

Advanced BASIC programming for the
Commodore 64 and Other
Commodore Computers

Editor-in-Chief: David Culverwell
Executive Editor: Terrell Anderson
Production Editor: Sandra Tamburrino
Text Design: Paula Huber
Cover Design: Don Sellers

Indexer: Leah Kramer
Typesetter: Action Comp Co., Inc., Baltimore, MD
Printer: R. R. Donnelley & Sons Co., Harrisonburg, VA
Typefaces: Trump Mediaeval (text), Antique Olive (display), OCR-A (programs)

Advanced
BASIC programming

for the Commodore 64
and Other Commodore Computers

Michael Richter

Robert J. Brady Co., Bowie, MD 20715
A prentice-Hall Publishing

and Communications Company

Note to Authors

Do you have a manuscript or a software program re
lated to personal computers? Do you have an idea for
developing such a project? If so, we would like to
hear from you. The Brady Co. produces a complete
range of books and applications software for the per
sonal computer market. We invite you to write to
David Culverwell, Editor-in-Chief, Robert J. Brady
Co., Bowie, Maryland 20715.

Advanced BASIC Programming for the Commodore 64 and Other Commodore
Computers

Copyright © 1984 by Robert J. Brady Co.
All rights reserved. No part of this publication may be reproduced or transmit
ted in any form or by any means, electronic or mechanical, including photo
copying and recording, or by any information storage and retrieval system,
without permission in writing from the publisher. For information, address
Robert J. Brady Co., Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Richter, Michael, 1939-
Advanced BASIC programming for the Commodore 64 and

other Commodore computers.

Includes index.
1. Commodore 64 (Computer)-Programming.

2. Commodore computers-Programming. 3. Basic
(Computer program language) I. Title.
QA76.8.C64R52 1983 001.64'2 83-15604

ISBN 0-89303-302-2

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

84 85 86 87 88 89 90 91 92 93 10 9 8 7 6 5 4 3 2 1

CONTENTS

1 Introduction
1.1 Prerequisites and purposes
1.2 Principles of BASIC
1. 3 Interoperabili ty

2 Writing for the User
2.1 Program planning
2.2 Program organization
2.3 Structured programming
2.4 Program documentation
2.5 Testing

3 Mechanics of a Program
3.1 Line numbers
3.2 Commands
3.3 Variables
3.4 Arrays
3.5 Bits, bytes, characters, and numbers
3.6 Keyboard input
3.7 FOR ... NEXT loops
3.8 Machine-language interface
3.9 Odds and endings
3.10 Coding tricks-DEF and ON

4 Devi.ces
4.1 Un-conventions
4.2 Printers
4.3 Disks and drives
4.4 Disk files
4.5 Disk commands
4.6 Tokens
4.7 Using files
4.8 Sorts and searches

5 SUPERLIST -an Example &. a Tool
5.1 SUPERLIST initialization
5.2 SUPERLISTutilities
5.3 StartingaSUPERLIST
5.4 Processing a line

1
2
4
5

9
11
14
17
19
21

25
26
28
29
31
33
35
38
40
41
43

47
49
51
53
55
57
59
61
63

67
68
70
71
72

v

5.5 Prin ting the references
5.6 What doesn't work
5.7 SUPERLISTing
5.8 SYS CHECKSUM
5.9 TURTLEW ALK
5.10 DOMINOES

6 Pursuing a Project
6.1 The first call
6.2 First meeting
6.3 Structuring the system
6.4 Inventory control (customer description)
6.5 Design
6.6 Using the warehouse program
6.7 Design review meeting
6.8 Coding
6.9 Maintenance
6.10 Bigger and better

Programs Supplied on the Diskette

Index

vi

74
75
76
81
85
90

97
98

100
102
104
105
107
109
110
111
114

116

117

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include the develop
ment, research, and testing of the programs to determine their effectiveness. The
author and the publisher make no warranty of any kind, expressed or implied,
with regard to these programs, the text, or the documentation contained in this
book. The author and the publisher shall not be liable in any event for claims of
incidental or consequential damages in connection with, or arising out of, the fur
nishing, performance, or use of the text or the programs. The programs contained
in this book and on any diskettes are intended for use of the original purchaser
user. The diskettes may be copied by the original purchaser-user for backup pur
poses without requiring express permission of the copyright holder.

TRADEMARKS OF MATERIAL
MENTIONED IN THIS TEXT

Apple machines: Apple Computer, Inc.
C-BASIC: Compiler Systems, Inc.
CBM, Commodore 64, Name Machine, Pet, SuperPet, Vic-20,

Word Machine: Commodore Business Machines, Inc.
CP/M: Digital Research Corporation
M-BASIC, Microsoft: Microsoft Corporation
Petspeed: Small Systems Engineering
Tandy machines: Tandy Corporation
WordPro: Professional Software, Inc.

vii

I
1 Introduction

Advanced BASIC Programming is not a contradiction in terms. Tradi
tionally, advanced software has been developed in other languages: FOR
TRAN, COBOL, and, more recently, PASCAL. BASIC was designed to be
an introductory language, not one for high-powered needs. Yet, BASIC can
be used for those needs, often as well as or better than the traditional
languages.

This text has two interrelated functions: helping you develop advanced
software and teaching you concepts of programming that will carry over
into professional levels. In general, software quality is independent of the
language used, so learning to write good programs will serve you well if
you later move into the conventional languages. The great advantage of
using BASIC for learning is that the computer you need for it is inexpen
sive and readily available.

This text is aimed at Commodore BASIC, and most of it can be applied
on the VIC 20. This means that you can learn advanced BASIC on a
machine selling for less than $200. By comparison, even a terminal to a
computer capable of running FORTRAN will cost several times that
amount, typically a few thousand dollars instead of a few hundred.
Another advantage of basing this text on the Commodore version of
BASIC is that it is applicable to all of their machines, from the VIC 20 and
64 through the business machines which, with peripherals, may cost
$5-10,000 and offer substantial business capabilities. So, you may learn
on an inexpensive starter system, then transfer that knowledge to ad
vanced applications.

You don't have to use a Commodore computer to learn advanced pro
gramming in BASIC-in fact, most of the material in this book is relevant
to Apple or Tandy machines as well. In addition, the philosophy and prin
ciples of programming apply to all interpretive languages. Most of the

1

2 1: Introduction

material on BASIC itself is common to all dialects, even those most dis
tant from Commodore's. But the versions of BASIC from Microsoft (Ap
ple, Tandy, M- and C-BASIC for CP/M) are close enough to Commo
dore's for most operations not dealing with peripherals to apply directly.
Finally, all the ideas and most of the examples should be valuable to you
regardless of the hardware you use.

1.1 prerequisites and purposes
This book is intended to help you learn to write professional software. It is
not a BASIC primer, and it assumes that you already know the elementary
uses of the language.

The rules for using BASIC are provided with most computers. Other
sources of elementary information are books, programs, and courses. For
all of those and for other current information, see your dealer-the micro
computer field changes too fast to provide current references in a book!

When you have finished with the elementary materials, you should
know enough to write a simple game or to read most BASIC programs.
The next step is to read and to write until you understand the mechanics
of programming. One way to combine the two tasks is to buy some soft
ware on disk or tape and change it. What program you use is almost irrel
evant. Any routine can be written in many different ways; its author
chose some to write the program, but you can look for others.

Take the program apart from its listing so that you understand how it
was built. Think about ways to change small parts of it and try them out.
The point is not to get a "better" version (although you may), but to un
derstand how it was written and why. You will quickly discover that it is
much more fun to write programs than to run them.

Make sure that you don't start with too ambitious or complicated an
example. Tic-tac-toe or a simple slot machine will do as well for this pur
pose as ADVENTURE, and it will be a lot easier to learn. A good starting
point would be an inexpensive game-but make sure you get one that's
written entirely in BASIC. The example program in 5.10, DOMINOES,
will do on a PET or a 64, although it is more complex than necessary for
the job.

After you know how and why simple software is built, you're ready to
learn advanced programming. Again, it helps to use an example. Com
modore's Word Machine is a good example for most purposes. It displays
most of the features of advanced software and is interoperable on all 40-
and 80-column Commodore computers. The example program, SUPER
LIST, provided with this book may also serve, but it does not use as many
of the features as Word Machine.

1.1 prereQuisites and purposes 3

You need not own a computer to learn advanced software or to use this
book. You will want access to one for enough time to convert book
knowledge to practice. Each of the sections of the book takes only a few
minutes to read, but it should give you enough ideas to spend an hour or
more in practice.

While you can write good code for a tape-only system, professional
software is normally aimed at disk. First, the disk saves so much time in
programming that tape alone is impractical. Even more important is the
fact that a serious program will use the disk to extend the computer's
built-in memory. A printer is almost a necessity, too; it lets you read list
ings that would be too complex for a screen and correlate routines from
one part of the program with those they call in another. Finally, if you are
using a Commodore 64, get a monochrome monitor. You will spend
hours reading text on the screen; fighting hash from the modulator, poor
resolution from color dots, and blur from a poor television set costs more
than the monitor's price of $100 or so.

Even with all due diligence in reading this book and practicing, you
won't become an instant programmer. You will learn how good pro
grams are written, how to read and use them, and how to know them
when you see them. You will learn what can be taught about writing ad
vanced software; what can't be taught you will have to acquire with ex
perience. Neither this nor any other book can substitute for getting your
hands dirty writing programs.

One message is repeated over and over in the pages to follow: there is
no "best" way to write a program. The objective of good software is to
develop programs that do their jobs well. Programming that is optimal
for one application may not even be adequate for another. Users differ in
needs, experience, and taste; your programs have to fit all three. Remem
ber your market as you write your program, and don't try to make it be all
things to all users. For example, the Word Machine was written to com
plement conventional word processors in a different market. WordPro,
Word craft and the rest are superb programs with capabilities the Word
Machine does not duplicate. However, using those capabilities requires
study, practice, and commitment. They are fine for an office, for an oper
ator who will use them hours per day. But Word Machine was aimed at
the home user, someone who will want to use the computer to help write
a letter, a book report, or even a book like this one. It was designed for
simplicity, especially for the occasional user. It cannot replace WordPro
in the office, but WordPro does not fit the needs of the amateur computer
user. When you build your software, it should be aimed at your user.
This book should help you hit that mark.

Professional software is written for both users and customers. The cus
tomer is the person who needs the program's products; the user is the

4 1: Introduction

computer operator who is responsible for running the program to gener
ate those products. Even when the user and the customer happen to be
the same person, it is necessary to keep in mind the difference in needs
between the two roles. To facilitate separating those functions, we con
sistently refer to the customer as female and the user as male in this
book. (But no implication is intended that women are less comfortable
with computers than men just because customers tend to be less familiar
with them than users are.)

1.2 principles of BASIC
The greatest advantage and the greatest drawback of programming in
BASIC is that it is an interpretive language. The computer does not actu
ally execute the instructions you writej it interprets them into primitive
instructions it understands, then does what those primitives command.
One BASIC instruction may translate into dozens of primitives. Running
some of the primitives may take much longer when they come from in
terpretation than when they are written directly, for reasons we'll cover
later. As a result, BASIC runs slower than languages which are compiled,
like FORTRAN or COBOL.

The advantage of an interpretive language is that it simplifies program
development. When a program is compiled, the interpretation of its high
level instructions is done once, taking much longer than running the
program. The resulting code will run very fast, but getting to that point
takes compilation time. A program of a few thousand lines may take ten
minutes or more to compile, while it would run in only a few seconds.
The compiled code might then run in a fraction of a second. So, the trade
off is between speed of getting a program into a position to run (no time
for interpretation, minutes for compilation) and speed of running. When
you are writing the program, speed of preparation is all-important.

The property of being compiled or interpreted is not inherent in a lan
guage. There are interpretive versions of FORTRAN and COBOL, and
compilers for BASIC. It is possible to have the best of both worlds: to de
velop the program interpretively, then to compile the finished product
for running speed. Doing both gives any language the advantages of both
modes. Interpreters for languages designed for compilation are used in
the SuperPet. It is designed to let you develop a program interpretively,
then to download it to a larger computer for compilation after you have it
working right. Similarly, BASIC compilers such as Petspeed and DTL's
give the BASIC programmer the speed of compilation after development.
Just to complete the story, some modem languages (FORTH, LISP, PAS
CAL) use variations on the concepts of compilation and interpretation

1.3 Interoperabillty 5

and offer some of the virtues of each. Since the principal difference be
tween BASIC and the "professional" languages is cancelled by the avail
ability of alternative compilers and interpreters, the operational choice
of language must come from other considerations.

Fundamentally, almost any problem can be programmed in any lan
guage. However, some problems are better suited to one language than to
another. Spoken languages have similar properties; for example, the
sound of a poem in French may make its translation into German diffi
cult. Similarly, FORTRAN is designed for mathematical computation; it
is less than ideal for creating business reports. COBOL is intended for
formatting files and print but is a poor choice for complex analysis.
BASIC trades off among the features of specialized languages. It's good
for almost all uses, but perfect for none. BASIC is a general-purpose lan
guage and can be used easily for almost all needs. It can be used for con
ventional and fast Fourier transformations which are almost impossible
for COBOL, and for banking systems that would tax FORTRAN to or past
its limits. The mathematical program might have been better in FOR
TRAN, the banking system would have been easier in COBOL, but both
are possible-and operational-in BASIC.

In practice, the greatest drawback to coding in BASIC is that it has no
prestige. After all, it is basic, easy to learn, and at least partially compre
hensible to the untrained programmer. A FORTH programmer has cre
dentials established by the simple fact that she can use the language.
BASIC provides no such cachet of ability. If you want to write a program,
the difference doesn't matter; if you want to be recognized by the drop of
a buzzword, you need another language.

1.3 Interoperability
In general, a package of advanced software may be written for a specific
target machine or for any computer in a broad class. If you write for one
computer model, you may exploit all of its special features and may in
corporate machine-language elements freely. There are two drawbacks
to that specificity: the code cannot easily be moved to another machine
for another customer, and you require a backup machine Ito handle hard
ware failures) with exactly the same properties. On the other hand, if
your programs can be used on any machine in a family, you have a
broader market for them and easier backup than if you design for only one
target. When requirements permit it, interoperability has a high payoff.

There are many dimensions of variation among the Commodore comput
ers: monochrome/color, 22/40/S0-column screen, 3/SI16/32164/96K
memory, BASIC 2.0/4.0, etc. Commodore has provided enough com-

6 1: Introduction

monality in the midst of this diversity to support interoperable advanced
software. For most purposes, we may assume a 32K, 40-column, mono
chrome computer. The program should be able to exploit extra memory
if it's available-preferably by dimensioning arrays based on FREe mem
ory. An 80-column screen may be windowed down to 40 most easily by
using only its left half. Color can be disdained just by presetting back
ground and character colors. And all of that can be done in such a way
that the program can be loaded and run on a 2001-32, 4032, 8032, CBM,
8096, SuperPet, or 64 without the user having to input the computer
model.

Unfortunately, Commodore has no cell of memory that can be read to
identify the model and its version of BASIC. Fortunately, that isn't nec
essary when you are programming in BASIC. The old versions of BASIC
and the old character generator can be ignored because those machines
have been out of production for so long that anyone who still has one
should have updated ROM's long ago. In fact, you can count on at least
BASIC 2.0 since the earlier versions would not run the disk.

To achieve interoperability for graphics, you use a code which is very
simple. On machines with windowing [4032, 8032, etc.) and on the 64,
you simply print a chr$(14); on 2001, POKE59468,12. The poke is safe
on all machines [except the VIC), and the character does no harm where
it is ineffective, so you may do both of them. The 80-column machines
need to be windowed down to 40, and any prior window should be cleared
first. [A "window" is a restricted area of a screen used for display. By re
ducing the 80-column screen to a 40-column window, programs may op
erate on either with a common user interface.) Finally, character color
must be set for the 64 [unless you like to read light blue on darker). All of
those functions can be accomplished in a single line, using a simple trick
of programming.

When you type a cursor-control character inside quotes, you see a
character in reverse video. For example, HOME is a lowercase "s".
When a Commodore BASIC program puts up a byte of control informa
tion in quotes, it uses the equivalent display code in reverse video. As a
result, chr$[O) is reverse "@", chr$[l) is "a", etc. That reverse "s" cor
responds to chr$(19)-which is the HOME character. You can type the
reverse characters directly by entering PRINT, quote, quote, delete, re
verse, and the desired equivalent letters. What you have done is to set up
the quotes mode, cancel it with the second quote, then delete the quote
character. Then the reversed characters are typed in and you don't need
to use the CHR$ operation. Note: control (27) and return (13) do not
work as characters.

For interoperability in graphics mode, we need first reversed "Sss" to
clear the screen and any prior windowing. Then "No" to set graphics

1.3 Interoperability 7

mode and top left of the window. Now we give 25 "q"s and SPC(39) to
get to the bottom right of the window, then "0" to set it, and "e" to print
in white on the 64. Finally, POKE59468,12 and the program will run in
40-column graphics on any Commodore host except a VIC.

Getting into literals mode is slightly more complex. The problem is
the extra spacing provided between lines on the windowed machines;
on a 4032, that hides the top and bottom lines. So, we need the com
pressed screen that comes from graphics mode, combined with upper
and lower case. By using POKE59468,14 (which we need for the 2001 in
any case), we accomplish the desired effect on the windowed machines
as well. However, we haven't handled the 64. For that, we need to
POKE53272,PEEK(53272)OR2. (The nominal value in 53272 is 21 for
graphics and 23 for literals, but Commodore doesn't guarantee that those
numbers will work on all future hardware. They have assured us that the
OR operation will work, so the extra nine bytes are needed.) Lines 9020
and 9025 of SUPERLIST (Section 5.7) provide just that code.

On one expansion system for the VIC, giving 40 columns and extra
RAM, the logic works without modification. However, the VIC 20 locks
up on POKEs that are safe on other machines, and you will have to play
with any adapter you might want to use. The reason for not writing inter
operable software for the VIC in the first place is that its limited screen
(22 characters) and small memory as supplied are too restrictive for other
uses. There are many adapters to get around the problems, but each is
likely to need unique code. In practice, cutting an 80-column screen to
40 will win few friends, but there are so many 40's around that writing
code for that mode makes sense. Advanced software can and should be
written for the VIC 20, and everything except interoperability applies to
that machine; in fact, the limited capabilities of the VIC increase the
payoff for top-quality programming. But a good program for an off-the
shelf VIC will be poor for an expanded one or for one with 40 mono
chrome columns; it will be even worse for a 4032 or a CBM. Therefore)
regard the VIC market as separate from that for the other machines, and
don't strive for interoperability between them.

2
I

writing for
the user

Advanced software is written for use-and for a user. Usually, your pro
gram is intended for a class of user-novice, frequent user, occasional pro
grammer, or serious programmer. A program that gives the first-time com
puter user simple capability must be self-explanatory, must use simple
language, and will trade away sophisticated capabilities for clarity and
flashy display. One written for the advanced programmer may do without
in-line instructions, may use computer jargon, and may provide extra
capabilities that are hard to reach. If you are writing for the data-entry pro
fessional, you may use elaborate special functions to provide fancy opera
tions-your user will remember them because they are frequently used.

In writing for someone who will use the program only occasionally, it is
better to run a menu than to use special keys for special functions. A menu
is simply a screen of options and a request for the user to select among
them. One way to select is by a code numberj the menu assigns a number
to each option, and that's the way the operator reaches the function. That
method is easy to code, and it's necessary when you don't know the op
tions until the program is run. For example, if the user will define the
categories into which a data item will be placed, selection of categories re
quires numbering. The category names go into an array, and the index is
both the array pointer and the value used in categorizing the information.

Single-character input (see 3.6 Keyboard input) gives you an easy al
ternative when the programmer defines the options. Use the initials of the
options for selection. Pick wording for them that is easy to recognize and
to remember. Pick an order for display that is easy for the user to scan.
Then put the initials into your working string in an order that's easy for
the program. When you're dealing with a nonprofessional user, always
adapt the program to your customer. Layout the screen, take inputs, and
provide outputs for easiest usej protect as much as possible against simple

9

10 2: writing for the User

errors. For the true novice, don't let anyone keystroke cause a catastro
phe. There is no better indicator of poor thinking by the programmer than
code which bombs when an extra RETURN is pressed.

A general rule for all users is to protect against losing information in
advertently. Before you let the user throwaway his carefully written file,
verify that that's what he wants to do. That means setting flags when
information has been created or changed and when it has been saved. If
he asks to input something new when information hasn't been saved,
provide a warning and ask for confirmation. Do the same when exiting
the program.

It is always worth memory to simplify the user's job. For example, the
logical order in which information is entered into a program may not be
the best order when the program runs. Even though you have to "waste"
variables to take the input out of order, do it. A common example occurs
when a program must do a lot of processing and substantial printing. If
you take the user's input for both operations at once, when the first begins
he can go off to do useful work, leaving the computer to do its part unat
tended. An occasional check of the screen or the printer should indicate
that progress is being made and give an indication of how much longer it
will be before he needs to return. If you organize the program for your con
venience, the user will have to sit around for minu tes or hours, just to hit a
key or two every so often. It may save you a few bytes of program, but it
won't win you friends-or repeat customers.

It is difficult to remember the user as you program. Take the time to
write down what the program will do before you start to code. Offer it to
your customer for review, comments, and approval. The most important
thing to tell her is what she will see and what she must do to get what
results. Talk through the special needs and special features of the prob
lem, and make sure that you know what she needs before you start to
code.

Murphy's laws could have been written for computer users. The pro
grammer must expect the unexpected and provide workarounds for
everything that can be anticipated. Among the unexpected events that
happen with regularity are: hitting the key next to the one wanted, power
transient, and disk fault. Requiring confirmation of critical inputs is part
of the solution to the keystroke problem. In other cases, you may require
confirmation of a set of data before saving, facilitate deletion of individual
characters, and provide easy editing of data already filed. You can't protect
against wrong-headed users, people who confirm what they mean to deny
or those who won't type an II a" to II Add" information, but insist on using
a lie" to "Create" it-regardless of the menu. But put in thought and code
to keep from penalizing the user for hitting the wrong key. There are pro
grams pretending to teach children that feed back II shame on you" and

2.1 Program planning 11

similar messages if one keystroke is wrong. Remember, if your customer is
bothered by your program, she can always get another one.

A few simple rules provide at least a little protection against faults of
disks and power lines. Don't leave a disk file open while waiting for inputj
open it, do what you must, then close it again. The APPEND command is
the best way to add to a file that will be needed over a long interval. If your
program OPENs once, then uses PRINT# every several minutes for hours,
there's a good chance that a day's work will be lost by a simple error. You
cannot protect against a faulty disk in all cases, but you can minimize its
impact. The simplest solution is to write any critical information to both
drives when you canj it then takes correlated errors on both disks to cost
you essential data.

A good program is designed for its user, not adapted to him. Your file
structures, use of redundancy, and provision for backup should all be
aimed at your market from the time you first block out the idea. Remem
ber that it's always easier to rip out features that aren't needed than to
add them after the program is built.

2.1 program planning
This section identifies one method of organizing programs. There are
many others, but this approach is efficient and has been the basis for a few
dozen applications. So far, it has worked. If you plan to use what you learn
on one program to develop another, some system is mandatory. You will
quickly discover that the more systematic your programming methods,
the easier it is to modify and to maintain your products, and the quicker it
is to build on the experience that a successful project can provide. (And
don't forget the flops-they may provide more education per hour of
coding than your greatest hits!)

The first step in programming is the most important and the most
demanding-thinking. The best rule for quality programming is: think
first, code later. The necessary minimum set of information to be pinned
down before you tum on the computer is:

file structure
major program blocks
utilities required
anticipated problem areas
array structure
global data definitions

A sound file structure is mandatory for microcomputer programming.
You will have to trade off speed against storage on the disk and in the com-

12 2: writing for the user

puter itself. But even more critical to the long-term success of the program
is your anticipation of requirements not well defined when you start.
Changes are normal after programming begins, and painfully common
even after the system is working. If your file structures won't expand, you
won't be able to handle growing requirements. Your product will be
limited by your failure to think before you code.

A program consists of collections of lines of code. Good programming
practice breaks the total job into major blocks or modules, each of which
does just one part of the job. One reason for modularizing is that it
simplifies changing the design. Another is that it shortens checkout and
debugging. For example, one module may read files, another write them, a
third supply all formatted print. Then if the system grows to include 'a

second disk drive or if you change to a letter-quality printer, all corre
sponding changes are in one place, and they can all be made as a unit.

Frequently, the major functions seen by the user correspond exactly to
the software modules. However, there may be logically different opera
tions that are functionally similar and fit within a single module. For ex
ample, creating a new record is logically identical with editing an old
one-the "old" values are simply nulls. To the user, creation and editing
are logically differentj to the program, they are the same. The converse can
also be true: logically, one might edit a record out of existencej function
ally, deletion may be significantly different (e.g., requiring repositioning
of pointers, editing of correlative files).

Modularization is the process of blocking out the functional code to cor
respond to what the program must do. A high-level flowchart is one way
to do it, showing the relationship between the user's logical operations
and the program's modules. Typically, there will be about six high-level
modules in a program, and they can be entered at line numbers which are
multiples of 1000. There should be no more than six routines within a
module, and each can usually be started at a line numbered as a multiple
of 100. Except where speed of execution dictates, all code used by a
module should lie within it. It may take a few more bytes of storage to col
locate the code, but it is usually worth it in legibility of listings. One ex
ception that can be made safely is exit from a function to wrap up opera
tions or utilities. For example, exiting from a subroutine to the logic for
"Hit a key" can be done as a GOTO, rather than a GOSUB followed by
RETURN. Similarly, it may be simpler to use a common routine to close
files opened for different functions and to return control to the calling
function from the close-file logic.

Utilities are packages of code used in many different programs, perform
ing functions common to many parts of each, and with few or no varia
tions among applications. They are standardized subroutines for your
needs, and give you a library of programming tools almost as convenient

2.1 Program planning 13

as an extension of BASIC. When you organize your program, you identify
and collect the utilities that you will need for that job. Utility code tends
to fall into two speed categories: very fast and very leisurely. Elements
that require user interpretation [e.g., yes or no answer) can be quite slow;
they'll still be faster than human reaction times. Code that collects infor
mation [even from the keyboard) should be as fast as possible. So utility
software tends to be split into two blocks: one at very low line numbers
[before the main program entry point), the other at very high ones [im
mediately before initialization). A utility's requirement for speed comes
from the job it does within the application; consequently, a routine that
can be run at a high line number in one program will not have to be moved
to a low one for others.

When you first think a project through, you should have little difficulty
determining where the biggest problems will be found. One area is a
system capability you've never used before. Another may be an algorithm
you have to invent, particularly one for string manipulation. A third may
be trade-off for speed or memory savings. Before you start to code the parts
you know how to do, make sure that you have solutions to the tough ones.
Develop sample code for a new capability and check it out by itself. Build
and test different routines for your new algorithm, so you have several
choices depending on what needs emerge as the design develops. Plan
alternative designs trading speed and memory, and make sure you under
stand the amount of effort and the performance payoff for each. It is vital
that you keep a record of what you learn as you experiment. Otherwise,
when the problem recurs a year or two later you may have to repeat your
learning experience. [In general, it isn't enough to copy the solution from
one problem over to the next; conditions and requirements change too
much to permit reuse without some change.)

In advanced software, arrays form the backbone of the data in the same
way that a high-level flowchart forms the backbone of the code. Once you
define the data structures, many routines have only one logical design,
most specific data elements are obvious, and you can reasonably estimate
total memory requirement. If you wish to use a simple routine to input or
output a complex file, you may need a multidimensioned array. Then
everything you need to know about, say, a telephone book entry goes
under one index, with the different fields as a second index.

Preplan your fields carefully: it's tough to split or combine them after
you've started coding. Since you probably want to order the information
last name first but print it last name last, the name will be at least two
fields; if you don't need ZIP code sort, it need not be separated from state.
Each field takes significant memory and often substantial time, but the
price for too many is usually less than that for too few. The objective of
planning is to pay neither price-to get it right the first time.

14 2: writing for the User

Global data are variables used to communicate among several parts of
the program. They should be named uniquely and never reused in the pro
gram. A simple example is the date, a value needed in most advanced soft
ware. Once you accept it (with any validation required by the applica
tion), assign it to a unique name (e.g., dt$) so that any routine that needs it
knows where it is. In planning your program, identify those global
variables by description first, then assign names that you can remember
easily. Where it makes sense, carry the names over from program to pro
gram-if you chose to use dt$ for a banking job, it will work just as well
for a word processor. Some variables will become utilities for you:

r$ carriage return (chr$ (13))
dt$ date as a string
dt date as a number (Julian?)

When you standardize information, you can look at an old listing and
recognize immediately what you were doing (or trying to do) without hav
ing to refer to your documentation. If you remember not to use your own
"reserved" words for other purposes in programs that don't need their
normal ones, you will find that a year-old program is almost as easy to
read as the one you finished yesterday.

2.2 program organization
Program organization means laying out the modules and their routines for
speed and clarity. Almost all executable code is perceived as being better if
it runs faster. Obviously, speed is not an advantage for commands that do
not execute. In BASIC, those commands are DATA and REM.

The first time a READ is encountered (after CLR, RUN, or RESTORE),
the program is searched for the first DATA statement. A pointer is set to
that statement, and each subsequent READ advances it from the place to
which it last pointed. Given that some DATA statements will occur late
in the program, the search will go through all the code once in each pro
gram execution. So there's no noticeable advantage in putting a DATA
statement early in the listing, and there's a real drawback. When you
GOSUB or GOTO a line across the DATA line, the interpreter must jump
over it. If that call is executed often, it can waste significant time. So,
DATA lines belong after all operational BASIC code. To help in
maintenance, it is worth a few bytes of REMarks to explain their func
tions, but only rarely is clarity worth the time to put DATA statements
near their READs.

A REM that ends a line of BASIC wastes some memory, but no execu
tion time. If you're not pressed for space, use REMs freely to explain to

2.2 Program organization 15

yourself and to your user what that line is doing. There are only two cases
that justify a line that has only a REM:

entry to a major module
an option that doesn't justify a run-time question

(A "run-time" question is one asked while the program runs. It requires
the operator to supply an answer every time the program is used, which is
an obvious inconvenience if the answer is always the same. One of your
programming decisions is which parameters to build into the code and
which to set at run time.)

A line containing only a REM can stand out in a listing. When you're
scanning the printout to find a fault, such a line can save you precious
seconds-and be worth the microseconds it wastes when the program
runs. It may be a matter of taste, but a REMark line for each module is
usually well worthwhile.

There are times when you will put a capability into a program to be
enabled or not depending on things that change only rarely. For example,
most users will have only one type of printer. The two or three terms in
your code that depend on which printer is in use can be put into the pro
gram and left there, under a REM, to be enabled when the hardware
changes. The thirty seconds it takes to IImodify" the program for a letter
quality printer can be provided by the user, the dealer, or any competent
programmer-if you remember to document what you did.

Initialization is the first job the program does in time-and should be
nearly the last thing in its space. It is code that is executed once and in
cludes few addresses. Most of initialization just steps forward line by line;
without GOTOs and GOSUBs, its speed will be essentially independent
of its location. Therefore, it may be assigned to the 9000's, conveniently
low and out of the way. The only code that goes below initialization is er
ror handling that requires user intervention. However big your program is,
running all the way through to a disk error trap at 60000 won't take a
thousandth of the time the user will spend. He'll be trying to figure out
what to do with a "disk error" message; a few milliseconds' delay in get
ting that message onto the screen will never be noticed.

Low-speed utilities can usually be really slow. They tend to entail
human reactions, so computer times are negligible in comparison. They
can be tucked out of the way in the 8000' s, in whatever order you find con
venient. In contrast, high-speed utilities (e.g., GETting characters from
disk or keyboard) must be at low line numbers. The only other code that
goes into those precious lines is a high-speed processing loop that can't be
coded without at least one GOTO into itself. When they can't be avoided,
they can be made less painful by putting them at the front of the program.

16 2: writing for the user

One function that runs almost as slowly as user interface is the printer.
Typically, a dot-matrix printer will put out about one line per second. Pro
gram delays from putting print logic in the 7000' s will hardly matter on
that scale. If you want the code to be interoperable (even with run-time
option on which printer is used), printing becomes a common routine
which is almost a utility.

Sticking to the idea of starting a module at a line number divisible by
1000, we still have six entries available without crowding. Typically, one
will be used for input from the disk, another for output to it. That leaves
four to do the program's work. You can start a menu at 1000 or less; put
ting it at 100 is sometimes awkward, but it has worked well in a lot of
applications. It leaves space before 1000 for many quick options, for
checking flags (e.g., loss of data), or for updating standard information
like Subject or Title. In a word, the space between the menu and the first
application module is used for routines common to the start of several
user (menu) functions.

Once modules and special routines have been located in the program,
design within the module determines both clarity of code and speed of ex
ecution. The code is easiest to read if it runs in a straight logical line. Un
fortunately, the requirement for speed translates into optimizing the most
commonly used path. For example, we might want to check a disk input
for end-of-file. The clearest code might be:

10 GETH1,C$: IFST=oGOT03o
20 X$=X$+C$: GOT010o: REM END OF FILE
30 X$=X$+C$: GOT01o: REM ATTACH THE CHARACTER

That version does the job, but every character except the last takes two
GOTOs. If that routine is located at 10, the wasted time may not matter.
But if you put it at 6010, it will slow down disk access-even on a floppy.
Recode it to speed things up a little with:

10 GETH1,C$: IFST=oTHENX$=X$+C$: GOT01o
20 X$=X$+C$: GOT010o

It's shorter and faster-one GOTO instead of two. If you want still more
speed (and are willing to be obscure to get it), try:

10 FORI=lT0255: GETH1,C$: IFSTTHENI=255
2oX$=X$+($:NEXT:GOTOlo0

Now there are no significant GOTO'sj the code will run as fast at 6010 as
at 10, and a novice programmer will have quite a struggle to figure out why
and how the routine works. The "best" organization of this part of the
program depends on:

2.3 Structured programmIng 17

1) How often it must run.
2) How high a line number can be used.
3) How well a programmer will maintain it.
4) How much time you can afford to debug it.

