

Dr. Watson Computer Learning Series

Commodore 64®
BASIC Programming
Peter Holmes and Derek Bush

[]]
HAYDEN BOOK COMPANY
a division of Hayden Publishing Company, Inc.

Hasbrouck Heights, New Jersey

All programs in this book and the accompanying software have been written expressly to
illustrate specific teaching points. They are not warranted as being suitable for any particular
application. Every care has been taken in the writing and presentation of this book but no
responsibility is assumed by the author or publisher for any errors or omissions contained herein.

Commodore 64 is a trademark of Commodore Business Machines, Inc., and Dr. Watson is a
trademark of Glentop Publishers Ltd .• both of which are not affiliated with Hayden Book
Company.

Copyright © 1983. 1984 by Glentop Publishers Ltd. All rights reserved. No part of this book may
be reprinted, or reproduced, or utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording, or in any
information storage and retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

12345678 9 PRINTING

84 85 86 87 88 89 90 91 92 YEAR

INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTERS

CHAPTER 6

CHAPTER 7

CHAPTERS

CHAPTER 9

CONTENTS

The Book • The Software • Loading Programs from
Diskette

The Commodore 64 Keyboard • Getting Started in BASIC
• Strings • INPUT • LIST • Prompts • Editing

Guess the Number Game· RND· INT· GOTO· Run/Stop
• IF ... THEN • Stop • Program Structure-Flow Charts •
FOR ... NEXT • STEP • Comparisons • Multi-Statement
Lines • REM • Storing a Program • SAVE • VERIFY •
Comparing Numbers • OR • AND • Cursor Controls

Honey.Aid • High-Resolution Graphics • HIRES • PLOT •
LINE • NRM • Etcha-Sketcha Game • GET • SOUND •
ENVELOPE • PLAY • TEMPO • AUTO • NUMBER •
OLD • FIND • CHANGE

The Hangman Game • READ ... DATA • RESTORE •
LEFT$ • RIGHT$ • MID$ • LEN • Flags • TABS •
GOSUB ... RETURN • Delays • ON ... GOTO

Reaction Tester Game • Clock • String Concatenation • TI •
POKE • PEEK • Arrays • DIM • CHR$ • ASC

User-Defined Graphics • CHAR.GEN Utility • Relocating
the Character Set • Protecting the Top of Memory •
Keyboard Buffer· Addressing the Keyboard· Logical
Operators • AND • OR • Logical Operators and Eight Bits •
VIC II Chip and the 6510 • Function Keys • Two
Dimensional Arrays • Auto Repeat on All Keys • DELETE
• Self-Modifying Programs· Using CHAR.GEN

Ball Games • Screen POKEing • A Moving Ball • A
Randomly Moving Ball· CO NT • A Moveable Bat •
Building the Wall • Demolishing the Wall • Balltrap Game
• Better Bouncing • Blockade Game

Sprightly Sprites • Sprite Variety • Expanded Sprites •
Multicolor Sprites • SPRITE.GEN Utility • Target Game •
Sprite Precedence • Sprite Collisions • Game Algorithm

COMPOS ATUNE • Sound and the SID Chip • Playing
with COMPOSATUNE· Initialization· SID POKES·
Input of Musical Information • Playback of Tune • Set

CHAPTER 10

CHAPTER 11

APPENDIX 1

APPENDIX 2

APPENDIX 3

Index

Tempo • Module Testing • Transfonning Note Frequencies
to Peek Values • Calculating X, Y Coordinates for Note
Plotting • Printing Note on Screen • The Stave •
Buildasound • Pitch • Volume· Envelopes· Gate Function •
Cycling through ADSR • Wavefonns • Triangular
Wavefonns • Sawtooth Wavefonns • Pulse Wavefonns •
Random Wavefonn • Filters • Resonance

Sums 'n' Things· Circles· SQR· SIN· COS· TAN·
ATN· ABS· SGN· LOG· EXp· DEF FN· VAL· STR$
• Improving the Hangman Game· Sound· 6510 Machine
Language • SYS • A Screen Border Machine Code Utility

Solutions to Exercises

BIN/BCD/HEX TUTOR

Honey.Aid Syntax

Table 1 Commodore 64 Character Set
Table 2 Hex to Decimal Conversion
Table 3 ASCII Character Set
Table 4 ASCII and CHR$ Codes
Table 5 Commodore 64 Character Symbol Representation
Convention
Table 6 VIC II (Video Interface Controller) Table
Table 7 SID (Sound Interface Device) Table

INTRODUCTION
The Book

The Commodore 64 is by far the most exciting machine to be introduced for home/ office
computer use in recent years. It simply bristles with advanced features. The Commodore 64
BASIC Programming book/software package is carefully designed to enable you to take full
advantage of this amazing machine.

What do you need to know to read and understand this book? Nothing! It is written for the
absolute beginner and the early chapters have been well tried and tested-{)n beginners.

What will you know when you've read the book? Well, that depends on you! If you persevere,
you will have used one of the most advanced home/office microcomputers on the market and
will have come to grips with its most advanced features.

This book will nurse you through the early stages of BASIC and, by Chapter 2, you will be
writing your first program-a number guessing game. Even though this is carefully explained
step by step, your Dr. Watson package includes a safety net-a computer-aided learning pro
gram. This program complements the book and provides even more explanation of the impor
tant fundamental commands introduced in the early chapters. As you progress, the pace will
quicken imperceptibly and you should soon become adept at picking up the new commands.
Each of these commands is introduced with an explanation followed by a short teaching program
that shows it in action. Before long it is seen playing its part in one of the many games and
utilities developed in the book.

Three chapters are devoted to the development of utilities that will greatly aid your programming
efforts on the Commodore 64, enabling you to build user-defined characters, sprites, and music
into your own programs.

Along with the book comes "Honey. Aid", a unique machine-code package that reaches the
parts of your Commodore 64 that other packages don't! In Chapter 3 you will be given a series
of programs that show Honey.Aid in use and an Appendix explains all of its features in detail.

In this book we have set out to provide what we feel the beginner will need to get started in
BASIC. We hope, though, that those with some experience will not be complacent! The later
chapters of the book explore the inner reaches of the Commodore 64 and will quickly elevate the
beginner to a status other than 'beginner'.

We have enjoyed the labor, though it has been long and hard and we hope that you, the reader,
will enjoy the task ahead. For some of you it will be for pleasure, and for others it will be for
business. Whatever your motives, may you get as much pleasure from reading it as we've had
from writing it.

P. Holmes
0.1. Bush

THE SOFTWARE

Having bought the book and disk, you're no doubt ready to get going! That's why the disk is
introduced first: you can just load a program and off you go! On the disk are three different types
of programs: the games that are developed in the book, utility programs that will help you use
your machine (some of which are developed in the book), and a computer-aided learning
program that supplements the explanations in the book and is designed to make sure that you
really do get going in BASIC.

The Games

The games on the disk start off with a particularly simple little screen graphics game and work
up to much more complex programs. This is how you will progress through the book, so that's
the order of the games. No doubt you'll find the later ones of most interest and of course you're
free to play them as you will.

I. Guess the Number

This is a number guessing game, developed in Chapter Two. The player is given six goes
in which to guess a number.

2. Hangman

This version of the popular word game uses color and screen display techniques producing
a thoroughly enjoyable, easy-to-understand game.

3. Reaction Tester

Developed in Chapter Five this program shows the programmer how to use the
Commodore's built-in clock and how to change the screen colors, resulting in a very
addictive game of speed.

4. Breakout

Breakout is the first of the Chapter Seven games. The reader is taken through all the steps
in producing this game. The finished product will provide you not only with a great game,
but also with the ability to write your own video games!

S. Balltrap

Developed to follow the Breakout game, Balltrap shows you how to use the game-writing
skills you have learned. The object of the game is to bounce the ball from your bat and
into the trap. The time limit is set to two minutes so you'll have to be quick!

6. Blockade

The last of the Chapter Seven games is a game for two players. They must try to block
their opponent's line with their own, taking care not to be blocked themselves.

The Utilities and CAL Program

There is a major utility, Honey.Aid, on the disk. Once this is loaded into your machine and run,
it will make your Commodore 64 into a new machine! It adds 27 new statements to Commodore
BASIC which can be typed in as any other BASIC command. These new features will help
considerably when you are writing programs and will improve the appearance of your programs.

There is also a Computer-Aided Learning (CAL) program that should help you to understand the
program developed in Chapter 2. That is followed by the two utilities.

1. Honey.Aid
A major machine code utility program that tucks itself away in your Commodore 64 and
helps you develop your own programs. In addition, it provides sound and graphics
commands that are easy to use and make learning BASIC much more fun.

2. GUESSER
A major Computer-Aided Learning program (CAL) that further explains the BASIC
commands used in the number guessing game in Chapter 2.

3. CHAR.GEN
A complete character generator program that assists in the designing of a character. It then
prepares this for storage in your own program and then automatically eliminates those
parts of the program that are no longer needed. The generation of this program is fully
described in Chapter 6.

4. SPRITE.GEN
A complete sprite generator program that enables you to design sprites of all possible
configurations. As with CHAR.GEN, the finished product can be stored in your own
program and the surplus parts can be eliminated.

S. COMPOSATUNE
Developed in Chapter Nine, this program allows the user to input a tune and then play it
back. The user is also able to change the tune, the frequency, pitch, decay, sustain, etc.

Loading Programs from Diskette

First of all, you should make sure that your computer and diskette drive are connected
properly. When you want to load a particular program, you should type in the full name of the
program, for example,

LOAD"HONEY.AID",8

and press RETURN. The diskette drive light will go on and the message

SEARCHING FOR HONEY.AID

LOADING

READY.

will appear on the screen. The program will then be ready to be listed or run.

CHAPTER

1
PART ONE

The Commodore Keyboard The Commodore 64 computer has a full keyboard which offers
all the facil ities of a typewriter along with many other
features that only the C-64 has. It is the typewriter style
keys that will occupy the first few chapters of this book.

Depressing a key with a single letter or number on it will print
that 1 etter (or number) onto the screen. Some signs such as the
percentage sign above the number 5 wi 11 onl y be pri nted onto the
screen when the shift key is held down at the same time as the key
is depressed. Other keys have very special computer functions such
as keys on the right and left-hand side of the keyboard marked

.iI -- -II -•• •
Just what these do you'1l see as we go along. They'll be explained
when we need them.

1-1

When first turned on, the Commodore 64 will display the message:

**** COMMODORE 64 BASIC V2 ****
64K RAM SYSTEM 38911 BASIC BYTES FREE

READY

FIGURE 1.1

This tells you that all is okay and that there's 38911 'bytes' or
character spaces for you to fill up with a program!

Below the READY sign is a flashing character or 'cursor' which is
simply reporting whereabouts it is, just sitting waitinq for the
next entry. Tryout the machine by typinq a letter 'P'. If you
make a mistake or just to try things out, press the key.
This should delete the 'P' or other letter and put the cursor back
where it was. Armed with the power to enter and delete characters,
now try to enter P,R,I,N,T and then press the RETURN key; ie:

PRINT <RETURN>

On pressing <RETURN> the READY sign will step down two lines,
leaving spaces between its two positions on the screen. Try
another exercise, type in:

START <RETURN>

This time, the Commodore 64 will report:

?SYNTAX ERROR

On this occasion, it's really saying

"I DON'T UNDERSTAND"

It says thi s because 'START' is not a part of the BASIC 1 anguage
that the Commodore 64 understands. Don't let this worry you when
it happens, just keep trying until the C-64 accepts what you say.

1-2

One of the beauties of the Commodore 64 is the simpl icity of its
keyboard. Entering anything is just like typing. So if you need
to enter an instruction like IPRINTI you go ahead and type it using
the "P","R","I","N" and liT" keys of the keyboard. The C-64 does
however have one or two special keyboard features - these involve
the use of the CONTROL, SHIFT and the COMMODORE ~ keys. Using a
combination of these keys the programer can produce various
effects.

letls illustrate this with some examples. The first effect is
obtained by pressing the SHIFT key and the(:«Commodore key».
What this does is to change the text from upper case to lower case
or vice-versa if it is already in lower case.

Assuming you have just switched your machine on and have got the
message:

**** COMMODORE 64 BASIC V2 ****
64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

FIGURE 1.2a

Then, holding down the ISHIFTI key and pressing the Commodore key
(bottom left-hand of the keyboard) will yield the display

k commodore 64 basic v2 *
64k ram system 38911 basic bytes free

ready.

FIGURE 1.2b

Most beginners prefer to work in the CAPITALS mode so, to change
back simply hold down SHIFT once more and then press the Commodore
key.

Notice that the asterisks and the numbers have not changed.
Asterisks and numbers come in only one type; you donlt get capital
numbers!

By now you have probably noticed that the keys of your Commodore 64
have more than one symbol displayed on them. For instance the lSI
key has also a small corner and a heart drawn on its front side.
The character on the 1 eft (i. e the corner pi ece) is obtained by
pressing both the Commodore key and the appropriate key at the same
time. The character on the right (in this example a heart) is
obtained by pressing both the ISHIFTI key and the appropriate key
(in this example being lSI). One thing that must be noted is that
if you are in sma 11 1 etters mode then I SH I FT I and a 1 etter will
produce a capital letter, but if you then press ISHIFTI and 'C:I the

1-3

display changes to capitals and the cnaracter changes. Try it and
see.

As well as having other characters on them, the number keys al so
have colors written on them. These range from bl ack (key 1) to
yellow (key 8). The nine and zero key have other functions which
will be demonstrated in a moment. The color is changed by holding
down the 'CTRL' key and then press i ng the number key with the
required color. So for example if we wished to change the color to
green then we would press down the 'CTRL' key and press '6'. Now
any key we press will come out green. To change simply repeat the
procedure with a different key.

As was mentioned above, the '9' and '0' keys have functions on them
other than colors. The '9' key has something called 'RVS ON' and
the '0' key has 'RVS OFF'. RVS ON means switch on reverse
characters. These characters are exactly what they sound 1 ike. a
character that is created by coloring the area around - opposed to
a normal character that is created by coloring the character
itself. Reverse characters are obtained by pressing 'CTRL' and
'9'. From that point on all characters will be in reverse. until
we press 'CTRL' and '0', which switches off the reverse characters
features returni ng us to normality. Reverse ch aracters can look
quite impressive on the screen and their color can be varied,
depending on the color of the cursor.

Two other items on the keyboard that need mentioning are 'CRSR' and
'CLR/HOME' • The 'CLR/HOME' when pressed wi 11 send the cursor to
the top of the screen, where it wi 11 f1 i cker in the 1 eft corner.
But if we press 'SHIFT' and 'CLR/HOME' the screen will be cleared
completely and the cursor will appear in the top left-hand corner.
Thus if we have a lot of junk on the screen it can be obliterated
by pressing both 'SHIFT' and 'CLR/HOME'.

The 'CRSR' (short for CuRSoR) keys control the position of the
cursor. There are two 'CRSR' keys. one with arrows pointing up and
down and the other pointing left and right. To get the cursor to
move down press the up/down key. Now hold down 'SHIFT' and press
the same key and this time the cursor will move up. Left and right
are controlled in the same way. Press the left/right key on its
own and the cursor will move right, hold down 'SHIFT' and the
cursor will move left.

It is important to note that moving the cursor over anything typed
on the screen will not change the typing at all.

1-4

PART TWO

GETTING STARTED IN BASIC

You've probably used a calculator quite often and most of these are
now pretty clever, doing 'sums' and even working out complicated
routines that are actually built into the machine. Your C-64
computer is just as clever but can do much more; so much so that
if you ask it to do a sum you will have to tell it what to do with
the answer. Unlike the earlier calculators that could only give
the answer on a screen, the C-64 could give a screen output - it
could print it out on your printer, store the data on a floppy disk
or even output it to some other device! However. we will
concentrate on screen output.

To tell the machine to print something onto the screen the command
'PRINT' is used. Try this by typing in:

PRINT 4 and then press the <RETURN> key.

The C-64 should respond by doing what you told it and displaying a
'4' on the screen. That didn't tax the computer too much, so now
try:

PRINT 4+4 and then press the <RETURN> key.

The 64 should respond with the answer 8. This command 'PRINT' is
part of the language that your computer speaks, known as BASIC. To
those who like jargon, BASIC stands for 'Beginners All-purpose
Symbolic Instruction Code'.

Unlike the calculator, however, the computer can handle not just
numbers (numeric characters) but also letters and, therefore, words
(alphanumeric characters). Try this with:

PRINT "FRED"

This time the 64 should print your name. In the unlikely event
that your name is not FRED you can try substituting your own name
between the quotation marks. One important thing to notice is that
lines entered may be much longer than this one and so the machine
needs to be told when you've finished typing. This you do by
pressing the 'RETURN' key.

Another thing to notice here is that the alphanumeric entry, i.e.
letters and numbers, MUST be included in quotation marks, as BASIC
handles alphanumeric and numeric characters differently •. In the
example given, "FRED" (or your name) is known as a 'string' as it
is really just a string of individual letters strung together.

1-5

So far we have not expected the 64 to actually 'remember' anything
- now to do so! Type in:

LET X=4 <KETURN>

So far the machine appears not to have done very much; so just to
check that it has done something, tell it to PRINT onto the screen
by means of:

PRINT X <RETURN>

If the 64 remembered it should have told you that X=4 by printing
the '4' onto the screen, as the command "PRINT" tells it to 'PRINT'
on the screen!

When entering this command, the X was not typed between quotation
marks. Had it been typed in so· PRINT "X", then the machine would
have responded by writing what it saw between the quotes i.e. the
letter X. Just try it to make sure! In the earl ier case, the
command PRINT X told the computer to print 'the value of the
variable known as X', which was 4.

In fact, what really happened was that typing LET X=4 told the
computer to create a variable called X and store the value 4 in it.
Going through this in stages, the computer does the following:

(i) it reads 'LET X' and transl ates this into "create a space in
memory and call this X" - see FIGURE 1.3.

FIGURE 1.3.

(ii) next it reads the '=4' part and translates this into "and
store the value 4 in X" - see FIGURE 1.4.

1-6

FIGURE 1.4.

Some BASICs insist that you use the keyword 'LET', as in LET X=4.
64 BASIC allows you to omit the 'LET' and normally we will do so,
although use of LET is optional and if you wish to use it. please
feel free.

The letter 'X' is an example of a 'numeric variable name'. 64
BASIC allows numeric variable names to be one or more letters long,
but only the first two characters are actually recognized. Thus
the names JOHN and JOAN would both be recognized as JO by the 64 -
could be awkward! To avoid the problem of the computer potentially
recognising two variable name~ as the same, it is best to stick to
using two letters at most.

The 64 actually recognizes the following types of numeric variable:

A single letter
A pair of letters
A single letter followed by a digit 0 to 9

If you insist on using 'FRED 37', then your 64 will treat it as the
v ar i ab 1 e 'FR'.

If you want the fancy terms, the statement LET X=4 is referred to
as 'assigning the value 4 to the numeric variable X". The value of
X is clearly very readily re-assigned; hence the term "variable",
the whole 'X=4' being referred to as a mathematical or arithmetic
expression.

Your 64 will remember that X=4 until something is done to make it
forget. Switching it off is quite effective, as is re-assigning
the variable, i.e. 'X=5'. There is however, a command, that tells
the computer to 'forget' the val ue of any vari abl es that we have
created. The command is ClR. When entered, 'CLR' will CLeaR the
value of 'X' (and indeed any variable set up). So if you type in:

1-7

CLR <RETURN>

and then attempt to PRINT X the answer would be '0' and not '4'.
This 'CLR' command allows us to remove any variable data from our
computer. thus - effectively· switching 'OFF and ON' the computer
without the loss of a program.

Strings

Not only can the computer store and manipulate numbers and numeric
variables. it can handle alphanumeric characters and strings in
variable form too.

String variables are more problematic to any computer than ordinary
numbers. as they can be of different lengths: from 0 to 255
characters. Clearly, very long strings need more space in the
computer's memory than numeric variables which only need 5 memory
cells (or bytes). The computer must "know" whether a numeric or
string variable is being used. The computer will; of course, need
to store the string length as well as the variable name. Thus,
string variable names must be identified by following them with a
dollar sign. Commodore 64 treats the string variable 'A$I
differently from the numeric variable IAI. To test out string
variables try the exercise below:

LET A$="FRED" <RETURN> (or your name)
PRINT A$ <RETURN>

This assigns the name to a variable A$ (see Figure 1.5) then it
prints the name in A$ onto the screen.

FIGURE 1.5

The name A$ is an example of a BASIC string variable, and C-64
BASIC allows these variables to be defined the same as the numeric
variables, i.e. two letters or a letter and a number are allowed.
Again. string variables must end with a 1$1 sign. So: A$. B$.

1-8

and XY$ are all acceptable string variable names in C-64 BASIC.

So far, all the entries made have been carried out (or executed)
immediately after the RETURN key was pressed. These are known as
DIRECT ENTRY or IMMEDIATE mode commands. Once these have been
executed, they cannot be re-activated; they're gone forever!
However, when programs are used, they are stored in memory and
re-activated when required. What differentiates an immediate
command from one in a program is the program's line numbers.
Whenever the RETURN key is pressed, the computer stores a BASIC
program line in memory as a line of program. Thus, if the earlier
immediate entry command is replaced by Program 1.1. this
constitutes an actual program. Just what the val ue of the 1 ine
number is doesn't really matter too much, as long as it is a whole
number with a positive value between 0 and 63999. What does matter
is the sequence of line numbers, as the C-64 will run the program
starting at the lowest line number and then work in increasing line
numbers unless told to do otherwise. Applying line numbers to the
early direct entries yields:

PROGRAM 1.1

20 LET A$="FRED" <RETURN>
30 PRINT A$ <RETURN>

This time, when RETURN was pressed, the machine simply responded by
moving the cursor to the next line on the screen. In order to get
it to run, simply type RUN and press <RETURN>. Once you have done
this, you will have run your first real program.

INPUT

In Program 1.1, your name was stored directly in the program, which
means of course that the program is only of use to you. To make it
of more general use, it would be handy to be able to set the value
of A$ once the program was running. This is done by using an
'INPUT' command which causes the C-64 to stop and wait while the
user enters the required information. The machine also needs to be
told which variable name to assign to this information. Program
1.2 shows how an INPUT command is utilized to assign a value to A$
at the beginning of the program.

PROGRAM 1.2

20 INPUT A$ <RETURN>
30 PRINT A$ <RETURN>

1-9

In order to erase the old line 20, it is only necessary to type in
the new one and then press RETURN. The machine will then write the
new line over the old.

When you type in RUN and then press <RETURN>, a question mark
appears on the next line. The flashing then cursor appears after
the question mark, indicating that the computer is awaiting an
INPUT of information. On typing in your name and pressing
<RETURN>, the computer will confirm the INPUT as, it executes line
20 and prints out the value of A$ - your name!

One thing to note about 'INPUT', is that it can't be used in
immediate mode. If you try to use it without a line number the
C-64 wi 11 respond with: I? ILLEGAL DIRECT ERROR I. Try it and see!

As you enter your program line by line, the computer displays it on
the screen. You can only do that for so long though and eventually
you'll run out of screen. The C-64 lets you enter lines until you
reach the bottom of the screen. Then the whole screen is moved up
so that a new 1 ine can be entered. In doing this the top 1 ine
leaves the top of the screen. The whole process continues line by
line and is given the fancy name 'scrolling'.

The C-64 allows you to redisplay previously entered lines in long
programs by use of the LIST command.

LIST

Just type LIST and the program lines will be sorted out by line
order and displayed on the screen. The listing appears quickly and
will scroll. If the listing 'scrolls' too fast for you and you
want to slow it down then hold down the 'CTRL' key and the lines
will appear one by one - slow enough for you to read. If you take
your finger off the key the listing will continue with its normal
speed. If you see the line you want going past, quickly press the
RUN/STOP key and this should stop the whole proceedings.

When you want a listing of just one particular line, say line 2000.
simply type 'LIST 2000 1 • However, should you want a listing of the
whole program from line 2000 onwards, then the command 'LIST 2000-'
is entered and the program listing will start from this line and
continue in sequence. If you just want to list a section of your
program, say from lines 2000 to 2310 then use:

LIST 2000-2310

1-10

Summarizing this:

LIST 2000
LIST 2000-
LIST 2000-2310
LIST -2000

means list line 2000 only
means list line 2000 onwards
means list lines 2000 to 2310
means list up to line 2000

So far. all the PRINT statements used have had something simple to
print out. However, it is sometimes necessary to print several
items at once on to the screen. This is handled in BASIC by means
of features that tell the machine what "format" is required on the
screen. Thus, in order to print the A$ in Program 1.2 on the
screen twice. it would be possible to write a line in a program
that had a PRINT command followed by two A$IS. Although the C-64
would understand the statement IPRINT AAI, technically the two
variables should be separated. Not surprisingly, the things used
to separate them are known as Iseparatorsl!

To test this procedure, Program 1.2 will be modified to print out
A$ four times, first of all using the 1,1 (comma) separator. Line
30 is changed to read:

30 PRINT A$,A$,A$,A$

This yields PROGRAM 1.2(a):

PROGRAM 1. 2 (a)

20 INPUT A$ <RETURN>
30 PRINT A$,A$,A$,A$ <RETURN>

When this is RUN with an A$ INPUT of "Fred" it yields a screen
display of:

FREDI\Ny\MFREDtvW\M FREDMN\MFRED

FIGURE 1.6

Note: throughout this book the small delta sign I~I in listings
means a space.

Program 1.2(a) will PRINT each of the strings onto the screen.
followed by a group of six spaces.

1-11

The other separator is the ';' (semi-colon), which has the
straight-forward effect of causing one string to be PRINTed
immediately after the other. This is demonstrated in Program
1.2(b) where line 30 is further extended by means of a semi-colon
separator.

PROGRAM 1. 2 (b)

20 INPUT A$ <RETURN>
30 PRINT A$,A$,A$,A$;A$ <RETURN>

This illustrates the effect of the semi-colon and yields the
display shown in Figure 1.7.

FRED~FREDAAAAAAFREDAAAAAAFREDFRED

FIGURE 1.7

In all the examples quoted so far, separators have been used with
string variables; their use with numeric variables is absolutely
identical. The only difference is that numeric variables are
automatically printed with two trailing blank characters. So:

PROGRAM 1. 2 (c)

10 A=l <RETURN>
20 PRINT A,A <RETURN>

produces:

11\N\fVW\N\ 1

when it's RUN, whereas

PROGRAM 1. 2 (d)

10 A=l <RETURN>
20 PRINT A;A <RETURN>

will produce

1M!

1-12

Asking for data ••• Prompts

In the course of a program the '1' is not a very informative way of
asking for information and the addition of some brief message would
greatly improve matters. Such a message, usually known as a
'prompt', can very readily be added using a PRINT statement. the
material to be printed being generally referred to as the 'print
item'. This is illustrated in line 10 of Program 1.3.

PROGRAM 1.3

10 PRINT "PLEASE TYPE IN YOUR NAME" <RETURN>
20 INPUT A$ <RETURN>
30 PRINT A$ <RETURN>

Any string of characters such as that in line 10 of Program 1.3 is
known as a 'literal string' because the line of program simply
instructs the computer to print literally onto the screen what it
sees in quotes. Thus a literal string is printed onto the screen
exactl y as it appears in the program and is affected by the two
separators in exactly the same way as any other string.

When Program 1.3 is run, the machine is a little more informative
and actually asks for your name. However, there's an even neater
way of doing the job in BASIC! The INPUT instruction can itself be
used to print a message by inserting the message between the
'INPUT' and the 'A$'. The line required is a mixture of lines 10
and 20, and, as line 10 is rather long it would seem to be a good
idea to use th is to make up the new 1 i ne. Th i s can be done
conveniently using the Commodore 64's EDIT function, and here's how
the trick's done:

Editing

Any editor, screen or line based, needs to perform three jobs:

* To correct or replace certain characters

* To delete or rub out unwanted characters

* To insert or add extra characters

Let's have a go at all three!

1-13

Firstly, LIST Program 1.3 if it's still in the computer (i.e. type
'LIST' and press (RETURN», otherwise, type it in again! It should
appear as:

10 PRINT"PLEASE TYPE IN YOUR NAME"
20 INPUT A$
30 PRINT A$
READY

The first task is to replace the 'PRINT' in line 10 with 'INPUT',
so the cursor needs to be moved from below the 'R' of READY to the
'PI of 'PRINT'. To do this, hold down the SHIFT key and press the
CRSR (CURSOR) key with the up/down arrows, four times, i.e.

~~
hold down press four times

As you press the cursor key, the cursor will move up line by line.
Once it is on the 111 of 10 (the line number), it needs to be moved
to the right. This is done by pressing the horizontal cursor key
(next to the vertical one) three times.

Once the cursor is over the 'PI of 'PRINT', simply type in the
word: I INPUT' •

Next, the I;A$I has to be added to the end of line 10, and this is
readily achieved by holding down the horizontal cursor key until
the cursor has moved to one character past the final quote sign;
ie:

10 INPUT "PLEASE TYPE IN YOUR NAME"

Now the semi-colon and A$ can be added so the line reads:

10 INPUT"PLEASE TYPE IN YOUR NAME";A$

Once this is achieved, press <RETURN> and that line is changed.

In our example above, we performed the first and last of the three
editing tasks; we corrected the characters P R I N T, changing them
to IN PUT and we added the extra I;A$'. This was done by using
the cursor control keys to get to the correct 1 ine. The change
from PRINT to INPUT was made character by character, and finally
the extra ;A$ was typed in.

1-14

Having modified line 10 to include an INPUT command, the program
now contains two INPUTs and, thus, line 20 needs to be deleted.
This is quite simply done by typing in the number 20 and then
pressing RETURN.

Once line 20 has been removed, Program 1.4 should appear as below.

PROGRAM 1.4

10 INPUT "PLEASE TYPE IN YOUR NAME";A$
30 PRINT A$

When thi sis run, a prompt wi 11 appear aski ng for your name and,
following the entry, the computer will simply print it back onto
the screen with no ceremony!

When doing the previous editing, the word INPUT very conveniently
fitted exactly over the word PRINT. Now let's try changing line 10
to read:

10 INPUPWHAT IS YOUR NAME" ;A$

Once again, first LIST the program, by typing 'LIST ' •

then:

10 INPUT"PLEASE TYPE IN YOUR NAME";A$
30 PRINT A$

* Move the cursor up to cover the 111 of line 10.

* Move the cursor across to cover the Ipi of 'PLEASE ' •

* Type in 'WHAT IS':the text should now appear as:

10 INPUPWHAT ISTYPE IN YOUR NAME" ;A$

* Space across with the SPACE bar, until the cursor is on the
lyl of 'YOUR'. At this stage, the words are OK - just too
many spaces.

* Delete the intermediate spaces on the line by means of the
INST DEL key on the top-right of the keyboard. Each time
you press this key, it will delete the character immediately
BEFORE the cursor. Seven presses of the key should do the
trick - don't forget to leave one space.

* Press <RETURN> and the line is edited.

1-15

The only way to really learn to edit is to try it. Nothing will go
into the computer's memory until you press <RETURN>, so, if you get
in a mess, just cursor away from the problem 1 ine and then try
again.

One last feature to note •.•

Jus t as the INST JOEL key took out spaces, so it can insert them,
when used with the SHIFT key pressed. Experiment with this and
then try Exercise 1.1.

EXERC I SE 1.1

Modi fy the above 1 ine 10 of Program 1.4 to
read:

10 INPUT"PLEASE TYPE IN YOUR FULL NAME";
A$

A possible solution is given on page 11.1

Fortunately, the PRINT command can also contain both a message and
variables in much the same way as the INPUT command, so try to
modify Program 1.4 as instructed in Exercise 1.2.

EXERCISE 1.2

Edit line 30 of Program 1.4 so that the
progr am an nou nces II YOUR NAME I S FRED". An
answer is given on page 11.1

Such messages or prompts as you are now capable of putting into
your programs are valuable in guiding the user through data entry.
Try Exercise 1.3 using prompts.

EXERC I SE 1. 3

Modify the program developed in Exercise 1.1
so that it asks a person's name and age, and
then reports back to them "YOUR NAME IS •••• ,
YOUR AGE IS •••. .. A possible answer is
given on page 11.1

1-16

CHAPTER

2
PART ONE

Guess the Number

T hiS first mini project develops a number guessing game and
investigates various number manipulation techniques. In the
game, the computer will think of a number between 1 and 100
and then, ask the player to guess the value of the number in

less than six goes. (S)he will then be told whether this is too
1 arge, too small, or correct. After six goes, if it has not been
guessed correctly, all will be revealed! At this stage, when the
number is guessed correctly, the player will be asked whether or
not (s)he wishes to have another go.

RND()

In a game such as this, the key function is that of generating a
random number for the player to guess. The 64 does this by means
of the command RND(). To try this out, tell the computer to
generate a random number and then to PRINT it onto the screen.
Such a combination of commands is referred to as a 'statement',
which in this case says:

PRINT RND(O)

Thi s wi 11 cause it to pri nt a random number between 0 and 1.
However, this range of numbers is not too 1 arge; the game we are
wri t i ng rea 11 y needs a range of about 100. To ach i eve such a
range, we can quite simply multiply our random number by 100, i.e.

PRINT 100*RND(0)

2-1

INT ()

Although the range is now right, the numbers that the comput~r
glves us have decimal points and what we really need is just the
whol e part of the number. BASIC conta i ns a command that wi 11
remove the fractional part of a number and leave the whole number
part or INTEGER. Not surprisingly, the command is 'INT()', and
the expression INT(6.318) would, for instance, yield the integ~r 6,
as would INT(6.0001) or INT(6.9999).

The 'INT' expression is always followed by parentheses and expects
to find the number to be operated upon enclosed in parentheses.
This number is given the technical term 'argument'.

The random number function developed so far can thus be further
refined to:

PRINT INT (lOO*RND(O»

This statement will produce integer numbers from 0 to 99. Two
features of BASIC bring this about; one of these being built into
the RND function itself. PRINT RND(O), would yield a random number
between 0 and 1 BUT NEVER 1 ITSELF. Therefore, PRINT(100*RND(0»
would never yield 100. Since INT always yields the whole number
part, PRINT INT(100*RND(0» produces integers from a to 99
inclusive.

If we want the random number to be between 1 and 100 tl-Jen it is
finally fixed by adding 1 onto the integer function to yield
Program 2.1(a), where RV - for Random Value, is the random number.

PROGRAM 2.1(a)

30 RV=1+INT(100*RND(0»

So far there has been no proof of the funct i oni ng of the RND
function over a number of cycles. This will be investigated by
modifying Program 2.1(a) so that line 30 repeats 100 times.

2-2

GOTO

For line 30 to be activated a number of times, some command is
needed which will tell the program to jump to lower or higher 1 ine
numbers. The command that does this is 'GOra' and it can be added
to Program 2.l(a) as 80 GOTO 30 - to yield Program 2.l(b). Its
operation is really quite clear - 'GOTO 30' tells the program to do
just that - to go to line 30! Once this is done, Program 2.l(b)
is said to LOOP back to line 30 from line 80.

PROGRAM 2.1(b)

30 RV=1+INT(100*RNO(0»
35 PRINT RV
80 GOTO 30

RUN/STOP

When this is RUN, the program will enter an endless loop which
PRINTs random numbers down the screen. The 64 will carryon
printing these numbers and will scroll up well for a long
time. But you can terminate the whole process by pressing the
IRUN/STOpl key. You should get a message saying 'BREAK IN ?',
where ? is 30, 40 or 80, i.e. the 1 ine being executed when the
I break I into the program occurred.

So far, the program is capable of glvlng quantities of random
numbers but in a rather uncontrolled manner. What is needed is
some form of counting mechanism and some check on this count. to
say when 100 numbers have been delivered.

A counting mechanism is provided by the introduction of a counting
variable called ICI - for count. This is set to zero at the
begi nni ng of the program and then increased by one (incremented)
each time a random value is PRINTed onto the screen (at line 60).
Just as we were able to LET C=l (or any other number), BASIC allows
us to LET C=C+1. It would appear strange in ordinary mathematics.
a statement such as this but then, that's BASIC. Thus far, then,
the program structure is as in Program 2.1(c)

PROGRAM 2.1(c)

Set count to zero.
Generate a random number.
Print the random number
onto the screen.
Increment the count.
Go back for another random
number.

10 c=o
30 RV=1+INT(100*RNO(0»

35 PRINT RV
60 C=C+l

80 GOTO 30

2-3

If 1 i nes 10 and 60 are added and the program 1 s RUN then a count
wi 11 be made of the number of random numbers printed onto the
screen. However, that is all that the program will do! So far it
has not been told to respond in any way to this number. As an
experiment, RUN the program for a few minutes. When the fun(!) has
worn off press the 'RUN/STOP' key and exit from the program. Next,
to check that the count routine has worked, type in: PRINT C and
the machine will respond by telling you how many random numbers it
has printed.

IF ... THEN

·So far so good - we can count! The next job is to modify the
program so that it can carry out a check on the state of PRINTing
and stop when enough lines have been displayed. This is done by
the checking or CONDITIONAL statement, that is added in line 70 of
Program 2.l(d).

PROGRAM 2.1(d)

70 IF C=101 THEN GOTO 90

This statement checks the value of Count and if • and ONLY if - it
equals 101, causes the program to jump to line 90.

When putting in statements such as that in line 70. care has to be
taken over the number tested against. In this case the value that
brought about the loop was 101 because the incrementing was done
after the random number (jeneration and PRINTing onto the screen.
Were this incrementing to have been done. say, in line 20. then
the branch would have been brought about in the case where C=100.

STOP

Although line 70 gets the machine out of the endless loop, it sends
it to a non-existent line. thus producing an undefined line error.
What is required at 1 ine 90 is aline that ends or STOPs the
program. For this the command STOP is used, as in Program 2.l(e).

PROGRAM 2.1(e)

90 STOP

2-4

A Diversion: Program Structure.

As programs become more and more complex, they become more and more
difficult to follow and some means needs to be found for
representing the flow of a program in a form that can be readily
understood. Such a device is known as a:

FLOW CHART

A flow chart breaks the program down into simple elements which:

* START or END programs (terminators).

* Input and Output: commands such as PRINT, INPUT, SAVE and
LOAD.

* Make decisions: IF ••• THEN.

* Process data: assignment statements.

There are other program statements which don't quite fit into the
above pattern. GOTO, for example, changes the sequence of lines as
a program is actually running.

It is often helpful to use a special diagrammatic form of FLOW
CHART to understand the logic of a program. Standard symbols are
used for each of the four program elements mentioned above, as
their use enables the diagrams or charts to be interpreted much
more readily.

Tenninators ()
Processes I I
Input/Output L /

Decision

FIGURE 2.1

2-5

The rule for following a flow chart is really quite simple as it
starts at the top of the chart and follows the lines connecting the
boxes. The arrows on the connecting 1 i nes show the di rect i on of
flow.

Flow charts can be helpful when first designing a program. By
convention, the explanations in the boxes should be written in
plain English. It is a common mistake to write "BASIC in boxes"
and think that is a proper flow chart. Always aim to make your
flow charts language independent.

Notice that the IGOTOI in Program 2.1(f) is represented by a flow
line on the flow chart, Figure 2.2. All the other equivalents to
the program statements are contained in one of the four box types
given above (Figure 2.1). The combination of Programs 2.l(c),
2.l(d) and 2.l(e) gives Program 2.1(f), which when run will print
out 100 random numbers.

One other thing to notice on Program 2.1(f) is the use of IF ... THEN
on line 70. In this line the GOTO is missed out as C-64 BASIC
allows this shorthand form. Thus, when it sees "THEN 90" it
interprets this as ITHEN GOTO 90 1 •

PROGRAM 2.1(f)

10 C=l
30 RV=1+INT(RND(0)*100)
35 PRINT RV
60 C=C+1
70 IF C=101 THEN 90
80 GOTO 30
90 STOP

2-6

calculate
random

display
random

increment
count

- C=l

- RV=]+ INT(RND(O)*lOO)

- PRINT RV

- C=c+]

- IF C=lO] THEN 90

- STOP

FIGURE 2.2

2-7

Other possible conditional tests are available in BASIC and all the
normal mathematic functions (or operators) can be used to test
values. For instance, Program 2.1(f) could be modified to use the
'greater than' sign, or '>', to bring about the loop. If you're a
little unsure about the mathematical terminology, just try mentally
replacing the '>' sign every time you see it with the words "is
greater than". Thus line 70 of Program 2.1(0 reads in its two
versions:

(i) 70 IF C>100 THEN 90
(ii) 70 IF C is greater than 100 THEN(GOTO)90

Line 70 (Program 2.1(g» uses the ,>, operator to replace the '='
used earlier in Program 2.1(f).

PROGRAM 2.1(g)

70 IF C >100 THEN 90

Another command available for mathematical comparisons is '(' which
means 'less than' and is used in exactly the same way as the
'greater than'.

EXERCISE 2.1

Rewrite Program 2.1(g) to produce Program
2.1(h), which uses the line

70 IF C «a number) THEN ••••

Draw a flow chart to explain the operation of
your program. The program answer is given on
page 11. 2.

The programs using conditional tests have enabled loops to be
written but BASIC contains its own built-in loop generator that
makes life much easier - this is the:

FOR ••• NEXT loop

When using this construction it is only necessary to define the
beginning and end of a loop, as shown below:

FOR ••••••
Loop
NEXT •••••

Beginning of loop.
Instructions within loop
End of loop.

2-8

As in Program 2.1(c), the number of passes through the loop needs
to be defined and this is achieved by means of a variable that is
incremented on each pass of the loop. Thus the form shown above
requires amendment, to become:

FOR C=l TO 100
Loop
NEXT C

In this loop, the term 'CI is known as the loop or control variable
as it controls the number of times that the loop is executed.

Incorporating this into Program 2.2 (produced from Exercise 2.1),
the 'FOR' and 'NEXT' lines replace lines 10 and 60, as indicated in
Program 2.2. Lines 70 and 90 have also been deleted. See if you
can use the edit features to carry out these changes!

PROGRAM 2.2

10 C=l 4--------..,...FOR C=l TO 100
30 RV=1+INT(100*RND(0»
35 PRINT RV
60 C=C+1 4--------t-NEXT C
70 IF C <101 THEN 304-----
90 STOP

Putting this FOR ... NEXT loop into practice results in much easier
programing of loops. For instance, Program 2.2 can be simplified
as shown in Program 2.3 below.

PROGRAM 2.3

STEP

10 FOR C=l TO 100
30 RV=l+INT(lOO*RND(O»
35 PRINT RV
60 NEXT C

FOR ... NEXT loops can tell the computer to count in 'steps' of more
than one using the 'STEP' command. The command is added to the end
of the 'FOR.,' statement like so

10 FOR X=l TO 100 STEP 'nl

2-9

If we do not specify a 'STEP' then a 'STEP' of one is assumed. The
In' denotes any number. To demonstrate the use of
'FOR ..• NEXT ••• STEP' enter and run Program 2.3(a).

PROGRAM 2.3(a)

1 FOR X=l TO 100 STEP 2
2 PRINT X
3 NEXT X
4 STOP

This particular loop starts at 'I' and prints out every second
number. So the displ ay would be '1', '3', '5' up till the last
value of 'X', 99.

EXERCISE 2.2.

Change line 1 of program 2.3(a) so that the
loop starts at 'a' and increases in 'STEPs'
of three. Answer on page 11.2

The loop doesn't have to start at 'a' or 'I' but can begin at any
value less than (or equal to) the 'TO' value. If the first value
is 1 arger than the second (i. e FOR X = 100 TO 50) then what's
needed is a countdown, 100, 99, 98, 97 etc.. To do this we use a
'STEP' value of minus one (-1).

So to count down the instruction would read:

PROGRAM 2.3(b)

1 FOR X=100 TO 50 STEP -1

EXERCISE 2.3

Write a short program that wi 11 count down
from '10' in 'STEPs' of '-1'. When the loop
has been completed then the program will
PRINT 'FIRE' • A possible answer is on page
11. 2

2-10

If we were unwise enough to have lines like these •••

FOR X=100 TO 10 STEP 1
or FOR X=10 TO 100 STEP -1

or even FOR X=10 TO 20 STEP 30

then the computer wi 11 execute each loop once, and then wi 11
proceed to the next program statement after the loop. You must make
sure that your starting and ending loop values are accurate.

As programs become more complex and include such features as
FOR ... NEXT loops, the danger of making mistakes increases.
Fortunately, the 64 stays with you and when a bug creeps in the
messages tell you pretty well what the error is. To demonstrate
this, add line 4 to Program 2.3(a).

PROGRAM 2.3(c)

4 NEXT I

When this is RUN, the 64 will give an error message:

7NEXT WITHOUT FOR ERROR IN 4

This tells you quite clearly that you have attempted to use a NEXT
without a match i ng FOR at 1 i ne 4 as the 1 FOR 1 1 i ne us ed the
variable X and the 'NEXT' line, the variable I.

Errors in 64 BASIC are readily picked up in this way as the
computer has been taught its own logic. For instance, if you chose
to say in English "Sat the cat, the mat on", this would be
incorrect in its 1 syntax 1 • Thus, when similar errors occur in the
64 1 s language, the computer tells you that a 'SYNTAX ERROR ' has
occurred. Just think of 'SYNTAX ERROR' as the computer's way of
saying "I DON'T UNDERSTAND".

However well the machine knows its own logic. it cannot know what
you, the programer, are thinking. Thus, if you put logical errors
into a program, the 64 will run these faithfully whatever problems
they cause for it. For instance, if you enter line 4 and 6 of
Program 2.3(d) and run this, the line will run even though it is
logically incorrect in terms of the overall program.

2-11

PROGRAM 2.3(d)

4 A=l
6 IF A=A THEN 6

When this is RUN, line 6 checks for the comparison of 'A' with 'A'
and on finding it valid sends the program back to the beginning of
line 6. This process then simply carries on continuously, with the
program locked into an endless loop. As this is a logical error
there is no way that the machine can detect it. From time to time,
a program will hang up the computer with an infinite loop, such as
line 6 in Program 2.3(d). You've already met the trick that
rescues you from this situation, pressing the 'RUN/STOP' key. It
rescued us from Program 2.1(b) - again an infinite loop.

To test this, run Program 2.3(d): the screen will stay still as
nothing appears to happen. At this stage, press RUN/STOP and the
computer should report:

BREAK IN 6
READY.

At long 1 ast we can now return to the project that was started
several pages ago, the number guessing game. Armed with several
new commands the game can be started in earnest by putting in the
basic elements of the program; these being the generation of a
random number, the i nputt i ng of a guess and the response and the
re-directing of the program.

Lines 30 and 50 will handle the generation of a random number and
the acceptance of a guess (G) from the player.

PROGRAM 2.4(a)

30 RV=l+INT(lOO*RND(O»
50 INPUT G

2-12

At this stage, the guess can be compared with the number using the
IF •.. THEN construction. In the earlier example, this was used only
to redirect the program by means of a GOTO command. However. the
IF ••. THEN can be followed by any valid BASIC command so, in this
case, the statement could say: 'If the quess equals the random
number then tell the player that his guess is correct.'
Translating that into BASIC yields:

IF G=RV THEN PRINT"WELL DONE - GUESS CORRECT."

One small tip before adding that line, though! During the
deve 1 opment of thi s game you wi 11 probably RUN it hundreds of
times. Fun as this may be for the first hundred or so times. it
will probably get somewhat boring - eventually. You might like to
include a line 35 "PRINT RV" to PRINT out the value of the random
number - it makes the game easier too! So far, then, the program
reads:

PROGRAM 2.4(b)

30 RV=1+INT(100*RND(0»
50 INPUT G
60 IF G=RV THEN PRINT"WELL DONE - GUESS
CORRECT. II

A diversion : Comparisons

The mathematical operators which we are about to use in the
program, i.e. '=', ,<' and ')' are very precise in their
operation - just as you'd expect, so this does mean that you, the
programer, must be precise too. Just to emphasize this. let's have
a look at a few simple programs that use them. Firstly let's do a
simple count in Program 2.4(c) up to 20 using the '<' sign.

PROGRAM 2.4(c)

2 LET C=O
4 PRINT C
6 LET C=C+1
8 IF C<20 THEN 4
10 PRINT"FINISHEO"
12 STOP

2-13

Try running this and see what happens. Your 64 should PRINT on the
screen for you the numbers from 0 to 19 and then announce that it
has "FINISHED". It won't actually get as hi gh as 20 because.
although the val ue of C itself has reached 20, 1 ine 8 no longer
sends it back to 4 to be printed. Thus, using the '<I operator. it
would be necessary to set the loop to 21 to get a PRINT up to 20.

Now modify the program by swapping over lines 4 and 6 as in Program
2.4(d).

PROGRAM 2.4(d)

4 LET C=C+ 1
6 PRINT C

Now RUN this and look what the 64 gives you. This time, it will
give the number series from 1 to 20 as the variable C was
incremented BEFORE being PRINTed. It may appear to be a very
trivial point this but it is most important to real ize that the
variables in a program may change from line to line and no
assumptions are valid. Let's see how you get on with the ')'
operator:

EXERCISE 2.4

Re-write Program 2.4(d) to PRINT the number
series 1 to 20 using the ')' operator. Hint!
It should contain a line like:
8 IF C> ... THEN ...
A possible answer is given on page 11.2

Another pair of operators in 64 BASIC facil itate control of the
kind of loops we're using. These allow us to check whether a
variable is greater than OR equal to and whether it is less than or
eq u a 1 to , i. e.

> = means greater than or equal to
< = means less than or equal to.

To try these out let's re-write 2.4(d) with 2.4(e) so that it
counts from 1 to 20. As we wish to go from 1, we must ensure that
at the first PRINT statement, the variable is, in fact, 1. To
achieve this, we could either set the count variable (in this case
'C') to 1 before we start and then PRINT before incrementing or set
it to zero originally and increment before PRINTing. Program
2.4(e) uses the former.

2-14

PROGRAM 2.4(e)

2 LET C=l
4 PRINT C
6 LET C=C+ 1
8 IF C<=20 THEN 4
10 PRINT "FINISHED"
12 END

Just to see if you can really handle these operators have a go at
Exercise 2.5

EXERCISE 2.5

Re-write Program 2.4(e) to count up to 30
using the '>=' operator.
A possible answer on page 11.2

Now, back to the number guess i ng game as it was 1 eft in Program
2.4(b) - don't forget, though, to remove lines 2 to 12.

At this stage, the program should RUN and, when the correct answer
is guessed, give a message and then end. However, if an incorrect
guess is entered, the program will simply end with no message. To
handle this. two further conditional statements are added at lines
70 and 80 in Program 2.4{f).

PROGRAM 2.4(f)

70 IF G>RV THEN PRINT"GUESS TOO LARGE -
TRY AGAIN."
80 IF G<RV THEN PRINT"GUESS TOO SMALL -
TRY AGAIN."

2-15

Multi-statement lines

When the current Program is run. it wi 11 handl e both correct and
incorrect answers but only for one input. In order to give a
further chance, it clearly has to be re-routed back to the INPUT if
the answer was incorrect. This re-routing needs to be done
conditionally based on the IF ... THEN tests performed in lines 60.
70 and 80. Once again, BASIC comes to the rescue in that a second
BASIC statement can be added to the end of an eXisting line
provided that the two parts are separated by a colon. When this is
done, the line is referred to as a multi-statement line and the
second statement is executed immediately after the first, just as
if it were in the next line. Thus. -line 60 can be modified to
read as in Program 2.4(g).

PROGRAM 2.4(g)

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT.":STOP

This modification will STOP the program after a correct answer and
lines 70 and 80 can then be similarly extended, in their particular
case to redirect the program, i.e. as in Program 2.4(h).

PROGRAM 2.4(h)

70 IF G>RV THEN PRINT"GUESS TOO LARGE -
TRY AGAIN"': GOTO 50
80 IF G<RV THEN PRINT"GUESS TOO SMALL -
TRY AGAIN.": GOTO 50

After the modifications in Program 2.4(h) the game will now allow
any number of incorrect guesses but comes to a STOP when the
correct guess is made. Once it has stopped in this way. you may
notice that the message is now different. It should, in fact,
read:

BREAK IN 60
Ready

It is now reporting a successful RUN and is also stating that it
fini shes on 1 i ne 60. Thi send. however. is rather abrupt and the
program would be improved considerably were the player to be given
a choice after a correct guess - either to terminate the game or to
carryon further. To this end, a further routine is added at the
end of the current program which offers the player the opportunity
to continue. It takes the form of an INPUT with a message and a
conditional test - see PROGRAM 2.4(i). In addition, the STOP will
need to be removed from 1 i ne 60 and the program redi rected from
here to the INPUT at line 110.

2-16

..

PROGRAM 2.4(i)

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT. " : GOTO 110

110 INPUT "DO YOU WANT ANOTHER GO (Y/N)";A$
120 IF A$="Y" THEN 30

In line 110, the INPUT is expecting a YES/NO type of answer and the
bracketed I (Y /N) I is an additional prompt that gives the pl ayer a
clear indication of what is expected in the way of inputted data.
The use of such prompts makes it possible to test simply following
the INPUT. In line 120, it is only necessary to test for the lyl
- meaning "Yes" - answer if this input is clearly expected. If the
input is not a IYI, then this line is ignored and the program goes
on to execute the nex t 1 i ne or, if there i sn I tone, to end the
execution.

As the INPUT expected is a string variable, i.e. one with
alphanumeric characters (letters), it was necessary to assign an
appropriate string variable name - in this case A$ is used.

As the game stands at the moment, the player can take any amount of
goes to guess the number. Just to add a bit more interest the
number of attempts will be restricted to six. Ways have already
been explored of getting programs to loop around a given number of
times and as in Program 2.3, a FOR ... NEXT loop can be used. This
will be required to repeat the guessing part of the program and
start after the random number has been generated - say, at line 40.
The loop back - the INEXT C(ount)1 - will take place after the
tests for the guess have been made and before the "another go?"
question is asked - say, at 90. These are shown in Program 2.4(j}
where the variable ICI is used in the loop.

2-17

PROGRAM 2.4(j)

30 RV =1+INT(100*RND(0»
40 FOR C=l TO 6
50 INPUT G
60 IF G=RV THEN PRINT "WELL DONE - GUESS

CORRECT.": GOTO 110
70 IF G>RV THEN PRINT "GUESS TOO LARGE -

TRY AGAIN.": GOTO 50
80 IF G<RV THEN PRINT "GUESS TOO SMALL -

TRY AGAIN.": GOTO 50
90 NEXT C
110 INPUT "00 YOU WANT ANOTHER GO (YIN)
";A$
120 IF A$="Y" THEN 30

Just to prove thi s program for yourself, run it through a few
times. If you count the incorrect guesses you will find that the
loop is not actually activated. To help you to see why, the flow
chart for this program is given in Figure 2.3. You can use this to
correct Program 2.4(j). Don't worry if you get stuck; the
correction is explained below. Incidentally, there are no less
than three problems or 'bugs ' in the program at present.

2-18

message
.. correct"

r - 7
I message ,

I "you took I
- goes" '- __ _ J

FLOW CHART

generate
random no..

initiate
loop

message
L-------..,...--~1 "had six goes"

FIGURE 2.3

2-19

EXPLANATION - don't read this until youlve had a go!

Following the program through for a correct answer yields no
problems. However, the loop fails to activate after the allowed
six attempts. If a I yes I results from the check I is guess too
high?', a message is outputted and then the flow chart shows a
further test for the number of attempts. However the program
simply loops back from this point to allow another INPUT. Removal
of the 'GOTO SOlon line 70 will allow this line to be followed by
80 and then 90 where 'NEXT CI is met. The 'NEXT' function performs
the necessary incrementing of ICI as well as checking if it has yet
reached 6. Once the loop is reached, the NEXT C command allows the
program to run through to the next 1 ine 110. At this point the
pl ayer will be asked: "00 you want another gO?" Before thi s he
should have been told: "had your six goes matey". To accomplish
this a PRINT line could be added at line 100.

To summarize, the three modifications required to Program 2.4(j)
are:

(i) Remove the GOTO 50 on line 70
(ii) Remove the GOTO 50 on line 80
(iii) Insert line 100:

100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."

Notice that in the flow chart, the program will only reach the lis
guess too low' decision box if the guess is in fact too low.
Strictly speaking therefore, that decision box is unnecessary. A
'NO' decision from the lis guess too high' box will automatically
result in the Itoo low' message being output. However, if we look
at Program 2.4(k) line 80, we will discover that the IF ... THEN
decision is necessary after all, as we do not have the GOTO's any
more on line 70. If our guess is too large, the program as written
will still pass through line 80 even though the flow chart shows it
jumping directly to the NEXT on line 90. The program is a little
easier to fol.low if this GOTO is left out and line 80 left as a
decision, even though the flow chart is a little easier to follow
if the GOTO is left in.

2-20

Incorporating the above modifications yields Program 2.4(k).

PROGRAM 2.4(k)

30 RV=1+INT(100*RND(0»
40 FOR C=l TO 6
50 INPUT G
60 IF G=RV THEN PRINT "WELL DONE - GUESS

CORRECT. ": GOTO 110
70 IF G>RV THEN PRINT "GUESS TOO LARGE -

TRY AGAIN."
80 IF G<RV THEN PRINT "GUESS TOO SMALL -

TRY AGAIN."
90 NEXT C
100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."
110 INPUT "DO YOU WANT ANOTHER GO (YIN)
";A$
120 IF A$="Y" THEN 30

All that really remains to be done now is for the program to report
back on how many goes the player took to get the ri ght answer.
This function is already shown on Figure 2.3, outlined in a dashed
box.

EXERCISE 2.6

Add a reporting-back function to Program
2.4(k) such that it tells the player how many
goes it took to get the correct answer. A
possible solution is given on page 11.3

Once Exercise 2.6 is completed, the result should be a functioning
number guessing game. In many ways it is a little basic (and
BASIC) but from Program 2.5 onwards the rest is up to you. The
major improvement that is needed is an introductory message to tell
the player what the game is about and what the rules are and a
po 1 ite • goodbye' when the player signs off.

2-21

REM

In the listing of this program, provision is made for additions at
a later date in lines 10 and 20. Both of these lines start with a
REM command, that identifies each line as a REMark line. Once the
operating system detects a 'REM', it then ignores anything that
follows on this line. By means of REMs, comments can be inserted
into programs to enable either the program's author or any other
user to follow its logic more readily. A generous sprinkling of
REMs is to be recommended to all.

PROGRAM 2.5

10 REM * *Introductory
20 REM * *message
30 RV=l+INT(lOO*RND(O»
40 FOR C = 1 TO 6
50 INPUT G
60 IF G=RV THEN PRINT"WELL DONE - GUESS
CORRECT. " : GOTO 110
70 IF G>RV THEN PRINT "GUESS TOO LARGE -

TRY AGAIN."
80 IF G<RV THEN PRINT "GUESS TOO SMALL -

TRY AGAIN."
90 NExT C
100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."
l10 INPUT "DO YOU WANT ANOTHER GO (YIN)
";A$
120 IF A$="Y" THEN 30

On the software that comes with the book you wi 11 find a program
called 'GUESSER'. This is a Computer Aided Learning simulation
(CAL) of Program 2.5 which should help to clear up any remaining
problems that you might have with the program. As you go through
the 'GUESSER', you will notice that the program has been simplified
somewhat so that the listing can be displayed the whole time. By
now, though, you should be able to follow this quite easily!

2-22

PART 2

Storing a program

Once a program of any length has been developed, it becomes a chore
to keep typing it into the computer. It can, of course, be saved
onto a storage device and then re-10aded back into the memory when
you need it. One common means of storage on the Commodore 64
allows your program to be stored on diskette. This form of storage
is known as 'non-volatile' as it doesn't need any power to keep the
program stored. The memory in the computer is 'volatile' as, once
the machine is turned off, all the contents of its memory are lost.
Commodore 64 BASIC contains two commands to facilitate this mode of
storage. Such commands form part of the machine's op'erating system
- those built-in programs that make the whole computer work.

The BASIC commands for storage are:

SAVE

SAVEing progr,ams on disk should present little problem on the
Commodore 64. Programs must be SAVED with a name. To SAVE a program
with the name 'DR WATSON', it's only necessary to place a formatted
disk into the disk drive and then type in:

SAVE "DR WATSON" ,8<RETURN>

The Commodore 64 will then tell you

SAVING DR WATSON

2-23

The diskette drive light will go on, then the computer will report
back with

READY.

It is a good idea to check that the program is SAVEd
satisfactorily. Commodore's command to do this is:

VERIFY

The computer wi 11 compare the program in memory wi th the one it
finds on the diskette with the same name. Use the form:

VERIFY "DR WATSON",8

Once a satisfactory check has been made, the computer will report

VERIFYING DR WATSON
OK

READY

If the check is not satisfactory the computer will report

VERIFYING DR WATSON
?VERIFY ERROR

READY.

If this 'VERIFY ERROR' is obtained then you must try another
·VERIFY'. If this results in a second error, then you'd be safest
to try 'SAVEing' the program again and then repeat the 'VERIFY'.

2-24

PART THREE

Comparing Numbers

Other techniques are allowed in BASIC when comparing numbers, one
very useful one allowing two comparisons to be made in one
statement. Using this, Program 2.6 will be developed from Program
2.5 to produce a game that asks the pl ayer to guess two numbers.
In order to simplify this, the equality check and 'larger than' and
'smaller than' lines should be removed. i.e. lines 60. 70 and 80.

Next, a second random number must be introduced so these will
simply be called 'R11 and 'R21 i.e. as in Program 2.6(a), line 30.
As the pl ayer is now to be asked to guess two numbers. it would
also be easier if the range of possibilities of each number were to
be reduced, say to 4.

PROGRAM 2.6(a)

30 Rl =1+INT(4*RND(1»:R2=1+INT(4*RND(1»

In this particular game, two guesses will be required and, as with
the R's these can be called 'G11 and 'G21 as in line 50 of Program
2.6(b).

PROGRAM 2.6(b)

50 INPUT Gl:TNPUT G2

OR

With two guesses and the random numbers, the comparison process is
obviously much more complex than in the earlier game. However. the
BASIC command 'OR' eases things somewhat. It enables one. for
instance, to compare a single guess with both R1 and R2. This
check may say 'if G1 does not equal R1 OR if G1 does not equal R2
then PRINT lone guess wrong ' ! Translating this into BASIC yields.

IF G1<>Rl OR Gl<>R2 THEN PRINT"ONE GUESS
WRONG"

A similar line will then check for G2. Lines 70 and 80 show this
in action in Program 2.6(c). «> means 'NOT equal tol).

2-25

PROGRAM 2.6(c)

AND

30 R1=1+INT(4*RND(1»:R2=1+INT(4*RND(1»
50 INPUT Gl:INPUT G2
70 IF G1<>R1 OR G2<>R2 THEN PRINT "ONE W
RONG"
80 IF G2<>R1 OR G2<>R2 THEN PRINT "ONE W
RONG"

So far the program hasn't even looked for correct answers and this
is done in lines 60 and 65 of Program 2.6(d). This line is able to
check for both answers being correct by means of the BASIC command
'AND' which enables one to say the BASIC equivalent of:

"If this is correct AND if that is correct, then do something"

Following this line, the program can be looped to a further routine
that asks if the p1 ayer wants another go. The final step is to
replace the loop that allows only six goes, lines 40 and 90.

PROGRAM 2.6(d)

30 R1=1+INT(4*RND(1»:R2=1+INT(4*RND(1»
40 FOR C=l TO 6
50 INPUT G1:INPUT G2
60 IF G1=R1 AND G2=R2 THEN PRINT"WELL DO
NE" :GOTO 110
65 IF Gl=R2 AND G2=Rl THEN PRINT"WELL DO
NE" :GOTO 110
70 IF Gl<>R1 OR G1<>R2 THEN PRINT"ONE WR
ONG"
80 IF G2<>Rl OR G2<>R2 THEN PRINT"ONE WR
ONG"
90 NEXT C
100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES"
110 INPUT "~O YOU WANT ANOTHER GO(Y/N)";
A$
120 IF A$="Y" THEN GO TO 30

Using the ideas in this chapter, you can now create a whole range
of logic games leading to very complex 'mastermind' - type games.
Once again the door is open and you are invited to enter.

