Commodore 61
Assembly
lLanguage

Bruce Smith

Commodore 64
Assembly
| anguage

Bruce Smith

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CWS5 SES, England

© Bruce Smith, 1984
ISBN 0 906812 96 &

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying
recording and/or otherwise, without the prior written
permission of the Publishers.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net price
given by the Publishers in their current price list.

Typeset by Gilbert Composing Services, Leighton Buzzard
and printed by Devon Print Group, Exeter

Conlenls

10

Preface

Machine Code or Assembly Language
(Why machine code?)

Numbers

(Binary, hex and decimal, Binary to decimal conversion, Decimal to
binary conversion, Binary to hex conversion, Hex to decimal conversion)

It All Adds Up!
(Binary arithmetic, Addition, Subtraction, Binary coded decimal
(BCD), BCD addition, BCD subtraction)

It’s Logical
(Logical operations, AND, OR, EOR)

The Registers
(The accumulator, The index registers, The program counter)

A Poke at Machine Code

(Code—the program counter, Entering machine code,
The hex loader program, Calling machine code,
Getting it taped, The Kernal)

Status Symbols
(The status register)

Addressing Modes I
(Zero page addressing, Immediate addressing)

Bits and Bytes
(Load, store and transfer, Paging memory)

Arithmetic in Assembler -
(Addition, Subtraction, Negation, Using BCD)

Addressing Modes 11

(Absolute addressing, Zero page indexed addressing,

Absolute indexed addressing, Indirect addressing,

Post-indexed indirect addressing, Pre-indexed absolute addressing,
Implied and relative addressing)

10

16

18

20

30

33

36

40

49

12 Stacks of Fun 58
(The stack, Stack instructions for saving data)

13 Looping 62
(Loops, Counters, Comparisons, Branches, FOR . . . NEXT,
Memory counters)

14 Subroutines and Jumps 72
(Subroutines, Passing parameters, Jumps)

15 Shifts and Rotates 78
(Arithmetic shift left, Logical shift right, Rotate left, Rotate right,
Logically speaking, Printing binary!, BIT)

16 Multiplication and Division 86
(Multiplication, Division)

17 Assembly Types 92
(Conditional assembly, Look-up tables)

18 Sprite of 64 96
(Moving sprites)

19 Floating a Point 103
(The floating point accumulators, Using USR, Integer to floating
point, Floating point to integer, Floating memory, The subroutines)

20 The Kernal 113
21 Speeding Up and Slowing Down 127
22 Interrupts and Breaks 129

(Interrupts, Breaks)

23 Prepacked Ultilities 132
(Hex to binary conversion, Binary to hex conversion,
Output ASCII string)

Appendices

1 The Screen 140
2 The 6510 142
3 The Instruction Set 145
4 Instruction Cycle Times 181
5 Commodore 64 Memory Map 184
6 Branch Calculators 185
7 6510 Opcodes 186

General Index 190

Program Index 193

Preface

At the centre of your Commodore 64 microcomputer is the 6510 microprocessor which is
responsible for coordinating and controlling every single thing your Commodore 64 does
while it is switched on. The microprocessor can be programmed in its own language—
machine language—and that is the aim of this book, to teach you just how to program
your micro at its very own machine level.

The text assumes that you have some knowledge of CBM BASIC but know absolutely
nothing about machine code. I have tried very hard to write in a non-technical language
and to set the chapters out in a logical manner, introducing new concepts in digestible
pieces as and when they are needed, rather than devoting chapters to specific items.
Wherever possible practical programs are included to bring home the point being made,
and in most instances these are analysed and the function and operation of each
instruction explained.

Commodore 64 Assembly Language is completely self-contained, includes a full
description of all the machine code instructions available and suggests suitable
applications for their use. After a ‘bit of theory’ in the opening chapters, the main registers
of the 6510 are introduced and descriptions given of how, when and where machine code
routines can be entered. There is also a simple machine code monitor program to facilitate
the entry of such routines.

After discussing the way in which the 6510 flags certain conditions to the outside world,
some of the modes of addressing the chip are described. Machine code addition and
subtraction are introduced and the easiest ways of manipulating and saving data for
future use by the program and processor are described. Machine code loops (equivalent to
BASIC’s FOR . . . NEXT . .. STEP) show how sections of code may be repeated, and
subroutines and jumps take the place of BASIC’s GOSUB and GOTO. Alsoincludedisa
look at some of the more complicated procedures such as multiplication and division
using the shift and rotate instructions, and producing sprites in machine code illustrates
just how fast real time graphics can be!

The Kernal is a very important part of the Commodore’s set-up, so no expense has been
spared in explaining every Kernal routine in detail. Practical examples show how the more
important ones can be used.

Finally, a comprehensive set of appendices provide a quick and easy reference to the
sorts of things you’ll need to ‘want to know quickly’ when you start writing your very own
original machine code programs!

Highbury, February 1984 Bruce Smith

DEDICATION

To Christie,
Para sa paburito kung Pamankin.

I Machine Code or
Assembly Language

The 6510 microprocessor within your Commodore 64 microcomputer can perform 152
different operations, with each one being defined by a number (or operation code) in the
range 0 to 255. To create a machine code program we need simply to POKE successive
memory locations with the relevant operation codes—*‘opcodes’ for short. For example,
to store the value 5 at location 1500 (in other words to do the machine code equivalent
of BASIC’s POKE 1500,5) we would need to POKE the following bytes into
memory:

169
S
141
220
S
and then ask the Commodore’s 6510 to execute them. Not exactly clear is it! That’s where
assembly language comes in.

Assembly language allows us to write machine code in an abbreviated form which is
designed to represent the actual operation the opcode will perform. This abbreviated form
is known as a mnemonic ard it is the basic building block of assembly language (or
assembler) programs.

We could rewrite the previous machine code in assembler like this:

LDA #5
STA 1500

and it can be read as:

Load the accumulator with the value 5

Store the accumulator’s contents at location 1500

As you can see from the bold letters, the mnemonic is composed of letters in the
instruction, which greatly enhances its readability.

Once the assembler program is complete, it can be converted into machine code in one
of two ways.

1. With the aid of a mnemonic assembler. This is itself a program (written in machine
code or BASIC) which transforms the assembly language instructions (known as the
source) into machine code (known as the object code) and POKEs them into memory
as it does so.

2. By,lookingup the relative codes in a table and then POKEing them into memory using
a monitor program or a DATA-reading FOR. . NEXT loop. Full details of this
method are given in Chapter 6, which also includes a simple monitor program.

All the programs in this book are listed in their DATA statement, machine code and
assembler forms, so they can be entered by any of the above methods—simply extract the
information you require.

Appendix 3 provides comprehensive user information about a// of the 6510’s opcodes,
so don’t worry too much if some of this seems a bit foreign at the moment—we’ll soon
change that!

WHY MACHINE CODE?

A question often asked is, “Why bother to program in machine code at all?’ Well, one
reason might be that you’re fed up with BASIC and want to broaden your horizons, but,
from the practical point of view there are two main reasons for programming in machine
code.

Firstly speed. Machine code is executed very much faster than an interpreted high level
language such as CBM BASIC. Remember that the BASIC interpreter is itself written in
machine code, and that the BASIC statements and commands are simply pointers to the
machine code routines in the ROM which actualy carry out the specified functions. It is
because each statement and command must first be identified and located within the
ROM that a decrease in operational speed occurs. Secondly, learning machine code
allows you to understand just how your computer works, and lets you create special
effects and routines not possible within the constraints imposed by the limited set of
BASIC instructions. Machine code allows you to control your Commodore 64 rather than
it controlling you!

2 Numbers

BINARY, HEX AND DECIMAL

We have seen that the instructions the Commodore 64 operates with consist of sequences
of numbers. But just how are these numbers stored internally? Well, not wishing
to baffle you with the wonders of modern computer science, let’s try to simplify
matters somewhat and say that each instruction is stored internally as a binary number.
Decimal numbers are composed of combinations of ten different digits, thatis 0, 1,2, 3,4,
5,6,7,8 and 9 and are said to work to a base of 10. As its name suggests, binary numbers
work to a base of 2 where only the digits @ and 1 are available. These two numbers
represent the two different electrical conditions that are available inside the Commodore
64, namely 0 volts (off) and 5 volts (on).
The machine code described in Chapter 1 is therefore represented internally as:

Mnemonic Machine code Binary
LDA 169 10101001
$5 05 00000101
STA 141 10001101
00 00 00000000
$15 15 00010101

As can be seen, each machine code instruction is expressed as eight binary digits, called
bits, which are collectively termed a byte.

Usually each of the bits in a byte is numbered for convenience as follows:

7 6 5 4 3 2 1 0

The number of the bit increases from right to left, but this is not so odd as it may first
seem.

Consider the decimal number 2934, we read this as two thousand, nine hundred and
thirty four. The highest numerical value, two thousand, is on the left, whilst the lowest,
four, is on the right. We can see from this that the position of the digit in the number is
very important, as it will affect its weight.

The second row of Table 2.1 introduces a new numerical representation. Each base
value is postfixed with a small number or power, which corresponds to its overall position
in the number. Thus 10% read as ten raised to the power of three, simply implies
10 X 10 X 10 = 1000.

Table 2.1

Value 1000s | 100s | 10s | 1s
Representation 10° 10> | 10' | 10°
Digit 2 9 | 3| 4

In binary representation, the weight of each bit is calculated by raising the base value,
two, to the bit position (see Table 2.2). For example bit number 7 has a notational
representation of 2’ which expands to: 2 X2 X 2 X 2 X2 X 2 X 2 = 128!

Table 2.2
Bit number 7 6 (S5S|4132]|1]6@0
Representation 27 28252022222]2°
Weight 128] 64132116 8| 4 |2 |1

BINARY TO DECIMAL CONVERSION

As it is possible to calculate the weight of individual bits, it is a simple matter to convert
binary numbers into decimal numbers. The rules for conversion are:

If the bit is sez—that is it contains a 1—add its weight
If the bit is clear—that is it contains a @&—ignore its weight

Let us try an example and convert the binary number 10101010 into its equivalent
decimal value.
1 X 128(2") = 128
X 642= 0
I X 322= 32

0x 162)= @
1x 8(2)= 8
00X 42H= 0
1x 229%= 2
oX 1= ©

170

Therefore 10101010 binary is 170 decimal.

Similarly 11101110 represents:

1 X 128(27) = 128

1 X 64(2% = 64
1 X 322%)= 32
0x 162Y= 0
11X 8(2)= 8
11X 42)= 4
Ix 22h= 2
o0xX 1= 0

238

in decimal.

DECIMAL TO BINARY CONVERSION

To convert a decimal number into a binary one, the procedure described earlier is
reversed—each binary weight is subtracted in turn. If the subtraction is possible, a | is
placed into the binary column and the remainder carried down to the next row where the
next binary weight is subtracted.

If the subtraction is not possible, a @ is placed in the binary column and the number
moved down to the next row. For example, the decimal number 141 is converted into
binary as in Table 2.3.

Table 2.3
Decimal Binary Binary Remainder
number weight

141 128(27) 1 13

13 64(2°) 0 13

13 32(2%) 0 13

13 16(2%) () 13

13 8(2%) 1 5

5 4(2%) 1 1

| 2(2"Y 0 1

1 1(2°) 1 0

Therefore 141 = 10001101 binary.

BINARY TO HEX CONVERSION

Although binary notation is probably as close as we can come to representing the way
numbers are stored within the Commodore 64, you will no doubt have noticed that the
machine code examples include some groups of two characters preceded by a dollar sign,
‘$’. This type of number is known as a hexadecimal number, or hex for short, and its value
is calculated to a base of 16! This, at first sight, may seem singularly awkward, howeverit
does present several distinct advantages over binary and decimal numbers as we shall see.

7

Sixteen different characters are required to represent all the possible digits in a hex
number. To produce these, the numbers 0 to 9 are retained, and the letters A, B, C, D, E

and F are used to denote the values 10 to 15. Binary conversion values are shown in Table
24.

Table 2.4
Decimal Hex Binary
0 0 0000
1 | 0001
2 2 0010
3 3 0011
4 4 0100
5 5 9101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

To convert a binary number into hex, the byte must be separated into two sets of four bits,
termed nibbles, and the corresponding hex value of each nibble extracted from Table 2.4.

Example Convert 0110 1001 to hex:

High nibble Low nibble

0110 1001

69
Because it is not always apparent whether a number is hex or decimal (as in the example
above), hex numbers on the Commodore are always preceded by a dollar sign—therefore
01101001 is $69 (read hex six nine).
By reversing the process, hex numbers can readily be converted into binary.

Example Convert $AF to binary:
/ AF\

10101111

1010 1111

It should now be apparent that hex numbers are much easier to convert to binary (and
vice versa), than their decimal counterparts, and the maximum binary number possible
with one byte, 11111111, requires just two hex digits, $FF.

HEX TO DECIMAL CONVERSION

For the sake of completeness, let’s see how hex and decimal numbers may be converted.
To transform a hex number into decimal, the decimal weight of each digit should be
summed.

Example convert $31A to decimal:

The 3 has the value 3 X 162 =3 X 16 X 16 = 768
The 1 has the value 1 X 16! =1 X 16 = 16
The A has the value 1 X 16° = 10 X | = 10

add these together to give $31A = 794 decimal.

Converting decimal to hex is a bit more involved and requires the number to be
repeatedly divided by 16 until a value less than 16 is obtained. This hex value is noted, and
the remainder carried forward for further division. This process is continued until the
remainder itself is less than 16.

Example convert 4872 to hex:

4072 + 16 + 16 = 15=F (remainder = 4072 — (15 X 16 X 16) = 232)
232+ 16=14=E (remainder = 232 — (14 X 16) = 8)
8=28

Therefore 4072 decimal is $FES.

Both of these conversions are a little long winded (to say the least!) and after all we do
have a very sophisticated microcomputer available to us, so let’s make it do some of this
more tedious work!

10

J It All Adds Up!

BINARY ARITHMETIC

Please don’t be put off and skip this chapter simply because it contains that dreaded
word—arithmetic. The addition and subtraction of binary numbers is simple, in fact if
you can count to two you will have no problems whatsoever! Although it is not vital to be
able to add and subtract ones and noughts by ‘hand’, this chapter will introduce several
new concepts which are important, and will help you in your understanding of the next
few chapters.

ADDITION

There are just four, simple, straightforward rules when it comes to adding binary
numbers. They are:

Ealadi Sl
—_ - S
+ + + +
—_—_ee
[T T
m——e
e’

=)

Note, that in rule 4, the result of 1 + 1is (1)0. The 1 in brackets is called a carry bit, and
its function is to denote an overflow from one column to another, remember, 1@ binary is 2
decimal. The binary ‘carry’ bit is quite similar to the carry that can occur when adding two
decimal numbers together whose result is greater than 9. For example, adding together
9 + 1 we obtain a result of 10 (ten), this was obtained by placing a zero in the units column
and carrying the ‘overflow’ across to the next column to give: 9 + 1 = 10. Similarly, in
binary addition when the result is greater than 1, we take the carry bit across to add to the
next column.

Let’s try to apply these principles to add together two 4 bit binary numbers, 0101 and
0100.

0101 (35)
+ 0100 (34)
1001 (%9)

Reading each individual column from right to left:

First column: 1+0
Second column: @ + 0
Third column: 1+1

1

0

("N@))]
Fourth column: 0+0=0+(1) =1

o

In this example a carry bit was generated in the third column, and was carried across and
added to the fourth column.

Adding 8 bit numbers is accomplished in a similar manner:

01010101 (355)

+ 01110010 (872)

11000111 (8C7
SUBTRACTION

So far we have been dealing with positive numbers, however in the subtraction of binary
numbers we need to be able to represent negative numbers as well as positive ones. In
binary subtraction though, a slightly different technique from normal everyday
subtraction is used, in fact we don’t really perform a subtraction at all—we add the
negative value of the number to be subtracted. For example, instead of executing 4 — 3
(four minus three) we actually execute 4 + (=3) (four, plus minus three)! Figure 3.1 will
hopefully eradicate any confusion or headaches that may be prevailing!

Minus or negative direction Positive direction

Move 4 positive >
< Add 3 negative

Figure 3.1 Diagramatic representation of 4 + (— 3).

We can use the scale to perform the example 4 + (—3). The starting point is zero. First
move to point 4 (i.e. four points in a positive direction) and add to this —3 (i.e. move three
points in a negative direction). We are now positioned at point 1 which is, of course, where
we should be. Try using this method to subtract 8 from 12, to get the principle clear in your
mind.

Okay, lets now see how we apply this to binary numbers, but first, just how are negative
numbers represented in binary? Well, a system known as signed binary is employed, where
bit 7, known as the most significant bit (msb), is used to denote the sign of the number.
Traditionally a ‘@’ in bit 7 denotes a positive number and a ‘1’ a negative number. For
instance, in signed binary:

1,0000001
I Bits 0-6 give value = |
Sign bit = 1, therefore number is negative

so, 10000001 = —1. And:

ariintl l!
Bits 0-6 give value = 127

Sign = @ therefore number is positive

therefore 1111111 = 127.

However, just adjusting the value of bit 7 as required, is not an accurate way of
representing negative numbers. What we must do to convert a number into its negative
counterpart, is to obtain its two’s complement value. To do this simply invert each bit and
then add one.

To represent —3 in binary, first write the binary for 3:

00000011

Now invert each bit. (Replace each @ with a 1, and each 1 with a @—this is known as its
one's complement.

11111100
Now add 1I:

11111100
+ 1
11111101
Thus, the two’s complement value of —3=11111101. Let us now apply this to our original
sum 4 + (=3):
4) 00000100
(-3) 11111101
(Now add) (1)0000000 1
We can see that the result is 1 as we would expect, but we have also generated a carry bit
due to an overflow from bit 7. This carry bit can be ignored for our purposes at present,
though it does have a certain importance as we shall see later on.
A further example may be of use. Perform 32 — 16 i.e. 32 + (—16).
32 in binary is:
00100000
16 in binary is:
00010000

The two’s complement of 16 is:

11101111
+ 1
11110000

Now add the two together:

(32) 00100000
(—16) + 11110000
(16) (H00010000

Ignoring the carry, we have our result, 16.

We can see from these examples that, using the rules of binary addition, it is
possible to add or subtract signed numbers. If the ‘carry’ is ignored, the result, including
the sign, is correct. Thus it is also possible to add two negative values together and still

obtain a correct negative result. Using two’s complement signed binary let’s perform
(=2) +(=2).

2 in binary is:
00000010

The two’s complement value is:

11111101
+ 1
1111111e

We can add this value twice to perform the addition:

(-2) 111111180
(-2) + 111111180
(h11111100

Ignoring the carry, the final result is —4. You might like to confirm this by obtaining the
two’s complement value of —4 in the usual manner.

BINARY CODED DECIMAL (BCD)

So far we have been dealing with the binary representation of hexadecimal numbers,
which is the normal way the Commodore 64 deals with its instructions and numbers.
However, on certain occasions, such as when dealing with business applications, where it
is essential to retain every significant digit in a result, it would be advantageous to work in
a form of decimal binary where only the decimal digits @ to 9 are available. Binary Coded
Decimal, or BCD for short, allows us to do this. Table 3.1 shows the BCD-binary
representations. As can be seen, only the binary values 000 through to 1001 are required,
and the combinations 1010 to 1111 are unused and are not legal values in BCD.

Table 3.1

BCD digit Binary

0 0000
| 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
not used 1010
not used 1011
not used 1100
not used 1101
not used 1110
not used 1111

As only four binary bits are required to code any BCD digit, two BCD digits can be
included in a single byte if required, this is known as packed BCD.

Converting BCD to binary and vice versa is performed as described in the previous
hexadecimal examples; split the byte in half and convert each nibble separately.

13

Example convert 16016011 to BCD:

1001

\93 ‘/Mll

Example convert 47 BCD to binary:

/47
0100 \0111
\01000111/

We shall see how the Commodore distinguishes between BCD and normal hex binary in
Chapter 7, but first some sums!

BCD ADDITION

We can now try adding two BCD binary values, consider 8 BCD + 4 BCD:

8 BCD 0000 1000
4 BCD 0000 0100
Adding together 0000 1100

We have obtained an illegal result, in fact we have obtained the ‘binary’ sum and not the
‘BCD’ sum. The result should of course be 12 BCD which is 9001 0010 in BCD binary. In
order to reach the correct value, the redundant binary values (1010 to 1111) must be
‘jumped over’. To do this 6 (or 0110 binary) must be added. Thus:

0000 1100 (binary result)

000001190 (BCD correction)

00010010 (result 12 BCD)

We can try another example which includes this decimal adjust—15 BCD + 10 BCD:

15 BCD 0001 0101
10 BCD 0001 0000
Binary result 00100101 = 25 BCD

In this example the correct result has been obtained without adding the decimal adjust.
This is because the addition was such that it did not encounter any of the illegal BCD
values. This means that when adding two BCD digits, the decimal adjust value need only
be added if a nibble value greater than 9 occurs in the result.

BCD SUBTRACTION

BCD subtraction is not so much difficult as it is involved. It is performed along the lines
of binary subtraction, but instead of adding the two’s complement value of the negative
number, you add its ten’s complement. The best way to explain the process is by working
through an example. Let’s choose a simple subtraction first of all, 9 BCD — 4 BCD:

9 BCD 0000 1001
4 BCD 0000 0100

To find the one’s complement of 4 BCD invert each bit:
11111011
and add one to obtain the ten’s complement (and thus —4BCD):
11111011
1
11111100

Perform the subtraction by adding the two values:

9 BCD 0000 1001
-4 BCD 11111100
()o0000 0101
Ignore the carry to obtain the result: 5 BCD.
Simple so far, but what if we encounter something like 11 BCD — 5 BCD? Here

adjustment will be. necessary to take into account the six unused binary codes 1010 to
1111. Instead of adding the decimal adjustment, it must be subtracted.

11 BCD 0001 0001
-5 BCD 11rrrt1etl
(10000 1100

Ignoring the carry, we now need to convert the illegal code to BCD by subtracting 6 (or
rather adding its two's complement).

Binary result 0000 1100
-6 111110610
(1) 0600 01190

Result = 6 BCD, which is correct.

16

4 I¥’s Logical

LOGICAL OPERATIONS

The theory of logic is based on situations where there can only ever be two possibilities.
namely yes and no. In binary terms these two possibilities are represented as | and 0.

There are three different logical operations that can be performed on binary numbers,
they are AND, OR and EOR. In each case the logical operation is performed between the
corresponding bits of two separate numbers.

AND

The four rules for AND are:
1. 0ANDO=20

2. 1ANDO=0

3. OANDI1 =0

4. 1ANDI=1

As can clearly be seen, the AND operation will only generate a 1 if both of the
corresponding bits being tested are 1. If a @ exists in either of the corresponding bits being
tested, the resulting bit will always be 0.

Example AND the following two binary numbers:

1010
AND 0011
0010

In the result only bit 1 is set, the other bits are all clear because in each case one of the bits
being tested contains a 0.

The main use of the AND operation is to ‘mask’ or ‘preserve’ certain bits. Imagine that
we wish to preserve the low four bits of a byte (low nibble) and completely clear the high
four bits (high nibble). We would need to AND the number with @0@01111. If the other
byte contained 10101100 the result would be given by:

10101100 (byte being tested)
AND 00001111 (mask)
00001100

the high nibble is cleared and the low nibble preserved!

OR

The four rules for OR are:

1. OORO=0
2. 10R0=1
3. OOR1=1
4. 10RI1=1]

Here the OR operation will result in a 1 if either or both the bits containa 1. A @ will only
occur if neither of the bits contains a 1.

Example OR the following two binary numbers:

1010
OR 0011
1011

Here, only bit 2 is clear, the other bits are all set as each pair of tested bits contains at
least one 1.

One common use of the OR operation is to ensure that a certain bit (or bits) is set—this
is sometimes called ‘forcing bits’. As an example, if you wish to force bit @ and bit 7, you
would need to OR the other byte with 10000001

001101190 (byte being tested)
OR 10000001 (forcing byte)
10110111

The initial bits are preserved, but bit @ and bit 7 are ‘forced’ to 1.

EOR

Like AND and OR, this donkey sounding operation has four rules:
I. OEORO=90

2. 1EORQ=

3. OEOR1=1

4, 1EORI1=0

This operation is exclusive to OR, in other words, if both bits being tested are similar a @
will result. A 1 will only be generated if the corresponding bits are unlike.

Example EOR the following two binary numbers:

This instruction is often used to complement, or invert, a number. Do thisby EORing the
other byte with 11111111,

10011000 (byte being inverted)
EOR 11111111 (inverting byte)
01100111

Compare the result with the first byte, it is completely opposite.

5 The Registers

To enable the 6510 to carry out its various operations, it contains within it several special
locations, called registers. Because these registers are internal to the 6510, they do not
appear as part of the Commodore 64’s memory map (see Appendix 5), and are therefore
referred to by name only. Figure 5.1 shows the typical programming model of the 6510.
For the time being we need only concern ourselves with the first four of these six registers,
they are the accumulator, the X and Y registers and the Program Counter.

7 g
[A l Accumulator
X
Y Index registers

| P | status register
8
m S | stack Pointer
15
| PCH | PCL | program Counter

Figure 5.1 The registers—a typical programming model.

THE ACCUMULATOR

We have already mentioned the accumulator (or ‘A’ register) several times in the opening
chapter. As you may have already gathered, the accumulator is the main register of the
6510, and like most of the other registers it is eight bits wide. This means that it can hold a
single byte of information at any one time. Being the main register, it has the most
instructions associated with it, and its principle feature is that all arithmetic and logical
operations are carried out through it.

The accumulator’s associated instructions are listed in Table 5.1. It is not absolutely
vital to be familiar with these at present, but they are included now as an introduction.
18

Table 5.1

Accumulator instructions

ADC Add with carry PHA Push accumulator

AND Logical AND PLA Pull accumulator

ASL Arithmetic shift left ROL Rotate left

BIT Compare memory bits ROR Rotate right

CMP Compare to accumulator SBC Subtract with carry

EOR Logical EOR STA Store the accumulator

LDA Load the accumulator TAX Transfer accumulator to X register
LSR Logical shift right TAY Transfer accumulator to Y register
ORA Logical OR TXA Transfer X register to accumulator

TYA Transfer Y register to accumulator

THE INDEX REGISTERS

There are two further registers in the 6510 which can hold single byte data. These are the X
register and the Y register. Theyare generally termed the ‘index registers’, because theyare
very often used to provide an ‘offset’ or index from a specified base address. They are
provided with direct increment and decrement instructions—something the accumulator
lacks—so are also quite often used as counters. However, it is not possible to perform
arithmetic or logical operations in either index register, but there are instructions to
transfer the contents of these registers into the accumulator and vice versa.
The instructions associated with both registers are given in Table 5.2.

Table 5.2

X register instructions Y register instructions

CPX Compare X register CPY Compare Y register

DEX Decrement X register DEY Decrement Y register

INX Increment X register INY Increment Y register

LDX Load the X register LDY Load the Y register

STX Store the X register STY Store the Y register

TAX Transfer accumulator to X reg. TAY Transfer accumulator to Y reg.

TXA Transfer X reg. to accumulator TYA Transfer Y reg. to accumulator
TSX Transfer Status to X register
TXS Transfer X register to Status

THE PROGRAM COUNTER

The Program Counter is the 6510’s address book. It nearly always contains the address in
memory where the next instruction to be executed sits. Unlike the other registers,itisa 16
bit register, consisting physically of two 8 bit registers. These two are generally referred to
as Program Counter High (PCH) and Program Counter Low (PCL).

6 A Poke at Machine Code

Now that we have got some of the basics out of the way, why don’t we write our first

machine code program, after all, that’s what this book is all about!

Enter Program 1—you can omit the REM statements if you like. The (hex) machine
code and assembler versions of the instructions are included as REMs alongside the

DATA statements (which are, of course, in decimal).

Program 1

16 REM * * MACHINE CODE DEMO * *

20 REM * PRINT ‘A’ ON SCREEN *

30 CODE = 828

40 FOR LOOP=0TOS

50 READ BYTE

60 POKE CODE + LOOP, BYTE

70 NEXT LOOP

80

90 REM * * MACHINE CODE DATA * *
100 DATA 169,65 REM $A9, $41 — LDA #ASC*“A”
110 DATA 32,210,255 REM $20, $D?®, SFF — JSR 65490
120 DATA 96 REM $60 — RTS
130
149 REM * * EXECUTE MACHINE CODE * *

150 SYS 828

The function of this short program is to print the letter ‘A’ on the screen. Nothing
spectacular, but the program does incorporate various features that will be common to all

your future machine code programs. The meaning of each line is as follows:

Line 30
Line 40
Line 50
Line 60
Line 70
Line 100
Line 110

20

Declare a variable called CODE to denote where the machine code is placed.

Set up a data-reading loop.

Read one byre of machine code data.

POKE byte value into memory.

Repeat loop until finished.

Machine code data—place ASCII code for A in accumulator.
Machine code data—print A on the screen.

Line 120 Machine code data—Return to BASIC.
Line 150 Execute the machine code

To see the effect of the program just type in RUN, hit the RETURN key and voila—the A
should be sitting just above the ‘READY’ prompt!

CODE-THE PROGRAM COUNTER

It should be fairly obvious that the machine code we write has to be stored somewhere in
memory. In all the programs in this book I have used the BASIC variable ‘CODE’ as a
pointer to the start address of the memory where the machine code is to be placed. (CODE
acts, in effect, rather like the processor’s own Program Counter.) You may wish to use
your own variable name—and this is perfectly acceptable. For example, you may consider
that PC is a more appropriate name for the start of the code—oreven MACHINECODE.
It does not really matter. What does matter is that you should get into the habit of using
the same variable name in a// your programs, and thus avoid ambiguity.

The value given to CODE must be chosen with care. It would be easy enough to allocate
an address which causes the machine code to overwrite another program or even the
assembly program itself! In Program | CODE is set to 828 using the normal variable
assignment statement:

CODE = 828

and the six bytes of machine code are stored there—or more correctly—in the six bytes start-
ing at 828 (828 to 833). If you look at Figure 6.1 you will notice that this area is in the fape
input/output buffer. The tape buffer comprises locations 828 to 1019 (3033C-$03FB),
making a total of 192 bytes available for machine code programs (provided, of course, the
program does not access the cassette, thereby overwriting the machine code stored in the
buffer). There are also nine free bytes below the tape buffer—from 820 ($0334) onwards.
As Program 1 is only six bytes long, it could be placed there.

Screen memory

1024 $09400
Unused
1920 $03FC

828 $033C

Unused
820 $0334

System addresses

Figure 6.1 Place machine code in tape buffer.

BASIC programs are stored in the user RAM which stretches from 2048 ($0800) to
40959 ($9FFF)—a massive 38K. It is quite feasible to place your machine code programs
here—but you must avoid conflict with BASIC. If your program is entirely machine code
then no problems should occur, however, if it is used in conjunction with BASIC, then it
must be assembled well out of harm’s way. Perhaps the best area is in the middle of the
user RAM from location 21504 ($5400) onwards, so that it is above all but the longest
BASIC programs and below the downgrowing BASIC stack which is used for holding
string and variable data (see Figure 6.2).

21

BASIC interpreter
ROM

49960 $A0DD
BASIC stack

21504 I $5400
BASIC programs
2048 $080D
Screen memory
10924 $040p

Figure 6.2 Place machine code in mid-RAM to avoid BASIC corruption.

A slightly more complex method of reserving space involves resetting the value of
MEMSIZ. This is the label associated with locations 55 ($0037) and 56 ($0038), which
hold the address of the highest memory location that may be used by a BASIC program.
By resetting these two locations to point lower down the memory map, it is possible to
create space above the BASIC user RAM and below the BASIC ROM as shown in Figure
6.3. Program 2 illustrates how this technique can be used.

BASIC interpreter
ROM

40959 Default MEMSIZ

40447 New MEMSIZ

BASIC program area

2048

Screen memory

Figure 6.3 Place machine code above MEMSIZ.
22

Program 2

10 REM * * PLACE M/C ABOVE MEMSIZ * *
20 REM * * RESET MEMSIZ TO 40447 * *
30 REM * * WHICH IS $9DFF * *

40 POKE 55,255 REM low byte
50 POKE 56,157 REM high byte
60 CLR REM clear stack
70 CODE = 40448 : REM set PC

80 FOR LOOP=0TO S5

90 READ BYTE

100 POKE CODE + LOOP, BYTE
116 NEXT LOOP

120

130 REM * * M/C DATA * *

140 DATA 169,147 REM $A9, $93 — LDA #8393
150 DATA 32,210,255 REM $20, $D2, SFF — JSR 65490
160 DATA 96 REM $60 — RTS

170

180 SYS CODE

As a BASIC loader program is being used, MEMSIZ can be altered by the BASIC
program itself (lines 40 and 50). If a pure machine code program is being loaded into
memory, MEMSIZ can be altered in Immediate Mode by:

POKE 55, 255
POKE 56, 157
CLR

Note that in both instances a CLR command is also entered (line 60 in the program). This
ensures that any ‘old” BASIC stack values are erased, as are the pointers associated with
them. These are then reset as required by the new value of MEMSIZ. Line 70 sets CODE
to the value of MEMSIZ +1 before the DATA is READ and POKEd into thé space which
has been created.

You may well be wondering just what new value should be assigned to MEMSIZ. Well,

this will depend on the length of the machine code you wish to place above it. The formula
is simply:

40959 - Program length

(where 40959 is the default value of MEMSIZ). In general, though, itis best to add several
bytes to the program length to be safe. Alternatively, just decide on an arbitrary amount of
memory to keep clear and use this value. In the above example I decided to reserve 512
bytes, therefore the new value of MEMSIZ is given by:

40959 - 512 = 40447

$9FFF - $200 = 9DFF

Next comes the question of how to calculate the individual byte values to be POKEd
into locations 55 and 56. If we are entering them directly in hex format, then all we need to

23

do is to split the address into its two constitutent bytes and POKE these into memory.
However, this is not possible in BASIC, so we need to calculate the decimal value of each
byte as follows:

High byte 40447 / 256 = 157.996094 = 157
Low byte 40447 — (157 * 256) =255

The low byte (255) is POKEd into location 55 and the high byte (157) into location 56.

Oh, by the way this program produces a ‘CLR’ (line 140), which is the same as that
obtained by pressing the SHIFT and CLR/HOME keys together. The ASCII code for
‘CLR/HOME’ is 147. (Line 1560 will be explained later!)

Finally, there is one more area for your machine code programs which is untouched by
the Commodore 64. This is memory in free RAM, from 49152 ($C000) to 53247 ($CFFF),
and provides a total of 4096 bytes (see Figure 6.4). Program 3, which switches to lower
case text, uses this area.

Input/output

53247 $CFFF

49152 $copp

BASIC interpreter ROM

40960 $A000

BASIC program area

Figure 6.4 Place machine code in 'free’ RAM.

Program 3

10 REM * * PLACE M/C IN FREE RAM * *
20 REM * * FROM 49152 ONWARDS * *

30 CODE = 49152

40 FORLOOP=0TOS

50 READ BYTE

60 POKE CODE + LOOP, BYTE

70 NEXT LOOP

80

24

990 REM * * M/C DATA * *

100 DATA 169,14 REM $A9, $0E — LDA #$0E
110 DATA 32,210,255 REM §20, $D2, $FF — JSR 65490
120 DATA 96 REM $60 — RTS

130

140 SYS CODE

To get back to upper case substitute 142 (8E) for the 14 in line 100.
To summarize then, the following areas of memory can be considered ‘safe’ for machine
code:

1. Tape 170 buffer (828-1019) (if not using cassette).
2. Unused RAM in locations:

251-254 ($0OFB-$00FE)
679-767 ($02A7-$02FF)
820-827 ($0334-$033B)

1020-1023 ($03FC-$03FF)

3. In the middle of user RAM.
4. Above reset MEMSIZ.
5. In ‘free’ RAM between 49152 ($C000) and 53247 ($CFFF).

Most Programs in this book use the ‘free’ RAM area.