Microcomputers have a fundamentally different kind of timing require
ment from mainframes. Even at its cheapest, time on a mainframe is ex
pensive. Time on a micro is (essentially) free. As long as slow operations
are done when the computer is otherwise idle and take no operator action,
they can run for hours. Put yourself into your customer's head when you
organize your program. One way to wrap up a day's work might take an
hour, with keyboard activity on ten scattered occasions. Another design
might take four hours, but all operator activity takes place in the first five
minutes. Count on it, the customer would rather let the computer stay on
overnight unattended than spend an extra 55 minutes of operator time.
When you organize the program, collect the slow code into one function;
the user can go to lunch while they're running. Collect printing when
practical; the door to the room with the printer can be closed while it does
its thing. And keep a counter on the screen to tell the user that the program
is working-and when he has to return.

2.3 structured programming
Programming has elements of science, technology, and art. By applying
jargon, programmers and computer scientists have been able to make
folk art look like science in the Nobel-prize class. Professors don't tell
you that structured programming has never had a meaningful test. But
"structured programming II are great buzz words, and can give the
uninitiated a warm feeling that someone really knows what's going on.

Structured programming for compiled languages includes a number of
features. None of them were new when the term was invented, and some
of them are important to the BASIC programmer. For q;ample, a routine
coded according to the structuring rules has a single entry and a single
exit. Single exit is a good idea when the application permits. If you forgot
to close a file, you only have to add CLOSEn in one place; if you want to
add a feature, you put it on all exits at once if you do it before a common
exit. But sometimes a single exit is very costly. For example, to get out of
a nested routine you must set a flag, then test it and use a GOTO around
the normal code at each level of nesting on the way out. Within reason,
the trouble can be worth the effort.

In contrast, single entry carries a high price and little payoff. A single
routine can get any character from the keyboard that fits a string provided

18 2: writing for the user

by the call, can provide a question mark or not, and can get the answer to
a yes/no question-all by entering it at three different points. Structured,
the same job would take a collection of GOSUB's or GOTO's. A true be
liever in structuring would ask for three GOSUB's to answer "y" or "n."

Another structuring rule that doesn't fit an interpretive language is to
avoid GOTO's. To do that, we would have to put initialization at the
front of the code, and pay a substantial speed penalty for the luxury.
Common, high-speed subroutines would have to be put at large line
numbers. The slowdown from this rule would make BASIC useless for a
lot of otherwise reasonable applications. Interestingly, the kind of
"train-of-thought" programming that goes with this rule is the sort that
weak BASIC programmers fall into. If you sit down at the computer
before you think, your first cut at the program is likely to have no
GOTO's at all. Of course, before you get it to crawl (it will probably
never run), you're likely to have a lot of them. Typically, a major omis
sion resulting from failure to plan will take at least two GOTO's or their
equivalent GOSUB's for its patches.

The remaining fundamental rule of structuring deals with "computed
GOTO's." In BASIC, we use ON ... GOTO instead. The equivalent struc
turing "rule" would be an explicit test before each ON ... GOTO (or
ON ... GOSUB) that the variable we branched on was in the legal range.
As long as the variable cannot be negative, the BASIC construct doesn't
need the test. ON ... GOTO has a built-in safety feature that we can of
ten afford to use: if the variable is out of range, processing falls through
to the next command. So, all you would need to follow the rule is:

10 IFC> OTHENONCGOT0100,200,300
20 GOTObOOOO: REM ERROR TRAP

Strictly speaking, you should also check that lines 100, 200, and 300 all
exist. But you would have done that anyway, wouldn't you?

Structured programming started out as a structured process for devel
oping good programs. The rules were originally illustrative and represen
tative. It has degenerated into a set of absolute rules; the ideas have been
lost. In this text, the ideas have been imbedded because they are both log-
1cal and constructive to our purpose: writing good code. If you know what
to look for, you'll find the philosophy of structure development in Pro
gram planning, Program documentation, and half a dozen other sections.

One topic not covered in this book is flowcharts-structured or not. If
you find flowcharting convenient, by all means do it. If you think it will
help you design, draw the charts before you code. If you think a flowchart
helps maintenance, draw them after. But the author's experience is that
flowcharts are optional. Data structuring is mandatory. Blocking your
code into modules and routines is usually enough to replace flowcharts.

2.4 Program documentation 19

BASIC is so easy to read that diagrams contribute little to understanding
the design or its implementation. But writing down exactly what each
variable means and what is meant by each byte (or even bit) of a file has a
very high payoff. While you write a program, you'll change its flow with
every idea. But you can't afford much flexibility in data after you write
your first module.

2.4 Program documentation
Just as you must tailor your program to its user, you must aim your
documentation at its readers. The problem is that there are three dif
ferent classes of reader for advanced software: the customer, the user, and
the programmer. The customer needs to know what she is buying; the
user, how to make it support him; and the programmer, how to adapt it
to changing needs. As a result, three different levels of documentation
must be generated for each operational program.

Customer documentation is a single page describing what the program
does for her. As an overview, it identifies the major functions and at
tributes of the program. It provides enough information for the customer
to verify its satisfaction of her real needs. Customer documentation also
constitutes a sales brochure for both the original customer and for others
with similar needs. Even if those requirements are substantially dif
ferent, your previous product is an example of your work and therefore
helps in establishing your credentials. Customer documentation is your
program's interface with the people who want to buy it.

The first product you generate on any project is the draft customer doc
umentation. As soon as you have blocked out your solution, embody the
results in a nontechnical description. One outline for the document is:

Purpose
Concept
Functions provided
Limitations

Make sure that you say enough to demonstrate your grasp of the prob
lem, and enough to let the customer specify changes before you begin
development. Final documentation is written when the program is com
plete; it should be identical with the draft except where comments on the
original caused the design to be changed.

The User Manual is the means by which the user accesses all of the ca
pabilities of your product. In microcomputers, it is the requirements
specification against which your product is tested and (you hope) ac
cepted. The easy way to generate a User Manual is to write down the
hardware requirements, then each step the operator goes through, with

20 2: Writing for the user

each option and its results. For simple products, that kind of documenta
tion may be sufficient. It is always necessary. However, the User Manual
written that way serves primarily for training. Its other function, as a ref
erence, requires a different point of view. For training, you tell the user
what happens at each step; for reference, you tell him what steps are
needed for an objective. The User Manual must provide a map of the
functions of the program; when the terrain is complicated enough, rec
ommended routes are needed to get the user from place to place.

Since the User Manual serves as your specification, its acceptance by
the customer (with input from the intended operator) constitutes your
approval to start coding. It is written to pin down exactly what the cus
tomer will get when the job is finished. Since it is comprehensive, it will
necessarily include some technical depth. The draft approved at the start
of coding evolves in depth and detail as the program is built, but nothing
in its initial version should be changed except through coordination with
the customer.

Programmer documentation is usually identified as a Maintenance
Manual. It contains everything required for a programmer competent at
the required level to modify the code to serve new purposes or to correct
errors. This document is required for all operational code and for any
product sold, even if you intend to do all maintenance yourself. There are
two pressing reasons for thorough documentation of your own code:

1) Your customer must be able to maintain the product even if you be
come unavailable.

2) You cannot expect to remember enough about your code a year or
five after writing it to modify it easily.

Maintenance documentation is written after programming is complete,
but comes from notes made throughout development. It includes a de
scription of each variable used, detailed file concepts and realization, and
nearly line-by-line analysis of each program module. Use of REMarks in
the program is not a substitute for the Maintenance Manual; they serve as
markers for major blocks, but a substantive, interpreted program cannot af
ford enough remarks to support maintenance requirements.

The one-page description for the customer should be polished prose
that you will be proud to send to potential customers. The User Manual
must be legible to the operator of the system and be in presentable form.
The Maintenance Manual may be hand scribbled if no one is to read it
except you, the author, but that approach carries a lot of risk. If your pro
gram is written under contract, the Maintenance Manual really belongs
to your customer, whether anyone else will work with it or not. If you
sell a copy of what you have developed to someone else, either you must
make the Maintenance Manual available (for a fee, of course), or plan to

2.5 Testing 21

maintain the program yourself throughout its useful life. Otherwise, you
will hang your customer out to dry. That will cost you at least one cus
tomer, and more if she makes her displeasure known. Don't count on
your customer to know enough to ask for the maintenance material, or
even to know what to do with it when you turn it over. Tell the customer
what it's for, and try to persuade her that keeping it is the only protection
against catastrophe.

The example of the Maintenance Manual is a good one to keep in mind
when you deal with your customers. In general, they are not computer
experts and certainly not as proficient as you are. They should look to you
for information on your products, and they will rely on your input-often
more than you do yourself. Make sure that each one understands every
step. Take time and care to be sure that her expectations and your plans
agree. Review the User Manual in draft with your user so that he knows
just what you're doing for and to him.

If you don't have a customer, documentation is even harder. You have
to play both customer and user yourself. When writing the one-page de
scription, put yourself into the place of the businessperson or home
owner who will buy the product. For the User Manual, try to be the com
puter operator. In both, you must pretend that you know nothing about
programming. Without a real customer and user, you will have to act out
both roles if your documentation is to do what it must for your continued
success.

Maintenance documentation is the information required to correct er
rors and to add capability after the program is finished. If maintenance is
someone else's responsibility, documentation should be at the level you
would want if you had to pick up someone else's program to do the equiv
alent job. You may want the kind of detailed description provided for
SUPERLIST in Chapter 5, flowcharts, and data definitions. If you are to
maintain the software yourself, organize and complete your notes and re
view them to be sure that they are sufficient for you to pick up where you
left off-even if it's a year or more later. Adequate documentation is bor
ing, time consuming, and essential for a viable program. (Note that the
job isn't finished until the paperwork is done but that the program can
be used while you're completing maintenance documentation.) Finally,
and at the risk of stating the obvious, keep a copy of everything you de
liver. You cannot count on your customer or your user to remember
where-or whether-your documentation is stored.

2.5 Testing
There is a truism in professional software that no programmer can test his
or her own code. You know what the program is supposed to do, and what

22 2: writing for the user

the user should do to make it happen. Therefore, you are conditioned to
do it right. The program isn't correct until it survives someone doing it
wrong. Given all of the above, you will usually find that no one else is
willing to take the time or effort to test your product. And, once again,
you will have to try to forget most of what you know and play the user.

Testing begins where the user does: with the User Manual. As you read
through the draft, make a list of everything that it says the program will
do, all of its functional capabilities. [In the aerospace business, that docu
ment carries the imaginative name of Functional Capabilities List-FCL
for short.) If your draft was truly comprehensive, it would also tell you
what the program will do on every type of error. In that case, error han
dling would show up in the FCL as well. What you need to develop a test
plan is a list of all the things the program should do and all the things that
the user can do to it that it should be able to survive. The test plan is sim
ply the collection of FCL's and fault-finding into a document, with a
schedule for the plan's approval, for generating test cases and procedures,
and for running the tests.

A test case is a specific problem run on the program. Each case fully or
partially satisfies a collection of capabilities from the FCL. If you draw
up a matrix of capabilities and cases, you can show that running all the
cases tests all the capabilities. When your program passes all the cases,
you're home free.

A test procedure is a specific set of steps which implements a test case.
In the ideal world, the user who will execute the procedure can write it;
the author of the test cases can verify that the procedures are accurate. In
reality, you will probably be writing the test cases and running them
yourself; you probably can and will do without the procedures, and cer
tainly won't bother to write them down in their painstaking detail.

If you have a real customer, the best you can expect is to have her verify
your test plan against the User Manual. Maybe you can talk her into look
ing at the test cases and test verification matrix. They will be impressive,
whether or not she can read them. Even if she doesn't really review the
material, having her look it over will help. At the least, she may find
something she thought was in your plans that doesn't show up in the
documentation. It's a lot better to find that you have to add something
before the program is finished than after.

Which brings up the question of timing. The draft test plan should im
mediately follow the draft User Manual; since you will probably be writ
ing both of them, you can do them concurrently. Sit down with your
customer when they're done-before you start to program-and review
them as thoroughly as you can. The temptation to skip writing test cases
will be great; demonstrate your dedication and fortitude by resisting.
Write each test case down on a separate page. When you run the test,

2.5 Testing 23

note on the same page everything you observe. Even if you pass the test,
you may notice something that strikes you as odd. It may be as simple as •
a job that runs slower than you thought it would. Every anomaly is a sig
nal that something may be off the track you laid. Check it out before
your program is derailed. A problem your customer finds will cost you
ten times as much as one you catch yourself.

In addition to your formal tests, play around with the program. Don't
follow a set procedure, but hit keys at random to do something unplanned
-and to check out how the program handles errors. When an error is
found and fixed, take the time to repeat any test which used that code.
Leave time at the end of the process for a final step: a complete run
through of every test case on your final product. That's the only way to
prove to your customer and to yourself that you're finished.

I
3
I

Mechanics of
a program

An advanced program seldom stands alone. It is usually part of a package
of software that performs a set of functions. Typically, there will be a
program used to set up information for the system, another to perform
the regular operations, and at least one more for analysis of errors or
anomalies. The first and last categories require more operator skill than
that for day-to-day operationsj as the programmer, you may be their only
user. Those support programs need enough documentation for you or
your successor to operate them, but not the full package that goes to your
customer. Even after the system is sold off, you need to retain the sup
port software for maintenance and extension.

Divide the system into programs based on the user's needs, not the
programmer's. If part of the system requires only reading data and should
be accessible to a true novice, put it into a separate program which never
writes to a critical file. Don't let the hacker foul up your data base. Daily
operations may require a second program, used by a professional who is
familiar with, but not expert in, the system's details. Exceptional cases,
especially writing key files, should be isolated in another program. Keep
dangerous weapons out of inexperienced hands.

A typical application program will take 8-10K of the 30-40K available
in the machine. If it's much bigger, execution is likely to be too slow for
good results-especially on the 64 with BASIC 2.0 garbage collection.
The rest of RAM will fill with data soon enough. Utilities and initializa
tion will take about 3K, so each of the programs in the package will have
to fit in less than 8K. Since most of RAM is data, most effort to save
memory should be concentrated on the data structures. Saving memory
in your code is likely to have less payoff than the same amount of effort
optimizing data structures. Modularization will already have eliminated
most of the flab in coding.

25

26 3: Mechanics of a program

The principal trade-off of memory and time is usually found in running
some code to reduce data storage. That balance is the key to building a
good system. You must learn your options and their costs by experience;
the following material can only give you some ideas to guide you in
teaching yourself.

Using the BASIC instruction set effectively can save substantial execu
tion time and some memory. The most important savings come in effi
cient use of loops; code that executes repeatedly has more potential for
speedup than code that runs only once. After you understand the full ef
fects of ON, GOSUB, GOTO, and FOR ... NEXT, examine the way you
use them. Then move modules around, assign routines to small line
numbers, and switch among the instructions for best results. Where the
code runs frequently or requires operator attention, spend extra effort on
saving time. Where it runs seldom, concentrate on saving space. And
remember to write down your experience as you acquire it. You'll need it
on your next project, and you'll find it faster to use what you learned
than to learn it over again.

3.1 Line numbers
A BASIC program is a sequence of lines of code, each distinguished by its
line number. When you type in a line, BASIC recognizes it as part of the
program because it begins with a number. A command begins with a let
ter. In fact, that is why a variable must begin with a letter; if you had a
variable "2A," the computer would interpret the command "2A = B /I as
a line "2 A = B." And that is not what you meant at all.

BASIC knows where its program begins and has a marker for where it
ends. In the early generations of Commodore machines (PET and CBM),
BASIC always begins at decimal 1025 ($0401, using the conventional
"$" to indicate hexadecimal). Later machines have a pointer to a variable
start of BASIC; the interpreter reads it to find out where to begin. The
first two bytes of a line of BASIC are the address of the next line. The next
two are the current line number. To get the line number from the stored
value, first convert the hex to decimal (if necessary), then multiply the
second by 256 and add it to the first. For example, if your first line num
ber were 300, peeking at 1027 would show 44 ($2C) and 1028 would show
1 ($01). When you type in a new line nnn, the interpreter scans all line
numbers to find the last one less than nnn and the first one greater than
nnn. If nnn is already there, it is replaced by the new one. If there is no
command on the line you enter (numbers only), then the line is null and
it is deleted from the program. If BASIC cannot interpret the line number
(< 0 or > 63999), a 1/ syntax error" is reported. When a line is inserted,

3.1 LIne numbers 27

changed, or deleted, all lines with higher numbers are moved to make
room without leaving empty space.

The first pair of bytes in a BASIC instruction is the absolute address in
memory of the next larger line number of the program. When the pro
gram looks for a line number, it jumps from one line to the next by using
that pointer. The computer knows three important program addresses:
start of BASIC, start of the next line, and where it is currently executing
(within the current line). When it sees a GOTO command, the inter
preter checks whether the high-order byte of the line number is greater
than that of the current line. If it's greater, then the interpreter starts
looking for the destination at the next instruction. Otherwise, it begins
at the start of BASIC. When it finds the line number you commanded, it
makes that the current line and continues execution at its first com
mand. (If it can't find the number, you get the error message.)

The GOSUB command is similar to GOTO in its operation, except
that the computer remembers where it came from: the address of the next
command after the GOSUB is saved in a reserved area of memory called
the "stack." Since the stack is limited in size, it can have more informa
tion supplied than it can hold. When that happens, you receive an "out of
memory error." In this case, that message doesn't mean that you have
used up all of the memory, only that you have exceeded the space allot
ted to the stack. The limit on how deeply subroutines may "nest" (call
other subroutines) is established by the size of the stack. When a sub
routine RETURNs, the address to which it goes is the one at the top of
the stack. In that process the return address is "popped" (removed) from
the stack. The space is then available for another subroutine call. If you
don't RETURN from the call (for example, if you GOTO an error routine
or directly to a menu), the addresses of the current call and all its un
popped predecessors are left behind, wasting space. Do this a few times,
and the stack fills up-for an "out of memory error."

It turns out, then, that we know a lot about good programming in
BASIC just from looking carefully at line numbers and what they mean.
First, we know that we need to RETURN from each GOSUB and why we
may get "out of memory error" when there's still a lot of memory free.
Second, we have insight into making programs run faster. A substantial
program spends a lot of its time going to other locations. If we have it go
either to very early lines or to lines with larger high-order bytes, it will
get there more quickly. In a large program, from line 2540 (high-order
byte $09) you may GOTO 20 (high-order $00) or GOTO 2600 (high-order
$Oa) very much faster than you can GOTO 2550 or GOTO 2530 (both
with high-order address byte $09). As a side note, you can also see why
you may not want to renumber a finished program to save space: it could
slow things down!

28 3: Mechanics of a program

3.2 Commands
A BASIC command is a reserved word which is interpreted by the com
puter to cause specific actions. Like a line number, a command is not
stored the way you type it in (or the way it is displayed when you LIST
the program). When you hit RETURN after typing in the line, the com
puter scans the line for recognizable commands. Each is converted to a
"token" (a number between 128 and 255) for storage. Everything else is
tucked away in the form the interpreter finds: as unreversed characters
IASC < 128). Since commands cannot be in quotes, the meaning of a
token in quotes is different, and reserved command words in quotes are
not tokenized.

The exact word transformed into a token is important and is often a
source of confusion. Logic was not the controlling factor in defining
keywords (or BASIC commands). So, the command to provide a number
of spaces includes its left parenthesis (" SPC("), while most others that
need the parentheses (e.g., STR$, SIN) do not include them. In some
cases (e.g., FRE), reasons for seeming illogic may show up with time.

One anomaly in Commodore BASIC gives insight into the tokenizing
process. Within a REMark, tokens are not created. But the stored infor
mation is displayed as though it had been tokenized. A shifted letter (a
capital in literals mode) is stored as a character whose value happens to
lie in the range of command tokens. For example, "A" is character
65 + 128 = 193. If you put that letter into a REMark, the 193 is stored
(one byte). When you LIST the line, BASIC translates character 193 into
its command, ATN. Now, if you put the cursor on that line and key
RETURN, the line will be reinterpreted. The three characters that form
"ATN" will be stored separately as three bytes. There are few applica
tions where this process is useful, but it is worth exploring just to be sure
that you understand the token concept.

Another form of shorthand commands is useful in programming. One
case is well documented, the use of "?" for PRINT. The general case
stems from the fact that the BASIC interpreter recognizes a shifted
character as ending a command. Therefore, a shorthand form of most
commands can be entered by typing the first couple of letters with the
last capitalized. For example, the PRINT# command may be spelled out,
but its shorthand form is short and easy: pRo To get a disk directory with
two characters, use CATALOG in its shorthand form: cA. (DIRECTORY
takes three: diR. Shorthand for DIM is dI.)

Note that a line number used in a GOTO or GOSUB is not a command.
It is stored as a sequence of ASCII characters, one for each digit. If you're
trying to squeeze out the last few bytes of storage, remember that
RETURN takes only one byte, where GOTOlOOO takes five (six if you

3.3 Variables 29

put a space before the number). Colons and spaces used to increase
readability cost memoryj so do REMarks. They may be so important to
your purposes that you use them extensively, or you may minimize
them if you're running out of space. Of course, a compiled program
removes all nonexecutable material, including spaces and REMarks; if
you plan to compile, use those features freely to simplify maintenance.

To summarize, a line of BASIC begins with two bytes of the line
number followed by the two-byte address of the next instruction. Then
comes a sequence of commands (values> 127) and characters. The line
ends with a byte set to zero. The overhead to put aline into a program is five
bytes; the overhead to add the command on the same line (with a colon)
is just one byte. Figure 1 illustrates the storage of a line of SUPERLIST.
At the top is BASIC line 1060 as LISTed. By entering the monitor, we
find that it stored at $0739. The first two bytes ($52 $07) point to the
start of the next line at $0752. The next pair ($24 $04) are the line num
ber, 1060 = 4*256 + 36. The next byte ($8b) is the IF command. $51 cor
responds to "q," $46 to "f," the name of the variable "qf." $89 is GOTO
and the next four bytes are the target line number (1400) in ASCII. $3a is
the colon and $8f the REM command. The remaining bytes are the
REMark itself, including $20's for the spaces. The last character (at
$0751) is the $00 that marks the end of the line.

1060 i fqfgoto14oo: rem in quotes
om 0739 0751
o 0 0739 52 07 24 04 8b 51 46 89
o 0 0741 31 34 30 30 3a 8f 20 49
o . 0749 4e 20 51 55 4f 54 45 53

0 0751 00 6e 07 38 04 8b 43 bl o 0

Figure 1: BASIC as it is stored.

To save storage and time, put as much as possible on a single line. To
increase readability, put separate commands on separate lines. Trade-offs
among speed, storage, and legibility are normal in programming, and you
should make the choice based on your application rather than on a rigid
set of rules. Since most of the things you want to program can be coded in
many ways, there may be many "right" answers to any problem. As long
as your choice is one of them, don't worry about whether it is the "best"
by anyone else's standards.

3.3 Variables
A variable is a thing you want the computer to remember. It has three key
elements: its name, its address (location in memory), and its value. Your

30 3: Mechanics of a Program

program controls names and values; BASIC assigns locations automati
cally. When the running program finds a variable name, it looks for it in
the list of those it encountered previously. If it doesn't find the name, it
adds it to the list with a default value. From the first time that the name
is used, it always has a location and value associated with it; you can see
the value (for example, PRINT it), but its location is invisible.

There are three types of variables: numeric, integer, and string. The
range of numeric variables is immense: about 35 decimal digits plus sign.
Precision is limited to eight or nine digits. A numeric variable is stored as
seven bytes of binary information. It is used in binary form for arithme
tic, translated into decimal for output. The name of a numeric variable is
an alphameric string beginning with a letter and including no reserved
word (BASIC command or predefined variable).

Two numeric variables are treated by Commodore BASIC as different
if they differ in either of the first two characters. The predefined variable
TI can be printed by the command PRINT TIME, since BASIC regards TI
and TIME as identical. On the other hand, X, Xl, and XI are different
variables. Since the size of a numeric variable is fixed, it can be stored in
a fixed location with its name; when a different value is given to the
variable, the corresponding bytes just replace the old ones in the same
place in memory.

An integer variable is logically different from a numeric one but is han
dled in essentially the same way. (All arithmetic is done in floating
point, so integer variables slow things down a bit.) An integer is limited
to values that could be represented in two bytes; its range is from about
- 32K to + 32K. Integer variables are named just as numeric ones are, ex
cept that they end with a %. Note that X% is not the same as X, and both
names may be used in the program without confusing the computer.
(However, they may confuse the programmer if they are truly indepen
dent variables. You may want to use a convention that X% is used only
for the integer part of X; then confusion is unlikely.) An integer variable
is stored as seven bytes (but see 3.4 Arrays) and associated with its
name. The easy way to think about simple integer variables is that they
are another way to write the INT function: X% = Y means' exactly the
same thing as X% = INT(Y). Like a numeric variable, an integer is set to
zero when it is first encountered.

A string variable is substantially different from a numeric or integer
variable. The most important difference is that its size is determined by
execution of the program, not preset. Consequently, BASIC stores the
address of its value with the string's name, not the value itself. (Anyad
dress takes two bytes, so needs a predictable amount of storage.) If the
value of the string is in the program itself (e.g., X$ = "ABC"), then the
address is the location of that statement in the program. When practical,

3.4 Arrays 31

the value is not stored twice. The same thing applies if you READ a value
from a DATA statement. Note that a string variable has the same naming
rules as the other types (ending with a "$") and that it is initialized as a
null string (zero length) when first encountered.

When the value of a string variable is assigned through an operator
(e.g., X$ = X$ + "A"L a place must be found to put it. Within the mem
ory of the computer, space is taken first for BASIC's work space, then for
the program itself. In some machines, screen memory comes into the
picture as wellj in the older models, it is up above the rest of RAM. (The
screen never enters BASIC's "map " of memory significantly.) At the end
of the BASIC program, variable names and values are allotted (or names
and string addresses). When you modify a line of BASIC, you may move
the place where the variables startj that's why all variable definitions are
cancelled when you change the program. When a string is assigned
through an operation, its value is stored away in the space between the
top of variable definitions and the top of available RAM. In fact, the
strings are put in from the top down. When the next assignment would
overlap variable definitions, it is necessary to free up more space if possi
ble. Since each assignment takes a fresh chunk of memory, most of the
top space is filled with outdated information. Those old values are II gar
bage" to the programj the process of reassigning string memory to discard
them is called II garbage collection."

Under BASIC 2.0 (the version in VIC and the 64), that process takes a
noticeable timej BASIC 4.0 uses more memory to save that time. In ex
treme cases (which you are unlikely to find in practice), 2.0 can take an
hour and a half to do a job handled in a fraction of a second by 4.0. How
frequently garbage collection occurs depends on how much memory is
used by the program and variable definitions and on how frequently
strings are assigned j how long it takes depends on how many strings have
to be collected. If garbage collection is a problem in your code, one method
for speeding it up may be to fool the computer. For example, first read in
all fixed data from a disk file, then POKE the value BASIC uses for top of
memory down under the space they use. When garbage is collected, the
space used by the external inputs will not be included, and substantial
time may be saved. Many other methods can be used (depending on the
computer you haveL but try first to live with the delays.

3.4 Arrays
An array is a collection of variables of any type which are distinguished
by number (ordinal) instead of by name. The principal reason for using an
array is to operate on its elements by calling them with a number, usu-

32 3: Mechanics of a Program

ally in a FOR ... NEXT loop. The rules for storing information in arrays
parallel those for simple variables except that values in an integer array
are stored as two bytes each instead of seven. That memory saving is the
principal reason for having integer variables and the other reason for us
ing arrays at all.

The first time that an array name (a variable name followed by a left
parenthesis) is encountered, a dimension is assigned to it and memory is
allocated. If the first use is in a DIM statement, the dimensionality is
given by that statement; otherwise, it is given a default assignment of
eleven entries (0 through 10). Since memory is assigned to the array
when it is first encountered, redimensioning during execution would re
quire moving all subsequent assignments. Such an operation would be
slow and would take substantial code, so it is not permitted (redimen
sioned array error). Normal procedure is to use DIM statements in the
early part of initialization. Arrays are stored right after the program and
before simple variables.

If you define an array after defining most of your variables, all of the
variables have to be moved and time is wasted. That's usually not much
of a problem and neither is the ordering of the variables themselves. When
BASIC runs, each reference to a variable causes the list to be scanned for
that name. If the most-used variables were named early in execution, that
scan is faster than if they were named late. However, programs rarely use
enough different variables for the delay to be significant in practice; as
signing variables early seldom saves enough time to be worth the effort.

Arrays may have up to four dimensions. BASIC st<:>res values and ad
dresses in an order computed from the values of those dimensions. It ac
cesses them by finding the start of the array, then computing the address
of the entry you want from the values in your reference. The amount of
storage required for an array is three bytes for its name, then two bytes
per entry for string or integer, and seven bytes for numeric. Remember
that there is always a 0 element to the array, so DIM X(5) means 6 ele
ments of 7 bytes each; X% (4,2) means 5 x 3 = 15 elements of 2 bytes
each. Two-dimensional arrays are common in advanced programs, while
three and four dimensions are needed rarely. For example, a mailing-list
program might have one dimension for the fields within a record (last
name, first, street address, etc.)' and the other for the individuals whose
information is on file. Some mathematical problems do require four or
more dimensions; if you have one that exceeds what BASIC will handle,
it will probably be too big to store in a microcomputer anyway.

One special case that gives a bonus "dimension" occurs often and can
save memory. Suppose the information you need to access is always
representable as a positive integer less than 256. It is then also represent
able as a single, legal character in BASIC, and you can map between the

3.5 Bits, bytes, characters, and numbers 33

number and the character by using the STR$ and ASC functions. Now
you can make one "dimension" of a complex array be position in a string
(maximum value, 255), and can put that string into an array which may
have up to four dimensions. Access the appropriate string in the usual
way, then access the extra dimension with the MID$ function (remem
ber that ASC returns the ASCII of the first character but that it bombs on
a null string). You may want to use the string even when you have
enough dimensions available since it takes only one byte per entry (in
stead of two or seven). But it is not recommended if you need to do much
arithmetic on the elements or if garbage collection delay is a problem.
This "trick" is of real but limited use. It has a side benefit since it is not
predimensioned. The size of the dimension is simply the current length
of that string, and may vary as the program runs. In some cases, that
memory saving alone may be worth the trouble of using string length as a
dummy dimension.

3.5 Bits, bytes, characters,
and numbers

To understand programming, it is necessary to understand what the com
puter knows as well as how it works. A program puts the contents of
memory into a context-establishes their meaning by their use. There
fore, we look into what is stored in the computer and what it can mean to
learn how to use and modify those meanings.

The fundamental piece of information is the bit. The least possible
thing we can know about anything is its existence. We can call it true or
false by establishing a context (if x exists means that x is true). Similarly,
we can give it symbols to mean existence or nonexistence, being true or
being false. If we want to operate mathematically, we can assign the sym
bol "1" to existence, "0" to nonexistence. In computer jargon, we call a
thing with values indicating truth or existence "flags." Each flag corre
sponds to one "bit/l of information.

When we do arithmetic, we can use true/ false (binary) logic. Since that
logic has only two values available in a position, it is called I/base 2./1 We
assign one bit to each position of a power of two in the number. The first
position is 2 t 0 = 1. If a symbol 1/1/1 is in that position, it means that the
integer is odd-has a remainder when divided by the next higher power
(2 t 1 = 2) even after any lower terms have been subtracted. It is inconve
nient to talk about bits one at a time, so we conventionally collect them
into "bytes" of eight ordered bits. With eight bits, each byte can count
from 0 through 255 (2 t 8 -1). But that byte is not that number; it is sim
ply a pattern of bits which can be interpreted as that number if we wish.

34 3: Mechanics of a Program

The decimal equivalent of any byte stored in memory can be read by
PEEKing at it. The byte may be used as that number, or as a character, or
as a collection of flags. It depends on the context established for it by the
program. In fact, a byte may assume many such meanings in different
parts of the program, even if it always contains the same pattern of bits.

Suppose that a chr$(193) is stored somewhere in memory, and we
wonder what it "means." If it is part of a BASIC program, it means the
ATN function. If it's in a quoted string, it means the character" A." Or
you could have stored it in a string to mean its ASCII value-193. If you
use that location as a hex number, it would be written "$C1," which is
the meaning that a monitor would show you. As a part of machine code,
it could mean an indirect compare against the X register. In binary, 193
means 11000001; interpreted as eight flags, it means on, on, off, off, off,
off, off, on. Obviously, there is no inherent or "right" interpretation of
that 193. It really means what your program makes it mean.

Two of the meanings of a byte are translatable by BASIC commands.
Suppose that the byte is a character, c$, in the context in which it was
stored. Then it can be converted to a number by the ASC command. A
number in the range 0 through 255 can be converted to a character by the
CHR$ command. Every value in the range corresponds to a character (al
though not all can be printed); every character has a numeric equivalent.
What the byte "is" depends on how we use it; its only independent ex
istence is as a pattern.

