advanced hasic

FLIP－I

```
C ,FOK Y=1 TO 10
S"LET C=0
```

1.0 FUR X=1 Tも SO
20 LET F=INT(2*R.ND (1))
30 IF $F=1$ THEN 60
JAMES S. COAN
40 - PRINT "T";
SO GOTV 100
S४ REM C CUUNTS THE NUMBER JF HEADS
60 LET C=C+1
70 PRINT "H";
100 NEXT X
110 PKINT
120 PKINT "HEADS ";C;"ŋUT yF 50 FLIPS"
12ら NEXT Y
130 END
KuN
FLIP-1

HIT I I HT THHT THT TTTTTTHTHHHHHHTTTTTHTHHH THHHTTHHTT HEADS 21 UUT JF 50 FLIPS
HTTH THH TTH T TH THH T T THH T T T T THHHH T TH TH THHHH THH T THHH HEADS 26 JUT 刀F 50 FLIPS
HTHT TTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHH THHHT HEADS 17 OUT UF SO FLIPS
IH Г T T IT TH TH TH THH THHHHHH THTTTHHTTH T TTTTT THH TH T THH T T HEADS 21 JUT JF 50 FLIPS
TTHHT TTTH THH I TH TH THHHH T THH THH T T T T T TH THHH T TH THHTT HEADS 24 JUT JF 30 FLIPS
HTH THHHHHHH THTTTTTTTHTTHHHHHH TT THT TTTHTH T THH THH THH HEADS 26 JUT UF 50 FLIPS
HT TTTTHTTTTHH T TH T TH THHHH TH THH T THHHH TH T TH TH TH T TT THT HEADS 22 DUT DF 50 FLIPS
TH THHHHHH TH THHHH T T THH TH THHHHH THHH THH THHHHHHH TT TH TH HEADS 34 JUT OF 50 FLIPS
HTTHH THH 「THITTTTTHHH TTTHT T THH T TH TH THHHHH T THH THH THT HEADS 24 JUT JF 50 FLIPS
I IHH THH IHHH TH T TH THH THHHTTTTHHH TT T TH T TH THH THH TH THT HEADS 26 JUT OF SO FLIPS

@dnanced

BASC

Hayden Computer Programming Series

```
COMPREHENSIVE STANDARD FORTRAN PROGRAMMING
James N. Haag
BASICS OF DIGITAL COMPUTER PROGRAMMING (Second Ed.)
John S. Murphy
BASIC BASIC: An Introduction to Computer Programming in BASIC Language (Second Ed.)
James S. Coan
ADVANCED BASIC: Applications and Problems
James S. Coan
DISCOVERING BASIC: A Problem Solving Approach
Robert E. Smith
ASSEMBLY LANGUAGE BASICS: An Annotated Program Book
Irving A. Dodes
PROGRAMMING PROVERBS
Henry F. Ledgard
PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledgard
FORTRAN WITH STYLE
Henry F. Ledgard and Louis J. Chmura
COBOL WITH STYLE: Programming Proverbs
Louis J. Chmura and Henry F. Ledgard
SNOBOL: An Introduction to Programming
Peter R Newsted
FORTRAN FUNDAMENTALS: A Short Course
Jack Steingraber
THE BASIC WORKBOOK: Creative Techniques for Beginning Programmers
Kenneth E., Schoman, Jr.
BASIC FROM THE GROUND UP
David E. Simon
```


advanced BAsic

APPLICATIONS AND PROBLEMS

JAMES S. COAN
Community Computer Corporation
Germantown Friends School

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data
Coan, James S
Advanced BASIC.
(Hayden computer programming series)
Bibliography: p.
Tncludes index.

1. Basic (Computer program language).
2. Mathematics--Data processing. I. Title.

QA76.73. B3C6 001.6'425 76-7435
ISBN 0-8104-5856-X
IS BN 0-8104-5855-1 pbk.
Copyright (C) 1977 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher.

Printed in the United States of America
$6 \quad 7 \quad 8 \quad 9 \quad$ PRINTING

PREFACE

Students are finding that after they have been through the introductory texts presenting BASIC they are pretty much on their own. They may get additional bits and pieces of assistance from other texts, finding that each adds something to their repertoire, but there is still all that introductory material to sort through. The present text is intended for those who have been introduced to the BASIC language and want to go further with the language. It is also intended for those who have already learned another language (such as FORTRAN or COBOL) and need only a brief introduction to what is for them a second or third programming language.

A review chapter is placed at the beginning of the book for those whose coverage of BASIC may have been somewhat limited or distant in time, and for those who come to it with competence in one or more other programming languages. In fact, this text can even be used by students with no former programming experience, if tutorial assistance is available, by a more extensive use of the review chapter.

Some extended features of BASIC are presented so that students working on systems providing extensions will have an opportunity to experiment with or master new techniques. Strings and files are introduced in Chapters 3 and 4. Due to the variety of implementations for use of both strings and files, two systems are presented in each area: General Electric and Hewlett Packard.

In addition to other topics, the applications chapters cover coordinate geometry, area, sequences and series, polynomials, graphing, simulation, and games. These chapters may be studied independently and in any order, although, where appropriate, the student may occasionally be referred to another section in the text. Generally these topics evolve from or build on the ground of a second course in algebra and beyond.

The topic of efficiency is treated explicitly on several occasions, though not necessarily to the point of optimizing execution time. The topic of structured programming is treated implicitly in that all example programs incorporate a clear programming style with minimal un-
conditional branching and maximal use of appropriate data and control structures. These two topics provide good stepping-off points in a computer science course.

Appendix A presents an abbreviation of the ASCII character codes. Appendices B and C summarize flowchart shapes and program statements in BASIC. Appendix D is an index of the nearly 100 demonstration programs in the text. Some solution programs for selected problems in the text follow these appendices.

I wish to thank Community Computer Corporation for computer time, General Electric Information Services for assistance, and those who commented on the first draft for invaluable suggestions.

James S. Coan
Philadelphia

CONTENTS

1 Review of BASIC 1
1-1 Introduction, 1
1-2 Some Simple Programs, 1
1-3 Functions, Loops, and Lists, 7
1-4 User Defined Functions, Subroutines, and Arrays, 12
1-5 MAT Statements in BASIC, 18
2 Some Extended Features of BASIC 23
2.1 Introduction, , 23
2-2 TAB, 23
2-3 Print Using, 25
2-4 Logical Operations, MAX and MIN , 27
2.5 Multiple Line Defined Function, 29
3 Strings. 31
3-1 Introduction, 31
3-2 The String Simple Variable, 31
3-3 The String Subscripted Variable, 34
3-4 The Substring Scheme, 35
3-5 The String Array Scheme, 40
4 Files 46
4-1 Introduction, 46
4-2 Hewlett Packard Files, 46
4-3 General Electric Files, 54
5 Plotting on the Terminal 64
5.1 Introduction, 64
5-2 Plotting a Function, 64
5-3 Plotting Using Data Stored in an Array, 68
6 Area Under a Curve 726-1 Introduction, 72
7 Coordinate Geometry 78
7-1 Points in a Plane, 78
7-2 Pairs of Points, 78
7.3 Parallel and Perpendicular Lines, 84
7-4 Point of Intersection of Two Lines, 88
7-5 Three Points in a Plane, 93
8 Polynomials 101
8-1 Introduction, 101
8.2 Finding a Real Zero of a Polynomial, 104
8-3 Synthetic Division to Get Further Zeros, 108
8-4 Miscellaneous Aids, 112
9 Sequences and Series 115
9-1 Sequences, 115
9-2 Convergence and Divergence, 119
9-3 Series, 122
9-4 More on Series, 125
10 Matrices. 127
10-1 Introduction, 127
10-2 Solving Simultaneous Linear Equations Using MAT INV, 131
11 Some Topics of Statistics 137
11-1 Introduction, 137
11-2 Average, Variance, and Standard Deviation, 137
11-3 Median, 140
11-4 Coefficient of Linear Correlation, 143
12 Simulation and Games 147
12-1 Introduction, 147
12-2 Lines at the Bank, 147
12-3 Magic Squares, 152
12-4 Games, 154
Appendix A ASCII Character Set Printable on Model 33 161
Appendix B Summary of Flowchart Shapes 162
Appendix C Summary of Statements in BASIC 163
Appendix D Index of Programs in Text 169
Bibliography 171
Answers to Selected Problems 172
Index 182

REVIEW OF

1-1 Introduction

This chapter is intended to serve several purposes. The student who is already competent in BASIC will move quickly through the chapter and perhaps write a few programs. The student who has studied BASIC, but not recently or not extensively, will want to move more slowly and write more programs. The student who comes to BASIC with competence in another language will be mainly interested in the differences between the language with which he or she is familiar and BASIC.

There are numerous implementations of BASIC available in schools, colleges, and businesses today. These implementations have many common features and some differences. This chapter will concentrate primarily on those features which are almost universally available. We will mention some of the more common variations (you can usually determine which features are part of your system by writing very short programs to see what works), but beyond that the student should obtain the specific features for his system from the BASIC reference manuals supplied by the computer center or the vendor.

It is also true that the specifications sometimes change as the people responsible for maintaining the computer update its language capabilities. Since these changes tend to be additions, however, programs previously tested will usually still run.

1.2 Some Simple Programs

We can demonstrate many features of BASIC by writing a program that will compare two numbers to determine whether the first is greater than, less than, or equal to the second. See program C \emptyset MPAR.

```
LIST
CCMPAR
94 REM * THIS IS A SAMPLE PRCERRAM TC
95 REM CCMPARE TNC NIMAFES FQR ORDER
100 READ A, }
110 IF A = .01 THFN 220
    IF A = B THFN 1GO
    IF A < B THFN IRO
PRINT A; "IS FRFATFR THAN"; Q
GOTO 1DO
PRINT A; "IS FOIAL TC"; 3
GGTC 100
PRINT A; "IS LFSS THAN"; R
GOTO 100
192
194 REM
200 DATA 3.4, 1.7.1.1, 31,31, -3,?, 0.0
210 DATA .0I,0
220 FND
R|N
COMPAR
    3 IS LESS THAN 4
    1.7 IS GRFATFR THAN 1.1
    3) IS EOIAAL TC 31
-3 IS LESS THAN?
O IS EOIIAL TC O
```

The first item shown is LIST. This is a system command rather than a program statement, and we type it to instruct the computer to print out the program exactly as it stands. Next the computer automatically prints C \varnothing MPAR, which is the program name. Some computers also print the time of day and date along with the program name. On some systems we assign program names with the system command NAME-CQMPAR. On others, to name a new program, NEW C \varnothing MPAR is typed before the program itself is. Having typed the program name, the computer goes on to list the program itself. Let us examine the program statements.

Read-Data

Line 100 is a READ statement. In this case we want the computer to READ two numbers into two variables A and B. Those numbers must come from one or more DATA statements. We provide data in lines 200 and 210.

Conditional Transfer

Lines 110,120 , and 130 are all examples of the conditional transfer in BASIC. Line 110 is used to terminate the execution of the program itself. We send the computer to the END statement only if the value of A is .01 . This is an example of the use of dummy data to control program execution. Lines 120 and 130 direct the computer to the appropriate PRINT statement according to the relation between the values of A and B. BASIC also allows "greater than" $(>)$, "greater than or equal to" $(>=)$ and "less than or equal to" ($<=$). To test for "not equal to" use $(<>)$. Some systems also allow "\#" for "not equal to."

In place of the algebraic symbols just mentioned, some systems require special symbols as relational operators. They are (\backslash LT) or (LT) for "less than,"
($\backslash \mathrm{LE}$) or (LE) for "less than or equal to," (\backslash GT) or (GT) for "greater than," ($\backslash \mathrm{GE}$) or (GE) for "greater than or equal to," ($\backslash \mathrm{EQ}$) or (EQ) for "equal to" and ($\backslash \mathrm{NE}$) or (NE) for "not equal to." The paired relational operators listed above are not generally interchangable. The first is for certain systems, and the second is for others. So there are three sets of possible relational operators. You can quickly tell which works on your computer by consulting the vendorsupplied manual or by trial and error.

Another conditional transfer is available on many systems. It is called the computed G $\emptyset \mathrm{T} \emptyset$. It takes the form,

$$
100 \quad \phi \mathrm{~N} \mathrm{~K} \mathrm{G} \phi \mathrm{~T} \phi \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \text { etc. }
$$

or

$$
100 \quad \mathrm{G} \emptyset \mathrm{~T} \emptyset \mathrm{~K} \emptyset \mathrm{~F} \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \text { etc. }
$$

or

$$
100 \quad \mathrm{G} \emptyset \mathrm{~T} \emptyset \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \text { etc, } \emptyset \mathrm{NK}
$$

At line 100 computer control passes to line n_{1} if $\mathrm{K}=1,1_{2}$ if $\mathrm{K}=2$, etc. If K is not in the range from one to the number of line numbers named, some systems terminate with an error message, while others simply pass control to the line after 100.

Print

Lines 140,160 , and 180 result in printed output to the terminal for the operator to see. We may mix literal output with numeric results by enclosing literal messages in quotation marks. Replacing semicolons in the PRINT statement with commas would result in wider spacing of printed output. On many systems, using commas to separate printed results causes the page to be divided into five columns of 15 characters each. For terminals with only 72 character spaces, the fifth column is 12 characters wide. Generally speaking, use of a semicolon to separate printed output results in closer spacing than with a comma.

Unconditional Transfer

Lines 150,170 , and 190 are examples of unconditional transfer. The $\mathrm{G} \emptyset \mathrm{T} \emptyset$ statement in BASIC serves to name the number of the next line to be executed. When the computer gets to line 150 , the next line the computer executes is 100 . The same is true for lines 170 and 190. Generally speaking, good programs try to minimize the number of $\mathrm{G} \emptyset \mathrm{T} \emptyset$ statements. We shall see ways to do this later.

End

The final statement in our example is the END statement. On most systems the highest numbered statement must be an END statement. After the END statement we see the system command RUN, which is typed by us to cause the computer to actually carry out the instructions of the program. In response to the RUN command, the computer has printed the program name, CФMPAR (some systems will also print the date and time), followed by the printed output
specified by the instructions of our program. (Some systems will follow program results with information about the computer resources used by this RUN of the program.)

Variables

In program $C \emptyset \mathrm{MPAR}$ we used A and B as variables to name stored numeric values. BASIC allows us to use every letter of the alphabet and also every letter of the alphabet followed by a single digit. (Some systems also provide additional symbols as variables.) Every letter or letter plus digit allows us to store a single number at any one time in a program. However, variables may be used over and over again to store new values as long as we have no further need for a particular old value. In C $\emptyset \mathrm{MPAR}$, the variables A and B were each used for six different numbers.

Prettyprinting

Note the overall appearance of program C \varnothing MPAR. An attempt has been made to provide spacing within the program statements to facilitate readability and therefore clarity of thought. The practice of indenting and spacing to achieve this goal is called "prettyprinting." In program CФMPAR, the IF statements have been indented three spaces. Spaces have been inserted in the PRINT statements to avoid a crowded appearance. The blank REM in line 194 is used to offset the DATA portion of the program, and the data has been grouped in the DATA statements to show just how the values will be read in the READ statement. Some systems do not allow prettyprinting. However, if your system does allow prettyprinting, you should work on developing a style of spacing to enhance program readability. Prettyprinting becomes more and more worthwhile as programs become longer and more complex.

Arithmetic Operations

The computer is often used to perform arithmetic operations on numbers. The operations allowed are exponentiation (**) or (\uparrow), multiplication (*), division (/), addition $(+)$ and subtraction (-). The priorities assigned these operators are the same as those assigned in conventional algebra, that is, first exponentiation followed by multiplication and division followed by addition and subtraction. Program \emptyset PRATN shows a use of each of the arithmetic operators.

```
GPRATN
    REM * THIS IS A SAMPLF PROGRAM TO DFMONSTRATF
    REM IISE CF ARITHMFTIC OPERATCRS IN BASIC
    PKINT "ATR", "A*B", "A/B", "A+B", "A-A"
    READ A,B
    IF A << O THEN 150
    IF A << O THEN 150
    STOP
    PRINT " A =''; A; "A="; B
    PRINT A*R, A*G, A/G, A+B, A-B
170 PRINT
180 GOTO 110
182
184 REM
190 DATA 1,P, 3,4, 2,40, 1,4,55.?
200 DATA 0,0
210 END
```

R! N OPRATN			
ArB A*B	A / B	$A+B$	A-9
$A=1 B=2$	0.5	3	-1
$A=3 B=4$			
81 12	0.75	7	-1
$\begin{array}{r} A=2 B=40 \\ 1.09951 F+12 \quad 80 \end{array}$	0.05	42	-38
$A=1.4 \mathrm{~B}=65.2$			
3.36936E+9 91.28	2.14724E-2	66.6	-63.8

The RUN of \emptyset PRATN produces three examples of what is called E-format. For $A=2$ and $B=40, A^{* *} B$ results in $1.09951 \mathrm{E}+12$. That means 1.09951 times 10 to the twelfth power, or 1.09951×10^{12}. Systems vary, but many provide from six to nine significant digits of numeric output.

In \emptyset PRATN, line 140 is equivalent to G \emptyset T $\emptyset 210$. The ST $\emptyset \mathrm{P}$ statement in BASIC is used to terminate execution of a program at some point other than the highest numbered line. This line of the program is called a "logical end" to differentiate it from the physical end.

Assignment

Thus far, the way that we have gotten numeric values to be stored in variables has been to READ values from DATA. We can also assign values directly as follows:

100	$\mathrm{X}=3$	or	100	LET X $=3$
200	$\mathrm{Y}=3^{*} \mathrm{X}+5$	or	200	LET T $=3^{*} \mathrm{X}+5$

These are examples of the assignment statement in BASIC. (On some sys. tems the LET is required. On others it is optional.) Used in this way, the equals sign is called the assignment operator. The assignment capability greatly enhances the power of any programming language since it permits us to retain values for later use. For example, we can sum up any number of data items as in program ADD.

```
ADO
94 REM * THIS PRCRSAM ADDS NIMAFZS FROM OATA
-100 laT S = 0
    110 RFADA
    100 IF A=-.01 T4FN 15O
    140 LET S = S+O
    150 GOTO 110
    160 PRINT "SIM IS"; S
    172
    174 RFM
    IRO DATA 21, 39, 11.3, 24.5, 91.3
    190 DATA -.OI
    200 END
    R!N
    ADD
    SJM IS 197.2
```

In line 100 of ADD the summing variable S is initialized at zero. (Some implementations of BASIC automatically initialize all variables to zero when the program is run.) We now generalize program ADD to count the number of numbers in the previous program. See lines 100, 130, and 140 of ADD1.

```
    ADD1
    94 REM * THIS PROGRQM ADDS AND COMNTS
    95 REM NIJMAFRS FRSM DATA
O LFT S = C=O
    110 RFAD A
    120 IF A = -.01 THFN 150
-130 LET C = C+1
-140 LET S=S+A
    150 GOTO 110
    160 PRINT "S'M 1S"; S
    170 PRINT "THERE ARE"; C; "NIMGFRS"
    172
    180 DATA ?1, 39. 11.3, 24.6, 91.3
    190 DATA -.01
    200 END
    RIN
    ADD 1
    SJM IS 187.?
    THERE ARE S N JMBF,RS
```

Line 100 of ADD1 is an example of a multiple assignment statement. It allows us to assign the rightmost value to all of the variables separated by equals signs. (Some systems require commas instead of equals signs for all but the rightmost equals signs. Our statement 100 would be 100 LET S,C $=0$ on such a system. You may be able to assign different values to different variables on one line, for example, 100 LET $H=4, Y=9 * K, B=81$, or even 100 LET $\mathrm{H}, \mathrm{I}, \mathrm{J}=3, \mathrm{~T}=-32$.)

Input

The final statement of this review section which results in variables containing numeric values is the INPUT statement. It is this statement which allows the operator to interact with a program during execution. When the computer executes an input statement, it prints a question mark at the terminal and awaits information from the keyboard. If we replace READ A with INPUT A in program ADD and remove the DATA statement, we have a program that behaves a little like an adding machine. By printing a marker such as \# followed by a semicolon in line 130 we can type our selected numbers on the same line as the marker, as in program ADD2.

```
                                    ADDR
                                    REM * THIS PROGRAM WORKS A LITTLE
                                    95 REM LIKE AN ADDING MACHINE
                                    100 PRINT "INPIT # = .01 TC DETAIN TCTAL."
                                    110 PRINT
                                    120 LET S = 0
-130 PRINT '#'';
140 INPUT A
150 IF A = .01 THEN 180
160 LET S = S+A
```

```
170 GCTO 130
180 PRINT "S!JM 1S"; S
190 END
RUN
ADD2
INPIJT # = .01 TC CBTAIN TCTAL
#?45
4?78
#?34
H?9R.12
#?43
#?-.01
SUM IS 298.12
```

Note that input statements may be used to call for several values. 100 IN PUT $X, Y, B 9$ calls for three numbers to be typed, separated by commas at the keyboard.

Summary of Sec. 1-2

We have looked at three system commands to give a program a name, instruct the computer to RUN a program, and to LIST a program. We have used the following eight statements in programs; READ, DATA, IF-THEN, PRINT, END, ST \varnothing P, LET, and INPUT. With just these statements we are able to write substantial programs (nevertheless, the language does contain tremendous additional power in other statements to come in the next sections). The concepts of variable and program control have been discussed. We have looked at three kinds of operators: arithmetic, relational, and assignment.

Problems for Sec. 1-2

1) Write a program to average numbers entered as DATA or on INPUT.
2) Write a program to find the largest and/or smallest number of a set of DATA.
3) Write a program to repeatedly average groups of numbers.
4) Write a program to add all positive integers from 1 to n, where n is an item of DATA.
5) Write a program to calculate n factorial. Be sure to make the value of 0 ! equal 1.
6) Write a program to solve equations of the form, $\mathbf{a x}+\mathbf{b}=\mathbf{c x}+\mathrm{d}$.
7) Write a program to solve quadratic equations, $a x^{2}+b x+c=0$.
8) Write a program to find the sum of the reciprocals of the first n positive integers.

1-3 Functions, Loops and Lists

BASIC provides computer functions or subroutines for special purposes. $\operatorname{INT}(\mathrm{X}), \mathrm{SGN}(\mathrm{X}), \mathrm{ABS}(\mathrm{X})$, and $\mathrm{SQR}(\mathrm{X})$ are among them. On some systems the INT(X) function takes the greatest integer not greater than X, such as 4 for 4.3 and -2 for -1.6 . Other systems simply give the integral part of X, such as 4 for 4.3 and -1 for -1.6 , by removing the decimal part. For non-negative numbers, the two are equivalent. $\mathrm{SGN}(\mathrm{X})$ becomes +1 if X is positive, zero if X is zero, and -1 if X is negative. $\operatorname{ABS}(X)$ becomes X if X is non-negative and becomes $-X$ if X is negative. $S Q R(X)$ becomes the principle square root of X so long as X is
non-negative. Each of these functions is useful. However, it is likely that of the four, $\operatorname{INT}(\mathrm{X})$ is most frequently used.

One use of $\operatorname{INT}(X)$ is to round off numeric results. For example, to round to the nearest integer, use $\operatorname{INT}(\mathrm{X}+.5)$. To round to the nearest hundredth, use $\operatorname{INT}(100 * X+.5) / 100$, etc. See line 150 of program R ϕ UND.

$\operatorname{INT}(\mathrm{X})$ is also used frequently to test numbers for divisibility by other numbers. For example:

$$
100 \text { IF X/10 }=\operatorname{INT}(\mathrm{X} / 10) \text { THEN } 200
$$

transfers the computer to line 200 if X is divisible by 10 , but the computer goes to the line immediately following 100 if X is not divisible by 10 . One problem solution that uses this is that of finding all factors of a certain number. We simply try all integers from 2 to the number and test for divisibility. If the divisor goes evenly, we print it; if not, we go to the next divisor. This is left as an exercise.

Random Numbers

BASIC provides a routine to generate pseudo-random numbers. These are very useful as a source of data for simulating random events. The procedure varies somewhat from system to system. All systems provide decimal numbers in the range, 0 to 1 . One procedure introduces random numbers by using $\mathrm{RND}(\mathrm{X})$ in a statement such as 100 LET $\mathrm{A}=\mathrm{RND}(\mathrm{X})$. The particular random numbers are duplicated or different from one run to the next according to the value of X . If X is negative, then you get a different set of random numbers from run to run. If X is 0 , then each run of the program produces the same succession of random numbers. And if X is positive, then the set of random
numbers is based on the value of X . A second procedure does not require an argument for RND. The statement 100 LET A $=$ RND selects a random number and assigns it to A. However, used alone it generates the same set of random numbers from one run to the next. To obtain a different set of random numbers from run to run, simply introduce the companion statement 10 RAND \varnothing MIZE into the program. The ability to reproduce the same set of random numbers is useful for finding errors in the program debugging process. Once the program has been perfected, it can then be modified to produce different results for each run.

Most of the uses for random numbers are for numbers in some range other than 0 to 1 . So we have to do the appropriate calculations to change the range. For example, to "roll a die" we would use 100 LET R $=\operatorname{INT}(6 * \operatorname{RND}(-1)+1)$ or 100 LET $\mathrm{R}=\operatorname{INT}(6 * \mathrm{RND}+1)$. This would give integers in the range 1 to 6 inclusive. In the statement, 200 LET $N=\operatorname{INT}(A * R N D+B)$, A specifies the possible number of random integers and B specifies the smallest possible random integer.

Loops
Suppose we place ten slips of paper numbered 1 to 10 into a hat and have five people draw one slip of paper, note the number on it, and return the slip to the hat. This we can easily do with a program, as in program DRAW.

Program DRAW and several other programs we have looked at contain examples of repetitive steps. This is a computer loop, and BASIC provides the F \emptyset R - NEXT statement pair to set up loops. Program DRAW01 uses F \varnothing R-NEXT to accomplish the same purpose as program DRAW. Note that both programs simulate returning the slips to the hat.

```
DRAW
94 REM * THIS PROGRAM SIMULATES RANDCM DRAWING
95 REM FIVE NUMBERS FROM AMONE 10 WITH REPLACEMENT
100 RANDOMIZE
110 LET }X=
120 LET R = INT( RND*10+1 )
130 PRINT R:
140 LET X = X+1
150 IF }x<=5\mathrm{ THEN 120
160 END
RIJN
DRAW
    6 9 6 10 8
    DRAWO1
    94 REM * THIS PROGRAM DIFFERS FROM DRAW
    95 REM IN THAT FOR-NEXT IS NOW INTRCDUCED
100 RANDDMIZE
-110 FOR X = 1 TO 5
120 LET R = INT( RND*10+1)
130 PRINT R;
140 NEXT X
142
150 END
RIJN
DRAWO1
    2 9 5 2 10
```


Lists

Now suppose that the five people who drew slips of paper from the hat did not replace them. We must make sure that no number is drawn twice. In order to achieve this goal we need to be able to keep track of what numbers have been drawn and what numbers are left. This can be done rather nicely using a subscripted variable called a "list." A list, designated by a single letter, reserves space for more than one number. At the time that we first designate a list variable, the computer automatically reserves 10 locations (some computers reserve 11 by allowing zero as a subscript). We can simulate the numbered slips of paper in the hat by establishing a 10 -item list with the integers 1 through 10 stored in locations 1 through 10. This is done by the following routine:

```
100 FOR I = 1 TO 10
10 LETL(I) = I
20 NEXT I
```

Line 110 sets up the subscripted variable $L()$ so that $L(1)=1, L(2)=2$, etc., through $\mathrm{L}(10)=10$. If we need more than 10 , we can get them by using the DIMension statement. This is usually placed at the very beginning of the program. For example, if we want 25 slips of paper in our hat, we would begin with 10 DIM L(25), and 25 locations would be available. Note that we could dimension for 25 and then use only 10 of them, but we cannot use more than the DIM statement specifies. Any number of lists may be dimensioned on the same line as: 10 DIM $\mathrm{A}(36), \mathrm{B}(43)$. Systems allow a maximum number of storage locations from a few thousand to many thousands.

Now we can develop a procedure to select five numbers at random without replacement. For the first draw there will be 10 numbers from which to draw; for the second draw one has been removed, leaving nine. The process is repeated until there remain only six from which to draw for the last draw. This can be done with another F $\emptyset \mathrm{R}-\mathrm{NEXT}$ pair. We can step backwards with $\mathrm{F} \phi \mathrm{R}$ $\mathrm{J}=10 \mathrm{~T} \phi 6 \mathrm{STEP}-1$. We may specify all three numbers on the right of the equals sign by variable or formula.

If we design a program that merely checks to see if the latest number has already been drawn, then we get into a trial and error situation. And if we try to draw 10 numbers from among 10 , or worse yet, 100 from 100 , the drawing gets slower and slower as we get nearer and nearer to the last draw (adding suspense and expense). For efficiency's sake we should avoid this pure trial and error scheme. Thus consider the following procedure for eliminating trial and error entirely.

For the first draw we may select a number R at random from one to 10 . We may use the value of $L(R)$ as the number on our randomly selected slip of paper. If we draw the same value of R later on, we need a method that does not require testing to see if $L(R)$ has been used. We can acheive this by simply replacing the value of $L(R)$ with the value of $L(J)$ where J is the number of slips from which the drawing is being made after each drawn number has been printed. The important consideration here is that this scheme allows us to use every number that is drawn. We have taken care here to develop an efficient algorithm to solve the problem submitted to us. See in particular line 160 in program DRAW02.

```
DRAWOR
94 REM * THIS PROGRAM SIMULATES RANDOM DRAWING UITHOUT
    REM REPLACEMENT AND UITHOIIT TRIAL AND ERRCR
    REM * LINES 100-120 SIMILLATE 10 SLIPS
    REM GF PAPER IN A HAT
    RANDOMIZE
    FOR I = I TO 10
    LETL(I)=I
    NEXT I
    REM * NOW DRAW FIUE NUMBFRS AT RANDCM
    FQR J = 10 TO 6 STEP - 1
    LET R = INT(RND*J+1)
    PRINT L(R);
    REM * NOW REPLACE THE NIMBER JIJST PRINTED
    REM WITH THE LAST NUMBER IN THE LIST
    LET L(R) = L(J)
    NEXT J
    END
180 END
DRAWO2
    9 7 3 4 5
```

We can see from a run of DRAW02 that no number has been drawn more than once, but one run is not a certainty. A further check can be made by drawing all 10. We leave this as an exercise.

More Functions

In addition to the functions already described, the following are universally available: SIN, C $\emptyset \mathrm{S}$, ATN, L $\phi \mathrm{G}$, and EXP. SIN(X), C $\emptyset \mathrm{S}(\mathrm{X})$ and TAN(X) give the sine, cosine, and tangent of X, where X is taken as an abstract dimensionless number or the measure of an angle in radians. ATN(X) gives the principle arctangent in radians, where X is the tangent of the required number. $L \emptyset G(X)$ gives the natural logarithm of a non negative X and $\operatorname{EXP}(X)$ gives e^{X}. Besides these there are other functions which may or may not be available on a particular system. Among these will be \log base 10 , secant, cosecant, etc. On some systems CLK(X) gives the present time using a 24 -hour clock, and TIM(X) gives the elapsed time of program run in seconds. It is best to consult the manual for your system to determine the full extent of function capabilities.

Summary of Sec. 1-3

BASIC generally provides INT, SQR, SGN, ABS, SIN, C $\emptyset \mathrm{S}$, TAN, ATN, EXP, and L $\varnothing G$ as standard functions, where trigonometric functions are based on radian measure and exponentials use as the base. The routine RND is available to provide random numbers. The language created loop is $F \emptyset R A=B$ TФ C STEP D, where the loop variable A first takes on the value of B and increments by D until A passes C and control passes to the next line following NEXT A which closes the BASIC loop. The default STEP value is always 1. The list is available as a subscripted variable to allow block storage of several numbers attached to a single letter. The DIM statement is required for subscripts exceeding 10.

Problems for Sec. 1-3

1) Write a program to find the absolute value without using any of the functions introduced in this section.
2) Write a program to find the greatest integer in X without using the INT function. Be certain it works for negative numbers.
3) Write a program to roll two dice.
4) Write an efficient program to deal four 13 card hands from a standard 52 card bridge deck.
5) Write a program to store 25 random numbers in a list, print them all, and print the largest and the smallest along with their respective positions in the list.
6) Write a program to print all factors of an integer entered on INPUT.
7) Write a program to print prime integers in the range 2001 to 2501.
8) Find the greatest common factor for pairs of integers.
9) Find the least common multiple for pairs of integers.
10) Generate 100 integers at random from one to 10 . Use a list to tabulate their frequency of occurrence.
11) Write a program to print a table of trigonometric values in a 10 degree range by intervals of 20 minutes. Pick any one function.
12) Modify DRAW02 to draw all 10 slips of paper.
13) Write a program to produce the results of $C \emptyset M P A R$ using $\operatorname{SGN}(\mathrm{A}-\mathrm{B})$ and the computed $\mathrm{G} \phi \mathrm{T} \phi$ statement.

1-4 User Defined Functions, Subroutines, and Arrays User Defined Functions

Another kind of computer function is available in BASIC. It is called the "user defined function" and has the following form:

$$
100 \text { DEF FNA }(X)=[\text { formula }]
$$

If the A is positioned in $\operatorname{FNA}(\mathrm{X})$, you may use instead any letter of the alphabet as the identifier, thus designating up to 26 functions in any one program. For example, we might want to round off results to the nearest hundredth in several places in a program. We would then use

$$
100 \operatorname{DEF} \operatorname{FNH}(\mathrm{X})=\operatorname{INT}(X * 100+.5) / 100
$$

and then use $\mathrm{FNH}($), placing whatever variable we want rounded off in the parentheses. Generally speaking, programmers place DEF statements near the beginning of the program, and some systems require that this be done. Some systems allow only a single argument; some allow two or more; some allow none. We may use any variable or legal BASIC expression, including a defined function, as an argument.

Suppose we define a polynomial function, select a few values of X between -10 and 10 at random and round the results to the nearest tenth. See program PRT.

Defined functions are useful whenever we wish the computer to return a single value.

Subroutines

If we want the computer to return with two or more values, we cannot use a defined function. Also, in the unlikely case that we want more than 26 functions, we need a new capability. In such cases we use a subroutine. A subroutine amounts to a detour in the program that returns to the statement immediately following the one that caused the detour in the first place. This capability permits a set of program statements to be accessed from more than one point in a program. The statement pair G ϕ SUB-RETURN accomplishes this.

One significant use of the subroutine is to improve the flow of control through a program. A subroutine may be used to eliminate the proliferation of GФT \emptyset statements by replacing them with RETURN statements where appropriate. This technique often simplifies the writing of programs. Programs written in this way are also easier to read and thus easier to correct or modify later (see, for example, programs GRAPH2 and GRAPH3 of Chap. 5).

Suppose that we want the product and the sum of two numbers modulo M. We can write a subroutine that calculates and prints both values. Then we can "call" the subroutine from anywhere in the program with G \varnothing SUB n where n is the first line of the subroutine. See lines 140 and 210 in program $M \phi D$.

```
MOD
94 REM * THIS PROGRAM DEMONSTRATES GQSUB
95 REM WITH MODULAR ARITHMETIC
9 9 ~ R A N D G M I Z E ~
100 DE゙F FNR(X) = INT( RND*X+1 )
110 PRINT "FIND A*B AND A+B MOD M"
120 PRINT "A,B,M";
130 INPUT A, B. M
-140 GOSIJB 500
150 PRINT
160 PRINT "NOW DO FOUR rMNDOM CALCULATIONS"
170 FOR I = 1 TO A
180 LETM = FNR(9)+1
```

```
    190
    LOO LET 日 = FNR(M-1)
-210 GOSUA 500
    220 NEXT I
    222
224 REM * THF STOP STATEMENT PREVENTS
225 REM ILLEGAL SUBROUTINE ENTRY
230 STOP
492
494 REM * MDDULAR ARITHMETIC SUBRCUTINE
500 LET P = A*B
510 IF P < M THEN 540
520 LET P = P-M
530 GOTO 510
540 LET S=A+B
550 IF S < M THFN 580
560 LET S = S-M
570 GOTO 550
580 PRINT A; "*"; A; "="; P; A; "+"; B; "="; S; "MOD'; M
590 RETURN
592
999
RON
MOD
FIND A*B AND A+B MOD M
A,B,M? 2,5,6
    2*5=42 + 5 = 1 MCD 6
NOW DO FOUR RANDOM CALCILATICNS
    3*2=2 3+2=1 MOD 4
    2*1=22+1=3 MCD 5
    1*3=31+3=4 MOD 8
    2*4=8 2+4=6 MCD 9
```

Subroutines may in turn call other subroutines as in both lines 510 and 550 of MQD1. One thing to avoid in subroutines is inadvertent use of variables that have been used elsewhere in the program. Subroutines called from other subroutines are called "nested subroutines." (What else?) In our example $M \phi D 1$ we have nested them two deep. Systems vary, but many have a limit on how deep subroutines may be nested.

```
MOD 1
94 REM * THIS PROGRAM INTRODUCES A NESTED
95 REM GOSUB INTO PROGRAM MOD
99 RANDOMIZE
100 DEF FNR(X) = INT( RND*X+1 )
110 PRINT "FIND A*B AND A+B MOD M"
120 PRINT "A,B,M'';
130 INPUT A, B, M
    GOSUB 500
140 PRINT
160 PRINT "NOW DO FOUR RANDOM CALCULATIONS"
170 FOR I = 1 TO 4
180 L.ET M = FNR(9)+1
190 LET A = FNR(M-1)
200 LET B = FNR(M-1)
210 GOSIJA 500
220 NEXT I
222
224 REM * THE STOP STATEMENT PREVENTS
225 REM ILLEGAL. SIJBROUTINE ENTRY
230 STOP
4 9 2
494 REM * MODULAR ARITHMETIC SUBRCUTINE
500 LET N = A*B
```

```
-510 G0SUB 700
    520 LET P = N
    540 LET N = A+B
-550 GOSUB 700
560 LET S = N
580 PRINT A; "*'; 8; "="; P; A; "'+"; B; "='; S; "MOD"; N
5 9 0
592
694 REM * REM REDUCES N TO A NIJMEER MOD M
700 IF N < M THEN 730
710 LET N = N-M
720 GOTO 700
730 RETIJRN
7 3 2
999 END
RUN
MOD I
FIND A*B AND A+B MOD M
A,B,M? 3,4,5
    3*4=2 3+4=? MOD 5
NOW DO FOUR RANDOM CALCILLATICNS
    2 * 3 = 5 2 + 3 = 5 MCD &
    4*1=4 4 + 1 = 5 MCD 9
    2*2=4 2+2=4 MOD 6
    6*8=85+8=4 MOD 10
```

Some systems have a computed G ϕ SUB statement similar in format to the computed $\mathrm{G} \emptyset \mathrm{T}$. . The format is:
$100 \quad$ N K G \emptyset SUB $n_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$, etc.
or
$100 \mathrm{G} \phi \mathrm{SUB} \mathrm{K} \phi \mathrm{F} \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$, etc.
or
$100 G \emptyset S U B n_{1}, n_{2}, n_{3}, \emptyset N K$

Arrays

An array is simply a two dimensional list. For this we use two subscripts separated by a comma and enclosed in parentheses. The first subscript designates the row and the second subscript designates the column. As with lists, we can use a subscript as high as 10 without the need for a DIM statement.

Suppose you recorded the temperature at 6AM, 12 NOON and 6 PM for one week. This data could easily be stored in an array to enable a program to carry out various calculations, for example, see program WETHR.

```
NETHR
94 REM * THIS PROGRAM FINDS AVFRAGE TEMPERATIJRE
95 REM TO DEMONSTRATE A USE OF ARRAYS
100 DIM A(6,4)
102
104 REM * READ DATA
110 FOR D = 1 TO 5
120 FOR I = 1 TO 3
130 READ A(D,I
140 NEXT I
150 NEXT D
152
```

```
REM * CALCJLATF AVFRAGF FACH DAY
FOR D = 1 TO 5
    LETT = 0
    FOR I = 1 T0 3
        LET T = T+A(D,I)
    NEXT I
    LET A(D,4) = T/3
NEXT D
REM * CALC!LATE AVFRAGF EACH RFADING
FOR I = 1 TO 3
    LET T=0
    FOR D = 1 TO 5
        LETT T=T+A(D,I)
    NEXT D
    LET A(5,1)=T/5
NEXT I
PRINT "DAY\TIME", "GAM", "ILNOCN", "GPM", "DAILY AVG"
PRINT
FOR D=1 TC 5
    RFM * KFEP TFRMINAL ON THIS LINE
    REM FOR THE NEXT PRINTED RFSULT
    RFM ,IITH TRAILING COMMA IN LINE 330
    PRINT "DAY"; D,
    FOR I = 1 TO 3
        PRINT A(D,I),
    NEXT I
    PRINT A(D,4)
NEXT D
FOR I = 1 TO 50
    PRINT ''-'';
NEXT I
PRINT
PRINT "AVERAGES",
FOR I = 1 TO 3
    PRINT A (G,I),
NFXT I
PRINT
RF.M
DATA 2.7,34,34, 40,50,55, 50,52,48
DATA 43,41,37, 30,33,29
END
```

R!JN
WETHP

DAYITIME	GAM	I2NOON	GPM	DAILY AVG
DAY 1	27	36	34	32.3333
DAY 2	40	50	55	48.3333
DAY 3	50	52	43	50
DAY 4	43	41	37	40.3333
DAY 5	30	33	30.3333	
AVERAGES	38	42.4	40.4	

Even though the computer permits a subscript as high as 10 for rows and for columns, it does not require that we use them all. In WETHR we used only six rows and four columns.

Note that we used loops within loops, or nested loops, several times in WETHR. The requirement here is that the loops must be nested entirely within
other loops. If a program contains $\mathrm{F} \emptyset \mathrm{R} X=A T \emptyset \mathrm{~B}$ followed by $\mathrm{F} \phi \mathrm{R} Y$ $=\mathrm{C} T \emptyset \mathrm{D}$, the NEXT Y statement must appear before the NEXT X statement.

Once the data is stored, it is a simple matter to obtain other information. For example, we can find the highest temperature reading for the week as in WETHR1.

```
WETHR1
    REM * THIS PROGRAM FINDS HIGHEST TEMPERATURE
    REM IN A FIVE DAY PERIOD USING ARRAYS
        DIM A(6.4)
    REM * READ DATA
    FOR D = 1T0 5
        FOR 1 = 1 TO 3
            READ A(D,I)
        NEXT I
    NEXT D
    REM * THE FIRST ENTRY IS THE HIGHEST SO FAR
    LET H=A(1,1)
    LET R = C = 1
    FOR D = 1 TO 5
        FOR 1 = 1 T0 3
                IF A(D,I) < = H THEN 240
            REM * IF THE CURRENT ENTRY IS HIGHER THEN
            REM SAVE DATA IN H, R, AND C
            LETH=A(D,I)
            LETR=D
            LET C = I
        NEXT I
    NEXT D
    PRINT "HIGHEST TEMPERATURE ="'; H
    REM * USE OF 24-HOIJR CLOCK SIMPLIFIES
    REM PRINTING THE TIME
    PRINT "GCCIJRS AT"; C*GOO; "HOIJRS ON DAY"; R
    REM
    DATA 27,36,34, 40,50,55, 50,52,48
    DATA 43,41,37, 30,33,28
    END
RIJN
WETHRI
HIGHEST TEMPERATURE = 55
OCCIRS AT 1800 HOURS ON DAY 2
```


Summary of Sec. 1-4

BASIC allows tremendous flexibility in the user defined functions. We may have up to 26 functions defined with DEF FNA(X) followed by an equals sign and any legal BASIC formula.

For calculations that don't lend themselves to function definition, such as calculations requiring more than one value in the result, the subroutine entered with G \emptyset SUB is available. The end of a subroutine is indicated by the RETURN statement.

Two dimensional variables are available in BASIC. A(I,J) designates the Ith row and the Jth column of A. For subscripts greater than 10, a DIM statement is required.

Problems for Sec. 1-4

1) Write a program to read six test scores for each of five students into an array, one student to a row. Find the test average by student and by test, and print the scores and the results in easily readable form.
2) Write a program to locate the maximum and the minimum point of any function in a domain specified as input. Also specify the increments as input.
3) Write a program to set up a tic-tac-toe board and keep track of the play of two external players.
4) Write a program to fill a square array with zeros except along the diagonal from the upper left to the lower right corners, which should contain ones. Print this array (called the "identity array").
5) Write a program to produce the results of program C \varnothing MPAR in Sec. $1-1$ using a simple G ϕ SUB and only one G \emptyset T \emptyset.
6) Write a program to produce the results of program C \varnothing MPAR in Sec. 1-1 using $\operatorname{SGN}(A-B)$ and the computed G $\emptyset \mathrm{SUB}$.
7) If your system allows two arguments in user defined functions, write a single function to allow rounding off numbers to any desired precision. Try the same thing with a single argument function. Write a program to verify your functions.