ENTERING MACHINE CODE

The most obvious way of entering machine code is to write a program that just contains
line after line of POKEs. Program 4 shows how this method can be used to produce a
machine code program that switches on the reverse character mode.

Program 4

106 REM * * RVS ON USING POKE:s * *
20 REM * * PLACE M/C IN TAPE BUFFER * *

30 POKE 828,169 REM §$A9 — LDA #RVS ON’
40 POKE 829,18 REM §12

50 POKE 830,32 REM §$20 — JSR 61898

60 POKE 831,202 REM $CA

70 POKE 832,241 REM $F1

80 POKE 833,96 REM $60 — RTS

90 SYS 828

To see the effect of this, add the following lines from Program 1 to write an ‘A’ on the
screen:

72 POKE 833,169 REM $A9 — LDA #8341
74 POKE 834,65 REM 841
76 POKE 835,32 REM §32 — JSR 65490
78 POKE 836,210 REM $D2

25

80 POKE 837,255 REM S$FF
82 POKE 840,96 REM $60 — RTS
As you may be beginning to appreciate, entering machine code in this manner is
somewhat laborious, particularly when it is a very long program. In the earlier programs
the machine code was placed in a series of DATA statements, which were subsequently
READ from within a FOR ... NEXT loop and then POKEd into memory using the loop
counter (LOOP) as an offset from the base address defined by CODE. This ensures that
each byte is placed into consecutive memory locations.
Notice also, that in each program, every machine code operation was placed in a

separate DATA statement, and was accompanied by a REM statement giving the same
information in both the hex and mnemonic formats, for example:

100 DATA 169,65 REM §A9, $41 — LDA #ASC (*A”)

The REM items are included for flexibility. Each of the programs can be entered and RUN
exactly as it stands, thus allowing you to get programming in machine code straightaway;
however, if at some time in the future you invest in an Assembler program then you'll need
to know the mnemonic versions. (The hex values are included for a reason that will soon
become apparent!)

It is a good idea to get into the habit of including this type of REM statement into your
own programs simply because it adds to the program’s readability. Imagine being
presented with a program that includes a single DATA statement:

100 DATA 169, 14, 32, 208, 241, 169, 146, 32, 202, 241, 96

Its not particularly clear what’s being performed, and if you need to debug it, well . . .!

One final point regarding the loop count. This should be set to the total number of data
bytes minus one. Remember that the loop counter itself must always start at ‘@’ to ensure
that the very first byte is placed at the address specified by CODE—CODE + LOOP =
828 + 0 = 828 (if CODE = 828).

THE HEX LOADER PROGRAM

An easier method of entering machine code is to use a monitor or hex loader program. This
is a program which allows machine code to be entered as a series of hex numbers. Program
5 is a simple example.

Program 5§

10 REM * * COMMODORE 64 HEX LOADER * *
20 PRINT CHRS$(147)

30 PRINT SPC(8)

40 PRINT “COMMODORE 64 MONITOR™

50 PRINT : PRINT

60 INPUT “ASSEMBLY ADDRESS”; A$

70 ADDR = VAL(A$)

80 REM * * MAIN PROGRAM LOOP * *

99 PRINT ADDR; “ :$";
100 REM * * GET HIGH NIBBLE OF BYTE * *
110 GOSUB 2000
120 HIGH = NUM
130 PRINT Z8$;

26

140 REM * * GET LOW NIBBLE OF BYTE * *
150 GOSUB 2000

160 LOW = NUM

170 PRINT Z$

180 REM * * CALCULATE BYTE AND UPDATE * *
199 BYTE = HIGH * 16 + LOW

200 POKE ADDR, BYTE

210 ADDR = ADDR + |

220 GOTO 80

300

500 REM * * SUBROUTINE * *
2000 GET Z$

2010 IF Z$ = “S” THEN PRINT “STOP” : END
2020 IF Z$ > “F” THEN GOTO 2000

2030 IF Z$ = “A” THEN NUM = 10 : RETURN
2040 IF Z$ = “B” THEN NUM = 11 : RETURN
2050 IF Z$ = “C” THEN NUM = 12 : RETURN
2060 IF Z$ = “D” THEN NUM = 13 : RETURN
2070 IF Z$ = “E” THEN NUM = 14 : RETURN
2080 IF Z$ = “F” THEN NUM = 15 : RETURN
2090 IF Z$ = ** THEN GOTO 2000

2160 NUM = VAL(Z$) : RETURN

The meaning of each line is as follows:

Line 20 Clear screen and HOME cursor.
Line 40 Print heading.

Line 50 Print two linefeeds.
Line 60 Get start address for machine code.
Line 70 Convert string into numeric value.

Line 90 Print address and ‘$’.

Line 118 Get high nibble of hex byte.

Line 120 Save its value in HIGH.

Line 130 Print high nibble.

Line 150 Get low nibble of hex byte.

Line 160 Save its value in LOW.

Line 170 Print low nibble.

Line 180 Calculate byte value.

Line 2686 POKE it into memory.

Line 216 Increment memory counter.

Line 220 Repeat.

Line 2000 Get key.

Line 2010 If it’s an S then end program.

Line 2020 If it’s greater than F go back to 2000 and ignore it.
Line 2030-2080 1If it’s in the range A to F declare its value and return.
Line 2090 If no key pressed go back to 2000.

Line 2100 Calculate value and return.

Enter and RUN the program. After it displays the heading you are asked to input an
*Assembly address’. This is simply the address that you would normally assign to CODE,
and should be entered as a decimal value. On hitting RETURN the first program address
is displayed followed by a dollar sign, $. All you now have to dois to type in the hex digits.
After you type the second digit, the byte value is calculated and then POKEd into
memory. The next address is then displayed. The program checks for (and ignores) non-
hex characters. To leave the monitor at any time type ‘S’ (for Stop!). Figure 6.5shows the
result of a typical monitor run. Once entered the machine code can be tested using a SYS
call to the address of the first byte of machine code.

COMMODORE 64 MONITOR
Assembly address ? 828

828 : $A9
829 : $41

830 : 320

831 : §D2
832 : $FF
833 : $60

834 : § STOP

READY.

Figure 6.5 A typical monitor run.

CALLING MACHINE CODE

To execute a machine code program the BASIC statement ‘SYS’ is used. To tell the
BASIC interpreter just where the machine code is located, the SYS statement must be
followed by a label or an address. So, to execute the machine code generated by the
assembly language program type in either:

SYS CODE

which is the label name which marks the start of the assembly language program, or:
SYS 49152

which is the start address of the machine code itself.

GETTING IT TAPED

It is a very good idea, as a matter of routine, to get into the habit of saving your machine
code programs on tape before you actually RUN them. This may seem a bit back to front
because you normally would not do this in BASIC until you had RUN, tested and
debugged the program. The trouble with running a machine code program for the first
time, though, is that if it does contain any bugs it will almost certainly cause the
Commodore 64 to ‘hang-up’, and the only way out of this is to switch the micro off and
then back on, and start all over again. If your machine code does fail in this way, and
you've saved it on tape, all you have to do is to reLOAD it and swat the bug out!

Once the program is fully debugged it is possible to save just the machine code if so
required. We shall look at how to do this in Chapter 20.

28

THE KERNAL

Supplied pre-packed within every Commodore 64 micro is a set of machine code routines
which are available for use from within machine code programs. These routines belong to
a part of the Operating System called the Kernal. There are 39 routines in total, but for the
present we need only concern ourselves with the more commonly used ones which are

summarized in Table 6.1.

Table 6.1

Routine Address Operation

CHRIN 65487 ($FFCF) Input character from channel
CHROUT 65490 ($FFD2) Output character to channel
GETIN 65508 (SFFE4) Get character from keyboard queue
SCNKEY 65439 ($FF9F) Scan keyboard

STOP 65505 (SFFE1) Scan STOP key

We have already used the CHROUT routine several times to write the character in the
accumulator to the screen. The instruction takes the form JSR 65490; the mnemonic ‘JSR’
simply tells the 6510 microprocessor to jump to the address given, and then come back
here when finished. This is known as a ‘subroutine’—which we shall look at in detail in

"Chapter 14.

29

30

1 Slatus Symbols

THE STATUS REGISTER

The Status register is unlike the various ‘other’ registers of the 6510. When using it, we are
not really concerned with the actual hex value it contains, but more with the condition or
state of its individual bits. These individual bits are used to denote or flag certain
conditions as and when they occur during the course of a program. Of the register’s eight
bits, only seven are in use—the remaining bit (bit 5) is permanently set. (In other words it
always contains a 1.)

Figure 7.1 shows the position of the various flags, each of which is now described in
detail.

7 9
[N[VI Te[o[1]z]c]
kR

Carry =1 if carry occurred.

Zero=1 if result zero.

IRQ=1 if interrupt disabled.

Decimal =1 if using BCD.

Break =1 if BREAK occured.

Not used =1 always.

Overflow =1 if overflow occurred.

Negative =1 if result negative.

Figure 7.1 Status register flags.

Bit 7: The Negative flag (N)

In signed binary, the Negative flag is used to determine the sign of a number. If the flag is
set (N = 1) the result is negative. If the flag is clear (N = @) the result is positive.
However a whole host of other instructions condition this particular flag, including all
the arithmetic and logical instructions. In general, the most significant bit of the result of
an operation is copied directly into the N flag.
Corsider the following two operations:

LDA #$80 \ load accumulator with $86
This will set the Negative flag (N = 1) because $80 = 10000000 in binary. Alternatively:

LDA #$7F \ load accumulator with $7F
will clear the Negative flag (N = @) because $7F = 01111111 in binary. There are two
instructions which act on the state of the N flag—these are:

BMI Branch on minus (N = 1)

BPL Branch on plus (N = 0)

More on these later.
Bit 6: The Overflow flag (V)

This flag is probably the least used of all the Status register flags. It is used to indicate if a
carry occurred from bit 6 during an addition, or if a borrow occurred to bit 6 in a
subtraction. If either of these events took place the flag is set (V = 1).

Look at the following two examples:
First, $09 + $07:

($09) 00001001
($07) +00000111
($10) 00010000

’—No overflow from bit 6 therefore V = 0.

Second, $7F + $01:

(37F) 01111111
($01) +00000001
(380) 10000000

*—Overﬂow has occurred from bit 6 therefore V= 1.

If we were using signed binary this addition would give a result of —128, which is of
course incorrect. However this fact is flagged and so the result can be corrected as
required.

Bit §
This bit is not used and is permanently set.
Bit 4: The Break flag (B)

This flag is set whenever a BREAK occurs, otherwise it will remain clear. This may seem a
bit odd at first, because surely we will know when a BREAK occurs. However, it is
possible to generate a BREAK externally by something called an Interrupt, and this flag is
used to help distinguish between these ‘BREAKS’.

Bit 3: The Decimal flag (D)

This flag tells the processor just what type of arithmetic is being used. If it is cleared (by
CLD), as is usual, then normal hexadecimal operation occurs. If set (by SED)all values
will be interpreted as Binary Coded Decimal.

Bit 2: The Interrupt flag (I)
We mentioned interrupts above in the description of the Break flag, and they will be

looked at in more detail in Chapter 22. Suffice to say now, that the flag is set (I= 1) when
the IRQ interrupt is disabled, and is clear (I = @) when IRQ interrupts are permitted.

31

Bit 1: The Zero flag (Z)

As its name implies, the flag is used to show whether or not the result of an operation is
zero. If the result is zero the flagis set (Z= 1), otherwise it is cleared (Z=0). It is true tosay
that the Zero flag is conditioned by the same instructions as the Negative flag. Executing:

LDA #0 \ load accumulator with zero
will set the Zero flag (Z = 1) but:
LDX #$FA \ load X register with $FA

will clear the Zero flag (Z = 0).
Bit 0: The Carry flag (C)

We have already seen that adding two bytes together can result in carries occurring from
one bit to another. What happens if the carry is generated by the most significant bits of an
addition?

For example, when adding $FF + $80:

($FF) 11111111
(380) +10000000
($7F) me1r1triririil
Carry over from bits 7
the result is just too large for eight bits,an extra ninth bit is required. The Carry flag acts as
this ninth bit.

If the Carry flag is clear at the start of an addition (C =@)and set on completion (C=1)
the result is greater than 255. It follows that if the flag is set (C = 1) before a subtraction
and clear on completion (C = @), the value being subtracted was larger than the original
value. Two instructions are available for direct use on the Carry flag:

CLC Clear Carry flag (C = 0)
SEC Set Carry flag (C = 1)

Two instructions are also provided to act on the condition of the Carry flag.

BCC Branch on Carry clear (C = 0)
BCS Branch on Carry set (C = 1)

8 Addressing Modes|

The 6510 has quite a small instruction set when compared with some of its fellow
microprocessors—in fact it has a basic clique of just 56 instructions. However, many of
these can be used in a variety of ways, which effectively increases the range of operations
to 152. The way in which these instructions are interpreted is determined by the addressing
mode used. The following examples are in hex format.

Addressing mode Mnemonic example Opcode Operand(s)
Immediate LDA #255 A9 FF
Zero page LDA $FB AS FB
Zero page indexed LDA $FB, X BS FB
Absolute LDA $CD00 AD 00 CD
Indirect pre-indexed LDA ($FB, X) Al FB
Indirect post-indexed LDA (§FB), Y Bl FB
Absolute indexed LDA $CD00, X BD %9 CD

All seven of these instructions load the accumulator—but in each case the data loaded is
obtained from a different source as defined by the opcode. This,as you may have noticed,
is different in each case.

For the time being we shall only look at the first two of these addressing modes,
immediate and zero page, both of which we have used several times already.

ZERO PAGE ADDRESSING

Zero page addressing is used to specify an address in the first 256 bytes of RAM where data
which has to be loaded into a specified register may be located. Because the high byte of
the address is always $00 it is omitted, and therefore the instruction and address require
just two bytes of memory.

Operation. DATA $A5, $FB

LDA 5B

SFC accumulator
$FB AB == AB |
$FA

33

34

Inr the example, LDA $FB, the contents of location $FB (in this case $AB)are loaded
into the accumulator.

The use of zero page needs some care as this area is used by the BASIC interpreter as a
scratchpad for storing addresses and performing calculations. However, Commodore
have kept a few bytes clear for us to use as we please. These bytes are located between 251
($06FB) and 254 ($FE) inclusive, and are of great importance as we shall see later on. The
instructions associated with zero page addressing are shown in Table 8.1.

Table 8.1

Zero page addressing instructions
ADC Add with carry LDX Load X register
AND Logical AND LDY Load Y register
ASL Arithmetic shift left LSR Logical shift right
BIT Bit test ORA Logical OR
CMP Compare accumulator ROL Rotate left
CPX Compare X register ROR Rotate right
CPY Compare Y register SBC Subtract with carry
DEC Decrement memory STA Store accumulator
EOR Logical EOR STX Store X register
INC Increment memory STY Store Y register
LDA Load accumulator

IMMEDIATE ADDRESSING

This form of addressing is used to load the accumulator or the index registers with a
specific value which is known at the time of writing the program. The 6510 knows from the
opcode that the byte following is in actual fact data and not an address. However, to
remind us of the fact, and to assist us when we are writing the initial assembler, we can
precede the data byte with a hash sign, ‘4’ (this shares the ‘3’ key on the 64’s keyboard).
Only single byte values can be specified because the register size is limited to just eight
bits.

If we wish our machine code program to load the accumulator with 255, we can include
the following two-byte sequence in our program:

DATA 169, 255 : REM $A9, $SFF — LDA #$FF

where 169 (3A9) is the ‘load the accumulator immediate’ code.
Similarly, the X and Y registers can be loaded immediately with:

DATA 162,65 REM $A2, $41 — LDX #ASC(*A™)
DATA 160,7 REM $A0, $07 — LDY #%07

Where 162(3A2) and 168(3A0) are the immediate codes for loading the X and Y
registers, and 65($41) is the ASCII code for the letter A.

Operation:

LDA #$FF A9 FF

Accumulator

Program 6 uses both zero page and immediate addressing to place an exclamation mark

on the screen.

Program 6

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

REM * * ZERO PAGE AND IMMEDIATE ADDRESSING * *
CODE = 49152
FOR LOOP=0TO9
READ BYTE
POKE CODE + LOOP, BYTE
NEXT LOOP

REM * * M/C DATA * *

DATA 162,33 REM $A2, §21 — LDX #ASC*!”
DATA 134,251 REM $86, $FB — STX $FB
DATA 165,251 REM $AS, $FB — LDA $FB
DATA 32,210,255 REM §20, $D2, $FF — JSR $FFD2
DATA 96 REM §$60 — RTS

SYS CODE

The meaning of each line is as follows:

Line 20

Assemble in ‘free’ RAM at $C000.

Lines 30-60 READ and POKE machine code.

Line 90
Line 100
Line 110
Line 120
Line 130
Line 150

Load X register with ASCII code for ‘I".

Store X register contents in location $FB.

Load accumulator with contents of location $FB.
Jump to subroutine to print accumulator’s contents.
Return to BASIC.

Call machine code.

35

36

9 Bilsand Byles

LOAD, STORE AND TRANSFER

To enable memory and register contents to be altered and manipulated, three sets of
instructions are provided.

Load instructions

The process of placing memory contents into a register is known as loading, some
examples of which we have already seen. To recap however, these are the three load
instructions:

LDA Load accumulator
LDX Load X register
LDY Load Y register
All of these instructions may be used with immediate addressing, but when dealing with
memory locations, it is more correct to say that the contents of the specified address are
copied into the particular register, as the source location is not altered in any way.

For example, with LDA $70, the contents of location $7@ (in this case FA) are copied
into the accumulator, location $70 is not altered:

$70 Accumulator

FA —»>| FA

The Negative and Zero flags of the Status register are conditioned by the load
operation.

Store instructions

The reverse process of placing a register’s contents into a memory location, is known as
storing. There are three store instructions:

STA Store accumulator
STX Store X register
STY Store Y register

The register value is unaltered and no flags are conditioned.

Example:

LDA #0
STA $1500
Accumulator $1500
00 > 00

Transfer instructions

Instructions are provided to allow the contents of one register to be copied into
another—this is known as transferring. The Negative and Zero flags are conditioned
according to the data being transferred. There are four instructions controlling transfers
between the index registers and the accumulator.

TXA Transfer X register to accumulator

TAX Transfer accumulator to X register

TYA Transfer Y register to accumulator

TAY Transfer accumulator to Y register

This form of single byte operation is known as implied addressing because the

Example:
LDA #3FF
TAY
TAX
Y register
Accumulator FF
FF X register
FF
.t_
5 Unfortunately, you cannot transfer directly between the X and Y registers, you have to
£ use the accumulator as an intermediate store.
YTOX TYA \ Y into accumulator
TAX \ accumulator into X
Similarly:
XTOY TXA \ X into accumulator
TAY \ accumulator into Y

information is contained within the instruction itself.

38

STX
X >
register
LDX
TAX TXA
STA Memory
>
Accumulator
LDA
TYA TAY
STY
Y
register
LDY

Figure 9.1 Load, store and transfer instruction flow.

PAGING MEMORY

We have seen that the Program Counter consists of two eight bit registers, giving a total of
16 bits. If all these bits are set, 11111111 11111111, the value obtained is 65536 or SFFFF.
Therefore the maximum addressing range of the 6510 is $0000 through to $FFFF. This
range of addresses is implemented as a series of pages and the page number is given by the
contents of PCH. It follows that PCL holds the address of the location on that particular
page.

As Figure 9.2 illustrates, each page of memory can be likened to a page of a book. This
book, called ‘64’s Memory’, has 256 pages labelled in hex format from $00 to $FF.
Each individual page is ruled into 256 lines which in turn are labelled (from top to bottom)
$00 to $FF.

Thus the address $FFFF refers to line $FF on page $FF, the very last location in the
Commodore’s memory map! Unlike conventional books, ‘64’s Memory’ begins with page
$00 which is known more affectionately as zero page. Owing to the 6510’s design zero page
is very important, as we shall see when we take a further look at addressing modes in the
next chapter.

P —
P
=
A =
| Page $02
| Page $01] |
64’s Memory Page $00 —__|
W | jpr——
g1 — |
92 —__
mO | |

Figure 9.2 Pages of ‘64’s Memory’.

Although we have referred to the 64’s memory map as a series of pages, it is more
frequently talked of in terms of ‘K’. The term ‘K’ is short for kilo, but unlike its metric
counterpart, one kilo of memory, or a kilobyte, consists of 1024 bytes and not 1000 bytes.
This slightly higher value is chosen because it is divisible by 256 and corresponds to
exactly four pages of memory (4 X 256 = 1024). The total memory map therefore
encompasses 64K because 65536/1024 = 64!

39

10 Arithmetic in Assembler

L 4

We can now put some of the basic principles we have encountered in the opening chapters
to some more serious use—the addition and subtraction of numbers. These two
procedures are fundamental to assembly language and will generally find their way into
most programs.

ADDITION

Two instructions facilitate addition, they are:

CLC Clear Carry flag

ADC Add with carry
The first of these instructions, CLC, simply clears the Carry flag (C = 0). This will
generally be performed at the very onset of addition, because the actual addition
instruction, ADC, produces the sum of the accumulator, the memory byte referenced and

the Carry flag. The reason for doing this will become clearer after we have looked at some
simple addition programs. Enter Program 7.

Program 7

10 REM * * SIMPLE ADD * *

20 CODE = 49152

30 FORLOOP=0TO7

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

99 DATA 24 REM $18 -- CLC

100 DATA 169,7 REM $A9, $07 — LDA #3$07
116 DATA 105,3 : REM $69, $03 — ADC #$03
120 DATA 133,251 : REM $85, $FB — STA $FB
130 DATA 96 : REM $60 — RTS

140

150 SYS CODE
160 PRINT “ANSWER IS : 7
170 PRINT PEEK(251)

As you can see, this program loads 7 into the accumulator using immediate addressing.
Immediate addressing is used again in line 110 to add 3 to the accumulator value. The
result, which is in the accumulator, is then stored at location 251. Line 150 executes the
assembled machine code, and the result (if you’re quick with your fingers you’ll know its
10!) is printed out. RUN the program to see its effect then try substituting your own values
in lines 100 and 110.

Re-type line 99 thus:

90 DATA 56 REM $38 — SEC

As you probably realize, the Carry flag will now be set (C = 1) when the program is next
executed. Reset lines 100 and 110 (if you have altered them),and RUN the program again.
The result is now 11. The reason being that the Carry flag’s value is taken into
consideration during ADC (add with carry) and this time its value is 1.

Accumulator + memory + carry = result
CLC 7 + 3 + 0 = 10
SEC 7 + 3 + 1 = 11

Again you might like to try your own immediate values—you’ll find the result is always
one greater than expected.

This program is quite wasteful both in terms of memory used and time taken for
execution. If we know the values to be added together beforehand, then it is more efficient
to add them together first. The machine code part of the program can then be
incorporated into just two lines:

LDA #10 \ place 10 (7 + 3) into accumulator

STA $FB \ store accumulator

Program 8 is a general purpose single byte addition program.

Program 8

10 REM * * SINGLE BYTE ADD * *
20 CODE = 49152

30 FORLOOP=0TO7

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 24 : REMS$18 — CLC
100 DATA 165,251 : REM $AS, $FB — LDA $FB
116 DATA 101,252 : REM $65, $FC — ADC $FC
120 DATA 133,253 : REM $85, $FD — STA $FD
130 DATA 96 : REM $60 — RTS

41

42

140

150 PRINT CHR$(147)

160 PRINT “SINGLE BYTE ADD DEMO”
170 PRINT : PRINT

180 INPUT “FIRST NUMBER™;A

199 INPUT “SECOND NUMBER”;B

200 POKE 251, A : POKE 252, B

210 SYS CODE

220 PRINT “ANSWER IS 7

230 PRINT PEEK(253)

RUN the program a few times entering low numerical values in response to the
program’s prompts.

Now enter 128 and 128 as your inputs. The result is @, why? The reason is that the
answer, 256, is too big to be held in a single byte:

128 $80 10000000
+ 128 + $80 + 10000000
256 $100 (00000000

and as can be seen, a carry has been produced by the bit overflow from adding the two
most significant bits. As the Carry flag was initially cleared before the addition, it will now
be set, signalling the fact that the result is too large for a single byte.

This principle is used when summing multibyte numbers, and is illustrated by Program
9, which adds two double byte numbers

Program 9

16 REM * * DOUBLE BYTE ADD * *
20 CODE = 49152

30 FOR LOOP=0TO 13

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 24 REM §18 — CLC
100 DATA 165,251 REM §$AS, $SFB — LDA $FB
110 DATA 101,253 REM $65, $FD — ADC $FD
120 DATA 133,251 REM 885, $FB — STA $FB
130 DATA 165,252 REM §$AS, $FC — LDA $FC
140 DATA 101,254 REM $65, $FE — ADC $FE
150 DATA 133,252 REM §85, $FC — STA $FC
160 DATA 96 REM $60 — RTS

170

180 PRINT CHRS$(147)

199 PRINT “DOUBLE BYTE ADD DEMO”

200 PRINT : PRINT

210 INPUT “FIRST NUMBER";A

220 REM CALCULATE HIGH AND LOW BYTE
230 AH = INT(A/256)

240 AL = A — (AH * 256)

250 INPUT “SECOND NUMBER”;B

260 REM CALCULATE HIGH AND LOW BYTE
270 BH = INT(B/256)

280 BL = B — (BH * 256)

290 POKE 251, AL : POKE 252, AH

300 POKE 253, BL : POKE 254, BH

310 SYS CODE

320 LOW = PEEK(251) : HIGH = PEEK(252)

330 RESULT = HIGH * 256 + LOW

340 PRINT “ANSWER IS :”;

356 PRINT RESULT

The meaning of each line is as follows:

Line 20 Assemble code in ‘free’ RAM from $C000.
Lines 30-60 READ and POKE machine code data.
Line 90 Clear Carry flag.

Line 100 Get low byte of first number, AL.

Line 110 Add it to low byte of second number, BL.
Line 120 Store low byte of result.

Line 130 Get high byte of first number, AH.

Line 140 Add it to high byte of second number, BH.
Line 150 Store high byte of result.

Line 160 Return to BASIC.

Lines 180-190 Clear screen and print title.

Line 210 Input first number.

Line 230 Calculate high byte value of A.

Line 240 Calculate low byte value of A.

Line 250 Input second number.

Line 270 Calculate high byte value of B.

Line 280 Calculate low byte value of B.

Lines 290-300 POKE high and low byte values of A, B into memory.
Line 310 Execute machine code.

Line 320 Get low and high bytes of the result.

Line 330 Calculate result.

Lines 340-350 Print result.

This routine will produce correct results for any two numbers whose sum is not greater
than 65536 ($FFFF) which is the highest numerical value that can be held in two bytes of
memory.

Note that the Carry flag is cleared at the onset of the machine code itself. If any carry
should occur when adding the two low bytes together, it will be transferred over to the
addition of the two high bytes.

SUBTRACTION

The two associated instructions are:

SEC Set Carry flag
SBC Subtract, borrowing carry
The operation of subtracting one number from another (or finding their difference) is
the reverse of that used in the preceding addition examples. Firstly the Carry flag is set
(C = 1) with SEC, and then the specified value is subtracted from the accumulator using

SBC. The result of the subtraction is returned in the accumulator.
The following program performs a single byte subtraction:

Program 10

10 REM * * SIMPLE SUBTRACTION * *
20 CODE = 49152

30 FORLOOP=0TO7

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 56 : REM $38 — SEC

160 DATA 165,251 REM $AS, $FB — LDA $FB
116 DATA 229,252 REM $ES5, $FC — SBC $FC
120 DATA 133,253 REM $85, $FD — STA $FD
130 DATA 96 REM $60 — RTS

140

150 PRINT CHR$(147)

160 INPUT “HIGHEST NUMBER";A
170 INPUT “LOWEST NUMBER”;B
180 POKE 251, A : POKE 252, B

190 SYS CODE

200 PRINT “ANSWER IS ™,

210 PRINT PEEK(253)

The meaning of each line is as follows:

Lines 20-60 Assemble machine code.

Line 90 Set Carry flag.

Line 100 Load high number into the accumulator.
Line 110 Subtract contents of $FC from it.

Line 120 Save result in $FD.

Line 130 Back to BASIC.

Lines 160-170 Get two values.

Line 180 POKE them into zero page.

Line 190 Call machine code.

Lines 200-210 Print the answer.

RUN the program and input your own values to see the results.

You may well be wondering why the Carry flag is set before a subtraction rather than
cleared. Referring back to Chapter 3, you will recall that the subtraction there was
performed by adding the two’s complement value. This is found by first inverting all the
bits to obtain the one’s complement, and then adding 1. The 6510 obtained the 1 to be
added to the one’s complement form, from the Carry flag. Thus we can say:

1. If the Carry flag is set after SBC, the result is positive or zero.
2. If the Carry flag is clear after SBC, the result is negative and a borrow has occurred.

Try changing line 99 to DATA 24 : REM $18—CLC and re-RUN the program. Now
your results are one less than expected—th& reason being that the two’s complement was
never obtained by the 6510, because only a ‘0’ was available in the Carry flag to be added
to the one’s complement value.

To subtract double byte numbers the Carry flag is set at the entry to the routine, and the

relative bytes are subtracted and stored. The resulting program looks something like
this:

Program 11

16 REM * * DOUBLE BYTE SUBTRACTION * *
20 CODE = 49152

30 FORLOOP=0TO 13

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 56 REM §$38 — SEC

100 DATA 165,251 REM $AS, $FB — LDA $FB
110 DATA 229,253 REM S$ES, $FD — SBC $FD
120 DATA 133,251 REM §85, $FB — STA $FB
130 DATA 165,252 REM $AS, $FC — LDA $FC
140 DATA 229,254 REM $ES, $FE — SBC $FE
150 DATA 133,252 REM $85, $FC — STA $FC
160 DATA 96 REM $60 — RTS

170

180 PRINT CHR$(147)

190 INPUT “HIGHEST NUMBER';A

200 INPUT “LOWEST NUMBER"”;B

216 REM CALCULATE HIGH AND LOW BYTES
220 AH = INT(A / 256)

230 AL = A — (AH * 256)

240 BH = INT(B / 256)

250 BL = B — (BH * 256)

260 POKE 251, AL : POKE 252, AH

270 POKE 253, BL : POKE 254, BH

45

46

280
290
300
310
320

SYS CODE

LOW = PEEK(251) : HIGH = PEEK(252)
RESULT = HIGH * 256 + LOW

PRINT “ANSWER IS ";

PRINT RESULT

The meaning of each line is as follows:

Lines 20-60 Assemble machine code.

Line 90
Line 100
Line 110
Line 120
Line 130
Line 140
Line 150
Line 160

Set the Carry flag.

Load low byte of high number into accumulator.
Subtract low byte of low number from it.

Save low byte of result in $FB.

Load high byte of high number into accumulator.
Subtract high byte of low number from it.

Save high byte of result in $FC.

Back to BASIC.

Lines 180-200 Get two numbers.
Lines 220-270 Calculate and store high and low bytes.

Line 280

Call machine code.

Lines 290-300 Calculate final result.
Lines 310-320 Print the answer.

NEGATION

The SBC instruction can be used to convert a number into its two’s complement form.
This is done by subtracting the number to be converted, from zero. The following
program asks for a decimal value (less than 255) and prints its two’s complement value in

hex:

Program 12

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

REM * * TWO'S COMPLEMENT CONVERTER * *
CODE = 49152
FOR LOOP=0TO 7
READ BYTE
POKE CODE + LOOP, BYTE
NEXT LOOP

REM * * M/C DATA * *

DATA 56 REM $38 — SEC
DATA 169,0 REM $A9, $00 — LDA #0
DATA 229,251 REM $ES, $FB — SBC $FB
DATA 133,252 : REM $85, $FC — STA $FC
DATA 96 REM $60 — RTS

PRINT CHR$(147)
INPUT “NUMBER TO BE CONVERTED”;A
IF A > 255 THEN PRINT “ERROR” : GOTO 160

180 POKE 251, A

199 SYS CODE

200 PRINT “THE TWO'S COMPLEMENT VALUE IS :™;
210 PRINT PEEK(252)

The meaning of each line is as follows:

Lines 20-60 Assemble machine code.

Line 90 Set the Carry flag.

Line 100 Load accumulator with 0.

Line 110 Subtract the contents of $FB from it.
Line 120 Save result in $FC.

Line 130 Back to BASIC.

Lines 150-160 Get number.

Line 170 Make sure it’s less than 256.

Line 180 POKE number into $FB.

Line 190 Execute machine code.

Line 200-210 Print result.

USING BCD

We can now investigate the use of BCD in assembly language programs. You will
remember from Chapter 3 that 6 must be added to (or subtracted from) the result of an
addition (or subtraction) whenever a transition occurs from 9 to 10 or vice versa. This
causes the six unused binary combinations, normally used to represent A to F in hex, to be
jumped over to produce the correct decimal result. You will be pleased to know that the
6510 will actually take care of this correction for you when it knows you are using BCD.
But how does it know when you are using BCD? Well, you must flag the condition by
setting the Decimal flag in the Status register with:

SED Set Decimal flag (D = 1)
The corresponding flag clearing instruction is:
CLD Clear Decimal flag (D = 0)

Program 13 uses immediate addressing to perform a BCD addition.
Program 13

10 REM * * SIMPLE BCD ADDITION * *
20 CODE = 49152

30 FORLOOP=0TO9

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 248 REM $F8 — SED

100 DATA 24 REM §$18 — CLC

110 DATA 169,9 REM §A9, $09 — LDA #$09
120 DATA 105,5 REM $69, $05 — ADC #$05
130 DATA 133,251 REM §85, $FB — STA $FB

47

48

140 DATA 216 REM §D8 — CLD
150 DATA 96 REM $60 — RTS
160

170 SYS CODE

180 PRINT PEEK (251)

As can be seen, BCD addition is no different from normal hex addition except for the
three extra instructions SED, CLC and CLD. RUN the program. Unfortunately, the
result is 20 and not 14 as we would expect. The reason for this is that the Kernal print
routine interprets the byte stored at location 251 (§FB) as a hex one and not a BCD one.

Don’t believe me eh? Well, the hex for 20 is $14 (told you!). Writing this in binary form we
have:

0001 0100

This, as you will now realize, is the BCD binary for 14 BCD.
Chapter 23 contains a program that will print decimal numbers in hex form—which is
really what we’re after. This program can be used to output correct BCD values.
Similarly, a BCD subtraction would take the form:

SED

\ set decimal mode
SEC \ set Carry flag
LDA VALUE \ get first value
SBC NUMBER \ subtract a number
STA RESULT \ save the result
CLD \ clear decimal mode

One final important point to remember regarding the Carry flag—when using BCD, the
Carry flag signals a result greater than 99 during addition.

Il Addressing Modes 1l

Let us now take a second look at addressing modes. In the previous chapters we have seen
how data can be obtained directly by an instruction using immediate addressing, or
indirectly from a location in zero page using zero page addressing. We shall now see how
two byte address locations can be accessed both directly and indirectly (through the all
important zero page), and how whole blocks of memory can be manipulated using indexed
addressing.

ABSOLUTE ADDRESSING

Absolute addressing works in exactly the same manner as zero page addressing, but it
covers all memory locations outside zero page. The mnemonic is followed by two bytes
which specify the address of the memory location (which can be anywhere in the range
$100 to SFFFF).