Changing contexts for information is a common function of advanced
software. One purpose is to reduce memory demands. Suppose an item
can be put into any combination of seven categories. You may save its
categorization as seven separate floating-point ones or zeroes. Since stor
ing a floating-point number takes seven bytes, you would need 49 bytes
to hold the information that way. Another way to hold the information is
by forming a single number out of the ordered set of seven. Number the
categories from zero through six. Multiply the one or zero in the corre
sponding position by two to that position's number. Then add those
products together. The result is a unique number between 0 and 127
(inclusive). So we can store those seven flags as a number, using only 7
bytes. But that number also corresponds to a character, which can be
stored in one byte; we can get the character by using the ASC function.
(Some of the characters less than 128 cannot be INPUT by BASIC.
Therefore, it is often desirable not to use the eighth bit and to store only
seven flags per character. The easy way to do that is to preset the highest
order bit to 1 by ORing the number with 128.)

Notice that many operations are required to save 48 bytes of storage,
including exponentiations, multiplications, and additions. If we "pack"
the data (compress them), we save memory and spend time; if we want to

3.6 Keyboard Input 35

save time, we must use memory. That is a fundamental trade-off in pro
gramming. The "right" answer depends on the program's particular re
quirements. In many cases, the difference between a good program and
an unacceptable one is as simple as packing and unpacking in the right
places.

The context of information goes beyond the byte level. A floating
point number can also be converted to a string with the STR$ function.
The STR$ creates a string whose first position is a blank (chr$(32)) for a
positive number, a dash (chr$(45)) for a negative one. The remaining
characters in the string are those corresponding to the value in the
decimal representation of the number. For example, the number 17 con
verts to " ", 1/1", 1/7." The floating-point number 17 takes seven bytesj
its string form stores in three.

Operations on strings and numbers are both logically and functionally
different. Adding two numbers does what you expectj "adding" two
strings attaches the second to the end of the first (1/ concatenates" them).
In many applications, it is better to manipulate strings than their
numeric equivalents. Using the VAL function (the inverse of STR$L you
can multiply an integer by ten with:

y=val(str$(x)+"O")

Sometimes you may work with numbers as strings to save timej more
often, you will do it to handle integers of more than nine digits. Another
reason for converting from numbers to strings is to facilitate displaying
information. We want to put commas and dollar signs into displays for
easy readabilityj that requires treating the numbers as strings.

3.6 Keyboard input
One way to feed characters from the user to the computer is with the IN
PUT command. For some purposes, it is good enough, and it is always con
venient. But advanced software usually needs to use the GET command for
one or more of the following reasons:

• INPUT can drop you out of the program .
• INPUT of a string does not check values.
• INPUT of a numeric variable checks too much.
• Miskeying can give strange results, such as including the prompt in

the INPUT variable.
• The longest INPUT variable is shorter (never more than 80 charac

ters, less than 39 on a 64 with a prompt) than can be accepted with
GET.

36 3: Mechanics of a Program

Since GET will be used frequently in advanced software, it makes sense
to define utilities for its applications. The part that runs at high speed ac
cepts a single character. One version takes three lines:

20GETC$:IFC$GOT020
25 GETC$: IFC$=""THENPRINT" < underscore> <backspace>";

:GOT025
27 PRINT" < backspace>"; : C=ASC (C$) : RETURN

Line 20 quickly and efficiently empties the input buffer of any characters
left by previous keystrokes. Seeing how this line is written indicates the
skill of the programmer. If the test is:

20 GETC$: IFC$< > ""GOT020

then the programmer hasn't thought about the code but has just put it
down. No string can be less than null, so that part of the test is useless. If
it's written:

20 GETC$: IFC$ > ""GOT020

then the programmer has not really leamed what the test for string equal
ity means. If you GET a character and none is there, then the string is func
tionally undefined-in a sense, it doesn't exist so the IF test is sufficient
with no comparison. Note that using a counter to empty the buffer (it's
only ten characters long) is practical but wastes some time and memory:

20FORI=1T010:GETC$:NEXT

Again, it shows a programmer who hasn't thought the job through.
The next job is to wait for a character to arrive. In the process, a dummy

cursor is useful, and the underscore is a convenient one since it need not
be flashed. If you want a different cursor, just define your own and flash it
if you wish. Using the underscore in line 25 allows us to backspace over it
to keep position on the display. When a character does arrive, we must
blank out the cursor before returning. Since many elements of the code to
follow will want the ASCII value of the character, it is convenient to pro
vide it within the mandatory third line.

Users of the routine mayor may not want to empty the keyboard buf
fer. For example, if you are getting a long string, you may want to let the
buffer help keep the program's speed up while you're off processing in
puts already received. For that purpose, you may enter the routine at 25
instead of 20. But don't forget to empty the buffer whenever you want a
new input; don't penalize the user for resting a hand on the keyboard.

The simplest use of the routine to get a character is to get any character
as a signal to proceed with processing. This routine need not be fast, so it
is dumped down in the 8000's with the rest of the low-priority utilities.

3.6 Keyboard Input 37

8010 PRINT"Hi t a Key ta cant i nue"; : GOT02o

is one easy solution. (Use reverse video, color, cursor-down, or other
display features for emphasis if you wish.) Note that you don't need to
COSUB20:RETURN. The return at 27 will get you back to the call if you
just COT020, saving a couple of bytes of program.

Another utility routine gets a single character from the keyboard that
suits the program's needs. Define x$ as the string of acceptable characters.
The following code will do the job.

8100 GOSUB2o:FORI=lTOLEN(X$)
811oIFASC(MID$(X$,I»=CTHENJ=I:I=25b
8120 NEXT: IFI < 257GOT081oo
8130 RETURN

There are many alternatives, but it's worth seeing how this one works.
Lines 8100 and 8110 work together and can be combined if you wish. First
a character is accepted from the keyboard through the routine we already
know. Then the character is compared with the string of acceptable ones
by using the ASC function; an alternative is:

8110IFMID$(X$,I,1)=C$THENJ=I:I=25b

If the input (c$) is accepted, the loop index (i) is set beyond the upper
bound of the loop (no string can be longer than 255 characters), and a
variable (i) indicates which character was matched. The test in 8120 tells
whether a match was found; if not, the loop is reentered to wait until an
acceptable character is supplied. If the input matched, the utility returns
to its call with the character (c$), its ASCII Ic), and the pointer (i) to which
value was received. The last is very useful for programs which follow with
branching lonjgoto) or which will use the input as the index to an array
(x(j) =). It makes it easy to avoid the slow, wasteful code that comes with
a collection of lines that read like: ifc$ = "xl/then

There are many bells and whistles to be added to this utility package.
The simplest i,s to print an acceptable character:

8130 PRINTC$: RETURN

-it takes just four extra bytes. Several extra lines are needed if you want
to confirm the input with a RETURN or to cancel it with DEL; whether
you want to let single-character input be accepted without a RETURN is
your design choice, but you should make it once for a package of software
and stick to it throughout. Whatever you teach your user (or yourself) to
do in one case, you should do in all, Otherwise, you have to remember
which set of rules applies to which program, and that hassle has no payoff.

There are a couple of conveniences that simplify using even this utility.

38 3: Mechanics of a Program

You will usually be asking a question when you are using the GET
package. So, just add

8090 PRINT"?";

and enter at 8090 to get the question mark and space. The most common
answers you will want are "y" or "n" j it's probably worth a line:

8050 X$="yn

Then GOSUB80S0 without having to define x$ for every call.
Another utility program of value is one which GETs a string of max

imum length mj that takes about four lines using both 20-27 and
8100-8130. However, if you need to restrict characters in the string (for
example, eliminate delimiters such as comma and colon), you probably
can't afford the time to search x$ for each character. One solution is to use
an array of acceptable characters and a replacement for 20-27 that only
returns when the character fits. Note that the whole process is a variation
on the theme of using a string as an extra array dimension (see 3.4 Arrays).

Finally, it's worth noting here the very special properties of the shifted
space CHR$(160). It always prints as a space, but is not eliminated when
leading blanks are dropped (e.g., on INPUT and INPUT#). Therefore, it
can be the only character in a diskfile record, where you can still INPUT#
and yet have' 'nothing" in the field when printed. However, a shifted
space must not be used in a diskfile namej it does nasty things to the direc
tory and may hide the file out of reach. Whenever you specify acceptable
characters, give an extra thought to 160.

3.7 FOR ... NEXT lOOpS
The FOR ... NEXT loop is one of the most powerful constructs in BASIC.
Its functions can be performed with conditionals and GOTO's, but at sig
nificant penalty in speed and memory. The index of the loop must be a
simple floating-point variable. The size of increment (STEP) defaults to
1. And the user needs to apply care with loops as with subroutines to
avoid "out of memory" and "next without for" errors. Those restrictions
aren't limitations in practice, and skillful handling of loops will speed up
your code.

Let's look at two equivalent pieces of program.

10 FORI=OT09: X (I) =I: NEXT

uses a very simple FOR ... NEXT loop to initialize an array.

10 I=O
20X(I)=I:I=I+1:IFI<=9GOT020

3.7 FOR ... NEXT lOOPS 39

uses the conditional IF and GOTO in 20. Of course, the second example
takes more code and an extra line. It also needs a GOTO on each itera
tion. Late in a large program, that will run very slowly. The FOR ...
NEXT loop saves the location of the command after FOR (and STEP if
used) on the same stack that remembers where subroutine calls come
from. So, when the NEXT test passes, the loop jumps directly to the ap
propriate command-no searching for line numbers, no wasted time.
When the loop completes (i > 9), the calling information is popped from
the stack and execution proceeds.

Any of three mechanisms will keep the stack clean:

complete the loop
reuse the index as an index
RETURN from a subroutine that included the loop

When BASIC executes NEXT, it increments the index by the STEP. If
your code assigns a value to the index during loop operation, the incre
ment is applied to the value you assign. Therefore, instead of letting the
loop complete naturally you may force completion by assigning a
number at or beyond the upper bound within the loop. To find a "7" in
an array of n elements, you might use:

10 FORI=OTON:IFX(I)=7THENJ=I:I=N
20 NEXT

and get the array pointer in j. You should preset j so you can recognize if
the test was unsuccessful; as an alternative, you may use i = n + 1 in 10,
then test whether i > n+ 1 (array element found).

The example problem may also be handled by:

10 FORI=OTON: IFX (I) <>7THENNEXT

and a test on whether i > n (no element = 7). That code leaves the FOR
... NEXT information on the stack, where it threatens to foul things up.
However, if the next loop following a hit uses i as its index, the old one is
popped by BASIC. Even more useful is the fact that a RETURN from a
subroutine that leaves an open loop will pop the stack all the way down
to the call-cleaning up the debris of the open loop in the process.

As a matter of coding convention, some simple rules are in order. A
FOR ... NEXT loop never needs the name of the variable in the NEXT
statement; if you put it there, it is for readability only. The only loop the
program can increment at the NEXT is the top one on the stack. That
loop has an index, and that index is the one that will be STEPped. If you
specify NEXTj and the index is actually i, you get "next without for" er
ror. If you don't specify, i will be stepped-whether that's what you
wanted or not. On a single-line FOR ... NEXT loop, naming the index in

40 3: Mechanics of a Program

the NEXT really doesn't clarify things very much and does take signifi
cant time-BASIC has to look up the index to verify that you named the
right one instead of just incrementing the one that's there. When the loop
takes several lines, the extra legibility provided by the name of the index
is usually worth the time. In addition, having the computer check that
you are incrementing the right index is worthwhile during checkout of
the program-it can help you avoid very weird problems that you might
be unable to recognize otherwise. If you are using nested loops, remem
ber that NEXTj, i is convenient, takes one less byte than NEXTj:NEXTi,
and does exactly the same thing.

3.8 Machine-language interface
There are occasions when a few lines of machine code will substantially
aid operations in your BASIC program. Other times you will want to
know why or how someone else's program is doing all those strange
things. So this section and 5.8 SYS CHECKSUM are aimed at embedding
machine code in BASIC programs for useful purposes.

One major aspect of interfacing machine language with a BASIC pro
gram is where to put it. From the start of BASIC to the top of RAM,
everything is (or can be) used by your program and its strings. On dual
tape machines the 160-character buffer for the second datasette is a favor
ite spot for machine code. That space isn't available on all machines, and
where it does exist it is used for disk commands as well as second
cassette-it's no longer as attractive as it was in the old days. The (first)
cassette buffer is available and is a good location for machine code if you
aren't going to use tape at all. For larger chunks of machine language,
your program may lock the top of memory away from BASIC by appro
priate POKEs, telling BASIC that you have a 30K computer instead of one
with 32K. That code is highly dependent on which machine you're run
ning, so check a memory map to find out what locations define top of
RAM. Note that you must lock that space out before BASIC stores any
variables into it; the best bet is to do that before any other part of
initialization.

There's another useful spot in which to put a short machine-language
routine: at the beginning of your program. There are only two places where
BASIC normally starts in Commodore machines: 1025 ($0401) or 4097
($1001). It is faid y easy to check which one is in use. One way is to print a
couple of characters to a clear screen and to PEEK for them where the screen
belongs. If your host is a 64, PEEK for start of BASIC i otherwise, it will be at
1025. The first few bytes after that location are address, line number, and
your GOT09000. After that, you may insert a REM and a batch of idle

3.9 Odds and endings 41

characters. From 11 bytes after start-of-BASIC you are free to have a REM
of, say, 60 bytes. Replace them with your machine code by POKEs at any
point in the program. That's ample room to do a lot of good machine
language work-exclusive OR, case conversion to true ASCII, or other
functions that are faster enough than BASIC to be worth the trouble. For an
example of embedded machine language in practice, see Section 5.8 SYS
CHECKSUM.

Two commands interface BASIC to the machine-language routine: SYS
and USR. SYS is, effectively, a subroutine call to its argument. Any vari
ables to be input to that routine must have been POKEd into appropriate
(and safe) locations before the SYS; those returned must be PEEKed from
safe spots. Normally, you would use SYS when there are no arguments
required. For example, a SYS is used to extend BASIC with machine
language in programs like WEDGE and BASIC AID.

USR is a subroutine jump to a reserved area of RAM ($00 on PET and
CBM), where you have three bytes to jump to your routine. Its argument
is a value sent to and returned from the floating-point accumulator, not
the address. USR may be convenient when you want to call a single rou
tine frequently with a variable argument, but its use of the floating-point
accumulator makes the machine code awkward for simple applications.

The lack of a true RESET on Commodore machines makes machine
language more of a risk than on other computers. If you POKE around in
memory, you may lock up the whole system to the point where you
must shut off power and start over. (On some machines, you can do
physical damage as well; video circuitry may not survive the speedup
that can be POKEd into the logic.) Within a BASIC program, a small
piece of machine code can save time and confound meddlers.

3.9 Odds and endings
WAIT and RND are useful commands with some odd properties. NEW,
STOP, and END all terminate a program, but with interestingly different
features. Those five commands really have little in common-except
that they are all covered in this section.

WAIT commands the system to suspend processing until the XOR of
the address in the first argument and the number in the third, when
ANDed with the second, is not zero. It is only useful when the address is
associated with an input; since those addresses vary among the types of
computer, any program using WAIT is almost certain to run on only one
machine. A good application of WAIT and a short way to get a character
from the keyboard is to POKE the buffer counter to 0, to WAIT for it to be
non-null, then to GET the character(s). For safety, it is best to use:

42 3: MechanIcs of a Program

WAIT addr, 255,255

although it is unlikely that keys could be pressed fast enough to be a
problem if you just wrote

WAIT addr,1,1

instead. A fatal error will result if you WAIT for a cell of ordinary
memoryi if it didn't pass the test the first time, it never will.

RND is used to generate a sequence of pseudo-random numbers. When
the program runs for your customer, randomization is used to get an un
predictable sequence. Unfortunately, that unpredictability makes check
out difficult. When the argument of RND is zero, most Commodore
computers will give a truly random number (derived from the clock). For
checkout, where you need a repeatable sequence, give your first use of
RND a fixed, negative argument. Every other use should be a positive
number. When the program has been checked out, change the negative
number to zero or to - I/TI to get a random sequence. (The argument
can be - TI, but inversion gives better statistics.)

STOP interrupts execution of the program and reports the line number
at which the break occurred. END does exactly the same thing, but prints
no message on the screen (except "ready"). You can resume operation in
either case with CaNT. For debugging, STOP is the command of choice.
When the break occurs, you know what point you reached and can print
out the information you need. Take care not to destroy the information
you need to CaNT successfullYi you can convert the interruption into
total disruption by using a variable you need as the loop index for print
out. Pick a variable the program doesn't know for that job, and don't
forget to complete the loop to restore the stack.

The NEW command also ends the program and effectively erases it in
the process. It seldom belongs in the program at all. The only case known
is where you intend to punish the user. If a password is needed to access
the program and the wrong one is entered repeatedly, you may want to
NEW the program to force the user to start over. Especially for younger
users, it's convenient to terminate the program with something like:

PRINT"Type RUN to play again when you're"; : end

It will give a nice final display. For good measure, put in an appropriate
GOTO. For example, after asking IIAre you through?", use an END for a
lIyes" response, but follow it with the IIno" action. Then the user who
changes his mind can recover simply by entering CaNT.

Of course, you may be ending one program only in order to start
another. Remember that the LOAD command within a program implies a
subsequent RUN but does not CLR variables. If the second program is no
larger than the first, the old data will still be in memory and still be accessi-

3.10 cOding trlcks-DEF and ON 43

ble unless you unlink them. (What the LOAD causes is not a RUN, but a
jump to the start of BASIC-in effect, a GOTO the first line of the new
program. If the load failed for any reason, it will cause reexecution of the
old program without a CLR.) If the new program is larger than the old or
has an early CLR, variables will be cancelled before it begins to execute.

Chaining programs by LOADing the second from the first was a fre
quently used device in smaller machines (e.g., 2001-S), especially when
you could not assume a disk. On larger modem systems, it is better to put
more into each program. If chaining is still needed, holding the linking
data on disk is preferable to relying on their staying accessible in memory.
For example, a bad program file could lose the work of its predecessors in
the chain. Putting data on disk and executing a CLR when the next pro
gram begins is safer. An extra benefit is that bringing in a smaller pro
gram without a CLR does not release the memory between the end of the
new program and the end of the old. A CLR before the LOAD or at the
start of initialization makes all of memory accessible.

3.10 Coding tricks-DEF and ON
There are many features of BASIC which can be used as /I tricks /I to save
code and effort. They are often relatively hard to learn and may be beyond
the skill of the novice programmer. Often, that's just as well since they
can be hard to understand from a listing. This section deals with two com
mands, DEF and ON, which are worth the trouble to learn and use.

DEF is a means by which you can extend BASIC using BASIC itself. It
allows you to DEFine a unary numeric function which you can then call
from any point in the program. In other words, you can replace a subrou
tine that computes one number from another with a user-defined function.

An example of the use of DEF is in converting a number to a character.
The ASCII function does the job, but with two disadvantages: small
numbers are unprintable characters, so are hard to verify, and some num
bers correspond to delimiters which cannot be read with INPUT# com
mands. Many applications need to pack integers from 0 through, say, 200
into single characters to save storage. If we remember how to count in
hex, we can extend the sequence: 0, I, ... ,9, A, B, C, ... , chr$(255).

The algorithm is simply:

x$=chr$(4S+x) ifx<lO
x$ = chr$(55 + x) if x>9

We cannot put an IF test into a DEF statement, but we can use another valu
able "trick"-evaluation of Boolean expressions. Every logical expression
is evaluated to "true" or "false/, and those are given numeric values.

44 3: Mechanics of a Program

"True" corresponds to the number - I, which is all ones in binary. "False"
corresponds to 0, which is all zeroes. As a result, the rules of logic are
preserved with simple arithmetic: a true statement OR anything is true
(- 1), AND anything is that thingj a false statement OR anything is that
thing, AND anything is false (0). But we can use the number that results
from a Boolean (logical) expression as a number. So, we may write:

x$=chr$(48+x-7*(x>9»

The operation gives characters that can be INPUT or INPUT# just as
though the IF test had been carried out explicitly. But now we can use DEF
to generalize the job. In particular, we may define a packing function FNP
and an unpacking function FNU by writing:

9010DEFFNP(X)=48+X-7*(X>9):DEFFNU(X)=X-48+7*(X>b4)

to get the desired unary functions. Now, you can verify that the functions
are inverses of each other by cycling through fnu(fnp(i)) for i = 0 to 200.
Notice that the argument for the unpack function is itself a functionj as
usual, the logic works from the innermost parentheses out. Do you want
larger numbers than 200? Then repeat the function working in base 201-
a little more complicated than base two or ten or sixteen, but the same
in principle.

One advantage of user-defined functions is obvious-they can save pro
gram space. A second is that there is only one place to make a mistakej fix
it there, and you're sure that it's fixed wherever it occurs. Of course, the
user-defined function is most valuable when the expression is complex
and used very frequently in your code, but get familiar with it in simple
cases before you really need it.

There are two ON constructs that seem more difficult than they are: ON
... GOTO and ON ... GOSUB. Either replaces a family of IF ... THEN
lines and can save a lot of code. Since they're very similar, we'll look at
ON ... GOTO for our example.

Suppose we have a counter which indicates to which of four routines we
want to branch. We could write:

110 IF J=lGOT01000
120 IF J=2GOT02000
130 IF J=3GOT03000
140 IF J=4GOT04000
150 GOT0100

All that is legal, proper, and wasteful. What it does is direct the program to
1000*j if j = I, 2, 3, or 4 j otherwise, it sends it back to 100. We can ac
complish almost the same thing with:

1100NJGOT01000,2000,3000,4000:GOT0100

3.10 Coding tricks-DEF and ON 45

The differences are subtle but significant: a negative argument (j < 0) is an
error, and fractions are truncated in ON ... GOTO. Operationally, those
limitations are seldom important, and you can save 73 bytes in this sim
ple example (32 bytes instead of 105).

Another use of ON ... GOTO is to provide a kind of IF ... THEN
... ELSE structure in a BASIC that doesn't have the real one. Suppose we
want to use the yes/no utility (see 3.6 Keyboard input) to branch to 1000
(if "yes") or 2000 (if "no"). Then we might write:

110 GOSU88050:0NJGOT01000,2000

That's all it takes. It becomes even more valuable if the branching takes
place under an IF ... THEN test, where we can rewrite:

110IFX<4GOT0150
120 GOSUB8050:IFJ=lGOT01000
130 GOT02000
150 •••

and, in the much simpler form:

110IFX>=4THENGOSU88050:0NJGOT01000,2000
150 •••

We have not only saved a lot of program memory; we may also have built
more readable code.

ON ... GOSUB gives you the same features as ON ... GOTO, with the
added advantages that you save the THEN you would need on IF ...
THENGOSUB, and you save storage by replacing all the GOTO's after
your destination addresses with RETURN's. The power of the ON is so
great that you will often find yourself using it with only one value of an
argument-where an IF would do the job about as well. In those cases,
remember that ON ... GOTO and ON ... GOSUB will make your pro
grams harder for a novice to read than simple IF's.

I
4 Devices

All Commodore computers use a simple, straightforward way of interfac
ing with the outside world. Anything that communicates with the CPU is
a device, and talks with the computer by its device number. The keyboard
is device 0, datasette is I, and screen is 3. In machines with dual-cassette
capability (PET, CBML the second cassette is device 2j in other comput
ers, device 2 is used for the RS-232C port. As default values, disks are as
signed device 8 and printers device 4. Device numbers can be changed
within many peripherals by hardware or software.

When the computer talks or listens to a device, it uses a constant "pro
tocol" (set of rules) regardless of what is on the other end of the line. In
general, you establish that communication by opening a file to the chosen
device, then receiving data through input commands or sending data with
print commands. Defaults are provided in the form of special commands
for communicating with devices 0 and 3 (keyboard and screen).

In other words, PRINT is a special case of PRINT#, and INPUT and GET
are simplified forms of INPUT# and GET#. When you use PRINT#n, you
are telling the computer to send the output to logical file n, which had pre
viously been opened to a numbered device. When you use PRINT, you are
telling it to send that information in the same way to the default device,
which is preset to 3 (screen). To change the default device, we use CMD.
For example, CMD4 changes the device for PRINTing and LISTing to the
one designated when you OPENed logical file 4. There are conditions in
which you may want to open a file to a device which doesn't need
one-such as the screen or keyboard. For example, suppose your output
can go to screen, disk, or printer at user option. You could write separate
routines to PRINT to the screen and PRINT# to the others, or you could
write a single routine for all. To do that, just open a logical file to the
selected device: 3 (screen), 4 (printer), or 8 (disk). Then, the routine that

47

48 4: Devices

does the PRINT#'s and CLOSEs the file will do so to whatever device you
are using. Using this feature will demonstrate graphically that PRINT and
PRINT# are functionally the same operationi output to the screen will be
independent of which command is used to talk to it.

On the PET and CBM, hitting RETURN in response to an INPUT
prompt drops the system out of BASIC. In the newer machines, it leaves
the value of the INPUT variable unchanged. In either case, a program
might be better off with other results. One way to change the operation of
INPUT on a null string is to use ~NPUT# instead. Open a file to the key
board and INPUT# from that file. As with screen operations, the keyboard
is a device, and file operations may be performed on it in any logical way.
Of course, an attempt to print to the keyboard [or to input from the screen)
can give you a file error ("not an input file" or "not an output file") if you
opened it properly and accessed it wrong. And you can expect a long wait
for input from the screen or for anything to show up that was PRINTed to
the keyboard, but the system will do what you command, whether it is
logical or not. Note that devices 0 through 3 are preassigned and usually
cannot be reassigned.

When you send the same information to different devices (or receive it
from different devices), there may be differences because of the nature of
the device. That's a complicated way of saying that getting literals on a
printer takes a different protocol from printing them to the screen-and
that you can't print them to the disk at all. On the disk, CHR$(193) is
just CHR$(193). On the printer, it is either a spade or a capital A, depend
ing on what went before it. On the screen, it is either a spade or a capital
A, depending on the value in one memory location-or, on the VIC or 64,
depending on the values in an area of memory.

While the Commodore peripherals are smart, your program has to
complement their intelligence by following the protocols they require.
For example, if you want to see literals instead of graphics, you must use
the appropriate POKE for the screen. You may either use SA7 or cursor
down on every line to the printer. The question is meaningless on disk or
tape. The code that opens the file to the device should set up all condi
tions required for its protocoli thereafter, the routine that communicates
neither knows nor cares which one you were using. For example, if you
are sending output to a dot-matrix printer or the screen, you may define a
paging string consisting of the CLR character and the HOME character.
By defining it as CHR$(12) for the 8300, you may also run with a letter
quality printer. Preset the paging string when output is begun, and let the
print routine use it without caring which it is. [It would be nice to use all
three characters in the string and be independent of the choice of printer,
but you can't. The 8023 printer will accept either paging commandi given
both, it puts out an extra page. And the 8300 prints CLR as "3"!)

4.1 Un-conventions 49

Assignment of file numbers to devices is almost entirely at your discre
tion. However, some system is worthwhile if you are to be able to read
your code easily. For example, you might choose always to input from
even-numbered files, always to output to those with odd numbers. Or it
may be convenient to use file 1 for a primary file, 2 for secondary, and so
on, regardless of the file's function or the device on the other end. If you
do that, it is convenient to CLOSE 1 routinely when entering the menu or
at any other major break point in your code. It can do no harm (no error
results from closing a file that isn't open), and it can correct a problem
if you got to that point unexpectedly. For example, if you broke out of
BASIC inadvertently and did a GOTO the menu, or you took an error exit,
you want to make sure that whatever files were open to disk are closed
before operations continue. Advanced software usually requires use of
many files on many devices, and some ordering scheme for your own
convenience will help you keep track of them.

The one restriction on file numbers is that the Commodore system
provides an automatic line feed (chr$(lO)) if you assign a file number
greater than 128. On Commodore peripherals, the line feed is either un
necessary or wrong; keep file numbers under 128 unless you're using
someone else's device which requires an explicit line feed from the
computer.

In opening files, secondary addresses can be crucial. Some SA's are con
sistent among devices of one type (e.g., disk drives); others vary depend
ing on the particular model in use. Where interoperability is important,
use SA's and features common to all models that are likely to be used.
For example, even Commodore printers vary in their formatting and spe
cial characters; instead of using SA5 for formatting, you may build a print
string as you need it and your code will run on all printers. In practice,
many of the secondary-address functions are inconsistent on the print
ers, including variable line spacing, literals/graphics mode selection, and
formatting. Although it puts code into the computer that belongs in the
peripheral, you are better off not relying on the printer to do all the things
its intelligence is supposed to allow.

4.1 Un-conventions
To bring order out of computer chaos, international conventions have
been established. They represent protocols accepted over many years,
some dating from the most primitive teletype machines, and are accepted
by all manufacturers of computer hardware and peripherals. Except
Commodore.

When Hewlett-Packard started making computers, they wanted an ef-

50 4: Devices

fici ent , high-speed interface with their peripherals. They devised a buss
system which came to be known as HPIB. Other manufacturers devel
oped peripherals to work with the HPIB, and to reduce publicity for
Hewlett-Packard they called it the GPIB. The Institute of Electrical and
Electronic Engineers embodied the GPIB in its standard, IEEE 488. Key
properties of the buss include its requirement for intelligence on both
ends (to manage the protocol), its high speed (suitable for even hard
disks), and its implementation by many vendors.

Given the low cost of microprocessors, Commodore was wise in se
lecting the CPIB for its computers. Unfortunately, they chose to econo
mize by omitting some parts of ~he protocol that were not needed in the
earliest machines. As a result, Commodore peripherals will not simply
plug into IEEE 488 busses, and Commodore computers will not run all
GPIB peripherals. Correction of the problem of interoperability is well
documented, and requires both hardware and software-for you to buy
and to build, respectively.

The situation with the RS-232C serial buss is somewhat different. In
the VIC 20, Commodore has implemented all of the required logic, but
saved substantial cost by not putting in the extra power supply for its
plus-and-minus twelve volts. Since the adapter to change signal level can
be as simple as an inverter, they provided inverted logic as well. The 64
behaves the same way, except for its inherent timing problem. The Com
modore 64 looks into memory before refreshing the screen. It must do
that in order to handle relocation of screen memory. Unfortunately,
stealing that glance takes CPU time that is given the highest priority in
the interrupt structure. As a result, clocks are given lower priority and
do not run with their customary regularity. That affects all busses in the
system. The intelligence of an IEEE interface unit can handle the prob
lem, but the serial busses have more difficulty. Since the RS-232C buss
demands precise timing, designers are hard at work trying to build inter
face hardware that will work consistently in the face of the 64's inconsis
tency. (That same problem may be part of the reason for difficulties with
the serial peripherals from Commodore.)

One standard that no one but Commodore violates is ASCII-the code
converting between characters and numbers. In computer terms, it's an
cient, venerable, and respected by (almost) all. Commodore's logic for
changing it stemmed from their incorporation of literals mode in all ma
chines. Since they expected users to want upper- and lowercase charac
ters in their programs, they recognized that it was easier to use the key
board as a typewriter.

In ASCII, the unshifted characters are uppercase; in Commodore, they
are lowercase. The ASCII standard is not complete, and there are varia
tions in its special characters among manufacturers. If your external de-

4.2 Printers 51

vices want true ASCII, you must convert to their requirements from
those that Commodore supplies. In some cases, you may simply map
characters 65-90 into 193-218 and vice versa. The logic is a little easier if
you mimic the printers by putting out the wrong case for characters
91-95 too, but in either case all you need to do is XOR the character from
the computer with 128 to get the ASCII value. If your peripherals need
special characters, check their translation against Commodore's docu
mentation and implement what you need.

Whatever reasons Commodore has had for varying from international
standards, your software and systems may have to correct for their re
sults. Commodore stays consistent within its own lines and really hasn't
been concerned with whether you have problems tying in to others'.
Other manufacturers use other approaches. For example, Apple expected
you to plug in boards and chips from other vendors for what you need, and
even to use an outside source for lowercase characters. No one fully im
plements all the protocols for all the different lines of printers, but some
manufacturers come closer than Commodore. Like Apple, Commodore
has chosen a path that supports a substantial cottage industry in periph
eral adapters. Unfortunately, each such adapter is likely to require its
own software. Interoperability of your programs will suffer from that
variability. One routine you are almost certain to need for telecommuni
cations is ASCII conversion for upper- and lowercase letters. Otherwise,
plan to adapt your software to each installation, with its unique hardware
and interfaces.

4.2 printers
Commodore distributes a wide range of printers manufactured by other
companies. The two designed for the serial buss of the VIC and the 64 are
the 1515 and the 1525; they differ in paper size (the 1525 takes standard
width), in noise level, and in that the 1515 will not run correctly with
the 64.

The range of printers on the IEEE buss is substantial. The original 2022
and 2023 required an upgrade ROM for best performance. Commodore
provided the ROM without charge, and embedded only one time bomb
for the programmer: paging logic was changed without warning and with
out documentation. The later dot-matrix printers are quieter, faster, and
more costly. Their firmware is superior in that they more reliably per
form the functions associated with secondary addresses than the earlier
machines could manage. The 8300 letter-quality machine is a Diablo
printer interfaced with a CMC adapter. Both are competent, but the
adapter requires support for its edge connector. The combination is effec-

52 4: Devices

tive, professional, and demanding of code different in many ways from
that for the dot-matrix machines. Typical of the changes required for the
8300 are the modifications discussed in Section 5.? SUPERLISTing.

