOTTOM LEFT

CORNER OF SCREEN.

CLEAR THIS ROW.

RESTORE THE MOUE

PARAMETERS: SR, EA, AND DEST

RESTORE ZERO PAGE BYTES WE

USED.

RETURN.

***************************.*******+*********

KEYBOARD DEFINITION TABLE

^*

*=$0Fm

4B63

4078

4088

4898
4100

4118 8F0S

4128

4139

4140

4153

4163

4178 0027“

4180 305E—

4153 001B=

4208 0020=

4210 0309=

4223 095B=

4233 8098=

4248 005R=

4250 00513=

4268 307F=

4270

4280

4233

4380 8F03 6C

4380 0F01 6A

4303 0F82 3B

4388 SF03 80

4308 8F84 83

4303 0FG5 63

4389 GF06 23

4339 0F07 2R

4380 0F03 6F

4380 0F03 00

43*38 8F8R 70

4388 0F0B 75

4388 8F0C 0D

4300 0F8B 69

4303 0F8E 2D

4388 0F0F 3D

4310 0F10 76

4310 0F11 03

4310 0F12 63

4318 0F13 80

4310 0F14 00

4310 8F15 62

4310 0F15 78

4310 0F17 7R

4310 0F18 34

4310 QF19 00

4310 0F1R 33

4319 0F1B 38

4310 0F1C IB

4310 0F1D 35

4310 OFIE 32

4310 0F1F 31

4320 0F20 2C

4320 0F21 28

AP0STR=$27 RSCII RPOSTROPHE.

CARAT=$5E RSCII CRRRT.

ESC=31B RSCII E5CRPE CHARACTER.

SPACE=S20 RSCII SFRCE.

TRB=S RSCII TAB CHARACTER.

BACK5L=$5B RSCII BACKSLASH CHARACTER.

BRCKSP=8 RSCII BACKSPACE CHRRRCTER.

LBRAKT=S5A RSCII LEFT BRACKET.

RBRAKT=$5D RSCII RIGHT BRACKET.

DELETE=$7F RSCII DELETE CHARACTER.

RTRKY5 .BYTE ' 1 j;' ,0,0f'k+*o' ,0,'pu' ,CR/ i-~'

.BYTE ' v' ,0,' c' ,0,0,' bxz4' ,0 / 36' ,ESC,' 521'

.BYTE ' , .n' ,0,' m/' ,0,' r' ,0,' ey' ,TAB,' twq'

382 BEYOND GAMES

4320 .0F22 2E

4320 0F23 6E

43Z0 8F24 03

4320 8F25 SB

4320 0F26 2F

4328 8F27 03

4328 0F28 72

4320 8F29 80

4323 BF2R S5

4328 0F2B 73

4320 0F2C 89

4323 8F2D 74

4320 0F2E 77

4320 8FZF 71

4330 0F33 39

4338 0F3.1 00

4330 GF32 30

4330 0F33 37

4330 8F34 08

4333 8F35 38

4330 0F36 3C

4330 0F37
3E

4333 0F38 66

4330 0F39 68

4333 BF3A 64

4330 0F3B 00

4338 8F3C 63

4330 0F3D 87

4333 8F3E 73

4333 BF3F 61

4340

4353

4363

4370

4388

4330

4403 0F4S 4C

4483 0F41 4 A

4488 0F42 3A

4400 BF43 03

4408 0F44 00

4483 8F45 4B

4400 0F46 SB

4480 0F47 5E

4418 0F48 4F

4418 8F43 00

4410 3F 4fi 53

4410 3F4B 55

4413 8F4C 0D

4418 0F4D 49

4410 GF4E 2D

4410 0F 4F 3D

4420 8F58 56

4420 0F51 00

4420 0F52 43

4420 0F53 00

4420 0FS4 88

4420 0F55 42

.BYTE f3’ ,0/07' ,BACKSP/ 8< >fhd' ,0,0/gsc'

FOLLOWING 64 BYTES CONTAIN

ASCII CODES FOR SHIFTED KEYS.

.BYTE 'LJ:' ,0,0/K' ,EACKSL,CRRAT

.BYTE ' O' ,0/PU' ,CR/ I-»'

.BYTE ' U* ,0/ C' ,0,0/ BXZ4" ,0/ 36' ,ESC/ Xm V

383

4420 0F5G 58

4420 0F57 5R

4420 0F58 34

4420 0F59 80

4420 0F5R 33

4420 0F5B 36

4420 0F5C IB

4420 0F5D 25

4420 0F5E 22

4420 0F5F 21

4430 0F60 5fl

4430 0F61 20

4430 0F62 5X3

4430 0F63 4E

4430 0F64 00

4430 0F55 4D

4430 0F66 3F

4430 0F67 00

4440 0F68 52

4440 0F63 00

4440 0F6R 45

4440 0F6B 59

4440 0F6C 09

4440 0F6D 54

4440 0F6E 57

4440 0F6F 51

4450 0F70 28

4450 0F71. 00

4450 0F72 ,29

4450 0F73 -27

4450 0F74 7F

4450 0F75 40

4450 0F76 08

4450 0F77- 00

4460 0F7Q 46

4450 0F79 48

4460 0F7R 44

4460 0F7B 00

4460 0F7C 00

4460 0F7D 47

4460 0F7E 53

4460 0F7F 41

4470

4480

4490

4500

4510

4520

4530

4540 0F80 00

4540 0F81 00

4540 0F82 00

4540 0F83 00

4540 0F84 00

4540 0F85 00

4540 0F86 00

4540 0F87 00

4540 0F88 00

.BYTE LBRfiKT, SPACE, RBRflKT/ N' ,0,MTT ,0

.BYTE ' R' ,0,' EY' ,TAB/ TWQ'

.BYTE ' C ,0/ V ,RPOSTR,DELETE,' ,0,0

.BYTE ' FHD' ,0,0/ GSA'

THE FOLLOWING 123 BYTES

CONTAIN CHRRfiCTER CODES FOR

CONTROL SHIFTED KEYS. EDITOR

FUNCTION KEYS RRE DEFINED.

.BYTE 0,0,0,0,0,0,8,0,0,0,$10,0,0,0,0,0

384 BEYOND GAMES

4540 0FSS 00

4540 8F8R 10

4540 8F8B 03

4548 GF8C 30

4540 0F8D 09

^548 8F8E S3

4540 8FSF 00

4550 0F30 83

4550 0F91 03

4550 GF9Z 03

4558 0F93 03

4558 0F94 00

4550 0FS5 00

4553 0FS6 00

4550 BFS7 80

4550 0F98 80

4550 8FSS 83

4550 8FSR 03

4558 QF9B 00

4558 8FSC 03

4558 GFSD 00

4558 BF3E 03

4550 0FSF eg

4560 0FR8 03

4560 8FR1 09

4560 0FR2 80

45S0 0FR3 os

4583 8FR4 08

4560 0FR5 00

4583 0FR8 08

4560 0FR7 03

4530 0FRS 00

4550 BFR9 00

4583 BFRR 08

4860 8FRB 03

4560 8FRC 03

4580 GFRD 83

4560 8FRE 00

4560 0FRF 00

4570 0FBS 00

4570 BFB1 00

4570 0FB2 03

4573 0FB3 03

4573 0FB4 03

4570 0FB5 03

4570 8FES 03

4570 8FB7 03

4570 BFB8 88

4570 0FB9 83

4570 0FBR 00

4570 8FBE eg

4578 8FBC 00

4570 8FBB 33

4573 0FBE 83

4570 0FBF 00

4583 0FC3 00

4580 0.FC1 00

4580 0FC2 00

.BYTE 0,0,3,0,0,0,0,0,0,3,0.0,8,0,0,3

.BYTE 0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0

.BYTE 0,8,0,0,0,0,8,0,6,0,0,0,0,8,0,0

.BYTE 0,8,0.0,8,8,8,0,8,0,8,8,0,0,0,8

385

4580 0FC3 00

4580 0FC4 00

4580 BFC5 03

4580 0FC5 00

4530 0FC7 03

4580 SFCS 30

4580 BFC5 00

4580 BFCfl 00

4588 8FCB 00

4558 BFCC 00

4580 0FCD 80

4580 0FCE 00

4580 0FCF 00
4590 0FE0 08 .BYTE 0,0,0,0,0,8,0,0,8,0,0,0,0,0,0,0

4590 BFB1 00

4593 8FB2 00

4530 0FD3 00

4538 0FB4 03

4533 0FD5 00

4593 0FD6 00

4530 0FB7 00

4530 0FD8 00

4533 0FB9 80

45S0 0FDR 00

4533 0FBB 00

4530 0FDC B0

45S3 ©FDD 00

4530 0FDE 08

4530 0FBF 00

4800 0FE0 03 .BYTE 0,0,0,0,0,0,0..0,0,0,8,8,8,8,0,0

4603 0FE1 03

4688 3FEZ 00

4800 8FE3 00

4630 3FE4 33

4808 0FE5 00

4600 3FE6 80

4830 8FE7 03

4630 0FE8 80

46B0 0FE9 03

4600 0FEFI 80

4500 0FE3 03

4638 0FEC 00

4803 8FED 00

4608 0FEE 08

4603 8FEF 00

4613 0FF0 38 .BYTE 0,0,8,0,8,0,0,0,8,0,0,0,0,0*3,8
48*i0 0FF1 00

4610 8FFZ 83

4610 GFF3 80

4810 0FF4 B0

4610 0FF5 80

4610 0FF6 00

4810 8FF7 83

4510 0FF8 00

4610 3FF3 00

4610 BFFfi 03

4610 8FFB 03

4610 0FFC 00

386 BEYOND GAMES

4610 0FFD 00

46.10 0FFE m

4610 SFFF 00

Appendix DI:
Screen Utilities

APFENDIX Dl: SCREEN UTILITIES

SEE CHAPTER 5 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER.

DUMPING $1100-$11FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

1100 20 C4 11 20 2B 11 AE 03 10 AC 04 10 20 13 11 20

1110 D3 11 60 8E 2A 11 93 AA AD 06 10 AC 2A 11 91 00

1120 88 10 FB 20 76 11 CA 10 EF 60 19 A2 00 R0 00 18

1133 S3 BA AD 04 10 4fi A8 AD 03 10 4A AA 38 EC 03 10

1140 S0 03 AE 03 10 33 CC 04 10 S0 03 AC 04 10 AD 00

1150 10 85 00 AD 01 10 85 01 08 DS 8A 18 65 00 90 03

1160 ES 01 18 C0 80 F0 0B 18 6D 02 10 90 02 E6 01 88

1170 D0 F5 85 00 28 60 BD 02 10 18 30 05 20 9B 11 A9

1180 01 eg D8 18 65 00 90 02 EG 01 85 00 38 AD 05 10

1190 C5 01 B0 05 AD 01 10 85 01 28 60 20 11 10 A0 00

11A0 91 00 68 48 4A 4A 4A 4A 20 BG 11 20 7C 11 68 20

11B0 B6 11 20 7C 11 60 08 D8 29 0F C9 0A 30 02 69 06

11C0 69 30 28 60 68 AA 68 A8 A5 01 48 A5 00 48 98 48

11D0 8R 48 SB 68 AA 68 A8 68 85 00 68 85 01 98 48 SR

11E0 48 60 80 00 00 00 00 00 00 00 00 00 00 00 00 00

11F0 00 00 00 00 00 00 80 00 03 00 00 00 00 00 00 00

Appendix D2:
Visible Monitor (Top Level and
Display Subroutines)

APPENDIX D2-. THE VISIBLE MONITOR (TOP LEVEL FIND DISPLAY SUBROUTINES)

gprr QHBPTER 6 OF BEYOND GAMES■ SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTE

DUMPING S1200-S12DF

0 1 2 3 4 5 6 7 8 3 R B C D E F

1200 30 0C 30 83 31 05 12 88 Do 23 12 12 20 E3 12 18

1210 30 F6 20 C4 11 23 25 12 20 34 12 20 5C 12 20 RF

1223 12 20 D3 11 S3 R2 82 R0 02 20 3C 11 R2 19 R0 03

1230 23 13 11 60 R2 3D R0 02 20 3C 11 R0 00 8C 51 12

12*40 E3 52 12 23 7C 11 EE 51 12 RC 51 12 C0 0R D0 F0

1253 60 3R 41 20 20 58 23 20 5S 20 20 50 R2 02 R0 03

1280 23 3C 11 RB 86 12 20 R3 11 RD 05 12 20 R3 11 20

1273 7F 11 2Q 34 12 48 20 R3 .11 23 7F 11 68 20 7C 11

1280 20 7F 11 R2 B8 BD 01 12 28 R3 11 23 7F 11 E3 E0

1290 0*4 DO F2 60 R5 02 48 RB 03 RD 05 12 85 02 RD 06

12fi0 12 85 03 m 00 B1 02 R8 68 85 02 86 03 93 60 R2

12B0

12C0

02 RO 04 23 2C 11 RC 03 12 38 C0 07 30 05 R0 00

8C 03 12 B3 CD 12 R8 RD 07 10 31 00 60 03 06 08

1.21*0 0B 06 ii 14 00 30 03 08 08 00 00 00 00 00 00 00

390 BEYOND GAMES

Appendix D3:
Visible Monitor (Update Subroutine)

APPENDIX D3: THE VISIBLE MONITOR OJPDfiTE SUBROUTINE)

SEE CHAPTER 6 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER.