Operation
LDA $1500 BD 00 15
$1501 Accumulator
$1500 IF IF
$14FF

As can be seen above, the operation code is followed by the address which, as always, is
stored in reverse order low byte first. The contents of location $1500 are copied into the
accumulator when the instruction is executed.

Program 14 uses absolute addressing to place a white A on to the screen; note that it is
not printed but stored into screen memory.

Program 14

10 REM * * ABSOLUTE ADDRESSING * *
20 CODE = 49152

30 FORLOOP=0TO 8

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

49

50

80

90
100
110
120
130
140
150
160

REM

DATA 169,1
DATA 141,80,04
DATA 141,80,216
DATA 96

** M/C DATA * *

PRINT CHR$ (147)
PRINT : PRINT : PRINT
SYS CODE

The meaning of each line is as follows:

Lines 20-60
Line 90

Line 100

Line 110
Line 120
Lines 140-150
Line 160

Assemble machine code.

REM §$A9, $01

REM 388D, $50, $04
REM §$8D, $50, $D8
REM $60

— LDA #3%01

— STA 1104

— STA 55376
— RTS

Load accumulator with display code for ‘A’ and colour code white.

Store A into screen mem

Store white code into colour memory.

Back to BASIC.

ory.

Clear screen and move cursor down.

Execute machine code.

The complete list of instructions associated with absolute addressing is shown in Table

11.1.

Table 11.1

Absolute addressing instructions
ADC Add with carry LDA Load accumulator
AND Logical AND LDX Load X register
ASL Arithmetic shift left LDY Load Y register
BIT Bit test LSR Logical shift right
CMP Compare accumulator ORA Logical OR
CPX Compare X register ROL Rotate left
CPY Compare Y register ROR Rotate right
DEC Decrement memory SBC Subtract with carry
EOR Logical EOR STA Store accumulator
INC Increment memory STX Store X register
JMP Jump STY Store Y register
JSR Jump, save return

ZERO PAGE INDEXED ADDRESSING

In zero page indexed addresing, the actual address of the operand is calculated by adding
the contents of either the X or Y register to the zero page address stated.

Operation:

LDA $70,X

X register

BS 70

Accumulator

$77

The X register in this instance contains $07. This is added to the specified address, $70,
to give the actual address, $77. The contents of location $77 (in this case FA) are then
loaded into the accumulator. Similarly:

STX $72.,Y 9% | 72 $76 $76
Lt » 76 | oA [a1

Y register

X register 41

Here the Y registeris used as an index to allow the contents of the X register to be stored in
memory location $76. This address was obtained by adding the Y register’s value, $04, to
the specified value, $72. The original contents of location $76 (DA) are overwritten.

Note the Y register can only be used to operate on the X register with instructions such
as LDX $FB, Y. The instructions associated with zero page indexing are listed in
Table 11.2.

Table 11.2
Zero page indexed addressing instructions
ADC Add with carry LDY Load Y register
AND Logical AND LSR Logical shift right
ASL Arithmetic shift left ORA Logical OR
CMP Compare ROL Rotate left
DEC Decrement memory ROR Rotate right
EOR Logical EOR SBC Subtract with carry
INC Increment memory STA Store accumulator
LDA Load accumulator *STX Store X register
*LDX Load X register STY Store Y register

The * indicates the only commands which can use the Y register as an index. All other
commands are for X register only.

ABSOLUTE INDEXED ADDRESSING

Absolute indexed addressing is like zero page indexed addressing except that the locations
accessed are outside zero page. The X and Y registers may be used as required to operate
with the accumulator, or each other.

Operation:
LDA $1500,Y BO |90 |15 $15FA Accumulator
+ ‘
FA| IS 72 | 72
Y register FA |

The Y register’s contents (§FA) are added to the two byte address ($1500) to give
effective address ($15FA).

51

52

The following program demonstrates how absolute indexed addressing can be used to
move a section of screen memory from one location to another.

Program 15

16 REM * * ABSOLUTE INDEXED ADDRESSING * *
20 CODE = 49152

30 FOR LOOP =0 TO 21

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

8 REM * * M/C DATA * *

90 DATA 162,32 REM $A2, $20 — LDX #$20
100 DATA 189,04 REM $BD, $00, $04 — LDA 1024, X
110 DATA 157,8,6 REM $9D. 308, $06 — STA 1544, X
120 DATA 202 REM $CA — DEX
130 DATA 208,247 REM $D0, $F7 — BNE -9
140 DATA 169,1 : REM $A9, $01 — LDA #3501
150 DATA 162,32 : REM $A2, $20 — LDX #$20
160 DATA 157,8,218 REM $9D, $08, DA — STA 55816, X
170 DATA 202 REM $CA — DEX
180 DATA 208,250 : REM $D@, $FA — BNE -5
199 DATA 96 REM $60 — RTS
200

2160 PRINT CHR$(147);

220 PRINT ““ ABSOLUTE INDEXED ADDRESSING”
230 GET A$

240 IF A$ =" THEN GOTO 236

25¢ SYS CODE

The meaning of each line is as follows:

Lines 20-60 Assemble machine code.

Line 90 Sex X register count.

Line 100 Load accumulator with contents of location 1024 + X.
Line 110 Store accumulator’s contents at 1544 + X,
Line 120 Decrement X register.

Line 130 IF X <> 0 then go back.

Line 140 Load accumulator with 1 (white colour code).
Line 150 Set X register count.

Line 160 Store code in colour memory, 55816 + X.
Line 170 Decrement X register.

Line 180 IF X < > 0 then go back.

Line 190 Back to BASIC.

Lines 210-220 Clear screen and print title.
Lines 230-240 Wait for a key to be pressed.
Line 250 Execute machine code.

When RUN, the message of line 220 is printed on to the screen. The program then waits
for a key to be pressed before calling the machine code. The X register acts as the offset
counter and is initialized in line 90. The byte at location 1024 + X is loaded into the
accumulator, and then stored back into screen memory at 1544 + X; in both instances
absolute indexed addressing is used. Two new instructions are introduced in lines 120 and
130 and these will be examined in the next couple of chapters. Briefly through, DEX
decreases the contents of the X register by one, and BNE tests to see if the X register has
reached zero. If X is not zero, the specified jump takes place, causing the load/store
procedure to be repeated with the new value of X. Lines 150 to 180 work in a similar
manner, storing the white colour code in the corresponding bytes of the colour memory.
This, in effect, turns the letters ‘on’ so that they can be seen (see the User Manual for a
description of this if you do not understand the procedure).

The instructions associated with absolute indexed addressing are shown in Table 11.3

Table 11.3
Absolute indexed addressing instructions

*ADC Add with carry **LDX Load X register
*AND Logical AND LDY Load Y register

ASL Arithmetic shift left LSR Logical shift right
*CMP Compare memory *ORA Logical OR

DEC Decrement memory ROL Rotate left
*EOR Logical exclusive OR ROR Rotate right

INC Increment memory *SBC Subtract with carry
*LDA Load accumulator *STA Store accumulator

Unmarked commands are available with X register as index only. Commands marked *
may use either register, whereas the one marked ** can only use the Y register.

INDIRECT ADDRESSING

Indirect addressing allows us to read or write to a memory address which is not known at
the time of writing the program! Crazy? Not really, the program itself may calculate the
actual address to be handled. Alternatively, a program may contain within it several tables
of data which are all to be manipulated in a similar manner. Rather than writing a separate
routine for each, a general purpose one can be developed, with the address operand being
‘seeded’ on each occasion the routine is called.

Indirect addressing’s beauty is that it enables the whole of the Commodore’s memory
map to be accessed with a single two byte instruction. To distinguish indirect addressing
from other addressing modes, the operands must be enclosed in brackets.

Pure indexed addressing in only available to one instruction—the jump
instruction—which is mnemonically represented by JMP. We will look at JMP’s function
in more detail during the course of Chapter 14, but suffice to say for now that it is the
6510’s equivalent of BASIC’s GOTO statement. (Though it does of course jump to an
address rather than a line number.)

A typical indirect jump instruction takes the form:

DATA 108, 251, 00 : REM $6C, $FB, $00 — JMP ($FB)

The address specified in the instruction is not the address jumped to, but is the address of
the location where the jump address is stored. In other words, don’t jump here but to the
address stored here!

53

54

Operation:

JMP ($FB)
$FD

$FC FF
$FB DA

lec | FB [00 |

From the operational example we can see that location $FB contains the low byte of the
address, and location $FC the high byte. These two locations, which act as temporary
stores for the address, are known as a vector. Executing JMP ($FB) in this instance will
cause the program to jump to the location $FFDA.

Program 16 illustrates the use of an indirect JMP to fill the screen with stars.

Program 16

10
20
30
49
50
60
70
80
90
100
110
120
130
140
150
160
170

REM * *INDIRECT JUMPING * *

CODE = 49152

FOR LOOP =0 TO 15

READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA * *

DATA 169,0
DATA 133,251
DATA 169,192
DATA 133,252
DATA 169,42
DATA 32,210,255
DATA 108,251,0

SYS CODE

REM $A9, $00 — LDA #300
REM §85, $FB — STA $FB
REM §$A9, $C0 — LDA #3Co
REM 8§85, $FC — STA $FC
REM $A9, $2A — LDA #ASC**”

REM §20, $D2, $FF —- JSR $FFD2
REM §6C, $FB, $00 — JMP ($FB)

Lines 90 to 120 set up a vector in zero page. Two of the free user bytes are loaded with the
assembly address of the machine code, $C000 in this case. Line 130 places the ASCII code
for the asterisk into the accumulator, and this is printed out using the Kernal routine at
$FFD?2 (line 149). Finally the routine jumps back to the start via the zero page vector (line

| ec [r | o0 |

Jump to $C000

150).
JMP ($FB)
$FC Co
$FB 00

The program is now in a continuous loop and will carry on printing stars ad infinitum.
I’'m afraid pressing the STOP key has no effect—that’s for BASIC only; you’ll have to
switch off at the side and then back on again to return to any semblance of normality!

The Commodore 64 itself uses indirect addressing extensively. If you flip to page 114
you’ll see a list of Kernal routines which, when called, perform indirect jumps into the
depths of the Operating System via vectors in block zero RAM.

POST-INDEXED INDIRECT ADDRESSING

Post-indexed addressing is a little like absolute indexed addressing, but in this case, the
base address is stored in a zero page vector which is accessed indirectly.

Operation:
LDA (870), Y Bl 70
Y register BA
Accumulator
-+ - g1sBA | 41 41
$71 15
$70 00

In the example above, the base address is stored in the vector at $70 and $71. The
contents of the Y register (§$BA) are added to the address in the vector ($1500) to give the
actual address ($15BA) of the data. It should be obvious that this form of indirect
addressing allows access to a 256 byte range of locations. In the case above, any location
from $1500 and $15FF is available by setting the Y register accordingly.

Program 17 uses post-indexed indirect addressing to move a line of screen memory from
the upper to the lower half of the screen.

Program 17

10 REM * * INDIRECT ADDRESSING * *
20 CODE = 49152

30 FOR LOOP =0 TO 19

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70
80 REM * * M/C DATA * *
90 DATA 160,39 REM $AQ, $27 — LDY #$27

55

56

100 DATA 177,251 REM $Bl1, $FB — LDA ($§FB), Y
1106 DATA 145,253 REM $91, $FD — STA (§FD), Y
120 DATA 36 REM $88 — DEY

130 DATA 208,249 REM $D0, $F9 — BNE -7

140 DATA 162,39 REM $A2, $27 — LDX #8$27
150 DATA 169,1 REM $A9, $01 — LDA #501

160 DATA 157,8,218 REM $9D, $08, $DA — STA 55816, X
170 DATA 202 REM $CA — DEX

180 DATA 208,250 REM $D0, $FA — BNE -6

199 DATA 96 REM $60 — RTS

200

210 POKE 251,60 : POKE 252,4 : REM SCREENTOP

220 POKE 253,8: POKE 254,6 : REM SCREENBOT

230 PRINT CHR$(147);

240 PRINT “ INDIRECT INDEXED ADDRESSING”

250 GET A$

260 IF A$ =" THEN GOTO 250

270 SYS CODE

The program commences by assembling the machine code held in the data statements.
Next, two vectors are created in zero page. The first (line 210) is POKEd with the address
of the top left-hand corner of the screen (1024) and is called SCREENTOP. Similarly, in
line 220, the next two locations are seeded to point to SCREENBOT (1544).

Once the program title has been printed and a key has been pressed, the machine code
stored in the ‘free” RAM area is executed. The Y register is set to the text screen line length
count (line 90), then using post-indexed indirect addressing, the byte stored at
SCREENTOP + Y is loaded into the accumulator (line 100) and stored in screen memory
at the location specified by SCREENBOT + Y (line 110). The Y register is decremented,
thus allowing the next location to be accessed (line 120), and the process repeated until the
Y register holds @ (the BNE instruction in line 130 takes care of this, as we shall see in the
next chapter).

The character codes for the title at the top of the screen are now stored in memory mid-
way down the screen. To make them visible, the corresponding locations in the colour
memory (from 55816) must be POKEd with the relevant colour code. This is taken care of
in lines 140-190. Line 140 begins by initializing the X register to the line length, and the
colour code is then loaded into the accumulator (line 150). Colour code ‘1’ means that the
text will appear white. Once again, the DEX and BNE (lines 180 and 190) are used to
control the number of times this piece of code is repeated.

PRE-INDEXED ABSOLUTE ADDRESSING

This addressing mode is used if we wish to indirectly access a whole series of absolute
addresses which are stored in zero page.

Operation:

LDA (870,X) Al | 70
+
— $74

X register 04
$75 18 $1807 Accumulator

— Address of data
$74 07 FE FE
$73 15 |
$72 AA

| Other vectored addresses, accessed by loading
$71 oD X register with @ or 2
$70 FA J

Here the contents of the X register {$04) are added to the zero page address ($70) to give
the vector address ($74). The two bytes here are then interpreted as the actual address of
the data ($1807).

Setting the X register to $02 gives indirect access to the vector address $1SAA.

A list of instructions which can be used with pre- and post-indexed addressing is shown
in Table 11.4.

Table 11.4

Pre- and post-indexed indirect addressing instructions

ADC Add with carry
AND Logical AND

CMP Compare memory
EOR Logical exclusive OR
LDA Load accumulator
ORA Logical OR

SBC Subtract with carry
STA Store accumulator

IMPLIED AND RELATIVE ADDRESSING

Two other modes of addressing are available with the 6510 namely, implied addressing
and relative addressing. We will be dealing with both of these addressing modes during
the course of the next few chapters.

12 Stacks of Fun

THE STACK

The stack is perhaps one of the more difficult aspects of the 6510 to understand, however it
is well worth the time mastering as it lends itself to more efficient programming. Because
of its importance the whole of Page $01 (that is memory locations $100 through to $1FF)
is given over to its operation.

The stack is used as a temporary store for data and memory addresses that need to be
remembered for use sometime later on during the program. For most purposes its
operation is transparent to us. For example, when, during the course of a BASIC program
a GOSUB is performed, the address of the next BASIC command or statement after it is
placed onto the stack, so that the program knows where to return to on completion of the
procedure. The process of placing values onto the stack is known as pushing, whilst
retrieving the data is called pulling.

The stack has one important feature which must be understood—it is a /ast in, first out
(LIFO) structure. What this means is that the last byte pushed onto the stack must be the
first byte pulled from it.

A useful analogy to draw here is that of a train yard. Consider a small spur line, onto
which trucks 1, 2 and 3 are pushed (see Figure 12.1). The first truck onto the line (truck 1)
is at the very end of the line, truck 2, the second onto the line is in the middle, and the last
truck (truck 3) is nearest the points.

Truck 3 is last in and so will be first out.

l -
MOl J NON JLEON [

Figure 12.1 The stack—LIFO.

It should now be fairly obvious that the first truck to be pulled off the spur must be the
last truck pushed onto it, that is, truck 3. Truck 2 will be the next to be pulled from the line,
and the first truck in will be the last one out.

To help us keep track of our position on the stack, there is a further 6510 register called
the Stack Pointer. Because the stack is a hardware item of the 6510, that is, it is actually
‘wired’ into it, the ‘page number’ of the stack ($01) can be omitted from the address, and
the Stack Pointer just points to the next free position in the stack.

58

When the Commodore 64 is switched on (or a BREAK is performed) the Stack Pointer
is loaded with the value $FF—it points to the top of the stack—this means that the stack
grows down the memory map rather than up as may be expected. Each time an item is
pushed the Stack Pointer is decremented, and conversely, it is incremented when the stack
is pulled.

STACK INSTRUCTIONS FOR SAVING DATA

The 6510 has four instructions that allow the accumulator and Status register to be pushed
and pulled. They are:

PHA Push accumulator onto stack

PLA Pull accumulator from stack

PHP Push Status register onto stack

PLP Pull Status register from stack

All four instructions use implied addressing and occupy only a single byte of memory.

LDA #S$FF Stack
RTA | $1FF
RTA | S1FE
Accumulator E : 2 $1FD
7 $1FC
Stack Pointer | FD i P $1FB
” S1FA

PHA

RTA | S1FF
Accumulator E RTA | S1FE
FF $1FD
) $1FC
Stack Pointer E]_J——) — ¢1rp
) $1FA

LDA #$00:PHA

RTA $1FF
RTA $1FE
Accumulator o S1ED
00 $1FC

Stack Pointer | FB F
L = $1FB
7 $1FA

Figure 12.2 Pushing items on to the stack.

60

The PHA and PHP instructions work in a similar manner, but on different registers. In
both cases the source register remains unaltered by the instruction. Again PLA and PLP
are similar in operation, but PLA conditions only the Negative and Zero flags, while PLP
of course conditions all the flags.

Consider the following sequence of instructions:

TWOPUSH LDA #$FF \ place $FF in accumulator
PHA \ push onto stack
LDA #300 \ place $00 in accumulator
PHA \ push onto stack

Figure 12.2 shows exactly what happens as this program is executed. The Stack Pointer
(SP) at the start contains $FD and points tQ the next free location in the stack. The first
two stack locations $FF and $FE hold the two byte return address (RTA) to which the
machine code will eventually pass control. (This may be the address of the next BASIC
instruction if a call to machine code has been made.) The subsequent stack locations are at
present undefined and are therefore represented as ?7.

After the accumulator has been loaded with $FF it is copied onto the stack by PHA.
Note that the accumulator’s contents are not affected by this operation. Once it has been
pushed onto the stack, the Stack Pointer’s value is decremented by one to point to the next
free location in the stack ($FC).

The accumulator is then loaded with $00 and this is pushed on to the stack at location
$FC. The Stack Pointer is again decremented to the next free location ($FB).

To remove these items from the stack the following could be used:

TWOPULL PLA \ get $00 from stack
STA TEMP \ save it somewhere
PLA \ get $FF from stack
STA TEMP + 1| \ save it as well

Figure 12.3 illustrates what happens in this case. The first PLA will pull from the stack
into the accumulator the last item pushed onto it, which in this example is $00. The Stack
Pointer is incremented, this time to point to the new ‘next free location’, $FC. As you can
see from the diagram the stack contents are not altered, but the $00 will be overwrittenifa
further item is now pushed. The STA TEMP saves the accumulator value somewhere in
memory so that it is not destroyed by the next PLA. This PLA restores the value $FF into
the accumulator, and again increments the Stack Pointer.

One thing should now be apparent—it is very important to remember the order in
which items are pushed onto the stack, as they must be pulled in exactly the reverse order.
If this process is not strictly adhered to then errors will certainly result, and could even
cause your program to crash or hang-up!

The following program shows how the stack can be used to save the contents of the
various registers to be printed later. This is particularly useful for debugging those
awkward programs that just will not work.

REGSAVE PHP \ save Status register
PHA \ save accumulator
TXA \ transfer X into accumulator
PHA \ save accumulator (X)
TYA \ transfer Y into accumulator
PHA \ save accumulator (Y)

It is important to save the registers in the order shown. The Status register should be saved
first so that it will not be altered by the subsequent transfer instructions which could affect

the Negative and Zero flags, and the accumulator must be saved before its value is
destroyed by either of the index register transfer operations.

PLA: STA TEMP Stack
RTA $1FF
RTA $1FE
A

ccumulator = $1FD
: — o0 $1FC
Stack Pointer I FC = = $1FB
” $1FA

PLA: STA TEMP + 1
RTA $1FF
A at RTA $1FE
ccumulator E — S1FD
] $1FC
Stack Pointer I FD IL ps $1FB
” $1FA

Figure 12.3 Pulling items from the stack.

If the registers’ values had been saved to preserve them while another portion of the
program was operating, we could retrieve them with:

PLA \ pull accumulator (Y)
TAY \ and transfer to Y register
PLA \ pull accumulator (X)
TAX \ and transfer to X register
PLA \ pull accumulator

PLP \ pull Status register

There are two final stack associated instructions:

TSX Transfer Stack Pointer to X register
TXS Transfer X register to Stack Pointer

These instructions allow the Stack Pointer to be seeded as required. On power-up or
BREAK the Commodore does the following:

LDX #$FF \ load X with $FF

TXS \ place in Stack Pointer
It is very unlikely that you will ever need these two instructions unless you go on to such

splendid projects as writing your own interpreter!
We shall see how and why the stack is used to save addresses in Chapter 14.

61

62

13 Looping

LOOPS

Loops allow sections of programs to be repeated over and over again. For example, in
BASIC we could print ten exclamation marks using a FOR . . . NEXT loop like this:

1# FOR NUMBER = 0 TO 9
20 PRINT “I”;
39 NEXT NUMBER

In line 10 a counter called NUMBER is declared and initially set to zero. Line 20 prints the
exclamation mark, and line 30 checks the present value of NUMBER to see if it has
reached its maximum limit. If it has not, the program adds one to NUMBER and branches
back to print the next exclamation mark.

To implement this type of loop in assembly language we need to know how to control
and use the three topics identified above; namely counters, comparisons and branches.

COUNTERS

It is usual to use index registers as counters, because they have their own increment and
decrement instructions.

INX Increment X register X=X +1
INY Increment Y register Y=Y +1
DEX Decrement X register X=X -1
DEY Decrement Y register Y=Y — 1

All these instructions can affect the Negative and Zero flags. The Negative flagis setif the
most significant bit of the register is set following an increment or decrement
instruction—otherwise it will be cleared. The Zero flag will only be set if any of the
instructions cause the register concerned to contain zero.

Note that incrementing a register which contains $FF will reset that register to $00,
will clear the Negative flag (N = 0) and will set the Zero flag (Z = 1). Conversely,
decrementing a register holding $00 will reset its value to $FF, set the Negative flag and
clear the Zero flag.

There are two other increment and decrement instructions:

INC Increment memory

DEC Decrement memory

These instructions allow the values in memory locations to be adjusted by one, for
example:

INC $70 \ add 1 to location $70

DEC $1500 \ subtract 1 from location $1500
Both instructions condition the Negative and Zero flags as described earlier.

Program 18 shows how these instructions can be used, in this case to print ‘ABC’ on the
screen.

Program 18

16 REM * * INCREMENTING A REGISTER * *
20 CODE = 49152

30 FOR LOOP=0TO 16

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 169,65 REM $A9, $41 — LDA #ASC“A”
160 DATA 170 : REM $AA — TAX
116 DATA 232 : REM $E8 — INX

120 DATA 32,210,255 : REM $20, $D2, $FF — JSR $FFD2
130 DATA 138 : REM $8A — TXA
140 DATA 232 : REM $E8 — INX

150 DATA 32,210,255 : REM $20, $D2, SFF — JSR $FFD2
160 DATA 138 : REM $8A — TXA
170 DATA 32,210,255 : REM $20, $D2, $FF — JSR $FFD2
180 DATA 96 : REM $60 — RTS

190

200 SYS CODE
The meaning of each line is as follows:

Lines 20-60 Assemble machine code.

Line 90 Place ASCII ‘A’ in accumulator.

Line 100 Save it in X register.

Line 110 Increment X to give code for ‘B’.

Line 120 Print ‘A’ to screen.

Line 130 Transfer ASCII code for ‘B’ to accumulator.
Line 140 Increment X to give code for ‘C’.

Line 150 Print ‘B’ to screen.

Line 160 Transfer ASCII code for ‘C’ into accumulator.
Line 170 Print ‘C’ to screen.

Line 180 Back to BASIC.

Line 200 Execute machine code.

64

COMPARISONS

There are three compare instructions:

CMP Compare accumulator
CPX Compare X register
CPY Compare Y register

The contents of any register can be compared with the contents of a specified memory
location, or as is often the case, the value immediately following the mnemonic. The
values being tested remain unaltered. Depending on the result of the comparison, the
Negative, Zero and Carry flags are conditioned. How are these flags conditioned? Well,
the first thing the 6510 does is set the Carry flag (C = 1). It then subtracts the specified
value from the contents of the register. If the value is less than, or equal to the register
contents, the Carry flag remains set. If the two values are equal the Zero flag is also set. If
the Carry flag has been cleared, it means that the value was greater than the register
contents, and a borrow occurred during the subtraction. The Negative flag is generally
(but not always) set when this occurs—this is only really valid for two’s complement
compares. Table 13.1 summarizes these tests.

Table 13.1
Test Flags
C z N
Register less than data 0 0 1
Register equal to data 1 1 0
Register greater than data 1 0 0

BRANCHES

Depending on the result of a comparison, the program will need either to branch back to
repeat the loop, branch to another point in the program, or just simply continue. This type
of branching is called conditional branching, and eight instructions enable various
conditions to be evaluated. The branch instructions are:

BNE Branch if not equal Z=90
BEQ Branch if equal Z=1]
BCC Branch if Carry clear CcC=90
BCS Branch if Carry set C=1
BPL Branch if plus N=2@
BMI1 Branch if minus N=1
BVC Branch if overflow clear V=20
BVS Branch if overflow set V=1

Let’s now rewrite the BASIC program to print ten exclamation marks (see page 62) in
assembly language.

Program 19

16 REM * * 10 ! MARKS * *
20 CODE = 49152

30 FORLOOP=0TO 12

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 162,0 : REM $A2, $00 — LDX #0

100 DATA 169,33 : REM $A9, $21 — LDA #ASC*!”
110 DATA 32,210,255 : REM $20, $D2, $FF —JSR $FFD2
120 DATA 232 : REM $E8 — INX

130 DATA 224,10 REM $E0, $0A — CPX #10

140 DATA 208,248 : REM $D@, $F8 — BNE -8

150 DATA 96 : REM $60 — RTS

160

170 SYS CODE

Lines 90 and 100 initialize the X register and place the ASCII code for an exclamation
mark into the accumulator. Line 110 uses the JSR instruction to print the accumulator’s
contents to the screen. The X register is incremented (line 120) and if not yet equal to 10 the
BNE instruction (line 140) is performed and the program loops back to print another
exclamation mark.

If you look closely at the program listing, more especially at line 149, you will notice
that the BNE opcode is followed by a single byte, and not an address as you may have
expected. This byte is known as the displacement, and this type of addressing is called
relative addressing. The operand, in this case 248 ($F8), tells the processor that a
backward branch of 8 bytes is required.

To distinguish branches backwards from branches forward you use signed binary. A
negative value indicates a backward branch while a positive number indicates a forward
branch. Obviously, it is important to know how to calculate these displacements—so let’s
try it.

Before sitting down in front of your Commodore 64 it is always best to write out your
machine code program on paper. While it is perfectly feasible to write it ‘at the keyboard’,
this nearly always leads to problems caused by errors in the coding (and I speak from
experience). To make it clear just where loops are branching to and from, you can use
labels. Table 13.2 shows the layout for Program 19.

Table 13.2
Label Mnemonics Comments
START Code begins
LDX #0 Loop counter
LDA #ASC 1 ASCII code for ‘1’
LOOP Branch destination
JSR $FFD2 Print‘?’
INX X=X+1
CPX #10 Is X = 10 yet?
BNE LOOP No, continue
RTS All done!

65

66

To calculate the branch displacement, just count the number of bytes from the
displacement byte itself back to the label LOOP.

LOOP

JSR $FFD2 3 bytes
INX 1 byte
CPX #10 2 bytes

BNE LOOP 2 bytes

This gives a total displacement of 8 bytes. Note that the relative displacement and the BNE

opcode are
instruction

included in the count because the Program Counter will be pointing to the
after the branch.

To convert this backward displacement into its signed binary form, you just calculate its
two’s complement value (see Chapter 3 if you need some refreshing on how to do this).

00
11

11

00 1000 (8)
110111
1

111000 (-8 =S$F8)

Since all branch instructions are two bytes long, effective displacements of —126 bytes

(128 + 2)

and +129 bytes (127 + 2) are possible.

To make life easier, you’ll be relieved to know that Appendix 6 contains a couple of
tables from which you can read off displacement values directly.

To demonstrate the use of a forward branch enter and RUN Program 20 which displays
a ‘'Y’ if location $FB contains a ‘0’ or an ‘N’ otherwise.

Program 20

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

REM * * FORWARD BRANCHING * *
CODE = 49152
FOR LOOP = 0 TO 14
READ BYTE
POKE CODE + LOOP, BYTE
NEXT LOOP

REM * * M/C DATA * *

DATA 165,251 REM $AS, $FB — LDA $FB
DATA 240,6 REM $F0, $06 — BEQ ZERO
DATA 169,78 REM $A9, $4E — LDA #ASC“N”
REM BACK
DATA 32,210,255 REM $20, $D2, SFF — JSR $FFD2
DATA 96 REM $60 — RTS
REM ZERO
DATA 169,89 REM $A9, $59 — LDA #ASC*Y”
DATA 24 REM $§18 — CLC
DATA 144,247 REM $90, $F7 — BCC BACK

190
200 SYS CODE

In this program I have used labels contained within REM statements to identify the
jump addresses. This should help to make things clearer.

The machine code begins by loading the byte at location $FB into the accumulator. If
the byte is zero this will automatically set the Zero flag, and the branch of line 100 will be
executed (BEQ—branch if equal). Because this is a forward branch a positive value is used
to indicate the displacement—in this instance 6 bytes forward. The accumulator is then
loaded with the ASCII code for Y. If the contents of $FB are non-zero, then the BEQ fails
and the accumulator is loaded with ‘N’.

Lines 170 and 180 illustrate a technique known as forced branching. The Carry flag is
cleared and a BCC (branch carry clear) executed—because we cleared the Carry flag
beforehand we have forced the processor to jump to BACK.

Whenever a register is used as a loop counter, and only as a loop counter, it is better to
write the machine code so that the register counts down rather than up. Why? Well, you
may recall from Chapter 7 that when a register is decremented such that it holds zero the
Zero flag is set. Using this principle Program 19 can be re-written as follows, so that the
CPX #10 instruction is superfluous:

Program 21

10 REM * * DOWN COUNT * *
20 CODE = 49152

30 FORLOOP=0TO 10

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 162,10 REM $A2, $0A — LDX #10

160 DATA 169,33 REM $A9, $21 — LDA #ASC*i”
110 REM LOOP

120 DATA 32,210,255 : REM $20, $D2, $FF — JSR $FFD2
130 DATA 202 REM $CA — DEX

140 DATA 208,250 : REM §D9, $FA — BNE LOOP
150 DATA 96 : REM $60 — RTS

160

170 SYS CODE

FOR ... NEXT

In BASIC the FOR ... NEXT loop makes the Commodore 64 execute a set of statements a
specified number of times. All FOR ... NEXT loops—including those containing positive

and negative STEP sizes—are relatively easy to produce in machine code, and each type is
summarized below.

1. FOR LOOP = FIRST TO SECOND . .. NEXT

This loop requires only two variables, the start and end values normally termed the

67

68

entry and exit conditions. Here they are defined by the two variables FIRST and
SECOND. No STEP size is indicated therefore the loop will increment by one each time
round. In assembler this is implemented as:

SETUP LDX FIRST \ place loop start into counter
LOOP \ mark loop entry
\ loop statements here
INX \ add one to counter
CPX SECOND \ has loop limit been reached?
BNE LOOP \ no, execute loop again

2. FOR LOOP = SECOND TO FIRST STEP -1 .. . NEXT

This loop is essentially the same as the previous one, except that the counter must
initially be loaded with SECOND, and then decremented by one each time round to
mimic the STEP —1I statement.

SETUP LDX SECOND \ place loop start in counter
LOOP \ mark loop entry
\ loop statements here
DEX \ decrement counter
CPX FIRST \ finished?
BCS LOOP \ no, execute again

In this loop the Carry flag remains set until the loop count is decremented below
FIRST. Therefore, if SECOND = 10 and FIRST = 6 the loop is executed 5 times, just as it
would be in BASIC.

3. FOR LOOP = FIRST TO SECOND STEP 3 ... NEXT

This loop is similar to that described in 1, except that three INX instructions are
required to produce the STEP 3.

SETUP LDX FIRST \ place loop start in counter
LOOP \ loop entry
\ execute loop statements here

INX \ increment counter by 3

INX

INX

CPX SECOND \ finished?

BNE LOOP \ no, go again

On reaching SECOND the CPX instruction will succeed, setting the Zero flag. The
BNE LOOP will fail and the loop is completed.

4. FOR LOOP = SECOND TO FIRST STEP -3 ... NEXT

This loop is similar to that already described in 2, but needs three DEX instructions to
generate the STEP —3.

SETUP LDX SECOND \ place loop start in counter
LOOP \ loop entry

execute lOOp statements

DEX \ decrement by three
DEX

DEX

CPX FIRST \ finished?

BCS LOOP \ no, go again

5. FOR LOOP = FIRST TO SECOND STEP NUM . .. NEXT

If NUM is known at the time of writing the program then just include the correct
number of INX statements. However, if NUM = 10, ten INX instructions would be a
pretty inefficient piece of programming. The rule here is to use INX for STEPs of 4 or less
and otherwise to use the ADC instruction.

SETUP LDX FIRST

LOOP

PHA \ save accumulator if needed

TXA \ move counter across into
accumulator

CLC \ clear Carry flag

ADC NUM \ add STEP size

TAX \ restore counter

PLA \ and accumulator

CPX SECOND \ finished?

BNE LOOP \ no, go again

Note here that the counter’s contents must be transferred to the accumulator for the
ADC NUM instruction to be performed, and returned to the X register on completion. If
the accumulator’s contents are important they can be preserved on the stack.

6. FOR LOOP = SECOND TO FIRST STEP -NUM . . . NEXT

The rules for 5 apply here, except that the Carry flag must first be set and SBC used to
mimic the minus STEP size.

SEPUP LDX SECOND

LOOP
PHA \ save accumulator if needed
TXA \ move counter across
SEC \ get Carry flag
SBC NUM \ minus STEP
TAX \ restore counter
PLA \ and accumulator
CPX FIRST \ finished?
BCS LOOP \ no, go again

Of course, the Y register could have been used equally well as the loop counter.
69

70

MEMORY COUNTERS

Invariably programs that operate on absolute addresses will require routines that are
capable of incrementing or decrementing these double byte values. A typical case being a
program using post-indexed indirect addressing that needs to sequentially access a whole
range of consecutive memory locations. The following two programs show how this can
be done. First, incrementing memory addresses.

Program 22

106 REM * * INCREMENTING MEMORY * *
20 CODE = 49152

30 FORLOOP=0TO6

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 230,251 : REM $E6, $FB — INC $FB
100 DATA 208,2 : REM $D0, $02 — BNE OVER
116 DATA 230,252 : REM $E6, $FC — INC $FC
120 REM OVER
130 DATA 92 REM $60 — RTS
140

156 POKE 251, @ : POKE 252, 0

160 SYS CODE

1706 LOW = PEEK(251)

180 HIGH = PEEK(252)

199 NUM = HIGH * 256 + LOW

200 PRINT NUM

2106 GOTO 160

Lines 90 to 120 contain the relevant code. Each time it is executed by the SYS CODE

call (line 160) the low byte of the counter at $FB is incremented. When the low byte
changes from $FF to $00 the Zero flag is set, and so the branch in line 100 will not take

place allowing the high byte of the counter at $FC to be incremented.
Decrementing a counter is a little less straightforward.

