
30 Hour CLIVE PRIGMORE

vir
BBC COMMODORE 64 EDITION
SLZ.A THE COMPUTER PROGRAMME BBC TV

NATIONAL EXTENSION COLLEGE

NEC
MM I

^

i | « .

Wt.

1/1.

4

NATIONAL EXTENSION COLLEGE

30 Hour BASIC
by

Clive Prigmore
(Orpington College of Further Education)

adapted for the Commodore 64 by Paul Shreeve

NATIONAL EXTENSION COLLEGE CORRESPONDENCE
TEXTS

COURSE NUMBER M27C

ISBN 0 86082 455 1
© NATIONAL EXTENSION COLLEGE TRUST LIMITED 1981.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of the publisher.

This book is sold subject to the condition that it shall not by way of trade or otherwise, be lent,
re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form of
binding or cover other than that in which it is published and without a similar condition being
imposed on the subsequent purchaser.

Contents

How to use this course 5

Unit 1 Simple statements and commands 7

Unit 2 Making decisions 35

Unit 3 Strings 63

Unit 4 Lists 93

Unit 5 An end to strings and PRINT 119

Unit 6 Mainly about dice and games 145

Unit 7 Sound, colour and graphics 173

Unit 8 Handling numbers 199

Unit 9 An introduction to data processing 229

Unit 10 File handling 255

3

4

How to use this course

Alms of the course
Quite simply, to help you learn to use your BBC or Acorn Electron microcomputer
with confidence. To do that you need to master three things: (a) the BASIC
language; (b) planning good program structures; and (c) using the keyboard. This
course teaches you the first two.Your computer will teach you the third!

30 Hour BASIC isn't all there is to know about BASIC but it does cover all the
essentials as implemented on the BBC and Acorn Electron microcomputers. Once
you've completed the course, you will be ready to use a textbook on BASIC or for
the second stage BASIC course, M034 Structured Programming in BASIC, which
is available from NEC.

Do I need a microcomputer?
You can do this course whether or not you have a microcomputer, although it will be of
more use to you if you can use a Commodore 64 since the course material is
designed particularly to apply to that machine. All you have to do is choose one of the
following ways of working through the course:
Self-instructional use: With a microcomputer: do all the Exercises and self-
assessment questions (SAQ's) and key in all the programs marked EL Without a
microcomputer: do all the Exercises and SAQ's but omit the items marked EL
FlexiStudy use: With your own microcomputer: do all the exercises and SAQ's at
home and key in at home all the programs marked EEL Test your assignment answers
on your own microcomputer. Then take/send your problems to your local FlexiStudy
centre. Without your own microcomputer: do all the Exercises and SAQ's but ignore
the items marked EL Then do the assignment questions and take these to your local
FlexiStudy centre to run on their microcomputers.
NEC correspondence student: With your own microcomputer: do all the Exercises
and SAQ's at home and key in all the items marked EL Test your assignments on your
own microcomputer before sending them to your NEC correspondence tutor. If the
assignment programs don't run properly, tell your tutor what response you are
getting from your microcomputer. Without your own microcomputer: do all the
Exercises and SAQ's at home but ignore the items marked EL Do the assignment
questions and post there to your NEC tutor.

5

Structure of the course
The course is in ten Units (See Contents). Each Unit includes:

Examples: These are problems which we solve completely for you in the text.

Self Assessment Question (SAQ's): We ask you to stop and quickly check that
you have understood a new idea that we have introduced. Answers to these
always appear at the end of the Unit in which the SAQ occurs.

Exercises: These are longer problems for you to try. Answers appear at the end of
the Unit in which the Exercise occurs.

OH which stands for key. This is where we think you could find it helpful to key a
program into your own Commodore 64 microcomputer.

Assignment: These are questions for you to answer and send to your tutor for
marking and comment. There are no answers to these in the course.

6

UNIT1
Simple statements and

commands
1.1 What does a computer do? 8

1.2 What is a computer? 8

1.3 What is BASIC? 10

1.4 A simple problem 10

1.5 Statement numbers 12

1.6 Execution and commands 14

1.7 Execution and data 16

1.8 INPUT, PRINT and LET 17

1.9 Store locations 19

1.10 Copying and overwriting 21

1.11 Arithmetic operators 23

1.12 Numerical constants 26

1.13 The remark statement: REM 27

1.14 More complicated arithmetic 28

1.15 Literal printing 28

Assignment 1 30

Objectives of Unit 1 31

Answers to SAQ's and Exercises 31

1.1 What does a computer do?
In broad terms, a computer is a machine which helps us to solve certain kinds of
problems. These usually involve symbols or characters which are familiar to us
through every day use, e.g. letters of the alphabet (capital and lower case),
numbers, punctuation marks and some special characters such as +, #, * . The
computer allows us to put in one set of symbols or characters and get out a
different but related set. If this seems very vague and too general, let's consider
some specific examples.

CHARACTERS IN

Numbers representing the size of a
window.

List of books borrowed from a
library.

A person's name.

Standard notation for a move in a
game of chess.

Number representing height and
acceleration.

Pre-determined codes.

CHARACTERS OUT

Cost of double glazing.

List of those books overdue.

The person's telephone number.

Picture of the chess board with the
move accomplished.

Picture of lunar lander.

Musical sounds.

Figure 1 Some uses of a computer

This course is not about how the computer does these things but about how you
can get it to do them by giving it the right instructions. We shan't therefore be going
into any detail of the insides of a computer but you will find it helpful to know which
are the major parts of a computer. This is quickly dealt with in the next section.

1.2 What is a computer?
A simple model of a computer is shown in Figure 2.

Input
device

Central
processing
unit

Output
device

Figure 2 A simple model of a computer

You can see that there are three main parts to a computer:
1 The input device which allows you to enter either instructions or data (informa

tion) into the computer. On a microcomputer the input device is a keyboard
which looks like a typewriter.

8

2 The central processing unit (CPU) which, amongst other things, carries out the
instructions you have put in. This processing results in a modification of your
data giving you the 'answer' or output that you require.

3 An output device which enables you to receive the result of the processing. The
output device might be a television screen displaying the output or a printer
which actually prints the output onto paper.

All this may sound very mundane. Indeed it would be were it not for the three key
characteristics of a computer: (a) its capacity to store very large quantities of data
which (b) it is able to process very rapidly and (c) its capacity to store a program
which controls its own operation. This last characteristic is by far the most
important one and is the one we are going to cover in this course.

Backing store
We shall just mention one other technical detail before looking at programming. If you
are using this course you are likely to own or use a microcomputer with a small
internal storage capacity. It uses that storage to keep its main running instructions
plus the details of the problem it is currently solving. The latter details are erased
when you switch the machine off so, if you want to keep your program data, you kave
to keep them in a backing store: a separate storage system that you can link to the
computer as needed. On small systems this will be an ordinary audio cassette tape
and on larger systems, a magnetic disc store. The Commodore 64 uses a special
tape deck (model C2N). It is not possible to use an ordinary domestic tape recorder.

So, to summarise, the main elements of a computer system are illustrated in
Figure 3.

TV screen

Output from
processor going to
output device.

Output device

/ Data and instructions
going into storage on
the tape

Backing
store

Cassette
tape
recorder

Data and instructions
being taken from the
tape

Data and instructions going in

Input device

Figure 3 A typical computer system

1.3 What is BASIC?
A computer is an electronic device which processes patterns of electrical signals. If
you had a problem, you wouldn't be able to feed it into the computer as electrical
signals. Nor, if the computer was ready to give you an output, would you be able to
understand it if it came as electrical signals. So the computer has a machine code
inside it (put there by the manufacturer) to enable it to understand a programming
code that you can understand. Machine codes are called low-level programming
languages and correspond directly with the patterns of electrical signals in the
computer. For obvious reasons, this program is called an interpreter. This course
teaches you BASIC which is a high-level programming language. You will then be
able to use BASIC to program any computer that contains a BASIC interpreter.
BASIC, by the way, stands for Beginners' All-purpose Symbolic Instruction Code.

You may find it useful to note the sequence of events that is taking place when you
program a computer.

1 You have a problem.
2 You break down the problem into steps which can be put into BASIC.
3 You write the program in BASIC.
4 You sit at a keyboard and enter your program into the computer.
5 The computer interprets your BASIC instructions into its own code and

processes them.
6 The computer prints out the results in the form you specified in the program.

And that is all you need to know about what a computer is. From now on we will
assume that all you want to do is to give the computer problems and to get back
results so now let's move on to a simple problem which we might want to give to a
computer.

1.4 A simple problem
The main activity of programming is breaking down the solution to a problem into
simple steps which can be represented by BASIC programming statements.

Imagine that you are playing the part of a computer with a young child. The child
might give you two numbers and ask you to tell him their sum. After a short time the
child will naturally try you out with large numbers which you cannot add in your
head, so you will have to have a paper and pencil at hand. The following could be a
typical dialogue.

CHILD: 'Start'
YOU: 'Give me the first number'
CHILD'12157'
(You write this number on a piece of paper)
YOU: 'Give me the second number'
CHILD: 7896'
(You write the second number on the piece of paper)
(You perform the addition sum)
YOU: '20053'

10

We could describe the computer's part in this process more formally in the
following way:

1 Input the first number
2 Input the second number
3 Add the two numbers
4 Output the result

Figure 4 Computer processes In adding two numbers

By this simple analogy we have arrived at a strategy for solving this problem.
Broadly speaking, phases 1 and 2 would be concerned with entering numbers into
the computer, phase 3 would involve a process in the central processing unit, while
phase 4 would involve the output device.

Now, although we have not taught you any BASIC programming yet, we are going
to show you what the problem solving sequence would look like when written in
BASIC.

Example 1
Write a BASIC program to enter two numbers into the computer and to output their
sum.

Solution
We have already worked out an intuitive procedure to solve this problem in Figure
4. A program in BASIC would have the following form.*

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
5 0 E N D + Program 1

We do not wish to concentrate on the details of the program at this stage, but hope
that you can see, without stretching the imagination too far, how the strategy from
Figure 4 has been changed into a program. A program then is a 'sequence of
instructions composed for solving a given problem by computer'.

SAQ 1
We now come to the first point in the course at which we want you to check your
progress through trying this Self-Assessment Question (SAQ). The SAQs are
designed to help you find out whether or not you have understood the immediately
preceding sections of the course. In each case, the answer to an SAQ appears at
the end of the Unit in which the SAQ occurs. If you get all the answers right, just
move on to the next section. If you get any wrong, check back to see where you
have gone wrong.

f END is not needed on all computers, and it may be omitted from programs on the
Commodore 64 computer.

11

Select those phrases from list B which complete correctly the phrases given in A.

A
1 The C P U . . .
2 The main characteristics of a computer system are . . .
3 A machine code is . . .
4 A machine code is an example of a . . . language.
5 BASIC is an example of a . . . language.
6 A BASIC interpreter...
7 A computer program is . . .

B
(a) low-level
(b) high-level
(c) . . . holds data and instructions, controls its own processing, and controls the

operation of input and output devices.
(d) . . . a series of instructions or procedural steps for the solution of a specific

problem.
(e) . . . that it is capable of storing large quantities of data, is able to process this

data very rapidly and lastly that it is able to store a program which controls its
own operation.

(f) . . . translates code written in BASIC into machine code.
(g) . . . a code which corresponds directly with the electrical patterns within a

computer.

1.5 Statement numbers
Let's have a closer look at Program 1 again:
10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END Program 1 (from p11)

We have said that a program is a sequence of instructions. In the program above
each line is an instruction. Thus:

10 INPUT FIRST
is the first instruction of the program, and

50 END

is the last. Instructions in a programming language are sometimes called state
ments. We will use the two words synonymously.

Entering statements
Until later in the course, we shall restrict ourselves to one instruction per line. When
sitting at the keyboard of your Commodore 64 micro, the actual process of entering a
statement is completed only after the RETURN key has been pressed. So what
happens is: You type 10 INPUT FIRSTthen press RETURN. Then type 20 INPUT
SEC and press RETURN etc . . .

12

You see on the screen 10 INPUT FIRST
20 INPUT SEC
30

You will have noticed that each line begins with a number. These must be whole
numbers in the range 1-9999, and they determine the order in which the
instructions are processed (executed), i.e. they define the 'sequence' of the
instructions. The execution of the instructions starts with the line of the lowest
number, and continues in the sense of increasing numbers until instructed
otherwise, or until the end of the program is reached. (More about 'until instructed
otherwise' and 'ending', later.)

Why then, you may ask, was the program not written as follows?

1 INPUT FIRST
2 INPUT SEC
3 LET SUM = FIRST+SEC
4 PRINT SUM
5 END Program 2

Why not indeed! The program would have done the job perfectly well! However, as
you will soon find out when writing programs you need a certain amount of
flexibility. In particular you need the opportunity to slip into the program a
statement which you have overlooked, or one which will allow you to make an
important modification. Numbering our lines 10,20,30 and 40 leaves 9 empty lines
between statements which may be used to correct or modify the program. When
running, the processing proceeds to the next highest line number of the program,
so the gap of 9 unused line numbers does not slow down the program execution in
any way.

SAQ 2
Look at the line numbers in the following programs and decide which programs
would produce a correct sum of FIRST and SEC.

(a) 11 INPUT FIRST
59 INPUT SEC
93 LET SUM = FIRST+SEC
401 PRINT SUM
500 END

(b) 23 INPUT FIRST
32 INPUT SEC
49 LET SUM = FIRST+SEC
40 PRINT SUM
50 END

(c) 10 INPUT FIRST
20 INPUT SEC
15 LET SUM = FIRST+SEC
40 PRINT SUM
50 END

(d) 100 INPUT FIRST

13

200 INPUT SEC
110 LETSUM = FIRST+SEC
190 PRINT SUM
220 END

(e) 100 INPUT FIRST
50 INPUT SEC
407 LET SUM = FIRST+SEC
902 PRINT SUM
1000 END

Programs 3—7

1.6 Executions and commands
The command RUN
Execution? No, it's not the end but the beginning! Let's get on and run our first
program before we get tired of it!

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END D . ,.

Program 1 (frompH)
And what happens? Nothing. This is because the computer is waiting for us to give
instructions to the program as a whole. If you want to execute this program, you
must give it the command RUN. This you put on a new line as follows:

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END
R U N Program 1 (from p11)

(Don't worry about RUN not having a line number - we'll explain that shortly.)

Then press tne RETURN key. You will see ? on the screen which is the computer's
way of asking for data. Give it your first number; then press RETURN; another ?
appears because the computer needs your second number. Give it the second
numberand press RETURN. The answer should now appear. Here isour version of
this run:

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END
RUN
? 12157

14

? 7896
20053

READY

Figure 5 A complete run of a program

What we are doing therefore is to distinguish between the entry of a program and
its execution. Let's go back to the dialogue between you and the child playing
computers. A very explicit infant may have said 'I am going to give you two
numbers, I want you to write them down, add them together, and then tell me their
sum'. At this point you know exactly what to do, but you haven't yet done anything.
You've got the instructions though, you've been programmed. The dialogue may
proceed thus:

CHILD: 'Start'
YOU: 'Give me the first number'.
CHILD:'12157'
YOU: 'Give me the second number'.
CHILD: 7896'
YOU: '20053'

Now these instructions have been carried out (run). A program then is just a set of
instructions for the computer. When the program is run or executed these
instructions are carried out.

Other commands: LIST, SAVE, LOAD
RUN is not the only command which you can give to a program as a whole. You
can also use LIST, SAVE and LOAD as follows.

LIST
For example, you may spend quite a lot of time typing a program into your machine
and during that process make several corrections. You may then wish to see a fair
copy of the program as a whole on the screen. If you type the word LIST, a
complete copy of the program in line number order will appear on the screen.

SAVE
Having developed a program to a satisfactory stage you may wish to take a copy of it
on to tape or disc; the word SAVE will do this for you. (Your computer will, of course,
have to be connected to a back-up store such as The C2N data recorder.)

LOAD
Later you may wish to use one of your stored programs; the command LOAD will
enter the program from your back-up store back into your computer.

Words like LIST. RUN, SAVE and LOAD which allow us to handle the program as
a single entity are called commands and are provided by the BASIC interpreter. A
command occupies a line on its own and generally does not have a line number,
e.g. the word RUN after line 50 causes the program to start to execute, and is
equivalent to the child's command 'start' in the dialogue above. Commands will be
discussed in greater detail in a later unit, but the four that we have already looked
at will allow us to get by for a start.

15

Computer response
After a command has been successfully carried out the interpreter informs the
user of this fact by writing a symbol on the screen, e.g.

> —

(the underline will flash on and off)

1.7 Execution and data
You will have realised that we have written a program which will add any two
numbers in a quite general way, for it is immaterial to the program what numbers
we enter when we receive prompts ? on the screen. As the computer executes the
program it must be able to request that we input actual numbers for its particular
task, i.e. it must have the facility to demand specific data to do the job in hand. You
need to be able to distinguish clearly between the program, as a set of more or less
general instructions, and the data which are the actual numbers which must be
input when the program is executing, in order to solve a particular problem. You
can, of course, run your program repeatedly with many pairs of numbers, as you
will see later.

Another way of looking at these instructions is to visualize the situation as an
umpire gathers the runners at the start of a race in order to give them certain
instructions: 'Go down the right-hand side of the field to the furthest corner, over
the stile and turn left down the lane . . . ' The umpire's instructions are analogous to
a program. If the runners understand what he is saying then they know what to do;
but they are still at the starting line. They haven't actually started. This is analogous
to the program having been entered into the machine. Then the umpire says 'Go!'
and the race starts. This is analogous to the computer starting to execute the
program. Let's extend the analogy and consider the cross-country race as a
novelty race. Imagine that the umpire did not give enough instructions for the
runners to complete the course but he said something like 'When you get to the
bottom of the lane you will find further instructions pinned to the oak t ree. . . ' These
instructions should be sufficient to guide the runners over the next part of the
course, i.e. on to the next clue, and so on until the end of the race. These clues are
analogous to giving the program more data during the course of its execution. This
analogy may help you to see the important distinction between entering a program
into the machine, executing the program, and then inputting data during the course
of its execution.

SAQ 3
Below is a print out from a computer. It contains keywords, commands, responses
from the system and items of data. It also contains sections that are concerned
with entry, execution and listing. Identify as many of these items as possible as
follows:

16

Mark keywords with K
Mark commands with C
Mark system responses with R
Mark data items with D
Bracket lines concerned with entry
Bracket lines concerned with execution
Bracket lines concerned with list

See 1.19 (p.19) to find out why we cannot use SECOND as a variable name.

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END
RUN
? - 3 7
? - 4 6
- 8 3
READY
LIST

10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END

READY

RUN
7 12.83
? 48.95

61.78

Program 1 (fromp11)

1.8 INPUT, PRINT and LET
You have seen that a program is a sequence of statements, and we have given
you an intuitive idea of how each statement works. You may also have noticed that
each of the three types of statement used so far (INPUT, LET and PRINT)
corresponds to one of the three main devices which comprise the computer
system (input, central processor and output devices). We will now look at each
statement in more detail.

INPUT
The word INPUT is a signal to the computer that during execution, an item of data
must be entered at the input device. We saw this happen when we ran our first

17

program: after the ? we entered 12157, pressed RETURN to complete the input
procedure and then found ourselves confronted by another ? requesting the input
of the next number. What, then, happened to 12157, the first item of data? The
answer is that it has been stored for later use in the program's execution in the
storage location labelled FIRST. The word FIRST has two main functions in the
program, (a) when written and later referred to by the programmer it reminds him
that at this point in the program the first item of data should be input, and (b) when
written in the statement 10 INPUT FIRST the word FIRST is the name or label of a
location in the computer's memory. So 10 INPUT FIRST means enter a number at
the input device and store it in the location labelled FIRST .

PRINT
The statement 40 PRINT SUM has almost the reverse effect to statements 10 and
20, in that it allows us to output information from the machine. It is a signal to the
machine to take a copy of the contents of the store location labelled SUM and pass
it to the output device which for most users of this course will be a television
screen. Notice that PRINT will literally result in a printed output if a printer is
attached to your microcomputer but you still use the command PRINT when your
microcomputer is attached to a television set for its output device.

LET
20 LET SUM = FIRST+SEC is an example of an assignment statement. It is in this
type of statement that the processing takes place. As you can see, it is a mixture of
store names (SUM, FIRST, SEC) and arithmetic operators (= and +). If you read it
forwards, it says.

Let the store location SUM be made equal to the contents of the location FIRST
added to the contents of the location named SEC.

However, like many mathematical expressions, it is often clearer when read from
right to left of the '= ' as follows

Add the contents of the location FIRST to the contents of the location SEC and
store the result in the location labelled SUM.

Generally the assignment statement has the form:
LET store location name = expression.

This means find the value of the expression of the right-hand side of the '= ' and
store this value in the store location named on the left-hand side of the '= ' .

The tricky point about LET . . . = . . . is that it is easily confused with . . . = . . . in
mathematical equations. An example will demonstrate the difference. Suppose
you have stored a number in location L and you want to make the number in that
store 5 greater than it now is. You write:

LET L = L+5
Now obviously this doesn't mean:

L = L+5

since there is no value for L which could make this true. What it does mean is that
the computer has added 5 to the number that is in store location L.

18

1.9 Store locations
As we have already said, one of the main characteristics of a computer system is
its capacity for storing large quantities of data. We must now consider how the
BASIC language allows us to allocate store location names. If you look at our first
program and recall that a computer is capable of only doing one thing at a time, it is
fairly obvious that when we reach line 20 and wish to input our second number, the
number that we entered in line 10 must have been stored somewhere! In this case
the first number was stored in the location labelled FIRST. We can think of the
storage locations as being like a set of pigeon-holes where we distinguish clearly
between the label or address or name on each pigeon-hole and the contents of the
hole.

Figure 6 A model of the store locations in a very small computer

You will see that in our model of possible store locations we have used the labels A, B,
C.. . On the other hand, in the program we have been studying we have used words of
up to five characters to label our stores, e.g. FIRST, SEC. This brings us to our first
major point of difference between the interpreters for the various microcomputers
now available. Some BASIC interpreters allow a much wider range of storage names
than others. Some machines limit your variable name to a few characters. Others
allow longer variable names or even names of unrestricted length. The Commodore
64 computer allows variable names of unlimited length, but variable names may
neither be nor include BASIC keywords. We could not use SECOND as a variable
name in Program 1 because it includes ON, a BASIC keyword, only the first two
characters of a variable name are significant, for example, SUM, SUN and SUB are
all treated as the same variable name because they start with the same first two
letters SU.

Choosing store location names
Clearly it makes life a lot easier for the programmer if he chooses store location
names which remind him of what he is storing. That is why we chose FIRST, SEC and
SUM. We could have used A, B and S so that our program would have been:

19

10 INPUT A
20 INPUT B
30 LETS = A+B
40 PRINTS
50 END

Program 9

EH When you see this symbol it means we suggest you try this program on your own
microcomputer if you have one. To do this, key in the lines, press RETURN and
then press RUN. Your computer will ask you for a number. Give it one and press
RETURN. It then asks you for the second number. Give it the second number,
press RETURN and the sum will appear on your screen.
If we had done this, then after inputting 12157 and 7896, the store locations would
be:

Figure 7 State of the store locations after Program 9.

The common system of location names
Since long store location names are not always available on many microcomputers,
we shall use the system of location names which works on practically every
microcomputer until we come to lists in a later unit. The system we shall use labels a
location by a cpaital letter followed by a digit. This gives us 286 possible locations as
shown in Figure 8.

The Commodore 64 requires the first character of a store location name to be in the
range A to Z and the second and subsequent characters in the range A to Z or 0 to 9.

20

Figure 8 286 possible store locations

1.10 Copying and overwriting
BASIC statements can have two different effects on the contents of a store
location. Or rather a statement can either have no effect on the contents of the loca
tion or it can change the contents. This is illustrated below.

Effect of copying
Suppose we have the number 53 stored in location A. What happens after
LET B= A and after PRINT A? In each case A still stores the number 53 after the
statement has been executed:

Before Statement After
executed

STORE STORE

53
A

D

53
B

E

C

F

53
A

D

B

E

C

F

21

Before

STORE

53
A

D

B

E

C

F

Statement
executed

PRINT A

After Monitor

STORE

53
A

D

B

E

C

F

53

In each case the copying statements leave the original store location unchanged.
It's just like getting a statement of your bank account: the piece of paper copies
your account but your account still has your money in it!

Effect of overwriting
Suppose now that we still have the number 53 stored in location A but this time
execute the statement LET A = A+7. The result is:

STORE

Before

53
A

D

B

E

C

F

Statement
executed

LET A = A+7

STORE

After

60
A

D

B

E

C

F

The statement LET A = A+7 overwrites the contents of A. That is, the original
contents disappear and are replaced by the new contents, which are in this case,
60. Of course we could have made the new contents of A to be 60 in many ways,
e.g. by, say: LET A = 60.

SAQ 4
Which of the following are valid store location names for numbers, according to the
rules given on pages 20-21.

(a)
(b)
(0
(d)
W
(f)
(9)
(h)
(i)
U)

N3
3N
W10
B#
QJ
M
M5
M-5
M+5
UO

Give reasons for discarding those names which you reject.

22

1.11 Arithmetic operators
When you do arithmetic you use four main operators: +, - , x and -K BASIC has
the same operators, although two are printed differently:

Every day symbol Meaning BASIC symbol
+ add +
- subtract
x multiply *
•*• divide /

SAQ5
Write the following expressions using BASIC symbols for the arithmetic operators.
(Where the expressions use brackets, leave the brackets in your answers.)

(a) 3+7
(b) 3x7
(c) 8+4
(d) 5x(2+8)

(e) 30+(3+2)
(f) 24-(4x3)
(g) 5 x 6 x 7
(h) 81-(27x2)

SAQ 6
If A has the value of 2, B has the value of 5 and C has the value of 10, calculate the
values of the following:

(a) A+B+C
(b) A * B
(c) A * B * C
(d) C/A

(e) C/(B-A)
(f) A * A
(g) (B*C)/(B-A)
(h) (C-B)*(C+B)

The arithmetic is actually done (executed) in BASIC through assignment state
ments (LET statements) which tell the computer's arithmetic unit (part of the
central processor) what to do. We can illustrate this with the following computer
model.

Effect of LET A = B-C STORE AT START

LETA = B-C

A

D

15
B

E

10

c

F

Remember to read this from the right to the left of the "=" sign. It says take the
number in location B, subtract from it the number in location C and put the result in
location A. So the result is:

Result of LET A = B-C

Notice that the contents of B and C
are unchanged.

STORE AT FINISH

5
A

D

15
B

E

10

c

F

23

Effect of LET A = B*C

STORE AT START STORE AT FINISH

A

D

15
B

E

10
c

F

150
A

D

15
B

E

10
C

F

SAQ 7
Fill in the values in the store locations A, B and C after each line has been
executed in these programs.

1. Program

10 LET A = 1 2

20 LETB = 5

30 LETC = A*(A+B)

40 LETA = A+10

2. Program

10 LET A = 20

20 LETB = A * 3

30 LET C = A/4

40 LETA = B+C

What you have just done isn't (we hope) difficult and it doesn't get any more
difficult when we move on fo more complicated store location names. We have to
make the names more complicated because A, B, C . . . only gives us 26 stores
and, as we said on page 21, we are going to use location names A, A0, A1, etc. So,

LETP4 = Q1*R1

is no different from LET A = B*C. P4, Q1 and R1 are simply store location names.
P4 is one name, just as XYZ 823A is one car number.

We are now ready to use the arithmetic capacity of a computer.

Store location values

A B C

• • •
• • •
n a n
n a n
Store location values

A B C

• • •
• • •
• • • • • •

24

Example 2
Write a BASIC program to enter two numbers into the computer and then output
their sum, difference, product and quotient.

Solution
This may look complicated but we've really solved this already. We had a program
(Program 9) to output the sum of two numbers, so to output their difference,
product and quotient, we only need to change the arithmetic operator in line 30
which reads
30 LET SUM = FIRST+SEC

First, however, we will rewrite the program using the shorter store location names:
Original version
10 INPUT FIRST
20 INPUT SEC
30 LET SUM = FIRST+SEC
40 PRINT SUM
50 END

New version
10 INPUT N1
20 INPUT N2
30 LETS = N1+N2
40 PRINTS
50 END

Program 10

Now what we need is three extra versions of the new version, each with a different
line 30:

10 INPUT N1
20 INPUT N2
30 LETS = N1+N2
40 PRINTS

i i

n

- D =
»D

i t

i t

N1-N2

11 11

» »
- P = N1*N2
•-P

i i i i

it it

» Q = N1/N2
" Q

(Using D for the location for difference, P for the location for product and Q for the
location for quotient.)

Do we need to write four programs? Fortunately no, because when we copy the
numbers from locations N1 and N2, we don't destroy these contents so we can use
them four times over in one program:

• original program for sum

10 INPUT N1
20 INPUT N2
30 LETS = N1+N2
40 PRINTS
50 LETD = N1-N2
60 PRINT D
70 LETP = N1*N2
80 PRINT P
90 LETQ=N1/N2
100 PRINTQ
110 END

• extra lines for difference

• extra lines for product

• extra lines for quotient

Program 11 Sum, difference, product and quotient of two numbers

25

E Key Program 11 into your microcomputer. Then key RUN and input two
numbers. A typical print out should look like:

RUN
? 57.82
719.11

76.93
38.71
1104.9402
3.02564103

READY.

1.12 Numerical constants
Earlier in this unit we saw that our first BASIC program was capable of
manipulating whole, decimal and negative numbers. At this stage we won't go into
detail on how numbers are represented in BASIC, but just show you that we can
use numbers directly in assignment statements.

The statement LET P = 427*R means create the number 427, multiply it by the
number found in store location R and then store the result in location P. (Don't be
put off by thinking that computers only handle binary numbers. The computer's
interpreter enables us to input ordinary decimal numbers.)

Similarly, the statement LET Y4 = 3.142+Z8 creates the number 3.142 and adds it
to the contents of location Z8, and then stores the sum in location Y4.

And the statement LET A = -48.93/B creates the number -48.93 and divides it by
the number found in location B and then stores the result of this calculation in
location A.

Exercise preamble
Progress in metrication has been slow and life still abounds with irritating little
conversions which occasionally tease us, e.g. pounds weight to kilogram yards to
metres, pints to litres,, a knitting pattern with balls of wool in ounces which must be
bought in grams etc If we go on holiday we mentally convert kilometres into
miles, and pounds sterling into other currency. Most of us still think of body and
weather temperatures in terms of degrees Fahrenheit rather than Centigrade or
Celsius. We can imagine the home microcomputer of the future having a general
conversion program in it which will do all these diverse coversions for us. The next
two exercises are on writing programs to do conversions. You only need the ideas
introduced in the earlier programs in this Unit.

Exercise 1
Write programs in BASIC to carry out each of the following conversions:
(a) Input a number representing a length in inches, and output this length in

centimetres, given that one inch is equivalent to 2.54 centimetres.
(b) Input a number representing a weight in ounces, and output that weight in

grams given that one ounce is equivalent to 28.375 grama
(Answers to Exercises appear at the end of each unit with the SAQ answers.)

26

Exercise 2
Any conversion involves 'conversion factor x number to be converted' so it is
possible to write a general conversion program where you input two numbers each
time you use it: the conversion factor and the number to be converted. Write a
general conversion program which will do this.

1.13 The remark statement: REM
The statement REM is the remark statement. It allows us to give a title to a
program or make some other meaningful remark about the program. For example,
within the body of a program it helps us identify what the program or section of the
program does. The REM statement is not executed by the computer and is there
purely for the benefit of either the programmer or user, i.e. when the computer
sees REM at the beginning of a line it ignores everything on that line. The next
program is concerned with calculating percentages and so as a title to the program
our first statement will be 10 REM ••PERCENTAGE CALCULATION**. (The
* * have no function other than to emphasise the title.)

Example 3
Write a BASIC program to input two numbers and output the second as a
percentage of the first.
Reminder Percentage = (second-*-first)x100.

Solution
10 REM**PERCENTAGE CALCULATION** (program title using

REM statement)
20 INPUTF
30 INPUTS
40 LETP = (S/F)*100
50 PRINT P
60 END

Program 12 Percentage calculation
Typical runs
RUN
? 57
? 74

129.824561

READY.
RUN
?74
?57
77.0270271

READY.
IS Program 12.

It is usually better to clear the screen of any unwanted information when running a
program. We can do this with a line such as

15 PRINT CHR$(147)

Character 147 in the set of characters stored in the computer's memory means 'clear
the screen'. See end of Unit 3 for more details of the character set. Where
approproate we shall use this instruction at the start, of all programs.

27

1.14 More complicated arithmetic
We have reached the stage when we can use the computer like a simple four-
function calculating machine, but we will soon wish to do slightly more complicated
arithmetic. Generally BASIC allows us to set out equations in a familiar way. We
can use brackets, i.e. () to group together certain values, and when BASIC
evaluates an expression it deals with the values inside the brackets first. Next
come values involving multiplication or division and finally, addition and subtrac
tion.

This order of preference for performing arithmetic operations is discussed more
fully in a later unit, but you will soon see that this order just formalises the way we
naturally go about arithmetic calculations.
Let's show you what we mean.

Example 4
Write the following expressions in BASIC:

a
1. ab+c 2. a(b+c) 3. r ~

Solutions
1. Ai»rB+C

The order of precedence rules tell us that A*B will be evaluated first and the
C added. If you were worried about this you could write (A*B)+C but the
brackets aren't essential here.

2. A*(B+C)
Notice that, just as a bracket is needed in a(b+c) so it is needed in A*(B+C).

3. A/(B+C)
Now try some for yourself.
SAQ 8
Write the following as BASIC expressions:
1. abc

2 ib
c

3. ^
c

Exercise 3
Now that you have written the expressions in SAQ 8 as BASIC expressions, write a
program that will allow you to input three numbers (A, B and C) and print out the
values of the expressions in SAQ 8.

1.15 Literal printing
You have seen already that we can print out the values from store locations. You
will find as the course progresses that the PRINT function is very versatile. One
use of this statement is to print messages on the monitor screen which will be
helpful to the user when the program is running. These messages are usually
referred to as prompts. We have seen already that when an input statement is
encountered during the execution of a program, a ? appears on the screen to
remind us that an input is required. In even slightly complicated programs, a series

28

of question marks on the screen is confusing to the user since he may not know
which input value the question mark is prompting. Prompts generated by PRINT
statements are very useful in these circumstances.

It is very easy to get a computer to print a reminder or message on the screen. All
you need is a line such as:

20 PRINT "MESSAGE"

This simply prints

MESSAGE

on your screen.

In other words, whatever appears between quotes thus "" after the word PRINT
will be printed out exactly as it stands. Notice that, as in the case of the REM
statement, the computer doesn't execute the words in the quotes. Thus

20 PRINT "A+B"

results in

A+B

on your screen and the computer does not add the value in location A to the value
in location B.

The following example demonstrates the use of PRINT " " to remind the
programmer and user of what the program is doing.

Example 5
Write a BASIC program to convert a temperature value given in degrees C into
degrees F. g

Remember CF = ~x°C+32
5

Solution
10 REM ••CENTIGRADE TO FAHRENHEIT**
15 PRINT CHR$(147) print message precedes
17 PRINT "CONVERTING TEMPERATURES" input statement
20 PRINT "ENTER NEXT TEMP IN DEGREES C - so that the
30 INPUT C message is printed
40 LET F=(9/5)*C+32 / before ? appears
50 PRINT "THIS TEMP IN DEGREES F IS" /
60 PRINT F /
70 END /

/Program 13 Temperature conversion
Typical run /

RUN /
CONVERTING TEMPERATURES /
ENTER NEXT TEMP IN DEGREES C
?16
THIS TEMP IN DEGREES F IS

60.8
READY.

03 Program 13.
We can use PRINT" " to give an on-screen title to the program (as in line 17, here).

29

Assignment 1
NEC students: your solution to this assignment should be sent to your NEC tutor
for marking. If you own your own microcomputer, write your own assignment in the
BASIC for that computer and tell your tutor what make of microcomputer it is.
FlexiStudy students: complete the assignments according to the instructions given
to you by your FlexiStudy centre.

Remember to make good use of remark and literal print statements when writing
your programs.

1. If you deposit £D in an account paying P% rate of interest for one year, then
the yield at the end of the first year is given by the equation

Y = Dx 100
(a) Write a BASIC program to input values for D and P and to output the yield, Y.
(b) If the original deposit together with the accrued interest is left in the account
for a further year at the same rate of interest then the compound interest after the
second year will be given by the equation

C = (D+Y)x4
Extend your program for (a) to calculate and output this compound interest.

2. Consider the problem of estimating the cost of installing replacement
aluminium double glazed windows. The windows comprise 3 parts:
(a) a hardwood surround, (b) aluminium
frame and (c) glass. If the height of the
window is H metres and the width is W
metres, then the total lengths of both
hardwood and aluminium required are
given approximately by the expression
(2H+2W) metres; and the area of glass
required by the expression (HxW)
square metres.

glass unit
aluminium
wood

Figure 9

Write three separate BASIC programs which, on being given values for height and
width in metres, will output the cost of
(a) the hardwood surround if the wood costs £3 per metre;
(b) the aluminium surround if the aluminium costs £4 per metre;
(c) the glass unit if the glass unit costs £40 per square metre.

Now link these three into one program to estimate and output the total cost of
installation, if the labour cost is £50 per window.

30

Objectives of Unit 1
Now that you have completed this Unit, check that you are able to:
Write simple programs using:
Line numbers •
INPUT •
LET •
PRINT D
Store locations identified by a single letter or a letter followed by a single digit D
Copying from one location to another D
Overwriting D
+,-,•,/ •
() •
Numerical constants •
REM •
PRINT " " •

Know when to use:
RET •
RUN •

Know how to respond to:
READY. •
? D

Answers to SAQ's and Exercises
SAQ 1
A
1
2
3
4
5
6
7

B
(c)
(e)
(g)
(a)
(b)
(f)
(d)

SAQ 2
(a) and (e) would run as Program 1.
(b) is asked to print SUM before SUM has been calculated.
(c) and (d) are asked to calculate SUM before SECOND has been inputted.

31

? - 4 6 -
- 8 3 —

-D
-R J

execution

R-
c-

R-
C-
R-
R-

R-
C-
R-
R-

R-

READY
•LIST (K)

10 I N P U T ^ S T
20 INPUT.8EC
30 LET SUM = FIRST+SEC
40 PRINT SUM

-50 END

READY
•RUN
? 12.83—

• ? 48.95
61.78 —

listing

-D
-D
-R

READY
RUN
? 17.0009 —
? -29.2629-
-12.362

-D
-D
-R

execution

execution

READY

(Have you noticed that this program has coped with negative and decimal
fractional numbers?)

SAQ4
(a) OK
(b)
(c)
(d)
(e)
(0
(g)
(h)
(i)
(j)

No, begins with a digit instead of a letter
Not allowed on all systems. (10 is two digits, not 1 as in, say, W8.) OK on CBM 64.
NO, # is not an acceptable symbol in a variable name.
No, uses two letters. (This will, of course, wolk on some machines.) OK on CBM 64.
OK
OK
No,
No,
OK

'—' is not an acceptable symbol.
+ ' is not an acceptable symbol.

SAQ 5
(a) 3+7 (b)
(f) 24- (4*3)

SAQ 6
(a) 17 (b)
(0 4 (g)

SAQ 7
1.

3*7 (c) 8/4 (d) 5*(2+8) (e) 30/(3+2)
(g) 5 * 6 * 7 (h) 81-(27*2)

12

12

10 (c) 100 (d)
50/3 or 16% or 16.66..

2.

(e) 10/3 or 31/3 or 3.33
(h) 75

20

I 20 | rib"

32

DEDJ
| 22 | | 5 |

204

204

20 60

65 60

Exercise 1
(a) Program 14

10 INPUT L1
20 LET L2 = 2.54*L1
30 PRINT L2
40 END

S3 Program 14.

Typical runs

RUN
? 12
30.48

READY
RUN
? 36
91.44

READY

• first use

second use

(b) Program 15

10 INPUT W1
20 LETW2 = W1 •28.375
30 PRINT W2
40 END

EH Program 15

Exercise 2
Program 16
10 INPUT V
20 INPUTF
30 LETN = F*V
40 PRINT N
50 END

Typical runs

RUN
? 10
283.75

READY
RUN
? 50

1418.75 J

READY
RUN
? 16
454

READY

Typical runs

RUN
? 16
? 28.375
454

[0 Program 16

READY
RUN
? 36
?2.54
91.44

READY

•first use

• second use

third use

use for ounces
to grams

use for inches
to cms.

33

SAQ 8
1. A*B*C
2. A*B/C [(A*B)/C is also correct]
3. (A+B)/C

4 REM ••ARITHMETIC PROGRAM**
6 PRINT CHR$(147)
8 PRINT "THREE NUMBER ARITHMETIC"
10 INPUT A
20 INPUT B
30 INPUT C
40 LET R=A*B*C
50 PRINT R
60 LET R=(A*B)/C
70 PRINT R
80 LET R=(A+B)/C
90 PRINT R
100 END

calculates first expression and prints it out

calculates second expression and prints it out

calculates third expression and prints it out

Notice that we can use R as the location for all three answers because we copy
(print out) each answer in turn before we overwrite with the next answer.

Typical runs

RUN
THREE NUMBER ARITHMETIC
? 13
? - 2 7
?55.2
-19375.2
-6.35869565
-0.253623188

READY.

B Program 17

RUN
THREE NUMBER ARITHMETIC
?13
?13
?13

2197
13
2

READY.

34

UNIT 2
Making decisions

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Introduction

PRINT

Repetitions and GOTO

Programming style

IF . . . THEN . . .

Inequalities

Flowcharts

Counting

Comparisons

Assignment 2

Objectives of Unit 2

Answers to SAQ's and Exercises

36

36

38

40

41

42

45

48

53

54

54

55

35

2.1 Introduction

The programs which we considered in Unit 1 were quite straightforward. They
started their processing at the statement with the lowest number and continued in
line number order until execution finished at the line with the highest line number.
One thing that computers are very good at is lots of repetitive calculations; another
is their ability to make decisions. Both of these features involve changing the
sequence in which a program is executed. This Unit will introduce you to some of
the statements which enable you to write programs of this type. But first we are
going to introduce you to a new type of PRINT statement.

2.2 PRINT. . . ,
In Unit 1 we wrote a program (Example 3) to output one number as a percentage of
another. On the screen, the calculation and result appeared in the format:

RUN
? 57
? 74

129.824561

Obviously it would be better if the answer included the word Percentage so that it
was clearer what was happening. This can easily be done by changing line 50 from
50 PRINT P to

50 PRINT "PERCENTAGE", P

The effect of this is:

Version of line 50
50 PRINT P

Result on screen
129.824561
PERCENTAGE 50 PRINT "PERCENTAGE", P

The statement PRINT "PERCENTAGE", P has four items in it.

129.824561

PRINT "PERCENTAGE" P
the variable whose value
will be printed
comma tells the computer
to print P at the 22nd
character position across
the page

" " identifies the word(s)
to appear on the screen

instructions to print
The computer prints the value of P so that the final (right most) digit is at Column 19,
and the number 'spreads' as many columns as are needed, to the left.
We can use PRINT . .., to improve the percentage program from Unit 1. At the
same time we can improve the appearance of the program by making use of the
literal print statement PRINT " " which we introduced in section 1.15.

36

Original program
10 REM**PERCENTAGE CALCULATION**.
20 INPUT F
30 INPUT S
40 LETP = (S/F)*100
50 PRINT P
60 END

New program
10 REM ^PERCENTAGE CALCULATION**
15 PRINT CHR$(147)
20 PRINT "CALCULATE PERCENTAGES"
30 PRINT "INPUT THE FIRST NUMBER"
40 INPUT F
50 PRINT "INPUT THE SECOND NUMBER"
60 INPUTS
70 LETP=(S/F)*100
80 PRINT "PERCENTAGE",P
90 END

Original program: typical run

RUN
? 80
? 37

46 25

New program: typical run

RUN
CALCULATE PERCENTAGES
INPUT THE FIRST NUMBER -
?80
INPUT THE SECOND NUMBER"
?37
PERCENTAGE 46.25 "

READY.

Program 1 Improved percentage program

effect of line 20

effect of line 40

effect of line 70

22nd position
-21st position reserved for'—' sign with numbers

Notice how the use of literal print at lines 20 and 40, together with PRINT " ",
makes the program much more friendly and understandable when in use.
E Program 1.

Commas in PRINT statements
You can use more commas in print statements to space our your results on the
screen. Commodore 64 BASIC has four print zones across the screen.

40 characters

Zone 1
Oto9

Zone 2
10 to 19

Zone 3
20 to 29

Zone 4
30 to 39

37

Each successive comma in the print line moves the item after it one zone to the
right. Thus

PRINT "ZONE 1", "ZONE 2", "ZONE 3"

results in

ZONE 1 ZONE 2 ZONE 3

and

PRINT "PERCENTAGE", P gave PERCENTAGE 46.25

whereas

PRINT "PERCENTAGE"; P would give PERCENTAGE 46.25

SAQ 1
What would appear on the screen as a result of these print lines?
(Assume A=48, B=8, C=6 in these questions.)

(a) PRINT "AREA"; A
(b) PRINT "LENGTH"; B, "WIDTH"; C, "AREA"; A
(C) PRINT "LENGTH", "WIDTH", "AREA"

PRINT B, C, A

Write PRINT lines in BASIC which would print on the screen the following words in
the zones shown:

Zone 1 Zone 2 Zone 3 Zone 4
(d) LENGTH 8 WIDTH 6
(e) LENGTH 8

WIDTH 6
AREA 48

(f) LENGTH WIDTH AREA

2.3 Repetitions and GOTO
Suppose now that you wanted to use Program 1 to calculate all the percentages
for a test taken by a whole class of pupils. You would have to use the program over
and over again, starting at RUN each time, e.g.:

READY
RUN
INPUT THE FIRST NUMBER
? 80
INPUT THE SECOND NUMBER

38

?42
PERCENTAGE 52.5

READY.
RUN
INPUT THE FIRST NUMBER
?80
INPUT THE SECOND NUMBER
? 19
PERCENTAGE 23.75

READY.