1.5 MAT Statements in BASIC

Arrays and lists are used so routinely in programming and in mathematics applications that most implementations of BASIC include a group of special statements to handle them. Note that since BASIC treats lists as special arrays, we may not use the same letter for a one-dimensional list that we use for a twodimensional array. Instead of reading values into the elements of an array entry by entry with loops, we may simply use MAT READ A or MAT READ A, B, C as long as the array or the arrays are dimensioned to be compatible with the data. BASIC also allows us to alter the dimensions of arrays in the MAT READ statement. MAT READ A, $\mathrm{B}(3,7), \mathrm{C}(\mathrm{N}, \mathrm{M})$ reads mat A according to previously set dimensions; dimensions B to three rows and seven columns; reads the array and dimensions C to N rows and M columns, N and M having been previously defined; and reads that array.

MAT PRINT A prints the complete array with comma format. To get semicolon format, MAT PRINT A; must be used. A single statement may specify printing of more than one array, as in MAT PRINT $A, B ; C$, which will result in A being printed with comma spacing, followed by B printed with semicolon spacing, followed by C printed with comma spacing (see program MAT01).

MAT INPUT allows us to type entries from the keyboard of our terminal with all of the dimensioning options of MAT READ. MAT INPUT A has one additional option in some implementations of BASIC. If A is a list, you may not know the number of entries required when the program is written. In some systems, the function NUM takes on the number of elements entered in the most recent MAT INPUT statement in the program.

Other statements that may be used to assign values to the elements of arrays are as follows:

MAT A $=$ ZER	Fills array A with zeros according to previously specified dimensions.
MAT A $=$ ZER (2,3)	Redimensions A and fills it with zeros.
MAT A $=$ ZER (B,C)	Redimensions A and fills it with zeros. MAT A $=$ ZER(5)
Redimensions A and fills it with zeros.	
MAT $=$ ZER(X)	Redimensions A and fills it with zeros.

MAT $A=C \emptyset N$ fills the array A with ones. As shown, the dimensions must have been previously determined. $\mathrm{C} \emptyset \mathrm{N}$ has all of the redimensioning options shown for ZER.

MAT A = IDN is used only for a square array (where the number of rows is equal to the number of columns). A is filled with ones where the row number and the column number are equal and all other locations are set equal to zero. IDN may be redimensioned with $\operatorname{IDN}(\mathrm{X}, \mathrm{X})$ or $\operatorname{IDN}(5,5)$. This is called the "identity matrix" in matrix algebra.

In matrix algebra, addition and subtraction are defined for like-dimensioned arrays as the sum or difference, respectively, of elements having the same location. That is, if array X is the sum or difference of Y and Z , then for all I, J we have $\mathrm{X}(\mathrm{I}, \mathrm{J})=\mathrm{Y}(\mathrm{I}, \mathrm{J}) \pm Z(\mathrm{I}, \mathrm{J})$. This could be done with nested loops; in BASIC, however, we merely type:

```
100 MAT X = Y + Z for addition
100 MAT X = Y - Z for subtraction
```

Matrix multiplication has a more complicated definition. For arrays Y and Z, the number of columns in Y must equal the number of rows in Z. The (R, C)th entry of X is the sum of the products $Y(R, T) * Z(T, C)$, where T goes from one to the number of columns in Y, which is also the number of rows in Z. The product matrix will have the same number of columns as X and the same number of rows as Y. A BASIC program for matrix multiplication requires triple nested loops.

The following statement accomplishes the same result:

$$
100 \text { MAT X }=\mathrm{Y} * \mathrm{Z}
$$

Note that if multiplication works for $\mathrm{Y}^{*} \mathrm{Z}$, it will work for $\mathrm{Z}^{*} \mathrm{Y}$ only if the arrays are square. In any case, the product has the number of rows of the left multiplier and the number of columns of the right multiplier (see program MAT02).

In matrix algebra, instead of dividing Y by Z, we first find the inverse of Z. The inverse of Z, written Z^{-1}, is the matrix such that $Z^{*} Z^{-1}$ equals the

```
MATO2
100 DIM X(10,10),Y(10,10),Z(10,10),P(10,10)
102
104 REM * READ MATRIX DIMENSIONS
110 READ I,J, K,L
120 IF J = K THEN 150
130 PRINT "PRODUCT UNDEFINED"
STOP
REM * READ MATRIX ELEMENTS
MAT READ Y(I,J), Z(K,L.)
REM * INITIALIZE PRODUCT MATRIX
MAT X = ZER(I,L)
REM * MULTIPLY USING NESTED LOQPS
FOR T = 1 T0 J
    FORR=1TGI
        FOR C = 1 TO L.
            LET X(R,C)=X(R,C)+Y(R,T)*Z(T,C)
        NEXT C
    NEXT R
NEXT T
PRINT "IJSING TRIPLE NESTED LOOPS"
MAT PRINT X:
PRINT
REM * DEMONSTRATE MAT PRODUCT IN BASIC
MAT P = ZER(I,L)
MAT P = Y*Z
PRINT "USING MAT MULIIPLY STATEMENT"
MAT PRINT P;
REM
DATA 2,3, 3,4
DATA 1,2,3,4,5,6
DATA 1,2,3,4,5,6,7,8,9,10,11,12
END
```


identity matrix. Having found the inverse of Z, we multiply Y by it. The inverse (if it exists) is obtained with the following statement:

$$
100 \text { MAT X }=\operatorname{INV}(Z)
$$

BASIC allows us to find the transpose of a matrix with the following statement:

$$
100 \text { MAT X }=\operatorname{TRN}(Z)
$$

The transpose consists of an array X such that the columns of X are the rows of Z and the rows of X are the columns of Z. Note that if the dimensions of Z are (R, C), then the dimensions of X must be (C, R).

We can duplicate an array with

$$
.100 \quad \text { MAT X }=Z
$$

and can multiply every entry of an array by the same number with

$$
100 \text { MAT X }=(\mathrm{C})^{*} \mathrm{Z}
$$

where \mathbf{C} is any legal BASIC formula.
In the last seven cases just presented, some systems use the statement itself to dimension or redimension X , whereas others require that the program make the dimensions of X compatible in advance.

Summary

BASIC provides a number of MAT statements that greatly simplify programs which deal with arrays. They are as follows:

MAT READ Reads data into a variable list.
MAT INPUT Enters data from the keyboard into a variable list.
MAT X $=$ ZER Fills X with zeros.
MAT $X=C \emptyset N \quad$ Fills X with ones.
MAT X = IDN Creates the identity matrix.
MAT PRINT Prints the contents of a variable list to the terminal.
MAT $X=Y \quad$ Copies the contents of Y into X.
MAT $X=Y+Z \quad$ Enters the sum of Y and Z into X.
MAT $X=Y-Z \quad$ Enters the difference of Y and Z into X.
MAT $\mathrm{X}=\mathrm{Y}^{*} \mathrm{Z} \quad$ Enters the product of Y and Z into X .
MAT $\mathrm{X}=(\mathrm{C})^{*} \mathrm{Y} \quad$ Multiplies each entry of Y by C and enters result in X .

MAT $\mathrm{X}=\operatorname{INV}(\mathrm{Y}) \quad$ Enters the inverse of Y into X .
MAT X $=$ TRN(Y) Enters the transpose of Y into X .
The first five statements above have optional redimensioning capabilities.

Problems For 1-5

1) Write a program to add or subtract two arrays without using matrix statements from this section.
2) Write a program to enter 25 random integers into a five by five array and print it. Now find the largest number in each row and its column number, and find the largest number in each column and its row number.
3) Write a program to print a times table modulo six.
4) Write a program to print a times table modulo five.
5) MAT READ the integers one through nine into a three by three array. Copy this into the upper left corner of a four by four array. Use the fourth row to enter the column sums, and use the fourth column to enter the row sums. Print the resulting array.
6) Write a program to create the transpose of a given matrix without using the TRN function.

SOME EXTENDED FEATURES OF BASIC

2-1 Introduction

None of the features to be discussed in this chapter is absolutely necessary to writing programs in BASIC. Other language statements may be assembled to achieve the same effect of each one. Some of them may not even be available on the computer you are using. However, if your system does provide any of the features presented here, you are encouraged to experiment since they save programming effort and storage space and make programs more readable.
(Note about problems: The author has not attempted to contrive problems which would require the reader to use the various features presented in this chapter. Rather it is recommended that you be alert to possibilities for using the material of this chapter in programs you will be writing throughout the rest of the book.)

2-2 TAB

The $\operatorname{TAB}(\mathrm{X})$ function is available on many BASIC systems. $\mathrm{TAB}(\mathrm{X})$ placed in a PRINT statement causes the printing mechanism of the terminal to be located in the $\mathrm{x}^{\text {th }}$ space of the current line, provided it has not already passed that point. Note that on most systems the leftmost space is numbered zero and the counting is modular, with the mod being typically 72 or 75 , but sometimes more. Some systems are not modular but start on a new line when the TAB argument exceeds the system line length. An explicit number or BASIC formula may be entered as the argument of the TAB function. If the value of the argument is not an integer, most systems use only the integer part. See program TAB01.

```
TABO1
```

Examining the output of program TAB01 and counting the leftmost space as zero, we see that the X's are printed in the spaces numbered $3,8,12,28$, and 48 , as designated in the DATA of line 240.

The uses of the TAB function are not limited to literal output. We may also format numeric output or a mixture of numeric and literal output. See program TAB02.

```
TABOR
94
100
102
104 REM * READ FOUR ITFM A LIST
110 FOR I = 1 TC 4
120 READ A(I)
130 NEXT I
132
140 PRINT TAB(15); "COMMA SPACING"
150 FOR I = 1 TO 4
160 PRINT A(I),
170 NEXT I
190 PRINT
182
190 PRINT TAB(10): "USINF TAB FOR 10 CHARACTER PRINT ZCNE
2OO FOR I = 1 TO 4
210 PRINT
220 NFXT I
230 PRINT
23?
240 PRINT TAG(G); "SFMICOLCN SPACING"
250 FOR I = 1 TO A
250 PRINT A(I);
270 NFXT I
280 PRINT
```

```
282 
                                    COMMA SPACING
                            11% O
                            ISING TAR FGR 1O CHAPACTHR PRINT ZONES
        SEMICCLON SPACING
-3 11 0 406
```

Note that systems differ in the number of spaces generated by the comma and semicolon delimiters.

2.3 Print Using

While it is possible with the string facilities available in BASIC (see Chapter 3) to print output in any desired form, formatting can require tedious programming. It is for this reason that many systems provide PRINT USING and image statements.

PRINT USING permits the format for printing output for the current line to be specified in yet another line. The specifications for printing are called the image. The image can be defined in an image statement, which begins with a colon. Very simply, a pound sign is used to specify where we want digits printed. For pound signs placed to the right of the decimal point, zeros to the right of the last nonzero digit are printed. For pound signs placed to the left of the decimal point, zeros to the left of the leading nonzero digit are not printed.

One of the common uses of PRINT USING is to obtain zeros to the right of the decimal point in printed output, since as a numeric the trailing zero is dropped in BASIC. If we want $\$ 3.10$ printed, we may use an image to force the printing of the zero, as shown in our first demonstration program, IMAGE01.

```
IMAGEOI
94 REM * DEMONSTRATFS ELEMENTARY
95 REM EXAMPLE FCZ PRINT ISSING
100 LET D = 3.1
110 PRINT "THIS IS &ITHOUT IMACE"
120 PRINT "THE AMO'INT IS S"; D
130 PRINT
140 PRINT "THIS IS WITH IMAGF""
150 :THE AMOHNT IS SH#.##
160 PRINT IISING 150, D
170 END
RIN
IMAGEOI
THIS IS WITHOUT IMAGF
THF AMOUNT IS S 3.1
THIS IS WITH IMACE
THE AMOUNT IS S 3.10
```

Next we present program IMAGE02 to show a variety of numbers printed in a variety of images.

Note that where several dollar signs appear only one of them gets printed. The one that is printed is as far right as possible in a space that has a dollar sign in the image. When there is not room to the right of the decimal point in the image to print all of the digits, the excess is dropped. No rounding off is done. Where there is not room to the left, all digits get printed anyway, and an asterisk is printed to call attention to the fact that the number did not fit the image.

The image can be a string. In this case, the line number which calls the image in the PRINT USING statement is replaced by the string variable that contains the image, as in program IMAGE03.

IMAGEO3

```
94 REM * DEMONSTRATES IMAGE STORED
95 REM IN A STRING VARIAGLE.
100 LET IS = "###.## SSS#.##"
110 LET N = 23.4
120 PRINT N; " IS THE NIJMAFR"
130 PRINT IS; " IS THE IMAGE"
140 PRINT USING IS,N,N
150 END
RUN
IMAGE03
```

```
23.4 15 THE NUMBER
```

23.4 15 THE NUMBER

S\#.\#\# IS THE IMAGE

S\#.\#\# IS THE IMAGE

23.40 \$23.40

```
23.40 $23.40
```

We can force the computer to print numeric output using E-format. Four up arrows are used for this, as shown in program IMAGE04.

```
IMAGEO4
94 REM * PRINTS E-FgRMAT
100 : ##*###+!
110 LET N = 24.3
120 PRINT USING 100,N
130 PRINT N; "IS THE NUMBER"
140 END
RUN
IMAGEOA
    2.43E+01
24.3 IS THE NUMBER
```

Strings may be formatted with images also. An apostrophe must be used to begin the printing for a string image. Then control letters $\mathrm{E}, \mathrm{L}, \mathrm{R}$, and C may be used to indicate fields of specific characteristics. Control character E calls for left justification and allows the string to overflow, whereas L calls for left justification but truncates on the right. Control character R calls for right justification and truncates any excess, and C calls for centering the string output and truncates on the right if there is an excess. The apostrophe is needed to delimit the control characters because any other alphabetic characters will be printed just as they appear in the image. See program IMAGE05 for a demonstration of formatting string output in the image.

```
IMAGEO5
94
110 PRINT IS
120 FOR I = 1 TO 5
130 READ SS
140 PRINT JSING IS, S$, SS, SS, S5
150 NEXT I
152
154 REM
160 DATA THIS, IS, A, SAMPLE, PROGRAM
170 END
RUN
IMAGEOS
\begin{tabular}{lrll} 
TLLLL & 'RRRRR & 'CCCCC & IEE \\
THIS & THIS & THIS & THIS \\
IS & IS & IS & IS \\
A & A & A & A \\
SAMPL & SAMPLE & SAMPLE & SAMPLE \\
PROGR & PRØGRA & PROGRA & PROGRAM
\end{tabular}
```


2-4 Logical Operations, MAX and MIN

Truth Values

Some BASIC implementations include a set of logical operations. Let's look at the already familiar IF-THEN statement. The statement IF X=1 THEN 200 transfers control to line 200 only if $X=1$ is true. If $X=1$ is true, BASIC assigns the statement $X=1$ a value of 1 to designate 'true.' If $X=1$ is false, then BASIC assigns it a value of 0 to designate 'false.' So we could replace our pro-
gram statement with IF X THEN 200, and when $\mathrm{X}=1$ the computer goes to 200 ; otherwise control passes to the next line in sequence, provided X can be only 0 or 1 .

We may even print the logical value of statements. If we print the value of $N / X=\operatorname{INT}(N / X)$, we should get a one when X is a factor of N and a zero when X is not a factor of N (see line 150 of program L $\emptyset \mathrm{GIC1}$).

```
    LOGIC1
    9 4 ~ R E M ~ * ~ T H I S ~ P R O G R A M ~ D E M O N S T R A T E S ~ T H E ~ T R U T H ~ V A L U E ~
    95 REM OF THE STATEMENT N/X = INT(N/X)
    100 PRINT "INPUT N";
    110 INPUT N
    114 REM * PRINT HEADINGS
    120 PRINT "X','N/X'","INT(N/X)","TRUTH VALUE GF"
    130 PRINT TAB(45);"N/X=INT(N/X)"
    140 FOR X=1 TO N
-150 PRINT X,N/X,INT(N/X),N/X=INT(N/X)
    160 NEXT X
    170 END
RUN
LOGICI
\begin{tabular}{lccc} 
INPUT \(N ? 6\) & & \\
\(X\) & \(N / X\) & INT \((N / X)\) & TRUTH VALUE OF \\
& & & \(N / X=\) INT \(N / X)\) \\
1 & 6 & 6 & 1 \\
2 & 3 & 2 & 1 \\
3 & 2 & 1 & 1 \\
4 & 1.5 & 1 & 0 \\
5 & 1.2 & 1 & 0
\end{tabular}
```

The fourth column prints the logical value of $\mathrm{N} / \mathrm{X}=\mathrm{INT}(\mathrm{N} / \mathrm{X})$. As we expected, that value is one whenever X is a factor of N and zero whenever X is nota factor of N. This gives us a novel approach for counting factors of N. See line 140 of program L ϕ GIC2. Where available, all of the relational operators may be used in a similar manner.

```
L0GIC2
94 REM * THIS PROGRAM COUNTS FACTORS CF INTEGERS
95 REM USING THE TRUTH VALUE OF N/X = INT(N/X)
100 PRINT "INPUT AN INTEGER";
110 INPIIT N
120 LET T=0
130 FOR X=1 TO N
-140 LET T=T+(N/X=INT (N/X))
150 NEXT X
160 PRINT T;"FACTCRS"
170 END
R!JN
LOGIC2
INPUT AN INTEGER??40
    20 FACTORS
RUN
LOGIC2
INPUT AN INTEGER?1949
2 FACTORS
```


Logical Operators

The logical operators AND, $\emptyset \mathrm{R}$, and $\mathrm{N} \phi \mathrm{T}$ are available on some BASIC systems and may be used in a wide variety of applications. One rather straightforward application is an extension of IF-THEN statements. We may often combine several IF-THEN's into one statement. For example, the pair,

```
100 IF X=3 THEN 200
110 IF Y<2 THEN 200
```

becomes

$$
100 \text { IF } X=30 R \quad Y<2 \text { THEN } 200
$$

Or the four statements,

```
100 IF X <> 3 THEN 130
110 IF Y >= 2 THEN 130
120 GOTC 510
130 PRINT "MESSAGE"
```

become

```
100 IF }X=3\mathrm{ AND Y<2 THEN 510
110 PRINT "MESSAGE."
```

We can negate a statement with $N \phi T$. That is, $X<>3$ and $N \phi T(X=3)$ are equivalent. (When you are unsure of the order of operations, it may be best to use parentheses if only to make the statement easier to read.) What about X and $\mathrm{N} \phi \mathrm{T} X$? In this case, X is either equal to zero or it isn't. So in the case IF N $\varnothing \mathrm{T}$ X THEN 200, control passes to line 200 for $X=0$ (because $N \emptyset T 0$ equals 1) and passes to the next statement in sequence for all other values.

MAX and MIN

For a system which provides MAX and MIN functions, the value of A MAX B becomes the larger of the two numbers. The value of A MIN B becomes the smaller of the two numbers. If you don't have these functions, then you may use
$.5^{*}(\mathrm{~A}+\mathrm{B}-\mathrm{ABS}(\mathrm{A}-\mathrm{B}))$ for A MIN B and $.5^{*}(\mathrm{~A}+\mathrm{B}+\mathrm{ABS}(\mathrm{A}-\mathrm{B}))$ for A MAX B

2-5 Multiple Line Defined Function

Some versions of BASIC provide multiple line user-defined functions that permit defining of functions that require two or more program statements to define. The first line must be DEF FN followed by the function identifying letter and the function argument or arguments in parentheses. The last statement must be FNEND, and in between there must be at least one assignment statement with FN and the same letter specified in the DEF statement on the left of the equals sign.

For example, we may write a multiple line function that will do modular multiplication. The function of lines 100 through 160 in program FUNCTI 1 N does just that.

As with other user defined functions, the multiple line function may be
accessed at any point of the program. In this way we may often save program space, just as G \emptyset SUB is often used to avoid repeating a set of program statements. However, the defined function is accessed directly whenever its name is used and thus it does not require a special statement to transfer control to it. The defined function may be used in all situations where a single value is required for each parameter or set of parameters, whereas a subroutine is more appropriate if two or more variables must be returned.

```
    FINCTION
    REM * THIS PROGRAM DFMONSTRATES A IJSE OF THE
    REM MULTIPLEE LINE JSER DEFINED FUNCTION
    REM * THE FINCTION IS DEFINFD IN LINES 100 THRO!JGH 160
    DEF FNM(X,Y,Z.)
    LET P = X*Y
    IF P < Z THEN 150
    LETP P P-Z
    GOTC 120
    LET FNM = P
    FNEND
    PRINT "MULTIPLY A TIMES B MOD M TC CET"
    READ A, B, M
    IF M = 0 TH5N 250
    PRINT TAS(8); A; TAS(16); B; TAB(22); M; TAB(27); FNM(A,
    GOTO 210
    REM
    DATA 1,2,3, 3,2,4, 3,3,4, 0,0,0
    END
RIN
FINCTION
MilLTIPLY A TIMES B MCD M TO GET
\begin{tabular}{llll}
1 & 2 & 3 & 2 \\
3 & 2 & 4 & 2 \\
3 & 3 & 4 & 1
\end{tabular}
```


STRINGS

3-1 Introduction

A string is simply any set of characters that is not to be treated as a number but is to be otherwise manipulated by the computer. The characters are referred to as alphameric or alphanumeric, since both alphabetic and numeric symbols may be used, as are most other symbols permitted by your terminal, even including the nonprinting characters. It is the purpose of this chapter to outline a few of the possible uses of strings and string variables in BASIC even though the specifications are not uniform from system to system. The user should determine the capabilities of his or her own system before planning extensive programming activity.

3-2 The String Simple Variable

To distinguish the string variable from the numeric variable, virtually all systems use a trailing dollar sign (\$) in the variable name for a string. Legal simple string variable names are $\mathrm{A} \$, \mathrm{~K} \$, \mathrm{~B} 3 \$$, and $\mathrm{C} 8 \$$. Some systems are restricted to the 26 letters of the alphabet, not permitting such variables as B3\$. Others allow additional variables such as $\& \$$. The number of characters you are allowed to store in one simple string varies typically from 18 to thousands. Most of the manipulations allowed for numeric variables are allowed for string variables except for arithmetic operations. String variables can be READ, INPUT, assigned, printed, and compared for order. Order comparison is accomplished according to ASCII (American Standard Code for Information Interchange) specifications, which place the digits in order 0 through 9 ahead of the letters of the alphabet in alphabetical order. (See Appendix A for relevant parts of the code.)

One of the uses of strings is to permit person-computer "conversation." We do not need to numerically code our answers to questions put to the program user. If we wish to give the program operator options, the answers can be words which the computer processes directly. If for example, we write a program that will require a lot of yes-no answers from the keyboard, we may write
a subroutine that prints the question, checks the answer to be sure that it is either a "YES" or a "N \varnothing," and rerequests the answer for all other responses.

Program DECIDE uses such a subroutine repeatedly as the computer assembles the information fed into it by the user. The subroutine outlined above begins in line 800 .

```
DECIDE
```

```
4 REM * DEMONSTRATICN PROGRAM INIRODIJCING STRINGS
```

4 REM * DEMONSTRATICN PROGRAM INIRODIJCING STRINGS
95 REM SHONS ASSIGNMENT, INPITT, COMPARISION AND
95 REM SHONS ASSIGNMENT, INPITT, COMPARISION AND
96 REM PRINTING CF STRINGS
96 REM PRINTING CF STRINGS
100 GOSIJB 200
100 GOSIJB 200
110 LET XS = 0S
110 LET XS = 0S
120 GQ SJB 400
120 GQ SJB 400
130 LET YS = QS
130 LET YS = QS
140 PRINT "PROGRAM NAME'';
140 PRINT "PROGRAM NAME'';
150 INPIT N\$
150 INPIT N\$
160 PRINT
160 PRINT
-170 PRINT XS; Y5; " - ''; NS
-170 PRINT XS; Y5; " - ''; NS
180 STOP
180 STOP
192
192
194 REM * LANGUAGE DECISION SUBRCUTINE
194 REM * LANGUAGE DECISION SUBRCUTINE
200 LET QS = 'FORTRAN"
200 LET QS = 'FORTRAN"
210 GOSUB 800
210 GOSUB 800
220 IF AS = "YES" THEN 310
220 IF AS = "YES" THEN 310
230 LET OS = "COBOL."
230 LET OS = "COBOL."
240 GOSUB 800
240 GOSUB 800
250 IF AS = "YES" THEN 310
250 IF AS = "YES" THEN 310
260 LET OS = "BASIC"
260 LET OS = "BASIC"
270 GOSUA 800
270 GOSUA 800
280 IF AS = "YES" THEN 310
280 IF AS = "YES" THEN 310
290 PRINT "FORTRAN, COBOL OR RASIC ONLY"
290 PRINT "FORTRAN, COBOL OR RASIC ONLY"
300 GOTO 200
300 GOTO 200
310 RETURN
310 RETURN
392
392
394 REM * MAKE 'OLD - NEN' DECISION HERE
394 REM * MAKE 'OLD - NEN' DECISION HERE
4OO LET OS = " OLD"
4OO LET OS = " OLD"
410 GOSJB 800
410 GOSJB 800
420 IF AS = "YES" THEN 480
420 IF AS = "YES" THEN 480
430 LET QS = "NEW"
430 LET QS = "NEW"
440 G0SUB 800
440 G0SUB 800
450 IF AS = "YES" THEN 480
450 IF AS = "YES" THEN 480
460 PRINT "OLD OR NEW ONLY''
460 PRINT "OLD OR NEW ONLY''
470 GOTO 400
470 GOTO 400
4 8 0 ~ R E T U R N
4 8 0 ~ R E T U R N
7 8 2
7 8 2
784 REM * YES-NO DECISION SUBROUTINE
784 REM * YES-NO DECISION SUBROUTINE
785 REM ENTER WITH GOSUB 8OO
785 REM ENTER WITH GOSUB 8OO
790 PRINT "YES OR NG"
790 PRINT "YES OR NG"
-800 PRINT OS;
-800 PRINT OS;
810 INPUT AS
810 INPUT AS
820 IF AS = "YES" THEN 850
820 IF AS = "YES" THEN 850
830 IF AS = "NO" THEN 850
830 IF AS = "NO" THEN 850
B40 60T0 790
B40 60T0 790
850 RETIJRN
850 RETIJRN
9 9 9 ~ E N D ~
9 9 9 ~ E N D ~
RUN
RUN
DECIDE
DECIDE
FORTRAN?NO
FORTRAN?NO
COBOL?NO
COBOL?NO
BASIC?YES
BASIC?YES
OLD?YES
OLD?YES
PRGGRAM NAME?DECIDE
PRGGRAM NAME?DECIDE
BASIC OLD - DECIDE

```
BASIC OLD - DECIDE
```

Strings are read from data in exactly the same manner that numerics are read from data. String and numeric data may be intermixed. Some systems require that string data be enclosed in quotes. On systems that do not require quotes, any expression that contains a comma will have to be enclosed in quotes anyway, since the comma will otherwise be interpreted as the end of the string.

Look at line 170 of program DECIDE. Note that the string variables are separated by semicolon delimiters in that PRINT statement. You should see that the printed output has no spaces other than those actually placed in string $\mathrm{Y} \$$ and the literal expression " - " by the program itself. When printing numeric values, the computer always provides some space automatically when using semicolons as delimiters. When printing strings, the computer does not provide any space automatically. We can print string characters right next to each other by using semicolons. We can print strings in 15-character columns using commas, or we can use the TAB function for other spacing. Some systems also provide PRINT USING for yet another formatting capability.

We can easily construct a program to do for two strings exactly what program C \emptyset MPAR in Sec. 1-2 did for two numerics, as shown in program C \emptyset MPR $\$$. All we want is to determine if $\mathrm{A} \$$ is less than, greater than, or equal to $\mathrm{B} \$$. Look carefully to see what happens to the leading and trailing blanks in the strings. In this case, the leading blank makes " ALPHA" less than "ALPHA", but the trailing blank in "BETA" has no effect. Some systems will not ignore trailing blanks. Also note that the string 0123456789 is placed in quotes. When calling for a string read, some computers will ignore such a string unless it is in quotes because it 'looks like' a numeric.

```
    COMPRS
    94 REM * THIS PROGRAM COMPARES TWO
95 REM STRINGS FOR ORDFR
100 READ AS, BS
110 IF AS = ''STOP' THEN 260
120 IF AG = ES THFN 160
130 IF AS < 日S THEN 18O
140 PRINT AS; " IS GREATER THAN "; BS
150 GOTO 100
160 PRINT A$; " IS FOIAL TO "; BS
170 GOTO 100
180 PRINT AS; " IS LESS THAN "; BS
190 GOTC 100
192 
200 DATA NUMERIC, ALPHABETIC
210 DATA "0123456789", ABCDEFGHIJK
->2R0 DATA " ALPHA", "ALPHA"
-230 DATA "BETA ", "BETA"
240 DATA END, END
250 DATA STOP, STOP
260 END
RUN
CCMPRS
NUMERIC IS GREATER THAN ALPHABETIC
0123456789 IS LESS THAN ABCDEFGHIJK
- ALPHA IS LESS THAN ALPPHA
-beta ls equal to beta
END IS EOUAL TO END
```


Summary of Sec. 3-2

We have seen that the simple string variable can be used in BASIC programs in many of the same ways that simple numeric variables can. We may use simple string variables in READ, DATA, INPUT, PRINT, and IF-THEN statements. In DATA and INPUT statements, some systems require quotes to delimit strings under certain conditions.
Problems for Sec. 3-2

1) Write a program to find the highest and lowest ranking strings in a set of data.
2) Write a program that reads two strings and then prints them in ascending order.
3) Write a program that will read three strings from data and print them in ascending order (more on ordering strings later).
4) How many print statements would be required to print n strings in alphabetical order using only the methods of this section?
5) Write a program to request two peoples' names in two strings for each person, first name first. Then have the names printed in alphabetical order. Be sure to handle William Smith and George Smith properly.

3-3 The String Subscripted Variable

It is at this point that we must distinguish the ways in which various systems treat subscripted string variables. There are two fundamentally distinct ways to deal with $\mathrm{A} \$(\mathrm{I}, \mathrm{J})$ and $\mathrm{B} \$(\mathrm{I})$. (Some systems don't even permit the double subscript.)

One concept, as shown in demonstration program ARRAY\$, considers $\mathrm{A} \$(\mathrm{I}, \mathrm{J})$ as an element of a string array just as $\mathrm{A}(\mathrm{I}, \mathrm{J})$ is an element of a numeric

```
ARRAYS
    REM * THIS PRCGRAM IS A DEMCNSTINATICN GF
    REM A STRING ARRAY
    REM * HERE THF DIMFNSION SPFCIFIES THF NIMBFP
    REM CF STRINGS THAT MAY BE STGPFD IN A L.IST
    DIM A5(3)
    REM * READ THE STRING L.IST FRCM DATA
    FOR I = 1 TO 3
            READ AS(I)
    NEXT I
    REM * NO! PFINT THF STRING LIST
    FCR I = 1 TC 3
        PRINT "AS("; I; ") = "; AF(I)
    NEXT I
    REM
    DATA FIRST, SECDND, THIRD
    END
RUN
ARRAYG
AS( 1 ) = FIRST
AS( 2 ) = SECOND
AS( 3) = THIRD
```

array. This makes $\mathrm{B} \$(\mathrm{I})$ the Ith element of a string list called $\mathrm{B} \$$ which may contain up to 11 strings before the DIMension statement is required.

The other concept, as shown in program SUBSTR, considers A $\$(\mathrm{I}, \mathrm{J})$ as a substring having J-I+1 characters going from the Ith to the Jth character inclusive. So $A \$(I, I)$ is the single Ith character. Using this concept, $B \$(\mathrm{I})$ is the substring beginning with the Ith character and continuing to the end of the string.

The next two sections will treat these two concepts separately.

```
SUSSTR
94 REM * THIS PRCGPAN IS A OFMCNSTRATICN
95 REM CF AS(I,J) AS A SUASTRINE
96 REM
97 REM * IN THIS CASE THE DINENSION SPECIFIES THE
98 REM NUMBER OF CHARACTERS IN THE STRING VARIARLF AS
100 DIM AS[14]
110 LET AS=*THIS IS A TEST"
120 PRINT "AS = "'AS
130 FOR I=1 TO 14 STEP &
140 LET J=I+INT (RND (-1)*4+1)
150 PRINT "AS('";I;",";J;"')= "";AS[I,J];"'"
150 NEXT I
154 REM
170 END
RUN
SJASTR
AS = THIS IS A TEST
AS( 1 , 4, = 'THIS'
AS( 5 , 5 ) = ' 1'
AS(9 , 1P ) = 'A TE'
AS( 13, 17 ) = 'ST
```


3-4 The Substring Scheme*

One advantage in the substring concept is that we can deal with any part or parts of the string directly. One disadvantage is that we cannot deal with hundreds or thousands of strings without the use of files. Strings may be read from data. When placed in data, strings must be enclosed in quotes. The same is true if we type more than one string to the keyboard in response to an INPUT statement.

Generally speaking, the DIMension statement is required for string variables to permit the computer to allocate space. For example, 100 DIM A $\$(10)$, $\mathrm{B} \$(58), \mathrm{A}(15)$ provides for 10 characters in $\mathrm{A} \$, 58$ characters in $\mathrm{B} \$$, and 15 numerics in the A list, the latter showing that string and numeric dimensioning may be intermixed.

A program to arrange the letters of a string in alphabetical order is shown in program ALPHA. Line 100 provides for up to 72 characters in the string variable A\$. Line 120 uses the LEN() function. This function measures the actual number of characters in the string. Note that lines 160,170 , and 180 exchange two characters which are not in the proper order. Since $B \$$ is used for only a single character, it need not appear in the DIMension statement. Note that spaces have a lower ASCII code than the letter A and so appear first in the result of program ALPHA.

[^0]```
 AL PHA
 94 REM * THIS PROGRAM ALFHABETIZES THE
 95 REM CHARACTERS OF A STRING
-100 DIM AS[72]
 110 INPIJT AS
-120 LET L=LEN(AS)
 122 REM
 124 REM * LINE 150 TESTS ALL PCSSIBLE PAIRS GF
 125 REM CHARACTERS TC SEE IF THEY ARF IN CRDER
 130 FCR I=1 TO L-1
 140 FOR J=I+1 TO L
 150 IF AS[I,I] <= AS[J,J] THEN 190
 152 REM
 154 REM * IF AS(I,I) IS NGT LESS THAN AS(J,J) THEN
 155 REM WE EXCHANGE THOSE CHARACTERS
-160 LET BS=AS[I,I]
-170 LET AS[I,I]=AS[J,J]
-180 LET AS[J,J]=BS
 190 NEXT J
 200 NEXT I
 204 REM
 210 PRINT AS
 220 END
 RUN
 ALPHA
 ?THE OUICK BROWN FOX JUMPS OVER THE LAZY DOG
 ABCDEEEFGHHI JKLMNOQOOPORRSTTTUUVWXYZ
```

Program REVRS simply prints the characters of a string in reverse order but keeps the string intact. Program END shows the printing of $A \$(I)$ for a sample string.

```
REURS
94 REM * THIS PROGRAM DEMONSTRATES PRINTING THE
95 REM CHARACTERS GF A STRING IN REVERSE ORDER
96 REM WITHOUT MODIFYING THE CONTENTS OF
97 REM THE STRING
100 DIM AS[72]
110 INPUT AS
120 PRINT
130 PRINT " THE STRING CONTENTS IN REVERSE ORDER:"
134 REM
140 FQR I=LEN(AS) TO 1 STEP - 1
150 PRINT AS[[1,I];
160 NEXT I
164 REM
170 PRINT
180 PRINT
190 PRINT " THE CGNTENTS PRINTED IN TACT:"
200 PRINT AS
210 END
RUN
REVRS
?THIS PRCGRAM PRINTS IN REVERSE
 THE STRING CONTENTS IN REVERSE CRDER:
ESREVER NI STNIRP MARGORP SIHT
 THE CONTENTS PRINTED IN TACT:
THIS PROGRAM PRINTS IN REVERSE
```

```
END
94 REM * THIS PROGRAM DEMONSTRATES THE USE OF
95 REM PRINT AS(I) IN THE SUBSTRING SCHEME
100 DIM ASC721
110 INPUT AS
120 FOR I=LEN(AS) TO I STEP - I
130 PRINT "AS(";I;") = ";ASCI]
140 NEXT I
142 REM
150 END
RUN
END
?THIS IS IT
AS(10)}=
AS(9) = IT
AS(8) = IT
AS(7) = S IT
AS(6) = IS IT
AS(5) = IS IT
AS(4) = S IS IT
AS(3)}3\mathrm{ (IS IS IT
AS(2) = HIS IS IT
AS (1, = THISISIT
```

The ability to compare strings and substrings allows us to pack several items of information into a single string. For example, we might want to work with the days of the week. As shown in program WEEKA, we could use

## 110 LET A\$ = "SUNM 9 NTUEWEDTHUFRISAT"

```
 WEEKA
 94 REM * THIS PROGRAM OEMONSTRATES CCMPARING A
 95 REM STRING AGAINST A SUBSTRING
-100 DIM DS{15],AS[21]
 110 LET AS="SIJNMONTUEUEDTHUFRISAT"
 120 INPIT DS
 130 LET D=0
-140 FOR I=1 T0 19 STEP 3
 150 LET D=D+1
* 160 IF DS <> ASII,I+21 THEN 190
 170 PRINT "DAY #'D
 180 STOP
 190 NEXT I
 194 REM
 2OO PRINT "DAY NOT FCUND"
 210 END
 RUN
 MEEKA
 ?TUE
 DAY # 3
```

Then we could step through the string with
$140 \quad \mathrm{~F} \phi \mathrm{R} \mathrm{I}=1 \mathrm{~T}$ - 19 STEP 3
comparing some test string with $\mathrm{A} \$(\mathrm{I}, \mathrm{I}+2)$ to see if the test string matches those three characters of A\$.

We can even test parts of two strings. We could test the first three characters of $\mathrm{D} \$$ successively against groups of three characters in $\mathrm{A} \$$ looking for a match by changing line 160 to

$$
160 \text { IF } \mathrm{D} \$(1,3)<>\mathrm{A} \$(\mathrm{I}, \mathrm{I}+2) \text { THEN } 190
$$

This is left for the reader to try.
It should be clear that by the use of strings we can control what is printed in every space of the paper on our terminal. If we convert numeric values to string variables, then we gain some added flexibility for the printing of numeric results since these can be printed imbedded in strings to avoid extra spaces. If you have PRINT USING, this step is not necessary.

We shall develop here the beginnings of a routine to convert a numeric to a string. The fundamental idea is simply to pick off the digits one at a time as numbers and use the numbers to store string equivalents in the correct positions of a string variable. The way to get the string equivalent is to use what is called a dummy string. In this case the dummy string to use contains all the digits. As shown in program C $\emptyset$ NVRT, it is $\mathrm{D} \$=$ " 0123456789 ". The string $\mathrm{A} \$$ in program WEEKA is another example of a dummy string. If we want a " 3 " stored in the sixth position of string $S \$$, we use the following statement:

$$
100 \quad \text { LET } S \$(6,6)=\mathrm{D} \$(4,4)
$$

since the " 3 " is really in the fourth position of $\mathrm{D} \$$. To get the digit " I " in the Jth position of $\mathbf{S} \$$, we use:

200 LET S $\$(\mathrm{~J}, \mathrm{~J})=\mathrm{D} \$(\mathrm{I}+1, \mathrm{I}+1)$
as shown in line 200 of program C $\varnothing$ NVRT.

```
 CONURT
 94 REM * THIS PRCGRAM CCNVERTS A NUMERIC
 95 REM TO A STPING
 100 DIM SS[6],DS[10]
 110 LET DS="01P3456789"
 120 INPIIT N
 130 dF N=INT (N) THEN 160
 140 PRIVT "INTEGFRS ONLY"
 150 GOTO 120
 160 PRINT "*'";N;'*'"
 170 FQR F=5 TC 0 STFP -1
 180 L5T J=6-E
 190 LFT I=INT(N/10:E)
-200 LET SS[J,J]=DSTI+1,I+1]
210 LET N=N-I*10,E
220 NEXT E
230 PRINT "$";S5;"$"
240 END
RIN
CONVRT
?975310
* 975310. *
$9753105
```

To append a string onto the end of another string, use the technique of program C $\emptyset \mathrm{NCAT}$.

