LEARN TO CREATE YOUR OWN EXCITING PROGRAMS WITH SOUND, GRAPHICS,
AND EVEN MUSIC. INCLUDES PROGRAMS TO MAKE YOUR COMPUTER EASIER TO USE.

Peter Holmes & Derek Bush

7: :-Im" |l --ﬂl-ua‘_ 4...‘ d. lnh il ma.
“h.."ll*“l-. 1IN | ",As

00 B [[

_--v.l.ll—-y—vr-v'vvv‘- l e ji .

HAYDEN booklsoftware

Fora _Commodore Commodore “0 BASIC

64 with . 3
Commodore 1541 Programming

disk drive. Peter Holmes and Derek Bush

Copyright © 1984 by Peter Holmes and Derek Bush, Commodore 64 is a
registered trademark of Commodore Business Machines, Inc.

LIMITED WARRANTY

This disk and its contents are provided only as a convenience for program or data entry. The
Publisher, Hayden Book Company, warrants to the original purchaser only that the
programs contained in this package are substantially the same as those contained in the
corresponding Hayden book, and that these programs will load and run on the manufacturer’s
standard configuration of the computer equipment listed.

The Publisher makes no other warranty of any kind, express or implied, including but not
limited to warranties of merchantability or fitness for any particular use. Neither the Publisher
nor the author(s) is liable to any purchaser or user for any damage or loss (including loss of
business or profits) caused directly or indirectly by the use of, or inability. to use, this disk,
documentation, or other contents of this package.

The Publisher will replace a defective disk without further charge if it is returned within 10
days of purchase to Hayden Book Company, at the address listed. The returned disk must
beiin its original envelope and must be accompanied by proof of purchase. This warranty

gives you specific legal rights and you may have other rights that vary from state to state.

{3 gl l&.:i'ii’ﬁ:iii Ji i 7 e 3

P PEUESS THE NUMBER" FRG
20 "HONEY.ALD” PR G
10 " HANGMAN” FRG
' SREACTION TESTER” PRG
" CHAR . GEN” FRG

FRG

FRG

" ELOCKADE” FRE
»EPRITE . GEN® FRG
“TARGET” FRG

» COMPOSATUNE” FREG
"GUESEER” FRE

PEIN/HEXADEC TUTD” FRG
S7E BLOCKES FREE.

READY .

Dr. Watson Computer Learning Series
Commodore 64
BASIC Programming
Peter Holmes and Derek Bush

H

HAYDEN BOOK COMPANY
of Hayden Publishing Company, Inc
Hasbrouck Heights, New Jersey

All programs in this book and the accompanying software have been written expressly to
illustrate specific teaching points. They are not warranted as being suitable for any particular
application. Every care has been taken in the writing and presentation of this book but no
responsibility is assumed by the author or publisher for any errors or omissions contained herein.

Commodore 64 is a trademark of Commodore Business Machines, Inc., and Dr. Watson is a
trademark of Glentop Publishers Ltd., both of which are not affiliated with Hayden Book
Company.

Copyright © 1983, 1984 by Glentop Publishers Ltd. All rights reserved. No part of this book may
be reprinted, or reproduced, or utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording, or in any
information storage and retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 PRINTING
84 85 86 87 88 89 90 91 92 YEAR

INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CONTENTS

The Book ¢ The Software ¢ Loading Programs from
Diskette

The Commodore 64 Keyboard ¢ Getting Started in BASIC
* Strings * INPUT ¢ LIST ¢ Prompts Editing

Guess the Number Game ¢ RND ¢ INT ¢ GOTO * Run/Stop
¢ IF...THEN e Stop * Program Structure—Flow Charts *
FOR...NEXT ¢ STEP ¢ Comparisons * Multi-Statement
Lines « REM ¢ Storing a Program ¢ SAVE ¢ VERIFY
Comparing Numbers * OR * AND ¢ Cursor Controls

Honey.Aid * High-Resolution Graphics * HIRES ¢ PLOT ¢
LINE * NRM ¢ Etcha-Sketcha Game * GET * SOUND ¢
ENVELOPE « PLAY * TEMPO ¢ AUTO NUMBER *
OLD « FIND * CHANGE

The Hangman Game * READ...DATA * RESTORE
LEFTS$ « RIGHT$ » MID$ « LEN ¢ Flags « TABS ¢
GOSUB...RETURN ¢ Delays * ON...GOTO

Reaction Tester Game * Clock ¢ String Concatenation TI »
POKE ¢ PEEK * Arrays * DIM * CHR$ * ASC

User-Defined Graphics ¢ CHAR.GEN Utility * Relocating
the Character Set ¢ Protecting the Top of Memory
Keyboard Buffer « Addressing the Keyboard ¢ Logical
Operators * AND ¢ OR ¢ Logical Operators and Eight Bits ¢
VIC II Chip and the 6510 * Function Keys * Two-
Dimensional Arrays * Auto Repeat on All Keys * DELETE
* Self-Modifying Programs ¢ Using CHAR.GEN

Ball Games * Screen POKEing * A Moving Ball « A
Randomly Moving Ball « CONT ¢ A Moveable Bat ¢
Building the Wall » Demolishing the Wall « Balltrap Game
¢ Better Bouncing * Blockade Game

Sprightly Sprites ¢ Sprite Variety * Expanded Sprites *
Multicolor Sprites * SPRITE.GEN Utility ¢ Target Game ¢
Sprite Precedence ¢ Sprite Collisions * Game Algorithm

COMPOSATUNE ¢ Sound and the SID Chip ¢ Playing
with COMPOSATUNE - Initialization ¢ SID POKES ¢
Input of Musical Information * Playback of Tune * Set

CHAPTER 10

CHAPTER 11

APPENDIX 1

APPENDIX 2

APPENDIX 3

Index

Tempo ¢ Module Testing * Transforming Note Frequencies
to Peek Values ¢ Calculating X,Y Coordinates for Note
Plotting * Printing Note on Screen * The Stave ¢
Buildasound ¢ Pitch * Volume ¢ Envelopes * Gate Function ¢
Cycling through ADSR Waveforms ¢ Triangular
Waveforms * Sawtooth Waveforms ¢ Pulse Waveforms ¢
Random Waveform ¢ Filters ¢ Resonance

Sums 'n’ Things * Circles * SQR ¢ SIN * COS * TAN »
ATN « ABS * SGN * LOG * EXP * DEF FN * VAL » STR$
* Improving the Hangman Game * Sound * 6510 Machine
Language * SYS ¢ A Screen Border Machine Code Utility

Solutions to Exercises

BIN/BCD/HEX TUTOR

Honey.Aid Syntax

Table 1 Commodore 64 Character Set

Table 2 Hex to Decimal Conversion

Table 3 ASCII Character Set

Table 4 ASCII and CHR$ Codes

Table 5 Commodore 64 Character Symbol Representation
Convention

Table 6 VIC II (Video Interface Controller) Table

Table 7 SID (Sound Interface Device) Table

INTRODUCTION

The Book

The Commodore 64 is by far the most exciting machine to be introduced for home/office
computer use in recent years. It simply bristles with advanced features. The Commodore 64
BASIC Programming book/software package is carefully designed to enable you to take full
advantage of this amazing machine.

What do you need to know to read and understand this book? Nothing! It is written for the
absolute beginner and the early chapters have been well tried and tested—on beginners.

What will you know when you’ve read the book? Well, that depends on you! If you persevere,
you will have used one of the most advanced home/office microcomputers on the market and
will have come to grips with its most advanced features.

This book will nurse you through the early stages of BASIC and, by Chapter 2, you will be
writing your first program—a number guessing game. Even though this is carefully explained
step by step, your Dr. Watson package includes a safety net—a computer-aided learning pro-
gram. This program complements the book and provides even more explanation of the impor-
tant fundamental commands introduced in the early chapters. As you progress, the pace will
quicken imperceptibly and you should soon become adept at picking up the new commands.
Each of these commands is introduced with an explanation followed by a short teaching program
that shows it in action. Before long it is seen playing its part in one of the many games and
utilities developed in the book.

Three chapters are devoted to the development of utilities that will greatly aid your programming
efforts on the Commodore 64, enabling you to build user-defined characters, sprites, and music
into your own programs.

Along with the book comes “Honey.Aid”, a unique machine-code package that reaches the
parts of your Commodore 64 that other packages don’t! In Chapter 3 you will be given a series
of programs that show Honey.Aid in use and an Appendix explains all of its features in detail.

In this book we have set out to provide what we feel the beginner will need to get started in
BASIC. We hope, though, that those with some experience will not be complacent! The later
chapters of the book explore the inner reaches of the Commodore 64 and will quickly elevate the
beginner to a status other than ‘beginner’.

We have enjoyed the labor, though it has been long and hard and we hope that you, the reader,
will enjoy the task ahead. For some of you it will be for pleasure, and for others it will be for
business. Whatever your motives, may you get as much pleasure from reading it as we’ve had
from writing it.

P. Holmes
D.J. Bush

THE SOFTWARE

Having bought the book and disk, you’re no doubt ready to get going! That’s why the disk is
introduced first: you can just load a program and off you go! On the disk are three different types
of programs: the games that are developed in the book, utility programs that will help you use
your machine (some of which are developed in the book), and a computer-aided learning
program that supplements the explanations in the book and is designed to make sure that you
really do get going in BASIC.

The Games

The games on the disk start off with a particularly simple little screen graphics game and work
up to much more complex programs. This is how you will progress through the book, so that’s
the order of the games. No doubt you’ll find the later ones of most interest and of course you’re
free to play them as you will.

1.

2.

6.

Guess the Number

This is a number guessing game, developed in Chapter Two. The player is given six goes
in which to guess a number.

Hangman

This version of the popular word game uses color and screen display techniques producing
a thoroughly enjoyable, easy-to-understand game.

Reaction Tester

Developed in Chapter Five this program shows the programmer how to use the
Commodore’s built-in clock and how to change the screen colors, resulting in a very
addictive game of speed.

. Breakout

Breakout is the first of the Chapter Seven games. The reader is taken through all the steps
in producing this game. The finished product will provide you not only with a great game,
but also with the ability to write your own video games!

Balltrap

Developed to follow the Breakout game, Balltrap shows you how to use the game-writing
skills you have learned. The object of the game is to bounce the ball from your bat and
into the trap. The time limit is set to two minutes so you’ll have to be quick!

Blockade

The last of the Chapter Seven games is a game for two players. They must try to block
their opponent’s line with their own, taking care not to be blocked themselves.

The Utilities and CAL Program

There is a major utility, Honey.Aid, on the disk. Once this is loaded into your machine and run,
it will make your Commodore 64 into a new machine! It adds 27 new statements to Commodore
BASIC which can be typed in as any other BASIC command. These new features will help
considerably when you are writing programs and will improve the appearance of your programs.

There is also a Computer-Aided Learning (CAL) program that should help you to understand the
program developed in Chapter 2. That is followed by the two utilities.

1. Honey.Aid
A major machine code utility program that tucks itself away in your Commodore 64 and
helps you develop your own programs. In addition, it provides sound and graphics
commands that are easy to use and make learning BASIC much more fun,

2. GUESSER
A major Computer-Aided Learning program (CAL) that further explains the BASIC
commands used in the number guessing game in Chapter 2.

3. CHAR.GEN
A complete character generator program that assists in the designing of a character. It then
prepares this for storage in your own program and then automatically eliminates those
parts of the program that are no longer needed. The generation of this program is fully
described in Chapter 6.

4. SPRITE.GEN
A complete sprite generator program that enables you to design sprites of all possible
configurations. As with CHAR.GEN, the finished product can be stored in your own
program and the surplus parts can be eliminated.

5. COMPOSATUNE
Developed in Chapter Nine, this program allows the user to input a tune and then play it
back. The user is also able to change the tune, the frequency, pitch, decay, sustain, etc.

Loading Programs from Diskette

First of all, you should make sure that your computer and diskette drive are connected
properly. When you want to load a particular program, you should type in the full name of the
program, for example,

LOAD“HONEY.AID”, 8
and press RETURN. The diskette drive light will go on and the message

SEARCHING FOR HONEY.AID
LOADING

READY.
will appear on the screen. The program will then be ready to be listed or run,

CHAPTER

PART ONE

The Commodore Keyboard

he Commodore 64 computer has a full keyboard which offers

all the facilities of a typewriter along with many other

features that only the C-64 has. It is the typewriter style

keys that will occupy the first few chapters of this book.
Depressing a key with a single letter or number on it will print
that letter (or number) onto the screen. Some signs such as the
percentage sign above the number 5 will only be printed onto the
screen when the shift key is held down at the same time as the key
is depressed. Other keys have very special computer functions such
as keys on the right and left-hand side of the keyboard marked

CLR JINST
nome]| DEL
CTAL RESTORE
A e
1 Lt
cRSk Jchsk

Just what these do you'll see as we go along. They'1l be explained
when we need them,

1-1

When first turned on, the Commodore 64 will display the message:

% COMMODORE 64 BASIC V2 *
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY

FIGURE 1.1

This tells you that all is okay and that there's 38911 'bytes' or
character spaces for you to fill up with a program!

Below the READY sign is a flashing character or 'cursor' which is
simply reporting whereabouts it is, just sitting waiting for the
next entry. Try out the machine by typing a letter 'P'. If you
make a mistake or just to try things out, press the key.
This should delete the 'P' or other letter and put the cursor back
where it was. Armed with the power to enter and delete characters,
now try to enter P,R,I,N,T and then press the RETURN key; ie:

PRINT <RETURN>
On pressing <RETURN> the READY sign will step down two 1lines,
leaving spaces between its two positions on the screen. Try
another exercise, type in:

START <RETURN>

This time, the Commodore 64 will report:

?SYNTAX ERROR

On this occasion, it's really saying

"1 DON'T UNDERSTAND"
It says this because 'START' is not a part of the BASIC language

that the Commodore 64 understands. Don't let this worry you when
it happens, just keep trying until the C-64 accepts what you say.

1-2

One of the beauties of the Commodore 64 is the simplicity of its
keyboard. Entering anything is just 1ike typing. So if you need
to enter an instruction Tike 'PRINT' you go ahead and type it using
the "P","R","I","N" and "T" keys of the keyboard. The C-64 does
however have one or two special keyboard features - these involve
the use of the CONTROL, SHIFT and the COMMODORE @& keys. Using a
combination of these keys the programer can produce various
effects.

Let's illustrate this with some examples. The first effect is
obtained by pressing the SHIFT key and the GZ(<Commodore key>).
What this does is to change the text from upper case to lower case
or vice-versa if it is already in lower case.

Assuming you have just switched your machine on and have got the
message:

%% COMMODORE 64 BASIC V2 **
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

FIGURE 1.2a

Then, holding down the 'SHIFT' key and pressing the Commodore key
(bottom left-hand of the keyboard) will yield the display

**kk commodore 64 basic v2 **x*
64k ram system 38911 basic bytes free
ready.

FIGURE 1.2b

Most beginners prefer to work in the CAPITALS mode so, to change
back simply hold down SHIFT once more and then press the Commodore
key.

Notice that the asterisks and the numbers have not changed.
Asterisks and numbers come in only one type; you don't get capital
numbers!

By now you have probably noticed that the keys of your Commodore 64
have more than one symbol displayed on them. For instance the 'S'
key has also a small corner and a heart drawn on its front side.
The character on the left (i.e the corner piece) is obtained by
pressing both the Commodore key and the appropriate key at the same
time. The character on the right (in this example a heart) is
obtained by pressing both the 'SHIFT' key and the appropriate key
(in this example being 'S'). One thing that must be noted is that
if you are in small letters mode then 'SHIFT' and a letter will
produce a capital letter, but if you then press 'SHIFT' and '¢' the

1-3

display changes to capitals and the character changes. Try it and
see.

As well as having other characters on them, the number keys also
have colors written on them. These range from black (key 1) to
yellow (key 8). The nine and zero key have other functions which
will be demonstrated in a moment. The color is changed by holding
down the 'CTRL' key and then pressing the number key with the
required color. So for example if we wished to change the color to
green then we would press down the 'CTRL' key and press '6'. Now
any key we press will come out green. To change simply repeat the
procedure with a different key.