Program 23

16 REM * * DECREMENTING MEMORY * *
20 CODE = 49152

30 FORLOOP=0TO 8

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220

REM * * M/C DATA * *

DATA 165,251 REM $AS, $FB — LDA $FB

DATA 208,2 : REM $D9, $02 — BNE LSBDEC

DATA 198,252 REM $C6, $FC — DEC $FC
REM LSBDEC

DATA 198,251 : REM $C6, $FB — DEC $FB

DATA 96 : REM $60 — RTS

POKE 251,0 : POKE 252,0

SYS CODE

LOW = PEEK(251)

HIGH = PEEK(252)

NUM = HIGH * 256 + LOW
PRINT NUM

GOTO 170

First, the accumulator is loaded with the low byte of the counter, $FB (line 99); this
procedure will condition the Zero flag. If it is set, the low byte of the counter must contain
$00, and therefore the high byte needs to be decremented (line 110)—the low byte of the
counter will always be decremented (line 130).

If all registers are being used the following alternative can be employed:

INC COUNTER
DEC COUNTER
BNE LSBDEC

DEC COUNTER + 1

LSBDEC DEC COUNTER

The process of first incrementing and then decrementing the low byte of COUNTER will
condition the Zero flag in the same manner as a /oad instruction.

71

14 Subroulines and Jumps

SUBROUTINES

If you are familiar with BASIC’s GOSUB and RETURN statements you should have-little
difficulty understanding the two assembler equivalents:
JSR Jump save return

RTS Return from subroutine

If you are not familiar, I will explain.

Quite often during the course of writing a program you will find that a specific
operation must be performed more than once, perhaps several times. Rather than typing
in the same group of mnemonics on every occasion, which is both time consuming and
increases the programs’ length, they can be entered once, out of the way of the main
program flow, and called when required. Not every piece of repetitive assembler
warrants being coded into a subroutine, however. For example:

INX : DEY : STA Temp

is quite common (or something very similar) however, when assembled it only occupies
four bytes of memory, which is the same memory requirement as a JSR . . . RTS call.
Nothing is to be gained by introducing a subroutine here then, in fact, it will actually slow
the program operation down by a few millionths of a second! On the other hand:

CLC : LDA Temp : ADC Value : STA Somewhere

might well warrant its own subroutine call as, if absolute addressing is employed, it may be
up to ten bytes in length.

Let’s now look at a short program, which contains several subroutine calls to the
Commodore 64’s Kernal.

Program 24

16 REM * * SUBROUTINE DEMO * *
20 CODE = 49152

30 FOR LOOP=0TO 14

40 READ BYTE

50 :POKE CODE + LOOP, BYTE

60 NEXT LOOP

70
80 REM * * M/C DATA * *
90 REM WAIT

100 DATA 32,228,255 REM $20, $E4, SFF — JSR $FFE4
116 DATA 240,251 : REM §F0, $FB — BEQ WAIT

120 DATA 133,251 : REM 885, $FB — STA $FB

130 DATA 230,251 : REM $E6, $FB — INC $FB
140 DATA 165,251 : REM §$AS, $FB — LDA $FB
150 DATA 32,210,255 REM $20, $D2, SFF — JSR $FFD2
160 DATA 96 : REM $60 — RTS

170

180 SYS CODE

This program uses two subroutine calls. The first (line 100) is to the Kernal GETIN
subroutine at 65508 ($FFE4) which is, in effect, a keyboard scan routine. A full
description of this routine (and all other Kernal routines) can be found in Chapter 20, but
briefly this routine returns a detected key’s ASCII value in the accumulator. If no keypress
is detected then the accumulator holds 0. Line 110 tests the accumulator for zero,
branching back to the GETIN routine until a keypress is detected. Then the key’s code is
stored in location 251 (3FB) and is incremented (line 130) before being loaded back into
the accumulator. Finally, the CHROUT subroutine, which we have used several times
before, is called to print the accumulator’s contents to the screen. RUN the program to see
the effect. Try pressing the ‘A’ key—a ‘B’ should be printed!

Now that we have taken a general overview of subroutine calls and their functions it will
be useful to see just how they manage to do what they do.

The two instructions JSR and RTS must perform three functions between them. Firstly,
the current contents of the Program Counter must be saved so that control may be
returned to the calling program at some stage. Secondly, the 6510 must be told to execute
the subroutine once it arrives there. Finally, program control must be handed back to the
calling program.

The JSR instruction performs the first two requirements. To save the return address it
pushes the two byte contents of the Program Counter onto the stack. The Program
Counter at this stage will hold the address of the location containing the third byte of
the three which constitute the JSR instruction. After pushing the Program Counter
onto the stack, the operand specified by JSR is placed into the Program Counter, which
effectively transfers control to the subroutine.

. Main
program
INX
PC | $0DP6 |——— FF
E3
b) JSR
Stack c) Subroutine
¢D PC $FFE3 c9
g6 g2
” $FD |sP 19

Figure 14.1 Steps taken by a JSR instruction.

73

74

Figure 14.1 shows how these operations take place, and in particular, their effect on the
stack. At the time the 6510 encounters the JSR instruction the Program Counter is
pointing to the second byte of the two byte operand (Figure 14.1a). The microprocessor
pushes the contents of the Program Counter onto the stack, low byte first (Figure 14.1b),
and then copies the subroutine address into the Program Counter (Figure 14.1c).

When the RTS instruction is encountered at the end of the subroutine, these actions are
reversed. The return address is pulled from the stack and incremented by one (Figure 14.2)
as it is replaced into the Program Counter, so that it points to the instruction after the
original subroutine call.

Subroutine
a)
PC $1234 |————p RTS
b) Stack
0 Main
rogram
96 prog
SP | $FD | 7 PC| $6DB7 [— INX
FF
c) &3
Stack JSR

SP | $FF —3d @D

Figure 14.2 Steps taken by an RTS instruction

PASSING PARAMETERS

Nine times out of ten a subroutine will require some data to work on, and this will have to
be passed into the subroutine by the main program. For example, in Program 24, the
values to be printed were placed into the accumulator before calling the CHROUT
routine. This routine is written such that it expects to find a data byte in the accumulator.
Other subroutines may require several bytes of information, in which case the

accumulator alone would not be sufficient. There are three general ways in which
information or parameters can be passed into subroutines, these are:

1. Through registers.
2. Through memory locations.
3. Through the stack.

Let’s look at each of these methods in turn.

Through registers

This is quite obviously the simplest method particularly because it can keep the subroutine
independent of memory. Because only three registers are available though, only three
bytes of information can be conveyed. The registers may themselves contain vital
information, so this would need to be saved, possibly on the stack, for future restoration.

Through memory

This is probably the easiest method if numerous bytes are being passed into the
subroutine. The most efficient way is to use memory in zero page between locations $FB
and $FE inclusive, because this is reserved for user applications. If the subroutine uses
several bytes of memory, a neat way of accessing them is to place the start address of the
data in the X register, and then use zero page indexed addressing with $00 as the operand

as follows:
LDX $FB
JSR Subroutine

\ Subroutine LDA $00, X

INX
CPX #$FE
BNE Subroutine
RTS
The disadvantage of using memory locations to pass parameters is that it ties the

subroutine to a given area, making it memory dependent. However, on most occasions
this does not really matter.

Through the stack

Passing parameters through the stack needs care, since the top of the stack will contain the
return address. This method also requires two bytes of memory in which the return
address can be saved after pulling it from the stack (though, of course, the index registers
could be used). If the stack is used, the subroutine needs to commence with:

PLA \ pull low byte
STA ADDR \ and save it
PLA \ pull high byte
STA ADDR + 1 \ and save it

The STA instructions can be replaced by TAX and TAY respectively. It is common
practice when using the index registers to hold an address, to place the low byte in the X
register and the high byte in the Y register.

75

76

Once the parameters have been pulled from the stack the return address can be pushed
back on to it with,

LDA ADDR + |
PHA

LDA ADDR
PHA

Remember, the stack isa LIFO structure, so the bytes need to be accessed and pushed in
the reverse order from that in which they were pulled and saved.

If a variable number of parameters is being passed into the subroutine, the actual
number can be ascertained each time by evaluating the contents of the Stack Pointer. This
can be carried out by transferring its value to the X register with TSX, and
incrementing the X register each time the stack is pulled until, say, $FF is reached,
indicating the stack is empty. The actual value tested for will depend on whether any other
subroutine calls were performed previously—making the current one a nested subroutine.
The value $FF is therefore just a hypothetical case and assumes nothing other than that
data is present on the stack.

JUMPS

The JMP instruction operates in a similar manner to BASIC’s GOTO statement in that it
transfers control to another part of the program. In assembler however, an absolute
address is specified rather than a line number (which does not, of course, exist in machine
code). The instruction operates simply by placing the two byte address specified after the
opcode into the Program Counter, effectively producing a jump.

Program 25 creates a continuous loop by jumping back to the start of the program. This
is seen as an unending stream of asterisks being printed to the screen—you’ll have to press
RUN/STOP and RESTORE to get back to BASIC.

Program 25

10 REM * * JUMPING * *

20 CODE = 49152

30 FORLOOP=0TO7

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 REM START

100 DATA 169,42 REM $A9, $2A — LDA #ASC**”
110 DATA 32,210,255 : REM $20, $D2, $FF — JSR $FFD2
120 DATA 76,0,192 REM 3$4C, $00, $C6 — JMP START
130

149 SYS CODE

JMP will generally be used to leapfrog over a section of machine code that need not be
executed because a test failed. For example:
BCC OVER
JMP SOMEWHERE
OVER LDA BYTE
ASL A
INX
DEY
SOMEWHERE STA TEMP
Here, if the Carry flag is clear, the jump instruction will be skipped and the code of
OVER executed. If the Carry flag is set the test will fail, the JMP will be encountered and
the code of OVER bypassed.
A further use of JMP, the ‘indirect jump’, was detailed in Chapter 11. As we saw, the

address that is actually jumped to is stored in a vector, the address of which is specified in
the instruction. JMP ($FB) being an example.

77

78

I5 Shifis and Rolales

Basically, these instructions allow the bits in a single byte to be moved one bit to the left or
one bit to the right. There are four instructions available:

ASL Arithmetic shift left
LSR Logical shift right
ROL Rotate left

ROR Rotate right

All of these instructions may operate directly on the accumulator, or on a specified
memory byte:

ASL A \ arithmetic shift left accumulator
ROL $FB \ rotate left location $FB

Let’s investigate each command in more detail.

ARITHMETIC SHIFT LEFT

ASL moves the contents of the specified byte left by a single bit.

Carry flag

Before shift: C M B, | B{|B | B, | B, | B, | B, | B ——0

After shift: B, B | B | B, | B, | B, | B, | By 0

Bit 7 (B;) is shifted into the Carry flag,and a ‘0’ takes the place of bit @ as the rest of the bits
are shuffled left. The overall effect is to double the value of the byte in question.

Example:
C Accumulator
LDA $42 \ load accumulator with $42 X 010000190
C Accumulator
ASL A \ shift accumulator left 0 10000100

The accumulator now holds 384, twice the original value!

A further example of ASL is given by Program 26 which asks for a number (less than
64), multiplies it by four using ASL A, ASL A, and prints the answer.

Program 26

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

REM * * MULTIPLY BY FOUR * *

CODE = 49152
FOR LOOP =0 TO 6
READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA * *
REM $AS, SFB
REM $0A
REM $0A

DATA 165,251
DATA 10
DATA 10
DATA 133,251
DATA 96

PRINT CHRS$ (147)

REM $85, $FB

REM $60

— LDA $FB

— ASL A
— ASL A

— STA $FB

— RTS

INPUT “NUMBER TO BE MULTIPLIED BY 4’; NUM

POKE 251,NUM
PRINT “X 4 =",
SYS CODE
PRINT PEEK(251)

LOGICAL SHIFT RIGHT

LSR is similar to ASL except that it moves the bits in the opposite direction, with bit @ (B,)
jumping into the Carry flag and a @ following into the spot vacated by bit 7 (B,).

Before shift: g——| B, | B

After shift 0 B,

Carry
Byte flag
B; | B, | B | B, | B | B |—=| C
Bs Bs B4 BJ BZ Bl BO

This instruction could well have been called arithmetic shift right because it effectively
divides the byte being shifted by two. For example:

LDA $42 \

load accumulator with $42

Accumulator

01000010

79

80

LSR A \ shift accumulator right 0 00100001

The accumulator now holds $21, half the original value.
Using:

LSR A : BCS Elsewhere
or,
LSR A : BCC Somewhere

is a good efficient way of testing bit @ of the accumulator.
Program 27 tests the condition of bit @ of an input ASCII character by shifting it into the
Carry flag position. If the carry is clear a zero is printed, if set—a one is printed instead.

Program 27

16 REM * * TEST BIT 0 * *

20 CODE = 49152

30 FOR LOOP=0TO 10

40 READ BYTE

50 POKE CODE + LOOP, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 165,251 REM $AS5, $FB — LDA $FB

100 DATA 74 : REM $4A — LSR A

116 DATA 169,48 REM 3$A9, $30 — LDA #ASC*0”
120 DATA 105,0 REM 869, $00 — ADC #90

130 DATA 32,210,255 REM $20, $D2, $FF — JSR $FFD2
140 DATA 96 REM $66 — RTS

150

166 INPUT A

176 POKE 251, A
180 SYS CODE

The input value (line 160) is POKEd into location 251 ($FB). This is then loaded into the
accumulator (line 99) and a logical shift right performed (line 100) which moves bit @ into
the Carry flag position—either setting or clearing it. The accumulator is then loaded with
the ASCII code value for ‘@’ (line 120) before the ADC instruction adds @ to it (line 130)!
No that’s not as crazy as it seems—remember that the ADC instruction takes the value of
the Carry flag into consideration. If it is clear then the accumulator will still hold the
ASCII code for @, but if it is set, one will be added to the accumulator’s value so that it now
holds the ASCII code for 1!

ROTATE LEFT

This instruction uses the Carry flag as a ninth bit, rotating the whole byte left one bitin a
circular motion, with bit 7 moving into the Carry flag, which in turn moves across to bit 0.

Byte

Before rotate: B, | B | B; | B, B, | B, B, B,
C
Carry
flag
After rotate: Bs | B | B, | B; B, B, B, C

B,

ROL provides an easy method of testing any of the four bits constituting the upper
nibble of the accumulator. The desired bit is rotated into the bit 7 position, thus setting or
clearing the Negative flag as appropriate.

Example: test bit 5 of accumulator.

Accumulator AF 10101111 N=1

Carry flag 0

ROL A / rotate bit 6 into the bit 7 position

Accumulator 5E 01011110 N=20

Carry flag 1

ROL A / rotate bit 5 into the bit 7 position

Accumulator BC 10111101 N=1

Carry flag 0

The Negative flag is now set, indicating that bit 5 of the accumulator was set.

ROTATE RIGHT

Works just like ROL except the bits move to the right.

81

‘Byte

Before rotate: B, B, Bs B, B, B, B, B,
C
Carry
flag
After rotate: C B, B, B; B, B, B, B,
+ B, ==

Example: ROR accumulator containing $8F.

CLC \ clear Carry flag
LDA $8F \ load accumulator with $8F

Accumulator 8F ||1060001111
Carry flag 0

ROR \ rotate right

Accumulator 47 ||01600111
Carry flag |

LOGICALLY SPEAKING

If you need to shift (or rotate) the contents of a particular location several times, it is more
efficient to load the value into the accumulator, shift (or rotate) that and store it back,
than to manipulate the location directly.
For example, to rotate location $1234 to the right four times, we could use:

ROR $1234

ROR $1234

ROR $1234

ROR 81234

This uses twelve bytes of memory, four for the instructions and eight for addresses.
Alternatively:

LDA $1234

ROR A
ROR A
ROR A
ROR A
STA $1234
uses two bytes less and is 25% quicker in operation.
So far we have only considered shifting and rotating single bytes. By using

combinations of instructions it is possible to perform similar operations on two byte
values such as $CAFE.

To perform an overall ASL on two bytes located at HIGH and LOW, ASL and ROL
are used in conjunction:

ASL HIGH \ shift bit 7 by LOW into Carry flag
ROL LOW \ rotate it into bit @ of HIGH

By exchanging the commands an overall LSR on the same two bytes can be performed:

LSR HIGH \ shift bit ® HIGH into Carry flag
ROR LOW \ rotate it into bit 7 of LOW
Note that the bytes are manipulated in the reverse order because we wish to move the

bits in the opposite direction. As with single byte shifts, the two byte values can be doubled
or divided in half.

Two byte rotates to move the bits in a circular manner, are simply rotation operations
performed twice! However, as with two byte shifts, it is important to get the byte rotation
order correct.

A two byte ROR is performed with:

ROR HIGH \ rotate bit @ of HIGH into Carry flag

ROR LOW \ and on into bit 7 of LOW
While two byte ROLs are implemented with:

ROL LOW \ rotate bit 7 of LOW into Carry flag
ROL HIGH \ and on into bit @ of HIGH

Finally, moving back to single byte shifts, to shift the contents of the accumulator right
one bit while preserving the sign bit, use the following technique:

TAY \ save accumulator in Y register

ASL A \ move sign bit (bit 7) into Carry flag

TYA \ restore original value back into
accumulator

ROR A \ rotate right moving sign bit back
into bit 7

The Y register has been used as a temporary store for the accumulator. We could have
used the X register or a memory location with equal effect.

PRINTING BINARY!

Quite often, it is necessary to know the binary bit pattern that a register or memory
location holds. This is particularly true in the case of the Status register when the

83

84

condition of its flags can often provide a great deal of information about the way a
program is running.

Program 28 shows how the binary value of a byte can be printed. It uses the Status
register’s contents at the time the program is RUN as an example.

Program 28

10 REM * * BINARY OUTPUT OF SR * *
20 CODE = 49152

30 FOR LOOP=0TO 18

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

990 DATA 8§ REM §08 — PHP

100 DATA 104 REM §$68 — PLA

116 DATA 133,251 REM $8S5, $FB — STA $FB
120 DATA 1628 REM $A2, $08 — LDX #$08
130 REM NBIT

140 DATA 6,251 REM $06, $FB — ASL $FB
150 DATA 169,48 REM $A9, $30 — LDA #ASC*"0”
160 DATA 105,0 REM §$69, $00 — ADC #$00
170 DATA 32,210,255 : REM $20, $D2, $FF — JSR $FFD2
180 DATA 202 REM $CA — DEX

190 DATA 208,244 REM $D0, $F4 — BNE NBIT
200 DATA 96 REM $60 — RTS
210

220 PRINT CHRS (147)
230 PRINT “NV—BDIZC”
240 SYS CODE

The Status register needs to be saved in a memory location so that it can be manipulated.
To do this it must be transferred into the accumulator by first pushing it on to the stack
with PHP (line 99) and then pulling it into the accumulator with PLA (line 100); it can then
be stored in zero page at location 251 (line 110). The X register is used to count the eight
bits of the byte, so it is initialized accordingly (line 120). Line 130 is used asa label marker
for NBIT (short for next bit). The arithmetic shift left (line 140) moves the msb of location
251 ($FB) into the Carry flag. The bit value (@ or 1)is printed out using the ASCII code for
0 and adding the Carry flag contents to it (lines 150 to 170) as described for Program 27.
The bit counter is decremented (line 180) and a branch to NBIT executed if X has not
reached zero (line 199).
To prove that the program does work, try including lines such as:

85 DATA 169,255 REM $A9, $FF — LDA #$FF set N
85 DATA 169,0 REM $A9, $00 — LDA #8300 clear N set Z

These will condition the status flags as indicated. (Don’t forget to change the LOOP count
in line 30.) You might like to try modifying the program to print the binary value of any
key pressed on the keyboard!

BIT

The instruction, BIT, allows individual bits of a specified memory location to be tested. It
has an important feature in that it does noz change the contents of either the accumulator
or the memory location being tested, but, as you may have guessed, it conditions various
flags within the Status register. Thus:

1. The Negative flag is loaded with the value of bit 7 of the location being tested.

2. The Overflow flag is loaded with the value of bit 6 of the location being tested.

3. The Zero flag is set if the AND operation between the accumulator and the memory
location produces a zero.

By loading the accumulator with a mask it is possible to test any particular bit of a
memory location. For example, to test location TEMP to see if bit @ is clear the following
could be used:

LDA #1 \ 00000001
BIT TEMP \ test bit @

If bit @ of TEMP contains a @, the Zero flag will be set, otherwise it will remain clear, thus
allowing BNE and BEQ to be used for testing purposes.

This masking procedure need only be used for testing bits @ to 5 because bits 6 and 7 are
automatically copied into the Negative and Overflow flags, which have their own test
instructions.

BIT TEMP

BMI \ branch if bit 7 set
BPL \ branch if bit 7 clear
BVC \ branch if bit 6 set
BVS \ branch if bit 6 clear

85

16 Multiplication and Division

MULTIPLICATION

Performing multiplication in assembly language is not too difficult provided that you
have grasped what you have read so far. Unfortunately there are no multiplication
instructions within the Commodore 64’s 6510 instruction set, therefore it is necessary to
develop an algorithm to carry out this procedure.

Let’s first look at the simplest method of multiplying two small values together.
Consider the multiplication 5 X 6. We know the result is 3@, but how did we obtain this?
Simply by adding together six lots of five, in other words: 5+ 5+ 5+ 5+ 5+ 5=30
This is quite easy to implement:

Program 29

10 REM * * SIMPLE MULTIPLICATION * *
20 CODE = 49152

30 FOR LOOP=0TO 16

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

86

70

80 REM * * M/C DATA * *

99 DATA 169,0 REM $A9, $00 — LDA #3500
100 DATA 133,251 REM 3§85, $FB — STA $FB
110 DATA 162,6 REM $A2, $06 — LDX #$06
120 DATA 24 REM §18 — CLC

130 REM LOOP

140 DATA 165,251 REM $AS, $FB — LDA $FB
150 DATA 105,5 REM $69, $05 — ADC #3805
160 DATA 133,251 REM §$85, $FB — STA $FB
170 DATA 202 REM $CA — DEX

180 DATA 208,247 REM $D@, $F7 — BNE LOOP
199 DATA 96 REM $60 — RTS

200

210 SYS CODE

220 PRINT “RESULT = "
230 PRINT PEEK(251)

All we have done here is to create a loop to add 5 to the contents of location $FB six times
to produce the desired result! This method is reasonable for multiplying small values, but
not particularly efficient for larger numbers.

At this point, it might be worth reviewing the usual procedure for multiplying two large
decimal numbers together. Consider 123 X 150. We would approach this, (without
calculators, please!) thus:

123 (Multiplicand)
X150 (Multiplier)

000 (Partial product 1)
615 (Partial product 2)
123 (Partial product 3)

18450 (Result or final product.)

The initial two values are termed the multiplicand and multiplier, and their product is
formed by multiplying, in turn, each digit in the multiplier by the multiplicand. This
results in a partial product, which is written such that its least significant digit sits directly
below the multiplier digit to which it corresponds. When formation of all the partial
products is completed, they are added together to give the final product or result.

We can apply this technique to binary numbers, starting off with two three bit values,
010 X 011

010 (Multiplicand)
X011 (Multiplier)

010 (Partial product 1)
010 (Partial product 2)
000 (Partial product 3)

00110 (Result)

Ignoring leading zeros, we obtain the result 110 (2 X 3 = 6). Moving on to our original
decimal example, its binary equivalent is:

01111011 123($7B)
x10010110 150(396)

00000000
01111011
01111011
00000000
01111011
000000000
00000000
01111011

100100000010010 18450(34812)

Hopefully you will have noticed that if the multiplier digit is a @ it will result in the whole
partial product being a line of zeros (anything multiplied by zero is zero). Therefore if a @
is present in the multiplier it can simply be ignored but we must remember to shift the next
partial product up past any 0s so that its least significant digit still corresponds to the
correct | of the multiplier. This technique of shifting and ignoring can be used to write an
efficient multiplication program.

87

88

Program 30

10 REM * * SINGLE BYTE MULT GIVING 2 BYTE RESULT * *
20 CODE = 49152

30 FOR LOOP =0TO 19

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 162,8 REM $A2, $08 — LDX #$08
100 DATA 169,0 REM $A9, $00 — LDA #%00
110 REM AGAIN
120 DATA 70,252 REM $46, $FC — LSR $FC
130 DATA 1443 REM $90, $03 — BCC OVER
140 DATA 24 REM §18 — CLC
150 DATA 101,251 REM $65, $FB — ADC $FB
160 REM OVER
170 DATA 106 REM §$6A — ROR A
180 DATA 102,253 REM $66, $SFD — ROR $FD
199 DATA 202 REM $CA — DEX
200 DATA 208,243 REM 3$D@, $F3 — BNE AGAIN
210 DATA 133,254 REM $85, $FE — STA $FE
220 DATA 96 REM $60 — RTS
230

240 PRINT CHR$(147)

250 INPUT “MULTIPLICAND”; A

260 INPUT “MULTIPLIER”; B

270 POKE 251, A : POKE 252, B

280 SYS CODE

290 HIGH = PEEK(254) : LOW = PEEK(253)

300 RESULT = HIGH * 256 + LOW

310 PRINT “RESULT IS ;

320 PRINT RESULT
This program takes two single byte numbers, multiplies them together storing the result
(which may be 16 bits long) in zero page. Unlike the binary multiplication examples, it
does not compute each partial product before adding them together, but totals the partial
products as they are evaluated. This is a somewhat quicker method, because the final
product is generated as soon as the last bit of the multiplier has been examined.

When RUN the program requests you to enter the multiplicand and multiplier (lines

250 and 260); these single byte values are then POKEd into memory. The machine code
begins by setting the X register to 8 ready to act as the bit counter (line 90). The

accumulator is then cleared—this is important as it affects the high result value in location
254 ($FE). The main loop is marked by the label in line 110. Bit @ of the multiplier is then

shifted into the Carry flag (line 120) and a branch to OVER executed if the Carry is clear
(line 149). If set, the multiplicand value needs to be added to the accumulator (line 150).
The product value now in the accumulator is rotated right (line 170) and a further ROR on
the low result byte at 253 ($FD) performed (line 180). These two operations move bit @ of
the accumulator into bit 7 of the low result byte. The X register is decremented (line 190)
and the procedure repeated for bits 1-7.

As may have become clear in the last binary example, the procedure is—if the bit is set
then add the byte, else ignore it and move on to the next shifting operation.

DIVISION

When performing the division of one number by another, we are actually calculating the
number of times the second number can be subtracted from the first. Consider 125 + 5:
25 (Quotient)

(Divisor) 51125 (Dividend)
-10
25
25
0 (Remainder)

Here, 5 can be subtracted from 10 twice, so we note the value 2 as part of the quotient.
The 10 is brought down and subtracted from the first two digits of the dividend, leaving 2.
Because 5 cannot be subtracted from 2 the remaining 5 of the dividend is brought down to
give 25. 5 can be subtracted from this, without remainder, 5 times. Again this is recorded
in the quotient, which now reflects the final result.

To divide binary numbers, this same procedure is pursued. The above example in
binary would look like this:

00011001

0]01'0111]10]

0101
10

101
101

101
101

0
In fact, as you may see, dividing binary numbers is much simpler than dividing decimal
numbers. If the divisor is less than or equal to the dividend the corresponding bit in the
quotient will be a 1. If the subtraction is not possible a @ is placed in the quotient, the next

bit of the dividend is brought down, and the procedure repeated.

The following utility program divides two single byte values and indicates whether a
remainder is present:

Program 31

16 REM * * SINGLE BYTE DIVIDE * *
20 CODE = 49152

30 FOR LOOP =0 TO 20

40 READ BYTE

89

90

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220

.230

240
250
260
270
280
290
300
310
320

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA * *

DATA 162,8 REM $A2, $08 — LDX #3508
DATA 169,0 REM §$A9, $00 — LDA #5300
REM AGAIN
DATA 6,251 REM $06, $FB — ASL $FB
DATA 42 REM $2A — ROL A
DATA 197,252 REM $CS, $FC — CMP $FC
DATA 1444 REM $90, $04 — BCC OVER
DATA 229, 252 REM $ES, $FC — SBC $FC
DATA 230,251 REM $E6, $FB — INC $FB
REM OVER
DATA 202 REM 3$CA — DEX
DATA 208,242 REM $D0, $F2 — BNE AGAIN
DATA 133,253 REM $85, $FD — STA $FD
DATA 96 REM $60 — RTS
PRINT

INPUT “DIVIDEND”; A
INPUT “DIVISOR”; B
POKE 251,A : POKE 252,B
SYS CODE

PRINT “RESULT = *;
PRINT PEEK(251)

PRINT “REMAINDER = *;
PRINT PEEK(253)

In case you cannot readily follow what the program is doing, here is a line by line
description of the mnemonics:

Line 90

Line
Line
Line

Line

Line
Line

Line
Line
Line

100
110
120

130

140
150

160
170
180

Initialize the X register to indicate the number of bits to be shifted—
1 byte = 8 bits.

Clear accumulator which will hold partial dividend value.

Set loop.

Shift the dividend left to provide the least significant bit position for the next
digit of the quotient.

The dividend bit is shifted left so that another bit from the partial dividend
(which is in accumulator) can be tested.

The divisor and partial dividend are compared.

If the result indicates that the divisor is less than, or equal to the partial
dividend . . .

. . . the divisor is subtracted from the partial dividend . . .

...and a 1 added to the quotient.

If compare shows that the divisor is greater than the partial dividend, these
last two lines are skipped.

Line 199 The bit count is decremented . . .
Line 200 ... and control returned to line 110 if not complete.
Line 210 Any remainder is saved in $FD.

This program uses the shift instructions of lines 120 and 130 as a two byte shift register
in which the accumulator acts as the higher byte. The carry produced by ROL A is
insignificant, in fact it is 0, and is eroded by the next ASL $FB procedure.

91

92

17 Assembly Types

CONDITIONAL ASSEMBLY

Conditional assembly allows different parts of an assembly language program to be
assembled in response to certain different conditions being met. One of its main
advantages is that a general source file can be created, rather than developing different
source files for each particular need. The relevant code can be selected in response to a
menu, or simply by seeding variable parameters.

Program 32 contains two different routines (multibyte addition and multibyte
subtraction), but, depending on the response to the menu selection, only one of them will
be assembled.

Program 32

10 REM * * CONDITIONAL ASSEMBLY * *
20 CODE = 49152
30 PRINT CHR$(147)
40 PRINT SPC(8)
50 PRINT “CONDITIONAL ASSEMBLY”
60 PRINT “PRESS 1 TO ASSEMBLE MBADD”
70 PRINT * 2 TO ASSEMBLE MBSUB”
80 GET A$
90 A = VAL(AS)
100 IF A = 1 THEN GOTO 200
110 IF A =2 THEN GOTO 300
120 GOTO 80
130
199 REM * * ASSEMBLE MBADD * *
200 RESTORE
210 FOR LOOP =0 TO 18
220 READ BYTE
230 POKE CODE + LOOP, BYTE
240 NEXT LOOP
250 END

260

290 REM * *ASSEMBLE MBSUB * *

300 RESTORE

310 READ BYTE

320 IF BYTE <> 96 THEN GOTO 310

330 GOTO 210

340

356 REM * * MBADD DATA * *

360 DATA 164,251 REM §$A4, $SFB — LDY $FB
370 DATA 162,0 REM $A2, $00 — LDX #$00
380 DATA 24 REM $18 — CLC

390 REM AGAIN

400 DATA 189,0,21 REM $BD, $00, $15 — LDA $1500,X
410 DATA 125,0,22 REM $7D, $00, $16 — ADC $1600,X
420 DATA 157,0,21 REM $9D, $00, $15 — STA $1500,X
430 DATA 232 REM $E8 — INX

440 DATA 136 REM $88 — DEY

450 DATA 208,243 REM $D#, $F3 — BNE AGAIN
460 DATA 96 REM $60 — RTS

470

480 REM * * MBSUB DATA * *

490 DATA 164,251 REM $A4, $FB — LDA $FB
560 DATA 162,0 REM $A2, $00 — LDX #3500
510 DATA 56 REM §38 — SEC

520 REM AGAIN

530 DATA 189,0,23 REM §$BD, $00, $17 — LDA $1700,X
540 DATA 253,0,24 REM $FD, $00, $18 — SBC $1800,X
550 DATA 157,0,23 REM $9D, $00, $17 — STA $1700,X
560 DATA 232 REM $E8 — INX

570 DATA 136 REM $88 — DEY

580 DATA 208,243 REM $D9, $F3 — BNE AGAIN
599 DATA 96 REM $60 — RTS

If item 1 is selected from the menu then the machine code is read and assembled in the’

normal manner by the BASIC loop of lines 210 to 240. If item 2 is selected we need to move
the DATA pointer on so that it points to the first data byte in the MBSUB data listing. To
do this a dummy READing loop is initiated in lines 310-320. This loop keeps reading
bytes until BYTE = 96. This marks the end of the MBADD routine as 96 is of course the
opcode for the RTS instruction. Now that the DATA pointer is in the correct position
line 330 loops back for the machine code of MBSUB to be assembled in the normal
manner.

MBADD uses absolute indexed addressing to sequentially fetch a byte of one operand
(line 400) and add it to the corresponding byte of the other operand (line 410). The result is
then stored in the location of the first operand. The Y register, having previously been
loaded with the number of addition bytes via the zero page location 251 ($FB), is

93

94

decremented (line 440), and the operation is continued until the Y register value has been
exhuasted. The two multibyte numbers for addition should, of course, be stored in
memory from locations $1500 and $1600 respectively.

The second routine, lines 490 to 598, is a multibyte subtraction routine (MBSUB)and is
assembled by selecting item 2 on the menu. MBSUB also uses absolute indexed addressing
to subtract the multibyte number at $1800 onwards from a similar number at $1700
onwards. Again the byte length of the number is stored in 251 ($FB).

LOOK-UP TABLES

Look-up tables provide a neat, compact and efficient way of obtaining data for what
might otherwise turn out to be long and complicated machine code programs. For
example, suppose we want to develop a machine code program to convert degrees
Centigrade into degrees Fahrenheit. The formula for this is:

°F = 1.8 (°C) + 32

As you can see, this requires two mathematical operations—first a multiplication then an
addition (a bit painful to the grey matter!). By providing the conversion values
precalculated in a table, the Fahrenheit values can be extracted by using the Centigrade
value as in index to the table. Try the following program:

Program 35

10 REM * * CENTIGRADE TO FAHRENHEIT * *
20 CODE = 49152

30 FORLOOP=0TO7

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

99 DATA 166,251 REM $A6, $FB — LDX $FB

100 DATA 189,0,193 REM $BD, $00, $C1 — LDA $C100,X
116 DATA 133,252 REM 885, $FC — STA $FC

120 DATA 96 REM $60 — RTS

130

140 REM * * CALCULATE TABLE VALUES * *
150 FOR C=0 TO 100

160 F=(1.8*C)+32

170 POKE 49408 + C, F

180 NEXT C

190

200 PRINT CHR$(147)

210 INPUT “CENTIGRADE VALUE”; C
220 POKE 251, C

230 SYS CODE

240 PRINT “FAHRENHEIT VALUE”;
250 PRINT PEEK(252)

Lines 150 to 180 calculate the equivalent Fahrenheit values for Centigrade values in the
range 0-100. Each value is POKEd in turn into memory, to form a table which has its base
at 49408 ($C100). The input Centigrade value for conversion is POKEd into location 251
($FB), and subsequently loaded into the X register when the machine code is executed
(line 99). This value is used as the index to the table when loading the accumulator with the
corresponding Fahrenheit value (line 100). This Fahrenheit value is stored in location 252
(8FC) so that it can be accessed by the calling BASIC. The following example illustrates
this graphically.