DUMPING S12E0-313FF

0 1 2 0 4 5 6 7 8 9 A B C D E F

12EO 6C 03 10 20 E0 12 C9 3E D0 10 EE 00 12 AD 00 12

12F0 ce 07 D0 85 A9 08 8D 00 12 60 C9 3C D0 0B CE 00

1330 12 10 05 A3 06 8D 00 12 60 C9 20 D0 09 EE 05 12

1310 D0 03 EE 06 12 60 C9 0D D3 0C AD 05 12 D0 03 CE

132Q 06 12 CE 05 12 60 BE 00 12 E0 02 D0 IB A8 A5 00

1330 48 AS 01 AD 05 12 85 00 AD 86 12 85 01 98 A0 00

134Q 91 80 8S 01 66 85 80 60 C9 47 D0 23 AC 03 12 BE

1350 02 12 AD 04 12 48 AD 01 12 23 20 6C 13 08 8D 01

1360 12 BE 02 12 8C 03 12 63 8D 04 12 60 6C 05 12 48

1370 20 D5 13 30 4B A8 68 98 BE 00 12 D0 14 A2 03 18

1360 0E Q5 12 2E 06 12 CA 10 F6 98 0D 05 12 8D 05 12

1350 60 E0 01 D0 18 23 0F 48 20 94 12 0A 0R 0A 0fi 29

13A0 F0 8D AC 13 68 0D AC 13 20 2D 13 60 00 CA CA CA

13E8 A0 83 18 IE 01 12 88 10 F9 ID 01 12 9D 01 12 60

13C0 68 C9 7F D0 04 20 00 11 60 C9 51 D0 04 63 63 28

1300 60 20 B0 18 60 38 E9 30 30 0F C3 0A 90 8E E9 07

13E0 C9 10 B0 05 38 C9 0A BQ 03 A9 FF 60 A2 00 60 00
13F3 00 00 08 80 00 00 80 00 00 00 00 00 00 00 80 03

391

Appendix D4:
Print Utilities

APPENDIX D4: PRINT UTILITIES

SEE CHAPTER 7 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL CQFIPUTf

DUMPING S1400-S154F

0I234567B9ABCDEF

1400 FF FF 00 20 00 00 0C 15 A3 FF 8D 01 14 60 A3 00

1410 8D 01 14 60 A3 FF SD 00 14 60 A9 00 BD 00 14 60

1420 A3 FF BD 02 14 60 A3 00 SB 02 14 60 20 08 14 20

1430 14 14 20 20 14 60 20 0E 14 20 1A 14 20 26 14 60

1440 C9 00 F0 24 8D 03 14 AD 01 14 F0 06 AB 03 14 20

1450 63 14 AB 00 14 F0 06 AD 03 14 20 6C 14 AD 02 14

1460 F0 06 AB 03 14 20 6F 14 60 6C 0A 10 6C 0C 10 6C

1470 0E 10 A9 0D 20 40 14 A3 0A 20 40 14 60 A3 20 20

1480 40 14 60 48 4A 4A 4A 4A 20 B6 11 20 40 14 68 20

1430 B6 11 20 40 14 60 A3 20 8E 04 14 48 AE 04 14 F0

14A0 0A CE 04 14 20 40 14 68 18 30 F0 68 60 8E 04 14

14B0 BE 04 14 F0 03 CE 04 14 20 72 14 18 30 F2 60 8E

14C0 05 14 B5 01 48 B5 00 48 AE 05 14 A1 00 C9 FF F0

14B0 0C F6 00 D0 02 F6 01 20 40 14 18 90 EB 63 95 00

14E0 68 95 01 60 68 Afi 68 A8 20 12 15 8E 05 12 8C 06

14F0 12 20 0D 13 20 BD 13 20 94 12 C9 FF F0 06 20 40

1500 14 18 90 F0 AE 05 12 AC 06 12 20 2B 15 98 48 8A

1510 48 60 68 8B 06 14 68 8D 07 14 AD 06 12 48 AD 05

1520 12 48 AD 07 14 48 AD 06 14 48 60 68 8D 06 14 68

1530 8D 07 14 88 8D 05 12 68 8D 06 12 AD 07 14 48 AD

1540 06 14 48 60 00 00 00 03 00 00 00 00 00 00 00 00

392 BEYOND GAMES

Appendix D5:
Two Hexdump Tools

APPENDIX D5: TWO HEXDUMP TOOLS

SEE CHAPTER 8 OF BEYOND .GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

DUMPING $1550-$17AF

0 1 2 3 4 5 6 7 8 3 A B C D E F

1550 00 04 50 15 AF 17 80 20 08 14 AD 51 15 8D 59 15

1560 AD 05 12 23 FS 8D 05 12 20 72 14 20 72 14 20 R1

1570 15 20 72 14 20 7D 14 20 9A 15 20 0D 13 AD 85 12

1580 23 07 D0 FQ 20 72 14 AD 05 12 29 0F D0 03 20 72

1590 14 CE 50 15 D0 D8 20 0E 14 60 20 94 12 20 S3 14

15A0 60 AD 0S 12 20 83 14 AD 05 12 20 83 14 60 20 C9

15B0 15 20 E3 15 20 A0 17 20 14 14 20 EB 16 20 42 17

15C0 10 FB 20 72 14 20 1A 14 60 20 00 11 20 08 14 20

15D0 E4 14 7F 0D 50 52 49 4E 54 49 4E 47 20 48 45 58

15E0 44 .55 4D 50 0D 0A 0A FF 60 20 08 14 20 E4 14 7F

15F0 0D 0A 53 45 54 20 53 54 41 52 54 49 4E 47 20 41

1600 44 44 52 45 53 53 20 41 4E 44 20 50 52 45 53 53

1610 20 22 51 22 2E FF 20 07 12 20 67 16 20 08 14 20

1620 £4 14 7F 0D 0A 53 45 54 20 45 4E 44 20 41 44 44

1630 52 45 53 53 20 41 4E 44 20 50 52 45 53 53 20 22

1640 51 22 2E FF 20 07 12 38 AD 06 12 CD 53 15 90 24

1650 D0 03 AD 05 12 CD 52 15 90 1A AD 06 12 8D 55 15

1660 AD 05 12 8D 54 15 60 AD 06 12 8D 53 15 AD 05 12

1670 8D 52 15 60 20 E4 14 7F 0D 0A 0A 0A 20 45 52 52

1680 4F 52 21 21 21 20 45 4E 44 20 41 44 44 52 45 53

1630 53 20 4C 45 53 53 20 54 48 41 4E 20 53 54 41 52

16B0 54 20 41 44 44 52“ 45 53 53 2C 20 57 48 43 43 48

16B0 20 43 53 20 FF 20 BB 16 4C 1C 16 A9 24 20 40 14

16C0 AD 53 15 20 83 14 AD 52 15 20 83 14 60 A3 24 28

16D0 40 14 AD 55 15 20 83 14 AD 54 15 23 83 14 60 20

16E0 BB 16 A9 2D 20 40 14 20 CD 16 63 20 E4 14 7F 0D

16F0 0A 0A 44 55 4D 50 49 4E 47 20 FF 20 DF 16 20 72

1700 14 20 E4 14 7F 0A 0A 28 20 20 20 20 20 20 20 30

1710 20 20 31 20 20 32 28 20 33 20 20 34- 20 20 35 20

393

1720 20 36 20 20

1730 42 20 20 43

1740 FF 60 20 72

1750 F0 8D 05 12

1760 0D RZ 03 20

1770 15 28 7D 14

1780 D0 EC 60 38

1790 05 12 CD 54

17R0 RD 52 15 8D

37 20 20 38 20 20

20 20 44 20 20 45

14 RD 05 12 48 29

20 R1 15 RZ 03 20

36 14 20 0D 13 CE

28 83 17 30 03 RD

RD 06 12 CD 55 15

15 B0 06 20 0D 13

05 12 RD S3 15 8D

39 20 20 41 20 20

20 20 46 OD 0R 0R

0F 8D 56 15 68 29

96 14 RD 56 15 F0

56 15 D0 F3 20 9fl

05 12 29 0F C9 00

90 0B D0 0F 38 RD

R9 00 60 R9 FF 60

06 12 60 00 00 08

394 BEYOND GAMES

Appendix D6:
Table-Driven Disassembler (Top
Level and Utility Subroutines)

APPENDIX DS: TABLE-DRIUEN DISASSEMBLER (TOP LEUEL AND UTILITY SUBROUTINES)

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

DUMPING 31S90-SIA3F

0 1 2 3 4 5 6 7 8 9 A B C D E F

1900 05 09 00 5A 40 1A FF 04 10 23 88 14 AD 00 19 8D

1310 01 19 A9 FF 8D 54 15 8D 55 15 20 72 14 20 7D 19

1920 CE 01 19 D0 F8 60 20 1A 14 20 08 14 20 E4 14 7F

1939 0D 0A 20 20 23 20 20 50 52 49 4E 54 49 4E 47 20

1340 44 43 53 41 53 53 45 4D 42 4C 45 52 2E 0D 0A FF

1953 20 E9 15 20 14 14 23 E4 14 7F BD 0A 44 49 53 41

I960 53 53 45 4D 42 4C 49 4E 47 20 FF 20 DF 16 20 A0

1970 17 20 72 14 20 7D 19 10 FB 20 1A 14 60 20 94 12

1380 48 20 32 19 20 7D 14 68 20 AF 19 20 01 1A 23 83

1930 17 63 A2 03 SE 02 19 AA BD 03 1C AA BD 50 IB 8E

19A0 03 19 20 40 14 AE 03 19 E8 CE 02 19 E0 EE 60 AA

19BS BD 80 ID AA 20 B3 19 68 BD IB IB 8D 04 19 E8 BD

1SC0 IB IB 8D 05 19 6C 04 19 20 0D 13 20 9A 15 60 20

1300 0D 13 20 94 12 48 20 0D 13 20 9A 15 68 20 83 14

19E8 60 A9 28 D0 82 A9 29 28 40 14 60 A9 ZC 23 40 14

19F8 AS 58 20 40 14 60 A9 2C 20 40 14 A9 S3 20 40 14

IA 00 60 8D 07 19 8E 06 19 CA 33 06 20 1A 13 CA 10 FA

1A10 08 D3 38 AD 08 19 E3 04 ED 07 19 23 AA 28 36 14

1A20 20 A1 15 20 7D 14 20 3A 15 20 0D 13 CE 06 19 10

1A39 F2 20 1A 13 20 72 14 60 00 00 00 00 00 00 03 00

Appendix D7:
Table-Driven Disassembler
(Addressing Mode Subroutines)

APPENDIX D7: TABLE-DRIVEN DISASSEMBLER CADDRESSING MODE SUBROUTINES)

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR SS02 PERSONAL COMPUTE

DUMPING Slfi-40-#lB4F

0 1 2 3 4 5 6 7 8 9 R B C D E F

1R40 20 CF 13 R2 02 R3 04 60 20 40 1R 20 EB 19 R2 02

1R5B R3 06 60 20 40 lfi 20 F6 19 R2 02 R9 06 60 R3 41

1R60 20 40 14 R2 00 R3 01 60 RZ 80 RS 00 60 R9 23 20

1R70 40 14 R3 24 20 40 14 20 C8 19 R2 01 R9 04 60 20

IR80 El 19 20 40 1R 20 E5 19 R9 06 R2 02 60 20 El 19

1R30 20 E8 lfl 20 E5 13 R2 01 R9 08 60 20 El 19 20 EB

1RRS 1R 20 E5 19 20 F6 19 R2 01 R9 08 60 20 0D 13 20

1RE0 12 15 20 34 12 48 20 0D 13 68 C9 00 10 03 CE 06

1RC0 12 08 D8 IS 6D 05 12 50 03 EE 06 12 8D 05 12 28

1RD0 20 Ri 15 20 2B 15 R2 01 R9 04 60 R9 00 20 83 14

1RE0 20 Co 13 R2 01 R9 04 60 20 DB 1R 20 EB 19 RZ 01

1RF0 R3 06 60 20 DB 1R 20 F6 19 R2 0i R9 06 60 68 68

1B00 68 68 20 S3 17 39 0D 20 94 12 C9 FF F0 06 20 40

1B10 14 18 98 EE 20 72 14 20 83 17 60 68 1R 5E 1R 6D

1B20 1R EB 1R ES 1R F3 1R 40 1R 48 1R 53 1R 68 1R RC

1B39 1R 8D 1R 9B lfi 7F 1R FE in 00 80 08 00 00 00 09

1B40 00 00 00 00 88 00 00 08 00 80 00 00 80 00 00 00

396 BEYOND GAMES

Appendix D8:
Table-Driven Disassembler (Tables)