As was mentioned above, the '9' and '0' keys have functions on them
other than colors. The '9' key has something called 'RVS ON' and
the '0' key has 'RVS OFF'. RVS ON means switch on reverse
characters. These characters are exactly what they sound like, a
character that is created by coloring the area around - opposed to
a normal character that 1is created by coloring the character
itself. Reverse characters are obtained by pressing 'CTRL' and
'9'. From that point on all characters will be in reverse, until
we press ‘CTRL' and '0', which switches off the reverse characters
features returning us to normality. Reverse characters can look
quite impressive on the screen and their color can be varied,
depending on the color of the cursor.

Two other items on the keyboard that need mentioning are 'CRSR' and
'CLR/HOME'. The 'CLR/HOME' when pressed will send the cursor to
the top of the screen, where it will flicker in the left corner.
But if we press 'SHIFT' and 'CLR/HOME' the screen will be cleared
completely and the cursor will appear in the top left-hand corner.
Thus if we have a lot of junk on the screen it can be obliterated
by pressing both 'SHIFT' and 'CLR/HOME'.

The 'CRSR' (short for CuRSoR) keys control the position of the
cursor. There are two 'CRSR' keys, one with arrows pointing up and
down and the other pointing left and right. To get the cursor to
move down press the up/down key. Now hold down ‘'SHIFT' and press
the same key and this time the cursor will move up. Left and right
are controlled in the same way. Press the left/right key on its
own and the cursor will move right, hold down ‘'SHIFT' and the
cursor will move left.

It is important to note that moving the cursor over anything typed
on the screen will not change the typing at all.

PART TWO

GETTING STARTED IN BASIC

You've probably used a calculator quite often and most of these are
now pretty clever, doing 'sums' and even working out complicated
routines that are actually built into the machine. Your C-64
computer is just as clever but can do much more; so much so that
if you ask it to do a sum you will have to tell it what to do with
the answer. Unlike the earlier calculators that could only give
the answer on a screen, the C-64 could give a screen output - it
could print it out on your printer, store the data on a floppy disk
or even output it to some other device! However. we will
concentrate on screen output.

To tell the machine to print something onto the screen the command
'PRINT' is used. Try this by typing in:

PRINT 4 and then press the <RETURN> key.

The C-64 should respond by doing what you told it and displaying a
'4' on the screen. That didn't tax the computer too much, so now
try:

PRINT 4+4 and then press the <RETURN> key.

The 64 should respond with the answer 8. This command 'PRINT' is
part of the language that your computer speaks, known as BASIC. To
those who Tlike jargon, BASIC stands for ‘'Beginners All-purpose
Symbolic Instruction Code'.

Unlike the calculator, however, the computer can handle not just
numbers (numeric characters) but also letters and, therefore, words
(alphanumeric characters). Try this with :

PRINT "FRED"

This time the 64 should print your name. In the unlikely event
that your name is not FRED you can try substituting your own name
between the quotation marks. One important thing to notice is that
lines entered may be much longer than this one and so the machine
needs to be told when you've finished typing. This you do by
pressing the 'RETURN' key. .

Another thing to notice here is that the alphanumeric entry, i.e.
letters and numbers, MUST be included in quotation marks, as BASIC
handles alphanumeric and numeric characters differently. * In the
example given, "FRED" (or your name) is known as a ‘'string' as it
is really just a string of individual letters strung together.

1-5

So far we have not expected the 64 to actually 'remember' anything
- now to do so! Type in:

LET X=4 <RETURN>

So far the machine appears not to have done very much; so just to
check that it has done something, tell it to PRINT onto the screen
by means of:

PRINT X <RETURN>

If the 64 remembered it should have told you that X=4 by printing
the '4' onto the screen, as the command "PRINT" tells it to 'PRINT'
on the screen!

When entering this command, the X was not typed between quotation
marks. Had it been typed in so: PRINT "X", then the machine would
have responded by writing what it saw between the quotes i.e. the
letter X. Just try it to make sure! In the earlier case, the
command PRINT X told the computer to print 'the value of the
variable known as X', which was 4.

In fact, what really happened was that typing LET X=4 told the
computer to create a variable called X and store the value 4 in it.
Going through this in stages, the computer does the following:

(i) it reads 'LET X' and translates this into "create a space in
memory and call this X" - see FIGURE 1.3.

FIGURE 1.3.

(ii) next it reads the '=4' part and translates this into "and
store the value 4 in X" - see FIGURE 1.4.

A

FIGURE 1.4.

Some BASICs insist that you use the keyword 'LET', as in LET X=4.
64 BASIC allows you to omit the 'LET' and normally we will do so,
although use of LET is optional and if you wish to use it. please
feel free.

The letter 'X' is an example of a 'numeric variable name'. 64
BASIC allows numeric variable names to be one or more letters long,
but only the first two characters are actually recognized. Thus
the names JOHN and JOAN would both be recognized as JO by the 64 -
could be awkward! To avoid the problem of the computer potentially
recognising two variable names as the same, it is best to stick to
using two letters at most.

The 64 actually recognizes the following types of numeric variable:

A single letter
A pair of letters
A single letter followed by a digit 0 to 9

If you insist on using 'FRED 37', then your 64 will treat it as the
variable 'FR'.

If you want the fancy terms, the statement LET X=4 is referred to
as 'assigning the value 4 to the numeric variable X". The value of
X is clearly very readily re-assigned; hence the term "variable",
the whole 'X=4' being referred to as a mathematical or arithmetic
expression.

Your 64 will remember that X=4 until something is done to make it
forget. Switching it off is quite effective, as is re-assigning
the variable, i.e. 'X=5'. There is however, a command, that tells
the computer to 'forget' the value of any variables that we have
created. The command is CLR. When entered, 'CLR' will CLeaR the
value of 'X' (and indeed any variable set up). So if you type in:

1-7

CLR <RETURN>

and then attempt to PRINT X the answer would be 'O' and not ‘'4*.
This 'CLR' command allows us to remove any variable data from our
computer, thus - effectively - switching 'OFF and ON' the computer
without the loss of a program.

Strings

Not only can the computer store and manipulate numbers and numeric
variables, it can handle alphanumeric characters and strings in
variable form too.

String variables are more problematic to any computer than ordinary
numbers, as they can be of different lengths: from 0 to 255
characters. Clearly, very 1long strings need more space in the
computer's memory than numeric variables which only need 5 memory
cells (or bytes). The computer must "know" whether a numeric or
string variable is being used. The computer will, of course, need
to store the string length as well as the variable name. Thus,
string variable names must be identified by following them with a
dollar sign. Commodore 64 treats the string variable 'A$'
differently from the numeric variable ‘'A'. To test out string
variables try the exercise below:

LET A$="FRED" <RETURN> (or your name)
PRINT A$ <RETURN>

This assigns the name to a variable A$ (see Figure 1.5) then it
prints the name in A$ onto the screen.

>

ASZ Z

FIGURE 1.5

The name A$ is an example of a BASIC string variable, and C-64
BASIC allows these variables to be defined the same as the numeric
variables, i.e. two letters or a letter and a number are allowed.
Again, string variables must end with a '$' sign. So: A$, BS,

1-8

and XY$ are all acceptable string variable names in C-64 BASIC.

So far, all the entries made have been carried out (or executed)
immediately after the RETURN key was pressed. These are known as
DIRECT ENTRY or IMMEDIATE mode commands. Once these have been
executed, they cannot be re-activated; they're gone forever!
However, when programs are used, they are stored in memory and
re-activated when required. What differentiates an immediate
command from one in a program is the program's line numbers.
Whenever the RETURN key is pressed, the computer stores a BASIC
program line in memory as a line of program. Thus, if the earlier
immediate entry command is vreplaced by Program 1.1. this
constitutes an actual program. Just what the value of the line
number is doesn't really matter too much, as long as it is a whole
number with a positive value between 0 and 63999. What does matter
is the sequence of line numbers, as the C-64 will run the program
starting at the lowest line number and then work in increasing line
numbers unless told to do otherwise. Applying line numbers to the
early direct entries yields:

PROGRAM 1.1

20 LET A$="FRED" <RETURN>
30 PRINT A$ <RETURN>

This time, when RETURN was pressed, the machine simply responded by
moving the cursor to the next line on the screen. In order to get
it to run, simply type RUN and press <RETURN>. Once you have done
this, you will have run your first real program.

INPUT

In Program 1.1, your name was stored directly in the program, which
means of course that the program is only of use to you. To make it
of more general use, it would be handy to be able to set the value
of A$ once the program was running. This is done by using an
'INPUT' command which causes the C-64 to stop and wait while the
user enters the required information. The machine also needs to be
told which variable name to assign to this information. Program
1.2 shows how an INPUT command is utilized to assign a value to A$
at the beginning of the program.

PROGRAM 1.2

20 INPUT A$ <RETURN>
30 PRINT A$ <RETURN>

1-9

In order to erase the old line 20, it is only necessary to type in
the new one and then press RETURN. The machine will then write the
new line over the old.

When you type in RUN and then press <RETURN>, a question mark
appears on the next line. The flashing then cursor appears after
the question mark, indicating that the computer is awaiting an
INPUT of information. On typing in your name and pressing
<RETURN>, the computer will confirm the INPUT as it executes line
20 and prints out the value of A$ - your name!

One thing to note about ‘'INPUT', is that it can't be used in
immediate mode. If you try to use it without a line number the
C-64 will respond with: '?ILLEGAL DIRECT ERROR'. Try it and see!

As you enter your program line by line, the computer displays it on
the screen. You can only do that for so long though and eventually
you'll run out of screen. The C-64 Tets you enter lines until you
reach the bottom of the screen. Then the whole screen is moved up
so that a new line can be entered. In doing this the top line
leaves the top of the screen. The whole process continues line by
line and is given the fancy name 'scrolling'.

The C-64 allows you to redisplay previously entered lines in long
programs by use of the LIST command.

LIST

Just type LIST and the program lines will be sorted out by 1line
order and displayed on the screen. The listing appears quickly and
will scroll. If the listing ‘'scrolls' too fast for you and you
want to slow it down then hold down the 'CTRL' key and the lines
will appear one by one - slow enough for you to read. If you take
your finger off the key the listing will continue with its normal
speed. If you see the line you want going past, quickly press the
RUN/STOP key and this should stop the whole proceedings.

When you want a listing of just one particular line, say line 2000,
simply type 'LIST 2000'. However, should you want a listing of the
whole program from line 2000 onwards, then the command 'LIST 2000-*
is entered and the program listing will start from this line and
continue in sequence. If you just want to list a section of your
program, say from Tines 2000 to 2310 then use:

LIST 2000-2310

1-10

Summarizing this:

LIST 2000 means 1list 1ine 2000 only
LIST 2000~ means list line 2000 onwards
LIST 2000-2310 means 1ist lines 2000 to 2310
LIST -2000 means list up to line 2000

So far, all the PRINT statements used have had something simple to
print out. However, it is sometimes necessary to print several
items at once on to the screen. This is handled in BASIC by means
of features that tell the machine what "format" is required on the
screen. Thus, in order to print the A$ in Program 1.2 on the
screen twice, it would be possible to write a line in a program
that had a PRINT command followed by two A$'s. Although the C-64
would understand the statement 'PRINT AA', technically the two
variables should be separated. Not surprisingly, the things used
to separate them are known as 'separators'!

To test this procedure, Program 1.2 will be modified to print out
A$ four times, first of all using the ',' (comma) separator. Line
30 is changed to read:

30 PRINT A$,A$,A$,AS
This yields PROGRAM 1.2(a):
PROGRAM 1.2(a)

20 INPUT A$ <RETURN>
30 PRINT A$,A$,A$,A$ <RETURN>

When this is RUN with an A% INPUT of "Fred" it yields a screen
display of:

FREDADAM FREDAMVAA FREDAAMVMWAFRED
FIGURE 1.6

Note: throughout this book the small delta sign A in listings
means a space.

Program 1.2(a) will PRINT each of the strings onto the screen,
followed by a group of six spaces.

1-11

The other separator dis the ';' (semi-colon), which has the
straight-forward effect of causing one string to be PRINTed
immediately after the other. This is demonstrated in Program
1.2(b) where line 30 is further extended by means of a semi-colon
separator.

PROGRAM 1.2(b)

20 INPUT A$ <RETURN>
30 PRINT A$,A$,A$,A$;AS <RETURN>

This illustrates the effect of the semi-colon and yields the
display shown in Figure 1.7.

FREDANMAF R EDAMAAAFREDAAMAAFREDFRED
FIGURE 1.7
In all the examples quoted so far, separators have been used with
string variables; their use with numeric variables is absolutely
identical. The only difference 1is that numeric variables are
automatically printed with two trailing blank characters. So:
PROGRAM 1.2(c)

10 A=1 <RETURN>
20 PRINT A,A <RETURN>

produces:

1AMAMWWA 1
when it's RUN, whereas
PROGRAM 1.2(d)

10 A=1 <RETURN>
20 PRINT A;A <RETURN>

will produce

1401

1-12

Asking for data...Prompts

In the course of a program the '?' is not a very informative way of
asking for information and the addition of some brief message would
greatly improve matters. Such a message, usually known as a
'prompt', can very readily be added using a PRINT statement. the
material to be printed being generally referred to as the 'print
item'. This is illustrated in line 10 of Program 1.3.

PROGRAM 1.3

10 PRINT "PLEASE TYPE IN YOUR NAME" <RETURN>
20 INPUT A$ <RETURN>
30 PRINT A$ <RETURN>

Any string of characters such as that in line 10 of Program 1.3 is
known as a 'literal string' because the line of program simply
instructs the computer to print literally onto the screen what it
sees in quotes. Thus a literal string is printed onto the screen
exactly as it appears in the program and is affected by the two
separators in exactly the same way as any other string.

When Program 1.3 is run, the machine is a little more informative
and actually asks for your name. However, there's an even neater
way of doing the job in BASIC! The INPUT instruction can itself be
used to print a message by inserting the message between the
"INPUT' and the 'A$'. The line required is a mixture of lines 10
and 20, and, as line 10 is rather long it would seem to be a good
idea to use this to make up the new line. This can be done
conveniently using the Commodore 64's EDIT function, and here's how
the trick's done:
Editing
Any editor, screen or line based, needs to perform three jobs:

* To correct or replace certain characters

* To delete or rub out unwanted characters

* To insert or add extra characters

Let's have a go at all three!

1-13

Firstly, LIST Program 1.3 if it's still in the computer (i.e. type
'LIST' and press <RETURN>), otherwise, type it in again! It should
appear as:

10 PRINT"PLEASE TYPE IN YOUR NAME"
20 INPUT A$

30 PRINT A$

READY

The first task is to replace the 'PRINT' in line 10 with 'INPUT',
so the cursor needs to be moved from below the 'R' of READY to the
'P' of 'PRINT'. To do this, hold down the SHIFT key and press the
CRSR (CURSOR) key with the up/down arrows, four times, i.e.

SHIFT CRSR

hold down press four times

As you press the cursor key, the cursor will move up line by line.
Once it is on the '1' of 10 (the 1ine number), it needs to be moved
to the right. This is done by pressing the horizontal cursor key
(next to the vertical one) three times.

Once the cursor is over the 'P' of 'PRINT', simply type in the
word: 'INPUT'.

Next, the ';A$' has to be added to the end of line 10, and this is
readily achieved by holding down the horizontal cursor key until
the cursor has moved to one character past the final quote sign;
ie:

10 INPUT "PLEASE TYPE IN YOUR NAME"
Now the semi-colon and A$ can be added so the line reads:
10 INPUT"PLEASE TYPE IN YOUR NAME";A$
Once this is achieved, press <RETURN> and that line is changed.

In our example above, we performed the first and last of the three
editing tasks; we corrected the characters PR I N T, changing them
to I NP UT and we added the extra ';A$'. This was done by using
the cursor control keys to get to the correct line. The change
from PRINT to INPUT was made character by character, and finally
the extra ;A$ was typed in.