2-26

CURSOR CONTROLS

One way of improving the number guessing game is by means of cursor
controls. For instance, it would be useful if at the start of
every game, the screen was cleared of any previous writing. In
direct mode this is achieved by holding down 'SHIFT' and pressing
the 'CLR-HOME' key - just try it to make sure! You can also get a
program to do this while it's running.

Try this out. Type in

PRINT u<CLR>u
Note that <CLR> will
appear on the screen
as a reverse heart i.e.~

When you press the RETURN key, the screen will clear and the
cursor move to the top left hand corner of the screen. A further
command 'HOME' moves the cursor to the screen's top 1 eft hand
corner without first clearing the screen. Try this out with:

PRINT u<HOMDu
Note that <HOME> will
appear on the screen
as a reverse'S' i.e. [J

Note that the symbol is obtained by pressing the HOME key.

Thus, we have seen how to obtain the clear home character,<HOME>
and c1 ear-screen character <CLR>. These can be used in the same
way as any other characters on the keyboard. They do present
somewhat of a problem in listings so, in this book, they have been
listed in a cleaner way as described in Appendix 3. Using this
convent i on the HOME cursor symbol is replaced by <HOME> and the
clear-screen by <CLR>.

All these control characters are used as strings and can be given
string names.

Thus•

and •...•.
A$=U<CLR>U is OK

PRINT u<HOME>LOVEu combines the control character
with a string.

2-27

Now that we have seen how to use these functions in a program,
let's add them to our number guessing game!

If we add line 35 to Program 2.6(d) then every time we run the
program, the screen will clear and printing will start in the top
left hand corner.

PROGRAM 2.7(a)

35 PRINT"<CLR>NUMBER GAME M

Now that we can c1 ear the screen from within a program, let I s
investigate cursor movements.

Like the <CLR> function, cursor keys have special print characters
and these are used in the same way. To try this, type in 'PRINP'
and then press the cursor up/down key to obtain the 'down cursor'
symbol and on the screen wi 11 appear 'Il.'. So the 'CRSR H' Key
produces the character I [J '. Now hold down the SHIFT key and
press 'CRSR fl I and we have the cursor up character. After
performing the same operation for the 'CRSR !:;' key, we will
obtain the following results.

Moves Cursor Up SHIFT RSRI OR <UCRSR>
Moves Cursor Down OR <DCRSR>
Moves Cursor Left SHIFT E~RI OR <LCRSR>
Moves Cursor Right OR <RCRSR>
Moves Cursor To Top Of Screen

~
<HOME>

Clears Screen SHIFT HOME OR <CLR>

let's have a go at us i ng these cursor controls ina program with
Program 2.7(b).

PROGRAM 2.7(b)

110 INPUT "<2DCRSR><4RCRSR> DO YOU WANT
ANOTHER GO (Y/N)?";A$

In those two examples (Program 2.7(a) and (b» we have changed only
two of the many PRINT commands that this program uses. On the disk
that accompanies this book, a few other changes have been made to
show what can be done. However, you should feel free and make any
other changes in display that you want to, after all its your game
now! Good luck!

2-28

CHAPTER

3
An Introduction to Honey.Aid

I n the diskette that comes with the book is a 'utility' program
called IHoney.Aid". This is designed to take full advantage
of the capabilities of your Commodore 64 by adding new
commands to its BASIC. The Honey.Aid program tucks itself away

at the top of computer's memory (wherever that is when Honey.Aid is
loaded) and protects itself from being overwritten by normal BASIC
programs. Typing in NEW will not remove Honey.Aid from your
computer. To remove it you can either switch the machine off
(which is rather like using a sledge-hammer) or make use of
Honey.Aid's built in switch off command. It is called 'KILL' and
will switch off all the Honey.Aid commands: but don't worry, when
you type KILL it tells you how to restart Honey.Aid, something
switching off does not do.

Find the program on your disk and load it with LOAD"HONEY.AID",8.
When it has loaded, LIST the program. You will find a small BASIC
program which is mainly concerned with displaying the Honeyfold
logo and playing the introductory jingle. What you can't see is
the machine code program which is Honey.Aid itself, and the other
machine code program which locates Honey.Aid at the top of memory.

Now, turn the volume on your television up and type RUN to get
Honey.Aid working. At this stage, you will see that Honey.Aid has
set your machine into lower-case mode. If you aren't too keen on
this hold down the Commodore key, (bottom left-hand corner of the
keyboard) and press SHIFT. This should turn you back into capitals
mode ('caps'). However, all the programs in this chapter are
written in lower-case so it might be an idea to leave the machine
set this way. In operation it makes no real difference one way or
the other how the machine is set - all the keys work the same way.
Many professional programers prefer to work in lower-case as this
allows them to introduce capitals into the text more readily and it
helps to make screen· displays look more interesting. Whether
you're in caps or lower-case, try the following:

3-1

High Resolution Graphics.

HIRES, PLOT AND LINE

This program will produce a random star-field (to execute it use
RUN just as you would for any program):

PROGRAM 3. l(a)

PLOT COLOR(0-15)1 ~BACKGROUND COLOR(0-15)

rf o=ov ERWRITE OLD DRAWl NGS;
~ll=CLEAR SCREEN BEFORE DRAWING

HIRES

10 hires 1,0,1
20 for z=l TO 100
30 plot rnd(1)*319,rnd(1)*199,1
40 next z

This is a command which turns the machine onto its high resolution
mode and is necessary before using either 'PLOT' or 'LINE'.

PLOT

'Plot X,Y,Mode' plots a point at screen co-ordinate
X(0-319),Y(0-199).

* In plot mode 0, it plots the point in the background color -
so yotl might not be able to see it!

* In plot mode 1 it plots in the plot color of HIRES

* In plot mode 2 it reverses the color of the point

Plot mode 2 requires a bit more explanation: if the point specified
is currently a background color point, it will be changed to a plot
color point: if it is already a plot color point, then it will be
changed into a background color point. If you have a color TV as
distinct from a monitor, you may have a multi-colored image instead
of white points on black. This is caused by slight misalignments
which are virtually unavoidable with the TV. On the other hand, if

3-2

you are using a monitor, rather than a TV, then all the 'stars'
should be white. If they are not then your monitor is not working
as well as it should - perhaps you should have a word with your
dealer!

By the time you have finished reading the explanation above, your
program should have finished plotting the star field. Good, but
how do you get back to the normal screen when you have finished
admiring your masterpiece? The answer is hit (not too hard) any
key. <SPACE> or <RETURN> are good. Try it!

You will get quite an interesting pattern if you try th1s instead:

PROGRAM 3.1(b)

10 hires 1,0,1
20 for z=1 TO 5000
30 plot rnd(0)*319,rnd(0)*199,1
40 next z

Thi sis because RND(0) generates its • random' numbers from your
computer's internal clock. If you use RND(1) instead, a more
random pattern will be produced.

LINE and NRM

Another useful graphics command is LINE; try this:

PROGRAM 3.2

10 hires 1,0,1
20 line 10,100,200,50,1

That will draw a line. In general terms, a LINE statement is of
the form:

starting co-ordinates of line

end co-ordinates of line

3-3

Where Xl and Y1 define the starting point of the line, and X2 and
Y2 define the end point, i.e:

I""~I----- 320 pixels ----,.~I

1
200

pixels

Y~~-r--r----J
1"'~:---X2 ---~

FIGURE 3.1

* The X I S must be between 0 and 319. and the Y I S between 0 and
199.

* Mode 0 converts all points along an existing line into the
background color.

* Mode 1 produces aline in the foreground color, ie. the 1 ast
color specified in the HIRES command.

* Mode 2 will cause all points along a line being plotted to be
plotted in the appropriate color to that of the screen at those
points- just like mode 2 of the hires command.

Try this short program.

PROGRAM 3.3

10 hires 6.7.1
20 for z=O to 60
30 line rnd(0)*319,rnd(0)*199,rnd(0)*319,
rnd(0)*199,1
40 next z

3-4

Try something more elaborate with the following program:

PROGRAM 3.4

10 for c=O TO 15
20 if c=l then next c
30 hires 1,c,1
40 for y1=0 TO 199 step 199
50 for y2=199 TO 0 step -1
60 line 0.y1,319,y2,2
70 line 0,y2,319,y1,2
80 next y2:next y1
90 for w=O TO 10000:next w

100 next c

When (if) you get fed up wi th it. press <RUN/STOP>, type: NRM
<RETURN>.

The NoRMal screen will only appear after you've done all this. or
on the first key pressed after the program has finished. Try
changing the STEP size on line 50: values between -2 and about -10
are quite interesting. Also try changing the first number in the
HIRES command on line 30.

An Etcha-Sketcha Game

In order to demonstrate the 'PLOT' command in action, let's develop
an 'etcha-sketcha' type program. The basic idea of this is that,
following an input, a character will be printed on the screen,
i.e. :

PROGRAM 3.5(a)

10 print "<CLR>"
20 input a$
30 print "*"
40 goto 20

(To stop this program, keep RAPIDLY alternately pressing RUN/STOP
and RETURN continuously until it stops!)

What Program 3.5(a) does is to print an asterisk after every INPUT.
This is not the smoothest bit of programing around, as the input
command itself uses two lines of the screen, prints a '?' and sits
around waiting for the user to press RETURN. There is, however. a
method of inputting data that does not produce a question mark or
even require one to press RETURN. This is the 'GET' command.

3-5

GET

What the 'GET' command does, as the name impl ies. is to 'GET' a
character from the keyboard. The command takes the form of:

10 get a$

If no key is pressed, then a$ will have the value of "", a null
stri ng. Thus, to make any sense out of the I GET I command, we have
to check whether a key has been pressed. In Program 3.5(b),a GET
command is used to test the value of as. If a$ is "". then no key
has been pressed, so the program loops back to 1 i ne 10 to accept
another input. This program will loop back continuously to line 10
until a key is pressed. When this is done, the program stops.

PROGRAM 3.5(b)

10 get a$
20 if a$="" then 10

Program 3.5(c) shows a further development where the 'GET' is used
to keep a message on the screen whil e the user reads it. The
program will then continue after a key has been pressed.

PROGRAM 3.5(c)

5 print "press any key"
10 get a$
20 if a$="" then 10

So. using the GET command, the simple etcha-sketcha program
becomes:

PROGRAM 3.5(d)

10 print "<CLR>"
20 get a$
30 if a$="" then 20
40 print "*"
50 goto 20

Now, when run, we have an asterisk printed every time a key is
pressed, but so far this character only moves down the screen.

3-6

To remedy this, we will use four control keys: 4, 5, 6 and 7.
Where '4' wi 11 move the cursor 1 eft and '7' wi 11 move the cursor
right. '5' will move the cursor down and '6' will move the cursor
up.

* 4 moves the cursor left
* 7 moves the cursor right
* 5 moves the cursor down
* 6 moves the cursor up

Lines 40 to 70 of program 3.5(e) carry out the processes required
when moving the cursor about the screen, line 50 being the easiest
case. When a '7' is detected, no great problem is presented as the
program simply prints an asterisk.

To move in other directions is more problematic, as the cursor is
always positioned one place to the right of the last character
printed following a 'PRINT' sequence.

Thus, to move a character one place left the process is:

(i) before move

I I I
tr---last character printed

1*1[
current cursor position

(ii) move cursor two places left - -
I I

current cursor position

(iii) PRINT new character r---- cursor moved

1*8
(iv) cursor now positioned for next 'PRINT' operation

3-7

I n just the same way when movi ng the cursor up and down, the
additional cursor-back control is required ie:

(i) before move r-------last character printed
current cursor position

(ii) move cursor one place down

*
current cursor position

(iii) move cursor one place left

"'e-------current cursor position

(iv) PRINT new character

* *
cursor moved to right

(v) cursor now positioned for the next 'PRINT'

3-8

Thus, adding these control lines yields Program 3.5(e).

PROGRAM 3.5(e)

40 if a$ ="4" then print"<2LCRSR>*";
50 if a$ ="7" then print "*";
60 if as ="5" then print"<OCRSR><LCRSR>*";
70 if as ="6" then print"<UCRSR><LCRSR>*";
80 goto 20

Now, when run, the program will draw lines of asterisks in any
direction we choose, giving free reign to your artistic endeavors!

EXERCISE 3.1

Write a small program that will print on the
screen which key the user should use to move
the asterisks. This piece of program should
be placed in the lines 1 to 9 and end with a
'PRESS ANY KEY' type prompt serviced by a GET
statement. A possible answer is given on
page 11.3

Although the present version of etcha-sketcha runs satisfactorily,
it sti 11 looks somewhat cl umsy with its asterisks all over the
screen. However, we can improve the display considerably by means
of the Honey.Aid command "PLOT".

First of all, we need to set up the high resolution screen and
accept a user's input, using GET.

PROGRAM 3.5(f)

10 hires 6,7,1
20 get as:if as="" then 20

3-9

Next, instead of using cursor controls and printed characters such
as asterisks, we will merely have to increment, or decrement, the
co-ordinates for the PLOT command:

PROGRAM 3.5(g)

30 if as ="4H then x=x+1:goto 80
40 if as ="5" then y=y+1:goto 100
50 if as ="6" then y=y-1:goto 90
60 if as =H7" then x=x-1:goto 70

Its no good trying to PLOT co-ordinates outside the screen area -
indeed, Honey.Aid will detect any attempt to do so and report an
error. We need to make sure therefore that we only attempt to PLOT
within the screen area displayed; ie. X must be controlled to
remain between 0 and 319 and Y between 0 and 199 ie:

PROGRAM 3.5(h)

70 if x<O then x=O:goto 110
80 if x>319 then x=319:goto 110
90 if y<O then y=O:goto 110

100 if y>199 then y=199
110 plot x ,y,l
120 goto 20

You should now have a working instant Honey.Aid type etcha-sketcha
program!

Have fun!

SOUND

Now to look at some of Honey.Aid's music commands (have the sound
on your TV turned up). Try typing in:

sound 1,4,1,6 <RETURN>

That note is Middle C.

The first number (1) is the 'voice' number, and may be 1, 2, or 3.
Any voice may be used to produce random or white noise, but more of
that in chapter 9. For now voice 3 is used. Try:

sound 3,5,1,6

The second number (5) is the octave, and may be from 0 to 7.

3-10

Try

and
sound 1,2,1,6

sound 1,7,1,6

The third number (1) is the note, and may be from 0 (silent) to 12
(high note). The last number is the length or duration of the note
and may be from 1 to 8. Summarising this:

,..------- voi ce number ! .r------ octave
sound 1, 7, 1, 6

t t_ duration of

~note
note

Then try this short program to run through all the notes in one
octave.

PROGRAM 3.6

10 for x=1 to 12
20 sound 1,3,x,6
30 print x;
40 next x

Then try this program to run through all the notes in eight
octaves.

PROGRAM 3.7

10 for y=O to 7
20 for x=1 to 12
30 sound 1,y,x,5
40 next x
50 next y
60 end

If you change line 30 to SOUND 3,Y,X,5, you will get a sound like a
faulty rocket blasting off!

3-11

Try this: (First type NEW) this is a 'piano' program!

PROGRAM 3.8
10 n$=" zsxdcvgbhnjm"
20 get x$:if x$="" then 20
30 for i=1 to 12
40 if mid$(n$,i,1)=x$ then nn=i:i=13
50 next i
60 sound 1,4,nn,5
70 goto 20

Now the keys stored in N$ are like piano keys (except that you can
only play one note at a time). Any other key will give the last
note pressed. Try this sequence of letters:

Z C B B N NBC Z C B B V C X B C Z V C X X Z Z C B C V C Z

To stop this program, press RUN/STOP.

ENVELOPE

Now try adding this line to the program:

5 envelope 1,2,9,3,0

and then try executing it. Honey.Aid's ENVELOPE command alters the
tone quality of the note generated. Type:

5 envelope 1,5,5,3,10

and try running that.

The first number (1) is the voice number, and, as for the SOUND
command above, may be 1,2 or 3 because your C-64 has three
"voices". For the purpose of computer music, a musical sound is
said to comprise four phases: the attack (A), decay (D), sustain
(S) and release (R) phases - ADSR. This is shown on the graph
below:

3-12

I
I
I
I
I
I Attack Decay , Phase Phase
I

maximum volume:
determined by setting
of volume register.

S

I
I
I
I ,
f
I
I
I

controlled by gate bit ~I~
setting and clearing I ,

I
f
I

Sustain Phase I
I
I

FIGURE 3.2

r ---.!
I
I
I
I
I
I

Release I
Phase I

I

Different musical instruments produce notes with different
"envelopes" - that is (partly) why they sound different! You will
find this discussed more thoroughly in a later chapter.

The second number in the envelope defines the length of the attack
phase - how long the note or sound will take to build to its peak
volume. The attack number may be from 0 to 15. The smaller the
number, the sharper (shorter) the attack.

Next comes the decay phase - after the note has reached its peak
loudness, it decays for a period of time determined by the third
number in the envelope command - again from 0 to 15.

The third number, which can be from 0 to 15 as well, but, unlike
the other three numbers (which define the length of their
particular phase), the sustain number defines the relative loudness
of the phase, in relation to the peak volume. The length of the
phase is controlled by the gate bit (see Chapter 9).

Following this is the release phase. Here the note fades out - the
length of time this takes is determined by the last numbers in the
envelope command, which may be from 0 to 15.

3-13

Summarizing that:

5 envelope

r--------- voice number

L +r------- attack

1, 5, 5, 3, 10

~ ~release
L-sustain

-------decay

FIGURE 3.3

Try a few different envelopes in 1 i ne 5 of the above program and
see (or hear!) what happens.

PLAY

This command allows your computer to remember a tune. The notes to
be PLAYed are stored in a string variable.

Try running this program:

PROGRAM 3.9

10 let a$="<blk>c4<f5>C<f7>dgfgagfgdg<f5>"
20 play a$

(To get the <blk>, hold down CTRL and press 1. <f5> etc. can be
obtained simply by pressing one of the four function keys on the
right of the C-64).

Note that the envelope from the earlier program is still operating
(unless you've switched off since then) - certain Honey.Aid
commands have been designed to stay as set until changed. This
enables you to set new default values that stay set until you wish
to change them. The ENVELOPE command is one of these, SOUND is
another and so is PLAY.

3-14

The 'PLAY' command is defined as follows: each note in a$ is
defined by a string of up to four symbols:

The first of the four symbols represents the voice. The C-64 has
three voices and you may choose voice 1 by using <CTRL l>(or
<BLK». voice 2 by using <CTRL 2> (or <WHT». and <CTRL 3> (or
<RED» for voice 3.

The second of the symbols represents the note and you can choose c
d e f gab for the naturals or C D F G A for the sharps. Flats
are obtained by using the tonally similar (i.e. previous) sharp.
i.e. for e f1 at use D#. An r gives a rest but you can use a
hyphen ("-") instead.

The third of the symbols is octave number; you can specify 0 to 7.

Fourthly and finally comes the note duration for which we use the
function keys <f1> breve. <f3> semi-breve. <f5> minim. <f7>
crotchet. <f2> quaver. <f4> semi-quaver. <f6> demi-semi-quaver and
<f8> a hemi -derni -semi -quaver. Thus. to specify a midd1 e C with
voice 1. we would place <BLK>c4<f5> in the string, which is exactly
what we find in line 10 of Program 3.9.

Summarizing all that:
r---------- vo ice 1

I .r------- note lei
play<CTRL1>c4<f5> t t _____ crotchet

~-------- octave 4

FIGURE 3.4

We did say that a note is defined by a string of ~ four
characters. It can be as little as one. however.

The trick is that if a note has the same voice as the previous
note, then there is no need to put the voice characters in again.
The same applies to the note, the octave or the duration. Looking
at line 10 of Program 3.9 then you can see that the second note is
another middle C using voice 1 but this time it is a quaver, the
third is a D and the voice must be 1, the octave 4 and the duration
a quaver and so on. In techni cal terms we say that Honey.A id
defaults these characters to their earlier values.

3-15

TEMPO

If you now add this to Program 3.9:

2 TEMPO 300

the little jingle will be played more quickly.

The 'TEMPO' command controls the speed with which a sound, note, or
a tune is played. A low number means play slowly, while a high
number means play more quickly. The range of numbers for tempo is
from 1 upwards. When Honey.Aid is first loaded, tempo is set at
120 - ie. 120 crotchets per minute.

Once Honey.Aid is loaded into your C-64 any program you write can
incorporate Honey.Aid commands. For instance, the last few lines
of the etcha-sketcha program can be improved further by including a
beep every time an attempt is made to draw outside the screen area:

PROGRAM 3.10

70 if x<O then x=O sound 1,4,4.6:goto 110
80 if x>319 then x=319:sound 1,5,4,6:goto 110
90 if y<O then y=O:sound 1,2,4,6:goto 110
100 if y>199 then y=199:sound 1,7,4,6

Honey.Aid has many other commands, and they are listed in Appendix
2. Many will be introduced in other chapters as and when required.
As we 11 as the commands, that make it easier to incorporate the
C-64's features into your programs, Honey.Aid incorporates a number
of 'utility' commands that make your programing easier. One
important feature of these util ity commands is that any program
written using these will operate on ANY C-64, not just one loaded
with Honey.Aid.

AUTO

Auto is a command that carries out 1 ine numbering automatically.
When typing in a program it can get a bit tedious putting line
numbers at the beginning of each line, so Honey.Aid will do it for
you. If you type 'auto <RETURN>' and then type in a line number.
say 10, from then on a new line number (20. 30 •••) will be provided
every time you press <RETURN>.

3-16

Try typing:

auto <RETURN>
10 print "hello" <RETURN>

You will see a '20' appear AUTOmatically. If you press RETURN
instead of typing something onto line 20, AUTO will be turned off,
i.e. typing in an empty line switches off the AUTO command.

The AUTO command defaults to a line spacing of 10 • i.e. if you
start at line 50, the next line AUTO provides will be 60, etc. If
you want a different line spacing then you just type it in:

auto 100 <RETURN>

will give spacings of 100. Note that line spacings must be
positive integers.

NUMBER

NUMBER is a command that will operate upon a program that you have
written and renumber all the 1 ine numbers in equal increments, as
well as adjusting all the GOTO's etc. so that they still GOTO the
right place! Whereas AUTO provides each line of a program with a
line number while you type it in, NUMBER is used to tidy up line
numbers,for example, after you've inserted or deleted a few lines.
Suppose you've been editing a program and have ended up with the
following:

PROGRAM 3.11

5 print "hello"
10 input a$
20 if a$<> "no" goto 90
57 print a$
90 stop

3-17

If you want this to start at line number 100 and increase by 10 for
each line, you would type:

NUMBER 100,10 <RETURN>

and your program would end up as:

100 print "hello"
110 input a$
120 if a$<> "no" goto 140
130 print a$
140 stop

Note that the GOTO on 1 i ne 120 has been corrected by the NUMBER
command. NuMBER will correct all GOTO'S, GOSUB's etc.

OLD

Another useful, at times life-saving, Honey.Aid command is 'OLD'.
If you have typed 'NEW' to wipe out a program and then changed your
mind, you can get the program back by typing 'OLD' - provided you
haven't begun typing in a new program or assigned any variables.

FIND

Sometimes, during programing, you will want to find out where a
particular command or string has been used. For instance, you may
be sure that you I ve used GOTO 130 somewhere, but you just can I t
find it! Honey.Aid's 'FIND' comes to the rescue! Typing:-

fi nd. goto 130.

will cause your computer to list all lines in which the string
Igoto 130 1 occurs. The full stops or periods (.) are called
'de1 imiters I and can be almost any symbol you choose, as long as
they don't appear in the string being searched for. Some examples
of FIND statements are:

find$x=S$
findx123.64x
find"b6=2"
findaharrya - WRONG! la l appears in the word harry

and so cannot be used as a delimiter when searching for occurrences
of harry.

3-18

-

Actually, the use of quotes (") as a delimiter has a special
function: if you want to find something in a program that appears
in quotes then you MUST put it in quotes in the 'FIND' statement.
Thus:

fi nd. pri nt.

would find PRINT in

10 print "start"
or ----! the value of ed

40 printer ~ I

but not in

50 input "printer or screen";a$

However, if we use quotes as delimiters, i.e.

find "print"

then we will NOT find PRINT in

10 print "start"
or -----1 the value of er I

40 printer ~ .

but we WILL find PRINT in

50 input "printer or screen";a$

Another thing we can do with the FIND command is tell it on which
line to start FINDing and where to stop, just like the LIST
command; thus:

find.halo.,100-200

wi 11 search from 1 ine 100 to 1 ine 200 incl us i ve for the string
'halo ' •

find.x.,150-

will search from line 150 to the end of the program,

find.emperor.,-400

will search up to and including line 400.

3-19

CHANGE

Instead of just finding a string. you may want to change it to
something else. For example:

change. print. input.

will change all occurrences of the string of letters p,r,i,n and t
into input.

change.print x.print a2.,100-

will change all occurrences of print x into print A2. from line 100
to the end of the program. but the comments relating to the use of
quotes as delimiters in the description of FIND above apply to
CHANGE as well. Some examples of CHANGE commands are

change$he110$goodbye$,200-400
changea=7a=9a,-950

Change is a really useful command but very faithful! It will do
just what you ask it to so beware - the string that you wish to
change may occur in far more places than you thought! Before doing
a 'change' on a long program it is a good idea to do a 'find'.
That way you can see just what you will be changing.

For more information these and other Honey.Aid commands see
Appendix Two.

3-20

CHAPTER

4
Putting in structure: The Hangman Game I n chapter 2, a number guessing game was developed that

utilized a random number generated by the Commodore 64. In
this chapter a similar game will be written, but this time
using words, i.e. a variation on the popular hangman game.

Thus, instead of asking the player to guess a number, (s)he will be
required to guess a word letter-by-letter. First of all though,
this chapter will investigate ways of storing these words and then
of delivering them one by one when required.

When dealing with random numbers, the C-64 can generate an endless
supply to order, as it has built into its ROM (Read Only Memory) a
program which can produce these as rapidly as they can be consumed.
Of course, when dealing with words, the same thing is not possible.
All the words to be used must be stored in the program somewhere,
and thus must be defined by the programer. A common way of
storing such data is in strings, and the program could contain such
statements as:

READ •••• DATA

LET A$="COMMODORE 64"
LET B$="KEYBOARD"
LET C $=" SCR EEN"

This, however, would be an extremely tedious way of doing the job
and BASIC provides an alternative method. It utilizes two
commands, READ and DATA, the first one telling the machine to READ
one piece of data and the second telling it where to find the data.
The DATA statement is the one piece of program that is footloose -
it can go anywhere in the program. It is, however, usual to put
it ri ght at the end so that it is out of the way. Program 4.1
illustrates this, with ~ine 1030 reading one piece of DATA, which
is PRINTed out in line 1035, the DATA originally having been stored
at line 9000.

4-1

PROGRAM 4.1

1030 READ A$
1035 PRINT A$
9000 DATA 1I0NE II , II TWO II , IITHREE"

When run, this program will retrieve only one piece of DATA, e.g.
'ONE', and then PRINT this onto the screen. String data does not
have to be enclosed in quotes in a DATA statement. If the string
contains a comma, as in JONES,ED then it is wise to enclose it in
quotes. For example, try 9000 DATA IIJONES,EDII,ONE,TWO in program
4.1. Program 4.2 shows a very similar program where numbers are
stored rather than words.

PROGRAM 4.2

1030 READ A
1035 PRINT A
9000 DATA 1,2,3

In this program, the changes from Program 4.1 are really only what
one would expect: the numeric variable name 'A' replaces the 'A$',
and the data is not enclosed in quotes as it is numeric.

READ statements may be as simpl e or as el aborate as the program
demands and a number of variables could be READ in by one line of
program; e.g. READ A$,A,B$. However, when doing this the greatest
care must be taken to ensure that when the READ statement tries to
READ a number it finds a number and not a string. If a mismatch in
types occurs, the mach i ne wi 11 report an error. As th i sis
straightforward, try a little exercise!

EXERCISE 4.1

Write a program to READ the numbers 1 to 4
from DATA statements in both numbers and
letters, and to display them on the screen
1 ike so:

1 ONE
2 TWO
3 THREE
4 FOUR

A possible solution is given on page 11.3.

Having found a way of storing and retrieving data, some way has to
be found of making a random selection from it. By using a
FOR ••• NEXT loop to READ a particular number of items from the DATA,

4-2

one part i cu 1 ar pi ece may be retri eved, as shown in Program 4.3.
In this program, the loop is executed three times, and thus the
third piece of data is retrieved.

PROGRAM 4.3

1020 FOR X=l TO 3
1030 READ A$
1040 NEXT X
1050 PRINT A$
9000 DATA ONE,TWO,THREE,FOUR

In fact, three pieces of DATA will have been retrieved but only the
string 'THREE' is printed. On the first pass through the loop,
the value of A$ would have been 'ONE' but during the second pass
this would be overwritten by 'TWO' and then finally by 'THREE'.
It was this string 'THREE' that was stored in A$ at the time that
line 1050 commanded it to display the string on the screen.

On each pass through the loop, line 1030 READs the next item in the
DATA statement. It knows which item is next as, each time a READ
is performed, a pointer is moved along one item to point to the
next one to be read. This can give rise to problems if an attempt
is made to read more DATA than exists. For instance, if Program
4.3 is put inside a second loop, i.e. 'nested ' , it will cease to
run on the second pass after all four pieces of DATA have been
READ. Fortunately, BASIC has a statement to use DATA more than
once in a program.

RESTORE

This has the effect of moving the pointer back to the beginning of
the DATA. This is demonstrated in Program 4.3(a) below, where the
loop in Program 4.3 is nested or buried inside a second loop that
runs it three times. As the nesting of loops is, in itself, a
powerful feature of BASIC, PRINT statements have been inserted into
1 ines 1000 and 1020. If you feel uncertain about the idea of
nesting, just examine the screen contents after youlve run Program
4.3(a). It will show you how the program handles a nested loop.
Firstly it sets Z to 1 and then runs through the IXI loop with X
equal to 1, then 2 and finally 3. It then loops back to 1 ine
1000, sets Z to 2 and then repeats the IX I loop. On completion of
this, it goes back to line 1000 for the final time with Z set to 3.
Generally, the number of times that the inside loop is repeated is
controlled by the size of the outside loop.

4-3

PROGRAM 4.3(a)

,------- 1000 FOR Z=l TO 3: PRINrnz=";z
1010 RESTORE

,-, --1020 FOR X=l TO 3:PRINT"X=";X;" ";
Loop 2 1030 READ A$

Loop 1 &,..' -- 1040 NEXT X
I 1050 PRINT A$
L-. ----- 1060 NEXT Z

9000 DATA ONE,TWO,THREE,FOUR

However many times it is run, Program 4.3 or 4.3(a) will only ever
del iver the third string; if a random del ivery is required, then
the loop variable must be replaced with a random number. In this
case the loop is rewritten as FOR X=l TO • a random number', the
random number having previously been defined, i.e.

PROGRAM 4.3(b)

1000 R=1+INT(4*RND(1»
1010 RESTORE
1020 FOR X=l TO R
1030 READ A$
1040 NEXT X
1050 PR I NT A$
9000 DATA ONE,TWO,THREE,FOUR

So far, then, a technique has been achieved for reading a word
randomly from a whole list of words, and this can be used to
produce a word guessing game of similar structure to that in
Chapter 2.

4-4

EXERCISE 4.2 (a long one)

Produce a flow chart and program for the
following game based on Program 4.3(b).

* Player told rules and possible
words to guess.

* Random word chosen.
* Player's guess INPUTted.
* Increment a count variable.
* INPUT checked for right/wrong.
* Player told "right/wrong".
* Player told how many goes

taken.
* Player asked whether another

go wanted.

A possible solution is given on page 11.4.

A normal hangman-style game differs from the one above in that in
hangman individual letters are guessed, necessitating the
dissection of strings.

LEFT$, RIGHT$ and MIO$

Commodore basic provides us with a number of ways to chop up
strings. The most brutal of these are LEFT$ and RIGHT$. These
simply lop off the left and right ends of strings respectively.
Let's try chopping up a few strings for practice! Firstly weill
set A$ to "COMPUTER 'II • To use the jargon, we will Iset the value
of the variable A$ to the literal value "COMPUTER ' • The first
practice will be with 'LEFT$'. This has to be told which string it
is going to chop up, so the command so far is 'LEFT$(A$...)',i.e.
'first find A$'. Following the string name we put the number of
characters that we want to chop off, i.e. 'LEFT$(A$,4)', will give
us 'COMP ' • Try that with

A$="COMPUTER"
B$=LEFT$(A$,4)
PRINT B$

The command RIGHT$() works in exactly the same way except that it
starts at the RIGHT hand end of the string.

Thus if A$="COMPUTER ", C$ = RIGHT$ (A$,5) will set the string C$ to
"PUTER", the 5 right-most characters of "COMPUTER". Try it out to
make sure!

4-5

In contrast, the MID$ function can be rather more precise in its
operat ion. It all ows one to chop away sel ectively small or 1 arge
bits of the string under the operation. Like a versatile surgeon
it can cut away from the middle or either end of the patient.
Let's examine that in more detail, using the example

A$ = "COMMODORE"
C$ = MID$(A$,4,3)

* When the computer sees C$=MID$(•••) it knows that a string is
to be dissected and the result stored in the string C$.

* It then carries on and sees MID$(A$.••). It translates this
into 'first find A$ and get prepared to do surgery on it'.

* Next it sees the '4' in MID$(A$,4 .•••) and this tells it start
at the fourth character of the string.

* Then it reads the '3' in MID$(A$,4,3) and, starting at the
fourth character of the string strips off three characters.
These it stores in C$.

Thus, following the operation, C$ would contain "MOD".

In general terms, the structure of the command is:

MID$(A$,START,LENGTH).

• START , and 'LENGTH' must both be whole numbers. MID$ will cut out
a part of the string A$ starting at character number 'START' and of
length 'LENGTH' characters.

As we shall see in this game, it is most often useful for our
dissected string or substring to have a length of one character.

4-6

LEN()

Another new command that we need for the hangman game is lEN().
What this does is to report how many characters are in a string,
eg:

A$="THIS IS VERY VERY VERY LONG"
PRINT LEN(A$)

When you enter this, the computer will respond with '27', the
number of characters in A$, including spaces! Thus, if we wanted
to cut a particular string in half we would first need to find the
length of it.

PROGRAM 4.4(a)

10 A$="CUTTING UP"
20 L=LEN(A$)
30 L=INT(L/2)
40 PRINT LEFT$(A$,L)

To give you an idea of how LEN() will be used in the hangman game
look at Program 4.4(b), below.

PROGRAM 4.4(b)

10 A$="MY WORD"
20 PRINPYOUR WORD HAS" ;LEN(A$); "LETTERS"

The Program's Structure: Part 1

The structure is defined in the flow chart - Figure 4.1 • the
various program elements are numbered from 1 to 17. This is done
to help you to match the program to the flow chart, but no direct
bit-by-bit comparison can be made between flow charts and programs.

Standard symbols are used and the names of the four flags (Fl to
F4) used have been inserted into the diamond shaped decision
symbols. In addition, all the subroutines are numbered to
cross-refer to the program - the sequence of these numbers has no
significance at all, as they are purely for reference purposes.
The subroutines will be studied in the numerical order shown on the
chart.

4-7

r-----I~ choose word

initialisation 1-----.
1

message
"character

pre\'ious!)' tried·
7

update array
of guessed
characters

YES

NO

F4-0

FIGURE 4.1

4-8

2

increment wrong
guess count

Flags

In a game such as this, there are three basic elements, the
structure, the detailed subroutines that carry out the various
actions and the screen display. For instance, a subroutine is
needed to check whether a letter guessed is in the word. Another
is needed to see if it has been guessed already •.. and so on. It
is the structure, however, that determines the order in which the
subroutines are called. Once called, a subroutine carries out its
function and then returns control back to the main program. When
the check is made to see whether the 1 etter is in the word, for
instance, the subroutine needs to store the answer Iyes l or Inol in
such a way that this information can be used later on. This is
done in this program by means of Iflags l : constants which are set
to 0 (zero) or 1 (one) for a Inol or Iyes l answer. In the case of
this first subroutine, for instance, the flag which is given the
name I Fli is set to 1 for a I yes I answer (i. e. the guess was
correct) and 10 1 for a Inol (i.e. the guess was incorrect). Once
this process has been carried out for all the subroutines, i.e. the
flags are set, the program can get on with playing the game!

We have already seen how cursor controls can be used for displays,
allowing us to print at any part of the screen. The large number of
cursor symbols can at times be confusing, to say the least, and
this could lead to errors.

The display for the hangman requires an extensive use of PRINTs and
cursor characters, so instead of having 10 right cursors, if we
want to move 10 spaces to the right, we can use the TAB() command.

TAB()

PRINTing on the C-64 is done in terms of columns. As far as the
C-64 is concerned, the video screen is divided into 40 vertical
columns, numbered 0 to 39. Each character is PRINTed into one of
these columns.

TAB(X) will cause the next character to be PRINTed in column X. Try
the following program:

2 PRINT TAB(20);IA"

When this is run the IAI will be PRINTed in column 20, because that
was the value set for the TAB. Using TAB() is much easier than
press i ng ri ght cursor twenty times, as demonstrated in the above
example, but is not particularly advantageous if only a small
number of right cursors are required. TAB() can only be used to
move the cursor right.

4-9

GOSUB •••• RETURN

So that the various subroutines of the game can be developed
individually and then linked together, they are written as
subroutines called by the command GOSUB. This command re-directs
the program to a specified line and the C-64 continues to execute
the program from that line onwards. However, when it comes.to the
command RETURN, it recognizes this as signifying the end of that
particular subroutine and then switches back to the statement after
the GOSUB. Thus, a subroutine is a small section of program that
you tell the program to visit, do a particular job and then RETURN.

Program 4.5 illustrates how to do this. It incorporates three
GOSUBs, one of which is repeated.

PROGRAM 4.5

100 GOSUB 200
110 GOSUB 300
120 GOSUB 200
130 STOP
200 PRINT "FRED"
210 RETURN
300 PRINT "JOEl!
310 RETURN

When this is run, line 100 is executed and this directs the program
to the subroutine at line 200, which prints 'FRED'. Next, line
210 RETURNs the program to 1 ine 110 which then redirects to the
subrout i ne at 300. Thi sis executed, the program aga i n RETURNed
(to line 120), only to be GOSUBed once again to the subroutine at
200. On RETURN from th is, the program meets the command STOP
wh i ch STOPs execut i on and prevents the program from runn i ng once
again into the subroutines.

The GOSUB command, although supl~rfici ally simil ar to the GOTO, has
an important di fference - it E!Xpects to be matched by a RETURN.
Thus, when the computer executes a GOSUB it automati ca 11 y stores,
in memory, a return 1 ine number for the program to jump back to
once the subroutine is finished (i.e. at RETURN). This is stored
in a special place in memory called the GOSUB stack. If a program
inadvertently runs into a subroutine, i.e. if the STOP in line 130
were not there, then on finding the RETURN in line 1010 it would
search for a return 1 i ne number. However, as the subrout i ne was
not called by a GOSUB, no return line number would have been stored
and problems would arise. Try this out by deleting line 130 and
running program 4.5 again.

4-10

The Variables Used

In a fairly complicated program like this one, it is a good idea to
make a list of the variables that will be used. This makes life
much easier while developing the program and, in particular, aids
debugging.

(i) Numeric

E the number of Erroneous (wrong) guesses.
L the length of the word to be guessed.
L2 the length of the array of guessed characters (X$).
R the random number that defines the word to be guessed.
X a loop variable, used generally.

(ii) Alpha-numeric (string)

A$
B$
G$
W$

X$

Y$
Z$

the word to be guessed.
general variable for INPUTs.
the currently guessed letter.
a string made up of the letters guessed to date or dots,
in the correct order. For example, this could be C.M.
if the word were CBM and the letters guessed to date were
'c' and IMI.
a string made up randomly from all the letters that have
been guessed to date.
a temporary variable used in GET statements.
a literal string, either • FIRST • or • NEXT I depending
whether next entry is the the first one or not.

The various program elements are now considered, roughly in the
order shown on the flow chart.

Program Element 1: Initialisation

The initialization routine starts by clearing the screen by
printing the Iclear home l character. After this, lines 450-470 are
used to give the rules of the game, these having been left for you,
the reader, to do your literary best. Real care must be taken
over this documentation phase as, if the game is to stand on its
own without you to explain it, the rules must be absolutely clear.

4-11

The initialization routine can now be written; what it will do is

Clear the screen and set to upper case - Line 410
Announce the game
Give the rules - Lines 450 to 470
Stop the program unt i 1 the ru 1 es have been read and a key
pressed - Line 480
Clear the screen once the rules have been read - Line 490

Putting that into a Program:

PROGRAM 4.6(a)

400 REM SCREEN DISPLAY
410 PRINT "<CLR>";CHR$(142)
420 PRINT TAB(13);"<RVSON><15 SPACES>"
430 PRINT TAB(13};"<RVSON> HAN G MAN"
440 PRINT TAB(13);"<RVSON><15 SPACES>
450 PRINT TAB(10);"THESE ARE THE RULES--
"
460 PRINT TAB(II);"(DCRSR>THERE ARE NO R
ULES!"
470 PRINT"<2DCRSR><4RCRSR>PRESS ANY KEY
TO BEGIN"
480 GET A$:IF A$=""THEN 480
490 PRINT "<CLR>"

Each time the game is played, several variables need to be reset
and strings cleared, for instance Z$. On the first run through
the game this is set to ' FIRST' i.e. the screen then says what is
your Z$ (first) guess. Inunediately after use, Z$ is reset to
"NEXT" so that ,the player is then asked 'what is your Z$ (next)
guess?' Of course, once the game has been played Z$=" NEXT" and
needs re-setting or re-initial izing. Other variables need
resetting too, such as E - the number of incorrect guesses so far,
and X$, a string comprising all the guesses made to date.

PROGRAM 4.6(b)

500 Z$=" FIRST "
510 E=O
520 X$=""

4-12

Program Element 2: Choose word

This routine, shown in Program 4.6(c), is very similar to those
discussed above, particularly Program 4.3. It generates a random
number and then searches that number of times through the DATA
statements.

PROGRAM 4.6(c)

1000 R=l+INT (4*RND(1»
1001 R=4:REM development only
1010 RESTORE
1020 FOR X=l TO R
1030 READ A$
1040 NEXT X
1050 L=LEN(A$)

Line 1001 sets IRI to the value of 14 1, so that when testing this
program we know what word to guess. This will save a lot of time
when debugging the program.

Note the FOR •... NEXT loop in 1020 runs from 1 to R.

In addition to choosing the word, the subroutine also calculates
its length, L, as this is needed in other subroutines. The
variable ILl is then used to make up the string 1'1$. At the
beginning of the game this simply contains the requisite number of
dots - i.e. one for each letter. As correct guesses are made the
appropriate letters are inserted in the correct place in the array
and then displayed on the screen.

PROGRAM 4.6(d)

1500 W$=""
1510 FOR X=l TO L
1520 W$=W$+"'"
1530 NEXT X

4-13

Program Element 3: Display screen

At this stage of the game, all that has to be displayed is the
message telling how many letters the word has, and the string W$.
One thing to note here is that every message printed on the screen
is printed starting at the top left hand corner of the screen. The
down-cursor character is used to move the print out into the
appropriate position. This is done to prevent any message being
printed in the wrong area. As the screen display in this program
is very important, one cannot afford to take any chances. By
starting all print events at the top left of the screen and working
down, the position of a print statement no longer rel ies on the
current cursor position.

PROGRAM 4.6(e)

1540 PRINT"<HOME><2DCRSR>";TAB(8);"YOUR
WORD HAS ";L;" LETTERS"
1550 PRINT"<2DCRSR>";TAB(15);W$

Program Element 4 : Input a guess

All that is required here is a simple message to tell the user to
input a guess. Sometimes, however, it will be the 'FIRST' guess
and sometimes the 'NEXT' guess. This can be accommodated by
assigning the word 'FIRST' to a string during the initialization
and then, once the program has run, changing the contents of the
variable to 'NEXT'. The two elements that do this are shown in
Program 4. 6(f). The use of a GET rather than INPUT all ows a s i ngl e
character - presumably a letter! - to be input without the need to
press <RETURN>.

PROGRAM 4.6(f)

500 Z$=" FIRST II

1800 PRINT"<HOME><3DCRSR><8RCRSR>WHAT I
IS YOUR";Z$;"GUESS? <LCRSR>";
1810 GET G$:IF G$="" THEN 1810
1820 PRINT G$
1830 Z$=" NEXT II

4-14

A Diversion: Setting the flags.

Once the guess has been keyed in, a check needs to be made to see
whether the 1 etter is a correct guess, whether it has been used
before, whether there are any letters left to guess or whether all
the 10 allowed goes have been used up. This is all done in a
subroutine starting at 3000 and is called by line 2000. The
setting of each flag is considered separately below and when each
one has been set, the program is RETURNed by line 3400; i.e.

PROGRAM 4.6(g)

2000 GOSUB 3000
.
2840 GOTO 1800
.
3400 RETURN

Program Element 5: Is guess in word?

Once the guess has been made and the word chosen, the subroutine in
Program 4.6(h) simply needs to read through this word looking for a
match for the inputted letter. Should it find such a match, then
F1 will be set to 1. Note that, at the start of this subroutine.
the fl ag is reset to zero and rema ins at zero unless the test at
line 3020 proves positive.

PROGRAM 4.6(h)

2999 REM ****IS GUESS IN WORD?
3000 F1=0
3010 FOR X=l TO L
3020 IF G$=MID$(A$,X,l)THEN F1=1:GOSUB
5500
3030 NEXT X

Notice that if flag F1 is set then a trip is made to the subroutine
at 5500. Let's see what this subroutine does:

PROGRAM 4.6(i)

5500 IF X=L THEN 5540
5510 IF X=l THEN 5560 .
5520 W$=LEFT$(W$,X-1)+G$+RIGHT$(W$,L-X)
5530 RETURN
5540 W$=LEFT$(W$,L-1)+G$
5550 RETURN
5560 W$=G$+RIGHT$(W$,L-1)
5570 RETURN

4-15

Remember that W$ holds the status of the word being guessed,
starting off with all dots. As correct guesses are made, the
correct letters are inserted into this string at the appropriate
place so that the word to be guessed is built up gradually.

The letter guessed may be one of three cases:

* The leftmost character of the word. In this case X will be 1
and the instruction in 5560 is followed. The L·1 rightmost
characters are saved and W$ is updated to the correct character
at the left together with the rest of W$ (line 5560),

* The rightmost character. Here we save the L-l characters at the
left of W$ and rep1 ace the 1 ast character with the guessed
letter (line 5540).

* A letter other than these· i.e. in one of the middle positions
of W$. We save a 11 characters to the 1 eft of I X I and all
characters to the right of I X I. We can then rep1 ace the full
stop in the middle with the correct character (lines 5520),

Program Element 6: Was character previously tried?

When a player puts in a guess that is a repeat of a previous entry,
this program treats him kindly. It would be possible to charge
this guess against his number of allowed attempts but the option
chosen here is to report that that particular letter has been
guessed and then loop back for another input. In Program 4.6(j),
F2 is initially set or reset to zero, and is only set to one if the
inputted character, G$, is found in X$,

The value, X$, was set to "", i.e. an empty string on line 520 of
the initialization procedure, Program 4.6(b). As a guess is made,
it is added to the string (program element 8) and so, at this stage
it is only necessary to read through the string to check whether
any of its letters equal G$, the latest guess. One slight
complication exists in that the string gets one letter longer each
time around, so it is always necessary to re-calculate its length
(L2), as in line 3110.

4-16

PROGRAM 4.6(j)

3100 F2=O
3110 L2=LEN(X$)
3120 FOR X=l TO L2
3130 IF G$=MID$(X$,X,l) THEN F2=1
3140 NEXT X
3150 IF F2=0 THEN X$=X$+G$

Program Element 7: Message: "character previously tried"

The aim of this message is to inform the player clearly that the
letter just guessed has been tried, and then to clear the screen
back to its previous state. The message is PRINTed onto aline
that is currently empty. Once on the screen, the message is held
there for a time while the player takes it in and then it is
cleared. What is needed here is a technique for causing the
program to wait for a specific time period.

Delays

The common way to do this is to use a FOR .•• NEXT loop that does
nothing but go round and round and round. The length of the delay
is then set by the number of times that the program runs through
the loop. Try this out with Program 4.6(i/i), which is designed
to let you INPUT the loop length. Run it first with an input of
100, then 1000 and finally 10000 just to get an idea of the loop
lengths.

PROGRAM 4. 6(i/ i)

10 PRINrn<CLR>"
20 INPUT T:REM SET UP LOOP LENGTH
30 FOR Z=1 TO T
40 NEXT Z
50 PRINT "FINISHED!"

A routine such as this all ows you to put in del ays to suit the
needs of the program.

Once the message in Program Element 7 has sunk in, it needs to be
removed by printing blank spaces over it. This;s achieved by
means of a PRINT statement that PRINTS the blank spaces (i.e. II ")

over the text to be obliterated.

4-17

PROGRAM 4.6(k)

4000 PRINT"<20DCRSR><4RCRSR>YOU'VE ALREA
DY TRIED THAT LETTER"
4010 FOR X=1 TO 500: NEXT X
4020 PRINT"<UCRSR><40 SPACES>"
4030 RETURN

Program Element 8: Update array of guessed characters

In this element, as it is a1ready known that the character guessed
has not previously been guessed, it is inserted into W$ at the
appropriate place. The process is carried out by line 3020 in
Program 4.6(1) which reads through the word A$ letter by letter
and, on fi ndi ng a match with the guess, stores that character in
the appropriate place in W$. If one were to stick to rigid
structured programing, this would be set once Fl is set, by testing
for this flag later. However, once the flag is set, on line 3020.
the array can be updated immed-iately. Indeed, if the setting is
done on the same line, following a colon, you can be sure that it
wi 11 only happen if the earl ier 'IF' statement gives a positive
(i.e. a YES) answer. (We have already seen how the subroutine at
5500 works.)

PROGRAM 4.6(1)

3020 IF G$=MID$(A$,X,I)THEN Fl=1:GOSUB 5
500

Figure 4.2 demonstrates the process for the INPUT of an 'E' (i.e.
G$="E") where A$="COMPUTER" and the 'E' has not previously been
guessed.

LOOP A$ W$ W$
NUMBER before after

1 C · · 2 0 · · 3 M · 4 P · · 5 U · · 6 T · · 7 E · E
8 R · ·

FIGURE 4.2

4-18

Program Element 9: Display new screen

It is only necessary at this stage to print out the current state
of the guessed word, this being done in 1 ine 3040 of Program
4.6(m).

PROGRAM 4.6(m)

3040 PRINP<DCRSR)" ;TAB(15) ;W$; "<3UCRSR)"

Program Element 10: Are all characters guessed?

To check this, string W$ needs to be read through to see if any
character position remains unfilled. If this is so then F3 is set
to a 1, in line 3230 c..f Program 4.6(n).

PROGRAM 4.6(n)

3199 REM ****ARE ALL CHARACTERS GUESSED?
3200 F3=0
3210 T$="."
3220 FOR X=1 TO L
3230 IF T$=MID$(W$,X,l) THEN F3=1
3240 NEXT X

Program Element 11: Message "well done"

This element tells the player that (s)he has guessed the word
correctly. Once the message is on the screen, the game is over and
there is, therefore, no need to display it for a fixed time. As the
next stage of the program is to ask the player if (s)he wants
another go, the message can be left on until (s)he makes a move.
Unlike the other subroutines, this one is called by a GOTO, as, on
completion, the program runs into the 'do you want another go?'
routine. Sticking to pure structuring, the program would be called
by a GOSUB and then, hav i ng RETURNed, wou 1 d be di rected to the
termination procedure.

PROGRAM 4.6(0)

4300 PRI NT" <HOME><10DCRSR)" ; TAB(18) ; "WE
LL DONE"
4310 PRINT TAB(18);"YOU HAVE"
4320 PRINT TAB(18); "GUESSED"
4330 PRINT TAB(18);"THE WORD"
4340 FOR X=O TO 500:NEXT X
4350 GOTO 5000

4-19

Program Element 12: Do you want another g01

This is a simple test for the key 'V' as shown on 1 ine 5030 of
Program 4.6(p). If the answer is 'N' (or indeed, anything other
than 'V') then the closing message "BYE" terminates the whole
proceedings.

PROGRAM 4.6(p)

5000 PRINT"<5DCRSR><BLU>"
5010 PRINT TAB(8);"DO YOU WANT ANOTHER G
O?"
5020 GET A$:IF A$="" THEN 5020
5030 IF A$="Y"THEN 490
5050 PRINT"<CLR><9DCRSR>";TAB(18);"BYE":
END

Program Element 13: End

This part is most conveniently appended to the end of the previous
element with a friendly (l) PRINT "BYE." (or whatever you wish -
see line 5050 of Program 4.6(p».

Program Element 14: Increment wrong guess count

The variable 'E' records the number of wrong guesses and is simply
incremented at the appropriate time whenever F1 is set to '0'. It
is done in line 2800 following the testing of the flag in line 2300
of Program 4.6(q).

PROGRAM 4.6(q)

2300 IF Fl=O THEN 2800

.
2800 E=E+l

4-20

Program Element 15: Displ~ new screen

When the guess is incorrect, the player is told "SORRY THAT LETTER
IS NOT IN THE WORD."

PROGRAM 4.6(r)

4200 PRINT"<HOME><20DCRSR><5RCRSR>SORRY
THAT LETTER IS NOT IN THE WORD"
4210 FOR X=l TO 500 : NEXT X
4220 PRINT"<UCRSR><40 SPACES>"
4230 RETURN

As in a previous subroutine, the message is maintained on the
screen by the FOR •• NEXT loop on line 4210

Following this, the hangman must be drawn.
draw will be created by using the graphics
from the keyboard. These are characters
either the Commodore key or the shift keys.

ON ••• GOTO

The hangman we wi 11
characters obtainable
obtained by pressing

The individual pieces of the hangman will be drawn using PRINT
commands, and the subroutine will be subdivided into separate
program sections. One section will be for drawing the frame, one
for drawing the head and so on. These individual sections will be
accessed depending on the value of 'E' (the incorrect guess count),
using a special version of the IF ..• THEN command, called ON •.• GOTO.
This works a bit like lots of 'IF ••• THEN .•• ' commands would. Taking
the example:

ON X GOTO 100,200,300

The computer understands this as:

" ON the value of X, GOTO 100, 200, 300"

Thus if X = 1 then the program ;s directed to line 100, if X is 2
then the program goes to line 200 and so on. If X is '0', or
greater than the number of 1 i ne numbers 1 i sted the program wi 11
continue onto the next line. As well as using 'GOTOs', the ON ...
command can just as well use GOSUBs. In this case, it directs the
program to the subroutine in just the same way as would any GOSUB.

4-21

For drawing the hangman graphics we will use an 'ON GOTO' command.

PROGRAM 4.6(s)

4400 ON E GOTO 4500, 4490, 4480, 4470, 4
460,4450, 4440, 4430, 4420, 4410
4410 PRINT "<HOME><13DCRSR><l1RCRSR>,<DC
RSR><LCRSR>t <DCRSR><LCRSR> <9UCRSR>"
4420 PRINT"<HOME><13DCRSR><9RCRSR>,-L <DC
RSR><2LCRSR >1 <DCRSR ><LCRSR>-' <9UCRSR>"
4430 PR I NT" <HOME><l1DCRSR><l1RCRSR>..J<5U
CRSR>"
4440 PRINT"<HOME><l1DCRSR><8RCRSR>,- <5UC
RSR>"
4450 PRINTII <HOME><l1DCRSR><10RCRSR>f-<DCR
SR><LCRSR>I<6UCRSR>
4460 PR INTII <HOME><8DCRSR><9RCRSR>n <DCR
SR><3LCRSR>I I<DCRSR><3LCRSR>~<4UCRSR
>
4470 PR INT" <HOME>< 7DCRSR><lORCRSR>, <DCRS
R><LCRSR>'-<2 UCRSR>II
4480 PR I NT II <HOME >< 7DCRSR ><6RCRSR>r-' <DCRS
R ><LCRSR>.I<3UCRSR>1I
4490 PRINT"<HOME><7DCRSR><7RCRSR>-r-<UC
RSR>II
4500 PRINT" <HOME>< 7DCRSR><6RCRSR>r-<DCRSR
><LCRSR><DCRSR><LCRSR>~DCRSR><LCRSR>I<D
CRSR><LCRSR>I<DCRSR><LCRSR>I<DCRSR><LCRS
R>I<DCRSR><LCRSR>I <DCRSR><LCRSR>. <DCRSR>
<LCRSR><DCRSR><LCRSR>I II
4520 RETURN

4-22

Program Element 16: Are all goes used?

This section is a simple test of the variable 'E':if it is equal to
9, F4 is set to 1.

PROGRAM 4.6(t)

3300 F4=0 .
3310 IF E=9 THEN F4=1
3400 RETURN

Program Element 17: Display new screen

By this point in the game, it's allover for the player and that's
what the message says in lines 4900 and 4905. The player is given
the correct solution to the game as some compensation!

PROGRAM 4.6(u)

4900 PR I NT" <HOME><12DCRSR>"; TAB(15) ; "SO
RRY YOU'VE HAD"
4905 PRINT"TAB(15);"YOUR TEN GOES"
4910 PRINT TAB(15);"THE WORD WAS ";A$
4920 FOR X=1 TO 500 : NEXT X
4930 RETURN

The Program's Structure: Part II

All that remains to be done now is to sort out the structure of the
program so that the various routines are called at the appropriate
time.

There are many possible ways that this could be achieved by
following through the flow chart and choosing a series of routes
that covers all possibilities. However, that would soon become
complicated and it would be impossible to avoid duplication. A
more logical way would be to group together all the routines that
set flags, once the necessary data is available to condition these.
Having run through the routines, the flag structure is as shown in
Figure 4.3. This figure is designed to display clearly the
various flag states for a particular game state.

4-23

game status Fl F2 F3 F4

1 guess correct, character
previously tried 1 1 1 0

2 guess correct, all
characters now guessed 1 0 0 0

3 guess correct, all
characters not yet guessed 1 0 1 0

4 guess incorrect,
all goes used 0 0 1 1

5 guess incorrect,
some goes left 0 0 1 0

6 guess incorrect, character
previously tried 0 1 1 0

FIGURE 4.3

The logic control section can be drawn by means of this figure and
the flow chart, and should be structured to run through all the
necessary subroutines as economically as possible. There's no
rule for doing this but one (very logical) way would be to work
through the flag structure diagram and to cover each status
line-by-1ine with a composite fhg testing statement. Thus, game
state 1 could be tested by a statement:

IF Fl=l AND F2=1 AND F3=1 AND F4=O THEN (Take appropri ate
action)

While this is, strictly speaking. logically correct, most
programers would divide the logical tests into sections and deal
with them section by section. This is done below, although there
is nothing to stop you adopting the straight logical approach.

The flag-setting routines, the logic-defining part of the game,
have already been described - these being the subroutines starting
at line 3000 and ending with the RETURN at line 3400.

With the approach adopted here, the first task is to look for the
easiest settled case. For instance, if the character has
previously been guessed, then, regardless of whether or not it is
in the word, i.e. game states 1 and 6, all that remains to be done
is to report the facts and then go back for another input. This
is readily dealt with by the one line of Program 4.6(v) which tests
the flag F2 and then directs the program to the relevant

subroutine. On completion of this, of course, the program will
RETURN to 1 i ne 2200 and thence be di rected to 1 i ne 1800 for the
next input.

PROGRAM 4.6(v)

2200 IF F2=1 THEN GOSUB 4000:GOTO 1800

Once F2 has been tested and a branch taken when appropriate, it can
be accepted throughout the remainder of the logic control section
that F2=0.

The next test made is for a correct/incorrect answer (F1). When an
incorrect one is found, the program loops to 2800, the section
between ~400 and 2800 dealing exclusively with correct answers, and
that from 2800 to 2830 with incorrect ones. In worki ng with thi s
structure it eliminates the necessity of rechecking F1 constantly.
We know that between lines 2400 and 2800 F1 always equals 1 and
that in the section starting at 2800, it always equals zero.

PROGRAM 4.6(w)

2230 IF F1=0 AND F2<>1 THEN 2800

Following this, it only remains to test F3 to check whether all the
characters have been guessed. If they haven I t, then 1 i ne 2500
(Program 4.6(x» di rects the program back for another 1 etter to be
entered. If they have been guessed, then the program is directed
to the subroutine at 4300 to congratulate the player and then sent
to line 5000 with a GOTO. This latter choice is necessary as the
routine at 5000 asks whether the pl ayer wants another go. On
receipt of a IV I the program returns to the beginning of the game,
while a INI produces the farewell message.

PROGRAM 4.6(x)

2500 IF F3=1 THEN 1800
2700 GOSUB 4300: GOTO 5000

The remainder of the logic control section, from 2800 onwards,
deals with game states concerned with wrong guesses (F1<>1). As
the error variable lEI is used to control the graphics at the end
of the game, it must be incremented when a wrong answer is given;
i.e. a simple E=E+1 (line 2800 of Program 4.6(y». Next, the
string of letter guesses must be updated using the subroutine at
4200 (line 2810). Following this, the graphics display is
completed according to the value of E (GOSUB 4400) and then a test
is made on the value of E to see if all 10 goes have been used up.
If they have F4=1 and the message is given that itls allover and
then the subroutine at 5000 is called (line 2830) and the player

4-25

asked whether another go is required.

PROGRAM 4.6(y)

2800 E=E+1
2810 GOSUB 4200
2820 GOSUB 4400
2830 IF F4=1 THEN GOSUB 4900:GOTO 5000

The final few lines of the program provide the stock of words for
the player to guess. These are stored in DATA statements at line
11000. In the example given only four words are provided, but
this number can be increased as desired. One other change will be
needed to ensure that all these additional words are READ. The
variable 'R' needs to be set to a number between 1 and the number
of words in the DATA statement. Thus if there are 20 words stored
in the DATA statements the value of 'R' would be set to
R=1+INT(20*RND(1». The DATA statement structure is as shown in
Program 4.6(z).

PROGRAM 4.6(z)

11000 DATA BUG,CBM,COMPUTER,TYPE

Once the sections of th i s program are typed in, you wi 11 have a
working word guessing game. What's more it's a game that you, the
reader, can understand and therefore modify. The words, as you
know, are stored in the data statements and these are readily
modified. You can substitute your own set of words or even give
the game some simple intelligence. Were the words in the DATA
statements to be graded from simple at the begi nni ng to more
difficult towards the end, then one (or any other number of)
successful go(es) could add a constant to the READ loop so that it
reads more deeply into the DA.TA, thus yielding more difficult
words. Other display modifications are described in Part 2 of
Chapter 10.

4-26

CHAPTER

5
REACTION TESTER

I n this chapter a program is developed that will enable your
C-64 to measure the speed of your reactions accurately. It
will do this by seeing how long it takes for you to press a
key once told to do s.o. It makes extensive use of one of the

clocks that is built into the C-64 and made accessible to you, the
programmer, for carrying out all sorts of programming tasks.

Computers are clearly pieces of equipment that work very rapidly
and to be able to do this, they need to get their co-ordination
just right! For this- reason they have several very accurate
time-pieces built into them. Some of these are used solely for
internal control functions but the C-64 designers have brought two
of these to the surf ace so that they can be accessed from BASIC
and. therefore, built into your programs.

Very conveniently, one of these is accessed as a string (TI$) and
one as a numeric variable (TI) and, as they are stored in this way
they can be very, simply displayed by means of PRINT statements.
Just to prove that try:

PRINT T1$, TI

This should have you a display of - well I don't really know! The
reason I don't know is that both of these clocks' times are reset
to zero when the machine is turned on. So, if you've just turned
on the numbers will be small, whereas if you've been at it all day,
the numbers will be large.