APPENDIX D3: TABLE-ERIUEN DISASSEMBLER CTABLES)

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

DUMPING S1B50-S1DFF

0 1 2 3 4 5 6 7 8 9 A B C D E F

IB50 7F 42 41 44 41 44 43 41 4E 44 41 53 4C 42 43 43

1B60 42 43 53 42 45 51 42 49 54 42 4D 43 42 4E 45 42

1E70 50 4C 42 52 4B 42 56 43 42 56 53 43 4C 43 43 4C

1B80 44 43 4C 49 43 4C 56 43 4D 50 43 50 58 43 50 53

1B30 44 45 43 44 45 53 44 45 59 45 4F 52 49 4E 43 49

1BA0 4E 58 43 4E 59 4A 4D 50 4A 53 52 4C 44 41 4C 44

1BB0 58 4C 44 53 4C 53 52 4E 4F 50 4F 52 41 50 48 41

1BC0 50 43 50 50 4C 41 50 4C 50 52 4F 4C 52 4F 52 52

1BD0 54 43 52 54 53 53 42 43 53 45 43 53 45 44 53 45

1BE0 43 53 54 41 53 54 58 53 54 53 54 41 58 54 41 59

1BF0 54 53 58 54 58 41 54 58 53 54 59 41 54 45 58 FF

1C00 22 BA 01 01 01 6A 0A 01 70 6A 0A 01 01 6A 8R 81

1C10 IF BA 01 01 01 6A 0A 01 2B 6A 01 01 01 6A 8fi 01

1C20 58 07 01 01 16 07 79 01 76 07 79 01 16 07 73 01

IC30 13 07 01 01 01 07 73 81 68 07 01 01 01 07 79 01

1C40 7F 43 01 01 01 49 B4 01 6D 49 64 01 55 43 64 01

IC50 25 43 01 01 01 43 64 01 31 49 01 01 01 49 64 01

1C60 82 04 01 01 01 84 7C 01 73 04 7C 01 55 04 7C 01

1C70 28 04 81 01 01 04 7C 01 8E 04 01 01 01 04 7C AC

1C80 01 91 01 01 37 31 94 01 46 81 A3 01 37 31 94 81

1C30 0D 91 01 01 97 91 S4 01 AS 91 A3 01 01 91 01 01

1CA0 61 5B 5E 01 61 5B 5E 01 3D SB SB 01 61 5B 5E 01

1CB0 10 5B 01 01 61 SB 5E 01 34 SB 9E 01 61 5B 5E 01

1CC0 3D 37 01 01 3D 37 40 01 52 37 43 01 3D 37 40 01

1CB0 1C 37 01 01 01 37 40 01 2E 37 01 01 01 37 40 01

1CE0 3A 85 01 01 3A 85 4C 01 4F 85 67 01 3A 85 4C 01

1CF0 13 85 01 01 01 85 4C 01 8B 85 01 01 01 85 4C 01

1D00 12 16 00 00 80 06 06 00 12 04 B2 00 00 0C 0C 00

1D10 14 18 00 00 00 BE 0E 80 12 10 00 00 S3 16 16 00

1D20 ec IB 00 00 06 0S 06 00 12 04 02 00 0C 8C 0C 00
1D30 . 14 18 00 00 00 08 08 08 12 10 00 00 00 0E 0E 00
1IM0 12 IS 00 80 00- 0S 06 00 12 0C 02 00 0C 0C 0C 00
1D50' 14 18 00 00 00 08 08 03 12 10 00 00 00 0E 0E 00
1B60 12 IB 00. 00 83 06 06 .00 12 04 02 00 1R 0C 0C 00
1D70 . 14 18 08 00 00 08 08 00 12 13 00 00 00 0E 0E 1C
1D80 00 IS 00 00 B6 0S 36 03 12 00 12 00 0C ec 0C 03
1D80 14 18 00 03 03 08 0fi 00 12 10 12 03 00 0E 00 03
1DR3 04 IS 04 00 86 06 06 00 12 04 12 03 0C 0C 0C 00

1DB0 14 18 00 08 08 08 0fi 03 14 10 12 00 0E 0E 10 00
1DC0 04 IB 00 00 06 06 06 00 12 04 12 00 0C 0C 0C 03

1DD0 14 18 03 08 00 08 08 00 12 10 03 03 00 0E 0E 00
1DE0 04 16 00 00 06 06 06 80 12 04 12 00 0C 0C 0C 00
1DF0 14 18 00 03 00 08 08 00 12 10 00 00 03 0E 0E 00

398 BEYOND GAMES

Appendix D9:
Move Utilities

APPENDIX D3: MOVE UTILITIES

SEE CHAPTER 10 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER

BUMPING $17B0~$18FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

17E0 C7 00 39 04 23 08 14 20 E4 14 7F 0D 0ft 20 20 20

17C0 20 20 4D 4F 55 45 20 54 4F 4F 4C 2E 0D 0A 0A FF

17D0 20 E9 15 20 B9 IS AE 55 15 33 AD 54 15 ED 52 15

17E8 8D B0 17 E3 02 CA 38 8A ED 53 15 8D Bl 17 B0 03

17F0 A3 80 60 A0 03 B3 00 00 48 83 10 F3 38 AD 53 15

1800 CD B3 17 90 40 D0 18 AD 52 15 CD B2 17 90 36 D0

1810 0E A0 00 68 99 00 00 C8 C0 04 B0 F7 A9 FF 60 20

1820 A4 18 A3 00 AE Bi 17 F0 0E Bl 00 31 02 C8 D0 F9

1830 EG 01 E6 03 CA D3 F2 88 C8 Bl 00 91 02 CC B0 17

1840 B0 FS 4C 11 18 AD Bl 17 F0 48 AC Bl 17 AD B0 17

1850 38 E3 FF B3 01 83 Aft 84 03 8A IS 6D 52 15 85 00

1860 90 01 C8 38 GB 53 15 85 01 8A 18 6D B2 17 85 02

1870 90 02 E6 03 A5 03 6D B3 17 85 03 AE Bl 17 A0 FF

1880 B1 80 31 02 88 B0 Fe Bl 00 91 02 C6 01 CG 03 CA

1830 D0 EC 20 A4 IB AC B0 17 Bl 00 91 02 S3 C0 FF D0

18A0 F7 4C 11 IS AD 52 15 85 00 AD 53 15 85 01 AD B2

18B0 17 85 02 AD B3 17 85 03 58 20 08 14 20 E4 14 7F

18C0 0D 0A 53 45 54 20 44 45 53 54 43 4E 41 54 43 4F

18D0 4E 28 41 4E 44 20 50 52 45 53 53 20 51 2E FF 20

18E0 07 12 AD 85 12 8D E2 17 AD 0G 12 8D B3 17 60 00

18FQ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Appendix DIO:
Simple Text Editor

APPENDIX D10: ft SIMPLE TEXT EDITOR

SEE CHAPTER 11 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMF1

BY KEN SKIER

DUMPING $1E00-$1FFF

0 1 2 3 4 5 6 7 8 9 A B C D E F

1E00 FF 01 20 0F IE 20 37 IE 20 C8 ltf IS 18 90 F6 20
1E10 08 14 20 E4 14 7F 0D 0A 0A 53 46 54 20 55 50 20
1E20 45 44 49 54 20 42 55 46 46 45 52 2E 0D 0A 0A FF
1E30 20 E9 15 20 A0 17 60 20 C4 11 20 2B 11 AE 03 10
1E43 A0 03 20 13 11 20 2B 11 20 76 11 20 C4 11 20 5E
1E50 IE 20 D3 11 20 78 11 20 89 IE 20 D3 11 60 20 12
1E60 15 AD 03 10 4A AA CA CA 20 1A 13 CA 10 FA AD 03
1E70 10 8D 00 IE 20 94 12 20 9B 11 20 7F 11 20 0D 13

1E80 CE 00 IE 10 EF 20 2B 15 60 AD 03 10 4A E9 02 20
1ES0 81 11 AD 01 IE C9 01 D0 05 A9 40 18 90 02 A9 4F
1EA0 20 SB 11 A3 02 20 81 11 AD 07 10 20 9B 11 R9 02
1EB0 20 81 11 AD 06 12 20 A3 11 AD 05 12 20 A3 11 60
1EC0 06 03 3E 3C 10 7F 51 00 20 E0 12 CD C6 IE D0 17
1ED0 48 20 E0 12 CD C6 IE D0 04 68 68 68 60 8D C7 IE
1EE0 68 20 E7 IE AD C7 IE CD Cl IE D0 0B CE 01 IE 10
1EF0 05 A9 01 8D 01 IE 60 CD C2 IE D0 04 20 79 IF 60
1F00 CD C3 IE D0 04 20 87 IF 60 CD C5 IE D0 04 20 DD
1FI0 IF 60 CD C4 IE D0 04 20 C5 IF 60 CD C0 IE D0 04
1F20 20 B4 IF 60 RE 01 IE F0 04 20 34 IF 60 20 2D 13
1F30 20 83 17 60 48 20 12 15 AD 53 15 48 AD 52 15 48
1F40 AD 55 15 48 AD 54 15 48 20 67 16 20 83 17 30 11
1F50 20 E2 18 AD 54 15 D0 04 C 5 55 15 CE 54 15 20 D6
1F60 17 68 8D 54 15 68 8D 55 15 68 8D 52 15 68 8D 53
1F70 15 20 2B 15 68 20 2D IF 60 20 94 12 C9 FF F0 04
1F80 20 83 17 60 R9 FF 60 38 AD 53 15 CD 06 12 90 0C
1F90 D0 10 AD 52 15 CD 05 12 F0 17 B0 05 20 1A 13 R9
1FA0 00 60 AD 52 15 8D 05 12 AD 53 15 8D 06 12 A3 00
1FB0 60 A3 FF 60 20 A0 17 A3 FF 20 2D 13 20 83 17 10
1FC0 F6 20 A0 17 60 20 A0 17 20 14 14 20 94 12 C9 FF
1FD0 F0 08 20 40 14 20 83 17 10 FI 4C 1A 14 20 12 15
1FE0 AD 53 15 48 AD 52 15 48 20 E2 18 20 83 17 20 67
1FF0 16 20 D6 17 68 8D 52 15 68 8D 53 15 20 2B 15 60

400 BEYOND GAMES

Appendix Dll:
Extending the Visible Monitor

APPENDIX Dll: EXTENDING THE VISIBLE MONITOR

SEE CHAPTER 12 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER.

DUMPING 310B0-S10FF

0 1 2 3 4 5 5 7 8 3 A B C D E F

10B0 C9 53 D3 03 AD 00 14 49 FF 8D 03 14 63 C9 55 D0

18C0 03 AD 02 14 49 FF SD 02 14 63 C9 48 D0 0D AD 00

10E3 14 D3 04 23 57 15 60 20 AE 15 60 CS 4D D0 04 20

10E8 B4 17 60 C3 3F B0 0D AD 03 14 D3 04 23 09 19 60

10F0 20 26 19 69 C3 54 D0 04 20 02 IE 63 60 00 60 03

Appendix EI:
Screen Utilities

APPENDIX El SCREEN UTILITIES

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 4352 TO 4607

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1000 DATA

1001 DATA

1002 DATA

1003 DATA

1004 DATA

1005 DATA

1006 DATA

1007 DATA

1008 DATA

1009 DATA

1010 DATA

1011 DATA

1012 DATA

1013 DATA

1014 DATA

1015 DATA

1016 DATA

1017 DATA

1018 DATA

1019 DATA

1020 DATA

1021 DATA

1022 DATA

1023 DATA

1024 DATA

1025 DATA

1026 DATA

1027 DATA

1028 DATA

4352, 32, 196, 17, 32, 43, 17, 174, 3, 4866

4360, 16, 172, 4, 16, 32, 19, 17, 32, 4668

4368, 211, 17, 96, 142, 42, 17, 152, 170, 5215

4376, 173, 6, 16, 172, 42, 17, 145, 0, 4947

4384, 136, 16, 251, 32, 118, 17, 202, 16, 5172

4392, 239, 96, 25, 162, 0, 160, 0, 24, 5098

4400, 144, 10, 173, 4, 16, 74, 168, 173, 5162

4408, 3, 16, 74, 170, 56, 236, 3, 16, 4982

4416, 144, 3, 174, 3, 16, 56, 204, 4, 5020

4424, 16, 144, 3, 172, 4, 16, 173, 0, 4952

4432, 16, 133, 0, 173,. 1, 16, 133, 1, 4905

4440, 8, 216, 138, 24, 101, 0, 144, 3, 5074

4448, 230, 1, 24, 192, 0, 240, 11, 24, 5170

4456, 109, 2, 16, 144, 2, 230, 1, 136, 5096

4464, 208, 245, 133, 0, 40, 96, 173, 2, 5361

4472, 16, 24, 144, 5, 32, 155, 17, 169, 5034

4480, I, 8, 216, 24, 101, 0, 144, 2, 4976

4488, 230, 1, 133, 0, 56, 173, 5,, 16, 5102

4496, 197, 1, 176, 5, 173,.. 1, 16, 133, 5198

4504, 1, 40, 96, 32, 17, 16, 160, 0, 4866

4512, 145, 0, 96, 72, 74, 74, 74, 74, 5121

4520, 32 r 182, 17, 32, 124, 17, 104, 32, 5060

4528, 182, 17, 32, 124, 17, 96, B, 216, 5220

4536, 41, 15, 201, 10, 48, 2, 105, 6, 4964

4544, 105, 48, 40, 96, 104, 170, 104, 168, 5379

4552, 165, 1, 72, 165, 0, 72, 152, 72, 5251

4560, 138, 72, 96, 104, 170, 104, 168, 104, 5516

4568, 133, 0, 104, 133, 1, 152, 72, 138, 5301

4576, 72, 96, 0, 0, 0, 0, 0, 0, 4744

0, 0, 0

0, 0, 0

0, 0, 0

0, 0, 0, 4584

0, 0, 0, 4592

0, 0, 0, 4600

1029 DATA

1030 DflTfi

1031 DRTfi

1032 END

OK

4584, 0, 0,

4592, 0, 0,

4600, 0, 0,

404 BEYOND GAMES

Appendix E2:
Visible Monitor (Top Level and
Display Subroutines)