```
CONCAT
94 REM * THIS PROGRAM DEMONSTRATES CONCATENATION
100 DIM AS[50], BS[50]
110 INPITT AS,日S
120 PRINT "GEFORE CONCATENATION",
130 PRINT AS.BS
140 LET AS[LEN(AS)+1]=BS
150 PRINT
160 PRINT "AFTER CONCATENATION",
170 PRINT AS,BS
180 END
RUN
CONCAT
?"CONCAT","ENATION"
BEFORE CONCATENATION CONCAT ENATION
AFTER CONCATENATION CONCATENATION ENATION
```


## Summary of Sec. 3-4

The substring scheme permits us to look at string variables in one of the following four ways:
$\mathrm{A} \$ \quad$ The whole string.
$A \$(I, J) \quad$ The substring from the Ith to the Jth characters inclusive.
A $\$(I, I) \quad$ The single Ith character of the string A $\$$.
$\mathrm{A} \$(\mathrm{I}) \quad$ The substring beginning at the Ith character and continu ing to the end. To obtain the beginning of the string, use A $\$(1, I)$.

We can build up new strings from parts of old ones. We can compare strings and substrings for equality and for order.

## Problems for Sec. 3-4

1) Modify ALPHA to eliminate duplicates.
2) Write a program to accept abbreviations for the days of the week and respond with the full correct spelling.
3) As written, C $\emptyset$ NVRT will print $\$ 000001 \$$ if we input 1 for N. Eliminate these leading zeros and end up with a string only as long as needed.
4) Modify $C \emptyset N V R T$ to accept negative numbers and insert the minus sign in the string.
5) Modify C $\emptyset$ NVRT to accept decimal numbers representing dollars and cents.
6) Write a program to convert a numeric string to a true numeric stored in a numeric variable.
7) Write a program to multiply two six-digit integers and print the answer exactly.
8) Write a program like that for problem 7, but not limited to six-digit integers. (Allow 10- or 20 -digit integers).
9) Write a program to encode and decode messages using a keyword.
10) Modify program WEEKA to test the first three characters of the input string from line 120 against successive sets of three characters from $\mathrm{A} \$$.
11) In comparing strings for order, BASIC compares the two strings one
character at a time. So for nonequal strings, the first nonequal characters determine order. Therefore when comparing such strings as ' 60 ' and ' 100 ', BASIC will evaluate ' 60 ' as greater than ' 100 '. Write a program to overcome this flaw. Be sure to also provide for proper ordering of strings like 'A6' and 'A10.'

## 3-5 The String Array Scheme*

Even where systems use the same general scheme, we will find differences. Therefore we present programs here which use features found on many timesharing systems. Strings and string arrays may be manipulated in many of the same ways that numerics and numeric arrays may be. That is, we may use INPUT, READ, PRINT, assignment, and comparison for order. We generally may not use arithmetic operations with the possible exception of addition since some computers allow LET $\mathrm{A} \$=$ "ABC" + "DEF" to assign "ABCDEF" to string variable $A \$$. Generally speaking, we find the same dimensioning requirements for string arrays as for numeric arrays. So 10 DIM A $\$(15), \mathrm{B} \$(3,47)$, $\mathbf{C}(3,8)$ provides for up to 16 strings in $\mathrm{A} \$$ (generally zero subscripts are allowed), up to 192 strings in $B \$$, and up to 36 numerics in C. Note that we may intermix strings and numerics in the dimension statement. Some systems allow only onedimensional string arrays. The number of characters allowed in each string will vary from system to system. The LEN() function, if available, evaluates the number of characters actually stored in a string. An alternative approach uses the CHANGE statement. CHANGE A\$ T $\varnothing$ A places the ASCII numeric code for the characters in the string in the list positions of $A$. So if $A \$=$ "XYZ," then list A carries in position 1 the ASCII code for X , in position 2 the code for Y , and in position 3 the code for $Z$. Moreover, $A(0)$ will contain the number of characters in the string $A \$$. CHANGE also works in the other direction. Change A T $\emptyset$ A $\$$ takes the codes stored in list A and enters the equivalent string character in $\mathrm{A} \$$. With this information, we can write some sample programs.

To arrange the letters of a string in alphabetical order we may first store the coded values in a list. We then arrange the coded values in numeric order and convert the numeric list back to a string for printing, as shown in program ALPHA1.

Similarly, we can reverse the order of the letters in a string with the procedure of program REVRS1. Look particularly at line 150 to see that the B list is filled in the reverse order from the contents of the A list.

We can compare strings as a means of coding information. For instance, we can number the days of the week by storing their names as the elements of a list-the first day stored in the first element, the second day in the second element, and so on. We then know which number belongs to a particular string by which subscript we use to obtain a match, as shown in program WEEKA1.

We can compare parts of strings by proper use of the CHANGE statement and a list for each string being compared. Program WEEKB1 looks at only the first three letters of two strings in lines 190,200 , and 210.

[^1]ALPHA1

```
94 REM * THIS PROGHAM DRDERS THE CHARAGTERS
95 REM OF A STRING
100 DIM A(75)
10 INP!IT AS
120 CHANGE AS TO A
122
130 LET L = A(O)
140 FOR I = 1 TO L-1
150 FOR J = I +1 TO L
160 IF A(I) < A(J) THEN 200
162
164 SFM * IF OUT OF GROFR THEN FXCHANGE
170 LFT X = A(I)
180 LET A(I) = A(J)
190 LET A(J)=x
200 NEXT J
210 NEXT I
21?
220 CHANGE A TC AS
230 PRINT AS
240 END
RIN
ALPHAI
? THE OULCK GROWN FOX JUMPED OVER THE LAZY DOGS
ABCDDEEEEFGHHI.JKLMNCOCCPORRSTTIUUUXYZ
```

REVRS 1

```
94 REM * THIS PROGRAM REUERSFS THE
95 REM CHARACTERS OF A STRING
100 DIM A(75),B(75)
110 INPUT AS
120 CHANGE AS TO A
122
124 REM * STORE THE NIMAER TF CHAUACTFISS IN L AND O(O)
130 LET L. = G(O) = A(O)
140 FOR I = 1 TO L
-150 LET 日(L-I+1)=A(I)
160 NEXT I
162 (1)
170 CHANGE B TC AS
18O PRINT AS
190 END
RUNN
REVRS1
? GOCD THINGS COME IN SMALL PACKACFS
SEGAKCAP LLAMS NI EMOC SGNIHT DCCE
```

WEEKAI

```
94 REM * THIS PROG&A:A FINDS THE DAY NUMBER
95 REM FRCM THE DAY NAME
100 DIM AS(7)
110 FOR D = 1 TC 7
1?0 READ AS(D)
130 NFXT D
140 PRINT "DAY";
150 INPITT BS
160 FOR D = 1 TC 7
170 IF RS <> AS(D) THEN POO
180 PRINT "DAY *";D
190 STCP
200 NEXT D
2IO PRINT BS; "NGT FOUND"
```

```
 212 REM
 220 DATA SUNDAY, MONDAY, TIESDAY, ,FDNESDAY
 230 DATA THIJRSDAY, FRIDAY, SATIJRDAY
 240 END
 RIN
 WEEKAI
 DAY? TIJESDAY
 DAY # 3
 UEF\B!
 94 RFM * THIS PROGRAM IIFFFRS FRCN EFFKAI RECAUSF
 95 KEM IT CHECKS ONLY THF FIRST TH:RFF CHARACTFRS
 95 REM OF TWO STRINGS. SEF LINFS 190 TO 210
 100 DIM AS(7),A(9),F(9)
 10?
 104 RFM * RFAD DAYS OF THE GFFK INTG ASLIST
 110 FDR D = 1 TO 7
 120 READ AS(D)
 130 NEXT D
 132
-140 PRINT "DAY";
 150 INPITT RS
 16O CHANGF BS TC D
 170 FOR I = 1 TO 7
 18O CHANGF AS(I) TO A
 182
 184 REM * TEST FIHST THRFE CHARACTFRS
-190 FOR K=1 TO 3
-200 IF A(K) <s 9(K) THFN P.40
-210 NFXTK
 220 PRINT AS(I); " IS DAY #''; I
 230 STOP
240 NEXT I
250 PRINT 3S; " NOT FOIND"
25% PR RNM
260 DATA SHDDAY, MONDAY, TIFSDAY, 1:FDNESDAY
270 DATA THIRSDAY, FRIDAY, SATIIRDAY
28O END
RIN
,FEFBI
DAY? SIMNDAE
SJNDAY IS DAY * 1
```

We can easily construct a program to alphabetize strings by using exactly the same approach that we use for sorting numbers except that we use subscripted string arrays instead of subscripted numeric arrays, as shown in program $\emptyset$ RDER $\$$. (For more about sorting see Sec. 11-3). Note that this program stops comparing as soon as the list is in order, an optimizing feature which obviously leads to shorter execution time.

ORDERS

```
94 REM * THIS PROGRAM ALPHABFTIZES
95 REM A LIST OF STRINGS
96 RFM THE CURRFNT LIMIT IS 2OO STRINGS
100 DIM LS(200)
102
104 REM * READ DATA
```

```
FOR I = 1 TO 200
 READ 1.S(I)
 IFLS(I)= "STOP" THFN 150
 NEXT I
 LETN=I=I-1
 REM * TIIRN SWITGY OFF, INCRFMENT N AND SORT
 LET S = 0
 LET N=N-1
FOR J = 1 TO N
 IFLg(J)<=L{(J+1) THEN 240
 RFM * EXCHANGE FLEMFNTS AND TIJRN ON SMITCY
 LFT SS = LS(1)
 LETLS(J) = LS(J+1)
 LFT LS(.J+1) = SS
 LFT S = 1
NFXX J
REM * CHFEK SN!TCH O=OFF, 1=ON
 IF S = 1 THEN 150
 RFM * THF SNITCH IS OFF - LIST IS CRDFPFD
FCR X = 1 TG I
 PRINT LSi(x)
NEXT X
REM
DATA WILLIAMS, JCNES, SMETH
DATA YOUNGMAN, STOP
END
ORDER$
JONES
SMITH
WILLIAMS
YOUNGMAN
```

Since strings in the scheme we are now considering may be treated as array variables, we should realize that we may MAT READ and MAT PRINT string arrays with all of the same options that these two statements allow for numerics. That is, we may MAT READ A $\$(M, N)$ to redimension the array in the MAT READ statement. And we may MAT PRINT with semicolon or comma spacing. Use semicolon spacing with care, however, as this will result in strings being printed with no spaces. For most systems, quotes are not required when placing strings in DATA statements unless the string contains a comma or is a numeral.

```
MATS
94 REM * THIS PROGRAM DFMONSTRATFS MAT RFAD
95 REM AND MAT PRINT FCR STRING APRAYS
100 DIM AS(5,10)
110 READ R,C
120 MAT READ AS(R,C)
130 MAT PRINT AS;
140 PRINT
150 MAT PRINT AS,
152
154 REM
160 DATA 2,5
170 DATA THIS, IS, A, SAMPLE, PROGRAM
180 DATA WITH, STRING, MAT READ, AND, MAT PRINT
190 END
```

```
RUNN
MATS
THISISASAMPLFPRORORAM
NITHSTRINGMAT READANDMAT PRINT
\begin{tabular}{lllll}
THIS & IS & A & SAMPLE & PKCGKAM \\
WITH & STRING & MAT READ & AND & MAT PRINT
\end{tabular}
```

Generally speaking, you need not be intimately familiar with the ASCII code because the ASC( ) function gives the numeric code for the character in parentheses. Alternatively, we may write a program to print the ASCII code for alphanumeric characters stored in a string variable, as shown in program ASC. Note that lines 130,150 , and 160 are used to store single characters from A\$ in the string variable $\mathrm{B} \$$. Some time sharing systems provide the EXT\$ function. The statement $\mathrm{B} \$=\mathrm{EXT} \$(\mathrm{~A} \$, \mathrm{I}, \mathrm{I})$ would result in the Ith character of $\mathrm{A} \$$ being stored in B\$. Some systems use SEG\$ for this. You may find numerous other functions for working with string data available in your system.

```
 ASC
 94 REM * THIS PROGRAM PRINTS SAMPLE
 95 REM ASCII CODE VALUES
 100 DIM A(9)
 110 LET AS = "6 :/ (EABZ"
 120 CHANGE AS TO A
-130 LET B(O) = 1
140 FQR X=1 TO A(O)
-150 LET B(1) = A(X)
-160 CHANGE B TO B$
 170 PRINT "\cdots"; B$; "い"; 日(1)
 180 NEXT X
 190 END
 RUN
 ASC
 '6' 54
 - . 32
 ':" 58
 '/'47
 '('40
 "[' }9
 -A' 55
 *** 65
 'Z' }9
```


## Summary of Sec. 3-5

Where strings may be stored in arrays, A $A(1, J)$ specifies a string stored in row I, column J of a string array. We may consider individual characters of the string by using CHANGE, which places equivalent numeric codes for the characters of the string in the positions of a numeric list corresponding to the position of the character in the string. In addition, the zero position of the list contains the number of characters in the string.

## Problems for Sec. 3-5

1) Modify program ALPHA1 to eliminate duplications.
2) Suppose you have typed a large quantity of data consisting of peoples names, first name first, and you suddenly find that you should have typed them last name first and in alphabetical order. Write a program to make the change. Your program should work whether or not you used middle initials.
3) Write a program to convert a string to a numeric (even though your computer may provide a function for this).
4) Write a program to accept two six-digit integers, multiply them digit by digit, and print the exact product.
5) Write a program to accept two numbers as strings not limited to six digits, find the exact product, and print it.
6) Write a program to generate license plate number and letter combinations. Establish a pattern, such as six characters with the first three alphabetic and the last three numeric. Select a few at random to print.
7) Write a program to generate 'words' where vowels and consonants alternate. Print a few at random.
8) In comparing strings for order, BASIC compares the two strings one character at a time. So for nonequal strings, the first nonequal characters determine order. Therefore, when comparing such strings as ' 60 ' and ' 100 ,' BASIC will evaluate ' 60 ' as greater then ' 100 .' Write a program to overcome this flaw. Be sure to also provide for proper ordering of strings like 'A6' and 'A10.'

## 4 FILES

## 4-1 Introduction

There are tremendous differences in file handling from system to system. Files give a tremendous extension of power to the BASIC language in two significant ways. First, the use of files allows us to handle far more data than we could ever store in DATA statements of a single program because of computer space limitations. Second, the use of files allows us to process the same data using several different programs. We might use one program only to enter data into a file. Another program might be used to make corrections. Another might be used to extract a particular piece of information, and yet another might be used to modify the data in the files. And so on and so on. There is no limit to the number of programs which may work on the data in a single file or group of files.

We have chosen to present here file programs on two different systems. You will want to determine which one resembles your system before attempting to write programs. The systems chosen here are Hewlett Packard and General Electric since both are in common use and differ in many ways.

## 4-2 Hewlett Packard Files

## Serial Data Files

Serial files have the advantage that they are quite efficient in the use of computer storage space. We simply print entry after entry until all desired entries are in the file or files. Serial files have the disadvantage that we cannot easily go into the file to change an existing entry or insert a new entry. To do this to a serial file, we must copy the entire contents into another file making the changes on the way and then copy the corrected data back into the original file. Naturally, this is a serious problem only if we are working with a large amount of data.

Let us construct an inventory file and work on it. Suppose that for each item of inventory we have a part name, a part number, a price, and a quantity.

Program ENTER1 will enter an initial set of inventory data into a file called INVO1.

```
FNTERI
94 RFM * THIS PROGRAM ENTERS DATA IV AN EMPTY FILE
100 FILFS INVOI
110 DIM PS[251
120 REAO PS,N,P,O
130 IF N=0 THEN 240
134 PEM * LINF 140 PIRINTS ITFM AFTEQ ITEM CLOSE PACKED
135 RFM IN THE FILE MAKING IT SFRIAL IN STRJCTIRE
140 PRINT &1:PS,N:P,O
150 GOTO 120
194 RFM
200 DATA "FRAMIS",1001,2.3,1900,"पIDEFT",100P,4.4.1100
210 DATA "RFG'LLATOR",1003,3.49,900,"SLICNEP",1004,.04,9000
220 DATA "FRAGMALATOR",1005,17,49,500,",MATSIT",1005,10.98,3000
230 DATA ''STOP',0,0,0
240 END
2N
ENTERI
```

DCNE

Line 100 is necessary to make file INVO1 available to the present program. The file must be in existence at the time the program is run. (Some HP systems provide for ASSIGNing files during program execution.) In this case, we typed the executive command $\emptyset P E N-I N V O 1,50$ to create the file. That command specified 50 discrete storage blocks referred to as "sectors" or "records." Each of our 50 records will hold as many as 32 numerics, where one numeric occupies the same space as 4 string characters. We must add one string character each for delimiters at the beginning and end of a string and add one if the number of characters in the string is odd. The record size varies from computer to computer, and some computers allow the user to specify its length. The maximum number of records allowed varies also.

Line 120 reads from program data statements in the usual way.
Line 130 checks for dummy data.
Line 140 prints the data as read in line 120 but to the external file instead of to the paper on the terminal in front of us. The \#1 is used because the file we use is the first named in the files statement. If we want to print to the second file named in a files statement, then we use PRINT \#2. We can also use PRINT \#F where F is the file number. File names are separated by commas in the FILES statement. For example,

## 100 FILES FILE1,FILE2,FILE3

makes three files available to the program in which this statement appears. Systems vary as to the number of files that may be named in a files statement. Most allow at least 8 .

This is the very first time that we have run a program which failed to print anything and yet did something useful. Generally speaking, we should print something to the terminal. To prove that the data really is in that file, we present program READ to read the data out of file INVO1.

```
 READ
 94 स巨4 * रFADS INJENTORY DATA FRTM A FILE
 100 FILES 1NソO1
 110 DIM PS[?5]
 120 DRTVT "PART VAME","PART 4","P{ICF","VIANTITY*
 124 रूM * RFAD DATA = RMM T4F F[ILF
->130 RFAD #1;PS,N,D,D
 134 :2FY * PRIVT THE DATA TC THE TFRMINAL
 140 P&TMT PS,N,P,O
 150 GOTO 1.37
-150 END
 そう
 25.4)
\begin{tabular}{|c|c|c|c|}
\hline PART VAME & PA？T \＃ & अयाく口 & ？）AITITY \\
\hline FアAMIS & 1031 & \(? 3\) & 1309 \\
\hline StDart & 1002 & 4.4 & 1109 \\
\hline 35，Heathr & 1003 & 3.48 & 900 \\
\hline SLICNEP & 1004 & － 04 & 9000 \\
\hline FRASMAL．ATOR & 1005 & 18.49 & 800 \\
\hline WHATSIT & 1006 & 10.93 & 3000 \\
\hline
\end{tabular}
 END-OF-FILE/END OF RECORD IN LINE 130
```

We get all of the information from the file and an error message to boot． We may avoid the error message by inserting an IF END statement．We will use 105 IF END \＃1 THEN 160．This statement，executed just once，sets a flag so that if line 130 tries to read nonexistent data or tries to read past the physical end of the file，the computer will next execute line 160 ．Alternatively，of course，we could have placed our own flag in the file by printing dummy data into the file at the end of the real data．

| $\rightarrow$ IOS IF END \＃1 THEN 160 |  |  |  |
| :--- | :---: | :---: | :---: |
| RIN |  |  |  |
| READI |  |  |  |
|  |  | PRICE | OIANTITY |
| PART NAME | PART |  | 1800 |
| FRAMIS | 1001 | 4.3 | 1100 |
| WIDGET | 1002 | 3.4 | 900 |
| REGILATOR | 1003 | -04 | 9000 |
| SLICNEP | 1004 | 19.49 | 800 |
| FRASMALATOR | 1005 | 10.98 | 3000 |

We can now sit down and dream up little programs to process the data in file INVO1．We might want to know the number of parts in inventory．You can easily verify that program READ2 does that．

READ2

```
94 REM * IHIS PROGRAM FINDS THE TOTAL
O5 REM NUMBER OF PARTS IN FILE INVO:
100 FILES INVOI
110 DIM P$[25]
120 LET T=0
130 IF END #1 THEN 170
140 READ #1:PS,N,P,Q
144 REM * RUNNING TOTAL CALCILATED IN L.INE 150
150 L.ET T=T+O
160 GOTO 140
```

```
170 PRINT T;'PARTS*
180 END
RIJN
READ2
```

16600 PARTS

It is left as an exercise for the reader to find the total value of inventory with a program.

Now suppose we want to add inventory to INVO1. Using ENTER1 again with different data will simply replace what is in INVO1 with new data. (Actually, the new data might replace only part of what is already in there, and this result has other complications.) What we must do is read out to the end of the data already in the file and then begin printing new data to the file at that point, as shown in program ENTER2.

Note that program ENTER2 may also be used to enter data into an empty file. We do not need a different program for this purpose. It is a good practice to provide for printed output to the terminal in a program of this kind. We run READ1 again to make sure that the new data was properly added to the end of the file.

```
 ENTEFR?
 94 REM * THIS PROGRAM ENTERS DATA INTO AN EMPTY OR
 95 REM PARTIALLY FILLED SERIAL FILE
 100 FILES INVOI
 110 DIM PS[25],Q&[25
 114 REM * READ TO THE END OF EXISTING DATA
-120 IF END | THEN 150
 130 READ 1:PG,N,P,O
 140 GOTO 130
 144 REM * ENTER NEW DATA INTO THE FILE
-150 READ PS,N,P,O
 150 IF N=0 THEN 200
 170 LET QS=P$
 180 PRINT #I:PS.N.P.O
 190 GOTO 150
 200 PRINT "LAST ITEM IS '';0S
 204 REM
 210 DATA "LIFTER",1007,.29,10000,"DROPPER'",1008,.89,1500
 220 DATA "WHOSIT",1009,16,12,"HOLDER", 1010,.47,1141
 230 DATA "STOP",0,0,0
 240 END
 R'JN
ENTERE
LAST ITEM IS HOLDER
RIN
READ 1
\begin{tabular}{lclc}
PART NAME & PART \(\#\) & PRICE & OJANTITY \\
FRAMIS & 1001 & 2.3 & 1800 \\
WIDGET & 1002 & 4.4 & 1100 \\
REGILATOR & 1003 & 3.48 & 900 \\
SLICNEP & 1004 & .04 & 9000 \\
FRASMALATOR & 1005 & 18.49 & 800 \\
WHATSIT & 1006 & 10.98 & 3000 \\
LIFTER & 1007 & .29 & 10000 \\
DRGPPER & 1008 & .89 & 1500 \\
WHOSIT & 1009 & 16 & 12 \\
HOLDER & 1010 & .47 & 1141
\end{tabular}
```

The next area we might get into is that of making changes in file INVO1 according to business activity. We can do this with the procedures mentioned earlier, that is, by copying the entire contents of the file into another file, making changes on the way. However, if the amount of data becomes very great, the time lost by this method tends to be more important than the space saved by using serial files. Furthermore, there are many devices for utilizing random access files more efficiently. So let's talk about random access files.

## Random Access Files

Files are serial or random access according to the structure the programmer creates for them. In fact, the same file may be treated as serial by one program and random access by another. File INVO1 was serial because we printed the data in serially. We may instead use the discrete records of the file for specifically arranged data.

In our inventory example we might consider placing one inventory item on one record. Since most of our sample data are equivalent to about 5 numerics, this would be wasteful of computer space. However, in practice, an item of inventory will contain more data, and thus it is often wise to allow more file space than is needed at first. Then we will not have to restructure the entire storage plan as we might if we had placed several inventory items on a single record. In fact, if programmers anticipate that additional data may be required, they go one step further. They incorporate the extra variables into all programs, using zeros for numbers and empty or null strings for anticipated alphameric data. Then the existing programs will carry all of the variables needed and will not have to be rewritten to accommodate the new data structure. Of course, changes will have to be made to actually utilize the newly activated variables later. Moreover, in some situations we can use space more efficiently by storing numerics in one file and strings in another with a scheme to link the data from the two files to each other. That way numeric data may be MAT READ out of the file for very easy processing.

```
 ENTER3
 94 REM % THIS PROGRAM ENTERS DATA INTO AN EMPTY
 95 REM FILE IN RANDOM ACCESS FORMAT
 100 FILES INVO2
 110 DIM P$[25]
-120 LE.T R=0
 130 READ P$,N,P,O
 140 IF N=0 THEN 190
*150 LET R=R+1
-160 READ #1.R
-170 PRINT #1;PS,N:P=Q
 180 GOTO 130
 190 PRINT R:"RECDRDS USED*
 194 REM
 200 DATA "FRAMIE"* 100!.2.3.1800."WTDGET".1002.4.4.1100
 210 DATA "REGIJLATOR", 1003,3.48,900,"SLICNEP", 1004,.04,9000
 220 DATA "FRASMALATGR", 1005,18.49,800,"WHATSIT",1006,10.98,3000
 230 DATA "STGP",0,0,0
 240 END
 RUN
 ENTER3
```

    6
        RECORDS USED
    To keep things simple, suppose that we look at a program to place one inventory item per record, such as program ENTER3, which PRINTs inventory data into file INVO2.

Note that we have the computer print the number of records used to assure us that the program has performed as expected. Lines 120 and 150 keep track of the record to which we are going to print. Statement 160 sets a pointer in the file to the beginning of record R. Statement 170 prints data to the file beginning at the pointer. The pair of statements 160 and 170 may be replaced with the single statement, PRINT \#1,R;P $\$, \mathrm{~N}, \mathrm{P}, \mathrm{Q}$, the difference between the two being that if 170 attempts to print more than will fit on the record, the excess goes on the next record, whereas PRINT \#1,R;P\$,N,P,Q will result in an error message if the data to be printed will not fit on record $R$.

Now program READ1 may still be used to read the contents of INVO2 by changing line 100 to FILES INVO2.

In order to add data to the end of file INVO2, we have several techniques available to us. One is exactly analogous to that for serial files. Another uses the TYP( ) function. The TYP( ) function 'looks' at the next item of information in a file and identifies it as follows:

$$
\begin{array}{ll}
\operatorname{TYP}(N)=1 & \text { Next item is a numeric } \\
\operatorname{TYP}(N)=2 & \text { Next item is a string } \\
\operatorname{TYP}(N)=3 & \text { Next item is end of file } \\
\operatorname{TYP}(N)=4 & \text { Next item is end of record }
\end{array}
$$

where N is the position that the file name occupies in the FILES statement. If N is positive, the value 4 is never returned; to detect end of record, N must be negative.

The TYP( ) function is used in line 150 of program ENTER4 to determine

```
ENTER4
95 REM FILE IN RANDGM ACCESS FORM
100 FILES INV02
110 DIM PS[25]
120 LET R=0
130 LET R=R+1
140 READ *1,R
144 REM * LINE 150 DIRECTS THE COMPIJTER TO LINE
145 REM 130 IF WE ARE NGT AT THE END OF DATA
-150 IF TYP(1) <> 3 THEN 130
160 LET R=R-1
170 READ PS,N,P,O
180 IF N=0 THEN 230
190 LET R=R+1
200 READ "1,R
210 PRINT 1HP$,N,P,Q
220 G0TO 170
230 PRINT R;"RECORDS |JSED"
234 REM
240 DATA "LIFTER',1007,.29,10000,'DROPPER',1008,.89,1500
250 DATA "WHOSIT",1009,16,12,"HOLDER",1010,.47,1141
260 DATA "STOP",0,0,0
270 END
RIJN
ENTER4
10 RECORDS IJSED
```

the first record that has an end of file (sometimes referred to as EOF) marker and begin printing the new data on that record. Here again, as a check on the program, we have the computer tell us how many records have been used.

Now we are in a position to explore some possibilities for editing the random access file. Note that we selected part numbers, so that if we subtract 1000, we get the number of the record on which that part will be found. Often in data processing it is helpful to organize data so that something about the data tells us where to find it. This method is sometimes called "content addressing." It could consist of an extra item of data for file management purposes only.

Let's write a program that allows us to go into the inventory file and change anything but the part number. We do this with program UPDATE. The part number is requested in line 150 , and the part is found in line 200 . Line 210 prints the part name and offers to make a change possible. The same is done for the price in line 260 and for the quantity in line 310 . When all information is correct, it is re-entered into the file in line 360 . The IF END statement in line 130 provides for attempting to access a nonexistent record or for attempting to access a record that has no data on it.

```
 IPDATE
 94 REM * THIS PROGRAM EDITS AN INVENTORY FILE.
 100 FILES INVO2
 110 DIM P$[25],AS[3)
 120 PRINT "INPUT PART NIMMBER ZERO TO OUIT"
-130 IF END #1 THEN 380
 140 PRINT
* 150 PRINT "PART #*;
 160 INPIST N1
 170 IF N1 < INT (N1) THEN 150
 180 IF N1=0 THEN 860
 184 REM * CALCILLATE RECORD FROM PART NIJMBER
 190 LET R=NI-1000
->200 READ #1,RBP$,N,P,O
 210 PRINT PS;
 220 GOSIJE 800
 230 IF AS = "YES" THEN 260
 240 PRINT "CHANGE TO";
 250 INPUT PS
-260 PRINT "PRICE = S'sP;
 270 GOSU8 800
 280 IF AS="YES" THEN 310
 290 PRINT "CHANGE TO $";
 300 INPUT P
-310 PRINT "OTY ="'0;
 320 GOSUB 800
 330 IF AS='YES' THEN 360
 340 PRINT "CHANGE, TO";
 350 INPIJT O
 354 REM * PRINT CORRECTED INFORMATION BACK TO THE FILE
-360 PRINT #1,R;PS,N,P,O
 370 GOTO 140
 380 PRINT "NO SUCH PART #"
 390 60TO 140
 764 REM * YES - NO SUSROIITINE
 790 PRINT "YES OR NO"
 800 PRINT " OK";
 810 INPIJT AS
 820 IF AS="YES' THEN 850
 830 IF AS='NO"' THEN 850
 840 GOTO 790
 850 RE TURN
 860 END
```

```
RUN
IJPDATE
INPUT PART NUMBER ZERO TO DIJIT
PART #?1001
FRAMIS DK?YES
PRICE = $ 2.3 OK?Ne
CHANGE T0 $?3.24
QTY = 1800 OK?YES
PART ##1003
REGIJLATOR OK?YES
PRICE = $ 3.43 OK?YES
QTY = 900 0K?N0
CHANGE T0?878
PART #?O
```

A run of READ1 confirms that the proper changes were indeed made in the file.

| IOO FILES INVO2 |  |  |  |
| :--- | :---: | :--- | :--- |
| RUN |  |  |  |
| READI |  |  |  |
|  |  |  |  |
| PART NAME | PART |  |  |
| FRAMIS | 1001 | PRICE | 1800 |
| WIDGET | 1002 | 3.24 | 1100 |
| REGILATOR | 1003 | 4.4 | 878 |
| SLICNEP | 1004 | 3.49 | 9000 |
| FRASMALATOR | 1005 | .04 | 800 |
| WHATSIT | 1005 | 18.49 | 3000 |
| LIFTER | 1007 | 10.98 | 10000 |
| DROPPER | 1003 | .29 | 1500 |
| WHOSIT | 1009 | .89 | 12 |
| HYLOER | 1010 | 16 | 1141 |

## Summary of Sec. 4-2

We have seen that files are serial or random access depending only on the approach that a program takes in printing data to or reading data from the file. In order to treat a file as random access, the data must be placed so that its location within a record is known. Files are made available to a program with the FILES statement. We can detect the end of data or physical end of file with the IF END statement. Data is entered into a file with the PRINT \# statement and read from a file with the READ \# statement. In addition, we may determine the nature of the next information in the file through use of the TYP() function. A file pointer can be set to the beginning of record $R$ of file $F$ with READ \#F,R without reading any data.

## Problems for Sec. 4-2

1) Arrange 10 or more strings in alphabetical order by placing them one to a record in a file.
2) Write a program to print the contents of a file without knowing the structure of the file.
3) Write a program to copy the contents of one file into another. See if you can provide for copying 'holes' too.
4) Write a program to find the first empty record and determine the number of records in the file.

## 4-3 General Electric Files

We actually are going to talk about external data files in this section, for in fact, programs are files too, and the data contained in DATA statements of a program are referred to as "internal files." The creation and use of data files can be a very complex business indeed. It is the purpose of this section to present some of the data file concepts and provide sufficient examples so that the reader will be able to use the power of files in future programming. (Our examples will of necessity handle only small amounts of data, as it would not be practical to print the entire contents of very large files.)

Files of two types are available to BASIC programs. They are called "ASCII files" and "BINARY files." ASCII files are also referred to as "Teletype files." This term reflects the fact that they may be created by typing data directly at the terminal using line numbers exactly as a program is typed at the terminal and that they may be listed directly to the terminal just as a program may be listed to the terminal. ASCII files may also be used by programs. Binary files may be used only under program control and may not be written to or read from the terminal.

## ASC/I Files

Data may be typed directly to the terminal. All we have to do is create a file with the command NEW and begin typing our data as if it were a program. Each line must have a line number followed by a space followed by our data separated by commas. String and numeric data may be intermixed. Lines may be corrected by retyping them. Lines may be deleted by typing the line number followed by return. For an ASCII file to be usable at some later time, it must be saved by typing the command SAVE.

To demonstrate some of the uses of ASCII files, we have selected the names of the ten largest cities in the U.S. according to the 1960 census, their rank, and the percentage change in population frrom 1960 to 1970. File CITY has been created, the data typed to the terminal, and the file saved as described above. Since this is a listable file, we do so below.

```
LIST CITY
CITY
100 BALTIMORE MD:6,-4.7
110 CHICAGO ILL,2,-6.3
120 CLEVELAND OHI0,8,-15.7
130 DETROIT MICH,5,-10.6
140 HOUSTON TEXAS,7,29.3
150 LOS ANGELES CALIF,3,12.2
160 NEW YORK N.Y.,1,-.1
170 PHILADELPHIA PA., 4,-3.8
180 ST LOUIS MD,10,-19
190 WASHINGION D.C.,9, =4.8
```

We may now write programs to access the data in file CITY. Probably the simplest useful task we could perform would be to print the contents of the file under program control.

In order to make the file available to the program we use the FILES statement in line 100 of program READCITY. We may read data from the external file in a manner similar to that with which we read data from internal files. To read from the file named in the files statement, we use READ \#1 followed by the list of variables we want. This is done in line 120 of the program. Every time such a statement is executed, a pointer is moved in the file so that the next read statement begins to read at the pointer. Initially, all file pointers are at the very beginning of the file. Note that we could use READ \#0 to read from the data statement of the program. Since it is possible to attempt to read past the end of the data in the file, we use the IF M $\emptyset$ RE statement in line 140. As long as there is more data in the file, line 140 in our program will direct the computer to 120 . When the data has all been read, line 140 will test false and control passes to line 150 in this case.

```
 READCITY
 94 REM * THIS PROGRAM READS THE CONTENTS OF FILE CITY
-100 FILES GITY
 110 PRINT "CITY"' TAB(2O); "RANK"; TAB(2S): "% GROWTH"
-120 READ #1. CS,R,G
 130 PRINT C$; TAB(20); R; TAB(25):G
* I40 IF MORE # 1 THEN 120
 150 END
 RUN
 READCITY
 CITY RANK % GROWTH
 BALTIMORE MD
 6 -4.7
 CHICAGO ILL.
 15.7
 CLEVELAND OHIO
 -15.7
 -10.6
 DETROIT MICH
 29.3
 HOUSTON TEXAS
 LOS ANGELES CALIF
 12.2
 -0.1
 NEW YORK N.Y.
 PHILADELPHIA PA. 4 -3.8
 ST LOUIS MO 10 -19
 WASHINGTON D.C. }9-4.
```

It turns out that ASCII files are always sequential (serial) in format. This means that data must be accessed by reading from the first set of data step by step until the desired information is obtained. There is no way to begin at some intermediate point of the file. We can, however, add data to the end of the file with an append statement. APPEND \#1 sets the file pointer to the end of data in the file and prepares the file for writing. For any data processing that requires tabulating information from each line of data, the sequential nature of ASCII files is ideal. Furthermore, ASCII files are very easy to edit from the keyboard, as described earlier. Having seen how to read an ASCII file, we will next see how to write to such a file with a program.

Let's write a program to transfer the data from file CITY to file CITY1, rearranging the data so that the order in which the cities appear in the new file will be according to decreasing percentage growth. One way to create the new file is with the NEW command. Once you have named the file, type 100 , press the space bar, then the return key, and save the file. Now we have to provide access to two files in one program. This is done with the FILES statement. Up to eight files may be named in a FILES statement as long as they are separated
with semicolons. These files may then be designated by number according to the order in which they are named in the FILES statement, as shown by line 100 of program GR $\emptyset$ WTH.

Since it is easy to sort numbers in a one-dimensional list, the strategy we will use here is to pass through the file once, entering the percentage growth for each city in the array $A$ as we go. Thus A(1) becomes the percentage growth of

```
GROWTH
 REM * THIS PROGRAM ARRANGES TEN CITIES ACCGRDING TO
95 REM GRONTH RATE USING TWO SEOUENTIAL FILES
100 FILES CITY; CITYI
110 DIM A(10), B(10)
112 REM * ENTER GROWTH DATA IN ARRAY A AND ORIGINAL
115 REM POSITION IN FILE CITY IN ARRAY B
120 FgR I = 1 T0 10
 READ #1, NS,R,G
 LET A(I) = G
 LET }8(I)=
 NEXT I
 REM * BEGINNING OF SORT
 LET N = 10
 LET S = 0
 FOR 1=1 TO N-1
 IFA(I)>=A(I+1) THEN 280
 REM * EXCHANGE OUT OF GRDER DATA
 REM AND TURN SWITCH ON
 LET SI = A(I)
 LET A(I) = A(I+1)
 LET A(I+1)=S1
 LET SI = B(I)
 LET B(I) = B(I+1)
 LET B(I+1)=SI
 LET S = 1
 NEXT I
 LEIN=N-1
 IF S = 1 THEN 180
 REM * GROWTH RATE IS IN ORDER NOW PRINT
 REM DATA IN FILE CITYI
 SCRATCH #2
 FOR I = 1 TO 10
 RESTORE H:
 FOR J = 1 TO B(I)
 READ #I, N$,R:G
 NEXT J
 WRITE #2,NS,R,G
 PRINT NS
 NEXT I
392
4 0 0 ~ E N D
RIJN
GROWTH
HOUSTON TEXAS
LOS ANGELES CALIF
NEW YORK N.Y.
PHILADEL.PHIA PA.
BALTIMORE MD
WASHINGTON D.C.
CHICAGO ILL.
DETROIT MICH
CLEVEL.AND OHIO
ST LOUIS MO
```

the first city in the file and $A(10)$ becomes the percentage growth of the tenth city in the file. Entering is done in lines 120 through 160 . We store the original position in a B array.

Now that the list is in order we know that whatever city has the percentage growth stored in $\mathrm{A}(1)$ goes first in our second file and whatever city has the growth rate in $\mathrm{A}(\mathrm{I})$ goes in the Ith position of file CITY1. However, in order to prepare a file for printing, we must use the SCRATCH statement. That statement erases whatever is in a file, prepares it for write mode, and sets the file pointer at the beginning of the file. Since we want to write to the second file in our FILES statement, we use SCRATCH \#2 in line 310. The next complication we face is that the pointer in file CITY is now at the end of the data. We move the pointer to the beginning of the file and keep the file in read mode with the REST $\emptyset$ RE statement in line 330 . REST $\phi$ RE \#N acts on the Nth file in the FILES statement. The REST $\phi$ RE statement must be executed every time we want to reread the file. The actual entry of the data to file CITY1 takes place in line 370 of program GR $\varnothing$ WTH when we have found the city with the growth rate in the Ith location of the arranged list A by reading to that city's position in the original file as determined by list B .

We now run READCITY on file CITY1 to confirm the contents of that file.

| IOO FILES CITYI |  |  |
| :--- | :---: | :---: |
| RUN |  |  |
| READCITY |  |  |
|  |  |  |
| CITY | RANK | GR@WTH |
| HOUSTON TEXAS | 7 | 29.3 |
| LOS ANGELES CALIF | 3 | 12.2 |
| NEW YORKN.Y. | 1 | -0.1 |
| PHILADELPHIA PA. | 4 | -3.8 |
| BALTIMORE MD | 6 | -4.7 |
| WASHINGTON D.C. | 9 | -4.8 |
| CHICAGQ ILL | 2 | -6.3 |
| DETROITMMCH | 5 | -10.6 |
| CLEVELANDOHIO | 8 | -15.7 |
| STLOUIS MO | 10 | -19 |

## Binary Files

Binary files are available only under program control. Whereas ASCII files may be only sequential, binary files may be either sequential or random access. Random access means that any data item may be accessed without reading all data from the beginning of the file up to that data item and that data may be written to any point in the file directly in the same manner.

An ASCII file or a binary file may be used as a sequential file as determined by the first WRITE statement which applies to that file after the file is made available for write mode by the SCRATCH statement. To work with a file as a sequential binary file simply use a colon (:) where the pound sign (\#) occurs in the READ, REST $\emptyset$ RE, SCRATCH, IF M $\emptyset$ RE and WRITE statements. The distinction between ASCII and binary files, regardless of sequentiality or randomness, has to do with the code that is used to store the data on some device peripheral to the computer, and does not generally effect the programmer at the level of programming in BASIC.

## Random Access Files

Thus far we have not been concerned with how much space our data has occupied because our files simply expanded to fit whatever we had written to the file. We are not likely to exceed the maximum space available in a single file for some time. However, since random access files must have a structure allowing data to be placed in physical locations that will be known to us for future access, space requirements for data storage become important. The structure of a random access file is a little like that of a two-dimensional array except that in a file we may intermix numeric and string data. In some situations, however, we may choose to place numeric data in one file or group of files and related string data in another file or group of files, with a scheme for relating the two structures.

Random access files may be segmented into components called "records." We may assign the amount of storage space in each record at the time we create the file. Storage space is measured in computer words, and storage is required for data as follows:

1 word per numeric
1 word per 4 string characters or fraction thereof
1 word for control per string for internal computer purposes.
For example we could store 120 numerics in any file in which the product of the number of records and the number of words per record is at least 120 . Since we are going to have control over the space in each record, we generally select some record size that is appropriate to our data structure, just as we usually dimension an array to fit the structure of the data we intend to store in it.

Let us begin by writing 10 random numbers to a random access file, proving that the numbers are really there and then arranging them in increasing order by using the random accessibility of the file to do the sorting.

First, the file must exist. The system command CREATE is required here. Let's provide two records which will handle 10 words each. Then our ten numbers will all fit on the first record. The executive command,

$$
\text { CRE RAND,(RAN }(10,2))
$$

accomplishes this. The numbers in parentheses specify the number of words per record first and the number of records second. Program RNDENTER is identical to a program that would write ten random numbers to an ASCII file except that a colon appears where a pound sign would appear in a program writing to a sequential file and no SCRATCH statement is required.

RNDENTER

```
94 RFM * THIS PROGRAM WRITES 10 RANDOM NIMMBERS
95 REM TO A RANDOM ACCESS FILE
100 FILES RAND
110 RANDOMIZE
120 FOR I = 1 TO 10
130 WRITE :1, RND
14O NEXT 1
142
150 END
RUN
RNDENTER
```

Note that the program generates no printed output. (It is not good general procedure to write programs with no visible output except to prove, as with program RNDENTER, that the program did in fact do something invisible.) We now need a program to read file RAND. Program RNDREAD does that.

```
RNDREAD
 94 REM * THIS PROGRAM READS NIMMERICS FROM A
 95 REM RANDOM ACCESS FILE SEOJENTIALLY
 100 FILES RAND
 110 READ : 1, A
-120 IF A=0 THEN 150
 130 PRINT A
 140 GOTO 110
 150 END
RUN
RNDRFAD
 0.220289
 0.257207
 0.705748
 0.717468
 0.143835
 0.349935
 0.704994
 0.649726
 0.974231
 0.852828
```

RNDREAD is like a program to read a sequential file, with one important difference. Look at line 120. Since we didn't put any zero values into the file, why test for zero? We would have used the IF M $\phi$ RE statement in an ASCII file. IF M $\varnothing$ RE does not determine an end of data condition in a random access file effectively because the CREATE command filled the file with binary zeros. The SCRATCH statement will have the same effect. Thus we are able to terminate our little program by reading values of $A$ until we come up with zero. IF M $\varnothing$ RE does determine whether or not we have reached the physical end of the file, however. Thus in our file RAND, if we had read 20 numerics, then IF M $\varphi$ RE : 1 would test false. A companion statement IF END :1 would test true in this condition. We should be beginning to see, and will soon see even more clearly, that the total structure of the data storage is the complete responsibility of the programmer. We must know when we have reached the end of our real data. We may want to count the number of data items or we may want to place dummy data at the end of the file just as we often do for data statements of a program.

Now let us arrange the numbers of file RAND in ascending order by operating on the data within the file as we go. The basic sorting scheme is exactly like that we just used for sorting cities and that we will use again in chapter eleven. The only difference is that we are now comparing numbers that have addresses in a file instead of in a list. In order to set the file pointer to the proper location of our file, we use the SETW statement. SETW N T $\varnothing$ X moves the pointer in file N to the beginning of the Xth word of storage counting from the beginning of the file. This operation is totally independent of the number of words per record. Thus if a file has nine words per record, then SETW N T $\emptyset 12$ moves the pointer to the beginning of the third word on the second record of
file number $N$. Once the pointer is set, the next read or write statement begins reading or writing from that point. In our problem we will be reading a single numeric value.

In program RNDS $\varnothing$ RT, line 130 sets the pointer to the Ith word of the file so that the Ith number may be read by line 140 . Line 150 sets the pointer to the I +1 st word so that the I +1 st number may be read out. If they are in the desired order, line 170 directs the computer to line 230 , which causes the next pair of adjacent numbers to be tested. Should the test in line 170 fail lines 180

```
 RNDSORT
 94 REM * THIS PROGRAM ARRANGES 10 NUMBERS IN
 95 REM GRDER IN A RANDOM ACCESS FILE
 100 FILES RAND
 110 LET S = 0
 120 FOR I = 1 TO 9
-130 SETW 1 TO I
-140 READ :1. A
-150 SETW 1 TO I+1
 160 READ:1:B
 -170 IF A <= B THEN 230
 172
 174 REM * EXCHANGE DIIT OF ORDER DATA
-180 SETW 1 TO I
190 WRITE:1, B
200 SETW 1 TO I+1
 L210 WRITE:1, A
 220 LET S = 1
-230 NEXT I
232
-240 IF S = 1 THEN 110
250 PRINT "DONE"
260 END
RUN
RNDSORT
DONE
```

through 210 , exchange the positions that the two values occupied in the file. Then a switch is turned on by setting $S$ equal to one. When the computer has passed through the list, we test in line 240 to see if any exchanges have been made. If there have been no exchanges, then the numbers are in order and we have the computer print " $D \phi N E$ ". In the present situation, we rerun RNDREAD to verify that the program did in fact sort the file.

```
RUN
RNOREAD
 0.143835
 0.220289
 0.257207
 0.349935
 0.649726
 0.704994
 0.705748
 0.717468
 0.852828
 0.974231
```

For our final example, let us take the data in the ASCII file CITY and enter it into a random access file. To do this we must plan very carefully, as we
must be able to specify the position of all data in the file exactly. It is usually convenient to group the data that belongs together on a single record. In our problem we have three variables: the city name, its rank, and its percentage growth. The rank and percentage growth are both numerics and so occupy one word of computer storage each. The city names are strings of different lengths and so require different amounts of space. A reasonable approach is to allow space for the largest string and dimension our file accordingly. Clearly L $\phi \mathrm{S}$ ANGELES CALIF is the longest string we use. The string has four groups of four characters and one character left over. That requires five words. We must add one word for internal control plus the two for the numerics. That puts the required space at eight words of storage per city. So we must CREATE a file with at least 10 records at eight words per record. We do this with

CRE CITY2,(RAN(8,10))
In order to set the file pointer to the beginning of the Ith record where the records contain eight words each, all we have to do is point $8(\mathrm{I}-1)+1$ words from the beginning of the file, as shown in line 140 of program XFER. This program transfers the data from ASCII file CITY to random access file CITY2. Notice that there is no difficulty whatever in accessing two different kinds of file with the same program.

```
XFER
94 REM * THIS PROGRAM COPIES DATA FROM ASCII FILE CITY
95 REM TO RANDOM ACCESS FILE CITYZ
100 FILES CITY: CITYZ
110 LET I = 0
120 READ #I, CS,R,G
130 LET I = 1+1
132
134 REM * THE FORMIJLA IN LINE 140 SETS THE
135 REM POINTER TG THE ITH RECORD IN THE FILE
140 SETW 2 TO 8*(I-1)+1
150 WRITE :2, C$,R,G
160 IF MgRE #1 THEN 120
170 PRINT 1; "ENTRIES"
180 END
RIJN
XFER
10 ENTRIES
```

Our final task is to arrange the cities according to rank without using a second file and without using the technique of saving the numbers to be sorted in an array. This program, program RANK, is very similar to RNDS $\phi$ RT except that the pointer is a formula and the read and write statements work with three variables instead of one.