5-1

Whatever number you got, let's investigate it a little. Firstly,
TI$. We'll assume that the command 'PRINT TI$' yielded the result:

123456

In this case, the computer is reporting back that it has been
turned on for twelve hours, thirty four minutes and fifty six
seconds, i.e.:

12 31~ 56

Number of hours _____Jt t tL-____ Number of seconds

Number of minutes

We can use TI$ to display the time of day as it's possible to split
up any string using RIGHT$, LEFT$ and MID$. The hours and seconds
are the easiest to get at as:

RIGHT$ (TI$, 2) gives the seconds and
LEFT$ (TI$, 2) gives the hours

To get at the minutes we need to start at the third character and
print the next two, i.e.:

MID$ (TI$,3,2) gives the minutes

With this knowledqe we can now convert our C-64 into a clock.
Let's have a go. Firstly we'll say what we're doing, i.e.:

PRINT "<CLR> THE TIME NOW IS:"

Next we need only print the hours and minutes, i.e.:

PROGRAM 5.1(a)

200 PRINT"<CLR> <3 DCRSR> THE TIME NOW I
S: "
210 PRINT RIGHT$(TI$,2);" SECONDS"
220 PRINT MID$(TI$,3,2);" MINUTES"
230 PRINT LEFT$(TI$,2);" HOURS"

5-2

Great eh? Running this will give you the time - well-oops my
screen says that it's just after one o'clock whereas it's nearly
eight. What went wrong? That's it; you've guessed it: the screen
is report i ng how long the computer has been turned on. What we
have to do if we wish to convert the machine into a timepiece is to
set it to the right time. When doing this TI$ is treated slightly
differently from any other string as each one of its six characters
has to be specified when assigning a value to it. Try resetting
the clock to zero with

TI$ = "000000"

Now, when you run Program 5.1 you'll get a very different time. Of
course you can set TI$ to any time you like with a straight
assignment. To improve the digital clock let's add a setting
feature. In order to get the time exactly right, it would be better
to input the hours, mi nutes and seconds separately us ing BASIC'S
feature of:

String Concatenation

This rather fancy name simply means string addition and with the
clock would enable us to input the hours as H$, The minutes as M$
and seconds as S$. Once these are stored in memory, they can be
added together to form TI$ i.e. TI$ = H$ + M$ + S$. Incorporating
these into Program 5.1(b) gives a time-setting feature. Add this
to 5.l(a).

PROGRAM 5.1{ b)

100 INPUT "<CLR><3DCRSR>ENTER HOURS"; H$
110 INPUT "<DCRSR> ENTER MINUTES"; M$
120 INPUT "<DCRSR> ENTER SECONDS"; S$
130 TI$ = H$ + M$ + S$

Did your version run? Well, it would have done if each INPUT was
two characters long: if not, TI$ would have ended up the wrong
length! In a case like this, an error check is called for and, as
it is needed three times it is best written into a subroutine:
what it needs to do is:

* Check that the INPUT is the correct length.
* If correct, continue program execution.
* If incorrect, report to user and go back for another INPUT.

5-3

The requirement for the program to return to a line is best done by
the IF ••• THEN test. However, this adds a sl ight compl ication,
which can be handled by means of a flag. When the INPUT is the
right length, this flag, say F, can be set to 1 and when the wrong
length set to zero.

A further complication arises from the fact that the test has to
be performed on either H$, M$ or S$, calling for a flexible
subroutine. One way around this is to set the three strings to two
characters length at the beginning of the program and to check that
all of them remain at two characters after the INPUT. When one
string is no longer the correct length, an error is flagged. To
incorporate this into the overall program a few earlier lines need
to be changed to test the flag on RETURN, i.e.:

PROGRAM 5.1 (c)

90 F=l: H$=" XX" :M$=" XX" : S$=" XX" : PR INT"<CLR>"
100 INPUT "<3DCRSR>ENTER HOURS"; H$:
GOSUB 300: IF F=O THEN F=l: GOTO 100
110 INPUT "<DCRSR>ENTER MINUTES";M$:
GOSUB 300: IF F=O THEN F=l: GOTO 110
120 INPUT "<DCRSR>ENTER SECONDS";S$:
GOSUB 300: IF F=O THEN F=l: GOTO 120
150 STOP

300 IF LEN(H$)=2 AND LEN(M$)=2 AND LEN(S$)=2
THEN RETURN
310 PRINT" INPUTS MUST BE TWO CHARACTERS
LONG<UCRSR>": F=O: RETURN

So far this clock is really a one-shot affair as it tells you the
time once and then dies. The next task is to keep it running.
Sorry, that should read "Your next task ll • Have a go at
Exercise 5.1. Don't worry if you have problems, it's fully
explained in the Solutions Chapter.

EXERC ISE 5.1

Modify the digital clock program so that it
gives a continuous display of the time.
A possible solution is given on page 11.5.

5-4

TI

For more accurate timing purposes the second clock is most useful.
This appears in BASIC as TI. Once again this will yield a group of
numbers but this time these are organized differently. The number
on the screen is simply the number of one-sixtieths of a second
that have passed since you turned your machine on. Next try this
little exercise: type in:

TI$="OOOOOO" :PRINT TI

Having done this, you should have a screen display of about 1. So,
resetting TI$, resets TI: this will be most useful to us when
developing our reaction tester. Of course, if it's seconds that
we're interested in and not sixtieths then we need to divide TI by
60 and then take the integer to eliminate the fractions.

To get used to using TI, lets do a few timing exercises. Firstly,
lets get the C-64 to print "FRED" 50 times and see how long it
takes:

PROGRAM 5.1(d)

100 TI$="OOOOOO"
110 FOR Z=1 TO 50
120 PRINT "FRED"
130 NEXT Z
140 PRINT INT(100*(TI/60»/100; "SECONDS"

$0 that took approximately 1.86 seconds. Note the multipl ication
and division by 100 on line 140: this gives us the first decimal
places for the seconds. What if we didn't ask it to print, try
REMing out 1 ine 120 i.e., 120 REM PRINT "FRED". This time it took
approximately 0.09 seconds. What if we remove line 120 altogether?
Do this and then re-run the program. Interesting eh?

This exercise tells us quite a lot about BASIC - not just about
timing!

Anyway,back to the reaction timer. What this program will do
eventually is to tell the user that timing is about to begin and
then, ask him/her to press a key. In the meantime we ought to
provide the player with something to keep their attention. One
thing that we can do is to flash though the colors on the screen
but to do that on the C-64 we will need to understand the command:

5-5

POKE

A very useful command is POKE, but one that differs somewhat from
most other BASIC commands. In affect all it does is allow you to
insert a particular number into a particular memory location. Thus,
the command to POKE a number into memory must specify both the
number and the memory location. For instance, the command:

POKE 828,90

will load a number 90 into memory location 828.Just what the effect
of this is will be investigated later! Basically POKE's are used
for two reasons:

(1) to store data in specific memory locations
(2) to control the inner workings of the C-64.

(1) There are many reasons for wishing to store data in specific
memory locations and some of these will be examined later in the
book.

(2) Many funct ions of the C-M are controlled by the contents of
particular bytes of memory. For instance, the color that you see on
your screen is determined by the contents of the three memory
locations, 53280, 53281 and 646. Let's investigate this with a few
loops. As each color setting can range from 0 to 15, each of these
memory locations can be cycled through the range 0-15, i.e. looking
at all the screen colors:

PROGRAM 5.2

10 FOR X = a TO 15
20 POKE 53281,X
25 PRINT X
28 FOR P=l TO 500:NEXT P
30 NEXT X

Return the screen back to original colors by holding the RUN/STOP
key and then pressing the RESTORE key. To examine border colors
modify line 20 to read:

20 POKE 53280,X

and run the program. Finally, to look at character color, modify
1 ine 20 to read:

20 POKE 646,X

and run it. Really interesting eh?

5-6

Machine crashes

This color feature will be useful when trying to occupy the mind of
the user in the reaction tester. Many other features can be turned
on or 'enabled ' by means of POKES. However. when POKEing around.
take care. Some POKEs will simply turn the machine off without much
ceremony. Just for fun(!), enter:

POKE 43.0

Now try and list whatever was in memory. What you have done with
this command is to cause a 'crash'. However, in this case it is a
recoverable crash that can be undone with a:

POKE 43.1

Not all crashes are recoverable. however. and with some of these,
you will lose the contents of memory altogether. However, whatever
you POKE into wherever, you won't damage the computer. The worst
you will do is lose your program, so you can always just switch off
and start again.

PEEK

This command is the direct opposite of POKE, where one puts data
into memory, the other retrieves it. Actually PEEK looks into
memory and copies what it finds there. For instance, try:

PRINT PEEK (828)

i.e. PRINT what you find when you PEEK into memory location 828.

5-7

Reaction Tester

The first task is to tell the players the rules and in programing
terms, this is very straight-forward. If you wish to change this
part. e.g. add your own rules, then by all means do so. The more
you change things, then the more the programs become yours and the
more you will learn. Type NEW and then these lines.

PROGRAM 5.3

10 REM REACTION TESTER
20 PR I NP <CLR><12RCRSR>REACTION TESTER II
40 PRINT"<20CRSR><4RCRSR>THESE ARE THE R
ULES"
50 PRINT"<OCRSR>WHEN TOLD TO DO SO YOU M
UST PRESS"
60 PR INT" ANY KEY. THE TIME IT TAKES YOU
TO"
70 PRINT"PRESS THE KEY WILL BE CALCULATE
0"
80 PRINT"AND ADDED TO YOUR TOTAL SCORE.
IF"
90 PRINT"YOU BEAT THE BEST SCORE THEN YO
U WIN."

Now the display is to be held on the screen until the player has
read the rules and then pressed any key (but not RUN/STOP!).

PROGRAM 5.3 (cont'd)

110 PRINT"<20CRSR><4RCRSR>PRESS ANY KEY
TO BEGIN"
120 GET A$:IF A$=""THEN 120
125 PRINT "<CLR>"

The next part is to set up a loop controlling the number of times
that the person's reaction will be tested. This is arbitrarily
set at ten times, although you may change this if you wish.

PROGRAM 5.3(a)

130 REM START OF REACTION LOOP
140 FOR X=1 TO 10:PRINTI<CLR>"

5-8

The number of times that we change the screen's color wi 11 be
random, so that the delay before the tests will not always be the
same. The random command in Program 5.3(b) dictates that the
colors will change at least once or at the most ten times prior to
the test.

PROGRAM 5.3(b)

150 FOR Y=l TO INT(RND{1)*10)

The color to which we change the border and background colors will
also be random. There will be one random value for the border
color and another random value for the background color. thus
ensuring that they won't always be the same.

PROGRAM 5.3{c)

160 B1=INT(RND(1)*10)+1
170 B2=INT(RND(1)*10)+1

The random value is between 'I' and '10' inclusive; this gives an
acceptably wide color range and includes all the major colors.

After every POKE of color code val ues (B1 and B2) into memory a
small delay loop is required. This enables the user to recognize
the change of color before the next change. Not only does it make
a good and effective display, but it makes the time between each
test longer: although, hopefully not long enough to become tedious
or slow. For this purpose, a delay loop of 1 to 250 will be used.
If this delay is too slow or fast for you, then feel free to change
lines 190 and 210.

PROGRAM 5.3(d)

180 POKE 53281,81
190 FOR DELAY=l TO 250:NEXT DE
200 POKE 53280,B2
210 FOR DELAY=l TO 250:NEXT DE
220 NEXT Y

Although we have called our loop 'DELAY' lines 190 and 210 end
with:

'NEXT DE'

This is because the Commodore 64 looks only at the first two
characters of a variable. The final line (220) completes the loop
'Y' which controls the number of times the colors change.

5-9

If we run this program as it stands, we will have some idea of what
the final game is going to look like.

When the colors have stopped flashing, it's time to tell the player
to press a key. Thi s wi 11 be done by the use of a 1 arge 'GO'
drawn on the screen. Before that, however, we need to test
whether the keyboard buffer is empty. If, while we were watching
the screen change color, we accidentally pressed a key (we wouldn't
really cheat, would we?) or were accidentally to hold down a key,
then the keyboard buffer would not be empty. The way to check
this is to use the GET command to say 'GET a character and if it is
something other than a null string ('"') then go back and GET
another character'.

This is demonstrated in Program 5.3(e) which also gives us the
commands to draw our large 'GO', which is constructed by means of
multiple use of cursor controls on one line. This allows us to
draw a large construction in a relatively small number of lines.
Line 235 ensures that the screen color will not be the same as our
'GO' (because we would not be able to see it). This is done by
POKEing a '1' into 53281, makin~J the screen color white. If this
color is not suitable for you, then feel free to change it, only
try to avoid it clashing with the color of the GO message, or you
won't be able to see it.

PROGRAM 5.3(e)

230 GET A$:IF A$<>""THEN 230
235 POKE 53281,1
240 PR INT" <CLR><60CRSR>"; TAB(7);" <RVSON
> •••••• <6LCRSR>·<DCRSR><LCRSR>.<OCRSR>";
242 PRINT"<LCRSR>II<OCRSR><LCRSR>I<OCRSR>
<LCRSR>'<OCRSR><LCRSR>I";
245 PRINT" <OCRSR><LCRSR> ••••• -.cUCRSR><LC
RSR>.<UCRSR><2LCRSR> ••• <4UCRSR>";
250 PRINT"<3RCRSR> •••••• <OCRSR><LCRSR>.<
OCRSR><LCRSR>.<OCRSR><LCRSR>.";
252 PRINT"<OCRSR><LCRSR>.<OCRSR><LCRSR>
<OCRSR><6LCRSR> •••••• <6LCRSR>";
254 PRINT"<UCRSR>.<UCRSR><LCRSR>.<UCRSR>
<LCRSR>.<UCRSR><LCRSR>.";
256 PR I NT" <UCRSR><LCRSR>I<UCRSR><LCRSR>.
<7DCRSR>"

Once the message has been displayed, we can now accept a legitimate
input. Prior to accepting an input, the jiffy clock, TI, must be
set to zero.

5-10

PROGRAM 5.3(f)

260 TI$="OOOOOO"
270 GET A$:IF A$=""THEN 270

After accepting our input, another reading of the clock, 'TI', must
be made. This will be stored in lEI (for End), giving us our
reaction time. This time, however, is in 60th ls of a second; to
convert we divide by sixty. The measurement of time for our
reaction tester needs to be accurate to two decimal places. The
effect is obtained, as before, by multiplying by 100, finding the
integer value and dividing by 100 afterwards. giving us our
reaction time to two decimal places.

PROGRAM 5.3(g)

280 E=TI /60
290 E=E*100:E=INT(E):E=E/100

Now we have your response time in seconds. The next step is to
display the time and then memorize it. It would be very simple to
add the time onto a total but, for the final stage of our reaction
tester, we will need to know each individual time, so we can
calculate the quickest and slowest. To be able to keep each of the
ten reaction times we will use a very special type of memory
location. called an array.

Arrays

An array is a series of related items; for example, if we had ten
reaction times they are all related because they are reaction
times! So these times can be labelled under one heading, IT' for
time. So all our times can be stored under the collective heading
of ITI, the first time could be T(1). the second T(2), etc. Program
5.4 demonstrates the array T(X).

PROGRAM 5.4

1 FOR X=l TO 10
2 T(X)=X
3 NEXT X
4 FOR X=l TO 10
5 PRINT T(X)
6 NEXT X

5-11

Lines 1 to 3 set up a loop to give the array variable 'T' ten
values, T(1)=1, T(2)=2, etc, until T(10)=10. Then lines 4 to 6
print out the values of array T. Quite logically, if we wanted
twenty values in array T, we simply increase the loop value. Change
1 i ne 1 to

1 FOR X=1 TO 20

then run it again - you will get a 'BAD SUBSCRIPT ERROR'. This
tells us we are trying to print more array values of T then there
are. If we don't tell the computer how many values of T there will
be, then only ten are assumed. So we can't print the eleventh value
of array T because there isn't one.

The command that tells the computer how many array values we need
is ca 11 ed •...

DIM

The DIM command, (DIM is short for DIMension) tells the computer to
allocate a given number of array locations to a certain variable.

e.g. DIM T(20)

will reserve twenty locations for the array T. Now if we change
Program 5.4 to Program 5.4(a) it will work properly:

PROGRAM 5.4(a)

1 DIM T(20)
2 FOR X=1 TO 20
3 T(X)=X
4 NEXT X
5 FOR X=1 TO 20
6 PRINT T(X)
7 NEXT X

One thing to notice is, if we DIM an array with, say, fifty values,
these will automatically be filled with zeros. Run Program 5.4(b)
just to prove it.

5-12

PROGRAM 5.4(b)

1 DIM T(50)
2 FOR X=l TO 50
3 PRINT T(X)
4 NEXT X

You can now delete lines 1 to 7.

