o

AOVANOEO /
COMMODORE

REVEAI.ED

-2 L o 7 T A L M L L Taes LN

Advanced Commodore 64 BASIC
Revealed

Also by Nick Hampshire

The Commodore 64 ROMs Revealed
0 00 383087 X

Advanced Commodore 64 Graphics and Sound
0 00 383089 6

The Commodore 64 Kernal and Hardware Revealed
0 00 383090 X

The Commodore 64 Disk Drive Revealed
0 00 383091 8

Advanced
Commodore 64
BASIC Revealed

Nick Hampshire

with Richard Franklin and Carl Graham

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © Nick Hampshire 1985

British Library Cataloguing in Publication Data
Hampshire, Nick

Advanced Commodore 64 BASIC Revealed

|. Commodore 64 (Computer)—Programming

2. Basic (Computer program language)

1. Title I1. Franklin, Richard I11. Graham, Carl
001.6424 QA76.8.C64

ISBN 0-00-383088-8

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or transmitted,

in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Contents

Preface

1 Memory Utilisation by BASIC

2 Arithmetic Processing by BASIC

3 The Keywords of BASIC

4 BASIC Wedges and Vectors

5 Extended BASIC - A Complete Package
Index

Vi

30
52
109
129

212

Preface

Whether you program the CBM 64 in BASIC or machine code, an
understanding of how the BASIC interpreter works is incalculable in any
advanced programming. This book delves into the way the interpreter works
and should be used in conjunction with Volume 1 of this series, The
Commodore 64 ROMs Revealed, when using the interpreter routines within a
machine code program.

Knowing how the interpreter operates enables one to perform many
interesting functions, probably the most exciting of which is the extension of
BASIC with the addition of extra commands, keywords and functions. This
book shows exactly how to extend BASIC and includes a package of machine
code routines which add over thirty extra commands and functions which
enormously improve the power of BASIC. It should be noted that a further set
of extended BASIC commands for graphics and sound are contained in Volume
3, Advanced Commodore 64 Graphics and Sound.

This book is the product of many years working on Commodore machines,
and I am confident that it provides the most complete, interesting and useful
" information available from any source. All serious programmers should find
this an invaluable and constant reference book.

Nick Hampshire

Chapter One
Memory Utilisation by BASIC

1.1 Memory usage

SFFFE (65535)
8K HI RAM
T (bit 1 of SO00T)
KERNAL ROM 0= RAM
1 = KERNAL ROM
SEO00 e (ST —————— -
CHARACIERSEL CIA 1. CIA 2(S. Bus. P.ULPY) .
(bt 2 ol SO00T SDCoo (553200 4K RAM
N . Colour Ram Nibbles maps to SDO00 when
U OHAR ROM SDRo0 (55296) bits 0 & 1 0f SO001 = 0
1=1/OROM/RAM VICILSID
SDHO0o (53248)
4K RAM
SC000 (49152)
BASIC 8K LO RAM
INTERPRETER (bit 0 0 SO001)
ROM 0=RAM
' 1 = BASIC ROM
SA000 (40960) [T
External
ROM
8K ROM Cartridge
maps here
SRO00
(32768)
BASIC
User RAM

(38912 Bytes)

$4000
(16384)
HI-RES Screen
maps here
sw000 | feeen
VIC 1T Chip sees (8192)
this 16K block
on power-up
SO800 (2018) ——————— -
Screen (1K) HI-RES Colour Table
S0400 (1024)
Workspace (1K)
i’r<»cess6 R cgis0 1) |
0000 rRegS0

Fig. 1.1. Commodore 64 memory architecture map.

2 Advanced Commodore 64 BASIC Revealed

The 6519 microprocessor used in the CBM 64 is capable of addressing up to
65536 bytes of memory. The 64 actually has more memory than this - a total of
nearly 88K - and this is accessible by a method known as bank switching. The
64K addressable area of memory is divided into blocks, each having its own
function. In the normal memory configuration all 64K of available memory
space is allocated to ROM (containing the system software) or RAM memory
for storage of variables and programs, and I/O to control the system input and
output devices. This division of memory space into blocks is shown in Fig. 1.1,
and an understanding of the function of each block is essential if full useis to be
made of the CBM 64. The following is a description of each of the memory
divisions.

(1) Processor register - hex $0¢@, $¢1 - decimal §,1. These two memory
locations are the two I/O port control registers on the 651¢) microprocessor
chip. Address § is the data direction port. Any bit set to one will define its
corresponding I/ O line as an output; azero will define it as an input. The normal
value of the data direction port is binary @@ 141111 (three input lines and five
output lines). The data direction port should, in general, never be changed since
these 1/O lines are used to define the 64 system architecture. Location 1 is the
associated input/output port. In the normal system configuration this location
contains, in binary, §@119111. The function of each of these lines is as follows:

Line Input/output State Function

0 output high LORAM (¢ =switch Basic ROM out)

1 output high HIRAM (f=switch kernal ROM out)

2 output high CHAREN () =switch character ROM in)
3 output low cassette write line

4 input high cassette sense switch () =switch down)

5 output high cassette motor control (f=on, 1=off)

6 input low undefined

7 input low undefined

(2) System variable workspace — hex $¢002 to $3FF - decimal 2 to 1923. This
area of RAM memory is used to store system variables, buffers, jump vectors
and the processor stack. The contents of this area areshowninTable 1.1 on pages
24-28. This table shows not only the location, power up contents and function of
each location but also shows how putting different values into certain locations
can be used to obtain a range of different effects.

(3) Screen RAM - hex $040¢ to $¢7FF — decimal 1$24 to 2¢47. This area is
used to store the ASCII character codes of the characters displayed on the
screen. Each memory location corresponds to a character location on the
screen. The locations $§7F8 to $¢7FF (decimal 2040 to 2047) are used as the
sprite definition pointers.

Memory Utilisation by BASIC 3

(4) User RAM area - hex $0800 to $9FFF - decimal 2048 to 4¢959. This area
of memory is used to store programs, data, etc.

(5) Basic interpreter ROM - hex $APP@ to SBFFF - decimal 49960 to 49151.
The interpreter translates the high level Basic program, step by step, into a series
of machine code routines, performing the functions required to execute each
command. These routines can be used by other machine code programs; this is
dealt with in Chapter 3. A complete annotated listing of the Basic interpreter is
contained in The Commodore 64 ROMs Revealed in this series.

(6) Free machine code programming RAM - hex $CPP to SCFFF - decimal
49152t0 53247. A 4K block of memory which is not used by Basic and therefore
is safe from use by Basic variables and can thus be used to store machine code
programs or data.

(7) Video interface controller chip - hex $D@P@ to SD3FF - decimal 53248 to
54271. This chip uses the first 47 locations of this 1K block (all other locations
are unusable). The VIC chip controls the video display, utilising the screen
RAM and colour nibble RAM. A full explanation of the function and
operation of this chip is given in The Commodore 64 Kernal and Hardware
Revealed in this series.

(8) Sound interface device - hex $D4p¢) to SD7FF - decimal 54272 to 55295.
This uses the first 29 locations of this 1K block (all other locations are unusable).
The SID chip controls the sound generation of the Commodore 64. A full
explanation of the operation of this chip is given in The Commodore 64 Kernal
and Hardware Revealed.

(9) Colour nibble memory - hex $D80@ to SDBFF - decimal 55296 to 56319.
This 1K block of memory parallels the screen memory and is used to store the
character colour. It should be noted that this area of memory is only 4 bits wide
(normal memory is 8 bits wide).

(1¢) Complex interface adaptor chip #1 - hex $DCP@ to SDDFF - decimal
56320 to 56831. There are two of these I/O devices. The first is the keyboard
controller device and is connected to the IRQ line; the second controls the serial
I/O ports and provides for the user port. It is connected to the NMI line.
Further detailed information on these devices is given in The Commodore 64
Kernal and Hardware Revealed.

(11) Basic ROM extension - hex SEQ@Q to SE4FF - decimal 57344 to 58623.
This area contains the last section of the Basic interpreter software.

(12) Kernal ROM - hex $E509 to SFFFF - decimal 58624 to 65535. The
operating system controls the functioning of the Commodore 64 system, such as
initialisation on power up, communications with peripheral devices, screen
display and editing, etc. The operating system normally works in conjunction
with the Basic interpreter, but the routines within it can be used by any machine
code program requiring the operating system functions. A complete annotated
listing of the kernal is given in The Commodore 64 ROMs Revealed in this

4 Advanced Commodore 64 BASIC Revealed

series, and further information on using these routines is given in The
Commodore 64 Kernal and Hardware Revealed.

1.2 Program storage

1.2.1 The input of a program line

When a program line is entered on the keyboard it is first written into the
keyboard buffer. The keyboard buffer is a ten byte block of memory which is
used to store keyboard entries temporarily as a first in first out buffer; this is
necessary to ensure that no keyboard entries are lost as a result of the system
being busy. The operating system routine which enters characters into the
keyboard buffer is located at SEA87 and is called by the 6§ cycle per second
keyboard scanning interrupt.

The keyboard scanning routine takes any keypress, converts it to the correct
ASCII code and stores it in the keyboard buffer. If the keyboard buffer is filled,
then any further keypresses are ignored until characters are removed by the
routine at $ESCD. The routine to remove characters from the keyboard buffer
is called either by one of the routines requesting an input from keyboard or by
the main warm start routine via the line input routine. The routine to remove
characters from the keyboard buffer first blinks the cursor, then removes a
character (if there are any) from the keyboard buffer, and in so doing moves all
characters in the keyboard buffer down. It then checks that the key pressed was
neither the RUN/STOP key nor the RETURN key; if it is neither of these then
the character is displayed on the screen. This process is continued until a
RETURN key is found, whereupon the line displayed upon the screen is copied
into the Basic input buffer.

The Basic input buffer is a block of memory 88 bytes long which is used to
store a Basic line when first input, whether it is a program line or a direct mode
command. When the warm start routine finds an entry in this buffer with its
associated pointers it checks whether the first character in the buffer is a
numeric character. If it is numeric then the line is crunched (this converts any
Basic keywords into tokens) and then either a line insert or line delete is
performed. If the first character is not numeric then the line is crunched and
executed, the control jumps to the error checking routine and READY is
printed on the screen. After completing either operation the warm start routine
returns to get another input.

A flow diagram of the complete character and program line input procedure
is shown in Fig. 1.2 on pages S and 6.

1.2.2 The tokenised BASIC command

The program line stored in the Basic input buffer is compressed and formatted
by the crunch routine. The compression converts each variable length Basic
keyword command into a single byte token. The purpose of this is principally to
reduce the amount of memory required to store a program, therefore allowing
longer programs to be run. Each program line is thus stored in a specific format

Memory Utilisation by BASIC 5

using the compressed Basic commands. Hence the command PRINT, instead of
being stored as five ASCII characters, is stored in a single byte as the decimal
value 152. When a program is listed the text compression process is reversed; as
far as the user is concerned the program is stored in the same form as it was
written.

The following is an example of a tokenised Basic line:

Input IF INT (A) > 5 THEN PRINT TAB(X)
Tokenised 8B B5 28 41 29 3E 35 A7 99 A3 58 29

One useful result of text compression, which is well known to most
programmers, is the shorthand way of writing Basic commands either in
program or direct mode. The rule is that any character in the keyword, except
the first or last, can be shifted to terminate that word. A table of all the Basic
keywords and their associated tokens is given in Table 1.2 on pages 28-29.

The token value given to a Basic command is a pointer to a table of reserved
command words located between $SAPIE and $AI9D and a table of start
addresses of Basic commands located at SAPPC to $AP8P. By subtracting 127
from the token value the number of the word in that table can be obtained. The
table of reserved commands is used when the commands are crunched. The
crunching routine simply scans down the table looking for a word match and
counts the number of words tested to obtain the token value. The list routine
does the reverse; it scans past the number of words in the table indicated by the
token value, then copies the command word into the buffer. The table of
execution addresses is used when the command is executed to provide the jump
address to the routine which performs that command.

The storage of a program as tokens means that the actual keywords used in a
program can be changed without affecting the program’s execution. The
keywords can be changed by copying the Basic interpreter into RAM and then
changing the keyword tables at the start of the interpreter. This will not alter the
operation of a Basic program; it will simply change the way it is entered and
listed.

1.2.3 Program storage format

Having converted the Basic command into a single byte token the program line
is stored together with the line number and a link address at a location just
above that of the last line entered. Assuming it is the first line of the program
being entered, it will be entered into the following memory locations using this
format:

$08p(0-2048 — contents

$08(1-2049 - link address Isb (points to starting location of next line)
$08(32-205p — link address msb

$¢8(33-2051 - line number Isb

$08p4-2052 — line number msb

6 Advanced Commodore 64 BASIC Revealed

@—o

Error Routine ($E37B)

a, Clear 1/0 Channels
b, Initialise Basic
c, Jump Via Error Message Ram Vector ($0300)

Is x Register > 128

Print ‘'Ready’ ($A474) And Set into Direct Mode

Output Error Message ($A434A)

$A480

Input Waiting Loop ($A480) via Warm Start Ram
Vector ($0302)

$A480

Get Basic Line into Input Buffer ($A560)

a, Get Character from Keyboard Buffer

b, Test if Return Key

¢, Place in Line Input Buffer ($0200 up)

d, Test if Line More than 88 Characters Long

s Line More than 88 Characters Long

Is Character Return Key

Output Error Message ($A437A)
‘String Too Long’

Output Carriage Return to Buffer ($AACA)

Set Charget to Point to Start of Line Input
Buffer ($A486)

Charget ($0073) to Get Next Character from

Buffer

Yes

($A4AE)
Is Character a Null

Fig. 1.2. Flow diagram of interpreter BASIC line input.

Memory Utilisation by BASIC 7

Direct Mode Program Line Insert/Delete
Tokenise Basic Line ($A579) CLR +Insert Progam Line ($A49C)

Execute Command A7E1
mmand ~ (SA7E1) Convert Line Number to 16 Bit Binary

Jump to E te Basic Stat t Ram
Vector ($0308) Format ($A96B)
Charget to Get Next Character Tokenise Basic Line ($A579)

Execute Statement ($SA7ED) Calculate Address of Line ($A613)

Insert Program Line into Program
Memory at Correct Position and Rechain

($A4ED)

(
Main interpreter Loop
Is there another Statement?

$E386 Execute 'END" (SAB8AB)

Fig. 1.2. cont.

$0805-2053 — start of compressed Basic text; the number of bytes
occupied is variable
$p8xx-2xxx - end of line flagged by ¢

A Basic program is stored as a series of blocks, each of variable length and
representing one line in the program. Each block has a fixed format and all
blocks are connected via a link in a sequential list structure. Each line in a
program is stored in memory in the correct position dictated by the magnitude
of its line number, thus it will be the line with the lowest line number which is
stored at the bottom of memory - 2049 up. When a new line is added to a
program it is inserted at the correct position and all lines above it are moved up
in memory by the size of the inserted line and the links reconnected. The line
number is stored in bytes 3 and 4 of a block in a 16 bit binary format. When a
program is being run, the current line number being executed is stored in
locations $39,$3A. A direct mode of operation is indicated when the contents of
location $3A contain the value $FF. The last byte of every block of program line
is flagged by a byte, the contents of which is zero. The structure of a program is
shown in Fig. 1.3.

The double byte link address which points to the start of the next program

8 Advanced Commodore 64 BASIC Revealed

Start of Basic Program at Location 2049

2048 2049 2050
Link Address Line Number 1 Tokenised Line Code
g Pointer to Line No. 2 Q

[[

Link Address Line Number 2 Tokenised

Pointer to Line No. 3 Line Code

l

Line Number 3 Tokenised Line Code @

Link Address

Pointer to Program
Terminator

Program Terminator Bytes

@ @ ——> END

Fig. 1.3. Program line linkage.

line is stored as the first two bytes of a program line block. When lines are added
or deleted these link addresses are all recalculated in a re-chaining process. The
link address of the last line of the program points not to another line but to two
bytes, the contents of which are zero. This forms a link address to zero. It should
be noted that when a NEW command is executed it does not erase the whole
contents of memory but simply sets the link address of the first line to zero. By
reconstructing this link address the program can be restored after a NEW
command. Changing link addresses can also be used to hide program lines as
part of a security technique or to store machine code subroutines or data.

1.2.4 Using a knowledge of program storage

Having a knowledge of the way a program is stored allows one to perform
modifications to program lines. This can be useful in many ways. Examples of
the kind of application are line renumbering, an auto line number generator,
program compactors, and many others. A line renumbering routine is quite

Memory Utilisation by BASIC 9

simple, entailing finding the line number of each program line and changingit to
the new number. An example of a Basic program to do this is shown in Program
1. This program is designed to be appended to the top of a program and can then
be run with a RUN 61¢@@. It should be noted, however, that although this
routine will renumber the line numbers it will not renumber jump and branch
addresses. For a full renumber routine in machine code which renumbers
everything see Chapter 5.

61609 REM #¥% LINE REHUMBER ##
61619 INPUT"START LIME.END LINE .INC";3.E.I
61829 INPUT"NEW START LINE";N
6103@ C=25¢6
61049 L=PEEK(43>+FEEK(44)%C
61958 A=l
61063 H=FEEK{RA+2)+PEEKA+3)%C
61978 L=PEEK(AX+PEEK(A+12¥C
61686 IFL=0 THENEND
61090 IFH<S THEN616%8
61100 IFH>E OR H>=32767 THENEND
61118 POKER+2,H AND Z55
61128 POKER+3,H/256
61139 N=MH+I
61159 GOTOs1@5a

Program 1.

An auto line numbering program is shown in Program 2. Like renumber, this
is intended to be appended at the top of a program, and should be entered before
starting to write the program. When this program is run it prints the line number
on the screen. You then type in the desired program line, and on pressing return
the program forces the input line into the low line number part of the program
before placing a new line number on the screen. The program line is entered into
the program using a special technique which allows program lines to be entered
from within a running Basic program. This technique uses the keyboard buffer
into which two carriage return characters are poked, the buffer length pointer
being set to two characters. The first of these carriage returns fools the
interpreter into accepting the line, as entered, and inserts it into the program,
taking care of the correct chaining and tokenisation. The second carriage return
performs a forced jump and auto run in direct mode to restart the auto line
numbering program with the GOTO61040 printed on the screen following the
entered line. A much more efficient auto line numbering routine written in
machine code is given in Chapter 5 as part of the Basic aid package.

618@@ REM ##% AUTO LINE HUMBER ##¥
61018 INFUT"STARTING LINE NUMBER. INCREMEMT":E.L
61628 PRIMT" BIE"
610230 POKESGS, L :GOTO51868
61846 B=FEEK(828)%256+FEEK(823)
616858 L=PEEK{(838>
61855 FRINT"N "
61868 PRINT" o
61070 PRIMTE,
€18889 OPEN1.©: INPUT#1.A$:FRINT: CLOSE1
616599 PRINT"GOTOS1648TITY;
61108 FOKE128.2:POKES31,13:POKES32,13
51118 B=B+L
011¢ PORES23, INT(BA/2562
S1122 POKES23, B-INT(R/256>#256 ENI

Program 2.

T

10 Advanced Commodore 64 BASIC Revealed

The program compactor in Program 3 uses several different techniques to
remove all REM statements. This will speed up both execution time and tape
loading time as well as reducing the amount of memory required. As with the
preceding two routines it is designed to be appended temporarily to the top of
the program. It locaies lines containing a REM command token and then
removes all following characters by first replacing them with space characters.
The line is then displayed on the screen and the terminating spaces removed by
using the auto line entry procedure used in Program 2. This procedure removes
the spaces and re-chains the program, having moved it all down in memory.
Chapter S contains a full program compactor routine in machine code which is
much more efficient.

61080 REM #4k REM REMOVER ##%

61018 L=PEEK(43)+PEEK(44>#256

€1628 G0TOS51848

61836 L=PEEK(828)+PEEK(823)%256

61840 N=PEEK{L>+FEEK{L+1)%256

616858 IFL=BTHEMEHND

61068 L=L+4:P=L

61078 Q=PEEKCL>

61080 IFR=BTHENL=N:50T0&1648

61698 IFQ=34THEN&6200@

61168 IF@=143THEN62S6@

61118 L=L+1

6112@ GOTO&1078

620009 L=L+1

62018 Q=PEEK(L>

62820 JFQA=0THENL=N:GOT0&610840

62030 IFG=34THEN&11186

620406 GOTO6ZA0O

62508 IFL=PTHENPOKEL .58 :G60T062546

62518 IFL=P+1THEN62536

62528 IFPEEK(L-1>=58THENFOKEL-1,32

62538 POKEL.32

62548 L=L+1

62358 IFPEEK(L)=6THEN62570

62568 GOTO62538

6257@ PRINT"IIMEL IST" ; FEEK(P-2>+FEEK(P-1)#256
62588 PRINT"M "
6259@ FRINT" "
2669 FRIMT"REG0TO &£1603a8";

62610 POKES28,P-4 AND2SS

62628 POKE&29, (P-4)/256

6263@ POKE198, 3:FPOKES31, 13:POKE6E32, 13 FOKEESES, 13
62648 END

Program 3.

The above are just three of the many possible ways in which an understanding
of the way a program is stored can be useful.

1.3 Data storage

The entire area of memory between $080¢9 and SAPPP not used for program
storage is available for data storage. In addition data can be stored within a
program either as DATA statements or defined variables, or directly poked into
the 4K block of memory from $CP@¢ to SCFFF.

Memory Utilisation by BASIC 11

1.3.1 DATA statements

The simplest form of data storage is using data statements. The data in a data
statement is stored as ASCII characters on a data statement line within a
program. The data is accessed by the program using the READ command.
However, data storage in data statements can be added to or changed only by
adding or amending program lines in the direct mode. Though the routine in
Program 4 can be used to add DATA statements to a program while it is
running, this is done by printing the line number followed by DATA and the
string or value on the screen, and using the keyboard buffer to force a carriage
return and thereby add the line to the program. It should be noted that this
procedure will delete all variables and pointers currently used by the program.
Another limitation is that data can be accessed from data statements only in a
serial mode. This means that to find one particular item the whole table of data
must be read. The pointer to the current data statement is stored in locations
$41,$42 and the data statement line number is stored in locations $3F,$40.
Manipulation of the contents of these locations provides a means of overcoming
this serial access limitation (see the RESTORE command in Chapter 4).

61060 REM ## DATA INPUTTER ##%
61618 INFUT"STARTING LINE NUMBER. INCREMENWT";RB.L
61826 PRINT" Hlkla"
61838 POKESR9, L :GOTOs1060
61848 B=PEEK(328)¥256+PEEK(829)
61850 L=PEEK(838>
61855 PRINT"T] "
61868 FRINT" "
61878 FRINTE; "BDATAR":
51828 OPEN1,8: INFUT#1.A%:PRINT:CLOSEL
616968 PRINT"GOTOS18407TIT ",
61108 POKE193,2:POKES31,13:POKES32,13
61116 B=B+L
61122 POKESZ3, INT(BA2562
61137 POVESZI, B-INT(R/256)#256 :END
Program 4.

1.3.2 Types of variables

Data not stored within the program is stored in an area of memory above the
Basic text area as variables. Variables can be divided into two groups. Simple
variables are of the kind used in the following statement:

LET X=67

where X is a simple variable. Array variables are defined by a DIM statement
and contain more than one value. The number of values is determined by the
number of elements in the DIM statement. For both groups of variables there
are three types of data - real or floating point numbers, integer numbers and
character or string variables where words are stored rather than numbers. The
interpreter differentiates between different types of variable by testing the
character immediately following the variable name. Thus a variable name
followed by a ‘$’ denotes that it is a string variable, a ‘%’ denotes an integer
variable, and if neither of these characters is present, then the variable is a
floating point value. If the character following the variable type determinating

12 Advanced Commodore 64 BASIC Revealed

character is a ‘(’ then this denotes that the variable is an array element. Variable
names are thus subject to the following rules:

(1) The first character must be alphabetic.
(2) The second character can be either alphabetic or numeric.

(3) Any further alphanumeric characters are valid but are ignored by the
interpreter, thus variable name ABCDE is, as far as the processor is concerned,
identical to variable name ABXYZ. Variable names have a practical upper limit
on size of 8() characters minus the length of the variable plus one. Long variable
names are really only of use to aid comprehension of a program, and since they
slow down program execution time should be limited in the final running
version. It should be noted that the variable name must never be a reserved Basic
word or contain within it a reserved Basic word. Thus a variable called PRINT
would be invalid, as would a variable called SPRINT; either of these will give a
Syntax error.

(4) The next character after the variable name denotes the variable type; ‘$’ =
string and ‘9%’ = integer; default is floating point.

(5) If the next character is a ‘(then this denotes a subscripted array variable.

(6) If the variable is an array variable then the following values denote the
position of the variable within the array.

One useful function when writing a Basic program is to be able to display all
variables currently being used and their contents. This is performed by the
variable dump routine in Chapter 5.

1.3.3 Simple variables
Simple variables of whatever data type are stored immediately above the Basic
program storage area, and start at an address pointed to by the contents of
locations $2D, $2E. The amount of memory used to store these variables
depends on the number of variables used in the program. Each variable occupies
seven bytes of memory, and the top of variables storage area where the next
variable may be stored is pointed to by the address in locations $2D, $2E.
For all types of simple variables the first two bytes contain the variable name,
the high bit of either byte being used to flag the variable type thus giving four
variable types. Examples are:

Variable Variable
name name storage Variable type
AA 65 65 floating point
AAY 193 193 integer
AAS 65 193 string

FN(AA) 193 65 function definition

Memory Utilisation by BASIC 13

Of these four types of variable the first two include the variable value within
the seven bytes of the variable, and the last two contain pointers to the variable
position in memory (and in the case of a function definition also to the
definition). When the program is run and a variable name encountered, the
table of variables is sequentially searched for the required variable. If the
variable is found then its value is retrieved, otherwise it is added to the end of the
variable table. Since each variable occupies the same memory space - seven
bytes — the scanning of the variable table is done quite rapidly. However, if speed
is important it is a good idea to define all variables required by a speed sensitive
portion of the program at the beginning. This will set them up at the start of the
variable table and therefore speed up access.

The contents and format of the last five bytes of each variable are different for
each variable type. These are shown in Fig. 1.4. The format used to store
floating point and integer values is covered in detail in Chapter 2. The pointer
used by string variables is a 16 bit address of the start of the string in memory.
This can be any RAM memory location, either within the Basic program or
from the area of memory at the top of RAM where Basic stores all calculated
strings. Byte three of the string variable contains the length of the string. The
string, when accessed, is thus fetched from the string pointer location up for the
number of bytes indicated by the string length. The format of a function
definition variable is different in that it contains two pointers. The first pointer is
to the actual definition which is contained within the Basic program. It points to
the character following the equals sign in the definition. The second pointer is to
the variable used in the definition. This points to the exponent of the variable
which is stored in normal floating point format.

Basic will allow variables to be retained when one program is loaded from
another, provided the second program is shorter than the first. This could create
problems since some strings and all functions have pointers to data within the
Basic program. With a new program these pointers will no longer point to
correct values and will therefore in most cases give rise to a Syntax error
message.

1.3.4 Array variables

The storage of array variables is considerably more complex than that of simple
variables. Arrays are stored immediately above the top of the simple variables
storage area and their beginning is pointed to by locations $2F,$3¢). The end of
the array storage area is pointed to by locations $31,$32. It should be noted that
adding an extra variable to the simple variable table necessitates moving all
array variables up seven bytes in memory, a process which considerably slows
down program execution time, and is another reason why it is desirable always
to define all simple variables at the start of a program.

Unlike simple variables the three different types of array variables (floating
point, integer and string) all use different amounts of memory. However, their
general organisation is very similar. All arrays consist of a header followed by a
string of variables. The first two bytes of the header contain the array name and
use the same convention as simple variables to determine the array variable type
(i.e. a setting of bit seven of either character). This is followed by a two byte

14 Advanced Commodore 64 BASIC Revealed

Integer Variables
Byte 1 2 3 4 5 6 7

l

First Second MsB Ls8
Characters of Variable | Integer Vvalue in 16Bit

Name 2's Complement
ASCII ASCII Signed Binary g /@ /®
+128 +128
or 128

String Variables

Byte 1 2 3 4 5 6 7
First Second LSB | MSB
Characters of Variable | String 16 Bit Address where
Name Length | String Start is Stored
ASCII ASClI in Memory ¢ @
128
or 128

Floating Point Variables

Byte 1 2 3 4 5 6 7
First Second Exponent 4 Bit Mantissa
Character of Variable in Signed
Name 2's
ASCII ASCll Compl

Bit Seven contains Mantissa Sign

i U

Function Definition

Byte 1 2 3 4 5 6 7
. LSB | MsB Unused
First Second LSB MSB 16 Bit Address Pointer | except
Characters of Variable | 16 Bit Address to Variable used in when
Name Pointer to Definition Definition (Points to the| Definition
ASClI ASCII (Byte after =Sign) Exponent of a simple |Set Up
+128 o & Floating Point Variable
Variable) Contents
| l

Fig. 1.4. Storage of BASIC simple variables in memory.

length of the full array entry. The next byte contains the number of dimensions
in the array. This is followed by a number of two byte values each containing the
value of the dimension, starting with the dimension number mentioned in byte
five of the header and descending to dimension zero. This header is then
followed by the data. An example of a typical header is as follows:

Memory Utilisation by BASIC 15
Array AB (5,10,2)

Bytes # Contents Function

1 65 first byte of array name (ASCII A)

2 66 second byte of array name (ASCII B)

3 233 high byte of array length

4 3 high byte of array length (1@ 1 bytes)

5 3 number of dimensions

6 ¢ high byte of number of elements in dimension 2
7 3 low byte of number of elements in dimension 2
8 ¢ high byte of number of elements in dimension 1
9 11 low byte of number of elements in dimension |
19 @ high byte of number of elements in dimension §
11 6 low byte of number of elements in dimension @

12-1091 x ' 990 bytes of array data in blocks of 5 bytes (these are

all floating point variables)

Note: If the array was an integer array then byte #1 would be 193 and byte #2
194, if a string array then byte #2 would be 194.

Data is stored more efficiently in arrays than in simple variables. Whereas
simple variables all occupy seven bytes of memory, array variables occupy five
bytes for a floating point variable, two bytes for integers, and three bytes for
strings. The format of the number in numerical variables is identical to that of
simple variables and is covered in detail in Chapter 4. The three byte string
variables consist of a length value in byte one and a two byte pointer to the
location of the string in memory. The format of storage of array variables and
the array header is shown in Fig. 1.5.

It is quite easy to calculate the amount of memory required by a given array.
This is the same value as that stored in bytes three and four of the header.
Program 5 can be used:

5 FOKES3281. 14
? FRINT" =[Tallal"
18 INFUT"HUMBER OF DIMENSICNS IN ARRAY";HN
15 E=1:PRINT
28 FORQ=1TON
30 PRINT"HUMBER OF ELEMENTS IN DIMENSIOH ":@Q
35 INPUT"®",; I:PRINT"&"
48 I=I+1:E=E%I
58 NEXTQ
€0 PRINT"HMARIABLE TYFE - S,F,I "
78 GETA$: IFA$=""THENTO
88 IFA$="S"THENA=3:PRINT"STRING" :GOTO12&
93 IFA$="F"THEMA=S:PRINT"FLOATIHG FOINT":GOTO120
166 IFA$="I"THENA=2:FRINT"INTEGER" :GOUTO12@
118 GoTov@
128 X=5+(2#N2+(E¥A)
138 FRINT"HMEMORY REQUIRED EY ARRAY IS".¥:"BYTES"

Program 5.

16 Advanced Commodore 64 BASIC Revealed

Byte 1 2 3 4 5 6 7

First [Second
Character of

Array Name

LSB | MsB MSB LSB | MsB
Number
of

If Floating Point Dimen— |Number of El

of El

ASCIl ASCll | Array Length [Sions in

in

Array N
l or @ y bi on N |Di

If Integer
ASCII ASCIl

+128 [+128 or
128

If String
ASCIl ASCHl
+128

ion N-1

Number of Elements
in

Dimension 9

1
’ El Element |E

Array Header 1 2

B

r B
xponent
in Signed
2's Com-— rBit 7 contains Mantissa Sign
pliment |¥| 1 | |

Element
3 =N

4 IByte Mahtissa

MSB I LSB
Integer Value in 16
Bit 2's Compliment
Signed Binary

String Length

I

LsB IMSB A|B
16 Bit Address

String | where String

Start is Stored
in Memory

Start Address of String

Length

Fig. 1.5. Storage of array variables in memory.

String Stored in Memory

Memory Utilisation by BASIC 17

All the variables within an array are held in a strictly defined order. This is
best demonstrated in the following example, for an array A(3,2).

Variable # Array element

A(D.9)
A(1,9)
A(2.9)
A(3.P)
A, 1)
A(1,1)
A1)
AG3,1)
A.2)
19 A(1,2)
1 A2,2)
12 AG,2)

0 NN AW —

O

As can be seen from this table the first dimension is rotated first, followed by
the second, then the third and so on. Thus if there were a third dimension to the
above example then element 1 in the third dimension would be accessed between
variables 13 and 24. The position of any variable within the array storage area
can be determined using the routine in Program 6.

16 REM %% PRRAY ELEMENT ADIRESS #%
20 POKES3221, 14
30 INFUT" LHRERARRAY TYFE - S F I ":A%
48 IFAF="S"THENL=3:FRIMT"M3TRING" : GOTO=6
S0 IFA$="F"THENL=5:PRIHT"MFLOATING FOINT":GOTOSE
58 IFA$="I"THENL=2:PRINT"RINTEGER" : GQT0SH
¥@ GOT038
88 INPUT"EHNUMBER OF DIMENSIONS";H
90 DIMDS{H>,ENCND
108 FORI=1TON
118 PRINT"HM NUMBER OF ELEMENTS IN DIMENSION",I
12@ INPUTDSC(I>
138 IFDSCI><ATHENi1@
146 NEXT
158 T=0
168 FORI=1TOH
178 PRINT"H ELEMENT NUMBER "I
188 INPUTENCI)
198 IFENCI><BORENCID>DSCIMTHENLI?S
280 NEXT
218 DEddd=a
228 FORI=1TON
280 Ti1=1
240 FORR=GTOI-1
258 Ti=T1#(DS+1>
2668 NEXT
278 T=T+T1#ENCI)
288 MEXT
228 T=THL+S+N¥2
200 FRINT"HMRRELEMENT OFF SET FROM START OF ARRAY"
218 PRINTT
Program 6.

18 Advanced Commodore 64 BASIC Revealed

To determine the exact position within memory the value obtained from
Program 6 must be added to the memory address of the start of the array. If this
is the first array then this address is stored in double byte format in locations
$2F,$30. If it is not the first array then the size of all preceding arrays must be
calculated and added to the start of array storage address.

1.4 Using BASIC variables within machine code routines

Where machine code subroutines are called from a Basic program it is
sometimes useful to pass parameters and data using existing Basic variables.
Other machine code routines such as a sort would be specifically designed to
manipulate Basic variables and arrays. If simple variables are used to pass
parameters or data then they should be set up as the first variables within the
variable table. This means that the first program line defines them using dummy
values. These variables are easily accessed using the start of variable pointer
and adding this to the index to variable pointer multiplied by seven. This will
point to the first byte of the variable name which can then be verified and the
data utilised using the routines within the interpreter to handle floating point
values.

Array data can be accessed using the method employed in Programs 5 and 6.
An example of such an application would be using an integer array to store a
screen display, using the high byte to store the character and the low byte the
colour. Such an array would use no more memory than storing it in memory
using poke commands, but would be faster and allow interesting manipulation
from Basic. If string arrays are to be sorted then this can be easily achieved by
simply swapping the pointers stored in the array (see Chapter 5 for an example
of this).

1.5 Interpreter routines to handle variables

The interpreter contains many different routines to handle and manipulate
variables; some useful ones are detailed in the rest of this section. Before using
any of these or other variable handling routines within your own machine code
programs, it is highly advisable to study the documented source code for all
these interpreter routines which is contained in The Commodore 64 ROMs
Revealed in this series. For routines handling variable input/output and
manipulation see the relevant keywords in Chapter 3.

1.6.1 Some useful routines
Routine: Search for variable
Entry point: $B8B

Function: The first function of this routine is to validate the variable name. The
first character must be alphabetic though the second can be either alpha or

Memory Utilisation by BASIC 19

numeric. The variable type is also determined and the flag in $@D is set
accordingly. If the variable is numeric then $§D=$¢§ and if it is string =$FF.
The numeric type flag in $QE is also set to $@§ if it is a floating point and to $8¢ if
it is integer. If the variable name is followed by a left bracket then the routine
branches to $B1D1 which finds or makes an array. The variable nameisstoredin
locations $45,$46. Having verified the variable name and determined the type
the routine searches for the variable in the section of memory allocated to
variable storage. If found then the variable address pointer is returned in $5F
and $60. If the variable is not found then the routine branches to $B11D where a
new variable is created.

Input parameters:
$45 - first character in variable name
$46 - second character in variable name

Output parameters:

$¢D - variable type flag

$0E - numeric type flag

$SF - Isb of address of variable

$6¢ - msb of address of variable

Note: The values must conform to the variable type flag convention covered
earlier in this chapter.

Error messages: Syntax error - if the first character of the variable
name is not alphabetic

Example use: To find the location of variable ABS.
LDA #%41 :ASCII code for first variable name character

STA $45 ;put in first current variable name store
LDA #$C2 ;ASCII code for second variable name character
STA $46 ;put in second current variable name store

JSR $B@8B ;find variable location

Routine: Print string from memory
Entry point: $ABIE

Function: The starting address of the string to be printed is stored in the
accumulator (Isb) and .y index register (msb) prior to entering this routine.
Consecutive characters are then printed to the current output device until a zero
terminator byte is encountered.

Input parameters:
.a - Isb of start address of string
.y - msb of start address of string

Output parameters: None
Error messages: None

Example use: To print a string starting at location $C@@ to the current output
device.

20 Advanced Commodore 64 BASIC Revealed

LDA #$00 ;lsb of string start address
LDY #$C§ ;msb of string start address
JSR $ABIE ;output string

Routine: Set up string
Entry point: $B487

Function: This routine creates space at the top of memory for a string, puts it
there and sets the pointers. On entry the starting location of the string is stored
in .a (Isb) and .y (msb). This starting address could be either the input buffer at
$0 100, in which case it would have a zero terminating byte, or a string within
quotes in a Basic program. The string origin is determined by the flags in
locations $(7,308. On exit the string length is stored in $61 and the address
pointer in $62 (Isb) and $63 (msb).

Input parameters:

.a Isb of start of string address
.y msb of start of string address
$07,$08 flags for quotes

Output parameters:

$61 string length

$62 string address pointer Isb
$63 string address pointer msb

Error messages: Formula too complex if insufficient stack space

Example use: Get a string from the buffer starting $¢ 100 and put it in the string
storage area.

LDA #3800 ;lsb of buffer start address

LDY #$01 ;msb of buffer start address

JSR $B487 ;transfer to string storage area
Note: The address pointers are returned in $62,$63 and the length in $61 can be
inserted into the requisite locations of a string variable located using the routine
at $B(8B.

Routine: Discard unwanted strings
Entry point: $B6A3

Function: This clears the last entered string pointed to by locations $64,$65,
and moves the bottom of the string pointers up by the size of the stringlengthso
that a new string will overwrite it. This routine is used to overwrite the last
entered string only. On exit locations $22,$23 point to the removed string.

Input parameters:
$64 - Isb of address of last entered string
$65 - msb of address of last entered string

Memory Utilisation by BASIC 21

Output parameters:
$22 - Isb of address of removed string
$23 - msb of address of removed string

Error messages: None

1.6 How BASIC works

There are two sides to the functioning of the Basic interpreter; program entry
and program execution. Program entry is nearly always performed in direct
mode, while program execution is carried out principally in run mode (except
for single line program or command execution in the direct mode). Program
entry has already been dealt with in the section on program storage.

The entry to the program execution loop is via one of the execution
commands entered in direct mode. These commands are RUN, GOTO and
GOSUB. When one of these commands is executed in the direct mode it sets the
charget pointers to the beginning of the program or the designated line number
(the charget subroutine is described in Chapter 4) and then goes to the main
program interpreter loop where the rest of the program is executed. For
explanations of the functioning of the routines for RUN, GOTO and GOSUB
see Chapter 3, and for the source code interpretation of these routines and the
program execution routines see The Commodore 64 ROMs Revealed in this
series.

The program execution loop is fairly straightforward and consists of two
quite short routines. The logic flow within these routines is shown in the flow
diagram in Fig. 1.6. The two routines are the main Basic interpreter control loop
and the execute Basic statement routine. The function of these two routines is as
follows.

1.6.1 Main BASIC interpreter loop ~ start *A7AE
This loop routine controls the execution of a Basic program, and has the
following sequence of operations:

(1) Check for the STOP key. If pressed, exit loop to direct mode.

(2) Check for the end of line or a program terminator (§ =end of line and) =
end of program). If it is the end of the program then execute the END routine,
otherwise locate next program line.

(3) Put the next character of the Basic line into the accumulator using the
charget routine.

(4) Jump to the execute Basic statement routine and then return to the start of
the interpreter loop at $A7AE.

1.6.2 Execute BASIC statement routine - start SA7ED

The character obtained by charget in step 3 of the interpreter loop is in the
accumulator. This character is first checked to see if it is a line terminating zero.
If so then the routine returns to the interpreter control loop at $A7AE and starts

22 Advanced Commodore 64 BASIC Revealed

$A7AE

Yes $A82C

Stop Key Pressed Save Program Pointers

Get Program Pointers Save Line # Pointers

Direct Mode Get Return Address from Stack

No
Save Program Pointers in Count $A469
Pointer Output 'Break in......" Message
($ A480) ($E386)
Get Current Character Warm Start Loop for New Command
Input

$A807 End of Line Flag

$AFO8

Generate Syntax Error

Fig. 1.6. Main BASIC interpreter loop.

on the next line. The character in the accumulator is then checked to seeif itisa
token (this is assumed if the code value is greater than $80). If a token is not the
first character found in a statement then the character is assumed to be a
variable and a LET default assignment is performed. When atoken is found it is
first checked to see if it is a function or the GOTO command; if it is then these
statements are performed. The token value is then used as a pointer to the
keyword table (starting at SAPQPC) by subtracting $8¢ and multiplying the result
by two. This pointer is used to get a two byte address of the start of the routine
which performs the command. The two byte address is pushed onto the stack

Memory Utilisation by BASIC 23

@—’ Get Next Character

Yes

End of Program/ Execute End Statement

$A84B

Save Current Line A

Set Charget Pointers

Jump ($0308) Vector
Execute Basic Statement

Use Token to Point to Routine

Get Next Character From Charget

Execute Command Pointed to by

Address of Stack on RTS

$A7ED| Return to Control Loop

Fig. 1.6. cont.

and a jump to the charget routine performed. Charget puts the next character of
the program line into the accumulator (this is usually a parameter required to
execute the command), and since charget terminates in an RTS instruction it
will return not to the general execute statement routine but to the routine
starting at the address stored on stack - the command routine. On returning
from the command routine the control will return to the start of the Basic
interpreter loop.

The execution of a Basic command is duplicated in the token handling
routines for adding commands to Basic; these routines are given in Chapter 4.

24 Advanced Commodore 64 BASIC Revealed
Table 1.1. BASIC zero page storage.

In this table are the addresses of zero page storage for the Basic interpreter. These
location are from $@3-$8F (3-143). Locations) and 1 are the processor registers,
location 2 is unused and locations above 143 are the kernal storage area.

$03-304 3-4 Initial: Hex $BIAA Dec 45482

This is a two byte vector for the Basic to use to convert numbers in floating point
format into two byte signed integers. This vector could be changed to point to your own
routine if required (i.e. for rounding up the value). This value remains unchanged.

$05-806 5-6 Initial: Hex $B391 Dec 45969
This is a two byte vector for the Basic to use to convert numbers in two byte signed
integer format into floating point. This value remains unchanged.

$¢7 7 Initial: Not applicable

This byte is used in the main interpreter loop to store a character whilst searching for
the next Basic statement on a line (or next line). There is no way of manipulating this
byte.

$0¢8 8 Initial: Not applicable

This byte is used in the Crunchtotokens routine and is used as a flag as to whether the
next character is to be crunched or not. This value has no effect unless the characters
follow the quotes character, REM, or DATA. It could be possible to wedge into the
Crunch to tokens link and put into the correct position a store to location 8 with an
illegal value (#$FE). This would then cause the input line not to be crunched.

$¢9 9 Initial: Not applicable

This location stores the position on a line where the next byte is to be displayed. This
is only ever used when the TAB command is found ina PRINT command. At this point,
the value in this location is subtracted from the TAB value and if greater than zero, that
number of cursor movements to the right is printed.

$0A 10 Initial: Not applicable
This byte just stores a | or §) to say whether a file is being loaded or verified. The
kernal has a byte with the same use.

$0B 11 Initial: Not applicable

This location is used as a storage for the position in the input buffer where the Crunch
to tokens routine is. Also in the same routine is the token value minus $8¢. This location
is also used to store the number of subscripts of an array when setting up/reading etc.

$§C 12 Initial: Not applicable

This value is a flag to tell the Find array routine whether the array exists or not. If not,
then the array is created to the default dimension (1)) and the number of subscripts
(max 3).

$¢D 13 Initial: Not applicable
This location is a flag set by the find variable routine which just says whether the
variable was string ($FF) or numeric (30¢).

$OE 14 Initial: Not applicable
This location holds the flag, if the variable was numeric, to state whether it was integer

($80) or real (309).

Memory Utilisation by BASIC 25

$¢F 15 Initial: Not applicable
This byte is used in the LIST routine to say whether a token is to be converted to text
or just displayed as the ASCII character. It is used for quotes, REM, and DATA.

$1¢ 16 Initial: Not applicable
This location is used by the DEF FN and check FN syntax routines. This byte is also
used when searching for or creating a variable.

$11 17 Initial: Not applicable
This location is used to flag whether a certain input is from READ ($98), GET (340)
or INPUT ($¢9).

$12 18 [nitial: Not applicable
This byte is used as a flag for the TAN command (sign) and the comparison routines
(result).

$13 19 [Initial: Hex $¢p Dec ¢

Current 1/O prompt flag. This byte is checked by the INPUT command to see
whether the prompt flag “? is to be displayed. Setting this value to a one will cause the
prompt to be ‘turned off’.

$14-$15 20-21 Initial: Not applicable

This two byte value is the integer value location. All commands using a two byte
integer (signed or unsigned) use this location, an example being the POKE command
where the address is stored in these locations.

$16 22 [nitial: Hex $19 Dec 25
This location is the pointer to the temporary string stack. The temporary string stack
is nine bytes long and is used when evaluating an expression.

$17-$18 23-24 Initial: Not applicable
This two byte vector is a pointer to the last temporary string used.

$19-$21 25-33 Initial: Not applicable
This is the nine byte long temporary string stack. This stack is used by the string
manipulation routines before setting the string to point to it.

$22-$25 34-37 Initial: Not applicable

These four bytes are used as a temporary pointer area by some of the Basic routines. It
is usually safe to use these in your own routines but do not depend on the values
remaining after exit from your routine.

$26-$2A 38-42. Initial: Not applicable
These five bytes are used to store products from the multiplication routines. The
numbers are stored in five byte packed format (as with variables).

$2B-$2C 43-44 Initial: Hex $p8p1 Dec 2049

This vector is the pointer to where the Basic program starts in memory. This value is
not changed once the Basic interpreter has been initialised. The value can be changed
before loading a program so that some memory below the Basic program is protected.
For example: POKE43,1:POKE44,64 will protect the bottom bank from the program.
Unfortunately this will reduce the size of the program area by 14K but will allow user
defined characters and sprites to be stored without worry of corruption.

Note: Another POKE is required to ensure that the program will RUN:
POKE(PEEK (43)+PEEK(44)*256)—1,0.

26 Advanced Commodore 64 BASIC Revealed

$2D-$2E 45-46 Initial: Hex $p8p3 Dec 2051

This vector is the pointer to the start of the variable storage area. Its value always
points to the location two bytes after the Basic program, thus it is changed every time a
program line is changed.

$2F-$39 47-48 Initial: Hex $p8p3 Dec 2051

This vector is the pointer to the end of Basic variable storage. Before a variable is
declared this vector is the same as the start of variable storage. Each time a variable is set
up, this value will be increased by seven bytes (for simple strings, integer, real variables
and functions). This vector is also the pointer to the start of array storage.

$31-$32 49-50 Initial: Hex $§833 Dec 2051

This vector is the pointer to the end of array storage. Before any array is declared this
value is the same as the start of variable storage. Each time an array is set up, the pointer
is increased by the length of the entry. (This value is variable depending on the number
of dimensions and the size of each dimension.)

$33-$34 51-52 Initial: Hex SAPPP Dec 496§

This vector is the pointer to the position where the last string was put. Strings are
stored from the top of memory working downwards. When the string pointer passes the
end of array pointer a garbage collect is done. This discards all strings that are not
pointed to, thus giving as much free memory as possible. If this does not give enough
memory to insert a variable, the message Out of memory will be displayed.

$35-$36 53-54 Initial: Hex SAPPP Dec 496§
This vector is the utility string pointer.

$37-$38 55-56 Initial: Hex SAPPP Dec 496§

This vector points to the first unusable byte at the top of memory (normally the
beginning of the Basic ROM). This value is not changed by the interpreter but can be
changed by you to protect an area at the top of the Basic program for the use of machine
code routines, data, etc.

$39-$3A 57-58 Initial: Hex $FFxx Dec >65279

This two byte value is the store for the current Basic line number of the line being
operated on. The high byte is set to $FF to say that Basicisindirect mode(itdisables GET
and INPUT).

$3B-$3C 59-6Q [Initial: Not applicable
This two byte value stores the line number of the previous Basic line used.

$3D-$3E 61-62 Initial: Hex $SFFxx Dec >65279

This vector is the pointer to the Basic statement to be operated on when the command
CONT is called. Note: Do not use CONT inside a program as this value will point to
itself (endless loop).

$3F-$4 63-64 Initial: Hex $PpPp@ Dec §
This two byte value is the line number where the next value for READ is taken from
in a DATA statement.

$41-342 65-66 Initial: Hex $0809 Dec 2048
This vector is the pointer to the memory of the first byte of the next DATA value.

Memory Utilisation by BASIC 27

$43-$44 67-68 Initial: Not applicable
This vector is the pointer to where the input for READ, GET, and INPUT isstored to
convert to number form (if need be).

$45-346 69-79 Initial: Not applicable
These two bytes store the name of the last variable accessed. The high bits are set to
give the correct type as well.

$47-$48 71-72 Initial: Not applicable
This vector is the pointer in memory to the last variable accessed.

$49-$4A 73-74 Initial: Not applicable
This vector is the pointer to the variable being used in the current FOR...NEXT loop.

$4B-$4C 75-76 Initial: Not applicable
These two bytes are used as a temporary storage for things such as Basic pointers.

$4D 77 Initial: Not applicable
This byte is the comparison symbol accumulator which holds which comparison
symbols have been found in the Evaluate expression routine.

$4E-$53 78-83 Initial: Not applicable
These six bytes are a work area for miscellaneous routines.

$54-$56 84-86 [nitial: Not applicable
Location $54 holds the byte value for ‘JMP’ and the other two bytes are set up when a
function is encountered.

$57-$60 87-96 Initial: Not applicable
These ten bytes are floating point accumulators three and four and are temporary
areas for some of the arithmetic routines.

$61-$66 97-1092 Initial: Not applicable
This is floating point accumulator one. All calculations use these locations and the
results of all arithmetic routines are left in here.

$61 - exponent value
$62-$65 - mantissa
$66 - sign

$67 103 Initial: Not applicable
Some of the arithmetic routines use one of the two series to perform the calculation.
This location holds the number of constants required for the series.

$68 194 Initial: Not applicable _
This byte holds the overflow from FPACC#1 when some calculations are performed.

$69-$6E 1¢5-119 /nitial: Not applicable
Floating point accumulator two.

$6F 111 [nitial: Not applicable
This byte holds the sign comparison byte for FPACC#1 and FPACC#2 for the use of
division etc.

$70 112 Initial: Not applicable
This byte contains the underflow from FPACC#I. It is used when transferring the
value into memory. The byte may also be referred to as the ‘rounding’ byte.

28 Advanced Commodore 64 BASIC Revealed

$71-872 113-114 Initial: Not applicable
The main use of this vector is as the pointer to a series constant.

$73-$8A 115-138 [nitial: See text
This is the location of the zero page routine used by Basic to get the next character
from the current input line (charget). For more information see Chapter 4.

$8B-$8F 139-143 [nitial: See text
This is the seed value from which the next RND value will be calculated. The initial
values are:
$80,84F,$C7,$52,858

Table 1.2. Table of BASIC keywords and their tokens.

Token value
Decimal Hexadecimal Keyword

128 $80 END
129 $81 FOR

13¢ $82 NEXT
131 $83 DATA
132 $84 INPUT#
133 $85 INPUT
134 $86 DIM

135 $87 READ
136 $88 LET

137 $89 GOTO
138 $8A RUN
139 $8B IF

149 $8C RESTORE
141 $8D GOSUB
142 $8E RETURN
143 $8F REM
144 $99 STOP
145 $91 ON

146 $92 WAIT
147 $93 LOAD
148 $94 SAVE
149 $95 VERIFY
15¢ $96 DEF

151 $97 POKE
152 $98 PRINT#
153 $99 PRINT
154 $9A CONT
155 $9B LIST
156 $9C CLR

157 $9D CMD
158 $9E SYS

: 159 $9F OPEN

Memory Utilisation by BASIC

Token value

Decimal Hexadecimal Keyword
160 $AP CLOSE
161 $A1l GET
162 $A2 NEW
163 $A3 TAB(
164 $A4 TO
165 $A5 FN
166 $A6 SPC(
167 $A7 THEN
168 $A8 NOT
169 $A9 STEP
17¢ SAA +
171 $AB -

172 $AC *

173 $AD /

174 SAE t

175 SAF AND
176 $BY OR
177 $B1 >

178 $B2 =

179 $B3 <

180 $B4 SGN
181 $B5 INT
182 $B6 ABS
183 $B7 USR
184 $B8 FRE
185 $B9 POS
186 $BA SQR
187 $BB RND
188 $BC LOG
189 $BD EXP
199 $BE COS
191 $BF SIN
192 $Co TAN
193 $Cl1 ATN
194 $C2 PEEK
195 $C3 LEN
196 $C4 STRS
197 $Cs VAL
198 $C6 ASC
199 $C7 CHRS
200 $C8 LEFTS$
201 $C9 RIGHTS$
202 $CA MID$
203 $CB GO

29

Chapter Two

Arithmetic Processing
by BASIC

2.1 How BASIC stores and uses numbers

2.1.1 Numeric variables, types and range
Basic uses two different types of numbers; integer and floating point. An integer
number is stored as two bytes giving a sixteen bit signed number which can store
numbers in the range +32767 to —32768. Floating point numbers require five
bytes and can store much larger values in the range +-1.7¢ 141183 E38 to
+-2.93873588 E—39. In the Basic interpreter all calculations, whether on
integer or floating point values, are performed using floating point values rather
than simple integers or binary values. Consequently all integer values are first
converted to floating point format before any calculations are performed.
The format for the storage of an integer value is very simple, consisting of two
bytes stored as low order/high order bytes. Negative values are stored in a twos
complement form. Floating point values are stored in either packed form
occupying five bytes, or unpacked form in six bytes. Packed format is the
normal mode for storing floating point variables in memory. Unpacked format
is used when performing calculations upon floating point values. In either
format there are three components of a floating point value; the sign, the
exponent, and a four byte mantissa. In packed mode the sign is stored as bit
seven of the most significant byte for the mantissa; in unpacked format the sign
occupies its own byte.

2.1.2 The floating point accumulator

In order to perform arithmetic operations on any floating point value the
interpreter needs temporary storage locations for the values being worked upon
and the result. There are two principal work areas, known as floating point
accumulator #1 and floating point accumulator #2. These names are usually
shortened to FAC#1 and FAC#2. Each floating accumulator occupies six
bytes; FAC#1 starts at $61, and FAC#2 at $69. There are, in addition, three
further areas where floating point numbers in packed format (occupying five
bytes) are stored; these areas start at $57, $5C and $26. The format and location
of the two floating accumulators are as follows:

Arithmetic Processing by BASIC 31

Location Function
FAC#1 FAC#2
$61 $69 Exponenent + $80
$62 $6A Mantissa msb
$63 $6B Mantissa byte #2
364 $6C Mantissa byte #3
$65 $6D Mantissa Isb
$66 $6E Sign ($FF = — and $0¢ = +)

Other locations used are:

$68 overflow byte for FAC#1
$6F sign comparison byte
$7¢ rounding byte for FAC#1

2.1.3 How a floating point number is stored

The storage of a floating point number is fairly complex both in packed and
unpacked format. The data used to store a floating point number can be divided
into three components; the exponent, the sign, and the mantissa. In the
unpacked format the exponent and sign both occupy one byte and the mantissa
four bytes. The following is an explanation of each component of a floating point
number.

Exponent The exponent indicates the position of the decimal point within the
number. Bit seven of the exponent byte indicates the sign of the exponent, thus if
the exponent is positive, bit seven is set to one and therefore the value of the
exponent byte will always be greater than 128. If the exponent is negative then
bit seven is set to zero and the exponent value is less than 128. The exponent is
stored as a power of 2 and is multiplied by the mantissa value to produce the
final value. The following formula can be used to convert a number N stored in
the mantissa bytes (see Mantissa below for calculation of N) to the full floating
point number by multiplying it with a positive exponent:

Value = N * 2 t (E-129)

To determine the exponent of a number, find the highest power of two which
can be subtracted from the number. Thus if the number is 18.256, then the
highest power of two is 16 or 214. The exponent value is positive and therefore
equals 129+4 or 133. The fact that the exponent is derived in this way means
that the mantissa for two different values may be the same, with the difference
being registered solely by the contents of the exponent. Thus the floating point
mantissa contents for the values 3.14159 (pi) and 6.28318 (pi*2) are identical:

3.14159 stored as: exponent 130 and mantissa 73,15,218,161
6.28318 stored as: exponent 131 and mantissa 73,15,218,161

32 Advanced Commodore 64 BASIC Revealed

As can be seen from this, multiplying and dividing a floating point number by
two is a very simple operation involving adding or subtracting one from the
exponent. The range of the exponent is +— 21128; this equates approximately to
+—10138.

Sign The sign of the value is stored in unpacked format as a single byte with a
value of $FF for negative numbers and $¢¢ for positive numbers. In packed
format the sign is stored in bit seven of the highest byte of the mantissa. If bitseven
is zero then the mantissa is positive and if one then it is negative. Thus the packed
floating point values for +2 and —2 are:

number +2 is: exponent 13¢) and mantissa §,0,0,0
number —2 is: exponent 13 and mantissa 128,0,0,0

Mantissa The mantissa is stored in four bytes minus the most significant bit of
the most significant byte of the mantissa which is used to store the sign bit. To
convert a number stored in the mantissa into its numeric equivalent use the
following formula:

N = I+((M1 AND 127)+(M2+(M3+M4/256)/256)/256) /128

where M1,M2, M3 and M4 are the mantissa bytes, with M 1 the highest and M4
the lowest. When N has been obtained it should be multiplied by 2t (exponent
—129) to give the actual value. Program 7 allows the input of a number then
prints the contents of the exponent and mantissa bytes for that number as it is
stored in floating point format. These values are then used by lines 99 to 120 to
convert the floating point byte values back into the number.

To convert a number into floating point form is a slightly harder calculation
and involves the following steps:

(1) Find the highest power of two which can be subtracted from the number. E=
the value of two to this highest power.

?QRENQ** REAL NUMBER FORMAT (PACKED) #¥
20 C=PEEK(45)+PEEK(46)%256+2
3@ IMPUT" R RERL NUMBER":A
48 E=FEEK(C)

Se Mi=PEEK(C+1>

S8 M2=PEEK(C+2)

7R M3I=PEEK(C+3)

88 M4=PEEK(C+4)

@ FRINT

1e0 PRINTE:M1,M2;M3, M

165 IFE=GTHENPRINTO:END

118 SG6=SCGM{64-{M1 AMD 128>
120 N=(M1 AND127)>+128

138 N=H#256+M2

149 MH=N#255+M3

156 H=H¥255+M4

160 M=N¥2T(E-168>%SG

288 PRINTH

Program 7.

Arithmetic Processing by BASIC 33

(2) Let R = the remainder after subtracting the value of 21E. The calculation is
then as follows:

Tp = (R/E)*128

M1 = INT(T@)+mantissa sign (sign =0 if positive, 128 if

negative)
Tl = (TP—INT(T@))*256
M2 = INT(T1)
T2 = (TI-INT(T1))*256
M3 = INT(T2)
T3 = (T2-INT(T2))*256
M4 = INT(T3)

MI1,M2,M3,M4 are the four mantissa byte values, M1 being the highest.
Program 8 makes this conversion of a number input at the beginning of the
program into the five bytes of a floating point format which are displayed on the
screen. The program then checks by putting these values into the first variable in
memory defined as a simple variable A in line 10.

S REM ##% REAL NUMBER FORMAT (PACKED) 3
18 R=0

20 C=FEEK(435>+PEEK(46)#256+2
38 INFUTR

35 IFB=OTHENPRINT®;@8;0;8;8:PRINT:GOT0230
4@ EX=INTC(LOGCABS(B)»/LOG(2)>
58 E=EX+123

6@ R=B-21EX

78 SG=SGN(-B)#54+64

88 Ta=(R/21EX1¥128

98 M1=INT(T@>+SG

188 T1=(T@-INT(T@)>%256

118 M2=INT(T1)

128 T2=(T1-INT(T1))>¥256

138 M3=INT(T2)

1489 T3=(T2-INT(T2) %256

156 M4=INT(T3D

160 FRINTE;M1;M2;M3; M4

178 PRINT

186 POKEC.E

196 POKEC+1.M1

208 POKEC+2.M2

218 PUKEC+3,MZ

228 POKEC+4,M4

238 PRINTAR

Program 8.

The following are examples of the storage of some floating point numbers:

Number Exponent MI M2 M3 M4 Sign
1 $81 $80 S99 3990 SPP 309

-1 $81 $8¢ $00 $00 $p0 SFF
5 $8¢ $80 300 PP spp $0¢
.25 $7F $80 Spp S0 Spp 3PP
1E38 $FF $96 $76 $99 $52 $09

1E-39 809 SA9 spp PP spp spo

34 Advanced Commodore 64 BASIC Revealed

The following are the principal routines within the interpreter which perform
the arithmetic operations; all are usable by the programmer within machine
code routines. These are all used by the Expression evaluation routine at
$ADOE.