Example: Convert 3°C to Fahrenheit.

LDA $C100, X BD | 8 | CI

+

—> = $Cl103

X 3

Accumulator
$Cle4 | 39
$cles | 37
$cle2 | 35
$Cle1 | 33
$Clo0 | 32

Therefore 3°C is equivalent to 37°F.

95

96

18 Sprite of 64

For my money, the most endearing aspect of the Commodore 64 is the ease with which
sprite graphics can be produced and controlled. This is so easy, in fact, that it is almost as
simple to produce them from machine code programs as it is from BASIC!

The Commodore 64 has a special chip, the Versatile Interface Chip (VIC), through
which up to eight sprites can be controlled at any one time. The VIC is a memory-mapped
device—this means that it actually appears as part of the Commodore’s memory map—in
fact, it occupies 46 locations from 53248 to 54271 ($D@00-$DO2E). These locations are
generally referred to as the ‘registers’ of the VIC, because various events and effects are
controlled by POKEing predetermined values into them. Table 18.1 details the function of
each register. If you have used sprites from BASIC before you will be quite familiar with
this. From machine code, all we need to do is to POKE the locations by first loading the
relevant value into the accumulator (or one of the index registers) and then storing it in the
relevant VIC register.

Because incorrectly written machine code can cause your micro to hang-up, it’s not a
bad idea to create the sprite and effect you want in BASIC, and only when you are satisfied
with it to translate it into machine code—in fact, this is the approach most software houses
use! As an example, let’s see if we can get the USS Entcrprise to fly across the screen ““. . .
where no man has gone before . . .”” under full machine code control!

First we need to define the shape—this can be done using one of tlie Sprite Definition
Charts given in either the User Guide or Programmers Reference Guide. Figure 18.1 shows
how my attempt turned out. The grid is divided horizontally into 3 main columns, each of
which is subdivided into a further 8 columns. Each ‘major’ column represents one byte
and the minor colums bits within the byte. We need to convert each row of bytes into the
decimal number derived from the ‘bit pattern’ of the byte.

We saw how to convert between bases in Chapter 2, but just to jog your memory, what
we need to do is to work across the byte and add the weight for each bit that is set (coloured
in). Clear bits have weight 0. For example, from Figure 18.1 we can see that the first three
bytes across the top are all clear, thus the values of these bytes are @, @ and 0 respectively.
Moving on to the second row, the first byte has all bits set except the most significant,
therefore its value is:

o 1 1 1 1 1 1 1
64+32+16 +8 +4 +2 +1=127

Similarly, the second byte has all bits set except the least significant, therefore its binary
value is:

1t 1 1 1 1 1 0
128+ 64+ 32+ 16 +8 +4 +2 + =254

Table 18.1 VIC registers

Address Function

Decimal Hex

53248 D0oo Sprite @ X coordinate
53249 D001 Sprite @ Y coordinate
53250 D002 Sprite 1 X coordinate
53251 D0a3 Sprite 1 Y coordinate
53252 D004 Sprite 2 X coordinate
53253 D005 Sprite 2 Y coordinate
53254 D006 Sprite 3 X coordinate
53255 D0g7 Sprite 3 Y coordinate
53256 D008 Sprite 4 X coordinate
53257 D009 Sprite 4 Y coordinate
53258 D@oA Sprite 5 X coordinate
53259 D00B Sprite 5 Y coordinate
53260 DooC Sprite 6 X coordinate
53261 D@@D Sprite 6 Y coordinate
53262 DOOE Sprite 7 X coordinate
53263 DOOF Sprite 7 Y coordinate
53264 D010 Sprites #-7 most significant bit of X coordinate
53265 D@11 VIC control register
53266 D012 Raster latch
53267 D013 Light pen latch X coordinate
53268 D014 Light pen latch Y coordinate
53269 D015 Sprite enable (1 = enable)
53270 D016 VIC control register
7, 6 unused
S always @

4 multicoloured mode if set
3 select 38/40 column text (@ = 38, 1 = 49)
2, 1, 0, X position scroll

53271 Do17 Sprites @-7 vertical expansion
53272 D018 VIC memory control register

53273 D019 VIC interrupt flag register

53274 DO1A VIC IRQ enable register

53275 D@1B Sprite-background display priority (1 = sprite)
53276 DoI1C Sprites 0-7 multicolour mode select
532717 DoID Sprites #-7 horizontal expansion
53278 DOIE Sprite-sprite collision register
53279 D@IF Sprite-background collision register
53280 D020 Border colour

53281 D@21 Background colour 9

53282 D022 Background colour 1

53283 D023 Background colour 2

53284 D024 Background colour 3

53285 D025 Sprite multicolour register @

53286 D026 Sprite multicolour register |

53287 D027 Sprite @ colour

53288 D028 Sprite 1 colour

53289 D029 Sprite 2 colour

53290 D02A Sprite 3 colour

53291 D02B Sprite 4 colour

53292 D02C Sprite 5 colour

53293 D02D Sprite 6 colour

53294 DO2E Sprite 7 colour

o 9 &
127,254, @
127,254, @
63, 254, B
63,254, @

1,128, @
1,128,120
1,131, 254
1,131, 254
1,129,128
1,131,128
1,131,128
1,131,128

1,143, @

1,143, @

1,149, @
15,254, @

3,255, @

3,255, @

1,254, @

2.9 9

Figure 18.1 The USS Enterprise.

The third byte in the second row is clear and is therefore equal to @. This process is
continued until all 63 bytes on the chart have had their decimal value calculated from their
bit pattern. The results are included down the side of Figure 18.1.

The bit patterns (in decimal form) can now be included into DATA statements as
follows:

Program 36a

160 FOR N =0 TO 62
110 READ BYTE
120 POKE 832 + N, BYTE
130 NEXT

200 DATA 0,00

201 DATA 127,254,0
202 DATA 127,254,0
203 DATA 63,254,0
204 DATA 63,254,0
205 DATA 1,128,0
206 DATA 1,128,120
207 DATA 1,131,254
208 DATA 1,131,254
209 DATA 1,129,128
210 DATA 1,131,128
211 DATA 1,131,128

212 DATA 1,131,128
213 DATA 1,143,0
214 DATA 1,143,0
215 DATA 1,140,0
216 DATA 15,2540
217 DATA 3,255,0
218 DATA 3,255,0
219 DATA 1,254,0

220 DATA 0,00

The FOR . . . NEXT loop (lines 100-130) is responsible for READing each DATA item
and POKEing it into memory. This section of program will remain the same for both
machine code and BASIC so if you are following this example through it is a very good
idea to save it on tape. To inform the VIC where the sprite DATA is stored, it is necessary
to program the corresponding sprite pointer. These are located in the last 8 bytes of the
screen memory, starting with Sprite @ at 2040 ($07F8) and ending with Sprite 7 at 2047
(307FF). As each sprite pointer is a single byte it can hold any number in the range 0 to
255. Obviously, this is not enough to hold an address, so instead the value chosen just
points to a memory block. As each sprite definition uses 64 bytes (63 for DATA plus one
for a marker) it is possible to store sprites anywhere in the first 16K of RAM (because 64 *
256 = 16K). In Program 36a the DATA was written into the tape input/output buffer
from location 832 onwards. The pointer value for this is 13, because 13 * 64 = 832, so this
value should be POKEd into the sprite pointer.

We can define our Enterprise as any sprite—let’s use Sprite 2. To initialize the pointerin
the program use:

POKE 2042, 13

Sprite 7 Bit 7 Msb
Sprite 6 Bit 6
Sprite 5 Bit 5
Sprite 4 Bit 4
Sprite 3 Bit 3
Sprite 2 Bit 2
Sprite 1 Bit 1
Sprite @ Bit 0 Lsb

Figure 18.2 The sprite enable register at location 53269 ($D015).

To display the sprite on the screen it has to be ‘turned-on’ by writing to the sprite enable
register at 53269; Figure 18.2 shows how this register is organized. Each bit is associated
with a particular sprite—turning sprites on and off isaccomplished by setting and clearing
the relative bits. Thus, to switch on Sprite 2, bit 2 of the enable register must be set. In
binary this is represented by:

00000100 = 4
Therefore, Sprite 2 is enabled using:
POKE 532694

To prevent the Enterprise looking a bit squashed we can ‘expand’ it horizontally by
writing to bit 2 of the horizontal expansion register at 53277:

POKE 53277,4

99

Finally the sprite must be positioned on the screen and (suprise, suprise!) there are two
registers associated with the X and Y axes (at 53252 and 53253 respectively). To position it
somewhere near the centre of the screen use:

POKE 53252,130 : POKE 53253,130
The next bit of the sprite program looks like this in BASIC:

10
20
30
40
50
60

PRINT CHR$(147)
POKE 2042,13
POKE 532694
POKE 53277,4
POKE 53252,130
POKE 53253,130

REM data in block 13
REM enable Sprite 2

REM expand in X direction
REM X coordinate

REM Y coordinate

Remember to add lines 100 to 220 from Program 36a and then RUN. A USS
Enterprise should now be sitting roughly in the middle of your TV screen!

You can now see just how easy it is going to be to program the VIC in machine code
because POKE has a direct equivalent in assembler:

LDA #value
STA register

So, we can rewrite the six lines above thus:

Program 36b

10
20
25
30
35
40
42
44
46
48
50
52
54
56
58
60
70

CODE = 49152

FOR LOOP =0 TO 26

READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA FOR SPRITE CONTROL * *

DATA 169,147
DATA 32,210,255
DATA 169,13
DATA 141,250,7
DATA 1694
DATA 141,21,208
DATA 141,29,208
DATA 169,130
DATA 141,4,208
DATA 141,5,208
DATA 96

REM $A9, $93 — LDA #$93
REM 320, $D2, $SFF — JSR PRINT
REM $A9, $0D — LDA #13
REM 88D, $FA, $07 — STA 2042
REM $A9, $04 — LDA #4

REM 38D, $15, $D@ — STA 53269
REM $8D, $1D, $D@ — STA 53277
REM $A9, §82 — LDA #130
REM $8D, $04, $DO — STA 53252
REM $8D, $05, $D8 — STA 53253
REM §$60 — RTS

Once again, don’t forget to add the original DATA statements from Program 36a. When
RUN, each byte will be assembled into the ‘free’ RAM area and the sprite should appear
when SYS CODE is executed. Simple!

100

MOVING SPRITES

To create the illusion of movement we need only to gradually alter the X or Y coordinate
register. In BASIC, we can ‘fly’ the Enterprise across the screen by placing the X
coordinate register inside a FOR . . . NEXT loop. The revised BASIC-only version

becomes:

10
20
30
40
50
55
60
65
70

PRINT CHR$(147)
POKE 2042, 13
POKE 53269, 4
POKE 53277, 4

POKE 53253, 100 : REM set height on screen

FOR N =0 TO 255

POKE 53252, N : REM increment X

NEXT N

REM add Program 36a here

Now, the X coordinate register is incremented from @ to 255. Each time round the loop the
location 53253 is POKEd with a new X value thereby repositioning the sprite. Once again,
the loop could be written in machine code—but because thie machine code is executed so
quickly, our eyes wouldn’t be able to see the movement. We need to slow it down
somewhat. Chapter 21 explains how delay loops can be implemented, but for now we’ll
use a different technique.

Program 36¢

5
10
20
25
30
35
40
42
44
46
48
50
52
54
56
58
60
62

REM * * THE ENTERPRISE FLIES * *

CODE = 49152

FOR LOOP =0 TO 41

READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA FOR FINAL SPRITE * *

DATA 169,147
DATA 32,210,255
DATA 169,13
DATA 141,250,7
DATA 1694
DATA 141,21,208
DATA 141,29,208
DATA 169,100
DATA 141,5,208
DATA 162,0

REM $A9, $93 — LDA #8393
REM §$20, $D2, $FF — JSR $FFD2
REM $A9, $0D — LDA #13
REM $8D, $FA, $07 — STA 2042
REM $A9, $04 — LDA #4

REM $8D, 815, $D@ — STA 53269
REM $8D, $1D, $D@ — STA 53277

REM $A9, $64 — LDA #100
REM $8D, $05, $D@ — STA 53253
REM $A2,$00 — LDX #00

REM AGAIN

101

102

64 DATA 138 REM $8A — TXA

66 DATA 141,4,208 REM $8D, $04, $D0 — STA 53252
68 DATA 134,251 REM §86, $FB — STX $FB

70 REM WAIT

72 DATA 32,228,255 REM §20, $E4, SFF — JSR $FFE4
74 DATA 240,251 REM $F0, $FB — BEQ WAIT
76 DATA 166,251 REM $A6, $FB — LDX $FB

78 DATA 232 REM $E8 — INX

80 DATA 208,240 REM $D9, $F0 — BNE AGAIN
82 DATA 96 : REM $60 — RTS

90 REM add Program 36a here
230 SYS CODE

The machine code loop is set up between lines 62 and 78 with the X register being used as
the counter. Each time round its value is transferred to the accumulator and stored in the
appropriate VIC register. The loop is delayed by a call to the Kernal GETIN routine at
$FFE4, and it only continues when a keypress is detected (lines 72 and 74). This Kernal
routine is described in the next chapter—note though, that our value for X must be saved
before the Kernal call, because the GETIN subroutine also uses the X register. (Our value
for X is restored after a keypress has been detected.)

When you run this program you will find, as with the last BASIC version, that the sprite
does not travel fully across the screen but stops about two-thirds of the way across. This is
because there are more than 255 X coordinate positions across the screen—in fact there
are 65 more! The reason that we cannot continue is, of course, because 255 is the
maximum value of a single byte. To enable us to write the sprite on this remaining part of
the screen there is a further register at 53264. By setting the corresponding sprite bit in this
register and then incrementing the X coordinate register as before, our sprite will continue
its journey across the screen. This can be done by adding the following lines to our BASIC-
only program:

70 POKE 53264, 4 : REM enable Sprite 2 in far screen
72 FOR X =0 TO 100
74 POKE 53252, X
76 NEXT X
Once again, this can easily be translated into machine code—but I'll leave that up to you

this time! By the way, to write to the normal area of the screen you’ll need to un-POKE
location 53264 to disable the register using:

POKE 53264, 0

19 Hoaling a Poinl

So far throughout this introduction to assembly language programming we have only
been concerned with integers, or whole numbers. As in the real world though, floating
point numbers also exist in the machine code world. A floating point number is one that
contains a decimal point (although in binary this is more correctly referred to as a
‘bicimal’ point).

For example, the denary number 5.25 is a floating point number whereas the number 7
is a whole or integer number. In CBM BASIC the binary floating point numbers have
what is known as 10 digit precision, displayed with 9 digits and with exponents in the range
+37 to —38. The exponent of a number is simply a scientific notational form of
representing numbers. For example, the number 1234.567 could be expressed
exponentially as:

0.1234567E+4

The ‘E’ denotes the exponential value and the +4 the fact that the decimal point has
been moved four places in a positive direction. Another way of writing this exponentially
is:

0.1234567 X 10*

Similarly, the decimal value 0.0000123 can be expressed as @.123E-4 or 0.123 X 107,
the —4 indicating that the decimal point has been moved four places in a negative
direction.

THE FLOATING POINT ACCUMULATORS

The 6510 is provided with two memory-mapped floating point accumulators which
manipulate the floating point numbers. These are known as the FAC (Floating Point
Accumulator) and the AFAC (Alternative Floating Point Accumulator)—also known as
FACH1 and FACH#2. The addresses associated with them in zero page are shown in Table
19.1 overpage.

Looking at the two floating point accumulators we can see that each has six associated
bytes. As already mentioned, each value has 10 digit precision, so to enable the value to be
packed into six bytes it must be broken down into two componerts called the binary
mantissa and the binary exponent. These are illustrated in Figure 19.1.

Exponent «—————Mantissa ——— Sign

b Signbit

rAC 97 98 99 100 101 102
AFAC 105 106 107 108 109 110

Figure 19.1 Floating point accumulator architecture.
103

Table 19.1

Label Address Description

Decimal Hex

FACEXP 97 $0061 FAC#1 exponent

FACHO 98-101 $0062-30065 FAC#1 mantissa

FACSGN 102 $0067 FACH]1 sign

BITS 104 $0068 FAC#] overflow digit

ARGEXP 105 $0069 FAC#2 exponent

ARGHO 106-109 30N6A-$006D FAC#2 mantissa

ARGSGN 110 $006E FACH#2 sign

ARIGN 111 $006F Sign comparison result FAC#1 v FAC#2

104

The binary mantissa is the ‘number’ part of the value, and this is stored in the centre
four bytes of the FAC (and AFAC). The sign of the number denotes whether it is a positive
or negative value, and this is stored in the sixth byte of the FAC (or AFAC). Only asingle
bit (bit 7) is required to store the sign—*1" represents a negative mantissa and ‘@’ a positive
mantissa.

The binary exponent is the first byte of the FAC (and AFAC) and this is used to
represent both positive and negative exponent values by adding the value to, or
subtracting the value from, 128. For example, an exponent of +15 is represented by:

+15 =128 + 15 = 143
Whereas a negative exponent of —15 is expressed as:
-15=128—-15=113
To allow a variety of floating point numbers to be handled by a standard set of floating
point subroutines, the Commodore 64’s BASIC Interpreter normalizes them to a

representation such that the most significant bit is a/lways a ‘I’
Consider the hexadecimal number $0345. Writing this in binary form we obtain:

$0345 = 0000 0011 0100 0101

In this case, the binary now has an exponent value of 2, or more correctly 112 with the
bicimal point being at the far right of the number. If we were to express this properly in
exponential form we would read:

0000 0011 0100 0101 X 210

Now, to normalize this value we need to ‘float’ the bicimal point along to the left until it
sits in front of the leftmost ‘1°. Figure 19.2 shows the process. Now, if we count the number
of shifts we obtain our exponent value, which in this case is 18. Thus:

$0345 = 0.1101 0001 0100 0000 X 2110

To represent this in either of the floating point accumulators we must add the exponential
value to 128 giving an exponent value of:

128 + 10 = 138 = $8A (1000 1010)

AAIAANIA

1 @

1

L

End Start

Figure 19.2 Floating the bicimal point.

Moving back to the mantissa, we have four bytes to fill, therefore the least significant
bits must be padded out with @s to give:

1101 0001 0100 0000 0000 0000 0000 0000

Finally, to complete our normalization of $0345 we must indicate a positive value by
placing a 0 in bit 7 of the sign byte. Our final representation of $0345 is given by:

Exponent Ist byte 1000 1010 $8A

Mantissa 2nd byte 11601 0001 $DI1
3rd byte 0100 0000 $40
4th byte 0000 0000 $00 (padded bytes)
5th byte 0000 0000 $00

Sign 6th byte Oxxx Xxxx

The xs in the sign byte denote that these bits may have any value.

The example given above was really an integer one, but numbers that do contain
bicimal values can be normalized in exactly the same manner. For instance, the decimal
value 255.75 can be expressed in binary terms as:

1111 1111 . 11
This can be normalized as before, giving a binary exponential representation of:
111 1111 1100 0000 X 218

USING USR

A further BASIC statement, USR, is provided to call sections of machine code. It has an
advantage over a normal SYS call in that it can also pass data from BASIC into the
floating point accumulator, so that it can be manipulated by a user-supplied machine code
program before returning the result to the calling BASIC program. Before executing USR
the address of a machine code subroutine must be seeded into USRADD, which is located
at the two bytes starting at 785 ($0311).

A USR call can take two forms:

USR(NUM)

transfers the value assigned to the variable NUM (or any other specified variable) into
FACH]1 before handing control to the machine code routine located at the vectored
address in USRADD. Whereas:

A = USR(B)

places the contents of B into FACH#1, executes the machine code at USRADD and returns
the final result, via FACH#I, in the variable B.
Let’s have a look at a couple of simple examples to get things clear in our minds.

Program 37

10 REM * * USR DEMO * *

20 REM * * SET UP DUMMY MACHINE CODE * *
30 POKE 820,96 : REM RTS OPCODE

40 PRINT CHRS$(147)

50 POKE 785,52 : REM SET UP USRADD TO

60 POKE 786,3 : REM POINT TO 820

0 A=0:B=837

80 PRINT “PRE USR A = ;A

105

106

9% A = USR(B)
100 PRINT “POST USR A = ;A

This program begins by POKEing an RTS instruction into memory at location 820 (line
30). USRADD is then pointed to this location. The values of A and B are assigned (line 70)
and the value of the former printed (line 80). The USR routine is then called (line 90)
passing the value of B into FAC#1. The code pointed to by USRADD is then executed—it
returns control immediately back to BASIC (remember it’s just RTS) passing the value in
FACH]I into the variable A which is subsequently printed out (line 100).

We can modify this program slightly so that it actually does something! Add the
following two lines:

25 POKE 820,230
26 POKE 821,98 REM INC $62

now change line 30 to read:
30 POKE 822,96 : REM RTS
RUN the program. The printed result should be:
POST USR A = 841

which is 4 more than the value passed into it through B (which was 837). What happened
here was that the two new bytes of machine code (lines 25 and 26) incremented the high
byte of the FACH#1 mantissa located at location 98. But why should this add 4 rather than
1?7 Examining the binary will make things clearer. 837 is $0345 which is the value we were
working on earlier. We know from our previous calculations that the byte stored in
location 98 was $D1. Incrementing this gives $D2, therefore the four bytes of the FAC#1
mantissa read:

$D2 $40 300 $00
1101 0010 0100 0000 0000 0000 0000 0000
We also know from our earlier calculations that the exponential value was 2110. Floating
the bicimal point ten places to the right to return to an un-normalized position gives:
1101001001.0000000000000000000000

Ignoring the non-significant zeros and sorting the binary into bytes we obtain:

0000 0011 0100 1001
$03 049
and of course $0349 = 841.

The important point to remember when dealing directly with the FAC is that we are
handling normalized values and even something as seemingly simple as an increment
instruction will not have the obvious result!

Another important point to remember is that the contents of the FACs cannot be
examined directly from BASIC by PEEKing locations. This is because even an operation

as straightforward as PEEK will affect the FAC’s contents. Therefore, to look at the
contents of a FAC you need a machine code routine such as Program 38.

Program 38

10 REM * * SAVE FACH#I * *
20 CODE = 49152

30 FORLOOP=0TO 10

40 READ BYTE

50

POKE LOOP + CODE, BYTE

60 NEXT LOOP

70

80 REM * * M/C DATA * *

99 DATA 162,6 REM $A2, $06 — LDX #6

100 REM AGAIN

110 DATA 181,96 REM $BS, $60 — LDA $60, X
120 DATA 157,52,3 REM $9D, $34, $03 — STA $0334, X
130 DATA 202 REM $CA —DEX

140 DATA 208,248 REM $D0, $F8 — BNE AGAIN
150 DATA 96 REM $60 — RTS

160

170 PRINT CHR$(147)

180 POKE 785,0 REM SET USRADD POINTING

199 POKE 786,192 REM TO 49152 ($C000)
200 B =837 REM VALUE TO PASS TO FACH1
210 A = USR(B) REM PASS AND EXECUTE CODE

220 PRINT “A =";A
230 PRINT “FACH] = »;
240 FORX=1TO 6
250 PRINT PEEK(820 + X);« ”*;
260 NEXT X
The machine code to save the contents of FAC#1 is quite simple, and just involves an

indexing loop which first loads a byte into the accumulator and then stores it somewhere
safe (lines 90 to 150). RUNing the program produces the following output:

A =837
FAC#H#1 = 138 209 64 0 0 81

The first five bytes compare favourably with the calculated values above. The final byte is
derived from FACSGN. The value 81is $51 and in binary is 101000 1. The sign bit, bit 7,
is clear and denotes a positive number. We can change the sign to a negative value by
‘forcing’ bit 7 to 1. To do this we need to logically OR the contents of FACSGN with $80,
10000000 binary. Add the following lines to the program:

82 DATA 165,102 REM $AS, $66 — LDA FACSGN
83 DATA 9,128 REM $09, $80 — ORA #$80
84 DATA 133,102 REM $8S, $66 — STA FACSGN

and change the loop count to:
30 FOR LOOP=0TO 16

Now RUN the program. The result returned in A is now —837, while FACSGN returns
209.

107

108

INTEGER TO FLOATING POINT

Included in the built-in subroutines are several which allow numbers to be converted from
integer to floating point and vice versa. These can be of great help in allowing us to
manipulate multibyte numbers in machine code, so let’s examine a few of them in
operation.

Program 39 shows how an integer value can be converted into its normalized floating
point counterpart. The subroutine to do thisislocated at 45969 ($B391). The integer value
is expected to be found in the accumulator (high byte) and Y register (low byte)—on
completion of the subroutine the floating point value can be extracted from FAC#]1.

Program 39

16 REM * * INTEGER TO FP * *
20 CODE = 49152

30 FOR LOOP =0 TO 17

40 READ BYTE

50 POKE LOOP + CODE, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

90 DATA 169,1 REM $A9, $01 — LDA #1
100 DATA 160,35 : REM $A0, $23 — LDY #$23
110 DATA 32,145,179 : REM 820, $91, $B3 — JSR $B39i
120 DATA 162,6 : REM $A2, $06 — LDX #6

125 REM AGAIN

130 DATA 181, 96 REM $BS, $60 — LDA $60, X
140 DATA 157,52,3 REM $9D, $34, $03 — STA $0334, X
150 DATA 202 REM $CA — DEX

160 DATA 208,248 : REM $D0, $F8 — BNE AGAIN
170 DATA 96 REM §$60 — RTS

180

199 PRINT CHR$(147)

200 SYS CODE

220 PRINT “FACH#1 =7

230 FORX=1TO6

240 PRINT PEEK(820 + X);* *;

250 NEXT X
The integer value being converted here is $0123, and the high and low bytes are placed in
the appropriate registers (lines 99 and 100) before the conversion routine is called (line

110). The floating point value is extracted from FAC#I (lines 120 to 160) so that it can be
PEEKed by the BASIC loop. RUNning the program produces this result:

FACH#1 =137 145128000

Evaluating this, we have an exponent of 9 (137 — 128), and two bytes which in binary form
give:

1001 0001 1000 0000
145 128

Moving the bicimal point 9 places to the right we arrive at a final value of:

0000 0001 0010 0011
$01 $23
$0123, which was our original value. The conversion works!

This subroutine for integer to floating point conversion can only handle numbers in the
range @ to 32767 ($7FFF). This is because bit 15 is used to determine the sign of the integer
value to be converted. If clear then a positive value is assumed; if set a negative value is
evaluated and the fact signalled in FACSGN. To see this, try changing the following lines:

9 DATA 169,255 REM $A9, $FF — LDA #$FF
1600 DATA 160,255 REM $A0, $FF — LDY #4$FF

RUN the program now and see what happens—TI’ll leave it up to you to work out how and
why you got the result you did!

FLOATING POINT TO INTEGER

A subroutine which operates in the reverse direction, and converts a floating point value
in FAC#I to an integer one in the A and Y registers, is located at 45482 ($B1AA).

Program 40

10 REM * * FP TO INTEGER * *
20 CODE = 49152

30 FORLOOP=0TO 17

40 READ BYTE

50 POKE LOOP + CODE, BYTE
60 NEXT LOOP

70

80 REM * * M/C DATA * *

9% DATA 162,6 REM $A2, $06 — LDX #6

100 REM AGAIN

110 DATA 189,52,3 REM $BD, $34, $63 — LDA 829, X
120 DATA 149,96 REM $95, $60 — STA $60, X
130 DATA 202 REM $CA — DEX

140 DATA 208,248 REM $D0, $F8 — BNE AGAIN
150 DATA 32,170,177 REM $20, $AA, $Bl — JSR $BIAA
160 DATA 133, 251 REM $85, $FB — STA $FB
170 DATA 132,252 REM 884, $FC — STY $FC
180 DATA 96 REM $60 — RTS

190

200 FORX=0TOS
210 READ FAC

109

110

220 POKE 821 + X, FAC

230 NEXT X

240 REM * * FAC DATA * *

250 DATA 137, 145, 128, 0, 0, 0

260 PRINT CHR$(147)

270 SYS CODE

280 PRINT “RESULTS RETURNED ARE:”
299 PRINT “ACCUMULATOR = ”; PEEK(251)
300 PRINT “Y REGISTER = ”; PEEK(252)

This program passes the normalized value of $0123 (line 250) into FAC#1. The DATA
is READ by the loop in lines 210 to 230 and placed into unused memory from 820. The
machine code begins by transferring this data into FAC#1 using indexed addressing (lines
90 to 140). Once there, the conversion routine is called (line 150) and the resultant values in
the A and Y registers saved in zero page, from whence they can be PEEKed (lines 290 and
300). RUNning the program produces:

RESULTS RETURNED ARE:
ACCUMULATOR =1
Y REGISTER = 35

Converting this to hex gives $0123!

FLOATING MEMORY

Several subroutines are available which allow floating point values to be transferred to
and fro between either of the floating point accumulators and memory. However, before
we can use these, we must see how floating point numbers are stored in memory, as a
slightly different format is used. Let’s go back to the normalized value of $0345 we used
earlier, this was stored in the FAC as:

Exponent $8A 1000 1010
Mantissa $D1 1101 0001
$40 0100 0000
300 0000 0000
$00 0000 0000
Sign OXXX XXXX

Looking at this, we can see that we waste 7 bits of the final sign byte simply because we
only use bit 7 to denote the sign. If another way could be found of encoding this then the
sign byte could be dispensed with.

You will remember that to normalize a floating point value the bicimal point is floated
left continuously until it reaches the left-most 1. We know, therefore, that the first bit of
the mantissa will a/lwaysbe a 1. As the BASIC Interpreter knows this too, it can ‘forget’ the
1 and use this bit to store the sign. When the interpreter converts a floating point number
stored in memory (outside either floating point accumulator), it looks at the msb of the
mantissa to evaluate the sign, then resets it back to | to evaluate the number proper! In
memory, then, the normalized representation of $0345 is compacted into just 5 bytes
stored thus:

Exponent $8A 1000 1010

Mantissa $51 0101 0001 (bit 7 = @ therefore number positive)
$40 0100 0000
$00 0000 0000
$00 0000 0000

THE SUBROUTINES

In all there are 33 floating point subroutines built-in to the BASIC Interpreter (well 33 that
I have un-earthed!). It is important to remember that these subroutines are in no way
‘standard’ and their execution addresses could change if a new ROM is issued. For the
same reason they are not transferrable to other CBM BASIC machines. However, if
you’re not going tc be writing portable programs, and are interested only in getting the
very most from your 64, then you won’t be too worried!

All of these subroutines are now listed (by address) so that you can take full advantage
of them. (PS Don’t tell Commodore will you!)

$A9C4
$A9D6

SAFA7

$BIAA
$B391
$B3A2

$B7BS

$B7F7
$B849
$B850

$B867

$BA28

$BA30

$BABC
$BAB7
$BAE2
$BAFE

$BB0O7

$BBOF

$BB12

$BBA2

Place FAC into variable pointed to by FORPNT (locations 73 and 74).
Place integer in FAC+3 into variable pointed to by FORPNT.

Evaluate function and return its numeric value in FAC. String pointer value
in FAC+3.

Convert FAC to integer in A and Y.
Convert integer in A and Y to floating point value in FAC.
Convert integer in Y to floating point value in FAC.

Convert string pointed to by INDEX1 (locations 34 and 35) whose length is
A, to a floating point value in FAC.

Convert FAC into an integer and store in INDEXI (locations 34 and 35).
Add 0.5 to contents of FAC.

Subtract contents of FAC from floating point value jn memory pointed to by
A and Y. Place result in FAC.

Add contents of FAC to floating point value in memory location pointed to

by A and Y. Place result in FAC.

Multiply contents of FAC by contents of memory location pointed to by A
and Y. Place result in FAC.

Multiply contents of FAC by contents of AFAC. Place result in FAC.
Load AFAC with floating point value of memory pointed to by A and Y.
Test FAC/AFAC for multiplication underflow or overflow.

Multiply FAC by 10. Place result in FAC.

Divide FAC by 10. Place result in FAC.

Divide contents of AFAC by contents of memory pointed to by A and Y with
sign in X. Place result in FAC.

Divide contents of AFAC by contents of memory pointed to by A and Y.
Place result in FAC.

Divide contents of AFAC by contents of FAC. Place resultin FAC, exponent
in A.

Place floating point value in memory pointed to by A and Y, in FAC.

111

$BBC7
$BBCA

$BBD#®

$BBD4
$BBFC
$BCOC
$BCIB
$BC2B
$BC3B

$BCSB

$BC9B

$BDD7

112

Store contents of FAC in locations 87 to 91.
Store contents of FAC in locations 92 to 96.

Store contents of FAC in locations pointed to by address in locations 73 and
74.

Store contents of FAC in memory location pointed to by A and Y.

Place contents of AFAC in FAC.

Place contents of FAC in AFAC.

Round off contents of FAC.

Return sign of contents of FAC in A. $00=zero, $01=positive, SFF=negative.
Store contents of A into FAC.

Compare contents of FAC with floating point value in memory pointed to by
A and Y. Result of comparison returned in A. $00 values equal, $01 FAC >
memory, $FF memory > FAC.

Convert contents of FAC into four byte integer. Place contents in FAC+1.

Print contents of FAC as an ASCII string.

20 The Kernal

At the very top of the Commodore 64’s memory map, on page $FF, are the Kernal
Operating System routines which allow user programs to communicate with, and take
advantage of, the professionally written machine code already present in the ROM. Inall,
39 Kernal routines are available, and an alphabetical list of these is given in Table 20.1.
When any of these routines is called, normally with JSR, the Kernal performs either a
direct or an indirect jump into the heart of the Kernal via a vectored address on Page 03 of
block zero RAM. Table 20.2 lists these vectored addresses. This approach of jumping
indirectly into the Kernal has been done for a deliberate reason. In the future, the BASIC
may be revised or enhanced and this will probably mean that the routines within the
Kernal will be moved around somewhat. Aslong as access to the Kernal routines is via the
‘official’ vector, machine code programs written for BASIC version X will also run on
BASIC version Z, because they will all enter the Kernal at the same point, even though the
actual sequence of events that occurs when they get there may change!

What follows now is a description of each one of the 39 Kernal routines—practical
examples are included for the ones that you are more likely to use frequently.

ACPTR Get data from an IEEE serial bus.

Address 65445 (3FFAS)

Registers accumulator and X register
Preparation TALK, TKSA

Stack use 13 bytes

ACPTR is used to read a byte into the accumulator from a serial device such as a disc.
Because this call uses full handshaking the serial device must first be told to transmit data
using TALK. The X register is also used by this routine. Error checking should be handled
by READST as errors are signalled in the status word.