Figure 1 Repeated use of percentage program

It would be much easier if, after the computer has calculated the first percentage, it
went back to the beginning of its calculation and asked us for the next mark. This
we can make it do using the statement

GOTO line number

which redirects the program to whichever line number we insert. Here is the
percentage program re-written in this way:

10 REM ••MARKS INTO PERCENTAGE**
15 PRINT CHR$(147)
20 PRINT "PERCENTAGE PROGRAM"
30 PRINT "INPUT THE TOTAL POSSIBLE MARKS"
40 INPUT T
45 REM **START OF INPUT
50 PRINT "INPUT THE NEXT MARK"
60 INPUT M
70 LETP=(M/T)*100
80 PRINT "PERCENTAGE",P
90 GOTO 45

Program 2 Percentage program for repeated use

Notice the new lines 30 and 40 which ensure than we only have to enter the maximum
mark on the test once. The calculation is carried out in lines 60 to 80 and, in reading
line 90, the program returns to line 45 to ask us for another mark. A typical run is:

RUN
PERCENTAGE PROGRAM
INPUT THE TOTAL POSSIBLE MARKS
?80
INPUT THE NEXT MARK
?42
PERCENTAGE 52.5
INPUT THE NEXT MARK
?67
PERCENTAGE 83.75
INPUT THE NEXT MARK
? 19
PERCENTAGE 23.75

39

IN PUT THE NEXT MARK

PERCENTAGE 23.75
? 55
PERCENTAGE 68.75
INPUT THE NEXT MARK
?

The GOTO statement interrupts the program's normal execution in line number
order. As soon as the program reads GOTO, it unconditionally transfers control to the
line number in the statement. It is sometimes called an 'unconditional jump'.
M Program 2. (Press RUN STOP and RESTORE when you are fed up with it!)

SAQ 2
The following program squares numbers (i.e. multiplies a number by itself). Add a
GOTO line to allow you to use the program over and over again to square
successive numbers.

10 INPUTN
20 LET S = N*N
30 PRINTS

Program 3 Calculating squares
El key and run lines 5 to 40.

Add your extra line and run your new program.

2.4 Programming style
The use of the GOTO statement helped in some was. However, it still left some loose
ends, such as the ? at the end of the run. On reaching line 90 in Program 2 control is
always returned to line 45 which then generates the demand for further input; hence
the ?. The program then is locked in a perpetual loop from which it cannot escape.
The only way to stop this program is to break out of it which is accomplished by
pressing RUN STOP and RESTORE.

To have the execution of the program left as it were in mid-air is obviously bad
style, but we will sort this out in a little while. More importantly, we ought to warn
you of the dangers of using GOTO. As we have said, this statement allows you to
jump or branch to virtually any position in the program, which may at this stage
seem to be a useful facility. But because GOTO allows us to jump rather at random
to any point in the program, it is often used in such a way that the logical structure
of the solution is broken up by 'jumps of convenience' to other parts of the program
rather than by following the logical structure of the analysis of the problem. We will,
therefore, use the GOTO statement sparingly throughout this course. We shall
only use it when we think that the clarity of the program will be marred if it is not
used. We hope that you will also try and follow our example and use the GOTO
statement as little as possible. Though we will avoid its indiscriminate use, you will
find it more widely used in some text-books and computer magazines.

You will notice that we will nearly always make the GOTO statement refer back to a
REM line. This will allow us to put an explanation of the jump in the REM statement, to
make the jump in program logic more easy to understand when looking at the
program listing. Even more importantly, this will make amendments to program
listings simple; we will be able to add or remove lines, often without changing the
details of the GOTO statement.

4 0

2.5 IF . . . THEN . . .
The problem that we have just left is how to signal to the computer that we have
reached the end of the list of marks. When doing a manual calculation, we can see
that we have reached the end, or, if not, we would have carried out some sort of
counting procedure. In a little while we will see how the computer may be used to
count for us, but first we will introduce a means of signalling that the end of the list
has been reached.

One method is to end the list of numbers that you put in with a special number that
will 'stick out like a sore thumb', eg -9999. We would hardly expect a pupil to have
obtained -9999 marks in any test! This value is called a dummy or terminating
value, or sometimes a rogue value. We want the program to run as normal when
'proper' marks are inputted but to stop when the mark -9999 is inputted. In other
words, we want to be able to write a program with the following logical structure:

1. Start.
2. Input the total marks.
3. Input the next mark.
4. If this value is equal to -9999 then go to line 8 otherwise carry on to line 5.
5. Calculate the percentage.
6. Output the percentage.
7. Go to line 3.
8. Stop.

Figure 2 Stopping the percentage calculation

Fortunately there is a BASIC statement which will carry out the decision in line 4. It
is:

IF THEN line number

I — condition to be satisfied for program to jump to given line number

So all we need to do is to translate statement 4 in Figure 2 as

65 IF M = - 9 9 9 9 THEN 100

and insert it into Program 4. This statement means: if the value found in M is equal to
—9999, then go to line 100, otherwise continue executing the next statement after 65.
The statement in Figure 2 'otherwise carry on to line 5' is not translated into BASIC but
is implied: either jump out of sequence or carry on in sequence. We can do this very
conveniently by using some new line numbers between the ones we have been
using. (You will remember that we deliberately spread out statements 10,20,30.. .
so as to leave room to put extra statements in later.) This gives us:

10 REM **PERCENTAGES**
15 PRINT CHR$(147)
20 PRINT "PERCENTAGE PROGRAM"
30 PRINT "INPUT THE TOTAL MARKS"
40 INPUT T
45 REM ••START OF INPUT**
50 PRINT "INPUT THE NEXT MARK"
60 INPUT M
76 IF M = - 9 9 9 9 THEN 100
70 LETP=(M/T)*100

41

80 PRINT "PERCENTAGE",P
90 GOTO 45
100 END

Program 4 Percentage calculation with a terminating value

You use Program 4 in exactly the same way as Program 2 until you have put in the
last mark to be converted to a percentage. Then you enter the mark -9999 and the
program ends.

Here is a typical run.
RUN
PERCENTAGE PROGRAM
INPUT THE TOTAL NUMBER OF MARKS
?80
INPUT THE NEXT MARK
?43
PERCENTAGE 53.75
INPUT THE NEXT MARK
?29
PERCENTAGE 36.25
INPUT THE NEXT MARK
?62
PERCENTAGE 77.5
INPUT NEXT MARK
? —9999 terminating mark

READY.

K] Program 4 and use it to convert some marks of your own. Terminate your run
with -9999.

SAQ3
You ended SAQ 2 with the program:
5 REM **CALCULATING SQUARES**
10 INPUT N
20 LETS = N*N
30 PRINTS
35 GOTO 5
40 END
but like the percentage program, this never stops. Modify the program to include a
dummy value for terminating the program.

2.6 Inequalities
It was helpful to be able to use the expression M = -9999 in the IF .. . THEN .. .
statement to determine whether or not the branch should occur. The statement
means if M = -9999 is true then branch, otherwise carry on. The = states a
relationship between M and -9999.

42

BASIC allows expressions to include relationships:

Relationship Example Meaning
> A>B the value in store location A

is greater than the value in
B

< X<Y the value in store location X
is less than the value in Y

True or false?
Consider the expression A<B. If A = 2 and B = 5 then A<B is true, because 2 is
less than 5. Consider the same expression with values A = 2 and B = 1. Now A<B
is false, because 2 is not less than I. Similarly if A = 2 and B = 2 then A<B is false,
for 2 is not less than 2. In writing programs we often find it useful to be able to know
whether a statement involving = or < or > will be true or false. This is called the
logical state of the assertion, e.g.

Assertion Logical state
3>2 True
7<7 False

You will probably find this easy enough for positive whole numbers but may be less
sure of what happens in other cases. If in doubt, remember the number line:

I I l I I I I 1 1 1 r-
- 5 - 4 - 3 - 2 -1 0 +1 +2 +3 +4 +5
Figure 3 The number line

If a number is found on this line to be to the left of a second number, then the first is
less than the second number; if to the right then the first is greater than the second.

Example 1
Test whether the following expressions are true or false for the given values of A
andB.

Values
A B

2 5
2 - 5

- 2 - 5
- 2 - 1

- 5 2
5 - 2

- 3 3

Expression

>
>

>
>

V

 V
 V

 V

CD
 C

D
 C

D
 C

D

A<B
A<B

A=B

Solution
To do this we work out the value of each expression using the values given and
then use the number line to decide whether or not the assertion is true or false for
those particular values. So the solution is:

43

Values

A

2
2

- 2
- 2

- 5
5

- 3

B

5
- 5
- 5
- 1

2
- 2

3

Assertion

Expression

m
 co m

 co
A

A

 A
 A

<

<
<

<

A<B
A<B

A=B

Its value

2> 5
2 > - 5

- 2 > - 5
- 2 > - 1

- 5 < 2
5 < - 2

- 3 = 3

Its logical state

F
T
T
F

hIL

F

F = false T = true

SAQ4
Complete the following table to determine whether the given expressions are true
or false for the values given.

Values

A

3
5

- 3
8
3
8

B

7
3
5
5
9

- 2

Assertion

Expression

m

C
D

 C
D

 CQ
 C

D
 CQ

A A

 A
 V

 V
 V

<

<
<

<
<

<

Its value Its logical state

We are now in a position to use relationships to allow control of a program to jump
to a new line when certain conditions are satisfied.

Example 2
In the following program segment after executing line 30, will control pass to line 40
or line 100?

10 L E T A = - 3
20 LET B = 2
30 IFA+B>0THEN 100
40

Program 5

Solution
- 3 + 2 > 0 is false, so the branch to 100 will not occur and control will just pass on to
line 40.

4 4

SAQ 5
In the following program segments after executing line 30, will control pass to line
40 or to line 100?

(a)

(b)

(c)

10
20
30
40

10
20
30
40

10
20
30

LET A = 7
LET B = - 8
IFA-B<0THEN 100

LET X = 3
LET Y =- - 3
|FX/Y= - 1 THEN 100

LETP= - 1
LET Q = 3
IFP+Q>QTHEN 100

(d)

(e)

10
15
20
30
40

10
20
30
40

LET M = 3
LET N = - 4
LET P = - 2
IFM-N<N-PTHEN 100

LET R = 1
LET S = - 2
IF R+S>-1 THEN 100

Programs 6-10

2.7 FLOWCHARTS
As we have said the principal task for a programmer is to find a suitable way of
expressing the solution strategy to solve a particular problem. At this stage we
must introduce you to what must be the ugliest word in computer jargon: algorithm.
This word is used to mean a general solution strategy, and is defined as a series of
instructions or procedural steps for the solution of a specific problem. You will
notice that in this case the computer is not mentioned. Apart from that, the
definition of program and algorithm are identical. A program then is an algorithm
written for a computer.

There are three basic ways of stating an algorithm:

(i) a description
(ii) BASIC coding
(iii) a flowchart

Flowcharts are a bit like blueprints and appeal to those of us who like to see events
displayed in pictorial, chart or cartoon form.

We display the different functions within an algorithm by using different shaped
boxes.

INPUT
AND
OUTPUT
FUNCTIONS

DECISIONS in

true
out

45

ASSIGNMENTS START/STOP

CZD
An - » - shows the sequence of the algorithm, and the boxes contain appropriate
scripts.

The first program from Unit 1 can be expressed in flowchart form as follows:

r start

l <

/ input
/ FIRST
/ number

1 '

/ input
/ SEC
/ number

' '

)

/

/

add FIRST
to SEC

and store in SUM

' r

/ output
/ SUM

' r

(stop

/

)

10

20

30

40

Figure 4 Flowchart of Program 1 from Unit 1

The descriptions of the functions in the boxes are in cryptic-English but could be
followed by someone who has no knowledge of BASIC. In that respect we say that
we try to keep these descriptions language independent. The numbers on the left-
hand side of the boxes refer to the statements in the descriptive algorithm in Figure
4 of Unit 1, and the numbers on the right-hand side of the boxes refer to the
statements in the BASIC program in Program 1 of Unit 1.

46

SAQ 6
Construct a flowchart for the percentage program (Program 1).

The decision box
You have seen how decisions are effected in BASIC using the IF .. . THEN .. .
statement. The logic is:

IF assertion is true THEN go to line X
otherwise (assertion is false) carry on to the next line

The basic idea of branching to line X or carrying on to the next is depicted in the
flowchart by two lines from a decision box. The decision of line 65 of Program 4:

65 IF M = -9999 THEN 100

could be depicted in language independent form

The assertion MARK = DUMMY may be expressed as a question

Flowchart style is up to you. The test of the effectiveness of a flowchart is whether
or not you can follow the flowchart easily some time after its composition! Or, if you
are trying to communicate your ideas to somebody else, whether they can follow
your flowchart easily.

47

A flowchart for Program 4 is given below.

Figure 5 Flowchart for percentage program

The numbers on the right-hand side of the flowchart boxes refer to the statement
numbers in the program. Statement 90 GOTO 45 is represented by a loop back
to box 30.

SAQ 7
Write a flowchart for the program you wrote in answer to SAQ 3.

Now that we have introduced the idea of flowcharts, we can use them to help plan
the structures of the programs that we are going to write.

2.8 Counting
As we have said, computers are good at carrying out lots of repetitive procedures.
If however we wish to control these activities rather than just start and stop them,

4 8

as we did in the last example, then we must use the computer to count the
repetitions for us. If we carry out a specified number of repetitions of an activity, we
start counting at the first activity, add one for each subsequent activity, until we
reach a predetermined limit. We can depict this procedure in flowchart form.

YES
—*—

start
the

counter

addl
to the

counter

The 'cloud' is not an official flowchart
shape, but used here is to denote
a more complicated routine
where details have already been specified.

NO

Figure 6 A counter in a flowchart

Notice that there are three parts to the counter:
(i) the procedure that sets the counter to its initial value;
(ii) the procedure for adding 1 to the counter each time the activity is completed;
(iii) the procedure for stopping the counter and leaving the activity when it has

been executed the required number of times.

Great care must be taken to ensure that we exit from such a repetitive loop at
exactly the point we wish to. As a warning, note that though this loop has counted
up to 10, the value of the location COUNT on leaving the loop will be 11. This is a
point which you would have to be very careful about if you wished to use the
number in COUNT later on in the program.

49

SAQ 8
How many numbers will be inputted with the flowcharts?

w

1

Yes

*

start J

i '

set counter
too

"

add 1 to
counter

l r

/ input /
/ number /

/ counter N.
\ <10? /

(b)
(start

V

set counter
too

"

/ input
/ NUMBER

"

add 1 to
counter

/ counter
\ S15?

>

/

i

Yes

Figure 7a

No

stop

" No

stop J
Figure 7b

SAQ 9
Make the following program read 5 numbers by completing the IF .. . THEN . . .
statement.
7 PRINT CHR$(147)
10 LETC=0
15 REM **READ NEXT NUMBER**
20 INPUTN
30 OF C=4 THEN 55
40 LET C=C+1
50 GOTO 15
55 REM **ALL DONE**
6 0 E N D Program 11
Example 3
Write a BASIC program to calculate and output the percentage marks for a group
of 5 pupils.

50

Solution
If we assume that the 'activity' in the cloud in the flowchart of Figure 6 was

input the mark

calculate the percentage

output the percentage

then we can display the algorithm for this solution in flowchart form.

f start J 10

input
TOTAL 30,40

COUNTER
to 1

YES

add 1
to

COUNTER

(stop j

50

60-140

145

i sCOUNTER\ 160

180

Figure 8 Flowchart for percentage calculation on 5 marks

51

This tells us the structure of the program that we need to write. The actual program
can now be written by modifying Program 4 to incorporate the counter. So the
required program is:

10 REM **PERCENTAGES**
20 REM **TOTAL MARKS**
25 PRINT CHR$(147)
30 PRINT "INPUT THE TOTAL MARKS"
40 INPUT T ______—— '
50 LET C-1 -—•
60 REM **START OF 'NEXT WEEK' LOOP**
70 PRINT "INPUT NEXT MARK"
80 INPUTM
120 REM **CALCULATION** /
130 LETP=(M/T)*100 /
140 PRINT "PERCENTAGE",P /
145 LET C=C+1 '
150 PRINT "LINE 150" ^ ^ - ~ ~ ~ " ~ "
152 PRINT "COUNT HERE =",C -""""^
160 IF C < = 5 THEN 60
170 REM **ALL DONE** " - — - _ _ ^
180 END

start the counter, 'initialisation'

add 1 to the counter,
'incrementation'

we've added this line to check
what is happening to the
counter at this point in the
program.

counting complete?

Program 12 Adding a counter to the percentage program

RUN
INPUT THE TOTAL MARKS
? 75
INPUT THE NEXT MARK
? 57
PERCENTAGE 76
LINE 75 COUNT HERE =
INPUT THE NEXT MARK
? 62
PERCENTAGE 82.6666667
LINE 75 COUNT HERE =
INPUT THE NEXT MARK
? 43
PERCENTAGE 57.3333333
LINE 75 COUNT HERE =
INPUT THE NEXT MARK
?39
PERCENTAGE 52
LINE 75 COUNT HERE =
INPUT THE NEXT MARK
? 70
PERCENTAGE 93.3333334
LINE 75 COUNT HERE = 6
READY.
>

Note: on emergence from the
loop the value of the counter
is 6.

H Program 12.

52

Exercise 1
In question 2 of Assignment 1, you wrote a program to calculate the cost of double
glazing a window. If you wanted to use the program to calculate the costs of
several windows, you would have to run the program again and again. This
exercise asks you to modify the program to cover more than one window.
Notice that the 'activity' for repetition will be:

input height and width of window

calculate cost of installation of
this window

output the cost

(a) Draw a flowchart algorithm to calculate and output the cost of each of six
windows.

(b) Code the algorithm in BASIC. B your answer and try a run for six windows on
your microcomputer.

(c) Extend your program to cope with any chosen number of windows, to be
specified at the beginning of the program.

Exercise 2
Extend the problem posed in question 1(b) of Assignment 1. The 'activity' for
repetition will be:

calculate the yield

output the year and its yield

calculate the deposit for the next
year

(a) Draw a flowchart algorithm to calculate and output the yield for each year up
to six years. Check your answer.

(b) Code this algorithm in BASIC in full detail. Check your answer. [0.
(c) Extend the algorithm to calculate and output the yield for each year up to any

chosen number of years, to be specified at the beginning of the program.
Check your answer. B

2.9 Comparisons
We have seen how the BASIC language allows us to compare two numbers. We
often wish to decide whether a particular value is larger or smaller than another.
This is a process which is fundamental to sorting items of data. Throughout the
course we will consider sorting methods in some detail, so let's start with the
simplest case.

Example 4
Devise an algorithm in descriptive form to input two numbers and to output the
larger of the two.

53

Comment
We have expressed our algorithms as flowcharts throughout most of this unit so
this time we will use the decriptive method introduced in Unit 1.

Solution
1. Start.
2. Input first number.
3. Input second number.
4. If first number > second number then go to 7 otherwise carry on to 5.
5. Output second number.
6. Go to 8.
7. Output first number.
8. Stop.

This is not the neatest solution, but is close to the layman's 'first attempt' at the
problem. We will seek neater solutions when we return to sorting methods in a later
unit.

Assignment 2
1. Devise a flowchart and write a BASIC program to input two numbers and
output the smaller of the two. Modify the program so that it will process (a) five
pairs of numbers, (b) any number of pairs of numbers.

2. Extend the 'mark - percentage' algorithm on page 41, and express it in the
form of flowchart and BASIC program:

(a) to accommodate a class of any size;
(b) to calculate the average percentage mark;
(c) to pick out the highest mark.

Objectives of Unit 2
Now that you have completed this Unit, check that you are able to:

Combine literal printing and variable print in PRINT statements •

Use , to space PRINT statements D

Use GOTO to repeat the use of a program •

Use a dummy value to terminate a program •

Use IF .. . THEN . . . •

Find the logical state of assertions including >, <, = •

Construct flowcharts •

Insert counters in flowcharts and programs to control the repeated use •
of part of a program or flowchart

5 4

Answers to SAQ's and Exercises
SAQ1
(a) AREA 48
(b) LENGTH 8 WIDTH 6 AREA 48
(c) LENGTH WIDTH AREA

8 6 48
(d) PRINT "LENGTH", B, "WIDTH", C
(e) PRINT "LENGTH", B

PRINT "WIDTH", C
PRINT "AREA", A

(f) PRINT "LENGTH", "WIDTH", ".", "AREA"

'—this prints a blank
SAQ2
All you need to do is add

35 GOTO 15

SAQ3
5 REM **CALCULATING SQUARES**
10 INPUT N
15 IF N = - 9 9 9 9 THEN 40
20 LET S = N*N
30 PRINTS
35 GOTO 5
40 REM *ALL DONE**
50 END Program 13

(Note that this terminating value is not quite as satisfactory as using -9999 as a
dummy mark. You can't have a mark of -9999, but you might perhaps want to
square -9999; this program would refuse to do it.)

SAQ 4

Values

A

3
5

- 3
8
3
8

B

7
3
5
5
9

- 2

Assertion

Expressions

co co m
 m

 m
 co

A

A
 A

 V

V

V

<
<

<
<

<
<

Its value

3>7
5>3

- 3 > 5
8<5
3<9
8 < - 2

Its logical state

F
T
F
F
T
F

If you got any of these wrong, look at them again on the number line

- A to the left of B means A<B true

B A A to the right of B means A>B true

55

SAQ 5

(a) 40 (b) 100 (c) 40
(d) 40 (e) 40

Your computer could help solve this problem for you. The statements

40 PRINT "40"
and 100 PRINT "100"

will cause the appropriate line to be output.

The following programs show how you could have solved (a) and (b) above.

Program to solve (a)
10 LETA = 7
20 LET B = - 8
30 I F A - B < 0 THEN 100
40 PRINT "40"
50 GOTO 999
100 PRINT "100"
999 END

Program to solve (b)
10 LETX = 3
20 LET Y = - 3
30 IFX/Y=-1 THEN 100
40 PRINT "40"
50 GOTO 999
100 PRINT "100"
999 END

Effect of running Program 14
RUN
40
READY.

Effect of running Program 15
RUN
100
READY.

Program 14

Program 15

56

SAQ 6 SAQ 7

(start)

'

/ input /
/ FIRST /
/ number /

' '

/ input /
/ SECOND /
/ number /

1 <

Divide SECOND by FIRST.
Multiply by 100. Store

result in PERCENTAGE.

' '

/ output /
/PERCENTAGE/

' 1

(stop J

SAQ 8

(a) 10

SAQ 9
30 IFC =

(b)

= 4 THEN 55

57

Kb)
10 REM ••COST OF DOUBLE GLAZING** Lines 20, 70 and 80 are
15 PRINT CHR$(147) the counter
20 LETC=1
25 REM **NEXT INPUT**
30 PRINT "ENTER HEIGHT IN METRES"
35 INPUT H
40 PRINT "ENTER WIDTH IN METRES"
45 INPUT W
50 LET K-14*(H+W)+40*H*W+50
60 PRINT "WINDOW.C,"COST",K
70 LETC=C+1
80 IFC<=6THEN25
90 END

Program 16
RUN
ENTER HEIGHT IN METRES
? 1.5
ENTER WIDTH IN METRES
? 2
WINDOW 1 COST
ENTER HEIGHT IN METRES
? 1.5
ENTER WIDTH IN METRES

219

58

? 3
WINDOW 2 COST
ENTER HEIGHT IN METRES
? 1.5
ENTER WIDTH IN METRES
? 4
WINDOW 3 COST
ENTER HEIGHT IN METRES
? 2.5
ENTER WIDTH IN METRES
? 2
WINDOW 4 COST

etc:

1(c)

10 REM **COST OF DOUBLE GLAZING**
15 PRINT CHR$(147)
17 PRINT "ENTER NUMBER OF WINDOWS"
18 INPUT N
20 LETC=1
25 REM **NEXT INPUT**
30 PRINT "ENTER HEIGHT IN METRES"
35 INPUT H
40 PRINT "ENTER WIDTH IN METRES"
45 INPUT W
50 LETK=14*(H+W)+40*H*W+50
60 PRINT "WINDOW",C,"COST",K
65 PRINT
70 LETC=C+1
80 IFC<=NTHEN25
90 END

If PRINT is entered as a program statement without anything else after it, the result is
that a blank line is printed on the screen. This serves to space the lines of output in
your display, and is useful because solid blocks of words are both unattractive and
more difficult to read.

293

367

313

Program 17

59

Exercise 2

2(a)

2 (b) Program

10 REM **COMPOUND INTEREST**
15 PRINT CHR$(147)
20 PRINT "COMPOUND INTEREST TABLE"
30 PRINT
40 PRINT "ENTER DEPOSIT £";
50 INPUT D
60 PRINT "ENTER PERCENTAGE INTEREST (%)";
70 INPUT P
80 PRINT
90 REM ••CALCULATE/PRINT TABLE**
100 LETC=1
110 REM **START OF CALC. LOOP**
120 LETY=(P*D)/100
130 PRINT "YEAR";C;" - - - YIELD - - - £";Y
140 LETD=D+Y
150 LETC=C+1
160 IFC<=6THEN110
170 END
6 0

Program 18

RUN

ENTER DEPOSIT £ ? 500
ENTER PERCENTAGE INTEREST % ? 12.5
YEAR 1 - - - YIELD - - - £62.5
YEAR 2 - - - YIELD - - - £70.3125
YEAR 3 YIELD - - - £79.1015625
YEAR 4 - - - YIELD - - - £88.9892578
YEAR 5 - - - YIELD - - - £100.112915
YEAR 6 - - - YIELD - - - £112.627029

10 REM **COMPOUND INTEREST**
15 PRINT CHR$(147)
20 PRINT "COMPOUND INTEREST TABLE"
30 PRINT
35 PRINT "ENTER NUMBER OF YEARS";
36 INPUT N
40 PRINT "ENTER DEPOSIT £";
50 INPUT D
60 PRINT "ENTER PERCENTAGE INTEREST (%)";
70 INPUT P
80 PRINT
90 REM ^CALCULATE/PRINT TABLE**
100 LETC=1
110 REM **START OF CALC. LOOP**
120 LETY=(P*D)/100
130 PRINT "YEAR";C;" - - - YIELD - - - £";Y
140 LETD=D+Y
150 LETC=C+1
160 IF C < = N THEN 110 Program 19
170 END

RUN
COMPOUND INTEREST TABLE
ENTER NUMBER OF YEARS ? 4
ENTER DEPOSIT £ ? 1000
ENTER PECENTAGE INTEREST (%) ? 13.75
YEAR1 - - - Y I E L D - - - £137.5
YEAR 2 - - - YIELD - - - £156.40625
YEAR 3 - - - YIELD - - - £177.912109
YEAR 4 - - - YIELD - - - £202.375024

61

62

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

UNIT 3
Strings

What a string?

More about strings

PRINT •

INPUT"...";...

Numbers and strings in PRINT statements

Standard letters

Patterns, files, READ with DATA

Sorting

Assignment 3

Objectives of Unit 3

Answers to SAQ's and Exercises

Appendix

64

66

66

69

70

73

75

81

84

84

85

90

63

3.1 What is a string?
The first two units were concerned with processing numbers. The layman often
sees the computer as a 'number cruncher' but this is certainly not the main function
of a computer, especially in a commercial environment. In this Unit we will see how
a computer may be used to manipulate characters using the BASIC language.

By character we mean the alphabet in capitals, the ten digits 0-9, punctuation
marks and some special characters as follows:

@, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, [, \ ,], f ,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, :, ;, < , =, >, ?, Space, !, „ #, $, %, &,., (,), +, • , - , /.

You have learnt to write programs using numbers (3, 57, -92 , etc.) and variables
(A, X, Z, etc.). BASIC also allows us to enter characters into the computer in
groups.

These groups of characters are referred to as strings. Some examples of strings
are:

CAT (a word)
MARGARET THATCHER (a name)
Z9)?27 (a mixture of characters)
ABC 123W (a car registration number)

i.e. a string can be any mixture of characters - even a space is a very important
character in a string!

As far as BASIC is concerned, a number is treated as a number when it is to be
used to do some arithmetic, otherwise it is considered to be a string of numeric
characters. When we look at a car or telephone number we see it as a group of
numeric characters; we would not use this collection of digits to do any serious
arithmetic.

Store locations for strings
How then can we signal to the computer that the group of characters which we are
entering should be treated as numbers for arithmetic purposes, or as just a string
of characters? The distinction is made in BASIC by how we label the storage
locations into which we put the characters. If a store location name is followed by
the symbol $ then the characters which are entered into that location are treated as
strings of characters.

You saw in Unit 1 that the store locations for numbers in a minimal BASIC system
are the 286 locations:

A, A 0 , . . . A9
B, BO, etc

The store locations for strings in a minimal BASIC are a further 286 locations:

A$, A0$, . . . A9$
etc
. . . Z7$, Z8$, Z9$

6 4

You read these out loud as follows:
A$
B9$

A string
B nine string

or
or

A dollar
B nine dollar

Thus you can now think of a microcomputer as having two areas for store
locations: one for numbers and one for characters. This is illustrated in Figure 1.

Figure 1 A summary of our system so far

" " with strings
Usually we have to show the computer that we want our string of characters to be
treated as a string. To do this we put"" around the string. Thus we write

10 LET Q$ = "HELLO"
and
30 IF Q$ = "HELLO" THEN 80
and so on.

SAQ1
Which of the following are valid store location names for strings:
(a)A$ (b)M8 (c)T7$ (d)B9- (e) C$3 (f) 8P$ (g) 2$ (h) 5$L

65

SAQ2
Which of the following are correct BASIC statements:

(a) LET A = 87
(b) LET B$ = "FRED"
(c) LET M $ = 9583
(d) LET K8 = "JAM POT"
(e) LET L17 = 38

3.2. More about strings
'How long is a piece of string?' is a pertinent question here. In other words, how many
characters can be input, stored or output as a single group? The Commodore 64
allows strings to be up to 255 characters in length. Initially in this course we will
assume that a store location for strings will hold up to 40 characters, and that this
restriction will apply to inputting and outputting strings. As our microcomputer screen
is 40 characters wide this is a convenient restriction. So you must now think of a string
memory location, not just as a labelled pigeon-hole, but as a location with 40 sub
divisions, as shown in Figure 2.

Figure 2 Size of string store locations

We have been discussing strings as if they were new but you have met them
before in Unit 1. There we used the PRINT statement to output messages which
were enclosed in quotation marks. We implied that the string enclosed in quotation
marks was output literally character by character. Then we saw in Unit 2 how the
commas between the elements of a PRINT statement caused the strings to be
spaced out across the screen or printer.

3.3 PRINT...;...
From what we have covered so far you will realise that the layout of information on
the screen is very important. This is just as true for strings as it is for numbers.

When handling textual information, ie strings of characters in the form of words or
codes, we want the strings to be printed as in a sentence and not spaced out
across the screen in print zones. The PRINT.. . ; . . . statement achieves this effect
for us. PRINT H$;T$ will take the characters in store location H$ and print them on

66

the left-hand side of the output device followed immediately by the characters from
location T$.

In the next few pages we are going to simulate a data recording service of the not
too distant future and use it to demonstrate the inputting and outputting of strings.
Let's start by writing a program which simulates a telephone answering service.

10 REM **TELE ANSWER**
20 PRINT CHR$(147)
30 PRINT "HELLO"
40 PRINT "PLEASE STATE YOUR TELEPHONE NUMBER
50 INPUT T$
60 PRINT
70 PRINT "HELLO",T$
80 PRINT
90 PRINT "HELLO",T$
100 PRINT
110 PRINT "HELLO", T$
120 PRINT
130 PRINT "HELLO"; " ";T$
140 END

Program 1 Printing strings

To help you analyse this program we have put below a 'trace' at the side of a
typical run. The trace indicates which line in the program generates which line in
the output.

RUN
HELLO
PLEASE STATE YOUR TELEPHONE NUMBER
? 58632

HELL058632

HELL058632

HELLO 58632

HELLO 58632
READY.

Trace
.30
40
50
60
70
80
90
100
110
120
130

67

Comments
Trace 50 INPUT T$ generated ? Our response was 58632 which the computer

treats as a string and not as a number. (If we had written INPUT T, then
58632 would be treated as a number.)

Trace 70 The PRINT . . . ; . . . on line 70 prints the 5 of the telephone number at the
15th position across the output line, whereas

Trace 90 The PRINT . . . ; . . . of line 90 prints the 5 immediately adjacent to the O
of HELLO.

Neither way is satisfactory, but:

Trace 110 Lines 110 and 130 show alternative ways of introducing the required
Trace 130 spaces, either by printing HELLO V(110) or by inserting the string V in

its own right into the output statement. (V indicates a space.)

E\ Program 1.

SAQ3
Study this program and work out what the print output will be. Write down the
output in the grid below.

7 PRINT CHR$(147)
10 PRINT "PRINT LAYOUT"
20 LET B$ = "BASIC"
30 LET C$ = "COURSE"
40 PRINT
50 PRINT B$, C$
60 PRINT
70 PRINT B$;C$
80 PRINT
90 PRINT B$; " ";C$
100 END

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SAQ4
Write a program which would print out the following:

68

3.4 INPUT" . . . " ; . . .
We have used the PRINT"..." as a prompt for an INPUT statement in several of our
programs so far. Most BASIC'S, including the version used by the Commodore 64,
have a facility to allow us to combine these two into one statement. Thus in the above
program, we could replace:

40 PRINT "PLEASE STATE YOUR TELEPHONE NUMBER"
50 INPUT T$

with

40 INPUT "PLEASE STATE YOUR TELEPHONE NUMBER";T$

The INPUT statement will always generate a ? however, so in the next program we
form the prompt into a direct question.

Also, in the last program we used the string "HELLO" several times. In the next
program we will save a little typing by storing this string in location H$ at the start of
the program.

10 REM **TELE ANSWER-**
20 PRINT CHR$(147)
30 LETH$="HELLO"
40 PRINT H$
50 INPUT "WHAT IS YOUR TELEPHONE NUMBER!" T$
60 PRINT
70 PRINT H$,T$
80 PRINT
90 PRINT H$; T$
100 PRINT
110 PRINT H$;" ";T$
120 END

Program 3 The computer asks the questions

RUN ^ computer response to line 50
HELLO ^^^^
WHAT IS YOUR TELEPHONE NUMBER? 58632

HELLO 58632
HELL058632
HELL058632
READY.

69

H Program 3.

SAQ5
What would appear on the screen when this program was run assuming your
name is John Smith and your age 45?

5 PRINT CHR$(147)
10 LET T$="THANK YOU"
20 INPUT "WHAT IS YOUR NAME!" N$
30 PRINT
40 INPUT "WHAT IS YOUR AGE!" A$
50 PRINT
60 PRINT T$, N$;A$

Program 4

3.5. Numbers and strings in print statements
We could have entered the telephone number of the previous program into a
numeric store location. We would of course soon run into problems if the number
were too long, or contained spaces (eg 01 693 4539). Let's compare how BASIC
would output this data from numeric and string store locations.

In this program note how we use the string of characters in S$ to print a scale
across the output page.

10 REM **TELE ANSWER**
20 PRINT CHR$(147)
30 LET H$="HELLO"
35 LET S$="1234567890123456789012345"
40 PRINT H$
50 INPUT "WHAT IS YOUR TELEPHONE NUMBER?" T$
55 INPUT "WILL YOU REPEAT THAT PLEASE?" T
60 PRINT S$
70 PRINT H$, T$
75 PRINT H$,T
80 PRINT S$
90 PRINT H$;T$
95 PRINT H$;T
100 PRINT SS
110 PRINT H$;" ";T$
115 PRINT H$;" ";T
120 END

Program-5 Printing strings and numbers

70

RUN
TELEPHONE ANSWER
HELLO
WHAT IS YOUR TELEPHONE NUMBER? 58632
WILL YOU REPEAT THAT PLEASE? 58632

Trace

60 S$ numbers each print
position across the page.

75 note that the first digit 5 is
placed at the 12th position,
the 11 th position is reserved

95 for the sign of the number in
T, but if the sign is '+ ' it is not
printed, and a space is left. A

115 similar effect occurs in 95
and 115.

75

note the effect when T$ and
95 T both hold -58632

115

IS Program 5.

SAQ6
Write a program to input your name as a string and your age as a number and to
output the message, 'My name is and I am years old' with the normal
spacing.

Data recording service

The following is a further example of how print layout is achieved in BASIC. We
can imagine that in the not too distant future our TV set, telephone and computer
will be linked together as an 'intelligent' terminal. On seeing an attractive
advertisement we may 'dial' a number and the following dialogue might ensue.

HELLO
THIS IS A DATA-RECORDING SERVICE

PLEASE ENTER THE DETAILS AS REQUESTED

Trace

30
40
50
60

71

1234567890123456789012345
HELLO 58632
HELLO 58632
1234567890123456789012345
HEL L058532
HELLO 58632
1 2 345 67 8 90 1 2345678901 2 34 5
HELLO 58632
HELLO 58632
READY.
RUN
TELEPHONE ANSWER
HELLO
WHAT IS YOUR TELEPHONE NUMBER7-58632
WILL YOU REPEAT THAT PLEASE7-58632

1234567890123456789012345
HELLO -58632
HELLO 58632
1234567890123456789012345
HEL LO-58632
HEL LO-58632
1 2345678901 2345678901 2345
HELLO -58632
HELLO -58632
READY.

70
YOUR NAME? C. A. SMITH 80
YOUR TELEPHONE NUMBER? 23685 90
NUMBER OR NAME OF HOUSE? 77 100
ROAD? CHALMERS ROAD 110
TOWN OR CITY? WORTH ING 120
YOUR POSTAL CODE? BR7 9QY 130

140
150
160

THANK YOU FOR ENQUIRY 170
180

YOUR PERSONAL DETAILS HAVE BEEN RECORDED AS: 190
NAME C. A. SMITH TELEPHONE NO. 23685 200
ADDRESS 77 CHALMERS ROAD 210

WORTHING BR7 9QY 220
230

DETAILS OF OUR SERVICES AND PRODUCTS 240
WILL BE SENT TO YOU 250
YOUR PERSONAL DETAILS WILL REMAIN CONFIDENTIAL 260

(Of course, instead of 'will be sent to you' it will eventually be 'will now be output to
your terminal' as electronic mail replaces paper letters, and then the only details
needed to be input would be a subscriber code.)

This simulated dialogue was achieved by the following program.

10 REM **DATA-RECORD**
20 PRINT CHR$(147)
30 PRINT "HELLO"
40 PRINT "THIS IS A DATA-RECORDING SERVICE"
50 PRINT
60 PRINT "PLEASE ENTER THE DETAILS AS REQUESTED"
70 PRINT
80 INPUT "YOUR NAME?" N$
90 INPUT "YOUR TELEPHONE NUMBER?" T$
100 INPUT "NUMBER OR NAME OF HOUSE?" H$
110 INPUT "ROAD?" R$
120 INPUT "TOWN OR CITY?" C$
130 INPUT "YOUR POSTAL CODE?" P$
140 PRINT
150 PRINT
160 PRINT
170 PRINT "THANK YOU FOR YOUR ENQUIRY"
180 PRINT
190 PRINT "YOUR PERSONAL DETAILS HAVE BEEN RECORDED AS:"
200 PRINT "NAME"; N$; "TELEPHONE NO."; T$
210 PRINT "ADDRESS ";H$;" ";R$
220 PRINT
230 PRINT
240 PRINT "DETAILS OF OUR SERVICES AND PRODUCTS"
250 PRINT "WILL BE SENT TO YOU"

72

260 PRINT "YOUR PERSONAL DETAILS WILL REMAIN CONFIDENTIAL"
270 END

Program 6 Data recording service

E\ Program 6.

3.6 Standard letters
A data recording service, such as we have just looked at, may be in the future, but
standard personalised letters are with us now. Such a letter would be composed
on a word-processor, but if your micro does not have word processing facilities
available, you could achieve modest results using BASIC. Your own choice of
letter will be left to you in Exercise 2.

Example 1
A bank recruiting office receives many enquiries about employment. Its policy is to
interview suitable applicants initially at its local branch. A stereotyped letter is sent
from the recruiting office to each applicant containing individual details of the
proposed interview. Devise a BASIC program to write such a letter.

Solution
The following program would do this job.

10 REM **LETTER WRITER**
20 PRINT CHR$(147)
30 INPUT A$ applicant's name
40 INPUT B$ date of letter of application
50 INPUT C$ name of interviewer
60 INPUT D$ time of interview
70 INPUT E$ date of interview
80 INPUT F$ location of interview
90 INPUT G$ name of employee replying
95 REM **END OF INPUT**
100 PRINT
110 PRINT
120 PRINT "DEAR ";A$;","
130 PRINT
140 PRINT "THANK YOU FOR YOUR LETTER OF THE"
150 PRINT B$;". WE INVITE YOU TO"
160 PRINT "ATTEND FOR A JOB INTERVIEW WITH"
170 PRINT C$;" AT ";D$;" ON THE"
180 PRINT E$;" AT OUR OFFICE, THE"
190 PRINT F$;"BRANCH."
200 PRINT
210 PRINT "YOURS SINCERELY"
220 PRINT
230 PRINT
240 PRINT G$
250 END

Program 7 Bank interview letter

73

This would result in the following
Trace

RUN
LETTER WRITER 3 0

? MISS JONES 40
? 13 OCTOBER 50
? MR FELLOWS 6 0

710.00 AM 7 0

? 20TH OCTOBER 8 0

? HIGH ST. SIDCUP 9 0

?C.A. SIDWELL 1 0o
110

DEAR MISS JONES, 120
130

THANK YOU FOR YOUR LETTER OF THE 140
13 OCTOBER. WE INVITE YOU TO 150
ATTEND FOR A JOB INTERVIEW WITH 160
MR FELLOWS AT 10.00 AM ON THE 170
20 OCTOBER AT OUR OFFICE, THE 180
HIGH ST. SIDCUP BRANCH. 190

200
YOUR SINCERELY 210

220
C.A. SIDWELL 230

The user of the program might find it difficult to use since all he gets is a series of
prompts ?. He might, therefore, make a skeletal aide-memoire to remind him of the
structure of the letter:

? A$
? B$
? C$
? D$
? E$
? F$
? G$

DEAR A$,
THANK YOU FOR YOUR LETTER OF THE
B$. WE INVITE YOU TO
ATTEND FOR A JOB INTERVIEW WITH
C$ AT D$ ON THE
E$ AT OUR OFFICE, THE
F$ BRANCH.

YOURS SINCERELY
G$

IB Program 7

Exercise 1
An estate agent periodically sends out a letter to check whether clients on his

74

books are still looking for a property, and that his details of their requirements (eg
type of property, price range, etc) are correct. Devise a BASIC program to write
such a letter.

Exercise 2
We all write letters requesting things, eg details of a product, a service, a holiday, a
job, etc. Devise a BASIC program to write a letter which will cover as wide a range
of applications as possible, leaving you to fill in only the particular details of each
enquiry.

3.7 Patterns, files, READ with DATA
READ with DATA
So far in this course we have entered data at the keyboard during the execution of
a program as a response to an INPUT statement. Another way of introducing data
into a program is to store it in DATA statements within the program itself and then
to READ the items into the program from the DATA statements as required.
Usually, data is stored at the end of a program, or program segment.

Every time the computer comes to a READ statement it takes the next item of data
from the DATA queue and places it in the location specified in the READ
statement. For a READ statement to be executed there must be a corresponding
item of DATA available in the DATA queue.

Thus in this program the following happens.

10 READA$
20 READB$
30 READ C$
100 DATA TOM, DICK
110 DATA HARRY Program 8
At 10, READ tells the computer to take the first item of DATA and put it in location
A$. The first DATA item occurs in line 100 and is TOM so TOM goes in location A$.
At the next READ statement (20), the computer takes the next DATA item which is
DICK and so on. You can check that this has happened by putting:

40 PRINTAS
50 PRINT B$
60 PRINT C$
into the program.
RUN
TOM
DICK
HARRY
SAQ7
What is wrong with this program segment?

10 READA$
20 READ B
30 READ C
40 READ D$
50 DATA PAUL, MARY, 63 Program 9

75

A more complex example is shown by this program segment:

t
- 3 0 READNS, T$

t
120 READCS

t
150 READM$

t
*-160 GOTO 30

200 DATA BENNY, COPPER, DRAPER
210 DATA EDDIE, GWYNNE
220 DATA HETTIE
230 DATA MORLEY, PROSSER, SMYTHE, WEEKS
240 DATA WILSON, WRIGHT

Here is what happens:

First time round loop
N$
T$
C$
M$

reads
reads
reads
reads

BENNY
COPPER
DRAPER
EDDIE

Stores at end of first time round

Second time round loop
N$
T$
U$
M$

reads
reads
reads
reads

GWYNNE
HETTIE
MORLEY
PROSSER

(i.e. next unread
item of DATA)

Stores at end of second time round

76

SAQ8
What will the final state of the stores be when all the data has been read?
SAQ9
What would the contents of locations A$, B$ and C$ be after this program segment
has read all the DATA items?
5 REM **SAQ 9 * *
10 READA$
15 REM **BRANCH BACK**
20 READ B$
30 READ C$
40 GOTO 15
45 REM * * * * * * * * * * Prnnram 1CI
50 DATA TINKER, TAYLOR, SOLDIER rrogram IU
60 DATA SAILOR, RICH MAN

RESTORE
BASIC also has a further reading instruction, RESTORE. When ths is encountered,
no matter how far down the DATA list the program has READ, the next READ
instruction will go back and read the first item in the DATA list once more, and then
continue reading through the list, i.e. the second item, third item and so on. This can
be very useful if you wish to access the same data more than once in the course of a
program, but only wish to key in the data once. Care must be taken that the number of
READs and the number of DATA items to read ties up—otherwise a message OUT
OF DATA will appear, halting the program run.

Files and records
Quite often we want to record data which is of one kind, i.e. it makes up a file of
information. A telephone directory is a good example of what in data processing is
called a file, that is a collection of similar records. Each record has the form

and is said to consist of a number of fields - in this case three: name, address and
telephone number. A record is then a collection of fields and a file is a collection of
records. A telephone directory is arranged in alphabetical order of surnames which
gives it a simple structure.

Comparing strings
We may wish to compare strings. Suppose, for example, we have a personal
telephone directory in our microcomputer and we wish to find out whether SMITH
is in our record. The computer will have to compare the string "SMITH" against all
the strings in the name field of our directory. It can do this very easily because each
letter is represented inside the computer by a binary code. Thus

A is 100 0001

Bis 100 0010

and so on. (See the Appendix to this unit for a full list of binary codes.) So words
placed in alphabetical order on paper will be represented in the computer by codes
in numerical order.

77

Thus if

A$ = CAT
B$ = DOG
C$ = CAT
D$ = FISH
E$ = CATS

A $ = C $
But B$ > A$ (it is further on in the alphabet)
and E$ > A$ (the extra S on CAT puts it after CAT in alphabetical order.)

We shall now use this facility in our examples.

Example 2
Set up a data file of names and associated telephone numbers. Write a BASIC
program to search through the file to find a particular name, and if found then
output the associated telephone number.

Solution
We could attempt a descriptive algorithm as follows:
1. Start.
2. Input query name.
3. Read next record of the data file (i.e. name and number).
4. If the end of the file has been reached (data name = "ZZZZ") then output

message 'not found in file' and go to 7 otherwise carry on to 5.
5. If query name = data name then output name and number and go to 7

otherwise carry on to 6.
6. Return to 3 for next record.
7. Stop.