2.1.4 Evaluate expression

This is a long and very important routine which parses any expression, numeric
or string, checking for syntax errors and evaluating the type of expression and
result. The routine evaluates and expression whose starting address is pointed to
by the charget pointers $7A,$7B. Since the routine involves a lot of stack
processing, it first checks that there is sufficient space (it should be noted that
long and complex expressions can generate an Out of memory error because of
insufficient stack space). The expression type is determined and stored in
location $¢/D. If $0D contains $FF then it is a string expression and if $§D
contains $¢ then it is a numeric expression. A series of routines then evaluates
the expression and if it is numeric stores it in FAC#1. If it is a string expression
then the string length is stored in the accumulator and the string pointer is in
locations $64,$65. The result value or string is then assigned to the specified
variable. If the variable is not found in the variable tables or arrays then it is
created and the value or string allocated. The following are the entry points and
functions of some of the routines used:

SADAO9 - push .a to stack and run routine

$ADBS - test for combination of <=>> and store code in $4D

$ADD7 - process string operators

$AE20 - push argument in FAC#1 onto the stack. The stack
format is:

. SAD

. SFA

. operation address msb

. operation address Isb

. sign of value in FAC#1

. value in FAC#1 Isb

. value in FAC#1 2nd byte

. value in FAC#1 3rd byte

9 .. value in FAC#1 msb

10 . . exponent in FAC#1

11 .. compare flag (from loc $4D)

12 . . operation hierarchy

0NN WV A WLWN—

The operation address is obtained from a table starting at $A@80. This table also
contains the operation hierarchy. This is stored in three bytes - hierarchy in one
byte, and a two byte operation address. The operation hierarchy is derived from
a hierarchy table at the start of the Basic interpreter. This places brackets and
functions as the highest priority, followed by power, negate, */, +—,
COMPARE, NOT, AND, OR. Bytes one and two of the stack.are the return
address and are fixed.

Arithmetic Processing by BASIC 35

$AES8 - puts stack contents into FAC#2 and puts the
exponent in .a

$AE83 - evaluation routine checks for ASCII numeric strings
and operators

$AE83 - PI in floating point notation

SAEF!1 - evaluates expression within brackets

$AEF7 - Syntax error if charget does not point to ‘)

SAEFA - Syntax error if charget does not point to ‘(’

$AEFD - Syntax error if charget does not point to

$AEFF - Syntax error if charget does not point to a byte
identical to that in .a; if it does then .a returns with the
next character

2.2 The arithmetic routines

The Basic interpreter includes twenty-four major arithmetic subroutines. These
subroutines can be grouped into four categories; floating accumulator to
memory transfers, floating accumulator to floating accumulator transfers,
floating point to integer conversion and the actual arithmetic function routines.
The following tables show the routines and how they can be used, parameters
passed etc. It is recommended that anyone wishing to use these routines should
first examine the full source code for these routines which is contained in
Volume 1 of this series, The Commodore 64 ROMs Revealed.

Routine: Transfer FAC#1 to memory

Entry points:

$BBC7 -pack FAC#I into $¢@5C up

$BBCA - pack FAC#1 into $¢¢57 up

$BBD{ - pack FAC#1 into current variable whose address is
pointed to by locations $49,$4A

$BBD4 - pack FAC#1 into memory pointed to by .x and .y

Function: This routine compresses the six bytes of FAC#1 into five bytes by
storing the sign byte as the most significant bit of the mantissa msb. These five
bytes are then stored in a memory location pointed to by .x (Isb) and .y (msb)
index registers.

Input parameters: No input parameters are required by entry points $BBC7,
$BBCA or $BBDJ.

.X index register - Isb of memory address pointer

.y index register - msb of memory address pointer

Output parameters:
Packed floating point value in memory, FAC#1 unchanged
Rounding flag in $70 set to zero

36 Advanced Commodore 64 BASIC Revealed

Registers used: Processor registers .a, .X, .y
< FAC#1

Error messages: None

Example use: Example to transfer contents of FAC#1 to memory location
starting at $CP@Q.

LDX #$0¢9 ;set .x to Isb address pointer

LDY #3CQ ;set .y to msb address pointer

JSR $BBD4 ;transfer

Routine: Transfer memory to FAC#1
Entry point: $BBA2

Function: This loads a value stored as a five byte floating point number, extracts
a sign byte, and then stores it in the six bytes of FAC#1. The location of the
value in memory is pointed to by the contents of .a (Isb) and .y (msb) registers.

Input parameters:
Accumulator - Isb of memory address pointer
.y index register - msb of memory address pointer

Output parameters:
FAC#1 contains the value which is still in memory
$7¢ (low order rounding byte) set to zero

Registers used:
Processor registers .a and .y
FAC#1

Error messages: None

Example use: This routine will load FAC#1 with the contents of memory
starting at location $CH@§.

LDA #3090 ;lsb of address pointer

LDY #$C@ ;msb of address pointer

JSR $BBAZ2 ;transfer

Routine: Transfer memory to FAC#2
Entry point: $SBA8C

Function: This takes the value stored as a five byte variable in memory at an
address pointed to by .a (Isb) and .y (msb), unpacks the sign byte and stores the
value in the six bytes of FAC#2.

Input parameters:
Accumulator - Isb of memory address pointer
.y index register - msb of memory address pointer

Output parameters: FAC#2 contains the value which is still stored in memory

Arithmetic Processing by BASIC 37

Registers used:
Processor .a and .y registers
FAC#2

Error messages: None

Example use: Will take the floating point value in memory at location $CP@¢
and transfer it to FAC#2.

LDA #8309 ;lsb of address pointer

LDY #$C@ ;msb of address pointer

JSR $BASC ;transfer
Note: To transfer FAC#2 to memory, FAC#2 must first be transferred to
FAC#1 then FAC#]1 transferred to memory.
Routine: Transfer FAC#1 to FAC#2
Entry point: $BCQF

Function: This moves the entire contents of FAC#1 into FAC#2, leaving both
containing the same value.

Input parameters: FAC#1

Output parameters: FAC#2

Registers used- FAC#1 and FAC#2, registers .a and .x
Error messages: None

Example use: JSR $BCQF

Routine: Transfer FAC#2 to FAC#1
Entry point: $SBBFC

Function: This moves the entire contents of FAC#2 into FAC#1, leaving both
containing the same value.

Input parameters: FAC#1

Output parameters: FAC#H#2

Registers used: FAC#1 and FAC#2, processor registers .a and .x
Error messages: None

Example use: JSR $BBFC

Routine: Perform addition

Entry points:
$B867 - add FAC#1 to constant
$B86A — add FAC#I1 to FAC#2

38 Advanced Commodore 64 BASIC Revealed

Function: The contents of FAC#1 are added to FAC#2 and the result stored in
FAC#]1. There are two entry points to this routine. The first at $B867 loads a
five byte constant from memory pointed to by .a and .y into FAC#2 and adds it
to FAC#1. The second at $B86A assumes that the two floating point numbers
are already loaded into the two floating accumulators. The result is stored in
FACH#I.

Input parameters: For entry point $B867
.a 1sb memory address pointer to value B
.y msb memory address pointer to value B
FAC#1 contains value A

For entry point $B86A
FAC#]1 contains value A
FAC#2 contains value B

Output parameters: FAC#1 contains the result of the addition

Registers used:
Processor registers .a, .x, .y
FAC#1 and FAC#2

Error messages: Overflow error if the sum of the two values exceeds the
maximum or minimum size floating point value

Example use: To load two floating point values from memory and add them
together leaving the result in FAC#1. The location of value A is $C@¢ and
value B is $DP@@. FAC#1 is loaded using the routine at $BBA2.

LDA #8309 ;lsb of address of value A

LDY #$C§ ;msb of address of value A

JSR $BBA2 ;transfer value A from memory to FAC#1

LDA #8309 ;lsb of address of value B

LDY #$D@ msb of address of value B

JSR $B867 ;transfer value B to FAC#2 and perform addition

and store the result in FAC#1

Routine: Perform subtraction

Entry points:
$B85() - subtract FAC#1 from constant
$B853 - subtract FAC#1 from FAC#2

Function: The contents of FAC#1 are subtracted from FAC#2 and the result
stored in FAC#1. There are two entry points to this routine. The first at $B85¢
loads FAC#2 with a five byte value from memory pointed to by .a (Isb) and .y
(msb). The other entry point at $B853 assumes that the two values are already
loaded into the two floating accumulators. The result is stored in FAC#1.

Input parameters: For entry point $B850
.a Isb of address of value A
.y msb of address of value B

Arithmetic Processing by BASIC 39

FAC#]1 contains value B
For entry point $B853

FAC#1 contains value B

FAC#2 contains value A

Output parameters: FAC#1 contains the result

Registers used:
Processor registers .a, .y, .X
FAC#1 and FAC#2

Error messages: Overflow error if maximum or minimum floating point values
are exceeded by the subtraction

Example use: To load two values stored in memory and subtract them leaving
the result in FAC#1. Value A is stored at SC)@@ and is placed in FAC#1 by
routine $BBA2. Value is stored at $D@P@. The result of subtracting value A
from value B is stored in FAC#1.

LDA #30¢ ;lsb of address of value A

LDY #$CQ ;msb of address of value A

JSR $BBA2 ;transfer A to FAC#1

LDA #3090 ;lsb of address of value B

LDY #3D@ ;msb of address of value B

JSR $B85(;transfer B to FAC#2 and perform subtraction.

Put the result in FAC#1.

Routine: Perform multiplication

Entry points:
$BA28 - multiply FAC#1 by constant
$BA2B - multiply FAC#1 by FAC#2

Function: The contents of FAC#1 are multiplied by the contents of FAC#2 and
the result is stored in FAC#1. There are two entry points to this routine. The
first at $BA28 loads a value into FAC#2 from memory pointed to by .a (Isb) and
.y (msb) then multiplies FAC#1 by FAC#2. The second entry point at §BA2B
assumes that both floating point accumulators have been loaded with the two
values.

Input parameters: For entry point $BA28
.a Isb of address of value A
.y msb of address of value A
FAC#]1 contains value B

For entry point $BA2B
FAC#]1 contains value B
FAC#2 contains value A

Output parameters: FAC#1 contains the result

40 Advanced Commodore 64 BASIC Revealed

Registers used:

Processor registers .a, .X, .y
FAC#]1 and FAC#2
Product area $26 to $2A

Error messages: Overflow error if the exponent of FAC#1 is $FF

Example use: This example loads two values stored in memory into the floating
point accumulators, multiplies them together and puts the result in FAC#1.
Value A is stored at $CP@§ and is placed in FAC#1 by routine SBBA2. Value B
is stored at $DP@P. The result of multiplying A by B is stored in FAC#I.

LDA #300 ;lsb of address of value A

LDY #$C0 ;msb of address of value A

JSR $BBA2 ;transfer A to FAC#1

LDA #$00 ;lsb of address of value B

LDY #3D@ ;msb of address of value B

JSR $BA3(;transfer value B to FAC#2 and perform

multiplication. Store the result in FAC#]1.

Routine: Perform division

Entry points:
$BB@F - divide value in memory by FAC#1
$BB12 - divide FAC#2 by FAC#1

Function: This divides FAC#2 by FAC#1 and puts the result in FAC#1. The
entry point $BBPF has the pointer to the five byte value stored in memory which
must be transferred to FAC#2, the pointer is stored in.a (Isb) and .Y (msb), and
.x must be loaded with the sign comparison byte - $6F. The contents of FAC#2
are then divided by the contents of FAC#1, loaded prior to the routine entry.
The result is stored in FAC#1.

Input parameters: For entry point $BB)F
.a Isb of memory address of value A
.y msb of memory address of value A
.X sign comparison byte from $6F
FAC#]1 contains value B

For entry point $BB12
.a exponent of FAC#1 from $61
FAC#1 contains value B
FAC#2 contains value A

Output parameters: FAC#1 contains the result of dividing A by B

Registers used:

Processor registers .a, .X, .y
FAC#1 and FAC#2
Product area $26 to $2A

Error messages:
Division by zero error if FAC#1 = §
Overflow error if FAC#1 exponent is $FF

Arithmetic Processing by BASIC 41

Example use: This example loads two values from memory into the two floating
point accumulators and divides the contents of FAC#2 by the contents of
FAC#!1 and stores the result in FAC#1. Value A is stored at $CP@@ and is
placed in FAC#1 by the routine at $BBA2. Value B is stored at $D@@@.

LDA #30¢ ;lsb of address of value A

LDY #$C@ ;msb of address of value A

JSR $BBA2 ;transfer A to FAC#1

LDA #8309 ;lsb of address of value B

LDY #$D@ ;msb of address of value B

JSR $BBYF ;transfer value to FAC#2 and divide B by A. Put

result in FAC#I.

Routine: Calculate SIN

Entry point: $E26B

Function: The argument in radians is stored in FAC#1. It is evaluated and the
sine of the angle stored in FAC#1.

Input parameters: FAC#1 contains the angle in radians
Output parameters: FAC#1 contains the sine of the angle

Registers used:
Processor registers .a, .X, .y
FAC#1

Error messages: None

Example use: Get the angle in radians from memory into FAC#1 using routine
$BBA2, then convert it to a sine value.

LDA #3090 ;lsb of address of value

LDY #$C0 ;msb of address of value

JSR $BBA2 :transfer value to FAC#1

JSR $E26B ;convert to sine and store in FAC#1

Routine: Calculate COS

Entry point: $SE264

Function: The argument in radians stored in FAC#1 is converted to the cosine
value which is stored in FAC#1. The routine actually adds PI/2 to the value and
then calculates the sine.

Input parameters: FAC#1 contains the angle in radians
Output parameters: FAC#1 contains the cosine of the angle

Registers used:
Processor registers .a, .X, .y
FAC#1 and FAC#2

Error messages: None

42 Advanced Commodore 64 BASIC Revealed

Example use: Get the angle in radians from memory at $CP@§ into FAC#I
using the routine $BBA2, then convert it to cosine value.

LDA #$0¢9 ;lsb of address of value

LDY #$C@ ;msb of address of value

JSR $BBAZ2 ;transfer value to FAC#1

JSR $E264 ;convert to cosine and store in FAC#1

Routine: Calculate TAN

Entry point: $SE2B4

Function: This routine calculates the tangent of an angle in radians stored in
FAC#1 and puts the result in FAC#1. The routine actually divides the sine of
the value by the cosine of the value.

Input parameters: FAC#1 contains the angle in radians
Output parameters: FAC#1 contains the tangent of the angle

Registers used:

Processor registers .a, .X, .y

FAC#1 and FAC#2

Temporary floating accumulators at $4E and $57

Error messages: None

Example use: Get the angle in radians from memory at $CP@§ into FAC#I
using the routine $SBBA2, then convert it to tangent value.

LDA #8309 ;lsb of address of value

LDY #$Cf ;msb of address of value

JSR $BBAZ2 ;transfer value to FAC#1

JSR $E2B4 ;convert to tangent and store in FAC#1

Routine: Calculate ATN

Entry point: SE3QE

Function: The arc-tangent of a value stored in FAC#1 is calculated and the
result in radians stored in FAC#1.

Input parameters: FAC#1 contains the value
Output parameters: FAC#1 contains the result in radians

Registers used:
Processor registers .a, .X, .y
FAC#I

Error messages: None

Example use: Get the value from memory at $CP@@ into FAC#1 using the
routine at $BBA2, then convert it to radians and store it in FAC#1.
LDA #8300 ;lsb of address of value

Arithmetic Processing by BASIC 43

LDY #$C0 ;msb of address of value
JSR $BBA2 ;transfer value to FAC#1
JSR $E3QE ;convert to radians and store in FAC#1

Routine: Calculate EXP
Entry point: SBFED

Function: This routine calculates the exponent (the value of E to the power of
the value in FAC#1) and stores the result in FAC#I.

Input parameters: FAC#1 contains the value
Output parameters: FAC#1 contains the exponent of the value

Registers used:
Processor registers .a, .X, .y
FAC#1 and FAC#2

Error messages: Overflow error if the value of the exponent is greater than
88.029

Example use: Get the value from memory at $CP@¢ into FAC#1 using routine
$BBA2, then calculate the exponent.

LDA #8300 ;lsb of address of value

LDY #$CQ ;msb of address of value

JSR $BBA2 ;transfer value to FAC#1

JSR $BFED ;calculate exp and put in FAC#1

Routine: Calculate LOG
Entry point: $B9EA

Function: This performs the calculation of the log to the base E of a value in
FAC#!1 and stores the result in FAC#1.

Input parameters: FAC#1 contains the value
Output parameters: FAC#]1 contains the log of the value

Registers used:

Processor registers .a, .X, .y
FAC#1 and FAC#2
Product area $26 to $2A

Error messages: Illegal quantity if value is zero or minus

Example use: Get the value from memory at SCH@§ into FAC#1 using routine
$BBA2, then calculate the log of the value and put the result in FAC#1.
LDA #3090 ;lsb of address of value
LDY #$CQ ;msb of address of value
JSR $BBA2 ;transfer value from memory to FAC#1
JSR $BYEA ;calculate log and put result in FAC#1

44 Advanced Commodore 64 BASIC Revealed
Routine: Calculate power

Entry points:
$BF78 - raise FAC#2 to power of constant in memory
$BF7B - raise FAC#2 to power of FAC#1

Function: The contents of FAC#2 are raised to the power of the value stored in
FAC#]1. Before using this routine FAC#2 must be loaded. If either value is zero
then FAC#1 is loaded with either @) or | depending on which FAC was zero. The
evaluation is performed by saving FAC#I to zero page and then multiplying the
logarithm of FAC#2 by FAC#1 and getting the exponent of the result. There
are two entry points. The first at SBF78 raises FAC#2 to the power of a constant
stored in memory and pointedto by .a (Isb) and .y (msb). The second entry point
requires the values to be in FAC#1 and FAC#2.

Input parameters: For entry point $BF78

.a Isb of power value in memory

.y msb of power value in memory

FAC#2 - value to be raised to the power of constant
For entry point $BF7B

FAC#1 - value of power

FAC#2 - value to be raised to the power of FAC#1

Output parameters: FAC#1 contains the result

Registers used:

Processor registers .a, .X, .y
FAC#1 and FAC#2

Product register $26 to $2A
Miscellaneous work area $4e to $53

Error messages: No error message is given if one of the FACs contains a zero.
This error is flagged by the contents of FAC#1, which contains zero if the power
is zero and one if the value is zero. (Note: This is a potential source of error in a
program.)

Illegal quantity error if either number is negative and the value is not an integer.
If the result is too large an Overflow error is generated.

Example use: Get a value from memory at $C@@ into FAC#2 using the routine
at SBASC, then raise it to the power of a value stored at $D@{@, and put the
result in FAC#1.

LDA #3090 ;lsb of address of value A

LDY #$C§ ;msb of address of value A

JSR $BASC ;transfer to FAC#2

LDA #8300 ;lsb of address of power value B

LDY #$D@ ;msb of address of power value B

JSR $BF78 ;raise value B to the power of A and put the result in

FAC#1

Routine: Calculate SQR

Arithmetic Processing by BASIC 45
Entry point: $BF71

Function: The contents of FAC#1 (the argument) are transferred to FAC#2.
FAC#1 is then loaded with .5 and the routine jumps to the perform power
routine at $BF78. The result is stored in FAC#1.

Input parameters: FAC#1 contains the argument.
Output parameters: FAC#1 contains the result

Registers used:

Processor registers .a, .x, .y
FAC#1 and FAC#2

Product register $26 to $2a
Miscellaneous work area $4e to $53

Error messages: lllegal quantity error if it is a minus value

Example use: Get a value from memory at $CP@§ into FAC#1 using routine
$BBA2, then find its square root and put the result in FAC#1.

LDA #8300 ;Isb of address of value of argument

LDY #3C@ ;msb of address of value of argument

JSR $BBAZ2 ;transfer value to FAC#1

JSR $BF71 ;calculate sqr of value and put result in FAC#1

Routine: Fixed point to floating point number conversion
Entry point: $B391

Function: This routine converts a two byte integer held in .a (msb) and .y (Isb)
into its floating point equivalent. This value is stored in FAC#I.

Input parameters:
.a msb of integer value
.y Isb of integer value

Output parameters:
FAC#1 contains the floating point equivalent
Variable type flag in $¢D is set to §

Registers used:
Processor registers .a, .x, .y
FAC#1

Error messages: None

Example use: Convert the 16 bit integer value $B7FE to floating point value in
FAC#I1.

LDA #$B7 ;msb of integer value

LDY #S$FE ;lsb of integer value

JSR $B391 ;convert to floating point in FAC#1

Routine: Floating point to fixed point number conversion

46 Advanced Commodore 64 BASIC Revealed
Entry point: $BC9B

Function: The floating point number is stored in FAC#1 and is converted to a
two byte integer value which is stored inlocations $65 (Isb) and $66 (msb). If the
value in FAC#1 is greater than +32767 or less than —32768 then the overflow is
stored in $68.

Input parameters; FAC#1 contains the floating point value

Output parameters:

$65 - Isb of integer value

$66 — msb of integer value

$68 - overflow if value exceeds maximum integer value

Registers used:
Processor registers .a, .y, .x
FAC#1

Error messages: None

Example use: Convert a five byte floating point value in memory at address
$COPO to a two byte integer in .a (msb) and .y (Isb). The value is first moved to
FAC#1, then converted to an integer value in $65,$66. These are transferred to
.a and .y.

LDA #309 ;lsb of address of floating point value

LDY #$C§ ;msb of address of floating point value

JSR $BBA2 ;transfer value to FAC#1

JSR $BC9B ;convert to integer

LDA $66 ;put integer msb in .a

LDY $65 ;put integer Isb in .y

Routine: Convert the value stored as a string to floating point value
Entry point: $BCF3

Function: The value stored as a string which is to be converted is stored in
memory at a location pointed to by the charget program pointers $7A and $7B.
The numeric value stored in the string is checked then converted to floating
point form in FAC#1.

Input parameters:

$7A - Isb of address of start of string

$7B - msb of address of start of string

The string is located in memory starting at an address pointed to by the above
two parameters. The string is unchanged by this routine.

Output parameters: FAC#1 contains the floating point equivalent of the string

Registers used:
Processor registers .a, .X, .y
FAC#1

Arithmetic Processing by BASIC 47
Error messages: Overflow error if the value in FAC#1 is too large or small

Example use: Convert a value stored as a string at starting address SC@@@ into a
floating point value in FAC#1.

LDA #8300 ;lsb of address of string start

STA $7A ;store in charget pointer Isb

LDA #3C@ ;msb of address of string start

STA $7B ;store in charget pointer msb

JSR $BCF3 ;convert string to floating point in FAC#1

Routine: Convert a floating point number into a string
Entry point: SBDDD

Function: The value stored in FAC#1 is converted into an ASCII string stored
in a buffer starting at location $§10@. On exit from the routine a zero
terminating byte is placed at the end of the string and the buffer start address is
stored in .a (Isb) and .y (msb). This is required to set the correct input parameters
for the print string routine at SABIE.

Input parameters: FAC#1 contains the floating point value

Output parameters: Buffer starting at $¢ 10§ contains the string
.a - Isb of buffer start address
.y — msb of buffer start address

Registers used:
Processor registers .a, .X, .y
FAC#1

Error messages: None

Example use: Get the floating point value from memory at $C@@§ into FAC#1
and convert it to a string stored in the buffer at $¢ 19¢). This string is then
displayed on the screen using routine $ABIE.

LDA #3090 ;lsb of address of value

LDY #$C0 ;msb of address of value

JSR $BBA2 ;transfer floating point value to FAC#1

JSR $BDDD ;convert to a string in $¢ 1¢¢) up

JSR $ABIE ;:display string on current output device

Routine: Compare the contents of FAC#1 with a value in memory
Entry point: $BC5B

Function: The value stored in FAC#1 is compared with a five byte floating
point value stored in memory at a location pointed to by .a (Isb) and .y (msb).
On exit the accumulator contains the comparison flag: $¢¢ = that both values
are the same; $() | =that FAC#1 is greater than the value in memory; and $FF =
that FAC#1 is less than the value in memory.

48 Advanced Commodore 64 BASIC Revealed

Input parameters: FAC#1 contains the floating point value A
.a Isb of address of floating point value in memory
.y msb of floating point value in memory

Output parameters: .a contains the comparison flag

Registers used:
Processor registers .a, .X, .y
FAC#1

Error messages: None

Example use: Get a floating point value into FAC#1 from memory at $CH@¢
and compare it with a floating point value in memory at $D@Q@. Store the
comparison flag in location $12.

LDA #$0¢ ;lsb of address of value A

LDY #$C@ ;msb of address of value A

JSR $BBA2 ;transfer value A to FAC#1

LDA #8300 ;lsb of address of value B

LDY #$D@ ;msb of address of value B

JSR $BCS5B ;compare value A to value B

STA $12 ;save comparison flag in location $12

Routine: Complement the contents of FAC#1

Entry point: $B947

Function: This routine replaces the contents of FAC#1 by its twos complement.
This means that all the zeros are converted to ones and vice versa, then one is
added to the result.

Input parameters: FAC#1 contains the value to be complemented
Output parameters: FAC#1 contains complemented value

Registers used:
Processor registers .a, .x, .y
FAC#1

Error messages: None

Example use: Get the value into FAC#I from memory at $CPP@ and
complement it. The result is stored in FAC#]1.

LDA #30¢0 ;lsb of address of value

LDY #$C§ ;msb of address of value

JSR $BBA2 ;transfer value to FAC#1

JSR $B947 ;complement FAC#1 and store result in FAC#1

Routine: Round FAC#I1
Entry point: $BCIB

Arithmetic Processing by BASIC 49

Function: The exponent of FAC#1 in byte $61 is tested. If the content is zero
then the routine exits; if not then the rounding byte in $7¢ is multiplied by two
and the state of the carry flag checked. If carry is clear then it exits. Otherwise
the floating point value is incremented by 1.

Input parameters: FAC#1 contains the value
Output parameters: FAC#1 contains the rounded floating point value

Registers used:
Processor registers .a
FAC#1

Error messages: Overflow error if rounding makes the value too large or small

Example use: Get the floating point value into FAC#1 from memory at SCHp0,
then round it and leave the rounded value in FAC#1.

LDA #3090 ;lsb of address of value

LDY #$C@ ;msb of address of value

JSR $BBA2 ;transfer value to FAC#1

JSR $BCIB ;round value in FAC#1

2.3 Using the arithmetic routines in a machine code program

Using the arithmetic routines within the Basic interpreter can save the
programmer a lot of time in program development. It can also greatly reduce the
size of a machine code program. The only penalty is that in any program using
eight or sixteen bit values the interpreter routines will have a considerably
slower run time than specially written routines. When faced with the necessity of
having to use arithmetic routines the best procedure is always to use the
interpreter routines and replace these only if the program is running too slowly.

The best way of learning to use these routines, in addition to actually trying to
use them, is to study some of the routines in this book which utilise them, in
particular the matrix calculation routines in Chapter 5. It is also an excellent
idea to examine the annoted assembly listings of any routine you intend using;
these annotated listings are contained in The Commodore 64 ROMs Revealed
in this series. ‘

It is quite simple to utilise the interpreter arithmetic routines within a machine
code program. The essential point to remember is that the interpreter does all its
calculations on floating point numbers, therefore all integer values must first be
converted to floating point. The following is an example of a routine using the
interpreter arithmetic routines:

calculation #C = (A+22) / (B*5)

Where values A and B are both positive unsigned sixteen bit integer values,
these are both input from the keyboard at the beginning of the routine and the

50 Advanced Commodore 64 BASIC Revealed

result C is a five byte floating point value which is both stored in memory and
displayed on the screen.
Variable storage locations in memory used by this routine are:

$CPPP - Isb of value A

$CPP1 - msb of value A

$CPP2 - Isb of value B

$CPP3 — msb of value B

$CPP4 to $CPP8 - temporary floating point value storage 1
$CPP9 to SCPHPD - temporary floating point value storage 2
$CPPE to $CP12 - floating point result C storage

a33C
a33c
a33c
033C
a33c
633C
633C
caoa
caaa
caa2

cea4
ceas
CoaE
ca13
cai1s
cote
CoiR
cai1c

eaaa
aaan
aganea
Q60068
@30808
AGAA
2aCFFF
csap
Foas
9900882

Ce1F C8

ca20
ce22
ce24
co27
ca29
Ca2E
Ca2D
CazF
ca32
€035
caas
CaaA
a3l
CasF
Caa2
Cod4
ced7
cadg
Co4B
CA4E
Ca4F
casi
Cas3
case
coss
casA
cesc
COSE
co61
Ca64
ces?
co62

DOFR
AS20
9900802
A98a
857R
A%a2
857R
207300
288AAD
26F7E7
AS14
8[0aCa
AS1S
aDpv1Ca
ABEs
20CFFF
caan
Foeé
990802
C38
DEF3
AS%ea
220602
A388
857A
R9B2
857B
207900
26G38AAD
26F7R7
AS14
are2ce

ICALCULATE (R+22)/(B¥3)

! WMHERE A AHD B ARE INPUT FROM
! THE KEYRUOARD.

I ENTRY AT S¥5 49171.

]

i

1

RESULT IS PRINTED

¥=$C000

Ay KOR @

BY HOR @

TF1 BYT 0.0,0,0,0

TE2 BYT 0.,0.0.0,0

TF3 BYT 6.0.2,0,0

ENTRY LDY #3009

L1 JSR $FECF LINPUT BYTE
CMP #$@D ICARRIAGE RETURN?
BEQ L2 IYES
STA #0200, Y ISTORE BYTE
INY 100 NEXT
BNE L1 1ALWAYS

L2 LDA #300 IZERD TERMIMATOR
STA $6200, Y
LDA #$00 ISET CHARGET TO
STA $7A | BUFFER
LDA #$02
STA $7E
J5R $0079
JSR $ADSA ICONVERT TO # @-65535
JSR $B7F? IMAKE INTEGER
LA $14 ISTORE VALUE
STA AY 1IN TEMF
LDA $1S
STA AY+1

ENTRY1 LDY #3500

L3 JSR $FFCF L INPUT EYTE
CMP #%0D ICARRIAGE RETURN?
PER L4 IYES
STA $6200, Y ISTORE BYTE
INY 100 HEXT
BHE L3 LALWAY'S

L4 LDA #5600 IZERC TERMINATOR
STA $0200,Y
LIA #10@ ISET CHARGET TO
STA $7A | BUFFER
LIA #5082
STA $7E
JSR $0879
JSR $ADSA ICOMVERT TO # @-65535
JSR $B7F? IMAKE INTEGER
LIA $14 ISTORE VALUE

STR BY 'IN TEMP

ce6C
CO6E
cazy
Car4
caz?
cavA
cavc
Cave
casl
Ccaes3
Ccass
cose
cesnA
ceac
CasrF
ces1

Co93
Ce36
Cas9
casC
COSF
CoR1
CeR3
CenRs
cens
CénA
CenD
CeRF
CaB1

CoB4
Cepé
coRre
CaABB
CORD
CaBF
cec2
cacs
cece

AS15
8D83Ce
RIV1CO
RCaace
2091R3
Az@4
RACH
28D4RB
A90Q
Réle
2091B3
A204
ABC8
2067B8
R204
Aaca
28D4BR
RDB3Ca
ACB2C6
2031B3
R283
RECO
20D4BB
R3a@\
RBAS
2091R3
A263
RGCY
2028BA
A284
RBCY
2006FBB
A26E
AaCy
26D4BR
2@DDBD
201ERB
4C74A4

LA
STR
LDA
Loy
JSR
LIK
LoY
JSR
LDA
LDY
JSR
LR
LnY
JSR
LDX
LDY
JSR
LDA
Loy
JSR
LDX
Loy
JSR
LDA
LDy
JSR
LIA
Loy
JSR
LIA
Loy
JSR
LDX
LoYy
JSR
JER
JSR
JHP

Arithmetic Processing by BASIC 51

$15
BY+1
AY+1
AY
$B391
#<TF1
#>TF1
$BRD4
#$00
#3516
$B391
#<CTF1
#>TF1
$BR67
#<TF1
#>TF1
$BED4
EY+1
BY
$B391
#TF2
#>TF2
$BBD4
#$00
#305
$B391
#TF2
#>TF2
$BA28
#<TF1
#>TF1
$RBOF
#<TF3
#OTF3
$BED4
$ELIDD
$ARIE
$A474

Program 9.

!GET FIRST VALUE

IFLOART IT
I'STORE IN TEMP FACH

I'VALUE 22 ($16)

'FLOAT IT

'POINT TQ TEMP
{FRC1

'AOD

'STORE IN TEMP FAC1

IGET SECOND VALUE

'FLOAT IT
ISTORE IM TEMP FAC2

IGET VALLE S

'FLOAT IT

'FQINT TO TEMP
IFAC2

IMULTIPLY

'FOINT TO TEMP
IFRCI

'DIVIDE

I'STORE RESULT IN
'TEMF FAC3

'CONVERT TQ STRING
IPRINT STRING
! “RERADY. -

Chapter Three
The Keywords of BASIC

ABS

Abbreviated entry: A(shift)B
Token: Hex $B6 Decimal 182
Modes: Direct and program

Purpose: The arithmetic expression contained in brackets following the ABS
command is converted to its absolute value. This means that the value is always
returned as a positive value.

Syntax: ABS (arithmetic expression). ABS can appear within a logical
expression, in a PRINT statement and to the right of an assignment statement.

Errors: This routine can generate a number of errors; these are the result of
either an invalid arithmetic expression or a non arithmetic expression.
Syntax error - wrong command syntax, e.g. missing closing bracket
Overflow error - result of expression evaluation which is too large
Division by zero - attempt within the expression to divide by zero
Type mismatch - using a non arithmetic expression

Use: This command has fairly limited applications, all confined to numerical
operations.

ROM routine entry point: $BC58

Routine operation: The routine is very short (three bytes !) and simply takes the
sign byte of FAC#1, in location $66, and on it performs a logical shift right,
thereby ensuring that it always contains a positive flag.

AND

Abbreviated entry: A(shift)N
Token: Hex SAF Decimal 175
Modes: Direct and program

The Keywords of BASIC 53

Purpose: This command performs a logical AND between two expressions.
These expressions are first converted into double byte integer values, an AND
performed, and the result returned as a two byte integer.

Syntax: Expression A AND expression B. The expression can be either
arithmetic or logical but must always be either an integer value or a floating
point value within the range +32767 and —32768.

Errors: There are several errors associated with this command:
Syntax error - incorrect command syntax
Illegal quantity - if expressions exceed maximum/minimum values
Type mismatch - using a non arithmetic or logical expression

Use: The AND command acts either as a logical operator or as a bitwise
operator on two straight 16 bit values.

As a logical operator the AND command is used to ensure that two
conditions are met before a particular operation is performed, as in the
following example:

IF A =22 AND B=5 THEN PRINT “TEST O.K.”

The result of a comparison gives —1 if the comparison is true and §) if it is false. If
a comparison is true then a value of —1 is returned by the comparison routine.
This is represented as a twos complement value with a binary representation of:

e 11rr riir 111t or hex $FFFF or —1

Similarly a false comparison returns a value of zero, represented as:

pop9 0099 9999 0PP¢ or hex $0PPor 0

Therefore an AND will give a true condition only when both conditions are true
(both values are $FFFF); all other states will be regarded as false.

A bitwise AND compares the first bit of one value with the first bit of the
second value and gives a result according to the following truth table:

AND 11§
1 (1[0
p1ol9

Thus the command:

1278 AND 3279

has as its binary equivalent:

pPpp 9199 1111 1119
AND 0009 1106 119 1111

This gives the result:

ppPp 9190 1109 1119
or decimal 1230.

54 Advanced Commodore 64 BASIC Revealed

It should be noted, of course, that the AND operation is performed on two
signed double byte integers. These are stored in twos complement form. Thus a
value of —1 has a binary equivalent of 1111 1111 1111 1111 and any number
ANDed with —1 will always return the same number. Likewise a positive value
ANDed with a negative will always give a positive result.

The hierarchy of logical operators is NOT, AND, OR, thus NOT always has a
higher priority than AND.

ROM routine entry point: $AFE9

Routine operation: The two arguments in floating point format are stored in
FACH#1 and FAC#2. They are first converted to fixed point integer values, the
AND operation performed on the two 16 bit numbers, and the result converted
back from integer to floating point form in FAC#1.

ASC

Abbreviated entry: A(shift)S
Token: Hex $C6 Decimal 198
Modes: Direct and program

Purpose: This command returns the ASCII code value of the first character ina
string expression.

Svntax: ASC (string expression). The string expression can be any valid string
expression either variable, literal or function including string concatenation.
The exception is a null string which will return an Illegal quantity error, the
reason being that such a null string (this is represented by “”) has a length of
zZero.

Errors: Syntax error - wrong command syntax e.g. missing closing
bracket
Type mismatch - use of a non string expression
Illegal quantity error - null string expression

Use: This command is useful in any situation where it is required to convert a
character into its corresponding value. It is particularly useful for trapping or
validating individual characters within strings such cursor control, insert /delete
and carriage return characters.

ROM routine entry point: $B78B

Routine operation: The routine first gets the string length and any string with a
zero length is rejected with an Illegal quantity error. The .y index register is
loaded with the character which is pointed to by locations $22,$23. This
character is then converted to a floating point number stored in FAC#1.

The Keywords of BASIC 55

ATN

Abbreviated entry: A(shift)T
Token: Hex $C1 Decimal 193
Modes: Direct and program

Purpose: This calculates the angle where the tangent of that angle is known. The
angle is returned in radians.

Syntax: ATN (arithmetic expression). Any arithmetic expression can be used.

Errors: Syntax error - wrong command syntax e.g. missing closing
bracket
Type mismatch - non arithmetic expression
Overflow error - if expression is outside floating point range

Use: This command is useful in many trigonometric applications. It should, of
course, be noted that the returned value is inradians and not degrees; to convert
to degrees multiply by 180/ pi.

ROM routine entry point: SE3QE

Routine operation: The tangent is stored in FAC#1 from where it is converted
to the equivalent angle in radians which is also stored in FAC#1.

CHR$

Abbreviated entry: C(shift)H
Token: Hex $C7 Decimal 199
Modes: Direct and program

Purpose: This command generates a character from its equivalent ASCII code
number.

Synrax: CHRS (numeric expression). The expression within the brackets must,
when evaluated, be within the range ¢ to 255.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non numeric expression
Illegal quantity - expression is outside range § to 255

Use: This command is the reverse of the ASC command and has similar
applications. This command is particularly useful when adding editor or colour
control characters to strings.

56 Advanced Commodore 64 BASIC Revealed

CHRS can be used to convert values stored in memory (and accessed using
PEEK) into string characters for display on the screen, or for use within the
program. Since the CBM 64 does not use a standard ASCII character set
another application is to use ASC to convert each character to its CBM ASCII
code value, perform the required code conversion, and then use CHRS to
convert back to the corresponding string character. This application is essential
when using some non CBM printers or when communicating with other makes
of computer. It could also be used in encoding and enscription routines.

The command CHRS has one oddity; the use of CHR $(§) allows the addition
of a null character with length 1 to a string. The null character will never be
printed but will register when LEN is used.

ROM routine entry point: $B6EC

Routine operation: The single byte parameter is input and evaluated and
checked for correct range (-255) by the routine at $B7A1. A single character
string space is then allocated, the character generated from the input parameter
is stored in this string space and the string pointers are set up in the allocated
string variable.

CLOSE

Abbreviated entry: CL(shift)O
Token: Hex $AQ Decimal 16§
Modes: Direct and program

Purpose: This command is used to inform the computer that the processing of a
file is completed. The processor then deletes reference to the file from its file
tables, depending on which output device is being accessed. The CLOSE
command also sets various end of file pointers.

Syntax: CLOSE file number. The file number must be a value between 1 and
255.

Errors: Syntax error - if there is no file number
Illegal quantity - if the file number is outside the range 1-255
Note: No error is generated if the file does not exist

Use: The CLOSE command deletes the file entries from the file tables set up by
the OPEN command (see OPEN command for details of file tables). If the files
opened were to either the screen (device 3) or keyboard (device (§) then no other
action is taken. When closing cassette files which have been used to write data
the last buffer is dumped to tape and an end of tape header is written containing
the end of tape value 5. Serial files, previously opened for write, when closed
send the buffer contents to the serial device media together with an end of file
command. This causes the serial device to close the file and set/reset any

The Keywords of BASIC 57

pointers within the serial device (see The Commodore 64 Disk Drive Revealed
for details on the functioning of the disk commands and the disk internal
operating system). Serial and cassette devices opened for read will simply clear
the input buffer.

ROM routine entry point: vector indirect entry $¢31C
routine entry $F291

Routine operation: The logical file number of the file to be closed is passed in the
processor accumulator. Keyboard, screen and unopened files just pass straight
through the routine, but tape files open for write are closed by dumpingthe last
buffer and conditionally writing an end of tape block. Serial files are closed by
sending a close file command if a secondary address was specified in the open
command.

CLR

Abbreviated entry: C(shift)L
Token: Hex $9C Decimal 156
Modes: Direct and program

Purpose: Resets the variable pointers so that all variables are in practice erased
while leaving the Basic program unchanged.

Syntax: CLR. This command has no parameters.

Errors: Will produce errors only if the programmer has been changing the
variable pointers.

Use: This command does not in fact erase any of the variables by replacing them
with nulls; instead it simply restores the variable pointers. Thus the start of an
arrays pointer will contain the top of the Basic program address plus two, and
the bottom of the strings pointer is set to the top of the memory pointer. The
pointer to DATA statements is also cleared. The temporary string stack is
cleared and the main stack is also cleared. The fact that the CLR command
resets the processor stack pointer to the bottom of the stack means that
although CLR can be used in program mode it will remove all loop returns.
Therefore if CLR is performed within a GOSUB or FOR ... NEXT loop, then
the program will fail on the RETURN or NEXT command. In many
applications it is preferable to use POKE commands to change just the required
pointers rather than use the CLR command. It should also be noted that the
CLR command will do a partial close on all files to cassette or serial which are
open; this will result in loss of data and the erasing of all open files from the file
tables.

ROM entry point: SA65E

58 Advanced Commodore 64 BASIC Revealed

Routine operation: The CLR function first checks that there is no following
parameter, then sets string pointers $33,$34 equalto the top of memory pointers
$37,$38 and the start of arrays $2F,$30 equal to the start of variables $2D,$2E
thus erasing all variable storage pointers. The I/O pointers are returned to
default values and the stack pointer reset to remove unwanted stack variables.
The routine performs a restore and blocks the CONT command.

CMD

Abbreviated entry: C(shift)M
Token: Hex $9D Decimal 157
Modes: Direct and program

Purpose: This command is used to set the primary output device to a previously
opened file rather than the screen. All output following the CMD command will
then be directed to the new output device.

Syntax: CMD logical file number, string. The file number must be a value
between 1 and 255. The comma separator between the file number and the string
is only necessary if a string is included within the CMD command.

Errors: Syntax error - wrong command syntax e.g. no file number
Illegal quantity - logical file number exceeds the limits of 1 to
255
File not open - if the specified logical file is not opened

Use: When this command has been used all PRINT or LIST commands will
send data to the device specified in the previous OPEN command. This will
continue until a PRINT# file number command resets the output to the screen.
It then uses a CLOSE command to close the file. An alternative method in direct
mode is to perform any operation which will generate a syntax error; this will
reset output to the default device. This should then be followed by a blank line
output to ‘unlisten’ the output device.

ROM routine entry point: $AA86

Routine operation: The parameter following the CMD command is evaluated
by the routine at $B79E which gets a single byte parameter. The result is stored
in the .x index register, the output device number variable in location $13 is then
set to the value in x and PRINT is performed.

CONT

Abbreviated entry: C(shift)O

The Keywords of BASIC 59
Token: Hex $9A Decimal 154

Mode: Direct only - attempting to use CONT within a program will result inan
endless loop within CONT and therefore a program crash.

Purpose: To restart the execution of a Basic program after either pressing the
STOP key or the program encountering a STOP command.

Errors: Can’t continue error - on using CONT after an execution error or after
changing the program or using CLR

Use: The main use of CONT is in debugging a Basic program. By inserting
STOP commands at strategic points within the program one can stop the
program, examine all the variables in direct mode and then resume operation
with CONT. While the program is stopped its variables can also be changed in
the direct mode; however new variables or lines cannot be added.

ROM routine entry point: $A857

Routine operation: This routine restores the line address pointer in chargot at
locations $7A,$7B using the contents of the pointer to the Basic statement for
the CONT variable at $3D,$3E. It also sets the current line number variable in
$39,$3A equal to the previous line number in $3B,$3C. If, however, the contents
of $3E are zero then a Can’t continue error is generated.

COS

Abbreviated entry: None

Token:Hex $BE Decimal 19¢

Mode: Direct and program

Purpose: This command evaluates the cosine of an angle in radians.

Syntax: COS (arithmetic expression). The expression must be syntactically
correct and within the range permissible for floating point numbers.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non arithmetic expression
Overflow error - expression is outside the permissible floating point

Use: This command is used within many trigonometric applications. It should
be noted that the value of the expression must be in radians rather than degrees.
An angle can be converted to radians by multiplying the angle by pi/ 180.

ROM routine entry point: $E264

Routine operation: The argument in radians is stored in FAC#1, this is then
added to a value of pi/2 stored in FAC#2 and the result stored in FAC#1. The

60 Advanced Commodore 64 BASIC Revealed

routine then jumps to the perform SIN routine at SE26B and the result is stored
in FAC#1.

DATA

Abbreviated entry: D(shift)A
Token: Hex $83 Decimal 131
Mode: Program mode only

Purpose: This command allows data to be stored within a program without the
necessity of it being entered separately from the keyboard, tape or disk. The
data, which can be any alphanumeric or ASCII character values or strings, is
then accessed using the READ command.

Syntax: DATA followed by ASCII characters. Two delimiters are used in a
DATA statement. A ” is used to delimit string data, and a comma is used to
separate each item of data. A colon encountered on the same line as a DATA
statement signifies the end of the data.

Errors: None

Use: DATA statements are a very useful way of storing data, in particular
constants, within a program. Though DATA statements can be placed
anywhere within the program the order of data within these statements is
important, since the READ command sequentially accesses the data. The data
pointer can be reset to the beginning of all DATA statements only by the
RESTORE command. To access DATA statements in a random manner one
would need to know the start address of each data statement as it is stored within
the program memory, and use these addresses to put into the pointers to the
current DATA statement variable in locations $41,$42. This would then cause a
READ to get the desired data. Data statements can be forced into a program
using the keyboard buffer to emulate the entry of a program line (see Chapter 2
for details of this and Chapter 4 for a Restore to line # routine).

ROM routine entry point: SA8F8

Routine operation: This routine'is part of the RETURN routine and is used to
search for the next Basic statement following the DATA statement, thereby
ignoring the data following the DATA statement. The main associated data
accessing routine is the READ routine.

DEF FN

Abbreviated entry: DEF is D(shift)E
FN has no abbreviation

The Keywords of BASIC 61

Token: DEF Hex $96 Decimal 150
FN Hex $AS5 Decimal 165

Modes: Program mode only

Purpose: This command is used to assign a user defined function which can be
called later within the program by FN. The function can consist of any valid
mathematical formula.

Svnrax: DEF FN floating point variable (floating point variable) = arithmetic
expression. The function definition must precede the FN call within a program
and must fit within a single Basic line.

Errors: Syntax error - wrong command syntax e.g. non floating point variable
(It should be noted that this error will be produced onthe
line using the FN rather than the DEF FN line)

Type mismatch - use of string variables
Division by zero - attempt to divide by zero within an expression
Out of memory - recursive calling of function by function
Overflow error - result of an expression evaluation which is

too large or small
Undefined function - FN call before DEF FN definition

Use: The principal use of the DEF FN command is to save program space and
complexity by allowing a complex formula, used several times within a
program, to be defined just once. In fact DEF FN acts rather like a special
subroutine jump. It could be replaced by a jump to a subroutine but this
would be considerably slower, and would only be justifiable if the expression
required more than a single line of Basic program to define it. The function
defintion is stored as a simple variable (see Chapter 2 for details on how this
variable is stored). It should be noted that the variable in brackets does not
change when a function is called. Although it is used by the function definition it
is temporarily stored in an area of memory reserved for the function definition.
Since the function definition is stored as a variable it can be redefined at any
time within a program; similarly one function definition can call another
function as its variable.

ROM routine em);r points: perform DEF is at $B3B3
perform FN is at $B3F4
check FN syntax at $B3EI

Routine operation: DEF - a syntax check is first carried out using the routine at
$B3E 1. The mode of operationis then checked to make sure that it is in program
mode, and a left bracket is searched for. If found, then the following variable is
located in memory using routine $B@8B. A right bracket is then checked for and
the next character in Basic tested to make sure that it is an = sign. The five bytes
of data obtained are then pushed onto the stack in the following format:

(1) function token of the first character in the variable name

62 Advanced Commodore 64 BASIC Revealed

(2) variable address pointer from locations $47
(3) and $48

(4) pointer to Basic for charget from $7A

(5) and $7B

The evaluate FN function first calls the routine at $B3E 1 which checks syntax
and then gets the variable address. The expression is evaluated and the result
stored in FAC#1. The data placed on the stack by the DEF routineis recovered
and stored in RAM memory at a location pointed to by the values in locations
$4E,$4F.

Both routines call a routine to check the FN syntax. This first checks for the
FN token, $AS, then sets the function flag in location $1() with the OR of the
function name AND $8(. If the function exists it is searched for; if not then it is
set up. Finally the routine checks that the value is numeric.

DIMm

Abbreviated entry: D(shift)l
Token: Hex $86 Decimal 134
Mode: Direct and program

Purpose: This command allocates space in memory for the storage of an array
of specified name, number of dimensions, number of elements in each
dimension and variable type.

Syntax: DIM name (arithmetic expression I, arithmetic expression 2, ,
arithmetic expression n) [,name 2 (arithmetic expression 1,)]- The square
brackets indicate optional repetitions. Each expression is evaluated and
converted to a two byte positive integer which must be within the range § to
32767 (though high values like 32767 will always give an Out of memory error).
It is usually best to dimension arrays at the beginning of a program, and any
attempt to put a DIM statement within a loop or create a new array using the
same variables will always give a Redimensioned array error.

Errors: Syntax error - wrong command syntax
Out of memory - number of elements is too large for the
available memory
Redim’d array - attempting to redefine an existing array
Illegal quantity - number of elements is less than @ or greater
than 32767

Use: This is a very straightforward command which must be used before setting
up an array. It is possible to use subscripted variables without having defined
the array with a DIM, in which case the number of elements in each dimension
will default to 11. (Note: DIM A (10) gives an array with eleven elements since

The Keywords of BASIC 63

the zero element is used.) In a default array any attempt to use more than three
dimensions will give an Out of memory error due to the fact that the default
array will be 10,10,10,1¢ and this uses more memory than is available on the
CBM 64. For further details on how arrays are stored see Chapter 2.

ROM routine entry point: $B@81

Routine operation: The presence of a variable of the same name is first checked
using the routine at $BP9¢. If one is not found then the routine sets up an array
with the variable name and number of elements specified in the DIM statement.
It checks to see if charget points to a comma as the next character; ifso then the
routine loops back and repeats the procedure for the next specified array.

END

Abbreviated entry: E(shift)N
Token: Hex $80 Decimal 128
Modes: Direct and program

Purpose: Informs the computer that it has reached the end of the program,
whereupon it exits to the direct mode and prints a Ready message. The CONT
command can be used to resume execution after an END statement.

Svntax: END has no parameters but must always be followed by a colon or end
of line marker.

Errors: Syntax error - following END by a parameter

Use: This command is used to halt execution of the program, a function it shares
with the STOP command. The END command is not essential at the end of a
program if the end is at the highest program line number, but is essential if the
program is to end prior to that. Like the STOP command, END can be used to
set break points in a program during debugging, where a CONT will resume
program execution.

ROM routine entry point: $A82C

Routine operation: This routine is called by either the STOP key detect routine
at $FFEI, theroutine at SA7BE which detects the terminating double zero bytes
of a Basic program, or by the keyword END. Which action is performed
depends on the state of the Z and carry flags in the processor status register. If
carry and Z are both set then a STOP break is initiated; if carry is clear then
END is performed.

64 Advanced Commodore 64 BASIC Revealed

EXP

Abbreviated entry: E(shift)X
Token: Hex $BD Decimal 189
Modes: Direct and program

Purpose: Calculates e (2.718281828) raised to any power in the range —88 to
+88, the result always being positive.

Syntax: EXP (arithmetic expression). If the expression exceeds 88.$296919
when evaluated then an Overflow error is generated.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Overflow error - expression exceeds 88.0296919

Use: EXP is the converse function of LOG and is used principally in scientific
or statistical programs.

ROM routine entry point: SBFED

Routine operation: The value of e to the power of the value in FAC#I is
calculated. It first multiplies FAC#1 by a constant equal to 1/log e 2 which is
then tested for range. If it is within the range then a series routine is called which
calculates 21(x/log e 2). The result is stored in FAC#I.

FOR...TO...[STEP] and NEXT

Abbreviated entry: FOR is F(shift)O
TO has no abbreviation
STEP is ST(shift)E
NEXT is N(shift)E

Tokens: FOR Hex $81 Decimal 129
TO Hex $A4 Decimal 164
STEP Hex $A9 Decimal 169
NEXT Hex $82 Decimal 130

Modes: Direct and program

Purpose: This command is used to repeat the program contained in the lines
between the FOR ... TO ... [STEP] command statement and its associated
NEXT. With each repetition of the loop the variable is incremented by the
STEP value until it reaches the value in the TO variable.

Syntax: FOR floating point variable = arithmetic expression or floating point
variable TO arithmetic expression or floating point variable [STEP arithmetic

The Keywords of BASIC 65

expression or floating point variable]. The square brackets denote that the
STEP command is optional; if STEP is not defined it defaults to a step
increment of 1.

Errors: Syntax error — wrong command syntax e.g. integer or array variables
used
NEXT without FOR - if there is no FOR ... TO to match a
NEXT; this can occur if the NEXT is
simply omitted or a RETURN is used
with a GOSUB/GOTO, called before
the FOR ... NEXT loop

Use: Although FOR ... NEXT loops are probably one of the most useful
commands in Basic the version of Basic used in the CBM 64 has several
interesting features which can pose problems for the programmer. The first
problem likely to be encountered is with nested FOR ... NEXT loops. The level
of nesting is limited by the fact that the processor stack is used to store the loop
variables and takes 18 bytes of stack space for every nested loop. To ensure
correct nesting it is advisable to omit the variable from the NEXT statement;
this will ensure that the interpreter simply takes the last entered FOR ... TO
entry on the stack as referring to the NEXT statement. The level of nesting is
limited in theory to 1§ levels, though in practice it is fewer since the stack is also
required for other purposes.

This use of the stack also gives several other effects. When a new FOR ... TO
is set up the stack is scanned for an existing active loop with the same variable. If
found then the new FOR ... TO replaces the old one. A RETURN after a
GOSUB also has the effect of clearing all stack contents placed there during the
GOSUB routine, thus erasing any FOR ... TO references set up during the
GOSUB which are still open (the cause of the NEXT without FOR error
encountered in such cases). The only way in which the variable denoting the
upper limit of the loop or the loop step can be changed is to directly change the
value in the stack, since these two variables are stored as part of the stack data.
Thus the variables used to define the upper limit and step can be reused
immediately after the FOR ... TO ... STEP command is set up without
affecting the command operation.

The STEP command and associated variable, if not specified, defaults to 1. It
should be noted that the FOR ... NEXT command will always pass once
through the loop. If STEP is specified it can lead to errors due to rounding of the
floating point values; this will not occur with non fractional values except on
very large numbers, but can be quite serious on some fractional values especially
values like 4. The result of such rounding can easily give a loop count error of
plus 1, and is commonly encountered in routines like graphics circle drawing.

ROM routine entry point: FOR ... TO $A742
NEXT $SADIE

Routine operation: FOR ... TO setup evaluates the expression and then assigns
18 bytes on the stack for the active FOR loop, having checked that there is space
on the stack. The format of the stack entry for an active FOR loop is:

66 Advanced Commodore 64 BASIC Revealed

Stack address | loop return address lo

2 loop return address hi

3 return line number hi

4 return line number lo

5 TO value in floating point notation (Isb)

6 TO value in floating point notation (Isb)

7 TO value in floating point notation (lsb)

8 TO (most significant byte + sign)

9 TO (mantissa)

1§ sign of STEP

11 STEP value in floating point notation (Isb)
12 STEP value in floating point notation (Isb)
13 STEP value in floating point notation (Isb)
14 STEP (most significant byte + sign)
15 STEP (mantissa)

16 variable address hi
17 variable address lo

18 FOR token $81

The first function of the NEXT routine is to check for any variable name
following the NEXT command. If there is none then the locations $49 and $4A
are set to zero. If a variable name follows the NEXT command then its location
is obtained using the routine at $BP8B. This returns the pointers in the
accumulator (low order address byte) and the .y index register (high order
address byte). These values are stored in the variable pointer $49,$4A. The stack
is then searched for a matching FOR command. If no variable is specified then
the last entered FOR return data is used; if there is no matching return FOR
then a NEXT without FOR error is generated. The step value in floating point is
moved from the stack to floating point accumulator #1 and added to the
variable pointed to by $49,$4A. This is compared with the TO value stored on
the stack, and if equal exits from the FOR ... NEXT loop. If not equal then the
return line number is restored in $39,$3A and the charget pointers in $7A,$7B
are reset to the FOR entry point and a warm start to Basic initiated to restart the
program at that point.

FRE

Abbreviated entry: F(shift)R
Token: Hex $B8 Decimal 184
Modes: Direct and program

Purpose: Calculates the number of unused bytes of memory available between
the bottom of the string storage area and the top of the array storage. The
routine also performs a ‘garbage collect’ which clears all unused string variables
out of memory thus freeing the maximum amount of available memory space.

The Keywords of BASIC 67

Svntax: FRE (expression). Since FRE is a function it requires an expression.
However, in the case of FRE this expression is purely a dummy and can be any
value.

Errors: Syntax error - wrong command syntax

Use: This command is used principally in the direct mode to find the size of a
program, or in the program mode, where a program involves a lot of string
storage and manipulation, to prevent an Out of memory error being generated
because of insufficient space to store a new string. Stringstorage can quickly use
up available memory if a lot of string manipulation is being performed. The
reason is that every time a new string is created it is stored in the string storage
area which starts at the top of available RAM memory and extends downwards
until it meets the top of the array storage area. New strings are simply added to
the bottom of this memory area, and when a string variable is redefined the old
string is not erased; the variable pointers are simply changed to point to the new
string. This means that the interpreter must occasionally remove unassigned
strings in order to release more free memory. This process is called ‘garbage
collection’ and occurs at irregular intervals whenever it is not possible to add
another string or variable to memory.

Unfortunately garbage collection can be a very lengthy operation (it can be
well in excess of 3() minutes) which totally halts the program operation. Many
users have been faced with a machine which ceases to operate, and have come to
the conclusion that it has crashed, when in reality it is simply performing a
‘garbage collect’. It should be noted, of course, that the amount of memory
available on the 64 means that a garbage collect situation is, on most
programs, rarely ever reached. If it is thought likely to occur then there are two
precautions which can be taken to reduce the garbage collection delay time. The
first is to lower the top of memory using the top of memory pointers, to reduce
the space available for string storage to the absolute minimum, thereby forcing
frequent small garbage collects, each of fairly short duration. The other method
is to use the FRE command to force a garbage collect at some regular period
within the program where there is normally a pause in program operation, e.g.
after an input prompt.

ROM routine entry point: $B37D

Routine operation: The routine discards all unwanted strings by calling the
garbage collect routine and then calculates the amount of free memory
available. This is returned as an integer stored as two bytes in $62 (1o), $63 (hi).

GET and GET#

Abbreviated entry: G(shift)E
G(shift)E#

Token: Hex $A1 Decimal 161

68 Advanced Commodore 64 BASIC Revealed
Modes: Program mode only

Purpose: These two commands input a single byte, GET from the keyboard and
GET# from any other input device. If there are no characters in the keyboard
buffer then these commands will simply return a null string.

Syntax: GET variable name, [variable name], [variable name],

GET # arithmetic expression, variable name, [variable name],
The GET and GET# commands may be followed optionally by more than one
variable, but must always have at least one variable. The GET# command must
always be followed by a logical file number between | and 255.

Errors: Syntax error - wrong command syntax, or attempting to input a non
numeric character using GET numeric variable
[llegal direct error - attempt to use the commands in direct mode
Device not present - no input device corresponding to the logical file

Use: The GET commands have a great virtue over the INPUT commands in
that they do not have the same conventions and restrictions. Therefore GET can
be used to input any character (including ” : , return and the screen editor
characters which are not accepted in an INPUT command). The single
character strings input by GET can then be validated by the program and if
necessary concatenated to produce a longer string, thereby giving the
programmer total control over input.

The GET command gets one character from the keyboard buffer where they
are placed by the keyboard servicing part of the IRQ routine. The keyboard
buffer is situated at $(277 and occupies 1§ bytes of memory. This buffer is
organised on a first in first out basis and the GET command takes a single
character off the top of the buffer. If there are no characters in the buffer then
GET will return a null character (it is for this reason that a GET command
usually has to be structured as a loop which rejects all null characters and just
returns the first character entered). Keypresses entered into the buffer prior to
the GET command will be returned by GET instead of keys pressed during the
GET command execution. This can be countered by clearing the keyboard
buffer previously by setting the buffer pointer in $C6 to zero.

The GET# command is used primarily to get data, byte by byte, from either
tape or disk, and as with GET its main value lies in the command’s ability to take
any character, such as colons and commas, rejected by the INPUT# command.
When reading from tape the GET# command obtains characters from the
cassette buffer. The cassette buffer is loaded with a 192 byte block of data from
tape, the tape then pauses until this buffer is read, the pointers are reset and the
next 192 byte block is read from tape (see The Commodore 64 Kernal and
Hardware Revealed for further details on tape and disk storage).

ROM routine entry point: $AB7B

Routine operation: Checks are first made by the routine to determine the
operation mode, direct or program, and whether the command is GET or
GET#. If the command is in the direct mode it is rejected with an error message.

The Keywords of BASIC 69

When it is a GET# command the file number is input, the routine checks that a
comma is present and sets the required device for input. The input buffer at
$0200 is then set up to accept just a single character, the buffer being filled with a
null byte. The accumulator is loaded with $40) and the routine jumps to the GET
character from the input device subroutine within the perform READ routine;
the entry address is SACQf. This routine first stores the accumulator in location
$11 to identify that it is a GET command. The character is then obtained from
the input device, the input character being stored in $¢200.

GOSUB and RETURN

Abbreviated entry: GOSUB GO(shift)S
RETURN RE(shift)T

Tokens: GOSUB Hex $8D Decimal 141
RETURN Hex $8E Decimal 142

Modes: Direct and program

Purpose: This performs a jump to another section of the program specified by a
line number following the GOSUB command. On encountering a RETURN
command the program will then return to the instruction following the
GOSUB. The section of program jumped to is called a subroutine.

Syntax: GOSUB line number. The line number must be in ASCII numerals and
be within the range @) to 63999. The RETURN command must be situated at the
end of the subroutine called by GOSUB.

