

Advanced Commodore 64 BASmC
Revea~ed

Also by Nick lHIampsliJlire

The Commodore 64 ROMs Revealed
000383087 X

Advanced Commodore 64 Graphics and Sound
0003830896

The Commodore 64 Kernal and Hardware Revealed
000383090 X

The Commodore 64 Disk Drive Revealed
000383091 8

Advanced
Commodore 64
BASIC Revealed

Nic~(Hampshire

woth Roclhlall'd IFlI'a01ldulI1l and Carl Graham

COLLINS
8 Grafton Street, London WI

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © Nick Hampshire 1985

British library Cataloguing in Publication Data
Hampshire, Nick
Advanced Commodore 64 BASIC Revealed
1. Commodore 64 (Computer)-Programming
2. Basic (Computer program language)
I. Title II. Franklin, Richard III. Graham, Carl
00\.64'24 QA76.8.C64

ISBN 0-00-383088-8

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or transmitted,
in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Contents

Preface

I Memory Utilisation by BASIC

2 Arithmetic Processing by BASIC

3 The Keywords of BASIC

4 BASIC Wedges and Vectors

5 Extended BASIC - A Complete Package

Index

VI

1

30

52

109

129

212

Preface

Whether you program the CBM 64 in BASIC or machine code, an
understanding of how the BASIC interpreter works is incalcu lable in any
advanced programming. This book delves into the way the interpreter works
and should be used in conjunction with Volume I of this series, The
Commodore 64 ROMs Revealed, when using the interpreter routines within a
machine code program.

Knowing how the interpreter operates enables one to perform many
interesting functions, probably the most exciting of which is the extension of
BASIC with the addition of extra commands, keywords and functions. This
book shows exactly how to extend BASIC and includes a package of machine
code routines which add over thirty extra commands and functions which
enormously improve the power of BASIC. It should be noted that a further set
of extended BASIC commands for graphics and sound are contained in Volume
3, Advanced Commodore 64 Graphics and Sound.

This book is the product of many years working on Commodore machines,
and I am confident that it provides the most complete, interesting and useful
information available from any source. All serious programmers should find
this an invaluable and constant reference book.

Nick Hampshire

Chapter One

Memory Utilisation by BASIC

1 .1 Memory usage

I·H\R·\CIFRQI

(hI! ~ (It SOOOll

II· CII \R RO\I

I ~ I/O ROM IR ·\\1

\ Ie II Chip "t't' ...

thl' 16K hlod

L

SHI-I-

SFllt11i

SDeoo

SDXIXI

S[)OIXl

SCOOO

S.·\OIlO

5~OOO
t 32"'i/1~)

54000
Ilo.1X41

SOXOO

50400

50000

KIRSAI ROM

BASIC

fJH912 Byte ...)

LI20IXI---4
Snet'n (IK)

r----1 1())41---4

Wnr\...spal:c(IK)

Proccs ... or Reg (SO I)

XK III RA\I

(hI! I 01511111111

RA \1

1 c- KFRSAI RO\1

41' RAM

map ... tll snooo" hen

hI!' 0 & 1 01 SIiOIlI = II

XK 1.0 R.'\\1

I hll It 01 SOOO II

0= RA\1

I -. BASIC RO\1

F\il'rn,,1
ROM

~K ROM Cartridge

map ... here

HI-RES Screcn

map ... here

HI-RES Cnlour Table

Fig. 1.1. Commodore 64 memory architecture map.

2 Advanced Commodore 64 BASIC Revealed

The 65I~ microprocessor used in the CBM 64 is capable of addressing up to
65536 bytes of memory. The 64 actually has more memory than this - a total of
nearly 88K - and this is accessible by a method known as bank switching. The
64K addressable area of memory is divided into blocks, each having its own
function. In the normal memory configuration all 64K of available memory
space is allocated to ROM (containing the system software) or RAM memory
for storage of variables and programs, and I/O to control the system input and
output devices. This division of memory space into blocks is shown in Fig. 1.1,
and an understanding of the function of each block is essential if full use is to be
made of the CBM 64. The following is a description of each of the memory
divisions.

(I) Processor register - hex $~~, $~ I - decimal ~,l. These two memory
locations are the two I/O port control registers on the 651 ~ microprocessor
chip. Address ~ is the data direction port. Any bit set to one will define its
corresponding I/O line as an output; azero will define it as an input. The normal
value of the data direction port is binary ~~ I~ 1111 (three input lines and five
output lines). The data direction port should, in general, never be changed since
these I/O lines are used to define the 64 system architecture. Location I is the
associated input/ output port. In the normal system configuration this location
contains, in binary, ~~ II~ Ill. The function of each of these lines is as follows:

Line Input/ output State Function

~ output high LORAM (~=switch Basic ROM out)
I output high HIRAM (~=switch kernal ROM out)
2 output high CHAREN (~=switch character ROM in)
3 output low cassette write line
4 input high cassette sense switch (~= switch down)
5 output high cassette motor control (~= on, I = off)
6 input low undefined
7 input low undefined

(2) System variable workspace - hex $~M2 to $~3FF - decimal 2 to I~23. This
area of RAM memory is used to store system variables, buffers, jump vectors
and the processor stack. The contents of this area are shown in Table 1.1 on pages
24-28. This table shows not only the location, power up contents and function of
each location but also shows how putting different values into certain locations
can be used to obtain a range of different effects.

(3) Screen RAM - hex $~4~~ to $~7FF - decimal I~24 to 2~47. This area is
used to store the ASCII character codes of the characters displayed on the
screen. Each memory location corresponds to a character location on the
screen. The locations $~7F8 to $~7FF (decimal 2~4~ to 2~47) are used as the
sprite definition pointers.

Memory Utilisation by BASIC 3

(4) User RAM area - hex $~8~~ to $9FFF - decimal2~48 to 4~959. This area
of memory is used to store programs, data, etc.

(5) Basic interpreter ROM - hex $A~~~ to $BFFF - decimaI4~96~ to 49151.
The interpreter translates the high level Basic program, step by step, into a series
of machine code routines, performing the functions required to execute each
command. These routines can be used by other machine code programs; this is
dealt with in Chapter 3. A complete annotated listing of the Basic interpreter is
contained in The Commodore 64 ROMs Revealed in this series.

(6) Free machine code programming RAM - hex $C~M to $CFFF - decimal
49152 to 53247. A 4K block of memory which is not used by Basic and therefore
is safe from use by Basic variables and can thus be used to store machine code
programs or data.

(7) Video interface controller chip - hex $D~~~ to $D3FF - decimal 53248 to
54271. This chip uses the first 47 locations of this 1 K block (all other locations
are unusable). The VIC chip controls the video display, utilising the screen
RAM and colour nibble RAM. A full explanation of the function and
operation of this chip is given in The Commodore 64 Kernal and Hardware
Revealed in this series.

(8) Sound interface device - hex $D4~~ to $D7FF - decimal 54272 to 55295.
This uses the first 29 locations of t his I K block (all ot her locations are unusable).
The SID chip controls the sound generation of the Commodore 64. A full
explanation of the operation of this chip is given in The Commodore 64 Kernal
and Hardware Revealed.

(9) Colour nibble memory - hex $D8M to $DBFF - decimal 55296 to 56319.
This 1 K block of memory parallels the screen memory and is used to store the
character colour. It should be noted that this area of memory is only 4 bits wide
(normal memory is 8 bits wide).

(I~) Complex interface adaptor chip #1 - hex $DCM to $DDFF - decimal
5632~ to 56831. There are two of these I/O devices. The first is the keyboard
controller device and is connected to the I RQ line; the second controls the serial
I/O ports and provides for the user port. It is connected to the NMI line.
Further detailed information on these devices is given in The Commodore 64
Kernal and Hardware Revealed.

(II) Basic ROM extension - hex $E~~~ to $E4FF - decimal 57344 to 58623.
This area contains the last section of the Basic interpreter software.

(12) Kernal ROM - hex $E5~~ to $FFFF - decimal 58624 to 65535. The
operating system controls the functioning of the Commodore 64 system, such as
initialisation on power up, communications with peripheral devices, screen
display and editing, etc. The operating system normally works in conjunction
with the Basic interpreter, but the routines within it can be used by any machine
code program requiring the operating system functions. A complete annotated
listing of the kernal is given in The Commodore 64 ROMs Revealed in this

4 Advanced Commodore 64 BASIC Revealed

series, and further information on using these routines is given in The
Commodore 64 Kernal and Hardware Revealed.

1.2 Program storage

1.2.1 The input of a program line
When a program line is entered on the keyboard it is first written into the
keyboard buffer. The keyboard buffer is a ten byte block of memory which is
used to store keyboard entries temporarily as a first in first out buffer; this is
necessary to ensure that no keyboard entries are lost as a result of the system
being busy. The operating system routine which enters characters into the
keyboard buffer is located at $EA87 and is called by the 6~ cycle per second
keyboard scanning interrupt.

The keyboard scanning routine takes any keypress, converts it to the correct
ASCII code and stores it in the keyboard buffer. If the keyboard buffer is filled,
then any further keypresses are ignored until characters are removed by the
routine at $E5CD. The routine to remove characters from the keyboard buffer
is called either by one of the routines requesting an input from keyboard or by
the main warm start routine via the line input routine. The routine to remove
characters from the keyboard buffer first blinks the cursor, then removes a
character (ifthere are any) from the keyboard buffer, and in so doing moves all
characters in the keyboard buffer down. It then checks that the key pressed was
neither the RUN / STO P key nor the RETURN key; if it is neither of these then
the character is displayed on the screen. This process is continued until a
RETURN key is found, whereupon the line displayed upon the screen is copied
into the Basic input buffer.

The Basic input buffer is a block of memory 88 bytes long which is used to
store a Basic line when first input, whether it is a program line or a direct mode
command. When the warm start routine finds an entry in this buffer with its
associated pointers it checks whether the first character in the buffer is a
numeric character. If it is numeric then the line is crunched (this converts any
Basic keywords into tokens) and then either a line insert or line delete is
performed. If the first character is not numeric then the line is crunched and
executed, the control-jumps to the error checking routine and READY is
printed on the screen. After completing either operation the warm start routine
returns to get another input.

A flow diagram of the complete character and program line input procedure
is shown in Fig. 1.2 on pages 5 and 6.

1.2.2 The tokenised BASIC command
The program line stored in the Basic input buffer is compressed and formatted
by the crunch routine. The compression converts each variable length Basic
keyword command into a single byte token. The purpose of this is principally to
reduce the amount of memory required to store a program, therefore allowing
longer programs to be run. Each program line is thus stored in a specific format

Memory Utilisation by BASIC 5

using the compressed Basic commands. Hence the command PRINT, instead of
being stored as five ASCII characters, is stored in a single byte as the decimal
value 152. When a program is listed the text compression process is reversed; as
far as the user is concerned the program is stored in the same form as it was
written.

The following is an example of a tokenised Basic line:

Input IF INT (A) > 5 THEN PRINT TAB(
Tokenised 8B B5 28 41 29 3E 35 A 7 99 A3

x)
58 29

One useful result of text compression, which is well known to most
programmers, is the shorthand way of writing Basic commands either in
program or direct mode. The rule is that any character in the keyword, except
the first or last, can be shifted to terminate that word. A table of all the Basic
keywords and their associated tokens is given in Table 1.2 on pages 28-29.

The token value given to a Basic command is a pointer to a table of reserved
command words located between $A~9E and $A 190 and a table of start
addresses of Basic commands located at $AMC to $A~8~. By subtracting 127
from the token value the number of the word in that table can be obtained. The
table of reserved commands is used when the commands are crunched. The
crunching routine simply scans down the table looking for a word match and
counts the number of words tested to obtain the token value. The list routine
does the reverse; it scans past the number of words in the table indicated by the
token value, then copies the command word into the buffer. The table of
execution addresses is used when the command is executed to provide the jump
address to the routine which performs that command.

The storage of a program as tokens means that the actual keywords used in a
program can be changed without affecting the program's execution. The
keywords can be changed by copying the Basic interpreter into RAM and then
changing the keyword tables at the start of the interpreter. This will not alter the
operation of a Basic program; it will simply change the way it is entered and
listed.

1.2.3 Program storage format
Having converted the Basic command into a single byte token the program line
is stored together with the line number and a link address at a location just
above that of the last line entered. Assuming it is the first line of the program
being entered, it will be entered into the following memory locations using this
format:

$~8~~-2~48 - contents ~
$~8~ 1-2~49 -link address Isb (points to starting location of next line)
$~8~2-2~5~ - link address msb
$~8~3-2~51 - line number Isb
$~8~4-2~52 - line number msb

6 Advanced Commodore 64 BASIC Revealed

Error Routine ($E37B)
a, Clear /I 0 Channels
b, Initialise Basic
c, Jump Via Error Message Ram Vector ($0300)

:::::>-N_0-4j Output Error Message ($A434A)

Print Ready ($A474) And Set into Direct Mode
~----------------------------------~

Yes

Waiting Loop ($ A 480) via Warm Start Ram
Vector ($0302)

Get Basic Line into Input Buffer ($AS60)
a, Get Character from Keyboard Buffer
b, Test if Return Key

c, Place in Line Input Buffer ($0200 up)
d, Test if Line More than 88 Characters Long

o
Output Carriage Return to Buffer ($AACA)

Set Charget to Point to Start of Line Input
Buffer ($ A 486)

Charget ($ 0073) to Get Next Character from
Buffer

$A480

Yes Output Error Message ($A437A)
'String Too Long'

No

Fig, 1,2, Flow diagram of interpreter BASIC line input.

3

Memory Utilisation by BASIC 7

Direct Mode

Tokenise Basic Line (SA579)

Charget to Get Next Character

Execute Statement (SA7ED)

(SABAB)

Fig. 7.2. cont.

v

Program LIne Insertl Delete

CLR + Insert Progam Line (SA49C)

Convert Line Number to 16 Bit Binary

Format (SA96B)

Tokenise Basic Line (SA579)

Calculate Address of Line (SA613)

Insert Program Line into Program

Memory at Correct Position and Rechain

(SA4ED)

$~8~5-2~53 - start of compressed Basic text; the number of bytes
occupied is variable
$~8xx-2xxx - end of line flagged by ~

A Basic program is stored as a series of blocks, each of variable length and
representing one line in the program. Each block has a fixed format and all
blocks are connected via a link in a sequential list structure. Each line in a
program is stored in memory in the correct position dictated by the magnitude
of its line number, thus it will be the line with the lowest line number which is
stored at the bottom of memory - 2~49 up. When a new line is added to a
program it is inserted at the correct position and all lines above it are moved up
in memory by the size of the inserted line and the links reconnected. The line
number is stored in bytes 3 and 4 of a block in a 16 bit binary format. When a
program is being run, the current line number being executed is stored in
locations $39,$3A. A direct mode of operation is indicated when the contents of
location $3A contain the value $FF. The last byte of every block of program line
is flagged by a byte, the contents of which is zero. The structure of a program is
shown in Fig. 1.3.

The double byte link address which points to the start of the next program

8 Advanced Commodore 64 BASIC Revealed

Start of Basic Program at Location 2049

2048 2049 2050

I I
Link Address Line Number 1 Tokenised Line Code

0 Poi nter to Line No. 2

I I

r I
Link Address Line Number 2 Tokenised

Pointer to Line No.3 Line Code
0

I I

Link Ad~ress I
Line Number 3 Tokenised Line Code

0 Pointer to Program
Terminator

I I

Program Terminator Bytes

-----~ END

Fig. 1.3. Program line linkage.

line is stored as the first two bytes of a program line block. When lines are added
or deleted these link addresses are all recalculated in a re-chaining process. The
link address of the last line of the program points not to another line but to two
bytes, the contents of which are zero. This forms a link address to zero. It should
be noted that when a NEW command is executed it does not erase the whole
contents of memory but simply sets the link address of the first line to zero. By
reconstructing this link address the program can be restored after a NEW
command. Changing link addresses can also be used to hide program lines as
part of a security technique or to store machine code subroutines or data.

1.2.4 Using a know/edge of program storage
Having a knowledge of the way a program is stored allows one to perform
modifications to program lines. This can be useful in many ways. Examples of
the kind of application are line renumbering, an auto line number generator,
program compactors, and many others. A line renumbering routine is quite

Memory Utilisation by BASIC 9

simple, entailing finding the line number of each program line and changing it to
the new number. An example of a Basic program to do this is shown in Program
1. This program is designed to be appended tothe top ofa program and can then
be run with a RUN 61~~~. It should be noted, however, that although this
routine will renumber the line numbers it will not renumber jump and branch
addresses. For a full renumber routine in machine code which renumbers
everything see Chapter 5.

610013 REM ** LIHE RENUMBER **
6H110 It~PUT"START LINE,END LINE
61020 INPlIT"NEW START LINE"; N
6113313 C=256
61040 L=PEEK(43)+PEEK(44)*C
610513 A=L
61060 H=PEEK(A+2)+PEEK(A+3)lIEC
6113713 L=PEEK(A)+PEEK(A+1)*C
61080 IFL=0 THENEND
61090 IFH(S THEN61050
61100 IFH)E OR H)=32767 THENEND
61110 POKEA+2,N AND 255
61120 POKEA+3,Nl256
61130 N=N+I

,INC";S,E,I

61150 GOT0610513
Program 1.

An auto line numbering program is shown in Program 2. Like renumber, this
is intended to be appended at the top of a program, and should be entered before
starting to write the program. When this program is run it prints the line number
on the screen. You then type in the desired program line, and on pressing return
the program forces the input line into the low line number part of the program
before placing a new line number on the screen. The program line is entered into
the program using a special technique which allows program lines to be entered
from within a running Basic program. This technique uses the keyboard buffer
into which two carriage return characters are poked, the buffer length pointer
being set to two characters. The first of these carriage returns fools the
interpreter into accepting the line, as entered, and inserts it into the program,
taking care of the correct chaining and tokenisation. The second carriage return
performs a forced jump and auto run in direct mode to restart the auto line
numbering program with the GOT061~4~ printed on the screen following the
entered line. A much more efficient auto line numbering routine written in
machine code is given in Chapter 5 as part of the Basic aid package.

61000 REM ** AUTO LI NE ~lUMBER **
611310 HlPUT"STARTING LINE NUMBER, INCREMEIH"; B, L
610213 PRINT"mM"
611330 POKE830,L:GOT061060
61040 B=PEEK(828)lIE256+PEEK(829)
611350 L=PEEK(830)
61055 PRINT":1
61060 PRINT"
61070 PRINTB;
61080 OPEN 1.. 0: INPUT#l,A$:PRINT:CLOSEl
61090 PRINT"GOT061~W3:Tl11";
61100 POKE19S.· 2:POKE631, 13 :POKE632, 13
61110 B=B+L
61120 POt<E828,IHT<B/256)
6113~\ POKE829, B-1 NT (B/256) *256 : END

Program 2.

10 Advanced Commodore 64 BASIC Revealed

The program compactor in Program 3 uses several different techniques to
remove all REM statements. This will speed up both execution time and tape
loading time as well as reducing the amount of memory required. As with the
preceding two routines it is designed to be appended temporarily to the top of
the program. It locales lines containing a REM command token and then
removes all following characters by first replacing them with space characters.
The line is then displayed on the screen and the terminating spaces removed by
using the auto line entry procedure used in Program 2. This procedure removes
the spaces and re-chains the program, having moved it all down in memory.
Chapter 5 contains a full program compactor routine in machine code which is
much more efficient.

6113(10 REI'l *** REi1 REf10VER ***
6113113 L=F'EEK(43)+PEEK(44)lIE256
61020 GOT061040
6113313 L=F'EEK(828)+PEEK(829)*256
6113413 N=PEEK(U+F'EEK(L+l)1If256
6113513 IFL=eTHENEND
6113613 L=L+4:P=L
6113713 Q=PEEK(l)
6113813 IFQ=0THENL=N:GOT061040
6113913 IFQ=34THEt~620130
61100 IFQ=143THEN62500
611113 L=L+l
611213 GOT06H370
621300 L=L+l
620113 Q=PEEK(l)
6213213 IFQ=eTHENL=N:GOT061040
621330 IFQ=34THEN6111e
6213413 GOT0621300
62500 IFL=PTHENPOKEL .. 58: GOT062540
625113 IFL=P+1THEN62530
625213 IFPEEK(L-1)=58THENPOKEL-L 32
625313 POKEL,32
625413 L=L+1
62550 IFPEEK(L)=0THEN62570
62560 GOT062530
62570 PRINT I :'lI/OO....IST";PEEK(P-2)+PEEK(P-1)*256
62580 PRItH")!I
625913 PRmT"
626130 PRIt-n")!I~)30TO 6W30~";
62610 POKE828, P-4 At~D255
62620 POKE829,(P-4)/256
62630 POKE198,3:POKE631,13:POKE632,13:POKE633,13
626413 END

Program 3.

II· ,

The above are just three of the many possible ways in which an understanding
of the way a program is stored can be useful.

1.3 Data storage

The entire area of memory between $~8~~ and $A~~~ not used for program
storage is available for data storage. In addition data can be stored within a
program either as DATA statements or defined variables, or directly poked into
the 4K block of memory from $C~~~ to $CFFF.

Memory Utilisation by BASIC 11

1.3.1 DA TA statements
The simplest form of data storage is using data statements. The data in a data
statement is stored as ASCII characters on a data statement line within a
program. The data is accessed by the program using the READ command.
However, data storage in data statements can be added to or changed only by
adding or amending program lines in the direct mode. Though the routine in
Program 4 can be used to add DATA statements to a program while it is
running, this is done by printing the line number followed by DATA and the
string or value on the screen, and using the keyboard buffer to force a carriage
return and thereby add the line to the program. It shol)ld be noted that this
procedure will delete all variables and pointers currently used by the program.
Another limitation is that data can be accessed from data statements only in a
serial mode. This means that to find one particular item the whole table of data
must be read. The pointer to the current data statement is stored in locations
$41,$42 and the data statement line number is stored in locations $3F,$4~.
Manipulation of the contents of these locations provides a means of overcoming
this serial access limitation (see the RESTORE command in Chapter 4).

610013 REt1 ** DATA mpUTTER H
61010 INPUT"STARTING LINE NUt1BER, INCREMEtH";B,L
61020 PRINT"JaaIi!I"
611330 POKE8313,L:GOT061060
610413 B=PEEk(828)*256+PEEK(829)
61050 L=PEEK(8313)
61055 PRINT"~
61060 PRINT"
610713 PRIIHB; "~IIDATA".;
61080 OPEtH, 0: mpUT#L R$: PRINT: CLOSE1
61090 PRINT I GOT061040:Tm";
61100 POKE198,2: POKE63L 13: POKE632, 13
6111r:' B=B+L
61120 POf(E:::28 .. INT<B/256)
611 :3C FWE829 , B- HlT (!~./2'56) *256 : END

Program 4.

1.3.2 Types of variables
Data not stored within the program is stored in an area of memory above the
Basic text area as variables. Variables can be divided into two groups. Simple
variables are of the kind used in the following statement:

LET X=67

where X is a simple variable. Array variables are defined by a DIM statement
and contain more than one value. The number of values is determined by the
number of elements in the DIM statement. For both groups of variables there
are three types of data - real or floating point numbers, integer numbers and
character or string variables where words are stored rather than numbers. The
interpreter differentiates between different types of variable by testing the
character immediately following the variable name. Thus a variable name
followed by a '$' denotes that it is a string variable, a '%' denotes an integer
variable, and if neither of these characters is present, then the variable is a
floating point value. If the character following the variable type determinating

12 Advanced Commodore 64 BASIC Revealed

character is a 'C then this denotes that the variable is an array element. Variable
names are thus subject to the following rules:

(1) The first character must be alphabetic.

(2) The second character can be either alphabetic or numeric.

(3) Any further alphanumeric characters are valid but are ignored by the
interpreter, thus variable name ABCOE is, as far as the processor is concerned,
identical to variable name ABXYZ. Variable names have a practical upper limit
on size of 8~ characters minus the length of the variable plus one. Long variable
names are really only of use to aid comprehension of a program, and since they
slow down program execution time should be limited in the final running
version. It should be noted that the variable name must never be a reserved Basic
word or contain within it a reserved Basic word. Thus a variable called PRINT
would be invalid, as would a variable called SPRINT; either of these will give a
Syntax error.

(4) The next character after the variable name denotes the variable type; '$' =
string and '%' = integer; default is floating point.

(5) If the next character is a '(' then this denotes a subscripted array variable.

(6) If the variable is an array variable then the following values denote the
position of the variable within the array.

One useful function when writing a Basic program is to be able to display all
variables currently being used and their contents. This is performed by the
variable dump routine in Chapter 5.

1.3.3 Simple variables
Simple variables of whatever data type are stored immediately above the Basic
program storage area, and start at an address pointed to by the contents of
locations $2D, $2E. The amount of memory used to store these variables
depends on the number of variables used in the program. Each variable occupies
seven bytes of memory, and the top of variables storage area where the next
variable may be stored is pointed to by the address in locations $20, $2E.

For all types of simple variables the first two bytes contain the variable name,
the high bit of either byte being used to flag the variable type thus giving four
variable types. Examples are:

Variable Variable
name name storage Variable type

AA 65 65 floating point
AA% 193 193 integer
AA$ 65 193 string
FN(AA) 193 65 function definition

Memory Utilisation by BASIC 13

Of these four types of variable the first two include the variable value within
the seven bytes of the variable, and the last two contain pointers to the variable
position in memory (and in the case of a function definition also to the
definition). When the program is run and a variable name encountered, the
table of variables is sequentially searched for the required variable. If the
variable is found then its value is retrieved, otherwise it is added to the end of the
variable table. Since each variable occupies the same memory space - seven
bytes - the scanning of the variable table is done quite rapidly. However, if speed
is important it is a good idea to define all variables required by a speed sensitive
portion of the program at the beginning. This will set them up at the start of the
variable table and therefore speed up access.

The contents and format of the last five bytes of each variable are different for
each variable type. These are shown in Fig. 1.4. The format used to store
floating point and integer values is covered in detail in Chapter 2. The pointer
used by string variables is a 16 bit address of the start of the string in memory.
This can be any RAM memory location, either within the Basic program or
from the area of memory at the top of RAM where Basic stores all calculated
strings. Byte three of the string variable contains the length of the string. The
string, when accessed, is thus fetched from the string pointer location up for the
number of bytes indicated by the string length. The format of a function
definition variable is different in that it contains two pointers. The first pointer is
to the actual definition which is contained within the Basic program. It points to
the character following the equals sign in the definition. The second pointer is to
the variable used in the definition. This points to the exponent of the variable
which is stored in normal floating point format.

Basic will allow variables to be retained when one program is loaded from
another, provided the second program is shorter than the first. This could create
problems since some strings and all functions have pointers to data within the
Basic program. With a new program these pointers will no longer point to
correct values and will therefore in most cases give rise to a Syntax error
message.

1.3.4 Array variables
The storage of array variables is considerably more complex than that of simple
variables. Arrays are stored immediately above the top of the simple variables
storage area and th~ir beginning is pointed to by locations $2F,$3~. The end of
the array storage area is pointed to by locations $31,$32. It should be noted that
adding an extra variable to the simple variable table necessitates moving all
array variables up seven bytes in memory, a process which considerably slows
down program execution time, and is another reason why it is desirable always
to define all simple variables at the start of a program.

Unlike simple variables the three different types of array variables (floating
point, integer and string) all use different amounts of memory. However, their
general organisation is very similar. All arrays consist of a header followed by a
string of variables. The first two bytes of the header contain the array name and
use the same convention as simple variables to determine the array variable type
(i.e. a setting of bit seven of either character). This is followed by a two byte

14 Advanced Commodore 64 BASIC Revealed

I nteger Variables

Byte 2 3 4 5 6 7

First I Second MSB I LSB

Characters of Variable Integer Value in 16Bit

Name 2's Complement e5 r6 j2J ASCII ASCII Signed Binary

+128 +128

or 128

I

String Variables

Byte 2 3 4 5 6 7

First I Second LSB I MSB

Characters of Variable String 16 Bit Address where

Name Length String Start is Stored ¢ 0 ASCII ASCII in Memory

128

or 128

I

Floating Point Variables

Byte 2 3 4 5 6 7

First I Second Exponent 4 Bit I Mantissa I I
Character of Variable in Signed

Name 2's

ASCII ASCII Complement

Bit Seven contains Mantissa Sign

or JIJ !I I I I

Function Definition

Byte 2 3 4 5 6 7

I Second I MSB
LSB J MSB Unused

First LSB 16 Bit Address Pointer except

Characters of Variable 16 Bit Address to Variable used in when

Name Pointer to Definition Definition (Points to the Definition

ASCII

I'';'' •
(Byte after = Sign) Exponent of a simple Set Up

+128 Floating Point Variable

Variable) Contents

I I
Fig. 1.4. Storage of BASIC simple variables in memory.

length of the full array entry. The next byte contains the number of dimensions
in the array. This is followed by a number of two byte values each containing the
value of the dimension, starting with the dimension number mentioned in byte
five of the header and descending to dimension zero. This header is then
followed by the data. An example of a typical header is as follows:

Memory Utilisation by BASIC 15

Array AB (5, 1~,2)

Bytes #

2
3
4
5
6
7
8
9

I~
I I

12-1~~1

Contents Function

65 first byte of array name (ASCII A)
66 second byte of array name (ASCII B)

233 high byte of array length
3 high byte of array length (I~~ I bytes)
3 number of dimensions
~ high byte of number of elements in dimension 2
3 low byte of number of elements in dimension 2
~ high byte of number of elements in dimension I

I I low byte of number of elements in dimension I
~ high byte of number of elements in dimension ~
6 low byte of number of elements in dimension ~
x I 99~ bytes of array data in blocks of 5 bytes (these are

all floating point variables)

Note: If the array was an integer array then byte #1 would be 193 and byte #2
194; if a string array then byte #2 would be 194.

Data is stored more efficiently in arrays than in simple variables. Whereas
simple variables all occupy seven bytes of memory, array variables occupy five
bytes for a floating point variable, two bytes for integers, and three bytes for
strings. The format of the number in numerical variables is identical to that of
simple variables and is covered in detail in Chapter 4. The three byte string
variables consist of a length value in byte one and a two byte pointer to the
location of the string in memory. The format of storage of array variables and
the array header is shown in Fig. 1.5.

It is quite easy to calculate the amount of memory required by a given array.
This is the same value as that stored in bytes three and four of the header.
Program 5 can be used:

5 POKE53281,14
7 PIUNT" :O:QW~"
10 INPUT"NU~lBER OF DIMENSIONS IN ARRAY" i N
15 E=1 :PRItH
213 FORQ=1TON
30 PRINT"NUMBER OF ELEMENTS IN DUIENSION "i Q
35 HIPUT"ij" i I : PRINT"~"
40 1=I+l:E=ElIII
50 NEXTQ
613 PRINT")ll'y'ARIABLE n'PE - S, F, I "i
713 GETA$: lFA$=""THEN?0
813 IFA$:"S"THENA=3: PRINT"STRING": GOT012€1
913 IFA$="F"THENA=5:PRINT"FLOATIHG POINT":GOT012e
1130 IFA$="I"THENA=2:PRINT"INTEGER":OOT0120
110 GOTO?13
1213 X=S+(2*N)+(E*A)
1313 PRINT"lIIIIlMEMORY REQUIRED BY ARRAY IS" i Xi "B'nES"

Program 5.

16 Advanced Commodore 64 BASIC Revealed

Byte 2 3 4 5

First 1 Second
Character of

LSB MSB

Array Name Number
of ----
pimen-If Floating Point

ASCII ASCII Array Length sions in

X Array N

If Integer

ASCII ASCII

+ 128 1+128 or
128

If String

ASCII ASCII

1+128

Element Element Element

Array Header ·1 j.2 "'3

~xponent
in Signed

4 I Byte Mahtissa I

2·s Com- r-Bit 7 contains Mantissa Sign

pliment"1 1 1 I

MSB I LSB

Integer Value in 16

Bit 2 .. Compliment

Signed Bjinary

6 7

MSB LSB

Number of Elements

in

Dimension N

>
Element

) .:::- N

)

String Length

String

Length

LSB MSB

16 Bit Address
where String

Start is Stored
in Memory

Start Address of String

8 9

MSB LSB

Number of Element!

in

Dimension N-1

I

(
)

)

)
)
)

x

LSB

Number of Elements

in

Dimension 0

~ ______ ~l~ ______ ~

String Stored in Memory

Fig. 1.5. Storage of array variables in memory.

Memory Utilisation by BASIC 17

All the variables within an array are held in a strictly defined order. This is
best demonstrated in the following example, for an array A(3,2).

Variable # Array element

A(~,~)
2 A(l,~)
3 A(2,~)
4 A(3,~)
5 A(~, I)
6 A(l,I)
7 A(2,1)
8 A(3,1)
9 A(~,2)

I~ A(l,2)
II A(2,2)
12 A(3,2)

As can be seen from this table the first dimension is rotated first, followed by
the second, then the third and so on. Thus if there were a third dimension to the
above example then element 1 in the third dimension would be accessed between
variables 13 and 24. The position of any variable within the array storage area
can be determined using the routine in Program 6.

10 REM ** ARRAY ELEMENT ADDRESS *'
20 POKE53281,14
30 I NPUT II :omM~RRAY T't'PE - S F I ".: A$
40 IFA$=ISITHENL=3:PRIHT"lIISTRING":GOT0813
50 IFA$=IF"THENL=5: PRH1T"N=LOATING POINT": GOT080
60 IFA$="I"THENL=2:PRINT"1lIINTEGER":GOT0813
70 GOT0313
se INPUT"l!i-!UI1BER OF DH1ENSIONS"; N
90 DIMDS(N)JEN(N)
lee FORI=1TON
1113 PRINT")!! NUMBER OF ELEMENTS m DH1ENSION"; I
1213 mpUTDS(I)
1313 IFDS(I)(OTHEN110
140 NEXT
1513 T=e
1613 FORI=l Tot~
1713 PRINT")!l ELEMENT NUI1BER ";1
1813 INPUTEN(I)
1913 IFEtl(I)(130REN(I»DS(I>THEN17e
21313 NEXT
2113 DS(0)=e
2213 FORI=lTON
2313 n=l
240 FORQ=OTOI-l
2513 T1=Tl*(DS(Q)+1)
2613 NEXT
2713 T=T+Tl*EN(l)
2813 NEXT
2913 T=TiliL+5+N*2
2013 PRINT"~LEMENT OFF SET FROM START OF ARRAY"
3113 PRINTT

Program 6.

18 Advanced Commodore 64 BASIC Revealed

To determine the exact position within memory the value obtained from
Program 6 must be added to the memory address ofthe start of the array. If this
is the first array then this address is stored in double byte format in locations
$2F,$3~. If it is not the first array then the size of all preceding arrays must be
calculated and added to the start of array storage address.

1.4 Using BASIC variables within machine code routines

Where machine code subroutines are called from a Basic program It IS
sometimes useful to pass parameters and data using existing Basic variables.
Other machine code routines such as a sort would be specifically designed to
manipulate Basic variables and arrays. If simple variables are used to pass
parameters or data then they should be set up as the first variables within the
variable table. This means that the first program line defines them using dummy
values. These variables are easily accessed using the start of variable pointer
and adding this to the index to variable pointer multiplied by seven. This will
point to the first byte of the variable name which can then be verified and the
data utilised using the routines within the interpreter to handle floating point
values.

Array data can be accessed using the method employed in Programs 5 and 6.
An example of such an application would be using an integer array to store a
screen display, using the high byte to store the character and the low byte the
colour. Such an array would use no more memory than storing it in memory
using poke commands, but would be faster and allow interesting manipulation
from Basic. If string arrays are to be sorted then this can be easily achieved by
simply swapping the pointers stored in the array (see Chapter 5 for an example
of this).

1.5 Interpreter routines to handle variables

The interpreter contains many different routines to handle and manipulate
variables; some useful ones are detailed in the rest of this section. Before using
any of these or other variable handling routines within your own machine code
programs, it is highly advisable to study the documented source code for all
these interpreter routines which is contained in The Commodore 64 ROMs
Revealed in this series. For routines handling variable input/ output and
manipulation see the relevant keywords in Chapter 3.

1.5. 1 Some useful routines
Routine: Search for variable

En,,:!, point: $B~8B

Function: The first function of this routine is to validate the variable name. The
first character must be alphabetic though the second can be either alpha or

Memory Utilisation by BASIC 19

numeric. The variable type is also determined and the flag in $~D is set
accordingly. If the variable is numeric then $~D=$~~ and if it is string =$FF.
The numeric type flag in $~ E is also set to $M if it is a floating point and to $8~ if
it is integer. If the variable name is followed by a left bracket then the routine
branches to $B 1 D 1 which finds or makes an array. The variable name is stored in
locations $45,$46. Having verified the variable name and determined the type
the routine searches for the variable in the section of memory allocated to
variable storage. If found then the variable address pointer is returned in $5F
and $6~. If the variable is not found then the routine branches to $B 11 D where a
new variable is created.

Input parameters:
$45 - first character in variable name
$46 - second character in variable name

Output parameters:
$~D - variable type flag
$~ E - numeric type flag
$5F - Isb of address of variable
$6~ - msb of address of variable
Note: The values must conform to the variable type flag convention covered
earlier in this chapter.

Error messages: Syntax error - if the first character of the variable
name is not alphabetic

Example use: To find the location of variable AB$.
LDA #$41 ;ASCII code for first variable name character
ST A $45 ;put in first current variable name store
LDA #$C2 ;ASCII code for second variable name character
ST A $46 ;put in second current variable name store
JSR $B~8B ;find variable location

Routine: Print string from memory

Entry point: $ABIE

Function: The starting address of the string to be printed is stored in the
accumulator (Isb) and .y index register (msb) prior to entering this routine.
Consecutive characters are then printed to the current output device until a zero
terminator byte is encountered.

Input parameters:
.a - Isb of start address of string
.y - msb of start address of string

Output parameters: None

Error messages: None

Example use: To print a string starting at location $C~~~ to the current output
device.

20 Advanced Commodore 64 BASIC Revealed

LDA #$~~ ;lsb of string start address
LDY #$C~ ;msb of string start address
JSR $AB 1 E, ;output string

Routine: Set up string

Entry point: $B487

Function: This routine creates space at the top of memory for a string, puts it
there and sets the pointers. On entry the starting location of the string is stored
in .a (lsb) and .y (msb). This starting address could be either the input buffer at
$~ I~~, in which case it would have a zero terminating byte, or a string within
quotes in a Basic program. The string origin is determined by the flags in
locations $~7,$~8. On exit the string length is stored in $61 and the address
pointer in $62 (Isb) and $63 (msb).

Input parameters:
.a Isb of start of string address
.y msb of start of string address
$~7,$~8 flags for quotes

Output parameters:
$61 string length
$62 string address pointer Is b
$63 string address pointer msb

Error messages: Formula too complex if insufficient stack space

Example use: Get a string from the buffer starting $~ 1 ~ ~ and put it in the string
storage area.

LDA #$~~ ;lsb of buffer start address
LDY #$~ 1 ;msb of buffer start address
JSR $B487 ;transfer to string storage area

Note: The address pointers are returned in $62,$63 and the length in $61 can be
inserted into the requisite locations of a string variable located using the routine
at $B~8B.

Routine: Discard unwanted strings

Entry point: $B6A3

Function: This clears the last entered string pointed to by locations $64,$65,
and moves the bottom of the string pointers up by the size of the string length so
that a new string will overwrite it. This routine is used to overwrite the last
entered string only. On exit locations $22,$23 point to the removed string.

Input parameters:
$64 - Isb of address of last entered string
$65 - msb of address of last entered string

Output parameters:
$22 - Isb of address of removed string
$23 - ms b of address of removed string

Error messages: None

1.6 How BASIC works

Memory Utilisation by BASIC 21

There are two sides to the functioning of the Basic interpreter; program entry
and program execution. Program entry is nearly always performed in direct
mode, while program execution is carried out principally in run mode (except
for single line program or command execution in the direct mode). Program
entry has already been dealt with in the section on program storage.

The entry to the program execution loop is via one of the execution
commands entered in direct mode. These commands are RUN, GOTO and
GOSUB. When one of these commands is executed in the direct mode it sets the
charget pointers to the beginning of the program or the designated line number
(the charget subroutine is described in Chapter 4) and then goes to the main
program interpreter loop where the rest of the program is executed. For
explanations of the functioning of the routines for RUN, GOTO and GOSUB
see Chapter 3, and for the source code interpretation of these routines and the
program execution routines see The Commodore 64 ROMs Revealed in this
senes.

The program execution loop is fairly straightforward and consists of two
quite short routines. The logic flow within these routines is shown in the flow
diagram in Fig. 1.6. The two routines are the main Basic interpreter control loop
and the execute Basic statement routine. The function of these two routines is as
follows.

1.6.1 Main BASIC interpreter loop - start *A7AE
This loop routine controls the execution of a Basic program, and has the
following sequence of operations:

(1) Check for the STOP key. If pressed, exit loop to direct mode.
(2) Check for the end of line or a program terminator (~ = end of line and ~~ =
end of program). If it is the end of the program then execute the EN 0 routine,
otherwise locate next program line.
(3) Put the next character of the Basic line into the accumulator using the
charget routine.
(4) Jump to the execute Basic statement routine and then return to the start of
the interpreter loop at $A 7 AE.

1.6.2 Execute BASIC statement routine - start $A7ED
The character obtained by charget in step 3 of the interpreter loop is in the
accumulator. This character is first checked to see if it is a line terminating zero.
If so then the routine returns to the interpreter control loop at $A 7 AE and starts

22 Advanced Commodore 64 BASIC Revealed

$A807

$AF08

Get Program Pointers

Save Program Pointers in Count

Pointer

Get Current Character

Generate Syntax Error

Yes $A82C
~----'------t Save Program Pointers

Yes

Yes
-:>-_--{2

Yes
:>----{3

Save Line # Pointers

Get Return Address from Stack

$A469
Output . Break in...... Message

($A480) ($E386)

Warm Start Loop for New Command
Input

Fig. 1.6. Main BASIC interpreter loop.

on the next line. The character in the accumulator is then checked to see if it is a
token (this is assumed if the code value is greater than $8~). If a token is not the
first character found in a statement then the character is assumed to be a
variable and a LET default assignment is performed. When a token is found it is
first checked to see if it is a function or the GOTO command; if it is then these
statements are performed. The token value is then used as a pointer to the
keyword table (starting at $A~~C) by subtracting $8~ and multiplying the result
by two. This pointer is used to get a two byte address ofthe start of the routine
which performs the command. The two byte address is pushed onto the stack

Get Next Character

Save Current Line A

Set C harget Pointers

3r---~-----~

Jump ($0308) Vector
Execute Basic Statement

Use Token to Point to Routine

Get Next Character From Charget

Execute Command Pointed to by

Address of Stack on RTS

$A7ED Return to Control Loop

Memory Utilisation by BASIC 23

=> __ y,_e_s ___ ~Execute End Statement $A84B

Fig. 1.6. cont.

and a jump to the charget routine performed. Char get puts the next character of
the program line into the accumulator (this is usually a parameter required to
execute the command), and since char get terminates in an R TS instruction it
will return not to the general execute statement routine but to the routine
starting at the address stored on stack - the command routine. On returning
from the command routine the control will return to the start of the Basic
interpreter loop.

The execution of a Basic command is duplicated in the token handling
routines for adding commands to Basic; these routines are given in Chapter 4.

24 Advanced Commodore 64 BASIC Revealed

Table 1.1. BASIC zero page storage.

In this table are the addresses of zero page storage for the Basic interpreter. These
location are from $~3-$8F (3-143). Locations ~ and I are the processor registers,
location 2 is unused and locations above 143 are the kernal storage area.

$~3-$~4 3-4 Initial: Hex $BIAA Dec 45482
This is a two byte vector for the Basic to use to convert numbers in floating point

format into two byte signed integers. This vector could be changed to point to your own
routine if required (i.e. for rounding up the value). This value remains unchanged.

$~5-$~6 5-6 Initial: Hex $B39l Dec 45969
This is a two byte vector for the Basic to use to convert numbers in two byte signed

integer format into floating point. This value remains unchanged.

$~7 7 Initial: Not applicable
This byte is used in the main interpreter loop to store a character whilst searching for

the next Basic statement on a line (or next line). There is no way of manipulating this
byte.

$~8 8 Initial: Not applicable
This byte is used in the Crunch to tokens routine and is used as a flag as to whether the

next character is to be crunched or not. This value has no effect unless the characters
follow the quotes character, REM, or DATA. It could be possible to wedge into the
Crunch to tokens link and put into the correct position a store to location 8 with an
illegal value (#$FE). This would then cause the input line not to be crunched.

$~9 9 Initial: Not applicable
This location stores the position on a line where the next byte is to be displayed. This

is only ever used when the TAB command is found in a PRINT command. At this point,
the value in this location is subtracted from the TAB value and if greater than zero, that
number of cursor movements to the right is printed.

$~A l~ Initial: Not applicable
This byte just stores a I or ~ to say whether a file is being loaded or verified. The

kernal has a byte with the same use.

$~B II Initial: Not applicable
This location is used as a storage for the position in the input buffer where the Crunch

to tokens routine is. Also in the same routine is the token value minus $8~. This location
is also used to store the number of subscripts of an array when setting upi reading etc.

$~C 12 Initial: Not applicable
This value is a flag to tell the Find array routine whether the array exists or not. If not,

then the array is created to the default dimension (I~) and the number of subscripts
(max 3).

$~ 0 13 Initial: Not applicable
This location is a flag set by the find variable routine which just says whether the

variable was string ($FF) or numeric ($M).

$~E 14 Initial: Not applicable
This location holds the flag, if the variable was numeric, to state whether it was integer

($8~) or real ($~~).

Memory Utilisation by BASIC 25

$~F 15 Initial: Not applicable
This byte is used in the LIST routine to say whether a token is to be converted to text

or just displayed as the ASCII character. It is used for quotes, REM, and DATA.

$I~ 16 Initial: Not applicable
This location is used by the DEF FN and check FN syntax routines. This byte is also

used when searching for or creating a variable.

$11 17 Initial: Not applicable
This location is used to flag whether a certain input is from READ ($98), GET ($4~)

or INPUT ($~~).

$12 18 Initial: Not applicable
This byte is used as a flag for the TAN command (sign) and the comparison routines

(result).

$13 19 Initial: Hex $~~ Dec ~
Current I/O prompt flag. This byte is checked by the INPUT command to see

whether the prompt flag '?' is to be displayed. Setting this value to a one will cause the
prompt to be 'turned off.

$14-$15 2~-21 Initial: Not applicable
This two byte value is the integer value location. All commands using a two byte

integer (signed or unsigned) use this location, an example being the POKE command
where the address is stored in these locations.

$16 22 Initial: Hex $19 Dec 25
This location is the pointer to the temporary string stack. The temporary string stack

is nine bytes long and is used when evaluating an expression.

$17-$18 23-24 Initial: Not applicable
This two byte vector is a pointer to the last temporary string used.

$19-$21 25-33 Initial: Not applicable
This is the nine byte long temporary string stack. This stack is used by the string

manipulation routines before setting the string to point to it.

$22-$25 34-37 Initial: Not applicable
These four bytes are used as a temporary pointer area by some ofthe Basic routines. It

is usually safe to use these in your own routines but do not depend on the values
remaining after exit from your routine.

$26-$2A 38-42. Initial: Not applicable
These five bytes are used to store products from the multiplication routines. The

numbers are stored in five byte packed format (as with variables).

$2B-$2C 43-44 Initial: Hex $~8~ I Dec 2~49
This vector is the pointer to where the Basic program starts in memory. This value is

not changed once the Basic interpreter has been initialised. The value can be changed
before loading a program so that some memory below the Basic program is protected.
For example: POKE43, I:POKE44,64 will protect the bottom bank from the program.
Unfortunately this will reduce the size of the program area by 14K but will allow user
defined characters and sprites to be stored without worry of corruption.

Note: Another POKE is required to ensure that the program will RUN:
POKE(PEEK (43)+PEEK(44)*256)-I,~.

26 Advanced Commodore 64 BASIC Revealed

$2D-$2E 45-46 Initial: Hex $~8~3 Dec 2~51
This vector is the pointer to the start of the variable storage area. Its value always

points to the location two bytes after the Basic program, thus it is changed every time a
program line is changed.

$2F-$3~ 47-48 Initial: Hex $~8~3 Dec 2~51
This vector is the pointer to the end of Basic variable storage. Before a variable is

declared this vector is the same as the start of variable storage. Each time a variable is set
up, this value will be increased by seven bytes (for simple strings, integer, real variables
and functions). This vector is also the pointer to the start of array storage.

$31-$32 49-5~ Initial: Hex $~8~3 Dec 2~51
This vector is the pointer to the end of array storage. Before any array is declared this

value is the same as the start of variable storage. Each time an array is set up, the pointer
is increased by the length of the entry. (This value is variable depending on the number
of dimensions and the size of each dimension.)

$33-$34 51-52 Initial: Hex $AM~ Dec 4~96~
This vector is the pointer to the position where the last string was put. Strings are

stored from the top of memory working downwards. When the string pointer passes the
end of array pointer a garbage collect is done. This discards all strings that are not
pointed to, thus giving as much free memory as possible. If this does not give enough
memory to insert a variable, the message Out of memory will be displayed.

$35-$36 53-54 Initial: Hex $AM~ Dec 4~96~
This vector is the utility string pointer.

$37-$38 55-56 Initial: Hex $AM~ Dec 4~96~
This vector points to the first unusable byte at the top of memory (normally the

beginning of the Basic ROM). This value is not changed by the interpreter but can be
changed by you to protect an area at the top of the Basic program for the use of machine
code routines, data, etc.

$39-$3A 57-58 Initial: Hex $FFxx Dec >65279
This two byte value is the store for the current Basic line number of the line being

operated on. The high byte is set to $FF to say that Basic is in direct mode (it disables GET
and INPUT).

$3B-$3C 59-6~ Initial: Not applicable
This two byte value stores the line number of the previous Basic line used.

$3D-$3E 61-62 Initial: Hex $FFxx Dec >65279
This vector is the pointer to the Basic statement to be operated on when the command

CONT is called. Note: Do not use CONT inside a program as this value will point to
itself (endless loop).

$3F-$4~ 63-64 Initial: Hex $~~~~ Dec ~
This two byte value is the line number where the next value for READ is taken from

in a DATA statement.

$41-$42 65--66 Initial: Hex $~8~~ Dec 2~48
This vector is the pointer to the memory of the first byte of the next DATA value.

Memory Utilisation by BASIC 27

$43-$44 67-68 Initial: Not applicable
This vector is the pointer to where the input for READ, GET, and INPUT is stored to

convert to number form (if need be).

$45-$46 69-7~ Initial: Not applicable
These two bytes store the name of the last variable accessed. The high bits are set to

give the correct type as well.

$47-$48 71-72 Initial: Not applicable
This vector is the pointer in memory to the last variable accessed.

$49-$4A 73-74 Initial: Not applicable
This vector is the pointer to the variable being used in the current FOR ... NEXT loop.

$4B-$4C 75-76 Initial: Not applicable
These two bytes are used as a temporary storage for things such as Basic pointers.

$40 77 Initial: Not applicable
This byte is the comparison symbol accumulator which holds which comparison

symbols have been found in the Evaluate expression routine.

$4E-$53 78-83 Initial: Not applicable
These six bytes are a work area for miscellaneous routines.

$54-$56 84-86 Initial: Not applicable
Location $54 holds the byte value for 'JMP' and the other two bytes are set up when a

function is encountered.

$57-$6~ 87-96 Initial: Not applicable
These ten bytes are floating point accumulators three and four and are temporary

areas for some of the arithmetic routines.

$61-$66 97-1~2 Initial: Not applicable
This is floating point accumulator one. All calculations use these locations and the

results of all arithmetic routines are left in here.
$61 - exponent value
$62-$65 - mantissa
$66 - sign

$67 103 Initial: Not applicable
Some of the arithmetic routines use one of the two series to perform the calculation.

This location holds the number of constants required for the series.

$68 1~4 Initial: Not applicable
This byte holds the overflow from FP ACC# I when some calculations are performed.

$69-$6E 105-11~ Initial: Not applicable
Floating point accumulator two.

$6F III Initial: Not applicable
This byte holds the sign comparison byte for FPACC # I and FPACC#2 for the use of

division etc.

$7~ 112 Initial: Not applicable
This byte contains the underflow from FPACC#1. It is used when transferring the

value into memory. The byte may also be referred to as the 'rounding' byte.

28 Advanced Commodore 64 BASIC Revealed

$71-$72 113-114 Initial: Not applicable
The main use of this vector is as the pointer to a series constant.

$73-$8A 115- I 38 Initial: See text
This is the location of the zero page routine used by Basic to get the next character

from the current input line (charget). For more information see Chapter 4.

$8B-$8F 139-143 Initial: See text
This is the seed value from which the next RND value will be calculated. The initial

values are:
$8~,$4F,$C7,$52,$58

Table 1.2. Table of BASIC keywords and their tokens.

Token value
Decimal Hexadecimal Keyword

128 $8~ END
129 $81 FOR
13~ $82 NEXT
131 $83 DATA
132 $84 INPUT#
133 $85 INPUT
134 $86 DIM
135 $87 READ
136 $88 LET
137 $89 GOTO
138 $8A RUN
139 $8B IF
14~ $8C RESTORE
141 $8D GOSUB
142 $8E RETURN
143 $8F REM
144 $9~ STOP
145 $91 ON
146 $92 WAIT
147 $93 LOAD
148 $94 SAVE
149 $95 VERIFY
15~ $96 DEF
151 $97 POKE
152 $98 PRINT#
153 $99 PRINT
154 $9A CONT
155 $9B LIST
156 $9C CLR
157 $9D CMD
158 $9E SYS
159 $9F OPEN

Memory Utilisation by BASIC 29

Token value
Decimal Hexadecimal Keyword

16~ $A~ CLOSE
161 $Al GET
162 $A2 NEW
163 $A3 TAB(
164 $A4 TO
165 $A5 FN
166 $A6 SPC(
167 $A7 THEN
168 $A8 NOT
169 $A9 STEP
17~ $AA +
171 $AB
172 $AC *
173 $AD /
174 $AE t
175 $AF AND
176 $B~ OR
177 $Bl >
178 $B2
179 $B3 <
18~ $B4 SGN
181 $B5 INT
182 $B6 ABS
183 $B7 USR
184 $B8 FRE
185 $B9 POS
186 $BA SQR
187 $BB RND
188 $BC LOG
189 $BD EXP
19~ $BE COS
191 $BF SIN
192 $C~ TAN
193 $CI ATN
194 $C2 PEEK
195 $C3 LEN
196 $C4 STR$
197 $C5 VAL
198 $C6 ASC
199 $C7 CHR$
2~~ $C8 LEFT$
2~1 $C9 RIGHT$
2~2 $CA MID$
2~3 $CB GO

Chapter Two

Arithmetic Processing
by BASIC

2.1 How BASIC stores and uses numbers

2. 1. 1 Numeric variables, types and range
Basic uses two different types of num bers; integer and floating point. An integer
number is stored as two bytes giving a sixteen bit signed number which can store
numbers in the range +32767 to -32768. Floating point numbers require five
bytes and can store much larger values in the range +-1. 7~ 141183 E38 to
+-2.93873588 E-39. In the Basic interpreter all calculations, whether on
integer or floating point values, are performed using floating point values rather
than simple integers or binary values. Consequently all integer values are first
converted to floating point format before any calculations are performed.

The format for the storage of an integer value is very simple, consisting of two
bytes stored as low order /high order bytes. Negative values are stored in a twos
complement form. Floating point values are stored in either packed form
occupying five bytes, or unpacked form in six bytes. Packed format is the
normal mode for storing floating point variables in memory. Unpacked format
is used when performing calculations upon floating point values. In either
format there are three components of a floating point value; the sign, the
exponent, and a four byte mantissa. In packed mode the sign is stored as bit
seven of the most significant byte for the mantissa; in unpacked format the sign
occupies its own byte.

2.1.2 The floating point accumulator
In order to perform arithmetic operations on any floating point value the
interpreter needs temporary storage locations for the values being worked upon
and the result. There are two principal work areas, known as floating point
accumulator # I and floating point accumulator #2. These names are usually
shortened to FAC#I and FAC#2. Each floating accumulator occupies six
bytes; FAC#I starts at $61, and FAC#2 at $69. There are, in addition, three
further areas where floating point numbers in packed format (occu pying five
bytes) are stored; these areas start at $57, $5C and $26. The format and location
of the two floating accumulators are as follows:

Location
FAC#I FAC#2

$61
$62
$63
$64
$65
$66

$69
$6A
$68
$6C
$6D
$6E

Other locations used are:

$68 overflow byte for FAC#1
$6F sign comparison byte
$7~ rounding byte for F AC# 1

Arithmetic Processing by BASIC 31

Function

Exponenent + $80
Mantissa msb
Mantissa byte #2
Mantissa byte #3
Mantissa Isb
Sign ($FF = - and $~~ = +)

2.1.3 Howa floating point number is stored
The storage of a floating point number is fairly complex both in packed and
unpacked format. The data used to store a floating point number can be divided
into three components; the exponent, the sign, and the mantissa. In the
unpacked format the exponent and sign both occupy one byte and the mantissa
four bytes. The following is an explanation of each component of a floating point
number.

Exponent The exponent indicates the position of the decimal point within the
number. Bit seven ofthe exponent byte indicates the sign of the exponent, thus if
the exponent is positive, bit seven is set to one and therefore the value of the
exponent byte will always be greater than 128. Ifthe exponent is negative then
bit seven is set to zero and the exponent value is less than 128. The exponent is
stored as a power of 2 and is multiplied by the mantissa value to produce the
final value. The following formula can be used to convert a number N stored in
the mantissa bytes (see Mantissa below for calculation of N) to the full floating
point number by multiplying it with a positive exponent:

Value = N * 2 I (E-129)

To determine the exponent of a number, find the highest power oftwo which
can be subtracted from the number. Thus if the number is 18.256, then the
highest power of two is 16 or 214. The exponent value is positive and therefore
equals 129+4 or 133. The fact that the exponent is derived in this way means
that the mantissa for two different values may be the same, with the difference
being registered solely by the contents of the exponent. Thus the floating point
mantissa contents for the values 3.14159 (pi) and 6.28318 (pi*2) are identical:

3.14159 stored as: exponent 13~ and mantissa 73,15,218,161
6.28318 stored as: exponent 131 and mantissa 73,15,218,161

32 Advanced Commodore 64 BASIC Revealed

As can be seen from this, multiplying and dividing a floating point number by
two is a very simple operation involving adding or subtracting one from the
exponent. The range of the exponent is +- 2t 128; this equates approximately to
+-I~t38.

Sign The sign of the value is stored in unpacked format as a single byte with a
value of $FF for negative numbers and $~~ for positive numbers. In packed
format the sign is stored in bit seven of the highest byte of the mantissa. Ifbit seven
is zero then the mantissa is positive and if one then it is negative. Thus the packed
floating point values for +2 and -2 are:

number +2 is: exponent 13~ and mantissa ~,~,~,~
number -2 is: exponent 13~ and mantissa 128,~,~,~

Mantissa The mantissa is stored in four bytes minus the most significant bit of
the most significant byte of the mantissa which is used to store the sign bit. To
convert a number stored in the mantissa into its numeric equivalent use the
following formula:

N = I+((MI AND 127)+(M2+(M3+M4/256)/256)/256)/128

where M I,M2, M3 and M4 are the mantissa bytes, with M I the highest and M4
the lowest. When N has been obtained it should be multiplied by 2t (exponent
-129) to give the actual value. Program 7 allows the input of a number then
prints the contents of the exponent and mantissa bytes for that number as it is
stored in floating point format. These values are then used by lines 9~ to 12~ to
convert the floating point byte values back into the number.

To convert a number into floating point form is a slightly harder calculation
and involves the following steps:

(1) Find the highest power of two which can be subtracted from the number. E =
the value of two to this highest power.

5 F.EM *i~ REAL HUMBER FORMAT (PACKED) **
~0 A=0
;~(1 C:,::P~EK (45)+PEEK (46) *256+2
30 HiPUT" A REAL NUMBER"; A
40 E=PEEI«C)
5~) i'11=PEEK(C+1)
SO ~12=PEEK(C'r2)
/0 N3=PEEK(C+3)
80 M*:PEEK(C+4)
~)0 PRINT
leO PRINTE.: ~11; ~12; M3; ~14
103 IFE=0THENPRINT0:END
110 SG""SGN(64-(m A~lD 128»
120 N=(M1 ANr1127)+128
130 ~1=1'1*256+M2
140 1-l=N;4E256+M3
150 1~=N*256+N4
160 t'j=N*2"t(E-160)l!ESG
200 PRINHl

Program 7.

Arithmetic Processing by BASIC 33

(2) Let R = the remainder after subtracting the value of 21 E. The calculation is
then as follows:

T~ = (RjE)* 128
Ml = INT(T~)+mantissa sign (sign =~ if positive, 128 if

negative)
Tl = (T~-INT(T~»*256
M2 = INT(TI)
T2 = (TI-INT(Tl»*256
M3 = INT(T2)
T3 = (T2-INT(T2»*256
M4 = INT(T3)

MI,M2,M3,M4 are the four mantissa byte values, Ml being the highest.
Program 8 makes this conversion of a number input at the beginning of the
program into the five bytes of a floating point format which are displayed on the
screen. The program then checks by putting these values into the first variable in
memory defined as a simple variable A in line l~.

5 REM ** REAL NUMBER FORMAT (PACKED) **
10 A=O
20 C=PEEK(45)+PEEK(46)*256+2
30 mpUTB
35 IFB=0THENPRINT0i 0.; 0i (1i (1: PRINT: GOT0230
40 EX=INT(LOG(AES(B»/LOO(2»
50 E=EX+129
60 R=B-21EX
70 SG=SGN(-B)*64+64
80 T0=(R/21E)O*128
90 ~11=INHT0)+SG
100 T1=(T0-IIH<T0»*256
110 t12=INT(Tl)
120 T2=<T 1-mHTl))*256
130 r'1:3= I NT <T2)
14~ T3=(T2-INT(T2»*256
150 M4=INT<T3)
160 PRINTEi N1 i ~12i M3i ~14
170 PFdNT
180 POKEC,E
190 POKEC+Lm
200 POf(EC+2 .. N2
210 POKEC+3,N3
220 POKEC+4,1'14
230 PRINTA

Program 8.

The following are examples of the storage of some floating point numbers:

Number

-I
.5
.25
IE38
IE-39

Exponent

$81
$81
$80
$7F
$FF
$PP

MI

$8~
$80
$8~
$8~
$96
$A~

M2 M3 M4 Sign

$~P $PP $~P $~0
$M $M $M $FF
$~P $0P $~P $0P
$PP $M $PP $PP
$76 $99 $52 $M
$PP $PP $PP $M

34 Advanced Commodore 64 BASIC Revealed

The following are the principal routines within the interpreter which perform
the arithmetic operations; all are usable by the programmer within machine
code routines. These are all used by the Expression evaluation routine at
$AD9E.

2.1.4 Evaluate expression
This is a long and very important routine which parses any expression, numeric
or string, checking for syntax errors and evaluating the type of expression and
result. The routine evaluates and expression whose starting address is pointed to
by the charget pointers $7 A,$7B. Since the routine involves a lot of stack
processing, it first checks that there is sufficient space (it should be noted that
long and complex expressions can generate an Out of memory error because of
insufficient stack space). The expression type is determined and stored in
location $~D. If $~D contains $FF then it is a string expression and if $~D
contains $~~ then it is a numeric expression. A series of routines then evaluates
the expression and if it is numeric stores it in F AC# 1. If it is a string expression
then the string length is stored in the accumulator and the string pointer is in
locations $64,$65. The result value or string is then assigned to the specified
variable. If the variable is not found in the variable tables or arrays then it is
created and the value or string allocated. The following are the entry points and
functions of some of the routines used:

SADA9 - push .a to stack and run routine
$ADB8 - test for combination of <= > and store code in $40
$ADD7 - process string operators
$AE2~ - push argument in FAC#I onto the stack. The stack

format is:
I .. $AD
2 .. $FA
3 .. operation address msb
4 .. operation address Isb
5 .. sign of value in FAC# I
6 .. value in FAC#I lsb
7 .. value in FAC#I 2nd byte
8 .. value in FAC#I 3rd byte
9 .. value in FAC#I msb

I ~ .. exponent in F AC# I
II .. compare flag (from loc $4D)
12 .. operation hierarchy

The operation address is obtained from a table starting at $A~8~. This table also
contains the operation hierarchy. This is stored in three bytes - hierarchy in one
byte, and a two byte operation address. The operation hierarchy is derived from
a hierarchy table at the start of the Basic interpreter. This places brackets and
functions as the highest priority, followed by power, negate, * /, +-,
COMPARE, NOT, AND, OR. Bytes one and two of the stack·are the return
address and are fixed.

Arithmetic Processing by BASIC 35

$AE58 - puts stack contents into FAC#2 and puts the
exponent in .a

$AE83 - evaluation routine checks for ASCII numeric strings
and operators

$AE83 - PI in floating point notation
SAEFI - evaluates expression within brackets
$AEF7 - Syntax error if charget does not point to ')'
$AEF A - Syntax error if char get does not point to '('
$AEFD - Syntax error if charget does not point to ','
$AEFF - Syntax error if charget does not point to a byte

identical to that in .a; if it does then .a returns with the
next character

2.2 The arithmetic routines

The Basic interpreter includes twenty-four major arithmetic subroutines. These
subroutines can be grouped into four categories; floating accumulator to
memory transfers, floating accumulator to floating accumulator transfers,
floating point to integer conversion and the actual arithmetic function routines.
The following tables show the routines and how they can be used, parameters
passed etc. It is recommended that anyone wishing to use these routines should
first examine the full source code for these routines which is contained in
Volume 1 of this series, The Commodore 64 ROMs Revealed.

Routine: Transfer FAC#1 to memory

Entry points:
$BBC7 - pack F AC# 1 into $~~5C up
$BBCA -pack FAC#1 into $~~57 up
$BBD~ - pack FAC#1 into current variable whose address is

pointed to by locations $49,$4A
$BBD4 - pack F AC# 1 into memory pointed to by .x and .y

Function: This routine compresses the six bytes of F AC# 1 into five bytes by
storing the sign byte as the most significant bit of the mantissa ms b. These five
bytes are then stored in a memory location pointed to by .x (Isb) and .y (msb)
index registers.

Input parameters: No input parameters are required by entry points $BBC7,
$BBCA or $BBD~ .

. x index register - lsb of memory address pointer

.y index register - msb of memory address pointer

Output parameters:
Packed floating point value in memory, F AC# I unchanged
Rounding flag in $7~ set to zero

36 Advanced Commodore 64 BASIC Revealed

Registers used: Processor registers .a, .x, .y
FAC#I

Error messages: None

Example use: Example to transfer contents of FAC#I to memory location
starting at $C~~~.