However, BASIC does not generally allow statements as complicated as 4 and 5,
and so we have to split up these statements as shown in the next algorithm:

1. Start.
2. Input query name.
3. Read next record from data file.
4. If the end of file has been reached then go to 7 otherwise carry on to 5.
5. If query name = data name then go to 9 otherwise carry on to 6.
6. Return to 3 for next record.
7. Output message 'not in file'.
8. Stop.
9. Output name and number.
10. Stop.

78

INDEX
Q$ = query name
N$ & T$ form data record
N$ = data name
T$ = data telephone number

Each file has two fields:
N$ and T$.

"ZZZZ" is a marker for
end of data queue.

Figure 3 Searching a telephone directory

Now each record contains two fields on this occasion: name and number.

Field 1

Name N$

BENNY

Field 2

Telephone Number T$

1234 e.g.

so each DATA item must contain information for each field. Thus the READ line will
be:

READ N$, T$

79

and the DATA lines are of the form:

DATA BENNY, 1234

Notice that the end-of-file number is a DATA item (line 310) so it has to have data
to fill T$ as well as N$. Without this an error message (out of data) would appear on
the screen. So we write

DATA ZZZZ, END OF FILE

and not just

DATA ZZZZ

This is an open string because it contains spaces. Some BASIC'S would require
this string to be enclosed in quotation marks.

10 REM **TELEPHONE DIRECTORY**
15 PRINT CHR$(147)
16 PRINT "TELEPHONE DIRECTORY"
18 PRINT
20 INPUT "SURNAME OF PERSON SOUGHT";Q$
25 REM **READ NEXT ENTRY**
30 READ N$,T$ ~ J READ
40 IF N$="ZZZZ" THEN 70
50 IFQ$=N$THEN90
60 GOTO 30
65 REM **NAME NOT LISTED**
70 PRINT Q$;" IS NOT IN THE FILE"
80 GOTO 9990
85 REM **NAME HAD BEEN FOUND**
90 PRINT Q$;" 'S NUMBER IS ";T$
100 GOTO 9990
190 REM **DATA LIST**
200 DATA BENNY.1234
210 DATA COPPER,9823
220 DATA DRAPER,1850
230 EDDIE,7294
240 GWYNNE.5821
250 HETTIE.4539 n A T A

260 MORLEY.7830
270 PROSSER.1383
280 DATA SMYTHE.1147
290 DATA WEEKS,5529
300 DATA WILSON,9936
310 DATA ZZZ.END OF FILE _
9990 REM **ALL FINISHED**
9999 END
Typical run
RUN
TELEPHONE DIRECTORY
SURNAME OF PERSON SOUGHT? EDDIE
EDDIE'S NUMBER IS 7294
READY.

80

RUN
TELEPHONE DIRECTORY
SURNAME OF PERSON SOUGHT? BROWNE
BROWNE IS NOT IN THE FILE
READY.
RUN
TELEPHONE DIRECTORY
SURNAME OF PERSON SOUGHT? WEEKS
WEEK'S NUMBER IS 5529
READY.
RUN
TELEPHONE DIRECTORY
SURNAME OF PERSON SOUGHT? WEEK
WEEK IS NOT IN THE FILE
In the fourth run we entered the name "WEEK" whereas the name "WEEKS" was
actually in the file. The computer compares these patterns of characters and finds
them unequal. If we were looking through a telephone directory we might realise
that we were really looking for WEEKS rather than WEEK. We could of course, re
run the program with a variety of spellings of a name, if we were in doubt.

Kl Program 11.
SAQ10
What changes would you have to make to Program 11 to input a person's
telephone number and output the subscriber's name or 'is not in list'.

3.8 Sorting
You will have noticed that the telephone directory data in Example 2 was in
alphabetical order as you would expect. It would be difficult for the user in normal
practice if this were not so. However, our solution to this searching problem did not
use this information; we just searched through the data file record by record until
we found the name, or reached the end of the file. Our algorithm would have
worked equally well had the data not been in alphabetical order. We shall spend
some time later in the course sorting and searching data, at which point you will
realise the advantages of sorting data into alphabetical order.

Let's make a modest start with this problem.

Example 3
Write a BASIC program to enter two names into the computer and output that
name which would come first in alphabetical order.

Solution
Descriptive algorithm

1. Start.
2. Input first name.
3. Input second name.
4. If first name < second name then 7 otherwise carry on to 5.
5. Output second name.
6. Go to 8.
7. Output first name.
8. Stop.

An outline flowchart for the solution of this problem is shown in Figure 4.

81

110

120

130

140

150

T

170
output
FIRST
name

180

Figure 4 Finding the first of two in alphabetical order

100 PRINT CHR$(147)
110 REM **FIRSTIN ALPHA-ORDER**
115 PRINT "ALPHA-ORDER PROGRAM"
120 INPUT "FIRST NAME?" A$
130 INPUT "SECOND NAME?" B$
135 REM **TESTING AND OUTPUT**
140 IFA$<B$THEN170
150 PRINT "FIRSTJN ALPHA-ORDER is ";B$
160 GOTO 180
1 70 PRINT "FIRST IN ALPHA-ORDER IS ";A$
180 END

Program 12

Typical run

RUN
ALPHA-ORDER PROGRAM
FIRST NAME? BROWN
SECOND NAME? SMITH
FIRST IN ALPHA-ORDER IS BROWN

IS Program 12.

READY.
RUN
ALPHA-ORDER PROGRAM
FIRST NAME? SMITH
SECOND NAME? BROWN
FIRST IN ALPHA-ORDER IS BROWN

82

The 3 card trick
Suppose now that we wanted to input three names and output the name that
comes first in alphabetical order. A standard solution to this would be to follow the
approach in Figure 5.

Figure 5 Finding the first of three in alphabetical order

When asked to solve this problem most students present an answer similar to the
algorithm in Figure 5. It is a perfectly good solution, but it bodes ill for the future.
Future trouble stems from the fact that we have had to utilise 3 decision and 3
output functions. This method would overtax our patience and ingenuity if we tried
to repeat it for 4, 5 . . . let alone 10 names. The fundamental problem is allowing
each variable to retain its own individual storage location, and how we are best
able to label that location.

A simpler method of solving this problem is to input the names one by one and to
store lowest-so-far in A$. The program retains only lowest-so-far, destroying all the
other discarded data. In the next Exercise we suggest you try this approach to
solving the problem.

83

Exercise 3
Write a BASIC program to input three names and output that name which would
come first in alphabetical order using the method discussed in the last few lines.

Exercise 4
A data file of European countries and their capital cities is suggested below. Write
a BASIC program to use this file as the basis of a quiz with the user, presenting him
with the country and asking him to name the capital city. Respond to his input by
telling him whether he is correct or not, and in the latter case giving him the correct
answer.

140 DATA FRANCE, PARIS
150 DATA WEST GERMANY, BONN
160 DATA THE NETHERLANDS, THE HAGUE
170 DATA POLAND, WARSAW
180 DATA ITALY, ROME
190 DATA SPAIN, MADRID
200 DATA PORTUGAL, LISBON
210 DATA HUNGARY, BUDAPEST
220 DATA DENMARK, COPENHAGEN
230 DATA NORWAY, OSLO
240 DATA ZZZZ, END OF FILE.

Assignment 3
1. Compose a descriptive algorith, and draw a flowchart to accompany the

BASIC program in program 12.

2. Modify your program for Exercise 4 to count the numbers of correct and
incorrect responses, and to give a summary of the marks at the end of the
quiz.

3. Devise an algorithm and write a BASIC program to do the following task. Store
several words as individual letters in DATA statements, e.g. the words
'algorithm' and 'flowchart' could be stored:

900 DATA A,L,G,0,R,l,T,H,M
910 DATA F,L,0,W,C,H,A,R,T

Count the number of vowels and consonants contained in the words, and output
the totals of these counts together with the ratio total number of vowels/total
number of consonants.

Objectives of Unit 3
Now that you have completed this Unit, check that you are able to use the following
in simple programs:

String storage locations •

PRINT. . . ; . . . •

84

INPUT"...";...
READ
DATA (one field only)
IF A$ = B$ THEN . . .
DATA (more than one field)
Simple sorting procedure

• • • •
D •

Answers to SAQ's and Exercises
SAQ1
Valid string locations: A$, T7$.
Of the others, M8 and B9 are number store locations.
The rest are neither number nor string Store locations.

SAQ2
(a), (b) and (e) are correct but (e) is not acceptable in minimal BASIC.
(c) is incorrect: M$ is a string location so you need "9583"
(d) is incorrect: K8 is a number store location so the string "JAM POT" cannot be

assigned to it.

SAQ3

p

B

B

B

R

A

A

A

I

S

S

s

N

I

I

I

T

C

C

C

C

L

0

C

A

U

0

Y

R

U

0

S

R

U

C

E

S

T

0

E

U R S E

SAQ4
10 LET B$ = "BASIC"
20 PRINT B$, B$
30 PRINT B$; B$; B$; B$
40 PRINT B$; " "; B$; " "; B$
50 END

SAQ5
WHAT IS YOUR NAME? JOHN SMITH
WHAT IS YOUR AGE? 45
THANK YOU JOHN SMITH 45

SAQ6
10 INPUT "WHAT IS YOUR NAME?" N$
20 INPUT "WHAT IS YOUR AGE?" A
30 PRINT "MY NAME IS ";N$;" AND I AM
40 PRINT A; " YEARS OLD"

Program 13

Program 14

85

Exercise 1
Exercises 1 and 2 are very similar in nature and an answer for Exercise 1 has not
been included.

Exercise 2

TO REM ••ENQUIRY LETTER**
20 PRINT CHRS(147)
30 PRINT "DETAILS OF ADDRESSEE"
40 PRINT
50 INPUT "NAME. . .?"N$
60 INPUUT "STREET . . .?"S$
70 INPUT "TOWN . . ,?"T$
80 PRINT
90 INPUT "DATE FOR THIS LETTER?" D$
100 PRINT
110 PRINT "DETAILS OF PRODUCT/SERVICE"
120 PRINT
130 PRINT "ITEM OF INTEREST"
140 INPUT l$
150 PRINT "SOURCE OF INFORMATION"
160 INPUT A$
170 INPUT "DATE OF SOURCE?" E$
180 PRINT
190 PRINT
200 PRINT
210 PRINT
220 PRINT N$
230 PRINT S$
240 PRINT T$
250 PRINT
260 PRINT
170 PRINT D$
280 FOR Z-1 TO 2000
290 NEXT Z
295 PRINT CHR$(147)
297 REM **LETTER PRODUCTON**
300 PRINT "DEAR SIR,"
310 PRINT
320 PRINT "WILL YOU KINDLY SEND ME DETAILS OF"
330 PRINT l$;","
340 PRINT "AS ITEMISED IN THE"
350 PRINT A$
360 PRINT "DATED ";E$;"."
370 PRINT
380 PRINT
390 PRINT "YOUR FAITHFULLY"
400 PRINT
410 PRINT
420 PRINT
430 PRINT "O.L. SEYMOUR"
440 END

Program 15

86

420 PRINT
430 PRINT'O.L SEYMOUR"
As explained in Unit 1,PRINTCHR$(147) clears the screen display, leaving it blank, it
does not affect the contents of any variables.

If we wish to display information for agiven amount of time, before we clear the screen
and then display something else, we can use a dummy loop. This is a FOR... NEXT..
loop which doesn't contain any processing instructions. It still takes the computer a

siTort time to count through the loop, and so causes a delay. The larger the number at
the end of the FOR... statement, the longer the delay. Lines 280 and 290 of Program
15 illustrate this.
Typical run
RUN
DETAILS OF ADDRESSEE

NAME. . .? E P SOFTWARE LTD
STREET. . .? EDGWARE ROAD
TOWN . . .? LONDON

DATE FOR THIS LETTER? 12TH OCTOBER 1980

DETAILS OF PRODUCT/SERVICE

ITEM OF INTEREST
? BUSINESS SOFTWARE PACKAGES
SOURCE OF INFORMATION
? MAGAZINE "MODERN COMPUTING"
DATE OF SOURCE? 10TH OCTOBER

E P SOFTWARE LTD
EDGWARE ROAD
LONDON

12TH OCTOBER 1980

DEAR SIR,

WILL YOU KINDLY SEND ME DETAILS OF
BUSINESS SOFTWARE PACKAGES,
AS ITEMISED IN THE
MAGAZINE "MODERN COMPUTING-
DATED 10TH OCTOBER.

YOURS FAITHFULLY,

O.L SEYMOUR

SAQ7
Line 20 will try to read the second DATA item which is MARY, which is a string, but
the location in line 20 is a number location. The computer would stop and indicate
a syntax error. To read "MARY", line 20 must be 20 READ B$

Line 40 calls for a fourth DATA item but there are only three items in line 50.

87

SAQ8

N$

T$

C$

M$

SMYTHE

WEEKS

WILSON

WRIGHT

SAQ9
A$ TINKER
B$ SAILOR
C$ RICH MAN

Notice that "RICH MAN" is read as one item since there is no comma between the two
words. If you run this program you will get an "out of data" message. Why?

SAQ10
Calling the number A$, changes are needed to lines 20, 50, 70 and 90 as follows:

20 INPUT "NUMBER OF PERSON SOUGHT?" A$
50 IFA$=T$THEN90
70 PRINT "SUBSCRIBER NUMBER"; A$; "IS NOT IN FILE"
90 PRINT "SUBSCRIBER NUMBER"; A$; "IS"; N$

Exercise 3
A simple method of solving this problem is shown in the Program 16. The names are
input one by one, and the 'lowest so far' always stored in A$. The program, however,
only retains this one item of information, all other data is lost.

10 REM **F!RST IN ALPHA-ORDER-**
15 PRINT CHR$(147)
17 PRINT "ALPHA-ORDER PROGRAM"
20 INPUT "FIRST NAME";B$
25 REM **NEXTINPUT**
30 INPUT "NEXT NAME";B$
40 IF B$="ZZZ" THEN 85
50 IFA$<B$THEN65
60 LET A$=B$
65 REM **OUTPUT**
70 PRINT "FIRST IN ALPHA-ORDER SO FAR IS ";A$
80 GOTO 25
85 REM ••FINAL ANSWER**
90 PRINT AS;" WAS OVERALL FIRST"
100 END Program 16
RUN
ALPHA-ORDER PROGRAM
FIRST NAME? TOM
NEXT NAME? SID
FIRST IN ALPHA-ORDER SO FAR IS SID
NEXT NAME? JOE
FIRST IN ALPHA-ORDER SO FAR IS JOE
NEXT NAME? PETE
FIRST IN ALPHA-ORDER SO FAR IS JOE

88

NEXT NAME? FRED
FIRST IN ALPHA-ORDER SO FAR IS FRED
NEXT NAME? BILL
FIRST IN ALPHA-ORDER SO FAR IS BILL
NEXT NAME? RON
FIRST IN ALPHA-ORDER SO FAR IS BILL
NEXT NAME? ALAN
FIRST IN ALPHA-ORDER SO FAR IS ALAN
NEXT NAME? ZZZZ
ALAN WAS OVERALL FIRST
READY
ExGTCJSG 4
10 REM **EUROPEAN CAPITALS QUIZ**
15 PRINT CHR$(147)
20 PRINT "'NAME THE CAPITAL' QUIZ"
25 REM **READ NEXT LIST ENTRY**
30 READ C$, T$
40 IFC$="ZZZ"THEN125
50 PRINT "WHAT IS THE CAPITAL OF ";C$
60 INPUT A$
70 IFA$=T$THE105
80 PRINT "NO! SORRY, THE CAPITAL OF"
90 PRINT C$;" IS ";T$
100 GOTO 25
105 REM **RIGHT ANSWER**
110 PRINT "YES! THAT'S RIGHT!"
120 GOTO 25
125 REM **QUIZ FINISHED**
130 PRINT "THAT'S THE END OF THE QUIZ"
135 END
137 REM **DATALIST**
140 DATA FRANCE,PARIS
150 DATA WEST GERMANY.BONN
160 DATA THE NETHERLANDS.THE HAGUE
170 DATA POLAND.WARSAW
180 DATA ITALY.ROME
190 DATA SPAIN.MADRID
200 DATA PORTUGAL.LISBON
210 DATA HUNGARY.BUDAPEST
220 DATA DENMARK.COPENHAGEN
230 DATA NORWAY,OSLO
240 DATA ZZZ.END OF FILE Program 17

RUN
'NAME THE CAPITAL' QUIZ
? PARIS
YES! THAT'S RIGHT!
WHAT IS TEE CAPITAL OF WEST GERMANY
? BERLIN
NO SORRY! THE CAPITAL OF
WEST GERMANY IS BONN
WHAT IS THE CAPITAL OF THE NETHERLANDS

89

? HAGUE
NO SORRY! THE CAPITAL OF
THE NETHERLANDS IS THE HAGUE
WHAT IS THE CAPITAL OF POLAND
? WARSAW
YES! THAT'S RIGHT!
WHAT IS THE CAPITAL OF ITALY
?ROME
YES! THAT'S RIGHT!
WHAT IS THE CAPITAL OF SPAIN
? MADRID
YES! THAT'S RIGHT!
WHAT IS THE CAPITAL OF PORTUGAL
? LISBON
YES! THAT'S RIGHT!
WHAT IS THE CAPITAL OF HUNGARY
? PRAGUE
NO SORRY! THE CAPITAL OF
HUNGARY IS BUDAPEST
WHAT IS THE CAPITAL OF DENMARK
? COPANHEEN
NO SORRY! THE CAPITAL OF
DENMARK IS COPENHAGEN
WHAT IS THE CAPITAL OF NORWAY
?OSLO
YES! THAT'S RIGHT!
THAT'S THE END OF THE QUIZ

READY.

Appendix
American Standard Code for Information Interchange or ASCII Code
That part of the code which concerns us here is shown below.

!
"

$
%
&
'
(
)
*
+
t

-

/
0

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
2
3
4
5
6
7
8
9

j

<
=
>
?
@
A

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

90

B
C
D
E
F
G
H
1
J
K
L
M
N
0
P
Q

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

R
S
T
U
V

w X
Y

z
[
£
]
•f

< •

82
83
84
85
86
87
88
89
90
91
92
93
94
95

96-127 and 161-191 Graphics characters
133-140 function keys

You can obtain any of the ASCII characters by using the statement

PRINT CHR$(Code number)

for example

PRINT CHR$(61)

will cause an equals sign,(=) to be displayed.

91

92

4.1

4.2

4.3

4.4

4.5

4.6

4.7

UNIT 4
Lists

Variables

Lists

List variables

List input and output

The FOR . . . NEXT.. . loop

Nested loops

Interchanging

Assignment 4

Objectives of Unit 4

Answers to SAQ's and Exercises

94

94

94

96

100

105

108

112

113

113

93

4.1 Variables
We have already seen how a memory location may store several different values
during the course of a program's execution. Thus the value in a store location may
vary during a run, and so we often refer to the location names as variables in a
program. Thus the 286 store labels:

A, AO, A1, . . . A9, B, BO, . . . Z8, Z9

are called numeric variables, and their counterparts:

A$, A0$, A1$, . . . A9$, B$, BOS, . . . Z8$, Z9$

are called string variables. The store labels are used in expressions in program
statements just as mathematicians use variables in equations.

4.2 Lists
Lists and supermarkets seem inextricably linked. We go in with a list of items which
we wish to buy, and emerge with the items and a list of prices in the form of a
receipt. The list of prices results from the process of transferring the items from the
basket to the counter. This is a fairly random process but we could have given the
list a more meaningful order in a variety of ways. With a lot of effort we could have
taken the items out of the basket in order of price, i.e. the cheapest first, the next
cheapest next, and so on with the most expensive last, so that the till roll of prices
would be in order of cost. Similarly, we could have taken them out of the basket in
order of weight, the lightest first through to the heaviest last; and by so doing
impose a completely different order on the receipt list. Being able to relate the
position in the list in some way to the value of the item is the most useful feature of
lists, as we shall see by the end of this Unit.

4.3 List variables
Most of the data that we have considered so far can be classified into sets. We
have considered sets of test marks, sets of names and associated telephone
numbers, sets of countries and their capital cities. Most data can be classified in
some way. If we are collecting data for some purpose, this very purpose gives the
set of values common characteristics. There are obvious advantages to naming
the storage locations for items in a set of data in a way which emphasises that all
the items belong to one set. Even better, it would be useful if the storage location
names identified the position of an item within the set.

For example, storage, or variable, notation which emphasises that the values are
in some way associated with each other, and allocates a position within the set.
This is achieved in the following way.

Consider a set of marks in a teacher's mark book. They form a natural list and could
be allocated storage locations in the following way:

94

Item
The first member of the M-list is 42
The second member of the M-list is 67
The third member of the M-list is 90
e t c . . .

Storage location symbol
M(1) = 42
M(2) = 67
M(3) = 90

M(1), M(2), M(3) are like separate memory locations. You can take any of the 572
store locations and put numbers in brackets after them to make list store locations,
e.g.

List name
M(l)
A0(l)
C$(l)
Q6$(l)

List store locations in that list
M(1), M(2), M(3) . . .
A0(1),A0(2), A0(3) . . .
C$(1), C$(2), C$(3) . . .
Q6$(1),Q6$(2), Q6$(3) . . .

The number in the brackets (here shown as 1) is called the index of the list, and may
be any positive integer up to a limit set by your computer. We called it the M-list, the M
standing for 'mark'.

String lists
As you can see from the table above, lists can be string lists as well as numeric
lists. Thus if you name a list M(l), it is clearly a list of numbers but M$(l) would be a
list of strings, e.g. a list of names could be stored:

Index

1
2
3
etc

Item

Jones
Alan
Smith
etc

Variable name

N$(1),orNAME$(1)
N$(2), or NAME$(2)
N$(3), or NAME$(3)
etc

Figure 1 String list names

Lists and arrays
A table of data, like that shown in Figure 1, is often referred to as an array of data.
With the data displayed in rows and columns in this way (indexed by item), a table
is often referred to as a two-dimensional array. A list (i.e. just one column of data)
is similarly called a one-dimensional array. We will see how BASIC provides for
two-dimensional arrays in a later Unit.

DIM or how long is a list?
As long as you choose! We said that the index may be any reasonable positive
integer, and within the overall memory limitations of a particular computer, we can
choose a list to be of any desired length, provided that we warn the system first. With
the Commodore 64 you do not need to warn the computer of lists of 10 or fewer items,
with 11 or more items you use a DIMENSION statement:

line number DIM A (length of list)

95

which must appear in the program before you use the array A. So in this unit we
include DIM statements. Even though the Commodore 64 computer does not need
DIM statements for small arrays, it is alright to leave the DIM statements in your
programs.

Items and index numbers
The following paper and pencil exercises should reinforce your understanding of
what is meant by the terms item and index, and their often only fleeting
relationship. They also prepare the ground for the interchange-sort procedure
which we will consider in detail later in this Unit.

Example 1
Transfer the item of lowest value in the following list to position 1, by comparing in
turn each of the values in the remainder of the list with the current value at position
1. Interchange the items if the one in the remainder of the list is lower than that at
position 1. (It is easier to do than to describe!)

List: 3, 42, - 8 , 9 , - 1 1

Start
position
or index

1
2
3
4
5

item

3
42
- 8

9
-11

Compare & interchange stages

1 st run
c

3 ^ - ,
42-*—'
- 8

9
- 1 1

2nd run
c&i

~:0
-11

3rd run
c

- 8 - * —
42

3
9 - * —

-11

4th run
c&i

- 1 1 - * - ,
42
3
9

- 8 - * —

Figure 2 Sort to place lowest number first

SAQ1
Carry out the procedure shown in Example 1 for the following list of numbers:

6,8,4,7,3,9,1.

4.4 List input and output
Before we can manipulate the items in a list we have to get the list of items into the
computer, and after processing usually get another list out.

Example 2
Write a BASIC program to input three numbers into a list and output the elements
of the list in reverse order.

Solution
We will call the list A(l). The required program is then:

10 REM ••EXAMPLE 2 * *
12 REM ••REVERSING A SHORT LIST**
13 PRINT CHR$(147)

9 6

15 0IMA(3)
20 INPUT A(1)
30 INPUT A(2)
40 INPUT A(3)
50 PRINT
60 PRINT
70 PRINT A(3), A(2), A(1) d , D . ,. , , ,. ,
80 END Program 1 Reversing the order of a list
Typical run

RUN
?29
?32
? - 1 7
-17 32 29

READY.

E\ Program 1.

We have done as requested in the question, but have not made a significant
advance in programming technique since we could have done the job with the
techniques of earlier units simply by calling the variables P, Q and R and outputting
them as R, Q and P. To do the job better we need to count the list as it is inputted
so that we can use the counter in reverse order when we output the list. The next
example adds this refinement.

Counting a list

Example 3
Write a program to input five numbers into a list, to display the items of the list and
its index in the form of a table, and then output the elements of the list in reverse
order.

Solution
As listed in the question, there are three main parts to the solution and we can
display these in flowchart form as in Figure 3.

(start

Stage 1
•

/ input
/ the
/ list

)

/ 2 0 - 5 0

/ " /

Stage 2

/ display
the table

Stage 3

/ 1 0 0 - 1 7 0 /

/ • / °UtP
1 * I in re
' / ore

1

C, "

7 2 U 0 - 2 6 0
ut list /
verse /
ier /

'

3P J

Figure 3 Stages in solving Example 3

97

Stage 1 We use the variable C to count the elements of the list on input, and to act as
an index for the L-list.

5 REM**INPUTALIST**
10 PRINT CHR$(147)
15 DIM L(5)
20 LET C=1
25 REM **START OF LIST INPUT LOOP**
30 INPUT "ENTER THE NEXT NUMBER";L(C)
40 LET C=C+1
50 IFC<=5THEN25

Program 2 Counting a list on entry

Stage 2 The table will have the form you met in the answer to SAQ 1. A simple
PRINT will suffice to display the table.

100 REM **DISPLAY THE TABLE**
110 PRINT
120 PRINT
130 PRINT "INDEX ITEM"
140 LETC=1
145 REM **START OF TABLE PRINT LOOP**
150 PRINT C,L(C) [-print the table
160 LETC=C+1
170 IFC<=5THEN 145

Program 3 Printing the list in input order

Stage 3 Now we make C count from 5 down to 1 in order to print the list in reverse
order.

200REM **OUTPUT LIST IN REVERSE**
210 PRINT
220 PRINT
230 LET C=5
235 REM **REVERSE PRINT LOOP**
240 PRINT L(C)
250 LET C - C - 1
260 IFC<=1 THEN 240

Program 4 Printing in reverse order

We have shown the three program modules that provide the solution. All we have to
do now is put them together as follows. The few changes (which don't affect what the
program does) are explained in the comments:

5 REM ** INPUTALIST**
10 PRINT CHR$(147)
12 PRINT "LIST HANDLING PROGRAM"
15 DIML(5)
20 LET C=1
25 REM **START OF LIST INPUT LOOP**
30 INPUT "ENTER THE NEXT NUMBER";L(C)
40 LET C=C+1
50 IFC<=5THEN25
60 REM + • • • • • * • • * * * * * * * * * *

print list in reverse order

98

70 REM * * * * * * * • • • • • • * • * • * •
100 REM **DISPLAY THE TABLE**
110 PRINT
120 PRINT
130 PRINT "INDEX","ITEM"
140 LETD=1
145 REM **START OF TABLE PRINT LOOP**
150 PRINT D,L(D)
160 LETD=D+1
170 IFD<=5THEN 145
180 REM * * * * * * * * * * * * * * * * * * *
190 REM * * • * * * * * * * * * * • • • * * •
200 REM **OUTPUT LIST IN REVERSE**
210 PRINT
220 PRINT
230 LET E=5
235 REM **REVERSE PRINT LOOP**
240 PRINT L(E)
250 LET E=E-1
260 IF E > - 1 THEN 235
270 END

REM statements to help
reader see the division in
the program.

We've used Das an index to
remind you that its name
doesn't matter — only its
value

MoreREM's

RUN
LIST HANDLING PROGRAM
ENTER THE NEXT NUMBER? - 8
ENTER THE NEXT NUMBER? 15
ENTER THE NEXT NUMBER? 23
ENTER THE NEXT NUMBER? - 4
ENTER THE NEXT NUMBER? 19

• And we've used E here

END added.

Program 5 The full reverse list program

INDEX ITEM
1 - 8
2 15
3 23
4 - 4
5 19

19
- 4
23
15
- 8

READY.
IS Program 5.

To solve the problem in Example 3 we've done quite a bit of programming but the
program only works for a list of five numbers. A small reward for a great effort! But
if we change statements 20-50 which counted the five items, we can make the
program accept any number of items so long as we know the number before
inputting.

But we need to make DIM M$ depend on the number of items we are inputting.
Because the counter C will go up to N+1 (watch line 50), DIM M$ needs to be N+1 .

99

10 REM ••INPUT A LIST OF ITEMS**

| S ^ Y ITEMS ,N THE L , S T " ; N] - S S S l S S e "
25 D1MM$(N+1) | i s t M $ (C)

35 REM **START OF LIST INPUT LOOP**
40 INPUT "ENTER THE NEXT ITEM ";M$(C)
50 LET C=C+1
60 IFC<=NTHEN35

Program 6
To be able to input any number of items of data into individual store locations with
just half a dozen statements represents a significant improvement in programming
technique. But, of course, we are never satisfied! Why should we bother to count
the items, especially if the list is long, when we can get the computer to do it for us?
The next exercise asks you to do this.

Exercise 1
Write a BASIC program to (a) input a list of numbers of unknown length; terminate
the list with the dummy '-9999'. Call the list P(C) and assume that the list will be 30
or less items. So DIM P (31) will declare the list. Check your answer,
(b) Now modify your program to output those items whose index is odd.

4.5 The FOR . . . NEXT . . . loop

As we have said (repeatedly!) a computer is good at lots of repetitive operations. In
order to control these operations we usually have to count them. Since we
introduced the idea of counting in Unit 2, we have used the following sequence of
statements several times.

LETC=1

LETC=C+1
IF C<=N THEN return to

Program 7
These repetitive operations are so important in programming that special provision
is made for them. In BASIC this is done by means of the FOR... NEXT... facility.

The sequence in Program 7 has three elements:

LET C = 1 which starts the count
LET C=C+1 which defines the incremental step (1 in this case; 2 in line 270

of the answer to Exercise 1)

C<=N which stops the counting process
The same features occur in the FOR . . . NEXT . . . loop where the above
sequence becomes:

100

Program 8

Notice that NEXT C returns control to the line FOR C=1 TO N STEP (1) without
you having to put the line number of FOR C . . . in the NEXT C statement.

Arrays and FOR... NEXT loops were made for each other. Together they form
possibly the most potent facility of the BASIC language. Let's look in detail at how
these loops work, and then repeat some of our earlier routines with lists using this
new facility.

Examples of FOR... NEXT loops in action

Programs 9—12

Commdore 64 BASIC does not insist upon brackets around the STEP number.
SAQ2
Write out the lists of numbers printed out by the following loops.

101

(a)
10 FOR l=4 TO 10 STEP (2)
20 PRINT I
30 NEXT I
RUN
4
6
8
10
READY.

(b)
10 FOR K=11 TO 4 STEP (-2)
20 PRINT K
30 NEXT K
RUN
11
9
7
5
READY.

(c)
10 FOR J — 3 TO 10 STEP (3)
20 PRINT J
30 NEXT I
RUN
- 3
0
3
6
9
READY.
(d)
10 FOR L=4 TO - 5 STEP (-2)
20 PRINT L
30 NEXT L
RUN
4
2
0
- 2
- 4
READY.

(a)
10 FORE=1 T0 9STEP(2)
20 PRINT E
30 NEXTE

(b)
10 FOR F= - 3 0 TO -18 STEP(3)
20 PRINT F
30 NEXTF

(d)
10
?n
30

FORH = - 2 T O - 1 1 STEP(-4)
PRINT H
NEXTH Programs 13-16

(c)
10 FORG=8TO-4STEP(-5)
20 PRINT G
30 NEXT G
FOR. . . NEXT... with STEP (1)
The above examples and SAQ's had steps of 2, 3, - 2 , - 4 , and - 5 . Quite often,
however, we simply want to use a step of 1. When that is the case, you can omit
STEP(1) from the statement. Thus

FORC=1 TON

Replaces lines 20—50

NEXTC Program 17
is taken by the computer to mean a step of 1.

Input/output routines with FOR... NEXT
Routines are made easier by the FOR. . . NEXT facility. For example we can
rewrite Program 5 using these loops. Notice that at lines 20 and 150 we require a
step of 1 so STEP(1) has been omitted.

Comparison with Program 5

5 REM ••INPUT A LIST OF 5 NAMES**
10 PRINT CHR$(147)
12 PRINT "LIST HANDLING PROGRAM**
15 DIM L$(5)
20 FOR C-1 TO 5
25 REM **START OF LIST INPUT L O O P * * "
30 INPUT "ENTER THE NEXT NAME ";L$(C)
40 NEXT C
50 REM * * * * * * • • • • • • • • •
60 REM • • • • • • • • • • • • • • •
100 REM ••DISPLAY THE TABLE**
110 PRINT
120 PRINT
130 PRINT "INDEX","NAME"
140 PRINT
145 REM **START OF TABLE PRINT LOOP - Replaces lines 140^170
150 FOR D=1 TO 5
160 PRINT D,L$(D)
170 NEXTD
180 REM * * * * * * * * * * * * * * *
190 REM * * * * * * * * * * * * * * *
200 REM **OUTPUT LIST IN REVERSE ORDER**
210 PRINT
220 PRINT
225 REM **REVERSE PRINT LOOP**
230 FORE=5T0 1 S T E P - 1 _ _ D . ., o o n o c n

240 PRINT E L$(E) T - Replaces lines 230—260
250 NEXT E '
280 END - 1 Program 18 Using FOR. . . NEXT.. . to reverse a list

102

RUN
LIST HANDLING PROGRAM
ENTER THE NEXT NAME? DICKENS
ENTER THE NEXT NAME? HARDY
ENTER THE NEXT NAME? SHOW
ENTER THE NEXT NAME? AUSTEN
ENTER THE NEXT NAME? ORWELL

INDEX NAME
1 DICKENS
2 HARDY
3 SNOW
4 AUSTEN
5 ORWELL

5 ORWELL
4 AUSTEN
3 SNOW
2 HARDY
1 DICKENS
READY.

IS Program 18.

General FOR... NEXT loop
The FOR... NEXT loop can be expressed in quite general terms as

FOR I = S TO F STEP (J)

NEXT I

providing that S, F and J are given 'reasonable' values before the loop is executed.
Unreasonable values would be something like

S=2, F=10, andSTEP(-3)

since you can't get from 2 to 10 in steps of - 3 , in the normal course of events.

Exercise 2
In Exercise 2 of Unit 2 you wrote a program (Program 19) to calculate the yield on
an investment for a period of years to be specified. Re-write lines 40-90 of the
program using a FOR... NEXT loop.

Exercise 3
If you are mathematically inquisitive you might like to try the following which
demonstrates the potential of the FOR... NEXT loop. Write a program to tabulate
the squares and cubes of the odd integers from 1 to 21 inclusive.

Output display
We always aim at a clear presentation of output data on the screen or printer. The
FOR... NEXT facility is used widely in presenting output routines.

103

Use to skip lines. As you saw in the layout of letters in Unit 3 it is useful to 'print'
blank lines. The following routine does this for you.

10 REM **FOR. . . .NEXT**
15 PRINT CHR$(147)
20 REM * *TO SKIP LINES IN A PRINT ROUTINE**
30 PRINT "HELLO"
35 REM **START OF LOOP**
40 FORH=1TO10
50 PRINT
60 NEXT H
70 PRINT "HELLO FROM 11 LINES BELOW"
80 END

•instruction to print 10 blank lines

HELLO FROM 11 LINES BELOW

[0 Program 19.

Drawing a line. We may wish to print lines across the screen or page, e.g. to
separate blocks of data or just to underline. The following routine does this.

10 REM **FOR. . . .NEXT**
15 PRINT CHR$(147)
20 REM * *TO DRAW LINES**
25 REM **START OF LOOP**
30 FOR M-1 TO 40
40 PRINT"*";
50 NEXT M
60 PRINT
90 END

Program 20
RUN

• * • * * * * * + • * * * * * * *

READY.

SAQ3
Why does line 40 in Program 20 have ; at the end of the line? What happens if line
40 is 40 PRINT "•"?
E Program 20.

Loops in flowcharts
Loops are so important that they have a special flowchart symbol of their own:

104

1 IN

start

step

finish OUT

Figure 4a Flowchart symbol for a FOR... NEXT... loop

The floating ends are the connections to the activity:

-^-O

Figure 4b Flowchart symbol's relationship to activity

4.6 Nested loops
Program 20 drew a line of 40 asterisks. We can re-write the program so that we
can specify in line 30 a number of asterisks and so vary the length of the line. So
with the program:

10 REM **LINES OF DIFFERENT LENGTH**
15 PRINT CHR$(147)
20 LETN=1Z1—
30 FOR M-1 TO N
40 PRINT"*";
50 NEXTM
60 PRINT
70 END

we get

RUN
•
READY.

To vary the line length we simply key in

20 LET N=required length

number to go in line 30

Program 21

105

and key run;

20 LETN=2

RUN
• •

READY.

20 LETN=3

RUN
• • •
READY.
20 LET N=4

RUN
• • • •
READY.

20 LETN=8

RUN
• • • • • • • •

READY.

20 LETN=16

RUN
•*••••••••••••••

READY.

20 LETN=32

RUN
• * • • • • • • • • • • • • * * • • • • • • • • • • • • • • • •
READY.

IS Program 21.
Nested FOR... NEXT loops
You have seen in Program 21 how you can control the effect of the FOR... NEXT
loop of lines 30-50 by changing the value of N. We hope by now that the 'obvious'
question springs to your mind: 'Why not control the value of N by using another
FOR... NEXT loop?' The following program does just that. The M-loop of lines
30-50 is itself controlled by the N-loop of lines 20-70. The M-loop is said to be
'nested' within the N-loop.
10 REM ••NESTED FOR . . . NEXT LOOPS**
12 PRINT CHR$(147)
15 REM **START OF OUTER LOOP**
20 FORN=1T0 16

106

25 REM **START OF INNER LOOP**
30 FOR M=1 TO N
40 PRINT"*'1; .
50 NEXT M Inner loop: controls number
55 REM **END OF INNER LOOP** o f * i n e a c h r o w

60 PRINT „ , , , . t.
70 NEXT N ~ 0 u t e r l o o p : c o n t r o l s t n e

75 REM **END OF OUTER LOOP** r o w s

80 END
Program 22 Nested loops

RUN
•
••
•••
••••
•••••
••••••
•••••••
••••••••
•••••••••
••••••••••
•••••••••••
••••••••••••
•••••••••••••
••••••••••••••
•••••••••••••••
•••*•••••••••••*
READY. .. __. .

It is important that you understand how this works. For example, when the
computer has just finished printing the 9th row of asterisks N will be 9. It leaves the
inner loop (line 50) and control goes to the outer loop (line 60). A blank line is
printed and N then increases to its next value of 10. Control reverts to the inner
loop at line 30. The computer then goes around the inner loop (lines 30-50) ten
times before exiting again to line 60.
B Program 22.
More print patterns from loops
If generating print patterns with loops appeals to you, here is another one plus two
Exercises.
10 REM **NEST FOR . . . NEXT LOOPS**
12 PRINT CHR$(147)
14 LETP=1
15 REM **START OF OUTER LOOP**
20 FOR N=1 TO 5
22 LET P=2*P
25 REM **START OF INNER LOOP**>
30 FOR M=1 TO P
40 PRINT"*";
50 NEXT M
55 REM **END OF INNER LOOP**
60 PRINT Program 23

Multiplies current value of
P by 2 for each pass
around loop.

107

70 NEXT N
75 REM **END OF OUTER LOOP**
80 END

RUN
* * P= 2
* * * * P= 4
• * • * • • * • p= 8
* * * * • * * • * • * • * * * * P=16
• • • • • • • • • • • * * * * * * * • * * * * • * • • • • + • • P=32
READY.

IS Program 23.

Exercise 4
Write a program using nested loops to print out the 7,8 and 9 multiplication tables.

Exercise 5
Write a program using nested loops to print out rectangles of asterisks of
dimensions to be chosen by the user.

4.7 Interchanging
We considered the problem of finding the smaller of 2 numbers in Unit 2, and the
smallest of 3 in Unit 3. In this Unit we have done exercises on interchanging items
of a list, in preparation for writing an interchange program.

We have been comparing the items of a list with that at position 1, and
interchanging if the item in the list is smaller than that at position 1. When you did
this in SAQ 1, you did it manually and we have not yet looked at the problems of
writing a program to perform the interchange. We can't just say

Copy A into B and then B into A

since the first transaction 'copy A into B' overwrites and destroys what's in B, giving
us copies of A in A and in B. Instead we have to put the contents of B away in some
safe temporary store before we overwrite B with A. We can show the process
diagrammatically: i

TEMP.-B
B*-A

A.-TEMP

r~
Where * - means place the number in the right hand store into the left hand store.

Suppose, for example, you want to sort a list of names N$-list and you want to
interchange the first name, N$(1) with some other name N$(K) at position K. This
can be done using a temporary store location T$:

T
T$«-N$(K)

N$(K)«-N$(1)
N${1)-T$

1

108

Remember that it is the contents of N$(1) and N$(K) that are being swapped.
Suppose N$(1)=FRED and N$(K)=JIM then this is what is happening:

start
next stage
next stage
end

Store locations

N$(1)

FRED
FRED
FRED
JIM

N$(K)

JIM
JIM
FRED
FRED

T$

JIM
JIM
JIM

(The fact that T$ still has JIM in it doesn't matter: we have achieved the object
which is to swap the locations of FRED and JIM).

Flowchart for name sort
In the number sort (SAQ 1) we wanted to put the lowest number at the top of the
list. So we test each name in turn against the one currently at the top of the list and
interchange only if the name under test comes before the one at the top of the list.
A flowchart for this is:

counter starts at 2

compare

interchange if needed

add 1 to counter

finished?

Figure 5a Flowchart for interchange

109

Or, if we want to use the special flowchart symbol for FOR... NEXT..., it would
look like:

—>—

I

<^ I N

K<-2

K—K+1

«_—__

KsN

/ N $ (1) ^
<

V N$(K) y

- * -<0 OUT

v T

L F

interchange J

1

Figure 5b Flowchart for interchange with FOR... NEXT... symbol

This new routine can now be used to construct a program.

Example 4
Write a program to enter a list of names of unknown length into an array, print out
this list with index in input order. By means of the interchange routine place the
name of lowest alphabetic value in position 1 in the list, and output the new list.

Solution

f start j

1

/ input
/ of nam
/unknowr

30-100

a list /

i length/

180-340

/ display this /

/ index /

400-470

/interchange the/
/ Inwest in / ^
/ a-order /

/ into position 1 /

500-570

/ out[

/ with

1

>ut this /
H list /
index /

!

f stop J

Figure 6 Flowchart for Example 4

110

print list

Interchange program
10 REM **FIRST IN ALPHA-ORDER**
15 PRINT CHR$(147)
20 PRINT "FIRST ITEM IN ALPHA-ORDER"
25 DIM N$(30)
30 PRINT "ENTER A LIST OF NAMES ONE BY ONE'
40 PRINT "END THE LIST WITH ZZZZ"
50 PRINT
60 LET 1=1
65 REM **INPUTTING LIST**
70 INPUT "NEXT NAME ";N$(I)
80 IFN$(I)="ZZZZ"THEN190
90 LET 1=1+1
100 GOTO 65
180 REM * * * * * * * * * *
190 REM * *WE DON'T WANT ZZZZ IN OUR LIST, S O * *
200 LET N H - 1
210 REM * * * * * * * * * *
300 PRINT
310 PRINT "INDEX","ITEM"
315 REM **START OF PRINT LOOP**
320 FOR J=1 TO N
330 PRINTJ,N$(J)
340 NEXT J
400 REM * * * * * * * * * *
410 REM **INTERCHANGE ROUTINE**
420 FOR K=2 TO N
430 IF N$(1)<N$(K) THEN 465
440 LET T$=N$(K)
450 LETN$(K)=N$(1)
460 LETN$(1)=T$
465 REM **JUMP TO HERE IF IN ORDER**
470 NEXT K
500 REM * * * * * * * * * *
505 REM **OUTPUT INTERCHANGED LIST**
510 PRINT
520 PRINT "LIST AFTER INTERCHANGE"
530 PRINT
540 PRINT "INDEX","ITEM
550 FOR L-1 TO N
560 PRINT L,N$(L)
570 NEXT L
580 END

inputting list

finding number
of names
entered

interchange

print interchanged order

Program 24 Finding the first item in alphabetical order

Interchange program runs

RUN
FIRST ITEM IN ALPHA-ORDER
ENTER A LIST OF NAMES ONE BY ONE
END THE LIST WITH ZZZZ

111

NEXT NAME? JONES
NEXT NAME? PRICE
NEXT NAME? DAVIES
NEXT NAME? EVANS
NEXT NAME? ZZZZ

INDEX ITEM
1 JONES
2 PRICE
3 DAVIES
4 EVANS

LIST AFTER INTERCHANGE

INDEX ITEM
1 DAVIES
2 PRICE
3 JONES
4 EVANS
READY.

If a print routine is inserted in to the interchange procedure as below (lines 470-478),
then we can look at the effect of each pass round the loop.

400 REM * * * * * * * * * *
410 REM **INTERCHANGE ROUTINE**
420 FOR K=2 TO N
430 'F N$(1)<N$(K) THEN 465
440 LETT$=N$(K)
450 LETN$(K)=N$(1)
460 LETN$(1)=T$
465 REM ••JUMP TO HERE IF IN ORDER**
470 NEXT K
472 FOR L-1 TO N
474 PRINT N$(L);" "
476 NEXT L
478 PRINT
500 REM * * * * * * * * * *
505 REM **OUTPUT INTERCHANGED LIST**
510 PRINT
520 PRINT "LIST AFTER INTERCHANGE"
530 PRINT
540 PRINT "INDEX","ITEM"
550 FOR L-1 TO N
560 PRINT L,N$(L)
570 NEXT L
580 END

Assignment 4
1. It will probably have occurred to you by now that, having placed the item of
lowest value into position 1, we could repeat the procedure by placing the item of
lowest value in the remainder of the list into position 2, and so on for the rest of the
list. The sort of the complete list in this way demands nested FOR... NEXT...
loops.

print routine to observe pass round the loop

112

2. Input a file of names and associated telephone numbers into two lists N$(l)
and T$(l) respectively. Use the index I to search through the file to find a particular
name, and if found then to output the associated telephone number.
Modify Program 24 to sort a complete list into alphabetical order.