Errors: Syntax error — wrong command syntax e.g. line number out
of range
Return without GOSUB - no GOSUB matching a RETURN
Undefined statement - line number does not exist
Out of memory - excessive use of GOSUB nesting using all
the stack space

Use: This is a very important Basic command which allows the use of
subroutines within a program, a subroutine being a piece of program code
required more than once in a program. Like the loop command FOR ... NEXT,
the pair of commands GOSUB ... RETURN make extensive use of the
processor stack to save the return address and line number. Every time a
GOSUB is used it requires eight bytes of the processor stack, therefore there is a
limit to the number of levels to which subroutines can be nested within other
subroutines. This limit is, in theory, 23 levels of nesting, but in practice it is much
less since the stack is also required for other purposes such as FOR ... NEXT
loops etc.

The RETURN command, when encountered, will delete all stack entries

70 Advanced Commodore 64 BASIC Revealed

above and including the last entered GOSUB stack entry. Any attempt to use
levels of GOSUB nesting greater than this will result in an Out of memory error.
This error will also result if an attempt is made by a GOSUB to call itself (the
stack will fill up with return addresses which are not deleted by the RETURN
command).

It is sometimes useful to be able to escape froma GOSUB without executinga
RETURN: this is done by the POP command in Chapter 5. Another interesting
feature of the GOSUB command is that when it checks the line number
following the GOSUB it performs an incomplete validation, thus GOSUB
followed by no line number or a non numeric character will always default to a
GOSUB §, a potentially useful feature. However, any attempt to do a computed
GOSUB will fail and will default to @ if a variable is used, or to the number if
used first. A proper computed GOSUB routine is given in Program 10.

Source code for computed GOSUB.

@33c ICALCULATED GOSUB

833C !

Ccaoo #*=$C000

CeB8 20FDAE JSR $AEFD 1SCAN PAST COMMA
€6a3 238AAD JSR $ADSA IGET LINE NUMBEK
CeQe 20F7B7Y JSR $B7F? t INTO #14,%135
cee9 68 PLA IREMOVE SYS RETURN
CadA 68 PLA ! ADDRESS

COBB R%A3 LDA #3083

Co@D 2@FBAR3 JSR $A3FB ICHECK STACK DEPTH
Ca10 ASYB LDR $7B {PUSH OFF GOSUB
ce12 48 FHA IPARAMETERS

CB13 AS7A LDA $7R

ca1s 43 FHA

Co16 HSEA LDA £3A

ca1e 48 PHH

Ce1s RS39 LA 39

CO1E 48 FPHA

Ce1C RSSD LDA #$8D

Ce1E 43 PHA

Ca1F 28R3A8 JSR $ASA3 D0 GOTO

Coz2 4CHERY JMP $A7VAE 'BACK TO MARIN LOOP

BASIC loader for computed GOSUB.

16 IMFUT"ADIDRESS FOR CALCULATED GOSUB®;I:S5=1

26 READA: IFA=-1THENSO

36 POKEI.A:I=I+1

48 T=T+A:GOTO2@

S0 IFT<O>4566THENPRINT "RIEICHECKSUM ERROR :456@"T:END
68 IFICOS+37THENPRINT"XMEMUMBER OF DATA ERROR":END
7@ PRINT"RHETO USE THE CRLCULATED GOSUE:*

88 PRINT"RSYS("S"),LINE HUMBER"

94 END

188 DATA32,253,174,32,138,173,32

118 DATRZ47, 183,104,104, 169,3,32

12@ DRTAZS1, 163, 165, 123,72,1635, 122

1368 DATA?2.165,58,72,165,57.72

142 TATAL1ES, 141,72,32,163,168,76

156 DRTA174,167,-1

Program 10.

The Keywords of BASIC 71

ROM routine entry point: GOSUB - $A883
RETURN - $A8D2

Routine operation: The routine to perform the GOSUB command pushes the
seven bytes of data required for a GOSUB onto the stack, having first checked
that there is space on the stack. If there is not then an Out of memory error is
generated. The format of the stack entry for an active GOSUB is:

Stack address 1 $A7 return to control loop address msb
$E9 return to control loop address Isb
return address hi

return address to

line number lo

line number hi

$8D GOSUB token

NN A WLWN

Having placed this data on the stack the routine performs the same function
as the GOTO command and scans the Basic program to locate the desired target
line. It does this by first comparing the target line number with the current line
number; if the target is larger then it scans up, if smaller than it scans up from the
start of Basic. If the line is not found then an Undefined statement error is
generated. Having found the line program the control jumps to it.

The routine to perform RETURN first checks for a GOSUB token $8D on
the stack by calling routine $A38A. This searches for FOR entries on the stack
which are then skipped and the nextstack entry checked fora GOSUB. If found
then all higher stack entries are erased and the pointers to the GOSUB calling
routine recovered. If no GOSUB pointer is found then a RETURN without
GOSUB error is generated. The original line number is stored in pointers
$39,$3A. Charget is reset using the return address pointers from the stack. The
routine then merges with the DATA routine which searches for the next
statement after the pointer; this is used to ignore any commands following the
GOSUB and to start execution on a new line following the GOSUB. The RTS
terminating the DATA routine calls the routine pointed to by the return to
control loop address on the stack.

GOTO

Abbreviated entry: G(shift)O
Token: Hex $89 Decimal 137
Modes: Direct and program

Purpose: Performs a jump to the specified line in the command. It can be used in
conjunction with IF and ON to give conditional jumps.

72 Advanced Commodore 64 BASIC Revealed

Svntax: GOTO line number. The line number must be in ASCII numeric
characters and in the range § to 63999.

Errors: Undefined statement - line number specified does not exist

Use: Programming purists do not approve of the GOTO command, however it
is very useful especially for jumping on a conditional test. An interesting feature
of the GOTO command is that if no line number is specified or a non numeric
character follows the GOSUB, then the interpreter assumes a default of GOTO
. Computed GOTOs are not allowed, but a simple routine to add this facility to
Basic, is given in Program 11.

Source code for computed GOTO.

833C !CALCULATED GOTO

a32C !

600 #=$C000

Coea 28FDAE JSR $REFD ISCAN PAST COMMA
C6a2 208AARD JSR $ADSA IGET LINE NUMEER
cané 28F7B7? JSR $BYF? ! INTO #14,%13
Cea3 4CA3AR8 JHP $A3A3 'EXECUTE GOTO

BASIC loader for computed GOTO.

16 IMPUT"ADDRESS FOR CALCULATED GOTO";I:S=1

20 READA: IFA=-1THEHS®

38 FOEEILA:I=I+1

40 T=T+A:GATOZG

S@ IFTL16VITHENPRINT " RIBSCHECKSUM ERROR :1671"T:END
& IFICOS+1ZTHEWFRIMT "REBNMUMBER OF DATA ERROR™:END
T8 PRINT"BRITC USE THE CALCULATED GOTO:" -

38 PRIMNT"®SYS("S"),LINE NUMBER"

Qi EMD

16a DATA32.253.174,32,138,173,32

118 DATA247.133,76,163,168,-1

Program 11.

ROM routine entry point: SA8A(

Routine operation: The line number used in the GOTO is first fetched and
stored in locations $14,$15. The line number is then compared with the current
line number (note high bytes only are compared). If the target line# high byte is
larger than the current line# high byte, thenthe programisscanned upwardsfrom
the current line using the link pointers to achieve thisscanningquickly. If the target
line number is not found then an Undefined statement erroris generated. Ifthe line
is found then the address of thezero before thestart of thetarget lineisloaded into
the charget pointers at $7A,$7B and program execution is restarted on an RTS.

IF...THEN

Abbreviated entry: 1F None
THEN T(shift)H

The Keywords of BASIC 73

Token: 1F Hex $8B Decimal 139
THEN Hex $A7 Decimal 167

Mode: Direct and program

Purpose: This command allows the conditional execution of any statement
following the IF including jumps or GOSUBs to other lines, depending on the
value or expression following the IF statement. The IF command is usually
associated with the THEN or GOTO commands.

Syntax: IF arithmetic or logical expression
THEN line number or expression
GOTO line number
THEN GOSUB line number
When GOTO is used it must not have a space between GO and TO.

Errors: Syntax error - wrong command syntax
Undefined statement - if the line number following THEN,GOTO
or GOSUB does not exist

Use: The IF...THEN command structure is the primary conditional test in
CBM 64 Basic and is therefore of great use. It functions by first evaluating the
expression following the IF statement. If this gives a value greater or less than
zero then the expression is deemed to be true; if the result is zero then the
expression is false. If the expression is false then any further statements on the
line are ignored and the next line executed. If the expression is true then the rest
of the line - a THEN or GOTO statement - is executed plus any further
commands separated by colons. If the IF command is followed not by an
expression but just a variable, then the interpreter takes the value of the variable
and uses that as the test. It should be noted, of course, that the sign of a value or
expression is not considered by the IF command.

One interesting feature of the IF command is that the condition following the
IF statement may be a string or string variable; it will not produce an error but
will give some odd effects. If the condition is a string variable then the condition
tests the contents of FAC#1 left after the previous numeric calculation or
numeric variable assignment. A previous string assignment will also affect the
condition test; a false condition will be generated only if the assignment was a
null string. The IF conditional test will work satisfactorily when making
comparisons between two strings. If a subscripted string variable is included
within the test, then the interpreter will ignore the string variable and simply
take the number or numeric variable used in the subscription as the test value.
The use of a string as the conditional test variable will give a false message if it is
a null string and a true message in all other cases. However, this does not clear
the string stack, and using it three times will give a Formula too complex error.

ROM routine entry point: $A928

Routine operation: The expression following the IF is first evaluated by the
routine at SAD9E, the result of the evaluated expression being placed in floating

74 Advanced Commodore 64 BASIC Revealed

point accumulator #1. The exponent value is also placed in the processor
accumulator. The routine then checks whether the following statement is the
token for either THEN ($A7) or GOTO ($89); if not then a Syntax error is
generated. When the result of the evaluation is zero the exponent in the
accumulator is set to zero. If the accumulator contains a zero then the condition
is deemed ‘false’ and the control branches to the next line. This is done by taking
the scan offset to the next line start address in the .y index register and adding it
to the charget pointers in $7A,$7B. If the accumulator is greater than zero then
the condition is ‘true’ and the statement following the IF conditional expression
is performed. A GOTO or THEN followed by a line number will execute a
GOTO jump; if THEN is followed by GOSUB and a line number the GOSUB
routine is executed. If THEN is followed by a variable then it is assigned.

INPUT and INPUT #

Abbreviated entry: INPUT None
INPUT# I(shift)N

Tokens: INPUT Hex $85 Decimal 133
INPUT# Hex $84 Decimal 132

Modes: Program mode only

Purpose: To input data into the computer, from the keyboard in the case of
INPUT, and from a specified input device in the case of INPUT#. The INPUT
command also displays the input on the screen at the current cursor position.
An INPUT or INPUT# is terminated by the return key or a return ASCII
character. INPUT can also include a string which is first output on the screen
prior to data input.

Syntax: INPUT [string within quotes;] variable name [,variable

With INPUT the string within quotes is optional as is also the use of more than
one variable. When run, an INPUT command will first display any string
following the command and then display a question mark followed by a flashing
cursor as an input prompt. Extra input variables can be separated by commas. If
carriage return is pressed after each then a double question mark is displayed to
prompt. With the INPUT# command the arithmetic expression following
defines the logical file number and must evaluateto a value between 1 and 255. It
should be noted that there is no optional displayed string with the INPUT#
command. With INPUT and INPUT# the maximum length of a data item
input is 79 characters including the terminating ‘return’ character and question
mark prompt.

The Keywords of BASIC 75

Errors: Syntax error - wrong command syntax
Illegal direct - attempting to use INPUT commands in the direct
mode
Redo from start - attempting to input the wrong variable type
Extra ignored - use of a comma separator within input
indicates that there are more inputs than variables
File not open - no input file open in INPUT#
Not input file - file not open for input

Use: Both INPUT and INPUT# have strict rules covering permissible input
characters. The characters not accepted are principally, : “ and the screen editor
commands plus the ‘return’ character if used as anything other than an input
terminator. These limitations can be quite annoying and are one reason why
GET or GET# are often preferred to INPUT and INPUT# because these
restrictions do not apply and the programmer can use his own character
trapping. The INPUT routines treat the comma as a separator between inputs
and therefore ignore it and place the following input data in the next variable (if
one was assigned in the INPUT command; if not then an extra ignored error is
produced). A colon encountered within the input data will signify the end of the
statement. If the “ character is input then all following characters are treated as
being a literal string until a matching ” is found.

The INPUT and INPUT# commands work by taking characters from the
respective input device and placing them in the input buffer. This is an 88 byte
block of memory at locations $¢20@ to $¢257. Characters continue to be put in
this buffer until either the buffer contains 8¢ characters (in which case a String
too long error is generated) or a carriage return, comma or colon character is
input. When a carriage return or separator character is input a terminating zero
is added to the end of the input, and the buffer contents are assigned to the
designated variable.

ROM routine entry point: INPUT - SABBF
INPUT# - §ABAS

Routine operation: The INPUT routine first checks for a quotation mark, $22,
as the next character following the INPUT command. If a quotation mark is
present then the string within the quotation marks is printed on the output
device. The input buffer at $¢20@ is set up to accept up to 8¢ characters, the
status ST is then tested (derived from the value in $13), and the routine branches
to the input line routine. It is the input line routine which is the cause of INPUT
not accepting colons etc.

The INPUT# command gets the file number and checks for a following
comma, sets the input device and jumps into the main input routine. Having
performed the input, the input device is turned off and location $13 set to zero.

76 Advanced Commodore 64 BASIC Revealed

INT

Abbreviated entry: None
Token: Hex $B5 Decimal 181

Modes: Direct and program

Purpose: Converts the value in the argument into an integer by removing the
fractional component of the value.

Syntax: INT (arithmetic expression). The arithmetic expression must be given a
valid numeric result within the range acceptable for floating point values.

Errors: None

Use: The INT command is principally used in rounding values to whole
numbers. However, since it removes just the fractional component of the
number it will always round down all positive values and round up all negative
values. To round up simply add .5 to the value then do an INT command. It
should be noted that the value returned by the INT command is a floating point
value and should not be confused with numbers stored as integers which have a
maximum range of +32767 to —32768.

ROM routine entry point: $BCCC

Routine operation: This takes a value stored in FAC#1 and rounds it down to
the nearest integer which is left in full floating point form in FAC#1.

LEFT$

Abbreviated entry: LE(shift)T
Token: Hex $C8 Decimal 20§
Modes: Direct and program

Purpose: This takes the specified string and takes from it a substring consisting
of the specified number of characters at the left end of the string.

Syntax: LEFT$(string expression, arithmetic expression). The string expres-
sion can be a string literal, string variable, a string function like LEFTS,
or a combination of one or all of these, the only limitation being that the
resulting string length must not exceed 255 characters. The arithmetic
expression must be an integer number between @) and 255 when evaluated.

Errors: lllegal quantity — value exceeds the limits § to 255

Use: The string functions are extensively used to manipulate strings and
LEFTS. The principal use is in getting rid of trailing characters or truncating
strings to a fixed length.

The Keywords of BASIC 77
ROM routine entry point: $B70(

Routine operation: The string parameter data is first pulled from the stack by
the routine at $B761. The .y index register contains the string length. The bulk
of the routine from $B706 is shared with MID$ and RIGHTS$ and involves
creating a substring, storing it in memory and setting up the necessary pointers.

LEN

Abbreviated entry: None

Token: Hex $C3 Decimal 195

Modes: Direct and program

Purpose: Will return the length of a string or string expression.

Syntax: LEN (string expression). The string expression must be valid and can be
either a string variable, string literal, or string function. The combined string
length must not exceed 255 characters.

Errors: Type mismatch - if it is a non string expression

Use: LEN is often used within FOR...NEXT loops to perform an operation on
each character in a string.

ROM routine entry point: $B77C

Routine operation: This calls the routine at $B782 to obtain the string length
which is returned in the accumulator with the.y index register set to zero. It then
jumps to the routine at $B3A7 which converts the contents of .a and .y to a
floating point value in FAC#1.

LET

Abbreviated entry: L(shift)E or by default nothi‘ng
Token: Hex $88 Decimal 136

Modes: Direct and program

Purpose: To assign a value or string to a variable

Syntax: LET is not actually required in CBM 64 Basic since if the first byte in
any statement is not a token then the interpreter assumes that a LET command
is intended by default. The interpreter parser then checks for an = sign following
the variable and an expression or value following the equals sign. The type of
variable allowed by the assignment is determined by the variable name. If the

78 Advanced Commodore 64 BASIC Revealed

last character is % then the variable is an integer variable, if $§ then it is a string
variable; in all other cases a floating point variable is assumed. Variables can be
either simple or array variables.

Errors: Type mismatch — wrong variable type assignment
Illegal quantity - value is outside the permitted size range

Use: The LET command is not necessary in CBM 64 Basic. For further details
of variable type, storage and assignment see Chapter 2.

ROM routine entry point: $A9AS

Routine operation: The variable defined in the LET statement is first searched
for amongst existing Basic variables using the routine at $$B@8B. If it does not
yet exist then it is set up. The variable pointer address is stored in locations
$49,54A. The routine then checks for an = sign (character value $B2). If this is
not found then a Syntax error is generated. The value, string or expression
following the equals sign is then evaluated and assigned to the corresponding
variable pointed to by locations $49,$4A. The following are the start of the
routines which assign the different variable types:

$A9C4 assign integer variables
$A9D6 assign floating point variables
$AA2C assign strings, except

$A9D9 which assigns TI$

The routine which assigns TI$ uses a routine at SAAID, which adds an
ASCII digit to the contents of FAC#1. The digit is pointed to by $22,.y.

LIST

Abbreviated entry: L(shift)l
Token: Hex $9B Decimal 155

Modes: Direct and program mode. In program mode this command will stop
the program after listing the desired lines.

Purpose: This command will output all or part of the Basic program stored in
memory on the current output device.

Syntax: LIST [line number][—[line number]]. The beginning and end of line
numbers defining the listing range are optional; the line numbers specified need
not actually exist but must be within the range ¢ to 63999.

Errors: Syntax error — wrong command syntax or if an unrecognisable token
is encountered when listing

Use: The LIST command converts the tokenised Basic program back into an
easily readable format which is displayed on the screen or to another peripheral

The Keywords of BASIC 79

(if the OPEN and CMD commands have previously been used to set up an
output device); this would normally be a printer. The program can also be listed
to cassette, disk or via a modem,; this is often useful when transferring programs
to non CBM devices. Another use for a Basic program listed to cassette is a
simple merge routine. This is dealt with in The Commodore 64 Kernal and
Hardware Revealed.

The LIST command has one quirk. After a REM command all shifted
characters will be interpreted as tokens and output in their expanded form
unless the shifted characters are enclused in quotes. This can be utilised when
listing the REM command by including screen or printer control characters
after the REM, thereby either improving the listing’s legibility or providing a
degree of unlistability by using cursor characters to backspace over lines and
thereby hide their contents.

A very useful variation of the LIST command is given in Program 12; it is
modified to convert all the graphics screen control and colour characters into
more readable form.

1 RESTORE

S GOTO3660

18 DATA162.8.165,43, 133,251, 165

28 DATA44.133,252,168,8,177.251

28 DATA133,253.208,177.251, 133,254
40 DATA201.8.283,1,35, 200. 200

S8 DATAZRE.1V7,251.281,0,288.13

6@ DATALES, 253,133,251, 165,254,133
"3 DATAZSE, 162,0,76. 19,192, 291
DATRAG4, 288, 10, 232,224, 2, 208

DATA1Z. 162.8.76,23.192,224
DATA1,241.3,76.28,192,201
DATAZSS, 268, 3, 76,28, 192,133
DRTA1G2,54,201,192, 144.4,216
DATRS6, 233,96.201,96,176.7
DATR2G1.33. 144, 3,76, 28, 192
DATA134, 168,133,161, 132,92, 162
DIATAL. 288,177,251, 197,162, 288
DATA4. 232,76, 186,192,134, 162
DATAZ224,1.248,2, 176,108,262
DATA18S, 181,291,32.208.3.76

DATAR16V. 193,138, 133,93, 169. 18
0 DATH133.94.152.8.169,8,6

&8 DATAS2, 42, 137,94, 144.4,229

1 DATAS4., 230, 93. 262, 283, 242. 216

3 DATA24.185.42,133,94.24,216

3 DATA1SS, 93,185,448, 133,23, 165

DATARIGL, 291,97, 176.3,76. 22

4 DATA193, 261,123, 144, 3. 76, 22

7 DATA193,216,56.233,32,133, 161

3 DATA152.7,165, 93,2081, 48,263

3 DATAR. 282, 165,94, 201. 43,288

218 DATA1.282,228,162,248,11,176
28 DATAE.32.0,194.76,227,192

DATA32, 168,124, 164, 92,169, 91

A DRATA145,251, 165.93,201,48,2406

i DATAR. 208. 145,251, 165, 182, 261
DATA1.248,5, 165, 24,200, 145
DATA251, 169, 71,288, 145,251, 169
DATAG62.2108. 145. 251, 165, 181,208
DATA145,251, 163, 93,2808, 145, 251
DATAles, 198.76,28,192,133. 101

DATA162.8@, 133,92, 169,195,133

ADNIDN DA TN A DA ARV]

Advanced Commodore 64 BASIC Revealed

4208 DATR99. 162,80, 160,08, 177,98

436 [ATAR197.161, 2408, 9, 2600, 200, 200
449 DATA202, 16,244, 76,2503, 198, 208
450 DATAL77,98,133,193,200,177,93
468 DATA1332,99,165,193, 133,98, 160
479 DATAB, 177,98,133.193,216,24
480 DATA165,4,178,165,93.2081,42
49@ DATA2G3. 8,202, 165, 94,201, 48
5688 DATA203, 1,262,228, 102,248, 11
518 DATA17E.6,32,0,194,76,105

528 DATA123.32, 168,124, 164,92, 169
538 DATA21. 145,251, 165, 93,201, 48
543 DATA248. 3,200, 145,251, 165, 162
559 DATAR2@1,1.240,5, 165, 94,200

568 TRTA145,251,132,92.160,@, 234
570 IATAZ34.200,177.98,132,194, 164
586 DATAS2.260,145.251,132,92, 164
330 DATA194.196, 193, 208, 238, 164, 92
503 DATA159,93,200.145.251,166. 168
&18 DATATE, 28,192, 164,92, 166, 160
2@ DATATE.28,192,-1

633 DATA134.194, 165, 102,56,229, 194
648 DATA133,187,24.165,251,101,92
658 DATA133,95. 165. 252, 105, 0, 133
658 DATARG.165.95, 101, 187,133,909
678 DATA165.96, 185,0, 133,91, 165
588 DRTR4S, 56, 229,90.133.88., 168
€28 DATR165.46,229,91,17@,232, 152
a8 DIRATRZ4@.31,165,90, 24,101,868
716 DATA133,90,144.3,230,91,24

726 DATA165,95. 181,38, 133,95, 144
738 DATAZ.238,96,152.73,255,168
748 DIATA268. 198, 91,198, 96,177, 90
7989 DATA145.25, 200,208, 249,230, 91
78 DATH22A, 96,202, 208, 242,56, 165
& DATA45.229,187,133,45.176,3

4 DATA198,46.56.160,0, 165,253

3 TATAZ29.187.133. 253, 145,251, 133
8 DATAS?, 165,254,233,0,200, 133

8 DATA=Z54.133,88,145.251,136,177
& DATASY, 133.185,200, 177,87, 133
9 DATA185,24@. 24, 136,56, 165, 185
€48 DATAZ29.187.170. 145,87, 165, 186
858 DATAZ233.@,200,145,87,133.823
868 DATA13R,133,87,76,131.15%4,96
278 DHTA138.56,229.102, 133,187, 24
238 DATA165,92.181,187.176,4,201
899 DATAZ2S4. 144,3.76.65,199, 165
208 DATA4S, 181,187,170, 165,46, 105
218 DATAE, 197,56, 263, 7.228,55

926 IATA144.3.76,99. 199,24, 165

3360 DATA4S.1323.96,101,187,133.88
240 DATA16S.46,1233,91,165,@,133
258 IATA29, 165,251, 101,92, 133,95
Jed DATA165, 252, 165,0, 133,96.32
F7@ DATA121,163.24.160,8, 165,45
380 DATR1G1, 187,133, 45,144,3,230
298 VATR4E. 24,165, 253, 101, 187, 133
16ea DATAZS3, 133,87, 145,251, 165, 254
1819 TATA18S5, 2, 200, 133,254, 133,85
16828 DATA145,251, 136,177,687, 133,185
1838 DATAZEA. 177,87, 133, 186, 248, 24
1843 DATA1ZE, 24, 1€5, 185, 181, 187,170
1850 DATA14S5,87,165. 185, 105, 8, 200
1oea DATA145. 27, 133, 88,138, 133,87

1678 DATATE. 19,195, 96, 1
1855 DATAS. 56, 197, 17,60, 197, 18

1 TATARS3, 197, 19- 28,7
0 DATALST v B, 78, 197

- DHTHBIJDQ.IS"

‘B DIRTA28, 197,123, -4 1q7 124 28
DATARIS7. 125,162, 197. 126,106, 197
DATAL=F, 188, 137,129, 112,157,133
DHTHll"\;lQ? 134,119,197, 13 5; 122
A DATALAV. 136,125, 197,137,128, 197
5 DHTHIK: 131,197, 139,134,197, 140
DATAL37. 1537, 144,148,197, 145, 144
DHTHI*.,l4r 147,137, 147,151,197
DATA143. 155,197,145, 159,197,150
DATAL63, 197,151, 1692.197,152,173
X DRTHIH.,lﬁB 1¥vv.197,154,183,197
20 DRTA1SS. 189,197,156, 193,197,157
DATA157, 197,158,260, 197, 159, 204
Z 50 DHTH19?3166;285;19 161,214,197
1 DATA152.218.197, w;;22;19?;164
DATAZ25, 197, 165, 23@ 197,166,234
1”“@ DHTRIQ?;16?,238'19?,168!242;197
1230 TATA169, 246,197, 170,250, 197,171
1380 DATA254,197,172.2,198.173,6
131@ DATA138,174,108,193,175,14,198
1326 DATAL176.1£,198,177,22.198.178
1338 IATAZE, 193,173,230, 198, 168, 34
12348 DATA198,181,28, 198, 182,42. 198
1350 DATR183.46,198, 184,50, 198, 185
1268 DATRS4, 198, 185,58, 123, 187. 62
1379 DATA128, 128. 66,198,183, 793,198
13238 DATA1%2@.74,193.121,78,192,1
12326 DATASZ. 193.2,558.138.8,94

1403 DRTALS2,9.180, 128, 14, 185, 193
1416 DATA142,112.198. 141, 118.192,-1
1428 DHTHQ!B(}[LB 2 ET
1426 DATA3, 82,69, 86.3, 72,79
144@ DATH?Y, 2.82,63,68.2.67
14358 DATAR32.3,71,82,78,3,66
14£8 DARTAYG,85.3,683,88.67,3
1478 IATA?1,62.,42,3,7 1,52.43
1488 DATAS.71,66,45.3,71,62
149U DHTH45:1 1 "'/ 1,.1160;44
1568 DATAZ,79,82.71,2,72,43
1516 DATA2,78,51,2.708.53,2
1526 DATAYB,55,2,78.50.2,70
1528 DATARS2,2,76,54,2,70,56
15349 DATA3. 66,76,75.2,67,85
1556 DATA3,79,70.78,3.67,.76
158 DATAB3, 3,68,62,70,3,66
13?U I'HTHSéJ r8:_'|6152'82;69
15368 DATAES.3,71,82.49,3,71
1558 DATAS2,56.5,76.32.71,82
16086 DHTH?B;S;?S;BQ,GS'?S,BS
1818 DRTA3,71,82,51.3,50.85
1620 DATAS2.2,67,76.3,89,69
16368 DATA?S,3,67.89,78.5,71
1640 DATA62.83,80.67.3.71,60
1658 DATAYS, 3, 71,60, 73,3.71
1660 DATAEH,84.3,71.608.54.3
1670 IATA7T1,60,71,3.71,€0,43
16868 DATAR.71,68,77,3,71,60
1656 DATAR2,3.71.62,92,3,71
17668 DATREQ.78,3,71,€08,81,3
1716 DATA?1,60,68.3,71,60,908
Fe@ DATARZ,71,66,83,3,71.60
1728 DATASV, 3,71,68,65.3,71
1746 DATA6@,69,3.71.68,82,3
1758 DATAP1,5@,87,3.71,80,72

The Keywords of BASIC 81

82 Advanced Commodore 64 BASIC Revealed

176@
1vve
1788
1738
12e
1814
1826
1gce
1840
185@
1860
1g8ve
iesa

DATAZ,71,60,74,3,71,60
IATA?6,3,71.60,89,3,71
DATREB.85.3,71,68,73,3
DATA71,62.64.3.71,68,78
DATAR,71,68.67,3,71,60
DATARZR,3,71,68,86,3,71
DATAED, 66,9, 67,54,82,76
DATAGS, 5. 67.,84,82, 76,66

DATAS,67,84,82,76,72,5
DATARE?,84.82,76.73.5,67

DATAR4,82.76,78,5,67,82
DATR?1,62.78,5,67.82,71
DATR62,77.-1

1820 DATA165,95,201.,27,144,3,76

1206 DATA1@5,199,105,64,141,24,199

1218 DATA169.19,133,98.,169,193,133

1928 DHTH99,75165;193,h,o-,84

1938 DATAR2, V6.,74,32.78.,73,32

1948 DATAHB3, 82, bS-TZ;br,SQ 83

1958 DATA?8.69,77,32.73,73,84

@ DATHZ2,13,32.78.73,32,78

5] DHTHS?:(Q,?S,?S 32.84,79

38 DATATYR, 32, 82.65.72.67.32

233 DATA13,162,26,189,24,199,32

266 DATAZ10.255,202,208.247,160,2

291‘3 DHTHI-‘? 251 l"‘\:n 51 ’ ;00; 1?-] ¢51

Zez2e IRTA133,58,32,201, 189,104,104

2@38 DATA?6,25,192.234,234,234,234

2042 DATAR2,53.164,-1

3088 A=49152: B=49581 : C=49664 : D=49975 :E=500008 ' F=58236 : G=504388 : H=5081 1
3019 I=59332:J=51045:K=0

3615 PRINT"ERERRGREEREBPRIA LISTER PROGRAM "

3820 PRIMT"HEBBIN FROCESSING DATA - PLEASE WAIT "
28 FURE=ATOR:READY : IFY=-1THEH3860

135 K=K+Y':FOKEZ. Y NEXT

248 FEADY: IFY=-1THEN4@@@

2850 IFK=581B8STHEM4@R@

3266 PRINT"WEN DATA ERROR IM LINES 18 - 620 ":END
4668 K=8:FORZ=CTOD:REARDY : IFY=-1THEN4830

4685 K=K+ :POKEZ. Y :HEXT

4810 READY:IFY=-1THENS066

4020 IFK=41386THENSGQO

4638 PRIMT"MEd DATA ERROR IM LINES 63@ - 1670 ":END

SeEE K=A:FORZ=ETOF : READY : IFY=-1THENSA3@
SHES K=K+Y:POKEZ, Y HEXT

3A1@ READY: IFY=-1THEH&@BD

8] IFK=354E84THEHABOA

#RI3 DATA ERROR IN LINES 1688 - 1418 ":END
*=3TOH: READY : IFY=-1THENG@36

1. CFOKEZ, Y HERT

5 PEHD? IFY'=-1THEN7@@Q

1 IFK=174231 THEN? G686
PRINT"HHR DATA ERROR IN LINES 142@ - 1888 ":END

5 —3 FORZ= ITU' REHD? IFY=-1THEN7@38

=K+Y :FOKEZ. Y :NEXT

5 REHDVZIFY=“1THEH8909

@ IFK=1123&THEN3@&6

FRINT"®I6I4 DATA ERROR IN LINES 18990 - 2048 “:END

G PRIMT"RIeN@IR DATA HAS BEEM INPUT

g PRINT"BEBRIQ SYS 49152 TO USE

EHD

2]
@
g]
&) FFIHT“
3]
@
(€]

Program 12.

ROM routine entry point: $A69C

Routine operation: The routine first checks and sets up parameters, converting

The Keywords of BASIC 83

the line number from floating point into a memory address for the start of the
link address of the Basic line in memory. The start address of the lowest line
number is stored in locations $5F,$60) and the highest line number in $14,$15. If
no parameters are given in the command then the lowest start address defaults
to $08@1 and the highest to SFFFF. Two important and useful routines are
used: $A6C9 lists a line of Basic pointed to by $14,$15 to the output device, and
$A717 converts a token value stored in the accumulator into a Basic keyword.
The LIST routine involves two loops. The outer loop tests for the STOP key
then prints carriage return and compares the next line number with the upper
limit line number; if smaller it then prints the next line number. The inner loop
displays the line character by character. It checks for a quote character, zero,
and characters with ASCII codes greater than 128. If it finds a quote then all
following characters are printed exactly as stored until another quote is found.
An ASCII character is interpreted as a token and is expanded, the full expanded
form being printed. A zero indicates that the line has terminated and the inner
loop is closed, the outer loop being called again.

LOAD

Abbreviated entry: L(shift)O
Token: Hex $93 Decimal 147
Modes: Direct and program

Purpose: To retrieve a program or memory dump from a storage device back
into RAM memory, storage devices being either disk or tape.

Syntax: LOAD [string expression [, arithmetic expression [, arithmetic
expression]]]. All the parameters within square brackets are optional. The
string expression is the name of the program to be loaded; if omitted then the
first program encountered is loaded. When used with a disk drive the program
name must always be used. The first arithmetic expression is the device number
which is one for the tape drive and eight for disk on the Commodore 64. The
second arithmetic expression always follows the first and defines where the
program will start in memory. If this value is zero, or no value is used, then the
program will always start loading at an address pointed to by the contents of the
.x and the .y index registers. This is normally the start of the Basic program
storage area in the normal mode of operation. If the second arithmetic
expression is <>{ then the program will start loading at the address from which
it was saved. The secondary address will have no effect onloading from tapeifa
secondary address of three was used in the SAVE command.

Errors: Load error — when verifying a procedure this indicates an error in the
loaded program
Device not present - specified device is not connected

84 Advanced Commodore 64 BASIC Revealed

Missing file name - no file name was specified when loading
from disk
Break error - if run/stop key is pressed
Illegal device number - invalid device number
Illegal quantity - out of range device or secondary address
values (range is 1 to 255)

Use: The functioning of this command varies according to whether it is used in
direct or program mode. In direct mode the computer produces a series of
messages which are displayed on the screen. These are:

Disk - LOAD “PROGRAM?”,8
SEARCHING FOR PROGRAM
LOADING
READY

Tape - LOAD [“PROGRAM 2”[, 1[.41]]
PRESS PLAY ON TAPE
SEARCHING [FOR PROGRAM 2]
[FOUND PROGRAM 1]

FOUND [PROGRAM 2]
LOADING [PROGRAM 2]
READY

On tape the square brackets denote that if the program name is not included in
the LOAD command then it will not be displayed in the messages, and the first
program encountered on tape will be loaded. If the name is specified, and that
program is not the first on tape, then the name of each program encountered will
be displayed. Of course, if the program is not found then a File not found error
will also be displayed.

In program mode the only message displayed by the LOAD command is
PRESS PLAY ON TAPE when loading from tape. The program will load
correctly, replacing the existing program and will start running from the
beginning of the new program as soon as the loading is completed. There is one
problem with using LOAD in the program mode; it does not change the variable
pointers of the old program. This means that if the new program is larger than
the old, it will be impossible to pass variables between the two programs, and
because the variable pointers have not been set correctly for the new program, a
crash will occur as soon as one tries to assign a variable. The best way to guard
against this is to make sure that the start of the variable pointers is always set to
an address above the end of the longest of the chained programs, thereby
ensuring that variables will never be overwritten by a program. The setting of
variable pointers can be achieved by finding the longest program and getting its
start of variable pointer by peeking locations 45 and 46. These values should
then be poked into these same two locations as the very first command of the
first program in the chain.

The method of loading and running the first program on tape or disk is by

The Keywords of BASIC 85

pressing the SHIFT/RUN keys. This then works by forcing the command
LOAD and RUN into the keyboard buffer. The interpreter then executes these
as two direct mode commands.

ROM routine entry point: SE168

Routine operation: This routine loads a program into the computer from disk
or tape. After loading, if an error has occurred, the error message is printed,
otherwise a check on direct mode is made. If in direct mode the variable pointers
are set to the end of the program. READY is output and a CLR performed. If in
program mode then charget is reset to the beginning of the program, the
program is re-chained and the Basic program executed.

LOG

Abbreviated entry: None
Token: Hex $BC Decimal 188
Modes: Direct and program

Purpose: Calculates the logarithm to the base e of any positive non zero
arithmetic expression.

Synrax: LOG(arithmetic expression). The arithmetic expression must be a
positive non zero value within the permissible limits of a floating point number.

Errors: lllegal quantity - the arithmetic expression has a zero or
negative value

Use: LOG is the converse function of EXP and is used principally in scientific or
statistical programs.

ROM routine entry point: $B9EA

Routine operation: This calculates the logarithm to the base e of a value stored
in FAC#1 and puts the result in FAC#1. The logarithm is calculated using a
fairly complex series evaluation.

MID$

Abbreviated entry: M(shift)l
Token: Hex $CA Decimal 202
Modes: Direct and program

Purpose: This takes the specified string and takes from it a substring.

86 Advanced Commodore 64 BASIC Revealed

Syntax: MID$(string expression, arithmetic expression [,arithmetic expres-
sion]). The string expression can be either a string literal, string variable, a string
function like LEFTS, or a combination of one or all of these concatenated with
the + sign, the only limitation being that the resulting string must not be longer
than 255 characters. The arithmetic expressions, which must be within the range
f to 255, define the starting and ending character positions of the substring
within the main string. If the second arithmetic expression is omitted then the
substring will continue to the end of the main string. This has a similar function
to RIGHTS but is often more useful, since it does not take just the designated
number of characters from the right of the string, but starts at a designated
character position within the string and takes all characters to the right
irrespective of how many there are.

Errors: lllegal quantity - if either of the arithmetic expressions
exceeds the permissible range @ to 255

Use: The string functions are used extensively to manipulate strings and MIDS$.
The principal use is in splitting up long strings.

ROM routine entry point: $B737

Routine operation: This checks the syntax and pulls the parameters from the

stack before jumping into the LEFT$ routine at $B7PE. This creates the
substring, stores it in memory and sets up the necessary pointers.

NEW

Abbreviated entry: None
Token: Hex $A2 Decimal 162
Modes: Direct and program mode

Purpose: This command erases a Basic program in memory by erasing the link
address to the first line. The program can be resurrected after NEW with the
OLD command in Chapter S.

Syntax: NEW. There are no parameters.

Errors: Syntax error - if the character following the NEW token is
neither a colon nor end of line, or if the first
byte of the Basic program storage area does
not contain a zero

Use: This command erases the program in memory by putting zeros into
locations $8(1 and $8p2 (assuming the normal start of a Basic address). This
means that virtually all other memory locations are unaltered, therefore NEW
will have no effect on machine code programs (such programs should, of course,
not start at the beginning of the Basic area).

The Keywords of BASIC 87
ROM routine entry point: $A642

Routine operation: This places zero into the first two bytes of the Basic RAM
program storage area. The end of Basic pointers $2D,$2E are then loaded with
the address of the start of the Basic storage area +2 bytes. Finally the routine at
$AG68E sets the charget pointers $7A, $7B to point to the start of Basic storage
—1. The CLR routine is then entered.

NOT

Abbreviated entry: N(shift)O
Token: Hex $A8 Decimal 168
Modes: Direct and program

Purpose: This will evaluate the complement of the arithmetic expression
following the command.

Syntax: NOT arithmetic or logical expression. The arithmetic or logical
expression must be within the range +32767 to —32768 when evaluated.

Errors: Illegal quantity - values outside the range +32767 to —32768

Use: It should be noted that this command operates on the binary value not the
decimal value and performs a twos complement on the binary value. This has
the effect of converting all binary ones into zeros and vice versa. The NOT
command has the highest priority in the hierarchy of logical operators and thus
takes precedence over AND and OR.

ROM routine entry point: $AED4

Routine operation: This converts the evaluated expression in FAC#1 into
integer format and performs a NOT operation on locations $64,$65. It then
refloats the value into FAC#I.

ON

Abbreviated entry: None
Token: Hex $91 Decimal 145
Modes: Direct and program

Purpose: This command is always linked with either GOTO or GOSUB and
causes a branch to one of a series of line numbers; which one is dependent on the
value of the variable following ON.

88 Advanced Commodore 64 BASIC Revealed

Syntax: ON arithmetic expression GOTO line number, line number,
ON arithmetic expression GOSUB line number, line number,

The expression following the ON command must evaluate to a number in the

range () to 255. (Note: The value will always be rounded down to an integer.)

Errors: Illegal quantity - if the arithmetic expression is outside the
range @ to 255
Syntax error - if the wrong command syntax is used e.g. if
GOTO or GOSUB does not follow an
arithmetic expression or if there is no space
between GO and TO

Use: This is a multiple exit conditional branch, thus when the value of the
expression is 1 then the branch is to the first line number, if 2 then the second line
number and so on. When the value exceeds the number of line numbers
specified after the GOSUB or GOTO command then the program simply
branches to the following line. If no line number is specified then a default of line
¢ is assumed by the interpreter. Thus a line ON X GOTO ,,,,20,,,50 is valid and
just means that if .x is 1,2,3,4,6 or 7 then the control will branch to line §.

ROM routine entry point: $A94B

Routine operation: This checks the variable type and evaluates it using the
routine at $B79E, which returns the value in location $65 and the .x index
register. It then checks whether the next command following the ON is a token
for either GOTO ($89) or GOSUB ($8D); if it is neither of these a Syntax error is
generated. It then goes through a loop which decrements the value in location
$65, gets the first line number from the list of line numbers following the GOTO
or GOSUB command, and checks for a comma following it. This loop is then
repeated, decrementing $65 and getting the next line number and so on until
either the value in $65 is zero or the line numbers are exhausted. If the contents
of $65 are zero then the next line number to be accessed is the line to which the
program control will be transferred. If the contents of $65 are not zero and there
are no more line numbers then the next statement is executed by default.

OPEN

Abbreviated entry: O(shift)P
Token: Hex $9F Decimal 159
Modes: Direct and program

Purpose: This statement opens an 1/O channel for input and/or output to a
peripheral device.

Syntax: OPEN arithmetic expression [,arithmetic expression [,arithmetic
expression [,string expression]]]. The first expression is the logical file number

The Keywords of BASIC 89

and is compulsory; it must evaluate to a number within the range 1 to 255. The
second arithmetic expression is the device number. This is hardware specific
(thus disk drives are usually device 8) and must be a value between () and 15. The
third arithmetic expression is a secondary address which is also hardware
dependent and is used to send commands to the peripheral. The final string
expression is the file name; it can also include file type and mode designators.

Errors: Device not present — device corresponding to the device
number is not attached
File open - file has already been opened
Too many files — more than 1§ files are already open
Illegal device number - device number is outside range
Out of memory - RS232 channel has insufficient memory for
buffers

Use: The open command is an essential part of the Basic file handling
commands. The full functioning and operation of this command is dealt with in
The Commodore 64 Kernal and Hardware Revealed and The Commodore 64
Disk Drive Revealed in this series.

ROM routine entry point: SE1BE

Routine operation: This routine opens a logical file on a specified device for
reading or writing. It first gets the parameters using routine $E1D6 and then
uses the kernal routine at $SFFC) to open the file (see The Commodore 64
Kernal and Hardware Revealed for further information on these routines).

OR

Abbreviated entry: None
Token: Hex $Bf Decimal 176
Modes: Direct and program

Purpose: This command performs a logical OR between two expressions. These
expressions are first converted into double byte integer values, an OR
performed and the result returned as a two byte integer.

Syntax: expression A OR expression B. The expression can be either arithmetic
or logical but must always be either an integer value or a floating point value
within the range +32767 and —32768.

Errors: Syntax error — incorrect command syntax
Illegal quantity - if the expressions exceed maximum/minimum
values
Type mismatch - using a non arithmetic or logical expression

90 Advanced Commodore 64 BASIC Revealed

Use: The OR command acts either as a logical operator or as a bitwise operator
on two straight sixteen bit values.

As a logical operator the OR command is used to ensure that at least one of
two conditions is met before a particular operation is performed, as in the
following example:

IF A<2 OR A>8 THEN PRINT “VALUE IN RANGE”

The result of a comparison gives —1 if the comparison is true and) if it is false. If
a comparison is true then a value of —1 is returned by the comparison routine.
This is represented as a twos complement value with a binary representation of:

I111 1111 1111 1111 or hex $FFFF or —1

Similarly a false comparison returns a value of zero, represented as:

0000 0000 PPPO PPPY or hex $PPPP or ¢

Therefore an OR will give a true condition only when one or both conditions are
true (both values are $FFFF); all other states will be regarded as false.

A bitwise OR compares the first bit of one value with the first bit of the second
value and gives a result according to the following truth table:

OR 110
1{1]1
pl1je
Thus the command:

1278 OR 3279

has as its binary equivalent:

p0pp 9109 1111 1119
OR 009 1166 110¢ 1111

This gives the result:

pppp 1109 1111 1111
or decimal 3327.

It should be noted, of course, that the OR operation is performed on two
signed double byte integers, which are stored in twos complement form. Thus a
value of —1 has a binary equivalent of 1111 1111 1111 1111 and any number
ORed with —1 will always return the same number. Likewise a positive value
ORed with a negative will always give a negative result.

The hierarchy of logical operators is NOT, AND, OR, thus NOT and AND
always have a higher priority than OR.

ROM routine entry point: $AFE6

Routine operation: The two arguments in floating point format are stored in
FAC#1 and FAC#2. They are first converted to fixed point integer values, the

The Keywords of BASIC 91

OR operation performed on the two sixteen bit numbers, and the result
converted back from integer to floating point in FAC#1.

PEEK

Abbreviated entry: P(shift)E
Token: Hex $C2 Decimal 194
Modes: Direct and program mode

Purpose: This command gets the contents of a desired memory location and
returns its decimal value in the designated variable.

Svntax: PEEK (arithmetic expression). The arithmetic expression must be
positive and all non integer values will be integerised; the value must be within
the range @ to 65535.

Errors: lllegal quantity - value is negative or outside the range @ to 65535

Use: This command is invaluable in any application which requires direct access
to memory locations. The principal applications are in passing parameters
between machine code routines and Basic, manipulating screen displays, using
the VIC, 1/0 and SID chips and manipulating Basic variables. It should be
noted that the only locations which cannot be PEEKed are $14,$15, the reason
being that these two locations contain the variable used by PEEK. Fora double
byte version of this command see the DEEK command in Chapter 5.

ROM routine entry point: $B8¢D

Routine operation: The memory address parameter has previously been
obtained using routine $B7F7. The parameter is thus stored as a two byte
integer in locations $14,$15. The result is put in the .y index register. This is then
converted to floating point form in FAC#1 by the routine $B3A2.

POKE

Abbreviated entry: P(shift)O
Token: Hex $97 Decimal 151
Modes: Direct and program mode

Purpose: This command puts the contents of a designated variable into a
desired memory location.

Syntax: POKE (arithmetic expression) (arithmetic expression). The first

92 Advanced Commodore 64 BASIC Revealed

arithmetic expression defines the desired memory location and must be positive;
all non integer values will be integerised. The value must be within the range § to
65535. The second expression is the value to be placed in the memory location;
this must be a positive value in the range §) to 255. Attempts to POKE data to a
ROM memory location will produce no effect on the ROM but will place the
data in the corresponding RAM memory plane.

Errors: lllegal quantity - value is negative or outside the range ¢ to 65535

Use: This command is invaluable in any application which requires direct access
to memory locations. The principal applications are in passing parameters
between machine code routines and Basic, manipulating screen displays, using
the VIC, 1/0O and SID chips and manipulating Basic variables. One use of the
POKE command is to transfer the ROM based operating system and Basic
software to the corresponding RAM memory plane by using a PEEK followed
by a POKE to the same locations in ROM. For a double byte version of this
command see DOKE in Chapter 5.

ROM routine entry point: $B824

Routine operation: The memory address parameter and contents parameter are
obtained using routine $B7EB. This leaves the address parameter in $14,$15 and
the value parameter in the .x index register. This value is then transferred to the
accumulator and stored in memory at the address pointed to by the first
parameter in $14,$15.

POS

Abbreviated entry: None
Token: Hex $B9 Decimal 185
Modes: Direct and program

Purpose: It returns the position of the cursor on the current screen line. It should
be noted that although the CBM 64 has only a 40 column screen, it works onan
80 character line by folding each output line onto two lines. Therefore if the
POS command returns a value between 4 and 79 then it is located on the
second display line.

Syntax: POS(expression). The expression used by the POS function is a
dummy variable and any numerical expression is valid.

Errors: None

Use: This command has fairly limited applications. These are limited to tests for
text justification and formatting.

ROM routine entry point: $B39E

The Keywords of BASIC 93

Routine operation: The position of the cursor on the line is obtained using
routine SFFF@, which gets the value from location $D3. A zero is then put into
the accumulator and the routine at $B391 used to put the value into FAC#1.

PRINT ' and PRINT# plus | TAB(and

SPC(

Abbreviated entry: PRINT 7
PRINT# P(shift)R
TAB(T(shift)A
SPC(S(shift)P

Tokens: PRINT Hex $99 Decimal 153
PRINT# Hex $98 Decimal 152
TAB(Hex $A3 Decimal 163
SPC(Hex $A6 Decimal 166

Modes: Direct or program

Purpose: The PRINT and PRINT# commands will evaluate and then display
on the current output device any string or numeric expression. The PRINT
command will display to the screen and the PRINT# command to the currently
opened output device. The output produced by PRINT and PRINT# can be
formatted by use of the commands TAB(and SPC(plus either a comma or
semicolon following the variable or literal.

Syntax: PRINT [arithmetic or string expression][arithmetic or string
expression].....
PRINT# arithmetic expression, [arithmetic or string expression]
[arithmetic or string expression].....
The first arithmetic expression following the PRINT# command is the logical
file number of the designated output device, and must be a positive integer in the
range 1to0255. The following expression or expressions are the data to be output
or displayed; if there is no expression then a carriage return is output. These
expressions are identical in syntax for both PRINT and PRINT#; each of the
expressions can be separated by the following formatting commands:

SPC(arithmetic expression) - moves the cursor position right by the
number of characters indicated by the arithmetic expression
TAB(arithmetic expression) — moves the cursor to the character position
number indicated by the evaluated expression

comma - a comma after a printed variable means that the following
printed variable starts on the tenth column or a column divisible by 10
semicolon - this leaves the cursor at its current position thereby preventing
a carriage return at the end of a line

94 Advanced Commodore 64 BASIC Revealed

With any of the above format commands, if the following output is a positive
numeric value then a space is added in front of the number; all numeric values
have a space added to the end of the value. It should be noted that the value
following the SPC(and TAB(commands must evaluate to a positive integer in
the range @ to 255. It should also be noted that the TAB(and SPC(commands
will not work after a PRINT#. The TAB(and SPC(commands both work by
displaying the required number of cursor right characters. This means that these
two commands will not delete any characters displayed in the area of screen over
which the cursor jumps. Any variable or literal used in the PRINT command
can include cursor, colour control and graphics characters.

Errors: String too long - if the length of the concatenated strings
exceeds 255 characters
Device not present - no specified output device for PRINT#
Not output file - file not defined as output on PRINT#
Illegal quantity - number is outside the range on TAB and SPC

Use: This is the principal output command in Basic and has a very wide range of
applications and uses. The additional formatting commands of standard Basic
are fairly limited, and to overcome this the CTL command in Chapter 5 gives the
programmer greater power over cursor positioning and general screen control.

ROM routine entry points: PRINT - $AAAD
PRINT# - SAAS)
SPC(- SAAFS
TAB(- SAAFS

Routine operation: There are four different routes which can be taken by the
PRINT routine and these depend on the character or command following the
PRINT command. Interesting subroutines within the main PRINT routine are:

$AAA4 - test for TAB(branch if found

$AAA8 - test for SPC(branch if found

$AAAD - test for comma branch if found

$AABI - test for semicolon branch if found

$AABC - print numeral after converting to ASCII

$AAD7 - print CR or CRLF

$AA9D - print string

$ABIE - print string from memory at .a (Isb) and .y (msb)

It should be noted that the output device number is stored in location $13. On
completion the buffer is reset and location $02¢/§) is set to $09, .x is $FF and .y is
$p1.

The PRINT# command is just a simple subroutine call to $AA86to perform
the CMD operation and a jump to SABBS, the end of the INPUT # routine. This
restores the default I/O and sets location $13 to zero.

The Keywords of BASIC 95

READ

Abbreviated entry: R(shift)E
Token: Hex $87 Decimal 135

Modes: Direct and program mode, but in direct mode a program must be
present which contains DATA statements, otherwise an Out of data error will
be generated.

Purpose: This command reads data stored in a DATA statement. Each time a
READ command is executed it gets a different item from the list of data
statements.

Syntax: READ variable [,variable][,variable]. Any valid variable type, both
simple and array, can be assigned by the READ command. However, the
variable type must match the data within the DATA statement otherwise a Type
mismatch error will be created.

Errors: Out of data error - no more data statements within the program
Syntax - variable type does not match the data. This is flagged as being
on the line containing the data and not on the line containing the
READ. This kind of error would normally generate Type
mismatch but there is a bugin the error routine of READ which
generates the wrong error message and position.

Use: The READ command associated with data statements within a program is
a very useful way of storing information and constants which are always
required by the program. The only drawbacks to the DATA statement/ READ
method of data storage are firstly the difficulty of amending or adding further
data whilst the program is running, and secondly that data elements are read
serially. The first of these problems can be overcome using the DATA statement
generator listed in Chapter 2 and the second limitation is overcome by the
Restore to line routine in Chapter 4.

ROM routine entry point: $ACP6

Routine operation: This routine is shared by both GET and INPUT. The three
different functions are distinguished by the contents of $11. These values are:

GET - $4¢
INPUT - $¢¢
READ - $98

These routines all scan the input buffer for blocks of data. In the case of GET a
block of data is defined as a single character. For INPUT a terminating carriage
return defines the input block. With READ the separating comma or end of line
marker for the data statement pointed to by $41,$42 defines the data block. The

96 Advanced Commodore 64 BASIC Revealed

block of data from whichever source is then assigned to the variable in the
command. Of the entry points within this routine the following are interesting:

$ACPD - INPUT entry point

$ACPF - GET entry point

$AC71 - assign string to string variable

$AC89 - assign numeral to numeric variable

SACB8 -used by READ to scan for DATA statements

$ACDF - checks for terminating zero at end of buffer; if not
found prints ‘extra ignored’ unless there is an active
file, in which case no warning is given.

REM

Abbreviated entry: None
Token: Hex $8F Decimal 143
Modes: Direct and program

Purpose: This command allows comments to be added to a program; any text
following the REM is ignored when the program is run but is listed on LIST.

Syntax: REM followed by any character

Errors: None

Use: Besides adding comments to Basic programs the REM command can be
used for other purposes. One application is to store short blocks of data, which
can be accessed by PEEK and POKE commands, or machine code subroutines
in the text string following the REM command.

ROM routine entry point: $A93B

Routine operation: The routine to perform the REM command is part of the [F
routine and is the same as that used for a condition “false’. It skips the rest of the
line by setting charget pointers $7A,$7B to the start of the next line by adding to
their current contents the scan to the next line $A909 offset in the .y index
register.

RESTORE

Abbreviated entry: RE(shift)S
Token: Hex $8C Decimal 140

The Keywords of BASIC 97
Modes: Direct and program

Purpose: Resets the pointer to data statements in a Basic program to the first
DATA statement.

Syntax: RESTORE has no following parameters
Errors: None

Use: The RESTORE command will reset the data statement pointer to the
beginning of the program so that the READ command can start accessing data
again from the beginning of the data statement table. The drawback of this is
that RESTORE returns to the beginning of the data table; this means that if you
wish to go back only a few items in the data table you must go back to the
beginning and then use READ to scan back up again to the desired location.
This restriction can be overcome by using the routine at the end of this section
which performs a RESTORE to a given program line.

ROM routine entry point: $A81D

Routine operation: Sets the data statement pointer to the start of Basic program
storage (3080 0). This pointer is stored in locations $41,$42. This routine is also
used by the RUN, CLR, and NEW routines.

RIGHT$

Abbreviated entry: R(shift)l
Token: Hex $C9 Decimal 201
Modes: Direct and program

Purpose: This takes the specified string and extracts from it a substring
consisting of the specified number of characters at the right end of the string.

Syntax: RIGHTS$(string expression,arithmetic expression). The string expres-
sion can be a string literal, string variable, a string function like LEFTS,
or a combination of one or all of these, the only limitation being that the
resulting string length must not exceed 255 characters. The arithmetic
expression must be an integer number between @) and 255 when evaluated.

Errors: 1llegal quantity - value exceeds the limits @ to 255

Use: The string functions are used extensively to manipulate strings and
RIGHTS. The principal use is in getting rid of leading characters or truncating
strings to a fixed length.

ROM routine entry point: $B72C

Routine operation: This pulls the parameter data off the stack and sets the string
position pointer before jumping to the routine in LEFTS$ at $B7(6, which
creates the substring, stores it in memory and sets up the required pointers.

98 Advanced Commodore 64 BASIC Revealed

RND

Abbreviated entry: R(shift)N
Token: Hex $BB Decimal 187
Modes: Direct and program

Purpose: This function generates a pseudo random number which it returns as
a floating point fractional value in the range @ to 1.

Syntax: RND(arithmetic expression). The expression is used as a seed for the
random value calculation and can be any valid floating point number.

Errors: None

Use: The random numbers produced by the RND are not truly random. For a
given seed value they will repeat the same sequence of values providing the
random seed has not been reset witha RND()). The seed value used in the RND
function is important; a negative number will calculate a random number but
will cause the next random number to have an identical value. A seed value of
zero will set the seed to the contents of the timer in the CIA chip. This is the best
way of generating a random value because it depends on the time since the
machine was switched on and is thus unpredictable.

ROM routine entry point: SE97

Routine operation: A random value is created by this routine and stored in
FAC#]1. Prior to running this routine FAC#1 contains a ‘seed’ value used to
initialise the random number calculation routine. The last random number
generated is stored in locations $8B,$8F. If a zero argument is given in the RND
function then the value in the CIA timers is used for the seed.

RUN

Abbreviated entry: R(shift)U
Token: Hex $8A Decimal 138
Modes: Direct and program

Purpose: Initiates the execution of a Basic program either from the beginning of
the program or from a specified line number.

Syntax: RUN [line number]. The line number is optional, but when specified it
must be an existing line within the range of valid line numbers. If a line number
follows RUN then program execution starts at the specified line number.

The Keywords of BASIC 99

Errors: Undefined statement error - line specified after RUN does not exist
Syntax error - first byte of Basic program storage ($0800) or
any end of line marker is not zero

Use: This initialises the execution of a Basic program. For a full explanation of
how a program is executed see Chapter .

ROM routine entry point: $A871

Routine operation: If RUN is followed by a line number, then RUN calls the
CLR routine to clear the contents of variables and stack, and jumps to the
GOTO routine. If RUN is not followed by a line number then the charget
pointers at $7A,$7B are set to the start of Basic program storage, the CLR
routine is called, and the RUN initiated with a return to the main Basic control
loop.

SAVE

Abbreviated entry: S(shift)A
Token: Hex $94 Decimal 148
Modes: Direct and program mode

Purpose: This command saves the contents of a specified section of memory
onto an output device, either disk or tape.

Syntax: SAVE [string expression [,arithmetic expression [,arithmetic expres-
sion]]]. All the parameters within square brackets are optional; the string
expression is the name of the program to be saved. When used with a disk drive
the program name must always be used. The first arithmetic expression is the
device number which is one for the tape drive and eight for disk etc., on the
Commodore 64. The second arithmetic expression always follows the first and
defines where the program will start in memory. If this value is zero, or no value
is used, then the program will always be saved so that it will start loading at an
address pointed to by the contents of the .x and .y index registers, normally the
start of the Basic program storage area. If the second arithmetic expression is
<> then the tape header will contain the address at which the program started.
A secondary address of five will cause an end of tape block to be written; this has
the effect of preventing the tape from reading past this block. The secondary
address will have no effect on loading from tapeif a secondary address of three is
used in the SAVE command.

Errors: Device not present - specified device is not connected or
device @ or 3 designated
Missing file name - no file name was specified when loading
from disk

100 Advanced Commodore 64 BASIC Revealed

Illegal device number - invalid device number
Illegal quantity - out of range device or secondary address
values (range is 1 to 255)

Use: The functioning of this command depends whether it is used in direct or
program mode. In direct mode the computer produces a series of messages
which are displayed on the screen. These are:

Disk - SAVE “PROGRAM”,8
SAVING “PROGRAM”
READY

Tape - SAVE [“PROGRAM[, 1[,07]]
PRESS PLAY ON TAPE
SAVING “PROGRAM”
READY

On tape the square brackets denote that if the program name is not included in
the SAVE command then it will not be recorded on the header or displayed in
the messages. In program mode the only message displayed by the SAVE
command is PRESS PLAY ON TAPE when saving to tape. The program will
save correctly (see Program 13).

Source code for computed SAVE.

833C IMEMORY SAVE ROUTINE

033C !

Coe8 #*=$C000

Coo0 20FDAE JSR $REFD

o063 268AAD JSR $ADSBA !GET RDDRESS OF START
CoB6 20F7B?7 JSR $B7F7 ! INTO $14,%15
Cesd AS14 LDA $14

CGOR 85FB STA $FB

ceeb AS1S LDR $15

CooF 8SFC STA $FC

Cull 2@FDAE JSR $AEFD

Co14 2a8ARD JSR $AD8A IGET ADDRESS OF END
Co1? 2eF7B? JSR $B7F7 TINTO $14,%15
CO1A 20FDAE JSR $AEFD YSCAN PAST COMMA
C21D 28D4E1 JSR $E1D4 'GET FILE DETRILS
Co28 ROFB LDR #$FB

Ca22 Aec14 LDX $14

€024 R415 LDY $15

Cez6 20D8FF JSR #FFD8 ISAYE FILE

€829 pagi BCS ERROR

CO2B 69 RTS IDONE 0.K.

CezC 4CFI9EG ERROR JMP $EGFS

BASIC loader for computed SAVE.

1@ INPUT“ADDRESS FOR MEMORY SAVE";I:S=I

20 RERDA:IFA=-1THENS®

20 POKEI,A:I=I+1

40 T=T+A:G0T020

S0 IFTCO6712THENPRINT " MIMCHECKSUM ERROR :6712"T:END

60 IFI{>S+47THEMPRINT "XRNUMBER OF DATA ERROR":END

7@ PRINT"TIRUSE MEMORY SAVE TO SAVE BLOCKS OF MEMORY"

38 PRINT"MSYS¢"S"),START,END+1, "CHR$(34) "NAME"CHR$(34)>" [, DEVI"

The Keywords of BASIC 101

5@ EHD

1ewa DATAS2.,253.174,32,138,173,32
119 DATA247.183.165,20.133,251, 165
128 DATA21,133.252,32,253,174,32
138 DATA138,173,32.247,183,32,253
148 DATA174, 32,212,225, 169,251,166
159 DATR20,164,21,32,216.255,176
168 DATAL,96,76,249,224,-1

Program 13.