The dot-matrix printers carry dual character sets, approximating Com
modore graphics and literals. Since the printers have either six or seven
dots per column and the screen has eight, the graphics are not exact.
Whether or not you care for the seven-wire literals, the six-wire version
in the 1515 and 1525 has no descenders and cannot produce quality copy.
All dot-matrix printers shift character sets reliably with the cursor-down
character (literals) and cursor-up (graphics). Most will usually shift into
literals mode (inverting operation of the cursor up/down) when a file
with SA? is opened, printed to, and closed. Some will shift back to graph
ics with SA8; however, SA8 sometimes works and sometimes does not,
depending on the particular printer, how often and how loudly you send
the command, and the temperament of the little gremlin who pushes the
wires.

The five characters (91-95) immediately above the alphabet behave
strangely in all dot-matrix machines except the 1515 and 1525. In literals
mode, square brackets, up and left arrows, and backslash (English pound
sign) print in reverse case. On the 1515 and 1525, cases are correct. On
the 8300, characters depend on your print wheel, but there will be fewer
than the dot-matrix machines can generate. The standard underscore
character is the keyboard left arrow. Underscore on the dot-matrix is a
shifted dollar sign, which prints as dollar sign on the 8300.

On any printer except the 1515 or 1525, carriage return is possible
without linefeed, permitting double printing on the line (e.g., for under
score). On the 8300, an ESCape sequence is required; on the other print
ers, chr$(141) does the job. Paging on the dot-matrix machine uses the
HOME and CLR characters. On the 8300, chr$(12) is required, while the
4022 or 8023 responds to either. For safety, flexibility and interoperabil
ity among machines, it is worth counting lines of text and paging by
sending chr$(13)'s or chr$(10)'s. Similarly, formatting within printers is
quite variable and should be relied on only when you are certain that,
say, an 8023 will be used for all printing from your program. Otherwise,
form your own print strings within the computer, and do not tax the
printer's intelligence with SA5's and the like. (One feature that works
consistently on dot-matrix machines is the user-defined character. It
even seems to behave the same regardless of the IEEE printer used, a truly
remarkable feat of consistency for Commodore.)

In many respects, the slow, noisy 2022 is the preferred dot-matrix
printer. It is reliable and well built, has a clear typeface, uses standard
teletype ribbons (six-hole variety) and doesn't consume them too rapidly.
The cartridges in other pripters are more costly and run out sooner, hang-

4.3 Disks and drives 53

ing up the system. That property is important for unattended printing. In
the same vein, remember that the 8300 lacks a paper sensorj if it runs out
in the middle of a long output, you can damage the platen-as well as
waste time. With that caveat, the 8300 is the only choice of printer for
professional use.

A wide variety of non-Commodore printers can be interfaced with any
Commodore computer. An RS-232 port is a good choice when a suitable
interface is included. A letter-quality printer can then be attached for less
than $1000, a considerable saving over the 8300. Other printers can be
run from the user port, requiring only a connector and appropriate soft
ware. The software is the problem in those caseSj you will probably have
to write your own, and any resemblance between talking to the printer as
device 4 on the standard buss and talking to it on the user port is coinci
dental. You will have to correct Commodore ASCII to what the rest of
the world uses, and handle paging and other features in detail. If there is
any possibility that you will want to use such a printer, collecting all
print commands into a common subroutine becomes mandatory. You
can then develop and verify your code on a standard printer and make the
changes later in one place for all output.

You will minimize the cost of changing printers if you collocate all
code in a restricted area of the program. If your system is to run with mul
tiple printers, you may want to make selecting among them a removable
line in initialization, or a question asked each time the program runs. If
the user is likely to have only one printer, a run-time option to remove a
line is usually preferable. If the system will have multiple printers at one
time, ask the question during initialization.

4.3 Disks and drives
All Commodore disk drives require high performance from the disks
themselves. You will need to find the best disks consistently available,
and even then to check out each batch that you buy. Even the best manu
facturers have had periods of poor quality control. If a few bad disks slip
into your system, vital data can be lost despite your backup procedures.

You and your customer will profit from documented procedures for
handling disks. Protection from dust and fingerprints is vital, so set up a
system for keeping the disks clean and protected. It is worth the effort to
format each disk when the box is first opened. Gross faults will be detect
able by appearance, difficulty in inserting the disk into the drive, and the
sound of the drive in operation.

Most faulty disks will fail to format, so they can be discarded (or re
turned) before any information is committed to them. If your program

54 4: Devices

has to format the disk, it will take several minutes at each initialization.
(You can detect whether the disk is already formatted and avoid wasting
the time. The easy way is to try to open the directory to read. If you suc
ceed, you need not reformat the disk. That step will also detect the
wrong format, except that it won't catch a 2040 disk as an error; to do
that, you'll have to read the format code at the end of the first directory
line. Since the 2040 format is obsolete, you may be able to ignore the
problem.)

Considering their price and the quality of the competition, Commo
dore's drives are quite good. The single drives for both IEEE and serial
busses are generally less reliable and less sturdily built than the duals.
The IEEE version performs well when properly set up, but its setup is dif
ficult and it has a disturbing tendency to lose adjustment. Upgrade
boards are technically available, but whether they cure the problems is
not yet proved. The serial buss machines have firmware problems that
have not been isolated at this writing. The 4040 dual drive is highly reli
able and not too demanding on the disk itself. The 8050 comes from one
of two manufacturers. The one with a 4040-style door is relatively slow,
but has proved reliable; the one with a 1541-type door is quite fast but
has had a painful history of failure. Both 8050's use higher density than
the 4040, so demand even more of the disk itself. The 8250 double-sided
drive offers little advantage for its higher cost; its performance is much
the same as that of the 8050. The problem with the 8250 is that its cost
approaches that of a hard disk, while its performance and capacity are still
in the range of the floppies. There may be applications where the 8250 is
the right answer, but more often you will either need to use a hard disk or
be able to get by with the readily available, better-known 8050 or 4040.

Commodore's hard disks are just becoming available as this text is be
ing written. They should be given at least six months in the field for de
bugging before you design advanced software around them. They are to
be fully compatible with the logic of the floppies (which is common to all
current units), so you should be able to design your programs for an 8050
and upgrade to hard disk without change.

The major advantage of hard disk is not its increased storage-although
that is significant to many applications. The big payoff is in speed of ac
cess to information. The disk spins faster and has higher bit density than
a floppy, so data are pumped in more rapidly. In addition, the time to find
the data is decreased by the head arrangement. The hard disk is fast
enough to allow the luxury of storing a directory to your files on the disk
itself; you can make an indirect access to information faster on the hard
disk than you can a direct one on a floppy. (And if you aren't accessing the
disk continuously, you get a side benefit since the hard disk doesn't have
to spin up to speed before occasional reads.) While your floppy-based pro-

4.4 Disk flies 55

gram will run better and faster on the hard disk, you won't get all of its
advantages until you design your programs to exploit it.

4.4 Disk fi les
Advanced software relies on disk storage to supplement that inside the
computer. Tape can hold only sequential files and programs, and oper
ates so slowly that it is used for no serious work. Much of the discussion
of sequential files in the following can be applied to tape, but to little
purpose.

The disk system supports four types of file: program, sequential, rela
tive, and user. The user file demands direct control by the programmer;
the level of skill required to use it is too great for the purposes of this text.

A program file consists of an image on disk of the contents of memory
SAVEd by a program. It carries the address from which the recording be
gan (for a BASIC program, start of BASIC) in the first bytes, then a byte
for-byte copy until the end (for BASIC, the occurrence of two consecutive
zeroes). Disk channel 0 is reserved for reading the directory or loading
programs. Channell writes the directory or saves a program. The disk di
rectory is recorded as a kind of program, with the special names "$"
(both drives), "$0" and "$1." To open the directory or any program file
for reading, OPENl,8,O, "fname." Since the characters in programs in
clude delimiters, you will have to GET# to read the information, but
your program can access the individual bytes of the program or directory
in this manner.

A similar operation using channell allows you to write a program di
rectly (rather than saving it), but this capability is of relatively little use.
By reading and writing programs (rather than LOADing and SAVing) you
can copy material which cannot be duplicated otherwise. For example, a
simple BASIC program can transcribe the usable parts of a program
which has been damaged by a disk fault.

A sequential file contains the sequence of characters sent to it in
PRINT# commands, including automatic carriage returns unless they are
suppressed with the semicolon. If there are individual records in the file,
they occur because you put them there. Since there is no fixed spacing of
records in the file, no storage is wasted with blanks to fill the space to the
next record. That's efficient storage. Unfortunately, it comes at a high
price: you can't get to the middle of the file except by reading through
from the front. The disk operating system (DOS) has no way to find any
point in the file except its beginning and its end. The only interesting
things that a program can do to a sequential file are read from its start
and write after its end.

56 4: Devices

Suppose you have a list of 100 names in a sequential file delimited
wi th carriage returns. All you want to do is replace #37, "Hector," with
"Hecuba." The straightforward way is to open a dummy file for write,
then to INPUT# from the old and PRINT# to the new 36 times, then
PRINT# "Hecuba," INPUT# (and discard) "Hector," then INPUT# and
PRINT# until the file is empty. Finally, close both files, scratch the old
one, and rename the dummy with the old name.

This process is effective but slow and clumsy. It also has some traps in
it. Run on a single drive, it will cause the head to search back and forth re
peatedly, shifting between the file it's reading and the one it's writing.
You will quickly learn to recognize the sound. And don't forget that both
scratching and renaming are risky operations i each should be followed
by initialization, and a collect (validate) would not be amiss.

The example gives insight into when you would not use a sequential
file. You should use it (and save storage) when you will use the file as a
whole, rather than piece by piece. Two cases arise frequently: a memory
resident file and one accessed by content. In many cases, the file must be
manipulated substantially during a run of the program, or it must be
sorted in multiple ways, or accessed so frequently that you can't afford
the time to keep going out to disk. Then you load the whole file into
memory to begin operations, manipulate it as required, and finally re
place the file as a whole if any changes have been made. For that sort of
handling, a sequential file serves quite well. Similarly, you may have to
leaf through a whole file every time you use it simply because you never
know which record(s) have the information you want. If all accesses are
based on the values of the records (their content), rather than their posi
tion, a sequential file will do the job well. Finally, you sometimes just
want to use a file to sequence the operations of a program; in that case,
again, the sequential type may be just what you need.

A relative file is a collection of fixed-length records for which the DOS
has the means of accessing by record number. To hold the same amount
of information as a sequential file, a relative file needs more disk. One
part of the space lost (overhead) is due to fixing record length. The size
must be large enough to hold your longest record (any excess is simply
chopped off). Therefore, you may need a 12-byte record size, even though
you will only use an average of four bytes per entry. The remaining two
thirds of the space is simply lost. In addition to empty space, the disk
must also hold the information on where the records are located. The
pointers to the data are held in "side chains," which also take space.
They also take an extra channel of the disk drive. On a dual drive, you
can have two relative files open at a time, and even have room left for a
sequential file. On a single drive, only one relative file at a time, please.

There are times when a relative file is the obvious (or only) choice.

4.5 Disk commands 57

Ideally, it is used for records which are all of constant (or nearly constant)
length, and which are to be accessed by ordinal. They are perfect comple
ments to sequential files, since they are ideal when they are very large
and require access to individual records for read and write. Unfortu
nately, it often happens that the file you need fits neither extreme; it may
be of variable-size records which need individual replacement. Then you
must choose between the evils, and spend either a lot of disk or a lot of
time using either relative or sequential types, respectively.

A little creativity can save a lot of grief. Suppose that you need to keep
a lot of information about a number of people. We might use a sequential
file of names, reading it in (and writing it out if necessary) as a whole.
The order of the name in the file (its ordinal) is the number of the relative
record of information about that person. Suppose the people are stu
dents and that we need a full school year's record for each one, with one
character for each of 200 days. The longest name may be 30 bytes, but
they may average 14. So the memory-resident file for 500 students is
only about 7K. The disk-resident data file is 100,000 characters long, but
that's okay; we only look at one student at a time, so we only need 200
bytes of memory. We can manipulate the names in memory, then fetch
the data record we need, manipulate it, and put it back where it belongs.
The only time we would have to write the name file out again is when we
have changed it-a rare event for this type of application.

Note that we can work around many of the limitations of the file types
by combining their virtues and cancelling their faults. Sequential and
relative files are complementary, and most advanced software will need
both. Where the trade-off in algorithms is usually as simple as speed ver
sus memory, in disk files it is usually among speed, computer memory,
and disk memory. And even the speed question is complex since there
are designs that take more time to initialize and less to run than alterna
tives. (A simple instance is between reading the whole file in once and
manipulating it in memory, compared with modifying it on the disk.
Each modification will take multiple disk accesses and a lot of time com
pared with shuffling memory, but you don't have the long delay to load
the file in the first time. There is no general rule for designing the file
structure. Pick the architecture that fits your application.)

4.5 Disk commands
There are two ways to send commands to any Commodore drive: through
the command channel or through BASIC 4.0. In fact, the disk receives
the same command, regardless of the route you take to send it. As a re
sult, you can use relative files, append to sequential ones, or perform any

58 4: Devices

of the other BASIC 4.0 operations on a VIC or a 64. Sometimes it will
take extra code, but seldom enough to matter. And in many cases using
2.0 commands is easier, more logical, or simply more effective than us
ing those of 4.0.

The most useful information you can get about the status of a disk is in
its directory. When all files have been written properly, the sum of the
sizes of all files added to blocks free is the total number of blocks on the
disk [664 in the 2a format of a 1540, 1541, or 4040). Many disk opera
tions lead to slight confusion in the directory, so the block count in
creases by one to three. Attaching information [APPEND or CONCAT)
tends to create this anomaly. However, when the error exceeds about five
blocks, the directory may have become seriously confused. At that point,
files may go into hiding-perhaps irretrievably. Repeated APPENDs to a
single file do not seem to create the problem, and no consistency has been
found in losing files, but it happens with painful frequency. The first file
on the disk has never been lost in this process, so it makes sense to put
really critical material in a file on a NEWed [HEADERed) disk.

There appears to be some risk on other commands that modify the di
rectory. For safety, reinitialize the disk after each SCRATCH or RE
NAME; SAVE@ should be avoided since you cannot initialize between
the scratch and the save. An occasional COLLECT command only hurts
in that it spends time; it will tend to reduce the extra blocks that the
DOS invents for you, although the only way to eliminate them is to
COpy the files to a blank disk. \

The most common form of catastrophic directory failure [even on a
4040 or 8050) is that two filenames point to the same physical file on the
disk. On the 1540/1541, a more severe problem can occur. Reading is a
difficult process for people and for disk drives; given enough material, ei
ther can get tired and confused. When a 1541 reads too long, its firmware
simply quits. Depending on the type of disk used, the ambient tempera
ture, and the phase of the moon, reading a hundred blocks or less on a 1541
may give you a "disk id mismatch." Since that error cannot be real, it
simply tells you that the DOS is lost. On consecutive runs with the same
disk and program, disaster will strike in different places. There is no so
lution except to keep your files small and to avoid long periods of reading
in files from a 1540 or 1541. Those drives are sui table for programs, mod
erate sequential files, and limited-use relative files; they cannot be
counted on for maintaining critical records.

Commodore disk commands can be used to give you a reliable system
for even critical data if you take care to maintain backup copies and if
you integrate recovery procedures into your products. On a dual-drive
system, HEADER one drive at the start of the day, open a Log for write,
then CLOSE it. When activity is to be recorded, APPEND the transac
tion, then CLOSE the Log. At the end of the day, merge the Log into the

4.6 Tokens 59

rest of the data system. Since the Log is the first file on a blank disk, it is
likely to survive any anomalous disk behavior. Your backup procedures
should allow repetition of the merge process; any failure is unlikely to re
peat. The disk with historical data should not be written at all until suc
cessful merger has been verified. Verification may be as complex as
checking the block count by reading the directory; if you're going to that
much trouble, take the time for a COLLECT first.

Except for a bug, the BASIC 4.0 command HEADER is equivalent to
sending a NEW to the command channel. The undocumented error is
that a variable cannot be used for the disk id in HEADER; if you are going
to format the disk within your program, you must revert to BASIC 2.0.
One factor to consider in promoting both program speed and drive reli
ability is head movement. When one drive is accessing two files concur
rently, the head must be moved between them. That takes substantial
time and wears the mechanism. If you are running on a dual drive, COpy
files between sides, CONCAT from one side to the other, and generally
avoid performing concurrent operations (e.g., read and write) on one
drive when you can use both.

Secure processing on disk is tedious, but the user may not be troubled
by the process. Merging is the last operation of the day, and requires no
manual input when it succeeds. Even if the process takes hours to com
plete, it can be effected by running the system overnight. On the rare oc
casions when it fails, recovery can be the first job in the morning. Since
computer time is essentially free, good program design will yield a suc
cessful product even when disk performance is marginal.

Directory confusion may be eliminated thanks to a suggestion by Mike
Louder. The method is to validate the disk (COLLECT in 4.0) before any
scratch, rename, or other erasure from the directory. The drawback of
validation is that it is very slow, taking several minutes on a full disk.
However, you may be forced to take the time penalty if your code has
trouble with disk errors. Since the Commodore drives have enough intel
ligence to validate without computer intervention, you may send the
command early and have it implemented in the drive while the com
puter is doing useful work. For example, a program which reads in a file
for modification expects to scratch and rewrite it later. Therefore, you
may want to COLLECT the disk it came from after reading the file, rather
than waiting until it's time to scratch it.

4.6 Tokens
A token is a single item that replaces a collection of others-in the way
that a subway token replaces a handful of change. In the BASIC inter
preter, the nine characters of DIRECTORY are replaced by chr$(218). In-

60 4: Devices

terpreted as ASCII, that token would be a liZ," but as a BASIC 4.0 com
mand it means DIRECTORY. The reason that the shorthand form "diR"
works is that finding a capital letter causes the interpreter to seek a suit
able token for the part of the command already input. If you had entered
"dI," the list of commands would be searched, and the first one that fit,
DIM, chr$(134), would be selected.

A data-intensive program may also benefit from tokenizing under your
control. Suppose you use a system for converting the 200 most common
entries in a field into single-character tokens. One way is with the nu
meric packing and unpacking functions (see 3.5 Bits, bytes, characters,
and numbers) that create characters you can INPUT. If you have ten
thousand classical recordings to file, the 200 composers most commonly
found probably account for 9,990 of them. To handle the other 10, save
one token to mean: this one is spelled out. If the average composer's
name takes seven characters, you replace seven with one in 9990 cases,
seven with eight in the other 10. Your primary file's composer informa
tion then shrinks from 70,000 characters to 10,080. However, you need a
secondary file, a "directory," of the names to which the tokens point;
that one is 1400 characters long (7*200). Since it is a separate file, its size
may not be a problem; in any event, the net saving in storage is about a
factor of six.

A little more storage is saved in a real system. The composer field of
the untokenized file requires a character to identify its end, a "delimiter. II
It marks the end of a field which may be anywhere from two to, say,
twenty characters long. Considering the delimiter, the file would then
have 90,000 characters. But for the 9,990 items that are tokenized, the
field is fixed at one character, and needs no delimiter; only the 10 excep
tions need to specify their length. Then tokenizing reduces that field's
size from 90,000 to 10,090, or total storage to 11,490.

Accessing the tokenized file requires packing, unpacking, and conver
sion between numbers and characters. Therefore, using it will take
longer than using the simple one. As usual, saving memory costs time.
Since disk access is usually slower than computer operations, you can
limit the slowdown to acceptable levels. Count on thinking about your
design for several extra hours if you're going to tokenize effectively.

One thing you must resolve at the start of planning a tokenized file is
where to keep the directory. For maximum savings, it can be held as a se
quential file on disk and read into memory at initialization. That will
take a chunk of precious RAM. However, using the file will be a lot faster
than if you access the directory on disk. If you simply can't afford to
spend the RAM, then try making the directory a relative file. With a
floppy, the time for the extra access can become painful; your program
will have to avoid reading any directory entries it can, and still may not

4.7 Using files 61

be fast enough. Of course, if you're using a hard disk you have enough
speed to keep the directory out there. One solution is to design the sys
tem with the directory on disk, build it with the floppy, then invest in
the hard disk after everything is running as you wish. On the other hand,
with all the extra storage on the hard disk you may not need the space
saving that tokens offer.

Tokenizing a hard disk file pays off in other ways, depending on how
you plan to extract records. For rapid access to information, you will need
pointers for many fields to lead you from record to record. To get that ca
pability, you will need a directory for each chained file. Tokenizing them
costs little and saves much. (Notice that in many ways a tokenized field
is easier to maintain. For example, spelling can be modified in one place
for all records. Without tokens, each record with the old spelling would
have to be found, corrected, and replaced.)

4.7 using files
A real example of the use of advanced programming techniques in man
aging files would be both too big for this text and of too little general
value. Instead, we will work with an artificial case that collects many of
the ideas in a way you can transfer to your own programs.

Suppose our problem is to translate a telephone area code into the state
or province in which it is located. The longest name we need is 14 char
acters. If they averaged 8 characters and we allowed for codes from 100
through 999, we could hold them in 7200 bytes of memory plus overhead.
Logically, that large a file should be out on the disk. For speed, we'd use a
relative file whose index was the area code and whose entry was the state
name. For that, we'd need 900 records of 14 characters, totalling 12,600
bytes plus overhead (side chains, directory). Given all the space on the
disk, that method should do the job. But we can do much better with a
little effort.

The first step is to look at area codes themselves. All have either 0 or 1
for the second digit, for reasons built into the switching system. If we
swap first and second digits, making 213 into 123, we have a scheme in
which the 900 area codes compact into less than 200 (the magic number
for the packing function we've used before). We could use a subroutine to
do the job:

10X$=LEFT$("O"+MID$(STR$(X),2),3)
12X$=MID$(X$,2,1)+LEFT$(X$,1)+RIGHT$(X$,1)
15 X=VAL< X$) : RETURN

(Line 10 is complicated because a leading zero is sometimes required.)
That routine transposes the first and second digits of a three-digit num-

62 4: Devices

ber, which is what we had in mind. And the routine is its own reciprocal
-since it just swaps two digits, it recovers the original by swapping
them back again. Just by using the swapping function, we cut storage
from 900 records to 200.

The next thing to look at is the names of the entries themselves. On
average, there are about 3 area codes per state. Therefore, we store each
state name three times. There are about 60 states, provinces, and other
areas to which codes are assigned. Suppose we build a file of those
names, hold it in memory, and then keep in our file of area codes only the
number of that entry. When we initialize the program, we read the state
names into an array from either DATA statements in the program or a se
quential file on the disk. (We could use a second relative file on the disk,
but that would slow things down. On a 1541 drive, we would have to
keep opening and closing the two files, which would be particularly slow
and would stress the drive.) We now save the 60 names once, then have
200 pointers to them in the relative file. If we kept those pointers on
disk, we might pack them with fnp and fnu, giving us a one-char,acter
record j in memory, we might prefer to use them as integers (two bytes
each) and save the packing and unpacking time, Depending on the appli
cation, we'll be dealing with about 700 bytes of storage instead of 7 -12K.

There is yet a final step we could use in packing the data into the
system. We could put the pointers (the number of the state or province in
our list) into a single-character string. Since the string is less than 256
characters long, it is legal. However, some of its characters cannot simply
be typed from the keyboard, so the string may have to be pieced together.

By now, the logic has gotten a lot more complicated, timing is a little
slower, and storage is a lot less. In the system with a 900-record relative
file, the logic was:

input the area code
send the code as the RECORD#
INPUT# the name

If we packed it as much as possible, we would first read in the file of names
and then use the following for each access:

input the area code
swap digits
find that record with RECORD# or MID$
retrieve the character
convert the character with ASC and fnu
use the converted number as the index to the name file

The mapping, converting and user-defined functions are complicated. If
you have plenty of memory and not much time, they're not worth the

4.8 Sorts and searches 63

trouble. But in many cases, the time to input the three digits is likely to be
longer than all that logic, so it won't be noticed. And there is a sort of law
in programming that the problem will always expand to fill memory, so it
is usually worth at least some of your effort to save space. Even in this
simple problem, we have taken a program that would require a disk or at
least 16K of computer and rewritten it to run in an unexpanded VIC 20
from cassette. At the other extreme, if we had a hard disk, we wouldn't
worry so much about storage space, access time, or opening several
relative files. If we were trying this simple problem on such a big system,
brute force would be a logical way to do the job.

4.8 Sorts and searches
Among the most common functions of advanced software are the storage
and retrieval of information. Those two operations are logical inverses of
each other. There are commercial file managers available to assist in the
tasks, but you will need to know how to design your own for many
applications.

The basic question to be asked in designing data files is whether they are
to be searched or sorted. In a sorted file, selected fields are designated for
sorting. A list is made for each field, running from the first to last record
by that field's ordering scheme (e.g., numeric or alphabetic). Each entry in
that list is called a "key." It points to a record in the main list. When a
record is added, its position in each list is found and its record number is
inserted in sequence in each place. To drop a record, its number is deleted
from each list. For a system with many small fields, those lists can be
larger than the file itselfj more often, they are of about the same size. Of
course, to use the record number, the file type must be relative, which
takes still more space.

A file which is searched for entries is similar to a card catalogue without
cross references. Usually, the file is ordered by one field-say, alphabeti
cally by last name. In order to find entries in another field, the whole file
must be searched by reading it from storage. That can take substantial
time for a large catalogue. There is no storage spent on lists of fields, and
the file can be sequential (saving still more space). Typically, updates to
the catalogue are merged into the file by copying it from one disk to
another in a dual drive. The burden on the drive is not severe since the
files are simply read in sequencej the head has little or no searching to do.
Still, the process is slow. For a large file (say, 10,000 records) it makes
sense to wait until there are many entries to be added or deleted (perhaps
50 or 100). The time used to add one record is about the same as that for a
hundred since most of it is spent just feeding records from one disk

64 4: Devices

through the CPU to the other. Merging into a large catalogue is the sort of
job one gives the computer to run overnight.

It is necessary to be able to search any file if you ever need to look inside
a field. To retrieve a record by anything on which you have not sorted, you
must search the whole file-whether it is sorted on other fields or not. The
less you know about how a file will be used, the less likely you are to set it
up correctly. Then you will have to build it all over again when you know
what sorting your customer really needs. Make sure that your file package
will support special searches. The odds are good that you will need one
someday on even the most completely sorted file.

Terminology in data management is more confused than in any other
aspect of microcomputing. Consider a collection of data files and their
associated lists (files) of sort "keys." It is reasonable to consider a "file
manager" to be a package of code which supports the maintenance of a
single data file and its correlated lists. Whether it is highly sophisticated or
simplistic, easy to use or demanding on the programmer, as long as it
works one data file at a time, it is a file manager.

A data base is a collection of data files with their individual and collec
tive lists. A II data base manager" will keep the multiple files within the
data base coordinated with each other and keep their lists linked as re
quired. Whatever the package of commercial software may be, the chance
that it is a data base manager is small. Software to coordinate multiple
data files is complex and demands more of the computer and disk systems
than most micros can manage. Even as simple a task as correlating a
mailing-list file with data on the accounts it contains is beyond the
capability of the commercial packages examined to date.

Sort keys may be kept on disk or in memory. On disk, access is slow but
storage is cheap. In memory, you need RAM to save time. Note that order
ing may be on a hierarchy of fields. H the primary field has multiple en
tries with the same value, they may be ordered by a secondary field, then
by a third, fourth, etc.

H a file has the following characteristics, you should sort it.

It is to be accessed by several fields.
You know from the beginning how it will be used.
It will fit comfortably on the disk, even with:

relative field overhead;
sort-key overhead.

It is to be updated on line.

How the file is to be updated is a key to designing it right. A sorted file is
best written one record at a time. The operator will intersperse entries
with retrievals, and will tend the system as it does its work. Each addition
to a sorted file takes many key accesses and significant time-usually

4.8 Sorts and searches 65

enough to be noticed, but not enough to take a coffee break. If there are
fifty updates at a time, the sort system is hard on the operator. A catalogue
is updated in batch, with plenty of time for coffee-or lunch. But the
operator need not watch the computerj all entries are made at once and the
machine will digest them as a group. So part of the choice of system
should be based on how it will be run.

The most important single factor in choosing the file structure is the
software. For a catalogue, you must build your own, start to finish. That
will take time, but give you complete control. For a sorted structure, you
can start from any commercial package. Your selection among them
should be based on your ability to interface the programs you are writing
with the files it supports. In practical terms, your program(s) must be able
to pull information from the files that their software maintains. Ideally,
the file manager should come with routines that tie your program to its
files and services. If it doesn't have the routines, you'll have to invent
them. Since the package seldom comes with enough information to do the
job easily, you may spend more time tying in to a purchased product than
you would building your own.

Before setting out to build a file manager, plan on spending substantial
time learni.ng the techniques. Commodore's Name Machine uses a very
simple catalogue ordered by a single field. After you understand how it
works, you might modify it for a secondary sort key of first name. Then
two entries with the same last name will be alphabetized by first name.
The next step is to discard cassette capability and to convert the file the
program now manipulates in memory into a relative file on disk with a
single ordering key. If you get through that stage, try a second key with ZIP
code first (that's necessary for the large files that a business requires). After
those exercises, you should be ready to design and build your very own file
manager. If you did a good job, that last exercise may be marketable in its
own right, especially if you tie it in to other useful software the way that the
Word and Name Machines are linked.

•

I
5

SUPERLIST an
Example & a
Tool

A printed listing of a program is a necessary tool in understanding it. You
know how to print such a listing, and know how much it means for both
development and analysis of the code. But a conventional listing lacks
some features that would help even more. If you had your choice of
features for it, you might ask for these:

1) Spell out special characters.
2) Cross reference line numbers by those that call them.
3) Cross reference variables by line references.
4) Print a code number to check different versions.

The first item on the wish list is clear enough: those who use Com
modore listings all the time know what reverse q's and s's mean. But
they are hard to read from a dot-matrix printer, require reverse printing
(impossible on letter-quality), a:nd communicate little or nothing to
those unfamiliar with the specialized jargon. So, let's convert reverse q
into something like c-d, reverse e into wht, and so on. In the process,
we'll get a listing that can be put out on a letter-quality printer. In a
word, it will be suitable for publication.

The second wish is a little less obvious. When you know who calls a
line, you get several useful data. First, if you want to discard a line, you
had better be sure that nothing is trying to use it (GOSUB or GOTO).
Next, if there are many calls to a line, you may want to make it con
spicuous-say by numbering it x 500. Third, routines that are used a lot
are worth extra effort to optimize. When memory is very tight, you may
even want to save some by moving a small routine that's called often
into the two-digit area; it will save a couple of bytes each call. But the
most important use is when the program goes wrong. What you often

67

68 5: SUPERLIST -an Example & a Tool

need to know is: how did it ever get here? The line-number cross refer
ence is often the only way to answer that question.

Variables need cross reference even more than line numbers. Do you
use a variable thirty times? Then make sure it's only one character long.
What working variables are available to add a feature in a routine? Check
the cross reference. And when your program goes sour, you can figure out
what code could have clobbered your pointer by looking at all of its
references.

The jargon for a number which characterizes a program is "checksum."
Its essential property is that two programs with identical checksums are
very likely to be the same. To say almost the same thing in another way,
it is unlikely that a change to the program will leave the number the
same. Then assume that you have a simple program which computes
the checksum. Run it against two programs to find out if they are
(probably) the same. The more complex the checksum, the less likely it
is that it will miss a program change. On the other hand, the more com
plex it is, the slower it runs and the less likely it is to be used. A practical
compromise for microcomputer software is a simple, exclusive OR of the
bytes-as long as sabotage is not suspected. Nothing less than byte-for
byte comparison will guarantee that two programs are identical, but bar
ring a deliberate effort to make undetectable changes, eight bits should
do the job well.

The need for SUPERLIST became apparent as soon as advanced soft
ware was attempted in BASIC. Most of its functions are handled by the
compiler for FORTRAN or COBOL; they are much more difficult in
languages such as FORTH. In the late 70's, the need for SUPERLIST
emerged when coding the 8K PET. The version presented here has been
recoded completely to include BASIC 4.0 and color commands. It il
lustrates many of the features of advanced software as developed in the
earlier chapters. The program is both an example of advanced software
and a tool to help you develop advanced software for yourself. One way
to demonstrate what it does is in Section 5.7 SUPERLISTing-it has been
run on itself.

5.1 SUPERLIST initialization
Entry to the program is at the first line (10); requiring the user to RUN
nnnn is poor human engineering. So, line 10 carries GOT09000 (the start
of initialization) and the copyright notice.

Line 9000, like all major entry points, contains only the remark describ
ing its function-initialization. The next line sets the parameters which
the rest of the program uses: 10 (lines of text per page), lp (total lines per

5.1 SUPERLIST Initialization 69

page), r$ (chr$(13)), a convenient base number (bs = 2 t 15 - 1), and a user
defined function. The function is called "fnx" and provides an exclusive
OR (XOR), a function omitted from BASIC but needed for our checksum.
Note that the XOR function itself is binary (two arguments), but can be
used here as unary (one argument), since one (s) is constant in all applica
tions. That argument will be the eight-bit checksum that characterizes the
program.

To set format at 40 columns and literals mode, 9020 and the start of
9030 should be familiar (see 1.3 Interoperability). The rest of 9030 clears
the screen for input of initialization data. A string of 39 spaces (b$) is
generated in 9050, which also opens the disk command file. A dateline
(dt$ 9060) is input using the line-in utility at 8200.