```
RANK
94 REM * THIS PROGRAM ORDERS CITIES ACCORDING TO RANK
95 REM IN A RANDOM ACCESS FILE
100 FILES CITY2
110 LET N1 = 0
120 LET N = 10
130 LET S = 0
140 FOR I = 1 T0 N-1
```

```
150 SETN 1 T0 8*(Im1)+1
160 READ :1, CS,R,G
170 SETW 1 T0 8*I+1
180 READ:1,C1S,R1,GI
190 IF R <= RI THEN 250
_IF R <E THEN }25
194 REM * EXCHANGE OUT OF ORDER DATA
200 SETW 1 T0 8*(1-1)+1
210 WRITE:1, G1S.RI,GI
220 SETW 1 T0 8*1+1
230 WRIIE:1, C$,R,G
240 LET S = 1
250 NEXT I
252
260 LET N = N-1
270 LETNI=NI+1
280 IF S = 1 THEN : 30
282
290 PRINT "CITIES ORDERED ON RANK"
300 PRINT "IN"; NI; "PASSES"
310 END
RUN
RANK
CITIES ORDERED ON RANK
IN }7\mathrm{ PASSES
```

Program REDCITY2 tabulates the results directly from the file.

```
 REDCITYZ
 94 REM * THIS PROGRAM READS THE CONTENTS OF FILE CITYZ
 95 REM AND PRINTS TO THE TERMINAL
 100 FILES CITY2
 110 PRINT "CITY''; TAB(20); "RANK'; TAB(25): "% GROWTH"'
 120 FOR I = 1 IO 10
 130 SETW 1 T0 8*(I-1)+1
-140 READ:1, C$,R,G
-150 PRINT C$; TAB(20)3 R3 TAB(26); G
 160 NEXT I
 162 END
 RUN END
 REDCITYZ
 CITY RANK % GROWTH
 NEW YORK N.Y. 1 -0.1
 CHICAGO ILL 2 -6.3
LOS ANGELES CAL.IF
PHILADELPHIA PA.
DETROII MICH
BALTIMORE MD
HDUSTDN TEXAS
CLEVELAND OHIO
WASHINGTON D.C.
ST lOUIS MO 10 -19
```

```
 -6.3
```

    -6.3
        12.2
        12.2
        -3.8
        -3.8
        -10.6
        -10.6
        -4.7
        -4.7
        29.3
        29.3
        -15.7
        -15.7
        -4.8
    ```
 -4.8
```


## Summary of Sec. 4-3

ASCII and binary files are used to store and to arrange both string and numeric data. We have seen that ASCII files can be accessed either by the terminal directly or by a program, whereas binary files are available only under program control. Binary files may be either sequential or random access, but ASCII files are only sequential. In order to make any file available to a program, the

FILES statement must name the files we want, separated by semicolons. The files are numbered according to the order of appearance in the files statement. As many as eight files may be accessed by a single program simultaneously. (Provision may be made for substituting new files for previously named old ones within a program.)

The following special statements apply to ASCII files: REST $\varnothing$ RE \#N moves the file pointer to the beginning of file N and places the file in read mode. READ \#N, $A, B, C \$$ reads values from file $N$ for variables $A, B, C \$$. WRITE \#N, $\mathrm{X}, \mathrm{B} \$$ enters the contents of X and $\mathrm{B} \$$ into file N . SCRATCH \#N erases the contents of file N and places the file in write mode at its beginning. IF $M \phi R E$ \#N tests for more data in file $N$. IF END \#N tests for the end of data condition in file N . All the above statements can be used for binary files by changing the pound sign (\#) to a colon (:). There are some differences when it comes to random access files, however. SCRATCH : N , when applied to a random file, fills the file with zeros, sets the pointer to the beginning of the file, and places it in write mode. IF END and IF M $\varnothing$ RE work only at the physical end of the file. In addition, there is a special statement for random files to place the file pointer under program control. SETW N T $\varnothing$ I may be used to place the file pointer of file N at the beginning of the Ith word of the file.

## Problems for Sec. 4-3

1) Enter student names followed by a fixed number of test scores in a sequential file. Arrange the students by test average and write the results to another file.
2) Suppose you have entered a large number of names in a file, last name first, one name to a string for alphabetizing. Write a program to print a list of names in alphabetical order but first name first.
3) Write a program to read numerics from two ordered files and print a single merged and ordered list to the terminal.
4) Write a program that will insert an item of data into an already ordered random access file so that the new item is in order.
5) You have a random access file with unknown contents. Write a program to determine the number of words the file contains.
6) Write a program to enter inventory data into a random access file. The data should include, for every part, a number, name, price, quantity, low order point, and reorder quantity. The low order point is the quantity that should trigger reordering for that part, and the reorder quantity is the quantity that should be ordered. Write a program or programs to do any or all of the following: modify quantity and or price according to business activity, edit the low order point and reorder quantities, process the file to find the total dollar value of the inventory, and process the file to determine what parts must be reordered and the quantities to be ordered.

## 5 <br> PLOTTING ON THE TERMINAL

## 5-1 Introduction

There are many sophisticated mechanical plotters on the market offered by a number of manufacturers. These generally use a pen which draws very short ( 0.01 inch is typical) straight line segments as determined by a program. The smaller the segments, the smoother the curve. However, this chapter is limited to using the terminal itself as a plotter. There are a number of disadvantages to using the terminal for this purpose. Plotting is slow and may therefore be expensive. The graphs we get are imprecise, and we can't easily use graph paper. Be all that as it may, if we have no other plotter, we can get very helpful plots from the terminal. The terminal has the advantage that it is conveniently available.

## 5-2 Plotiting a Function

We can greatly simplify plotting by choosing a function, since functions have the feature that for any value of $x$ there is exactly one value for $y$. So, if we think of $y$ as increasing across the page from left to right and $x$ increasing down the page from top to bottom, when the plot is completed, we just turn the paper ninety degrees counterclockwise to obtain the conventional orientation.

To plot a single function, we first locate the origin and then concern ourselves with having the terminal mark the axes. Let's plot $y=\frac{1}{2} x+3$. The basie pletting is yery simple. All that is necessaiy is to use the TAB(iv) printing function to get the printing mechanism out to the proper location on the paper and then print some symbol. Since the TAB function begins counting at the left margin and we would like to have negative values available for $y$ on the graph, it will be necessary to move the $x$ axis to the right. How far we move it
will depend on the particular graph. We simply add some constant value to all TAB arguments. This value is set in line 110 of program GRAPH1. If your version of BASIC does not have a $\mathrm{TAB}(\mathrm{N})$ function, then you may put PRINT"" "; in a loop to get the printing head to the proper spot on the paper. We print a plus sign to indicate the origin. We will therefore have to check to see if we are at $x=0$ and then determine whether the point of the graph is to the left or the right of zero.

GRAPH:

```
 94 REM * THIS IS A RUDIMENTARY PLOTTING PROGRAM
 100 DEF FNF (X) = . 5*X+3
102
104 REM K MgVES THE ORIGIN K SPACES TO THE RIGHT
-110 LET K=10
 120 FOR X = - 7 T0 7
 130 LET Y = FNF (X)
-140 IF X <> O THEN 210
 150 IF Y < -. 5 THEN 180
152
154 REM * X = 0 AND Y >= -.5 SO PRINT ORIGIN
160 PRINT TAB(K); "'+")
170 IF Y < .5 THEN 220
180 PRINT TAB(INT (Y+.5)+K); "*";
190 IF Y < -. S THEN 160
200 GOTO 220
210 PRINT TAB(INT(Y+.5) +K); "*";
220 PRINT
230 NEXT X
232
240 END
RUN
GRAPHI
```



GRAPH1 seems to do the job we set out to do. (Be sure to turn the results ninety degrees counterclockwise to view the graph.) However, there are many improvements that we can make. Let's put in a set of axes. Since the $y$-axis is the line where $x=0$, the $y$-axis provision can go after line 140 of GRAPH1. In order to put the $x$-axis in, we have to check for each value of $x$ whether or not the plotted point is below the $x$-axis. This is done in line 200 of GRAPH2. As long as we are working on the program, let's add a little flexibility by putting the position of the $x$-axis and the domain in as data. See lines 110 , 130 , and 600 of GRAPH2. Note that a distinguishing character is used to mark every tenth location in each of the axes. This greatly improves the readability of the plot. Lines 210 and 420 determine where those marks are printed.

```
 GRAPH2
 94 REM * THIS PROGRAM PLOTS GRAPHS OF FUNCTIONS
 95 REM WITH AXES PRINTED
 100 DEF FNF (X) = 5 S*X* 3
 102
 104 REM THE VALUE OF N DETERMINES LENGTH OF Y-AXIS
 105 REM K MOVES THE GRAPH K SPACES TG THE RIGHT
 106 REM F IS THE FIRST VALUE OF X FOR THE PLOT
 107 REM L IS THE LAST VALUE OF X FGR THE PLOT
-110 READ N, K,F,L
 120 PRINT TAB(K-1); "X=*" F
-130 FOR X = F TO L
 140 LET Y = FNF (X)
 IF X O THEN 200
 REM & }X=0\mathrm{ SD THIS IS THE Y-AXIS
 FOR Y1 =-K TO N-K
 GOSUB 400
 NEXT Y1
 G0T0 280
 REM * PGINTS OFF Y-AXIS ARE PRINTED
 REM IN LINES 200 T0 280
 IF }Y<.5\mathrm{ THEN 260
 IF }X/10<INT(X/10) THEN 24
 PRINT TAB(K): '".")
 G0Y0 250
 PRINT TAB(K); "!'s
 IF Y < . 5 THEN 280
 PRINT TAB(INI(Y*.5)+K): "太"!
 IF Y<-.5 THEN 210
 PRINT
 NEXT X
 PRINT TAB(K-1); "K ="; L
 STOP
 REM * SUBRØUTINE TO PRINT Y-AXIS
 IF Y1 = 0 THEN 490
 IF ABS(Y-Y1) < . S THEN 470
 IF Y1/10= INT(Y1//10) THEN 450
 PRINT "m"')
 RETURN
 PRINT "I"*'
 RETURN
 PRINT "*";
 RETURN
 PRINT "+"";
 RETURN
 5
 594 REM
-600 DATA 25, 10, -11. 12
610 END
```

Three runs of GRAPH2 show a variety of results. For the first RUN of GRAPH2, we present the line $y=\frac{1}{2} x+3$ from program GRAPH1. For the second RUN, we re-define the function in line 100 to plot the parabola, $y=$ $-.4 x^{2}-x+8$. For the third RUN, we again re-define the function in line 100 to get the graph of $y=.2 x^{3}-2 x^{2}+x+5$.

We have in GRAPH2 a satisfactory hasic granhing program, and the results may be enhanced by sketching a curve through the plotted points by hand. We can still improve on the program itself, though. Consider what the sine graph would look like using the program as it stands. The graph would show us little. Clearly we could do better by putting a scale capability in for both axes. This is left as an exercise.


## Summary of Sec. 5-2

We have developed a program to use the terminal as a plotter. This appears to give us rough but satisfactory graphs for a variety of functions.

## Problems for Sec. 5-2

1) Modify GRAPH2 to allow a change of scale. Allow for two different scales for the two axes. Use the new program to plot any of the following:
a) $y=\sin x$
b) $y=\cos x$
c) $y=x-\operatorname{INT}(x)$
d) $y=x+\operatorname{INT}(x)$
e) $y=\sqrt{x}$
2) You may have noticed that the mechanics of your terminal are such that the vertical and horizontal scales are different. On many terminals there are 10 characters per inch on the horizontal line and six lines per inch on the vertical page. Use the scaling ability of problem 1 to provide equal scale for both axes relative to the graph.
3) Modify GRAPH2 to handle more than one function.

## 5-3 Plotting Using Data Stored in an Array

There are some other things we can do with plotting. For instance, we can plot a graph that does not have to be rotated to achieve standard orientation. And we might want to plot some nonfunction relation.

One way to achieve such a capability is to set up a computer array in such a way that each storage location of the array corresponds to a coordinate point of the graph. We will have some adjustment problems, however, because for an array the "starting point" is the upper left corner and for a graph the "starting point" is generally nearer the center of things. This difficulty can be handled by shifting the "starting point" of the graph to the left and up. Also for an array, row numbers increase from top to bottom, and the reverse is true for a graph. This problem can be handled by putting the graph into the array "upside down".

We can scan through the array inserting numbers which will later be interpreted to print specific characters. Let us make the graph cover an odd number of coordinate points in each direction and make the middle element of the array correspond to the origin of the graph. We can begin by setting every entry of the array to zero, to be ignored when the printing takes place. Then we use a ' 1 ' to signify the origin, a ' 2 ' to signify the horizontal axis, a ' 3 ' to signify the vertical axis, and a ' 4 ' to signify the plotted point. This scheme will allow more relations to be handled by using numbers greater than 4 for the additional graphs.

All these features are incorporated in program GRAPH3. The axes are shifted, and the $y$-axis is turned upside down by line 230 . The $y$-axis is entered in line 160. The $x$-axis is entered in line 170. The origin is entered at line 190. The use of the variable L 1 is to save program storage. It takes less computer storage to set L 1 equal to $\mathrm{L}+1$ and then use L 1 (rather than $\mathrm{L}+1$ ) as long as we need this value several times, and moreover it saves typing. On some systems, storage will not be a limitation for a program like this, but if it is, then such a procedure is worth using. Line 220 tests to see if the coordinate position of the array is on the graph. This depends on our choice for the value of $t$. If the yalue of $t$ is .5 , then we get a graph just like that of program GRAPU2. However, by increasing the value of $t$, we can have more points plotted. This tends to "fill in" the graph. Lines 110 and all other references to $D$ are employed to limit the actual use to only that part of the array that seems necessary for the graph requested. This will save printing time. As written, the program causes the printing mechanism to scan the entire line. Considerable print-

GRAPH3

```
 9 4
 100
 102
 104
 105 REM L IS THE NUMBER OF SPACES EACH SIDE OF ZERG
 106 REM T DETERMINES GRAPH RESOLUTIDN
 107 REM LI IS USED TO SAVE TYPING L+I REPEATEDLY
 110 LET D = 21
 120 LET L = (D-1)/2
 130 LET T = . 4
 140 LET L1 = L+1
 142
 144 REM * ENTER AXES AND ORIGIN IN THE ARRAY
 150 FOR I = 1 TO D
->160 LET A(LI,I)=3
-170 LET A(I,LI)=2
 180 NEXT I
*190 LET A(LIPLI) = 1
 192
 194 REM * NOW INSERT A*S TO DESIGNATE PLOTTED POINTS
 200 FOR Y = -L TO L
 210 FORX=-L TOL
-220 IF ABS(. 5*X+3-Y) > T THEN 300
 LET A(X+L1,D-(Y+L))=4
 NEXT X
NEXT Y
 REM * THE VALUES ARE STORED NOW PRINT
 PRINT TAB(L1); "Y"
 FOR Y = 1 TO D
 FOR X = 1 TO D
 PRINT TAB(X):
 IF A(X,Y) = 0 THEN 380
 Go Sub 500
 NEXT X
 PRINT
NEXT Y
PRINT TAB(L); "-Y"
STOP
REM * PRINTING SUBROUTINE
 IF A(X,Y) = 2 THEN 550
 IF A(X,Y) = 3 THEN 580
 IF A(X,Y) = 4 THEN 610
PRINT ""+")
RETIJRN
 IF (X-LI)/10= INT((X-LI)/10) THEN 590
PRINT "=*';
RETURN
 IF (Y-L1)/10= INT((Y-L1)/10) THEN 560
 PRINT "!";
 RETURN
 PRINT "'*";
 RETURN
 END
```

ing time could be saved by sending the printing head back to the beginning of the new line as soon as the last point is printed. This is left as an exercise.

Three runs of GRAPH3 are presented. The first RUN is the straight line of the first RUN of program GRAPH2; the second RUN is the parabola of the second RUN of GRAPH2; and the third RUN is a circle with radius 10 and center at the point $(2,-3)$. Note that as with the graphs of Sec. $5-2$, these graphs are distorted by the fact that the space occupied by a single character on the printed page is higher than it is wide.


130 LET T $=.6$
$2 ? 0$
IF ABS $6-4 * X+2-X+8-Y,>$ T THEN 300
GRAPH3


```
110 LET D \(=29\)
130 LET T \(=5\)
220 IF ABS
RUN
```



## Summary of Sec. 5-3

GRAPH3 gives us the ability to deal with many kinds of graphs fairly easily. The graph can be oriented in the conventional manner, and we can see that the ability to graph more than one relation on one set of axes is a direct extension of the current program.

## Problems for Sec. 5-3

1) Modify GRAPH3 to stop printing when the last character of the current line has been printed.
2) Modify GRAPH3 to permit two relations to be plotted. Use your program to find the approximate points of intersection of $y=2 x^{2}$ $+x-1$ and $y=3 x+4$.
3) Use the ideas of GRAPH3 to write your name. That is, store points to be printed in an array. If you have a long name, maybe you'd rather use the word BASIC. This exercise may be a little tedious, but fun.
4) Rewrite GRAPH3 so that the origin does not have to be the center point of the array.
5) We get an interesting effect if instead of plotting points, we plot spaces. That is, where there is no point on the graph, print an asterisk, and where there is a point, leave the location on the paper blank. Try this.
6) Modify GRAPH3 to allow different scales for the two axes. Then plot a large circle to see how well you can do.
7) On some systems, the array size allowed is limited enough to make some plots not practical if we use the methods of this section. One way to program around this is to notice that there is a tremendous amount of wasted storage in each element of the array itself. Note that for up to six relations GRAPH3 requires only a one digit number to store the information required for graphing. Since most computers provide at least six digits, by using each of those digits we can increase the storage by a factor of six. Write a graphing program to use this additional storage space.
8) One method for obtaining larger graphs is described in problem 7. Another procedure would be simply to analyze the graph one line at a time. Try this.

## AREA UNDER

## A CURVE

## 6-1 Introduction

Let us consider a moving object. At constant speed, the distance traveled is simply its speed multiplied by time. If an object travels 15 feet per second for 5 seconds, it will travel 75 feet. However, it is often true that the speed of an object is not constant. Suppose the graph of Fig. 6-1 represents an object in nonconstant motion. The distance the object has traveled at time $t$ is the area under the graph from the origin to $t$. For Fig. 6-1 that area is a convenient geometric shape. We get Area $=\mathrm{A}=\frac{1}{2} * 60 * 3=90 \mathrm{ft}$.


Figure 6-1
Now suppose a graph does not provide such a convenient geometric shape, as in Fig. 6-2.


Figure 6-2

To find the total area of such a shape, we can subdivide the area into many smaller segments, find the area of each segment, and sum up the individual areas. All we have to do is decide what kind of smaller segments to use and how large they should be. Consider Fig. 6-3.


Figure 6-3

Figure 6-3 subdivides the area into rectangles so constructed that each one falls completely within the desired area. Thus we know that the sum of these areas will be less than the actual area. We could alternatively place the rectangles as shown in Fig. 6-4. But that would have the opposite effect on the accuracy. Another possibility is to construct the rectangles so that the midpoint of the top


Figure 6.4
side is a point of the curve, as shown in Fig. 6-5. Now we have some area included by the rectangles that is not included by the actual curve and some area included by the curve but excluded by the rectangles. Thus we expect some cancelling-out effect.


Figure 6-5

Let us begin by writing a program to sum up the area shown in Fig. 6-5. In order to test the program, we can make our first function contain a known area. We choose a semicircle derived from the circle $(x-5)^{2}+y^{2}=25$. This circle has a radius of 5 and its center at the point $(5,0)$, as shown in Fig. 6-6A, and so the area we expect is $\frac{1}{2} \pi r^{2}$ or $\left(\pi^{*} 5^{2}\right) / 2$.


Figure 6-6A

The curve we are considering is in fact a function from 0 to 10 for $x$. Solving $(x-5)^{2}+y^{2}=25$ for $y^{2}$, we get

$$
y^{2}=25-(x-5)^{2}
$$

and

$$
y=\sqrt{25-(x-5)^{2}}
$$

For the shaded area of Fig. 6-6A, the function is

$$
y=\mathrm{f}(x)=\sqrt{25-(x-5)^{2}}
$$

Thus we can easily define a computer function as follows:

$$
100 \operatorname{DEF} \operatorname{FNS}(\mathrm{X})=\operatorname{SQR}(25-(\mathrm{X}-5) \uparrow 2))
$$

For this problem we can begin by taking 10 intervals one unit wide. Then the midpoint of an interval will be $x-.5$, and the height of the rectangle will be FNS(X - .5). See Fig. 6-6B and program AREA1.


Figure 6-6B

```
 AREAI
 94 REM * THIS PROGRAM COMPARES THE AREA OF A
 95 REM SEMICIRCLE FOUND BY FORMULA AND BY
 96 REM SUMMING AREAS OF RECTANGLES.
-100 DEF FNS(X)= SQR(25-(x-5),2)
 110 LET A = 3.14159*25*.5
120 PRINT "AREA GF SEMICIRCLE BY FORMULA =''; A
130 LET A = O
132 REM * THE
140 LET B = 1
FQR X=1 TO 10
 REM * THE HEIGHT IS H
 LETH = FNS(X-.5)
 REM * THE AREA OF CURRENT RECTANGLE IS B*H
 LET A = A + B*H
 NEXT X
 PRINT TAB(3); "AREA BY SUMMING RECTANGLES ="; A
 END
RUN
AREAI
AREA OF SEMICIRCLE BY FORMULA = 39.2699
 AREA BY SUMMING RECTANGLES = 39.6499
```

The relative error is about .38 in 39 or about $1 \%$. We can improve on this by taking smaller intervals within the accuracy of the computer.

Let's rewrite program AREA1 to allow varying widths of intervals. We can take the $b=1$ out of the $x$ loop and allow the value of $b$ to be read from data.

Now since the width of interval will change according to the value of $b$, the midpoint of the interval will be $x-b / 2$, and the value of $x$ must be successively incremented by $b$, the interval width. While we are at it, let us allow the value of $x$ to have a variable range read as data. This is done in lines 140 and 160 of AREA2.

```
AREAZ
 94 REM * THIS PROGRAM SUMS RECTANGLEES TO
 REM APPROXIMATE AN AREA ALLDWING THE
 96 REM WIDTH OF THE REGTANGLES TO BE READ
 97 REM AS DATA.
 100 DEF FNS(X) = SQR(25-(X-5):2)
 110 PRINT "FROM", "INTERVAL", "T\emptyset", "AREA""
 120 READ B
 130 IF B = 0 THEN 250
-140 READ F.T
 150 LET A = 0
-160 FOR X = F+B TO T STEP B
 170 LET H = FNS(}X-B/2
 180 LET A = A + B*H
 190 NEXT X
 192 PRINT F, G, T
 210 GOTO 120
 212
 220 DATA 1.0.10, .5.0.10
 230 DATA .1.0.10% .01.0.10
 240 DATA O
 250 END
 RUN
 AREA2
\begin{tabular}{cccc}
FROM & INTERVAL & T0 & AREA \\
0 & 1 & 10 & 39.6499 \\
0 & .5 & 10 & 39.4051 \\
0 & .1 & 10 & 39.2115 \\
0 & .01 & 10 & 39.2674
\end{tabular}
```

The results of AREA2 do indeed give successively more accurate approximations of the area.

Now we run AREA2 for the function,

$$
f(x)=2 x^{3}-2 x^{2}+x+5
$$

from -3 to 11 for $x$. For a graph of this function, see Sec. $5 \cdot 2$.


## Summary of Chapter 6

We have developed a routine that approximates the area under a curve for functions. The method used is to sum up areas of rectangles whose heights are determined by the midpoint of the intervals. (There are several other methods, which are left as exercises.)

## Problems for Chapter 6

1) Find the area enclosed by $y=x+3$ and $y=x^{2}-8 x+17$.
2) Find the area enclosed by $y=-3 x^{2}+4 x+2$ and the line $y=-3$.
3) Another procedure for finding area under a curve is called the trapezoid method. This is done by inscribing trapezoids instead of rectangles under the curve. Write a program to use the trapezoid method.
4) Write a program that begins with a specified width and automatically makes the subdivisions smaller until the new approximation does not differ from the old approximation by more than some percentage error, say $.01 \%$.
5) Write a program to approximate area by making the first interval the whole domain and each subsequent interval one half the previous interval. Have the computer stop when the percentage change is less than, say, $.01 \%$.
6) A method always as accurate and usually more accurate than the trapezoid method is Simpson's rule. Simpson's rule requires an even number of intervals and is given by the following (see Fig. 6-7):

$$
A=\frac{W}{3}\left(f_{1}+4 f_{2}+2 f_{3}+4 f_{4}+\cdots+2 f_{n-2}+4 f_{n-1}+f_{n}\right)
$$

Write a program to use Simpson's rule.


Figure 6.7
7) Use the ideas of this section to find the length of the graphed line of a continuous function instead of the area.

## 7

## COORDINATE GEOMETRY

## 7-1 Points in a Plane

In the Cartesian coordinate system, points in a plane are named by ordered pairs of real numbers. A point is labeled $\mathrm{p}(x, y)$, where the first number is called the $x$-coordinate and the second is called the $y$-coordinate. As we consider the ordered pairs of numbers associated with a point or set of points, many geometric relationships unfold. For two points in a plane, we can look at the distance between them or consider the straight line they determine. For three points in a plane, we may be interested in whether or not they fall on a straight line, that is, are collinear. If not collinear, then three points determine a triangle which has many properties of interest. We may examine many other common geometric figures such as quadrilaterals, circles, parabolas, etc. It is the purpose of this chapter to study some of these topics, using the computer to assist us.

## 7-2 Pairs of Points

Consider the two points $\mathrm{A}(3,5)$ and $\mathrm{B}(3,-1)$, as shown in Fig. 7-1. Clearly the distance $A B$ from $A$ to $B$ is six units, usually stated simply as 6 . We define the distance between two points with the same $x$-coordinate as the absolute value of the difference in $y$-coordinates. (For two points with the same $y$ coordinate, the distance is defined as the absolute value of the difference in $x$-coordinates.) Thus in Fig. 7-1,

$$
\mathrm{AB}=|5-(-1)|=|5+1|=6
$$

Left only with this definition we would have a very limited ability to determine distance. We should, however, be interested in determining distance for any two points whatever their coordinates.


Figure 7-1

For the points $A(3,5)$ and $B(-1,2)$, we may find the distance by plotting the points and constructing a right triangle, as shown in Fig. 7-2.


Figure 7-2

Using the Pythagorean Theorem,

$$
\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}
$$

or

$$
\mathrm{AB}=\sqrt{\mathrm{BC}^{2}+\mathrm{AC}^{2}}
$$

so that

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{4^{2}+3^{2}} \\
& \mathrm{AB}=\sqrt{25} \\
& \mathrm{AB}=5
\end{aligned}
$$

It is evident that for any two points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ we have the relationships shown in Fig. 7-3.


Figure 7-3

Using $\mathrm{AB}=\sqrt{\mathrm{BC}^{2}+\mathrm{AC}^{2}}$, we get

$$
\mathrm{AB}=\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}}
$$

but since the square of a number equals the square of its absolute value, we get

$$
\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

This is known as the distance formula.
We shall now find distances for pairs of points. The distance formula translates readily into the BASIC statement:

$$
200 \text { LET D }=\operatorname{SQR}((\mathrm{X} 2-\mathrm{X} 1) \uparrow 2)+(\mathrm{Y} 2-\mathrm{Y} 1) \uparrow 2)
$$

All that remains is to get coordinate pairs read into the computer and results printed out. This is done in program DIST1.

```
DIST:
```

```
94 REM * THIS PROGRAM FINDS THE DISTANCE AB
95 REM FOR THE COORDINATES (X1,Y1) AND (X2,Y2)
100 PRINT "TO FINO THE DISTANCE BETWEEN TWO POINTS"
150 PRINT
160 PRINT "POINT A",
170 INPUT XI,Y
180 PRINT "POINI B":
190 INPUT X2,Y2
192 R REM * CALCULATE DISTANCE AND PRINT IT
->200 LET D = SQR((X2-X1):2 + (Y2-Y1);2)
210 PRINT "DISTANCE AB ='' D
222
230 END
RUN
DISTI
TO FIND THE DISTANCE BETWEEN TWO POINTS
PGINT A?3.5
POINT B?-1,2
DISTANCE AB = 5
```

Program DIST1 works fine for a single pair of points. But suppose we had several pairs of points. We may simply request the number of calculations desired and use F $\emptyset$ R-NEXT, as shown in DIST2.

```
 DIST2
 94 REM * FINDS DISTANCE FQR PAIRS OF POINTS
 95 REM PERMITS MORE THAN ONE SET OF DATA
 100 PRINT "TØ FIND THE DISTANCE BETWEEN TWO POINTS"
 110 PRINT
 120 PRINT "NØW MANY PAIRS';
 INPUT N
 FOR I = 1 TO N
 PRINT
 PRINT "PGINT A";
 INPUT XI,YI
 PRINT "POINT B";
 INPUT X2,Y2
 REM * CALCULATE DISTANCE AND PRINT IT
 LET D = SQR((X2-X1)+2 + (Y2-Y1)+2)
 PRINT "DISTANCE AB ="; D
220 NEXT I
222
230 END
RUN
DIST2
T0 FIND THE DISTANCE BETWEEN Two POINTS
NOW MANY PAIRS?2
pgINT A?3,4
PGINT B?0,O
DISTANCE AB = 5
POINT A?-3.4, 5.75
P0INT E?3.125,2
DISTANCE AB = 7.52583
```

For any two points $A$ and $B$, it can be shown that the coordinates of the midpoint of segment AB are found by taking the average of the corresponding coordinates of A and B . Thus the midpoint of AB for $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is

$$
\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}
$$

It is left as an exercise for the reader to write a program to give coordinates of midpoints.

Where coordinates of two points are known, another property of interest is the slope of the line they determine. The slope is the ratio of the change in $y$-coordinates to the change in $x$-coordinates, or

$$
\text { Slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Thus for $\mathrm{A}(1,3)$ and $\mathrm{B}(5,6)$,

$$
m=\frac{6-3}{5-1}=\frac{3}{4}
$$

and for $A(3,-4)$ and $B(1,6)$,

$$
m=\frac{6-(-4)}{1-3}=\frac{10}{-2}=-5
$$

Note that slopes up and to the right are positive and slopes up and to the left are negative. A short program can easily be written to make the above calculation, as shown by program SL $\varnothing$ PE.

```
SLOPE
 00 PRINT "THIS PROGRAM FINDS THE SLOPE OF AB"
 110 PRINT
 120 PRINT "HOW MANY PROBLEMS";
130 INPUT N
140 FORI=1 TON
142
150 PRINT
160 PRINT "POINT A";
170 INPUT X1.Y1
180 PRINT "POINT B'';
190 INPUT X2,YE
192 INPUI XE*YE
194 REM * CALCULATE SLOPE AND PRINT II
-230 LET M = (Y2-Y1)/(X2-X1)
 LEIM = (Y2-Y1)/(XR-
 NEXT I
 E.ND
RIJN
SL.OPE
THIS PROGRAM FINDS THE SLOPE OF AB
HOW MANY PROBLEMS??
```

POINT $A ? 0,0$
POINT B?A,S
SLOPE $=1.25$
POINT A? 3:6
POINT B?5:-3
$S L Q P E=-4.5$

Look at line 230 in program SL $\emptyset$ PE. Note that we instruct the computer to perform division. When two points have the same $x$-coordinate, division by zero is required, which is a mathematically, and thus computationally, undefined condition. The program should be modified to test the value of $x_{2}-x_{1}$ before allowing division to take place. This is left as an exercise for the reader.

The idea that two points determine a line has been referred to several times. It can be shown that any line in a plane can be described by an equation of the form $a x+b y+c=0$, where $a, b$, and $c$ are constants. This is called the general form of the equation. It can also be shown that all nonvertical lines can be described by an equation of the form $y=m x+k$, where $m$ is the slope as defined earlier and $k$ is the value of $y$ when $x=0$, that is, the value of $y$


Figure 7-4
where the line crosses the $y$-axis, called the $y$-intercept, as shown in Fig. 7-4. The form $y=m x+k$ is called the slope-intercept form.

If we are given two points, we can find $m$ in $y=m x+k$. Then we can get a value for $k$ by solving $y=m x+k$ for $k$ to get $k=y-m x$. With a value for $m$ and a value for $k$, we can write the equation of the line in slopeintercept form by using program LINE1.

LINEI

```
94 REM * THIS PROGRAM PRODUCES THE EQUATION OF A LINE
95 REM IN SLOPE-INTERCEPT FORM GIVEN COORDINATES FOR
96 REM TWO POINTS ON THE LINE. THE PRGGRAM USES }X
97 REM A CONSTANT FOR VERTICAL LINES
100 PRINT "EQUATION OF A STRAIGHT LINE IN"
110 PRINT "SLOPE-INTERCEPT FGRM GIVEN TWG POINTS"
120 READ X1,Y1, X2,Y2
 IF X1 =.001 THEN 250
PRINT
PRINT "("; XI; ","; Y1: "),("; X2; ","; Y2; ")"
150 PRIN
152
REM * TEST FOR DEFINED SLOPE
 IF X2-X1 <> O THEN 190
 PRINT "EQUATION IS: X ='* XI
 GaT0 120
182
184 REM * CALCULATE SLQPE AND INTERCEPT
185 REM THEN PRINT SOLUTION EOUATION
190 LET M = (Y2-Y1)/(X2-X1)
200 LET K = Y1 - M*X1
210 PRINT "EQUATION IS: Y ="; M; "*X+("; K; "')"
220 G0T0 120
222 REM
230 DATA 3,4, 5,6, -1,6, -1,3
240 DATA .001,0, 0,0
250 END
RUN
LINEI
EOUATION OF A STRAIGHT LINE IN
SLOPE-INTERCEPT FORM GIVEN TWO POINTS
(3)
(-1 , 6) = (-1 , 3)
EQUATION IS: X =-1
```


## Summary of Sec. 7-2

For two points we have found the coordinates of the midpoint of the segment they determine. We have found the distance, the slope, and the equation of the line in slope-intercept form.

## Problems for Sec. 7-2

1) Modify program SL $\emptyset$ PE to accommodate data for which the slope is undefined.
2) Write a program to calculate the coordinates of the midpoint for pairs of points.
3) Modify program LINE1 to treat a horizontal line as a special case.
4) Modify program DIST1 or DIST2 to give the distance in simplified radical form.
5) Modify LINE1 to give the slope as a decimal, integer, or fraction reduced to lowest terms as appropriate.
6) For an equation in slope-intercept form, have the computer give a table of $(x, y)$ values suitable for graphing.
7) For an equation in general form, have the computer give a table of $(x, y)$ values suitable for graphing.
8) For a set of $n$ points, write a program to give equations for all possible pairs of points. Enter the $n$ points as DATA and store them in a 2 by $n$ array or in a pair of lists.
9) For problem 8, have the computer eliminate duplicate points and therefore duplicate lines in the output.
10) Write a program to write the equation of a line, given two points, in $a x+b y+c=0$ form. Treat vertical and horizontal lines as special cases.
11) Modify program LINE1 to find the slope and $y$-intercept as fractions reduced to lowest terms, if appropriate.

## 7-3 Parallel and Perpendicular Lines

What happens when we begin to think about more than one line in a plane? Lines either intersect or they don't. If they don't, then the lines are parallel, in which case their slopes are equal unless the lines are vertical, making both the slopes undefined. If the lines intersect, then they might be perpendicular. What about the situation for perpendicular lines? Consider Fig. 7-5.

Note that the slope of $l_{1}$ is positive and the slope of $l_{2}$ is negative. Thus,

$$
\begin{equation*}
m_{1}=\frac{d_{1}}{t} \tag{7-1}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2}=-\frac{d_{2}}{t} \tag{7-2}
\end{equation*}
$$

Since $l_{1}$ and $l_{2}$ are perpendicular, right triangles $A B C$ and $A B^{\prime} C$ are similar and

$$
\begin{equation*}
\frac{d_{1}}{t}=\frac{t}{d_{2}} \tag{7-3}
\end{equation*}
$$



Figure 7-5
because ratios of lengths of corresponding sides of similar triangles are equal. Since

$$
\begin{equation*}
m_{2}=-\frac{d_{2}}{t} \tag{7-4}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{t}{d_{2}}=-\frac{1}{m_{2}} \tag{7-5}
\end{equation*}
$$

Substituting from (7-1) and (7-5) above into (7-3), we get

$$
\begin{equation*}
m_{1}=-\frac{1}{m_{2}} \tag{7-6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
m_{1} m_{2}=-1 \tag{7-7}
\end{equation*}
$$

That is, for perpendicular lines having slopes $m_{1}$ and $m_{2}$, the product of the slopes is -1 , or the slopes are negative reciprocals of each other.

We can use the parallel and perpendicular properties for a variety of problems. We can test lines to see if they are either parallel or perpendicular. We can find the equation of a line through a fixed point parallel or perpendicular to another line. We can write the equation of a line which is the perpendicular bisector of a segment.

We shall now present a program to give an equation for the line through a given point perpendicular to the line determined by a pair of given points. There are many conditions that we must account for. Suppose the given points determine a vertical or a horizontal line? We might even be given the same point


Figure 7-6 Flowchart for finding the equation of a line given one point on the line and two points determining a line perpendicular to it.
twice. A flowchart should be helpful in organizing these conditions. See Fig. 7.6 and program PERP.

```
PERP
REM * THIS PROGRAM ATTEMPTS TO WRITE AN EQUATION
REM FOR A STRAIGHT LINE CONTAINING THE GIVEN POINT
REM (XO,YO) AND PERPENDICULAR TO THE LINE
REM DETERMINED BY THE GIVEN POINTS (X1,Y1)
REM AND (X2,Y2).
READ XO,YO
 IF XO =.001 THEN 800
READ X1,Y1, X2,Y2
PRINT
PRINT "LINE THRQUGH ("; XO; ","; YO; ")""
PRINT "PERPENDICULAR TO THE LINE THROUGH POINTS"
PRINT "("; X1; ","; Y1;"),("; X2; ","; Y2; ")"
PRINT "* EQUATION IS: "'
GOSUB 500
GOT0 100
REM * SUBRøUTINE TO DETERMINE AND PRINT EQUATION
LET V = Y2-Y1
LET H = X2-X1
 IF V <> 0 THEN 560
 IF H}<< O THEN 590
REM * THE TWO GIVEN POINTS COINCIDE
PRINT "NOT UNIQUE"
RETURN
 IF H <> O THEN 610
REM * SOLUTION LINE IS HORIZONTAL
PRINT "YY ='* YO
RETURN
REM * SOLUTIEN LINE IS VERTICAL
PRINT "X =''s XO
RETURN
REM * DEFINED NON-ZERO SLOPE
LET M = V/H
LET MO = -1/M
LETK=YO-MO*XO
PRINT "Y ="; MOs "*X+("' K; ")"
RETURN
REM
DATA 1,2, 4,7,4,7, 4,3, -1,9,4,5
DATA 5,-2, 6,4,6,-8, 3,8, 18,5,-11,5
DATA .001.0
END
RUN
PERP
```

```
LINE THROUGH (1 , 2)
```

LINE THROUGH (1 , 2 )
PERPENDICULAR TO THE LINE THROUGH POINTS
PERPENDICULAR TO THE LINE THROUGH POINTS
(4 , 7 ) < (4, 7, 7)
(4 , 7 ) < (4, 7, 7)
EOUATION IS: NOT UNIQUE
EOUATION IS: NOT UNIQUE
LINE THROUGH (4 , 3 )
LINE THROUGH (4 , 3 )
PERPENDICULAR TO THE LINE THROUGH POINTS
PERPENDICULAR TO THE LINE THROUGH POINTS
(-1 , 9 ),64 , 5 )
(-1 , 9 ),64 , 5 )
EOUATION IS: Y = 1.25 *X+(-2 )
EOUATION IS: Y = 1.25 *X+(-2 )
LINE THROUGH ( 5 ,-2 )
LINE THROUGH ( 5 ,-2 )
PERPENDICULAR TO THE LINE THROUGH POINTS
PERPENDICULAR TO THE LINE THROUGH POINTS
(6 , 4 ), (6 ,-8 )
(6 , 4 ), (6 ,-8 )
EQUATION IS: Y =-2

```
 EQUATION IS: Y =-2
```

```
LINE THROUGH (3 , 8)
PERPENDICULAR TO THE LINE THROUGH POINTS
(18 , 5),(-11 , 5)
 EQUATION IS: }x=
```


## Summary of Sec. 7-3

We have examined pairs of lines in a plane. If they are parallel and nonvertical, their slopes are equal. If two lines are perpendicular and neither is vertical, the produci of their siopes is $\mathbf{- 1}$.

## Problems for Sec. 7-3

1) Change program PERP to write the equation of the new line parallel to the line determined by the given pair of points.
2) Write a program to give the equation of the perpendicular bisector of a segment, given its endpoints.
3) For two pairs of points entered as DATA, have the computer determine if the specified lines are parallel or perpendicular. Be sure to permit vertical lines.
4) For two lines given in $a x+b y+c=0$ form, have the computer determine whether the lines are parallel, perpendicular, or neither.

## 7-4 Point of Intersection of Two Lines

We can define two lines to work with in several ways. One is to give a pair of points to define each line. Another is to give an equation in the form $y=$ $m x+k$ by specifying $m$ and $k$ for each line. Yet another is to give equations in the form $a x+b y+c=0$ by specifying ( $a, b, c$ ) for each line. We may become more familiar with the general form by working with data for equations in the form ( $a, b, c$ ).

Given two lines,

$$
\begin{equation*}
a_{1} x+b_{1} y+c_{1}=0 \tag{7-8}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2} x+b_{2} y+c_{2}=0 \tag{7-9}
\end{equation*}
$$

and the need to find the point of intersection, we must find a coordinate pair $(x, y)$ that fits both equations. That is, we have to solve the equations simultaneously. Since the computer does not "do algebra," we will have to.

Rearranging the above equations, we get

$$
\begin{align*}
& a_{1} x+b_{1} y=-c_{1}  \tag{7-10}\\
& a_{2} x+b_{2} y=-c_{2} \tag{7-11}
\end{align*}
$$

Multiplying Eq. (7-10) through by $-a_{2}$ and Eq. (7-11) by $a_{1}$ gives

$$
\begin{align*}
-a_{2} a_{1} x-a_{2} b_{1} y & =a_{2} c_{1}  \tag{7-12}\\
a_{2} a_{1} x+a_{1} b_{2} y & =-a_{1} c_{2} \tag{7-13}
\end{align*}
$$

Adding Eqs. (7-12) and (7-13) produces

$$
\begin{equation*}
a_{1} b_{2} y-a_{2} b_{1} y=a_{2} c_{1}-a_{1} c_{2} \tag{7-14}
\end{equation*}
$$

Factoring, we get

$$
y\left(a_{1} b_{2}-a_{2} b_{1}\right)=a_{2} c_{1}-a_{1} c_{2}
$$

Dividing both sides by $a_{1} b_{2}-a_{2} b_{1}$ leaves

$$
\begin{equation*}
y=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}} \tag{7-16}
\end{equation*}
$$

Following a similar procedure to solve for x , we get

$$
\begin{equation*}
x=\frac{b_{1} c_{2}-b_{2} c_{1}}{b_{2} a_{1}-b_{1} a_{2}} \tag{7-17}
\end{equation*}
$$

Let's write a program to use the above results to find the point of intersection, if it exists. Note that in Eqs. (7-16) and (7-17) the denominators are equal. So we may use the BASIC statement,

$$
180 \text { LET D }=\mathrm{Al} * \mathrm{~B} 2-\mathrm{A} 2 * \mathrm{~B} 1
$$

This will allow us to divide the numerators from Eqs. (7-16) and (7-17) by D to obtain the values for $y$ and $x$, respectively, unless D happens to equal zero. This situation would require division by zero, which means that the value is either indeterminant or undefined depending on whether the numerator is zero or not. Thus, if the value of $D$ is not zero, we have a unique intersection, which we may calculate using Eqs. (7-16) and (7-17). If D equals zero, we may obtain more information about the two lines as outlined in the following discussion.
$\mathrm{D}=0$ means the following:

$$
a_{1} b_{2}-a_{2} b_{1}=0
$$

and therefore

$$
\begin{equation*}
a_{1} b_{2}=a_{2} b_{1} \tag{7-19}
\end{equation*}
$$

which may be written

$$
\begin{equation*}
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}} \tag{7-20}
\end{equation*}
$$

To see the significance of this, let's look at the original equations, (7-8) and (7-9). They are $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$. Solving each for $y$ we get:

$$
\begin{equation*}
y=-\frac{a_{1} x}{b_{1}}-\frac{c_{1}}{b_{1}} \tag{7-21}
\end{equation*}
$$

and

$$
\begin{equation*}
y=-\frac{a_{2} x}{b_{2}}-\frac{c_{2}}{b_{2}} \tag{7.22}
\end{equation*}
$$

Now the equations are in $y=m x+k$ form. Notice that the slope of line 1 in Eq. (7-21) is $-a_{1} / b_{1}$ and of line 2 in Eq (7-22) is $-a_{2} / b_{2}$ unless $b_{1}$ or $b_{2}$ is zero. Clearly by multiplying both sides of Eq. (7-20) by -1 we get

$$
\begin{equation*}
-\frac{a_{1}}{b_{1}}=-\frac{a_{2}}{b_{2}} \tag{7-23}
\end{equation*}
$$

Since the two sides of Eq. (7-23) are the slopes of the lines in Eqs. (7-21) and (7-22), that makes line 1 parallel to line 2. To sum up, if $D=0$, then the lines are paraliel and there is no solution unless $b_{1}$ or $b_{2}$ is zero.