ROM routine entry point: $E156

Routine operation: This routine saves a program from the computer to disk or
tape. The start address of the block of memory to be saved is stored in locations
$2B,$2C (bottom of memory) and the end address of the SAVE is in locations
$2D,$2E (start of variables). The file name and device number are obtained by
the routine at SE1D4.

SGN

Abbreviated entry: S(shift)G
Token: Hex $B4 Decimal 180
Modes: Direct and program

Purpose: This function returns the sign of an arithmetic function; —1 if the
expression is negative, @ if zero, and +1 if positive.

Syntax: SGN(arithmetic expression). The expression must evaluate to a
number within the permissible floating point value range.

Errors: 1llegal quantity - value is out of range
Type mismatch - non numeric expression

Use: This command has fairly limited applications, mostly confined to
performing conditional tests on values.

ROM routine entry point: $BC39

Routine operation: The routine to get the sign of FAC#1 is called ($BC2F). The
sign of the value in FAC#1 is put into the msb of FAC#1, $88 is put into the
exponent of FAC#1 and the rest of FAC#1 is zeroed.

SIN

Abbreviated entry: S(shift)l
Token: Hex $BF Decimal 191

102 Advanced Commodore 64 BASIC Revealed
Mode: Direct and program
Purpose: This command evaluates the sine of an angle in radians.

Synrax: SIN (arithmetic expression). The expression must be syntactically
correct and within the range permissible for floating point numbers.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non arithmetic expression
Overflow error - expression is outside permissible floating point
range

Use: This command is used within many trigonometric applications. It should
be noted that the value of the expression must be inradians rather than degrees;
an angle can be converted to radians by multiplying the angle by pi/ 180.

ROM routine entry point: $E26B

Routine operation: The argument in radians is stored in FAC#1. It is evaluated
to give the sine of the angle, and this is stored in FAC#1.

SQAR

Abbreviated entry: S(shift)Q

Token: Hex $SBA Decimal 186

Mode: Direct and program

Purpose: Calculates the square root of a value.

Svntax: SQR(arithmetic expression). The arithmetic expression must be
positive and within the normal range for floating point values.

Errors: llegal quantity - value is negative

Use: This command is not essential since it can easily be replaced by the
expression X 1 .5, but the SQR function is convenient and slightly faster. When
using machine code routines the SQR routine can easily be rewritten to use
powers of any other value; this is because the routine uses a constant of .5 stored
in memory as a floating point value. The pointers to this constant can easily be
changed in a rewritten routine to point to a new constant (see The Commodore
64 ROMs Revealed for a listing of the routine).

ROM routine entry point: $BF71

Routine operation: The contents of FAC#1 (the argument) are transferred to
FAC#2, FAC#I is then loaded with the constant .5 (pointed to by .a and .y) and
the routine jumps into the perform power routine at $BF78. The result is stored
in FAC#1.

The Keywords of BASIC 103

STOP

Abbreviated entry: S(shift) T
Token: Hex $9¢ Decimal 144
Mode: Direct and program

Purpose: Causes a program to exit from the program mode to the direct mode
and print a message showing on which line the program stopped. This
command is like END; typing CONT will allow the program to continue
execution.

Syntax: STOP has no parameters but must always be followed by a colon or end
of line marker.

Errors: Syntax error - if STOP is not followed by colon or end of line
marker

Use: The STOP command can be used to set break points within the program
during de-bugging, where a CONT will resume program execution.

ROM routine entry point: $A82F

Routine operation: This routine is shared with END (see END command for
explanation).

STR$

Abbreviated entry: ST(shift)R

Token: Hex $C4 Decimal 196

Modes: Direct and program mode

Purpose: This command converts a number or numeric expression into a string.

Syntax: STR§(arithmetic expression). The arithmetic expression can evaluate
to any floating point value within the permitted range. The resulting string will
have the same format as that produced by PRINT when displaying the numeric
variable.

Errors: Type mismatch - non numeric expression

Use: This command is used only to insert numeric values into strings, usually in
association with a numeric formatting routine.

ROM routine entry point: $B465

Routine operation: The routine first checks that there is a numeric evaluation to

104 Advanced Commodore 64 BASIC Revealed

the argument. The argument is stored in FAC#1, and this is converted into an
ASCII string starting at location $¢10@ by the routine at $SBDDF. The string
and its related pointers are then set up in memory by the routine $B487.

SYS

Abbreviated entry: S(shift)Y
Token: Hex $9E Decimal 158
Modes: Direct and program

Purpose: This command transfers program control to a machine code program
starting at the address following the SYS command. Control can be returned to
Basic when an RTS gets the return address to the SYS routine off the stack.

Syntax: SYS arithmetic expression. The arithmetic expression must evaluate to
a positive integer value within the range) to 65535; all non integers are rounded
down.

Errors: lllegal quantity - address is outside the range ¢ to 65535

Use: This is an essential command when calling machine code routines from a
Basic program. The SYS command also allows the passing of parameters which
will initialise the .x, .y, .a and status registers on entry to the machine code
routine, and then save these same registers on exit. The contents of these
registers are stored in the following memory locations:

$¢3¢C - save accumulator
$030D - save .x register
$P3GE - save .y register
$P3GF - save status register

ROM routine entry point: SE12A

Routine operation: This first gets a two byte value (the address) and puts it in
locations $14 (Isb) $15 (msb), then pushes the return address to the stack
followed by the processor status register from $¢3@F, and loads the .a, .x, .y
registers with the parameters stored in locations $$3¢C to $§3@E. Control then
jumps to the machine code routine using an indirect jump via locations $14,$15.
On returning from the machine code routine the contents of the .a, .x, .y and
status registers are saved in the above memory locations.

TAN

Abbreviated entry: None
Token: Hex $C@ Decimal 192

The Keywords of BASIC 105
Modes: Direct and program
Purpose: This command evaluates the tangent of an angle in radians.

Synrax: TAN (arithmetic expression). The expression must be syntactically
correct and within the range permissible for floating point numbers.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non arithmetic expression
Overflow error - expression is outside the permissible floating point
range

Use: This command is used within many trigonometric applications. It should
be noted that the value of the expression must be inradians rather than degrees;
an angle can be converted to radians by multiplying the angle by pi/ 18(.

ROM routine entry point: SE2B4

Routine operation: The argument in radians is stored in FAC#1. It is calculated
by dividing the sine of the angle by the cosine, using the routines at $E26B (sine)
and $E264 (cosine) to give the tangent of the angle; this is stored in FAC#1.

USR

Abbreviated entry: U(shift)S
Token: Hex $B7 Decimal 183
Modes: Direct and program

Purpose: This is an arithmetic function which will call a user written machine
code routine.

Syntax: USR(arithmetic expression). The expression must evaluate to a value
within the permissible range for floating point numbers.

Errors: lllegal quantity - if USR is not defined

Use: This command is useful when using machine code routines within a Basic
program which involve passing parameters in full floating point form. The
expression within the brackets following the USR command is evaluated and
the result stored in FAC#]1. This value can then be used by a machine code
routine which starts as a jump routine to the actual routine. The jump is stored
in three bytes from $@310 to $0312. If the jump is not set then it defaults on
power up to give an illegal quantity error. On leaving the machine code routine
the contents of FAC#1 are assigned to the variable on the other side of the
equals sign.

ROM routine entry point: The routine will always jump to the vector jump
starting at $¢310.

106 Advanced Commodore 64 BASIC Revealed

Routine operation: As in all functions, the expression is first evaluated and the
result stored in FAC#1. The routine then jumps to the vector jump in $931¢
which has been set up by the programmer to point to the machine code
subroutine. On encountering an RTS instruction terminating the machine code
routine, the return address on stack transfers control to a routine where the
contents of FAC#1 are assigned to the variable preceding the function.

VAL

Abbreviated entry: V(shift)A
Token: Hex $C5 Decimal 197
Modes: Direct and program

Purpose: This command converts a string or string expression into a numerical
value; this command is the converse of STRS.

Syntax: VAL(string expression). The string command can consist of string
variables, string literals, string functions like LEFTS$, or a combination of these
concatenated by a +. The maximum string length is one where the resulting
number does not exceed the maximum permissible size of a floating point
number. The resulting number will, if very large, be rounded and stored in
exponent/ mantissa form.

Errors: Overflow - resulting number exceeds the maximum range for floating
point numbers
Type mismatch - non string expression

Use: This command is the converse of STRS$ and is usually used in conjunction
with this command. It should be noted that any spaces in the string are ignored,
but if there is an alpha character in the string then all following numbers are
ignored - unless that character is an E following a number, when the E is
interpreted as indicating that the following number is an exponent.

ROM routine entry point: $BTAD

Routine operation: The string pointed to by charget pointers $7A,$7B is located
and converted into a floating point number by the routine $BCF3; the result is
stored in FAC#1.

VERIFY

Abbreviated entry: V(shift)E
Token: Hex $95 Decimal 149

The Keywords of BASIC 107

Modes: Direct and program

Purpose: This command checks that the contents of a block of memory stored
on tape or disk are identical to the current contents of the same block of
memory. The VERIFY command is a special version of the LOAD command.

Syntax: The syntax is identical to LOAD.

Errors: Verify error - contents of the tape or disk do not match memory
contents

Use: The VERIFY command is used principally to check that a program has
been saved correctly. It does this by reading the program from tape or disk byte
by byte and comparing it with the corresponding byte in memory. For this
reason VERIFY cannot be used with data files, only with memory dumps. If the
VERIFY is satisfactory then the computer gives an OK message, and when used
in the program mode will continue executing the rest of the program.

ROM routine entry point: $E165

Routine operation: This routine sets the flag for ‘verify’ and continues with the
LOAD routine. After the Kernal LOAD/VERIFY routine had been called, the
status is checked to see if the VERIFY was correct. If so it prints OK, otherwiseit
gives an error message.

WAIT

Abbreviated entry: W(shift)A
Token: Hex $92 Decimal 146
Modes: Direct and program

Purpose: Halts the execution of a Basic program until the contents of a specified
memory location have one or more bits set according to a bit pattern parameter.

Syntax: WAIT arithmetic expression, arithmetic expression [,arithmetic
expression]. The first arithmetic expression is a memory location and must be a
positive integer in the range () to 65535, the second arithmetic expression is the
bit pattern to match and must therefore be a value in the range () to 255, the third
optional parameter is another bit pattern matching byte which is ORed with the
result of the second parameter and ANDed with the contents of memory; if the
result is non zero then the WAIT loop is terminated.

Errors: lllegal quantity - first expression is outside the range (} to
65535 and the second and third parameters
are outside the range @ to 255

Use: The format of the WAIT command is WAIT I,J,K. When this is executed,
the contents of location I are ORed with K and ANDed with J. If the result of

108 Advanced Commodore 64 BASIC Revealed

this is zero then the loop is repeated until it becomes non zero. The command is a
test on bits in a memory location and the values in J and K would be powers of 2
(9,1,2,4,8,16,32,64,128,255 or a combination of these values). It should be noted
that while the computer is in the WAIT loop the STOP key is not being tested
and one should therefore be very careful that the bit combination chosen will
occur. As an example of the use of WAIT the line:

100 GET AS: IF A$ = ““ THEN 100
can be replaced by:
100 WAIT 198,1:GETAS

This waits for a keypress before getting a character in A$. The WAIT command
can also be used to test when the joystick is moved or when the fire button
pressed. Another application is a timed pause using the timers in the CIA chip.

ROM routine entry point: $B82D

Routine operation: The two parameters are obtained using the routine at
$B7EB. This leaves the address parameter in location $14,$15 and the second
parameter in the .x index register. This second parameter is stored in $49, and
the optional third parameter is then obtained by routine $B7F [and stored in
$4A,; if there is no third parameter it defaults to zero. The routine then performs
a loop which continues until the value at the location pointed to by $14,$15 is
not equal to zero when exclusively ORed with the third parameter and ANDed
with the second.

Chapter Four
BASIC Wedges and Vectors

This chapter covers the different types of wedge routine which can be used to
intercept normal program execution and thereby be used to add extra
commands to Basic or simply modify existing commands and operating system
functions. All of the wedge programs, with the exception of the wedges into
‘charget’ and ‘warm start’ are required as the wedge routines for the extended
Basic package in Chapter 5.

4.1 Charget

The charget routine is a short machine code routine located in zero page RAM
memory which is used by the Basic interpreter to read the program, character by
character, from memory. Charget occupies 24 bytes and starts at location
$0@73. The reason why charget is located in this part of RAM memory is that it
contains a variable load address which is used to point to the current character
to be accessed in the Basic program. This variable load address or pointer to
source text is stored in locations $7A,$7B. There are two entry points to the
charget routine. They are:

Charget - entry point $073. This gets the next character in the
Basic program following the location pointed to by the address in
$7A,37B.

Chargot - entry point $0@79. This gets the character in the Basic
program currently pointed to by the address in $7A,$7B.

The charget routine is designed to ignore spaces within a program, thus if the
character accessed is a space, then the pointer in $7A,$7B is incremented and the
following character accessed. (If that also is a space then this is continued until a
non space character is reached.) The mode of the character is then checked
before the character is passed to the calling routine in the accumulator. This
mode check decides whether the character is numeric or not. If the character is
numeric then the array flag in the processor status register is cleared, otherwise
it is set. When using charget or any routines calling charget it is important to
remember this use of the carry flag.

The charget routine is as follows:

110 Advanced Commodore 64 BASIC Revealed

Loc Bytes Operation Comments

#9073 E67A CHARGET INC $7A ;increment the char-
acter pointer Isb

975 DPp2 BNE CHARGOT ;no rollover from lo byte

077 E67B INC $7B ;increment the high
byte

P79 AD**** CHARGOT LDA §r*** ;get the byte into .A

007C C93A CMP #$3A -is it colon?

#P7E BOPA BCS CHAREND ;not numeric

po8g C92¢ CMP #3$2¢ ;is it a space?

¢pp82 FQEF BEQ CHARGET ;yes, ignore

posa 38 SEC

#0985 E93p SBC #$3p ;set the carry for any
value less than

pp87 38 SEC #8339 which is the
character for ‘¢’

9988 E9DY SBC #$D§

PP8A 6f CHAREND RTS ;return to main routine

Note that the instruction at $0#79 (CHARGOT) reads LDA $**** The ****
indicate that the address in locations $7A,$7B is variable.

It is fairly easy to wedge into the charget subroutine, and such wedges are used
in applications like a DOS wedge. Here a certain character, such as ‘@’ is used
to indicate that a wedge into current operation must occur, and the new routine
executed. One good thing about wedging into charget is that any command can
be trapped before it is executed. This is best done by replacing the first three
bytes by JMP $zzzz, where zzzz is the address of the wedge routine. Then by
pulling and pushingthe two bytes of thereturn address one can find where charget
was called from (example: HIMEM in Chapter 5). If charget was called by the
execute statement routine, one can check that the next character is a wedge
identifier character like ‘@’. If the next character is a wedge identifier then the
required operation is performed, otherwisea JMP $0) 79 will return to chargot. It
must be remembered that the charget pointer address in $7A,$7B must always
be incremented before returning to the charget routine with a JMP $9(79.

The chargot routine is best demonstrated by Program 14 which causes Basic
to run in RAM and then modifies some of the command vectors to point to
routines in the $CPPP area of memory. Each of the modified routines uses a
chargot at the beginning to check for a wedge identifier character(s). The
routines that have been modified in this way are:

PRINT and INPUT (which now allow the positioning of the cursor by the @
character, thus simulating PRINT AT). Therefore to start printing a string A$
starting at the coordinates x,y on the screen, one could use the command:

PRINT @ x,y;A$

cooe
coeo
Coa2
cend
cevé
cang
CooR
ceaC
CeaE
COBF
cail
ce13
Co15
ce1?
co13
Co1R
cein
CalF
cez1
co24
caz?
Cezs

COZA

cazb
cezn
cazs
cazv?
caze
Ca41
Ca4s
ca4?
CadF
casy
COSE
CasDh
CasF
Casl
ces3
carvi
£ava
cara
Cave
cers
CavA
Ce’n
Caza
cas3
€083
cozé
cass
CasR
ceglh
casa
Caaz
cas3
cass
cass
Co2R
ca=p
CaRa
CORa
CoRs
Cans
CaAA
CeRc
CORE

ASAG
85FC
RSB
85FB
HBGO
BiFB
91FB
ce
DaF3
EEFC
ASFC
Cc2Co
DaF1
ASE1
29FE
as5a1
R246
ED2CCo
E) =)
CA

DaFy

4C74A4

30AS41
A4AB
7I00
SOEGOS
PERS27
Coco
£2R3D1
4AAZ2C
E4E1E2
208
TFAA
gzca
SEASOR
Z3E1BD
41R5

207300
40
Fa@s
4CBFAB
26F2CH
4CEFRE

207308
C24i
FaB3
4CHORA
26FzCa
4CREAR

267500
921
Fous
40248
267368
2B8AARD
2GF 7B7
AS14
SSFR
AS15
85FC
26FDAE

¥=$Ca006

COPY1

CorPY2

!
YECTOR

!
INPUT

INPUTY

!
PRINT

PRINT1

!
POKE

FOKEL

BASIC Wedges and Vectors 111

Source code for charget wedge.

LDA #$R0 ISET FOINTERS
STA $FC ! 7O COFY BRSIC
LIR #3060 ! ROM INTO RAM
STA $FR

LDY #3006

LDAR ($FBY,%Y IGET BYTE
ST31($FB),? ISTORE TO RAM
IH

EHME COFY1 IUNTIL PAGE DONE
INC #$FC !DO0 NEXT FAGE
LIA $FC

CHP #%C0 IIF NEELED

EHE COPY1

LR $081 ISHITCH QUT THE
AHD #3$FE ! ERSIC ROM
STA $21

LIX #4246 ILOOP TO COPY
LDR VECTOR-1,X ! HEW VECTORS
STR $ABYB. X ! INTO FLACE
DEX
EHE COPY2 TUNTIL DONE

JHP $R474 !BACK TO RERDY
EYT $30,$A3, $41,#A7, $1D, $AD. $F7, $H8

BYT #A4.$AB

WOR INFUT-1

YT $30,$EQ, $A5, $AC, $R4, $A9, $5F , $A8
BYT $76,$A8, $27,$R9
WOR RESTOR-1

BYT $382,$R%.$D1,$A8, $2A, $A9, $2E, $A8

BYT
EYT
HOR
EY

WOR
BYT
EYT
BYT

JSR
cHP
EEQ
JMP
JSR
JmpP

JSR
CHP
BEQ
JHP
J3E
JHMP

JER
CHP
BER
Jmp
JSR
JSR
JSR
LIA
TR
LDAR
STR
JER

$4A., $A9, $2C, $B8, $67, $E1, 55, $E1
$64,$E1, 482,453

POEE-1

$7F, $AA

FRINT-1

356, $A8. $9B, ¥A6. $3D, $A6, $835, $AA
$29,$E1.4ED, $E1, $C6. $E1, $7A, $AB
$41.,%A5

0079 ICURRENT CHAR
#3406 198 IT "@’?
INPUT! IYES

$ABBF D0 INPUT
POSIT IPOSITION CURSOR
$ABBF DD INPUT
$0872 ICURRENT CHAR
#3408 118 IT “@”7?
FRINT1 IYES

$AAAB DO PRINT
FOSIT 'FOSITION CURSOR
FAARAO DO PRIMT
£0a79 !CURRENT CHAR
##21 IS IT “17?
FOKE1 IYES

$Boz24 'D0 POKE
$0a73 'HEXT CHAR
$AD8A IGET ADDRESS
$BYF? IFIX IT

$14

$FER

$15

$FC

$AEFD ISCAN “,”

112 Advanced Commodore 64 BASIC Revealed

COE1 2QERAD JSR $ADSA IGET VALUE

COBd 26F7B7 JSR $B7F? IFIX IT

CER7 RGO LDY #3066

CaB? AS14 LDA $14 IGET LO BYTE
COEE 91FB STH ($FB),Y ISTORE IT

COED C& INY

C&BE RS1S LDA $15 IGET HI BYTE
COCo 91FE STA ($FB),Y ISTORE IT

cece @ RTS IDONE

CaC3 !

Coc3 207908 RESTOR JSR $0079 ICURRENT CHAR
cace 9063 BCC REST1 INUMERIC

Cacs 4C1DAS JMP $A31D /D0 RESTORE

C8CB D@@3 RESTI BNE REST2

COCD 4C1DAS JMP $AS1D ID0 RESTORE

C6Do 2GSAAD RESTZ2 JSR $ADSA IGET LINE NUMEBER
CED3 20F7B7 JSR $B7F7 IFIX IT

Cele 2813A56 JSR $R613 IFIND BARSIC LINE
CoD3 ASSF LDA $SF IGET LO BYTE
CoDB Dag2 BME REST3

CoDlr Ceed DEC $60 IDECREMENT HI BYTE
CeLF CASF REST3 DEC $SF 'DECREMENT LO BYTE
CEE1 ASSF LDA $5F IADDRESS LO

CBE3 8541 STR $41

COES ASEn LIN $6@ IADDRESS HI

COE7 §532 STA $42

COEZ AS14 LDA $14 ILINE # LO

COEE SS3F 5TA $3F .

COED AS1S LDA $15 ILINE # HI

COEF 8549 STA $40

COF1 69 RTS

CaFz !

CeFZ 267300 POSIT JSR $0073 INEXT CHAR

COFS 2GSEE? JSR $B79E IGET X POSITION
CéF3 S6FE STX $FB

COFA 26F1B7 JSR $B7F1 IGET ¥ POSITION
CEFT Ea19 CFX #25 10-24?

COFF 9693 BCC POSIT1

C181 4C48B2 POSERR JMP $B248 I'XLLEGHL _QUANTITY/
Ci04 A4FE POSITI LDY $FB IGET X POS

C188 a3 CPY #40 19-39?

C16& BOF? BCS POSERR

Cl16A 13 CLC

C16R 20FOFF JSR $FFFa@ IPOSITION CURSOR
C18E 4C7900 JMP $0079 IGET CHAR & EXIT POSIT

BASIC loader for charget wedge.

1@ 1=49152

26 RERDA: IFA=-1THENS@

38 POKEI,R:I=I+1

40 T=T+A:GOT0O20

58 IFT<O36249THENPRINT " MMBICHECKSUM ERROR - 36249"T:END
€0 FRINT"REHYQU NOW HAVE 4 MORE COMMANDS:"

7@ FRINT"RPRINT @X,Y.ooo.. " 'PRINT"BINPUT @X.Y.000aa"
89 FRINT"H®POKE !AD.2VAL":PRINT"¥RESTORE LINHUM"

98 SYS49152

186 DATA169,160,133,252,16%,0,133

110 DATA251,16@,0,177,251, 145, 251

120 DHT9208,2@8;249;43B; 252,165,252

130 DATA2@1, 192,203,241, 165, 1,41

148 DRTH;¢4;133;1 162,709,189,44

158 DRTA192, 157,11, 160,202, 208,247

1€@ DRTAYE,116,164,48,168,65,167

170 DATR23,173,247,168,164,171,114

188 DATR192,128,176,5,172,164,163

120 DATA153,168,112,168,39,169.194

298 DATA192.139, 168,209, 168,58, 169

BASIC Wedges and Vectors

210 DATA46,168,74,169,44,184.1063
220 DATA225,85,225,16008,225,176,179
230 DATAR145,192,127,173,130, 192,86
240 DATA168,155,166,93,166,133,176
250 DATA41.225,129,225,128,225, 122
268 DATA171,65,166,32,121,08,201
278 DATAE4.,240,3,76,191,171,32

280 DATA242,192.76,191,171,32,121
290 DRTAG.261.64,24@,3,76,160
3908 DATA178,32,242.192,76,160,178
318 DATA32,121,0,201,33,249,3

328 DATA76.36,184,32,115,8,32

338 DATA138,173,32,247,183,165,29
348 DATA133,251,165,21,133,252,32
35@ IATA253.174,32,138.173,32,247
369 DATA1E3, 160,08, 165,28, 145,251
378 DATAZG9, 165,21, 145,251,996, 32
388 DATA121,0, 144,3,76,23,168

399 DATA283,3.,76.29.168,32,138

498 DRTA173,32,247,183,32,19. 166
41@ DATA1ES, 95,208,2,198,965,193

29 DATASS, 165,95, 133,65, 165,96
422 DATA133,66.,165,28.133,63,165
448 DATAR21,133,64.96,32,115,0

45@ DATA32, 158,183, 134.251,32, 241
468 DATA163,224,25,144,3,76,72

479 LATAR178.164,251,192,48.176,247
480 DATA24,32,248,255,76,121,0

498 DATA-1

Program 14.

113

POKE has a check for ‘" enabling a two byte poke (see DOKE in Chapter 5). To
use this command to put a value into two consecutive memory locations use the

following command syntax:

POKE ! address, two byte value

RESTORE is the other command to be changed. This checks for any character
that is not a colon or end of line. If so, then a line number is read in to bring
about a restore to line number. This command has the following syntax:

RESTORE line number

An example of using this command is shown in Program 15.

16 READ A,B,C

20 FESTORE118°

39 READ D,E

40 PRINTR:B;C.DiE
56 EHD

160 DATA 1

116 DATR 2

129 DATR' 3

Program 15.

4.2 Warm start vector wedge

The warm start routine is a loop routine which waits for the entry of a program

114 Advanced Commodore 64 BASIC Revealed

line or direct command. When not actually running a program the computer
will always be in this warm start loop. The Basic warm start vector ($¢30¢)
contains the entry address of the warm start routine; this is used as an indirect
jump to the warm start by the other interpreter routines. Since this indirect or
vector jump address is stored in RAM it can be changed to point to another
routine. One example of this is to use the warm start vector to protect a Basic
program from being listed or otherwise accessed outside a normal run mode.
When the program is running the Basic warm start vector is changed to point to
$FCE?2 and any program break-in will cause the computer to cold start. This
will reset all system variables to power up values and NEW the program.
Program 16 will save a Basic program so that it will automatically run, when
loaded using a short machine code routine, and be protected from unauthorised
break-in. It should be noted that followinga LOAD the computer will return to
the warm start loop. The routine utilises this and the warm start vector change.

Source code for warm start vector wedge.

Cooo =$C000

Covd AS2B LDA $2B !GET START OF EARSIC
Ccov2 eD1vCi STA STERAS ! AHD STORE AMWRAY
€83 RS2C LDA $2C

Ceg? <D18C1 STA STBAS+1

CB6A ASARS LIR #$RS 'SET START OF

caaC 852B STA $2B ! AUTO RUM CODE
CooE 8D62e3 STA #8362 ! AND HARM START
Cell A%e2 LIA- #3602 ! ENTRY FOINT

Co13 852C STR $2C

C815 &Daze3 STA $6383

ceig AS2D LDA $2D !GET END OF BRSIC
Co1R 8D19C1 STA ENDBAS | AND STORE AWAY
CaiD RAS2E LDR $2E

Ce1F 8DI1ACI STR ENDBAS+1

ce22 A9%83 LDR #3@3 ISET END OF

Cce24 852E STA $2E ! AUTO RUH COLE
Co26 R204 LDA #4864

ce2g8 g52D STA $2D

Ca2n R256 LIX #$56 ILOCP “ALUE FOR CODE
Cce2C BICBCB AUTO1 LDR AUTOCD., X IGET AUTO BYTE

Ca2F 3DASe2 ETA $B2AS, X ! AND STORE IT

ce3z2 CH TEX

CO33 1&F? BPL RUTO1 'AHD MEXT BYTE
CO35 A26e3 LDA #$@8 IFOINTER TU PROGRAM
ce37 85FC STA $FC

Ce39 RSV LDA #3600

C63B 85FB 5TR $FB

Ca3D ReG1 LDY #3601

Ca3F BiFB AUTO2 LDR. ($FBR),Y IGET BYTE

CB41 49FF EOR #%FF~ INOT IT

Ca43 91FB STA ($FB>,Y ISTORE IT

Co45 C8 IHY

Ce46 DaF? BNE AUTOZ2 IUNTIL END OF PAGE
Ce48 EGFC INC $FC 1D0 MEXT FAGE

CB4A ASFC LDR $FC ! UHMTIL END OF BASIC
Ce4C C9RO CHMP #%A0 I STORAGE

Ca4E DGEF BHE AUTO02

CosSe =8D4E1L JSR $E1D4 IGET FILE NAME

COS3 AS83 LDA #$03 ISET SEC ADIRS

cess 83R9 STR $EB2 ! FOR LORD

casy 285%E1 JSR $E159 ISAYE AUTCO RUN CODE

CasA !

BASIC Wedges and Vectors 115

COeSA AD17C1 LDA STRAS 'RESTORE BASIC POINTERS
COeSD 852R STA %2F

COSF AD18C1 LDA STRAS+1

cae2 852C STA $2C

Ce64 AD19CI LDA ENDBAS

Ccos? 852D STA $2D

Cee9 ADIACY LDA ENDBAS+1

CesC 852 5TA $2E

CO6E N287 LIA #<SAYE ISET SAVE VECTOR
C@rg S03203 STR $6332

Car3 R3CO LDR #>SAVE

Cars 813363 STA $0333

Ca7s8 A33% LDA #3863 IRESET WARM START
Ca7H 808203 STA $0392

Ce7D A2A4 LDA #3A4

CO7F 800203 STA $0203

€082 A%BY LDR #$60 ISET RUN MODE
Ce84 859D STA $9D

£086 60 RTS

cos? !

Ce37 ASED SAVE LDA #3ED IRESET SAVE VECTOR
Co83 803203 STA $0332

Co8C ASFS LDA #3$F5

COSE 8D3303 STA $6333

C991 RSl LDR #3081 IDEVICE TAPE
€093 AR TAX

C034 A8 TARY

Co35 2@BAFF JSR $FFBA

Co98 A901 LDA #$01 ILENGTH OF NAME
CR%R A2R6 LDX #306 IPOINTER TO NAME
Co9C RE82 LDY #3%082

COSE 26BDFF JSR $FFBD

CoR1 208591 JSR $E159 ISAYE FILE

COAd A9S9O LIR #4060

C3R5 85FB STR $FB

COR8 A993 LDA #$08

COGRA 8SFC STA $FC

COAC A& LDY #s$01

CORE BIFB SAYE? LDAR (3FB),Y 'DECODE PROGRAM
COB@ 49FF EOR #3FF

Cak2 SIFE STA ($FRY,Y

CoB4 C& INY

CAES DOF? BHE SAVE2

CAB? ESFC INC .$FC

C@B9 FSFC: LDA $FC

CAEE CoR8 CMP #3R0

CORD DQEF BHE SAYE2

CORF 60 RTS

ceco !

cace AS83 AUTCCD LDA #$83 IRESET WARM START
CaC2 SD9263 STA $0302

COCS ASA4 LDAR #$A4

CaC? =Ie=03 STA $6303

CACA A=00 LIA #3600 ISET RUN MODE
cacc &ssp STAR $9D

COCE 28DSFF JSR $FFDS, ! DUMMY LOAD

COD1 A1 LDR #$061

CeDZ AR TAX

C6D4 RS TRY

CaDnS 23EAFF JSR $FFBR ISET FILE DETAILS
cans Asel LDR #$01

CaDR AZAS LDX #3A6

CODC AEe2 LDY #3082

CO@DE 26EDFF JSR $FFBD ISET NAME DETRILS
CAE1 A>o8 LDA #$00

CBE2 26I'SFF JER $FFIS ILOARD

COES 852D STX $2D !SET VARIABLE POINTERS

116

COES
COER
COEC
CEEE
CaFe
COF2
COF4
COFeé
ceFg
CeFA
COFB
CaFD
CeFF
c1a1
c182
c104
c1e6
c108
C16A
C16C
C1BE
C111
C114

Cci1?
Ci13

Advanced Commodore 64 BASIC Revealed

852F 5TX $2F
£e31 STX #31
842E STY %2E
&459 STY $30
8432 STY $32
REGB LDY #$00
84FR STY $FB
ARS8 LDA #$68
8SFC STA $FC
ce INY
ASFF AUTOC1 LDA #3$FF
S1FB EOR ($FB)>,Y
91FB STA ($FB,Y
ce INY
DeF? BNE RUTOCH
EEFC INC $FC
ASFC LR $FC
CoA2 CMP #3$A0
DAEF BNE AUTOCH
R3609 LDA #$68
265ER6 JSR $A6SE
208ERG6 JSR $R6BE
4CRER? JMP $A7AE
[S15]%] g 8
Ghco Ebmes MoK 8

'DECODE PROGRAM

!SET CHARGET POINTERS
'PERFORM “CLR”

|EXECUTE STRTEMENT

BASIC loader for warm start vector wedge.

1=49152:7=0

RERDA: IFA=-1THEN1040
FOKEI,A:T=T+A
I=1+1:60T01010

IFT<O37131 THENFRINT "CHECKSUM ERROR "37131,T:END
IFI<>49431 THENPRINT"NUMBER OF DATA VALUE ERROR" :END
PRINT " TeINRIEBBITO SAYE A FROGRAM WITH AUTO RUN."

PRINT"X#BILORD THE PROGRAM AND ENTER:"

FRINT " BBRISYS(49152) "CHR$ (34> "F ILENAME"CHR$(34>" : SAYE" : END

DATR165,43, 141,23, 193, 165,44

@ DATAR141.24.,193,169,165,133,43

DATAR141,2,3,169,2,133,44
DATR141,3,3,165,45, 141,25

@ DATA133,165,46,141,26,193,169

IRTAR, 133.46,169,4,133,45
DATA162, 86, 189, 192,192,157, 165
DATA2,2082,16,247,169,8,133
DATA252,169.8,133,251,160. 1

D DATA177,251,73,255,145,251,200

IRATA298, 247,230,252, 165,232,261

239 DATAR16@,2088,239,32,212,225, 169

1320
1330
1240
1350
1360
13r70
1330

DATAS3, 133, 185, 32,89,225,173

DATAR23.,193,133,43,173,24, 193
DATA133,44,173,25, 193,133,435
DATAR173,26,193,133,46.169,135

@ DATR141.50,3,169,192,141,51

DATAR, 169, 131,141,2,3,169
DATA164.141.83,3,169,8,133
DATA157.,96,169,237,141,508, 3
DATA169,245.,141,51,3,169,1
DATAR178, 168,32, 186,255,169, 1
DATA162,121,1608,192,32,183, 255
DRTAR2,89,225,169,0., 133,251
DATA169.,8, 133,252, 160,1,177
DATAZ251,73,255, 145,251,208, 208
DATA247,238,252, 165,252,201, 168
DATAR208.,239,96,169,131,141,2
DHTA3, 169, 164,141, 3,3, 169
DATAB, 133, 157,32, 213,255, 169

1330
1469
1410
1420
1439
1440
145@
1450
1470
1430

DATR1, 178, 168,32, 186, 255, 169
DATAL, 162, 166,1608,2,32,189
DATAZ5S., 169,08, 32,213,255, 134
DATA4S5,134,47,134,43,132, 46
DHRTA132.48, 132,50, 168,06, 132
DATARZ51.169,8, 133,252,200, 169
DATAZSS, 81,251, 145,251, 200, 208

BASIC Wedges and Vectors

DRTA247.2308,252, 165,252,281, 160

DATR288, 239, 169,8,32,94, 166
DATA32, 142, 166.76,174,167,-1

Program 16.

117

The following routines are the start of the Basic extension commands. These are
the main control routines that patch the extra commands into the Commodore

64's Basic. They should be used in the order in which they appear.

Initialisation

This file contains the initialisation routines and the table of added commands
and their vectors. The commands are initialised by calling the cold start ($FCE2
- 64738) which is a simulation of power-up. The routines cannot be used with a
cartridge as they take up the same memory locations and simulate a cartridge.

The routine labelled ‘COLD’ is the actual power-up routine and the routine
labelled ‘WRST is the NMI routine that makes sure that the function keys and
lister are not disabled.

Loc

0000
2000
8000
8002
8004
8005
8006
8007
8009
8009
800F
80eD
800F
8011
8013
8015
8015
8018
8019
801P
€o1D
801F
8021
8023
8025
8027
8029
802p
802D

CODE

74
39
c3
c2

8

8B
83
ce
SE
F7
34

4C
00
31
44
47
4A
?1
oE
o0
33
E3
CA
ED

ae
890

30

E3
AL
81
82
82
e3

EA
80
FE
F3
F2
F2
F2
F3
83
Fi
Fé

B2

LINE

LINK

VECTOR

.LIB

INITRT

® =$3000

- WOR
. WOR
LBYT

-UWOR
WOk
-WOR
- WOk
WOR
.WOR

CoLD
WRST

;COLD START ENTRY
;RESTORE ENTRY

$C3,$C2,3CD, '8¢’

$E38R
$A483
CENCHT
FRINT
HANDLE
ARITH

JMF $R248

-BYT
-WOR
-WOR
-WOR
-WOR
- WOR
-WOR
. WOR
-WOR
. WOR
-WOR
- WOR

]
$EA31
WRSTO1
$FE47
$F34A
¢F291
$F20E
$F250
$F333
LISTER
$F1CA
$F6ED

;USSR JUMF

; IRQ

s BREAK

s NMI

;OFEN

; CLOSE

;SET INFUT
;SET OUTFUT
;RESTORE I/0
s INFUT
OUTFUT

; TEST-STOF

118 Advanced Commodore 64 BASIC Revealed

L.oC

802F
8031
8033
8035
8037
8039
8039
803C
803F
8041
044
8047
804A
804D
8050
8052
8054
8057
8058
805A
805D
805D
BO5F
8061
863
8045
8067
8047
806C
806D
806F
8071
8073
8076
8079
8O7A
e07A
807D
8080
8083
8086
8089
eo8a
8e8D
8090
8092
8094
80946
ge9e
8094
809C
80%E
B80A0
80A2
80A4
80A7
B80A9
B80AA
B80AC
80AC
80AD
80AE
80C8
80D1
8002
8eD3

CODE

3E
2F
44
AS

ED

20
20
Fo
4C
20
20
20
20
A9
85
20
98
a2
4C

A2
Ao
86
84
Ao
B1
?9
8e
10
A9
AQ
8D
8c
60

8E
20
20
20
2e
38
20
20
a9
85
85
85
A9
85
8%
85
A9
A9
20
A2
24
Do

93
oD
20
20
oD
oD

20

F1
F3
80
Fé4
FS

BC
El
03
72
A3
18
50
cc
00
13
7A

80
88

15
80
c3
C4
23
c3
10

F8
68
83
ar
9?0

16
A3
50
5
5D

ES
BF
80
34
36
38
¢o
33
35
37
AC
89
2D
Fe

AC

20
56

36

Fé
FF

FE
FD
ES
=14

Ab

E3

03

Do
FD
FD
FF
80

=1]
E3

E4

LINE

WRST

WRSTO1

SETKER

STKER1

CoLD

FOWER

-WOR $F13E

-WOR
-WOR
- WOR
-WOR

JSKR
JSR
BEQ
JmF
JSR
JSR
JSKR
JSR
LDA
STA
JSR
CLI
LDX
N

LDX
LDY
STX
STY
LDY
LDA
STA
PEY
RFL
LDA
LDY
STA
STY
RTS

STX
JSR
JSKR
JSKR
JSR
CLI
JSkR
JSK
LDA
STA
STA
6TA
LDA
STA
STA
STA
LDA
LDY
JSK
LDX
X8
BNE

$F32F
WRSTO1
$F4AS
$FSED

$F6BC
$FFE1L
WRSTO1
$FE72
$FDA3
$ET18
SETKER
$FFCC
H¢00
$13
$A67A

H$890
$E388

H<VECTOR
#:VECTOR
$C3

$C4

#$23
($C3), Y
30310, Y

STKER1
HFUNC
H:=FUNC
$028F
$029¢

$D016
$FDA3
$FDG0
$FFSE
SETKER

SETRAS
$E3BF
He80
$34

$36

$38
He00
$33

$35

$37
H<FOUWER
HXFOUER
$E42D
HeFP

WRSTO2

.BYT $93,$0D

BYT 7 n¥

;GET

;ABORT 1/0

;s WARM RESTART
;LOAD

1 SAVE

;UFDATE TIME

;STOF KEY?

;YES

¢ NO

INIT 1/0

;s INIT VIC CHIF

s INIT KERNAL VECTORS
;sRESTORE 1/0

; INFUT FROMFT FLAG
;INIT PASIC
1ENABLE IRQ

;SET FOR READY
;60 TO READY

sFOINT TO
;KERNAL VECTORS

;LOOF TO COFY VECTORS
;GET BYTE
:STORE IT

s AND NEXT

;FOINT TO FUNCTION
;KEY ROUTINE

;STORE IN KEYROARD
;s TARLE SETUF VECTOR

; SHRINK SCREEN
;INIT 1/0
;INIT SYSTEM CONSTANTS

+SET KERNAL VECTORS
;ENABLE IRQ

+SET PASIC VECTORS
JINIT BASIC

;SET TOF OF RAM

;FOINT TO FOWER
;UF MESSAGE
;OUTFUT MESSAGE

:SET STACK POINTER
SALWAYS

* EXTENDED 64 BRASIC’

SBYT 7 VoL xxxx2’ ¢0D,$0D

PYT 7 64K RAM SYSTEM ’, $00

BASIC Wedges and Vectors 119

Loc CODE LINE

80E4 00

80EYS H

80OES 2 eb SETRAS LDX Hs$oP ; LOOF
80E7 BD 09 80 STRAS1 LDA LINK, X ;GET BYTE
80EA 9D 00 03 STA $0300,X ;sSTORE IT
BOED CA DEX

8Q0EE 10 F7 BPL STRAS1 ;D0 NEXT
80F0 40 RTS

80F 1 ;

80F1 G52 S5 CLIST .RYT ’RU’,$CE
80F3 CE

8OF4 43 54 BYT- 'CT’,¢CC
8O0F46 CC

8O0F7 41 S@ BYT TAFFEN’,$C4
80FC C4

8OFD 41 S5 94 BYT "AUT’ ,$CF
8100 CF

8101 43 41 .BYT "CATALO’ ,¢C7
8107 C7

8108 43 48 .BYT "CHANG’,b¢CS
810D CS

B810E 43 48 .BYT "CHAI’ , %CE
8112 CE

8113 43 2 .BYT "CRUNC' ,¢C8
8118 C8

8119 44 45 .BYT "DELET’,$CS
811E C3

811F 44 49 53 BYT 'DIS’, $CP
8122 ce

8123 44 4F 4P .BYT "DOK’ ,¢CS
8126 CS

8127 44 55 4D .BYT 'DUM’ ,¢D0
812A Do

8128 45 58 45 .BYT TEXE’,$C3
812E C3

B812F 46 49 4E .BYT ’FIN’,$C4
8132 C4

8133 47 45 LBYT "GE’,$D4
8135 D4

8136 4P 45 .BYT "KE’,$D9
8138 D9

8139 4D 41 BPYT "MA’,$D4
8138 D4

813C 4D 45 .BYT "MERG’,$CS
8140 CS

8141 4F 4C .BYT ’0L",%C4
8143 C4

8144 50 4F .BYT 'FO’,%D0
8146 DO

8147 50 55 .BPYT "FU’ ,$D4
8149 D4

814A 52 45 .BYT ’RENUMRE' D2
8151 D2

8152 952 45 .BYT "REFEA’,$D4
8157 D4

8158 53 4F 52 .BYT "SOR’,$D4
8156 D4

815C 954 32 .BYT "TRACEQO’,$CE
8162 CE

8163 54 82 .BYT "TRACEOF’,b$Cé
816A Cé6

B146P 5S4 S9 50 BYT "TYF’ , $CS
8146E CS

816F S5 4E .BYT "UNTI’, ¢CC

8173 CC

120

Loc

8174
8174
8177
8178
817C
817D
8181
8182
8187
8188
8189
8189
818k
818D
818F
€191
8193
8195
8197
8199
8198
219D
819F
81A1
81A3
e1as
81A7
81A9
81AR
g1aAD
81AF
81k1
81R3
8185
31R7
81R9
81BP
e1ep
81PF
81C1
81C1
81C3
81CS
81C7
81C9
e1Cc?
81C¢

Crunch to tokens

This routine is wedged into the crunch token link at locations $¢304-$0305
(772-773). Crunch to tokens will take the input line and convert all command
words to one (for normal Basic) or two (for extended Basic) byte token values.
This does exactly the same as the original Basic version except that the extended
keyword table is checked before the normal Basic table.

Crunch to tokens is performed directly after the warm start routine
encounters a carriage return, no matter whether the command is in direct mode

Advanced Commodore 64 BASIC Revealed
CODE

44
ce
48

4C
co
56
D2
00

18
AA
D7
36
ES
B7
82
FE
AC
4C
DE
o1
CD
92
Do
13
17
AF
84
BA
79
s5C
F1
24
FC
42
4F
6P

24

ce

49
4F

41

9D
83
84
85
8%
84
86
37
89
8A
en
8P
8c
gD
8E
99
91
?7
98
98
99
PA
9C
?D
9E
9F
9F
9F

89

90
9F

LINE

CADDR

~e

FNSTRT

BYT
BYT
BYT
BYT
BYT

-WOR
WOR
-WOR
-WOR
- WOR
-WOR
-WOR
WOR
- WOR
-WOR
<WOR
.WOR
-WOR
-WOR
-WOR
-WOR
. WOR
LWOR
-WOR
-WOR
. WOR
.WOR
-WOR
.WOR
. WOR
-WOR
. WOR
.WOR

.WOR
-WOR
.WOR
. WOR

=29
.END

"DEE" , $CR
"HIME” , $CD
"LOME” , $CD
TUARFT" 4D2
]

RUN-1
CTL-1
AFFEND-1
AUTONO-1
CATLOG-1
CHANGE -1
CHAIN-1
CRUNCH -1
DELETE-1
DISK-1
DOKE-1
DUAF -1
EXEC-1
FIND-1
GET-1
KEY-1
MAT-1
MERGE -1
OLD-1
FOF-1
FUT-1
RENUMBE -1
REFEAT-1
SORT-1
TRON-1
TROFF-1
TYFE-1
UNTIL-1

DEEK-1
HIMEM-1
LOMEM-1
VARFTR-1

or for entering or deleting a line in memory.

etce
e1C?
e1c9
81C?
81c9
81C9
81CP
81CD
81CF
8102
8104
81D6
8108
8109
81Dk
8108
81DD
81DF
81E1
81E3
81ES
81E7
81E9
S1ER
81ED
31EF
81F1
81F1
e1F3
Q1FS
81F7
81F9
81FC
81FC
81FE
81FF
81FF
8201
2203
8204
8205
8208
8204
82ecC
820F
8211
8212
8214
8216
8218
821A
821C
821D
821F
8221
8223
8226
8228
822A
g822C
822D
8230
8231
8233
8233

CODE

A4

B9

20
24
08
47
oF
1A
IF
04
99

12

39
04
3C
A
46 82

EE

op
71

Fe o1
EE
31
Fe o1

el

pos

A
24
49
02
oF
39
AE
o8
o0 02
DB
28
D7

FB 01
Fe
FD o1

BASIC Wedges and Vectors

LINE

IR CRUNCH-TOKEN
; CRUNCH KEYWORD LINK
; FOR USE WITH THE ROUTINES IN
; "ADVANCED COMMODORE 64 PASIC REVEALED”
C

RNCHT LDX %74

LDY #$04
STY %0F
CRNCO1 LDA $0200,X ;GET CHAR
BFL CRNCO2 ;CHAR IS OK
CMF H$FF s FIFRINT
BEQ CRNCO8 ;YES,SEND IT
INX ;NO, ILLEGAL CHAR
BNE CRNCO1 ; 80 DO NEXT
CRNCO2 CHMF H$20 s SFACEFRINT
BEQ CRNCo8 ;YES, SEND IT
STA ¢$08
CMF #$22 ;s QUOTESFRINT
BEQ CRNC12 ;YES, SCAN QUOTE END
BIT $0OF
BVS CRNCO8 ; SEND CHAR
CMF H$3F 3 "FRINT” FPRINT
BNE CRNCO3 s NO
LDA H$99 ;SET TO FRINT TOKEN
BNE CRNCO8 ;SEND IT
CRNCO3 CMF #$30 ;%0 FRINT
BCC CRNCO4 s YES, HUNT FOR KEYWORD
CMF #$3C s 747 PRINT
BCC CRNCo8 ; YES, SEND CHAR
CRNCO4 JMF CRNC1S sHUNT FOR KEYWORD
CRNCOS LDA H$EE ;ONE OF MINE
.BYT $2C ;SKIF NEXT 2 RYTES
CRNC0O6 ORA ¢0P ;ONE OF BASIC’S
CRNC@7 LDY %71 ;RESTORE Y
CRNCO8 INX ;NEXT FOSITION
INY
STA $01FR,Y ;STORE IT
CMF HS$EE ;MINEFRINT
BEQ CRNC14 ;YES, SEND 2ND BYTE
LDA $Q1FP Y ;NO, END OF INFUTFRINT
BEQ CRNC13 ; YES
SEC
SBC #32A 377 FRINT
BEQ CRNCO? ; YES
CHF HE49 ;DATA 7
. BNE CRNC10 3 NO
CRNCO? STA ¢oF
CRNC10 SEC
SBC #$55 REM 7
ENE CRNCO1 :NO DO NEXT CHAR
STA $08 ;SET QUOTE FLAG
CRNC11 LDA $0200 X ;GET RYTE
BE@ CRNCo8 ;END OF INFUT, SEND
CMF $08 :QUOTE FLAGFRINT
BE® CRNCeS8 ;YES, SEND
CRNC12 INY :STORE CHAR
STA $@1FR,Y
INX
BNE CRNC11 ;00 NEXT

CRNC13 STA $01FD,Y 3 STORE ZERO

121

122 Advanced Commodore 64 BASIC Revealed

[Ns] CODE. L. INE

82346 Cé 7B DEC $7P

8238 A9 FF LDA HeEFF

8:3A 85 7A STA $7A

823C 60 RTS sEXIT CRUNCH

823D H

8230 AS OB CRNC14 LDA $oP ;GET 2ND PYTE
823F (8 INY

8240 99 FB 01 STA $01FP Y :STORE IT

8243 4C CF 81 JMF CRNCO1 ;D0 NEXT BYTE

82446 H

82446 84 71 CRNC15 STY $71 ;SAVE OFF Y

8248 AG FF LDY H$FF

824A 86 7A STX $7A ; AND X FOINTERS
824C CA DEX

824D A9 01 LDA H$0Q1 ;START TOKEN VAL=1
824F 85 eP STA 0P

8251 C8 CRNC16 INY

8252 ER INX

8253 PBD 0 o2 CRNC17 LDA $0200,X ;GET RYTE

8256 38 SEC

8257 F9 F1 8@ SBC CLIST,Y ;AS KEYWORD TABLEFRINT
825A FO FS PEQ CRNC1é s YES, CHECK NEXT
825C C9 8o CMF H$80 sSHIFT OUTPRINT
825E Fe 9C PEQ CRNCOS ;s YES, FOUND

82460 A6 7A LDX $7A sRESTORE BUFFER FOINTER
8262 E6 0B INC ¢op s NEXT TOKEN

8264 C8 CRNC18 INY

8265 P9 Fo 80 LDA CLIST-1,Y ;;END OF KEYWORDFRINT
8268 10 FA BFL CRNC18 ;NO

826A B9 F1 80 LDA CLIST,Y ;END OF TAPLEFRINT
826D DO E4 BNE CRNC17 ;NO, CHECK NEXT
824F AO 00 LDY #H¢00 ;START TOKEN AT ©
8271 84 0P STY 0B ;FOR BASIC

8273 88 DEY

8274 A6 7A LDX $7A ;GET INFUT FOINTER
8276 CA DEX

8277 C8 CRNC19 INY

8278 EB8, INX

827 BD 00 02 CRNC20 LDA $0200,X ;GET BYTE

827C 38 SEC

827D F9 9E A0 SBC $AG%E,Y sAS IN TABLEFRINT
8280 FO FS BEQ CRNC19 ; YES, CHECK NEXT
8282 C9% 89 CMF H$80 ;SHIFT OUTFRINT
8284 DO 03 ENE CRNC21 ;NO, TRY NEXT WORD
8286 4C FF 81 JNF CRNCes ;YES, SEND PASIC TOKEN
8289 A6 7A CRNC21 LDX $7A sRESTORE INFUT FOINTER
828R Eé ©P INC seob :NEXT TOKEN

828D C8 CRNC22 INY

828E B9 9D A0 LDA $A09D,Y ;END OF WORDFRINT
8291 10 FaA PFL CRNC22 s NO

8293 B9 9E AQ LDA $AQ%E,Y ;END OF TABLEFRINT
8294 DO E1L BNE CRNC20 sNO, TRY NEXT WORD
8298 PBD 00 62 LDA %0200 X ;ELSE SEND RYTE
8292 4C o1 82 JMF CRNCO7

829E END

Tokens to text

This routine is wedged into the print token link at locations $$306-$03¢7
(774-775). Tokens to text is used in the list command only to convert any token
value (greater than 127 for normal Basic or preceded by $EE-238 for extended
Basic) back into the command word and print it to the output device.

829E
829E
829E
829E
829E
82%E
8240
82A3
82A5
82A7
82A9
82AR
82AD
82AF
8282
8284
82e7
82eA
82eA
82PE
82D
82PE
82Ceo
82C2
82C3
82C5
82C6
82C9
82CE
82CD
82CE
8201
8203
8206
8208
8209
8209
82DA
82DC
82DD
82DF
82E1
82E2
82E4
82EY
82E8
82EA
82EC
82ED
82F0
82F2
82F5
82F7

CODE

39
4C
c9
Fo
24
30
c?
Fo
20
3e
20
4C

c8
3
AA
84
AQ
CA
Fo
c8
B9
10
30
(0]
374
30
20
Do
69

38
E?
AA
84
AQ
CaA
Fo
c8
37
10
30
c8
B9
30
20
Do

03
F3
FF
Fo

EE
05
D9
03
BA
EF

SF

49
FF

08

F1

FA

F5

F1
05
D2

FS

7F

49
FF

o8

9E
FA

FS

9E
E6
D2
FS

Ab

82

82

Ab

80

80
FF

A0

Ao
FF

LINE

v
14
v
y
.
y

FRINT
FRINO1
FRINO2

FRINOS
FRIN13

FRINO3

FRINO4

FRINOS

FRINOS

FRINO7
FRINOS

FRIN1O
FRIN11

FRIN12

Execute statement

BASIC Wedges and Vectors

.LIP FRINT-TOKEN

FRINT TOKENS LINK

FOR USE WITH THE ROUTINES IN

RMI
JHF
CnMF
BEQ
BIT
BMI
CHF
BEQ
JSR
EmMl
JSR
JMF

INY
LDA
TAX
STY
LDY
DEX
BEQ
INY
LDA
BFL
BMI
INY
LDA
BMI
JSR
BNE
RTS

SEC
SecC
TAX
STY
LDY
DEX
BEQ
INY
LDA
BFL
EMI
INY
LDA
BmMI
JSKR
BNE
-END

FRINO2
$A6F3
HeFF
FRINOL
$OF
FRINO1
HS$EE
FRINOS
FRINO?
FRIN13
FRINOJ
$ALEF

($5F),Y

$49
HEFF

FRINOG

CLIST,Y
FRINOS
FRIN®4

CLIST,Y
FRINO7
$FFD2
FRINOS

H$7F

$49
HEFF

FRIN12

$AOYE, Y
FRIN11
FRIN10

$A0PE,Y
FRINO7
$FFD2
FRIN12

" ADVANCED COMMODORE 64 PRASIC REVEALED’

;A TOKEN
;FRINT IT
;I8 IT FI?
;s YES

;s QUOTES?

; YES

;ONE OF MINE?
;D0 MINE
;D0 PASIC
;ALWAYS

;00 MINE
;AND NEXT

;sGET TOKEN CHAR

;SAVE Y

;FOUND IT

;GET CHAR FROM. TABLE
;UNTIL END OF WORD
;FOUND END OF WORD

;GET CHAR FROM TAPLE
;LAST CHAR OF WORD
sFRINT IT

sNEXT CHAR

;D0 LAST

sREMOVE SHIFT
;SAVE .Y

sFOUND IT

;GET CHAR FROM TAPLE
;UNTIL END OF WORD
;FOUND END OF WORD

;GET CHAR FROM TABLE
;LAST CHAR OF WORD
;FRINT CHAR

s ALWAYS

123

This routine is wedged into the start new Basic code link at locations
$0308-$0309 (776-777). This is the control part of the main Basic interpreter
loop. It takes a token value and executes the routine via the vector table in the
initialisation file. There is a special case routine for PRINT which uses the same
token as in normal Basic but the routine has been rewritten to allow the CTL
command.

124 Advanced Commodore 64 BASIC Revealed

LOC

82F7
82F7
82F7
82F7
82F7
82F7
82FA
82FC
82FE
8300
8302
83905
8308
g30e
830P
820E
830E
8311
8112
8314
8315
8316
8319
831A
831D
831E
8321
8321
8321
832

8324
8327
8327
8324
8320
832E
832F
8332
8334

CODE

20
c9
Fo
ce
Fo
20
4C

20
4C

20
38
E?
0A
A8
:3%
48
B9
48
4C

73
EE
oA
?9
iF
79
E7

oFE
AE

8e

01

8A
89

73

27
AE

33

00

00
A7

82
A7

8E

81
81
00

83
A7

83
83
090

LINE

.LIP. HANDLE-TOKEN
EXECUTE STATEMENT LINK

"ADVANCED COMMODORE 64 BASIC REVEALED’

; FOR USE WITH THE ROUTINES IN

HANDLE JSR
ChF
REQ
chr
REQ
JSR
JMF

HANDO1 JSK
JnF

HANDO2 JSR
SEC
SecC
ASL.
TAY
LDA
FHA
LDA
FHA
JnE

sFRINT SFEC

DOFRNT JSR
INF:

HAND@3 LDA
FHA
LDA
FHA
JNE
FADDR .WOR
.END

Execute arithmetic

This routine is wedged into the arithmetic link at locations $¢30A-30B
(778-779). This routine is called by the evaluate expression and transfers control
to one of the four arithmetic routines included in this package. If the extended
Basic command is not one of the four arithmetic routines, a Syntax error is

output.

Loc

8334
8334
8334
8334
8334
8334
8336
8338

CODE

A%
85

00
oD

20 72 00

LINE

$0073
H3EE
HANDO1
H$99
DOFRNT
$0079
$A7E7

HANDO2
$A7AE

FIND13

Heol
A

CADDR+1,Y
CADDR, Y
$0073

IAL CASE

HANDO3
$A7AE

FADDR+1
FADDR

$0073
FRINTT-1

;GET CODE

;IS IT MY TOKEN?
:YES, DO IT

1S 1T FRINT?
1 YES

;GET CURRENT CHAR
;D0 BASIC COPE

;EXECUTE THE CODE
s AND NEXT

;GET TOKEN CHAR

sTIMES 2

;GET HI BYTE
;70 STACK
:GET LO BYTE
;7O STACK
;EXECUTE IT

;D0 FRINT COMMAND
;DO NEXT COMMAND

;GET HI BYTE

;TO STACK

;GET LO BYTE

;TO STACK

;EXECUTE FRINT
;VECTOR FOR PRINT

.LIE ARITH-TOKEN

ARITHMETI

RITH LDA
STA
JSR

C LINK

H$00
$0D
$0073

FOR USE WITH THE ROUTINES IN
"ADVANCED COMMODORE 64 RASIC REVEALED”

sTYFE FILAS TO NUMERIC

;GET BYTE

BASIC Wedges and Vectors 125

i.0C CODE LINE

833 C9% EE CMF H$EE ;ONE OF MINE?
833D FO 06 PEQ ARITH1 ; YES

833F 20 77 00 JSK $0079 ;GET CURRENT CHAR
8342 4C 8D AE JMF $AEBD ;sOFERATE

8345 i

8345 20 8P 8E ARITH1 JSR FIND13 ;GET TOKEN CHAR
8348 C? 1D CMF HFNSTRT ;IS IT A FUNCTION
834A Po 03 BCS ARITH2 s YES

834C 4C 08 AF JMF $AF0O8 ; SYNTAX ERROR
834F H

834F B8Y 24 ARITH2 STA $24 ; SAVE TOKEN VAL
8351 A% AD LDA H#$AD ;SETUF RETURN ADDRESS
8353 48 FHA

8354 A9 8C LDA #$8C

8356 48 FHA

8357 C6 24 DEC %24

8359 AS 24 LDA $24 ;GET TOKEN

835R 0A ASL A ; TIMES 2

835C AA TAX

8350 eD 8A 81 LDA CADDR+1,X ;GET HI BYTE

8360 48 FHA

8361 BD 89 81 LDA CADDR, X ;GET LO RYTE

8364 48 FHA

8365 4C 73 00 JMF $0073 ;EXECUTE FUNCTION
8368 .END

Function keys

This routine is wedged into the keyboard table set-up vector at locations
$028F-$029¢ (655-656). The routine checks whether the computer is in direct
or program mode; if in direct mode then the normal routine is executed, if in pro-
gram mode the quotes flag is checked, and if set the normal routine is executed.

The current key pressed is checked for one of the four function keys and the
shift key. If it was a function key the text for that key is read from behind the
Basic ROM, and put into the keyboard buffer until all eight characters or a zero
byte terminator are found. If it was not a function key the normal routine is
executed.

Loc CODE LINE

8368 .LIB. FUNC-KEYS

8368 AS 9D FUNC LDA $9D ;DIRECT?

834A FO 10 BEQ FUNCO1 ;NO

824C A9 @1 LDA H$O1 ; QUOTES?

836E 24 D4 RIT $D4

8370 Do on BNE FUNCO1 s YES, IGNORE
8372 A5 CB LDA $CB ;KEY FRESSED
8374 C9 02 CMF H¢03 F77

8376 90 04 RCC FUNCO1 ;NO, LESS THAN
8378 C9 07 CMF H$07 ;FS7

8374 90 03 BCC FUNCO2 ;YES, IS A FUNCTION KEY
837C 4C 48 EP FUNC@1 JMF $EP48B ;D0 NORMAL KEYS
837F H

837F CS CS FUNCO2 CMF ¢CS ;s ALREADY DONE?
8381 F9 F9 PEQ FUNCO1 ; YES

8383 A9 00 LDA H$00 ;CLEAR FOINTER

126 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE

8385 85 FC STA $FC

8387 85 Fe STA ¢FB

8389 A9 01 LDA H$O1 ;SHIFT KEY?

838e. 2C 8D 02 BIT $028D

838E Fo 04 BEQ@ FUNCO3 :NO

83990 A% 20 LDA H$20

8392 85 Fe STA $FR

8394 A9 BF FUNCO3 LDA H$PF ;ADD START OF STORE
8396 85 FC STA $FC ; TO FOINTER

8378 A9 Co LDA #H$CO

839A 18 CLC

839p 45 FR ADC ¢$FP

839D 85 FB STA $FB

839F A5 CR LDA s¢Ce

83a1 C9 03 CMF #$03 ;F77

83A2 DO 04 BNE FUNCO4 ;NO

83A5 A9 18 LDA H24

83A7 Do 12 BNE FUNCO7

83A9 C9 06 FUNCO4 CNhF H$06 s FO7?