Objectives of Unit 4
Now that you have completed this Unit, check that you are able to write simple
programs using:

List store location names
to input lists •
to print lists D

Counters to count the number of items in a list. •

FOR. . . NEXT. . . loops
to print a list •
to input a list •
to print * layouts •

Nested loops
to print * layouts D

Interchange routine •

Answers to SAQ's and Exercises
SAQ1
The six stages of the procedure are shown here in the following program run:

RUN
ENTER A LIST OF NAMES ONE BY ONE
END THE LIST WITH ZZZZ

NEXT NAME? 6
NEXT NAME? 8
NEXT NAME? 4
NEXT NAME? 7
NEXT NAME? 3
NEXT NAME? 9
NEXT NAME? 1
NEXT NAME? ZZZZ

INDEX
1
2
3
4
5
6
7

ITEM
6
8
4
7
3
9
1

113

6 8 4 7 3 9 1

4 8 6 7 3 9 1

4 8 6 7 3 9 1

3 8 6 7 4 9 1

3 8 6 7 4 9 1

1 8 6 7 4 9 3

LIST AFTER INTERCHANGE

INDEX ITEM
1 1
2 8
3 6
4 7
5 4
6 9
7 3
READY.
Exercise 1
Notice that we've used lots of REM statements to tell you how the program works.

5 DIM P(31)
1 0 REM * * A LIST OF NUMBERS OF UNKNOWN LENGTH**
15 PRINT CHR$(147)
17 PRINT "NUMBER LIST PROGRAM"
20 PRINT "ENTER THE ELEMENTS OF THE LIST"
22 PRINT "ITEM BY ITEM AS REQUESTED"
24 PRINT "END THE LIST WITH THE DUMMY -9999'"
26 PRINT
30 LET C-1 ~~
35 REM **START OF INPUT SEQUENCE**
40 INPUT "ENTER THE NEXT NUMBER";P(C)
50 IF P(C)=-9999 THEN 90 Input sequence
60 LET C=C+1
70 GOTO 35
80 REM * * * * * * * * * *
90 REM **REMEMBER 'C COUNTED -9999 AS AN ITEM**
100 LET N=C-1 1 , T a k i n 9 correct
110 REM * * * * * * * * * * total from counter
200 REM **OUTPUTTHE ITEMS WHOSE INDEX IS ODD**
210 REM ••3=14-2 . . 5=3+2 . . 7=5+2 . . ETC . . . * *
220 LET C-1
230 PRINT
240 PRINT
250 PRINT "ODD INDEX","ITEM"
255 REM **OUTPUT SEQUENCE**
260 PRINT C,P(C) • Output sequence
270 LET C=C+2
280 IF C < = N THEN 255
290 END J Program 25

114

RUN
NUMBER LIST PROGRAM
ENTER THE ELEMENTS OF THE LIST
ITEM BY ITEM AS REQUESTED
END THE LIST WITH THE DUMMY "-9999'

ENTER THE NEXT NUMBER? 42
ENTER THE NEXT NUMBER? - 1 2
ENTER THE NEXT NUMBER? 37
ENTER THE NEXT NUMBER? 92
ENTER THE NEXT NUMBER? 11
ENTER THE NEXT NUMBER? - 3
ENTER THE NEXT NUMBER? -9999

ODD INDEX ITEM
1 42
3 37
5 11
READY.

SAQ2
(a) 1,3,5,7,9. (C) 8,3,-2.
(b) -30 , -27 , -24 , -21 , -18 . (d) - 2 , - 6 , - 1 0 .

Exercise 2
10 REM ••COMPOUND INTEREST**
15 PRINT CHR$(147)
1 7 PRINT "BANK ACCOUNT INTEREST"
20 PRINT "ENTER YEARS, DEPOSIT AND % INTEREST"
30 INPUT N,D,P
35 REM • * * • • • • • • *
40 FOR C=1 TO N
50 LETY=(P*D)/100
60 PRINT "YEAR ";C;"YIELD ";Y
70 LETD=D+Y
80 NEXT C
90 REM • • • * * • • * * •
100 END

Program 26
RUN
BANK ACCOUNT INTEREST
ENTER YEARS, DEPOSIT AND % INTEREST
?5,500,11.25
YEAR 1 YIELD £56.25
YEAR 2 YIELD £62.578125
YEAR 3 YIELD £69.6181641
YEAR 4 YIELD £77.4502075
YEAR 5 YIELD £86.1633559
READY.

The FOR NEXT .. . loop

115

ExGrcisfi 3
10 REM **SQUARES AND CUBES**
15 PRINT CHR$(147)
20 PRINT "NUMBER","SQUARE","CUBE"
30 FOR 1=1 TO 21 STEP 2
40 LET S=l* l
50 LETC=I*I*I
60 PRINT l,S,C
70 NEXT I
80 END Program 27
RUN
NUMBER SQUARE CUBE
1 1 1
3 9 27
5 25 125
7 49 343
9 81 729
11 121 1331
13 169 2197
15 225 3375
17 289 4913
19 361 6859
21 441 9261
READY.
SAQ3
; suppresses the print return so that the print head stops after printing * . Thus the
next * will be printed on the same line. Without; the asterisks would be printed in a
column 40 print lines deep.

Exercise 4
10 REM **MULTIPLICATION TABLES**
20 PRINT CHR$(147)
30 PRINT "MULTIPLICATION TABLE"
40 FOR T=7 TO 9
50 FORK=1T0 12
60 LET P=K*T
70 PRINT K:"TIMES ";T"=";P
80 NEXT K
90 PRINT
100 NEXTT
110 END Program 28
RUN
MULTIPLICATION TABLE
1 TIMES7 = 7
2 TIMES 7 = 14
3 TIMES 7 = 21
4 TIMES 7 = 28
5 TIMES 7 = 35
6 TIMES 7 = 42
7 TIMES 7 = 49
8 TIMES 7 = 56
9 TIMES 7 = 63

116

10 TIMES 7 = 70
11 TIMES 7 = 77
12 TIMES 7 = 84

1 TIMES 8 = 8
2 TIMES 8 = 16
3 TIMES 8 = 24
4 TIMES 8 = 32
5 TIMES 8 = 40
6 TIMES 8 = 48
7 TIMES 8 = 56
8 TIMES 8 = 64
9 TIMES 8 = 72
10 TIMES 8 = 80
11 TIMES 8 = 88
12 TIMES 8 = 96

1 TIMES 9 = 9
2 TIMES 9 = 18
3 TIMES 9 = 27
4 TIMES 9 = 36
5 TIMES 9 = 45
6 TIMES 9 = 54
7 TIMES 9 = 63
8 TIMES 9 = 72
9 TIMES 9 = 81
10 TIMES 9 = 90
11 TIMES 9 = 99
12 TIMES 9 = 108

READY.

We still have a lot to learn
about tabulation

Exercise 5
5 REM **RECTANGLE**
7 PRINT CHR$(1477)
10 INPUT "LENGTH OF RECTANGLE?" L
20 INPUT "WIDTH OF RECTANGLE?" W
30 FOR 1=1 TO W
40 FOR J-1 TO L
50 PRINT"*";
60 NEXT J
70 PRINT
80 NEXT I
90 END

Program 29

117

118

UNIT 5
An end to strings and PRINT

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Introduction

Length of a string of characters

Frequency tables

Frequency diagrams

Tabulation

Cutting up strings

VAL

TAB footnote: control characters

Assignment 5

Objectives of Unit 5

Answers to SAQ's and Exercises

120

120

121

124

127

130

136

140

140

141

141

119

5.1 Introduction
The earlier units were concerned with introducing topics; new ideas came thick
and fast. This Unit is mainly concerned with strings, but you will meet the TAB
statement which is an important addition to your printing repertoire. The title of this
Unit is a slight exaggeration, but by the end of this Unit you will have met most of
the main string and print functions of the BASIC language.

5.2 Length of a string of characters
We asked the question 'How long is a piece of string?' in Unit 3. At the time it may
have seemed a rather facetious question, but the number of characters contained
in a particular string storage location is often a vital piece of information. This is
especially so if we are trying to use the memory allocation of a particular computer
as efficiently as possible.

In BASIC the operation LEN(A$) gives the length of A$ as a number of characters.
Thus:

If A$="FRED" then LEN (A$) = 4
If B$="l" LEN (B$) = 1

SAQ1
What are the values of the following:
(a) LEN (C$) where C$= "ANN" (c) LEN (E$) where E$ = "72"
(b) LEN (D$) where D$ = "A" (d) LEN (F$) where F$ = "CAT 123"

Example 1
Write a BASIC program to input a list of words, ending with ZZZZ, and to print out
the length of each word.

Solution
We have arranged the program to read in the words from a DATA statement in
order to reduce the inputting time needed. Each word read from DATA is held in
W$ (line 100) and its length stored in L (line 120). Then the result is printed out at
line 140.

10 REM**LENGTHOFAWORD**
20 REM *
30 REM ••READ WORDS FROM A DATA LIST ONE BY ONE
40 REM AND OUTPUT THEIR LENGTHS**
50 PRINT CHR$(147)
90 REM **START OF READING LOOPjki*
100 READW$
110 IFW$="ZZZZ"THEN190
120 LETL=LEN(W$)
130 PRINT
140 PRINT W$;" HAS ";L;" LETTER(S)"
150 GOTO 90
190 REM **ALL DONE**
200 END
910 DATA DEVISE,AN,ALGORITHM,AND,WRITE,A,BASIC,PROGRAM
920 DATA ZZZZ

Program 1 Measuring word lengths

READ, LEN, PRINT cycle

120

RUN

DEVISE HAS 6 LETTER(S)

AN HAS 2 LETTER(S)

ALGORITHM HAS 9 LETTER(S)

AND HAS 3 LETTER(S)

WRITE HAS 5 LETTER(S)

A HAS 1 LETTER(S)

BASIC HAS 5 LETTER(S)

PROGRAM HAS 9 LETTER(S)

READY.

IS Program 1.

5.3 Frequency tables
Measuring the frequency with which something occurs is commonly needed in
handling numerical information. For example, a knowledge of the frequency with
which certain letters occur in normal language usage is an important factor in
code-breaking activities. In order to measure frequencies it is useful to be able to
use the simple technique used in statistical analysis of tally marks. This first paper
and pencil example introduces this.

Tally marks
Example 2
Find the frequency with which each vowel occurs in the words in the following
DATA statements.

900 DATA THE, HORSE, STOOD, STILL, TILL, HE, HAD, FINISHED, THE, HYMN
910 DATA WHICH, JUDE, REPEATED, UNDER, THE, SWAY, OF, A,

POLYTHEISTIC
920 DATA FANCY, THAT, HE, WOULD, NEVER, HAVE, THOUGHT, OF,

HUMOURING
930 DATA IN, BROAD, DAYLIGHT, ZZZZ

Solution
There are two ways to approach the problem.
(a) Go through crossing out and counting up all the A's, and then through again

counting the number of E's, etc. This would involve 5 passes through the data
for fairly sparse information (i.e. for a low hit-rate);

(b) Draw up a table as below and take each vowel in sequence:

THl£: put a tally mark in the E row;

H(£>RS£: put a mark in the O row, followed by another in the E row;

ST0OD: put two more marks in the O row.

121

Vowel

A

E

1

0

U

Count

1444

4444

4444

4444

1444~

1111

1444

1444"

1444

1

4444 1

Total count
or frequency

9

16

10

10

6

900 DATA THE, H&RSE, ST00D, STfLL, T(LL, HE, HAD, FMSHED, THE, HYMN
910 DATA WH/CH, JI0DE, REPEATED, l/JNDER, THE, SWAY, (£>F, A,

PdLYTHE/ST/C
920 DATA FANCY, THAT, HE, WGMLD, NEVER, HAVE, THGMGHT, <&F,

HI / IMGMR/NG
930 DATA (N, BR0AD, DAYLIGHT, ZZZZ

Figure 1 Completed tally count

SAQ2
Use the tally method to draw up a frequency table of the lengths of words for the
data in Example 2.

Getting the computer to count
Having found a paper and pencil method of counting frequencies, we now need a
method of getting the computer to do the counting of a list. The power of lists is
derived from an apt use of the index. In question 2 of Assignment 4 we saw how
the items of two lists of data (name and telephone number lists) were linked by a
common index. The 3rd member of the number-list was the telephone number for
the 3rd name in the name-list, etc. Generally the l-th member of the name-list is
linked to the l-th member of number-list.

Suppose we want to count the number of times the digits 0 , 1 ,
sequence. We can use 10 counters:

9 occur in a

C(0), C(1), C(2) C(9)

each of which will be zero at the start. To count the digits in 473808 we take the
first digit in the sequence: 4. 1 is added to C(4) and so on:

Digits entered

start
4
7
3
8
0
8

C(0)
0
0
0
0
0
1

, 1

Counters after entry

C(1)
0
0
0
0
0
0 '
0

C(2)
0
0
0
0
0
0
0

C(3)
0
0
0
1
1
1
1

C(4)
0

C(5)
0
0
0
0
0
0
0

C(6)
0
0
0
0
0
0
0

C(7)
0
0

C(8)
0
0
0
0
1
1
2

C(9)
0
0
0
0
0
0
0

122

So the idea is that when I is entered at the key-board, increment C(l) by 1. This can
be achieved in just two BASIC statements.

• A list counter
120 INPUT I
140LETC(I)=C(I)+1

SAQ3
The sequence
10 INPUT N
20 LETC(N)=C(N)+1
is used to count the number of 0's, 1 's, 2's, etc. in the following input data: 3 , 1 , 0,
5,9, 9,6, 6,6,0,4,4, 2, 4 , 1 , 2,1,3,0, 2,1,3. What are the values of the following:
(a) C(3) after 3 numbers have been inputted.
(b) C(9) after 12 numbers have been inputted.
(c) C(1) after all the numbers have been inputted.
(d) C(0) after all the numbers have been inputted.

We will now use this method of counting a list in an example.

Example 3
Write a program to input a sequence of single digits and to output the frequency
with which each digit occurs.

Solution
A digit is one of the set of 10 numbers 0, 1, 2, 3 . . . 9. We will enter these one by
one, with the sequence being terminated by -9999. So far, very routine!

The counting list will have 10 counters:

C(0) ,C(1) ,C(2) . . . C(9)

The program to solve the complete problem has two parts, (i) The input and
increment routine incorporates the two statements 120 and 140 discussed above,
(ii) The output routine is driven by a FOR.. . NEXT loop, with index J running from
0 t o 9 .

10 REM **COUNT THE NUMBER OF TIMES EACH DIGIT IS ENTERED**
20 REM **AND STORE IN A COUNT-LIST C(l) * *
30 REM * * * * * * * * * * * * * * *
35 PRINT CHR$(147)
40 DIMC(10)
90 PRINT "LIST COUNTER"
100 PRINT "ENTER A SERIES OF INDIVIDUAL DIGITS"
110 PRINT "ENDING THE LIST WITH -9999"
120 INPUT "NEXT DIGIT"!
130 IF H-9999 THEN 190 input and counting routine
140 LETC(I)=C(I)+1
150 GOTO 120 _
190 REM **PRINT TITLES**
200 PRINT
210 PRINT "DIGIT COUNT"
220 PRINT
230 FOR J=0 TO 9
240 PRINT J, C(J)
250 NEXT J
260 END

printing table

Program 2 Counting with a list counter C(l)

123

Typical output
(After entering 3, 7, 6, 4, 9, 1, 4, 9, 2, 7, 8, 0, 1, 5, 2, 7, -9999.)

DIGIT COUNT
0 1
1 2
2 2
3 1
4 2
5 1
6 1
7 3
8 1
9 2

READY.

B Program 2.

Frequency table for string lengths
We have written two programs so far in this Unit: the first to find the lengths of
strings, and the second to build up a frequency table.

In the following exercise we want you to combine these two ideas to build up a
frequency table of lengths of words. If you wish you can use the words in the DATA
statements already used in Example 2. Assume that the words will not be longer
than 15 characters, so the length-list will have elements:

L(1), L(2), L(3) . . . L(15).

Exercise 1
Write a program to read in a set of words and to display a frequency table of their
lengths.

5.4 Frequency diagrams
Frequency diagram for number of vowels
The picture of tally marks in Figure 1 makes a more immediate impact on us and
somehow gives us more information about the distribution of frequencies of the
vowels than just the column of figures. So why not get the computer to print a
picture for us? You saw how to print rows of asterisks in Unit 4 by driving the print
head across the page (or screen) with a FOR... NEXT loop of variable range.

SAQ4
What will appear on the screen as a result of the following program?

10 READ A
20 FOR 1 = 1 TO A
30 PRINT"*";
40 NEXT I

124

45 PRINT
50 GOTO 10
100 DATA 2, 5, 7, 8, 3, 1

Program 3

We can do the same thing using the frequencies from Figure 1 to determine the
range and thus the number of asterisks printed across the page. This will generate
a picture of the distribution.

Example 4
Write a program to print out a frequency diagram for the distribution of vowels
given in Example 2.

Solution
Notice that this program draws the diagram from the frequencies we have already
calculated. We have stored these frequencies in the DATA statement in line 900.

We read the frequencies (lines 50 to 80) with a counter F(K) where F(1) is the
number of a's, F(2) the number of e's, etc.

Then we print asterisks across the page according to the value of F(K) (lines 220 to
250).

10 REM ••FREQUENCY DISTRIBUTION**
20 REM **PREPARATION PICTURE****
25 REM **FREQUENCY-LIST IS F(K)**
30 PRINT CHR$(147)
35 DIM F(6)
40 LETK=1
45 REM **START OF READ LOOP**
50 READF(K) 1
60 IFF(K)=-9999THEN110
70 LETK=K+1
80 GOTO 50 _
90 REM * • * * * • * * * *
100 REM **DON'T ADD -9999 TO LIST**
110 LETN=K-1
120 REM * * * * * * * * * *
200 REM **PRINT ROUTINE**
210 PRINT -.
220 FOR X=1 TO N
230 FOR Y-1 TO F(X)
240 PRINT " * "
250 NEXT Y
260 PRINT
270 PRINT
280 NEXT X
300 REM * * * * • • • * * * J

900 DATA 9,16,10,10,6,-9999

Program 4 Drawing a frequency distribution
RUN

• * • * • • • • •

• * * * • * * * • • • • • • • •

reading the frequencies
• and storing them in F(1),
F(2) . . .

printing * across the page

125

••••••••••

••••••••••

• • • • • •
READY.

Kl Program 4.

Frequency diagram for length of words
If we want to draw a diagram of the frequencies with which the word lengths
occurred in SAQ 1, we need to modify Program 4. Two modifications are
necessary:

First the frequency list contains more items. There are 15 frequencies (1 to 15)
plus -9999, so that's 16 items and we add 35 DIM F(16) to Program 4.

Second the print routine at line 220 will run into problems when the frequency is zero.
We can't drive the FOR . . . NEXT loop from 1 to 0! So we must prevent the program
going on to the FOR... NEXT loop when the frequency is zero. To do this we add 225
IF F(X)=0 THE 255
255 REM **JUMP TO HERE IF ZERO FREQUENCY**
So the program is

insert 35 DIM F(16)
Program 4

insert 225 IF F(X)=0 THEN 255

And of course, line 900 is now:

900 DATA 1, 5, 4, 6, 9, 0, 1, 3, 1, 0, 0, 1, 0, 0, 0, -9999.
Delete line 270, to fit the whole display onto the screen.
A run of the modified Program 4 produces:

•
•••••
••••
••••••
•••••••••

•
•••
•

-print out ends about here!
READY.
Figure 2 Frequency diagram of modified Program 4

[K] Program 4 (modified).

126

5.5 Tabulation
We've got the essential ingredients of a picture, but it is still far from being a
meaningful diagram. It will help if we have the facility to move the print head across
the page or screen to any pre-determined position. In typing this is called
tabulation (to arrange in tabular or table-form). In BASIC the TAB function does
this for us.

We take the same approach as we did in Unit 3, namely to write a snippet of
program which explains itself - an approach well worth cultivating!

First, look at what happens if you number print positions across the screen:

50 PRINT"1234567890123456789012345678901234567890"
60 PRINT"A";TABJ5);"E";TAB(7);"I";TAB(19);"0";TAB(31);"U"

RUN
1234567890123456789012345678901234567890
A E I O U
READY.

Program 5

You can see that TAB(5) printed E at the sixth position. Why? Because the
machine counts print positions from position 0. This is demonstrated by Program 6
where the scale across the screen goes from 0:

50 PRINT"0123456789012345678901234567890123456789"
60 PRINT"A";TAB(5);"E";TAB(7);T;TAB(19);"0";TAB(31);"U"

RUN
01234567890123456789012345678901'23456789
A E I O U
READY.

Program 6

Now TAB(5) goes to the position labelled 5 but it is still in the sixth position across
the screen.

SAQ5
Write a program to print COL 1, COL 2, COL 3 across the screen with COL 1
starting at position 0, COL 2 at position 10 and COL 3 at position 20.

Variable TAB and its effects
We can drive line 60 of the vowel print with a FOR.. . NEXT loop to produce an
actual table.

50 FOR 1 = 1 TO 7
60 PRINT"A";TAB(5);"E";TAB(7);T;TAB(19);"0";TAB(31)
70 NEXT I

"U"

Program 7

127

RUN
A
A
A
A
A
A
A

E
E
E
E
E
E
E

0
0
0
0
0
0
0

u
u
u
u
u
u
u

READY.

Here is another example which shows how we can drive TAB with a variable. If we
use TAB(V) where V is a variable, we can drive the print head to different positions
across the screen. The program

Value of A in TAB(A) is determined
by the loop variable A.

Program 8

30 FORA=1TO10
40 PRINT TAB(A); "HELLO"
50 NEXT A
60 END

produces:

RUN
HELLO

HELLO
HELLO

HELLO
HELLO

HELLO
HELLO

HELLO
HELLO

HELLO
READY.
We can go one step further and combine these two effects in one program:

50 FOR 1 = 1 TO 7
60 PRINT TAB(0+I);"A";TAB(5+I);"E";TAB(7+I);"I";
65 PRINTTAB(19+I);"0";TAB(31+I);"U"
70 NEXT I
80 END Program 9
RUN
A E I O U

A E I O U
A E I O U

A E I O U
A E I O U

A E I O U
A E I O U

READY.
SAQ6
Write a program segment to input three numbers of the user's choice which will

128

place the string "HEADING" at three different positions across the same output
line.

TAB and the frequency diagram
We are now in a position to set out the frequency diagram of figure 2 in a more
attractive manner.

The print routine of the modified Program 4 (lines 200 to 300) was:

200 REM **PRINT R O U T I N E * * * * * * * * * * * *
210 PRINT
220 FOR X-1 TO N
225 IF F(X)=0 THEN 255
230 FOR Y=1 TO F(X)
240 PRINT " * "
250 NEXT Y
260 PRINT
270 PRINT
280 NEXT X
300 REM * * *

Program 4 (modified)

We add:
line 212 to print column headings.
line 214 to print a rule across the screen.
line 216 to start the column divides (the rest of the divides we printed by the

following loop).
line 222 (in the loop) prints X and F(X) across the page plus the column divides.

This line ends in ";" which makes the next PRINT instruction (line 240)
appear on the same line.

You will probably have to study this carefully to see all the detail in it:

10 to 120 see Program 4.

200 REM **PRINT ROUTINE**
210 PRINT
212 PRINT "LENGTH";TAB(8);"FREQ";TAB(14);"TALLY"
214 PRINT " "
216 PRINTTAB(7);"I";TAB(12);"I"
220 FOR X-1 TO N
222 PRINTTAB(2);X;TAB(7);"I";TAB(9);F(X);TAB(12);"I",TAB(14)
225 IF F(X)-0 THEN 255
230 FOR Y-1 TO F(X)
240 PRINT " • "
250 NEXTY
255 REM **JUMP TO HERE IF ZERO FREQUENCY**
260 PRINT
280 NEXT X
290 REM *
900 DATA 1,5,4,6,9,0,1,3,0,0,1,0,0,0,-9999

Program 10

129

RUN

LENGTH

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

FREQ

1
5
4
6
9
0
1
3
1
0
0
1
0
0
0

TALLY-

•
• • • • •
• • • •
• • • • • •
• • • • • • • • •

•
• • •
•

•

-212
•214
•216

230-250 as before but using
TAB(14) as a base line (from line 222)

effect of line 222
READY.

B Program 10

Exercise 2
Modify Program 4 to give a print-out similar to that developed for Program 10 and
to include the following points:
(a) an appropriate change of headings;
(b) a print-out of the letters A, E, I, O and U as appropriate in the left-hand

column;
(c) an appropriate scale at the base of the diagram.

5.6 Cutting up strings
Let's now look at a string which, though being an entity in its own right, contains
more than one item of information. For example, 23 June 1971 is a single date but
there are occasions when we only want to look at part of it, e.g. the month.

Filing dates
How many times have you been faced with a box on a form like this?

DATE

D D M M Y Y

If we look at D D M M Y Y the presentation has problems. Compare

23rd June 1971, or 230671

130

and 14th Sept 1973, and 140973.

The later date has the smaller number. Whereas with

4 July 1933, or 040733

15 Jan 1967, and 150167

the later date has the larger number. Clearly then D D M M Y Y is not very useful
for filing dates.

The solution is to put the dates in the form Y Y M M D D . This makes the four dates
above:

330704, 670115, 710623, and 730914

giving date and number consistency.

Dates are usually stored as numbers in the machine for use in calculations but are
entered as strings to allow checking procedures to occur before they are stored.

If we are interested in a salary increment, then the year and month parts of the
number would be important. If we are a music centre and send out reminders to
our clients every three months to have their pianos tuned, then only the month may
be important. The whole data-string is important in its own right, but we can see
that there may be valid reasons for cutting it up.

LEFT$(X$,I) and RIGHT$(X$,I)
If we want to consider part of a string, then we need a statement that will do this for
us. We will start with two such statements.

LEFT$(X$,I) gives the left-most I characters of the string X$.

e.g. if X$ = "CUTTING"
then LEFT$(X$,3) = CUT

RIGHT$(X$,I) gives the right-most I characters of X$.

e.g. RIGHT$(X$,4) = TING

Let's get the machine to tell us its own story. We enter a 6-character string and use
the index I of the FOR. . . NEXT loop to peel off sub-strings of lengths 1 to 6. The
scale (line 30) helps you to identify what's happening.
10 REM ••STRING TEST**
15 PRINT CHR$(147)
20 INPUT "ENTER A 6-CHARACTER STRING";X$
30 PRINT TAB(10); "1234567890"
40 FOR 1=1 TO 6
50 LETA$ = LEFT$(X$,I)
60 PRINT ;I;TAB(10);A$
70 NEXT I
80 END „

Program 11

131

Left strinc
RUN

I run

ENTER A 6-CHARACTER STRING? 123456

1
2
3
4
5
6
>
Now if we

50 LET A$

1234567890
1
12
123
1234
12345
123456

change line 50 of Program 11 to

= RIGHT$(X$,I)

and enter the string ABCDEF the result is:
Right string run

RUN
ENTER A 6-CHARACTER STRING? ABCDEF

1
2
3
4
5
6

1234567890
F
EF
DEF
CDEF
BCDEF
ABCDEF

READY.

E Program 11. Then change line 50 for RIGHTS.

SAQ7
If A$ = 1A2B3C4D, what are the following:

(a) LEFTS (A$,1) (c) RIGHTS (A$,3)
(b) LEFTS (A$,4) (d) RIGHT$(A$,4)
Cutting up strings of variable length
Program 11 is a bit awkward because we had to specify (in line 40) how long the
string was to be: 6 characters. But we might want to input strings of any length.
This is easily done by modifying Program 11 so that the computer measures the
length of the string we input and runs that length to control the FOR... NEXT loop.
The modifications required are:

10 REM ••SLICING VARIABLE STRINGS**
15 PRINT CHR$(147)
20 INPUT "ENTER A STRING";X$
30 PRINT TAB(10);"1234567890"
40 FOR 1=1 TO LEN(X$)
50 LETA$=LEFT$(X$,I)
60 PRINT l;TAB(10);A$
70 NEXT I
80 END

Program 12

LEN(X$) acts as the upper limit of the loop.

132

RUN
ENTER A STRING? HAMSTRING

1234567890
1 H
2 HA
3 HAM
4 HAMS
5 HAMST
6 HAMSTR
7 HAMSTR I
8 HAMSTR IN
9 HAMSTRING
READY.

IB Program 12.

Exercise 3
Write a program to output those words in the DATA statements of the answer to
Exercise 1 which began with a vowel.

Exercise 4
Write a program to change the output of the RIGHTS run of Program 11 to:

F
EF

DEF
CDEF

BCDEF
ABCDEF

MID$(X$,I,J)
We have used LEFTS and RIGHT$ to cut sections off either end of a string, but we
might want a section in the middle of a string, e.g. M M i n Y Y M M D D . There is
another BASIC statement that will give us a section of this type:

MID$(X$,I,J)

This will cut a sub-string of length J, starting from position I:

MID$(X$,I,J)

I length of sub-string from position I

position in the string

e.g., if X$ = POSITION

MID$(X$,5,2) = Tl

and MID$(X$,2,4) = OSIT

We will use the computer again to demonstrate MID$ at work by a further
modification to Program 11. We have already adapted Program 11 to allow us to
input a string of any length. This gave us:

133

10 REM ••STRING TEST**
15 PRINT CHR$(147)
20 INPUT "ENTER A STRING?"X$
30 PRINT TAB(10); "1234567890"
40 FOR 1-1 TO LEN(X$)
50 LET A$=LEFT$(X$,I)
60 PRINT;I;TAB(10);A$
70 NEXT I D ram ,_
80 END Program 13

If we now change line 50 to

50LETA$=MID$(X$,I,1)

and input SHOESTRING we get:
RUN
ENTER A STRING? SHOESTRING

1
2
3
4
5
6
7
8
9
10
READY.

1 2 3 4 5 6 7 8 9 0
S
H
O
E
S
T
R
I
N
G

Here MID$ is looking at all possible sub-strings of length 1.
If we now use

50LETA$=MID$(X$,I,2)

and input STRINGENT we get:

RUN
ENTER A STRING? STRINGENT

1 2 3 4 5 6 7 8 9 0
1 ST
2 TR
3 R I
4 I N
5 NG
6 GE
7 EN
8 NT
9 T 'null' string

READY.

E\ Program 13.

The last sub-string caused problems. We can't get a sub-string 2 characters long
from a string of 9 characters starting at the 9th character. In trying to do so we enter
a default state, and are given a null-string as a reward. There must always be

134

enough characters left of the original string to take out the sub-string.

Generally, if we wish to take out J characters we will not be able to start this sub
string beyond the (LEN(X$)-J+1)th position.

Yes, + 1 .
e.g., if LEN(X$) = 10 and J=3, then LEN(X$)-J=7;

but we can get a string of length 3 from a string of length 10 if we start at 8, i.e.
character positions 8, 9 10 of the original string.

SAQ8
Write a program to accept as input London telephone numbers in the form 01 XXX
XXXX and output the exchange codes only. (Remember that the spaces are
characters just as much as the digits.)

Mid-string program
As you have probably spotted, MID$ can cut left sub-strings and right sub-strings if
we want it to. In other words, it can give us every possible sub-string. Here is a
program that makes it do that for us. First it prints out all sub-strings of length 1,
then all of length 2 and so on until it prints the whole word which is the only sub
string of the same length as the word itself I

10 REM ••STRING TEST**
15 PRINT CHR$(147)
20 INPUT "ENTER A STRING?"X$
30 PRINT "J";TAB(5);"I";TAB(10); "1234567890"
35 FOR J=1 TO LEN(XS)

140 FOR 1=1 TO (LEN(X$)-J+1)
50 LETA$=MID$(X$,I,J)
60 PRINT; J;TAB(5);I;TAB(10);A$

|70 NEXT I I
72 PRINT" "
75 NEXT J
80 END

RUN
ENTER A STRING? STRING

J

2
2
2
2
2

I
1
2
3
4
5
6

1
2
3
4
5

1 2
S
T
R
I
N
G

ST
TR
R I
I N
NG

J is the length of the
sub-string, starting at I.

Program 14

Note headings and scale

135

3 1
3 2
3 3
3 4

4 1
4 2
4 3

5 1
5 2

6 1

READY.

STR
TR I
R I N
I NG

S T R I
T R I N
Rl NG

S T R I N
T R I NG

S T R I N G

E Program 14.

5.7 VAL
Having found a method of cutting up strings, we now need a method of examining
what we have got. One such method is to use VAL(A$) which looks at the numeric
value of A$.

VAL(A$) gives us the numerical value of the string A$ provided A$ starts with +, -
or a digit. In all other cases, VAL(A$) = 0.

Program to demonstrate VAL
In the following program we input seven strings (123456, 12345A ABCDEF)
and look at VAL for the string, VAL for the left-string of 2 characters and VAL of the
mid-string of 2 characters starting from the third character.

You will see that if the left-most character of the string (or sub-strings) is a digit,
then a value will be given, even if the rest of the string contains non-numeric
characters.

10 REM • •THE VAL FUNCTION**
15 PRINT CHR$(147)
17 REM ••START OF LOOP**
20 INPUT "NEXT STRING?"$
25 IF N$="ZZZZ" THEN 990
30 LET N=VAL N$
40 LET P=VAL(LEFT$(N$,2))
50 LET Q=VAL(MID$(N$,3,2))
60 PRINT" "
70 PRINT N,P,Q
80 PRINT" "
90 GOTO 17
990 REM **ALL DONE** Pmnram m
999 END Pr09ram 15

NEXT STRING? 123456

123456 12 34

136

NEXT STRING? 12345A

12345 12

NEXT STRING? 12 3 T A E

1234 " iT

NEXT STRING? 123ABC

123 12

NEXT STRING? 12ABCD

12 12

NEXT STRING? 1ABCDE

1 1

NEXT STRING? ABCDEF
0 0

S3 Program 15.

3 4
- VAL still gives the value of
.the left-most digits, even
though the string contains
AB-non-numeric
characters.

A is now at position 3, so
" VAL (A$)=0

SAQ9
What are the values of the following?
(a)VAL (A$) where A$=54 (f) VAL (LEFT$(F$,1)) where F$=8AM
(b)VAL(B$) where B$=76XY (g)VAL(LEFT$(G$,2)) where G$=Z35
(c)VAL(C$) where C$=A3 (h)VAL(RIGHT$(H$,1)) where H$=593
(d)VAL (D$) where D$ =-132 (i) VAL(RIGHT$(I$,2)) where l$=8AM
(e)VAL(LEFT$(E$,2)) where E$=593 (j) VAL(RIGHT$(J$,2)) where J$=Z35

Date string check
We are now in a position to see how VAL can be put to practical use, in this case to
check the accuracy of dates keyed into a computer. This is typical of what happens
in computers all the time. We know errors will frequently happen when data is
keyed in so, wherever possible, we try to use the computer to detect the errors.

Example 5
Write a program to carry out data checks on the 3 fields of a 6-digit date-string.

Solution
The date-string D$ has three fields in the form:

YY MM DD

•RIGHT$(D$,2)

MID$(D$,3,2)
,LEFT$(D$,2)

137

We are going to consider the years 1980 and 1981 only; so:
VAL(LEFT$(D$,2)) should have a range of 80-81,
VAL(MID$(D$,3,2)) should have a range of 1-12,
VAL(RIGHTp,2)) should have a range of 1-31.
This is a fairly complex process as we first need to decide on the steps involved.
These are given in the following flowchart (Figure 3).

Figure 3 Flowchart showing the four checks on YYMMDD

The program is fairly straightforward as it goes through each of the four checks. If
any check fails, the program prints an error message and returns control to line 20.

138

If there are no errors it runs through to line 410 where the correct entry ij
confirmed.
10 REM *DATE CHECK**
15 PRINT CHR$(147)
17 REM **START CHECK**
20 INPUT "NEXT DATE";D$
30 IF D$="ZZZZ" THEN 890
50 IF LEN(D$)=6 THEN 100 3 length check
80 PRINT "!!!!!!ERROR IN DATE LENGTH!!!!!!"
90 GOTO 17
100 REM *
110 PRINT "STRING LENGTH CORRECT"
120 IF VAL(LEFT$(D$,2))=80 THEN 200 ~ l year check
130 IF VAL(LEFT$(D$,2))=81 THEN 200 J
180 PRINT "!!!!!!ERROR IN YEAR FIELD!!!!!!"
190 GOTO 17
200 REM *
210 PRINT "YEAR FIELD CORRECT"
220 IF VAL(MID$(D$,3,2))<1 THEN 270 ~ j month check
230 IFVAL(MID$(D$,3,2))<=12THEN300 J
270 REM *
280 PRINT "!!!!!!ERROR IN MONTH FIELD!!!!!!"
290 GOTO 17
300 REM *
310 PRINT "MONTH FIELD CORRECT"
320 IF VAL(RIGHT$(D$,2))<1 THEN 370 ~| . . .
330 IF VAL(RIGHT$(D$,2))<31 THEN 400_l U d y u ^
370 REM * • * * * * * • * * * * • • • * * * * *
380 PRINT "HMHERROR IN DAY FIELD!!!!!!"
390 GOTO 17
400 REM *
410 PRINT "DATE STRING WITHIN LIMITS"
490 GOTO 17
890 REM **ALL DONE**
900 PRINT "END OF DATE CHECK"
910 END Program 16

Typical run
READY
RUN
NEXT DATE? 1234567
!!!!!!ERROR IN DATE LENGTH!!!!!!
NEXT DATE? 123456
STRING LENGTH CORRECT
!!!!!!ERROR IN YEAR FIELD!!!!!!
NEXT DATE? 803456
STRING LENGTH CORRECT
YEAR FIELD CORRECT
!!!!!!ERROR IN MONTH FIELD!!!!!!
NEXT DATE? 801256
STRING LENGTH CORRECT
YEAR FIELD CORRECT
MONTH FIELD CORRECT
!!!!!!ERROR IN DAY FIELD!!!!!!

139

NEXT DATE? 800131
STRING LENGTH CORRECT
YEAR FIELD CORRECT
MONTH FIELD CORRECT
DATE STRING WITHIN CHECK LIMITS
NEXT DATE? ZZZZ
END OF DATE CHECK
READY.

H Program 16.

5.8 TAB footnote: Control Characters
Some BASICs have a TAB statement of the form

PRINT TAB(X,Y); "-PUT YOUR MESSAGE HERE"

where X is the column number across the screen, and Y is the row number down the
screen, at which the start of the message will be printed. This is a useful faclity for
laying out a screen display in as few BASIC statements as possible.

This is not available in Commodore 64 BASIC. What is possible as an alternative, is
the use of cursor up/down/left/right commands, included within literal print
statements.
PRINT " 0 "
means move one row down the screen. The inverse Q symbol is obtained by touching
CRSR. To move two rows down would be
PRINT " 0 0 "
and so on j
To move one row up the screen, use SHIFT and CRSR which appears as
PRINT " H " i
Move one column to the right is
PRINT "Q"
obtained by touching CRSR

and move one column to the left is
PRINT "0D"
obtained by touching SHIFT and CRSFî

Finally, move to the top left hand corner of the screen is
PRINT "03"
obtained by touching CLR HOME

Any combination of these control characters inside the quote marks of a literal print
statement is permissible. It is most logical, however, to start at the top left hand corner
of the screen, and to move down one line at a time, finishing at the bottom. We shall be
using control characters in later Units of the course, but it is wise to use them
sparingly, as they can make program listings difficult to follow.

Assignment 5
1. Write a program to find the frequency with which each vowel occurs in the

words in the JUDE data of Example 2, giving also a summary of the total
number of vowels and consonants which occur in these words.

2. Write a program to input a string of characters and to output this string in
reverse order.

140

Objectives of Unit 5
Check that you are now able to write simple programs:

Using LEN(A$)

Using LETC(I)=C(I)+1 to count frequencies

To print a frequency diagram

Using TAB to print in columns

Using TAB to print a frequency table with headings and scale

Using LEFT$(X$,I)
and RIGHT$(X$,I)

Using MID$(X$,I,J)

Using VAL(A$)

•
•
•
•
•
•
•
•
•

Answers to SAQ's and Exercises
SAQ1
(a) 3; (b) 1; (c) 2 (not 72 - LEN counts the number of characters); (d) 7
(LEN counts the characters regardless of whether they are numbers, letters or
spaces).

SAQ2
Your answer should be:

Word length

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Count

1
4444-
1111
144+ 1
1444 1111

1
111
1

1

Total

1
5
4
6
9
0
1
3
1
0
0
1
0
0
0

SAQ3
(a) C(3)=1 (Not 3! C(3) has counted the number of 3's inputted.
(b) C(9)=2
(c) C(1)=4
(d) C(0)=3

141

Exercise 1
The solution appears in the following text.
SAG 4
• •
• • * • •
* * * * * * *
* * * * * * * *
* * *
•
There will be a message
? OUT OF DATA ERROR IN 10
SAQ5
10 PRINT"COL1 ";TAB(9);"COL2";TAB(19);"COL3"

SAQ6

10 INPUT A,B,C
20 PRINT TAB(A);"HEADING";TAB(B);"HEADING";TAB(C),"HEADING"
Exercise 2 Program 17

10 REM ••FREQUENCY DISTRIBUTION**
15 REM **PREPARATION PICTURE*****
20 REM **FREQUENCY-LIST IS F(K)**
22 PRINT CHR$(147)
25 DIMV$(5)
30 DIM F(6)
32 FOR 1=1 TO 5
34 READV$(I)
36 NEXT I
40 LETK=1
45 REM **START OF READING LOOP**
50 READ F(K)
60 IF F(K)=-9999 THEN 100
70 LETK=K+1
80 GOTO 45
90 REM * * * * * * * *
100 REM **DON'T ADD -9999 TO LIST***
110 LETN=K-1
120 REM * * * * * * * *
200 REM **PRINT R O U T I N E * * * * * * * * * * * * *
210 PRINT
212 PRINT"VOWEL";TAB(9);"FREQ";TAB(15);"TALLY"
214 P R I N T " = "
220 FOR X=1 TO N
222 PRINTTAB(2);V$(X);TAB(7);"I";TAB(10);F(X);TAB(14)"I";TAB(16);
230 FOR Y=1 TO F(X£J prints out from word list
240 PRINT " * "
250 NEXTY
260 PRINT
280 NEXTX
290 PRINT". . . .SCALE ";TAB(15)"0. . . .5. . . .0. . . .5. . . .0"
300 REM * * * * * * *
800 DATAA,E,l,0,U
900 DATA 9.16.10.10.6,-9999 Program 18

142

.reads in the vowels from
800 into a vowel list

reads in the frequencies
from 900

RUN
VOWEL FREQ T A L L Y

9
1 6
1 0
1 0
6

• • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • •

• • • • S C A L E • • • • 0 - - 5 - - 0 - - 5 - - 0
READY.
B Program 18.

SAQ7
(a)1; (b)1A2B; (c) C4D; (d) 3C4D.
Notice that LEFTS and RIGHTS treat all characters in a string in the same way. It
doesn't matter whether they are numbers or letters, they still get counted..

Exercise 3
10 REM • • I S LEFT-MOST CHARACTER A VOWEL?**
15 PRINT CHR$(147)
17 REM ••READ LOOP**
20 READ W$
30 IF W$="ZZZZ" THEN 9999
40 LETL$=LEFT$(W$,1)
50 IFL$="A"THEN 190
60 IFL$="E"THEN 190
70 IFL$=TTHEN190
80 IFL$="O"THEN190
90 IFL$="U"THEN190
100 GOTO 17
190 REM * * * * * * * * *
200 PRINT
210 PRINT L$,W$
220 GOTO 17
230 REM • • • • • • • • •
900 DATA THE,HORSE,STOOD,STILL,TILL,HE,HAD,FINISHED,THE,HYMN
910 DATA WHICH,JUDE,REPEATED,UNDER,THE,SWAY,OF,A,POLYTHEISTIC
920 DATA FANCY,THAT,HE,WOULD,NEVER,HAVE,THOUGHT,OF,HUMOURING
930 DATA IN,BROAD,DAYLIGHT,ZZZZ
9990 REM **ALL DONE**
9999 END Program 19

RUN

U UNDER

O OF

A A

0 OF

1 IN

READY.

EH Program 19.

143

Exercise 4
10 REM ••STRING TEST**
15 PRINT CHR$(147)
20 INPUT "ENTER 6-CHARACTER STRING!"X$
30 PRINT TAB(10);"1234567890"
40 FOR 1=1 TO 6
50 LETA$=RIGHT(X$,I)
60 PRINT:I:TAB(16-1);A$
70 NEXT I
80 END

Program 20
RUN
ENTER 6-CHARACTER STRING? ABCDEF

1234567890

1
2 F
3 EF
4 DEF
5 CDEF
6 BCDEF

ABCDEF

READY.

H Program 20.

SAQ8
5 PRINT CHR$(147)
10 INPUT "NEXT TELEPHONE NUMBER?"N$
20 LETA$=MID$(N$,4,3)
30 PRINT A$
40 GOTO 10

Program 21
IB Program 21.

SAQ9
(a) 54; (b) 76 (stops at letters); (c) 0 (starts with a letter. Therefore 0); (d)
-132; (e)59; (f) 8; (g) 0 (starts with a letter); (h) 3; (i) 0 (starts at A which
is a letter); (j) 35.

144

UNIT 6
Mainly about dice and games

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Random numbers

The RND function

Random number postscript

Two examples

Keeping scores

Short cuts in program writing

Concatenation

STR$

Assignment 6

Objectives of Unit 6

Answers to SAQ's and Exercises

146

147

152

153

158

159

161

162

133

164

165

145

6.1 Random numbers
The programming function which allows us to inject a sense of fun into a program
is the one which generates random numbers. This function is at the heart of many
of the game-playing and simulation programs which are now available for
microcomputers.

You will have met random numbers when playing games; games which involve
tossing a coin or throwing a dice, or drawing numbers out of a hat. These domestic
games have become institutionalised in casinos, bingo clubs, the ritualistic draw
for the FA Cup competition, and, of course, on a larger scale, the monthly draw for
premium bonds. Although we all have an intuitive idea of what we mean by a
sequence of random numbers, it is quite difficult to define the idea clearly. Let's
have a look at some number sequences to try and clarify this idea.

Here are three 'thought experiments' each of which involves throwing a six-sided
die fifteen times. Imagine that in the first experiment the uppermost values of the
dice had those values shown in sequence A shown in Figure 1. The second
experiment generated the numbers shown in sequence B and the third experiment
gave us the numbers shown in sequence C.

Sequence A
5,1,2,4,6,3,2,1,6,3,5,4,3,4,2
Sequence B
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
Sequence C
1,2,3,4,5,6,1,2,3,4,5,6,1,2,3
Figure 1 Random sequences?