APPENDIX EZ VISIBLE MONITOR (TOP LEOEL & DISPLfiY SUBS)

THE FOLLOWING DATA STfiTEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 4608 TO 4831

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1108 DATA 4603, 0, 12, 0, 0, 43, 177, 25Z, 8, S106

1101 DATA 4616, Z16, 32, 18, 18, 32, 227, 18, 24, 5201

1102 DATA 4624, 144, 246, 32, 136, 17, 32, 37, 18, 5346

1103 DATA 4632, 3Z, 52, 18, 32, 92, IS, 32, 175, 5083

1104 DATA 4640, 18, 32, 211, 17, 36, 162, 2, 160, 5338

1105 DATA 4648, 2, 32, 60, 17, 162, 25, 160, 3, 5109

lies DATA 4656, 32, 19, 17, 36, 162, 13, 160, 2, 5157

1107 DATA 4664, 32, 60, 17, 160, 0, 140, 81, 18, 5172

1103 DATA 4672, 185 , 82, 18, 32, 124, 17, 238, 81, 5443

1109 BATfi 4630, 18, 172, 81, 13, 132, 10, 208, 240, 5613

1110 DATA 4688, 96, 10, 65, 32, 32, 83, 32, 32, 5075

1111 DATA 4636, S3, 32, 32, 80, 162, 2, 160, 3, 5256

1112 DATA 4704, 32, 60, 17, 173, 6, 18, 32, 163, 5205

1113 DATA 4712, 17, 173, 5, 18, 32, 163, 17, 32, 5163

1114 DATA 4720, 127 , 17, , 32, 148, 18, 72, 32, 163, 5323

1115 DATA 4728, 17, 32, 127, 17, 104, 32, 124, 17, 5138

1116 DATA 4736, 32, 127, , 17, 162, 0, 189, 1, 18, 5282

1117 DATA 4744, 32, 163 , 17, 32, 127, 17, 232, 224, 5588

1118 DATA 4752, 4, 208, 242, 96, 165, 2, 72, 166, 5707

1119 DATA 4760, 3, 173, 5, 18, 133, 2, 173, 6, 5273

1120 DATA 4768, 18, 133 , 3, 160, , 0, 177, 2, 168, 5423

1121 DATA 4776, 104, 133, 2, 134, 3, 152, 96, 162, 5562

1122 DATA 4784, 2, 160, 4, 32, 60, 17, 172, 0. 5231

1123 DATA 4732, 18, 56, 132, 7, 144, 5, 160, 0, 5374

1124 DATA 4300, 140, 0, 18, 185, 205, 18, 168, 173, 5^07

1125 DATA 4808, 7, 16, 145, 0, 96, 3, 6, 8, 5033

405

1126 DfiTR 4816, 11, 14, 17, 20, 0, 0, 0, 0, 4878

1127 DRTfl 4824, 0, 0, 0, 0, 0, 0, 0, 0, 4824

1128 END

406 BEYOND GAMES

9

/-\ppeiiuia cj.

Visible Monitor (Update Subroutine)

APPENDIX E3 VISIBLE MONITOR (UPDATE SUBROUTINE)

THE FOLLOWING DATA STRTEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 4832 TO 5119

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1200 DATA 4832, 108, 8, 16, 32, 224, 18, 201, 62, 5591

1201 DATA 4840, 208, 16, 238, 0, 18, 173, 0, 18, 5511

1202 DATA 4848, 201, 7, 208, 5, 163, 0, 141, 0, 5573

1203 DATA 4856, 18, 96, 201, 60, 288, 11, 206, 0, 5656

1284 DATA 4864, 18, 16, 5, 168, 6, 141, 0, 18, 5237

1205 DATA 4872, 96, 201, 32, 208, S, 238, 5, 18, 5679

1286 DATA 4380, 208, 3, 238, 6, 18, 96, 201, 13, 5663

1237 DATA 4888, 203, 12, 173, 5, 18, 203, 3, 206, 5721

1203 DATA 4896, 6, 18, 206, 5, 18, 96, 174, 0, 5419

1203 DATA 4904, 13, 224, 2, 288, 27, 168, 165, 0, 5716

1210 DATA 4912, 72, 166, 1, 173, 5, 18, 133, 0, 5483

1211 DATA 4320, 173, 6. 18, 133, 1, 152, 160, 0, 5563

1212 DATA 4328, 145, 0, 134, 1, 104, 133, 0, 96, 5541

1213 DATA 4336, 201, 71, 208, 35, 172, 3, 18, 174, 5818

1214 DATA 4944, 2, 18, 173, 4, 18, 72, 173, 1, 5405

1215 DATA 4352, 18, 40, 32, 108, 13, 8, 141, 1, 5319

1216 DATA 4360, 18, 142, 2, 18, 148, 3, 18, 104, 5405

1217 DATA 4968, 141, 4, 18, 96, 108, 5, 18, 72, 5430

1218 DATA 4376, 32, 213, 19, 43, 75, 188, 104, 152, 5787

1219 DATA 4984, 174, 0, 18, 208, 20, 162. 3, 24, 5593

1220 DATA 4932, 14, 5, 18, 46, 6, 18, 202, 16, 5317

1221 DATA 5000, 246, 152, 13, 5, 10, 141, 5, 13, 5593

1222 DATA 5088, 96, 224, 1, 208, 24, 41, 15, 72, 5683

1223 DATA 5016, 32, 148, 18, 10, 10, 10, 10, 41, 5295

1224 DATA 5824, 240, 141, 172, 19, 104, 13, 172, 19, 5984

1225 DATA 5032, 32, 45, 19, 95, 16, 202, 202, 282, 5846

1228 DATA 5040, 160, 3, 24, 30, 1, 18, 136, 16, 5428

1227 DATA 5048, 249, 29, 1, 18, 157, 1, 18, 96, 5617

1228 DATA 5856, 104, 201, 127, 208, 4, 32, 0, 17, 5749

407

1229 DRTR

1230 BRTR

1231 DRTR

1232 DRTR

1233 DRTR

1234 DRTR

1235 DRTR

1236 END

5BS4, 9S, 231, 81, 238, 4, 134, 134, 40, 5932

5072, 96, 32, 16, 16, 96, 56, 233, 48, 5665

5380, 144, 15, 201, 10, 144, 14, 233, 7, 5848

5088, 231, 16, 176, 5, 56, 201, 10, 176, 5929

5095, 3, 169, 255, 96, 162, 3, SB, 0, 5877

5134, 0, 0, 0, 0, 0, 0, 0, 0, 5184

5112, 0, 0, 0, 0, 0, 0J Qf 0> eng

408 BEYOND GAMES

Appendix E4:
Print Utilities

APPENDIX E4 PRINT UTILITIES

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 5120 TO 5455

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1330 DATA 5120, 0, 255, 0, 0, 0, 0, 0, 0, 5375
1331 DATA 5128, 153, 255, 141, 1, 20, 96, 169, 0, 5973

1302 DATA 5135, 141, 1, 20, 96, 169, 255, 141, 0, 5953

1303 DATA 5144, 20, 96, 169, 0, 141, 0, 20, 96, 5686

1304 DATA 5152, 169, 255, 141, 2, 20, 96, 169, 0, 6004

1305 DATA 5160, 141, 2, 20, 96, 32, 8, 20, 32, 5511

1306 DATA 5168, 20, 20, 32, 32, 20, 96, 32, 14, 5434

1307 DATA 5176, 20, 32, 26, 20, 32, 38, 20, 96, 5460

1308 DATA 5184, 201, 0, 240, 36, 141, 3, 20, 173, 5938

1309 DATA 5192, 1, 20, 240, 6, 173, 3, 20, 32, 5687

1310 DATA 5200, 105, 20, 173, 0, 20, 240, 6, 173, 5937

1311 DATA 5203, 3, 20, 32, 188, 20, 173, 2, 20, 5586

1312 BATA 5216, 240, 6, 173, 3, 20, 32, 111, 20, 5821

1313 DATA 5224, 96, 108, 10, 16, 108, 12, 16, 108, 5698

1314 DATA 5232, 14, IS, 169, 13, 32, 64, 20, 169, 5729

1315 DATA 5240, 10, 32, 64, 20, 96, 169, 32, 32, 5695

1316 DATA 5248, 64, 20, 96, 72, 74, 74, 74, 74, 5796

1317 DATA 5256, 32, 182, 17, 32, 64, 20, 104, 32, 5739

1318 DATA 5264, 182, 17, 32, 64, 20, 96, 169, 32, 5876

1319 BATA 5272, 142, 4, 20, 72, 174, 4, 20, 240, 5943

1320 DATA 5283, 10, 206, 4, 20, 32, 64, 28, 104, 5740

1321 DATA 5288, 24, 144, 240, 104, 96, 142, 4, 20, 6062

1322 DATA 5296, 174, 4, 20, 240, 9, 236, 4, 20, 5973

1323 DATA 5304, 32, 114, 20, 24, 144, 242, 96, 142, 6113

1324 DATA 5312, 5, 20, 181, 1, 72, 181, 0, 72, 5844

1325 DATA 5320, 174, 5, 20, 161, 0, 201, 255, 240, 6376

1326 DATA 5328, 12, 246, 0, 208, 2, 246, 1, 32, 6075

1327 DATA 5336, 64, 20, 24, 144, 235, 104, 149, 0, 6076

1328 DATA 5344, 104, 149, 1, 96, 104, 170, 104, 168, 6240

409

1323 DRTR

1330 DRTR

1331 DRTR

1332 DRTR

1333 DRTR

1334 DRTR

1335 DRTR

1336 DRTR

1337 DRTR

1333 DRTR

1333 DRTR

1340 DRTR

1341 DRTR

1342 END

5352, 32, 10, 21, 142, 5, 18, 140, G, 5734
5360, 18, 32, 13, 19, 32, 13, 19, 32. S538
5363, 143, 18, 201, 255, 240, 6, 32, 64, 6332
5376, 20, 24, 144, , 240, 174, 5, 18, 172, 6173
5384, 6, 18, 32, 43, 21, 152, 72, 138, 5866
5332, 72, 86, 104, p 141, 6, 20, 104, 141, 6076
5400, 7, 20, 173, 6, 18, 72, 173, 5, 5874
5408, 18, 72, 173, - 7, 20, 72, 173, 6, 5348
5416, 20, 72, 96, 104, 141, 6, 20, 104, 5973
5424, 141, 7, 20, 104, 141, 5, 18, 104, 5964
5432, 141, 8, 18, 173, 7, 20, 72, 173, 6042
5440, G, 20, 72, 96, 0, 0, 0, 0, 5634
5448, 0, 0, 0, 0, 0, 0(0f 0j 544Q

410 BEYOND GAMES

Appendix E5:
Two Hexdump Tools

APPENDIX E5 TWO HEXDUMP TOOLS

THE FOLLOWING BATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 5456 TO 6063

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1400 DATA 5456, 0, 4, 0, 0, 255, 255, 0, 32, 6002