LDX #$~~ ;set.x to lsb address pointer
LDY #$C~ ;set.y to msb address pointer
JSR $BBD4 ;transfer

Routine: Transfer memory to F AC# I

Entry point: $BBA2

Function: This loads a value stored as a five byte floating point number, extracts
a sign byte, and then stores it in the six bytes of F AC# 1. The location of the
value in memory is pointed to by the contents of.a (Is b) and.y (msb) registers.

Input parameters:
Accumulator - lsb of memory address pointer
.y index register - msb of memory address pointer

Output parameters:
F AC# I contains the value which is still in memory
$7~ (low order rounding byte) set to zero

Registers used:
Processor registers .a and .y
FAC#I

Error messages: None

Example use: This routine will load F AC# I with the contents of memory
starting at location $C~~~.

LDA #$~~ ;lsb of address pointer
LDY #$C~ ;msb of address pointer
JSR $BBA2 ;transfer

Routine: Transfer memory to F AC#2

Entry point: $BA8C

Function: This takes the value stored as a five byte variable in memory at an
address pointed to by .a (Isb) and .y (msb), unpacks the sign byte and stores the
value in the six bytes of F AC#2.

Input parameters:
Accumulator - Isb of memory address pointer
.y index register - msb of memory address pointer

Output parameters: FAC#2 contains the value which is still stored in memory

Registers used:
Processor .a and .y registers
FAC#2

Error messages: None

Arithmetic Processing by BASIC 37

Example use: Will take the floating point value in memory at location $C~~~
and transfer it to FAC#2.

LOA #$~~ ;lsb of address pointer
LOY #$C~ ;msb of address pointer
JSR $BA8C ;transfer

Note: To transfer F AC#2 to memory, F AC#2 must first be transferred to
F AC# 1 then F AC# 1 transferred to memory.

Routine: Transfer FAC#1 to FAC#2

Entry point: $BC~F

Function: This moves the entire contents of F AC# 1 into F AC#2, leaving both
containing the same value.

Input parameters: F AC# I

Output parameters: FAC#2

Registers used: F AC# 1 and FAC#2, registers .a and .X

Error messages: None

Example use: JSR $BC~F

Routine: Transfer F AC#2 to F AC# 1

Entry point: $BBFC

Function: This moves the entire contents of F AC#2 into FAC# 1, leaving both
containing the same value.

Input parameters: F AC# 1

Output parameters: F AC#2

Registers used: FAC# 1 and FAC#2, processor registers .a and .x

Error messages: None

Example use: JSR $BBFC

Routine: Perform addition

Entry points:
$B867 - add F AC# 1 to constant
$B86A - add FAC#1 to FAC#2

38 Advanced Commodore 64 BASIC Revealed

Function: The contents of F AC# I are added to F AC#2 and the result stored in
F AC# 1. There are two entry points to this routine. The first at $B867 loads a
five byte constant from memory pointed to by .a and .y into F AC#2 and adds it
to F AC# 1. The second at $B86A assumes that the two floating point numbers
are already loaded into the two floating accumulators. The result is stored in
FAC#1.

Input parameters: For entry point $B867
.a lsb memory address pointer to value B
.y msb memory address pointer to value B
FAC#I contains value A

For entry point $B86A
F AC# I contains value A
FAC#2 contains value B

Output parameters: FAC#I contains the result of the addition

Registers used:
Processor registers .a, .x, .y
FAC#I and FAC#2

Error messages: Overflow error if the sum of the two values exceeds the
maximum or minimum size floating point value

Example use: To load two floating point values from memory and add them
together leaving the result in FAC#1. The location of value A is $CM~ and
value B is $OM~. FAC#I is loaded using the routine at $BBA2.

LOA #$~~ ;Isb of address of value A
LOY #$C~ ;msb of address of value A
JSR $BBA2 ;transfer value A from memory to FAC#I
LOA #$~~ ;Isb of address of value B
LOY #$O~ msb of address of value B
JSR $B867 ;transfer value B to F AC#2 and perform addition

and store the result in F AC# I

Routine: Perform subtraction

Entry points:
$B85~ - subtract F AC# I from constant
$B853 - subtract FAC#I from FAC#2

Function: The contents of FAC#I are subtracted from FAC#2 and the result
stored in F AC# I. There are two entry points to this routine. The first at $B85~
loads FAC#2 with a five byte value from memory pointed to by .a (Isb) and.y
(msb). The other entry point at $B853 assumes that the two values are already
loaded into the two floating accumulators. The result is stored in F AC# 1.

Input parameters: For entry point $B85~
.a lsb of address of value A
.y msb of address of value B

F AC# I contains value B
For entry point $B853

FAC#I contains value B
FAC#2 contains value A

Arithmetic Processing by BASIC 39

Output parameters: F AC# I contains the result

Registers used:
Processor registers .a, .y, .x
FAC#I and FAC#2

Error messages: Overflow error if maximum or minimum floating point values
are exceeded by the subtraction

Example use: To load two values stored in memory and subtract them leaving
the result in FAC#1. Value A is stored at $CM~ and is placed in FAC#I by
routine $BBA2. Value is stored at $O~~~. The result of subtracting value A
from value B is stored in F AC# I.

LOA #$~~ ;Isb of address of value A
LOY #$C~ ;msb of address of value A
JSR $BBA2 ;transfer A to FAC#!
LOA #$~~ ;!sb of address of value B
LOY #$D~ ;msb of address of value B
JSR $B85~ ;transfer B to FAC#2 and perform subtraction.

Put the result in F AC#!.

Routine: Perform mUltiplication

Entry points:
$BA28 - mUltiply F AC#! by constant
$BA2B - mUltiply FAC#I by FAC#2

Function.· The contents ofFAC# I are mUltiplied by the contents ofFAC#2 and
the result is stored in F AC # I. There are two entry points to this routine. The
first at $BA28 loads a value into FAC#2 from memory pointed to by .a (lsb) and
.y (msb) then mUltiplies FAC# I by FAC#2. The second entry point at $BA2B
assumes that both floating point accumulators have been loaded with the two
values.

Input parameters: For entry point $BA28
.a Isb of address of value A
.y msb of address of value A
FAC# I contains value B

For entry point $BA2B
FAC# I contains value B
F AC#2 contains value A

Output parameters: F AC# I contains the result

40 Advanced Commodore 64 BASIC Revealed

Registers used:
Processor registers .a, .x, .y
FAC#I and FAC#2
Prod uct area $26 to $2A

Error messages: Overflow error if the exponent of FAC#I is $FF

Example use: This example loads two values stored in memory into the floating
point accumulators, mUltiplies them together and puts the result in F AC# 1.
Value A is stored at $C~~~ and is placed in F AC# I by routine $BBA2. Value B
is stored at $O~~~. The result of multiplying A by B is stored in FAC#1.

LDA #$~~ ;lsb of address of value A
LOY #$C~ ;msb of address of value A
JSR $BBA2 ;transfer A to F AC# 1
LDA #$~~ ;lsb of address of value B
LOY #$D~ ;msb of address of value B
JSR $BA3~ ;transfer value B to F AC#2 and perform

multiplication. Store the result in F AC# 1.

Routine: Perform division

Entry points:
$BB~F - divide value in memory by FAC#I
$BBI2 - divide FAC#2 by FAC#I

Function: This divides F AC#2 by F AC# I and puts the result in F AC# 1. The
entry point $BB~ F has the pointer to the five byte value stored in memory which
must be transferred to F AC#2, the pointer is stored in.a (Is b) and. Y (msb), and
.x must be loaded with the sign comparison byte - $6F. The contents of FAC#2
are then divided by the contents of FAC#I, loaded prior to the routine entry.
The result is stored in F AC# 1.

Input parameters: For entry point $BB~F
.a Isb of memory address of value A
.y msb of memory address of value A
.x sign comparison byte from $6F
F AC# 1 contains value B

For entry point $BBI2
.a exponent ofFAC#1 from $61
F AC# 1 contains value B
F AC#2 contains value A

Output parameters: F AC# I contains the result of dividing A by B

Registers used:
Processor registers .a, .x, .y
FAC#I and FAC#2
Prod uct area $26 to $2A

Error messages:
Division by zero error if F AC# I = ~
Overflow error if FAC#I exponent is $FF

Arithmetic Processing by BASIC 41

Example use: This example loads two values from memory into the two floating
point accumulators and divides the contents of F AC#2 by the contents of
F AC# 1 and stores the result in F AC# 1. Value A is stored at $C~~~ and is
placed in F AC# 1 by the routine at $BBA2. Value B is stored at $O~~~.

LOA #$~~ ;lsb of address of value A
LOY #$C~ ;msb of address of value A
JSR $BBA2 ;transfer A to F AC# 1
LOA #$~~ ;lsb of address of value B
LOY #$D~ ;msb of address of value B
JSR $BB~F ;transfer value to F AC#2 and divide B by A. Put

result in FAC#1.

Routine: Calculate SIN

Entry point: $E26B

Function: The argument in radians is stored in FAC#1. It is evaluated and the
sine of the angle stored in F AC# I.

Input parameters: F AC# I contains the angle in radians

Output parameters: F AC# 1 contains the sine of the angle

Registers used:
Processor registers .a, .x, .y
FAC#l

Error messages: None

Example use: Get the angle in radians from memory into F AC# I using routine
$BBA2, then convert it to a sine value.

LOA #$~~ ;Isb of address of value
LOY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# 1
JSR $E26B ;convert to sine and store in F AC# 1

Routine: Calculate COS

Entry point: $E264

Function: The argument in radians stored in F AC# 1 is converted to the cosine
value which is stored in F AC# 1. The routine actually adds PI /2 to the value and
then calculates the sine.

Input parameters: F AC# I contains the angle in radians

Output parameters: F AC# I contains the cosine of the angle

Registers used:
Processor registers .a, .x, .y
F AC# I and F AC#2

Error messages: None

42 Advanced Commodore 64 BASIC Revealed

Example use: Get the angle in radians from memory at $C~M into F AC# I
using the routine $BBA2, then convert it to cosine value.

LDA #$~~ ;lsb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# I
JSR $E264 ;convert to cosine and store in F AC# I

Routine: Calculate TAN

Entry point: $E2B4

Function: This routine calculates the tangent of an angle in radians stored in
F AC# 1 and puts the result in F AC# 1. The routine actually divides the sine of
the value by the cosine of the value.

Input parameters: F AC#! contains the angle in radians

Output parameters: F AC#! contains the tangent of the angle

Registers used:
Processor registers .a, .X, .y
FAC#1 and FAC#2
Temporary floating accumulators at $4E and $57

Error messages: None

Example use: Get the angle in radians from memory at $C~~~ into F AC# I
using the routine $BBA2, then convert it to tangent value.

LDA #$~~ ;Isb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# I
JSR $E2B4 ;convert to tangent and store in F AC# I

Routine: Calculate A TN

Entry point: $E3~E

Function: The arc-tangent of a value stored in F AC# I is calculated and the
result in radians stored in F AC# 1.

Input parameters: F AC# I contains the value

Output parameters: F AC#! contains the result in radians

Registers used:
Processor registers .a, .X, .y
FAC#!

Error messages: None

Example use: Get the value from memory at $C~~~ into F AC# I using the
routine at $BBA2, then convert it to radians and store it in F AC# 1.

LDA #$~~ ;lsb of address of value

Arithmetic Processing by BASIC 43

LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# I
JSR $E3~E ;convert to radians and store in F AC# I

Routine: Calculate EXP

Entry point: $BFED

Function: This routine calculates the exponent (the value of E to the power of
the value in FAC#l) and stores the result in FAC#1.

Input parameters: F AC# I contains the value

Output parameters: FAC# I contains the exponent of the value

Registers used:
Processor registers .a, .x, .y
F AC# I and F AC#2

Error messages: Overflow error if the value of the exponent is greater than
88.~29

Example use: Get the value from memory at $C~~~ into F AC# I using routine
$BBA2, then calculate the exponent.

LDA #$~~ ;Isb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# I
JSR $BFED ;calculate exp and put in F AC# I

Routine: Calculate LOG

Entry point: $B9EA

Function: This performs the calculation of the log to the base E of a value in
FAC#I and stores the result in FAC#l.

Input parameters: F AC# I contains the value

Output parameters: F AC# I contains the log of the value

Registers used:
Processor registers .a, .x, .y
F AC# I and F AC#2
Prod uct area $26 to $2A

Error messages: Illegal quantity if value is zero or minus

Example use: Get the value from memory at $CM~ into F AC# I using routine
$BBA2, then calculate the log of the value and put the result in F AC# 1.

LDA #$~~ ;Isb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value from memory to F AC# I
JSR $B9EA ;calculate log and put result in F AC# I

44 Advanced Commodore 64 BASIC Revealed

Routine: Calculate power

Entry points:
$BF78 - raise FAC#2 to power of constant in memory
$BF7B - raise FAC#2 to power of FAC#I

Function: The contents of F AC#2 are raised to the power of the value stored in
F AC# 1. Before using this routine F AC#2 must be loaded. If either value is zero
then F AC# I is loaded with either ~ or I depending on which F AC was zero. The
evaluation is performed by saving FAC#I to zero page and then multiplying the
logarithm of F AC#2 by FAC# I and getting the exponent of the result. There
are two entry points. The first at $BF78 raises F AC#2 to the power of a constant
stored in memory and pointed to by .a (lsb) and.y (msb). The second entry point
requires the values to be in FAC#I and FAC#2.

Input parameters: For entry point $BF78
.a lsb of power value in memory
.y msb of power value in memory
FAC#2 - value to be raised to the power of constant

For entry point $BF7B
FAC#I - value of power
FAC#2 - value to be raised to the power of FAC# 1

Output parameters: F AC# I contains the result

Registers used:
Processor registers .a, .x, .y
FAC#I and FAC#2
Product register $26 to $2A
Miscellaneous work area $4e to $53

Error messages: No error message is given if one of the FACs contains a zero.
This error is flagged by the contents ofFAC# 1, which contains zero ifthe power
is zero and one if the value is zero. (Note: This is a potential source of error in a
program.)
Illegal quantity error if either number is negative and the value is not an integer.
If the result is too large an Overflow error is generated.

Example use: Get a value from memory at $C~~~ into F AC#2 using the routine
at $BA8C, then raise it to the power of a value stored at $D~M, and put the
result in FAC#1.

LDA #$~~ ;lsb of address of value A
LDY #$C~ ;msb of address of value A
JSR $BA8C ;transfer to FAC#2
LDA #$~~ ;lsb of address of power value B
LDY #$D~ ;msb of address of power value B
JSR $BF78 ;raise value B to the power of A and put the result in

FAC#I

Routine: Calculate SQR

Arithmetic Processing by BASIC 45

Entry point: $BF7 I

Function: The contents of F AC# I (the argument) are transferred to F AC#2.
F AC# I is then loaded with. 5 and the routine jumps to the perform power
routine at $BF78. The result is stored in F AC# 1.

Input parameters: F AC# I contains the argument.

Output parameters: F AC# I contains the result

Registers used:
Processor registers .a, .x, .y
F AC# I and F AC#2
Product register $26 to $2a
Miscellaneous work area $4e to $53

Error messages: Illegal quantity error if it is a minus value

Example use: Get a value from memory at $C~~~ into F AC# I using routine
$BBA2, then find its square root and put the result in F AC# 1.

LOA #$~~ ;ls b of address of value of argument
LOY #$C~ ;msb of address of value of argument
JSR $BBA2 ;transfer value to F AC# I
JSR $BF7 I ;caIculate sqr of value and put result in F AC# I

Routine: Fixed point to floating point number conversion

Entry point: $B391

Function: This routine converts a two byte integer held in.a (msb) and.y (lsb)
into its floating point equivalent. This value is stored in FAC#1.

Input parameters:
.a msb of integer value
.y Isb of integer value

Output parameters:
F AC# I contains the floating point equivalent
Variable type flag in $~O is set to ~

Registers used:
Processor registers .a, .X, .y
FAC#I

Error messages: None

Example use: Convert the 16 bit integer value $B7FE to floating point value in
FAC#1.

LOA #$B7 ;msb of integer value
LOY #$FE ;Isb of integer value
JSR $B39 I ;convert to floating point in F AC# 1

Routine: Floating point to fixed point number conversion

46 Advanced Commodore 64 BASIC Revealed

Entry point: $BC9B

Function: The floating point number is stored in FAC#i and is converted to a
two byte integer value which is stored in locations $65 (Isb) and $66 (msb).lfthe
value in F AC# I is greater than +32767 or less than -32768 then the overflow is
stored in $68.

Input parameters; FAC#l contains the floating point value

Output parameters:
$65 - Isb of integer value
$66 - msb of integer value
$68 - overflow if value exceeds maximum integer value

Registers used:
Processor registers .a, .y, .x
FAC#1

Error messages: None

Example use: Convert a five byte floating point value in memory at address
$C~~~ to a two byte integer in.a (msb) and.y (Isb). The value is first moved to
F AC# 1, then converted to an integer value in $65,$66. These are transferred to
.a and .y.

LOA #$~~ ;Isb of address of floating point value
LOY #$C~ ;msb of address of floating point value
JSR $BBA2 ;transfer value to F AC# 1
JSR $BC9B ;convert to integer
LOA $66 ;put integer msb in .a
LOY $65 ;put integer Isb in .y

Routine: Convert the value stored as a string to floating point value

Entry point: $BCF3

Function: The value stored as a string which is to be converted is stored in
memory at a location pointed to by the charget program pointers $7 A and $7B.
The numeric value stored in the string is checked then converted to floating
point form in F AC# 1.

Input parameters:
$7 A - Is b of address of start of string
$7B - msb of address of start of string
The string is located in memory starting at an address pointed to by the above
two parameters. The string is unchanged by this routine.

Output parameters: F AC# 1 contains the floating point equivalent of the string

Registers used:
Processor registers .a, .x, .y
FAC#1

Arithmetic Processing by BASIC 47

Error messages: Overflow error if the value in F AC# I is too large or small

Example use: Convert a value stored as a string at starting address $C~~~ into a
floating point value in FAC# 1.

LDA #$~~ ;lsb of address of string start
ST A $7 A ;store in charget pointer lsb
LDA #$C~ ;msb of address of string start
ST A $7B ;store in charget pointer msb
JSR $BCF3 ;convert string to floating point in F AC# I

Routine: Convert a floating point number into a string

Entry point: $BDDD

Function: The value stored in FAC# I is converted into an ASCII string stored
in a buffer starting at location $~ I~~. On exit from the routine a zero
terminating byte is placed at the end of the string and the buffer start address is
stored in.a (isb) and.y (msb). This is required to set the correct input parameters
for the print string routine at $AB I E.

Input parameters: F AC# I contains the floating point value

Output parameters: Buffer starting at $~ I~~ contains the string
.a - Isb of buffer start address
.y - msb of buffer start address

Registers used:
Processor registers .a, .X, .y
FAC#I

Error messages: None

Example use: Get the floating point value from memory at $C~~~ into F AC# I
and convert it to a string stored in the buffer at $~ I~~. This string is then
displayed on the screen using routine $AB I E.

LDA #$~~ ;lsb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer floating point value to F AC# I
JSR $BDDD ;convert to a string in $~ I~~ up
JSR $AB I E ;display string on current output device

Routine: Compare the contents of F AC# I with a value in memory

Entry point: $BC5B

Function: The value stored in F AC# I is compared with a five byte floating
point value stored in memory at a location pointed to by .a (isb) and.y (msb).
On exit the accumulator contains the comparison flag: $~~ = that both values
are the same; $~ I = that F AC# I is greater than the value in memory; and $FF =
that F AC# I is less than the value in memory.

48 Advanced Commodore 64 BASIC Revealed

Input parameters: F AC# I contains the floating point value A
.a lsb of address of floating point value in memory
.y msb of floating point value in memory

Output parameters: .a contains the comparison flag

Registers used:
Processor registers .a, .X, .y
FAC#I

Error messages: None

Example use: Get a floating point value into F AC# I from memory at $CM~
and compare it with a floating point value in memory at $O~~~. Store the
comparison flag in location $12.

LOA #$~~ ;lsb of address of value A
LOY #$C~ ;msb of address of value A
JSR $BBA2 ;traiisfer'value A to FAC#I
LOA #$~~ ;lsb of address of value B
LOY #$O~ ;msb of address of value B
JSR $BC5B ;compare value A to value B
ST A $12 ;save comparison flag in location $12

Routine: Complement the contents of F AC# I

Entry point: $B947

Function: This routine replaces the contents ofFAC# I by its twos complement.
This means that all the zeros are converted to ones and vice versa, then one is
added to the result.

Input parameters: F AC# 1 contains the value to be complemented

Output parameters: F AC# 1 contains complemented value

Registers used:
Processor registers .a, .X, .y
FAC#1

Error messages: None

Example use: Get the value into F AC# I from memory at $CM~ and
complement it. The result is stored in F AC# I.

LOA #$~~ ;lsb of address of value
LOY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to FAC#I
JSR $B947 ;complement F AC# I and store result in F AC# I

Routine: Round FAC#I

Entry point: $BCIB

Arithmetic Processing by BASIC 49

Function: The exponent of F AC# 1 in byte $61 is tested. If the content is zero
then the routine exits; if not then the rounding byte in $7~ is multiplied by two
and the state of the carry flag checked. If carry is clear then it exits. Otherwise
the floating point value is incremented by I.

Input parameters: F AC# I contains the value

Output parameters: FAC# I contains the rounded floating point value

Registers used:
Processor registers .a
FAC#I

Error messages: Overflow error if rounding makes the value too large or small

Example use: Get the floating point value into F AC# 1 from memory at $CM~,
then round it and leave the rounded value in F AC# I.

LDA #$~~ ;Isb of address of value
LDY #$C~ ;msb of address of value
JSR $BBA2 ;transfer value to F AC# I
JSR $BCIB ;round value in FAC#I

2.3 Using the arithmetic routines in a machine code program

Using the arithmetic routines within the Basic interpreter can save the
programmer a lot of time in program development. It can also greatly reduce the
size of a machine code program. The only penalty is that in any program using
eight or sixteen bit values the interpreter routines will have a considerably
slower run time than specially written routines. When faced with the necessity of
having to use arithmetic routines the best procedure is always to use the
interpreter routines and replace these only if the program is running too slowly.

The best way of learning to use these routines, in addition to actually trying to
use them, is to study some of the routines in this book which utilise them, in
particular the matrix calculation routines in Chapter 5. It is also an excellent
idea to examine the annoted assembly listings of any routine you intend using;
these annotated listings are contained in The Commodore 64 ROMs Revealed
in this series. .

It is quite simple to utilise the interpreter arithmetic routines within a machine
code program. The essential point to remember is that the interpreter does all its
calculations on floating point numbers, therefore all integer values must first be
converted to floating point. The following is an example of a routine using the
interpreter arithmetic routines:

calculation #C = (A+22) / (B*5)

Where values A and B are both positive unsigned sixteen bit integer values,
these are both input from the keyboard at the beginning ofthe routine and the

50 Advanced Commodore 64 BASIC Revealed

result C is a five byte floating point value which is both stored in memory and
displayed on the screen.

Variable storage locations in memory used by this routine are:

$C~M - Isb of value A
$C~~ I - msb of value A
$C~~2 - Isb of value B
$C~~3 - msb of value B
$C~~4 to $C~~8 - temporary floating point value storage I
$C~~9 to $C~~D - temporary floating point value storage 2
$C~~E to $C~ 12 - floating point result C storage

033C
(l33C
033C
033C
033C

!CALCULATE (A+22)/(B*5)
! I·IHERE A AIm B ARE I I~PUT FROM
! THE KE'T'BOARD.

ENTR'T' AT S'T'S 49171.

B33C RESULT IS PRINTED
033C !
CB00 *=fC000
C000 001313 AV
C13B2 0(100 B'v'
C004 0013(11313 TF 1
C0139 00(l0a0 TF2
C00E 130130013 TF3
C013 A000 ENTRY
C0lS 20CFFF L1
celS C90D
celA F0136
calC 9900132
celF C8
C020 D0F3
C022 A900 L2
C024 9901302
ce27 Age0
ce29 857A
C(12B A902
C02D S57B
C02F 20791313
C032 208AAD
ca35 20F7B7
C133a A514
C03A SII130C13
C133D A515
C03F 8D01C0
ce42 A000 ENTR'r'1
C044 20CFFF L3
C947 Cger)
C049 Foe6
C04B 9913002
C04E C8
C04F D0F3
C051 A900 L4
C053 9900132
C056 Agee
ce58 857A
C05A A902
CB5C 857B
C05E 20791313
C061 20SAAD
C064 20F7B7
C067 A514
C069 SIIB2ce

WOR ° WOR 13
B'T'T 13.0.0.0.13
BYT 0.13,13,13,13
B'r'T 13,0.13,0,0
LD'r' #$130
JSR $FFCF
C~IP #$0D
BEQ L2
STA t02ee, 'T'
INY
BI~E L1
LDA #$1313
STA $(12013, 'T'
LDA uee
STA $7A
LDA #$132
STA $7B
JSR $01379
JSR $AD8A
JSR $B7F7
LIiA $14
STA Ali
LDA $15
STA AV+l
LDY #$013
JSR :f.FFCF
Ct1P #f.0D
BEl) L4
STA te200.Y
ItN
BNE L3
LIlA #$013
STA $0290,',..
LIlA #$00
STA $7A
LIlA U02
STA $7F
JSR $0079
JSR $AD8A
JSR $B7F7
LIlA $14
STA BV

! INPUT B'r'TE
!CARRIAGE RETURN?
!'T'ES
!STORE BYTE
!DO NEXT
!ALWA'T'S
! ZERO TERMIHA"fOR

!SET CHARGET TO
!BUFFER

!CONVERT TO It 13-65535
! !·IAKE INTEGER
!STORE VALUE
! IN TEMP

! INPUT BYTE
!CARRIAGE RETURN?
!'r'ES
!STORE BYTE
!III) t·IEXT
! ALI~A'T'S
!ZERO TERMINATOR

!SET CHARGET TO
!BUFFER

!CONVERT TO # 13-65535
! ~lAI(E I tHEGER
!STORE VALUE
! W TEMP

C06C A515
Ca6E 8D03CO
C071 AII01C0
ce74 AC00ce
can 2091B3
C07A A204
COlC Allee
C07E 20D4BB
C081 Ageo
C083 A016
C085 2091B3
C088 A904
C08A Aoce
C08C 2067B8
C08F A204
C091 Allce
C093 2(lD4BB
C096 AD03C0
ce99 AC02CO
C09C 2091B3
C09F A2e9
CEtAl AOCO
C(IA3 20D4BB
C0A6 A90e
COA8 A(l05
C(IAA 21391 B3
COAD A909
C0AF Aoeo
COBI 2028BA
C0B4 A904
C0E6 Aeco
C0BS 200FBB
COBB A20E
COBD A0CO
COFF 20D4BB
COC2 20DDBD
ceC5 201EAB
COC8 4C74A4

Arithmetic Processing by BASIC 51

LDA $15
sm BV+l
LIlA AV+l
LIlY AV
JSR tB391
L[I){ #<TFI
LD'r' IDTFI
JSR tBBD4
LDA #$00
LD'r' #$16
JSR tB391
LIlA #<TFI
LD'r' #)TFI
JSR H8G?
LDX #<TFI
LD'r' tDTFl
JSR $BBD4
LDA B'.I+l
LD'r' BV
JSR tB391
LDX #<TF2
LD'r' #)TF2
JSR tBBD4
LDA #$00
LD'r' #$05
JSR tB391
LDA #<TF2
LD'" #)TF2
JSR tBA28
LDA #<TFI
LD'T' #)TFI
JSR $BBOF
LDX #<TF3
LD'T' #)TF3
JSR $BBD4
JSR $EDDD
JSR $ABlE
Jt'lP $A474

Program 9.

!GET FIRST VALUE

IFLOAT IT
!STORE IN TEMP FAC1

IVALUE 22 ($16)

!FLOAT IT
!PO HiT TO TEMP
!FACI
!ADD
! STORE IN TE~lP FACI

IGET SECOND VALUE

!FLOAT IT
!STORE IN TEMP FAC2

!GET VALUE 5

!FLOAT IT
!POINT TO TEMP
!FAC2
! ~lUL T IPL 'y'
!POINT TO TE~lP
!FACI
!DIVIDE
! STORE RESULT I t~
! TEt'lP FAC3

!CONVERT TO STRING
!PRINT STRING
! 'READ'r'. '

Chapter Three

The Keywords of BASIC

Abbreviated entry: A(shift)B

Token: Hex $B6 Decimal 182

Modes: Direct and program

Purpose: The arithmetic expression contained in brackets following the ABS
command is converted to its absolute value. This means that the value is always
returned as a positive value.

Syntax: ABS (arithmetic expression). ABS can appear within a logical
expression, in a PRINT statement and to the right of an assignment statement.

Errors: This routine can generate a number of errors; these are the result of
either an invalid arithmetic expression or a non arithmetic expression.

Syntax error - wrong command syntax, e.g. missing closing bracket
Overflow error - result of expression evaluation which is too large
Division by zero - attempt within the expression to divide by zero
Type mismatch - using a non arithmetic expression

Use: This command has fairly limited applications, all confined to numerical
operations.

ROM routine entry point: $BC58

Routine operation: The routine is very short (three bytes!) and simply takes the
sign byte of FAC#I, in location $66, and on it performs a logical shift right,
thereby ensuring that it always contains a positive flag.

Abbreviated entry: A(shift)N

Token: Hex $AF Decimal 175

Modes: Direct and program

The Keywords of BASIC 53

Purpose: This command performs a logical AND between two expressions.
These expressions are first converted into double byte integer values, an AND
performed, and the result returned as a two byte integer.

Syntax: Expression A AND expression B. The expression can be either
arithmetic or logical but must always be either an integer value or a floating
point value within the range +32767 and -32768.

Errors: There are several errors associated with this command:
Syntax error - incorrect command syntax
Illegal quantity - if expressions exceed maximum/ minimum values
Type mismatch - using a non arithmetic or logical expression

Use: The AND command acts either as a logical operator or as a bitwise
operator on two straight 16 bit values.

As a logical operator the AND command is used to ensure that two
conditions are met before a particular operation is performed, as in the
following example:

IF A =22 AND B=5 THEN PRINT "TEST O.K."

The result of a comparison gives -I if the comparison is true and ~ if it is false. If
a comparison is true then a value of -I is returned by the comparison routine.
This is represented as a twos complement value with a binary representation of:

1111 1111 1111 1111 or hex $FFFF or -I

Similarly a false comparison returns a value of zero, represented as:

or hex $0~~~or 0

Therefore an AND will give a true condition only when both conditions are true
(both values are $FFFF); all other states will be regarded as false.

A bitwise AND compares the first bit of one value with the first bit of the
second value and gives a result according to the following truth table:

AND ~ trnm
Thus the command:

1278 AND 3279

has as its binary equivalent:

This gives the result:

1111
II~~

~M~ ~IM II~~ III~

or decimal 123~.

III ~
I III

54 Advanced Commodore 64 BASIC Revealed

It should be noted, of course, that the AND operation is performed on two
signed double byte integers. These are stored in twos complement form. Thus a
value of -1 has a binary equivalent of 1111 1111 1111 1111 and any number
ANDed with -1 will always return the same number. Likewise a positive value
ANDed with a negative will always give a positive result.

The hierarchy oflogical operators is NOT, AND, OR, thus NOT always has a
higher priority than AND.

ROM routine entry point: $AFE9

Routine operation: The two arguments in floating point format are stored in
FACH#1 and FAC#2. They are first converted to fixed point integer values, the
AND operation performed on the two 16 bit numbers, and the result converted
back from integer to floating point form in F AC# I.

Abbreviated entry: A(shift)S

Token: Hex $C6 Decimal 198

Modes: Direct and program

Purpose: This command returns the ASCII code value of the first character in a
string expression.

Syntax: ASC (string expression). The string expression can be any valid string
expression either variable, literal or function including string concatenation.
The exception is a null string which will return an Illegal quantity error, the
reason being that such a null string (this is represented by'''') has a length of
zero.

Errors: Syntax error - wrong command syntax e.g. missing closing
bracket

Type mismatch - use of a non string expression
Illegal quantity error - null string expression

Use: This command is useful in any situation where it is required to convert a
character into its corresponding value. It is particularly useful for trapping or
validating individual characters within strings such cursor control, insert/ delete
and carriage return characters.

ROM routine entry point: $B78B

Routine operation: The routine first gets the string length and any string with a
zero length is rejected with an Illegal quantity error. The .y index register is
loaded with the character which is pointed to by locations $22,$23. This
character is then converted to a floating point number stored in F AC# 1.

Abbreviated entry: A(shift)T

Token: Hex $C 1 Decimal 193

Modes: Direct and program

The Keywords of BASIC 55

Purpose: This calculates the angle where the tangent of that angle is known. The
angle is returned in radians.

Syntax: ATN (arithmetic expression). Any arithmetic expression can be used.

Errors: Syntax error - wrong command syntax e.g. missing closing
bracket

Type mismatch - non arithmetic expression
Overflow error - if expression is outside floating point range

Use: This command is useful in many trigonometric applications. It should, of
course, be noted that the returned value is in radians and not degrees; to convert
to degrees multiply by 18~ / pi.

ROM routine entry point: $E3~E

Routine operation: The tangent is stored in F AC# 1 from where it is converted
to the equivalent angle in radians which is also stored in F AC# 1.

CHR$

Abbreviated entry: C(shift)H

Token: Hex $C7 Decimal 199

Modes: Direct and program

Purpose: This command generates a character from its equivalent ASCII code
number.

Syntax: CHR$ (numeric expression). The expression within the brackets must,
when evaluated, be within the range ~ to 255.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non numeric expression
Illegal quantity - expression is outside range ~ to 255

Use: This command is the reverse of the ASC command and has similar
applications. This command is particularly useful when adding editor or colour
control characters to strings.

56 Advanced Commodore 64 BASIC Revealed

CHR$ can be used to convert values stored in memory (and accessed using
PEEK) into string characters for display on the screen, or for use within the
program. Since the CBM 64 does not use a standard ASCII character set
another application is to use ASC to convert each character to its CBM ASCII
code value, perform the required code conversion, and then use CHR$ to
convert back to the corresponding string character. This application is essential
when using some non CBM printers or when communicating with other makes
of computer. It could also be used in encoding and enscription routines.

The command CHR$ has one oddity; the use ofCHR$(~) allows the addition
of a null character with length I to a string. The null character will never be
printed but will register when LEN is used.

ROM routine entry point: $B6EC

Routine operation: The single byte parameter is input and evaluated and
checked for correct range (~-255) by the routine at $B7 A 1. A single character
string space is then allocated, the character generated from the input parameter
is stored in this string space and the string pointers are set up in the allocated
string variable.

CLOSE

A bbreviated entry: CL(shift)O

Token: Hex $A~ Decimal 16~

Modes: Direct and program

Purpose: This command is used to inform the computer that the processing of a
file is completed. The processor then deletes reference to the file from its file
tables, depending on which output device is being accessed. The CLOSE
command also sets various end of file pointers.

Syntax: CLOSE file number. The file number must be a value between I and
255.

Errors: Syntax error - if there is no file number
Illegal quantity - if the file number is outside the range 1-255
Note: No error is generated if the file does not exist

Use: The CLOSE command deletes the file entries from the file tables set up by
the OPEN command (see OPEN command for details of file tables). If the files
opened were to either the screen (device 3) or keyboard (device~) then no other
action is taken. When closing cassette files which have been used to write data
the last buffer is dumped to tape and an end oftape header is written containing
the end of tape value 5. Serial files, previously opened for write, when closed
send the buffer contents to the serial device media together with an end of file
command. This causes the serial device to close the file and set / reset any

The Keywords of BASIC 57

pointers within the serial device (see The Commodore 64 Disk Drive Revealed
for details on the functioning of the disk commands and the disk internal
operating system). Serial and cassette devices opened for read will simply clear
the input buffer.

ROM routine entry point: vector indirect entry $~3IC
routine entry $F29 I

Routine operation: The logical file number of the file to be closed is passed in the
processor accumulator. Keyboard, screen and unopened files just pass straight
through the routine, but tape files open for write are closed by dumping the last
buffer and conditionally writing an end of tape block. Serial files are closed by
sending a close file command if a secondary address was specified in the open
command.

Abbreviated entry: C(shift)L

Token: Hex $9C Decimal 156

Modes: Direct and program

Purpose: Resets the variable pointers so that all variables are in practice erased
while leaving the Basic program unchanged.

Syntax: CLR. This command has no parameters.

Errors: Will produce errors only if the programmer has been changing the
variable pointers.

Use: This command does not in fact erase any of the variables by replacing them
with nulls; instead it simply restores the variable pointers. Thus the start of an
arrays pointer will contain the top of the Basic program address plus two, and
the bottom of the strings pointer is set to the top of the memory pointer. The
pointer to DATA statements is also cleared. The temporary string stack is
cleared and the main stack is also cleared. The fact that the CLR command
resets the processor stack pointer to the bottom of the stack· means that
although CLR can be used in program mode it will remove all loop returns.
Therefore if CLR is performed within a GOSUB or FOR ... NEXT loop, then
the program will fail on the RETURN or NEXT command. In many
applications it is preferable to use POKE commands to change just the required
pointers rather than use the CLR command. It should also be noted that the
CLR command will do a partial close on all files to cassette or serial which are
open; this will result in loss of data and the erasing of all open files from the file
tables.

ROM entry point: $A65E

58 Advanced Commodore 64 BASIC Revealed

Routine operation: The CLR function first checks that there is no following
parameter, then sets string pointers $33,$34 equal to the top of memory pointers
$37,$38 and the start of arrays $2F,$3~ equal to the start of variables $2D,$2E
thus erasing all variable storage pointers. The I/O pointers are returned to
default values and the stack pointer reset to remove unwanted stack variables.
The routine performs a restore and blocks the CONT command.

Abbreviated entry: C(shift)M

Token: Hex $9D Decimal 157

Modes: Direct and program

Purpose: This command is used to set the primary output device to a previously
opened file rather than the screen. All output following the CMD command will
then be directed to the new output device.

Syntax: CMD logical file number, string. The file number must be a value
between I and 255. The comma separator between the file number and the string
is only necessary if a string is included within the CMD command.

Errors: Syntax error - wrong command syntax e.g. no file number
Illegal quantity -logical file number exceeds the limits of 1 to

255
File not open - if the specified logical file is not opened

Use: When this command has been used all PRINT or LIST commands will
send data to the device specified in the previous OPEN command. This will
continue until a PRINT # file number command resets the output to the screen.
It then uses a CLOSE command to close the file. An alternative method in direct
mode is to perform any operation which will generate a syntax error; this will
reset output to the default device. This should then be followed by a blank line
output to 'unlisten' the output device.

ROM routine entry point: $AA86

Routine operation: The parameter following the CMD command is evaluated
by the routine at $B79E which gets a single byte parameter. The result is stored
in the .x index register, the output device number variable in location $13 is then
set to the value in x and PRINT is performed.

I CONT

Abbreviated entry: C(shift)O

The Keywords of BASIC 59

Token: Hex $9A Decimal 154

Mode: Direct only - attempting to use CONT within a program will result in an
endless loop within CONT and therefore a program crash.

Purpose: To restart the execution of a Basic program after either pressing the
STOP key or the program encountering a STOP command.

Errors: Can't continue error - on using CONT after an execution error or after
changing the program or using CLR

Use: The main use of CONT is in debugging a Basic program. By inserting
STOP commands at strategic points within the program one can stop the
program, examine all the variables in direct mode and then resume operation
with CONT. While the program is stopped its variables can also be changed in
the direct mode; however new variables or lines cannot be added.

ROM routine entry point: $A857

Routine operation: This routine restores the line address pointer in chargot at
locations $7 A,$7B using the contents of the pointer to the Basic statement for
the CONT variable at $3D,$3E. It also sets the current line number variable in
$39,$3A equal to the previous line number in $3B,$3C. If, however, the contents
of $3E are zero then a Can't continue error is generated.

Abbreviated entry: None

Token:Hex $BE Decimal 19~

Mode: Direct and program

Purpose: This command evaluates the cosine of an angle in radians.

S.vntax: COS (arithmetic expression). The expression must be syntactically
correct and within the range permissible for floating point numbers.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Type mismatch - non arithmetic expression
Overflow error - expression is outside the permissible floating point

Use: This command is used within many trigonometric applications. It should
be noted that the value of the expression must be in radians rather than degrees.
An angle can be converted to radians by multiplying the angle by pi/ 18~.

ROM routine entry point: $E264

Routine operation: The argument in radians is stored in F AC# I, this is then
added to a value of pi/ 2 stored in FAC#2 and the result stored in F AC# I. The

60 Advanced Commodore 64 BASIC Revealed

routine then jumps to the perform SIN routine at $E26B and the result is stored
in FAC#1.

DATA

Abbreviated entry: D(shift)A

Token: Hex $83 Decimal 131

Mode: Program mode only

Purpose: This command allows data to be stored within a program without the
necessity of it being entered separately from the keyboard, tape or disk. The
data, which can be any alphanumeric or ASCII character values or strings, is
then accessed using the READ command.

Syntax: DATA followed by ASCII characters. Two delimiters are used in a
DATA statement. A " is used to delimit string data, and a comma is used to
separate each item of data. A colon encountered on the same line as a DATA
statement signifies the end of the data.

Errors: None

Use: DATA statements are a very useful way of storing data, in particular
constants, within a program. Though DATA statements can be placed
anywhere within the program the order of data within these statements is
important, since the READ command sequentially accesses the data. The data
pointer can be reset to the beginning of all DATA statements only by the
RESTORE command. To access DATA statements in a random manner one
would need to know the start address of each data statement as it is stored within
the program memory, and use these addresses to put into the pointers to the
current DATA statement variable in locations $41,$42. This would then cause a
READ to get the desired data. Data statements can be forced into a program
using the keyboard buffer to emulate the entry of a program line (see Chapter 2
for details of this and Chapter 4 for a Restore to line # routine).

ROM routine entry point: $A8F8

Routine operation: This routine"is part ofthe RETURN routine and is used to
search for the next Basic statement following the DATA statement, thereby
ignoring the data following the DATA statement. The main associated data
accessing routine is the READ routine.

DEf fN

Abbreviated entry: DEF is D(shift)E
FN has no abbreviation

Token: DEF
FN

Hex $96
Hex $A5

Decimal 15~
Decimal 165

Modes: Program mode only

The Keywords of BASIC 61

Purpose: This command is used to assign a user defined function which can be
called later within the program by FN. The function can consist of any valid
mathematical formula.

Syntax: DEF FN floating point variable (floating point variable) = arithmetic
expression. The function definition must precede the FN call within a program
and must fit within a single Basic line.

Errors: Syntax error - wrong command syntax e.g. non floating point variable
(It should be noted that this error will be produced on the
line using the FN rather than the DEF FN line)

Type mismatch - use of string variables
Division by zero - attempt to divide by zero within an expression
Out of memory - recursive calling of function by function
Overflow error - result of an expression evaluation which is

too large or small
Undefined function - FN call before DEF FN definition

Use: The principal use of the DEF FN command is to save program space and
complexity by allowing a complex formula, used several times within a
program, to be defined just once. In fact DEF FN acts rather like a special
subroutine jump. It could be replaced by a jump to a subroutine but this
would be considerably slower, and would only be justifiable if the expression
required more than a single line of Basic program to define it. The function
defintion is stored as a simple variable (see Chapter 2 for details on how this
variable is stored). It should be noted that the variable in brackets does not
change when a function is called. Although it is used by the function definition it
is temporarily stored in an area of memory reserved for the function definition.
Since the function definition is stored as a variable it can be redefined at any
time within a program; similarly one function definition can call another
function as its variable.

ROM routine enfl;l' points: perform DEF is at $B3B3
perform FN is at $B3F4
check FN syntax at $B3E I

Routine operation: DEF - a syntax check is first carried out using the routine at
$B3E I. The mode of operation is then checked to make sure that it is in program
mode, and a left bracket is searched for. If found, then the following variable is
located in memory using routine $B~8B. A right bracket is then checked for and
the next character in Basic tested to make sure that it is an = sign. The five bytes
of data obtained are then pushed onto the stack in the following format:

(I) function token of the first character in the variable name

62 Advanced Commodore 64 BASIC Revealed

(2) variable address pointer from locations $47
(3) and $48
(4) pointer to Basic for charget from $7A
(5) and $7B

The evaluate FN function first calls the routine at $B3E I which checks syntax
and then gets the variable address. The expression is evaluated and the result
stored in F AC# I. The data placed on the stack by the DEF routine is recovered
and stored in RAM memory at a location pointed to by the values in locations
$4E,$4F.

Both routines call a routine to check the FN syntax. This first checks for the
FN token, $A5, then sets the function flag in location $I~ with the OR of the
function name AND $8~. If the function exists it is searched for; if not then it is
set up. Finally the routine checks that the value is numeric.

Abbreviated entr.v: D(shift)I

Token: Hex $86 Decimal 134

Mode: Direct and program

Purpose: This command allocates space in memory for the storage of an array
of specified name, number of dimensions, number of elements in each
dimension and variable type.

s.vntax: DIM name (arithmetic expression I, arithmetic expression 2, ,
arithmetic expression n) [,name 2 (arithmetic expression I,)]. The square
brackets indicate optional repetitions. Each expression is evaluated and
converted to a two byte positive integer which must be within the range ~ to
32767 (though high values like 32767 will always give an Out of memory error).
It is usually best to dimension arrays at the beginning of a program, and any
attempt to put a DIM statement within a loop or create a new array using the
same variables will always give a Redimensioned array error.

Errors: Syntax error - wrong command syntax
Out of memory - number of elements is too large for the

available memory
Redim'd array - attempting to redefine an existing array
Illegal quantity - number of elements is less than ~ or greater

than 32767

Use: This is a very straightforward command which must be used before setting
up an array. It is possible to use subscripted variables without having defined
the array with a DIM, in which case the number of elements in each dimension
will default to II. (Note: DIM A (l~) gives an array with eleven elements since

The Keywords of BASIC 63

the zero element is used.) In a default array any attempt to use more than three
dimensions will give an Out of memory error due to the fact that the default
array will be I~, l~, l~, 1 ~ and this uses more memory than is available on the
CBM 64. For further details on how arrays are stored see Chapter 2.

ROM routine entry point: $B~81

Routine operation: The presence of a variable of the same name is first checked
using the routine at $B~9~. If one is not found then the routine sets up an array
with the variable name and number of elements specified in the DIM statement.
It checks to see if charget points to a comma as the next character; if so then the
routine loops back and repeats the procedure for the next specified array.

Abbreviated entry: E(shift)N

Token: Hex $80 Decimal 128

Modes: Direct and program

Purpose: Informs the computer that it has reached the end of the program,
whereupon it exits to the direct mode and prints a Ready message. The CONT
command can be used to resume execution after an END statement.

Syntax: END has no parameters but must always be followed by a colon or end
of line marker.

Errors: Syntax error - following END by a parameter

Use: This command is used to halt execution of the program, a function it shares
with the STOP command. The END command is not essential at the end of a
program if the end is at the highest program line number, but is essential if the
program is to end prior to that. Like the STOP command, END can be used to
set break points in a program during debugging, where a CONT will resume
program execution.

ROM routine entry point: $A82C

Routine operation: This routine is called by either the STOP key detect routine
at $FFE I, the routine at $A 7BE which detects the terminating double zero bytes
of a Basic program, or by the keyword END. Which action is performed
depends on the state of the Z and carry flags in the processor status register. If
carry and Z are both set then a STOP break is initiated; if carry is clear then
END is performed.

64 Advanced Commodore 64 BASIC Revealed

Abbreviated entry: E(shift)X

Token: Hex $BD Decimal 189

Modes: Direct and program

Purpose: Calculates e (2.718281828) raised to any power in the range -88 to
+88, the result always being positive.

Syntax: EXP (arithmetic expression). If the expression exceeds 88.~296919
when evaluated then an Overflow error is generated.

Errors: Syntax error - wrong command syntax e.g. missing closing bracket
Overflow error - expression exceeds 88.~296919

Use: EXP is the converse function of LOG and is used principally in scientific
or statistical programs.

ROM routine entry point: $BFED

Routine operation: The value of e to the power of the value in F AC# I is
calculated. It first mUltiplies F AC# I by a constant equal to I flog e 2 which is
then tested for range. If it is within the range then a series routine is called which
calculates 21(xjJog e 2). The result is stored in FAC#l.

FOR ... TO ... [STEP] and

Abbreviated entry: FOR is F(shift)O

Tokens: FOR
TO
STEP
NEXT

TO has no abbreviation
STEP is ST(shift)E
NEXT is N(shift)E

Hex $81
Hex $A4
Hex $A9
Hex $82

Decimal 129
Decimal 164
Decimal 169
Decimal 13~

Modes: Direct and program

NEXT

Purpose: This command is used to repeat the program contained in the lines
between the FOR ... TO ... [STEP] command statement and its associated
NEXT. With each repetition of the loop the variable is incremented by the
STEP value until it reaches the value in the TO variable.

Syntax: FOR floating point variable = arithmetic expression or floating point
variable TO arithmetic expression or floating point variable [STEP arithmetic

The Keywords of BASIC 65

expression or floating point variable]. The square brackets denote that the
STEP command is optional; if STEP is not defined it defaults to a step
increment of 1.

Errors: Syntax error - wrong command syntax e.g. integer or array variables
used

NEXT without FOR - if there is no FOR ... TO to match a
NEXT; this can occur if the NEXT is
simply omitted or a RETURN is used
with a GOSUB/GOTO, called before
the FOR ... NEXT loop

Use: Although FOR ... NEXT loops are probably one of the most useful
commands in Basic the version of Basic used in the CBM 64 has several
interesting features which can pose problems for the programmer. The first
pro blem likely to be encountered is with nested FO R ... NEXT loops. The level
of nesting is limited by the fact that the processor stack is used to store the loop
variables and takes 18 bytes of stack space for every nested loop. To ensure
correct nesting it is advisable to omit the variable from the NEXT statement;
this will ensure that the interpreter simply takes the last entered FOR ... TO
entry on the stack as referring to the NEXT statement. The level of nesting is
limited in theory to 1 ~ levels, though in practice it is fewer since the stack is also
required for other purposes.

This use of the stack also gives several other effects. When a new FOR ... TO
is set up the stack is scanned for an existing active loop with the same variable. If
found then the new FOR ... TO replaces the old one. A RETURN after a
GOS UB also has the effect of clearing all stack contents placed there during the
GOSUB routine, thus erasing any FOR ... TO references set up during the
GOSUB which are still open (the cause of the NEXT without FOR error
encountered in such cases). The only way in which the variable denoting the
upper limit of the loop or the loop step can be changed is to directly change the
value in the stack, since these two variables are stored as part of the stack data.
Thus the variables used to define the upper limit and step can be reused
immediately after the FOR ... TO ... STEP command is set up without
affecting the command operation.

The STEP command and associated variable, if not specified, defaults to 1. It
should be noted that the FOR ... NEXT command will always pass once
through the loop. If STEP is specified it can lead to errors due to rounding of the
floating point values; this will not occur with non fractional values except on
very large numbers, but can be quite serious on some fractional values especially
values like Y3. The result of such rounding can easily give a loop count error of
plus 1, and is commonly encountered in routines like graphics circle drawing.

ROM routine entry point: FOR ... TO $A 742
NEXT $ADIE

Routine operation: FOR ... TO setup evaluates the expression and then assigns
18 bytes on the stack for the active FOR loop, having checked that there is space
on the stack. The format of the stack entry for an active FOR loop is:

66 Advanced Commodore 64 BASIC Revealed

Stack address I loop return address 10
2 loop return address hi
3 return line number hi
4 return line number 10
5 TO value in floating point notation (lsb)
6 TO value in floating point notation (Isb)
7 TO value in floating point notation (lsb)
8 TO (most significant byte + sign)
9 TO (mantissa)
I~ sign of STEP
II STEP value in floating point notation (lsb)
12 STEP value in floating point notation (Is b)
13 STEP value in floating point notation (lsb)
14 STEP (most significant byte + sign)
15 STEP (mantissa)
16 variable address hi
17 variable address 10
18 FOR token $81

The first function of the NEXT routine is to check for any variable name
following the NEXT command. If there is none then the locations $49 and $4A
are set to zero. If a variable name follows the NEXT command then its location
is obtained using the routine at $B~8B. This returns the pointers in the
accumulator (low order address byte) and the .y index register (high order
address byte). These values are stored in the variable pointer $49,$4A. The stack
is then searched for a matching FOR command. If no variable is specified then
the last entered FOR return data is used; if there is no matching return FOR
then a NEXT without FOR error is generated. The step value in floating point is
moved from the stack to floating point accumulator # I and added to the
variable pointed to by $49,$4A. This is compared with the TO value stored on
the stack, and if equal exits from the FO R ... N EXT loop. If not equal then the
return line number is restored in $39,$3A and the charget pointers in $7A,$7B
are reset to the FO R entry point and a warm start to Basic initiated to restart the
program at that point.

Abbreviated entry: F(shift)R

Token: Hex $B8 Decimal 184

Modes: Direct and program

Purpose: Calculates the number of unused bytes of memory available between
the bottom of the string storage area and the top of the array storage. The
routine also performs a 'garbage collect' which clears all unused string variables
out of memory thus freeing the maximum amount of available memory space.

The Keywords of BASIC 67

Syntax: FRE (expression). Since FRE is a function it requires an expression.
However, in the case of FRE this expression is purely a dummy and can be any
value.

Errors: Syntax error - wrong command syntax

Use: This command is used principally in the direct mode to find the size of a
program, or in the program mode, where a program involves a lot of string
storage and manipUlation, to prevent an Out of memory error being generated
because of insufficient space to store a new string. String storage can quickly use
up available memory if a lot of string manipUlation is being performed. The
reason is that every time a new string is created it is stored in the string storage
area which starts at the top of available RAM memory and extends downwards
until it meets the top of the array storage area. New strings are simply added to
the bottom of this memory area, and when a string variable is redefined the old
string is not erased; the variable pointers are simply changed to point to the new
string. This means that the interpreter must occasionally remove unassigned
strings in order to release more free memory. This process is called 'garbage
collection' and occurs at irregular intervals whenever it is not possible to add
another string or variable to memory.

Unfortunately garbage collection can be a very lengthy operation (it can be
well in excess of 3~ minutes) which totally halts the program operation. Many
users have been faced with a machine which ceases to operate, and have come to
the conclusion that it has crashed, when in reality it is simply performing a
'garbage collect'. It should be noted, of course, that the amount of memory
available on the 64 means that a garbage collect situation is, on most
programs, rarely ever reached. If it is thought likely to occur then there are two
precautions which can be taken to reduce the garbage collection delay time. The
first is to lower the top of memory using the top of memory pointers, to reduce
the space available for string storage to the absolute minimum, thereby forcing
frequent small garbage collects, each of fairly short duration. The other method
is to use the FRE command to force a garbage collect at some regular period
within the program where there is normally a pause in program operation, e.g.
after an input prompt.

ROM routine entry point: $B37D

Routine operation:. The routine discards all unwanted strings by calling the
garbage collect routine and then calculates the amount of free memory
available. This is returned as an integer stored as two bytes in $62 (10), $63 (hi).

~and GET#

Abbreviated entry: G(shift)E
G(shift)E#

Token: Hex $AI Decimal 161

68 Advanced Commodore 64 BASIC Revealed

Modes: Program mode only

Purpose: These two commands input a single byte, GET from the keyboard and
GET# from any other input device. If there are no characters in the keyboard
buffer then these commands will simply return a null string.

Syntax: GET variable name, [variable name], [variable name],
GET # arithmetic expression, variable name, [variable name],

The GET and GET# commands may be followed optionally by more than one
variable, but must always have at least one variable. The G ET# command must
always be followed by a logical file number between I and 255.

Errors: Syntax error - wrong command syntax, or attempting to input a non
numeric character using GET numeric variable

Illegal direct error - attempt to use the commands in direct mode
Device not present - no input device corresponding to the logical file

Use: The GET commands have a great virtue over the INPUT commands in
that they do not have the same conventions and restrictions. Therefore GET can
be used to input any character (including" : , return and the screen editor
characters which are not accepted in an INPUT command). The single
character strings input by GET can then be validated by the program and if
necessary concatenated to produce a longer string, thereby giving the
programmer total control over input.

The GET command gets one character from the keyboard buffer where they
are placed by the keyboard servicing part of the IRQ routine. The keyboard
buffer is situated at $~277 and occupies I~ bytes of memory. This buffer is
organised on a first in first out basis and the GET command takes a single
character off the top of the buffer. If there are no characters in the buffer then
GET will return a null character (it is for this reason that a GET command
usually has to be structured as a loop which rejects all null characters and just
returns the first character entered). Keypresses entered into the buffer prior to
the GET command will be returned by GET instead of keys pressed during the
GET command execution. This can be countered by clearing the keyboard
buffer previously by setting the buffer pointer in $C6 to zero.

The GET# command is used primarily to get data, byte by byte, from either
tape or disk, and as with GET its main value lies in the command's ability to take
any character, such as colons and commas, rejected by the INPUT# command.
When reading from tape the GET# command obtains characters from the
cassette buffer. The cassette buffer is loaded with a 192 byte block of data from
tape, the tape then pauses until this buffer is read, the pointers are reset and the
next 192 byte block is read from tape (see The Commodore 64 Kernal and
Hardware Revealed for further details on tape and disk storage).

ROM routine entry point: $AB7B

Routine operation: Checks are first made by the routine to determine the
operation mode, direct or program, and whether the command is GET or
GET#. lithe command is in the direct mode it is rejected with an error message.

The Keywords of BASIC 69

When it is a G ET# command the file number is input, the routine checks that a
comma is present and sets the required device for input. The input buffer at
$~2~~ is then set up to accept just a single character, the buffer being filled with a
null byte. The accumulator is loaded with $4~ and the routinejumps to the GET
character from the input device subroutine within the perform READ routine;
the entry address is $AC~f. This routine first stores the accumulator in location
$ I I to identify that it is a GET command. The character is then obtained from
the input device, the input character being stored in $~2~~.

GOSUB and RETURN

Abbreviated enll~l": GOSUB
RETURN

Tokens: GOSUB
RETURN

Hex $80
Hex $8E

Modes: Direct and program

GO(shift)S
RE(shift)T

Decimal 141
Decimal 142

Purpose: This performs ajump to another section of the program specified by a
line number following the GOSUB command. On encountering a RETURN
command the program will then return to the instruction following the
GOSUB. The section of program jumped to is called a subroutine.

Syntax: GOSUB line number. The line number must be in ASCII numerals and
be within the range ~ to 63999. The RETURN command must be situated at the
end of the subroutine called by GOSUB.

Errors: Syntax error - wrong command syntax e.g. line number out
of range

Return without GOSUB - no GOSUB matching a RETURN
Undefined statement - line number does not exist
Out of memory - excessive use of GOS U B nesting using all

the stack space

Use: This is a very important Basic command which allows the use of
subroutines within a program, a subroutine being a piece of program code
required more than once in a program. Like the loop command FOR ... NEXT,
the pair of commands GOSUB ... RETURN make extensive use of the
processor stack to save the return address and line number. Every time a
GOS UB is used it requires eight bytes of the processor stack, therefore there is a
limit to the number of levels to which subroutines can be nested within other
subroutines. This limit is, in theory, 23 levels of nesting, but in practice it is much
less since the stack is also required for other purposes such as FOR ... NEXT
loops etc.

The RETURN command, when encountered, will delete all stack entries

70 Advanced Commodore 64 BASIC Revealed

above and including the last entered GOSUB stack entry. Any attempt to use
levels of GOS UB nesting greater than this will result in an Out of memory error.
This error will also result if an attempt is made by a GOSUB to call itself (the
stack will fill up with return addresses which are not deleted by the RETURN
command).

It is sometimes useful to be able to escape from a GOSUB without executing a
RETURN: this is done by the POP command in Chapter 5. Another interesting
feature of the GOSUB command is that when it checks the line number
following the GOSUB it performs an incomplete validation, thus GOSUB
followed by no line number or a non numeric character will always default to a
GOSUB~, a potentially useful feature. However, any attempt to do a computed
GOS UB will fail and will default to ~ if a variable is used, or to the number if
used first. A proper computed GOSUB routine is given in Program 10.

Source code for computed GOSUB.

033C !CALCULATED GOSUB
033C
COOO *=$Ceee
ceoe 20FDAE
Ce03 21)8AAD
Ctl06 20F7B7
C009 68
CeaA 68
ceOB A9133
COOD 20FBA3
C0Hl A57B
C012 48
C013 A57A
COl5 48
Ce16 853A
C£118 48
C019 A539
con 48
celC A98D
celE 48
COIF 2083A8
C(122 4CAEA7

JSR $AEFD
JSR $ADBA
JSR $B7F7
PLA
PLA
LDA #$133
JSR $A3FB
LDA $7B
PHA
LDA $7A
PHA
LDA $3A
PHA
LDA $39"
PHA
LDA #$SD
PHA
JSR $ASA3
J~IP $A7AE

BASIC loader for computed GOSUB.

10 HlPUT"AIiIIRESS FOR CALCULATED GOSUB-; 1:8=1
20 REAIIA:IFA=-lTHEN50
30 POKEI,A:I=I+l
40 T = T+A : GOT02e

!SCA'" PAST COMMA
! GET LI NE NUr1BER
! INTO $14,$15
!REMOVE SYS RETURN
! ADDRESS

!CHECK STACK DEPTH
!PUSH OFF GOSUB
!PARAMETERS

!DO GOTO
!BACK TO MAIN LOOP

50 1FT 04560 THENPR I NT" lllf!lCHECKSUM ERROR : 4560" T : END
60 IFIOS+37THENPRINT".l!l!!ltIUMBER OF DATA ERROR" : END
70 PRINT"WTO USE THE CALCULATED GOSUB:"
80 PRINT "l!BYS ("S") I LINE t·llJr-I.BER"
913 END
100 DATA32, 253 .. 174,32, 13S, 173,32
110 DATA247, 183 .. 104 .. 104, 169 .. 3,32
120 IIATA25L 163, 165, 123,72,165,122
13/) DATA?2, 165,58,72,165,57,72
1413 DATAI69, 141,72,32,163,168,76
1513 DATAI74,167,-1

Program 10.

ROM routine entry point: GOSUB - $A883
RETURN - $A8D2

The Keywords of BASIC 71

Routine operation: The routine to perform the GOSUB command pushes the
seven bytes of data required for a GOSUB onto the stack, having first checked
that there is space on the stack. If there is not then an Out of memory error is
generated. The format of the stack entry for an active GOSUB is:

Stack address I
2
3
4
5
6
7

$A 7 return to control loop address msb
$E9 return to control loop address Isb
return address hi
return address to
line number 10
line number hi
$80 GOSUB token

Having placed this data on the stack the routine performs the same function
as the GOTO command and scans the Basic program to locate the desired target
line. It does this by first comparing the target line number with the current line
number; if the target is larger then it scans up, if smaller than it scans up from the
start of Basic. If the line is not found then an Undefined statement error is
generated. Having found the line program the control jumps to it.

The routine to perform RETURN first checks for a GOSUB token $80 on
the stack by calling routine $A38A. This searches for FOR entries on the stack
which are then skipped and the next stack entry checked for a GOSUB. Iffound
then all higher stack entries are erased and the pointers to the GOSUB calling
routine recovered. If no GOSUB pointer is found then a RETURN without
GOSUB error is generated. The original line number is stored in pointers
$39,$3A. Charget is reset using the return address pointers from the stack. The
routine then merges with the DATA routine which searches for the next
statement after the pointer; this is used to ignore any commands following the
GOS UB and to start execution on a new line following the GOS UB. The R TS
terminating the DATA routine calls the routine pointed to by the return to
control loop address on the stack.

GOTO

Abbreviated entry: G(shift)O

Token: Hex $89 Decimal 137

Modes: Direct and program

Purpose: Performs ajump to the specified line in the command. It can be used in
conjunction with IF and ON to give conditional jumps.

72 Advanced Commodore 64 BASIC Revealed

Syntax: GOTO line number. The line number must be In ASCII numenc
characters and in the range ~ to 63999.

Errors: Undefined statement - line number specified does not exist

Use: Programming purists do not approve of the GOTO command, however it
is very useful especially for jumping on a conditional test. An interesting feature
of the GOTO command is tnat if no line number is specified or a non numeric
character follows the GOS UB, then the interpreter assumes a default of GOTO
~. Computed GOTOs are not allowed, but a simple routine to add this facility to
Basic, is given in Program II.

033C
033C
C000

Source code for computed GaTa.

!CALCULATED GOTO
!
*=$C000

cooe 20FDAE
C003 208AAD
C£1I36 20F7B7
C009 4CFt3A8

JSR $AEFD
JSR $AD8A
JSR $B7F7
JI'lP $A8A3

BASIC loader for computed GaTa.

10 HlPUT/lADDRESS FOR CALCULATED GOTO"il:S=1
20 READA:IFA=-lTHEH50
30 POKEL A: 1=1 +1
413 T=T+A:GOT020

!SCAN PAST COMMA
IGET LINE NUMBER
! INTO $14,$15
!EXECUTE GOTO

50 1FTO 1671 THENPRINT/I),!I~):HECKSUI-1 ERROR : 1671/1T: END
61:1 IFIOS+12THEIJPRItIT/I)!tl!tJUI'lBER OF DATA ERROR" : END
71Z1 PF:ItH":l1mro USE THE CALCULATED GOTO:" •
81Z1 PR HIT" N3'r'S <: "S") , LI NE NUMBER"
9(1 END
WI) IIATA32., 253, 174,32, 138, 173,32
110 DATA247,183,76,163,168.-1

Program 11.

ROM routine entry point: $A8A~

Routine operation: The line number used in the GOTO is first fetched and
stored in locations $14,$15. The line number is then compared with the current
line number (note high bytes only are compared). If the target line# high byte is
larger than the current line# high byte, then the program is scanned upwards from
the current line using the link pointers to achieve this scanning quickly. I fthe target
line number is not found then an Undefined statement error is generated. If the line
is found then the address of the zero before the start ofthe target line is loaded into
the charget pointers at $7 A,$7B andprogram execution is restarted on an RTS.

~F ... THIEN

Abbreviated entry: IF
THEN

None
T(shift)H

The Keywords of BASIC 73

Token: IF Hex $8B Decimal 139
THEN Hex $A 7 Decimal 167

Mode: Direct and program

Purpose: This command allows the conditional execution of any statement
following the IF including jumps or GOSUBs to other lines, depending on the
value or expression following the IF statement. The IF command is usually
associated with the THEN or GOTO commands.

Syntax: IF arithmetic or logical expression
THEN line number or expression
GOTO line number
THEN GOSUB line number

When GOTO is used it must not have a space between GO and TO.