83AE DO 04 BNE FUNCOS :NO

83AD A9 10 LDA #1646

83AF DO oA BENE FUNCO7

8381 C9% o5 FUNCOS CMF H$0S s F37

83R3 DO 04 BNE FUNCO6 3 NO

83R5 A% 08 LDA H8

83R7 DO oI ENE FUNCO?7

83R9 A% 00 FUNCO6 LDA H$00 ;MUST BE F1

83BE 18 FUNC@7 CLC ;SET VAL INTO FOINTER
83RC 435 FB ADC $FB

82RE 135 FB STA $FPR

83C0 A9 00 LDY H$00

82C2 A9 36 LDA H$36 ;SWITCH QUT BAS ROM
23C4 85 o1 STA $01

83C6 B1 FB FUNCe8 LDA (¢FBR),Y ;GET CHAR

83C8 Fo 98 BEQ FUNCO? ;ZERD BYTE TERMINATOR
83CA 99 77 o2 STA $0277,Y ;STORE IN PUFFER
33CD C8 INY

83CE Co o8 CFY H%08 ;AL 87

8300 Do F4 RNE FUNCOS8 ;NOT YET

83D2 B84 C6 FUNC@? STY ¢C6 ;s HCHARS IN BUFFER
83D4 A9 37 LDA H&37 FUT BASIC ROM RACK
8306 85 o1 STA $01

83D8 A5 CP LDA 3CR :SET LAST=FRESENT
83DA 85 CS STA $CS ; KEYS,

83DC AD 8D 02 LDA $0280 ; SHIFT COmeO

e3DF 8D BE @2 STA $028E

8lE2 40 RTS ;ALL DONE

8ZE3 -END

Program lister

This routine is wedged into the INPUT vector at locations $0324-(325
(894-8¢5). This routine completely simulates the normal input routine. First
the input device is checked for keyboard input and if it is not so the normal
routine is executed. Direct mode is then checked for and if it is not, the normal
routine is executed.

The next part of the routine is copied directly from the kernal routine except
that the cursor down key is checked for and, if found, the cursor position is
checked. If the cursor is not on the bottom line of the screen, the cursor down

BASIC Wedges and Vectors 127

character is printed. If the cursor is on the bottom line, instead of printing cursor
down the next line number is found and that line is listed (for any output device).
(Note: There is no check for quotes, which means that if you are entering a line
on the bottom line of the screen, the line will be wiped out and a line listed if you
press the cursor down key even from within quotes.)

When the last line of the program is listed the cursor will remain at the end of
the line. Pressing the cursor down key again will produce the message:

After this, the program will start listing from the beginning again.

Loc CODE LINE

83E3 LIB LISTER

83E3 S 79 LISTER LDA $99

83ES w0 04 BNE LISTO1 ;NOT KEYROARD

83E7 AL 9D LDA $9D

83E? D@9 03 BNE LISTQ2 ; IS DIRECT INFUT

82Ee 4C 57 F1 LISTO1 JUMF $F157 ;DO NORMAL

83EE ;

83EE A5 D3 LISTO2 LDA $D3 ; SAVE CURRENT CURSOR
83F0 85 CA STA $CA ; COLUMN

83F2 A5 D6 LDA ¢D6

83F4 85 C9 STA $C9 ; AND ROW

83F6 98 TYA ;SAVE .X AND .Y

33F7 48 FHA

83F8 8A TXA

83F9 48 FHA

83FA AYS DO LDA $DO ; SCREEN OR KEYPOARD?
B83FC FO 06 BEQ LISTO4 ; KEYROARD

B3FE 4C 3A E6 JMF $E63A ;D0 FOR SCREEN

8401 H

8401 20 16 E7 LLISTO3 JSR $E716 ;DISFLAY CHAR TO SCREEN
8404 AT C6 LISTO4 LDA $Cé ;ANY CHARS "IN BUFFER?Y
8406 85 CC STA $CC ;IF NOT, BLINK CURSOR
8408 8D 92 o2 STA $0292 ;AUTO SCROLL DOWN

840P FO F7 PEQ LISTO4 ;REFEAT UNTIL CHAR
840D 78 SEI ;DISARLE KEYBOARD

840E A5 CF LDA $CF ; CURSOR BLINK?

8410 F0 oC BEN LISTOS ;NO

8412 AY CE LDA $CE :RESTORE ORIGINAL CHAR
8414 AE 87 02 LDX $0287 ; AND COLOUR

8417 A0 00 LDY H$00

8419 84 CF STY $CF ;SWITCH OFF BLINK

841P 20 13 EA JSR $EA13 ;RESTORE

841E 20 P4 ES LISTOS JSR $ESR4 ;REMOVE CHAR FROM BUFFER
8421 C9 83 CMF H$83 ;RUN/STOF?

8423 Do 10 BNE LISTO7 ;NO

8425 A2 09 LDX H¢09 ;COFY TEXT INTO PUFFER
8427 78 SEI

8428 86 C6 STX $Cé

842A BD E6 EC LIST@®6 LDA $ECE6,X

842D 9D 76 @2 STA $0276,X

8430 CA DEX

€431 Do F7 BNE LISTO4 ;REFEAT UNTIL ALL DONE
8433 FO CF BEQ I.ISTO4 ;DONE, OFERATE ON RUN/STOF
8435 C9 oD LISTO7 CMF H$OD ; CARRIAGE RETURN?
8437 D2 03 BNE LISTO8 ;HO

8439 4C @2 Eé6 JMF $E602 ;END OF INFUT

843C H

843C C9 11 LISTO8 CMF H$11 ; CURSOR DOWN?

843E DO Ci BNE LISTO3 ;NO GET NEXT CHAR

128

LocC

8440
8442
8444
8446
8449
8442
844D
B844E
8451
8453
8455
8457
849A
845C
845E
8450
8462
8464
8466
8468
B46A
846D
8470
8472
8474
8476
8477
8479
847P
847D
8480
8482
6489
84864
2489
848A
848D
848F
8491
84%4
8496
2499
849E
849E
84A1
84A2
B4A5
24A4
8409
84AP
84AC
84AD
84AE
84D6
84D7
84D8

Advanced Commodore 64 BASIC Revealed

CODE

Ab
EQ
Fo
4C
A2
A9
i8
29
Eé
Do
E6
20
Ad
Bl
Do
A9
8%
8%
A9
A0
20
4C
[214
B1
8%
ce
-3}
85
A9
8D
A%
gD
68
8D

D6
18
2
21
i8
20

Fo
14
02
15
13
01
SF
10
FF
14
15
AR
84
1E
04
02
SF

14

SF
15
94
00
84
o1

A9

00

84

FF

Ab

AP
84

03
23
84
84

Ab
23

a3
84

84
84

LINE

LDX
CFX
REQ
JNF
LISTO? LDX
LDY
cLC
JSR
INC
BNE
INC
LIST10 JSRK
LDY
LDA
BNE
LDA
STA
STA
LDA
LDY
JSR
JMF
LIST11 LDY
LDA
STA
INY
LDA
STA
LDA
STA
LDA
STA
FLA
STA
FLA
STA
LDY
STY

- JNF
LIST12 LDA
STA
LDA
STA
LDA
FHA
LDA
FHA
JNF

$D6
H24
LISTO?
LISTO3
H24
H$00

$FFFQ
$14
LIST10
$14+1
$A613
H$01
(35F), Y
LIST11
H$FF

$14
$14+1
H<EOFMES
H>EQFMES
$AR1E
LISTO4
H$02
($5F), Y
$14

($5F), Y
$14+1
H:LIST12
$0300
H:LIST12
$0301

STACK

STACK+1
He¢o1
$OF
$A6D7
Hege
$0300
H$E3
$0301
STACK+1

STACK

LISTO4

STACK .WOR ¢
EOFMES .BYT $0D,$0D, %12

LBYT

-END

1 SCROLL SCREEN?
; TES
;NO, NEXT CHAR
:SET CURSOR 10
; PEGINNING OF LINE

sFIND NEXT LINE TO
; LIST
:GET ADDRESS

;END OF FROGRAM?
;NO

sNEXT LINE NUMPER=0
s TELL USER THAT THE
; END OF FROGRAM HAS
; BEEN REACHED

;GET NEXT CHAR

;BET LINE NUMPER
;L0 BYTE
+HI BYTE
;RETURN TO LIST12
JAFTER LIST

;SAVE 2 RYTES IN
: SAFE LOCATION

sLIST LINE
;RESET ERROR VECTOR

;RESTORE 2 RYTES

;D0 NEXT CHAR

Txxxxxxxxexxx END OF FROGRAM x#xxxuxxxxxsx’

.BYT $0D,%00

Chapter Five
Extended BASIC - A

Complete Package

Introduction

This chapter contains a collection of programs which will create 31 extra
commands to the Commodore 64’s Basic and modify two other commands.
These extra commands will be of considerable use to any Basic programmer.
The commands require the wedge programs in Chapter 4 to be loaded as part of
the assembly; these wedges allow the following commands to be used as
ordinary Basic commands. The commands and a description of their use is given
in the documentation accompanying each of the routines. All these extra
commands and their associated wedge, tokenising the parsing routines are
designed to be stored in the cartridge ROM area of $8@0¢ up for an area of just
under 8K of memory. The routines are designed to emulate a ROM cartridge
based program and will thus power up on cold start. The listings are all in CBM
assembler format. For readers wishing to obtain these programs in machine
readable form, they are available as both source and object code at an inclusive
cost of £10 from: Advanced Commodore 64 BASIC Revealed Software Offer,
40 Bowling Green Lane, London ECI. (Please make cheques payable to Zifra
Software Ltd.)
The extended Basic commands are:

APPEND AUTO CATALOG CHAIN

CHANGE CRUNCH CTL DEEK

DELETE DISK DOKE DUMP

EXEC FIND GET HIMEM

KEY LOMEM MAT MERGE

OLD POP PRINT PUT

RENUMBER ~ REPEAT&RUN SORT TRACE ON &

TYPE UNTIL VARPTR TRACE OFF
APPEND

Abbreviated entry: A(shift)P
Affected Basic abbreviations: None
Token: Hex $SEE,$¢3 Decimal 238,3

130 Advanced Commodore 64 BASIC Revealed
Modes: Direct and program
Recommended mode: Direct

Purpose: To load a program into memory so that it appears ‘on top’ of the
current program. This routine will work with both disk and cassette and the
variable pointers when loaded are set to the end of the combined program.
When this routine is used, you should check that the line numbers of the
APPENDed program are larger than the line numbers of the program in
memory.

Syntax: APPEND [filename([,d[,s]]] - where d is the device number and s is the
secondary address.

Errors: The same errors will be encountered as in the Basic command LOAD.

Use: This routine would be used mostly to add Basic library routines onto the
end of your programs. It would be used rather than MERGE because of the
difference in speed. APPEND is much faster than MERGE.

Routine entry point: $84D8

Routine operation: The APPEND routine uses LOAD’s parameter parsing
routine to get the filename etc., then sets the secondary address so that it loads at
the end of the Basic program in memory. The load routine is then called, the
program is re-chained and variable pointers are set.

LOC CODE LINE

84D8 .LLIB AFFEND

84D8 A9 00 AFFEND LDA H$00

84DA S oA STA $0A

84DC 20 D4 E1 JSR $E1D4 ; GET FILE FARAMETERS
84DF A% 00 LDA HE0O

84E1 S B? STA $B9 ;SET SA FOR ALT LOAD
84E3 A5 2D LDA $2D

84E5 38 SEC

84E6 E9 02 SBC H$02 ; SET LOAD ADDRESS
84E8 AA TAX ; DIRECTLY AFTER RESIDENT
84E9 AS 2E LDA $2D+1 ; FROGRAM.

84ER E9 00 SBC H$00

84ED A8 TAY

84EE AS 0A LDA $04A

84F0 20 DS FF JSR $FFDS ; LOAD

B84F 3 ;

84F3 20 33 AS RESVAR JZR $AS533 ;RE-CHAIN LINES

84F6 AS 2D LDA $2D

B4FB8 A4 2E LDY $2D+1 ; RESET VARIAPLE

84FA 38 SEC ; FOINTERS TO END OF
84FR E9 02 SRC H#$02 ; NEW FROGRAM

84FD 85 57 STA %57

84FF 98 TYA

8500 E9 00 SBC H$00

8502 85 58 STA $57+1

8504 A0 00 RESVO1 LDY H$00 ; FIND END OF FROGRAR
8506 EB1 57 LDA ($57),Y ;s AND SET VARIABLE
8508 Do 1B BNE RESVO2 ; FOINTERS

38%eA C8 INY

850k B1 57 LDA ($57),Y

Extended BASIC - A Complete Package 131

LocC CODE LINE
850D Do 16 ENE RESV02
850F A5 §7 LDA $57
8511 18 CLC
8512 469 02 ADC H$02
8514 85 2D STA $2D
85146 85 2F STA $2F
8518 895 31 STA $31
851A A5 S8 LDA $57+1
851C 69 0@ ADC H¢00
851E 85 2E STA $2D+1
8520 85 30 STA $2F+1
8522 85 32 STA $31+1
8524 69 RTS
8525 A0 00 RESVO2 LDY H$00 ; NOT YET END OF
8527 B1 57 LDA (357),Y ; FROGRAM. GET
8529 5 99 STA $59 ; ADDRESS OF NEXT
es2e ce INY ; LINE.
852C P1 57 LDA ($57),Y
852E 85 58 STA $57+1
8530 A5 59 LDA %59
8512 8% 57 STA 457
8534 4C 04 85 JMF RESVDY
8537 .END
AUTO

Abbreviated entry: A(shift)U
Affected Basic abbreviations: None
Token: Hex $EE,$04 Decimal 238,4
Modes: Direct and program
Recommended mode: Direct only

Purpose: To save time when entering a program by providing the user with the
next line number to be entered. To enable the AUTO line numbering, enter
AUTO followed by the line number increment. To disable AUTO just enter
AUTO without a number. The next line number is picked up from the previous
line typed in, so if you enter a line 1§ with the auto step at 10, the next line
number will be 20. If you change this number to, say, 1§ and enter that line, the
next line number displayed will be 11¢. A new line number is not displayed if
nothing is entered on the line.

Syntax: AUTO [step]

Errors: Syntax error - if the step value is greater than 63999
(maximum line number)

Use: The command is used in direct mode to enable or disable AUTO line
numbering. When enabled, AUTO will produce line numbers after entering a
line until it is disabled with AUTO without an increment value. If you wish to

132 Advanced Commodore 64 BASIC Revealed

exit from the AUTO facility when a line number has been displayed, either press
return (which will delete that line if it exists), or cursor down off that line.

Routine entry point: $8537

Routine operation: First this routine checks tosee if there is a number following
it. If not it will disable AUTO, otherwise it will read the number and store as the
step and enable AUTO. The actual routine is wedged into the crunch tokens
link. It first checks that the first non space character in the input buffer is a
numeric character and sets a flag to say yes or no. Theline is then tokenised and
if there was no line number or there was nothing following the line number, the
routine exits. If the previous line typed in had a line number with something
following it, the line number is read from the pointer. The step is then added to
it, and the number converted to ASCII and inserted into the keyboard buffer.

LOC CcOnE LINE

8537 .LIR AUTO

8537 Fo 1p AUTONO PEQ AUTOFF ; NO STEF, TUEN OFF
8539 20 4P A9 JSR $A94R ; GET STEF

893C A5 14 LDA $14 ; STORE AWAY

853E 8D 5C 85 STA AUTOST

8541 AS 15 LDA $15

8543 8D SD 85 STA AUTOST+1

8546 A9 SE LDA H<AUTO ;1 ENABLE AUTO

8548 8D 04 03 STA $0304

854R A9 85 LDA #:AUTO

854D 8D @5 03 STA $0305

8550 60 RTS

855 :

8551 AS C9 AUTOFF LDA H#<CRNCHT ; DISABLE AUTO
S53 8D 04 03 STA 40304

8556 A9 81 LDA #:CRNCHT

8558 8D 05 03 STA $0305

855E 40 RTS

855C 00 00 AUTOST .WOR ©

855E ;

855E AD 00 02 AUTO LDA $0200 ; CHECK FIRST CHARACTER
8561 C9 30 CMF H$30 ; IN INFUT PUFFER FOR

8563 90 0A PCC AUTOO1 ; A NUMBER

8565 C9 3A CMF H$3A

8547 PO 06 BCS AUTOO1

8569 A9 01 LDA H$01 ; SET FLAG TO SAY
854E 85 02 STA $02 ; DO IT

854D DO 04 BNE AUTDO2

854F A9 00 AUTO®1 LDA H$00 ; SET FLAG TO SAY
3571 85 @2 STA $02 ; DON'T DO IT

8573 20 C9 81 AUT002 JSR CRNCHT ; CRUNCH INFUT
8576 A5 @2 LDA $02 : CHECK FLAG

gs7e De o1 ENE AUTO0O3

8574 60 RTS ; DON’T DO IT

857P (O 05 AUT003 CFY H$05 ; CHECK FOR PLANK
8570 D@ o1 BNE AUT004 ; INFUT LINE

857F 60 RTS

8580 AD SC 85 AUT004 LDA AUTOST ; ADD STEF TO FREVIOUS

8592 18 cLC ; LINE NUMBER

8584 65 14 ADC $14

8526 AA TAX

8587 AD SD 85 LDA AUTOST+1

858A 65 15 ADC $15

858C 86 63 STX $63

Extended BASIC - A Complete Package 133

Loc CODE LINE
85G8E 85 42 STA $62
8590 A2 90 LDX H$990
8592 138 SEC
8593 98 TYA
8594 48 FHA
8595 20 49 BC JSR $RC4? ; CONVERT LINE NUMBER
8598 20 DF PD JSR $BDDF ; TO ASCII STRING
8598 35 FB STA $FB
es9bd 84 FC STY ¢FC
859F A0 00 LDY H$00
g5A1 P1 FP AUT0OS LDA ($FBR),Y ; COFY ASCII
85A3 FO 06 REQ AUTOQS ; STRING INTOQ KYRD
85A5 99 77 @2 STA $0277.,Y ; BUFFER
85A8 C8 INY
85A9 DO Fé6 ENE AUT00S
85AP C8 AUTO06 INY
85AC A9 20 LDA H$20 ; AMD A SFACE
85AE 99 77 €2 STA $0277,Y
851 84 C6 STY ¢C6 ; NUMBER OF CHARS IN
GB3 68 FLA ; BUFFER
BSR4 AP TAY
8URS 60 RTS
8RS <END
CATALOG

Abbreviated entry: C(shift)A

Affected Basic abbreviations: None
Token: Hex $EE,$05 Decimal 238,5
Modes: Direct and program
Recommended mode: Direct

Purpose: To display the directory (CATALOG) of a disk in drive unit eight.
This command will display the directory straight to the screen without having to
load it in. Users of dual disk drives will be pleased to note that you can specify
which drive to display by either a number one or zero after the command. If no
number is specified, the routine will default to drive zero.

Syntax: CATALOG [§ or 1]

Errors: Syntax error - if the command CATALOG is followed by
anything but §,1:, or nothing
Disk error message - after the CATALOG has been dis-
played, the disk error channel is read
and displayed

Use: The command is used to display the directory of a disk. This can be useful
if you have a program that you wish to save but need to check if there is room on
the disk or find a filename to use. The directory can be paused when displaying
by use of the spacebar, and restarted with any key. Display can be stopped
completely with the STOP key.

134 Advanced Commodore 64 BASIC Revealed
Routine entry point: $85B6

Routine operation: On entry, the routine checks to see if a drive number is
specified. If no number is specified or ‘%’ the character ‘@’ is inserted into the
filename after the ‘$. If it is a ‘I’, the character ‘I’ is inserted. Anything else will
cause a Syntax error. The file is then opened and each line is read in and
displayed ignoring line links. When the directory is finished, the file is closed
and the disk error channel is read.

LOC CODE LINE

85R4 .LIB CATALOG

8586 FO 0P CATLOG BEQ CATLe1 ;DRIVE 0

85r3 C9 3o CHF #$30 ;IS IT oF

85RA Fo o7 BEQ CATLei ; YES

85eC C9% 31 CMF H$31 ;IS IT 17

85Pt FO 06 BEQ CATLO2 ; YES

85C0 4C 08 AF JAF sAFe8 ;SYNTAX ERROR
85C3 A9 3o CATLO1 LDA H$30 ;CHAR 7o’

85Cs 2C BYT $2C

85Cé A9 31 CATLO2 LDA H$31 ;CHAR 717

85C8 8D 83 84 STA OFDIR+1 ;STORE IN STRING
85CE A7 o2 LDA Hs¢o2 ;LENGTH

83CD A2 82 L.DX HZOFDIK ;ADDRESS LSB
85CF A0 86 LDY #H:OFDIR ; MSE

8301 20 BD FF JSR $FFRD ;SET FILENAME DETAILS
85D4 A9 OE LDA H¢OE

83D6 20 A3 8A JSR GETN1 ;GET UNUSED FILEH
85D9 A2 08 LDX H#s$08 ;DEVICE 8

85DE A0 00 LDY #s$00 ;8A 0

850D 20 BA FF JSR $FFRA ;SET FILE DETAILS
85EQ0 20 Co FF JSR $FFCO ;OFEN FILE

85E3 90 oA BCC CATLO3 ;NO ERROR

83ES 48 FHA ;STORE ERROR
85E6 A5 BB LDA $B8 ;GET FILE #

85E8 20 C3 FF JSR $FFC3 ;CLOSE FILE

8SEP 68 FLA ;GET ERROR

85EC 4C F? EO JNF SEQF9 ;SEND ERROR

85EF ;

8GEF A0 @3 CATLO3 LDY #$03

85F1 84 P7 CATLO4 STY $B7

85F3 A6 B8 LDX $B8

BS5FS 20 Cé FF JSR $FFCé ;SET INFUT DEVICE
85F8 20 CF FF JSR $FFCF 3 INFUT

85Fe 85 &7 STA $57 ;STORE VALUE
85FD 20 B7 FF JSR $FFB7 ;GET STATUS

8600 DO 72 BNE CATL13 ;STATUS ERROR
8602 20 CF FF JSR $FFCF s INFUT

6605 85 58 STA $57+1 ;STORE IT

8607 20 B7 FF JSR $FFR7 ;GET STATUS

860A DO 68 ENE CATL13 ;STATUS ERROR
860C A4 B7 LDY $R7 ;GET COUNTER
860E 88 DEY ;DO NEXT

860F DO EO CATLOS BNE CATLO4

8611 84 B7 STY ¢e7 ;SET $B7 TO ZERO
8613 20 CF FF CATLOS JSR %FFCF s INFUT

B616 48 FHA ;STORE IT

8617 20 B7 FF JSR $FFB7 ;GET STATUS

861A AA TAX ;STORE TO X

861 648 FLA :GET INFUT CHAR
861C EO 00 CFX H$00 ;WAS THERE AN ERROR?
861E D@ 5S4 BNE CATL13 ;YES

8620 A4 B7 LDY ¢B7 ;GET LENGTH

Extended BASIC - A Complete Package 135

LOC CODE LINE
8622 €O 50 CFY H$50 ;TON LONG?
8624 PO 4E BCS CATL13 {YES, ERROR
8625 99 00 02 STA $0200,Y ;STORE CHARACTER
B629 AA TAX
8624 FO 04 BEQ CATLOY ;END OF LINE
862C E6 B7 INC $B7 ;D0 NEXT CHAR
B42E D@ E3 BNE CATLOA ALWAYS
8630 ;
8630 20 CC FF CATLO? JSK $FFCC ;RESET DEFAULT 10
8633 A6 9F LDX %9F
8635 EO 03 CFX #$03
8637 FO 05 BEQ CATLOS
8639 A6 9E LDX $9E
863B 20 C9 FF JSR $FFCY ;SET QUTFUT DEVICE
B63E A6 57 CATLOS LDX $57
8640 A5 58 LDA $57+1
8642 20 CD BD JSK $BDCD ;FRINT FILE LENGTH
8645 A9 20 LDA H32@ :SFACE CHAR
8647 20 D2 FF JSR $FFD2 sPRINT IT
B64A AO 00 LDY #$00
864C B9 00 02 CATLOY LDA $0200,Y ;GET CHAR
864F FO 06 REQ CATL10 ;END OF LINE
8651 20 D2 FF JSR $FFD2 sFRINT CHAR
8654 C8 INY
8655 DO F5 BNE CATLO9 ;D0 NEXT LINE
8657 A9 0D CATL10 LDA H$0D ; CARRIAGE RETURN
8659 20 D2 FF JSR $FFD2 sFRINT IT
865C 20 CC FF JSK $FFCC ;RESET DEFAULT 10
845F 20 E1 FF JSK $FFE1 ;STOF KEY?
8662 FO 10 REQ CATL13 ;YES
8664 20 E4 FF JSR $FFE4 ;GET KEY
8667 CY 20 CHF H$20 1 SFACE?
8669 DO 05 BNE CATL12 sNO
866R 20 E4 FF CATL11 JSR $FFE4 ;GET KEY
B66E FO FPR PEQ CATLI11 ;NO KEY
8670 AQ 02 CATL12 LDY H$02
8672 DO 9E BNE CATLOS ;DO NEXT LINE
8674 20 CC FF CATL13 JSR $FFCC ;RESET DEFAULT 10
8677 AS EB LDA $B8 ;GET FILE NUMBER
8679 20 C3 FF JSR $FFC3 ;CLOSE FILE
867C 20 S5 8A JSR DISKO1
867F 4C 74 A4 JNF 3A474 ; JUNF TO READY YIA ERROR
8682 24 30 OFDIR .BYT ’$0’ ;FILE OFEN NAME
8684 .END
CHAIN

Abbreviated entry: CHA(shift)]
Affected Basic abbreviations: None
Token: Hex $EE,$07 Decimal 238,7
Modes: Direct and program
Recommended mode: Either

Purpose: To load and run a Basic program from tape or disk. After the

136 Advanced Commodore 64 BASIC Revealed

program has been loaded, variable pointers are set to the end of the program.
‘S_vntax: As in LOAD

Errors: As in LOAD

Use: CHAIN is used to load and run a Basic program. It will work from
another program or in direct mode, having the same effect. If used from another
program, it is more convenient than LOAD as LOAD does not set the variable
pointers, and if the program you load is larger than the one in memory, when
variables are used they will corrupt the end of the program.

Routine entry point: $8684

Routine operation: The CHAIN routine simulates the LOAD routine as far as
the program has been loaded. From there variable pointers are set to the end of
LOAD, the run mode flag is set, and then three operations cause the program to
run:

JSR $A65E ;perform CLR
JSR $A68E ;set charget pointers to the start of program
JMP SATAE ;execute NEXT command

Loc CODE LINE
8684 .LIE CHAIN
8484 20 D4 E1 CHAIN JSR $E1D4 ;GET NAME
8687 A9 00 LDA H¢00
€689 85 B9 STA $R9 ; SECONDARY ADDRESS=9
868E A6 2R LDX $2B
848D A4 2C LDY $2C ;ADDRESS TO LOAD AT
868F 20 DS FF JSR $FFDS ;LOAD IT
8692 RO 21 BCS CHAINI1 ;LOAD WAS NOT 0.K.
8694 86 2D STX $2D ;SAVE END OF LOAD
8496 86 2F STX $2F ; ADDRESS IN VARIABLE
8498 86 31 STX $31 ; FOINTERS
869A 84 2E STY $2E
869C 84 30 STY $3@
8569E 84 32 STY 432
86A0 A9 @D LDA #H$0D ;FRINT CR
86A2 20 D2 FF JSR $FFD2
86AT A9 00 LDA Hs$60 ;SET TO RUN
§6A7 85 9D STA $9D
86A% 8D 24 9D STA REFESK ;CLEAR REFEAT STACK
86AC 20 SE A6 JSR $A6SE ;CLR
B6AF 20 BE A6 JSR $A68BE ;SET CHARGET FOINTER
84R2 4C AE A7 JAF $A7AE s RUN
8605 4C F9 EO CHAIN1 JNMF $EGF? ; SEND ERROR MESSAGE
86R8 END

CHANGE

Abbreviated entry: C(shift)H
Affected Basic abbreviations: CHRS - CH(shift)R

Extended BASIC - A Complete Package 137
Token: Hex $EE,$06 Decimal 238,6
Modes: Direct and program
Recommended mode: Direct only

Purpose: To change all occurrences of a string or command to something else.
Each line that is changed is listed if there is anything left to list.

Syntax: CHANGE dstrlddstr2d - where d is a delimiter character that does
not appear in either of the strings (strl or str2).

Errors: Syntax error - if the format is not as above
String too long - if either strl or str2 are longer than 4 characters

Use: CHANGE has a number of uses. An example would be:
CHANGE @PRINT@@PRINT#4,@

to change all occurrences of PRINT to PRINT#4, or:
CHANGE “PRINT”“PRINT#4,”

which will change all occurrences of the text PRINT to the text PRINT#4.
Note: Not all delimeter characters will work in all cases. An example is:

CHANGE /REM///

As the character ‘/” has two values, the first is the token for divide and the second
is just the ASCII slash character.

The sameis true of DATA. Other characters that will have the same effect are:
F=

Routine entry point: $86BB

Routine operation:. CHANGE uses most of the FIND routines to find strl and
list the line.

CHANGE reads in the delimiter byte and stores it away. The string to be
changed is then read in until the second delimiter character is reached and then
stored away. The next character is checked to see that it equals the delimiter
character, and if so the string to change to is read in until the delimiter character
is found again or the end of command. The rest of the routine is just a loop
finding all occurrences, changing them and listing until the end of the program.

The actual routine that changes the string uses the Basic input buffer and the
Basic routines to change a line. The routine copies the line up to strl into the
buffer, the change string (str2) is then copied to the buffer and the remainder of
the line is copied over. The pointers are then set so that the next byteto check is
the one following str2.

LOC cote LINE
aépe .LIB CHANGE
863 20 F3 84 CHANGE SR RESVAR ;RESET ILINE LINKS

84EE 20 91 BE JSR FIND14 ;GET CURRENT CHAR

138 Advanced Commodore 64 BASIC Revealed

LOC Lorr LINE

84RE 8BE § STA $59 ;STORE IN FLAG
86CO0 A2 @0 LDX H$eo

86C2 20 C7 8D JSR FINDO3 ;GET SEARCH STRING
86CS N2 00 LDX H$00

84L7 20 22 87 JSR CHANO7 ;GET STRING TO CHANGE
86CA B6 FC STX ¢FC ;STORE LENGTH OF CHANGE STRING
84CC 20 ES 8D JSR FIND@S :SETUF FOINTERS
86CF 78 SEI

86D0 AD 00 03 LDA $0300

26D2 8D CF BE STA FINDER

8606 AD 01 @3 LDA $0301

8409 8D DO 8E STA FINDER+1

84DC A9 47 L.DA H<FIND11 ;ERROR LLINK TO RTS
86DE €D 00 03 STA $0300

86E1 A9 8E LDA H:FIND11

B6E3 €D o1 03 STA ¢0301

86E6 58 CLI

86E7 20 F3I 8D JSE FINDOS ;FIND STRING

86EA 4C F6 86 CHANO1 JMF CHANQ3 ; CHANGE

B6ED 20 &8 BE EHANO2 JUSR FIND12 ;LIST LINE

86F0 20 F? 8D JSRE FINDO7 ;FIND STRING

86F3 4C EA 86 JMF CHANO1 ;AND REFEAT

86F6 ;

86F6 AT FC CHANO3 LDA $FC ;LENGTH OF CHANGE STRING
84F8 38 SEC

86F9 ES 22 SBC ¢22 ;- LENGTH OF FIND
846FR F9 03 REQ CHANO4 ; THEY ARE EQUAL
864FD 4C 48 87 JMF CHAN1O ;ELSE CHANGE SIZE
8700 A4 23 CHANO4 LDY $23 ; INDEX TO LINE
8702 A2 40 LDX H¢40 ; INDEX TO CHANGE STRING
8704 A5 01 LDA $01

8706 29 FE AND HEFE ;0UT PASIC ROM
8708 835 ei STA $01

87eh BD 40 BF CHANQS LDA $PF40,X ;GET CHANGE CHAR
870D Fe 07 REQ CHANOS ;END OF STRING
g70F 91 &7 STA ($57),Y ;REFLACE CHAR

8711 ES8 INX ;NEXT CHAR

8712 C8 INY ;NEXT BYTE

8713 4C on 87 JMF CHANOS ;AND AGAIN

8716 AL o1 CHANQ6 LDA 401

8718 09 o1 ORA #301 ; IN BASIC ROM

871A 5 01 STA ¢01

371C 88 DEY

871D 84 23 STY 423 ;STORE LINE INDEX
871F 4C ED 86 JMF CHANOR ;D0 NEXT FIND

8722 ;

8722 20 ep 8E CHAN@?7 JSK FIND12 ;GET NEXT CHAR
8725 C5 59 CMF $59 IS5 IT THE FLAG?Y
8727 Fo 03 PEQ CHAMOB ;YES, GET STRING
3729 4C o8 AF JNF $AKe8

872C 20 8k €E CHAN@S JSK FIND13 ;GET NEXT CHAR
872F Fo 11 REQ CHANO? JEND OF LINE

8731 C% 59 CNF $59 tEND OF STRING?
8733 Fo oD BEEQ CHANO? ;YES

2735 9D 89 BF STA $BFEO,X ;STORE CHAR

8738 ES8 INX

8739 E@ 49 CEX H$49 sSTRING T0OQ LONG?
Q73 DO EF ENE CHANGS :NO

7D A2 17 LDX HE17 ;STRING TOO LONG
B873F 40 37 A4 JOF $A437 ;OUTFUT ERROR

8742 AT 09 CHANO? LDA Ht0Q ;STRING TERMINATOR
8744 9D 80 BF STA $RF80, X ;STORE IT

Q747 60 RTS

8748 ;
8748 A0 00 CHAN1O LDY H$00

Loc

8744
e74C
874E
874F
8751
8753
8755
8754
8752
8754

75C
875F
87460
8762
8764
B766
8768
876A
876C
876F
8771
8774
8775
8776
8778
877A
877C
87°C
87890
8782
8783
8785
8786
8788
8789
878e
878D
878F
8791
8794
8795
8796
8798
8794
879C
87%E
87A0
87A2
87A4
87A7
87A8
B7A9
87AR
87nD
87R0
87e2
87R4
87p%
37pE
87BE
87C0
27C2
87C6
87C8
87Ce

CO0i

B1
83
c8
Bl
85
A2
c8
Ca
Fe
B1
9D
E8
EQ
Do
AS
29
83
Ao
B9
Fe
9D
E8
c8
EQ
Do
AS
09
85
AS
18
45
A8
AS
18
65
85
Cé
B1
9D
[o12]
ES
ce
Fe

D9
A9
9D
E8
gk
8a
18
69
89

&n

00
A
58
F1
00
0

FC

24
oP.
92
Fb
02
FE
Ce
02
87
93
?6
R
Al
FD

BF

87

23
87
23
87

03

03
8E

A4
87

LINE

CHAN11

CHAN12

CHAN13

CHAN14

CHANLS

CHAN14

CHAN17

LDA
STA
INY
LDA
STA
LDX
INY
CFY
REQ
LDA
STA
INX
CFX
ENE
LDA
AND
STA
LDY
LDA
BEQ
STA
INX
INY
CFX
BNE
LDA
ORA
STA
LDA
CcLC
ADC
TAY
LDA
CLC
ADC
STA
DEC
LDA
STA
INY
INX
CHF
BREQ
CFX
BNE
LDA
STA
INX
STX
TXA
CcLC
ADC
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDy
JNE
LDA

Extended BASIC - A Complete Package

($57) .Y ;GET LINEH 1O

$14 ;STORE IT
($57).Y ;BET LINE# HI
$15 :STORE IT

Heeo

$23 ;REACHED STRING?
CHAN12 ;YES, INSERT IT

($57),Y ;GET FROGRAM BYTE

$0200 X :STORE IN PUFFER
H$56 ;PUFFER TOO LARGE?
CHAN11 ;NOT YET
$01
HSFE ;0UT BPASIC ROM
$01
#$00
$BFB80, Y ;GET CHANGE STRING RYTE
CHAN14 {END OF STRING
40200, X ;STORE IN BUFFER
{NEXT CHAR
;AND FROGRAM BYTE
He57 {END OF PUFFER?
CHAN13 +NO
$01
#io1 ;IN PASIC ROM
$01
$23 ;CALCULATE START
;0OF REST OF FROGRAM LINE
$22 ;AFTER INSERTING THE
;CHANGE STRING
$23
$FC
$23
$23
($57),Y ;GET FROGRAM BYTE
$0200 X :STORE IN PUFFER
(NEXT BYTE
(NEXT CHAR
Hso00 (END OF LINE?
CHAN16 JYES
#158 ;END OF BUFFER?
CHANLS sNOT YET
#$00 ;ZERO IF END OF PUFFER
$0200, ¥ (STORE IT
CHANLN ySTORE LENGTH OF
;LINE
H$04
$0B
10302
CHANST
$0303
CHANST+1
HZCHAN17 ;BASIC WARM START
$0302 {RE-ENTRY FOINT
H#:CHANL7
$0303
FINDIS ;SAVE FOINTERS ETC
$0B :GET FOINTER
$A4A4 ;s INSERT FROGRAM LINE

CHANST ;RESTORE WARM START VECTOR

139

140 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE
87CE 8D o2 03 STA $0302
8701 AD FE 87 LLDA CHANST+1
87D4 8D 03 03 3TA $0303
37D7 20 Re BE JSR FIND14 ;RESTORE FOINTERS ETC
87DA A5 57 LDA $57 s LAST LINE?
87DC C5 2D CmF $2D
87DE DO 96 ENE CHAN1B ;NOT YET
87E0 A5 58 LDA $58
87E2 C9 2E CMF ¢2E
87E4 FO 13 BEQ@ CHAN20 ; YES
87E6 AD FC 87 CHAN18 LDA CHANLN ;DID WE DELETE
87E9 C9 o1 CMF #$01 s WHOLE LINE?
87ER FO 03 BE@ CHAN1? ; YES
87ED 4C ED 84 JMF CHANO2 ;NO, LIST AND DO NEXT
87F® A0 o2 CHAN19 LDY #¢02 s INDEX TO NEXT LINE
87F2 84 23 STY 23
87F4 A2 090 LDX H$00
87F6 4C FO 86 JMF CHANO2+3 ;DO NEXT WITHOUT LIST
87F9 4C 56 8E CHAN20 JMF FIND1O ;EXIT CHANGE
87FC 00 CHANLN .BYT @
87FD 00 09 CHANST .WOR @
87FF -END
CRUNCH

Abbreviated entry: C(shift)R

Affected Basic abbreviations: None
Token: Hex $EE,$8 Decimal 238,8
Modes: Direct and program
Recommended mode: Direct

Purpose: To remove all occurrences of REM in a program and so reduce the
size of the program.

Syntax: CRUNCH
Errors: None

Use: CRUNCH is used to remove REM statements and anything following
them on the same line. If the REM is in the first or second position ofthe line, a
colon is left on the line in case there is a GOTO or GOSUB to that line.

Routine entry point: $87FF

Routine operation: The Basic program is scanned line by line, byte by byte,
until the REM token is found. If REM is found in either the first or second byte
of the program then a colon is put into the input buffer. Otherwise the whole line
up to the REM is copied into the buffer and the Basic routine is used to alter the
line. A .’ character is printed to tell you that it has found a REM token.

87FF
37FF
8802
2804
2804
88e8
EE0A
880A
880D
880F
8811
8813
8814
2816
8818
281k
8e1p
381C
€81E
2820
ee21
882

8825
8829
e826
3828
ee2a
882C
882E
8830
8822
8834
8835
8834
882e
883A
883C
883E
883E
8840
8842
8843
8845
8847
8849
884A
8R4C
884E
agse
8852
€854
8854
88546
eess
8837
885C
885E
8860
8863
8B64
88664
3068
Q85n4
886A
886C

CORE

20
AS
85
AS
85

20
Fo
Ao
1
c8
11

4C

c8
B1
85
c8
B1

85

c8
Bl
c?
Fo
c?
Do
ho
B1
AA
c8
B1
8%
84
Do

ce
Do
c8
e
(4
Do
c8

Fo
c?
Fo
Do

84

k4
cé
Ad
R1
79
c8
C4
De
Fe

A9
8D

33 A5
28
FE
2¢
FC

E1l FF
X4
00
Fe

FE

74 A4

Fe
14

Fe

Fe
8F
28
020
oE
(A%
FB

FB
FC
FB
cc

EE
03

EQ

jedeal

A an

DC

FB
E2

29

aal

02
05
10
22
04
Fe
FC o1

o2

e7

3hA
20 @2

CRUNCH

CRUNO1

CRUNO2

CRUN®3

CRUNQ4

CRUMOS

CRUN®6

CRUNO7

CRUNOS

CRUN@Y

CRUM19

v

CRUN11

Extended BASIC - A Complete Package

.L.IE CRUNCH

JSK
LDA
STA
LDA
STA

JSR
BEQ
LDY
LDA
INY
ORA
BNE
JNE

INY
1.DA
STA
INY
LDA
STA

INY
LDA
CMF
BEQ
CHF
ENE
LOY
LDA
TAX
INY
LDA
STA
STX
ENE

Cmf
BNE
INY
RPNE
CnF
BNE
INY
LDA
BEQ
CMF
BEQ
RNE

STY
CFY
BCC
DEC
LDY
DA
STA
INY
CFY
BNE
BEQ

LDA
STA

$A533
$2P
$FB
¢2C
$FC

$FFEL
CRUNO2
#300
($FR),Y

($FR) Y
CRUNO3
$474

($FR)Y,Y
$14

($FR),Y
$15

($FB),Y
HeQF
CRUN®9
H$00
CRUNO6
H$00
($FR), Y

($FR) Y
$FC

$FP
CRUNO1

HS$EE
CRUNO?

CRUNO4
He22
CRUNO4

($FR), Y
CRUNOS
w22

CRUN®4
CRUNOS

$02
H306
CRUN11
$02
304
T3FR) LY
$Q1FC,Y

¢02
CRUN1O
CRUNLD

H$3A
$0209

;RE-CHAIN LINES
;GET START OF BASIC
; AND STORE IN TEMF
; LOCATIONS FOR THE
; USE OF THIS ROUTINE

;STOF KEY?
:YES

;MAIN CRUNCH LOOF
sNEXT LINE LO

;NEXT LINE HI
;NOT END OF FROG
s "READY.’

;GET LINE NUMBER
;LO
;LINE# LO

s HI
sLINEHW HI

.
12

;NEXT BYTE OF LINE
;REM TOKEN?
:YES, REMOVE REM
;END OF LINE?
sNOT YET

;GET FOINTERS TO
; NEXT LINE AND
; STORE
+ IN FOINTER

;ALWAYS

;s TOKEN?
sNO

;SCAN OTHER HALF
s QUOTES?

NO

;YES, SCAN TO

; END OF LINE
: OR ANOTHER QUOTE?
; YES

sNO, ALWAYS

;STORE OFF INDEX TO LINE
;0N 18T OR 2ND FNS?
;YES
SCORY LINE TO REM INTO
; INFUT PUFFER

2

;REACHED REM?
:NO
:ALWAYS, CHANGE

;FUT 737 AT START OF LLINE
; INTO INFUT BPUFFER

141

142 Advanced Commodore 64 BASIC Revealed

LOC CODE LINE
BBLF AD 05 LDY HEOS ; AND INSERT IT
8871 A9 00 CRUN12 LDA H300 ;SET ZERO TERMINATOR
£873 99 FC o1 STA $01FC,Y
8874 (8 INY
2377 84 OP. STY $eoe
8879 A9 95 LDA H<CRUN13 ;RETURN FROM CHANGE
8370 8D 02 03 STA $0302
227E A9 88 LDA H:CRUN13
2830 BD 03 o3 S1A $0303
3883 AS FB LDA $FB ;STORE LINE FOINTER
8885 8D 34 03 STA $0334
8388 A5 FC LDA $FC
8884 8D 35 03 STA $0335
888D A9 2E LDA H$2E ;TELL USER WE ARE
888F 2@ D2 FF JSR $FFD2 ;DOING SOMETHING
8892 4C A4 A4 JNF $A4AL ; CHANGE
8895 :
8895 A9 83 CRUN13 LDA H$83 ;TO HERE FROM CHANGE
8897 8D @2 03 STA $0302 :RESET WARM START
8894 A9 A4 LDA H$A4 : FOINTER
889C 8D 93 03 STA $0303
889F AD 34 03 LDA $0334 sRESTORE LINE FOINTER
88A2 B85 FP. STA $FE
88A4 AD 35 03 LDA $033'
88A7 85 FC STA $FC
2849 DO 85 BNE CRUNOS sALUAYS, NEXT LINE
S9AR .END
CTL

Abbreviated entry: C(shift)T

Affected Basic abbreviations: None

Token: Hex $SEE,$02 Decimal 238,2

Modes: Direct, program, and in PRINT statements

Purpose: To replace cursor and colour characters, screen and border pokes,
thus improving the ability to position the cursor anywhere on the screen. If the
value is not specified, the current value is used.

Syntax: CTL (x]LIyIL[ccll[sell,[bc]l,[cIs]]]]]]) - where x is the column
position of the cursor (-39), y is the row position of the cursor (f-24), cc is the
cursor colour, sc the screen colour, bc is the border colour (f-15), and cls is a
flag for clearing the screen (f = no, 1 = yes).

Errors: Syntax error - if the syntax is not as above
Illegal quantity - if the values are out of range

Use: CTL is a powerful screen handling routine. Cursor, screen, and border
colours can be set with a number (f-15), and the position of the cursor on the
screen can be anywhere you like by entering the x position (§-39) and the y
position (@-24). There is also a screen clear flag which, if set to 1, will clear the

Extended BASIC - A Complete Package 143

screen before positioning the cursor. To make it easier to describe, here are a few
examples with details of what they do.

CTL (20) - positions the cursor at the middle of the current line

CTL (9,0) - moves the cursor to (},f (home position)

CTL (,,1) - sets the cursor color to white

CTL (,,,P) - sets the screen colour to black

CTL (,.,,,P) - sets the border colour to black

CTL (,,,l) - clears the screen leaving the cursor at the current
position

CTL (20,12,5,0,11,1) - clears the screen (1), sets the screen to
black (@), the border to medium grey (11), the cursor colour to
green (5), and the cursor position to column 20, row 12.

To print something at a specified location on the screen:
PRINT CTL(x,y)“text”CTL(x1,yl)“more text”.....

Routine entry point: $88AB

Routine operation: The current settings of the five parameters are read and the
screen clear flag is set to (). The open brackets character is scanned past and each
of the six values is read if present, checking to see if there is a closing bracket.
When the closing bracket is found the screen is cleared if the flag is set to 1, and
the other values are stored in their own locations.

i.oc COOE LINE

8eaAp .LIB CTL

8eae 20 2C 8% CTL JSR CTLDEF ;SET DEFALLT
88AE 20 FA AE JSR $AEFA ;GCAN 7 (7

88R1 20 79 09 JSR $0079 ;GET CURRENT CHAR
gee4 20 51 89 JSR CHECKN+3 s NEXT FAR?Y

887 P9 08 BCS CTLO1 +NO

889 20 45 89 JSR GV1 ;GET VALUE

88RC 8E 8F 89 STX CTXFOS ;STORE IT

88BF PO 42 BCS CTLEN1 ;FOLLOWED BY ")’
88C1 20 4E 89 CTLe1 JSR CHECKN sNEXT FAR?

88C4 PO 08 BCS CTLO2 3 NO

88C6 20 6E 89 JSR GY4 ;GET VALUE

88C9 €E 90 89 STX CTYFOS ;STORE IT

88CC RO 35 BCS CTLEN1 ;FOLLOWED BY ")~
88CE 20 4E 89 CTL@O2 JSR CHECKN s NEXT FAR?

88D1 PO 08 RCS CTLO3 s NO

88D3 20 68 89 JSR GY2 sGET VALUE

8804 BE 91 89 STX CTCUR ;STORE IT

88D%9 pO 28 BCS CTLEN1 ;FOLLOWED BY 7)7
88DE 20 4E 89 CTLO3 JSR CHECKN sNEXT FAR?

82DE B0 o8 BCS CTLO4 ;NO

8BE® 20 48 89 JSR GV2 ;GET VALUE

8BEZ BE 92 89 §TX CTSC ;STORE IT

88E6 PO 1R BCS CTLEN1 ;FOLLOWED BY ")”
88EB 20 4E 89 CTLO4 JSR CHECKN ;s NEXT FAR?

88EE PO 08 BCS CTLOS ;NO

88ED 20 68 89 JSR GV2 ;GET VALUE

88F0 B8E 93 8% STX CTBD ;STORE IT

88F3 PO OE BCS CTLEN1 ;FOLLOWED BY 7)”

144

LocC

88FS
88F8
88FA
88FD
8700
8703
8906
8906
2909
geoe
890D
8910
8913
8916
8919
8%1C
891F
8922
8725
2928
8927
892C
892C
892D
8930
8933
2934
8939
393C
892F
8942
8945
8948
894A
894D
8F4E
894E
8951
8953
8955
8754
8957
8949
8950
895C
895D
895E
895F
8962
8965
8965
8947
2968
896A
896E
896D
896E
8970
8973
8976
8979
897e
897E
8780
8982

Advanced Commodore 64 BASIC Revealed
CODE

20
990
4C
20
8E
20

AD
Fo
A9
20
AD
8D
AD
8D
AD
8D
AC
AE
i8
4C

38
29
8cC
8E

AD

8D
AD
8D
D
80
ne
8D
60

20
Ce
o1
38
69
c?
Fo
18
60
68
68
20
4C

A9
2c
a9
2C
A9
2C
A9
8D
20
EC
Bo
20
c9
Fo
ce

4E
03
08
6B
24
F7

94
035
93
16
91
86
92
21
$3
20
8F
9@

Fo

Fo
8F
90
21
@2
20
93
864
91
00
P4

73
2C

92

89

AF
89
89
AE

89

E7
89
02
89
Do
89
Do
89
89

FF

FF
89
89
Do
g8
o
89
02
89

89

(4]

00
89

89
B7
89

00

LINE
CTLOS

CTLOG
CTLEN1
CTLEND

CTEND1

CTLDEF

CHECKN

CHECKS
CHECKE
CHECKC

CHECKA

6V1

GV2

JSR
ecc
JMF
JSR
STX
JSR

LDA
REQ
LDA
JSR
LDA
STA
LDA
STA
LDA
STA
LDY
LDX
CLC
JnF

SEC
JSR
STY
STX
LoA
STA
LDA
STA
LDA
aTA
LDA
STA
RTS

JSR
ChF
ENE
SEC
RTS
cmr
BEQ
cLC
RTS
FLA
FLA
JSR
JME

LDA

CHECKN
CTLO6
$AF 08
GV3

CTCFLG
$AEF7

CTCFLG
CTEND1
H147
$E716
CTCUR
$0266
CTSsC
$D021
CTeD
$D020
CTXFOS
CTYFOS

$FFFe

$FFFQ
CTXF0OS
CTYFOS
$D021
cTsc
$De2e
CTeD
$0286
CTCUR
H$00
CTCFLG

$0073
H$2C
CHECKE

H$29
CHECKA

$0073
CTLEND

H40

.BYT $2C

LDA

SBYT

LDA

Hi6
$2C
H2

LBYT $2C

LDA
STA
JSK
CFX
BCS
JSR
cme
REQ
Cmr

H25
VComF
$R79E
YCOnF
GERR
$0079
He29
CHECKS
He2C

;NEXT FAR?
s YES
;COMMA, SYNTAX ERROR
sGET VALUE

+STORE IT

;SCAN ")’

;CLEAR SCREEN?

:NO

;CHAR FOR CLS
;OUTFUT TO SCREEN
;GET CURSOR COLOUR
;SET IT

;GET SCREEN COLOUR
;SET 11
;GET BORDER COLOUR
SSET IT

;GET X FOSITION
;GET Y FOSITION
;FLAG WRITE

:SET CURSOR FOS AND EXIT

JFLAG READ

;BET CURSOR FOS
(STORE X

;STORE Y

;GET SCREEN COLOUR
;STORE IT

:GET BORDER COLOUR
;STORE IT

{GET CURSOR COLOUR
;STORE IT

1 ZERO SCREEN CLEAR
;FLAG

;GET NEXT CHAR
;IS IT A COMMAT
s NO

;FLAG FOR COMMA

;I8 IT 7)7?
;YES, DONE
;SET NO COMMA

;REMOVE RTS

; ADDRESS

;GET NEXT CHAR
;SET VALUES

;COMFARE X FOS
1SKIF

; COMFARE COLOUR

s SKIF

;COMFARE CLEAR FLAG
s SKIF

;COMFARE Y FOS
;STORE COMMARE VALUE
;GET 1 BYTEH

; IN RANGE @-(VCOMF-1)
;NO

;GET CURRENT CHAR
;IS IT 7))

;YES, FLAG END
(IS IT 7’

Extended BASIC - A Complete Package 145

Loc CODE LINE
8984 FO DS BEQ CHECKC ;YES FLAG ANOTHER
8986 4C 08 AF JMF $AF 08 ;SYNTAX ERROR
8989 A2 OE GERR LDX H3$eE ; ILLEGAL QUANTITY
898p 4C 37 A4 JMF $A437 ; SEND ERROR
898E ;
898E 00 VCOomMF .BYT o ;VALUE COMFARE
898F 00 CTXFOS .RYT © ;X FOSITION
8950 00 CTYFOS .BYT @ ;Y FOSITION
8991 00 CTCUR .BYT 0 ; CURSOR COLOUR
8992 0@ CT1sC .BYT @ ; SCREEN COLOUR
8993 090 CTeD BYT @ ; BORDER COLOUR
8994 @0 CTCFLG .BYT @ ;CLEAR SCREEN FLAG
89995 JEND

DEEK

Abbreviated entry: D(shift)E

Affected Basic abbreviations: DEF - DEF

Token: Hex $SEE.,$1D Decimal 238,29

Modes: Direct and program

Recommended mode: Either

Purpose: To return the value of a two byte pointer that is stored lo,hi order.

Synrax: DEEK (expression) — where expression is the address of the low byte of
the number.

Errors: Syntax error
Illegal quantity - if the expression is less than) or greater
than 65535

Use: DEEK stands for Double byte pEEK and is used to get a two byte value
stored in the 6510 microprocessor’s internal two byte format, e.g.

DEEK(43) - returns the beginning of Basic
PEEK(43)+PEEK(44)*256 - is the normal way of getting the:value

Note: DEEK must be on the right-hand side of an expression e.g.
B=DEEK(43) and not DEEK(43)=B.

Routine entry point: $8995

Routine operation: The two byte address inside the brackets is read in and
stored in $14,315. Using this value the bytes are read and converted to floating
point form.

146
Loc

8995
8995
g99e
899¢b
899D
899F
8940
8%A1
89A3
89A5
89A7
89A9
89AA
89AD

Advanced Commodore 64 BASIC Revealed
CODE

20
20
Ao
B1
AA
cs
B1
86
85
A2
38
4C

8Aa AD
F7 B7
00
14

14
63
62
90

49 BC

DELETE

LINE

DEEK

ASSIGN

.LIE DEEK
JSR $AD8BA
JSR $R7F7
LDY H$09
LDA ($14),Y
TAX

INY

LDA (314),Y
STX $63

STA $62

LDX H$90
SEC

JNF $BCA9
-END

Abbreviated entry: DE(shift)L

Affected Basic abbreviations: None
Token: Hex $EE,$¢9 Decimal 238,9

Modes: Direct and program

Recommended mode: Direct only

Purpose: To delete a range of unwanted lines from a Basic program.

Syntax: DELETE [start line][—[end line]]. Although all parameters are
denoted as optional, at least one of the parameters must be given.

Errors: Syntax error - if DELETE is used without parameters
Syntax error —if either of the line numbers is less than ¢ or
greater than 63999

Use: DELETE is used to delete a range of lines in a Basic program. These can
be lines of, say, a data generating program after the DATA has been created.

For example:

Program lines that have been DELETEd can not be recovered as they have been

;GET NUMBER
;MAKE INTEGER

sGET LO BYTE
s INTO .X

;GET HI BYTE

;STORE LO BYTE
;STORE HI BYTE
;EXPONENT =$90

;FLOAT AND SEND

DELETE 100-150 - deletes lines 10@ to 15 inclusive

DELETE —100¢ - deletes all lines up to line number 10¢§
DELETE 20p@— - deletes all lines from 20@@ to the end of the

program
DELETE § - deletes the whole program

wiped from memory.

Routine entry point: $89AD

Routine operation: DELETE first gets the range of the delete and then loops

Extended BASIC - A Complete Package 147

b

moving the memory above the range over the top of the deleted area.

LocC

894D
89AD
e9e.0
8%e2
e7k4
8%Rb
a7e8
8RR
89ED
89BF
89C1
89C3
89CS
89C7
e9cs8
89C¢9
89CP
esece
89CE
89CP.
89Ce
87Ce
gyce
89CD
89CF
8901
89D2
8904
8905
89D7
8909
89DA
890cC
890D
89DE
89EQ
8FE2
89E3
89ES
89E7
89E9
89EP
89ED
89EE
89F0
89r2
87F 4
89F 6
89F8
89FA
89FD
89FF
8A01
8n02
3404
8A06
808
8A09
8A0L
B8AQE
8Aal1

CODE

85
86
AG
38
ES

AS
ES
A8
B9
eA
18
65

[
W

98
65
85
Ao
B1
2?1
cs
Do
Eé
Eé6
AS
C3
eo
20
AS
Ab
18
69
es
?0
E8
86
20
4C

11 BA
SF
69
FE
FC
13 Aé
SF
69
A
o1
SF
04

77
7e
FE
7A

FC
7B

1E

2D
20

33 AY

2D

2E
399 Aé
74 A4

LINE

..LIB DELETE
DELETE JSR DELEQS ;GET DELETE RANGE
LDA $GF ;GET START OF DELETE
LDX $SF+i ;MEMORY FOINTER
STA $FP ;STORE IT
STX $FP+1
JSK $A613 ;FIND ADDRESS OF
L.DA $SF ;END OF DELETE
LLDX $GF+1
BCC PELE®1
LDY #H$01
LDA ($5F),Y
BEQ DELEQ1
TAX
DEY
LDA (3GF),Y

;.A ,-X HOLD THE FOINTER TO THE END
; OF DELETE RANGE.

;$FC,$FE HOLD THE FOINTER TO THE

; START OF DELETE RANGE.
D

ELE®1 STA $7A ;STORE AWAY END
STX $74+1 ;OF DELETE FOINTER
LDA ¢$FP
SEC
SeC ¢7A ;SET VARIARLE FOINTER
TAX ;TO END OF FROGRAM AFTER
LDA $FB+1 sDELETE
SRC $7A+1
TAY
BCS DELEQJ
TXA
CLC
ADC 42D
STA $20
TYA
ADC $2D+1
STA $2D+1
LDY H300
DELE®2 LDA (¢7A),Y ;GET RYTE
STA ($FR),Y ;MOVE IT DOWN
INY
ENE DELEQ2 ;D0 FULL FAGE
INC ¢7A+1 ; INCREMENT HI BYTE
INC $FR+1 ;FOINTERS
LDA $2D+1 ;DONE LENGTH?
CMF $FR+1
BCS DELE®2 sNOT YET
DELE®3 SR $A533 ;RE-CHAIN FROG
LDA $2D
LDX $2E
CLC
ADC H$02
STA ¢2D ;SET VAR FOINTERS
BCC PELEQ4
INX
DELE@4 STX $2D+1
JSR $A659 ;FERFORM "CLR”’
JMF $A474 ; "READY .’

Y

148 Advanced Commodore 64 BASIC Revealed

LocC CODE LINE
8A11 ;GET RANGE FOR DELETE
8A11 s
8Aa11 20 79 00 DELE®S JSR $0079 ;GET CURRENT CHAR
8A14 FO 190 BEQ DELEQ6 ;NO RANGE, ERROR
8A16 90 11 BCC DELEQ7 ;IS A NUMBER
8A18 C9 AR CMF H$AR ;IS IT "-77
8Al1A DO oA PNE DELE®6 ;NO, ERROR
8A1C A5 2R LDA $2PB ;SET START ADDRESS OF
8A1E 85 SF STA $5F ;DELETE TO START
8A20 A5 2C LDA $2C ;OF FROGRAM
BA22 8% 60 STA $5F+1
8A24 DO 12 BNE DELEe8 s ALWAYS
8A26 4C @B AF DELE®6 JMF $AFO8 ;OUTFUT SYNTAX ERROR
BAR29 20 6B A9 DELE@7 JSR $A%64P ;GET NUMBER
8A2C 20 13 As JSR $A613 ;FIND ADDRESS OF LINE
8A2F 20 79 00 JSR $0079 ;SECOND VALUE?
RAZ2 Fo oC PEQ DELE®? ;NO
8A34 C9% AR CMF #H3AB ;I8 IT "-77%
8A36 DO EE BNE DELE®é6 ;NO, ERROR
8A33 20 73 00 DELLE@8 JSR %0073 ;GET NEXT CHAFR
8A3R 20 6B A9 JSR $A96E ;GET NUMBER
8A3E DO E6 BNE DELE®6 ;NOT END OF INFUT
8A40 A5 14 DELEQ@9 LDA $14 ;IS SECOND LINE ZERO?
8A42 05 15 ORA $14+1
8A44 DO 06 ENE DELE19 ;NO
8A46 A9 FF LDA HS$FF ;SET TO MAX LINE#H
8A48 B89 14 STA $14
8A4A 85 15 STA $14+1
BA4C 6@ DELE10 RTS ;RANGE DONE
8A4D .END
DISK

Abbreviated entry: D(shift)l

Affected Basic abbreviations: DIM - DIM

Token: Hex $EE,$A Decimal 238,10

Modes: Direct and program

Recommended mode: Either

Purpose: To send a disk command to the disk unit eight.

Syntax: DISK [string expression] - where the string expression is:

“SP:TEST” - to scratch the file test
‘N@:DISK,p@” - to reformat the entire disk

The other syntax is DISK which will display the disk error message to the screen
giving a message like:

23,READ ERROR, 18,01

where 23 is the error number, 18 is the track, 1 is the sector, and READ
ERROR is the error description.

Extended BASIC - A Complete Package 149

Errors: Syntax error - if the first character of the command is not a
quote character
String too long - if the command is over 255 bytes long
Type mismatch - if the command is a number, not a string

Use: This command is useful in checking errors created from disk access by
using just DISK which displays the message. A Basic equivalent would be:

OPEN 15,8,15

INPUT #15,E,EMS$,T,S
PRINT E“,“EMS”’“T,,“Sﬂ””
CLOSE 15

Also, for sending disk commands such as Scratch a file etc.:
DISK “1¢”

is equivalent to:
OPEN 15,8,15,“1¢”

For disk commands refer to the disk user manual.

Routine entry point: $8A4D

Routine operation: The DISK routine checks to see if anything follows the
command; if not the error channel is read and displayed. If there is text after the
command (which must start with the quotes character) the text is read in and
sent in the open command. Before either of these two operations is actioned, the
current file is closed.