1-14

Having modified line 10 to include an INPUT command, the program
now contains two INPUTs and, thus, line 20 needs to be deleted.
This is quite simply done by typing in the number 20 and then
pressing RETURN.

Once 1ine 20 has been removed, Program 1.4 should appear as below.
PROGRAM 1.4

10 INPUT “"PLEASE TYPE IN YOUR NAME";A$
30 PRINT A$

When this 1is run, a prompt will appear asking for your name and,
following the entry, the computer will simply print it back onto
the screen with no ceremony!
When doing the previous editing, the word INPUT very conveniently
fitted exactly over the word PRINT. Now let's try changing line 10
to read:

10 INPUT"WHAT IS YOUR NAME";A$
Once again, first LIST the program, by typing 'LIST'.

10 INPUT"PLEASE TYPE IN YOUR NAME";A$

30 PRINT A$
then:
* Move the cursor up to cover the '1' of line 10.
* Move the cursor across to cover the 'P' of 'PLEASE'.

* Type in 'WHAT IS':the text should now appear as:
10 INPUT"WHAT ISTYPE IN YOUR NAME";A$

* Space across with the SPACE bar, until the cursor is on the
'Y' of 'YOUR'. At this stage, the words are OK - just too
many spaces.

* Delete the intermediate spaces on the line by means of the
INST DEL key on the top-right of the keyboard. Each time
you press this key, it will delete the character immediately
BEFORE the cursor. Seven presses of the key should do the
trick - don't forget to leave one space.

*

Press <RETURN> and the line is edited.

1-15

The only way to really learn to edit is to try it. Nothing will go
into the computer's memory until you press <RETURN>, so, if you get
in a mess, just cursor away from the problem line and then try
again.

One last feature to note...
Just as the INST/DEL key took out spaces, so it can insert them,

when used with the SHIFT key pressed. Experiment with this and
then try Exercise 1.1.

EXERCISE 1.1

Modify the above line 10 of Program 1.4 to
read:

10 INPUT"PLEASE TYPE IN YOUR FULL NAME";
A$

A possible solution is given on page 11.1

Fortunately, the PRINT command can also contain both a message and
variables in much the same way as the INPUT command, so try to
modify Program 1.4 as instructed in Exercise 1.2.

EXERCISE 1.2

Edit line 30 of Program 1.4 so that the
program announces “YOUR NAME IS FRED". An
answer is given on page 11.1

Such messages or prompts as you are now capable of putting into
your programs are valuable in guiding the user through data entry.
Try Exercise 1.3 using prompts.

EXERCISE 1.3

Modify the program developed in Exercise 1.1
so that it asks a person's name and age, and
then reports back to them "YOUR NAME IS....,
YOUR AGE IS ". A possible answer is
given on page 11.1

1-16

CHAPTER

PART ONE

Guess the Number

his first mini project develops a number guessing game and

investigates various number manipulation techniques. In the

game, the computer will think of a number between 1 and 100

and then, ask the player to guess the value of the number in
less than six goes. (S)he will then be told whether this is too
large, too small, or correct. After six goes, if it has not been
guessed correctly, all will be revealed! At this stage, when the
number is guessed correctly, the player will be asked whether or
not (s)he wishes to have another go.

RND()

In a game such as this, the key function is that of generating a
random number for the player to quess. The 64 does this by means
of the command RND(). To try this out, tell the computer to
generate a random number and then to PRINT it onto the screen.
Such a combination of commands is referred to as a 'statement',
which in this case says:

PRINT RND(0)

This will cause it to print a random number between 0 and 1.
However, this range of numbers is not too large; the game we are
writing really needs a range of about 100. To achieve such a
range, we can quite simply multiply our random number by 100, i.e.

PRINT 100*RND(0)

2-1

INT ()

Although the range 1is now right, the numbers that the computer
gives us have decimal points and what we really need is just the
whole part of the number. BASIC contains a command that will
remove the fractional part of a number and leave the whole number
part or INTEGER. Not surprisingly, the command is 'INT()', and
the expression INT(6.318) would, for instance, yield the integer 6,
as would INT(6.0001) or INT(6.9999).

The 'INT' expression is always followed by parentheses and expects
to find the number to be operated upon enclosed in parentheses.
This number is given the technical term 'arqument'.

The random number function developed so far can thus be further
refined to:

PRINT INT (100*RND(0))

This statement will produce integer numbers from 0 to 99. Two
features of BASIC bring this about; one of these being built into
the RND function itself. PRINT RND(O), would yield a random number
between O and 1 BUT NEVER 1 ITSELF. Therefore, PRINT(100*RND(OQ))
would never yield 100. Since INT always yields the whole number
part, PRINT INT(100*RND(0Q)) produces integers from O to 99
inclusive.

If we want the random number to be between 1 and 100 then it is
finally fixed by adding 1 onto the integer function to yield
Program 2.1(a), where RV - for Random Value, is the random number.
PROGRAM 2.1(a)

30 RV=1+INT(100*RND(Q))
So far there has been no proof of the functioning of the RND

function over a number of cycles. This will be investigated by
modifying Program 2.1(a) so that line 30 repeats 100 times.

2-2

GOTO

For line 30 to be activated a number of times, some command is
needed which will tell the program to jump to lower or higher line
numbers. The command that does this is 'GOTO' and it can be added
to Program 2.1(a) as 80 GOTO 30 - to yield Program 2.1(b). Its
operation is really quite clear - 'GOTO 30' tells the program to do
just that - to go to line 30! Once this is done, Program 2.1(b)
is said to LOOP back to line 30 from line 80.

PROGRAM 2.1(b)

30 RV=1+INT(100*RND(0))
35 PRINT RV
80 GOTO 30

RUN/STOP

When this is RUN, the program will enter an endless loop which
PRINTs random numbers down the screen. The 64 will carry on
printing these numbers and will scroll up ... well for a long
time. But you can terminate the whole process by pressing the
'RUN/STOP' key. You should get a message saying 'BREAK IN ?',
where ? is 30, 40 or 80, i.e. the line being executed when the
'break' into the program occurred.

So far, the program is capable of giving quantities of random
numbers but in a rather uncontrolled manner. What is needed is
some form of counting mechanism and some check on this count. to
say when 100 numbers have been delivered.

A counting mechanism is provided by the introduction of a counting
variable called 'C' - for count. This is set to zero at the
beginning of the program and then increased by one (incremented)
each time a random value is PRINTed onto the screen (at line 60).
Just as we were able to LET C=1 (or any other number), BASIC allows
us to LET C=C+1. It would appear strange in ordinary mathematics.
a statement such as this but then, that's BASIC. Thus far, then,
the program structure is as in Program 2.1(c)

PROGRAM 2.1(c)

Set count to zero. 10 C=0
Generate a random number. 30 RV=1+INT(100*RND(0))
Print the random number

onto the screen. 35 PRINT RV
Increment the count. 60 C=C+1
Go back for another random

number. 80 GOTO 30

2-3

If lines 10 and 60 are added and the program is RUN then a count
will be made of the number of random numbers printed onto the
screen. However, that is all that the program will do! So far it
has not been told to respond in any way to this number. As an
experiment, RUN the program for a few minutes. When the fun(!) has
worn off press the 'RUN/STOP' key and exit from the program. Next,
to check that the count routine has worked, type in: PRINT C and
the machine will respond by telling you how many random numbers it
has printed.

IF...THEN

-So far so good - we can count! The next job is to modify the
program so that it can carry out a check on the state of PRINTing
and stop when enough lines have been displayed. This is done by
the checking or CONDITIONAL statement, that is added in line 70 of
Program 2.1(d).

PROGRAM 2.1(d)
70 IF C=101 THEN GOTO 90

This statement checks the value of Count and if - and ONLY if - it
equals 101, causes the program to jump to line 90.

When putting in statements such as that in line 70, care has to be
taken over the number tested against. In this case the value that
brought about the loop was 101 because the incrementing was done
after the random number aeneration and PRINTing onto the screen.
Were this incrementing to have been done. say, in line 20. then
the branch would have been brought about in the case where C=100.

STOP

Although line 70 gets the machine out of the endless loop, it sends
it to a non-existent line, thus producing an undefined line error.
What 1is required at line 90 is a line that ends or STOPs the
program. For this the command STOP is used, as in Program 2.1(e).
PROGRAM 2.1(e)

90 STOP

2-4

A Diversion: Program Structure.
As programs become more and more complex, they become more and more
difficult to follow and some means needs to be found for
representing the flow of a program in a form that can be readily
understood. Such a device is known as a:
FLOW CHART

A flow chart breaks the program down into simple elements which:

* START or END programs (terminators).

* Input and Output: commands such as PRINT, INPUT, SAVE and
LOAD.

* Make decisions: IF...THEN.

* Process data: assignment statements.
There are other program statements which don't quite fit into the
above pattern. GOTO. for example, changes the sequence of lines as
a program is actually running.
It is often helpful to use a special diagrammatic form of FLOW
CHART to understand the logic of a program. Standard symbols are
used for each of the four program elements mentioned above, as

their use enables the diagrams or charts to be interpreted much
more readily.

Terminators (j

Processes

Input/Output Z{f /

Decision

FIGURE 2.1

2-5

The rule for following a flow chart is really quite simple as it
starts at the top of the chart and follows the Tines connecting the
boxes. The arrows on the connecting lines show the direction of
flow.

Flow charts can be helpful when first designing a program. By
convention, the explanations in the boxes should be written in
plain English. It is a common mistake to write "BASIC in boxes"
and think that is a proper flow chart. Always aim to make your
flow charts language independent.

Notice that the 'GOTO' in Program 2.1(f) is represented by a flow
line on the flow chart, Figure 2.2. A1l the other equivalents to
the program statements are contained in one of the four box types
given above (Figure 2.1). The combination of Programs 2.1(c),
2.1(d) and 2.1(e) gives Program 2.1(f), which when run will print
out 100 random numbers.

One other thing to notice on Program 2.1(f) is the use of IF...THEN
on line 70. In this Tine the GOTO 1is missed out as C-64 BASIC
allows this shorthand form. Thus, when it sees "THEN 90" it
interprets this as 'THEN GOTO 90'.

PROGRAM 2.1(f)

10 C=1

30 RV=1+INT(RND(0)*100)
35 PRINT RV

60 C=C+1

70 IF C=101 THEN 90

80 GOTO 30

90 STOP

2-6

START

setcount =1 — C=1
calculate
random «— RV=I+INT(RND(0)*100)
display
random -— PRINT RV
1 7
increment
count -— C=C+1
-— IF C=101 THEN 90

-— STOP

FIGURE 2.2

2-7

Other possible conditional tests are available in BASIC and all the
normal mathematic functions (or operators) can be used to test
values. For instance, Program 2.1(f) could be modified to use the
'greater than' sign, or '>', to bring about the loop. If you're a
little unsure about the mathematical terminology, just try mentally
replacing the '>' sign every time you see it with the words "is
greater than". Thus line 70 of Program 2.1(f) reads in its two
versions:

(i) 70 IF C>100 THEN 90
(ii) 70 IF C is greater than 100 THEN(GOTO)90

Line 70 (Program 2.1(g)) uses the '>' operator to replace the '=*
used earlier in Program 2.1(f).

PROGRAM 2.1(g)
70 IF C >100 THEN 90
Another command available for mathematical comparisons is '<' which

means ‘'less than' and is used in exactly the same way as the
‘greater than'.

EXERCISE 2.1

Rewrite Program 2.1(g) to produce Program
2.1(h), which uses the line

70 IF C <(a number) THEN....
Draw a flow chart to explain the operation of

your program. The program answer is given on
page 11.2.

The programs using conditional tests have enabled loops to be
written but BASIC contains its own built-in loop generator that
makes life much easier - this is the :

FOR...NEXT loop

When using this construction it is only necessary to define the
beginning and end of a loop, as shown below:

FOR...... Beginning of loop.

Loop Instructions within loop
NEXT..... End of loop.

2-8

As in Program 2.1(c), the number of passes through the loop needs
to be defined and this is achieved by means of a variable that is
incremented on each pass of the loop. Thus the form shown above
requires amendment, to become:

FOR C=1 TO 100
Loop
NEXT C

In this loop, the term 'C' is known as the loop or control variable
as it controls the number of times that the loop is executed.

Incorporating this into Program 2.2 (produced from Exercise 2.1),
the 'FOR' and 'NEXT' 1lines replace lines 10 and 60, as indicated in
Program 2.2. Lines 70 and 90 have also been deleted. See if you
can use the edit features to carry out these changes!

PROGRAM 2.2

10 C=1 «¢ FOR C=1 TO 100
30 RV=1+INT(100*RND(0))
35 PRINT RV

60 C=C+1 < NEXT C
70 IF C <101 THEN 30 ¢—i
90 STOP

Putting this FOR...NEXT loop into practice results in much easier
programing of loops. For instance, Program 2.2 can be simplified
as shown in Program 2.3 below.

PROGRAM 2.3

10 FOR C=1 TO 100

30 Rv=1+INT(100*RND(0))

35 PRINT RV

60 NEXT C
STEP
FOR...NEXT loops can tell the computer to count in 'steps' of more
than one using the 'STEP' command. The command is added to the end
of the 'FOR..' statement like so

10 FOR X=1 TO 100 STEP 'n'

2-9

If we do not specify a 'STEP' then a 'STEP' of one is assumed. The
'n' denotes any number. To demonstrate the use of
'FOR...NEXT...STEP' enter and run Program 2.3(a).

PROGRAM 2.3(a)

1 FOR X=1 TO 100 STEP 2
2 PRINT X

3 NEXT X

4 STOP

This particular loop starts at 'l' and prints out every second
number. So the display would be 'l', '3', '5' up till the last
value of 'X', 99.

EXERCISE 2.2.

Change line 1 of program 2.3(a) so that the
loop starts at '0' and increases in 'STEPs'
of three. Answer on page 11.2

The loop doesn't have to start at '0' or 'l' but can begin at any
value less than (or equal to) the 'TO' value. If the first value
is larger than the second (i.e FOR X = 100 TO 50) then what's
needed is a countdown, 100, 99, 98, 97 etc.. To do this we use a
'STEP' value of minus one (-1).

So to count down the instruction would read:
PROGRAM 2.3(b)
1 FOR X=100 TO 50 STEP -1

EXERCISE 2.3

Write a short program that will count down
from '10' in 'STEPs' of '-1'. When the loop
has been completed then the program will
PRINT 'FIRE' . A possible answer is on page
11.2

2-10

If we were unwise enough to have lines like these ...

FOR X=100 TO 10 STEP 1
or FOR X=10 TO 100 STEP -1
or even FOR X=10 TO 20 STEP 30

then the computer will execute each 1loop once, and then will
proceed to the next program statement after the loop. You must make
sure that your starting and ending loop values are accurate.

As programs become more complex and include such features as
FOR...NEXT loops, the danger of making mistakes increases.
Fortunately, the 64 stays with you and when a bug creeps in the
messages tell you pretty well what the error is. To demonstrate
this, add line 4 to Program 2.3(a).

PROGRAM 2.3(c)
4 NEXT I

When this is RUN, the 64 will give an error message:

INEXT WITHOUT FOR ERROR IN 4

This tells you quite clearly that you have attempted to use a NEXT
without a matching FOR at 1line 4 as the 'FOR' line used the
variable X and the 'NEXT' line, the variable I.

Errors in 64 BASIC are readily picked up in this way as the
computer has been taught its own logic. For instance, if you chose
to say in English "Sat the cat, the mat on", this would be
incorrect in its ‘'syntax'. Thus, when similar errors occur in the
64's language, the computer tells you that a 'SYNTAX ERROR' has
occurred. Just think of 'SYNTAX ERROR' as the computer's way of
saying "I DON'T UNDERSTAND".

However well the machine knows its own logic. it cannot know what
you, the programer, are thinking. Thus, if you put logical errors
into a program, the 64 will run these faithfully whatever problems
they cause for it. For instance, if you enter line 4 and 6 of
Program 2.3(d) and run this, the line will run even though it is
logically incorrect in terms of the overall program.