Errors: Syntax error - wrong command syntax
Undefined statement - if the line number following THEN ,GOTO

or GOSUB does not exist

Use: The IF ... THEN command structure is the primary conditional test in
CBM 64 Basic and is therefore of great use. It functions by first evaluating the
expression following the IF statement. If this gives a value greater or less than
zero then the expression is deemed to be true; if the result is zero then the
expression is false. If the expression is false then any further statements on the
line are ignored and the next line executed. If the expression is true then the rest
of the line - a THEN or GOTO statement - is executed plus any further
commands separated by colons. If the IF command is followed not by an
expression but just a variable, then the interpreter takes the value of the variable
and uses that as the test. It should be noted, of course, that the sign of a value or
expression is not considered by the IF command.

One interesting feature of the IF command is that the condition following the
IF statement may be a string or string variable; it will not produce an error but
will give some odd effects. If the condition is a string variable then the condition
tests the contents of F AC# 1 left after the previous numeric calculation or
numeric variable assignment. A previous string assignment will also affect the
condition test; a false condition will be generated only if the assignment was a
null string. The IF conditional test will work satisfactorily when making
comparisons between two strings. If a subscripted string variable is included
within the test, then the interpreter will ignore the string variable and simply
take the number or numeric variable used in the sUbscription as the test value.
The use of a string as the conditional test variable will give a false message if it is
a null string and a true message in all other cases. However, this does not clear
the string stack, and using it three times will give a Formula too complex error.

ROM routine entry point: $A928

Routine operation: The expression following the IF is first evaluated by the
routine at $AD9E, the result of the evaluated expression being placed in floating

74 Advanced Commodore 64 BASIC Revealed

point accumulator # I. The exponent value is also placed in the processor
accumulator. The routine then checks whether the following statement is the
token for either THEN ($A 7) or GOTO ($89); if not then a Syntax error is
generated. When the result of the evaluation is zero the exponent in the
accumulator is set to zero. If the accumulator contains a zero then the condition
is deemed 'false' and the control branches to the next line. This is done by taking
the scan offset to the next line start address in the .y index register and adding it
to the charget pointers in $7 A,$7B. If the accumulator is greater than zero then
the condition is 'true' and the statement following the I F conditional expression
is performed. A GOTO or THEN followed by a line number will execute a
GOTO jump; if THEN is followed by GOSUB and a line number the GOSUB
routine is executed. If THEN is followed by a variable then it is assigned.

INPUT and INPUT#

Abbreviated entry: INPUT None
INPUT# I(shift)N

Tokens: INPUT Hex $85 Decimal 133
INPUT# Hex $84 Decimal 132

Modes: Program mode only

Purpose: To input data into the computer, from the keyboard in the case of
INPUT, and from a specified input device in the case of INPUT#. The INPUT
command also displays the input on the screen at the current cursor position.
An INPUT or INPUT# is terminated by the return key or a return ASCII
character. INPUT can also include a string which is first output on the screen
prior to data input.

Syntax: INPUT [string within quotes;] variable name [,variable
name].
INPUT# arithmetic expression, variable name [,variable
name].

With INPUT the string within quotes is optional as is also the use of more than
one variable. When run, an INPUT command will first display any string
following the command and then display a question mark followed by a flashing
cursor as an input prompt. Extra input variables can be separated by commas. If
carriage return is pressed after each then a double question mark is displayed to
prompt. With the INPUT# command the arithmetic expression following
defines the logical file number and must evaluate to a value between I and 255. It
should be noted that there is no optional displayed string with the INPUT#
command. With INPUT and INPUT# the maximum length of a data item
input is 79 characters including the terminating 'return' character and question
mark prompt.

The Keywords of BASIC 75

Errors: Syntax error - wrong command syntax
Illegal direct - attempting to use INPUT commands in the direct

mode
Redo from start - attempting to input the wrong variable type
Extra ignored - use of a comma separator within input
indicates that there are more inputs than variables
File not open - no input file open in INPUT#
Not input file - file not open for input

Use: Both INPUT and INPUT# have strict rules covering permissible input
characters. The characters not accepted are principally, : " and the screen editor
commands plus the 'return' character if used as anything other than an input
terminator. These limitations can be quite annoying and are one reason why
GET or GET# are often preferred to INPUT and INPUT# because these
restrictions do not apply and the programmer can use his own character
trapping. The INPUT routines treat the comma as a separator between inputs
and therefore ignore it and place the following input data in the next variable (if
one was assigned in the INPUT command; if not then an extra ignored error is
produced). A colon encountered within the input data will signify the end of the
statement. If the" character is input then all following characters are treated as
being a literal string until a matching" is found.

The INPUT and INPUT# commands work by taking characters from the
respective input device and placing them in the input buffer. This is an 88 byte
block of memory at locations $~2~~ to $~257. Characters continue to be put in
this buffer until either the buffer contains 8~ characters (in which case a String
too long error is generated) or a carriage return, comma or colon character is
input. When a carriage return or separator character is input a terminating zero
is added to the end of the input, and the buffer contents are assigned to the
designated variable.

ROM routine entry point: INPUT - $ABBF
INPUT# - $ABA5

Routine operation: The INPUT routine first checks for a quotation mark, $22,
as the next character following the INPUT command. If a quotation mark is
present then the string within the quotation marks is printed on the output
device. The input buffer at $~2~~ is set up to accept up to 8~ characters, the
status ST is then tested (derived from the value in $13), and the routine branches
to the input line routine. It is the input line routine which is the cause ofINPUT
not accepting colons etc.

The INPUT# command gets the file number and checks for a following
comma, sets the input device and jumps into the main input routine. Having
performed the input, the input device is turned off and location $13 set to zero.

76 Advanced Commodore 64 BASIC Revealed

8
Abbreviated entry: None

Token: Hex $B5 Decimal 181

Modes: Direct and program

Purpose: Converts the value in the argument into an integer by removing the
fractional component of the value.

Syntax: INT (arithmetic expression). The arithmetic expression must be given a
valid numeric result within the range acceptable for floating point values.

Errors: None

Use: The INT command is principally used in rounding values to whole
numbers. However, since it removes just the fractional component of the
number it will always round down all positive values and round up all negative
values. To round up simply add .5 to the value then do an INT command. It
should be noted that the value returned by the INT command is a floating point
value and should not be confused with numbers stored as integers which have a
maximum range of +32767 to -32768.

ROM routine entry point: $BCCC

Routine operation: This takes a value stored in F AC# 1 and rounds it down to
the nearest integer which is left in full floating point form in F AC# 1.

lEFT$

Abbreviated entry: LE(shift)T

Token: Hex $C8 Decimal 2~~

Modes: Direct and program

Purpose: This takes the specified string and takes from it a substring consisting
of the specified number of characters at the left end of the string.

Syntax: LEFT$(string expression, arithmetic expression). The string expres
sion can be a string literal, string variable, a string function like LEFT$,
or a combination of one or all of these, the only limitation being that the
resulting string length must not exceed 255 characters. The arithmetic
expression must be an integer number between ~ and 255 when evaluated.

Errors: Illegal quantity - value exceeds the limits ~ to 255

Use: The string functions are extensively used to manipulate strings and
LEFT$. The principal use is in getting rid of trailing characters or truncating
strings to a fixed length.

The Keywords of BASIC 77

ROM routine entry point: $B7~~

Routine operation: The string parameter data is first pulled from the stack by
the routine at $B76 I. The .y index register contains the string length. The bulk
of the routine from $B7~6 is shared with MID$ and RIGHT$ and involves
creating a substring, storing it in memory and setting up the necessary pointers.

Abbreviated entry: None

Token: Hex $C3 Decimal 195

Modes: Direct and program

Purpose: Will return the length of a string or string expression.

Syntax: LEN (string expression). The string expression must be valid and can be
either a string variable, string literal, or string function. The combined string
length must not exceed 255 characters.

Errors: Type mismatch - if it is a non string expression

Use: LEN is often used within FOR ... NEXT loops to perform an operation on
each character in a string.

ROM routine entry point: $B77C

Routine operation: This calls the routine at $B782 to obtain the string length
which is returned in the accumulator with the.y index register set to zero. It then
jumps to the routine at $B3A 7 which converts the contents of .a and .y to a
floating point value in FAC# 1.

Abbreviated entry: L(shift)E or by default nothing

Token: Hex $88 Decimal 136

Modes: Direct and program

Purpose: To assign a value or string to a variable

Syntax: LET is not actually required in CBM 64 Basic since if the first byte in
any statement is not a token then the interpreter assumes that a LET command
is intended by default. The interpreter parser then checks for an = sign following
the variable and an expression or value following the equals sign. The type of
variable allowed by the assignment is determined by the variable name. If the

78 Advanced Commodore 64 BASIC Revealed

last character is % then the variable is an integer variable, if $ then it is a string
variable; in all other cases a floating point variable is assumed. Variables can be
either simple or array variables.

Errors: Type mismatch - wrong variable type assignment
Illegal quantity - value is outside the permitted size range

Use: The LET command is not necessary in CBM 64 Basic. For further details
of variable type, storage and assignment see Chapter 2.

ROM routine entr), point: $A9A5

Routine operation: The variable defined in the LET statement is first searched
for amongst existing Basic variables using the routine at $$B~8B. If it does not
yet exist then it is set up. The variable pointer address is stored in locations
$49,$4A. The routine then checks for an = sign (character value $B2). If this is
not found then a Syntax error is generated. The value, string or expression
following the eq uals sign is then evaluated and assigned to the corresponding
variable pointed to by locations $49,$4A. The following are the start of the
routines which assign the different variable types:

$A9C4 assign integer variables
$A9D6 assign floating point variables
$AA2C assign strings, except
$A9D9 which assigns TI$

The routine which assigns TI$ uses a routine at $AA I D, which adds an
ASCII digit to the contents of F AC# I. The digit is pointed to by $22,.y.

UST

Abbreviated entry: L(shift)I

Token: Hex $9B Decimal 155

Modes: Direct and program mode. In program mode this command will stop
the program after listing the desired lines.

Purpose: This command will output all or part of the Basic program stored in
memory on the current output device.

Syntax: LIST [line number][-[line number]]. The beginning and end of line
numbers defining the listing range are optional; the line numbers specified need
not actually exist but must be within the range ~ to 63999.

Errors: Syntax error - wrong command syntax or if an unrecognisable token
is encountered when listing

Use: The LIST command converts the tokenised Basic program back into an
easily readable format which is displayed on the screen or to another peripheral

The Keywords of BASIC 79

(if the OPEN and CMD commands have previously been used to set up an
output device); this would normally be a printer. The program can also be listed
to cassette, disk or via a modem; this is often useful when transferring programs
to non CBM devices. Another use for a Basic program listed to cassette is a
simple merge routine. This is dealt with in The Commodore 64 Kernal and
Hardware Revealed.

The LIST command has one quirk. After a REM command all shifted
characters will be interpreted as tokens and output in their expanded form
unless the shifted characters are enclused in quotes. This can be utilised when
listing the REM command by including screen or printer control characters
after the REM, thereby either improving the listing's legibility or providing a
degree of unlistability by using cursor characters to backspace over lines and
thereby hide their contents.

A very useful variation of the LIST command is given in Program 12; it is
modified to convert all the graphics screen control and colour characters into
more readable form.

1 RESTORE
5 GOT030~Kl
10 DATAI62 .. 0 .. 165,43, 133,251, 165
20 DATA44 .. 133,252, 160,0 .. 177 .. 251
30 DATAl33, 253 .. 200.·177 .. 251, 133,254
40 DATA201 .. 0 .. 208 .. 1 .. 96 .. 2013 .. 2013
50 DATA200.·177, 251.. 201, 0, 208 .. 13
60 DATA165 .. 253 .. 133 .. 25L 165 .. 254, 133
70 DATA252, 162,0,76 .. 10 .. 192 .. 201
80 DATA34,2l18,10 .. 232 .. 224 .. 2,208
90 DATAI2 .. 162 .. 0 .. 76,28 .. 192,224
1O~3 DATAL240 .. 3,76 .. 28,192,201
110 DATA255 .. 208 .. 3,76,28, 192,133
170 DATA102,24,201,192 .. 144 .. 4,216
13~j DATA56 .. 233,96 .. 201 .. 96 .. 176 .. 7
140 DATA201 .. 33 .. 144 .. 3, 76, 28,192
1513 IIATA134, 1£113, 13:3.. HH .. 132,92 .. 162
160 DATA1 .. 200,177 .. 251,197,102,208
170 DATA4 .. 232 .. 76, Hl6 .. 192 .. 134, 102
180 DATA224, 1..2413 .. 2,176 .. H.l,2(12
19",1 DATA165,10L20L 32 .. 208 .. 3 .. 76
200 DATA167, 193.· 138, 133 .. 93,169 .. 11)
210 DATA133 .. 94 .. 162 .. 8 .. 169,0,6
220 DATA93, 42 .. 197,94 .. 144 .. 4 .. 229
230 DATA94 .. 230 .. 93 .. 2(12, 208, 242 .. 216
240 DATA24 .. H.l5 .. 4:3,133,94 .. 24, 216
250 IlATA165, 93 .. 105,48, 133,93, 165
260 DATA101, 201, 97 .. 176 .. 3,76,22
270 DATA193,2el,123,144,3 .. 76,22
280 DATA193,216,56 .. 233,32 .. 133,101
290 DATAI62 .. 7,165,93,2131, 48, 208
300 DATA:3 .. 2e2 .. 165,94,20L48 .. 208
:::Hi DATAl .. 2132, 228,102,2413,1 L 176
320 DATA6 .. 32 .. 0,194 .. 76,227,192
33~3 DATA32, 168, 194, 164,92,169,91
3413 DATA145, 251, 165 .. 93, 201, 48, 240
35(1 DATA3 .. 200 .. 145,251,165,1132,2131
36(1 DATAl .. 240, 5,165,94,2013,145
:370 DATA251, 169,71,2013,145,251,169
380 DATA62 .. 2~30 .. 145 .. 251.. 165, leI, 200
390 DATA145, 251,169 .. 93,200,145,251
400 DATAl66, 1013,76,28,192,133 .. 1131
4113 DATA169,80, 133,98,.169, 195, 133

80 Advanced Commodore 64 BASIC Revealed

420 DATA99 .. 162,80,160,0 .. 177,98
430 nATA197, 101, 2413, 9, 200, 2013, 2130
4413 IIATA202, 16,244, 76,250, 198, 21313
4513 DATA177,98, 133,193,200,177,98
4613 DATA13:3,99,165, 193, 133,98, 1613
470 DATA13 .. 177,98,133 .. 193,216,24
480 IIATAI05, 4,1713,165,93 .. 2131, 48
490 DATA2~"8,8, 2132,165, 94 .. 201,48
500 DATA208,l,2132,228, 102,240, 11
510 DATA176 .• 6,32,0,194,76,105
5213 DATA193 .. 32,168,194,164,92,169
530 DATA9L 145,251, 165,93,201,48
540 DATA24a,3,200,145,251,165,102
550 DATA213L 1,2413,5,165,94,200
5613 DATA145, 251, 132, 92 .. 16~M:l, 234
570 IIATA234 .. 200,177 .. 98 .. 132,194,164
580 DATA92 .. 200,145,251, 132,92 .. 164
590 DATAI94 .. 196, 193 .. 208,238,164,92
600 DATAI69 .. 93, 200 .. 145 .. 251,166 .. 100
610 DATA76,28, 192, 164,92,166,100
620 DATA76 .. 28,192,-1
630 DATAI34,194,165,102,56,229,194
640 DATA133, 187,24 .. 165,251, 101,92
6513 DATA133, 95 .. 165 .. 252,105,13,133
660 DATA96 .. 165,95, 101, 187,133,913
67(1 DATAI65 .. 96,105, €.I, 133,91, 165
68(1 DATA45,56, 229, 913 .. 133 .. 88 .. 168
690 DATA165,46,229,91,17e,232,152
700 DATA2413,31,165,90,24,101,88
71(1 DATAI33,90,144 .. 3,230,91..24
720 DATAI65,95 .. 1el ,88,13:3,95,144
73(1 DATA2 .. 230, 96,152 .. 73,255,168
(413 DATA2€Kl .. 198,91, 198,96,177,913
750 ·DATA145 .. 95, 2130,2(l8, 249,230, 91
7613 DATA230 .. 96 .. 2(l2, 208,242, 56,165
770 DATA45 .. 229,187,133,45 .. 176,3
78(1 DATAI98, 46 .. 56, 1613, €.I, 165,253
790 DATA229 .. 187 .. 133 .. 253,145,251,133
8013 DATA87, 165,254,233,13,21313 .. 133
810 DATA254 .. 133,88,145,251,136, 177
828 DATA87 .. 133,185,2130, 177,87, 133
8XI DATA186 .• 240 .. 24,136,56,165,185
:::40 DATA229 .. 187,170 .. 145,87,165,186
850 DATA23:3 .. 13, 2013,145,87,133 .. 88
86(1 DATAt:38, 133,87,76, 13L 194,96
:37(1 DATAI38 .. 56, 229 .. 102,133,187,24
880 DATAI65,92,101,187, 176,4,201
8913 DATA254 .. 144,3,76 .. 65,199,165
91313 DATA45, H.l1 .. 187, 170 .. 165,46,185
918 DATA(1, 197,56,208,7 .. 228,55
920 DATA144,3 .. 76,99 .. 199,24, 165
938 DATA45 .. 1:33,90, 1131, 187, 133,88
940 DATAI65,46,133,91, 105,0,133
950 DATA89, 165 .. 251, 101,92, 133,95
960 DATA165.;252 .. H)5,13,133,96,32
970 DATA19L 163 .. 24,160,8,165,45
980 DATA10L 187,133 .. 45 .. 144,3,2313
99(1 DATA46 .. 24 .. 165,253, 191, 187, 133
10fu) DATA253 .. 1:33,87, 145,251, 165,254
1010 DATAl 05,0,200,133 .. 254,133,88
1020 DATA145 .. 251.136,177,87,133,185
10313 IIATA200 .. 177,87,133,186,2413,24
1040 DATAI36,24,165,185.101,187,170
1050 DATA145,87,165 .. 186,195,€.1,200
1060 DATA145, :37 .. 1:33,88 .. 138 .. 133,87
1070 DATA?6, 19 .. 195,96,-1
10:::0 DATH5 .. 56 .. 197, 17 .. 6(1 .• 197,18

1090 DATA63.197,19,67,197.28,71
1100 DATA 1 97 .. 29, 75. 197. 313 .. 7E:. 197
11113 DATA31,82,197,32.86,197.96
1120 DATA90.197,123,94,197.124,98
1130 DATAI97,125,102.197,126.106,197
11413 DATAI27,113B,197, 129,112.197,133
11513 DATA116.197,134.119,197,135,122
11613 DATAI97,136.125,197,137,128.197
11713 DATAL:;::: .. 131.. 197,139,134.197.1413
1180 DATA137,197.144, 140.197.145.144
11913 DATA197.146,147,197.14?151,197
1200 DATAI48,155.197, 149,159.197.1513
12113 DATAl~~: 197, 1~1, 169 .. 197. ~5~.173
1220 DATAl~{,153.1{?,197.154.183.197
12313 DATA155,189.197.156.193.197.157
1240 DATAI9?197.158 .. 200.197.159.204
1250 DATAI9?160.208.19?,161.214,197
12613 DATAI62, 218,197. 163.222.197,164
1270 DATA226, 197 .. 165 .. 230 .. 197, 166,234
12:'::0 DATAI97 .. 167 .. 238.197, 168 .. 242.197
129121 DATAI69, 246,197.170 .. 250 .. 197,171
13013 DATA254. 197,172 .. 2.198 .. 173,6
1318 DATA198,174.10,198.175,14,198
1320 DATA176 .. IE:, 198. 177.22.198,178
1330 DATA26. 198. 179.30 .. 198. 180.34
1340 DATA198.181.38, 198, 182.42 .. 198
1350 DATA183, 46.198,184 .. 50.198.185
13613 DATA54. 198. 186. 58 .. 198.187,62
13713 IIATA198.188, 66.198.189. 713 .. 198
13813 DATA190,74.198.191,78.198.1
13913 DATA82 .. 198 .. 2.88 .. 198 .. 8,94
1400 DATA198,9,1130.198.14,106.198
1410 DATA142,112,198,141.118,198.-1
14213 DATA3,87.72,84.2.67,68
1430 DATA3.82,69,86,3,72,79
1440 DATA77.3,82.69.68.2,6?
1450 DATA82 .. 3.71.82.78.3.66
1460 DATA76, 85, 3. 83, 80 .. 67.3
147(1 DATA? 1. 62.42,3,71. 62 .. 43
1480 DATA3 .. 71.60,45 .. 3.7L62
1490 DATA45. 1.126.3.71.60.42
1500 DATA3,79.82,71.2.70,49
1510 DATA2.70.51.2.713,53.2
1520 DATA?IJ. 55. 2. 70, 50 .. 2. 70
1530 DATA52. 2,70.54.2,-713.56
1540 DATA3. 66, 76. 75 .. 2. 67.85
1550 DATA3. 79, 70. 70.3 .. 67 .. 76
1560 IIATA83, 3.68,69,70.3.66
1570 I1ATA82. 78 .. 5 .. 76. 32. 82, 69
1580 DATA68 .. 3. 71. 82 .. 49,3,71
1590 DATA82, 50,5,76 .. 32 .. 71. 82
1600 DATA78,5 .. 76 .. 32,66.76.85
16113 DATA3,71.82,51 .. 3.80.85
1620 DATA82 .. 2. 67.76 .. 3.89 .. 69
16313 DATA76,3.67.89,78.5,71
16413 DATA62 .. 83. 80, 67 .. 3 .. 71. 60
16513 DATA75. 3. 71. 60 .. 73,3 .. 71
1660 DATA60. 84 .. 3. 71.60 .. 64 .. 3
1670IIATA71.60.?1.3,71.60.43
1680 DATA3.71.60.77.3.71,60
1690 DATA92.3 .. 71.62.92.3.71
1700 DATA60,78.3.71.60.81.3
1710 IIATA71, 60. 68, 3. 71.60,90
1720 DATA3. 71. 60.83.3,71.. 60
1730 IIATA80. 3. 71. 60. 65 .. 3.71
1740 DATA60. 69, 3. 71. 60. 82. 3
1750 DATA71.60,87.3,71.60.72

The Keywords of BASIC 81

82 Advanced Commodore 64 BASIC Revealed

1760 DATA3,71,60,74,3,71,60
1770 DATA76,3,7L60,89,3,71
17813 DATA60, €IS .• 3, 71,60,79,3
17913 DATA71,62,64,3,71,6e,70
18013 DATA3,71,6e,67,3,71,60
18113 DATA88,3,71,60,86,3,71
18213 DATA60,66,5,67,84,82,76
18313 DATA65,S,67,84,82,76,66
18413 DATA5,67,84,82,76,72,5
18513 DATA67,84,82,76,73,5,67
18613 DATA84,82,76,78,5,67,82
18713 DATA71 , 62 .• 78, S,67, 82, 71
18813 DATA62,77,-1
18913 DATA165,95,201,27,144,3,76
191313 DATA105,199,1e5,64,141,24,199
19113 DATA169,19,133,98,169,199, 133
19213 DATA99,76,65,193,5,67,B4
1930 DATA82 , 76, 74,32 .• 78, 73,32
19413 DATA83,82,65,72,67,32,89
19513 DATA78,65,77,32,79,79,84
19613 DATA32, 13,32,78,73,32,78
19713 DATAe7, 79, 78, 75, 32 .• 84, 79
198€1 DATA78, 32 .• 82, 65 .• 72, 67,32
19913 DATA13, 162,213,189,24,199,32
2131313 DATA2113,255,2e2,208,247,16e,2
213113 DATA177,251,133,57,209,177,251
213213 IIATA133, 58, 32, 2131,189,194,194
20313 IIATA76,25, 192 .• 234,234,234,234
213413 DATA32,53..164,-1
3131313 A=49152:B=49581:C=49664:D=49975:E=50090:F=59236:G=50488:H=59811
313113 1=50938:J=51045:K=0
31315 PRINT"~IIIi1I1I1'IIIIII"""'~ LISTER PROGRAM II

313213 PRINT"N/III~ PROCESSING DATA - PLEASE WAIT II

313313 FORZ=ATOB:READY:IFY=-ITHEN3060
31335 K=K+~': POKEZ, '1': NEXT
313413 READY:IFY=-ITHEN4e00
313513 IFK=58195THEN40!30
30613 PRlNT":.II!I~ DATA ERROR IN LINES 19 - 629 ": END
4131313 K=0: FORZ=CTOD : READ'" : IFY=-1 THEN4939
40135 K =K +'T' : POKEZ, Y : NEXT
413113 READY:IFY=-lTHEN50e9
4029 IFK=41386THEN513ee
41339 PRINT")WQ~ DATA ERROR 11.1 LINES 6313 - 113713 II : END
5000 1<=13: FORZ:::ETOF : REAII'r' : I F'y'=-1 THEN503e
5!3€15 K=I<+'r': POKE2, Y: NEXT
513 1 () READ'r': I F'y'=-lTHEt-l6000
502t1 IFK=35484THEN6000
5(130 PRHlT":/It~I~ DATA ERROR IN LINES 113813 - 14113 ":END
6"::1(10 K=(l: FORZ=GTOH: READY: IFY=-l THEN6e3e
6(')135 K=K+'y': POI<EZ, '1': NEXT
61310 READ''': I F~'=-lTHEN7000
602£1 IFK=17491 THEN700e
60313 PRHH":.rIll~ DATA ERROR IN LINES 1420 - 1880 P : END
713013 K=O: FORZ= I TO,T : READY: I P,'=-l THEN7030
70135 K=K+Y: POKEZ, Y: NE)<T
7010 REHD'.,': I FY=-1 THEN8000
70213 IFK=11236THENse00
71330 PRHlT")!lIII~ DATA ERROR IN LINES 1890 - 2040 .. : END
8000 PRHlT"~I/ltI!JlIIII~ DATA HAS BEEN INPUT II

81310 PRIIH"~~"'I~ SYS 49152 TO USE II

8030 EHD
Program 12.

ROM routine entry point: $A69C

Routine operation: The routine first checks and sets up parameters, converting

The Keywords of BASIC 83

the line number from floating point into a memory address for the start of the
link address of the Basic line in memory. The start address of the lowest line
number is stored in locations $5F,$6~ and the highestline number in $14,$15. If
no parameters are given in the command then the lowest start address defaults
to $~8~ 1 and the highest to $FFFF. Two important and useful routines are
used: $A6C9 lists a line of Basic pointed to by $14,$15 to the output device, and
$A 717 converts a token value stored in the accumulator into a Basic keyword.
The LIST routine involves two loops. The outer loop tests for the STOP key
then prints carriage return and compares the next line number with the upper
limit line number; if smaller it then prints the next line number. The inner loop
displays the line character by character. It checks for a quote character, zero,
and characters with ASCII codes greater than 128. If it finds a quote then all
following characters are printed exactly as stored until another quote is found.
An ASCII character is interpreted as a token and is expanded, the full expanded
form being printed. A zero indicates that the line has terminated and the inner
loop is closed, the outer loop being called again.

lOAD

Abbreviated entry: L(shift)O

Token: Hex $93 Decimal 147

Modes: Direct and program

Purpose: To retrieve a program or memory dump from a storage device back
into RAM memory, storage devices being either disk or tape.

Syntax: LOAD [string expression [, arithmetic expression [, arithmetic
expression]]]. All the parameters within square brackets are optional. The
string expression is the name of the program to be loaded; if omitted then the
first program encountered is loaded. When used with a disk drive the program
name must always be used. The first arithmetic expression is the device number
which is one for the tape drive and eight for disk on the Commodore 64. The
second arithmetic expression always follows the first and defines where the
program will start in memory. If this value is zero, or no value is used, then the
program will always start loading at an address pointed to by the contents of the
.x and the .y index registers. This is normally the start of the Basic program
storage area in the normal mode of operation. If the second arithmetic
expression is <>~ then the program will start loading at the address from which
it was saved. The secondary address will have no effect on loading from tape if a
secondary address of three was used in the SAVE command.

Errors: Load error - when verifying a procedure this indicates an error in the
loaded program

Device not present - specified device is not connected

84 Advanced Commodore 64 BASIC Revealed

Missing file name - no file name was specified when loading
from disk

Break error - if runl stop key is pressed
Illegal device number - invalid device number
Illegal quantity - out of range device or secondary address

values (range is I to 255)

Use: The functioning of this command varies according to whether it is used in
direct or program mode. In direct mode the computer produces a series of
messages which are displayed on the screen. These are:

Disk - LOAD "PROGRAM",8
SEARCHING FOR PROGRAM
LOADING
READY

Tape - LOAD ["PROGRAM 2"[, I[,~]]]
PRESS PLAY ON TAPE
SEARCHING [FOR PROGRAM 2]
[FOUND PROGRAM I]
FOUND [PROGRAM 2]
LOADING [PROGRAM 2]
READY

On tape the square brackets denote that if the program name is not included in
the LOAD command then it will not be displayed in the messages, and the first
program encountered on tape will be loaded. If the name is specified, and that
program is not the first on tape, then the name of each program encountered will
be displayed. Of course, if the program is not found then a File not found error
will also be displayed.

In program mode the only message displayed by the LOAD command is
PRESS PLAY ON TAPE when loading from tape. The program will load
correctly, replacing the existing program and will start running from the
beginning of the new program as soon as the loading is completed. There is one
problem with using LOAD in the program mode; it does not change the variable
pointers of the old program. This means that ifthe new program is larger than
the old, it will be impossible to pass variables between the two programs, and
because the variable pointers have not been set correctly for the new program, a
crash will occur as soon as one tries to assign a variable. The best way to guard
against this is to make sure that the start ofthe variable pointers is always set to
an address above the end of the longest of the chained programs, thereby
ensuring that variables will never be overwritten by a program. The setting of
variable pointers can be achieved by finding the longest program and getting its
start of variable pointer by peeking locations 45 and 46. These values should
then be poked into these same two locations as the very first command of the
first program in the chain.

The method of loading and running the first program on tape or disk is by

The Keywords of BASIC 85

pressing the SHIFT / RUN keys. This then works by forcing the command
LOAD and RUN into the keyboard buffer. The interpreter then executes these
as two direct mode commands.

ROM routine entry point: $E168

Routine operation: This routine loads a program into the computer from disk
or tape. After loading, if an error has occurred, the error message is printed,
otherwise a check on direct mode is made. If in direct mode the variable pointers
are set to the end of the program. READY is output and a CLR performed. If in
program mode then charget is reset to the beginning of the program, the
program is re-chained and the Basic program executed.

Abbreviated entry: None

Token: Hex $BC Decimal 188

Modes: Direct and program

Purpose: Calculates the logarithm to the base e of any positive non zero
arithmetic expression.

Syntax: LOG(arithmetic expression). The arithmetic expression must be a
positive non zero value within the permissible limits of a floating point number.

Errors: Illegal quantity - the arithmetic expression has a zero or
negative value

Use: LOG is the converse function of EXP and is used principally in scientific or
statistical programs.

ROM routine entry point: $B9EA

Routine operation: This calculates the logarithm to the base e of a value stored
in F AC# I and puts the result in F AC# 1. The logarithm is calculated using a
fairly complex series evaluation.

MID$

Abbreviated entry: M(shift)I

Token: Hex $CA Decimal 2~2

Modes: Direct and program

Purpose: This takes the specified string and takes from it a substring.

86 Advanced Commodore 64 BASIC Revealed

Syntax: MID$(string expression, arithmetic expression [,arithmetic expres
sion]). The string expression can be either a string literal, string variable, a string
function like LEFT$, or a combination of one or all of these concatenated with
the + sign, the only limitation being that the resulting string must not be longer
than 255 characters. The arithmetic expressions, which must be within the range
~ to 255, define the starting and ending character positions of the substring
within the main string. If the second arithmetic expression is omitted then the
substring will continue to the end of the main string. This has a similar function
to RIG HT$ but is often more useful, since it does not take just the designated
number of characters from the right of the string, but starts at a designated
character position within the string and takes all characters to the right
irrespective of how many there are.

Errors: Illegal quantity - if either of the arithmetic expressions
exceeds the permissible range ~ to 255

Use: The string functions are used extensively to manipulate strings and MID$.
The principal use is in splitting up long strings.

ROM routine entry point: $B737

Routine operation: This checks the syntax and pulls the parameters from the
stack before jumping into the LEFT$ routine at $B7~E. This creates the
substring, stores it in memory and sets up the necessary pointers.

Abbreviated entry: None

Token: Hex $A2 Decimal 162

Modes: Direct and program mode

Purpose: This command erases a Basic program in memory by erasing the link
address to the first line. The program can be resurrected after NEW'with the
OLD command in Chapter 5.

Syntax: NEW. There are no parameters.

Errors: Syntax error - if the character following the NEW token is
neither a colon nor end of line, or if the first
byte of the Basic program storage area does
not contain a zero

Use: This command erases the program in memory by putting zeros into
locations $8~ I and $8~2 (assuming the normal start of a Basic address). This
means that virtually all other memory locations are unaltered, therefore NEW
will have no effect on machine code programs (such programs should, of course,
not start at the beginning of the Basic area).

The Keywords of BASIC 87

ROM routine entry point: $A642

Routine operation: This places zero into the first two bytes of the Basic RAM
program storage area. The end of Basic pointers $2D,$2E are then loaded with
the address of the start of the Basic storage area + 2 bytes. Finally the routine at
$A68E sets the charget pointers $7 A, $7B to point to the start of Basic storage
-I. The CLR routine is then entered.

Abbreviated entry: N(shift)O

Token: Hex $A8 Decimal 168

Modes: Direct and program

Purpose: This will evaluate the complement of the arithmetic expressIOn
following the command.

Syntax: NOT arithmetic or logical expression. The arithmetic or logical
expression must be within the range +32767 to -32768 when evaluated.

Errors: Illegal quantity - values outside the range + 32767 to -32768

Use: It should be noted that this command operates on the binary value not the
decimal value and performs a twos complement on the binary value. This has
the effect of converting all binary ones into zeros and vice versa. The NOT
command has the highest priority in the hierarchy of logical operators and thus
takes precedence over AND and OR.

ROM routine entry point: $AED4

Routine operation: This converts the evaluated expression in F AC# 1 into
integer format and performs a NOT operation on locations $64,$65. It then
refloats the value into F AC# 1.

Abbreviated entry: None

Token: Hex $91 Decimal 145

Modes: Direct and program

Purpose: This command is always linked with either GOTO or GOSUB and
causes a branch to one of a series of line numbers; which one is dependent on the
value of the variable following ON.

88 Advanced Commodore 64 BASIC Revealed

Syntax: ON arithmetic expression GOTO line number, line number,
ON arithmetic expression GOSUB line number, line number,

The expression following the ON command must evaluate to a number in the
range ~ to 255. (Note: The value will always be rounded down to an integer.)

Errors: Illegal quantity - if the arithmetic expression is outside the
range ~ to 255

Syntax error - if the wrong command syntax is used e.g. if
GOTO or GOSUB does not follow an
arithmetic expression or if there is no space
between GO and TO

Use: This is a mUltiple exit conditional branch, thus when the value of the
expression is I then the branch is to the first line number, if 2 then the second line
number and so on. When the value exceeds the number of line numbers
specified after the GOSUB or GOTO command then the program simply
branches to the following line. If no line number is specified then a default ofline
~ is assumed by the interpreter. Thus a line ON X GOTO ""2~,,,5~ is valid and
just means that if .x is 1,2,3,4,6 or 7 then the control will branch to line ~.

ROM routine entry point: $A94B

Routine operation: This checks the variable type and evaluates it using the
routine at $B79E, which returns the value in location $65 and the .x index
register. It then checks whether the next command following the ON is a token
for either GOTO ($89) or GOSUB ($8D); ifit is neither of these a Syntax error is
generated. It then goes through a loop which decrements the value in location
$65, gets the first line number from the list ofline numbers following the GOTO
or GOS UB command, and checks for a comma following it. This loop is then
repeated, decrementing $65 and getting the next line number and so on until
either the value in $65 is zero or the line numbers are exhausted. If the contents
of $65 are zero then the next line number to be accessed is the line to which the
program control will be transferred. If the contents of$65 are not zero and there
are no more line numbers then the next statement is executed by default.

OPEN

Abbreviated entry: O(shift)P

Token: Hex $9F Decimal 159

Modes: Direct and program

Purpose: This statement opens an I/O channel for input and/or output to a
peripheral device.

Syntax: OPEN arithmetic expression [,arithmetic expression [,arithmetic
expression [,string expression]]]. The first expression is the logical file number

The Keywords of BASIC 89

and is compulsory; it must evaluate to a number within the range 1 to 255. The
second arithmetic expression is the device number. This is hardware specific
(thus disk drives are usually device 8) and must be a value between ~ and 15. The
third arithmetic expression is a secondary address which is also hardware
dependent and is used to send commands to the peripheral. The final string
expression is the file name; it can also include file type and mode designators.

Errors: Device not present - device corresponding to the device
number is not attached

File open - file has already been opened
Too many files - more than I ~ files are already open
Illegal device number - device number is outside range
Out of memory - RS232 channel has insufficient memory for

buffers

Use: The open command is an essential part of the Basic file handling
commands. The full functioning and operation of this command is dealt with in
The Commodore 64 Kernal and Hardware Revealed and The Commodore 64
Disk Drive Revealed in this series.

ROM routine entry point: $EIBE

Routine operation: This routine opens a logical file on a specified device for
reading or writing. It first gets the parameters using routine $E I D6 and then
uses the kernal routine at $FFC~ to open the file (see The Commodore 64
Kernal and Hardware Revealed for further information on these routines).

Abbreviated entry: None

Token: Hex $BP Decimal 176

Modes: Direct and program

Purpose: This command performs a logical OR between two expressions. These
expressions are first converted into double byte integer values, an OR
performed and the result returned as a two byte integer.

Syntax: expression A OR expression B. The expression can be either arithmetic
or logical but must always be either an integer value or a floating point value
within the range +32767 and -32768.

Errors: Syntax error - incorrect command syntax
Illegal quantity - if the expressions exceed maximum/minimum

values
Type mismatch - using a non arithmetic or logical expression

90 Advanced Commodore 64 BASIC Revealed

Use: The OR command acts either as a logical operator or as a bitwise operator
on two straight sixteen bit values.

As a logical operator the OR command is used to ensure that at least one of
two conditions is met before a particular operation is performed, as in the
following example:

IF A<2 OR A>8 THEN PRINT "VALUE IN RANGE"

The result of a comparison gives -I if the comparison is true and ~ if it is false. If
a comparison is true then a value of -I is returned by the comparison routine.
This is represented as a twos complement value with a binary representation of:

Illl III I III I III I or hex $FFFF or -I

Similarly a false comparison returns a value of zero, represented as:

Therefore an OR will give a true condition only when one or both conditions are
true (both values are $FFFF); all other states will be regarded as false.

A bitwise OR compares the first bit of one value with the first bit of the second
value and gives a result according to the following truth table:

OR ~~
I I I
~ I ~

Thus the command:

1278 OR 3279

has as its binary equivalent:

~M~ ~I~~
OR ~~~~ II~~

This gives the result:

IIII
II~~

~~~~ II ~~ III I IIII 

or decimal 3327. 

III~ 
IIII 

It should be noted, of course, that the OR operation is performed on two 
signed double byte integers, which are stored in twos complement form. Thus a 
value of -I has a binary equivalent of IIII IIII 1111 IIII and any number 
ORed with -I will always return the same number. Likewise a positive value 
ORed with a negative will always give a negative result. 

The hierarchy of logical operators is NOT, AND, OR, thus NOT and AND 
always have a higher priority than OR. 

ROM routine entry point: $AFE6 

Routine operation: The two arguments in floating point format are stored in 
F AC# I and F AC#2. They are first converted to fixed point integer values, the 



The Keywords of BASIC 91 

OR operation performed on the two sixteen bit numbers, and the result 
converted back from integer to floating point in F AC# 1. 

PEEK 

Abbreviated entry: P(shift)E 

Token: Hex $C2 Decimal 194 

Modes: Direct and program mode 

Purpose: This command gets the contents of a desired memory location and 
returns its decimal value in the designated variable. 

Syntax: PEEK (arithmetic expression). The arithmetic expression must be 
positive and all non integer values will be integerised; the value must be within 
the range ~ to 65535. 

Errors: Illegal quantity - value is negative or outside the range ~ to 65535 

Use: This command is invaluable in any application which requires direct access 
to memory locations. The principal applications are in passing parameters 
between machine code routines and Basic, manipulating screen displays, using 
the VIC, 110 and SID chips and manipulating Basic variables. It should be 
noted that the only locations which cannot be PEEKed are $14,$15, the reason 
being that these two locations contain the variable used by PEEK. For a double 
byte version of this command see the DEEK command in Chapter 5. 

ROM routine entry point: $B8~D 

Routine operation: The memory address parameter has previously been 
obtained using routine $B7F7. The parameter is thus stored as a two byte 
integer in locations $14,$15. The result is put in the.y index register. This is then 
converted to floating point form in F AC# I by the routine $B3A2. 

POKE 

Abbreviated entry: P(shift)O 

Token: Hex $97 Decimal 151 

Modes: Direct and program mode 

Purpose: This command puts the contents of a designated variable into a 
desired memory location. 

Syntax: POKE (arithmetic expression) (arithmetic expression). The first 



92 Advanced Commodore 64 BASIC Revealed 

arithmetic expression defines the desired memory location and must be positive; 
all non integer values will be integerised. The value must be within the range ~ to 
65535. The second expression is the value to be placed in the memory location; 
this must be a positive value in the range ~ to 255. Attempts to POKE data to a 
ROM memory location will produce no effect on the ROM but will place the 
data in the corresponding RAM memory plane. 

Errors: Illegal quantity - value is negative or outside the range ~ to 65535 

Use: This command is invaluable in any application which requires direct access 
to memory locations. The principal applications are in passing parameters 
between machine code routines and Basic, manipulating screen displays, using 
the VIC, I/O and SID chips and manipulating Basic variables. One use of the 
POKE command is to transfer the ROM based operating system and Basic 
software to the corresponding RAM memory plane by using a PEEK followed 
by a POKE to the same locations in ROM. For a double byte version of this 
command see DOKE in Chapter 5. 

ROM routine entry point: $B824 

Routine operation: The memory address parameter and contents parameter are 
obtained using routine $B7EB. This leaves the address parameter in $14,$15 and 
the value parameter in the .x index register. This value is then transferred to the 
accumulator and stored in memory at the address pointed to by the first 
parameter in $14,$15. 

Abbreviated entry: None 

Token: Hex $B9 Decimal 185 

Modes: Direct and program 

Purpose: It returns the position of the cursor on the current screen line. It should 
be noted that although the CBM 64 has only a 4~ column screen, it works on an 
8~ character line by folding each output line onto two lines. Therefore if the 
POS command returns a value between 4~ and 79 then it is located on the 
second display line. 

Syntax: POS(expression). The expression used by the POS function is a 
dummy variable and any numerical expression is valid. 

Errors: None 

Use: This command has fairly limited applications. These are limited to tests for 
text justification and formatting. 

ROM routine entry point: $B39E 



The Keywords of BASIC 93 

Routine operation: The position of the cursor on the line is obtained using 
routine $FFF~, which gets the value from location $D3. A zero is then put into 
the accumulator and the routine at $B391 used to put the value into F AC# 1. 

PRiNT] and PR~NT# plus 

SPC( 

Abbreviated entry: PRINT 
PRINT# 
TAB( 
SPC( 

Tokens: PRINT 
PRINT# 
TAB( 
SPC( 

Hex $99 
Hex $98 
Hex $A3 
Hex $A6 

Modes: Direct or program 

? 

P(shift)R 
T(shift)A 
S(shift)P 

Decimal 153 
Decimal 152 
Decimal 163 
Decimal 166 

'---_T_A_IB_( ----....1 and 

Purpose: The PRINT and PRINT# commands will evaluate and then display 
on the current output device any string or numeric expression. The PRINT 
command will display to the screen and the PRINT# command to the currently 
opened output device. The output produced by PRINT and PRINT# can be 
formatted by use of the commands T AB( and SPC( plus either a comma or 
semicolon following the variable or literal. 

Syntax: PRINT [arithmetic or string expression] [arithmetic or string 
expression]. .... 
PRINT# arithmetic expression, [arithmetic or string expression] 
[arithmetic or string expression]. .... 

The first arithmetic expression following the PRINT# command is the logical 
file number of the designated output device, and must be a positive integer in the 
range I to 255. The following expression or expressions are the data to be output 
or displayed; if there is no expression then a carriage return is output. These 
expressions are identical in syntax for both PRINT and PRINT#; each of the 
expressions can be separated by the following formatting commands: 

SPC(arithmetic expression) - moves the cursor position right by the 
number of characters indicated by the arithmetic expression 
TAB(arithmetic expression) - moves the cursor to the character position 
number indicated by the evaluated expression 
comma - a comma after a printed variable means that the following 
printed variable starts on the tenth column or a column divisible by l~ 
semicolon - this leaves the cursor at its current position thereby preventing 
a carriage return at the end of a line 



94 Advanced Commodore 64 BASIC Revealed 

With any of the above format commands, if the following output is a positive 
numeric value then a space is added in front ofthe number; all numeric values 
have a space added to the end of the value. It should be noted that the value 
following the SPC( and T AB( commands must evaluate to a positive integer in 
the range ~ to 255. It should also be noted that the T AB( and SPC( commands 
will not work after a PRINT#. The TAB( and SPC( commands both work by 
displaying the required number of cursor right characters. This means that these 
two commands will not delete any characters displayed in the area of screen over 
which the cursor jumps. Any variable or literal used in the PRINT command 
can include cursor, colour control and graphics characters. 

Errors: String too long - if the length of the concatenated strings 
exceeds 255 characters 

Device not present - no specified output device for PRINT# 
Not output file - file not defined as output on PRINT# 
Illegal quantity - number is outside the range on TAB and SPC 

Use: This is the principal output command in Basic and has a very wide range of 
applications and uses. The additional formatting commands of standard Basic 
are fairly limited, and to overcome this the CTL command in Chapter 5 gives the 
programmer greater power over cursor positioning and general screen control. 

ROM routine entry points: PRINT - $AAA~ 
PRINT# - $AA8~ 
SPC( - $AAF8 
TAB( - $AAF8 

Routine operation: There are four different routes which can be taken by the 
PRINT routine and these depend on the character or command following the 
PRINT command. Interesting subroutines within the main PRINT routine are: 

$AAA4 - test for T AB( branch if found 
$AAA8 - test for SPC( branch if found 
$AAAD - test for comma branch if found 
$AAB I - test for semicolon branch if found 
$AABC - print numeral after converting to ASCII 
$AAD7 - print CR or CRLF 
$AA9D - print string 
$ABIE - print string from memory at .a (Isb) and .y (msb) 

It should be noted that the output device number is stored in location $13. On 
completion the buffer is reset and location $~2~~ is set to $M,.x is $FF and.y is 
$~ 1. 

The PRINT# command is just a simple subroutine call to $AA86 to perform 
the CMD operation and ajump to $ABB5, the end ofthe INPUT# routine. This 
restores the default I/O and sets location $13 to zero. 



READ 

Abbreviated entry: R(shift)E 

Token: Hex $87 Decimal 135 

The Keywords of BASIC 95 

Modes: Direct and program mode, but in direct mode a program must be 
present which contains DATA statements, otherwise an Out of data error will 
be generated. 

Purpose: This command reads data stored in a DATA statement. Each time a 
READ command is executed it gets a different item from the list of data 
statements. 

Syntax: READ variable [,variable][,variable]. Any valid variable type, both 
simple and array, can be assigned by the READ command. However, the 
variable type must match the data within the DATA statement otherwise a Type 
mismatch error will be created. 

Errors: Out of data error - no more data statements within the program 
Syntax - variable type does not match the data. This is flagged as being 

on the line containing the data and not on the line containing the 
READ. This kind of error would normally generate Type 
mismatch but there is a bug in the error routine of READ which 
generates the wrong error message and position. 

Use: The READ command associated with data statements within a program is 
a very useful way of storing information and constants which are always 
required by the program. The only drawbacks to the DATA statement/READ 
method of data storage are firstly the difficulty of amending or adding further 
data whilst the program is running, and secondly that data elements are read 
serially. The first ofthese problems can be overcome using the DATA statement 
generator listed in Chapter 2 and the second limitation is overcome by the 
Restore to line routine in Chapter 4. 

ROM routine entry point: $AC~6 

Routine operation: This routine is shared by both GET and INPUT. The three 
different functions are distinguished by the contents of $11. These values are: 

GET - $4~ 
INPUT - $~~ 
READ - $98 

These routines all scan the input buffer for blocks of data. In the case of GET a 
block of data is defined as a single character. For INPUT a terminating carriage 
return defines the input block. With READ the separating comma or end ofline 
marker for the data statement pointed to by $41,$42 defines the data block. The 



96 Advanced Commodore 64 BASIC Revealed 

block of data from whichever source is then assigned to the variable in the 
command. Of the entry points within this routine the following are interesting: 

$AC~D - INPUT entry point 
$AC~F - GET entry point 
$AC71 - assign string to string variable 
$AC89 - assign numeral to numeric variable 
$ACB8 - used by READ to scan for DATA statements 
$ACDF - checks for terminating zero at end of buffer; if not 

found prints 'extra ignored' unless there is an active 
file, in which case no warning is given. 

Abbreviated entry: None 

Token: Hex $8F Decimal 143 

Modes: Direct and program 

Purpose: This command allows comments to be added to a program; any text 
following the REM is ignored when the program is run but is listed on LIST. 

Syntax: REM followed by any character 

Errors: None 

Use: Besides adding comments to Basic programs the REM command can be 
used for other purposes. One application is to store short blocks of data, which 
can be accessed by PEEK and POKE commands, or machine code subroutines 
in the text string following the REM command. 

ROM routine entry point: $A93B 

Routine operation: The routine to perform the REM command is part of the IF 
routine and is the same as that used for a condition 'false'. It skips the rest of the 
line by setting char get pointers $7 {\,,$7B to the start of the next line by adding to 
their current contents the scan to the next line $A9~9 offset in the .y index 
register. 

RIESTORE 

Abbreviated entry: RE(shift)S 

Token: Hex $8C Decimal 14~ 



The Keywords of BASIC 97 

Modes: Direct and program 

Purpose: Resets the pointer to data statements in a Basic program to the first 
DATA statement. 

Syntax: RESTORE has no following parameters 

Errors: None 

Use: The RESTORE command will reset the data statement pointer to the 
beginning of the program so that the READ command can start accessing data 
again from the beginning of the data statement table. The drawback of this is 
that RESTORE returns to the beginningofthe data table; this means that if you 
wish to go back only a few items in the data table you must go back to the 
beginning and then use READ to scan back up again to the desired location. 
This restriction can be overcome by using the routine at the end of this section 
which performs a RESTORE to a given program line. 

ROM routine entry point: $A8ID 

Routine operation: Sets the data statement pointer to the start of Basic program 
storage ($~8~P). This pointer is stored in locations $41,$42. This routine is also 
used by the RUN, CLR, and NEW routines. 

RIGHT$ 

Abbreviated entry: R(shift)I 

Token: Hex $C9 Decimal 2~ 1 

Modes: Direct and program 

Purpose: This takes the specified string and extracts from it a substring 
consisting of the specified number of characters at the right end of the string. 

Syntax: RIGHT$(string expression,arithmetic expression). The string expres
sion can be a string literal, string variable, a string function like LEFT$, 
or a combination of one or all of these, the only limitation being that the 
resulting string length must not exceed 255 characters. The arithmetic 
expression must be an integer number between ~ and 255 when evaluated. 

Errors: Illegal quantity - value exceeds the limits ~ to 255 

Use: The string functions are used extensively to manipulate strings and 
RI G HT$. The principal use is in getting rid of leading characters or truncating 
strings to a fixed length. 

ROM routine entry point: $B72C 

Routine operation: This pulls the parameter data off the stack and sets the string 
position pointer before jumping to the routine in LEFT$ at $B7~6, which 
creates the substring, stores it in memory and sets up the required pointers. 



98 Advanced Commodore 64 BASIC Revealed 

Abbreviated entry: R(shift)N 

Token: Hex $BB Decimal 187 

Modes: Direct and program 

Purpose: This function generates a pseudo random number which it returns as 
a floating point fractional value in the range ~ to 1. 

Syntax: RND(arithmetic expression). The expression is used as a seed for the 
random value calculation and can be any valid floating point number. 

Errors: None 

Use: The random numbers produced by the RND are not truly random. For a 
given seed value they will repeat the same sequence of values providing the 
random seed has not been reset with a RND(~). The seed value used in the RND 
function is important; a negative number will calculate a random number but 
will cause the next random number to have an identical value. A seed value of 
zero will set the seed to the contents of the timer in the CIA chip. This is the best 
way of generating a random value because it depends on the time since the 
machine was switched on and is thus unpredictable. 

ROM routine entry point: $E~97 

Routine operation: A random value is created by this routine and stored in 
F AC# 1. Prior to running this routine F AC# I contains a 'seed' value used to 
initialise the random number calculation routine. The last random number 
generated is stored in locations $8B,$8F. If a zero argument is given in the RND 
function then the value in the CIA timers is used for the seed. 

Abbreviated entry: R(shift)U 

Token: Hex $8A Decimal 138 

Modes: Direct and program 

Purpose: Initiates the execution of a Basic program either from the beginning of 
the program or from a specified line number. 

Syntax: RUN [line number]. The line number is optional, but when specified it 
must be an existing line within the range of valid line numbers. If a line number 
follows RUN then program execution starts at the specified line number. 



The Keywords of BASIC 99 

Errors: Undefined statement error -line specified after RUN does not exist 
Syntax error - first byte of Basic program storage ($~8~~) or 

any end of line marker is not zero 

Use: This initialises the execution of a Basic program. For a full explanation of 
how a program is executed see Chapter 1. 

ROM routine entry point: $A871 

Routine operation: If RUN is followed by a line number, then RUN calls the 
CLR routine to clear the contents of variables and stack, and jumps to the 
GOTO routine. If R UN is not followed by a line number then the charget 
pointers at $7 A,$7B are set to the start of Basic program storage, the CLR 
routine is called, and the R UN initiated with a return to the main Basic control 
loop. 

SAVE 

Abbreviated entry: S(shift)A 

Token: Hex $94 Decimal 148 

Modes: Direct and program mode 

Purpose: This command saves the contents of a specified section of memory 
onto an output device, either disk or tape. 

Syntax: SAVE [string expression [,arithmetic expression [,arithmetic expres
sion]]]. All the parameters within square brackets are optional; the string 
expression is the name of the program to be saved. When used with a disk drive 
the program name must always be used. The first arithmetic expression is the 
device number which is one for the tape drive and eight for disk etc., on the 
Commodore 64. The second arithmetic expression always follows the first and 
defines where the program will start in memory. If this value is zero, or no value 
is used, then the program will always be saved so that it will start loading at an 
address pointed to by the contents of the .x and. y index registers, normally the 
start of the Basic program storage area. If the second arithmetic expression is 
<>~ then the tape header will contain the address at which the program started. 
A secondary address of five will cause an end of tape block to be written; this has 
the effect of preventing the tape from reading past this block. The secondary 
address will have no effect on loading from tape if a secondary address of three is 
used in the SAVE command. 

Errors: Device not present - specified device is not connected or 
device ~ or 3 designated 

Missing file name - no file name was specified when loading 
from disk 



100 Advanced Commodore 64 BASIC Revealed 

Illegal device number - invalid device number 
Illegal quantity - out of range device or secondary address 

values (range is 1 to 255) 

Use: The functioning of this command depends whether it is used in direct or 
program mode. In direct mode the computer produces a series of messages 
which are displayed on the screen. These are: 

Disk - SAVE "PROGRAM",8 
SAVING "PROGRAM" 
READY 

Tape - SAVE ["PROGRAM"[, l[,~]]] 
PRESS PLAY ON TAPE 
SAVING "PROGRAM" 
READY 

On tape the square brackets denote that if the program name is not included in 
the SAVE command then it will not be recorded on the header or displayed in 
the messages. In program mode the only message displayed by the SAVE 
command is PRESS PLAY ON TAPE when saving to tape. The program will 
save correctly (see Program 13). 

Source code for computed SAVE. 

033C ! MEMORY SAYE ROUTINE 
033C ! 
C000 '=$C000 
C000 20FDAE 
C093 20SAAD 
C006 20F7B7 
C009 A514 
C00B S5FB 
Ce0D A515 
CgeF S5FC 
Cell 20FDAE 
C014 20SAAD 
cel7 29F7B7 
C0lA 20FDAE 
C0lD 2eD4El 
CB20 A9FB 
C022 A614 
C024 A415 
C026 20DSFF 
C929 B001 
C02B 60 
C02C 4CF9E0 ERROR 

JSR $AEFD 
JSR $ADSA 
JSR $B7F7 
LDA $14 
STA $FB 
LDA $15 
STA $FC 
JSR lAEFD 
JSR SADSA 
JSR $B7F7 
JSR $AEFD 
~TSR IEID4 
LDA #$FB 
LDX $14 
LDY 115 
JSR $FFDS 
BCS ERROR 
RTS 
JMP $EeF9 

BASIC loader for computed SAVE. 

10 INPUT"ADDRESS FOR MEMORY SA'v'E"iI:S=I 
2£1 READA:IFA=-ITHEN50 
39 POKEI,A:I=I+l 
49 T=T+A:GOT020 

!GET ADDRESS OF START 
I INTO $14,$15 

!GET ADDRESS OF END 
! INTO $14,$15 
! SCAN PAST COI·1NA 
!GET FILE DETAILS 

!SAVE FILE 

IDONE O.K. 

50 IFT06712THENPRINT".m:HECKSUM ERROR :6712"T:END 
60 IFIOS+47THENPRIHT"W-IUI1BER OF DATA ERROR- :EHD 
70 PRIIn":'MWSE ~lEMORY SAVE TO SAVE BLOCKS OF NE~10RY" 
813 PRINT"lIISYS(IS"),START,EHD+l,"CHRI(34)"HAME MCHR$(34)"[,DEYJ" 



90 EIID 
11;)121 I'RTA32,253, 174,32,138,173,32 
110 DATA247 .. 183 .. 165,20 .. 133,251,165 
120 DATA21,133,252,32,253,174,32 
130 DATA138,173,32 .. 247,183,32,253 
140 DATA174,32,212,225,169,251,166 
150 DATA20,164,21,32,216,255,176 
160 DRTA1,96,76,249,224,-1 

Program 13. 

ROM routine entry point: $E 156 

The Keywords of BASIC 101 

Routine operation: This routine saves a program from the computer to disk or 
tape. The start address of the block of memory to be saved is stored in locations 
$2B,$2C (bottom of memory) and the end address of the SA VE is in locations 
$2D,$2E (start of variables). The file name and device number are obtained by 
the routine at $E I 04. 

Abbreviated entry: S(shift)G 

Token: Hex $B4 Decimal 18~ 

Modes: Direct and program 

Purpose: This function returns the sign of an arithmetic function; -I if the 
expression is negative, ~ if zero, and + I if positive. 

Syntax: SGN(arithmetic expression). The expression must evaluate to a 
number within the permissible floating point value range. 

Errors: Illegal quantity - value is out of range 
Type mismatch - non numeric expression 

Use: This command has fairly limited applications, mostly confined to 
performing conditional tests on values. 

ROM routine entry point: $BC39 

Routine operation: The routine to get the sign of F AC# I is called ($BC2F). The 
sign of the value in F AC# I is put into the msb of F AC# I, $88 is put into the 
exponent of FAC#I and the rest of FAC#I is zeroed. 

Abbreviated entry: S(shift)I 

Token: Hex $BF Decimal 191 



102 Advanced Commodore 64 BASIC Revealed 

Mode: Direct and program 

Purpose: This command evaluates the sine of an angle in radians. 

Syntax: SIN (arithmetic expression). The expression must be syntactically 
correct and within the range permissible for floating point numbers. 

Errors: Syntax error - wrong command syntax e.g. missing closing bracket 
Type mismatch - non arithmetic expression 
Overflow error - expression is outside permissible floating point 

range 

Use: This command is used within many trigonometric applications. It should 
be noted that the value of the expression must be in radians rather than degrees; 
an angle can be converted to radians by mUltiplying the angle by pi/ 18~. 

ROM routine entry point: $E26B 

Routine operation: The argument in radians is stored in F AC# I. It is evaluated 
to give the sine of the angle, and this is stored in F AC# I. 

Abbreviated entry: S(shift)Q 

Token: Hex $BA Decimal 186 

Mode: Direct and program 

Purpose: Calculates the square root of a value. 

Syntax: SQR(arithmetic expression). The arithmetic expression must be 
positive and within the normal range for floating point values. 

Errors: Illegal quantity - value is negative 

Use: This command is not essential since it can easily be replaced by the 
expression X t .5, but the SQR function is convenient and slightly faster. When 
using machine code routines the SQR routine can easily be rewritten to use 
powers of any other value; this is because the routine uses a constant of.5 stored 
in memory as a floating point value. The pointers to this constant can easily be 
changed in a rewritten routine to point to a new constant (see The Commodore 
64 ROMs Revealed for a listing of the routine). 

ROM routine entry point: $BF71 

Routine operation: The contents of F AC# I (the argument) are transferred to 
F AC#2, FAC# I is then loaded with the constant.5 (pointed to by .a and .y) and 
the routine jumps into the perform power routine at $BF78. The result is stored 
in FAC#1. 



STOP 

Abbreviated entry: S(shift)T 

Token: Hex $9~ Decimal 144 

Mode: Direct and program 

The Keywords of BASIC 103 

Purpose: Causes a program to exit from the program mode to the direct mode 
and print a message showing on which line the program stopped. This 
command is like END; typing CONT will allow the program to continue 
execution. 

Syntax: STOP has no parameters but must always be followed by a colon or end 
of line marker. 

Errors: Syntax error - if STOP is not followed by colon or end of line 
marker 

Use: The STOP command can be used to set break points within the program 
during de-bugging, where a CONT will resume program execution. 

ROM routine entry point: $A82F 

Routine operation: This routine is shared with END (see END command for 
explanation). 

STR$ 

Abbreviated entry: ST(shift)R 

Token: Hex $C4 Decimal 196 

Modes: Direct and program mode 

Purpose: This command converts a number or numeric expression into a string. 

Syntax: STR$(arithmetic expression). The arithmetic expression can evaluate 
to any floating point value within the permitted range. The resulting string will 
have the same format as that produced by PRINT when displaying the numeric 
variable. 

Errors: Type mismatch - non numeric expression 

Use: This command is used only to insert numeric values into strings, usually in 
association with a numeric formatting routine. 

ROM routine entry point: $B465 

Routine operation: The routine first checks that there is a numeric evaluation to 



104 Advanced Commodore 64 BASIC Revealed 

the argument. The argument is stored in FAC#I, and this is converted into an 
ASCII string starting at location $~I~~ by the routine at $BDDF. The string 
and its related pointers are then set up in memory by the routine $B487. 

Abbreviated entry: S(shift)y 

Token: Hex $9E Decimal 158 

Modes: Direct and program 

Purpose: This command transfers program control to a machine code program 
starting at the address following the SYS command. Control can be returned to 
Basic when an RTS gets the return address to the SYS routine off the stack. 

Syntax: SYS arithmetic expression. The arithmetic expression must evaluate to 
a positive integer value within the range ~ to 65535; all non integers are rounded 
down. 

Errors: Illegal quantity - address is outside the range ~ to 65535 

Use: This is an essential command when calling machine code routines from a 
Basic program. The SYS command also allows the passing of parameters which 
will initialise the .x, .y, .a and status registers on entry to the machine code 
routine, and then save these same registers on exit. The contents of these 
registers are stored in the following memory locations: 

$~ 3~ C - save accumulator 
$~3~D - save .x register 
$~3~E - save .y register 
$~3~F - save status register 

ROM routine entry point: $EI2A 

Routine operation: This first gets a two byte value (the address) and puts it in 
locations $14 (Is b) $15 (msb), then pushes the return address to the stack 
followed by the processor status register from $~3~F, and loads the .a, .x, .y 
registers with the parameters stored in locations $~3~C to $~3~E. Control then 
jumps to the machine code routine using an indirect jump via locations $14,$15. 
On returning from the machine code routine the contents of the .a, .x, .y and 
status registers are saved in the above memory locations. 

Abbreviated entry: None 

Token: Hex $C~ Decimal 192 



The Keywords of BASIC 105 

Modes: Direct and program 

Purpose: This command evaluates the tangent of an angle in radians. 

Syntax: TAN (arithmetic expression). The expression must be syntactically 
correct and within the range permissible for floating point numbers. 

Errors: Syntax error - wrong command syntax e.g. missing closing bracket 
Type mismatch - non arithmetic expression 
Overflow error - expression is outside the permissible floating point 

range 

Use: This command is used within many trigonometric applications. It should 
be noted that the value of the expression must be in radians rather than degrees; 
an angle can be converted to radians by mUltiplying the angle by pi/ 18~. 

ROM routine entry point: $E2B4 

Routine operation: The argument in radians is stored in F AC# I. It is calculated 
by dividing the sine of the angle by the cosine, using the routines at $E26B (sine) 
and $E264 (cosine) to give the tangent of the angle; this is stored in FAC#1. 

Abbreviated entry: U(shift)S 

Token: Hex $B7 Decimal 183 

Modes: Direct and program 

Purpose: This is an arithmetic function which will call a user written machine 
code routine. 

Syntax: USR(arithmetic expression). The expression must evaluate to a value 
within the permissible range for floating point numbers. 

Errors: Illegal quantity - if USR is not defined 

Use: This command is useful when using machine code routines within a Basic 
program which involve passing parameters in full floating point form. The 
expression within the brackets following the USR command is evaluated and 
the result stored in F AC# I. This value can then be used by a machine code 
routine which starts as ajump routine to the actual routine. Thejump is stored 
in three bytes from $~31 ~ to $~312. If the jump is not set then it defaults on 
power up to give an illegal quantity error. On leaving the machine code routine 
the contents of FAC# 1 are assigned to the variable on the other side of the 
equals sign. 

ROM routine entry point: The routine will always jump to the vector jump 
starting at $~31~. 



106 Advanced Commodore 64 BASIC Revealed 

Routine operation: As in all functions, the expression is first evaluated and the 
result stored in FAC#1. The routine then jumps to the vector jump in $~31~ 
which has been set up by the programmer to point to the machine code 
subroutine. On encountering an R TS instruction terminating the machine code 
routine, the return address on stack transfers control to a routine where the 
contents of F AC# I are assigned to the variable preceding the function. 

Abbreviated entry: V(shift)A 

Token: Hex $C5 Decimal 197 

Modes: Direct and program 

Purpose: This command converts a string or string expression into a numerical 
value; this command is the converse of STR$. 

Syntax: VAL(string expression). The string command can consist of string 
variables, string literals, string functions like LEFT$, or a combination of these 
concatenated by a +. The maximum string length is one where the resulting 
number does not exceed the maximum permissible size of a floating point 
number. The resulting number will, if very large, be rounded and stored in 
exponent/ mantissa form. 

Errors: Overflow - resulting number exceeds the maximum range' for floating 
point numbers 

Type mismatch - non string expression 

Use: This command is the converse of STR$ and is usually used in conjunction 
with this command. It should be noted that any spaces in the string are ignored, 
but if there is an alpha character in the string then all following numbers are 
ignored - unless that character is an E following a number, when the E is 
interpreted as indicating that the following number is an exponent. 

ROM routine entry point: $B7AD 

Routine operation: The string pointed to by charget pointers $7 A,$7B is located 
and converted into a floating point number by the routine $BCF3; the result is 
stored in F AC# 1. 

VERIFY 

Abbreviated entry: V(shift)E 

Token: Hex $95 Decimal 149 



The Keywords of BASIC 107 

Modes: Direct and program 

Purpose: This command checks that the contents of a block of memory stored 
on tape or disk are identical to the current contents of the same block of 
memory. The VERIFY command is a special version of the LOAD command. 

Syntax: The syntax is identical to LOAD. 

Errors: Verify error - contents of the tape or disk do not match memory 
contents 

Use: The VERIFY command is used principally to check that a program has 
been saved correctly. It does this by reading the program from tape or disk byte 
by byte and comparing it with the corresponding byte in memory. For this 
reason VERIFY cannot be used with data files, only with memory dumps. If the 
VERIFY is satisfactory then the computer gives an OK message, and when used 
in the program mode will continue executing the rest of the program. 

ROM routine entry point: $E165 

Routine operation: This routine sets the flag for 'verify' and continues with the 
LOAD routine. After the Kernal LOAD / VERIFY routine had been called, the 
status is checked to see if the VERIFY was correct. Ifso it prints OK, otherwise it 
gives an error message. 

WAIT 

Abbreviated entry: W(shift)A 

Token: Hex $92 Decimal 146 

Modes: Direct and program 

Purpose: Halts the execution of a Basic program until the contents of a specified 
memory location have one or more bits set according to a bit pattern parameter. 

Syntax: WAIT arithmetic expression, arithmetic expression [,arithmetic 
expression]. The first arithmetic expression is a memory location and must be a 
positive integer in the range ~ to 65535, the second arithmetic expression is the 
bit pattern to match and must therefore be a value in the range ~ to 255, the third 
optional parameter is another bit pattern matching byte which is ORed with the 
result of the second parameter and ANDed with the contents of memory; if the 
result is non zero then the WAIT loop is terminated. 

Errors: Illegal quantity - first expression is outside the range ~ to 
65535 and the second and third parameters 
are outside the range ~ to 255 

Use: The format of the WAIT command is WAIT I,J ,K. When this is executed, 
the contents of location I are ORed with K and ANDed with J. If the result of 



108 Advanced Commodore 64 BASIC Revealed 

this is zero then the loop is repeated until it becomes non zero. The command is a 
test on bits in a memory location and the values in J and K would be powers of2 
(~, 1,2,4,8,16,32,64,128,255 or a combination of these values). It should be noted 
that while the computer is in the WAIT loop the STOP key is not being tested 
and one should therefore be very careful that the bit combination chosen will 
occur. As an example of the use of WAIT the line: 

I~~ GET A$: IF A$ = "" THEN 1M 

can be replaced by: 

I~~ WAIT 198,I:GETA$ 

This waits for a keypress before getting a character in A$. The WAIT command 
can also be used to test when the joystick is moved or when the fire button 
pressed. Another application is a timed pause using the timers in the CIA chip. 

ROM routine entry point: $B82D 

Routine operation: The two parameters are obtained using the routine at 
$B7EB. This leaves the address parameter in location $14,$15 and the second 
parameter in the .x index register. This second parameter is stored in $49, and 
the optional third parameter is then obtained by routine $B7F I and stored in 
$4A; if there is no third parameter it defaults to zero. The routine then performs 
a loop which continues until the value at the location pointed to by $14,$15 is 
not equal to zero when exclusively ORed with the third parameter and ANDed 
with the second. 



Chapter Four 

BASIC Wedges and Vectors 

This chapter covers the different types of wedge routine which can be used to 
intercept normal program execution and thereby be used to add extra 
commands to Basic or simply modify existing commands and operating system 
functions. All of the wedge programs, with the exception of the wedges into 
'charget' and 'warm start' are required as the wedge routines for the extended 
Basic package in Chapter 5. 

4.1 Charget 

The charget routine is a short machine code routine located in zero page RAM 
memory which is used by the Basic interpreter to read the program, character by 
character, from memory. Charget occupies 24 bytes and starts at location 
$~~73. The reason why charget is located in this part of RAM memory is that it 
contains a variable load address which is used to point to the current character 
to be accessed in the Basic program. This variable load address or pointer to 
source text is stored in locations $7 A,$7B. There are two entry points to the 
charget routine. They are: 

Charget - entry point $~~73. This gets the next character in the 
Basic program following the location pointed to by the address in 
$7A,$7B. 
Chargot - entry point $~~79. This gets the character in the Basic 
program currently pointed to by the address in $7 A,$7B. 

The charget routine is designed to ignore spaces within a program, thus if the 
character accessed is a space, then the pointer in $7 A,$7B is incremented and the 
following character accessed. (If that also is a space then this is continued until a 
non space character is reached.) The mode of the character is then checked 
before the character is passed to the calling routine in the accumulator. This 
mode check decides whether the character is numeric or not. If the character is 
numeric then the array flag in the processor status register is cleared, otherwise 
it is set. When using charget or any routines calling charget it is important to 
remember this use of the carry flag. 

The charget routine is as follows: 



110 Advanced Commodore 64 BASIC Revealed 

Loc Bytes Operation Comments 

¢~73 E67A CHARGET INC $7A ;increment the char-
acter pointer Isb 

~~75 DP~2 BNE CHARGOT ;no rollover from 10 byte 
~~77 E67B INC $7B ;increment the high 

byte 
~~79 AD**** CHARGOT LDA $**** ;get the byte into .A 
~~7C C93A CMP #$3A ;is it colon? 
M7E B~~A BCS CHAREND ;not numeric 
~~8~ C92~ CMP #$2P ;is it a space? 
~~82 F~EF BEQ CHARGET ;yes, ignore 
M84 38 SEC 
¢p85 E93~ SBC #$3P ;set the carry for any 

value less than 
pp87 38 SEC ;#$3P which is the 

character for '~' 

~~88 E9D~ SBC #$D¢ 
~p8A 6~ CHAREND RTS ;return to main routine 

Note that the instruction at $~~79 (CHARGOT) reads LDA $****. The **** 
indicate that the address in locations $7 A,$7B is variable. 

It is fairly easy to wedge into the charget subroutine, and such wedges are used 
in applications like a DOS wedge. Here a certain character, such as '@' is used 
to indicate that a wedge into current operation must occur, and the new routine 
executed. One good thing about wedging into charget is that any command can 
be trapped before it is executed. This is best done by replacing the first three 
bytes by JMP $zzzz, where zzzz is the address of the wedge routine. Then by 
pulling and pushing the two bytes of the return address one can find where charget 
was called from (example: HIMEM in Chapter 5). If charget was called by the 
execute statement routine, one can check that the next character is a wedge 
identifier character like '@'. If the next character is a wedge identifier then the 
required operation is performed, otherwise aJMP $~~79 will return to chargot.1t 
must be remembered that the charget pointer address in $7 A,$7B must always 
be incremented before returning to the charget routine with a JMP $~~79. 

The chargot routine is best demonstrated by Program 14 which causes Basic 
to run in RAM and then modifies some of the command vectors to point to 
routines in the $C~~~ area of memory. Each of the modified routines uses a 
chargot at the beginning to check for a wedge identifier character(s). The 
routines that have been modified in this way are: 

PRINT and INPUT (which now allow the positioning of the cursor by the @ 
character, thus simulating PRINT AT). Therefore to start printing a string A$ 
starting at the coordinates x,y on the screen, one could use the command: 

PRINT @ x,y;A$ 



C013e ~=$C0130 
C1313e A9A0 
Ce132 85FC 
C13!34 A900 
C!306 85FB 
COOS A0130 
coeA B1FB COPY! 
c13ec 91FB 
CBOE C8 
C00F D0F9 
cell E6FC 
C013 A5FC 
ca15 C9ce 
C1317 DOFl 
C019 A5131 
COIB 29FE 
COlIl E:50 1 
COIF A246 
C021 :£:D2cce COPY2 
(:024 9D13Bffa 
C~)27 CA 
(:[128.DOF7 
c~nl1 4C74A4 
C02D' ! 
C02D 30A841 '·/ECTOR 
CO;;:5 A4AB 
C037 72(:13 
C039 80:£:005 
C(141 70A827 
C045 C2(:0 
C047 82ff8Dl 
C[14F 4Aff92C 
C057 64El:£:2 
C05I: 92CO 
C(15D 7FAA 
C05F 82CO 
CI)61 56ff:::9B 
C(169 29E 1 fiD 
C071 41A6 
C073 ! 
C073 207900 mpUT 
C076 C940 
C078 F003 
COlA 4CBFffB 
C07D 20F2CO INPUT1 
(0:30 4CBFff:£: 
(083 ! 
C083 2137900 PRINT 
CO:::6 C940 
C0E:8 F003 
C0:::A 4Cff~::lAA 
C(l8It 20F2CO PRINT1 
((19[1 4CAOAA 
C093 ! 
C093 213791313 POKE 
C096 C921 
C098 F003 
C09A 4C24B8 
C09D 207300 POKE! 
COAO 208AAD 
COA~: 20F7B7 
COA6 A514 
C[IA8 85FB 
COAA 11515 
COAC 85FC 
COAE 20FDAE 

BASIC Wedges and Vectors 111 

Source code for charget wedge. 

LDA #tAe 
STA $FC 
LDA #$013 
sm $FB 
LIt'''' #$013 
LDA ($FB), '." 
STR"· ($FB), 'I 
ItN 
WE COPY1 
mc $FC 
LIlA $FC 
Ct'IP #$Ce 
Bf~E COPY1 
LDA $131 
AHD #$FE 
STA $01 
LIIX #$46 
LDA VECTOl':-1, X 
STR $A00B,X 
DEX 
:£:f-IE COPY2 
,Tt'lP $A474 

! SET POHlTERS 
! TO COP'T' BASIC 
! ROt1 INTO RAt1 

!GET FYTE 
ISTORE TO RAM 

! lINTI L PAGE DONE 
!DO NEXT PAGE 

! IF NEEDED 

! S~JI TCH (IUT THE 
I BASIC ROt1 

!LOOP TO COpy 
! HEW VECTORS 
! INTO PLACE 

!UNTIL DONE 
!BACK TO READY 

BYT $30,$A8,$41,$A7,$lD,:fAD,$F7,:fA8 
F'T'T $114, $AB 
I~OR IHPUT-1 
B'T'T $8(1, $IIO, $05, :fAC, $A4, :fA9, $9F, :fAa 
B''''T $70, $A8, $27, $A9 
I~OR RESTOR-l 
B'r'T $82, $A8 .. $Dl, $A8, $3A, $A9, $2E, $Aa 
B'T'T HA, $A9,$2C, $B8, $67, $El, $55, $El 
B'r'T $64, $E L $B2, $B3 
1·IOR POKE-l 
B'T'T $7F, :fAA 
loJOR PRIfH-l 
B'r'T $56, :fA8, $9B, $A6, :f5D, $A6, $85, $AA 
B'n $29, $El.· $BD, $El, $C6, :tEl, $7A, :tAB 
B'n Hl,$A6 

JSR $131379 
Ct-IP #$40 
BEQ INPUTl 
JMP $ABBF 
JSR POSIT
Jt1P $ABBF 

JSR $13079 
eNP #$413 
BEQ PRIHTl 
Jt'IP $AAI10 
JSf;: POSIT 
JNP $AAAO 

JSR $01379 
CNP #$21 
BEQ POKEl 
JNP $B824 
JSR $012173 
JSR $AD8A 
JSR $B7F7 
LIlA $14 
STA $FB 
LDA $15 
STA :fFC 
JSR $AEFD 

!CURRENT CHAR 
! is IT '@'? 
!'r'ES 
!DO INPUT 
IPOSITION CURSOR 
!DO INPUT 

ICURRENT CHAR 
! IS IT '@'? 
!'r'ES 
!DO PRINT 
!POSITION CURSOR 
!DO Pf;:HlT 

!CURRENT CHAR 
! IS IT '!'? 
!'r'ES 
!DO POKE 
!tlEXT CHAR 
!GET ADDRESS 
IFIX IT 

!SCAN ',' 



112 Advanced Commodore 64 BASIC Revealed 

COE:l 20E:AAD 
CON 20F7B7 
COB? A0(10 
C(1B9 A514 
C(If:B 91FB 
COHD C8 
C~mE A515 
COCU 91FB 
COC2 60 
CO(:3 ! 
COC3 2079013 RESTOR 
C0C6 9003 
COC8 4CIDA8 
COCB D003 REST1 
COCD 4CIDA8 
C0D0 208RAD REST2 
COD3 20F7B7 
C0D6 2013A6 
C0D9 A55F 
CODB DO02 
CODD C660 
COIIF C65F REST3 
COEI A55F 
COE3 8541 
C(lE5 A56l1 
COE7 8542 
C0E9 A514 
COEE 85:3F 
C(lED A515 
COEF 85413 
C(lFl 6fJ 
COF2 ! 
COF2 207300 POSIT 
COF5 209EB7 
COF8 86FE 
COFA 20FIB7 
C(lFD E019 
COFF 90133 
C101 4C48B2 POSERR 
C104 A4FI: POSITl 
C106 C028 
C108 B0F7 
ClOA 18 
C10E 20FOFF 
CI0E 4C7900 

te 1=49152 

JSR $AD8A 
JSR $B7F7 
LDY #$00 
LDR $14 
STH ($FB),Y 
IN'''' 
LDA $15 
STA ($FB),Y 
RTS 

JSR $0079 
BGC REST! 
JI'IP $A81D 
ENE REST2 
JMP $A81D 
JSR $AD8A 
JSR $B7F7 
JSR $A613 
LDA $5F 
BNE REST3 
DEC $60 
DEC $5F 
LDA $5F 
STA $41 
LIlA $6(1 
STR $42 
LIlA $14 
STA $3F 
LDR $15 
STR $413 
RTS 

JSR $01373 
JSR $B79E 
STi< $FB 
JSR $B7Fl 
CPX #25 
BCC POSIT! 
J~IP $B248 
LDY $FB 
CPY #413 
BCS POSERR 
CLC 
JSR $FFF0 
JMP $01379 

BASIC loader for charget wedge. 

2a READA:IFA=-lTHEN50 
313 POKEI,A: 1=1+1 
413 T=T+A:GOT020 

!GET VALUE 
!FIX IT 

!GET LO BYTE 
!STORE IT 

!GET HI BYTE 
!STORE IT 
!DONE 

!CURRENT CHAR 
!NU~IERIC 
!DO RESTORE 

!DO RESTORE 
! GET LI NE ~IUMBER 
!FIX IT 
!FWD BASIC LINE 
!GET LO BYTE 

!DECREMENT HI BYTE 
!DECREMENT LO BYTE 
!ADDRESS LO 

!ADDRESS HI 

lLINE # LO 

!LINE # HI 

!NEXT CHAR 
!GET X POSITION 

!GET Y POSITION 
!13-24? 

!~rLLEGAL QUANTITY' 
!GET X POS 
!13-39? 

lPOSITION CURSOR 
!GET CHAR & EXIT POSIT 

513 IFT036249THENPRItH"~IlI:HECKSUI1 ERROR - 36249"T: Et~D 
613 PRINT")IilIIlI'r'OU NOI~ HAVE 4 l'IORE COMI1At~DS: II 

70 F'RINT"~RINT @X,~' •••••• II : PRINT")!lINPUT @~<, Y •••••• II 
813 F'RINT":~OKE !AD,2VAL" :PRINT")!RESTORE LlNNUI1" 
913 SVS49152 
1013 DATA169,16e,133,252,169,0,133 
1113 DATA25L 160,0,177,251, 145,251 
1213 DATA200,2138,249,23e,252,165,252 
1313 DATA201,192/2e8,241,165,l,41 
1413 DATA254, 133,1,162,70,189,44 
1513 DATA192,157,11,160,202,2138,247 
160 DATA76,116,164,48, 168,65,167 
1713 DATA29 , 173,247,168, 164,171,114 
1813 DATA192,128,176,5,172,164,169 
1913 DATA159,168,112, 168,39,169,194 
2013 DATA192 .. 130, 168,209,168,58,169 



2113 DATA46,168,74,169,44, 184,1133 
2213 DATA225,85,225,1130,225,178,179 
2313 nATA146,192,127,170,1313,192,86 
2413 DATA168, 155,166,93,166,133,170 
2513 DATA4L 225,189,225 .. 198,225,122 
26ft DATA 1 7 L 65, 166, 32, 121, 13, 2£11 
2713 DRTA64,240,3,76, 191,171,32 
2813 DATA242, 192 .. 76 .. 191,171, 32,121 
2913 DATAO .. 2131 .. 64,2413,3,76,1613 
3013 DATA170,32,242,192,76, 160,170 
310 DATA32,121,O,213L33,24'0,3 
3213 IIRTA76, 36,184,32,115,13,32 
3313 DATA138,173,32,247,183,165,20 
3413 DRTA133,25L 165,21, 133,252,32 
3513 DATA253 .. 174,32 .. 138 .. 173,32,247 
3613 DATA183,16e,e,165,20,145,251 
3i0 DATA200, 165,21,145 .. 251,96,32 
:3813 DATA12L 0,144,3,76,29,168 
3913 DATA2138, 3, 76,29 .. 168,32,138 
400 DATAl7:3, 32, 247,183,32,19,166 
410 IIATA165,95, 209, 2,198,96,198 
420 DATA95 .. 165,9S,133,65, 165,96 
430 DATA133,66,165,21!l .. 133,63,165 
4413 DATA2L 133,64 .. 96,32, 115,0 
450 DATA32, 158, 183, 134 .. 251, 32,241 
460 DATA183,224,25, 144,3,76,72 
4713 IIATA178 .. 164,251, 192,413 .. 176,247 
4813 DATA24,32,240,255,76,121,0 
4913 DATA-l 

BASIC Wedges and Vectors 113 

Program 14. 

POKE has a check for '!' enabling a two byte poke (see DOKE in Chapter 5). To 
use this command to put a value into two consecutive memory locations use the 
following command syntax: 

POKE! address, two byte value 

RESTORE is the other command to be changed. This checks for any character 
that is not a colon or end of line. If so, then a line number is read in to bring 
about a restore to line number. This command has the following syntax: 

RESTORE line number 

An example of using this command is shown in Program 15. 

10 READ A,B,C 
20 F:ESTORE110" 
313 READ D,E 
40 PRIHTA;B;C;DiE 
50 EHD 
Hl0 DATA 1 
110 nATA 2 
1213 DATA 3 

Program 15. 

4.2 Warm start vector wedge 

The warm start routine is a loop routine which waits for the entry of a program 



114 Advanced Commodore 64 BASIC Revealed 

line or direct command. When not actually running a program the computer 
will always be in this warm start loop. The Basic warm start vector ($~3~~) 
contains the entry address of the warm start routine; this is used as an indirect 
jump to the warm start by the other interpreter routines. Since this indirect or 
vector jump address is stored in RAM it can be changed to point to another 
routine. One example of this is to use the warm start vector to protect a Basic 
program from being listed or otherwise accessed outside a normal run mode. 
When the program is running the Basic warm start vector is changed to point to 
$FCE2 and any program break-in will cause the computer to cold start. This 
will reset all system variables to power up values and NEW the program. 

Program 16 will save a Basic program so that it will automatically run, when 
loaded using a short machine code routine, and be protected from unauthorised 
break-in. It should be noted that following a LOAD the computer will return to 
the warm start loop. The routine utilises this and the warm start vector change. 

Source code for warm start vector wedge. 

cooe ~=$C000 
C000 A52B 
C002 8D17Cl 
C1305 A52C 
C0137 E:D18Cl 
COOA A9A5 
COOC 852B 
COOE 8D0203 
C011 A902 
C913 852C 
C015 8D0303 
C018 A52D 
COlA 8D19Cl 
COlD A52E 
COIF 8DIACI 
C022 A903 
C024 852E 
C026 A904 