LoC CODE LINE

8A4D .LIE DISK

844D 20 79 00 DISK JSR $0079 ; CHECK FOR BLANK
8AG0 FO 02 REQ DISKO1 ; AFTER COMMAND.
8A52 4C P8 8A JMF DISKO4

8A55 A9 @0 DISK®1 LDA H$090 ; IF BLANK, READ
8AS7 85 R7 STA $B7 ; ERROR MESSAGE
8ASY 20 91 8A JSR FOFEN ;s OFEN A FILE

8ASC A9 oD 1.DA H$OD ;s FRINT <RETURM:
B8ASE 20 D2 FF JSR $FFD2

8A61 A9 12 LDA H$12 ; FRINT <REVERSE ON:
8A63 20 D2 FF JSKR $FFD2

8A66 A6 BB LDX $BR8

8A68 20 Cé FF JSR $FFC6 ; SET FILE TO INFUT
8A4E 20 CF FF DISK@2 JSR $FFCF ; INFUT

BA6E 48 FHA

8A6F A5 90 LDA $90 ; CHECK STATUS

8A71 DO 07 ENE DISKO3

8A73 68 FLA

8A74 20 D2 FF JSK ¢FFD2 ; FRINT CHARACTER
8A77 4C 6P 8A JMF DISKO?2 ; AND NeEXT

8A7A 68 DI35Ke3 FLA

8A7E AZ BB LDA $B8

8A7D 89 49 STA $49

8A7F 20 CC E1 JSR $E1CC ; CLOSE FILE

BAB2 A9 92 LLDA H$92

8A84 20 D2 FF JSR $FFD2 ; FRINT <REVERSE OFF:

’

8AB7 A% 0D LDA #$0D

150 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE
8AB9 20 D2 FF JSR $FFD2 ; FRINT “RETURN:
BABC A% 00 LDA #H$00
8ABE 4C C&6 FF JNF $FFCé ; INFUT TO KYPD
8A91 H
8A91 20 Al 8A FOFEN JSR GETFNO ; FIND FREE FILE NO.
8R4 5 B8 STA $P8
8A%6 A9 OF LDA #H$oF ; SECONDARY ADDRESS
B8A98 85 R9 STA $R9
BAPA A9 08 LDA #¢$08 ; DEVICE NUMBRER
8A9C 8% BA STA $BA
BAYE 4C C1 E1 JNF ¢E1CH ;s OFENM
3AA1L H
8AA1 A% oF GETFNO LDA H$OF ; CHECK TARLE OF
8AA3 A6 98 GETNY1 LDX %98 ; FILE NUMBERS FOR
8AAS EO 00 CFX #%$00 ;s A FREE ONE
8AA7 FO OF BEQ GETN4 ; HAS REEN FOUND
8AAY? DD S8 02 GETN2 CMF $@258,X
8AAC DO 046 BNE GETN3
8AAE 38 SEC
8AAF E9 o1 SRC #1301
8AR1 4C A3 8A JMF GETN1
8AB4 CA GETN3 DEX 3 TRY NEXT NUMBER
EARS DO F2 BNE GETN2
8AR7 460 GETN4 RTS
8ARS H
eARR (9 22 DISKQ4 CMFP H$22 + CHECK FOR COMmMAND
RARA F@ 03 PEQ DISKOS ; IN QUOTES
BARC 4C 08 aAF JNF $AF OB 3 SYNTAX ERROR
8ARBF AT P8 DISKOS LDA $R8 ; CLOSE CURREMNT
&AC1 85 49 STA $49 ; DISK FILE
8AC3 20 CC EL JSR BELCC
BAC6 20 9E AD JSE ¢ADPE ; GET TEXT IN GQUOTES
8AC? 20 A3 R4 JSR $BRAA3J
BACC A6 22 LDX $22 ; STRING ADDRESS AT
8ACE 84 PR STX $RP ; ($22)
8ADO A4 23 LDY ¢22
8AD2 84 PBC STY $BC
84D4 85 B7 DISK@? STA $B7 3 SET LENGTH
8ADA 20 91 8A JSR FOFEN ; OFEN FIIE
2ADS A9 @D LDA #s$oD
2ADE 20 D2 FF JSR $FFD?2 3 FRINT <RETURN:
8ADE 49 RTS ; EXIT DISK
8ADF <END

DOKE

Abbreviated entry: D(shift)O

Affected Basic abbreviations: None

Token: Hex $EE,$¢B Decimal 238,11

Modes: Direct and program '
Recommended mode: Either

Purpose: To store a value (§-65535) in the 6510 microprocessor’s internal two
byte format (the opposite of DEEK).

Extended BASIC - A Complete Package 151

Svntrax: DOKE address, value - where the address and value are
between @) and 65535.

Errors: Syntax error - if either of the values is out of the range
P-65535

Use: DOKE stores a two byte value into memory at the location pointed to by
the address. It can be used for storing a frequency value to the SID chip:

DOKE 54272,10¢¢¢

POKE 54272,INT(100¢9/256)
POKE 54273,10000-INT(1409¢ / 256)*256

Routine entry point: $8ADF

Routine operation: The two byte address is read in and stored to a safe
location. The two byte value is then read in and the two bytes are stored in lo,hi
order pointed to by the address.

Loc COCE LINE
8aDF .LIE DOKE
8ADF 20 8A AD DOKE JSR ¢ADBA ;GET ADDRESS
8AE2 20 F7 B7 JSR $R7F7 ;CONVERT TO INT
8AES A5 14 LDA %14 ;GET LSP
8AE7 89 FB STA $FP ;SAVE IT
8AE? ADS 15 LDA $15 ;GET Msp
8AER 85 FC STA ¢FC ;SAVE IT
8AED 20 FD AE JSR $AEFD ;SCAN FAST 7,7
8AF@ 20 8A AD JSR $ADBA ;GET VALUE
SAF3 20 F7 B7 JSR $R7F7 ;CONVERT TO INT
8nFé6 AG 00 LDY H¢00 ; INDEX
8AF8 AJ 14 LDA $14 ;GET LSR
8aFA 91 FP STA (¢FR),Y ;STORE LSE
8AFC C8 INY s NEXT RYTE
8AFD A5 15 LDA $15 ;GET mse
8AFF 91 FB STA ($FR),Y :STORE MSR
gpo1 40 RTS
8R02 .END
DUMP

Abbreviated entry: D(shift)U

Affected Basic abbreviations: None
Token: Hex $SEE,$0C Decimal 238,12
Modes.: Direct and program
Recommended mode: Direct

Purpose: To display the values of all simple variables, name functions, and
display the dimensions of arrays.

152 Advanced Commodore 64 BASIC Revealed
Svatax: DUMP
Errors: None

Use: For de-bugging Basic programs, the DUMP command may be used after
the program has run to get a list of all variables and their values. As an added
bonus, not found in any other DUMP command for the Commodore 64, all
array dimensions are also given. The DUMP command will also display
function names.

Routine entry pbint: $8B¢2

Routine operation: The DUMP routine sets a pointer to the start of variables
and checks for the end of variables. If it does not find any the variable name is
read in and displayed, the variable type is determined, and the display is
produced according to which type is required. When all simple variables have
been processed, arrays are handled. The array names are read and displayed in
the same way as the simple variables, and the number of dimensions read off.
The pointer is then set to the end of the dimension entries and, reading
backwards, the dimensions are read and displayed.

Loc CODE LINE

epe2 LIB DUMF

8R02 AS 2E DUMF LDA $2E ;GET START OF VARIABLES
8R4 B8O 6@ STA ¢60 ;3 AND STORE IN REQUIRED
8R06 A5 2D LDA $2D ; LOCATIONS

8208 85 SF STA $5F

8R0OA H

8poeA 38 DUMFo1 SEC ;START OF tMAIN LOOF
8BOE ES 2F SBC $2F ;END OF VARIABLES?
8ReD A5 60 LDA %60

8ROF ES 30 SBC %30

8e11 90 €3 BCC DUMFO2 ;NO

8B13 4C ED 8R JNF DUMF17 ;YES, DISFLAY ARRAY DIMS
8R16 ;

8e16 2@ C% 8k DUMFO2 JSR DUMF12 ;GET VAR NAME

8R1% A5 25 LDA $25 ;REAL?

8Ri1e Fo 2B BEQ DUMFO3 s YES

8e1D C9 et CMr #$01 sFUNCTION?

8B1F FO 47 BEQ DUMF26 ; YES

8B21 C9 @2 CMF H$02 3 STRING?

8e23 FO SC BEQ DUMFO4 s YES

8R25 A9 25 LDA H$25 ;MUST RE INTEGER
8R27 20 D2 FF JSR $FFD2 sFRINT "%Z7

8R2A 20 E3 8P JSK DUMF1S ;ANY EXTRA SFACES
8B2D A9 3D LDA #¢3D

8R2F 20 D2 FF JSR $FFD2 sFRINT 7=~

8R22 A0 02 LDY #¢02 sSET FOINTER TO VAL
8R34 P1 SF LDA ($5F),Y ;GET LO

8B36 48 FHA

8e37 C8 INY

8R38 P1 SF LDA ($5F),Y ;GET HI

8R3n A8 TAY

8R3R 68 FLA

8e3C 20 91 B3 JSR $B3%1 sFIX-FLOAT

8R3F 20 DD PD JSR ¢BDDD ;FLOAT-ASCII

8R42 20 1E AR JSR $ABRIE sFRINT IT

8R45 4C A9 8P JNF DUMFO7 ;D0 NEXT VAR

8p48

LaocC

ar48
8R48
8R48
3B4A
8RAD
8R50
eps2
8R55
8B.58
eR3A
8R.5C
8RSF
8R462
8R4S
8R.48
2040
8eeg
8R48
B8R.4P.
8R.4D
8R6F
8e72
8e7%
8p8o
erel
3881
8E81
21323
8e.83
8e8é
8e8?
8E.8P
8e3D
er9e
8p91
8p93
8R95
8R97
8r99
8R.9A
8R9C
8R9E
8B9F
8pal
8RA4
8RAS
3RAY
8RAY
8BA9
8RA9
8RAP.
8EAE
8eR1
8BE3
8BR4
8BRS
8eR7
8eey
SEEPR
8REeD
8PRF
8RCO
8BC2
8R.CS
8BCS
8R.CY

CODE

A9
20
20
A9
20
20
AS
A4
20
20
20
4C

20

A?

a1}
29
4C

2

s

00

A2
ep
20
EQ
Do
20
CA
19
AQ
B1
8%
38
B1
8%
ae
B1
20
ne
20

A?
20
20
Do
-1
18
AS
69
8%
Ab
9e
ES
86
4C

E3

ae
1E
A9
D

03
CA
D2
03
03
E3

Fo
04
SF
23

SF
22

22
SF
24

ot

D2

oD
D2
El
e1

SF
27
SF
50
21

60
2A

FF
ge

FF
B1

BR
BD
BD
1=

3B

fa]:
3e

ac
FF

ap

AP

FF

FF

8k

Extended BASIC - A Complete Package 153
LINE

sREAL VARIABLE
DUMFO3 LDA H$20

JSR $FFD2 ;FRINT SFACE
JSE DUMF1S ;FAD HAME

LDA H$3D

JSR ¢FFD2 sFRINT 7=7

JSR $R18%G ;GET ADDRESS OF VAR
LDA $47 ; INTO A AND Y
LDY %48

JSR $PRA2 sMEM--FACHIL

JGR $BDDD ;FLOAT-ASCIT
JSK 4BDDA ;FRINT NUMPER
JREDUNFO7Y ;0 NEXT VAR

:FUNCTION

DUMF26 JSR DUMF1S sFADR NARE
LDA HFUNCTT JFOINT T0
LDY HEFUNCTT ;TFUNCTION
JSKR ¢ARILE ;FRINT STRING
JMF DUMFO? D0 NEXT VAR

FUNCTT .BYT ’ = FUNCTION’ ,%00

STRING VARIABLE

o we e

DUMF@4 LDX #$03
DUMFOS LDA DUMTEL, X
JSR $FFD2
CFX #303
ENE DUMF 6
JSR DUMF15 sFAD FOR NAME
DUMF@6 DEX
RFL DUMFOS ;COMFLETE LOOF
LDY #$04 ;GET ADDRESS OF STRING
LDA ($5F) Y
STA $23
DEY
LDA ($5F),Y
STA $22
DEY
LDA (35F),Y JLENGTH
JSK $AR24 ;FRINT STRING FROM ($22)
LDA #$22 ; AND LENGTH IN .A
JSR $FFD2 SFRINT 707

;LOOF TO FRINT “¢= "’

~

;FRINT CARRIAGE RETURN AND DO NEXT

DUMF@7 LDA H$0D

JSR %FFD2 ;FRINT RETURN
DUMFO8 JSR $FFE1 ;STOF KEY?

BNE DUMF10 ;NO
DUMF@9 RTS ;EXIT TO "READY”
DUMF10 CLC ;MOVE TO NEXT VAR

LDA $5F

ADC #3097

STA $5F

LDX %60

BCC DUMF11

INX
DUMF11 STX $60

JMF DUMFO1 ;DO NEXT VAR

GET AND FRINT VAR NARE

~e e we

154

Loc

8RCS
8eC7
8B.C9
8BCA
8ECC
8BCD
SBCF
gepe
8pD2
8BD4
8ED6
8eD8
8P.DE
aeDD
EEDF
8RE2
EREZ
8RE3
BRE3
8RL3
8REYS
SPE7
QPEQ
SBEC
eprED
SPED
SPED
8RED
8BED
8REF
8PF2
8BF4
8PF 6
8PF8
ePFA
erFA
8BFC
SPFE
8C00
8ce2
8C04
8C06
8Ces6
8ce9
8coee
8CoE
8C10
8C12
8C1l4
8C16
8C18
8C1¢9
8C1eE
8C1C
8C1E
ec21
8C24
8C26
8C29
ac2e
8C2E
8C30
8C31
8C32
8C35

Advanced Commodore 64 BASIC Revealed

£aDE

Ao
84
ce
B1
oA
26
4h
?9
88
1e
AT
20
AS
Fo
20
50

AS
De
A?
20
50

A9
20
AS
85
NS

85

AS
CS
Do
AS
CS

Fe

20
Fo
20
AS
Fo
ce
Do
A9
2C
234
2C
A9
20
20
A9
20
A9

AS
ig
69
8%

[
J

46

20
D2

00

FF

FF

FF

FF

FF

8B

FF
ge

FF
FF

LINE

DuUnMF12 LDY
STY
INY
DUMF13 LDA
ASL
ROL
LSR
STAH
DEY
BFL
LDA
JSR
LDA
BEQ
JER
DUMF14 RTS

DUMF13
45
$FFD2
246
DUMF14
$FFD2

;GET VARIAPLE TYFE
:AND NAME

;GET BYTE
;TYFE BIT INTD TENWF

;RESTORE NAME PYTE
;STORE NAME RYTE

sFRINT NARE

;2ND BYTE?
SYES, FRINT IT
: DONE

;PAD OUT NAME IF OMLY 1 RYTE LONG

DUMF15 LDA
BNE
LDA
JSKR
DUMF16 RTS

346
DUMF16
H$20
$FFD2

;2ND BYTE?
;YES, DON’T FAD
;ELSE FAD WITH SPACE
(PRINT

: DONE

;DISPLAY ARRAY NAMES AND DIMENSIONS

3 ONLY

DUMF17 LDA
JSKR
LDA
STA
LDA
STA

DUMF18 LDA
Chr
ENE
LDA
cnre
REQ

DUMF19 JSR
BEQ
JSR
LDA
BEQ
cme
BNE
LDA

Hs0D
$FFD2
$2F
$5F
$30
$60

$60
$32
DUMF19
$SF
$31
DUMFO9

$FFE1
DUNMFQ9
DUMF12
$25
DUMF21
He02
DUMF20
HE24

BYT 3$2C

DUMF20 LDA

H$25

-BYT $2C

DUMF21 LDA
JSR
JSK
LDA
JSR
LDA
JSR
LDA
CLC
ADC
STA
LDA

H$20
$FFD2
DUMF1S
H$20
¢FFD2
H$28
$FFD2
$5F

H$03
$FPB
$60

;SEFARATE NORMAL

; VARS FROM ARRAYS WITH
: A CARRIAGE RETURN
:SET FOINTER TO 1ST

; ARRAY

sEND OF ARRAYS?

:NO

;STOF KEY?
;YES,EXIT

;GET AND FRINT NAME
sWHICH TYFE?

:REAL

sSTRING?

:NO, ARRAY IS INTEGER
;CHAR "¢

;SKIF 2 BYTES

;CHAR 7%

;SKIF 2 BYTES

;CHAR 7 7

sFRINT IT

;ONE EXTRA SFACE
;CHAR 7 (7
sFRINT IT

;SET FOINTER TO END
; OF ARRAY ENTRY FOR
: DISFLAY OF DIMS

Extended BASIC - A Complete Package 155

LdC CODE LINE

8C37 69 00 ADC H$00

8c3% 85 FC STA $FC

8C3E A0 01 LDY #¢01

8C3D B1 FB LDA ($FR),Y ;4 OF DIMENSIONS
8C3F 85 FD STA $FD

8C41 A% 00 LDA H300

8C43 85 FE STA $FE

8C45 06 FD ASL $FD ;TIMES 2

8C47 26 FE ROL $FE

8C4? A5 FD LDA $FD (FLUS END VALUE
8C4E 18 CLC

C4C 65 FR ADC $FB

8C4E 85 FD STA $FD

8C50 A5 FE LDA $FE

8052 65 FC ADC $FC

8C5¢ 85 FE STA $FE

ecsa ;

8CS6 AO 00 DUMF22 LDY #¢¢0 ;GET DIMENSION VALUE
8c58 B1 FD LDA ($FD),Y

8csa 8D C9 8C STA DIMENS+1

8CSD €8 INY

8CSE P1 FD LDA ($FD),Y

8C40 8D £8 8C STA DIMENS

8C63 DO 03 ENE DUMF23 sMINUS 1

8C45 CE C9 8C DEC DIMENS+1

8C48 CE Co an DUMF23 DEC DIMENS

8C6E AD C9 8C LDA DIMENS+1 ;FRINT NUMBER
8C4E AE CB 8C LDX DIMENS : IN LACGHI), .X(LO)
8C71 A4 SF LDY $5F :SAVE ARRAY FOINTER
8C73 8C €8 8C STY DIMENS

8C76 A4 40 LDY $60

8C78 8C C9 8C STY DIMENS+1

8C7p 20 CD PD JSR $BNCD

8C7E AC C8B 8C LDY DIMENS ;RESTORE ARRAY FOINTER
8C81 84 SF STY $SF

8C83 AC C9 8C LDY DIMENS+1

8C84 84 60 STY $60

8c88 38 SEC ;SUBTRACT 2 FROM
8C89 AS FD LDA $FD ; DIMENSION FOINTER
8CER E9 02 SEC H$02

8C8D 85 FD STA $FD

8C8F AT FE LDA $FE

8C?1 E9 00 SBC H$00

8C93 85 FE STA $FE

8C95 €S FC CMF $FC ;END OF ARRAY?
8C97 DO 06 ENE DUMF24 +NO

8C99 AS FD LDA $FD

8C9E CS FP. CMF $FP

8C9D Fo 08 PEQ DUMF25 ; YES

8CYF :

8C9F A% 2C DUMF24 LDA H$2C sCHAR 7’

8CA1 20 D2 FF JSK $FFD2 JFRINT IT

8CA4 4C 56 8C JNF DUMF22 ;D0 NEXT ELEMENT
8cA7 :

8CA7 A0 03 DUMF25 LDY H$03 ;GET LENGTH OF
8CA9 PR1 SF LDA ($5F),Y 1 ARRAY ENTRY
8CAB 85 FP STA ¢FP

8cAD 88 DEY

BCAE B1 SF LDA ($5F) Y

scee 18 cLC

8CR1 65 SF ADC $5F ;AND ADD TO ARRAY
8ce3 85 SF STA $5F ; FOINTER

8CBS A5 60 LDA $60

8CR7 65 FB ADC $FP.

8CE? 85 60 STA ¢60

156 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE
8CRR A? 29 LDA #2227 ;CHAR ")
eCED 20 D2 FF JSR $FFD2 FRINT IT
8CCe A% oD LDA H3QD ; CARRIAGE RETURHN
8CC2 20 D2 FF JER $FFD2 JPRINT IT
8CCS 4C FA 8B JNFE DUMFLS 00 NEXT ARRAY
accs 0o ¢9o DIMENS .WOR @
8CCA 22 DURMTRL .BYT 3%22,%$20,%3D, %24
ecce 29
8ccc 3D
8CCD 24
8CCE -END
EXEC

Abbreviated entry: E(shift)X

Affected Basic abbreviations: EXP - EXP
Token: Hex $EE,$¢D Decimal 238,13
Modes: Direct and program
Recommended mode: Direct only

Purpose: To EXECute a text file stored on disk. This command works in
conjunction with GET and PUT.

Syntax: EXEC filename,d - where d is the device number (disk only).

Errors: Tllegal device - if the device number specified is less than eight
Missing filename - if a null filename is specified
File not found - if the file does not exit
Device not present - if no disk drive is connected
Too many files - if ten files are already open
Disk errors — at the end, the disk error channel is read and
displayed

Use: EXEC can be used in several different ways. The main one is to set up
function keys when first powered up. For example, enter the program:

1¢ CTL(,.5,0.0,1)
20 KEY1,“CATALOG"+CHRS$(13)
3¢ KEY2,“DISK”+CHRS$(13)
49 KEY3,“LIST"+CHRS(13)
5¢ KEY4,“RUN”+CHR$(13)
69 KEYS,“OLD"+CHRS$(13)
7 KEY6,“PEEK(”
8¢ KEY7,“RENUMBER”
99 KEY8,“FIND@"
169 PRINT CTL(12,12,,,,1)*FUNCTION KEYS DEFINED”

Extended BASIC - A Complete Package 157

Use the PUT command to write this to a disk file: PUT“FK”,8

When powered up, type EXEC“FK”,8 and the commands will be carried out
and your function keys will be defined.

Other uses could be a string of CHANGE commands to a program.

Routine entry point: $8CCE

Routine operation: The filename and device number are read in and the file is
opened. Each line is read into the input buffer until carriage return is found. It is
then tokenised, and executed until the file is complete or an operating error
occurs.

Loc ConE LINE

8CCE .LIPR EXEC

8CCE 2@ 4F 98 EXEC JSR DFARS ;GET FILE FARAMETERS
ecb1 2@ B7 8F JSR GETOFN ;OFEN FILE

ECD4 A9 93 LDA H#393 ;CLEAR SCREEN
8CDh6 20 D2 FF JSR $FFD2

8CD? AD ¢0 @3 LDA $0300 ;STORE OFF ERROR LINK
8cpc 8D 90 8D STA EXECER

8CDF AD 01 03 LDA $0301

8CE2 8D 91 8D STA EXECER+1

8CES AD 02 03 LDA $0302 ;STORE OFF WARM START
8CE8 8D BE 8D STA EXECST

8CER AD 03 03 LDA %0303

8CEE 8D &F 8D STA EXECST+1

8CF1 A9 4@ LDA HZMERGRT sSET "RESET INFUT’
8CF3 8D 2C 03 STA $032C ; TO RTS

8CF6 A? 98 LDA H:MERGRT

8CF8 8D 2D o3 STA $032D

8CFR A? S LDA H-EXECOQ4 ;SET ERROR VECTOR
8CFD 8D 00 o2 STA $0300

8D00 A% 8D LDA HAEXECO6

gbe2 8D o1 @3 STA ¢e3el

8D0S A9 erF LDA HEXEC@2 ;SET WARM START
8D07 8D 02 93 STA $0302

8DoA A9 8D L.DA H:EXECQ2

8DeC €D 03 @3 STA ¢0303

8DoF AE 92 8D EXECQ2 LDX EXECNO

eD12 2@ C6 FF JSR $FFCé ;SET INFUT

8D15 A2 18 LDX H24 ;ROTTOM

8D17 Ae o0 LDY #$00 ; LEFT

8D19 18 CLC

8D1A 20 FO FF JSR ¢FFF@ ; OF SCREEN

8D1D A2 090 LDX H$09

8D1IF 20 CF FF EXEC®3 JSR $FFCF ;GET RYTE

8D22 48 FHA

8D23 AL 99 LDA ¢90 ;CHECK STATUS
8D25 Do 29 BNE EXECOS

8D27 68 FLA

8Dh28 C9 oD CMF #$0D ;CARRIAGE RETURN?
8D2A FO 0A PEQ EXECQ4

8D2C 9D 00 02 STA $0200,X

8D2fF ES8 INX

8030 20 D2 FF JSR $FFD2 ;FRINT CHAR

8033 4C 1F 8D JMF EXECOZ

8036 A? @0 EXECO4 LDA H$00

8D38 9D 0@ o2 STA $0200,X

8D3p A% o1 LDA H$01

en3 85 Cé STA $C6

8D3F A% @D LDA #H$0OD

8D41 20 D2 FF JSR ¢FFD2

8D44 A2 00 LDX H300 ;SET KEYROARD AS INFUT

158 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE
8D46 20 C6 FF JSR $FFC6
8D49 A2 FF LDX H$FF
8D4E. A9 91 LDY #H¢$01
3D4D 4C 85 A4 JMFP $A484 ;EXEC IT
8D5oe 20 &Y 8D EXECOS JSR EXECO? ;RESET VECTORS
8053 20 S5 8A JSR DISKO1 ;DISFLAY DISK ERROR
8D56 4C 74 A4 JNF $A474 ;EXIT TO READY
8D59 990 B4 EXECQs BCC EXECOR
8D%ie B8A TXA ; SAVE ERROR NUMBER
8DSC 48 FHA
8DSD 20 65 8D JSR EXECO7 sRESET VECTORS
8040 68 FLA ;sRESTORE ERROR NUMBER
8D61 AA TAX
8D62 6C 00 02 JMF ($0300) ; SEND ERROR
8D65 A9 2F EXECO7 LDA H$2F ;RESTORE "RESET DEFAULT IO’
8D67 8D 2C 03 STA $032C
8D6A A9 F3 LDA H$F3
8D6C 8D 2D 03 STA $032D
8D46F AD 99 8D LDA EXECER ;RESET ERROR LINK
8D72 8D 00 03 STA $0300
8D75 AD 91 8D LDA EXECER+1
8D78 8D 01 03 STA $0301
8b7e D 8E 8D LDA EXECST ;RESET WARM START
8D7E 8D 02 03 STA $0302
8n81 AD 8F 8D LDA EXECST+1
8D84 8D @3 03 STA $0303
8D87 AE 92 8D LDX EXECNO
8D8A 20 C3 FF JSR $FFC3 ;CLOSE FILE
8p8n 69 RTS
8DBE 00 09 EXECST .WOR ©
8D%0 00 00 EXECER .WOR ©
8D%92 00 EXECNO .BYT @
8D%3 -END
FIND

Abbreviated entry: F(shift)l

Affected Basic abbreviations: None
Token: Hex $EE,$0E Decimal 238,14
Modes: Direct and program
Recommended mode: Direct only

Purpose: To find all occurrences of a string or command inside a Basic
program.

Syntax: FIND string — where d is the delimiter character as in CHANGE.

Errors: Syntax error - if the syntax is not as above
String too long - if the string is longer than 4@ characters

Use: FIND is another useful routine for de-bugging and checking Basic
programs. An example of FIND is:

Extended BASIC - A Complete Package 159
FIND @PRINT@

which will find and list all lines containing the command PRINT. If PRINT
occurs more than once on a line, the line will be listed each time it is found with
the exception of the last lines, where the line will be listed only once.

Routine entry point: $8D93

Routine operation: The string to be found is read in within quotes, including
spaces and colons, and stored away. The rest of the program is a loop that
searches the program until the string has been found, lists the line, and starts
searching from the next character.

The error message vector is stored away and replaced withajump toan ‘RTS’
so that LIST will return to the routine.

LoC COLE LINE

8D93 LLIB FIND

80?3 20 91 BE FIND JSR FIND14 ;GET CHARACTER

ep9s6 B9 59 STA $59 ;STORE IN FLAG

8D?8 A2 09 LDX H3$00

ep9A 2@ C7 8D JSR FINDOQZ ;GET SEARCH STRING
809D 20 ES 8D JSR FINDOS ;SETUF FOINTERS

8DA® 78 SEI

8DA1 AD 00 93 LLDA $030¢

8DA4 8D CF BE STA FINDER

80A7 AD 01 03 LDA $0301

8DAA 8D DO BE. STA FINDER+1

8DAD AP 47 LDA H=FIND11 ;ERROR LINK TO RTS
8DAaF 8D €0 03 STA $0300

8DB2 A% 8E LDA H:FIND11

epe4 8D 01 03 STA $0301

8DR7 S8 CLI

speg 20 F3 8D JSR FINDO6 ;FIND STRING

8DEE 20 48 BE FIND@1 JSR FINDI12 ;LIST LINE

8DBE 20 F9 8D JSR FIND®7 ;FIND STRING

80C1 4C PB 8D JMF FINDO1 ;AND REFEAT

enc4 ;

80C4 4C 08 AF FINDQ2 JMF $AFO8 ; SEND SYNTAX ERROR
8DC7 H

8DC7 20 8k 8E FIND®3 JSR FIND13 ;GET A CHARACTER
8DCA FO F8 PEQ FINDO2 ;END OF LINE

8DCC CS S9 CMF $59 ;END OF STRING?

8DCE FO oD BEQ FINDO4 ;YES, COMFLETE

80DO 9D 490 PBF STA' $RF40,X ;STORE IN SEARCH STRING
8DD3 ES8 INX

8DD4 EOQ 40 CFX H$40 ;STRING TOO LONG?
80D6 DO EF PNE FINDO3 ;NO

8pp8 A2 17 LDX #H$17 ;STRING TO0O LONG
8DDA 4C 37 A4 JNF $A437 ; OUTFUT ERROR

8DDD A9 00 FINDO4 LDA #$00 ; TERMINATOR TO STRING
8DDF 9D 4@ BF STA $BF490,X ;STORE IT

8DE2 86 22 STX ¢22 ;STORE STRING LENGTH
8DE4 60 RTS JEXIT

8DES ;

8DES AS 2P FINDOS LDA $2PB ;GET START OF FROGRAM
8DE7 18 CLC

8PE8 69 o2 ADC #¢02 ;FLUS 2

8DEA 85 §57 STA $57

8DEC A5 2C LDA $2C ;GET START OF FROG MSE
8DEE 69 090 ADC #%$00

8DF® 85 I8 STA ¢58 ;STORE IT

160

Loc

8DF2
8DF3
8DF3
8DF5
8DF 7
8DF 9
eDF e
8DFD
8DFF
8E01
8EQ3
8EQ6
8EQ7
8E09
8EQP
8EQD
8EQE
8E10
SELL
8E12
8E14
8E16
8E17
8E19
8E1R
8E1D
8E1F
8E21
8E24
8E26
8E28
BE2A
8E2C
8E2D
8E2F
8E31
8E23
8E39
8E37
8E39
8E3P.
8E3D
8EZE
8E40
8E42
8E44
8E46
8E48
8E49
8E- i
8E4D
8EA4F
8ES1
8ES3
8ES6
8ES7
8ESA
8ESD
8E4O
8E63
BEb64
8E67
8E&L7
8E48
848

Advanced Commodore 64 BASIC Revealed

CODE

69

A2
[21%
84
AS
29
8%
B1
Fo
DD
8
AS
09
28]
28
Do
csg
E8
E4
Do
60
Eé6
A4
A2
B1
Fo
4C
AS
09
es
AS
38
E?
8%
AS
E?
85
Ad
B1
8%
cs
B1
85
05
Fo
AS
18
69
83
AS
-34
2%
4C
78
AD
8D
AD
8D
58
4C

&0
[e14

00
02
23
o1
FE
o1
57
21
40

01
o1
01

mry
W

(SN
N

00
57
e3
FQ
21
o1
01

57

02
57
o8

20

=
57

59
57

59
10
39

22
57
58
00
58
F3
CF
00
De
21

74

00

BF

8D

8D

8E
03
8E
03

A4

LINE

FIND@6

FIND®7

FINDOS

FINDO?

FIND19O

FIND11

FIND12

RTS

LDX
LDY
STY
LDA
AND
STA
LDA
REQ
CHMF
FHF
LDA
ORA
STA
FLF
BNE
INY
INX
CFX
ENE
RTS
INC
LDY
LDX
LDA
BEQ
JnF
L.DA
ORA
STA
LDA
SEC
SeC
STA
LDA
SeC
STA
LDY
LDA
STA
INY
LDA
STA
ORA
BEQ
LDA
CLC
ADC
STA
LDA
ADC
STA
JnE
SEI
L.DA
STA
LDA
STA
CLI
JMF

RTS

LY

H$00
#302
$23

$01
HEFE
$e1
($57),Y
FINDOY
¢BF 40, X

$e1
#301
$01

FINDOS

$22

FINDO7

$23

$23
#$00
($57),Y
FINDO9
FINDO7
s01
Hso1
$01

$57

H$02
$57

$58
H$00
$59
Hi00
($57),Y
$59

($57),Y
$58

$59
FIND10
$59

H$02
$57

$58

H$00
$58
FINDOS
FINDER
$0300
FINCER+1
$0301

$A474

H$00

;INDEX TO STRING
;INDEX TO LINE

;0UT BASIC ROM

;GET BYTE
:END OF LINE
;SAME AS STRING?

;IN RASIC ROM

;NOT MATCHED

;NEXT RYTE

sNEXT CHAR

;STRING MATCHED?

:NO

:YES

;s START AT NEXT BYTE
;AND START OF STRING
1GET RYTE

;END OF LINE

1 TRY AGAIN

;IN RPASIC ROM

;LINE FOINTER -2

;GET LINK LO
;STORE IT

;GET LINK HI

;STORE TO FOINTER HI
;END OF FPROGRAM?
;YES

;GET LINE FOINTER LO
LADD 2

+GTORE IT

{GET HI BYTE

;D0 NEXT LINE

;RESET ERROR LINK

JEXIT

; ERROR LINK

LocC

8SE6A
8E6D
SE6F
8E72
BE7 4
8E76
8E77
8E79
8E7R
8E7E
8EB1
8EB4
8E8S
8EES
SE8A
eEee
8EEE
8ESD
@EBF
QE?1
8EF2
8E?3
8E96
eEF6
BE?8
2ETP
8E?D
2EAQ
8EA2
8EAT
BEA7
BEAA
SEAC
SEAF
8EROQ
8EPR@
SER3
8ERS
8ERS
8ERA
8ERD
8ERF
8EC2
8EC4
8EC7
QEC?
8ECA
8ECE
8ECC
8ECD
8ECE
8ECF
8ED1

CODE

20
A9
20
Bl
85
cs
B1
8%
20

20
Eé
A4
A2
690

Eé
Do
Eb6
AY
=31
60

AS
8D
hS
8D
AS
8D
AS
8D
AS

69

AD
8%
AD
85
AD
85
AD
85
AD
85
69
00
00
00
(-1
00
00

)
91
D2
57

14

57
15
13
ce
Po
23
23

oe

74
02
78
00
76

22
CA
23
ce
a7
cc
58
CcD
FC
CE

ca
Ce
23
cc
cD
58
CE
FC

00

GET

8E
FF

Ad
A6
8E

8E
8k
8E
8E

8E
8E
8E
aE
8E

L.INE

FIND13

FIND14

Mo

IND16

FIND17

FINDER

Extended BASIC - A Complete Package

JSR FIND15G ;SAVE FOINTERS
LDA H$91 ;CURSOR UF
JSR $FFD2 sFRINT IT
LDA ($57),Y (GET LINEH LO

STA $14 (STORE IT
INY

LDA (357),Y ;GET LINEH HI

STA $15 :STORE IT

JSR $A613 ;FIND LINE ADDRESS
JSK $ACY sLIST LINE

JSR FIND16 ;RESTORE FOINTERS

INC $23 ;NEXT CHAR IN LINE
LDY %23

LDX #$00 ;START OF STRING

RTS

INC $74 ; INCREASE LSP.

BNE FIND14

INC $7P

LDY H%00

LDA ($74),Y ;GET INFUT BYTE

RTS

LDA ¢22 1STORE STRING LENGTH
STA FIND17

LDA $23 ;STORE LINE INDEX

STA FIND17+1

LDA $57 sSTORE LINE FOINTER LO
STA FIND17+2

LDA $58 HI

STA FIND17+3

LDA $FC ;SAVE CHANGE VARIAPLE
STA FIND17+4

RTS

LDA FIND17 ;BET STRING LENGTH
STA $22

LDA FIND17+1 ;GET LINE INDEX

STA $23

LDA FIND17+2 ;GET LINE FOINTER LD

STA $57

LDA FIND17+3 ;GET LINE FOINTER HI

STA %58

LDA FIND17+4 ;GET CHANGE FARAMETER
STA $FC

RTS

BYT $00,$00,$00,%00,%00

-WOR @
.END

Abbreviated entry: G(shift)E

Affected Basic abbreviations: None

161

162 Advanced Commodore 64 BASIC Revealed
Token: Hex $SEE.,$0F Decimal 238,15
Modes: Direct and program

Recommended mode: Either; different effects in direct mode and program
mode.

Purpose: To input an ASCII file on disk into memory with line numbers
created from 10@Q in steps of 1§. GET will read in files created by the
Commodore assembler and SYSRES. Each lineis read in until a carriage return
is reached. It is then tokenised and entered into memory as a program line.

Syvntax: Direct mode: GET filename, d - where d is the device number (disk
only)
Run mode : aschapter 3 GET and GET#

Errors: lllegal device - if the device number specified is less than eight
Missing file name - if a null filename is specified
File not found - if the file does not exist
Device not present - if no disk drive is connected
File open error - if ten files are already open
Disk errors —at the end, the disk error channel is read and
displayed

Use: For editing Commodore assembler files or for editing files for the use of
the EXEC command.

Routine entry point: $8EDI

Routine operation: The GET routine first checks whether the computer is in
run mode or direct. If it is in run mode, then the Basic version of GET is
performed. If in direct mode, the file parameters are read in and checked for a
null filename or the device not being disk. If these checks are OK, the message
‘reading’ filename is displayed and the file is opened. Each line is then input and
stored in the input buffer, tokenised, and entered into memory until the end of
file marker is reached. The program is then re-chained and the variable pointers
are set to the correct values for the program. Finally the disk error channel is
read and displayed.

Lac CODE LINE

8ED1 LLIB GET

8ED1 S 9D GET LDA $9D ;CHECK IF DIRECT
8ED3 DO 06 ENE GETUN ; YES, DIRECT

8EDS 20 79 00 JSK 30079 ;GET CURRENT CHAR
8ED8 4C 7E AR JMF $ARZE ;FERFORM PASIC ’GET’
8EDE 20 6F 98 GETUN JSR DFARS ;GET FILE FARAMETERS
8EDE 20 99 8F JSK GETMES ; "READING’

8EE1 20 B7 8F JSR GETOFN ;OFEN FILE

8EE4 20 AC 8F JSK GETIN ;SET INFUT

8EE?7 S 28 LDA $2B ;SET START OF FROGRANM
8EEY 85 FB STA $FP ;FOINTER

8EER AY 2C LDA $2C

8EED 8% FC STA ¢FC

Loc

8EEF
8EF1
8EF2
8EF 4
BEFS
8EF7
8EF9
8EFE
8EFD
8EFF
8Fo1
8F03
8F 05
8F07
8F09
8FeC
8FOF
8F11
8F14
8F16
8F18
8F1A
8F1C
8F1F
8F20
8F22
B8F24
8F2¢&
8F29
2F 2P
8F2E
8F30
8F32
8F34
8F 36
8F39
8F3C
8F 3E
8F 40
8F43
8F45
8F 46
8F 49
8F 4P
8F4C
8F 4F
8F351
3F53
8F54
BFS5S
8F57
gFas
8FSA
eFsC
8FSE
eF 60
8F62
GF 63
[F 65
8F 664
8F 68
8F 6A
8F4C
8F &D
8F 6F
8F72

CODE

AS
18
69
AA
AS
69
89
83
85
86
86
86
A9
A2
8D
8E
A0
20
ce
Fo
c9o
Fo
9?9
c8
co
Do

=
~

8D
A9
99
A2
86

85
20
AD
Fo
Ad
AD
921
c8
AD
?1
8
B9
71
Do
ce
98
A0
13
65
85
91
AS
69
c8
?1
A8
AS
85
84
30

AD
1e

pc

FC
FE
F8

00

FE
FD
FP
FC
20

FE
FD
FB
FC

19
DC

8F
8F

FF

8F

8F

01

8F

LLINE

GETLF1
GETLF2

GETLN

GETLF3

LDA
cLC
ADC
TAaX
LDA
ADC
STA
STA
STA
STX
STX
STX
LDA
LDX
STA
STX
LDY
JSR
cmF
BEQ
cmF
BEQ
STA
INY
CFY
ENE
LDA
STA
LDA
STA
LDX
STX
LDA
STA
JSK
LDA
BEQ
LDY
L.DA
STA
INY
LDA
STA
INY
LDA
STA
BNE
INY
TYA
LDY
CLC
ApC
STA
STA

LDA
ADC

INY
STA
TAY
LDA
STA
STY
TYA
EMI
LDA
cLc

Extended BASIC - A Complete Package

$28
H$02

$2C
#$00

$2€

$30

$32

$2D

$2F

$31

H$03
HSEB
GETLNO+1
GETLNO
H$00
$FFCF
H$0D
GETLN
H$0A
GETLF2
$0200,Y

W57
GETLF2
$90
GETER
H$00
$0200, Y
H$00
$74
Hs$02
$78
$A579
$0200
GETLF4
Hs$02
GETLNO
($FR), Y

GETLNO+1
(3FB),Y

$Q1FC,Y
($FR),Y
GETLF3

He00

$FP

$FD
($FP),Y
$FC
H$00

($FR)Y,Y
$FD
$FR
$FC

GETEND
GETLNQ

;START LINEHW HI
;START LINEH HI

; INFUT BYTE
;END OF LINE?
; YES
;LINE FEED?

; YES
;STORE BYTE

;END OF BUFFER?
;STATUS

; TERNINATOR
;STORE

;CRUNCH LINE
;NULL LINE

;LINEM LO
;STORE IT

;LINEH HI
;STORE IT

;GET BYTE

;STORE IT
;UNTIL END OF LINE

; INCREASE FOINTER BY
:LENGTH

; INCREASE LINEH

163

164 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE

8F73 69 0A ADC H$0A ;BY 10
8F75 8D DC 8F STA GETLNO
8F78 AD DD 8F LDA GETLNO+1
8F7B 69 0@ ADC H$00
8F7D0 8D DD 8F STA GETLNO+1
8F80 AD DE 8F GETLF4 LDA GETER ;STATUS?
8F83 Do 03 BNE GETEND ;BAD
8FB8S 4C OF 8F JMF GETLF1 ;D0 NEXT LINE
8F88 ;
8F88 A9 00 GETEND LDA #$00
8F8A AB TAY
8F8E 91 FB STA ($FR),Y ;ZERO END OF FROGRAM
8F8D C8 INY
8FBE 91 FR STA (¢FR),Y
8F%0 20 AC 99 JSR FUTEND ;CLOSE AND DISK
8F93 20 85 98 JSR OLD ;sRESET FOINTERS
8F96 4C 74 A4 JNF $A474
8F99 A9 A3 GETMES LDA H:GMESSG ;FOINTER TO
8F9P AO 8F LDY H:GMESSG ; "READING’
8F9D 20 1E AR JSR ¢ARIE ;FRINT STRING
8FAQ 4C C1 FS JHF $FSC1 sFRINT FILENARME
8FA3 G52 45 GMESSG .PYT "READING ’,$00
8FAR 00
8FAC A6 P8 GETIN LDX ¢P8
8FAE 20 C6 FF JSR $FFCé sSET INFUT
8FR1 Po 01 BCS GETIN1 ; ERROR
8FR3 60 RTS
8FR4 4C F9 EO GETIN1 JUMF $EOF9 ; SEND ERROR
8FR7 ;
8FR7 A0 00 GETOFN LDY #$00
8FR? P1 PR GETOF1 LDA (3%BR),Y ;GET BYTE
8FRR 99 00 o2 STA $0200,Y ;STORE IT
8FRE C8 INY
8FBF C4 B7 CFY ¢B7 END OF FILENAME?
8FC1 DO F$ RNE GETOF1 s NOT YET
8FC3 A2 00 LDX #H+0@
8FCS PBD D8 8F GETOF2 LDA GETSK,X ;GET RYTE
8FC8 99 00 o2 STA $0200,Y ;STORE IT
8FCE E8 INX
8FCC C8 INY
8FCD EQ 04 CFX H$04 ;END OF SR?
B8FCF D@ F4 BENE GETOF2 ;NOT YET
8FD1 A% 640 LDA H$60
eFDZ B85 B9 STA $B9
8FDS 4C 16 9A JMF FUTOF 4 ;COMFLETE OFEN
8FD8 2C 53 GETSR .BYT 7,8, R’
8FDC @0 09 GETLNO .WOR ©
8FDE 00 GETER .BYT @
8FDF -END
HIMEM

Abbreviated entry: H(shift)]
Affected Basic abbreviations: None
Token: Hex $EE,$1E Decimal 238,30

Modes: Direct and program

Extended BASIC - A Complete Package 165
Recommended mode. Either
Purpose: To read/set the top of Basic programming memory.

Syntax: HIMEM = expression - sets the top of memory to the
expression (f-65535)
A = HIMEM or PRINT HIMEM - returns the top of
memory address

Errors: Syntax error
Illegal quantity - if the address is out of the range (¢ -65535)

Use: HIMEM can be used to protect an area of memory at the top of Basic
programming memory for the use of data storage or machine code programs.
With these routines in memory, HIMEM is set at 32768. When HIMEM is used
to set, a CLR is performed, thus wiping out all variables.

Routine entry point: $8FDF

Routine operation: HIMEM first checks to see whether it was called by the
arithmetic routine or the execute statement routine. If the arithmetic routine
called it, the top of memory pointer is read and converted to floating point form.
If not, the ‘=" sign is scanned and the value is read in and stored at the top of
memory pointer. CLR is then performed.

LOC COoE LINE

8FDF LLIP HIMEM

9FDF 48 HIMEM FLA ;GET RETURN ADDRESS
BFE? 48 FHA

8FE1 C9 8C CMF H$8C sARITHMETIC?
8FE3Z DO @7 ENE HIMSET s ND

8FES A6 37 LDX $37 ;GET HIMEM LO
BFE7 A5 38 LDA ¢38 ;GET HIMEM HI
SFE9 4C A3 89 JME ASSIGN ;SEND IT

BFEC ;

8FEC A9 B2 HIMNSET LDA H$B2 sCHAR ="

BFEE 2@ FF AE JSK $AEFF ;SCAN FAST 7=’
8FF1 20 BA AD JSR $ADBA ;GET ADDRESS
8FF4 20 F7 B7 JSK $BIF7 JFIX IT

8FF7 A5 14 . LDA $14 sGET VALUE LO
8FF9 85 37 5TA $37 ;STURE TO MEMTOF
8FFE 85 35 STA $35 ;UTILTTY 3TRING
BFFD 85 33 STA $33 ;s STRING

8FFF AS 15 LDA $15 ;GET VALUE HI
9001 85 38 STA $28 ;STORE TO HI BYTES
9003 85 36 STA $36

9005 85 34 STA $24

9007 A5 20 LDA $20 ;FERFORM CLR
9009 85 2F STA $2F

900P. 85 31 STA $31

700D AS 2E LDA $2E

900F 85 30 STA $30

5011 85 32 STA $22

9013 40 RT3

9014 .END

166 Advanced Commodore 64 BASIC Revealed

KEY

Abbreviated entry: K(shift)E

Affected Basic abbreviations: None

Token: Hex $SEE,$1¢ Decimal 238,16

Modes: Direct and program

Recommended mode: Either, but function keys work in direct mode only.
Purpose: To set an eight byte string to one of the eight function keys.

Syntax: KEY expression, string — where the expression is a value (1-8) and the
string is any string expression (first eight bytes only are accepted).

Errors: lllegal quantity - if the key number is <1 or >8
Syntax error - if missing comma
String too long - if the string is longer than 255 bytes
Type mismatch - if the command is numeric instead of string

Use: KEY is used to set a commonly used string or command onto a function
key. There are eight function keys available and each one can be eight bytes
long. For an example of the format for KEY, see the EXEC command.

Routine entry point: $9914

Routine operation: KEY first reads in the function key number and checks that
it is within range (anything after a decimal point is ignored). If it is within range,
the comma is scanned past and the stringis read in. The string is then copied into
the storage area until the whole string is in or the first eight bytes.

Loc CODE LINE

7014 .LIB KEY

9014 20 9E B7 KEY JSR $E79E ;GET KEYH

2017 EO 00 CFX #3$00 ; IN RANGE?

7019 Fo 04 BEQ KEYERR ; NO

901 EOQ 09 CFEX H309

901D 90 oS BCC KEYO1 ; YES

901F A2 OE KEYERR LDX- #3$06E ; ILLEGAL QUANTITY
9021 4C 37 A4 JNF $A437 ; SEND ERROR

7024 A9 BF KEY@e1l LDA HS$BF ;FOINTER HI BYTE
2026 B89 FC STA $FC

%028 CA DEX

7029 BD 5S4 90 LDA KEYLO,X ;GET LO BYTE
Y02C B3 FB STA $FB

992E 20 FD AE JSR $AEFD ; SCAN FAST CONMMA
7031 20 9E AD JSR $ADYE ;GET STRING

9024 8D SC 90 STA STLEN

9037 20 A3 B6 JSR $R&A3 ;DISCARD STRING
9034 A0 00 LDY #¢00

?03C B1 22 KEYQ2 LDA ($22),Y ;6ET BYTE

903E 91 FEB STA ($FBR),Y ;STORE IT

9040 C8 INY

Extended BASIC - A Complete Package 167

Loc CODE LINE
9041 CC 5C 90 CFY STLEN ;END OF STRING?
?044 FO 05 RBEQ KEYQ4
9046 (0 08 CFY Hg$o8 ;END OF ROOM?
2048 DO F2 ENE KEY@2 ;NOT YET
9044 60 KEY®3 RTS
9048 CO e8 KEY@4 CFY H$08 ;STRING LENGTH=87
204D FO FB BE@ KEYO3 ; YES
9@4F A9 00 LDA H$00 ; ZERO TERMINATOR
9051 91 FB STA ($FR),Y ;STORE IT
?es3 50 RTS
9054 Ce KEYLO .BYT $C0,$E0, $C8, $E8
2035 E@
9056 C8
9057 ES
2058 Do .BYT $D0,$F0, D8, ¢F8
7059 FO
?05A DB
205 F8
905C 99 STLEN .BYT @
Y030 -END
LOMEM

Abbreviated entry: L(shift)O

Affected Basic abbreviations: LOAD - LO(shift)A

Token: Hex $EE.$1F Decimal 238,31

Modes: Direct and program

Recommended mode: Either

Purpose: To read/set the bottom of Basic programming memory.

Syntax: LOMEM = expression - sets the bottom of memory to the
expression (#-65535).
A = LOMEM or PRINT LOMEM - returns the bottom of
memory address.

Errors: Syntax error
Illegal quantity - if the address is out of range (§-65535)

Use: LOMEM can be used to protect an area of memory at the bottom of the
Basic programming memory for the use of data storage or machine code
programs. LOMEM is originally set at 2049. When LOMEM is used to set, a
NEW is performed, thus wiping out all variables and Basic program at the new
address. If a program was there, use OLD to restore it.

Routine entry point: $995D

Routine operation: LOMEM first checks to see whether it was called by the
arithmetic routine or the execute statement routine. If the arithmetic routine

168 Advanced Commodore 64 BASIC Revealed

called it, the bottom of memory pointer is read and converted to floating point
form. If not, the ‘=" sign is scanned and the value is read in and stored at the
bottom of memory pointer. NEW is then performed. The byte below the new
bottom of memory is also set to zero.

L0cC CODE LINE
FO50 LLIB LOMEM
?05D 68 LOMEM FLA ;GET RETURN ADDRESS
P@SE 48 FHA
?05F C9 8C CMF #4$8C s ARITHMETIC?
9061 DO 07 ENE LOMSET ; NO
0463 A6 2B LDX $2e ;GET LOMEM LO
9065 AS 2C LDA $2C sHI
9067 4C A3 89 JMF ASSIGN ;SEND IT
F06A H
?06A A9 B2 LOMSET LDA H$R2 ; TOKEN "’ ="
9046C 20 FF AE JSK $AEFF ;SCAN FAST 7=7
PO06F 20 8n3 AD JSR $ADBA ;GET ADDRESS
9072 20 F7 B7 JSR $BR7F7 sFIX IT
?075 AS 14 LDA $14 ;GET LO RYTE
?077 85 2R STA $2p sSTORE ROTTOM
9079 18 CLC
074 69 02 ADC Heo2 ;SET UF VARS
?07C 83 2D STH $2D
9@7E 85 2F STA $2F
9080 85 31 STH %31
9082 A5 15 LDA €15 ;GET HI RYTE
9084 85 2C STA $2C ;STORE BOTTOM
9086 69 00 ADC H$00
9088 B35 2E STA $2E ;SET UF VARS
?98A 85 30 STA ¢$3@
?08C 85 32 SThA $32
GOBE AT 14 LDA ¢14 ;COMPLETE HEW
2090 DO 02 PNE LOMO1
9092 Cé 15 DEC ¢15
9094 ~C6 14 1.OMe1 DEC %14
?096 AR 02 LDY #¢e2 ;LOOF TO STORE 3 ZERQS
?098 A9 ¢e LDA H$00Q
094 91 14 LOMO2 STA ($14))Y ;STORE ZERO
?07C 48 DEY
ge?D 10 FPR BFL LOMO2 s AND NEXT
909F A5 38 LDA %38 ;RESET STRING FNOINTERS
feAl 85 36 STA $26
90A3 85 34 STA $34
90AS AS 37 LDA %37
?0A7 89 35 STA $35
?0A9 85 33 STA $32
F0AR 6@ RTS
F0AC END

MAT

Abbreviated entry: M(shift)A
Token: Hex $SEE.,$11 Decimal 238,17

Modes: Program and direct

Extended BASIC - A Complete Package 169

Purpose: To perform arithmetic operations on entire arrays, assuming their
contents to be matrices.

Syntax: MAT array name = (arithmetic expression). Assign scalar value to all
elements of the matrix in the array. Brackets are required around the
expression.

MAT array name = array name. Assign all corresponding elements
from one array to another. Both arrays must be numeric and of the same
dimensions.

MAT array name = array name operator (arithmetic expression) or

MAT array name = (arithmetic expression) operator array name. The
operator may be + or * to add or multiply a matrix with a scalar value.

MAT array name = array name + array name. All three arrays must
be of the same dimensions and numeric.

MAT array name = array name * array name. Array sizes must follow
the convention for matrix multiplication i.e. (a X ¢) = (a X b)*(b X ¢), where
a,b,c are the array sizes in the DIM statement plus 1 (element @ is used).

The MAT command will only accept arrays of 1 or 2 dimensions, of only
numeric type and with not more than 255 elements in either dimension.

Errors: Syntax error - when the expression is not in brackets or an
illegal operator is used
Type mismatch - for string arrays
Bad subscript - for arrays of incorrect size etc.

Use: High speed matrix arithmetic is approximately eight times faster than an
equivalent basic subroutine. Using this command also saves the use of nested
FOR...NEXT loops, thereby reducing the chances of an Out of memory error
due to the stack being full. Since most versions of Basic on mainframe
computers have full matrix arithmetic, this subset of the full MAT command
will be useful in converting programs to run on the CBM 64. Matrix arithmetic
is often used in programs handling large amounts of numbers in linear
equations.

The routine uses the simple convention that a matrix of size a X b will be
stored in an array dimensioned by DIM A(a—1,b—1). This means that a routine
to read a 5 X 2 matrix from data statements would be:

DIM A(4,1)

FOR 1= ¢ TO 4
FORJ=¢TO I
READ A(LJ)
NEXT J,I

DATA 0, 4
DATA 3,5
DATA —5,3.45
DATA 1, 1
DATA .44

170 Advanced Commodore 64 BASIC Revealed
To print an array use a routine like:

FOR I = ¢ TO 4
FOR J = ¢ TO |
PRINT A(LJ),
NEXT J

PRINT

NEXT I

The matrix multiplication is equivalent to: (a X ¢) = (a X b) * (b X ¢).

DIM A(a—1,c—1),B(a—1,b—1)c,(b—1,c—1)
MATA=B*C

is the same as but faster than:

FORI=¢TOa—I

FOR J=¢ TO c—I
T=9
FORK =¢ TO b—1
T=T+B{J.K) * C(K.])
NEXT K

AQD =T

NEXT J

NEXT 1

Routine entry point: $99AC
Routine operation: The MAT routine uses the following Basic ROM calls:

$AEF1 - Evaluate expression in brackets
$BBD4 - FAC#I1 to memory (x.y)

$BBA2 - Memory (x.y) to FAC#1

$BIBF - Float to fixed

$B391 - Fixed to float

$B867 - Memory (a.y) + FAC#1 to FAC#1
$B850 - Memory (a.y) — FAC#1 to FAC#I
$BA28 - Memory (a.y) * FAC#1 to FAC#1

The routine for assignment will, for speed, perform just a block memory move if
the two arrays are both of the same type e.g. both integer. The multiply routine
works in the same way as the Basic version above. It calculates the address of the
next element required just by adding a pre-calculated offset for speed.

Readers are advised to consult a standard mathematics textbook for details
of matrix arithmetic.

188 A$=" NOITARTSNOMED LTC DNA YLPITLUM XIRTAM "
11e CTLC,,.0.8,1)

120 FORI=1TOLENCA$

130 B$=MID$(A$. 1.1)

146 C=ASC(BE$ RAND1S

158 PRINTCTL(48-I,1,COR1.,.C);B$

Extended BASIC - A Complete Package 171

160 HEXT

179 PRINTCTLC, 3, 145" TIME IN EBRSIC"

188 PRINTCTLC, 150" TIME IN MAT “"CTL(..S)

130 XP=18

268 X1=3

218 Y1=3

228 ¥2=3

238 Y2=

248 Xx3=1

258 ¥3=3

266 LIMACKL, Y1), B(X2,Y2),C(X3, Y32

278 GOsSuB43a

280 GOSUB45@

238 FRINTCTLCL,7):" "
300 T1=TI

3168 50SUB4 /R

328 PRINTCTL(15,3,142(TI-T1>/68CTLC, 7

3380 GOSUB41@

348 PRINTCTLC(1,12,53;" "
358 T1=TI

360 MAT A=B%C

370 PRINTCTL(19,4,15>(TI-T1>/68CTL(, 125

380 GOSUE41@

399 PRINTCTLCL,17,8>;" !
480 CTL(8, 22> END

418 FORI=BTOX1:FORJ=8TOY1:PRIMTCTLC(J+12#XP-1@),;ACI, J); *NEXT : FRINT :NEXT
428 RETURM

428 FORI=BTOKZ :FORJ=BTOYZ2:READE(I, J) :NEXT ' NEXT
448 RETURH

458 FORI=ATOX3:FORJ=@TOY3:READCCI, J) :HEXT : NEXT
468 RETURH

478 FORY=8TOY1

488 FORX=8TOX1

420 T=4

S8@ FORI=aTOY2

18 T=T+B(K, I #CC(I.Y)

28 MHERT

538 ACK,Yo=T

548 MEKT

558 NEXT

568 RETURN

ore DATAL.2

588 DATAZ. 4

598 DATAS. 6

€808 DATAV,8E-S

618 REM

628 DRTAL.2,3,4

630 DATAS.6,7.8

Program 17. Demonstration of the MAT command and use of CTL command.