2-11

PROGRAM 2.3(d)

4 A=1
6 IF A=A THEN 6

When this is RUN, line 6 checks for the comparison of 'A' with 'A*
and on finding it valid sends the program back to the beginning of
line 6. This process then simply carries on continuously, with the
program locked into an endless loop. As this is a logical error
there is no way that the machine can detect it. From time to time,
a program will hang up the computer with an infinite loop, such as
line 6 in Program 2.3(d). VYou've already met the trick that
rescues you from this situation, pressing the 'RUN/STOP' key. It
rescued us from Program 2.1(b) - again an infinite loop.

To test this, run Program 2.3(d): the screen will stay still as
nothing appears to happen. At this stage, press RUN/STOP and the
computer should report:

BREAK IN 6
READY.

At long last we can now return to the project that was started
several pages ago, the number guessing game. Armed with several
new commands the game can be started in earnest by putting in the
basic elements of the program; these being the generation of a
random number, the inputting of a guess and the response and the
re-directing of the program.

Lines 30 and 50 will handle the generation of a random number and
the acceptance of a guess (G) from the player.

PROGRAM 2.4(a)

30 RV=1+INT(100*RND(0))
50 INPUT G

2-12

At this stage, the guess can be compared with the number using the
IF...THEN construction. In the earlier example, this was used only
to redirect the program by means of a GOTO command. However. the
IF...THEN can be followed by any valid BASIC command so. in this
case, the statement could say: 'If the quess equals the random
number then tell the player that his gquess s correct.’
Translating that into BASIC yields:

IF G=RV THEN PRINT"WELL DONE - GUESS CORRECT."

One small tip before adding that 1line, though! During the
development of this game you will probably RUN it hundreds of
times. Fun as this may be for the first hundred or so times. it
will probably get somewhat boring - eventually. You might like to
include a line 35 "PRINT RV" to PRINT out the value of the random
number - it makes the game easier too! So far, then, the program
reads:

PROGRAM 2.4(b)

30 RV=1+INT(100*RND(0))

50 INPUT G

60 IF G=RV THEN PRINT"WELL DONE - GUESS
CORRECT."

A diversion : Comparisons

The mathematical operators which we are about to use in the
program, i.e. '=', '<' and '>' are very precise in their
operation - just as you'd expect, so this does mean that you, the
programer, must be precise too. Just to emphasize this. let's have
a look at a few simple programs that use them. Firstly let's do a
simple count in Program 2.4(c) up to 20 using the '<' sign.

PROGRAM 2.4(c)

2 LET C=0

4 PRINT C

6 LET C=C+1

8 IF C<20 THEN 4
10 PRINT"FINISHED"
12 SToP

2-13

Try running this and see what happens. Your 64 should PRINT on the
screen for you the numbers from O to 19 and then announce that it
has "FINISHED". It won't actually get as high as 20 because,
although the value of C itself has reached 20, line 8 no longer
sends it back to 4 to be printed. Thus, using the '<' operator, it
would be necessary to set the loop to 21 to get a PRINT up to 20.

Now modify the program by swapping over lines 4 and 6 as in Program
2.4(d).

PROGRAM 2.4(d)

4 LET C=C+1
6 PRINT C

Now RUN this and look what the 64 gives you. This time, it will
give the number series from 1 to 20 as the variable C was
incremented BEFORE being PRINTed. It may appear to be a very
trivial point this but it is most important to realize that the
variables in a program may change from 1line to 1line and no
assumptions are valid. Let's see how you get on with the *>'
operator:

EXERCISE 2.4

Re-write Program 2.4(d) to PRINT the number
series 1 to 20 using the '>' operator. Hint!
It should contain a line like:

8 IF C>...THEN...

A possible answer is given on page 11.2

Another pair of operators in 64 BASIC facilitate control of the
kind of 1loops we're using. These allow us to check whether a
variable is greater than OR equal to and whether it is less than or
equal to, i.e.

>
<

means greater than or equal to
means less than or equal to.

To try these out let's re-write 2.4(d) with 2.4(e) so that it
counts from 1 to 20. As we wish to go from 1, we must ensure that
at the first PRINT statement, the variable is, in fact, 1. To
achieve this, we could either set the count variable (in this case
'C') to 1 before we start and then PRINT before incrementing or set
it to zero originally and increment before PRINTing. Program
2.4(e) uses the former.

2-14

PROGRAM 2.4(e)

2 LET C=1

4 PRINT C

6 LET C=C+1

8 IF C<=20 THEN 4
10 PRINT "FINISHED"
12 END

Just to see if you can really handle these operators have a go at
Exercise 2.5

EXERCISE 2.5

Re-write Program 2.4(e) to count up to 30
using the '>=' operator.
A possible answer on page 11.2

Now, back to the number guessing game as it was left in Program
2.4(b) - don't forget, though, to remove lines 2 to 12.

At this stage, the program should RUN and, when the correct answer
is guessed, give a message and then end. However, if an incorrect
guess is entered, the program will simply end with no message. To
handle this, two further conditional statements are added at lines
70 and 80 in Program 2.4(f).

PROGRAM 2.4(f)

70 IF G>RV THEN PRINT"GUESS TOO LARGE -
TRY AGAIN."
80 IF G<RV THEN PRINT"GUESS TOO SMALL -
TRY AGAIN."

2-15

Multi-statement lines

When the current Program is run, it will handle both correct and
incorrect answers but only for one input. In order to give a
further chance, it clearly has to be re-routed back to the INPUT if
the answer was incorrect. This re-routing needs to be done
conditionally based on the IF...THEN tests performed in lines 60,
70 and 80. Once again, BASIC comes to the rescue in that a second
BASIC statement can be added to the end of an existing line
provided that the two parts are separated by a colon. When this is
done, the line is referred to as a multi-statement line and the
second statement is executed immediately after the first, just as
if it were in the next line. Thus, line 60 can be modified to
read as in Program 2.4(g).

PROGRAM 2.4(g)

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT.":STOP

This modification will STOP the program after a correct answer and
lines 70 and 80 can then be similarly extended, in their particular
case to redirect the program, i.e. as in Program 2.4(h).

PROGRAM 2.4(h)

70 IF G>RV THEN PRINT"GUESS TOO LARGE -
TRY AGAIN.": GOTO 50
80 IF G<RV THEN PRINT"GUESS TOO SMALL -
TRY AGAIN.": GOTO 50

After the modifications in Program 2.4(h) the game will now allow
any number of incorrect gquesses but comes to a STOP when the
correct gquess is made. Once it has stopped in this way, you may
notice that the message is now different. It should, in fact,
read:

BREAK IN 60
Ready

It is now reporting a successful RUN and is also stating that it
finishes on line 60. This end, however. is rather abrupt and the
program would be improved considerably were the player to be given
a choice after a correct guess - either to terminate the game or to
carry on further. To this end, a further routine is added at the
end of the current program which offers the player the opportunity
to continue. It takes the form of an INPUT with a message and a
conditional test - see PROGRAM 2.4(i). In addition, the STOP will
need to be removed from line 60 and the program redirected from
here to the INPUT at line 110.

2-16

PROGRAM 2.4(1)

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT.":G0OTO 110

110 INPUT "DO YOU WANT ANOTHER GO (Y/N)";A$

120 IF A$="Y" THEN 30

In line 110, the INPUT is expecting a YES/NO type of answer and the
bracketed '(Y/N)' is an additional prompt that gives the player a
clear indication of what is expected in the way of inputted data.
The use of such prompts makes it possible to test simply following
the INPUT. In line 120, it is only necessary to test for the 'Y’
- meaning "Yes" - answer if this input is clearly expected. If the
input is not a 'Y', then this line is ignored and the program goes
on to execute the next line or, if there isn't one. to end the
execution.

As the INPUT expected is a string variable, i.e. one with
alphanumeric characters (letters), it was necessary to assign an
appropriate string variable name - in this case A$ is used.

As the game stands at the moment, the player can take any amount of
goes to guess the number. Just to add a bit more interest the
number of attempts will be restricted to six. Ways have already
been explored of getting programs to loop around a given number of
times and as in Program 2.3, a FOR...NEXT loop can be used. This
will be required to repeat the guessing part of the program and
start after the random number has been generated - say, at line 40.
The Toop back - the 'NEXT C(ount)' - will take place after the
tests for the guess have been made and before the "another go?"
question is asked - say, at 90. These are shown in Program 2.4(j)
where the variable 'C' is used in the loop.

2-17

PROGRAM 2.4(J)

30 RV =1+INT(100*RND(0))

40 FOR C=1 TO 6

50 INPUT G

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT.": GOTO 110

70 IF G>RV THEN PRINT "GUESS TOO LARGE -
TRY AGAIN.": GOTO 50

80 IF G<RV THEN PRINT "GUESS TOO SMALL -
TRY AGAIN.": GOTO 50

90 NEXT C

110$INPUT "DO YOU WANT ANOTHER GO (Y/N)
" A

120 IF A$="Y" THEN 30

Just to prove this program for yourself, run it through a few
times. If you count the incorrect guesses you will find that the
loop is not actually activated. To help you to see why, the flow
chart for this program is given in Figure 2.3. You can use this to
correct Program 2.4(j). Don't worry if you get stuck; the
correction is explained below. Incidentally, there are no less
than three problems or 'bugs' in the program at present.

2-18

FLOW CHART

START

generate
random no.

v

initiate
loop

message
®correct”

NO

message

r -l.nessage‘ -7 "too high” is
/ |}
/ * you took p loop
- goes” complete
L= NEXT)
message
*too low "
/ message Z
Z “had six goes ™ /™
message
* want another
YES

another

go?

FIGURE 2.3

2-19

EXPLANATION - don't read this until you've had a go!

Following the program through for a correct answer yields no
problems. However, the loop fails to activate after the allowed
six attempts. If a 'yes' results from the check 'is gquess too
high?', a message is outputted and then the flow chart shows a
further test for the number of attempts. However the program
simply loops back from this point to allow another INPUT. Removal
of the 'GOTO 50' on line 70 will allow this line to be followed by
80 and then 90 where 'NEXT C' is met. The 'NEXT' function performs
the necessary incrementing of 'C' as well as checking if it has yet
reached 6. Once the Toop is reached, the NEXT C command allows the
program to run through to the next line 110. At this point the
player will be asked: "Do you want another go?" Before this he
should have been told: "had your six goes matey". To accomplish
this a PRINT line could be added at Tine 100.

To summarize, the three modifications required to Program 2.4(j)
are:

(i) Remove the GOTO 50 on line 70
(ii) Remove the GOTO 50 on line 80
(iii) Insert line 100:

100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."

Notice that in the flow chart, the program will only reach the 'is
guess too low' decision box if the gquess is in fact too low.
Strictly speaking therefore, that decision box is unnecessary. A
'NO' decision from the 'is guess too high' box will automatically
result in the 'too low' message being output. However, if we look
at Program 2.4(k) 1line 80, we will discover that the IF...THEN
decision is necessary after all, as we do not have the GOTO's any
more on line 70. If our guess is too large, the program as written
will still pass through line 80 even though the flow chart shows it
jumping directly to the NEXT on line 90. The program is a little
easier to follow if this GOTO is left out and line 80 left as a
decision, even though the flow chart is a little easier to follow
if the GOTO is left in.

2-20

Incorporating the above modifications yields Program 2.4(k).

PROGRAM 2.4(k)

30 RV=1+INT(100*RND(0))

40 FOR C=1 T0 6

50 INPUT G

60 IF G=RV THEN PRINT "WELL DONE - GUESS
CORRECT.": GOTO 110

70 IF G>RV THEN PRINT "GUESS TOO LARGE -
TRY AGAIN."

80 IF G<RV THEN PRINT "GUESS TOO SMALL -
TRY AGAIN."

90 NEXT C

100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."

110$INPUT "DO YOU WANT ANOTHER GO (Y/N)

uep

120 IF A$="Y" THEN 30

A1l that really remains to be done now is for the program to report
back on how many goes the player took to get the right answer.
This function is already shown on Figure 2.3, outlined in a dashed
box.

EXERCISE 2.6

Add a reporting-back function to Program
2.4(k) such that it tells the player how many
goes it took to get the correct answer. A
possible solution is given on page 11.3

Once Exercise 2.6 is completed, the result should be a functioning
number guessing game. In many ways it is a little basic (and
BASIC) but from Program 2.5 onwards the rest is up to you. The
major improvement that is needed is an introductory message to tell
the player what the game is about and what the rules are and a
polite 'goodbye' when the player signs off.

2-21

REM

In the listing of this program, provision is made for additions at
a later date in lines 10 and 20. Both of these lines start with a
REM command, that identifies each line as a REMark line. Once the
operating system detects a 'REM', it then ignores anything that
follows on this line. By means of REMs, comments can be inserted
into programs to enable either the program's author or any other
user to follow its logic more readily. A generous sprinkling of
REMs is to be recommended to all.

PROGRAM 2.5

10 REM * *Introductory

20 REM * *message

30 RV=1+INT(100*RND(0))

40 FORC =1T0 6

50 INPUT G

60 IF G=RV THEN PRINT"WELL DONE - GUESS

CORRECT.":GOTO 110

70 IF G>RV THEN PRINT "GUESS TOO LARGE -
TRY AGAIN."

80 IF G<RV THEN PRINT "GUESS TOO SMALL -
TRY AGAIN."

90 NEXT C

100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ES."

110$INPUT “DO YOU WANT ANOTHER GO (Y/N)

II;A

120 IF A$="Y" THEN 30

On the software that comes with the book you will find a program
called 'GUESSER'. This is a Computer Aided Learning simulation
(CAL) of Program 2.5 which should help to clear up any remaining
problems that you might have with the program. As you go through
the 'GUESSER', you will notice that the program has been simplified
somewhat so thnat the listing can be displayed the whole time. By
now, though, you should be able to follow this quite easily!

2-22

PART 2

Storing a program

Once a program of any length has been developed, it becomes a chore
to keep typing it into the computer. It can, of course, be saved
onto a storage device and then re-loaded back into the memory when
you need it. One common means of storage on the Commodore 64
allows your program to be stored on diskette. This form of storage
is known as 'non-volatile' as it doesn't need any power to keep the
program stored. The memory in the computer is ‘'volatile' as, once
the machine is turned off, all the contents of its memory are lost.
Commodore 64 BASIC contains two commands to facilitate this mode of
storage. Such commands form part of the machine's operating system
- those built-in programs that make the whole computer work.

The BASIC commands for storage are:

SAVE

SAVEing programs on disk should present 1little problem on the
Commodore 64. Programs must be SAVED with a name. To SAVE a program
with the name 'DR WATSON', it's only necessary to place a formatted
disk into the disk drive and then type in:

SAVE "DR WATSON",8<RETURN>
The Commodore 64 will then tell you

SAVING DR WATSON

2-23

The diskette drive light will go on, then the computer will report
back with

READY.

It is a good didea to check that the program is SAVEd
satisfactorily. Commodore's command to do this is:

VERIFY

The computer will compare the program in memory with the one it
finds on the diskette with the same name. Use the form:

VERIFY "DR WATSON",8
Once a satisfactory check has been made, the computer will report

VERIFYING DR WATSON
oK

READY
If the check is not satisfactory the computer will report
VERIFYING DR WATSON

?VERIFY ERROR
READY.

If this 'VERIFY ERROR' 1is obtained then you must try another
‘VERIFY'. If this results in a second error, then you'd be safest
to try 'SAVEing' the program again and then repeat the 'VERIFY'.

2-24

PART THREE

Comparing Numbers

Other techniques are allowed in BASIC when comparing numbers, one
very useful one allowing two comparisons to be made in one
statement. Using this, Program 2.6 will be developed from Program
2.5 to produce a game that asks the player to quess two numbers.
In order to simplify this, the equality check and 'larger than' and
‘smaller than' Tlines should be removed. i.e. 1lines 60, 70 and 80.

Next, a second random number must be introduced so these will
simply be called 'R1' and 'R2' i.e. as in Program 2.6(a), line 30.
As the player is now to be asked to guess two numbers, it would
also be easier if the range of possibilities of each number were to
be reduced, say to 4.