Most of us would be quite happy that sequence A represented a typical sequence
of numbers generated by throwing a die fifteen times. This number sequence
shows no definable patterns or repetitions and each number occurrence would
seem to be 'equally likely'. We are not surprised at the appearance of any of the
sub-sequences in this main sequence. By contrast, however, sequence B is quite
unreasonable. We would certainly not expect to have thrown fifteen sixes with
fifteen consecutive throws of the die. We would be highly suspicious had this
happened and we would blame a weighted die. Intuitively, we would be prepared
to accept that sequence A had occurred 'by chance' but would not be prepared to
accept that this was so for sequence B.

Another feature about random number sequences which we learn by experience is
that, in long sequences, localised 'unfair' occurrences iron themselves out. What
we mean by this is that after, say, a hundred throws, we would expect on average
about sixteen ones, about sixteen twos, sixteen threes and so on. In other words,
over a longer sequence we expect the 'laws of chance' to apply. If we now consider
sequence C with its emerging pattern ' . . .6,1,2,3,4,5,6,1 . . . ' continued for a
hundred throws then this long term averaging-out effect would be satisfied. But
once again this sequence would not be intuitively acceptable to us as random
because we would not expect this sequential pattern to persist over a hundred
throws by chance alone.

These concepts of 'statistical averaging' over a sequence of throws, and of the
'reasonableness' of the patterning of the numbers in sequence are intuitively

146

acquired from games of chance. There are statistical techniques to test these two
features of a random number sequence but we will not be concerned with those
techniques here.

A computer is a very determinate machine. You will therefore not be surprised to
learn that quite special features have to be programmed into the machine to
achieve a sequence of random numbers. For our uses, however, we will assume
that a table of random numbers has been stored in the machine's memory. The
sequence of numbers is very long and generation would have to occur for a long
time before the sequence repetition became apparent. To achieve a different
random number sequence from one program execution to another, all that a
machine has to do is to start reading this table of random numbers from a different
point. This starting point is often referred to as the 'seed' and we talk about random
number sequences as starting from different seeds. Because the computer has to
'contrive' random number sequences, the numbers produced are usually referred
to as pseudo-random numbers.

6.2 The RND function
RND is a function that requires an argument. That is a number in brackets after it:

RND(A)

the argument of RND

'A' might be negative, zero or positive and the following program explores the effect of
different values for A.

10 REM • •THE RND FUNCTION**
15 PRINT CHR$(147)
20 INPUT "NEXT ARGUMENT FOR RND";A
30 FOR 1=1 TO 10
40 LETB=RND(A)
50 PRINT B
60 NEXT I
70 END

RUN
NEXT ARGUMENT FOR RND? - 1
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
2.99196472E-08
READY.

Program 1 Effect of A on RND

Negative A seems to fix the
random number

147

RUN
NEXT ARGUMENT FOR RND? 0
.417970002
.468751073
.750001013
.703126013
.195313454
.421876013
.144532621
.66406405
.132814467
.988283575
READY.

RUN
NEXT ARGUMENT FOR RND? 1
.186647695
.531850191
.615078971
.862640194
.868612207
.665991999
.168051895
.749537644
.921491476
.376282314
READY.

03 Program 1 to see the effect of A on your Microcomputer.

As far as generating useful random numbers is concerned we will ignore arguments
other than 1.

RND(1)

What the above investigation demonstrates is that

RND(1)

will give random numbers within the range 0—1.
Changing the argument (A) doesn't seem to extend the range so how can we get
other random numbers? Quite simply by multipying RND(1) by another number.
So:

RND(1) gives a random number in the range 0—1;
6*RND(1) gives a randon number in the range 0—6;
and 52*RND(1) gives a random number in the range 0—52;
etc.

You can think of RND(1) as a 'conversion factor' which changes at will. The following
program tries out this idea.

10 REM **RND AS A CONVERSION FACTOR**
20 PRINT CHR$(147)
30 PRINT" l";TAB(9);"RND(1)";TAB(22);"6*RND(1)"
40 PRINT " "

Zero A also seems to fix the
random numbers.

These look more like
sequence of random
numbers

148

50 FOR 1=1 TO 10
60 LETB=RND(1)
70 LETC=6*B
80 LET D=52*B
90 PRINT l;TAB(6);B;TAB(20);C
100 NEXT I
110 END
Run with line 70 as LET C= =6*B

RUN
1 RND(1)

Program 2 RND(1) as a conversion factor

6*RND(1;

1 .313989386 1.88393632
2 .4103648 2.4621888
3 .0372279632 .223367779
4 .653960338 3.92376203
5 .829575892 4.97745535
6 .968877828 5.881326697
7 .719719175 4.31878305
8 .655509562 3.93305737
9 .988886233 5.9333174

10 .495105785 2.97063471
READY.

Run with line 70 as LET C=52*B plus change of heading in line 20.

10 REM **RND AS A CONVERSION FACTOR**
20 PRINT CHR$(147)
30 PRINT" l";TAB(9);"RND(1);TAB(22);"52*RND(1)"
40 PRINT"
50 FOR 1=1 TO 10
60 LETB=RND(1)
70 LET C=52*B
80 LETD=52*B
90 PRINT l;TAB(6);B;TAB(20);C
100 NEXT I
110 END

RUN
1 RND(1) 52*RND(1)

1
2
3
4
5
6
7
8
9

10
READY.

IB Program 3

.962672411

.188713114

.490369113

.877514285

.310898818

.23589211

.682800869

.672005353

.0160770983

.274055703

50.0589654
9.81308195
25.4991939
45.6307428
16.667385
12.2663897
35.5056452
34.9442784
.836009114
14.2508966

SAQ1
Write a program to print out 6 random numbers in the range 0 to 5.999999.

The RND+1 function
If you look again at the output of Program 3 on the run with 6*RND(1), the numbers
were:

1.88393632
2.4621888

.22367779
3.92376203
4.97745535
5.81326697
3.93305737
5.9333174
2.97063471

Look now at the number before the decimal point. They are:

1 ,2 ,0 ,3 ,4 ,5 ,4 ,3 ,5 ,2

i.e. members of the set

(0,1,2,3,4,5)

But, if we were throwing dice we would generate members of the set (1,2,3,4,5,6). All
we have to do then is to add 1 to each member of the first set to get the second.

Now in games we frequently want to throw a dice (outcomes 1,2,3,4,5,6) or use a
pack of cards (52 outcomes) so we are particularly interested in the functions:
6*RND(1)+1 and52*RND(1)+1

The following program allows us to explore these.

10 REM **RND AS A CONVERSION FACTOR**
20 PRINT CHR$(147)
30 PRINT" l";TAB(9);"RND(1)";TAB(22)"6*RND(1)+1"
40 PRINT " "
50 FOR 1=1 TO 10
60 LETB=RND(1)
70 LETC=6*RND(1)+1
90 PRINT l;TAB(6);B;TAB(20);C
100 NEXT I
110 END

Program 3 6*RND(1)+1

150

RUN
1 RND(1) 6*RND(1)

1
2
3
4
5
6
7
8
9
10
READY.

IB Program 4.

.330653535

.142569108

.833693422

.91441378

.998117197

.971321694

.0807038861

.735023715

.291704401

.573413704

The INT function
If you now look at the columns in the runs of Program 4 picked out in colour you will
now see that we have generated the random numbers we needed. Column 3 has
numbers from 1 to 6 and column 4 has numbers from 1 to 52.

But what about all the garbage to the right of the decimal point? Well, we have a
function to get rid of that: the INT function.

The effect of INT(X) is to give the whole number (or integer part) of the number X, i.e.
the largest integer which is not larger than X. The effect of INT is to 'chop' down to the
next highest whole number:

INT(5.6) = 5
INT(3.9) = 3
INT(-3.2) = - 4
INT(2) = 2

If INT(—3,2) = —4 surprises you, look at the number line and remember that INT
always chops down to the next whole number. It doesn't 'round' numbers.

T~=a^ 1 1 1 1 1 ri^i nfri r
- 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7

SAQ2
What are the values of the following
(a) INT(4.5)
(b) INT(9.1)
(C) INT(-2.5)
(d) (-0.99)
(e) INT(1.01)

Now, with INT, we can at last generate the whole numbers from 1 to 6 and from 1 to 52
to use as dice or cards. All we need is

INT(6*RND(1)+)
andlNT(52*RND(1)+£)

4.05197904
2.30689197
3.13529572
4.41938042
1.91661943
5.4688784
3.65650019
1.19667692
3.40376347
6.6935622

151

The following program prints out the values of these two functions:

10 REM **THE INT FUNCTION**
20 PRINT CHR*(147)
30 PRINT" l";TAB(5);"B (=RND(1)) INT(6*B+1) INT(52*B+1
40 PRINT "
50 FOR 1=1 TO 10
60 LETB=RND(1)
70 LETC=INT(6*B+1)
80 LETDHNT(52*B+1)
90 PRINT l;TAB(6);B;TAB(22);C;TAB(33);D
100 NEXT I
110 END

Program 5 INT to give whole numbers

RUN
1

1
2
3
4
5
6
7
8
9

10
READY.

03 Program 5

B(=RND(1))

.0699786424

.0240625019

.130669805

.684806689

.129658042

.358230933

.687650651

.0825698957

.98751032

.269134563

INT(6*B+1)

1
1
1
5
1
3
5
1
6
2

INT(52*B+1)

4
2
7

36
7

19
36

5
52
14

6.3 Random number postscript
The following program simulates the tossing of a die 100 times.

10 REM • • 1 0 0 TOSSES OF A DIE**
20 PRINT CHR$(147)
30 FOR 1=1 TO 10
40 FOR J=1 TO 10
50 LETX=INT(6*RND(1)+1)
60 PRINT: X;
70 NEXT J
80 PRINT
90 NEXT I
100 END

Program 6 Die toss

152

RUN
TOSSING A DIE
4 1 6 6 4 3 2 4 3 1
6 6 2 2 5 3 6 5 2 2
3 3 6 3 4 2 6 1 2 6
6 1 4 3 5 2 2 2 1 6
6 3 1 1 6 3 4 5 2 5
6 1 4 2 2 4 5 1 2 4
6 6 5 4 3 4 5 5 1 5
3 5 4 3 5 3 6 6 6 6
1 5 3 4 3 1 1 4 2 1
6 3 6 1 6 1 6 5 3 1
READY.

M Program 6

Just to make sure that you understand the INT function try the following questions.

SAQ3
The program:

15 PRINT CHR$(147)
20 FORX=-3.8TO-1.8STEP(.2)
30 LETYHNT(X)
40 PRINT X,Y
50 NEXTX
60 END
70 NEXT J
80 PRINT
90 NEXT I
100 END

Program 7
prints out 10 pairs of numbers. What are they?

SAQ4
The program

10 REM • • S A Q * *
15 PRINT CHRS 147
20 FOR X-1.6 TO 3.4 STEP (.2)
30 LETYHNT(X)
40 PRINT X,Y
50 NEXT X
60 END

Program 8
prints out 9 pairs of numbers. What are they?

6.4 Two examples
This section is made up of two lengthy examples. We suggest that you try and treat
them as exercises first and then compare your solution with ours.

153

Example 1
Write a program to simulate tossing a coin 100 times. Count and output the
number of times the coin falls heads and tails.

Solution
The heart of the solution is a random number generator which produces a 1 or a 2.

We will use a 1 to represent a tail and 2 to represent a head. Using this approach, a
descriptive algorithm for the solution to the problem is:

1. Start.
2. Set heads total and tails total to zero.
3. Start loop counter.
4. Generate the two values 1 and 2 randomly.
5. If random number equals 2 then go to statement 8 otherwise go on to

statement 6.
6. Add 1 to tails total.
7. Go to statement 9.
8. Add 1 to heads total.
9. Add 1 to loop counter.

10. If loop counter <=100 then go to statement 4 otherwise go on to statement 11.
11. Output total heads and total tails.
12. Stop.

Figure 2 Descriptive solution to coin toss

Alternatively you may prefer a flowchart description to the solution:

(start

2

K TV-0

GLOSSARY
H .. . 'heads' counter
T . . . 'tails' counter
I . . . '100-toss' loopcounter
Y . . . contains each random

number as generated

< Y=2 >

I F

TV-T+1

k- l+1

8 0

110

20

»•

8
H^H+1

130

if slop J

Figure 3 Flowchart for coin toss

154

and finally the program:

10 REM **TOSS 1 COIN 100 TIMES**
20 PRINT CHR$(147)
25 PRINT "RESULTS FROM TOSSING A COIN 100 TIMES"
30 LETH=0
40 LETT=0
50 LET 1=1
55 REM **TOSS COIN**
60 LETYHNT(2*RND(1)+1)
70 IF Y=2 THEN 95
80 LET T=T+1
90 GOTO 105
95 REM * * 2 = H E A D * *
100 LETHHH+1
105 REM **TOTAL COUNT**
110 LET 1-1+1
120 IF l<=100 THEN 55
130 PRINT "HEADS","TAILS"
140 PRINT H,T
150 END

Typical outputs
HEADS
51
RUN
HEADS
57
RUN
HEADS
55
M Program

TAILS
49

TAILS
43

TAILS
45

9
Program 9 Coin toss

Example 2
Write a program to simulate tossing 2 coins 100 times. Count and output the number
of tails that the outcome of this imaginary experiment is: head-head (HH), tail-tail
(TT), and head-tail or tail-head (HT or TH).

Solution
We use the same scoring rules: 1 for a tail and 2 for a head but we are now tossing 2
coins. We store the score from the first coin in C1 and the score form the second coin
in C2. Then we add C1 and C2 to give the total score for that throw:

S=C1+C2

S can be 2, 3 or 4:

outcome

TT

TH or HT

HH

score

1 + 1=2

1+2=2+1=3

2+2=4

Then we count how many 2's we get, how may 3's and how many 4's.

155

Counter for 2's
Counter for 3's
Counter for 4's

T2
M1 (M for Mix of H's and T's)
H2

The flowchart of the solution is:

(start j

H2^-0
T2*-0
M1<-0

2 0 - 4 0

l«-1

I.-I+1
l>100

60,170

T

v F

C1 &C2
=RND(1 or 2)

S=C1+C2

70,80

9 0

F 120

M1<-M1+1

GLOSSARY OF SYMBOLS
H2 . . . total for HH
T2 . . . total for TT
M1 .. . total for HT or TH
C1 . .. random 1 or 2 for coin 1
C2 . . . random 1 or 2 for coin 2
S .. . sum of coin scores.

180,190

output
H2,T2,M1

(stop j

140

T2—T2+1

160

H2.-JH2+1

Figure 4 Flowchart for two coin toss

156

And the program is:

10 REM • •TOSS 2 COINS 100 TIMES**
15 PRINT CHR$(147)
17 PRINT "TOSSING 2 COINS 100 TIMES"
20 LET H2=0
30 LET T2=0
40 LETM1=0
50 REM ••TOSSING LOOP**
60 FOR 1=1 TO 100
70 LETC1=INT(2*RND(1)+1)
80 LETC2=INT(2*RND(1)+1)
90 LETS=C1+C2
100 IFS=4THEN 155
110 IFS=2THEN 135
120 LETM1-M1+1
130 GOTO 165
135 REM **TWO TAILS**
140 LETT2=T2+1
150 GOTO 165
155 REM **TWO HEADS**
160 LETH2HH2+1
165 REm **RETURN FOR NEXT TOSS?**
170 NEXT I
180 PRINT "TT", " HT"," HH"
190 PRINT T2.M1.H2
200 END

Program 10 Two coin toss
RUN

TT HT HH

21 54 25

READY.

RUN

TT HT HH

26 48 26

READY.

RUN

TT HT HH

26 48 26

READY.

RUN

TT HT HH

24 55 21

READY.

IB Program 10

157

6.5 Keeping scores
You may have noticed that we have used some ungainly variable names, such as T2,
H2 and M1. Perhaps you have been thinking. 'What about lists? Couldn't they be as
useful here as they were with frequency tables?' Indeed they could so let's try a score
list S(l) for the coin tossing. So we say:
If the score is 2, add 1 to the number in S(2)
If the score is 3, add 1 to the number in S(3)
If the score is 4, add 1 to the number in S(4)
generally
If the score is S, add 1 to the number in S(S)
Application to tossing two coins
If we go back to Example 2, we can re-use lines 10 to 90 and then put in our new
scoring system:

100 LET S(S)=S(S)+1

The program then becomes:

10 REM ••TOSS 2 COINS 100 TIMES**
15 PRINT CHR$(147)
17 PRINT "TOSSING 2 COINS 100 TIMES"
18 DIM S(4) Note the addition of
20 LETS(4)=0 18DIMS(4)
30 LETS(3)=0
40 LET S(2)-0
50 REM **TOSSING LOOP**
60 FOR 1=1 TO 100
70 LETC1HNT(2*RND(1)+1)
80 LETC2HNT(2*RND(1)+1)
90 LETS=C1+C2
100 LET S(S)=S(S)+1
110 NEXT I
120 PRINT "TT"," HT"," HH"
130 PRINT S(2),S(3),S(4)
140 END Program 11
RUN
TOSSING 2 COINS 100 TIMES
TT HT HH
21 58 21

READY.

RUN

TT HT HH

27 47 26

READY.

RUN

TT HT HH
31 52 17
READY.

158

RUN

TT HT HH

19 55 26

READY.

[H Program 11

Score lists for dice
The score-list for throwing one die would be:
S(1),S(2),S(3). . . S(6);

and for throwing two dice:
S(2),S(3),S(4). . .S)12).

Exercise 1
Write a program to simulate throwing a die 100 times. Count and output the number of
times each score occurs.

Exercise 2
Modify the program written for Exercise 1 to simulate the throwing of two dice 100
times.

Exercise 3
Write a program to display the data obtained from the program in Exercise 2, in the
from of a frequency diagram.

6.6 Short cuts in program writing
Our programs are becoming quite long and the longer they are, the longer they take to
key in to the computer. There are short cuts which help to speed up keying. We have
deliberately avoided short cuts up to this point, feeling that intelligibility of coding is
more important than speed. We will abbreviate some of our coding at times to show
you what can be achieved, but will generally continue our policy of clarity of
interpretation. If you are sending assignments to a tutor for marking, then please use
short cuts sparingly.

The principal short cuts are:

1. The word LET may be omitted from assignment statements. Thus:

20 LET A=B can be written 20 A=B

2. More than one statement per line is allowed; the statements must be
separated by:
Thus:

10 LET A=7
20 LET B=8
30 PRINT A+B

can be written:

10 LET A=7: LET B=8; PRINT A+B

or, using the first short cut as well:

10 A=7: B=8: PRINT A+B

(This short cut speeds up program execution as well as keying time. Computers take
up time interpreting each line number, so the fewer line numbers, the quicker will be
the execution.)

3. The word PRINT may be replaced by ? on the Commodore 64. However, when
you ask the computer to list your program you find ? is replaced by the full word
PRINT.

E.g. if you key in

10 A=7 :B=8 :?A+B

and then ask for LIST you get

10 A=7: B=8: PRINT A+B

Appendix D of your User Manual lists all possible keyword abbreviations.

4. You can include expressions in PRINT statements. These expressions will be
executed. We've already done this above where we said PRINT A+B.

But be careful
• Don't cram statements on a line just for the sake of doing so.

• Be very careful with transfer of control statements. E.g. GOTO . . ., IF . . .,
THEN.. . , and later on GO SUB. . . Remember, the lines referred to must exist
and program control goes to the beginning of the line in the GOTO statement

• Most programs spend 80% of their time in 20% of their coding. So, concentate
on abbreviating (and therefore speeding up) those statements which work the
hardest, e.g. lines 70-120 in the solution to Exercise 3.

• The line number associated with a REM statement takes up run time so it is
useful to tack a :REM... on to the end of other statements. We do so in programs
later in this Unit. They don't all look as tidy as they ought to, though.

• Take care to distinguish clearly between: and; in the listings of programs: yours,
ours and especially those in computer magazines, The pairs (,< and),> are
often barely distinguishable in some listings.

• In Unit 10 the command PRINT* must be keyed in full, ?# is not acceptable to
the Commodore 64.

Some examples of short cuts
Program 11 which was 14 lines can be written in 10

10 REM ••TOSS 2 COINS 100 TIMES** ^
15 PRINT CHRS(147) ^ *
20 DIM S(4):S(4)=0:S(3)=0:S(2)=0 - - ^
50 PRINT "TWO-COIN TOSS"
60 FOR 1=1 TO 100
70 C1 =INT(2*RND(1)+1):C2HNT(2*RND(1)+1)
90 S=C1+C2:S(S)=S(S)+1
110 NEXT I
120 PRINT "TT"," HT"," HH"
130 PRINT S(2),S(3),S(4)
140 END

3 assignment statements
without LET

this is where the work is
being done, 70 to 90 are
executed 100 times

not worth condensing,
-because it is executed only
once per run

Program 12

160

SAQ5
Try using the short cuts on Program 20.

6.7 Concatenation
Having gone to a lot of trouble in Unit 5 to cut up strings, we will now spend some time
putting them back together. This second ugliest word in the computing repertoire
means to chain or link together. Program 9 shows us what is happening.

10 REM ••CONCATENATION**
15 PRINT CHR$(147)
20 INPUT "FIRST STRING";A$
30 INPUT "SECOND STRING";B$
40 PRINT A$ + B$
50 END

Program 13 Concatenation

RUN
?GET
7TOGETHER
GETTOGETHER
READY.

RUN
7CONCATE
7NATIONA
CONCATENATION
READY.

SAQ2
Write a program to input a word and output its plural assuming that all words only
need s adding to make their plurals.

Program 14 shows how we can use concatenation to build up a string from a list of
symbols. We have stored the letters in line 40(DATA) and in the loop 110-140 we add
a new letter to the string on each around the loop.

10 REM **MORE CONCATENATION**
20 REM **SET UP DIRECTORY**
22 PRINT CHR$(146)
25 DIMA$(10)
30 FOR 1=1 TO 10: READ A$(l): NEXT I
40 DATAA,B,C,D,E,F,G,H,I,J
50 REM * * • * • * • * * * * * * * • • * * * *
100 C$="":REM **EMPTY C $ * *
110 FOR J=1 TO 10
120 C$=C$+A$(J)
130 PRINT:J,C$
140 NEXT J
159 END

Program 14

161

RUN
1
2
3
4
5
6
7
8
9
10
READY.

K) Program

A
AB
ABC
ABCD
ABCDE
ABCDEF
ABCDEFG
ABCDEFGH
ABCDEFGHI
ABCDEFGHIJ

14

This process is of great value in textual analysis, but we will use it for codes and
games.

6.8 STR$
This function has the reverse effect to the VAL-function. The VAL-function gives the
numerical value of a string, and the STR$-function turns a number into just a string of
characters.

STR$(X) gives the string representation of the value of X.

Printing STR$
STR$(N) looks very much like N itself as the following program shows:

10 REM **THE STR$-FUNCTION**
15 PRINT CHR$
20 INPUT "THE NEXT NUMBER?"N
25 PRINT "012345678901234567890"
30 PRINT: N,TSR&(N)
40 END Program 15

RUN
NEXT NUMBER? 17
012345678901234567890
17 17

RUN
NEXT NUMBER7-17
012345678901234567890
-17 -17
RUN
NEXT NUMBER? 99.34
012345678901234567890
99.34 99 . 34

RUN
NEXT NUMBER7-99.34
012345678901234567890
-99.34 -99.34

BH Program 15

162

However, in each run the second figure is treated as a string.

In the next program (Program 16) we make use of the fact that STR$(8) treats 8, say,
as a string so that we add the character 8 (as opposed to its value) onto the end of a
string.

40 REM ••MORE STRS**
50 REM •
60 PRINT CHR$(147)
100 C$="":REM**EMPTYC$**
110 FOR J=1 TO 10
120 C$=C$+STR$(J)
130 PRINT;J,C$
140 NEXT J
150 END

Program 16

RUN
1
2
3
4
5
6
7
8
9
10
READY.

1
12
123
1234
12345
123456
1234567
12345678
123456789
12345678910

Thus, we still cannot link the characters in adjacent positions because of the space
allocated for the sign of the number.

H Program 16

Exercise 4
Write a program to input a word from the keyboard, to code each letter as a number
and output the code as sequence of numbers.

Guidance if required: set up a directory-list as in Program 14 but for the whole
alphabet. Remember the DIM statement. Take each letter of the word and compare it
with the items of the directory-list. When found in the directory, add that index, in
string form, to the code string.

Exercise 5
Write a program to generate 20 random 3-letter words. (It's interesting to see how
many times you have to run this program until you generate a bona fide word.)

Assignment 6
1. Write a program to deal a hand of cards, the size of which is left to you. Print out

the hand in the form 1D, KC, 8H.6S... , where D=diamonds, C=clubs, etc. 1 =
ace, T, J, Q and K stand for ten, jack, queen and king. Remember that when a
card has been dealt it cannot be dealt again.

163

Guidance if required: write the program in sections:
• set up the deck (we have previously called it a directory);
• deal (using the RND generator 1-52 is easiest);
• output.

When a card has been dealt, put a marker (e.g. an •) in that position to signal
that it cannot be used again.

2. Write a program to simulate a game of snakes and ladders using a 4X4 board
and one die.

Guidance if required: though the board is square it can be represented in
memory by a list B(l):
i.e. B(1),B(2),B(3)...B(16)
B(3)=+4 could be a ladder going up 4 places.
B(9)=—7 could be a snake going down 7 places, etc.
Don't forget that your last throw has to give the right number to complete the
board at exactly 16.

Suggestions (not part of the Assignment for your tutor): play the game a few
times and estimate the average number of throws needed to run the board.
Change the layout of the board and try some more runs. Design a bigger board,
etc.

Objectives of Unit 6
When you have finished this unit check that you are able to:

Use RND to generate random numbers between 0 and 1 •

Use INT and RND to generate integer random numbers between 0 and

a given integer N. •

Simulate the tosses of coin. •

Simulate the tosses of a die. •

Simulate the throw of a die •

Simulate the throws of two dice. •

Use score lists. •

Abbreviate programs with ? and multiple statement lines. •

Concaternate strings. •

Use STR$(X) •

164

Answers to SAQ's and Exercises
SAQ1

10 PRINT CHR$(147)
20 FOR 1=1 TO 6
30 LETN=6*RND(1)
40 PRINT N
50 NEXT I
60 END

Program 17

SAQ2
(a) 4; (b)

SAQ3

RUN
-3.8
-3.6
-3.4
-3.2
-3
-2.8
-2.6
-2.4
-2.2
-2
READY.

SAQ4

9;

-4
-4
-4
-4
-3
-3
-3
-3
-3
-2

RUN
1.6 1
1.8 1
2 2
2.2 2
2.4 2
2.6 2
2.8 2
3 3
3.2 3

Exercise 1

Descriptive algorithm for 1 die toss
1. Start.
2. Set the 6 total score locations to zero.
3. Start the 100-throws loop.
4. Generate a random score from the set (1,2,3,4,5,6).
5. Increment the total linked with this score.
6. If loop counter <=100 then go to statement 4 otherwise go on to statement 7.
7. Output score and total for each score value.
8. Stop

165

10 REM **THROW ONE DIE 100 TIMES**
12 PRINT CHR$(147)
14 REM **SPACE FOR SCORE COUNTERS**
15 DIMS(6)
17 PRINT "RESULTS FROM THROWING A DIE 100 TIMES
18 REM **ZEROISE COUNTERS**
20 FOR J-1 TO 6
30 LETS(J)=0
40 NEXT J
50 REM **GENERATION LOOP**
6- FOR 1=1 TO 100
70 LETSHNT(6*RND(1)+1)
80 LET S(S)=S(S)+1
85 REM **END OF LOOP**
90 NEXT I
95 REM **OUTPUT RESULTS**
100 PRINT
110 PRINT "SCORE","FREQUENCY"
115 REM **DISPLAY LOOP**
120 FOR K=1 TO 6
130 PRINT K,S(K)
140 NEXTK
150 END
RUN
RESULTS FROM THROWING A DIE 100 TIMES
SCORE FREQUENCY
1 12
2 20
3 16
4 18
5 16
6 18

READY.

RUN

SCORE FREQUENCY
1 9
2 20
3 19
4 18
5 14
6 20

READY.

SCORE FREQUENCY
1 14
2 28
3 17
4 18
5 15
6 8

Program 18

READY.

166

RUN

SCORE
1
2
3
4
5
6

FREQUENCY
15
19
18
17
17
14

READY.
03 Program 18
ExGrciSG 2
10 REM **THROW TWO DICE 100 TIMES**
12 PRINT CHR$(147)
14 REM **SPACE FOR SCORE COUNTERS**
15 DIMS(15)
17 PRINT "RESULTS FROM THROWING 2 DICE 100 TIMES"
18 REM **ZEROISE COUNTERS**
20 FOR J=2 TO 12
30 LETS(J)=0
40 NEXT J
50 REM **GENERATION LOOP**
60 FOR 1=1 TO 100
70 LETS1HNT(6*RND(1)+1)
75 LETS2HNT(6*RND(1)+1)
80 LETS=S1+S2
82 LET S(S)=S(S)+1
85 REM **END OF LOOP**
90 NEXT I
95 REM ••OUTPUT RESULTS**
100 PRINT
110 PRINT "SCORE","FREQUENCY"
115 REM **DISPLAY LOOP**
120 FORK=2T012
130 PRINT K,S(K)
140 NEXT K
150 END Program 19
RUN
RESULTS FROM THROWING 2 DICE 100 TIMES
SCORE FREQUENCY
2 1
3 5
4 10
5 13
6 11
7 19
8 16
9 5
10 10
11 5
12 5
READY.
[@ Program 19

167

How about 1000 throws? Well, just change 60 to 60 FOR 1=1 T01000 and change the
REM line and you will get a run such as:

RUN
RESULTS FROM THROWING 2 DICE 1000 TIMES
SCORE FREQUENCY
2 31
3 59
4 74
5 118
6 151
7 173
8 118
9 100
10 89
11 61
12 26
READY.

Suggestions for further programs
1. How will you cope with printing afrequency diagram for this data, as 151 and 173

. . . would 'want to print' off the end of the line?
2. We need a general 'scaling' routine which adjusts to differing line widths, but

makes best use of the full width of the page or screen.

ExGrciss 3
10 REM **FREQUENCY DIAGRAM**
12 PRINT CHR$(147)
14 REM **SPACE FOR SCORE COUNTERS**
15 DIMS(15)
17 PRINT "RESULTS FROM THROWING 2 DICE 100 TIMES**
18 REM **ZEROISE COUNTERS**
20 FOR J=2 TO 12
30 LET S(J)=0
40 NEXT J
50 REM **GENERATION LOOP**
60 FOR 1=1 TO 100
70 LETS1=INT(6*RND(1)+1)
75 LETS2=INT(6*RND(1)+1)
80 LETS1+S2
82 LET S(S)-S(S)+1
85 REM **END OF LOOP**
90 NEXT I
95 REM **OUTPUT RESULTS**
100 PRINT
110 PRINT "FREQUENCY DIAGRAM"
115 PRINT
120 FOR K=2T0 12
130 PRINT K;TAB(5);S(K);TAB(10);
140 IF S(K)=0 THEN 205
150 FORL=1 TOS(K)
160 PRINT"*";

168

170 NEXTL
180 REM **JUMP TO HERE IF ZERO FREQ**
190 PRINT
200 NEXT K
210 END

Program 20

RUN
RESULTS FROM THROWING 2 DICE 100 TIMES.

FREQUENCY DIAGRAM

2
3
4
5
6
7
8
9
10
11
12
READY.

IE Program 20

4
6
6
8
19
21
10
11
8
4
3

• • * •
• • • • * *
• • • * • •
* * * * * * * *
* * * * * * * * * * * * * * * * * * *
*
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * *
* * * *
• • •

SAQ1
The following solution is just one of many possible ways of shortening the program.

10 REM **FREQUENCY DIAGRAM**
15 DIMS(15):PRINTCHR$(147)
17 PRINT "RESULTS FROM THROWING 2 DICE 100 TIMES"
20 FOR J=2TO12:S(J)=0:Next J
60 FOR 1=1 TO 100
70 S1 =INT(6*RND(1)+1):S2=INT(6*RND(1)+1)
80 S=S1+S2:S(S)=S(S)+1
90 NEXT I
100 PRINT:PRINT "FREQUENCY DIAGRAM":PRINT
120 FORK=2T0 12
130 PRINT K;TAB(5);S(K);TAB(10);
140 IFS(K)=0THEN200
150 FORL=1 TOS(K):PRINT"*";:NEXTL
190 PRINT
200 NEXT K
210 END

Program 21

169

RUN
RESULTS FROM THROWING 2 DICE 100 TIMES
FREQUENCY DIAGRAM
2 4 ••••
3 3 ••*
4 3 ••*
5 18 *•*•••••••••••••••
6 11 ••••••••••*
7 13 *••**••*•*•••
8 11 • • • * • • • • • • *
9 13 * • • * • • • • • • • • *
10 9 • • • • • • • • •
11 11 • • • * * * • • * • •
12 4 • * * •

SAQ6

10 REM **PLURALS**
20 LET A$="S"
30 INPUT B$
40 PRINT B$+A$
50 END

Program 22

Exercise 4
10 REM **SIMPLE CODE**
20 PRINT CHR$(147)
30 DIM A$(26)
40 FOR 1=1 TO 26
50 READ A$(l)
60 NEXT I
70 DATA A,B,C,D,E,F,G,H,l,H,K,L,M,N,0,P
80 DATAQ,R,S,T,U,V,W,X,Y,Z
100 INPUT "NEXT WORD FOR CODING?" W$~
110 L=LEN(W$)
120 FOR J-1 TO L
130 1=1
140 IF MID$(W$,J,1)=A$(I) THEN 200
150 1-4+1
160 GOTO 140
200 C$=C$+STR$(I)+"
210 NEXT J
220 PRINT:PRINTC$
230 END

RUN

NEXT WORD FOR CODING? COMPUTING

3 15 13 16 21 20 9 14 7

READY.

-set up the directory

IT

compare each letter of the
word (W$) with each letter in
the directory

.until found,

_then add the index in string
form to the code-string

Program 23

170

RUN

NEXT WORD FOR CODING? PARLIAMENT

1 6 1 1 8 1 2 9 1 1 3 5 1 4 20

READY.

RUN

NEXT WORD FOR CODING? PROFESSIONALS

16 18 15 6 5 19 19 9 15 14 1 12 19

READY.

E Program 23

Exercise 5

10 REM ••RANDOM 3-LETTER WORDS**
20 DIMA$(26)
30 FOR 1=1 TO 26:REM **FORM ALPHA-LIST**
40 READA$(I):NEXTI
50 DATA ArB,C,D,E,F,G,H,l,J,K,L,M,N,0,P
60 DATAQ,R,S,T,U,V,W,X,Y,Z
70 PRINT CHR$(147)
80 INPUT'ANOTHER LIST?" R$
90 IFR$<>"YES"THEN 190
100 FOR K=1 TO 20:REM * * 2 0 WORDS**
110 W$="":REM **WORD-STRING EMPTY TO START**
120 FOR J=1 T0 3:REM**STARTOFAWORD**
130 X=END(26)
140 W$=W$+A$(X)
150 NEXTJ:REM**ENDOFAWORD**
160 PRINT W$:REM**PRINT THE WORD**
170 NEXT K:REM * * G O BACK FOR NEXT WORD**
180 GOTO 80
190 END

Program 24

PDY
XNM
HPI
EVW
EFT
KZT
IGM
KWL
QHW
AIY
ZBQ
MSH
FFA
ZYJ
BBX
JPT

171

FSV
BPG
GNR
EEP

How many times must you run to get a 'proper' word?

QS Program 24.

172

UNIT 7
Graphics, sound and colour

7.1 Introduction

7.2 Colour: border

7.3 Colour: paper

7.4 Colour: ink

7.5 Direct colour display with POKE

7.6 Coloured light

7.7 Moving graphics

7.8 Drawing flags

7.9 Sprite graphics

7.10 Sound in programs

7.11 Sound effects in programs

Assignment 7

Objectives of Unit 7

Answers to SAQ's and Exercises

174

174

175

175

178

179

182

188

189

190

195

196

196

196

173

7.1 Introduction
So far, we have only used the Commodore 64 to handle numbers and text, in the
standard screen colours, light blue on dark blue, to get a sound grounding in the
BASIC language. However, the most exciting uses of a microcomputer such as the
Commodore 64 involve using a full range of colours in screen displays, using
graphics (picture displays), and in adding sound.

Obviously, arcade-type games are more enjoyable in colour, and with suitable
sounds generated when 'invaders' or 'starships' are destroyed. But graphs and
educational programs, for instance, are also clearer and easier to use with the
judicious use of colour and, when appropriate, sound.

7.2 Colour: border
There are three main areas of the screen display which may be output in colour. The
first of these is the border of the screen. You will have seen this area when you first
switch the computer on, coloured light blue.

The Commodore 64 uses the BASIC instruction POKE to input colour control codes
directly to the computer. The instruction takes the form

POKE memory location, control code

Memory location 53280 controls the colour of the screen border. If you RUN the
following program you will be able to see the effect of 'POKE'ing this store area.

10 REM *
20 REM ** BORDER COLOURS **
30 REM ********************
40 PRINT CHR$(147)
50 FOR X=0 TO 15
60 POKE 53280.X
70 FOR Z-1 TO 500
80 NEXT Z
90 REM * * PAUSE TO SLOW PROGRAM
100 REM ENOUGH TO SEE EACH
110 REM COLOUR DISPLAYED.**
120 NEXTX
130 END

Program 1 Border colours

M Program 1.

The FOR . . . NEXT . . . loop in lines 70 and 80 slows down the output display
sufficiently to allow you to see the border colours cycled. Without these two lines, the
rate of change of the borders is too rapid to be seen properly. Although the FOR.. .
NEXT . . . loop contains no processing instructions, it takes the computer a short
period of time to count up to the limit number, which slows down the computer
sufficiently.

You will have seen the border area of the screen cycle through sixteen colours: in
order; black, white, red, cyan, purple, green, blue, yellow, orange, brown, light red,
grey 1, grey 2, light green, light blue and grey 3. These colours are referred to by the

174

numbers 0 to 15 inclusive.

As an exercise, why not use

POKE 53280, colour number

to add a coloured border to some of the programs you have already keyed in as part of
the course?

0 black
1 white
2 red
3 cyan
4 purple
5 green
6 blue
7 yellow

8 orange
9 brown

10 light red
11 grey 1
12 grey 2
13 light green
14 light blue
15 grey 3

To return from a coloured display to the usual light blue/dark blue screen, hold down
RUN STOP and touch RESTORE.

7.3 Colour: paper
The main part of the screen display, inside the border, is called the backgound, or the
paper. This is the area upon which you have seen your programs listed, and your
results displayed. The colour is controlled by POKEing the number of the required
number to the memory location 53281.

This program prints the screen in each of the sixteen available colours, in turn.

10 REM * * • • • • • • • • • • • • • • • • •
20 REM * • PAPER COLOURS • *
30 REM • • * • • • • • • • • • • • * * • * *
40 PRINT CHR$(147)
50 FORX=0TO15
60 POKE 53281.X
70 FOR Z=1 TO 500
80 NEXT Z
90 NEXTX
100 END

Program 2 Paper colours

M Program 2.

The Commodore 64 can change screen colour without needing to clear the screen
beforehand.

7.4 Colour: ink
Just as the background colour of the screen can be referred to as the paper, the
colour of the characters printed onto the screen is referred to as the ink. Another
name is the foreground. Until this unit we have used light blue ink on dark blue paper:

175

these are the default values — that is to say, the colours provided when the computer
program is first turned on, or when the existing program is wiped from memory with
the NEW function, or RUN STOP/RESTORE.

To begin with, we will look at producing colours with the

PRINT CHR$(code number)

instruction. As we saw at the end of Unit 3, this BASIC instruction can be used to print
out any ASCII character available on the Commodore 64. Appendix F of your User
Manual shows what each character code means. The colour codes are dotted about
in spare places in the code.

ASCII code
5

28
30
31

144
156
158
159

Colour
White
Red
Green
Blue
Black
Purple
Yellow
Cyan

Only the eight colours shown on the Commodore keyboard are available in this way.

This program prints coloured stripes onto the screen:

10 REM • • • • • • • • • * * • • • * • • * • • • •
20 REM • • COLOURED STRIPES • *
30 REM • * * • • • * • • • • • • * • * • • • • • •
40 PRINT CHR$(147)
50 FOR X=0 TO 7
60 READ CL
65 PRINT CHR$(CL)
70 PRINTCHR$(18)
80 FOR Y=1 TO 40
100 PRINT CHR$(160);
110 NEXTY
120 NEXTX
130 END
140 DATA 5,28,30,31,156,158,159,144

Program 3 Coloured stripes

H Program 3

Line 70 uses ASCII character code 18 (RVS ON)—this prints out the 40 spaces which
make up a line (ASCII character code 160) in reverse graphics, so that the effect is to
print a solid bar of the required colour.

We can also print coloured characters on the coloured bars.

10 REM • • • • • • • • • • • • • * • * * • • • • • •
20 REM • • COLOURED MESSAGES * •
30 REM • • • • • • • * • • • • • * • * • • • • * • •
40 PRINT CHR$(147)
50 FOR Y-1 TO 3
60 FOR X=0 TO 7
70 READ CL

176

80 PRINT CHR$(CL);
90 PRINT "HELLO TO OUR COMMODORE 64 PROGRAMMERS"
100 NEXT X
110 RESTORE
120 NEXTY
130 GOTO 130
140 DATE 5,28,30,31,156,158,159,144

Program 4 Coloured messages

EH Program 4.

You will see from running this program that some combinations of ink and paper are
easier to read than others. Worse still, without a colour monitor, there can be a loss of
picture quality with some colour combinations, which makes the letters hard to read.
It is, therefore, important to choose colour combinations wisely and sparingly. You
will soon discover which combinations of colours suit your displays best, by trial and
error.

You will also need to bear in mind that, if you hope to produce programs for use by
other people, not everyone will be using a coloured display screen. Colour
combinations of ink and paper need to have equally good contrast in black and white.
For instance, blue and red, in solid blocks, are clearly distinguishable in colour, but
have poor contrast in black and white, being close to each other in the contrast scale.

Example 1
Use the method of Program 3 to produce a six-colour rainbow. We cannot produce a
seven-colour rainbow by this method, as we need orange, which is not available. Our
'rainbow' will look best on a dark background, so we set our screen border and paper
to black (colour 0).

50 POKE 53281,0
60 POKE 53280,0

Otherwise, the method can be exactly as per Program 3. We have six coloured
stripes, so we set up our controlling FOR . . . NEXT . . . loop

70 FOR X-1 TO 6
160 NEXTX

The screen is 25 lines deep, so we can fit in six stripes of four lines (total 24
lines). To print out each coloured bar four times, we use a nested FOR . . . NEXT
. .. loop:

100 FOR Z -1 TO 4
150 NEXTZ

The order of the colours we need is:

red yellow green light blue indigo violet.

The nearest we can manage is:

red yellow green cyan blue purple

So our DATA statement will be

180 DATA 28,158,30,159,31,156

177

We can now fit in the rest of the program thus:

10 REM • • * • • • • • • * • • • • • * • * • • • •
20 REM ••6-COLOUR RAINBOW • •
30 REM • • • * • • • • • • • • • • • • • • * + * •
40 PRINT CHR$(147)
50 POKE 53281,0
60 POKE 53280,0
70 FOR X=1 TO 6
80 READ CL
90 PRINT CHR$(CL);
100 FORZ=1 TO 4
110 PRINT CHR$(18);
120 FOR Y=1 TO 40
130 PRINT CHR$(160);
140 NEXTY
150 NEXTZ
160 NEXTX
170 GOTO 170
180 DATA 28,158,30,159,31,156

Program 5 6-colour rainbow

EH Program 5.

Line 170 is to prevent the display being spoilt by a 'Ready' message. Touch RUN
STOP to stop the program.

7.5 Direct colour display with POKE
The screen display of the Commodore 64 is controlled by a block of 1000 store
locations from 1024 to 2023. The screen display is 40 characters wide and 25 lines
deep. (40 X 25=1000).

The locations are laid out in a grid pattern (see Appendix G of your User Manual).

The colour of the 1000 possible character locations in the screen display is controlled
by another block of memory, starting at 55296, going up to 56295, also shown in
Appendix G of the User Manual.

Try the enhanced rainbow program

10 REM • • • • • • • • • • • • • • • - * • * * • • • •
20 REM • • 7-COLOUR RAINBOW • *
30 REM •
40 PRINT CHR$(147)
50 POKE 53280,0
60 POKE 53281,0
70 FOR X-1024 TO 2023
80 POKEX.160
90 NEXT X
100 FORC=0TO6
110 READCL
120 FOR X=55296+120*C TO 55415+120*C

178

130 POKEX.CL
140 NEXTX
150 NEXTC
160 GOTO 160
170 DATA 2,8,7,5,14,6,4

Program 6 7-colour rainbow

M Program 6.

As before, lines 50 and 60 made the screen and border black. Lines 70 and 90 put the
space character (ASCI1160) into all display locations.

The main processing loop is in lines 100 to 150. Line 120 refers to the Colour Memory
Map. It causes groups of three adjacent screen lines to be coloured in. (3 X 7 = 21,
which fits into the 25 line screen display).

The data (line 170) uses the colour codes, which are 2 (red), 8 (orange), 7 (yellow), 5
(green), 14 (light blue), 6 (blue), 4 (purple).

If line 120 seems strange, try dry running the program. When C is 0, the first bar is
from 55296 to 55415. when C is 1, the second bar is 55416 to 55535 and so on.