Now suppose that tither $b_{1}$ of $b_{2}$ is zero when $\bar{D}=\hat{6}$. Looning at Eq. (7-19), if $b_{1}=0$ then either $a_{1}$ or $b_{2}$ is also zero. Now, if Eq. (7-8) is not meaningless, that means that $b_{2}$ must also be zero. If $b_{1}$ and $b_{2}$ are both zero, we get

$$
\begin{align*}
& a_{1} x+c_{1}=0 \text { or } x=-\frac{c_{1}}{a_{1}}  \tag{7-24}\\
& a_{2} x+c_{2}=0 \text { or } x=-\frac{c_{2}}{a_{2}} \tag{7-25}
\end{align*}
$$

in which case both lines are vertical because $x$ is constant. If what we are looking for is the point of intersection, there won't be any unless the two equations define the same line, in which case all points on one line will also lie on the other.

We really have three levels of information to test for. First we want to know if the lines intersect in a single point. If they do intersect in a single point, then we want the coordinates of that point. If they don't intersect in a single point, then it is useful to know whether or not they are vertical, because if one is, they both are. And finally, we can determine whether or not they coincide. If they coincide, the solution is indeterminant. If they do not coincide and are parallel, we say the equations are inconsistent. A flowchart should help to sort out all of the above considerations. See Fig. 7-7 and program P $\emptyset$ INT.


Figure 7.7 Flowchart for program POINT (cont'd on next page)


POINT

```
94 REM * THIS PRDGRAM FINDS THE PGINT OF INTERSECTION
95 REM FGR TWG LINES GIVEN IN AX + BY +C=0 FGRM. HANDLES
96 REM INDETERMINANT AND INCONSISTENT CASES.
100 READ T
110 IF T = 0 THEN 500
112
114 REM * READ COEFFICIENTS FOR BOTH LINES
120 READ A1.B1,C1, A2,B2,C2
130 PRINT
132
:3A REN % PRYNT THE EOUATYONS
140 PRINT TAB(10); "LINES"
```



```
160 PRINI TAB(10); "AND"
170 PRINT A2; "*X+("; B2; ")*Y+("; C2; "*) = 0"
1 7 2
174 REM * IF Al*B2-A2*B1 < O THEN THERE IS
175 REM A UNIQUE SOLUTION
180 LET D = A1*B2 - A2*81
190
192
194 REM * WE COULD TEST FGR B2 = O WITH THE SAME RESULI
200 IF BI = 0 THEN 240
210 PRINT "NON-VERTICAL. "s
220 IF CI/B1 = C2/B2 THEN 280
230 G0T0 260
240 PRINT "VERTICAL ";
250 IF C1/AI = C2/A2 THEN 280
260 PRINT "PARALLEL"
270 GOTO 100
280 PRINT "COINCIDENT"
290 GOTO 100
292
294 REM * SOLUTION EXISTS - CALCULATE AND PRINT IT
300 LET N1 = A2*C1 - Al*C2
310 LET N2 = 81*C2 - B2*C1
320 L.ET X = N2/D
330 LET Y = N1/D
340 PRINT "SOLUUTION 1S: ("; X; ","; Y; ")"
350 GOTO 100
352
394 REM
4 0 0 ~ D A T A ~ 1 , ~ 1 . 1 , 1 , ~ 2 , 2 , 2 ~
410 DATA 1, 1,2,3, 4,5,6
420 DATA 1, 3,0,4, 7,0,-8
430 DATA I, 5,3,10, 10,6,-3
440 DATA O
500 END
```

RUN
POINT


L. INES						
3	* X +10	$) * Y+($	4	)		0
AND						
7	* X + C 0	$) * Y+($		)		0
VERTICAL PARALLEL						
LINES						
5	$* X+C$ 3	) $* Y+C$		)		0
AND						
10	* $\mathrm{X}+\mathrm{C} 6$	$) * Y+($		)		0
NON	RTICAL	AlLEL				

## Summary of Sec. 7-4

We have found the intersection of two lines for which the equations are given in standard form. Consideration has been given to the special cases of parallel and coincident lines.

## Problems for Sec. 7-4

1) Write a program to find the intersection of two lines with equations given in slope-intercept form.
2) Write a program to find the intersection of two lines given two points on each line.
3) Write a program to find the distance from a point to a line, given the equation of the line in $a x+b y+c=0$ form. You may use

$$
d=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}
$$

4) Write a program to find the distance from a point to a line, given two points on the line.

## 7-5 Three Points in a Plane

If we are given two points, we know that they lie on a straight line, but if we are given three points, they may or may not lie on a straight line, that is, they may or may not be collinear. If they are not collinear, there are many questions we may ask.

Let us look at three points, $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$, to determine if they are collinear. Suppose for the moment that if they are, the line containing them is not vertical. One way to see if they are collinear is to look at the slope of $A B$ and the slope of $B C$. If the two slopes are equal, then the points are on a single line.

Now suppose that we select points $(1,2),(1,4)$ and $(2,3)$ as DATA. Clearly the slope calculation will produce an undefined condition due to an attempt to divide by zero. We need to check for equal $x$-coordinates. We need only check $x_{1}=x_{2}$ and $x_{2}=x_{3}$. If $x_{1}=x_{2}$, what about $x_{1}-x_{2}$ ? Notice that $x_{1}-x_{2}$ would be zero. Now we see that if $\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)=0$, then either AB or BC , or both, are vertical segments. Or, to put it another way, if $\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)$ is not zero, then neither AB nor BC is vertical, and it is safe to instruct the computer to calculate the slopes of both segments. See especially line 190 in program CØLIN.

COLIN


## Triangles (The Noncol/inear Case)

It should be clear that if three points in a plane are noncollinear, they are vortices of a triangle. That being the case, we have a whole new collection of properties to consider. To name only a few possibilities, we can calculate the area using Hero's formula; we can test to see if the triangle is acute, right, or obtuse; we can find the centroid where the medians intersect; we can find the orthocenter where the altitudes intersect; and we can find the lengths of the altitudes.

Suppose we first look for a right triangle. There are at least two procedures we might use. One is to test the lengths of the three sides using the Pythagorean Theorem, $c^{2}=a^{2}+b^{2}$. Another is to test the slope of each pair of sides to see if their product is -1 or if one side is vertical and another is horizontal. Either procedure will be instructive. Let's first investigate Pythagoras with the aid of Fig. 7-8.


Figure 7-8

When we consider $c^{2}=a^{2}+b^{2}$ we assume that the hypotenuse has length $c$. Suppose we find that $a$ is the length of the hypotenuse or that $b$ is. The only safe bet is to test them all. This could be done by putting the following in an IF-THEN statement to test if AB is the hypotenuse for points $\mathrm{A}\left(\mathrm{x}_{1}\right.$, $\left.\mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ :

$$
\begin{aligned}
(\mathrm{X} 1-\mathrm{X} 2) \uparrow 2+(\mathrm{Y} 1-\mathrm{Y} 2) \uparrow 2=((\mathrm{X} 2- & \mathrm{X} 3) \uparrow 2+(\mathrm{Y} 2-\mathrm{Y} 3) \uparrow 2) \\
& +((\mathrm{X} 3-\mathrm{X} 1) \uparrow 2+(\mathrm{Y} 3-\mathrm{Y} 1) \uparrow 2)
\end{aligned}
$$

and by then putting in two similar statements to see if BC or CA might be the hypotenuse. Such a procedure ought to work, but this statement is excessively long and cumbersome and we aren't really using the power of the computer to do repeated operations. It seems worthwhile to devise a way of storing the coordinates so that we can use computer loops to move around the triangle instead of writing new statements for each side being considered. That seems to suggest subscripts and lists. So instead of $\mathrm{X} 1, \mathrm{X} 2$, and X 3 we are going to use $\mathrm{X}(1)$, $\mathrm{X}(2)$, and $\mathrm{X}(3)$. And for $\mathrm{Y} 1, \mathrm{Y} 2$, and Y 3 we use $\mathrm{Y}(1), \mathrm{Y}(2)$, and $\mathrm{Y}(3)$, as shown in Fig. 7-9.

Often when trying a new procedure on a new program, it is a good idea to do the work piecemeal. If we put a lot of new things into a program simultaneously, errors are harder to find than if we go in steps. Consider program PYTH1 for simply reading coordinates in and printing them out.


Figure 7.9

PYTH 1								
94	REM * THIS IS A TRIAL PROGRAM TO SIMPLY READ							
95	REM CODRDINATES FOR THE VERTICES OF A TRIANGLE							
96	REM AND PRINT THEM DUt again using an X l.ist							
97	REM FOR $X$ COgRDINATES AND A Y LISI FOR Y $Y$							
98	REM Cogrdinates							
100	DIM X 3 (3), Y(3)							
110	READ T							
120		F $=0$ then	900					
130	PRINI							
132	REM * READ COQRDINATES IN LINES 140 T0 160							
134								
[140	FgR $P=1$ TO 3 READ $X(P), Y(P)$							
$\rightarrow\left\{\begin{array}{l} 150 \\ 160 \end{array}\right.$	$\begin{gathered} \text { RE } \\ \text { NETT } \end{gathered}$	$\underset{P}{E A D} X(P), Y$	NEXT P					
162	REM * PRINT CODRDINATES IN LINES 170 T0 190							
164								
$\Gamma^{170}$	PRINT	"(") X 1	', '";	Y(1) ${ }^{\text {(1) }}$ )	"			
< 180	PRINT PRINT	T "(") $\times$ (2)	",";	Y(2): ")	AND "	${ }^{3}$		
190		T "(') X $\times$ 3	", " ${ }^{\text {l }}$	Y(3)3 ")"				
200	GET0 110							
792								
794	REM							
800	data	1. 1.2.	5, -1,	6.15				
810	DATA	1. 0.0.	0,3,	4, 0				
820		0						
900	END							
RUN								
PYTHI								
	- 2	$2) \times(5$	- - 1	) AND 6		,		,
	- 0	) $) \times(0$	- 3	$)$ AND $($	4			

To consider each side in turn as a possible hypotenuse, we want to work our way around the triangle. First we will use the distance from point 1 to point 2 , then the distance from point 2 to point 3 , and finally the distance from point 3 to point 1. See the columns labeled "Hypotenuse" in Table 7-1.

TABLE 7-1

| Hypotenuse |  | 1st Leg |  | 2nd Leg |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Segment | Points | Segment | Points | Segment | Points |
| AB | 1,2 | BC | 2,3 | CA | 3,1 |
| BC | 2,3 | CA | 3,1 | AB | 1,2 |
| CA | 3,1 | AB | 1,2 | BC | 2,3 |

Looking at Table 7-1, we see a progression across, from points 1 and 2 to points 2 and 3 and then to points 3 and 1 for hypotenuse $A B$. For hypotenuse BC , we go from points 2 and 3 to points 3 and 1 and then to points 1 and 2 . This pattern is completed by considering CA as the hypotenuse. If we can simply go $1-2 \cdot 3-1-2-3$, we can get all of the pairs we need using loops and subscripts.

Consider the following four lines of BASIC code:

```
200 FOR P = 1 T0 3
210 LET X(P+3)=X(P)
220 LET Y(P+3)=Y(P)
230 NEXT P
```

These four lines have the effect of copying the three points 1,2 , and 3 into locations 4,5 , and 6 , respectively, of the $X$ and $Y$ lists. This will enable us to organize the testing of each side in turn for being the hypotenuse of triangle ABC, as shown in TABLE 7-1. See lines 200 to 230 in PYTH2.

```
 PYTH2
 REM * THIS PROGRAM STORES THE CORDINATES DF THE
 REM VERTICES OF A TRIANGLE IN THE FIRST THREE
 REM ELEMENTS OF X AND Y LISTS AND DUPLICATED
 REM IN THE NEXT THREE ELEMENTS OF THOSE LISTS
 REM TO FACILITATE USE OF SUBSCRIPTS AND LOOPS
 REM TO TEST PROPERTIES OF THE TRIANGLES.
 DIM X(6),Y(6)
 READ T
 IF T = 0 THEN 900
 PRINT
 REM * READ COORDINATES IN LINES 140 TO 160
 FOR P = 1 TO 3
 READ X(P), Y(P)
 NEXT P
 REM * PRINT C\emptysetORDINATES IN LINES 170 T0 190
 PRINT "("; X(1); ","; Y(1)) "),";
 PRINT "("; X(2); ","; Y(2); ") AND ";
 PRINT "("; X(3); ","; Y(3); ")""
 REM * DUPLICATION TAKES PLACE IN LINES 200 TO 230
 FOR P = 1TO 3
 LET X(P+3)= X(P)
 LET Y(P+3)=Y(P)
 NEXT P
 REM * WE PRINT THE CONTENTS OF THE }X\mathrm{ AND Y LISTS
 REM FOR DEMONSTRATIGN PURPOSES ONLY
```

```
240 PRINT "VALUES GF X LOOK LIKE THIS IN THE X L.IST"
250 FOR P = 1 T0 6
 PRINT X(P);
 NEXT P
 PRINT
 PRINT "VALUES OF Y LOOK LIKE THIS IN THE Y LIST"
 FOR P = 1 TO 6
 PRINT Y(P):
 NEXT P
 PRINT
 G0T0 :10
 DATA 1, 1,2, 5,-1, 6,15
 DATA 1, 0,0, 0,3. 4,0
 DATA O
 END
RUN
PYTH2
(1 , 2),(5 ,-1) AND (6 , 15)
VALUES GF X LOOK LIKE THIS IN THE X L.IST
1
(0), 0, 0 , 3) AND (4 , < 0)
VALUES OF X LOOK LIKE THIS IN THE X LIST
O ccccccccccc
```

Now all that remains is to calculate the lengths of the sides of the triangle and to store them in such a way that we may test in sequence around the triangle, trying each side as possible hypotenuse. This is accomplished by lines 300 to 350 in PYTH3. Note that line 340 does for the lengths of sides what 210 and 220 do for the coordinates of the vertices.

```
PYTH3
```

```
REM * THIS PROGRAM DETERMINES FROM THE COBRDINATES
```

REM * THIS PROGRAM DETERMINES FROM THE COBRDINATES
REM OF THE VERTICES OF A TRIANGLE GHETHER OR
REM OF THE VERTICES OF A TRIANGLE GHETHER OR
REM NOT IT IS A RIGHI TRIANGLE
REM NOT IT IS A RIGHI TRIANGLE
DIM X(6), Y(6)* D(6)
DIM X(6), Y(6)* D(6)
READ T
READ T
IF T = 0 THEN 900
IF T = 0 THEN 900
PRINT
PRINT
REM * READ COGRDINATES IN LINES 14O TO 160
REM * READ COGRDINATES IN LINES 14O TO 160
FOR P = 1 TO 3
FOR P = 1 TO 3
READ X(P), Y(P)
READ X(P), Y(P)
NEXT P
NEXT P
REM * PRINT COORDINATES IN LINES 170 T0 190
REM * PRINT COORDINATES IN LINES 170 T0 190
PRINT "("; X(1); ","; Y(1); "),";
PRINT "("; X(1); ","; Y(1); "),";
PRINT "("! x(O): ":": Y(O): ") AN!D ":
PRINT "("! x(O): ":": Y(O): ") AN!D ":
PRINT "("; X(3); ","; Y(3); ")"
PRINT "("; X(3); ","; Y(3); ")"
REM * DUPLICATION TAKES PLACE IN LINES 200 T0 230
REM * DUPLICATION TAKES PLACE IN LINES 200 T0 230
FOR P = 1 TO 3
FOR P = 1 TO 3
LET X(P+3)=X(P)
LET X(P+3)=X(P)
L.ET Y(P+3)=Y(P)
L.ET Y(P+3)=Y(P)
NEXT P
NEXT P
232

```
```

REM * ENTER LENGTHS IN THE D LIST IN THE
295 REM SAME FORMAT AS USED FOR COORDINATES IN
296 REM THE X AND Y LISTS; THAT IS - DUPLICATED
300 FOR J = 1 TO 3
LET A = X(J)-X(J+1)
LET B = Y(J)-Y(J+1)
LET D(J) = SQR(A+2+B+2)
LET D(J+3)=D(J)
NEXT J
REM * NOW TEST EACH SIDE FGR BEING A HYPGTENUSE
FOR P = 1 TO 3
IF D(P)*2=D(P+1)+2 + D(P+2)+2 THEN 500
NEXT P
REM * IF THE TEST FAILS FOR ALL THREE SIDES THEN
REM WE HAVE A NON-RIGHT TRIANGLE
PRINT 'NOT A RIGHT TRIANGLE'"
G0T0 110
PRINT "RIGHT TRIANGLE UITH HYPOTENUSE DETERMINED BY""
PRINT "POINTS: ("; X(P); ","; Y(P); "') AND ";
PRINT "("; X(P+1); ","; Y(P+1); ")"
G0T0 110
REM
DATA 1, 1,2, 5,-1, 6,15
DATA 1, 0,0, 0,3, 4,0
DATA 0
END
RUN
PYTH3
(1 , 2 ),( 5 ,-1 ) AND ( 6 , 15 )
NOT A RIGHT TRIANGLE
(0, 0), (0, 3 ) AND (4 , 0, 0, )
RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY
POINTS: 6 0, 3, AND (4, % 0,

```

\section*{Summary of Sec. 7-5}

We have examined sets of three points for collinearity. We have looked at the triangle formed by noncollinear points to determine whether or not it is a right triangle. In order to do this, we have devised a technique of storing coordinates in lists to take advantage of repeatable program statements using loops.

Problems for Sec. 7-5
1) In program \(\mathrm{C} \emptyset \mathrm{LIN}\), provide for treating points on a horizontal line as a special case.
2) Write a program to find the intersection of two altitudes of a triangle.
3) Write a program to find the intersection of two medians of a triangle.
4) Modify program PYTH3 to classify triangles as acute, equiangular, right, or obtuse.
5) Have the computer print all Pythagorean Triples for a hypotenuse less than 101. Pay particular attention to efficiency here.
6) Write a program to determine if four points are collinear.
7) Write a program to determine if \(n\) points are collinear.
8) Write a program to compute the area of a triangle given the coordinates of the three vertices and using Hero's formula:
\(A=\sqrt{s(s-a)(s-b)(s-c)} \quad\) where \(\quad s=(a+b+c) / 2\)
9) Write a program to calculate the area of a triangle by finding the length of an altitude using the methods of Sec. 7-4.
10) Write a program to test triangles for right triangles by determining the slope of all three sides to see if the product is - 1 for any patr. You will have to treat vertical lines as a special case.
ii) Given three noncoiimear points, find the center and radius of the circle they determine.

\section*{POLYNOMIALS}

\section*{8-1 Introduction}

A real polynomial in \(x\) can be defined as any expression that can be written in the following form:
\[
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
\]

For a given value of \(x, n\) is a non-negative integer and the \(a\) 's are constant values. Examples of polynomials are
\[
2 x ; 3 x^{2}+2 ; 4 ; 5 x^{11}+3 x^{3}-2
\]

The highest exponent of \(x\), called \(n\), is the degree of the polynomial.
Polynomials are of interest to the mathematician and scientist alike. The distance an object travels in a gravitational field is described by a second degree polynomial, for example. We will now explore some ways in which the computer may be programmed to evaluate polynomials and make some comparisons.

Regardless of the final procedure to be used to evaluate a polynomial, we will probably want to store the coefficients in a list. If you have zero subscripts available, this is a perfect fit because the subscript of the coefficient is equal to the exponent on \(x\) in each term. If you don't use zero subscripts, simply adjust the variable used for exponents. We arbitrarily select \(3 x^{4}+\) \(2 x^{3}-x^{2}+5 x+3\) for our first example. The degree of the example is four, and hence there are five coefficients. The coefficients and the degree of the polynomial may be entered as data.

One procedure for evaluating a polynomial is to use a BASIC language function such as
```

100 DEF FNP(X)=P(5)*X*4+P(4)*X* 3*P(3)*X+2+P(2)*X+P(1)

```

This defined function will work fine for any fourth degree polynomial. For a
degree less than four we could fill in with zeros, but for degrees more than four, we would have to retype the line. We are also limited by line length when DEFining a function on some computer systems. Others allow multiple line DEFinitions. So while the DEF capability is very useful in some situations, we might give some thought to developing another procedure for evaluating a polynomial.

Note that the exponent of \(x\) is one less than the subscript of the list coefficient in each term of the DEF statement. (They are the same if you use zero subscripts.) Fiven \(p(2) * x\) cañ be wititeñ \(\left.p(2)^{*} x\right\rangle\) and \(p(1)\) can be written \(p(1)^{*} x \uparrow 0\) (unless \(x=0\)). This suggests the following loop:
```

300 LET P2 = P(1)
310 FOR I = N+1 TO 2 STEP - }
320 LET P2 = P2 + P(I)*X:(I-1)
330 NEXT I

```

This four line routine has the desirable feature that it requires no change for handling polynomials of differing degree.

Suppose we give some thought to the number of operations we are instructing the computer to perform. Look at line 320 . There we can see an addition and a multiplication and an exponentiation. For positive integers as exponents, exponentiation amounts to successive multiplication. That means for an exponent of I - 1 there will be I - 2 multiplications plus the multiplication of the coefficient. That makes I - 1 multiplications for that line. If we take another look at \(3 x^{4}+2 x^{3}-x^{2}+4 x+3\) and count the number of operations, we get four additions and 10 multiplications for our fourth degree polynomial (not accounting for how the computer might handle the exponent one as a special case). For a \(10^{\text {th }}\) degree polynomial there would be 10 additions and 55 multiplications.

Programmers often try to improve the efficiency of their programs because of the limitations of the computer and the size of the job to be done or purely for the challenge involved. Notice that in any polynomial, beginning with the second term, each term has \(x\) as a factor one less time than the previous term. This suggests some sort of successive factoring, as shown by the following:
\[
\begin{aligned}
3 x^{4}+2 x^{3} & =(3 x+2) x^{3} \\
(3 x+2) x^{3}-x^{2} & =((3 x+2) x-1) x^{2} \\
((3 x+2) x-1) x^{2}+4 x & =(((3 x+2) x-1) x+4) x \\
(((3 x+2) x-1) x+4) x+3 & =(((3 x+2) x-1) x+4) x+3
\end{aligned}
\]

Thus our original polynomial \(3 x^{4}+2 x^{3}-x^{2}+4 x+3\) can be written in the following form:
\[
(((3 x+2) x-1) x+4) x+3
\]

This is called nested form.
Now there are only four multiplications and four additions called for in a fourth degree polynomial. Of course, a saving of six multiplications is not much to a computer, but the saving accumulates as the degree of the polynomial in-
creases and as the number of times we evaluate the polynomial increases. Consider the following routine:
```

400 LET P3 = P(N+1)
410 FOR I = N TO 1 STEP - 1
420 LET P3 = P3*X + P(I)
430 NEXT I

```

We have another four-line routine that is more efficient than the first one.
We now have three procedures for evaluating polynomials. The first is a defined function, the second is a loop which evaluates the polynomial using exponents term by term, and the third is a loop which uses nested form. Let's assemble these three procedures into a program so that we can compare some values. As we expected, we see that all values do check out by looking at the output of program \(\mathrm{P} \emptyset \mathrm{LY} 01\).
```

94 REM * THIS PROGRAM EVALUATES POLYNOMIALS BY THREE
95 REM METHODS3 DEF, TERM BY TERM AND NESTING
96
97 REM * SET UP DEFINED FUNCTION
100 DEF FNP(X)=P(5)*X+4+P(4)*X+3+P(3)*X*2+P(2)*X+P(1)
102
104 REM * READ DATA
110 READ N
120 FOR I = N+1 TO I STEP - 1
130 READ P(I)
140 NEXT I
142
144 REM * PRINT HEADINGS
150 PRINT "X", "FNP(X)", "EXP LOQP", "NESTING"
160 FOR X = 1 TO 10
192
194 REM * CALCULATE BY DEF
200 LET P1 = FNP(X)
292
294 REM * CALCULATE USING EXPONENTS IN A LOOP
295 REM TERM BY TERM
300 LET P2 = P(1)
310 FOR I = N+1 TO 2 STEP - 1
LET P2 = P2 + P(I)*X*(1 * 1)
NEXT I
REM * CALCULATE USING NESTING
LET P3 = P(N+1)
FOR 1 =N TO I STEP - 1
LET P3 = P3*X + P(1)
NEXT I
REM * PRINT RESULTS
PRINT X, P1, P2, P3
NEXT X
REM
DATA 4, 3, 2, -1, 5, 3
END
RUN
POLYOI

$X$	FNP $(X)$	EXP LOOP	NESTING
1	12	12	12
2	73	73	73
3	306	306	306
4	903	903	903

```
\begin{tabular}{llll}
5 & 2128 & 2128 & 2128 \\
6 & 4317 & 4317 & 4317 \\
7 & 7878 & 7878 & 7878 \\
8 & 13291 & 13291 & 13291 \\
9 & 21108 & 21108 & 21108 \\
10 & 31953 & 31953 & 31953
\end{tabular}

\section*{Problems for Sec. 8-1}
1) Write a program to tabulate the number of additions and multiplicabions for varying degrees of polynomial in order to compare nesting with a one line DEF or with a loop which uses exponents.
2) Write a program to multiply two polynomials.
3) Write a program to add polynomials. Be sure to avoid leading zero coefficients.
4) Do problem 3 for subtraction.
5) Write a program to give ordered pairs \((x, p(x))\) suitable for graphing the polynomial \(p(x)\).
6) Write a program to find zeros of a second-degree polynomial using the quadratic formula.

\section*{8-2 Finding a Real Zero of a Polynomial}

Now that we are set up to evaluate a polynomial, we can explore some applications. One important consideration where polynomials are concerned is to find values of \(x\) for which the value of the polynomial is equal to zero. If we designate a polynomial as \(p(x)\) (read \(p\) of \(x\)) and set \(y\) equal to \(p(x)\), then we may think in terms of polynomial equations and their graphs. The zeros of a polynomial are the values of \(x\) where \(p(x)=0\). For real zeros they are the values of \(x\) where the graph of the polynomial equation crosses the \(x\)-axis. However, in the case of nonreal zeros, while the value of \(p(x)\) will be zero, the graph of the polynomial equation in the \(x-y\) plane will not cross the \(x\)-axis. Of course, we are familiar with special mathematical procedures for solving certain poly. nomials. For instance, all second degree polynomials may be solved by the quadratic formula. We will look here at more general solutions.

It can be shown that every \(n\)th degree polynomial has exactiy \(n\) complex zeros. So one approach to finding zeros is to simply try values of \(x\) until \(n\) are found which give \(p(x)=0\). Such a procedure is feasible only with the aid of a computer because of the tedious calculations required. Even so, the approach can be very complicated indeed. We will simplify our job for now if we begin by looking only for real zeros. A most valuable aid to finding zeros of any continuous function \(y=f(x)\) is the principle that if \(f\left(x_{1}\right)\) and \(f\left(x_{2}\right)\) are of different sign, then there are an odd number of zeros in the interval from \(x_{1}\) to \(x_{2}\). For real values of \(x\) it should be clear that if \(f\left(x_{1}\right)>0\), the point \(\left(x_{1}, f\left(x_{1}\right)\right)\) on the graph is above the \(x\)-axis, whereas \(f\left(x_{1}\right)<0\) makes (\(x_{2}, f\left(x_{2}\right)\)) below the \(x\)-axis, and the graph of a continuous function must cross the \(x\)-axis somewhere in between.

There is a variety of ways to isolate increments in which real zeros may be found. Let us set up a procedure whereby we have control over where the computer searches for intervals within which zeros may be found. We can store coefficients in a list, select limits within which to search, and have the computer
step through the specified region, trying pairs of values for \(x\) to see if \(f\left(x_{1}\right)^{*} f\left(x_{2}\right)\) is positive. If it is not, then we have a zero between \(x_{1}\) and \(x_{2}\) or either \(x_{1}\) or \(x_{2}\) is a zero. If we always find \(f\left(x_{1}\right)^{*} f\left(x_{2}\right)\) positive, there are numerous possible reasons. We may not have included the zeros in our limits, or we may have had the computer search such large increments that the graph crosses the \(x\)-axis an even number of times, or the graph may just touch the \(x\)-axis at a minimum or maximum point and never cross the \(x\)-axis (the point at which it touches, however, is still a zero of the polynomial), or there are no real zeros. We must bear all of these problems in mind as we construct and operate a program.

In program \(\mathrm{ZER} \phi 01\), line 120 reads the degree of the polynomial and line 140 reads the coefficients. Line 280 tests for sign change. The subroutine which starts at line 800 evaluates the polynomial by nesting. Line 840 checks for exact zeros. The general procedure here is just as valid for any continuous function as it is for polynomial functions. Note that we could use the graphing of Chapter 5 to assist us in finding regions where we might expect to find zeros.
```

ZEROO1
94 REM * THIS PROGRAM SEARCHES FOR A SIGN CHANGE
95 REM IN THE VALUE OF A POLYNOMIAL FUNCTION
100 DIM P(15)
110 PRINT "POLYNOMIAL IS';
-120 READ N
130 FOR I = N+1 TG : STEP - 1
-140 READ P(I)
150 PRINT P(I):
160 NEXT I
162
170 PRINT
180 PRINT
190 PRINT "FIRST, LAST, STEP";
200 INPUT F,L,S
210 PRINT
220 LET XO=F
230 GOSUB }80
240 FgR X = F+S TO L STEP S
242
244 REM * SAVE THE VALUE OF THE FUNCTION AT THE
245 REM BEGINNING OF THE INTERVAL
250 LET Y1 = P3
260 LET XO = X
270 GOSUB 800
-280 IF Y1*P3 > 0 THEN 320
290 PRINT "SIGN CHANGE:"
300
310
320
322
330
340
792
794 REM * LINES 800 T0 830 EVALUATE BY NESTING
-800 LET P3 = P(N+1)
810 FOR I = N TO 1 STEP-1
\&PO LET P3 = P3*X0 + P(I)
830 NFXT I
832
834 REM * CHECK FOR EXACT ZERO
-840 IF P3 < O THEN 880
850 PRINT
PRINT XO: "IS A ZERC"
STOP
RETURN
882

```
```

884 REM
890 DATA 3, 1,2,3,4
900 END
RUN
ZEROO1
PGLYNOMIAL IS I 2 3 4
FIRST, LAST, STEP? - 10,10,1
SIGN CHANGE:
P(-2 )=-2 AND P(-1 )=2

```

\section*{Interval Halving}

Now we have an interval in which we expect to find a zero. We would like to make that interval smaller and smaller to get successively better approximations of a zero. We can simply evaluate the polynomial at the midpoint of the interval found in program ZER \(\varnothing 01\) and check for a change of sign against one endpoint. If a change in sign is found, we bisect and repeat. If a change in sign is not found, then the change must occur between the midpoint and the endpoint not tested above; therefore we bisect that interval and repeat. After each bisection the interval is smaller and the midpoint is a better approximation of the zero. This process is accomplished in lines 400 to 550 of program ZER \(\phi 02\).

The process needs a stopping place. We need a test of the accuracy of the current approximation that works for roots very close to zero and far away from zero, a test, moreover, that is compatible with the precision of the computer. We would like to get six significant digits in our results. We label the endpoints of the interval \(x_{1}\) and \(x_{2}\). If we test \(\left|x_{1}-x_{2}\right|\) against \(10^{-6}\), we will not get six significant digits for \(x_{1}\) and \(x_{2}\) when they are very close to zero. For \(x_{1}\) and \(x_{2}\) large in magnitude, say 100,000 , we would require a machine with 12 -digit precision. These problems are avoided by using relative error and testing \(\left|x_{1}-x_{2}\right| /\) \(\left(\left|x_{1}\right|+\left|x_{2}\right|\right)\) against \(10^{-6}\). See line 450 in program ZER \(\phi 02\).
```

ZEROO2
REM * THIS PROGRAM SEARCHES FCR APPROXIMATE ZEROS
REM IN THE INTERVALS FOUND IN PROERAM ZEROOI
DIM P(15)
PRINT "POLYNOMIAL IS";
READ N
FQR I = N+1 TO I STEP -1
READ P(I)
PRINT P(I);
NEXT I
PRINT
PRINT
PRINT 'FIRST, LAST, STEP';
INPUT F, L, S
PRINT
LET XO = F
GOSUB 800
FOR X = F+S TO L STEP S
LET Y1 = P3
LET XO = X
GOSUB 800
IF Y1*P3 > 0 THEN 320

```
```

    390 PRINT "P("; X-S;")="; Y1; "AND P("; X; ")="; P3
    G0T0 400
    NEXT X
PRINT "NO SIGN CHANGE FOUND"
STOP
REM * LINES 400 THROUGH 550 CARRY OUT INTERVAL
REM HALVING. INTERVAL BOUNDARIES ARE XI AND XZ
REM EXACT ZERGS ARE FOUND IN LINE 84O
LET X1 = X-S
LET X2 = X
LET YZ = P3
REM * HALVING TAKES PLACE IN LINE A30
LET XO = (X1+X2)/2
G0SUB B00
IF ABS (X1-X2)/(ABS(X1)+ABS(X2))>1E-6 THEN 500
PRINT
PRINT "APPROXIMATE ZERO:"
PRINT "P("') XO; ")="; P3
STOP
IF Y1*P3 > O THEN 530
LET X2 = X0
G0T0 420
LET XI = X0
LET Y1 = P3
GOTO 430
REM * EVALUATE BY NESTING
LET P3 = P(N+1)
FOR I = N TO 1 STEP -1
LET P3 = P3*X0 + P(1)
NEXT I
IF P3 << O THEN 8BO
PRINT
PRINT XO: "IS A ZERG"
STOP
RETURN
REM
DATA 3, 1,2,3,4
END
900
ZERO02
POLYNOMIAL IS 1 2 3 4
FIRST, LAST, STEP? -2,-1,.1
SIGN CHANGE:
P(-1.7 )=-0.233 AND P(-1.6 )=0.224
APPROXIMATE ZERO:
P(-1.65063 )=-4.7632E-6

```

\section*{Summary of Sec. 8-2}

We have used the principle that if \(f\left(x_{1}\right)\) and \(f\left(x_{2}\right)\) are of opposite signs, there must be a value of \(x\) between \(x_{1}\) and \(x_{2}\) such that \(f(x)=0\) if we are to find intervals within which zeros exist for polynomial functions. We have further reduced interval size by successive halving to obtain approximate zeros. All of the methods used here can easily be applied to other finite continuous functions as well.

\section*{Problems for Sec. 8-2}
1) Find a zero for any or all of the following:
a) \(x^{3}+6 x^{2}-49 x+66\)
b) \(x^{4}+2 x^{3}-13 x^{2}-14 x+24\)
c) \(x^{3}+11 x^{2}-68 x-672\)
d) \(2 x^{3}+3 x^{2}+4 x-5\)
e) \(x^{5}+13 x^{4}-37 x^{3}-457 x^{2}+492 x+2340\)
f) \(x^{3}+2 x^{2}-11 x-12\)
g) \(x^{5}+4.8 x^{4}-4.2 x^{3}-29.6 x^{2}+7.2 x+28.8\)
2) Modify ZER 002 to search for aili reai zeros automatically after the values of \(F, L\), and \(S\) have been specified. Be sure to stop if all zeros have been found without further testing values of \(x\).
3) Modify ZER \(\emptyset 02\) to use linear interpolation instead of interval halving to obtain approximate zeros.
4) Modify ZER \(\varnothing 02\) to find zeros for any continuous function rather than just a polynomial function.

\section*{8-3 Synthetic Division to Get Further Zeros}

We present the Remainder Theorem, Factor Theorem, and synthetic division as aids to finding zeros after a first zero is known.

\section*{The Remainder Theorem}

If \(p(x)\) is divided by \((x-z)\), the remainder is the value of the polynomial when \(z\) is substituted for \(x\).
\[
\frac{p(x)}{(x-z)}=q(x)+\frac{r}{(x-z)}
\]

That is, \(p(x)\) divided by \((x-z)\) yields a quotient polynomial plus a remainder. Multiplying through by \((x-z)\) we get:
\[
p(x)=(x-z) q(x)+r
\]
and when \(z\) is substituted for \(x\) that produces:
\[
p(z)=(z-z) q(z)+r
\]
or simply
\[
p(z)=r
\]

\section*{Factor Theorem}

We note that when the value of \(r\) is zero, we have \(p(z)=0\), and that makes \(z\) a solution of the equation \(p(x)=0\) or a zero of the polynomial. Since the remainder is zero after dividing by \((x-z)\), it follows that \((x-z)\) must be a factor of \(p(x)\), or
\[
p(x)=(x-z) q(x)
\]

Having found the first zero using the procedure of Sec. \(8-2\), we need only find
\(q(x)\) and then use the procedure of \(8-2\) on it, repeating until all real zeros are found.

\section*{Synthetic Division}

We now develop the synthetic division algorithm using \(x^{4}+5 x^{3}+\) \(9 x^{2}+8 x+4\) divided by \(x+2\) as an example. It is this division that will enable us to find \(q(x)\) above. We begin by performing the division "long hand":
\[
\begin{array}{r}
x+2 \begin{array}{r}
x^{3}+3 x^{2}+3 x+2 \\
x^{4}+5 x^{3}+9 x^{2}+8 x+4 \\
\frac{x^{4}+2 x^{3}}{3 x^{3}+9 x^{2}} \\
\frac{3 x^{3}+6 x^{2}}{3 x^{2}+8 x} \\
\frac{3 x^{2}+6 x}{2 x}+4 \\
2 x+4
\end{array}
\end{array}
\]

Notice that a great many things will always be written twice. We will always "bring down" \(9 x^{2}\) and \(8 x\) and 4 . For division by \(x+2\), we will always get \(x^{4}\) and \(3 x^{3}\) and \(3 x^{2}\) and \(2 x\) repeated. So let us eliminate these repetitions and compress the problem vertically:
\[
\begin{array}{r}
x^{3}+3 x^{2}+3 x+2 \\
\frac{x^{4}+5 x^{3}+9 x^{2}+8 x+4}{3 x^{3}+3 x^{2}+2 x}
\end{array}
\]

Now if we line things up properly, there is no need to write the \(x\) 's and their exponents. And there will always be an \(x\) in the divisor, so we don't need that. Let's condense again:
\[
\begin{aligned}
& 1+3+3+2 \\
& + 2 \longdiv { 1 + 5 + 9 + 8 + 4 } \\
& \frac{2+6+6+4}{3+3+2}
\end{aligned}
\]

Since the coefficient of the first term of the quotient is always the same as the coefficient of the first term of the original polynomial, we can make the bottom line of figures exactly agree with the top line by simply bringing down the first figure. Now we eliminate the top line to get:
\[
\begin{array}{r}
+ 2 \longdiv { 1 + 5 + 9 + 8 + 4 } \\
\frac{2+6+6+4}{1+3+3+2}
\end{array}
\]

Recognizing that subtraction is the same as "changing the sign and adding," we can change the 2 to a -2 and add instead of subtracting. That leaves us with:
\[
\begin{array}{r}
- 2 \longdiv { 1 + 5 + 9 + 8 + 4 } \\
-2-6-6-4 \\
\hline 1+3+3+2
\end{array}
\]

The sequence of operations is as follows: Bring down the 1 , moltiply the 1 by -2 , and write it under the 5. Add 5 and -2 to get 3 . Multiply the 3 by -2 and write it down under the 9 . Add 9 and -6 to get 3 . Multiply 3 by -2 and write it down under the 8 . Add 8 and -6 to get 2 . Multiply 2 by -2 and write it down under the 4 . Add 4 and -4 to get a remainder of 0 . Division done by this algorithm is called "synthetic division."

Since synthetic division is an iterative process, it is especially suited to the computer. Notice that most of the process consists of multiplying and adding. Not only is that an iterative process, but it is the same iterative process used for evaluating polynomials by the nesting method. All that is required to adapt the subroutine 800 in program ZER \(\varnothing 02\) to synthetic division is to store the subtotals along the way in an appropriate list element. This is done in line 820 of program DIVIDE. Look at program DIVIDE and compare subroutine 800 in it with the subroutine 800 in ZER \(\emptyset 02\).
```

DIVIDE
94 REM * THIS PROGRAM USES SYNTHETIC DIVISION
100 DIM P(15), 0(15)
110 READ N
120 PRINT "P(X)=";
130 FOR 1 =N+1 T0 1 STEP - 1
140 READ P(I)
150 PRINT P(I);
160 NEXT I
162 PRINT
180 PRINT "DIVIDE BY Xm";
190 INPITT XO
200 PRINT "OUOTIENT ";
210 GOSUB 800
220 ST0P
7 9 2
794 REM * THE DIVISION TAKES PLACE IN LINES 800 TO 830
795 REM * NOTE THE SIMILARITY TC NESIING
800 LET P3 = 0(N+1) = P(N+1)
810 FOR I =N TO I STEP-1
-820 LEI O(I)=P3=P3*X0 + P(I)
830 NEXT I
832
834 REM * PRINT RESIJLTS
840 FOR I = N+1 TO 2 STEP - 1
850 PRINT O(I);
8 6 0 ~ N E X T ~ I ~
862
870 PRINT "REMAINDER ="
880 RETURN
882
884 REM
890 DATA 4, 1,5,9,8,4
900 END

```
```

RIN
DIVIDE
P(X)= 1 1 5 9 8 8 4
DIVIDE BY X-? -2
OUGTIENT 1 3 3 2 REMAINDER = 0

```

Program DIVIDE works well, but why use a program to perform division in the first place? Why not simply use program ZER \(\phi 02\) to look for zeros until we find all of them? It is true that program ZER 002 would easily find -2 as a zero of \(f(x)=x^{4}+5 x^{3}+9 x^{2}+8 x+4\), but then what? Program ZER \(\phi 02\) will find no further zeros. We may use the results of a run of program DIVIDE to see why.

The output of program DIVIDE above tells us that
\[
x^{4}+5 x^{3}+9 x^{2}+8 x+4=(x+2)\left(x^{3}+3 x^{2}+3 x+2\right)
\]

So - 2 is a zero of our function \(f(x)=x^{4}+5 x^{3}+9 x^{2}+8 x+4\). Next we want a zero of \(q(x)=x^{3}+3 x^{2}+3 x+2\). Let's use program ZER \(\emptyset 02\) to find that zero.
```

890 DATA 3, 1,3,3,2
RUN
ZEROOE
POLYNOMIAL IS 1 3 3 2
FIRST, LAST, STEP? -5,5,1
-2 IS A ZERO

```

A run of ZER \(\emptyset 02\) with the new data reveals why we could not have found one of the other zeros. We now see that -2 is a zero of the function \(f\) twice and our program had no way of determining that fact. Values that occur more than once as zeros are called multiple zeros. Why wouldn't ZER \(\varnothing 02\) find the other two zeros? Let's divide \(q(x)\) by \((x+2)\) and find out.
```