1401 DATA 5464, 8, 20, 173, 81, 21, 141, 80, 21, 6009

1402 DATA 5472, 173, 5, 18, 41, 248, 141, 5, 13, 6121

1403 DATA 5480, 32, 114, 20, 32, 114, 20, 32, 161, 6005

1404 DATA 5488, 21, 32, 114, 20, 32, 125, 20, 32, 5884

1405 DATA 5436, 154, 21, 32, 13, IS, 173, 5, 18, 5931

1406 DATA 5504, 41, 7, 208, 240, 32, 114, 23, 173, 6339

1407 DRTA 5512, 5, 18, 41, 15, 208, 3, 32, 114, 5948

1408 DATA 5520, 20, 206, 80, 21, 208, 216, 32, 14, 6317

1403 DATA 5528, 20, 36, 32, 148, 18, 32, 131, 20, 6025

1410 DATA 5536, 96, 173, 6, 18, 32, 131, 20, 173, 6185

1411 DATA 5544, 5, 18, 32, 131, 20, 96, 32, 201, 6079

1412 DATA 5552, 21, 32, 233, 21, 32, 160, 23, 32, 6106

1413 DATA 5560, 20, 20, 32, 235, 22, 32, 66, 23, 6010

1414 DATA 5568, 16, 251, 32, 114, 20, 32, 26, 20, 6079

1415 DATA 5576, S6, 32, 0, 17, 32, 8, 20, 32, 5813

1416 DATA 5584, 228, 20, 127, 13, 80, 82, 73, 78, 6285

1417 DATA 5592, 84, 73, 78, 71, 32, 72, 69, 88, 6153

1418 DATA 5600, 68, 85, 77, 80, 13, 10, 10, 255, 6198

1419 DATA 5608, 96, 32, 8, 20, 32, 228, 20, 127, 6171

1420 BATA 5616, 13, 10, 83, 63, 84, 32, 83, 84, 6074

1421 DATA 5624, 65, 82, 84, 73, 78, 71, 32, 65, 6174

1422 DATA 5632, 68, 68, 82, 63, 83, 83, 32, 65, 6182

1423 DATA 5640, 78, 68, 32, 80, 82, 69, 83, 83, 6215

1424 DATA 5648, 32, 34, 81, 34, 46, 255, 32, 7, 6169

1425 DATA 5656, 18, 32, 103, 22, 32, 8, 20, 32, 5923

1426 DATA 5664, 228, 20, 127, 13, 10, 83, 69, 84, 6298

1427 DATA 5572, 32, 69, 78, 68, 32, 65, 68, 68, 6152

1428 DATA 5680, 82, 69, 83, 83, 32, 65, 78, 58, 6240

411

1429 DRTR 5683, 32, 83, 82, 63, 83, 83, 32, 34, 6183

1430 DRTR 5696, 81/ 34, 46, 255, 32, 7, 18, 56, 6225

1431 DRTR 5704, 173, 6, 18, 205, 83, 21, 144, 36, 6330

1432 DRTR 5712, 203, 8, 173, 5, 18, 205, 82, 21, 6432

1433 DRTR 5720, 144, 26, 173, 6, 18, 141, 85, 21, 6334

1434 DRTR 5728, 173, 5, 18, 141, 84, 21, 36, 173, 6439

1435 DRTR 5736, 6, 18, 141, 83, 21, 173, 5, 18, 6201

1436 DRTR 5744, 141, 82, 21, 96, 32, 228, 20, 127, 649i

1437 DRTR 5752, 13, 10, 10, 10, 32, 63, 82, 82, 6060

1438 DRTR 5760, 79, 82, 33, 33, 33, 32, 69, 78, 6199

1439 DRTR 5768, 68, 32, 65, 68, 68, 82, 69, 83, 6303

1440 DRTR 5776,, 83, 32, 76, 63, 83, 83, 32, 84, 6318

1441 DRTR 5784, 72, 65, 78, 32, 33, 84, 65, 82, 6345

1442 DRTR 5792, 84, 32, 65, 68, 68, 82, 69, 83, 6343

1443 DRTR 5800, 83, 44, 32, 87, 72, 73, 67, 72, 6330

1444 DRTR 5808, 32, 73, 83, 32, 255, 32, 187, 22, 6524

1445 DRTR 5816, 76, 28, 22, 169, 36, 32, 64, 20, 6263

1445 DRTR 5824, 173, 83, 21, 32, 131, 20, 173, 82, 6539

1447 DRTR 5832, 21, 32, 131, 20, 96, 163, 36, 32, 6369

1448 DRTR 5840, 64, 20, 173, 85, 21, 32, 131, 20, 6386

1449 DRTR 5848, 173, 84, 21, 32, 131, 20, 96, 32, 6437

1450 DRTR 5856, 187, 22, 169, 45, 32, 64, 20, 32, 6427

1451 DRiR 5864, 205, 22, 96, 32, 228, 20, 127, 13, 6607

1452 DRTR 5872, 10, 10, 68, 85, 77, 80, 73, 78, 6353

1453 DRTR 5880, 71, 32, 255, 32, 223, 22, 32, 114, 6661

1454 DRTR 5888, 20, 32, 228, 20, 127, 10, 10, 32, 6367

1455 DRTR 5896, 32, 32, 32, 32, 32, 32, 32, 48, 6168

1456 DRTR 5904, 32, 32, 49, 32, 32, 50, 32, 32, 6195

1457 DRTR 5912, 51, 32, 32, 52, 32, 32, 53, 32* 6223

1458 DRTR 5920, 32, 54, 32, 32, 55, 32, 32, 56, 6245

1459 DRTR 5928, 32, 32, 57, 32, 32, 65, 32, 32, 6242

1460 DRTR 5936, 66, 32, 32, 67, 32, 32, 68, 32, 6297

1461 DRTR 5944, 32, 69, 32, 32, 70, 13, 10, 10, 6212

1462 DRTR 5352, 255, 96, 32, 114, 20, 173, 5, 18, 6665

1463 DRTR 5960, 72, 41, 15, 141, 86, 21, 104, 41, 6481

1464 DRTR 5968, 240, 141, 5, 18, 32, 161, 21, 162, 6748

1465 DRTR 5976, 3, 32, 150, 20, 173, 86, 21, 240, 6781

1466 DRTR 5984, 13, 162, 3, 32, 150, 20, 32, 13, 6409

1467 DRlR 5992, 19, 206, 86, 21, 208, 243, 32, 154, 6961

1468 DRTR 6000, 21, 32, 125, 20, 32, 131, 23, 48, 6432

1469 DRTR 6008, 9, 173, 5, 18, 41, 15, 201, 0, 6470

1470 DRTR 6016, 208, 236, 96, 56, 173, 6, 18, 205, 7014

14jrl DRTR 6024, 85, 21, 144, 11, 208, 15, 56, 173, 6737

14^2 DRTR 6032, 5, 18, 205, 84, 21, 176, 6, 32, 6573

1473 DRTR 6040, 13, 19, 169, 0, 96, 169, 255, 96, 6857

1474 DRTR 6048, 173, 82, 21, 141, 5, IS, 173, 83, 6744

1475 DRTR 6056, 21, 141, 6, 18, SB, 0, 0, 0, 6338
1476 END

412 BEYOND GAMES

Appendix E6:
Table-Driven Disassembler (Top
Level and Utility Subroutines)

fiFPENDIX E6 DISASSEMBLER (TOP LEUEL & UTILITY SUBS)

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 6400 TO 6719

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1500 DATA 6400, 5, 0, 0 , 0, 0, : 0, 0, 0, 6405

1501 DATA 6403, 16, 32, 8, 20, 173, 0, 25, 141, 6823

1502 DATA 6416, 1, 25, 169, , 255 , 141 ., 84, 21, 141, 7253

1503 DATA 6424, 85, - 21, 32, , 114 , 20, 32 , 125, 25, 6878

1504 DATA 6432, 206, 1, 25, , 208 , 248, 96, 32, 26, 7274

1505 DATA 6440, 20] 32, 8, 20, 32, 228, 20, 127, 6927

1506 DATA 6448, 13, 10, 32, , 32, 32, 32, 32, 80, 6711

1507 DATA 6456, 82, 73, 78 , 84, 73, 73, 71, 32, 7027

1508 DATA 6464, 68, 73, 83 , 65, 83, 83, 69, 77, 7065

1509 DATA 6472, 66, 76, 69 , 82, 46, 13, 10, 255, , 7089

1510 DATA 6480, 32, 233, 21, 32, 20, 20, 32, 22S, 7033

1511 DATA 6488, 20, 127, 13, 10, 68, 73, 83, 65, 6947

1512 DATA 6496, 83, 83, 69, 77, 66, 76, 73, 78, 7101

1513 DATA 6504, 71, 32, 255, 32, 223. , 22, 32 , 160, 7331

1514 DATA 6512, 23, 32, 114, 20, 32, 125, 25 , 16, 6833

1515 DATA 6520, 251, , 32, . 26, 28, SB, 32, 148 , 18, 7143

1516 DATA 6528, 72, 32, 146, 25, 32, 125, 23 , 104, 7884

1517 DATA 6536, 32, 175] , 25, 32, 1, 26, 32, 131, 6930

1518 DATA 6544, 23, 96, 162, 3, 142, 2, 25, 170, 7167

1515 DATA 6552, 189: , 0. 23, 170, 189 , 80, 27 , 142, 7377

1520 DATA 6560, 3, 25,,.32, 64, 20, 174, 3, 25, 6306

1521 DATA 6563, 232, 206, 2, 25, 208, 238, 96, 170, 7f45

1522 DATA 6576, 189, 0, 23, 170, 32, 184, 25, 36, 7301

1523 DATA 6584, 189, 27, 27, 141, 4, 25, 232, 189, 7418

1524 DATA 6592, 27, 27, 141, 5, 25, 108, 4, 25, 6354

1525 DATA 6600, 32, 13, 13, 32, 154, 21, SB, 32, 6399

413

1526 DATA

15Z7 DATA

1528 DRTfl

1529 DRTfl

1530 DRTfl

1531 DRTfl

1532 DRTfl

1533 DRTfl

1534: DRTfl

1535 DRTfl

1536 DRTfl

1537 DRTfl

1538 DRTfl

1539 DRTfl

1540 END

6608,

6616,

6624,

6632,

6640,

6648,

6656,

6664,

6672,
6683,

6683,

6696,

6704,

6712,

13, 19, 32, 148, 18, 72, 32, 13, 6955

13, 32, 154, 21, 104, 32, 131, 20, 7123

36, 169, 40, 288, 2, 163, 41, 32, 7381

64, 20, 96, 169, 44, 32, 64, 20, 7141

163-, 88, 32, 64, 20, 96, 169, 44, 7322

32, 64, 20, 169, 83, 32, 64, 20, 7138

96, 141, 7, 25, 142, 6, 25, 202, 7300

48, 6, 32, 26, 13, 202, 16, 250, 7263

8, 216, 56, 173, 8, 25, 233, 4, 7395

237, 7, 25, 40, 170, 32, 150, 20, 7361

32, 161, 21, 32, 125, 20, 32, 154, 7265

21, 32, 13, 19, 206, 6, 25, 16, 7034

242, 32, 26, 19, 32, 114, 20, 36, 7285
0, 0, 0, 0, 0, 0, 0, 0> S7I2

414 BEYOND GAMES

Table-Driven Disassembler
(Addressing Mode Subroutines)

APPENDIX E7 DISASSEMBLER (ADDRESSING NODE SUBROUTINES)

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 6720 TO 6991

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1680 DATA 6720, 32, 207, 25. 162, 2, 169, 96, 7417