PROGRAM 2.6(a)

30 R1 =1+INT(4*RND(1)):R2=1+INT(4*RND(1))
In this particular game, two guesses will be required and, as with
the R's these can be called 'Gl' and 'G2' as in line 50 of Program
2.6(b).
PROGRAM 2.6(b)

50 INPUT G1:INPUT G2

OR

With two guesses and the random numbers, the comparison process is
obviously much more complex than in the earlier game. However. the
BASIC command 'OR' eases things somewhat. It enables one, for
instance, td compare a single guess with both R1 and R2. This
check may say 'if Gl does not equal R1 OR if Gl does not equal R2
then PRINT 'one guess wrong'! Translating this into BASIC yields.

IF GI<>R1 OR GI<>R2 THEN PRINT"ONE GUESS
WRONG"

A similar line will then check for G2. Lines 70 and 80 show this
in action in Program 2.6(c). (<> means 'NOT equal to').

2-25

PROGRAM 2.6(c)

30 R1=1+INT(4*RND(1)) :R2=1+INT(4*RND(1))
50 INPUT G1:INPUT G2

70 IF G1<>R1 OR G2<>R2 THEN PRINT "ONE W
RONG"

80 IF G2<>R1 OR G2<>R2 THEN PRINT "ONE W
RONG"

AND

So far the program hasn't even looked for correct answers and this
is done in lines 60 and 65 of Program 2.6(d). This line is able to
check for both answers being correct by means of the BASIC command
'AND' which enables one to say the BASIC equivalent of:

"If this is correct AND if that is correct, then do something"

Following this line, the program can be looped to a further routine
that asks if the player wants another go. The final step is to
replace the loop that allows only six goes, lines 40 and 90.

PROGRAM 2.6(d)

30 R1=1+INT(4*RND(1)) :R2=1+INT(4*RND(1))
40 FOR C=1 TO 6

50 INPUT G1:INPUT G2

60 IF G1=R1 AND G2=R2 THEN PRINT"WELL DO
NE" :GOTO 110

65 IF G1=R2 AND G2=R1 THEN PRINT"WELL DO
NE" :GOTO 110

70 IF G1<>R1 OR GI<>R2 THEN PRINT"ONE WR
ONG"

80 IF G2<>R1 OR G2<>R2 THEN PRINT"ONE WR
ONG"

90 NEXT C

100 PRINT "SORRY, YOU'VE HAD YOUR SIX GO
ESII

110 INPUT "DO YOU WANT ANOTHER GO(Y/N)";

A$
120 IF A$="Y" THEN GO TO 30
Using the ideas in this chapter, you can now create a whole range

of logic games leading to very complex 'mastermind' - type games.
Once again the door is open and you are invited to enter.

2-26

CURSOR CONTROLS

One way of improving the number guessing game is by means of cursor
controls. For instance, it would be useful if at the start of
every game, the screen was cleared of any previous writing. In
direct mode this is achieved by holding down 'SHIFT' and pressing
the 'CLR-HOME' key - just try it to make sure! You can also get a
program to do this while it's running.

Try this out. Type in :

Note that <CLR> will
PRINT "<CLR>" appear on the screen
as a reverse heart i.e.‘:l

When you press the RETURN key, the screen will clear and the
cursor move to the top left hand corner of the screen. A further
command 'HOME' moves the cursor to the screen's top left hand
corner without first clearing the screen. Try this out with:

Note that <HOME> will
PRINT "<HOME>" appear on the screen
‘ as a reverse 'S' i.e.

Note that the symbol is obtained by pressing the HOME key.

Thus, we have seen how to obtain the clear home character,<HOME>
and clear-screen character <CLR>. These can be used in the same
way as any other characters on the keyboard. They do present
somewhat of a problem in listings so, in this book, they have been
listed in a cleaner way as described in Appendix 3. Using this
convention the HOME cursor symbol is replaced by <HOME> and the
clear-screen by <CLR>.

A1l these control characters are used as strings and can be given
string names.

A$="<CLR>" is 0K

PRINT "<HOME>LOVE"™ combines the control character
with a string.

2-27

Now that we have seen how to use these functions in a program,
let's add them to our number guessing game!

If we add line 35 to Program 2.6(d) then every time we run the
program, the screen will clear and printing will start in the top
left hand corner.

PROGRAM 2.7(a)
35 PRINT"<CLR>NUMBER GAME"

Now that we can clear the screen from within a program, let's
investigate cursor movements.

Like the <CLR> function, cursor keys have special print characters
and these are used in the same way. To try this, type in 'PRINT"®
and then press the cursor up/down key to obtain the 'down cursor'
symbol and on the screen will appear '} '. So the 'CRSRHY}' key
produces the character ' []'. Now hold down the SHIFT key and
press 'CRSR$} * and we have the cursor up character. After
performing the same operation for the 'CRSR = ' key, we will
obtain the following results.

Moves Cursor Up SHIFT Hsr OR <UCRSR>
Moves Cursor Down v OR <DCRSR>
Moves Cursor Left SHIFT SR OR <LCRSR>
Moves Cursor Right — | OR <RCRSR>
Moves Cursor To Top Of Screen TR <HOME>
Clears Screen SHIFT [HOME| OR <CLR>

Let's have a go at using these cursor controls in a program with
Program 2.7(b).

PROGRAM 2.7(b)

110 INPUT "<2DCRSR><4RCRSR> DO YOU WANT
ANOTHER GO (Y/N)?";A$

In those two examples (Program 2.7(a) and (b)) we have changed only
two of the many PRINT commands that this program uses. On the disk
that accompanies this book, a few other changes have been made to
show what can be done. However, you should feel free and make any
other changes in display that you want to, after all its your game
now! Good luck!

2-28

CHAPTER

An Introduction to Honey.Aid

n the diskette that comes with the book is a 'utility' program

called "Honey.Aid". This is designed to take full advantage

of the capabilities of your Commodore 64 by adding new

commands to its BASIC. The Honey.Aid program tucks itself away
at the top of computer's memory (wherever that is when Honey.Aid is
loaded) and protects itself from being overwritten by normal BASIC
programs. Typing in NEW will not remove Honey.Aid from your
computer. To remove it you can either switch the machine off
(which 1is rather 1like using a sledge-hammer) or make use of
Honey.Aid's built in switch off command. It is called 'KILL' and
will switch off all the Honey.Aid commands: but don't worry, when
you type KILL it tells you how to restart Honey.Aid, something
switching off does not do.

Find the program on your disk and load it with LOAD"HONEY.AID",8.
When it has loaded, LIST the program. You will find a small BASIC
program which is mainly concerned with displaying the Honeyfold
logo and playing the introductory jingle. What you can't see is
the machine code program which is Honey.Aid itself, and the other
machine code program which locates Honey.Aid at the top of memory.

Now, turn the volume on your television up and type RUN to get
Honey.Aid working. At this stage, you will see that Honey.Aid has
set your machine into lower-case mode. If you aren't too keen on
this hold down the Commodore key, (bottom left-hand corner of the
keyboard) and press SHIFT. This should turn you back into capitals
mode ('caps'). However, all the programs in this chapter are
written in lower-case so it might be an idea to leave the machine
set this way. In operation it makes no real difference one way or
the other how the machine is set - all the keys work the same way.
Many professional programers prefer to work in lower-case as this
allows them to introduce capitals into the text more readily and it
helps to make screen displays 1look more interesting. Whether
you're in caps or lower-case, try the following:

High Resolution Graphics.

HIRES, PLOT AND LINE

This program will produce a random star-field (to execute it use
RUN just as you would for any program):

PROGRAM 3.1(a)
PLOT COLOR(0-15) BACKGROUND COLOR(0-15)

0=0OVERWRITE OLD DRAWINGS;
1=CLEAR SCREEN BEFORE DRAWING
10 hires 1,0,1
20 for z=1 TO 100
30 plot rnd(1)*319,rnd(1)*199,1
40 next z

HIRES

This is a command which turns the machine onto its high resolution
mode and is necessary before using either 'PLOT' or 'LINE'.

PLOT

'Plot X,Y,Mode' plots a point at screen co-ordinate
X(0-319),Y(0-199).

* In plot mode 0, it plots the point in the background color -
so you might not be able to see it!

* In plot mode 1 it plots in the plot color of HIRES
* In plot mode 2 it reverses the color of the point

Plot mode 2 requires a bit more explanation: if the point specified
is currently a background color point, it will be changed to a plot
color point: if it is already a plot color point, then it will be
changed into a background color point. If you have a color TV as
distinct from a monitor, you may have a multi-colored image instead
of white points on black. This is caused by slight misalignments
which are virtually unavoidable with the TV. On the other hand, if

3-2

you are using a monitor, rather than a TV, then all the ‘stars'
should be white. If they are not then your monitor is not working
as well as it should - perhaps you should have a word with your
dealer!

By the time you have finished reading the explanation above, your
program should have finished plotting the star field. Good, but
how do you get back to the normal screen when you have finished
admiring your masterpiece? The answer is hit (not too hard) any
key. <SPACE> or <RETURN> are good. Try it!

You will get quite an interesting pattern if you try this instead:
PROGRAM 3.1(b)

10 hires 1,0,1

20 for z=1 TO 5000

30 plot rnd(0)*319,rnd(0)*199,1

40 next z
This is because RND(0) generates its 'random' numbers from your
computer's internal clock. If you use RND(1l) instead, a more
random pattern will be produced.
LINE and NRM
Another useful graphics command is LINE; try this:
PROGRAM 3.2

10 hires 1,0.1
20 line 10,100,200,50,1

That will draw a line. In general terms, a LINE statement is of
the form:

starting co-ordinates of line

end co-ordinates of line

line MODE

Where X1 and Y1 define the starting point of the 1ine, and X2 and
Y2 define the end point, i.e:

L —— 320 pixels ———p
A
200
g pixels
b —
< X2 ’l

FIGWRE 3.1

* The X's must be between 0 and 319. and the Y's between 0 and
199.

* Mode 0 converts all points along an existing line into the
background color.

* Mode 1 produces a line in the foreground color, ie. the last
color specified in the HIRES command.

* Mode 2 will cause all points along a line being plotted to be
plotted in the appropriate color to that of the screen at those
points- just like mode 2 of the hires command.

Try this short program.
PROGRAM 3.3

10 hires 6.7,1

20 for z=0 to 60

30 Tine rnd(0)*319,rnd(0)*199,rnd(0)*319,
rnd(0)*199,1

40 next z

Try something more elaborate with the following program:
PROGRAM 3.4

10 for c=0 TO 15

20 if c=1 then next c

30 hires 1,c,1

40 for yl=0 TO 199 step 199
50 for y2=199 TO O step -1

60 Tine 0.y1,319,y2,2

70 line 0,y2,319,y1,2

80 next y2:next yl

90 for w=0 TO 10000:next w

100 next c

When (if) you get fed up with it, press <RUN/STOP>, type: NRM
<RETURN>.

The NoRMal screen will only appear after you've done all this, or
on the first key pressed after the program has finished. Try
changing the STEP size on line 50: values between -2 and about -10
are quite interesting. Also try changing the first number in the
HIRES command on line 30.

An Etcha-Sketcha Game

In order to demonstrate the 'PLOT' command in action, let's develop
an ‘'etcha-sketcha' type program. The basic idea of this is that,
following an input, a character will be printed on the screen,
i.e.:

PROGRAM 3.5(a)

10 print "<CLR>"
20 input a$

30 print "

40 goto 20

(To stop this program, keep RAPIDLY alternately pressing RUN/STOP
and RETURN continuously until it stops!)

What Program 3.5(a) does is to print an asterisk after every INPUT.
This is not the smoothest bit of programing around, as the input
command itself uses two lines of the screen, prints a '?' and sits
around waiting for the user to press RETURN. There is, however, a
method of inputting data that does not produce a question mark or
even require one to press RETURN. This is the 'GET' command.

3-5

GET

What the 'GET' command does, as the name implies., is to 'GET' a
character from the keyboard. The command takes the form of:

10 get a$

If no key is pressed, then a$ will have the value of "", a null
string. Thus, to make any sense out of the 'GET' command, we have
to check whether a key has been pressed. In Program 3.5(b),a GET
command is used to test the value of a$§. If a$ is "", then no key
has been pressed, so the program loops back to line 10 to accept
another input. This program will loop back continuously to line 10
until a key is pressed. When this is done, the program stops.

PROGRAM 3.5(b)

10 get a$
20 if a%="" then 10

Program 3.5(c) shows a further development where the 'GET' is used
to keep a message on the screen while the user reads it. The
program will then continue after a key has been pressed.

PROGRAM 3.5(c)

5 print "press any key"
10 get a$
20 if a%$="" then 10

So, wusing the GET command, the simple etcha-sketcha program
becomes:

PROGRAM 3.5(d)

10 print "<CLR>"

20 get a$

30 if a$="" then 20
40 print "*

50 goto 20

Now, when run, we have an asterisk printed every time a key is
pressed, but so far this character only moves down the screen.

3-6

To remedy this, we will use four control keys: 4, 5, 6 and 7.
Where '4' will move the cursor left and '7' will move the cursor
right, '5' will move the cursor down and '6' will move the cursor
up.

4 moves the cursor left

7 moves the cursor right
5 moves the cursor down

6 moves the cursor up

* % ¥ %

Lines 40 to 70 of program 3.5(e) carry out the processes required
when moving the cursor about the screen, line 50 being the easiest
case. When a '7' is detected, no great problem is presented as the
program simply prints an asterisk.

To move in other directions is more problematic, as the cursor is
always positioned one place to the right of the last character
printed following a 'PRINT' sequence.

Thus, to move a character one place left the process is:

f————last character printed

(i) before move

L—current cursor position

(ii) move cursor two places left

— G

current cursor position

(iii) PRINT new character cursor moved

character printed at
current position

(iv) cursor now positioned for next 'PRINT' operation

3-7

In just the same way when moving the cursor up and down, the
additional cursor-back control is required ie:

(i) before move last character printed
I current cursor position

x

(ii) move cursor one place down

*

Lcurrent cursor position

(iii) move cursor one place left

current cursor position

(iv) PRINT new character

L
cursor moved to right

(v) cursor now positioned for the next 'PRINT'

Thus. adding these control lines yields Program 3.5(e).

PROGRAM 3.5(e)

40 if a$ ="4" then print"<2LCRSR>*";

50 if a$ ="7" then print "*";

60 if a$ ="5" then print"<DCRSR><LCRSR>*";
70 if a$ ="6" then print"<UCRSR><LCRSR>*";
80 goto 20

Now, when run, the program will draw lines of asterisks in any
direction we choose, giving free reign to your artistic endeavors!

EXERCISE 3.1

Write a small program that will print on the
screen which key the user should use to move
the asterisks. This piece of program should
be placed in the lines 1 to 9 and end with a
'PRESS ANY KEY' type prompt serviced by a GET
statement. A possible answer is given on
page 11.3

Although the present version of etcha-sketcha runs satisfactorily,
it still looks somewhat clumsy with its asterisks all over the
screen. However, we can improve the display considerably by means
of the Honey.Aid command "PLOT".

First of all, we need to set up the high resolution screen and
accept a user's input, using GET.

PROGRAM 3.5(f)

10 hires 6,7,1
20 get a$:if a$="" then 20

3-9

Next, instead of using cursor controls and printed characters such
as asterisks, we will merely have to increment, or decrement, the
co-ordinates for the PLOT command:

PROGRAM 3.5(g)

30 if a$ ="4" then x=x+l:goto 80
40 if a$ ="5" then y=y+l:goto 100
50 if a$ ="6" then y=y-l:goto 90
60 if a$ ="7" then x=x-1l:goto 70

Its no good trying to PLOT co-ordinates outside the screen area -
indeed, Honey.Aid will detect any attempt to do so and report an
error. We need to make sure therefore that we only attempt to PLOT
within the screen area displayed; ie. X must be controlled to
remain between 0 and 319 and Y between 0 and 199 ie:

PROGRAM 3.5(h)
70 if x<0 then x=0:goto 110
80 if x>319 then x=319:goto 110
90 if y<0 then y=0:goto 110
100 if y>199 then y=199
110 plot x,y,1
120 goto 20

You should now have a working instant Honey.Aid type etcha-sketcha
program!