Example:
PHA \ save accumulator
TXA
PHA \ save X register
LDA #2
JSR TALK \ device 2 to talk
JSR ACPTR \ read byte from serial bus
STA memory \ save data byte
\ continue until finished
PLA
TAX \ restore X register
PLA \ restore accumulator

113

Table 20.1 The Kernal routines

Name Address Description

Decimal Hex

ACPTR 65445 FFAS Get byte from serial port

CHKIN 65478 FFC6 Open channel for input

CHKOUT 65481 FFC9 Open channel for output

CHRIN 65487 FFCF Input character from channel
CHROUT 65490 FFD2 Output character to channel

CINT 65409 FF81 Reset screen editor

CIOUT 65448 FFA8 Put byte to serial port

CLALL 65511 FFE7 Close all files and channels
CLOSE 65475 FFC3 Close specified logical file
CLRCHN 65484 FFCC Close input and output channels
GETIN 65508 FFE4 Get character from keyboard buffer
IOBASE 65523 FFF3 Get base address of I/0 devices
IOINIT 65412 FF84 Reset input/output

LISTEN 65457 FFB1 Command serial bus devices to listen
LOAD 65493 FFDS5 LOAD memory from device
MEMBOT 65436 FF9C Read/set bottom of memory
MEMTOP 65433 FF99 Read/set top of memory

OPEN 65472 FFCO Open a logical file

PLOT 65520 FFFO® Read/set XY cursor position
RAMTAS 65415 FF87 Reset RAM

RDTIM 65502 FFDE Read real time clock

READST 65463 FFB7 Read I/0 status word

RESTOR 65418 FF8A Reset 1/0 vectors

SAVE 65496 FFD8 Save memory block to device
SCNKEY 65439 FF9F Scan keyboard

SCREEN 65517 FFED Return XY details of screen
SECOND 65427 FF93 Send second address after LISTEN
SETLFS 65466 FFBA Set logical first and second address
SETMSG 65424 FF90 Control Kernal messages
SETNAM 65469 FFBD Set file name

SETTIM 65499 FFDB Set real time clock

SETTMO 65442 FFA2 Set timeout on serial bus

STOP 65505 FFEl1 Scan STOP key

TALK 65460 FFB4 Iﬁstruct serial bus device to TALK
TKSA 65430 FF96 Send secondary address after TALK
UDTIM 65514 FFEA Increment real time clock

UNLSN 65454 FFAE Command serial bus to unLISTEN
UNTLK 65451 FFAB Command serial bus to unTALK
VECTOR 65421 FF8D Read/set vectored I/0

CHKIN Open a channel for input.

Address 65478 (3FFC6)
Registers X register, accumulator
Preparation (OPEN)

Stack use none

CHKIN is used to define an input channel from a previously OPENed logical file, thus
allowing it to be read. The X register is used to hold the logical file number, the

114

Table 20.2 Vectored addresses

Name Address Vector
Decimal Hex
ADRAY1 3-4 0003-0004 Covert FP to integer
ADRAY2 5-6 0005-0006 Convert integer to FP
INPPTR 67-68 0043-0044 INPUT routine
KEYTAB 243-244 00F5-00F6 Keyboard decode table
IERROR 768-769 0300-0301 BASIC error message
IMAIN 770-771 0302-0303 BASIC warm start
ICRNCH 772-773 0304-0305 BASIC tokenizer
IQPLOP 774-775 0306-0307 BASIC list
IGONE 7767717 0308-0309 Character dispatch
IEVAL 778-779 030A-030B BASIC token evaluation
USRADD 785-786 0311-0312 USR address (784 holds $4C)
CINV 788-789 0314-0315 Hardware IRQ
CBINV 790-791 0316-0317 BRK vector
NMINV 792-793 0318-0319 NMI vector
IOPEN 794-795 031A-031B OPEN vector
ICLOSE 796-797 031C-031D CLOSE vector
ICHKIN 798-799 031E-031F CHKIN vector
ICKOUT 800-801 0320-0321 CHKOUT vector
ICLRCH 802-803 0322-0323 CLRCHN vector
IBASIN 804-805 0324-0325 CHRIN vector
IBSOUT 806-807 0326-0327 CHROUT vector
ISTOP 808-809 0328-0329 STOP vector
IGETIN 810-811 032A-032B GETIN vector
ICLALL 812-813 032C-032D CLALL vector
USRCMD 814-815 032E-032F User-defined vector
ILOAD 816-817 0330-0331 LOAD vector
ISAVE 818-819 0332-0333 SAVE vector

accumulator is also used. This routine must be called before using either the CHRIN or

GETIN routines if data is being input from any device other than the keyboard.
Note that this routine will automatically send a TALK address if the communicating

device is present on the serial bus. A secondary address will also be sent if so specified in

the OPEN routine.

There are three possible errors:

#3 File is not OPEN
#5 No device present
#6 File not an input file!

CHKOUT Open a channel for output.

Address
Registers

Preparation

Stack use

65481 (3FFC9)
X register, accumulator

(OPEN)

4 bytes minimum

115

CHKOUT defines a previously OPENed file for output so that it may have data written
to it. The X register should contain the file number; the accumulator is also used. This
routine must be used prior to sending data to another device. CHKOUT will
automatically send a LISTEN address if the device is present on the serial bus.

Note it is not necessary to call this routine to ouput data to the screen.
There are three possible errors:
#3 No file open
#5 No device present

#7 No output file present!

CHRIN Input a character from the input channel.

Address 65487 (3FFCF)
Registers accumulator, X register
Preparation (OPEN, CHKIN)
Stack use 7 bytes minimum

CHRIN reads a byte of data into the accumulator from the channel already open for
input. If CHKIN has not been called to define an input channel the keyboard will be used
as a default channel.

This routine can be used to manipulate data already present in the keyboard buffer—
for example, to move the keyboard buffer into the tape buffer. As the X register is
required by CHRIN, the Y register must be used for indexing:

PHA \ save accumulator

TXA

PHA \ save X register

LDY #0 \ initialize Y register as offset counter
LOOP JSR CHRIN \ remove character

STA TAPE, Y \ place in tape buffer

INY \ increment Y

CMP #13 \ does accumulator hold CR?

BNE LOOP \ no, so repeat

PLA

TXA \ restore X register

PLA \ restore accumulator

CHROUT Output character in accumulator to channel.

Address 65490 ($FFD2)
Registers accumulator
Preparation (CHKOUT, OPEN)
Stack use 8 bytes minimum

This routine can be used to print ASCII characters to the screen as this is the default ouput
device. Other devices can be set up by calling the OPEN and CHKOUT routines. The
character to be output should be placed into the accumulator. The following example
shows how a string of characters can be printed to the screen.

PHA \ save accumulator

LDY #0 \ initialize counter
116

LOOP LDA WORD,Y \ get byte
JSR CHROUT \ print it
INY \ increment counter
CMP #13 \ was last character a CR?
BNE LOOP \ no repeat
PLA \ restore accumulator
RTS

.WORD COMMODORE 64 <CR>

CINT Reset screen editor and VIC.

Address 65409 ($FF81)
Registers none
Preparation none

Stack use 4 bytes

This routine is used to reset the screen editor and VIC chip—perhaps after high
resolution graphics have been used, or as part of a cartridge initialization routine.

CIOUT Output byte to device on serial bus.

Address 65448 (SFFAB)
Registers accumulator
Preparation LISTEN, (SECOND)
Stack use 5 bytes

CIOUT writes the byte currently held in the accumulator to a device present on the IEEE
serial bus using full serial handshaking. To ensure that the device is ready to receive data
the LISTEN call must be used first; SECOND may be used to send a secondary address.

CLALL Close all files.

Address 65511 ($FFET7)
Registers accumulator, X register
Preparation none

Stack use 11 bytes

This routine closes all files that are currently open. CLALL also calls CLRCHN to reset
the input/output channels.

CLOSE Close logical file.

Address 65475 (SFFC3)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes minimum

This routine is used to close a specified logical file—the file number being in the
accumulator (this must be the same number that the file was OPENed with). Errors are
and 240 and should be handled by calling READST.

CLRCHN Close all input/output channels.

Address 65484 ($FFCC)
Registers none
Preparation none

Stack use 9 bytes

117

118

This routine is called to restore all input/output channels to their default values. The
default input device is the keyboard (device #0) and the default output device is the screen
(device #3). If one of the devices being closed is on the serial bus this routine will also call
UNTALK or UNLISTEN. CLRCHN is automatically called by CLALL.

GETIN Get a character from keyboard.

Address 65508 (3FFE4)
Register accumulator
Preparation CHKIN, OPEN
Stack use 7 bytes minimum

This routine gets one character from the keyboard queue and places it in the accumulator.
Characters may also be read in from the RS232 port. If no character is found in the queue
then the accumulator returns the value 0. The following example shows how you can wait
for a key to be pressed:

WAIT JSR GETIN \ get character
BEQ WAIT \ if empty repeat

Alternatively, a specific character (or sequence of characters) can be looked for. The
following routine will only continue if the numbers 6and 4 are entered one after the other:

SIX JSR GETIN \ get first character
BEQ SIX \ repeat if empty
CMP #ASC*6” \ s it a six?
BNE SIX \ no, restart!
FOUR JSR GETIN \ yes, get next character
BEQ FOUR \ repeat if empty
CMP #ASC*4” \ is it a four?
BNE SIX \ no, restart from beginning
\ yes, all systems go!

IOBASE Read address of 6526 CIA.

Address 65523 (3FFF3)
Registers X and Y registers
Preparation none

Stack use 2 bytes

When called, this routine returns the 16-bit address where the 6526 CIA is located,
in the index registers. The X register holds the low byte address and the Y register the high
order byte. The address returned for the Commodore 64 is $DC00.

TOINIT Reset all input/output devices.

Address 65412 (3FF84)
Registers accumulator
Preparation none

Stack use none

This routine is used to restore all input/output devices to their usual conditions.

LISTEN Command serial bus device to LISTEN.

Address 65457 ($FFBI1)
Registers accumulator
Preparation none

Stack use none

The device on the serial bus specified by the number in the accumulator is commanded to
receive data. The device number is in the range @ to 31. Errors should be handled by
READST.

LOAD Load memory from device into RAM.

Address 65493 (3FFD5)

Registers accumulator, X register, Y register
Preparation SETLFS, SETNAM

Stack use none

This routine can be used to load or verify a block of memory from an input device (tape,
for example). The accumulator holds the command code—#@ signals LOAD, 1 signals
VERIFY. The SETLFS and SETNAM routines must be called first.

If a relocation of the load is required the SETLFS routine should be used to send a
secondary address of @, and the index registers must hold the reload start address. If the
device is addressed with a secondary address of 1 then the data is loaded at the address
given by the header.

Example:
\ load file from tape
\ call SETLFS and SETNAM first
LDA #0 \ set LOAD flag
LDX #$00 \ set reload address if required . . .
LDY #$Co \ ... thisis ‘free’e RAM
JSR LOAD \ load memory
STX TEMP \ index registers now hold highest address
STY TEMP+1 \ loaded—save if needed

Errors returned are 0, 4, 5, 8, 9 (see READST).

MEMBOT Set bottom of memory.

Address 65436 ($FF9C)
Registers both index registers
Preparation none

stack use none

This routine can be used to either read or set the bottom of memory, depending on the
condition of the Carry flag. If carry is set then the address of the bottom of memory is
returned in the X and Y registers. If carry is clear on entry to this routine, the valuesin the
index registers are interpreted as an address and are loaded into the MEMBOT pointer
which points to the bottom of RAM. This routine can be used to create ‘safe’ machine

119

120

code space by moving the MEMBOT pointer up the memory map (say 512 bytes up), as
the following example shows:

read current pointer

SEC \ set Carry flag

JSR MEMBOT \ pointerin X and Y
INY

INY \ increment page by two
CLC \ clear Carry flag

JSR MEMBOT \ rewrite MEMBOT

MEMTOP Set the top of RAM

Address 65433 ($FF99)
Registers both index registers
Preparation none

Stack use 2 bytes

This routine can be used to either read or set the bottom of memory depending on the
condition of the Carry flag. If carry is set then the address of the top of memory is returned
in the X and Y registers. If the Carry flag is clear on entry to this routine the values in the
index registers are interpreted as an address, and are loaded into the MEMTOP pointer
which points to the top of RAM.

OPEN Open a logical file.

Address 65472 ($FFC0)

Registers accumulator, X register, Y register
Preparation SETLFS, SETNAM

Stack use none

This routine is used to OPEN a logical file for input or output operations. Both SETLFS
and SETNAM must be used prior to the OPEN routine. The following example shows
how the BASIC equivalent of OPEN 1, 1, 1, “NAME?"” can be implemented:

LDA #4 \ length of file name

LDY #$C0 \ high byte address filename

LDX #@ \ low byte address filename

JSR SETNAM \

LDA #1

LDY #1

LDX #1

JSR SETLFS

JSR OPEN

write filename

PLOT Read/set cursor position.

Address 65520 (SFFF0)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

This routine can be used to read or set the cursor position depending on the condition of
the Carry flag. If carry is set the X and Y coordinates of the cursor are loaded into the X
and Y registers respectively. If carry is clear then the contents of the X and Y registers are
used to reposition the cursor at the new X, Y coordinates. The following example shows
how this routine can be used—in this case to move the cursor across and down one
position:

SEC \ set carry

JSR PLOT \ read cursor coordinates

INX \ add one to X coordinate

INY \ add one to Y coordinate

JSR PLOT \ reposition cursor
RAMTAS Perform RAM test.

Address 65415 (3FF87)

Registers accumulator, X register, Y register

Preparation none

Stack use 2 bytes

This routine tests RAM and sets the top and bottom memory pointers respectively.
Locations $0000-30101 and $0200-3¢3FF are cleared. The screen base is set to $0400 and
a non-destructive RAM test is carried out above this location.

RDTIM Read system clock.

Address 65502 (SFFDE)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

This routine can be used to read the system (jiffy) clock which ‘ticks’ every 60th second.
The accumulator returns the most significant byte, the X register the next most significant
and the Y register the least significant byte. The jiffy clock is maintained in locations $A@,
$A1 and $A2 though these locations should not be read directly.

Example:
JSR RDTIM \ read jiffy clock
STA $FB \ save time in zero page
STX $FC
STY $FD

READST Read status word.

Address 65463 (3FFB7)
Registers accumulator
Preparation none

Stack use 2 bytes

This routine returns the current status of an input/output device. Status is returned as a
single-byte bit pattern in the accumulator. This routine should generally be called on
completion of any input/output procedure which might cause an error. The errors
associated with particular bits are shown in Table 20.3.

121

122

Table 20.3

Bit Cassette read Serial RW Tape verify/load
0 Time-out write

1 Time-out read

2 Short block Short block

3 Long block Long block

4 Read error Mismatch

5 Checksum error Checksum error
6 End of file EOI line

7 End of tape No device present End of tape

For example, the following routine can be used to check a tape load for checksum errors:

JSR READST
AND #$20 \ checksum?
BEQ ERROR \ yes, call, handling routine

RESTOR Reset all system default vectors.

Address 65418 (SFF8A)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

All system vectors used in Kernal and BASIC, plus the interrupt vectors, are reset to their
default values.

SAVE Save memory block to device.

Address 65496 (3FFD8)

Registers accumulator, X register, Y register
Preparation SETLFS, SETNAM

Stack use none

The accumulator points to a zero page vector specifying the start address of the memory
to be saved, and the index registers hold the end address. The SETLFS and SETNAM
routines must be used prior to SAVE. Note that a filename is not needed when saving to
tape (device 1).

The following routine shows how a section of memory stored from $C000 to $C12A
may be saved to tape:

LDA #1 \ device 1 therefore tape

JSR SETLFS

LDA #5 \ filename 5 characters long i.e. “FILE1”
LDX #LOW \ load low byte address of filename
LDY #HIGH \ load high byte address of filename

JSR SETNAM \ write filename

LDA #00 \ low byte start

STA $FB

LDA #3$C0 \ high byte start

STA $FC

LDA #$FB \ point accumulator to START address

LDX #32A \ low byte END address
LDY #$Cl \ high byte END address
JSR SAVE \ save memory block

SCNKEY Scan the keyboard.

Address 65439 (SFF9F)

Registers accumulator, X register, Y register
Preparation IOINIT

Stack use S bytes

This routine scans the keyboard looking for a ‘depressed’ key. If such a key is detected its
ASCII code is placed into the normal keyboard queue for processing. The following
example shows how a machine code program can truly handle input from the keyboard:

KEY JSR SCNKEY \ scan keyboard
JSR GETIN \ get character
BEQ KEY \ branch if no key present

SCREEN Returns screen set-up.

Address 65517 (SFFED)
Registers X register, Y register
Preparation none

Stack use 2 bytes

This routine returns the number of columns in the X register and number of lines in the
Y register.

SECOND Send secondary address for LISTEN.

Address 65427 ($FF93)
Registers accumulator
Preparation LISTEN
Stack use 8 bytes

This routine is used to send a secondary address on the serial bus following a call to the
LISTEN routine. Errors are indicated in the status byte.

SETLFS Set up a logical file.

Address 65466 (SFFBA)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

This routine will normally be called during the initialization of input/output by other
routines. It is used to declare the logical file number, device number and secondary
address (command number). These are placed in the accumulator, X register and Y
register respectively. If no secondary address is to be sent then the Y register should
contain 255 ($FF).

To set up the printer as logical device number 3,and to send a secondary address of 7 so
that it will print in lower case, use the following:

LDA #3 \ logical file 3
LDX #4 \ select serial bus printer

123

LDY #7 \ lower case
JSR SETLFS

SETMSG Control messages.

Address 65424 ($FF90)
Registers accumulator
Preparation none

Stack use 2 bytes

This routine governs control and error messages. Bits 6 and 7 of the accumulator indicate
the message’s origin. If bit 7 is set an error message will be printed from the Kernal, i.e.
‘FILE NOT FOUND’. If bit 6 is set, a control message is output, i.e. ‘PRESS PLAY ON
CASSETTE".

Messages can be enabled or disabled as follows:

LDA #0

JSR SETMSG \ turn off all messages

LDA #40 \ 0100 0000 bit 6 on

JSR SETMSG \ control messages only

LDA #860 \ 1000 0000 bit 7 on

JSR SETMSG \ error messages only
SETNAM Setup filename.

Address 65469 (3FFBD)

Registers accumulator, X register, Y register

Preparation none

Stack use none

This routine is used to set up a filename for use by the OPEN, SAVE or LOAD routines.
The length of the filename is loaded into the accumulator and the index registers are used
to hold the address where the filename is stored—low byte in X register high byte in Y
register. If no filename is required the accumulator can be set to @ and the index register’s
contents are ignored.

To set the filename as ‘RETURNS?’, which is stored as an ASCII string at $0334, the
following could be used:

LDA #7 \ filename length

LDX #$34 \ low byte filename address
LDY #3603 \ high byte filename address
JSR SETNAM

SETTIM Set the system clock.

Address 65499 ($FFDB)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

This routine is used to set the system jiffy clock. Three bytes are expected by the routine,
the most significant byte is placed into the accumulator, the next in the X register and the
least significant in the Y register.

124

SETTMO Set time-out on serial bus.

Address 65442 ($SFFA2)
Registers accumulator
Preparation none

Stack use 2 bytes

This routine can be used to set or reset the time-out flag for the IEEE serial bus.

STOP Test for STOP key being pressed.

Address 65505 ($FFE1)
Registers accumulator, X register
Preparation none

Stack use none

If the STOP key is detected during a keyboard scan the Zero flag is set. If the STOP key
is not detected, then the accumulator holds a byte corresponding to the very last row of
the keyboard scan.

TALK Instruct the serial bus device to TALK.

Address 65460 (SFFB4)
Registers accumulator
Preparation none

Stack use 8 bytes

The accumulator should contain the number which corresponds to the device about to be
asked to TALK. Check status byte for errors.

TKSA Send secondary address after TALK.

Address 65430 ($FF96)
Registers accumulator
Preparation TALK

Stack use 8 bytes

This routine is used to send a secondary address on the serial bus to the TALKing device.
The status byte should be checked for errors.

UDTIM Increment system clock.

Address 65514 (3FFEA)
Registers accumulator, X register
Preparation none

Stack use 2 bytes

This routine simply increments the system jiffy clock by one sixtieth of a second.

UNLSN Command serial device to unLISTEN.,

Address 65454 ($FFAE)
Registers accumulator
Preparation none

Stack use 8 bytes

This routine instructs all devices that are currently LISTENing on the serial bus to stop
doing so! Use READST to check for errors.

125

UNTLK Command serial device to unTALK.

Address 65451 (3FFAB)
Registers accumulator
Preparation none

Stack use 8 bytes

Instructs all devices currently TALKing on serial bus to stop doing so. Error checks may
be performed on status byte.

VECTOR Read/set vectors.

Address 65421 (3FF8D)

Registers accumulator, X register, Y register
Preparation none

Stack use 2 bytes

Depending on the condition of the Carry flag the system vectors will either be read or
reset. Calling the routine with carry set causes the system vectors to be stored in the section
of memory pointed to by the address held in the index registers. If the Carry flag is clear,
the list pointed to by the index registers is copied into the system vectors.

126

21 Speeding Up and
Slowing Down

At the beginning of this book I said that one of the advantages of using machine code was
that it runs very much faster than an interpreted language such as BASIC. But just how
fast is fast, and can we calculate the amount of time a piece of machine code takes to
execute? The answer is yes, and we shall now see just how to do it.

The Commodore 64 has within its plastic case its own clock (called the jiffy clock) which
it uses to ‘tick’ out the stages of an instruction’s execution. This clock takes the form of a
quartz crystal which vibrates at a rate of 2MHz, which simply means it ‘ticks’ or cycles 2
million times every second. Appendix 4 lists the number of cycles each instruction
requires. As can be clearly seen, the more complex forms of addressing modes take longer
to execute. The fastest instructions, generally employing implied or immediate
addressing, take just 2 cycles to complete. In real terms this is 0.000001 seconds or more
simply, a micro second—one millionth of a second! Instructions which access absolute
addresses can vary in execution time. For example, instructions using absolute indexed
addressing will generally take 4 cycles to complete, but, if a memory page boundary is
crossed an extra cycle is required in order to increment the high byte of the Program
Counter (PCH).

Branch instructions can take 2, 3 or 4 cycles. If the branch does not take place, then only
two cycles are needed. Three cycles are needed if the branch occurs, and a further cycle ifa
page boundary is crossed.

Another interesting point to note is that while PHA and STA ZEROPAGE both take 3
cycles, PLA takes 4 cycles compared with LDA ZEROPAGE which only takes 3 cycles. It
is therefore quicker to use zero page for storage rather than the stack. It should be
remembered, though, that PHA : PLA require only two bytes whereas STA
ZEROPAGE: LDA ZEROPAGE require four—so there has to be a trade-off in
memory requirements against execution time.

Using Appendix 4 (page 181) we can calculate some program execution times.

LDX #$FF \ immediate

TXA \ implied

AND $FB \ zero page

STA $1500, X \ absolute indexed
JMP (3FC) \ indirect

The first instruction, LDA #$FF, uses immediate addressing and therefore requires
only 2 cycles. Similarly the implied TXA instruction needs only 2 cycles. AND $FBtakesa
little longer, 3 cycles, as it has to access the contents of a zero page location. The absolute
indexed addressing of STA $1500, X can take either 4 or 5cycles, depending on whether a
page boundary is crossed. The shorter time is the correct one here because the base

127

address ($1500) is itself on a page boundary, which means the index register cannot
contain a value great enough to cross the next page boundary. Finally, the indirect jump
takes 3 cycles. The total time of program operation is therefore 2+2+3+4+3 =14
cycles.

Consider the following simple loop.

LDY #$FF \ 2cycles
LOOP DEY \ 2 cycles
BNE LOOP \ 3 cycles

The Y register loading instruction takes 2 cycles and the loop execution a total of 5cycles.
However, the LOOP will execute 255 times and we must of course take this into account.
This gives a total LOOP execution period of §X 255 — 1= 1274 cycles. The ‘minus one’ in
the calculation is because the ‘last’ branch will not occur and will therefore only require 2
cycles of computer time. If the branch causes a page boundary crossing, then each
execution of LOOP will need 6 cycles, giving a total of 6 X 255 — 2 = 1528 cycles for the
program (the ‘minus two’, of course, is for the last ‘page boundary branch’ which does not
take place).

Because of the speed of machine code it is sometimes necessary to produce deliberate
delays to slow things down to allow mere humans time to interact with the Commodore
64. There is an instruction that does nothing but provide a 2 cycle delay:

NOP No operation

To demonstrate its use let’s write a piece of machine code to produce about a one
millisecond delay (0.001 seconds or 2000 cycles). The process has to be worked out by trial
and error. Using the loop described above and inserting a single NOP command would
give:

LDY #$FF \ 2cycles
LOOP NOP \ 2cycles
DEY \ 2cycles
BNE LOOP \ 3 cycles

Total loop time is 7 cycles, which gives a total execution time of 7X 255 — 1 = 1784 cycles.
Because LDY #$FF is fundamental to the LOOP operation we should include this—
giving a total delay of 1786 cycles. This falls short of the desired 2000 cycles.

By adding an extra NOP, the delay is increased to 9 X 255 — 1 + 2 =2296 cycles. This is
too high but can be reduced by altering the value of the loop counter.

LDY #$DE \ 2 cycles
LOOP NOP \ 2cycles
NOP \ 2cycles
DEY \ 2 cycles
BNE LOOP \ 3 cycles

This final version produces a delay which is just one half of one millionth of a second short
of a millisecond i.e. 9 X 222 — 1+ 2= 1999 cycles. You might like to try experimenting with
loops to produce a delay of exactly one millisecond.

128

22 Inlerrupls and Breaks

INTERRUPTS

An interrupt is a signal that causes the program that is currently running to halt
temporarily whilst program control is transferred to a subroutine somewhere in memory
that is designed to service the interrupt. Once the interrupt has been dealt with control is
passed back to the original program, allowing it to continue as though nothing had
happened.

There are two different types of interrupt—the NMI (non-maskable interrupt) and the
IRQ (interrupt request). The difference between the two is that an NMI must be serviced
immediately because it is too important to ignore, whereas an IRQ can be ignored until we
are ready to service it. A variety of different devices can interrupt the 6510, some obvious
examples being devices attached to the user port or games port.

On the Commodore 64, the NMI is used by the Kernal Operating System to
communicate with various devices on- and off-board. As this type of interrupt cannot be
‘programmed’ directly it is not specifically covered here—though much of what follows is
applicable. The IRQ has two instructions associated with it which directly affect bit 2 of
the Status register, they are:

CLI Clear interrupt disable bit
SEI Set interrupt disable bit

The condition of the Interrupt flag within the Status register determines whether the IRQ
is serviced orignored when it occurs. If the Interrupt bit is set (I=1) then an IRQis ignored;
if the Interrupt bit is clear (I=0) an IRQ is serviced the moment it occurs.

Let’s examine the exact sequence of events that takes place when an IRQ occurs,
assuming that the Interrupt flag is clear. Firstly, the processor completes the operation
specified by the machine level instruction it is currently executing. The Status register is
examined to determine if bit 2 is clear (in our case it is), in which case the contents of the
Program Counter and Status register are pushed on to the hardware stack. The Interrupt
bit is now set (I=1) to shut out any further IRQs whilst one is being serviced. Note that the
Interrupt bit is set after the Status register has been saved, thus preserving its pre-interrupt
condition. At the end of this chain of events, the Program Counter is loaded with the
contents of the locations $FFFE and $FFFF, the top two bytes in the memory map,and a
jump performed to this address. The machine code located here (65352 in BASIC V2
machines) is listed below, and ends with a jump to the actual Interrupt service routine
responsible for locating and servicing the IRQ.

The IRQ routine also has a vector in block zero RAM associated with it—at 788
($0314)—and any user-generated interrupt routines should gain control through here. On
completion of the interrupt service routine, control must be returned to the interrupted

129

program. To facilitate this a further instruction is provided:
RTI Return from interrupt

This instruction resets the Status register and Program Counter to the values previously
saved on the stack, and allows the original program to continue from the point at which it
was interrupted.

Before performing the indirect jump to the IRQ vector the Kernal also saves the
contents of the other registers. This is very important because they will undoubtedly be
altered by the interrupt service routine, and we need to ensure that the contents of al/
registers are in their pre-interrupt condition before the RTIis executed. The machine code
located at 65352 responsible for this reads as follows:

65352 PHA \ save accumulator on stack

65353 TXA

65354 PHA \ save X register on stack

65355 TYA

65356 PHA \ save Y register on stack

65357 TSX \ transfer Stack Pointer to X register
65358 LDA 260, X \ get Status register

65361 AND #16 \ mask off high nibble

65363 BEQ +3 \ ifZ =1 then IRQ

65365 JMP (790)
65368 JMP (788) \ jump to IRQ service

As you can see, the accumulator and index registers are pushed on to the stack before
jumping to the IRQ vector—any user-supplied routines should act on this and handle
them as required. Several bytes in Page @3 are reserved as store locations for the registers
(see Table 22.1), and user-supplied routines can also use these if stack space is at a
premium. (The JMP (7990) instruction is described in the next section—BREAKS.)

Table 22.1

Label Address Description

SAREG 780 ($030C) Accumulator store
SXREG 781 ($030D) X register storage
SYREG 782 ($030E) Y register storage
SPREG 783 ($030F) Stack Pointer storage

The Commodore 64’s keyboard is interrupt driven. Every time you press a key an
interrupt service routine is used to store the depressed key’s value into the keyboard buffer
for servicing. As an active example enter the following one line program:

10 FOR N=0 TO 2000 : NEXT N

Type RUN and hit a few keys on the keyboard while this nonsense loop is being executed.
When the loop has finished the keys you pressed previously appear on the screen, proving
that you interrupted the program at machine level whilst it was running.

BREAKS

There is an instruction in the Commodore 64’s 6510 instruction set which allows a
software type of interrupt to be generated—this instruction is:

BRK Break

130

BRK is a single byte instruction (opcode $00) which can be inserted into programs as and
when required. When the 6510 encounters a BRK instruction it does a number of
things—in fact, it proceeds along a similar path to that taken by an IRQ. Firstly it
increments the Program Counter so that it is now pointing to the instruction after the
BRK, and then pushes this two byte address on to the hardware stack. Next it sets the
Break flag, which is bit 4 of the Status register, and then pushes this on to the stack before
jumping to the BRK servicing routine. This routine’s address is stored in locations $FFFE
and $FFFF and therefore it is the same servicing routine as that used by an IRQ. Or s it?
Well not exactly—itjust enters at the same point. Referring to the interrupt service routine
address 65361, the high byte of the Status register, now in the accumulator, is masked off
by the AND #16 instruction. Now if a BRK had occurred, bit 4 (the Break flag) would be
set and the BEQ would not take place. Instead, there would be an indirect jump to the
BRK vector at 790.

By resetting the BRK vector it is possible to perform simple machine code debugging by
pointing the BRK handler to a user-supplied routine that prints out the contents of all the
processor’s registers at the time the BRK occurred.

131

23 Prepacked Utilities

I am sure that you will find the programs that follow in this chapter very useful when you
write your own serious machine code—thus I have called them utility programs because
they have a practical use. Included are programs to:

1. Convert an ASCII based hex number into its binary equivalent.
2. Convert and print a binary value as a two digit ASCII based hex number.
3. Print an ASCII string stored within the machine code itself.

HEX TO BINARY CONVERSION

The following routine will convert two ASCII based hexadecimal characters into their
eight bit binary equivalent. For example, if the characters F E are input, the binary value
returned would be 1111 11160—this will of course be printed as 254, the decimal
equivalent. This is a particularly important procedure especially if programs handling
hexadecimal data are anticipated. Conversion is not difficult and Table 23.1 gives some
indication of what is required.

Table 23.1

Hex character Binary value ASCII value ASCII binary

0 0000 $30 0011 6000
1 0001 $31 0011 0001
2 0010 $32 0011 0910
3 0011 $33 0011 0011
4 0100 $34 0011 0100
5 0101 $35 0011 0101
6 0110 $36 0011 0110
7 0111 $37 0011 0111
8 1000 $38 0011 1000
9 1001 $39 0011 1001
A 1010 $41 0100 0001
B 1011 $42 0100 0010
C 1100 $43 0100 0011
D 1101 $44 0100 0100
E 1119 $45 0100 0101
F 1111 $46 0100 0110

132

In the case of the characters @ to 9 it should be fairly obvious that all we need to do to
convert them to binary is to mask out the high nibble of the character’s ASCII code,

because the low nibble binary is the same as the hex character itself.
Converting the characters A to F is a little less obvious. However, if the high nibble of

the ASCII code is masked off, then the remaining low nibble is 9 less than the hex value
required. For example, the ASCII for ‘D’ is 81000100, masking off the high nibble gives

0109, which is 4, add 9 to this to arrive at $D = 1101.

Program 41

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

REM * * ASCII HEX TO BINARY * *

CODE = 49152

FOR LOOP =6 TO 48

READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA * *

DATA 32,34,192

REM $20, $22, $C0

— JSR CHARACTER
— LDA $FC
— JSR CHECK
— ASL A

— ASL A

— ASL A

— ASL A

— STA $FD

— LDA $FB
— JSR CHECK
— ORA $FD
— STA $FD

— RTS

— CMP #$3A

— BCS ATOF
— AND #$0F
— RTS

— SBC #$37

— RTS

— JSR $FFE4
— BEQ FIRST

DATA 165,252 REM $AS, $FC
DATA 32,24,192 REM $20, $18, $C0
DATA 10 REM $0A
DATA 10 REM $0A
DATA 10 REM $0A
DATA 10 REM $0A
DATA 133,253 REM $85, $FD
DATA 165,251 REM $AS, $FB
DATA 32,24,192 REM $20, $18, $C0
DATA 5,253 REM $05, $FD
DATA 133,254 REM $85, $FE
DATA 96 REM $60
REM * * CHECK SUBROUTINE : $C018 * *
DATA 201,58 REM $C9, $3A
DATA 176,3 REM $B0, $03
DATA 41,15 REM $29, $0F
DATA 96 REM $60
REM ATOF
DATA 233,55 REM $E9, $37
DATA 96 REM $60
REM * * CHARACTER SUBROUTINE : $C022 * *
REM FIRST
DATA 32,228,255 REM $20, $E4, $FF
DATA 240,251 REM $F0, $FB
DATA 133,252 REM $85, $FC

— STA $FC

133

350 REM SECOND
360 DATA 32,228,255 REM $20, $E4, SFF — JSR $FFE4

370 DATA 240,251 REM $F0, $FB — BEQ SECOND
380 DATA 133,251 REM $85, $FB — STA $FB

390 DATA 96 REM $60 — RTS

400

410 PRINT CHR$(147)

420 PRINT “ENTER TWO HEX DIGITS”;
430 SYS CODE

4490 PRINT “THEIR BINARY VALUE IS: ;
450 PRINT PEEK(254)

The program begins by calling the CHARACTER subroutine to obtain two ASCII
based hex characters (lines 310 to 390) and places them in locations 251 ($FB) and 252
($FC). The high nibble character is converted first by calling the CHECK subroutine
(lines 230 to 290). If the ASCII based character byte is in the range -9 the high nibble is
masked off (line 250), otherwise 55 is subtracted from it (line 280@). This has the same effect
as masking off the high nibble and adding nine!

On returning from the CHECK subroutine the result, now held in the low four bits, is
shifted left into the high nibble of the accumulator (lines 120 to 150) and saved for future
reference (line 160).

A similar procedure is used to convert the low ASCII based character, but on return
from the CHECK subroutine the resultant binary is logically ORed with the previous
result (line 190) to produce the final value. This is then stored in location 254 ($3FD).

This program could be improved in a number of ways; for instance, the ASCII
characters are not echoed to the screen, nor are there any checks to ensure that only legal
hex values are entered. You might like to add these extra facilities yourself?