1601 DATA 6723, 32, 64, 26, 32, 235, 25, 162, 2, 7306

1602 DATA 6736, 163, 6, 96, 32, 64, 26, 32, 246, 7407

1603 DATA 6744, 25, 162, 2, 163, 6, 96, 169, 65, 7438

1604 BATA 6752, 32, 64, 20, 162, 0, 169, 1, 96, 7296

1605 DATA 6760, 162, 0, 169, 0, 96, 169, 35, 32, 7423

1606 DATA 6768, 64, 20, 169, 36, 32, 64, 20, 32, 7205

1607 DATA 6776, 200, 25, 162, 1, 169, 4, 96, 32, 7465

1608 DATA 6784, 225, 25, 32, 64, 26, 32, 223, 25, 7442

1683 DRTA 6792, 169, 6, 162, 2, 96, 32, 225, 25, 7503

1610 DATA 6800. 32, 232, 26, 32, 229, 25, 162, 1, 7533

1611 DATA 6808, 169, 8, 96, 32, 225, 25, 32, 219, 7614

1612 DATA 6816, 26, 32, 229, 25, 32, 246, 25, 162, 7593

1613 DATA 6824, 1, 163, 8, 96, 32, 13, 19, 32, 7194

1614 DRTA 6832, 18, 21, 32, 148, 18, 72, 32, 13, 718S

1615 DATA 6840, 19, 104, 201, 0, 16, 3, 206, 6, 7395

1616 DATA 6848, 18, 8, 216, 24, 103, 5, 18, 144, 7390

1617 DATA 6856, 3, 238, 6, 18, 141, 5, 18, 40, 7325

1618 DATA 6864, 32, 161, 21, 32, 43, 21, 162, 1, 7337

1619 DATA 6872, 169, 4, 96, 163, 8, 32, 131, 20, 7493

1620 DATA 6880, 32, 200, 25, 162, 1, 169, 4, 36, 7569

1621 DATA 6888, 32, 219, 26, 32, 235, 25, 162, 1, 7620

1622 DATA 63S6, 169, 6, 96, 32, 213, 28, 32, 246, 7722

1623 DATA 6304, 25, 162, 1, 169, 6, 96, 1G4, 104, 7571

1624 DATA 6912, 104, 104, 32, 131, 23, 48, 13, 32, 7399

1625 DATA 6920, 148, 18, 201, 255, 240, 6, 32, 64, 7884

415

1626 DfiTft

1627 DATA

1628 DATA

1623 DATA

1638 DATA

1631 DATA

1632 DATA

1633 DATA

163-4 END

6328,

6336,

6344,

6352,

6S60,

6983,

6378,

6934,

20, 24, 144, 238, 32, 114, 20, 32, 7552

131, 23, 5b, 104, 25, 94, 26, 103, 7545

25, 219, 26, 232, 26, 243, 26, 64, 7805

26, 72, 26, 83, 26, 184, 26, 172, 7487

26, 141, 26, 155, 26, 127, 26, 254, 7741
26, 0, 0, 0, 0s Qf 0 9 6Sg4

0* 0, 0, 0, 0, 0, 0, 0 r 6376

0, 0, 0, 3, 0, 0, 0, 0> 6384

416 BEYOND GAMES

Appendix E8:
Table-Driven Disassembler (Tables)

APPENDIX E8 DISASSEMBLER < TABLES)

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 6992 TO 7S79

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1700 DATA

1701 DATA

1702 DATA

1703 DATA

1704 DATA

1705 DATA

1705 DATA

1707 DATA

1708 DATA

1709 DATA

1710 DATA

1711 DATA

1712 DATA

1713 DATA

1714 DATA

1715 DATA

1716 DATA

1717 DATA

1718 DATA

1719 DATA

1720 DATA

1721 DATA

1722 DATA

1723 DATA

1724 DATA

1725 DATA

1725 DATA

1727 DATA

1723 DATA

6992, 127, 66, 65, 68, 65, 68, 67, 65, 7583

78Q0, 78, 68, 65, 83, 76, 66, 67, 67, 7570

7008, 66, 67, 83, 66, 69, 81, 66, 73, 7579

7816, 84, 66, 77, 73, 66, 73, 69, 66, 7595

7024, 80, 76, 66, 82, 75, 66, 86, 67, 7622

7032, 66, 86, 83, 67, 76, 67, 67, 76, 7620

7040, 68, 67, 76, 73, 67, 76, 86, 67, 7620

7043, 77, 60, 67, 80, 88, 67, 80, 83, 7676

7066, 68, 69, 67, 63. 69, 88, 68, 69, 7622

7064, 89, 69, 79, 82, 73, 78, 67, 73, 7674

7872, 78, 88, 73, 78, 89, 74, 77, 80, 7709

7080, 74, 83, 82, 76, 68, 65, 76, 68, 7672

7083, 88, 76, 68, 89, 76, 83, 82, 78, 7728

7896, 79, 80, 79, 82, 65, 80, 72, 65, 7S3S

71S4, 80, 72, 80, 80, 75, 65, 83, 76, 7713

7112, 80, 82, 79, 76, 82, 79, 82, 82, 7^54

7120, 84, 73, 82, 84, S3, 83, 66, 67, 7742

7128, S3, 69, 67, 83, 69, 68, 83, 69, 7719

7136, 73, 83, 84, 65, 83, 84, 88, 83, 7779

7144, 84, 89, 84, 65, 88, 84, 65, 89, 7792

7152, 84, 83, 88, 84, 88, 65, 84, 88, 7S16

7160, 83, 84,- 89, 65, 84, 69, S3, 255, 7377

7168, 34, 106, 1, 1, 1, IQS, 10, 1, 7428

7176, 112, 106,- 10, 1, 1, 10, 1, ^523

7184, 31, 106, 1, 1, 1, 106, 10, 1, 7441

7192, 43, 106, 1, 1, 1, 106, 10, 1, 7461

7200, 88, 7, 1, 1, 22, 7, 121, 1, 7448

7208, 118, 7, 121, 1, 22, 7, 121, 1, 7606

7216, 25, 7, 1, I, 1, 7, 121, 1, 7380

J-f« JJHTR
1730 DATA

1731 DRTfl

1732 DATA

1733 DRTR

1734 DRTfl

1733 DRTfl

1733 DRTfl

1737 DRTfl

1738 DRTfl.

1733 DRTfl

1740 DRTR

1741 DRTfl

1742 DRTR

1743 DRTfl

1744 DRTfl

1745 DRTR

1746 DRTfl

1747 DRTfl

1748 DRTfl

1749 DRTfl

1750 DRTR

1751 DRTfl

1752 DRTfl

1753 DRTfl

1754 DRTfl

1755 DRTfl

1756 DRTfl

1757 DRTR

1758 DRTfl

1753 DRTfl

1760 DRTfl

1761 DRTfl

1762 DRTR

1763 DRTR

1764 DRTR

1765 DRTR

1766 DRTR

1767 DRTR

1768 DRTfl

1763 DRTfl

1770 DRTfl

1771 DRTfl

1772 DRTfl

1773 DRTfl

1774 DRTfl

1775 DRTfl

1776 DRTR

1777 DRTfl

1778 DRTfl

1779 DRTR

1780 DRTfl

1781 DRTR

1782 DRTfl

1783 DRTR

1784 DRTfl

1785 DRTfl

1786 END

7224,

7232,

7240,

7248,

7255,

7264,

7272,

72S0,

7238,

7296,

7304,

7312,

7320,

7328,

7336,

7344,

7352,

7360,

7363,

7376,

7384,

7392,

7400,

7408,

7416,

7424,

7432,

7440,

7443,

7456,

7464,

7472,

7480,

7488,

7496,

7504,

7512,

7520,

7528,

7536,

7544,

7552,

7560,

7563,

7576,

7584,

7592,
7600,

7608,

7616,

7624,

7632,

7640,

7648,

7656,

7664,

7672,

127* l* 7’ 121> L’ 7499

109 73f lop/',1’ 73, X00’ X> 7"9

St 73 V0?* 73’ 100» 1. 7732
43 73’ 1’ !’ ?3’ 100’ 7535

130 4’ r’ 1’ I3’ 100’ L’ 7555
115’ 4’ fi/’,1’ 4’ 124’ l’ 7530

40 ’4 'if' f* !5’ *’ 1Z4' 7730

1 Lc:’ I" f" i' 4’ i24> L7Z< 7737

•70 1 ’jRq 1,’ 151 ’ 145’ 148> X> 7883

13 iV f’ I* *81’ 145> i43. 1. 7984

376%r53416f' ii X* i45> ^ ^’79467

157 si fkJ\ ’ 91 ’ 94> I- 7894

leaf if’ i; 97 ’ 31’ 34- 1. 6022
9 ’ f* ‘l’ 97 • 31 ’ 94, 1, 7736

li ss’ : ’ 97, 91' 94> l* 7937 fai> 55, 1, 1, si, 55, 64 . 7p!-a
82, 55, 67 1 k ~ 4’ i* 7353

28, 55, 1 l’l « L ! U 7754
46 rr , , 1’ 5S’ 84> 1. 7582

58; 133, 1 [lsaSSl3V’yt’ 7608
73 J39 ira^1'.58’ 133‘ 76, 7853
73, 133, 103 1 58, 133, 76, 1, 7384

139 ’ L’ 133> 78> 1. 7773
9 133, 1. l 1 | oq -pr- *

18 77 n ’ L ’ l'j3’ 78> 7301
16 f2’,8’ 0’ 6> 8. 0.'7476

zl’ 24 ; 0; 0> lz> LZ’ 0> 7480

is’ 1r’ n f’ 0’ 14, 14’ 0* 7512

ll’ 77’ f’ f ’ S’ 22> 22’ 0> 7828
Jo 4 ’7’0’ 6’ G’ 8> 0- 7508

20’ 24 ^ 12’ 12’ 12, 0’ 7524
fa’ fa’ ?’ ?’ 0> 8’ 8> 0. 7532

}b’ ±8’ f' 0’ 0’ I4. I4. 0, 7542

ll’ 17’ 7’ n’ B’ G’ S’ 01 7540
70’ if' f’ B’ 12’ 12’ 12> 0. 7564
ff’ f4, 0’ 0> 0. 8. S, 0, 7564

2' i8’ ?’ 0’ 14- I4. 0. 7574

2* f ’ 3’ 0> 0’ 8- 8- 0. 7572
if’ f; 2I 0> 28> 12, 12, 0. 7602

is’ ffi’ f’ B’ B’ 8’ 8’ 0- 75S6
„’i6’0’ 0> 0> i4. 14, 28, 7634

18 2r’ ?n B’ B’ B’ 6’ 0’ 7532

20’ 24 f’ f’ i2’ 12’ 12’ 0’ 7832
18 fo’ ?A B’ 8’ 8> 10> 0- 7638 18,16, 18 0, 0, 14, 0, 0, 7642

1R 2f’ B’ 8’ 8’ G’ 0’ 7832
if’ 4; 19’ 0> 12> i2, 12, 0> 7668

If" f4’ f* 0> 8- 8> 10. 0, 7670

4 '22 'ei ;01 14, 14, 18, 0’ 7706
’ 2?’..0, 0’ 8’ 8> 6, 0, 7660

if’ 19’ °« 12> 12, 12, 0, 7700

fa ft’ f’ ®’ 0> 8’ 8’ 8’ 7892

4 ’22 ’r R ’c0’ 14’ 14’ 0’ 7702
18 4’ m ; ’ 8’ 87 0’ 7592
1 ’ 18» 12, 12, 12 0 77q7

IB ’ 24’ 0’ 0> 0. 9. 8, B 7724722
19. 15, 0, 0, 0, 14, 14, 0, 7?34

418 BEYOND GAMES

Appendix E9:
Move Utilities

APPENDIX E9 MOUE UTILITIES

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 6064 TO 6339

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

I8B0 DATA 6064, 0, 0, 0, 0, 32, 8, 20, 32, 6156

1801 DATA 6072, 228, 20, 127, 13, 10, 32, 32, 32, 6566

1802 DATA 6080, 32, 32, 77, 79, 86, 69, 32, 84, 6571

1803 DATA 6883, 79, 79, 76, 46, 13, 10, 10, 255, 6656

1804 DATA 60SS, 32, 233, 21, 32, 185, 24, 174, 85, 6882

1885 DATA 6104, 21, 56, 173, 84, 21, 237, 82, 21, 6799

1806 DATA 6112, 141, 176, 23, 176, 2, 202, 56, 138, 7026

1807 DATA 6120, 237, 83, 21, 141, 177, 23, 176, , 3, 6981

1803 DATA 6128, 169, 0, 96, 160, 3, 135, 0, 0, 6741

1883 DATA 6138, 72, 136, 16, 249, 56, 173, 83, 21, 6942

1810 DATA 6144, 205, 179, 23, 144, 64, 203, 24, , 173, 7164

1811 DATA 6152, 82, 21, 205, 178, 23, 144, 54, 208, 7067

1312 DATA 6160, 14, 160, 0, 104, 153, 0, 0, 200, 6791

1813 DATA 6168, 132, 4, Z0S, 247, 169, 255, 96, 32, 7371

1814 DATA 6176, 164, 24, 160, 0, 174, 177, 23, 240, 7138

1815 DATA 61S4, 14, 177, 0, 145, 2, 200, 208, 243, 7173

1816 DATA 6192, 230, 1, 230, 3, 202, 208, 242, 136, 7444

1817 DATA 6208, 200, 177, 0, 145, 2, 204, 176, 23, 7127

ISIS DATA 6208, 208, 246. 76, 17, 24, 173, 177, 23, 7152

1813 DATA 6216, 240, 72, 172, 177, 23, 173, 176, 23, 7272

1820 DATA 6224, 56, 233, 255, 176, 1, 136, 170, 132, 7383

1821 DATA 6232, 3, 138, 24, 183, 82, 21, 133, 0, 6742

1822 DATA 6240, 144 , 1, 200, 152, 109, 83, 21 , 133, 7083

1823 DATA 6243, 1, 138, 24, 109, 178, 23, 133 , 2, 6e56

1824 DATA 6256, 144, 2, 230, 3, 165, 3, 109, 179, 7091

1825 DATA 6264, 23, 133; p 3, 174, 177, 23, 160 , 255, 7212

1826 DATA 6272, 177, 0, 145, 2, 136, 208, 249 , 177, 7366

1827 DATA 6280, 0, 145, 2, 198, 1, 198, 3, 202, 7029

1828 DATA 6288, 208, 236, 32, 164, 24, 172, 176, 23, 7323

419

1829 DRTR B29S, 177, 0, 145, 2, 136, 192, 255, 208, 7411

1830 DfiTfi 6334, 247, 76, 17, 24, 173, 82, 21, 133, 7077

1831 DRTR 6312, 0, 173, 83, 21, 133, 1, 173, 178, 7074

1832 DRTR 6323, 23, 133, 2, 173, 173, 23, 133, 3, 6989

18d3 DRTR 6328, 96, 32, 8, 20, 32, 228, 20, 127, 6831

1834 DRTR 6336, 13, 10, 83, 63, 84, 32, 68, 69, 6764

183b DRTR 6344, 83, 84, 73, 78, 65, 84, 73, 79, 6963

1836 DRTR 6352, 78, 32, 65, 78, 68, 32, 80, 82, 6887

1837 DRTR 6368, 69, 83, 83, 32, 81, 46, 255, 32, 70m

1835 DRTR 6368, 7, 18, 173, 5, IS, 141, 178, 23, 6331

1833 DRTR 6376, 173, 6, 18, 141, 179, 23, 96, 0, 7012
1840 DRTR 6384, 0, 0, 0, 0, 0, 0f Qf 6334

1841 DRTR 6332, 0, 0, 0, 0, 0, 0, 6392

1842 END

420 BEYOND GAMES

Appendix E
Simple Text Editor

APPENDIX E10 R SIMPLE TEXT EDITOR

THE FOLLOWING DfiTA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 7SS0 TO 8191