Arrays can also be used with strings. We simply call them T$(X)
instead of T(X) for example, for our reaction game will have an
array to store the player's score and also another array storing
the top five player's names. These two arrays will be called MN$
and TN figure 5.1 shows how the arrays will be arranged.

~~~~>i ... ': ... '.: .. ' .. ':' .. '.,',:.'.:.,:: ... : .... ' .. ' .... '.'.,', .. , .. ,.,.,:.:.: ...... ,." ... , .. ,.,:., .. , .. :, .. ::.',::.:.':., ... ,.: .. ,.,': .... ,.,.:.,., .. " .... , .. "'.,,.,: ...... , .. '.,::' ... ' .. ,,':.,:' ... ,.' .... , ..... , .... :.: ..... : ...... : .. : .... , ... ,: .... , ...... ".:,.,: ..... , ..... :.: ... :, ... , .... '.:.,.,:, .... ' ... ,.,.'.:.: ...... , ...... : ...... : .. " .... , .. " ........ , .... ' ... :., .. ' .... ~ .. , .. , .. : ... : ..... , ..... : .. ' .. : .. '., .... : ... :.: .... , ..... , .. ,' ...... ,.' .. , .... , .. '., ... , .. 

.•.•..••••. : .• : .••...•.• ,: •..•.. , •.• ,.,.:,., ..• : ...• ,.' .• ,' .• ,.' •• : .•..•. : •..•..•... :.: •..••.. : •.... , •• , ••..•. , •.. , •.• , •..• , •.•.. , •. :., .• , •...• , .. ,.,., •.... , •.. , •.. , •. , •.. , •.. : ••• , ..•.. , •.. , •. , •... , •.. , •. , •.• : .. , •• ,, •.. ,:, •• , ...•..••.•. ' .. '.:,.::.;,: .•• , •• , ... ~ .•.. ,: .•.• , .• ·.' .• · .. • .. ; .•. ;.·.· •. ;.·.··,· .. ~,·.i.i,i .•. i ..•. !;.~.: . . . ....... ' ...... "., ....... ".'/, ...... '.: ............... ; ...... " ...... '· .. , ............... :r .... . 

FIGURE 5.1 
The array diagram 

We need to sort our scores inside the the array into numerical 
order, i.e. the top score will be the first value of TN( ) and the 
scorers name will be the first value of MN$. Program 5.4(c) 
demonstrates this. 

5-13 



Program 5.4(c) 

1000 REM ARRAY SORT 
1005 DIM MN$ (5), TN(5) 
1010 INPUT "NAME"; N$: INPUT"SCORE";N 
1020 FOR X=1 TO 5 
1030 IF TN(X»N THEN U$=MN$(X):U=TN(X): 
MN$(X)=N$:TN(X)=N:N$=U$:N=U 
1040 NEXT X 
1050 FOR X=1 TO 5 
1060 PRINT MN$(X),TN(X) 
1070 NEXT X 

Line 1030 may be a bit difficult to understand! If the val ue of 
TN(X) is greater than our inputted score we will need to replace it 
with 'N' and then change TN(X) into N. The same appl ies to MN$(X) 
and N$. To do this an intermedia.te variable is used. U$ is set to 
MN$(X) and U is set to TN(X). Then MN$(X) and TN(X) become N$ and N 
respectively. Last but not least, N$ is set to U$ and N is set to U 
(the old values of MN$(X) and TN(X». When you run the program the 
first time, both arrays MN$ and TN are empty, so provided you input 
a positive number, your name and score will be stored in MN$(1) and 
TN(l). Experiment with this program a few times. 

When you've finished playing with program 5.4(c), you can delete 
it, as it is not the version that will be included in the reaction 
tester game. However, it does demonstrate the sorting technique 
that will be used in the game. Now back to the reaction tester •••• 

PROGRAM 5.5 

300 PRINT TAB(10); "<2DCRSR>THAT TOOK" ;E; 
" SECONDS" 
310 T(X) :z: E 
320 FOR DELAY:1 TO 1000:NEXT DE 
330 NEXT X 

There is a delay here (320) so the player can read the display 
before the 'X' loop which controls the number of tests is closed 
using a NEXT statement (330). Line 310 stores the time taken in our 
time array (T(». 

Once the loop has been completed, i.e. all ten reaction tests have 
taken place, the player is to be presented with the average score 
for all the tests, and his shortest and fastest scores, the values 
of 'BB' and ISS' are to be set at the start of each test. 

5-14 



PROGRAM 5.5(a) 

115 BB=0:SS=99 
340 PRINT"<CLR> THAT WAS YOUR LAST GO" 
350 FOR X= 1 TO 10 
360 TT=T( X)+ TT 
370 IF T(X»BB THEN BB=T(X) 
380 IF T(X)<SS THEN SS=T(X) 
390 NEXT X 
400 PRINT"YOUR TOTAL TIME WAS:";TT;"SECO 
NOS" 
410 PRINT"YOUR FASTEST TIME WAS:";SS;"SE 
CONDS" 
420 PRINT"YOUR SLOWEST TIME WAS:";BB;"SE 
CONDS" 

After a small delay a check is made to see whether we have a new 
best score, the lowest score being the best. Here we make use of a 
similar routine to that used in Program 5.4(c) 

PROGRAM 5.5(b) 

430 FOR X= 1 TO 5 
440 IF TN(X»TT THEN F=1 
450 NEXT X 
460 IF F<>1 THEN 560 
470 PRINT TAB(13);"<2DCRSR><RVSON><RED) 
NEW BEST SCORE<RVSOFF><BLUE>" 
480 INPUT"<DCRSR><4RCRSR>WHAT IS YOUR NA 
ME ";A$ 
490 A$=LEFT$(A$,8) 
500 FOR X=1 TO 5 
510 IF TN(X»TT THEN U$=MN$(X): 
U=TN(X):MN$(X)=A$:TN(X)=TT:A$=U$ 
520 NEXT X 
530 FOR X = 1 TO 5 
540 PRINT TAB(15);MN$(X);TN(X) 
550 NEXT X 

A point to note is that the arrays TN( ) and MN$( ) are not DIMed 
at the start of the program (or anywhere else for the matter) This 
is because we use no more than the allowable ten array values. If 
we used more than 10 then the arrays would have to be DIMensioned. 
However, we need to set them with large values at the start of the 
program so that the first time will be the shortest, Program 
5.5(c). 

5-15 



· PROGRAM 5.5(c) 

2 FOR X=1 TO 5 
3 TN(X)=99:MN$(X)="X" 
4 NEXT X 

All that is left now is to ask the player if (s)he requires another 
go. If yes, then we need to reset TT (the score total), and F(the 
new best score flag), to zero and then the game will loop back to 
line 110, thus avoiding printing the rules, or resetting the best 
score variable. 

PROGRAM 5.5(d) 

560 PRINT"<4DCRSR><4RCRSR>DO YOU WANT 
ANOTHER GO?(Y/N)" 
570 GET A$:IF A$="" THEN 570 
580 IF A$="Y" THEN F=O:TT=O:GOTO 110 
590 PRINT "BYE":END 

Now you have a fully functional computer reaction tester game with 
which to delight and amuse your friends! 

Another reaction program could ask the user to press a particular 
key rather than any key. Apart from anything else, this would be 
good practice on learning the layout of the keys. 

One way this new game could be developed is to have all the letters 
on DATA statements, much in the same way as we choose our words in 
the Hangman game. 

PROGRAM 5.6 

10 R=INT(RND(1)*26)+1 
20 FOR X=1 TO R 
30 READ A$ 
40 NEXT X 
50 PRINT A$ 
1000 DATA "A","B","C","D", .•. etc •.. "X"," 
Y","Z" 

When run, Program 5.6 will print a random letter. This small 
routine will be a very useful way to get a random letter, but there 
is a much better way and that is to use the CHR$( ) command. 

5-16 



CHR${ ) 

Every key on the Commodore keyboard has a special code which the 
computer uses to identify that character. 

Try 

PR I NT CHR$ (47) 

and you should get 1/1. That 1 s because the CHR$( ) command tell s 
the computer to print the character that corresponds to the CHR$( ) 
value of 1471• 

All the symbols have their own code number. For instance. can you 
see what this does? -

PRINT CHR$(13) 

Well, 13 is the code number for the RETURN key. As your computer 
can't display 'RETURN ' without being told to PRINT it, it has 
actually done a RETURN instead. This makes the computer start a new 
line. 

There is a full list of the CHR$( ) values in Appendix 3 and it is 
quite interesting to see what some of them are. Here are a few 
examp 1 es, but fi rs t make sure you are in lower case mode by 
pressing SHIFT and ~ • 

PRINT CHR$(142) 

Now we are in upper case mode. Try this: 

PRINT CrlR$(158) 

and the cursor has become yellow. 

So the CHR$( ) command can be used to find our random letter. Also 
we need to find a random number between 1 and 26. and this time we 
simply print the CHR$( ) value to get our letter. 

PROGRAM 5.7 

10 R=INT(RND(1)*26)+1 
20 PRINT CHR$(R) 

5-17 



Well! What went wrong there? Why didnlt it print a letter? Although 
the computer printed the CHaRacter responding to the random number. 
it wasnlt a letter. If we run Program 5.7 again, we still wonlt get 
a letter. This is because the CHR$( ) value of the letters is 
greater than 126 1• So what value do letters start at? An easy way 
of finding out it to ASC( ). 

ASC() 

The ASC ( ) command is the oppos ite of CHR$( ). Whereas CHR$( ) 
converts a number into the appropriate character. ASC() converts a 
character into the appropriate number. For example ••• 

PRINT ASC(II/II) 

The result will be 147 1, and if you remember, that was the 
character number we printed earlier. So if we tell the computer to 
print the ASC( ) value of IAI, then we will know where the letter 
characters start. You must always remember to enclose the character 
in quotes when using ASC( ). 

PRINT ASC(IIAII) 

This should respond with 1651• So clearly the letters start at 
1651• Just to test this, type in Program 5.7(a). 

PROGRAM 5.7(a) 

10 FOR X=65 TO 91 
20 PRINT CHR$(X) 
30 NEXT X 

When run, this program will pr"int the letters IAI to IZI thus 
proving our theory. 

Now that we understand how to use these commands, we can begin to 
develop our program, or rather ••• you can. The program is left for 
you to create. The structure \~i 11 be s imil ar to that of the 
Reaction Tester program but, bE~fore you begin, herels a little 
nudge in the right direction. 

PROGRAM 5.7(b) 

10 R=INT(RND(1)*26+65) 
20 PRINT IIPRESS THIS KEYII;CHR$(R) 
30 GET A$:IF A$=IIII THEN 30 
40 IF ASC(A$)=R THEN PRINT liVERY WELL DO 
NEil: STOP 
50 GOTO 30 

5-18 



CHAPTER 

6 
PART ONE 

User-Defined Graphics 

By using the Commodore 64's user-defined graphics it is 
possible to define a character of your own design and then 
call it up in programs as and when it is required. Once 
defined, this character can be treated as any other and it 

answers to the name that you give it, a name that can be anyone of 
the characters on the keyboard or anywhere in the character set. 
The character you define is made up from an 8x8 matrix, of little 
squares known as pixels. These are set to eith€r full or empty by 
reference to the patterns stored in the character data which is 
stored in the ROM. The computer could actually store the data as a 
series of 64 separate memory locations each of which is set to 'on' 
or 'off', thus defining the matrix as shown in Figure 6.1. 

0 0 1 1 1 1 0 0 0 0 1 1 1···. 1 0 0 

0 0 1 1 1 1 0 0 0 0 1 1 l· i 1 0 0 

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 

1 1 1 1 1 1 1 1 1 l< 1 1 1 1 1 1····.· ....... 

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 

0 1 1 1 1 1 1 0 0 IJ· •.. .1 1 J 1 1 0 

0 1 0 0 0 0 1 0 0 ~Yl. 0 0 0 0 ·.·· •. 1 ••••••• 0 

1 1 0 0 0 0 1 1 1 1> 0 0 0 0 .{ ·1 - ..... 

FIGURE 6.1 

6-1 



Defining a character by using individual bytes for each pixel would 
use up 64 memory locations for each character and, by the time a 
few characters have been stored, they start to gobble up a lot of 
the computer's memory. However, help is at hand in the way the 
computer stores data generally! 

The microprocessor chip on which the C-64 ;s based· the 6510 • is 
referred to as an 8-bit chip, which means that each character is 
stored in memory as eight 'bits' of data. This block of eight bits 
is known as one 'byte'. As the chip is a 'digital' microprocessor, 
each of the bits of data can be set only to 'on' or 'off', i.e. a 
'1' or a '0'. Thus, only one byte is needed to store each of the 
rows for each character shapes, so a total of 8 bytes are needed to 
hold the entire shape of each of the C-64's characters. 

The method of cramming up to eight bits of character information 
into the byte simply takes account of binary notation (see Appendix 
I). When using this technique it is necessary to add up the 
elements of the character bit by bit, to end up with the number to 
be POKEd into memory. Thus, to store the top line of the dancing 
man shown in Figure 6.1. the addition sum shown in Figure 6.2 is 
performed. 

(OxI28)+(Ox64)+(lx32)+(lxI6)+(lx8)+(lx4)+(Ox2)+(Oxl)=60 
o 0 1 1 1 1 0 0 =001111002 

FIGURE 6.2 

From Figure 6.2 the elements of the row add up to: 32+16+8+4=60. 
Thus the number '60' must be POKEd into memory. To obtain POKE 
values for the whole figure, each row must be considered 
separately, as shown in Figure 6.3. 

6-2 



BII~ARY CALCU LA TI ON DECIMAL 

128 64 32 16 8 4 2 1 

0 0 1 1 1 1 0 0 32+16+8+4 = 60 
I 

0 0 1 .~ 1· 1 0 0 32+16+8+4 = 60 .. 

0 0 0 1 1 0 0 0 16+8 = 24 

1 1 1 1 1 1 i 1 128+64+32+16+8+4+2+1 = 255 

0 0 0 1 1 0 0 0 16+8 = 24 

0 1 1 1 1 1 ~ .... 0 64+32+16+8+4+2 = 126 . 

0 1· 0 0 0 0 ··1··· 0 64+2 = 66 
i· 

1 0 0 0 0 1 1 128+64+2+1 = 195 .. 

FIGURE 6.3 

Having calculated the values needed to define a character, these 
values must be stored in the area of memory where the VIC II chip 
looks for its characters. As this is a fairly complicated process, 
it's easiest to use a utility program to help. Part Two of this 
chapter develops such a utility and during its development. the 
whole process of defining characters will be explored. 

Before you set out to develop a program of this complexity, it is a 
good idea to LOAD and RUN Honey.Aid. In addition to using 
Honey.Aid as a tool, we will incorporate a Honey.Aid command into 
the Char.Gen program, and thereby speed it up considerably. 

6-3 



PART TWO 

A Graphics Utility: Specification 

This utility will provide a facility for the creation of a 
user-defined graphics character. The character will be designed on 
a 'screen' or matrix which represents a single character about 
eight times full size, see Figure 6.4, and the actual form of the 
character will be displayed during the design process. By moving a 
block, , which represents a single pixel, around the character 
matrix and storing it where desired, a character will be built up, 
its POKE values calculated and stored in RAM. Provision will be 
made for storing these POKE values in DATA statements for 
incorporation into the user's program. To facilitate its use along 
with the user's own program, the graphics utility program will be 
numbered from line 60000 onwards. 

------

Relocating the character set. 

---...... --- -------- ... -- -- --.::: ----.... 
----::..."':::..."":::..~ 

---- .. ---------- ,"""" --- """'" 

"-"-,,,,,,-

FIGURE 6.4 

,,/ 
" ,," 

The C-64 comes with its own ready-drawn character set - these are 
the characters that you see on the screen when you press the keys. 
These, however, are stored in ROM, or Read only Memory, and it 
isn't possible to change them. Thus, if you want to define a new 
character set, then it is first of all necessary to move the 
existing set into RAM where you can operate on it. As each 
character occupieb 8 bytes and there are 256 different characters 
in the upper case graphics character set to be moved, 8 x 256 or 
2048 bytes need to be re-located. In the ROM, the standard 
characters are located from 53248 ($0000) onwards and one 
recommended place to move these to is 12288 ($3000). A fairly 
straight-forward PEEK/POKE routine would appear to perform this 
operation i.e. 

6-4 



FOR 1=0 TO 2047:POKE(12288+1),PEEK(53248+1):NEXT 

However, because of the way the various chips inter-relate, a few 
other things need to be done before this removal process can be 
carried out. 

Protecting the top of memory 

Once this is done. a copy of the character set exists at the top of 
the RAM. Of course, this is quite likely to be overwritten by any 
program that tries to use the same piece of RAM. This problem can 
be overcome by persuading the C-64 that RAM ends lower down than it 
really does. A switch-on the computer checks through the RAM and 
calculates just how much memory is available. Once the calculation 
is done, the location of the top of memory is recorded in memory 
locations 55 and 56. If these values are fixed and set to a lower 
figure the C-64's BASIC thinks that memory ends earlier and doesn't 
overwrite your character set. Before moving down the top of memory, 
just do a little check on what memory is available by entering: 

PRINT FRE(O)-(FRE(0)<0)*64*1024 

The machine will then respond with 34618 if Honey.Aid is in 
(otherwise 38909). 

Next move down the memory by means of: 

POKE 55,0: POKE 56,48 

Once this is done, check memory availability again with another 
'PRINT FRE(0)-(FRE(0)<0)*64*1024' and you should find the new value 
is 10237 which is some 24406 (28671) less. 

Now, let's investigate the workings of the keyboard a little, in 
particular the: 

Keyboard Buffer 

When any data is entered into the computer vi a the keyboard, the 
C-64 automatically puts it into the keyboard buffer, which is ten 
bytes of memory located from 631 to 640. In order to keep track of 
what's in this buffer, one other byte located at 198 is used. Just 
to investigate the operation of this buffer, type in Program 6.1. 

6-5 



PROGRAM 6.1 
2 PRINT "<CLR)"; 
5 T$=CHR$(34)+CHR$(20)+"<RVSON)T<RVSOF)" 
+CHR$(34}+CHR$(20) 
6 M$=CHR$(34)+CHR$(20)+"<RVSON)M<RVSOF)" 
+CHR$(34)+CHR$(20) 
10 PRINT:PRINT"<HOME>";CHR$(34);:FOR X=O 
TO 9 
20 IF PEEK(X+631)=20 AND X<10 THEN PRINT 
T$;:NEXT:GOTO 10 
30 IF PEEK(X+631)=13 AND X<10 THEN PRINT 
M$;:NEXT:GOTO 10 
40 PRINT CHR$(PEEK(X+631»;:NEXT:PRINT C 
HR$(34):PRINT PEEK(198);:GOTO 10 

When you RUN this program, it will print in the top left-hand 
corner of the screen the current contents of the keyboard buffer. 
Underneath this it will print what value is stored in 198, i.e. the 
number of characters that the C-64 thinks are in the buffer. Why is 
this a zero? Well, at turn on and various other times, the buffer 
gets filled up with garbage that just shouldn't be there. What 
location 198 tells you is the official story. The C-64 will only 
read the number of characters that location 198 tells it are there, 
the rest it ignores. 

To watcb the buffer in action run Program 6.1 and while it is 
running type in FREDFREDFRED and you will see that the buffer now 
contains: 

"FREDFREDFR" 

and the line below tells you that 198 now contains the value 10. 

Next, type in SID and see what happens. Anything happened? No, 
nothing happens because the buffer is full. It is a First In, First 
Out device which means that the first item put in i.e. the 'F' of 
the first 'FRED' is maintained ready for retrieval. 

To investigate the buffer further, press RUN/STOP and then modify 
Program 6.1 to do the following 

* accept the first 10 keyboard entries 
* perform a 'GET' 
* store the result in A$ 
* display the first character to come out of the buffer. 

6-6 



---------------------~-------------

PROGRAM 6.1( a) 

45 IF PEEK(198)=10 THEN GETA$:PRINT"<4DC 
RSR)"A$ 
50 GOTO 10 
(remove the GOTO 10 on line 40) 

When you RUN this, repeat the above procedure by attempting to type 
in three 'FRED's. As you enter the 'E' of the thi rd 'FRED', the 
buffer will fill i.e. 198 contains a '10'. However, immediately 
afterwards, the 'GET' will be performed and a character taken from 
the buffer to be stored in A$ and PRINTED on the screen. Thus, the 
letter 'F' will be taken from the buffer and the remaining 9 
characters moved along one to the first 9 positions. When the next 
letter 'E' is entered, it will be placed initially in location 10 
of the buffer, only to be shuffled forward as an 'R' is extracted 
by the GET. You may now stop the program by pressing RUN/STOP, but 
do not erase the program yet. 

Addressing the keyboard 

Before we can re-locate the character set, one other formality is 
needed, a necessity because of the important role that the keyboard 
plays. As it forms the main communications channel between the 
user and the ope rat ing system, the keyboard is scanned 
continuously. This scanning must be turned off or disabled before 
copying the character set. Scanning is turned off by setting bit 
zero of 56334 to zero and re-enabled or turned on by setting this 
bit to one. One problem with this process is that it is only bit 
zero of 56334 that needs to be changed with the remainder staying 
as it was. To do this without a lot of PEEKing and POKEing we may 
make use of : 

LOGICAL OPERATORS (a digression) 

AND - Perform a logical AND 

It may be clearer if we first examine an electronic AND gate - your 
C-64 is just full of them! What an AND gate does is to accept two 
electrical signals, compare them and produce an output based on 
this comparison. Figure 6.5 shows such a device with inputs 1 and 2 
and output OP. 

AN ELECTRONIC AND 

FIGURE 6.5 

6-7 



In operation, this gate looks at IPI and IP2 and, if they are both 
set at 5 volt, then OP is set at 5 volt. However, if either or both 
IPI and IP2 are set at zero volts, the OP is set at zero volts. In 
computer terms, the 1 state is referred to as 'TRUE' and the zero 
as FALSE so the AND gate rules read: the output of a gate is TRUE 
if input 1 AND input 2 are TRUE.. For all other cases, the output is 
FALSE or zero. 

It is convenient to express these states in a TRUTH TABLE, see Fig. 
6.6. 

IPI IP2 OP 

a a a 
a 1 a 
1 0 a 
1 1 1 

TRUTH TABLE FOR 
ELECTRONIC AND 

FIGURE 6.6 

To use this, read along the line that has the requisite states of 
IPI and IP2 and column 'OP' will then give the logical state of the 
output, 'OP'. 

For instance, tak ing a val ue of IPl=O and IP2=I, 1 ine 2 gives the 
state of OP as '0' (FALSE). 

OR Perform a logical OR 

As with 'AND', this operator performs a logical bit-by-bit 
comparison between the two pieces of data. What this means is that 
each bit of the data is tested and if either one OR the other is 
equal to 1, then a TRUE position obtains and the resultant bit is 
set to 1. 

This is represented on the truth table, Figure 6.7. On this the 
two possible inputs are labelled IPl and IP2 while the output is 
1 a be 11 ed 0 P • 

6-8 



This is represented on the truth table, Figure 6.7. On this,the 
two possible inputs are labelled IP1 and IP2 while the output is 
labelled OP. 

IP 1 

0 

1 

0 

IF2 

0 

0 

1 

TRUTH TABLE FOR 
LOGICAL OR 

FIGURE 6.7 

Logical operators and eight bits 

OP 

0 

1 

1 

So far, all the operators have been shown operating upon single 
bits of data. However, when logical operations are carried out on 
an eight bit number, each bit of that number is treated 
individually. Take for example the situation where 10010 (01100100 2) 
is ORed with 5010 (001100102), The process is simply one of ORing 
bit by bit or, as it is otherwise known, bitwise operation. Figures 
6.8 and 6.9 show the stage-by-stag~ process where first of all the 
first zero of 100 is ORed with the first zero of 50 to yield a 
zero. Next the second character of the 100 (a zero) is ORed with 
the second character of the 50 (a one) to yield a 1. Figure 6.9 
shows the various stages of the pro:ess along with the results. 

Thus, when 100 is ORed with 50 the result is: 

0 1 1 0 0 1 0 0 = 10010 

OR 0 0 1 1 0 0 1 0 = 5010 

= 0 1 1 1 0 1 1 0 = 11810 

FIGURE 6.8 

6-9 



Decoding this by means of the truth table, Figure 6.7, starting 
with bit 0 gives: 

bit 0 : 0 ORed with 0 gives 0 
1 : 0 ORed with 1 ~jives 1 
2 : 1 ORed with 0 gives 1 
3 : 0 ORed with 0 ~~ i ves 0 
4 0 ORed with 1 gives 1 
5 1 ORed with 1 qives 1 
6 1 ORed with 0 gives 1 
7 0 ORed with 0 I~i ves 0 

i.e. o 1 1 101 1 0 

FIGURE 6.9 

Back to the project ••• 

As we were saying! The keyboard is the main means of communication 
between the user and the computer and it is necessary at times to 
break the link. 

One memory location - 56334($OCOE) - contains one bit of data - bit 
o - that turns the keyboard ON when it's set to 1 and OFF when it's 
set to zero. To set it, two of the logical functions, AND and OR 
are used. 

Firstly, to set just one bit of a byte to zero we AND it with a 
byte that contains all l's except at the location to be set. Thus, 
when that bit is ANDed with the zero present it is automatically 
switched to a zero. Hence to set bit zero to zero, we AND the byte 
with a 25410(111111102) i.e.: 

this 1 0 1 1 0 0 1 1 1 
ANDed with 1 1 1 1 1 1 1 1 0 

gives 1 0 1 1 0 0 1 1 0 

FIGURE 6.10 

If you're unsure of the process, substitute any number you wish for 
the top number and you'll find that it will remain unchanged except 
for bit zero which will be switched to a zero. 

Putting this into practice to turn off the keyboard is: 

15-10 



PROGRAM 6.2 

x = PEEK( 56334) 
Y = X AND 254 
POKE 56334, Y 

or, putting it into one line: 

POKE 56334,(PEEK(56334)AND 254) 

To turn the keyboard on again or to Ire-enablel it, bit zero needs 
to be re-set to alii. In this case, the byte is ORed with a 1 i.e. 
seven zeros and a 1 in bit zero. This process will leave all the 
bits ORed with the zeros as they were but set bit zero to alii. 
Figure 6.11 shows this process in action: 

this 
ORed wi th 

gives 

101 1 
o 0 0 0 
101 1 

001 
000 
001 

1 
o 
1 

o 
1 
1 

FIGURE 6.11 

Thus, the two lines to turn the keyboard off and then on again are: 

POKE 56334,PEEK(56334)AND 254 
POKE 56334,PEEK(56334)OR 1 

Turn off keyboard 
Turn on keyboard 

Our short demo programs (6.1 and 6.1a) can help to illustrate that 
process too if we set it to turn off the keyboard when, say 3 
characters have been inputted. A slight problem might arise here 
though, as, once the keyboard is turned off there is no easy way 
remaining to talk to the computer. Therefore, the turning-back-on 
procedure must be programmed BEFORE the keyboard is disabled. Lines 
60 and 70 perform this ON/OFF function, with a suitable del ay 
between. 

PROGRAM 6.2(a) (add these lines to the program 6.1 and 6.1a) 

47 IF PEEK(198)=3 THEN 60 
60 POKE 56334,PEEK(56334)AND 254:PRINT"< 
6DCRSR> KEYBOARD OFF" :FOR X=l TO 1000 
70 NEXT:POKE 56334,PEEK(56334)OR I:PRINT 
"<UCRSR> KEYBOARD ON": FOR X=l TO 1000: NEXT 
80 GOTO 10 
(delete line 50) 

Run thi s program and watch what occurs as you type in keyboard 
characters. You may then save thi s program and erase the memory 
(type in NEW). 

6-11 



The VIC II CHIP and the 6510 

The next task to be tackled is the relocation of the character set 
and to do this, the role of the VIC II chip needs to be examined. 
The C-64 contains many chips including the two that are very much 
concerned with day-to-day operations, the 6510 and the VIC II chip. 
The 6510 is the main microprocessor in the C-64 while the VIC II 
chip handles all of the video outputs to the screen, leaving the 
6510 free to get on with its own tasks. Many funct ions call for 
the interaction of one of these with the other and this is 
particularly true during the translation of a command into an 
actual screen display. To understand how this works, it's 
necessary to look into the operation of the ROM. Thi sis the 
program that is built into your machine and, in effect, makes the 
machine work. It has to run this program pretty quickly and so 
it's not written in BASIC but in the language that the chip itself 
uses, machine code. 

let's take a sample statement and see how the 6510 handl es it. 
Take the statement: 

PRINT "A" 

This will cause the C-64 to print an 'AI at the next cursor 
position. 

The first thing that the 6510 must do is to work out what 'PRINT' 
means. As this is a command word, it is not stored in memory as 
five separate letters but as a 'token', a one byte number that is 
the code for 'PRINT'. Thus, the 6510 sees 'PRINT', works out what 
its token is and then looks through the ROM to fi nd that token. 
When it finds it, in a table, it finds an address there too, the 
address being the start address of the machine-code program which 
brings about a 'PRINT'. 

6-12 



It then jumps to this address and starts to run the machine-code 
program stored there. The first task assigned by this program is 
to find out where to print, i.e. to look up in memory what the 
current cursor position is. Next it looks at what comes after the 
PRINT and, on finding a quote sign (II), takes the IAI and uses a 
special algorithm to convert it to screen code which turns out to 
be III in this case. The 6510 now puts this 111 into the 
appropriate screen memory location. It must then look at what the 
current character color is and insert the appropriate code for it 
into the color RAM area. 

Having carried out all these tasks, the cursor position must be 
updated, i.e. moved one position to the right, and the 6510 is then 
free to look for the next job to do and simply carries on. 

However, nothing has got printed onto the screen yet, all the 6510 
has done is to update the screenls RAM area. This is where the VIC 
II chip comes in! 

The VIC II chip carries out many screen control functions and is 
constantly updating the screenls contents. In fact, it is 
constantly scanning through the screen RAM memory and looks, in 
turn, at the contents of each individual screen memory location. 
When, in our example for instance, it looks into location 1064, it 
finds a Ill~ This it must translate into an appropriate screen 
image with shape and color. 

Before it can find the appropriate shape data, the VIC II chip must 
find out the address of the character shape data. To do this it 
needs to refer to two memory locations: the first of these is at 
56576 (actually a register of one of the CIA chips) and the second 
at 53272 which is one of the VIC II chip's own registers. Once 
thi s address is found, it can look through the data stored there 
and pick ou~ the appropriate pixel pattern. Next it must find the 
color data for that character and this it simply looks up in the 
color RAM, which is always stored in the same place. 

Having acquired all the necessary data, the VIC II chip can go 
ahead and display the IAI on the screen. Figure 6.12 illustrates 
this entire process. 

6-13 



6510/VIC II INTERACTION 
DURING EXECUTION OF A 

PRINT "A" 

~§d'~ ~ l-auunG 

What 6510 does: 

* find token 

* find subroutine 

* find cursor 

* fi nd quotes 

···CLHRC\"f . 
SCRE[]\ START< 

~24 -, 

* calculate screen 
code for 'A' 

* store 'A's' 
code 

FIGURE 6.12 

6-14 

What VIC II does: 

* look in 1064 

* find pixel 
data for 'I' 

* find color 
data for 1064 

* produce 
pixel pattern 

* display on 
screen 

DUUn 



Normally, when the 6510 looks at the memory in 53248 to 57343 
($0000 to $OFFF) it sees the Color RAM (at $0800) and the so called 
Input/Output devices i.e. the VIC II chip (at $0000), the SID 
(Sound Interface Device) chip (at $0400) and the two CIA (Complex 
Interface Adaptors) chips, (at $OCOO and $0000). However, the 
Character ROM is there also and we need to arrange for the 6510 to 
Isee l the Character ROM instead of the Color RAM and I/O devices. 
This is quite easily achieved by changing bit 2 of memory location 
1. This is normally set to 1 which allows the 6510 to see the 
Color RAM and I/O devices. If bit 2 is changed to a zero, however, 
the 6510 sees the Character ROM in this space. 

Before we rush into doinq this, we need to consider what would 
happen to the C-64 if the 6510 can no longer see the Color RAM and 
the I/O chips. The only real problem lies with the two Complex 
Interface Adaptors (CIA' s ). These chips handle all the 
Input/Output, from and to the keyboard, the tape cassette reader 
(if any), the di sk drive (if any) and the RS232 (if any). If the 
CIA's cannot be seen by the 6510 then no input or output to these 
devices can be handled. 

At first sight, this doesn't appear to be a problem. Surely, if we 
make sure that the Char.Gen program is not inputting or outputting 
to the keyboard, tape, disk or RS232 while we are copying the 
character ROM to RAM, then there isn't a problem, is there? Well, 
yes, the keyboard is the trouble. The 6510 checks the keyboard 
everyone sixtieth of a second to see if any key has been 
depressed. In order to check the keyboard, the 6510 needs to be 
able to see the two CIA's which it can't do if we1ve set bit 2 of 
memory location 1 to a zero. It would see the character ROM, and 
treat the character it found as an instruction from the keyboard -
disaster! 

Keyboard checking normally goes on all the time, the program which 
the C-64 is currently running being interrupted in order to do 
this. We need to stop this interruption temporarily, therefore, 
while we use the 6510 to copy the Character ROM. Fortunately, this 
is quite simple. What we do is stop the system clock which 
measures the sixtieths of a second and this stops the keyboard 
scanning routine from interrupting. To stop the clock we must 
change bit zero of memory location 56334 ($OCOE) to a zero. To 
restart the clock, following the move we change the same bit to a 
one. Since this memory location is a register on one of the two 
CIA' s , we can only change the value while the 6510 can see the 
CIA's. 

6-15 



So the plan of action works out to be: 

(1) Stop the system clock controlling the keyboard scan by 
changing bit zero of 56334 to zero. 

(2) Let the 6510 see the Character ROM instead of the CIA I s by 
changing bit 2 of memory location 1 to a zero. 

(3) Copy the Character ROM to RAM, using the 6510. 

(4) Let the 6510 see the I/O chi ps again by changi ng bit 2 of 
location 1 back to a one. 

(5) Restart the system clock by changing bit zero of 56334 back 
to a one. 

Putting that into the program: 

PROGRAM 6.2(b) 

Stop system clock 
Let 6510 see ROM & 
copy character 
ROM to RAM 

Restart system clock 

60030 POKE 56334,PEEK(56334)AND 254 
60040 POKE 1,PEEK(1) AND 251: FOR 1=0 TO 
2047:POKE I+12288,PEEK(I+53248):NEXT 

60050 POKE I,PEEK(1) OR 4 
60060 POKE 56334,PEEK(56334) OR 1 

Finally the VIC II chip needs to be told just where you are putting 
your new character set. To find where it is stored, it looks in 
location 53272, so to redirect the VIC II chip to the new location, 
type in: 

60070 POKE 53272,(PEEK(53272)AND 240)+12 

We shall be using two special characters in the character generator 
program and these are redefined during the initial ization. The 
characters that we will redefine are those which represent 254 and 
255 and are thus stored in: 

12288+(254*8)=14320 
12288+(255*8)=14328 

The character representing 255 will be a totally filled-in square. 
i.e. The pixels on each 1 ine coincidentally add up to 255 also .. 
see Figure 6.13. 

6-16 



FIGURE 6.13 

:II: 255 

:II: 255 

z 255 

z 255 

z 255 

z 255 

'"' 255 

z 255 

Memory locations 14328 to 14335 are, thus, filled with 255's i.e. 

FOR X=O TO 7:POKE(12288+255*8)+X,255 

Figure 6.14 shows the other character, 254. This one has some empty 
pixe1s represented by a zero (0). 

FIGURE 6.14 

6-17 

z 255 

:: 12g 

= 129 

:: 129 

= 129 

= 129 

:: 129 

'"' 255 



Two different numbers need to be POKEd in to define this character, 
255' s into the zero' th and seventh 1 ocat ions and 129 into the 
middle six locations, i.e. 

FOR X=1 TO 6: POKE(12288+254*8)+X, 129 
POKE(12288+254*8)+0,255 
POKE(12288+254*8)+7,255 
NEXT X 

In use, the character generator program will be suitable for 
redesigning any character in the character set i.e. from 0 to 253 
(254 and 255 being used in the Char.Gen program). Lines 60110 and 
60120 ask for the value of the character which is to be defined and 
store this in the variable CH. 

When the program so far is run, it will move the character set and 
ask which character is to be re-defined. When running this program, 
you may be struck by the interminable time taken to move the 
character set. However, once this has been done, it doesn't need to 
be done again. Indeed, it is important that it isn't done again. 
For if a character has been redefined then moving the character set 
again will destroy the redefinition. One way to handle this would 
be to ask whether or not the character set has been moved, using an 
INPUT or GET. However, a more subtle way of checking this exists 
as, during the initialization procedure, byte 53272 was set by 
loading in a '12', i.e. settin£! bits 3 and 2 to l's. Thus, a check 
of th is byte wi 11 te 11 whether or not the character set has been 
moved. What is needed therefore is a way of looking at the byte but 
ignoring all the bits other than 3 and 2. This can be achieved by 
ANDing the contents of 53272 with '12' and then checking whether 
the resultant value is 12. If you're not sure, check it below. 

0 0 0 0 1 1 0 0 
ANDed with 0 0 0 0 1 1 0 0 
12 equal s 0 0 0 0 1 1 0 a = 12 

and, 1 a 1 1 1 1 0 a 
ANDed with a 0 0 0 1 1 a 0 
12 equals 0 0 0 0 1 1 0 a = 12 

FIGURE 6.15 

Whatever the number is that is ANDed with 12, any l's other than 
those in the 3rd and 2nd bit are stripped off by the 12's zeros. 
This is frequently known as stripping bits off by means of an AND 
function. 

6-18 



Thus, a BASIC line is required which says: If the result of ANDing 
the number with 12 equals 12, then jump over the character moving 
sub-routine i.e. 

60000 GOSUB 62000: IF PEEK(53272)AND 12=12 THEN 60080 

The subroutine at 62000 in left upto you: it is for a title page 
should you wish to include one. 

Adding all the various parts of the initialization procedure, gives 
the routine as in Program 6.3. 

PROGRAM 6.3 

60000 GOSUB62000 
60010 IF(PEEK(53272)AND12)=12THEN60080 
60020 PRINT" <CLR><BL U><11DCRSR><2RCRSR> 

PLEASE WAIT WHILE CHAR SET MOVED" 
:POKE55,0:POKE56,48 

60030 POKE53280,3:POKE53281,1:POKE56334 
,PEEK(56334)AND254 

60040 POKEl,PEEK(1)AND25l:FORI=OT02047: 
POKEI+12288,PEEK(I+53248):NEXT 

60050 POKEl,PEEK(1)OR4 
60060 POKE56334,PEEK(56334)OR1 
60070 POKE53272,(PEEK(53272)AND240)+12 
60080 FORX=OT07:POKE14328+X,255:NEXT 
60090 FORX=lT06:POKE14320+X,129:NEXT 
60100 POKE14320,255:POKE14327,255 
60110 PRINT"<CLR><5DCRSR><BLU><2RCRSR>W 

HICH CHARACTER WOULD YOU LIKE" 
60120 INPUT"<4RCRSR>TO DEFINE(O TO 253) 

";CH 
60130 IFCH<=00RCH>2530RCH<>INT(CH)THEN6 

OllO 

One of the features of the character generator will be its ease of 
use and this is defined principally by the graphics. The main 
feature of the graphics is the design matrix. In this, a blown-up 
version of the character matrix is set up using PRINT statements. 
These create an eight by eight (8x8) matrix within which the new 
character is designed. Lines 60150 to 60170 of Program 6.4(a) 
contain this section. In addition to displaying the character as 
designed in its enlarged format, the program will actually POKE the 
character to the screen without any enlargement, all that is 
necessary being a POKE,CH: 

6-19 



PROGRAM 6.4(a) 

60140 PRINT"<CLR)<40CRSR)<PUK)HERE IS Y 
OUR CHARACTER SO FAR:<GRY2> ";:PO 
KEl214,CH 

60150 PRl NT"<HOME)"TAB( 7 )"<70CRSR><RED> 
<RVSON>YN.VNNa": FORX=l T08 

60160 PRlNTTAB( 7 )"<RED><RVSON)"<GRN>··" 
·····<REO>"II 

60170 NEXT: PRINTTAB( 7) "<REO><RVSON>WYao .............. 
When the program is being used to design a character, the filled-in 
square is moved about the matrix by means of four keys, the chosen 
ones being: 

up 

t 
w 

left~A 
z 

S --+right 

+ down 

FIGURE 6.16 

So that this is clear to the user, the keys and their functions are 
displayed on the screen, arranged in the same pattern as on the 
keyboard. To control the actual operation of the generator, the 
function keys are used and, once again, they are displayed on the 
screen by means of simple PRINT statements. Lines 60180 to 60240 in 
Program 6.4(b) complete the display: 

PROGRAM 6.4(b) 

60180 PRINT"<4DCRSR><GRY3> ~-UP" 
60190 PRINT" A-LEFT S-RIGHT" 
60200 PRINT" Z-DOWN":PRINT"<RETURN> 

-END C.GEN"; 
60210 PRl NT" <3LJCRSR>"TAB (18)" (L TBLU>I<G 

RY3> F1-SET PIXEL" 
60220 PRINTTAB(18)"<LTBLU>I<GRY3> F3-CL 

EAR PI XEL" 
60230 PRINTTAB(18)"(LTBLU>I<GRY3> F5-01 

SPLAY DATA" 
60240 PRINTTAB(18)"<LTBLU>I<GRY3> F7-CL 

EAR BOARD<BLil>"; . 

6-20 



The Function Keys 

The C-64 has eight function keys, 1,3,5 and 7 being available by 
simply pressing the function keys alone. By means of the SHIFT and 
these keys, function keys 2,4,6 and 8 are activated. As with all 
the other keys on the keyboard, each has a characteristic ASCII 
code assigned. Thus, the pressing of fl (function key 1) can be 
detected by looking for a CHR$(133). The relevant codes for the 
function keys are: 

f1 CHR$( 133) 
f3 CHR$(134) 
f5 CHR$(135) 
f7 CHR$(136) 

f2 CHR$ (137) 
f4 CHR$( 138) 
f6 CHR$(139) 
f8 CHR$(140) 

FIGURE 6.17 

Designing the character 

To define each individual character, 64 pixels need to be defined 
i.e. eight bytes of eight bits each. During processing, this data 
could be stored as a single stream of 64 characters but Commodore 
BASIC provides a much easier way of doing this by means of 

Two dimensional arrays 

Two dimensional arrays utilize the same names as single dimensional 
arrays, and can in the same way be used to store both numeric and 
string data. 

i.e. A(X,Y) 
AB(X,Y) 
A9(X,Y) ••• etc. 

In effect, a two-dimensional array is a rectangular matrix of cells 
that can be visualized as a series of pigeon holes with X rows in 
one direction and Y columns in the other. See Figure 6.18. 

6-21 



A 4 x 7 array 
eg A(4,7) 

An 6 x 11 array 
eg W$(6,11) 

FIGURE 6.18 

I n an array, each ce 11 can be addressed i ndi vi dually by defi ni n9 
its co-ordinates in each direction i.e.: 

ce 11(1,3 

ce11(5,2) 

l-l--i-t-L"UJ-=lr----ce11 (4,5) 

.-_-ce1H7,6) 

An 8 x 8 Array 
FIGURE 6.19 

Such an array as in Figure 6.19 can be used to store the character 
as it's being defined with each row i.e. A(1,l} to A(1,8} being 
stored in one byte. As with single-dimensional arrays, the 
two-dimensional variety needs to be DIMensioned prior to use. 

Auto-repeat on all keys 

To move the cursor around the screen, the cursor control keys which 
are, very conveniently, fitted with an auto-repeat feature, are 
used. However, Char.Gen utilizes the W,A,S and Z keys for cursor 
control and these do not norma 11 y feature auto-repeat. However, 
this feature is very readily turned on generally by means of: 

POKE 650,128 (or by REPEAT 1) 

6-22 



Prior to the design of the character, an initialization procedure 
is required to set X and Y (the co-ordinates of the design cursor) 
to 1 (line 60250). In addition, the character to be re-designed 
needs to be cleared as, prior to this process, it contains one of 
the C-64's standard characters. 

60250 X=I:Y=I:POKE 55296+328,0 

A GET A$ is used to accept an input from the keyboard and one 
precaution that is well worth taking when using GET A$ is to ensure 
that the keyboard buffer does not get full up with garbage. It is 
quite easy for the user to press two keys down or hold one down too 
long, especially as the repeat on all keys has been turned on. As 
discussed above, one location in memory, 198, records the number of 
bytes stored in the keyboard buffer. By setting this to zero, the 
C-64 is persuaded that the keyboard is empty. Thus, to empty the 
keyboard buffer, enter: 

60280 POKE 198,0 

The specially designed character that represents the current design 
cursor position is changed to black and this is moved around the 
design square in much the same way as in etcha-sketcha. by 
incrementing and decrementing its X and Y co-ordinates. Lines 
60300 to 60330 in Program 6.4(d), simply check for the control keys 
being pressed and move the cursor accordingly. 

PROGRAM 6.4(d) 

60300 IFA$="A"ANDX>lTHENX=X-l 
60310 IFA$="S"ANDX<8THENX=X+l 
60320 IFA$="W"ANDY>ITHENY=Y-l 
60330 IFA$="Z"ANDY<8THENY=Y+l 

Function Key·Functions •••• 

f1:Set Pixel 

If f1 is depressed it means store current cursor position as a 
character element. This is detected when A$=CHR$(133) and the array 
location corresponding to the current cursor position is set to 1, 
i . e: 

60350 IF A$=CHR$(133) THEN A(X,Y)=1 

6-23 



Then the current square on the character grid is set to a sol id 
co lor and the color RAM is set. The pos it i on on the character 
matrix is found relative to the top left-hand corner in terms of X 
and Y i.e. X+Y*40 and this is added to the co-ordinate of that 
point - 1024+287. This is required to change the data which is in 
a matrix format (X,Y) into the format that the screen understands 
i.e. running along in rows of 40 characters. A similar calculation 
is carrjed out for the color RAM. Once this is done, the subroutine 
moves to 1 ine 60570 to update the current character stored in 
memory i.e. 

60350 IF A$="<F1>~ THEN A(X,Y)=l: 
POKE 1024+287+X+Y*40,255: 
POKE 55296+287+X+Y*40,6:GOTO 60570 

f3:Clear Pixel 

When a pixel that has previously been set needs to be cleared, this 
function does the job. It simply reverses the procedure of f1 by 
setting the relevant array position to zero, poking a space onto 
the screen and finally setting the color RAM to background. Being 
so similar to the Set Pixel function the code is virtually 
identical i.e. 

60360 IF A$="<F3>"THEN A(X,Y)=O:POKE 
1024+287+X+Y*40,254:POKE 55296+287+X+Y* 
40,5:GOTO 60570 

f5:Display DATA/store in program 

When this function is called, the program will ask the user where 
the DATA statement for that particular character should be stored. 
If a line number of zero is indicated, then the DATA for that 
character will be displayed but not stored. When a line number is 
entered, a line will be inserted into the program which contains 
the requisite DATA for that character. This is a rather complicated 
process and will be discussed later. 

60370 IF A$="<F5>"THEN 60400 

f7:C1ear Board 

Essentially, this function scraps the design work done to date and 
wipes the slate clean. In other words, it clears the design matrix 
and prepares it for start. The command CLR does this by setting all 
the variables and arrays back to zero, and, once this is done, the 
program is re-routed to the beginning of the input routine, i.e. 

60380 IF A$="<F7>" THEN CLR:DIM A(8,8):GOTO 60110 

6-24 



fS:Display DATA/store in program - the details 

This is activated by pressing function key 5 and as it is required 
to do two different jobs, it starts with a prompt which tells us 
what these jobs are and asks for a line number INPUT, i.e. LN. In 
an attempt to avoid overwriting either the program to which 
user-defined graphics will be added or the Char.Gen program itself; 
line numbers between 10000 and 60000 are suggested. To strengthen 
this 'suggestion', an error-check is made in lines 60400-60420 
which re-routes the program back for another INPUT when lines lie 
outside this range. 

Once the INPUT has been accepted, the prompt is deleted by printing 
spaces over it, lines 60430 and 60440 in Program 6.4(e). In 
addition to the code for f5, this listing provides the whole 
program for the character design routine. 

PROGRAM 6.4(e) 

60250 X=1:Y=1:POKE55296+328,0 
60260 FORB=OT07:POKE12288+B+CH*8,0:NEXT 

:POKE650,255 
60270 GETA$:IFA$="ITHEN60270 
60280 POKE198,0 
60290 POKE55296+287+X+Y*40,5+A(X,Y) 
60300 IFA$=IA"ANDX>1THENX=X-1 
60310 IFA$="S"MDX<8THENX=X+1 
60320 IFA$="W"ANDY>lTHENY=Y-1 
60330 IFA$="Z"ANDY<8THENY=Y+1 
60340 POKE55296+287+X+Y*40,0:IFA$=CHR$( 

13)THEN61000 
60350 IFA$=I<Fl>"THENA(X, Y)=1:POKE1024+ 

287+X+Y*40,255:POKE55296+287+X+Y* 
40,6:GOT060570 

60360 IFA$=" <F3)1I THENA( X, Y)=O: POKEl024+ 
287+X+Y*40,254:POKE55296+287+X+Y* 
40,5:GOT060570 

60370 IFA$="<F5>"THEN60400 
60380 IFA$="<F7)"THENCLR:DIMA(8,8):GOTO 

60110 
60390 GOT060270 
60400 PRINT"<HOME>ENTER LINE NO. FOR DA 

TA STATEMENT":PRINT"(10000-60000) 
• II • . , 

60410 PRINT"OR ZERO FOR DISPLAY ONLY"'I 
NPUTLN 

60420 IF(LN<lOOOOORLN>599990RLN<>INT(LN 
»ANDLN<>OTHEN60400 

60430 PRINT"<HOME>";: FORC=l T03: FORD=l TO 
38 

60440 PRINT" ";:NEXT:PRINT:NEXT:PRINT"< 
HOME><18DCRSR>"; 

6-25 



Prior to PRINTing the actual DATA onto the screen, the POKE values 
need to be found and this can be done by PEEKing the actual 
locations where these are stored. Once the values have been found 
they could be stored on the screen or in an array. In this program, 
neither of these courses are chosen, the data being stored in one 
variable C$, made up from the relevant PEEKs. To do this, the 
string is built up with alternate PEEK values and commas. One 
problem is created by this procedure, the presence of a final comma 
on the line. This is removed by adding a delete character 
(CHR$(20» to the end of the string and deleting the last comma. If 
youlre not too sure about this, type in Program 6.5(a). 

PROGRAM 6.5(a) 

10 C$="":FOR X=1 TO 10 
20 C$=C$+"A"+",II 
30 NEXT X 
50 PRINT C$ 

When this is run, C$ should bE~ PRINTed as a string of ten Als 
separated by commas with a comma at the end. Now modify thi s by 
adding line 40 of Program 6.5(b) 

PROGRAM 6.5(b) 

40 C$=C$+CHR$(20) 

Once the new line is added, the string C$ will then consist of the 
ten AI s separated from each other by commas but the final comma 
will have been deleted. So it does work! Once you are satisfied 
that the program works, delete lines 10 to 50, either by typing in 
the numbers or by means of the Honey.Aid command : 

DELETE (A Honey.Aid command) 

Its descriptive name tells you just what this command does, the 
syntax being just like that of LIST. Hence, to delete lines 10 to 
40 of a program, three of the four different methods could be used; 
i.e. 

* delete the lines individually 
DELETE 10 <RETURN> 
DELETE 20 <RETURN> 
etc. 

* delete the block 
DELETE 10 - 40 <RETURN> 

* delete up to line 40 
DELETE -40 <RETURN> 

6-26 



The other allowable method is DELETE 40 but as this would delete 
the bit of program that you need it's not a good idea to use it 
here. Go steady wi th DELETE though, it's useful but dangerous! It 
has been set up so that 'DELETE' on its own won't delete 
everything, (unlike LIST which will list everything) but it is 
still powerful! 

Back to CharGen. . . 
So far the data 1 ine has been created and if aline number is 
PRINTed onto the screen prior to this, all the elements of a DATA 
statement will have been created. So far this has not been entered 
into the program and this now needs to be done. 

Self modifying programs 

In order to enter a line into a program the computer needs to be in 
edit mode i.e. with a 'READY' sign displayed and the cursor 
flashing. Of course, the computer is not in this state once a 
program is running and the machine would need to encounter an 'END' 
to turn on the 'READY' sign. 

When doing an edit manually the process would be to type in the 
line and then press <RETURN> to add the line. So far we've worked 
out how to print the line and if we then follow this with an 'END' 
the computer wi 11 return to EDIT mode. Test thi s out with the 
following line. In this we'll attempt to modify a program that 
prints 'FRED' to one that prints 'FRED IS OK'. The task then is to 
change the program. 

10 PRINT "FRED" into 10 PRINT "FRED" 
20 PRINT "is OK" 

What is needed, therefore, is aline to create 1 ine 20 and one 
problem that arises immediately is that of printing quotes i.e. H 

onto the screen. Actually, this is no problem since, ASCII code 34 
is the quote sign. 

PRINT CHR$(34) 

should print a quote sign onto the screen. Try it and see. The next 
stage is to print the whole line and this time let's do it from 
within a program: 

10 PRINT "FRED" 
20 PRINT"20 PRINT";CHR$(34);"IS OK";C 
HR$(34) 
999 END 

6-27 



Now when this is 'RUN', the program will yield: 

FRED 
20 PRINT" IS OK" 

READY 
• <CURSOR> 

FIGURE 6.20 

From this stage, the cursor would need to be moved up four lines so 
that it is over line 20. This can be done in the program by adding 
a line to move the cursor up four lines. 

30 PRINT 1<4UCRSR>" 

When this is added and run, thE~ display will be as in Figure 6.20 
but with the cursor flashing over line 20. At this stage, if you 
press RETURN, you will enter (edit) line 20 into the program. Press 
RETURN now, then type in LIST 1-·999. You will then see the program: 

10 PRINT"FRED" 
20 PR I NT" I S OK II 
30 PRINT I <4UCRSR)"; 
999 END 

You had to physically press the RETURN key to enter line 20 into 
memory. We actually want the computer to do this itself. We can 
force the computer to read a RETURN key press without actually 
pressing RETURN by placing a value of 1 into the keyboard read 
location (198), meaning a key has been pressed, and placing the 
value of a RETURN key (13) into 631 (the keyboard buffer). Modify 
lines 20 and 30 to now read: 

20 PRINT"20 PRINTI;CHR$(34};"IS OK";CHR$(34) 
30 PRINTI<4UCRSR)";POKE 631,13:POKE 198,1 

Now run the program and it will yield the following display: 

READY 
20 PRINT" IS OK" 
• <CURSOR> 

FIGURE 6.21 

Now type LIST 1-999 and the new program will be: 

10 PRINT"FRED" 
20 P R I NT" I S OK II 
30 PRINT"<4UCRSR>";POKE 631,13:POKE 198,1 
999 END 



So far so good. The program modifies itself, but what would happen 
were it to be incorporated into a longer program? To find out, 
modify the program by adding the following lines (the program is 
simply going to go through a PRINT loop): 

20 PRINT"20 PRINT";CHR$(34);"IS OK";CHR$(34) 
40 FOR X=1 TO 10 
50 PRINT X 
60 NEXT X 

Now run the program. The display will be overlayed with the numbers 
1 to 10. Type in LIST 1-999 and you will see that line 20 was not 
changed as it was before. The reason for this is that the computer 
will not check the keyboard buffer until the program calculations 
are complete (the FOR ... NEXT loop is finished). It is necessary to 
have the computer perceive an END or an INPUT in order to force it 
to check the keyboard buffer. Modify line 30 to now read: 

30 PRINT"<4UCRSR)";POKE 631,13:POKE 198,1:END 

RUN the program, then LIST 1-999 and you wi 11 see that 1 ine 20, 
again, has been changed. However, we must now realize that the 
FOR ... NEXT loop has not been executed. We can force the computer to 
execute the loop by means of typing in GOTO 40. Type this in now 
and you will have the numbers 1 through 10 printed on the screen. 
Of course, we want the computer to do th i s itself, wi thout our 
having to type in GOTO 40. What is necessary is a repetition of the 
procedure used to enter line 20, i.e. 

* PRINT the new line onto the screen 
* move the cursor onto this line 
* force a RETURN into the keyboard buffer 
* tell the computer that this RETURN is in there 
* force the computer to look into the buffer to see 

what to do next by means of an END 

In order to integrate this into the program, the 'GOTO' is added to 
the program before the earlier 'keyboard buffer' line and this is 
modified to contain an additional CHR$(13) i.e. Program 6.6(a). 

PROGRAM 6.6(a) 

20 PRINT"20 PRINT";CHR$(34);"IS OK";CHR$(34) 
25 PRINT"GOTO 40" 
30 PRINTI<5UCRSR)":POKE 631,13:POKE 632, 
13:POKE198,2:END 

Now, at long last, when this is RUN, the program will insert the 
new line 20 followed by the 'GOTO', cursor up over this and then 

6-29 



RETURN over the two lines, one a line edit and the other a direct 
GOTO command. One other little refinement could be added to this 
line and that is to print the IGOTOI in background color so that 
the user is not aware of its presence. This is, in fact, done on 
line 60490 of Program 6.6(b). One warning though. if something of 
a different color occupies that space on the screen, the GOTO will 
be seen! You can now type in DELETE 1-999 (assuming Honey.Aid has 
been RUN), to remove these lines from our Char.Gen program. 

When integrated into the Char.Gen program, this process will enter 
the DATA line and then restart the program. The routine is shown 
in Program 6.6(b). 

PROGRAM 6.6(b) 

60440 PRINT" ";:NEXT:PRINT:NEXT:PRINT"<HOME> 
<18DCRSR>"; 
60450 IF LN>O THEN PRINT LN; 
60460 PRINT"DATA";:IF LN>O THEN PRINT CH;","; 
60470 C$="":FOR C=O TO 7:C$=C$+STR$(PEEK(1228S+ 
CH*8+C) )+"," 
60480 NEXT:C$=C$+CHR$(20):PRINT C$:IF LN=O THEN 
LN=I:GOTO 60500 
60490 PRINT"<WHT>GOTO 60500<5UCRSR>":POKE 631 
,13:POKE 632,13:POKE 198,2:END 
60500 PRINT"<HOME><2DCRSR><ORNG> <RVSON>PRESS 
ANY KEY TO CONTINUE<RVSOFF><BLU>" 
60510 POKE 198,0 
60520 GET A$: IF A$="" THEN 60520 
60530 PRINT"<HOME><2DCRSR><30 SPACES>" 
60540 IF LN=O THEN DIM A(S,S):GOTO 61000 
60550 PR I NT"<HOME><lSDCRSR>";: FOR C= 
1 TO 70:PRINT" ";:NEXT 
60560 GOTO 60140 

This subroutine requires one final section to yield an overall 
workable Char.Gen program. This is the routine that loads the array 
A(X,Y), converts the information into a POKE value and POKEls that 
into memory. It is called each time a new pixel is incorporated 
into a character and the POKE val ue for the character is thus 
updated. As each cell of the array, in the X direction, represents 
a value equivalent to a two raised to its positional value, a loop 
is used to calculate the total val ue of A, i.e. for the pixel 
pattern: 

Positional value 

bit val ue 
in decimal = 

7 654 3 
o 1 100 
o + 26 + 25 + 0 + 0 
o + 64 + 32 + 0 + 0 

FIGURE 6.22 

6-30 

210 
110 

+ 22 + 21 + 0 
+ 4 + 2 + 0 = 102 



The summation is performed by the loop: 

FOR B = 1 TO 8:A=A(B,Y)*2 (8-B):NEXT 

A slight warning: the array place numbers are stored from right to 
left, while the bit numbers are, by convention, from left to right. 

i.e. 
X value 1 234 5 6 7 8 array(X,Y) 

bit value 7 6 5 4 3 2 1 0 

Testing for bit 3 A = A(B,Y) *2 (8-5) 

i.e. A = 1 *2 (3) 

and A = 1 * 8 = 8 

Once the byte value is calculated, it is POKEd into the appropriate 
location and the program returned for the next INPUT (line 60570 of 
Program 6.6(c». Actually, as you will see, we have used an AND 
instead of the FOR .•.. NEXT loop: 

PROGRAM 6.6(c) 

60570 A=PEEK(12287+Y+CH*8):IFA(X,Y)=OTrl 
ENA=AAND(255-(2t(8-X») 

60580 IFA(X,Y)=1THENA=AOR(2t(8-X» 
60590 POKE12287+Y+Crl*8,A:GOT060270 

Read DATA/create character subroutine 

When a program utilizes custom-designed characters, one necessary 
function is their creation from the DATA statements where all the 
necessary information is stored. In Char.Gen, the characters are 
created during the running of the program but, as this function is 
integrated with the rest of the program, it is not suitable for 
incorporation into the user's own program. To overcome this 
problem, a small routine is created which will read in the DATA and 
POKE it into the appropriate memory locations. Program 6.6(d) 
shows the routine along with an explanation of its function, and 
into this is built the facility for creating a specified number of 
characters (N). 

6-31 



PROGRAM 6.6(d) 

60610 FOR V = 1 TO N:READ A:FOR X=O TO 7 
read character number 
60620 READ B:POKE 12288+A*8+X,B 
60630 NEXT : NEXT 
read eight lines of character Y, store as appropriate 

Destroy unwanted program routine 

Once the characters in a program have been defined, the Char.Gen 
program can be deleted and the largest part of this is the question 
and answer session. Any program that is as drastic as this needs 
lots of warnings! In addition, the initial ization procedure sets 
out to find the number of characters concerned. Program 6.6(e) 
shows this part of the 'program. 

PROGRAM 6.6(e) 

61000 PRINT"<CLR><2DCRSR><4RCRSR>HAVE Y 
OU FINISHED USING" 

61010 INPUT"<DCRSR><4RCRSR>CHAR.GEN (YI 
N)";A$:IFA$="N"THEN60110 

61020 IFA$<>"V"THEN61000 
61030 PRINT"<2DCRSR><4RCRSR>WARNING:THI 

S ROUTINE DELETES THE" 
61040 PRINT"<DCRSR><4RCRSR>CHARACTER GE 

NERATOR.II 
61050 PRINT"<2DCRSR><4RCRSR>ARE YOU REA 

LLV SURE THAT VOU'VEII 
61060 INPUT"<DCRSR><4RCRSR>FINISHED (VI 

N)";A$:IFA$="N"THENEND 
61070 IFA$<>"Y"THEN61060 
61080 PRINT"<2DCRSR><4RCRSR>HOW MANV CH 

ARACTERS HAVE VOU":INPUTII<DCRSR>< 
4RCRSR>REDESIGNED";N 

BEFORE YOU RUN THIS SAVE IT - IT DESTROYS PROGRAMS! 

Once it is established that the user really does want to eliminate 
the Char.Gen program, deletion can begin. In this program use is 
made of Honey.Aid's DELETE function although the job can be done, 
albeit much more slowly, using ordinary BASIC. To do this, the 
individual line numbers would need to be printed and then RETURNed 
over. 

6-32 



However, Honey.Aid to the rescue! In the final program, the moving 
down of the character set will still be required so the first 
DELETE starts at 60080. Also the generat i on of the character is 
required, defining the end of the DELETE as 60599. Thus, the first 
delete is from 60080 to 60599. It isn't possible to use DELETE in 
program mode, so once again we must resort to printing onto the 
screen and RETURNing over it. 

The program from line 61000 onwards can then be deleted in one go, 
i.e. DELETE 61000- leaving just one final DELETE to be done. line 
60000. This line, the first in the Char.Gen program, by-passes the 
mov i ng of the character set once the program has been run. When 
this 1 ine has been removed, it exposes 1 ine 60010 which is not 
otherwise used, and this functions in the same way that 60000 did 
but directs the program over the now missing section. 

Finally, the number of characters defined (N) is written 
permanently into the program by inserting a LET statement into the 
program in order to defi ne the value of N in a permanent 1 i nee 
Program 6.6(f) shows these final few lines in action and completes 
the functional character generator program. 

Program 6.6(f) 

PART 3 

Using Char.Gen 

61090 PRINT"<CLR><WHT><2DCRSR>"; 
61100 PRINT"DELETE60080-60599<2DCRSR)U 
61110 PR I NT"DELETE61000-<2DCRSR)" 
61120 PRINT"60600 N=";N 
61130 PRINT"60000" 
61140 PRINT"PRINT I CHRS(34)"<CLR><BLU>"C 

HR$( 34)' 
61150 PRINT"<rlOME>"; 
61160 FORX=631T063S;POKEX,13:NEXT:POKEl 

98,5:END 

To use Char.Gen you must first load and run Honey.Aid, then load 
and run Char.Gen. The program on the disk has been modified to run 
more quickly than the version described in the previous sections. 

To see Char.Gen in action, let's define a character and incorporate 
this into a short program. First of all RUN Char.Gen and the 
machine will ask: 

Enter: 
WHICH CHARACTER WOULD YOU LIKE TO DEFINE? 
'253' 

6-33 



This character is to be replaced by that shown in Figure 6.23, 

I > 
••••••• 

...... 

........ 

I < I} 
Li : t> 

< ••••••••• 
I> 

.....•.•.. . .. 

FIGURE 6.23 

To create this character, the relevant blocks need to be filled in. 
The first block that needs filling on the top row happens to be the 
first block in the row. As the cursor is already at this block when 
the program runs it is only necessary to press fl to set the pixel. 
At this stage, next to the message "HERE IS YOUR CHARACTER SO FAR" 
will appear the first dot of the character. The rest of the 
character can then be built up using the keys: 

W Move cursor up 
A Move cursor left 
S Move cursor right 
Z Move cursor down 

and to set the actual characters: 

fl sets the current cursor pixel 
as part of the character 

f3 clears the current cursor pixel 
and deletes it from part of the 
character 

f5 calculates the POKE values for 
the re-designed characters 

f7 clears the character designed to 
date ready to start again. 

6-34 



Going through the first two lines of the character the operations 
are, press: 

* fl, S, fl, S 
* Z, fl, S, fl, S 
* Z, fl, S, fl, S 
* Z, f1, S, f1 
* Z, fl, A, fl, A 
* Z, f1, A, fl, A 
* Z, fl, A, fl, A 
* Z, fl, A, fl 
* W, W, S, S, fl 
* W, f1, A, fl, A, f1 
* W, fl, S, fl, S, fl 
* W, f1, A, fl 

Whoops! That's one too many. To correct this press f3, to clear 
the 1 ast pixel. Remember, if you press f1 in the wrong pl ace, f3 
wi 11 correct it. If you find that there are too many changes 
needed, simply press f7 to clear the whole board. 

Now that you've designed the whole character and you're sure that 
no changes are needed, press f5. The computer will ask: 

ENTER LINE NO. FOR DATA STATEMENT 
(10000-60000):OR ZERO FOR DISPLAY ONLY 

Just to test out the program enter a zero and the screen will then 
display the relevant DATA statement below the design matrix. In 
addition a message will be given to: 

PRESS ANY KEY TO CONTINUE 

Once a key is pressed, the program returns to its entry mode. 

Now to transfer the DATA statement into your own program, once 
again press f5. The 'AT WHICH LINE. ..• " message will re-appear and 
this time you should enter the relevant line number, say, 10000. 
When you press (RETURN>, the DATA statement will reappear, this 
time along with a line number. After a second or so, the "PRESS ANY 
KEY •.. " message will reappear and, on doing this you will return 
once again to the 'Which character' message. 

If you wished to design another character you would first clear the 
design matrix by pressing f7 and then begin again. You can go on 
to define all the characters that you need and you may find some 
changes appeari ng on the screen if you redefi ne those characters 
used by Char.Gen itself! However, for now just stick to the one 
character. 

6-35 



Next, to get into the program termination phase press <RETURN> and 
you will be asked: 

HAVE YOU FINISHED USING CHAR.GEN (YIN)? 

On entering a lyl you then be warned and then asked: 

WARNING: THIS ROUTINE DELETES THE CHARACTER GENERATOR 

ARE YOU REALLY SURE THAT YOUIVE FINISHED (YIN)? 

Once the decision has been made, you will be asked: 

HOW MANY CHARACTERS HAVE YOU REDESIGNED? 

Enter a 111 and press <RETURN>. 

You will now be left with the remnants of Char.Gen, lines 
10000-10010, 60010-60070, 60600-60640. 

In order to utilize Char.Gen it needs to be called with a GOSUB 
60010. Program 6.7 illustrates a simple technique for utilizing the 
character. It is displayed by POKEing it into the screen. 

PROG~AM 6.7 

10 GOSUB 60010:A=32 
20 FOR X=l TO 1000:POKE 1023+X,A: 
A=PEEK 1024+X:POKE 1024+X,253: 
POKE 55296+X,6:NEXT 
30 END 

When you run this its a good idea not to clear the screen first, 
just type RUN <RETURN>. Can you see from line 20 what it does? All 
itls doing is storing the character ahead of the space ship and 
then placing it back behind it as this moves on. Quite like a 
sprite eh? 

One last thing about redefining characters, donlt forget that 
youlre using them as you change them. Letls have a little play with 
Char.Gen! Change lines 60130 so that it allows all characters to be 
defined, i.e. change the 253 into a 255. Then run the program and 
select 12541 for the character to be redefined. Now, when the 
display is put onto the screen, you will see the 12541 characters 
melt away before your very eyes as line 60260 gets to work. If you 
now create characters, you will find that the design matrix is made 
up of these - as you create them. By making regular grid-type 
characters, all kinds of patterns can be made. 

6-36 



CHAPTER 

7 
BAll GAMES 

I n this chapter, we will develop further the ideas explored in 
Chapter 5. Some of the techniques explored in Chapter 5 will 
be extended to develop a breakout type of game which uses 
graphics interactively. This is really a fancy way of saying 

that the player will control the screen display by way of the 
keyboard. 

One of the features of the C-64' s screen is that it is' memory 
mapped' wh i ch means that every character space or cellon the 
screen has a memory location allocated to it. Thus, if the value 90 
is stored in the appropriate location for the screen's top 
left-hand corner, then a 90 (in CBM code, a diamond) will be 
displayed on the screen. However, you may not be able to see it if 
the screen's background color and the character color are one and 
the same - blue on blue is none too clear, nor is green on green. 
In any program, therefore, it is advisable to make sure that the 
colors are those that you want by setting them appropriately. Thus 
the stages are: 

* Set border color 
* Set screen background color 
* Set character color 

The order is none too important but they all need doing! 

The screen colors are quite easily set by single POKEs but in order 
that a screen di spl ay can have more than one color on it, each 
character cell can be set individually. If the character is not 
set, you may be lucky and your characters may be visible - on the 
other hand you may be unlucky. 

7-1 



The C-64 screen is divided into 1000 cells; 40 across each line and 
25 down -see Figure 7.1 . 

... ~,.--40 columns across---I .... 

25 lines down 

FIGURE 7.1 

Its top left-hand location, the Ihome l position is mapped to memory 
location 1024 and the other cells along the top row, to locations 
1025, 1026, etc. A further memory location, 55296, contains the 
color information for the top left-hand screen cell. The next 39 
locations hold color information for the remainder of the screenls 
top row, the following 40 for row two, etc. This whole area of 
memory ;s known as the Icolor RAMI. 

Enough talking, letls have a go! Program 7.1 POKEs onto the screen 
an IAI on a white background with a green border. 

PROGRAM 7.1 

Set border to green 10 POKE 53280,5 
Set screen background 
to white 20 POKE 53281,1 

POKE a 111 onto 
screen home position 30 POKE 1024,1 

Set color of screen 
home position 40 POKE 55296,7 

7-2 



In line 40, a 'I' was POKEd into the screen memory and a letter 'A' 
appeared on the screen. These screen POKE codes are a Commodore 
form of ASCII code and the whole range of these is listed in 
Appendix 3. They can be investigated by modifying Program 7.1 
slightly so that it cycles through them all. Try it with: 

PROGRAM 7.2 

10 POKE 53280,1 
20 POKE 53281,2 
25 FOR X=O TO 255 
30 POKE 1024+X,X 
40 POKE 55296+X,X 
50 NEXT X 

When Program 7.2 is run, the whole character set is displayed in 
the first two and a half rows of the screen. Each character is a 
different color as the value stored in the color RAM is incremented 
on each pass through the loop. However, as there are only 16 colors 
and most of the values POKEd into the color RAM were over 16, the 
computer was clearly working on it! What was happening, in fact, 
was that only the least significant nybble of the color RAM was 
being used to define the color. The remainder was being stripped 
off by means of a logical operator, so •••• 

EXERCISE 7.1 

What logical operation is used to remove the 
most si gnifi cant nybbl e? An answer is given 
on page 11-6. 

Suppose now we wanted to fi 11 the ent ire screen with the POKE 
character '83'. One way of doing this would be to enter '2000' 
lines of program - 1000 assigning the character and another 1000 
giving it a color, starting: 

PROGRAM 7.2(a) 

POKE 1024,83 
POKE 55296,2 

and ending ••• 
POKE 2023,83 
POKE 56295,2 

7-3 



That would be a very laborious process, to say the least! As we saw 
in Program 7.2, we can use variables when POKEing. Thus, if we 
wi shed to fi 11 up the whole screem with the character 1831, we can 
use a loop. As there are 1000 locations between 110241 and 120231 
(and also between 1552961 and 156295 1), the loop wi 11 need to run 
from 101 to 19991, i.e. 

PROGRAM 7.2{b) 

20 FOR X=O TO 999 
30 POKE 1024+X,83 
40 POKE 55296+X,2 
50 NEXT X 

That short program (1996 lines shorter than Program 7.2{a» fills 
the screen with bright red hearts (all together now: AAH!). The 
next leap forward will be to have lines of different colored 
hearts: one 1 i ne red, one blue, l~tC. The problem with tryi ng to do 
this is that each line holds forty characters and the loop in 
Program 7.2{b) was just too long. What is needed, therefore, is a 
loop just 40 characters long i.e., 

PROGRAM 7.3 

20 FOR X=O TO 39 
30 POKE 1024+X,83 
40 POKE 55296+X,2 
50 NEXT X 

Now, when this is run one line of red hearts will be displayed 
across the screen. They are all the same color though! Letls add 
another loop to run through the 16 colors: 

PROGRAM 7.3{a) 

10 FOR Y=O TO 15 
20 FOR X=O TO 39 
30 POKE 1024+X,83 
40 POKE 55296+X,Y:REM CHANGE COLOR 
50 NEXT X 
60 NEXT Y 

7-4 



Now, at least we've got the 16 colors but they're all on the top 
line. What we need now is to increase the values for the two POKES 
by 40 on the second loop as the second now starts at 1064. For the 
third line an increase of 80 is needed and 120 on the fourth etc. 
This can be achieved by adding 40 times the Y value to each POKE, 
i.e. on the first loop 40*0=zero is added, on the second pass 
40*1=40 etc. Incorporating this in a program yields: 

PROGRAM 7.3(b) 

10 FOR Y=O TO 15 
20 FOR X=O TO 39 
30 POKE 1024+X+Y*40,83 
40 POKE 55296+X+Y*40,Y 
50 NEXT X 
60 NEXT Y 

EXERCISE 7.2 

Change Program 7.3(b) so that the hearts are 
POKEd column by column instead of row by row. 
A possible answer is given on page 11-6. 

We now have the tools to start on the ball game and to POKE in the 
wall simply calls for a 3 x 7 loop using a POKE character of 160, 
an off-reverse space (i.e. a brick!). 

Program 7.3(c) 

10 PRINT"<CLR>" 
20 FOR Y=3 TO 7 
30 FOR X=O TO 39 
40 POKE 1024+X+Y*40,160 
50 POKE 55296+X+Y*40,Y 
60 NEXT X, Y 

EXERCISE 7.3 

Modify Program 7.3(c) so that the lines start 
at the top of the screen, but retain their 
original colors. A possible answer is given 
on page 11-6. 

7-5 



A MOVING BALL 

Probably the most important part of the game will be the simulation 
of a bouncing ball. Big oaks from little acorns grow, so we shall 
start by making the ball move across the top of the screen. If we 
choose a ball-like character say a '.'(POKE 81} we may move this 
across the screen by means of straight-forward POKES: 

PROGRAM 7.4 

10 PRINT"<CLR)" 
20 FOR X=O TO 39 
30 POKE 1024+X,81 REM 81='.' 
40 POKE 55296+X,2 
50 NEXT X 

When run, the program only draws a line of red balls across the 
screen leaving a trail behind it. On a black and white television, 
they may be completely invisible" so, if you can't see them, change 
line 40 to POKE color 10 instead of color 2. What we need to do 
now is to wipe out that trail. This can be done most readily by 
POKEing a space (a POKE of 32) behind the ball, thus ensuring that 
only one ball is on the screen at a time. This extra POKE can be 
included in the loop but care must be taken to ensure that its 
location is always one behind the ball i.e. the ball is at 1024+X 
and the space is at 1024+X-l. 

PROGRAM 7.4(a) 

10 PRINT"<CLR)" 
20 FOR X=O TO 39 
30 POKE 1024+X,81 
40 POKE 55296+X,2 
45 POKE 1024+X-l,32 
50 NEXT X 

EXERCISE 7.4 

Modify Program 7.4(a) so that the ball moves 
across the bottom of the screen. A possible 
answer is given on page 11-6. 

7-6 



Before entering Program 7.4(b) examine it and see if you can 
predict the way in which the ball will move (no prizes for a 
correct guess). 

PROGRAM 7.4(b) 

10 PRINT"<CLR>" 
20 FOR X=O TO 20 
30 POKE 1024+X+X*40,81 
40 POKE 55296+X+X*40,2 
50 POKE 1024+X-l+(X-l}*40,32 
60 NEXT X 

The ball stops short of the bottom line to avoid POKEing anything 
into non-screen memory locations: always a sensible precaution. 

EXERCISE 7.5 

Change Program 7.4(b) so that the ball moves 
di agona 11 y from bottom ri ght to top 1 eft. A 
possible answer is given page 11-6. 

A Randomly Moving Ball 

Now to extend the moving ball idea a little. Suppose we want to 
increase the row position and decrease the column position of the 
ball at the same time thus giving a diagonal movement from the top 
right to the bottom left. The major problem of wiping out the trail 
that the ball leaves is overcome by introducing variables 'XX' and 
IVY', which 'remember' the position of the ball before it moves on. 

PROGRAM 7.5 

10 PRINT"<CLR>" 
20 x=o : y=o 
30 POKE 1024+X+Y*40.81 
40 POKE 55296+X+Y*40,2 
50 YY=Y : XX=X 
60 Y=Y+l : X=X+l 
70 IF Y=24 THEN STOP 
80 POKE 1024+XX+YY*40,32 
90 GOTO 30 

Before 'X' and 'V' are given new values in line 60, 'XX' and 'YY' 
are set to the old values (line 50) and so the old position is 
wiped out in line 80. Program 7.5 stops when the ball reaches the 
bottom. Checks for the edges of the screen are very important. 

7-7 



By now you should have real ized that the problem of the bouncing 
ball is not as straightforward as our first attempts might have led 
us to believe. Sometimes it is necessary to increment the column 
(X), sometimes the row (Y) and sometimes both. Then of course, 
sometimes it is necessary to decrement them and finally sometimes a 
mixture of the two is needed. 

To simulate a randomly-moving ball, use can be made of the random 
number generator within the 64. Run the following short program: 

PROGRAM 7.6 

1 PRINT INT(RND(1)*2):GOTO 1 

This produces a series of randomly chosen zeros and ones. When you 
get bored press 'RUN/STOP'. One small point about RUN/STOP! It 
does, in fact, stop the program as you'd expect but what about when 
you press it by mistake? Fortunately BASIC has a way out of this 
disaster; it's the command .•• 

CONT 

This is a shorthand form for 'continue' and tells the computer to 
continue executing the program from where it last stopped. Try it 
out now; type in: 

CONT 

The program should continue by giving you even more random numbers. 

In the randomly moving ball program it will be necessary either to 
increase each row or column (add +1) and/or decrease each column 
or row (add -1) in order to generate a random bounce. The random 
number generator can be used to do this. Two more variables will be 
req ui red to handl e th is random bounce - X I and VI. These wi 11 
control the sign of the increments XX and VV. 'XI' control s the 'X' 
increment and 'VI' controls the 'V' increment. See lines 120 and 
130. 

7-8 



PROGRAM 7.7 

10 REM RANDOMLY MOVING BALL 
20 PRINT "<CLR>" 
30 X=10 
40 Y=lQ 
50 POKE 1024+X+Y*40,81 
60 POKE 55296+X+Y*40,2 
70 XX=X:YY=Y 
80 XI=INT(RND(l)*2) 
90 IF XI=O THEN XI=-l 
100 YI=INT(RND(I)*2) 
110 IF YI=O THEN YI=-l 
120 X=XX+XI 
130 Y=YY+YI 
135 IF X>38 OR X<l THEN STOP 
140 IF Y>23 OR Y<1 THEN STOP 
150 POKE 1024+XX+YY*40,32 
160 GOTO 50 

Lines 135 and 140 make sure that the ball doesn't stray out of the 
boundaries we have allowed for it, i.e. the screen. Since we want 
XI and YI to be either -lor +1, and these are not consecutive 
numbers, we first let XI be either 0 or 1 (line 80) and then, if 
it's 0, we change it to -1 (line 90). If it's 1, we leave it alone. 
This is repeated for YI in lines 100 and 110. 

When Program 7.7 is run it wi 11, eventually, reach one of its 
limits and the program will stop. To remedy this situation, we 
must change lines 135 and 140 so that the ball 'bounces'. 

PROGRAM 7.7(a) 

135 IF X>38 OR X<l THEN XI=XI*-l:GOTO 120 
140 IF Y>23 OR Y<l THEN YI=YI*-l:GOTO 120 

Multiplying a number by -1, in effect, simply changes its sign, so 
+1*-1 results in -1 and -1*-1 gives us +1. Thus lines 135 and 140 
change the direction of the ball when it reaches an extreme value. 
By going to line 120, the new value of XI or YI is added to X, thus 
giving the ball a new direction away from the offending edge. 

In developing the randomly bouncing ball we have investigated many 
important graphics techniques, not all will be called for in the 
first game we develop but, eventually, we will need them all. 
Overall, the endlessly bouncing ball program looks 1 ike Program 
7.7(b). 

7-9 



PROGRAM 7.7(b) 

10 REM AN ENDLESSLY BOUNCING BALL 
20 PRINT "<CLR>" 
30 X=10:Y=1Q 
40 XI=1:YI=1 
50 POKE 1024+X+Y*40,81 
60 POKE 55296+X+Y'\"40,2 
70 XX=X:YY=Y 
80 IF X>38 OR X<1 THEN XI=XI*-l 
90 IF Y>23 OR Y<1 THEN YI=YI*-1 
100 X=XX+XI 
110 Y=VV+VI 
120 POKE 1024+XX+YV*40,32 
130 GOTO 50 

EXERCISE 7.6 

Amend Program l.7(b) so that the ballis 
initial position is random. A possible 
answer is given on pa~e 11-6. 

The program we have so far, bounces the ball from any edge of the 
screen but for the first game, the ball should only bounce from 
the bottom if the bat is in position; also when the ball approaches 
the wall, its bounce depends upon how many bricks have been 
demolished. 

What is needed is a function which will enable one to look at a 
particular screen location (especially the one into which the ball 
is about to move) and to report back what is seen: the PEEK 
command! 

Program 7.9 illustrates how we can use PEEK to bounce a ball from a 
line drawn using character code 160 (reverse space). 

When this program is run, it may look very similar to the one 
earl ier in this chapter, but the bounce is caused by a different 
logic. Before, we constantly kept a check on the values of IXI and 
lVI, and when they reached their extreme values we effected a 
bounce. In Program 7.9, however, line 115 checks the location 
into which we are going to move to see if anything is in the way. 
If there isnlt anything, then we make the ball move as before, but 
if there is (in which case A=O), then we canlt let the ball move 
into that position. So line 116 changes the row increment 
variable, VI, and the program branches back to line 100 to work out 
the new position. 

7-10 



PROGRAM 7.9 

10 REM ENDLESSLY BOUNCING BALL 
20 PRINT "<CLR>" 
21 FOR X=O TO 39 
22 POKE 1024+X,160:POKE 55296+X,0 
23 NEXT X 
30 X=10:Y=10 
40 XI=1:YI=1 
50 POKE 1024+X+Y*40,81 
60 POKE 55296+X+Y*40,2 
70 XX=X: YY=Y 
80 IF X>38 OR X<l THEN XI=XI*-l 
90 IF Y>23 OR Y<l THEN YI=YI*-l 
100 X=XX+XI 
110 Y=YY+YI 
115 A=PEEK(55296+X+Y*40) AND 15 
116 IF A=O THEN YI=YI*-l:GOTO 100 
120 POKE 1024+XX+YY*40,32 
130 GOTO 50 

If we hadnlt used lAND 15 1 on line 115, then the value of IAI would 
have been 12241. The lAND 15 1 part gives the lowest numeric value 
of the color in that location. 

EXERCISE 7.7 

Rewrite Program 7.9 so that a line (character 
160) is drawn vertically from the ninth 
location at the top (1033) and finishing at 
the bottom equivalent (1993). The command 
to draw the 1 ines should take the pl ace of 
the present 1 ines 1211 to 123 1• Line 116 
will also have to be changed. A possible 
answer is given on page 11-7. 

The logic behind the bounce is controlled by looking at the color 
of the byte that we are about to move into. If the color is 0 
(the color of our wall) then we react. However, if we POKE spaces 
instead of reverse space characters (Program 7.9(a», thus removing 
the 1 ine from sight, the ball will still bounce as if the wall is 
there. 

PROGRAM 7.9(a) 

22 POKE 1024+X,32:POKE 55296+X,0 

7-11 



This is because the color memory locations are still black, so a 
different PEEK val ue is needed, that of the character in front. 
If it is a wall then its PEEK val ue is needed. If the byte in 
front is the wall, then the PEEK value will be '160 ' - the character 
code for a reverse space. So, for a perfect 'Bounce Game', we 
need to replace lines 115 and 116 with: 

PROGRAM 7.9(b) 

115 A=PEEK(1024+X+Y*40) 
116 IF A=160 THEN YI=YI*-l:GOTO 100 

Now we have two ways of making the ball bounce. Firstly by 
keeping a constant check on the values of 'x' and 'Y' and secondly, 
by means of the PEEK command. 

Armed with this knowledge and experience (not to mention the PEEK 
and POKE commands) we can seriously start to produce a ball game. 
To make a fresh start, type in NEW, after saving the program if you 
wish, and we will begin in earnest. 

A Moveable Bat 

The bat will move to and fro along the bottom line of the screen, 
key 'l' bei ng used to move the bat 1 eft and '9 ' to move it ri ght. 
Obviously, an INPUT command can't be used or the program will stop 
after each entry and wait until the RETURN key is pressed. 
Instead, the 'GET' command is used which means that characters can 
be entered straight from the keyboard without havi ng to press 
RETURN. To demonstrate this, enter the program below: 

PROGRAM 7.10 

10 PRINT"<CLR)" 
20 GET A$:IF A$="II THEN 20 
30 IF A$=ll" THEN PRINT "LEFT" 
40 IF A$=19" THEN PRINT "RIGHT" 
50 GOTO 20 

The program will not leave line~ 20 unless a key is pressed, and if 
that key is not '1' or '9, then it is ignored. 

7-12 



EXERCISE 7.8 

Write a program that wi 11 output "CORRECT" if 
the '0' key is pressed first followed by the 
'K' key and will output "INCORRECT" if any 
other key or combination of keys is pressed. 
A possible answer is given on page 11-7. 

For the finished game, the bat will be made two characters long and 
it will move along the bottom line of the screen (locations 1984 to 
2023) by means of the 'I' and '9' keys. The variable 'BC' will be 
used as the bat column variable and 'CB' as the one that 
'remembers' where the bat was (similar to 'X' and 'XX' in the 
moving ball program). A further refinement is added so that the 
program checks that the bat stays on the screen. This time we 
check that 'BC' lies between '0' and '38' inclusive (NOT '39' 
because the bat is two characters long). 

PROGRAM 7.10(a) 

10 REM MOVING BAT 
20 PRINT "<CLR>" 
30 GET A$:IF A$="" THEN 30 
40 IF A$="9"AND BC<38 THEN BC=BC+2:GOTO 
70 
50 IF A$="l" AND BC>O THEN BC=BC-2:GOTO 
70 
60 GOTO 30 
70 POKE 1984+CB,32 : 
80 POKE 1984+8C,160: 
90 POKE 56256+8C,0 
100 C8=8C 
110 GOTO 30 

EXERCISE 7.9 

POKE 1984+CB+1,32 
POKE 1984+8C+1.160 
POKE 56256+8C+1,0 

Amend Program 7.10(a) so that the bat size is 
three characters long. A possible answer is 
given on page 11-7. 

7-13 



Building The Wall 

Using the logic demonstrated in Program 7.3(a), we will build a 
multi-colored wall. The top two lines of the screen will be left 
to display the current score and other such data. 

PROGRAM 7.10(b) 

5 REM DRAW THE WALIl 
10 PRINrn<CLR>" 
20 FOR X=O TO 39 
30 FOR Y=2 TO 7 
40 POKE 1024+X+Y*40,160 
50 POKE 55296+X+Y*40,Y 
60 NEXT Y,X 

Demolishing The Wall 

Now that the wall has been built, it is necessary to think about 
how the ball will demolish it! The blocks can and will be removed 
by POKEing a space character into that location. To experiment 
with this, enter the following command: 

PROGRAM 7.1O(c) 

POKE 1164,32 

and a block will disappear from the screen. To make the game 
slightly easier, the blocks will be removed two at a time. It is 
necessary, therefore, to ensure that the POKE statements are made 
only with col umns 2, 4, 6 and so on up to 38, i.e. the col umn 
variable must be an even number. 

EXERCISE 7.10 

Extend the wall-buildinq program so that the 
wall will first be buill and then demolished 
brick by brick and row by row. A possible 
answer is given on page 11-7. 

Suppose that the wall is still complete and the ball is approaching 
the tenth row. Since ten is an even number, there's no problem -
we just clear a section of the wall and bounce the ball away. 
However, if the ball was approaching the 13th column, it's not so 
straight-forward. Since 13 is an odd number we need to remove two 
blocks starting at the 12th column. So it is necessary to check 
whether the column variable is even or not. 

7'-14 



Program 7.10(d) distinguishes between even and odd numbers. Line 
20 does the actual calculations (if A=3 then INHA/2)=1, whereas 
A/2=1.5). 

PROGRAM 7.10 (d) 

10 INPUPNUMBER";A 
20 IF INT(A/?) <>A/2 THEN PRINT"ODD" :GOTO 
10 
30 PRINT"EVEN" : GOTO 10 

Now, to put two of the programs together - the one that builds the 
wall followed by the endlessly bouncing ball. It will be slightly 
different in the final version because the ball will only bounce up 
from the bottom if the bat is in the way, whereas it bounces 
automatically in the current program whenever it reaches the bottom 
of the screen, i.e. when Y=24. 

First enter the wall building program, Program 7.1O(b) and then 
Program 7.11. 

PROGRAM 7.11 

100 REM BOUNCING BALL 
110 X=l1: Y=l1 
120 XI=I:YI=1 
130 POKE 1024+X+Y*40,81 
140 POKE 55296+X+Y*40,2 
150 XX=X:YY=Y 
160 IF X<1 OR X>38 THEN XI=XI*-1 
170 IF Y<1 OR Y>23 THEN YI=YI*-1 
180 X=XX+XI 
190 Y=YY+YI 
200 A=PEEK(1024+X+Y*40) 
210 IF A<>160 THEN 260 
220 YI=YI*-l 
230 IF INT(X/2)<>X/2 THEN X=X-l 
240 POKE 1024+X+Y*40,32 
250 POKE 1024+(X+l)+Y*40,32 
255 IF X<1 THEN YI=I:GOTO 160 
260 POKE 1024+XX+YY*40,32 
270 GOTO 130 

7-15 



Line 230 makes sure that the bricks are demolished in the correct 
pattern (i.e. 'X' is an even number). Line 180 ensures that if the 
ball breaks through the wall then it bounces before it reaches the 
top line (remember the top line is reserved for scoring details). 
The rest of the program is straight-forward. If the value of 'AI 
is '160' (the wall), then a block is removed and a bounce is 
performed. If 'A' is not '160 1 then the ball moves continuously 
along its previous path. 

EXERCISE 7.11 

Modify Program 7.11 so that the ball starts 
off in a random position. Make sure that the 
start position is below the wall. A possible 
answer is given on page 11-7. 

The Final Program 

So, now that we've done all the hard work, it's simply a matter of 
putt i ng a 11 the pi eces together and comi ng up with the fi ni shed 
product. We've used three subroutines, for moving the bat. for 
moving the ball and the initialisation routine (building the wall. 
serving the ball etc); rather than giving the list in one go, we'll 
first look at each subroutine separately. You may now LOAD BREAKOUT 
from the disk and follow the explanations of the program sections. 

Program 7.12 is the subroutine for moving the bat along the bottom 
of the screen. This subroutine is called twice for every once that 
the ball moving subroutine is called, thus enabling the bat to move 
faster than the ball. The character for the bat has been changed 
from 160 (a reverse space) to 60 (a less-than sign). This now 
allows us to react differently every time we hit either the bat or 
the wall. 

PROGRAM 7.12 

3000 REM MOVING THE BAT 
3010 GET A$:IF A$="" THEN RETURN 
3020 IF A$=11" AND BC>O THEN BC=BC-2:GOT 
o 3050 
3030 IF A$="9" AND BC<38 THEN BC=BC+2:GO 
TO 3050 
3040 GOTO 3060 
3050 POKE 1984+CB,,32:POKE 1984+CB+1,32 
3060 POKE 1984+BC" 60: POKE 56156+BC, 0 
3070 POKE 1984+BC+1,60:POKE 56256+BC+1,0 
3080 CB=BC 
3090 RETURN 

7-16 



Next to be developed is the subroutine for moving the ball. Program 
7.12(b). On the return from this subroutine. a check is made on 
the value of NB • if it is 101 then a new ball is not necessary 
(and the RETURN has been made via line 2210. indicating a valid 
move). This illustrates the important idea of passing information 
to and from subroutines by flags, which are set to particular 
values. 

Notice that after we PEEK into the next location (line 2060), 
before anything else is done. a check is made to see if the ball is 
approaching the bat. If it is, then the value of A is 60 and the 
ball is bounced away· line 2065. 

The other addition to this subroutine is the score element in line 
2090, the IVI value being used to calculate the score. IV' is 
subtracted from ten and this value is multiplied by 15 1 so the 
bricks nearer the top are worth more points than the bricks lower 
down, e.g. if Y=3 then 10-3=7 and 7*5=35 so 35 points are scored 
for removing a top brick. 

PROGRAM 7.12(b) 

2000 REM MOVING BALL 
2010 YY=Y:XX=X 
2020 IF X<1 OR X>38 THEN XI=XI*-l 
2025 IF X<O OR X=O THEN XI=+1 
2030 IF Y<2 OR Y=2 THEN YI=+1 
2035 IF Y>23 THEN NB=1:RETURN 
2040 X=XX+XI 
2050 Y=YY+YI 
2060 A=PEEK(1024+X+Y*40) 
2065 IF A=60 THEN YI=YI*-1:GOTO 2040 
2070 IF A<>160 THEN 2140 
2080 YI=YI*-1 
2090 SC=SC+5*(10-Y) 
2100 IF INT(X/2)<>X/2 THEN X=X-l 
2110 POKE 1024+XX+YY*40,32 
2120 POKE 1024+(X+1}+Y*40,32 
2130 GOTO 2010 
2140 POKE 1024+XX+YY*40,32 
2150 IF Y=1 THEN YI=1:GOTO 2010 
2160 POKE 1024+X+Y*40,81 
2170 POKE 55296+X+Y*40,2 
2180 RETURN 

7-17 



Now for the final subroutine - Program 7.12(C) - or, rather, the 
fi na 1 two subrout i nes in one. Lines 1000 to 1050 are concerned 
with building the wall, displaying score information, setting SCore 
to '0' and Ball to 'I' (the ball number currently in play). Three 
goes have been allowed and a check has been made towards the end of 
the subroutine on the value of the current ball number. This part 
is needed only at the beginning of each new game. 

The second part of the subroutine is concerned with serving a new 
ball, and so 'NB' is reset to zero (remember it would have been set 
to 'I' in the previous subrout"ine to indicate the last ball had 
been lost) and lines 1240 to 1270 ensure a random starting position 
(from row 10) and initial random direction. Best score will be 
explained in the next section. 

PROGRAM 7.12 ( c ) 

1000 REM INITIALIZATION ROUTINE 
1010 FOR X=O TO 39 
1020 FOR Y=2 TO 7 
1030 POKE 1024+X+Y*40,160 
1040 POKE 55296+X+Y*40,Y 
1050 NEXT Y,X 
1060 BC=O 
1070 POKE 1984+BC,60:POKE 56256+BC,O 
1080 POKE 1984+BC+1,60:POKE 56256+BC+1,0 
1090 PRINT"<HOME>SCORE:";SC;TAB(12);"BAL 
L:";8,"8EST:";BEST 
1100 B=l 
1110 Sc=o 
1120 REM NEW BALL SERVED 
1130 NB=O 
1140 Y=11 
1150 X=INT(RND(1)*36)+2 
1160 YI=l 
1170 XI=INT(RND(1)*2) 
1180 IF XI=O THEN XI=-l 
1190 RETURN 

The final part of the 1 isting - Program 7.12(d) - is the main 
program that controls the calling of the subroutines. 

The program loops around lines 60 to 160, continually checking to 
see whether a new ball is necessary (lines 80 to 130), or if all 
the bricks have been demolished. The maximum possible score is set 
to 3300 (line 70), and a bonus of 1000 is also made for each ball 
left over after the wall has been demolished. 

7-18 



When the current game is over - either all 3 balls have been used 
or the entire wall has been demolished - lines 180 to 220 display 
the score and prompt for the next game. The best score ('BEST') 
is initi ally set to 0 and a check is made in 1 ine 190 to see 
whether the current score is better, with appropriate action being 
taken. 

PROGRAM 7.12(d) 

5 PRINT "(CLR>" 
10 REM FINAL PROGRAM 
20 POKE 53281,1 
30 POKE 53280,1 
40 BEST=O 
50 GOSUB 1000 
60 GOSUB 2000 
70 IF SC=3300 THEN 170 
80 IF NB=O THEN 140 
90 IF B=3 THEN 180 
100 POKE 1024+X+Y*40,32 
110 B=B+1 
120 GOSUB 1120 
130 GOSUB 3000 
140 GOSUB 3000 
150 GOTO 60 
160 PRINT"<HOME>SCORE:";SC;TAB(12);"BALL 
:" ; B, "BEST:" ; BEST 
170 REM GAME OVEK 
180 PRINT"GAME ","OVER" 
190 IF SC>BEST THEN PRINT"NEW BEST SCORE 
":BEST=SC 
199 PRINT"SCORE",SCORE 
200 PRINT" PRESS ANY KEY FOR ANOTHER GO" 
210 GET A$:IF A$="" THEN 210 
220 PRINT"<CLR>":SC=O:B=O:NB=O:GOTO 50 

So that's the game. Finito!! You can improve the game by 
incorporating some of the exercises that you've done, e.g. 
introducing a skill factor via a variable bat size of 'I' or '2' or 
even '3' characters long and by improvi ng the bounce features of 
the ball as it comes off the bat. 

This program has been explained in a fair amount of detail, and 
hopefully has stimulated you along the way such that you have 
evolved some ideas of your own for video games. There really is 
an almost infinite variety of games that could be devised. We 
shall look at a couple of spin-offs from this game in the rest of 
the chapter, but by now you should be busy thinking up your own. 

7-19 



PART TWO 

Ball trap 

This is the first of the two games that are a direct follow-on from 
the work done during the development of the breakout game. All the 
techniques used in this game will already be familiar to you. So 
it's merely the logic (or algorithms) that has to be explored. 

The aim of this game is to trap a bouncing ball in a 'basket' at 
the top of the screen - not by moving a bat, but by drawing colored 
1 i nes from wh i ch the ba 11 can bounce and hence be gui ded towards 
the desired destination. 

Programs 7.13 and 7.14 will illustrate the concepts discussed. The 
actual BALLTRAP game can be loaded later in this chapter. 

Fi rst of all, Program 7.13 looks at the drawing of the 1 ines. As 
before, the 'I' and '9' keys control sideways movement but in 
addition here, the 'l' and 'M' keys control movement up and down 
the screen. Since this time the aim is to leave a trail, the 
coding is a lot easier. Once again the top row is being kept for 
scoring details. 

PROGRAM 7.13 

Better Bouncing 

10 REM COLORED LINE 
20 PRINT "<CLR>" 
30 BX=lO: BY=lO 
40 POKE 1024+BX+BY*40,160 
50 POKE 55296+BX+BY*40,2 
2000 GET A$:IF A$="" THEN 2000 
2010 IF A$="l" AND BX<>O THEN BX=BX-1:GOTO 2060 
2020 IF A$="9" AND BX<>39 THEN BX=BX+1:GOTO 2060 
2030 IF A$="l" AND BY<>24 THEN BY=BY+1:GOTO 2060 
2040 IF A$="M" AND BY<>l THEN BY=BY-1:GOTO 2060 
2050 GOTO 2000 
2060 GOTO 40 

Now for the bouncing ball! To create this it would be possible to 
use exactly the same code as bE!fore, but this time the aim is to 
obtain a more realistic bounce. The following diagrams illustrate 
some of the problems: 

7-20 



Example 1 

Example 2 

Example 3 

row 

col umn 

4 
51--+~~~ 

row 6 1--+==+!~+-4 
7 ~=I--+-+--I 
8 L.=:..JL...-.L--'--'-~ 

co'l umn 

row iii 771. 8. 
5 6 789 

col umn 

In the previous program, position (9,4) would have been examined 
(using PEEK) and, if found unoccupied, the ball would have moved 
there. However, in the first two examples, the dotted ball 
indicates a more realistic move and, in Example 3, the ball really 
ought simply to retrace its steps. 

The other case that must be considered is illustrated in Example 4. 

Example 4 

row 

5 6 7 8 9101112 

column 

7-21 



This time (X,Y+YI), i.e. (8,4), and (X+XI,Y), i.e. (9,5), will have 
been checked, and being found to be empty, the ball will be moved 
to (X+XI,Y-YI), i.e. (9,4), which is occupied by the wall! 

What is needed in this case is for the ball to retrace its steps, 
so that after (X,Y+YI) and (X+XI,Y) have both been checked, 
(X+XI,Y+YI) is checked and if found to be occupied, both XI and YI 
are altered. 

This is done in Program 7.14 (lines 250 to 340) which draws some 
random lines to test this ball-bouncing logic. In this program, 
the variables that were used last time to I remember I the old 
position of the ball are not necessary now because in 1 ines 250, 
280 and 310, the relevant shape code is found before XI and YI are 
altered. 

PROGRAM 7.14 

10 REM DRAWING ASSORTED LINES 
20 FOR X=10 TO 35 
30 POKE 1104+X, 160:POKE 55376+X,2 
40 NEXT X 
50 FOR Y=1 TO 15 
60 POKE 1114+Y*40, 160:POKE 55386+Y*40, 
2 
70 NEXT Y 
80 BX=10: BY=20 
200 REM BETTER BOUNCING BALL 
210 X=5: Y=20 
220 XI=I: YI=1 
230 IF X<1 OR X>38 THEN XI=XI*-1 
240 IF Y<1 OR Y>23 THEN YI=YI*-1 
250 A=PEEK(1024+X+Y*40) 
260 IF A<> 160 THEN 280 
270 XI=XI*-1 
280 A=PEEK(1024+X+(Y*40)+YI*40) 
290 IF A<>160 THEN 310 
300 YI=YI*-1 
310 A=PEEK(1024+(X+XI)+(Y*40)+YI*40) 
320 IF A<> 160 THEN 340 
330 XI=XI*-I:YI=YI*-1 
340 POKE 1024+X+Y*40,32 
350 X=X+XI:Y=Y+YI 
360 POKE 1024+X+Y*40,81 
370 POKE 55296+X+Y*40,2 
380 GOTO 230 

7-22 



Now for the trap. This has to be made in a different color and 
also has to be surrounded by a border of the same color that the 
lines will be drawn in. Ohe suggested color scheme is white for 
the background, a black ball and red for the trap. (The line 
numbers used are as they will appear in the final program.) You may 
now LOAD BALL TRAP from disk and follow these sections. 

PROGRAM 7.14(a) 

4000 REM DRAWING THE TRAP 
4010 FOR X=l TO 4 
4020 POKE 1148+X,160:POKE 55420+X,2 
4030 POKE 1188+X*40,160:POKE 55460+X*40,2 
4040 POKE 1228+X,160:POKE 55500+X,2 
4042 POKE 1109+X,83:POKE 55381,5 
4044 POKE 1249+X,83:POKE 55781,5 
4050 NEXT X 
4060 RETURN 

The next Program (7.14(b» handles the scoring - again a Ibest 
score l is used to add interest. This time, of course, since the 
ball has to be trapped in the shortest possible time, 1831 is 
initially set to 1000, and this also provides the time limit so 
each time the program loops a check is made to make sure that this 
limit has not been exceeded. 

The final problem arises when attempting to determine exactly when 
the ball has been trapped - and this is quite easily done by 
filling the trap with green hearts. Thus when the PEEK value of the 
next co-ordinate is 83 the ball has hit a heart and is now in the 
trap. 

So here1s the final listing, subroutine by subroutine (remember to 
include the one above for drawing the trap!). 

7-23 



PROGRAM 7.14(b) 

1000 REM INITIALIZATION ROUTINE 
1010 T=O: SC=O 
1020 TF=O 
1030 X=INT(RND(l)*38) 
1040 Y=INT(RND(l)*23) 
1050 IF X<ll AND X>l THEN 1030 
1060 XI=l:YI=l 
1070 BX=38:BY=23 
1080 POKE 1024+BX+BY*40,160 
1090 POKE 55296+BX+BY*40,2 
1100 RETURN 

Program 7.14(c) should present no great difficulty as the 
techniques have al ready been well explored. Lines 1100 to 1130 
give a random starting position for the ball (ensuring that it 
isn I t in the trap to start with!). Lines 1140 and 1150 make sure 
that the ball is initially moving away from the trap, and lines 
1160 to 1190 set the starting position of the line to the bottom 
right-hand corner. 

The flag TF, "trapflag", is used in a similar way to the way NB, 
"newball", was used last time and is set to 1 only when the ball 
enters the trap. 

PROGRAM 7.14(c) 

2000 REM DRAWING THE LINES 
2010 GET A$:IF A$="" THEN RETURN 
2020 IF A$="I" AND BX<>O THEN BX=BX-l:G 
OTO 2070 
2030 IF A$="9" AND BX<>38 THEN BX=BX+l: 
GOTO 2070 
2040 IF A$="Z" AND BY<>2 THEN BY=BY-l:G 
OTO 2070 
2050 IF A$=" M" AND BY <>23 THEN BY =BY+ 1: 
GOTO 2070 
2070 POKE 1024+BX+BY*40,160 
2080 POKE 55296+BX+BY*40,2 
2090 RETURN 

So far, this program is very s imil ar to the earl ier ball game 
except that, this time, if no key is pressed or the wrong key is 
pressed the program RETURNs. 

7-24 



PROGRAM 7.14(c) contd. 

3000 REM MOVING THE BALL 
3010 IF X<1 OR X>38 THEN XI=XI*-l 
3020 IF Y<1 OR Y>23 THEN YI=YI*-l 
3060 A=PEEK(1024+X+(Y+YI)*40) 
3070 IF A<>160 THEN 3090 
3080 YI=YI*-l 
3090 A=PEEK(1024+(X+XI)+(Y+YI)*40) 
3100 IF A<>160 THEN 3120 
3110 XI=XI*-l 
3120 POKE 1024+X+Y*40,32 
3130 X=X+XI 
3132 IF X>38 OR X<l THEN XI=-XI:GOTO 3130 
3140 Y=Y+YI 
3142 IF Y>22 OR Y<2 THEN YI=-YI:GOTO 3140 
3150 A=PEEK(1024+X+Y*40) 
3160 IF A=83 THEN TF=1 
3170 POKE 1024+X+Y*40,81 
3180 POKE 55296+X+Y*40,2 
3190 RETURN 

The only addition to this subroutine has been lines 3150 and 3160 
which check (before printing the ball!) to see whether or not the 
trap has been entered, and if so the "trapflag" is set. 

After the ball enters the trap, it would look more effective were 
the ball to continue to move until it hits the back of the trap, 
and this is accomplished by the following subroutine, Program 
7.14(d) (and is an example of one subroutine calling another!). 

PROGRAM 7.14 ( d) 

5000 REM BALL IN TRAP 
5010 GOSUB 3000 
5020 IF X<>8 THEN 5010 
5030 RETURN 

Now for the final part of the program, which loops around lines 55 
to 130, constantly checking that time is still available (line 100) 
and that the ball hasn't been trapped (line 80, via the flag 'TF'). 
Again, the line-drawing subroutine is called twice for every once 
that the ball-moving subroutine is called. 

7-25 



PROGRAM 7.14(e) 

5 PRINT"<CLR>" 
10 REM BALL TRAP 
20 POKE 53281,1:POKE 53280,1 
30 T1$=IOOOOOO":S=T1 
40 GOSUB 4000:REM THE TRAP 
50 GOSUB 1000:REM INITIALIZATION 
55 S=TI 
60 T=INT«(S/60)*100)/100) 
70 GOSUB 3000:REM MOVING THE BALL 
80 IF TF=l THEN 140 
90 PRINT"<HOME>TIME:";T 
100 IF T=120 THEN 240 
110 GOSUB 2000:REM DRAWING THE LINES 
120 GOSUB 2000:REM DRAWING THE LINES 
130 GOTO 55 
140 GOSUB 5000:REM CHECK TRAP 
150 IF T>BS THEN 180 
160 BS=T 
170 PRINT"NEW BEST TIME",T 
180 FOR X=l TO ~iOO 
190 NEXT X 
195 GET A$:IF A$<>""THEN 195 
200 PRINT"PRESS ANY KEY FOR ANOTHER GO" 
210 GET A$:IF A$="" THEN 210 
220 PRINT"<CLR>":GOTO 30 
230 REM OUT OF TIME 
240 PRINT"OUT OF TIME !l!!!" 
250 GOTO 180 

7-26 



PART THREE 

Blockade 

Now for the final part of this project. PART 2 improved upon the 
ball-movement from the breakout game and we will now improve upon 
the user control aspect of the game. In the breakout game, the user 
controls the (limited) movement of the bat and in balltrap this was 
extended to draw lines anywhere on the screen. This blockade game 
is a game for two peopl e, who simultaneously draw 1 ines on the 
screen, trying to avoid going over any 1 ines already drawn. The 
first person to cross a line loses the game! Of course, the 
movements are not simultaneous - they just happen so quickly that 
it appears that way! Programs 7.15(a) to 7.15(c) will be used to 
illustrate the concepts. 

The keys to be used for the different directions are: 

Player 1 .. 
Q 

• Z X. 
A 

• 
Player 2 • 

1-

• 
Player 1 will be assigned the coordinates (AX,AY) with increments 
AR and AC, while Player 2 will have (BX,BY) with BR and BC as the 
increments. Diagonal movements are not permitted, so this 
introduces a further constraint to the problem. 

First of all, the coding for Player 1 is developed in Program 
8.15(a). This subroutine evaluates the new direction if one of 
the four controlling keys is pressed; otherwise, the direction 
remains the same as it was before and the RETURN is made from line 
1010. However, if one of the .controlling keys has been pressed, 
then both AC and AR are made zero before proceedi ng (di agona 1 
movement not being permitted means that one of these increment 
variables must always be zero). By the time line 1060 is reached, 
there is only one possibility left - "A" has been pressed. So, of 

7-27 



course, it is not necessary to test for this. 

PROGRAM 7.15(a) 

1000 GET A$ 
1010 IF A$<>"Z" AND A$<>"X" AND A$<>"Q" 
AND A$<>"A" THEN RETURN 
1020 AR=O:AC=O 
1030 IF A$="Z" THEN AC=-l:RETURN 
1040 IF A$="X" THEN AC=+l:RETURN 
1050 IF A$="Q" THEN AR=-l:RETURN 
1060 AR=+l:RETURN 

This subroutine must of course be called, and the initialization 
and calling procedure is developed in Program 7.15(b). 

PROGRAM 7.15(b) 

10 PRINT"<CLR>" 
20 AX=O:AY=O 
30 AR=l:AC=O 
50 POKE 1024+AX+AY*40,160:POKE 55296+AX 
+AY*40,2 
60 GOSUB 1000 
70 AX=AX+AC 
80 IF AX=39 THEN AX=O 
90 IF AX=-l THEN AX=38 
100 AY=AY+AR 
110 IF AY=24 THEN AY=l 
120 IF AY=O THEN AY=23 
130 GOTO 50 

Once this section is inserted, the program will run but does not 
yet have the characteristics required in the game. However, if 
you insert the following lines - Program 7.15(c) - then you'll 
begin to get the idea of the game. 

PROGRAM 7.15(c) 

25 SC=O 
35 SC=SC+1 
125 A=PEEK(1024+X+Y*40) 
127 IF A=160 THEN 140 
130 GOTO 35 
140 PRINT "SCORE=";SC 
150 PRINT "PRESS 'P' TO PLAY AGAIN" 
160 GET A$: IF A$ <> "P" THEN 160 
170 GOTO 10 

7-28 



From this stage, it's simply a question of getting similar 
subroutines for Player 2 and deciding on the strategy and, hence, 
scoring of the game. There are two choices, either the game is 
lost when a player moves over a location which his opponent has 
already occupied, or the game is lost when a player moves over any 
square which has been occupied, and the first player to win, say, 
10 games is the overall winner. 

These two alternatives will be incorporated in the same program, 
INPUT statements being used to determine the player's colors. 
First, the two subroutines corresponding to the above listings, one 
for Player 1 and one for Player 2, are given in Program 7.16(d). 
Obviously, these are basically identical, the major difference in 
their use being how the program calls each one. First type in NEW, 
then load in the BLOCKADE program from disk by LOAD"BLOCKADE",8. 

PROGRAM 7.16(a) 

For Player 1: 

1000 REM PLAYER ONE 
1010 GET A$ :IF A$="" THEN 1090 
1020 IF A$<>"Z" AND A$<>"X" AND A$<>"Q" 
AND A$<>"A" THEN 1090 
1030 AC=O: AR=O 
1040 IF A$="Z" THEN AC=-l:GOTO 1090 
1050 IF A$="X" THEN AC=+l:GOTO 1090 
1060 IF A$="Q" THEN AR=-l:GOTO 1090 
1070 AR=+l 
1090 AX=AX+AC 
1100 IFAX=40 THEN AX=O 
1110 IFAX=-l THEN AX=39 
1120 AY=AY+AR 
1130 IF AY=24 THEN AY=l 
1140 IF AY=O THEN AY=23 
1150 RETURN 

For Player 2: 

2000 REM PLAYER TWO 
2010 GET A$ : IF A$="" THEN 2080 
2020 IF A$<>"N" AND A$<>"0" AND A$<>"M" 
AND A$<>"L" THEN 2080 
2030 BC=O:BR=O 
2040 IF A$="N" THEN BC=-l :GOTO 2080 
2050 IF A$="M" THEN BC=+l:GOTO 2080 
2060 IF A$="O" THEN BR=-l :GOTO 2080 
2070 BR=+l 
2080 BX=BX+BC 
2090 IF BX=40 THEN BX=O 

7-29 



2100 IF BX=-l THEN BX=39 
2110 BY=BY+BR 
2120 IF BY=24 THEN BY:l 
2130 IF BY=O THEN BY=23 
2140 RETURN 

As this is a two-player game, it would look much more professional 
were players' names to be input, rather than using the terms 
'Player I' and 'Player 2'. The next subroutine, Program 7.16(b), 
prompts for the p1 ayers' names and colors (di sp1 aying an 
appropriate message depending on whether both colors are the same 
or not). It initializes the scores and sets up the board (again 
using row 0 for scoring details). Notice that a check is made on 
the length of the players' names (lines 3020 and 3040) and if 
either is greater than 11 characters long it has to be input again 
in an abbreviated form. Also, a check is made on the color number 
input, to ensure that it is in the correct range. 

PROGRAM 7.16(b) 

3000 REM START POINT 
3005 Z=PEEK(53281) AND 15 
3010 INPUT"NAME OF PLAYER ONE";P$ 
3020 IF LEN(P$»ll THEN 3010 
3030 INPUT"NAME OF PLAYER TWO";Q$ 
3040 IF LEN(Q$»ll THEN 3030 
3050 PRINT"COLOR CODE (0-15) FOR ";P$; 
3060 INPUT C1 
3070 IF C1=Z THEN 3050 
3080 PRINT"COLOR CODE (0-15) FOR ";Q$; 
3090 INPUT C2 
3100 IF C2= Z THEN 3080 
3110 IF C2=C1 THEN PRINT"AVOID ALL LINE 
S": GOTO 3130 
3120 PRINT"AVOID ALL YOUR OPPONENT'S LI 
NES" 
3130 PRINT"PRESS ANY KEY TO BEGIN" 
3140 GET A$ : IF A$="" THEN 3140 
3150 Sl=0:S2=0 
3160 PRINT "<CLR>" P$;SI,P2;S2 
3170 RETURN 

The next subroutine, Program 1.16(c), initializes the players' 
starting positions. 

7-30 



PROGRAM 7.16(c) 

4000 REM START POSITIONS 
4010 REM PLAYER ONE 
4020 AX=O : AY=l 
4030 AR=l : AC=O 
4040 POKE 1024+AX+AY*40,160 
4050 POKE 55296+AX+AY*40,C1 
4060 REM PLAYER TWO 
4070 BX=39 : BY=23 
4080 BR=-l : BC=O 
4090 POKE 1024+BX+BY*40,160 
4100 POKE 55296+BX+BY*40,C2 
4110 RETURN 

Finally, to the central part of the game - Program 8.16(d) - which 
serves to call the initializing subroutines and then repeatedly 
calls 1000 and 2000. As it returns, it checks that the line isn1t 
drawing over an opponent1s line already there (lines 60 and 100), 
or any line when both players are using the same color. When this 
check is positive, the appropriate player1s score is incremented 
and then a further check is made to see whether it has yet reached 
10 (lines 190 and 230). 

PROGRAM 7.16(d) 

10 REM BLOCKADE 
20 REM 
30 GOSUB 3000 : REM START POINT 
40 GOSUB 4000 : REM START POSITIONS 
50 GOSUB 1000 : REM PLAYER ONE 
60 A=PEEK(55296+AX+AY*40) AND 15 
70 IF A=C2 THEN 160 
80 POKE 1024+AX+AY*40,160 
90 POKE 55296+AX+AY*40,C1 
100 GOSUB 2000 : REM PLAYER TWO 
110 A=PEEK(55296+BX+BY*40) AND 15 
120 IF A=C1 THEN 250 
130 POKE 1024+BX+BY*40,160 
140 POKE 55296+BX+BY*40,C2 
150 GOTO 50 
160 POKE 1024+AX+AY*40,102 
170 POKE 55296+AX+AY*40,C1 
180 FOR X=O TO 300 : NEXT X 
190 S2=S2+1 
200 GOSUB 3160 : REM PRINT SCORE 
210 IF S2=10 THEN A$=Q$: GOTO 350 
220 PRINT" PRESS SPACE BAR TO CONTINUE" 
230 GET A$ : IF A$<>" " THEN 230 

7-31 



240 GOTO 40 
250 POKE 1024+BX+BY*40,102 
255 PRINT "<CLR>" 
260 POKE 55296+BX+BY*40,C2 
270 FOR X=O TO 300 : NEXT X 
280 S1=S1+1 
290 GOSUB 3160:REM PRINT SCORE 
300 IF S1=10 THEN A$=P$:GOTO 350 
310 GOTO 220 
320 GET A$: IF A$<>" " THEN 230 
330 GOTO 40 
340 REM THE END 
350 PRINT"CONGRATULATIONS I!!! ";A$ 
360 PRINT" PRESS ANY KEY FOR A NEW GAME 
" 

370 GET A$ : IF A$="" THEN 370 
380 PRINT "<CLR>" 
390 GOSUB 3050:REM TO COLOR CHOICE 
400 GOTO 30 

At this stage you have your third Ibouncing-ball l game and, once 
aga in, further developments are up to you. Us i ng the ideas in 
parts 1, 2 and 3 of this chapter, there are many possible 
variations on the game and the more you modify them, the more you 
can identify with them as your own creations! One thing you could 
try is changing the logic behind moving the ball in Breakout. For 
instance, you could try pokeing the space BEFORE you actually poke 
the ball into the next screen location. There are lots of 
poss i bil it i es. 

7-32 



CHAPTER 

8 
PART ONE 

Sprightly Sprites 

Afurther advanced feat~re of the C-64 is its ability to use 
sprites or, in the Commodore jargon, Moveable Object Blocks 
(MOBs). Eight different sprites, numbered from zero to 7, 
can be used at anyone time. These are really rather 

well described by the dry name 'Moveable Object Block', as they are 
just that: a large block approximately 7~ characters in size, 
which is very readily moved about the screen. In addition, 
facilities are available for checking when sprites collide either 
with other sprites or with objects in the background. In its 
simplest form, a sprite is a character object (3x2!) of a 
single color. They can, however, be enhanced by being designed in 
three colors or expanded to twice the size in either the horizontal 
or vertical directions or both. Thus, the available features of 
sprites are: 

* Normal size - 3 characters by 2! ~haracters. 

* Expanded horizontal size - 6 characters by 2! characters. 

* Expanded vertical size - 3 characters by 5 characters. 

* Expanded both axes - 6 characters by 5 characters. 

* Three colors, any of above sizes (multicolor mode). 

In fact, the sprite's size is more accurately defined in terms of 
pixels. As Figure 1 shows, each normal-sized sprite occupies a 
rectangle 24 pixels wide in the horizontal direction and 21 pixels 
in the vertical. 

8-1 



pyrE 1 SYTI: .2- SITE ..3 
;-.-

j 
ByTe 4- e""lI:,.. 

~ 

~Ir .. ~ 
FIGURE 8.1 

As a single-color sprite is made up of pixels that are either on or 
off, each pixel requires one bit of information to define its 
state. To store all the information necessary to define a sprite, 
therefore, 24x21=504 bits of memory are needed. This is arranged in 
bytes as shown in Figure 8.1, with the eight top left-hand pixels 
stored in the first byte, the top middle eight bits being stored in 
byte 2 etc. Calculations to work out the byte value for each group 
of eight pixels are done in exactly the same way as for the 
graphics characters discussed in Chapter 6. Thus. the sprite shown 
in Figure 8.2 is defined by the POKE values: 

FIGURE 8.2 

8-2 

0,128,65 
7,113,173 

,30,8 
56,12,0 



EXERCISE 8.1 

Calculate the POKE values for the first 12 
bytes of the sprite shown in Figure 8.3. 

FIGURE 8.3 

For the control of sprites, an area of memory is reserved, starting 
at 53248. Thus, the addresses of the various sprite functions are 
located in the 46 bytes following this base address. As it's far 
easier to remember numbers of two digits than the five-digit memory 
locations, all sprite function addresses are given as R+N where 
R=sprite base register address of 53248 and N=sprite number. 

Sprite Variety 

The discussion so far has considered only the simplest of sprites 
but other varieties exist, as described above. The nature of each 
sprite other than the normal sized, single-colored variety is 
described below, i.e. 

* Expanded horizontal sprites 

One byte, 53277 (R+29) stores information about the horizontal size 
of sprites, each bit defining the scale of one particular sprite. 
For instance, to expand sprite number 0 horizontally, bit 0 of 
53277 (R+29) is set to a 1. When expanded horizontally, each 
horizontal pixel of the sprite is doubled and thus the resolution 
remains at 2 even though the sprite occupies 48 pixels on the 
screen. 

* Expanded vertical sprites 

One byte, 53271 (R+23) stores information about the vertical size 
of sprites. As with the horizontal size, each bit defines the scale 
of one particular sprite. When expanded vertically, each vertical 
pixel of the sprite is repeated and thus the resolution remains at 
21. 

8-3 



* Expanded both axes 

When both the rel evant bits are set to 1 then both axes are 
expanded. Thus, if both bit 21 s of R+23 and R+29 are set to 1 then 
sprite 2 appears as a double sized sprite. 

* Review of sprite size definition 

Figure 8.4 shows the two size bytes set and reviews the effect this 
has on the relevant sprites. 

Address 

53271 

53277 

7 6 5 4 3 2 1 0 

11101011101111101 
111011111110[IT:D 

Sprite Horizontal 
number scale 

0 double 
1 single 
2 single 
3 double 
4 double 
5 double 
6 single 
7 double 

FIGURE 8.4 

* Multicolor sprites 

Register 

R + 23 (vertical) 

R + 29 (horizontal) 

Vertical 
scale 

single 
double 
double 
single 
double 
single 
single 
double 

All eight sprites can be defined as multicolored by setting the 
relevant bit of R+28 (53276) to a 1, i.e. 

7 6 5 4 3 2 1 0 

53276 I 01111111010[~J~ R+28 

means that sprites 1,2,3, and 7 are single color and sprites 0,4,5 
and 6 are multicolored. 

8-4 



Multi-colored sprites can have up to three different colors defined 
in the usual C-64 way, but two of these must be common to all 
sprites. Thus some sample allowable combinations are: 

Sprite 0 
Sprite 1 
Sprite 3 

red yellow blue 
red yellow white 
red yellow purple 

It is the method of storing the color data that gives rise to this 
1 imitat i on as the 1 east-si gnifi cant nybb 1 es (LSN - remember, a 
nybble is half a byte - i.e. four bits) of two bytes a.re made 
available for storing the two common sprite colors and one LSN for 
each of the individually defined colors i.e. 

Register Effect 
number 

(R+ ••• ) 

37 set overall color 1 
38 set overall color 2 
39 set sprite 0 to sprite color 
40 set sprite 1 to sprite color 
41 set sprite 2 to sprite color 
42 set sprite 3 to sprite color 
43 set sprite 4 to sprite color 
44 set sprite 5 to sprite color 
45 set sprite 6 to sprite color 
46 set sprite 7 to sprite color 

FIGURE 8.5 

As multicolor sprites are more compl ex than the singl e colored 
variety, more information is needed to define them fully. In 
multicolor mode, each pixel can be off, color 1, color 2 or sprite 
color. Two bits of information are needed to store the four 
possible states. These are allocated as below: 

bit 1 bit 2 resultant 
state state color 

0 0 background 
(transparent) 

0 1 color 1 
(general) 

1 1 color 2 
(general) 

1 0 sprite color 
(individual) 

FIGURE 8.6 

8-5 



Thus, multicolored sprites have only half the resolution of single 
colored ones in the horizontal direction (12 pixels) as the bits 
are paired, each bit pair containing the information necessary to 
define one two-pixel element. 

Putting this into practice, Figure 8.7 shows the top left-hand 
corner of a sprite, both as it is stored and as it appears on the 
screen. 

Bit-pairs •.••••• 
~~~~~~ 