Loc COLE LINE

FOAC LIR MAT.COMMAND
9@AC PEEEEEREANE AN AR R RN RN
200 ; 16 RIT UNSIGNED MULTIFLY
FOAC L R PP P P
GOAC ; WAREA = NI = N2

SOAC :

?0AC 00 0@ N1 JWOR @

P0AE 00 0@ N2 .WOR @

0RO 00 00 RESULT .WOR ©

?0R2 ;

P0R2 NP @0 MAULT LDA #o s ZERO RESULT

fee4 8D RO 90 STA RESULT

172 Advanced Commodore 64 BASIC Revealed

Loc

f0R7
FerA
9@RD
7000
9eCc2
°oCs
?0C8
gecCA
29CP
F0CD
?0D9
9eD2
9003
90D6
9009
geDC
?0DF
FOE2
?0ES
FOE8
7QER
9REE
?0F1
90F 4
POF 4
FOF 4
POF 4
P0OF 4
POF 4
90F 4
POF 4
90F 4
P0F 4
90F 4
POF 6
9OF 7
PQF 9
FeFA
POFC
90FD
9102
9107
2109
g1iee
2100
91eE
?10E
910E
910E
711@
7112
9114
2116
7118
9118
9118
9118
?11E
911E
9120
9123
9128
9128
9128
912E

CODE

8D
Ab
20
Fo
AD
oD
De
450
%4
2D
Fo
18
AD
6D
8D
AD
6D
8D
oE
2E
4E
6E
4C

09
00
e
00
00
00

(-1
09
00
00

00
09

00
00

8D

el
-

B9
4C
A9
80
8D
8D
an

B1
AE
AF
8
Al
AD
o1

21
AC
13

AE
eo
ee
AF
B1
Bl
AE
AF
AD
AC
c2

00
oe

20

(1}

oe

00
20
00
20
00

F4
13
23
08
00
FS
F8
FE
Fé

?@
90
9

?9
90

70

?0
?0
0
90
?0
99
90
G0
?0
99
9?0

990
B1

AF

90
90
9e
e

LINE

MMULTL

MAULT2
MMULT3

MAULT4

@ Ne w4 we w4 e e

ISNALF
CHRGOT
CHRGET
UNAME 1L
YTYFEL
UNAME D
UTYFE2
UNAME3
VTYFE3
FACnM
FACT
VSIZE1
VSIZE?
USIZEZ
OFTYFE
VFTR1
VFTR2
VFTR3
VSTT1
USTT2
VSTT3
T1

T2

Fee v ve

CHOK

STA
LDA
ORA
REQ
LDA
ORA
BNE
RTS
LLDA
AND
PEQ
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
LSR
ROR
JMF

RESULT+1
N2

N2+1
MMULT2
N1

Ni+1
MMULT3

H1
N1
MAULT4

N2
RESULT
RESULT
N2+1
RESULT+1
RESULT+1
N2

N2+1
Ni+1

N1
MMULTL

$R113
$79
$73
. WOR
BYT
- WOR
BYT
.WOR
BYT

% =

i

il

SO

545
o= w45
.WOR @
.WOR @
WOR @
.BYT ©
= ¢FPR
= $FD
= $9E
.WOR
-WOR
. WOR
. WOR
-WOR

OO S

STA
JSR
BCS
JnFE
LDA
STA
STA
STA
STA

UNAME1
ISNALF
CHOK
$AF08

#Ho
UNAMEL+1
UNAME2+1
UNAME3+1
UTYFEL

; END IF N2=0

(NL = 0 7

;IF BIT @ OF N1
;THEN ADD N2 TO RESULT

;sADD N2 TO RESULT

MATRIX ARITHMETIC

EXEEBCBFLLXLBLREX L RBRRRNER

;VARIAEBLE NARES

; TEMF FLOATING STORE
s TEMF FLOATING STORE
;s ARRAY STZES

;OFERAND TYFE

;BET FIRST ARRAY
;NAME AND CHECK

; LEGAL

; SYNTAX

9131
9134
9137
?13A
?13C
913F
?141
?144
9147
9149
714C
914E
9150
9152
9154
9157
?159
215k
915E
9161
9163
9165
9148
F16E
916D
F16F
9172
9174
?176
9178
P17A
917D
?17F
2182
9185
9188
913
218D
9190
92193
9195
9198
?19A
?19D
91A0
F1A2
P1AS
?1A7
1A%
91AR
?1AD
?1R0
?1p2
?1R4
P17
21PA
91BC
91RF
?1C2
91C4
?1C7
91CA
91CC
91CE
9101

CODE

4C

4C

4C

4C
8D
20
90
20
90
8D
20
90
20
2o
cs
Do
a2
4C
co
0o
20
CE
A2
gE
20
Do
4C
EE
co
Fo
EE
co

F9
FC
73
05
13
oD
FS
73
FB
13
Fé
24
5}
16
37

25
06
Fé
73
B2
23
08
73

16
F1
oD
DC
FD
90
D4
o1
F9
BA
13
23
03
F7
73
05
13
oD
F8
73
FB
13
Fé
24
25
16
37

28
06
73
F9
00
oD
79
03
49
oD
AA
11
op
AR

90
90
(14
B1

90
20

Pl

A4

990

AF
00

AE

1]
90
91
1
AF
90
00
P1

90
(4]

Rl

A4
(1
90

9?1
09

92
?1

91

LINE

CHOK1
LNE

EDUNAL

TYMISE

NSTR1

NTINT1

FOEQ

NTEXF2

CHOK2

CHOK2A
LNE2

EDUNAZ

NSTR2

CHKOF

NASSIG

STA
STA
JSKR
BCC
JSR
Bcc
STA
JSR
BCC
JSKR
BCS
CMF
BNE
LDX
JMF
cnr
BNE
DEC
JSR
ChF
REQ
JMF
JSR
CHF
ENE
JSR
LDA
ENE
L.DX
LDY
JSR
LDX
STX
JNE
JSR
BCS
JnF
STA
JSR
eCC
JSR
RCC
STA
JSR
BCC
JSR
BCS
cnr
BNE
LDX
JMF
CMF
BNE
JSKR
DEC
LDX
STX
JSR
BNE
JNF
INC
CMF
BEQ
INC
CnF

Extended BASIC - A Complete Package

VTYFE2
VTYFE3
CHRGET
CHOK1
ISNALF
EDUNA1
UNAME1+1
CHRGET
LNE
ISNALF
LNE
g%
NSTR1
H22
$A437
H7
NTINT1
VTYFE1L
CHRGET
HeR2
FOEQ
$AFO8
CHRGET
#(
NTEXF2
$AEF1
$0D
TYMISE
H-FACH
H:FACA
$RRDA4
#H1
YTYFE2
CHKOF
ISNALF
CHOK2
$AFO8
UNAME2
CHRGET
CHOK2A
ISNALF
EDYNA2
UNAME2+1
CHRGET
LNE2
ISNALF
LNE2
H'$
NSTR2
H22
$n437
HZ
CHKOF
CHRGET
UTYFE2
#o
OFTYFE
CHRGOT
NASSIG
DOMAT
OFTYFE
HEAA
GETV3
OFTYFE
HEAR

;60 CHECK FOR % $ =
;SCAN FAST REST
;0F VAR NAME

;CHECK FOR STRING

;TYFE MISMATCH

;NOT INTEGER ARRAY
;SET TYFE FLAG TO $FF
:GET NEXT CHAR

;1 TOKEN FOR =
;SYNTAX NOT =

;CHECK FOR ¢ EXF.)

;EVAL. EXF. IN ()
; CHECK NUMERIC

FACHL TO FACRH

3 SET TYFE FLAG TO CONST

(GET NAME
sCHECK LEGAL
SGYNTEY

;GET SECOND CHAR
s NUMBER 7

s CHECK FOR ¢ %

:SCAN TO END

;OF VARIABLE NAME
;CHECK FOR "¢’

; TYFE MISMATCH
;CHECK IF INTEGER
;SET INTEGER FLAG

; CHECK OFERAND TYFE
;END STATEMENT 7

;CHECK FOR ADD +

;CHECK FOR SUB -~

173

Advanced Commodore 64 BASIC Revealed
CODE

Fo
EE
c?
Fo
4C
20
ce
Do
AD
ce
De
4C
20
AS
Fe
4C
A2
A0
20
[:%4
8D
20
Fo
4C
29

oA
oD
AC
23
08
73
28
28
Fe

9?1

AF
09

99

AF
AE

9?1

Be

90
a0

AF
Bl

90
20
Bl

70
00

2 Pl

A4

ge
(4%

AF
70

90
90

90
?0
94
?1
91

921

21

LINE

GETV3

BEXFOK

NUMOK

SYNTE
NTEXF3

CHOKZ
LLNE3

EDUNAZ

NSTRS

NTINT3
DOMAT

V1REAL

BEQ
INC
cme
BEQ
JAF
JSRK
cMF
ENE
LDA
CMF
ENE
JMF
JSK
LDA
PER
JMF
LDX
LDY
JSR
LDA
SThA
JSK
BEQ
JMF
JSR
RCC
STh
JSR
PEQ
RCC
JSR
RCC
STA
JSR
BEQ
RCC
JSK
RCS
CMF
RBNE
1.DX
JnF
chr
BNE
DEC
JSR
BEQ
JAF
LDA
RERQ
LDA
ORA
STA
LDA
ORA
STA
JSR
STX
STY
LDA
STA
LDA
STA
LDA
che

GETV3

OFTYFE

H$AC ;CHECK FOR MULT =
GETU3

$AF08 ; SYNTAX

CHRGET

H(;CHECK FOR (EXF)
NTEXF3

VTYFED ;CHECK TYFEZ2 FOR
;BEING CONSTANT
BEXFOK

$AF0R s SYNTAX

$AEF1 ;EVAL EXF

$0D

NUMOK

TYNISE ;TYFE MISMATCH
HFACH ;FACH1 TO FACH
H:FACNH

$PED4

1 ;SET TYFE FLAG TO CONST
UTYFE3

CHRGOT ;END OF STATEMENT 7
DOMAT

$AF QR s SYNTAX

ISNALF {GET ARRAY NAME
SYNTE ;SYNTAX ERROR
UNAME3

CHRGET

DOMAT : ¢ OR END OF LINE
CHOKZ

ISNALF

EDUNA3

UNAME 341

CHRGET

DOMAT

LNE3

ISNALF

ILNE3

H'$;IS IT A STRING
NSTR3

Ho2

30437

'} ;18 IT INTEGER
NTINT3

UTYFEZ

CHRGET sNEXT CHAR

DOMAT

$AF 08 1 SYNTAX

UTYFEL (FIND ARRAY 1
VIREAL

H128 ;SET HI BITS ARRAY NAME
UNAME 1

UNAME 1

#128

UNAME1+1

UNAME1+1

FINDAR ;FIND ARRAY ADDR
VSIZE1

USIZE1+1

VFTR1 :STORE IT

UsTTL

UFTR1+1

USTT1+1

UTYFE2

#i

Extended BASIC - A Complete Package 175

Loc CODE LINE

9276 FO 2A BEQ GAR3 sEXFRESSION

9278 AD F9 9@ LDA VTYFE2 sSET UF ARRAY NAME 2
?278. 29 80 AND H$80 ;FOR SEARCH ROUTINE
9270 8D 14 91 STA T1

9280 0D F7 990 ORA VUNAME2

9283 8D F4 990 STA UNAMEL

9284 AD F8 90 LDA UNAME2+1

9289 oD 14 91 ORA T1

928C 8D FS 90 STA UNAMEL1+1

P28F 20 78 %94 JSR FINDAR ;FIND ADDRESS ARRAY 2
?292 8E 09 91 STX VSIZE2

9295 8C @A 91 STY VSIZE2+1

9298 AS FR LDA VFTR1

9294 8D 10 91 STA VSTT2

929D AS FC L.DA VFTR1+1

?2%F 8D 11 91 STA VUSTT2+1

922 AD oD 91 GAR3 LDA OFTYFE sARRAY 3 7

92A5 FO 21 REQ DOMATA ;NO ARRAY 3

?2A7 AD FC %0 LDA VTYFE3

92AA (% o1 CHF #1 ;IS IT A CONSTANT
P2AC FO 2A BEQ DOMATA ; YES

?2AE 29 20 AND H$80 ; IS ARRAY 3 INTEGER
920 8D 14 91 STA T1

2R3 AD FA 99 LDA VNAMEZ

P26 @D 14 91 ORA T1

929 8D F4 99 STA UNAMEL

?2RC AD FB 90 LDA UNAME3+1

92BF oD 14 91 ORA T1

?2C2 8D FS 9@ STA UNAME1+1

Q2CE 20 V8B 94 JSR FINDAR ;FIND ARRAY 2
?2C3 8E oR 91 STX VSIZES

920 8C e 91 STY VSIZEZ+1

P2CE AY FPR LDA VFTR1

°2D@ 8D 12 1 STA MNETTZ

?2D3 A5 FC LDA VFTR1+1

F2DS5 8D 12 91 STA USTTZ+1

9208 AD 0D 91 DOMATA LDA OFTYFE $SET A JURF VECTOR
gL oA ASL A ;FOR OFERATION
?2DC AA TAX

920D BD EE 92 LDA OFJTAR,X

?2E@ 8D EC 92 STA OF JMF

92E3 PBD EF 92 LDA OFJTAR+L X

92E6 8D ED 92 STA OFJMF+1

92E9? 6C EC 92 JMF COF JMF)

?2EC :

P2EC 00 00 OFJMF .WOR @ ; JUMF VECTOR
92EE Fé6 92 OFJTAR .WOR ASSGN : JUMF TARLE

92F0 @1 95 .WOR ADDSUR

P2F2 01 95 .WOR ADDSUE

92F4 6A 96 SWOR MULT

92F6 ;o #xs MAT AA = C

?2F6 A9 o1 ASSGN LDA #1

?2F8 CD F9 %0 CMF YTYFE2

P2FE FO 02 BE@ ASSIC

92FD 4C 63 93 JNF ASARAR

9300 A2 05 ASSIC LDX HS ;s ARRAY =CONSTANT
2302 AD F6 90 LDA VTYFEL

@305 Fo 16 PEQ ASSR1

?3¢7 A9 FD L.DA H<FACM ;FACM TO FACH1
2209 A0 9@ LDY #H:FACM

?30P. 20 A2 PP JSR $PRA2

930E 20 PF P1 JSR ¢P1PF ;FLOAT TO FIXED
9311 AS 64 LDA $64 ;STORE INT IN FACH
?313 8D FD 50 STA FACH

9316 AT 65 LDA $45

176 Advanced Commodore 64 BASIC Revealed

LoC CODE LINE

9318 8D FE 990 STA FACM+1

931B A2 e2 LDX #2

931D BE F9 99 ASSR1 STX VTYFE2 ;STORE ELEMENT LENGTH
9320 A9 00 LDA Ho ;CALC NUMBER OF ELEMENTS
9322 8D AD 99 STA N1+1

2325 8D AF 90 STA N2+1

9328 AD 07 91 LDA VSIZE1L

9328 8D AC 90 STA N1

932E AD 08 91 LDA VSIZE1+1

9331 8D AE 990 STA N2

9334 20 P2 990 JSR MMULT sRESULT =N1 % N2
9337 20 Co 95 JSR TRFT1 ;COFY FOINTER TO ZERO FAGE
933A A0 00 LDY Ho

933C A2 00 ASLOOF LLDX He ;FACM TO ARRAY
$33E BD FD 99 ASLOF LDA FACM,X

9341 91 FP STA (VYFTRL),Y

9343 ES8 INX

9344 E&6 FR INC VFTR1

9346 DO @2 BENE ASNC

9348 E6 FC INC VUFTR1+1

934A EC F9 90 ASNC CFX VTYFER

934D D9 EF BNE ASLOF

934F AD RO 90 LDA RESULT

9352 DO o3 ENE ASNC?

9354 CE B1 90 DEC RESULT+1

9357 CE B9 %90 ASNCY? DEC RESULT s ARRAY FILLED 7
9354 AD PO 90 LDA RESULT

935D oD P1 %0 ORA RESULT+1

9360 DO DA BNE ASLOOF

2362 60 RTS

9363 :

9363 A2 05 ASARAR LDX #% ;SET VAR LENGTH
9365 AD Fé6 90 LDA VTYFE1L

9368 Fo @2 EER ASRIR

7360 A2 @2 LDX #2

934C B8E Fé& 99 ASRIK STX VTYFE1

?36F A2 0% LDX #S

2371 AD F9 90 LDA VTYFE2

9374 Fo @2 BEQ ASR2R

9376 A2 02 LDX #2

9378 8L F9 90 ASR2R STX VTYFE2

$37B AD @7 91 LDA VSIZE1 ;s COMFARE ARRAY SIZES
?37E CD 09 91 CMF VSIZER

2281 Fo 05 PEQ ASRSOK

9383 A2 12 ASRSUB LDX #$12 ;PAD SUBRSCRIFT ERROR
9385 4C 37 A4 JNF $A437

9388 AD 08 91 ASRSOK LDA VSIZE1+1

9286 ID 0a 91 CHMF VSIZE2+1

938E DO F3 BNE ASRSUPE ; ERROF

9350 AD F6 90 LDA VTYFEL 1 ARRAYS SAME TYFE 7
9393 CD F9 90 CHMF VTYFEZ2

9396 DO SA BNE ASRIR ;NO

9378 A9 00 LDA Ho :CALC SIZE OF ARRAYS
939A 8D AD 90 STA Ni+1

939D 8D AF 90 STA N2+1

9340 AD 07 91 LDA VSIZE1L

93A3 8D AC 90 STA N1

93A6 AD 08 91 LDA VSIZE1+1

93A? 8D AE %0 STA N2

93AC 20 B2 90 JSR MMULT

93AF AD RO 90 LLDA RESULT

932 8D AC 99 STA N1

93RS AD B1 90 LDA RESULT+1

7388 8D AD 99 STA Ni+1

93BR AD F6 90 LDA VTYFE1L

Loc

93RE
?3C1
?3C3
93Cé
?3C9?
93CC
93CE
?3D0
9302
93D4
73D6
9308
?3DA
?3DC
93DE
93E1
93E3
93E4
93IES
93EC
93EF
93F1
FIF2
F3F 4
?3F7
93IFA
93FD
2430
9403
9406
9409
?40C
940E
9410
2412
415
9417
9419
Q41P.
941C
?41F
2421
9423
9425
9427
2429
942C
P42F
9431
Q434
9436
G439
943C
243F
P442
445
9447
9449
944C
P44E
9450
9433
9455
9456
P48

COOE

8D
A9
8D
20
20
no
e1
2?1
E6
Do
E6
Eé
Do
Eé
AD
De
CE
CE
AD
oD
Do
69
A?
8D
8D
AD
8D
AD
8D
20
20
21
A2
B1
D
E6
Do
ES
EB
EC
De
EQ
De
A?
219
29
2e
AS
8D
AS
8D
4C
AD
AC
20
A2
AQ
20
A0
A2
BD
91
E8
EA&
De

AE
00
AF
B2
B6
00
FD
FB
FE
02
FC
FD
02
FE
1%
23
B1
B9
B9
B1
DD

00
AD
AF
o7
AC
8
AE
B2
Bé
1%
0
FD
FD
FD
o2
FE

F%
EF
05
17
FD
90
n2
BF
b4
FD
65
FE
4C
FD
FE
91
FD
90
D4
o0
00
FD
Fe

FB
34

90

90
?0

?5

90

90
?0
?0
9?0

?0
ge
91
90
21
90
90
9?5

9@

?0

BP
Bl

70
90
T4
90

20
B3

BR

90

L. ITNE

ASSTLO

ASSTN1

ASSTN2

ASSTN3

ASRIR

ASRLOF

ASRLF1

ASKNC2

ASRITR

ASRTM

ASRTM1

STA
LDA
STA
JSR
JSR
LDY
LDA
STA
INC
BNE
INC
INC
BNE
INC
LDA
BNE
PEC
DEC
LDA
ORA
ENE
RTS
LDA
STA
5TA
LDA
STA
LDA
STA
JSE
ISR
LDy
LDX
LDA
STh
INC
BNE
INC
INX
CFX
BNE
CFX
ENE
L.Da
LDY
JSR
JSR
LDA
STA
L.DA
STA
JnF
LDA
LDY
JSR
LDX
LDY
JSR
LDY
L.DX
LDA
STA
INX
INC
BNE

Extended BASIC - A Complete Package

N2

#o

N2+1

MAULT

TRFT2 ;SET FOINTERS TO ARRAYS
Ho

(VFTR2),Y ;BLOCK MOVE OF
(VFTR1),Y LENGTH IN RESULT
VFTR1

ASSTN1

VFTR1+1

VFTR2

ASSTN2

UFTR2+1

RESULT

ASSTN3

RESULT+1

RESULT

RESULT

RESULT+1

ASSTLO

Ho

Ni+1

N2+1

VSIZEL

N1 ;CALC MUMBER OF ELEMENTS
USIZE1+1

N2

MMULT

TRFT2

Ho

#o ;ARRAY ELEMENT TO FACM
(VFTR2),Y

FACM, X

VFTR2

ASRNC2

VFTR2+1

VTYFE2

ASRLF1

5

ASRITR

#FACH sFACM TO FACH1
H:FACH

$PRA2

$P1EF {FLDAT TO FIXED
$64

FACH

$65

FACH+1

ASRTN ;FACM TO ARRAY
FACH

FACH+1

$p391 ;FIXED TO FLOAT
H:FACH (FACHL TO FACH
HxFACH

$BRDA

Ho

Ho

FACHM, X

(VFTR1) Y

VFTR1
ASRNC1

177

2450
?45C
P45F
94561
464
F4ab6
4469
946C
Q45F
9472
?474
9477
9478
2478
2478
9474
?47C
F47E
?489
9482
9484
9486
9488
9484
948C
94CE
2491
9493
495
F496
2499
498
Q47D
92400
P4A2
F4AT
475
?4A8
F27:¥4
40P
94AC
S4AL
P4P.0
9403
94B4
?4R6
?4B8
?4PA
?4RC
94BF
?4C1
94C4
P4CS
94Cé
94C7
94C9
?4CB
?4CD
94CF
?4D2
24D3
?4D4
94D6
?4D8
24D9

Advanced Commodore 64 BASIC Revealed

CODE

Eb
eC
Do
AD
Do
CE
CE
AD
oD
Fo
4C
60

NG
8%
AS
8%
AS
CS
0o
AS
CcS
Do
A2
20
Ao
21
c8
CcD
Do
B1
cD
Fe
ce
3}
8D
c8
e1
18
65
8%
AD
18
65
85
90
Eé
4C
A?
8D
ce
c8
c8
B1
ce
30
A2
4C
AA
c8
Bl
De
c8
Be1

FC
Fé
EF
eo
03
e1
B9
Bo
e1
03
oC

2F
Fe
30
FC
Fe
3
or
FC
32
05
12
37
(1%
Fe

Fa

FE
FS
1D

FP.
14

Fe

FC
FC
14

FB
Fe
02
FC
8e
o1

15

FE
05
12

37

FB

FS

Fe

?0
?0

90
90
990
29

94

A4

90

90

91

21

P4

91

A4

LINE

ASRNC1

ASRTM3

ASREXT

FIND
F INDAR

Tea e

FALOOF

FACONT

FANAR

FANC
FAGETS

FAE1L
FANDOK

INC
CFX
ENE
LDA
BNE
DEC
DEC
LDA
ORA
PEQ
JNF
RTS

VFTR1+1
VTYFEL
ASRTM1
RESULT
ASRTM3
RESULT+1
RESULT
RESULT
RESULT+1
ASREXT
ASRLOF

ARRAY

LLDA
STA
LDA
STA
LDA
che
RNE
LDA
cnr
ENE
LDX
JSR
LDY
LDaA
INY
cnr
BNE
LDA
Cne
BEQ
INY
LDA
STA
INY
L.DA
CLC
ADC
STA
LDA
cLC
ADC
STA
BCC
INC
JnF
LDA
STA
INY
INY
INY
L.DA
CHF
BMI
LDX
JNF
TAX
INY
LDA
BNE
INY
LDA

$2F ;START OF ARRAYS
VETR1

$30

UPTR1+1

VPTR1 ;CMF. END OF ARRAYS
$31

FACONT

UFTR1+1

$32

FACONT

He12 ;PAD SURSCRIFT ERROR
$A427

o

(VFTR1),Y FIKST CHAR OF MAME

UNAME L

FANAR :TRY NEXT ARRAY

(VFTR1),Y

UNAMEL+1

FAGETS ; GET ARRAY DATA
sFIND NEXT ARRAY

(VETR1), Y

T1

(VFTR1), Y

VFTR1+1
VFTR1+1
T1

VFTR1

VFTR1

FANC

VFTR1+1

FALOOF

H1 ;GET ARRAY DATA
Ti+1

(VPTR1),Y

3

FANDOK

He$12 ;ERROR MORE THAN 2
$A437

(VFTR1),Y
FAE1 ;FIRST DIM TOO BIG

(VFTR1),Y

DIM

L.0c

9408
94DE
94DF
94E0
94E2
94E3
94ES
94E7
94E8
P4EA
94ED
94EE
94EF
94F0
94F2
94F 4
94F b
94F8
94F A
94FD
9500
9501
9501
9504
9507
9500
950D
950F
9512
9515
9518
9514
951D
951F
9521
9524
9527
9529
952¢
952F
9531
9533
9536
9539
9538,
953E
9541
9544
9547
954h
954D
9550
9553

2559

9557
955A
955D
9GSF
9561
9564
9567
P56A
956D
957

9572

oe

Fe
Eb6

Fe

19

Fe
Fe
FC
00
FC
14
15

81

5
AC
e9

22

alal

28
AE
2A
17
F9
o1
15
o9
B
08
A
oC
05
12
37
AcC
09
AD
AF
B2
ce
13
16
17
on
o1
06
67
bA
02
06
50
6A
28
3E
Be
03
1

91

9?1

?1
91

95
9?1
90
21

91
90
7?1

?9

9?1
91

91
91

A4

95

0
9?0
90
95

?1
91
91

B8
?5

333
?9
BA
?6
990

990

LINE

FAEX

ADDSUP.

ADBADS

ABSC

ABRSLOF

posue

DOMULT
ABFA

STA
TXA
DEX
REQ
INY
LDA
BNE
INY
LDA
STA
INY
TYA
CLC
ADC
STA
LDA
ADC
STA
LDX
LDY
RTS

JSKR
L.DA
STA
cmF
BNE
LDA
STA
CchF
ENE
LDA
chr
REQ
LDA
CHF
BNE
LDA
cHp
REQ
LDX
JHF
JSR
LDA
STA
STA
JSR
JSR
JSR
LDA
LDY
LDX
CFX
BNE
JSKR
Jor
CFX
BNE
JSKR
Jne
JSK
JSR
LDA
BNE
DEC

Extended BASIC - A Complete Package

T1

FAEX ;ONE DIM ARRAY

(VFTR1),Y
FAE1 ;SECOND DIM TOO PIG

(VETR1),Y
T1+1

VFTR1
VFTR1
UFTR1+1
Ho
VFTR1+1
T

Ti+1

ORDER ;FUT CONST LAST
USIZE1 ;CHECK ARRAY SIZES
N1

YSIZE2

ADBADS

USIZE1+1

N2

USIZE2+1

ADBADS

YTYFE2 V2 CONSTANT 7
H1

ABSC

USIZE2 ;U3 IS ARRAY
USIZE3

ADRADS

USIZE2+1

USIZE3+1

ABSC

He12 ;BAD SUBSCRIFT
$A437

TRFT3 ;COFY FOINTER TO Z FAGE
#o ;CALC NO. OF ELEMENTS
N1+1

N2+1

mMuLT

V21072 V2 TO (T2)
VITOF1 ;U2 TO FACH1

T2

T2+41

OFTYFE

#1

DOSUB

$£867 ; (ALY) + FACHL
ABFA

H2

DOMULT

$p.850 3 (ALY)-FACH1
ABFA

$PA28 ;(A.Y) = FACHL
FL1TOV1 ;FACHL TO U1
RESULT ;CHECK ALL DONE
ABNC

RESULT+1

179

180
Loc

7575
9578
?57e
9S7E
2580
9581
9581
9584
9586
2588
958R
958E
7591
25%94
2597
959A
959D
?GNM0
95A3
95A6
?5A8
FSAR
?5AC
?5AC
9OAF
7501
?5B4
FoRb
P59
?5ER
9SRE
95Co
?5C3
95CS
75C8
9SCA
95CR
75CE
?5CE
9500
9502
95D4
?aD4
93D9
?5DC
950D
95DF
95E1
9S5E4
9SE7
?5EQ
FOEA
95EC
9SEE
95F 0
95F2
9SF 4
?GFS

SF7
95F9
9SFA
95FB
73FD
?SFE
PSFF

Advanced Commodore 64 BASIC Revealed

Cone

CE
AD
oD
De
6@

]
ce
Do
AD
8D
AD
8D
AD
8D
AD
=1
AD
80
A9
8D
60

AD
89
AD
8%
AD
89
AD
85
aD
85
AD
85

60

AD
Fo
30
A%
[:14
8D
8C
69
AS
A4
8D
8C
A9
18
65
89
AS
69
83
69
AQ
B1
Ah
c8
B1
AB
8A
20

ee
ee
e1
Ca

FC
21
23
F?
FC
09
ep
on
oC
10
12
11
13
01
F9

12
k43
13
9F
10
FD
11
FE
oE
FR
oF
FC

F9
oD
23
FD
99
16

17

FD
FE
16
17
05

FD
FD
FE
00
FE

20
FD
FD

91

?0

?0

?e

70
71
91
71
?1
?1
91
91

90

71
91
91
?1
?1

?1

90

91
91

?1
71

B3

LINE

ABNC

ORDER

ADVZNC

TRFT3
TRFT2

TRFT1

U2TOT2

VABFT

V2INT

DEC
LDA
ORA
BNE
RTS

LDA
Cmr
BNE
LDA
STA
LDA
3TA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

LDA
BEQ
BMI
LDA
LDY
STA
STY
RTS
LDA
LDY
STA
STY
LDA
cLC
ADC
STA
LDA
ADC
STA
RTS
LDY
LDA
TAX
INY
LDA
TAY
TXA

JSKR

RESULT
RESULT
RESULT+1
ABRSLOF

UTYFE3
#1
ADU2NC
UTYFE2
VTYFE3
VSIZE?
USIZE3
VSIZED+]
USIZER+1
usSTT2
USTTZ
USTT2+1
USTT3+1
1
UTYFE2

USTT3
VFTR3
VSTT3+1
VPTR3+1
VsSTT2
VFTR2
USTT2+1
VFTR2+1
VSTT1
VFTR1
VSTT1+1
UFTR1+1

VUTYFE2
V2RA
V2INT
- FACM
H:FACM
T2

T2+1

UFTR2
VFTR2+1
T2

T2+1

HS

VFTR2
VFTR2
VFTR2+1
#Ho
VFTR2+1

Ho
(VFTR2),Y

(VFTR2),Y

$R391

V2 CONST

$SNOT V2 & V3

; COFY FOINTERS TO
; ZERO FAGE

;V2 TO FACH2

.

FACM TO FACH2

;U2 TO FACH2

sPUMF VFTR2

;FIXED TO FLOAT
; THEN FACH1 TO FACH2

;FIXED TO FLOAT

Loc

?602
2604
9507
?609
960C
P6QF
?611
?613
9616
?618
P61A
?61C
961F
?621
9622
624
9626
9628
624
?62C
?62D
P62F
9631
9632
2633
9639
7636
Q637
963A
?63C
?63E
2641
9643
9645
2647
Pb64A
?64C
264D
Qb64F
9651
9653
?659
657
2458
F65B
?65D
F65F
9661
G663
P664
9666
9668
F66A
PL6A
?556D
964F
9671
9474
9677
?679
9?6780
P67E
9681
7682
436

CODE

A2
8E
AQ
8C
20
A?
Do
AD
Do
AS
A4
20
A9
18
65
8%
AS
69
8%
60
Ao
B1
AA
c8
3]
A8
8A
20

Al

pe
nD
CcD

02
16
?1
17
D4
22
Dé
FC
15
9E
9F
A2

25

9E
9E
9F
(1%}
9F

09
9E

9E

21
92
E3
Fé
15
FE
FC
D4
5}

FE
FE
FC
9o
FC

BF
(14
64
FE
65

FB
02

E2

Fo
01
23
o1
FC
o1
Fé
08
eh
30
@7
o

?1
2?1
BE

?0

BR

B3

90

Be

B1

99

95
90

?1
91

g1
21

LINE

Y3TOF1

V3BFT

VIINT

F1TOV1

VIBFT

VIINT

v
7

MULT

GADS
MERR

LDX
STX
LDY
STY
JSR
LDA
ENE
L.DA
ENE
LDA
Loy
JSR
LDA
CLC
ADC
STA
LDA
ADC
STA
RTS
LDY
LDA
TAX
INY
LDA
TAY
TXA
JSKR
LDA
BNE
LDA
ENE
LDx
LDY
JSK
LDA
CLC
ADC
STA
1.DA
ADC
STA
RTS
JSR
LDY
LDA
STA
LDA
INY
STA
LDA
BNE

LDA
CMF
ENE
JMF
LDA
CmF
BEQ
L.DA
Cng
BNE
LDA
CmF

Extended BASIC - A Complete Package

V2BFT
VTYFEZ
VIINT
VFTR3
UPTR3+1
$RRA2

HS

VFTR3
VFTR3
VFTR3+1
HO
VFTR3+1

Ho
(VFTR3),Y

(VFTR3) Y

$R391
H2
V3BFT
VTYFE1L
VIINT
VFTR1
UFTR1+1
$BRD4
HS

VFTR1
VFTR1
UPTR1+1
#Ho
VFTR1+1

$R1RF

HO

$64
(VFTR1),Y
$65

(UFTR1),Y
H2
VIBFT

UTYFE2
H1

MERR
ADDSUE
VUTYFE3
#1

GADS
USIZE1+1
UGIZER+]
AAERR
USTZEL
VEIZEZ

;FACHL TO FACT

;60 BUMF VFTR2

;U3 TO FACH1

;BUMF VETR3

;GET V3

;FIXED TO FLOAT

;GO BUMF VFTR3
;FACHL TG Vi

;BUMF VFTR1

;FLOAT TO INT

;CHECK FOR MULT.
;s ARRAY BY CONSTANT

; CHECK ARRAY DIM.

;CHECK HOT SAME ARRAYS

181

182 Advanced Commodore 64 BASIC Revealed

Loc CODE LINE

2689 Do 2 ENE AAERR

968E AD 09 91 LDA VSIZEDR

?68E (D oC 91 CHME VSIZE3+1

9691 Do 2@ ENE AAERFR

9693 AD OE 91 LDA VSTT1

9696 CD 10 91 CMF VUSTT2

9699 Do e8 BNE NSARRO

?698 AD OF 91 LDA VGTT1+1

969E CD 11 91 CMF YSTT2+1

?6A1 FO 10 BEQ AAERR

92603 AD OE 91 NSARRO LDA VSTT1

?6A6 CD 12 91 CMF VUSTT3

9609 DO oD BNE AASOK

P6AR AD OF %1 LDA VSTT1+1

?6AE CD 13 91 CMF VUSTT3+1

P61 DO 05 ENE AASOK

963 A2 12 AAERR LDX H$12 ;BAD SUBSCRIFT ERROR
P6BT 4C 37 A4 JNF $A437

968 20 AC 90 AASOK JSR TRFT3 ;COFY FOINTERS TO Z. F.
P6BE A9 00 LDA Ho

96D 8D AD 90 STA Ni+1

96C0 8D AF 90 STA N2+1

96C3 A9 o1 LDA #1

?6CS 8D AA 97 S§TA ROW

96C8 8D A9 97 STA NROW

96CE 8D AR 97 STA COL

96CE A9 05 LDA HS ;CALC LENGTH OF v2 ROW
?6D0 AE F9 90 LDX VTYFE2 ; — 1 ELEMENT
96D3 Fo @2 BEQ AA2R

96D5 A9 02 LDA #2

?6D7 8D AC 90 AA2R STA N1

96DA 8D 14 91 STA T1

?6DD AE oA 91 LDX VSIZE2+1

P4EQ@ CA DEX

96E1 BA TXA

P6E2 8D AE 90 STA N2

96ES 20 B2 90 JSR mMmMULT

96E8 AD RO 90 LDA RESULT ;STORE IT IN LLV2
96ER. 8D AC 97 STA LLV2

P6EE AD BP1 90 LDA RESULT+1

96F1 8D AD 97 STA LLV2+1

96F4 18 AALOOF CLC ;MAIN LOOF
96FS AD 10 91 LDA VSTT2 3SET V2 COL. FTR. TO NEXT
96F8 85 FD STA VFTR2

96FA 6D 14 91 ADC T1 ;COL. OF V2
?6FD 8D AE 97 STA V2COLF

9700 AD 11 91 LDA VSTT2+1

2703 85 FE STA VFTR2+1

9705 69 00 ADC Ho

9707 8D AF 97 STA V2COLF+1

9704 A9 00 AALOF LDA HO ; ZERO ROW COL TOTAL
?70C 8D FD 90 STA FACNM

?70F 8D FE 9@ STA FACM+1

9712 8D FF 90 STA FACM+2

9715 8D 00 9?1 STA FACM+3

9718 8D 01 91 STA FACM+4

971B 20 CB 95 AAMRC JSR V2T0T2 ;GET V2

971E 20 13 96 JSR V3TOF1 ;GET V1

9721 AD 16 91 LDA T2

9724 AC 17 91 LDY T2+1

9727 20 28 PA JSKR $BA28B ;(ALY) = FACHI
972~ A9 FD L.DA H<FACPH

972C AO 90 LDY H:FACH

?72E 20 67 BB JSR $R867 1 (ALY) + FACHL

9731 AD AA 97 LDA ROW

Extended BASIC - A Complete Package

LOC CODE LINE
9734 CD 09 91 CMF USIZED
9737 Fo 1C PEQ ENDCOL
9739 EE AA 97 INC ROW
973C A2 FD LDX HZFACH
973E A0 90 LDY H:FACM
9740 20 D4 BB JSR $BPD4
9743 A5 FD LDA VFTR2
9745 18 cLc
9746 6D AC 97 ADC LLV2
9749 85 FD STA VFTR2
?74B AS FE LDA VFTR2+1
974D 6D AD 97 ADC LLY2+1
9750 85 FE STA UFTR2+1
9752 4C 1B 97 JNF AANRC
9755 20 3E 96 ENDCOL JSK F1TOV1
9758 A9 @1 LDA #1
9754 8D AA 97 STA ROW
975D AD AR 97 LDA COL
9760 CD oA 71 CMF USIZE2+1
9763 FO 26 PEQ ENDROW
9765 AD 12 91 LDA VSTT3
9768 85 9E STA VFTR3
9760 AD 13 91 LDA USTT3+1
976D 85 9F STA UFTR3+1
976F EE AR 97 INC COL
9772 18 cLe
9773 AD AE 97 LDA Y2COLF
9776 85 FD STA VFTR2
9778 6D 14 91 ADC T1
9778 €D AE 97 STA V2COLF
977E AD AF 97 LDA V2COLF+1
9781 85 FE STA UFTR2+1
9783 69 00 ADC 1O
9785 8D AF 97 STA V2COLF+1
9788 4C 0A 97 JNF AALOF
97688 AD A9 97 ENDROW LDA NROW
978E CD 07 91 CMF USIZE1
9791 DO o1 BNE NEAA
9793 60 RTS
9794 AS 9E NEAA LDA UFTR3
9796 8D 12 91 STA USTT3
9799 AS 9F LDA VFTR3+1
9798 8D 13 91 STA VSTT3+1
979€ EE A% 97 INC NROW
7741 A9 01 LDA H1
9742 8D AP 97 5TA COL
9786 4C F4 96 JNF AALOOF
9745 00 NKOW .BYT 0
9740 00 ROW .BYT 0
974R 00 coL .BYT @
97AC 00 00 LLV2 LWOR @
97AE 00 00 Y2COLF .WOR ©
7780 JEND
MERGE

Abbreviated entry: M(shift)E

Affected Basic abbreviations: None

183

;FACHL TO (X.Y)
;V2 FTR DOWN 1 ROW

;GET NEXT 2 ELEMENTS
sFACHL (SUM) TO V1
;FIRST ROW

;SET V2 FTIR. TO START CURRENT
;ROW

;ALL ROWS DONE 7

; ALL DONE

;FIRST COL..
;GO NEXT ROW FIRST COL.

184 Advanced Commodore 64 BASIC Revealed
Token: Hex $EE,$12 Decimal 238,18

Modes: Direct and program

Recommended mode: Direct only

Purpose: To merge a Basic program from disk into the current Basic program
in memory.

Syntax: MERGE filename, d - where d is the device number (disk only).

Errors: lllegal device - if the device number specified is less than eight
Missing filename - if a null filename is specified
File not found - if file does not exist
Device not present - if no disk drive is connected
File open error - if ten files are already open
Disk errors — at the end, the disk error channel is read and
displayed

Use: Merge is used to combine two Basic programs in memory. Each line of the
program on disk is read in until the zero byte is reached, and then stored in the
input buffer. The Basicroutineto enter a line is then called and the line is entered
at the correct place. Note: If a line number of the program to MERGE is the
same as an existing line number, the MERGEAd line will replace it.

Routine entry point: $97Bf

Routine operation: The filename and device are read in and checked for
missing filename and illegal device. If both checks are OK, the file is opened and
the message MERGING is displayed. Eachlineis then read into the input buffer
and entered using the Basic routine to do so. When the file is completed it is
closed, and the disk error channel is read and displayed.

L0 Copx LINE

9780 .LIE MERGE

7780 20 6F 98 MERGE JSRK DFARS ; GET FILE FARAMETERS
F7B3 A9 62 LDA HMRGMES ; DISFLAY MERGE MESSAGE
9785 AO 78 LDY H:MRGMES

9787 20 1E AP JSR $ARIE

?7BA 20 C1 FS JSR $FSCH ; DISFLAY FILENAME
97BD AD 02 03 LDA ¢0302 ; SAVE PASIC WARM START
?7C0 8D 6D 98 5TA MERGST ; LINK

97C3 AD 03 03 LDA $0303

97C6 8D 4E 98 STA MERGST+1

?7C9 A% OE LDA H$0E ; FIND FILE NUMPER
97Ce 20 A3 8A JSR GETN1

97CE 85 B8 STA ¢E8

9700 8D 61 98 STA FILENO

?7D03 A% 00 LDA #H$00

9703 85 B9 STA $R9?

9707 20 CO FF JSR $FFCO ; OFEN FILE

?7DA AE 61 98 LDX FILENO

97DD 20 C6 FF JSR ¢FFC6 ; SET FILE TO INFUT
97EQ A% 69 LDA H<MERGRT

97E2 8D 2C @3 STA $032C

?7ES A9 78 LDA H>MERGRT ; SET "RESET INFUT’

Loc

97E7
97EA
97EC
P7EF
97F1
P7F 4
97F7
P7FA
97FD
97FF
9802
9804
9806
9808
?80A
980C
980F
9811
9814
9816
9818
?81R
981E
9820
7822
9824
9825
9827
9829
982A
982P
982D
982F
9831
9833
2835
9838
9830
983E
9841
9844
9847
9849
?84C
984E
9851
9854
9857
F8IA
985D
9869
9861
9862
9863
986C
986D
986F
986F
P86F
986F
986F
986F
9872
9874
9874

en

4C

4D
00
20

20
A5
ce
90

A4

45

00

D4
BA
08
95

03
03

03
FF

" FF

FF
FF

FF

FF

FF
02

A4
97
?8
ez
98
23

03
98
FF
FF
8A
A4

El

LINE

MERGO2

MERGO3

MERGO4
MERGOS

MERGRT
FILENO
MRGMES

MERGST

STA
LDA
STA
LDA
STA
JSR
JSR
JSR
STA
JSR
STA
ORA
PEQ
LDA
BNE
JSR
STA
JSR
STA
Ley
JSR
STA
LDX
CFX
REQ
INY
cmF
ENE
TYA
CLC
ADC
5TA
LDA
RNE
LDY
JMF
JNF
L.DA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
JSK
JSR
JSR
JMF
RTS

Extended BASIC - A Complete Package

$032D
H<MERGO4
$0302
H:MERGO4
$0303
$FFCF
$FFCF
$FFCF
$14
$FFCF
$15

$14
MERGOS
$90
MERGOS
$FFCF
$14
$FFCF
$15
H$00
$FFCF
$0200,Y
$C5

#63
MERGOS

H$400
MERGO3

HeO4
$0R
$£990
MERGOY
$0P
$A4A4
MERGO2
MERGST
$0302
MERGST+1
$0303
He2F
$032C
HEF3
$032D
FILENO
$FFC3
$FFCC
DISKe1
$A474

YT @
LBYT $91,"MERGING: 7,6 $00

.WOR ©

we e e e Ne ve we %

.

e e

oY

.

’

e w4 we e

TO A RTS

SET PASIC WARM START
T0 MERGO4

INFUT 2 RBYTE LOAD
ADDRESS

; INFUT NEXT LINE

FOINTERS AND
CHECK FOR ZERO

(END OF PASIC FROGRAM)

CHECK STATUS

INFUT LINE NUMBER
AND STORE IN ¢14 & $15

; INFUT LINE AND
STORE IN INFUT
PUFFER

END OF LINE? NO.
YES

CHECK STATUS

MERGE LINE

; DO NEXT LINE

; RESET PRASIC WARM
START

AND ’RESET DEFAULT I/0°

CLOSE FILE

RESET DEFAULT I/0
DISFLAY ERROR CHANNEL
JUMF TQ READY

;GET FARAMETERS AND LAlTK FOR
; ILILEGAL DEVICE. USED RY DISk
;ONLY COMMANDS.

DFARS JSR $E1D4

LDA
CHF
BCC

$RA
H$08
FARERR

sGET FILENAME ETC

;1S DEVICE DISK?

;NO

185

186 Advanced Commodore 64 BASIC Revealed

Loc CQODE LINE
9878 AS B7 LDA $B7 ;s FILENAME LENGTH
987A FO 04 REQ FARER1 ; ZERO
987C 60 RTS
9870 A2 09 FARERR LDX H$09 ; ILLEGAL DEVICE
987F 2C .BYT $2C
9880 A2 08 FARER1 LDX H$08 ;MISSING FILENAME
7882 4C 37 A4 JNF $A437 ; SEND ERROR
2885 .END

OLD

Abbreviated entry: O(shift)L

Affected Basic abbreviations: None

Token: Hex $EE,$13 Decimal 238,19

Modes: Direct and program

Recommended mode: Direct only (there should be no program in memory).
Purpose: To restore a Basic program after a NEW has been performed.
Syntax: OLD

Errors: None

Use: OLD can be used if the program in memory has been wiped out using the
NEW command. OLD will not work if DELETE was used to remove the whole
program or if a variable has been declared since the NEW. (In most cases, a
syntax error will create a variable e.g. LI instead of L(shift)l will create the
variable LI and give Syntax error instead of trying to list the program).

Routine entry point: $9885

Routine operation: The first line is scanned until the end and the pointer to the
next line is restored. The program is then re-chained and variable pointers are
set.

1.ac CODE LINE

9885 .LIP OLD

9885 AL 2B oLD LDA $2B ; FIND THE END OF
9887 i8 CcLC ; THE FIRST LINE

2888 &9 04 ADC H#4$04

988A 85 57 STA $57 ; SET FOINTER TO AFTER
?88C A5 2B LDA $2P ; LINE NUMBER

I8CE 69 00 ADC H$00

98906 89 58 STA $57+1

9892 AQ @0 LDY #H¢eo

9894 B1 57 OLbe1 LDA ($57),Y ; SEARCH LINE

98946 Fo 10 BEQ OLDO2 ; IF ZERO, END OF LINE

9398 4% §7 LDA $57

Extended BASIC - A Complete Package 187

Loc CODE LINE
98%A 18 CLC
289 6% 01 ADC H$O1 ; INCREMENT FOINTER
969D 85 57 STA $57
939F A5 S8 LDA $57+1
?8A1 49 00 ADC #$00
?8A3 B85 S8 STA $57+1
98AS 4C 94 98 JmF oLDe1
93A8 A5 97 OLD@2 LDA $57 ; END OF LINE
98AA AD 00 LDY #H¢00 ; FOUND
?8AC 18 CLC
98AD 69 01 ADC H$01
?8AF 91 2P STA ($2B),Y ; SET NEXT LINE
sep1 C8 INY ; FOINTER
?8p2 5 58 LDA $57+1
98R4 69 00 ADC H¢00
98R&6 91 2P STA ($20),Y
98R8 4C F3 84 JMF RESVAR ; SET VARIARLE FOINTERS
?8PR END
POP

Abbreviated entry: P(shift)O

Affected Basic abbreviations: POKE - PO(shift)K
Token: Hex $EE,$14 Decimal 238,20

Modes: Direct and program

Recommended mode: Program only

Purpose: To remove the last GOSUB entry from the stack, thus leaving the
subroutine without changing the execution address.

Syntax: POP

Errors: Syntax error - if POP is followed by anything but a colon or
end of line marker
Return without GOSUB - if there was no GOSUB entry

Use: POP can be used in Basic programs where the user wishes to returnto, say,
a menu from within a Basicsubroutine. If a GOTO was used without POP, after
approximately 24 runs the message Out of memory will occur as the GOSUB
entries will still be active. Using the POP command removes that entry and any
FOR...NEXT loops active within the subroutine.

Routine entry point: $98BB

Routine operation: POP first checks for a syntax error. If there is none, the
stack is scanned until the first non FOR entry is found. If it is a GOSUB, the
stack pointer is set to that point and the GOSUB entry is removed. If it is not a
GOSUB, the error message Return without GOSUB is displayed.

188 Advanced Commodore 64 BASIC Revealed

LOC CODE LINE
98ER .LIB FOF
98BE FO 01 FOF BEQ FOFIT ;NULL CHAR
98BD 60 RTS :SYNTAX ERROR
9BRE :
98PE A9 FF FOFIT LDA H$FF
98CO 85 4A STA $44 ;MASK OFF "FOR’
98C2 20 8A A3 JSR $A38A ;FIND FIRST NON 'FOR’ ENTRY
98C5 €9 8D CMF #$8D :GOSUR?
98C7 FO 05 PEQ DOFOF : YES
98C9 A2 oC LDX H$0C
98CE 4C 37 A4 JNF $A437 ;RETURN WITHOUT GOSUR
98CE :
98CE 9A DOFOF TXS sMOVE FOINTER TO GOSUP.
98CF 68 FLA ;REMOVE GOSUPB. ENTRY
98D0 68 FLA
9801 68 FLA
98D2 68 FLA
$8D3 48 FLA
98D4 60 RTS ; DONE
98D5 .END
PRINT

Abbreviated entry: ‘7

Affected Basic abbreviations: None
Token: Hex $99 Decimal 153
Modes: Direct and program
Recommended mode: Either

Purpose: To PRINT characters to the open CMD output channel (usually
value three, which is screen).
Syntax: Same as in the Basic command PRINT.

Errors: As in the Basic PRINT.

Use: This version of PRINT does exactly the same as the Basic PRINT except
that a check has been made for the CTL command to be included.

Routine entry point: $98D5
Routine operation: See PRINT in Chapter 3.

Loc Cobk L INE

98D LIE FRINT

?305 20 21 AP FRNTO1 JSR $AR21 s FRINT STRING
f8De 20 79 00 FRNTQ2 JSR $0079 ;GET CURRENT CHAR
?8DE FO 5@ FRINTT BEQ FRNT@3 ;CARRIAGE RETURN
980D Fo SE FRNTOX PEQ FRNTQ7 ; SEMICOLON

?8DF C? A3 CMF #4$A3 ;TAR?

LoC

98E 1
98E3
SRES
78ES
98ES
P8EA
PBEC
938EE
?8F0
98F2
98F 4
98F7
78FA
98FD
9700
9900
2903
9905
9907
9999
goep
FI0L
9910
9912
P15
$918
9P1R
991E
7920
9922
2925
9927
2929
9928
92920
?92F
7932
9934
?936
9938
?93e
993D
993E
992E
?93E
993E
?93F
9942
?943
?944
??46
9948
9940
9940
994E
994E
99 4E
994E
994F
9750
9953
9955
9998
995A
295C

CODE

Fo
cw
18
Fo
ce
De
AQ
B1
ce
Do
20
20

4C

20
c9
Fo
ce
Fo
20
24
k1]
20
20
20
20
Do
AP
£40]
A2
[21%)
AS

Do

20
24

A9
20
49
69

38
29
o8
38
E?
£o
49
69
pe

o8
38
20
84
20
ce

4C

4B
Ad

66
EE
14
o1
7A
e2
oC
73
73
AR
D8

79
20
37
3e
61
PE
oD
c3
DD
87

e
£8
20
00
FF
o1
13
19
2D
47
13

@5

47
FF

oA

FF
01
19

Fo
0?
9B
29
03
o8

00
00
88
?8

00

AD

BD
B4
AR
AP

AP

AP

FF

FF
B7

AF

LINE

BEQ
CnF
cLC
REQ
CMF
BNE
LDY
LDA
CnF
BNE
JSK
JSKR
JSR
JNFE

T

RNT@8 JSK
Ccnr

BEQ

CMF

RER

JSR

RIT

BMI

JSR

JSR

JSR

JSK

BNE
FRNTO4 LDA
STA

LDX

LDY

LLDA

BNE

FRNTQS L.DA
JSK

BIT

BFL

LDA

JSR

FRNTO4 EOR
FRNT@®7 RTS

Extended BASIC - A Complete Package

TAR s YES

HEA6 ;SFC?

TAR ; YES

HEEE sMINE?T

FRNTO8 s NO

Heot

($7A),Y ;GET TOKEN

Heo2 ;CTL?

FRNTO8 ;NO

$0073

$0073 ;sGET NEXT CHAR
CTL ;DO CTL

FRNTQ2

$0079 ;GET CURRENT CHAR
#32C s,

FRNTQ9 ;s YES

#e3e sy Y

TARO4 ; YES

$ADYE ;EVALUATE EXFRESSION
$0D sWHICH TYFE?
FRNTO1 s STRING

$2DDD ;CONVERT FACHIL TO STRING
$£487

$AR21

$AR3R

FRNTO2

H$00

$0200,X

HeFF

#eo1

$13

FRNTO7

#s0D ;CARRIAGE RETURN
$AR47

$13

FRNT@6 ;sFILEH-128 NO LF
H30A :LINE FEED

$AP47 ;FRINT IT

HEFF

:DECIMAL TARLUATOR

FRNTO9 SEC

JER TFFFQ :GET CURS0R FO%5
TYA
SEC
FRNT10 SPC #$0A sMINUS 10
RCS FRNT1@
EOQOF H$FF
ADC H#$el
ENE TAPRO1
;TAP AND SFC
TAR FHF
SEC
JSR $FFFQ ;GET CURSOR FOSITION
STY $@9 s8TORE IN TEMF
JSR ¢R79P ;GET 1 BYTE FAR
CMF H$29 ;’)'?
REQ TAR10 3 TES
JMF tAFO8 ;SYNTAX ERROR

189

190 Advanced Commodore 64 BASIC Revealed

LOC CODE LINE
995F 28 TAR1O FLF ; TAR OR SFC?
9960 90 06 RCC TARO2 3 SFC
9962 8A TXA ; TAB VALUE
9963 €5 09 SBC $09 ;MINUS COLUMN FOSITION
9965 90 65 BCC TARO4 ;LESS THAN
9967 AA TARO1 TAX
9968 E8 TARO2 INX
9969 CA TAR@3 DEX
9964 DO 06 ENE TAROS
996C 20 73 00 TARO4 JSR $0073 ;GET NEXT CHAR
994F 4C DD 98 JNF FRNTO3 ;BACK TO FRINT
9972 20 3p AR TAROS JSR $AR3E ;OUTFUT SFACE/RIGHT
9975 DO F2 BNE TARO3 ;ALWAYS
9977 4C 1E AP JNF $ARIE
9974 .END
PUT

Abbreviated entry: P(shift)U

Affected Basic abbreviations: None

Token: Hex $EE,$15 Decimal 238,21

Modes: Direct and program

Recommended mode: Direct

Purpose: To list a Basic program to a disk file without line numbers.
Syntax: PUT filename, d - where d is the device number (disk only).

Errors: lllegal device - if the device number specified is less than eight
Missing filename - if a null filename is specified
Device not present - if no disk drive is connected
Too many files - if ten files are already open
Disk errors - at the end, the disk error channel is read and
displayed

Use: PUT is used in conjunction with GET to allow the editing of Commodore
assembler source files. PUT can also be used as an alternative save method for
Basic programs so that they may be run by using the EXEC command. See
EXEC for an example of use.

Routine entry point: $997A

Routine operation: The filename is read along with the device number and
checks are made for missing filename and illegal device number. If these are OK,
the file is then opened and each line is output using the Print tokens routine to
the file. At the end of each line a carriage return is set and an extra carriage
return inserted at the end of the file. The file is then closed and the disk error
channel is read and displayed.

Loc

?97A
997A
2970
9580
9983
9986
9989
99ER
998D
998F
9991
9993
9995
9596
9998
999A
?99C
999E
9940
?9A2
9974
P9Ab
P9A9
I9NA
?9AC
99AC
?9AE
9961
?9B4
9987
?98.9
99eLp
998.C
99eD
P9BF
99C1
?9C3
9?9CS
99C8
99CA
99CC
99CF
99CF
9902
99D3
9905
9907
9909
990R
99DD
?9DD
99DF
P9E1
99E4
PPES
99E?
9PER
99ED
99F 0
99F 0
99F2
G9FS
99F7
99F€e
99FA
99FC

CODE

4C

Ab
29
(3]
69
L4
B1
99

6F
44
FB
Fo
33
28

5 SF

2C
60
29

SF
SF
04

17
e
29
29
D2

Fo

eD
D2
3A

55

(-1
SF

SF
69
SF
oD
D2
9?0
EQ
9?1

SF
E®
22
F4
ce
EE
25
D?
2
BA
7F
49
Ab

B8
ce
3C

09
BB
00

98
?A
?9
?9
AS

FF

FF
94
8A

FF

?9

FF

LINE

Extended BASIC - A Complete Package

LIR PUT

FUT JSK
JSR
JSK
JSR
JSK
L.DA
STA
L.DA
STA
FUTO2 LDY
LDA
INY
ORA
REQ
LDY
FUT@3 LDA
BEQ
RMI
cnr
RBEQ
FUT@4 JSR
INY
BNE

~e

n

‘UTEND LDA

JSR

JSR

JnF
FUTNL LDY
LDA
TAX
INY
LDA
STA
STX
LDA
JSR
LDA
BENE
JMF

FUTQT JSR
INY
LDA
PEQ
CnF
BENE
REQ

7

FUTTK CnF
BEQR
JSK
BMI

FUTTK1 JSR

FUTTK2 AND
LDY
JnE

14

FUTOUT LDX
JSR
BCS
RTS

FUTOFN LDY

FUTOF1 LDA
STA

DFARS
FUTMES
FUTOFN
FUTOUT
$4533
$2p
¢SF
$2C
$40
H$00
($5F),Y

($5F),Y
FUTEND
H$04
($5F),Y
FUTNL
FUTTH
He22
FUTAT
$FFD2

FUTOZ

H$oD
$FED2
FUTCLS
DISKe1
#3100
($5F),Y

($5F),Y
$60

$5F
#30D
$FFD2
$90
FUTEND
FUTO2

$FFD2

($5F),Y
FUTNL
H322
FUTAT
FUTQ4

H$EE
FUTTK1
FRINOY
FUTTK2
FRINO3
HE7F
$49
FUT@4

$E8
$FFCY
FUTOF3

Hs00
(see), Y
$0200. Y

;GET FILENAME FARAMETERS
s TURITING. .’
sOFEN FILE
:SET OUTFUT
{RE~-CHAIN FROGRAM
;SET FROG FOINTER
;T0 START OF FROGRAM

;END OF FROGRAMT

;YES
sFOINT TO FIRST CHAR

;END OF LINE
;FRINT TOKEN

;I8 IT A QUOTE?
:YES DO IT

;FRINT CHAR

;SET TO NEXT

;D0 NEXT (ALWAYS)

; CARRIAGE RETURN
sFRINT IT

;CLOSE FILE

;DISFLAY DISK MESSAGE

;GET LINK LO

sGET LINK HI
;STORE AS NEXT FOINTER

;CARRIAGE RETURN
+FRINT IT
(STATUS

JEXIT IF BAD

JERINT IT

;NEXT BYTE

:GET BYTE

:END OF LINE

;s QUOTE?

:NO

;OUTFUT AND DO NEXT

MY TOKEN?

;s YES

:TOKEN TO TEXT

s ALWAYS

;CONVERT TO TEXT AND FRINT
sMASK TOF BIT

{RESTORE .Y

+SEND AND DO NEXT

sFILE NUMPER
;SET OUTFUT
; ERROR

;GET NAME BYTE
;GTORE IT

191

192 Advanced Commodore 64 BASIC Revealed

LocC CODRE LINE
P?FF C8 INY
50400 C4 B7 CFY 07 ;END OF NAME?
002 DO F6 RNE FUTOF1 ;NOT YET
7604 A2 Q0 LDX #H¢oe
2006 BD 36 %A FUTOF2 LDA FUTSW,X ;GET BYTE
96407 99 00 02 STA $@200,Y ;STORE 1T
?A0C EB INX
940D C8 INY
PA0E EO 04 CEX #3004 s DONE?
70410 DO F4 ENE FUTOF2 s NOT YET
?A412 A9 61 LDA H$61
$A14 8U B9 STA $B9
fA16 84 B7 FUTOF4 STY $B7 s FILENAME LENGTH
?H18 A9 00 LDA #4090
PA1A 79 00 02 STA $0200,Y
241D Ae o2 LDY H#02
?A1F 85 BR STA $BR ;FOINTER 1O
?n21 84 BC STY $BC ;FOINTER HI
?A23 A9 OE LDA H$0E
FA2E 20 AZ BA JSR GETN1 ;GET FILE NUMBER
9428 85 B8 STA $B8 sFILEH
9A2A €D 92 8D STA EXECNO ;FOR EXEC
9420 20 CO FF JSR $FFCO ;OFEN
9630 PO @1 BCS FUTOFZ ; ERROR
PA32 40 RTS
9A33 4C F9 EO FUTOFZ JMF $EQF9 ;OUTFUT ERROR
?A36 2C 53 FUTSW .BYT 7 G, W’
PAZA H
PA3A A2 03 FUTCLS LDX H$03
9a2C 20 C9 FF JSR ¢FFC? ;OUTFUT TO SCREEN
?03F A2 00 1LDX #$00
9Aa41 20 Cé& FF JSR $FFC6 ;s INFUT FROM KEYROARD
?044 AD 92 8D LDA EXECND
9447 4C C3 FF JMF $FFC3 ;CLOSE FILE
PA4A H
Ph4hA A9 T4 FUTMES LDA HFMESSG ;FOINTER TO MESSAGE
PA4C AQ 9A LDY H:FMESSG
PA4E 2@ 1E AR JER $ARIE 1FRINT MESSAGE
PA31 4C C1 FS JNF $F5C1 :FRINT FILEMNAME
9454 57 G2 FMESSG .BYT "WRITING ', $00
PASC 00
9A5D .END
RENUMBER

Abbreviated entry: R(shift)E

Affected Basic abbreviations: READ - RE(shift)A
Token: Hex $EE,$16 Decimal 238,22

Modes: Direct and program

Recommended mode: Direct only

Purpose: To renumber a Basic program in even line number steps. All RUNs,
GOTOs, GO TOs, GOSUBs, and RUNs are renumbered if found.

Extended BASIC - A Complete Package 193

Syntax: RENUMBER start,step - where start and step are values between ()
and 63999 (variables are not allowed).

Errors: Syntax error - if the syntax above is wrong
Syntax error - will occur in pass 1 if a number following any
of the commands mentioned in ‘Purpose’ are
<P or >63999
Undefined xxxxx in old line yyyyy - if a line does not exist
Syntax error - will occur in pass 2 if the new line number is
greater than 63999

Use: RENUMBER is useful for opening up program lines for the insertion of
more lines or just making the program tidy after it is finished. All commands
that contain line numbers will be changed so that the new line number is
inserted:

RUN xxxxx

GOTO xxxxx

GO TO xxxxx

GOSUB xxxxx

THEN xxxxx

ON exp GOTO XXXXX,XXXXX.....
ON exp GOSUB xXXXX,XXXXX.....

Routine entry point: $9A5SD

Routine operation: The start and step are read in and Syntax error is output if
they are out of range. Pass 1 is displayed and performed. At each occurrence of a
branch as above, the routine will print a *.’ character. If the line does not exist,
the error message Undefined xxxxx in old line yyyyy will be displayed and
replaced with the number 65535 (illegal). This is done throughout the program
until the end is found. Then pass 2 is displayed and the line numbers are changed
to the new values. Note: If Syntax error is encountered in either of the passes,
the renumber process will be stopped but the program will be partly renumbered
and thus will not run.