C028 852D 
C02A A256 
C02C BDCOCO AUTOI 
C02F 9DA502 
C032 CA 
C033 10F7 
C035 A9138 
C037 85FC 
ce39 A900 
Ce3B 85FB 
C03D A£101 
C03F BIFB AUT02 
C041 49FF 
C043 91FB 
ce45 C8 
C046 DOF7 
C048 E6FC 
C04A A5FC 
C€t4C C9A0 
(:04E D€lEF 
C050 20D4E1 
C053 A903 
C055 85B9 
C05? 2e59E1 
C05A 

LDA $2B 
STA 5TBAS 
LDA $2C 
STA STBAS+l 
LDA #$A5 
STA $2B 
STA $0302 
LDA·. tu02 
STA $2C 
STA $03133 
LDA $2D 
8TA ElmBAS 
LDA $2E 
STA ENDBAS+l 
LDA #$133 
5TA $2E 
LDA #$04 
STA $2D 
L!IX #$56 
LDA AUTOCD,X 
5TA $02A5,X 
DEX 
BPL AUT01 
LDA #$08 
STA $FC 
LDA #$00 
STA $FB 
LD'-r' #$01 
LDA. ($FB),Y 
EOR tuFF
STA ($FB),Y 
HI'T' 
Bt~E AUT02 
me $FC 
LDA $FC 
Cl'lP #$A0 
ENE AUT02 
JSR $EID4 
LDA #$03 
STA $B9 
JSR $E159 

!GET START OF BASIC 
! AND STORE A~JAY 

!SET START OF 
AUTO RUtl CODE 

! At~D '·JARI'! START 
! EtHR'T' POINT 

!GET END OF BASIC 
, A~ID STORE m~AY 

!SET END OF 
! AUTO RUt·1 CODE 

!LOOP VALUE FOR CODE 
!GET AUTO BYTE 
! AND STORE IT 

! At·m NEXT B'T'TE 
!POINTER TO PROGRAM 

! GET B'-r'TE 
!HOT IT 
ISTORE IT 

! UIH I L END OF PAGE 
! DO ~IEXT PAGE 
! Ut·ITIL EHD OF BASIC 
! STORAGE 

! GET FILE NAt'IE 
!SET SEC ADDRS 
! FOR LOAD 
!SAVE AUTO RUH CODE 



BASIC Wedges and Vectors 115 

C05A AD17Cl LDA STBAS !RESTORE BASIC POINTERS 
C05D S52B STA $2:8 
C05F ADISCI LDA STBAS+l 
C062 852C STA $2C 
C064 AD19C1 LDA ENDBAS 
ce67 852D STA $2D 
C069 ADIAC1 LDA ENDBAS+l 
ce6C 852E STA $2E 
C06E A987 LDA #(SAVE ISET SAVE VECTOR 
ce70 8D3203 STA $9332 
C073 A9C0 LDA #)SAVE 
C075 81133133 STA $9333 
C078 A983 LDA #$83 !RESET WARM START 
C07A 8D02e3 STA $03132 
C07D A9A4 LDA #$A4 
C07F 8De303 STA ~9303 
C082 Agee LDA #$00 !SET RUN MODE 
ce84 859D STA $9D 
C086 60 RTS 
C087 
C987 A9ED SAVE LDA #$ED !RESET SAVE VECTOR 
C0e9 8D3293 STR $9332 
Cgec A9F5 LDA #$FS 
C0SE 8»3303 STA $9333 
ce91 A901 LDA #$91 !DEVICE TAPE 
C993 AA TAX 
ca94 A8 TAY 
C095 20BAFF JSR $FFBA 
C098 A901 LDA #$01 !LENGTH OF NAME 
C09A A2A6 LDX #$A6 !POINTER TO NAl1E 
C09C A092 LDY #$02 
ce9E 20BDFF JSR $FFBD 
COAl 2059E1 JSR $E159 !SAVE FILE 
COA4 Agee LIlA #$00 
COR6 85FB STA $FB 
C(lAB Ages LDA #$138 
COAA 85FC STA $FC 
ceAC AO£11 LDY #$01 
COAE BIFB SAVE2 LDA <fFB),Y IDECODE PROGRAM COBO 49FF EOR #$FF 
C0B2 91FB STA ($FB),Y 
COB4 C8 INY 
COBS DOF7 Bt~E SAVE2 
COB7 E6FC IHC.$FC 
C9:89 A5FC LDA $FC 
CliBI: C9A13 CMP #$AO 
COBn 1IOEF BNE SAVE2 
COBF 613 RTS 
COC0 ! 
cec13 A983 AUTOCD LDA #$83 IRESET WARM START ceC2 SD0203 STA $0392 
coes A9A4 LDR #$A4 
COC7 8D£1393 STA $0303 
COCA A913e LDA #$139 ISET RUN MODE COCC 859D STA $9D 
caCE 20D5FF JSR $FFD51 !DUMMY LOAD C9Dl A9£11 LDA #$01 
ceD3 AA TAX 
COD4 AS TAY 
caD5 21Z1BAFF JSR $FFBA ISET FILE DETAILS C0D8 A9@1 LDA #$131 
CODA A2A6 LDX #$AG 
CODC A13e2 LDY #$92 
C0DE 20BDFF JSR $FFBD !SET NAME DETAILS ceEl A9£I(l LDA #$139 
COE3 20D5FF JSR $FFD5 !LOAD C13E6 862D ST:>< $2D !SET VARIABLE POINTERS 



116 Advanced Commodore 64 BASIC Revealed 

COE8 862F 
C0EA 8631 
COEC 842E 
C£IEE 8430 
COFe 8432 
C0F2 Aoes 
C0F4 84FB 
C0F6 A90S 
ceFS 85FC 
C0FA C8 
COFB A9FF AUToel 
ceFD 51FB 
C0FF 91FB 
Clel C8 
C102 D0F7 
C194 E6FC 
Cle6 A5FC 
C108 C9A0 
CleA DeEF 
CHiC A900 
CleE 2£15EA6 
C111 2e8EA6 
C114 4CAEA7 
Cll? 013013 ~Tt.IBDAB$FfS Cll::1 £112100 r. 

STX $2F 
STX $31 
STIr' $2E 
STIr' $30 
STY $32 
LDY 1$00 
STY $FB 
LDA 1$08 
STA $FC 
INY 
LDA I$FF 
EOR (fFB),Y 
STA ($FB),Y 
INY 
SNE AUTOCI 
INC $FC 
LDA $FC 
CMP I$A0 
BNE AUTOC1 
LDA 1$99 
JSR $A65E 
JSR $A68E 
JMP $A7AE 

~8~ 2 

!'DECODE PROGRAM 

'SET CHARGET PO I tITERS 
!PERFORM "CLR" 
IEXECUTE STATEMENT 

BASIC loader for warm start vector wedge. 

11300 I=49152:T=9 
1019 READA:IFA=-lTHEN1940 
11320 POKEI,A:T=T+A 
le301=I+l:00TOle10 
1040 IFT037131THENPRINT"CHECKSUM ERROR "37131,T:END 
105£1 IFI049431THENPRINT"NUMBER·OF DATA VALUE ERROR":END 
1060 PRHlT":l~IIIITO SAVE A PROGRAM WITH AUTO RUN," 
11370 PRINTu)QIfLOAD THE PROGRAM AND ENTER: H 

11380 PRINT ",QIIiISYS(49152) "CHR$(34) "FILENAME"CHR$(34) " : SAVE" : END 
1139£1 DATA165,43,141,23, 193, 165,44 
Ilea DATA141,24,193,169,165,133,43 
11113 DATA141,2,3,169,2,133,44 
1129 DATA141,3,3,165,45,141,25 
11313 DATA133,165,46,141,26,193.169 
1140 I'ATA3, 133,46, 169,4, 133,45 
11513 DATA162,86, 189, 192, 192,157, 165 
11613 DATA2,202,16,247,169,S,133 
11713 DATA252,169,£1,133,251,160,1 
11813 DATA177,251,73,255,145,251,200 
1199 DATA20S,247,230,252,165,252,201 
121313 DATA169, 29S,239, 32,212,225, 169 
1219 DATA3,133,185,32,S9,225,173 
1220 DATA23,193,133,43,173,24,193 
123£1 DATA133,44, 173,25, 193, 133,45. 
12413 DATA173,26,193, 133,46, 169,135 
1250 DATAI41,50,3,169,192,141,51 
12613 ·DATA3,169,13L141,2,3,169 
1270 DATA164,141,3,3,169,0,133 
1280 DATA157,96,169,237,141,50,3 
1299 DATA169,245,141,51,3,169,1 
1300 DATA179,168,32,186,255,169,1 
1310 DATA162, 121, 160, 192,32,189,255 
13213 DATA32,89,225,169,0,133,251 
1330 DATAI69,8, 133,252, 160, 1,177 
1340 DATA251,73,255,145,251,200,208 
1350 DATA247, 239, 252, 165,252,201, 169 
1360 DATA208, 239, 96, 169,131,141,2 
1370 DATA3,169,164,141,3,3,169 
1380 DATAo,133,157,32,213,255,169 



1390 DATA1,170, 168,32,186,255,169 
1400 DATAl, 162, 166,160,2,32,189 

BASIC Wedges and Vectors 117 

1410 DATA255,169,e,32,213,255, 134 
1420 DATA45,134,47,134,49,132,46 
14:313 IIATA132, 48,132,50,160,0,132 
1440 DATA251,169,8,133,252,200, 169 
1450 DATA255,81;251,145,251,200,20S 
1460 DATA247,230,252, 165,252,201, 169 
1470 DATA208,239, 169,0,32,94, 166 
1480 DATA32,142, 166,76,174, 167,-1 

Program 16. 

The following routines are the start of the Basic extension commands. These are 
the main control routines that patch the extra commands into the Commodore 
64's Basic. They should be used in the order in which they appear. 

Initialisation 

This file contains the initialisation routines and the table of added commands 
and their vectors. The commands are initialised by calling the cold start ($FCE2 
- 64738) which is a simulation of power-up. The routines cannot be used with a 
cartridge as they take up the same memory locations and simulate a cartridge. 

The routine labelled 'COLD' is the actual power-up routine and the routine 
labelled 'WRST is the NMI routine that makes sure that the function keys and 
lister are not disabled. 

LOC CODE LINE 

0000 .LIB INITRT 
0000 * =$8000 
8000 7A 80 .I~OR COLO ;COLO START ENTRY 
8002 39 80 .WDR WRST ;RESTORE ENTRY 
8004 C3 .BYT $C3,$C2,$CO,'80' 
8005 C2 
8006 CD 
8007 38 30 
8009 , 
8009 8B E3 LINK .WOR $E38B 
800B 83 A4 .WOR $A483 
8000 C9 81 .WOR CF:NCHT 
800F 9E 82 .WOR PRINT 
8011 F7 82 .WOR HANDLE 
8013 34 83 .WOR ARITH 
8015 ; 
8015 4C 48 B2 VECTOR JMF' $B248 ; usr~ JUMP 
8018 00 .BYT 0 
8019 31 EA • wor~ $EA31 ;IRQ 
801B 4', 80 .WOR WRST01 ;BREAK 
8010 47 FE .WOR fFE',7 ;NMI 
80lF 4A F3 .WOR $F34A ;OPEN 
8021 91 F2 .wor~ $F291 ;CLOSE 
8023 0E F2 .~JOR $F20E ; SET INPUT 
8025 50 F2 .WOR $F250 ; SET OUTPUT 
8027 33 F3 .WOR $F333 ;RESTORE I/O 
8029 E3 83 .I~OR LISTER ; INPUT 
802e. CA Fl .WOR $FICA ;OUTPUT 
8020 EO F6 . wor~ $F6ED ; TEST-STOP 



118 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

802F 3E Fl .WOR $FI3E ; GET 
8031 2F F3 .WOR $F32F ;AI?ora I/O 
8033 44 80 .WOR WRST01 ;WARM RESTART 
8035 A5 F4 .WOR $F4A5 ;LOAO 
8037 ED F5 .WOR $F5EO ;SAVE 
8039 ; 
8039 20 I?C F6 WRST JSR $F6BC ; UPDATE TIME 
803C 20 El FF JSR $FFE1 ;STOP KEY? 
803F F0 03 BEQ WRST01 ;YES 
801,1 4C 72 FE JMP $FE72 ;NO 
8044 20 A3 FO wr<ST01 JSR $FOA3 ; INIT I/O 
80 /,7 20 18 E5 JSR $E518 ; INIT VIC CHIP 
804A 20 50 80 JSR SETI{ER ;INIT KERNAL VECTORS 
80/,0 20 CC FF JSR $FFCC ; RESTORE I/O 
8050 A9 00 LOA IIS00 
8052 85 13 SJA $13 ;INPUT PROMPT FLAG 
8054 20 7A A6 JSR $A67A ; INIT BASIC 
8057 58 CLI ;ENAI?LE IRQ 
8058 A2 80 WRST02 LOX "$80 ;SET FOR READY 
805A 4C 88 E3 JMP $E388 ;130 TO READY 
8050 ; 
8050 A2 15 SETI{ER LOX "<VECTOR ;POINT TO 
805F A0 80 LOY II>VECTOR ; I{ERNAL VECTORS 
8061 86 C3 STX $C3 
8063 84 C/, STY $C4 
8065 A0 23 LOY "$23 ;LOOP TO COPY VECTORS 
8067 IH C3 Sn{Er<1 LOA ($C3),Y ;13ET BYTE 
8069 99 10 03 STA $0310,Y ;STORE IT 
806C 88 DEY 
8060 10 F8 BPL STI(ERI ;ANO NEXT 
806F A9 68 LOA "<FUNC ;POINl TO FUNCTION 
8071 A0 83 LOY II>FUNC ;I(EY ROUTINE 
8073 80 8F 0/ STA $028F ;STORE IN KEYBOARD 
8076 8C 90 02 STY $0290 ;TABLE SETUP VECTOR 
8079 60 RTS 
807A ; 
807A 8E 16 00 COLO STX $0016 ; SIiR I NI{ SCREEN 
8070 20 A3 FO JSR $FOA3 ; INIT 1/0 
8080 20 50 FO JSR $F050 ;INIT SYSTEM CONSTANTS 
8083 20 51? FF JSR $FF5B 
8086 20 50 80 JSR SETI(ER ;5ET KERNAL VECTORS 
8089 58 CLI ; ENAE'.LE IRQ 
808A 20 E5 80 JSf< SETBAS ;SET BASIC VECTORS 
8080 20 SF E3 JSR $E3BF ; INIT e.ASIC 
8090 A9 80 LOA 11$80 ;SET TOP OF RAM 
8092 85 34 STA $3 /, 
8094 85 36 STA $36 
8096 85 38 STA $38 
8098 A9 t'0 L.OA "$00 
809A 85 33 STA $33 
809C 85 35 STA $35 
809E 85 37 STA $37 
80A0 A9 AC LOA II<F'OWER ;POINT TO POWER 
80A2 A0 80 LOY ">POWER ;UP MESSAGE 
80M 20 20 E4 JSR $E420 ;OUTPUT MESSAGE 
80A7 A2 Fe. lOX UFI? 
80A9 9A TXS ;SET STACI( POINTER 
80M 00 AC BNE WRST02 ;ALWAYS 
80AC ; 
80AC 93 POWER .I?YT ~93,$00 
80AO 00 
80AE 20 20 .BYT , 

**** EXTENDED 64 BASIC' 
80e8 20 56 .SYT ' V01 ****',$00,$00 
8001 00 
8002 00 
8003 20 36 .p.YT , 641{ RAM SYSTEM , ,$00 



BASIC Wedges and Vectors 119 

LOC CODE LINE 

80E4 00 
80E5 , 
80E5 A2 0B SETBAS LOX "$0B ;LOOP 
80E7 BO 09 80 STBASl LOA LINf(,X ; GET BYTE 
80EA 90 00 03 STA $0300,X ;STORE IT 
80EO CA OEX 
80EE 10 F7 BPL STBASl ;00 NEXT 
80F0 60 RTS 
80Fl , 
80Fl 52 55 CLIST • BYT 'RU',$CE 
80F3 CE 
80F4 1,3 54 .BYT· 'CT' ,fCC 
80F6 CC 
80F7 41 50 .BYT 'AF'F'EN',$C4 
80FC C4 
801'0 1,1 55 54 .BYT 'AUT' ,$CF 
8100 CF 
8101 43 41 .p.YT 'CATALO' ,$C7 
8107 C7 
8108 43 48 .P.YT 'CHANG' ,$C5 
8100 C5 
810E 43 48 .BYT 'CHAl',tCE 
8112 CE 
8113 43 52 .p.YT 'CRUNC' ,$C8 
8118 C8 
8119 1,4 45 .BYT 'OELET',$C5 
811E C5 
811F 44 49 53 • Bn 'DIS' ,$eB 
8122 CB 
8123 44 4F 4B .BYT '001(' ,$C5 
8126 C5 
8127 44 55 40 .BYT '~UM' ,$00 
812A 00 
812B 45 58 45 • Bn 'EXE',$C3 
812E C3 
812F 46 49 4E .BYT 'FIN',$C4 
8132 C4 
8133 47 45 .BYT 'GE' ,$04 
8135 04 
8136 4B 45 · BYT 'I(E' ,$09 
8138 09 
8139 40 41 .BYT 'MA',$04 
813B 0 1, 

813C 4D 45 .p.YT 'MERG' ,$C5 
81',0 C5 
8141 4F 4C .p.YT 'OL' ,$C4 
8143 C/, 
81 /,4 50 4F .BYT 'PO' ,$00 
8146 00 
8147 50 55 · BYT 'PU' ,$0/, 
81',9 04 
814A 52 45 .BYT 'RENUMBE' ,$02 
8151 02 
8152 52 45 • BYT 'REPEA' ,$04 
8157 04 
8158 53 4F 52 .BYT 'SOf(' ,$0 /, 
815B 04 
815C 54 52 .BYT 'TRACED' ,$CE 
8162 CE 
8163 5't 52 .BYT 'TRACEOF',$C6 
81bA C6 
816B 54 59 50 • BYT 'TYP' '$C5 
816E C5 
816F 55 4E .BYT 'UNTI' ,fCC 
8173 CC 



120 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

81.74 
8174 '.4 45 45 .BYT 'DEE' ,$CB 
8177 CB 
8178 48 49 .IWT 'fUME' ,$CD 
817C CD 
8170 4C 4F .BYT 'l.OI'1E' , $CD 
8181 CD 
8182 56 '.1 · [WT 'W1FWT' ,$D2 
8187 02 
8188 00 .IWT 0 
8189 , 
8189 18 90 CADOR .WOF( RUN-1 
818B AA 88 .~JOR CTL--l 
8180 07 84 .l~or( AF'F'ENO-'l 
818F 36 85 .WOR AUTONO-1 
8191 Be' • .J 85 .WOR CATLOG-1. 
8193 B7 86 .WOR CHANGE-l 
8195 83 86 .l~or, CHAIN-·l 
8197 FE 87 .WOR CRUNCH ·-1 
8199 AC 89 · ~JOR DELETE-·1 
819B I.C 8A .WOR D1Sf(-1 
8190 DE 8A .WOR DeWE -1 
819F 01 sr.. .WOR DUMp·-l 
BIAI CD BC .WOR EXEC-l 
81A3 92 8D .WOR FIND-l 
8H15 D0 8E • l~()f\ GET-l 
81A7 13 90 .WOR fT1-1 
81A9 17 9.1 • WOF, MAT-l 
81AB AF 97 .WOR MERGE-l 
81AD 84 98 .WOR Ol.D--1 
81AF BA 98 .WOR POP-1 
81Bl 79 99 .WOR F'UT-l 
811.'.3 5C 9A .WOR RENUMB-l 
811.'.5 F1 9C .WOR REF'EAT-1 
alB7 24 90 .WOR SORT·-l 
8U>.9 FC 9E .WOR TF:ON--l 
81!?B 't2 9F .WOR TROFF-l 
81P..D 4F 9F .WOR TYF'E-l 
811?F 6B 9F .WOR UNTIl. -1 
81C1 
81C1 94 89 .WOR DEEf(-1 
81C3 DE SF .WOR HIMEM-1 
81C5 5C 90 .WOR LOMEM-l 
81C7 C9 9F .WOR VARF'TR-l 
81C9 , 
81C9 FNSTRT =29 
81C9 .END 

Crunch to tokens 

This routine is wedged into the crunch token link at locations $~3~4-$~3~5 
(772-773). Crunch to tokens will take the input line and convert all command 
words to one (for normal Basic) or two (for extended Basic) byte token values. 
This does exactly the same as the original Basic version except that the extended 
keyword table is checked before the normal Basic table. 

Crunch to tokens is performed directly after the warm start routine 
encounters a carriage return, no matter whether the command is in direct mode 
or for entering or deleting a line in memory. 



LOC 

81C9 
81C9 
81C9 
81C9 
81C9 
81C9 
81CB 
81CD 
81CF 
8102 
810', 
8106 
8108 
8109 
8101'· 
8101'· 
8100 
810F 
81El 
81E3 
81E5 
81E7 
81E9 
BlEB 
81EO 
81EF 
81Fl 
81Fl 
81F3 
B1F5 
81F7 
BIF9 
81FC 
81FC 
81FE 
81FF 
81FF 
8201 
8203 
820', 
8205 
8208 
820A 
820C 
820F 
8211 
8212 
821'. 
8216 
8218 
821A 
821C 
8210 
821F 
8221 
8223 
8226 
8228 
822A 
822C 
8220 
8230 
8231 
8233 
8233 

CODE 

A6 7A 
A0 0'. 
8', 0F 
t.O 00 02 
10 07 
C9 FF 
F0 2B 
EO 
00·F4 

C9 20 
F0 24 
85 08 
C9 22 
F0 47 
24 0F 
70 1A 
C9 3F 
D0 04 
A9 99 
00 12 

C9 30 
90 04 
C9 3C 
90 0A 
t,C t,6 132 

A9 EE 
2C 

05 01'. 
A', 71 
E8 
C8 
99 Fl'. 01 
C9 EE 
F0 31 
1'.9 FB 01 
F0 22 
38 
E9 3A 
F0 04 
C9 49 
00 02 
85 0F 
38 
E9 55 
00 f~E 

85 08 
1'.0 00 02 
F0 DB 
C5 08 
F0 07 
C8 
99 FB 01 
E8 
00 F0 

99 FO 01 

BASIC Wedges and Vectors 121 

UNr: 

.LIB CRUNCH-TOKEN 
CRUNCH KEYWORD LINK 

FOR USE WITH THE ROUTINES IN 
'ADVANCED COMMODORE 64 BASIC REVEALED' 

, 
CRNCHT LOX $7A 

LOY 11$04 
STY $0F 

CRNC01 LOA $0200,X 
BPL CRNC02 
CMF' IIHF 
BEQ CRNC08 
INX 
BNE CRNC01 

, 
CRNC02 CMF' 11$20 

BEQ CRNC08 
STA $08 
CMF' 11$22 
BEQ CRNC12 
BIT $0F 
BVS CRNC08 
CMF' 1I$3F 
BNE CRNC03 
LDA 11$99 
BNE CRNC08 

, 
CRNC03 eMF' 11$30 

I'·CC CRNC04 
eMF' 1I$3C 
BCC CRNC08 

CRNC04 JMF' CRNC15 
, 
CRNC05 LOA II$EE 

.BYT $2C 
, 
CRNC06 ORA $01'. 
CRNC07 LOY $71 
CRNC08 INX 

INY 
STA $01FB,Y 
CMF' II$EE 
BEQ CRNC14 
LOA $01FB,Y 
BEQ CRNC13 
SEC 
SBC 1I$3A 
BEQ CRNC09 
UlF' 11$49 
BNE CRNC10 

CRNC09 STA $0F 
CRNC10 SEC 

SBC 11$55 
[,.NE CRNC01 
STA $08 

CRNClt LOA $0200,X 
[,.EQ CRNC08 
CMF' $08 
BED CRNC08 

CRNC12 INY 

, 

STA $01FB,Y 
INX 
BNE CRNCll 

CRNC13 SlA S01FO,Y 

;GET CHAR 
;CHAR IS Of( 

;F'IPRINT 
; YES, SENO IT 
;NO, ILLEGAL CHAR 
; SO 00 NEXT 

;SF'ACEPRINT 
;YES, SEND IT 

;QUOTESF'RINT 
;YES, SCAN QUOTE ENO 

;5ENO CHAR 
; 'PRINT' F'r\lNT 
;NO 
;SET TO PRINT TOKEN 
;SEND IT 

;<0 PRINT 
;YES, HUNT FOR KEYWORD 
;< '<' PRINT 
;YES, SEND CHAR 

; HUNT FOR f(EYWORO 

;ONE OF MINE 
;SKIF' NEXT 2 BYTES 

;ONE OF I'.ASIC'S 
;RESTORE Y 
;NEXT POSITION 

;STORE IT 
;MINEF'RINT 
;YES, SEND 2ND BYTE 
;NO, END OF INPUTPRINT 
;YES 

;':' PRINT 
;YES 
;DATA ? 
;NO 

;REM -, 
;NO 00 NEXT CHAR 
;SET QUOTE FL.AG 

;GET BYTE 
;ENO JF INPUT, SEND 
;QUOTE FLAGF'RINT 
; YES, SEND 

:STORE CHAR 

;00 NEXT 

; STORE ZErW 



122 Advanced Commodore 64 BASIC Revealed 

LOC CODE. LINE 

8236 C6 7B DEC $7B 
8238 A9 FF LOA "$FF 
S::3A 85 7A STA $7A 
823C 60 RTS ;EXIT CRUNCH 
8230 ; 
8230 AS 0B CRNC14 LOA $0B ; GEl 2ND I?VTE 
823F C8 INY 
8240 99 H. 01 STA $01FB,Y ;STORE IT 
8243 l,C CF 81 JM~' CRNC01 ;00 NEXT BYTE 
8246 ; 
8246 84 71 CRNC15 STY $71 ;SAVE OFF Y 
8248 A0 FF LOY "$FF 
824A 86 7A STX $7A ; AND X POINTERS 
824C CA OEX 
8240 A9 01 LOA "$01 ;START TOKEN VAL=l 
824F 85 0B STA $0B 
8251 C8 CRNC16 INY 
8252 E8 INX 
8253 BO 00 02 CRNC17 LOA $0200,X ;OEl BYTE 
8256 38 SEC 
8257 F9 Fl 80 SBC CLIST. Y :AS KEYWORD TABLEPRINT 
825A F0 F5 BEQ CRNC16 ;YES, CHECK NEXT 
825C C9 80 CMP "$80 ;SHIFT OUTPRUIT 
825E F0 9C BEQ CRNC05 ;YES, FOUND 
8260 A6 7A LOX $7A ;RESTORE BUFFER POINTER 
8262 E6 0B INC $0B ; NEXT TOI(EN 
8264 C8 CRNC18 INY 
8265 B9 F0 80 LOA CLIST-l, Y ;END OF I(EYWORDPRINT 
8268 10 FA BPL CRNCt8 ;NO 
826A B9 Fl 80 LD~ CLIST, Y ;END OF TABLEF'RINT 
8260 D0 E4 e.NE CRNC17 ;NO, CHECK NEXT 
826F A0 00 LOY "$00 ;START TOKEN AT 0 
8271 84 0B bTv $0B ;FOR MSIC 
8273 88 DEY 
8274 A6 7A LOX $7A ;OEl INPUT POINTER 
8276 CA DEX 
8277 C8 CRNCt9 INY 
8278 E8. INX 
8279 P.D 00 02 CRNC20 LOA $0200,X ;OET P.YTE 
827C 38 SEC 
8270 F9 9E A0 SBC $A09E,Y ;AS IN TABLEPRINT 
8280 F0 F5 BEQ CRNC19 ;YES, CHECI' NEXT 
8282 C9 80 CMP "$80 ;SHIFT OUTPRINT 
8284 00 03 BNE CRNC21 ;NO, TRY NEXT WORD 
8286 4C FF 81 JMP CRNC06 ;YES, SEND BASIC TOKEN 
8289 A6 7A CRNC21 LOX $7A ;RESTORE INPUT POINTER 
828B E6 0e. INC $0B ~NEXT TOf(EN 
8280 C8 CRNC22 INY 
828E B9 90 A0 LOA $A09D,Y lEND OF WOROPRINT 
8291 10 FA e.f'L CRNC22 ;NO 
8293 B9 9E A0 LOA fA09E,Y ;E.NO OF TABLEPRINT 
8296 00 El P..NE crmC20 ;NO, TRY NEXT WORD 
8298 BO 00 02 LOA $0200,X ;ELSE SEND e.YTE 
829P. 4C 01 82 JMf' CRNC07 
829E .END 

Tokens to text 

This routine is wedged into the print token link at locations $~3~6-$~3~7 
(774-775). Tokens to text is used in the list command only to convert any token 
value (greater than 127 for normal Basic or preceded by $EE-238 for extended 
Basic) back into the command word and print it to the output device. 



LOC 

829E 
829E 
829E 
829E 
829E 
829E 
82110 
82A3 
82A5 
82A7 
82A9 
82AB 
82AD 
82AF 
82B2 
82\?.I .. 
82B7 
82BA 
82BA 
82BB 
82BD 
82BE 
82C0 
82C2 
82C3 
82C5 
82C6 
82C9 
82C\?· 
82CD 
82CE 
82Dl 
82D3 
82D6 
82D8 
82D9 
82D9 
82DA 
82DC 
82DD 
82DF 
82El 
82E2 
82E'. 
82E5 
82E8 
82EA 
82EC 
82ED 
82F0 
82F2 
32F5 
82F7 

CODE 

30 03 
4C F3 A6 
C9 FF 
F0 F9 
24 0F 
30 F5 
C9 EE 
F0 05 
20 D9 82 
30 03 
20 \?A 82 
4C EF A6 

C8 
Bl 5F 
AA 
8'. 49 
A0 FF 
CA 
F0 08 
C8 
B9 Fl 80 
10 FA' 
30 F5 
C8 
B9 Fl 80 
30 05 
20 02 FF 
00 F5 
60 

38 
E9 7F 
AA 
84 49 
A0 FF 
CA 
F0 08 
C8 
B9 9E A0 
10 FA 
30 F5 
C8 
B9 9E A0 
30 E6 
20 D2 FF 
D0 F5 

BASIC Wedges and Vectors 123 

LINE 

.LIB F·RINT··rOf(EN 
PRINT TOKENS LINK 

FOR USE WITH THE ROUTINES IN 
'ADVANCED COMMODORE 64 BASIC REVEALED' 

, 
PRINT 
PRIN01 
PRIN02 

PRIN08 
F'RIN13 
, 
F'RIN03 

PRIN04 

F'RIN05 

PRIN06 

PRIN07 
, 

BMI PRIN02 
JMP $A6F3 
CMP "$FF 
BED PRIN01 
\?IT $0F 
BMI PRIN01 
CMF' "$EE 
BED F'r<IN08 
JSR PRIN09 
BMI F'RIN13 
JSR PRHI03 
JMP $A6EF 

INY 
LOA ($5F), Y 
TAX 
STY $49 
LDY HfFF 
OEX 
BED PRIN06 
INY 
LDA CLIST, Y 
BF'L PRIN05 
\?MI PRIN04 
INY 
LOA CLIST, Y 
MI PRIN07 
JSR $FF02 
\?NE PRIN06 
RTS 

F'RIN09 SEC 
SBC "$7F 
TAX 
STY $49 
LOY "$FF 

PRIN10 DEX 
BED F'R I N 12 

PRIN11 INY 
LOA $A09E,Y 
BPL PRIN11 
BMI PRIN10 

PRIN12 INY 
LOA $A09E,Y 
MI PRIN07 
JSr< fFF[)2 
\?NE PHIN12 
.END 

;A TOf(EN 
;PRINT IT 
·IS IT PI? 

; YES . 
;DUOTES7 
;YES 
;ONE OF MINE? 
;00 MINE 
;DO BASIC 
;ALWAYS 

;DO MINE 
;AND NEXT 

; GET TOf(EN CHAR 

;SAVE Y 

;FOUNO IT 

;GET CHAR FROM. TABLE 
;UNTIL END OF WORD 
;FOUND END OF WORD 

;GET CHAR FROM TABLE 
;LAST CHAR OF WORD 
;PRINT IT 
;NEXT CHAR 

;DO LAST 

;REMOVE SHIFT 

;SAVE • Y 

;FOUND IT 

;GET CHAR FROM TABLE 
;UNTIL END OF WORD 
;FOUND END OF WOR[) 

;GET CHAR FROM TABLE 
;LAST CHAR OF WORD 
;PRINT CHAR 
;ALWAYS 

Execute statement 

This routine IS wedged into the start new Basic code link at locations 
$~3~8-$~3~9 (776-777). This is the control part of the main Basic interpreter 
loop. It takes a token value and executes the routine via the vector table in the 
initialisation file. There is a special case routine for PRINT which uses the same 
token as in normal Basic but the routine has been rewritten to allow the CTL 
command. 



124 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

82F7 .LIB HANDLE-TOKEN 
82F7 EXECUTE STATEMENT LINK 
82F7 FOR USE WITH THE ROUTINES IN 
82F7 'ADVANCED COMMODORE 64 BASIC REVEALED' 
82F7 ; 
82F7 20 73 00 HANDLE JSR $0073 ;GET rODE 
82FA C9 EE eMF' "$EE ;IS IT ry TOKEN? 
82FC F0 0A BEQ HAND01 ;YES, DO IT 
82FE C9 99 CMf' "$99 ; IS IT PRINT? 
8300 F0 IF BEQ DOPRNT ;YES 
8302 20 79 00 JSR $0079 ;GET CURRENT CHAR 
8305 4C E7 A7 JMF' $A7E7 ;00 BASIC CODE 
8308 , 
8308 20 0E 83 HAND01 Jsr< HAND02 ;EXECUTE THE tODE 
830B 4C AE A7 JMP $A7AE ;AND NEXT 
830E , 
830E 20 81.'. 8E HAND02 JSR FIND13 ;GET TOf:EN CHAR 
8311 38 SEC 
8312 E9 01 SBC "$01 
8314 0A ASL. A ;TIMES 2 
8315 A8 TAY 
8316 89 8A 81 LOA CADDR+l,Y ;GET HI BYTE 
8319 48 F'HA 

CADDR,Y 
;TO STACf: 

831A B9 89 81 LDA ;GET LO BYTE 
8310 48 F'HA ;TO STACf: 
831E 4C 73 00 JMP $0073 ;EXECUTE IT 
8321 , 
8321 ;PRINT SPECIAL CASE 
8321 

DOPRNT 8321 20 27 83 JSR HAN003 ;00 PRINT COMMAND 
8324 4C AE A7 JMP $A7AE ;00 NEXT COMMAND 
8327 
8327 AD :33 83 ?IAND03 LOA PADDR+1 ;GET HI BYTE 
832A 48 PHA ;TO STACf: 
832B AD 32 83 LOA PADDR ;GET LO BYTE 
832E 48 PHA ;TO STACf: 
832F 4C 73 00 JMP $0073 ;EXECUTE PRINT 
8332 DA 98 F'AODR .WOR PRINTT-l ;VECTOR FOR PRINT 
8334 .END 

Execute arithmetic 

This routine is wedged into the arithmetic link at locations $~3~A-~3~B 
(778-779). This routine is called by the evaluate expression and transfers control 
to one of the four arithmetic routines included in this package. If the extended 
Basic command is not one of the four arithmetic routines, a Syntax error is 
output. 

LOC CODE LINE 

8334 .LIB ARITH-TOKEN 
8334 ARITHMETIC LINf: 
8334 FOR USE WITH THE ROUTINES IN 
8334 'ADVANCED COMMODORE 64 BASIC REVEALED' 
8334 ; 
8334 A9 00 ARITH LOA "$00 ;TYPE F:.AG TO NUMERIC 
8336 85 00 STA $00 
8338 20 73 00 JSR $0073 ;GET BYTE 



BASIC Wedges and Vectors 125 

LOC CODE LINE 

833B C9 EE CMF' II$EE ;ONE OF MINE? 
8330 F0. 06 BEQ ARITH1 ;YES 
833F 20 79 00 JSR $0079 ;GET CURRENT CHAR 
8342 4C 80 AE JMF' $AE8D ;OPERATE 
83',5 ; 
8345 20 8E? 8E ARITH1 JSR FIND13 ;GET Tot(EN CHAR 
83',8 C9 10 CMF' IIFNSTRT ;IS IT A FUNCTION 
83 /,A B0 03 Bes Ar<I TH2 ;YES 
834C ',c 08 AF JMP $AF08 ;SYNTAX ERROR 
83(,F , 
834F 85 24 ARITH2 STA $24 ; SAVE Tot(EN VAL 
8351 A9 AD LDA II$AD ;SETUF' RETURN ADDRESS 
8353 48 F'HA 
835', A9 8C LOA 1I$8C 
8356 48 PHA 
8357 C6 2't DEC $24 
8359 A5 24 LDA $24 ;GET Tot(EN 
835B 0A ASL A ; TIMES 2 
835C AA TAX 
8350 BD 8A 81 LDf~ CADDR+1,X :GET HI BYTE 
8360 48 PHA 
8361 BO 89 81 LOA CADOR,X ;GET LO BYTE 
836', ',8 PHA 
8365 ',C 73 00 JMP $0073 ;EXECUTE FUNCTION 
8368 .ENO 

Function keys 

This routine is wedged into the keyboard table set-up vector at locations 
$~28F-$~29~ (655-656). The routine checks whether the computer is in direct 
or program mode; if in direct mode then the normal routine is executed, ifin pro
gram mode the quotes flag is checked, and if set the normal routine is executed. 

The current key pressed is checked for one of the four function keys and the 
shift key. If it was a function key the text for that key is read from behind the 
Basic ROM, and put into the keyboard buffer until all eight characters or a zero 
byte terminator are found. If it was not a function key the normal routine is 
executed. 

U)C CODE LINE 

8368 • LIB FUNC-f(EYS 
8368 AS 9D FUNC LDA $90 ;DIRECT? 
836A F0 10 BEtl FUNC01 ;NO 
836C A9 01. LDA 11$01 ;QUOTES? 
836E 24 D4 BIT $04 
8370 00 0A ~,NE FUNC01 :YES, IGNOf,E 
8372 A5 CB LOA $CB ; f(EY PRESSED 
8374 C9 03 CMF' 11$03 ;F7? 
8376 90 0 /, BCC FUNC01 ;NO, LESS THAN 
8378 C9 07 CMf' 11$07 ;F5? 
837A 90 03 BCC FUNC02 ;YES, IS A FUNCTION f(EY 
837C 4C 48 E~, FUNC01 JMP $EI'.I,8 ;00 NORMAL f(EYS 
837F , 
837F C5 C5 FUNC02 CMF' $C5 ;ALREADY DONE? 
8381 F0 F9 BEQ FUNC01 ;YES 
8383 A9 00 LDA 11$00 ;CLEAR POINTER 



126 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

8385 
8387 
8389 
838['. 
838E 
8390 
8392 
839', 
8396 
8398 
839A 
839B 
8390 
839F 
83(11 
83(13 
83A5 
83A7 
83A9 
83AB 
83AO 
83AF 
83B1 
83B3 
83B5 
83B7 
83B9 
831?B 
83BC 
83BE 
83C0 
83C2 
83C', 
83C6 
83C8 
83CA 
83CO 
83CE 
83D0 
83D2 
83D', 
8306 
8308 
83DA 
830C 
830F 
83E2 
83E3 

85 FC 
85 Fl? 
A9 01 
2C 80 02 
F0 04 
A9 20 
85 FB 
f'\9 BF 
85 FC 
A9 C0 
18 
65 FB 
85 FB 
A5 CB 
C9 03 
00 04 
A9 18 
00 12 
C9 06 
00 04 
A9 10 
D0 0A 
C9 05 
00 0', 
A9 08 
D0 02 
A9 00 
18 
65 FB 
:35 FB 
A0 00 
A9 36 
85 01 
B1 FP. 
F0 08 
99 77 02 
C8 
C0 08 
00 F', 
84 C6 
A9 37 
85 01 
A5 CB 
85 C5 
AD 80 02 
80 8E 02 
60 

Program lister 

STA $FC 
STA $FB 
LOA 11$01 
BIT $0280 
BEQ FUNC03 
LOA "$20 
STA $FB 

FUNC03 LOA "$BF 
STA $FC 
LDA II$C0 
CLC 
AOC $FB 
STA $FB 
LDA $CI? 
CMF' "$03 
BHE FUNC04 
LOA 1124 
BHE FUHC07 

FUNC0', CMF' 11$06 
BNE FUNC05 
LOA 1116 
BNE FUNC07 

FUNC05 CMF' 11$05 
BNE FUNC06 
LOA 118 
BNE FLJNC07 

FUNC06 LOA 11$00 
FlJNC07 CLC 

AOC $FB 
STA $FB 
LOY "$00 
LOA 11$36 
STA $01 

FlJNC08 LOA ($FB),Y 
l?.Etl FUNC09 
STA $0277,Y 
INY 
CPY IU08 
BNE FUNC08 

FUNC09 STY $C6 
LOA "$37 
STA $01 
LDA $CB 
STA $C5 
LOA $0280 
STA $028E 
RTS 
.END 

;SHIFT f(EY? 

;NO 

;AOD START OF STORE 
; TO POINTER 

;F?? 
;NO 

;F3? 
;NO 

;MUST I?E F1 
;SET VAL INTO POINTER 

;SWITCH OUT BAS ROM 

; GET CH(lF: 
;ZERO BYTE TERMINATOR 
;STORE IN BUFFER 

;ALL 8? 
: NOT YET 
. ;"CHARS IN BlJFFER 
;PUT BASIC ROM BACK 

;SET LAST=PRESENT 
; f(EYS, 
; SHIFT COMI?Q 

;ALL DONE 

This routine IS wedged into the INPUT vector at locations $~324-~325 
(8~4-8~5). This routine completely simulates the normal input routine. First 
the input device is checked for keyboard input and if it is not so the normal 
routine is executed. Direct mode is then checked for and if it is not, the normal 
routine is executed. 

The next part of the routine is copied directly from the kernal routine except 
that the cursor down key is checked for and, if found, the cursor position is 
checked. If the cursor is not on the bottom line of the screen, the cursor down 



BASIC Wedges and Vectors 127 

character is printed. If the cursor is on the bottom line, instead of printing cursor 
down the next line number is found and that line is listed (for any output device). 
(Note: There is no check for quotes, which means that if you are entering a line 
on the bottom line of the screen, the line will be wiped out and a line listed if you 
press the cursor down key even from within quotes.) 

When the last line of the program is listed the cursor will remain at the end of 
the line. Pressing the cursor down key again will produce the message: 

************ END OF PROGRAM ************ 
After this, the program will start listing from the beginning again. 

LOC CODE LINE 

83E3 
83E3 
83E5 
83E7 
83E9 
83E.t'. 
83EE 
83EE 
83F0 
83F2 
83F4 
83F6 
83F7 
83F8 
83F9 
83FA 
83FC 
83FE 
8401 
8 /.01 
8'.04 
8406 
8408 
840B 
8'.00 
840E 
8'.10 
8·,12 
8'.14 
8417 
8'.19 
841B 
8'olE 
8421 
8'.23 
8425 
8'.27 
8428 
8 /.2A 
8420 
8'.30 
8431 
8433 
8435 
8437 
8439 
8'.3C 
843C 
8'.3E 

A5 99 
.)0 04 
AS 90 
00 03 
4C ~7 F1 

A5 03 
85 CA 
A5 06 
85 C9 
98 
'.8 
8A 
48 
A5 00 
F0 06 
4C 3A E6 

20 16 E7 
A5 C6 
85 CC 
80 92 02 
F0 F7 
78 
A5 CF 
F0 0C 
A5 CE 
AE 87 02 
A0 00 
8'. CF 
20 13 EA 
20 ~.4 E5 
C9 83 
00 10 
A2 09 
78 
86 C6 
BO E6 EC 
90 76 02 
CA 
00 F7 
F0 CF 
C9 00 
00 03 
I,C 02 E6 

C9 11 
D0 C1 

. LIB LISTEF: 
LISTER LOA $99 

BNE LIST01 
LOA $9D 
BNE LIST02 

LIST01 JMP tF157 
, 
LIST02 LOA $D3 

STA $CA 
LOA f06 
STA $C9 
TYA 

, 

PHA 
TXA 
PHA 
LOI~ $00 
~.EQ LIST0'. 
JMP tE63A 

LI5T03 JSR $E716 
LIS104 LOA $C6 

STA ICC 
STA $0292 
BEQ LlST04 
SEI 
LOA $CF 
~·EQ LlST05 
LO~ tCE 
LOX t0287 
LOY IIt00 
STY tCF 
JSR tEA13 

LIST05 JSR tE5r?4 
CMP 11$83 
BNE LIST07 
LDX IIt09 
SEI 
STX tC6 

LIST06 LOA $ECE6,X 
STA t0276,X 
DEX 
BNE LIST06 
BEQ LIST04 

LIST07 CMP IIUD 
PoNE LIST08 
JPlF' $E602 

, 
LI 51'08 CMF' 11$11 

~.NE LIST03 

; NOT f(EYBOARO 

;IS DIRECT INPUT 
;00 NORMAL 

;SAVE CURRENT CURSOR 
; COLUMN 

, ,'ND ROW 
;SAVE .X AND .Y 

;SCREEN OR KEYBOARD? 
;KEYBOflRO 
;00 FOR SCREEN 

·DISPLAY CHAR TO SCREEN 
;ANY CHARS "IN BUFFER? 

;IF NOT, BLINK CURSOR 
;AUTO SCROLL DOWN 
;REPEAT UNTIL CHAR 
;OISABLE KEYBOARD 
; cur(SOR BLI Nf(? 
·NO 
;RESTORE ORIGINAL CHAR 
; AND COLOUR 

;SWITCH OFF BLINK 
·RESTORE 
';REMOVE CHAR FROM BUFFER 
;RUN/STOP? 
;NO 
;COPY TEXT INTO BUFFER 

;REPEAT UNTIL ALL OONE 
;DONE, OPERATE ON RUN/STOP 

;CARRIAGE RETURN? 
; liD 
;END OF INPUT 

; CUI~SOR DOWN? 
;NO GET NEXT CHAR 



128 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

84'.0 A6 D6 LDX $D6 
8','.2 E0 18 CPX 112'. ;SCROLL SCREEN? 
8444 F0 03 BED LIST09 ;YES 
8'.46 4C 01 84 .JMP LIST03 ;NO, NEXT CHAR 
8449 A2 18 LIST09 LOX 112'. :SET CURSOR TO 
8441?, A0 00 LDY 11$00 ; BEGINNING OF LINE 
8440 18 CLC 
844E 20 F0 FF .Jsr, lFFF0 
8451 E6 14 INC $14 ; FIND NEXT LINE TO 
8 /,53 00 02 SNE LISTi0 ; LIST 
8455 E6 15 INC $14+1 
8457 20 13 A6 LISTi0 JSR lA613 :OET ADDRESS 
845A A0 01 LOY IIl01 
8 1.5e B1 5F LOA ($5F),Y ;END OF PROGRAM? 
845E D0 10 BNE LISTll ;NO 
8'.60 A9 FF LOA IIlFF 
8462 85 14 STA $14 ;NEXT LINE NUMBER=0 
8464 85 15 STA $14+1 
8466 A9 AB LDA II<:EOF'MES ;TELL usm THAT THE 
8468 A0 8'. LOY II>EOPMES ; END OF PROGRAM HAS 
846A 20 lE AB JSR lABIE ; BEEN REACHED 
8'.60 '.c 04 84 JMP LIST04 ; GET NEXT CHAR 
8470 A0 02 LI ST 11 LDY 11$02 ;GET LINE NUMP',ER 
8472 Bl 5F LOA (l5F>,Y ;LO BYTE 
8474 85 14 STA l14 
8476 C8 INY 
8',77 EH 5F LDA (l5F> , Y ;HI BYTE 
8479 85 15 STA $1/.+1 
847P., A9 94 LOA II<LIST12 ; f,ETUHN TO LIST12 
8470 80 00 03 STA l0300 ; AFTER l.I ST 
8480 A9 84 LDI~ II>LIST12 
8 /.82 80 01 03 STA l0301 
8485 68 F'LA ;SAVE 2 BYTES IN 
8486 80 A9 84 STA STACK ; SAFE LOCATION 
8489 68 PLA 
8 /.8A 80 AA 8 /• STA STACf(+l 
8480 A0 01 LOY 11$01 
8 t.8F B4 0F STY l0F 
8491 4C D7 A6 JMF' $A6D7 ; LIST LINE 
8494 A9 2B LIST12 LOA III 8 !?, ;RESET ERROR VECTOR 
8496 80 00 03 STA l0300 
8499 A9 E3 LOA IIlE3 
849B 80 01 03 STA l0301 
B49E AO AA 84 LOA STACf(+l ;RESTORE 2 f.>.YTES 
8'iAl 48 F'UA 
84A2 AO A9 84 LOA STACK 
84A5 48 F'UA 
8'.A6 4C 04 84 JMP LIST04 ;00 NEXT CHAR 
84A9 00 00 STACf( .WOR 0 
84AS 00 EOF'MES .SYT l00,l00,$12 
84AC 0D 
84AO 12 
84AE 2A 2A .BYT '************ END OF F'fWGRAM **********~*' 
8406 00 .BYT $00,$00 
8407 00 
8408 .END 



Chapter Five 

Extended BASIC = A 
Complete Pacl(age 

Introduction 

This chapter contains a collection of programs which will create 31 extra 
commands to the Commodore 64's Basic and modify two other commands. 
These extra commands will be of considerable use to any Basic programmer. 
The commands require the wedge programs in Chapter 4 to be loaded as part of 
the assembly; these wedges allow the following commands to be used as 
ordinary Basic commands. The commands and a description of their use is given 
in the documentation accompanying each of the routines. All these extra 
commands and their associated wedge, tokenising the parsing routines are 
designed to be stored in the cartridge RO M area of $8~~~ up for an area of just 
under 8K of memory. The routines are designed to emulate a ROM cartridge 
based program and will thus power up on cold start. The listings are all in CB M 
assembler format. For readers wishing to obtain these programs in machine 
readable form, they are available as both source and object code at an inclusive 
cost of £10 from: Advanced Commodore 64 BASIC Revealed Software Offer, 
40 Bowling Green Lane, London ECI. (Please make cheques payable to Zifra 
Software Ltd.) 

The extended Basic commands are: 

APPEND AUTO 
CHANGE CRUNCH 
DELETE DISK 
EXEC FIND 
KEY LOMEM 
OLD POP 
RENUMBER REPEAT&RUN 
TYPE UNTIL 

APPEND 

Abbreviated entry: A(shift)P 

Affected Basic abbreviations: None 

Token: Hex $EE,$~3 Decimal 238,3 

CATALOG CHAIN 
CTL DEEK 
DOKE DUMP 
GET HIMEM 
MAT MERGE 
PRINT PUT 
SORT TRACE ON & 
VARPTR TRACE OFF 



130 Advanced Commodore 64 BASIC Revealed 

Modes: Direct and program 

Recommended mode: Direct 

Purpose: To load a program into memory so that it appears 'on top' of the 
current program. This routine will work with both disk and cassette and the 
variable pointers when loaded are set to the end of the combined program. 
When this routine is used, you should check that the line numbers of the 
APPENDed program are larger than the line numbers of the program in 
memory. 

Syntax: APPEND [filenamef,dLs]]] - where d is the device number and s is the 
secondary address. 

Errors: The same errors will be encountered as in the Basic command LOAD. 

Use: This routine would be used mostly to add Basic library routines onto the 
end of your programs. It would be used rather than MERGE because of the 
difference in speed. APPEND is much faster than MERGE. 

Routine entry point: $8408 

Routine operation: The APPEND routine uses LOAD's parameter parsing 
routine to get the filename etc., then sets the secondary address so that it loads at 
the end of the Basic program in memory. The load routine is then called, the 
program is re-chained and variable pointers are set. 

LOC CODE LItlE 

8408 
8408 A9 00 APPEND 
840A 85 0A 
81.,OC 20 0 /• E1 
84DF A9 00 
BI.El 85 e.9 
8'.E3 A5 20 
BI.E5 38 
8'.E6 E9 02 
84E8 AA 
84E9 A5 2E 
84[E'- E9 00 
84[0 A8 
8'.EE A5 0A 
84F0 20 05 FF 
81.F3 , 
84F3 20 33 A5 RESVAR 
8 l ,F6 A5 20 
84F8 A4 2E 
8 l ,FA 38 
84FB E9 02 
84FD 85 57 
84FF 98 
8500 E9 00 
8502 85 58 
850', A0 00 RESV01 
8506 B1 57 
8508 00 lE'-
850A C8 
850E'- E'-1 57 

. LIB AF·PENO 
LOA 11$00 
STA $0A 
JSR $EI04 
LOA 11$00 
STA $B9 
LOA $20 
SEC 
SBC 11$02 
TAX 
LOA $20+1 
SBC 11$00 
TAY 
LOA $0A 
JSR $FF05 

JSR $A533 
LOA $20 
LOY $2DH 
SEC 
SBC 11$02 
STA $57 
TVA 
SBC 11$00 
STA $57+1 
LOY 11$00 
LOA ($57>. Y 
e.NE RESV02 
INY 
LDA ($57),Y 

; GET FILE PARAMETERS 

;SET SA FOR ALT LOAD 

SET LOAD ADDRESS 
DIRECTLY AFTER RESIDENT 
PROGRAM. 

; LOAD 

;RE-CHAIN LINES 

RESET VARIABLE 
POINTERS TO END OF 
NEW PROGRAM 

; FIND END OF PROGRAM 
; AND SET VARIABLE 
; POINTERS 



Extended BASIC - A Complete Package 

LOC CODE LINE 

8500 D0 16 BNE RESV02 
850F A5 57 LOA $57 
8511 18 CLC 
8512 69 02 AoC 11$02 
851 J, 85 2D STA $20 
8516 85 2F STA $2F 
8518 85 31 STA $31 
851A A5 58 LOA $57+1 
851.C 69 00 ADC 11$00 
851E 85 2E STA $20+1 
8520 85 30 STA $2F+1 
8522 85 32 STA $31+1 
8524 60 RTS 
8525 A0 00 RESV02 LOY 11$00 
8527 [>.1 57 LOA ($57),Y 
8529 85 59 STA $59 
852B C8 INY 
852C B1 .,..., 

,J, LOA ($57>, Y 
852E 85 58 STA $57+1 
8530 A5 59 LDf~ $59 
85,~2 8~ 57 STA $57 
853{, ',C 04 85 JMP RESV01 
8537 .END 

AUTO 

Abbreviated entry: A(shift)U 

Affected Basic abbreviations: None 

Token: Hex $EE,$~4 Decimal 238,4 

Modes: Direct and program 

Recommended mode: Direct only 

; NOT YET END OF 
PROGRAM. GET 
ADDRESS OF NEXT 
LINE. 

131 

Purpose: To save time when entering a program by providing the user with the 
next line number to be entered. To enable the AUTO line numbering, enter 
AUTO followed by the line number increment. To disable AUTO just enter 
AUTO without a number. The next line number is picked up from the previous 
line typed in, so if you enter a line l~ with the auto step at l~, the next line 
number will be 2~. If you change this number to, say, l~~ and enter that line, the 
next line number displayed will be ll~. A new line number is not displayed if 
nothing is entered on the line. 

Syntax: AUTO [step] 

Errors: Syntax error - if the step value is greater than 63999 
(maximum line number) 

Use: The command is used in direct mode to enable or disable AUTO line 
numbering. When enabled, AUTO will produce line numbers after entering a 
line until it is disabled with AUTO without an increment value. If you wish to 



132 Advanced Commodore 64 BASIC Revealed 

exit from the AUTO facility when a line number has been displayed, either press 
return (which will delete that line if it exists), or cursor down off that line. 

Routine entry point: $8537 

Routine operation: First this routine checks to see if there is a number following 
it. If not it will disa ble A UTO, otherwise it will read the number and store as the 
step and enable AUTO. The actual routine is wedged into the crunch tokens 
link. It first checks that the first non space character in the input buffer is a 
numeric character and sets a flag to say yes or no. The line is then tokenised and 
ifthere was no line number or there was nothing following the line number, the 
routine exits. If the previous line typed in had a line number with something 
following it, the line number is read from the pointer. The step is then added to 
it, and the number converted to ASCII and inserted into the keyboard buffer. 

l.OC CODt' LINE 

8537 .LIB AUTO 
8537 F0 18 AUTONO P..EO AUT OFF ; NO STEF', TUF:N OFF 
853':7 20 6B A9 JSR $A96B ; GET STEF" 
853C A5 14 l.OA $14 ; STor,E AWAY 
853E 80 5C 85 STA AUTOST 
8541 A5 15 LO~I $15 
85'.3 80 5D 85 STA AUTOST+1 
85'.6 A9 5E LOA "<AUTO ENABl.E AUTO 
85'.8 80 0'. 03 STA $030'. 
854B A9 85 LOA ">AUTO 
85'.0 80 05 03 STA $0305 
85~j0 60 RTS 
8551 , 
8551 A9 C9 AUTOFF LOA "<CRNCHT DISABLE AUTO 
8553 80 0'. 03 STA $0304 
8556 A9 81 LOA !I>CRNCHT 
8558 80 05 03 STA $0305 
B55B 60 RTS 
855C 00 00 AUTOST .WOR 0 
855E , 
855E AD 00 02 AUTO LOA $0200 ; CHECf( FIRST CHARACTER 
8561 C9 30 CMF" "$30 IN INF"UT BUFFER FOR 
8563 90 0A BCC AUT001 A NUMBER 
8565 C9 3A CMP "$3A 
8567 B0 06 BCS AUT001 
8569 A9 01 LOA "$0.1 SET FLAG TO SAY 
856£'. 85 02 STA $02 DO IT 
8560 00 04 BNE AUT002 
856F A9 00 AUT001 LOA "$00 ; SET FLAG TO SAY 
8571 85 02 STA $02 ; DON'T DO IT 
8573 20 C9 81 AUT002 JSR cr\NCHT ; CRUNCH INPUT 
8576 A5 02 LOA $02 ; CHECH FLAG 
8578 D0 01 BNE AUT003 
857A 60 RTS ; DON'T DO IT 
857B C0 05 AUT003 Cpy "$05 ; CHECf( FOR P..LANf( 
857D 00 01 BNE AUT00'. ; INPUT LINE 
857F 60 RTS 
8580 AD 5C 85 AUT00'. LOA AUTOST ; ADD STEP TO PREVIOUS 
8583 18 CLC ; LINE NUMP..Ef< 
858'. 65 1 '. AOC $11. 
8586 AA TAX 
8587 AD 5D 85 l.DA AUTOST+1 
858A 65 15 Aoe $15 
858C 86 63 STX $63 



Extended BASIC - A Complete Package 133 

LOC CODE LINE 

858E 85 62 STA $62 
8590 A2 90 LOX 11$90 
8592 38 SEC 
8593 98 TYA 
8594 48 F'HA 
8595 20 '.9 BC JSR $BC49 
8598 20 OF ~.O JSR $I?ODF 
859B 85 FB STA $FB 
8590 84 FC STY $FC 
859F A0 00 LOY 11$00 
85A1 B1 FB AUTD05 LOA ($FB), Y 
85A3 F0 06 E'.[Q AUT006 
85A5 99 77 02 STA $0277,Y 
85A8 C8 INY 
85A9 00 F6 ~.NE AUT005 
85AB C8 AUT006 INY 
85AC A9 20 LOA 11$20 
85AE 99 77 (;2 STA $0277,Y 
8SB1 84 C6 STY $C6 
85B3 68 F'LA 
85B4 A8 TAY 
SSB!) 60 RTS 
8~E'.6 .END 

CATALOG 

Abbreviated entry: C(shift)A 

Affected Basic abbreviations: None 

Token: Hex $EE,$~5 Decimal 238,5 

Modes: Direct and program 

Recommended mode: Direct 

CONVERT LINE NUMBER 
TO ASCII STRING 

; COpy ASCII 
; STF:ING INTO I:YBD 
; BUFFER 

AND A SPACE 

NUMf?Er< OF CHARS IN 
BUFFER 

Purpose: To display the directory (CATALOG) of a disk in drive unit eight. 
This command will display the directory straight to the screen without having to 
load it in. Users of dual disk drives will be pleased to note that you can specify 
which drive to display by either a number one or zero after the command. If no 
number is specified,. the routine will default to drive zero. 

Syntax: CATALOG [~ or I] 

Errors: Syntax error - if the command CATALOG is followed by 
anything but ~, 1:, or nothing 

Disk error message - after the CATALOG has been dis
played, the disk error channel is read 
and displayed 

Use: The command is used to display the directory of a disk. This can be useful 
if you have a program that you wish to save but need to check if there is room on 
the disk or find a filename to use. The directory can be paused when displaying 
by use of the spacebar, and restarted with any key. Display can be stopped 
completely with the STOP key. 



134 Advanced Commodore 64 BASIC Revealed 

Routine entry point: $85B6 

Routine operation: On entry, the routine checks to see if a drive number is 
specified. If no number is specified or '~', the character '~' is inserted into the 
filename after the '$'. If it is a 'I', the character' I' is inserted. Anything else will 
cause a Syntax error. The file is then opened and each line is read in and 
displayed ignoring line links. When the directory is finished, the file is closed 
and the disk error channel is read. 

LOC CODE LINE 

85B6 
851:'.6 
85B8 
85M 
85e-C 
85BF. 
85C0 
85C3 
85C5 
85C6 
85C8 
85CB 
85CO 
8SCF 
8501 
850/• 
8506 
8509 
8501:'. 
8500 
85E0 
85E3 
85E5 
85E6 
85E8 
85H 
85EC 
85EF 
85EF 
85F1 
85F3 
85F5 
85F8 
85Fe-
85FO 
8600 
8602 
8605 
8607 
860A 
860C 
860E 
860F 
8611 
8613 
8616 
8617 
861A 
8611:'. 
861C 
861E 
8620 

F0 0B 
C9 30 
F0 07 
C9 31 
F0 06 
4C 08 AF 
A9 30 
2C 
A9 31 
80 83 86 
A9 02 
A2 82 
A0 86 
20 e-o FF 
A9 0E 
20 A3 8A 
A2 08 
A0 00 
20 BA FF 
20 C0 FF 
90 0A 
48 
A5 e-8 
20 C3 FF 
68 
4C F9 E0 

A0 03 
84 e-7 
A6 e-8 
20 C6 FF 
20 CF FF 
85 57 
20 B7 FF 
00 72 
20 CF FF 
85 58 
20 87 FF 
00 68 
A4 1:'.7 
88 
00 E0 
84 B7 
20 CF FF 
48 
20 e-7 FF 
AA 
68 
E0 00 
00 54 
A4 B7 

• LIB CATALOG 
CATLOG e-EQ CATL01 

CMF' 11$30 
BEQ CATLvl 
CMF' 11$31 
BEQ CATL02 
JMP '!>AF08 

CATl01 LOA 11$30 
.BYT $2C 

CATL02 LOA IIS31 
STA OPOIR+1 
lOA IIS02 
LOX II<OF-OIR 
LOY II>OPOIR 
JSR SFFlm 
LOA 1I$0E 
JSR GETN1 
LOX "S08 
LOY I/S00 
JSR SFFBA 
JSR $FFC0 
e.cc CATL03 
PHA 

, 

LOA $e.8 
JSR $FFC3 
f'lA 
JMP $E0F9 

CATL03 LOY IIS03 
CATl04 STY $e.7 

LOX $B8 
JSR $FFC6 
JSR SFFCF 
STA $57 
JSR SFF87 
BNE CATL13 
JSR $FFCF 
STA S57+1 
JSR $FFe-7 
BNE CATL13 
LOY $P..7 
DEY 

CATL05 e-NE CATL04 
STY $e-7 

CATL06 JSR $FFCF 
PHA 
JSR $FFe-? 
TAX 
PLA 
CPX 11$00 
BNE CATL13 
LDY te-7 

;ORIVE 0 
;IS IT 0? 
·YES 
;IS !T 1? 
;YES 
;SYNTAX ERROR 

;CHAR '0' 

;CHAR '1' 
;STORE IN STRING 
;LENGTH 
;AOORESS LSe
;MSB 
;SET FILENAME DETAILS 

;GET UNUSED FIlEIi 
;OEVICE 8 
-SA 0 
;SET FILE DETAILS 
;OPEN FILE 
;NO ERROR 
;STORE ERROR 
;GET FILE II 
;ClOSE FILE 
;GET ERROR 
;SEND ERROR 

;SET lNPUT DEVICE 
;INPlJT 
;STORE VALUE 
;GET STATUS 
;STATUS ERROR 
;INf'UT 
-STORE IT 
;Gn STATUS 
;STATUS ERROR 
;GET COUNTER 
;00 NEXT 

;sn $B7 TO ZERO 
;INPUT 
STor(E IT 
GET STATUS 
STor<E TO X 
GET INPUT CHAR 
WAS THERE AN ERROR? 
YES 
GET LENGTH 



Extended BASIC - A Complete Package 

LOC CODE LINE 

3622 C0 50 CPY 1/$50 
8624 B0 4E Bes CATL13 
8626 99 00 02 STA $0200,Y 
8629 AA TAX 
862A F0 0', E'.EO CATL07 
862C E6 B7 INC $B7 
862E 00 E3 [,.NE CATL06 
8630 , 
8630 20 CC FF CATLe7 JSR $FFCC 
8633 A6 9F LOX $9F 
8635 E0 03 CF'X 11$03 
8637 F0 05 BEO CATL08 
8639 A6 9E LOX $9E 
863B 20 C9 FF JSR $FFC9 
863E A6 57 CATL08 LOX $57 
86 /,0 A5 58 LOA $57+1 
8642 20 CD E'.O JSR $BOCO 
86',5 A9 20 LOfl 11$20 
8647 20 02 FF JSR $FF02 
86',A A0 00 LOY 11$00 
864C E'.9 00 02 CATL09 LOA $0200,Y 
864F F0 06 ['HI CATL10 
8651 20 02 FF JSR $FF02 
8654 C8 INY 
8655 00 F5 BNE CATL09 
8657 A9 00 CATLl0 LOA 11$00 
8659 20 02 FF JSR $FF02 
865C 20 CC FF JSR $FFCC 
865F 20 E1 FF JSR $FFE1 
8662 F0 10 (,.EO CATL13 
8664 20 E4 FF JSR $FFE', 
8667 C9 20 CMF' 11$20 
8669 00 05 [,.NE CATL12 
866B 20 E4 FF CATLl1 JSR $FFE4 
866E F0 F['. [,.EO CATL11 
8670 A0 02 CATL12 LOY 11$02 
8672 00 9B [,.NE CATL05 
8674 20 CC FF CATLl3 JSR $FFCC 
8677 A5 E'.8 LOA $B8 
8679 20 C3 FF JSR $FFC3 
867e 20 55 8A JSR OISI(01 
867F 4C 74 A4 JMF' $A'o 74 
8682 24 30 OF'OIR .[>'YT '$0' 
8684 .ENO 

CHAIN 

Abbreviated entry: CHA(shift)I 

Affected Basic abbreviations: None 

Token: Hex $EE,$~7 Decimal 238,7 

Modes: Direct and program 

Recommended mode: Either 

;TOO LONG? 
;YES, ERRor, 
;STORE CHARACTER 

; END OF LINE 
;00 NEXT CHAR 
;ALWAYS 

;RESET DEFAULT IO 

;SET OUTPUT DEVICE 

; F'r\lNT FILE LENGTH 
;SF'f>CE CHAR 
;PRINT IT 

;GET CHAR 
;ENO OF LINE 
; F'R I NT CHAr, 

; DO NEXT LINE 
;CARRIAGE RETURN 

;F'RINT IT 
;RESET DEFAULT 10 
; STOP I(EY? 
;YES 
;GET I(EY 
;SF'ACE? 
;NO 

;GET I(EY 
;NO I(EY 

;00 NEXT LINE 
;RESET DEFAULT 10 

;GET FILE NUMBER 
;CLOSE FILE 

;JUMF' TO READY VIA ERROR 
;FILE OF'EN NAME 

135 

Purpose: To load and run a Basic program from tape or disk. After the 



136 Advanced Commodore 64 BASIC Revealed 

program has been loaded, variable pointers are set to the end of the program. 

Syntax: As in LOAD 

Errors: As in LOAD 

Use: CHAIN is used to load and run a Basic program. It will work from 
another program or in direct mode, having the same effect. If used from another 
program, it is more convenient than LOAD as LOAD does not set the variable 
pointers, and if the program you load is larger than the one in memory, when 
variables are used they will corrupt the end of the program. 

Routine entry point: $8684 

Routine operation: The CHAIN routine simulates the LOAD routine as far as 
the program has been loaded. From there variable pointers are set to the end of 
LOAD, the run mode flag is set, and then three operations cause the program to 
run: 

JSR $A65E ;perform CLR 
JSR $A68E ;set charget pointers to the start of program 
JMP $A7AE ;execute NEXT command 

LOC CODE LINE 

8684 .LIB CHAIN 
868'. 20 D'. E1 CHAIN JSR $E1D4 ;GET NAME 
8687 A9 00 LDA "$00 
8689 85 B9 STA $B9 ;SECONDARY ADDRESS=0 
86BB A6 2B LDX $2B 
868D A4 2C LDY $2C ;ADDRESS TO LOAD AT 
868F 20 D5 FF Jsr, $FFD5 ;LOAD IT 
8692 B0 21 BCS CHAIN1 ;LOAD WAS NOT O.K. 
869'. 86 20 STX $2D ;SAVE END OF LOAD 
8696 86 2F STX $2F ; ADDRESS IN VARIABLE 
8698 86 31 STX $31 ; PO I NTEf,S 
869A 8'. 2E STY $2E 
869C 84 30 STY $30 
869E 8'. 32 STY $32 
86A0 A9 00 LOA 11$00 ;PRINT CR 
86A2 20 D2 FF JSR $FFD2 
86A5 A9 00 LOA 11$00 ; SET TO RUN 
86A7 85 9D SHI $9D 
86A9 80 24 9D STA REPESI( ;CLEAf, REPEAT STACK 
86AC 20 5E A6 JSR $A65E ;CLR 
86AF 20 8E A6 JSR $A68E ;SET CHARGET POINTEr:: 
86B2 4C AE A7 JMP $A7AE ;RUN 
86r.S 4C F9 (0 CHAIN1 JMF· $E~F9 ; SEND ERRDr, MESSAGE 
86B8 .END 

CHANGE 

Abbreviated entry: C(shift)H 

Affected Basic abbreviations: CHR$ - CH(shift)R 



Extended BASIC - A Complete Package 137 

Token: Hex $EE,$~6 Decimal 238,6 

Modes: Direct and program 

Recommended mode: Direct only 

Purpose: To change all occurrences of a string or command to something else. 
Each line that is changed is listed if there is anything left to list. 

Syntax: CHANGE dstrlddstr2d - where d is a delimiter character that does 
not appear in either of the strings (str! or str2). 

Errors: Syntax error - if the format is not as above 
String too long - if either str I or str2 are longer than 4~ characters 

Use: CHANGE has a number of uses. An example would be: 

CHANGE @PRINT@@PRINT#4,@ 

to change all occurrences of PRINT to PRINT#4, or: 

CHANGE "PRINT""PRINT#4," 

which will change all occurrences of the text PRINT to the text PRINT#4. 
Note: Not all delimeter characters will work in all cases. An example is: 

CHANGE /REM// / 

As the character' /' has two values, the first is the token for divide and the second 
is just the ASCII slash character. 

The same is true of DATA. Other characters that will have the same effect are: 
'+-*f=<>'. 
Routine entry point: $86BB 

Routine operation: CHANGE uses most of the FIND routines to find str I and 
list the line. 

CHANGE reads in the delimiter byte and stores it away. The string to be 
changed is then read in until the second delimiter character is reached and then 
stored away. The next character is checked to see that it equals the delimiter 
character, and if so the string to change to is read in until the delimiter character 
is found again or the end of command. The rest of the routine is just a loop 
finding all occurrences, changing them and listing until the end of the program. 

The actual routine that changes the string uses the Basic input buffer and the 
Basic routines to change a line. The routine copies the line up to str I into the 
buffer, the change string (str2) is then copied to the buffer and the remainder of 
the line is copied over. The pointers are then set so that the next byte to check is 
the one following str2. 

LOC COD£ LINE 

86~.8 
86~·8 20 F3 8(, 
86~.~. 20 91 8E 

. LIB CHANGE 
CHANGE JSR RESVAR 

Jsr( FIND14 
;RESET LINE LINKS 

;GET CURRENT CHAR 



138 Advanced Commodore 64 BASIC Revealed 

L.OC l.0r" LINE 

86f?·F 85 59 STA $59 ;STORE IN FLAG 
86C0 A2 00 L.DX 11*00 
86C2 20 C7 80 JSR FIN003 ;GET SEARCH STRING 
86C5 1'12 00 LDX 1\$00 
S,sC7 20 22 87 JSr, CHAN07 ;GET STRING TO CHANGE 
86CA 86 FC STX $FC ; STor,E LENGTH OF CHANGE STrONG 
86CC 20 E5 8D .JSR FIND05 :SETUF' POINTERS 
86CF 78 SEI 
8600 AD 00 03 LOA $0300 
86D3 8D CF 8E STA FINDER 
86D6 AD 01 03 LOA $0301 
8bD9 80 D0 8E STA FINOEH+l 
86DC 1'19 67 LOA II<FIND11 ; ERROr.: L IW: TO RTS 
86D[ 80 00 03 STA $0300 
86El 1'19 8E LDA II>FINDll 
8bE3 80 01 03 STA $0301 
86E6 58 CLI 
86E7 20 F3 80 JSF: FIND06 ; FIND STRING 
86EA 4C F6 86 CHAN01 .JMP CHAN03 ;CHANGE 
86EO 20 68 8E CHAN02 JSH FIND12 ;LIST LINE 
86F0 20 F9 80 JSR FIN007 ;FIND STRING 
86F3 I.C EA 8b JMF' CHAN01 ; AND HEr'EAT 
86F6 , 
86F6 (~5 FC CHAN03 LDA $FC ;LENGTH OF CHANGE Sf RING 
86F8 38 SEC 
8bF9 F"" .,J 22 sr.c $22 , LENGTH OF FIND 
86FI? F0 03 enl CHAN0 /• ; THEY ARE EQUAL 
86FD I.C 48 87 JMF' CHAN10 ;ELSE CHANGE SIZE 
8700 A'. 23 CHAN0 /• LOY $23 ;INOEX TO LINE 
8702 1'12 1.0 LOX 11$40 ; INDEX TO CHANGE STF:ING 
8704 1'15 01 LOA $01 
8706 29 FE AND II$FE lOUT BASIC ROM 
8708 85 01 STA $01 
8701'1 E.>.D 40 f'.F CHAN05 LDA $BF40,X ;GE.T CHANGE CHAr, 
8700 F0 07 P..EQ CHAN06 ;ENO OF STRING 
870F 91 57 STA ($57),Y ; r,EF'LACE CHAH 
8711 E8 INX ;NEXT CHAR 
8712 CB INY ;NEXT BYTE 
8713 4C 01'1 87 ,JMF' CHAN05 ;I'1NO AGAIN 
8716 A5 01 CHAN06 LOA $01 
8718 09 01 OHA 1I~01 ;IN P..f~S I C ROM 
8711'1 85 01 STA $01 