890 DATA 3, 1,3,3,2
RUN
DIVIDE
P(x)=1 3 3 2
DIVIDE BY X-? -2
QUOTIENT 1 1 1 REMAINDER =0

```

Thus one factored form of our original polynomial is
\[
(x+2)(x+2)\left(x^{2}+x+1\right)
\]

The first two factors tell us that-2 is a zero twice and analyzing the third factor using the quadratic formula tells us that the final two zeros are nonreal numbers. They are \(-\frac{1}{2}+\frac{1}{2} i \sqrt{3}\) and \(-\frac{1}{2}-\frac{1}{2} i \sqrt{3}\).

Thus we see that the ability to divide polynomials by \((x-z)\) where \(z\) is a zero of the polynomial function makes more information available to us than we would have if we limited ourselves to the procedures of program ZER 002 . The ability to divide enables us to find multiple zeros and, where we are able to divide so that the quotient polynomial is a quadratic, we are able to determine nonreal zeros. We note that caution must be exercised when dividing by approximate zeros. Each succeeding division will be susceptible to additional error.

\section*{Summary of Sec. \(8-3\)}

The Facton Theorem tells us that when we find a sexoz, we may divide the polynomial by \((x-z)\) to obtain a new polynomial with one less zero. Synthetic division has been shown to duplicate the steps of evaluating a polynomial by the nesting method and so enables us to easily perform the division indicated by the results of the factor theorem. This enables us to find multiple zeros and, in some cases, nonreal zeros.

\section*{Problems for Sec. 8-3}
1) Write a program to find the zeros of third-degree polynomials by finding the first zero and then finding the remaining zeros by using the quadratic formula.
2) Incorporate synthetic division into program ZER \(\phi 02\) so that whenever a zero is found, the division is performed and a search is begun for the next zero.
3) Use the methods of this section to find as many zeros as possible for the problems of problem 1 in Sec. 8-2.

\section*{8-4 Miscellaneous Aids}

\section*{Integral Zeros}

It can be shown that for an \(n\)th degree polynomial with zeros \(z_{n}\), \(z_{n-1}, \ldots, z_{2}, z_{1}\) that the following is true:
\(\left(x-z_{n}\right)\left(x-z_{n-1}\right) \ldots\left(x-z_{2}\right)\left(x-z_{1}\right)\)
\[
=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
\]

Considering the product of \(n\) binomials on the left we can see that \(\left(-z_{n}\right)\). \(\left(-z_{n-1}\right) \ldots\left(-z_{2}\right)\left(-z_{1}\right)\) is the constant term in the product which must equal the constant term on the right, or \(a_{0}\). If there is at least one integral zero and \(a_{0}\) is an integer, that means that all integral zeros of a polynomial must be factors of \(a_{0}\). So we could write a program somewhat simpler than ZER \(\phi 01\) that would search only for integral zeros by first determining all integral factors of \(a_{0}\). In program ZER \(\phi 01\) we used \(p(1)\) for \(a_{0}\).

\section*{Descartes: Ruie of Signs}

Consider the polynomial \(x^{2}+8 x+1\). It should be clear that no matter what positive value we might try for \(x\), we can never make \(x^{2}+8 x+1\) equal zero because \(x^{2}\) and \(8 x\) are both positive for \(x\) positive. Thus in searching for real zeros we need not consider any positive numbers. The same is true for \(-2 x^{2}-5 x-1\). Now, what about \(x^{2}+3 x-1\) ? Can there be more than one
positive value of \(x\) for which \(x^{2}+3 x-1=0\) ? No! Consider as another example \(x^{2}+1\). There is no positive replacement for \(x\) to make \(x^{2}+1\) equal to zero, and likewise there is no negative replacement for \(x\) that makes \(x^{2}+1\) equal to zero since \(x^{2}\) would have to equal -1 . That tells us that since \(x^{2}+1\) is a second-degree polynomial and has two complex zeros, they must both be nonreal. Descartes observed all this and more and left us with Descartes' Rule of Signs.

We may define the variation \(v\) in a sequence of numbers as the number of changes in sign found by comparing successive pairs of adjacent numbers. For example, for the sequence \(1,3,4,-8,2\), the value of \(v\) is 2 . There is no change for 1 to 3 or 3 to 4 . There is one change for 4 to -8 and for -8 to 2 . If zeros appear in the sequence, we drop them. The sequence \(-2,8,0,5,-3,6\) becomes \(-2,8,5,-3,6\) in order to determine the number of variations, which is 3 .

Descartes' Rule of Signs says that for
\[
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}
\]
the number of positive zeros depends on the number of variations in the sequence, \(a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\), in the following manner. If \(v\) is the number of variations, then the number of positive zeros is either \(v\) or \(v-2\) or \(v-4\), etc., but not less than zero. This may be written \(v-2 i\) where \(i\) is a positive integer.

It turns out that we may find a corresponding number for negative zeros by finding positive zeros for \(p(-x)\). Substituting \(-x\) for \(x\) will change the sign of all terms which have an odd exponent for \(x\). Thus if \(p(x)=-4 x^{5}-3 x^{4}+\) \(5 x^{3}-2 x^{2}+x-3\), the value of \(v\) is 4 and there must be 4 or 2 or 0 positive zeros. Now we find that \(p(-x)=+4 x^{5}-3 x^{4}-5 x^{3}-2 x^{2}-x-3\) and that \(v\) is 1 . Thus there must be exactly one negative zero. For example, in \(3 x^{6}-2 x^{5}+x^{4}-2 x^{3}+5 x^{2}-x+1\), we might expect to find as many as six positive zeros, but under no conditions would we look for negative zeros since \(p(-x)=3 x^{6}+2 x^{5}+x^{4}+2 x^{3}+5 x^{2}+1\), which gives zero variations. All of this gives us a great deal of information. Sometimes the information is exact, as when we get 0 or 1 as the number of variations. At other times we get only a guide, as with \(x^{3}+2 x^{2}+2 x+1\), which has no positive real zeros and three variations for \(p(-x)\), which gives 3 or 1 negative real zeros. A solution of the problem will yield one negative zero and two nonreal zeros in this particular example.

\section*{Problems for Sec. 8-4}
1) Write a program to produce polynomials of random degree when zeros are all random integral values.
2) Write a program to produce an \(n\)th degree polynomial given \(n\) integral zeros.
3) Modify program ZER \(\phi 01\) to find all integral zeros by having \(x\) go from \(-a_{0}\) to \(a_{0}\) STEP SGN \(\left(a_{0}\right)\).
4) In problem 3, how many additions and multiplications would be required in \(a_{0}=100\) for nesting compared to the use of exponents, not counting the loop operations?
5) Modify program ZER \(\emptyset 01\) to find all integral zeros by having \(x\) take on only values which are factors of \(a_{0}\).
6) Analyze the number of operations called for in problem 5 as compared to problem 3 for selected values of \(a_{0}\).
7) Write a routine to use Descartes' Rule of Signs which merely prints the number of possible zeros in each of the following categories: complex, positive, negative, and zero. Be careful about zero coefficients.
8) Incorporate the routines of problem 7 in ZER \(\varnothing 02\) so that the computer stops searching if it has found enough positive zeros and if it has found enough negative zevos. Be sure to have the program check for both positive and negative possibilities.
9) An upper bound may be placed on zeros by finding a non-negative value of \(z\) such that after dividing by (\(x-z\)), all nonzero terms in the third line of the synthetic division are of the same sign, provided the leading coefficient of \(p(x)\) is positive. A lower bound may be found by taking the negative of the upper bound for \(p(-x)\). Write a program to find upper and lower bounds.

\section*{9}

\section*{SEQUENCES AND SERIES}

\section*{9-1 Sequences}

A sequence is simply a list of numbers. It is, of course, a natural for use in computers, although a computer list may not be essential for a particular application.

Sequences come in two kinds, finite and infinite. Obviously we will only be able to evaluate a finite number of terms for any sequence used in a computer.

We routinely work with sequences. The set of counting numbers is a sequence, as is the set of odd integers and the set of even integers. If we were to consider 10 random numbers, they could constitute a sequence. It is more usual that the numbers in a sequence follow some relatively simple pattern. One such sequence you've probably seen goes \(1,1,2,3,5,8\), where every number from the third on is the sum of the previous two. This is called the Fibonacci sequence. The numbers in this sequence have widespread significance in mathematics, art, and nature. We can easily write a program to compute elements of this sequence, store them in a list, and print them, as shown in Program FIBO1. One can generate a Fibonacci type sequence by selecting any two integers for \(F(1)\) and \(F(2)\).
```

FIBOI
94 REM * THIS PROGRAM PRINTS THE FIRST
95 REM 30 FIBONACCI NUMBERS
100 DIM F(30)
102
104 REM * STARE THE NUMBERS IN A LIST
110 LET F(1)=F(2)=1
120 FOR X = 3 T0 30
130 LET F(X)=F(X-1) +F(X-2)
140 NEXT X
142

```
```

14A REM * NOW PRINT THE LIST
150 FOR X = 1 Tg 30
160 PRINT F(K),
170 NEXT X
172
180 END
RUN
FIBO!

```
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 1 & 2 & 3 & 5 \\
\hline 8 & 13 & 21 & 34 & 55 \\
\hline 89 & 144 & 233 & 377 & 610 \\
\hline 9？ & 1597 & 259A & A！\({ }^{\text {a }}\) & 6755 \\
\hline 10946 & 17711 & 28657 & 46368 & 75025 \\
\hline ここらごラ & ：504： & 3：76： & 5i4ee\％ & －52040 \\
\hline
\end{tabular}

Probably one of the simplest sequences is the set of counting numbers．It begins \(1,2,3, \ldots\) ．This is an example of an＂arithmetic sequence．＂An arith－ metic sequence is one in which we get from one term to the next by adding a constant，called the common difference．The general form for the \(n\)th term of such a sequence is \(t_{n}=t_{1}+(n-1) d\) ，and we will discuss this later．For the counting sequence，\(d=1\) ．

Some sequences are motivated by physical problems．Suppose you are 200 feet from a fixed point．How long will it take to reach that point if you cover half the remaining distance every minute？It should be clear that you can－ not ever reach that point，because at every minute along the way there is still a distance separating you from the point and half of that is still a nonzero distance． So there is always a distance remaining，and you can only cover half of it in the next minute．However，it is also clear that at some point you can reach out and touch the point．So we might ask how long it will take to be within six inches． Consider program HALF．
```

HAL.F
REM * THIS PROGRAM HALVES DISTANCE
REM * INITIAL CCNDITICNS - 200 FEET AT TIME ZERO
LET D = 2nO
LET T = 0
REM * NOW COVER HALF THE REMAINING DISIANCE
REM EVERY MINITTE
LET T = T+I
LET D = D*(1/2)
IF D > 6/12 THEN 120
PRINT "DISTANCE ="; D; "FEET"
PRINT "IN"; T; "MINUTES"
END
RIJN
HALF
DISTANCE = 0.390625 FEET
IN }9\mathrm{ MINIJTES

```

If we change HALF to look at the intermediate values of D，we get an example of another common type of sequence．Consider program HALF1．
```

135 PRINT I; D
RIJN
HALFI

```
```

    100
    50
    25
    12.5
    6.25
    3.125
    1.5625
    0.78125
    0.390625
    DISTANCE = 0.390625 FEET
IN 9 MINUTES

```

Each term in the sequence is calculated by multiplying the previous term by a constant. In our problem the constant is \(\frac{1}{2}\). Such sequences are called "geometric sequences." The constant term is called the "common ratio." The \(n\)th term of a geometric sequence can be found by the formula \(t_{n}=t_{1} r^{(n-1)}\), where \(r\) is the common ratio.

A common situation described by a geometric sequence is compound interest. If you put money in a savings account, the bank adds interest to the account at regular intervals, and the amount becomes the principle for the next interest period. If the interest rate per interest period is \(r\), we get the amount at the end of that period as \(p+p r\), which equals \(p(1+r)\), and at the end of \(n\) periods we get \(p(1+r)^{n}\). If you put \(\$ 100\) in a bank for one year at \(5 \%\) interest compounded monthly, the rate for each interest period would be \(.05 / 12\), and the number of interest periods would be 12. Consider Program INT.
```

INT
REM * THIS PROGRAM CALCULATES COMPOUND
95 REM INTEREST BY FORMULA
100 READ N
110 FOR I = 1 TO N
120 READ P, RI, Ni, Y
130 LET R = RI/N1
140 LET N=N1%Y
150 LET A = P*(1+R/100)PN
160 PRINT "S"; P; "AT"; R
PRINT "S"! P; "AT"; RI| "X FOR"' Y; "YEARS"
PRINT "COMPOUNDED"; N1; "TIMES ANNUALLY BECOMES \$"; A
PRINT
NEXT I
REM
DATA 3
DATA 100, 5, 4, 2
DATA 100, 5, 12, 2
DATA 100, 5, 365, 2
END
RUN
INT
S 100 AT 5 % FOR 2 YEARS
COMPGUNDED 4 TIMES ANNUALLY BECOMES \$ 110.449
S 100 AT 5 % FOR 2 YEARS
COMPDUNDED 12 TIMES ANNUALLY BECOMES \$ 110.494
\$ 100 AT 5 % FOR 2 YEARS
COMPOUNDED 365 TIMES ANNUALLY BECOMES \$ 110.5:6

```

For some sequences we are merely given a formula. For example, consider the sequence for which the \(n\)th term is \((2 n-1) /(2 n+1)\). We see the first 20 terms in program SEQO1.

\section*{Summary of Sec. 9-1}

Sequences are defined as lists of numbers. Sequences may be motivated by a study of some natural phenomenon or simply an interest in the relationships of numbers.

\section*{Problems for Sec. 9-I}
1) Beginning with the second Fibonacci number, and continuing to the eighteenth term of the sequence find (a) the square of the term, (b) the product of the immediately preceding and the immediately following terms, and (c) the difference of the numbers obtained in (a) and (b).
2) For at least 25 Fibonacci numbers, find, for all possible pairs, the greatest common factor.
3) For at least 15 Fibonacci numbers, print the ratios of adjacent terms.
4) Have the computer print at least 20 elements of a general Fibonacci sequence making \(f(1)=1\) and \(f(2)=3\), or any \(f(1)\) and \(f(2)\) you prefer.
5) For a general Fibonacci sequence like that in problem 4, print the ratio oí adjacent tems.
6) For a general Fibonacci sequence like that in problem 4, print the square of each term from the second to the next to last, the product of the one just before and the one just after, and the difference of these results.
7) Find the accrual to \(\$ 1000\) after seven years at \(6 \%\) interest compounded monthly and also compounded daily.
8) Find how many minutes it will take for you to get to within six inches of a point if you start 200 feet away and every minute you cover one-third of the remaining distance.
9) Suppose that a rubber ball is known to bounce to three-fourths of the height from which it is dropped. If the ball is dropped from 10 feet, how many bounces will it take to bounce back less than one inch?
10) If you were to place one grain of rice on the first square of a chess board, two grains on the second, four grains on the third, doubling the number from each square to the next, how many grains would you have to place on the 64th square? (Could you?)
11) Print a few terms of any of the following:
(a) \(2 n+3\)
(d) \(n^{n}\)
(b) \(2 n^{2}-n+1\)
(e) \(n^{(1 / n)}\)
(c) \(2^{n} / n^{2}\)
(f) \((1+1 / n)^{n}\)

\section*{9-2 Convergence and Divergence}

Looking at the sequences of the last section and the results of the problems, we can see some differences. Note that for the Fibonacci sequence, the numbers get larger and larger, and for the sequence in which the distance is halved each minute, the terms get closer and closer to zero. For the sequence generated by \((2 n-1) /(2 n+1)\), the terms seem to get closer and closer to one. The later two sequences are examples of converging sequences, and the Fibonacci sequence is an example of a diverging sequence.

If a sequence converges on some value, then that value is called the limit of the sequence. In the formal study of limits, methods are developed for determining whether or not a sequence has a limit and for finding the limit if it does exist. However, we will take a somewhat informal approach here.

The limit of a sequence of values \(s_{1}, s_{2}, \ldots s_{n}\) is denoted by
\[
\lim _{n \rightarrow \infty} s_{n}
\]

Thus for \(s_{n}=(2 n-1) /(2 n+1)\), we write:
\[
\lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1}=1
\]

Note that there is no integer for which \((2 n-1) /(2 n+1)\) actually equals one, but the larger \(n\) gets, the closer to one the value of \((2 n-1) /(2 n+1)\) becomes. We can get some insight into the behavior of sequences by looking at a few terms, even if that insight is that we need to look at still more terms. In order to be certain about the properties of some sequences, you should pursue a formal study of limits. However, one clear benefit of using the computer is that we may look at hundreds or even thousands of terms without tedious hand calculations. Of course, one way to save computer time is to print only those values that we are interested in seeing. Sequences converge and diverge at vastly different rates. Therefore don't be too quick to infer too much from just a few terms.

We can look at \(\lim _{i \rightarrow \infty}\left(-\frac{3}{5}\right)^{i}\) by writing a very short program to print some terms. See program LIM01.
```

LIMOI
REM * THIS PROGRAM PRINTS SAMPLE VALUES
REM FOR THE SEQUENCE S = (-3/5)%H
DEF FNL(H) = (-3/5):H
FOR 1 = 1 TO 10
PRINT I% FNL(I)
NEXT I
PRINT 100: FNL(100)
PRINT 101B FNL(101)
END
RLiN
LIMOI
1-0.6
0.36
-0.216
0.1296
-0.07776
0.046656
7-2.79936E-2
8 1.67962E-2
9-1.00777E-2
10 6.04662E.3
100 6.53319E-23
101-3.91991E-23

```

Looking at just the first 10 terms we can see that each term is closer to zero than the one before and that the values alternate between positive and negative. For the one-hundredth term, we get \(6.5 \times 10^{-23}\) and for the onehundred and first term we get \(-3.9 \times 10^{-23}\), making us more and more confident that the limit is zero.

Not all converging sequences converge on zero. Consider \(\lim _{n \rightarrow \infty}\left(2+\frac{1}{5}^{n}\right)\). We can see that \(\left(\frac{1}{5}\right)^{n}\) converges on zero, and therefore \(2+\left(\frac{1}{5}\right)^{n}\) converges on \(2+0\), or 2 . Look at program LIM02, and see how much faster it converges than program LIM01.
LIM02
94 REM * THIS PR\emptysetGRAM PRINTS SAMPLE VALUES
94 REM * THIS PR\emptysetGRAM PRINTS SAMPLE VALUES
95 REM FOR THE SEQUENCE S = (2+(1/5)PH)
95 REM FOR THE SEQUENCE S = (2+(1/5)PH)
100 DEF FNLL(H)=(2+(1/5)+H)
100 DEF FNLL(H)=(2+(1/5)+H)
110 FOR I = 1 10 10
110 FOR I = 1 10 10
120 PRINT |: FNL(I)
120 PRINT |: FNL(I)
130 NEXT I
130 NEXT I
140 END
140 END
RUN
RUN
LIM02
LIM02
2.2
2.04
32.008
2.0016
2.00032
2.00006
2.00001
2.
2.
102.

It should be clear that if any number \(n\) such that \(|n|<1\) is raised to higher and higher powers, the closer to zero \(n\) is, the faster the result approaches zero.

We will look at an example of divergence before we leave this section. Suppose that we have a magic ball that bounces to 110 percent of the height from which it is dropped. If we drop this ball from 10 feet, after one bounce it reaches 11 feet. After the second bounce, it reaches 12.1 feet, etc. How high will it go after 10 bounces? See program B \(\emptyset\) UNCE.

Bounce
```

94 REM * THIS PROGRAM PRINTS HEIGHTS FOR A BALL
95 REM RECOUERING 110% OF ITS HEIGHT EACH BOUNCE
100 LET H = 10
110 FOR 1 = TO 10
120 LET H=H*1.10
130 PRINT Is H
140 NEXT I
142
150 END
RUN
BOUNCE

```
\begin{tabular}{ll}
1 & 11 \\
2 & 12.1 \\
3 & 13.31 \\
4 & 14.641 \\
5 & 16.1051 \\
6 & 17.7156 \\
7 & 19.4872 \\
8 & 21.4359 \\
9 & 23.5795 \\
10 & 25.9374
\end{tabular}

\section*{Summary of Sec. 9-2}

We have been judging divergence and convergence of sequences by looking at successive terms.

\section*{Problems for Sec. 9-2}
1) Compare the convergence of \(\left(-\frac{100}{101}\right)^{n}\) with \(\left(\frac{1}{10}\right)^{n}\).
2) Print a few terms of \(1+\left(\frac{2}{3}\right)^{n}\) and \(\left(1+\left(\frac{2}{3}\right)\right)^{n}\).
3) Write a program to give enough terms of \(\left(2+(n-2) / n^{2}\right)\) to decide on convergence.
4) Write a program to examine any or all of the following:
(a) \(\frac{n^{2}+3 n-1}{n}\)
(b) \(\frac{n-1}{(n+1)(n-2)}\)
(c) \(1 / n\) !
(d) \(1-1 / 3!+1 / 5!+\ldots+(-1)^{n+1} /(2 n-1)!\)
(e) \(\left(1+(1 / n)^{n}\right)\)
(f) \(\frac{\sin (n)}{n}\)
5) It can be shown for the Fibonacci sequence that the \(n\)th term is:
\[
F_{n}=\frac{(1+\sqrt{5})^{2}-(1-\sqrt{5})^{2}}{2^{n} \sqrt{5}}
\]

Verify this for a reasonable number of terms.

\section*{9-3 Series}

A series is what you get if you write the terms of a sequence with plus signs between them. In other words, a series is the sum of a sequence. Thus the series for the counting sequence is
\[
1+2+3+4+5+\cdots
\]

The sum of the first five terms is 15 . Note that if we look at successive sums, we can form yet another sequence called the sequence of partial sums. For the counting sequence, we get

We could look at the series associated with that sequence and so on without end.
For some series, we can evaluate the sum by formula, and for others, to do so is difficult. It is even possible to evaluate the sum by formula for certain infinite sequences.

Looking at an arithmetic series of \(n\) terms, we see that
\[
\begin{equation*}
s_{n}=t_{1}+\left(t_{1}+1 d\right)+\left(t_{1}+2 d\right)+\ldots+\left(t_{1}+(n-1) d\right) \tag{8-1}
\end{equation*}
\]
and looking at the same series in reverse order we see that
\[
\begin{equation*}
s_{n}=\left(t_{1}+(n-1) d\right)+\ldots+\left(t_{1}+2 d\right)+\left(t_{1}+1 d\right)+t_{1} \tag{8-2}
\end{equation*}
\]

Adding (8-2) to (8-1) we get
\[
\begin{aligned}
2 s_{n}=\left(2 t_{1}+(n-1) d\right)+\ldots+\left(2 t_{1}+(n-1) d\right)+ & \left(2 t_{1}+(n-1) d\right) \\
& +\left(2 t_{1}+(n-1) d\right)
\end{aligned}
\]
which is therefore twice the sum \(s_{n}\). Note that \(2 t_{1}+(n-1) d\) occurs \(n\) times. Thus we get \(2 s_{n}=n\left(2 t_{1}+(n-1) d\right)\) or \(2 s_{n}=n\left(t_{1}+\left(t_{1}+(n-1) d\right)\right.\). Since the \(n\)th term is \(t_{1}+(n-1) d\), we get \(2 s_{n}=n\left(t_{1}+t_{n}\right)\) or
\[
s_{n}=(n / 2)\left(t_{1}+t_{n}\right)
\]

This gives us a choice for finding the sum of an arithmetic series. We may use either the formula, or add terms as we generate them in a computer loop.

For a geometric series we have
\[
\begin{equation*}
s_{n}=t_{1}+t_{1} r+t_{1} r^{2}+\ldots+i_{1} r^{(n-1)} \tag{8-3}
\end{equation*}
\]

Multiplying both sides by \(r\) we get
\[
\begin{equation*}
r s_{n}=t_{1} r+t_{1} r^{2}+t_{1} r^{3}+\ldots+t_{1} r^{n} \tag{8-4}
\end{equation*}
\]

Subtracting (8-4) from (8-3) we get
\[
s_{n}-r s_{n}=t_{1}-t_{1} r^{n}
\]
which simplifies to
\[
s_{n}=t_{1}\left(\frac{1-r^{n}}{1-r}\right)
\]

Again we have the choice of finding the sum by formula or by having the computer add terms as it generates them.

We can get some idea about how the arithmetic and geometric series behave by picking two terms and treating them as the first and second terms for both kinds of sequences. This is done for two pairs of terms in two runs of program GE \(\emptyset\) ARI.

Note that in both cases the sequence of sums for the arithmetic sequence seems to diverge. In fact, all arithmetic sequences for \(d<>0\) diverge and so do their associated sequences of sums. We can see that one of the geometric sequences diverges and the other seems to converge. All geometric sequences and their associated series for which \(|r|<1\) converge.
```

GEOARI
94 REM * THIS PROGRAM PRINTS VALUES FOR GEOMETRIC AND
95 REM ARITHMETIC SEQUENCES AND SERIES WITH THE SAME
96 REM FIRST TWO TERMS
100 PRINT "FIRST TWO TERMS";
110 INPUT A(1), A(2)
120 LET S(1)=T(1)=G(1)=A(1)
130 LET G(2) = A(2)
132
134 REM * FIND COMMON DIFFERENCE FOR ARITHMETIC SEQUENCE
140 LET D = A(2) - A(1)
142
144 REM * FIND COMMON RATIO FOR GEOMETRIC SEQUENCE
150 LET R = G(2)/G(1)
160 PRINT "TERM", "GEO SEQ", "GEO SERIES",
170 PRINT "ARITH SEQ", "ARITH SERIES"
174 REM * STORE SUCCESSIVE VALUES IN LISTS
180 FOR I = 2 TO 10
190 LET G(I)=G(I-1)*R
200 LET S(I) =S(I-I) +G(I)
210 LET A(I) = A(I-1) + D
220 LET T(I) =T(I-1) + A(I)
230 NEXT I
232 R REM * PRINT RESULTS
240 FOR I = 1 TO 10
PRINT 1,G(I), S(I), A(I), T(I)
NEXT I
262
270 END
RUN
GEOARI
FIRST TWO TERMS?1:2

| TERM | GEO SEQ | GEQ SERIES | ARITH SEQ | ARITH SERIES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 3 | 2 | 3 |
| 3 | 4 | 7 | 3 | 6 |
| 4 | 8 | 15 | 4 | 10 |
| 5 | 16 | 31 | 5 | 15 |
| 6 | 32 | 63 | 6 | 21 |
| 7 | 64 | 127 | 7 | 28 |
| 8 | 128 | 255 | 8 | 36 |
| 9 | 256 | 511 | 9 | 45 |
| 10 | 512 | 1023 | 10 | 55 |

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{RUN} \\
\hline \multicolumn{5}{|l|}{GEOARI} \\
\hline \multicolumn{5}{|l|}{FIRST TWO TERMS?A,3} \\
\hline TERM & GEO SEQ & GEO SERIES & ARITH SEO & ARITH SERIES \\
\hline 1 & 4 & 4 & 4 & 4 \\
\hline 2 & 3 & 7 & 3 & 7 \\
\hline 3 & 2.25 & 9.25 & 2 & 9 \\
\hline 4 & 1.6875 & 10.9375 & 1 & 10 \\
\hline 5 & 1.26562 & 12.2031 & 0 & 10 \\
\hline 6 & . 949219 & 13.1523 & -1 & 9 \\
\hline 7 & . 711914 & 13.8643 & \(-2\) & 7 \\
\hline 8 & .533936 & 14.3932 & -3 & 4 \\
\hline 9 & . 400452 & 14.7986 & -4 & 0 \\
\hline 10 & = 30033 & 15.099 & - 3 & -5 \\
\hline
\end{tabular}

Looking at the formula for the sum of a geometric sequence,
\[
s_{n}=t_{1}\left(\frac{1-r^{n}}{1-r}\right)
\]
we can see for \(|r|<1\) that \(r^{n}\) gets closer and closer to zero as \(n\) gets larger and larger. Thus \(1-r^{n}\) gets closer and closer to one, that is, \(\lim _{n \rightarrow \infty} 1-r^{n}=1\), and
\[
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{1}\left(\frac{1-r^{n}}{1-r}\right)=t_{1}\left(\frac{1}{1-r}\right)
\]

Thus for an infinite sequence with \(|r|<1\),
\[
s=t_{1}\left(\frac{1}{1-r}\right)
\]

Finally, we will look at some other series in the next section.

\section*{Summary of Sec. 9-3}

We have defined a series as what we get by replacing commas with plus signs in sequences. We can find the successive sums of a series, which is the sequence of partial sums. For an arithmetic series the \(n\)th sum is \(s_{n}=(n / 2)\) \(\left(t_{1}+t_{n}\right)\), and for a geometric series the \(n\)th sum is \(s_{n}=t_{1}\left(1-r^{n}\right) /(1-r)\).

Series either converge on some real number value or they diverge. All arithmetic series diverge, and geometric series diverge for a common ratio greater than or equal to 1 or less than or equal to -1 .

\section*{Problems for Sec. 9-3}
1) For the magic ball bounding to 110 percent of its height in Sec. 9-2, find the total distance traveled before reaching the height of the tenth bounce.
2) Find the sum of the first \(n\) positive integers for the following values of \(n: 10,100,1000\), and 10000 .
3) In the song "The Twelve Days of Christmas," gifts are bestowed upon the singer in the following pattern: the first day she receives a partridge in a pear tree; the second day two turtle doves and a partridge in a pear
tree; the third day three French hens, two turtle doves, and a partridge in a pear tree. This continues for 12 days. On the twelfth day she receives \(12+11+\cdots+2+1\) gifts. How many gifts were there altogether? Note that the figure asked for here is the twelfth term of the sequence of partial sums of the sequence of partial sums of the sequence of positive integers.

\section*{9-4 More on Series}

There are many series that have importance in the field of mathematics which are neither arithmetic nor geometric.

It can be shown that the cosine is the sum of an infinite sequence:
\[
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n+1} \frac{x^{2 n-2}}{(2 n-2)!}+\cdots
\]

While this is a very tedious calculation by hand, it is relatively simple with the aid of a computer program. As with finding zeros for polynomials, we use a relative comparison to decide when to stop (see line 180 of program C \(\phi\) SINE). However, in the case of polynomial evaluation, we were using the value at the midpoint of an interval which we knew contained the true value. In that case we had a measure of relative error. In the present situation we have somewhat less information. We have only the sum of \(n\) terms to compare with the sum of \(n-1\) terms. Thus we are saying that the magnitude of the most recent term is small enough to stop summing. When the magnitude of the most recent term is very small compared to the sum so far, we may expect the error to be small also, but not necessarily as small. We have not attempted to measure the cumulative effect of the remaining terms, although methods exist for evaluating it.
```

COSINE
94 REM * THIS PROGRAM APPROXIMATES COSINE X
95 REM USING TERMS OF A SERIES
100 PRINT "FIND COSINE QF";
110 INPUT }
120 LET S1=S = N=F=1
130 PRINT N:S
140 LET N = N+1
150 LET S! = S
152
154 REM * F IS THE VALUE OF FACTORIAL 2*N.2
160 LET F = F*(2*N-2)*(2*N-3)
170 LET S = S + ((-1)+(N+1) * X+( 2*N-2 )/F)
-180 IF ABS(S-S1)/(ABS(S)+ABS(S1))> 1E-6 THEN 130
190 PRINT "BY COMPUTER COSINE FUNCTION"; COS(X)
200 END
RUN
COSINE
FIND COSINE OF? 1.57
1 1
2 -0.23245
2.07055E-2
4-9.45914E-5
5 8.20947E-4
6 7.95873E-4
7 7.96341E-4
8 7.96335E-4
BY COMPUTER COSINE FUNCTION 7.96334E-4

```

Similarly it can be shown that
\[
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{n+1} \frac{x^{2 n-1}}{(2 n-1)!}
\]

Evaluation of this is left as a problem.
Problems for Sec. 9-4
1) Write a program to calculate \(\sin (x)\) using the series in this section.
2) Each of the following series approaches pi as \(n\) increases.
(a) \(4\left(1-\frac{1}{3}+\frac{1}{5}-\ldots+(-1)^{n-1} \frac{1}{(2 n-1)}+\ldots\right)\)
(b) \(6\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}\right)\)
(c) \(8\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{(2 n-1)^{2}}\right)\)

Write a program to compare convergence for each of the above.
3) The constant \(e\), whose value is approximately 2.718 , is of importance in calculus. It can be shown that
\[
\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}
\]
and
\[
\left(1+\frac{1}{n}\right)^{n}
\]
both approach \(e\) as \(n\) increases. Compare convergence for the two different methods of calculating \(e\).
4) One method of approximating pi is to select random points in a square and find how many of them fall within a quarter circle whose radius is a side of the square. The number of points that fall within the quarter circle should be proportional to the area. The area of the quarter circle is \(\frac{1}{4} \pi r^{2}\), whereas the area of the square is \(r^{2}\). Thus four times the ratio of circle to square should approximate pi. This is a variation of the Monte Carlo method. Write a program to select from 1,000 to 10,000 such points to obtain an approximate value for pi.

\section*{MATRICES}

\section*{10-1 Introduction}

A matrix is simply a rectangular array of numbers. As such, an array is a set of numbers arranged in rows and columns. This is, of course, exactly the array we have been using whenever we have used subscripted numeric variables in BASIC. A matrix may also consist of a single row or a single column. Such arrays are sometimes called "row vectors" and "column vectors."

It is the purpose of this chapter to study some of the properties of matrices and see some applications. We will not concern ourselves with theorems and their proofs. A brief review of Sec. 1-5 at this time might be helpful.

Matrices may be studied in a totally abstract setting, but it is useful to have a concrete example. Suppose that we are operating the Framis Corporation, which employs three salesmen (it could be 300): Brown, Jones, and Smith. Brown, Jones, and Smith are selling clevises, hammer handles, shoehorns, and whipsockets. In a given week the three salesmen turn in orders for merchandise as shown in Table 10-1a.

One fundamental piece of information is the amount of money brought in by each salesman. To calculate that we need the prices as shown in Table 10.1b. We can find subtotals by multiplying the price of an item by the number of items. The subtotals are shown in Table 10-2a. Now to obtain each salesman's total, we simply add across the rows to get the figures shown in Table 10-2b.

TABLE 10-1a ARRAY S
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{\begin{tabular}{c}
Hammer \\
handle
\end{tabular}} \\
Salesman & Clevis & Shoehorn & Whipsocket \\
\hline Brown & 30 & 800 & 50 & 20 \\
Jones & 50 & 31 & 40 & 10 \\
Smith & 0 & 500 & 50 & 90 \\
\hline
\end{tabular}

TABLE iÓ-za
\begin{tabular}{lrrrr}
\hline & \multicolumn{4}{c}{\begin{tabular}{c}
Hammer \\
handle
\end{tabular}} \\
Salesman & Choehorn & Whipsocket \\
\hline Brown & \(\$ 30\) & \(\$ 312.00\) & \(\$ 24.50\) & \(\$ 75.80\) \\
Jones & 50 & 12.08 & 19.60 & 37.90 \\
Smith & 0 & 195.00 & 24.50 & 341.10 \\
\hline
\end{tabular}

TABLE 10-1b ARRAY P
\begin{tabular}{lc}
\hline \multicolumn{1}{c}{ Item } & Price \\
\hline Clevis & \(\$ 1.00\) \\
Hammer & \\
\(\quad\) handle & 0.39 \\
Shoehorn & 0.49 \\
Whipsocket & 3.79 \\
\hline
\end{tabular}

TABLE \(\mathbf{1 0 - 2 b}\) ARRAY M
\begin{tabular}{lr}
\hline Salesman & Dollar sales \\
\hline Brown & \(\$ 442.30\) \\
Jones & 119.59 \\
Smith & 560.60 \\
\hline
\end{tabular}

To make the discussion easier, we label the array of Table \(10-1\) as \(S\), the array of Table \(10-1 \mathrm{~b}\) as P , and the array of Table \(10-2 \mathrm{~b}\) as M . Thus to get \(\mathrm{M}(1,1)\), we add the products \(\mathrm{S}(1, \mathrm{I}) * P(\mathrm{I}, 1)\), for I going from one to four, and to get \(\mathrm{M}(2,1)\), we sum the products \(\mathrm{S}(2, \mathrm{I}) * \mathrm{P}(\mathrm{I}, 1)\), for I going from one to four. That makes \(M(J, 1)\) the sum of the products \(S(J, I) * P(I, 1)\) for \(J\) going from one to three and for I going from one to four. If the \(P\) array had had a second column, such as the salesmen's commission per item, we could carry out the above process for the second column, getting \(M(J, K)\) by summing up the products \(\mathrm{S}(\mathrm{J}, \mathrm{I}) * \mathrm{P}(\mathrm{I}, \mathrm{K})\), for K going from one to the number of columns in P , J going from one to the number of rows in S , and I going from one to the number of columns in \(S\). Note that the number of columns in \(S\) must equal the number of rows in \(P\) and that the product array has the number of rows in \(S\) and the number of columns in P. This is exactly the definition for matrix multiplication. Therefore, instead of constructing triply-nested loops to perform the algorithm described above, we take advantage of the BASIC matrix multiplication statement (see line 290 of program SALES1). To make the run of the program more readable, we have used string lists to provide labeling.
```

SAL.ESI
94 REM * THIS PROGRAM CALCULATES SALES TØTALS
95 REM USING MATRICES
100 DIM S(3,4), P(4,1), M(3,1), 1$(4), S$(3)
110 MAT READ S. P, I$, S$
112
114 REM * PRINT RAW DATA IN LINES 120 THROUGH 260
:CO PRTAT "SALESHANAVME*".
130 FOR I = 1 T0 4
140 PRINT IS(I).
150 NEXT I
152
160 FOR I = 1 TO 3
170 PRINI S\$(I).
1BO FORJ=1 IO 4

```
```

            PRINT S(I,J),
        NEXT J
    NEXT I
PRINT
PRINT "ITEM", "PRICE"
FOR 1=1 TO 4
PRINT I$(I), P(I,1)
NEXT 1
PRINT
REM * CALCULATE TOTALS IN LINE 290
PRINT "SALESMAN", "DOLLAR SALES"
MAT M = S*P
FOR I = ITO 3
    PRINT S$(1), M(1,1)
NEXT I
REM
DATA 30, 800, 50; 20
DATA 50, 31, 40, 10
DATA 0, 500, 50, 90
DATA 1, .39, .49, 3.79
DATA CLEVIS, HAMMER HANDLE
DATA SHOE HORN, WHIPSOCKET
DATA BROWN, JONES, SMITH
END
RUN
SALESI

| SALESMAN ITEM | CLEVIS | HAMMER HANDLE | SHOE HORN | WHIPSOCKET |
| :--- | :---: | :---: | :---: | :---: | :---: |
| BROWN | 30 | 800 | 50 | 20 |
| JONES | 50 | 31 | 40 | 10 |
| SMITH | 0 | 500 | 50 | 90 |
|  |  |  |  |  |
| ITEM | PRICE |  |  |  |
| CLEVIS | 1 |  |  |  |
| HAMMER HANDLE | 0.39 |  |  |  |
| SHOE HORN | 0.49 |  |  |  |
| WHIPSOCKET | 3.79 |  |  |  |
|  |  |  |  |  |
| SALESMAN | DOLLAR SALES |  |  |  |
| BROWN | 442.3 |  |  |  |
| JONES | 119.59 |  |  |  |
| SMITH | 560.6 |  |  |  |

```

It may strike you that SALES1 is rather long, and indeed it is. However, most of the program is devoted to producing nicely formatted output. If all that is required is the three dollar amounts at the end of the printout, that can be done with an extremely short program having just one calculation statement and one print statement, as shown in program SALES2.
```

SALES2
100 DIM S(3,4), P(4,1), M(3,1)
110 MAT READ 5, P
-290 MAT M = S*P
310 MAT PRINT M
330 DATA 30, 800, 50, 20
340 DATA 50, 31, 40, 10
350 DATA 0, 500, 50, 90

```
```

360 DATA 1,.39. .49. 3.79
4 0 0 ~ E N D ~
RUN
SALES2
442.3
119.59
560.6

```

There are many popertes of matrices which come to ligh through the process of just experimenting with different relationships. So it is recommended that you do as many probiems as possible and that you work on problems of your own throughout this chapter.

\section*{Summary of Sec. 10-1}

Matrices are not only convenient as storage areas for data, they possess mathematical properties that are both interesting and of practical value. The mathematics of matrix algebra is fairly complex, containing numerous abstract, involved, and intricate theorems. The thrust of our work will be to use familiar properties to develop new facts.

Problems for Sec. 10-1
1) As manager of the Framis Corporation of this section, you are interested only in total sales. Create a row vector T to contain the sales totals by item for the week. Then find \(\mathrm{T} * \mathrm{P}\) and print it.
2) MAT READ the integers 1 through 12 into both a column vector \(C\) and a row vector \(R\). Find \(R^{*} C\) and \(C^{*} R\) and print them both.
3) Write a program to print integer powers of an array. How must the number of rows and columns be related for this?
4) A light fixture manufacturer makes three different fixtures requiring parts as shown in the table and wishes to make 800 of fixture A, 200 of fixture \(B\), and 1,500 of fixture \(C\). Write a program to find how many bulbs, switches, meters of wire, and screws will be needed.
\begin{tabular}{llll}
& A & B & C \\
\hline Bulbs & 3 & 1 & 4 \\
Switches & 1 & 1 & 2 \\
Meters of wire & 9 & 2 & 3 \\
Screws & 15 & 8 & 12 \\
\hline
\end{tabular}
5) Find any or all of the following products:
(a) \(\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
(b) \(\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
(c) \(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
6) Find the result:
\[
\left.\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{rrrr}
30 & 800 & 50 & 20 \\
50 & 31 & 40 & 10 \\
0 & 500 & 50 & 90
\end{array}\right]\right] \cdot\left[\begin{array}{r}
1.00 \\
.39 \\
.49 \\
3.79
\end{array}\right]
\]
and compare with the results of problem 1.

\subsection*{10.2 Solving Simultaneous Linear Equations Using MAT INV}

The matrix equation,
\[
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
\]
can be multiplied out on the left side to obtain
\[
\left[\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z \tag{10-2}\\
a_{2} x+b_{2} y+c_{2} z \\
a_{3} x+b_{3} y+c_{3} z
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
\]

We say that two matrices are equal if each entry of one equals the corresponding entry of the other. (Each entry of a matrix is often referred to as an element of the matrix.) For MAT \(A=\) MAT \(B\) that means \(A(I, J)=B(I, J)\) for all values of I and J. Therefore, we may say that
\[
\begin{align*}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \tag{10-3}\\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{align*}
\]

Equation (10-3) constitutes a system of three linear equations in three unknowns. Actually Eqs. (10-1), (10-2), and (10-3) are simply three different ways of writing the same equality.

We want to solve the set of equations (10-3). It will be easier to discuss the solution if we assign variables to the matrices of Eq. (10-1) as follows:
\[
\mathrm{C}=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \quad \mathrm{S}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \mathrm{K}=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
\]
iviairix \(\overline{\mathrm{C}}\) may pe reierred to as the coefficient matrix, S the solution matrix, and K the matrix of constants. Now we may rewrite Eq. (10-1) in the form
\[
\begin{equation*}
\mathrm{C} * \mathrm{~S}=\mathrm{K} \tag{10-4}
\end{equation*}
\]
and proceed to solve for \(S\).
It would be very convenient if we could just divide both sides by C . But it turns out that the division of one matrix by another is not an easily describable process. However, division by C is equivalent to multiplication by the inverse of C and the huerse of C , if it exists, is easily obtained in BASIC.

Before we use an inverse to solve simultaneous linear equations let's look more closely at just what the inverse of a matrix is. The inverse of a matrix C is the matrix \(\mathrm{C}^{-1}\) such that the product of C and \(\mathrm{C}^{-1}\) is the identity matrix. The identity matrix has the same number of rows as columns and is filled with zeros except for the upper left to lower right diagonal, which is filled with ones. Note that in order for a matrix to have an inverse, it must be square.

Let's find, for example, the inverse of
\[
\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
\]

We are looking for a matrix with entries \(a, b, c\), and \(d\) such that
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]

Finding the product on the left we get
\[
\left[\begin{array}{ll}
5 a+7 b & 6 a+8 b \\
5 c+7 d & 6 c+8 d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]

If two matrices are equal, then their corresponding entries are equal. So we get the following four equations with four unknowns:
\[
\begin{array}{ll}
5 a+7 b=1 & 6 a+8 b=0 \\
5 c+7 d=0 & 6 c+8 d=1
\end{array}
\]

We can easily solve these equations to get \(a=-4, b=3, c=3.5\), and \(d=\) -2.5 . Therefore,
\[
\left[\begin{array}{cc}
-4 & 3 \\
3.5 & -2.5
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]
or
\[
\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-4 & 3 \\
3.5 & -2.5
\end{array}\right]
\]

We can easily verify this with the demonstration program MATINV. (Note that the computer in some cases, unlike our example here, is susceptible to slight roundoff errors when the MAT INV statement is used.)

Now to get back to solving simultaneous linear equations. We had the
```

MATINV
94 REM * THIS IS A PROGRAM TO DEMONSTRATE MAT INV
100 DIM X(2,2), A(2,2), P(2,2)
110 MAT READ A
120 MAT X = INV(A)
122
130 PRINT "ORIGINAL MATRIX"
140 MAT PRINT A
150 PRINT
152
160 PRINT "INVERSE MATRIX"
170 MAT PRINT X
180 PRINT
182 PRINT "THE PRODUCT IS"
200 MAT P = X*A
210 MAT PRINT P
212
214 REM
220 DATA 5.6, 7,8
230 END
RUN
MATINV
GRIGINAL MATRIX
5
INVERSE MATRIX
-4
THE PRODUCT IS
1 0
-1

```
matrix equation, \(\mathrm{C} * \mathrm{~S}=\mathrm{K}\). Now
\[
\begin{equation*}
\mathrm{C}^{-1} * \mathrm{C} * \mathrm{~S}=\mathrm{C}^{-1} * \mathrm{~K} \tag{10-5}
\end{equation*}
\]
and a matrix times its inverse gives the identity matrix, sometimes designated I. Thus \(\mathrm{C}^{-1} * \mathbf{C}=\mathrm{I}\). The identity matrix has the property that for any matrix M with dimensions compatible with the dimensions of \(I\),
\[
I^{*} M=M^{*} I=M
\]

Thus Eq. (10-5) becomes
\[
\mathrm{I}^{*} \mathrm{~S}=\mathrm{C}^{-1} * \mathrm{~K}
\]
or
\[
\mathrm{S}=\mathrm{C}^{-1} * \mathrm{~K}
\]
and we have solved Eq. (10-4) for S , which was our purpose. It is now a relatively simple matter to write a program (see program SФLVE) to solve the system,
\[
\begin{array}{r}
x+2 y-z=2 \\
3 x-3 y+2 z=3 \tag{10-6}\\
4 x-y+2 z=8
\end{array}
\]
sølve
```

94 REM * THIS PROGRAM SDLVES SIMULTANEOUS LINEAR
95 REM EQUATIONS USING THE MAT INU STATEMENT
100 DIM C(3,3), S(3,1),K(3,1),N(3,3)
110 MAT READ C. K
120 MAT N = INV(C)
130 MAT S = N*K
140 PRINT "SOLUTIONS:"
150 MAT PRINT S
152
154 REM

```

```

170 DATA 2,3,8
:BO END
RUN
SOL.VE
SOLUTIONS:
1.
2.
3.