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1300 DATA 7680, 255, . 1. 32, 15, 30, 32, 55, 30, 8130

1901 DATA 7688, 32, 200, , 30, , 24, 24, , 144, 246, 32,.8420

1302 DATA 7636, 8, 20, 32, 228, 20, 127, 13, , 10 - , 8154

1303 BATA 7704, 10, 83, 69, 84, 32, 85, 80, 32, 8179

1904 DATA 7712, 69, 68, 73, 84, 32, 66, 85, 70, 825S

1905 DATA 7720, 70, 63, 82, 46, 13, 10, 10, 255, , 8275

1386 DATA 7728, 32, 233, , 21 , 32, 160, 23, 96, 32, 8357

1307 DATA 7736, 136, , 17 , 32 , 43, 17, , 174, 3, , 16, , 8234

1908 DATA 7744, 160, , 3, 32, 19, 17, 32, 43, 17, 8067

1909 DATA 7752, 32, 118 , 17 , 32, 136, 17, 32, 94, 8290

1910 DATA 7760, 30, 32, 211, 17, 32, 118, 17, 32, 8243

1311 DATA 7763, 137, 30, 32, 211, 17, 96, 32, 18, 8341

1S12 DATA 7776, 21, 173, 3, 16, 74, 170, 202, 202, 8637

1313 DATA 7784, 32, 26, 19, 282, 16, 250, 173, 3, 8505

1914 DATA 7792, 16, 141, 0, 30, 32, 148, 18, 32, 8203

1315 DATA 7800, 155, 17, 32, 127, 17, 32, 13, 19, 8212

1916 DATA 7308, 206 , 0, 30, 16, 239, 32, 43, 21, 8395

1917 DATA 7816, 96, 173, 3, 16, 74, 233, 2, 32, 8445

1918 DATA 7824, 129 , 17, 173, 1, 30, 201 , 1, 208, , 8584

1919 DATA 7832, 5 169, 73, 24, 144, 2, 169, 79, 8497

1928 DATA 7840, 32, 155, 17, 169, 2, 32, 129, 17, , 8393

1921 DATA 7648, 173 , 7, 16, 32, 155, 17, 169, 2, 8419

1922 DATA 7856, 32, 129, 17, 173, 6, 18, 32, 163, , 8426

1923 DATA 7864, 17, 173, 5, 18, 32, 163, 17, 96, 8385

1924 BATA 7872, 6, 3, 62, 60, , 16, 127, 81, 0, 8227

1925 DATA 7880, 32, 224, 18, 205, 198, , 30, 208, 23, 8818

1926 DATA 7888, 72, 32, 224, 18, 205, 1S3, 30, 208, B875

1927 DATA 7896, 4, 104, 104, 104, 96, 141, 199, 30, 8678

1928 DATA 7384, 104, 32. 231, , 30, 173, 199. , 30, 205, 8908

421

1329 DRTR

1330 DRTR

1331 DRTR

1932 DRTR

1933 DRTR

1934 DRTR

1335 DRTR

1936 DRTR

1337 DRTR

1938 DRTR

1939 DRTR

1940 DRTR

1941 DRTR

1942 DRTR

1343 DRTR

1944 DRTR

1945 DRTR

1946 DRTR

1947 DRTR

1948 DRTR

1349 DRTR

1950 DRTR

1951 DRTR

1952 DRTR

1953 DRTR

1954 DRTR

1955 DRTR

1356 DRTR

1957 DRTR

1958 DRTR

1959 DRTR

1960 DRTR

1961 DRTR

1962 DRTR

1963 DRTR

1964 END

7912,

7920,

7928,

7336,

7344,

7952,

7960,

7968,

7976,

7984,

7992,

8000,

8008,

8816,

8024,

8032,

8040,

8048,

8056,

8064,

8072,

8080,

8088,

8036,

8104,

8112,

8120,

8128,

8136,

8144,

8152,

8160,

8168,

8176,

8184,

193, 30, 208, 11, 206, 1, 30, is, S6Q7

5, 169, 1, 141, 1, 30, 36, 205, 8563

194, 30, 208, 4, 32, 121, 31, 36, 8644

205, 195, 30, 288, 4, 32, 135, 31, 8776

96, 205, 19r', 3Q, 208, 4, 32, 221, 8937

31, 96, 205, 196, 30, 208, 4, 32, 8754

137, 31, 36, 205, 192, 30, 208, 4, 8323
32, 180 , 31 , 96, i 174, , 1. 38, 240, 8752
4, 32, 52, 31, 36, 32, 45, 19, 8287
32, 131, , 23 , 36, , 72, 32, 18, 21, 8409
173, 83, , 21 , 72, , 173, 82, 21, 72, 8683
173 , 85, 21 , 72, 173, 84, 21, 72, 8781
32, 103, * 22 , 32, 131, 23, 43, 17, 8416
32, 2^8, 24, 173, 84, 21, 208, 4, 8788

206, 85, 21, 206, 84, 21, 32, 214, 8893

23, 104, 141, 84, 21, 104, 141, 85, 8735

21, 104, 141, 82, 21, 104, 141, 83, 8737

21, 32, 43, 21, 104, 32, 45, 31, 8377

96, 32, 148, 18, 201, 255, 240, 4, 9050

32, 131, 23, 96, 169, 255, 96, 56, 8922

173, 83, 21, 205, 6, 18, 144, 12, 8734

208, 16, 173, 82, 21, 205, 5, 18, 8803

240, 23, 176, 6, 32, 26, 19, 169, 8779

0, 96, 1^3, 82, 21, 141, 5, 18, 8632

173, 83, 21, 141, 6, 18, 169, 0, 8715

96, 169, 255, 96, 32, 160, 23, 16S, 9112

255, 32, 45, 19, 32, 131, 23, 16, 8673

246, 32, 160, 23, 96, 32, 160, 23, 8903

32, 20, 20, 32, 148, 18, 201, 255, 8862

240, 8, 32, 64, 20, 32, 131, 23, 8594

16, 241, 76, 26, 20, 32, 18, 21, 8602

173, 83, 21, 72, 173, 82, 21, 72, 8857

32, 226, 24, 32, 131, 23, 32, 103, 8771

22, 32, 214, 23, 104, 141, 82, 21, 8815

104, 141, 83, 21, 32, 43, 21, 96, 8725

422 BEYOND GAMES

Appendix Ell:
Extending the Visible Monitor

APPENDIX Ell EXTENDING THE UISIELE MONITOR

THE FOLLOWING CRTA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 4272 TO 4351

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

2600 DATA 4272, 201

2031 DATA 4230, 255

2032 DATA 4288, 9,

2003 DATA 4296, 20,

2004 DATA 4334, 20,

2305 DATA 4312, 174

2006 DATA 4320, 1S0

2807 DATA 4328, 0,

200S DATA 4336, 32,

2003 DATA 4344, 32,

2910 END

, 80, 208, 9, 173, 0, 20, 73, 503S

, 141, 0, 20, 96, 201, 85, 203, 5286

173, 2, 20, 73, 255, 141, 2, 4963

96, 201, 72, 208, 13, 173, 0, 5079

208, 4, 32, 87, 21, 96, 32, 4804

, 21, 96, 201, 77, 208, 4, 32, 5125

, 23, 96, 201, 63, 208, 13, 173, 5277

20, 208, 4, 32, 9, 25, 96, 4722

38, 25, 96, 201, 84, 203, 4, 5024

2, 30, 96, SB, 0, 0, 0, 4500

423

Appendix E12:

System Data Block for the Ohio
Scientific C-1P

appendix ejlz
SYSTEM DATA BLOCK FOR GSI CIP

the following data statements

contain decimal object code and

CHECKSUMS FOR MEMORY FROM 4035

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

TO 4113

2100 DATA

2101 DATA

2102 DATA
2103 END

4096, 101, 20Q, 32,

4104, 237, 254, 45,

4112, 96, 96, 0, 0,

24, 24, 211, 32, 16, 4744

131, 177, 252, IS, 16, 5232
0, 0, 8, 0, 4334

OK

424 BEYOND GAMES

Appendix El3:
System Data Block for the PET 2001

APPENDIX EI3 SYSTEM DATA BLOCK FOR THE PET 2001

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND

CHECKSUMS FOR MEMORY FROM 4036 TO 4151

SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

2100 DATA 4896

2101 DATA 4104;

2102 DATA 4112.

2103 DATA 4120

2104 DATA 4128.

2105 DATA 4136

2106

2107

DATA

END

4144:

0, 128, 40, 39,

42, IS, 210, 255

98, 41, 127, 56,

201, 96, 144, 10

232, 233, 32, 24

64, 36, 32, 228,

249, 96, 0, 0, 8

24, 131, 32, 30, 4520

, 16, 16, 16, 15, 4631

201, 64, 144, 17, 4853

, 162, 14, 141, 76, 4964

, 144, 3, 56, 233, 5085

255, 41, 127, 240, 5219

, 0, 0, 0, 4439

OK

Appendix El4:

System Data Block for the Apple II

APPENDIX EX4 SYSTEM DflTfi BLOCK FOR THE RPFLE II

the FOLLOWING BRTR STRTEMENTS

CONTRIN DECIMAL OBJECT CODE RND

CHECKSUMS FOR MEMORY FROM 4036 TO 4127
SUITABLE FOR LORDING WITH

THE BRSIC OBJECT CODE LORUER.

2100 DRTA

2101 DRTfl

2102 DRTfi

2103 DRTR

2104 END

4096,

4104,

4112,

4120,

0. 4, 128, 33, 7, 7, 1S0, 222, 4BS3

23, 16, 26, 16, 16, IS, 16, 16, 4246

9, 123, 36, 32, 12, 253, 41, 4779

127, 96, S, 128, 32, 253, 251, 36, 5112

OK

426 BEYOND GAMES

Appendix El5:
System Data Block for the Atari 800

BPFENDIX E15 SYSTEM DRTR BLOCK FOR THE BTBRI 800

THE FOLLOWING DRTR STRTEMENTS

CONTRIN DECIMRL OBJECT CODE RND

CHECKSUMS FOR MEMORY FROM 3712 TO 4223

SUITRBLE FOR LORDING WITH

THE BRSIC OBJECT CODE LOfiDER.