87lC 88 DEY 
871D 8 /• 23 STY $23 ;STOr.:E LINE INDEX 
871F '.c ED 86 JMP CHAN02 ;DO NEXT FIND 
8722 , 
8722 20 8P.. 8E CHAN07 JSF: FIND13 ;GFT NEXT CHAr, 
8725 C5 59 CMP $59 :IS II THE FLAG" 
8727 F0 03 p..[O CHMl08 ;YES, GET STRING 
8729 I.e 08 AF .JMP $M'0!3 
872C 20 8f'. 8E CHAN08 JSI( FIN013 ;GET NEXT CHAr, 
872F F0 11 BED CHAN09 ;END OF LINE 
8731 C" " 59 CMf" <f59 :END OF ~mnNG? 
8 T.33 F0 00 BED CHAN09 ; YE', 
8735 9D 8~ ['.F STA tE!.F80,>: : 'nm;:E CHM;: 
8738 E8 INX 
8739 Ee" 40 CF'X «$40 ; STfn tIC; rno LONe;? 
873P.. 00 EF BNE CHAN08 :NO 
873D Fl2 17 LOX 11$17 ;STRING TOO LONG 
873F ftC 3} f~4 Jr'lF" *'1'1 /037 ;Ol'TPUT ERROF: 
87'.2 (19 00 CHAN09 LDA 11$00 ;SlRING Tn,MINATOt, 
87 /.'. 9fJ 80 BF SIrI $BF80,X ;STDr;.E IT 
8747 60 ras 
87'.8 , 
El7 /.El 1'10 00 CHANl.0 LDY 11$00 



Extended BASIC - A Complete Package 139 

LOC CODE LINE 

87 1dl In 57 LOA ($57). Y ;GET LINEII LO 
874C 85 14 STf~ $1.4 ; STor<E IT 
87/,E C8 INY 
874F Bl 57 LOA ($57). Y ;GET LINEIt HI 
8751 85 15 STA $15 ;STORE IT 
8753 A2 00 LOX 11$00 
8755 C8 CHANll INY 
8756 C4 23 CPY $23 ;REACHED STRING? 
8758 F0 0A BED CHAN12 ;YES, INSERT IT 
875', IH 57 LOA ($57),Y ;GET PROGRAM BYTE 
875C 90 00 02 STA $0200,X ;STORE IN BUFFER 
875F E8 INX 
8760 E0 56 CPX U56 ;BUFFER TOO LARGE? 
8762 00 Fl BNE CHAN11 ;NOT YET 
8761, AS 01 CHAN12 LOA $01 
8766 29 FE AND !I$FE ;OUT BASIC ROM 
8768 85 01 STA $01 
876A A0 00 LOY !I$00 
876C B9 80 BF CHAN13 LOA $e.F80, Y ;GET CHANGE STRING BYTE 
876F F0 09 BED CHAN14 ; END OF STr<ING 
8771 90 00 02 STA '$0200,X ;STORE IN BUFFER 
8774 E8 INX ;NEXT CHAR 
8775 C8 INY ;AND PROGRAM BYTE 
8776 E0 57 CPX 11$57 ; END OF I'.UFFER? 
8778 00 F2 e.NE CHAN13 ;NO 
877A A5 01 CHAN14 LOA '$01 
877C 09 01 ORA 11$01 ;IN !?ASIC ROM 
8T7~ 85 01 STA $01 
8780 A5 23 LOA ~23 ;CALCULATE START 
8782 18 CLC ;OF REST OF PROGRAM LINF 
8783 65 22 ADC $22 ;AFTER INSERTING THE 
8785 A8 TAY ; CHANGE STRINli 
8786 A5 23 LOA $23 
8788 18 CLC 
8789 65 FC ADC $FC 
8781'. 85 23 STA $23 
8780 C6 23 DEC $23 
878F B1 57 CHAN15 LOA ($57), Y ;GET PROGRAM BYTE 
8791 90 00 02 STA $0200,X ;STORE IN BUFFER 
8794 C8 INY ;NEXT BYTE 
8795 E8 INX ;NEXT CHAR 
8796 C9 00 CMF' 11$00 ;END OF LINE? 
8798 F0 0A BEQ CHAN16 ;YES 
879A E0 58 CPX ",*58 ;END OF BUFFER? 
879C 00 F1 e·NE CHAN15 ;NOT YET 
879E A9 00 LDA 11$00 ;ZERO IF END OF BUFFER 
87Ae 90 00 02 STA $0200,X ;STORE IT 
87A3 E8 INX 
87A4 8E FC 87 CHAN16 STX CHANLN ;STORE LENGTH OF 
87A7 8A TXA ; LINE 
B7AB 18 CLC 
87A9 69 04 AOC 11$04 
87AB 85 01'. STA $0e. 
BlI)!) AD 02 03 LOA $0302 
87B0 80 FD 87 STA CHANST 
871.'.3 AD 03 03 LOA $0303 
871.'.6 80 FE 87 STA CHANST+1 
87B9 A9 CB LOA It<CHAN17 ;BASIC WARM START 
87BB 80 02 03 STA $0302 ;RE-ENTRY POINT 
871:'.[ A9 87 LOA !I>CHAN17 
87C0 80 03 03 STA $0303 
87C3 20 96 BE JSR FIND15 SAVE POINTERS ETC 
87C6 A4 0B LOY $0B GET POINTER 
87C8 4C AI, A4 JMP $A4A4 INSERT PROGRAM LINE 
87CB AD FD 87 CHAN17 LOA CHANST ;RESTORE WARM START I)ECTOR 



140 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

87eE 80 02 03 STA $0302 
8701 AD FE 87 '_OA CHM1ST ~1 
87D4 80 03 03 STA $0303 
87D7 20 B0 8E JSR FlND16 
870A A5 57 L.OA $57 
870C C5 20 CMP $20 
870E 00 06 BNE CHAN18 
87E0 A5 58 LOf' $58 
87E2 C5 2E CMF' $2E 
87104 F0 13 BEQ CHAN20 
87E6 AD FC 87 CHAN18 LOA CHANLN 
87E9 C9 01 eMF' 11$01 
87E!'. F0 03 !'.EQ CHAN19 
87ED I,C to 86 JMF' CHAN02 
87F0 A0 02 CHf~N19 LDY 11$02 
87F2 84 23 STY $23 
87F4 A2 00 LOX 11$00 
87F6 ',c F0 86 JMP CHAN02+3 
87F9 4C 56 8E CHAN20 JMF' FIN010 
87FC 00 CHANLN .lnT 0 
87FD .00 00 CHANST .WOR 0 
87FF .END 

CRUNCH 

Abbreviated entry: C(shift)R 

Affected Basic abbreviations: None 

Token: Hex $EE,$~8 Decimal 238,8 

Modes: Direct and program 

Recommended mode: Direct 

;RESTORE POINTERS ETC 
;L.AST LINE? 

;NOT YET 

;YES 
;DID WE DELETE 

;WHOLE LINE? 
;YES 
;NO, LIST AND DO NEXT 

: INDEX TO NEXT LINE 

;DO NEXT WITHOUT LIST 
;EXIT CHANGE 

Purpose: To remove all occurrences of REM in a program and so reduce the 
size of the program. 

Syntax: CRUNCH 

Errors: None 

Use: CRUNCH is used to remove REM statements and anything following 
them on the same line. lfthe REM is in the first or second position of the line, a 
colon is left on the line in case there is a GOTO or GOSUB to that line. 

Routine entry point: $87FF 

Routine operation: The Basic program is scanned line by line, byte by byte, 
until the REM token is found. If REM is found in either the first or second byte 
of the program then a colon is put into the input buffer. Otherwise the whole line 
up to the REM is copied into the buffer and the Basic routine is used to alter the 
line. A '.' character is printed to tell you that it has found a REM token. 



Extended BASIC - A Complete Package 141 

c.JC CODE L I j~~E 

87FF .LIE>. CRUNCH 
87FF 20 33 A5 CRUNCH JSR $A533 ;F:E-CH,HN LINES 
8802 AS 2P.· LOA 52B ;GET START OF BASIC 
880'. 85 FB STA $Ff'. ; AND STORE IN TEMP 
880t. A5 2C LOA 52C ; LOCATIONS FOR THE 
8808 85 FC STA $FC ; USE OF THIS ROUTINE 
880A , 
880A 20 El FF CRUN01 JSR $FFEl ;STOP f(EY? 
8800 F0 09 P..EQ CRUN02 ;YES 
880F A0 00 LOY 11$00 ;MAIN CRUNCH LOOP 
8811 P.·l FB LDA ($FB), Y ; NEXT LI NE l.O 
8813 C8 INY 
8814 11 FP.· ORA (fFB),Y ;NEXT LINE HI 
8816 00 03 BNE CRUN03 ;NOT END OF PROG 
8818 4C 7'. A'. CRUN02 JMF' SA474 ;' READY. ' 
8Blf'. , 
88lB C8 CRUN03 INY ; GET LI NE NUMBER 
88le Bl FB LOA ($FB), Y ;LO 
8B1E 85 14 STf~ $1'. ;LINEII LO 
882(;1 C8 INY 
8821 Bl FE? LDA ($FE>') , Y ;HI 
8823 85 15 STA $15 ;LINEII HI 
8825 
8825 C8 CRUN04 INY 
8826 Bl FP.. LOA ($FE?), Y ;NEXT BYTE OF LINE 
8828 C9 8F CMP 1I$8F ; REM T()f(EN? 
882A F0 28 BEQ CRUN09 ;YES, REMOVE REM 
882C C9 00 CMF' 11$00 ; END OF LI NE? 
882E 00 0E P.·NE CHIN06 ;NOT YET 
8830 A0 00 CRUN05 L::lY 11$00 ;GET POINTERS TO 
8832 Bl FE'. LDA (5FB), Y NEXT LINE AND 
883~. AA TAX ; STORE 
8835 C8 INY ; IN F'OINTER 
8836 P..l FE'. LOA ($FB).Y 
8838 85 FC STA src 
883A 86 FE'. STX $FB 
883C 00 CC P..NE crWN01 ;ALWAYS 
883E , 
883E C9 EE crWN06 CMF' II$EE ; TOI(EN? 
88'.0 00 03 BNE CRUN07 ;NO 
8842 C8 INY 
88'.3 D0 E0 P..NE CRlIN0'. ;SCAN OTHER HALF 
88'.5 C9 22 CRUN07 CMF' 11$22 ;QUOTES? 
8847 00 DC BNE CRUN04 ;NO 
8849 C8 CfWN08 INY : YES, SCAN TO 
884A Bl FB LOA ($FB), Y 
884C F0 E2 BEQ CfWN05 : END OF LINE 
884E C9 22 CMF' 11$22 ; OR ANOTHER QUOTE? 
8850 F0 D3 BEQ CfWN0'. ;YES 
8852 00 F5 P..NE CRUN0B ;NO, AUJAY!3 
8854 , 
8854 84 02 CRUN09 STY $02 ;STORE orF INDEX TO LINE 
B856 C0 06 CP'( 11$06 ION 1ST OR 2ND F'OS? 
8858 90 10 E~CC CfWNl1 ;YES 
885,~ C6 02 DEC $02 ;COPY LINE TO REM INTO 
B85C A0 04 LD'y 11$0'. ; HWUT BUFFER 
885E P.·l FE'. CRUNl0 LDA ($FB).Y 
8860 99 FC 01 STA $01FC,Y 
8863 C8 INY 
8864 C4 02 (TY 102 ; RU,CHLD f;'EM? 
8866 00 F6 P.NE CRUNl0 :NO 
8868 F0 07 P..EQ CRUNl.2 ; ALWAYS, CHAtJGE 
886A , 
886A A9 3fl CRUN11 LDA 1l$3A ;F'UT ':' AT START OF LINE 
8B6C 80 00 02 ST A $020~) ; INTO INPUT BUFFER 



142 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

886F A0 05 LOY 1**05 
8871 A9 00 CRUN12 LOA 11$00 
8873 99 Fe 01 STA $01FC,Y 
8876 C8 INY 
8877 84 0Po STY $01'. 
887'i A? 95 LDA II<CRUN13 
8871'. 80 02 03 STA $0302 
887E A9 88 LDA II.>CRUN13 
8880 80 03 03 S1 A $0303 
8883 A5 FE'. LOA $ FE'. 
8885 80 34 03 STA $0334 
8888 A5 FC LOA $FC 
888r~ 80 35 03 STA $0335 
8880 A9 2E LOA 1I$2E 
888F 20 O~) FF JSR $FFD2 
8892 4C A4 A4 JMF' $A4A', 
8895 , 
88$'5 A9 83 CRUN13 LOA 11$83 
8897 80 02 03 STA $0302 
889A A9 A', LOA 1I$A4 
88?C 8D 03 03 ST/~ $0303 
B89F AD 3', 03 LOA $0334 
88A2 85 F~. S Tt, $FI'. 
88A', AD ~" ~'" 03 LOA $033:) 
88A7 85 FC STA $FC 
B8A? D0 85 I'.NE CRUN05 
S8AI? .END 

Abbreviated entry: C(shift)T 

Affected Basic abbreviations: None 

Token: Hex $EE,$~2 Decimal 238,2 

; AND INSERT IT 
; SET ZEF:O TERMINATOR 

;RETURN FROM CHANGE 

;STORE LINE POINTER 

;TELL USER WE ARE 
;DOING SOMETHING 
;CHANGE 

;TO HERE FROM CHANGE 
;RESET WARM START 
; F'OINTEf( 

; RESTOr.:E LINE F'OINTEr( 

;ALWAYS, NEXT LINE 

Modes: Direct, program, and in PRINT statements 

Purpose: To replace cursor and colour characters, screen and border pokes, 
thus improving the ability to position the cursor anywhere on the screen. If the 
value is not specified, the current value is used. 

Syntax: CTL ([x][,[y][,[cc][,[sc][,[bc][,[cls]]]]]]) - where x is the column 
position of the cursor (~-39), y is the row position of the cursor (~-24), cc is the 
cursor colour, sc the screen colour, bc is the border colour (~-15), and cls is a 
flag for clearing the screen (~ = no, I = yes). 

Errors: Syntax error - if the syntax is not as above 
Illegal quantity - if the values are out of range 

Use: CTL is a powerful screen handling routine. Cursor, screen, and border 
colours can be set with a number (~-15), and the position of the cursor on the 
screen can be anywhere you like by entering the x position (~-39) and the y 
position (~-24). There is also a screen clear flag which, ifset to I, will clear the 



Extended BASIC - A Complete Package 143 

screen before positioning the cursor. To make it easier to describe, here are a few 
examples with details of what they do. 

CTL (2~) - positions the cursor at the middle of the current line 
CTL (~,~) - moves the cursor to ~,~ (home position) 
CTL (" I) - sets the cursor color to white 
CTL (",~) - sets the screen colour to black 
CTL (",,~) - sets the border colour to black 
CTL ("", I) - clears the screen leaving the cursor at the current 
position 
CTL (2~,I2,5,~,II,I) - clears the screen (I), sets the screen to 
black (~), the border to medium grey (II), the cursor colour to 
green (5), and the cursor position to column 2~, row 12. 

To print something at a specified location on the screen: 

PRINT CTL(x,y)"text"CTL(x I,yI)"more text" ..... 

Routine entry point: $88AB 

Routine operation: The current settings ofthe five parameters are read and the 
screen clear flag is set to~. The open brackets character is scanned past and each 
of the six values is read if present, checking to see if there is a closing bracket. 
When the closing bracket is found the screen is cleared ifthe flag is set to I, and 
the other values are stored in their own locations. 

LOC CODE LINE 

88AB .LIB CTl 
8SAB 20 2C 89 CTl .JSR CTlDEF ; SET OEFAUl T 
BaAE 20 FA AE JSR $AEFA ;SCAN ' ( , 
8BBl 20 79 00 JSR $0079 ;GET CURRENT CHAR 
88P..4 20 51 89 JSR CHECI(N+3 ;NEXT PAR? 
89['.7 B0 08 I?CS CTl01 ;NO 
88B9 20 65 89 JSR GVl ;GET VALUE 
88BC 8E 8F 89 STX CTXPOS ;STORE IT 
881?F 1?0 't2 BCS CTlEN1 ;FOllOWEO BY , ) , 
88C! 20 4E 89 CTl01 JSR CHECI(N ;NEXT PAR? 
88C4 1?0 08 BCS CTl02 ;NO 
88C6 20 6E 89 JSR GI)II ;GET VALUE 
88C9 8E 90 89 STX CTYPOS ;STORE IT 
88CC B0 35 BCS CTlENl ;FOllOWED BY , ) , 
88CE 20 4E 89 CTl02 JSR CHECI(N ;NEXT PAR? 
8801 B0 08 I?CS CTl03 ;NO 
8803 20 68 89 JSR GI)2 ;GET VALUE 
8806 8E 91 89 STX CTCUR ;STORE IT 
8809 B0 28 BCS CTlEN! ;FOllOWEO BY , ) , 
880B 20 4E 89 CTl03 JSR CHECKN ;NEXT PAR? 
880E B0 08 BCS CTl04 NO 
88E0 20 68 89 JSR GV2 GET VALUE 
88E3 BE 92 89 STX CTSC STORE IT 
88E6 B0 ll? BCS CTlEN! FOLLOWED BY , ) , 
88EB 20 4E 89 CTL04 JSR CliECf(N ;NEXT PAR? 
88EB B0 08 I?CS CTL05 NO 
88ED 20 68 89 JSR GV2 GET VALUE 
88F0 BE 93 B9 STX CTM STORE IT 
88F3 1!·0 0E f.CS CTLEN1 FOLLOWED I!.y , ) , 



144 Advanced Commodore 64 BASIC Revealed 

LOC COOE LINE 

88F5 20 4E 89 CTL05 JSR CHECI:N i NEXT PAR? 
88F8 90 03 BCC CTL06 ;YES 
88FA 4C 08 AF JMP $AF08 ;COMMA, SYNTAX ERROR 
88FO 20 6E!. 89 CTL06 JSR GV3 ; GET VALUE 
8900 8E 94 89 STX CTCFLG ;STORE IT 
8903 20 F7 AE CTLENl JSR $AEF7 ;SCAN ' ) , 
8906 , 
8906 AO 9', 89 CTLENO LOA CTCFLG ;CLEAR SCREEN? 
8909 F0 05 BEQ CTENOl ;NO 
890B A9 93 LOA 1*147 ;CHAR FOR CLS 
8900 20 16 E7 J5R $E716 ;OUTPUT TO SCREEN 
8910 AD 91 89 CTEN01 LOA CTClIR ;GET cur,SOR COLour, 
8913 80 86 02 STA $02&6 ;sn IT 
89J.6 AO n 89 LOA CTSC ; GET scr,EEN COLour, 
8919 80 21 00 STA $0021 ;SET 1"1 
891C AO 93 89 LOA enD ;8ET BormER COLOlm 
891F 80 20 00 STA $0020 ;SET IT 
8922 AC 8F 89 LDY CTXF'OS ;GET X POSITION 
8925 AE 90 89 LDX eTYF'OS ;GET '( POSITION 
8928 18 CLC ;FLAG WRITE 
892'7 4C F0 FF JMP $FFF0 ;SET cur,SOR POS AND EXIT 
892C , 
892C 38 CTLDEF SEC ;FLAG PEAO 
892D 20 F0 FF JSR $FFF0 ;GET cur,SOF: POS 
8930 8C 8F 89 STY CTXPOS ;STORE X 
8933 8E 90 89 STX CTYF'OS ; STOF:E Y 
8936 AD' 21 00 LO,) $D021 ;GET SCREEN COLOUR 
8939 80 92 B9 STA Clse ; SlOF:E IT 
893C AD 20 1)0 LOt~ $0020 ;GET BClF:OER COLOUR 
893F 80 93 89 STA CTBD ;STOHE IT 
8942 .... 0 86 02 LOA $0286 ;GET CURSOR COLOUR 
8945 80 91 89 C:TA CTCUR ;STOHE IT 
89 1.8 A9 00 LOr, 11$00 ;ZERO SCREEN CLEAR 894A BD 94 89 STA CTCFLG ;FLAG 
894D 60 RTS 
894E 

CHECI:N B94E 20 73 00 JSR $0073 ; GET NEXl OlAr, 
8951 C9 2C eMP 1I$2C ;IS n A COMMA? 
8953 D0 02 BNE CHEClm ;NO 
8955 38 CHECI:S SEC ;FLAG FOR COMMA 
8956 60 RTS 
8957 C? 29 CHECKB CMF' 11$29 ;IS IT ') '? 
8959 F0 02 BEQ CHECI:A ;YES, DONE 
895B 18 CHECf:C CLC ;SET NO COMMA 
895C 60 RTS 
8950 68 CHECf:A PLA ;REMOVE RTS 
895E 68 F'LA ;AOOHESS 
895F 20 73 00 JSR $0073 :GET NEXT CHAR 
B962 4C 06 89 JMF' CTLEND ; SET VALUES 
8965 , 
8965 A9 28 GV1 LDA "40 ;COMPARE X POS 
8967 2C .BYT $2C ~Sf:IF' 
8968 A9 10 GV2 LOA "16 ;COMPARE COLOllR 
896A 2C .BYT $2C ;Sf:IP 
896B A9 02 GV3 LDA 112 ; COMPAr,E CLEAR FLAG 
8960 2C .BYT $2C ;SKIP 
896E A9 19 G'J4 LDA "25 ;COr1PAr,E Y POS 
8'J70 8D 8E 89 STA VCOMP ;STOR[ COMr'ARE VALUE 
8973 20 9E B7 JSF~ $B79E ; GET 1 BYTEII 
8976 EC 8E 89 CPX I)COMP ;IN RANGE 0-(t)COMP-l ) 
8979 B0 0E Bes GERH ;NO 
8?7B 20 79 00 J%: $0079 ;GET CURRENT CHAR 
897E C9 29 CMP "$29 ;IS IT ') , 
8980 F0 D3 BEQ CHECI(S ;YES, FLAG END 
8""82 C9 2C CMF' 1112C ;IS IT , , , 



Extended BASIC - A Complete Package 

LOC CODE LINE 

898'. F0 D5 BEG CHECf(C 
8986 '.C 08 AF JMP $AF08 
8989 (12 0E GERR LOX 1I$0E 
898B '.c 37 A4 JMF' $A437 
899E , 
898E 00 VCOMF' · Bn 0 
898F 00 CTXPOS .p..n 0 
8990 00 CTYF'OS .EWT 0 
8991 00 CTCUR · Bn 0 
8992 00 CTSC .Bn 0 
8993 00 CTBD · Bn 0 
8994 00 CTCFLG · Bn 0 
8995 .END 

DEEK 

Abbreviated entry: D(shift)E 

Affected Basic abbreviations: DEF - DEF 

Token: Hex $EE,$lD Decimal 238,29 

Modes: Direct and program 

Recommended mode: Either 

;YES FLAG ANOTHER 
;SYNTAX ERROF( 

;ILLEGAL QUANTITY 
;SENO ERROR 

;VALUE COMf'Ar\E 
;X POSI nON 
;Y POSITION 
;CURSOR COLOUR 
;SCREEN COLOUH 
;BOROER COLOUR 
;CLEAH SCREEN FLAG 

145 

Purpose: To return the value of a two byte pointer that is stored lo,hi order. 

Syntax: DEEK (expression) - where expression is the address of the low byte of 
the number. 

Errors: Syntax error 
Illegal quantity - if the expression is less than ~ or greater 

than 65535 

Use: DEEK stands for Double byte pEEK and is used to get a two byte value 
stored in the 651 ~ microprocessor's internal two byte format, e.g. 

DEEK(43) - returns the beginning of Basic 
PEEK( 43)+ PEEK( 44)*256 - is the normal way of getting the: value 

Note: DEEK must be on the right-hand side of an expression e.g. 
B=DEEK(43) and not DEEK(43)=B. 

Routine entry point: $8995 

Routine operation: The two byte address inside the brackets is read in and 
stored in $14,$15. Using this value the bytes are read and converted to floating 
point form. 



146 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

8995 .LIB OEEI{ 
8995 20 8A AD OEEK JSR $A08A 
8998 20 F7 87 JSR $B7F7 
899B A0 00 LOY "$00 
8990 EH 14 LOA ($14). Y 
899F AA TAX 
89A0 C8 INY 
89Al B1 14 LOA ($14). Y 
89A3 86 63 ASSIGN STX $63 
89A5 85 62 STA $62 
89A7 A2 90 LOX "$90 
89A9 38 SEC 
89M I.C 49 BC JMF' $BC49 
89AD .END 

DELETE 

Abbreviated entry: DE(shift)L 

Affected Basic abbreviations: None 

Token: Hex $EE,$~9 Decimal 238,9 

Modes: Direct and program 

Recommended mode: Direct only 

;GET NUMBER 
;MAI{E INTEGER 

;GET LO BYTE 
;INTO .X 

;GET HI BYTE 
;STORE LO BYTE 

;STORE HI BYTE 
;EXPONENT =$90 

;FLOAT AND SEND 

Purpose: To delete a range of unwanted lines from a Basic program. 

Syntax: DELETE [start line][-[end line]]. Although all parameters are 
denoted as optional, at least one of the parameters must be given. 

Errors: Syntax error - if DELETE is used without parameters 
Syntax error - if either of the line numbers is less than ~ or 

greater than 63999 

Use: DELETE is used to delete a range of lines in a Basic program. These can 
be lines of, say, a data generating program after the DATA has been created. 
For example: 

DELETE 1~~-15~ - deletes lines I~~ to 15~ inclusive 
DELETE -I ~~~ - deletes all lines up to line number I ~~~ 
DELETE 2~~~- - deletes all lines from 2~~~ to the end of the 
program 
DELETE ~ - deletes the whole program 

Program lines that have been DELETEd can not be recovered as they have been 
wiped from memory. 

Routine entry point: $89AD 



Extended BASIC - A Complete Package 147 

Routine operation: DELETE first gets the range of the delete and then loops, 
moving the memory above the range over the top of the deleted area. 

LOC CODE LINE 

89AO . LIB DELETE 
891'10 20 11 8A DELETE .JSR OELE05 ;GET DELETE RANGE 
89B0 A5 5F LDI'! $5F ;GET STArn OF DELETE 
891:'.2 A6 60 LOX $5F+l IMEMORY POINTER 
891:.4 85 FB STA $FB ;STor<E IT 
89B6 86 FC STX $FB+l 
89B8 20 13 A6 .JSR $A613 IFINO ADDRESS OF 
89E?B 1'15 5F LOA $5F lEND OF DELETE 
89BO A6 60 LDX $5F+l 
89BF 90 01'1 E?CC OELE01 
89C1 1'10 01 LDY 11$01 
89C3 B1 5F LOA ($5F), Y 
89C5 F0 04 BEQ DELE01 
89C7 AA TAX 
89C8 88 DEY 
89C9 Bl 5F LOA (S5F),Y 
89CE? , 
89CB ; .A ,.X HOLD THE POINTER TO THE END 
89CB , OF DELETE RANGE. 
89CB ;$FC,$FB HOLD THE POINTER TO THE 
89CB I START OF DELETE RANGE. 
89CB , 
89CB 85 71'1 OELE01 STA $7A ;STORE AWAY END 
89CD 86 7B STX $71'1+1 ;OF DELETE POINTER 
89CF A5 FB LDA $FB 
89Dl 38 SEC 
8902 E5 7A SBC $7A ;SET VAr<IAp..LE POINTER 
89D4 AA TAX ;TO END OF PROGRAM AFTER 
89D5 A5 FC LDA $FB+1 ;OELETE 
89D7 E5 7B SBC $71'1+1 
8909 A8 TAY 
89DA E?0 IE BCS DELE03 
890C 8A TXA 
89DO 18 CLC 
890E 65 20 AOC $20 
89E0 85 20 STA $20 
B9E2 98 TYA 
89E3 65 2E AOC $2D+1 
89[5 85 2E STA $20+1 
89E7 A0 00 LOY 11$00 
89E9 B1 71'1 [lELE02 LOA ($7A),Y ;GET BYTE 
89EB 91 FB STA ($FB), Y IMOVE IT DOWN 
89EO C8 INY 
89EE 00 F9 BNE OELE02 ;00 FULL PAGE 
89F0 E6 7B INC $7A+l ; INcr,EMENT HI BYTE 
89F2 E6 FC INC SF!?+1 ;POINTERS 
89F4 1'15 2E LDA $2D+l ;DONE LENGTH? 
89F6 C5 FC CMF" $FB~1 

89F8 B0 EF BCS DELE02 ;NOT YET 
89FA 20 33 AC' ~, DELE03 .JSR $A533 ; F:E -CHA HI PROG 
89FD A5 20 LDA $20 
89FF A6 2E LOX $2E 
BA01 18 CLe 
81'102 69 02 AOC "$02 
31'104 85 2D STA $2D ;SET VAf, POINTERS 
8A06 90 01 Bce DELE04 
8(i08 E8 INX 
8A09 86 2E DELE0'. STX $2D+l 
8A0B 20 59 1'16 JSR $1'1659 IPERFOf.:M 'CLR' 
8A0E 4C 7'. A4 JMF" $1'147', I 'READY.' 
BAll 



148 Advanced Commodore 64 BASIC Revealed 

l.OC CODE LINE 

BAll ;GET RANGE FOR DELETE 
BAll , 
8All 20 79 00 DELE05 JSR $0079 ;GET CURRENT CHAR 
8A14 F0 10 E!.EQ DELE06 ;NO RANGE, ERROR 
8A16 90 11 BCC DELE07 ; IS A NUMP..ER 
8A18 C9 AB CMF' II$AB ; IS IT Y_'? 
8filA D0 0A BNE DELE06 ;NO, ERRor~ 
8MC A5 2P.. LDA $2B ;SET START ADDRESS OF 
8AIE 85 SF STA $5F ;DELETE TO START 
8A20 A5 2C LOA $2C ;OF PROGRAM 
8A22 85 60 STA $5F+l 
8A24 00 12 BNE OELEI18 ;ALWAYS 
8A26 4C 08 AF DELE06 JMF' $AF08 ;OUTF'UT SYNTAX ERROR 
8A29 20 6B A9 DELE07 JSR $A96B ; GET NUME!.ER 
8A2C 20 13 A6 JSR $A613 ;FIND ADDRESS OF LINE 
8A2F 20 79 00 JSR $0079 ;SECONO VALUE? 
BA32 F0 0C E!.EQ OELE09 ;NO 
BA34 C9 AB CMP tUAB ; IS IT '-'? 
8A36 00 EE BNE OELE06 ;NO, ERROR 
8A3a 20 73 00 DELE08 JSR $0073 ;GET NEXT CHAP. 
8A3B 20 6B A9 JSR $A96E!· ; GET NUME!.ER 
8A3E 00 E6 BNE OELE06 ;NOT END OF INPUT 
8A40 A5 1 /, OELE09 LOA $14 ; IS SECOND LINE ZERO? 
8A4~ 05 15 ORA $14+1 
8A44 00 06 BNE DELE10 
8M6 A9 FF LDA hFF 
8A4B 85 14 STA $14 
BA/,A 95 15 STA $14·1 
8A4C 60 DELE10 RTS 
8A40 .END 

DISK 

Abbreviated entry: D(shift)I 

Affected Basic abbreviations: DIM - DIM 

Token: Hex $EE,$~A Decimal 238, I~ 

Modes: Direct and program 

Recommended mode: Either 

;NO 
;SET TO MAX LINEII 

;RANGE DONE 

Purpose: To send a disk command to the disk unit eight. 

Syntax: DISK [string expression] - where the string expression is: 

"S~:TEST' - to scratch the file test 
'N~:DISK,~~" - to reformat the entire disk 

The other syntax is DISK which will display the disk error message to the screen 
giving a message like: 

23,READ ERROR,18,Pl 

where 23 is the error number, 18 is the track, ~ I is the sector, and READ 
ERROR is the error description. 



Extended BASIC - A Complete Package 149 

Errors: Syntax error - if the first character of the command is not a 
quote character 

String too long - if the command is over 255 bytes long 
Type mismatch - if the command is a number, not a string 

Use: This command is useful in checking errors created from disk access by 
using just DISK which displays the message. A Basic equivalent would be: 

OPEN 15,8,15 
INPUT #15,E,EM$,T,S 
PRINT E","EM$","T',"S"," 
CLOSE 15 

Also, for sending disk commands such as Scratch a file etc.: 

DISK "I~" 

is equivalent to: 

OPEN 15,8, 15,"I~" 

For disk commands refer to the disk user manual. 

Routine entry point: $8A4D 

Routine operation: The DISK routine checks to see if anything follows the 
command; if not the error channel is read and displayed. If there is text after the 
command (which must start with the quotes character) the text is read in and 
sent in the open command. Before either of these two operations is actioned, the 
current file is closed. 

LOC CODE LINE 

BA4D .LIB DISf~ 
8,v.D 20 7'1 00 DISf( JSR $0079 ; CHECf( FOR BLANf( 
Bfl50 F0 03 BEQ DISf~01 ; AFTER CO(1MAND. 
8A52 4C 1'.8 8A .JMP DISf(0'. 
BA55 A9 00 DISf~01 LDA 11$00 ; IF BLANf(, READ 
8A5? 85 1'.7 STA $1'.7 ERROR MESSAGE 
BA59 20 91 8A JSR FOPEN OPEN A FILE 
8ASC A9 0D L.DA 1I$0D PRINT <RETURN> 
BA5E 20 D2 FF JSR $FFD2 
BA61 A9 12 LDA 11$12 PRINT <REVERSE ON> 
8A63 20 D2 FF Jsr, $FFD2 
8M6 A6 P..B LDX $P..8 
8A6B 20 C6 FF JSR $FFC6 SET FIL.E TO INFtJT 
8MB 20 CF FF DISf(02 JSR $FFCF ; INPUT 
8A6E 4B F'HA 
8A6F A5 90 LDA $90 CHECf( STATUS 
8A71 D0 07 !'.NE DISf(03 
8A73 6B PLA 
8A74 20 D2 FF JSR $FFD2 PRINf CHARACTER 
BA77 '.c 6e. 8A JMP DISf(02 AND NEXT 
BA7A 68 DISf(03 PLA 
8A?!'. AS 1'.8 LDA $B8 
8A7D 85 49 STA $49 
8A?F 20 CC El JSR $E1CC CLOSE FILE 
BAB2 A9 92 LDA 11$92 
8A84 20 D" "- FF JSR $FFD2 PRINT <REVERSE OFF> 
BAB? A9 0D LDA 1I$0D 



150 Advanced Commodore 64 BASIC Revealed 

l.DC CODE LlNE 

8A89 20 02 FF JSR $FFD2 
BA8C A9 00 LOA 11$00 
8ABE ',c C6 FF JMP $FFC6 
8fW1 , 
8A91 20 Ai 81'1 FOF'EN .JSR GETFNO 
8A9', 85 ~·8 STA $B8 
81'196 1'19 0F LOA 1I$0F 
81'198 85 89 STA $B9 
81'191'1 1'19 08 LOA «$08 
8A9C 85 81'1 STA $~.A 

8A9E 4C C1 E1 JMF' $E1C1 
8AAI , 
8AAI 1'19 0r GETFNO LOA lI$or 
8AA3 A6 98 GETNl LOX $98 
8AA5 E0 00 CF'X 11$00 
8AA7 F0 0E BEa GETN4 
8AA9 DO 58 0') GETN2 CMF' $0258,X <. 

8AAC D0 06 BNE GETN3 
8AAE 38 SEC 
8MF E9 01 SBC «$01 
8MI 4C 1'l3 81'1 ~IMF' GETN1 
8r~B4 Cr~ GETN3 DEX 
8M5 PO F2 BNE GETN2 
8A~.7 60 GETN'. RTS 
8AI'·8 , 
SABH C9 22 OISf(04 CMF' Ian 
BAM F0 03 BEQ DISI(05 
8ABC I,C 08 (-IF JMP $AF08 
8MF 1'15 ~·8 OISf(05 LOA $~·8 
8AC1 85 ',9 STA $49 
8AC3 20 CC E1 JSR $E1CC 
8AC6 20 9E AD JSF: fAD9E 
BAC9 20 1'13 B6 JSR $1'061'13 
BACe A6 22 L[)X $22 
8f'ICE 86 BB STX $P"P" 
BAD0 A4 23 LOY $23 
81'102 84 Be STY $P..C 
8(.iD4 85 1'07 DISf(07 STA $1'07 
81'106 20 91 81'1 JSR FOF'EN 
81'109 1'19 00 LOA 1f$0D 
£lADE. 20 02 FF JSR $FFD2 
8r)OE 60 RTS 
8f~OF .END 

DOKE 

A bbreviated entry: D(shift)O 

Affected Basic abbreviations: None 

Token: Hex $EE,$~ B Decimal 238, II 

Modes: Direct and program 

Recommended mode: Either 

PRINT <RETURN> 

INPUT TO KYBD 

; FIND FREE FILE NO. 

SECONDARY ADDRESS 

DEVICE NUMBER 

OPEN 

; CHECf( TABLE OF 
; FILE NUMBERS FOR 

; A FF(EE ONE 
; HAS BEEN FOUND 

TRY NEXT NlJ~lBEI~ 

; CHECf( FOF( COMMAND 
; IN OUOTES 
; SYNTAX EF:r~(m 

; CLOSE CURREtIT 
DISf( FILE 

GEl TEXT IN QUOTES 

STRING ADDr(ESS AT 
($22) 

; SET LENGTH 
OPEN rIl E 

PRINT <RETURN> 
EXIT [) I SI( 

Purpose: To store a value (~-65535) in the 651 ~ microprocessor's internal two 
byte format (the opposite of DEEK). 



Extended BASIC - A Complete Package 151 

Syntax: DOKE address, value - where the address and value are 
between ~ and 65535. 

Errors: Syntax error - if either of the values is out of the range 
~-65535 

Use: DOKE stores a two byte value into memory at the location pointed to by 
the address. It can be used for storing a frequency value to the SID chip: 

DOKE 54272,IM~~ 

POKE 54272,INT(I~M~/256) 
POKE 54273, I~~~~-INT( I~~~~ / 256)*256 

Routine entry point: $8ADF 

Routine operation: The two byte address is read in and stored to a safe 
location. The two byte value is then read in and the two bytes are stored in 10,hi 
order pointed to by the address. 

LOC CODE LINE 

8ADF .LII'- DOI([ 
8ADF 20 8A AD DOKE JSR $AD8A 
8t1E2 20 F7 1'-7 JSR $1'-7F7 
8AE5 A5 1', LDA $14 
8AE7 85 F~. STA $FI'-
8AE9 A5 15 LDA $15 
8AEI'- 85 FC STA $FC 
BAED 20 FD AE JSR $AEFD 
8AF0 20 8A AD JSR $AD8A 
8AF3 20 F7 B7 JSR $B7F7 
8AF6 A0 00 LOY 11$00 
8r~F8 A5 1 I, LOA $1', 
8AFA 91 FI'- STA ($FP.),Y 
8AFC C8 INY 
8AFD A5 15 LDA $15 
8AFF 91 FB STA ($F~.), Y 
8~·01 60 RTS 
8~.02 .END 

DUMP 

Abbreviated entry: D(shift)U 

Affected Basic abbreviations: None 

Token: Hex $EE,$~C Decimal 238,12 

Modes: Direct and program 

Recommended mode: Direct 

;GET ADDRESS 
;CONVERT TO INT 
;GET LSB 
;SAVE IT 
;GET MSB 
;SAVE IT 
;SCAN PAST , , , 
;GET VALUE 
;CON~'ERT TO .tNT 
;INDEX 
;GET l.SI? 
;STORE LSB 
;NEXT IHTE 
;GET MSr. 
;STOF:E MSB 

Purpose: To display the values of all simple variables, name functions, and 
display the dimensions of arrays. 



152 Advanced Commodore 64 BASIC Revealed 

Syntax: DUMP 

Errors: None 

Use: For de-bugging Basic programs, the DUMP command may be used after 
the program has run to get a list of all variables and their values. As an added 
bonus, not found in any other DUMP command for the Commodore 64, all 
array dimensions are also given. The DUMP command will also display 
function names. 

Routine entry point: $8B~2 

Routine operat ion: The DUMP routine sets a pointer to the start of variables 
and checks for the end of variables. If it does not find any the variable name is 
read in and displayed, the variable type is determined, and the display is 
produced according to which type is required. When all simple variables have 
been processed, arrays are handled. The array names are read and displayed in 
the same way as the simple variables, and the number of dimensions read off. 
The pointer is then set to the end of the dimension entries and, reading 
backwards, the dimensions are read and displayed. 

LOC CODE LINE 

8['.02 .LIB DUMP 
8B02 A5 2E DUMP LDA $2E ;GET STArn OF \"ARIABl.ES 
8B0'. 85 60 STA $60 ; AND STOf(E IN REQUIRED 
8B06 A5 2D LDA $2D ; LOCATIONS 
8B08 85 5F STA $5F 
8[>.0A , 
8B0A 38 DUMP01 SEC ;START OF MAIN LOOP 
8B0l'. E5 2F SBC $2F ;END OF VARIABLES? 
8B0D A5 60 LDA $60 
8B0F E5 30 SBe $30 
8['.11 90 03 BCC DUMP02 ;NO 
8['.13 '.c ED 8B JMP DUMP17 ;YES, DISPLAY ARRAY DIMS 
8B16 , 
8£'.16 20 C"" ,} 8['. DUMP02 JSR DUMP12 ;GET VAr( NAME 
8['.19 f~5 25 LDA $25 ;REAL? 
8[>'lB F0 2B BEQ DUMP03 ;YES 
8B1D C9 01 eMF" 1/$01 ;FUNCTION? 
8[>'lF F0 47 BEQ DUMP26 ;YES 
8£'.21 C9 02 CMF" 1/$02 ;STRING? 
8£'.23 F0 5C [>.EQ DUMP04 ;YES 
8[>.25 A9 '1~ 

,,'~J LDA 11$25 ;MtJST BE INTEGER 
8[>,27 20 D2 FF JSf( $FFD2 ;prnNT "r. ' 
8B21\ 20 E3 8B JSR DtJMP15 ;ANY EXTRA SPACES 
8B2D A9 3D LDA II$·3D 
882F 20 D2 FF JSR $FFD2 ;PRINT ,-, 

8832 A0 02 LDY 11$02 ; SET POINTER TO VAL 
8B3'. 81 5F LDA (,$5F), Y ;GET LO 
8[,,36 48 f'HA 
8B37 C8 INY 
8B38 Bl 5F LDA ($5F), Y ;GET HI 
8B31\ A8 TAY 
8£'.3B 68 f"LA 
883C 20 91 B3 JSR $8391 FIX-FLOAT 
883F 20 DO £'.D JSR $BDDD FLOAT-ASCII 
8[>.1,2 20 lE A[" JSR $A[>.lE PRINT IT 
8[,.1.5 '.c A9 BB JMP DUMf'07 DO NEXT VAR 
8[,.t, 8 



Extended BASIC - A Complete Package 153 
LaC CODE LINE 

SB4S ;REAL VARIABLE 
8B48 , 
SB4B A9 20 DUMF'03 LOA 11$20 
8~,L,A 20 D2 FF JSR $FFD2 ;PRINT SPACE 
aB40 20 E3 8E? JSR OUMP15 ;PAD tlAME 
8B50 A9 3D LOA 1I$3D 
8B52 20 02 FF JSR $FFD2 ;PRINT '=' 
8B55 20 85 Bl JSR $P.·185 ;GET ADDRESS OF VAR 
SB58 A5 47 LDA $47 ; INTO A ~lND Y 
8~·5A A4 48 LOY $48 
SB5C 20 A2 ~·B JSH $BBA2 ; MEM--FAClll 
8B5F 20 DO e.0 JSR $BODO ;FLOAT-ASCII 
B~.62 20 DA E?D JSr< $BOOA ;PRiNT NUMBER 
ae.65 4C A9 BB JMP OUMP0J ;00 NEXT Vf.\R 
B~·68 , 
8e.6e :FUNC1ION 
BB6B , 
Be.6B 20 E3 ae. DUMP26 JSR DUMPl:~ ;PAD NAME 
8MB A9 75 LOA II<FUNCTT :POINT TO 
8P..60 A0 8~. LDY ".>FUNCn ; 'FUNCT ION' 
8B6F 20 lE AB JSH $ABIE ; F'r, I NT STF:ING 
8[>·72 4C A9 Se. JMP oUMP07 ;DO NEXT lv'AR 
8B75 20 3D FUNCTT • Bn , = FUNCTION' . $00 
8[>·80 00 
8B8l 

;STRING VARIABLE aBBl 
8B8l , 
8B81 A2 03 DUMF'04 LOX 11$03 ;LOOF' TO PRINT ' $.= '" 
8~.B3 ~.O CA 8C DUMP05 LOA OUMTe.L,X 
8B86 20 02 FF JSR $FFD2 
BB89 E0 03 CF'X 11$03 
BBB~. 00 03 BNE DlJMF'06 
BBaO 20 E3 8B JSR OUMP15 ;PAD FOR NAME 
Se.90 CA OUMP06 DEX 
8B91 10 F0 BPL OUMP05 ;COMPLETE LOOP 
BB93 A0 04 LOY 11$04 ;GET ADDRESS OF STr\lNG 
BB95 IH 5F LDA ($5F),Y 
BB97 85 23 STA $23 
8B99 98 DEY 
B~.9A Bl 5F LDA ($5F),Y 
ae.9C 85 22 STA $"" "'''' Se.9E B8 DEY 
8e.9F e.l SF LOA ($5F),Y ;LENGTH 
Be.Al 20 24 AB .JSR $A[>.24 ;PRINT STRING FROM ($22) 
BBA4 A9 22 LDA "$22 , AND LENGTH IN .A 
8BA6 20 D2 FF JSr, $FFD2 ;PHINT , .. , 
8BA9 , 
BBA9 ;PHINT CARRIAGE RETUHN AND DO NEXT 
8BA9 , 
8BA9 A9 00 oUMP07 LDA 1I$0D 
BBAB 20 D2 FF JSR $FFD2 ;F'RINT RETURN 
BBAE 20 El FF DLJMP08 JSR $FFEI ;STOP f{EY? 
8BB1 D0 01 BNE DU'MP 10 ;1'10 
aB~.3 60 DUMP09 RTS ;EXIT TO 'READY' 
BBB4 IS OUMP10 CLC ; MOlJE TO NEXT VAR 
8B~.5 A5 SF LDA $SF 
BBB7 69 1!J7 (lDG 11$07 
SB~.9 8S SF STA $SF 
8BBB A6 60 LDX $60 
BBe.O 9~ 01 BGC DUMf' 11 
8BBF E8 INX 
BBC0 86 60 DUMPII STX $60 
8BC2 4C 0A 8B JMP oUMP0l ;DO NEXT 'JAR 
BBCS 
8BGS GET AND PRINT VAR NAME 
8Be5 



154 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

BBC5 
8BC? 
8BC9 
8BCA 
8gCC 
8BCD 
8BCF 
8B00 
8BD3 
aBD4 

A0 00 
8 /• 25 
C8 
1:>.1 5F 
0A 
26 25 
4A 
99 
88 

45 00 

10 F(, 
8BD6 A5 45 
8BD8 20 02 FF 
8BDB A5 46 
8['.00 F0 03 
81?OF 20 02 FF 
8P..E2 60 
BBE3 
8BE3 
8BE3 
8BE3 A5 1.6 
8BE5 00 05 
8BE? A9 20 
8P.E9 20 02 FF 
3BEC 60 
8BED 
8BED 
BBED 
8 I?ED 
8BED A9 00 
8BEF 20 02 FF 
8BF2 A5 2F 
8BF/. 85 SF 
8BF6 AS 30 
8BF8 85 60 
8BFA 
8BFA AS 60 
8BFC CS 32 
8BFE 00 06 
8C00 AS 5F 
8C0:~ C5 31 
eC04 F0 AD 
eC06 
eC06 20 El FF 
8C09 F0 A8 
eC0B 20 C5 BB 
8C0E A5 25 
8C10 F0 0A 
8C12 C9 02 
eCl /• 00 03 
8C16 (19 2', 
eCIB 2C 
eC19 A9 25 
8CIB 2C 
BC1C A9 20 
8CIE 20 02 FF 
8C21 20 E3 8['. 
8C24 A9 20 
8C26 20 02 FF 
eC29 A9 28 
8C2B 20 02 FF 
eC2E A5 5F 
BC30 18 
8C31 69 03 
BC33 85 FB 
8C3S A5 60 

DUMF'12 LOY "$00 
STY $25 
INY 

OUMP13 LOA ($5F),Y 
ASL A 
ROL $25 
LSR A 
STA $0045,Y 
DEY 
BPL DUMP13 
LOA *"5 
JSR $FF02 
LOA $46 
[,.EQ DUMP 1 I. 
JSR *FF02 

DUMP14 RTS 
, 

;GET VARIABLE TYPE 
;ANO NAME 

;GET [,.YTE 
;TYPE BIT INTO TEMP 

;RESTORE NAME BYTE 
;STORE NAME BYTE 

;F'RINT NME 

;2ND BYTE? 
·NO 
;YES, PHINT IT 

:DONE 

;PAO OUT NAME IF ONLY 1 BYTE LONG 

OUMPIS LOA $/.6 
BNE DUMP16 
LOA "$20 
JSR $FFD2 

OUMP16 RTS 
, 

;2ND BYTE? 
;YES, ~ON'T PAD 
;ElSE PAD WITH SPACE 
·PRINT 
, ;OONE 

;DISPLAY ARRAY HAMES AND DIMENSIONS 
;ONLY 
, 
OUMP1? LOA 1t$00 

JSR $FFD2 
LOA $2F 
STA $SF 
L[)A $30 
STA $60 

, 
OUMP18 LOA $60 

CMP $32 
l'.NE OUMP19 
LOA $5F 
CMP $31 
[,.EO OUMP09 

6UMP19 JSR $FFEI 
[,.EO OUMP09 
JSR OUMP12 
L[)A $25 
BEQ OUMP21 
CMF' 1t$02 
BNE OUMP20 
LOA "*24 
.BYT $2C 

DUMP20 LOA 1t$25 
.BYT $2C 

OUMP21 LOA 1t$20 
JSR $FF02 
JSR DUMP15 
LOA 1t$20 
JSR $FFD2 
LOA "'.28 
JSR $FFD2 
LOA $5F 
CLC 
AOC "$03 
STA $FB 
LOA $60 

;SEPARATE NORMAL 
; VARS FROM ARRAYS WITH 
, A CARRIAGE RETURN 
;SET POINTER TO 1ST 
; ARRAY 

;END OF ARr<AYS? 

;NO 

;STOP KEY? 
; YES, EXIT 
;GET AND PRINT NAME 
; WliICH TYPE? 
;REAL 
;STRING? 
;NO, ARRAY IS INTEGER 
;CHAR '$' 
;SKIP 2 BYTES 

;CHAR '7.' 
;SI(IP 2 BYTES 

-CHAR' , 
;PRINT IT 

ONE EXTRA SPACE 
CHAR '(' 
PRINT IT 

SET POINTER TO END 
OF ARRAY ENTRY FOR 
DISPLAY OF DIMS 



Extended BASIC - A Complete Package 155 

LOC CODE ~_ INE 

BC37 69 00 ADC "$00 
8C39 85 FC STA $FC 
8C3B A0 01 LDY IU01 
8C3D Bl FB LOA ($FB), Y ;11 OF DIMENSIONS 
8C3F 85 FD STA $FD 
8C1.1 A'l 00 LOA 11$00 
8C'.3 85 FE STA ~FE 
8C/.5 06 FD ASL $FO ;TIMES 2 
8C1.7 26 FE F:OL fFE 
8C4? A5 FO LDA $FO :F'LUS END \jALUE 
8C48 18 CLC 
3C4C 65 FB ADe $FB 
8C4£ 8e ' ,} FD STf; $FO 
8C50 A5 FE LDA $FE 
8C52 65 FC ADC $FC 
8C54 85 FE STA $FE 
8C56 , 
8(56 A0 00 DLJMF'22 LDY IIf00 ;GET DIMENSION VALUE 
8C58 Bl FD LOA ($FD),Y 
8C5A 8D C9 8C STA OIMENS+l 
8C5D C8 INY 
8e5E Bl FD LDA ($FD),Y 
8C60 80 C8 8C STA DIMENS 
8C63 D0 03 8NE DUMF'23 ;MINUS 
8C65 CE C9 8C DEC DIMENS+l 
8C68 CE (;ti 9r: DLJMP23 DEC DIMENS 
8C6P· AD C9 8C LOA DIMt~'S+ 1 ;F'RINT NUMBER 
8C6E AE C8 8C LOX DIMENS , IN .A(HI) , .X(LO) 
8C71 AI. 5F LOY $5F ;SAVE ARRAY F'OINTER 
8C73 8C CB 8C STY OIMENS 
BC76 AI. 60 LOY $60 
8C78 8C C9 8C STY OIMENS+l 
8C7B 20 CD BD JSR $BDCD 
BC7E AC CB BC LOY OIMENS ;RESTORE ARr~AY POINTER 
8C81 84 SF STY $SF 
OC83 AC C9 8C LDY DIMENS+l 
8C86 84 60 STY $60 
8C88 38 SEC ;SUBTHACT 2 FHOM 
8CB9 A5 FD LOA $FD ; DIMENSION POINTER 
8C8B E9 02 SBC "$02 
8C8D 85 FD STA $FO 
8C8F A5 FE LDA $FE 
8C91 E9 00 SBC "'$00 
8C93 85 FE STA $FE 
8C95 C5 FC CMF' $FC ;END OF ARRAY? 
8C97 00 06 P.NE OUMF'24 ;NO 
8C99 A5 FD LOA $FD 
8C9P· C5 FB CMF' $FB 
8C9D F0 08 BEQ DUMF'25 ;YES 
8C9F ; 
8C9F A9 2C DUMF'24 LOA "$2C ;CHAR , 
BCAl :!0 D2 FF JSR $FFD2 ;F'RINT IT 
8CA'. 4C 56 8C JMF' DUMF'22 ;00 NEXT ELEMENT 
8CA7 , 
8CA7 A0 03 DUMF'25 L[)Y "$03 ;GET LENGTH OF 
8CA9 Bl 5F LOA ($5F), Y ;ARRAY ENTRY 
8CAB 85 FP.. STA fFB 
8CAD 88 DEY 
8CAE Bl 5F LOA ($5F), Y 
8CB0 18 CLC 
BCP.l 65 5F ADC f5F ;AND ADD TO ARRAY 
8CB3 85 5F STA $5F ; POINTER 
BCB5 A5 60 LOA $60 
8CB7 65 FB ADC $FB 
8CP.? 85 60 STA $60 



156 Advanced Commodore 64 BASIC Revealed 

LOC CODE 

8CBB A'l 29 
8CP..D 20 D2 
8CC0 A9 0D 
8CC2 20 D2 
8CC5 I,C FA 
8CCB 00 00 
BCCA 22 
8cer. 20 
eccc 3D 
BceD 24 
BCCE 

FF 

FF 
8B 

LINE 

LDA 11.29 
JSF( $FFD2 
LCot~ II~0D 

JSR $FFD2 
.JMF· DUMP t 8 

DIMENS .W(lf( 0 

;CHAR ')' 
;PHINT IT 
; Ct~RR I AGE RE llJl~tl 
;F'rUIH IT 
;I)() NEXT Ar.:I~AY 

DUMTBL .BYT $22,'20,S3D,$2~ 

.END 

EXEC 

Abbreviated entry: E(shift)X 

Affected Basic abbreviations: EXP - EXP 

Token: Hex $EE,$~D Decimal 238,13 

Modes: Direct and program 

Recommended mode: Direct only 

Purpose: To EXECute a text file stored on disk. This command works in 
conjunction with GET and PUT. 

Syntax: EXEC filename,d - where d is the device number (disk only). 

Errors: Illegal device - if the device number specified is less than eight 
Missing filename - if a null filename is specified 
File not found - if the file does not exit 
Device not present - if no disk drive is connected 
Too many files - if ten files are already open 
Disk errors - at the end, the disk error channel IS read and 

displayed 

Use: EXEC can be used in several different ways. The main one is to set up 
function keys when first powered up. For example, enter the program: 

l~ CTL(,,5,~,~, I) 
2~ KEYI,"CATALOG"+CHR$(I3) 
3~ KEY2,"DISK"+CHR$(l3) 
4~ KEY3,"LIST'+CHR$(l3) 
5~ KEY4,"RUN"+CHR$(13) 
6~ KEY5,"OLD"+CHR$(I3) 
7~ KEY6,"PEEK(" 
8~ KEY7,"RENUMBER" 
9~ KEY8,"FIND@" 
I~~ PRINT CTL(l2,12""I)"FUNCTION KEYS DEFINED" 



Extended BASIC - A Complete Package 157 

Use the PUT command to write this to a disk file: PUT"FK",8 
When powered up, type EXEC"FK",8 and the commands will be carried out 

and your function keys will be defined. 
Other uses could be a string of CHANGE commands to a program. 

Routine entry point: $8CCE 

Routine operation: The filename and device number are read in and the file is 
opened. Each line is read into the input buffer until carriage return is found. It is 
then tokenised, and executed until the file is complete or an operating error 
occurs. 

LOC CODE LINE 

8CCE 
8CCE 
8COl 
BCD', 
8CD6 
8CO';> 
8CDC 
8CDF 
8CE2 
8CE5 
8CE8 
8CEB 
8CEE 
8CF1 
8CF3 
8eF6 
8CF8 
8CFB 
8CFO 
8D00 
8002 
8005 
8D07 
8D0A 
800C 
8D0F 
8012 
BD15 
8D17 
BD19 
801A 
801D 
8D1F 
8D22 
8023 
8025 
8D27 
8D28 
8D2A 
8D2C 
802F 
8030 
8033 
8036 
8D38 
SD3B 
803D 
8D3F 
8D41 
8044 

20 6F 98 
20 £'.7 8F 
A9 93 
20 02 FF 
AD 00 03 
8D 90 8D 
AD 01 03 
8D 91 8D 
AD 02 03 
8D 8E 8D 
AD 03 03 
8D 8F flO 
A9 60 
80 2C 03 
A9 98 
8D 20 03 
A9 59 
8D 00 03 
A9 80 
8D 01 03 
A9 0F 
80 02 03 
A9 8D 
8D 03 03 
AE 92 8D 
20 C(' FF 
A2 18 
A0 00 
18 
20 F0 FF 
A2 00 
20 CF FF 

A5 90 
D0 29 
68 
C9 00 
F0 0A 
90 00 02 
E8 
20 D2 FF 
',e 1F 80 
A9 00 
9D 00 02 
A9 01 
85 C6 
A9 00 
20 D2 FF 
A2 00 

.LIB EXEC 
EXEC JSR OF-ARS 

JSR GETOPN 
LOA 1t$93 
JSR $FFD2 
LOA $0300 
STA EXECER 
LOA $0301 
STA EXECER+1 
LOA $0302 
STA EXECST 
LDA $0303 
STA EXECST+1 
LOA It<MERGRT 
STA $032C 
LOA II>MERGRT 
STA $032D 
LOA II<EXEC06 
STA $0300 
LOA It>EXEC06 
STA $0301 
LOA "<EXEC02 
STA $0302 
LOA II:>EXEC02 
STA $0303 

EXEC02 LOX EXECNO 
JSR $FFC6 
LOX 1124 
LDY 11$00 
CLC 
Jsr, tFFF0 
LOX "$00 

EXEC03 JSR $FFCF 
PHA 
LDA $90 
BNE EXEC05 
PLA 
CMF" 11$00 
BEQ EXEC04 
STA $0200,X 
INX 
JSR $FF02 
JMP EXEC03 

EXEC0', LOA 11$00 
STA $0200,X 
LOA 11$01 
STA $C6 
LOA 11$00 
JSf, tFFD2 
LDX "$00 

,GET FILE PARAMETERS 
,OPEN FILE 
,CLEAR SCREEN 

,STORE OFF ERROR LINK 

,STORE OFF WARM START 

,SET 'RESET INPUT' 
, TO RTS 

,SET ERROR VECTOR 

,SET WARM START 

,SET INPUT 
,BOTTOM 

LEFT 

, OF SCREEN 

;GET BYTE 

;CHECI( STATlIS 

,CARRIAGE RETURN? 

,PRINT CHAR 

;SET KEYBOARO AS INPUT 



158 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

8046 20 C6 FF JSR $FFC6 
8049 A2 FF LOX It$FF 
80',f? A0 01 LOY 1t$01 
80',0 4C 86 AI, JMP $A/,86 
8050 20 65 80 EXEC05 .JSR EXEC07 
8053 20 55 8A JSR 01SI(01 
8056 4C 74 A4 JMF' $Alt7,', 
8059 90 1?,1, EXEC~6 I?CC EXEC02 
80~jf? SA TXA 
805C ',8 PIIA 
80S0 20 65 80 JfiF: EXEC07 
8060 68 PLA 
8061 AA TAX 
8062 6C 00 03 JMP ($0300) 
8065 A9 2F EXEC07 LOA 1t$2F 
8067 80 2C 03 STA $032C 
80M A9 F3 LOA It$F3 
80bC 80 20 03 STA $0320 
806F AD 90 80 LOA EXECER 
8072 80 00 03 STA $0300 
8075 AD 91 80 LOA EXECER+l 
8078 80 01 03 STA $0301 
80n tiD 8E 80 LOA EXECST 
807E 80 02 03 STA $0302 
8081 AD 8F 80 LOA EXECST+l 
8084 80 03 03 STA $0303 
8087 AE 92 80 LOX EXECNO 
808A 20 C3 FF Jsr< $FFC3 
8080 6~ RTS 
BOSE 00 00 EXECST .WOR 0 
8090 00 00 EXECER .WOR 0 
8092 00 EXECNO .EWT 0 
8093 .ENO 

FIND 

Abbreviated entry: F(shift)I 

Affected Basic abbreviations: None 

Token: Hex $EE,$~E Decimal 238,14 

Modes: Direct and program 

Recommended mode: Direct only 

;EXEC IT 
;RESET VECTORS 

;OISPLAY DISK ERROR 
; EXIT TO READY 

;SAVE ERROR NUMBER 

;RESE"i VECTORS 
; RESTORE ERROR Nur·lf?ER 

;SENO ERROR 
;RESTORE 'RESET DEFAULT 

;RESET ERROR LINK 

;RESET WARM START 

;CLOSE FILE 

10' 

Purpose: To find all occurrences of a string or command inside a Basic 
program. 

Syntax: FIND string - where d is the delimiter character as in CHANGE. 

Errors: Syntax error - if the syntax is not as above 
String too long - if the string is longer than 4~ characters 

Use: FIND is another useful routine for de-bugging and checking Basic 
programs. An example of FIND is: 



Extended BASIC - A Complete Package 159 

FIND @PRINT@ 

which will find and list all lines containing the command PRINT. If PRINT 
occurs more than once on a line, the line will be listed each time it is found with 
the exception of the last lines, where the line will be listed only once. 

Routine entry point: $8D93 

Routine operation: The string to be found is read in within quotes, including 
spaces and colons, and stored away. The rest of the program is a loop that 
searches the program until the string has been found, lists the line, and starts 
searching from the next character. 

The error message vector is stored away and replaced with ajump to an 'RTS' 
so that LIST will return to the routine. 

LOC CODE LINE 

8093 
B093 20 91 BE 
8096 B5 59 
B09B A2 00 
809A 20 C7 80 
8090 20 E5 80 
80A0 78 
8DAl AO 00 03 
80M 80 CF 8E 
80A7 AO 01 03 
80AA 80 00 8E 
BOAD A9 67 
BOAF 80 ~0 03 
80B2 A9 8E 
80B4 80 01 03 
80B7 58 
80B8 20 F~~ 80 
80BB 20 68 BE 
80BE 20 F9 BO 
BOCI 4C BB 80 
BOC4 
BOC', 4C 08 AF 
BOC7 
BOC7 20 BE? 8E 
BOCA F0 Fa 
BOCC C5 59 
BOCE F0 00 
B000 90 40 BF 
8003 EB 
8004 E0 40 
8006 00 EF 
800B A2 17 
800A 4C 37 A4 
8000 A9 00 
BOOF 90 40 BF 
80E2 86 22 
80E4 60 
BOE5 
80E5 
BOE7 
80(8 
80EA 
80EC 
80EE 
8DF0 

A5 2B 
18 
69 02 
85 57 
A5 2C 
69 00 
85 58 

.LIB FIND 
FIND JSR FIN014 

STA $59 
LOX "$00 
JSR FIN003 
JSR FIN005 
SEI 
LOA $0300 
STA FINDER 
LOA $0301 
STA FINOER+1 
LOA "<FINOll 
STA $0300 
LOA ">FlNDll 
STA $0301 
CLI 
JSR FIN006 

FIND01 JSR FIN012 
JSR FIND07 
.IMP FIN001 

; 
FIND02 JMP $AF0B 

FIND03 JSR FIN013 
e·EQ FIN002 
CMP $59 
E?EQ FIN004 
STA' $!?F40,X 
INX 
CPX "$40 
e.NE FIN003 
LOX "$17 
J~IP $M37 

FIN004 LOA "$00 
STA $E?F40,X 
STX $22 
RTS 

FIND05 LOA $2E?· 
CLC 
AOC 11$02 
STA $57 
LOA $2C 
AOC 11$00 
STA $5B 

;GET CHARACTER 
;STORE IN FLAG 

;GET SEARCH STRING 
;SETUP POINTERS 

;ERROR LINK TO RTB 

;FIND STRING 
;LlST LINE 

;FINO STRING 
;ANO REPEAT 

;SEND SYNTAX ERROR 

; GET A CHAr<ACTER 
; END OF LINE 
·ENO OF STRING? 
;YES, COMPLETE' 
;STORE IN SEARCH STRING 

;STRING TOO LONG? 
·NO 
;STRING TOO LONG 
;OUTPUT ERROR 

;TERMINATOR TO STRING 
;STORE IT 
;STORE STRING LENGTH 
;EXIT 

;GET START OF PROGRAM 

;F'LUB 2 

;GET START OF PROG MSB 

;STORE IT 



160 Advanced Commodore 64 BASIC Revealed 

LaC CODE LINE 

80F2 60 RTS 
80F3 

FIN006 8DF3 A2 00 LOX 11$00 ;INOEX TO STRING 
8DF5 A0 02 LOY 11$02 ;INOEX TO LINE 
80F7 84 23 STY $23 
8DF9 A5 01 FIN007 LOA $01 
BorB 29 FE AND II$FE lOUT BASIC ROM 
8DFD 85 01 STA $01 
80FF ~.1 57 LOA ($57>,Y ;GET ~.YTE 

8E01 F0 21 BEQ FIN009 ;ENO OF LINE 
8E03 00 40 BF CMF' $BF40,X ;SAME AS StrONG? 
8E06 08 F'HF' 
8E07 A5 01 LOA $01 
8E09 09 01 ORA 11$01 ; HI BASIC ROM 
8E0B 85 01 STA $01 
8E00 28 F'LF' 
8E0E 00 07 BNE FIND08 ;NOT MATCHED 
8E10 C8 INY ;NEXT P..YTE 
BEll E8 INX ;NEXT CHAR 
8E12 E'. 22 CF'X $22 ;STRING MATCHED? 
8E14 D0 E3 BNE FIND07 ;NO 
8E16 60 RTS :YES 
8E17 E6 23 FIN008 INC $23 ;STAHT AT NEXT BYTE 
8E19 A4 23 LOY $23 
SEIB A2 00 LDX 11$00 ;ANO STAHT OF STRING 
8EI0 B1 57 LOA ($57),Y ; GET P..YTE 
8EIF F0 03 BEQ FIN009 ;END OF LINE 
8E21 '.c F9 80 JMP FIND07 ;TRY AGAIN 
8E24 A5 01 FIND09 LDA $01 
8E26 09 01 ORA 11$01 ;IN BASIC ROM 
8E28 85 01 STA $01 
8E2A A5 57 LOA $57 
8E2C 38 SEC 
8E20 E9 02 SBC "*02 ;LINE POINTER -2 
8E2F 85 57 STA $57 
8E31 A5 58 LOA $58 
8E33 E9 00 SBC 11$00 
8E35 85 58 STA $58 
8E37 A0 00 LOY 11$00 
8E39 B1 "-' ,) , LOA ($57>, Y ;GET LINf( LO 
8E3B 85 59 STA $59 ;STORE IT 
8E30 C8 INY 
8E3E B1 57 LOA ($57), Y ; GET LINf( HI 
8E'.0 85 58 STA $58 ;STORE TO POINTER HI 
8[42 05 59 or,A $59 ;END OF PROGr<AM? 
8E'.4 F0 10 BEQ FIND10 ;YES 
8E46 A5 59 LOA $59 ;GET LINE POINTER La 
8E'.8 18 CLC 
8[49 69 02 ADC 11$02 ; ADD 2 
8E·./,. 85 57 STA $57 ;STORE IT 
8[40 A5 58 LDA $58 ; GET HI BYTE 
8E'.F 69 00 AOC 11$00 
8E51 85 58 STA $58 
8E53 4C F3 80 JMF' FIND06 ;00 NEXT LINE 
8E56 78 FIND10 SEI 
8E57 AD CF BE LOA FINDER ;RESET ERROR LINf( 
8E5A 80 00 03 STA $0300 
8E5D AD 00 8E LOA FINCER+l 
8E60 80 01 03 STA $0301 
8E6:3 58 eLI 
8E64 I.e 7 /• A4 JMP $A474 ;EXIT 
8E67 , 
8E67 60 FINDll RTS ; ERROr.: LINf( 
8E68 , 
8E68 A0 00 FIND12 Ll)Y 11$00 



Extended BASIC - A Complete Package 161 

LOC CODE LINE 

SE6A 20 96 SE JSI~ FIND15 ; Sf)\![ PO I NT ERS 
8E60 (19 9l LDA IU91 ; CURsor, UP 
8E6F 20 D2 FF JSR $FFD2 ;F'RIN1 IT 
8E72 1'.1 57 LDA ($57), Y ;G[l LItlEH LO 
BE7', 85 1 " STA $1', ; STORE IT 
8E76 C8 INY 
8E77 1:'.1 57 LDA ($57>, Y ;GET LHIEH HI 
8E79 85 15 STA $15 ; STOr,E IT 
BE 71:'· 20 13 A6 JSR $A613 ;FIND LINE A()()RESS 
8E7E 20 C9 A6 JSr, ,*A6C9 ;LIST LINE 
8E81 20 1'.0 BE JSR FIND!6 ;RESTORE POINTERS 
8EB4 E6 23 INC $23 ;NEXT CHAR IN LINE 
8E86 A4 '1-

~.~ LDY $23 
8E88 A2 00 LDX 11$00 ; STr1RT OF STRING 
8E8A 60 RTS 
8E8E'. , 
8E8E'. E6 7A FIND13 INC $7A ; INCr,EASE LSB 
BE8D 00 02 BNE FHID1', 
8E8F E6 7B INC $7B 
8E91 1~0 00 FI NO 1'. LDY 1t$00 
8E93 1:'·1 7A LDA ($7A),Y ;GET INPUT BYTE 
8E?5 60 RTS 
8E96 , 
8E96 A5 22 FINDl5 LDA $22 ; ST()f~E SH,ING LENGTH 
8E98 8D CA 8E STA FIND!7 
8E9E'. (15 23 LDA $23 ;STDr\E LINE INDEX 
8E9D 8D CB 8E SlA FIND17+1 
8EA0 A5 57 LDA $57 ; STOr,E LINE F'OINTER LO 
8EA2 BD CC 8E STA FIND17+2 
8EA5 A5 58 LDA $58 ;HI 
SEA7 8D CD 8E STf) FIND17+3 
8EAA (~5 FC LDA $FC ;SAVE CHANGE VAr,IABLE 
8EAC 80 CE 8E STA FIND17+4 
8EAF 60 RTS 
8EB0 ; 
BEE'.0 AD CA BE FIND16 LDA FIND17 ;GET STRING LENGTH 
8EB3 85 22 STA $22 
8EB5 AD CI.'. BE LDA FIND17+1 ;GET LINE INDEX 
8EB8 85 23 STA $23 
8EBA AD CC BE LDA FIND17+2 ; GET LINE PO INTEr, LO 
8EBD 85 57 STA $57 
8EE'.F AD CD BE LDA FIND17+3 ;GET LINE POINTER HI 
8EC2 85 58 STA $58 
8EC4 AD CE 8E LDA FH1D17+4 ;GET CHANGE PARAMETER 
8EC7 85 FC STA $FC 
8EC9 60 ras 
8ECA 00 FIND17 .BYT $00,$00,$00,$00,$00 
BECE'. 00 
8ECC 00 
8Ec[) 00 
8ECE 00 
8ECF 00 00 FINDER • WDr\ 0 
8ED1 .END 

B 
Abbreviated entry: G(shift)E 

Affected Basic abbreviations: None 



162 Advanced Commodore 64 BASIC Revealed 

Token: Hex $EE,$~F Decimal 238,15 

Modes: Direct and program 

Recommended mode: Either; different effects In direct mode and program 
mode. 

Purpose: To input an ASCII file on disk into memory with line numbers 
created from l~~~ in steps of l~. GET will read in files created by the 
Commodore assembler and SYSRES. Each line is read in until a carriage return 
is reached. It is then tokenised and entered into memory as a program line. 

Syntax: Direct mode: GET filename, d - where d is the device number (disk 
only) 

Run mode : as chapter 3 GET and GET# 

Errors: lllegal device - if the device number specified is less than eight 
Missing file name - if a null filename is specified 
File not found - if the file does not exist 
Device not present - if no disk drive is connected 
File open error - if ten files are already open 
Disk errors - at the end, the disk error channel IS read and 

displayed 

Use: For editing Commodore assembler files or for editing files for the use of 
the EXEC command. 

Routine entry point: $8EDI 

Routine operation: The GET routine first checks whether the computer is in 
run mode or direct. If it is in run mode, then the Basic version of GET is 
performed. If in direct mode, the file parameters are read in and checked for a 
null filename or the device not being disk. If these checks are OK, the message 
'reading' filename is displayed and the file is opened. Each line is then input and 
stored in the input buffer, tokenised, and entered into memory until the end of 
file marker is reached. The program is then re-chained and the variable pointers 
are set to the correct values for the program. Finally the disk error channel is 
read and displayed. 

LOC COOE LINE 

8E01 .LIP.. GET 
8E01 A5 90 GET LOA $90 ;CHECI: IF OII~ECT 

8E03 00 06 P..NE GETUN YES, DIRECT 
8ED5 20 79 00 JSf~' $0079 GET CURRENT CHAI~ 
8ED8 4C 7E AB JMP $AB7E F'Ef(FOFiM BASIC 'GET' 
BEOE!- 20 6F 98 GETUN JSR OPARS ;GET FILE PARAMETEI~S 
8EOE 20 99 8F JSf( GETMES 'READING' 
8EE1 20 B-' ., 8F JSI~ GETOPN OPEN FILE 
8EE4 20 AC 8F JSf( GETIN SET INPUT 
8EE? A5 2E!- LOA $2B SET STI)RT OF PROGF@~ 
8EE9 85 FE!- STA $FP.. POINTER 
8EEP.. A5 2C LDA $2C 
8EED 85 FC STA $FC 



Extended BASIC - A Complete Package 163 

l.OC CODE LINE 

8EEF A5 21? LOA $2B 
8EF1 18 CLC 
8EF2 69 02 AOC 11$02 
8EF4 AA TAX 
8EF5 A5 2C LOA $2C 
8EF7 69 00 AOC 11$00 
8EF9 85 2E STA $2E 
8EFB 85 30 STA $30 
8EFO 85 32 STA $32 
8EFF 86 20 STX $20 
8F01 86 2F STX $2F 
8F03 86 31 STX $31 
8F05 A9 03 LOA 11$03 ;START LINEII HI 
8F07 A2 E8 LOX II$E8 ; STAfa LINEII HI 
8F09 80 DO 8F STA GETLNO+1 
8F0C 8E DC 8F STX GETLNO 
8F0F A0 00 GETLP1 LOY 11$00 
8Fll 20 CF FF GETLP2 JSR $FFCF ; INPUT BYTE 
8F14 C9 00 CMP 11$00 ;ENO OF LINE? 
8F16 F0 0C BEQ GETLN ;YES 
8F18 C9 0A CMF' 11$011 ;LINE FEED? 
8F1A F0 F5 BEQ GETLP2 ;YES 
BF1C 99 00 02 STA $0200,Y ;STORE [,·YTE 
8F1F C8 INY 
8F20 C0 57 CPY 11$57 ;ENO OF BUFFER? 
8F22 00 ED BNE GETLP2 
8F24 A5 90 GETLN LOA $90 ;STATUS 
8F26 80 DE 8F STA GETER 
8F29 A9 00 LOA 11$00 ;TERMINATOR 
BF2B 9$' 00 02 STA $0200,Y ; STOI~E 
8F2E A2 00 LOX 11$00 
8F30 86 7A STX $7A 
8F32 A9 02 LOA 11$02 
8F34 85 7B STA $7B 
8F36 20 79 A5 JSR $A579 ; CRUNCH LINE 
8F39 AD 00 02 LOA $0200 
8F3C F0 42 BED GETLP4 ;NULL LINE 
8F3E A0 02 LDY 11$02 
8F40 AD DC 8F LOA GETLNO ;LINEII LO 
8F43 91 FB STA ($FB), Y ; STOf,E IT 
8F45 C8 INY 
8F4'" AD DD 8F LDA GETLNO+1 ;LINEII HI 
8F49 91 FB STA ($FB), Y ;STDRE IT 
8F4B C8 GETLF'3 INY 
8F/,C 1:.9 Fe 01 LOA $01FC,Y ; GET BYTE 
8F4F 91 FB STA ($FB), Y ; STOF~E IT 
SFS1 D0 F8 BNE GETLF'3 ;UNTIL END OF LINE 
8FS3 C8 INY 