Have fun!

SOUND

Now to look at some of Honey.Aid's music commands (have the sound
on your TV turned up). Try typing in:

sound 1,4,1,6 <RETURN>
That note is Middle C.
The first number (1) is the 'voice' number, and may be 1, 2, or 3.
Any voice may be used to produce random or white noise, but more of
that in chapter 9. For now voice 3 is used. Try:

sound 3,5,1,6

The second number (5) is the octave, and may be from 0 to 7.

3-10

Try :

sound 1,2,1,6
and

sound 1,7,1,6

The third number (1) is the note, and may be from 0 (silent) to 12
(high note). The last number is the length or duration of the note
and may be from 1 to 8. Summarising this:

voice number

octave

sound 1, 7, 1, 6

t—-duration of note

note

Then try this short program to run through all the notes in one
octave.

PROGRAM 3.6

10 for x=1 to 12
20 sound 1,3,x,6
30 print x;

40 next x

Then try this program to run through all the notes in eight
octaves.

PROGRAM 3.7

10 for y=0 to 7
20 for x=1 to 12
30 sound 1,y,x,5
40 next x

50 next y

60 end

If you change 1ine 30 to SOUND 3,Y,X,5, you will get a sound like a
faulty rocket blasting off!

3-11

Try this: (First type NEW) this is a 'piano' program!

PROGRAM 3.8
10 n$="zsxdcvgbhnjm"
20 get x$:if x$="" then 20
30 for i=1 to 12
40 if mid$(n$,i,1)=x$ then nn=i:i=13
50 next i
60 sound 1,4,nn,5
70 goto 20

Now the keys stored in N$ are like piano keys (except that you can
only play one note at a time). Any other key will give the last
note pressed. Try this sequence of letters:
ZCBBNNBCZCBBVCXBCZVCXXZZCBCVCZ

To stop this program, press RUN/STOP.

ENVELOPE
Now try adding this line to the program:
5 envelope 1,2,9,3,0

and then try executing it. Honey.Aid's ENVELOPE command alters the
tone quality of the note generated. Type:

5 envelope 1,5,5,3,10
and try running that.

The first number (1) is the voice number, and, as for the SOUND
command above, may be 1,2 or 3 because your C-64 has three
"voices". For the purpose of computer music, a musical sound is
said to comprise four phases : the attack (A), decay (D), sustain
(S) and release (R) phases - ADSR. This is shown on the graph
below:

3-12

< maximum volume:
determined by setting
of volume register.

] \ 4

— a —P— d —Pl€—controlled by gate bit——}k—~r——}‘

: | ‘: setting and clearing | :
i ! : { |
| | i | :
| ! I I I
| Attack | Decay | Sustain Phase 1 Release |
| Phase |

1 1

| Phase | Phase |
| ' (

FIGURE 3.2

Different musical instruments produce notes with different
"envelopes" - that is (partly) why they sound different! You will
find this discussed more thoroughly in a later chapter.

The second number in the envelope defines the length of the attack
phase - how long the note or sound will take to build to its peak
volume. The attack number may be from O to 15. The smaller the
number, the sharper (shorter) the attack.

Next comes the decay phase - after the note has reached its peak
loudness, it decays for a period of time determined by the third
number in the envelope command - again from O to 15.

The third number, which can be from O to 15 as well, but, unlike
the other three numbers (which define the Tlength of their
particular phase), the sustain number defines the relative loudness
of the phase, in relation to the peak volume. The length of the
phase is controlled by the gate bit (see Chapter 9).

Following this is the release phase. Here the note fades out - the

length of time this takes is determined by the last numbers in the
envelope command, which may be from 0 to 15.

3-13

Summarizing that:
voice number

attack
5 envelope 1, 5, 5,3, 10

t——— release
sustain

decay

FIGURE 3.3

Try a few different envelopes in line 5 of the above program and
see (or hear!) what happens.

PLAY

This command allows your computer to remember a tune. The notes to
be PLAYed are stored in a string variable.

Try running this program:
PROGRAM 3.9

10 et a$="<blk>c4<f5>C<f7>dgfgagfgdg<fs5>"
20 play a$

(To get the <blk>, hold down CTRL and press 1. <f5> etc. can be
obtained simply by pressing one of the four function keys on the
right of the C-64).

Note that the envelope from the earlier program is still operating
(unless you've switched off since then) - certain Honey.Aid
commands have been designed to stay as set until changed. This
enables you to set new default values that stay set until you wish
to change them. The ENVELOPE command is one of these, SOUND is
another and so is PLAY.

3-14

The 'PLAY' command is defined as follows: each note in a$ is
defined by a string of up to four symbols:

The first of the four symbols represents the voice. The C-64 has
three voices and you may choose voice 1 by using <CTRL 1>(or
<BLK>), voice 2 by using <CTRL 2> (or <WHT>), and <CTRL 3> (or
<RED>) for voice 3.

The second of the symbols represents the note and you can choose ¢
de fgab for the naturals or C D F G A for the sharps. Flats
are obtained by using the tonally similar (i.e. previous) sharp,
i.e. for e flat use D#. An r gives a rest but you can use a
hyphen ("-") instead.

The third of the symbols is octave number; you can specify 0 to 7.

Fourthly and finally comes the note duration for which we use the
function keys <fl> breve, <f3> semi-breve, <f5> minim, <f7>
crotchet, <f2> quaver, <f4> semi-quaver, <f6> demi-semi-quaver and
<f8> a hemi-demi-semi-quaver. Thus, to specify a middle C with
voice 1, we would place <BLK>c4<f5> in the string, which is exactly
what we find in line 10 of Program 3.9.

Summarizing all that:

voice 1
note 'C'
play<CTRL1>c4<f5>
crotchet
octave 4
FIGURE 3.4

We did say that a note is defined by a string of up to four
characters. It can be as little as one, however.

The trick is that if a note has the same voice as the previous
note, then there is no need to put the voice characters in again.
The same applies to the note, the octave or the duration. Looking
at line 10 of Program 3.9 then you can see that the second note is
another middle C using voice 1 but this time it is a quaver, the
third is a D and the voice must be 1, the octave 4 and the duration
a quaver and so on. In technical terms we say that Honey.Aid
defaults these characters to their earlier values.

3-15

TEMPO
If you now add this to Program 3.9:
2 TEMPO 300
the 1ittle jingle will be played more quickly.

The *'TEMPO' command controls the speed with which a sound, note, or
a tune is played. A low number means play slowly, while a high
number means play more quickly. The range of numbers for tempo is
from 1 upwards. When Honey.Aid is first loaded, tempo is set at
120 - ie. 120 crotchets per minute.

Once Honey.Aid is loaded into your C-64 any program you write can
incorporate Honey.Aid commands. For instance, the last few lines
of the etcha-sketcha program can be improved further by including a
beep every time an attempt is made to draw outside the screen area:

PROGRAM 3.10

70 if x<0 then x=0 sound 1,4,4.6:goto 110

80 if x>319 then x=319:sound 1,5,4,6:g0to 110
90 if y<0 then y=0:sound 1,2,4,6:goto 110

100 if y>199 then y=199:sound 1,7,4,6

Honey.Aid has many other commands, and they are listed in Appendix
2. Many will be introduced in other chapters as and when required.
As well as the commands, that make it easier to incorporate the
C-64's features into your programs, Honey.Aid incorporates a number
of ‘utility' commands that make your programing easier. One
important feature of these utility commands is that any program
written using these will operate on ANY C-64, not just one loaded
with Honey.Aid.

AUTO

Auto is a command that carries out line numbering automatically.
When typing in a program it can get a bit tedious putting line
numbers at the beginning of each line, so Honey.Aid will do it for
you. If you type 'auto <RETURN>' and then type in a line number.
say 10, from then on a new line number (20, 30...) will be provided
every time you press <RETURN>.

3-16

Try typing:

auto <RETURN>
10 print "hello" <RETURN>

You will see a '20' appear AUTOmatically. If you press RETURN
instead of typing something onto line 20, AUTO will be turned off,
i.e. typing in an empty line switches off the AUTO command.

The AUTO command defaults to a line spacing of 10 - i.e. if you
start at line 50, the next line AUTO provides will be 60, etc. If
you want a different line spacing then you just type it in:

auto 100 <RETURN>

will give spacings of 100. Note that line spacings must be
positive integers.

NUMBER

NUMBER is a command that will operate upon a program that you have
written and renumber all the line numbers in equal increments, as
well as adjusting all the GOTO's etc. so that they still GOTO the
right place! Whereas AUTO provides each line of a program with a
Tine number while you type it in, NUMBER is used to tidy up line
numbers,for example, after you've inserted or deleted a few lines.
Suppose you've been editing a program and have ended up with the
following:

PROGRAM 3.11

5 print "hello"

10 input a$

20 if a$<> "no" goto 90
57 print a$

90 stop

3-17

If you want this to start at line number 100 and increase by 10 for
each line, you would type:

NUMBER 100,10 <RETURN>
and your program would end up as:

100 print "hello"

110 input a$

120 if a$<> "no" goto 140
130 print a$

140 stop

Note that the GOTO on line 120 has been corrected by the NUMBER
command. NUMBER will correct all GOTO's, GOSUB's etc.

oLD

Another useful, at times life-saving, Honey.Aid command is 'OLD'.
If you have typed 'NEW' to wipe out a program and then changed your
mind, you can get the program back by typing 'OLD' - provided you
haven't begun typing in a new program or assigned any variables.

FIND

Sometimes, during programing, you will want to find out where a
particular command or string has been used. For instance, you may
be sure that you've used GOTO 130 somewhere, but you just can't
find it! Honey.Aid's 'FIND' comes to the rescue! Typing:-

find.goto 130.

will cause your computer to 1list all 1lines in which the string
'goto 130' occurs. The full stops or periods (.) are called
‘delimiters' and can be almost any symbol you choose, as long as
they don't appear in the string being searched for. Some examples
of FIND statements are:

find$x=5%

findx123.64x

find"b6=2"

findaharrya <- WRONG! 'a' appears in the word harry
and so cannot be used as a delimiter when searching for occurrences
of harry.

3-18

Actually, the use of quotes (") as a delimiter has a special
function: if you want to find something in a program that appears
in quotes then you MUST put it in quotes in the 'FIND' statement.
Thus:

find.print.
would find PRINT in

10 print "start"

or the value of er]
40 printer

but not in
50 input "printer or screen";a$

However, if we use quotes as delimiters, i.e.
find "print"

then we will NOT find PRINT in
10 print "start"

or /[the value of er]
40 printer

but we WILL find PRINT in

50 input "printer or screen";a$
Another thing we can do with the FIND command is tell it on which
line to start FINDing and where to stop, just like the LIST
command; thus:

find.halo.,100-200

will search from line 100 to line 200 dinclusive for the string
‘halo’.

find.x.,150-
will search from line 150 to the end of the program,
find.emperor.,-400

will search up to and including line 400.

3-19

CHANGE

Instead of just finding a string, you may want to change it to
something else. For example:

change.print.input.

will change all occurrences of the string of letters p,r,i,n and t
into input.

change.print x.print a2.,100-

will change all occurrences of print x into print A2, from line 100
to the end of the program, but the comments relating to the use of
quotes as delimiters in the description of FIND above apply to
CHANGE as well. Some examples of CHANGE commands are

change$hello$goodbye$,200-400
changea=7a=9a,-950

Change is a really useful command but very faithful! It will do
just what you ask it to so beware - the string that you wish to
change may occur in far more places than you thought! Before doing
a 'change' on a long program it is a good idea to do a 'find'.
That way you can see just what you will be changing.

For more information these and other Honey.Aid commands see
Appendix Two.

3-20

CHAPTER

Putting in structure: The Hangman Game

n chapter 2, a number guessing game was developed that

utilized a random number generated by the Commodore 64. In

this chapter a similar game will be written, but this time

using words, i.e. a variation on the popular hangman game.
Thus, instead of asking the player to guess a number, (s)he will be
required to guess a word letter-by-letter. First of all though,
this chapter will investigate ways of storing these words and then
of delivering them one by one when required.

When dealing with random numbers, the C-64 can generate an endless
supply to order, as it has built into its ROM (Read Only Memory) a
program which can produce these as rapidly as they can be consumed.
Of course, when dealing with words, the same thing is not possible.
A1l the words to be used must be stored in the program somewhere,
and thus must be defined by the programer. A common way of
storing such data is in strings, and the program could contain such
statements as:

LET A$="COMMODORE 64"
LET B$="KEYBOARD"
LET C$="SCREEN"

READ....DATA

This, however, would be an extremely tedious way of doing the job
and BASIC provides an alternative method. It utilizes two
commands, READ and DATA, the first one telling the machine to READ
one piece of data and the second telling it where to find the data.
The DATA statement is the one piece of program that is footloose -
it can go anywhere in the program. It is, however, usual to put
it right at the end so that it is out of the way. Program 4.1
illustrates this, with line 1030 reading one piece of DATA, which
is PRINTed out in Tine 1035, the DATA originally having been stored
at line 9000.

4-1

PROGRAM 4.1

1030 READ A$
1035 PRINT A$
9000 DATA "ONE", "TWO", "THREE"

When run, this program will retrieve only one piece of DATA, e.g.
'ONE', and then PRINT this onto the screen. String data does not
have to be enclosed in quotes in a DATA statement. If the string
contains a comma, as in JONES,ED then it is wise to enclose it in
quotes. For example, try 9000 DATA "JONES,ED",ONE,TWO in program
4.1. Program 4.2 shows a very similar program where numbers are
stored rather than words.

PROGRAM 4.2

1030 READ A
1035 PRINT A
9000 DATA 1,2,3

In this program, the changes from Program 4.1 are really only what
one would expect: the numeric variable name 'A' replaces the 'A$',
and the data is not enclosed in quotes as it is numeric.

READ statements may be as simple or as elaborate as the program
demands and a number of variables could be READ in by one line of
program; e.g. READ A$,A,B$. However, when doing this the greatest
care must be taken to ensure that when the READ statement tries to
READ a number it finds a number and not a string. If a mismatch in
types occurs, the machine will report an error. As this is
straightforward, try a little exercise!

EXERCISE 4.1

Write a program to READ the numbers 1 to 4
from DATA statements in both numbers and
letters, and to display them on the screen
like so:

ONE

TWO

THREE

FOWR

W N

A possible solution is given on page 11.3.

Having found a way of storing and retrieving data, some way has to
be found of making a random selection from it. By using a
FOR...NEXT loop to READ a particular number of items from the DATA,

4-2

one particular piece may be retrieved, as shown in Program 4.3.
In this program, the loop is executed three times, and thus the
third piece of data is retrieved.

PROGRAM 4.3

1020 FOR X=1 T0 3

1030 READ A$

1040 NEXT X

1050 PRINT A$

9000 DATA ONE,TWO, THREE,FOUR

In fact, three pieces of DATA will have been retrieved but only the
string 'THREE' is printed. On the first pass through the loop,
the value of A$ would have been 'ONE' but during the second pass
this would be overwritten by 'TWO' and then finally by 'THREE'.
It was this string 'THREE' that was stored in A$ at the time that
Tine 1050 commanded it to display the string on the screen.

On each pass through the loop, 1ine 1030 READs the next item in the
DATA statement. It knows which item is next as, each time a READ
is performed, a pointer is moved along one item to point to the
next one to be read. This can give rise to problems if an attempt
is made to read more DATA than exists. For instance, if Program
4.3 is put inside a second loop, i.e. 'nested', it will cease to
run on the second pass after all four pieces of DATA have been
READ. Fortunately, BASIC has a statement to use DATA more than
once in a program.