BINARY TO HEX CONVERSION

To convert an eight bit binary number into its ASCII hex equivalent characters, the
process described above is reversed. However, because characters are printed on the
screen from left to right we must, in this instance, deal with the high nibble of the byte first.
Program 42 requests a number for conversion (lines 300-37@0) and holds it in the
accumulator. It is then pushed onto the stack (line 99), and the high nibble is shifted four
times to move it into the low nibble position (lines 180-130). The subroutine FIRST does
the conversion. After ensuring that no high bits are set (line 170) the binary value is tested
to see if it’s in the range 0-9 (line 180). If it is not (and is therefore in the range A-F), 7 is
added to the accumulator (line 200—6 by the command plus 1 from the Carry flag). Line
220 performs the conversion by adding $30, which effectively sets bits 4 and 5. After
printing the ASCII character (line 230) control returns back to line 150, where the original
binary value is pulled off the stack in readiness for the low nibble (line 170) to be converted
into the appropriate ASCII character.

Program 42

106 REM * * PRINT ACCUMULATOR AS HEX NUMBER * *
20 CODE = 49152

30 FOR LOOP =0TO 21

40 READ BYTE

50 POKE CODE + LOOP, BYTE

60 NEXT LOOP
134

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
349
350
360
370
380

REM * * M/C DATA * *

DATA 72 : REM $48 — PHA
DATA 74 : REM $4A — LSR A
DATA 74 REM $4A — LSR A
DATA 74 REM $4A — LSR A
DATA 74 REM $4A — LSR A
DATA 32,9,192 REM $20, $09, $CO — JSR FIRST
DATA 104 : REM $68 — PLA
REM * * FIRST SUBROUTINE : $C009 * *
DATA 41,15 : REM $29, $0F — AND #$0F
DATA 201,10 REM $C9, $0A — CMP #30A
DATA 1442 REM $90, $02 — BCC OVER
DATA 105,6 : REM $69, $06 — ADC #$06
REM OVER
DATA 105,48 : REM $69, $30 — ADC #$30

DATA 76,210,255 REM $4C, $D2, $FF — JMP $FFD2

REM * * DEMO PROGRAM * *
REM LDA $FB : JMP $C000

POKE 828, 165 : POKE 829, 251

POKE 830, 76 : POKE 831, 0 : POKE 832, 192

PRINT CHR$(147)

PRINT “HIT A KEY AND ITS HEX VALUE IN ”
PRINT “ASCII WILL BE DISPLAYED”

GET A$

IF A$=* " THEN GOTO 320

A = ASC(A$)

POKE 251, A

REM * * CALL LINK ROUTINE—LINES 270 and 280 * *
SYS 828

REM * * CALL ‘SYS CODE’ TO USE DIRECTLY * *

Program 42 is demonstrated by pressing any of the alphanumeric keys—it then prints
their ASCII hexadecimal value.

OUTPUT ASCII STRING

This utility subroutine—Program 43—enables ASCII character strings to be stored
within the body of machine code programs ready for printing on to the screen. It has two
advantages over the normal absolute indexing approach. Firstly, it is inserted into the
program at the point it is needed and secondly, it calculates its own address and is
therefore fully relocatable.

135

136

Program 43

10

20

30

40

50

60

70

80

90
100
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
299
300
310
320
330
340
350
360
370
380
390
400

REM * * ASCII STRING OUTPUT ROUTINE * *

CODE = 49152

FOR LOOP =0 TO 26

READ BYTE

POKE CODE + LOOP, BYTE

NEXT LOOP

REM * * M/C DATA * *

DATA 14
DATA 133,251
DATA 104
DATA 133,252

DATA 160,0
DATA 230,251
DATA 208,2
DATA 230,252

DATA 177,251
DATA 48,6

DATA 32,210,255

DATA 76,6,192

DATA 108,251,0

REM $68
REM $85, $FB
REM $68
REM $85, $FC
REM REPEAT
REM $A0, $00
REM $E6, $FB
REM $D@, $02
REM $E6, $FC
REM CLEAR
REM $Bl, $FB
REM $30, $06

REM §$20, $D2, $FF
REM $4C, $06, $C0

REM FINISH

REM $6C, $FB, $00

REM * * DEMO ROUTINE * *
REM * * LOCATED AT $C200 * *

DEMO = 49664

FOR LOOP = ¢ TO 22

READ BYTE

POKE DEMO + LOOP, BYTE

NEXT LOOP

DATA 169,147

DATA. 32,210,255

DATA 32,0,192

REM $A9, $93
REM $20, $D2, $FF
REM §$20, $00, $C0

— PLA
— STA $FB
— PLA
— STA $FC

— LDY #%00

— INC $FB

— BNE CLEAR
— INC $FC

— LDA ($FB), Y
— BMI FINISH
— JSR $FFD2
— JMP REPEAT

— JMP ($FB)

— LDA #$93
— JSR $FFD2
— JSR OUTPUT

REM * * NOW STORE ASCII CODES FOR PRINTING * *
DATA 67,79, 77, 77, 79, 68, 79, 82, 69, 32, 54, 52, 13

REM

C,O,M,M, O,D, O, R, E,

6, 4,<CR>

410 DATA 234 : REM $EA — NOP
420 DATA 96 : REM $60 — RTS
430 SYS DEMO

The main ASCII output routine is between lines 99 and 250, a short demonstration
program is included in lines 350 to 420. The demo program begins by clearing the screen
(lines 350 and 360), then the OUTPUT routine located at $C000 is called. Immediately
following this call the ASCII text for output is POKEd into memory. The end of the string
is marked by a negative byte—one that has its most significant bit set. NOP is ideal for this
because it doesn’t do anything (line 410)!

The ASCII print routine, which is just 27 bytes long, begins by pulling the RTS address
(from the calling subroutine) off the stack and placing it into two zero page locations,
251 ($FB) and 252 ($FC).

Because. the string immediately follows the CODE subroutine call (see Figure 23.1),
post-indexed indirect addressing can be used to load the first string character into the
accumulator (line 200). Line 210 tests to see if the string-terminating negative byte has
been reached. If not, the character is printed (line 220). A JMP back to REPEAT is
implemented (line 230) and the zero page address incremented (lines 160-180) so that
the next string character can be sought out. Once the negative byte is encountered and the
test of line 210 succeeds, an indirect jump (line 250) via the zero page address will return
control to the calling machine code program.

Address Hex Mnemonic/character
49664 $C000 A9 LDA#,
49665 $Co01 93 147
49666 $C002 20 JSR
49667 $C003 D2
49668 $CO004 FF SFFD2
49669 $Co05 20 JSR
49670 $C006 00
49671 $C007 Co :|_ 3Co00
49672 $Co08 43 C
49673 $C009 4F (o]
49674 $CO0A 4D M
49675 $C00B 4D M
49676 $Co0C 4F o
49677 $C00D 44 D
49678 $CO0E 4F o
49679 $COoF 52 R
49680 $C010 45 E
49681 $Co11 20
49682 $Co12 36 6
49683 $Co13 34 4
49684 $Co14 0D <CR>
49685 $Co15 EA NOP
49686 $Co16 60 RTS

Figure 23.1 Memory layout of part of Program 43.

137

Appendices

140

1 The Screen

The character set can be displayed on the screen in two different ways:

1. By printing the ASCII code.
2. By storing the screen code into screen memory and setting the colour memory.

The screen and ASCII codes are listed in the Manual, Appendix E.
To print an ASCII code on to the screen, first load the ASCII code into the accumulator
and then call the Kernal CHROUT routine at $FFD2. For example to print an ‘A’ use:

LDA #65 \ ASCII code for A
JSR $FFD2 \ print it

The print position can be specified by first calling the Kernal PLOT routine.

Using screen codes is slightly more involved. First the screen code must be placed into
the relevant screen memory position, and then the corresponding location in the colour
memory must be POKEd with the specified colour code to ‘turn on’ the print colour. For
example, to display a blue ‘A’ midway down the left-hand side of the screen the following
can be used:

LDA #1 \ POKE code for A

STA 1424 \ store in screen memory

LDX #6 \ code for blue

STX 55696 \ store in colour memory to show blue

letter A

Figures Al.1 and A1.2 show the screen and colour memory maps.

Column number

1111111 11122222222223323333333 3
1234567 80901234567890 123456780908 1234567839
1924 — [4
1064 1
114 2
1144 3
1184 4
1224 5
1264 s 5
13¢4 7
dA 1344 s W
d 1384 9 n
r 1424 1% u
e 1464 1 m
S, 1504 12 b
S 1544 13 e
1584 1w "
1624 15 l
1664 16
1704 17
1744 18
1784 19
1824 20
1864 21
1994 22
1944 23
1984 24
2023
Figure A1.1 The screen memory map.
Column number —_____,
11111111 11222222222233233333333
1234567890 1234567809061 2345678090123 45¢6789
55296 — [}
55336 1
55376 2
55416 3
55456 4
55496 s
55536 6
55576 7 5
A 55616 8 w
d 55656 9
d 5569 19 n
r 55736 1" ou
e 55776 12 m
s 55816 1 b
S 55856 w €
55896 15 '
55936 16
55976 17 l
56016 18
56056 19
56096 20
56136 21
56176 22
56216 23
56256 24
sszss

Figure A1.2 The colour memory map.

141

142

2 The 6510

So far throughout this book we have been concerned with the software aspects of the
Commodore’s 6510, or in other words, how to program it! We could not really finish
without having a glimpse at its hardware or physical features. For example, just how is it
organized internally and how does it transfer data to and fro? While it is not absolutely
vital to understand these features, an understanding of its design will enhance your new
found knowledge.

Figure A2.1 shows a simplified block diagram of the 6510’s design or architecture as it is
more commonly called. If you study it many of the features will be readily recognizable.
There are a few exceptions though, including three buses, the address bus, the data bus,
and the control bus. You may well be wondering just what is meant by bus? It is not, as you
may have thought, a number 19 bound for Highbury Barn—it’s simply a collective term
for a series of wires—or tracks as they are called on a Printed Circuit Board (PCB for
short)—onto which a 1 or a @ can be placed electronically.

By placing a series of 1s and @s onto the eight lines of the data bus, a byte of information
may be transferred to or from the address specified by the binary value present at that
instant in time on the 16 lines of the address bus.

The control bus lines are responsible for carrying the numerous synchronization signals
that are required for the Commodore to operate.

EXECUTING INSTRUCTIONS

We can now examine just how the 6510 fetches, interprets and executes each instruction.
Firstly, the 6510 must locate and read the next instruction of the machine code program. It
does this by placing the current contents of the Program Counter onto the address bus and
simultaneously placing a read signal on the appropriate control bus line. Almost
instantaneously the instruction, or more correctly the byte that constitutes the instruction,
is placed onto the data bus. The 6510 then reads the contents of the data bus into a special
internal, eight bit register, known as the Instruction Register (IR for short), which is used
exclusively by the 6510 to hold data waiting for processing. Once in the IR, the Control
Unit interprets the instruction and then generates the various internal and external signals
required to execute the instruction. For example, if the data byte fetched was $AS, the
6510 would interpet this as LDA zero page, and would fetch the next byte of data and
interpret this as the address at which the data to be placed into the accumulator is located.
Each one of these operations would be performed in a manner similar to that already
described.

Obviously instructions and data must be fetched in the correct sequence. To enable this
to happen the Program Counter is provided with an automatic incrementing device. Each
time the Program Counter’s contents are placed onto the address bus the incrementer
adds one to its contents, thus ensuring bytes are fetched and stored in the correct order.

WoISOp AI0[q—IS9 YL [TV 24nSis

L

J0ysiBoa
uoponLsuy|

! A
" A snq wjeq Wz
|
|
I

(WvH pue WOH) Hun L+ 19d | HOd v A X ds

Kowew jonuod) VﬁM
_
= z
N
~N

198

J

L Mol snq ssaippy ¢

ybiy snq_sseippy NS v

143

The 6510 also contains two further registers that I haven’t mentioned up until now.
These are associated with the input/output port of the 6510 and are called the Data
Direction register and the Data register. They are responsible for memory management in
the Commodore 64 and actually appear on the memory map as the very first two locations
in zero page.

As its name suggests, the Data Direction register ($0000) determines whether data is to
be input or output from the Data register. If a bit is set then that particular line is
configured for input, if the bit is clear it is configured for output. The normal Data
Direction register configuration is xx101111 where the xx means ‘don’t care’!

Only the first six Data register lines are used and their purposes are as follows:

Bit 0 LORAM signal—if this bit is low then the BASIC ROM is switched out.
Bit 1 HIRAM signal—if this bit is low then the Kernal ROM is switched out.
Bit 2 CHAREN signal.

Bit 3 Tape data output line.

Bit 4 Tape switch sense—high if switch closed.

Bit 5 Tape motor control—high if off.

Bits 6-7 Not used.

144

3 The Instruction Set

This section contains a full description of each of the 56 instructions that the 6502 is
provided with. For ease of reference, the instructions are arranged in alphabetical order
by mnemonic, and each description is broken down into the following six sections:

Introduction A brief one or two line description of the instruction’s function.
Table This details the addressing modes available with the instruction, and lists the
various opcodes, the total number of memory bytes required by each addressing mode,

and finally the number of cycles that particular addressing mode takes to complete.

Status Shows the effect the execution of the instruction has on the Status register. The
following codes are employed:

* The flag is affected by the instruction but bits are undefined, being dependent
on the byte’s contents

1 The flag is set by the instruction

0@ The flag is cleared by the inctr-

If no code 1s 1naicated the flag remains unaltered by the instruction.

Operation A brief description of how the instruction operates together with details of its
effect on the Status register.

Applications Some hints and tips on the sort of applications the instruction might be
used for.

References A list of the page numbers giving further information about the instruction.

145

ADC

Add memory to accumulator with carry.

Addressing Opcode Bytes Cycles
Decimal Hex
ADC #immediate 105 $69 2 2
ADC zero page 101 $65 2 3
ADC zero page, X 117 $75 2 4
ADC absolute 109 $6D 3 4
ADC absolute, X 125 $7D 4 4/5
ADC absolute, Y 121 $79 3 4/5
ADC (zero page, X) 97 $61 2 6
ADC (zero page), Y 113 $71 2 5/6

NV—-—BDIZC

* % * %

Operation Adds the contents of the specified memory location to the current contents of
the accumulator. If the Carry flag is set this is added to the result which is then stored in the
accumulator. If the result is greater than $FF (255) the Carry flag is set. If the result is
equal to zero the Zero flag is set. The contents of bit 7 of the accumulator are copied into
the Status register. If overflow occurred from bit 6 to bit 7 the Overflow flag is set.

Applications Allows single, double and multibyte numbers to be added together.
Overflow from one byte to another is provided by the Carry flag wkich is included in the
addition.

References Page: 41

146

AND

Logical AND of memory location with accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

AND #immediate 41 $29 2 2
AND zero page 37 $25 2 3
AND zero page, X 53 $35 2 4
AND absolute 45 $2D 3 4
AND absolute, X 61 $3D 3 4/5
AND absolute, Y 57 $39 3 4/5
AND (zero page, X) 33 $21 2 6
AND (zero page), Y 49 $31 2 S

*

NV—-—BDIZZC

*

Operation Logically ANDs the corresponding bits of the accumulator with the specified
value or contents of memory location. The result of the operation is stored in the
accumulator but memory contents remain unaltered. If the result of the AND is @, the
Zero flag is set. If the result leaves bit 7 set, the Negative flag is set. Otherwise both flags are

cleared.

Applications Used to ‘mask off” the unwanted bits of the accumulator.

AND #$F0
AND #$0F

References Page: 16

\ masks off lower nibble, 11110000
\ masks off higher nibble, 00001111

147

ASL

Shift contents of accumulator or memory left by one bit.

Addressing Opcode Bytes Cycles
Decimal Hex

ASL accumulator 10 $0A 1 2

ASL zero page 6 $06 2 5

ASL zero page, X 22 $16 2 6

ASL absolute 14 $OE 3 6

ASL absolute, X 30 $1E 3 7

NV—BDIZC
* * %

Operation Shuffles the bits in a specified location one bit left. Bit 7 moves into the carry,
and a zero is placed into the vacated bit @.

The Carry flag is set if bit 7 contained a | before the shift, and cleared if it contained 0.
The Negative flag is set if bit 6 previously contained a 1. The Zero flag is set if the location
holds $00 after the shift. (For this to occur it must previously have contained either $00
or $80.

Applications Multiplies the byte by two. Can be used to shift low nibble of byte into high
nibble.

References Page: 78

148

BCC

Branch if the Carry flag is clear (C = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

BCC relative 144 $90 2 2/3/4

NvVv—BDIZC

Operation If the Carry flag is clear (C = @) the byte following the instruction is
interpreted as a two’s complement number and is added to the current contents of the
Program Counter. This gives the new address from which the program will now execute,
allowing a branch of either 126 bytes back or 129 bytes forward. If the Carry flag is set
(C = 1) the branch does not occur and the next byte is ignored by the 6510.

Applications The Carry flag is conditioned by a number of instructions such as ADC,
SBC, CMP, CPX and CPY, and a branch will occur if any of these result in clearing the
flag. A ‘forced’ branch can be implemented using:"

CLC \ C=0
BCC value \ ‘jump’

References Pages: 32, 64

BCS

Branch if the Carry flag is set (C = 1).

Addressing Opcode Bytes Cycles
Decimal Hex

BCS relative 176 $B0 2 2/3/4

NV—BDIZC

Operation If the Carry flag is set (C = 1) the byte following the instruction is interpreted
as a two’s complement number and is added to the current contents of the Program
Counter; this gives the new address from which the program will now execute, allowing a
branch of either 126 bytes back or 129 bytes forward. If the Carry flag is clear (C = @) the
branch does not occur and the next byte is ignored by the 6510.

Applications As with BCC but the branch will only take place if an operation results in
the Carry flag being set. A ‘forced’ branch can be implemented with:

SEC \ C=1
BCS set \ ‘jump’

References Page: 32

149

BEQ

Branch if the Zero flag is set (Z = 1).

Addressing Opcode Bytes Cycles
Decimal Hex
BEQ relative 240 $F0 2 2/3/4

NV—BDIZC

Operation If the Zero flagis set (Z = 1) the byte following the instruction is interpreted as
a two’s complement number and is added to the current contents of the Program Counter;
this gives the new program address from which the program will now execute, allowing a
branch of either 126 bytes back or 129 bytes forward. If the Zero flag is clear (Z = 0) the
branch does not occur and the next byte is ignored by the 6510.

Applications Used to cause a branch when the Zero flag is set. This happens when an
operation results in zero (e.g. LDA #0). The BEQ command is used frequently after a
comparison instruction, for example:

CMP #ASC?”
BEQ Questionmark

If the comparison succeeds the Zero flag is set therefore BEQ will work.

References Page: 64

BIT

Test memory bits.

Addressing Opcode Bytes Cycles
Decimal Hex

BIT zero page 36 $24 2 3

BIT absolute 44 $2C 3 4

NV—-—BDI ZC
*

* ok

Operation The BIT operation affects only the Status register, the accumulator and the
specified memory location are unaltered. Bit 7 and bit 6 of the memory byte are copied
directly into N and V respectively. The Zero flag is conditioned after a logical bitwise
AND between the accumulator and the memory byte. If accumulator AND memory
results in zero then Z = 1, otherwise Z = 0.

Applications Often used in conjunction with BPL/BMI or BVS/BVC to test bits 7and 6
of a memory location and to cause a branch depending on their condition.

References Page: 85

150

BMI

Branch if the Negative flag is set (N = 1),

Addressing Opcode Bytes Cycles
Decimal Hex

BMI relative 48 $30 2 2/3/4

NV—-_BDI ZC

Operation 1f the Negative flag is set (N = 1) the byte following the instruction is
interpreted as a two’s complement number and is added to the current contents of the
Program Counter; this gives the new address from which the program will now execute,
allowing a branch of either 126 bytes back or 129 bytes forward. If the Negative flag is
clear (N = @) the branch does not occur and the next byte is ignored by the 6510.

Applications Generally after an operation has been performed (i.e. LDA, LDX etc.) the
most significant bit of the register is copied into the Negative flag position. If itis set thena
branch will occur using BMI. The *minus’ part of the mnemonic denotes this instruction’s
importance when using signed arithmetic—where bit 7 is used to denote the sign of a
number in two’s complement form.

References Pages: 31, 64

BNE

Branch if the Zero flag is clear (Z = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

BNE relative 208 $DO 2 2/3/4

NvVv—-—BDI1IZC

4

L

Operation 1f the Zero flag is clear (Z=0) the byte following the instruction is interpreted
as a two’s complement number and is added to the current contents of the Program
Counter; this gives the new address from which the program will now execute, allowing a
branch of either 126 bytes back or 129 bytes forward. If the Zero flag is set (Z = 1) the
branch does not occur and the next byte is ignored by the 6510.

Applications Used to cause a branch when the Zero flag is clear. It’s often used, in
conjunction with a decrementing counter, as a loop controlling command.

DEX
BNE AGAIN

will continue branching back to AGAIN until X = 0 and the Zero flag is set.

References Page: 64

151

BPL

Branch if the Negative flag is clear (N = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

BPL relative 16 $10 2 3/4/5

NV—BDI ZC

Operation If the Negative flag is clear (N = 0) the byte following the instruction is
interpreted as a two’s complement number and is added to the current contents of the
Program Counter; this gives the new address from which the program will now execute,
allowing a branch of either 126 bytes back or 129 bytes forward. If the Negative flag s set
(N = 1) the branch does not occur and the next byte is ignored by the 6510.

Applications Generally after an operation has been performed (i.e. LDA, ROL, CPX
etc.) the most significant bit of the register is copied into the Negative flag position. Ifitis
clear then a branch will occur if BPL is used. The ‘plus’ part of the mnemonic denotes the
instruction’s importance when using signed arithmetic, where bit 7 is used to indicate the
sign of a number in two’s complement form. If a decrementing counter is being used in a
loop this branch instruction allows the loop to execute when the counter reaches zero.

DEX
BPL again

This loop will finish when X is decremented from @ to $FF because $FF = 1111 1111
binary, where bit 7 is set.

References Pages: 31, 64

BRK

Software forced BREAK.

Addressing Opcode Bytes Cycles
Decimal Hex

BRK implied 00 $00 1 7

NV—BDI ZC
1

Operation The Program Counter address plus one is pushed onto the stack, followed by
the contents of the Status register. The Break flag is set and the Commodore passes
control to the BRK servicing routine at $FFFE.

Applications Used as a software interrupt.

References Page: 130

152

BVC

Branch if the Overflow flag is clear (V = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

BVC relative 80 $50 2 2/3/4

NV—BDI1ZC

Operation If the Overflow flag is clear (V = @) the byte following the instruction is
interpreted as a two’s complement number and added to the current contents of the
Program Counter. This gives the new address from which the program will now execute.
This allows a branch of either 126 bytes back or 129 bytes forward. If the Overflow flag is
set (V = 1) the branch does not take place and the next byte is ignored by the 6510.

Applications Used to detect an overflow from bit 6 into bit 7 (i.e. a carry from bit 6 to bit
7) when using signed arithmetic. When using signed arithmetic two numbers of opposite
sign cannot overflow, however numbers of the same sign can overflow. For example:

01001111 ($4F)
+ 01000000 (340)
10001111 (-$71)

LOverﬂow from bit 6 to bit 7

The result is now negative which is, of course, absurd! Similarly adding two large negative
numbers can produce a positive result. In fact overflow can occur in the following
situations:

1. Adding large positive numbers.
2. Adding large negative numbers.
3. Subtracting a large negative number from a large positive number.
4. Subtracting a large positive number from a large negative number.

The Overflow flag is used to signal this overflow from bit 6 to bit 7 and therefore, in
signed arithmetic, a change in sign. If it is clear no overflow has occurred and BVC will
cause a branch.

A ‘forced’ branch may be implemented using:

CLV \ clear V

BVC Forced \ ’jump’

References Page: 64

153

154

BVS

Branch if the Overflow flag is set (V = 1).

Addressing Opcode Bytes Cycles
Decimal Hex

BVS relative 112 $70 2 2/3/4

NV—-—BDI ZC

Operation If the Overflow flag is set (V = 1) the byte following the instruction is
interpreted as a two’s complement number and added to the current contents of the
Program Counter. This gives the new address from which the program will now execute,
allowing a branch of either 126 bytes back or 129 bytes forward. If the Overflow flag is
clear (V = 0) the branch does not occur and the next byte is ignored by the 6510.

Applications Used to cause a branch if the sign of a number has been changed. In most
instances this will only matter if signed arithmetic is being employed. See BVC for more
details.

References Page: 64

CLC

Clear the Carry flag (C = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

CLC implied 24 318 1 2

NV—-—BDI ZC
0

Operation The Carry flag is cleared by setting it to zero.

Applications Should always be used before adding two numbers together as the Carry
flag’s contents are taken into account by ADC. A ‘forced’ branch may be implemented
with:

CLC \ Clear C
BCC clear \ and ‘jump’

References Pages: 32, 40

CLD

Clear the Decimal flag (D = 0).

Addressing Opcode Bytes Cycles
Decimal Hex
CLD implied 216 $D8 1 2

NV—-—BDI ZC
0

Operation The Decimal flag is cleared by setting it to zero.

Applications Used to make 6510 work in normal hexademical mode.

References Page: 47

CLI

Clear the Interrupt flag (I = 9).

Addressing Opcode Bytes Cycles
Decimal Hex
CLI implied 88 $58 1 2

Nv—-—BDI ZC
0

Operation The Interrupt flag is cleared by setting it to zero.

Applications Causes any interrupts on the IRQ line to be processed immediately after

completion of current instruction.

References Page: 129

155

CLvV

Clear the Overflow flag (V = 0).

Addressing Opcode Bytes Cycles
Decimal Hex

CLV implied 184 $B8 1 2

NV—BDI ZC
0

Operation The Overflow flag is cleared by setting it to zero.

Applications Used to clear the Overflow flag after an overflow from bit 6 to bit 7. In most
instances this is only important if signed arithmetic is being used.

156

CMP

Compare contents of memory with contents of the accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

CMP #immediate 201 $C9 2 2
CMP zero page 197 $C5 2 3
CMP zero page, X 213 $DS 2 4
CMP absolute 205 $CD 3 4
CMP absolute, X 221 $DD 3 4/5
CMP absolute, Y 217 $D9 3 4/5
CMP (zero page, X) 193 $C1 2 6
CMP (zero page), Y 209 $D1 2 5/6

NV—BDIZZC
* * %

Operation The contents of the specified memory location (or immediate value) are
subtracted from the contents of the accumulator. The contents of the memory location
and accumulator are NOT altered, but the Negative, Zero and Carry flags are conditioned
according to the result of the subtraction. To perform this subtraction, the 6510 first sets
the Carry flag and then adds the two's complement value of the memory location’s
contents to the accumulator’s contents. If both values are equal (memory =accumulator)
the Zero flag is set and the Carry flag remains set. If the contents of memory are less than
the accumulator (memory < accumulator) the Zero flag is cleared and the Carry flag set. If
memory contents arg¢ greater than the accumulator (memory > accumulator) then both
the Zero flag and Carry flag are cleared. If unsigned binary is being used the Negative flag
is also set. If signed binary is being used the Overflow flag should be checked in
conjunction with the Negative flag to test for a ‘true’ negative result.

Applications Should be used to test for intermediate values that cannot be tested directly
from the Status register. For example:

CMP #00

BEQ AWAY

is a waste of two bytes, as the Zero flag will be set if the accumulator contains $00,

therefore all that is needed is : BEQ AWAY. To test for a particular key, the following
CMP might be used:

JSR GETIN \ get key
CMP #ASC*Y™ \ isit Y key?
BEQ YES

References Page: 64

157

CPX

Compare contents of memory with contents of the X register.

Addressing Opcode Bytes Cycles
Decimal Hex

CPX #immediate 224 $E0 2 2

CPX zero page 228 $E4 2 3

CPX absolute 236 $EC 3 4

NV—BDI ZZC
* * *

Operation The contents of the specified memory location (or immediate value) are
subtracted from the contents of the X register. The contents of the memory location and X
register are NOT altered, instead the Negative, Zero and Carry flags are conditioned
according to the result of the subtraction. To perform this subtraction the 6510 first sets
the Carry flag and then adds the two’s complement value of the memory location to the
contents of the X register. If both values are equal (memory = X register) the Zero flag is
set and the Carry flag remains set. If the contents of memory are less than the X register
(memory < X register) the Zero flag is cleared but the Carry flag remains set. If memory
contents are greater than the X register (memory > X register) then both Zero and Carry
flags are cleared. If unsigned binary is being used then the Negative flag is set.

Applications Should be used to test for intermediate values which cannot be tested
directly from the Status register. For example, to test the X register’s contents during use
as a loop counter try:

LDX #220 \ load X with 220
AGAIN DEX \ decrement X

CPX #87 \ has X reached 87?7

BNE AGAIN \ no, go again

References Page: 64

158

CPY

Compare contents of memory with contents of the Y register.

Addressing Opcode Bytes Cycles
Decimal Hex

CPY #immediate 192 $Co 2 2

CPY zero page 196 $C4 2 3

CPY absolute 204 $CC 3 4

NV—BDI ZZC
* *

Operation The contents of the specified memory location (or immediate value) are sub-
tracted from the contents of the Y register. The contents of the memory location and Y
register are NOT altered, instead the Negative, Zero and Carry flags are conditioned
according to the result of the subtraction. To perform this subtraction the 6510 first sets
the Carry flag and then adds the two’s complement value of the memory location to the
contents of the Y register. If both values are equal (memory = Y register) the Zero flag is
set and the Carry flag remains set. If the contents of memory are less than the Y register
(memory < Y register) the Zero flag is cleared but the Carry flag remains set. If memory
contents are greater than the Y register (memory > Y register) then both Zero and Carry
flags are cleared. If unsigned binary is being used then the Negative flag is set.

Applications Should be used to test for intermediate values which cannot be tested
directly from the Status register. For example, to test the Y register’s contents during use
as a loop counter try:

LDY #220 \ load Y with 220
AGAIN DEY \ decrement Y

CPY #87 \ has Y reached 877

BNE AGAIN \ no, go again

References Page: 64

159

160

DEC

Decrement memory contents by one.

Addressing Opcode Bytes Cycles
Decimal Hex

DEC zero page 198 $Co 2 5

DEC zero page, X 214 $D6 2 6

DEC absolute 206 $CE 3 6

DEC absolute, X 222 $DE 3 7

NV—BDI ZZC
* *

Operation The byte at the address specified is decremented by one (MEMORY =
MEMORY -1). If the result of the operation is zero the Zero flag will be set. Bit 7 of the

byte is copied into the Negative flag.

Applications Used to subtract one from a counter stored in memory.

References Page: 62

DEX

Decrement contents of X register by one.

Addressing Opcode Bytes Cycles
Decimal Hex

DEX implied 202 $CA 1 2

NV—BDIZC
* *

Operation One is subtracted from the value currently held in the X register (X=X —1). If
the result of the operation is zero the Zero flag will be set. Bit 7 is copied into the Negative
flag (N = 0 if X < $80; N = 1 if X > $7F). The Carry flagis not affected by the instruction.

Applications Used with indexed addressing when the X register acts as an offset from a
base address, allowing a sequential set of bytes to be accessed. Invariably used to

decrement the X register when being used as a loop counter, branching until X = 0
(Z=1.

References Page: 62

DEY

Decrement contents of Y register by one.

Addressing Opcode Bytes Cycles
Decimal Hex

DEY implied 136 $88 1 2

NV—-—BDZZC
*

*

Operation One is subtracted from the value currently held in the Y register (Y=Y —1). If
the result of the operation is zero the Zero flag is set. Bit 7 is copied into the Negative flag
(N=0if Y<$80;N = 1if Y > $7F). The Carry flag is not affected by the instruction.

Applications Used with indexed addressing when the Y register acts as an offset from a
base address allowing a sequential set of bytes to be accessed. Invariably used to
decrement the Y register when being used as a loop counter, branching until Y = 0
Zz=1).

References Page: 62

161

EOR

Accumulator exclusively ORed with memory.

Addressing Opcode Bytes Cycles
Decimal Hex
EOR #immediate 73 $49 2 2
EOR zero page 69 $45 2 3
EOR zero page, X 85 $55 2 4/5
EOR absolute 77 $4D 3 4
EOR absolute, X 93 $5D 3 4/5
EOR absolute, Y 89 $59 3 4/5
EOR (zero page, X) 65 $41 2 6
EOR (zero page), Y 81 $51 2 5/6

NV—-—BDZC
* *

Operation Performs a bitwise exclusive OR between the corresponding bits in the
accumulator and the specified memory byte. If the result, which is stored in the
accumulator, is zero the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications Used to complement or invert a data byte.
References Page: 17

INC

1
Increment memory contents by one.

Addressing Opcode Bytes Cycles
Decimal Hex

INC zero page 230 $E6 2 5

INC zero page, X 246 $F6 2 6

INC absolute 238 $EE 3 6

INC absolute, X 254 $FE 3 7

NV—BDI ZZC
*

*

Operation The byte at the address specified is incremented by one. If the address holds
zero after the operation the Zero flag is set. Bit 7 of the byte is copied into the Negative
flag.

Applications Add one to a counter stored in memory.

References Page: 62

162

INX

Increment contents of X register by one.

Addressing Opcode Bytes Cycles
Decimal Hex

INX implied 232 $E8 1 2

NV—BDI ZC
* *

Operation One is added to the value currently in the X register (X = X + 1). If the result
of the operation is zero the Zero flag will be set. Bit 7 is copied into the Negative flag
(N =0if X <380 ; N=1if X> $7F). The Carry flag is not affected by the instruction.
Applications Used with indexed addressing when the X register acts as an offset from a
base address, and allows a sequential set of bytes t.. . » accessed. Often used as a counter
to control the number of times a loop of instructions .; executed.

References Page: 62

INY

Increment contents of Y register by one.

Addressing Opcode Bytes Cycles
Decimal Hex

INY implied 200 $C8 1 2

NV—BDIZC
* *

Operation One is added to the value currently held in the Y register (Y = Y + 1). If the
result of the operation is zero the Zero flag will be set. Bit 7 is copied into the Negative flag.
The Carry flag is not affected.

Applications Used with indexed addressing when the Y register acts as an offset froma
base address, allowing a sequential set of bytes to be accessed. Often used as a counter to
control the number of times a loop is executed.

References Page: 62

163

164

JMP

Jump to a new location.

Addressing Opcode Bytes Cycles
Decimal Hex

JMP absolute 76 $4C 3 3

JMP (indirect) 108 $6C 3 3

NV—_BDI ZC

Operation In an absolute JMP the two bytes following the instruction are placed into the
Program Counter. In an indirect jump the two bytes located at the two byte address
following the instruction are loaded into the Program Counter.

Applications Transfers control, unconditionally, to another part of a program stored
anywhere in memory.

References Pages: 54, 55, 76

JSR

Jump, save return address.

Addressing Opcode Bytes Cycles
Decimal Hex
JSR absolute 32 $20 3 6

NV—-—BDI ZC

Operation Acts as a subroutine call, transferring program control to another part of
memory until an RTS is encountered. The current contents of the Program Counter plus
two are pushed onto the stack. The Stack Pointer is incremented twice. The absolute
address following the instruction is placed into the Program Counter and program
execution continues from this new address.

Applications Allows large repetitive sections of programs to be entered once, out of the
way of the main program, and called as subroutines as often as required.

References Page: 72

LDA

Load the accumulator with the specified byte.

Addressing Opcode Bytes Cycles
Decimal Hex
LDA #immediate 169 $A9 2 2
LDA zero page 165 $AS 2 3
LDA zero page, X 181 $B5 2 4
LDA absolute 173 $AD 3 4
LDA absolute, X 189 $BD 3 4/5
LDA absolute, Y 185 $B9 3 4/5
LDA (zero page, X) 161 3A1 2 6
LDA (zero page), Y 177 $B1 2 5/6

NV—-—BDIZC
* *

Operation Places the value immediately following the instruction, or the contents of the
location specified after the instruction, into the accumulator. If the value loaded is zero
then the Zero flag is set. Bit 7 is copied into the Negative flag position.