o 0
o 0
o 0
o 0
o 0
o 0

o 1 1 1
o 1 1 1
o 0 o 1
o 0 o 1
o 1 1 0
o 0 o 1

Sprite •••
as stored

1 1 1 1 1110)
1 1 11 r
1 1 1 1j
1 1 l.r-'"-

1 0
1 0

B
B
B
B
B
B

Cl C2
Cl C2
B Cl
B Cl
C1 CO
B C1

Sprite ••.
on screen

B = background
C1 = color 1
C2 = color 2

C2
C2
C2
C2
CO-"
COJ

CO = sprite color

FIGURE 8.7

The Sprite Generator: SPRITE.GEN

C2 I cof
C2)-/

C2/
V-

As with user-defined graphics, sprites will be examined during the
development of a sprite generator, a utility that facilitates the
design of a sprite and its incorporation into a sprite-using
program. In structure, this is identical to the Char.Gen program
developed in Chapter 6. As Char.Gen was described in detail in
Chapter 6, only the differences between Sprite.Gen and Char.Gen are
covered in detail in this chapter.

During operation of the program, the sprite will be built up pixel
by pixel and continuously displayed on the screen. The sprite
chosen for this honor will be sprite zero but at the end of the
process, the design can be transferred to any other sprite.

8-6

Initialization

You can now load in the SPRITE.GEN program and follow the
explanation of segments. Once designed, sprite data can be stored
anywhere within the 16K block of memory that is currently visible
to the VIC II chip. In our case this means the first 16K of
memory. There is just one restriction however - the first byte of
the 63 making up the sprite must be stored at the start of a 64
byte block 0, 64, 128 etc •• One such block lies within the cassette
buffer located from 828 to 1023. Its start address is 13x64 or 832,
and the pixels of an empty sprite can be loaded in with a:

FOR X=O TO 62:POKE 832+X,0:NEXT X

Once a sprite is defined, it needs to be assigned a number and the
C-64 needs to be told that sprite N is located at block X. This is
done using a block of memory from 2040 to 2047 as:

POKE 2040+N,13

start of / t ~ start
sprite sprite address
location number of data block
pointers i.e.13*64

Thus, the address of sprite zero is POKEd in location 2040, that
for sprite one into 2041 etc. Therefore, the first few lines of
Sprite.Gen read:

PROGRAM 8.1

Clear screen
Set screen color
Report sprite zero
at block 13
Set sprite zero
to empty

60000 GOSUB 62000:PRINT "<CLR)"
60010 POKE 53280,3:POKE 53281,1:

POKE 2040,13

60020 FOR X=O TO 62:POKE 832+X,0:NEXT

The subroutine called from line 60000 puts a title page onto the
screen, should you wish to include it. Once defined, the sprite
needs to be switched on or, in the jargon, 'enabled'. This is done
by setting individual bits of byte R+21 to one. Bit zero controls
sprite zero, bit one sprite 1 etc. i.e.

bit number 7 6 543 2 1 0

R+21 I 0 I 0 I 0 I 0 I 0 11 I 0 I 0 I
~rns sprite 2 on, i.e.

POKE R+21,4

8-7

•

Finally, the sprite needs to be given a location on the screen~
there being 200 addressable positions in the vertical (V) direction
and 320 in the horizontal (X).

To define a vertical (V) position on the screen, one byte is used
for each sprite, the actual bytes being: R+1 for sprite 0, R+3 for
sprite 1, R+5 for sprite 2 etc. So, to set a V position of 100 for
sprite 0, the requisite command is:

POKE R+1,100

In the case of the X direction, life's a bit more complicated as
anyone of the 320 horizontal points needs to be addressed. As some
of the numbers 0-319 are greater than the maximum value that can be
stored in a single byte, extra capacity needs to be found.
Eight-bit arithmetic is clearly insufficient and sixteen bit
arithmetic is used. Actually, that's not quite true - indeed, two
bytes are used but only 9 bits of these are actually needed. The
extra one bit required per X address can be provided for all eight
available sprites in one byte, R+16 being used for this. As with
other bit-wise storage, bit zero is used for the Most Significant
Bit of sprite zero's X address, bit 1 for sprite 1 etc. Let's
investigate this by setting an address of 300, for sprite 3, and
calculating the POKEs required.

The least significant byte cannot exceed 255, so bit zero for the
most significant byte needs to be set to 1. As this has a place
value of 256, the content of the least significant byte needs to be
44 (300-256) i.e.

MSB LSB

1010101010101011\ 101011\0111110101

0+ 0+ 0+ 0+ 0+ 0+ 0+256 + 0+ 0+32+ 0+ 8+ 4+ 0+ 0 = 300

Using this knowledge, the next line of Sprite.Gen can be written:

PROGRAM 8.2

Switch on sprite zero
Set Y co-ord for display sprite
Set X co-ord for display sprite

60030 POKE 53269,1:
POKE 53249,74:
POKE 53264,1:POKE 53248,35

8-8

Once the basic sprite is set up, the other parameters, size and
color need to be defined, this routine simply setting the variables
for:

* horizontally enlarged sprite: EX=!
* vertically enlarged sprite EY=1
* multicolor sprite MC=!

color 1 C!
color 2 C2
sprite color CO

Lines 60040 to 60130 of Program 8.3 carry out this function and set
up the sprite by means of the relevant POKEs.

PROGRAM 8.3
60040 CO=6
60050 PRINT"<GRY1><CLR><4DCRSR>"TAB(12)

;: INPUT"ENLARGED X <3LCRSR>" ;A$
: IFA$="Y"THENEX=1 :GOT060060

60055 IFA$O"N"THEN60050
60060 PRINTTAB(12);: INPUT"<3DCRSR>ENLAR

GED Y <3LCRSR>";A$:IFA$="Y"THEN
EY=1:GOT060070

60065 IFA$O"N"THENPRINru<5UCRSR>" :GOTO
60060

60070 MC=0:PRINTTAB(11);:INPUT"<3DCRSR>
<RED>M<BLU>U<PUR>L<ORNG>T<BRWN>I<
GRY1>C<GRN>0<LTRED>L<GRY2>0<LTBLU
>U<RED>R<GRY1> <3LCRSR>";A$:IFA
$="N"THEN60120

60075 IFA$<>"Y"THENPRINT"<5UCRSR>":GOTO
60070

60080 MC=1
60090 INPUT"<RED><2DCRSR><3RCRSR>MULTIC

OLOUR #1 (.<RVSON> <RVSOF»<GRY1>
<5LCRSR>";C1

60095 IF C1<00RC1>15THENPRINru<4UCRSR>"
:GOT060090

60100 INPUT"<BRWN><DCRSR><3RCRSR>MUL TIC
OLOUR #2 «RVSON> <RVSOF»<GRY1>

<5LCRSR>";C2
60105 IF C2<00RC2>15THENPRINT"<3UCRSR>1I

:GOT060100
60110 POKE53285,C1:POKE53286,C2
60120 IFMC=OTHENPRINTTAB(4);
60122 PRINT"<BLU><2DCRSR><4RCRSR>SPRITE

COLOUR ";:IFMC=1THENPRINT"«RVSO
N> <RVSOF>.)";

8-9

Screen display

60124 INPUT"<GRYl> <SLCRSR>";CO$:CO
=VAL(CO$):IFCO=OANDCOS<>"O"THENCO
=99

60126 IF CO<00RCO>15THENPRINT"<4UCRSR>"
:GOT060120

60130 POKE53287,CO:POKE53277,EX:POKE532
71,EY:POKE53276,MC

With the larger screen display required by sprites, no room remains
for the clear cursor display that was provided on the Char.Gen
program. Also, the initial grid must be simplified to a grid of
dots. A much simpler program results as lines 60140 to 60170
testify.

PROGRAM 8.4

60140 PRINT"<CLR><3DCRSR)";TAB(27);"<BL
U> YOUR" : PRI NTTAB(27) ;" SPR ITE"

60150 PRINT"<HOME><DCRSR><RED><RVSON)
" :FORX=lT

021
60160 PRINT"<RED><RVSON> <RVSOF><GRN) ••

••••••..•••••••••••••• <REO><RVSON
> <RVSOF>"

60170 NEXT:PRINT"<RED><RVSON>
<BLU>"

Set sprite and display

As with Char.Gen, the array for data storage is DIMed, although
this time it is somewhat larger at 24x21. The initial cursor
position is then set to 1 (X=I,Y=I). Once this is done, the sprite
is cleared to zero in memory and auto-repeat on all keys is turned
on.

Once an input has been made, the current cursor position color is
reset and then the input is decoded-lines 60300 to 60340 of Program
B.S. The cursor color is set back to zero (black) and a check made
for a RETURN (CHR$(13» input.. The current sprite form is then
displayed to the right of the screen, lines 60400 to 60450.

8-10

PROGRAM 8.5

60250 X=1:Y=1:POKE55296+81,0: IFZX=OTHEN
ZX=1:DIMA(24,21)

60260 FOKB=OT062:POKE832+B,0:NEXT:POKE6
50,128:POKE53269,1

60270 GETA$:IFA$="ITrlEN60270
60280 POKEl98,0
60290 POKE55296+40+X+Y*40,5+A(X,Y)
60300 IFA$=IA"ANDX>1THENX=X-1
60310 IFA$="S"ANDX<24THENX=X+1
60320 IFA$=IW"ANOY>1THENY=Y-1
60330 IFA$=IZ"ANDY<21 THENY=Y+1
60340 POKE55296+40+X+Y*40,0:IFA$=CHR$(1

3)THEN6100U

Tests are then made for the pressing of the function keys, again as
was done with Char.Gen.

f1: set current pixel in sprite

This function is virtually identical to the corresponding function
in Char.Gen: it first sets the relevant cell in the array A(X,Y) to
1, turns the screen location ON and sets the screen color. It then
sends the program to the routine at 60570, where the pixel is set
in memory i.e.

PROGRAM 8.6

set array 60350 IF A$="<f1>"THEN A(X,Y)=1:
set screen pi xe 1
set screen color
GOTO update sprite

POKE 1024+40+X+Y*40,160:
POKE 55296+40+X+Y*40,6:
GOTO 60570

The first task is to calculate the byte number (C) for a given
array position X. This is defined by C=INT«X-1)/8).

Next, the POKE values for the individual bytes need to be
calculated by means of a loop which adds up the individual bit
values, i.e.:

PROGRAM 8.7

Calculate byte position 60570

{
60575

Add up bit values
60580

Store value in memory 60590

C=INT«X-1)fS)
A=PEEK(829+Y*3+C): IFA(X, y)=OTHENA
=AAND(255-(2-(8-(X-(C*8»»)
IFA(X,Y)=1THENA=AOR(2-(8-(X-(C*8) »)
POKE829+Y*3+C,A:GOT060270

8-11

f3: turn current pixel off in spr'ite

This function is very similar to f1 but in reverse. Little
explanation seems necessary.

PROGRAM 8.8

unset array
clear screen pixel
set screen color to
background
GOTO update sprite

f5: Print DATA on screen

60360 IF A$="(f3>"THEN A(XtY)=O:
POKE 1024+40+X+Y*40,46:
POKE 55296+40+X+Y*40,5:

GOTO 60570

As sprites are so much larger than individual characters, it is not
possible to display both the sprite DATA and the design matrix on
the screen at the same time. It is necessary, therefore, to split
the two processes such that f5 simply covers the 'displ ay on
screen' routine.

To prepare the screen, the message "YOUR II and "SPRITE" are bl anked
off and the sprite is turned off (POKE 53296,0). Next, the first
three bytes are recovered (FOR D=:O TO 2) by a PEEK into the storage
location and these are prepared for printing onto the screen. Line
60410 does this by stripping off the extra space inserted by the
C-64's BASIC and then prints this and the following comma. Once the
o TO 2 loop has been executed, the 0 TO 20 loop increments to read
the next three bytes of the sprite.

Once the user has finished with the DATA and presses any key, the
screen is again set up as before.

PROGRAM 8.9

60370 IFA$="(F5>"THEN60400

f6: Write DATA into program

As this is the same as for Char.Gen, no explanation is needed.

PROGRAM 8.10

60375 IFA$="(F6>"THEN60460

8-12

f7: Clear design matrix

To carry out the clearing of the matrix, it is only necessary to
clear the various variables and the screen. The command CLR does
the first job and a GOTO 60000 the second: line 60390 completes the
input loop by jumping back to the GET.

PROGRAM 8.11

60380 IF A$="<f7>"THEN CLR:GOTO 60000
60390 GOTO 60270

Store sprite in DATA statements.

First the work sprite is turned off (POKE 53269,0) and then comes
the interrogation to find out where the sprite is to be stored, at
what 1 ine interval and, finally, an error check in an attempt to
prevent over-writing (line 60475).

PROGRAM 8.12

60460 POKE53269,0
60465 PRINT"<REU><CLR><3DCRSR>AT WHICH

LINE DO YOU WISH TO STORE YOUR"
60470 INPUT" SPRITE DATA(10000-60000)

";LN
60475 IFLN<100000RLN>59999THEN60465
60480 INPUT" <3DCRSR>LI NE NUMBER I NCREME

NTS OF" ;SP

Next the sprite number and its storage block are inputted.

PROGRAM 8.13

60485 INPUT"<3DCRSR>WHICH SPRITE WILL T
HIS BE(0-7) <4LCRSR)";SN

60487 IF SN<OORSN> lTHENPR I NT" ~5UCRSR>" : G
OT060485

60490 PRINT"<3DCRSR>AT WHICH BLOCK 00 Y
OU WANT THE DATA TO"

60492 INPUT"BE STORED (0-255) <5LCRS
R>";BN

60494 IFBN<00RBN>255THENPRINT"<6UCRSR>:
GOT060490

8-13

Once the sprite's general data is collected, it has to be stored
prior to being loaded into DATA statements. As the rest of the data
for these is POKEd into memory, it would seem logical to store the
sprite's general data in the same way. The process is further
assisted by the presence below the cassette buffer of enough empty
bytes to store the sprite generall data. Lines 60495 and 60500 store
these eight bytes.

PROGRAM 8.14

60495 POKE824,SN:POKE825,BN:POKE826,CO:
POKE827 , EX

60500 POKE828,EY:POKE829,MC:POKE830,Cl:
POKE831,C2

Once these bytes are in place, a single re-load routine will store
both the general and specific data in DATA statements. One of the
important features of such a procedure is that the data is
organized in a systematic way. When this is done, the DATA can be
used to reconstruct sprites on demand. Recovery of the data and its
insertion into the program follows much the same pattern as that
used for the DATA only module.

PROGRAM 8.15

60505 PRINT"<BLU><CLR>":FORX=OT06:PRINT
: PRINTLN+X*SP; "DATA";: FORY=OT09

60510 A$=STR$(PEEK(824+X*10+Y»:PRINTRI
GHTS(AS,LEN(AS)-l);:PRINT",";

60515 NEXT:PRINTCHR$(20);:NEXT:A$=STR$(
PEEK(824+X*10+Y»

6u520 PRINT", "RIGHT$(A$,LEN(A$)+l) :PRIN
T"<WHT>GOT060530<HOME>" ;

60525 FURX=OT07:POKE631+X,13:NEXT:POKEI
98,8:END

60530 PRINTTAB(6)"<RED><2DCRSR><RVSON>
PRESS ANY KEY •• TO CONTINUE <RVSOF
>";

60535 GETA$: IFA$=:tt"THEN60535
60540 GOT061000

Once Sprite.Gen has been used to create a sprite and store it in
memory, the program that will be using this will need to be able to
decode it satisfactorily: the implication of this is that the order
and location of storage must ble defined in such a way that the
reading-back routine performs its task in the right order. It is
this routine which remains once the termination procedure has been
called, the stages it goes through being:

8-14

* reset all sprites to unexpanded single color.
* READ in sprite general data to define block,

number, size, color etc.
* READ pixel data and POKE into appropriate

location: assign sprite general data.

Only the penultimate stage gives rise to a slight complication, as
single bytes are used to store data for all eight sprites. Taking
1 ine 60660 as an example, this stores the X expansion data. Say,
then, that sprite 3 is to be expanded in the X direction and that
sprites 5 and 7 have already been set to expanded. In this case, EX
is set to 1. Thus working through line 60660:

Sprites 5 and 7 are already set to expanded, i.e. location 53277
appears as:

7 654 3 2 1 0

101 0 0 0 I 0 I 0

128+ 0 +32 + 0 + 0 + 0 + 0 + 0

i.e. a PEEK (53277) would yield 160.

= 160

EX=11
Sprite number (SN)=3 -------"

60660 POKE 53277,PEEK(53277)OR«2 SN)*EX)

PEEK (53277)=160-----1+

the line simplifies to:

60660 POKE 53277,(160 OR 2t3*1)

i.e. 60660 POKE 53277,(160 OR 8*1)

i.e. 60660 POKE 53277,(160 OR 8)

Le' l 1 a 1 0 a a 0 I a I
I 0 a a a a 1 a I a I
I 1 a 1 0 0 1 a I 0 I
128 + a + 32 + 0 + 8 + 0 + 0 = 168

line 60660 then becomes:

60660 POKE 53277,168

A similar process is used to set the Y expansion and multicolor
modes in lines 60670 and 60680.

PROGRAM 8.16

60605 POKE53277,O:POKE53271,0:POKE53276
,0

60610 FORY=lTON:READSN,BN,CO,EX,EY,~:,C
1,C2:FORX=OT062

60620 READC:POKE(BN*64)+X,C
60630 NEXT
60640 POKE2040+SN,BN
60650 POKE53287+SN,CO
60660 POKE53277,PEEK(53277)OR«2iS~)*EX

)
60670 POKE53271 ,PEEK(53271)OR((21SN)*EY

)
60680 POKE53276,PEEK(53276)OK«2rS~)*MC

)
60690 IFMC=lTHENPOKE53285,C1:PUKE53236,

C2
60700 NEXT:RETURN

Sprite.Gen removal routine

Once the necessary sprites have been developed, the bulk of
Sprite.Gen can be removed. This is done in exactly the same way as
was done in Char.Gen. Therefore, no explanation is necessary.

PROGRAM 8.17

61000 PR INT" <BL U><CLR><2DCRSR><4RCRSR>H
AVE YOU FINISHED USING"

61010 INPUT"<DCRSR><4RCRSR>SPRITE.GEN (
Y/N)";A$:IFA$="N"THEN60050

61020 IFA$<>"Y"THEN61000
61030 PRINTTAB(4)"<2DCRSR>DO YOU WISH T

o CREATE THE SPRITE"
61040 PRINTTAB(4)"<DCRSR>SUBROUTINE FOR

YOUR PROGRAM?"
61045 PRINTTAB(4)"<RED><DCRSR><RVSON>WA

RNING<RVSOF>:<BLU> IF YOUR REPLY
IS 'Y'"

8-16

61050 PRINTTAB(4)"THEN SPRITE.GEN WILL
BE DELETED"

61060 INPUT"<DCRSR><4RCRSR>CREATE SUBRO
UTINE (YIN) <3LCRSR>" ;A$: IFA$="
N"THENEND

61070 IFA$<>"Y"THENPRINT"<2UCRSR>":GOTO
61060

61080 PRINTTAB(4)"<2DCRSR><BRWN>HOW MAN
Y SPRITES HAVE YOU": INPUP<DCRSR>
<6RCRSR>DES IGNED <4LCRSR>" ; N

61090 PRINT"<CLR><WHT><2DCRSR>";
61100 PR INT "DELETE60000-60599<2DCRSR>"
61110 PR I NT" DELETE61000-<2DCRSR>"
61120 PRINT"60600 N=";N
61140 PR INT" ?"CHR$(34)" <CLR><BLU>"CHR$(

34)
61150 PRINT"<HOME>";
61160 FORX=631T0634:POKEX,13:NEXT:POKEI

98,5:END

With this book came a disk containing Sprite.Gen. You may now
experiment with this program. Make sure that you LOAD and RUN
Honey.Aid first, as the Sprite.Gen program uses the DELETE function
of Honey.Aid.

8-17

PART 2

Using Sprite.Gen

In Part 2 of this chapter, we will develop a game called Target
that uses Sprite.Gen to generate a sprite and then explore its
various features.

Target: The Game

The aim of 'Target' is to hit a target in the center of the screen
with a circular missile, which can be controlled in three axes by
the pressing of certain keys. Two keys control its X and Y
direction (Z and X respectively) while the two unshifted cursor
keys control the Z direction, the cursor. key moving the missile
into the screen whil e the cursor m key moves it towards the
player.

As the target is suspended in space, the missile can pass either
below or above the target and, in order to score a hit, the missile
must be at the correct height. While attempting to hit the target,
the player must avoid obstacles on the screen and a,collision with
one of these terminates the game as does the hitting of the target.
On termination the player's progress is reported, along with the
running time of the game.

How it works •••••

An imaginary Z co-ordinate for the target is generated by means of
a random number function. As the Z-axis of the missile is adjusted
it may yield a location coincident with the target or one either in
front of it or behind it. When the X, Y and Z co-ordinates of the
missile and target coincide then a hit is scored and that round of
the game is concluded with a congratulatory message. When the Z
co-ordinate of the missile is in front of the target, the missile
must pass in front of it and when its co-ordinate is behind the
target, the target must obscure the missile as they pass.

8-18

Sprite precedence

The three dimensional effect is most readily achieved by utilizing
the sprite precedence feature which defines the order in which
sprites appear to pass in front of each other. In the Commodore
pecking order, sprite 0 always passes in front of all other sprites
and 7 always hides away at the back. What is actually required in
this game is one sprite· the missile· which passes, sometimes in
front of and sometimes behind a second sprite. Not too easy to
achieve that, so three sprites are used, 0 and 2 for the target and
1 for the missile. The two targets can then be switched on and off
to allow the ball to pass in front of or behind these as
appropriate.

Sprite collisions

First though: what is a co11ision1

A sprite consists of a block with its 24x21 pixel matrix and
collision only occurs when this block comes in contact with a
s imil ar block of another sprite or the substance of a screen
object. Figure 8.8 illustrates this.

Sprite to background

1':iP --..
matrix

I
Call

no co 11 i s ion

sprite

full··.·····.·.··.'·.····· .. ·.·.···.···.······.··· .. ·.· ··.··.·.Li ::::::">::;::.:::;::::::::::.

no collision collision

no coll i si on co 11 i si on

FIGURE 8.8

Note: a call i si on occurs ONLY when the body or substance of a
sprite is in contact with that of another sprite.

8-19

(i) Collision with other sprites

One byte in the sprite register, 53278 (R+30), is used to detect
sprite/sprite collisions. Thus, when sprite zero collides with
another sprite, bit zero of R+30 is set to 1. Also, of course, the
relevant bit of the other sprite is also set. A PEEK at R+30,
therefore, will tell if any sprite collisions have occurred, but
beware! PEEKing into this location resets the byte back to zero-so
you must get it right first time.

When only two sprites are being used, this collision checking is
easy as the PEEK of 53278 will read something other than zero when
a collision has occurred. If a specific collision is checked for,
then the contents of the register must be checked more thoroughly.
For instance, following a sprite 5 to sprite 1 collision 1 bits 1
agd 5 will be set to 1. Thus, the register will contain a 2 plus a
2 i.e.

7 6 5 4 3 2 1 0

o 0 1 000 1 0]

o + 0 + 32+ 0 + 0 + 0 + 2 + 0 = 34

The PEEK of 53278 (R + 30) wi 11 be 34. A more soph i s t i ca ted way of
check i ng th i s wou 1 d be to OR the contents of the PEEK with the
relevant amount - in this case 34. On doing this the l's in the 1st
and 5th bit would remain behind along with any l's in the original
byte. Thus if the result of the byte ORed with 34 is 34, then
that's what the original byte contained i.e.

0 0 1 0 0 0 1 0
ORed with 0 0 1 0 0 0 1 0
gives 0 0 1 0 0 0 1 0

= o + 0 +32 + 0 + 0 + 0 + 2 + 0 = 34

but

0 1 0 0 1 1 1 0
ORed with 0 0 1 0 0 0 1 0
gives 0 1 1 0 1 1 1 0

= o +64 +32 + 0 + 8 + 4 + 2 + 0 = 110

If more than one collision is to be detected then the PEEK of the
register must be stored prior' to, or at the time of the first
testing otherwise the register's contents will be destroyed.

8-20

(ii) Collisions with other objects

When a collision occurs between a sprite and anything in other than
background color, then register R+31 (53279) is set appropriately.
This function is virtually identical to that for sprite to sprite
collisions and is tested for in the same way. Thus, to test for a
sprite 4 collision, R+31, (53279) would be PEEKed to see if bit 4
is set, i. e.

IF PEEK(53279 AND 2t4)=2t4 THEN (a collision)

Note that this will only test for sprite 4 coll isions and destroy
the evidence of any other collisions having occurred.

Developing the program

Your disk contains the entire TARGET program; however, you may want
to follow the instructions on designing and entering the sprites.
There will be instructions in a few pages to load the TARGET
program and to follow the game design.

As the program is all about sprites, the first task to be
undertaken will be to design the missile and the target using
Sprite.Gen. Figure 8.9 gives the designs used on the disk but as
you will probably find these not to your taste, you're free to
design your own. That's one of the great advantages of sprites;
once the algorithm for manipulating them is developed, it's
operation is entirely independent of their form •

•• • •• •

I
..
I -

(O=I! CI=II Cl=7

Missile Target

FIGURE 8.9

8-21

To create these, first of all LOAD and RUN Honey.Aid (if it is not
already there) and then LOAD and RUN Sprite.Gen (if it is not
already there).

First the missile •••

The 64 asks
ENLARGED X?
ENLARGED V?
MULTICOLOR?

Reply N
Reply N

Reply N

Next the computer will display the sprite design grid and await
your pleasure. At this stage, the design cursor is located in the
top left-hand corner of the grid and it is moved by the keys:

The function keys operate in the same way as those on Char.Gen with
the addition of f6.

fl turn current pixel in sprite ON.
f3 turn current pixel in sprite OFF.
f5 print DATA on screen.
f6 add DATA to program.
f7 clear design matrix.

Entering of the actual design data is done exactly as with
Char.Gen, so no further descript"ion is necessary.

13-22

Once the design is ready, press function key 6, obtained by holding
down shift and pressing the function key marked f5/f6. You will
then be asked:

AT WHICH LINE DO YOU WANT TO STORE
YOUR SPRITE DATA (10000-60000) ?

Next question ••..

IN STEPS OF ?

Next. ...

WHICH SPRITE WILL THIS BE (0-7) ?

And •.••

AT WHICH BLOCK DO YOU WANT THE DATA
TO BE STORED ?

Reply 10000

Reply 10

Reply 1

Reply 14

Then the program wi 11 di sp 1 ay the added 1 i nes on the screen and
enter them into the program giving a

PRESS ANY KEY TO CONTINUE

On pressing a key the SPRITE.GEN program will ask you

HAVE YOU FINISHED USING
SPRITE.GEN (YIN)?

Reply with an N and the SPRITE.GEN program will resume, allowing
the target to be designed next.

Repeat the above process for the target but for:

ENLARGED X ?
ENLARGED Y ?
MUL TICOLOR ?
MUL TI-COLOR#1
MUL TICOLOR#2
SPRITE COLOR

Reply N
Reply N
Reply Y
Reply 10
Reply 7
Reply 15

Then design the sprite; press function 6 and answer the questions
as follows:

STORE AT LINE?
IN STEPS OF?
WHICH SPRITE?
BLOCK STORED?

Reply 10070
Reply 10
Reply 0
Reply 13

8-23

And then •••••

As the two targets are the same, the design for the first can be
used for the second and so it is only necessary to tell the
computer to look at Jthe same memory for each sprite. This is done
at the beginning of the program with a direct POKE. Of course, if
you wish to go through the proceedings exactly you can repeat the
above procedure.

POKE 2042, 13

i.e. set sprite 2j L to block 13

At this stage, if you're happy with your sprites, you can select
RETURN while in edit mode and, should you manage to persuade the
computer that you're serious, you may remove Sprite.Gen. leaving
the DATA and sprite creation procedure.

At last: the game ••••

Basically the program breaks down into five sections:

1 Initialisation
2 Game alQorithm
3 Reporting on progress
4 Printing obstacles on the screen
5 DATA and sprite creation

Module 1: Initialisation

You may now want to load the TI~RGET program and follow the game
des i gn. As the segments are di scussed, you can LI ST the segments
(i.e. LIST 100-160).

This section commences with the usual sprite initialization
routines, Program 8.18 lists these along with notes on their
functions.

PROGRAM 8.18

Switch off all sprites
Clear screen
Read data and create
Sprites:MODULE 5
Set sprite 2 to same
as sprite 0
Set screen color

100 POKE 53269,0·
PRINT"<CLR><NOCBM><UCASE>";:
GOSUB 60600:

POKE 2042,13

110 POKE 53280,3:POKE 53281,1

8-24

Set sprite 2' s
individual color
Set multicolor mode
for sprite 0 and 2
Set X co-ordinates
for sprites 0 and 2
Set Y co-ordinates
for sprites 0 and 2
print obstacles

130 POKE 53289,15:

POKE 53276,5

140 POKE 53248,170:POKE 53252,170

150 POKE 53249,100:POKE 53253,100

160 GOSUB 820

Once the sprite initialization is done, the start co-ordinates for
the missile can be set up. Line 240 does this with the simple
assignment X=24:Y=60. It's necessary in this game to be able to
reverse the direction of the missile when controlled by a key, or
when it hits the electro-magnetic shield around the field of play.
This is done by means of a pair of increments XD and YD which are
set up to take either positive or negative values. During
initialization, these are both set to 5 which gives the number of
pixels of increment for each cycle. Changing this value will change
the speed of the missile across the screen· a value of 1 giving
slower progress and a 10 giving faster.

In addition to X and Y co-ordinates, both the missile and target
need to be given a Z value or depth. This is worked out by means
of two random number functions which calculate L, Z co-ordinate of
the missile and RL, Z co-ordinate of the target. A simple check on
line 250, Program 8.19 sends the program back to try again when
both Z co-ordinates are the same i.e.

PROGRAM 8.19

240 X=24:Y=60:XD=5:YD=5:Xl=0:X2=0:L=1NT(
RND(0)*10):RL=INT(RND(1)*5)+3
250 IF L=RL THEN 240

Finally, the two collision registers are cleared by PEEKing them,
the clock (T1$) is set to zero and auto-repeat is switched off i.e •.

PROGRAM 8.20

260 CS=PEEK(53278):CD=PEEK(53279):
TI$="OOOOOO": POKE 650,64

8-25

Module 2 : The Game Algorithm

At the beginning of the game the X and Y co-ordinates are both
incremented by 5 (XD and YO), producing movement across the screen
at 45 degrees. Before these are actually POKEd in to re-locate the
missile sprite, it is turned off with a POKE. Once this is done,
the new sprite co-ordinates can be POKEd into memory prior to the
sprite being turned on once more. The X co-ordinate is slightly
awkward as the poss i bi 1 ity of it bei ng over 255 must be catered
for. Thus, the actual co-ordinate must be split into its least and
most significant parts. Firstly, to find its least significant
byte, AND it with 255. Try it out with, say 500:

ANDed
with

gives

I 0 I 0 I 0 I 0 I 0 I 0 I 0 11]

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0]

1010101010101010]

11 I 1 11 11 I 0 11 I 0 11 I = 500

11 11 11 11 11 11 11 11 I = 255 .

[1 11 11 11 I 0 11 I 0 11 J = 244

i . e. the POKE becomes:

POKE 53250, X AND 255

To obtain the most significant byte, the X co-ordinate is ANDed
with 256 to test for a co-ordinate over 255. As this has bit eight
set to 1 and the remainder of its bits set to zero, this strips off
any bits that are set in bit 0 to 7 and allows any l's through that
are set in bit 8. Test this out with 500.

ANDed
with

gives

I 0 I 0 I 0 I 0 I 0 I 0 I 0 11]

I 0 J 0 I 0 I 0 I 0 I 0 I 0 11]

I 0 I 0 I 0 I 0 I 0 I 0 I 0 11]

11 11 11 11 I 0 11 I 0 I 1 I = 500

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I = 256

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I = 256

When a 1, i.e. a 256, is present, it must be converted into a 1 in
the appropriate bit for that particular sprite, as location 53264
contains I~SB information for all seven sprites. For sprite 0, the
appropriate POKE value would be 1 or 2t1, while for sprite 4 it
would be 16 or 2t4. Thus the 256 needs to be divided by 256 to
obtain the sprite zero POKE or 2 to obtain the sprite 7 value; i.e.
in general terms, the dividend is 2 t (8-sprite number). In the
particular case of sprite 1, therefore, the 256 needs to be divided
by 128 to yield a 2. Doing this yields a line:

POKE 53264,(X AND 256)/128

8-26

PROGRAM 8.21

Increment X and Y
Set new X and
Y co-ordinates
turn missile sprite
on again

270 X=X+XD:Y=Y+YD
280 POKE 53250,X AND 255:POKE 53251,
Y:POKE 53264,(X AND 256)/128
POKE 53269,N+2

As the missile traverses the screen, checks must be made to see if
it has yet reached the limits of its travel. Fairly standard sorts
of things these, as when the edges of the screen are reached, the
missile is deflected back to the center of the screen. (We'd call
it a 'bounce' in another game!) As with the ball-game, it's simply
done by reversing the sign of the increment, on lines 290 and 300.

PROGRAM 8.22

290 IF X>324 OR X<24 THEN XD=-XD
300 IF Y>230 OR Y<60 THEN YD=-YD
310 IF L<5 THEN POKE 53269,6:N=4
320 IF L>=5 THEN POKE 53269,3:N=1

Following the GET A$ which checks the keyboard buffer, the buffer
is cleared with a POKE 198,0 and the two sprite collision bytes are
saved as CS(sprite collision) and CD (background collision).

One of the problems with a game that uses three axes, is that of
how to display the third axis. Movement in the Z axis, being in
effect into and out of the screen, is not really visible to the
player. To overcome this, two different features are built into the
game to indicate that:

a) movement along the Z-axis has taken place
b) the limit of movement along this axis has been

reached.

The mode of indication chosen is a flash of the background color
for movement and avery quick flash through the first ten colors to
show that the 1 imi t of movement has been reached. Two of these
lines have the basic syntax:

"If the GET A$ was a cursor down «DCRSR» and the Z co-ordinate is
greater than zero (Z>O) and no sprite-to-sprite collision has
occurred (CS=O) then decrement the Z co-ordinate (L=L-1) and flash
the background (POKE 53281;O:POKE 53281,1)" i.e.:

8-27

PROGRAM 8.23
330 GETA$
340 POKE198,0:CS=PEEK(53278}:CD=PEEK(53

279}
350 IF A$=" <DCRSR>" ANDL >OANDCS=OTHENL =l-

1:POKE53281,O:POKE53281,1

Similarly. for cursor acrosses:

PROGRAM 8.23(a}

360 IFA$="<RCRSR)IANDL<10ANDC~=C7HENL=l
+1:POKE53281,0:POKE53281,1

370 IF (A$=" <DCRSR)" ANDL =0) OR ('c·,S=" <RCRSR
>"ANDL=1O)THENGOSUB810

Next comes a check for a collision, at which point the Z
co-ordinates of the target and missile will coincide (Z=RL) and the
sprite collision register will have been set (CS)O). When this
condition is detected, the program is routed to a routine at 580.

PROGRAM 8.23(b)

380 IF L=RL AND C5>0 THEN A$=TI$:GOTO 580

While the sprite is moving about the screen, its direction can be
changed by means of the 'Z' and 'X' keys which, in effect create an
invisible wall from which the missile bounces. The syntax of the
line is fairly straight-forward; the only precaution necessary
being a check that the missile has not already reached one of the
edges of the field. When this has happened in the current cycle the
direction of movement has already been reversed and another
reversal would be slightly disastrous!

PROGRAM 8.24

390 IF A$="Z"AND X<324 AND X>24 THEN XD=-XD
400 IF A$="X"AND Y<230 AND Y>60 THEN YD=-YD

At last the game algorithm gets as far as checking for a sprite to
background collision. Although a check for a non-zero value would
be sufficient, an AND is used to demonstrate how to check for a
specific sprite's data. When a sprite to background collision is
detected, the program is sent to the sub-routine at 450 that
reports back.

8-28

PROGRAM 8.25

420 IF (CD AND 2)=2 THEN 450

It's worth noting again that when more than one sprite is involved,
the storage of the PEEK in a variable is absolutely necessary.
PEEKing the sprite's collision registers destroys the data. This,
of course, is NOT so for any other memory location, except the last
few SID registers.

Finally, at the conclusion of an impactless cycle, the time TI$ is
reported and the program loops back for another go.

PROGRAM 8.26

430 PRINT"<HOME><RVSON>";TI$
440 GOTO 270

Module 3: Reporting on progress

Report miss/blow missile

When a collision has occurred, the first task is to store the time,
TI$~ to see how long the game lasted; i.e. A$=TI$.

Once the missile has hit an object, it needs to be blown up. Such
an effect can be simulated by defining a series of disintegrating
missiles or, more easily, by just drawing a series of randomly
fragmented objects in the sprite's block of screen. As the VIC chip
knows where a sprite's data is by means of the block numbers stored
in locations 2040 to 2047, the particular location for the
disintegrating sprite could be varied rapidly, sending the VIC chip
looking allover the place for the data; i.e.

FOR X=16 TO 0 STEP -l:POKE 2041,X:NEXT

This tells the VIC chip that sprite lis data is in block 16, then
block 15 etc. down to zero. If the routine is nested within another
loop, say a four times one, then the effect will 1 ast for a
reasonable time. One danger associated with this technique is that
it leaves sprite 1 in block zero - that's zero page. However, as
the program is re-started with a 'RUN ' (line 730), the sprite is
re-located by the program.

8-29

Prior to displaying the end of game message, the missile is
switched off (POKE 53269, N) and fin ally the target is turned off
and the screen cleared; i.e. Program 8.27.

PROGRAM 8.27

remember time
draw random sprites
4x16 times
delay
switch off missile
delay
switch off target

450 A$=TI$:
FOR Y=1 TO 4:FOR X=16 TO 0 STEP -1:
POKE 2041,X:NEXT:NEXT
460 FOR X=1 TO 1000:NEXT:
POKE 53269,N
470 FOR X=1 TO 1000:NEXT:
POKE 53269,0: PRINrn<CLR>";

Next the program reports back on how long the player survived by
means of the subroutine at 510. Also it tells the player that (s)he
failed to hit the target. After this it jumps to the "Do you want
another go?" subroutine; i.e.

PROGRAM 8.28

Report time

480 PRINT "<CLR><7DCRSR><9RCRSR> <2RCRS
R><ORNG>YOU SURVIVED FOR :":GOSUB 510
490 PRINT "<2DCRSR><5RCRSR><GRN>ANO YOU
DID NOT HIT THE TARGET!"
500 GOTO 690

Time in this game is recorded in TI$ which was initialized at the
beginning of the game cycle (line 260) and was stored in A$ when a
game is terminated. Prior to reporting a time, the string Tl$ must
be dissected \0 yield the hours, minutes and seconds: i.e.

left-most two digits - hours LEFT$(A$,2)
middle two digits - minutes MID$(A$,3,2)
right-most two digits - seconds RIGHT$(A$,2)

The decoding of the string can be done straight-forwardly in the
print statement as in Program 8.29, lines 510 to 530.

8-30

PROGRAM 8.29

510 PRINT "<DCRSR><17RCRSR><BLU>;LEFT$(A
$,2);" HOURS<DCRSR><8LCRSR>";
520 PRINT MID$(A$,3,2)" MINUTES
<DCRSR><14LCRSR> AND ";
530 PRINT RIGHT$(A$,2);" SECONDS"

Once the reporting back is done, the game title is printed onto the
screen and the subroutine returned.

PROGRAM 8.30

Report a hit

540 PRINT "<HOME><2DCRSR>
TAB(16);"<RVSON><RED> "

" . ,
550 PRINT TAB(16); "<RVSON> TARGET
<RVSOFF>"
560 PRINT TAB(16);"<RVSON>
<RVSOFF>"
570 PRINT "<10DCRSR>";:RETURN

The remainder of this module is concerned with printing messages
onto the screen after TI$ has been stored in A$. A call at the
subroutine at 510 reports the time. A special message is then
chosen from the selection stored in lines 630 to 660, the
particular choice being based on the actual time taken to hit the
target. To do thi s, the program reads down through the IF ••• THEN
checks and, when the test succeeds, prints out the appropriate
message and is then di rected to the "Do you want another qo?"
subroutine, i.e.

PROGRAM 8.31

580 FORX=lT050:POKE53269,3:POKE53269,1:
NEXT

590 FORX=lTOIOOO:NEXT:POKE53269,0
600 PRINT"<CLR><7DCRSR><LTBLU>"TAB(16);

"WELL DONE!":PRINTTAB(10);" YOU HIT
THE TARGET."

610 PRINT"<DCRSR><14RCRSR><BLK>YOUR TIM
E WAS:":GOSUB510

620 PRINT"<DCRSR><5RCRSR><BRWN>WHICH WA
S ";

630 IFA$<"OOOOlO"THENPRINT"BRILLIANT! F
ANTASTIC! AMAZING!":GOT0690

640 IF A$<"000030" THENPRI NT "SRI LLIANT": G
OT0690

8-31

650 IFA$<1I000l00IlTHENPRINT II VERV GOOOII:G
OT0690

660 IFA$<"OOlOOO"THENPRINTIINOT AT ALL G
000":GOT0690

670 PRINTIINOT VERV GOOD BUT AT LEAST VO
U HIT IT. JUST KEEP ON"

680 PRINTIIVOU'LL GET A BETTER SCORE SOO
N.II

Do you want another go?

This is a fairly standard routine. It prompts for a 'V' or 'N'
response and on receipt of the 'Vies, re-RUNs the program by means
of the RUN command in line 730. One of the advantages of this over
a GOTO 100 (for this program) is that when the operating system
sees the command RLlN, it immediately re-sets all the variables
ensuring that the game starts once more with a clean sheet. Program
8.32 shows the whole subroutine:

PROGRAM 8.32

Sign off

690 PRINT 1I<40CRSR><8RCRSR><ORNG>
DO YOU WNAT ANOTHER GO?II
700 PRINT "<OCRSR><15RCRSR><ORNG>
<LTRED>Y<ORNG>ES OR <LTRED>N<ORNG>OIl
710 GETC$: IFC$=uIITHEN 760
720 IF C$="N" THEN 750
730 IF C$="VII THEN RUN
740 GOTO 710

When the player indicates that (s)he has finished the game, the
'Target' screen is displayed and a friendly message given. This is
held on screen for a while with provision being made for the player
to terminate the proceedings if so desired.

PROGRAM 8.33

760 PRINTN<CLR)II:GOSUB540:PRINTTAB(12)"
<20CRSR)<PUR>GOOOBYE FOR NOW."

770 FORX=lTOlOOO:GETA$:IFA$=III1THENNEXT
780 IFX<1000THENX=10l0:NEXT
790 PRINTII<CLR)II;
800 POKE650,O:PRINTII <OKCBM)N:END

8-32

Color cycle

This is the sub-routine that produces a cycle through colors 0 to
10 when an attempt is made to move the Z cursor beyond its limit.

PROGRAM 8.34

810 FOR Z=O TO 10:POKE 53281,Z:
NEXT:POKE 53281,1:RETURN

Module 4: Present obstacles

No attempt will be made to explain this module, as it simply prints
characters onto the screen. It is c1 earl y a major advantage of
sprites that collisions are so readily detected and this enables
one to print out a pattern of obstacles that suit one's personal
taste.

PROGRAM 8.35

820 PRINT"<CLR><16DCRSR><29RCRSR><YEL>V
<LTRED>*4<YEL>V";

830 PRINT"<DCRSR><4LCRSR><LTRED>/<CYN>U
I <L TRED> /" ; : PRI NT" <DCRSR><4LCRSR><L
TRED> 7<CYN>JK <LTRED> 7" ;

840 PRINT"<DCRSR><4LCRSR><YEL>V<LTRED>*
4<YEL >V" ;

850 PRINT"<4DCRSR><LCRSR><GRY2>V<UCRSR>
V<UCRSR>V<UCRSR>V<UCRSR>V<UCRSR>V<U
CRSR>V<UCRSR>";

860 PRINT"<BLU><HOME><RVSON>

>" . ,
<RVSOF

870 PRINT"<HOME><16DCRSR><7RCRSR><YEL>V
<L TRED>*4<YEL>V";

880 PRI NT"<DCRSR><4LCRSR><L TRED> /<CYN>U
I <L TRED> I" ; : PR I NT" <DCRSR><4LCRSR><L
TRED>7<CYN>JK<LTRED>7";

890 PRINT"<DCRSR><4LCRSR><YEL>V<LTRED>*
4<YEL >V" ;

900 PRINT"<2UCRSR><10LCRSR><GRY2>V<DCRS
R>V<DCRSR>V<DCRSR>V<DCRSR>V<DCRSR>V
<DCRSR>V<DCRSR><BLU>";

910 RETURN

If you find this a boring old set of obstacles, simply change the
print statements to suit yourself. The sprite collision detection
feature will handle the problem of colliSions automatically.

8-33

Thi s facil ity gi yes you a free rei gn to design your own screen.
You could design this as a maze or what you will. It's up to you!

Module 5: Sprite DATA and sprite creation

Sprite.Gen, as its last act before it was ruthlessly destroyed,
printed out the sprites' DATA statements. All that is left after
you pushed the button is enough to set up the sprites and this was
explained with Sprite.Gen. Again, therefore, no explanation.

PROGRAM 8.36
10000 DATA1,14,6,0,0,0,0,0,0,0
10010 DATAO,0,0,0,0,0,0,1,240,0
10020 DATA7,28,0,12,126,0,8,254,0,25
10030 DATA255,0,19,255,0,19,255,O,19,25

5
10040 DATAO,25,255,0,12,254,O,14,126,O
10050 DATA7,252,0,1,240,0,0,0,0,0
10060 OATAO,O,O,O,O,O,O,O,O,O, °
10070 DATAO,13,15,0,0,1,10,7,0,170
10080 DATAO,2,170,128,10,170,160,10,O,1

60
10090 DATA40,60,40,40,255,40,35,0,200,1

63
10100 DATAO,202,163,20,202,163,20,202,1

63,20
10110 DATA202,163,0,202,35,0,200,40,255

,40
10120 DATA40,60,40,10,0,160,10,170,160,

2
10130 DATA170,128,0,170,0,0,O,0,0,0, 0
60600 CN= 2
60605 POKE53277,0:POKE53271,0:POKE53276

,0
60610 FORY=lTOCN:READSN,BN,CO,EX,EY,MC,

C1,C2:FORX=OT062
60620 READC:POKE(BN*64}+X,C
60630 NEXT
60640 POK E 2040+SN , BN
60650 POKE53287+SN,CO
60660 POKE53277 "PEEK (53277 }OR « 21SN}*EX

)
60670 POKE 53271 "PEEK (53271) OR « 2TSN)*EY

)
60680 POKE53276 l,PEEK (53276 }OR « 21 SN)*MC

)
60690 IFMC=lTHENPOKE53285,C1:POKE53286,

C2
60700 NEXT:RETURN

8-34

Now the game is loaded, just a recap of the rules:,

Z and X move the missile, effectively bouncing it back in X
and Y directions.

The cursor keys move the missile in and out of the screen i.e.
in the Z direction.

moves the missile out of the screen.

moves the missile into the screen.

Right then, it's all yours. Bit of a frustrating game, isn't it?