7.6 Coloured light
Now that we know how the Commodore 64 deals with colour, let us see how a colour
television or monitor produces the colours we want. RUN program 7, Coloured light,
and you will have a visual demonstration of the explanation that is to follow:

10 REM • • • • • • • • • • • • • • • • • • * •
20 REM * * COLOURED LIGHT • •
30 REM • • • • * • • • • • • + * * • • • • • • •
40 POKE 53280,0
50 POKE 53281,0
60 PRINT CHR$(147)
70 REM • • • * • • • * • * * • • • • • • * * *
80 FOR X-1024 TO 2023
90 POKE X,160
100 NEXTX
110 REM • * • • • • * • • • • • • * • * • • * • • •
120 PRINT " MIXING COLOURED LIGHT"
130 REM * • MAKING UP THE SPOTLIGHTS • *
140 FOR X=0 TO 15
150 FOR Y=55508+40*X TO 55523+40*X
160 READC
170 POKEY.C
180 NEXTY
190 NEXTX
200 GOTO 200
210 DATA 2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0
220 DATA 2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0
230 DATA 2,2,2,2,2,2,7,7,7,7,5,5,5,5,5,5
240 DATA 2,2,2,2,2,2,7,7,7,7,5,5,5,5,5,5
250 DATA 2,2,2,2,2,2,7,7,7,7,5,5,5,5,5,5

179

260 DATA 2,2,2,2,2,2,7,7,7,7,5,5,5,5,5,5
290 DATA 2,2,4,4,4,4,1,1,1,1,3,3,5,5,5,5
300 DATA 2,2,4,4,4,4,1,1,1,1,3,3,5,5,5,5
310 DATA 2,2,4,4,4,4,1,1,1,1,3,3,5,5,5,5
320 DATA 2,2,4,4,4,4,1,1,1,1,3,3,5,5,5,5
330 DATA 0,0,6,6,6,6,3,3,3,3,3,3,5,5,5,5
340 DATA 0,0,6,6,6,6,3,3,3,3,3,3,5,5,5,5
350 DATA 0,0,6,6,6,6,6,6,6,6,6,6,0,0,0,0
360 DATA 0,0,6,6,6,6,6,6,6,6,6,6,0,0,0,0
370 DATA 0,0,6,6,6,6,6,6,6,6,6,6,0,0,0,0
380 DATA 0,0,6,6,6,6,6,6,6,6,6,6,0,0,0,0

Program 7 Coloured light
OS Program 7.
The data lines here (210 to 380) are like a 'paint by numbers' picture. If you coloured
each number in with its corresponding colour, you would have the same picture as
that shown on the screen. This shows the power of POKEing information directly into
screen memory.

You will see that the program produces three overlapping rectangular spotlights —
the left one is red, the right one is green, and the bottom one is blue. Where the red
and green lights meet, they produce yellow, the blue and green produce cyan, and
the red and blue make magenta (purple). Where all three lights mix, they produce
white light. Where there is no light, we get black.

A colour tube is sensitive to red, green and blue light output, and produces other
shades by overlapping (or mixing, if you like) tiny dots of these three primary colours.

SAQ1
Which colours will be generated by these instructions, and in which screen areas?

(a) POKE 53280,7 (b) POKE 53281,6
(c) PRINT CHR$(4)

Example 2
add colour to the following tables testing program, to make it more effective;

10 REM * • TABLES TEST • •
20 LET C=0
30 LET D=0
40 PRINT " • 0 0 0 0 0 0 0 W n W I I n H I I n HU n »l TEST YOUR TABLES"
50 PRINT " 0 0 0 0 11 i l H1111H TYPE YOUR ANSWER, THEN TOUCH"
60 PRINT " 1111U M11IITHE RETURN KEY."
70 PRINT " 0 0 0 0 0 B W » U m 1111 111 111111 TOUCH A LETTER KEY"
80 PRINT" in H D K11 i l I I WHEN YOU ARE READY TO START."
90 GETAS
100 IF A$>="A" AND A$<="Z" THEN GOTO 130
110 GOTO 90
130 LETA=INT(RND(1)*13)
140 LETBHNT(RND(1)*13)
150 LET E=0
160 LETD=D+1
170 PRINT "Q HHBHHBHl lWi l l l l l l l l l l l l l l l l l l] ";A;" X ";B;" = ?"
180 PRINT " 0 0 0 0 0 0 0 1 1 * 1 1 1 I I TYPE IN YOUR ANSWER—THEN RETURN"
185 PRINT "0 II1111II11II 111 1111IIH <B IU ";

180

190 INPUTF
200 PRINT " Q a E l G I E I E H E H l l l l I l H U i l l H I l i i H i i] ";A;" X ";B;" = ";F
210 IF F < > A * B THEN GOTO 330
220 IF E>0 THEN GOTO 240
230 LET C=C+1
240 PRINT " B E E E E E B H U H i l i H D RIGHT-YOUR SCORE IS NOW ";C;"/";D
250 FOR Z-1 TO 2000
260 NEXT Z
270 IF D<10 THEN GOTO 130
280 PRINT "QE B 0 0 080111111HBH YOUR SCORE IS";C;" OUT OF 10"
290 PRINT " B B B B i l H B U H H H I I S I H U H F O R ANOTHER GO:"
300 PRINT "0 0 I ' *' *' » *' " H "I *' "I '*• *' H '*l *l TYPE RUN"
310 PRINT "0011W:n WHH:nHTHEN TOUCH THE RETURN KEY"
320 PRINT" B B B B "
325 END
330 LET E=E+1
340 IF E > = 3 THEN GOTO 390
350 PRINT "B B B B B B B II1111II I I I I1111II I I I I I I WRONG-TRY AGAIN"
360 FOR Z-1 TO 2000
370 NEXT Z
380 GOTO 170
390 FOR Z -1 TO 2000
400 NEXT Z
410 PRINT " a B B B B B B B I l 1111II1111IIIIIIHII l l";A;" X ";B;" = ";A*B
420 PRINT " 0 0 B 0 0 0 B11II1111 Jl || i i i) iiTHIS IS THE CORRECT ANSWER"
440 FOR Z-1 TO 5000
450 NEXT Z
460 LET E=0
470 GOTO 270

Program 8 Tables test

M Program 8.

RUN: initial display and instructions

TEST YOUR TABLES

TYPE YOUR ANSWER, THEN TOUCH
THE RETURN KEY.

TOUCH A LETTER KEY

WHEN YOU ARE READY TO START.

RUN: typical question display

5X 12 = ?

TYPE IN YOUR ANSWER-THEN RETURN

RUN: typical correct answer display

5 X 12 = 60
RIGHT-YOUR SCORE IS NOW 1/1
RUN: typical wrong answer display

181

-j g x 5 = 55
WRONG-TRY AGAIN

RUN: correct answer given after three incorect attempts

9 X 6 = 54
THIS IS THE CORRECT ANSWER
RUN: display of score/re-run instructions
YOUR SCORE IS 8 OUT OF 10
FOR ANOTHER GO:
TYPE RUN
THEN TOUCH THE RETURN KEY

The tables testing program gives a set of randomly generated times tables questions,
in the range of 0 X 0 to 12 X 12. If the wrong answer is keyed in, another chance is
given. After three wrong answers to one question, the correct answer is displayed. It
is quite a good user-friendly program, but it could be enhanced with the use of colour.

Firstly, let us add a coloured border to the screen.

15 POKE 53280,5

which will give a green border. The following lines;

311 FORY=1 TO 20
312 POKE 53280,2
313 FORZ=1 TO 100
314 NEXTZ
315 POKE 53280,6
316 FORZ=1 TO 100
317 NEXTZ
318 NEXTY

cycle the colours in the border, alternatively blue and red, twenty times, to highlight
the score output. Now RUN the program and see if you think this modest addition of
colour improves the program, or not. Whether or not you think it does, now
experiment with the program yourself, to see which colours make good displays.

We shall come back to this program later in the Unit, when dealing with sound in
programs.

Your programs will be more attractive, if the colour is applied to graphics — that is to
say, pictures on the display screen — especially moving graphics.

7.7. Moving graphics
Let us follow an example of how to produce simple moving graphics. The picture, or
graphics symbols, on the Commodore 64 are shown on the front of the relevant keys,
and are accessed via the SHIFT, CTRL and 'Commodore Logo' keys in conjunction
with the ordinary keys.

182

Example 3: Moving bus program
This program will draw a rather chunky-looking bus on the display screen,

10 REM * • • • • • • • * • • • • • • *
20 REM * • MOVING BUS * *
30 REM * • • • * • • * • • • • • • * •
40 LET B$(1)=" B O O H O B B B "
50 LETB$(2)="H H"
60 LETB$(3)=" O O"
70 LET C$="
80 FOR M-1 TO 32
90 PRINT " 0 0 0 0 0 "
120 FOR K=1 TO 3
130 PRINT LEFT$(C$,M);B$(K)
140 NEXTK
150 FORZ=1 TO 25
160 NEXTZ
170 NEXTM
180 END

Program 9 Moving bus
M Program 9.

To help you reproduce the bus picture, the graphics inside the quotes are obtained
thus:

Line 40: CTRL/9 (RVS ON)
Commodore/D
Commodore/F (repeat a further 4 times)
CTRL/0 (RVS OFF)

Line 50: CTRL/9 (RVS ON)
Space bar (repeat a further 6 times)
CTRL/0 (RVS OFF)

Line 60: space bar
0 (capital O, not zero)
space bar (repeat a further 2 times)
O

Line 70: 39 spaces between the set of quotes

Line 90: SHIFT/CLR HOME (to clear the screen)
vertical cursor (repeat a further 4 times)
(to move 5 lines down the screen)

You should get this picture on the screen when you RUN program 9:

183

The bus will be in light blue/dark bue, and it moves across the screen. Magic!

Lines 80 to 170 draw the bus, clear the screen, draw the bus one square to the right,
and clear the screen, and so on. Lines 120 to 140 print spaces behind the bus, and
redraw the bus, as the motion across the screen occurs. This is exactly the way that
cartoon drawings are made to 'move' — the slight difference in position of each
drawing, coupled with the rapid movement from one picture to the next, makes us
think the picture is actually moving.

We adjust the speed of the bus via the dummy loop in lines 150 and 160; the larger the
number after TO in line 150, the slower and jerkier will be the bus' motion. Try
adjusting line 150 until you get the speed you think looks best.

Now, not too many companies have blue buses, so let's colour it red, but have black
tyres; we add colour codes inside the strings at lines 40, 50 and 60.

Make the first item in line 40's quotes

CTRL/3 (which means red)
and do the same with line 50. Start line 60 with
CTRL/1 (which means black)

Add
180 PRINT " • " (CTRL/7 to get the symbol inside the quotes) to return the print colour
to normal at the end of the program.

Well, this is all very fine, but what about a piece of road for the bus to drive along? No
problem, just add

Line 100 CTRL/1
Commodore/4 (repeated a further 38 times)

Line 110 SHIFT/vertical cursor (repeated a further 4 times)

10 REM • • • • • * • • • • • • • • • •
20 REM * • MOVING BUS • •
30 REM • • • • * • • • • • • • • • • •
40 LETB$(1)- "HaQOOSDEna"
50 LETB$(2)="H0 a "
60 LETB$(3)-"M O O"
70 LET C$=
80 FOR M=1 TO 32
90 PRINT " • 0 0 0 0 0 "
100 PRINT " • "
110 PRINT " • • • • • "
120 FOR K=1 TO 3
130 PRINT LEFT$(C$,M);B$(K)
140 NEXTK
150 FORZ=1 TO 25
160 NEXTZ
170 NEXTM
180 PRINT " • '

Program 10 Moving bus with road

El Program 10

184

A typical picture of the bus, whilst moving. The body of the bus will be drawn in red.

The principles we have shown in this example will enable you to draw and colour your
own pictures. Now experiment with the graphics symbols, to make your own moving
pictures. Don't forget to use the expanding blank line (line 130) at the left-hand side of
each line of the picture, so that the picture will rub out its 'tail' as it moves.

We shall come back to our bus, to add sound, later on in this unit.

Example 4: Drawing with blobs
The GET function allows the computer user to input single key strokes without having
to touch RETURN after the key had been touched. When GET is being used, it is
usually necessary to make the program check each key that is being pressed and to
respond immediately. The 'response' will be of one of three types:
• Perform the appropriate action for that key as defined by that program
• one error message such as 'key not valid at this time—please re-enter'
• or, for all invalid keys, simply do nothing but loop back and wait for a valid key to

be pressed.

In program 11, only the keys 5, 6, 7,8 and 9 are valid. If any other key is pressed, no
action results. All that happens is that line 190 re-directs the program back to line 55
to await a valid key press.

This program uses the 5 key to move left, 6 to move down, 7 to move up, 8 to move
right, and 9 to change colour. There is nothing stopping you from using other keys for
these functions. The lines 100,120,140 and 160 deal with the cases when the blob
drawn in lines 55 and 60 reaches the edge of the screen. Every line that you touch key
9, the colour is changed. If colour 15 (grey 3) is reached, the colour then steps back to
0 (black), because of line 180.

The blob isn't rubbed out after it moves, so this program enables you to draw your
own picture. If you draw in the same colour as the screen colour you can in effect, rub
out'. As the Commodore 64 doesn't have an automatic repeat function if you hold
down a key, it is necessary to touch and release the relevant key each time you wish
to move the blob.

10 REM * • DRAWING PROGRAM**
20 PRINT CHR$(147)
30 LET R=0
40 LET C=0
50 LETCL=0
55 POKE 55296+C+R*40,CL
60 POKE1024+C+R*40,160
70 GETA$
80 IF A$="" THEN GOTO 70
90 IF A$="5" THEN LET C=C-1

185

100 IFC<=0THENLETC=0
110 IF A$="6" THEN LET R=R+1
120 IF R>=24 THEN LET R=24
130 IF AS="7" THEN LET R-R-1
140 IFR<-0THENR=0
150 IF A$="8" THEN LET C=C+1
160 IF C>=39 THEN LET C=39
170 IF A$="9" THEN LET CL=CL+1
180 IF CL>=16 THEN LET CL=0
190 GOTO 55

Program 11 Drawing with a blob

M Program 11.

A typical RUN.

If you change the code for a space (160) in line 60 for another character, you can add
variety to your drawings, too. Lines 55 and 60 refer back to the screen map and colour
map; C is the column number (0 to 39) and R is the row number (0 to 24).

186

Example 5: Move a blob

It is beyond the scope of this course to develop a complex game, such as the one of
the space pursuit games, because of the higher level programming skills needed.
However, this program developed from Example 4 above, shows how full two-
dimensional motion of a spacecraft picture, for example, can be produced. See how it
differs from Program 11, to enable the blob to rub out its 'tail' behind it. This is simply
done by clearing the screen before going back to draw the next position.

10
20
30
40
50
55
60
70
80
90
100
110
120
130
140
150

REM * • MOVING DOT PROGRAM • *
PRINT CHR$(147)
LET R=0
LET C=0
LET CL=0
POKE 55296+C+R*40,CL
POKE1024+C+R*40,160
GETA$
IFA$<
FA$=
IFC<=0THEN LETC=0
IF A$=

IFA$=

IF A$=

" THEN GOTO 55
5" THEN LETC=C-1

6" THEN LET R=R+1
IF R>=24 THEN LET R=24

7" THEN LET R=R-1
IFR<=0THENR=0

8" THEN LET C=C+1
160 IF C>=39 THEN LET C=39
170 IF A$="9" THEN LET CL=CL+1
180 IF CL>=16 THEN LET CL=0
190 PRINT CHR$(147)
200 GOTO 55

Program 12 Moving blob

H Program 12.

RUN program 12, and see how you can move the blob to any point within the
designated area of the screen, using the 5, 6, 7 and 8 keys. The 9 key allows you to
change colour.

187

7.8 Drawing flags.
The following program draws the French flag, in full colour. The flag consists of three
vertical stripes: from left to right these are blue, white and then red. The border is set
to 0 (black), for contrast, and then the loop from 100 to 180 builds up the flag, from the
top to the bottom, filling in one row of character positions at a time; Line 100 is
100 FOR R=0 TO 24
as we have 25 lines in the flag. Line 110 is
110 FORC=0TO2
as we have three stripes in the flag. Line 130 builds up one horizontal line of the flag, at
a time. As the three colours are repeated in each line of the flag, we need the
RESTORE at line 170 to save having to repeat the data for each line.

10 REM • • • • • • • • • • • • • • • • • • * * * * • •
20 REM • • VERTICAL TRICOLORE • *
30 REM • • * • • * * • • • • • • * • • • • • • • • • *
40 POKE 53280,0
50 POKE 53281,0
60 PRINT CHR$(147)
70 FOR X=1024 TO 2023
80 POKEX.160
90 NEXT X
100 FORR=0TO24
110 FORC=0TO2
120 READCL
130 FOR X=55296+13*C+40*R TO 55309+13*C+40*R
140 POKEX.CL
150 NEXT X
160 NEXT C
170 RESTORE
180 NEXTR
190 GOTO 190
200 DATA 6,1,2

Program 13 Vertical tricolore flag

OS Program 13.

RUN the program.

SAQ2
1. Convert Program 13 to draw the Belgian flag (black/yellow/red vertical stripes).

(You will need to alter the border colour, as one of the flag stripes is black.)
2. Convert Program 13 to draw the Italian flag (green/white/red vertical stripes).

Exercise 1
We have shown how to draw a flag made of three vertical stripes; try to write a
program to draw a flag made up of three horizontal stripes — the Dutch flag would be
a good example to try. The top stripes is red, the middle stripe is white, and the bottom
stripe is blue.

188

7.9 Sprite graphics
It is beyond the scope of this course to go into details of how to define your own high-
resolution (detailed) graphics display. It will suffice to work through an example.

In the following picture,
128 32 8 2 128 32 8 2 128 32 8 2

64 16 4 1 64 16 4 1 64 16 4 1

Column
Series 1 Series 2 Series 3

we have a grid of 24 columns and 21 rows, from which we can build up our detailed
picture. The grid is divided into three vertical sections, called Series 1, 2 and 3,
respectively. Each column is numbered in powers of 2 (1,2,4,8,16,32,64 and 128),
from right to left, within its series. Using this pattern we can build up a picture, such as
the 'National Extension College' train shown above.

10 REM • * HIGH-RES TRAIN • •
20 PRINT CHR$(147)
30 LET HR=53248
40 POKE 53281,8
50 POKEHR+21,4
60 POKE 2042,13
70 POKEHR+41,2
80 FORT=0TO62
90 READD
100 POKE832+t,D
110 NEXTT
120 POKEHR+23,4
130 POKEHR+29,4
140 REM * • MOVE TRAIN SPRITE * •
150 FORC=0TO200
160 POKEHR+4,0
170 POKEHR+5,150
180 NEXTC
190 GOTO 140
200 DATA 0,0,24,0,0,28,0,0,12,0,0,6,0,0,6,0,0,0
210 DATA 255,0,15,255,7,6,51,15,134
220 DATA 51,255,255,63,104,67,63,43,223
230 DATA 63,8,223,255,75,223,255,104,67
240 DATA 255,255,255,14,28,56,17,34,68
250 DATA 21,42,84,17,34,68,14,28,56
M Program 14. Program 14 Sprite train

189

The data in lines 200 to 250 describe the train drawing in order of rows 1 to 21, going
across the series 1 to 3 with each row.

The data numberfor each series in each row is obtained by adding up the numbers for
each square that is coloured in.

Line 20 Clearing the screen.
30 Memory location 53248 is the start address of the display chip control.
40 Colour the screen (paper) orange (8).
50 Register 21 turns the sprite picture on or off; 4 (binary 100) means

turn on Sprite 2 (the Commodore 64 can handle 8 sprite levels
simultaneously).

60 tells the computer where to read the sprite data from. 2042 deals with
Sprite 2.

70 Register 41 deals with colour for Sprite 2 — this line makes the
drawing red (Colour 2)

80 to 100 read in the 62 pieces of data (21 rows X 3 series) and store it in
locations 832 onwards.

120 and 130 mean 'expand' the sprite picture in the X-direction (left-right)
and in the Y-direction (up-down) — this makes the sprite picture
bigger and easier to use.

150 to 80 move the sprite picture; 160 moves it from left to right — 170
keeps the picture on the same level in the Y-direction, as a train
doesn't go up in the air!

Now RUN program 14. You will see the train move across the screen, from left to right.
If you draw a picture on squared paper, as the train picture was drawn, and then turn it
into data, you will be able to use program 14 to animate your own sprite picture.

7.10 Sound in programs
The Commodore 64 has a very versatile sound generation capability, ranging from
simple tunes and sound effects to complex harmonies. The sound is played through
the loudspeaker of the television used as a display screen. See Chapter 7 of your
User Manual for data tables.

As with the sprite graphic instructions for the Commodore 64, the full sound
instructions are very complicated. We shall only deal with one of the three available
voices. For each note that is played, we need to instruct the computer about the
volume of the note, how quickly the note rises to and falls from its highest volume
level, the waveform (type of sound produced), how long the note is to be held on
(sustained), the length of the note, and two values called the high and the low
frequency for the note. Each of these items is controlled by a POKE to a numbered
memory location. In our programs we shall give meaningful names to these memory
locations, to make the listing a little easier to follow.

We shall stick to VOICE 1. In this case, volume is controlled by location 54296,
waveform by location 54276, attack/decay by location 54277, sustaining the note by
location 54278, and the low frequency, 54272, high frequency 54273.

In line 90, we have set the volume (VOL) to the maximum level, of 15. We have chosen
a triangular waveform in line 100. Line 110 sets the attack to 128, and the decay to 1.
(Which is a high attack and the lowest decay). Line 120 sets the sustain value to a
medium setting.

190

The dummy loop in line 130 and 140 sets the length of the note. The larger the number
at the end of line 130, the longer the note. In lines 150 and 160 we read in the high/low
frequency values for the notes we need. These are found in Appendix M of your User
Manual. Line 170 checks to see if all data has been read in.

The data is the scale of C, in octave 4.

10 REM • • PLAY A SCALE * •
20 REM • • * * • • • • • * • • • • * * * *
30 LET VOL=54296
40 LET WAV=54276
50 LET ATD=54277
60 LET LFRQ=54272
70 LET HFRQ=54273
80 LET SUS=54278
90 POKEVOL.15
100 POKE WAV, 17
110 POKE ATD,129
120 POKESUS.64
130 FOR D-1 TO 250
140 NEXTD
150 READH
160 READ L
170 IF H < 0 THEN GOTO 220
180 POKELFRQ.L
190 POKEHFRQ.H
200 POKE WAV,0
210 GOTO 100
220 REM * * E N D * *
230 POKE LFRQ.O
240 POKE HFRQ.O
250 END
260 REM • • SCALE C OCTAVE 4 • •
270 DATA 17,37
280 DATA 19,63
290 DATA 21,154
300 DATA 22,227
310 DATA 25,177
320 DATA 28,214
330 DATA 32,94
340 DATA 34,75
350 DATA - 1 - 1

Program 75 Scale of C
IB Program 15.

Turn up the sound on your television set, and RUN program 15. The scale of C goes
C — D - E — F - G - A - B — C .

Exercise 2
Try to write the data to play the scale of G in the 4th octave, using program 15.

Suggestion

The scale of G goes G—A—B—C—D—E—F#—G'; use the notes table in Appendix
M of your User Manual to find the high frequency and low frequency values.

191

Now, let us play a tune. We need to be able to change the lengths of the notes, and we
do this by altering the length of the dummy loop which counts whilst the note is
playing. This now means that, even for a tune where we keep volume, attack/decay
and sustaining constant, we still need three data items—high frequency number, low
frequency number, and duration. In the next program, we have used 200 to be a
crotchet, so 100 will be a quaver, and 400 a minim.

We can speed up to music by changing line 190 to, for instance,

190 FOR T-1 TO D/2
or slow it down:
190 FORT=1 TOD*2
which can be useful, if we want the music to be slow enough to check through for
mistakes.

10 REM ••LONDON'S BURNING**
20 REM * * * * * * * • • • • • • • • • • • •
30 LETVOL=54296
40 LET WAV=54276
50 LET ATD=54277
60 LET LFRQ=54272
70 LET HFRQ=54273
80 LET SUS=54278
90 POKEVOL,15
100 POKEWAV.17
110 POKEATD.68
120 POKE SYS,128
130 READH
140 READL
150 READD
160 IF H < 0 THEN GOTO 240
170 POKELFRQ.L
180 POKEHFRQ.H
190 FOR T-1 TO D
200 NEXTT
210 POKELFRQ.O
220 POKE HFRQ.O
230 GOTO 130
240 END
250 REM ••LONDON'S BURNING**
260 REM * * HI/LO/DURATION * *
270 DATA 19,63,100
280 DATA 19,63,100
290 DATA 25,177,200
300 DATA 25,177,200
310 DATA 19,63,100
320 DATA 19,63,100
330 DATA 25,177,200
340 DATA 25,177,200
350 DATA 28,214,100
260 DATA 28,214,100
390 DATA 32,94,200
400 DATA 32,94,200
410 DATA 28,314,100

192

420 DATA 28,214,100
430 DATA 32,94,200
440 DATA 32,94,200
450 DATA 38,126,200
460 DATA 38,126,400
470 DATA 38,126,200
480 DATA 38,126,400
490 DATA 38,126,100
500 DATA 34,75,100
510 DATA 32,94,200
520 DATA 32,94,200
530 DATA 38,126,100
540 DATA 34,75,100
550 DATA 32,94,200
560 DATA 32,94,200
570 DATA - 1 , - 1 , - 1

E Program 16.

10 REM • • DARBY KELLY • •
20 REM • • • • • • • • • • • • • • • • •
30 LET VOL=54296
40 LETWAV=54276
50 LET ATD=54277
60 LET LFRQ=54272
70 LET HFRQ=54273
80 LETSUS=54278
90 POKEVOL.15
100 POKEWAV,33
110 POKE ATD, 136
120 POKE SUS,128
130 READ H
140 READL
150 READD
160 IF H<0 THEN GOTO 240
170 POKELFRQ.L
180 POKEHFRQ.H
190 FOR T-1 TO D
200 NEXTT
210 POKELFRQ.O
220 POKE HFRQ.O
230 GOTO 130
240 END
250 REM • ••DARBY KELLY • •
260 REM • • HI/LO/DURATION • •
270 DATA 19,63,120,25,177,240
280 DATA 32,94,120,32,94,240
290 DATA 19,63,120,25,177,240
300 DATA 32,94,120,32,94,240
310 DATA 19,63,120,25,177,240
320 DATA 32,94,120,32,94,80
330 DATA 28,214,80,32,94,80

Program 16 London's Burning

193

340 DATA 34,75,240,28,214,120
350 DATA 28,214,240,19,63,120
360 DATA 25,177,240,32,94,120
390 DATA 32,94,80,28,214,80
400 DATA 25,177,80,21,154,240
410 DATA 34,75,120,34,75,240
420 DATA 21,154,120,19,63,240
430 DATA 32,94,120,32,94,240
440 DATA 28,214,120,28,214,240
450 DATA 25,177,120,25,177,240
460 DATA 32,94,120,28,214,240
470 DATA 19,63,120,19,63,240
480 DATA 32,94,120,28,214,240
490 DATA 19,63,120,19,63,240
500 DATA 32,94,120,28,214,240
510 DATA 38,126,120,38,126,80
520 DATA 36,85,80,38,126,80
530 DATA 38,126,240,19,63,120
540 DATA 19,63,960,34,75,120
550 DATA 32,94,240,28,214,120
560 DATA 25,177,240,24,63,120
570 DATA 21,154,240,25,177,120
580 DATA 25,177,80,21,154,80
590 DATA 21,154,80,19,63,240
600 DATA 32,94,120,32,94,240
610 DATA 28,214,120,28,214,240
620 DATA 25,177,120,25,177,240
630 DATA 32,94,120,28,214,240
640 DATA 19,63,120,19,63,240
650 DATA 32,94,120,28,214,240
660 DATA 19,63,120,19,63,240
670 DATA 32,94,120,28,214,240
680 DATA 38,126,120,38,126,80
690 DATA 36,85,80,38,126,80
700 DATA 38,126,240,19,63,120
710 DATA 19,63,960,34,75,120
720 DATA 32,94,240,28,214,120
730 DATA 25,177,240,24,63,120
740 DATA 21,154,240,25,277,120
750 DATA 25,177,80,24,63,80
760 DATA 21,154,80,19,63,240
770 DATA 32,94,120,32,94,240
780 DATA 28,214,120,28,214,240
790 DATA 25,177,120,25,177,120
800 DATA - 1 , -1 , -1

IS Program 17.

If you run this program. You will see that quite complex tunes can be played on the
Commodore 64, even with only one voice in use. If you are well-versed with musical
theory, you should find no difficulty in writing music programs. If not, a book of simple
tunes, such as those written for children learning to play the recorder, would give

Program 17 Darby Kelly

194

suitable tunes to start with. Write the name of each note (A,B,C, etc) under each note
on the piece of music, and then refer to the note chart at Appendix M of your User
Manual, for the high and low frequency numbers. Decide what value your 'standard'
note will be worth (e.g. 100 for a crotchet), and then work out what each note in your
tune is worth.

7.11 Sound effects in programs
As well as providing proper music, the Commodore 64 can produce a wide range of
sound effects in programs. You may be familiar with the 'explosions' and 'flying
saucer' noises on arcade type games commercially available.

Let us return to our old friend, the moving bus. The following program has lines 161 to
168 added, to provide a two-tune sound. This slows down the program, so the delay
lines (150 and 160) are no longer needed.

10 REM * * * * * * * * * * * * * *
20 REM **MOVING BUS**
30 REM * * * * * * * * * * * * * *
40 LETB$(1)="HH3HHBEHH"
50 LETB$(2)="HQ a "
60 LETB$(3)="M O O"
70 LETC$="
72 POKE 54296,15
73 POKE 54276,17
74 POKE 54277,129
75 POKE 54278,128
80 FOR M-1 TO 32
90 PRINT " Q 0 0 0 0 0 "
100 PRINT "m "
110 P R I N T " Q a n D D "
120 FORK=1 TO 3
130 PRINT LEFT$(C$,M);B$(K)
140 NEXT K
161 POKE 54273,34
162 POKE 54272,75
163 FORT=1 TO 40
164 NEXTT
165 POKE 54273,17
166 POKE 54272,37
167 FOR T-1 TO 40
168 NEXTT
170 NEXTM
180 PRINT " a "

Program 18 Bus with sound

IB Program 18.

The program plays C—5 then C—4 alternately, as the bus moves along, providing a
quiet sort of 'engine' noise.

SAQ3
Alter program 18 to give a red border, yellow paper, and a green bus.

195

Assignment 7
1. Take program 8, Tables Test, and add suitable sound effects to the colour

version:
(a) to accompany the initial instructions.
(b) to accompany correct answers
(c) to accompany incorrect answers.
(d) to accompany the final score/re-run instructions.

Guidance if required: first establish exactly where in the program each of the
above four functions takes place, then decide a suitable sound effect to add
(e.g. a rising scale for good things, a descending scale for bad things, etc).

2. Choose a simple flag (other than one of the two designs already covered in this
unit) and write a program to draw it, in full colour. Send a description or colour
picture of the flag with your program to your tutor.

Objectives of Unit 7
When you have finished this unit check that you are able to:

Change the screen border colour

Change the screen paper colour

Change the screen ink colour

Describe how coloured lights combine to make other colours

Add colour to programs to improve their outputs

Produce simple moving graphics

Use a program with sprite graphics

Play tunes

Add sound effects

•
•
•
•
•
•
•
•
•

Answers to SAQs and Exercises
SAQ1
(a) yellow border
(b) red paper
(c) purple ink

SAQ2
1. Belgian flag

alterations to program 13:

40 POKE 53280,1
50 POKE 53281,1
200 DATA 0,7,2

196

2. Italian flag

alterations to program 13:

200 DATA 5,1,2
(40 and 50 are alright, as black)

Exercise 1
Horizontal tricolore flag.

10 REM *
20 REM * * HORIZONTAL TRICOLORE • •
30 REM *
40 POKE 53280,0
50 POKE 53281,0
60 PRINT CHR$(147)
70 FORX-1024TO2023
80 POKEX.160
90 NEXTX
100 FORC=0TO2
110 READCL
120 FOR X=55296+320*C TO 55615+320*0
130 POKEX.CL
140 NEXTX
150 NEXTC
160 GOTO 160
170 DATA 2,1,6

Program 19 Horizontal tricolore flag

M Program 19

Exercise 2
Musical scale — G (octave 4)

10 REM **PLAY A SCALE**
20 REM * * * * * • • * * • * * • * * *
30 LETVOL=54296
40 LET WAV=54276
50 LETATD=54277
60 LET LFRQ=54272
70 LET HFRQ=54273
80 LET SUS=54278
90 POKEVOL.15
100 POKEWAV.15
110 POKEATD.29
120 POKESUS.64
130 FOR D=1 TO 250
140 NEXTD
150 READH
160 READL
170 IF H < 0 THEN GOTO 220
180 POKELFRQ.L
190 POKEHFRQ.H
200 POKE WAV.O
210 GOTO 100

197

220 REM * * E N D * *
230 POKE LFRQ.O
240 POKE HFRQ.O
250 END
260 REM • • SCALE G OCTAVE 4 * •
270 DATA 25,177
280 DATA 28,214
290 DATA 32,94
300 DATA 34,75
310 DATA 38,126
320 DATA 43,52
330 DATA 48,127
340 DATA 51,97
350 DATA - 1 , -1

Program 20 Scale of G

03 Program 20.

SAQ3
Alterations to the BUS program (program 18)

lines 40 and 50 — first item in quotes should be CTRL/6 (shows up as UJ)

add 35 POKE 53280,2 for a red border, and
36 POKE 53281,7 for yellow paper.

198

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

UNIT8
Handling numbers

Introduction

Averages and the arithmetic mean

Range

Number crunching

Dry running

The representation of numbers

The INT-function for rounding

The ABS-f unction

Iteration

Assignment 8

Objectives of Unit 8

Answers to SAQ's and Exercises

200

200

203

206

209

211

214

215

215

220

220

220

199

8.1 Introduction

We have demonstrated that computers are not just number crunchers but in this
Unit we take a closer look at their arithmetic capacity. We concentrate on fairly
straight-forward arithmetic, so don't worry about finding it difficult. We're sure that
you will be able to cope. We shall continue the 'let's see what happens if
approach', and 'let's get the machine to tell us what is going on'. We hope that you
will adopt the same approach with the machine that you use.

8.2 Averages and the arithmetic mean
'How long have you been taking over each Unit of the course, so far?' 'Well, on
average, about 3 hours.' If we asked you how long it took you to complete a regular
journey, such as going to work, you would answer in a similar manner. Sports
enthusiasts use the terms goal average, and batting average, atlases abound with
pictures of average rainfalls for the months of the year. We talk of average mark in
a test or average age of a group of people, etc.

If we wished to calculate the average or arithmetic mean of the ages of a particular
group, we would add up the ages for all of the members of the group and divide
that sum by the total number of people in the group. To find the arithmetic mean
then involves: adding up, counting and then dividing the sum by the count.

Example 1

Find the arithmetic mean of the following set of numbers:

6,7,2,5,4,4,9,8.

Solution
Their sum = 6+7+2+5+4+4+9+8 = 45.
There are 8 numbers.
So their arithmetic mean = 45/8 = 5.625.
SAQ1
Find the arithmetic mean of the following set of numbers:

8,4,2,6,1,7,6,1,4.

Arithmetic mean
Example 2
Devise an algorithm and write a program to find the arithmetic mean of the
numbers stored in these DATA statements as follows:

900 DATA 56,47,52,65,24,34,59,37,49,66
910 DATA 38,24,62,76,31,47,66,61,74,45
920 DATA 66,44,55,67,36,56,54,54,50,43
930 DATA 18,83,23,79,29,-9999

Solution
We will express the algorithm first of all in descriptive form.
1. Start.
2. Set counter to 1.

200

3. Set sum to 0.
4. Input the next mark.
5. If mark = -9999 then go to 9 otherwise carry on to 6.
6. Add mark to sum.
7. Add 1 to counter.
8. Go to 4.
9. Set total to counter-1.

10. Calculate average=sum/total.
11. Output average.

Figure 1 Descriptive algorithm for arithmetic mean

I

(start

"

set
COUNTER to 1

&
SUM to 0

' r

/ input /
/ next /
/ MARK /

/ is \
<^MARK = -9999^>

? NO

add
MARK to SUM

1 1

add
1 to COUNTER

20,30

4 0

50

YES

6 0

70

j

/ set / -/ TOTAL TO /
/ COUNTER-1 /

\ '

calculate
AVERAGE =
SUM/TOTAL

! 1

/ /
/ output /
/ AVERAGE /

' '

stop

1

120

Figure 2 Flowchart for arithmetic mean

10 REM **ARITHMETIC MEAN**
15 PRINT CHR$(147)
20 LET C-1
30 LET S=0
35 REM **PROCESSING LOOP**
40 READ M
50 IF M=-9999 THEN 95
60 LET S=S+M
70 LET C=C+1
80 GOTO 35
90 REM * * * * * * * * * * * * * * * * *
95 REM **CORRECT COUNT**
100 LETN=C-1
110 REM * * * * * * * * • • • • • * • • •
115 PRINT "ARITHMETIC MEAN PROGRAM"
120 PRINT "AVERAGE=";S/N
130 REM * * * * * * * * * * * * * * * * *
900 DATA 56,47,52,65,24,34,59,37,49,66
910 DATA 38,24,62,76,31,47,66,61,74,45
920 DATA 66,44,55,67,36,56,54,54,50,43
930 DATA 18,83,23,79,-9999

Program 1 Arithmetic mean
RUN
ARITHMETIC MEAN PROGRAM
AVERAGE= 50.5714286
READY.

IS Program 1.

Exercise 1
Write a program to find the average length of the words in the 'Jude' DATA
statements of Example 2 of Unit 5. You can do this by grafting a routine onto
Program 1 of Unit 5 which already finds the lengths of words.

Exercise 2
Write a program to find the average score in a simulated experiment of tossing a
die 100 times. Run it 10 times to see what range of results you get.

Simulation
The expected average score when throwing a die a large number of times is:

1+2+3+4+5+6 21 „ c

6 6

However, in our runs of Exercise 2, we only hit exactly 3.5 once with values ranging
from 3.24 to 3.76. That was from the results of 3,000 (30 x 100) throws so you might
well ask, 'Is the random number generator biased?' (We did call it 'pseudo' anyway!)
How many experiments do we need to convince us that it is, or is not, biased?

To explore that question fully we need to go into statistical theory that is beyond the
scope of this course but we can at least find the mean of these means. All we have
to do is to take data from the 30 runs of the program:
3.56,3.47,3.52,3.65,. . .
and enter them into the DATA statements of Program 1 above. This gives us the
mean of the means.
202

You will notice below that we have entered only the decimal parts of the numbers
in order to make our data entry a little easier, e.g. 56 instead of 3.56. (We can do
this because all the numbers are 3. something.)

130 REM • * • * • • • • • • • • * • • • •
900 DATA 56,47,52,65,24,34,59,37,49,66
910 DATA 38,24,62,76,31,47,66,61,74,45
920 DATA 66,44,55,67,36,56,54,54,50,43
930 DATA -9999
940 END
RUN
AVERAGE- 51.2666667

Figure 3

Thus the overall mean of 3,000 throws is 3.51 to 2 decimal places - a bit more
convincing!

Simulation summarised
Simulation is rather a grand word for what we have just done. However, we wanted
to emphasize that we can simulate a real life activity without getting deeply
involved in statistics. We couldn't toss a die 3,000 times in classroom but with a
computer we can collect and process data fairly rapidly.
If your curiosity has been aroused then try the following exercise.

Exercise 3
Write a program to find the average score in a simulated experiment of tossing 2
dice 100 times.

What would you expect the average score to be in this case and in experiments
with 3, 4 . . . dice? Are your expectations justified by your experiments?

8.3 Range
While discussing the results of Exercise 2 on the previous page, we quite naturally
used the idea of range, we said that the values ranged from 3.24 to 3.76. The process
involves finding the lowest and highest values of the set.

Example 3
Devise an algorithm and write a routine to find the maximum and minimum values
of the numbers stored in the DATA statements in Example 2. Add this routine to
the program to find the arithmetic mean as written as a solution to Example 2.

(If you feel confident enough, treat this Example as an exercise before working
through our solution.)

Solution
You may feel we've been here before in Unit 4 when we found the lowest member
of a list. We could use that approach again but to do so we would first have to put
the data in a list form and then sort it twice with the interchange routine. That's a lot
of work so we will look at a shorter approach: trying to find the lowest and highest
marks as the data is read in.
We know how to read in the data (lines 10-50 in Program 1) but what do we do
with it as each item is read?

203

• First we create two stores:
M for top mark so far
B for bottom mark so far.

• Then we read the first mark and put it into both B and M. After all it is the lowest
and highest so far!

• Then we read each mark and if it is higher than M, put it into M or, if lower than B,
put it into B. If neither, just read the next mark.

So a descriptive solution is:

Description
1. Start routine.
2. If counter= 1 then write mark into top and bottom and go to 6 otherwise carry on

to 3.
3. If mark > top then write mark into top and go to 6 otherwise carry on to 4.
4. If mark >=bottom then got to 6 otherwise carry on to 5.
5. Write mark into bottom.
6. End routine.
Figure 4

And a flowchart:

i' F

set
BOTTOM = MARK

&
TOP = MARK

70,80

100

110

SET
TOP = MARK

120

SET
BOTTOM = MARK '

140

Figure 5.
add 1

to COUNTER
160

2 0 4

Which do you find easiest to follow?

Where there are several branches in a program, the descriptive algorithm can be
rather confusing. The two dimensional display of the flowchart may be more helpful.
It's a matter of personal choice; you judge for yourself!

the program visits this
backwater only the first time
round the loop when O—1.

the decisions are made
here.

10 REM • •MAX AND MIN* *
15 PRINT CHR$(147)
20 LETC=1
25 LET S=0
28 REM**READAVALUE**
30 READM
40 IF M—9999 THEN 185
50 I F 0 1 T H E N 9 5
60 REM * • * * • • * * * * * • • * * *
70 LETB=M
80 LETT-M
90 REM * * * * • • * * * * * * • • * *
95 REM **CHECK FOR MAX/MIN**
100 IF M>T THEN 135 "
110 IFM>=BTHEN155
120 LETB=M
130 GOTO 155
135 REM **NEW MAX VALUE**
140 LET T=M
150 REM * * * * * * * * * * * * * * * *
155 REM **TOTAL FOR AVERAGE**
160 LETC=C+1
165 LETS=S+M
170 GOTO 28
180 REM • * * • • • * * * * * * • • * *
185 REM **OUTPUT**
190 PRINT "MAX=";T,"MIN=";B
200 REM * • • * • • • * * * * * * * * *
210 LETN=C-1
220 PRINT "AVERAGE=";S/N
230 REM * * * * * * * * * * * * * * * *
900 DATA 56,47,52,65,24,34,59,37,49,66
910 DATA 38,24,62,76,31,47,66,61,74,45
920 DATA 66,44,55,67,36,56,54,54,50,43
930 DATA 18,83,23,79,-9999

RUN
MAX=83 MIN=18
AVERAGE = 50.5714286

READY.

M Program 2.

Exercise 4
Write a program to draw up a frequency table for the data in Program 2, using
categories'.
0-9,10-19, 20-29, .. . 90-99

Program 2

205

Suggestion
You could use a score-list

S(0), S(10), S(20), . ..S(100)

and for each mark read in, test whether it is less than the top of the second band (10),
less then the top of the third band (20), etc. until you find

MARK < K true

then increment S(K—10). This is the approach we have used (see answer).

8.4 Number crunching
We have avoided anything other than fairly simple arithmetic so far in the course, and
will continue to do so. But it would be wrong not to give a brief insight into the
computer's arithmetic capacity. If your heart sinks at the sight of the following few
pages, you will miss no vital programming information if you pass on to the next
section on dry running and tracing, but we hope you will give it a try. The Commodore
64 certainly does take the drudgery out of arithmetic.

Here is a simple program which calculates the numbers 1 to 10 their squares (line 50),
cubes (line 60) and reciprocals (line 70) and then tabulates the result.

1 REM **TABULATE THE SQUARES, CUBES AND
2 REM RECIPROCALS FOR THE FIRST TEN
3 REM NATURAL NUMBERS**
5 PRINT CHR$(147)
10 PRINT" N":TAB(7)'"N*N";TAB(13);"N*N*N";TAB(21);"1/N"
20 PRINT
25 REM **PROCESSING LOOP**
30 FOR 1=1 TO 10
35 REM **NUMBER**
40 LET N=l
45 REM **SQUARE**
50 LET S=l* l
55 REM * * C U B E * *
60 LETC=I*I*I
65 REM **RECIPROCAL**
70 LET R-1 /I
75 REM**PRINT**
80 PRINT N;TAB(7);S;TAB(13);C;TAB(21);R
90 NEXT I
95 REM**ENDOFLOOP**
100 END

Program 3

206

RUN
N N*N N*N*N 1/N

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

IE Program 3

Raising to a power
We expect that you are familiar with the notation:

4X4=42 (4-squared or 4 raised to the power 2)
7X7X7=73 (7-cubed or 7 raised to the power 3)
10X10X10X10X10=105 (10 raised to the power 5)

In BASIC raised to the power is shown as t. Any number N raised to the power P is
shown as NtP. P is called the exponent and raising to a power is called
exponentiation.

Similarly for negative powers:

N

1 x 1 = —!— = 4~2 4
4 ~ 4 4X4
1 y 1 y 1 = 1 = 7-3 7
7 X 7 X 7 7X7X7 ' '
1 y _i_ y _1_ y _!_ y _1_ = 1 = i c\—5 i n

10 10 10 10 10 10X10X10X10X10

Fractional powers (positive and negative) are also possible but we will not be
concerned with them.

We can use the'notation instead of • in Program 3. Thus Program 3 re-written with"
becomes:

1 REM **TABULATE THE SQUARES, CUBES A N D * *
2 RECIPROCALS FOR THE FIRST TEN
3 NATURAL NUMBERS**
5 PRINT CHRS(147)
10 PRINT " N";TAB(7);"Nt2";TAB(13);"Nt3";TAB(21)"Nt(-1)"
20 FORN=1TO10
30 PRINT N;TAB(7);Nt2;TAB(13);Nt3;TAB(21);Nt(-1)
40 NEXTN
50 END

Program 4

We have put this program here to show you that raising to a power is not exact with the
Commodore 64. See section 8.6, Representation of Numbers, for an explanation.

207

27
64
125
216
343
512
729
1000

.333333333

.25

.2

.166666667

.142857

.125

.111111111

.1

P NtP

- 2 4t(-2)

- 3 7(-3)

- 5 10f(-5)

Sequences and their sums
Calculating the individual terms in a sequence, or the sum of the first N terms, is a very
great labour without a computer. How long would it take you to evaluate the terms of

1_, J_, J _ , . . .J_?
12 22 32 N2

Well it's very easy with Program 5.

3 PRINT CHR$(147)
5 PRINT "SERIES CALCULATION"
10 PRINT "N"."N?(-2)"
15 REM **START OF PROCESSING LOOP**
20 FOR N- t TO 10
30 PRINT N,Nt(-2)
40 NEXTN
50 END

Program 5
RUN
SERIES CALCULATION

N Nt(-2)
1 1
2 .25
3 .111111111
4 .0625
5 .04
6 .277777778
7 .0204081633
8 .15625
9 .012345679
10 .01
READY.

B Program 5.

Exercise 5
Write a program to find how many terms of the series

1 1 1 1
' 2' 3' 4' • ' •

are needed to make their sum exceed 2.4.

Exercise 6
Modify the program from Exercise 5 to find out how many terms are needed for sum

= 1+1 + 1 + 1 + . . .
22 32 42

to exceed 1.5.