Program planning recognized that we had to translate stored bytes from
the program into special characters (within quotes) and commands. Two
string arrays are dimensioned for the purpose: q$ within quotes, k$ for
commands (9070). The ninety commands available through BASIC 4.0
are contained in DATA statements (10000-10060) and read into k$ at
9070. To translate nonprintable characters, data are read from 10070-
10100 into the appropriate parts of q$ at 9080; since the //pi" character
prints differently on different printers, chr$(255) is entered separately.
Other characters will print as their ASCII values when needed. Note that
the DATA statements include values for all machines; only two have dif
ferent meanings among the machines, and they are entered in their
VIC/64 incarnations, not those for CBM.

Now that all predefined data are established, we set a working variable
(x 9100) to the amount of FREe memory. We save about lK for working
space, and dynamically allocate the rest to arrays for storing the results of
our analysis. The information we want to save is the name of a variable or
a line number, and the lines at which it is referenced. For printout, we
need up to 5 characters for each field. Therefore, we could squeeze 13 col
umns of information onto an 80-column page (leaving a blank space be
tween fields), but that would be very crowded. For a clean display, we'll
use 11 columns per page-the name of the referenced item and up to ten
references per line of printout. We had to solve the print question first in
order to design the arrays. The problem is to have enough elements to han
dle even a very large program in a computer of moderate size. What we
will use is one string array (z$) for the names of the referenced items, and
an integer array (z%) dimensioned ten wide for the references themselves.
Each reference then has up to 6 bytes for its name plus 2 for its address plus
twenty for the references to it. To provide a small cushion for garbage col
lection (expanded VIC and, especially, 64), we model the array as needing
30 bytes; strictly, 28 is enough, but the few extra elements are not likely
to be worth the push. Subtracting 31 elements from the arrays assures us

70 5: SUPERLIST -an Example & a Tool

of 930 bytes for working storage. (It looks like 32 elements, but remember
the zero index.) Finally, we exit to the main entry point of the program,
line 100.

It is arguable whether we should name the target program in initializa
tion, carrying the logic in the 9000's through line 170 or even 190. The
question is only a matter of taste and judgement, and is of little practical
importance. Breaking it here puts most of the one-time operations at high
line numbers where they belong. If you wanted to modify the program to
permit superlisting more than one program per initialization, the entry is
at the right place. If you try that, you will discover that the delay to
reinitialize the arrays is so great that it won't be worth the effort.

5.2 SUPERLIST utilities
SUPERLIST is a relatively simple program which needs little user interac
tion. Many of the utilities here have been carried over from more ad
vanced products because they serve needed functions and have already
been checked outi the most efficient SUPERLIST coding would simplify
those utilities, at substantial cost in generality. In many cases,
SUPERLIST was designed for clarity rather than efficiency. It can be made
faster and smaller, but might be less understandable after that kind of
"optimization. /I

Two routines are assigned low line numbers for speed of execution.
Lines 20-27 GET a single character from the keyboard. Entered at 20, the
buffer is emptied (20) before the character (c$) is awaited (25), then re
turned with its ASCII value (c). Entry at 25 allows the buffer to hold
characters typed in while earlier ones are being digested.

The users of the character-input logic are "Hit a key" (8010), yes/no
logic entered at 8050, single-character input (8100-not needed in
SUPERLIST), and line-in logic (8200). The logic from 8080 through 8095
is one way to require a RETURN to accept single-character input. It allows
the option of deleting the character, but accepts no keys except RETURN
and DEL.

Line input (8200-8290) uses character input to permit commas and co
lons (precluded by INPUT). A line must be ended with a RETURN which
is tested at 8220. A deletion from a non-null string is handled in 8230.
Along with all other nonprintable characters, DELete of a null string is
rejected in 8250. The quote mark is rejected at 8260. The longest input
string is 18 characters: a drive number, a colon, and up to 16 characters of
program name. (The dateline is arbitrarily limited to the same length.) If
the string is less than 18 characters long (8270), an acceptable character is
printed and tacked onto the working string (x$). If the string is already its
full size, the program continues to wait for a RETURN or DEL (8280).

5.3 starting a SUPERLIST 71

Two other routines approach the status of utilities. The one that out
puts a line and ejects a page (7900-7960) keeps count of lines, then pages
as required or on a call. A prefix string (s$) is attached to the print string
(p$) to set case and (if you code it that way) to set the left margin. The
string is printed and nulled (7920), the line counter (1) is incremented, and
the routine returns if the page is not yet full. If all allotted lines have been
printed, enough null lines are printed to provide bottom and top margins
(7950). That is also the entry for a forced page eject; by testing for I
(implicitly, > 0), we avoid ejecting a blank page if we have just finished a
page of text when the call comes.

The other semi-utility is the routine (30-34) that reads in two bytes,
XORs them into the checksum, and creates a number from them for
memory address or line number. Note that the logic is complicated by the
fact that the ASC function bombs on a null string, while the disk returns a
null string for a character zero. This routine really doesn't need the high
speed it's given, but it is as logical to put it here as anywhere else-and the
speed doesn't hurt. Along the same lines, if you didn't use buffering of in
put in the line-in logic (8200), you would have to give it smaller line
numbers to avoid typing too fast for processing.

5.3 starting a SUPERLIST
The main entry point (100) ensures that the primary file is closed, then
sets up the screen. The program name (pr$) is input through a call to line
input (8200 @ 110); clearing the checksum (s) is unnecessary for the pro
gram as coded, but it clarifies operations a bit. The program file is opened
to read (120). Possible errors trapped at this point include file not found,
read error, and even device not present (tum the power on first).

Note that there are many options in entering a program name. You may
use the pattern-matching capabilities, but remember that the name is not
checked from the directory-what's printed at the top of your
SUPERLISTing will use asterisks and question marks if you typed them
in. If you wish, you may specify the drive in the name; if you do, the
number and colon are deleted (160) between opening the file and printing
its name. If you give a blank name (after deleting drive number), disk
error won't trap it; the program does so (170) with an appropriate
message. Meanwhile (130), an option is offered for graphics printout.
The print prefix string (s$) is either null or cursor-down, the character
causing literals print, depending on your answer. If you want to put a left
margin on your page, add blanks to the definition of s$.

The last operation before starting processing of the individual lines
(190) is to complete the display and to read the first two bytes of the pro
gram, the start-of-BASIC pointer SAVEd with the program. As written

72 5: SUPERLIST -an Example & a Tool

here, the checksum includes that pointer. Consequently, the checksum
will vary with the machine that did the SAVE. If you want to be indepen
dent of that term, just reset the checksum (s = 0) after GOSUB30 in 190.

Before looking at line-by-line logic, it's worth a moment to check out
the thinking behind it. The easy part of the process (given what we've
already put into the arrays) is translating all those tokens. The tough part
is handling line numbers and variables. We can recognize a variable by
the fact that it begins with an alpha character. The only other ways to
have alphabetics in program lines are in quotes, remarks, and data
statements. Therefore, we need flags for start of a variable, being in
quotes mode, being in a remark, and being in a data statement. In con
trast, a line number is recognizably numeric, but not all numbers
designate lines. A line flag is set after specific commands: GOTO, RUN,
GOSUB, and THEN. When a byte other than a digit is found, the line
number is complete.

5.4 processing a line
The first two bytes of a line are the address of its successor-unless it's
the line after the end of the program, when they are both nulls. To pro
cess a line, we get the first two bytes (1010) and enter wrapup if they
can't be the address of the next line. Otherwise (1020), we assign the cur
rent line's address to n and the next one's to m. Then we pick up the cur
rent line number (In) and initialize all the flags needed to process the line
(qf, df, rf, vf, 1£). Note that each flag has a value of 1 if "true" and of "0" if
false. Thus, df = 1 in a data statement, rf = 1 in a remark, qf = 1 in
quotes modej vf = 1 if a variable is being named, 1£ = 1 if a line number
may be starting next. The last jobs in 1020 are initializing the print string
(p$) with the line number (bracketed with blanks) and the reference
string (z$).

In order to display on the screen what the computer is doing, 1030
prints the line number. Then the rest of the line is input (x$) in a single
FOR ... NEXT loop. By processing the line as a whole, this version of
SUPERLIST has several advantages over the byte-at-a-time version built
several years earlier. However, most processing operates on single bytes,
so the rest of line processing (1000-1800) is essentially within a FOR ...
NEXT loop indexed by i through the length of x$. We process each byte in
terms of its ASCII value (c), first by XORing it into the checksum (s), then
by reconstructing its character (c$). While later processing may alter c$, a
REMark leaves it unchanged for printing. If the current character is a quote
(1050), the quotes flag is toggled and no further processing occurs. The

5.4 processing a line 73

quote is one of many cases where syntax errors could be caught but aren't.
A line:

20 a=b"

will be a syntax error since the variable (b") is illegal. But it can be stored,
and SUPERLIST will not flag it. If you wish, you can expand SUPERLIST
to check for all sorts of syntax errors instead of having to run test cases-in
that way, you could accomplish many of the verification functions of a
compiler.

Information in quotes is processed separately (1060), as are commands
(1080). The code in the 1100's processes unshifted characters not in
quotes or remarks. If the line flag (If) is set and the current character is
numeric, the character is tacked onto the string (z$ 1100). If the character
is not numeric, line-reference is ended by calling 1600 (1110); other than
for a syntax error, this handles the cases of comma (ON ... eOTO) and a
variable after THEN. If a variable is currently flagged (1130) and the cur
rent character is alphameric, it is tacked on. Although a variable usually
ends with a command or end of line, it can be terminated by a comma or
right parenthesis; they are handled by calling 1500 (1140). The variable
flag (vf) is set (1150) if the character is alpha and no flag is set. Finally
(1160), a colon resets the data flag (df), since that is one way to end a
DATA statement. (Note that only the end of a line terminates a REMark.)

Within quotes (1400-1420), the string from the quote array (q$) is
assigned to c$ for printing. Ending a variable (1500-1520) begins by chop
ping off extra characters (1510) if there were more than two, then tacks on
the current character if it is part of the variable ($, %, or left parenthesis).
If it was $ or %, then a left parenthesis is also added if it is next on the line
(1520). The rest of the processing matches that for variables (1600-1690).

Since the line flag (If) was set when the leading command was given, in
tervening spaces may occur on a line number. They are handled in
1600-essentially by ignoring them. A null line number is possible after
THEN; in that case (1610), the flag is reset before exiting. This would also
be a good point at which to check for legality of line number (val(z$) <
64000) if you wish. Now a counter (q) is used instead of a flag to identify
one of three conditions: a new line of ten entries is found for the reference
(q = 0); an old line has room for it (q = 9); or there is no place leftto put it
(q = 5). The counter is initialized (1620) and a loop initiated (index j)
among the references already encountered (z$ array). If we get through the
used entries without success, we use anew one (1620). If we find the name
in the list (1630) with space for the entry, we use that. If there is no room
(1640), we report the problem and continue with the rest of the work. In
1650, the program finds the first available place to put the entry. The
reference that is stored (z% 1660) is complex. An integer array can count

74 5: SUPERLIST -an Example & a Tool

from about -32K to +32K. Line numbers range from 0 through 63999, so
they need to be massaged before insertion. The easy way would be simply
to subtract a suitable number, like 32767, from the line number and store
the result. The problem is that that would let you store a 0 (for a true line
32767). That's the value when the array is initialized, so it could not be
detected easily. Therefore, we bias the value by adding 1 (subtracting -1)
if the stored value is not negative.

The last major operation to end reference processing is to reset the line
number flag (1680) if the current character is not a comma (remember
ON ... GOTO and ON ... GOSUB). Finally, the variable flag is always
reset and the reference string cleared before the return (1690).

Processing a command is surprisingly simple. If the variable flag was
set, the variable is wrapped UPi if the line flag was set, the line number is
wrapped up. Then the current character is replaced by the string in the
command array (k$). Note that using ON ... GOSUB allows all this and
more to be done in one line (171 0). If the command is GOTO, RUN,
GOSUB, or THEN, the line flag (1£) is set. If the command is DATA, the
data flag (df) is set. Finally, if the command is a remark, we set the re
mark flag (rf 1740).

At this point (1800), we have completed processing that byte, and c$
has the information to be added to the print string. If there's no room to at
tach c$ and keep an 80-character print line, the existing line is printed (and
nulled) by calling 7900. The contribution from the current byte is at
tached (1810) before the next byte is processed i when the line is finished,
variables and lines are wrapped up if needed, the remaining print line is
output, and the next line is called for by moving back to 1000.

5.5 Printing the references
When the next line is at an impossible address, the processing of lines ex
its to wrapup (2000). The disk file is closed (2005), the display is prepared
for references, and a fresh flag (f) is cleared to indicate that line references
are to be printed. A blank line is printed (2010), then the checksumi a
routine that puts out a new page with a header (2900) is called to start the
variable references. Rather than searching all of the possible entries (v),
we first find the last entry (q 2020). The work string (x$) is set larger than
any reference name (2040)i anything after "z" would do, but chr$(255) is
impressive. The list of string names is scanned (2040-2050) to find the
smallest one still in iti when all have been output, the program goes to
2500 for the final operations-finishing the page, ejecting a page at user
option, and saying" Goodbye!"

Before putting out the line, a check is made (2060) for the first variable

5.6 what doesn't work 75

to be printed. To maximize interoperability, lines are formatted instead of
using printer capabilities. Columns are right-justified for easy reading,
beginning with the reference's name or number (2070). The reference is ef
fectively removed from the array (z$) by setting it to chr$(2SS). For each
non-null entry in the reference array (z%), the print string (p$) is extended
(2080). When the string is complete (2090), it is printed and the next
reference is sought.

You may want to modify the program in the area of printing line
number references. One look at the output shows you that the numbers
are in ASCII order, not numerical. That means that references to line 30
are displayed after those to 1000. By using the VAL function, you can
order them numerically. However, you must remember that there can be a
line 0, and you will find the logic several lines longer than that given here.
Similarly, you might investigate using separate pages for the different
types of variables and for arrays. All the information you need to make the
changes is here, but you may find doing it more complex than you expect.

5.6 What doesn't work
SUPERLIST has a number of anomalies which could be distracting in
some applications. Correcting them is straightforward-usually requiring
just setting and testing flags in appropriate places. But testing those flags
will take time, and whether it's worthwhile depends on the application.
The obvious limitations of the program as documented are listed below.

The command TO is unique in Commodore BASIC. It designates the
upper bound of a FOR definition, and it completes a two-word command:
GO TO. SUPERLIST doesn't have a flag set when GO is encountered and
tested when TO is found. GO TO is functionally identical with GOTO,
and is followed by a line number; otherwise, TO is followed by a number
or a variable. Since GO TO offers no advantage over GO TO and takes two
extra bytes, the omission is probably not significant.

If you set a flag for a number, then you can catch the fact that "eS" is not
a variable in "leS." As the program is written, you will see a spurious
variable.

A user-defined function introduces a spurious array "variable."
SUPERLIST itself uses FNX (defined in 9010) for the XOR operator. Again,
a flag could be set after the FN command to indicate that the next character
is not part of a true variablej on the other hand, if you don't use a real X(
array, having the program show you where FNX is used may be
constructive.

BASIC 4.0 has a set of unique expressions which give rise to spurious
"variables" in SUPERLIST. (In fact, it was failure to consider all of them

76 5: SUPERLIST -an Example & a Tool

that led to the bug in formatting a disk with a variable id.) When a file is
OPENed under 2.0, all the special information needed is put in quotes, as
though it were part of the name. DOPEN the same file (BASIC 4.0), and
you put that information into the line itself. As a result, one can find
spurious "variables" such as "d1," "w," and "1123" in a SUPERLIST. In a
HEADER command, you can generate a spurious "ix4" if you format the
disk within the program. The solution is straightforward: a BASIC 4.0
flag, set on any appropriate command, suppressing variables except
within parentheses, and cleared at the next command.

LIST presents an anomaly in its use of line numbers. LIST 123-456 is
not SUPERLISTed as having line references at all. There are two reasons
for that: neither 123 nor 456 is really a line number, and LIST does not
belong in finished code. The numbers following LIST and the dash are
bounds for line numbers; if the numbers don't exist, no error is generated.
Consequently, omitting the logic for the LIST command is a good design
decision, not simply a convenience.

Commodore offers a set of special characters which are not
SUPERLISTed. They are the graphics characters which do not convert to
uppercase letters; on a PET, they include shifted numerals and punctua
tion. On CBM, they are not accessible from the keyboard at all. On a 64,
they are reached with the Commodore key. Since there is no obvious nota
tion for those characters, the version of SUPERLIST shown here will print
question marks for them. If you have a preferred notation, just enter it in
the appropriate DATA statements.

Since SUPERLIST is in BASIC, you have the option to supply the miss
ing logic for any or all of the above. If your code is not interoperable, you
will probably want to use BASIC 4.0. Then add the flag and the logic to
do the job you want. Trap GO TO if it's worth the effort; figure a solution
for LIST if you think that that would be worthwhile. But recognize that
those changes will slow the program further and will enlarge it too.

When you have finished with your own version of SUPERLIST, you
may want to compile it for your primary computer. In BASIC, it runs
slowly. Most of the time is spent finding places to put variables and line
numbers. A large program may take 30 minutes or more to SUPERLIST
in BASIC but be limited by the printer after compilation-to 5 minutes
or so. If you plan to compile, then the extra time required to handle the
special cases above won't be significant.

5.7 SUPERLISTing
SUPERLIST was modified before it was mn to make the listing in this
section. The changes indicate what you may want to do on rare occasion,

5.7 SUPERLISTing 77

or an option you might want to build in for yourself. The difference be
tween this listing and an "ordinary" one is that this was intended for
publication.

Getting wide margins is simple enough. Left margin is set by adding
spaces to s$ in 130. The right margin is set indirectly-by changing the
number of characters per line (set at 80 in 1800). To get 6-character
margins, add six blanks to s$ and set the line limit at 68 in 1800. Of
course, references can still take 66 characters. The 8300 printer has a
number of features that will surprise you if you're familiar with the dot
matrix variety. The one of immediate interest is that its underscore
character is not the shifted" $" but the left arrow. The shifted /I $" prints
as "$." We can't just put the correction into the q$ array since ,it would
appear in brackets. This listing was generated by adding the line:

1415IFC=164THENC$="

followed by a left arrow. Note that the arrow simply isn't on the print
wheel; you can't get there from here. Since it can only appear legally in
quotes, you could add it to the q$ array. The same thing could be done for
other special characters, and you could build a version of SUPERLIST
just for formal printing on the 8300.

Some problems with printers have no practical solutions. The easiest
demonstration is the character" pi," which can appear on a program line.
It looks like a command and in some senses behaves like one. If you put a
special trap in the command logic (1700' s), you will slow down the pro
gram significantly. For most purposes, the slowdown isn't worth the
small problem of interpolating a pi. If you disagree, write your own
version.

There are some obvious variations on the theme of SUPERLIST that are
included on the disk you will get on returning the card. CHECKSUM is a
fast and simple program that computes an 8-digit checksum matching the
one from SUPERLIST. It will run on a VIC if you remove the formatting.
PROGRAM COMPARE reports the line numbers that differ between two
programs; it is useful in identifying different versions when they have
different checksums. SUPERLIST takes about 20 minutes to SUPERLIST
itself. It is CHECKSUMmed in about 2, and can be compared with
another version in about 6. If you want to compile CHECKSUM or
SUPERLIST, note that some compilers won't handle the dynamic dimen
sioning used in those programs. A compiled SUPERLIST can be limited
in speed by the printer-it should run about five times as fast as the inter
preted version.

78 5: SUPERLIST -an Example & a Tool

superlist Operational

10 goto9000:rem (c) 1982 by m richter 90064
20 getc$:ifc$goto20:rem empty buffer
25 getc$: ifc$thenprint" <c-1>";: c=asc (c$) : return
27 print" <c-l>";:goto25
30 get#l, c$: x=O: 1£c$>" "thenx=asc (c$) : s=fnx (x)
32 get#l, c$: c=O: ifc$> ''''thenc=asc (c$) : x=x+256*c: s=fnx (c)
34 return
100 closel:print"<clr>","<rvs> SUPERLIST ":rem main entry
110 s=O:print"<c-d>Program name?":gosub8200:pr$=x$
120 openl ,8,0,pr$:input#8,x,x$:ifxthenprintx$:gosub8000:gotol00
130 print"<c-d>Graphics printout";:gosub8050:s$="":ifithens$="

<c-d>
160 ifmid$(pr$,2,1)=":"thenpr$=mid$(pr$;3)
170 ifpr$=""thenprint"<c-d>The program needs a name":gosub8000:

gotol00
180 open4,4:print#4,sprleft$(b$,40-len(pr$»"<c-d>"dt$:print#4:

1=2
190 print"<c-d><rvs>current line<c-d>":gosub30:m=x:rem start of b

asic
1000 rem process a line
1010 gosub30:ifx<1024goto2000:rem end
1020 n=m:m=x: gosub30: In=x: qf=O: df=O: rf=O: vf=O: If=O: p$=str$ (In)+"

":z$="
1030 print"<c-u>"ln:x$="":fori=n+4tom-2:get#1 ,c$:x$=x$+c$:next:

get#l ,c$:rem line in
1040 fori=ltolen(x$):c=asc(mid$(x$,i»:s=fnx(c):c$=chr$(c):ifrf

goto1800:rem rem
1050 ifc=34thenqf=1-qf:goto1800:rem quote mark
1060 ifqfgoto1400:rem in quotes
1080 ifc>127goto1700:rem command
1100 iflfthenifc>47andc<58thenz$=z$+c$:goto1800:rem add digit
1110 iflfthengosub1600:rem end line
1130 ifvfthenif(c>47andc<58)or(c>64andc<91)thenz$=z$+c$:goto1800:

l"em add char.
1140 ifvfthengosub1500:rem end variable
1150 ifc>64andc<91thenvf=1-df:z$=c$
1160 ifc=58thendf=0:rem colon
1170 goto1800
1400 rem within quotes
1410 ifq$(c»""thenc$="<"+q$(c)+">
1 420 goto1800
1500 rem end of variable
1510 z$=left$(z$,2):ifc=36orc=37orc=40thenz$=z$+c$:rem $ ~ (
1520 if(c=36orc=37)andmid$(x$,i+l ,1)="("thenz$=z$+"(
1600 ifc=32andz$= thenreturn:rem leading space in line reference
1610 ifz$=""goto1680
1620 q=5:forj=Otov:ifz$(j)=""thenz$(j)=z$:q=0:k=j:j=v:rem new slo

t
1630
1640
1650
1660
1680
1690
1700
1710
1720
1730

ifz$(j)=z$andz~(j,9)=Othenq=9:k=j:j=v:l"em old slot
nextj: ifq=5thenprint"<rvs> File full <c-u>": goto1680
forj=Oto9:ifz~(k,j)=Othenq=j:j=9
nextj:z~(k,q)=ln-bs-(ln>=bs)
ifc<>44thenlf=0:rem not comma
vf=O:z$="":return
rem command
onvfgosub1500:onlfgosub1600:c$=k$(c-128)
ifc=137orc=138orc=1416rc=167thenlf=1 :z$="
ifc=131thendf=1 :rem data

5.7 SUPERLISTlng 79

1740 ltc-143thenrf-l :rem remark
1800 ltlen(p$)+len(c$»80thengosub7900
1810 p$.p$+o$:nextl:onvtgosub1500:onltgosub1600:gosub7900:gotol00

o
2000 rem wrapup
2005 cl08el :print"<c-u><c-u>"b$:prlntb$:prlnt"<c-u><rvs>Now print

1ng<c-d>":f=0
2010 gosub7900:p$="<c-d> CHECKSUM: "+str$(s):gosub7900:p$="<c-d>L1

ne-number":gosub2900
2020 for1=vtoOstep-1 :1fz$(i»""thenq=1:1=0
2030 next1
2040 xS="<pi>":fori=Otoq:lfz$(I)<xSthenj=l:x$=zS(I)
2050 nextl:1fx$="<pl>"goto2500
2060 iff=Oandasc (x$) >57thenp$= "<c-d>Varlable": gosub2900: f=1
2070 p$=left$ (b$, 6-len(xS))+x$: z$ (j)= "<pi>": print "<c-u> "p$: for1=0

to9
2080 x=z~(j,i):lfxthenx$=str$(x+bs+(x>0)):pS=p$+left$(b$,6-len(x$

))+x$
2090 nextl:gosub7900:goto2040
2500 rem the end
2510 gosub7950:print"<c-d>Eject a page";:gosub8050:ifi=Othenl=.1:

gosub7950
2520 close4:print"<0-d>Goodbye!":end
2900 gosub7950:p$=p$+" references":gosub7900:goto7900:rem page wi

th header
7900 rem line out
7910 ifp$>""thenp$=sS+p$
7920 print#4, p$: pS= '"': 1=1+1 : lfl<lOthenreturn
7950 iflthenforl=ltolp-1:prlnt#4:next:l=0:rem page with blanks
7960 return
8000 rem utilities
8010 print"<c-d><rvs> Hit a key to continue";:gosub20:print:print

"<clr>":return
8050 xl-"yn
8060 print"? ";
8070 gosub20:for1=1tolen(xS):1fcS<>m1dS(x$,1,1)thennext:goto8070
8075 1=1-1 :pr1ntc$;
8080 getw$:1fw$=""thenprlnt" <0-1>"; :goto8080
8085 print" <c-1>";:1fw$=r$tnenprint:return
8090 ifw$=chr$(20)thenprintw$;:goto8070
8095 goto8080
8200 x$="":rem Input a string
8210 getc$:lfc$goto8210
8220 gosub25:1tc-13thenprlnt:return
8230 1tc=20andx$>""thenprintc$;:x$=left$(x$,len(x$)-1):rem delete
8250 it(127andc)<32goto8220:rem cursor control characters
8260 ifc=34goto8220:rem quote
8270 ltlen(x$)<18thenprlntc$;:x$=x$+c$
8280 goto8220
9000 rem init1alize
1~010 lp_66:l0=60:r$=chr$(13):bs=32767:deffnx(1)=(sori)andnot(sand

9020 print"<clr><grph><home><home><tset><c-d><c-d><c-d><c-d><c-d>
<c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>
<0-d><c-d><c-d><c-d><c-d><c-d><c-d>"spc(39) "<bset><wht >":poke59468
,14: rem format
9030 poke53272,2orpeek(53272):pr1nt"<clr>","<rvs> SUPERLIST "
9050 bS-" ":b$=bS+bS+bS:open8,8,15
9060 pr1nt"<c-d>Date11ne?":gosub8200:dtS=x$
9070 dimk$(127),q$(255):for1=Oto90:readk$(i):next

80 5: SUPERLIST -an Example & a Tool

9080 fori=Oto;l :readq$(i):next:fori=128to160:readq$(i):next:q$(25
5)="pi

9100 x=fre(0):ifx<Othenx=x+65536
9110 v=int(x/30-;2):dimz$(v),z%(v,9)
9190 goto100
10000 dataend,for,next,data,input#,input,dim,read,let,goto,run,if

,restore
10010 datagosub,return,rem,stop,on,wait,load,save,verify,def,poke

,prlnt#,prlnt
10020 datacont,llst,clr,cmd,sys,open,close,get,new,tab(,to,fn,spc

(,then,not
10030 datastep,+,-,*,/,"<pi>",and,or,>,=,<,sgn,int,abs,usr,fre,po

s,sqr,rnd,log
10040 dataexp,cos,sin,tan,atn,peek,len,str$,val,asc,chr$,left$,ri

ght$,mld$,go
10050 dataconcat,dopen,dclose,record,header,collect,backup,copy,a

ppend
10060 datadsave,dload,catalog,rename,scratch,dlrectory
10070 data?,?,stop,?,?,wht,bell,?,dls,enab,l-f,?,?,c/r,lit,tset,?

,c-d,rvs,home
10080 datadel,ldel,-end,?,?,sc-u,?,esc,red,c-r,grn,blu
10090 data?,?,?,run,?,fl ,f3,f5,f7,f2,f4,f6,f8, :c/r,grph,bset,blk,

c-u,off,clr
10100 datainst,lins,-st,?,?,sc-d,?,?,pur,c-l,yel,cyn, ~spc

CHECKSUM: 187

Line-number references

100 120 170 9190
1000 1810
1400 1060
1500 1140 1710 1810
1600 1110 1710 1810
1680 1610 1640
1700 1080
1800 1040 1050 1100 1130 1170 1420

20 20 8010 8070
2000 1010
2040 2090

25 27 8220
2500 2050
2900 2010 2060

30 190 1010 1020
7900 1800 1810 2010 2010 2090 2900 2900
7950 2510 2510 2900
8000 120 170
8050 1;0 2510
8070 8070 8090
8080 8080 8095
8200 110 9060
8210 8210
8220 8250 8260 8280
9000 10

Variable references

b$ 180 2005 2005 2070 2080 9050 9050 9050 9050
bs 1660 1660 2080 9010

c 25 32 32 32 32 1040 1040 1040 1050
c 1100 1100 1130 1130 1130 1130 1150 1150 1160
c 1410 1510 1510 1510 1520 1520 1600 1680 1710

9050

1080
1410
1720

5.8 SYS CHECKSUM 81

c 1720 1720 1720 1730 1740 8220 8230 8250 8260
c$ 20 20 25 25 25 30 30 30 32 32
c$ 32 1030 1030 1030 1040 1100 1130 1150 1410 1510
c$ 1710 1800 1810 8070 8075 8210 8210 8230 8270 8270
df 1020 1150 1160 1730

dt$ 180 9060
f 2005 2060 2060
i 130 1030 1040 1040 1520 1810 2020 2020 2020 2020
i 2030 2040 2040 2040 2040 2050 2070 2080 2090 2510
i 8070 8070 8075 8075 9010 9010 9010 9070 9070 9080
i 9080 9080 9080
j 1620 1620 1620 1620 1620 1630 1630 1630 1630 1640
j 1650 1650 1650 1650 1660 2040 2070 2080
k 1620 1630 1650 1660

k$(1710 9070 9070
1 180 2510 7920 7920 7920 7950 7950 7950 7950

10 7920 9010
If 1020 1100 1110 1680 1710 1720 1810
1n 1020 1020 1030 1660 1660
1p 7950 9010

m 190 1020 1020 1030
n 1020 1030

p$ 1020 1800 1810 1810 2010 2010 2060 2070 2070 2080
p$ 2080 2900 2900 7910 7910 7910 7920 7920

pr$ 110 120 160 160 160 170 180 180

q$(
1620 1620 1630 1640 1650 1660 2020 2040
1410 1410 9070 9080 9080 9080

qf 1020 1050 1050 1060
r$ 8085 9010
rf 1020 1040 1740

a 30 32 110 1040 2010 9010 9010
a$ 130 130 180 7910

v 1620 1620 1630 2020 9110 9110 9110
vi 1020 1130 1140 1150 1690 1710 1810
w$ 8080 8080 8085 8090 8090

x 30 30 30 32 32 120 120 190 1010 1020
x 1020 2080 2080 2080 2080 9100 9100 9100 9100 9110

x$ 110 120 120 1030 1030 1030 1040 1040 1520 2040
x$ 2040 2040 2050 2060 2070 2070 2080 2080 2080 8050
x$ 8070 8070 8200 8230 8230 8230 8230 8270 . 8270 8270
x$ 9060
x(30 32 1040 9010
z$ 1020 1100 1100 1130 1130 1150 1510 1510 1510 1510
z$ 1520 1520 1600 1610 1620 1630 1690 1720

z$(1620 1620 1630 2020 2040 2040 2070 9110
z%(1630 1650 1660 2080 9110

5.8 SYS CHECKSUM
A fast checksum program interoperable on all machines is clearly
desirable. The one is BASIC 2.0 on the demonstration disk which was
developed from SUPERLIST by stripping out all unnecessary code and
putting the XOR function in line. Then an alternative version, SYS
CHECKSUM, was written on the framework of CHECKSUM. It differs

82 5: SUPERLIST -an Example & a Tool

in using a machine-language routine to perform the XOR operation.
Three factors prompted the change. The desire to:

• Demonstrate using machine language within BASIC.
• Speed up the program (about 20%).
• Provide a display of the program's activity.

The logic for providing the XOR function is trivial in machine code. The
6502 family, like most microprocessors, offers the needed instruction
(EOR) in its set of primitives, with several addressing modes. The pro
gram POKEs the value to be XOR'd into the byte following the EOR
immediate instruction ($49). The rest of the "routine" is simply loading
the checksum into the accumulator before executing the EOR, then stor
ing the accumulator into the checksum's location. By putting the
checksum into a blank cell of the screen, we have a visible display of the
program's progress. We could put that display wherever we wished. Plac
ing it one pixel right of the top left corner of the screen is convenient. Put
ting it into the corner would be a problem: BASIC line 10 would have two
bytes = 0 (the low-order of the checksum address). If you LISTed the pro
gram after RUNning it, you would find strange line numbers, which
would be confusing. BASIC would still run correctly, since it uses the
next-instruction address instead of looking for the end-of-line marker.
Still, the O's would be inconvenient.

For the 64, the machine code is:

LDA $0401
EOR #($1016)
STA $0401
RTS

For PET or CBM, only the addresses are changed:

LDA $1001
EOR #($0416)
STA $1001
RTS

We can identify the type Gf computer by noting that start of BASIC on the
PET or CBM coincides with the start of the normal screen position on the
64. Our programs control both what's in BASIC and what's on the screen.