```

In program \(\mathrm{S} \emptyset \mathrm{LVE}\), the column vector,
\[
S=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\]
translates back to \(x=1, y=2\), and \(z=3\). We may now substitute these values in Eq. (10-6) to verify that they do in fact solve the system of equations.

\section*{Summary of Sec. 10-2}

We have seen that sets of simultaneous linear equations may be solved by considering an equivalent matrix equation \(\mathrm{C}^{*} \mathrm{~S}=\mathrm{K}\), where C is the coefficient matrix, \(S\) is a column vector which contains the values of the variables in the original set of linear equations, and K is a column vector containing the constant terms in the original set of linear equations. We may solve for S by finding the inverse of matrix \(C\), so that \(S=C^{-1} * \mathrm{~K}\). The inverse may be found with the BASIC statement MAT \(I=I N V(C)\). For systems of simultaneous linear equations having a unique solution, MAT C will always be square, which is one of the requirements for having an inverse.
Problems for Sec. 10-2
1) Let
\[
A=\left[\begin{array}{rrr}
4 & -4 & 4 \\
1 & 1 & 7 \\
-3 & 9 & -8
\end{array}\right]
\]

Find the print \(A^{-1}, A * A^{-1}\), and \(A^{-1} * A\).
2) Let
\[
B=\left[\begin{array}{rr}
-8 & -3 \\
0 & -1
\end{array}\right]
\]

Find \(\mathrm{B}^{-1}\) and print it. Verify by hand-computing the inverse of B . Find and print \(B^{*} B^{-1}\) and \(B^{-1} * B\).
3) Solve for \(x\) and \(y\) :
\(-2 x-5 y=-16\)
\(-x+4 y=31\)
4) Solve for \(x, y\), and \(z\) :
\(2 x-9 y-5 z=2\)
\(7 x-6 y+5 z=-35\)
\(9 x-6 y+5 z=-39\)
5) Solve for \(x, y\), and \(z\) :
\(3 x+4 y+z=7\)
\(5 x-6 y+3 z=8\)
\(3 x+4 y+z=-3\)
6) Solve for \(w, x, y\), and \(z\) :
\(6 w+3 x+6 y+5 z=-12\)
\(-7 w+5 x-7 y-z=77\)
\(-3 w+x+3 y+6 z=31\)
\(-2 w-4 x+4 y-7 z=-76\)
7) Solve for \(w, x, y\), and \(z\) :
\(-3 w+6 x-5 y-z=-32\)
\(w+9 x-5 y-2 z=9\)
\(w+6 y+5 z=2\)
\(-7 w+4 x-y+5 z=-86\)
8) Solve for \(x, y\), and \(z\) :
\(2 x+4 y-3 z=-11.9\)
\(-9 x-3 y=58.5\)
\(-9 x+8 y+5 z=66.6\)
9) Solve for \(v, w, x, y\), and \(z\) :
\(7 v+6 w-3 x-y+9 z=26.3\)
\(-9 v+2 w+9 x+5 y+z=91.1\)
\(-3 v+4 w+5 x+5 z=62.9\)
\(6 v-8 x-2 y-6 z=-55.6\)
\(-3 v-9 w+5 x+7 y+3 z=-25.9\)
10) Let
\(A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 5 & -1 & -2 \\ 0 & 3 & 4\end{array}\right]\) and \(B=\left[\begin{array}{rrr}2 & -4 & 0 \\ -3 & 1 & 2 \\ 5 & 2 & -5\end{array}\right]\)
Find and print \((\mathrm{A} * \mathrm{~B})^{-1}\) and \(\mathrm{B}^{-1} * \mathrm{~A}^{-1}\)
11) Write a program that can solve sets of simultaneous linear equations having different numbers of equations. Provide an item of data that is the momber of equations and redimension ail matrices accorūngiy.

\section*{11 \\ SOME TOPICS OF STATISTICS}

\section*{11-1 Introduction}

The possibilities for using the computer to analyze and summarize large amounts of data are virtually unlimited. This chapter will introduce just a few fundamental statistical calculations.

\section*{11-2 Average, Variance, and Standard Deviation}

One of the most common measures of statistical information is the average or arithmetic mean. The average is the sum of the measures divided by the number of measures. In some cases the mere task of counting the number of measurements may be a job in itself. So we can even use the computer to do the counting for us. All that is necessary is to append an item of artificial data as a flag to stop counting and calculate the average, as shown in program AVG.
```

AVG
94 REM * THIS PROGRAM COUNTS DATA AND
95 REM CALCULATES AVERAGE
100 LET N = T = 0
110 READ D
-120 IF D =.01 THEN 160
130 LET N = N+1
140 LET T = T+D
150 GOTO 110
160 PRINT " MEASUREMENTS'; N
170 LET A = T/N
190 PRINT "AVERAGE MEASURE''S A
4 9 2
494 REM
500 DATA 98, 80, 73, 92, 77, 84, 83, 79, 87, 73
510 DATA 99, 63, 63, 92, 81, 93, 47, 53, 89, 100
520 DATA 98, 71, 73,.01
530 END

## RUN

 AVGMEASUREMENTS 23
AVERAGE MEASURE 80.3478
The average for a set of data gives no idea of the spread or dispersion of the data. The average of zero and 100 is 50 , and the average of 49 and 51 is also 50. We could get some idea by having the computer find for us the largest and the smallest measures. Even that information could be misieading, since the largest measure could be much larger than the next largest, or the smallest could be much smaller than the next smallest. One way to gain some insight into the distribution of the measures is to find the average of the amount by which each measurement differs or deviates from the average of the measures. There is a flaw here, however, as some will deviate by a positive amount and some will deviate by a negative amount, thus cancelling each other out. Using mean absolute deviation would avoid this difficulty. However, expressions involving absolute value are difficult to work with algebraically, and statisticians thus find the average of the squares of the deviations. This figure is called the "sample variance." In order to write a formula for variance, we use the Greek letter sigma, $\sum$, which indicates summation. Defining average using summation notation looks like this:

$$
A=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

The average $A$ is the sum of all values of $x_{i}$ for $i$ going from 1 to the number of measurements, which is $n$, divided by the number of measurements. We define variance in terms of the average as follows:

$$
V=\frac{\sum_{i=1}^{n}\left(x_{i}-A\right)^{2}}{n}
$$

Even the variance, which gives an indication of how measurements are distributed, doesn't indicate actual dispersion. It indicates the square of dispersion. Thus we take the square root of $V$, getting a number called "standard deviation":

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-A\right)^{2}}{n}
$$

and

$$
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-A\right)^{2}}{n}}
$$

Now if we try to apply a computer program directly to the formula for $S^{2}$, we soon find that we will have to READ the DATA twice, once to find the average, and again to get each value of $x_{i}-A$. This is not a problem for small amounts of data; but since it can be avoided, let's do so.

It can be shown that

$$
\frac{\sum_{i=1}^{n}\left(x_{i}-A\right)^{2}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-A^{2}
$$

This means that we can, alternatively, have the computer sum up the squares of the measures rather than the squares of the deviations. This can easily be incorporated into program AVG. See lines 150 and 210 of program VAR.

```
 VAR
 REM * THIS PROGRAM COUNTS DATA AND CALCULATES
 REM THE AVERAGE, VARIANCE AND STANDARD DEVIATION
 LET N=T=T1=0
 READ D
 IF D =.01 THEN }17
 LET N=N+1
 LET T=T+D
 LET TI = T1 + D.2
 GOTO 110
 PRINT " MEASUREMENTS":N
 LET A = T/N
 PRINT " AVERAGE MEASURE"; A
 LET AI = T1/N
 LETV=AI - A&2
 PRINT " VARIANCE** V
 LET S = SQR(V)
 PRINT "STANDARD DEVIATION"'S
 REM
 DATA 98, 80, 73, 92, 77, 84, 83, 79, 87, 73
 DATA 99, 63,63, 92, 81, 93, 47, 53, 89, 100
 DATA 98, 71, 73,.01
 END
RUN
VAR
```

    MEASUREMENTS 23
    AVERAGE MEASURE 80.3478
            VARIANCE 202. 314
    STANDARD DEVIATION 14.2237

## Summary of Sec. 11-2

In this section, the average, or arithmetic mean, variance, and standard deviation have all been defined. We have written programs to calculate the average and standard deviation.

## Problems for Sec. 11-2

1) Modify program AVG so that the computer tells us the highest and the lowest measures.
2) Modify program VAR so that we get the deviations of the largest and smallest measures from average in terms of the number of standard deviations. (If the largest measure is 91 for an average of 70 and the standard deviation is 7 , then the largest measure would be three standard deviations from average.)
3) Often in practice we use what is called the "weighted average." Suppose that tests count three quizzes and that the final exam counts two tests. Find the weighted average for quiz marks 70,80 , and 73 , test marks 63,82 , and 91 , and a final exam of 83.
 and standard deviation.
4) Generate 100 random numbers from -100 to 100 and calculate the average and standard deviation.
5) Devise a scheme without reading data twice for finding accurately the average and standard deviation for the following data: 9999.12, $9999.36,9999.64,10000.03,10000.41,9999.83,9999.51,9999.13$ and 10000.08 . Due to roundoff error, many programs will give a large standard deviation for the above data. (Hint: we can simply measure differences from 10000 instead of from zero.)

## 11-3 Median

The median is the middle value. Sometimes the median is presented as an item of statistical information, such as median income or median weight. If there are an even number of data items, then the median is the average of the middle two values. One reason for using the median is that it tends to be less affected by a few widely dispersed items of data than the average. There are no particularly difficult calculations required to find the median. What does have to be done, though, is to first arrange the data in numerical order. Thus let us develop an ordering routine.

There are many, many ways of ordering. Some ordering procedures are very elaborate and some are very simple. As the number of items to be sorted increases, the need for efficiency increases. The study of sorting is a fascinating and intriguing one. However, we hesitate to become too involved at this time. We will instead develop an ordering routine that works with only a little attention to efficiency and defer a more sophisticated study of ordering for another time and place.

If we test every adjacent pair of numbers in a list and find that they are in order, then we know that the entire list is in order. This is called a "bubble sort." If we find any adjacent pair that is not in order, then we can direct the computer to exchange those two elements so that they are in order. If every time that we make such an exchange, we turn a switch on by letting $S=1$, then we can determine at the end of checking through the list that an exchange has been made and that the list might not be in order yet. If after scanning the entire list we find that switch $S$ is still zero, then we know that no exchange has been made and the list must be in order. After the first scan through the list, we know that the number at the end of the list is the highest or lowest depending on which order we specify. That is, it is the number that will be there when the list is finally ordered. Thus we do not need to check the entire list the next time; we can check one less item. See program $\emptyset$ RDER.

```
REM * THIS PROGRAM ORDERS UP TO 2OO NUMBERS
DIM L(200)
 REM * READ AND CQUNT DATA
 LET I = 0
 LET I = 1+1
 IF I <= 200 THEN 160
 PRINT "CURRENT LIMIT IS 200 NUMBERS"
 STOP
 READ L(I)
 IF L(I) << .01 THEN 120
 LET N=I=I-1
 REM * TURN SWITCH GFF AND EEGIN SORT
 LET S = 0
 LET N=N-1
 FOR J = 1T0 N
 IF L(J) >= L(J+1) THEN 270
 REM * EXCHANGE ELEMENTS AND TURN SWITCH GN
 LET SI = L(J)
 LET L(J) = L(J+1)
 LET L(J+1) = SI
 LET S = 1
 NEXT J
 REM * CHECK SWITCH
 REM S = 0 SORT COMPLETE
 REM S = 1 SORT NOT COMPLETE
 IF S = 1 THEN 190
 REM * THE LIST IS IN ORDER - PRINT IT
 FOR X = I TO I
 PRINT L(X)B
 NEXT X
 REM
 DATA 98, 80. 73, 92, 77, 84, 83, 79, 87, 73
 DATA 99, 63, 63, 92, 81, 93, 47, 53, 89, 100
 DATA 98, 71, 73,.01
 END
RUN
ORDER
\begin{tabular}{llllllllllllllllll}
100 & 99 & 98 & 98 & 93 & 92 & 92 & 89 & 87 & 84 & 83 & 81 & 80 & 79 & 77 & 73 & 73 & 73
\end{tabular}
```

Note that in line 220 we check for greater than or equal to. What would happen if we only checked for greater than? If there are two equal numbers in the list, the switch will always get turned on and cause the routine to be repeated endlessly. In program $\emptyset$ RDER we have done two things in the interest of efficiency. We do not scan that part of the list that we know to be in order, and we quit when we know the entire list is in order.

There are other things that may be done to improve the efficiency of program $\emptyset$ RDER. One is to sort "up" the list as well as "down." However, in spite of these precautions, the general procedure here is satisfactory only for relatively small amounts of data. If we are to order thousands or hundreds of thousands of data items, then there are far more efficient algorithms which we would have to use. The fundamental weakness in the procedure we have used is that on each pass the computer checks only one less pair of data items than on the previous pass. Much can be gained by partitioning the data to be ordered in such a way that only a small fraction of the data need be scanned each time an item is placed in its final spot in the list. However, such procedures generally require much more programming effort.

If all we want is the median, then there is no need to actually print the data in order. The middle number for $\operatorname{Iodd}$ is $\mathrm{L}(\operatorname{INT}(\mathrm{I} / 2)+1)$ or $\mathrm{L}(\operatorname{INT}((\mathrm{I}+1) / 2))$. See line 320 of program MEDIAN.

```
 MEDIAN
 94 REM * THIS PROGRAM FINDS THE MEDIAN FOR
 95 REM AN ODD NUMBER GF DATA ITEMS
 100 DIM L(200)
 iiO LET I = 0
 120 LET I = I+1
 130 IH L E= ZUU THEN ISU
 140 PRINT "CURRENT LIMIT IS 200 NUMBERS"
 150 STOP
 160 READ L.(I)
 IFL(I) < .OI THEN 120
 LET N=I=I-I
 IF N/Z << INT(N/2) THEN 220
 PRINT "N EVEN"
 STOP
 LETS S=0
 L.ET N=N-1
 FGR J=1 TON
 IF L.(J) >=L L(J+1) THEN }30
 LET S! = L.(J)
 LET L(J)=L.(J+1)
 LET L(J+1) = S!
 LET S = 1
 NEXTJ
 IF S = 1 THEN 220
310
->320 PRINT "MEDIAN"; L(INT((I+1)/2))
 REM
 DATA 98, 80, 73, 92, 77, 84, 83, 79, 87, 73
 DATA 99,63,63, 92, 81, 93, 47, 53, 89, 100
 DATA 98. 71. 73..01
 END
 RUN
 MEDIAN
 MEDIAN 81
```

As written, MEDIAN does not properly account for an even number of data items.

## Problems for Sec. 11-3

1) Modify program MEDIAN to allow for both even and odd numbers of data items.
2) Modify $\emptyset$ RDER so that it can be used to arrange in either ascending or descending order determined by an INPUT request.
3) Modify MEDIAN as in problem 1 and print the largest, smallest, and average value.
4) Gencrate 100 random numbers from 1 to 100 and find the median.
5) As written, program $\emptyset R D E R$ is efficient for a set of numbers in which only the first number in the list is out of order. But suppose only the last number is out of order. Then the program is slow. We can improve it by inserting an upward sort, taking the number that belongs at the top of the list up to the top in one pass and then not scanning that element again. Incorporate this step into the program.

## 11-4 Coefficient of Linear Correlation

Very often people have a set of data consisting of two or more figures for each object of the study and would like to know if there is a relation between them. For example, suppose we have test scores for five people for whom we also have IQ scores, as shown in Table 11-1. We would like to know if one score is a good predictor of the other score.

TABLE 11.1 IQ's and Test Scores
for Five People

$1 Q$	TEST
110	80
105	84
134	92
128	71
92	83

There is a variety of formula and techniques for finding correlations. We present here a computational formula for finding the degree of linear correlation between two sets of data, $X$ and $Y$.

$$
\begin{equation*}
r_{X Y}=\frac{n \sum_{i=1}^{n} X_{1} Y_{1}-\sum_{i=1}^{n} X_{1} \sum_{i=1}^{n} Y_{1}}{n^{2} V_{X} V_{Y}} \tag{11-1}
\end{equation*}
$$

where $r_{X Y}$ is the linear correlation coefficient, $V_{X}$ is the variance of the $X$ data, and $V_{Y}$ is the variance of the $Y$ data.

Let's look at the correlation coefficient for the data of Table 11-1. See program C $\emptyset$ RREL. The correlation is about .03 . That may safely be taken to indicate that there is no correlation between these two sets of data. That is, IQ is unrelated to the test score. We can see by inspection that no obvious pattern is present.

We can get some idea of how the value of $r$ is affected by various patterns in the data by simply using C $\emptyset R R E L$ with a variety of data. We present two additional runs for your observation.

```
CgRREL
94 REM * THIS PROGRAM CALCULATES CORRELATIDN COEFFICIENT
100 LET N = S = S1 = S2 = T1 = T2 = 0
110 PRINT "IQ TEST SCORE"
120 READ X,Y
lu0 IF X=O THEN 220
150 LET N=N+1
152
154 REM * SUMMATIONS DONE IN LINES 160 THROUGH 200
160 LET S = S + X*Y
170 LET SI = S 1+X
180 LET S2 = S2+Y
190 LET T1 = T1 + X+2
200 LET T2 = T2 + Y&2
210 GOT0 120
212
```

```
214 REM * VARIANCES CALCULATED IN LINES 220 IHROUGH 270
220 LET A1 = SI/N
230 LET A2 = S2/N
240 LET B1 = T1/N
250 LET B2 = T2/N
260 LET V1 = SQR(B1 - AlT2)
270 LET V2 = SQR(B2 - A2P2)
272
280 LET R = (N*S - S!*S2)/((N+2)*V1*V2)
290 PRINT
300: CORRELATION = #.A##
310 PRINT USING 300, R
312
```



```
330 DATA 128,71, 92,83, 0, 0
340 END
RUN
CQRREL.
\begin{tabular}{lcl}
I日 & TEST & SCORE \\
110 & 80 & \\
105 & 84 & \\
134 & 92 & \\
128 & 71 & \\
92 & 83 &
\end{tabular}
CORRELATIBN = .027
RUN
CORREL
\begin{tabular}{lcc}
IQ & TEST & SCORE \\
134 & 92 & \\
128 & 84 & \\
110 & 83 & \\
105 & 80 & \\
92 & 71 &
\end{tabular}
CORRELATION = .930
RUN
CORREL
IQ TEST SCORE
 1 -2
 -m
 4-5
 5 -6
 CORRELATION = *-1.000
```

We can see that correlation coefficients range from -1 to .930 in the sample of runs. It turns out that -1 to 1 is the true maximum range. A coefficient of one indicates perfect correlation. A coefficient of zero indicates no correlation, and a coefficient of negative one indicates perfect negative correlation. Generally, values between -. 40 and .40 are considered to indicate that the variables are unrelated, whereas for -1 to -.9 and for .9 to 1 the variables are considered to be extremely closely related in a linear fashion. The larger the number of data items we use to calculate the value of $r$, the more reliable its value. For a small amount of data, the coefficient is more likely to be affected by a single stray or inaccurate item of data.

Often it may happen that we have more than two sets of data with which to work. With a slight modification of C $\emptyset$ RREL, we can easily find the linear
correlation coefficient for columns 1 and 2,1 and 3 , and 2 and 3 for the data shown in Table 11-2. See program runs labelled WEATHER. The program is actually C $\emptyset$ RREL with the READ statement modified as shown in each run. An alternative approach would be to REST $\varnothing$ RE the data and use the entire program as a subroutine three times.

TABLE 11-2 Run Table Showing Normal, Record High, and Record Low
Temperatures for 24 Selected Dates of the Year

Normal	High	Low	Normal	High	Low
32	61	4	32	63	5
46	81	14	53	91	27
33	61	2	34	63	-2
58	90	35	63	90	37
36	68	11	41	86	10
68	97	44	72	98	44
74	102	52	76	98	56
62	89	34	55	89	34
76	97	56	74	94	56
50	84	30	44	72	21
71	97	49	67	93	44
39	68	11	33	60	7


120	READ	$X, Y, Z$	120	READ	$X, Z, Y$	120	READ	$Z, X, Y$
RUN WEATHER			RUN			RUN		
			WE ATHER			WEATHER		
$x$	$Y$		$x$	Y		$x$	$Y$	
32	61		32	4		61	4	
32	63		32	5		63	5	
46	81		46	14		81	14	
53	91		53	27		91	27	
33	61		33	2		61	2	
34	63		34	-2		63	-2	
58	90		58	35		90	35	
63	90		63	37		90	37	
36	68		36	11		68	11	
41	86		41	10		86	10	
68	97		68	$\triangle 4$		97	44	
72	98		72	44		98	44	
74	102		74	52		102	52	
76	98		76	56		98	56	
62	89		62	34		89	34	
55	89		55	34		89	34	
76	97		76	56		97	56	
74	94		74	56		94	56	
50	84		50	30		84	30	
44	72		44	21		72	21	
71	97		71	49		97	49	
67	93		67	44		93	44	
39	68		39	11		68	11	
33	60		33	7		60	7	
COR	RELATIO	ON =	COR	ELAT	ON =	CORR	Elat	$0 N=$

For correlation normal to high, we get .944 ; for normal to low, we get .984 ; and for high to low, we get .920 . These all indicate a high degree of linear correlation.

If we were to require the correlation coefficients for all pairs of columns for more than three columns, it is a bit awkward to use the method we used in program WEATHER. It would be a lot cleaner to read all the data into an array and manipulate the column subscripts to get all possible pairs. This is left as an exercise.

## Summary of Sec. 11-4

We have presented a computational formula for obtaining the linear correlation coefficient. This is also referred to as the Pearson $r$. Values close to zeno matate a how degree of hear comedaton, whereas values with abohute value close to one indicate a high degree of linear correlation.

## Problems for Sec. 11-4

1) Write a program to generate 25 pairs of random numbers and compute the correlation coefficient. What value do you expect? Run the program several times.
2) Write a program to calculate the correlation coefficient for the integers 2 through 100 and the number of factors.
3) Do problem 2 for prime factors not including 1.
4) Write a program to find correlation coefficients for all pairs of columns by first reading the data into a single array as described in the section. Use the following data:

$a$	$b$	$c$	$c$
39	12	2	1978
43	8	5	1749
25	4	1	1462
22	4	1	1288
21	11	11	1241
21	7	3	1176
32	10	2	1086
37	7	12	1026
18	2	1	1003
30	10	3	971

5) For the data given, find any or all of the following linear correlations:
(a) $a$ and $b$
(b) $a^{2}$ and $b$
(c) $a^{3}$ and $b$
(d) $a^{4}$ and $b$

$a$	$b$
1	1.04631
2	16.5958
3	84.0632
4	266.206
5	651.343
6	1353.51
7	2512.56
8	4294.3
9	6890.5
10	10519
11	15424

## 12 <br> SIMULATION AND GAMES

## 12-1 Introduction

The ability of the computer to store information, generate random numbers, and make decisions makes it well suited for simulations of all kinds. Computers can be programmed to play games. Programs can be written to simulate business activity, social phenomena, and numerous activities in the physical sciences. Computers can be used to conduct gambling enterprises, schedule classes, and manage production schedules. Some situations are dealt with by having the computer investigate all possible alternatives. Other situations are so complex that a procedure must be found that enables the computer to make a best reasonable decision which may not be the best possible decision. For example, it is possible to write an unbeatable tic tac-toe program. However, the game of chess allows so many possible sequences of moves that it is impossible to write a program for existing computers to investigate them all.

The purpose of this chapter is to present a few examples of simulation and to suggest areas for further investigation.

## 12-2 Lines at the Bank

As the manager of a new bank branch, you are interested in knowing what to expect in the way of teller requirements. You are presented a bank that has five windows. As a preliminary trial, you make the following estimates and assumptions:

1. Assume that there is always a customer waiting with a four minute transaction when the bank opens at 9 am.
2. Always open two windows at 9 AM .
3. Customers will tolerate only as many as 10 persons per line; thus when all lines are full, a new window must be opened.
4. During every minute of the day one or two or no customers will enter with equal probability.
5. Every customer after the first has transactions that will last one, two, or three munutes with equal probability.
6. A new customer upon entering the bank goes to the line with the fewest persons. In case of a tie, the customer takes the line closest to the door.
7. The bank closes at 3 PM .

Oin job now is to wite a computer program that reacts to each of the restrictions above and keeps track of the day's business. One possible simulation is to use two arrays-one from the customer's point of view and one from the window's point of view. Both arrays have five columns, one per window. The customer array has 10 rows to allow as many as 10 people in line. The window array has four rows. The first row contains a ' 1 ' to signify that the window is open and a ' 0 ' to signify that the window is closed. The second row contains the number of people in line for that window. The third row contains the number of people served since the run began. The fourth row contains the number of minutes that the window has been open. The customer array contains the number of minutes each customer in line will take.

In program LINES, all loops F $\phi \mathrm{R}$ W1 $=1 \mathrm{~T} \phi 5$ scan all five windows. Lines 200 and 210 open two loops to keep track of time. H stands for hours and M1 stands for minutes of that hour. Line 240 looks to see if a window is open, and line 250 adds one minute to open time for the window. Line 260 looks to see if anyone is in line at the open window. Lines 390 through 500 search for the line having the fewest people. Numerous other relevant comments appear in the REM statements of program LINES.

```
LINES
94 REM * THIS PROGRAM SIMULATES LINES AT
95 REM TELLER WINDOWS OF A BANK
96
97 REM * ARRAY L IS THE CUSTOMER ARRAY
98 REM ARRAY R IS THE. WINDGW ARRAY
100 DIM L (10,5), R(4,5), AS(4)
105 RANDOMIZE
110 MAT READ AS
120 MAT R = ZER
130 MAT L = 2ER
132
134 REM * OPEN WINDOWS 1 AND 2 BY PLACING A
135 REM I IN ROW I OF COLUMNS I AND 2 IN ARRAY R
140 LET R(1,1)=R(1,2)=1
142
144 REM * THE FIRST CUSTOMER ENTERS WITH A
145 REM FOUR MINUTE TRANSACTION
150 LET L(1,1) = 4
160 LET R(2,1)=1
162
164 REM * SET UP LOOPS TO KEEP IRACK OF TIME
200 FGR Hi=0 10 5
210 FOR M1 = 1 T0 60
220 LET T = 60*H + MI
222
224 REM * THIS LOOP ADJUSTS TIME FOR
225 REM CUSTGMERS AND WINDOWS
230 FOR WI=1 TO 5
240 IFR(I,W1)=0 THEN 350
```

```
 IF R(2,W1) = O THEN 350
 REM * THERE IS A LINE
 REM REDUCE FIRST PERSON'S TIME
 LET L(1,W1) = L(1,W1)-1
 IFL(1,W1) <> O THEN 350
 REM * END OF TRANSACTION - MOVE PEOPLE UP IN LINE
 FOR P= 1 TO R(2,W1)-1
 LET L(P,W1)=L(P+1,W1)
 NEXT P
 LET L(R(2,W1),W1) = 0
 REM * ONE MORE TRANSACTION = ONE LESS PERSON
 LET R(3,W1) = R(3,N1)+1
 LET R(2,W1) = R(2,W1)-1
 NEXT WI
 REM * ENTER 0, 1 OR 2 CUSTOMERS
 LET C = INT(RND(-1)*3)
 FORC1=1 TG C
 REM * SELECT TRANSACTION TIME
 LET T1 = INT(RND(-1)*3+1)
 REM * NOW FIND THE SHORTEST LINE WITH
 REM LESS THAN TEN PEOPLE
 LET N = R(2,1)
 LET N1 = 1
 FOR W1 = 2 TG 5
 IF R(1,W1)=0 THEN 460
 IF R(2,W1) >= N THEN 460
 REM * CURRENT LINE IS SHORTER
 REM SAVE WINDOW # AND # OF PEOPLE
 LET N=R(2*W1)
 LET NI=Wl
 NEXT W!
 IF N <= 9 THEN 590
 FOR WI = 1 TO 5
 IF*R(1.W1) = 0 THEN 570
 NEXT W:
 PRINT "ALL WINDOWS FULL AT";'T; "MINUTES"
 MAT PRINT R;
 STgP
 REM * gPEN ANOTHER WINDOW
 LET R(1;W1)=1
 LET N! = W!
 LET R(2,N1)=R(2,N1)+1
 LETL(R(R,N1),N1) = T1
 NEXT C!
 NEXT Ml
 G0SIJE 800
NEXT H
STOP
PRINT TAB(11); "AT THE END OF"" T/60; "HOURS"
PRINT " WINDOW NO. ONE TWO THREE FOUR FIVE"
FOR I = I TO 4
 PRINT AS(I):
 FOR J = 1 TO S
 PRINT TAS(15+(J-1)*G): R(I,J):
 NEXT J
 PRINT
NEXT I
PRINT
RETURN
```



The run shows that ten minutes into the fourth hour the third window was opened. We can see that at the end of the day there was one person waiting at window 1 , which had served 178 people during the day. Window 2 also had one person in line, but had served only 153 customers. Similarly, the third window had served 51 customers and left none in line at the end of the day's business.

While the results of LINES provide some interesting information, there are virtually unlimited possibilities for extracting more information and for testing changes in the original list of assumptions and estimates.

There have been no provisions for closing a window. We might want to close a window due to lack of activity or to allow employees time to lunch. In practice, bank tellers close windows but service those customers already in line.

Program LINES does not provide for having a window closed with people standing in line. We could use a " -1 " in the window array to signify this condition.

It is fairly obvious that the assumption of random arrival of customers is an oversimplification of the true pattern. Clearly, large numbers of people conduct bank business during their lunch hour. Not only does the arrival of customers vary during the day, but it varies with the days of the week and of the month. Fridays tend to be heavier, and the first of the month is heavy.

The limit of 10 persons per line was thus arbitrary and perhaps unreasonable as an absolute limit. The program could be modified to open a new window when all the lines contain 10 customers, but when all windows are open and all lines contain 10 , then we should allow the lines to grow.

In practice, a new customer generally steps into the shortest line, but the customer is not obligated to stay there. Thus we could make provision in our simulator for customers to move to a faster moving line. (We know from experience that fast-moving lines immediately become slow-moving lines when we step into them and slow-moving lines immediately become fast-moving lines when we step out of them.) This points up the fact that although a customer enters a line based on the number of customers in it, what he really cares about is how long he has to wait. We could add a row to the window array giving maximum waiting time so far. We could cause a certain waiting time to trigger opening a new window.

As the program is written, when a new window opens only new customers may enter that line. Generally when a new window opens, a whole bunch of people swarm into the new line. Sometimes the new line quickly exceeds the old lines in length. We could modify the simulation of LINES to allow an orderly shift of customers from all lines to a newly opened window.

It is easy to see that we could go on and on at great length, making our simulation program more and more like what we believe to be the real life activity. What about drive-in windows, automatic tellers, etc.?

Based on many runs of simulations like this, a business person is in a better position to make decisions about hiring, opening hours, business procedures, and other aspects of management than he would be without the computer. Once we are convinced that a simulation is realistic, then we can experiment with innovative procedures using computer results to warn us of poor changes without actually having to use customers as guinea pigs.

Similar simulations could be set up for toll booths, grocery store checkouts, post offices, gas stations, and stores and businesses of all kinds.

## Summary of Sec. 12-2

We have looked at a much simplified set of rules for lines at the tellers' windows of a bank and written a program to imitate the activities of bank customers for a sample business day. Random numbers are used to simulate the random nature of the arrival of people at the bank and the random nature of transactions. Arrays have proved very useful for keeping track of many of the activities of our banking model. We recognize that simulations usually must be simplifications of the real activity under study.

## Problems for Sec. 12-2

The possibilities for making changes in program LINES and developing other models are so varied and so numerous that no attempt will be made to enumerate a specific set of problems. Instead you should select one or more of the improvements outlined in this section and implement them, along with any changes not mentioned that you would like to make. You should obtain several runs of your final program to get a range of results. Experiment with differing transaction times, differing rates of amival of customers, and so forth.

## 12-3 Magic Squares

Magic squares have provided entertainment and been the source of wonder for more than a thousand years. They have been considered to have magic powers and therefore have been used to keep away evil spirits. Magic squares are square arrays of numbers (usually integers) so arranged that all row sums equal all column sums and these equal each of the sums of the elements of the two main diagonals.

Of course, this feat can be accomplished by simply entering the same number in each position of the array, but this is trivial and of little interest. The simplest magic square of real interest is the following three-by-three magic square:

$$
\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}
$$

Note that all integers from 1 through 9 have been used and that the magic sum is 15. It turns out that while we can rotate this to get a total of eight different positions, there is no other arrangement of these integers that will produce a magic square, even though there are 45,360 possible different arrangements. The magic sum can be found for integers 1 through $n^{2}$ by the formula,

$$
s=\frac{n^{3}+n}{2}
$$

An odd order magic square from 3 up can be generated by a procedure called the De la Loubere method. For a $5 \times 5$ magic square, this method produces only one magic square, but millions are possible. The De la Loubere method uses the integers 1 to $n^{2}$ for an $n$ th-order magic square and may be described with the following set of rules:

1. Begin by entering a " 1 " in the center column of the first row.
2. Always move diagonally up one and to the right one and enter the next larger integer there unless the move (a) is the move immediately following an entry that is a multiple of the order of the magic square, in which case the new number goes directly beneath the previous one, or, (b) takes us out the side of the square, in which case the new number goes to the extreme left of the new row, or, (c) takes us out the top of the square, in which case the new number goes to the bottom of the new column.
3. Proceeding in this way, $n^{2}$ should always be placed in the middle column of the bottom row, and we know it is time to stop.

In program MAGIC for $n=5$, the middle column is determined in line 160, and the row is set to 1 in line 170 so that the first entry in line 190 follows rule 1 above. Line 210 checks to see if the condition in rule 2 a has occurred. Line 250 checks for the condition of rule 2 b , and line 300 checks on rule 2 c . Line 200 determines the stopping point as per rule 3.

```
 MAGIC
 94 REM * THIS PRGGRAM GENERATES ODD ORDER
 9 6 ~ R E M ~ M E T H D D ~ D
 100 DIM M(47, 47)
 110 PRINT "WHAT DDD SIZE";
 120 INPUT N
 130 IF N/2 = INT(N/2) THEN 110
 140 MAT M = ZER(N,N)
 150 LET CI = 0
-160 LET C = INT (N/2)+1
-170 LET R = 1
 180 LET C1 = C1+1
-190 LET M(R,C) = CI
-200 IF C1 = N+2 THEN 330
 IFC1/N <> INT(CI/N) THEN 240
210 LE CI/N
 230 GgT0 180
 240 LET C = C+1
-250 IF C <=N THEN 290
 260 LET C = 1
 270 LET R = R-1
 280 G0T0 180
 290 LET R = R-1
-300 IF R > O THEN 180
 310 LET R = N
 320 GOTO 180
 330 PRINT
340 LET T = 0
342 REM ADD ONE COLUMN TO FIND MAGIC NUMBER
3 5 0 ~ F O R ~ I ~ = ~ T O ~ N ~
 LET T=T+M(I,1)
 NEXT I
 PRINT "MAGIC NUMBER IS";T
 PRINT
 MAT PRINT MB
 END
RUN
MAGIC
WHAT ODD SIZE?S
MAGIC NUMBER IS 65
```

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

As written, this program will arrange and print magic squares up to 47 by 47. Of course, we can't print 47 numbers across the page. So we would have to do some rearranging to make the results easy to read.

## Problems for Sec. 12-3

1) The magic squares of this section used 1 as the first number. It is easy to show that beginning with any integer will also produce a magic square. Modify program MAGIC to allow beginning with any integer. Be careful about rule 2a.
2) Another way to generate odd order magic squares may be described as follows. Place the first number in the array position directly beneath the central element, and proceed down one row and to the right one column unless this move: (a) takes you both out the bottom and out the right side of the square, in which case the new entry goes in position ( $2, \mathrm{n}$ ), or (b) takes you out the bottom of the square, in which case the new entry goes to the top of the new column, or (c) takes you out the right side of the square, in which case the new entry goes to the extreme left in the new row, or (d) the new location is already occupied, in which case the new entry goes in the second row directly below the previous entry. (Note that this may take you out the bottom.) Write a program to generate this type of odd-order magic square.
3) Squares of the type described in problem 2 can also be generated by beginning with any integer. Modify your program for problem 2 to do this.
4) There are 880 different 4 -by- 4 magic squares using the integers 1 through 16. One of them can be generated by the following simple procedures: MAT READ the integers 1 through 16 into a 4-by- 4 array and then make these exchanges:

$$
\begin{aligned}
& \mathrm{A}(1,1) \rightleftharpoons \mathrm{A}(4,4) \\
& \mathrm{A}(2,2) \rightleftharpoons \mathrm{A}(3,3) \\
& \mathrm{A}(3,2) \rightleftharpoons \mathrm{A}(2,3) \\
& \mathrm{A}(4,1) \rightleftharpoons \mathrm{A}(1,4)
\end{aligned}
$$

Write a program to do this.

## 12-4 Games

There are hundreds of games which may be played with computers. There are games played with cards, dice, dominoes, and numbers. There are board games and two- and three-dimensional tic-tac-toe. Programs have been written to play casino gambling games and to simulate slot machines. There are programs which simulate horse races. Programs can be written to play word games such as Hangman or Geography using strings and files. Using computer files, gameplaying programs ean be devised which modify strategy depending on consequences of previous decisions. It is not the purpose of this section to present any comprehensive or systematic study of games or game strategy. Rather, it is the purpose of this section to arouse the sleeping giant of gamesmanship that may lie within the reader by exploring two examples.

## Battle of Numbers

The game, Battle of Numbers, begins with two integers, such as 63 and 11, where one should always be somewhat larger than the other. Two players take turns subtracting an integer in the range 1 to 11 from 63 and subsequent new remainders. The last player to subtract loses. The feature that makes this game intriguing is that usually the first player may assure a win by applying proper strategy on the very first move. Working out the strategy is fairly straightforward if we look at the last few moves. Suppose it is your turn, and you may subtract up to 11 from 15 . If you subtract 2 leaving 13 , you win because your opponent must leave you a number in the range of 2 to 12 , subtracting in the range 11 to 1 . Now it is your turn again and you can be assured of leaving your opponent a " 1 ," which he must subtract, thereby losing. Now one pair of plays earlier you can assure yourself of leaving your opponent with 13 by leaving 25 and before that 37 , and so forth. That is, you want to leave $(11+1) i+1$, or one more than an integral multiple of one more than the largest number you are allowed to subtract. For subtracting in the range 1 to $a$, then leave $(a+1) i+1$. This means that if the human player goes first in competition with the computer, the human can always win except when the original larger number is one more than an integral multiple of the largest subtractable number. However, one slip-up, and the computer can always win.

Thus in our game with 63 as the starting total and 11 as the maximum subtractable integer, divide 63 by 12 to get 5 as the integral quotient. Since 5 times 12 is 60 , if we are faced with 61 we can't win and should subtract some random integer. But since we are not faced with 61 , we want to leave our opponent with 61 by subtracting 2 . No matter what our opponent does, we will leave 49 , then 37 , then 13 , then 1 . The calculations and testing here are done in lines 370 through 410 of program BATTLE. Note that lines 280 through 320 assure that the human player inputs a number in the range 1 to $a$. If you would like to play the game, but don't want to type the program, many timesharing systems include the game under the name BATNUM.