8F5', 98 TYA 
8F5~j A0 00 LOY 11$00 
8F57 18 CLC 
8F58 65 FB ADC $FB ; INCF,EASE POINTEr- BY 
8F5A 85 FD STA $FD ;LENGTH 
8F5C 91 FE'. STA ($rl'o),Y 
8F5E A5 Fe LOA $FC 
8F60 69 00 ADC 11$00 
8F62 C8 INY 
8F63 91 FB STA (H'B),Y 
8F65 A8 TAY 
8F66 AS FD LDA $FD 
8F68 85 Fl? STA $FB 
8F6A 8', FC STY 'FC 
8F6C 98 TYA 
8F6D 30 19 E'·MI GETEND 
8F6F AD DC 8F LOA GETLNO ; INCREASE LI NEil 
8F72 18 CLC 



164 Advanced Commodore 64 BASIC Revealed 

LDe CODE LINE 

8Fn 69 0A ADC "$0A 
8F75 80 DC 8F STA GETLNO 
8F78 AD DO 8F LOA GETLNO+t 
8F7B 69 00 AOC 1t$00 
8F70 80 DO 8F STA GETLNO+l 
8FB0 AD DE 8F GETLP/, LDA GETER 
8F83 00 03 BNE GETEND 
BF85 I,C 0F 8F JMF' GETLF'l 
8F88 ; 
8F88 A9 00 GETENO LOA 11$00 
8F8A A8 TAY 
8F8B 91 Fl? STA ($FB),Y 
8F80 C8 INY 
BF8E 91 FB STA ($FB),Y 
8F90 20 AC 99 JSR F'UTENO 
8F93 20 85 98 JSR OLD 
8F96 '.c 74 A4 JI1P $fV.74 
8F99 A9 A3 GETMES LOA II<GMESSG 
8F9B A0 8F LOY ">GMESSG 
8F90 20 IE AI? JSR $AEHE 
8FM 4C Cl F5 JI1P $F5Cl 
8FA3 "".., •• ..1.:. 45 GMESSG .BYT 'READING 
8FAB 00 
8FAe A6 1?·8 GETIN LDX $B8 
8FfiE 20 C6 FF .JSR $FFC6 
8FBl B0 01 Bes GETINl 
8FI?3 60 F:TS 
8FB4 4C F9 E0 GETINl JMF' $E0F9 
8FB7 ; 
8FB7 A0 00 GETOF'N LOY "$00 
8FP.9 Bl BB GETOF' 1 LOA ($BB), Y 
8FBB 99 00 0~) STA $0200,Y 
8FBE C8 INY 
8FBF C4 B7 CPY $B7 
8FCl 00 F6 BNE GETOPI 
8FC3 A2 00 LOX 11$00 
8FC5 BO 08 SF GETOP2 LOA GETSR, X 
8FC8 99 00 02 STA $0200,Y 
BFCB E8 INX 
8FCC C8 INY 
8FCO E0 04 CF'X "$0'. 
8FCF 00 F4 BNE GET()F'2 
8F01 A9 60 LOA "$60 
8F03 85 B9 STA $B9 
8FD5 ',e 16 9A JMP PUTOP'. 
BF08 2C 53 GETSR .BYT ' , s, r~' 
8FOC 00 00 GETLND .WOR 0 
8FDE 00 GETER .I?YT 0 
8FDF .ENO 

HIMEM 

Abbreviated entry: H(shift)I 

Affected Basic abbreviations: None 

Token: Hex $EE,$IE Decimal 238,3~ 

Modes: Direct and program 

;BY 10 

;STATUS? 
;I?AO 
;DO NEXT LINE 

;ZERO END OF PROGRAM 

;CLOSE AND OISf: 
; RESET F'() HIT Er,s 

;POINTER TO 
; 'READING' 
;PRINT STRING 
;PRINT FILENAME 

',$00 

; SET INPUT 
;ERrWR 

; SEND ErmOf, 

;GET BYTE 
; STor,E IT 

;END OF FILENAME? 
;NOT YET 

;GET BYTE 
;STOf,E IT 

;END OF SR? 
;NOT YET 

;COMF'LETE OPEN 



Extended BASIC - A Complete Package 165 

Recommended mode: Either 

Purpose: To read / set the top of Basic programming memory. 

Syntax: HIMEM = expression - sets the top of memory to the 
expression (~-65535) 
A = HIMEM or PRINT HIMEM - returns the top of 
memory address 

Errors: Syntax error 
Illegal quantity - if the address is out of the range (~-65535) 

Use: HIMEM can be used to protect an area of memory at the top of Basic 
programming memory for the use of data storage or machine code programs. 
With these routines in memory, HIMEM is set at 32768. When HIMEM is used 
to set, a CLR is performed, thus wiping out all variables. 

Routine entry point: $8FDF 

Routine operation: HIMEM first checks to see whether it was called by the 
arithmetic routine or the execute statement routine. If the arithmetic routine 
called it, the top of memory pointer is read and converted to floating point form. 
If not, the '=' sign is scanned and the value is read in and stored at the top of 
memory pointer. CLR is then performed. 

LOC CODE LINE 

8FDF • LIP.. HIMEM 
8FDF 68 HIMEM PLA ;GET RETURN ADDRESS 
8FE0 ',8 F·HA 
BFEl C9 8e CMF· H$8C ;ARITHMETIC? 
8FE3 00 07 E:'.NE HIMSET ;NO 
8FES A6 37 LDX $37 ;GET HIMEM LO 
8FE7 (i5 38 LDf.l $38 ;GET HIMEM HI 
8FE9 4C 1\3 89 JMP {)GSIGN ;GEND IT 
8FEC , 
8FEC A9 E:'.2 HIMSET LDA 1I$E'.2 ;CHAR ,- , 
8FEE 20 FF AE JSR $AEFF ;SCAN PAST 1 __ 1 

8FFl 20 8A AD JSR $AD8A ;GET ADDRESS 
8FF4 20 F7 E:'.7 JSR $87F7 ;FIX IT 
8FF7 A5 1 /, LOA $14 ; GET VALUE LO 
8FF9 85 37 STA $37 ; STU,-it. TO MEMTOP 
8FFE:'. 85 35 STA $35 ;UTILtTy aTRING 
8FFD 85 33 STA $33 ;STRING 
8FFF A5 15 LDA $15 ; GET VALUE HI 
9001 85 38 STA $38 ;STORE TO HI E:'.YTES 
9003 85 36 STA $36 
9005 85 34 STA $34 
9007 A5 2D LDA $2D ;PERFORM CLR 
9009 85 2F STA $2F 
900P.. 85 31 STA $31 
9000 A5 2E LOA $2E 
900F 85 30 STA $30 
9011 8 0 • . } 32 STA $32 
9013 60 RTS 
901', .END 



166 Advanced Commodore 64 BASIC Revealed 

Abbreviated entry: K(shift)E 

Affected Basic abbreviations: None 

Token: Hex $EE,$I~ Decimal 238,16 

Modes: Direct and program 

Recommended mode: Either, but function keys work in direct mode only. 

Purpose: To set an eight byte string to one of the eight function keys. 

Syntax: KEY expression, string - where the expression is a value (1-8) and the 
string is any string expression (first eight bytes only are accepted). 

Errors: Illegal quantity - if the key number is < I or >8 
Syntax error - if missing comma 
String too long - if the string is longer than 255 bytes 
Type mismatch - if the command is numeric instead of string 

Use: KEY is used to set a commonly used string or command onto a function 
key. There are eight function keys available and each one can be eight bytes 
long. For an example of the format for KEY, see the EXEC command. 

Routine entry point: $9~14 

Routine operation: KEY first reads in the function key number and checks that 
it is within range (anything after a decimal point is ignored). If it is within range, 
the comma is scanned past and the string is read in. The string is then copied into 
the storage area until the whole string is in or the first eight bytes. 

LOC CODE LINE 

9014 .LIB f(EY 
901<1 20 9E B7 f(EY JSR $1:'.79E ;GET KEYII 
9017 E0 00 CF·X 11$00 ; IN I~ANGE? 
9019 F0 04 BEQ HE YERr, ;NO 
901H E0 09 CPX 11$09 
901D 90 05 BCC I(EY01 ;YES 
901F A2 0E I(EYERR LDX·II$0E ;ILLEGAL QUANTITY 
9021 4C 37 A4 JMF" $i'j437 ;SEND ERROR 
9024 A9 BF f(EY01 LDf' II$HF ;POINTER HI BYTE 
9026 85 FC STA $FC 
9028 CA DEX 
9029 BD 54 90 LDA I(EYLO, X ;GET LO BYTE 
902C 85 FB STA $FB 
902E 20 FD AE JSR $AEFD ;SCArl PAST cor1P1A 
9031 20 9E AD JSR $AD9E ;GET STRING 
903<1 80 5C 90 STA STLEN 
9037 20 A3 B6 JSR $B6A3 ;DISCARD STRING 
903A (i0 00 LOY «$00 
903C B1 22 f(EY02 LOA ($22),Y ;GET BYTE 
903E 91 FB STA ($F~.),Y ;STORE IT 
9040 C8 INY 



Extended BASIC - A Complete Package 

LOC CODE LINE 

9041 CC 5C 90 CF'Y STLEN ;ENO OF STRING? 
90'.'. F0 05 I?Hl f(EY04 
9046 C0 08 CF'Y 11$08 ;ENO OF ROOM? 
9048 00 F2 j?NE KEY02 ;NOT YET 
90411 60 f(EY03 Ins 
904B C0 08 f(EY0'. CPY 11$08 :STRING LENGTH=8? 
9040 F0 FB BED f(EY03 ;YES 
904F A9 00 LOA 11$00 ;ZERO TERMINATOR 
9051 91 FB STA ($FB),Y ;STORE 
9053 60 RTS 
9054 C0 f(EYLO .Bn $C0,$E0,$C8,$£8 
9055 E0 
9056 C8 
9057 E8 
9058 00 .Bn $D0,$F0,$08,$F8 
9059 F0 
905(; 08 
90SB F8 
905C 00 STLEN .BYT 0 
9050 .END 

lOMEM 

Abbreviated entry: L(shift)O 

Affected Basic abbreviations: LOAD - LO(shift)A 

Token: Hex $EE,$1 F Decimal 238,31 

Modes: Direct and program 

Recommended mode: Either 

IT 

Purpose: To read/set the bottom of Basic programming memory. 

167 

Syntax: LOMEM = expression - sets the bottom of memory to the 
expression (~-65535). 
A = LOMEM or PRINT LOMEM - returns the bottom of 
memory address. 

Errors: Syntax error 
Illegal quantity - if the address is out of range (~-65535) 

Use: LOMEM can be used to protect an area of memory at the bottom of the 
Basic programming memory for the use of data storage or machine code 
programs. LOMEM is originally set at 2~49. When LOMEM is used to set, a 
NEW is performed, thus wiping out all variables and Basic program at the new 
address. If a program was there, use OLD to restore it. 

Routine entry point: $9~5D 

Routine operation: LOMEM first checks to see whether it was called by the 
arithmetic routine or the execute statement routine. If the arithmetic routine 



168 Advanced Commodore 64 BASIC Revealed 

called it, the bottom of memory pointer is read and converted to floating point 
form. If not, the '=' sign is scanned and the value is read in and stored at the 
bottom of memory pointer. NEW is then performed. The byte below the new 
bottom of memory is also set to zero. 

Loe CODE LINE 

905D .LIP.. LOMEM 
905D 68 LOMEM PLA ;GET RETURN ADDRESS 
905E '.8 PHA 
905F C9 8C eMP "$8C ; ARITHMETIC? 
9061 D0 07 !?oNE LOMSET ;NO 
9063 A6 2B LDX $2B ;GET LOMEM LO 
90{;5 A5 2C LDA $2C ;HI 
9067 '.c A3 89 JMP ASSIGN ;SEND IT 
90bA . 
906A A9 B2 LOMSET LDA "$1?2 ;TQf(EN '=' 
906C 20 FF AE JSR $AEFF ;SCAN PAST ._. 
906F 20 8A AD JSR $AD8A ;OET ADDRESS 
9072 20 F7 B7 JSR $B7F7 ;FIX IT 
9075 A5 14 LOA $14 ;OET LO BYTE 
9077 85 2B STA $21? ;STORE BOTTOM 
9079 18 CLC 
907A 69 02 AOC "$02 ;SE1" UP VARS 
907C 85 20 STA $20 
907E 85 2F STA $2F 
9080 85 31 STA $31 
9082 A5 15 LOA $15 ;GET III BYTE 
909'. 85 2C STA $2C ; STORE I?OTTOM 
9086 69 00 ADC "$00 
9088 85 2E 5TA $2E ;SET UP VARS 
908A 85 30 STA $30 
908C 85 32 STA $32 
908E A5 I'. LOA $14 ; COMPLETE NEW 
9090 00 02 I?NE LOM01 
9092 C6 15 DEC $15 
9094 . C6 1'. LOM01 OEC $14 
9096 A0 0-' <- LDY "$02 ;LOOP TO STORE 3 ZErws 
9098 A9 00 LOA "$00 
909A 91 1'. LOM02 STA ($1'.). Y ;STORE ZERO 
90'jlC 88 DEY 
909D 10 FE? BF'L LOM02 ;ANO NEXT 
909F A5 38 LDA $38 ;RESET STRING POINTERS 
90A1 85 36 STA $36 
90A3 85 3'. STA $34 
90~,5 A5 37 LOA $37 
90A7 85 35 STA $35 
90A9 85 33 S1"A 03 
90AB 60 RTS 
90AC .ENO 

~ 
Abbreviated entry: M(shift)A 

Token: Hex $EE,$II Decimal 238,17 

Modes: Program and direct 



Extended BASIC - A Complete Package 169 

Purpose: To perform arithmetic operations on entire arrays, assuming their 
contents to be matrices. 

Syntax: MAT array name = (arithmetic expression). Assign scalar value to all 
elements of the matrix in the array. Brackets are required around the 
expreSSIOn. 

MA T array name = array name. Assign all corresponding elements 
from one array to another. Both arrays must be numeric and of the same 
dimensions. 

MAT array name = array name operator (arithmetic expression) or 
MAT array name = (arithmetic expression) operator array name. The 

operator may be + or * to add or mUltiply a matrix with a scalar value. 
MAT array name = array name + array name. All three arrays must 

be of the same dimensions and numeric. 
MAT array name = array name * array name. Array sizes must follow 

the convention for matrix multiplication i.e. (a X c) = (a X b)*(b X c), where 
a,b,c are the array sizes in the DIM statement plus I (element ~ is used). 

The MAT command will only accept arrays of I or 2 dimensions, of only 
numeric type and with not more than 255 elements in either dimension. 

Errors: Syntax error - when the expression is not in brackets or an 
illegal operator is used 

Type mismatch - for string arrays 
Bad subscript - for arrays of incorrect size etc. 

Use: High speed matrix arithmetic is approximately eight times faster than an 
equivalent basic subroutine. Using this command also saves the use of nested 
FOR ... NEXT loops, thereby reducing the chances of an Out of memory error 
due to the stack being full. Since most versions of Basic on mainframe 
computers have full matrix arithmetic, this subset of the full MAT command 
will be useful in converting programs to run on the CBM 64. Matrix arithmetic 
is often used in programs handling large amounts of numbers in linear 
equations. 

The routine uses the simple convention that a matrix of size a X b will be 
stored in an array dimensioned by DIM A(a-l,b-I). This means that a routine 
to read a 5 X 2 matrix from data statements would be: 

DIM A(4,l) 

FOR I = ~ TO 4 
FOR J = ~ TO I 
READ A(I,J) 
NEXT J,I 

DATA~,4 
DATA 3,5 
DATA -5,3.45 
DATAI,I 
DATA .4,-4 



170 Advanced Commodore 64 BASIC Revealed 

To print an array use a routine like: 

FOR I = ~ TO 4 
FOR J = ~ TO I 
PRINT A(I,J), 
NEXT J 
PRINT 
NEXT I 

The matrix multiplication is equivalent to: (a X c) = (a X b) * (b X c). 

DIM A(a-I,c-I ),B(a-I ,b-I)c,(b-I ,c-I) 
MAT A = B * C 

is the same as but faster than: 

FOR I = ~ TO a -I 
FOR J = ~ TO c-I 
T=~ 
FOR K =~ TO b-I 
T = T + B(J,K) * C(K,I) 
NEXT K 
A(J,I) = T 
NEXT J 
NEXT I 

Routine entry point: $9~AC 

Routine operation: The MAT routine uses the following Basic ROM calls: 

$AEF I ~ Evaluate expression in brackets 
$BBD4 ~ FAC# I to memory (x.y) 
$BBA2 ~ Memory (x.y) to F AC# I 
$B lBF ~ Float to fixed 
$B391 ~ Fixed to float 
$B867 ~ Memory (a.y) + FAC#I to FAC#I 
$B85~ ~ Memory (a.y) - FAC#I to FAC#I 
$BA28 ~ Memory (a.y) * F AC# I to F AC# I 

The routine for assignment will, for speed, perform just a block memory move if 
the two arrays are both of the same type e.g. both integer. The mUltiply routine 
works in the same way as the Basic version above. It calculates the address of the 
next element required just by adding a pre-calculated offset for speed. 

Readers are advised to consult a standard mathematics textbook for details 
of matrix arithmetic. 

100 A$=" NOITARTSNOMED LTC DNA YLPITLUM XIRTAM " 
110 CTL(",O,O,1) 
120 FORI=1TOLEN(A$) 
130 B$=MID$(A$.o 1,1) 
140 C=ASC(B$)At~D15 
150 PRINTCTL(40-I,l,CORl"C)iB$ 



Extended BASIC - A Complete Package 171 

160 ~~EXT 
178 PRINTCTL(' 3,14) II THlE IN BASIC" 
1813 PRINTCTL(" 15) II TIME IN ~lAT "CTL(" 5) 
190 XP=1e 
200 X1=3 
2Hl Y1=3 
2213 )<2=3 
2313 'T'2=1 
240 X3=1 
250 Y3=3 
260 DIMA(Xl, 'T'1) ,B(X2, Y2), C(X3, Y3) 
2713 GOSUB430 
280 GOSUB45e 
290 PRINTCTL(l,l);"--------------------------------------" 
31313 T1=TI 
3113 GOSUB470 
3213 PRINTCTL(15,3,14)(TI-T1)/60CTL(,7) 
330 GOSUB41e 
340 PRINTCTL<1,12,5);"--------------------------------------" 
3513 n=TI 
3613 MAT A=B*C 
370 PRINTCTL(15,4,15)(TI-Tl)/6eCTL(, 12) 
3813 GOSUB410 
39(1 PR ItHCTL< 1 , 17, 5) i II -----------------_____________________ II 

4130 CTL(0, 22) : END 
4113 FORI=0TOXl: FORJ=eTOYl : PRINTCTL «J+1) It:XP-H)) i A<I.J); : HEXT: PRIHT: NEXT 
420 F:ETURN 
4313 FORI =eTO>(2 : FORJ=eTOY2: READB( L J) : NEXT : t~EXT 
440 RETURN 
450 FORI =eTOX3 : FORJ=13TO'i3: READC( L J) : NEXT: NEXT 
460 RETURt·j 
4713 FORY=0TO'r'1 
480 FORX=0TOXl 
490 T=e 
500 FORI=13TO'T'2 
5113 T=T+B(X.I)*CCI,Y) 
5213 HEXT 
5313 A(X,Y)=T 
5413 HEXT 
55(1 NEXT 
5613 RETURt~ 
5713 DATAl.2 
5813 DATA3,4 
590 DATA5.6 
6130 DATA7,8E-5 
6113 REM 
6213 IIATAL 2, 3; 4 
6313 DATA5,6,7,8 

Program 17. Demonstration of the MAT command and use of CTL command. 

LOC CODE LINE 

9'.lAC .LIB MAT.COMMAND 
9Q1AC 
'?('tAC ; 16 BIT UNSIGNED MULTIPLY 
'7'0AC 
90AC ; WAREA = N1 * N2 
S'0AC , 
90AC 00 00 Nl .1~OR 0 
90AE 00 00 N2 .war, 0 
90B0 00 00 RESULT .WOR 0 
90B2 , 
'10B2 A9 00 MMULT LDA"0 ;ZERO RESULT 
901?4 80 1?·0 90 STA r,ESUL T 



172 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

90B7 80 IH 90 STA RESULT+1 
91l'BA AD AE 90 LOA N2 ; END IF N2=0 
91l'/'.0 00 AF 90 ORA N2+1 
90C0 F0 08 I?Etl MMUL T2 
90C2 AD AC 90 MMULT1 LOA N1 ;Nl :: 0 ? 
90C5 eo AD 90 or(A N1+1 
90eB 00 01 I?NE MMUL T3 
91l'CA 6e MMULT2 RTS 
'10CB A9 01 MMULT3 LOA M1 ; IF BIT e OF N1 
geco 20 AC 90 AND N1 ;THEN ADD N2 TO RESULT 
9000 Fe 13 BEt! MMULT4 
9002 18 CLC ;AOO N2 TO RESULT 
9003 AD AE 90 LOA N2 
9006 60 B0 90 f"lDC RESULT 
9009 80 B0 ':?0 STA RESULT 
900C AD AF 90 LOA N2+1 
900F 60 B1 90 AOC RESULT+l 
90E2 80 11,1 90 STA RESULT+l 
90ES 0E AE 91l' MMUL T', ASL N2 ;N2 = N2 !I; 2 
90E.8 2E AF ge ROL N2+1 
91l'EB 4E AD ge LSR N1+1 ;N1 = N1 / 2 
91l'EE 6E AC 90 ROR N1 
90F1 4C C2 90 JMP MMULTl 
geF4 
geF', 
geF4 , 
90F4 :*~~*****~**************** 
geF4 ; MATRIX ARITHMETIC 
geF', ;*******~~**************** 
geF/. , 
90F4 ISNALF " $B113 
geF4 CHr(GOT = $79 
geF4 CHRGET " $73 
90F4 e0 00 VNAME1 .WOH 0 ; VAf, I AeLE NAMES 
90F6 0e 'HYPE 1 .BYT 0 
90F7 0e 00 ')NAME;! .WOR e 
geF9 00 VTYPE2 .I?YT 0 
90FA 00 0e VNAME3 .WOf, 0 
90re 00 VTYF'E3 .BYT 0 
90FD FACM '* :0:: 

~+5 ;TEMf"' FL.OATING STORE 
9102 FACT * .. - *+5 ; TEMP FLOf"lTING SlfJr(E. 
9107 0e 00 VSIZE1 .WOR 0 ;ARRAY SIZES 
9109 00 09 VSIZE:·! .WOR 0 
910l'. 00 ell' VSIZE3 .WCJr( 0 
9100 00 OP1YPE .Ern 0 ;OF'ERAND TYPE 
91eE VPTR1 " fFl'. 
910E VPTR2 " $FO 
910E VF'TH3 = $9E 
910E 00 e0 VSTTl .WOR 0 
911e 00 01l' VSTT2 .WOR 0 
9112 00 00 VSTT3 .WOR 0 
9114 00 00 T1 .wor, 0 
9116 00 00 T2 .WOR 0 
9118 
9118 
911.8 ; 
9118 80 F', 90 MAT STA VNAMEl ;GET FIRST ARRAY 
911B 20 13 B1 JSR ISNALF NAME AND CHEC~( 
911E Be 03 BCS CHOf( LEGAL 
9120 ',c 08 AF .JMF' $AFe8 SYNTAX 
9123 A9 e0 CHOI( LOA 110 
9125 80 F5 90 STA VNAME1+1 
9128 80 Fa 90 STA VNAME2+1 
912B 80 FB ge STA VNAME3+1 
912E 80 F6 ge STA VTYF-El 



Extended BASIC - A Complete Package 173 

LaC CODE LINE 

9131 8D F9 90 STA VTYPE2 
9134 80 FC 90 STA VTYPE3 
9137 20 73 00 JSR CHRGET 
913A 90 05 E'·CC CHOf(l 
913C 20 13 B1 JSR ISNALF 
913F 90 00 BCC EOVNA1 ;GO CHECI( FOR % $ 
91',1 80 F5 90 CHOf( 1 STA '.'NAME1 +1 
9144 20 73 00 LNE JSR CHRGET ;SCAN PAST REST 
91£,7 90 FB BCC LNE ;OF VAR NAME 
9149 20 13 B1 JSR ISNALF 
71'.C 1'.0 F6 BCS LNE 
914E C9 2't EDVNA1 CMP H'$ ;CHECI( FOR STRING 
9150 D0 05 E'·NE NSTR1 
9152 A2 16 TYMISE LOX "22 
9154 4C 37 AI, JMP $A437 ;TYPE MISMATCH 
9157 C9 'Ie' ..:....1 NSTR1 CMF' H'% 
9159 D0 06 BNE NTINTl ,NOT INTEGER ARRAY 
915B CE F6 90 DEC VTYPE1 ;SET TYPE FLAG TO $FF 
915E 20 73 00 .JSR CIIRGET ;GET NEXT CHAR 
9161 C9 (>,2 NTINTl CMF' H$(>'2 , TOf(EN FOR = 
9163 F0 03 Bnl FOEQ 
9165 4C 08 AF JMP 'fAF08 ;SYNTAX NOT ",. 

9168 20 73 00 FOEQ JSR CHRGET 
916B C9 28 CMF' H' ( ;CHECI( FOR ( EXF'. 
916D D0 16 BNE NTEXF'2 
916F 20 F1 AE .Jsr, 'fAEF1 ;EVAL. EXF'. IN ( ) 

9172 A5 00 LOA $00 ,CHECI( NUMERIC 
9174 00 DC E'.NE TYMISE 
9176 A2 FO LOX II<FACM ,FACH1 TO FACM 
9178 A0 90 LOY II>FACM 
917A 20 04 1'.1'. JSR $1'.1'·04 
9170 A2 01 LDX Hl ; SET TYPE FLAG TO CONST 
917F 8E F9 90 STX 'JTYF'E2 
9182 4C BA 91 JMF' CHI(OF' 
9185 20 13 B1 NTEXF'2 JSF: ISNALF ;GET NAME 
9188 ~.0 03 E'·CS CHOI(2 ;CHECI; LEGAL 
918A 4C 08 AF JMI" $AF08 ;SYNTn: 
9180 80 F7 90 CHOI(2 STA VNAME2 
9190 20 73 00 JSF: CHRGET ; GEl SECOND CHAR 
9193 90 0~) Bce CHOI(2A ; NurmER ";' 

9195 20 13 Bl JSI~ ISNALF 
9198 90 00 BCC EDVNA2 ;CHECf( FOR $ /. 
919A 80 F8 90 CHOf(2A STA lJNAME2+ 1 
9190 20 73 00 UlE2 JSR CHRGET ;SCAN TO END 
91A0 90 FB Bce LNE2 ;OF VARIABLE NAME 
91(~2 20 13 1'.1 JSII ISNALF 
91A5 1'.0 F6 E'.CS LNE2 
91A7 C9 2't EOVNA2 CMF' H'$ ;CHECI( FOR '$' 
91A9 D0 05 BNE NSTR2 
91Ar. A2 16 LDX W'') ; TYPE MISMATCH 
91AD 4C 3'7 At, JMF' $A'.37 
911'.0 C9 25 NSTH2 CMF' H'/. ;CHECI( IF INTEGEr, 
91B2 00 06 E'.NE CHI(OP 
91E1,I, 20 73 00 JSR CHRGET 
911'.7 CE F9 90 DEC I)TYPE2 ;SET INTEGER FLAG 
91BA A2 00 CHIWP LDX H0 ;CHECI( OPERAND TYPE 
91E'.C 8E 00 91 STX OPTYF'E 
91BF 20 79 00 JSR CHRGOT ;ENO STATEMENT ? 
91C2 00 03 BNE NASSIG 
91C4 I,C 49 92 J~lF' OOMT 
91C7 EE 0D 91 NASSIG INC OPTYPE 
91CA C9 AA CMF' H'fAA ;CHECI( FOR ADD + 
91CC F0 11 BEQ GET\!3 
91CE EE 0l' 91 INC OPTYPE 
9101 C9 AI'. CMF' H$Af.'. ;CHECI( FOR SUB -



174 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

91D3 F0 0A BED GETV3 
91D5 EE 0D 91 INC OPTYF'E 
91D8 C9 AC CMP II$AC ; CHECI( FOR MULT * 'l1DA F0 03 e,ED GET'J3 
91DC ~C 08 AF .IMP $AF08 ;SYNTAX 
91DF 20 73 00 GETV:3 Jsr, CHRGET 
91E2 C9 2B CMF' II' ( ;CHECI( For, ( EXF' 
91E4 D0 28 BNE NTEXF'3 
91E6 AD F9 90 LDA VTYF'E2 ;CHECI( TYF'E2 FOR 
91E9 C9 01 CMF' 111 ;BEING CONSTANT 
91EE'. D0 \"-' BNE BEXF'Of( ~. 

(?lED ',c 08 AF JMP $AF08 ;SYNTAX 
91F0 20 Fl AE E'·EXF'Qf( JSR $AEF1 ;EVAL EXP 
91F3 A5 0D LDA $00 
91F5 F0 03 E'-ED NUMOf( 
91F7 ',C ~'1 91 JMF' TYMISE ; TYPE MISMATCH ~'L 

91FA A2 FD NUMOf( LDX II<FACM ;FACII1 TO FACM 
91FC A0 90 LDY II>FACM 
91FE 20 D'. E'-E'- JSR $BBD4 
9201 A9 01 LDA 111 ;SET fYF'E FLAG TO CONST 
9203 BD FC 90 STA VTYPE3 
9206 20 79 00 JSR CHRGOT ;END OF STATEMENT ? 
9209 F0 3E BED DOMAT 
9201? 4C 0B AF SYNTE JMP $AF08 ;SYNTAX 
920E 20 13 E'.l NTEXF'3 ,.ISf( ISNI\LF ;GET Ar,RAY NAME 
9211 90 F8 BCC SYNTE ;SYNTAX mRO~: 
9213 BO FA 90 STrl VNAME3 
9216 20 7:5 00 ..ISH CHHGET 
9219 F0 2E e.EO DOMT ; : or, END OF LINE 
921B 90 05 PCC CHOU 
921D 20 13 P.·l JSR ISNALF 
9220 90 0F BCC EDVNf~:3 
9222 BD FP.. 90 CHCH(3 STA V Nf.1ME3 + 1 
9225 20 7:5 00 LNE3 JSR CHRGET 
9228 F0 1F e·EO [)OMAT 
922A 90 F9 Bce LNE3 
922C 20 1 'I ., E'.1 JSf~ ISNALF 
922F B0 F4 I?CS LNE:3 
9231 C9 2't E:'DVNA3 C~1F' 11'$ ;IS IT A smING 
9233 D0 05 e.NE NSTR3 
9235 A2 !6 LDX 1122 
9237 ',c 37 fV, JMP $A'.37 
923A C9 25 Nsm::; CMF' II ' ;~ ;I5 IT INTEGER 923C D0 08 e.NE NTINT3 
923E CE FC 90 DEC VTYPE3 
9241 20 73 00 JSH CHRGET ;NEXT CHAR 9244 F0 03 BED DOMAT 
92'.6 ',C 08 AF NTINT3 JMF' $AF0B ;SYNTAX 
9249 AD F6 90 DOMAT LDA VTYPEl ;FIN[) Ar,r,A Y 1 92',C F0 10 e.EQ 1)1REAL 
921,[ A9 80 LDA 11128 ;SET HI BITS ARRAY NAME 
9250 0D F4 90 ORA VNAME1 
9253 8D F4 90 STA VNAME1 
9256 A9 80 LDA 11128 
92~,8 0D F5 90 ORA VNAME1+1 
925P BD F5 90 STA VNAME1+1 
925E 20 78 9'. VIREAL JSR FINDAR ;FIND ARRAY AD[)R 
9261 8E 07 91 STX ')SIZEl 
926'. BC 08 91 STY VSIZEl+l 
9267 A5 Fl? LDA VPTR1 ;STORE IT 
9269 8D 0E 91 STA VSTT 1 
926C A5 Fe LDA VPH\l + 1 
926E 8D 0F 91 STA VSTT1+1 
9271 AD F9 90 LDA VTY'F'E2 
9274 C9 01 CMf" III 



Extended BASIC - A Complete Package 175 

LOC CODE LINE 

9276 F0 2A BEQ GAR3 ;EXF'RESSION 
9278 AD F9 90 LOA VTYF'E2 ;SET UP ARRAY NAME 2 
927[1. 29 80 AND 11$80 ;FOR SEARCH ROUTINE 
927D 80 14 91 STA Tl 
9280 00 F7 90 OR(.j VNAME2 
9283 8D F4 90 STA VNAMEl 
9286 AO F8 90 LOA VNAME2+1 
9289 00 1', 91 ORA T1 
928C 80 F5 90 STA VNr"lMEl+1 
928F 20 78 94 JSR FINOAr( ;FIND AODRESS ARRAY 2 
9292 BE 09 91 STX VSIZE2 
9295 8C 0A 91 STY VSIZE2+1 
9298 A5 FI3 LDA VF'TR1 
929A 80 10 91 STA VSTT2 
9290 A5 FC LOA VPTRl+1 
929F 8D 11 91 STA VSTT2+1 
92A2 AD 00 '71 GAR3 LOA OF'TYF'E ;ARRAY 3 ? 
92A5 F0 31 BEQ OOMATA ;NO Af(RAY 3 
92A7 AD FC 90 LOA VTYF'E3 
92AA C9 01 CMF' 111 ;IS IT A CONSTANT 
92AC F0 2A BEQ OOMATA ;YES 
92AE 29 80 AND 11$80 ; IS ARRAY 3 INTEGER 
92B0 80 1', 91 STA T1 
92['.3 AD FA 90 LDA VNAME3 
92['·6 00 1 't 91 ORA T1 
92E?8 80 F4 90 STA VNAME1 
9213C AD FB 90 LOA \.!NAME3+ 1 
92BF 00 14 91 OFM T1. 
92C2 80 F5 90 STA I)NAMEl+l 
92C5 20 7H 94 JSf( F I NDI\f( ;FIND ARF:AY 3 
?;~C8 8E 013 91 STX I)SIZE3 
92Cf'. 8C 0C 91 STY ')5 I ZE3+ 1 
92CE Ac-• J Fl: . L.DA IJPTR1 
9200 80 12 ~'1 STA '.'STT3 
9203 A5 FC LDI~ 'JF'TR 1 -I- 1 
9205 80 13 91 STA 1.'STT3+ l 
920B AD 00 91 OOMATA LOA OF' r YFE ;SET A JUMP I)ECTor·: 
920£'. 0A ASL A ;FOR OPERATION 
920C AA TAX 
92DO BO EE 92 LOA OPJTAB,X 
92E0 80 EC 92 STA OFJMF' 
92E3 BO EF 92 LOA OF'JTAB+l,X 
92E6 80 EO 92 STA OF'JMP+l 
92E9 6e EC 92 JMP <oP .)MF' ) 
92EC , 
92EC 00 00 OPJMF' .WOR 0 ;JUMP VECTOR 
92EE F6 92 OF'JTAB .WOR ASSGN ; JtJMr-' TABLE 
92F0 01 95 .WOR ADOSUB 
92F2 01 95 .WOR ADO SUB 
92F4 6A 96 .l~OR MULT 
92F6 , *:.;.~ MAT M ... C 
92F6 A9 01 ASSGN L[)A III 
92F8 CO F9 90 CMF' VTYPE2 
92FB F0 03 BEQ ASSIC 
92FO 4C 63 93 JMP ASARAR 
9300 (\2 05 ASSIe LDX 115 ;ARRAY =CONSTANT 9302 AO F6 90 LOA VTYF'E 1 
9305 F0 16 BEQ ASSRl 
93(:;,7 A9 FO LOA II<FACM ;FACM TO FAC"1 
9309 A0 90 l.OY II>FACM 
930B 20 A2 BB JSR $BP..A2 
930E 20 BF B1 JSR $f?lBF ;FLOAT TO FIXED 
9311 A5 6't LDA $64 ;STORE INT IN FACM 
9313 flD FD 90 STA fACM 
9316 AS 65 LOA $65 



176 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9318 8D FE 90 STA FACM+l 
931B A2 02 LDX 112 
9310 8E F9 90 ASSR1 STX VTYf'E2 ;STORE ELEMENT LENGTH 
932et A9 00 LOA 110 ;CALC NUMBER OF ELEMENTS 
9322 8D AD 90 STA Nl+l 
9325 8D AF 90 STA N2+1 
9328 AD 07 91 LDA VSIZE1 
932B 80 AC 90 STA Nl 
932E AD 08 91 LOA VSIZE1+1 
9331 80 AE 90 STA N2 
9334 20 B2 90 JSR MMULT ;RESULT "'Nl ~ N2 
9337 20 C0 95 JSR TRPTI ;COPY POINTER TO ZERO PAGE 
933A A0 00 LDY 110 
933C A2 00 ASLOOP LOX 110 ;FACM TO ARRAY 
933E BD FO 90 ASLOP LDA FACM,X 
9341 91 FB STA (I)PTR1), Y 
9343 E8 INX 
93',4 E6 FB INC VPTRI 
9346 D0 02 BNE ASNC 
93',8 E6 FC INC VPTR1+1 
934A EC F9 90 ASNC CPX VTYF'E2 
93',D D0 EF BNE ASl.OP 
934F AD [,,0 90 L[)A RESULT 
9352 00 03 BNE ASNC9 
9354 CE Bl 90 DEC F:ESUL T+l. 
9357 CE B0 90 ASNC9 DEC RESULT ; Ar.:r,AY FILLED ? 
935A AD [,,0 90 LDA RESULT 
9350 00 (?,1 90 OHA RESULT+l 
9360 D0 DA BNE ASl.OOF' 
9362 60 RTS 
9363 
9363 A2 05 ASARAr, L.[)X II·" " ;SET VAf~ LENGTH 
9365 AD F6 90 LDA VTYPEI 
9368 F0 02 r,EQ ASRIR 
936A A2 02 LOX 112 
936C 8E F6 90 ASRH, STX VTYPEI 
936F A2 05 LOX 115 
9371 AD F9 90 LOA VTYF'E2 
937', F0 02 BED ASR2R 
9376 A2 02 LDX 112 
9378 8E F9 90 ASR2R STX VTYPE2 
937B AD 07 91 LDA VSIZEI ;COMF'AHE AHRAY SIZES 
937E CD 09 91 CMP VSIZE2 
9381 F0 05 BED ASRSOf( 
9383 A2 12 ASRSU\?, LDX 11$12 ;MO SUBSCRIPT ERROR 
9385 4C 37 A4 JMP $A407 
9388 AD 08 91 ASRSOf( LOA VSIZEl+1 
938B ::D 0;'1 91 CMf' VSIZE2+1 
93BE 00 F3 BNE ASRSUB ; ERROR 
9390 AD F6 90 LOA VTYf'EI ;ARRAYS SAME TYf'E ? 
9393 CO F9 90 CMP VTYPE2 
9396 D0 5A ["NE ASRIR ;NO 
9398 A9 00 LOA 110 ;CAl.C SIZE OF ARRAYS 
939A 80 AD 90 STA Nl+! 
9390 80 AF 90 STA N2+1 
93A0 AD 07 91 LOA VSIZEI 
93A3 80 f'C 90 STA Nl 
93A6 AD 08 91 LOA VSIZE1+1 
93A9 80 AE 90 STA N2 
93AC 20 B2 90 JSR MMULT 
93AF AD B0 90 LOA RESULT 
93B2 8D AC 90 STA Nl 
93B5 AD Bl 90 LDA RESULT+l 
93B8 8D AD 90 STA Nl+l 
93["B AD F6 90 LOA VTYPEI 



Extended BASIC - A Complete Package 177 

LOC CODE LINE 

93~.E SO AE 90 STA N2 
93C1 A9 00 LOA 110 
93C3 80 AF 90 STA N2+1 
93C6 20 e,2 90 JSR MMULT 
93C9 20 B6 95 JSr< TRPT2 ;SET POINTERS TO ARRAYS 
93CC A0 00 LOY 110 
93CE ~.1 FD ASSTLO LDA (VPTR2),Y ; BLOCI( MOVE OF 
9300 91 F~. STA (VPTR1>,Y ;LENGTH IN RESULT 
9302 E6 FB INC VPTR1 
9304 00 02 BNE ASSTNl 
9306 [6 FC INC VPH<1+1 
930a E6 FO ASSTN1 INC VPTR2 
930A 00 02 BNE ASSTN2 
930C E6 FE INC I)PTR2+1 
930E AI) ~.0 90 ASSTN2 LOA RESULT 
93E1 00 03 BNE ASSTN3 
93E3 CE B1 90 DEC RESULT+1 
93E6 CE B~ 90 ASSTN3 DEC RESULT 
93E9 AD B0 90 l.OA HESULT 
93EC 00 Bl 90 ORA RESULT+l 
93EF 00 DO I?NE ASSTLO 
93F1 60 RTS 
93F'2 A9 00 ASRH\ LOA 110 
93F', aD AD 90 STA N1+1 
93F7 SO AF 90 STA N2+1 
91FA AD 07 91 LOA VSIZE1 
93FO aD AC 90 STA N1 ;CALC NUMBER OF ELEMENTS 
9400 AD 0a 91 LOA ')SIZElt 1 
9403 80 AE 90 STA N2 
9406 20 e,2 90 JSH MMULT 
9409 20 B6 95 JSR TRPT2 
9',0C A0 00 ASRLOF' LOY 110 
940E A2 00 LOX 110 ;ARRAY ELEMENT TO FACM 
9410 e,1 FO ASRLF'1 LOA (I.'PTR2), Y 
9412 90 FD 90 STA FACM,X 
9415 E6 FO INC I)PTR2 
9',17 00 02 BNE ASRNC2 
9',19 E6 FE INC VPTR2H 
9411? E8 AsrmC2 INX 
9',1C EC F9 90 CPX VTYPE2 
9',1F 00 EF I?·NE ASRLP1 
9',21 E0 05 CPX 115 
9'.23 00 17 BNE ASRITR 
9',25 A9 FO LOn It<FACM ;FACM TO FACII1 
9427 A0 90 LOY II>FACM 
9',29 20 A2 I?e, JSR $e,E?A2 
942C 20 BF B1 JSR $EHBF ;FLOAT TO FIXEO 
9',2F A5 6'. LOA $6', 
9431 80 FD 90 STA FACM 
9',34 A5 65 LOA $65 
9436 80 FE 90 STA FACM+l 
9',39 I.C 4C 94 JMF' ASRTM ;FACM .0 ARRAY 
943C AD FO 90 ASr<ITr< LDA FACM 
9',3F AC FF. 90 LOY FACM+1 
9 /,42 20 91 B3 ~'SR $B:~91 ;FIXE[) TO FLOAT 
9'.',5 A2 FO LOX II<FACM :FAGII1 TO FACM 
9447 A0 90 LDY II>f'ACM 
9',49 20 0', BB JSR fBBO/, 
944C A0 00 ASRTM LOY 110 
94',E A" .,. 00 LDX 110 
9450 BO FO 90 ASRTMI LDA FACM,X 
9',53 91 FB STA (VPTR1),Y 
9455 E8 INX 
9',56 E6 FB INC VPTRI 
94~8 D0 02 P..NE ASRNCl 



178 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9'.51'1 F.:6 FC INC VPTR1+1 
945C EC F6 90 ASRNC1 Cf'X VTYF'E1 
9'.5F D0 EF I?NE ASRTM1 
9'.61 AD B0 90 LOA RESULT 
9464 D0 03 BNE ASRTM3 
94b6 CE Bl 90 DEC RESULT+1 
9469 CE B0 90 ASF:TM3 DEC RESULT 
946C AD B0 90 LOA RESULT 
9'.6F 0D B1 90 ORA RESULT+l 
9472 F0 03 I?EQ ASREXT 
9474 4C 0C 94 JMP ASRLOP 
9477 60 ASREXT RTS 
9478 ; 
9'.78 , FIND ARRAY 
9478 1'\5 2F FINDAR LOA $2F ;START OF ARRAYS 
947A 85 FB STA VPH\l 
947C A5 30 LOA $30 
947E 85 FC STA VF'Tf<l+l 
9'.80 A5 Fl? FALOOP LOA IJPTRI ;CMP. END OF ARRAYS 
9482 C5 31 CMF' $31 
948'. D0 0B BNE FACONT 
9486 AS FC LOA VPTRl+1 
9488 C5 32 CMP $32 
9'.8A 00 05 BNE FACONT 
91,8C A2 12 LOX 11$12 ;BAD SUBSCRIPT ERROR 
948E 20 37 A'. JSf< $A437 
9491 AO 00 FACONT LOY 110 
9'.93 1?1 FE.'. LOA (VPTR1),Y ;FIf<ST CHAR OF NAME 
9495 C8 INY 
9496 CO F'. 90 CMF' VNAME1 
9499 00 07 BNE FANAR ;TRY NEXT ARRAY 
9491? Bl FB LOA (VPTRl),Y 
9-.90 CO F5 90 eMP VNAMEl+1 
94A0 F~ 10 BEQ FAGETS ; GET ARRAY DATA 
9'.A2 C8 FANAR INY ;FlNO NEXT ARRAY 
9'01'13 Bl FB LOA (VPTRl),Y 
94A5 80 14 91 STA T1 
94A8 C8 INY 
94A9 IH FB LOA (VPTRl),Y 
94AI? 18 CLC 
9'.AC 65 FC AOC VPTRl+1 
94A[ 85 FC STA VPTRl+1 
94M AD 14 91 LOA Tl 
94B3 18 CLC 
9 ',I?,1, 65 Fl? AOC VPTRI 
94M 85 FB STA VPTRI 
9',88 90 02 I?CC FANC 
948A E6 Fe INC VPTR1+1 
948C 4C 80 94 FANC JMP FALOOP 
941?F A9 01 FAGETS LOA Itl ;GET ARRAY DATA 
9',C1 80 15 91 STA T1+1 
94C4 CB INY 
94C5 C8 INY 
94C6 C8 INY 
94C7 81 F!?- LOA (VPTR1),Y 
94C9 C9 03 CMP 1t3 
9 ',CI? 30 05 BMI FANOOK 
94CO A2 12 FAEI LOX ItU2 ;ERROR MORE THAN 2 DIM 
94CF I,C 37 AI, JMP $M37 
9402 AA FANOOl( TAX 
9403 C8 INY 
94D4 81 Fl? LOA (VPTR1),Y 
9406 D0 F5 BNE FAE1 ;FIRST DIM TOO BIG 
91,08 C8 INY 
9409 1?1 Fl? LOA (VPTR1),Y 



Extended BASIC - A Complete Package 179 

i...oc r.OOE LINE 

94D~. 80 14 91 STA T1 
94DE SA TXA 
940F CA DEX 
94E0 F0 0B e.EQ FAEX ;ONE DIM ARRAY 
94E2 C8 INY 
94E3 Bl FB LOA (VF'TR1>, Y 
94E5 00 El, ~.NE FAEI ;SECOND DIM TOO BIG 
94E7 C8 INY 
94E8 Bl FB LOA (VPTR1),Y 
91.EA 80 15 91 STA T1+1 
91.EO C8 FAEX INY 
91.EE 98 TYA 
9'.EF 18 CLC 
94F0 65 Fe. AOC VF'TRI 
94F2 85 Fe. STA VPTRI 
94F4 A:5 FC LOA VPTRl+l 
9'.F6 69 00 AOC "0 
94F8 85 FC STA VPTRl+1 
9'.FA AE 14 91 LI)X T1 
94FD AC 15 91 LOY T1+1 
9500 60 RTS 
9501 ; 
9501 20 81 95 AODSlJB JSf< ORDER ;PlIT CONST LAST 
9504 AD 07 91 LDA VSIZEI ;CHECK ARRAY SIZES 
.,,507 80 AC 90 STA N1 
950A CD 09 91 CMF' VSIZE2 
950D D0 22 BNE ADMOS 
950F AD 08 91 LOA VSIZE1+l 
9512 80 AE 90 STA N2 
9515 CD 0A 91 CMF' VSIZE2+1 
9518 00 17 BNE AOMOS 
951A no F9 90 LOA VTYF'E2 ;V2 CONSTANT ? 
9510 C9 01 CMF' "1 
951F F0 15 e.EQ ABSC 
9521 AD 09 91 LOA VSIZE2 ;V3 IS ARRAY 
9524 CD 0B 91 CMF' VSIZE3 
9527 00 08 BNE AOBAOS 
9529 AD 0A 91 LOA VSIZE2+1 
952C CD 0C 91 CMF' VSIZE3+1 
952F F0 05 ['.EQ Ae.SC 
9531 A2 12 AOBAOS LOX "$12 ;IMD SUBSCRIF'T 
9533 I.C 37 A4 JMF' $A437 
9536 20 AC 95 ABSC JSR TRF'T3 ;COF'Y F'OINTER TO Z PAGE 
9539 A9 00 LOA 1t0 ;CALC NO. OF ELEMENTS 
953B 80 AD 0;00 STA Nl+l 
953E (,D AF 90 STA N2+1 
9541 20 e.2 90 JSR MMULT 
9544 20 CB 95 ABSLOF' JSR V2TOT2 ;V2 TO <T2) 
9547 20 13 96 JSR V3TOFl ;V2 TO FACItI 
954A AD 16 91 LOA T2 
9540 AC 17 91 LOY T2+1 
9550 AE 00 91 LOX OF'TYF'E 
9553 E0 01 CF'X Itl 
9555 00 06 E?NE OOSUB 
9557 20 67 e.8 JSR $B867 (A. Yl + FAC"1 
955A 4C 6A 95 JMF' Ae.FA 
9550 E0 02 DOSUB CF'X "2 
955F 00 06 BNE OOMULT 
9561 20 50 B8 JSR $B850 ; (A. Yl-FACltl 
9564 4C 6A 95 JMF' Ae.FA 
9567 20 28 BA OOMULT JSR $BA2B ;(A.Y) * FACMl 
956A 20 3E 96 ABFA JSR FITOVI ;FACItI TO VI 
9560 AD e.0 90 LOA RESULT ; CHEC.{ ALL DONE 
9570 00 03 BNE Ae.NC 
9572 CE Bl 90 DEC RESIJLT+1 



180 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9575 CE B,!) 90 ABNC DEC RESULT 
9578 AD B0 90 LDA RESIJLT 
95?B 0D ['.1 90 ORA RESUU+1 
957E 00 C4 BNE ABSLOF' 
9580 60 RTS 
9581 , 
9581 AD FC 90 ORDER LDA VTYPE:3 ;')2 CONST 
958', C9 01 CMF' "1 
9586 D0 23 BNE AD')2NC 
9588 AD F9 90 LDA I)TYPE2 ; SIJOT V2 ,;: v3 
958B 80 Fe 90 STA VTYF'E3 
958E AD 09 91 LDA VSIZE2 
9591 80 0B 91 STA ',1SIZE3 
959', AD 0A 91 LDA VSIZ[:.!+l 
9597 80 0C 91 STA I)SIZE3H 
95% AD 10 91 LOA VSTT2 
9590 80 12 91 STA vsn 3 
95M AD 11 91 LOA VSTT2+J. 
95A3 8D 13 91 STA I,'STT3+1 
95A6 t~9 01 LOA "1 
95A8 8D F9 90 STA VTYF'E2 
95AB 60 AOV2NC RTS 
95AC , 
95AC AD 12 91 HWT3 l.OA VSTT-3 , con F'O I NTEf(S TO 
95AF 85 9E STA VPTR3 ;ZERO PAGE 
95B1 ~ID 13 91 LDA VSTT3+1 
95B4 85 9F STA VPTR3+1 
95Bb AD 10 91 HWT2 l.OA VSTT2 
95B9 85 FO STA IJPTR2 
95BB AD 11 91 LDA VSTT2+1 
95BE 85 FE STA VPTR2+1 
95C0 AD 0E 91 TRF'l1 LDA VSTT1 
95C3 85 FB STA VPTRl 
95C5 AD 0F 91 LDA VSTT1+1 
95C8 85 FC STA VPTR1+1 
95CA £-0 RTS 
95CB , 
95C[,. AD F9 90 ')2TOT2 LDA VTYPE2 ;V2 TO FACH2 
95CE F0 00 BED V2RA 
95D0 30 23 [,.MI V2INT 
9502 A9 FO LOA I/<FACM ;FACM TO FAClt2 
95D4 A0 90 LOY H>FACM 
9506 80 16 91 STA T2 
95D9 8C 17 91 STY T2+1 
950C 60 RTS 
95DO A5 FD V2RA LOA I)PTR2 ;V2 TO FACH2 
950F A4 FE LDY VPTR2+1 
95E1 80 16 91 STA T2 
95E4 BC 17 91 STY T2+1 
95[7 A9 05 LOA 1t5 
95E9 18 V2BF'T CLC ;BUMP VPTR2 
95EA 65 FD ADC VPTR2 
95EC 85 FO STA VPTR2 
95EE A5 FE LDA VPTR2+1 
95F0 69 00 ADC 1t0 
95F2 85 FE STA VF'Tr~2+ 1 
95F', 60 RTS 
95F5 A0 00 V2INT LDY "0 ;FIX[D TO FUhH 
95F7 Bl FD LOA (VPTR2),Y ;THEN FAC"! TO FAC"2 
95F9 AA TAX 
95FA CB INY 
95FB B1 FD LOA (VPTR2),Y 
95FO A8 TAY 
95FE 8A TXA 
95FF 20 91 B3 ,JSI~ $P..391 ;FIXEO TO FLOAT 



Extended BASIC - A Complete Package 181 

L.OC CODE LINE 

9602 A2 02 LOX II·TACT ;FAClll TO FACT 
'7'60'. 8E 16 91 STX T2 
9607 A0 91 un ILFACT 
9609 8C 17 91 STY T2+1 
960C 20 0'. BP, JSH $BBD4 
960F A9 02 LOA 112 
9611 00 06 E'.NE V2E'.F'T ;GO BUMP VPTFC 
9613 Al' FC 90 I)3TOF1 LOA 'v'TYf'E3 
9616 00 15 P,NE nun 
9618 A5 9E LOA ""PTR3 , \)3 TO FACII1 
961A A'. 9F LOY VPTR3+1 
961C 20 A2 BB JSR $[>,BA2 
961F A9 05 LOA 115 
9621 18 V3Bf'T CLC ;BUMP VF'TR3 
9622 65 9E AOC VPTR3 
962', 8<-..J 9E STA VPTR3 
9626 A5 9F LOA VPTR3+1 
9628 69 00 ADC 110 
962A 85 9F STA VPTR3+1 
962C 60 RTS 
9620 A0 00 V3INT LOY 110 ;GET V3 
962F B1 9E LOA (VPTR3) , Y 
9631 AA TAX 
9632 C8 INY 
9633 f'.l 9E LOA (VPTR3),Y 
9635 A8 TAY 
9636 SA TXA 
9637 20 91 e,3 JSR $B391 ;FIXED TO FLOAT 
963A A9 02 LOA 1t2 
963C 00 E3 BNE V3Bf'T ;GO BUMP VPTR3 
963E AD F6 90 FlTOV1 LOA VTYPEl ;FACIt1 TG V1 
96'.1 D0 15 BNE VlINT 
9643 A6 FE'. LD;: ')I:'TRl 
961.5 A4 FC LOY VPTR1+1 
9647 20 D4 f'.f'. JSR $BBD4 
96'.A A9 05 LOA 115 
964C 18 VIBPT CLC ;BUMP VPTF:l 
96'.0 65 FB ADC VPTR 1 
964F 85 FB STA VPTRI 
9651 A5 FC LDA ')PTR1 + 1 
9653 6S' 00 AOC 110 
9655 85 FC STA VPTR1+1 
9657 60 RTS 
9658 20 BF Bl VIINT JSR $B1BF ;FLOAT TO INT 
965B roe 00 LOY 110 
9650 A" .J 64 LDA $6'. 
965F 91 FB STA (VPTR1),Y 
9661 A5 65 LOA $65 
9663 C8 INY 
9664 91 FB STA (')PTRll,Y 
96{'6 r~9 02 LDA 112 
9668 00 E':> BNE V1e.PT 
96bA , 
966A AD F9 90 MUll LOA VTYPE2 ; CHECf( FOr< MULT. 
966D C9 01 CMP 111 ;ARRAY By CONSTANT 
966F D0 03 P,NE MERR 
9671 4C 01 95 GADS JMP ADOSUB 
967'. AD FC 90 MERR LDA VTYPE3 
9677 C9 01 CMF' 111 
9679 F0 F6 I',EQ GADS 
9671'. AD 08 91 LOf~ ""SIZE1+1 ; CHECf~ ARRAY DIM. 
967E CD 0A 91. Cr1F' '.'51Z[2+1. 
9681 D0 30 e,NE AAERI~ 

9683 f"lD 07 91 LDA VSIZEl ; CHECf( NOT SAME ARRAYS 
%36 CD 02, 91 CMF' ')SIZE:'. 



182 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9689 00 28 BNE AAERR 
9681:'. AD 09 91 LDA VSIZE2 
968E CO 0C 91 eMF' VSIZE3+1 
9691 D0 20 e.NE AAERF: 
9693 AD 0E 91 LOA VSTTl 
9696 CD 10 91 CMF' VSTT2 
9699 00 08 I:'.NE NSARR0 
969B AD 0F 91 LOA VSTTl""l 
969E CD 11 91 CMf' VSTT2+1 
96Al F0 10 l?.Etl MEF:R 
9M3 AD 0E 91 NSARR0 LOA VSTT1 
96A6 CO 12 91 CMF' VSTT3 
9M9 00 00 BNE AASOI( 
96AB AD 0F 91 LOA VSTT1+1 
96AE CD 13 91 CMP VSTT3+1 
961:'.1 00 05 I:'.NE AASOI( 
96B3 A2 12 AAERR LOX 11$12 ;BAO SUBSCRIPT ERROR 
96B5 '.c 37 Aft JMF' $A437 
961:'·8 20 AC 93 AASOI( JSR TRPT3 ;COPY POINTERS TO Z. P. 
96M A9 00 LOA 110 
961:'.0 80 AD 90 STA Nl+l 
96C0 SD AF 90 STA N2+1 
96C3 A9 01 LOA 111 
96C5 SO AA 97 STA ROW 
96CS 80 A9 97 STA NROW 
96CB SO AI:'. 97 STA COL 
96CE A9 05 LOA 115 ;CALC LENGTH or V2 ROW 
9600 AE F9 90 LOX VTYPE2 : - 1 ELEMENT 
9603 F0 02 BEQ AA2R 
9605 A9 02 LOA 112 
9607 SO AC 90 AA2R STA N1 
960A SO' 14 91 STA Tl 
9600 AE 0A 91 LOX VSIZE2+1 
96E0 CA OEX 
96E1 8A TXA 
96E2 SO AE 90 STA N2 
96E5 20 1:'.2 90 JSR MMULT 
96E8 AD B0 90 LOA RESULT ;STORE IT IN LLV2 
96EB 80 AC 97 STA LLV2 
96EE AD 131 90 LOA RESULT+1 
96F1 80 AD 97 STA LLV2+1 
96F4 18 AALOOP CLC ;MAIN LOOP 
96F5 AD 10 91 LOA VSTT2 ,SET V2 COL. PTR. TO NEXT 
96FS 85 FO STA VPTR2 
96FA 60 14 91 AOC Tl ;COL OF V2 
96FO SO AE 97 STA V2COLP 
9700 AD 11 91 LOA VSTT2+1 
9703 85 FE STA VPTR2+1 
9705 69 00 AOC 110 
9707 80 AF 97 STA V2COLP+1 
970A A9 00 AALOP LOA 110 ;ZERO ROW COL TOTAL 
970C SO FO 90 STA FACM 
970F SO FE 90 STA FACM+1 
9712 SO FF 90 STA FACM+2 
9715 80 00 91 STA FACM+3 
9718 SO 01 91 STA FACM+4 
971B 20 CB 95 AAMRC JSR nTOT2 ;GET V2 
971E 20 13 96 JSR V3TOF1 ;GET V1 
9721 AD 16 91 LOA T2 
9724 AC 17 91 LOY T2+1 
9727 20 2S BA JSR $P..A28 ; (A. Y) ~ FACII1 
972A A9 FD LOA "<,FACM 
972C A0 90 LOY II>FACM 
972E 20 67 e.8 .JSR $1:'.867 ; (A. Y) I- FACII1 
9731 AD AA 97 LOA F:OW 



Extended BASIC - A Complete Package 183 

LOC CODE LINE 

973', CD 09 91 CMF' VSIZE:~ 

9737 F0 1C BEQ ENDCOl 
9739 EE AA 97 INC ROW 
973C A2 FD LDX II(FACM 
973E A0 90 LOY II>FACM 
97',0 20 D', E'.B JSr, $B!?D4 
9743 A5 FD LOA '..'F'TR2 
9745 18 CLC 
97',6 6D AC 97 ADC LLV2 
9749 85 FD STA VPTR2 
97',!? A5 FE LOA VPTR2+1 
974D 6D AD 97 ADC LLV2+1 
9750 85 FE STA VF'TR2+1 
9752 4C 1£'. 97 JMF' AAMRC 
9755 20 3E 96 END COL JSR F1TOVl 
9758 A9 01 LDA 111 
975A 80 AA 97 STA ROW 
975D AD A£'. 97 lOA COL 
9760 CD ~A ':71 CMF' VSIZE2+1 
9763 F0 26 BEQ ENDrWW 
9/65 AD 12 91 lDA VSTT3 
9768 85 9E STA VPTr\3 
976A AD 13 91 LOA VSTT3+1 
976D 85 9F STA VPTR3+1 
976F EE AB 97 INC COL 
9772 18 ClC 
9773 AD AE 97 lDA V2COlP 
9776 85 FD STA VPTR2 
9778 6D 1 " 91 ADC T1 
977B 80 AE 97 STA V2COlF' 
977E AD AF 97 LOA V2COLF'+1 
9781. 85 FE STA VPTR2+1 
9783 69 00 ADC 110 
9785 8D AF 97 STA V2COLP+1 
9788 ',C 0A 97 JMF' AALOP 
978B AD A9 97 ENDROW LDA NROW 
978E CD 07 91 eMF' l)SIZEl 
9791 00 01. !:,.NE NEAA 
9793 60 RTS 
9794 A5 9E NEAA lOA VPTr\3 
9796 SO 12 91 STA \)STT3 
9799 A5 9F lDA VPTF:3+1 
979B 80 13 91 STA \)STT3+ 1 
979E EE A9 97 INC NROW 
971\1 A9 01 LOA 111 
97A"!. 80 AP.· 97 STA COL 
97A6 ',e F', 96 JMP AALOOF' 
97A9 00 tmOW .P..YT 0 
97AA 00 ROW .!:,.YT 0 
97A!:'. 00 COL .BYT 0 
97AC 00 00 LI.V2 . WOF: 0 
97A[ 00 00 I)2COU;' .WCJr( 0 
97B0 .END 

MERGE 

Abbreviated entry: M(shift)E 

Affected Basic abbreviations: None 

;FAClll TO (X. Y) 

; v:~ F'm DOWN 1. ROW 

;8ET NEXT 2 ELEMENTS 
;FAClll (SUM) TO 1,!1 

;FIRST ROW 

;SET v" PIR. TO START CURRENT 
;ROW 

;ALL ROWS DONE ? 

(ILL DONE 

;FIF:ST COL. 

:GO NEXT ROW FIRST COL. 



184 Advanced Commodore 64 BASIC Revealed 

Token: Hex $EE,$12 Decimal 238,18 

Modes: Direct and program 

Recommended mode: Direct only 

Purpose: To merge a Basic program from disk into the current Basic program 
in memory. 

Syntax: MERGE filename, d - where d is the device number (disk only). 

Errors: Illegal device - if the device number specified is less than eight 
Missing filename - if a null filename is specified 
File not found - if file does not exist 
Device not present - if no disk drive is connected 
File open error - if ten files are already open 
Disk errors - at the end, the disk error channel 1S read and 

displayed 

Use: Merge is used to combine two Basic programs in memory. Each line of the 
program on disk is read in until the zero byte is reached, and then stored in the 
input buffer. The Basic routine to enter a line is then called and the line is entered 
at the correct place. Note: If a line number of the program to MERGE is the 
same as an existing line number, the MERGEd line will replace it. 

Routine entry point: $97B~ 

Routine operation: The filename and device are read in and checked for 
missing filename and illegal device. If both checks are OK, the file is opened and 
the message MERGING is displayed. Each line is then read into the input buffer 
and entered using the Basic routine to do so. When the file is completed it is 
closed, and the disk error channel is read and displayed. 

~(."':;:~ COOl,: ~INI:: 

97B0 
97~.0 20 6F 98 r1ERGE 
9n.3 A9 62 
(l7e.5 f"I0 98 
97P..7 20 lE A~. 
97BA 20 Cl F5 
97~.D fiD 02 03 
97C0 80 60 98 
97C3 AD 03 03 
97C6 80 6E 98 
97C9 A9 0E 
97CB 20 A3 8A 
97C[ 85 1'.8 
9700 80 61 98 
9703 A9 00 
9705 85 B9 
9707 20 C0 FF 
97DA AE 61 98 
9700 20 C6 FF 
97E0 A9 60 
97E2 8D 2C 03 
97E5 A9 98 

.LIB 
JSR 
l.DA 
LOY 
Jsr~ 
JSR 
l.DA 
STA 
l.OA 
STA 
LOA 
JSR 
STA 
STA 
LOA 
STA 
Jsr~ 
LOX 
JSI~ 
LOA 
STA 
LOA 

MERGE 
OPARB 
II<MRGMES 
II>MRGMES 
$ABlE 
$F5Cl 
*0302 
MERGST 
$0303 
MERGST+1 
tt$0E 
GETNl 
*e-B 
FILENO 
11$00 
$B9 
$FFC0 
FILENO 
$FFC6 
II<MERGRT 
$032C 
II>MERGRT 

; GET FILE PARAMETERS 
DISPLAY MERGE MESSAGE 

DISPLAY FILENAME 
SAVE BASIC WARM START 
LIN.: 

FIND FILE NUMBER 

OPEN FIl.E 

SET FILE TO INPUT 

SET 'RESET INPUT' 



Extended BASIC - A Complete Package 185 

LOC CODE LINE 

97E7 80 20 03 STA $0320 TO A ras 
97EA A9 38 LOA It<MERG04 
97EC 80 02 03 STA $0302 
97EF A9 98 LOA II>MERG04 SET BASIC WARM START 
97Fl 80 03 03 STA $0303 TO MERG04 
97F4 20 CF FF JSR $FFCF INPUT 2 BYTE LOAD 
97F7 20 CF FF JSR $FFCF ADor<ESS 
97FA 20 CF FF MERG02 JSR $FFCF ; INPUT NEXT LINE 
97FO 85 1', STA $14 POINTERS AND 
97FF 20 CF FF JSR $FFCF CHECf: FOR ZERO 
9802 85 15 STA $15 (Et-JD OF BASIC PROGr,AM) 
9804 05 14 ORA $14 
9806 F0 33 ~·EQ MERG05 
9808 A5 90 LOA $90 CHECf: STATUS 
980A D0 2F BNE MERG05 
980C 20 CF FF JSR $FFCF INPUT LINE NUMBER 
980F 85 14 STA $14 AND STonE IN $14 & $15 
9811 20 CF FF JSR $FFCF 
9814 85 15 STA $15 
9816 A0 00 LOY 11$00 
9818 20 CF FF MEF:G03 JSR $FFCF ; INPUT LINE AND 
98113 99 00 02 STA $0200,Y ; STORE IN INPUT 
981E A6 C5 LOX $C5 ; BUFFER 
9820 E0 3F CPX 1163 
1822 F0 17 BEQ MEr,G05 
9824 [8 INY 
9825 C9 00 CMF' 11$00 
9827 00 EF f?NE MERG0] END OF LINE';> NO. 
9829 98 TYA YES 
982A 18 CLC 
982B 69 04 ADC 11$04 
982D 85 0f? STA $0B 
982F A5 90 LDA $90 CHECK STATUS 
9831 D0 08 ~.NE MEr,G05 
9833 A4 0B LDY $0B 
9835 '.c A', A', JMF' $A',M ; ~lERGE LINE 
9838 ',c FA 97 MEFW0', JMP MEr\G02 ; DO NEXT L.INE 
983~. AD 60 98 MERG05 LOA MERGST ; F:ESET BASIC '~ARM 
983E 80 02 03 STA $0302 START 
9841 AD 6E 98 LDA MEI;:GST+1 
981,4 8D 03 03 STA $0303 
98',7 A9 2F LDA 1I$2F AND 'F:ESET DEFAULT liD' 
9849 8f) 2C 03 STA $032C 
98',(; A9 F:5 LDA II$F3 
981,[ 80 2D 03 STA $032D 
9851 AD 61 98 LDA FILENO 
9854 20 C3 FF JSR $FFC3 CLOSE FILE 
9857 20 CC FF JSR $FFCC RESET DEFAULT I/O 
985', 20 55 8A JSR OISf:01 DISPLAY ERRor, CHANNEL 
9850 ',c 74 A', JMP $A/,7', JUMP TO READY 
9860 60 MERGRT RTS 
9861 00 FILENO . BYT 0 
9862 91 MRGMES .~.YT $91,'MERGING: , ,$00 
9863 ',D 't5 
986C 00 
9860 00 00 MERGST .WOR 0 
986F , 
986F ;GET PARAMETERS AND L~[~K Fon 
986F ;ILlEGAL DEVICE. USED e,Y DIS'"', 
986F ;ONLY COMMANDS. 
986F , 
986F 20 04 E1 OF-Ar,S Jsr, fEI04 ;GEr FILENAME ETC 
9872 AS f?A LOA $M ;IS DEVICE DISf:? 
987'. C9 08 CMF' 11$08 
9876 90 05 E'.CC F'ARERR ;1'10 



186 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9878 A5 B7 LDA $B7 
987A F0 04 BEQ PAF:ER 1 
987C 60 RTS 
987D A2 09 PARERR LDX H$09 
987F 2C • Bn $2C 
9880 A" ... 08 PARER1 LDX H$08 
9882 4C 37 A4 JMF' $A'.37 
9885 .END 

Abbreviated entry: O(shift)L 

Affected Basic abbreviations: None 

Token: Hex $EE,$13 Decimal 238,19 

Modes: Direct and program 

;FILENAME LENGTH 
;ZERO 

;ILLEGAL DEVICE 

;MISSING FILENAME 
;EEND ERROR 

Recommended mode: Direct only (there should be no program in memory). 

Purpose: To restore a Basic program after a NEW has been performed. 

Syntax: OLD 

Errors: None 

Use: OLD can be used if the program in memory has been wiped out using the 
NEW command. OLD will not work if DELETE was used to remove thewhole 
program or if a variable has been declared since the NEW. (In most cases, a 
syntax error will create a variable e.g. LI instead of L(shift)I will create the 
variable LI and give Syntax error instead of trying to list the program). 

Routine enllT point: $9885 

Routine operation: The first line is scanned until the end and the pointer to the 
next line is restored. The program is then re-chained and variable pointers are 
set. 

LOC CODE LINE 

9885 .LIB OLD 
9885 AS 2B OLD LDA $2B ; FIND THE END OF 
9887 18 CLC THE FIRST LINE 
9888 6'~ 0'. ADC H$0'. 
988A 85 57 STA $57 SET F·OINTER TO AFTER 
988C A5 2B LOA $2B LINE NUME'·ER 
982E 69 00 ADe 11$00 
9890 85 58 STA $57+1 
9892 A0 00 LOY 11$00 
989'. Bl 57 OLD01 LDA ($57), Y ; SEARCH LINE 
9896 F0 10 BED OLD02 ; IF ZERO, END OF LINE 
9898 A5 57 LDA $57 



Extended BASIC - A Complete Package 

LOC CODE LINE 

989A 18 CLC 
9891:'. 69 01 AOC 11$01 INCREMENT POINTER 
9890 85 57 STA $57 
989F AS 58 LOA $57+1 
98A1 69 00 ADC 11$00 
98A3 85 58 STA $57+1 
98A5 IoC 910 98 JMP OL001 
98f18 A5 57 OL002 LOA $57 ; END OF LINE 
98AA A0 00 LOY 1l$00 FOUND 
98AC 18 CLC 
981'lD 69 01 ADC 11$01 
98AF 91 2P.. STA ($21:'.), Y SET NEXT LINE 
98B1 C8 INY POINTER 
98B2 A5 58 LOA $57+1 
98B4 69 00 ADC 11$00 
981:'.6 91 2B STA ($21:'.), Y 
981:'.8 4e F3 Blo JMP RES\,.'Ar, SET VARIABLE POINTERS 
9 BI'· 1'. .END 

Abbreviated entry: P(shift)O 

Affected Basic abbreviations: POKE - PO(shift)K 

Token: Hex $EE,$14 Decimal 238,2~ 

Modes: Direct and program 

Recommended mode: Program only 

187 

Purpose: To remove the last GOSUB entry from the stack, thus leaving the 
subroutine without changing the execution address. 

Syntax: POP 

Errors: Syntax error - if POP is followed by anything but a colon or 
end of line marker 

Return without GOSUB - if there was no GOSUB entry 

Use: POP can be used in Basic programs where the user wishes to return to, say, 
a menu from within a Basic subroutine. If a GOTO was used without POP, after 
approximately 24 runs the message Out of memory will occur as the GOSUB 
entries will still be active. Using the POP command removes that entry and any 
FOR ... NEXT loops active within the subroutine. 

Routine entry point: $98BB 

Routine operation: POP first checks for a syntax error. If there is none, the 
stack is scanned until the first non FOR entry is found. If it is a GOSUB, the 
stack pointer is set to that point and the GOSUB entry is removed. If it is not a 
GOSUB, the error message Return without GOSUB is displayed. 



188 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

98E?·B • LIE? POP 
98BE? F0 01 F'OP BEt! POPIT ;NULL CHAR 
981?D 60 RTS ; SYNTAX ERf<OR 
9BBE . , 
98BE A9 FF POP IT LOA It$FF 
98C0 85 4A STA $4i) ;MASK OFF 'FOR' 
98C2 20 8A A3 JSR $A38A ;FINO FIRST NON 'FOR' ENTRY 
98C5 C9 80 CMF' U80 ;OOSUS? 
98C7 F0 05 BEG! OOF'OF' ;YES 
98C9 A2 0C LOX H$0C 
98CB 4C 37 A4 JMP $A437 ;RETURN WITHOUT GOSUI? 
98CE , 
98CE 9A 00f'0f' TXS ;MOVE POINTER TO GOSUB 
98CF 68 F'LA ;REMOVE GOSUB ENTRY 
9800 68 PLA 
9801 68 PLA 
9802 68 PLA 
9803 68 F'LA 
9804 60 RTS 
9805 .END 

PRINT 

Abbreviated entry: '1' 

Affected Basic abbreviations: None 

Token: Hex $99 Decimal 153 

Modes: Direct and program 

Recommended mode: Either 

;OONE 

Purpose: To PRINT characters to the open CMD output channel (usually 
value three, which is screen). 

Syntax: Same as in the Basic command PRINT. 

Errors: As in the Basic PRINT. 

Use: This version of PRINT does exactly the same as the Basic PRINT except 
that a check has been made for the CTL command to be included. 

Routine entry point: $98D5 

Routine operation: See PRINT in Chapter 3. 

LOC CODE LINE 

9805 .LIB F'f<l NT 
9805 20 21 AB PRNT01 .JSR $AB21 ;f'RINT STRING 
9808 20 79 00 F'RNT02 JSR $0079 ; GET CUHRENT CHAR 
98DB F0 50 PRINTT I?EQ PRNT05 ;CARRIAGE RETURN 
9800 F0 5E F'RNT03 BEG! PRNT07 ;SEMICOLON 
98DF C9 A3 eMf' H$A3 ;TM? 



Extended BASIC - A Complete Package 189 

LOC CODE LINE 

98E1 F0 61', !,,[Q TAE'. ;YES 
98U C? A6 CMF' tUM ;SF'C? 
98E5 18 CLC 
98<:6 F0 66 BEQ TAB ;YES 
98E8 C9 EE CMF' IUEE ;MINE? 
(lBEA D0 1', BNE F'RNT08 ;NO 
98[C A0 01 LDY »$01 
98EE E'.1 7A LDA ($7A), Y ;GET TOf:EN 
9BF0 C9 02 CMF' »$02 ;CTL? 
98F2 D0 0C !',NE F'RNT08 ;NO 
981'4 20 73 00 JSV, $0073 
98F7 20 73 00 JSR $0073 ;GET NEXT CHAR 
98FA 20 AB 88 JSR ClL ;DO CTL 
98FD ',C D8 98 JMF' F'RNT02 
9900 , 
9900 20 79 00 F'RNT08 JSF: $0079 ;GET CURRENT CHAV, 
9903 C9 2C CMF' 1I$2C l' '7 , , 
9905 F0 37 !',EQ F'RNT09 ;YES 
9907 C9 3B CMF' 1I$3B ;'; 1'? 
9909 1'0 61 E'.EQ TAE'.0', ;YES 
990B 20 9E AD JSR $A09E ;EVALUATE EXPRESSION 
990E 2't 0D BIT $00 ;WHICH TYPE? 
9(110 30 C3 BMI F'RNT01 ;STRING 
9912 20 DD BO JSR ~E'.DDO ;CONVERT FACIH TO STRING 
9915 20 87 B', JSR $B487 
9918 20 21 AB JSF: $ A!'. 21 
991B 20 3£'. AB JSR $AB3E', 
991E D0 !',8 BNE F'RNT02 
9920 A9 00 F'RNT04 LOA 11$00 
9922 9D 00 02 STA $0200,X 
9925 A2 FF LDX II$FF 
9927 A0 01 LDY 11$01 
9929 A5 13 LDA $13 
9'7'2B D0 10 BNE FT,NT07 
992D A9 00 F'RNT05 LOA »$0D ;CARRIAGE RETURN 
992F 20 47 A!', JSI( $AB47 
9932 24 13 BIT $13 
9934 10 05 !',PL F'RNT06 ;FILEII:>128 NO LF 
9936 A9 0A LDA 1I$0A :LINE FEED 
9938 20 ',7 AI'. JSV, $A!,J,7 ;F'RINT IT 
993B 49 FF F'RNT06 EOR II$FF 
993D 60 PRNT07 RTS 
993E , 
993E ;DECIMAL TA!'.LlJATOR 
993E , 
993E 38 PV\NT09 SEC 
993F 20 F0 FF J!3R HFF0 : GET CURSOF: PO'., 
99',2 98 TYA 
9943 38 !,EC 
994', E9 0A F'RNT10 SP,C 1I$0A ;MINUS 10 
97 /,6 130 FC I?,CS F'I,NT10 
9948 49 FF EOf:: II$FF 
994A 69 01 ADC 1I$0l 
99'.C D0 19 BNE TAP.01 
994E 
99'.E ;TAB AND SF'C 
994E , 
994E 08 TAB PHF' 
994F 38 SEC 
9950 20 F0 FF JSf, $FFF0 ; GET CUI\SOR POSITION 
9953 8', 0'1 STY $09 ;STORE IN TEMF' 
9955 20 9B !',7 Jsr( $B79B ;GET 1 "YTE PAR 
9958 C9 29 CMF' 11$29 ;' ) 1'? 
995(1 F0 03 BEQ TAB10 ;YES 
995C 4C 08 AF JMF' $AF08 ;SYNTAX ERROR 



190 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

995F 28 TAE'.10 PLP ; TAr. or~ SPC? 
9960 90 06 BCC TAB02 ;SPC 
9962 SA TXA ;TAB VALUE 
9963 ~". 09 SBC $09 ;MINUS COLUMN POSITION t:.J 

9965 90 05 BCC TAr.04 ;LESS THAN 
9967 AA TAB01 TAX 
9968 E8 TAB02 INX 
9969 CA TAB03 DEX 
996A D0 06 BNE TAB05 