Exercise 7
Factorials are interesting numbers. Factorial 4=4X3X2X1 and is usually written 4!
So

Factorial 7 = 7X6X5X4X3X2X1 = 7!

Factorial N = NX(N-1)X(N-2)X . . . X1 = N!

Write a program to evaluate the factorials of any positive integer.

208

Exercise 8
We wrote a rather clumsy program to evaluate the yield (Y)on a deposit (D) at
compound interest percentage (P) way back in Unit 1. A neater formula is Y = D X
(1 + P/100)T where T is the number of years of the investment.

Write a program to evaluate the yield, using this formula, for various deposits,
percentages and time periods.

8.7 Dry running
Often we find that a program either does not work at all, or not to our complete
satisfaction. If we have reasonable access to a computer we may sit at the machine
until we trace the fault, but when all else fails we may be forced to sit down with pencil
and paper and think hard. Stepping through an algorithm line by line with pencil and
paper is called dry running.

We shall illustrate dry running by looking at Program 18 which was the solution to
Exercise 5.

10 REM **SUM OF RECIPROCALS**
15 PRINT CHR$(147)
20 LETS=0
30 LETN=1
35 REM ••START OF PROCESSING LOOP**
40 LETS=S+1/N
50 IFS>2.4THEN80
60 LETN=N+1
70 GOTO 35
80 REM **OUTPUT**
90 PRINT "SUM=";S;" THE NO. OF TERMS IS ";N
100 END

Program 18 (from Exercise 5)
RUN
SUM= 2.45 THE NO. OF TERMS IS 6
READY.
Tracing means finding and recording each step, the line number executed at that
step and the values of the variables after that line has been executed, so, for Program
18 we need the headings:

step No.

1

2

etc

line No. N S

209

We omit from the trace lines which don't affect the variables, i.e.

REM (line 10)
GOTO (line 70)
PRINT (lines 15 & 90)

Apart from these, the program steps are as follows:

-GOTO

GOTO

GOTO

Figure 6

Tracing
Some BASIC interpreters provide a TRACE command, the Commodore 64 does not.
This is no great loss, as these often provide so much information that it is difficult to
see the wood for the trees. A carefully designed trace routine of your own works best.
Later in this Unit we will show you how to write your own trace into a program.

step No.

1

2

3

Step No.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

line No.

20

30

40

line no.

50

60

40

50

60

40

50

60

40

50

60

40

50

60

40

N

0

1

1

N

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

S

0

0

1

S

1

1

1.5

1.5

1.5

1.83

1.83

1.83

2.08

2.08

2.08

2.28

2.28

2.28

2.45

Note effect of
"GOTO 40 line 60

-GOTO again

210

SAQ2
Complete a dry-run on the following program, starting when line 20 has just been
executed and continuing until the condition inline 50 is true. Draw up the table with the
same headings as in the above example.

10 REM • •SUM OF SQUARES**
15 PRINT CHR$(147)
20 S=0
30 N=1
35 REM **ADD NEXT TERM**
40 S=S+Nt2
50 IFS>50THEN80
60 N=N+1
70 GOTO 35
80 REM **OUTPUT**
85 PRINT "SUM OF SQUARES"
90 PRINT "SUM=";S;" NO. OF TERMS IS";N
100 END

Program 6

8.6 The representation of numbers
So far in the course we have left in abeyance a number of questions about the
representation of numbers in our programs. We do not intend to consider the
mathematics of number representation in computers in general but we need to tidy
up our ideas about numbers.

In general terms computers must be able to process and store the following types of
number:
(a) positive and negative whole numbers (integers or counting numbes);
(b) fractions and numbers which are partly whole and partly fractional (measuring

numbers);
(c) very large and very small numbers;
(d) the number zero.

The single most important piece of advice that we can give you at this stage is that if a
number has been involved in any sort of calculation within a program then consider it
with a certain amount of suspicion. The reason for this statement is that numbers
within a computer are stored and manipulated in binary form, that is to base 2, rather
than to the base 10 with which we are familiar. In our familiar decimal notation you will
recall that a number like V3 or 77 in incapable of exact expression, e.g. % = 0.3333...
We assume that by adding as many 3's to this number as we wish we can achieve an
acceptable level of acurracy in any particular problem. In the binary system, in just the
same way, some numbers cannot be expressed exactly, e.g. in decimal form we can
say that 1/10 = 0.1 exactly but when this number is changed into binary form it cannot
be represented exactly.

Most BASIC interpreters allow for numbers to be expressed to an accuracy of six
decimal digits. In decimal form then the number 31/,0 could be represented as 3.10000
to six decimal digit accuracy. However, if this number had been the result of some
calculation within a computer, we might find that the number output was 3.09999 or

211

3.10001. So, in general, you must always be suspicious of the least significant digit in
any answer (i.e. the digit on the far right of the number).

We saw this in the output to Program 4.

Program 7 shows how this type of inaccuracy may occur. The FOR . . . NEXT loop
adds 4.0,4.1 and 4.25 into locations S, T and U one thousand times. Now 4.0 and 425
are exactly represented in binary form, but 4.1 is not. We can see that the result of this
repetitious summation is exact in respect of 4.0 and 4.25, but not for 4.1 where the
error is 0.04 in 4100.00. Obviously, we would avoid writing programs involving such
repetitions wherever possible, but we hope that the program will act as a warning
about possible inaccuracies.

10 REM **ACCURACY DEMONSTRATION**
15 PRINT CHR$(147)
20 LETS=0
30 LETT=0
40 LETU=0
50 LET 1=1 TO 1000
60 LETS=S+4.0
70 LETT=T+4.1
80 LETU=U+4.25
90 NEXT I
100 PRINT S,T,U
120 END

Program 7

RUN
4000 4100.00016 4250

READY.

IB Program 7.

Small and large numbers
Six decimal digits do not allow us to cope with very small or very large numbers. So
these numbers are represented in BASIC in exponential form.

Small numbers

0.000586321 means JJ^^J^ = ^

which could be expressed as 586321 X 10-9. We could also express 0.000586321 as

° i ooo21 ° ° 0 5 8 6 3 2 1 x 10~3

In BASIC this last number would be written as 0.56321 E-3 or 0.586321 E-03
Similarly,

0.0234539 = 2.34539 X 10"2 = 2.34539E-2

and

0.00000000959734 = 0.959734 X 10"8 = 0.959734E-8.
E stands for exponent, and the base for exponentiation is 10. So E—4 means move
the decimal point 4 places to the left, and E+9 means move the decimal point 9
places to the right.

212

Large numbers
12368500 = 1.23685 X 107 = 1.23685E+7
935.432 = 0.935432 X 103 = 0.935432E+3
959734000000000000000 = 0.959734E+21

most BASIC interpreters have a range of at least E—32 to E+32; The range of the
Commodore 64 is 2.93873588E-39 to 1.70141183E+38

10 REM ••NUMBER DEMONSTRATION**
15 PRINT CHR$(147)
20 PRINT "NUMBER","REPRESENTATION"
30 FORH-10TO10
40 PRINT "10t";l,10tl
50 NEXT I

Program 8
IB Program 8

RUN
NUMBER
101-10
10t—9
1QT-8
10T-7
10T-6
10t-5
10t—4
10t-3
10t-2
10t-1
10t0
10t1
10t2
10t3
1014
1015
1016
10T7
10t8
1019
10110
READY.

DEMONSTRATION
9.99999998E-11
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
.01
.1
1
10
100
1000
10000
100000
1000000
10000000
100000000
1E+09
1E+10

213

8.7 The INT-function for rounding
For some problems we need to round off the result of a calculation to the nearest
whole number.

e.g. 6.6. to the nearest whole number is 7
7.4 to the nearest whole number is 7.

This is especially true if we are not confident about the last figure accuracy of a
decimal number,

e.g. 6.99999 or 7.00001 for 7.

The function INT(X+0.5) does this rounding for us as the following program
demonstrates.

10 REM ** INT FOR ROUNDING**
15 PRINT CHR$(147)
20 PRINT "X","INT(X)","INT(X+0.5)"
30 FORI=-1.4TO-2.6STEP(- .1)
40 PRINT I, INT(l)),INT(l+0.5)
50 NEXT I
60 END

X INT(X) INT(X+0.5)
-1.4 - 2 - 1
-1.5 - 2 - 1
-1.6 - 2 - 2
-1.7 - 2 - 2
-1.8 - 2 - 2
-1 .9 - 2 - 2
- 2 - 2 - 2
-2.1 - 3 - 2
-2.2 - 3 - 2
-2.3 - 3 - 2
-2.4 - 3 - 2
-2.5 - 3 - 2
-2 .6 - 3 - 3

Changing line 30 to 30 FOR 1 = 1.4 TO 21

X INT(X) INT(X+0.5)
1.4 1 1
1.5 1 2
1.6 1 2
1.7 1 2
1.8 1 2
1.9 1 2
2 2 2
2.1 2 2
2.2 2 2
2.3 2 2
2.4 2 2
2.5 2 3
2.6 2 3

Program 9a

gives

[0 Program 9a.
214

Program 9b

SAQ3
What print-outs will we get from the above program if we change line 30 as follows::

(a) 30 FOR 1=4 TO 2.2 STEP (.2)?
(b) 30 FOR 1=4 TO -.6 STEP (-.2)?

8.8. The ABS-function
An arithmetic function related to the above ideas, is to find the modulus, or absolute
value of a number. It sounds rather grand, but is very simple.

ABS(X) simply gives us the positive value of X.
e.g. ABS(23)=23, ABS(-23)=23

The following program illustrates the function.

10 REM ••THE ABS-FUNCTION**
15 PRINT CHR$(147)
20 PRINT "X","Y","X+Y","ABS(X+Y)"
30 FOR 1=1 TO 4
40 READX.Y
50 PRINT X,Y,X+Y,ABS(X+Y)
60 NEXT I
100 DATA 5,7,5,-7,-5,7,-5,-7

Program 10
RUN
X Y X+Y ABS(X+Y)

5 7 12 12
5 - 7 - 2 2

- 5 7 2 2
- 5 - 7 - 1 2 12

READY.
H Program 10

SAQ4
What will the print-out table be if we change line 100 to
100 DATA 9,14,11 -2 , -4 ,13 , -7 , -8?

8.9 Iteration
The process of making a guess at a value, testing it, making a better guess and
testing again, etc., until we home in on an item or value is known as iteration. The
essence of iteration involves:
• making an arbitrary start
• guessing how accurate this point is
• refining this in a sequence of repeated operations.

215

Program 11

Square root by iteration
BASIC can do square roots directly as this program demonstrates:

5 REM ••DIRECT SQUARE ROOTS**
7 PRINT CHR$(147)
10 FORX=33TO63STEP(10)
20 PRINTX;TAB(5);Xt(.5),SQR(X)
30 NEXT X

(SQR(X) gives the square root of X provided that X>=0.)

RUN
33 5.74456265 5.74456265
43 6.55743853 6.55743853
53 7.28010989 7.28010989
63 7.93725393 7.93725393
READY.

However, we shall also show you how to find a square root by an iterative method not
because that's how you would normally do it but because it's an easy example
through which to demonstrate iteration.

The method
If you want to square root a number N, then:
• take a guess at the square root, say G
• work out N/G
• then the average of G and N/G is an even better guess than your first one, i.e. it is

closer to the unknown square root than your first guess.
• go back to the beginning using this new 'better' guess.

We shan't prove this here (it's in plenty of maths textbooks) but we shall show its
working in a simple case.

To square root
Guess
Work out
Take average

N = 12
G = 2
N/G = 6
G +N/G = 2 + 6 = 4

2 2

So 4 is the new guess

Guess G = 4
N/G = 3
G + N/G = 3.5

So 3.5 is the new guess.

In table form this looks like:

Figure 7

G

2

4

3.5—

N/G

12/2=6

12/4=3

-^T2/ai=T..

G + N/G
2

(2+6)/2=4

(4+3^2=3.5

216

SAQ5
To make sure than you have grasped the process draw up a table similar to that
above, but make your first guess 1.

Iteration . . . stop
The question now is: 'How do we stop the process?' Well, we want to stop the
processs when the square of our guess becomes as close as possible to N.What do
we mean by 'as close as possible'? The answer is that it's up to you. You're in charge!
How accurate do you want the square root to be? If, for example, we wish to find the
square root of 12 to 2 decimal places, then the difference between G*G and N would
have to be

<0.005

We don't need to know whether G*G is bigger or smaller than N—only the difference
matters. So we are back to ABS. If

ABS(N-G*G) < 0.005

then stop, is what we are after.

Descriptive algorithm for square root iteration
1. Start.
2. Input the number whose square root is sought.
3. Input the accuracy required.
4. Input a guess at the square root.
5. If the guess is within the accuracy required then go to 8 otherwise continue

with the next statement.
6. Make the guess more accurate.
7. Return to 5.
8. Output the square root value found.
9. Stop.

-is NIO
(start V—*

Figure 9 Flowchart for square root iteration

10 REM **SQRT BY ITERATION**
15 PRINT CHR$(147)
20 INPUT"NO. FOR SQUARE-ROOTING";N
30 INPUT-ACCURACY REQUIRED";A
40 INPUT "YOUR GUESS";G
45 REM **START OF ITERATION**
50 IFABS(N-G*G)<ATHEN80
60 LET G=.5*(G+(N/G))
70 GOTO 45
75 REM **OUTPUT**
80 PRINT
81 PRINT "THE SORT OF ";N;" IS ";G
90 END

Program 12 Square root iteration
RUN
NO. FOR SQUARE-ROOTING? 12
ACCURACY REQUIRED? .005
YOUR GUESS? 2

THE SQRT OF 12 IS 3.46428572

READY.

RUN

NO. FOR SQUARE-ROOTING? 12
ACCURACY REQUIRED? .00005
YOU GUESS? 2

THE SQRT OF 12 IS 3.46410162

READY.

IS Program 12.

Tracing the iterative process
Now the result of program 12 is not very startling. As we pointed out earlier on, we can
find N directly with a computer. But we wanted a simple example to demonstrate
iteration at work so we will now take a closer look at what is happening, we will put a
trace into Program 12 as follows:

47 PRINT "OLD","NEW","ABS(N-G*G)"
55 PRINT G
65 PRINT G,ABS(N-G*G)

Each pass round the loop (i.e. each iteration) lines 55 and 65 print out a report on how
the calculation is going.

10 REM **SQRT BY ITERATION**
20 INPUT"NO. FOR SQUARE-ROOTING";N
30 INPUT-ACCURACY REQUIRED";A
40 INPUT"YOURGUESS";G
47 PRINT"OLD":'NEW","ABS(N-G*G)"
48 REM **START OF ITERATION**
50 IFABS(N-G*G)<ATHEN80
55 PRINT G
60 LET G=.5*(G+N/G))

218

65 PRINT G,ABS(N-G*G)
70 GOTO 48
75 REM **OUTPUT**
80 PRINT
81 PRINT"THESQRTOF";N;"IS";G
90 END

RUN
NO. FOR SQUARE-ROOTING? 12
ACCURACY REQUIRED? .005
YOUR GUESS? 2
OLD NEW
2 4
4 3.5
3.5 3.46428572

THE SORT OF 12 IS 3.46428572

READY.

RUN
NO. FOR SQUARE-ROOTING? 12
ACCURACY REQUIRED? .0005 —
YOUR GUESS? 2

Program 13 Iterative square root with trace

ABS(N-G*G)
4
.25
1.27551204E- 03

3 loops only

-increasing the accuracy tenfold still only
takes 4 loops

OLD NEW ABS(N-G*G)
2 0 4
0
? DIVISION BY ZERO ERROR IN 60

Depending on the size of the number, if we input a negative number, either the
Commodore 64 will come up with an error message (as it did above), or it will keep
outputting gibberish, so that the program has to be stopped by touching RUN STOP.

OLD
2
4
3.5
3.46429572

NEW
4
3.5
3.46429572
3.46410162

ABS(N-G*G)
4
.25
1.27551204E-03
3.38040991 E-08

THE SQRT OF 12 IS 3.46410162

IB Program 13.

RUN
NO. FOR SQUARE-ROOTING? -
ACCURACY REQUIRED? .005
YOUR GUESS? 2

•if we give it a negative number

Exercise 9
Change the square root program above to produce cube roots. If G is a guess at the
cube root of N then |(G+N/G2) will be a better guess.

Assignment 8
1. Produce a conversion chart for changing litres to gallons, and vice versa, displayed
on the screen. Make the litre answers rounded to the nearest whole number and the
gallon answers rounded to two places of decimals; use the conversion 1 gallon
equals 4.544 litres.

Notes: Set the numbers 1 to 15 down the centre of the screen; output litre equivalents
down the right-hand side; e.g. the first row would have 5 under the litres column, 1 in
the centre column, and 0.22 in the gallons column, because 1 gallon is 5 litres, and 1
litre is 0.22 gallons. Produce 15 rows of the table which will leave space for titles etc.

2. Produce a program to calculate and display your car's petrol consumption, from
the distance travelled since the fuel tank was last filled up, and the amount of fuel
needed to refil the tank.

Hint: you should use the INT(X+0.5) function to provide reasonable levels of
accuracy.

If you were feeling very confident, you could allow your fuel consumption program to
cater for either miles/gallon or km/litre! (1 mile = 1.609 km; 1 gallon = 4.544
litres).

Objectives of Unit 8
Calculate (manually) an arithmetic mean. •

Write a program to calculate arithmetic means. •

Write a program to find the largest and smallest item in a data list. Q

Use * , / and t in programs. •

Dry run a program. •

Interpret numbers in E notation. •

Use INT(X+.5) for rounding. •

Use ABS(X). •

Write programs for iterative routines to include terminating procedures. •

Insert trace print lines in a progam. •

Answers to SAQ's and Exercises
SAQ1
Sum = 8 + 4 + 2 + 6 + 1 + 7 + 6-1-1+4 = 39
There are 9 numbers.
So the arithmetic mean is 39/9 = 4.333 . . .

2 2 0

Exercise 1

10 REM ••AVERAGE LENGTH**
15 PRINT CHR$(147)
17 PRINT "AVERAGE LENGTH PROGRAM"
20 LETS-0
30 LET C-1
35 REM ••START OF READ LOOP**
40 READ W$
50 IF W$="ZZZZ" THEN 150
60 LETL=LEN(W$)
70 LETS=S+L
80 LETC=C+ 1
90 GOTO 35
100 REM • • • • * * * * * * * * * • * * * * * •
110 DATATHE,HORSE,STOOD,STILL,TILL,HE,HAD,FINISHED,THE,HYMN
120 DATA WHICH,JUDE,REPEATED,UNDER,THE,SWAY,OF,A,POLYTHEISTIC
130 DATA FANCY,THAT,HE,WOULD,NEVER,HAVE,THOUGHT,OF,HUMOURING
140 DATA IN,BROAD,DAYLIGHT.ZZZZ
150 REM *
160 LETN=C-1
170 LETA=S/N
180 PRINT "AVERAGE LENGTH OF THE WORDS IS"
185 PRINT A; "CHARACTERS"
190 END

Program 14
AVERAGE LENGTH OF WORDS
IS 4.64516129 CHARACTERS

E Program 14.

Exercise 2

10 REM **MEAN OF 100 THROWS**
20 REM * * O F 1 DIE**
25 PRINT CHR$(147)
30 PRINT "THROW 1 DIE 100 TIMES"
50 LET S=0
60 FOR 1=1 TO 100
70 LETXHNT(6*RND(1)+1)
80 LET S=S+X
90 NEXT I
100 PRINT "AVERAGE SCORE=";S/100
110 END

Program 15

OH Program 15.

Exercise 3

10 REM **MEAN OF 100 THROWS**
20 REM**OF2DICE* *
25 PRINT CHR$(147)
30 PRINT "THROW 2 DICE 100 TIMES"
50 LETS=0
60 FOR 1=1 TO 100
70 LETX=INT(6*RND(1)+1)
85 LETY-INT(6*RND(1)+1)
80 LETS=S+X+Y
90 NEXT I
100 PRINT-AVERAGE SCORE=";S/100
110 END

Program 16

El Program 16

Exercise 4

10 REM **HISTOGRAM**
15 PRINT CHR$(147)
20 DIMS(100)
30 FOR K=0TO 100 STEP (10):S(K)=0:NEXT K
40 REM * * * * * * * * * * * * * * * * * * *
50 READM
60 IF M=-9999 THEN 140
70 REM * * * * * * * * * • • * * * * • • * *
80 K-10
85 REM **FIND RANGE OF DATA ITEM**
90 IF M<K THEN 115
100 K=Kd-10
110 GOTO 85
115 REM **STORE DATA**
120 S(K-10)-S(K-10)+1
130 GOTO 40
140 REM * * * * * * * * * * * * * * * * * * *
150 FOR K=0 TO 100 STEP (10)
160 PRINT K,S(K)
170 NEXTK
180 REM * * * * * * * * * * * * * * * * * * *
190 DATA 56,47,52,65,24,34,59,37,49,66
200 DATA 38,24,62,76,31,47,66,61,74,45
210 DATA 66,44,55,67,36,56,54,54,50,43
220 DATA 18,83,23,79,29,-9999

RUN
0 0
10 1
20 4
30 5
40 6
50 7
60 3

K for score category
or class interval

-correct category found.
Increment counter for
that catergory.

Program 17

2 2 2

80 1
90 0
100 0
IB Program 17.

Exercise 5

10 REM **SUM OF RECIPROCALS**
15 PRINT CHR$(147)
20 LETS=0
30 LETN=1
35 REM **START OF PROCESSING LOOP**
40 LETS=S+1/N
50 IFS>2.4THEN80
60 LET N=N+1
70 GOTO 35
80 REM • •OUTPUT**
90 PRINT"SUM=";S;" THE NO. OF TERMS IS ";N
100 END

Program 18
RUN
SUM= 2.45 THE NO. OF TERMS IS 6
El Program 18.

Exercise 6

10 REM **SUM OF N t (- 2) * *
15 PRINT CHR$(147)
20 S=0
30 N=1
35 REM **START OF PROCESSING LOOP**
40 S=S+Nt(-2)
50 IFS>1.5THEN80
60 N=N+1
70 GOTO 35
80 REM **OUTPUT**
90 PRINT "SUM»";S;"THE NO. OF TERMS IS, ";N
100 END

Program 19
RUN
SUM- 1.51179705 THE NO. OF TERMS IS 7

READY.

You can, of course, change line 50 to explore the number of terms needed for the sum
to exceed other values, eg.

50 IFS>1.6THEN80

RUN

SUM= 1.60049693 THE NO. OF TERMS IS 22 for 1.6

READY.

50 IF S>1.61 THEN 80

RUN

SUM-1.61103901 THE NO. OF TERMS IS 29 for 1.61

READY.

50 IF S>1.62 THEN 80

RUN

SUM-1.62024396 THE NO. OF TERMS IS 40 for 1.62

READY.

50 IF S>1.63 THEN 80

RUN

SUM= 1.63011952 THE NO. OF TERMS IS 67 for 1.63

READY.

What a good starting point these and similar programs would make to lessons
about limits and convergence of number series!

OS Program 19.

Exercise 7

10 REM **FACTORIALS**
15 PRINT CHR$(147)
20 PRINT "TO END THE RUN, ENTER -9999"
30 PRINT
35 REM **NEXT INPUT**
40 INPUT"NEXT FACTORIAL";N
50 IF N=-9999 THEN 125
60 LETF-1
70 FOR 1=1 TO N
80 LET F=F*1
90 NEXT I
100 PRINT N,F
110 PRINT
120 GOTO 35
125 REM * * A L L D O N E * *
130 END

Program 20

RUN
TO END THE RUN, ENTER -9999

NEXT FACTORIAL? 1
1 1

NEXT FACTORIAL? 3
1 6

NEXT FACTORIAL? 5
5 120

2 2 4

NEXT FACTORIAL? 7
7 5040

NEXT FACTORIAL? 9
9 362880

NEXT FACTORIAL? 11
11 39916800

NEXT FACTORIAL? -9999

READY.

IB Program 20

SAQ2

Step No. Line no. N S
1 20 0 0
2 30 1 0
3 40 1 1
4 60 2 1
5 40 2 5
6 60 3 5
7 40 3 14
8 60 4 14
9 40 4 30

10 60 5 30
11 40 5 55

Exercise 8

10 REM ••COMPOUND INTEREST**
12 PRINT CHRS(147)
15 PRINT "COMPOUND INTEREST"
20 PRINT "ENTER DEPOSIT, PERCENTAGE, TIME
30 INPUT D,P,T
40 PRINT "TIME","YIELD(£)"
50 FOR. 1=1 TOT
60 PRINT 1,D*(1 +P/100)tl
70 NEXT I
80 END

Program 21
RUN
ENTER DEPOSIT, PERCENTAGE, TIME
500,11.5,5

TIME YIELD(£)
1 557.5
2 621.612501
3 693.097938
4 772.804201
5 861.676685
READY.

EH Program 21.

225

SAQ3
(a) X

.4

.6

.8
1
1.2
1.4
1.6
1.8
2

(b) X
.2
0

- . 2
- .4
- .6

SAQ4
RUN
X

9
11

- 4
- 7

Y
14

- 2
13

- 8

INT(X)
0
0
0

2

INT(X)
0
0

- 1
- 1
- 1

X+Y
23
9
9

-15

INT(X+0.5)
0

2
2
2

INT(X+0.5)
0
0
0
0

- 1

ABS(X+Y)
23
9
9
15

SAQ5

9

1

6 . 5 - "

4 . 1 5 ^

3.52"-

N/G

1 2 ^

1 - 8 ^

2 . 8 9 ^

3.41

G+N/G
2

, 6 . 5

,4.15

,3 .52

3.46 etc

226

Exercise 9

10 REM ••CUBEROOT ITERATION**
15 PRINT CHR$(147)
20 INPUT'NUMBER FOR CUBEROOTING";N
30 INPUT"ACCURACY REQUIRED";A
40 LET G=N/2 • the machine makes the first guess at N/2
43 LETC=1
45 REM **START OF ITERATION**
50 IFABS(N-G*G*G)<ATHEN75
60 LET G=0.5*(G+N/(G*G))
67 LETC=C+1
70 GOTO 45
75 REM **OUTPUT**
80 PRINT "THE NO. OF LOOPS =";C
81 PRINT "THE CUBEROOT OF ";N;"=";G
90 END

Program 22
RUN
NUMBER FOR CUBEROOTING? 28
ACCURACY REQUIRED? .005
THE NO. OFLOOPS=14
THE CUBE ROOT OF 28 = 3.03640957

READY.

RUN
NUMBER FOR CUBEROOTING? 10101
ACCURACY REQUIRED? .005
THE NO. OF LOOPS = 28
THE CUBE ROOT OF 10101 = 21.6166341

READY.
RUN
NUMBER FOR CUBEROOTING? -937
ACCURACY REQUIRED? .005
THE NO. OFLOOPS=21
THE CUBEROOT OF -937 = -9.78541983

READY.

LH Program 22.

2 2 7

228

9.1

9.2

9.3

9.4

9.5

UNIT 9
Introduction to data

processing
Introduction

Sorting

Subroutines

Searching

Tables

Assignment 9

Objectives of Unit 9

Answers to SAQ's and Exercises

230

230

233

238

243

248

249

249

229

9.1 Introduction
In this Unit we shall emphasise again how important it is to impose some sort of order
on data. In particular, we shall analyse in detail one method of ordering data: the
interchange procedure for sorting. Having sorted the data we shall then show how to
search through it quickly using the bisection search procedure. Finally we shall look
at how to handle data in tabular form.

These activities will also give us a chance to see how subroutines can help us perform
many of those little repetitive tasks which can occur in programs of any size.

9.2 Sorting
In Unit 4 we spent some time discussing the procedure for finding the lowest value
item in a list. We did this by an interchange procedure that put the lowest item into
position 1 on the list. We said that we could repeat the procedure for the rest of the
list, placing the second lowest value into position 2, etc., and we left you with the
problem of sorting the whole list as an assignment. Because of the interchange
sort's importance, we are now going to look at it in greater detail.

first pass

second pass

lowest'

third pass I

fourth pass

1

• •
4 •
1

1

ne>

1

iterchang

I

I

I
t lowest

I

2
3 position

I I
_J

2
| interchan

I I

L.
2

I A

2

I
next lowest'

Positions

3 4 5

I I I
J

3 t
ge position

I I I
- > I

3 A
{ interchange po

1 1 1
•
*
3 1

\
1 A 1

y

i i i
L i

\ i

3 C

!
sition

i

1 .

i cn
[£
interchange po

3 C
_ j

3 C

sition

1
L

1

]

}

}

-hig

comparisons

comparisons

comparisons

comparison

hest

Figure 1 The sort procedure for a list of 5 items

230

Figure 1 illustrates the procedure for placing the items into locations 1 to 5 with the
lowest item in 1, the next lowest in 2 and so on.

First pass. On the first pass all items are compared with the item in position 1
and the lowest is then placed in position 1.

Second pass. Position 1 can now be ignored and the procedure repeated on
positions 2 to 5. This will find the next lowest which is placed in position 2.

Third pass. Now positions 1 and 2 can be ignored since they contain 'lowest'
and 'next to lowest'. The procedure is repeated on positions 3 to 5. This finds the
third lowest which goes in position 3.

Fourth pass. This is performed on items 4 and 5 only and results in the 4th
lowest going into the fourth position. The remaining item must be the highest and
will already be in the fifth position so no further passes are needed.

We can summarise the sort procedure as:

loop
number

1
2
3
4

point
interchange

i
2
3
4

remaining sub-sequence

start

2
3
4
5

end

5
5
5
5

Figure 2a Four sorts in a list of 5 items

Or, more generally, if we want to sort a list of N items:

loop
number

1
2
3

K

N-1

interchange
point

1
2
3

K

N-1

remaining sub-sequence

start

2
3
4

K+1

N

end

N

N

N
N
N

Figure 2(b) (N-1) sorts in a list of N items

231

Since each pass involves a repetitive series of comparisons, it is an obvious
candidate for a FOR . . . NEXT . . . loop. Then we need a further loop to decide
which loop we are going round:

- • F O R K = 1 to N-1

- • F O R L = K+1 to N

- determines the interchange position

-determines the sub-sequence for
the interchange

interchange
procedure

• NEXT L

• NEXT K

Figure 3 The nested loops of interchange sorting

SAQ1
Use the interchange sort to place the following in order. Show the numbers stored
at each location after each run

6, 1, 4, 0, 2, 3, 7, 8

The program is:

outer loop decides
interchange point

/

210 REM **SORT ROUTINE**
220 FOR K-1 TO N-1
230 FOR L=K+1 TO N
240 IF X$(L) > = X$(K) THEN 275
250 T$=X$(L)
260 X$(L)=X$(K)
270 X$(K)=T$
275 REM **JUMP HERE IF IN ORDER**
280 NEXT L

I 290 NEXT K
300 REM **END OF SORT ROUTINE**

if the item in the sub
sequence is > = the item in
the interchange position then
do not interchange

the 'power-house': should be
condensed onto one line to
speed up process

inner loop decides the
sub-sequence

Program 1 Interchange sort

Using the sort program
The sort program can be used whenever it is needed. Here is one particular use: to
sort a list of names into alphabetical order.

232

reading in data

• sort routine

lines 50-80 read in the data
lines 210-300 carry out the sort
lines 410-450 print out the sorted list
the data has been stored in line 900

10 REM ••SORT ROUTINE**
15 PRINT CHR$(147)
20 PRINT " SORT ROUTINE "
30 DIMX$(100)
50 1=1
55 REM **READ LOOP**
60 READX$
70 IF X$="ZZZZ" THEN 180
80 X$(l)=X$:l=l+1:GOT0 55
180 REM * * * * *
190 N - l - 1 : REM*LENGTH OF LIST
200 REM * * * * *
210 REM **SORT R O U T I N E * * * * * *
220 FOR K-1 TO N-1
230 FOR L=K+1 TO N
240 IF X$(L)>= X$(K) THEN 275
250 T$=X$(L)
260 X$(L)=X$(K)
270 X$(K)=T$
275 REM **JUMP HERE IF IN ORDER**
280 NEXT L
290 NEXT K
300 REM **END OF SORT ROUTINE**
400 REM * * * * *
410 PRINTTINAL SORTED LIST"
420 FOR P-1 TO N
430 PRINT X$(P);" ";
440 NEXT P
450 PRINT
500 REM * * * * *
900 DATA TONY,SAM,PETE,JOE,BILL,ZZZZ

RUN
SORT ROUTINE

FINAL SORTED LIST
BILL JOE PETE SAM TONY

READY.

9.3 Subroutines
By the time you have reached this stage you will begin to distinguish the wood from
the trees. You will be aware that programs have an overall structure and are
assemblies of smaller parts like the paragraphs of an essay. It is usual to break a
program down into its constituent parts, and to write and test each part separately.
Certain operations are often repeated several times throughout a program. The
structure of a program may be simplified and tidied up by including these repetitive
operations as subroutines.

• printing out the result

Program 2 Using the sort routine

233

We shall illustrate subroutines by taking a final look at the sort procedure. We are
going to insert two extra trace print lines into the program so that we can see what
is happening at each of the three stages of the sort routine:

Sort routine
1. Input.
2. Sort.
3. Output.

Trace print line to show
The list as taken in.
The list after each sub-sequence
The final, sorted, list.

Figure 5 shows the overall structure and how we can use one PRINT subroutine
for all three PRINT operations.

I
PRINT

SUBROUTINE

return

I

Figure 5 Print sub-routine in the sort program

GOSUB
In BASIC to go to a subroutine we say:

GOSUB

followed by the line number of the start of the subroutine. Each subroutine must
end with the statement

RETURN

which will return control to the next line in the main body of the program after the
appropriate GOSUB statement. Thus in the following program segment line 30
transfers control to line 200 and lines 200 and 210 are executed. The 220 returns
control to line 40 for the program to continue in the normal way.

2 3 4

-GOSUB 200

10 INPUT A
20 INPUT B
30 GOSUB 200 -
40 S=A+B
50

200 PRINT "A","B"
210 PRINT A,B
220 RETURN

SAQ2
What is the value of B after this program has been run: (a) if 5 is inputted; (b) is 3 is
inputted?

5 REM * * S A Q 2 * *
7 PRINT CHR$(147)
10 INPUT A
20 IFA<5THEN35
30 GOSUB 65
35 REM **JUMP TO HERE**
40 B=A*A
50 PRINT B
60 END
65 REM **SUBROUTINE**
70 A=1/A
80 RETURN

Program 3
Here is the sort program with a print subroutine (lines 500 - 550) which is used each
time the program executes line 194, line 280 and line 420.

10 REM **SORT ROUTINE**
15 PRINT CHR$(147)
20 PRINT " SORT ROUTINE "
30 DIMX$(100)
40 PRINT "SORTING PROGRAM"
50 1=1
55 REM **READ LOOP**
60 READ X$
70 IFX$="ZZZZ"THEN185
80 X$(I)=X$:IH+1 :GOTO 55
180 REM *
190 N- l -1 ;REM*LENGTH OF LIST
192 PRINT "LIST AT START"
194 GOSUB 5 1 0 - O U T 1 First trace
196 PRINT - I N J
200 REM *
210 REM **SORT ROUTINE* * * * * *
220 FOR K=1 TO N-1
225 PRINT "PASS NO.";K
230 FOR L=K+1 TO N
240 IF X$(L) > - X$(K) THEN 275
250 T$=X$(L):X$(L)-X$(K):X$(K)=T$
275 REM **JUMP HERE IF IN ORDER**

235

280 GOSUB510 -OUT
285 NEXT L - I N
287 PRINT
290 NEXT K
300 REM **END OF SORT ROUTINE**
400 REM *
410 PRINT "FINAL SORTED LIST"
420 GOSUB510 -OUT 1
450 END - IN J
500 REM **PRINT SUBROUTINE**
510 for P=1 TON
520 PRINT X$(P);TAB(P*6)
530 NEXT P
540 PRINT
550 RETURN
900 DATA TONY,SAM,PETE,JOE,BILL,ZZZ

Second trace

Output

Subroutine

Program 4 Print subroutine in sort program
RUN
SORTING PROGRAM
LIST AT START
TONY SAM PETE JOE BILL >

printed by GOSUB at
"line 194

PASS NO. 1
SAM
PETE
JOE
BILL

TONY
TONY
TONY
TONY

PETE
SAM
SAM
SAM

JOE
JOE
PETE
PETE

BILL
BILL
BILL
JOE

PASS NO. 2
BILL SAM
BILL PETE
BILL JOE

PASS NO. 3
BILL JOE
BILL JOE

PASS NO. 4
BILL JOE

FINAL SORTED LIST
BILL JOE

READY.

TONY PETE JOE
TONY SAM JOE
TONY SAM PETE

SAM
PETE

PETE

PETE

TONY
TONY

SAM

SAM

PETE
SAM

TONY>

TONYJ-

each block printed
by GOSUB at line
280 on the four occa
sions the program
executes the loop
controlled by K

printed by GOSUB at
"line 420

Examples on subroutines
The purpose of a subroutine is to simplify and shorten long programs". By its very
nature then, it is difficult to get short meaningful programs which illustrate
subroutines without their often being a little contrived. We need a program where
the same or similar function is repeated at different points in the program.

Example 1
The game of dice ('craps' in the USA) provides a simple example. A pair of dice is
thrown twice and the total score on each throw is noted. If the two scores are the

236

same, the game ends. If they are different, the dice are thrown again. Write a
program to simulate the game which prints out the number of throws required to
obtain equal scores and what that score was.

Solution

10 REM **EQUAL THROWS**
20 PRINT CHR$(147)
25 PRINT "DICE GAME SIMULATION"
30 C-1
40 GOSUB130:REM**FIRST THROW**
50 S 1 = S - ^ 1 the subroutine produces
60 GOSUB 130:REM**SECOND THROW** generally different values
70 S2=S - ^ ' of S for the 'main' program
80 IFS1=S2THEN 100
90 C=C+1:GOTO40
100 PRINT "EQUAL SCORE";S1 ;"IN";C;"THROWS"
110 END
120 REM **DICE ROLLING SUBROUTINE**
130 D«=RND(6):D2=RND(6) 1 subroutine
140 S=D1+D2:RETURN J

Program 5 Simulation of 'craps'
RUN
DICE GAME SIMULATION
EQUAL SCORE 6 IN 5 THROWS
READY.
RUN
DICE GAME SIMULATION
EQUAL SCORE 7 IN 5 THROWS
READY
RUN
DICE GAME SIMULATION
EQUAL SCORE 4 IN 6 THROWS
READY.

Exercise 1
(a) Write a segment of program to print a line of 40 dashes " " across the

screen

(b) Write one line of program to print a 'submarine' or < = > , at any position across
the screen or printer where the variable S determines the position.

(c) Write a program to print on successive lines:
(i) a line of dashes;
(ii) a submarine at any point
(iii) another line of dashes;
with the line printing in (i) and (iii) in a subroutine.

Exercise 2
Now you must admit that the solution to Exercise 1 looks like a vessel in a canal, so
why not a submarine as we are concerned with subroutines? Instead of battleships in
a 2-dimensional sea, we have a submarine in a 1 -dimensional canal. Anyway, we
have the picture for a simple game.

237

Write a program to generate a random number between 1 and 36. The submarine is
going to take up three positions of the width (37,38,39). Use the random number to
print the submarine in random positions along the canal.

Exercise 3
The essence of the game we are going to play with the machine will be clear from
Exercise 2. The computer generates a random number and invites you to find the
submarine by guessing a number between 1 and 36. If you guess the correct position,
i.e. between S and S+2 if S is the random number (remember the submarine takes up
3 places in the line), then the machine records a 'hit' and the game ends. If you don't
find the submarine, the machine will record a 'miss' and invite you to try again. Write a
program to do this.

(We advise you to write a program to give yourself the option to stop playing before
you find the submarine, because it is infuriating to have to try every position across
the screen just to stop the program running. You could just pull the plug out. and then
it would sink!?)

9.4 Searching
The submarine problem gives us a good lead into discussions about searching
data. The only methodical way to find the submarine was to search the canal
successively position by position starting from one end. How much easier it would
have been had the program responded with 'too high' or 'too low', as appropriate,
after each guess. No doubt you can immediately think of a procedure for 'homing-
in' on the submarine as quickly as possible!

Similarly, if dictionaries, telephone directories, encyclopedias and library cata
logues were not arranged in alphabetical order, think how difficult it would be to
find the desired information.

But if we've gone to a lot of trouble to sort our data into numerical or alphabetical
order, then we need an efficient search technique to find any given item. If we
consult a dictionary or telephone directory for an item, we don't start looking at the
first page and work methodically through the volume page by page until the item is
found. We take a rough guess, e.g. if the name begins with 'P' then we try to open
the directory at just over half-way through it, and start looking from that point.

Bisection search
A 'rough' guess is too imprecise a term for a computer. However we can specify
guessing points as follows:

• divide the range of items into half and ask 'is the item above or below the half
way mark?'

• if it is below then we define a new range with the middle item now acting as the
upper limit;

• if above then the middle item becomes our lower limit;
• either way we discard half the old range and repeat our halving or bisection

procedure with the new range.

238

So the bisection search is, in outline:

Is 7 in the list 1,2,3,4,5,6,7,8,9,10? '

List in order:

Halve list.

1

1

Is 7 = middle item?
Is 7 < middle item?
So 7 is in top half.

Halve list.

Is 7 = middle item?
Is 7 < middle item?

Halve list.

Is 7 = middle item?
So 7 is in list.

2

2

3 4

3 4

No.
No.

No.
Yes.

Yes.

5

5

6 7 8 9 10

6 7 8 9 10

6 7 (I 9 10

6 7 8
i

That outline illustrates the principle of the bisection search but in practice we need
to distinguish between the values of the items in a list and the indexes of those
items.

Example 2
An ordered list contains the items A, F, I, M, P, T, U, Z. Use the bisection search
procedure to find whether or not P is in the list.

We call P, Query - the value we wish to enquire about:

Index 1
Item A
Start-Index Low (1)
Mid-Index, lnt(1_±8)=4

2

Comparisons

4
M
•

5
P

6
T

7
U

8
Z
High (8)

Mid (4)

is Query = Item (4)? no!
is Query < Item (4)? no!
make Index (4) the new Low

Index
Item
Start-Index
Mid-Index, lnt(4±8) = 6

2

4 5 6
M P T

Low (4) '•
Mid(6)

7 8
U Z

High (8)

Comparisons
is Query = Item (6)? no!
is Query < Item (6)? yes!
make lndex(6) the new High

Index
Item
Start-Index
Mid-Index, lnt(4±6) = 5

2
Comparison

4 5 6
M P T

Low(4) J High(6)
Mid(5)

is Query = Index (5)? yes!

Figure 6 Bisection search

Exercise 4
Carry out the bisection search procedure on the list in Example 2 but looking for
the letter I.

We only had to make 3 comparisons to home-in on the item 'P' in Example 2, but
they were a bit long-winded, and the whole procedure may seem to have little
advantage over simply searching straight through the list. The effectiveness of the
method is not really apparent in short lists. We will demonstrate its power in
searching longer iists later, but first we still have some loose ends to tie up.

Some problems with bisection search
(a) How to stop

Example 3
Carry out the same procedure as before, but search for the letter 'Q'.

The method would proceed exactly the same as before as far as the 3rd
comparison, so we'll pick up the story there.

Query = Q

Index
Item
Start-Index
Mid-Index, lnt(4 + 6) = 5

2

Comparisons

Index
Item
Start-Index
Mid-Index, lnt(5 + 6) = 5

2

Comparisons

4 5 6
M P T

Low(4) : High(6)

Mid(5)

is Query = ltem(5)? no!
is Query < ltem(5)? no!
make lndex(5) the new Low

4 5 6
P T

Low(5) High(6)
Mid(5)

is Query = ltem(5)? no!
is Query < we have done this before?!

So we don't seem able to stop. Q is not there but we are stuck looking for it
between P and T. We have already met the problem of stopping the process in the
last example. If the indexes Low and High have moved so close that they are at
adjacent positions, and Query is not yet found, then Query is not a member of the
list. That is the end and outcome of the search. So the end is either when the
Query has been found, or when Low and High occupy adjacent indexes (High -
Low = 1).

2 4 0

(b) How to start
To start the process seemed straightforward enough. We make Index (1)=Low
and lndex(N)=High. Trouble would occur however if ltem(1) and Item(N) were not
the lowest and highest possible values.

E.g. consider the following list which does not include letters before C or after S:

1 2 3
C F G
Low

4 5
P S

High

If Query was A or B or higher than S, then the process would not work. The easiest
solution is to ensure that the items at the ends of the list will always have the
extreme values, e.g. in a list of names make ltem(1)=AAAA and ltem(N)=ZZZZ.

We will now outline the algorithm in flowchart form.

GLOSSARY
All terms are as defined
in the preceding text.

Low «- 1
High «- N

are they in adjacent positions?

r 500

calculate
Mid

'not
found'

320

f stop J

,^ry
High — Mid

take upper half take lower half

Figure 7 Flowchart for bisection search

241

All we have to do now is write the program:

10 REM ••BISECTION SEARCH**
20 PRINT CHR$(147)
30 DIM N$(20):DIM T$(20)
40 1=1
45 REM **START OF READ LOOP**
50 READ N$(I),T$(I)
60 IF N$(I)="ZZZZ" THEN 90
70 IH+1:GOT0 45
90 REM * * * * *
100 N=I:REM*WE ARE USING ZZZZ THIS TIME*
110 REM * * * * *
150 INPUT'QUERY NAME?" Q$
200 REM **START OF SEARCH**
210 PRINT;" L";TAB(5); " H";TAB(10); "M";TAB(15);"N$(M)"
220L=1:H-N j

240* LFHNT(a+
EH)/429)° t~ 21 ° ^ 25° ™ ^ "*"

250 PRINT: L;TAB(5);H;TAB(10);M;TAB(15);N$(M)
260 IF Q$=N$(M) THEN 320
270 IF Q$<N$(M) THEN 300
280 L=M:GOTO 230
300 H=M:GOTO 230
320 REM **END OF S E A R C H * * * * *
330 PRINT Q$;"'S TELE NO. IS ";T$(M)
350 GOTO 600
490 REM **NAME NOT FOUND**
500 PRINT Q$;" IS NOT IN THE LIST"
600 INPUT'DO YOU WISH TO LOOK FOR ANOTHER NAME?" R$
610 IF R$= "YES" THEN 110
620 END
900 DATA AAAA.0000
910 DATA BENNY, 1234
920 DATA COPPER, 9832
930 DATA DRAPER, 1980
940 DATA EDDIE, 7294
950 DATA GYWNNE, 5821
960 DATA HETTY, 8632
970 MORLEY, 7832
980 DATAPROSSER, 1383
990 DATA SMYTHE, 1147
1000 DATA WEEKS, 5529
1010 DATA WILSON, 9936
1020 DATA ZZZZ, 9999

Program 6 Bisection search program

242

RUN
BISECTION SEARCH
QUERY NAME? MORLEY

L H M N$(M)
1 13 7 HETTY
7 13 10 SMYTHE
7 10 8 MORLEY

MORLEY'S TELE NO. IS 7832

DO YOU WISH TO LOOK FOR ANOTHER NAME ? YES
QUERY NAME? WEEK

L H M N$(M)
1 13 7 HETTY
7 13 10 SMYTHE
10 13 11 WEEKS

WEEK IS NOT IN THE LIST
DO YOU WISH TO LOOK FOR ANOTHER NAME'' NO
>

9.5 Tables
When we want to store a lot of information there are various methods open to us.
One is lists (see Unit 4), which are sometimes called one-dimensional arrays. A
second method is tables or two-dimensional arrays.