2100 DRTR 3712, 32, 196, 17, 173, 179, 23, 72, 173, 4577

2101 DRTR 3720, 178, 23, 72, 173, 85, 21, <Z9 173, 4517

2102 DRTR 3728, 84, 21, 72, 173, 83, 21, 72, 173, 4427

2103 DRTR 3736, 82, 21, 72, 32, 43, 17, 165, 0, 4168

2104 DRTR 3744, 141, 178, 23, 165, 1, 141, 179, 23, 4595

2105 DRTR 3752, 32, 118, 17, 165, 0, 141, 82, 21, 4328

2106 DRTR 3760, 165, 1, 141, 83, 21, 174, 3, 16, 4364

2107 DRTR 3768, 172, 4, 16, 32, 60, 17, 165, 0, 4234

2108 DRTR 3776, 141, 84, 21, 165, 1, 141, 85, 21, 4435

2109 DRTR 3784, 32, 214, 23, 172, 4, 16, 162, 0, 4407

2110 DRTR 3732, 32, 60, 17, 174, 3, 16, 160, 1, 4255

2111 DRTR 3800, 32, 19, 17, 104, 141, 82, 21, 104, 4320

2112 DRTR 3838, 141, 83, 21, 104, 141, 84, 21, 104, 4507

2113 DRTR 3816, 141, 85, 21, 104, 141, 178, 23, 104, 4613

2114 DRTR 3824, 141, 179, 23, 32, 211, 17, 96, 0, 4523

2115 DRTR 3832, 0, 0, 0, 0, 0. 0, 0, 0* 3832
2116 DRTR 3840, 108, 106, 59, 0, 0, 107, 43, 42, 4305

2117 DRTR 3848, Hi, 0, 112, 117, 13, 105, 45, 61, 4412

2118 DRTR 3856, 118, , 0, 99, 0, 0, 98, 120, 122, 4413

2118 DRTR 3864, 52, 0, 51, 54, 27, 53, 50, 43, 4200

2120 DRTR 3872, 44, 32, 46, 110, 0, 109, 47, 0, 4260

2121 DRTR 3880, 114, 0, 101, 121, 9, 116, 119, 113, 4573

2122 DRTR 3888, 57, 0, 48, 55, 8, 56, 60, 62, 4234

2123 DRTR 3896, 102, 104, 100, 0, 0, 103, 115, 97, 4517

2124 DRTR 3904, 76, 74, 58, 0, 0, 75, 91, 94, 4372

2125 DRTR 3912, 79, 0, 80, 85, 13, 73, 45, 61, 4348

2126 DRTR 3920, 86, 0, 67, 0, 0, 66, 88, 90, 4317

2127 DRTR 3928, 52, 0, 51, 54, 27, 37, 34, 33, 4216

2128 DRTR 3936, 90, 32, 93, 78, 0, 77, 63, 0, 4369

427

2123

2130

2131

2132

2133

2134

2135

2136

2137

2138

2133

2140

2141

2142

2143

2144

2145

2146

2147

2148

2143
2150

2151

2152

2153

2154

2155

2156

2157

2158

2153

2160

2161

2X62

2163

2164

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

DRTR

END

3344,

3352,

3360,

3368,

3376,

3384,

3932,
4000,

4008,

4016,

4024,

4032,

4040,

4048,

4056,

4064,

4072,

4080,

4088,

4096,

4104,

4112,

4120,

4128,

4136,

4144,

4152,

4160,

4168,

4178,

4184,

4192,
4200,

4208,

4216,

f2’ ?’ 89’ 89’ 9- 84, 87, 81, 4445

7S’ 72 39’ 127’ 64’ 8. 0. 4263

0 ’* L ®* 0’ 7i> 83, 65, 4389
0. 0, 0, 0, 0, 0) 0> 0> 3g68

B I’ f6’ 0’ 0" 0> 0. 0. 3992

a’ n’ f’ B’ B’ 0’ 0’ 3987
8> 0. 0, 0, 0, 0, 0, 0> 3932

B’ b’ o* n’ B’ B' 0> 4000
’ * 0’ 0> 0> 0. 0. 0, 4008

I* ?’ 05 0* 8’ 0> 0. 0, 4016
6. 0. 0, 0, 0, 0, 0> 0> ,,030

0. 0. 0, 0, 0, 0, 0-, 0> 40||
0> 0» 0, 0, 0, 0, 0> 0> 4040

0» 0. 0, 0, 0, 0, 0> 0> 404g

B’ ?’ ®* 0> 0» 0> 0. 0, 4056
’ » 0, 0, 0, 0, 0> 0j 40B4

0. 0, 0, 0, 0, 0, 0> 0> 40?2

0. 0. 0. 0, 0, 0, 0, 0, 4080

’ B’ 0’ 0’ 0’ 0> 0> 0» 4088

S* 18%f',I9’ 23> 127’ 0’ 123. 4638
op’ if* 54’ 18' 16> i6, 18, IB, 4294 S ii f,: “■ “*• 32, i«, a. ,iT

2- s8' £ *• f 6675

52, 16. 32, 196, 17, 172 4 , L l-T*1
174 53 ic 00 tL ** 1G> 4673

is a’lM ff* * 17’ 173’ sz’ 4753 — ’ f2’ 124> 17> 238, S3, 18, 173 4853
53, 16, 205 ^ 1C ->r»n ^ ’ “TOtJd
cro 16, 20B> e> 32, 4731

?:0\v---- -1?- 0> 0. 0, 0, 0, 0, 0> 0j 421s

OK

428 BEYOND GAMES

Index
ABSLUT 123
ABS.X 124
ABS.Y 124
absolute mode 16, 123

ACC 124
accumulator 3, 124

ADC 38
addressing

absolute indexed 21
base 20, 33
description 16-17

index 20-21
indirect 27, 45, 119, 126
pointer 45

relative 26, 127
zero page 17, 45, 129
zero page indexed 21

addition 38
ALL.OFF 85

ALL.ON 85
AND 39
Apple computer 2, 6, 7, 44
arithmetic 23, 34

arrow line 67, 72
ASCII 11, 15, 46, 52, 54, 62, 145, 159
assemblers 12, 45

assembly language 1, 8
Atari computer 2, 6, 7, 44

BAD 117

BASIC 7, 26, 28
BCC 24
BCS 24
BEQ 23-24
binary 9, 36

bits 4, 8, 41, 45
bit twiddling 39

BLANK 58

BMI 24
BNE 21, 23-24

BPL 24
branch 23-24, 41, 114

break flag 22

bug 49
BVC 24
BVS 24
byte 8

call 28

carry 23, 35, 36, 38
carry flag 22
cartesian coordinates 49
CENTER 55

character graphics 44

CHARS 90
CLD 39
clear screen 57

CLR.TV 57

CLR.XY 58

CMP 22
comma 21
COMMENT 14
compare 22
conditional branch 23

constant 15-16, 22
CPX 21-22
CPY22

CR.LF 89

CR.LFS 90

data line 67, 69

data mode 61
debugging 49

DEC 37
decimal 15, 39
decimal flag 22, 39
decrement 37

delete 158

INDEX 429

DEST 154
DEX37
directives 18

disassembler 114, 160
display-memory 47, 49
divide 36

documentation 14
DSLINE 117

DUMMY 162

dummy subroutine 30
DUMPSL 102

EA 154

EDITIT 152

EDITOR 146

EDMODE 148, 153
8080 7

equate 18

error-checking 52
ETX 92, 129, 157

EXTEND 161

IMMEDT 125
IMPLID 125

implied mode 125
INC 37

increment 21, 24, 37

index 25, 33, 118-119
INDRCT 126
IND.X 126
IND.Y 127

input/outut 5
input ports 4

INSCHR 149
INSERT 154
insert 149

instruction:

cycle 11-12
set 7

interpreter 7
interrupt flag 22
INX 21, 37
INY 37

fetch 12, 27

FINISH 131
FIXCHR 46

flag 33, 42, 67, 85, 160
FLSHKY 153
flush buffer 157
front end 135

function keys 133

GETKEY 76, 152
GOSUB 28
GOTO 26
graphic 46, 64

hand 44

HEADER 107
hierarchy 73

hexadecimal 9-12, 19, 52, 62, 98, 114
HEXDUMP 160
hexdump 13, 98

high byte 45, 119, 121
HOME 48
hook 30, 84

immediate mode 14-15, 22, 125

JMP 28, 62

JSR 28, 63, 119
juggling 8, 15

key 74

LABEL 14

label 14, 18, 21, 45
label line 67, 69

LDA 14-15, 20
LDX 14, 20
LDY 14

least-significant:
byte 17

bit 45, 54
LIFO 30
listing 159

logical operations 23, 39
loop 22, 24, 66, 139
low byte 45, 121

LPAREN 121

machine language 12, 60
mask 39

MCODES 118
memory 3, 44

430 BEYOND GAMES

memory-mapped display 44

message 84
microprocessor 3, 7

MNAMES118 .
MNEMON 118
MNEMONIC 14
mnemonic 14, 114

mode 148-149
MODEKY 153
MODES 119
monitor 60-61
most-significant:

byte 17
bit 45, 54

MOVDN 139
move 134
MOV.EA 135, 154
MOVER 143, 160
MOVE TOOL 142
MOVNUM 135

multiply 36

negative 23, 26

negative flag 22
NEXTCH 155
next character 155

NEXTKY 153
NEXTSL 111

nybbles 10, 39

object code 10, 12, 15
Ohio Scientific (OSI) computer 2, 6, 7, 44, 47, 61, 159

ONEBYT 120
opcodes 11-12, 14-15, 27, 114

OPERAND 14
operand 14, 16, 17, 21, 24-28, 38, 114

operating systems 6

OPERND 119

ORA 39
output:

port 4
print 84

vectors 88
overflow flag 22

overlap 135
overstrike 149

OVRCHR 149

P register 22
page 17
PAGE-DOWN 141
PAGE-UP 141
parentheses 119
PC 11-12, 27
PET computer 2, 6-7, 44
PHA 30
PLA 30
pockets 8, 31
pointers 27, 45, 119
POINTR 45
pop 30
POP.SL 95, 155
positive 26

PR. ADR 102
PR.BYT 89
PR.CHR 87

PR.DIS 132, 160

PRDUMP 103, 160
PR.EA 107
previous character 156
PREVKY 153
PREVCH 156
PRINT: 93
print 157

print utilities 84

PRUNE 109
PR.MSG 91
PR.OFF 85
program counter 11, 27

programmable memory 4, 7
PR.ON 85
PR.SA 106
PRTBUF 157
PRTKEY 153
pseudo-addressing mode 129

pseudo-mnemonic 117
push 30

PUSHSL 95, 154

QUITKY 152

RANGE 107
registers:

A 3, 8, 15
compare 22

description 3

index 20

processor status (P) 22, 64
transfer 33

X register 3, 8, 20, 24, 49, 56
Y register 3, 8, 21, 49, 56

RELATV 127
relocate 28

RETURN 28
return 29

ROM 4, 6
ROMPRT 88
ROMTVT 88
rotate 36

ROWINC 48
RPAREN 121
RTS 28, 62, 136

RUBKEY 153

SA 154
SAHERE 154
screen 44

screen utilities 58
SED 39
SELECT 94, 117
set 39

SETBUF 147
SET.DA 143
shift 35

SHOWIT 148
6502 8, 11

6800 7
source code 13, 18

SPACE 89-90
space bar 65

STA 16, 20

stack 30
status 150
STRIKE 153
string 129, 145

SUBPTR 119
subroutines 30, 62, 119

SUBS 120, 130
subtraction 38

SYSTEM DATA 88

table 32, 118-119
TAX 33

TAY33
TEST 24
TEX 92, 130
text:

buffer 146

description 130, 145, 150
editor 145, 160

title 142
toggle 41
tool 142
truth table 39
TVCOLS 49, 150
TV.DIS 132, 160
TVDOWN 51
TVDUMP 98, 160
TVHOME 55
TVPLUS 51

TVPOP 56, 59
TVPTR 45

TVPUSH 56, 59
TV.PUT 46

TVROWS 49
TVSKIP 51
TVT84
TVT.OFF 85
TVT.ON 85
TVTOXY 48

TWOBYT 121

TXA33

TXMODE 130
TYA33

UPDATE 74, 162
USR.OFF 85
USR.ON 85
USROUT 88

utilities 120, 134

Visible Monitor 63, 160

VUBYTE 52, 54

VUCHAR 52

XINDEX 122

XOR 39, 41

YINDEX 122

Z80 7

432 BEYOND GAMES

zero 22
zero flag 22
ZEROPG 128
ZERO.X 129
ZERO.Y 129

INDEX 433

Beyond Games: Systems Software for Your 6502
Personal Computer

By Ken Skier

Use your 6502 personal computer for more than games! Learn
how it works and how to make it work for you. This book, for Apple,
Atari, Ohio Scientific and PET computer owners who know little or
nothing about bits, bytes, hardware, and software, presents a guid¬
ed tour of your computer. Beginning with basic concepts such as
what is memory? and what is a program?, Beyond Games moves
through a fast but surprisingly complete course in assembly
language programming. Having mastered these fundamentals, the
reader is introduced to many useful subroutines and programming
tools, such as screen utilities, print utilities, a machine language
monitor, a hexadecimal dump tool, a move tool, a disassembler,
and a simple, screen-based text editor.

About the Author
Ken Skier, systems analyst for Wang Laboratories, Inc, designs soft¬
ware for word, processing and other applications concerning the of¬
fice of the future. A Massachusetts Institute of Technology graduate,
he co-founded the M.l.T. Writing Program, where he teaches science
fiction writing. He lives in Cambridge, Massachusetts, with his wife
Cynthia and a nameless white cat.

0-07-057860- 5