996C 20 73 00 TAB0', JSR $0073 ;GET NEXT CHAR 
996F 4C DD 98 JMP PRNT03 
9(172 20 3B AB TAB05 JSR $AB3B 
9975 00 F2 I?NE TAB03 
9977 4C 1E AB JMP $ABIE 
997A .END 

Abbreviated entry: P(shift)U 

Affected Basic abbreviations: None 

Token: Hex $EE,$15 Decimal 238,21 

Modes: Direct and program 

Recommended mode: Direct 

; BACI{ TO PRINT 
;OUTPUT SPACE/RIGHT 

;ALWAYS 

Purpose: To list a Basic program to a disk file without line numbers. 

Syntax: PUT filename, d - where d is the device number (disk only). 

Errors: Illegal device - if the device number specified is less than eight 
Missing filename - if a null filename is specified 
Device not present - if no disk drive is connected 
Too many files - if ten files are already open 
Disk errors - at the end, the disk error channel IS read and 

displayed 

Use: PUT is used in conjunction with GET to allow the editing of Commodore 
assembler source files. PUT can also be used as an alternative save method for 
Basic programs so that they may be run by using the EXEC command. See 
EXEC for an example of use. 

Routine entry point: $997A 

Routine operation: The filename is read along with the device number and 
checks are made for missing filename and illegal device number. If these are OK, 
the file is then opened and each line is output using the Print tokens routine to 
the file. At the end of each line a carriage return is set and an extra carriage 
return inserted at the end of the file. The file is then closed and the disk error 
channel is read and displayed. 



Extended BASIC - A Complete Package 191 

LOC CODE LINE 

997A . LIB PUT 
997A 20 6F 98 PUT JSH DF'AHS ;GET FILENAME PAr(AMETERS 
997D 20 4A 9A JSR PUTMES ; 'WRITING •• , 
9980 20 F8 99 JSR PUTOPN ,OPEN FILE 
9983 20 F0 99 JSR PUTOUT ,SET OUTPUT 
9986 20 33 A5 JSF~ $A533 ;RE-CHAIN PHOGRAM 
9989 A5 2B LDA $2B ,SET PROG POINTER 
998B 85 ~,F STA $5F ;TO START OF PROGRAM 
998D A5 2C LOA $2C 
998F 85 60 STA $60 
9991 A0 00 PUT02 LOY 11$00 ;ENO ()F PROGRAM? 
9993 Bl 5F LDA ($5F), Y 
9995 C8 INY 
9996 11 5F OHA ($5F),Y 
9998 F0 12 BEQ PUTENO ,YES 
999A A0 0" l.DY 11$0" ,POINT TO FIRST CHAR 
999C Bl 5F PUT03 LDA <S5F), Y 
999E F0 17 BEQ PUTNL ;END OF LINE 
99A0 30 3B BMI PUTTf: ,PRINT TOf(EN 
99A2 C9 22 CMP 11$22 ,IS IT A QUOTE? 
99A/. F0 29 BEQ PUTQT ;YES DO IT 
99A6 20 D~) FF PUT0" JSr( $FF02 ;F'RINT CHAR 
99A9 C8 INY ,SET TO NEXT 
99AA D0 F0 BNE F'UT03 ,DO NEXT (ALWAYS) 
9 '1(\ C , 
9<;'AC A9 00 PUT END LOA 11$00 ;CARRIAGE RETUr(N 
99AE 20 02 FF JSR $FF02 ;PRINT IT 
99B1 20 3A 9A JSH PUTCLS ,CLOSE FILE 
99B4 4C 55 8A JMP OISf(01 ,OISPLAY OISf( MESSAGE 
99B7 A0 00 F'lJTNL LOY 11$00 
99B9 Bl 5F LOA ($5F), Y ,GET LINf( LO 
99BB AA TAX 
99BC C8 INY 
99f?D B1 5F LOA ($5F), Y ,GET LINf( HI 
99BF 85 60 STA $60 ;STORE AS NEXT POINTER 
99Cl 86 5F STX $5F 
99C3 A9 00 LOA 11$00 ;CARRIAGE RETURN 
99C5 20 D2 FF JSH $FFD2 ,PRINT IT 
99C8 A5 90 LDA $90 ;STATUS 
99CA 00 E0 BNE PUTEND ;EXIT IF BAD 
99CC 4C 91 99 JMF' PUT02 
99CF , 
99CF 20 02 FF PUTQT JSR $FFD2 ,PF:INT IT 
9902 C8 INY ;NEXT P..YTE 
99D3 Bl 5F l.OA ($5F), Y ;GET BYTE 
9905 F0 E0 P.·EQ PUTNL ,END OF LINE 
9907 C9 22 CMF' 11*22 ;QUOTE? 
99D9 00 F" BNE PUlelT ;NO 
99DB F0 C9 BEQ PUT04 ;OUTPUT ANO DO NEXT 
9900 , 
9900 C9 EE PUTTf( CMF' II$EE ;MY T()f(EN? 
99DF F0 05 BEQ PUTTf( 1 ,YES 
99El 20 09 82 JSR PRIN09 ; T()f(EN TO TEXT 
99E4 30 03 f'.M I F'UTTf(2 ;ALWAYS 
9'7E6 20 E,>.A 82 F'UTTf(1 JSR PRIN03 ; CON'JERT '10 TEXT AND PRINT 
99[9 29 7F F'UTTf(2 AND 11*71' ,MASI: TOP F·Il 
99EE.'. AI. 49 LOY $"9 ,RESTORE .Y 
99EO ',C A6 99 JMP PUT0', ;SEND AND DO NEXT 
99F0 ; 
99F0 A6 B8 PUTOUT LOX $BS ;FILE NlJrlBER 
99F2 20 C9 FF .JSR $FFC9 ,SET OUTPUT 
99F5 B0 3C BCS PUTOP3 ,ERROR 
99F7 60 RTS 
99F8 d~ 00 F'UTOPN LOY 11$00 
99FA Bl BB PUTOF'l LOA (~t'.B), Y ; GET NAME BYTE 
99FC 99 00 02 STA $0200,Y ; STOF~E IT 



192 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

99FF C8 INY 
9A00 C4 B7 CPY $B7 ;t·.NO OF NAME? 
9A02 00 F6 BNE PIJTOF' 1 ;NOT YET 
9fl04 A2 00 LDX "$00 
9A06 BO 36 9A F'IJTOF'2 LOA PIJTSW,X ;GET E>.YTE 
9A0S' 99 00 02 STA $0200,Y ; STor~E IT 
9A0C E8 INX 
9A00 C8 INY 
9A0E E0 0 1, CPX HUI, ;OONE? 
9A10 00 1'4 BNE PUTOP2 ;NOT YET 
9A12 A9 61 LOA "$61 
C;'A14 85 B9 STA $B9 
9A16 8', B7 PUTOP4 STY $B7 ;FILENAME LENGTH 
9A18 A9 00 LOA "$00 
9A1A 99 00 02 SlA $0200,Y 
9A10 A0 02 LOY "$02 
9A1F 85 BB STA $BP.· ; F'OINTEF: 1..0 
9A21 84 Be STY $BC ; POINTER HI 
9A23 A9 0E LOA H$0E 
91'125 20 1'13 8A JSR GETN1 ;GET FILE NUMBER 
9A28 85 B8 STA $B8 ;FILEH 
9A2A 80 92 80 STA EXECNO ;FOR EXEC 
9A20 20 C0 FF JSR $FFC0 ;OPEN 
9~130 B0 01 Bes PUTOP3 ;ERROF~ 
9A32 60 RTS 
91'133 '.c F9 E0 F'UTOP3 JMF' $E0F9 ;OUTF'lJT ERROR 
9A36 2C 53 PUTSW .P',YT , ,S,W' 
9A3A , 
9A3A A2 03 PUTCLS LOX H$03 
9A3C 20 C9 FF JSR $FFC? ;OUTPUT TO SCREEN 
9A3F A2 00 LOX "$00 
91'141 20 C6 FF JSR $FFC6 ; INF'lJr FROM f(EYBOAF,O 
9(11,4 AD 92 8f) LOA EXECNO 
9A47 -4C C3 FF JMP $FFC3 ;CLOSE FILE 
9AI.A , 
9A4A 1'19 54 F'UTMES LOA "<F'MESSG ;F'OINTER TO MESSAGE 
9A1.C A0 9A LOY H}PMESSG 
9A4E 20 1E I'll'. JSR $ABIE ;F'RJNT MESSf~GE 
9A51 I,C C1 F5 JMP $F:,)Cl ;~'RINT FILENAME 
91'154 57 52 F'MESSG .BYT 'WRITING , ,$00 
9A5C 00 
9A5o .END 

RENUMBER 

Abbreviated entry: R(shift)E 

Affected Basic abbreviations: READ - RE(shift)A 

Token: Hex $EE,$16 Decimal 238,22 

Modes: Direct and program 

Recommended mode: Direct only 

Purpose: To renumber a Basic program in even line number steps. All RUNs, 
GOTOs, GO TOs, GOSUBs, and RUNs are renumbered if found. 



Extended BASIC - A Complete Package 193 

Syntax: RENUMBER start,step - where start and step are values between ~ 
and 63999 (variables are not allowed). 

Errors: Syntax error - if the syntax above is wrong 
Syntax error - will occur in pass I if a number following any 

of the commands mentioned in 'Purpose' are 
<~ or >63999 

Undefined xxxxx in old line yyyyy - if a line does not exist 
Syntax error - will occur in pass 2 if the new line number IS 

greater than 63999 

Use: RENUMBER is useful for opening up program lines for the insertion of 
more lines or just making the program tidy after it is finished. All commands 
that contain line numbers will be changed so that the new line number is 
inserted: 

RUN xxxxx 
GOTO xxxxx 
GO TO xxxxx 
GOSUB xxxxx 
THEN xxxxx 
ON exp GOTO xxxxx,xxxxx .... . 
ON exp GOSUB xxxxx,xxxxx .... . 

Routine entry point: $9A5D 

Routine operation: The start and step are read in and Syntax error is output if 
they are out of range. Pass I is displayed and performed. At each occurrence of a 
branch as above, the routine will print a '.' character. If the line does not exist, 
the error message Undefined xxxxx in old line yyyyy will be displayed and 
replaced with the number 65535 (illegal). This is done throughout the program 
until the end is found. Then pass 2 is displayed and the line numbers are changed 
to the new values. Note: If Syntax error is encountered in either of the passes, 
the renumber process will be stopped but the program will be partly renumbered 
and thus will not run. 

L.OC CODE l..INE 

9A50 .LIB RENUMBER 
cNi50 20 6E', A9 RENur1P.. JSF: H,9bB : GET STAIn 
9A60 AS 1 '.f LOA $1'. ;LSE'. 
9M2 8D DB 9(" STA RENsra ;STOF:E IT 
9A65 AS 15 LDA $15 :MSE'. 
9(>,67 BD 09 9A STA RENSRT+l ;STORE IT 
9AUl 20 FO AE JSR $~'EFO ;SCAN , , , 
9MD 20 6E'. A9 JSR $A96B ; GET STEP 
':?A70 AS 1 '. LOA $1'. ;LSB 
9(,72 8D DA 9A STA r(ENSTP ;STORE IT 
9f~75 A5 15 LOA $15 ;~lSB 
9(.77 80 DB 9A STA RENSTF'+l ;STOF:E IT 
9(\7A 20 8E A6 JSR $A68E ;SET CHARGET POINTER 
9(.,70 20 Be 9A JSR RENMSI ;SEND PASSt MESSAGE 
9,'80 I.C 35 9B JMP RENF'Sl ;PASS 1 
9(,~13 20 BE A6 RENU01 JSR $A6BE ;SET CHARGET POINTEr< 



194 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

91'\86 20 92 9(,) JSR RENMS~~ ;SEND PASS2 MESSAGE 
9A89 ftC E9 9A JMP RENPS2 ;00 f'ASS 2 AND END 
9ABC 
9A8C ;TELL USER WHAT WE Af<E DOING 
9A8C ; 
9A8C A9 99 RENMSI LOA II<PSIMES ;POINT TO 
9A8E A0 9A LOY II>PSIMES ;MESSAGE 
9A90 00 04 BNE RENMS3 ;SEND IT 
9A92 A9 AB RENMS2 LOA II{PS2MES ;POINT TO 
9A94 A0 9A LOY II>F'S2MES ;MESSAGE 
9A96 4C IE AE.'. RENMS3 JMP SABlE ;OUTPUT MESSAGE 
9(.)99 , 
9AY9 2A 2A PSIMES .E.'.YT '.;.:.;.:.;.:.;0: PASS 1 ***l!',$0D,$00 
9AA9 00 
9f',AA e0 
9Af.!!? 00 PS2MES .BYT $00, ';"",l!l! PASS 2 ;o;l!;o;l! , , $00, $00 
9MC 2A 2A 
9ABC 00 
9riBD 00 
9ABE 00 RENILL .BYT $00, 'UNDEFINED ' ,$00 
9MF .,." ,J,J 4E 
9A(;9 00 
%CA 20 49 RENILl .BYT , IN OLD LINE , ,$00 
9A07 00 
9(iDB , 
';'AD8 ; VAR I AE.'.LES USED 
9A08 , 
9(iD8 00 00 RENSRT .WOR 0 ;START OF RENUME'.ER 
9AOA 00 00 RENSTP .WOR 0 ;RENUMBER STEP 
9AOC 00 00 RENLNf( .WOR 0 ;POINTER:START OF " 9ADE 00 00 RENLNO .WOR 0 ; F'OINTER: START OF LINE 
9AE0 00 00 REtlUST • wm:: 0 ;WARM STAfn STORE 
9AE2 00 RENLEN .Bn 0 ;LENGTH:JUMP II 
9AE3 00 f,ENLNI .BYT 0 
9AE4 00 REN"T~·L .BY! $00 ;DUMMY 
9AE5 89 .BYT <f89 ;GOTO 
9AE6 8A .BYT $8A ;RUN 
9AE7 8D .BYI $80 ;GOSUB 
9AE8 A7 .E.'.YT $A7 :THEN 
9flE9 RUNT "1 :TOI(EN VALUE OF MY F:I.JN 
9AE9 , 
9("E9 :I'ASS 2 
9AE9 , 
9AE9 20 2A 9£? RENPS2 JSR RENU02 ;GET NEXT BYTE 
9AEC A0 00 RENF'S3 LOY 11$00 
9AEE Bl 7t~ LDA (f.7Al,Y ; GET BYTE 
9AF0 80 DC 9A STA RENLNf: ;NEXT LINE LO 
9flF3 C8 INY 
9AF'. Bl 7A LOA ($7A), Y ;GET BYTE 
91'1F6 80 DO 9A STA RENLNI:+1 ;NEXT LINE HI 
9AF9 AD 08 9A LOA RENSRT ;GET LINE NUMBER LO 
9AFC C8 INY 
9AFD 91 7A STA ($71'1), Y ;STORE IT 
9AFF AD 09 9A LDA RHISRT+l ;HI 
9B02 C8 INY 
9B03 91 7A STA ($7A),Y ; STOf<E IT 
9B05 18 CLC 
9F.06 AD DB 9A LDA RENSRT ;GET LINEII LO 
9B09 60 OA 9A AOC I~ENSTP ;ADO STEP 
9F·0C 80 08 9A STA RENSRT ; STOf<E IT 
9B0F flO 09 9A LOA RENSRT+l ;HI 
9B12 6[) DB 9A AOC RENSTP+l ;ADD STEP 
9B15 80 09 9A STA RENSRT+l ;STORE IT 
9BIB AD DO 9A LOA RENLNf{+l ; GET LINt{ HI 
9E.'.lB F0 0A BEQ RENUXT ;ZERO, END OF PROG 



Extended BASIC - A Complete Package 195 

L()( COr)E L.INE 

91?1D 85 7B STA $7B 
9EHF AD DC 9A LOA RENLNf( ;GET LO 
9B22 85 7A STA $7A 
9B24 I.C EC 9A JMF' RENPS:5 ;flND AGAIN 
9B27 4C 74 A4 RENUXT JMP $A474 ;E?ACf( TO 'READY' 
9B2A 

; SUBFWUT I NE 9B?A TO GET NEXT CHAr( 
9B2A ; WITHOUT SCANNING PAST SPACES 
9P..2A , 
9B2A E6 7A RENU02 INC $71"1 ;BUMP LO 
9B2C 00 02 BNE F:ENI.J03 
9B2E E6 7B INC $7B :BUMP HI 
9B30 A0 00 RENU03 LOY IU\lI0 ; SET INDEX 
QB32 1:>.1 71"1 LOt'l ($7A),Y ;GET BYTE 
9B3 /• t,0 RTS 
9B35 
9B35 ;PASS 
9I?35 

RENPSl n~3~; 20 21"1 9~, JSR RENU02 ;GEl BYTE 
9B38 20 2A 9B ,JSR RENU02 ; GET BYTE 
~'B3B D0 03 E?,NE RENP01 ;NOT END or F'ROG 
9E?,30 '.c 83 9A JMP RENU01 ;ENO OF PROGRAM 
9B40 AS 7A RENP01 LDA $7A .~GE\ POINTEr, LO 
9B'.2 SO OE 91"1 STA RENLNO • rOF .. E IT 
9B45 A5 7B L.DA $7B :HI 
91?,1.7 80 DF 91"1 STA RENLNO+l ;STOI~E IT 
9B4A 20 2A 9E?, JSH HENU02 :GET BYTE 
9B'.D 20 21"1 9B JSH RENU02 ;GET BYTE 
9E?50 20 2A 9B RENP02 Jsr, HENU02 : GET P,·YTE 
'iB53 C9 00 RENP12 CMP '1$00 ;END OF LINE? 
9P..55 F0 DE BEel REtlPSl. ;YES 
9B57 C9 EE CMF' II$EE :MY Tm:EN? 
9BS9 1"0 29 F.EQ HENP0~) ;YES 
9B5E'. C9 2:~ CMP 11$22 :UUOTES7 
9F.5D F0 ifl E?EQ HENP04 
9B5F AA TAX 
9E?·60 l\l1 EE BPL RENP02 :NOT A IOf(EN 
9B62 1'12 0'. LOX 11$0 /• ;l.OOP TEST HlI<ENS 
9B64 OD Elf 91"1 HEtlP03 eMF' HENTP..L.,X ;CHANGE IT'? 
9£'.6 7 F0 22 BEQ RENF'06 ;YES 
9869 CA DEX 
?B6A 00 F8 BNE REtW03 ;DO NEXT 
91'·6C C9 CB eMf" II$CB ;IS IT 'GO'? 
9E?6E 00 E0 BNE RENP02 ;NO 
9B70 20 73 00 JSR $0073 ;NEXT CHAF:ACTEH 
9B73 C9 AI. eMF' II$At. ;IS IT 'TO'? 
9B75 D0 DC BNE RENP12 ;NO 
9B77 F0 12 BEQ RENP06 ;YES 
9B79 :!0 21"1 98 r~ENf'04 JSH RENU02 ;GET BYTE 
9B7C 1"0 B7 e·EQ RENPSl ;END OF LINE 
987E C9 22 CMP 11$22 ;IS IT QUOTES? 
9B80 F0 CE BEQ F:ENF'02 ;YES, DO NEXT 
9B82 D0 F5 BNE RENf'04 ; ALWAYS 
9B84 20 2A 9B RENP05 JSR RENU02 ;GET BYTE 
91>.87 C9 01 CMF' IIHUNT ;F:UN TOI(EN? 
9B89 D0 C5 BNE RENP02 ;NO 
91>.81>. . 
9B8!? ;DNE OF THE FIVE Tm(ENS HAS BEEN 
9B8!? ; FOUND. 
988B , 
91>.8B A9 2E r~ENP06 LOA II' • ;TELL USEr, DOING 
91>.80 20 0" "- FF JSR $FFD2 PRINT IT 
9B90 20 73 00 JSR $0073 GET NEXT CHAR 
?1>.93 90 03 BCC RENP56 IS A NUMBER 
91>.95 4C 62 9C JMP RENlJ04 CHECI( FOF~ 

, , , 



196 Advanced Commodore 64 BASIC Revealed 

U)C CODE" LINE 

9['.98 A5 7A RENPS6 LOA $7A ;GET POINTER LO 
9B9A 80 DC 9A STA RENLNK ;STORE IT 
9B90 AS 7['. LOA $7B ;HI 
9B9F 80 DO 9A STA RENLNf{+1 ;STORE IT 
,/BA2 M 00 LOY 11$00 
9BA4 B1 7fl RENP07 LOA ($7A),Y ; GET BYTE 
9BAb C8 INY 
9P..A7 C9 30 CMP 11$30 ;LESS THAN '0'1 
9e.A9 90 0', BCC RENP08 ;YES 
9BAB C9 3A CMP 1/$3A ; NUf'IERIC1 
n.M 90 FO::-• .J BCC RENP07 ;YES 
9BAr 88 RENF'08 DEY 
9BB0 88 DEY 
9BB1 BC E2 9A STY RENLEN ;STOf(E LENGTH 
9B[,,1, AS 7A LDA $7A 
9BB6 D0 02 BNE RENU05 
9BB8 C6 7B DEC $7['. 
9BM C6 7A RENU05 DEC $7A 
9BBC 20 73 00 JSR $0073 ;GET CHARACTER 
9BBF 20 6['. A9 JSf< $A96B ;GET LINE NUMHER 
9BC2 20 6C 9C JS~: F:ENF'18 ;CALCULATE NEW NUMBER 
9BC5 AD DE 9A LOA f(ENLNO ; RESTOf(E START or LINE 
9BCB 85 7A STA $7A ;LO 
9BCA AD Dr 9A LOA RENLNO+1 
nCD 85 7B SUI $]B ;HI 
9Bcr 20 2A 9('. JSf( RENU02 ; GET LINE" LO 
9H02 85 1 " STA $1', ;STORE IT 
9B04 20 2A 9B JSR RENU02 ;HI 
9B07 85 15 STA $15 ;STORE IT 
9B09 A2 00 LDX 11$00 
9BDB 20 2A 9P. RENF'10 JSF: RENU02 ; GET BYTE 
9BDE. ',8 F'IlA 
9l'.OF M5 7A LOA $7A :REACHED NU~IBER? 
9BEl CD DC 9A eMF' RENl.NI( 
9BE4 00 07 l'.NE F:ENP50 ;NOT YET 
9BE6 AS 7B LOA $7B 
9BE8 CO DO 9A CMF' RENLNI(+l 
9BEB F0 07 BED f<E.NF'51 ;YES 
'?BED 68 RENP50 Pl.I' 
?BEE 90 00 02 STA $0200,X ;STORE B~·TE 

9BFl E8 INX 
9Br2 00 E7 BNE RENF'10 ;ALWAYS 
9BF', 68 RENPSl F'LA 
9BFS (10 00 LOY 11$00 
9BF7 B9 00 01 F:ENPII LOA $0100,Y ;GET NEW LINE" 
9[,.FA r0 07 BEQ RENP13 ;END OF SIRING 
'lBrc 90 00 02 STA $0200,X ;STORE IT 
9BFF C8 INY 
~~C00 E8 INX 
ge01 D0 F', [,.NE RENP11 ;ALWAYS 
9C03 8C E3 9A RENP13 STY RENLNI 
9C0l~ AD E2 9A LOA RENLEN ;GET LENGTH 
9C09 18 CLC 
9C0A 65 7A AOC $7A ;AOD TO POINTER 
9C0C 85 7A STA $7A ;STORE IT 
9C0[ A5 7['. LOA $7B ; III 
9C10 67 00 AOC "$00 
9C12 85 71.'. STA $7B 
9C14 20 2A 9B RENP14 JSR RENU02 ~GET [,.YTE 
9C17 90 00 02 STA $0200,X ;STORE IT 
9CIA F0 03 BEQ RENP1S ~ENO OF LINE 
9CIC E8 INX 
gel0 00 F5 [,.NE RENF'l " ~ALWAYS 
9CIF 8A RENP15 TXA 
9C20 18 CLC 



Extended BASIC - A Complete Package 197 

LDt: CODE LINE 

9C21 69 05 AOC "$05 ; INCREASE E'·UFFER POINTER 
9C23 85 0E? STA $0E? ;ANO STORE IT 
9C25 AD 02 03 LOA $0302 ; GET WARM START LO 
9C28 80 E0 91'1 STA RENUST ;STORE IT 
9C2E'. AD 03 03 LOA $0303 ;HI 
9C2E 80 El 91'1 STA RENUST+l ;STORE IT 
9C31 A9 40 LOA "<RENF'16 ;SET WArm STAra 
9C3J 80 02 03 STA $0302 ; VECTOR TO RETURN 
9C36 A9 9C LOA ">RENPI6 ; TO PROGRAM 
9C38 80 03 03 STA $0303 , AFTER MAf(!NG CHANGE 
9C3P· A4 0B LOY $0B ;GET BUFFER POINTER 
9C30 4C A4 I'll. JMF' $1'1 /.1'1'. ;CHANGE LINE 
9C40 AD E0 9A RENF'16 LOA RENUST ;RESTor~E WARM 
9C'.3 80 02 03 STA $0302 ;START VECTor, 
9C46 AD E1 91'1 LOA RENUST+l 
9C'.9 8D 03 03 STA $0303 
9C4C CE E3 91'1 DEC R[NLN1 
9C'.F AD E3 91'1 LDA RENLN1 ;MOVE TO END OF 
9C52 18 CLC ;NEW LINEIl 
9C53 60 DC 91'1 ADC ~:ENUW 
9C56 85 7A STA $7A 
'7'C58 flD DO 91'1 LDA RENLNf:~1 
9C5E? 69 00 AOC "$00 
9C50 85 7E? STA $7P.. 
9C5F 20 73 00 JSR ~0073 ;GET NEXT CHAR 
9C62 C9 2C RENU0'. eMF' II' , ;IS IT A CmlMA? 
9C64 F0 03 E'.[Q F:ENF'17 ;YES 
9C66 4C 53 9E? JMF' RENF't2 :TRY NEXT CHAR 
9C69 4C 8E? 9P. RENP17 JMP RENF'0b :00 Nf:XT LINEII 
9C6C , 
9C6C ; CAl. CLJl.ATE NEW LINE IIUME>.Er~ 
9C6C , 
9C6C 20 8E A6 RENf' tel JSR $A68E ;SET CHAfWET F'OINTER 
9C6F AD D8 91'1 LOA RENSRT ;SET LINE NUME'.ER 
9C72 85 63 STA $63 
9C7'. r,o 09 9A LOA RENSRT~1 
9C77 85 62 STA $62 
9C79 20 21'1 9E? RENF'19 JSR ~:ENIJ02 ;GET (,·YTE 
9C7C 20 2A 9E? Jsr~ RENIJ02 ; GET BYTE 
9C7F 00 '.1 (,·NE r~ENP20 ;NOT END OF PRDG 
9C81 1'19 9D LOA "$90 
9C8:5 20 02 FF .JSR $FF02 
9C86 1'19 20 LOA 11$20 ;FL.!)G ERFWF: 
9C88 20 02 FF JSR $FFD2 
9C8E? A9 BE LOA IVRENILL 
9C80 A0 91'1 LOY Il:>RENILL 
9C8F 20 IE AE'. JSR $ABIE ;F'RINT 
9C92 A5 15 LOA $15 
9C9'. A6 14 LDX $14 
9C96 20 CD BD JSR $BDCO ;PRINT NUME'.ER 
9C99 A9 C(') l.DA II<RENIL1 
9C9(>' 1'10 91'1 LOY ">RENIU 
9C9O 20 lE AE? JSR $AE'.lE ;PRINT 
9CA0 AD DE 91'1 LOA RENLNO 
9CA:~ 85 FE>. STA $FE'. 
9CA5 AD OF 91'1 LDA RENLNO+l 
9CM! 85 FC STA 'FC 
9CAA A0 01 LOY "$01 
9CAC E'.1 FB LOA ($F(>'),Y 
9CAE AA TAX 
9CAF C8 INY 
9CE'.0 Bl FB LOA ($FB), Y 
9CB2 20 CD BO JSR 'BoCO PRINT LINE NUMBER 
9CB5 A9 0D LOil "$00 CARRIAGE RETUFm 
9CB7 20 02 FF JSR $FFD2 PRINT IT 



198 Advanced Commodore 64 BASIC Revealed 

U)C CODE LINE 

9CP..A A9 FF LOf~ ttHT ;ILLEGAL LINE NUMBER 
9CP.·C 85 63 STA $63 ;65535 
9CBE 85 62 STA $62 
9CC~ 30 0E !,.MI RENF'21 ;ALWAYS 
9CC2 20 2A 9B RENF'20 JSR F:ENU02 ;GET BYTE 
9CC5 C5 14 CMF' $1.4 ;SAME AS LINE"? 
9CC7 00 10 BNE F:ENF'22 ;ND 
9CC9 20 2A 9B JSR r,ENU02 ;(;ET BYTE 
9CCC C5 15 CMF' $15 
9CCE 00 0C !,.NE m:NF'n ;NO 
9CD0 A2 90 RENF'21 LOX 11$90 
9C02 38 SEC 
9C03 20 49 BC JSR $BCI,9 ;CDNVERT LINE 
9CD6 ftC Dr !,.D JMF' 1BDDr ; NUMBEr, TO 
9CO'7' 20 2A 9B RENF'22 .JSR '~ENU02 :GET BYTE 
9COC A5 63 F:EtWn LDA $63 ; BUMF' NEW 
'ieDE 18 CLC ; NUME'.ER E'.,( 
9CDr 60 Ofl 9A ADC RENSH' :STEr' 
9CE2 85 S3 STA $63 
9CE4 A5 62 LDA *62 
9CE6 6D DB 9(1 AOC F:ENSTP -1 
9CE9 85 6''> STA $62 
'iCEI? 20 2A 9e. RENF'2 1, JSR RENU0:? ;GET f'·YTE 
9CEE D0 n'. gllE r,EIW~!4 :NOT END OF 
9CF0 F0 B7 P.H] Rr:NF'l(.~ :M.WAY':' 
S'CF2 .END 

REPEAT and ~ 
Abbreviated entry: REPEAT RE(shift)P 

RUN R(shift)U 

Affected Basic abbreviations: None 

Tokens: REPEAT 
RUN 

Hex $EE,$17 
Hex $EE,$~I 

Decimal 238,23 
Decimal 238, I 

Modes: Direct and program 

Recommended mode: Either 

fiSCI I 

LINE 

LINE 

Purpose: REPEAT is the opening boundary of a REPEAT. .. UNTIL loop. 
R UN is the same as Basic R UN except the REPEAT stack pointer is cleared. 

Syntax: REPEAT 
RUN [line number] 

Errors: REPEAT - Out of memory - if more than 6 I nested 
REPEAT loops are active 

RUN as in Basic RUN 

Use: REPEAT ... UNTI L is a very powerful looping method. For example: 

I~ REPEAT:GET A$:UNTIL A$="" 



Extended BASIC - A Complete Package 199 

will pause until the space key is pressed. The Basic version would be: 

1~ GET A$:IF A$<>" " THEN 1~ 

The method is very simple to understand. It means REPEAT do something 
UNTIL done. The REPEAT ... UNTIL loop does not use any of the processor 
stack for its storage; the RAM behind the Basic ROM is used. This enables 
more complicated calculations than a FOR ... NEXT loop which takes up a 
valuable 18 bytes of the stack. 

Routine entry point: REPEAT $9CF2 
RUN $9D19 

Routine operation: REPEAT checks for its stack being out of memory. If it is 
not then the command pointer and current line number are stored in the 
REPEA T ... UNTIL stack and the stack pointer bumped (decreased) by 4. RUN 
just sets the REPEAT stack pointer to zero and executes the normal RUN. 

l.OC CODE LINE 

9CF2 .LIB REPEAT 
9CF2 AD 24 9D REPEAT LDA REF'ESf( 
9CF5 C9 F0 CMF' 11240 
9CF7 D0 03 BNE REF'E01 
9CF9 ',c ;35 A', JMF' $AI,35 
9CFC AA REPE01 TAX 
9CFD A5 7A LOA $7A 
9CFF 90 00 B~ STA $BE00,X 
9D02 A5 7B LOA $7B 
9D04 90 01 BE STA $BE01,X 
9D07 A5 39 LOA $39 
9D09 90 02 BE STA $BE02,X 
9D0C AS 3A LOA $3A 
900E 90 03 BE STA $BE03,X 
9D11 8A TXA 
9012 18 CLC 
9013 69 0', ADC 11$04 
9015 80 2', 90 STA REF'ESf: 
9018 60 RTS 
9019 , 
9019 A9 00 RUN LOA 11$00 
901B 80 24 90 STA REPESK 
901E 20 79 00 JSR $0079 
9D21 4C 71 A8 JMF' $A871 
9D24 , 
9024 00 REF'ESf( .I?YT 0 
9025 .END 

SORT 

Abbreviated entr}': S(shift)O 

Affected Basic abbreviations: None 

Token: Hex $EE,$18 Decimal 238,24 

: GET STACf( POINTEr~ 
;ROOM ON STAGf:? 
;YES 
;'OUT OF MEMORY' 

;STACf: POINTER 
;COMMAND ADDRESS LSB 
; STor~E IT 
;MSB 
;STORE IT 
; CURRENT LINE II LSB 
;STORE IT 
;MSB 
;STORE IT 
;INCREASE STACK 
;POINTER BY 
;4 

;CLEAR REPEAT STACf( 

;GET LAST CHAR 
;RUN 



200 Advanced Commodore 64 BASIC Revealed 

Modes: Direct and program 

Recommended mode: Either 

Purpose: To sort a string array into alphabetically ascending order. 

Syntax: SORT string array name. The string array name must be lor 2 bytes 
long, this being the characters of the name (without the $ character) 

Errors: Syntax error - if no name is specified 
Array not found - if the string array specified does not exist 
Incorrect dimension - if the string array specified has more 

than one dimension 
Insufficient elements - if the string array has only I element 

Use: SORT is a bubble sort routine that will sort a string array so that all of the 
strings in the array can be read in alphabetically ascending order. For example: 

A$O 
~ TEST 
I SORT 
2 NAME 
3 BUBBLE 
4 AFTER 
5 READING 
6 READ 

After SORT A 
AFTER 
BUBBLE 
NAME 
READ 
READING 
SORT 
TEST 

Routine entry point: $9D25 

Routine operation: The array name is first read in and stored away in the Basic 
format for string arrays. The array storage area is then scanned for that array, 
and if not found the message Array not found is displayed. If the array is found 
the number of dimensions is checked, and if more than one dimension the 
message Incorrect dimension will be displayed. If that is OK the dimension is 
checked, and if it is only one value the message Insufficient elements is 
displayed. If all checks are OK the array is then sorted. 

The method of the sort is rather complicated, and anyone wishing to know 
how it is done can follow the assembly listing or refer to Library of PET 
subroutines written and published by Nick Hampshire, from where the original 
routine was taken. 

LOC C,lDE LINE 

902:; .L1E.'. SORT 
9025 20 79 00 SORT JSR $0079 ; GET 1ST CHAF~ NAME 
9028 80 Fg 9E STA CA ;STORE IT 
9D2B 20 73 00 JSR $0073 ;GET 2ND CHAR 
902E 08 PHP 
902F 09 80 or<A "$80 SET HIGH BIT 
9031 80 Fl 9E STti C~. STORE IT 
9034 28 PLP NULL 2ND? 
9035 F0 06 SEQ SORT00 YES 
9D37 20 73 00 .JSR $0073 CHARGET For< NEXT COMMAND 



Extended BASIC - A Complete Package 201 

l.(}c CODE LINE 

9D3A '.C 't2 90 JMF' SORT01 
9D.3D A9 80 SORT00 LOA 11$80 
9D~F 8D Fl 9E STA CB 
9042 , 
9D'.2 A5 2F SOF:T01 U)A $2F ;8ET POINTEr, 
90'.4 85 22 STA $22 ; TO ARRAY 
9046 A5 30 LOA $2F+l 
9D/.8 85 23 STA $22+1 
9D4A , 
'7'D4A A5 22 80RT02 LOA $22 ;ENO OF ARRAYS? 
9D4C C5 31 CMF' $2F+2 
904E 00 0B BNE SOHT03 ;NO 
9D50 AS 23 LDA $22+1 
9[)~;2 C5 32 CMF' $21'+3 
905'. 00 05 BNE 80RT03 ;NO 
9D~~6 A9 00 l.OA 11$00 ; (if,RAY NOT FOUND 
9D58 '.C 9B '7E .JMP SORT21 
9D5P, , 
905B A0 00 SORT03 LDY 11$00 
9050 P,1 22 L[)A ($22),Y 
903F CD F0 9E CMF' CA ;NAME CORRECT? 
9D62 00 08 BNE SORT04 ;NO 
9D64 C8 INY 
9065 Bl 22 LOA ($22),Y 
9D67 CD F1 9E eMF' CB 
9D6A F0 lE BED SORT05 ;YES 
9D6C , 
906C A0 02 SOfa04 L[)Y "$02 ;A[)O LENGTH OF ENTRY 
906E Hl 22 LOA ($22), Y ; TO POINTER AND 
9070 80 FA 9E STA TEMP ; CHECf( NEXT 
9073 C8 INY 
'7'07'. Bl 22 L[)A ($22), Y 
9076 8D FB 9E STA TEMF'+l 
9079 18 Cl.C 
907A A5 22 LOn $')'"' <.- .. 

907C 6D FA 9E M)C TEMP 
9D7F 85 22 STA V'') 
9081 (~5 23 LDA ~22+1 

9083 6D H· 'iE ADC TEMP q 
9086 85 23 8TA $22+1 
9D88 90 C0 BCC SOr\T02 ;ALWAYS 
9D8A 
908A A0 0'. SORT05 LDY 11$0'. 
9D8C ~'·1 22 LD{) (*22), '( ; GET AFmAY DIMENSION 
9D8E C9 01 CMF' 11$01 
9[)90 F0 0~i P.ED SOF:T06 :ONL.Y 1 DIMENEION 
9D92 A9 01 LDA "$01 ; INC()RI~ECT Dl~lENSION 
9[)94 4C 9P, 9E -IMP SORT21 
9097 , 
'1'[)97 A0 0~:j SOfn06 LDY 11105 
9D99 B1 2~~ LDA ('$22), Y :13EI t·lur1BEri OF ELF.:r·lEN 13 
9D9!' SD F3 9E STA NOOFE+l 
9D9E C8 INY 
<;.'D9F !'o1 22 LDA (*~~2),Y 
90(11 8::> F2 9E STA NOOFE 
90A4 AO F3 9E L.OA NOOFE+l ;ENOlJGH ELEMENTS? 
9DA7 D0 0C BNE SOF:T07 ;YES 
90A'1' ~I[) F2 9E LOA NOOFE 
9DAC C9 02 CMF' "$02 
9[)AE E'.0 05 Bes SOfa07 ;,(£5 
'iDP..0 '·19 02 LDA "*02 ;TOO FEW ElY;IENTS 
9DE'.2 '.c 9B 9E JMF' SORT21 
9DB5 , 
9D[>·5 AD F2 9E SOf.:T07 LDA NOOFE ;SET COlJNTDOlm 
9['B8 80 F4 9E STA NOOFC ; FOR NUMBER OF 



202 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9DBB AD 1"3 9E LOA NOOFE+l ; MAIN SORT LOOPS 
9DBE 8D F5 9E STA NOOFC+l 
9DCl 

SOfa08 9DCI A9 00 LDA 11$00 ;MAIN LOOP OF SORT 
9DC3 80 FC 9E STA FLAGS ;RESET SWAP FLAG, 
90C6 8D F8 9E STA COUNT ; AND ILOOF' COUNT 
9OC9 80 F9 9E STA COUNT+l 
90CC CE F'. 9E DEC NOOFC ; DECREASE OLOOf' COUNT 
90CF AD F4 9E LOA NOOFC 
9002 C9 FF CMP II$FF 
9OD', 00 03 BNE SORT09 
9OD6 CE F5 9E DEC NOOFC;+l 
9DD9 ; 
9D09 AD F5 9E SORT09 LOA NOOFC+l ;ENo OF SORT? 
9DoC 00 06' BNE SORTl0 ;NO 
90DE AD F4 9E L.DA NOOFC 
90El 00 01 BNE SORTl0 ;NO 
90E3 60 RTS ;YES, DONE 
9OE'. ; 
9OE4 18 SOf<T10 CLC ; SET $24 TO $22+7 
?oE5 A5 22 LOA $22 
9OE7 69 07 AOC 11$07 
'lOE9 85 2'. STA $2'. 
9OEl'. A5 23 LOA $22+1 
9OEO 69 00 AoC 11$00 
90EF 85 25 STA $24+1 
90Fl ; 
90FI A0 00 SORTlI LDY 11$00 ;INNER LOOP 
9DF3 131 24 LOA ($24),Y ;GET LENGTH, ADDRESS 
9OF5 8D F6 9E STA LEN 1 ; OF 1ST STRING 
9DF8 C8 INY 
9DF9 !H 2'. LDA ($2',),Y 
9DFB 85 FB STA $FB 
9DFO C8 INY 
90FE Bl 24 LOA ($2'.). Y 
9E00 85 Fe STA $FB+l 
9[02 CB INY 
9E03 131 24 LDA ($24), Y ; GET LENGTH, ADDf(ESS 
9E05 80 1"7 9E STiI LEN2 ; OF 2ND STRINO 
9F.08 C8 INY 
9E09 IH 2'. LDA ($2 /,), Y 
9E0P.. 8" .J ro STA $FD 
9E00 CB INY 
9E0E EH 24 LDA (f;21,), Y 
9£10 85 FE 5TA $1"0+1 
9E12 AE F7 9£ LOX LEN2 : LEN (Sm2) '-0? 
9E15 1"0 53 E.'.EQ SORTl7 ;YES, ~ON'T SWAP 
9E17 (IE F{; 9E L[)X LEN! ;LEN(STr(1 ),,~? 
9EIA 1"0 ;!8 E.'.EQ sora II> ;'([8, SWAP THEM 
9EIC 1\0 00 LOY 11$00 
9EIE 131 FB SORT!2 LDA ($FB),Y ;COMPARE $FB 
9£20 01 FO CMP ($FD),Y ; I.JITH $FD 
9[22 1"0 05 BEla SOlH13 ;SME 
9£21, 90 1,4 BCC SORT17 ;[)IFFERENT, ~ON'T SWAP 
9E26 ',c '.'t 9E .JMP SORT1" ;DIFFERENT, SIMP 
91::29 ; 
9E~!9 CO SORT13 INY ;LENGTH"256? 
9E21\ F0 3E E.'.EQ SORT17 ;YES, DON'T SWAP 
9£2C CC F6 9£ CPY LENI ;END OF STR1? 
9E2F 90 0'. E.'.CC SORTl4 ;ND, CUEC.: STR2 
9E31 F0 07 E.''[(;1 SORT15 IrES 
9E33 B0 05 Bes SORT15 ;ALWAYS 
9£35 ; 
9E35 CC F7 9£ SORTl4 CPY LEN2 lEND OF STR2? 
9E38 90 E', Bee sora 12 ;NOT YET 



Extended BASIC - A Complete Package 203 

LOC CODE UNE 

9[3A , 
9E3n nO F6 9E SDRT15 LOA LEN! ,LENl"LEN2? 
9E30 CD F7 9E· CMf" LEN2 
9[J.0 Fe 28 BEQ SOra!7 ,YES, DON'T SWAP 
9E/,2 90 26 BCC SORT17 ;NO, LEN1<LEN2 
9E',I, , 
9E/,I, A0 00 SORT16 LOY 11$00 ,SWAP, STRl"STR2 
9[/,6 AD F7 9E LOn LEN2 , MID VICE VERSA 
9E/,9 91 2'. STA ($24),Y 
9E/,B C8 INY 
9E',C 1)5 FO LOA $f.'o 
9E',E 91 2', STA ($2 /,),Y 
9F.50 C8 INY 
9E51 n5 FE LDA $FO~1 
9E~j3 91 2 /, STA ($2 /,), Y 
9E55 C8 INY 
9E5t. flD Ft. 9E LOA LEN1 
9E59 91 2', STA ($2 /,), Y 
9E5P.. C8 INY 
9E5C 1'\5 Fe. LDA $rB 
9E~;E 91 2 /, STA ($2 /,),Y 
9E60 C8 IHY 
9E61 A5 FC LOA $Fe.+1 
9Eb3 91 2', STA ($24),'( 
9E65 (19 01 LOfl IU.01 ;FLAG SWAP 
9E67 00 FC 9E STA FLAGS 
9[M , 
9[6(.) Er F8 (IE SOra17 INC COUNT ,INcr,EMENT INNF.r, 
9E60 00 0~ e·NE sora 18 , LOOP COUNT 
9E6f EE F9 9E INC COUNT+1 
9En AD F8 9E sora 18 I.DA C()UNf 
9E75 CO F4 9E CMF' ~HlOFC ;DONE? 
9E78 00 11 P..~IE SORT20 ,NO 
9E7A AD 1'9 9E LDA COUNT+l 
9(71) CO r5 9E eM!" N()OFCn 
9E80 00 09 BIlE SOR120 ;NO 
'7E02 AD Fe 9E LDfl Fl.. 1'\ GS ,MIY SI~Apn? 

9E85 F0 0:~ (?Hl S()fn 19 ;NO, END 
9[137 4C C1 ?O ,JME' SOlHe8 ,00 NEXT LOOP 
9[OA 60 srlr(T19 ras ;ALL DONE 
9E8B 18 ~)OHT20 cu: 
9E8C 
9EOC A5 2't LDA $ ~~/, ; INCHFASE PO I NTH, BY 3 
9F8E 69 03 ADC 11$03 
9£:'.'1'1 fl5 2'. ST() '$ -ll . , 
'iF\,2 (\5 ~~ LDA '$:~',.q 
9[9 /, b~~ 00 we 11100 
9[96 05 25 !)fl'\ $2411 
9E9fl I,e F1 90 .IMP sora 11 ,DO INNER LOOP 
9['?P., , 
9E9P. (M S(JRT21 MiL () ,SEND ERF'OR MESS()GE 
9[?C ()8 r()Y 
9[90 P.,9 AD 9E LDI'\ POINT,Y , ADDr,ESS OF MESSAGE 
9[()0 f'\() T()X 
9Erl1 Cfl IHY 
9[,)2 1'.9 (lD 9E tl)() POINT,Y 
9[A~j (10 HI)' 
9Efl(' Bfl TXA 
9[(17 ~'0 IE AI!. ,JSH $Ae.1E ;SEND IT 
9FM I,C 62 1'\1, JtlP $A/,62 ; pr,HIT 'IN •.• ' 
9E()[) , 
9EM) P.3 9E POINT .WOR STERr~ 1 
9[()F CI, 9E • weir( STERR2 
9l:B1 1)9 9E .WOR STmR3 
9[[>,3 3F 1,1 STErml .BYT ' ,'()fmAY NOT FOUN[)',$00 



204 Advanced Commodore 64 BASIC Revealed 

LOC CODE LINE 

9[: r. 3 00 
9Er.'. :3F '.9 STEr,H2 .IWT ' ?INCCmr,ECT DIMENSION' ,$00 
9ED8 00 
9E[)9 3F '.9 STmr,3 .IWl '?INSUFrrCI[NT ELEMENTS' ,$~0 
9EEr 00 
9F.T0 00 CA .eYT 0 
9EF1 00 CB .Bn 0 
9EF2 00 00 NOOFE .WOH 0 
9EF'. 00 00 Noorc .W@ 0 
9EFb 00 LENl .I'.YT 0 
9EF7 00 LEN2 .Bn 0 
9EFO 00 00 COUNT .wcm 0 
9EF(\ 00 00 TUII" • ~JOR 0 
9EFC 00 FlJIGS .BYT 0 
9EFD .END 

TRACEON and TRACEOFF 

Abbreviated entry: TRACEON T(shift)R 
TRACEOFF TRACEO(shift)F 

Aflected Basic abbreviations: None 

Tokens: TRACEON Hex $EE,$19 Decimal 238,25 
TRACEOFF Hex $EE,$IA Decimal 238,26 

Modes: TRACEON and TRACEOFF - Direct and program 

Recommended mode: TRACEON and TRACEOFF - Either 

Purpose: To provide a line trace facility while the program is running for the 
purpose of program de-bugging. 

Syntax: TRACEON 
TRACEOFF 

Errors: None 

Use: The TRACE routine prints the current line number being executed to the 
current output device. If it is the screen, it will be displayed at the current cursor 
position. 

Routine entry points: TRACEON $9EFD 
TRACEOFF $9F43 

Routine operation: When TRACEON is called, the line trace routine is wedged 
into the handle statement link. When TRACEOFF is called, the handle 
statement is put back into the link. The actual line trace routine first checks to 
see if the program is running. If not, the handle statement routine is jumped to. 
If the program is running, the current line is checked with the last line number 



Extended BASIC - A Complete Package 205 

displayed and if they are the same, the handle statement routine is jumped to, If 
it is a different line, the current line number is stored away and the line number 
printed thus: '[xxxxx]' and the handle statement routine is jumped to, 

LOC CODE LINE 

'i'EFD ,LIrl mArE 
9EFD 78 mON SEI 
9UE A9 0A L[)(l u-:mAr[ 
9Hle 8D '.1(3 '.13 STA $~:Ieo 
9F(,!~ A9 9F LDA u.:mAr[ 
9Fe~'j OD 0? 0,\ !lTA $0300+1 
9F08 SB eLI 
'll' 0? 60 rns 
9F0A , 
9F0A A5 9D IT:AC[ LDA $9D 
9F0C F0 03 1',[0 H,AC01 
9F(,[ I,C F7 8? .IMP IIANDLE 
91' 11 A5 39 mAC01 LDA $39 
9F13 C9 '.10 mM:02 eMF' 11$00 
9Fl~:i 00 e'l r,m: mAC0/, 
9F 17 AS 3A LDrl $39+1 
'lr I '7 C'l 00 Tr,,~C03 eMP 11$00 
9FlB D0 03 BN[ mAC0', 
'IF 10 ',C F7 82 ,JMP HANDLE 
9F20 (15 39 Tr,AC0', Ulf'\ $39 
'11'22 OD _1', 91' STA TRAC02+1 
9F;'5 AS 3A LDA $39+1 
'1F27 00 .I.,~ 91' STA TRAC03+! 
9F:'A A9 5P- LOA U$SB 
9F2C 20 D2 FF .JSR $FFD2 
912F (1(, 39 LDX $39 
91'31 A3 3A l.DA $39q 
9F 3.~ 20 CD P',D ,)SR n~DC[) 

91':1(, A9 ~D LO() U$~)D 

9F3B 20 D2 FF .I~m $FFD2 
9F3['. A9 20 LDA 11$20 
9F3D 20 D ~, FF ,Jsr, $FFD2 
9F 1,0 ',e F7 132 .JMP H()NOLE 
9F',3 , 
9F '.3 78 1 r,OFF SEI 
9F 1,', A9 F7 LD() U<JIMIDLE 
9F46 BD 08 03 ST() $0308 
9F',9 (\9 8') l.DI\ U.>HMIDLE 
9r ',B 80 09 03 STA $('l~('lflI1 

91' ',E 5B CLI 
9F4F 60 rns 
91'50 • FIll) 

TYPIE 

Abbreviated entry: T(shift)Y 

Affected Basic abbreviations: None 

Token: Hex $££,$1 B Decimal 238,27 

Modes: Direct and program 

Recommended mode: Direct 

ENA['.LE TRACE ( TR,'CEON) 

; mACE ROUTINE 
; nm.Y IF A PROGRAM 
; I C' ., HLJNNING 

; IF SAME LINE AS 
; LAST, DON'T InSF-LAY 

; STORE AWAY F'r,ESENT 
; LINE 

DISPLAY , [' 

DISPLAY LINE NLJMBEH 

DISPLAY 'J' 

DISPL,'lY 

DISABLE TRACE (TRACEOFF) 



206 Advanced Commodore 64 BASIC Revealed 

Purpose: To display a text file stored on disk to the screen. 

Syntax: TYPE filename,d - where d is the device number (disk only). 

Errors: Illegal device - if the device number specified is less than eight 
Missing filename - if a null filename is specified 
File not found - if the file does not exist 
Device not present - if no disk drive is connected 
Too many files - if ten files are already open 
Disk errors - at the end, the disk error channel is read and 

displayed 

Use: TYPE can be used to look at sequential files stored on disk. This can be 
used rather than GET if you wish to check a certain line in the file; as the file is 
not loaded in but directly displayed from the disk. Easyscript text files could be 
just as easily displayed using this routine. 

Routine entry point: $9F5~ 

Routine operation: The filename is read along with the device number and 
checks are made for missing filename and illegal device number. If these are OK, 
the file is then opened and each character is read in and displayed until the end of 
file or the stop key is pressed. At this point, the file is closed, the disk error 
channel is read and the routine exits. 

LOr. CODE LINE 

91'50 .LIB TYPE 
9F50 20 6F 98 TYPE JSR OF-fiRS 
9F53 20 B7 SF .JSR GETOF"N 
9F56 20 flC SF JSR BETIN 
9F59 20 CF FF TYPE2 .Jsn $FFCF 
9F5C M 90 LOX $90 
9F5E 20 02 FF .J5R n'FD2 
91'61 20 E1 FF -lSR $FF E 1 
9F6', F0 0"1 .. I?EQ TYPE1 
91'66 BfI TXA 
9F67 F0 F0 BEQ TYPE2 
91'69 ',c .,c 99 TYPEl JMF" PUTEND 
'iF6C .END 

UNTil 

Abbreviated entry: U(shift)N 

Affected Basic abbreviations: None 

Token: Hex $EE,$IC Decimal 238,28 

Modes: Direct and program 

Recommended mode: Either 

;GET FILE DETAILS 
;OPEN FILE 
;SET INPUT 

; INPUT BYTE 
;BET STATUS 
;PRINT BYTE 
;STOP I·(EY? 
;YES 

;1010 ERROR 
;DONE 



Extended BASIC - A Complete Package 207 

Purpose: To repeat something where the start of the Basic commands is 
specified by the REPEAT command until a check is true. 

Syntax: UNTIL expression. The expression should be of the same format as 
the basic IF command. 

Errors: UNTIL without REPEAT - if there was no corresponding 
REPEAT command 

Use: UNTIL is the closing command in a REPEAT. .. UNTIL loop and is 
followed by a comparison or boolean expression. If the expression is true, the 
program continues running from that point. If the expression is false, the 
program continues from the first statement after the preceding REPEAT 
command. 

Routine entry point: $9F6C 

Routine operation: The repeat stack pointer is fin;t checked to see if there is any 
active repeat. If not, UNTIL without REPEAT is displayed. If there is an active 
REPEA T, the ex pression following is checked and if the result is not zero (true) 
then the REPEAT. .. UNTIL loop is closed and exited. If the result is zero 
(false), the program pointers to the command following the REPEAT are set 
and execution starts at that point. 

LOC CODE LINE 

9F6C 
9F6C 
9F6F 
9F71. 
9F7', 
9F76 
9F78 
9F7B 

AD 2', 90 
F0 39 
20 9E AO 
1'\5 61 
F0 0A 
f'D 2', 9D 
38 

9F7C E9 0', 
9F7E 80 2'. 90 
9F81 60 
9F82 AO 24 90 

38 9F85 
9F86 
9FF!8 
9F89 
9F81?-
9F80 
9F8F 
9F92 
9F9'. 
9F97 
9['99 
9FS'C 
9F9E 
9FA1 
9FI'\3 
9FA~j 

9Ffl7 
9FI'\9 
9F f\I\ 
9FAC 

E9 04 
AA 
A5 01 
29 FE 
85 01 
BO 00 P..E 
85 7A 
BO 01 BE 
85 7B 
BD 02 BE 
85 39 
BO 03 BE 
85 3A 
f~5 01 
09 01 
85 01 
60 
fl9 I?.I, 
A0 9F 

.LIB UNTIL 
UNTIL LOA REPESK 

BEQ UNTI02 
JSR $A09E 
LOA $61 
BEQ UNTI01 
LOA REPESI{ 
SEC 
HBC 11$04 
STA REP(,:Sf( 
RTS 

UNTI01 LOA REPESK 
SEC 
SP'.C 11$0', 
TAX 
LDA $01 
AND II$FE 
STA $01 
LOA $I?-E00,X 
STA $7A 
LOA $BE01,X 
STA $71'. 
LDA $1'.E02. X 
srA $39 
LOA $BE03,X 
STA HA 
l.OA $01 
ORA 11$01 
HTA $01 
RTS 

UNTI02 LOA II<UNTIER 
L.DY If>UNTIEr, 

;GET STACK POINTER 
;UNTIL WITHOUT REPEAT 
;EVAL.UATE EXPRESSION 
;GET EXPONENT 
;FALSE 
;GET STACK POINTER 

;MINUS " 

;GET STACK POINTER 

;MINlIS 4 

lOUT BASIC 

;CHflRGET POINTER LSB 

;MSf'. 

;LINEIt L.SB 

;LINEti MSB 

;IN BASIC 



208 Advanced Commodore 64 BASIC Revealed 

LOC CODE 

S'Ff'E 20 1E 
9FfH I,C 62 
9FB', 

LINE 

A['. 
AI, 

, 

,JSR $AB1E 
JMF' $(.)/,62 

;OUTPUT ERROR 

9FB4 3F LRr." 
",)..1 UNTIER .BYT '?UNTIL WITHOUT REF'EAT'.S90 

9FC9 00 
7FC(') .END 

VARPTR 

Abbreviated entry: V(shift)A 

Affected Basic abbreviations: VAL - VAL 

Token: Hex $EE,$2~ Decimal 238,32 

Modes: Direct and program 

Recommended mode: Either 

Purpose: To return the address in memory where a variable is stored. 

Syntax: VARPTR (variable name). The variable name must be in ASCII 
characters. 

Errors: Syntax error 

Use: V ARPTR can be used to find the address in memory of any variable be it 
simple or an element of an array. If the variable is a string, the value returned 
points to the length of the string (the following two bytes are the pointer to the 
actual string). For example: 

VARPTR (A$) will return the entry address of A$. To find the 
address of the string: DEEK(V ARPTR(A$)+ 1) 
V ARPTR (BB(l2)) will return the address of the 12th element 
of the array BB 

Routine entry point: $9FCA 

Routine operation: On entry, V ARPTR scans past the opening bracket and 
then finds the variable (or creates it if it does not exist). The closing bracket is 
then scanned past and the address of the variable is converted to floating point 
form. 

LOC CODE LINE 

9FCA 
9FCA 20 FA (iE 
9FCD 20 8[>, [>,0 
9FD0 80 [8 9F 
9FD3 8C E9 9F 

.LIB VARPTR 
VARF'TR JSR $AEFA 

JSR $B08!?, 
STA VARP~l 
STY VARP01+1 

-SCAN '(' 
;FIND VARIABLE 
;STORE POINTER OFF 



Extended BASIC - A Complete Package 209 

lOC CODE LINE 

9FD6 20 F7 AE .JSR $flEF7 :SCAN PAST ') , 
'1FD9 fW 00 LDA 11$00 ;SET TYPE TO REAL NUMBER 
9FDB 85 0D STA $0D 
9FDD 85 0E BTA $0E 
9FDF AE E8 9F LDX VARP01 : GET F'OINTER 
9FE2 AD [9 9f' LOA IJARF'0Hl 
9FE5 4C 1'13 89 JMF' ASSIGN :SEND IT 
9FEB 00 00 VARF'01 .WOR 0 
9FEA .END 

Symbol table 

SYM[>'()l .. VALUE 
f)A2r, 96D7 f,AEf\R 96['.3 MlOOF' 96Ft. MlOF' 9701'1 
(hiMI;;!: 91.1P.. M1Sm( 96B8 flBFA 956(\ ,W.NC 9575 
(]f'.SC 9536 M'.SLDF' 95't4 flD['.tlDS 9~j31 (IDOSUE? 9501 
f)[)I)2NC 9~jAB flF'F'ENf) 8 /,D8 Af.:ITH 8:~:3'. ARITH.l 831.5 
flrdTH2 BV.F AS A r,/'lf;: 9363 ASlOOF' 933C ASLOF' 933E 
M3NC 93 /tf) flSNC9 935/ ASF\1R 936C ASR2R n78 
ASf(EXT 91,77 Asr, J:r\ 93F2 ASf,ITR 943C ASRlOF' 940C 
li'31~LP 1 9/,10 ASRNCl 9 /.5C ASRNC2 9!t1B ABRsm: n8B 
ASRSUB 93B3 ASfaM 9 /•I.C ASRTMl 9 /,50 ASRTM3 9469 
ASSGN 92F6 ASSIC 9300 ASSIGN 89A3 ASSR1 931D 
ASSTLO 93CE ASSTNl 9308 ASSTN2 930E ASSTN3 93E6 
AUTO 8:55E AUTD01 8561' AUTD02 8573 AUT003 857B 
AUT00 /, 8~j80 AUT005 851'11 AUT006 85AP. AUT01'F 8551 
f.olJTDND 8537 AU1D8T 855C I?EXF'Of( 9lF0 CA 9EF0 
CtlDDR 8189 CAH.O! 83C3 CATL02 85C6 C,HL03 85EF 
CATL0', 85F1 CATL05 860F CATl06 8613 CATl07 8630 
CATlO8 863E CATL09 864C CIHLl0 8657 CATLl1 8MB 
CATL12 8670 CATLl3 86,74 CATlOG 851?6 CB 9EF1 
CHAIN 8684 CHAIN1 86B5 CIlIiN0l 86EA CHAN02 86ED 
CHflN03 86F6 CHAN0'. 8700 CHAN05 8701'1 CHAN06 8716 
CHAN07 8722 CHAN0f1 B72C CHAN09 B742 CHAN10 8748 
CHMll1 8755 CHflN12 8'76'. CHAN13 876C CHAN14 877A 
CHAN15 B78F ClfANl6 87M CHAN17 87CB CHAN18 87E6 
CH/iN19 87F0 CHAN20 87F9 CHANGE 86B8 CHANLN 87FC 
CHAN5T B7FD CHECIU' 8950 CHECI{p" 8957 CIlECI{C 8951'. 
CHECI(N 89'.E CHECI(S 8955 CHImp 91BA CHOf( 9123 
CH()f(l 91',1 CH()f(2 9180 CHOI(2A 919A CHOI{3 9222 
LfmGET 0073 CHRGOT 0079 CLIST 80F1 COL 97AB 
COLD B07A COUNT 9EF8 CRNC01 81Cr CRNC02 81DB 
criNC03 81Fl CRNC0'. 8lF9 CRNC05 81FC CRNC06 81FF 
CF:NC07 8201 CRNC08 8203 CfmC09 821A CRNC10 821C 
CRNC11 8223 CRNC12 822C CRNC13 8233 CRNCl', 823D 
Cf,NC15 8246 CRNC16 8251 CfmC17 8253 CRNC18 8264 
CRNCJ.9 8277 CRNC20 8:~79 CRNC21. 8289 CRNC22 828D 
Cf,NCHT 81C9 CRUN01 880A cr,UN02 8818 CRUN03 881B 
CRUN0'. 8825 CRUN0:j 8830 CRUN06 883E CRUN07 88',5 
Cf\UN08 88',9 CfWN09 8854 CRUN10 885E CRUN1.1 886A 
CRUN12 8871 CRUHn 8895 CRUNCH 87FF cnD 8993 
CTCFLG 8994 CTCUf, 8991 CTENDl 8910 CTL 88M 
CTL01 B8Cl CTL02 88CE CTl03 B8DP.. CTL0 /• 88E8 
CTL05 88F5 CH.0t'> 88FD eTLDEF 892C CTLENl 8903 
elLEND 8906 eTSC 8992 CTXP08 898F CTYF'OS 8990 
DEEI( 8995 DElE01 89CI'. DELE02 89E9 DELE03 B9FfI 
DELE0'. 8f'i09 DElE0:'i 8All DELE06 8A26 DELE07 81'12'1 
DELE08 8A38 DElE09 BAl,O DELEl0 BAI,e DELETE 89AD 
DIMENS 8cca OISI( 8A1,D D181:01 8f'\55 DI81-(02 8MB 
0151(03 8A7/\ D I SI:0'. flAI?B DI51(0,) 8ABF ['151(07 BAD/, 
DOI([ 8ADF DOM."l T 92'.9 DDMrlTfI (121)13 j)OI~UL T 9567 
DOr-OP 98CE DOF'RN'f 8321 [)OSUE'. 9550 DF'Af\S 986F 



210 Advanced Commodore 64 BASIC Revealed 

SYMl'.OL VALUE 
DUMP Bl'.02 DIJMF'01 OB01'1 DUMF'02 8816 DUMF'03 OP',1,8 
OlJMf'0', ElBOl OUMF'05 BP..B3 DUMP06 8B90 DUMF'07 8BM 
Dl.IMF'08 8BflE DUMF'09 8B83 DUMP!.II eBp..I, DUMP 11 BBC0 
I)tmPl? onC5 DU~1F' 13 FlBCr'I DUMP1 (, I31?E2 DlJMPl~5 8P..E3 
DUI·lF'l.,s 8BEC DIJMPI7 8BED DlIMP1.8 8BFr'I DU11F'19 8C06 
DUMP~~0 3Cl.9 DUMP:~l 8CIC OUMP22 OC::;6 OUMPn 8CbB 
DUMP2', 8C9F DtJMF'25 8CA? 01lMF'2b 8!'.68 OUMTBL 8ccrl 
EDVNM ,.' ll,E EDVNI'I:! 911'17 EOVNI'I:3 9::!:31 ENDCDL 9755 
ENOFWH 978B EOF'MES 8/,AB EXEC 8CCE EXEC02 OD0F 
EXEC03 BDIF EXEC0', 8036 EXEC05 BD~50 EXEC06 8L'59 
EXEC07 8D65 EXECEr< 8090 EXECNO 8092 EXF.CST OD8E 
FITOV.l 963E Ff'lCM 90FD Ff'lCONT 9 1,91 Ff'lCT 9102 
FI'lEl 9"CO FAEX 94EO FAGETS 94!W FALOOF' 9480 
FMIi'lR 9 /,1'12 FANC 9 /,l'.C FANOIn( 9 1,02 FILENO 9861 
FIND B093 FIND01 8DP..B FIND02 flDC4 FIN003 8DC7 
FIND0', BODO FIND05 ODES FIND06 BDF3 FIND07 BDF9 
FIND08 8E17 FIND09 8E:~4 FIN010 OE56 FINOll 8E67 
FIND12 8E68 FIND13 8E8B FIND1 /• 8E91 rIND15 8E96 
FIND16 8EB0 FIN017 8F.CA FINDAH 9 /.78 FINDER 8ECF 
FLi'lGS 9EFC FNSTRT 001D FOEQ 91(,8 FOPEN 81'191 
FUNG BU,8 FlJNC01 837C FUNC02 B37F FUNC03 839 /• 
FUNC0', 83f'l9 FUNC05 83B1 FUNC0b 83B9 FUNC07 83Bl'. 
FUNC08 83(;6 FLJNC09 83D2 FLJNCH 8875 GADS 9l>71 
GAR3 921'12 GERr< B989 GET BEDI GETEND BF8B 
GETEH BFOE GETFNO BMI GETIN BFAC GETINI 8FB/. 
GErLH 8F2 /• GETU/o SFDC GETLPl 8F0F GETLF'2 BFll 
GET!. P3 BF"E? GETLF'" 8F80 GETMES 8F99 GETN! 8M3 
GETN2 Br'lA9 GETN3 0f'll',1. GETN/. BAS7 GETOF'l BFB9 
GETOP2 8FC5 GETOPN SFB7 GETSR 8FD8 GETUN 8EDS 
GETV3 910F GMESSG 8FA3 I3Vl 8965 GI)2 B968 
GV3 896S GV'i 896E HAND01 8308 HAND02 830E 
Hf'lND03 8377 HANDLE 82F7 HIMEM BFDF IHMSET I3FEC 
ISNf.1LF 1?113 f(EY 9014 f(EYftl 9024 f(EY02 903C 
KE'f03 90',1'1 KEY0 /• 90 /.B KEYEr<R 901F KEYLO 90S', 
LEN! 9EF6 LEN2 9EF7 LINf( 8009 LIST01 83EP.. 
LIST02 83EE LJST03 8 /.01 LIST04 8 /.0 /• LIST05 B/.IE 
LIST06 842A LIST07 8"35 LIST0B 843C LIST09 B449 
LISTl0 8',57 l!STl1 8 /.70 LIST1? 8494 LISTER B3E3 
LLV2 97flC LNE 91'.4 LNE2 919D LNE3 9225 
LOM01 909'. l.OM02 909A LOMEM 905D LOMSET 906(\ 
MAT 9118 MEf<G02 97FA MEHG03 9818 MERG0" 9838 
ME::HG05 983P.. MEHGE 97B0 MERGRT 9B60 MERGST 9860 
MERR 967" MMULT 90B2 MMlILT1 90C2 MMUlT2 90CA 
MMULT3 90CB MMULT/. 90E5 MRGMES 9B62 MUloT 966A 
NI 90AC N2 90AE NASSIG 91C7 NEM 9794 
NOOFe 9EF'. NOOFE 9EF2 NROW 971'19 NSAF:R0 961'13 
NSTR1. 9157 NSTR2 91B0 NSTR3 923A NTEXP2 91.85 
NTEXP3 92eE NT HIT 1 9161 NTINT3 92 /.6 NUMme 91FA 
OLD 9885 OLD01 9894 OL[)0~' 98A8 OPDIR 8682 
()P.JMP 92EC OP.JTAP.. nEE OF'TYPE 9100 ORDm 9581 
PflDDR 8332 PAr<EIU 9080 PAREHr< 987D F'MESSG 9A5" 
POINT 9Er~0 POP 98r..r.. PDPIl 98r..E POWEr< 8(Me 
F'IUN01 82M F'RIN02 82fl;~ PRIN03 82M F'HIN0" 8;~C2 
F'RIN05 82C5 Pf(IN06 82CD prnN07 8208 PRIN08 821?Jt 
F'RIN09 8209 Pf,IN10 82E1. F'IUN11 82E/. PRIN12 82EG 
PRIN13 B2B7 PRINT 829[ PRINTT 9BDB PfmT01 9805 
PRNT02 98[)8 PRNT0:>: 9Em[) F'I~NT0" 9920 f"r<NT05 992D 
PRNT0b 99:3r.. PRNT07 9931) PHNT0B 9900 PRNT09 993E 
PRNT10 9944 PS1MES 9(199 PS2ru:S 9AAI~. PlJT 997r'1 
PUTe? 9991 PlJT03 999C PUT0 /• 99M PllTelS 9A3/'\ 
F'lITEND 99AC PUTMES 9~,I,A PUrNL 99P..7 F'llTOF'l 99FA 
PUTOP2 %06 F'UTOF'3 9A:13 PIHOP', 9A1(, PlJTOPN 99FfI 
PUrollT 99F0 PUTQT 99CF PUTSW 91'136 pun f( 99DD 
PUTTKl 99Eb PUTTI<2 99E9 f~nHL1 9ACA RENILL 9ABE 
RENLEI·! 9AE? RENLNl 'JAE3 RENLNf: 9ADC REtll..NO 9ADE 
RENMS1 9ABC RENM~>2 9An HENMS3 9A96 r<ENP01 9B40 
RENP02 9B50 RENP03 9B6I. f<ENP0', 9B79 RENP0:5 9B84 



Extended BASIC - A Complete Package 211 

SYMP,OL IJi'lLLJE 
r,FNF'0{, 9£,,8£', RENF'07 9r.,rV, F:ENP08 9B(IF HEf.!F'10 9BDB 
metlPl.l 9£'.1"'7 RENP 1:' 9B53 r,ENPU 9C03 RENf'l /, 9ClI, 
r.:ENF' l~; 9[;1[' r'ENF'J.6 9C1.0 F:HIF' 1. 7 9C69 f;'ElW1B ~'C6C 
l~nlF' 19 9C7'? RENP20 9CC2 r,ENP21 9CD0 r,ENP22 '~CD9 
r,ENF'~'3 9CDC f~ENP;'>', geEE', RENP50 9E',ED f~ENP51. 9BF,\ 
r,ENF"j6 'JIWB HFNPBl 9f?35 RENF'B7 9r'l[9 RENP!;3 9f'lEC 
RENsrn 9(IDB f~ENsn' 91'1Df.! RENT[>'L 9f.!E4 RENU01 9Ml3 
f.:ENU0:~ 9P',2(, RENIJe>3 9B:50 RENlJ0'. 9C62 RHllJ05 'mP-A 
RENLJM£', ?tIS[) r~ENLJST 9AE0 r,ENUXT 9[>,27 REF'E0l 9CFC 
I~EF'Er'\T 'lel"'2 I~EF'E!3f( 91)2'. I~ESLJLT 90B0 RI:S')01 850', 
r,[SV02 8~J2:i RESVr'\F, 8/.F3 f::OW 97M RUN 9[)19 
F:UNT 0001 SETBAS B0E:'; SETf(ER B050 Born 9025 
SORT00 9D3D sorn01 9[)',:,' scmT02 9[)/.f.! SORT03 9[)5B 
sorn0 /, 906C SORT05 908A SORT06 9097 SORT07 90B5 
SOfnNl 91'C1 50RT09 9[)D9 SORT10 9[)[4 SORT11 9[)Fl 
SOF:T 12 9E1E SOIH13 9E29 SORT!'. 9E:::S~j SORT15 9E3A 
sor,T16 'lEI,'. Sorn17 9E6A sorn18 9E72 SORT19 9EBA 
f,OlH20 9EBP.. srmT21 9E9B STACf( 84M STBASl B0E7 
STERr,l 9E[,,3 STEFm2 9EU, STErm3 9ED9 STI(ERl 8067 
Sf LEN 90~jC SYNTE 920B Tl 9114 T2 9116 
TA[>' 99'.E. TAB01 9967 TAE!,02 9968 TAB03 9969 
TflP',0', 996C T t"lP',05 9972 TAB 10 995F TEMP 9EFA 
TRAC01 9Fl1 TRAC02 9F13 mAC03 9F19 TRAC04 9F20 
TRACE 9F0A TROFF 9F',3 maN 9EFD TR'PTl 95C0 
TRf"T2 95Bb TRF'T3 95AC TYMISE 9152 TYPE 9F50 
TYPE1 9F69 TYF'E2 9F59 UNTI01 9F82 UNTI02 9FAA 
UNTIER 9FB4 UNTIL 9FbC Vl.BF'T 964C VlINT %58 
VIREr~L 925E V2P..F'T 9::;E9 V2COLF' 9lAE V2UH 95F5 
V2RA 9500 V2TOT2 95CB V3BPT 9621 V3INT 962D 
V3TOFl 9613 WIRF'01 9FE8 VARPTR 9FCA VCOMP 898E 
VECTOR 8015 VNAMEl 90F'. VNAME2 90F7 VNAME3 90FA 
\JF'H: 1 00FB VF'TR:~ 00FO VPTR3 009E '!SIZEl 9107 
VSIZE2 9109 VSIZE3 910f'. VSH1 910E VSTT2 9110 
VEl T3 9112 VTYF'EI 90F6 VTYF'E2 90F9 VTYPE3 90FC 
~JRST 8039 WRST01 8044 WRST02 8058 

END OF ASSE.MBLY 



Index 

ABS, 52 
AND,52 
APPEND, 129 
architecture map, 
arithmetic routines, 35 
array dimensions, 17 
array elements, 17 
array variables, 13, 15 
ASC, 54 
ATN,55 
AUTO, 131 
auto line numbering, 9 

Basic input buffer, 4 
Basic interpreter loop, 21 
Basic ROM, 3 
Basic storage and use of numbers, 30 
Basic zero page storage locations, 

24-8 

calculate ATN, 42 
calculate COS, 41 
calculate EXP, 43 
calculate LOG, 43 
calculate power, 44 
calculate SIN, 41 
calculate SQR, 44 
calculate TAN, 42 
CATALOG, 133 
CHAIN, 135 
CHANGE, 136 
charge, 109 
charget wedge, II I 
chargot, 109 
CHR$,55 
CLOSE,56 
CLR,57 
CMD,58 
colour nibble memory, 3 
compare contents of FAC# I with a 

value in memory, 47 
complement the contents of F AC# 1,48 
complex interface adaptor chip # I 

(CIA#I),3 
complex interface adaptor chip #2 

(CIA#2),3 

computed GOSUB, 70 
computed GOTO, 72 
CONT,58 
control code lister, 79 
convert a floating point number into a 

string, 47 
convert a value stored as a string to a 

floating point value, 46 
COS, 59 
CRUNCH, 140 
crunch to tokens, 120 
CTL,142 

DATA,60 
DATA inputter, II 
DATA statements, II 
data storage, 10 
DEEK,145 
DEF FN, 13,60 
DELETE, 146 
DIM,62 
discard unwanted strings, 20 
DISK, 148 
DOKE, 150 
DUMP, 151 

END,63 
evaluate expression, 34 
EXEC, 156 
execute arithmetic, 124 
execute BASIC statement, 21 
execute statement, 123 
EXP, 64 
exponent, 31 

FAC#I and FAC#2, 30 
FIND, 158 
fixed point to floating point number 

conversion, 45 
floating point accumulator, 30 
floating point number storage, 31 
floating point to fixed point number 

conversion, 45 
floating point variables, 13, 14 
FOR" ,TO, 64 
FRE,66 



function definition. 13 
function keys. 125 

GET,67, 161 
GET#.67 
GOSUB.69 
GOTO,71 

HIMEM,164 
how BASIC works, 21 

IF ... THEN, 72 
initialisation, 117 
INPUT, 74, 110 
INPUT#.74 
INT,76 
integer variables, 13. 14 
interpreter RO M, 3 
interpreter routines to handle variables. 

18 
interrupt, 4 

kernal ROM, 3 
KEY, 166 
keyboard buffer, 4 
keyboard scanning, 4 
keywords, 5, 28 

LEFT$,76 
LEN,77 
LET,77 
lin k add ress, 5 
LIST, 78 
LOAD,83 
LOG,85 
LOMEM,167 

machine code RAM area. 3 
mantissa. 32 
MAT. 168 
MEMORY SAVE. 100 
memory usage. I 
MERGE,183 
microprocessor, 2 
MID$,85 

NEW, 8, 86 
NEXT,64 
NOT,87 
numeric variables type and range. 13, 

14,30 

OLD. 186 
ON,87 
OPEN. 88 
OR,89 

PEEK,91 

perform addition, 37 
perform division. 40 
perform multiplication, 39 
perform subtraction, 38 
POKE, 91, 113 
POP, 187 
POS, 92 
PRINT, 93, 110, 188 
print string from memory, 19 
PRINT#,93 
processor registers, 2 
program compactor, 10 
program line input, 4 
program lister, 126 
program storage format, 5 
PUT, 190 

RAM,3 
READ,95 
REM,96 
REM remover, 10 
renumber. 8. 192 
REPEAT,198 
RESTORE, 96, 113 
RETURN,69 
RIGHT$,97 
RND,98 
ROM,3 
round FAC#1,48 
RUN,98, 198 

SAVE,99 
screen RAM, 2 
search for variable, 18 
set up string, 20 
SGN 101 
sign, 32 
simple variable storage, 12 
simple variables. 12 
SIN. 101 
SORT, 199 

Index 213 

Sound Interface Device (SID). 3 
SPCC 93 
SQR, 102 
STEP, 64 
STOP, 103 
STR$, 103 
string variables, 13, 14 
SYS. 104 
system variable workspace. 2 

T ABC 93 
TAN,105 
tokenised BASIC, 4 
tokens to text, 122 
TRACE,204 
TRACEOFF, 204 
TRACEON,204 



214 Index 

transfer FAC# I to FAC#2, 37 
transfer FAC#I to memory, 35 
transfer FAC#2 to FAC#I, 37 
transfer memory to FAC#I, 36 
transfer memory to F AC#2, 36 
TYPE, 205 

UNTIL, 206 
user RAM, 3 
using arithmetic routines, 49 
using basic variables, 18 
USR, 105 

VAL, 106 
variable names, II 
variable types, II 
VARPTR,208 
vectors, 109 
VERIFY, 106 
video interface controller chip (VIC), 3 

WAIT,107 
warm start, 109, 113 
wedges, 109 



J 



/ 