In initialization, we have cleared the screen (9020) before we look at
1035 (9040). On the 64, we'll find 160, a reversed space. On PET or CBM,
we'll find 143, the first REM in line 10. Next (9050), we read into the nine
bytes following that REM the machine-language XOR program, then open

5.8 SYS CHECKSUM 83

the command channel to the disk and set s to the checksum site for 64,
and offset 1 to the location of the routine. If 1 is < 2000 (actually, 1040L
we reset the checksum site and POKE for literals on PET/CBM (9060).
Note that initialization may POKE any value after the EOR; the program
puts in the ASCII of each character as we get it. However, if we initialize to
0, the line would not list correctly until reading began. (We only POKE in
values for non-null characters, so we will never have a 0 after processing
starts.)

Since it only takes two lines to process the whole file, they're put right
up at the top of the program (12-14). Of course, we don't have to XOR a 0
into the checksum. On the other hand, we want to look for three con
secutive O,s to find the end of the program. Line 12 handles both jobs
quickly. In 14, the ASCII value of the current character is POKEd into its
location (lL then the routine is called with SYS(s). It really is that easy.

We could have used the USR function, but that requires moving the
argument from the floating-point accumulator in memory to the pro
cessor,s accumulator register. That means extra code and another location
to select depending on the computer in use. And it offers no advantage
over SYS in this case. There are more alternative designs in a typical
machine-language routine than in its BASIC equivalent, and selecting
among them is seldom as simple as choosing SYS over USR in this pro
gram. The 20% speedup that machine language gives in CHECKSUM
would probably not be worth the time to write the extra code if the pro
gram's purpose were simply to compute a checksum. The effort is
justified by its other function-as an example of machine code embedded
in a BASIC program.

eys checksum Operational

10 got09000:rem :rem (c) 19S2 by m richter 90064
12 get#1 ,c$:ifc$=""thenget#1 ,c$:ifc$=""thenget#1 ,c$:ifc$=""then

close1 :return
14 pokel,asc(c$):sys(x):goto12
20 getcS:ifc$goto20:rem empty buffer
25 getcS:ifc$thenprint" (c-l>";:c=asc(cS):return
27 print" (c-l>";:goto25
100 closeT:print"(clr>","(rvs> CHECKSUM ":rem entry
110 print"(c-d>Program name?":gosubS200:pr$=x$
120 openl ,8,0,pr$:input#8,x,x$:ifxthenprintx$:gosub8000:gotol00
160 ifmid$(pr$,2,1)=":"thenpr$=midS(pr$,3)
170 ifprS=""thenprint"<c-d>The program needs a name":gosubSOOO:

goto100
1000 rem the works
1010 x=1-4:pokes,0:gosub12:print"<c-d>Checksum="peek(s)
1030 print"<c-d>Another program";:gosubS050:ifithenprint"<c-d>Goo

cbye!":end
1040 goto100
8000 rem utilities
8010 print"<c-d><rvs> Hit a key to continue";:gosub20:print:print

"<clr>":return

84 5: SUPERLIST -an Example & a Tool

8050 x$="yn
8060 print"? ";
8070 gosub20:fori=1tolen(x$):ifc$<>mid$(x$,i,1)thennext:goto8070
8075 i=i-1 :printc$;
8080 getw$:ifw$=""thenprint" <c-l>"; :goto8080
8085 print" <c-l>"; :ifw$=chr"f(13)thenprint:return
8090 ifw$=chr$(20)thenprintw$;:goto8070
8095 goto8080
8200 x$="":rem input a string
8210 getc$:ifc$goto8210
8220 gosub25:ifc=13thenprint:return
8230 ifc=20andx$>""thenprintc$;:x$=left$(x$,len(x$)-1):rem delete
8250 if(127andc)<32goto8220:rem cursor control characters
8260 ifc=34goto8220:rem ~uote
8270 iflen(x$)<18thenprintc$;:x$=x$+c$
8280 goto8220
9000 rem initialize
9020 print"<clr><grph><home><home><tset><c-d><c-d><c-d><c-d><c-d>

<c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>
<c-d><c-d><c-d><c-d><c-d><c-d><c-d>"spc(39) "<bset><wht >":poke53272
,2orpeek(53272)
9040 1=1024:ifpeek(1+11)<>143thenl=4096:rem 1035 in basic/screen

on pet/64
9050 fori=1+12tol+20:readc:pokei,c:next:open8,8,15:s=1025:1=1+16
9060 ifl<2000thenpokel-2,128:pokel+3,128:poke59468,14:s=32769:rem
for 64
9090 goto100
10000 data173,1,4,73,1,141,1,4,96:rem Ida & eor # sta & rts (&)

CHECKSUM: 167

Line-number references

100 120 170 1040 9090
12 14 1010
20 20 8010 8070
25 27 8220

8000 120 170
8050 1030
8070 8070 8090
8080 8080 8095
8200 110
8210 8210
8220 8250 8260 8280
9000 10

Variable references

c 25 8220 8230 8250 8260 9050 9050
c$ 12 12 12 12 12 12 14 20 20 25
c$ 25 25 8070 8075 8210 8210 8230 8270 8270

i 1030 8070 8070 8075 8075 9050 9050
1 14 1010 9040 9040 9040 9050 9050 9050 9050 9060
1 9060 9060

pr$ 110 120 160 160 160 170
s 1010 1010 9050 9060

",$ 8080 8080 8085 8090 8090
x 14 120 120 1010

x$ 110 120 120 8050 8070 8070 8200 8230 8230 8230
x$ 8230 8270 8270 8270

5.9 TURTLEWALK 85

5.9 TURTLEWALK
Advanced software in BASIC is used for many purposes: business, games,
education-any programming application. Where SUPERLIST is an ex
ample for software development and the following chapter deals with a
business application, a few pages are worthwhile for an educational pro
gram that borders on a game.

The concept of a program is difficult to teach. The idea is an abstraction,
like a "function" in algebra, and is not self-evident as apples, lines of
BASIC, or other tangibles are. Most modem languages are ill suited to
teaching the concept, however easy they are to use when the idea is
understood. PILOT is one language in which the idea comes through easi
ly, but it has few applications. Let's construct a "language" in BASIC that
teaches the idea in a PILOT-like way. We'll introduce the concept and
make it useful and entertaining. We don't want a language that resembles
BASIC or FORTRAN, since we want to talk about only the ideas of pro
gramming, not a particular implementation. We need a few simple
"instructions" that will be understandable to anyone. We'll use a
minimum of jargon to build a language and to give the user some exercise
with it.

TURTLEW ALK uses a figure for a "turtle" that has a recognizable direc
tion. It has "instructions" to point it in the cardinal directions, to move it
forward, and to locate it on a screen which may be cleared. Of the many
types of programming language, we'll use macros. Like a user-defined
function, a macro is an expression in the language which can be used as a
command.

Implementing TURTLEWALK is simple enough. The instructions are
extensive, and just about fill the 9000's after brief initialization. Since we
are trying only to teach the concepts, we don't need any real computing
power. As a result, we can limit the system to ten "programs" and can ex
pand each one to its primitives. If we wanted to build a language for use,
we would allow more macros and would save memory by deferring their
expansion to execution time. That program would run slower, but would
still be acceptable to the user. The program might interpret the macro as a
number when the assignment was recognized, then execute the numbered
routine when it was run. Since BASIC does not offer direct access to the
stack, nesting would have to be limited. More to the point, special code
would be needed to prevent infinite loops. The language might be "better"
that way, but not in terms of its purpose.

The TURTLEWALK language has elements of many standard ones, in
cluding BASIC, PILOT, FORTRAN, and FORTH. It is artificial and has no
other application. The only reason for its existence is TURTLEW ALK, so
there is no point to extending or expanding it. Consequently, the language

86 5: SUPERLIST -an Example & a Tool

and the program are built for the one purpose, and should be evaluated
only in terms of how well they accomplish it. TURTLEWALK might be
the first program of a series teaching BASIC, FORTRAN, or any other
language, or even teaching the role of the computer in society.

turtlewalk

10 goto9QOO:rem m richter
20 getc$:ifc$goto20

Operational

22 getc$:lfc$=""thenprint" <c-1>"; :goto22
24 c=asc(c$):print" <c-l>"T:return
30 x$="neswfchq":ifp$="1/thenreturn:rem execute p$
32 forkzltolen(p$):c$=mld$(p$.k.l):gosub8110:ifj>6thenk=256
34 ifj=50rj=6thenxs l :y=l :ifj=5thenprint"<clr><c-d> I/;:rem clear h

ome
36 ifj=4thengosub8200
38 ifj<4thend~j
39 printet(d);:nextk:return
40 return
50 getc$:lfc$goto50
52 getc$:ifc$=1/"goto52:rem no cursor
54 return
100 print"<clr><c-d> <rvs> turtle"
110 print"<c-d>type in your command or your program
120 print"<c-d>ending with <c/r>.<c-d>
130 a=-1:tl$="":gosub8300
140 ifasc(x$)=39gotol000:rem ? assign?
150 ifx$=""goto2000:rem wrapup
160 c=asc(x$):ifc=39goto300:rem macro
165 ifc=32thenprlnt" ";:x$=mid$(x$,2):goto150:rem space is ok
170 ifk%(c)=Ogoto500:rem invalid
180 iflen(p$)<255thenc$=chr$(c):printc$;:p$=p$+c$:x$=mid$(x$.2):

goto150
190 print"<rvs>A":print"<c-d>too much to remember! ":gosub8000:

gotol00
300 rem program name
310 j=0:forl=2tolen(x$):ifasc(mid$(x$.i))=39thenj=i:i=256
320 next:ifj<3goto500
330 y$=mid$(x$.2.j-2):x$=mid$(x$,j+l)
340 j=-l :fori=Oto9:ifp$(0,i)=y$thenj=i:i=10
350 next:ifj<Ogoto500
360 iflen(p$)+len(p$(l,j))>255goto190
370 print"'"y$"''';:p$=p$+p$(l .j):goto150
500 rem invalid character
510 print"<rvs>A":print"<c-d>try again":gosub8000:gotol00
1000 rem test assignment
1010 jsO:forls2tolen(x$):ifasc(mld$(x$.i))=39thenj=1:i=256
1020 next:ifj=Ogoto500:rem no next'
1030 ifmld$(x$.j+l .1)<>I/-"goto330:rem in-line
1100 rem effect assignment
1110 y$=mid$(x$,2,j-2):1fy$.. ""thenprint"<c-d>it needs a name":

goto1190
1120 x$amid$(x$,j+2):ifx$.""thenprlnt"<c-d>1 can't remember nothl

ng!":gotol190
1130 j=-l :fori=Oto9:ifp$(0,i)~""orp$(0,1)=y$thenp$(0,1)=y$:j=i:1~

9
1140 next:ifj<Othenprlnt"<c-d>l can't remember any IIlore!":gotol19

o
1150 aaj :print"' "y$"'=";: goto150

1190 gosub8000:goto100
2000 rem wrapup

5.9 TURTLEWALK

2010 ifa--1thenp$-"h"+p$:gosub8040:got0100:rem direot
2020 p$(1 ,a)-p$:goto100
2500 rem effeot assignment
8000 rem utilities

87

8010 pr1nt"<c-d><rvs> please touch a key to cont1nue";:got020
8040 gosub30:gosub9990:print:print"<c-d><c-d>do it again";:gosub8

050:1!j=Ogot08040
8045 return
8050 print"? "j:x$="yn
8100 gosub20
8110 fori=1 tolen (x$) : ifc$=mid$ (x$, i, 1) thenj = i-1 : i=256
8120 next:i!i<257got08100
8130 return
8200 printe$:ifd=Otheny=y+(y>1)
8210 ifd=1thenx=x-(x<38)
8220 ifd=2theny=y-(y<2;)
8230 ifd=3thenx=x+(x>1)
8240 printleft$(d$,y+1)spc(x)j:return
8300 x$="~:rem input a l1ne
8310 getcS:ifcSgot08310:rem olear buffer
8320 gosub22:1fc=13thenprint:return
8330 1fc=20andx$>""thenxS=left$(x$,len(x$)-1):printc$j:got08320
8340 ifc<>34thenif(cand127»31thenprintc$j:x$=x$+c$
8350 goto8320
8400 gosub50:fori=1to1en(xS):ifc$=mid$(x$,i,1)thenj=i-1 :i=256
8410 next:ifi<257got08400
8420 return
9000 rem initialization
9010 print"<c1r><grph><ho~e><home><tset><c-d><c-d><c-d><c-d><c-d>

<c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>
<c-d><c-d><c-d><c-d><c-d><c-d><c-d>"spc(39)"<bset><wht>":poke59468
, 1 2: rem format
9020 dimtS(3):fori=Ot03:readtS(i):next
9030 eS="<c-u> <c-d> <c-1><c-1><c-1> <c-d><c-1> <c-u><c-1>":d$="

<home><o-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>
<c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>
9040 dimp$(1 ,9):fori=Ot02:readpS(0,i),p$(1 ,i):next
9050 dimk~(255): x$= "cefhnqsw": fori=1 tolen(x$) : ~(asc (mid$ (x$, i)))

=1 :next
9080 print"<clr><c-d> <rvs> turtle ":print"<c-d>do you want i

nstructions"j
9090 gosub8050:ifjgot0100
9100 print"<c1r><c-d>h1! 1'm a turtle nt$(O)
9110 print"<c-d>1 can face in four d1rections:
9120 gosub9990:pr1nt"<c-d><c-d> north "tS(O)
9130 gosub9990:print"<c-u> south neStS(2)
9140 gosub9990:print"<c-u> east "eStS(1)
9150 gosub9990:print"<c-u>or west neSt$(3)
9160 gosub9990:print"<c-d><c-d>to tell me to go north, type n.
9170 printn<c-d>for south, s, for east, e, for west, w.<c-d>
9180 gosub8000
9200 printn(clr><c-d>let'a try 1t now. just type n, a, e, w
9210 printn<c-d>or q for quit when you want to go on.
9220 pr1nt n<c-d><c-d> n;:j=O:x$="neawq
9230 print n(c-l><c-l><c-l>"mid$(xS,j+1 ,1)" "eSt$(j);:gosub8400:

ifj<4goto9230
9300 printn<clr><c-d>i can also go forward if you type f.
9310 print"<c-d>when i reach the edge of the screen,
9320 print"(c-d>i just atop. as i move around the

88 5: SUPERLIST -an Example & a Tool

9330 print"<c-d>screen, i erase what was there.
9340 print"<c-d>try it now. ";:x=13:y=9:j=1:d=j:x$="neswfq
9350 printeStS(d);:gosub8400:ifj=4thengosub8200:got09350
9360 ifj<4thend=j:got09350
9400 print"<clr>~c-d>with some special hel~, i can remember
9410 print"<c-d>how you tell me to move. what i learn
9420 print"<c-d>is called a program. i need two new
9430 print"<c-d>commands: c to clear the screen and
9440 print"<c-d> h to send me home (top left).
9450 print"<c-d>when you hit a key, i will run a
9460 print"<c-d>program called 'square'.
9470 p$="c"+p$(l ,0):print"<c-d><c-d>'square'="p$:gosub8000
9500 gosub30:print"<home><c-d><c-d><c-d><c-d><c-d>the program cal

led 'square' said
9510 print:print" "p$:print"<c-d>c clear the screen
9520 print"<c-d>e turn east
9530 print"<c-d>ffff take four steps forward
9540 print"<c-d>sffffwffffnffff draw the right, bottom,
9550 print"<c-d> and left sides of the square.
9560 print"<c-d>do it again";:gosub8050:ifj=Ogot09500
9600 print"<clr><c-d>the reason i could show you 'square'
9610 print"<c-d>again is that i remembered it.
9620 print"<c-d>i learned its name when i saw it in
9630 print"<c-d>the single quotes (') and learned what
9640 print"<c-d>it said to do when i saw the = sign.
9650 print"<c-d>so, saying 'square'=
9660 print"<c-d>told me to learn the program and to
9670 print"<c-d>call it 'square'. notice that 'square'
9680 print"<c-d>did not need a q for quit. when a
9690 print"<c-d>program is over, it quits by itself.":gosub8000
9700 print"<clr><c-d>i can remember up to ten different
9710 print"<c-d>programs as long as they have different
9720 print"<c-d>names. one program can use another
97'30 print"<c-d>by putting its name on the right of the
9740 print"<c-d>= sign. let's have another program:
9750 sq$=p$(1,0):st$=p$(1,1):print"<c-d>'step'=efsf
9760 print"<c-d>'step' tells me to go across one and
9770 print"<c-d>down one, like going down one step of
9780 print"<c-d>a staircase. i can just step down the
9790 print"<c-d>screen - like this:":gosub8000
9800 p$="c"+st$+st$+st$+st$+st$+st$+st$+st$+st$+st$:gosub8040
9820 print"<clr><c-d>that program used a c for clear, then
9830 print"<c-d>ten steps by using 'step' ten times.
9840 print"<c-d>if we take the c for clear out of
9850 print"<c-d>'square', we can put it together with
9860 print"<c-d>'step' and call it '2 step'=
9870 p$="c"+pS(l ,2)
9880 print"<c-d>c'square"step"square"step"square'
9890 print"<c-d>when you're ready to watch it,":gosub8000:gosub80

40
9900 print"<clr><c-d>'2 step' is the third program i have
9910 print"<c-d>learned already. you may now tell
9920 print"<c-d>me to run one i already know by typing
9930 print"<c-d>its name <c/r>, or name a new one using
9940 print"<c-d>the = sign. don't forget to put the
9950 print"<c-d>program name in apostrophes - 'step'.
9960 g08ub8000:gotol00
9990 fori=Oto999:nexti:return:rem delay
10000 data"QI<c-l><c-l><c-l>U<c-u>W<c-d><c-l>
10010 data"QW<c-l><c-l><c-u>I<c-d><c-d><c-l>K<c-u><c-l>
10020 data"QK<c-l><c-l><c-l>J<c-d>W<c-u><c-l>

5.9 TURTLEWALK 89

10030 data"Q<c-l><c-l>W<c-u>U<c-d><c-d><c-l>J<c-u><c-l>
10050 data"square",effffsffffwffffnffff,"step",efsf,"2 step
10060 dataeffffsffffwffffnffffefsfeffffsffffwffffnffffefsfeffffsf

fffwtftfnffff
CHECKSUM: 21

Line-number references

100 190 510 1190 2010 2020 9090 9960
1000, 140
1190 1110 1120 1140

150 165 180 370 1150
190 360

20 20 8010 8100
2000 150

22 22 8320
30 8040 9500

300 160
330 1030

50 50 8400
500 170 320 350 1020

52 52
8000 190 510 1190 9180 9470 9690 9790 9890 9960
8040 2010 8040 9800 9890
8050 8040 9090 9560
8100 8120
8110 32
8200 36 9350
8300 130
8310 8310
8320 8330 8350
8400 8410 9230 9350
9000 10
9230 9230
9350 9350 9360
9500 9560
9990 8040 9120 9130 9140 9150 9160

Variable references

a 130 1150 2010 2020
c 24 160 160 165 170 180 8320 8330 8340 8340

c$ 20 20 22 22 24 32 50 50 52 52
c$ 180 180 180 8110 8310 8310 8330 8340 8340 8400

d 38 39 8200 8210 8220 8230 9340 9350 9360
d$ 8240 9030
e$ 39 8200 9030 9130 9140 9150 9230 9350

i 310 310 310 310 340 340 340 340 1010 1010
i 1010 1010 1130 1130 1130 1130 1130 1130 8110 8110
i 8110 8110 8120 8400 8400 8400 8400 8410 9020 9020
i 9040 9040 9040 9050 9050 9990 9990
j 32 34 34 34 36 38 38 310 310 320
j 330 330 340 340 350 360 370 1010 1010 1020
j 1030 1110 1120 1130 1130 1140 1150 8040 8110 8400
j 9090 9220 9230 9230 9230 9340 9340 9350 9360 9360
j 9560
k 32 32 32 39

k:'(170 9050 9050
p$ 30 32 32 130 180 180 180 360 370 370
p$ 2010 2010 2020 9470 9470 9510 9800 9870

p$(340 360 370 1130 1130 1130 2020 9040 9040 9040
p$(9470 9750 9750 9870

90 5: SUPERLIST -an Example & a Tool

sq$ 9750
st$ 9750 9800 9800 9800 9800 9800 9800 9800 9800 9800
st$ 9800
t$(39 9020 9020 9100 9120 9130 9140 9150 9230 9350

x 34 8210 8210 8210 8230 8230 8230 8240 9340
x$ 30 140 150 160 165 165 180 180 310 310
xS 330 330 330 1010 1010 1030 1110 1120 1120 1120
x$ 8050 8110 8110 8300 8330 8330 8330 8330 8340 8340
x$ 8400 8400 9050 9050 9050 9220 9230 9340

y 34 8200 8200 8200 8220 8220 8220 8240 9340
y$ 330 340 370 1110 1110 1130 1130 1150

5.10 DOMINOES
Some years ago, it was surprising to note that no one had put the game of
dominoes on a computer. A little analysis showed why it hadn't been
done, some thinking showed a solution to the problem, and a little work
put a predecessor of the program on the sample disk on the market.

Dominoes is played with "bones" that show two patterns of dots. Each
bone is unique, and each combination of zero through six dots on each
side is on one bone. The total number of bones is therefore 28. To display
a bone takes at least 5 x 8 pixels. Theoretically, all plays could go on one
side (or even one quadrant) of the screen-there just isn't room to show
them decently with only 1000 pixels.

In practice, the only important things about the bones already played
in the block game are the two active ends. Thus, we can make a display
with those ends shown in the center, and use just numbers to represent
those in the player's hand and those already played by both sides. Each
bone displayed takes two pixels (width) by four (height) for legibility. We
can put up to 20 bones on a row, so we need two rows to display those
already played. Each player starts with 7 bones, leaving 14 in the bone
yard. In the worst case, the computer could have all 7 bones with 6' s on
them in its starting hand. Then the player would have to draw all 14
before passing, making a total of 21, too many to show on one row. For
that very improbable case or the one requiring 20 bones in the player's
hand, we might want to have an extra row on the display. On the other
hand, the chance that that condition will ever arise is so low that it could
be ignored.

The DOMINOES program is fully operational and plays a pretty good
game. Its best play has three levels of logic: playa doublet if possible;
playa tile that has a successor if possible; pick at random from those that
can be played. Doublets are handicaps since they are less easily played
than bones with different numbers on the two sides. Therefore, it's
harder to play your last bone if it's a doublet, and your chance of winning
is reduced. (Double zero is an exception, but the program doesn't recog-

5.10 DOMINOES 91

nize that.) There are many other strategies that can be added to the sys
tem, usually taking extra time.

A quick review of the listing will show that DOMINOES falls short of
"advanced software" as developed in this text. It isn't interoperable and
its speed could be improved. Before you make changes, make sure that
you really know the rules by checking a copy of Hoyle. You can get fancy
by using one of the variants of the game, but just improving the basic
block game will be useful.

dominoes Non-Professional

5 gosub15000:rem m.richter 90064 12/7S
10 pw=O:tw=O:ty=O
20 poke5946S, 12: l=rnd(-tl): dimd$ (27) ,h$(1,20) ,pl(6) ,h(20)
40 lu$="<home><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d><c-d>

<c-d><c-d><c-d><c-d><c-d><c-d><c-d>":lo$=lu$+"
<c-u>"

100 pl=0:print"<clr>"spc(15)"dominoes<c-d><c-d><c-d><c-d><c~d>
<c-d><c-d><c-d><c-d><c-d><c-d>
110 j=0:k=0:fori=Oto27:d$(i)=mid$(str$(j),2)+mid$(str$(k),2):

goeub9500
120 k=k+1 :ifk>jthenk=O:j=j+l
130 nextl:forl=Oto26:j=i+t2S-1)*rnd(1):x$=d$(i):d$(i)=d$(j):d$(j)

=x$:gosub9500
140 nexti:forj=Oto6:fori=Otol :h$(i,j)=d$(7*i+j):nexti:gosub9500:

nextj:sp=14
150 forj=7t020:fori=Otol :h$(i,j)="":nexti:gosub9500:nextj
160 kO$="d":k1$="<rvs>d<off>raw":k2$="draws a bone
200 1$="":forj=Oto1 :fori=Ot06:x$=left$(h$(j,i),1):gosub9500
210 ifx$=rlght$(h$(j,i),l)andx$>l$thenl$=x$:p=j:k=i
220 nexti:nextj:ifl$=""goto100
230 print"<home><c-d><c-d>p<c-d><c-l>l<c-d><c-l>a<c-d><c-l>y<c-d>

<c-l>e<c-d><c-l>d<c-d><c-d>
240 printspc(S)"U::::"""::::I bone count
250 printsPC(S)"! <rvs> <off> ! DDDDDDDDDD
260 printspc(S)" V <rvs> <off> V yard
270 printspc(S)" <rvs> <off> you
2S0 printspc(S)"J::::<rvs>999<off>::::K pet
290 gosub2000:goeub7000
295 printlo$:print"the largest doublet is ";1$1$:r$=1$:gosub19S0:

gotol000
300 p=O:prlntlo$:print"which bone (or "k1$")? ";
302 gosub4000:x$=c$:lfx$=kOSthenprintxS:gotoSOOO
305 IfxS<"0"orx$>"6"goto302
307 prlntxS;:
310 gosub4010:y$=c$:lfy$<"0"ory$>"6"goto310
315 prlnty$:xS=x$+y$:y$=y$+leftS(xS,l)
320 fork=Oto20:ifh$(0,k)<>x$andh$(0,k)<>ySthennextk:goto9000
330 rf=O:Ifpl=Othenl$=risht$(x$,1):r$=left$(x$,l):If=l :goto1000
340 If=O:ifl$=left$(x$,l)orl$=right$(x$,l)thenlf=l
350 Ifr$=left$(x$,l)orr$=right$(x$,l)thenrf=l
360 iflf+rf=Ogoto9000
370 iflf*rf=Othenonlf+lgoto500,550
375 ifl$=r$orh$(O,l)=""goto450
380 printlo$:printx$" - left or right? ";
390 getc$:ifc$<>"1"andc$<>"r"goto390
400 prlntc$:ifc$="1"Soto450
410 ifr$=right$(x$,l)thenr$=leftS(x$,l):gotol000

92 5: SUPERLIST -an Example & a Tool

420 r$=right$(x$,l):sotol000
450 ifl$=right$(x$tl)thenl$=left$(x$,l):gotol000
460 l$=right$(x$,l):soto1000
500 ifr$=right$(x$tl)thenr$=left$(x$,l):gotol000
510 r$=right$(x$,l):sotol000
550 ifl$=right$(x$tl)thenl$=left$(x$,l):gotol000
560 l$=right$(x$,l):goto1000
1000 rem play the bone
1005 1_=0:¥$=h$(p,k):fori=kto19:h$(p,i)=h$(p,i+l):nexti:h$(p,i)="

":gosub7000
1010 gosub2000:x$=y$:print"<home><c-d>":gosub5000:pl=pl+l
1020 x=pl:ifx>18thenx=x-18:print"<c-d><c-d><c-d>
1030 printspc(1+2*x)x$
1100 x$=1$:gosub5900:printleft$(lo$,12)spc(9)x$:x$=r$:gosub5900
1110 print"<c-u><c-u><c-u>"spc(17)x$: ifh$(O,o)="n orh$(l ,o)="ngoto

8500
1150
1200
1210
1220
1230
1240

nextk
1250
1260
1270

00
1280
1300
1310
1320
1330
1340
1350
1360
1370
1380
1400
1450
1460
1470

ws or
1500
1510
1520
1550
1560
1570
1580
1980
1990
1995
2000
2120
2130
2150
2170
4000
4010
4020
5000

ifpgoto300
rem pet's play
p=l :onalgoto1450,1350
fori=Oto6:pl(i)=0:nexti
fork=Oto20:ifh$(1,k)="n goto1250
gosub9900:x=val(x$):pl{x)=pl(x)+1 :x=val(y$):pl(y)=pl(y)+1:

rem playable doublet with successor
fork=Oto20:ifh$(1,k)=""goto1300
gosub9900:if(x$=y$)and(x$=r$orx$=1$)and(pl(val(x$))>2)goto15

nextk
rem playable bone with successor
fork=Oto20:ifh$(1,k)=""goto1350
gosub9900:if«x$=1$)or(x$=r$))andpl(val(x$))>lgoto1500
if«y$=1$)or(y$=r$))andpl(val(y$))>lgoto1500
nextk
rem playable doublet
fork=Oto20:ifh$(1,k)=""goto1400
gosub9900:ifx$=y$and(x$=1$orx$=r$)goto1500
nextk
rem still more algorithms here
rem playable bone
fork=Oto20:gosub9900:1fl$=x$orr$=x$orl$=y$orr$=y$goto1500
nextk:printlo$:print"pet "k2$:gosub1980:goto8000:rem pet dra
passes
rem wrapup pet's play
printlo$:print"pet plays "x$y$:gosub1980
x=val(x$) :pl(x)=pl(x)-l :x=val(y$) :pl(x)=pl(x)-l
ifl$=x$thenl$=y$: gotol 000
ifl$=y$thenl$=x$: gotol 000
ifr$=x$thenr$=y$:gotol000
r$=x$: goto 1000
ti$="OOOOOO
ifti <60goto1990
return
rem put up count
printleft$(lo$,T3)s~c(30)28-sp"<c-l> "
fori=Oto20:ifh$(0,i»""thennexti
printspc(30)i"<c-l> n:fori=Oto19: ifh$(l , i»"nthennexti
printspc(30)i"<c-l> n:return
getc$:ifc$>"n goto4000
getc$:ifc$=""goto4010
return
x$=left$(x$,l)+"<c-l><c-d>:<c-l><c-d>n+r ight$(x$,l):return

5.10 DOMINOES

5900 rem get dot format
5990 on1+val(x$)goto6000,6010,6020,6030,6040,6050,6060
6000 x$=" <c-d><c-l><c-l><c-l> <c-d><c-l><c-l><c-l> ".

return
6010 x$=" <c-d><c-l><c-l><c-l> Q <c-d><c-l><c-l><c-l> ":

return
6020 x$="Q <c-d><c-l><c-l><c-l> <c-d><c-l><c-l><c-l> Q":

return
6030 x$="Q <c-d><c-l><c-l><c-l> Q <c-d><c-l><c-l><c-l> Q":

return
6040 x$="Q Q<c-d><c-l><c-l><c-l> <c-d><c-l><c-l><c-l>Q Q":

return
6050 x$="Q Q<c-d><c-l><c-l><c-l> Q <c-d><c-l><c-l><c-l>Q Q":

return
6060 x$="Q Q<c-d><c-l><c-l><c-l>Q Q<c-d><c-l><c-l><c-l>Q Q":

return
7000 rem print player's dominoes
7010 printlu$"<c-d><c-d><c-d>":fori=Oto19:ifh$(0,i»""goto7100
7030 ifi<20thenprint" <c-l><c-d> <c-l><c-d> "
7040 i=O:return

93

7100 x$=h$(0,i):gosub5000:printx$;:ifi<19thenprint"<c-u> <c-u>";
7110 nexti:return
8000 rem pet draws or passes
8010 ifsp=28goto8100
8020 fori=Oto20:ifh$(p(i»""thennexti
8025 printleft$(lu$,13J
8030 ifsp>26thenprint"<rvs> yard":print"<rvs>empty":kO$="p":kl$="

<rvs>p<off>ass":k2$="passes
8040 h$(p,i)=d$(sp):sp=sp+l :gosub7000:gosub2000:onp+lgoto300,1200
8100 rem pass logic
8110 ifl~goto8500
8120 1~=1
8200 onp+lgoto1200,300
8500 sO=0:fori=Oto19:x$=h$(0,i)
8510 ifx$) ""thensO=sO+val(left$(x$, 1))+val(rightS (x$, 1)) : nexti
8520 sl=0:fori=Oto19:x$=h$(1 ,i)
8530 ifx$)""thensl=sl+val(lefU(x$,l))+val(right$(x$,l)):nexti
8540 ifsO>slthenx$="<rvs> pet wins ":pw=pw+l
8550 ifsl)sOthenx$="<rvs> you win "
8560 ifsO=slthenx$="<rvs>it's a draw":ty=ty+l
8570 to=tO+sO:tl=tl+sl :tw=tw+l:gosub2000
8600 printlo$:print"<rvs>"x$"<off> score: you"sO", pet"sl :gosub19

80
8605 print" ":print"<rvs> another? "
8610 gosub4000:ifc$="y"gotol00
8620 ifc$<>"n"goto8610
8800 rem wrapup
8820 print"<clr><c-d><c-d>of the"tw"games, you won"tw-ty-pw"pet w

on"pw
8830 iftythenprint"and we drew"ty
8840 print"<c-d>the totals were: you"tO", pet"tl
8850 print"<c-d><c-d>to play again, enter 'run' when you're":end
9000 printlo$:print"try again: ";:goto302
9500 print"<c-u>"spc(14);:ifuthenprint" ";
9510 print"shuffling ":u=1-u:return
9900 x$=h$(1 ,k):y$=right$(x$,1):x$=left$(x$,1):return
15000 poke59468,12:print"<clr><c-d>","<rvs> dominoes <off>":

print,"<c-d><rvs> instructions <off>
15005 print"<c-d><c-d>to playa bone type in the two numbers.
15010 print"<c-d><c-d>to draw a bone type "chr$(34)"d"chr$(34)
15020 print"<c-d><c-d>note: it is not necessary to press