RESTORE

This has the effect of moving the pointer back to the beginning of
the DATA. This is demonstrated in Program 4.3(a) below, where the
loop in Program 4.3 is nested or buried inside a second loop that
runs it three times. As the nesting of loops is, in itself, a
powerful feature of BASIC, PRINT statements have been inserted into
lines 1000 and 1020. If you feel uncertain about the idea of
nesting, just examine the screen contents after you've run Program
4.3(a). It will show you how the program handles a nested loop.
Firstly it sets Z to 1 and then runs through the 'X' loop with X
equal to 1, then 2 and finally 3. It then Toops back to 1line
1000, sets Z to 2 and then repeats the 'X' loop. On completion of
this, it goes back to T1ine 1000 for the final time with Z set to 3.
Generally, the number of times that the inside loop is repeated is
controlled by the size of the outside loop.

4-3

PROGRAM 4.3(a)

1000 FOR Z=1 TO 3:PRINT"Z=";Z
1010 RESTORE
———— 1020 FOR X=1 TO 3:PRINT"X=";X;" "3
Loop 2 1030 READ A$
Loop 1 — 1040 NEXT X
| 1050 PRINT A$
1060 NEXT Z
9000 DATA ONE,TWO,THREE,FOUR

However many times it is run, Program 4.3 or 4.3(a) will only ever
deliver the third string; if a random delivery is required, then
the loop variable must be replaced with a random number. In this
case the loop is rewritten as FOR X=1 TO 'a random number', the
random number having previously been defined, i.e.

PROGRAM 4.3(b)

1000 R=1+INT(4*RND(1))

1010 RESTORE

1020 FOR X=1 TO R

1030 READ A$

1040 NEXT X

1050 PRINT A$

9000 DATA ONE,TWO, THREE,FOUR

So far, then, a technique has been achieved for reading a word
randomly from a whole 1list of words, and this can be used to
produce a word guessing game of similar structure to that in
Chapter 2.

4-4

EXERCISE 4.2 (a long one)

Produce a flow chart and program for the
following game based on Program 4.3(b).

* Player told rules and possible
words to guess.

Random word chosen.

Player's guess INPUTted.
Increment a count variable.
INPUT checked for right/wrong.
Player told "right/wrong".
Player told how many goes
taken.

Player asked whether another
go wanted.

* Ok ok ¥ o

*

A possible solution is given on page 11.4.

A normal hangman-style game differs from the one above in that in
hangman individual letters are guessed, necessitating the
dissection of strings.

LEFT$, RIGHT$ and MID$

Commodore basic provides us with a number of ways to chop up
strings. The most brutal of these are LEFT$ and RIGHT$. These
simply lop off the left and right ends of strings respectively.
Let's try chopping up a few strings for practice! Firstly we'N
set A$ to "COMPUTER"'. To use the jargon, we will 'set the value
of the variable A$ to the literal value "COMPUTER'. The first
practice will be with 'LEFT$'. This has to be told which string it
is going to chop up, so the command so far is 'LEFT$(A$...)',i.e.
'first find A$'. Following the string name we put the number of
characters that we want to chop off, i.e. 'LEFT$(A$,4)', will give
us 'COMP'. Try that with

A$="COMPUTER"
B$=LEFT$(AS$,4)
PRINT B$

The command RIGHT$() works in exactly the same way except that it
starts at the RIGHT hand end of the string.

Thus if A$="COMPUTER", C$ = RIGHT$ (A$,5) will set the string C$ to
"PUTER", the 5 right-most characters of "COMPUTER". Try it out to
make sure!

In contrast, the MID$ function can be rather more precise in its
operation. It allows one to chop away selectively small or large
bits of the string under the operation. Like a versatile surgeon
it can cut away from the middle or either end of the patient.
Let's examine that in more detail, using the example

A$
C$

"COMMODORE"
MID$(AS$,4,3)

* When the computer sees C$=MID$(...) it knows that a string is
to be dissected and the result stored in the string C$.

* It then carries on and sees MID$(A$...). It translates this
into 'first find A$ and get prepared to do surgery on it',

* Next it sees the '4' in MID$(A$,4....) and this tells it start
at the fourth character of the string.

* Then it reads the '3' in MID$(A$,4,3) and, starting at the
fourth character of the string strips off three characters,
These it stores in CS$.

Thus, following the operation, C$ would contain "MOD".
In general terms, the structure of the command is:
MID$(A$,START,LENGTH).

'START' and 'LENGTH' must both be whole numbers. MID$ will cut out
a part of the string A$ starting at character number 'START' and of
length 'LENGTH' characters.

As we shall see in this game, it is most often useful for our
dissected string or substring to have a length of one character.

4-6

LEN()

Another new command that we need for the hangman game is LEN().
What this does is to report how many characters are in a string,
eg:

A$="THIS IS VERY VERY VERY LONG"
PRINT LEN(A$)

When you enter this, the computer will respond with '27', the
number of characters in A$, including spaces! Thus, if we wanted
to cut a particular string in half we would first need to find the
length of it.

PROGRAM 4.4(a)

10 A$="CUTTING UP"
20 L=LEN(A$)

30 L=INT(L/2)

40 PRINT LEFT$(A$,L)

To give you an idea of how LEN() will be used in the hangman game
look at Program 4.4(b), below.

PROGRAM 4.4(b)

10 A$="MY WORD"
20 PRINT"YOUR WORD HAS";LEN(A$);"LETTERS"

The Program's Structure : Part 1

The structure is defined in the flow chart - Figure 4.1 -« the
various program elements are numbered from 1 to 17. This is done
to help you to match the program to the flow chart, but no direct
bit-by-bit comparison can be made between flow charts and programs.

Standard symbols are used and the names of the four flags (F1 to
F4) used have been inserted into the diamond shaped decision
symbols. In addition, all the subroutines are numbered to
cross-refer to the program - the sequence of these numbers has no
significance at all, as they are purely for reference purposes.
The subroutines will be studied in the numerical order shown on the
chart.

4-7

START

initialisation

choose word
2

display screen
3

1
message
“character

previously tried”
7

YES

was
character
previously tried?
F2
6

NO | F2=0

update array

Fl=1

input guess
4

guess in
word?
F1

increment wrong

guess count
/ 15]

v

display
new screen

of guessed
characters

v

display
new screen

NO
F4=0

[=]

YES

are any
characters

all
goes used

display

Jeft to

tell player
* well done”

I

/

o

—

FIGURE 4.1

4-8

want
another go?
12

Flags

In a game such as this, there are three basic elements, the
structure, the detailed subroutines that carry out the various
actions and the screen display. For instance, a subroutine is
needed to check whether a letter guessed is in the word. Another
is needed to see if it has been guessed already ... and so on. It
is the structure, however, that determines the order in which the
subroutines are called. Once called, a subroutine carries out its
function and then returns control back to the main program. When
the check is made to see whether the letter is in the word, for
instance, the subroutine needs to store the answer 'yes' or 'no' in
such a way that this information can be used later on. This is
done in this program by means of 'flags': constants which are set
to 0 (zero) or 1 (one) for a 'no' or 'yes' answer. In the case of
this first subroutine, for instance, the flag which is given the
name 'F1' s set to 1 for a ‘yes' answer (i.e. the guess was
correct) and '0' for a 'no' (i.e. the guess was incorrect). Once
this process has been carried out for all the subroutines, i.e. the
flags are set, the program can get on with playing the game!

We have already seen how cursor controls can be used for displays,
allowing us to print at any part of the screen. The large number of
cursor symbols can at times be confusing, to say the least, and
this could lead to errors.

The display for the hangman requires an extensive use of PRINTS and
cursor characters, so instead of having 10 right cursors, if we
want to move 10 spaces to the right, we can use the TAB() command.

TAB()

PRINTing on the C-64 is done in terms of columns. As far as the
C-64 is concerned, the video screen is divided into 40 vertical
columns, numbered O to 39. Each character is PRINTed into one of
these columns.

TAB(X) will cause the next character to be PRINTed in column X. Try
the following program :

2 PRINT TAB(20);"A"

When this is run the 'A' will be PRINTed in column 20, because that
was the value set for the TAB. Using TAB() is much easier than
pressing right cursor twenty times, as demonstrated in the above
example, but is not particularly advantageous if only a small
number of right cursors are required. TAB() can only be used to
move the cursor right.

4-9

GOSUB....RETURN

So that the various subroutines of the game can be developed
jndividually and then 1linked together, they are written as
subroutines called by the command GOSUB. This command re-directs
the program to a specified line and the C-64 continues to execute
the program from that line onwards. However, when it comes.to the
command RETURN, it recognizes this as signifying the end of that
particular subroutine and then switches back to the statement after
the GOSUB. Thus, a subroutine is a small section of program that
you tell the program to visit, do a particular job and then RETURN.

Program 4.5 illustrates how to do this. It incorporates three
GOSUBs, one of which is repeated.

PROGRAM 4.5

100 GOSUB 200
110 GOSuUB 300
120 GOSUB 200
130 STOP

200 PRINT "FRED"
210 RETURN

300 PRINT "JOE"
310 RETURN

When this is run, line 100 is executed and this directs the program
to the subroutine at line 200, which prints 'FRED'. Next, line
210 RETURNs the program to line 110 which then redirects to the
subroutine at 300. This is executed, the program again RETURNed
(to line 120), only to be GOSUBed once again to the subroutine at
200. On RETURN from this, the program meets the command STOP
which STOPs execution and prevents the program from running once
again into the subroutines.

The GOSUB command, although superficially similar to the GOTO, has
an important difference - it expects to be matched by a RETURN.
Thus, when the computer executes a GOSUB it automatically stores,
in memory, a return line number for the program to jump back to
once the subroutine is finished (i.e. at RETURN). This is stored
in a special place in memory called the GOSUB stack. If a program
inadvertently runs into a subroutine, i.e. if the STOP in line 130
were not there, then on finding the RETURN in 1line 1010 it would
search for a return line number. However, as the subroutine was
not called by a GOSUB, no return line number would have been stored
and problems would arise. Try this out by deleting line 130 and
running program 4.5 again.

4-10

The Variables Used

In a fairly complicated program like this one, it is a good idea to
make a list of the variables that will be used. This makes 1ife
much easier while developing the program and, in particular, aids
debugging.

(i) Numeric

E the number of Erroneous (wrong) guesses.

L the length of the word to be guessed.

L2 the length of the array of guessed characters (X$).

R the random number that defines the word to be guessed.
X a loop variable, used generally.

(ii) Alpha-numeric (string)

A$ the word to be guessed.

B$ general variable for INPUTs.

G$ the currently guessed letter.

W$ a string made up of the letters guessed to date or dots,
in the correct order. For example, this could be C.M.
if the word were CBM and the letters guessed to date were
'C' and 'M'.

X$ a string made up randomly from all the letters that have
been guessed to date.

Y$ a temporary variable used in GET statements.

Z$ a literal string, either * FIRST ' or ' NEXT ° depending
whether next entry is the the first one or not.

The various program elements are now considered, roughly in the
order shown on the flow chart.

Program Element 1: Initialisation

The initialization routine starts by clearing the screen by
printing the 'clear home' character. After this, lines 450-470 are
used to give the rules of the game, these having been left for you,
the reader, to do your literary best. Real care must be taken
over this documentation phase as, if the game is to stand on its
own without you to explain it, the rules must be absolutely clear.

4-11

The initialization routine can now be written; what it will do is

Clear the screen and set to upper case - Line 410

Announce the game

Give the rules - Lines 450 to 470

Stop the program until the rules have been read and a key
pressed - Line 480

Clear the screen once the rules have been read - Line 490

Putting that into a Program:

PROGRAM 4.6(a)

400 REM SCREEN DISPLAY

410 PRINT "<CLR>";CHR$(142)

420 PRINT TAB(13);"<RVSON><15 SPACES>"

430 PRINT TAB(13);"<RVSON> HANGMAN"
440 PRINT TAB(13);"<RVSON><15 SPACES>

450 PRINT TAB(10);"THESE ARE THE RULES--

n

460 PRINT TAB(11);"<DCRSR>THERE ARE NO R
ULES!"

470 PRINT"<2DCRSR><4RCRSR>PRESS ANY KEY
TO BEGIN"

480 GET A$:IF A$=""THEN 480

490 PRINT "<CLR>"

Each time the game is played, several variables need to be reset
and strings cleared, for instance Z$. On the first run through
the game this is set to ' FIRST ' i.e. the screen then says what is
your Z$ (first) gquess. Immediately after use, Z$ is reset to
"NEXT" so that the player is then asked 'what is your 7% (next)
guess?' Of course, once the game has been played 2%=" NEXT " and
needs re-setting or re-initializing. Other variables need
resetting too, such as E - the number of incorrect guesses so far,
and X$§, a string comprising all the guesses made to date.

PROGRAM 4.6(b)
500 7$=" FIRST "

510 E=0
520 X$=""

4-12

Program Element 2: Choose word

This routine, shown in Program 4.6(c), is very similar to those
discussed above, particularly Program 4.3. It generates a random
number and then searches that number of times through the DATA
statements.

PROGRAM 4.6(c)

1000 R=1+INT (4*RND(1))

1001 R=4:REM development only
1010 RESTORE

1020 FOR X=1 TO R

1030 READ A%

1040 NEXT X

1050 L=LEN(A$)

Line 1001 sets 'R' to the value of '4', so that when testing this
program we know what word to guess. This will save a lot of time
when debugging the program.

Note the FOR....NEXT loop in 1020 runs from 1 to R.

In addition to choosing the word, the subroutine also calculates
its length, L, as this is needed in other subroutines. The
variable 'L' s then used to make up the string W$. At the
beginning of the game this simply contains the requisite number of
dots - i.e. one for each letter. As correct guesses are made the
appropriate letters are inserted in the correct place in the array
and then displayed on the screen.

PROGRAM 4.6(d)
1500 Wg=""
1510 FOR X=1 TO L

1520 W=W§+" - »
1530 NEXT X

4-13

Program Element 3: Display screen

At this stage of the game, all that has to be displayed is the
message telling how many letters the word has, and the string W$.
One thing to note here is that every message printed on the screen
is printed starting at the top left hand corner of the screen. The
down-cursor character 1is used to move the print out into the
appropriate position. This is done to prevent any message being
printed in the wrong area. As the screen display in this program
is very important, one cannot afford to take any chances. By
starting all print events at the top left of the screen and working
down, the position of a print statement no longer relies on the
current cursor position.

PROGRAM 4.6(e)

1540 PRINT"<HOME><2DCRSR>";TAB(8);"YOUR
WORD HAS ";L;" LETTERS"
1550 PRINT"<2DCRSR>";TAB(15);W$

Program Element 4 : Input a guess

A1l that is required here is a simple message to tell the user to
input a guess. Sometimes, however, it will be the 'FIRST' gquess
and sometimes the 'NEXT' guess. This can be accommodated by
assigning the word 'FIRST' to a string during the initialization
and then, once the program has run, changing the contents of the
variable to 'NEXT'. The two elements that do this are shown in
Program 4.6(f). The use of a GET rather than INPUT allows a single
character - presumably a letter! - to be input without the need to
press <RETURN>.

PROGRAM 4.6(f)

500 z$=" FIRST "

1800 PRINT"<HOME><3DCRSR><8RCRSR>WHAT I
IS YOUR";Z$;"GUESS? <LCRSR>";

1810 GET G$:IF G$="" THEN 1810

1820 PRINT G$

1830 Z$=" NEXT *

4-14

A Diversion : Setting the flags.

Once the guess has been keyed in, a check needs to be made to see
whether the Tetter is a correct quess, whether it has been used
before, whether there are any letters left to guess or whether all
the 10 allowed goes have been used up. This is all done in a
subroutine starting at 3000 and is called by line 2000. The
setting of each flag is considered separately below and when each
one has been set, the program is RETURNed by line 3400; i.e.

PROGRAM 4.6(g)
2000 GOSUB 3000
2840 GOTO 1800
3400 RETURN

Program Element 5: Is guess in word?

Once the guess has been made and the word chosen, the subroutine in
Program 4.6(h) simply needs to read through this word looking for a
match for the inputted letter. Should it find such a match, then
F1 will be set to 1. Note that, at the start of this subroutine.
the flag is reset to zero and remains at zero unless the test at
line 3020 proves positive.