8-35

CHAPTER

9

PART 1: SOUND

O ne of the very advanced features of the Commodore 64
computer is its SID or Sound Interface Device chip. By
means of thi s, the programmer can control all the usual
musical parameters, and much more. The much more refers to

the AoSR and tone-color controls which reproduce the sound of
musical instruments such as the trumpet or piano. However,
controlling such a wide range of parameters requires a considerable
amount of programing and in this chapter, modules will be developed
that should help you in your task of controlling SID.

First a summary ••••

SID gives you the following:

3 voices or separate channels of
sound each controllable for:

* Pitch
* Note duration
* ADSR
* Waveform
* Filtering
* Modulation

The SID chip itself is persuaded to yield all these features by
changing the values stored in certain memory locations. There are
25 such locations and it's only necessary to remember their
addresses - from 54272 to 54296 - to be able to totally control
SID.

9-1

Let's first of all look at one of the 3 voices and see if we can
control it. Then perhaps we'll get more ambitious.

According to SID's memory map, the pitch controls for voice 1 are
located at 54272 and 54273. As far as SID is concerned however.
he has 25 registers and they just happen to be wired in from 54272
to 54296 on the Commodore 64. He'd be just as happy were these to
be numbered from 0 to 24 and these lower numbers are much easier to
understand too. In this chapter, then, in the early stages of a
program, the variable R will be defined as 54272 and, thereafter,
the chip's registers will be alilocated the register numbers 0 to
24.

One of the most important characteristics of a sound is its pitch
and to set this, a number has to be POKEd into SID's registers.
However, as each of these registers is only 8 bits - the 6510 being
an 8 bit chip - a single register can only accommodate a number up
to 255-i.e. POKE 54272,255 would load a '255' into address 54272.
An attempt to load anything greater than 255 into a memory location
would yield an error of the type:

?ILLEGAL QUANTITY ERROR

To be able to POKE numbers only up to 255 becomes something of a
restriction when this is to define the frequency of SID's note. In
order to extend this range, SID uses 16 bit arithmetic and treats
the two 8-bit bytes 54272 and 54273 es ore 16-bj t byte. Thi s it
does by allocating place v~lue~ of 2 '1~ 2 to the low byte,
54272 and place values of 2 , 2 ••..•. 2 to the high byte. T~us,
the place-value of the right-most bit of the high byte is 2 or
256. Hence, a 1 in the high byte and some ones in the low byte
could yield a total of 256+205=461:

Place value

215 213 211 29

1141121 ~o 1 ~
10101010101010111
\ 0 +0 +0 +0 +0 +0 +0+25~ + ~'8+64+0 +0 +8 +4 +0 +1 J Z 461

'Y'256 Y205

FIGURE 9.1

9-2

Thus the line

R=54272:POKE R+l,l:POKE R,205

will POKE in the 16 bit number 256+205=461. This, the manual
tells us, will yield the note AO with a frequency of 28 Hz on an
American Commodore 64 or 27 Hz on a European CBM64. (The
generally accepted standard frequency for this note is actually in
between these two values at 27.5 Hz.) However, if you POKE those
two numbers into the machine in direct mode, then most probably,
no sound will emerge. This is because SID needs a certain amount
of preparation before you can actually get him to work. However,
if you have previously used a program with sound built in, then the
POKEs may, on their own, give a sound output (a very low note and
quite quiet, especially if played on a smallish loud speaker).

To prepare SIO for sounds •••

The first task is to clear out whatever's left in from the last
program - there's nothing worse than other people's noises! Such
a clear-out is achieved by setting all the sound registers to zero
i.e. POKEing a zero into all addresses from R to R+24. It can be
done with a single loop:

R=54272:FOR Z=R TO R+24:POKE Z,O:NEXT Z

Setting up the note

Once the chip is clear, we're free to set up the note which, on
SID, has four basic parameters:

1 Pitch
2 Vol ume
3 Duration/tone color
4 Envelope

* Set Pitch is discussed above, it's the characteristic which
makes a note sound high or low.

* Set Vol ume is simply the loudness of the note which can be
varied between 0 and 15 by POKEing the appropriate value into
Register 24. To get maximum volume therefore, the command is

R=54272:POKE R+24,15

9-3

It should be noted that the volume register controls the
volume for the whole of the SID chip, not just the volume of
a single voice. There is a way of controlling the relative
volume of two or more voices which will be discussed later.

* Set Duration/tone color is obtained by switching the note on
and off as appropriate. With SID, once a note is turned on,
it stays on unt il switched off so a delay loop is used to
hold the note on as long as is needed. Each note is made up
of several stages, and 'set duration' is only one of these.
Detailed discussion of this is left, therefore, until the
structure of the sound is discussed below. For now, we will
turn on both the sound and its waveform at the same time by
POKEing a 33 into R+4 and holding it there for as long as we
wi sh the note to stay. We wi 11 then turn the note off by
POKEing a 32 into this address, i.e.

R=54272:POKE R+4,33:FOR X=l TO 1000:NEXTX:POKE R+4,32

* Envelope is complicated, so for now letls dodge this one and
simply set a tone color. It deserves a whole section on its
own. To set a particular tone color (or timbre) weill use:

R=54272:POKE R+5,9:POKE R+6,O

Now try putting that all together! The order will be:

1 Set R = 54272
2 Clear Chip
3 Set ADSR (tone color)
4 Set volume
5 Set high and low frequency (NS 2144 used)
6 Define nature of sustain sequence
7 Set up delay then turn off sustain
8 Turn volume to zero

i.e.

PROGRAM 9.1

100 R = 54272
1020 FOR Z = R TO R+24:POKE Z,O:NEXT Z
1030 POKE R+5,9:POKE R+6,O
6000 POKE R+24,15
6020 POKE R+4,33
6050 POKE R+1,6:POKE R,96
6060 FOR Z=l TO 1000:NEXT
6070 POKE R+4,32
6090 POKE R+24,O

9-4

So far so good, that's a sound on vo i ce 1 and the other channels
operate in a s imil ar way. In fact the regi ster structure for
voices 2 and 3 is identical to that of 1 and as each voice utilizes
seven bytes of memory, each of three seven-byte blocks from 54272
onwards contains the registers for one voice. Thus, Program 9.1 can
be modified to operate with voice 2 by changing line 1 to read
R:54272+7 or, to use voice 3, to R:54272+14.

Single notes are OK as far as they go but still not too exciting.
The frequency can be varied quite readily by setting a variable
that is then POKEd into the relevant location. As you'd expect
with such a complicated chip, it's very important that this process
is done in the correct order to the pattern of Program 9.1. As it
is the intention in Part 1 of this chapter to write a program that
accepts inputs in conventional musical notation, the problem arises
of changing the note names - A, B, C, C# etc. into the relevant
frequencies. Conversions are given in the Commodore literature in
terms of high and low frequency POKEs but it will be far more
convenient to use the frequencies. What is required are two
arrays, one with the note names and one with the frequency so that
a match can be found for the note name and then the frequency
looked up. These arrays, A$(Z) and A(Z), will be set initially
by READing in the data from DATA statements as in Program 9.2 which
should be added to Program 9.1. Once this program has been run,
A$(Z) will contain the note names, A, B, C etc. and A(Z) their
respective frequencies.

PROGRAM 9.2

1000 DIM A$(8),A(8)
1010 FOR Z:l TO 8:READ A$(Z),A(Z):NEXT
30000 DATA C,2146,D,2409,E,2704,F,2864
30010 DATA G,2215,A,3609,B,4051,C,4292

The DATA statements in 1 ines 30000 and 30010 are correct for
American or Japanese CBM 64s (or strictly speaking, C-64s intended
for use with NTSC standard TVs). European C-64s (intended for use
with PAL standard TV's) need a different set of values if the C-64
is to be tuned to international 'concert pitch' (A4:440 Hz). These
val ues are:

PROGRAM 9.2(a)

30000 DATA C,2149,D,2500,E,2806,F,2973
30010 DATA G,3337,A,3746,B,4205,C,4297

9-5

This DATA is in C8M oscillator frequencies and, needs to be
converted into 8 bit hi and 10 bytes so that it can be POKEd into
the relevant register. The hi£jh byte {FH for 'frequency hi I} is
the number of 256 1 s in the original frequency. It can be found by
taking the INT of the original frequency divided by 256. Test
this out with a few values for A(}.

(i) The frequency 256 should give a hi byte of 1
i.e. FH = INT(256/256} = 1

(ii) The frequency 300 should give a hi byte of 1
i.e. FH = INT(300/256} = 1

(iii) The frequency 1025 should give a hi byte of 4
i.e. FH = INT(1025/256) = 4

The low byte (FL for frequency 10) is sl ightly more compl icated, as
it is what remains when all the hi bytes have been stripped off.

i.e. FL = A() - FH*256

Again, testing this:

(i) For a frequency of 256
FL = 256 - 1*256 = 0
Testing this: frequency = hi byte x 256 + 10 byte

= 1 x 256 + 0 = 256

(ii) For a frequency of 300
FL = 300 - 1*256 = 44
Testing this: frequency = hi byte x 256 + 10 byte

= 1 x 256 + 44 = 300

(iii) For a frequency of 1025
FL = 1025 - 4*256 = 1
Testing this: frequency = hi byte x 256 + 10 byte

= 4 x 256 + 1 = 1025

Two lines, 6030 and 6040 in Program 9.2{b), are added to
incorporate this in the program. Line 6050 POKEs these values into
the register.

PROGRAM 9.2{b)

6030 FH = INT{A(X}/256)
6040 FL = A{X)-256*FH
6050 POKE R, FL :POKE R+1,FH

9-6

So far, however, the program will still only play one note and the
FOR ••. NEXT loop inserted at lines 6010 and 6080 in Program 9.2(c)
wi 11 ensure that the program now plays through the scale of C
major. On completion of this, the volume is turned off, line 6090.

PROGRAM 9.2(c)

Set register constant
DIM
READ note, freq.

Clear chip
Set ADSR

100 R=54272
1000 DIM A$(8),A(8)
1010 FOR Z=l TO 8:READ A$(Z),A(Z)
:NEXT
1020 FOR Z=R TO R+24:POKE Z,O:NEXT
1030 POKE R+5,9:POKE R+6,0

set volume 6000 POKE R+24,15
P-------I~.6010 FOR X=l TO 8
L set sawtooth 6020 POKE R+4,33
A calc hi/lo 6030 FH=INT(A(X)/256)
Y 6040 FL=A(X)-256*FH
L POKE note 6050 POKE R,FL:POKE R+1,FH
a hold note 6060 FOR Z=l TO 1008:NEXT Z
o release sawtooth 6070 POKE R+4,32
P ~ 6080 NEXT X

set volume to
zero

6090 POKE R+24,0

30000 DATA C,2149,D,2500,E,2806,F,2973
30010 DATA G,3337,A,3746,B,4205,C,4297

So far, so good! The program works and plays a scale but needs
much elaboration if it's to be of any real use. As the final
program is going to end up as a pretty complex animal, we have no
choice but to adopt a pretty rigid structured approach. There's a
bonus too in this approach, as the modules that we develop will be
mobile and capable of being incorporated into any other music
program, game or whatever that you care to write.

9-7

PART 2 - COMPOSATUNE

The Structure

Composatune is to be a utility that will help you to add sound to
your programs but wi 11 also demonstrate the many features of the
SID chip and, hence, your C-64. As the chip is so versatile and
full of features, Cornposatune \<,li11 be a long and fairly complex
thing. Itls important, therefore, to give some thought to its shape
before we get too far. One way to explore it is to RUN the version
on disk and test out its major features.

Playing with Composatune

First LOAD and RUN Compos atune and this will present you with MENU
1.

* Select III for input.
enter NOTE IFI

OCTAVE 4
DURATION 3

then NOTE I F I
OCTAVE 4
DURATION 2

check progress by means of
NOTE Ip i <RETURN> for playback

then carryon through the sequence:
F,4,3;A,4,3;A,4,2;C,5,1;
C,5,1;F,5,5

Repeat the playback check by means of:
NOTE Ip i <RETURN>

Now to change the tempo, enter:
NOTE ITI <RETURN>

This will produce the prompt "TEMPO". Enter:
TEMPO 13001

and then NOTE Ipi <RETURN> to see the effect. Try this out
with a few more tempi.
To return to the menu, enter:

NOTE IRI <RETURN>

* Select Ipl for Iplaybackl, this will playback your tune.

* Select IBI for Buildasound this will produce:

an introduction telling you something about Buildasound. On
the second screen you will be asked which note mode. Select
ITI for tune then:

9-8

Buildasound Stage 1: pitch

Select 'R' for 'raise pitch'. The screen will then report that the
current frequency is H and you will hear the pitch raised and
lowered as 'R' and 'L' are selected. When you have finished
experimenting with this. leave stage 1 by entering an IN'. This
will direct the program into:

Buildasound Stage 2: volume

Select to set the volume and enter a value of 1. On pressing
<RETUR~>, the volume will decrease considerably. A suggestion is
that you leave the stage with the volume set at 15. Leave by means
of an INI and enter:

Buildasound Stage 3: envelope

Select 'C' to cycle ADSR, and then choose 'AI to cycle the attack
phase. You will see that the attack starts at zero, while the
others are at their current default values. Cycle the attack using
the space bar. After the attack reaches 15 you will be returned to
the menu - select lA' again, and set it to a low attack number -
say 4. using IS' to set it. Next, try cycling the decay, sustain
and release phases in turn, listening to the effects. Once this is
done, tryout the 'Set ADSR I and I Pre-defi ned I options just to
investigate the wide range of envelopes possible.

Buildasound Stage 4: waveform

Select 'LI and listen to some of the waveforms. Note that when you
listen to the Pulse waveforms you will be asked to set the Ipulse
widthl. Well, don't just sit there! Have a go! Use IXI to exit
when youlre satisfied with the pulse width. Then try:

Buildasound Stage 5: filters

Try the various fi lters to see what they do. You can hear the
sounds when you use III or 10 1 to alter the frequencies. Next,
have a go at:

Buildasound Stage 6: resonance

Start off at zero, and 'I' your way through to 15. After this,
comes:

9-9

Buildasound Stage 7: revision

At this stage you can go back and change any of the earl ier
settinqs. if you wish.

As you saw in Program 9.1. many registers have to be set before SID
produces a sound and this leads to the necessity of a very complex
playback structure. However. most of these registers can quite
safely be left set and then only one of those registers needs to be
set or reset to make SID speak. Because of thi s. the process of
specifying register values and setting these can be separated out
into two discrete subroutines which are simply called when needed.

During the initi al ization phase of the program in 1 ines 11060 to
11120, values are defined for all the variables that will
subsequently be POKEd into the registers. These Idefault l values
will serve the purpose of enabling some sound to be produced easily
and will be replaced when other values need to be set.

Once these. or any other variables have been set. a separate
subroutine. located at 30500 onwards POKEs these into memory. This
is written as a general-purpose subroutine that loads all the SID
registers used in this program. Its general-purpose nature means
that it can be called whenevelr registers need to be set. Some
redundancy is involved in this as. in setting all the registers.
the subroutine inevitably sets some that have not been changed. In
the following pages. the Composatune program will be detailed in
stages. You may follow along with the discussion by listing the
appropriate sections as they are described.

Initialisation

Thi s routine prepares the way for the ma in program by sett i ng the
screen colors. variables etc •• prior to the running of the main
program.

Lines 10-30 set up the screen/border colors. turns the machine into
lower-ca~e and print an introductory message. This is supplemented
on the disk version by a border routine that is set up by a GOSUB
60000 (line 11000) and then called by a SYSH. H being the start
address of the machine-code routine.

The SID chip is cleared. line 11000 and a value of 47.5 is set for
tempo (T). Next. the variables are. DIMed in line 11010 and the
first block of DATA read in 1 ine 11020. As DATA statements are
used for various different purposes. a precaution is taken by
reading in the first DATA element. If this is not IXYZ I then
further DATA is READ until this is found. This procedure ensures
that the correct block of DATA jis READ.

9-10

The next procedure is to set default values for envelope, pitch,
volume and waveform. Following this, the POKE routine is called
(see below) and the program sent to the first MENU.

In addition, the initialization procedure contains two 'GET'
routines, one to return A$ (line 11500) and one to return B$ (line
11600) •

PROGRAM 9.3(a)

2 POKE53280,3:POKE53281,1:PRINT"<BLU>"
10 PRINTCHR$(14)CHR$(8)"<CLR><7DCRSR>"T

AB(13)"COMPOSATUNE
20 PRINT"<6DCRSR>"TAB(6)"(C)COPYRIGHT P

HOLMES 1983
10999 REM INITIALISATION ROUTINE
11000 GOSUB60000:CLR:H=PEEK(55)+256*PEE

K(56):R=54272:T=47.5:FORX=RTOR+24
: POKEX, 0: NEXT

11010 DIMA$(12),B$(12),A(12),FL(50),FH(
50),DU(50):CN=0:X=0

11020 READA$:IFA$<>"XYZ"THEN11020
11030 FORZ=lT012:READA$(Z),B$(Z),A(Z):N

EXT
11040 DATAXYZ,C,C,268,C#,D@,284,D,D,301

,D#,D@,318,E,E,337,F,F,358
11050 DATAF#,G@,379,G,G,401,G#,A@,425,A

,A,451,A#,B@,477,B,B,506
11060 REM SET DEFAULT VALUES
11070 AT=5:DE=8:AD=88
11080 SU=5:RE=9:SR=89:FR=4454
11090 FH(1)=INT(FR/256)
11100 FL(1)=FR-256*FH(1)
11110 VO=15
11120 WF=32
11130 GOSUB30500:GOT012000
11500 POKE198,0
11510 GETA$:IFA$=""THENI1510
11520 RETURN
11600 GETB$: IFB$<>'"'THEN11600
11610 GETB$: IFB$="ITHEN11610
11620 RETURN

9-11

This program won't do much other than set the various sound
variables. To complete the partnership we can put in the SID POKE
ROUTINE.

SID POKES

Many of SID's registers can be handled in a fairly straight-forward
way, registers 5, 12 and 19, for instance, setting the attack/decay
parameters for vo ices 1, 2 and 3. Others, however, set several
disparate functions and one of the major advantages of a routine
such as this is that by using it as a standard POKE section, one
can be sure that all the registers have been set. In the case of
register 4, this sets the parameters shown on Figure 9.2(a). In the
case of regi sters 11 and 18, thei r structure iss imil ar but they
operate on different voices.

9-12

select
random
noise synchronize
waveform=w rr= Osc.1 with Osc.3

select 0 r Gate bit
pu lse
waveform

1r--7--'-1-'-6 ""-1 5--'1r-4-r--3 ~I 2--"'1--'-1-r""1 ~O]

select _____ --'t t ... ______ ring modulate
sawtooth Osc 1 with Osc 3
waveform

select
tri angle ------
waveform

'---------Disable Osc 1

FIGURE 9. 2(a)

The problem caused by this register structure is that, if one
sesects a sawtooth waveform by POKEing a 1 into bit 5 (i.e. a 32
(2) into the register) then all the other bits are reset to zero
and as bits 0 to 3 do other things, these would be turned off. To
tackle the problems this routine POKEs everything appropriate that
is set into register 4 each time; i.e.

30620 POKE R+4,WF+G+RM

The 'logical' way to tackle the problem would be to use logical
operators but - beware

ALL THE INTERNAL SOUND CONTROL REGISTERS OF
THE SID CHIP ARE WRITE-ONLY

Because of this the only way to know what's in a chip is to
'remember'. Routines such as this SID POKE help to ensure that
nothing is 'unset' that should remain set. The various variables
used in the SID chip POKEs are tabulated below (figure 9.2(b» as a
reference although their uses have not yet been expl ained. This
will be done when required.

9-13

REGISTER VARIABLE FUNCTION
FOR VOICE (V)

1 2 3

0 7 14 FL(V) Lo byte frequency

1 8 15 FH(V} Hi byte frequency

2 9 16 LP Lo byte pulse width

3 10 17 HP Hi byte pulse width

4 11 18 WF+G Register 4 POKE

4 11 18 WF Waveform

4 11 18 G Gate - enable

5 12 19 AD Attack/decay

6 13 20 SR Sustain/release

ALL VOICES

21 LO La nybble filter

cut-off frequency

22 HI Hi byte fi lter

cut-off frequency

23 RP+FV Register 23 POKE

23 RP Resonance

23 FV Voice filter enable

24 VO+FT

24 VO Volume

24 FT Fi lter type

FIGURE 9.2(b}

9-14

Program 9.3(b) shows the simple sub-routine that executes the
POKEs. As this is a straight POKE sequence it in no way modifies
the variables.

PROGRAM 9.3(b)

30500 POKER,FL(l)
30510 POKER+1,FH(1)
3U520 POKER+2,LP
30530 POKER+3,HP
30540 POKER+4,WF+G+RM
30550 POKER+5,AD
30560 POKER+6,SR
30570 POKER+15,VO
30580 POKER+21,LO
30590 POKER+22,HI
30600 POKER+23,RP+FV
30610 POKER+24,VO+FT
30620 POKER+4,WF+G+RM
30630 RETURN

One advantage of the SID POKES routine is that, at any stage in the
program a sound can be turned on simply by setting the gate 'G' to
1 and going into the subroutine at 30500.

It can be just as easily turned off by setting G to zero and
entering this subroutine. This provides for a controlled way of
producing a sound by the process:

* set G=l
* GOSUB 30500
* set up delay loop
* set G=O
* GOSUB 30500

Many routines in Composatune call for a single 'beep' sound and the
two subroutines added at 30100 and 30300 call the POKE routine,
execute a delay and then recall the POKE routine after setting the
gate to zero (off) i.e. turning the sound off. A further routine
provides for the play back tune choice when this option is chosen.
The operation of the chip is fully discussed below, the aim of
this introduction being to get a working sound routine.

9-15

To facilitate the use of this technique, two subroutines are
provided to give delays of different lengths:

PROGRAM 9.3(c)

MENU 1

30000 GOSUB30500:FORZ1:IT0100:NEXT:G=O:
GOSUB30100:RETUR~

30100 GOSUB30500:FORZl=liJ500:NEXT:G=O:
GOSUB30500:RETUR~

30200 REM G=I:FORZl=lTOC~:GOSUB30700
30210 REM FORZ2=lTOT*2 A CJ(Zl):NEXTZ2
30220 REM NEXTZ1:G=0:POKER+4,WF+G+RM:

RETURN
30300 IFPB$="T"THENGOSL!317020:RETURN
30310 GOSUB30100:RETUR~

This is the major control menu that calls the control sub-elements
shown in Figure 9.3.

MENU 1

1.1 INPUT TUNE

1.2 PLAY -BACK TUNE

1.3 STORE IN DATA

1.4 RECOVER FROM DATA

1.5 BUILDASOUND

1.6 EXIT FROM COMPOSATUNE

FIGURE 9.3

At this stage of development, the program routeing will be dummied
in and the overall structure defined. Initially the options are
printed onto the screen as in lines 12000 to 12070 of Program
9.3(d) along with the required input.

9-16

PROGRAM 9.3(d)

12000 PRINTCHR$(14)"<CLR><3DCRSR>";:SYS
H:PRINTTAB(15);"MENU1<DCRSR><5LCR
SR>-"

12010 PRINTTAB(8)"<2DCRSR>INPUT TUNE ...
.•.•. I<DCRSR>"

12020 PKINTTAB(8)"PLAY BACK TUNE ..•. P<D
CRSR>

12030 P~INTTAB(8)"STORE DATA ..•..... S<D
CRSR>

12040 PRINTTAB(8)"READ OATA ..•.....• R<D
CRSR>

12050 PRINTTAB(8)"BUILDASOUND •.•..•. B<O
CRSR>

12060 PRINTTAB(8)"EXIT COMPOSATUNE .. X<D
CRSR>

12070 GOSUBl1500

A$, the inputted character, is checked and, on an erroneous entry,
the program loops back to present another menu. A small point here!
The loop is made to the <CLR> rather than to the GET, the flicker
on the screen showing that something has happened i.e. the input
has been accepted.

PROGRAM 9.3(e)

GET a character
prepare for 'INPUT'
INPUT rout i ne
prepare for 'PLAYBACK '
PLAYBACK routine
prepare for 'STORE'
STORE routine
prepare for 'READ'
READ rout i ne
prepare for 'BUILOAS00NO'
BUILDASOUND routine

EX IT rout i ne

12070 GOSUB 11500
12080 IF A$<>" I" THEN 12140

12140 IF A$<>"P" THEN 12180

12180 IF A$<>"S" THEN 12200

12200 IF A$<>"R" THEN 12220

12220 IF A$<>"B" THEN 12240
12240 IF A$<>"X" THEN GOSUB l1500:
GOTO 12070
12250 GOTO 29000

9-17

Following the MENU, a character needs to be inputted from the
keyboard and the standard 'GET' routines at 11500 and 11600 are to
be used for this.

Option 1: Input musical informat'ion

This routine, called by selecting an 'I' in MENU 1, inputs all the
data necessary to define a musical note, displays this on the
screen and plays the note. Other functions must be attended to as
well by this routine and provision is made for the current tune to
be played back at any stage, for the tempo to be set, for different
voices to be selected, and finally for a return to MENU 1.

The section that controls this lies in lines 12080 to 12120, each
routine being called by a GOSUB. Thus, the structure for the
'Input' option is:

(1) Print stave GOSUB 15000
(2) Print input

prompts GOSUB 13000
(3) Decode inputted

data GOSUB 14800
(4) Print note on

screen GOSUB 15500

PROGRAM 9.3(f)

12080 IFA$<>"I"THENI2140
12090 GOSUB15000
12100 GOSUB13000:IFN$="R"THENI2000
12110 GOSUBI4800:GOSUSI5500
12120 GOSUBI7100:GOTOI2100

(i) Print Stave

This display remains on the screen for all of the time that the
input routine is running and is most simply achieved by means of
PRINT statements which utilize the C-64's built-in graphics
characters:

9-18

PROGRAM 9.3(g)

15000 PRINTCHR$(142)"<CLR><OCRSR) ~
" I I" :PRINT" t\ I

I I II

15010 PRINT" • al • a2 • a3 0 a4 0
as"

15020 PRINT"<2DCRSR) ",It
15030 PRINT"- H

I I II

15040 PRINT"- H
1/"

15050 PRINT"- V
I"

15060 PRINT"-/ In
1 • I II

15070 PRINT"-' V

'" 15080 PRINT" I '"
15090 PRINT" \..I"
15100 RETURN

(ii) Print input prompts

Each input of data is prompted and requires error checking
routines. This error checking is provided by a separate 'GET'
routine integrated into this subroutine and called each time a new
input is made. On return from the 'GET' routine, the inputted data,
returned as B$, is re-assigned a variable name as appropriate.

Overall the input data routine must input:

* note data

* control data

pitch
duration

playback tune
set tempo
return from input subroutine

Where the inputted data is recognized as control data, th~
necessary action is taken immediately. For instance, a IT' input
for Iset tempol sends the program to the subroutine at 14700 while
a request for 'playback' directs the program to the playback
routine at 17000.

Each time a prompt is displayed, the program is re-directed to the
GET rout i ne:

9-19

GET a character ••••

In order to facilitate the inputting of the various data elements,
this subroutine is provided which has built-in error checking to
eliminate some of the obvious errors. As some entries are to be one
character long and others two, a variable (E) is set to 1 or 2
prior to entering the subroutine. The inputted characters are
returned in the variable B$. Program 9.3(h) shows the main features
of this program.

PROGRAM 9.3(h)

initialize loop counter
set input variable to
null string
Set up loop
Make up space
for inputted
character
move cursor
end loop
print spaces
print a cursor
perform a GET
check for a delete
decrement loop counter
print inputted character
remove last character
go for another character
check for RETURN pressed
if so perform a RETURN
enough characters input,
if not GET more
check for c9ntrol
characters
check for off reverse
characters
GET another character
Bu il d up B$
increment loop counter
print inputted character
GET another character

13200 Z$=" ":K=1:

B$ = "":
FOR Z5=0 TO E:
Z$=Z$+" <LCRSR>":

PRINT"<RCRSR> ";:
NEXT
13210 PRINT"<RETURN><8LCRSR>";Z$
13220 PR INT"'<LCRSR>";:
GOSUB 11500
13230 IF A$ = CHR$(20) AND K>1 THEN
K=K-1:
PRINT "<LCRSR> <2LCRSR>";:
B$ = LEFT$(B$,LEN(B$)-1):
GOTO 13210
13240 IF A$=CHR$(13)THEN PRINT" ".
RETURN
13250 IF K>E THEN 13220

13260 IF ASC(A$)<32 OR

ASC(AS»127 THEN 13220

13270 B$=B$+A$:
K=K+1:
PRINTA$;:
GO TO 13220

9-20

When this has been added, the program, when run, will carry out the
initialisation, print the menu and when III is selected run into
the GET a character rout i ne. Once thi s has been done, the next
stage is to decode the character that has been entered and act
accordingly.

The input routine

The GET a character subrout i ne returns the inputted data as the
variable B$ and the first task on returning from this, is to check
whether one of the control functions has been selected ie:

The control functions provided allow for the tune inputted to data
to be played back, for the tempo to be set and for the option to be
quit.

Playback of tune to date

If a Ip i is inputted at the "NOTE" prompt, then a jump to the
playback routine can be implemented. As this is a fairly trivial
programming task it is readily achieved, although not in too
structured a way by putting in a check and GOSUB during the
subroutine itself, ie:

13020 IF NS="P" THEN GOSUB 17000:GOTO 13000

'----y--J '----.r---J L-y--J , ~ /
check for go to return to
"Play" playback input

routine routine

Set tempo

A further subrout i ne that can be incorporated here is the tempo
change facility. Again an input check and GOSUB handles the
process, ie:

13030 IF N$="T" THEN 14700
L-y-J

/ check for
tempo

y
go to tempo

setting routine

9-21

When the input detects that a setting of tempo is required, the
tempo routine first of all prints the word ITEMPO I over the earlier
prompt INOTEI. It then jumps to the input a character routine to
collect the tempo value. The tempo value Ir l is then evaluated by
means of:

T = INT(5000/VAL(B$»

This factor 5000 may be modified to suit your own needs but it is
calculated so that the inputtin'g of a tempo T will result in the
tune being played at T crotchets per minute:

i.e. if T:120 tune plays at 120 crotchets per minute.

14700 E=3: PRINT"<UCRSR>TEMPO="; :GOSUB 13
200:T=INT(5000/VAL(B$»:PRINTT:GOTO 13000

Return to MENU 1

The final function accessed from this input subroutine is the
'return to MENU 11. An IRI inputted achieves this by means of a
simple RETURN.

Together these three functions appear in Program 9.3{i) as:

PROGRAM 9. 3{ i)

13020 IF N$="P" THEN GOSUB 17020:GOTO 13000
13030 IF N$="T" THEN 14700
13040 IF N$="R" THEN RETURN

Once the musical note name is inputted, decoding it into a
frequency requires only that the note name be matched with a
position in the array A$() and that the corresponding element in
array A{) be found. As this can be done in one 1 ine, it is
included in this subroutine although this decoding is,
strictly-speaking, a routine of its own.

At the 13090 stage where the octave is inputted, an error check is
utilized to sift out inputs which are:

below zero
above seven
not integers
zero when the note input was not zero

i.e. IF OC<O OR OC> 7 OR OC<>INT(OC) OR OC=O AND B$<>"O" THEN •••

9-22

Error checks are implemented after the duration input to sift out
durations which are:

below one
above five
not integers

i.e. IF DU<1 OR DU>5 OR DU<>INT(DU) THEN

When such errors are found, the cursor is moved back over the
previous input to await the next one.

Program 9.3(j) shows all this in action!

PROGRAM 9.3(j)

position cursor
display prompt
set variable:number of
characters for input
go to input character
routine
store character as N$
check for playback

check for tempo
check for stop
increment character number

clean & entry from screen

go back for another entry
display prompt
set loop control variable
input a character
store character in OC
check for errors

go back for another entry

set loop counter variable
input a character
check for errors

go back for another entry
end subroutine

13000 PR INT"<HOME><19DCRSR>"
13010 PRINT "NOTE= <4LCRSR>";:
E=2:

GOSUB 13200:

N$=B$
13020 IF N$ = "P" THEN GOSUB 1700:
GOTO 1300
13030 IF N$ = "T" THEN 14700
13040 IF N$ = "R" THEN RETURN
13050 CN=CN+ 1

13070 NEXT:IF N=O THEN PRINT"
<2U.CRSR>" :
GO TO 13000
13080 PRINT"OCTAVE=<RCRSR><LCRSR>";:
E=I:
GOSUB 13200:
OC=VAl(B$)
13090 IF OC<O OR OC>7 OR OC<>
INT(OC) OR (OC=O AND B$<>"O")
THEN PRINT "<2UCRSR>":
GOTO 13080
13100 PRINT"DURATION= <LCRSR>";:
E=I:
GOSUB 13200:DU(CN)=VAL(B$)
13110 IF DU(CN)<1 OR DU(CN»5
OR DU(CN)<>INT(DU(CN»THEN
PRINTI<2UCRSR>" :
GO TO 13100
13120 RETURN

9-23

As it stands, the program runs as far as inputting the characters
required and can be tested by running the program, once the next
routine has been written. However, a safer way is to test the
module individually under more controlled conditions.

Generally speaking none of the subroutines in Composatune are so
complex as to require elaborate test procedures. However, even the
humblest of routines can crash a whole system. A few examples of
systematic testing are given just to show how it might be done in a
large complex system. Testing is illustrated below for the input of
a note, its octave and duration, in subroutine 13000.

Module Testing

When written in modular form, the subroutine can be tested prior to
incorporation into the program as a whole. First of all, a short
calling program should be written which calls this subroutine and
then reports back on its performance. Program 9.3(j/i} does this,
reporting back on the values of B$, OC and D. This is not a section
of Composatune, but can be added to test the subroutine.

PROGRAM 9.3(j/i}

o GOTO 40
40 DIM A$(20),B$(20},A(20):GOSUB11030:GOSUB13000
42 PR INT"B$=" ;N$: PR INT"OC=" ; OC; "0="; OU(CN} : END

And then edit line 11030 to be:

11030 READ A$(O):FORZ=lT012:
READA$(Z),B$(Z),A(Z):NEXT:RETURN

Type RUN and test the various functions by entering:

1 Note
2 Octave
3 Duration

The report should tell:

= C
= 4
= 1

B$ = C
OC = 4
0=1

Next test the routine with invalid entries such as:

B$ >"H"
OC <1 or >6
o >5

Once it passes these tests, the module is ready for use.

9-24

Decoding data

The input routine collects the data from the user and stores it in
the appropriate variables. The next task is to transform this data
into a form that can be used to sound the notes and display them on
a musical stave.

The parameters inputted in the prev i ous modu 1 e are decoded and
transformed in the following way:

1. Note frequency FR is transformed to hi/lo PEEK values

A musical notation input is taken and its corresponding frequency
found and transformed into hi and 10 POKE values i.e.

(i) B$ looked up in array A$(N) to find location in array i.e. N.

(ii) Relevant frequency found in position N in array A(N).

(iii) If no entry found. return for another input.

(iv) Variable FR set equal to A(N) for ease of use later.

(v) Value of frequency hi POKE value calculated using FR.

(vi) Value of frequency 10 POKE value calculated using FR.

Putting this into a program yields:

(i)&(ii) N=O:FOR Z=1 TO 12:IF B$=A$(Z)OR B$=A$(Z)THEN N=Z:Z=20:NEXT

(iii) IF N=O THEN PRINT "<2UCRSR)":GOTO 13000

(iv) FR = A()

(v) FH() = INT(FR/256)

(vi) FL() = FR-256*FH()

Note that (iv) and (v) automatically store the inputted data in the
arrays FH () and FL () :

13060 N=O:FOR Z=1 TO 12:IF N$=A$(Z)OR N
$=B$(Z)THEN N=Z:Z=12
13070 NEXT: IF N=O THEN PRINT"<2UCRSR)":
GOTO 13000

9-25

2. Calculating (X,Y) co-ordinates for the plotting of the notes

(i) The X co-ordinate is incremented by one on each pass through
the subroutine.

(ii) Each Y co-ordinate is calculated individually as it is
plotted. C4, the lowest note, is just below the stave, 16
07-l) lines down from the top of the screen. The next
natural note, D is 15 07-2) lines down and so on. Thus,
each note's position is actually (17-N) lines down, where N
is the note's position in the DATA statement. Line 14840
takes care of the processing of both X and Y and, when
handling the Y co-ordinate, must take account of the sharps
and fl ats. As these are plotted on the same 1 ine as the
natural note, the value of Y is not decreased for a natural.
Their presence is recognized on line 14840 as the DATA
character for both a sharp and a flat is two letters long,
e.g.C#(sharp) or E@(flat). When the stored character is only
one letter, and only then, is the value of Y decremented.

One final adjustment is needed for the Y co-ordinate when the
INPUT is octave 5. In this case a further 7 is subtracted
from Y to move the character up by one octave.

The decode subroutine is thus:

PROGRAM 9.3(k)

Module Testing

14800 N=O:FOR Z=1 TO 12:IF N$=A$(Z)OR N$
=B$(Z)THEN N=Z:Z=20
14810 NEXT Z:FR=A(N)*2tOC
14820 FH(CN)=INT(FR/256)
14830 FL(CN)=FR-256*FH(CN)
14840 X=X+1:Y=17:IF X=6 THEN X=O:GOSUB 1
5000:READ Y
14850 FOR Z=1 TO N:IF LEN(A$(Z»=l THEN
Y=Y-l .
14860 NEXT
14870 IF OC=5 AND N<9 THEN Y=Y-7
14880 RETURN

This module needs testing primarily to prove its transformation
function, i.e. how it transforms data from one form to another.
Two transformations are carried out:

9-26

(i) B$ is transformed into hi/lo frequency POKE values. Program
9.3(h) tests this function by inputting a note value and
comparing the outputted val ues of FH() against the standard
table.

To test this, add Program 9.3(k/i) to 9.3(j/i).

PROGRAM 9.3(k/i)

40 DIM A$(20),B$~20),A(20):GOSUB11030:GOSUB 14800
42 PRINT II FH(l)=It; FH(l), II FL(1)="; FL(1): END

Clear the screen, run this and test for a 'C' INPUT with
OCTAVE=6 and DUR=3, the two output values should give
(European CBM 64 values in parenthesis):

FH(1) = 67(69) and FL(1)=O(155)

other tests are

E FH(1) = 84(87) FL(1) = 64(179)
G FH(1) = 100(104) FL(l) = 64(74)
D FH(1) = 75(78) FL(1) = 64(33)

Now delete lines 0, 40, and 42 by typing in the line
number and pressing RETURN. Also edit line 11030 to
read:

11030 FORZ=1T012:READA$(Z),B$(Z),
A(Z):NEXT

Print note on screen

Having inputted the data and decoded it, it can be displayed in its
correct position on a stave on the screen. Thus, this sub-routine
breaks down into two parts; the di spl ay of the stave and the
display of individual notes on it.

Two elements make up the visual display, the basic stave and the
notes. These two units are used differently and are, therefore,
written as two separate routines.

4. The Stave

As the graphics remains on the screen during most of the program,
it can be put there simply by a series of PRINT routines - lines
15000 to 15100 Program 9.3(g).

9-27

5. Plotting the notes.

Each time a note is entered, the cursor needs to be moved to the
(X,Y) co-ordinates. Line 15500 does this within the FOR •••. NEXT
loop by cursoring down one for every unit of Y and across 7 for
each unit of X. Following this, a check is made for sharps and
flats (lines 15530/40) and then the notes themselves are plotted in
lines 15550 to 15600.

PROGRAM 9.3 (1)

15500 PRI~T"<HOME>";:FORZ=ITOY:PRINT"<D
CRSR>";:NEXT:FORl=1TOX:PRINT"<7RC
RSR>";:NEXT

15520 IFN=IANDOC<>5THENPRINT"<DCRSR><
2RCRSR>-<UCRSR><5LCRSR>" ;

15530 IFRIGHT$(N$,I)="@"THENPRINT"*<DCR
SR><LCRSR>*74<DCRSR><3LCRSR>*N<RC
RSR><UCRSR>" ;

15540 IFRIGrlT$(N$,I)="#"THENPRINT":/L<O
CRSR><3LCRSR>* 4<DCRSR><3LCRSR>P7
O<UCRSR>" ;

15550 IFLEN(~$)=ITHENPRINT"<3RCRSR><DCR
SR>";

15560 IFDU(CN)=ITHENPRINT"Q<UCRSR><lCRS
R>*M<UCRSR><2LCRSR>*M<LCRSR>";

15570 IFDU(CN)=2THENPRINT"Q<UCRSR><LCRS
R>*<UCRSR><LCRSR>*M<LCRSR>";

1 b 580 IF D U (C N) = 3 TH E N P R IN T" Q < UC R S R >< LC R S
R>*<UCRSR><LCRSR>*";

15590 IFDU(CN)=4 THENPR I NT" W<UCRSR><lCRS
R>*<UCRSR><LCRSR>*";

15600 IFDU(CN)=5THENPRINT"W";
15610 PRINf"<28UCRSR><18DCRSR><2LCRSR>"

; OC ;
15620 RETURN

6. Audio Display/Playback

This subroutine has the structure:

* check whether any tune stored
* gate sound (gate function is explained more fully

under 'ENVELOPE')
* set up loop for number of notes to be played
* hold program in delay loop
* turn gate off

9-28

PROGRAM 9.3(m)

17000 IF CN<>OTHEN17020
17010 PRINT"<CLR><IIDCRSR>"TAB(12)"NO T

UNE STORED":SYSH:FORXX=ITOI000:NE
XToRETURN

17020 G=I:FORZ1=ITOCN:GOSUB17500
17030 FORZ2=lTOT*2 A DU(ZI):NEXTl2:G=0:GO

SUB3062U:G=1
17040 NEXTZl:G=0:POKER+4.wF+G+RM:RETURN

17100 G=1:ll=CN:GOSUB17500
17110 FORZ2=lTOT*2 A DU(Zl):NEXTZ2
17120 G=0:POKER+4,WF+G+RM:RETURN
17500 POKER,FL(Zl)
17510 POKER+1,FH(Zl)
17520 POKER+4,WF+G+RM
17530 RETURN

Option 2 : Play back tune.

Having written the sub-routine that produces an audio output, the
pl ayback routine requires only that the relevant subroutine be
accessed.

PROGRAM 9.3(n)
12140 IFA$<>"P"THEN12180
12150 GOSUB17000:GOT012000

Option 3 : Store DATA

This option allows the user to store the inputted data as DATA
statements ready for use in his/her own programs. Its basic
structure is identical to that used in both Char.Gen and Sprite.Gen
so no detailed explanation will be provided. It is called by a
GOSUB in line 12090.

9-29

PROGRAM 9.3(0)

12180 IFA$<>"S"THENI2200
12190 GOT019000
19000 PR INT" <CLR><3DCRSR>"TAB(15) "BAS IC

DATA"
19010 PRINT"<5DCRSR><RCRSR>AT WHICH LIN

E WOULD YOU LIKE TO STORE<3RCRSR>
THE DATA?(100-255)?"

19020 INPUT"<HOME><13DCRSR><3RCRSR>";LN
:IFLN<1000RLN>255THENI9000

19030 INPUT"<3RCRSR>IN STEPS OF";SP
19040 PRINT"<CLR><3DCRSR>" ;LN; "DAABC,"C

N"<LCRSR>,"AD"<LCRSR>,"SR"<LCRSR>
, "VO"<LCRSR>,"WF/I<LCRSR>,/IT/I<LCRS
R>,/ICT

19050 A=CN:B=0:C=I:FORZ=lTOCN:POKE829+Z
*3,FL(Z):POKE830+Z*3,FH(Z)

19060 POKE831+Z*3,DU(Z):NEXT
19070 F=0:LV=A:IFA>=24THENLV=24:A=A-24:

F=l
19080 L1=INT«LV+2)/3):L2=LV-INT(LV/3)*

3:IFL2=OTHENL2=3
19090 FORXl=ITOL1:PRINTLN+(B*8+«Xl-l»

+ 1) * SP ; /I DA TA /I ;
19092 X3=3:IFXl=LITHENX3=L2
19095 FORX2=ITOX3
19100 PRINTPEEK(820+B*24+Xl*9+X2*3);/I<L

CRSR>, /I;
19110 PRINTPEEK(821+B*24+Xl*9+X2*3);/I(L

CRSR>,";
19120 PRINTPEEK(822+B*24+X1*9+X2*3);"(L

CRSR>,";
19130 NEXTX2:PRINTCHR$(20):NEXTXl:PRINT

"GOTO 19170/1
19140 POKE826,SP:POKE827,F:POKE828,LN:P

OKE829,A:POKE830,B
191-50 PR INT" <HOME>/I : FORX3=ITOLl +C+2: POK

E630+X3,13:NEXT:POKE198,L1+C+2:C=
o

19160 END
19170 SP=PEEK(826):LN=PEEK(828):A=PEEK(

829):B=PEEK(830)
19180 IFPEEK(827)THENB=B+l:PRINT/I<CLR>(

4DCRSR>/I;:GOTOI9070
19190 FL=I:GOTOI

9-30

Option 4 : Read DATA

This option is also very similar to those subroutines in Chapters 6
and 8 and so, again is simply listed along with the GOSUB that
calls this.

PROGRAM 9.3(p)

12200 IFA$<>"R"THENI2220
12210 GOSUB20000

20000 PRINT"<CLR> READ DATA"
20010 READCN,AD,SR,VO,WF,T,CT
20020 FORZ=ITOCN:READFL(Z),FH(Z),D~(Z):

NEXT
20030 RETURN

Option 5 : Buildasound

The Composatune program has several menu options which we call the
Buildasound routine. This option provides the facility for the user
~o build up a sound stage by stage. while hearing the sound. Once a
sound is developed it is automatically stored as the default value
used in the program generally.

Buildasound's structure is based on a series of interlinked menus.
being an example of a 'menu-driven' routine. With such a structure.
the user can work to the instructions displayed on the screen and
thus have a path charted through the possible routines.

One MENU serves as the master menu that drives the others and
redirects them on return to this. It provides the only way out of
the Buildasound routine by means of its 'EXIT' option.

Each menu offers its own particular features along with the
standard opt ions to change apart icul ar Buil dasound stage or to
move onto the next one. Thi slatter feature serves to defi ne a
particular route through the program so that the user can explore
its features in a systematic way. At each 'stage menu' the option
'N' will, therefore, direct the program to the next stage menu. At
any menu, the option 'X' will redirect the program to the
Buildasound master Menu and, ultimately, out of the Buildasound
routine altogether. Figure 9.4 shows the overall menu structure of
Buildasound and the various routes through it.

9-31

.............

x
• III .. JI .. ~.

· · · · · · x ui..,

stage 8

stage)
PITCH

stage 2
VOWME

X

single
note

ortune
...

~'I"""""": :X

R&L raise/

'I lower

~ set

S volume

MENUl

IB
X

INTRO

p

• l----I------...;,.
fe \ set pre-

::::::::' 1lI1ll1~~ stage 3 crt A DSR defi.ned
E~'TEWPE ~1"I"I""II"""'III"""'I"II.''''''''llir X

L......: 11.1.1 ••• 1111111' J'" 'IUI. IIIIIIIU. 1.11I.II'lJ
I"'I' X •

'-----. --... IC I· • 1'" I ___ ._~ cycle repeat

§ ADSR H·S'" store

~::.::::::: 1"·II·~xi.'I~ L ___ s_ta ... g_e ... 4 ___ ... :....IIIIIIII M.II.UI ul ... !. X WAVEFORM ... " U ,IlI~X .
: defme

I .. I ___ .L."""'I~ listen I 0& p~ pulse
.. '1 wa\-eform ~L-_~_·_id_th __ ...

• III"'''':'., stage 5 X increase

x
:' IIlllU~"

· · · · · · · · ., · · · i J ...
X&N

FILTERS foil """""""0: decrease
~X ~ L-. ___ + __ ----~

I 1 ___ ,;Siiooooj~ select select
.. filter ~ cut-off

stage 6
RESO],;ANCE

stage 7
MODULATE

type frequency

~'"II1'"II1:X ='11 11111 ,. X ; Y ~ ___ :~ ___ ~
set

resonance
increase
decrease

r-. II ': :" 111 -:

=X : =X :: ... ::
set

... I ____ S ~·I frequency
increase
decrease

FIGURE 9.4

9-32

At each stage of Buil dasound, the user can experiment with the
sound parameters and, when desired, reset the default values. In
this way a new sound can be built up progressively. Such is the
finesse of the SID chip that a sound can, in fact, be very 'finely
tuned ' . However, that's the sound that's leaving the computer! If
you are listening on a television with a typically very poor
speaker, some of the nuances of the SID ch i p may be lost in its
ci rcu its!

The Buildasound Routines

In the COMPOSATUNE program, the Buildasound routine has some
preliminary material that introduces the user to the routine. This
is listed below in Program 9.3(q). In addition, some variables are
set to contain data strings that are used frequently in Buildasound
(lines 21160-21190). The Buildasound routine is called by a GOSUB
in 1 ine 12230.

PROGRAM 9.3(q)

12220 IFA$<>"B"THEN12240
12230 GOSuB21000:GOT012000
21000 PRINT"<CLR><2DCRSR>";:SYSH:PRINTT

AB(13);"BUILDASOUND<DCRSR><11LCRS
R>77777777777"

21010 PRINT"<2DCRSR><3RCRSR>THIS ROUTIN
E ENABLES YOU TO BUILD

21020 PRINT"<DCRSR><3RCRSR>A SOUND IN T
HE FOLLOWING WAY, AND

21030 PRINP<DCRSR><3RCRSR>TO HEAR IT A
T ALL STAGES.

21040 PRINTTAB(7);"<2DCRSR>1 DEFINE PI
TCH"

21050 PRINTTAB(7);"3 DESIGN ENVELOPE"
21055 PRINTTAB(7);"2 SET VOLUME
21060 PRINTTAB(7);"3 DESIGN ENVELOPE"
21070 PRINTTAB(7);"4 DEFINE WAVEFORM"
21U80 PRIIHTAB(7);"5 SET FILTERS"
21090 PRINTTAB(7);"6 SET RESONANCE"
21100 PRINTTAB(7)"<2DCRSR>PRESS ANY KEY

FOR STAGE }II
21110 GOSUBl1500
21160 M$="<CLR><30CRSR><7RCRSR)BUILDASO

UNO STAGE<DCRSR><17LCRSR>77777777
77777777177<UCRSR><LCRSR)"

21170 R$="<7RCRSR>":S$="<2DCRSR><3RCRSR
>"+ R$

21180 P$=R$+"NEXT STAGE •••••••• N<DCRSR>
"

21190 Q$=R$+"EXIT STAGE •••••••• X<DCRSR> ..
9-33

At each stage of Buildasound, the option is offered for the user to
playa single note or repeat the tune. This choice is presented via
a MENU and a variable PBS set to record the choice. Each time a
playback is requested, this variable PBS is checked and when this
is set to "T" the program is re-routed appropriately.
PROGRAM 9.3(r)

21200 PRINT"<CLR>";:SYSH:PRINTR$"<5DCRS
R> SELECT NOTE MODE

21205 PRINTR$" 7777777777777777<3DCRSR
>

21210 PRINTR$"SINGLE NOTE .•••••• N<DCRSR
>

21220 PRINTR$"TUNE .••..••••••••. T<DCRSR
>

21230 GOSUB11500
21240 PB$=A$:IFPB$="T"THEN23000

Option 5.1: Define pitch

This option is written as an example of a completely menu-driven
routine which requires only that the user respond to menu prompts.
It provides for four options:

* raise pitch
* lower pitch
* move to next stage
* exit from option

A short section, from 22100 to 22120 decodes the menu directing the
'raise' and 'lower' routines to a calculation section where the
frequency FR (initially 4291, US or 4454 European) is broken down
into FH(I) and FL(l) values. The gate variable (G) is then set to 1
and the SID POKE routine at 30500 is entered. Throughout the
remainder of the option, the sound remains gated, only being turned
off when either the 'exit' or 'next stage' options are selected.

When either the 'raise' or 'lower' options are selected the
frequency, FR, needs to be adjusted either up or down. This could
be done by starting at some arbitrary value for FR and increasing
it by a percentage or a s trad ght forward number of cycles each
time. The frequency values obtained by doing this would only rarely
coincide with the frequencies of 'musical notes' i.e. C, F# G etc.
and so, the option chosen is to increase or decrease the notes in
semitone steps. To do this, th,e frequency steps for semitones need
to be worked out.

9-34

The frequency of a note, say C4 is exactly twice that of the note
one octave below, say C3. Between these two notes, on the musical
scale are twelve intervals and the debate about how to divide up
this gap has raged for many centuries. We will take the rather dry
and mathematical approach and adopt the equal tempered scale. It's
clear that as frequencies get higher, the frequency interval
between semitones gets greater; the gap between the octaves,A4 and
A5 is (880-440) i.e. 440Hz while that between A3 and A4 is only
(440-220) i.e. 220 Hz.

Thus, the ratio between any note and the semitone above is given by
the twelfth root of 2 i.e. frequency 1 and frequency 2, one
semitone apart are related as:

frequency 1 = frequency 2 *(2 (1/2»

To try this out enter the following routine which will:

* Set frequency (FR)=200
* Set up a twelve times loop
* Multiply FR by 2t (1/12)
* Print out FR
* Do next loop
* End

PROGRAM 9.3(r/i)

i.e. 10 FR=200
20 FOR Z=1 TO 12
30 FR=FR*(2t(I/12»
40 PRINT FR
50 NEXT Z
60 END

When this is run, it should give a series of numbers like:

211.892619
224.49241
237.841423
251.98421
266.967971
282.842713
299.661416
317.480211
336.358566
356.359487
377 .549725
400

9-35

In other words, the octave gap has been spl it up by means of a
geometric progression. Lines 22200 and 22210 carry out this raising
and lowering of the frequency and when the val ue of this is
reported back, it is the INT() of FR that is used rather than FR
itself.

PROGRAM 9.3(s)
Buildasound stage 1

22000 PRINTM$"1":SYSH
22030 PRINTR$"<30CRSR)RAISE PITCH ••••••

. R<OCRSR)"
22040 PRINTR$"LOWER PITCH ••••••• L<OCRSR

)"

22060 PRINTP$:PRINTQ$
22090 GOSUB11500
22100 IFA$="N"THENG=0:GOSUB30620:GOT023

000
22110 IFA$="X"THENG=O:GOSUB30500:GOT028

000
22120 IFA$="R"ORA$="L"THEN22140

22130 GOT022090'
22140 PRINTTAB(5);"<3DCRSR)CURRENT FREQ

UENCY= <7LCRSR)";
22180 IFA$="R"THENFR=FR*(2A(1/12»
22190 IFA$="L"THENFR=FR*(1/(r(1/12»)
22200 FH(0)=INT(FR/256):IFFH(O»255THEN

FH(0)=255
22210 IFFH(O)<OTHENFH(O)=O
22220 FL(0)=FR-256*FH(O):IFFL(0»255THE

NFL(0)=255
22230 PRINTINT(FR)"<4~CRSR>":IFFL(O)<OT

HENFL(0)=0
22240 G=1:GOSUB30500
22250 GOT022090

Option 5.2: Set volume.

As the whole process of sett i ng the volume cons i sts of one POKE
into register 24 the routine used in Program 9.3(t) seems to need
little explanation!

9-36

PROGRAM 9.3{t)
Buildasound stage 2

23000 PRINTM$12":SYSH
23010 PRINTS$"SET VOLUME<2DCRSR>"
23020 PRINTR$"SET VOLUME •••••••• S<DCRSR

>"
23030 PRINTP$:PRINTQ$
23040 GOSUB11500
23050 IFA$<)"S"THEN230BO
23060 G=1:GOSUB30500
23070 PRINTTAB(11}"<3DCRSR)";::E=2:GOSU

B13200:VO=VAL(B$}:GOSUB30500
23080 I FA$="N"THENG=O: GOSUB30620: 60T024

000
23090 IFA$="X"THENG=0:GOSUB30620:GOT028

000
23100 IFA$<>"N"TrlEN23000

Option 5.3: Envelopes

The envelope option of Buildasound provides facilities for the user
to:

* cycle through the ADSR parameters
* set a specific envelope
* adopt pre-defined envelopes

The menu from lines 24000 to 24100 provides the display and basic
decoding:

PROGRAM 9. 3(u}

24000 PRINTM$13":SYS H
24010 PRINTS$"SET ENVELOPE<2DCRSR>"
24020 PRINTR$"CYCLE ADSR •••••••• C<DCRSR

)"

24030 PRINTR$"SET ADSR •••••••••• S<DCRSR
)"

24040 PRINTR$"PRE-DEFINED ••••••• P<DCRSR
)"

24050 PRINTP$:PRINTQ$
24060 GOSUB11500
24070 IF A$=" X"THENG=O: GOSUB30620: GOT028

000
24080 IFA$="N"THEN25000
24090 IFA$="S"THEN24530
24100 IFA$="P"THEN24600

9-37

This stage allows the user to investigate a sound's envelope and to
set it as required. The definition is a simple process, but the
envelope is a complex thing. A sound may be analyzed in many ways
but one generally accepted method is to describe the life-cycle of
a sound in terms of the 'Envelope' that contains it. Within this
envelope, the sound's volume rises to its maximum, decays to its
steady level, holds this for a period and then decays away. On the
SID chip, the process is started by a 'gate' being opened and the
final decay sequence is initiated by that gate being closed. Figure
9.5 shows the envelope cycle along with the associated gating
function.

FIGURE 9.5

The gate function ••••••

As the process of gating the envelope is really an ON/OFF one, only
one bit is needed to carry this out. Bit zero of register 4 handles
the requisite information, a 1 signifying the gate ON and a zero
signifying the gate OFF. This bit can only be turned on and off by
setting the contents of the register appropriately, this being with
a zero or one.

Following the turning on of the gate bit i.e. by setting bit 1 of
R+4 to 1, the following happens automatically:

9-38

(i) SID commences the 'attack'.
The amplitude of the sound (its volume) rises to its maximum value.
The time taken to do this is controlled by the value stored in the
bits zero to 3 of R+5. A value of zero sets the attack time to 2
thousandths of a second (2ms or 2 milliseconds) while a value of 15
sets this to 8 seconds. Figure 9.7 tabulates the intermediate
val ues for this.

At this completion of the 'attack' phase, SID will immediately:
(ii) commence the 'decay'.

At this point, the amplitude of the sound begins to decay away to
its steady state value. The time taken for this decay cycle is set
by the least significant nybble of R+5. A value of zero in this
nybble gives a cycle decay time of 6 ms, while a value of 15 gives
a decay of 24 seconds. Figure 9.7 tabulates the intermediate values
for this.

At the completion of the 'decay' phase, SID will automatically:
(iii) commence the 'sustain'.

This is the steady past of the cycle where the amplitude (volume)
is held at a constant value. Notice that unlike the values for
'attack', 'decay' and 'release', the values of which refer to the
timing of the phases, the value of 'sustain' is the actual
amplitude which is held during the 'sustain' phase and is defined
by the most significant nybble of R+6. a val ue of zero in this
nybble produces a sustain vol ume of zero, i.e. in effect the
'decay' phase will be the last audible phase. With the sustain
nybble set to 15, there will be no fall in ampl itude during the
'decay' phase and consequently there will appear to be no decay
phase. A value of 8, on the other hand, will cause the amplitude to
fall to a half of the peak ampl itude during the 'decay' phase.
Figure 9.6 illustrates the two extreme cases.

amplitude amplitude

-t----~--- ti me time
sustain = 0 sustain = 15

FIGURE 9.6

9-39

The Isustainl phase will be terminated when the Igate l bit of
register 4 is switched off. This will initiate:

(iv) the Irelea·se l phase.

At this point, the ampl itude begins to decay to zero, the time
taken for this phase being set by one nybble of register 6. A zero
value in this nybble gives a release time of 6 ms while a value of
15 gives a 24 second cycle time. Figure 9.7 tabulates the
intermediate values for this.

The description given above ill ustrates the normal use of the
Igate l bit to control the ADSR cycle. However, it is possible to
switch the gate bit either off or on during any part of the ADSR
cycle. If the gate bit is switched off during the lattackl or
Idecayl phases then the release phase will start immediately,
missing out the sustain and possibly part or all of the decay and
attack phases too. Similarly the gate bit may be switched back on
at any time during the I release I phase and, if this happens, the
release will be abandoned and the new attack will commence starting
at the volume reached by the release at the moment of Igate onl.

VALUE ATTACK RATE DECAY RELEASE RATE

DEC (HEX) (Time/Cycle) (T ime/Cyc 1 e)

0 (0) 2 ms 6 ms
1 (1) 8 ms 24 ms
2 (2) 16 ms 48 ms
3 (3) 24 ms 72 ms
4 (4) 38 ms 114 ms
5 (5) , 56 ms 168 ms
6 (6) 68 ms 204 ms
7 (7) 80 ms 240 ms
8 (8) 100 ms 300 ms
9 (9) 250 ms 750 ms

10 (A) 500 ms 1.5s
11 (B) 800 ms 2.4s
12 (C) Is 3s
13 (D) 3s 9s
14 (E) 5s 15s
15 (F) 8s 24s

FIGURE 9.7

9-40

To control the ADSR cycle, five parameters must be set:

Attack - A
Decay - D
Sustain - S
Release - R
Gate - G

Four of these, A, D, Sand R have prOV1Slon on the SID chip for
setting at any integer val ue between 0 and 15 and this can be
contained within only four bits of binary, i.e.:

1 1 1 1

8 + 4 + 2 + 1

In order to economize on space, one eight-bit byte can be used to
store two four-bit numbers and, when one byte is used to store two
4-bit numbers, each of these four bit structures is referred to as
a nybble (half a byte equals a nybble! corny eh?) Thus, when
storing two nybbles each of 15 in one byte, the memory location
would appear to contain eight l's i.e.

NY BBLE 1 NYBBLE 2

1 1 1 1

FIGURE 9.8

Just to make it possible to distinguish between the two nybbles,
they are referred to as the "Most Significant Nybble" (MSN) i.e.
the one on the left (Nybble 1 in Figure 9.8) and the other one as
the Least Significant Nybble - the one on the right (Nybble 2 in
Figure 9.8). These names derive from the fact that in an eight bit
number the l's on the 1 eft wou 1 d represent much higher numeri ca 1
values than the l's on the right. The left-most 1, for instance,
represents 12810' the humble right-most represents a mere one (a
unit) •

MSN LSN

111111111 11111 1
128+ 64 + 32 +16 + 8 + 4 + 2 + 1

= 111111112
= 25510

Thus, as far as the C-64 is concerned, two nybbles filled with l's
is really just one byte filled with l's. That's an important
difference for the programer, as to load two nybbles of 15 into a
memory location (s)he would have to load the byte with a 255. The
question then is how to perform this operation, not only will we
want to store 15's, but l's and 6's and 13's etc. - indeed every
number between 0 and 15.

9-41

let's try an experiment, thi s time usi ng 9' s (1001 2) instead of
15' s, as the binary pattern of a 9 is more distinctive. The aim
will be to store two nybbles, of 910 each, in a byte ie.:

MSN LSN

1 101 0 11 111 I 0 I 0 11

(28 + 0 + 0 + 1~ + ~ + 0 + 0 + 1.J
v v
144 9

ThuS when the LSN of 9 is moved up into the MSN position, its eight
bit representation is 144. In fact as each bit is moved one place
to the left, it increases its value two times. A four-bit4move to
the left, therefore, increases the value of each bit by 2 or 16.
So, to recalculate the value of a nybble when it is moved from the
LSN position to the MSN position itls only necessary to multiply
its base 10 value by 16. Try this with a few examples:

1 in LSN position = 16 in MSN

1010101 1 1101 0 10 1 1

t o + 0 + 0 + 16 0 + a + 0 + 1 '-. ___ ,-__ .JJ l J
'Y v
16 1

10 in LSN positi on = 160 in MSN

1 1 0 11 I 0 111 I 0 11 I 0 I
128 + 0 + 32 +0 8 + o + 2 + 0
\ v J \ V

J

160 10

15 in LSN position = 240 in MSN

11 11 11 11 111 11 11 11)

128 + 64 +32 +16
, J

'V

8 + 4 + 2 + 1 =255
\ J

Y
240 + 15 = 2

9-42

So far then, we can calculate what would be the value of a LSN
when moved into the MSN position but now it's necessary to find a
way of of combining the two nybbles into 1 byte. Surprisingly
enough it's suffici.e.nt simply to add together the two nybbles in
base 10 to get the overall 8-bit number. If you're not convinced,
just look at the examples above.