```
BATTLE
94 REM * THIS PROGRAM PLAYS BATTLE OF NUMBERS
100 PRINT TAB(15); "BATTLE OF NUMBERS"
105 RANDOMIZE
110 PRINT "DO YOU KNOW THE RULES"'
120 INPUT AS
 IF AS = "YES" THEN 180
 PRINT "WE TAKE TURNS SUBTRACTING AN INTEGER IN THE"
 PRINT "INTERVAL I TO SOME NUMBER A FROM ANOTHER NUMBER"
 PRINT "B WITH THE DIFFERENCE LEAVING B FOR THE NEXT"
 PRINT "TURN. THE LAST PERSON TO TAKE LOSES."
 PRINT "HERE WE G0. ***"
 REM * SELECT RANGE AND STARTING NUMBER
 REM THE RESTRICTING CONSTANTS HERE ARE ARBITRARY
 LET A = INT(RND(-1)*14+7)
 LET B = INT(RND(-1)*77+41)
 PRINT
 PRINT "INTERVAL = 1 TO"; A
 PRINT
240 PRINT "STARTING TOTAL IS"; B
```

```
PRINT "YOU GO";
INPUT P
 REM * CHECK FOR AN INTEGER IN THE LEGAL RANGE
 REM LESS THAN OR EOUAL TO THE REMAINING TOTAL
 IF P <> INT(P) THEN 310
 IF INT((P-1)/A) <> 0 THEN 310
 IF P <= B THEN 330
PRINT "ILLEGAL MOVE"
GoT0 250
LET B = B-P
IF B > 0 THEN 370
```



```
 STOP
 EET : = NAT: {B : %:AO:% %
 LET C = B - ((A+1)*I+1)
 IF C > O THEN 420
 LET C = INT(RND(-1)*A+1)
 IF B-C < O THEN 400
 LET B = B-C
 PRINT "I TAKE"; C
 IF B = 0 THEN 470
 PRINT 'LEEAVING A TOTAL OF''; B
 GOTO 250
 PRINT "F*** YOU 外利 ***"
 END
R!JN
BATTLEE
 BATTLE GF NIJMBERS
DO YO!J KNOW IHE RULES? YES
HERE WE GO. ***
INTERVAL = 1 T0 20
STARTING TOTAL IS 69
YOI] 60? 4
I TAKE 6
L.EAVING A TOTAL, GF 5%
YOU GO? 15
I TAKE 7
LEAVING A TOTAL, OF 35
YolJ G0? 14
I TAKE G
LEAVING A TOTAL OF 16
YOIJ GO? 15
I TAKE 1
*** YOU WIN ***
```


## The Knight's Tour

The game of chess is played on a square board having 64 smaller squares, eight on a side. The various pieces belonging to the two sides are assigned specific moves. The knight moyes in an L-shaped path, moving one square in any direction and two squares in a direction perpendicular to the first move. Thus from a position near the center of the chess board, a knight may move to any of eight possible positions. If the knight occupies position (3, 4), then he may move to any one of the following: $(4,6),(4,2),(2,6),(2,2),(5,5),(5,3),(1,5)$ or (1,3). In general, if the knight occupies position $(r, c)$, then he may move to
any of the following: $(r+1, c+2),(r+1, c-2),(r-1, c+2),(r-1$, $c-2),(r+2, c+1),(r+2, c-1),(r-2, c+1)$, or $(r-2, c-1)$, unless the new position is off the board. An ancient and intriguing challenge is to move the knight about the board in such a way that it visits all 64 squares of the chess board exactly once.

This is a difficult feat, known as the Knight's Tour, but it can be done. We will here contrive only to select moves randomly until the knight reaches a dead end due to the fact that all reachable squares have already been visited. We use an 8 -by- 8 array B to simulate the board. Initially all entries are zero to indicate open positions. We will place the move numbers in the squares as the knight moves about the board. The 8 -by- 2 array $U$ stores all eight possible moves from the present position as described in the previous paragraph. These eight moves are scanned for legal use in lines 220,230 , and 240 of program TøUR. Note that INT $((R 1-1) / 8)=0$ in line 220 is equivalent to $(0<R 1$

```
TOUR
REM * THIS PRDGRAM CARRIES ØUT A RANDOM
REM KNIGHT'S TOUR TO DEAD END
DIM B(8,8),T(2,8),U(8,2)
MAT B = ZER
MAT READ U
LET M = 1
PRINT "BEGIN WHERE';
INPUT R, C
LET B(R,C) = M
MAT T = ZER
REM * K1 COUNTS THE NUMBER OF LEGAL MOVES
LET KI = 0
REM * ENTER ALL LEGAL MOVES IN T ARRAY
FOR T = 1TOg
 LETRI=R+U(T,1)
 LET CI = C + U(T,2)
 IF INT((RI-1)/8) <> O THEN 280
 IF INT((CI-1)/8) << O THEN 280
 IF B(RI,C1) < O THEN 280
 LET Kl= Kl+1
 LET T(I,Kl)=RI
 LET T(2,KI)=Cl
 NEXT T
 IF Kl = O THEN 350
 REM * SELECT A LEGAL MOVE AT RANDOM
 LET T = INT(RND(-1)*K1+1)
 LET R = T(1,T)
 LET C = T(2,T)
 LET M = M+1
 GgT0 160
 PRINT "G0T T0"; M
 PRINT "PRINT IT"B
 INPUT AS
 IF AS <> "YES" THEN 420
 MAT PRINT BI
 REM
 DATA 1,2, 1,-2, -1,2, -1,-2
 DATA 2,1, 2,-1, -2,1, -2,-1
420 END
RUN
TOUR
```

BEGIN WHERE? 4,4   GET IG 41   PRINT IT?YES   0	8	15	0	0	24	39	0
14	11	0	7	38	0	0	25
0	16	9	12	0	26	23	40
10	13	18	1	6	37	0	0
17	0	5	36	27	22	41	0
0	0	2	19	32	35	28	0
0	0	0	4	0	30	21	34
0	3	0	31	20	33	0	29

AND $\mathrm{R} 1<9$ ). If a move is found to be legal, then we enter it into the T array. When all legal moves are in the Array T, K1 is the number of legal moves. If K1 is zero, then the knight has reached a dead end and we may print the tour or not. We present a flowchart in two parts. Figure 12-1 details the sorting out of legal next moves. Figure 12 n 2 shows where a legal move chosen at random is incorporated into the tour.

## Summary of Sec. 12-4

We have seen programs to play Battle of Numbers and simulate the Knight's Tour. In the first case there is a guaranteed strategy which we exploit in our program. In the second case we have not employed strategy of any kind but merely progress from step to legal step at random with no procedure for maximizing results.

## Projects for Sec. $12-4$

Some of the projects listed will require considerable study and planning before the actual coding of the program takes place. Be sure to allow a reasonable amount of time should you attempt any of the longer projects. Some of the solution programs can be very long indeed. The reader needn't feel limited to projects proposed here.

1) Modify the game of Battle of Numbers so that the last person to take away wins. Be sure to change the computer's strategy.
2) Write a program to play the game of Nim.
3) Write a program to play Tic-Tac-Toe. First decide whether or not you want an unbeatable program.
4) Write a program to play three-dimensional Tic-Tac-Toe.
5) Write a program to lengthen the knight's tour by backing up every time the knight hits a dead end.
6) Write a program to play the game of Geography using strings and files. In this game two players take turns naming places where the first letter of the new place must be the last letter of the last place named.
7) Write a program to make the computer the dealer in a blackjack game.
8) Write a program to play craps.
9) Write a program to simulate a Roulette-wheel.


Figure 12-1 Flowchart for keeping track of Knight's Tour.


Figure 12-2 Flowchart for selecting moves at random for Knight's Tour.

## APPENDIX A

## ASCII Character Set Printable on Model 33

CODE	CHARACTER	CODE	CHARACTER
32		64	0
33	1	65	A
34	"	66	B
35	*	67	C
36	5	68	D
37	8	69	$E$
38	\&	70	$F$
39	*	71	G
40	(	72	H
41	)	73	I
42	*	74	J
43	+	75	K
44	,	76	L
45	-	77	M
46	*	78	N
47	1	79	0
48	0	80	P
49	1	81	0
50	2	82	R
51	3	83	5
52	4	84	T
53	5	85	U
54	6	86	$v$
55	7	87	W
56	8	88	$X$
57	9	89	$Y$
58	1	90	$L$
59	1	91	¢
60	$\leqslant$	92	1
61	$=$	93	]
62	$\geqslant$	94	!
63	$?$	95	+
NGTE SPECIAL CHARACTERSt			
LINEFEED OR CTRL 310			
FORMFEED OR CTRL L 12			
RETURN OR CTRL M 13			
SPACE 32			

## APPEAVDIX B

## Summary of Flowchart Shapes



Used for beginning and ending of program.

Indicates data entered into the computer or results returned by the computer.

READ	MAT READ	READ\#
PRINT	MAT PRINT	READ:
INPUT	MAT INPUT	WRITE\#
		WRITE:

Indicates that a decision is being made.
IF XXXXXX THEN YYY

Indicates a sequence of program statements not included in the flowchart. May be used for G $\varnothing$ SUB statement.

Connector. Indicates transfer from one statement to another other than the next higher numbered statement in the program. N matches another N elsewhere in the same flowchart.

Used for anything not already specified.
NEXT X
LET
RETURN
STดP

## APPENDIX C

## Summary of Statements in BASIC

NOTE: Not all statements which appear in this appendix will run on all systems and the list here does not cover every statement for some systems.

END It is the highest numbered statement of every BASIC program. It is optional on a few systems and required on most.

PRINT

PRINT USING $n$ :

READ

DATA
$G \emptyset T \phi n$
$\emptyset \mathrm{N} X \mathrm{G} \emptyset \mathrm{T} \phi n_{1}, n_{2}, n_{3}$, etc., or
G $\emptyset$ T X $\varnothing$ F $n_{1}, n_{2}, n_{3}$, etc., or
$\mathrm{G} \emptyset^{\top} \emptyset n_{1}, n_{2}, n_{3}$, etc., $\phi \mathrm{NX}$
LET

REM

Prints values of variables, calculated values, and literal expressions inside quotes. Spacing is controlled by commas, semicolons, and TAB. More spacing functions are available on some systems.
Prints according to format specified in line $n$.
Specifies printing for PRINT USING statements.
Enters values stored in DATA statements into variables named in the READ statement. All legal BASIC variables (string and numeric) may be read in a single READ statement by separating them with commas.
Stores values for READ statements. Items of data must be separated by commas. Some systems require that strings be in quotes.
Names $n$ as the next line number to be executed by the computer.
Computed G $\varnothing \mathrm{T} \emptyset$ goes to the line number in the $x$ th position in the list of line numbers $n_{1}, n_{2}, n_{3}$, etc. If available, one of these should work. They are not interchangeable.

Assignment statement. The word LET is optional on many systems. Stores the value on the right of an equals sign in the variable named on the left. May be used to assign string variables. Multiple assign. ment is available on most systems.
Permits the programmer to remark upon the program in the program itself without affecting the pro-

IF THEN $n$
$F \phi R X=A T \phi B$ STEP C

NEXT X

G $\varnothing$ SUB n etc., or
G $\varnothing$ SUB X $\phi \mathrm{F} n_{1}, n_{2}, n_{3}$, etc., or
G $\varnothing$ SUB X $\phi \mathrm{N} n_{1}, n_{2}, n_{3}$, etc.
RETURN
DEF FNA(X) =

DEF FNA(X)

FNEND
STดP
DIM A( ),B\$( )....

INPUT
REST $\varnothing$ RE

RESTดRE*
RESTORE\$

Sends the computer to a subroutine beginning at line n. Upon executing a RETURN statement, the n. Upon executing a RETURN statement, the
computer returns to the line immediately following G $\emptyset$ SUB $n$.
$\emptyset \mathrm{N} \mathrm{X} \mathrm{G} \emptyset \mathrm{SUB} n_{1}, n_{2}, n_{3}$, Computed G $\phi$ SUB goes to the subroutine beginning
gram operation. Some systems allow 'to serve the same purpose.
Tests the truth of an algebraic sentence placed between the IF and the THEN. Sends the computer to line $n$ if the sentence is true. Control passes to the next line if the sentence is false.
Opens a machine loop with first value for X at A , last number B , and increment C . If C is omitted, the siep defauts to an increment of 1 .
Closes machine loop. Sends the computer to the corresponding $F \emptyset \mathrm{R}$ statement to increment and test X. at the $x$ th line number in the list. Upon executing a RETURN statement, control goes to the line immediately following this statement. If available, one of these should work. They are not interchangeable.
Closes all subroutines.
Program-defined function. The letter pair FN designates that a function is called for. The function name is $A$, and the argument is X . Any letter of the alphabet may be used. Some systems permit multiple arguments separated by commas.
Opening line of a multiple-line program-defined function. Several arguments may be permitted, separated by commas. A value must be assigned to FNA in the lines to follow.
Closing statement of a multiple-line, program-defined function.
Execution of the ST $\emptyset \mathrm{P}$ statement causes termination of the RUN at that point.
Declares dimensions for one- or two-dimensional numeric arrays or string arrays or both. One number is required in the parentheses for a list and two numbers separated by a comma are required for a two-dimensional array.
Same as READ except that data is to be typed on the keydoard of the remote terminal.
Restores all data in the program. The next item of data to be read will be the very first data item in the program.
Restores numeric data only.
Restores string data only.

RESTDRE n
CHANGE A $\$$ T $\emptyset$ A

CHANGE A T $\varnothing$ A $\$$

RAND $\emptyset$ MIZE

MAT READ

MAT PRINT

MAT INPUT
$\operatorname{MATC}=\mathrm{A} * \mathrm{~B}$
MAT A $=\mathrm{B}+\mathrm{C}$
MAT A $=\mathrm{B}-\mathrm{C}$
MAT $A=(\mathrm{K}) * B$
MAT A $=$ ZER

MAT A $=\mathbf{C} \phi \mathrm{N}$

MAT E = IDN
$\operatorname{MAT} \mathrm{X}=\operatorname{INV}(\mathrm{A})$
$\operatorname{MAT} \mathrm{A}=\operatorname{TRN}(\mathrm{B})$

SQR(X)
ABS(X)
SGN(X)

Restores all data from line n on.
Stores the ASCII code of the characters of the string $A \$$ in the array $A$ with the length of the string in characters stored in $\mathrm{A}(0)$.
Stores a string in $\mathrm{A} \$$ with length specified in $\mathrm{A}(0)$ and characters determined by the ASCII code stored in the array elements of the A list.
Causes the random numbers generated in successive runs of the same program to vary.

## MATRIX INSTRUCTIONS

Enters data into numeric and string arrays. Several arrays can be read in the same MAT READ statement by separating the array names with commas.
Prints the array(s) listed, separated by commas or semicolons. The delimiter used specifies spacing for the preceding array. Numeric and string arrays are allowed.
Enters data into an array (string or numeric) from the keyboard. Some systems allow more than one array listed here; others do not.
Enters the product of A and B into array C.
Enters the sum of B and C into array A.
Enters the difference of B and C into array A.
Multiplies each entry of B by the scalar K and enters the result into A .
Creates the zero matrix (fills each entry of $A$ with zero). ZER may be followed by redimensioning specifications in parentheses.
Fills each element of A with 1. C C N may be followed by redimensioning specifications in parentheses.
Forms the identity matrix E. E must be square. All elements with equal row and column numbers are 1 and all other elements are 0 . IDN may be followed by redimensioning specifications in parentheses.
Finds the inverse of $A$ and enters it in $X$ (if it exists). Fills A with the transpose of B.

## FUNCTIONS

Computes the non-negative square root of X . X must be non-negative.
Computes the absolute value of X .
Returns the value 1 for X positive, 0 for X equals zero, and -1 for X negative.

INT(X)	Returns integer part of X. For some systems this is the mathematically greatest integer function. For others, the computer simply chops off the digits to the right of the decimal point. (The results are the same for non-negative numbers.)
RND(X)	Generates a random number. In some systems the set of random numbers accessed is determined by the value of X . Some systems generate the same set of numbers each time the program is run, whereas others provide a different set and still others provide an option. See RND below.
$\operatorname{SIN}(\mathrm{X}), \mathrm{C} \phi \mathrm{S}(\mathrm{X}), \mathrm{TAN}(\mathrm{X})$	Computes the $\sin , \cos$, or $\tan$ of $X$, where $X$ must be in radians.
$\operatorname{ATN}(\mathrm{X})$	Computes the arctan of $X . \operatorname{ATN}(X)$ is in radians. The program must be written to determine the correct quadrant for the result.
L¢G(X)	Computes the logarithm of X using base e.
EXP(X)	Computes the number whose $L \emptyset \mathrm{G}$ base e is X .
TAB(X)	Moves the printing mechanism to the ( $\mathrm{X}+1$ )st position of the carriage unless the printing mechanism is already past that point, in which case there is no effect.
ASC( )	Returns the ASCII code for the character placed in parentheses.
LEN(A\$)	Returns the number of characters in the string $\mathrm{A} \$$.
EXT\$(A\$,I,J)	String extract function. Isolates a substring in $\mathrm{A} \$$ from the Ith to the Jth character inclusive.
NUM	Returns the number of elements typed in response to the most recent MAT INPUT statement executed in the program.
DET	Returns the determinant of the most recent matrix for which the inverse has been found with the MAT INV ( ) statement. No argument required.
RND	Returns a random number. The numbers will be the same on successive runs of the program if the RAND $\varnothing$ MIZE statement is not present in the program and different on successive runs if the RAND $\varnothing$ MIZE statement is present.

## FILES

Hewlett Packard Files
FILES

READ \#N,R
Names files to be used by the present program and makes them available for access. File names are separated by commas.
Sets the file pointer to the beginning of the Rth record of the Nth file named in the files statement. In addition, when followed by a semicolon and

READ \#N; | When followed by a variable list, this statement reads |
| :---: |
| from the file at a point previously established. |
| Reads values from a file with the same options al- |
| lowed for READ \#. |

PRINT \#N,

## ASCII Files

Reads data from the Nth file named in the program into the variables of the variable list following the comma.
WRITE \#N,

IF M $\varnothing$ RE \#N
IF END \#N
APPEND \#N
Writes data from the variable list following the comma to the file. The variables in the list may be separated by semicolons or commas to achieve corresponding spacing in the file.
Determines whether or not there is more data in the file.
Determines whether or not the end of the file has been reached.
Allows additional data to be written to an existing
file by setting the file pointer to the end of the Nth file and placing the file in write mode.
SCRATCH \#N Sets the pointer of the Nth file to the beginning of the file, erases the file, and places it in write mode.
RESTORE \#N
Sets the pointer of the Nth file to the beginning of the file and places it in the read mode.

## Binary Sequential Files

Binary sequential files may be processed by all of the above statemonts by substituting a colon (:) for the pound sign (\#). Binary files should be less expensive to work with; however, ASCII files are very convenient due to the fact that they may be listed at the terminal.

## Random Access Files

READ: N, WRITE :N, IF M $\phi$ RE : N

IF END : N

SCRATCH:N
REST $\phi$ RE : N
SETW N TФ X

Same as ASCII.
Same as ASCII.
Tests true, except when the file pointer is at the physical end of file.
Tests false, except when the file pointer is at the physical end of file.
Places the file pointer at the beginning of the file and fills the file with binary zeros.
Places the file pointer at the beginning of the file without altering the contents of the file.
Places the file pointer to the Xth word of file N. To access a random file by record, the formula $W^{*}(R-1)+1$ places the pointer at the beginning of the Rth record if there are $W$ words per record.

## APPENDIXD

## Index of Programs in Text

Program	Description	Section
ADD	Adds Numbers from Data	1-2
ADD1	Adds and Counts Numbers from Data	1-2
ADD2	Adds Numbers from Input	1-2
ALPHA	Arranges Characters of String	3-3A
ALPHA1	First Use of Change Statement	3-3B
AREA1	Area by Summing Rectangles	6
AREA2	Areal with Variable Interval Width	6
ARRAY\$	Demonstrates a String Array	$3 \cdot 3$
ASC	Prints Sample ASCII Codes	3-3B
AVG	Averages Numbers from Data	11-2
BATTLE	Plays Battle of Numbers	12-4
BQUNCE	Prints Successive Heights for a Magic Ball	9-2
CITY	First GE Data File	4-3
CQLIN	Determines Colinearity of Three Points in a Plane	$7-5$
CQMPAR	Compares Two Numerics	1-2
CQMPR\$	Program COMPAR with Strings	3-2
CQNCAT	Appends One String on Another	3-3A
CQNVRT	Converts Numeric to String	3-3A
C $¢$ RREL	Calculates Linear Correlation Coefficient	11-4
CQSINE	Compares Computer cos(x) Function and Series Evaluation	9-4
DECIDE	First Demonstration of Strings	3-2
DIST1	Uses Distance Formula for Two Points	7.2
DIST2	Finds Distance for Several Pairs of Points	7-2
DIVIDE	Demonstrates Synthetic Division	8-3
DRAW	Draws 5 Numbers at Random from 10 with Replacement	1-3
DRAW01	Draws with FOR-NEXT	1-3
DRAW02	Draws Numbers from 10 Without Replacement	1-3
END	Prints A $\$(\mathrm{I})$ in Substring Scheme	3-3A
ENTER1	Prints Data Serially in File INV01 (HP)	4-2
ENTER2	Adds Data to File INV01 (HP)	$4-2$
ENTER3	Prints Data to Random Access File INV02 (HP)	4-2
ENTER4	Adds Data to File INV02 (HP)	4-2
FIBQ1	Prints the First 30 Fibonacci Numbers	9-1
FUNCTI 0 N	Demonstrates Multiple Line Defined Function	2-5
GEQARI	Compares Geometric and Arithmetic Sequences and Series	9-3
GRAPH1	Bare Plot, No Axes, Origin Only .	5-2
GRAPH2	Graph1 with Axes . . . . . . . .	5-2
GRAPH3	Plotting from an Array with Axes	5-3
GR¢WTH	Orders Contents of City into File CITY1 (GE)	4-3
HALF	Halves Remaining Distance of Separation	$9-1$
IMAGE01-   IMAGE05	Demonstrates Print Using . . . . . . . . . .	$2 \cdot 3$
INT	Computes Compound Interest by Formula	9-1
LIM01	Prints Powers of ( $-3 / 5$ )	9-2
LIM02	Prints Terms of ( $2+(1 / 5) 1 \mathrm{H})$	9-2
LINE1	Gives Equation of Line Given Two Points	7-2


Program	Description	Section
LINES	Simulates Bank Teller Window Activity	12-2
L¢GICi	Prints Trutin Values	$2-4$
LØGIC2	Gets Factors Using Truth of $\mathrm{N} / \mathrm{X}=\mathrm{INT}(\mathrm{N} / \mathrm{X})$	$2-4$
MAGIC	Prints Odd Order De La Loubere Magic	
	Squares . .	12-3
MAT\$	Demonstrates MAT READ and MAT PRINT for String Arrays	3-3B
MAT01	Demonstration MAT READ and MAT PRINT	1-5
MAT02	Demonstrates Matrix Product	1-5
MATINY	Demonstrates MAT MV	10-2
MEDIAN	Finds Median for Odd Number of Data	11.3
MQD	Miodular Arithmetic with One Subroutine	1-4
M 0 D 1	Modular Arithmetic with Nested	
	Subroutines	1-4
¢PRATN	Uses $\uparrow, *, /,+$,	$1 \sim 2$
QRDER	Orders Numbers from Data	11.3
QRDER ${ }^{\text {P }}$	Alphabetizes Names in a String Array	3-3B
PERP	Equation of Line Given Point and Points on Perpendicular Line	7-3
PQINT	Finds Intersection of Two Lines in $A X+B Y+C=0$ Form	7-4
PQLY01	Compares Values of F(X) by Three Methods	8-1.
PRT	Demonstration of User Defined Function	1-4
PYTH1	Reads and Prints Coordinates of Three	
	Points	7-5
PYTH2	Sets Up Three Points in Six List Positions	7-5
PYTH3	Checks Three Points for Vertices of	
	Right Triangle	7-5
RANK	Arranges the Contents of File CITY2 (GE)	4-3
READ	Reads File INV01 (HP) ...	4-2
READ1	Reads with IF END Trap (HP)	4-2
READ2	Finds Number of Parts in Inventory File INV01 (HP) .	4-2
READCITY	Reads File CITY (GE)	4-3
REDCITY2	Reads Contents of File CITY2 (GE)	$4 \cdot 3$
REVRS	Prints String in Reverse Order	3-3A
REVRS1	Reverses Characters of a String Using Change	3-3B
RNDENTER	Writes 10 Random Numbers to Binary File RAND (GE)	4-3
RNDREAD	Reads File RAND (GE)	4-3
RNDS $\varphi$ RT	Arranges Contents of File RAND (GE)	$4 \cdot 3$
RดUND	Rounds to Various Precisions	1-3
SALES1	Matrix Demonstration	10-1
SALES2	Sales1 Stripped to Bare Essentials	10-1
SEQ01	Prints Ratios of Successive Odd Integers	9-1
SLQPE	Finds Slope of Lines Given Two Points	7-2
SФLVE	Solves Simultaneous Linear Equations Using MAT INV	10-2
SUBSTR	Demonstrates A $\$(\mathrm{I}, \mathrm{J})$ As a Substring	3-3
TAB01	Demonstrates Tab Printing of String Characters	2-2
TAB02	Prints Numerics Using the Tab Function	$2 \cdot 2$
TQUR	Knight's Tour-Prints at Dead End	$12-4$
UPDATE	Edits Inventory File INV02 (HP)	$4-2$
VAR	Calculates Variance and Standard Deviation	11-2
WEATHER	Calculates Linear Correlation for Temperature Data.	11-4

Array Demonstration with Weather Data ..... 1-4
Transfers Contents of City to RandomFile CITY2 (GE)4-3Search for Change of Sign in PolynomialFunction8-2Uses Interval Halving to Find an Approxi-mate Zero8-2

## BIBLIOGRAPHY

Albrecht, Robert L., LeRoy Finkel and Jerold R. Brown, BASIC, Wiley, 1973. Programmed instruction is used to introduce BASIC.

Coan, James S., Basic BASIC, Hayden, 1970. An introduction to BASIC in a mathematics setting.
Gateley, Wilson Y., and Gary G. Bitter, BASIC for Beginners, McGraw-Hill Book Company, 1970. Brief introduction to the rudiments of BASIC.
Gruenberger, Fred, and George Jaffray, Problems for Computer Solution, Wiley, 1965. A book of problems from a wide variety of topics.
Kemeny, John G., and Thomas E. Kurtz, BASIC Programming, 2nd Ed., Wiley, 1971. BASIC programming presented by the originators of the language.
Knuth, Donald E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, 1973. A comprehensive treatment on arranging data in order and locating items in an ordered data structure.
Ledgard, Henry F., Programming Proverbs, Hayden, 1975. Writing programs that work the first time.
Nolan, Richard L., Introduction to Computing Through the BASIC Language, Holt, Rinehart and Winston, 1969. Introduction to computers and computing as well as BASIC.
Pavlovich, Joseph P. and Thomas E. Tahan, Computer Programming in BASIC, Holden-Day, 1971. An introduction to BASIC assuming a traditional background in high-school mathematics.
Pegels, C. Carl, BASIC A computer Programming Language, Holden-Day, 1973. With business and management applications.

Sage, Edwin R., Problem Solving with the Computer, Entlek, 1969. An introduction to BASIC using mathematics problems.
Smith, Robert E., Discovering BASIC, Hayden, 1970. Introduces BASIC using a wide variety of interesting problems.
Spencer, Donald D., A Guide to BASIC Programming; A Time-Sharing Language, Addison-Wesley, 1970. Introduces the language, solves problems from general interest topics, and presents problems for reader solution.
Spencer, Donald D., Game Playing with Computers, Rev. 2nd Ed., Hayden, 1975. Mostly Fortran with some BASIC. Detailed anaylsis of a wide variety of games.

## Each two-page spread should be read from top to bottom as an individual page.

```
Cluplert
Ge: tum:-
Nambas
```



```
hem, mead first sumgerm
REAB :
rem - first valye is largest and smallest so far
 LETSSN=L=N
 MEAD N
 Em - current number gmallef so save
 MEM MET
 CNO
 REm * Curgent munber larger so save
 LETTL=""
 PaINT "O LARGEST =": L
 2!2
M, DATA B3, 54,71,92,-3, .01
M, R14%
LaRGEST =92
Number 4
OM REM * SIMM INTEGERS FRDM 1 to N
 C0 PriNT "SIM:TEM,
l19 :MPHTN
MOM LET:=%=1
150 1F: ON HHEN 100
```

```
OA REM. Find greatest integer hithout tmt function
MAO REM.*
70 PGF X..".-001 THEN 290
M,
M,
40 PRINT X
*60 LETE C=0
lon
210 PRINT C
lumen
250 LET X = = x =-1, THEN 230
200
col
274
\begin{subarray}{c}{2,0, DATA 2, 1.23456, -2.8712, i, 0, -4, -.001}\end{subarray}
Mym
```




```
*
Number 4
94 REM * TO DEAL FOUR 13 CARO HANOS
94. REM*TO DEAL FOUR
lol
120 PRINT "ONE"'"TW
l.150 NEX
llol
```

```
lol
Nambes 10
MA REM *COUNT FRECUENCY OF OCCURANCE FOR RANDCM INTEIERS
100 DIM Srtor
loz Rem * initialize countine list
```



```
\120 nexET LET
34. rem, genemate ico mandom imtegers count in line llo
lol
l60 MELET
72 REM * PRINT RESULTS
MEM * PRINT RESUL
```



```
log mEXT
l
NG.10
l}1
```





A5:10	
6	
${ }^{\text {As }} 76$	
${ }^{\text {che }}$ C510	
As?atioo	
es?aso	
Aso	A103
astaso	
As? siop	
Chapter 3	
Secton 3-5	
Number	
	dim ac75)
	INPUT AS
	change as to a
	LET $L=A(1) 3$
132	
	FOR $J=1+\}$
160   170	If Aris $¢=$ ArJ2 THEN 200
190	LET $x(s)=x$
200	next J
	next it
$\underset{212}{212}$	LEET $x=1$
	IF $A(X)$ © $A(x+1)$ THEN 290
232	
234	REM * If $A(x)=A(x+1)$ THEN MOVE EACH
235	REM TYEM UP JE PGSITION
240	FOR $1=x+1$ To -1
250	LET ACII $=\mathrm{A}(1+1)$
	NEXT:
	LET $\mathrm{L}=$ ¢-
	00 T0 230
	LET $x=x+1$
	1F $x$ <t-1 thes 230
	LET $A(0)=$ L
	CHANGE A PRINT AS
340	END
N0	
? The guick batin fox jumped gier the hazy dogs  	
Number 2	
100	dmasctoge, ne20)
110	read N
	mat read usen)
	For in it To ${ }^{\text {N }}$,
140	
152	
154	rem * siarch for first space
160	FOR J E N(0) To 1 STEP ${ }^{-1}$
170	N(x) ${ }^{\text {t- }}$ - $\mathrm{N}(\mathrm{d})=32$ THEN 190
190	
200	print vses)



```
5:clom 3-5 tcontd
```



```
Number }
100 Dim ar(102, e(10)
loc
lol
$4,
$:40
lol
```



```
 REM* ASC(O) = 64 (SEE ASCH1 CODE)
```



```
 IF B(G) = 64, THEN 2%0
```



```
\a60 NEXTG
MgO PRINT BS; " "; AS
```



```
F|NN
lss7 100
l:5? A50
rs? stop
Chapters
section +.-2
log FILESTRY
110 IF END:1 THEA 200
30 LET I=0
\30 LET I= It \
```



```
La LET 1=1+1
l180 READ =11.1
M190 GOTO 170
M:0 ERO
GPEN-
first mpty recoro is
ftle size is 11
```



Clapter 7
Section 7 -2

100 primt "to fing "he distange between tho points"
160 PRINT "point a"
170 MPAT XIN:
180 PRINT MO:NT
190



PRINT "SOME" 3: "?

$\begin{array}{ll}330 & \text { PRINT } \\ 330 \\ \text { RUN } \\ \text { END }\end{array}$

TO Find the distance betwen two pomis

Numbiber 8

```
LET \(12=0\) (20). Y(20)
```

LET $12=0$ (20). Y(20)
LET N=M-001 THEN 18
LET N=M-001 THEN 18
LET $Y(N)=8$
G9TO
120
LET $Y(N)=8$
G9TO
120
FOR $p=1$ TO $N=1$

```
FOR \(p=1\) TO \(N=1\)
```




```
 IF Y(p) of Yeplititicy ebo
```

```
 IF Y(p) of Yeplititicy ebo
```








```
 IF M \(\rightarrow 0\) THEN 330
```

```
 IF M \(\rightarrow 0\) THEN 330
```




```
 NEXEXPT
```

        NEXEXPT
    mex

```
mex
```




```
S30
```



49.4	rem		
500	data	$1,2,4,7 \%$ $-3,9,4.5$	4,7, 4, ${ }_{4}$
520	data	-001,0,0:0	
530	EmD		

ERPENDICULAK BISECTOR of
INE SEGMENT GIVEN Two end points

peapendicular gisector of
LINE seghent - given two end points


PERPENDICULAR GISEGTOR OF


PERPENDICULAR BISEETOR of


Number 3
$\begin{array}{ll}100 & \text { print } \\ 110 & \text { gosyb } 500\end{array}$
110 Gosti 5000




1000 PGINT "PERPENDICllar"

$\begin{array}{ll}1100 & \text { GOTE } \\ 1000 \\ \text { PRIMT } & \text { "NEITHER" }\end{array}$



${ }_{1220}^{1.222}$ 6050 1200


S30 IF $A=0$ TEEN 5100



$\begin{array}{ll}5110 & \text { LET K } \\ 5120 \\ \text { PRINT "HORTZONTAL" }\end{array}$
S120 PRNT
S130 RETURM
S. 200 LTK K
S200
S210
LET K
PRI "
vertical
S220 RETURN
$\begin{array}{ll}5300 & \text { LET K K } \\ 5310 \\ 5320 \\ \text { PRINT MEANINGLESS" }\end{array}$
$\begin{array}{ll}5310 & \text { PRINT } \\ 5320 & \text { RETURN } \\ 5322 & \end{array}$
5322
5995
REM


## Chapter 7

ection -3


## REM THE FOLLOWING NEW LINES IN PROGRAM REM PYTH3 WILL FRODUCE THE DESIRED RESULTS <br> REM PYtH3 WILL PRODUCE THE DESIRED RESULTS


$\operatorname{LET} D=0(1)$
FOR $=8$ TO
EXT $P^{1 F}$ ABS $(D-D(P))$ ) . OQ0001 THEN AES
print "Equilateral and equiangular"
goto 110 print "getuse triangle hith long side determined ay
print "acute triangle"
PRINT AC
GOTO 110

$\begin{array}{llllll}20 & \text { DATA } & 1, & 1,0, & 5,0,1, & 6,15 \\ 30 & \text { DATA } & \text { DATA } & 0,0, & 0,3, & 4,0 \\ \text { DATA } & 1, & -2,6, & 1,2, & 9,8\end{array}$
$\stackrel{1}{2 \cdot a}$




Number 3





```
 \begin{tabular}{c}
\(\substack{\text { NEXT } \\
\text { ENT } \\
\text { ENT }}\) \\
\hline
\end{tabular}
```

$\begin{array}{ll}4 & 5 \\ 12 & 13 \\ 8 & 10 \\ 24 & 25 \\ 15 & 17 \\ 12 & 15 \\ 40 & 15 \\ 24 & 26 \\ 60 & 61 \\ 16 & 20 \\ 35 & 37 \\ 54 & 85 \\ 18 & 50 \\ 20 & 25 \\ 36 & 39 \\ 30 & 34 \\ 63 & 65 \\ 24 & 30 \\ 60 & 82\end{array}$

## Chapter 0

Section 8.1
(an


```
\(120 \operatorname{LET} W(w)=S(w)=P(w)=P(w+10)=0\)
33 NEXT M
```




```
 READ
PRINT
Fi
(X)
```



```
 PRINT
READ
R
R
```



```
 \({ }_{\text {print sym }}\)
 NEXT
PRTNT
 rem * Find avo print product
 PRINT "PROtuGT:"
FOR \(=1 \geqslant 0 A\)
```



```
 \(\frac{\text { next }}{\text { mex }}\)
```



```
 \(\underset{\substack{\text { NE } \times T \\ \text { PRTNT }}}{\substack{\text { Z }}}\)
\(\begin{array}{ll}370 & \text { PRINT } \\ 380 & 60 r 9 \\ & 110\end{array}\)
```



```
20 DATA
\(\begin{array}{lllll}3 & 2 & 0 & 2 & 1 \\ 2 & 5 & 2 & & 1\end{array}\)
\(\begin{array}{ll}3 & 2 \\ 3 & 3 \\ 3\end{array}\)
```



```
Chupter 9
Section 9-1
vanker 1
```




```
120
130
130
100
NEXY \(x=3\)
120
```





```
 LET \(A=F(x)+2\)
LET \(B=F(x-1) \times T(x+1)\)
190
200
202
2020
\(\begin{array}{ll}202 \\ 210 & \text { Eng } \\ \text { RuM }\end{array}\)
```

210
RuM
Na.



	1 $=1$ T0 12	
	LEF $S=S+1$	
	next 1 I Sits	
142		
	paint sh "gifts all together"	
RUN		
Nอ. 3		
350	gifts all together	
Chapt		
Sectio	n9-4	
Rumb	er +	
100	print "righ mavy points"s	
110	InPut n!	
120	LET $\mathrm{C}=0$	
	ramdomize	
140	FOR $\mathrm{N}=1$ TO N	
150	LET $\mathrm{x}=$ Rad	
160	LETY $\mathrm{Y}=$ R R ${ }^{\text {det }}$	
170	1F $\mathrm{x}+2+$	
180	Let $\mathrm{C}=\mathrm{C}+1$	
190	next $n$	
	priny ca "in the circlepi a*Cont	
210	EmD	
R		
No. 4		
H0\%	mavy points? 2500	
196	IN THE Clacle 3.1438	
Rux		
Na. 4		
нзх	mavy potmts? 2500	
195	In THE Circle 3.132 B	
Chapt	er 10	
Sectro	0101	
Numb	er !	
	DIM $5(3,4), P(4,1), M(3,12, T(1,4), A C$	(1,1)
	mat read sjp	
120	FOR R $=1$ T0 3	
130	For $C^{\text {c }}=1$ T0 ${ }^{\text {T0 }}$	
140		
150	NExT C	
150	next R	
162		
	mat $A=T * F$	
180	mat print a	
1 ga		
184	REM	
190	data 30,500,50,20, 50,31,40,10,	0,500,50,90
200	DATA L..39,.49,3.79	
210	END	
RUN		
No. ${ }^{1}$		
112	. 49	
Numb	er 4	
100	Dim $A(3,1), B(4,3), C(4,1)$, HS( 4 )	
110	mat read ar b, NS	
120	WAT $\mathrm{C}=\mathrm{B} * \mathrm{~A}$	
122		
130	FOR $\mathrm{t}=1$ to ${ }^{\text {to }}$	
140		
150	next 1	




## INDEX

$\mathrm{ABS}(\mathrm{X})$ function, 7
Algorithm, 10
Alphabetization, 42
AND, 29
Append statement, 55
Area, 72
Arithmetic mean, 137
Arithmetic operators, 4
Arithmetic sequence, 116
Arithmetic series, 122
Array; numeric, 15, 127 string, 34
ASCII code, 31, 35, 40, 44
ASCII files, 54
Assignment operator, 5
Assignment statement, 5, $31,40,47$
ATN(X) function, 11
Average, 137
Axes, 64, 68
Battle of numbers, 155 f
Binary files, 54, 57
Bubble sort, 140
Cartesian coordinates, 78
Census, 54
CHANGE statement, 40
Chess, 156
Circle, 74
CLK(X) function, 11
Coefficient matrix, 132
Coefficients, 101
Coinciding lines, 90
Collinear points, 78
Column vector, 127
Comma delimiter, 3,33
Common difference, 116
Common ratio, 117
Compound interest, 117
Computed G $\varnothing$ SUB statement, 15

Computed GФТФ statement, 3
Computer functions:
ABS (X), 7
ASC(I\$), 44
ATN(X), 11
CLK (X) , 11
$\mathrm{C} \square \mathrm{S}(\mathrm{X}), 11$
DEF, 12
EXP(X), 11
EXT\$( ), 44
$\operatorname{INT}(\mathrm{X}), 7,8$
$\operatorname{LEN}(\mathrm{A} \$), 35,40$
LゆG(X), 11
MAX, 29
MIN, 29
NUM, 18
RND, 9
RND(X), 8
SEG\$( ), 44
SGN(X), 7
SIN(X), 11
SQR(X), 7
TAB(X), 23, 64
TAN(X), 11
TIM(X), 11
TYP(N), 51
CФN, 19
Concatenation, 39
Constant matrix, 132
Content addressing, 52
Continuous function, 104
Convergence, 119
Correlation coefficient, linear, 143, 146
$\mathrm{C} \emptyset \mathrm{S}(\mathrm{X})$ function, 11
Cosine, 125
CREATE command, 58 , 61

DATA statement, 2, 43
Degree of a polynomial, 101

De la Loubere, 152
Delimiter; comma, 3, 25, 33
in a file, 47
semicolon, 3, 25, 33
Descartes' Rule of Signs, $112 f$
DIM statement, 10,35 , 40
Dispersion, 138
Distance, 72, 78f
Distance formula, 80
Divergence, 119
Dummy data, 2, 47, 48, 59,137
Dummy string, 38
Efficiency, 10, 42, 46, 102, 140
E-format, 5, 26
END statement, 2
EOF , 52
Error, 75, 112, 125
Error message, 48, 51
$\mathrm{EXP}(\mathrm{X})$ function, 11
EXTS( ) function, 44
Factor Theorem, 108
Fibonacci sequence, 115
Files, 46, 54
ASCII, 54
binary, 54,57
random access, 50,57f
sequential, 57
serial, $46,55,57$
teletype, 54
FILES statement, 47,55
FNEND statement, 29
Formatting, 25
FQR-NEXT statement, 9
Functions, computer; see Computer functions
Function, mathematical, 64

Games, 147, 154-159
Geometric sequence, 117
Geometric series, 122
G $Q$ SUB statement, 13
GФTด statement, 3
Graph, 64
Hero's formula, 100
Hypotenuse, 95
Identity matrix, 19, 132
IDN, 19
IF END statement, 48, 59
IF M $\varphi$ RE statement, 55
IF-THEN statement, 27
Inconsistent equations, 90
Indeterminant solution 89f
Initialization, 6
INPUT statement, 6, 31, 40
Integral zeros, 112
Interest, compound, 117
Intersecting lines, 84
INT(X) function, 7, 8
INV, 21, 131
Inverse of a matrix, 132
Knight's tour, 156ff
$\operatorname{LEN}(\mathrm{A} \$)$ function, 35, 40
LET statement, 5,40
Limit of a sequence, 119
Linear correlation coefficient, 143,146
List, 10
LIST command, 2
Logical operators:
AND, 29
( R , 29
NดT, 29
Logical value, 28
$L \emptyset G(X)$ function, 11
Loops, 9
nested, 16
Magic squares, 152ff
MA'T equals, 21
MAT INPUT, 18
MAT PRINT, 18, 43
MAT READ, 18, 43
Matrix, 127
coefficient, 132
constant, 132
identity, 19,132

Matrix algebra, 19
MAX function, 29
Median, 140
Midpoint, 75, 81
MIN function, 29
Monte Carlo, 126
Multiple assignment statement, 6
Multiple zeros, 111
NAME command, 2
Nested form of a polynomial, 102, 110
Nested loops, 16
NEW command, 2, 54
Noncollinear points, 94
Nonreal zeros, 104
N $\varnothing$ T, 29
NUM function, 18
Operators
arithmetic, 4
assignment, 5
logical, 27
relational, 2,3
$\varnothing \mathrm{R}, 29$
Ordering data, 140
Origin of a graph, 64
Parabola, 66
Parallel lines, 84
Pearson r, 146
Perpendicular bisector, 85
Perpendicular lines, 84
Plot, 64
Plotters, 64
Pointer, $51,55,59$
Polynomial, 12, 101
Polynomial equation, 104
Prettyprinting, 4
PRINT statement, 2, 40, 47, 81
PRINT USING statement, 25
Pseudo-random numbers, 8
Pythagorean Theorem, 95

Quadratic formula, 104, 111
Quotes, 33, 35
Radians, 11
Random access files, 57, 58

Random numbers, 147
RAND $\varnothing$ MIZE statement, 9

READ statement, 2, 31, 40,55
Record of storage, 47,58
Relational operators, 2 f
REM statement, 4
Remainder Theorem, 108
RESTQRE statement, 57
RETURN statement, 13
Right triangle, 79, 84, 95
RND function, 9
RND(X) function, 8
Row vector, 127
RUN command, 3
SAVE command, 54
Scale, 66
SCRATCH statement, 57
Sectors of storage, 47
SEG\$( ) function, 44
Semicolon delimiter, 3 , 33
Sequence; arithmetic, 116
defined, 115
Fibonacci, 115
geometric, 117
of partial sums, 122
Sequential files, 57
Serial files, 55
Series; arithmetic, 122
defined, 122
geometric, 122
SETW statement, 59
SGN(X) function, 7
Significant digits, 5
Similar triangles, 85
Simpsons' rule, 77
Simulation, 147
Simultaneous linear
equations, 88,131
SIN(X) function, 11
Slope, 81
positive, 82
negative, 82
Slope-intercept, 83
Solution matrix, 132
Spacing; comma, 43
semicolon, 43
Standard deviation, 137, 138
Statements:
APPEND, 55
ASSIGN, 47
assignment, 5, 31, 40

Statements (continued)	Storage, 59, 68	Undefined slope, 84,97
CHANGE, 40	String, 25, 31	Undefined solution, 89
computed GQSUB, 15	dummy, 38	User-defined function,
DATA, 2, 43	null, 50	12
DIM, 10, 35, 40	SQR(X) function, 7	multiple line, 29
END, 2	Subroutine, 13	
FILES, 47,55	Subscripted variable, 10	Variables, 4.
FNEND, 29	Synthetic division, 109	numeric, 31
F $\varphi$ R-NEXT, 9	System command, 2	$\text { string, } 31$
GqGUB, 13	CREATE, 58, 61	subscripted numeric,
GดTQ, 3	LIST, 2	10
	NAMET 2	subscripleu string, 94
IF M $\varphi$ RE, 55	NEW, 2, 54	Variance, 138, 142
IF-THEN, 27	QPEN, 47	Variation, 113
image, 25	RUN, 3	Vector; column, 127
INPUT, 6, 31, 40	SAVE, 54	row, 127
LET, 5, 40		
$\mathrm{MAT}, 18,19$	TAB(X) function, 23, 64 TAN(X) function 11	WRITE statement, 57
multiple assignment, 6 PRINT, 2, 31, 40	TAN(X) function, 11 Teletype files, 54	
PRINT'USING, 25	TIM(X) function, 11	X-axis, 65, 68
RANDQMIZE, 9	Transfer; conditional, 2	X-coordinate, 78
READ, 2, 31, 40,55	unconditional, 3	
REM, 4	Trapezoid method, 77	Y-axis, 65, 68
RESTQRE, 57	Trial and error, 10	Y-coordinate, 78
RETURN, 13	Triangles, similar, 85	
SCRATCH, 57	TRN, 21	ZER, 19
SETW, 59	Truth values, 27	Zeros; integral, 112
STФP, 5	TYP(N) function, 51	multiple, 111
WRITE, 57		nonreal, 104
ST $\emptyset \mathrm{P}$ statement, 5	Undefined condition, 82	real, 104

## ADVANCED BASIC:

 Applications and ProblemsJames S. Coan

Now you can extend your expertise in the BASIC language with this book of advanced techniques and applications of the BASIC language. It allows you to gradually increase both your understanding of concepts and your ability to write programs. The development of each topic progresses from simple to more sophisticated problems and is accompanied by many sample programs to clarify the discussions.

ADVANCED BASIC opens with a review chapter on the elementary points of BASIC. Then, the book covers extended features, strings and files, and the applications of the BASIC language in such areas as: coordinate geometry, area, sequences and series, polynomials, graphing, simulations and games. Summaries and problem exercises end each section.

## Other books of interest ...

## BASIC BASIC:

An Introduction to Computer Programming in BASIC Language
James S. Coan
This poputar text for high school and college students integrates programming in BASIC language and the teaching of mathematics. Each topic begins with a short, complete program and moves to more sophisticated problems. The use of flowcharts is encouraged as an aid in writing programs. Summaries and questions review important concepts. \#5872-1, paper, \#5873-X, cloth, 256 pages, $6 \times 9$, illus.

## THE BASIC WORKBOOK:

## Creative Techniques for Beginning Programmers

Kenneth E. Schoman, Jr.

A hands-on approach to learning BASIC and the fundamentals of problem-solving using a computer. Through many exercises, you develop a workable BASIC vocabulary, a feeling for the logic and intrigue of programming algorithms, and the self-contidence needed to use a computer in a variety of applications. \#5104-2, paper, 128 pages, $81 / 2 \times 11$, illus.


[^0]:    *The programs of Sec. $3-4$ were run on a Hewlett Packard Computer.

[^1]:    *The programs of Sec. 3.5 were run on the General Electric Information Services time sharing system.