94 5: SUPERLIST -an Example & a Tool

15025 printchr$(34)"return"chr$(34)".
15030 print"<c-d><c-d><c-d>press a key to continue
15040 gett$:ift$-""goto15040
16000 print"<clr><c-d><c-d><c-d>":print"pet has three levels of p

lay:
16010 print"<c-d>1. easy: you can win two games of three
16020 print"<c-d>2. slightly harder: maybe 60/40 for you
16030 print"<c-d>3. tough: nearly equals best play
16040 print"<c-d><c-d>which do you want?
16050 gosub4000:ifc$<"1 "orc$>"3"goto16050
16060 a1=val(c$):return
20100 printtab (9) "V"; : printtab (29) "V": return,

CHECKSUM: 60

Line-number references

1 00
1000
1000
1200
1250
1300
1350
1400
1450
1500

15000
15040
16050

1980
1990
2000
300
302
310
390

4000
4010

450
500

5000
550

5900
6000
6010
6020
6030
6040
6050
6060
7000
7100
8000
8100
8500
8610
9000
9500
9900

220
295

1550
8040
1230
1260
1210
1360
1210
1270

5
15040
16050

295
1990
290

1150
305
310
390
302
310
375
370

1010
370

1100
5990
5990
5990
5990
5990
5990
5990

290
7010

302
8010
1110
8620

320
110

1240

8610
330 410 420

1560 1570 1580
8200

1310

1470 1510 8600

1010 8040 8570
8040 8200
9000

4000 8610 16050
4010

400

7100

1100

1005 8040

1470

8110

360
130 140 150

1270 1320 1370

450

1460

200
1460

460 500 510 550 560

5.10 DOMINOES 95

Variable references

al 1210 16060
0$ 302 310 390 390 390 400 400 4000 4000 4010
0$ 4010 8610 8620 16050 16050 16060

d$~ 20 110 130 130 130 130 140 8040
h$ 20 140 150 200 210 320 320 375 1005 1005
h$(1005 1005 1110 1110 1230 1260 1310 1360 2130 2150
h$(7010 7100 8020 8040 8500 8520 9900

h(20
i 20 110 110 130 130 130 130 130 130 140
i 140 140 140 140 150 150 150 200 200 210
i 210 220 1005 1005 1005 1005 1005 1220 1220 1220
i 2130 2130 2130 2150 2150 2150 2150 2170 7010 7010
i 7030 7040 7100 7100 7110 8020 8020 8020 8040 8500
i 8500 8510 8520 8520 8530
j 110 110 120 120 120 130 130 130 140 140
j 140 140 150 150 150 200 200 210 210 220
k 110 110 120 120 120 120 210 320 320 320
k 320 1005 1005 1230 1230 1240 1260 1260 1280 1310
k 1310 1340 1360 1360 1380 1460 1470 9900

kO$ 160 302 8030
k1$ 160 300 8030
k2$ 160 1470 8030

1$ 200 210 210 220 295 295 295 330 340 340
1$ 375 450 450 460 550 550 560 1100 1270 1320
1$ 1330 1370 1460 1460 1550 1550 1560 1560
l~ 1005 8110 8120
lf 330 340 340 360 370 370

10$ 40 295 300 380 1100 1470 1510 2120 8600 9000
1u$ 40 40 7010 8025

p 210 300 1005 1005 1005 1005 1150 1210 8020 8040
p 8040 8200

pl 100 330 1010 1010 1020
Pl~ 20 1220 1240 1240 1240 1240 1270 1320 1330 1520
pl 1520 1520 1520

pv 10 8540 8540 8820
r$ 295 330 350 350 375 410 410 420 500 500
r$ 510 1100 1270 1320 1330 1370 1460 1460 1570 1570
r$ 1580
rf 330 350 360 370
sO 8500 8510 8510 8540 8550 8560 8570 8600
sl 8520 8530 8530 8540 8550 8560 8570

~i
140 2120 8010 8030 8040 8040 8040

15040 15040
to 8570 8570 8840
tl 8570 8570
t1 20 1990

tiS 1980
tv 10 8570 8570 8820
ty 10 8560 8560 8820 8830 8830
u 9500 9510 9510
x 1020 1020 1020 1020 1030 1240 1240 1240 1240 1520
x 1520 1520 1520 1520 1520

x$ 130 130 200 210 210 210 302 302 302 305
x$ 305 307 315 315 315 320 330 330 340 340
x$ 350 350 380 410 410 420 450 450 460 500
x$ 500 510 550 550 560 1010 1030 1100 1100 1100
x$ 1110 1240 1270 1270 1270 1270 1320 1320 1320 1370
x$ 1370 1370 1460 1460 1510 1520 1550 1560 1570 1580

96 5: SUPERLIST-an Example & a Tool

x$ 5000 5000 5000 5990 6000 6010 6020 6030 6040 6050
x$ 6060 7100 7100 8500 8510 8510 8510 8520 8530 8530
x$ 8530 8540 8550 8560 8600 9900 9900 9900 9900

y 1240 1240
y$ 310 310 310 315 315 315 315 320 1005 1010
y$ 1240 1270 1330 1330 1330 1370 1460 1460 1510 1520
y$ 1550 1560 1570 9900

I
6
I

pursuing a
project

There is no formula for writing advanced software. There is no pattern to
the way projects come to you. This chapter is devoted to one scenario,
where you are designing and building an inventory system for a specific
customer. We will walk all the way through the process, from the first
phone call to the first request for expansion. Notice that we're taking the
easy path-a project requested by a customer. We're even simplifying
that, detailing only the easiest of the three programs in the system. In par
tial atonement, the rest of this section looks briefly at a project that you
start on your own.

You're an amateur fly-tier, with a passion for the classic patterns and
their modern variations. (Not that kind of fly-these are fishing lures, and
can represent high art in the opinion of a devotee.) Your collection in
cludes samples and pictures. You want to catalogue the collection, to
develop a taxonomy based on size, shape, material, color, and other
features. Then you will add measures of performance, and eventually
develop a science of fly-tying to complement the art. With sudden insight,
you decide to put your computer on the job with you. You'll write a
catalogue system, FLYTIE, and revolutionize the field. For this, you will
be customer, user, designer, coder, tester, and everything else.

There are two interesting possibilities here: you will be the only user of
your product; or you will be the pioneer in a new field of thousands
(dozens?). If no one else will ever use your system, then write what you
will and as you will. If it works for you, good enough! But maybe there
will be a market; maybe the fly-tying field will be revolutionized by your
product. How do you handle that prospect?

For fly-tying alone, there is little to add to the material in the rest of this
chapter. You will have to play all the roles and pretend to be a computer
novice when acting as the customer or user. The larger problem comes

97

98 6: pursuing a project

when you think about what else the system should do. At the least,
remember that other fly-tiers will want features that you don't. How do
you extend your ideas to address the broadest potential market? Concen
trate on the most general statement of the problem that satisfies all of your
needs. (Don't lose sight of your basic requirement to catalogue your own
collection; just try to build on it.)

Can the system be extended still further? Can the same techniques be
applied in biology or geology? Is there a still more general concept of
cataloguing that opens the market still further? If the answers suggest a
broader kind of system than you planned, there are several ways to get
there from your original idea. One of the best approaches is gradual; trying
for the ultimate system first can leave you dissatisfied-even disgusted
with beautiful parts of a package that doesn't work.

Start by building something that directly addresses your own fly-tying
needs. Get it up and working first to put your house in order. Then take
what you learned and what you have working to investigate extensions for
other applications. Can you add more fields? Can you tokenize more in
formation to save space? Would a relative file be better than sequential or
vice versa? Sketch alternative designs until you find something that looks
to be marketable. Now, follow the methods of advanced software to build
the new system. How do you test it? Use your FLYTIE catalogue. Move
the files that work into the new system, and verify that it does everything
that the specialized program did. And don't forget to document. If anyone
else is ever to use your product, the rules must be legible.

6.1 The first call
"Are you the computer whiz they told me about?" Your first contact with
a customer may start that way, inspired by a recommendation from
"them" to her. Who gave that recommendation? A satisfied customer,
someone who heard you lecture, or a beleaguered dealer may have been
the source. Whoever it was, she thinks you're the miracle worker who
will move her business into the computer age in three days for $49.95
(plus tax). You have to persuade her that she found the right person at the
same time that you tell her that your stock of miracles has run out.

The customer will want to dump her problem on you over the phone.
Don't let her. Take enough information to find out whether you have a
chance of solving the problem, then ask for a face-to-face meeting to get
more. Before making that request, use the call to scale the problem, cali
brate the customer, estimate the time frame, and comfort the customer.

Does the problem belong on a pocket calculator or a mainframe? If it
isn't in the range that you handle comfortably, pass the job on to someone

6.1 The first call 99

else. A microcomputer won't process five thousand transactions a day; if
that's what she needs, recommend someone who programs mainframes.
A distributed data base won't sit comfortably on Commodore, and an at
tempt to shoehorn it in won't payoff.

Five minutes on the phone will give you a good idea of your customer's
competence. The worst customers have only enough knowledge to think
they know computers. The best are those who admit to complete ig
norance or who know enough to recognize your expertise and leave you
alone. The customer who thinks the computer will do everything needs to
be disabused. The one who tells you exactly what to do and how should be
invited to do it herself. Fortunately, most customers will work with you
for their benefit-just make sure you show them where that advantage
lies. Remember that software experts are in short supply, so she has to sell
her problem to you as hard as you sell your services to her.

There is no chance that a call in March will get an accounting system on
line in time for April's taxes. Make sure that the amount of work is con
sistent with the calendar and your availability. Some problems can be
worked in stages: an initial capability in a few months; bells, whistles
and special reports months later. Your hardest work-thinking-must be
completed before you do any coding, so don't fool around. Building half
the system may take 80% of the effort of building it all, and at least 80%
of the time.

Not all first calls come in panic. Just most of them, and they need calm
ing and assurance that you're the right person to do the job, that you can
learn her needs and satisfy them, and that you can do so fully, quickly and
economically. She needs calming first, solutions second. If you take a
strong, positive approach in the first call, she'll assume that you will work
her problem strongly and positively. And that's what she needs to believe.
Remember that your customer is over her head. She's calling you the same
way that she would her physician or her architect. You are a professional
and must sound like one.

If you haven't screened out the job or the customer, the final point of the
first call is to set up a meeting. The best place is on her turf, not yours. She
will be comfortable and in control, with all information at hand. You
won't be tempted to fall into jargon, or to jump to the machine to
demonstrate your insight. (A flashy show on the computer is likely to per
suade her that she's incompetent to deal with it-or you.) Remember to
speak English on the phone and at your meeting; she isn't fluent in com
puter or BASIC, and won't hire someone she can't talk to. When you
schedule the appointment, make sure that you'll each have at least an
hour. Set it up as soon as it is convenient, but don't catch her panic. It will
take weeks or months to solve her problem; a little leisure in defining it
can only help.

100 6: pursuing a Project

6.2 First meeting
Your first meeting with your potential customer is a job interview. She
must find out whether you're qualified; you need to learn what job you're
trying for. For a conventional interview, you prepare a resume. For this
one, assemble your one-page product descriptions. Put on a cover letter
that says: here's a sample of what I have already done for others. Your job
is different, but it can be based on my solid base of experience. The de
scriptions will demonstrate your qualifications. Pick the examples based
on the new job, and put them in order of decreasing relevance to it. Drop
the package off before the meeting if time permits. By reading them first,
she will not only know that you have the technical problem under con
trol but also that you're prepared to talk in English, not computer.

When you go into the meeting, recognize its purposes. The customer is
to be assured of your competence, but that requires no special action. Ask
ing the right questions and handling her answers well will do that
automatically. Keep her at ease, and try to be comfortable yourself. When
you leave the meeting, you will write up the one-page customer descrip
tion of her problem. So you will have to learn enough to do that during the
conversation.

The Widget Company sells 100 different products from 30 warehouses.
They need to track their inventory, keep stocks above a target level in each
item, and distribute products to their customers as efficiently as possible.
Each warehouse holds enough for a month of normal business, but their
paper shuffling has gotten out of hand. They log each item moved, but
can't process the paper fast enough to know what's in stock where-ex
cept by going back to count it. There may be a problem with pilfering, but
they aren't sure. How do you help?

Widget Company needs inventory control. They need a lot of input sta
tions (30), but don't require real-time operations. So each station can
stand alone, and can talk to inventory control through floppy disks,
telephone lines, or even cassettes. What operations should go on at a sta
tion? Ask, don't guess. How about instant local inventory? (Widget's
customer calls for 25 pieces in size 17; are they in stock? If so, an instant
answer is available. Can this office call central to find out where the
customer can get them? Does it have to be able to answer without that
call? How many times a day is that kind of question asked? How often will
the request have to be satisfied outside that warehouse? How quickly are

6.2 First meeting 101

responses needed? Is the cost of a disk acceptable if all it provides is that
sort of instant inventory? Would a printout do as well?)

As you talk about your customer's needs, you start to postulate a
design. That leads to more specific questions. Can she live with a limit of
200 items? Can we always enter a new item from the central office, or
must a station be able to add to the list of items it carries? Can we be sure
that there will never be more than 31 stations? 63? Are all stations
equivalent? Those questions are directed at the main purpose of the
system.

You also check out the other things the system will have to do-even if
they are to be developed much later. When an item is sold, should the sta
tion log the customer? Is there a fixed list of customers? What about walk
in business? Is there any problem if the customer list is maintained only at
the home office? How about suppliers? Must you distinguish equivalent
parts by supplier? Can we assign our own part numbers? If we do, what
restrictions apply? How about the station printing the invoice for the
order? Figuring the price? Recording payment on a walk-in? Account
balance? Check balance against that customer's limit?

When you leave that first meeting, you will have 90% of the informa
tion you need to design the system. You will have two choices for the
missing 10%: call and ask, or guess. The calls will be difficult and should
be few in number and directly to the point. When you know what you
don't know, plan a call. List your questions. For best results, have
multiple-choice answers ready. Before you leave the meeting, find out
when you can telephone, and set up a tentative appointment to present
your solution. Regard that appointment as an absolute commitment on
your part, which the customer can change at a moment's notice. Call
before that appointment to confirm it. Again, plan that the second session
is at the customer's office. That's where the answers you need will be
found; that's where you can look at existing paper processes.

Make sure that your customer knows that you understand her prob
lems. One that you should raise (in order to put it aside) is transition to
the new system. The customer is doing something already, and it has
worked until now. You will not throw all that good stuff away just
because it doesn't fit the computer. Invite them to suggest additional
testing, and ask the user to participate. If he's willing, let him join you for
the testing itself. Again, the customer will have adopted your program as
her own even before delivery.

102 6: pursuing a project

6.3 Structuring the system
The week or so following the first meeting with your customer is your
time for thinking. That's when you layout your file and system struc
tures, devise the way she will get the functions and information she needs
from the product, size the work involved for schedule and cost, and write
up the customer documentation. You're a long way from coding, and your
computer at this stage is either idle or a word processor.

Widget Company's products have names as long as 30 characters; 45 of
them will go in a string array of 1350 characters total, and we can afford to
keep it in memory. If they average 20, even 200 different names will fit.
There are 30 warehouses with 100 items each, so we'd need over 20K to
hold the inventory in floating point. Integers will do the job and will take
only about 6K, so the inventory could go into memory, too. If they grow to
60 stations and 150 items, it might be tight; let's plan on using the inven
tory file from disk and leave room for expansion. The company needs the
customer information as well, but we'll use a standard mailing list for
that. We'll call each line item a transaction. It is characterized by its
customer, part number, quantity, price per item, discount and tax rates,
and mode of payment. Each station will need a file of all customers, tax
and discount rates, authorized signatures, available credit, and comments
and special conditions. The central office will do monthly reporting and
billing from the transaction logs. You have to check on whether they want
a general ledger, and if so whether it has to be linked into the inventory
system automatically.

Each station will keep its own inventory current by subtracting each
sale and adding each delivery when it occurs. (Deliveries are transactions,
too. Remember them in designing the log.) Initialize the system with the
date; item and customer names are read in from the current disk. The date
is converted to a number, and the day's log file is created. Check with the
customer about whether a review of inventory should be automatic at
initialization-the system could flag shortages before the day's business
starts. As a customer comes to the station to check out, the transaction is
logged and inventory decremented. A customer's call may require an in
ventory check. Naming an item can be by complete part number (easy on
the machine) or by name (easy on the clerk). By name, we should use
keyword search; find a three-inch quarter-twenty bolt by looking at all
bolts if you want, then accessing by part number. Price structure is part of
the item information; since it varies by quantity, we need, say, five prices
per item. That file won't fit in memory even with only 100 items. One
more job at the station would be to check on whether another station has
parts not available here; that software is simple enough to be added later

6.3 Structuring the system 103

and requires no change of file structure. So, we'll leave that for add-on
after the system is running.

The central system will take the logs in by disk and add fields for date
and station ID before recording them. It needs a dual drive for that tran
scription. Daily activity is to integrate yesterday's transactions into the
history, flag special conditions (e.g., account near limit, parts requiring
manufacture or reorder), and create new files for the stations. Problems:
two trips to each station per day, one to take out the morning's disk, the
other to pick up the one with the transactions. Solution may be to use
telephone (modem) communications after the system is set up. Recognize
the problem now, make sure there is a solution that won't break the
system, then continue with primary design.

The central system needs dual disk and a quality printer, which means
an IEEE system at $3,000-5,000. Each station can run with a 64 (maybe
even a VIC) with a 1541 and a 1525 (for on-the-spot invoicing). Say $1500
for each of the 30 stations. So, the customer is looking at $50,000 in hard
ware all told. She'll probably balk at that total and start with fewer sta
tions. The five busiest stations will get the full treatment; the others will
work on paper at first. The bill will then be around $12,500. If the soft
ware runs another $2,500, we mean about a 100-hour job. Allowing half
that time for testing and data entry, we need to be sure that $1,250 or so is
a fair price for your design and coding.

Two other items need to be considered at this stage, both dealing with
interfacing the system. Firing up the first time will require entering a com
plete inventory. Thereafter, occasional inventories will verify the history,
check for pilferage, and keep the accountants happy. Inventories require
facilities for data entry and reports of discrepancies. The initial system
will require manual entry for warehouses without stations; that capability
will fit in with file editing and transaction correction. Until clerks become
perfect, errors will occur; the system has to be able to tolerate and to cor
rect them. We'll need a system to identify transactions that are current
and to purge those that are not. Someday we'll want programs to analyze
trends and aid long-range planning, so purged logs shouldn't be thrown
away. We'll keep the old disks with their logs, and we'll maintain a se
quential file of purges. Between them, we can construct a complete audit
trail.

The other set of functions of the central system we can think of as being
done monthly. (The actual interval is whenever the user wants to do
them.) That run reports activity by station and by customer; its primary
purpose is to generate bills for the current accounts. A later generation of
system may well provide a cover letter, but for now we'll just summarize
monthly activity. One line per transaction per account. Then part of the

104 6: pursuing a project

daily activity has to be logging payments that come in. (Check need for
distinct status flags: received, cleared. When should we credit the checks?
Need we compute interest on outstanding balance?) Put in a mechanism
for interest on daily balance after a fixed delay. Initial interest rate will be
set to 0; to set a rate, change the line and save the program again. It makes
no sense to ask the question repeatedly. More pressing is the need to flag
each billed transaction so it is not recomputed.

We'll log for each customer the date billed and amount due (for next
time) and tick off everything we billed. We can purge the old transactions
from the system (put them into the historical file) when the bills are
prepared or when they're paid. Nominally, let's do it at preparation, and
turn back to paper copies (or historical search) if questions arise after bill
ing. Those functions could be in the same program as the daily central
functions, but they are really different and probably need a bookkeeper to
run them instead of the central clerk. Both programs end with long print
runs, so have different kinds of wrapup.

The system will need three distinct programs: warehouse (interoperable
64/central), daily (central), and monthly (central). For backup, we need a
second IEEE system (we can do without a second letter-quality printer). It
can back up a warehouse station as well as the central one since it can run
station software. Total hardware cost is about $lSK. We'll go for $3K for
the baseline software. If that's too big a bite at one time, we can back off to
a single, central station without warehouse software at $5K hardware,
$2K software on a two-month development schedule. Knowing our file
structures, we can add the warehouse hardware and software at any time.
(Most of the $lK saved in software comes from not having to test the in
terface, not from skipping the warehouse program.)

The central station will serve as a warehouse station during the day; it
will run the same program that goes into their 64's. (It should probably
have a dot-matrix printer in addition to its 8300; otherwise, the programs
might not be identical.) A new customer will be added on second shift,
when the disks are updated and the item .information (prices, etc.) is
modified. With that, we have pretty much pinned down the architecture
we're proposing and are ready to write the customer description.

6.4 Inventory control
(customer description)

The Inventory Control System (ICS) is a package of custom software and
Commodore hardware that manages the inventory and accounts receiv-

6.5 Design 105

able for a coordinated warehousing function. It tracks inventories at up to
63 warehouses for up to 200 distinct, numbered items. It provides individ
ual invoices for each sale and periodic reports for each account showing
all purchases and payments. Daily reports are generated for stock on
hand and resupply requirements by warehouse.

Each warehouse station consists of a Commodore 64 computer, a 1541
disk drive, and a 1525 printer. Its information base is supplied each day on
a single floppy disk delivered from the central system. A transaction is
begun by entering the account name (or "walk-in"). Each item's name
and quantity are entered into a dummy invoice on the screen. The ac
count's discount and tax rates and the item's piece and total costs are
displayed. Accepting that item readies the system for the next. When all
are input, entering an item name "total" prints the invoice for that pur
chase and logs the sale. Items may be identified by name or number.
Returned items are treated as transactions in the same way as purchases,
except that inventory is not incremented by the return. Items are added to
inventory as delivery transactions. A second function of the warehouse
station is to check both local and distant inventories for availability of an
item; local inventory is maintained current including that day's sales and
deliveries; remote inventories are supplied by the central system and are
current to the previous day. The system is expandable for telephone com
munication of daily activity, although the baseline system requires carry
ing floppy disks between warehouses and the central station.

The central system requires a Commodore 8032 computer, 4040 disk
drive, and both 8300 and 4022 printers. It integrates the daily logs from
the warehouses and reports inventory status and resupply requirements. It
accepts comprehensive inventory inputs, payments on account, and cor
rections to prior transactions and payments. The central system also
maintains all system information, including account names, addresses,
discount rates, tax rates, and credit limits. Periodically, the central
system generates bills for all accounts or for a named account (user option)
and a report of activity by warehouse. The central system may also serve
as a warehouse station, but only when central operations are not required.

Some parameters are necessarily limited in the ICS. They include max
ima of 63 warehouses, 200 enumerated items, and five price groups per
item.

6.5 Design
Let's suppose that the customer has accepted the Inventory Control Sys
tem as described, and has agreed to your terms for development (includ
ing payment schedule). Since most of the eventual system cost will be
hardware, you should establish a link with a local dealer; a dealer's coop-

106 6: pursuing a Project

eration will be easy to obtain and may simplify some of your prob
lems-including getting information and hardware. Your next task is to
layout the files and programs of the system in detail, to schedule your
work so you'll know whether you're in trouble or not, and, finally, to
start coding.

Transactions are collected in the daily log, which carries the coded date
in its name. Each transaction has a type [cash sale, credit sale, return, de
livery), account, part number, quantity, line-item cost/ credit. Someday
the system may expand to include salesman commission, so leave space
for an ID field.

Inventory on disk is a relative file with two records per warehouse.
[200 items at 2 bytes each won't fit into a 255-character maximum rec
ord.) The item names and numbers are.in a sequential file read in at the
start of the day; one each string and integer arrays required, at about 25
characters litem for 5K storage. We'll keep the local inventory in RAM as
well, so we can update it as the day's transactions proceed. Brute force
storage (200 items x 63 warehouses x 7 bytes) takes about half the disk.
We should be conservative and pack inventory into two bytes per entry
[use the 0-200 counter twice for a maximum of about 40,000 items). We
can afford to keep that file on disk and to spend time to unpack it since it
is accessed only rarely-when the customer needs more widgets than
this warehouse has in stock.

In contrast, the list of accounts is searched for every purchase. Figuring
the average account name as 15 characters, we could handle 200 of them
in 3K. Note: Add the 200-account limit to the system constraints. We'll
pack the number in the usual way. If the number of accounts goes over
200, we'd need two characters for the id-no problem. If it goes over 500,
we'd need more than 7.5K of RAM-that'll be a problem. If they can live
with 200, that's the design. The other account data can be relative and
fetched when needed (once per invoice).

Program architecture for the warehouse is almost trivial. After initial
ization, enter the account [or a dummy for a delivery). Create a display
with account information, and start the invoice page. Select transaction
type, accept input data, print the line and log the transaction. Then
return for the next transaction. If the transaction type is "total," present
final display for confirmation, then wrap up the invoice on the printer.
[Check invoice formattingj special paging may be needed to get the form
out of the printer without too much wastage. How many transactions on
a typical order?) A dummy account can be used for "inventory"-to trig
ger an inventory check. Its logic is to report first how many are in stock
here. If more are needed, the warehouses with at least the required [in
put) quantity are on hand.

One module handles the inventory check. Otherwise, all transactions

G.G Using the warehouse program 107

are equivalent, with variations depending on whether inventory is decre
mented, incremented, or left unchanged. (The idea of not putting returns
back in inventory assumes that they will be examined for damage or re
turn to shipper. Check with customer on a "return to inventory" option
after each return. If so, implement with another transaction type, speci
fied at its completion.) Select cash or credit at the end of the transaction
(during total on a sale)j that means holding all disk writes until accep
tance, which we would want to do anyway. It also means a limit on the
number of transactions per invoice-get the data from the customer.
(Answer comes back: maximum of ten lines per invoice, automatic. head
ing of second page with appropriate labelling of successor pages, but each
page is subtotaled and accepted as a unit. Otherwise, there's too much
risk of redoing ten minutes' work for one typo.)

The process of developing the design is repeated for the more substan
tial central programs. As the concepts emerge, questions arise that require
answers from your customer. Your relationship is now close enough that
occasional calls for information not only will be acceptable, but they'll
be welcome to indicate your progress. As soon as the design is complete
and the questions have been asked and answered, you're ready to revise
the customer description and to draft the User Manual.

6.6 using the warehouse program
Each day's operation begins by turning on power to the computer, the
disk drive, and the printer. Insert the new disk into the drive (label side
up), and enter:

LOAD"*",8 <C/R>

The red light will go on and the warehouse program will be loaded from
the disk. Then type:

RUN <C/R>

As the program starts to run, it reads information from the disk into the
computer. It then tells you the date for which that disk was designed, and
asks you to "Confirm" itj if it's right, just answer "y" (C/R). If you are
using another day's disk-say because today'S is late-answer "n," then
type in the date as month/ day / year.

The screen now clears and asks you to enter the" Account." You may
type in the account name or number, "inventory," or ~'delivery." If you
enter only the first part of the Account name (like" Adams" for "Adams
and Smith Fine Furniture"), the program will show you all the accounts
beginning that way ("Adams") with their account numbers, and ask you

108 6: pursuing a project

to type in the number of the one you want. A number 0 tells the com
puter that none was the one you wanted, and you'll reenter the account.
Once the account is specified, the screen will show you the full name,
discount and tax rates, and credit data. The printer will start to mn, put
ting out the top part of the invoice. Then you type in what item is being
purchased or returned and how many pieces. The items may be specified
by part number, full name, or part of the name, just like the Accoupt.
The screen will show you the price per item and the total price for that
quantity, and ask you to "Accept" the entry. If you enter "y," it's ready
for the next. Answer "n," and that line item is cancelled. When you have
entered all items, call the next one "total," and the computer will figure
the total with tax and discount and show it to you for you to "Approve."
If you do, you tell whether the sale or return is for "Cash" (otherwise, it
is handled by crediting or debiting the account). The invoice is completed
and filed automatically. If the sale was not accepted, the printer voids
and ejects the page before asking for the next "Account. 1/

Notice that you have to treat an exchange as two separate operations
one for return, the other for sale-and you have to enter the Account
twice. If the order is for more than ten items, after every ten the com
puter will ask you to confirm the work so far and will automatically sub
total and complete that invoice page. When you finally mn a total, the
subtotal for the last page will be computed and printed as well as the grand
total. Remember that each page is accepted separately, so you have no
way to correct an earlier page of a large order except by creating a return
invoice for items your customer decides not to take.

For walk-in customers, the Account is "walk-in," number O. Of course,
there is no walk-in account as such, so it cannot be credited or debited,
and all transactions are automatically for cash.

If you call the Account "inventory," you will be asked "What part?"
Enter its number or its full or partial name. The screen will tell you how
many are in stock. If you need more than you have on hand, answer the
question: "Check other warehouses?" with "y." Then enter the number
of pieces your customer needs. The program will list the numbers of the
warehouses that have enough to cover the order, so you can either send
the customer to one of them or arrange to pick them up for him.

When you're through for the day, remove the disk from the drive and
pack it for shipment to the central office. Take the spare disk from the
file and insert it in the drive. Then enter "quit" for the Account, and the
spare disk will be updated with your current inventory. Put the spare
away, shut off the power, and call it a night. The next day, a new disk
should be ready and you repeat the process. If the new disk has not ar
rived, use the spare instead. You will have to tell it today's date, and the
inventories for the other warehouses won't be up to date, but it will do
everything you need and central can sort out the problems.

6.7 Design review meeting 109

6.7 Design review meeting
With the draft User Manual in hand, you're ready to hold a design review
with your customer and her user(s). Deliver the manual a day or two be
fore the meeting, and try to have someone read it through. While they're
reading, you're writing-the test plan. For the three programs in the ICS,
you may want one, two, or three reviews. After all, the user of the ware
house program will be a salesperson, not a computer operatorj the clerk
running the daily program at the central station will have more familiar
ity with the computerj and the bookkeeper who runs the monthly pro
gram has specialized needs. The customer will be at all three meetings,
since she has to approve your going ahead with coding. The user of each
program should be at the appropriate session. Realistically, you will have
to work to make sure that the design reviews aren't just rubber stamps.
Usually, no one has really read your material, no one is ready to ask
meaningful questions, and the review turns into a formal process for put
ting the customer on the hook-committing her to your plans.

The first step in the review is to run through the User Manual to make
sure that everyone understands it. Keep it simple and direct, but identify
everything that the program will do and everything that might be rele
vant that it doesn't. Make sure that they understand that disks have to be
carried back and forth each day for good results, that only 200 accounts
can be active, and any other limitations. Then pull out the test plan and
show them what you'll be testing and how. Ask for input, comments, or
questions. Your objective is to leave the meeting with general approval,
specific changes to be made, and the customer feeling that,it's her sys
tem already.

Try to avoid broad, open action items. In the meeting, tell them what
you will change to implement anything that you accept. If they ask you
for a major redesign, point to the Customer Description that they already
accepted. Most changes will modify that agreement, and give you the
right to change your cost and schedule. Did they reconsider the 200-item
limit and decide that they want at least 1O00? Your whole design may be
broken by that "simple" change. If the customer insists on it, your op
tions are to submit revised documentation, schedules, and fee or to ter
minate the contract and request payment for services already rendered
in accordance with your agreement. Be firm, ex"plain the problem, but
don't give in. To handle 1,000 items will take 20K of RAM j the 64 will be
crammed, garbage collection will be prohibitive, and the system won't
run adequately. The disk files will become massive, and the fragile 1541
may not stand the burden. For a thousand entries, you may be forced to a
completely different system-hardware and software. Help them to un
derstand what that means, and why the change may be fatal.

Both you and your customer want the system to work, so bend where

110 6: pursuing a project

you can and give them what you can afford. Try to postpone even minor
extensions until the system is mnning. Diverting your attention from
the fundamental problem threatens to delay delivery and to degrade the
product. Make notes, but no commitments, on each change that they re
quest. Promise nothing that you didn't plan to do when you designed the
system. Be as friendly as possible, but don't give in.

Hand out copies of the test plan during the meeting, and walk through
it with your customer. Point out that you're testing everything the User
Manual says, both positive and negative. Invite them to suggest addi
tional testing, and ask the user to participate. If he's willing, let him join
you for the testing itself. Again, the customer will have adopted your pro
gram as her own even before delivery.

Finally, pin down some dates at the design review. Schedule delivery of
the documentation with the changes you have agreed to. Get a commit
ment for their review, confirmation, and signoff by a fixed date. Make sure
that they understand that you cannot proceed without those signatures.

When the revised User Manual and Test Plan are ready, deliver them
with a cover letter that includes a list of the changes you made due to the
review, any changes in cost and schedule that they have caused, and the
date on which you require signoff. Resist the temptation to put in a nega
tive option (" ... will be regarded as accepted unless ... "). It's much
weaker than a signature, and the User Manual is your specification (hence
your contract) while the Test Plan embodies the acceptance criteria (the
way you know you're done).

6.8 Coding
Now that we've come to the enjoyable part of the process, there isn't
much to say. Coding is a highly personal process; each programmer has
his or her own approach. Some prefer to write a routine of a dozen lines or
so and check it out thoroughly before they proceed. Others insist on get
ting the whole thing down before the first RUN. If you prefer, work the
modules one at a time; an alternative is to label all of them, then write one
and all that GOTO it, then all that it can reach, and so on. All that matters
is that you use some system that you find comfortable and efficient.