To carry out the storage process, therefore, the attack/decay
values and the sustain/release values are combined into one byte.
Taking the first case, where attack is stored in MSN of R+5 and
decay in LSN of R+5, the stages are

(i) convert LSN in MSN (attack): AT :: AT*16
(ii) combine LSN and MSN to form one byte;

calling the sum AD (attack/decay)
AD = AT + DE

(iii) POKE this value into R+5:
POKE R+5, AD

For the sustain/release part, the process is identical (sustain is
in MSB, the register used is R+6)

SU :: SU * 16
SR :: SU + RE
POKE R+6,SR

Only one bit is needed for the gate function, it is stored in bit
o of register 4. This complicates life somewhat as the remainder
of R+4 is used to store other things. Under normal circumstances,
therefore, the advice would be to use a logical OR to turn the
gate ON and a logical AND to turn the gate OFF but ••••

ALL THE INTERNAL SOUND CONTROL REGISTERS OF
THE SID CHIP ARE WRITE ONLY

With this limitation in force, therefore, it is not possible to
PEEK any of the registers of the SID chip. In order to find out
what is stored in any particular register, it's necessary to hold
a copy of anything that we POKE to a SID register in a variable
which we set up for that purpose and interrogate this when
necessary. The problem is discussed more thoroughly below when
waveforms are considered as the other material stored in this
register is the waveform data.

9-43

Returning to Buildasound

Cycle through ADSR

With 15 possible settings for each of the ADSR parameters, at
total of 15*15*15*15= 50625 possible different envelopes exist.
While this provides an enormous variety of possible sounds, it
does also lead to an embarrassment of riches - how can one choose
from the great variety available. This 'cycle through AOSR' sets
out to solve the problem by allowing the user to cycle through any
one parameter. Once this is as desired, cycle through the next one
until all four are set as required. Choice of parameter for
cycling is from a menu, lines 24200 to 24290 and a 0 to 15 loop
then cycles the value of that parameter. During any cycling
process the values of the three other parameters are maintained at
the default setting and displayed by means of lines 24400 to
24410.

PROGRAM 9.3(v) Cycle through ADSR

24200 PRINT"<CLR><30CRSR>";:SYSH:PRINTT
AB(5)" IN THIS SECTION, THREE PARAM
ETERS

24210 PRINTTAB(5)"<DCRSR>ARE SET TO TH
E LATEST OEFAULT":PRINTTAB(5)"<D
CRSR>VALUE"II

24220 PRINTTAB(5)"<DCRSR>THE OTHER IS C
YCLED THROUGH 0-15

24230 PRINTTAB(5)"<30CRSR>WHICH WOULD Y
OU LIKE TO CYCLE?"

24240 PRINTTAB(14)"<30CRSR>ATTACK .•.•. A
II

24250 PRINTTAB(14)"OECAY .•..•. D"
24260 PRINTTAB(14)"SUSTAIN ••.• S"
24270 PRINTTAB(14)"RELEASE. •.• R"
24280 PRINTTAB(14)"EXIT ••••••• X"
24290 GOSUB11500
24300 IFA$="X"THEN24000
24310 IFA$<>"A"ANDA$<>"D"ANDA$<>"S"ANDA

$<>"R"THEN24290
24320 PRINT"<CLR><4DCRSR)":SYSH
24330 FORB3=OTOI5
24340 IFA$="A"THENAT=B3
24350 IFA$="D"THENOE=B3
24360 IFA$="S"THENSU=B3
24370 IFA$="R"THENRE=B3
24380 IFB$="S"THENB$="":GOT024100
24390 AD=AT*16+DE:SR=SU*16+RE

9-44

24400

24410

24420

24430

24440

24450

24460
24470
24480
24490
24500
24510
24520

Set envelope

PRINTTAB(9);"ATTACK=
AT;TAB(21);" DECAY=
DE

<3LCRSR>";
<3LCRSR>" ;

PRINT"<2DCRSR>" ;TAB(8); "SUSTAIN=
<3 L C R SR >" ; S U ; TAB (21) ; " R E LEA SE =
<3LCRSR>";RE

PRINT"<5DCRSR><5RCRSR>REPEAT PREV
IOUS PARAMETER R
PRINT"<5RCRSR><DCRSR>JUMP BACK ON
E STEP••... J"
PRINT"<DCRSR><5RCRSR>STORE PREVIO
US AS DEFAULT .•.. S
PR INTTAB(10);" <3DCRSR>PRESS SPACE

TO CYCLE
GOSUBI1600:G=I:GOSUB30300
IFB$="R"ANDB3=OTHENB3=-1
IFB$="R"ANDB3>OTHENB3=B3-1
IFB$="J"ANDB3<=lTHENB3=-1
IFB$="JIANDB3>lTHENB3=B3-2
IFB$="S"THEN24340
PRINT"<HOME><4DCRSR>":NEXTB3:GOTO
24100

With this option, the user is simply asked to define the ADSR
parameters using straight forward INPUTS. Having stored these as
variables, the POKE values then need to be calculated, as the
attack and decay values need to be combined into a single POKE
value, as do the sustain and release. Thus, the variables
AT(attack) and DE(decay) are combined by moving AT from the LSN
into the MSN by multiplying it by 16 and then adding the product
to DE to produce the POKE value, AD, i.e.

AD = 16*AT+DE

Similarly for the Sustain (SU) and Release (RE) parameters:

SR = 16*SU+RE

This yields Program 9.3(w), the 'set envelope' part of tne
routine.

9-45

PROGRAM 9.3{w}

24530 PRINT"<CLR>":SYSH:PRINT"<3DCRSR>"
TAB(14);"PLEASE ENTER:"

24540 PRI NTTAB(10)" <2DCRSR>ATTACK ";: E=
2:GOSUBI3200:AT=VAL(BS):G=I:GOSUB
30300

24550 PRINTTAB(10)"<2DCRSR>DECAY ";:E=2
:GOSUB13200:DE=VAL(B$)

24560 PRINTTAB(10)"<2DCRSR>SUSTAIN ";:E
=2:GOSUB13200:SU=VAL(B$)

24570 PRJ NTT AB(10)" <2DCRSR>RELEASE ";: E
=2:GOSUB13200:RE=VAL(B$)

24580 AD=AT*16+DE:SR=SU*16+RE
24590 GOT024000

Use pre-defined envelope

With this option, the user is presented with a MENU glVlng a
choice of instrumental voices. On choosing one of these, it is
simply necessary to set the ADSR appropriately. Program 9.3(x)
shows this part of the routine, in addition, this routine cheats a
little as it also adds in the appropriate waveform for the
instrument.

PROGRAM 9.3(x)

24600 PRINT"<CLR)":SYSH:PRINT"<2DCRSR>"
;TAB(10);"ENTER INSTRUMENT TYPE

24610 PRI NTTAB(12)" <3DCRSR>VIOLIN ••••• V
"

24620 PRINTTAB(12)"<DCRSR>DRUM ••••••• D"

24630 PRINTTAB(12)"<DCRSR>PIANO •••••• P"

24640 PRINTTAB(12)"<DCRSR>ORGAN •••••• O"

24650 PRINTTAB(12)"<DCRSR>SYNTHETIC •• S"

24660 GOSUB11500
24670 IFA$="V"THENAT=10:DE=8:SU=10:RE=9

: wF =32
24680 IFA$="D"TliENAT=0:DE=9:SU=0:RE=9:w

F=128
24690 IFA$="P"THENAT=0:DE=9:SU=0:RE=0:W

F=64:LP=255:HP=0
24700 IFA$="O"THENAT=0:DE=9:SU=0:RE=0:W

F=16
24710 IFA$="S"THENAT=0:DE=9:SU=O:RE=0:W

F=32
24720 GOT024000

9-46

~~ --~~~~~--~-~~------------------------------

Option 5.4: Waveform

Firstly, about waveforms and tone color.

With a pure oscillating frequency, a clear 'pure' tone is produced
which sounds like a clear human female/young male voice or a flute
played without vibrato.

However, most musical instruments do not yield such a pure tone
but have mixed in some, frequently many, harmonics which serve to
create a complex wave-form. It is this complexity that allows
one to listen to a steady note and identify it as being played by,
say, an oboe or a vi 01 a. Thus, as well as there be i ng present
the fundamental or 1st harmonic, the 2nd, 3rd, 4th etc. will all
be present as well although they will all be quieter than the
fundamental. Generally, the harmonics get quieter the higher
their harmonic number but this is by no means a uniform
phenomenon. By means of four different waveforms, it is possible
to simulate the major waveforms produced by modern musical
instruments and many novel ones. These waveforms are:

(i) Triangular waveform •••

Some waves are particularly strong in the odd harmonics which
means that, at every node or point where the fundamental has
zero amplitude (i.e. cuts the axis) the harmonics too have
zero amplitude. Because of this, the resultant wave form,
which is the sum of the harmonics, rises very steeply from
the axis.

Very much like the sine wave shape, the triangular wave form
rises steadily to its peak and then reverses direction to
fall equally steadily (Figure 9.8). Its form comes from a
make-up of only odd harmonics and the fact that the 3rd
harmonic is only 1/9 as strong (i.e. as loud) as the 1st, and
the 5th, 1/25 as loud and so on.

9-47

A TRIANGULAR WAVEFORM
FIGURE 9.8

(ii) Sawtooth waveform

As it contains all the harmonics, this is a non-symmetrical
form. Its amplitude rises steadily and then decays almost
instantaneously to its minimum value.

I·
FIGURE 9.9

o

9-48

1·0

1'0
o

(iii) Pulse waveform •••

This waveform is also strong in odd harmonics. However,;n
thi s case the odd harmonics do not falloff so rapidly as
they do with the triangular wave form i.e. the third harmonic
is 1/3 of the strength of the fundamental (compared with 1/9
for triangular), the fifth harmonic is 1/5 of the strength
(compared with 1/25) etc. The total effect is that of a
square wave risin§ almost vertically and falling as abruptly.

FIGURE 9.10

(iv) Random waveform (or noise) •••

This waveform is quite simply (and deliberately) a mess and
defies any analysis. Its main use is for sound effects: zaps,
whooshes, clunks etc.

9-49

Back to Buildasound

The first control section on waveforms offers the user the
usual chance to switch on and listen to the various
waveforms. This MENU leads on to the second MENU that offers
a choice of five waveform options.

PROGRAM 9.3(y)

25000 PRINTM$"4":SYSH
25010 PRINTS$"SELECT WAVEFORM<2DCRSR>

<LCRSR>
25020 PRINTTAB(7)"LlSTEN WAVEFORM ... L<D

CRSR>
25030 PRINTP$
25040 PRINTQ$:GOSUB11500
25050 IFA$="X"THENG=0:GOSUB30500:GOT028

000
25060 IFA$="N"THEN26000
25070 PRINT"<CLR><2DCRSR>":SYSH:PRINTTA

B(13)"ENTER WAVEFORM
25075 PRINT"<CLR><2DCRSR>":SYSH:PRINTTA

B(l3)"ENTER WAVEFORM
25080 PRINTTAB(7)"<2DCRSR>SAW TOOTH ••••

••••• S<DCRSR>"
25090 PRINTTAB(7)"TRIANGLE •••••••••• T<D

CRSR>"
25100 PRINTTAB(7)"RANDOM ...••.•••.•• R<D

CRSR>"
25110 PRJ NTTAB (7)" PULSE (SQUARE) ••••• P<D

CRSR>"
25120 PRINTTAB(7)"PULSE(OTHER) •••.•• O<O

CRSR>"
25130 PRINTQ$
25140 GOSUB11500

For voice 1, the bits of Register 4 are used to turn the wave
forms on and off, a 1 in a particular bit meaning wave form
ON and a zero meaning OFF. ie.

Bit 7 6

~I Random

Pulse

54321

triangle

saw-tooth

FIGURE 9.11

9-50

o

I -I
Register

R+4
at 54276

-- --

From Figure 9.11 it can be seen that a 1 in bit 7 of R+4 or a 128
(left-most bit) POKEd into 54276 will turn on the Random noise.
Similarly, bit 6 controls the pulse wave form, bit 5 the saw-tooth
and bit 4 the triangular waveform.

Thus, if Register 4 contains all zeros i.e. WF(wave form)= 0,
simply adding 32 to WF i.e. WF=WF+32 will set the chips to output
a saw tooth. However, once a waveform is set, i.e. one of bits 4
to 7 contains a 1, simply adding to the contents will not reset
the register. For example if a 32 was already set and a 16 was
then added, both bits 4 and 5 would be set. What is required is a
two stage operation which first cleans the register completely and
then sets it as required. The subroutine at 30500 takes care of
this problem by storing the composite variable WF+G+RM in register
4 each time the register variables are modifi.e.d.

Once the choice of waveform has been made, Register 4 can be set
to tell SID which waveform to output on channell. The first stage
in Program 9.3(z) in the process is to set WF to the requisite
POKE value shown on Figure 9.11.

PROGRAM 9.3(z)

25150 IFA$=IX"THEN25000
25160 IFA$=IS"THENWF=32
25170 IFA$=IT"THENWF=16
25180 IFA$=IR"THENWF=128
25190 IFA$="P"ORA$="O"THEN wF=64:GOT025

210
25200 G=1:GOSUB30300:GOT025140

For three of the waveforms, saw-tooth, tri angl e and random, the
setting of WF is all that's required and so, once this is done the
program can RETURN.

9-51

In the case of the pulse waveform, however, life is a little more
complex as the waveform can vary infinitely from pulses almost 100%
on to almost 100% off, ie:

PULSE
ON r- PULSE

PULSE WIDTH
.... WIDTH ~

PULSE ...
OFF

FIGURE 9.12

It's necessary, therefore, to tell SID what part of the time the
pu lse is to be on and what part off. Thi s can be done to an
accuracy of one part in 4095 so zero represents a zero pu~se width
and 4095 represents pulse on the whole time.

One particular waveform, a square wave, is obtainable, therefore,
by setting the pulse length to 2048.

In order to store a number up to 4095, 12 bits of bi nary are
needed, see Figure 9.13.

o + 0 + 0 + 0+2048+1024+512+256 + 128+64+32+16+8+ 4+ 2+ 1 =4095

10101010111111111 (111111111111111)

FIGURE 9.13

Tni s means therefore, that one full byte and four extra bits are
required to store numbers up to this size. Register 2 is used to
store the low eight bits of the number and the four least
significant register 3, the four upper bits.

9-52

So ••• to set up a square wave, a 2048 needs to be stored
i e:

16 bit
value 2048 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =

2048

~[~~[~~11 I 0 I 0 I 0 II 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0]
8 bit
value

8 + 0 + 0 + 0 0
__ ----) l.

Y
Register 3 = 8

o 0 000

V
Register 2 = 0

FIGURE 9.14

Thus, the statement to set up a square wave is:

POKE R+3,8:POKE R+2,0

o o
)

Once a .p. input is detected in A$, the square state can be
set up as in Program 9.3(aa):

PROGRAM 9.3(aa)

25210 IF A$=npn THEN LP=0:HP=8:PP=50:GO
SUB 30300:GOTO 25380

When an ·0· is selected at MENU 4, it is first necessary to
ascertain just what percentage of the wave is ·ON·. An input
routine along with a simple prompt and error check collects
this in ZI, as a percentage. As the range of pulse widths is
from zero to 4096, the percentage needs to be converted ie:

PW=O.OI*ZI*4095

The next stage is to break the number down into its Hi gh
Pulse (HP) and Low Pulse (LP) parts. First the high bit. To
isolate the bits of PW that are above 256, ie in the high
byte, PI'.' itself can be divided by 256. Any numbers in the
high byte then become integers while those in the low byte
are converted into fractions ie:

2048/256 = 8
1024/256 = 4
512/256 = 2
256/256 = 1

whereas ..••
128/256 = 0.5
64/256 = 0.25
32/256 = 0.125 etc •••

9-53

Thus, if the INT() of PW/256 is taken, the result will be
the number to be POKEd into the high register. Once this is
evaluated the low register value (LP) is calculated quite
simp ly as:

LP = PW-HP*256

Putting these parts together yields:

PROGRAM 9.3(bb)

25300 PRINT"<CLR>";:SYSH:PRINTR$"<3DCRS
R>OEFINE PULSE WIDTH<OCRSR>"

25310 PRINTR$"ENTER PERCENTAGE OF PULSE
":PRINTR$"WIDTH ON (0-100%)"

25320 PRINT"<OCRSR><7RCRSR>";:E=3:GOSUB
13200:PP=VAL(B$)

25330 IFPP<00RPP>100THEN25160
25340 PW=0.01*PP*4095
25350 HP=INT(PW/256)
25360 LP=PW-HP*256
25370 G=1:GOSUB30300:IFPF=1THENPRINT"<H

OMD"TAB(26)"<3DCRSR> <4LCRSR>
II PP; "%" : GOT025430

25380 PRINT"<CLR>";:SYSH:PRINTR$"<3DCRS
R>CURRENT PULSE WIDTH= <6LCR
SR>";PP;"<LCRSR>%<DCRSR>"

25390 PRINTR$"DO YOU WISH TO:<DCRSR)"

25400 PRINTR$"<DCRSR>INCREASE PULSE WID
TH •.• 1 <DCRSR)II

25410 PRINTR$"DECREASE PULSE WIDTH ••• D<
DCRSR>II

25420 PRINTQ$"<UCRSR><LCRSR> ••••• X"

25430 GOSUB11500
25440 IFA$="X"THEN25000
25450 IFA$="I"THENPP=PP+1:IFPP>100THENP

P=lQO
25460 IF AS=" D"THEI~PP=PP -1: IFPP<OTHENPP=

o
25470 PF=1:PRINT"<10UCRSR>":GOT025330

9-54

Options 5.5: Filters

This option provides the user with the facility to set the
SID chip filters as required. First things first though,
let's look at the facilities provided on the SID chip.

The fi lters

Any sound, other than a pure tone, is made up of a range of
frequencies. When put through a filter, however, some of the
frequencies are eliminated or simply made quieter
(attenuated). Different types of filter act in different
ways. Some filter cut or attenuate just the lower frequencies
of the signal while others attenuate just the higher
frequencies. Another type can allow a band of frequencies to
pass whi le one other attenuates thi s band. On all these
fi Hers a frequency needs to be defi ned, above whi ch, ' be low
which or around which the frequencies are attenuated. This is
known as the 'cut-off' frequency. Summarising those available
on the SID chip:

• Low-pass filter: passes frequencies BELOW the cut-off •

• High-pass filter: passes frequencies ABOVE the cut-off.

• Band-pass : passes a band of frequencies around the cut-off,
attenuates all others.

• Notch-reject : attenuates a band of frequenci es around the
cut-off,passes all others.

9-55

The effect of these is displayed graphically in Figure 9.15.

100

100

100

cut-off cut-off

Signal frequency Signal frequency

LOW-PASS FILTER HIGH-PASS FILTER

100

cut-off cut-off

Signal frequency Signal frequency

BAND-PASS FILTER NOTCH-REJECT FILTER

AVAILABLE FILTER TYPES ON SID CHIP

FIGURE 9.15

In order to use the filters, the first stage is to set the filters
to ON for voice one, or lenable l them by a POKE+23,1. Following
this it is necessary to select the filter type. Register 24
contains 3 bits which enable three filter types and allow the
fourth type to be created. Figure 9.16 shows the structure of this
byte.

9-56

R + 24
at 54296

select high-pass
select band-pass--....

""----- select low-pass

FIGURE 9.16

This routine, the first part of which is shown in Program 9.3(cc),
therefore presents a MENU and once the choice is made, sets the
appropriate bits of register 24. Having cleared the screen it
then prints the chosen filter type on to the top of the screen.

PROGRAM 9.3(cc)

26000 PRINTM$"5":SYSH
26010 PRINTS$"LI STEN FILTERS<2DCRSR>":R

EM POKE54295,1
26020 PRINTR$"SELECT FILTERS ••.• S<DCRSR

>"
26030 PRINTP$:PRINTQ$:GOSUBI1500
26040 IFA$="N"THEN27000
26050 IFA$="X"THEN28000
26060 G=I:GOSUB30300
26070 PRINT"<CLR><2DCRSR>":SYSH:PRINTTA

B(8)"SELECT FILTER TYPE":POKER+23
,1

26080 PRINTTAB(8)" "
26090 PRINTR$"<2DCRSR>LOW PASS •••••••••

• L
26100 PRINTR$"<DCRSR>HIGH PASS .•••.••••

H
26110 PRINTR$"<OCRSR>BAND PASS ..•.••••.

B
26120 PRINTR$"<OCRSR>NOTCH REJECT ..•..•

N<OCRSR>
26130 PRINTQ$:GOSUBlI500
26140 PRINT"<CLR><30CRSR>"TAB(14);:SYSH

26150 IFA$="X"TrlEN26000
26160 IFA$="L"THENFT=16:PRINT"LOW PASS
26170 IFA$="H"THENFT=64:PRINT"HIGH PASS

26180 IFA$="B II THENFT=32:PRINT"BAND PASS

26190 IFA$="N"THENFT=80:PRINT"NOTCH REJ
EeT

9-57

Once the filter type is defined, SID needs to be told what the
relevant cut-off frequency is and, once this is decoded it needs
to be stored in the appropriate place in memory. This frequency
needs to have a large enough range to cover the whole of the SID
chipls frequency spectrum and, hence, requires 11 bits of memory
for storage. As with other values of this size, this needs to be
broken down into an eight bit low-byte and three bit high-nybble.
This can be done by dividing the value down as was done with the
pulse-width calculation or, perhaps more elegantly, by means of
logical operators. Stripping off the high part of the value can be
achi eved by AND i ng it with 255. When thi sis done any 11 s that
exist in the first eight bits will survive but the others higher
than bit 7 will be stripped off, i.e:

11 11 11 I 0 11 I 0 11111 r--I O~ll-'--ll-'-ll-"-1 0-r-1-r1 1--"1 I~o I
ANDed with [0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 11 11 11 11)111 11 11 I
gives I 0) 0) 0 I 0 I 0 I 0 I 0 I 0 I I 0 11 11 11 I 0 11 11 I 0 J
Writing this into the program gives:

PROGRAM 9.3(dd)

26210 PRINP'<3DCRSR>ITAB(2)"ENTER FREQU
ENCY FOR CUT-OFF(2DCRSR>

26220 PRINTI(4RCRSR>";:E=4:GOSUBI3200:C
O=VAL(B$)

26230 PRINTTAB(2)"(2DCRSR)CURRENT CUT-O
FF FREQUENCY= (9LCRSR)";C
O;IIHZ"

26240 CI=INT(CO*2047/12000):IFCI>2047T~
ENCI=2047

26250 CO=INT(CI*12000/2047)
26260 LO=CIAND7
26270 HI=(CI-LO)/8:FV=1
26300 PRINTR$II(2DCRSR>DO YOU WISH TO:"
26310 PRINTR$"(DCRSR>INCREASE FREQ •••••

I
26320 PRINTR$"(DCRSR)DECREASE FREQ •••••

D(DCRSR>
26330 PRINTQ$:GOSUBI1500
26350 IFA$=IIX II THEN26070
26360 IFA$=II"THENCO=CO+7+INT(O.01*CO)
26370 IFA$=IID II THENCO=CO-7-INT(O.01*CO)
26380 PRINT I(13UCRSR)";:G=I:GOSUB30300:

GOT026230

9-58

Option 5.6: set resonance

The resonance of a sound-cavity system ;s simulated on the SID
chip by means of a value (R) set to between 0 and 15. What, the
SID chip is, in fact, doing when setting different resonance
values, is to simulate the effect of the defined sound being
emitted in rooms which differ in their resonance characteristics.
Such features as size, number of reflective/non-reflective
surfaces, position of the sound source, all affect the resonance
of an enclosed cavity.

SID chip provides a range of resonance settings from zero to 15,
so the routine that carries this out is none to complex, ie:

PROGRAM 9.3(ee)
27000 PRINTM$1I6 11 :SYSH
27010 PRINTS$IISET RESONANCE<2DCRSR>"
27020 PRINTR$IISET RESONANCE ••••• S<DCRSR

>"
27030 PRINTP$:PRINTQ$:GOSUBI1500
27040 IFA$=IX"THENG=0:GOSUB30500:GOT028

000
27050 IFA$=IN"THEN28000
27060 IFFV<>OTHEN27110
27070 PRINT"<CLR><4DCRSR>":SYSH:PRINTR$

; II NO FILTER SET:
27080 PRINTR$"<2DCRSR>RESONANCE FEATURE
27090 PRINTR$"<DCRSR>NONE OPERATIONAL
27100 PRINTR$"<3DCRSR>PRESS ANY KEY TO

CONTINUE":GOSUBI1500:GOT027000
27110 PRINTI<CLR><2DCRSR>":SYSH:PRINTTA

8(10)"SET RESONANCE(0-15)
27120 PRINT"<2DCRSR><7RCRSR>II;:E=2:GOSU

B13200:RS=VAL(B$):RP=RS*16
27130 IFRS<OORRS>15THEN27020
27140 G=1:GOSUB30300
27150 PRINTTAB(5)1I<3DCRSR>CURRENT RESON

ANCE SETTING= <6LCRSR>II;RS
27160 PRINTR$II(3DCRSR>DO YOU WISH TO:"
27170 PRINTR$II(2DCRSR>INCREASE RESNCE ••

• 1
27180 PRINTR$II<DCRSR>DECREASE RESNCE •••

D<DCRSR>
27190 PRINTQ$:GOSUBI1500
27200 IFA$=II X"THEN27000
27210 IfA$=IIIIITHENRS=RS+l:1FRS>15THENRS

=15
27220 IFA$="D II THENRS=RS-l:IFRS<OTHENRS=

o
27230 IFA$=IIIIIORA$=IID II THENRP=RS*16:PRIN

Til <16UCRSR>1I ;: GOT027140
27240 IFA$<>IIN II THEN27040

9-59

Option 5.7: choose parameter

This option simply allows the user to step backwards and forwards
between options. It consists mainly, therefore, of a MENU and its
related decoding statements:

PROGRAM 9.3(ff)

28000 PRINT M$"7":SYSH
28010 PRINT"<2DCRSR><2RCRSR>WHICH PARAM

ETER DO YOU WISH TO SET?<2DCRSR>"

28020 PRINTR$"PITCH .•••..• P"
28030 PRINTR$"VOLUME .••••• V"
28040 PRINTR$"ENVELOPE. ••. E"
28050 PRINTR$"WAVEFORM ...• W"
28060 PRINTR$"FILTERS •.••. F":PRINTR$"RE

SONANCE ... R"
28070 PRINTR$"DISPLAY D"
28075 PRINTR$"EXIT •.•..••• X" : GOSUB11500

28080 IFA$="P"THEN22000
28090 IFA$="V"THEN23000
28100 IFA$="E"THEN24000
28110 IFA$=IW"THEN25000
28120 IFA$="F"THEN26000
28130 IFA$=IR"THEN27000
28150 IFA$="D"THEN31000
28160 IFA$="X"THENRETURN
28170 GOT028080

9-60

Option: Display default state

This option reports back on the current settings of the SID chip
and provides a screen display.

PROGRAM 9.3(99)

31000 PRINT"<CLR><DCRSR>":SYSH:PRINTTAB
(8)"DISPLAY CURRENT DEFAULT

31010 PRINT"<DCRSR><4RCRSR>FREQUENCY ="
;FR

31020 PRINT"<DCRSR><4RCRSR>ENVELOPE:
31030 PRINT"<DCRSR><4RCRSR>ATTACK ="iAT

i" DECAY ="iDE
31040 PRINT"<DCRSR><4RCRSR>SUSTAIN ="is

Ui"RELEASE ="iRE
31050 PRINT"<DCRSR><4RCRSR>WAVEFORM: " . ,
31060 IFWF=16THENPRINT"TRIANGLE"
31070 IFWF=32THENPRINT"SAWTOOTH"
31080 IFWF=64THENPRINT"PULSE OF WIDTH "

PP;"%"
31090 IFWF=128THENPRINT"RANDOM"
31100 IFRP=OTHENPRINT"<DCRSR><4RCRSR>FI

LTERS NOT SET:NO RESONANCE":GOT03
1170

31105 PRINT"<DCRSR><4RCRSR>FILTER:";
31110 IFFT=16THENPRINT"LOW PASS"
31120 IFFT=64THENPRINT"HIGH PASS"
31130 IFFT=32THENPRINT"BAND PASS"
31140 IFFT=80THENPRINJUNQTCH REJECT"
31150 PRINT"<DCRSR><4RCRSR>CUT-OFF FREQ

UENCY ="CO"HZ"
31160 PRINT"<DCRSR><4RCRSR>RESONANCE="R

S
31170 PRI NT" <HOME><21 DCRSR>"TAB(7); "PRE

S5 ANY KEY TO CONTINUE"
31180 GOSUB1l500

Menu Ii Option 6: Exit Composatune

This option provides the orderly way out of Composatune. It's
major task is in resetting SID's registers so that the next
program doe:sn't get mixed up with old noises. The routine is
called by line 12240 and resides at 29000 onwards.

9-61

PROGRAM 9.3(hh)

Postlude:

12240 IFA$<>"X MTHENGOSUBl1500:GOT012070
12250 GOT029000

29000 PRINT"<CLR)":FORCN=RTOR+25:POKER,
0: NEXT: END

So that's Composatune. It's written for you to learn from as well
as being a, hopefully, useful utility. You'll get the most from
this by taking the bits that you need most and modifying them to
what you want. It's all yours!

9-62

CHAPTER

10
In this chapter, some of the more advanced features of the C-64

are explored. These are 'advanced ' in several ways, some
require a greater knowledge of mathematical techniques than
has previously been assumed while some involve the use of

assembly language - the next stage up (or down!) from BASIC. Each
of the four parts of Chapter 10 are self-contained so, if the maths
is not to your liking, don't be put off, move on to Part 2.

PART ONE: SUMS Inl THINGS

Circles

In this, a small program is examined which will allow the user to
program, display and draw a circle. This will use some of
Honey.Aid's graphics commands, although all the calculations
performed will use Commodore's built in mathematical functions. It
wi 11 of course be necessary to expl ain these mathematical
functions, and we shall do so as we go along. The first of these
is:

SQR()

The Commodore 64 1 ike most computers has simple to use commands
(functions) that perform mathematical calculations. For example,
type in:

PRINT SQR(16)

You will get a reply of 141. Thus the SQR command returns the
square root of a number. Other built-in functions like RND{)and
INT() have already been discussed in earlier chapters.

10-1

SIN() and COS()

For a circle, the mathematical commands we need are our old friends
from school, SIN and COS. These two useful functions will be used
to the full when we draw a circle. Let's first see what they are
and how they can help in this task.

Figure 10.1 shows a pair of axes with a segment one unit long fixed
to the origin and at an angle 'A' from the 'X' axis:

one. l4rt,it 10 Ilj

01\\(;"'" '-'t'-:-f----JI-------- X D..XiS

FIGURE 10.1

If this segment were to be rotated about the origin, the tip would
trace out a circle:

FIGURE 10.2

In order to use these ideas to draw a circle on the computer we
will need to know the 'X' and 'Y' co-ordinates of the end point of
the segment. This, as you may have guessed, is where SIN and COS
come in. For a particular angle 'A' the 'X' and 'Y' co-ordinates
are:

10-2

X=R*COS(A} V=R*SIN(A}

FIGURE 10.3

This value 'A' would be in radians, there being 2*pi radians in 360
degrees (a circle). Pi (pronounced 'pie' as in 'Apple pie') is a
number which is the ratio of the radius of a circle to its
circumference - the circumference of a circle is 2*pi*R(R=radius).
The actual value of pi is 3.14159 ... but you don't have to worry
about it because there is a pi character on your keyboard. It is
located on the same key as the up-arrow or 'exponentiation' sign
next to <RESTORE>. Check this by typing:

PRINT f'

This demonstrates that the C-64 recognizes this symbol and treats
it as a number - you don't have to type in the number 3.14159 ...
itself, the computer works out the number for you. An angle in
degrees can be changed to radians if the angle is multiplied by
pi/180.

If we let 'A' be all the i:!ngles in a circle, i.e. 0 to 2*pi then
SIN(A) and COS(A) gi ve all the 'X' and 'V' co-ordi nates of the
points around the circle. Well that's all very well for a circle
with a radius of 'I' but what about a circle with a radius of
'100'? If the radius, or segment, is 100 times longer, then
everything 'is 100 times bigger, so the co-ordinates of 'X' and 'V'
become:

X=100 COS(A} V=100*SIN(A)

Because the HIRES screen has two hundred pixels of space in the
vertical direction the largest radius we could possibly draw is
'100'. Let's use this highest value for our program.

To draw a circle we need to plot every point on the 'X' and 'V'
axis i.e. a FOR .. NEXT .. loop will be needed. It will loop from 0 to
360 degrees, or rather 0 to 2*pi radians (a complete circle). (Make
sure you have Honey.Aid loaded to use the HIRES command).

10-3

PROGRAM 1O.1(a)

10 HIRES 0,1,1
20 R=100
30 FOR A=O TO 360 STEP 0.5
40 X=R*COS(A*f/180):Y=R*SIN(A*W/180)
50 PLOT 150+X,100+Y,1
60 NEXT A

How's that? A wonderful circle created with SIN and COS. Now that
we have plotted a circle using SIN and COS, let's look at another
way of tackling the problem. using TAN.

TAN

AdjdC.el\t (X)

FIGURE 10.4

orpo£i~ (Y)

TAN (A)= opp(Y)
adj(X)

As demonstrated in Figure 10.4, we now have the values of three
things: - 'R' is the radius. 100; 'A' is the value of our loop (0
to 360), and 'X' is R*COS(A*1T/180). So to find 'V' using TAN
instead of COS, the calculation becomes:

Y=X*TAN(A*rr/180)

So now change line 40 of Program 10.1(a) to that of Program 10.2(a)
and then run it.

PROGRAM 1O.2(a)

40 X=R*COS(A*1l/l80):Y=X*TAN(A*~/180)

10-4

Oh dear! we get an error: I Division by zero error in 40 ' • Well
that's okay. The computer is just telling us that it (and for that
matter we) can't divide by zero. The cosine value is zero at 90
and 270 degrees; therefore the TAN is undefined at these values.
All we have to do is to check for val ues of 90 and 270 and skip
them. That way the computer doesn't have to divide by zero and it
will plot a complete circle. So add line 35 to Program 10.2(b).

PROGRAM 10.2(b)

35 IF A=90 OR A=270 THEN 60

ATN

Out of interest you might like to know about a simple way of
converting a TAN value back into radians. You can do this by
using the ATN command, which takes the form:

ATN(X) where 'x' is a TANgent value

We wi 11 now take a look at some of the other funct ions on the
Commodore 64. One of these functions is ABS:

ABS ()

ABS(X) will give you what is called the 'absolute value' of X. In
other words it makes X positive. There are three possible cases:

If X is positive, ABS(X) is positive - e.g. ABS(9)=9

If X -is negative, ABS(X) is still positive - e.g. ABS(-7)=7

If X is zero, ABS(X) is zero

10-5

SGN ()

Another useful function is 'SGN'. This function tells you whether
a numeric value is negative or positive:

SGN(-4)=-1
SGN(4)=+1

and SGN (0)=0

LOG() AND EXP()

The C-64 LOG() function finds the natural logarithm of a number -
i.e. the log to base e, where e = 2.71828183 •••

EXP() is the opposite function to LOG(). Given the LOG() of a
number, EXP() finds out what the number was. In other words, EXP(
)is the antilog function. What EXP(X) actually does is find eX,
that is, etx, so you can check out the value of e for yourself by
typing:

PRINT EXP(1)

To find the LOG to base 10 of a number, you divide the LOG to base
e of the number by LOG(lO). Similarly, to get a base 10 antilog of
a number, you can multiply by LOG(lO) before taking the EXP() of
the number:

Y= LOG(X) gives LOG to base e of X
X= EXP(Y) gives ANTILOG to base e of Y i.e. eY or etY
and
Z= LOG(X)/LOG(lO) gives LOG to base 10 of X
X= EXP(Z*LOG(lO» gives antiLOG to base 10 of Z i.e. 10Z or 10tZ

An analogous method can be used for LOG'S and EXP'$ in any base.

LOG() works for numbers greater than (not equal to) zero, and the
function EXP() works for numbers up to slightly over 88.

However, possibly the most useful functions of all will be those
which you invent yourself, as explained below.

10-6

OEF FN

Often, when programing you will find that you have to perform the
same complicated calculation in more than one place in the program.
It is, however, rather wasteful to type the calculation in each
time. Also, if the calculation is to appear as part of some other
statement, each time, e.g. in the middle of a bigger calculation,
a GOSUB can be inconvenient as you have to go through the rigmarole
of assigning the result of the GOSUB to a variable before you do
the calculation. Also, in a complicated program, GOSUBls and
GOTOls can becomQ rather hard to follow. Therefore, we have
FuNctions. Commands like ASC(>, CHR$(), EXP() etc. are
functions built into the machine, but you can DEFine your own using
DEF FN.

For example, supposing you want to solve some quadratic equations -
e.g. :

Where A, B, and C are known constants (numbers). The general
formula for solving a quadratic equation is:

X=-BJ (B2 - 4AC)
2A

We can put this into a program to find the real roots of a
quadratic quite easily:

PROGRAM 10.3

10 DEF FNQR(V)=(-B+V*SQR(B12-4*A*C»/(2*A)
20 INPUT IA,8,C";A,B,C
30 IF 4*A*C>Bf2 THEN PRINT "NO REAL ROOTS": END
40 V=l
50 PRINT liTHE FIRST ROOT IS";FNQR(V)
60 V=-l
70 PRINT liTHE SECOND ROOT IS";FNQR(V)

Line 10 is the function definition. Function definitions are
positioned at the beginning of a program (or, at least, are defined
prior to the first function call), and are of the form:

DEF FN<variable name>«variable name»=expression.

10-7

In the function definition on line 10, notice that the variable
name V in brackets in the statement OEF FNQR(V) also appears in the
formula on the right-hand side of the equals sign. When the
functi6n is called, the value of V at that time will be substituted
into the 'V' where it appears on the right - i.e. that value will
be used by the right-hand side V's.

A function is called just by using it as though it was a variable.
Thus we could add lines 80 and 90 to the above program:

80 Z=FNQR(A)*16.31*EXP(7)
90 PRINT Z

Notice that in 1 ine 80 we have FNQR(A) rather than the FNQR(V)
which we had on 1 ines 50 and 70. What will the program do with
this 'A' when it evaluates the function on line 10? Well, it will
treat the V's in the function definition as though they were 'A's.
That is, it will substitute the value of 'A' for V on the
right-hand side of the equals sign. It can do this because the V
in "OEF FNQR(V)" is a "dummy variable" - it doesn't really exist!
The 'V' and 'A' in lines 50,70 and 80, however, are real,and are
known as "parameters". They are slotted into the OEF FNQR(V)
statement whenever it is called, and are substituted for the dummy
vari able whenever it appears in the expression on the right-hand
side of the definition.

Another feature of a function is that the dummy variable doesn't
actually have to appear on the right-hand side of the equals sign
at all! That's another reason for calling it a dummy!

Here is a function definition which you may find useful sometime:
it gener~tes normally distributed random numbers with a mean of MU
and a standard deviation of SO (this function is very useful in the
field of statistics):

10 DEF FNRN(X)=SQR(-2*LOG(RNO(I»*COS(2*f*RNO(1»*SO+MU
20 INPUT "MEAN,STD.OEVIATION";MU,SO
30 INPUT "HOW MANY RANDOM NUMBERS DO YOU WANT"; N
40 FOR C=1 TO N
50 PRINT FNRN(X);
60 NEXT C

Two functions which can be useful are the C-64's functions:

10-8

VAL () & STR$()

VAL () is the opposite function to STR$(}. VAL(} turns a string
into a number, whereas STR$(} turns a number into a string.

Thus

VAL("12.34"}=12.34

but

VAL(I'H7") will not work, as "H" can not be converted directly to a
number, even though "7" can be turned into the number 7. What wi 11
happen is that it will return the value 0, as the first character
in the string is not one of 0-9. A couple more examples are in
order:

VAL ("65.4JOHNI7") = 65.4
VAL ("-3827") =-3827

also

STR$(67.93} = "67.93"

- this is useful for storing numbers in string variables.

10-9

PART TWO: IMPROVING THE HANGMAN GAME

Sound

You can LOAD in the Hangman program and follow this section to
improve it. Then, you can save the new Hangman program on another
disk.

Any program is enl ivened by sound and the hangman game is no
exception. The question is what sound and where? As there are
several things going on at once in the game, the sound will be kept
fairly simple, two basic features being used: beeps at inputs and a
chord at the end of the game. Naturally, a correct input should
receive a more friendly beep that an incorrect one and an
unsuccessful game is best rewarded with a 'raspberry'! Thus the
four features provided are:

INPUT:

END:

Successful
Unsuccessful
Successful
Unsuccessful

- friendly beep
- less friendly beep
- rising chord
- fall ing chord

Whatever the situation, the first necessity is to set up the sound
at the beginning of the program. All SID's registers need to be
cleared and the waveforms set up, i.e.

Initialisation

This is written as a subroutine located at 6000 and called once the
initial screen has been set up:

PROGRAM 10.4

475 GOSUB 6000

6000 R=54272:WF=32:AD=0:SR=245
6010 FOR X=R TO R+24:POKEX,0:NEXT
6020 FOR V=l TO 3:POKE R+S+«V-1)*7),
AD:POKE R+6+«V-1)*7),SR
6030 NEXT:RETURN

10-10

Next, a SID poke section needs to be set up to actually turn on the
sound:

PROGRAM 10.5

6100 H1=INT(FI/256)
6110 L1=FI-256*H1
6120 POKE R,L1
6130 POKE R+1,H1
6140 POKE R+4,WF+G
6150 POKE R+24.(G*15)
6160 RETURN

As on composatune, it will only be neccessary to enter this routine
with the variables set appropriately in order to get SID to speak.
However, on Hangman two variables will need setting, the note
frequency (F1) and the gate value (G).

First: Successful Inputs

With successful inputs a 'reward' note will be given, the frequency
being set to 8583(8910).

PROGRAM 10.6

2400 G=1:FI=8583:GOSUB6100:FOR 0=1 TO 100:
NEXT: G=O: GOSUB6100

)Then: Unsuccessful Inputs

Here the routine is very similar to that for successful ones but a
somewhat lower note is used:

PROGRAM 10.7

4205 G=1:FI=2145:GOSUB 6100
4215 G=O:GOSUB 6100

10-11

A similar process is carried out when a letter is tried for a
second time:

Next: Successful game

When the word has been guessed, a chord is played and, as this
requires all three voices to be set a new SID POKE routine is
provided i.e.:

PROGRAM 10.8

4334 G=1:FI=8583"GOSUB 6l00:FOR Z=l TO
200:NEXT:G=0:GOSUB 6100
4335 G=1:FI=108l4:GOSUB 6100:FOR Z=l TO
200:NEXT:G=0:GOSUB 6100
4336 G=1:FI=12860:GOSUB 6l00:FOR Z=l TO
100:NEXT:G=0:GOSUB 6100
4337 G=1:F(l)=8583:F(2)=10814:F(3)=12860
:GOSUB 6200
4338 FOR Z=l TO 600:NEXT:G=0:GOSUB 6200

.
6200 FOR V=l TO 3
6210 H(V)=INT(F(V)/256)
6220 L(V)=F(V)-256*H(V)
6230 POKE S+«V-l)*7),L(V)
6240 POKE S+1+«V-l)*7),H(V)
6250 NEXT V
6260 FOR V=l TO 3
6270 POKE 5+4+«V-1)*7),WF+G
6280 NEXT V
6290 POKE S+24,G*15
6300 RETURN

Finally: Unsuccessful game

When a word is guessed wrongly, a chord is played to commiserate:

PROGRAM 10.9
4920 G=1:F=6430:GOSUB 6l00:FOR Z=l TO
200:NEXT:G=0:GOSUB 6100
4930 G=1:F=5407:GOSUB 6100:FOR Z=l TO
200:NEXT:G=0:GOSUB 6100
4940 G=1:F=4291:GOSUB 6l00:POR Z=l TO
100:NEXT:G=0:GOSUB 6100
4950 G=1:F(l)=4291:F(2)=3608:F(3)=2864
:GOSUB 6200
4960 FOR Z=l TO 1000:NEXT:G=0:GOSUB 62
00

10-12

PART THREE : 6510 Machine Language

As you are probably aware, microprocessors speak only in numbers
and, for mere mortals that's none too easy. However, because only
numbers are used, the 6510 finds machine-language or machine-code
programs much eas i er to execute and so it can run them much more
quickly. To get over the problem of handling all the numbers, a
further language has been devised called 'Assembly language'.

With this, the actual numbers are replaced by groups of letters
which suggest the action that any particular command does. These
groups of letters are known as MNEMONICS, pronounced 'Nemoniks'.
One mnemonic, for instance is STA which stands for STore the
contents of the Accumulator (one part of the 6510 chip itself).
Thus, STA 1024 means store the contents of the accumul ator in
memory location 1024 (i.e. on the screen). In machine-code 'STA'
becomes 141 in decimal notation or 80 in hexadecimal. If you are
unsure about these mathematical notations (and want to know!) have
a read of Appendix One.

We have seen the command 'STA' which is used to store (or copy) the
contents of the accumulator somewhere else but what about getting
it there in the first place? This is done by means of the command
LDAIM or LoaD the Accumulator Immediately. Thus: LOAIM 90 means
load the accumulator with a '90'.

With just one more command or 'instruction' we could actually write
a machine-code program. The instruction that tells the 6510 that
the program's finished is RTS or ReTurn from Subroutine. Putting
these into a short assembly language program that will print a
Commodore zero (i. e. an "@" sign onto the screen) yi e 1 ds:

PROGRAM 10.10

In assembly language

LDAIM 0 LoaD Accumulator IMmediately (i.e. in Immediate
mode) with a zero.

STA 1024 STore the contents of the Accumulator in 1024 (i.e.
on the screen).

STA 55296 STore the contents of the Accumulator in 55296
(i.e. set the color RAM).

RTS ReTurn from Subroutine (i.e. tell the chip that the
program is finished).

10-13

Changing this into both hexadecimal (Hex) and decimal gives:

Mnemonic Data Mnemonic Data
hex/decimal hex/decimal

LDAIM 0 A9/169 00/0
STA 1024 80/141 00 04/0 4
STA 55296 80/141 00 08/0 216
RTS none

(Notice that data items larger than 255, e.g. 1024, are stored as
two separate numbers in the computer. Thus 1024 decimal is 400 in
hexidecimal, which the computer stores as two numbers, 00 and 04,
in that order, i.e. least significant number or byte first).

Writing this out gives:

Assembly language
LDAIM 0
STA 1024
STA 55296
RTS

Hexadecimal
A9 00
80 00 04
80 00 08
60

Decimal
169 0
141 0 4
141 0 216

96

The next task is to store the program in memory and, as each number
in the hexadecimal or decimal listing requires one byte, the
overall program will require 9 bytes for storage. One convenient
area for stori ng short (up to 200 byte long) programs is the
cassette buffer, from memory location 828 onwards. Therefore, POKE
the program into memory from 828 to 836, using the decimal form.

PROGRAM 10.11

10 FOR X=O TO 9
20 READ A
30 POKE 828+X,A
40 NEXT A
50 DATA 169,0,141,0,4,141,0,216,96

10-14

~~----~--~---~---~~---~---~--------------------------

When this is run, the machine-code program will have been stored in
the cassette buffer. To get it to actually run from BASIC, the
command used is:

SYS

This tells a program to jump to the memory location specified and
execute the machine-code program stored there. Try it out in
direct mode with:

SYS 828

This will execute the machine-code program and print an I@I sign in
the top left-hand corner of the screen. Be careful that the 'RUN '
command is not at the bottom of the screen when you press RETURN,
otherwise the screen may scroll and you will lose the result of
your labors.

A program such as this may appear trivial but it illustrates three
of the 6510 chip's 'instructions' or commands and gives a taste of
how machine-code works. When programing in 6510 language, one can
ignore the OIS and lis to some extent and make use of an
'assembler ' . This is a program, written in BASIC or machine code
(or a mixture) which allows the user to enter a program in assembly
language and then changes it into machine-code and stores that in
memory.

If you wish to explore the world of machine code more deeply, then
see Commodore 64 Assembly Language Programming, published by
Hayden Book Company. This comes complete with a "two-pass"
assembler on tape or disk and takes you through the whole 6510
instruction set. In fact, the program we have examined above, is
Program 1.1 from that book and is examined in much more detail in
Chapter 1 of the book.

10-15

PART FOUR: A Screen Border: a machine-code utility.

In Composatune and several other programs on tape, a border was
printed around the screen using a machine-code routine. This is
provided on the disk, numbered from 60000 onwards. Two actions are
needed to operate this:

(i) Load the machine-code program into memory.
(ii) Call the program with a SYS command.

The subroutine is loaded into memory by a simple GOSUB 60000. This
causes the DATA to be READ and then POKEd into memory. This program
firstly reads the top of memory by PEEKing 55 and 56 and then
resets these pointers 120 bytes lower (line 60010). It then POKEs
the machine-code routine into this newly-created space and RETURNS.
As line 60010 sets the variable 'H' to the start of the
machine-code routine, it can be called readily by the statement SYS
H. (or SYSH).

As the routine moves the top-of-memory pointers down, it's a good
idea, on leaving the program to reset these to where they were.
Line 60199 does this and is activated by a GOSUB 60199. Once this
is done, the pointer is reset to where it was originally.

PROGRMJI 10.12

60000 REM BORDER ROUTINE
60010 H=4096*6:I=7*17
60015 READA$:IFA$<>"ZXC"THEN60015
60020 FORZ=HTOH+I:READA:POKEZ,A:NEXT:SYSH:RETURN
60030 DATAZXC,162,38,169,192,157,0,4,157,192,7,169,6,157,
0,216,157,192 ,219
60040 DATA202,208,237,162,240,169,221,157,0,4,157,240,4,
157,224,5,157,168
60050 DATA6,157,39,4,157,207,6,157,223
60060 DATA5,157,239,4,169,6,157,0,216,157,240,216,157,224,
217,157,168,218
60070 DATA157,39,216,157,207,218,157,223
60080 DATA217,157,239,216,138,56,233,40,240,4,170,24,144,
194,169,240,141
60090 DATAO,4,169,253,141,231,7,169,237,141,192,7,169,238,
141,39,4,169

60100 DATA6,141,0,216,141,231,219,141,192,219,141,39,216,96

10-16

CHAPTER

n
SOLUTIONS TO EXERCISES

CHAPTER ONE

EXERC I SE 1.1

Move the cursor to the W of 'WHAT·
Type in 'PLEASE'
Space over the '$' with the space bar
Insert seven spaces
Type in 'TYPE IN'
Move cursor on to the N in 'NAME'
Insert five spaces
Type in 'FULL'
Press 'RETURN'
You have now finished. Line 10 should look like this:

10 INPUT "PLEASE TYPE IN YOUR FULL NAME";
A$

EXERCISE 1.2

Move the cursor to the A of 'A$'
Insert 16 spaces
Type in "YOUR NAME IS ";
Press "RETURN"
And now line 30 looks like this:

30 PRINT "YOUR NAME IS ";A$

11-1

EXERCISE 1. 3

10 INPUT "WHAT IS YOUR FULL NAME AND AGE"; A$, A
30 PRINT "YOUR NAME IS ";A$
40 PRINT "YOUR AGE IS";A

EXERCISE 2.1

10 C=l
30 RV=INT(RND(O)*100)+1
35 PRINT RV
60 C=C+1
70 IF C<101 THEN 30
90 STOP

EXERCISE 2.2

10 FOR X=O TO 100 STEP 3

EXERCISE 2.3

1 FOR X=10 TO 0 STEP-1
2 PRINT X
3 NEXT X
4 P R r NT "F IRE! ! ! "
5 STOP

EXERCISE 2.4

2 C=O
4 C=C+1
6 PRINT C
8 IF C>19 THEN 10
9 GOTO 4
10 PRINT" FINISHED"
12 END

CHAPTER TWO

11-2

EXERCISE 2.5

2 C=l
4 PRINT C
6 C=C+1
8 IF C>=31 THEN 10
9 GOTO 4
10 PRINT" FINISHED"
12 END

EXERCISE 2.6

First we need to change line 60 so that it goes to line 105 instead
of 1 ine 1l0. 60 IF G=RV THEN PRINT "WELL DONE - GUESS CORRECT."
: GOTO 105
105 PRINT "YOU TOOK";C; "GOES".

CHAPTER 3

EXERCISE 3.1

1 PRINT "<CLR><2DCRSR><14RCRSR>
ETCHA SKETCHA"
2 PR INT "<2DCRSR><2RCRSR> INSTRUCTIONS"
3 PRINT "<lDCRSR><4RCRSR>PRESS 141 TO MOVE LEFT"
4 PRINT "<4RCRSR>PRESS 151 TO MOVE DOWN"
5 PRINT u<4RCRSR>PRESS 16 1 TO MOVE UP"
6 PRINT u<4RCRSR>PRESS 17 1 TO MOVE RIGHT"
7 PRINT u<2DCRSR><10RCRSR>PRESS ANY KEY TO BEGIN"
8 GET A$: IF A$="" THEN 8

EXERCISE 4.1

10 FOR X=l TO 4
20 READ A,A$
30 PRINT A,A$
40 NEXT
50 DATA 1,ONE,2,TWO
60 DATA 3,THREE,4,FOUR

CHAPTER 4

11-3

HER:ISE 4.2

11-4

10 REM WORD GUESSER
20 PRINT "<CLR><2DCRSR><4RCSR>
THESE ARE THE RULES"
30 PRINT "<DCRSR><4RCRSR>THERE ARE 10 WORDS TO GUESS"
40 PRINT "<4RCRSR>AND I WILL GUESS ONE OF THEM"
60 PRINT "<4RCRSR>YOU MUST GUESS WHICH ONE I HAVE GUESSED"
70 PRINT "<4RCRSR>THE WORDS TO GUESS ARE:"
80 RESTORE
90 FOR X=1 TO 10
100 READ A$:PRINT A$,
110 NEXT X
120 R=I+INT(RND(1)*10)
130 RESTORE
140 FOR X=1 TO R
150 READ A$
160 NEXT X
170 PRINT "I HAVE CHOSEN MY WORD"
180 PRINT "NOW YOU MUST GUESS IT"
190 C=O
200 INPUT "GUESS="; Z$
210 IF Z$=A$ THEN PRINT "CORRECT": GOTO 250
220 C=C+l: PRINT "WRONG"
230 GOTO 200
250 PRINT "THAT TOOK YOU";C;"GOES"
260 INPUT "DO YOU WANT ANOTHER GO" ;A$
270 IF A$= "Y" THEN 10
280 PRINT "BYE!"
290 END
300 DATA "COMMODORE", 'IFRED", "MUSIC", "COMPUTER"
310 DATA "FLOWER", "BASIC", "LOVE", "TRAIN"
320 DATA "MAGIC", "DREAM"

CHAPTER FIVE

EXERCISE 5.1

The extra lines needed to give a continuous display of time are
listed here:

250 FOR P=l TO 575:NEXT P
260 GOTO 200

The pause on line 250 is added so the display changes approximately
once per second instead of the display flashing continually.

11-5

CHAPTER SEVEN

EXERCISE 7.1: The logical operation used to find the most
significant BYTE is AND, i.e. AND with 240.

EXERCISE 7.2

10 FOR X=O TO 39
20 FOR Y=O TO 15
30 POKE 1024+X+Y*40,83
40 POKE 55296+X+Y*40,Y
50 NEXT Y
60 NEXT X

EXERCISE 7.3

10 PRINT "<CLR>"
20 FOR Y=O TO 4
30 FOR X=O TO 39
40 POKE 1024+X+Y*40,160
50 POKE 55296+X+Y*40,Y+3
60 NEXT X, Y

EXERCISE 7.4

10 PRINT "<CLR>"
20 FOR X=O TO 39
30 POKE 1984+X,81
40 POKE 56256+X,2·
45 POKE 1984+X-l,32
50 NEXT X

EXERCISE 7.5

10 PRINT "<CLR>"
20 FOR X=20 TO 0 STEP-l
30 POKE 1024+X+X*40,81
40 POKE 55296+X+X*40,2
50 POKE 1024+X+l+(X+l)*40,32
60 NEXT X

EXERCISE 7.6

In order to give the ball a random start position we need only to
change the values of 'X' and 'Y' in line 30

30 X=INT(RND(1)*38)+I:Y=INT(RND(I)*23)+1

11-6

EXERCISE 7.7

21 FOR Y=O TO 23
22 POKE 1033+Y*40,160: POKE 55305+Y*40,O
23 NEXT Y
116 IF A=O THEN XI=XI*-l:GOTO 100

EXERCISE 7.8

10 GET A$: IF A$="" THEN 10
20 GET B$: IF B$='"' THEN 20
30 IF A$="O" AND B$="K" THEN PRINT
"CORRECT": STOP
40 PRINT "INCORRECT":STOP

EXERCISE 7.9

To add an extra character to the bat size we need to add another
two POKE commands and change lines 40 and 50.

40 IF A$="9" AND BC<37 THEN BC=BC+3:GOTO 70
50 IF A$="l" AND BC>O THEN BC=BC-3:GOTO 70
85 POKE 1984+BC+2,160:POKE 56256+BC+2,O
75 POKE 1984+CB+2,32

EXERCISE 7.10

10 REM DRAW THE WALL
20 FOR X=O TO 39
30 FOR Y=2 TO 7
40 POKE 1024+X+Y*40,160
50 POKE 55296+X+Y*40,Y
60 NEXT Y,X
70 REM DESTROY THE WALL
80 FOR X=O TO 39
90 FOR Y=2 TO 7
100 POKE 1024+X+Y*40,32
110 NEXT Y,X

EXERCISE 7.11

To get the ball to start in a random position we can set 'X' and
'Y' to random values.

110 X=INT(RND(1)*39)+1:Y=INT(RND(1)*10)+12

By adding twelve to 'Y- we ensure the ball will start below the
wall

11-7

CHAPTER 8

EXERCISE 8.1

0,24,0
0,102,0
1,129,128
6,24,96

APPENDIX ONE

EXERCISE A1.1

i) 0000 00112 = 0+0+0+0+0+0+2+1
= 310

ii) 0000 01002 = 0+0+0+0+0+4+0+0
= 410

ii 1) 1000 00002 = 128+0+0+0+0+0+0+0
12810

iv) 1000 00112 = 128+0+0+0+0+0+2+1
13110

v) 1011 01112 = 128+0+32+16+0+4+2+1
18310

vi) 0111 0011 2 = 0+64+32+16+0+0+2+1
11510

EXERCISE A1.2

i) 000916 = Ox409+0x256+0x16+9x1
= 0+0+0+9
= 910

ii) 001316 = Ox4096+0x256+1x16+3x1
= 0+0+16+3
= 1910

ii i) 00A516 = 0+0+10x16+5x1
= 160+5
= 16510

iv) OAAE 16 = 0+10x256+10x16+14x1
= 2560+ 160+ 14
= 273410

11-8

v) 000E16 = 0+0+0+14
= 1410

vi) 011A16 = 0+256+16+10
= 28210

vi i) 00EA16 = 0+0+14x16+1O
= 224+10
= 23410

vi i i) FOA316 = 15x4096+0+10x16+3
= 61440+160+3
= 6160310

EXERCISE A1.3

i) 410 = 01002(BCD)

ii) 1010 = 1x10+0

iii) 7710 = 7x10+7
= 0111 0111 2(BCD)

iv) 9710 = 9x10+7
= 1001 0111 2(BCD)

v) 5310 = 5x10+3
= 0101 0011 2(BCD)

vi) 10210 = 1x100+0x10+2x1
= 0001 0000 00102(BCD)

vi i) 95310 = 9x100+5x10+3x1
= 1001 0101 0011 2(BCD)

vi i i) 257910 = 2x1000+5x100+7x10+9x1
= 0010 0101 0111 10012(BCD)

EXERCISE A1.4

i) 0000 0001 2(BCD) = Ox10+1x1
= 110

ii) 0000 10012(BCD) = Ox10+9x1
= 910

iii) 0001 0101 2(BCD) = 1x10+5x1
= 1510

11-9

iv)

v)

vi)

0010 00002(BCO) = 2xlO+0x1
2010

0100 10012(BCO) = 4x10+9xl
= 4910

1010 00112(BCO)

*** This is not a valid BCO number as the
first nybble, 10102 = 1010' i.e. is greater
than allowed in BCO.

vii) 1001 0111 2(BCO) = Ox10+7x1
9710

viii) 1000 10002(BCO) = 8x10+8xl
8810

11-10

APPENDIX

1
BINARY, BINARY-COOED DECIMAL AND HEXADECIMAL NOTATION

Counting systems in general use throughout the world use the
decimal system and this has been developed to count up to and
beyond 10 and also below the value 1. In this standard the digits
to the 1 eft of a number are of greater val ue than those to the
right. For instance, in the number 66, the first 6 has a value 10
times the second, i.e.

This is extended in larger numbers where digits to the left are
successively greater by a multiple of ten, i.e.

6 x 100 6 x 10

6XlOOO~ ~6Xl
6666

A system where the position or place of a digit in a number affects
its value is known as a PLACE-VALUE numbering system. In the
decimal system, the values of digits increase in multiples of 10
and this is known as the BASE for that system. Other systems use
different bases but follow the same pattern as the decimal system,
i.e. the place to the left is greater by being multipl ied by the
base.

A1-1

The computer, being basically electronic in operation, works better
if it is told to only recognize two states, on or off or '0' and
'1', and thus uses the Binary system - base 2. Thus, any number in
binary consists simply of O's and l's, or electronically, zero
volts (off) and some volts (on). To count past one, the binary
system must resort to place-value notation and, as with other
cases, the multiplying factor is the base, i.e. 2. Thus, the
number 101 in base 2 or binary represents:

i.e. 4+0+1=5. Clearly the plethora of bases presents a problem
when representing numbers as in base 10, '101' represents one
hundred and one while in binary (base 2) '101' represents 5. To
overcome this ambiguity, a convention exists when representing
numbers in that the base is written to the ri ght of the number,
just below the line. Thus, the two numbers discussed above become:

101 10 = One hundred and one in base ten.

1012 = Fi~e in base two.

The present-day generation of personal computers (l983-style) use
eight bit registers or memories and can thus represent numbers up
to 111111112' i.e. in base 10:

128 +64 +32 +16 +8 +4 +2 +1

1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1

Fig. A1.1

Al-2

=25510

Digit
Equivalent in
base 10

By way of example, let's take one more conversion - say, 101001112•

1 x 128 0 x 64 1 x 4 1 x 2 1 x 1

~1\10~1~
1 x 3~~ l~O x 8

Thus 10100111 = 1x128 +Ox64 +lx32 +Ox16 +Ox8 +lx4 +lx2 +lx1
= 128+32+4+2+1
= 16710

Just to check your understanding, have a go at the following:

EXERCISE A1.1

Calculate the value of the following in base
10:-

i) 00000011 2
i i) 000001002

iii) 100000002
iv) 10000011 2
v) 10110111 2

vi) 01110011 2 Answers on page 11-8.