Suppose you want to store the following data:

Car sales

Servicing

Petrol

1 st qtr

20

10

30

2nd qtr

70

14

45

3rd qtr

80

18

50

4th qtr

40

11

30

Figure 8 Income for Main Road Service Station (£,000's)

Now you could put this in one list but it would be hard to use. The first four items
would be income for car sales, the next four for servicing, etc. Alternatively you
would have three lists: one for car sales, one for servicing and one for petrol. But
BASIC allows you to have a two dimensional table named by any of the 286
variable names, e.g.:

T(,)

Comparison of lists and tables
Lists need one index to describe a position in the list. Tables need two, which are
usually called sub-scripts not indices (or indexes, as we have called them).

List
L(1), L(2), L (3) . . . L (l) . . .

I index of this item = 3

243

Array

A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)
A(3,1) A(3,2) A(3,3)

' this item needs two sub-scripts:
3 to tell us it is in row 3;
2 to tell us it is in column 2.

Tables
• A table must contain either all string variables, or all numerical variables.

(Numbers can of course be stored as strings, and their values found by the VAL-
function.)

• We use one of the 286 variable names to describe the table as a whole, e.g. A
table, B$ table, M3$ table.

Generally, a table comprises:

row 1

row 2

row 3

etc

col.1

r i d

r2d

r3d

col.2

Mc2

r2c2

r3c2

col.3

Mc3

r2c3

r3c3

col. 4

Figure 9 The rows and columns of a table

For the service station data, T needs 3 rows and four columns and so contains 12
items:

T(1,1) T(1,2) T(1,3) T(1,4)

T(2,1) T(2,2) T(2,3) T(2,4)

T(3,1) T(3,2) T(3,3) T(3,4)

So

T(2,1) = 10

T(3,3) = 50 etc.

This is very similar to the idea of tables which you have previously met. There we
said that a file consists of a series of records each of which consists of fields. In
table form this would look like:

244

Record 1

Record 2

Record 3

Record 4

Field 1

Name

BENNY

COPPER

DRAPER.

EDDIE

Field 2

Telephone number

1234

9823

1850

7294

Or, more generally:

Record 1

Record 2

Record 3

etc

Field 1

R1F1

R2F1

R3F1

Field 2

R1F2

R2F2

R3F2

Field 3

R1F3

R2F3

R3F3

etc

If the telephone numbers table is called T$ then the individual items will be
labelled:

Record 1

Record 2

Record 3

Record 4

Field 1

Name

T$(1,1) = BENNY

T$(2,1)=COPPER

T$(3,1) = DRAPER

T$(4,1)=EDDIE

Field 2

Telephone number

T$(1,2) = 1234

T$(2,2)=9823

T$(3,2) = 1950

T$(4,2) = 7294

• The whole table is called T$ table.

• Each item in the table is described by two subscripts. Thus 1950 (3rd row, 2nd
column) is

T$(3,2)

• The 3 and 2 describe the position of item T$(3,2), not its value. Its value is 1950.
So we say

T$(3,2) = 1950

2 4 5

In general
T$(R,C)

Row subscript Column subscript

Example 4
The N$-table overleaf has 9 values as shown. What are their variable names?

N$(

Solution

BENNY = N$(1,1)

EDDIE = N$(2,1)

MORLEY = N$(3,1)

^ > - ^
1

2

3

1

BENNY

EDDIE

MORLEY

2

COPPER

GWYNNE

PROSSER

3

DRAPER

HETTY

SMYTHE

COPPER = N$(1,2)

GWYNNE = N$(2,2)

PROSSER = N$(3,2)

DRAPER = N$(1,3)

HETTY = N$(2,3)

SMYTHE = N$(3,3)

SAQ3
In the following A$ table identify the variables and their values as in Example 4.

ARCHER
DRAPER
GWYNNE
LAMB
PROSSER

BENNY
EDDIE
HETTY
MORLEY
SMYTHE

COPPER
FRAME
KEMP
NOAKES
TAIT

Tables and nested loops
If FOR.. . NEXT loops and lists seemed to be made for each other, then even
more so do nested FOR. . . NEXT loops and tables seem complementary.

For example, suppose you want to read:
ARCHER,BENNY,COPPER,DRAPER,EDDIE,FRAME,GWYNNE,HETTY,
KEMP,LAMB,MORLEY,NOAKES,PROSSER,SMYTHE,TAIT,WEEKS

into a table, N$, with 4 rows and 4 columns. (We need a string array because we
are storing string data.) This can be done with a READ statement in two nested
loops:

60 FOR 1 = 1 TO 4
90 FOR J=1 TO 4
80 READ N$(I,J)
90 NEXT J
100 NEXT I

This process is carried out in full by lines 10 to 100 of Program 7.
246

It's all very well to store the value in a table, but of course we cannot see the result
of this until we print it out. The second half of the program prints the table values
out in a column with I and J accompanying them so that you can identify clearly
how I and J are used.

10 REM **TABLE READ AND P R I N T * * _ _ _ , D | M statement for 2-D array.
20 PRINT CHR$(147) ^ _ _ _ — " We are asking for space for
30 DIM N$(20,5), •—' ' 20 rows and 5 columns.

40 REM**READ R O U T I N E * - * * * - * * - * * * *
60 FOR 1 = 1 TO 4
70 FOR J = 1 TO 4
80 READ N$(I,J)
90 NEXT J
100 NEXT I
110 REM**PRINT R O U T I N E * * * * * * * * * *
115 PRINTT, "J","N$(IJ)"
120 PRINT rows
140 FORJ = 1 TO 4 columns
150 PRINT; I; J, N$(I,J)
160 NEXT J
180 NEXT I
190 GOTO 270
240 R E M * * * * * * * * * *
250 DATA ARCHER,BENNY.COPPER,DRAPER,EDDIE.FRAME.GWYNNE.HETTY
260 DATA KEMP.LAMB.MORLEY.NOAKES.PROSSER.SMYTHE.TAIT.WEEKS
270 END

Program 7 Reading data into a 4 x 4 array.

RUN
DATA ARRAY
I J N$(I,J)

1 1 ARCHER
1 2 BENNY
1 3 COPPER
1 4 DRAPER
2 1 EDDIE
2 2 FRAME
2 3 GWYNNE
2 4 HETTY
3 1 KEMP
3 2 LAMB
3 3 MORLEY
3 4 NOAKES
4 1 PROSSER
4 2 SMYTHE
4 3 TAIT
4 4 WEEKS

SAQ4
The following amendments are made to Program 7. Write out what the output table
will look like.

60 FOR 1 = 1 TO 3
70 FOR J = 1 TO 5
130 FOR 1 = 1 TO 3
140 FOR J = 1 TO 5

Table output
The output of Program 7 is not very satisactory since we want to see the table in
table form. To do this we delete line 115 and insert a new print routine:

130 FOR 1 = 1 TO 5
140 FOR J=1 TO 3
150 PRINT TAB(10*(J-1));N$(I,J);
160 NEXT J
170 PRINT
180 NEXT I
190 GOTO 270

the first column starts at position 1-1=0

columns 10 characters wide

Program 8

The output then is:

ARCHER BENNY COPPER
DRAPER EDDIE FRAME
GWYNNE HETTY KEMP
LAMB MORLEY NOAKES
PROSSER SMYTHE TAIT

Assignment 9
1. A salesman has 4 product lines. The value (in £) of his firm orders for one
week are shown in the table.

\ product
day \

1

2

3

4

5

totals

1

500

600

200

250

400

a

2

300

700

550

450

200

b

3

20

40

60

100

100

c

4

25

0

20

5

11

d

totals

e

f

g

h

i

t

2 4 8

Write a program which will help him analyse his week's work by giving:

(i) his day totals (e,f,g,h,i)
(ii) his product totals (a,b,c,d)
(iii) his overall weekly total (t).

2. Write a program to extend the submarine game to a 10 x 10 grid. If the guess
is close to the submarine then the program should give a 'near miss' clue. You
decide what is meant by 'close'.

Objectives of Unit 9
Now that you have completed this Unit, check that you are able to:

Use the interchange sort (manually) on a set of data •

Write two nested program loops to perform the interchange sort r]

Follow GOSUB in programs •

Write GOSUBS into programs •

Use the bisection search (manually) on a set of data •

Write a program for the bisection search •

Put data into two dimensional arrays •

Write a program to read data into a two dimensional array •

Write a program to print data out of a two dimensional array •

Write a program to find the row sums and the column sums in a two
dimensional array •

Answers to SAQ's and Exercises
SAQ1
0 6 4 1 2 3 7 8
0 1 6 4 2 3 7 8
0 1 2 6 4 3 7 8
0 1 2 3 6 4 7 8
0 1 2 3 4 6 7 8
0 1 2 3 4 6 7 8
0 1 2 3 4 6 7 8

FINAL SORTED LIST
0 1 2 3 4 5 6 7 8

SAQ2
(a) B = 1/25 (Shown as 4E-2 - i.e. 0.04)
(b) B = 9 (GOSUB is not used in this case.)

Exercise 1
(a) 10 FOR 1=1 TO 40

20 PRINT"-";
30 NEXT I
40 PRINT

or in one line:
FOR 1=1 TO 40: PRINT"—";:NEXT l:PRINT

(b) PRINT TAB(S);"< = >"
(C) 10 INPUTS

20 GOSUB 100
30 PRINT TAB(S);"< = >"
40 GOSUB 100
50 END
100 FOR 1=1 TO 39 PRINT "-";:NEXT l:PRINT
110 RETURN

The value that we give S will determine the position of the submarine along the canal,
and we get a picture like:

RUN

< = >

READY.

Because the Commodore 64 puts an automatic line feed in when the end of the 'bank'
is drawn, we will stop it at character position 39, instead of 40.

Exercise 2

10 REM **SUBMARINE**
20 PRINT CHR$(147)
50 S=INT(36*RND(1)+1)
60 GOSUB 510
70 PRINT TAB(S) ; "<=>"
80 GOSUB 510
90 END
500 REM * * PRINT SUBROUTINE**
510 FOR 1=1 TO 39 PRINT "-";:NEXT l:PRINT
520 RETURN

Program 11

RUN

< = >

RUN

< = >

Program 9

Program 10

250

Exercise 3

10 REM **SUBMARINE**
20 PRINT CHR$(147)
30 REM ••PRINT CHALLENGE**
40 GOSUB300 - 1
50 PRINT "A NUMBER FROM 1 TO 36 MIGHT FIND ME"
60 GOSUB 300 - 2 subroutine used 8 times
70 REM • • RANDOM POSITION OF SUB**
80 SHNT(36*RND(1)+1)
90 PRINT
100 INPUT'TRY ANOTHER NUMBER?"
110 IF X < S THEN 190
120 IFX>S+2THEN190
130 R E M * * A H I T * *
140 GOSUB 300 - 3
150 PRINT TAB(S);"HIT"
160 GOSUB 300 - 4
170 GOTO 320
180 REM * * A MISS**
190 GOSUB 300 - 5
200 PRINT "YOU MISSED"
210 GOSUB 300 - 6
220 INPUT'DO YOU STILL WANT TO PLAY?"R$
230 IF R$="YES" THEN 90
240 PRINT "SPOILSPORT!! I WAS HERE":PRINT
250 GOSUB 300 - 7
260 PRINTTAB(S);"<=>
270 GOSUB 300 - 8
280 GOTO 320
290 REM **PRINT SUBROUTINE**
300 FOR 1-1 TOP 39 PRINT "-";:NEXT kPRINTl subroutine prints just one
310 RETURN _ | line of dashes
320 END

Program 12

RUN
SUBMARINE GAME

A NUMBER FROM 1 TO 36 MIGHT FIND ME

TRY ANOTHER NUMBER? 27

YOU MISSED

DO YOU STILL WANT TO PLAY? YES

TRY ANOTHER NUMBER? 30

YOU MISSED

251

DO YOU STILL WANT TO PLAY? NO

SPOILSPORT!! I WAS HERE

< = >

READY.

Exercise 4
1 2 3

A F I

4

M

5

P

6

T

7

U

8

Z

Mid (4)

Query = Item (4)? No.
Query < Item (4)? Yes.
make Index (4) the new high

A

1

F

2

I

3

M

4
Mid-Index = lnt(1_±4)=2

Query = Item (2)? No.
Query < Item (2)? No.
make Index (2) the new low

2
F

4
M

Query = Item (3)? Yes.
Therefore I is in list

SAQ3

A$(1,1) = ARCHER
A$(2,1) = DRAPER
A$(3,1) = GWYNNE
A$(4,1) = LAMB
A$(5,1) = PROSSER

A$(1,2) = BENNY
A$(2,2) = EDDIE
A$(3,2) = HETTY
A$(4,2) = MORLEY
A$(5,2) = SMYTHE

A$(1,3) = COPPER
A$(2,3) = FRAME
A$(3,3) = KEMP
A$(4,3) = NOAKES
A$(5,3) = TAIT

2 5 2

SAQ4

RUN
1

2
2
2
2
2
3
3
3
3
3

J

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

N$(I,J)

ARCHER
BENNY
COPPER
DRAPER
EDDIE
FRAME
GWYNNE
HETTY
KEMP
LAMB
MORLEY
NOAKES
PROSSER
SMYTHE
TAIT

(Note that WEEKS was not read into the table. A 5x3 table will only read the first
15 items.)

2 5 3

254

UNIT 10
File-handling

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Saving programs

LPRINT

Sequential files

Create and access

Files in flowcharts

Sorting filed data

Merge

Deletion

Postscript

Assignment 10

Objectives of Unit 10

Answers to SAQ's and Exercises

256

256

258

258

261

263

265

271

272

274

274

275

255

10.1 Saving programs
The course so far has largely been concerned with a system of only 3 devices, viz.
keyborad, processor and monitor. That system is volatile, i.e. when you switch off the
power your programming efforts are lost. If you wish to run a program again you will
have to type it in again. But all microcomputers provide facilities for saving a program
on ordinary cassette tapes. Once the program is on cassette, you can switch off your
computer and still be able to re-run the program whenever you want in the future.

There are two occasions on which you will wish to store programs:
(a) when you have a complete program that you want to keep; and
(b) to save part of a program which you are developing. If you save every time you
have a screen-full, you will never lose too much when you have an accident with the
part currently in your computer. When the complete program has been entered and
saved, you can always erase your intermediate part-programs.

The process of saving
First you have to give the program a name which the computer will use to locate your
program. Systems differ in how long and what characters may be included in the file
name. Up to 16 characters are allowed on the Commodore 64.

Suppose you want to save a program called PROGNAME. The procedure will be:

• Connect the Commodore 1530(C2N) cassette tape recorder to your computer.
• Key SAVE "PROGNAME" on your computer and touch RETURN.
• Start the tape recorder running in record mode. (Touch play and record)
• The television screen will go blank (light blue).
• Once the program is saved, turn off the recorder.

The process of loading
Having saved a program you may wish to use it at a later date. It can be loaded back in
to the machine with a LOAD command. A typical interaction would be:

Either
• Connect the Commodore 1530(C2N) cassette recorder to your computer.
• Key LOAD 'PROGNAME" and touch RETURN.
• Set the tape recorder running in play mode.
• Switch off the recorder when loading is complete.

Or
• Connect the recorder to your computer.
• Key LOAD "" and press RETURN.
• Set the recorder running in play mode.
• Switch off the recorder when loading is complete.

10.2 Printing to a printer
If you wish to list a program to the printer, you need to warn the printer that information
is coming. This is done with the OPEN command.
OPEN logical file number, device number

For the VIC-151 printer, the device number is 4 or 5. The logical file number can be
any number you decide upon in the range 1 to 255. You can change the number to suit

256

yourself, provided you stick to it for you whole set of commands.

OPEN 1,4
will do

We next need to transfer control from the computer to the printer. This is done with the
CMD command.
CMD logical file number.
So we need
CMD1
to be consistent

The computer will print READY on the printer paper. The instruction LIST will now
cause the program to be listed on the printer rather than the monitor screen.

We now need PRINT #

PRINT* logical file number

to close the line to the printer (or 'unlisten' it, in jargon!) so we will write

PRINT#1

Note that you must spell out PRINT* letter by letter—you cannot use the ? symbol to
stand for PRINT. Finally you need to close the file after printing:

CLOSE logical number
So we need
CLOSE 1
Our sequence of commands is
OPEN 1,4
CMD1
LIST
PRINT#1
CLOSE 1

This corresponds to the LLIST command available on some microcomputers.

It is possible to print out information to the printer during the run of a program.
You must open the file as before, and then you can use PRINT* in the same way
that would normally use PRINT to display to the screen.
For example:

40 PRINT#1, "SUBMARINE GAME"

will cause SUBMARINE GAME to be displayed on the printer. Don't forget to
CLOSE 1 at the end of the printer display part of the program to 'tidy up' and
close the file.

This corresponds to the LPRINT command available in some forms of BASIC.

These instructions correspond to the handling of tape and disc files, as explained
in subsequent sections of this Unit.

257

10.3 Sequential files
We have used the term 'file' several times throughout the course, to mean 'collection
of data items'. However, when a program is saved we refer to its having a file-name,
and we think of both programs and data as files.

Data
So far we have either input data from the keyboard during the course of a program's
execution, or read from DATA statements which formed part of the program. On
several occasions we have made a program handle different sets of data by over
writing or substituting new DATA statements for old ones. This latter method can be
quite effective for small computer systems without file-handling facilities. But if we
wish to handle collections of data of meaningful size, we need the facility to be able to
store this data on either tape or disk. We need to be able to store new data on a file on
cassette or disk and to read data from these files to use in program runs.

Incompatibility of systems
Most of the main micro-computer systems differ from each other in the finer details of
how file-handling is achieved. We will concentrate on the general principles as far as
possible. Our examples will be kept as simple as possible, but will relate to the
Commodore 64.

Sequential files
As a simplification we shall only consider sequential file-handling. Sequential files
are where we read in every item of data from the file in the sequence in which it was
originally created. This is, of course, the only type of file than you can use on a tape
storage system since a tape has to be read sequentially.

10.4 Create and access
Create refers to a program's activity of writing data from the program in the
computer's memory to a peripheral device: in our case either tape or disk. Access is
when data is read from the peripheral device to the program in memory.

Because you cannot 'see' what's stored on tape or disk, the activities of create and
access must be complementary. You do not know whether your program to create
has been successful until you've written an access program to read the data back in.
Only then can you see it on the screen or printer.

In order to keep this Unit as simple as possible, we shall keep create and access as
separate as possible.

Create
To create a new file, or to write into an existing one, we have to tell the computer:
• the name of the file;
• that we wish to OPEN the file for writing to it;
• than we write out to it;
• then we CLOSE it;

Notice that:
• during the create run, the computer needs a temporary number for that file to

identify it during execution;
• that between OPEN and CLOSE, the computer is under control of the tape

recorder.

258

So creating a program is like this on the Commodore 64:

1000 REM ••CREATE A DATA-FILE**
1010 OPEN 1,1,1,"DATA"

1080 CLOSE 1

Notes
OPEN 1,1,1 -«—tells the computer to open a file in output mode.

* tells the computer to use the cassette recorder

our internal (to the program) file number which we will use to
refer to the file as long as it is open. The Commodore 64 allows
us a range of file numbers (0-255), but we stick to 1 in our examples.

"DATA1" the file-name on the cassette or disk under which the data will be

stored.

CLOSE1 this closes the file that we gave the file number 1.

So let's see this in use.

Example 1a
Write a program to create a data file of 10 names.
Solution

1000 REM **CREATE A DATA FILE**
1010 OPEN 1,1, VDATA1"
1020 REM *
1030 PRINT "TYPE DATA (ZZZZ TO END)
1040 ONPUT"DATA1";A$
1050 PRINT#1,A$
1060 IF A$<>"ZZZZ" THEN 1040
1070 PRINT "DATA1 HAS BEEN SAVED"
1080 CLOSE 1

Program 1 Create a data file

RUN
DATA1 HAS BEEN SAVED

The only new bit here is PRINT* ,A$. This writes the value A$ into the file 1. (You can
now see why we wanted a number for the file to use during the program.)

At the end of all that the 10 names (ARCHER, BENNY, etc) are all on the tape under
the file-name "DATA1". If you switched off the computer, they would still be there.

before pressing RETURN
the recorder would have to be
activated (PLAY/RECORD)

and switched off here.

Access
Now you want the data back to use. For this you need an access program. This has
the following structure:

10 REM **ACCESS A DATA FILE**
30 OPEN 1,1,0,"DATA1"
50 IF A$="ZZZZ" THEN 80

80 CLOSE 1

Notes
OPEN 1,1,0-* -tells the computer to open the file in input mode ("0" for input)

-tells the computer to use the cassette recorder.

-our internal (to the program) file number.

"DATA1" the name of the file that the computer is to look for on the tape or

disk.

IF A$="ZZZZ" we are using a dummy record to signal the end of file

CLOSE 1 tells the computer to close the file number 1.

In use the program works as follows:

Example 1b
Write a program to access the data file "DATA1" which was created in Example 1 a
and to print out the 10 names in the file.

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 OPEN 1,1,0,"DATA1"
40 INPUT#1,A$
50 IFA$="ZZZZ"THEN80
60 PRINT A$
70 GOTO 40
80 CLOSE 1

RUN-

Program 2 Access a data file

the recorder would have
to be activated (PLAY only)

ARCHER
BENNY
COPPER
DRAPER
EDDIE
FRAME
GWYNNE
HETTY
KEMP
LAMB

READY.

260

and switched off here.

Once we have opened the file, we input the data in it with:

40 INPUT #1,AS

Exercises preamble
A fairly serious defect of Programs 1 and 2 is that they both work only for a specifically
named file, viz, "DATA1". Now if af ile-handling program is going to be of general use,
we don't want to have to edit the program just to create or access data from a file of
different names. We can overcome this by entering the file name into a variable store
location. F$, in the following example.

INPUT"NAME OF THE DATA FILE?"F$
OPEN 1,1,0,F$

Let's write some programs which remedy this point.

Exercise 1
Modify Program 1 to write a sequence of names to a file directly from the keyboard,
and allow the file thus created to have a variable name.

Exercise 2
Modify Program 2 to access the file created in Exercise 1 and to print out the list.

Exercise 3
Write a program to access the file created in Exercise 1 and to search through it to find
and print out all those names whose initial letter is 'N'.

Exercise 4
Write a program to access the file created in Exercise 1 and to enter the names into a
list, and to print out the list with indexes.

10.5 Files in flowcharts
The solution to Exercise 4 holds the key to the development of future programs. It's
our old friend the list again, which makes all the difference! Having got the data into
list form we can do much more with it. Before we do, however, let's try to summarise
the position we've reached.

The program solution to Exercise 1 may be summarised as in Figure 1.

261

input from the keyboard

one box for the whole create program

the output data file
the#here denotes a file on tape/disk,
with the appropriate filename.

FILENAME

Figure 1 Flowchart for 'Create a file'

The flowchart solution for Exercise 4 is given in Figure 2.

you have to start the access program before
you can call up the file#USDATA2, so the
flowchart has a certain amount of 'artistic
licence', but we feel that it conveys the essen
tial theme

to screen or printer

Figure 2 Access a file and index as a list

10.6 Sorting filed data
The list of names in answer to Exercise 2, is just asking to be sorted! We have an
access routine and we developed a sort of routine in Unit 8. All we have to do now is to
link the two together. Before we do let's sketch the algorithm.

(

/

/

(

start

"

£USDATA2
NAMES

' r

ACCESS
into
list

' r

SORT
list

^ '

indexed
sorted list
ot NAMES

\ '

stop

)

/

/

)

Figure 3 Access and sort

The program is simply three routines (access, sort and print) that you have already
met, joined together.

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM X$(50)
40 C-1
50 INPUT "NAME OF THE DATA FILE";G$
60 OPEN 1,1,0,G$
70 INPUT#1,A$
80 X$(C)=A$
90 IFA$="ZZZZ"THEN120
100 C=C+1
110 GOTO 70
120 CLOSE 1
130 REM **END OF ACCESS**

access routine

263

140 REM * * N IS LENGTH OF LIST**
150 N=C
200 REM * * * * * * * * * * * • * * • * * * * * • "
210 REM ••SORT ROUTINE**
220 FOR K=1 TO N-1
230 FOR L=K+1 TO N
240 IF X$(L)>=X$(K) THEN 280
250 T$=X$(L)
260 X$(L)=X$(K)
270 X$(K)=T$
280 NEXT L
290 NEXT K
300 REM • •END OF SORT ROUTINE**
400 REM •
410 PRINT "FINAL SORTED LIST"
420 FOR P=1 TO N
430 PRINT P,X$(P)
440 NEXT P
450 PRINT
500 REM •

• sort routine

print routine

Program 3 Access and sort

RUN
NAME OF THE DATA FILE? USDATA2
FINAL SORTED LIST

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

ASHTON
BANKS
BARR
BURNS
CAREY
COMPTON
DOYLE
EDGE
GRANT
HOWSON
ICKERY
NASH
NEILS
NUNN
PRIEST
PURVISS
SCALES
SHIPTON
TEELE
TURNER
WATERS
WATTS
WELLS
WEST

264

Exercise 5
We don't necessarily wish to print out the list as we did for demonstration purposes
in Program 3, but we definitely would want the sorted data to be saved in a data file
for future use.

Modify Program 3 to write the sorted data list to a file, SDATA, say.
How will you test that it is successful?

Exercise 6
Having created a file of sorted data you will sooner or later wish to search through it
quickly.
Combine the list-access routine of Program 3 with the bisection search routine of
Unit 8 to make this file-search utility program.

Exercise 7
Write a program to access a file and input the data into a table.
You are in charge of the dimensions of the table and the data you use.

10.7 Merge
We've created, accessed, sorted and searched files. What else is there to do?
Well, very seldom does a data file which is doing useful work, stay static for long.
We usually want to add or delete items, or make amendments to it. The rest of this
Unit will be spent considering how to add and delete items to and from a file.

No doubt you have already visualised how you would go about these tasks, and we
hope that you follow up your ideas. We will develop a fairly standard approach. To
add items to a file we will merge two files together. You've done this if you have
ever played cards. You have a hand which you have sorted and have spread out
fan-like before you. You pick up another card and slot it into its appropriate place in
your hand.

The process of merging involves a master file (sorted into order) and a list of new
items to go in (also sorted into order).

Master file New items (=work file)
AMES
COLES nAVi^
GREGG U A V , b

HOPE
IVES
JAMES L A M B

MUNN TNORRIS

SYMES W E

But before we develop a program for the merge, we must anticipate and remove
one problem: the extremes of the master file. Both in the bisection search (Unit 8)
and in Exercise 6 we found it necessary to ensure that the master file included the
extremes. So we now develop a program routine to ensure that this will be so.

265

The extremes of the master file
The following routine takes any sorted file (G$) and places "AAAA" as the first item.
We do not need to add "ZZZZ" as the last as the Commodore 64 uses a dummy
record as the end of the file marker already.

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147) ^ _ _ lowest item made AAAA
30 DIM M$(50) __——-~~~~~^ before accessing the file.
40 C-1
50 M$(C)="AAAA"
60 INPUT "NAME OF THE DATA FILE";G$
70 OPEN 1,1,0,G$
80 C=C+1
90 INPUT#1,A$
100 M$(C)=A$
110 IF A$="ZZZZ" THEN 120 highest made ZZZZ after
120 GOTO 80 closing the file
130 CLOSE 1
140 REM *
150 N=C
160 REM *
170 FOR 1=1 TON
180 PRINT l,M$(l)
190 NEXT I

Program 4 Adding AAAA to a file

RUN
NAME OF THE DATA FILE? SDATA3

1
2
3
4
5
6
7
8
9
10
11
12

AAAA-
AMES "
COLES
GREGG
HOPE
IVES
JAMES
MUNN
PRICE
ROSS
SYMES
ZZZZ -

•lowest item

-original file SDATA3

-highest item

The merge program
A picture of the overall process is shown in Figure 4. Once again there is a certain
amount of artistic license. The program does not really have two starting points,
but as you will see when the program is run, there are two quite distinct entry points
for the two input files.

The essential point to remember is that SDATA3 and SDATA4 have been sorted
into alphabetical order before entry into the program. This was done using
programs developed earlier in this Unit.

2 6 6

f start J

'

/ £SD
/ WC

/ "

'

ATA4 /

IRK / *"

' J

(

/

/

(

start

1 '

ESDATA3
MASTER

file

\ '

MERGE
routine

t
merged

list

1

St

f

3P

)

/

/

Figure 4 Merge routine in outline

The merge routine

The central idea is:

• if the item in the Master file is lower in order than the item from the Work file

• then write the item from the Master file into the New file;

• otherwise write the item from the Work file into the New file.

267

GLOSSARY

W$ next item in Work file
M$ Master
New-list into which they both
write (C$ in the program)

next in
W$

next in W$
into New-list

increment
New-list oniy

270

310

write M$
into New-list

320

increment M$
& New-list

360

320

410 - 430

write rest
of M$ into
New-list

" 500-520

output
New-list

(stop J

Figure 5 The merge routine in detail

268

-C$ will be the New-list

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM M$(50)
35 DIMC$(50)
40 C-1
50 M$(C)="AAAA"
60 INPUT "NAME OF THE DATA FILE";G$
70 OPEN 1,1,0,G$
80 C=C+1
90 INPUT#1,A$
100 M$(C)=A$
110 IFA$="ZZZZ"THEN130
120 GOTO 80
130 CLOSE 1
140 REM *
150 N=C
160 REM * _
170 FOR 1=1 TO N
180 PRINT l,M$(l)
190 NEXT I
200 REM * *MERGE**
210 1=1
220 K-1
230 INPUT "NAME OF THE WORK FILE";H$
240 OPEN 1,1,0,H$
250 INPUT#1,W$
260 IF W$="ZZZZ" THEN 350
270 IFM$(I)<W$THEN310
280 C$(K)=W$
290 K=K+1
300 GOTO 250
310 C$(K)=M$(I)
320 K=K+1
330 1=1+1
340 GOTO 270
350 CLOSE 1
360 C$(K)=M$(I)
370 K=K+1
380 1=1+1
390 IF K = N THEN 360
400 REM A * * * * * * * * * * * * * * * * * * *
550 FOR L=2 TO K-2
510 PRINT L,C$(L)
520 NEXT L

accessing Master file,M$,(c)
and inserting AAAA and
ZZZZ at ends

print out of Master file
before merge

merge

K is one too high at 390
• and we don't want "ZZZZ"
either; hence K—2

Program 5 The complete merge program

269

Runs of merge program
First using SDATA3 as the Master file:

RUN
NAME OF THE DATA FILE? SDATA3

1
2
3
4
5
6
7
8
9
10
11
12

AAAA
AMES
COLES
GREGG
HOPE
IVES
JAMES
MUNN
PRICE
ROSS
SYMES
zzzz

NAME OF THE WORK FILE
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

AMES
COLES
DAVIS
GREGG
HOPE
IVES
JAMES
LAMB
MUNN
NORRIS
PEARCE
PRICE
ROSS
SYMES
TATE

Second using SDATA4 as the Master file:

RUN
NAME OF THE DATA FILE? SDATA4

1 AAAA
2 DAVIS
3 LAMB
4 NORRIS
5 PEARCE
6 TATE
7 ZZZZ

270

NAME OF THE WORK FILE? SDATA3

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

AMES
COLES
DAVIS
GREGG
HOPE
IVES
JAMES
LAMB
MUNN
NORRIS
PEARCE
PRICE
ROSS
SYMES
TATE

We have run the program using data files SDATA3 and 4 as Master file. You can
see that it doesn't really matter which one we call the Master and which the Work
file. (It is interesting to note that entering the smaller of the two first (SDATA4)
takes up slightly less room in the memory.)

If we wanted the New-list in a data file, we would have to add a create routine to the
end of the program, instead of 500-520, perhaps.

10.8 Deletion
Deletion may seem a very different process from addition and merging but it can
be achieved by modifying the merge program only very slightly.

First, the items for deletion are collected into a Work file.

Then:
• if the item in the Master list = that in the Work list then do not write the Master

list item into the New list;
• otherwise do write the Master list item into the New list.

We will not give a flowchart in this case, but hope that you can follow the changes
to the merge program as shown in the delete program below. In this case a
moment's thought will convince you that the Work and Master lists are no longer
interchangeable.

271

Master file (SDATA)
AHSTON
BANKS
BARR
BURNS
CAREY
COMPTON
DOYLE
EDGE
GRANT
HOWSON
ICKERY
NASH
NEILS
NUNN
PRIEST
PURVISS
SCALES
SHIPTON
TEELE
TURNER
WATERS
WATTS
WELLS
WEST

10 REM ••ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM M$(50)
35 DIM M$(50)
40 C-1
50 M$(C)="AAAA"
60 INPUT "NAME OF THE DATA FILE";G$
70 OPEN 1,1,0,G$
80 C=C+1
90 INPUT # 1 , A$
100 M$(C)=A$
110 IFA$="ZZZZ"THEN130
120 GOTO 80
130 CLOSE 1
140 REM •
150 N=C
160 REM •
170 FOR 1=1 TO N
180 PRINT l,M$(l)
190 NEXT I
200 REM **DELETE**
210 1=1
220 K=1
230 INPUT "NAME OF THE WORK FILE";H$

Work file (SDATA5)
= deletions to be made

BURNS
DOYLE
NASH
TEELE
WATTS

272

240 OPEN 1,1,0,HS
250 INPUT#1,W$
260 IF W$="ZZZZ" THEN 370
270 IF M$(I)=W$ THEN 350 -
310 C$(K)=M$(I)
320 K=K+1
330 1=1+1
340 GOTO 270
350 1=1+1
360 GOTO 250
370 CLOSE 1
380 C$(K)=M$(I)
390 K=K+1
400 1-1+1
410 IF K = N THEN 380
420 REM * • • • • • • * • * • • • • • • • • * •
430 FOR L=2 TO K-2
440 PRINT L,C$(L)
450 NEXT L

if Master item = Work item
do nothing, just go for the
next Master item
otherwise write Master item
into New list

RUN
NAME OF THE DATA FILE? SDATA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

AAAA
ASHTON
BANKS
BARR
BURNS
CAREY
COMPTON
DOYLE
EDGE
GRANT
HOWSO-N
ICKERY
NASH
NEILS
NUNN
PRIEST
PURVISS
SCALES
SHIPTON
TEELE
TURNER
WATERS
WATTS
WELLS
WEST
zzzz

-Master list

NAME OF THE WORK FILE? SDATA5

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

ASHTON
BANKS
BARR
CAREY
COMPTON
EDGE
GRANT
HOWSON
ICKERY
NEILS
NUNN
PRIEST
PURVISS
SCALES
SHIPTON
TURNER
WATERS
WELLS
WEST

-New list . . . the old Master with
five items deleted

Assignment 10
1. Write a program to create a library Master loan file in alphabetical order by

borrower's name, with records of the form:

BORROWER DATE DUE BOOK TITLE

(a) Write a routine to merge new records with this Master file.

(b) Write a routine to access and search through the file to find those books
which are overdue.

2. Write a program to access a table of numerical values, to complete row and
column sums, and to create a new file to include this extra information.

Objectives of Unit 10
Check that you are able to write programs in a form suitable for your micro
computer to:

Create a data file (open for output) Q

Access a data file (open for input) •

Sort a data file •

Add new items to a data file (merge) •

Delete items from a data file •

274

Answers to Exercises
Exercise 1

1000 REM **CREATE A DATA FILE**
1010 INPUT "NAME OF DATE FILE";F$
1020 OPEN 1,1,1,F$
1030 REM **INPUT DATA**
1040 PRINT "TYPE DATA (ZZZZ TO END)"
1050 INPUT "NEXT NAME";N$
1060 PRINT#1,N$
1070 IF N$<>"ZZZZ" THEN 1050
1080 PRINT F$;" HAS BEEN SAVED"
1090 CLOSE 1

Program 7
NAME OF THE DATA FILE? USDATA2
NEXT NAME? BARR
NEXT NAME? SHIPTON
NEXT NAME? HOWSON
NEXT NAME? WELLS
NEXT NAME? CAREY
NEXT NAME? WEST
NEXT NAME? NEILS
NEXT NAME? ASHTON
NEXT NAME? NASH
NEXT NAME? TURNER
NEXT NAME? COMPTON
NEXT NAME? BURNS
NEXT NAME? EDGE
NEXT NAME? NUNN
NEXT NAME? PRIEST
NEXT NAME? DOYLE
NEXT NAME? SCALES
NEXT NAME? WATERS
NEXT NAME? GRANT
NEXT NAME? BANKS
NEXT NAME? PURVISS
NEXT NAME? TEELE
NEXT NAME? WATTS
NEXT NAME? ICKERY
NEXT NAME? ZZZZ
USDATA2 HAS BEEN SAVED

Exercise 2

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 INPUT "NAME OF THE DATA FILE";G$
40 OPEN 1,1,0,G$
59 INPUT#1,A$
60 IF A$="ZZZZ" THEN 90
70 PRINT A$
80 GOTO 50
90 CLOSE 1 Program 8

275

RUN
NAME OF THE DATA FILE? USDATA2
BARR
SHIPTON
HOWSON
WELLS
CAREY
WEST
NEILS
ASHTON
NASH
TURNER
COMPTON
BURNS
EDGE
NUNN
PRIEST
DOYLE
SCALES
WATERS
GRANT
BANKS
PURVISS
TEELE
WATTS
ICKERY

Exercise 3

10 REM ••ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 INPUT "NAME OF THE DATA FILE";G$
40 OPEN 1,1,0,G$
50 INPUT#1,A$
60 IFA$="ZZZZ"THEN100
70 IFLEFT$(A$,1)O"N"THEN50
80 PRINT A$
90 GOTO 50
100 CLOSE 1

RUN
READ - TAPE PROGRAM
NAME IF DATA FILE? USDATA2
PRESS PLAY ON TAPE
OK
FILE OPEN
NEILS
NASH
NUNN
READY.

276

Program 9

Exercise 4

10 REM ••ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM B$(50) dimension the list
40 C=1 initialise the index for the list
50 INPUT "NAME OF THE DATA FILE";G$
60 OPEN 1,1,0,G$
70 INPUT#1,A$
80 B$(C)=A$
90 IFA$="ZZZZ"THEN120
100 C=C+1 increment only if EOF
110 GOTO 70 marker is not found
120 CLOSE 1
130 N=C
140 FOR 1=1 TO N-1 so the final count of C is the
150 PRINT l,B$(l) length of the list
160 NEXT I

Program 10

RUN
NAME OF THE DATA FILE? USDATA2

1 BARR
2 SHIPTON
3 HOWSON
4 WELLS
5 CAREY
6 WEST
7 NEILS
8 ASHTON
9 NASH
10 TURNER
11 COMPTON
12 BURNS
13 EDGE
14 NUNN
15 PRIEST
16 DOYLE
17 SCALES
18 WATERS
19 GRANT
20 BANKS
21 PURVISS
22 TEELE
23 WATTS
24 ICKERY

277

Exercise 5
Instead of the print routine of lines 410-500 of Program 3, we have to write a create
routine as follows (lines 300 to 500 of the followuing program)

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM X$(50)
40 C-1
50 INPUT "NAME OF THE DATA FILE";G$
60 OPEN 1,1,0,G$
70 INPUT#1,A$
80 X$(C)=A$
90 IFA$="ZZZZ"THEN120
100 C=C+1
110 GOTO 70
120 CLOSE 1
130 REM **END OF ACCESS**
140 REM * * N IS THE LENGTH OF THE LIST**
150 N=C
200 REM *
210 REM **SORT ROUTINE**
220 FOR K=1 TO N-1
230 FOR L=K+1 TO N
240 IF X$(L)>=X$(K) THEN 280
250 T$=X$(L)
260 X$(L)=X$(K)
270 X$(K)=T$
280 NEXT L
290 NEXT K
300 REM **END OF SORT ROUTINE**
400 REM *
410 REM **CREATE A DATA FILE**
420 INPUT "NAME FOR THE DATA FILE";F$
430 OPEN 1,1,1 ,F$
440 FOR P=1 TO N
450 A$=X$(P)
460 PRINT#1,A$
470 NEXT P
480 CLOSE 1
490 PRINT F$;" HAS BEEN SAVED"
500 REM * * * * * * * • * * * • * * • • • • • *
R U N Program 11

NAME OF THE DATA FILE? USDATA2
NAME FOR THE DATA FILE? SDATA
SDATA HAS BEEN SAVED

To test whether it has been successful we can load and run the access program for
the file SDATA.

NAME OF THE DATA FILE? SDATA
ASHTON
BANKS
BARR

278

BURNS
CAREY
COMPTON
DOYLE
EDGE
GRANT
HOWSON
ICKERY
NASH
NEILS
NUNN
PRIEST
PURVISS
SCALES
SHIPTON
TEELE
TURNER
WATERS
WATTS
WELLS
WEST

Exercise 6

10 REM **ACCESS FOR SEARCH-**
20 PRINT CHR$(147)
30 DIM N$(50)
40 C-1
50 PRINT "READ-TAPE PROGRAM" access
60 INPUT "NAME OF THE DATA FILE";G$
70 OPEN 1,1,0,G$
80 PRINT "FILE OPEN"
90 PRINT
100 INPUT#1,A$
110 LETN$(C)=A$
120 IFA$="ZZZZ"THEN150
130 C=C+1
140 GOTO 90
150 CLOSE 1
160 REM • •END OF ACCESS**
170 REM * * N IS THE LENGTH OF THE LIST**
180 N=C bisection search
190 REM *
200 INPUT "QUERY NAME";Q$
210 REM **START OF SEARCH**
220 L-1
230 H=N
240 IF H-L=7 THEN 500
250 MHNT((L+H)/2)
260 IF Q$=N$(M) THEN 320
270 IF Q$<N$(M) THEN 300
280 L=M

279

290 GOTO 240
300 H=M
310 GOTO 240
320 REM **END OF SEARCH**
330 PRINT "YES ";Q$;" IS IN THE LIST"
350 GOTO 600
500 PRINT Q$; "IS NOT IN THE LIST"
600 PRINT "END OF SEARCH"

RUN
NAME OF THE DATA FILE? SDATA - -The sorted data file. (We
QUERY NAME? HOWSON couldn't use the bisection
YES HOWSON IS IN THE LIST search on the unsorted file.)
END OF SEARCH
RUN
NAME OF THE DATA FILE? SDATA
QUERY NAME? SMITH
SMITH IS NOT IN THE LIST
END OF SEARCH

Note: We have combined an access program with the bisection search program of
Unit 8, and it works. To make the program foolproof, however, we must be careful
about its limits: remember N$(1)="AAAA" and N$(N)="ZZZZ" in Unit 8! We deal
with the problem in Program 5.

Exercise 7

10 REM **ACCESS A DATA FILE**
20 PRINT CHR$(147)
30 DIM A$(30,30)
40 INPUT "NO. OF ROWS AND COLS";R,C
50 INPUT "NAME OF THE DATA FILE";G$
60 OPEN 1,1,0,G$
70 FOR 1=1 TO R
80 FOR J=1 TOC
90 INPUT#1,B$
100 A$(I,J)=B$
110 IFB$="ZZZZ"THEN140
120 NEXT J
130 NEXT I
140 CLOSE 1
150 REM • * * * * * • * * * • * * * * * * • * *
160 FOR 1=1 TOR
170 FOR J=1 TOC
180 PRINT TAB(10*(J-1));A$(I,J);
190 NEXT J
200 PRINT
210 NEXT I
220 END

Program 13

print routine

Program 12

280

Run on SDATA

RUN
NO. OF ROWS AND COLUMNS? 6 , 4
NAME OF THE DATA FILE? SDATA

ASHTON BANKS BARR BURNS
CAREY COMPTON DOYLE EDGE
GRANT HOWSON ICKERY NASH
NEILS NUNN PRIEST PURVISS
SCALES SHIPTON TEELE TURNER
WATERS WATTS WELLS WEST

READY.

Course comments
Please let us know what you think of this course to help us improve future editions
of it. We would especially like to know of any problems you have had in getting
particular programs to run on your micro.

Make of microcomputer M027

Name

Address

Correspondence tuition
Are you studying by yourself and need help?
If you are, enrol now with NEC as a correspondence student on 30 Hour
BASIC. We will give you a correspondence tutor with experience of your
make of microcomputer. He will then take you through the course,
marking and commenting on your assignments and giving you any advice
you need on getting the programs in 30 Hour BASIC to run on your micro.

To enrol, send us the following details:

Name '

Address

Postcode ...

Tel. No

Date of birth

Microcomputer you are using
M027 J

Course fee: £50 (44 if you already have a copy of 30 Hour BASIC).

Also available
Cassettes
Two cassettes of the main programs in 30 Hour BASIC. Price £5.95 inc.
p & p and VAT each. (Specify BBC or Acorn Electron) two.

Free notes
30 Hour BASIC needs small adaptations for use on certain microcompu
ters. If you are having problems getting our programs to work on your
machine, send us a stamped addressed envelope with the make and
model of your microcomputer written clearly on the inside of the envelope
flap. We'll send you a sheet of notes on getting 30 Hour BASIC programs
to run on your computer.

National Extension College,
18 Brooklands Avenue, Cambridge CB2 2HN.

^ ou n o u r D A y i v w^/sviiviv^L/v/rtiz 04 ©onion

^ V M E N D E D ^ ®

What is BASIC?
Microcomputers are the tool of the 80's. BASIC is the language that
all of them use. So the sooner you learn BASIC, the sooner you will
understand the microcomputer revolution. i

30 Hour Basic is a simple self-instructional course on the language
of microcomputers. But programs need more than language: they
need structure as well. So the course also teaches you good
programming techniques. You'll learn how to keep, order and sort
files, records and directories; how to print letters and addresses;
how to invent your own computer games; how to handle numbers
and so on.

Commodore 64
This is the edition specially written with the, needs of the
Commodore 64 user in mind. A standard edition, and editions for
the Spectrum, ZX81, Oric, Electron and Dragon are also available.

£ 6 . 9 5 ISBN 0 86082 455

Cover design: Peter Hall