Common sense suggests that you start with a nucleus of initialization
and utility routines from earlier programs. If there are utilities you
haven't tried before (say, RECORD in BASIC 2.0), code them separately
and mn some tests. Since part of the system will mn on a 64, figure on
BASIC 2.0 for all of the warehouse program; while you're at it, stick to
2.0 throughout for consistency and ease of maintenance. You'll probably
develop the program on another host (403218032) to take advantage of

6.9 Maintenance 111

your progTamming tools and the IEEE buss, and you could fall into BASIC
4.0 without thinking. Try to drill BASIC 2.0 into your head so you don't
slip accidentally.

An experienced programmer doing a variation on an established theme
may spend half the time coding, half in debugging and testing. The less
experience you have with that type of problem, the longer testing will
take. No customer will be upset if you deliver ahead of schedule. If coding
will take four weeks, schedule six for checkout and test. Maybe you'll
finish in four, or even three-great! But schedule for four and run into
one extra bug, and you'll lose your schedule or even your contract.

Remember your objective: deliver a quality product. Don't compro
mise in testing to meet the schedule, and don't deliver code you haven't
fully checked out. If the user joins you in testing, you'll save no time; you

. will have an in-house supporter to attest that you fulfilled your contract.
If you have to test alone, invite your customer to witness the final run
through of the plan. At least, ask her to select some parts of the test to
witness. Throughout testing, and particularly during the final pass, doc
ument every result and its results compared with those you predicted in
the test cases. Once you have your customer's signoff on the test cases,
the system is finished. Unfortunately, your job is not.

While coding, you will find improvements over your original design.
Many will simply be better ways to do the original job. Some will modify
the procedures in the User Manual-or even the capabilities in the Cus
tomer Description. Within the latitude provided by the approved docu
mentation, the design is entirely under your control. Change it to save
memory, disk space, running time, or difficulty in development. If your
improvements will change the documentation, you cannot proceed with
out customer approval. Most changes will give a better product, and she
will buy off quickly. Some may be necessary to meet schedule (budget is
your problem, not hers) even though they will cost performance; those
will be harder to sell. As soon as you see a design change that affects doc
umentation, talk it over with the customer to get verbal approval. Before
you start to test, get her signature on the revised documentation
including the Test Plan. You must have final documentation in hand be
fore you start acceptance tests and demonstrations, for your protection
and hers.

6.9 Maintenance
Software cannot wear out or break; if it was correct when it was written,
it cannot go wrong. In hardware, maintenance means cleaning, inspec-

112 6: Pursuing a project

tion, and minor repair. In software, it means repair and expansion. Once
the program is delivered, you can expect calls of three varieties:

"It doesn't work. Come fix it."
"It doesn't work the way we want."
"Can't we make it do this, too?"

They correspond to three different kinds of changes, and require different
responses.

If the program is not performing as specified, it needs repair. Both mor
ally and contractually, that's your responsibility for a fixed period after
delivery. However comprehensive your testing was, a few weeks of the
real world will tax the software in ways you didn't cover. Even if your
program is right, there will be hardware glitches-noise on the power
line, faulty disks, and something never seen before just to complicate ex
istence. Since your product for the Widget Company was a system,
you're stuck with hardware problems as well as software. If you had put
software into existing hardware, you would be less securely on the hook.

When you get a trouble report, the first (and toughest) problem is to
find out what really happened. Your experience and the user's garbled re
port of the phenomenon are all you can count on. You must get the sys
tem back into operation, even if it requires repeating operations. Fre
quently, you will have to watch the user experience the problem. First,
tell him how to rebuild the system (it should be in the User Manual, but
tell him where to look) and see if the problem repeats. If it doesn't, and if
it does not recur too often, blame it on power lines and track it no further.
If it repeats, try it yourself or watch the user do it a third time. Diagnose
and solve every repeated problem. If the program and procedures were
correct and the problem stemmed from misuse of the system, the fault is
the user's and you are entitled to be paid for your consultation. If the
fault is in the program or the User Manual, you are responsible for its cor
rection as part of the original contract.

Limit your liability in the original agreement so that you are not on the
hook for consequent costs; loss of business and fouled records can be very
expensive to your customer. Whatever the contract says, you may have
problems if you did not take all reasonable measures to protect against
faults and to limit their effect when they occur. You were employed as an
expert, and if you did not use expert methods you are responsible for fail
ures. Before you sign up for software on which a company will depend,
check with an attorney.

Most requests for maintenance stem from things the user wants to do
that the system wasn't designed to handle or that he doesn't know how
to accomplish. If it can do what he wants, just tell him how. If it can't,

6.9 Maintenance 113

explain that he is going beyond its design limits. Widget's system will
handle 200 items, and they just got their 201st. Now what? Are all 201
really active now? If not, remind them that they can replace outdated
ones with current products. But if they really need 201, there's a prob
lem. You used a coding scheme that won't expand, and made it clear from
the beginning that the limit was solid. The problem cannot be "fixed" by
changing a few lines or modifying procedures. It has just escalated be
yond what the user can handle; call in the customer.

It's surprisingly difficult for a customer to recognize that a system that
works well for 200 items just won't handle 201. You explain that both
the disk files and the program have to change, and the reaction is, approx
imately, "Change 'em! II She should recognize that there is no instant
fix, so the problem will last for some weeks until you can make some
minimum modifications. She has to pay for a week or so of your time to
patch in emergency measures, then may have to go to a whole new sys
tem to handle the growth. Explain the process that you have to go through
so she understands the fact that it's complex and time consuming.

What will you do? To begin, you need a two-byte item ID instead of
one. The extra code is easy, but you need a program to transcribe and ex
pand each file, inserting a "0" first digit. You can't afford to require a
new inventory and manual reentry just because you've changed the file
structure. Finally, you impose a new limit and implement it by changing
array dimensions. The new numbering system would handle up to 40,000
items-but the computer can't. With luck, the running programs will
have room for expansion to, say, 250 items. That will only handle growth
for a few months. For the Widget Company to stay in business, more ex
tensive changes are needed-in a hurry. Get customer agreement, re
work your schedule, and patch up the code. However great their panic,
retest the system before you deliver it. They will have worked around the
problem while you patched, so they can live with it for another day. They
cannot live with a patch that breaks down a week later.

When you deliver the modified system, stress the need for redesign to
handle the growing load. The customer must understand that you cannot
stretch the hardware any further, and that there's barely time to adapt be
fore the system saturates again. If she isn't ready to face the problem, tell
her that she hasn't much time, then go home and write a letter. Formally
identify the facts: the patch is temporary, but functional; the system will
not handle further growth without substantial redesign; you cannot be
responsible for the effects of delaying that redesign. Make sure that you
are off both the legal and the moral hooks. Put the problem on paper and
be certain that your customer receives it.

If the customer is ready to face reality, take a contract to find practical,
economical solutions. Suppose that the 64's have space, but the 8032 just

114 6: pursuing a project

can't handle more items. Maybe there's a new machine with full com
patibility and more RAM. Perhaps the critical 8032 code could keep the
files on a hard disk and access them there, saving RAM. More likely, the
64's have filled to the point where garbage collection becomes prohibi
tive. Switching computers is expensive-it means new disk drives, too,
and there are at least 30 stations to resupply. A week should be time
enough for you to construct a maximum system for the hardware you
know, to estimate cost and schedule for several alternatives, and to pre
pare the sad message for your customer. With customer approval, con
tact a supplier of minicomputer systems. If you exceed the capacity of a
micro, maybe the Widget Company has to move up in capacity and price.

When you started the process, you had to guard against contagious
panic. That rule applies here as well. There is no greater trap than promis
ing more than the system can deliver. There are few worse things to do to
your customer than make her believe that an unsolvable problem is under
control. Even when a problem has outgrown your programming, a cus
tomer will still need your expert consultation. She'll still be a customer.

6.10 Bigger and better
Once the system is up and running, you are in an ideal position to do
more for your customer and yourself. The system itself may not have
room for growth, but the computer can serve other purposes than those
for which it was bought. The key word is "noninterference." What can
be done with the system and the files that will not interfere with ICS but
will make the Widget Company more profitable?

The first thing to do is to ensure that there is hardware available for the
extra work. Those thirty 64's are well used all day, but they should be
free on second shift. The central system is in use at all times, but the
backup is idle except when replacing a failed one. If the backup and its
4022 printer are used for the central warehousing job, then a full system
with 8032, 4040, and 8300 is available for most prime shifts. What can
we propose to Widget for that hardware?

First, there are standard software packages-spreadsheets, word pro
cessors, general ledgers, and many more. They may be taken off the deal
er's shelf and run as is. There is little for you to contribute except to ad
vise Widget about what's out there, how to select, and how to use the
products they choose.
But there are greater benefits for both sides if you involve yourself. For

example, you may run WordPro as it comes for excellent word process
ing. But you'll find it hard to tie it in to the ICS files. It's quite a job to
generate a cover letter for the monthly statement that uses all the good

6.10 Bigger and better 115

stuff the system knows. Suppose you start with the Word Machine. It's
inexpensive and written in BASIC. Rip it apart and interface it to the ICS
files. A little imagination will let you adapt the program so it cites bal
ance past due, late-payment charges, and other items as they are relevant
to that account.

The same sort of thing applies to a general ledger or accounting pack
age. Half of the accounting is already implied in the ICS files-items sold
and payments received. Look for a package that you can link into those
files so that bookkeeping will require entering information only once. Be
willing to sacrifice elaborate features with low payoff to Widget Com
pany for easy interfacing. When you have finished ICS, you will be in a
unique position. You will know more about how Widget Company could
use computers and more about computers and software that apply to Wid
get than anyone else connected with the company. Your consultation is
valuable to management, and they'll probably be well aware of it-and
willing to pay for you to use it.

Don't confuse yourself by working the second problem first. Your pri
mary job is ICS. Get it working without concern about WordPro or Gen
eral Ledger. Only after you have a satisfied customer should you spend
time or thought on what else can be done. After your first few projects,
you will automatically organize your systems for easy interfacing to your
favorite purchased products. But don't be tempted by the glitter in the
distance to leave the development vein you're paid to mine. The time to
look for building onto the system is after both you and your customer are
sure that it's working.

programs Supplied on the Diskette
Seven programs are provided on the eHdJ '5@G disk. All are referenced or
contained in the book Advanced BASIC Programming for the Commo
dore 64 and Other Commodore Computers. All programs are self-docu
mented, so user instructions are not required.

SUPERLIST is the principal program developed in Chapter 5 to pro
vide cross-referenced listings.

DIABLO SUPERLIST is the variant of SUPERLIST for letter-quality
publication copy. It is described in 5.7 SUPERLISTing and was used for
all listings in the book.

SYS CHECKSUM is developed in 5.8 to show the use of embedded
machine-language code in a BASIC program.

CHECKSUM is a BASIC-only checksum program intermediate be
tween SUPERLIST and SYS CHECKSUM. It is referenced in 5.8 and in
cluded on the disk to clarify the relationship between its parent and its
descendant.

PROGRAM COMPARE reports line by line on the differences be
tween two BASIC programs. It assists the advanced programmer in
tracking down differences in code which have been flagged by different
checksums.

TURTLEWALK is developed in 5.9 as an example of an educational
program for microcomputers.

DOMINOES is discussed in 5.10 as a less-advanced program. It is pro
vided on the disk as a working program for the student to improve, ap
plying the principles developed in the book to create a better product.

116

Index

Absolute address, 27
Accountlsl

entering of, 107-108
list of, 106

Accounts receivable, 104-105
Addition, 34
Addresslesl, 26, 32, 41, 72

absolute, 27
return, 27
secondary, 49
of variable, 29, 30

Addresser, for SYS CHECKSUM
program, 82

Advanced BASIC programming, 1-2
prerequisites and purposes, 2-4

Advanced programmer, writing a
program for, 9

Advanced software, 1
interoperability, 5-7
writing of, 97

ADVENTURE, 2
Alternative designs, 13
AND, 41, 44
Anomalies, 25
APPEND command, 58

use, 11
Apple machines, I, 2
Application program, bytes, 25
Arithmetic, 33
Arrayls),31-32

defining of, 32
dimensioning of, 6, 32-33
multidimensioned, 13
storage required, 32
structure, 11, 12

Array name, 32
Array "variable," 75
ASC function, 28, 33, 34, 37
ASCIL 33, 43, 53, 60, 75

changes in, 50-51
characters, 28
conversion to, 41
in SYS CHECKSUM program, 83
values, 34, 36, 39, 72

ATN command, 28
Automatic line feed, 49

Backup, ll, 114
BASIC, 1,85

information on, sources, 2
principles, 4-5
start of, 27
use,S

BASIC AID program, 41
BASIC commands, see Commands
BASIC programming, advanced, see

Advanced BASIC programming
BASIC 2.0, 111

garbage collection, 25
Beginner programmer, writing a

program for, 9
Bells, 37
Binary, 33
Bitls), 33

assigning of, 33
"Bones," dominoes and, 90
Bookkeeping, 115
Brackets, 77
Branching, 37
Brute force storage, 106
Buffer

cassette, 40
keyboard, emptying of, 36

Bug, see Error
Buss system, 50
Byte(s), 25, 33-34

high-order, 27
of a line, in SUPERLIST program, 72
losing of, 14
meanings, 34
saving of, 28, 29

cA command, 28
Carriage return, 52, 56

automatic, 55
Cartridges, 52-53

117

118

Cassette, 40
dual, 47

Cassette buffer, 40
CATALOG,28
Catalogue, software for, 65
Catalogue system, 97, 98
C-BASIC,2
CBM, 6,47
Central station, 104
Central system, 114

function, 103-104
for inventory control, 105

Chaining of program, 43
Character(s)

ASCII value of, 36
on dot-matrix printer, 52
nonprintable, 69
reverse, 6
routine for getting, 36-37

Checks, crediting of, 104
Checksum, 68, 71, 72, 74

see also SYS CHECKSUM program
chr$, 49, 52, 59

meaning of, 34, 48
CHR$ command, 34

use, 38
Clarity, 14, 16
Clocks, 50
CLOSE function, 48, 49, 58
CLOSEn, 17
CLR character, 14, 48, 52
CLR function, 42, 43
CMD, use, 47
COBOL, I, 4, 68

interpretive versions, 4
use, 5

Coders)
blocking of, 18
clarity of, 16
lines of, 12

sequence, 26
utility, 13

Code number, 9
printing of, 67

Coding, 39
process, 110-111
tricks, DEF and ON, 43-45

COLLECT command, 58, 59
Colon(s), 29, 38
Color, 37
Comma, 38, 73
Command(s)

beginning of, 26
disk, 40, 57-59

Index

processing of, 74
types and use, 28-29

Commodore 64, I, 50
Commodore computers, dimensions of

variations, 5-6
Commodore's Word Machine, see Word

Machine
Communication, establishing of, 47
Compilation time, 4
Compiled languages, structured

programming for, 17
Compiler(sj, 4
Computer games, 2

DOMINOES, 90-96
CONCAT, 58, 59
Confusion, 28
CONT,42
Context, of information, 35

changing of, 34
Contract, 112
Conventions, international, varying

from, 49-51
COPY function, 59
Counter, use, 73
CP/M,2
CPU

items communicating with, see
Devices

time, 50
Cursor, dummy, 36
Cursor-control character, typing of, 6
Cursor-down, 37, 71
Customer, 3, 4

first call from, 98-99
first meeting with, 100-10 1
needs, 100-101
program documentation for, 19

Daily activity, 103
Daily program, 104
Data

global, 14
loss of, 16
packing of, 34

Data base, 25, 64
"Data base manager," 64
Data definitions, 21
Data-entry professional, writing for, 9
Data files, 63

designing of, 63
Data flag (df), 74
DATA line, 14

DATA statement, 14, 73
placing of, 14
search for, 14
in SUPERLIST, 69

Data structures, structuring, 13, 18
Datasette, device number, 47
Debugging, 42, 111
Decimal,26
DEF, use, 43-45
Default(s), 47
Default device, changing of, 47
Default values, 47
DEL function, 37, 70
Delimiters, elimination of, 38
Design

improvement of, 111
for warehouse program, 106-107

Design review, 101
meeting, 109-110

Device(s),47-49
disk commands, 57-59
disk and drives, 53-55
diskettes, 55-57
printers, 51-53
sorts and searches, 63-65
tokens, 59-61
un-conventions, 49-51
using files, 61-63

Device numbers, 47
df,74
dr, 28
Diablo printer, 51
Dialects, 2
DIM command, 28
DIM(X) command, 32
diR command, 28
Directory

disk, 55
modifying of, 58
problems, 58

DIRECTORY command, 28
token for, 59-60

Disk(s), 53, 65
device number, 47
faults, protection against, 11
faulty, 53-54
floppy, 54-55, 61
handling of, 53
hard, 54, 55, 61
inventory on, 106
reinitializing of, 58
status of, 58
storage on, 11
use, 3

Index

Disk access, slowing of, 16
Disk channel, 55
Disk commands, 40

sending of, 57-59
Disk directory, 28, 55
Disk drivels), 53

types and features, 54
Disk error trap, 15
Disk file, 31

closing of, 74
types and features, 55-57

"Disk id mismatch," 58

119

Disk operating system (DOS), 55, 56
loss, 58

Disk-resident data file,S 7
Display

for references, 74
on screen, 72

Display features, 37
Documentation

delivery, lOl
program, 19-21

DOMINOES program, 2, 90-96
DOPEN,76
DOS, see Disk operating system
Dot-matrix printer, 16, 77

features, 51-52
operation to, 48

DTL,4
Dual-cassette capaci ty machine, 47
Dual disk drives, 54
Dual-drive system, 58
Dual-tape machines, 40
Dummy cursor, 36
Dummy file, 56

ELSE structure, 45
END command, usc, 41, 42
Endings, of program, 41-42
EOR instruction, 82
Error(s), 59

analysis, 25
file, 48
handling of, 15, 22
minimizing of, 10-11
"next without for," 38
"out of memory," 27, 38
syntax, 26, 73

ESCape sequence, 52
Exit, single, 17
Expansion of system, 114-115
Exponentiation, 34

120

"False," 43, 44
FCL, see Functional Capabilities List
Featurels), adding of, 17
Fieldls)

adding of, 98
preplanning of, 13

Filels)
closing of, 12, 17,47
disk, 55-57
opening of, 49
tokenized, assessing of, 60-61
updating of, 64-65
using, 61-63

File error, 48
File manager, building of, 65
File numbers, assigning devices to, 49
File operations, 48
File structures, 11-12

choosing of, 65
Flagls), 33, 34

checking of, 16
data, 74
initializing of, 72
line, 72, 73, 74
quotes, 72-73
setting and testing of, 17, 75
variable, 73, 74

Floating-point number
conversion to string, 35
storing of, 34

Floppy disks, 54-55, 61
Flowchart, 12, IS, 21

high-level, 13
replacement of, IS

FN command, 75
FNP function, 44
FNU function, 44
FNX function, 69, 75
FOR definition, function, 75
FOR ... NEXT loop, 26, 32, 72

use, 38-40
Formatting, 49

within printers, 52
FORTH, 4, 5, 68, 85
FORTRAN, I, 4, 5, 6S, 85, 86

costs, 1
interpretive versions of, 4

Fourier transformation, 5
FREe memory, 6

setting working variable to, 69
Functionls), user-defined, 44
Functional Capabilities List (FCL), 22

"Garbage," 31
"Garbage collection," 25, 31, 69

Index

General ledger, 114, 115
GET command, IS, 47, 70

use, 35-36
GET function, 38
GET# command, 47, 55
Global data, 14

definitions, II, 14
GO, 75
GO TO command, 75, 76
GOSUB command, 12, 14, IS, 18, 26,

2S, 67, 72, 74
operation, 27

GOSUB20:RETURN, 37
GOTO command, 12, 14, IS, 16, 26,

27, 2S, 49, 67, 72, 74, 110
avoiding of, IS
bytes used, 28
"computed," 18
use, 17,39,42

GPIB,50
Graphics, 48

interoperability, 6
printout, 71

Graphics character, 76
Graphics mode

interoperability of, 6-7
selection, 49

Hard disks
features, 54-55
tokenizing and, 61

Hardware
costs, 104
maintenance, 111, 112

HEADER command, 5S, 59, 76
Hexadecimal, 26

counting in, 43
High-order byte, 27
High-speed utilities, 15
HOME character, 6, 48, 52
HPIB,50

IEEE buss, III
disk drives for, 54
printers, 51

IEEE printer, 52
IEEE system, 104
IEEE 4SS busses, 50
IF command, 29

use, 39
IF test, 44
IF ... THEN, 44, 45
IF ... THENGOSUB, 45
Increment ISTEP), defaults, size o(38

Information
attaching of, 58
changing contexts for, 34
codes collecting, 13
context of, 35
gathering, for pursuing of

project, 101
holding of, 34
losing of, 10
minimum set, 11
order of entering, 10
set up, 25
storage, in array, 32
updating of, 16

Initialization, IS, 110
bytes for, 25
SUPERLIST, 68-70

Input, keyboard, 35-38
INPUT command, 47, 48, 60

changing operation of, 48
use, 35

INPUT variable, value of, 48
INPUT# command, 43, 47,56
Instructions, interpreting of, 4
Integer array, 73-74
Integer variable, 30
Interest rate, 104
Interface, interfacing, 53

high-speed, 50
machine language, 40-41
of system, 103
to outside world, 47

Interoperability
of advanced software, 5-7
maximizing of, 75

Interoperation, 16
Interpreter, 26, 27
Interpretive language, advantage of, 4-5
Interview, customer, 100
Inventory(iesl, 103

on disk, 106
review of, 102

Inventory control (customer
descriptionl, 104-105, 106, 107,
109

Inventory Control System (ICS), 97,
104-105, 114, 115

Jargon, 17

Keyboard, 48
device number, 47
input, 35-38

Index 121

Keystroke problem, solution to, 10-11
Keywords, 28

Language(sl, 1
interpretive, 4-5
modern, 4
professional, 5
properties, 5

Ledger(sl, 114, 115
Letter-quality printer, 53
If, 73
Line(s)

discarding of, 67
formatting of, 75
processing of, in SUPERLIST

program, 72-74
Line feed, automatic, 49
Line flag (H), 72, 73, 74
Line number, 28

bytes used, 29
cross referencing of, 67-68
features, 26-27
handling of, in SUPERLIST

program, 72
massaging of, 74
references, printing of, 75

Line references, cross referencing
variables by, 68

LISP, 4
LIST command, 28

in SUPERLISTing, 76
Listing, features of, 67-68
LiSTing, 82

device for, 47
Literals, 48
Literals mode, 7

selection, 49
LOAD command, 42

function, 43
usc, 43

Log(s), saving of, 103
Logical expression, evaluation of, 43
Loop(s)

initiation, 73
see also FOR . . . NEXT loop

Loop index, 37
Low-speed utilities, 15
Lowercase letters, ASCII conversion

for, 50, 51

Machine, see Computer
Machine code, for SYS CHECKSUM

program, 82

122

Machine-language routine, location of,
40-41

Macros, 85
Mailing-list program, 32
Mainframe[sJ, timing requirements, 17
Maintenance documentation, 20-21
Maintenance Manual, 20
Maintenance of system, 111-114
"Map" of memory, 31
Margins, wide, obtaining of, 77
Material, review of, 22
Mathematical computation, 5
Mathematical problem, 32
M-BASIC,2
Mechanics of a program, 25-26

arrays, 31-33
bits, bytes, characters, and numbers,

33-35
coding tricks, DEF and ON, 43-45
commands, 28-29
FOR ... NEXT loops, 38-39
keyboard input, 35-38
line numbers, 26-27
machine-language interface, 40-41
odds and endings, 41-43
variables, 29f, 29-31

Meeting[s)
with customer, 100-101
design review, 109-110

Memory, 3, 6
balance with time, 26
losing of, 10, 14,29,31,38
saving of, 25, 26, 34, 45
size,S

Memory map, 40
Menu, 9

starting of, 16
Merge, 58
Microcomputer[sJ, 19

timing requirements, 17
Microprocessors, 50
Microsoft, BASIC from, 2
MID$ function, 33
Modem, 103
Modern languages, 4
Modifying the program, 15
Modularization, 25

function of, 12
process of, 12

Modulator, 3
Module[s), 18

layout of, 14
location of, 16

Monitor, monochrome, 3
Monochrome computer,S, 6

Index

Monochrome monitor, 3
Monthly program, 104
Multidimensioned array, 13
Multiplication, 34
Murphy's law, computer user and, 10

Name Machine, 65
Needs

customer, 100-101
programs based on, 25

Nested routine, 17
NEW command, 42, 59

use, 41
NEXT, see FOR . . . NEXT loop
"Next without for" error, 38
Nonprintable characters, translation, 69
Novice programmer, writing programs

for, 9, 10
Null string, 48, 71
Numberis)

floating-point, 34, 35
operation on, 35

Numerals, shifted, 76
Numeric function, unary, 43
Numeric values, 43
Numeric variable, 30

storage, 30

ON, 26
use, 43-45

ON ... GOSUB, 18, 44, 74
use, 45

ON ... GOTO, 18,44, 73, 74
use, 45

onjgoto, 37
OPEN command, 11
OPEN1,8,O, "fname," 55
Options, selection of, 9
OR, 41, 44, 69
Organization of program, 14-17
"Out of memory" error, 27, 38
Outside world, interfacing to, 47

p$string, 71, 75
"Packing" of data, 34
Paging, on dot-matrix printer, 52
Paging string, 48
Parenthesis, 28, 73
PASCAL, 1, 4
Pattern-matching capabilities, 71
PEEK function, 34, 40

Peripherals, 48
development of, 50

PET, 47
Petspeed, 4
pi, 77
Pilot, 85
Planning of program, 11-14
Pointer, 26, 71
Poke, 6
POKE command, 31, 40, 41, 48

in SYS CHECKSUM program, 83
Popping, 39
Power lines, faults, protection against,

11
Prefix string (s$), 71
Prerequisites, for advanced BASIC

programming, 2-4
Price structure, 102-103
Principles of BASIC, 4-5
PRINT command, 28, 47, 48
PRINT# command, 11, 28, 47, 48, 55,

56
Print string (p$J, 71

in SUPERLIST, 75
PRINT TIME command, 30
Printer, 3, IS, 49, 114

capabili ties, 75
checking of, 10
device number, 47
dot-matrix, see Dot-matrix printer
problems with, 77
speed of, 16
types and features, 51-53

PRINTing, device for, 47
Printing, of references, 74- 75
"Professional" languages,S
Professional software, 3
Program

blocks, 11, 12
characterizing of, 68
concept, teaching of, 85
documentation, 19-21
mechanics of, see Mechanics of a

program
organization, 14-17
planning of, 11-14
printed listing of, see SUPERLIST
testing of, 21-23

PROGRAM COMPARE, 77
Program file, 55

features, 55
Program name, entering of, in

SUPERLIST, 71
Programmer, 19
Programmer documentation, 20

Index

Programming, structured, 17-19
Project, pursuing of, 97-98

coding, 110-111
design, 105-107
design review meeting, 109-11 0
expansion, 114-115
first call, 98-99
first meeting, 100-101
inventory control (customer

description), 104-105
maintenance, 111-114

123

structuring the system, 102-104
using warehouse program, 107-108

Protocol(s), 47, 48, 49
Punctuation, 76
Purposes of advanced BASIC

programming, 2-4

q$, 73
Question mark ("?"), use, 18,28
Quote array (q$), 73
Quotes, 6, 28, 76

information in, 73
Quotes flag, in processing a line,

72-73
Quotes mode, 6

RAM, 25,31, 64, 106
saving of, 114
top of, 40
wasting of, 60

READ command, 14
Reader, classes of, 19
Reading of file, 58
Record(s)

addition and deletion of, 63
keeping of, 13

Redimensioning, of arrays, 32
Redundancy, 11
Reference(s), printing of, 74-75
Reference processing, ending of, 74
Relative file, 57, 65, 98

features, 56-57
for inventory control, 106
use, 57

REM, 14, 82
insertion of, 40-41
use, 14-15,20

REMark(s), 29, 72, 73
REMark line, 15
RENAME, 58
"Reserved" word, 14
RESET, 41

124

Resolution, 3
RESTORE,14
Retrieval of information, see Search

operation
Return address, removal, 27
RETURN command, 12,27,37,39,45,

48,70
bytes used, 28
use, 28

Reverse characters, typing of, 6
Reverse video, 6, 37
RND command, use, 41, 42
ROM, 51
Routine(sl, 18

layout, 14
RS-232C port, 47, 53
RS-232C serial buss, 50
Rules, set of, see Protocols
RUN command, 14, 42, 43, 73, 74, 82
"Run-time" question, 15

s$ string, 71
SA,49
SAVE command, 58, 71
SCRATCH command, 58
Screen

Index

checking of, 10
device number, 47
dimensions, 5, 6
display on, 72
output to, 48

Screen memory, 31
Search operations, 63-65
Secondary addresses, 49
Sequential files, 55, 57, 98

appending to, 57
features, 55-56
for inventory control, 106
use, 56, 57

Serial busses, disk drive for, 54
Shifted space, use, 38
Shorthand commands, 28
Single-character input, 9
Single disk drive(sl, 54
Single entry, 17-18
Single exit, 17
Software, 2, 53

advanced, see Advanced software
for catalogue, 65
costs, 104
maintenance, Ill, 112
for multiple data file coordination, 64
objective of, 3
professional, 3

quality, 1
utility, 14

Software packages, standard, 114
Sort key(s), 64
Sort operation, 63-65

characteristics for, 64
designing of file for, 64-65

Spacers), 27, 29
saving of, 27
wasting of, 27

"SPCi," 28
Special characters, spelling out of, 67
Speed, 14, 27

disk files and, 57
execution of, 16
loss of, 16, 38
requirements, utility, 13
see also Time

Spreadsheet(sl, 114
Spurious "variable," 75-76
Stack

cleaning of, 39
popping of, 39

STEP defaults, size of, 38
STOP command, use, 41, 42
Storage

brute force, 106
saving of, 29

STR$ function, 28
use, 35

String(sl
conversion of floating-point number

to, 35
operation on, 35

String names, scanning of, 74
String variable, 30-31

value, assigning of, 31
Structured programming, 17-19
Structuring of system, 102-104
Subroutine(s I

exiting from, 12
high-speed, 18

Subroutine call, 27
SUPERLIST program, 2, 7, 21, 67-68

anomalies, 75-76
DOMINOES program, 90-96
initialization, 68-70
printing the reference, 74-75
processing a line, 72-74
starting of, 71-72
SUPERLISTing, 76-81
SYS CHECKSUM, 81-85
TURTLEWALK program, 85-90
utilities, 70-71

SUPERLISTing, 52, 76-81

SuperPet, 4, 6
Support program, 25
Symbols, 33
"Syntax error," 26

in SUPERLIST program, 73
SYS CHECKSUM program, 40, 81-84
SYS routine, 41
System

expansion of, 114-115
maintenance of, 111-114
structuring of, 102-104

Tandy machines, 1, 2
Tape, 55
Telephone Imodem) communications,

103
Terminal, 1
Test case, 22
Test plan, 22, 101, 110, III

draft, 22
Test procedure, 22
Testing, III

of program, 21-23
Text, reading of, 3
THEN, 45, 72, 73, 74
TI variable, 30
Time

balance with memory, 26
loss of, 34
saving of, 26, 27, 29, 31, 35
see also Speed

Timing
on mainframes, 17
on microcomputers, 17
requirements, 22
RS-232C buss and, 50

TO command, function, 75
Token, tokenizing, 28, 98

features, 59-61
Transactionls), 102

collection of, 106
Trouble report, 112
True statement, 43, 44
TURTLEW ALK program, 85-90

Unary functions, 44
numeric, DEFining of, 43

Uppercase letters, ASCII conversion for,
50,51

User, 3-4
class of, 9
writing for, see Writing, for user

User-defined functions, 44

Index 125

User Manual, 19, 20, 21, 22, 101, Ill,
112

draft, 22, 109
function, 20
generation, 10-20
review, 109-110

USR function, in SYS CHECKSUM
program, 83

USR routine, 41
Utilitylies), 11, 12-13

bytes for, 25
high-speed, 15
low-speed, 15
required, 11, 13
software, 13
SUPERLIST, 70-71

Utility code, 13
Utility routines, 110

VAL function, 35
use, 75

Valuels), 32
of variable, 29, 30, 31

Variable(s)
array, 75
beginning of, 26
clearing of, 42
cross referencing of, 67, 68
defining of, 32
handling of, in SUPERLIST

program, 72
spurious, 75-76
types and use, 29f, 29-31

Variable flag (vf), 73, 74
Variable line spacing, 49
Variable name, 29, 30, 31, 32
vf, 73, 74
VIC, poke, 6
VIC 20, 1,50

advanced software for, 7
Video, reverse, 6, 37

WAlT command, use, 41-42
Warehouse program, 103, 104

architecture, 106
design for, 106-107
use of, 107-108

Warehouse station, 104
for Inventory Control System, 105

Warehousing function, inventory
control system for, 105

WEDGE program, 41
Whistles, 37

126

"Window," 6, 7
Word(s), transformation into

token, 28
Word Machine, 2, 65, 115

function, 3
Word processor, 114
Word craft, 3
WordPro, 3, 114, 115
Work string (x$), 74
Wrapup, 72, 74
Writing

advanced software, 97
for user, 9-11

program documentation, 19-21
program organization, 14-17

Index

program planning, 11-14
structured programming, 17-19
testing, 21-23

x$,74
X variable, 30
Xl variable, 30
Xl variable, 30
XOR function, 41, 69, 71, 81
XOR operation, performance, in

CHECKSUM program, 82
XORing,72