Lac CODE L.INE

FADD .LIP RENUMRER

FASD 20 4B AT RENUME JSE 3A94P :GET START

PA6Q AT 14 LDA $14 ;LGB

A62 D DB 9 STA RENSRT ;STORE IT

P65 AT 15 LDA $15 1 MSER

067 8D D9 9A STA RENSRT+1 ;STORE IT

?A6A 20 FD AE JSR $#AEFD ;SCAN 77

FALD 20 4B A9 JSK $AT4R ;GET STEF

PA7e AT 14 LDA %14 ;LSE

72 8D DA FA STA RENSTF ;STORE IT

PA7S AT 15 LDA %15 s MSR

2677 8D DB %A STA RENSTF+1 ;STORE IT

n7A 20 BE Aé JSR $MA4LBE ;SET CHARGET FOINTER
247D 20 8C %A JSK RENMS1 ; SEND FASS1 MESSAGE
FARG 4C 35 9B JMF RENFS1 ;FASS 1

enez 2@ BE Ab RENUQ1 JSR ¢A6BE ;SET CHARGET FOINTER

194

Loc

086
*nge
?M8C
?A8C
PABM
?ALC
PASE
°A?9
NP2
094
PAPS
FAFQ
FATT
20HA9
FHAA
FAAR
?aNnC
?ARC
2MHBD
FARE
PARF
SACY
260CA
?2aD7
fAD8
?AD2
SAD8
?ADB
FADA
FADC
PADE
PAEQ
FAER2
FAEZ
9AE4
FAES
PAESL
AET
9AES
PNE?
PAE?
FHE?
PAE?
9AES
PAEC
SAEE
A9
PHF 3
PAF 4
FAFS
9AF?
FAFC
FAFD
SAFF
?Re2
?B.03
RS
9BQ&
809
9eoC
PROF
?B12
FR1S
Sp1e
PR1R

Advanced Commodore 64 BASIC Revealed

CODE

20
4C

A
Ao
De
[:3%
AR
40C

24
oD
ee
oD
20
ep
00
oD

)

0Q
20
(14

0e
00
0Q
0

20
ee
(4%}
879
8A
en
A7

20
hQ
P21
8D
c8
B1
8D
AD
c8
k=]

AD
c8
21
18
aD
6D
8D
AD
6D
aD
[21))
Fo

92
EQ

99
A
24
AR
9h
1E

4E

49

2A
00
74
DC

74
oD
D3

7A
D¢

74

D8
DA
D8
D?
e
p?
DD
oA

?n
Ph

AR

e

kG

7A
A

94

LINE

JSKR
JNF

RENMS2
RENFG2

;SEND FASS2 MESSAGE
;00 FASS 2 AND END

;TELL USER WHAT WE ARE DOING

RENMS1 LDA H<FSIMES ;FOINT TO
LDY H:FSIMES ; MESSAGE
BNE RENMS3 ;SEND IT
RENMS2 LDA H-FS2MES ;FOINT TO
LDY H:FS2MES ; MESSAGE
RENMS3 JMF $ABRI1E ;OUTFUT MESSAGE
FSIMES .BYT ’#x#% FASS 1 »xxx’ 40D, 6 $00

=S JBYT $0D, "xxxx FASS 2 xxxx’ ¢0D,$00

RENILL .BYT ¢0D, UNDEFINED *,6 ¢0@

RENILL .BYT 7 IN OLD LINE ’,6 %00

.

{UARTABLES USED

RENSKRT .WOR o ;START OF RENUMBER
RENSTF .WOR © {RENUMBER STEF
RENLNK .WOR @ ;FOINTER:START OF #
RENLNO .WOR © ;FOINTER:START OF LINE
RENUST .WOF © ;WAKM START STORE
RENLEN .BYT @ (LENGTH: JUMF H
RENLNT .BYT ©
RENTRL .BYT 300 ;DUMMY

LBYT 89 6070

.BYT 384 TRUN

.BYT $8D ;Gosue

.BYT 3A7 : THEN
RUNT =1 :TOKEN VALUE OF MY RUN
(FASS 2
RENFS? JSR RENUQZ ;GET NEXT BYTE
RENFS3 LDY H$00

LDA ($7A),Y ;GET BYTE

STA RENLNK sNEXT LINE LO

INY

LDA (37A),Y :GET BYTE

STA RENLNK+1 ;MEXT LINE HI

LDA RENSRT ;GET LINE NUMBER LO

INY

STA (37M),Y ;STORE IT

LDA RENSRT+1 ;HI

INY

STA ($7A),Y ;STORE IT

cLe

LDA RENSRT +GET LINE# LO

ADC RENSTF ;ADD STEF

STA RENSRT +STORE IT

LDA RENSRT+1 ;HI

ADC RENSTF+1 ;ADD STEF

STA RENSRT+1 ;STORE IT

LDA RENLNK+1 ;GET LINK HI

REQ RENUXT ;ZERD, END OF FROG

LoC

?B1D
PB1F
P22
PR24
?R27
PR2A
9B2A
PB2A
FB2A
PB2A
9r2C
9B2E
P39
QR32
7824
P3G
FBIT
FR3S
BTG
?R38
SRIR
?B3D
949
R42
045
PR47
FR4A
9B 4D
FRGe
PR53
RIS
R57
FRG?
PRIR
FBGD
9R5F
9060
PRS2
9R64
9B.67
P69
PR6A
FE60
PR6E
870
%B73
?BR7G
QR77
9879
P8.7C
9R7E
?B80
82
PB84
FE87
9839
7880
PR3E
B8P
301
e8P
?B8D
9B90
?BR93
b4]

COGE

8%
aD
8%
4C
4C

20
29
Do
4C
A%
an
AS
210}

20 ¢

20
c?
Fo
ce
Fo

Fo
AA
1e
n2
(3]
Fo
Ca
0o
co
Do
20
ce
De
Fo
20
Fo
ce
Fo
Do
20
ce
Do

A%
20
20
?0
4C

7B
DC
7
EC
74

26
24
e3
83

DE
7.
DF
26

20
5]
DE
EE
29
22
14
EE
04
E4
22
Fa
ce
E®
72
A4
o]
12
2A
B7

22

pogts

CE
FS
24
21

<)

?4

8
A4

ks
PP

PA
?0
24
e

PR
k4

FhA

29

sB

?B

FF
00

9C

LINE
STA
LDA
5TA
JnF
RENUXT JMF

Extended BASIC - A Complete Package

$70
RENLNK
$70
RENFS3
$A474

;GET LO

:AND AGAIN

;BACK TO "READY’

;SUBROUTINE TO GET MNEXT CHAR

; WITHOUT SCANNING

RENU@2 INC

ENE

INC
KENU@3 LDY

LDA

RTS
;FASS 1
RENFS1 JSR
JSR
ENE
N
LDA
STA
LDA
STA
JSK
JSR
JSR
CoE
LEQ
ChF
EEQ
CHF
REQ
TAX
PFL
LDX
CHF
REQ
DEX
ENE
Chp
PNE
JSK
ChF
ENE
REQ
JSK
REQ
ChF
BER
ENE
JSR
CHF
P.NE

RENFO1

RENFO2
REMF12

RENFOZ

RENF@4
RENFOG

; FOUND.
RENFO6 LDA
SR
JSK
BCC
JMF

$70
RENUO3
%70
HteoQ

($78),Y

RENUO2
RENUQ2
REMFQ1
RENUO1
$70

RENLNO
$+7E

REMNLNO+1

RENLIQZ
RENUQ2
RENU@2
Hioe
RENFS],
H3EE
RENFQG
e
RENFO4

RENFQ2
Heos

RENTEL
RENF Q54

RENFOZ
HECP
RENFO2
$0073
H3N4
RENF12
RENF0O6
RENUO2
REMFS1
H$22
RENFO2
RENFQ4
RENUQ2
HRUNT
RENFQ2

.
$FFD2
$0073
RENF356
RENUO4

ONE OF THE FIVE TOKENS

FAST SFACES

;BURF LO

BUMF HI
;SET INDEX
;GET BYTE

;GET BYTE

(GET RYTE
;NOT END OF FROG
;END OF FROGRAM
sGET FOINTER LO
J&TORE IT
sHI

(STORE IT

:CET BYTE

(GET RYTE

;GET BYTE

(END OF LINE?

1 TES

(MY TOKEN?

JYES

LGUOTES?

s MOT A TOKEN
s LOOF TEST TOHENS
s CHANGE ITY

s YES

D0 NEXT

IS IT "GO’ 7
:HO

s NEXT CHARACTER
;I8 IT 1077

s NO

; YES

;GET RYTE
:END OF LINE
;IS IT QUOTES?
;YES, DO NEXT
;ALWAYS

;GET BYTE
sRUN TOKEN?
:NO

HAS BEEN

;TELL USER DOING
SPRINT IT

sGET MEXT CHAR
(IS A NUMBER
;CHECK FOR 7,7

195

196 Advanced Commodore 64 BASIC Revealed

L0C COBE LINE

PB928 AT 7A RENFS6 LDA 374 ;GET FOINTER LO
PBE9A €D DC 9A STA RENLNK ;STORE IT

PR9D AT 7B LDA $7B sHI

2B9F 8D DD %A STA RENLNK+1 ;STORE IT

YRA2 AQ 00 LDY #300

9BA4 R1 7h RENFO7 LDA ($7A),Y ;GET BYTE

?BA6 C8 INY

9RA7 C9 30 CMF H$30 ;LESS THAN 077
PRA9 20 04 BCC RENFOS8 ; YES

BAR CT 2A CMF He3A ;NURERIC?

RAD 9O FS RCC RENFQ7 ; YES

JBAF 8@ RENF@8 DEY

72RO 88 DEY

9BE1L 8C E2 9A STY RENMNLEN ;STORE LENGTH
PRR4 AT 7A LDA $7A7

9BR& DO 02 ENE RENURS

?BR8 C6 7P DEC $7B

9BRA C6 7A RENUQG DEC $7A

PBRC 2@ 73 @0 JSR $0073 ;GET CHARACTER
9BRF 2@ 6B A% JSR ¢A96P ;GET LINE NUMPER
PRC2 20 6C 9C JSE RENF18 ;CALCULATE NEW NUMBER
98CS AD DE 9A LDA RENLNDO ;RESTORE START OF LINE
FRCB 85 7A STA $7A ;L0

P8CA AD DF 9A LDA RENLMNO+1

fRCDO 85 7R STh $7B s HI

SRCF 20 2A 9D JSR RENUQ2 ;GET LINE# LO
9BD2 8% 14 STA %14 :STORE XT

PED4 20 2A SR JSE RENUO2 sHI

9eD7 85 15 STA $15 :STORE IT

9809 A2 20 LDX H%ee

FRDR 20 24 9P RENF1¢ JSR REMNUQ2 GET BYTE

PRDE 48 FHA

PBDF AS 7A LDA %74 REACHED NUMRER?
9BEL CD DC 9A CMF RENLNK

7RE4 DO 07 ENE RENMGe (NOT YET

9BES6 AL 7R LDA $7P

PREB CD DD 94 CAF RENLNK+1

PRER F2 o7 BEQ RENFS1 YES

YRED 9 RENF3Q FLA

FREE 9D ¢0 o2 STA $0200,X 1 STORE BVTE
9BF1 EB INX

PBF2 D@ E7 ENE RENF10 sALWAYS

PRF4 48 RENFS1 FLA

9BFS A9 00 LDY #H¢00

FRF7 B9 @0 01 RENF11 LDA $0100,Y ;GET NEW LINE#H
9BFA FO 07 BEQ RENF13 ;END OF STRING
9RFC 9D 00 02 STA $0200,X ;STORE IT

9BFF (8 INY

PCeo E3 INX

?CQ1 DO F4 BNE RENF11 ;ALWAYS

9C03 8C EIZ 9A RENF13 STy RENLN1

?C06 AL E2 94 LDA RENLEN ;GET LENGTH
?C9? 13 CLC

9COA 65 7A ADC ¢74A ;ADD TO FOINTER
?CeC 5 7A STA %74 ;STORE IT

9COE A5 7B LDA $7B s HI

9C10 67 00 ADC H$00

9C12 85 7R STA ¢7B

9C14 20 24 9P RENF14 JSR RENUQ2 ;GET BYTE

?C17 9D o0 o2 STA $0200,X ;STORE IT

?C1A FO 03 BEQ RENF15 ;END OF LINE
9CiC EB8 INX

?C1D DO FS ENE RENF14 ; ALWAYS

9C1F 8A RENF1S5 TXA

fC20 12 cLC

Extended BASIC - A Complete Package 197

LaC CODE LINE

9C21 69 05 ADC #3$05 ; INCREASE PUFFER FOINTER
PC23 85 @R STA %0R ;AND STORE IT

9C25 AD @2 o2 LDA ¢0302 ;GET WARM START LO
2C28 8D EQ 94 STA RENUST :STORE 1T

SC2E AD 03 03 LDA 403032 s HI

9C2E 8D E1 94 STA RENUST+1 ;STORE IT

2C31 A9 40 LDA #<RENF16 ;SET WARM START
?C33 8D 02 03 STA 30302 ; VECTOR TO RETURN
?C36 A9 9C LDA H:RENF16 ; TO FROGRAM

?C38 8D 03 @3 STA $0303 ; AFTER MAKING CHANGE
SCIP. A4 R LDY soe :GET BUFFER FOINTER
PC3D 4C A4 A4 JNF $A404 ; CHANGE LINE

9C4@ AD EO 9A RENF16 LDA RENUST ;RESTORE WARM
?C43 8D 02 o3 STA %0302 ;START VECTOR

9C46 AD E1 94 LDA RENUST+1

9C4? 8D 03 03 STA $0303

9C4C CE E3 94 DEC RENLN1

PC4F AD EZ 247 LDA RENLN1 :MOVE TO END OF
PCH2 1e cLc ;NEW LINEH

?C33 6D DC 2?4 ADC RENLNK

9CT6 8S 7A STA $74A

FCI8 AD DD 24 LDA RENLNK+1

PCER 69 @0 ADC Hio0eQ

fCsD 85 7R SThA $7R

9CSF 20 72 00 JSR ¢90073 GET MEXT CHAR
PCs52 C9 2C RENU@4 CMF W7, (IS IT A COmmaTY
GC&4 FO 03 BEQ REMF17 S YES

?C66 4C 53 9B JMFRENFL2 :TRY NEXT CHAR
9CE? 40 er 9p RENP17 JMF RENFQ& D0 MEXT LINE#
PCAC :

PCeC ;CALCULATE NEW LINE HUMPER

9CeC :

9C6C 20 8E A4 RENF16 JSR $A68E ;SET CHARGET FOINTER
PC6F AD D8 24 LDA RENERT SET LINE NUNMBER
?C72 85 &3 STA $63

?C74 AD D? 94 LDA RENSRT+1

gC77 85 62 STA $62

PC79 20 24 9P RENF1? JSR RENU®2 ;GET BYTE

?C7C 20 2A SR JSK RENUO2 ;GET BYTE

9C7F DO 41 BNE RENF20 ;NOT END OF FROG
2081 A9 9D LDA #$9D

7C83 20 D2 FF JSR $FFD2

2C8s A9 2@ LDA H$20 ;FLAG ERROR

?C88 20 D2 FF JSR $FFD2

gcep a9 BE LDA H-RENILL

?C8D AQ 9A LDY H>RENILL

9C8F 20 1E AR JSR $ARILE s FRINT

?C?22 A5 15 L.DA %15

7C?4 A6 14 LDX $14

?C?6 20 CD BD JSR $BDRCD ;FRINT NUMBER

9C99 A9 Ch LDA #<RENIL1

7CP8 A0 9A LOY HFRENIL1

9C9D 20 1E AR JSK $ARI1E ;FRINT

9CA@ AD DE %A LDA RENLNO

FCAZ 8S FB STA $FE

?CAS AD DF %A LDA RENLNO+1

9CAL 8BS FC STA $FC

?CAA A0 01 LDY H$01

¢CAC R1 FPR LDA (¢FR),Y

SCAE AA TAX

9CAF €8 INY

7Ceo e1 FB LDA ($FR).,Y

9ce2 20 CD BD JSR ¢BDCD ;FRINT LINE NUMBER
PCRS A% oD LDA HéOD ;CARRIAGE RETURN

QCR?7 20 D2 FF JSR $FFD2 sFRINT IT

198 Advanced Commodore 64 BASIC Revealed

LocC CODE LINE

PCRA AP FF LDA HIFF ; ILLEGAL LLINE NUMRER
9CRC 85 &3 STA $63 365535

9CBE 85 62 STA 362

9cCe 3¢ ©E BMI RENF21 s ALWAYS

9CCZ 20 247 9B RENF20 JSR RENUO2 ;GET RYTE

9CCS CS 14 CMF €14 ;SAME AS LINEH?
9CC7 Do 190 BNE RENF22 ;NO

9CC? 20 2A 9B JSR RENU@2 ;GET BYTE

9CCC CS 15 CMF $15

SCCE Do ocC BNE RENF23 ;NO

?CDho A2 90 RENF21 LDX #$90

9CD2 38 SEC

9CD3 20 42 BC JSR $RLC49 ;CONVERT LINE
9CD& 4C DF BD JNE ¢RDDF ;s NUMBER TO ASCIY
9CD? 20 24 9B RENF22 JSR RENU@2 :GET RYTE

9CDC AT 63 REMF23 LDA $63 s BUMF NEW LINE
yCDE 18 cL.C ;s NUMBER RY

9CDF 6D DA 9A ADC RENSTF (STEF

FCE2 85 53 STA $63

9CE4 A5 62 LDA $62

9CES 6D DR 94 ADC RENSTF+1

GCE? €5 62 STA $42

FCER 20 2A %R RENF24 JSR RENUQ2 ;GET PYTE

SCEE Do FE BNE RENF24 (NOT END OF LINE
?CFe Fe 97 REQ RENFL19 sALWAYS

¢CF2 JEND

REPEAT and RUN

Abbreviated entry: REPEAT RE(shift)P
RUN R(shift)U

Affected Basic abbreviations: None

Tokens: REPEAT Hex $EE,$17 Decimal 238,23
RUN Hex $EE.$01 Decimal 2381

Modes: Direct and program
Recommended mode: Either

Purpose: REPEAT is the opening boundary of a REPEAT...UNTIL loop.
RUN is the same as Basic RUN except the REPEAT stack pointer is cleared.

Syntax: REPEAT
RUN [line number]

Errors: REPEAT - Out of memory - if more than 61 nested
REPEAT loops are active
RUN as in Basic RUN

Use: REPEAT...UNTIL is a very powerful looping method. For example:
10 REPEAT:GET A$:UNTIL Ag§="

Extended BASIC - A Complete Package 199
will pause until the space key is pressed. The Basic version would be:
10 GET AS$:IF A$<>*” THEN 1¢

The method is very simple to understand. It means REPEAT do something
UNTIL done. The REPEAT...UNTIL loop does not use any of the processor
stack for its storage; the RAM behind the Basic ROM is used. This enables
more complicated calculations than a FOR...NEXT loop which takes up a
valuable 18 bytes of the stack.

Routine entry point: REPEAT $9CF2
RUN $9D19

Routine operation: REPEAT checks for its stack being out of memory. If it is
not then the command pointer and current line number are stored in the
REPEAT.. .UNTIL stack and the stack pointer bumped (decreased) by 4. RUN
just sets the REPEAT stack pointer to zero and executes the normal RUN.

L.OC CODE LLINE
QCF2 . .I.IB REFEAT
CFZ AD 24 9D REFEAT LDA REFESK sGET STACK FOINTER
9PCFS C9? Fe CMF H240 sROOM ON STACK?
YCF? Do @3 ENE REFE@1 ;s YES
PLF? 4C 39 A4 JNF $A435 ;70UT OF MEMORY’
9CFC AA REFEQ1 TAX ;STACK FOINTER
PCFD A5 7A LDA 37A ;s COMMAND ADDRESS LSPR
9CFF 9D ee BT STA $REQO,X sSTORE IT
D02 A% 7B LDA $7B 1 MSE
?0e4 9D @01 BE STA $PE®1,X :STORE IT
9007 AS 39 LDA $39 ;CURRENT LINE H LSE
$D09 9D @2 PE STA $BEQG2,X ;STORE IT
?DeC AS 3A LDA $3A ; MSe
SDOE 9D @2 BE STA $PE@3,X ;STORE IT
D11 8A TXA : INCREASE STACK
?D12 18 cLC sFOINTER RY
D13 69 04 ADC H$04 4
¢D1% 3D 24 9D STA REFESK
D18 60 RTS
$D19 ;
F019 A9 090 RUN LDA #H$00 sCLEAR REFEAT STACK
9D1B 8D 24 9D STA REFESK
9D1E 20 79 0@ JSR $0079 ;GET LAST CHAR
?D21 4C 71 A8 JNF $A871 : RUN
D24 H
D24 @0 REFESK .BYT ©
9025 .END
SORT

Abbreviated entry: S(shift)O
Affected Basic abbreviations: None
Token: Hex $EE,$18 Decimal 238,24

200 Advanced Commodore 64 BASIC Revealed

Modes: Direct and program

Recommended mode: Either

Purpose: To sort a string array into alphabetically ascending order.

Syntax: SORT string array name. The string array name must be 1 or 2 bytes
long, this being the characters of the name (without the § character)

Errors: Syntax error - if no name is specified
Array not found - if the string array specified does not exist
Incorrect dimension - if the string array specified has more
than one dimension
Insufficient elements - if the string array has only 1 element

Use: SORT is a bubble sort routine that will sort a string array so that all of the
strings in the array can be read in alphabetically ascending order. For example:

AS$() After SORT A
¢ TEST AFTER
I SORT BUBBLE
2 NAME NAME
3 BUBBLE READ
4 AFTER READING
5 READING SORT
6 READ TEST

Routine entry point: $9D25

Routine operation: The array name is first read in and stored away in the Basic
format for string arrays. The array storage area is then scanned for that array,
- and if not found the message Array not found is displayed. If the array is found
the number of dimensions is checked, and if more than one dimension the
message Incorrect dimension will be displayed. If that is OK the dimension is
checked, and if it is only one value the message Insufficient elements is
displayed. If all checks are OK the array is then sorted.

The method of the sort is rather complicated, and anyone wishing to know
how it is done can follow the assembly listing or refer to Library of PET
subroutines written and published by Nick Hampshire, from where the original
routine was taken.

Lac CODE LINE

YD2% .LIB SORT

9025 20 79 00 SORT JSKR $0079 ;GET 1ST CHAR NAME
fD238 8D Fo PE STA CA $STORE IT

9D2E 20 73 00 JSR $0073 ;GET 2ND CHAR

9D2E 08 FHF

9D2F @9 8@ ORA H$80 ;SET HIGH RIT

?031 8D F1 9E STh CB ;STORE IT

$D34 28 FLF sNULL 2NHD?

9035 Fo 04 BEQ SORTQO ; YES

e0I7 20 73 @@ JSR $0073 sCHARGET FOR NEXT COMMAND

L0C

FD3A
902D
YD3F
D42
042
2044
9046
?D48
9D4A
FD4A
9D4C
?D4E
?050
oDS2
D54
?DG6
D58
2DSP
05
9DSD
PDGF
D62
7Dé64
9D65
D67
FD6A
?D6C
FD6C
PDLE
eD70
9073
FD74
9D76
SD79
076
7D7C
9D7F
081
7083
086
2088
08A
7D8A
onecC
?D8E
D90
092
D94
097
D97
FD99
ID7P
PDPE
FD9F
FDAL
9DA4
FOAT7
DA%?
?DAC
9DAE
sopo
9pR2
7DRS
0RS
?0e8

COlE

4C

A9
8D

AS
[
J

AS
85

AS
Cs
Do
AS
co
Do
A9
4C

21}
B1
cb
Do
c8
B1
CD
Fe

AQ
B1
ep
c8
=31
8D
i8
AT
6D
8%
AS
6D
89
20

217
B1
ce
Fo
A?
4C

A
Bl
ep
c8
B1
8D
AD
[81%)
ab
ce
ee
R¥4
4C

aD
8D

42
80
Fi

2F
22
30
23

’7:)

e
23
32
05
00
2B

00
22

Fo
o8

20

Py

F1
1E

02
a0
Fa
22
FR
22
Fa
23
Fe
23
ce

Q4
20
01
05
o1
9E

[}
202
22

Fa

22
F2
F3
oC
F2
02
03
02
9B

F2
Fé4

70

9F

PE

?E

€

FE

9E

9E

YE

E

?E
PE
$43

SE

9E

L
SE

LINE

SOKRTOO

SORTO1

SORTO2

SORTO3

SORT04

SORTOS

SORTO4

SORTO7

JNF
LDA
STA

LDA
STA
LDA
STA

LDA
CcnrF
BNE
LDA
CHF
ENE
LDA
JMF

LDY
LDA
CHF
ENE
INY
LDA
CMF
BEQ

LDY
LDA
STA
INY
LDA
STA
CLC
LDA
ADC
STA
LDA
ADC
STA
ecc

LDY
L.DA
CMF
REQ
LDA
JNF

Loy
L.DA
STA
INY
LDA
STA
LDA
BNE

LDA
cmr

BCS
LDA
JMF

LDA
STA

Extended BASIC - A Complete Package

SORTO1
#$80
ce

$2F
$22

$2F+1
$22+1

$22
$2F+2
SORTO3
$22+1
$2F+3
SORTO3
H$00
SORT21

H$00
($22),Y
cA
SORTO4

($22),Y
ce
SORTOS

He02
($22),Y
TEMF

($22),Y
TEMF+1

$22
TEMF
322
$22+41
TEMF +1
$22+1
SOKTO2

HE04
(£22),7
LELD
SORTO6
H3e1
SORT21

Hi05
(8220,

NOOFE+1

(£22),Y
NOOFE
NOOFE+1
SORT@7
NOOFE
Heo2
SORT@7
H$02
SORT21

NOOFE
NOQFC

;SET FOINTER
; TO ARRAY

;END OF ARRAYS?
s NO

:NO
; ARRAY NOT FOUND

s NAME CORRECT?
1NO

; YES
;ADD LENGTH OF ENTRY

; TO FOINTER AND
3 CHECK NEXT

1 ALWAYS
; GET ARRAY DIMENSION

sONLY 1 DIMENSION
 INCORRECT DIMENSION

GET NUMRER OF ELEMENTS
;ENQUGH ELEMENTS?
:YES

:TES
;TOO FEW ELFMENTS

;SET COUNTDOWN
; FOR NUMBER OF

201

k44
?DBRE
9DC1
gDC1
9DC3
90C6
9DC9
gDCC
FDCF
90D2
?DD4
?0D6
enD?
?0D%
?0DC
?DDE
?DE1
9DE3
PDE4
9DE4
7DES
9DE7
?DE?
9DER
9DED
9DEF
9DF1
9DF1
9DF3
9DFS
9DF8
$DF9
9DFP
$DFD
9DFE
FE00
€02
9E03
PEQT
PFE08
FEQ9
PEQD
PEOD
PEQE
PELQ
9E12
9E15
9E17
PELA
9EIC
PELE
9E20
PL22
PE24
PE26
PE29
PE29
PE2N
9E2C
PE2F
9E31
PE33
PEIS
PE3S
PE38

Advanced Commodore 64 BASIC Revealed
CODE

AD
8D

A?
8D
8D
8D
CE
AD
C?
Do
CE

AD
Lo
ab
Do
60

1e
AS
69
85
A5
69
85

AQ

Bl :

8D
c8
Bl
89
ce
B1
8%
c8
B3
8D
c8
R1
8%
ca
B1
85
AE
Fo
hE

Fo 2

no
B1
D1
Fo
?e
4C

c8
Fo
cc
99
Fo
Ro

cc
90

F3

FS

o0
FC
Fg
F9
Fé4
Fé
FF
03
FS

FS

06

Fé4
o1

24

04
07
25

F7
E4

9E
PE

9E
9E
9E
9E
9E

9E
9E
9E

9E

k4

9L

9E

9E

k43

9E

LINE

SORTOS

SORTOY

SORT10

SORT11

SORTL2

i
SORT13

SORT14

LDA
STA

LDA
STA
STA
STA
DEC
LDA
CHF
BNE
DEC

LDA
BNE
LDA
BNE
RTS

CLC
LDA
ADC
STA
LDA
ADC
STA

LDY
L.DA
STA
INY
LDA
STA
INY
LDA
STA
INY
LDA
SThA
INY
LDA
STA
INY
LDA
GTA
LDX
REQ
L.DX
REQ
LDY
LDA
CHF
BEQ
RCC
JnE

INY
REQ
CFY
BCC
BEQ
BCS

CFY
BCC

NOOFE+1
NOOFC+1

H$00
FLAGS
COUNT
COUNT#+1
NOOFC
NOOFC
HSFF
SORTO9
NOOFG+1

NOOFC+1
SORT10
NOOFC
SORT10

$22
H¢07
$24
$22+1
H$00
$24+1

H$00
($24),Y
LEN1

($24),Y
$FP.

($24).Y
$FR+1

($24),Y
LEN2

($24),Y
$FD

($24),Y
$FD+1
LEND
SORT17
LENL
SORT14
s00
($FP), Y
($FD) Y
SORT13
SORT17
SORT16

SORT17
LEN1

GORT14
SORT1S
SORT15S

LEN2
SORT12

; MAIN SORT LOOFS

;MAIN LOOF OF SORT
;RESET SWAF FLAG,
; AND ILOOF COUNT

;DECREASE OLOOF COUNT

;END OF SORT?
s NO

;NO
:YES, DONE

;SET €24 TO $22+7

; INNER LLOOF
;GET LENGTH, ADDRESS
; OF 1ST STRING

;GET LEMNGTH,ADDRESS
s OF 2ND STRING

(LEN(STR2) 07
JYES, DON’T SWAF
(LEN(STR1) =07

;YES, SWAF THER

;COMFARE $FPR
; WITH $FD
s SANME
sDIFFERENT, DON’T SWAF
;DIFFERENT, SUAF

sLENGTH=2567
;YES, DON'T SWAP
+END OF STR17
;NO, CHECK STR2
{YES

S ALWAYS

;END OF STR27
;NOT YET

L.0C

PE3A
PE3A
2E3D
9C40
PE42
PL44
9E44
QL 46
9E49
PE4R
9EAC
PE4L
PES0
PESL
PEST
PESS
9ESE
PES9
PESE
FESC
PESE
PE60
PELT
PEL3
PELS
PE&7
9E6A
9E6NA
PE4D
PELF
PE72
9E7S
PE78
PE7N
PE7D
9EB0
PE02
PERD
9CB7
PE8A
PEBD
PEBC
9E8C
?C8E
LV
Qre2
9E?4
PE96
9ESE
QLR
PESR
L2C
E9D
PEN9
QEnMT
PLEN2
GENS
PENS
PEN7
QLNA
PEND
FEAD
QENF
LR
9ER3

CODE

AD
CD
Fo
90

214
nn
91
c8
AS
91
ce
nS
91
c8
nD
?1
c8
AS
21
c8
NG
91
He
an

EE
Do
EE
AD
(W)
Do
AD
cD
ne
AD
Fo
4C
690
18

AS
69
a5

(3
A

59
15
4C
on
ne
P9
AN
c8
137
ng
8A
20
4C
PR3
C4
ne
ki

Fé
F7
28
26

00
F7
24
FD
24
FE

24

Fé

24
FBe

24

FC
24
o1
FC

F8
23
F?
F8
F4
11
F9
Fo
a9
FC
23
C1

I

AD

1E
62

9E
9K
9E
41

9E

E -

9E

9E

?E
9E
9
9E
9E
PE
?E

0

9D

PE

Ap
N4

LINE

SORTLS

SORT16

SORT17

GORTL8

SORT1?
SO0RT29

.
’

SORT21

FOINT

STERR1

LDA
cmp
REQ
BCC

LDY
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
LDA
STA
INY
LDA
5TA
LDA
STA

INC
BNE
INC
L.DA
cmr
RME
L.DA
ChF
PME
LDA
BEQ
JAF
RTS
CLC

LDA
ADC
STh
LDA
ADC
5TA
JnF

nsL
TNY
1.DA
ThX
INY
L.DA
Thy
TXA
JSKR
JAP

Extended BASIC - A Complete Package

LEN1
LLEN2
SORT17
SORT17

Hs00
LEN2
($24),Y

$FD
($24),Y

$FD+1
($24),Y

LEN1
($24) Y

$re
($24),Y

$FP+1
($24)
Hso1
FLAGS

COUNT
SORT18
COUNT+1
COUNT
NOOFC
SORT29
COUNT+1
NOOFC+1
SORT20
FI.AGS
SORT19
SORTO8

$24
11403
$24
$24+1
H¢00
$2441
SORT11

n

FOINT,Y
FOINT,Y

$MAR1E
$N162

-WOR STERR1
WOR STERR2
.WOR STERR3
BYT 7"?ARRAY NOT FOUND',$00

s LENL=LEN27?

;YES, DON'T SWAF
$NO, LENT<LEN?

;SWAF, STR1=STR2
; AND VICE VERSA

;FLAG SWAP

; INCREMENT INNER
; LOOP COUNT

; DONE?
;MO

+ND
SANY SWAPG?
;ND, END

:DO NEXT LOOF
;0LL DONE

;s INCREASE FOINTER BY 3

;D0 INNER LOOF
; SEND ERFOR MESENAGE

; ADDRESS OF MESSAGE

JSEND IT
JFRINT "IN...’

203

204 Advanced Commodore 64 BASIC Revealed

L.OC CODE ILINE

9EC3 00

PECA 3F 49 STERR2 .RYT "PINCORRECT DIMENSION' 6 $0@
9EDB 90

9ED? 3F 49 STERR3 .PYT "7INSUFFICIENT ELEMENTS’,f $00
PLEF Q@

9EFe @0 CA BYT @

PEF1 00 CR YT 9

9EF2 @0 00 NOOFE .WOR @

PLFA Q0 90 NOOFC WOk @

9EF6 00 LLENY LBYT 0

PEF7 €9 LEN2 YT @

EF8 00 00 COUNT .WOR @

9CFA 00 90 TENP JWOR @

9EFC 00 FLLAGS .BYT 0

PLFD CEND

TRACEON and TRACEOFF

Abbreviated entry: TRACEON T(shift)R
TRACEOFF TRACEO(shift)F

Affected Basic abbreviations: None

Tokens: TRACEON Hex $EE,$19 Decimal 238,25
TRACEOFF Hex $EE,$1A Decimal 238,26

Modes: TRACEON and TRACEOFF - Direct and program
Recommended mode: TRACEON and TRACEOFF - Either

Purpose: To provide a line trace facility while the program is running for the
purpose of program de-bugging.

Syntax: TRACEON
TRACEOFF

Errors: None

Use: The TRACE routine prints the current line number being executed to the
current output device. If it is the screen, it will be displayed at the current cursor
position.

Routine entry points: TRACEON $9EFD
TRACEOFF $9F43

Routine operation: When TRACEON is called, the line trace routine is wedged
into the handle statement link. When TRACEOFF is called, the handle
statement is put back into the link. The actual line trace routine first checks to
see if the program is running. If not, the handle statement routine is jumped to.
If the program is running, the current line is checked with the last line number

Extended BASIC - A Complete Package 205

displayed and if they are the same, the handle statement routine is jumped to. If
it is a different line, the current line number is stored away and the line number
printed thus: ‘[xxxxx]’ and the handle statement routine is jumped to.

Loc

FEFD
PEID
PLFE
PF 00
9Faz
105
gF o8
Pr Q9
9FON
FFON
FOC
9FeE
PF11
9F13
PF 13
FF17
PF19
9F1R
PEAD
9F 20

Cont:

78
A9
8n
A
8D
58

50

AL

(LG}
28
?F
09

23

9FID 20 D2 FF
PF49 4C F7 82
9F 43
SF43 78
PF44 A9 F7
9F46 8D 08 03
PF49 A9 82
PF4E 8D 09 03
9F a4k 58
FF4F 6@
?r50

TYPE

(NE

TROM

T

TRACRL
TRACO2

TRACO3

TRACOA

ey

RACE

ROFF

LB

SEL
LDA
5TA
L.DA
5TA
CL.I
RTS

L.DA
RLO
Jne
LDA
ChF
BNE
L.DA
CHF
PNE
JnF
LDA
STA
LDA
aTNA
1.DA
JSR
1.DX
L.DA
JSR
1.DA
JSR
L.hA
JSR
JNF

SEI
LDA
STA
Lon
STA
CLI
RTS

EHD

Abbreviated entry: T(shift)Y
Affected Basic abbreviations: None
Token: Hex SEE,$1B Decimal 238,27

Modes: Direct and program

Recommended mode: Direct

TRACE

H-TRACE
$0300

H:-TRACE
$0300+1

$9D
TRACOQ1L
HANDLE
$39
H¢00Q
TRACQ4
$39+1
H$00
TRACO4
HANDIE
$39
TRACQ2+1
$39+1
TRACO3+1
HESP
$FFD2
$39
$39+1
$EDCD
H$SD
$FFD2
H$20
$FFD2
HANDIE

H<HAMNDLE
$0308
H=HANDLE
$0308+1

’

13

v

~

; ENARLE TRACE (TRACEON)

; TRACE ROUTINE
ONLY IF A FROGRAM
IS RUNMING

; IF SAME LINE AS
LAST, DON’T DISFILAY

; STORE AWAY FRESENT
LINE

DISFLAY "

DISFLAY LINE NUMBER
DISFLAY "]’

DISFLAY 7 7’

; DISARLE TRACE (TRACEOFF)

206 Advanced Commodore 64 BASIC Revealed
Purpose: To display a text file stored on disk to the screen.
Syntax: TYPE filename,d - where d is the device number (disk only).

Errors: Illegal device - if the device number specified is less than eight
Missing filename - if a null filename is specified
File not found - if the file does not exist
Device not present - if no disk drive is connected
Too many files - if ten files are already open
Disk errors —at the end, the disk error channel is read and
displayed

Use: TYPE can be used to look at sequential files stored on disk. This can be
used rather than GET if you wish to check a certain line in the file, as the file is
not loaded in but directly displayed from the disk. Easyscript text files could be
just as easily displayed using this routine.

Routine entry point: $9F5(

Routine operation: The filename is read along with the device number and
checks are made for missing filename and illegal device number. If these are OK,
the file is then opened and each character is read in and displayed until the end of
file or the stop key is pressed. At this point, the file is closed, the disk error
channel is read and the routine exits.

LOoC COoDI: LLINE
PF50 LLIB TYPE
?F50 20 6F 98 TYFE JSR DFARS ;GET FILE DETAILS
9F53 20 R7 8F JSR GETOFN ;OFEN FILE
PF56 20 AC 8F JSR GETIN ;SET INFUT
9FS9 20 CF FF TYFE2 SR $FFCF ; INFUT BYTE
9F3SC A6 90 LDX $90 ;GET STATUS
9FGE 20 D2 FF JSR $FFD2 ;FRINT BYTE
9F461 20 EL FF JSR $FFEL ;STOP KEY?
9F64a FO 03 BEA TYFEL ; TES
PF66 8N TXA
9F67 FO FO PEQ TYFE2Q ;NO ERROR
F69 40 AC 99 TYFEL JMFP FUTEND ; DONE.
9F6C .END

UNTIL

Abbreviated entry: U(shift)N

Affected Basic abbreviations: None
Token: Hex $EE,$1C Decimal 238,28
Modes: Direct and program

Recommended mode: Either

Extended BASIC - A Complete Package 207

Purpose: To repeat something where the start of the Basic commands is
specified by the REPEAT command until a check is true.

Syntax: UNTIL expression. The expression should be of the same format as
the basic IF command.

Errors: UNTIL without REPEAT - if there was no corresponding
REPEAT command

Use: UNTIL is the closing command in a REPEAT...UNTIL loop and is
followed by a comparison or boolean expression. If the expression is true, the
program continues running from that point. If the expression is false, the
program continues from the first statement after the preceding REPEAT
command.

Routine entry point: $9F6C

Routine operation: The repeat stack pointer is first checked tosee if there is any
active repeat. If not, UNTIL without REPEAT is displayed. If there is an active
REPEAT, the expression following is checked and if the result is not zero (true)
then the REPEAT...UNTIL loop is closed and exited. If the result is zero
(false), the program pointers to the command following the REPEAT are set
and execution starts at that point.

Loc CODE LINE

Pr6c LIR UNTIL

PF6C AD 24 9D UNTIL LDA REFESK ;GET STACK FOINTER
9F4F Fo 39 BEQ@ UNTIO2 sUNTIL WITHOUT REFEAT
9F71 20 9E AD JSR $ADSE ;EVALUATE EXFRESSION
9F74 AS 61 LDA $61 ;GET EXFONENT

9F76 FO 0A BEQ UNTIO1 ; FALSE

9F78 AD 24 9D LDA REFESK ;GET STACK FOINTER
9F78 38 SEC

9F7C E9 04 SRC #$04 sMINUS 4

9F7E 8D 24 9D STA REFESK

9F81 60 RTS

9F82 AD 24 9D UNTIO®1 LDA REFESK ;GET STACK FOINTER
?FB85 38 SEC

9F86 E9 04 SRC H$04 sMINUS 4

PFR3 AA TAX

9F89 A5 01 LDA $01

9F8E 29 FE AND HS$FE ; 0UT BASIC

9rFgD 85 o1 STA s$e1l

9F8F BD 00 BRE LDA $REQQ,X

9F92 84 7A STA $7A ;CHNARGET FOINTER LGSR
9F?4 RD o1 BE LGA $REQO1 X

9F97 85 7R STA $7P y MSE

?r99 R 22 BE LDA $REQ2,X

FSC 85 39 STA $39 ;LINE# LSP

9FPE BD 93 RE LDA $REQ3,X

PFAL 85 3A STA 33A sLINE# MSE

9FA3 A5 01 LDA $01

9FAS 09 o1 ORA H$01 ; IN BASIC

9FA7 85 01 STA %01

9FAT 60 RTS

PFNA NP R4 UNTIQ2 LDA HUMTIER

9FAC A0G 9F LDY #:UNTIER

208 Advanced Commodore 64 BASIC Revealed

LocC CODE LINE
YFAE 20 1E AR JSR $ARILE ;OUTFUT ERROR
PFR1 4AC 62 A4 JNF $A462
9FR4 ;
9FR4 3F 55 UNTIER .RYT "7?UNTIL WITHOUT REFEAT’,$00
PFC9 @0
?2FCA .END
VARPTR

Abbreviated entry: V(shift)A

Affected Basic abbreviations: VAL - VAL

Token: Hex $EE,$2¢ Decimal 238,32

Modes: Direct and program

Recommended mode: Either

Purpose: To return the address in memory where a variable is stored.

Syntax: VARPTR (variable name). The variable name must be in ASCII
characters.

Errors: Syntax error

Use: VARPTR can be used to find the address in memory of any variable be it
simple or an element of an array. If the variable is a string, the value returned
points to the length of the string (the following two bytes are the pointer to the
actual string). For example:

VARPTR (AS$) will return the entry address of A$. To find the
address of the string:. DEEK(VARPTR(A$)+1)

VARPTR (BB(12)) will return the address of the 12th element
of the array BB

Routine entry point: $9FCA

Routine operation: On entry, VARPTR scans past the opening bracket and
then finds the variable (or creates it if it does not exist). The closing bracket is
then scanned past and the address of the variable is converted to floating point
form.

LoC CODE LINE

9FCA .LIR VARFTR

9FCH 20 FA AE VARFTR JSR $AEFA ;SCAN 7 (7

PFCD 20 8B BO JSR $RO8R ;FIND VARIABLE
SFDe 8D EB 9F STA VARFQ1 ;STORE FOINTER OFF

9FD3 8C E? 9F STY VARFO1+1

Extended BASIC - A Complete Package 209

LOC CODE LINE

9FD6 20 F7 AE JSK $AEF7 ;SCAN FAST ")’

9FD9 AP 00 LDA H$00 ;SET TYFE TO REAL NUMBER
9FDP. 85 @D STA $0D

9rDD 85 @E STA $0E

9FDF AE E8 9F L.DX VARF@1 ;GET FOINTER

PFE2 AD E9 9F LDA VARFO1+1

9FES 4C A3 89 JMF ASSIGN ;SEND 1T

SFES 90 00 VARFO1 .WOR 0

PFEN .END

Symbol table

SYMROL VALUE

AN2R 26D7 AAERR 603 AALOOF 26F A AALOF P79
NANMRE Q7R AASOK P68 ARFA P36A ARNC 9975
ARSC 9536 ARSLOF 9544 ADRADS 9531 ADDSUE 9501
ADU2NC 95AB AFFEND 84DB ARITH 8334 ARITHL 8345
ARITH2 B34F ASARAR 9363 ASLUOF 933C ASLOF 933E
AGNC 2340 ASNC? 9357 ASRIR P346C ASR2R 9378

ASREXT 9477 ASRIR F3F2 ASRITR ?43C ASRLOF 940C
ASRILF 1 9410 ASRNC1 ?45C ASRKNC2 P41R ABREOK 2388
ASRSUR 2383 ASRTM 944C ASRTM1 9450 ASRTM3 9469

ASHGN P26 ASSIC 9300 ASSIGN 8903 AGSR1 231D
ASSTLO 93CE ASSTNI1 ?3D8 ASSTN2 ?3DE ASSTN3 93E6
AUTO 855E NUTOO1L 856F AUT0OQ2 0973 ATOO3 857k
AUTOO4 8ui8o AUT00S 85A1 AUTDO6 85AR AUTOFF 8551
AUTONO 8537 AUTOST 855C BEXFOK ?1F0 CA PEFQ

CADDR 8189 cATLel 8GC3 CATLO2 85C6 CATLO3 85EF
CATLO4 8OF1 CATLOS 860F CATL@S 8613 CATLO? 8630
CATL®S 863E CATLO? 8640 CATL1® 8657 CATL1L 8664P
CATL12 36790 CATL13 8674 CATLOG 85R.6 Ce ?EF1
CHAIN 8684 CHAIN1 8605 CHANO1 864EA CHANO2 86ED
CHANO3 86F 6 CHAN94 8700 CHANOY 870A CHANOS 8716
CHANO? 8722 CHANOSB 872C CHANO? 8742 CHAN1® 8748
CHAN11 8755 CHAN12 8764 CHAN13 876C CHAN14 8774
CHAN1S 878F CHAN16 87A4 CHAN17 87Cce CHAN1S 87E6

CHAN1? 87F0 CHAN20 87F9 CHANGE 86P8 CHANLN 87FC
CHANST 87FD CHECKA 895D CHECKR 8957 CHECKC 875k

CHECKN 894E CHECKS 8935 CHKOF P1BA CHOK 2123
CHOK1 9141 CHOK?2 218D CHOK2A 7194 CHOK3 9222
CHRGET 0073 CHRGOT 2079 CLIST 8oF1 coL ?7AR
COoLD 8074 COUNT 9EFB CRNCO1 81CF CRNCO2 81DE

CRNCO3 81F1 CRNCO4 81F9 CRNCOS 81FC CRNCO6 81FF
CRNCo7 8201 CRNCO8 8203 CRNC99 8214 CRNC190 821C
CRNC11 8223 CRNC12 822C CRNC13 8233 CRNC14 823D
CRNC1S 8246 CRNC16 8251 CRNC17 8253 CRNC18 8264
CRNC1? 8277 CRNC20 8279 CRNC21 8287 CRNC22 828D
CRNCHT 81C9 CRUNO1 880A CRUN@2 8818 CRUNO3 881p

CRUNO4 8825 CRUNOS 88390 CRUN26 8B83E CRUNO7 8845
CRUNOS8 8849 CRUNO? 8854 CRUN10 885E CRUNIL 8864A
CRUN12 8871 CRUN13 8895 CRUNCH 87FF CTeD 8993
CTCFLG 8994 CTCUR 8991 CTEND1 8?10 CTL 38AR
CTLo1 88C1 CTLe2 88CE CTL23 880DR CTL24 88E8
CTLOS 88F5 CTLOG 88FD CTLDEF 892C CTLEN1 8903
CTLEND 3906 CTSsC 8992 CTXFOS 898F CTYFOS 89990
DEEK 8995 DELE®1 89CE DELEQR 89E9 DELE®3 89Fa
DELEQ4 8n07 DELEQS 8A11 DELEQS 8NM26 DELE®? 2A29
DELE®S8 8438 DELE®9 gn4e DELE1® enacC DELETE 894D
DIMENS 8CC8 DISK 8AAD DIGKO1 8A55 DISKO2 8A6R
DISK®D3 8A7A DISKO4 8nE8 DISKe" 8ARF LISKe?7 8nn4
DOKE 8ADF DOMAT 249 DOMATA 2208 DOMULT 9567

DOFOF 98CE DOFRNT 8321 posue 265D DFARS ?86F

210 Advanced Commodore 64 BASIC Revealed
SYMP.OL VALUE

DUMP
DUMF o4
DUMFO8&
DUMFL2
DUMAF16
DUMF29
DUMM24
EDUNAL
ENDROW
EXECO3
EXECO7
F1TOVY
FAE1L
FANAR
FIND
FIND®4
FINDOS8
FIND12
FIND16
FLAGS
FUNC
FUNCO4
FUNC o8
GAR3
GETER
GETLN
GETLF3
GETN2
GETOF2
GETU3
GV3
HANDO3
ISNALF
KEY93
LEN1
LISTO2
LISTR6
LIST10
LLV2
LOMoL
MAT
MERGOS
MERR
MAULT3
N1
NOOFC
NSTR1
NTEXF3
oLD

OF JMF
FADDR
FOINT
FRINOL
FRINOG
FRINOY
FRIM13
FRNTO2
FRNTQ6
FRNT10
FUTe2
FUTEND
FUTOF2
FUTOUT
PUTTK1
RENLENM
RENMEL
RENP®2

8Re2
BEB1
ORAE
ancs
8REC
3C19
acor
VIAE
9788
8D1F
D65
P&3E
940D
2402
8D92
8nbDb
8E17
BL68
2] 3]
PEFC
0368
83A9
83C6
202
8FDE
8F24
8F 4P
B8NA?
8FCS
91DF
896P
8327
£113
P9 4A
PEF6
83EE
842A
8457
97N1C
2094
?118
2830
674
?0CR
90AC
PEF4
157
?20L
2885
92LC
8332
PEAD
8200
a2C5
e2n9
82n7
9808
P93P
9944
9991
9nC
IS
F9F0Q
9PEL
PAE?
968C
859

DUNFOL
DUMFOT;
DUMF@S
DUMF13
DUMF 17
DUMF2L
DUMF2S
EDUNAZ
EOFMES
EXECQ4
EXECER
FACH
FAEX
FANC
FINDO1
FINDOS
FINDO?
FIND13
FIND17
FNSTRT
FUNCo1
FUNCQS
FUNCO?
GERR
GETFNO
GETLNO
GETLF4
GETN3
GETOFN
GMESSG
GV4
HANDLE
KEY
KEYQ4
LEN2
LISTO3
LISTO7
LIST1Y
LNE
L.Ome2
MERGO2
MERGE
MMULT
MAULT4
N2
NOGOFE
NSTR2
NTINTL
oLDoet
OFJTAR
FARERT
FOF
FRINGZ
FRINOG
FRIN1O
FRINT
PRNTOZ
FRNTO7
FS1MES
PUTR3
FUTMES
FUTOF3
FuTaT
FUTTK2
REMLNL
RENMG2
RENFQ3

SRen
8re3
aep3
BRCAH
8RED
8C1C
8CA7
P1N7
840
aD36
8D90
POFD
F4ED
94BC
sDPR
8DES
8E24
8ESPR
8ECA
901D
837C
83R1
83D2
8989
8nAl
8FDC
8F 8o
8AR4
8FR7
8FA3
896F
82F7
F014
P04
PEF7
8401
8435
8470
P144
09A
Q7F A
9?7R9
?08.2
POES
90AE
PEF2
2100
9161
2894
PAEE
880
280D
82A3
82CDh
82E1
8290
280D
293D
INeQ
P99
640
?A33
9CF
9PES
9AET
AP
L4

DUMFQ2
DunFes
DUMF 10
DUMF 14
DUMF18
DUMF23
DUMF26
EDVNAJ
EXEC
EXECQS
EXECNO
FACONT
FAGETS
FANDOK
FINDO2
FINDO6
FIND1O
FIND14
FINDAR
FOEQ
FUNCO2
FUNCe6
FUNCTT
GET
GETINM
GETLF1
GETMES
GETN4
GETSR
GV1
HANDO1
HIMEM
KEYe1
KEYERR
L.INK
LLISTQ4
LISTe8
LIST12
LLNE2
LOMEM
MERGO3
MERGRT
MAULTS
MRGMES
NASSIG
NROW
NSTR3
NTINT3
oLpez
OFTYFE
FARERR
FOFTY
FRINOZ
FRINO7
FRINLL
FRINTT
FENTO4
FRMTO8
FO2MES
FUTO4
FUTNL
PUTOF 4
FUTSW
RENIL1
REMLNK
RENMEZ
RENF24

8R16
[31:0°4%)
eRR4
N2
B8BFN
ars

8R68
@231
8CCE
8059
8D92
491
?4BF
94D2
anc4
8DF3
BES6
8E®1
9478
91468
837F
83R9
8R7%
8ED1
8FAC
8FOF
8F99
8AR7
8FD8
8963
8308
8FDF
024
?01F
8009
8404
843C
8494
219D
05D
9818
?860
FeC2
?862
?1C7
P7A?
?23A
P246
?8AB
Q19D
987D
FBRE
820N
8208
82EA4
28DR
92920
2900
I0AR
2906
P9R7
0106
9A36
PaLA
PADC
AP
R7?

DUMFO3
DUMFa7
DUMF11
DUMELTG
DUMF19
DUNF23
pumTRL
ENCCOL
EXECH2
EXEC@6
EXECST
FACT
FALOOF
FILENO
FIND®3
FINDO7
FIND11
FIND1G
FINDER
FOFEN
FUNC@3
FUNCe7
GADS
GETEND
GETIN1
GETLF2
GETN1
GETOF1
GETUN
GY2
HANDO2
HINSET
KEYO2
KEYLO
LISTOL
LISTOS
LIST@?
LISTER
L.LNE3
LONSET
MERGO4
MERGST
MMULT2
MULT
NEAA
MSARRQ
NTEXF2
NUMOK
OFDIR
ORDER
FMESSG
FOWER
FRIN®A
FRINGS
FRINL2
FRNTQ1
FRNTOS
FRMTQ?
FUT
FUTCLS
FUTOML
FUTOFN
FUTTK
RENILL
RENLNQ
RENFQ1
RENFOG

83R48
8pnY?
gece
8REZR
aces
8C68
8CCAH
97055
8DoF
80pas9e
8NeE
P12
9480
9861
8pcz
8DF?
8E&67
8EY6
8ECF
8A%1
8294
B3RP
9671
areag
8FB4
8F11
8AN3
8FR9
8EDP.
8968
830E
8FEC
?e3C
9054
83ER
841E
8449
83E3
9225
P06
7838
286D
90CA
P466A
9794
P6A3
7185
P1FA
8682

581
PAG4H
RO
exc?
82R4
2EC
803
292D
PP3E
Fe7N
PAIN
PN
918
CAMY)
FABE
PADE
GR4@Q
B84

Extended BASIC - A Complete Package 211

SYMEOL VALUE

RENF@¢ R8P REMNF@7 FBM4 RENF@8 FBAF RENF10 FRDE
BEMFLL 20177 RENFL2 7R33 RENF13 ?C03 RENI"14 ?C14
REMNF1S gCIF RENF16 9CHQ RENF17 €69 RENF18 FC6C
REMNF19 QC79 RENF20 PCC2 RENF21 ?CNDO RENF22 CNe
RENF23 eCne RENF24 FCER RENFS50 9BED RENFG1 FEF 4
RENFT46 20949 REMFSGL o35 RENFS2 PAE? RENFG3 FAEC
RENSRT FaDe RENSTF 9ADA RENTPL 9NAE 4 RENU@1 9683
RENUQ2 PR20 RENUQ3 Y39 RENUQ4 ?C62 RENUQS PREA
RENUME 7HED RENUST P0EQ RENUXT R27 REFE®1 7CFC

REFEAT PCr2 REFESK D24 RESULT 9910 RESYVO1L 8504
RESVO2 8528 RESVAR 84F3 ROW ?70A RUN 9019
FUNT 0091 SETRASG BOET SETKER a930 S0RT D023

SORT09 203D SORTO1 D42 SORTO2 ?DANM SORTO3 9D5R
SORTRA D6E SORTOS D8A GORTO6 2097 SO0RTO7 ?DRS
SORTeR nCy SORTO9 9DD9 SORT1@ 9DE4 SORT11 gDF1
SORT12 PELE SORT13 PE29 SORT14 PE3S GORT1S PE3A
SORT16 PEA4 SORT17 PE6A SORT18 9E72 SORT19 PE8A
S0RT20 PEBR QORT21 PEPR 5TACK 84A9 STRASL 8oE7
STERR1 FER3 STERR2 PEC4 STERR3 PEDY STKER1 8067

S5TLEN ?05C SYNTE 9208 T1 ?114 T2 ?116
TAR 9P4E TARO1 9967 TARO2 9968 TARQ3 9969
TARO4 ?96C THROS 9972 TAR1O 995K TEMF PEFA
TRACO1 9F11 TRACO2 9F13 TRACO3 9F19 TRACO4 9F20
TRACE ?FoA TROFF PF43 TRON 9EFD TRFT1 ?5C9
TRET2 9506 TRFT3 95AC TYMISE 9152 TYFE 9F50

TYFEL 9F69 TYFE2 ?Fa9 UNTIOL PF82 UNTIO2 FFANA
UNTIER PFR4 UNTIL 9F6C VIBFT 9640 V1INT 9658
VLIREAL P2GE V2RFT POE? V2COLF 97AE V2INT 95FS
V2RA 9GDD v2T0T2 ?5CE VIBFT 9621 V3INT 762D
V3TOF1 7613 VARFO1 9FE8 VARFTR PFCA VConFP 898E
VECTOR 8015 UNAME 1 90F 4 UNAMED 90F7 UNAME3 9OFA
UPTRL Q0FP VFTR2 A0FD VFPTR3 QO9E VSIZE1L 9107
VUSIZE2 9109 VSIZE3 ?10PR VSTT1 910E VSTT2 9110
VSTT3 2112 VTYFEL P0F 6 UTYFE2 90F9? VTYFE3 POFC
WRST 8039 WRSTO1 8044 WRSTO2 8058

END OF ASSEMRLY

Index

ABS, 52

AND, 52

APPEND, 129
architecture map, |
arithmetic routines, 35
array dimensions, 17
array elements, 17
array variables, 13, 15
ASC, 54

ATN, 55

AUTO, 131

auto line numbering, 9

Basic input buffer, 4

Basic interpreter loop, 21

Basic ROM, 3

Basic storage and use of numbers, 30

Basic zero page storage locations,
24-8

calculate ATN, 42

calculate COS, 41

calculate EXP, 43

calculate LOG, 43

calculate power, 44

calculate SIN, 41

calculate SQR, 44

calculate TAN, 42

CATALOG, 133

CHAIN, 135

CHANGE, 136

charge, 109

charget wedge, 111

chargot, 109

CHRS, 55

CLOSE, 56

CLR, 57

CMD, 58

colour nibble memory, 3

compare contents of FAC#1 with a
value in memory, 47

complement the contents of FAC#I, 48

complex interface adaptor chip #1
(CIA#1), 3

complex interface adaptor chip #2
(C1A#2), 3

computed GOSUB, 70

computed GOTO, 72

CONT, 58

control code lister, 79

convert a floating point number into a
string, 47

convert a value stored as a string to a
floating point value, 46

COsS, 59

CRUNCH, 140

crunch to tokens, 120

CTL, 142

DATA, 60

DATA inputter, 11
DATA statements, 11
data storage, 10
DEEK, 145

DEF FN, 13, 60
DELETE, 146

DIM, 62

discard unwanted strings, 20
DISK, 148

DOKE, 150

DUMP, I51

END, 63

evaluate expression, 34
EXEC, 156

execute arithmetic, 124
execute BASIC statement, 21
execute statement, 123

EXP, 64

exponent, 31

FAC#! and FAC#2, 30

FIND, 158

fixed point to floating point number
conversion, 45

floating point accumulator, 30

floating point number storage, 31

floating point to fixed point number
conversion, 45

floating point variables, 13, 14

FOR...TO, 64

FRE, 66

function definition, 13
function keys, 125

GET, 67, 161
GET#, 67
GOSUB, 69
GOTO, 71

HIMEM, 164
how BASIC works, 21

IF... THEN, 72
initialisation, 117
INPUT, 74, 110
INPUTH#, 74

INT, 76

integer variables, 13. 14
interpreter ROM, 3

interpreter routines to handle variables,

18
interrupt, 4

kernal ROM, 3
KEY, 166

keyboard buffer, 4
keyboard scanning, 4
keywords, 5, 28

LEFTS, 76
LEN, 77

LET, 77

link address, 5
LIST, 78
LOAD, 83
LOG, 85
LOMEM, 167

machine code RAM area. 3
mantissa, 32

MAT, 168

MEMORY SAVE, 100
memory usage, |

MERGE, 183
microprocessor, 2

MIDS, 85

NEW, 8, 86

NEXT, 64

NOT, 87

numeric variables type and range. 13,
14, 30

OLD, 186
ON, 87
OPEN, 88
OR, 89

PEEK., 91

Index

perform addition, 37
perform division, 40
perform multiplication, 39
perform subtraction, 38
POKE, 91, 113

POP, 187

POS, 92

PRINT, 93, 110, 188
print string from memory, 19
PRINTH#, 93

processor registers, 2
program compactor, 10
program line input, 4
program lister, 126
program storage format, 5
PUT, 190

RAM, 3

READ, 95

REM, 96

REM remover, 10
renumber, 8. 192
REPEAT, 198
RESTORE, 96, 113
RETURN, 69
RIGHTS, 97
RND, 98

ROM, 3

round FAC#I, 48
RUN, 98, 198

SAVE, 99

screen RAM, 2

search for variable, 18

set up string, 20

SGN 101

sign, 32

simple variable storage, 12
simple variables, 12

SIN, 101

SORT, 199

Sound Interface Device (SID), 3
SPC(, 93

SQR, 102

STEP, 64

STOP, 103

STRS, 103

string variables, 13, 14

SYS. 104

system variable workspace, 2

TAB(. 93

TAN, 105
tokenised BASIC, 4
tokens to text, 122
TRACE, 204
TRACEOFF, 204
TRACEON, 204

213

214 Index

transfer FAC#1 to FAC#2, 37
transfer FAC#1 to memory, 35
transfer FAC#2 to FAC#1, 37
transfer memory to FAC#1, 36
transfer memory to FAC#2, 36
TYPE, 205

UNTIL, 206

user RAM, 3

using arithmetic routines, 49
using basic variables, 18
USR, 105

VAL, 106

variable names, 11

variable types, 11

VARPTR, 208

vectors, 109

VERIFY, 106

video interface controller chip (VIC), 3

WAIT, 107
warm start, 109, 113
wedges, 109

: . M
B e TR

Although it is relatively easy to learn to program the
Commodore 64 in BASIC, advanced programmers need to know
much more than how to use the fundamental commands. It is
essential to know how BASIC works and utilises memory. The
ability to add further commands is often invaluable in speeding
up and simplifying a program.

This book explains all these details and sets out a unique library
of routines to add extra commands to BASIC.

With this book you will not only learn far more about the
Commodore 64 and its dialect of BASIC. You will also learn how
to expand the scope and function of your programs; the utilities
included in this book will make the writing of such programs
much easier.

The Authors

Nick Hampshire is a well-known author and microcomputer
expert who has specialised in Commodore computer equipment.
He started the first hobby microcomputer magazine, later
absorbed into Practical Computing, of which he was technical
editor for several years. He was the co-founder of Popular
Computing Weekly and founder and managing editor of
Commodore Computing International magazine. He is also the
author of over a dozen books on popular computing, including the
very successful and widely acclaimed PET Revealed and VIC
Revealed.

Richard Franklin and Carl Graham are programmers with
Zifra Software Ltd and together with Nick Hampshire have
written some of the software included in this book.

Also by Nick Hampshire

THE COMMODORE 64 ROMs REVEALED
000383087 X

ADVANCED COMMODORE 64 GRAPHICS AND SOUND
000383089 6

THE COMMODORE 64 KERNAL AND HARDWARE REVEALED
000383090 X

THE COMMODORE 64 DISK DRIVE REVEALED

. 0003830918

COLLINS

Printed in Great Britain

0003830888 £9.95 net