If you remain unclear on this, or simply want to see it
demonstrated, load and run the Binary/Hex tutor program which is
included on disk. At the menu select 'H' for "Decimal, Binary and
Hexadecimal". Then, when asked "At what number do you wish to
start?", press "1" <return>. The screen will then display three
rows of boxes, of which the top two are currently of interest.
These represent a decimal number (marked "DEC") and a binary number
(marked "BIN"). At this stage, they should contain the numbers 110
and 12• The decimal number has three digits and thus has a
capacity of 99910' and the binary, with its eight binary digits
(bits) will hold up to 255 10 .

Al-3

From this point, the program will simply count, every time that you
press the space bar, both the decimal and the binary boxes will
index one. Try pressing the space bar once and the boxes should
contain a 210 and a 102, If you carryon indexing then you will
see how binary counts. When you get to the stage where the decimal
shows 1510 the binary should read 11112, Now index one further and
the binary will change to 100002, One way of looking at this is to
layout the addition:-

1111 A
+ 1 B

On adding the 1 (A) to the 1 (B) this gives '2' i.e. 0, carry 1.
This carry then produces another '0 1 plus another carry, and so on.

If you continued to press the space bar long enough, then
eventually the binary register would become full. However, this
would take an awful lot of pressing, so we will take a short cut to
this state of affairs. Instead of pushing the space bar, press the
RETURN key instead. This will return you to the menu where you can
select the IHI option again. This time, when asked "at what number
do you want to start?" type a fairly hi gh val ue which is 1 ess than
255, say 240. Off you go again until the binary register is full
i.e. 111111112, The addition of a further one, now, will clock all
the binary register back to zeros and 256 will be lost. However,
with the 6510, all is not lost as the 6510 has a carry fl ag that
stores the fact-rhat a carry has occurred. Clocking past 25510
with the Binary/Hex tutor will show this happening. This is a
handy feature of the 6510 but it must not be relied on as more than
a temporary store of the carry. The carry flag is just as easily
reset as it is set to I!

In order to make sure that you really understand the binary
notation, you may wish to try some of the exercises which are
provided by the BIN/HEX exercises. Select 'E' at the main menu.
This will provide you with a menu of exercises and you can select
'21 to try the exercises converting decimal numbers into binary or
'5' to try converting them back again. When you are runni ng the
exercises, by the way, typing a space (instead of a digit) will
delete the last entry that you made, thus providing you with a
correction facil ity. When you are satisfied that you have done
enough, pressing the <return> key will take you back to the main
menu.

AI-4

While the 0'5 and 1'5 are convenient for the computer, they are
much less so for the mere human so a compromise is sought. Decimal
notation is of little use as, apart from 12 and 110 there is no
other correspondence. A further idea wou 1 d bE) to take the who 1 e
eight binary bits as a digit (i.e. up to 25510 and use a base of
256! What would you see as the objection to this? That's apart
from the idea itself being a bit mind-bending! Time to think •••
The answer comes from an examination of the base 10 case in which
ten digits (0 to 9) are needed to represent the ten steps up to 10.
In the base 2 system, two digits are needed so base 256 would need
256 digits!

A compromise system adopted splits the eight bits up into two parts
and represents these separate ly. Thus, the 1 argest number to be
represented is 11112 or 1510 and this requires, along with the 0,
sixteen different symbols. The ones adopted for this job are:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Decimal number

o 1 2 3 4 5 6 7 8 9 A B C D E F Symbol

Fig. AI. 2

Using this notation, any eight bit number can be represented by two
symbo 1 s, one for the most s i gni fi cant four bits and one for the
least significant four bits. To avoid the rather long description
of these two halves of a byte, they are given the term NYBBLES.
Thus a byte consists of two nybbles, a most significant nybble
(MSN) and a least significant nybble (LSN) - see Fig. A1.3.

Fig. A1.3

The system described, which uses sixteen symbols is, of course,
given the name HEXADE~IMAL - usually abbreviated to HEX. Its major
advantage, as far as computers are concerned, is that it is
compatible with binary. Any eight bit binary number can be
represented by two hexadecimal characters.

Al-5

You are now in a position to look at the Binary/Hex tutor program
again. The third row of boxes, which we ignored last time round,
contains the Hex numbers. While the counting is going on in the
binary boxes, so it is in the Hex boxes also. The comparability
between binary and HEX shows wherever a major carry occurs - take
for instance 1111 2, 1510 or F16 . One index past this clocks the
binary ones to zeros ana adds a one to the left, i.e. to 100002 or
1016 ' These major points of correspondence occur at

12

0001 00002

0000 0001 0000 00002

0001 0000 0000 00002

= 116

= 1°16

= 10°16

=100016

= 110

= 1610

= 25610

=409610

Up to 9, the hex ch ar acters co inc ide with the dec i ma 1 ones and
between 10 and 15 the single letters correspond to the decimal
numbers. After 15, Hex to decimal conversion becomes a little more
tricky, as the use of two numbers together, e.g. FF16 =255, once
again calls for place-value notation. This time, as tne base is 16
the ratio between any place and its neighbor is 16.

The values, in base 10 of the places in hexadecimal are:

x 4096 ~x 25\ /1:V-----X 1

1r=-1-'-1--=-2-'-1-3=;-1 -4""":;1 Pl ace Number

Fig. A1.4

Using Fig. Al.4 the way that E92F16 makes up 5969510 is explained
below in Figure Al.5.

~/9J
F

~
E(14)x4096 + 9x256 + 2x16 + F(15)xl = 59695

Fig. A1.5

AI-6

Now that hex is totally mastered(!) try the fo'llowing; the first
two are explained fully on page II-B.

EXERCISE A!. 2

Calculate the value in decimal of the
following:-

i) 0009
i i) 001316

iii) 00A5i~
iv) OAAE16

Answers on page II-B.

BINARY CODED DECIMAL

v) 000E16
vi) 011A16

vii) 00EA16
viii) FOA316

As well as decimal, binary and hexadecimal notations, one other
system is used in computing - binary-coded decimal. As its name
suggests it is a hybrid form with elements from binary and decimal.
It is commonly used where an output is required in digital format,
e.g. a digital clock, or when great precision is required and no
bits can be dropped.

In BCD the normal decimal base is retained, i.e. one pl ace is a
factor of 10 times its neighbor but each individual digit is
represented in binary. Thus the number B710 would be represented
as:

8 7 base 10

~~
1000 0111

i.e. BCD = 1000 0111 (or in eight bits
10000111)

Fig. AI.6

As the largest digit required in decimal notation is 9, only four
bits of binary are needed to represent this, i.e. 910 =1001 2, thus
a BCD digit can be represented by a nybble and two digits by a
byte. Figure A1.6 shows this, where 8710 is represented in BCD as
10000111 2, This can give rise to ambiguity in that 100001112 in
binary is 13510' To overcome this, BCD representations wilT be
given the notatlon 100001112(BCD).

Al-7

Using four bits of binary, it is possible to count up to 1510 (i.e.
1111 2=15 10) but in BCD the largest digit used is 9, so inevitably
BCD 1S less economical in its use of space. Its largest digit, 9,
is 1001 2 and when one is added to this it clocks over to 00002 and
carries the 1 to the next nybble. i.e.

810 = 0000 1000 (base 2 BCD)

1610 = 0000 1001 II II II

= 0001 0000 II II II

1110 = 0001 0001 II " II

10

Fig. Al.l

It would probably be helpful at this point if you load and run the
Binary/Hex tutor program again. This time, select IBI at the main
menu. and when asked IIAt what number ••• 11 enter a 1 <return>.

The display will then show three rows of boxes again but this time
they will contain decimal, binary and BCD. If you press the space
bar as before, to index from Ill, you will notice that up to 910'
binary and BCD are identical .. However, as you index from 910 to
1010 keep an eye on the BCD box and you will see the 1 carried over
to the most significant nybble. From 1010 upwards BCD becomes a
true hybrid representing the decimal number in a binary form.

As the number increases, the uneconomical nature of BCD will become
apparent as 9910 changes to 10010 , When 9910 indexes to 10010 you
will see the BCD generate a carry from its most significant nybble
to the carry flag.

This carry is only a short term expedient and must be picked up at
the earliest possible moment if it is not to be lost. This carry
is generated on the BCD boxes at 9910 while the binary boxes will
store up to 25510 ' BCD is therefore fairly uneconomical in memory
usage, but it has its uses in particular situations. In the past.
microcomputers have always been dogged by their lack of memory and
consequently BCD has been little used. However, the new generation
of microcomputers have much larger memories and it is quite likely
that BCD will be used much more frequently than it was in the past.
Perhaps it is a sign of the times. that. although all COMMODORE
computers have had BCD capability, your C-64 is the first to make
use of BCD, albeit in a very small way. The 24 hour time of day
clocks which are built into the C-641 s two input/output chips
(6526 Is) do make use ,of BCD.

Al-8

As you know all about BCD now(!) try the following:-

EXERCISE A1.3

Convert the foll owing decimal numbers into
BCD:

i) 4
i i) 10

iii) 77
iv) 97

Answers on page 11-9.

EXERCISE A1.4

v) 53
vi) 102

vii) 953
viii) 2579

Convert the following BCD numbers into
decima1:-

i) 0000 0001
ii) 0000 1001

iii) 0001 0101
iv) 0010 0000
v) 0100 1001

vi) 1010 0011
vi i) 1001 0111

viii) 1000 1000

Answers on page 11-9.

In the explanations given of the value of places in place-value
notation a simplification was adopted in order to make these
explanations clearer for our less mathematically inclined brethren.
However, if you wish to see a sl ight1y more mathematical
explanation, please read on. Otherwise - END OF APPENDIX ONE.

Al-9

With binary numbers it was said that the places increase their
value in multiples of 2, but the least significant bit of the
binary number was equival ent to the same symbol base 10 (or for
that matter base 3, or whatever). In actual fact the multiplying
factor is the base raised to the power of its place starting with
zero at the 1 eft. i.e. in bi nary:

7 6 5 4 3 2 1 0 Place
Previously stated

128 64 32 16 8 4 2 1 multiplication factor

27 26 25 24 23 22 21 2° Mathematically more
precise factor.

Thus the least significant bit is multiplied by 2° or 1. (If you
are not sure of this 1ry the direct program PRINT 2 0.) The next
bit is multiplied by 2 • and so on.

This rule holds for ANY base; let's apply it for hex, t .e. base 16:

Least significant bit factor = 16° = 1

2nd most significant bit factor = 161 = 16

3rd most significant bit factor = 162 = 256

Most significant bit factor = 163 = 4096

Al-lO

APPENDIX

2
This appendix is a guide to the Honey.Aid utility package which 1s
supplied with this book.

LIST OF HONEY.AID COMMANDS

Toolkit Commands

The Toolkit commands are intended to assist with the creation of a
working BASIC program and subsequent amendment etc ••

Toolkit commands can be used only as 'direct' commands i.e. they
may not be included as commands within a BASIC program. An attempt
to use one of the Toolkit commands within a program will result in
a SYNTAX ERROR message and the abandonment of the program in which
they were included. As will be realized, this is not really a
serious restriction as the only use ever likely to be required of
the Toolkit commands will be as 'direct' commands.

APPEND
AUTO
BRK
CBM

CHANGE
DELETE
EXTEND
FIND

HMEM
KILL
LMEM
NUMBER

OLD
REPEAT
RESET

All other Honey.Aid commands, may be used either as 'direct'
commands or as BASIC program commands.

A2-1

Graphics Commands

COLOUR (or COLOR) LINE PLOT
HIRES NRM

Synthesizer Commands

ENVELOPE SOUND WAVE
PLAY TEMPO
PULSE VOL

DESCRIPTION OF HONEY.AID COMMANDS

1. Toolkit Commands

APPEND (abbreviation A <SHIFT> P)

Used in conjunction with the HMEM command (see below). Appends the
BASIC program placed in high memory (using the HMEM command) to
the program preserved in low memory. APPEND effectively issues an
LMEM command (see below) on completion of the APPEND.

APPEND simply attaches the high memory program to the low memory
program. The renumbering command, NUMBER, may/should be used prior
to the APPEND to adj us t the 1 i ne numbers of the two programs so
that the combined program's line numbers are in sequence. In many
cases, renumbering after the APPEND will not produce problems.

AUTO «SHIFT> A or A <SHIFT> U)

Creates line numbers automatically, using the specified increment.

and
while

AUTO 100
AUTO 20
AUTO

creates increments of one hundred
creates increments of twenty
(no increment) is equivalent to AUTO 10.

Once an AUTO command has been issued, Honey.Aid will respond to the
entry of any numbered BASIC line by issuing the next 1 ine number
and waiting for the remainder of the line to be typed in; Honey.Aid
will then issue the next line number and so on. The line numbers
which is issued by Honey.Aid may be changed if required and the
next line number issued by Honey.Aid will reflect the changed line
number. AUTO is switched off by typing an empty line i.e. a line
number followed by a <RETURN>.

A2-2

BRK «SHIFT> B or B <SHIFT> R)

Performs a machine code BRK instruction. Unless a program has been
loaded which responds to a machine code BRK, then the result of the
BRK command will be a BASIC warm start. (BASIC pointers will be
reset and the READY message will be given - in other words 'not a
lot'). However, if a Machine Language Monitor (MLM) has been
loaded, then the BRK command will cause the MLM to be entered.

CBM «SHIFT> C or C <SHIFT> B)

Prevents Honey.Aid from creating a non-CBM BASIC program. If
either the special Honey.Aid Graphics or Synthesizer commands are
incl uded in a BASIC program, then the program will not be runnable
by a C-64 which is not equipped with Honey.Aid. However, it is
obviously very handy to be able to use the Honey.Aid Toolkit
commands when writing BASIC programs which do not include Honey.Aid
Graphics/Synthesizer commands. Use of the CBM command before
creat i ng the BASIC program wi 11 prevent Honey.A i d commands from
being encoded and any accidental use of a Honey.Aid command in the
program may be detected when the program is tested (a SYNTAX ERROR
message will appear). Note that the CBM command does not prevent a
previously saved Honey.Aid program from being run (provided it was
not created with CBM in force, of course).

The CBM command will also cause a 'bleep' to be issued and the
color of the border to be changed to remind the user that CBM is in
force. CBM is cancelled by the EXTEND command (see below).

CHANGE (C <SHIFT> H)

CHANGE is similar, in many ways, to the FIND command (see below).
It will search the program for all the occurrences of one
particular string of characters and then replace these by a second
string of characters. Optionally, the search and change may be
confined to one section of the program only. The string of
characters being sought is defined by using almost any character
which is not itself a part of the sought string (or the replacement
string) as a delimiter. The delimiter must immediately precede and
follow the strings, unless you intend the space to be considered
part of the string. Full stop and comma are convenient characters
to use as delimiters because of their position on the keyboard, but
the slash sign (/) is not so good (see below).

A2-3

Examples:

CHANGE.PRINT.PRINT#3. will replace all occurences of PRINT by
PRINT#3 (but see "Using Quotes as a
delimiter"). The character "." has been
used here as a delimiter.

CHANGEQAQAIQ,100-860 will replace the variable name A$ by the
name AI$ within the range of lines 100 to
860 inclusive. The letter Q has been used
as a delimiter here.

The second example illustrates using a letter as a delimiter.
However, most users find it less confusing when non-alphanumeric
delimiters are used. The quote sign, when used as a delimiter, has
some special effects; see beloW.

Using quotes as a delimiter:

If you do search for PRINT, say, using ordinary (non-quote)
de 1 imiters, then some occurences of PR I NT may not be found. The
'missed' PRINTs will be those which appear within quotes in the
program (e.g. the PRINT in 100 INPUT "PRINTER OR SCREEN";A$ would
not be found). Strings within quotes which contain a Commodore
BASIC keyword (e.g. PRINT, GOTO, TO .••) will only be found by
CHANGE when the delimiters used are quotes. Similarly, strings
which contain Commodore BASIC keywords which are not within quotes
will not be found if the delimiters used are quotes. Hence, CHANGE
"PRINTER"SCREEN" will find all occurrences of PRINTER which occur
within quotes (and will change these to SCREEN), but it would not
find for instance, the string in 220 PRINTER;S$ (i .e. 220 PRINT
ER;S$). Lastly, you cannot use CHANGE to replace a string which is
only a part of a BASIC keyword, unless the string is within quotes.
FIND.RINT. will fail to find the RINT's in the PRINT and PRINT#
commands.

Although +, -, * and I may be used as delimiters without problems
most of the time, they do not work if you are looking for strings
which contain the BASIC REM or DATA keywords.

A2-4

DELETE «SHIFT> D or D <SHIFT> E)

DELETE enables the deletion of a number of adjacent 1 ines from a
BASIC program.

Examples:

DELETE 100

DELETE 100-

DEL ETE 100 -250

DELETE -250

deletes line number 100, not very useful: a 100
by itself would have the same effect.

deletes all lines from line 100 (inclusive) to
the last line of the program.

deletes all lines from 100 to 250 (inclusive).

deletes all 1 ines from the start of the program
up to and including line 250.

Warn~: DELETE - (the hyphen is present but the start and
finishing line numbers are missing) will delete
the whole pr~am. If this is done, in error,
then the situation cannot be recovered by use
of the OLD command (see below).

EXTEND «SHIFT> E or E <SHIFT> X)

Will restore Honey.Aid following a CBM command so that Honey.Aid
Graphic and Synthesizer commands used during the creation of a
BASIC program will be accepted. Honey.Aid will sound a 'bleep' and
res tore the border to the ori gi na 1 color as an i ndi ca tor that
Honey.Aid commands may again be included in BASIC programs.

FIND «SHIFT> F or F <SHIFT> I)

FIND provides a method of finding all the lines in the program
containing a particular string of characters. Optionally, the
search may be confined to a particular range of lines. The string
of characters which is being sought is defined by using almost any
character which is not itself part of the string as a delimiter.

A2-5

Examples:

FIND.PRINT A$. finds and lists all lines in the program which
contain the characters PRINT A$. The
character "." has been used here as a
delimiter.

FIND$NEXT$,100-580 finds all occurrences of NEXT in the line
range 100 to 580 inclusive.

FINDQLETQ,560- finds all occurrences of LET from line 560 to
the end of the program. This example uses the
letter Q as a delimiter.

The use of quotes as a del imiter in the FIND command mirrors the
way in which they are used by the CHANGE command. Similarly the
use of +, -, / or * as a delimiter is not recommended as it will
fail to find a string containing a REM or a DATA.

HMEM (H <SHIFT> M)

Seals off and preserves the eXisting program in memory and permits
the memory which follows the existing program to be used for other
programs. Possible uses are:

i) To examine a program held on disk or cassette without the
need to save the existing program, or

ii) as a preparation to appending a program held on disk or
cassette with the existing program. Loading the program
which is to be APPENDed into high memory provides the
opportunity to edit the program prior to the APPEND, or

iii) examining the Directory of a disk.

When the HMEM command is issued, Honey.Aid will respond with a
'bleep' and will change the color of the border as a reminder to
the user that HMEM is in force.

If the C-64 is already in the HMEM state when the HMEM command is
used, a SYNTAX ERROR message will be printed to the screen.

A2-6

KILL «SHIFT> K or K <SHIFT> I)

The KILL command is provided to enable Honey.Aid to be switched
off. One reason for wishing to switch Honey.Aid off might be to
remove the small overhead in the running speed of a program which
is not making use of the Honey.Aid Graphics or Synthesizer
commands. This overhead is considerably less than is normal with
several other BASIC 'Toolkit' systems, owing to the method used to
link Honey.Aid to Commodore 64 BASIC. Even so, the facility to
switch off is provided should you need it.

Note that Honey.Aid is not removed from the C-64' s memory by the
KILL command and may be reactivated at a later time, if required.
The procedure for reactivating Honey.Aid is explained in the
introductory message put on to the screen when Honey.Aid is
initialized, and a further reminder is given when the KILL command
is used. In the current version of Honey.Aid, this procedure is to
type SYS 750 followed by <RETURN>.

LMEM «SHIFT> L or L <SHIFT> M)

Releases the high memory space made available by HMEM and reverts
to normal BASIC space complete with its original contents. Any
program which is currently held in high memory will not be
preserved, although an immediate HMEM following a LMEM should
reinstate the high memory program. LMEM is unnecessary if APPEND
is used, as automatic reversion to normal memory follows its
execution.

If the C-64 is in the LMEM state when the LMEM command is issued,
then a SYNTAX ERROR message will result.

NUMBER «SHIFT> N or N <SHIFT> U)

NUMBER enab~es the whole of a program to be renumbered. The 1 ine
number which is to be given to the first line of the renumbered
program may be specified, if omitted the value 100 will be assumed.
The increment value to be added to each line number to create the
next may also be specified, if omitted the value 10 will be
assumed. All commands which refer to other 1 ine numbers such as
GOTO, GOSUB, THEN, RUN and LIST wi 11 automatically have the 1 ine
numbers adjusted.

A2-7

Examples:

NUMBER 200,25 wi 11 renumber the program so that the new 1 ine
numbers will be:

200
225
250 •••

etc

NUMBER is equivalent to NUMBER 100,10
NUMBER 200 is equivalent to NUMBER 200,10
NUMBER ,20 is equivalent to NUMBER 100,20

Whenever Honey.Aid adjusts the line numbers referred to by a GOTO,
GOSUB, THEN, RUN or LIST statement, the new line number is printed
to the screen, e.g. if the line 220 GOTO 150 has been adjusted to
250 GOTO 190 then Honey.Aid will print 190 on the screen. These
numbers should always be examined to check that there have been no
problems during the renumbering process. The problem most likely
to occur is when Honey.Aid discovers a GOTO, GOSUB, RUN, THEN
statement which refers to a non-existent line number (the sort of
problem which causes BASIC to complain of an UNDEF'D STATEMENT).
Honey.Aid will replace the silly line number with a line number
which is even sillier: 65535. It is these 65535 numbers that
should be looked for in the list of changes that Honey.Aid
produces. Clearly, only the programer will be able to sort out
what is his/her own error, but at least the FIND command is
available to assist in clearing up the problem.

Warning: It is possible to obtain peculiar results if the start
line number or increment value are such as will cause
the 1 ine numbers at the end of the program to exceed
63999 (C-64 BASIC does not recognize program line
numbers greater than thi s). Line numbers greater than
65535 cannot be created anyway. If this happens, it is
usually possible, but not always, to sort the problems
out by reNUMBERing with less extravagant values.

OLD (<SHIFT> 0 or 0 <SHIFT> l)

The purpose of the OLD command is to undo a careless NEW command.
OLD will reinstate a program to the state that it was in
immediately prior to the NEW command. Note that OLD can not undo a
careless DELETE command.

A2-8

REPEAT «SHIFT> R or R <SHIFT> E)

When the C-64 is initialized, only the SPACE bar, the cursor keys
and the INST/DEL keys will repeat if held down for longer than 0.5
seconds. The REPEAT command can be used to change the range of
keys that will repeat in this manner.

Examples:

REPEAT 0
REPEAT 1
REPEAT

no keys to repeat
all keys to repeat
revert to standard repeat pattern,
cursors and INSTI DEL.

RESET (R E <SHIFT> S)

i.e. SPACE,

This is a very drastic command. The RESET command causes the C-64
to be reset (the so-called ' co1d restart '). Exactly the same
resu 1t is ach i eved as if the C-64 had been switched off and then
switched on again: everything within sight is intia1ized including
the RAM memory.

The occasions when this might be required are when
itself in a complete mess and you wish to restart,
might want to clear out every program from
Honey.Aid!!).

the 64 has got
or perhaps you
memory (even

Since this is such a drastic command. Honey.Aid will ask for
confirmation before doing the RESET. Honey.Aid will warn "System
Reset- Are you sure y/n?", and any response other than y will
cause the RESET to be abandoned.

2. Graphics Commands

One of the great advantages of the Honey.Aid Graphics system over
other systems on offer is that the Graphics commands can be used in
'direct' mode. Thus the user can experiment with different
commands and see the result immediately, before building them into
a BASIC program. A second advantage, not always provided by
competing systems, is that Honey.Aid will only clear the high
resolution screen when it is told to do so; it does not clear the
screen automatically at the beginning of the execution of a program
as many systems do. Therefore a graphics picture may be built up
in stages by several runs of the same, or different programs.

A2-9

The high resolution graphics screen is maintained in the RAM which
lies under the C-64's Operating System ROM. The other part of the
high reso1 ution screen system, the color screen, uses the bottom
2000 bytes of the C block. The consequence of this is that the use
of high resolution graphics subtracts not one single byte from the
normal BASIC memory space and this means that very large high
resolution graphics BASIC programs may be written. This is made
possible, of course, by the unique characteristics of the C-64's
6510 processor, and Honey.Aid sets out to extract the full benefit
from this chip for the user.

The system of defining the X, Y axes for plotting which is used by
Honey.A i d conforms to the convent i ona 1 cartes ian system as taught
in all schools i.e. the origin of the axes is in the bottom left
hand corner of the screen and Y displacements are measured upwards.
The majority of Graphic systems designed for microcomputers defy
this convention - the origin is in the top left hand corner and Y
displacements are measured downwards (graphic systems for mini and
main-frame computers stick to the conventional Cartesian system
however) •

Finally, it should be noted that Honey.Aid allows high resolution
graphics to be used alongside the synthesizer with no ill effects
on either. With skill and patience, the all singing AND all
dancing picture show is yours for the programing.

COLOUR or COLOR (abbreviation C <SHIFT> 0)

Thi s command changes both the color of the normal text screens
background (paper) and of the border. The first parameter
specifies the screen background color and the second (optional)
parameter controls the border color, e.g.

COLOR 0,1

would change the screen background to black (0) and the border to
white (1).

COLOR 15

would change the screen background to grey 3 and leave the border
color unchanged.

A2-10

HIRES (H <SHIFT> I)

Any graphics work that we wish to do using Honey.Aid's advanced
commands, must be done in the high resolution screen area. This is
an area '320' points across and '200' points up. The HIRES command
switches the d i sp 1 ay from the normal text screen to the
high-resolution screen, optionally setting/changing the drawing
(ink) color, setting/changing the background (paper) and clearing
screen or not.

Where i
P

and c

so:

HIRES i,p,c

is the ink color, the color we will draw in,
is the background or paper color
indicates whether or not we clear the HIRES screen. A
value of '1' will clear the HIRES screen and a zero will
retain the previous picture.

HIRES 2,8,1

wi 11 allow us to draw in red on an orange background, with the
screen cleared of any previous drawings.

All arguments are optional so:

HIRES

HIRES 6

switches on the high-resolution screen using the same
colors as before, retaining previous picture.

\
would change the 'ink' color to blue, leaving the
'paper' color unchanged and retaining previous picture.

One of the oddities of the C-64 is that the colors of the high
resolution screen can only be changed in chunks which correspond to
the character spaces of the normal text. Thus the pixels belonging
to the 8 by 8 square of pixels which make up a single character
space have their own paper and ink colors. If HIRES is called with
the 'c' value set to 1 then all of the chunks will be initialized
to the same 'paper' and 'ink' colors. If HIRES is then called with
a different set of colors and 'c' value set to zero, or omitted,
then no immedi ate changes wi 11 be observed. However, any future
plotting which is carried out will change the two colors of the
character space in which the plotting takes place· all 64 pixels.
even if only a single pixel is plotted. This can produce rather
unexpected results but used with care can produce the effect of a
full sixteen color high resolution graphical display.

A2-11

lINE (lI <SHIFT> N)

The LINE command allows one to draw a line from two sets of
co-ordinates, the first co-ordinates being the start point and the
second set being the end position.

lINE xl,yl,x2,y2,n

'n' controls the type of lINE that we will draw. There are three
possible values of 'n', and these are:

o This tells the computer to draw the line in the background
(paper) color, (or erase the line).

1 Tells the computer to draw the line in the ink color.

2 Tells the computer to draw the line in inverse. The line
will be drawn in the ink color except where it crosses a
line or a point which is already drawn in the ink color.
At this point it will Iswitch off', revert to background
color. At the point of intersection, and all other points
will be drawn in the ink color.

So: lINE 10,20,5,100,1

will draw a line from the eleventh point across (the points are
numbered from zero) and twenty one points up to the sixth point
across and the one-hundreth and first point up, in the ink color.

The value of the co-ordinates must be in the range of '0 ' to '319 1

for 'x' and '0' to '199' for 'Y', any other value will result in an
ILLEGAL QUANTITY ERROR message.

NRM (N <SHIFT> R)

The NRM command returns the computer to normal text use after using
the HIRES graphics area. There are no parameters in this command.

In practice, this command is little used. If a program simply goes
into HIRES mode and draws a pretty picture, without needing to
revert to the text screen during the run, then the NRM command is
unnecessary. Following the successful completion of a graphics run
the program will stop with the graphics picture on display for all
to admire. Pressing any key will automatically switch the screen
to text mode (i.e. will do a NRM). With Honey.Aid, therefore~
there is no need for delay loops at the end of a graphics run to
allow the final picture to be displayed - it is automatic.

A2-12

If a graphics program coll apses during a run with an error, the
screen will automatically revert to the text screen to show the
error message (note that the high resolution picture, as it was at
the time of the error, is still present, and may be examined by
issuing a HIRES command).

The only time that a NRM command is necessary is when the program
is halted with a STOP command. This is deliberate as this is
possibly the effect that is required. If the text screen is
required at STOPs then a NRM command should be placed before the
STOP. If, in error, a STOP command wi thout a NRM command is
encountered, then NRM can be typed in as a Idirectl command.

PLOT (P <SHIFT> L)

The PLOT command allows one to Isetl, Iclearl or linvertl each
individual point on the HIRES screen. The PLOT command (like LINE)
can Iplotl in three forms and these are:

o This PLOTs the point in the background (paper) color, or
if you like, erases the point.

1 This PLOTs the point in the linkl color.

2 PLOTs that point in the inverse. Thus if there was a
point already there, it would then become the same as the
background color. If there wasnlt, then the point would
appear in the I inkl color.

$0: PLOT 53,78,0

sets a point on the fifty-fourth point across (remember the points
are numbered from zero) and the seventy-ninth point up, in the same
color as the background color.

and PLOT 319*RND(1),199*RND(1),1

will plot a random point in the ink color, somewhere on the screen.

The value of co-ordinates must be in the range of 10 1 to 13191 for
IXI and 10 1 to 1199 1 for lyl; any other value will result in an
ILLEGAL QUANTITY ERROR message.

A2-13

3. Synthesizer Commands

The Honey.Aid Synthesizer system has been designed with compactness
and ease of use as prime objectives. For example, suppose that a
middle C crotchet is played with voice 1. Honey.Aid will
I remember I that it has played a middle C crotchet. Now if a
request is made to pl ay the same note with voice 2, it is not
necessary to re-specify either the note, the octave or the duration
as Honey.Aid will automatically use the I remembered I values if new
values are not supplied. In other words the values are 'sticky'.

Honey.Aid has been tuned to international Iconcert pitch ' (A4 = 440
Hz). There are two versions of the C-64 available intended for use
with either NTSC TV standards (USA and others) or wi th PAL TV
(Europe and others). The two versions of the C-64 have slightly
different clock rates to cope with the different TV standards and
consequently these clock rates have an effect on the pitch of the
sound commands.

Honey.Aid automatically provides the appropriate compensation for
this problem and will maintain concert pitch on either of the two
versions of the C-64.

ENVELOPE (E N <SHIFT> V)

Sets the envelope characteristics of a specific voice.

The general form of the command is:

ENVELOPE v,a,d,s,r

where v specifies which of the three voices is to have its envelope
modified: 1, 2,or 3,

a specifies the attack rate
d specifies the decay rate
s specifies the sustain level

and r specifies the release rate

o to 15
o to 15
o to 15
o to 15.

If any of the a, d, s, or r values is not being changed then it is
not necessary to include a value in the list.

A2-14

Examples:

ENVELOPE 1,0,1,8,2 sets the envelope characteristics of
voice 1 to attack 0, decay 2, sustain 8,
release 2.

ENVELOPE 1",,4 changes only the release rate of voice 1
to a value of 4.

ENVELOPE 1,,5 changes the decay rate of voice 1 to a
val ue of 5.

PLAY (P L <SHIFT> A)

This is a very powerful command which is used to playa sequence of
musical notes. A single PLAY command could, in the ultimate, pl ay
a piece of music of 6630 notes!

In its simplest form PLAY takes a single string parameter.
PLAY A$ or PLAY "CDEFG". The string specifies the actual
which are to be PLAYed. If desired, additional strings of
may be specified.

e.g PLAY A$,B$,C$ or PLAY "CDEFG",X$.

e.g.
notes
notes

The largest number of strings that could be specified with one PLAY
command on one double line is 26, and as each of these strings
could specify up to 255 notes, the maximum number of notes is 26 x
255 or 6630. A maximum of four symbols is required to represent a
single note, but in certain circumstances it may be possible to
reduce this to a single symbol.

One symbol is used to specify the voice which is to play the note:
<BLK> (or <CTRL>!) specifying voice 1, <WHT> (or <CTRL>2)
specifying voice 2 and <RED> (or <CTRL>3) specifying voice 3.

A second symbol is used to specify the note to be played: C 0 E F G
A B specify the natural and shifted C 0 F G A are used to specify
the sharps. An R or a hyphen is used to represent a rest. It is
easier to see what is being specified if the C-64 is set to lower
case mode, of course, and the examples below assume the mode.

A third symbol is used to represent the octave, and the
international convention of numbering is used i.e. 0 to 7.

A2-15

Lastly, the fourth symbol is used to represent the duration of the
note. The function keys are used for this purpose: <fl> specifies
a breve, <f3> a semi-breve, <f5> a minim, <f7> a crotchet. The
'shifted' function keys are used to represent the shorter notes:
<f2> a quaver, <f4> a semi-quaver, <f6> a demi-semi-quaver and <f8>
a hemi-demi-semi-quaver is!

Example:

PLAY "<BLK>C4<f7>" voice 1 to playa middle C crotchet

Any of the four symbols may be omitted (but not all, of course).
If the voice symbol is omitted then the same voice as was last
specified will be used. Similarly omitting the note, octave or
duration symbol will result in the last specified note, octave or
duration being used. To make this 'sticky' value process work, it
is essential to remember that the order of specifications must be
in the sequence: voice followed by note followed by octave followed
by duration. If Honey.Aid finds a specifier out of sequence it
will assume that this is the start of a new note. Playing chords
is extremely easy. If Honey.Aid is told to playa note with a
particular voice it will do so immediately if the voice is
currently inactive or if it is in its release phase. If the voice
is active in the attack, decay or sustain phase then Honey.Aid will
wait. Thus

PLAY "<BLK >C4<F7><WHT><REO>3"

will playa chord - voice 1 will start to playa middle C crotchet
and then Honey.Aid will find the voice 2 note, and since voice 2 is
inactive it will be started immediately playing a middle C
crotchet. The delay between the two starts is, to all intents and
purposes imperceptible. Similarly, voice 3 will start playing a C
below middle C crotchet without noticeable delay.

PLAY "<BLK>C4<F5><WHT>E<F7><REO>G<WHT><REO>"

Would playa middle C semi-breve in synchronism with two chords
consisting of voice 2 playing E and voice 3 playing G crotchets.
They should all finish together.

A2-16

Off-beat effects with multiple voices are also simple to achieve by
using 'rests' to delay the start of a voice, thus:

PLAY II <BLK >C4<F3><WHT>-<F2><RED>- <F7><WHT>E <F 3><RED>"

Produces a sort of rippled chord.

Note that PLAY may be interrupted by the STOP key between notes.

PULSE (P <SHIFT> U)

This sets the pulse width of a specific voice to a given value.
The effect of this will, of course, only be observed if the voice
is using the pulse wave form.

The form of the command is:

PULSE v,w

Where 'v' specifies the voice (1,2 or 3) and 'Wi specifies the
pulse width (valid values are 0 to 4095)

SOUND (S <SHIFT> 0)

May be used to playa single note

The form of the command is:

SOUND v,o,n,d

where v speclfies the voice 1 to 3
0 specifi es the octave 0 to 7
n specifi es the note 0 to 12

and d specifi es the duration 1 to 8 .
The voice and the octave specifications are the same as for the
PLAY command. A zero value for the note creates a 'rest'. The
other values 1 to 12 correspond to C, C#, D, D#, E, F, F#, G, G#,
A, A# and B respectively.

The duration values 8 to 1 correspond to breve, semi-breve, minim,
crotchet, quaver, etc.

A2-17

As with the ENVELOPE command, it is only necessary to incl ude
values for those parts which need to be changed, in fact no values
at all is perfectly acceptable, thus:

SOUND 1,4,1,6
SOUND

would cause VOICE 1 to play two middle C crotchets.

The only advantage that SOUND has over PLAY is that parameters may
be variables or expressions (the characters within the PLAY string
are simply literals, of course). Thus SOUND could be used to issue
a note whose pitch varied with the proximity of a missile from itls
target, for instance, the octave and the note being computed from
the distance.

TEMPO (T E <SHIFT> M)

Sets the tempo of all voices to the specified number of crotchets
per minute.

The general form of the command is:

TEMPO t

Where It I may be any positive val ue greater than or equal to 1.
TEMPO with no It I value specified will default to the standard
March tempo of 120 crotchets per minute. Be warned, however. a
tempo value of 1 means one crotchet per minute which means a very
long crotchet indeed. Although Honey.Aid allows you to interrupt
the music with the STOP key, the interruption takes place between
notes. With a tempo setting of 1, you could have to wait four
minutes for a breve to finish before Honey.Aid allowed your
interruption.

VOL (V <SHIFT> 0)

Sets the volume for all voices to the specified value (0 to 15)

The general form of this command is:

VOL v

where v may be any value between 0 (silent) and 15 (maximum). VOL
with no IVI specified defaults to 15.

A2-18

WAVE (W A <SHIFT> V)

Sets the specified voice to a wave form.

The general form of the command is:

WAVE v,W

'v' specifies the voice and 'w' the waveform. 'w' lies in the
ranae of 0 to 8. A value of 0 disconnects the voice from all
oscillators. Values of 1, 2, 4 or 8 sets the voice to the
triangular, sawtooth, pulse or random (white noise) wave form
respectively. It is possible (but not always very profitable) to
connect the voices to two or even three wave forms, thus a value of
3(1+2) connects to the triangular and sawtooth wave forms (witt,
little result). Note that since the wave value may not exceed 8,
the random wave form cannot be mixed with any of the others. This
is deliberate, as such combinations are likely to cause the SID
chip to lock up solid.

There are no reasons why all these voices cannot be set to the same
waveform, with or without the same envelope.

Initial Defaults

When Honey.Aid is first loaded or following a STOP/RESTORE panic,
the standard defaults shown below are set up. This enables simple
sounds to be generated without the need for setting up VOL, TEMPO,
WAVE, ENVELOPE etc. If any changes are made to these values they
remain at the new value until changed again.

standard values

VOL initially set to 15
TEMPO initially set to 120 (120 crotchets per minute)

VOICEI initially set to wave form 1 (triangular)
VOICE2 initially set to wave form 4 (pulse) with

a pulse width of 255 (6.225%)
VOICE3 initially s~t to wave form 8 (random noise)

OCTAVE initially set to 4
NOTE initially set to C natural, hence middle C is

the default octave/note combination.

DURATION initially set to 4 (semi-quaver)

A2-19

APPENDIX

3

Table 1 - Commodore 64 Character Set

Table 2 - Hex to Decimal Conversion

Table 3 - ASCII Character Set

Table 4 - ASCII and CHR$ Codes

Table 5 - C-64 Character Symbol Representation Convention

Table 6 - VIC II (Video Interface Controller) Registers

Table 7 - SID (Sound Interface Device) Registers

A3-1

TABLE 1 64 Character Set

poke setl set2 poke setl set2 poke set1 set2 poke set1 set2

0 @ 33 I 65 [IJ A 97 IJ
1 A 8 34 ..

66 [l] B 98 ..
2 B b 35 # 67 E3 C 99 0
3 C c 36 $ 68 EJ 0 100 D
4 0 d 37 % 59' Ej E 101 0
5 E e 38 & 70 bl F 102 II
6 F f 39 · 71 [J G 103 0
7 G g 40 (72 []) H 104 IiiiiiI
8 H h 41) 73 5] t 105 ~ ~
9 I I 42 · 74 [9 J 106 [)
10 J j 43 + 75 eJ K 107 [8
11 K k 44 76 0 L 108 C. · 12 L , 45 - n lSI M 109 [9
13 M m 46 78 IZl N 110 Ell
14 N n 47 I 79 D 0 111 ~
15 0 0 48 0 80 0 P 112 [j3
16 P P 49 1 81 • Q 113 E9
17 Q q 50 2 82 bJ R 114 Ei3
18 R

51 3 83 [!) S 115 BJ r

19 S 52 4 84 [] T 116 IJ s
20 T t

53 5 85 U3 U 117 IJ
21 U 54 6 86 ~ V 118 [J

u

22 V 55 7 87 C W 119 Ll v
1±1 23 W 56 8 88 X 120 ~ w

24 X
57 9 89 [] Y 121 ~ x

fIl 25 Y 58 : 90 Z 122 0 0 y
EB 26 Z 59 91 123 .:J z ·

27 [60 < 92 IJ 124 ~
28 £ 61 = 93 CD 125 EJ
29] 62 > 94 tm 81 126 ~
30 t 63 ? 95 r!I ~ 127 ~
31 +- 64 E3 96 <space>

32 <space>

Codes from 128 to 255 are reversed images of codes 0-127.

A3-2

TABLE 2

Hexadecimal to Decimal
Conversion Chart

HEX 0 1 2 3 4 5 6 7 8 9 ABC D E F

o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

TABLE 3

ASCII CHARACTER SET

HEX MSB 0 1 2 3 4 5 6 7
LSB BIN 000 001 010 011 100 101 110 111

a 0000 NUL OLE SPACE a @ p ,
p

1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 .. 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V f v
7 0111 BEL ETB I 7 G W 9 w
8 1000 BS CAN (8 H X h x
9 1001 HT EM) 9 I Y i Y
A 1010 LF SUB * : J Z j z
B 1011 VT ESC + . K [k { ,
C 1100 FF FS , < L \ 1 I
D 1101 CR GS - = M] m }
E 1110 SO RS > N ...

n -.
F 1111 SI US / ? 0 - 0 DEL

A3-3

TABLE 4

PRINTS CHR$ PRINTS CHR$ PRINT$ CHR$ PRINTS CHR$

0 • 46 , 92 f4 138
1 I 47] 93 f6 139
2 0 48 t 94 f8 140
3 1 49 4- 95 SHIFT<RET'N)141

.4 2 50 8 96 <UCASE> 142
<WHT> 5 3 51 00 97 143

6 4 52 [IJ 98 <BLK> 144
7 5 53 B 99 <UCRSR> 145

<NOCBM> 8 6 54 B 100 <RVSOFF> 146
<OKCBM) 9 7 55 EI 101 <CLR> 147

10 8 56 bJ 102 <INST> 148
11 9 57 [] 103 <BRWN> 149
12 · 58 CD 104 <LTRED> 150 · <RET'N> 13 · 59 @ 105 <GRYl> 151 ,

<LCASE> 14 < 60 (9 106 <GRY2> 152
15 z 61 El 107 <LTGRN> 153
16 > 62 0 108 <LTBLU> 154

<OCRSR> 17 ? 63 CSl 109 <GRY3> 155
<RVSON> 18 @ 64 IZJ 110 <PUR> 156
<HOtlf> 19 A 65 0 111 <LCRSR> 157
 20 B 66 0 112 <YEL> 158

21 C 67 III 113 <CYN> 159
22 0 68 Q 114 <SPACE> 160
23 E 69 [!J 115 IJ 161
24 F 70 DJ 116 ~ 162
25 G 71 [tJ 117 0 163
26 H 72 ~ 118 0 164
27 I 73 C 119 0 165

<RED> 28 J 74 I±l 120 II 166
<RCRSR> 29 K 75 rn 121 0 167
<GRN> 30 L 76 III 122 ~ 168
<BLU> 31 M 77 83 123 ~ 169
<SPACE> 32 N 78 11 124 [] 170

! 33 0 79 rn 125 [8 171
.1 34 P 80 Iffi 126 [Il 172 , 35 Q 81 ~ 127 lS 173
$ 36 R 82 128 @ 174
% 37 S 83 <ORNG> 129 Q 175
& 38 T 84 130 G3 176 • 39 U 85 131 E9 177
(40 V 86 132 Ei3 178
) 41 W 87 fl 133 HJ 179
* 42 X 88 f3 134 IJ 180
+ 43 Y 89 f5 135 IJ 181
t 44 Z 90 f7 136 [] 182 - 45 [91 f2 137 0 183

A3-4

PRINTS

~
~

CODES
CODES
CODES

CHR$

184
185

PRINTS

0
.:1

192-223
224-254
255

CHR$

186
187

PRINTS

~
e::J

SAME AS
SAME AS
SAME AS

A3-5

CHR$

188
189

PRINTS

~
~

96-127
160-190
126

CHR$

190
191

MEANING

Cursor up
Cursor down

TAB l E 5

CHARACTER SET CONVENTION

(OBTAINED BY)

«SHIFT><CRSR ft »
«CRSR .u. »

Cursor right «CRSR ::::}»
Cursor left «SHIFT><CRSR <= »
Clear screen «SHIFT><CLR/HOME»
Home «CLR/HOME»
Reverse off «CTRL>O)
Reverse on (<CTRL>9)
Upper case «SHIFT><CBM»
Lower case «CiRL>N)or<SHIFT>

<CBM»
CBM disable «CTRL>H)
CBM enable «CmL>I)

Black «CTRl><l»
White «CTRl><2»
Red «CTRL><3>)
Cyan «CTRL><4»
Purple «CTRL><S»
Green «CTRL><6»
Blue «CTRL><7»
Yellow «CTRL><8>)
Orange «CBM><l>)
Brown «CBM><2»
Light red (<CBM><3»
Grey 1 «CBM><4»
Grey 2 «CBM><5>)
Light green «CBM><6»
Light blue «CBM><7>)
Grey 3 «CBM><8>)

A3-6

CONVENTION

<UCRSR>
<DCRSR>
<RCRSR>
<LCRSR>
<CLR>
<HOME>
<RVS OFF>
<RVS ON>
<UCASE>
<LCASE>

<NOCBM>
<OCCBM>

<BLK>
<WHT>
<RED>
<CYN>
<PUR>
<GRN>
<BLU>
<YEL>
<ORNG>
<BRWN>
<LTRED>
<GRY1>
<GRY2>
<LTGRN>
<LTBLU>
<GRY3>

VIC II (Video Interface Controller) Registers

Address
No Hex Decimal Bits Description

--
0 0000 53248 Sprite 0 X position
1 0001 53249 Sprite 0 Y position
2 0002 53250 Sprite 1 X position
3 0003 53251 Sprite 1 Y positi on
4 0004 53252 Sprite 2 X position
5 0005 53253 Sprite 2 Y position
6 0006 53254 Sprite 3 X position
7 0007 53255 Sprite 3 Y position
8 0008 53256 Sprite 4 X position
9 0009 53257 Sprite 4 Y position

10 DODA 53258 Sprite 5 X position
11 DOOB 53259 Sprite 5 Y position
12 DOOC 53260 Sprite 6 X position
13 0000 53261 Sprite 6 Y position
14 DOOE 53262 Sprite 7 X position
15 DOOF 53263 Sprite 7 Y position
16 0010 53264 Sprites 0-7 X position (ms bit of

X coordinate)
17 0011 53265 VIC Control Register:

7 Raster compare (ms bit)
6 Extended colour text mode, o :: disabled,

1 :: enabled
5 Bit -map mode, 0 :: disabled, 1 :: enabled
4 Blank screen to border colour,

o :: blanked, 1 :: norma 1
3 Display 24/25 row text, 0 :: 24 rows,

1 :: 25 rows
2-0 Smooth scroll to Y dot position

18 0012 53266 Read/write raster value
19 0013 53267 Light pen X position
20 0014 53268 Light pen Y position
21 0015 53269 Sprite display enable/disable

7-0 o :: disable, 1 :: enable
22 0016 53270 VIC Control Register

7-6 Unused
5 Reset bit, 0 :: normal status,

1 :: stopped
4 Multi-colour mode, 0 :: disabled,

1 :: enabled
3 Display 38/40 column text,

o :: 38 columns, 1 :: 40 columns
2-0 Smooth scroll to X dot position

A3-7

Address
k) Hex Decimal Bits Description

23 0017 53271 Sprite vertical expansion
7-0 o = normal, 1 : expanded

24 0018 53272 VIC Memory Control Register
7-4 Video matrix base address
3-0 Character dot data base address

25 0019 53273 VIC Interrupt Flag Register
7 VIC interrupt flag, 0 : no interrupt,

1 '"' interrupt
6-4 Unused

3 Light-pen interrupt, 0 '"' none,
1 = interrupt detected

2 Sprite to sprite collision, a : none,
1 : collision detected

1 Sprite to background collision,
o : none, 1 : collision detected

0 Raster compare, 0 '"' not matched,
1 : matched

26 D01A 53274 VIC Interrupt Enable Register
7 1 = set interrupt enable for ••

6-4 Unused
3 light-pen, a '"' disable, 1 & enable
2 sprite to sprite collision, 0 & disable,

1 = enable
1 sprite to background collision,

o = disable, 1 = enable
0 raster match with 0012, 0 : disable,

1 = enable
27 001B 53275 Sprite to background priority

7-0 o = background, 1 : sprite ,3 DOlC 53276 Sprite multi-colour mode
7-0 o = standard mode, 1 '"' M.C.M.

29 0010 53277 Sprite Y expansion
7-0 o = normal, 1 = expanded

~'" DOlE 53278 Sprite to sprite collision detect jJ

7-0 o = do not detect, 1 = detect
~. DOlF 53279 Sprite to background collision " ~'-

detect
7-0 o = do not detect, 1 = detect

32 0020 53280 Border colour
23 0021 53281 Background colour (text)
~ , 0022 53282 Background colour 1 ,J";

35 0023 53283 Background colour 2
::5 0024 53284 Background colour 3

A3-8

--- -----------------------------

Address
No Hex Decimal Bits Description

37 0025 53285 Sprite multi-colour register 0
38 0026 53286 Sprite multi-colour register 1
39 0027 53287 Sprite 0 colour
40 0028 53288 Sprite 1 colour
41 0029 53289 Sprite 2 colour
42 002A 53290 Sprite 3 colour
43 002B 53291 Sprite 4 colour
44 002C 53292 Sprite 5 colour
45 0020 53293 Sprite 6 colour
46 002E 53294 Sprite 7 colour

A3-9

SID (Sound Interface Device) Registers

Voice 1 Registers

Address
No Hex Deci ma 1 Bits Description

0 D~OO 54272 Frequency control - low byte
1 0401 54273 Frequency control - high byte
2 0402 54274 Pulse waveform width - low byte
3 0403 54275 Pulse waveform width - high byte

7-4 Unused
3-0 Bits 11-8 of waveform width

4 0404 54276 Voice Control Register
7 Random noise waveform, 0 = not selected,

1 = selected
6 Pulse noise waveform, 0 = not selected,

1 = selected
5 Sawtooth noise waveform,

o = not selected, 1 = selected
4 Triangle noise waveform

o = not selected, 1 = selected
3 Test bit for oscillator, 0 = normal,

1 = disable
2 Ring modulate with oscillator 3

o = don't modulate, 1 = do
1 Synchronise with oscillator 3

o = don't synchronise, 1 = do
0 Gate bit, 0 = start release,

1 = start attack
5 0405 54277 Envelope Attack/Decay control

7-4 Attack duration
3-0 Decay duration

6 0406 54278 Envelope Sustain/Release control
7-4 Sustain level
3-0 Release duration

Voice 2 Registers

7 0407 54279 Frequency control - low byte
8 0408 54280 Frequency control - high byte
9 0409 54281 Pulse waveform width - low byte

10 040A 54282 Pulse waveform width - high byte
7-4 U nu sed
3-0 Bits 11-8 of waveform width

A3-10

Address
No Hex Deci rna 1 Bits Description

11 D40B 54283 Voice Control Register
7 Random noise waveform, 0 z not selected,

1 z selecte d
6 Pulse noise waveform, 0 a not selected,

1 z selected
5 Sawtooth noise waveform,

o = not selected, 1 z selected
4 Triangle noise waveform

o z not selected, 1 z selected
3 Test bit for oscillator, 0 z normal,

1 = disable
2 Ring modulate with oscillator 1

o = don't modulate, 1 z do
1 Synchronise with oscillator 1

o = don't synchronise, 1 z do
0 Gate bit, 0 z start release

1 = start attack
12 D40C 54284 Envelope Attack/Decay control

7-4 Attack duration
3-0 Decay duration

13 0400 54285 Envelope Sustain/Release control
7-4 Sustain level
3-0 Release duration

Voice 3 Registers

14 040E 54286 Frequency control - low byte
15 040F 54287 Frequency control - high byte
16 0410 54288 Pulse waveform width - low byte
17 0411 54289 Pulse waveform width - high byte

7-4 Unused
3-0 Bits 11-8 of waveform width

A3-11

Address
No Hex Decimal Bits Description

18 0412 54290 Voice Control Register
7 Random noise waveform, o = not selected,

1 = selected
6 Pulse noise waveform, 0 = not selected,

1 = selected
5 Sawtooth noise waveform,

o = not selected, 1 = selected
4 Triangle noise waveform,

o = not selected, 1 = selected
3 Test bit for oscillator, 0 = normal,

1 = disable
2 Ring modulate with oscillator 2

o = don't modulate, 1 = do
1 Synchronise with oscillator 2

o = don't synchronise, 1 = do
0 Gate bit, 0 = start release

1 = start attack
19 0413 54291 Envelope Attack/Decay control

7-4 Attack duration
3-0 Decay duration

20 0414 54292 Envelope Sustain/Release control
7-4 Sustain level
3-0 Release duration

SID General Registers

21 D415 54293 Filter cutoff frequency low byte
7-3 Unused
2-0 Used

22 0416 54294 Filter cutoff frequency high byte
23 0417 54295 Filter resonance control

7-4 Resonance level
3 External input, o = don't filter,

1 = fi lter
2 Voice 3 output, o = don't filter,

1 = filter
1 Voice 2 output, o = don't filter,

1 = fi lter
0 Voice 1 output, o = don't filter,

1 = filter

A3-12

Address
No Hex Decimal Bits Description

23 0418 54296 Filter mode/Volume
7 Cut-off voice 3, 0 = normal, 1 = cut-off
6 Select high-pass mode, o = don't select,

1 = select
5 Select band-pass mode, 0 = don't select,

1 = select
4 Select low-pass mode, 0 = don't select,

1 = select
3-0 Output volume

25 0419 54297 Analogue to digital coversion 1
(game paddle 1)

26 D41A 54298 Analogue to digital coversion 2
(game paddle 2)

27 D41B 54299 Oscillator 3 Random Number Generator
Output

28 D41C 54300 Envelope Generator 3 Output

Note: Registers 0 to 24 (54272 to 54296, hex 0400 to 0418) are
write-only, 25 to 28 (54297 to 54300, hex 0419 to 041C) are
read-only.

A3-13

INDEX
(H)=Honey.Aid

A
ABS function 10-6
Accumulator 10-13
Addition 1-5
ADSR 3-12, 9-4, 9-39 et.seq., 9-47
AND operator 2-26, 6-7
APPEND(H) A2-2
Argument 2-2
Arithmetic expressions 1-8
Arrays 5-11, 6-21
ASC function 5-18
ASCII character codes A3
Assembly Language 10-13
ATN(Arc-TaNgent) function 10-5
Attack 3-12
AUTO(H) 3-16, A2-2
Auto-repeat on keys 6-22

B
Balltrap game 7-20 et.seq.
BASIC 1-5

numeric functions 10-1 et.seq
variables 5-11, 6-21

Binary arithmetic Al
Binary Coded Decimal Al
Bit 6-2
Bitwise operation 6-9
Blockade game 7-27 et.seq.
Breakout game 7-1 et.seq.
BRK(H) A2-2
Bug 2-18
Buildasound 9-8, 9-32
Byte 1-8, 6-2

C
Cassette Buffer 10-14
CBM(H) A2-3
CHANGE(H) 3-20, A2-2
CHR$ codes 6-21, A3
CHR$ function 5-17
CIRCLES 10-1
CLR statement 1-7
CLR/HOME key 1-4
Clock 5-1, 6-15
Colon (:) 2-16

I-I

Color
adjustment 1-4

CHR$ codes A3
(H) A2-10
keys 1-4, 3-14
PEEK and POKE 7-2, 7-10
RAM 6-14,7-2
screen and border 5-6 et.seq., 7-1 et.seq.

Columns on screen(40) 4-9
Commodore key 1-3
Comparisons «,>,>=,<=,<» 2-13,2-14,2-25
Composatune 9-1 et.seq
Control variable 2-9
Concatenation of strings 5-3
Conditional statements 2-4
CONT command 7-8
CTRL key 1-4,1-10
COSine function 10-2
CRSR (CuRSoR) keys 1-4,2-27
Correcting errors 1-13
Cursor 1-2,1-4,2-27

D
Data pointer 4-3
DATA statement 4-1
Decay 3-12
Defaults(H) A2-19
DEFine statement 10-7
Delay loop 4-17, 5-9
DELETE(H) 6-26, 6-33, A2-5
DELete key 1-2, 1-15
Delimiters(H) 3-19, A2-4
DIMension statement 5-12
Direct entry commands 1-9
Disk 2-23
Dummy variables 10-8

E
Editing programs 1-2, 1-13, 2-9
END statement 4-20. 6-27, 6-29, 6-30
Envelope 9-39 et.seq., 9-49
ENVELOPE(H) 3-12, A2-14
Error messages 1-2
Etcha-sketcha game 3-5
Expanded Sprites 8-3
EXPonent function 10-6
Exponentiation 10-3, 10-6
Expression, arithmetic 1-8
EXTEND(H) A2-5

F
False 6-8
Filters 9-58
FIND(H) 3-18, A2-5
Flags 4-9
Flow charts 2-5
FN Statement 10-7
FOR statement 2-8
FRE function 6-5
Frequencies of notes
Function key codes
Functions 10-1,

9-5, 9-36
6-21

10-7

G
Gate bit 9-41
GET statement 3-6
GOSUB stack 4-10
GOSUB statement 4-10
GOTO (GO TO) statement 2-3
Graphics 6-1 et.seq
Graphic symbols A3
Greater than (» 2-8, 2-13

H
Hangman 4-1, 10-10
Hexadecimal A-I
HIRES(H) 3-2, A2-11
HMEM A2-6
Honey.Aid 3-1 et.seq., A2

I
IF •.. THEN statements 2-4,2-13
Immediate mode commands 1-9
Initialising SID 9-3
INPUT statement 1-9,1-13
INST(INSerT) key 1-15
INTeger function 2-2
Interactive 7-1

J
Jiffy clock (TI) 5-1, 5-5, 5-10

K
Keyboard 1-1
Keyboard buffer 5-10,6-5,6-28
Keyboard on/off 6-10
KILL(H) 3-1, A2-7

I-3

L
LEFT$ function 4-5
LEN function 4-7
Less than «) 2-8,2-13
LET statement 1-6
LINE(H) 3-3, A2-12
LIST command 1-10
LMEM(H) A2-7
LOGarithm function 10-6
Logical operation 6-7
Loops 2-3,2-8
Loop variable 2-9
Lower case characters 1-3

M
Machine code 6-12,10-13
Machine language 10-13
Mathematical expressions 1-8
Memory locations

SID 9-1, 9-2
sprites 8-3

Memory mapped screen 7-1
MID$ function 4-5
MOBs 8-1
Module Testing 9-25,9-28
Moveable Object Blocks (MOBs) 8-1
Multi-statement lines 2-16
Music 9-1 et.seq.

N
Names

program 2-23
variable 1-7

Nested subroutines 7-25
NEXT statement 2-8
Note

duration 9-4
frequencies 9-5, 9-36
PEEK values 9-26

Not equal to «» 2-25
NRM(H) 3-5, A2-12
NUMBER(H) 3-17, A2-7
Numeric variables 1-6, 1-7
Nybble 9-44

1-4

o
OLD(H) 3-18,
ON s ta tement
Operators

arithmetic
logical
relational

OR 2-25

p

1-5
2-25, 2-26

2-13, 2-14. 2-25

Parameters 10-8
PEEK function 5-7, 7-10
PEEK value of notes 9-26
Pi 10-3
Pitch 9-2, 9-5, 9-36
Pixel 6-1
PLAY(H) 3-14, A2-15
Play-back of tune 9-30
PLOT(H) 3-2, "A2-13
Pointer

Data 4-3
Top of Memory 10-16

POKE codes A3
POKE statement 5-6, 7-2
PRINT statement 1-2, 1-5, 1-6, 1-10
Program

edit i ng 1-13
line numbering 1-9
loading/saving (disk) 2-23
names xi, 2-23

Prompts 1-13
PULSE(H) A2-17

Q
Quadratic equations 10-7
Quotation marks

as delimiters(H) 3-19, A2-4
printing onto screen 6-27

I-5

R

2-1
2-1, 10-

Radi ans 10-3
RaNDom function
Ran dom num bers
Reaction Tester
READ statement

5-1 et.seq.
4-1

Release 3-12
Relocating character set
REMark statement 2-22
REPEAT(H) A2-9
Repeat on keys 6-22
RESET(H) A2-9
RESTORE statement 4-3
Resonance 9-62
Return key 1-2, 1-5
RETURN statement 4-10
RIGHT$ function 4-5
ROM 4-1
Rows on screen (25)
RND (RaNDom) function
RUN command 1-9
RUN/STOP key 2-3
RVS OFF key 1-4
RVS ON key 1-4

S
SAVE command 2-23

4-9
2-1

6-4

Saving programs (disk) 2-23
Screen border utility 10-16
Screen columns (40) 4-9
Screen POKEing 7-1 et.seq.
Scrollinq screen 1-10
Self modlfying programs 6-27
Separators 1-11,1-12,1-13
SGN function 10-6
Shift key 1-2
SINe function 10-2
Sixteen bit arithmetic 9-2
Sound 9-1 et.seq.,
SOUND(H) 3-10, A2-17
Sound effects 10-10
SID 9-1
Sound Interface Device 9-1
Space symbol 1-11, 4-17
Sprite

graphics 8-1 et.seq.
memory 8-3
multicolor 8-4
precedence 8-19

1-6

SQR(SQuare Root function) 10-2
Stack, GOSUB 4-10
Stave 9-19
STEP 2-9
STOP command 2-4
STOP key 2-3
Storing programs on disk 2-23
String concatenation 4-13, 5-3
Strings 1-8
String variables 1-8
STR$ function 10-9
Subroutines 4-10
Subroutine testing 9-25, 9-28
Subscripted variables(Arrays) 5-11, 5-12
Sustain 3-12
Syntax error 1-2
SYS statement 10-15, A2-7

T
TAB function 4-9
TANqent function 10-4
Tempo 9-22
TEMPO(H) 3-16, A2-18
Testing routines 9-25, 9-28
THEN 2-4,2-6
TI variable 5-1, 5-5, 5-10
Tl$ variable 5-1
Time clock 5-1 et.seq.
Tone color of note 9-4. 9-50
Top of memory pointer 10-16
TO statement 2-9
True 6-8

u
1-3
10-7

Upper/Lower Case mode
User defined functions
User defined graphics 6-1 et.seq

1-7

V
VALue function 10-9
Va ria b 1 es 1-7

array 5-11
control 2-9
dimensions 5-12
dummy 10-8
integer 2-2
loop 2-9
names of 1-7
numeric 1-7, 1-8
string 1-8

VERIFY command 2-24
VIC II chip 6-12
Voices 3-10, 9-1, 9-5
VOL(H) A2-18
Volume 9-3, 9-39

W
WAVE(H) A2-19
Waveforms 9-50
Write only registers 9-14, 9-46

SYMBOLS

(Colon) 2-16
(Exponentiation) 10-3, 10-6

> (Greater than) 2-8, 2-13
< (Less than) 2-8, 2-13
>= (Greater than or equal to) 2-14
<= (Less than or equal to) 2-14
<> (Not equal to) 2-25

(P i) 10-3
(space) 1-11, 4-17

I-8