Applications Probably the most frequently used instruction, it allows for general data
movement and facilitates all logical and arithmetic operations.

References Page: 36

LDX

Load the X register with the specified byte.

Addressing Opcode Bytes Cycles
Decimal Hex

LDX #immediate 162 $A2 2 2

LDX zero page 166 $A6 2 3

LDX zero page, Y 182 $B6 2 4

LDX absolute 174 $AE 3 4

LDX absolute, Y 190 $BE 3 4/5

Nv—BDI ZC
* *

Operation Places the value immediately following the instruction, or the contents of the
location specified after the instruction, into the X register. If the value loaded is zero then
the Zero flag is set. Bit 7 is copied into the Negative flag position.

Applications General transfer of data for processing or storage. Also allows a loop
counter to be set to its start value.

References Page: 36

165

166

LDY

Load the Y register with the specified byte.

Addressing Opcode Bytes Cycles
Decimal Hex

LDY #immediate 160 $A0 2 2

LDY zero page 164 $A4 2 3

LDY zero page, X 180 $B4 2 4

LDY absolute 172 $AC 3 4

LDY absolute, X 188 $BC 3 4/5

NV—-—BDIZC
* *

Operation Places the value immediately following the instruction, or the contents of the
location specified after the instruction, into the Y register. If the value loaded is zero the
Zero flag is set. Bit 7 is copied into the Negative flag.

Applications General transfer of data for processing or storage. Also allows a loop

counter to be set to its start value.

References Page: 36

LSR

Logically shift the specified byte right one bit.

Addressing Opcode Bytes Cycles
Decimal Hex

LSR accumulator 74 $4A 1 2

LSR zero page 70 $46 2 5

LSR zero page, X 86 $56 2 6

LSR absolute 78 $4E 3 6

LSR absolute, X 94 $SE 3 7

NV—BDI ZC
6 * X

Operation Moves the contents of the specified byte right by one position, putting a @ in
bit 7 and bit @ into the Carry flag.

The Negative flag is cleared, and the Carry flag is conditioned by the contents of bit @. The
Zero flag is set if the specified byte now holds zero (in which case it must previously have
contained $00 or $01).

Applications Divides a byte value by two (if D = @) with its remainder shifting into the
Carry flag position. Can also be used to shift the high nibble of a byte into the low nibble.

References Pages: 79, 80

NOP

No operation.

Addressing Opcode Bytes Cycles
Decimal Hex

NOP implied 234 $SEA 1 2

NV—-—BDIZC

Operation Does nothing except increment the Program Counter.

Applications Provides a two cycle delay.

References Page: 128

167

168

ORA

Logical OR of a specified byte with the accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

ORA #immediate 9 $09 2 2
ORA zero page 5 $05 2 3
ORA zero page, X 21 $15 2 4
ORA absolute 13 $0D 3 4
ORA absolute, X 29 $1D 3 4/5
ORA absolute, Y 25 $19 3 4/5
ORA (zero page, X) 1 $01 2 6
ORA (zero page), Y 17 $11 2 5

NV—BDI ZC
* *

Operation Logically ORs the corresponding bits of the accumulator with the specified
value, or contents of a memory location. The result of the operation is stored in the
accumulator. If the result leaves bit 7 set the Negative flag is set, otherwise it is cleared.

Applications Used to ‘force’ certain bits to contain a one. For example:
ORA #$80 \ 10000000 binary

will ensure bit 7 is set.

References Pages: 50, 51, 53

PHA

Push the accumulator contents onto the ‘top’ of the stack.

Addressing Opcode Bytes Cycles
Decimal Hex

PHA implied 72 $48 1 3

NV—-—BDIZZC

Operation The contents of the accumulator are copied into the position indicated by the
Stack Pointer. The Stack Pointer is then decremented by one.

Applications Allows bytes of memory to be saved temporarily. The index registers can
be saved by first transferring them to the accumulator; memory bytes are saved by first
loading them into the accumulator. Bytes are recovered with PLA.

References Pages: 59, 60

PHP

Push the Status register’s contents onto the top of the stack.

Addressing Opcode Bytes Cycles
Decimal Hex

PHP implied 8 $08 1 3

NV—_BDI ZC

Operations The contents of the Status register are copied into the position indicated by
the Stack Pointer. The Stack Pointer is then decremented by one.

Applications Allows the conditions of the flags to be saved, perhaps prior to a subroutine
call, so that the same conditions can be restored with PLP on return.

References Pages: 59, 60

PLA

Pull the ‘top’ of the stack into the accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

PLA implied 104 $68 1 4

*

NV—_BDIZC
*

Operation The Stack Pointer is incremented by one, and the byte contained at this
position in the stack is copied into the accumulator. If the byte is $00 the Zero flag is set.
Bit 7 is copied into the Negative flag.

Applications Complements the operation of PHA to retrieve data previously pushed
onto the stack.

References Pages: 59, 60

169

PLP

Pull the ‘top’ of the stack into the Status register.

Addressing Opcode Bytes Cycles
Decimal Hex

PLP implied 40 $28 1 4

NV—-—BDI ZZC
* * Xk % % %

Operation The Stack Pointer is incremented by one and the byte contained at this
position is copied into the Status register.

Applications Complements the operation of PHP to retrieve the previously pushed
contents of the Status register, or to condition certain flags from a defined byte previously
pushed onto the stack via the accumulator.

References Pages: 59, 60

170

ROL

Rotate either the accumulator or a memory byte left by one bit with the Carry flag.

Addressing Opcode Bytes Cycles
Decimal Hex

ROL accumulator 42 $2A 1 2

ROL zero page 38 $26 2 5

ROL zero page, X 54 $36 2 6

ROL absolute 46 $2E 3 6

ROL absolute, X 62 $3E 3 7

NV—-—BDIZC
* %

*

Operation The specified byte and the contents of the Carry flag are rotated left by one
bit in a circular manner.

7] 6|5[4]3]2]1]0

> cl
1]

Bit 7 is rotated into the Carry flag, with the flag’s previous contents moving into bit @. The
remaining bits are shuffled left. The Negative flag is set if bit 6 previously held I;
cleared otherwise. The Carry flag is conditioned by bit 7, and if the specified byte now
holds zero the Zero flag is set.

Applications Used in conjunction with ASL, ROL can be used to double the value of
multibyte numbers, as the Carry bit is used to propagate the overflow from one byte to
another. It may also be used before testing the Negative, Zero and Carry flags to
determine the state of specific bits.

References Page: 80

171

ROR

Rotate either the accumulator or a memory byte right by one bit with the Carry flag.

Addressing Opcode Bytes Cycles
Decimal Hex

ROR accumulator 106 $6A 1 2

ROR zero page 102 $66 2 5

ROR zero page, X 118 $76 2 6

ROR absolute 110 $6E 3 6

ROR absolute, X 126 $7E 3 7

NV—-—BDI ZC
* %

*

Operation The specified byte and the contents of the Carry flag are rotated right by one

bit in a circular manner.
pugEnEanny
[le
Il

Bit 0 is rotated into the Carry flag with the flag’s previous contents moving into the bit 7
position. The remaining bits are shuffled right. The Negative flag is set if the Carry flag
was set previously; otherwise it is cleared. If bit @ contained a | the Carry flag will now also
be set. If the specified byte now holds zero the Zero flag is set.

Applications Used in conjunction with LSR, ROR can be used to halve the value of
multibyte numbers. It may also be used before testing the Negative, Zero and Carry flags
to determine the contents of specific bits.

References Pages: 80, 81

172

RTI

Return from interrupt.

Addressing Opcode Bytes Cycles
Decimal Hex
RTI implied 64 $40 1 6
NV—BDI ZC
* * * &x % X X

Operation 'This instruction expects to find three bytes on the stack. The first byte is
pulled from the stack and placed into the Status register—thus conditioning all flags. The

next two bytes are placed into the Program Counter. The Stack Pointer is incremented as
each byte is pulled.

Applications Used to restore control to a program after an interrupt has occurred. On
detecting the interrupt, the processor will have pushed the Program Counter and Status
register onto the stack.

References Page: 130

RTS

Return from subroutine.

Addressing Opcode Bytes Cycles
Decimal Hex

RTS implied 96 $60 1 6

NV—BDIZC

Operation The two bytes on the top of the stack are pulled, incremented by one, and
placed into the Program Counter. Program execution continues from this address. The
Stack Pointer is incremented by two.

Applications Returns control from a subroutine to the calling program. It should
therefore be the last instruction of a subroutine.

References Page: 72

173

SBC

Subtract specified byte from the accumulator with borrow.

Operation Subtracts the immediate value, or the byte contained at the specified address,
from the contents of the accumulator. If the value is greater than the contents of the
accumulator it will ‘borrow’ from the Carry flag, which should be set at the onset (only) of
a subtraction. If the Carry flag is clear after the subtraction, a borrow has occurred. If the
result is $00 the Zero flag is set. The contents of bit 7 are copied into the accumulator and

Addressing Opcode Bytes Cycles
Decimal Hex
SBC #immediate 233 $E9 2 2
SBC zero page 229 $ES 2 3
SBC zero page, X 245 $FS 2 4
SBC absolute 237 $ED 3 4
SBC absolute, X 253 $FD 3 4/5
SBC absolute, Y 247 $F9 3 4/5
SBC (zero page, X) 225 $EI 2 6
SBC (zero page), Y 241 $F1 2 5/6

N

V is set if an overflow from bit 6 to bit 7 occurred.

Applications

another.

References

SEC

Pages: 44, 46

Set the Carry flag (C = 1).

Allows single, double and multibyte numbers to be subtracted from one

Addressing Opcode Bytes Cycles
Decimal Hex
SEC implied 56 $38 1 2

NV—-—BDI ZC

1

Operation A one is placed into the Carry flag bit position.

Applications

into account by SBC.

References

174

Pages: 32, 44

Should always be used at the onset of subtraction as the Carry flagis taken

SED

Set the Decimal mode flag (D = 1).

Addressing Opcode Bytes
Decimal Hex

Cycles

SED implied 248 $F8 1

NV—BDI ZC
1

Operation A one is placed into the Decimal flag position.

Applications Puts the Commodore in decimal mode, in which Binary Coded Decimal
(BCD) arithmetic is performed. The Carry flag now denotes a carry of hundreds, as the

maximum value that can be encoded in a single BCD byte is 99.

References Page: 47

SEI

Set the Interrupt disable flag (I = 1).

Addressing Opcode Bytes
Decimal Hex

Cycles

SEI implied 120 $78 1

NV—BDIZC
1

Operation A one is placed into the Interrupt flag position.

Applications When this flag is set no interrupts occurring on the IRQ line are processed.

However NMI interrupts are processed, as are BREAKSs.

References Page: 129

175

STA

Store the accumulator’s contents in a memory location.

Addressing Opcode Bytes Cycles
Decimal Hex
STA zero page 133 $85 2 3
STA zero page, X 149 $95 2 4
STA absolute 141 $8D 3 4
STA absolute, X 157 $9D 3 5
STA absolute, Y 137 $99 3 5
STA (zero page, X) 129 $81 2 6
STA (zero page), Y 145 $91 2 6

NV—BDI ZC

Operations The contents of the accumulator are copied into the specified memory

location.

Applications To save the contents of the accumulator, or to initialize areas of memory to
specific values. Used in conjunction with LDA, blocks of data can be transferred from one

area of memory to another.

References. Page: 36

STX

Store the X register’s contents in memory.

Addressing Opcode Bytes Cycles
Decimal Hex

STX zero page 134 $86 2 3

STX zero page, X 150 $96 2 4

STX absolute 142 $8E 3 4

NV—-—BDIZC

Operation The contents of the X register are copied into the specified memory location.

Applications To save the Xregister’s contents, or to initialize areas of memory to specific

values.

References Page: 36

176

STY

Store the Y register’s contents in memory.

Addressing Opcode Bytes Cycles
Decimal Hex

STY zero page 132 $84 2 3

STY zero page, X 148 $94 2 4

STY absolute 140 $8C 3 4

NV—-—BDIZC

Operations The contents of the Y register are copied into the specified memory location.

Applications To save the Y register’scontents, or to initialize areas of memory to specific
values.

References Page: 36

TAX

Transfer the accumulator’s contents into the X register.

Addressing Opcode Bytes Cycles
Decimal Hex

TAX implied 170 SAA 1 2

*

NV—-—BDIZC
*

Operation The contents of the accumulator are copied into the X register. If the X
register now holds zero, the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications Allows the accumulator’s values to be saved temporarily, or perhaps used
to seed the X register as a loop counter. Often used after PLA to restore the X register’s
contents previously pushed onto the stack.

References Page: 37

177

TAY

Transfer accumulator’s contents into the Y register.

Addressing Opcode Bytes Cycles
Decimal Hex

TAY implied 168 $A8 1 2

NV—BDIZC
*

*

Operation The contents of the accumulator are copied into the Y register. If the Y
register now holds zero the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications Allows the accumulator’s values to be saved temporarily, or perhaps used
to seed the Y register as a loop counter. Often used after PLA to restore the Y register’s
contents previously pushed onto the stack.

References Page: 37

TSX

Transfer the Stack Pointer’s contents into the X register.

Addressing Opcode Bytes Cycles
Decimal Hex

TSX implied 186 $BA 1 2

NV—BDI ZZC
* *

Operation The contents of the Stack Pointer are copied into the X register. If X now
holds zero, the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications To calculate the amount of space left on the stack, or to save its current
position while the stack contents are checked.

References Page: 61

178

TXA

Transfer the X Register’s contents into the accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

TXA implied 138 $8A 1 2

NV—-—BDI ZZC
* *

Operation The contents of the X register are copied into the accumulator. If the
accumulator now holds zero the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications Allows the X register’s contents to be manipulated by logical or
arithmetic instructions. Followed by a PHA it allows the X register’s value to be saved on
the stack.

References Page: 37

TXS

Transfer the X Register’s contents into the Stack Pointer.

Addressing Opcode Bytes Cycles
Decimal Hex

TXS implied 154 $9A 1 2

NV—-—BDI ZC

Operation The contents of the X register are copied into the Stack Pointer.

Applications Allows the contents of the Stack Pointer to be set or reset to a specific
value. For example, on ‘power-up’ or BREAK, the OS executes:

LDX #$FF
TXS

to ‘clear’ the stack and reset the Stack Pointer.

References Page: 61

179

TYA

Transfer the Y register’s contents into the accumulator.

Addressing Opcode Bytes Cycles
Decimal Hex

TYA implied 152 $98 1 2

NV—BDIZZC
* *

Operation The contents of the Y register are copied into the accumulator. If the
accumulator now holds zero the Zero flag is set. Bit 7 is copied into the Negative flag.

Applications Allows the Y register’s contents to be manipulated by logical or arithmetic
instructions. When followed by a PHA, it allows the Y register’s value to be saved on the
stack.

References Page: 37

180

4 Instruction Cycle Times

(12311puy)

X ‘(98ed o0197)
(X ‘98ed 0137)
A ‘9njosqy

X ‘anjosqy
Jnjosqy

X ‘98ed oz
a3ed oiaz
JleIpaWwW]
aAneRy

parduy

5*

4*

4*

5*

4*

4*

2**

2**

2**

2**

2**

2**

2**

2**

5*

4%

4*

ADC

AND

ASL

BCC
BCS

BEQ
BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

181

(10a1pu)

(& ‘98ed 0137)
(X ‘98ed o197)
A ‘anjosqy

X ‘amjosqy
Anjosqy

X ‘o8ed o137
38ed o197
Jeipaww]
aaneRy

parjduwy

5*

4*

4*

5*

4*

4*

5*

4*

4%

5*

4%

4%

CPX
CPY

DEC
DEX

DEY

EOR

INC

INX

INY

JMP
JSR

LDA

LDX
LDY

LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL

ROR
RTI

RTS

SBC

SEC

SED

SEI

182

S >

o] X > s =2

L [[- - ?n &
° < a0 80 Q g 9) 5 =
T 2 3 & & 3 3 3 =& &° &%
s = E g 2 %2 %2 % % % %
E & E 8§ 8§ < = = N N =

STA - — — 3 4 4 5 5 6 6
STX - - - 3 4 4 = = - = =
STY - - — 3 4 4 = - = = =
TAX 2 - - - - = = = = = =
TAY 2 - - - - - = = = = =
TSX p
TXA 2 - - - - = = = = = =
TXS 2 - - - - - = = = = =
TYA 2 - - - - - - - = = =

*Add 1 cycle if page boundary crossed.
**Add 1 if branch occurs to same page or add 2 if branch occurs to a different page.

183

5 Commodore 64 Memory Map

FFFF
Kernal Operating System
ROM
DCaR
Colour RAM
D8PY
VIC and SID
DaowY
‘Free’ RAM
Coro
BASIC interpreter ROM
AQRR
VSP cartridge ROM
80D
Program area
800
Screen memory
400
Kernal vectors and flags
300
Input buffers
200
Stack
100
Zero page
2]

184

6 Branch Calculalors

The branch calculators are used to give branch values in hex. First, count the number of
bytes you need to branch. Then locate this number in the centre of the appropriate table,
and finally, read off the high and low hex nibbles from the side column and top row

respectively.,

Example

For a backward branch of 16 bytes:

Locate 16 in the centre of Table A6.1(bottom row), then read off high nibble (#F)and low
nibble (#0) to give displacement value (#F0).

Table A6.1 Backward branch calculator

MS

SD

3 4 5 6 7 8 9

A B C D E F

mmgOm» o x

128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
112 111 110 109 108 107 106 105 104 103 102 101 100

96
80
64
48
32
16

95
79
63
47
31
15

93 92 91 99 89 88 87
7776 75 74 73 72 71
61 60 59 58 57 56 55
45 44 43 42 41 40 39
29 28 27 26 25 24 23
13 12 11 186 9 8 7

86 85
70 69
54 53
38 37
22 21

6 5

84
68
52
36
20

4

99 98 97

Table A6.2 Forward branch calculator

MS

SD

D E F

NN BA W —S

3 4 5 6 7 8 9
19 20 21 22 23 24 25
35 36 37 38 39 40 41
51 52 53 54 55 56 57
67 68 69 70 71 72 73
83 84 85 86 87 88 89
99 100 101 102 103 104 105

112 113 114 115 116 117 118 119 120 121

106 107
122 123

13 14 15
29 30 31
45 46 47
61 62 63
77 78 79
93 94 95
109 110 111
125 126 127

185

186

1 6510 Opcodes

All numbers are hexadecimal.

00
01
02
03
04
05
06
07
08
09
0A
0B
oC
6D
0E
oF

BRK implied
ORA (zero page, X)
Future expansion
Future expansion
Future expansion
ORA zero page
ASL zero page
Future expansion
PHP implied
ORA #immediate
ASL accumulator
Future expansion
Future expansion
ORA absolute
ASL absolute
Future expansion
BPL relative

ORA (zero page), Y
Future expansion
Future expansion
Future expansion
ORA zero page, X
ASL zero page, X
Future expansion
CLC implied
ORA absolute, Y
Future expansion

Future expansion

1D
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37

Future expansion
ORA absolute, X
ASL absolute, X
Future expansion
JSR absolute
AND (zero page, X)
Future expansion
Future expansion
BIT zero page
AND zero page
ROL zero page
Future expansion
PLP implied

AND #immediate
ROL accumulator
Future expansion
BIT absolute
AND absolute
ROL absolute
Future expansion
BMI relative

AND (zero page), Y
Future expansion
Future expansion
Future expansion
AND zero page, X
ROL zero page, X

Future expansion

38
39
3A
3B

3D
3E
3F
40
41
42
43
44

46
47
48
49
4A
4B
4C
4D

4F
50
51

52

54
55
56
57
58
59
SA
5B
5C
5D
SE
SF

SEC implied
AND absolute, Y
Future expansion
Future expansion
Future expansion
AND absolute, X
ROL absolute, X
Future expansion
RTI implied
EOR (zero page, X)
Future expansion
Future expansion
Future expansion
EOR zero page
LSR zero page
Future expansion
PHA implied
EOR #immediate
LSR accumulator
Future expansion
JMP absolute
EOR absolute
LSR absolute
Future expansion
BVC relative
EOR (zero page), Y
Future expansion
Future expansion
Future expansion
EOR zero page, X
LSR zero page, X
Future expansion
CLI implied
EOR absolute, Y
Future expansion
Future expansion
Future expansion
EOR absolute, X
LSR absolute, X

Future expansion

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E

80
81
82
83
84
85
86
87

RTS implied
ADC (zero page, X)
Future expansion
Future expansion
Future expansion
ADC zero page
ROR zero page
Future expansion
PLA implied
ADC #immediate
ROR accumulator
Future expansion
JMP (indirect)
ADC absolute
ROR absolute
Future expansion
BVS relative

ADC (zero page), Y
Future expansion
Future ¢xpansion
Future expansion
ADC zero page, X
ROR zero page. X
Future expansion
SEI implied

ADC absolute, Y
Future expansion
Future expansion
Future expansion
ADC absolute, X
ROR absolute, X
Future expansion
Future expansion
STA (zero page, X)
Future expansion
Future expansion
STY zero page
STA zero page
STX zero page

Future expansion

188

88
89
8A
8B
8C
8D
8E
§F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
A4
AS
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

DEY implied
Future expansion
TXA implied
Future expansion
STY absolute
STA absolute
STX absolute
Future expansion
BCC relative
STA (zero page), Y
Future expansion
Future expansion
STY zero page, X
STA zero page, X
STX zero page, Y
Future expansion
TYA implied
STA absolute, Y
TXS implied
Future expansion
Future expansion
STA absolute, X
Future expansion
Future expansion
LDY #immediate
LDA (zero page, X)
LDX #immediate
Future expansion
LDY zero page
LDA zero page
LDX zero page
Future expansion
TAY implied
LDA #immediate
TAX implied
Future expansion
LDY absolute
LDA absolute
LDX absolute

Future expansion

BCS relative

LDA (zero page), Y
Future expansion
Future expansion
LDY zero page, X
LDA zero page, X
LDX zero page. Y
Future expansion
CLV implied
LDA absolute, Y
TSX implied
Future expansion
LDY absolute, X
LDA absolute, X
LDX absolute, Y
Future expansion
CPY #immediate
CMP (zero page, X)
Future expansion
Future expansion
CPY zero page
CMP zero page
DEC zero page
Future expansion
INY implied

CMP #immediate
DEX 1implied
Future expansion
CPY absolute
CMP absolute
DEC absolute
Future expansion
BNE relative
CMP (zero page), Y
Future expansion
Future expansion
Future expansion
CMP zero page, X
DEC zero page, X

Future expansion

D8 CLD implied
D9 CMP absolute, Y
DA Future expansion
DB Future expansion
DC Future expansion
DD CMP absolute, X
DE DEC absolute, X
DF Future expansion
E@ CPX #immediate
El SBC (zero page, X)
E2 Future expansion
E3 Future expansion
E4 CPX zero page
E5 SBC zero page
E6 INC zero page
E7 Future expansion
E8 INX implied

E9 SBC #immediate
EA NOP implied

EB Future expansion

EC
ED
EE
EF
Fo
Fl
F2

F4
F5
Fo6
F7
F8
F9
FA
FB
FC
FD
FE
FF

CPX absolute
SBC absolute
INC absolute
Future expansion
BEQ relative
SBC (zero page), Y
Future expansion
Future expansion
Future expansion
SBC zero page, X
INC zero page. X
Future expansion
SED implied
SBC absolute, Y
Future expansion
Future expansion
Future expansion
SBC absolute, X
INC absolute, X

Future expansion

189

190

General Index

absolute addressing, 49
absolute indexed addressing, 51
accumulator, 18
ACPTR, 113

ADC, 40, 146

addition, 40

addressing, 33, 49
addressing modes, 33
AFAC, 103

AND, 16, 147
ARGEXP, 104
ARGHO, 104
ARGSGN, 104

ARIGN, 104

arithmetic, 40

arithmetic shift left, 78
ASCII hex to binary, 133
ASCII string output, 135
ASL, 78, 148

assembly language, 3
assembly types, 92

backward branch, 66

base, §

BCC, 32, 64, 149

BCD, 13, 47

BCD addition, 14, 47

BCD subtraction, 14, 48
BCS, 32, 64, 149

BEQ, 64, 150

binary, 5

binary addition, 10

binary arithmetic, 10
binary exponent, 103
binary mantissa, 103
binary subtraction, 11
binary to ASCII hex, 134
binary to decimal conversion, 6
binary to hex conversion, 7
bit, §

BIT, 85, 150
BITS, 106

BMI, 31, 64, 151
BNE, 64, 151
BPL, 31, 64, 152
branch calculators, 185
branches, 64
Break flag, 31
breaks, 130
BRK, 130, 152
BVC, 64, 153
BVS, 64, 154
byte, 5

carry bit, 10
Carry flag, 32
CHKIN, 114
CHKOUT, 115
CHRIN, 29, 116
CHROUT, 29, 116
CINT, 117
CIOUT, 117
CLALL, 117
CLC, 32, 40, 154
CLD, 155

CLI, 129, 155
CLOSE, 117
CLR, 24
CLRCHN, 117
CLV, 156

CMP, 64, 157
CODE, 21

colour memory, 140
comparisons, 64
conditional assembly, 92
counters, 62

CPX, 64, 158
CPY, 64, 159
cycle times, 181
cycles, 127

DEC, 62, 160

decimal, 5

Decimal flag, 31

decimal to binary conversion, 7
decrement, 62
decrementing memory, 70
delays, 128

DEX, 62, 161

DEY, 62, 161
displacement, 65

division, 89

divisor, 89

dollar, 8

entering machine code, 25
EOR, 17, 162

executing instructions, 142
execution time, 127

FAC, 103

FACEXP, 104

FACSGN, 104, 107

flags, 30

floating memory, 110
floating point accumulators, 103
floating point to integer, 109
FOR ... NEXT loops, 67
forced branch, 67

forcing bits, 17

forward branch, 66

GETIN, 29, 118

GOSUB, 72
GOTO, 76
hex, 5

hex loader, 26

hex to ‘binary conversion, 132
hex to decimal conversion, 9
horizontal expansion register, 99

immediate addressing, 34
immediate mode, 24

implied addressing, 37, 57, 59
INC, 62, 162

increment, 62

incrementing memory, 70
index registers, 18, 19
indirect addressing, 53
indirect jump, 77

instruction register, 142
integer to floating point, 108
Interrupt flag, 31

interrupt service routine, 129
interrupts, 129

INX, 62, 163

INY, 62, 163

IOBASE, 118

IOINIT, 118

IRQ, 129

jiffy clock, 127
JMP, 54, 76, 164
JSR, 29, 72, 164
jumps, 76

K, 39
Kernal, 29, 113
Kernal routines, 114

labels, 65

last in, first out, 58
LDA, 36, 165

LDX, 36, 165

LDY, 36, 165
LIFO, 58

LISTEN, 119

load, 36

logical operations, 16
logical shift right, 79
look-up tables, 94
loops, 62

LSR, 79, 167

machine code storage, 21
mask, 16

memory counters, 69
memory map, 184
memory mapped, 96
MEMSIZ, 21, 23
MEMTOP, 120
mnemonic, 3
moving sprites, 101
multiplicand, 87
multiplication, 86
multiplier, 87

negation, 46
Negative flag, 30
nibble, 8

NMI, 129

NOP, 128, 167
normalized, 104

one’s complement, 12
opcode, 3

opcodes, 186

OPEN, 120

operating system, 29
OR, 17

ORA, 168

output ASCII string, 135
Overflow flag, 31

packed BCD, 13
paging memory, 38
parameter passing, 75
PHA, 59, 168

PHP, 59, 169

PLA, 59, 169

PLOT, 120

PLP, 59, 170

191

POKE, 25 STA, 36, 176
post-indexed indirect addressing, 55 stack, S8
power, 5 Stack Pointer, 58
pre-indexed absolute addressing, 56 | Status register, 18, 30
printing binary, 83 STOP, 29, 125
Program Counter, 19 STX, 36, 176
pull, 58 STY, 36, 177
pure indexed addressing, 53 subroutines, 72, 111
push, 58 subtraction, 44
quotient, 89 TALK, 125

tape buffer, 22
RAMTAS, 121 TAX, 177
RDTIM, 121 TAY, 178
READST, 121 TKSA, 125
registers, 18 transfer, 37
regsave, 60 TSX, 61, 178
relative addressing, 57, 65 twopull, 60
RESTOR, 122 twopush, 60
RETURN, 72 two’s complement, 12
ROL, 80, 171 TXA, 179
ROR, 81, 172 TXS, 61
rotate left, 78 TYA, 180
rotate right, 78
rotates, 78 UDTIM, 125
RTI, 130, 173 UNLSN, 125
RTS, 72, 173 UNTLK, 126

user RAM, 22
save, 122 USR, 105
SBC, 44, 174 USS Enterprise, 96
SCNKEY, 29, 123
SCREEN, 123 vector, 54, 128
screen memory, 140 vectored addresses, 113, 115
SEC, 32, 44, 174 VIC, 96
SECOND, 123 VIC registers, 97
SED, 175 .
SEI, 129, 175 weight, S
SETLFS, 123 .
SETMG, 124 X register, 19
SETMO, 125 Y register, 19
SETNAM, 124
SETTIM, 124 Zero flag, 32
shifts, 78 zero page addressing, 33
signed binary, 11, 65 zero page indexed addressing, 50
sprite enable register, 99 zero page RAM, 33
sprite pointer, 99
sprites, 96 6510, 142

192

Program Index

Absolute addressing, 49 Machine code above MEMSIZ, 23
Absolute indexed addressing, 52 Machine code demo, 20

ASCII hex to binary, 133 Machine code in free RAM, 24
ASCII string output, 136 Multiply by four, 79

Binary output of SR, 84 Print accumulator as hex number, 134

Centigrade to Fahrenheit, 94

Conditional assembly, 92 Save FACH1, 106
Simple addition, 40
Decrementing memory, 70 Simple BCD addition, 47
Double byte addition, 42 Simple multiplication, 86
Double byte subtraction, 45 Simple subtraction, 44
Down count, 67 Single byte addition, 41
Single byte divide, 89
Forward branching, 66 Single byte multiplication giving two byte
FP to integer, 109 result, 88

Subroutine demo, 72
Hex loader, 26

Ten !s, 64
Incrementing a register, 63 Test bit 0, 80
Incrementing memory, 70 The Enterprise flies, 101
Indirect addressing, 55 Two’s complement converter, 46
Indirect jumping, 54
Integer to FP, 108 USR demo, 105
Jumping, 76 Zero page and immediate addressing, 35

193

Other titles of interest

Easy Programming for the Commodore 64
Ian Stewart & Robin Jones

The Commodore 64 Music Book
James Vogel & Nevin B. Scrimshaw

Programming for REAL Beginners: Stage 1
Philip Crookall

Programming for REAL Beginners: Stage 2
Philip Crookall

Brainteasers for BASIC Computers
Gordon Lee

‘Just the job for a wet afternoon with the computing class’—
Education Equipment

Computing: a Bug’s Eye View
Cosgrove

Easy Programming for the BBC Micro
Eric Deeson

‘A beginners guide in the true sense’—FEducational Computing

Further Programming for the BBC Micro
Alan Thomas

‘If you are sinking with Basic on your BBC Micro, this could be a life raft!"—

Educational Computing

BBC Micro in Education
Eric Deeson

BBC Micro Assembly Language
Bruce Smith

“This book is an excellent beginner’s guide’—Acorn User

BBC Micro Assembler Workshop
Bruce Smith

Easy Programming for the Electron
Eric Deeson

Electron Assembly Language
Bruce Smith

Electron Assembler Workshop
Bruce Smith

£6.95

£5.95

£3.95

£3.95

£4.95

£2.95

£5.95

£5.95

£6.50

£7.95

£6.95

£5.95

£7.95

£6.95

Easy Programming for the ZX Spectrum
Ian Stewart & Robin Jones

‘... will take you a long way into the mysteries of the Spectrum: is
written with a consistent and humorous hand: and shares the
affection the authors feel for the computer’—ZX Computing

Further Programming for the ZX Spectrum
Ian Stewart & Robin Jones

‘Again written with clarity and style’—Educational Computing

Spectrum Machine Code
Ian Stewart & Robin Jones

‘An excellent grounding in machine and assembly language’—Sinclair User

Computer Puzzles: For Spectrum and ZX81
Ian Stewart & Robin Jones
‘What a gem of a book!"—Education Equipment

Games to Play on Your ZX Spectrum
Martin Wren-Hilton

Spectrum in Education
Eric Deeson

PEEK, POKE, BYTE & RAM! Basic Programming
for the ZX81

Ian Stewart & Robin Jones

‘Far and away the best book for ZX81 users new to computing'—

Popular Computing Weekly

Machine Code and better Basic

Ian Stewart & Robin Jones

‘A beautifully written course in so-called advanced programming’—
Education Equipment

Easy Programming for the Oric-1

Ian Stewart & Robin Jones

Games to Play on your Oric-1
Czes Kosniowski

Machine Code for the Atmos and Oric-1
Bruce Smith

Easy Programming for the Dragon 32
Ian Stewart & Robin Jones

Further Programming for the Dragon 32
Ian Stewart & Robin Jones

Dragon Machine Code
Robin Jones & Eric Cowsill

£5.95

£5.95

£5.95

£2.50

£1.95

£6.50

£4.95

£7.50

£5.95

£4.95

£6.95

£5.95

£5.95

£6.95

Shiva Software

BBC Micro Utilities 1 £6.95
Bruce Smith

A machine code monitor plus a series of machine code subroutines.

Supergraph Summer 1984
David Tall

This teaches an appreciation of coordinate geometry and lays the groundwork
for calculus (covered in subsequent tapes) on the BBC Micro.

Spectrum Special 1 £5.95
Ian Stewart & Robin Jones

A selection of 10 educational games and puzzles.

Spectrum Special 2 £5.95
Ian Stewart & Robin Jones

A selection of utilities, games and puzzles.

Spectrum Special 3 £5.95
Ian Stewart & Robin Jones

A further collection of games and puzzles.

Spectrosim £9.95
Robin Helmer

A utility program that overcomes the first hurdles of machine code
programming on the ZX Spectrum.

Shiva Educational Software

The SHIVA First Mathematics Programme
(for children 5-8 years)

Developed by Iris V. Hewett, M. Ed.

Each of the six tapes on numeracy and logic
contains five graphically illustrated programs with
full documentation.

Life off with Numbers Launching Logic
Additional Fun Sets and Operators
Playing with Places Decisions

Cassettes are available for the BBC Micro Model B
and versions for the Sinclair Spectrum, Dragon 32, Electron, Commodore 64
and RML 480Z microcomputers will follow soon.

If you would like your 64 to work even faster, why not try
machine code programming.

Find out about:

® hex and bina
® registers andrt}l’ags

® jumps, shifts and rotates
¢ the Kernal

® machine code sprites

This comprehensive introduction to the world of assembly
language provides plenty of sample programs and gives a full
description of each of the 56 instructions your 64 understands.

No Assembler? All programs are designed using DATA
statements, so key them in and go! If you do have an
Assembler, the mnemonics are included as well!

Why not put BASIC to one side and give your 64 a holiday
by talking to it in its own language?

Your 64 can do so much more. . .

GB £ NeT +007.9¢
TS8N O-appaza.q, . i

, 00795

Shiva Publis’tiiﬁg Limiteq

— ° 7809061812948

as bronm !o you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