PROGRAM 4.6(h)

2999 REM ***xIS GUESS IN WORD?
3000 F1=0
3010 FOR X=1 TO L

3020 IF G$=MID$(A$,X,1)THEN F1=1:GOSUB
5500
3030 NEXT X

Notice that if flag F1 is set then a trip is made to the subroutine
at 5500. Let's see what this subroutine does:

PROGRAM 4.6(1)

5500 IF X=L THEN 5540

5510 IF X=1 THEN 5560

5520 W$=LEFT$(WS$,X-1)+GS+RIGHTS(WS,L-X)
5530 RETURN

5540 WS=LEFT$(W$,L-1)+G$

5550 RETURN

5560 W$=GS$+RIGHTS(WS,L-1)

5570 RETURN

4-15

Remember that W$ holds the status of the word being guessed,
starting off with all dots. As correct guesses are made, the
correct letters are inserted into this string at the appropriate
place so that the word to be guessed is built up gradually.

The letter guessed may be one of three cases:

* The leftmost character of the word. In this case X will be 1
and the instruction in 5560 is followed. The L-1 rightmost
characters are saved and W$ is updated to the correct character
at the left together with the rest of W$ (1ine 5560).

* The rightmost character. Here we save the L-1 characters at the
left of W$ and replace the last character with the guessed
letter (1ine 5540).

* A letter other than these - i.e. in one of the middle positions
of W$. We save all characters to the left of 'X' and all
characters to the right of 'X'. We can then replace the full
stop in the middle with the correct character (lines 5520).

Program Element 6: Was character previously tried?

When a player puts in a guess that is a repeat of a previous entry,
this program treats him kindly. It would be possible to charge
this gquess against his number of allowed attempts but the option
chosen here 1is to report that that particular letter has been
guessed and then loop back for another input. In Program 4.6(j),
F2 is initially set or reset to zero, and is only set to one if the
inputted character, G$, is found in X$.

The value, X$, was set to "", i.e. an empty string on line 520 of
the initialization procedure, Program 4.6(b). As a guess is made,
it is added to the string (program element 8) and so, at this stage
it is only necessary to read through the string to check whether
any of its letters equal G$, the latest guess. One slight
complication exists in that the string gets one letter longer each
time around, so it is always necessary to re-calculate its length
(L2), as in Tine 3110.

4-16

PROGRAM 4.6(3)

3100 F2=0

3110 L2=LEN(X$)

3120 FOR X=1 TO L2

3130 IF G$=MID$(X$,X,1) THEN F2=1
3140 NEXT X

3150 IF F2=0 THEN X$=X$+G$

Program Element 7: Message: "character previously tried"

The aim of this message is to inform the player clearly that the
letter just guessed has been tried, and then to clear the screen
back to its previous state. The message is PRINTed onto a line
that is currently empty. Once on the screen, the message is held
there for a time while the player takes it in and then it is
cleared. What is needed here is a technique for causing the
program to wait for a specific time period.

Delays

The common way to do this is to use a FOR...NEXT loop that does
nothing but go round and round and round. The length of the delay
is then set by the number of times that the program runs through
the loop. Try this out with Program 4.6(i/i), which is designed
to Tet you INPUT the loop length. Run it first with an input of
100, then 1000 and finally 10000 just to get an idea of the loop
lengths.

PROGRAM 4.6(i/1)

10 PRINT"<CLR>"

20 INPUT T:REM SET UP LOOP LENGTH
30 FORZ=1T0 T

40 NEXT Z

50 PRINT "FINISHED!"

A routine such as this allows you to put in delays to suit the
needs of the program.

Once the message in Program Element 7 has sunk in, it needs to be
removed by printing blank spaces over it. This is achieved by
means of a PRINT statement that PRINTS the blank spaces (i.e. " ")
over the text to be obliterated.

4-17

PROGRAM 4.6(k)

4000 PRINT"<20DCRSR><4RCRSR>YOU'VE ALREA
DY TRIED THAT LETTER"

4010 FOR X=1 TO 500: NEXT X

4020 PRINT"<UCRSR><40 SPACES>"

4030 RETURN

Program Element 8: Update array of guessed characters

In this element, as it is already known that the character guessed
has not previously been guessed, it is inserted into W$ at the
appropriate place. The process is carried out by line 3020 in
Program 4.6(1) which reads through the word A$ letter by letter
and, on finding a match with the guess, stores that character in
the appropriate place in W$. If one were to stick to rigid
structured programing, this would be set once F1 is set, by testing
for this flag later. However, once the flag is set, on Tine 3020.
the array can be updated immediately. Indeed, if the setting is
done on the same line, following a colon, you can be sure that it
will only happen if the earlier 'IF' statement gives a positive
(i.e. a YES) answer. (We have already seen how the subroutine at
5500 works.)

PROGRAM 4.6(1)

3020 IF G$=MID$(A$,X,1)THEN F1=1:GOSUB 5
500

Figure 4.2 demonstrates the process for the INPUT of an 'E' (i.e.
G$="E") where A$="COMPUTER" and the 'E' has not previously been
guessed.

LOOP A% W$ W$
NUMBER before after
1 C .
2 0 .
3 M .
4 P .
5 U .
6 T .
7 E E
8 R .
FIGURE 4.2

4-18

Program Element 9: Display new screen

It is only necessary at this stage to print out the current state
of the guessed word, this being done in line 3040 of Program
4.6(m).

PROGRAM 4.6(m)
3040 PRINT"<DCRSR>";TAB(15) ;W$;"<3UCRSR>"

Program Element 10: Are all characters guessed?

To check this, string W$ needs to be read through to see if any
character position remains unfilled. If this is so then F3 is set
to al, in Tine 3230 of Program 4.6(n).

PROGRAM 4.6(n)

3199 REM ****ARE ALL CHARACTERS GUESSED?
3200 F3=0

3210 T$="."

3220 FOR X=1 TO L

3230 IF T$=MID$(W$,X,1) THEN F3=1

3240 NEXT X

Program Element 11: Message "well done"

This element tells the player that (s)he has guessed the word
correctly. Once the message is on the screen, the game is over and
there is, therefore, no need to display it for a fixed time. As the
next stage of the program is to ask the player if (s)he wants
another go, the message can be left on until (s)he makes a move.
Unlike the other subroutines, this one is called by a GOTO, as, on
completion, the program runs into the 'do you want another go?'
routine. Sticking to pure structuring, the program would be called
by a GOSUB and then, having RETURNed, would be directed to the
termination procedure.

PROGRAM 4.6(o0)

4300 PRINT"<HOME><10DCRSR>";TAB(18);"WE
LL DONE"

4310 PRINT TAB(18);"YOU HAVE"

4320 PRINT TAB(18);"GUESSED"

4330 PRINT TAB(18);"THE WORD"

4340 FOR X=0 TO 500:NEXT X

4350 GOTO 5000

4-19

Program Element 12: Do you want another go?

This is a simple test for the key 'Y' as shown on line 5030 of
Program 4.6(p). If the answer is 'N' (or indeed, anything other
than 'Y') then the closing message "BYE" terminates the whole
proceedings.

PROGRAM 4.6(p)

5000 PRINT"<5DCRSR><BLU>"

5010 PRINT TAB(8);"DO YOU WANT ANOTHER G
O?II

5020 GET A$:IF A$="" THEN 5020

5030 IF A$="Y"THEN 490

5050 PRINT"<CLR><9DCRSR>";TAB(18);"BYE":
END

Program Element 13: End

This part is most conveniently appended to the end of the previous
element with a friendly (!) PRINT "BYE." (or whatever you wish =
see line 5050 of Program 4.6(p)).

Program Element 14: Increment wrong guess count

The variable 'E' records the number of wrong guesses and is simply
incremented at the appropriate time whenever F1 is set to '0'. It
is done in line 2800 following the testing of the flag in Tine 2300
of Program 4.6(q).

PROGRAM 4.6(q)
2300 IF F1=0 THEN 2800

2800 E=E+1

4-20

Program Element 15: Display new screen

When the quess is incorrect, the player is told "SORRY THAT LETTER
IS NOT IN THE WORD."

PROGRAM 4.6(r)

4200 PRINT"<HOME><20DCRSR><5RCRSR>SORRY
THAT LETTER IS NOT IN THE WORD"

4210 FOR X=1 TO 500 : NEXT X

4220 PRINT"<UCRSR><40 SPACES>"

4230 RETURN

As in a previous subroutine, the message is maintained on the
screen by the FOR.. NEXT Toop on line 4210

Following this, the hangman must be drawn. The hangman we will
draw will be created by using the graphics characters obtainable
from the keyboard. These are characters obtained by pressing
either the Commodore key or the shift keys.

ON...GOTO

The individual pieces of the hangman will be drawn using PRINT
commands, and the subroutine will be subdivided into separate
program sections. One section will be for drawing the frame, one
for drawing the head and so on. These individual sections will be
accessed depending on the value of 'E' (the incorrect guess count),
using a special version of the IF...THEN command, called ON...GOTO.
This works a bit Tike lots of 'IF...THEN...' commands would. Taking
the example:

ON X GOTO 100,200,300

The computer understands this as:
" ON the value of X, GOTO 100, 200, 300"

Thus if X = 1 then the program is directed to line 100, if X is 2
then the program goes to line 200 and so on. If X is '0', or
greater than the number of line numbers 1listed the program will
continue onto the next line. As well as using 'GOTOs', the ON...
command can just as well use GOSUBs. In this case, it directs the
program to the subroutine in just the same way as would any GOSUB.

4-21

For drawing the hangman graphics we will use an 'ON GOTO' command.

PROGRAM 4.6(s)

4400 ON E GOTO 4500, 4490, 4480, 4470, 4
460,4450, 4440, 4430, 4420, 4410

4410 PRINT "<HOME><13DCRSR><11RCRSR>4<DC
RSR>CLCRSR>t <DCRSR><LCRSR> <9UCRSR>"
4420 PRINT"<HOME><13DCRSR><9RCRSR>*+ <DC
RSR><2LCRSR>1 <DCRSR><LCRSR>¥<9UCRSR>"
4430 PRINT"<HOME><11DCRSR><11RCRSR>=4<5U
CRSR>"

4440 PRINT"<HOME><11DCRSR><8RCRSR>¢ <5UC
RSR>"

4450 PRINT"<HOME><11DCRSR><10RCRSR>+<DCR
SR><LCRSR>IK6UCRSR>

4460 PRINT"<HOME><8DCRSR><IRCRSR>e <DCR
SR><3LCRSR>Y #IKDCRSR><3LCRSR>~<4UCRSR
>

4470 PRINT"<HOME><7DCRSR><10RCRSR>1<DCRS
R><LCRSR>-<2UCRSR>"

4480 PRINT"<HOME><7DCRSR><6RCRSR><DCRS
R><LCRSR><<3UCRSR>"

4490 PRINT"<HOME><7DCRSR><7RCRSR>-T—<UC
RSR>"

4500 PRINT"<HOME><7DCRSR><6RCRSR>DCRSR
><LCRSR><DCRSR><LCRSR>EKDCRSR>SLCRSR>I <D
CRSR><LCRSR>1 <DCRSR><LCRSR>I <DCRSR><LCRS
R>1 <DCRSR><LCRSR>1 <DCRSR><LCRSR>I <DCRSR>
<LCRSR><DCRSR><LCRSR>| "

4520 RETURN

4-22

Program Element 16: Are all goes used?

This section is a simple test of the variable 'E':if it is equal to
9, F4 is set to 1.

PROGRAM 4.6(t)

3300 F4=0 .
3310 IF E=9 THEN F4=1
3400 RETURN

Program Element 17: Display new screen

By this point in the game, it's all over for the player and that's
what the message says in lines 4900 and 4905. The player is given
the correct solution to the game as some compensation!

PROGRAM 4.6(u)

4900 PRINT"<HOME><12DCRSR>";TAB(15);"S0O
RRY YOU'VE HAD"

4905 PRINT"TAB(15);"YOUR TEN GOES"

4910 PRINT TAB(15);"THE WORD WAS ";A$
4920 FOR X=1 TO 500 : NEXT X

4930 RETURN

The Program's Structure: Part II

A11 that remains to be done now is to sort out the structure of the
program so that the various routines are called at the appropriate
time.

There are many possible ways that this could be achieved by
following through the flow chart and choosing a series of routes
that covers all possibilities. However, that would soon become
complicated and it would be impossible to avoid duplication. A
more logical way would be to group together all the routines that
set flags, once the necessary data is available to condition these.
Having run through the routines, the flag structure is as shown in
Figure 4.3. This figure is designed to display clearly the
various flag states for a particular game state.

4-23

game status F1 F2 F3 F4

1 guess correct, character

previously tried 1 1 1 0
2 guess correct, all

characters now guessed 1 0 0 0
3 guess correct, all

characters not yet guessed 1 0 1 0
4 guess incorrect,

all goes used 0 0 1 1
5 gquess incorrect,

some goes left 0 0 1 0
6 guess incorrect, character

previously tried 0 1 1 0

FIGURE 4.3

The logic control section can be drawn by means of this figure and
the flow chart, and should be structured to run through all the
necessary subroutines as economically as possible. There's no
rule for doing this but one (very logical) way would be to work
through the flag structure diagram and to cover each status
line-by-line with a composite flag testing statement. Thus, game
state 1 could be tested by a statement:

IF F1=1 AND F2=1 AND F3=1 AND F4=0 THEN (Take appropriate
action)

While this is, strictly speaking, logically correct, most
programers would divide the logical tests into sections and deal
with them section by section. This is done below, although there
is nothing to stop you adopting the straight logical approach.

The flag-setting routines, the logic-defining part of the game,
have already been described - these being the subroutines starting
at line 3000 and ending with the RETURN at line 3400.

With the approach adopted here, the first task is to look for the
easiest settled case. For instance, if the character has
previously been guessed, then, regardless of whether or not it is
in the word, i.e. game states 1 and 6, all that remains to be done
is to report the facts and then go back for another input. This
is readily dealt with by the one line of Program 4.6(v) which tests
the flag F2 and then directs the program to the relevant

4-24

subroutine. On completion of this, of course, the program will
RETURN to line 2200 and thence be directed to line 1800 for the
next input.

PROGRAM 4.6(v)
2200 IF F2=1 THEN GOSUB 4000:G0TO 1800

Once F2 has been tested and a branch taken when appropriate, it can
be accepted throughout the remainder of the logic control section
that F2=0.

The next test made is for a correct/incorrect answer (F1). When an
incorrect one is found, the program loops to 2800, the section
between 2400 and 2800 dealing exclusively with correct answers, and
that from 2800 to 2830 with incorrect ones. In working with this
structure it eliminates the necessity of rechecking F1 constantly.
We know that between lines 2400 and 2800 F1 always equals 1 and
that in the section starting at 2800, it always equals zero.

PROGRAM 4.6(w)
2230 IF F1=0 AND F2<>1 THEN 2800

Following this, it only remains to test F3 to check whether all the
characters have been guessed. If they haven't, then 1line 2500
(Program 4.6(x)) directs the program back for another letter to be
entered. If they have been guessed, then the program is directed
to the subroutine at 4300 to congratulate the player and then sent
to line 5000 with a GOTO. This latter choice is necessary as the
routine at 5000 asks whether the player wants another go. On
receipt of a 'Y' the program returns to the beginning of the game,
while a 'N' produces the farewell message.

PROGRAM 4.6(x)

2500 IF F3=1 THEN 1800
2700 GOSUB 4300: GOTO 5000

The remainder of the logic control section, from 2800 onwards,
deals with game states concerned with wrong guesses (F1<>1). As
the error variable 'E' is used to control the graphics at the end
of the game, it must be incremented when a wrong answer is given;
i.e. a simple E=E+l (line 2800 of Program 4.6(y)). Next, the
string of letter guesses must be updated using the subroutine at
4200 (1ine 2810). Following this, the graphics display is
completed according to the value of E (GOSUB 4400) and then a test
is made on the value of E to see if all 10 goes have been used up.
If they have F4=1 and the message is given that it's all over and
then the subroutine at 5000 is called (line 2830) and the player

4-25

asked whether another go is required.
PROGRAM 4.6(y)

2800 E=E+1

2810 GOSUB 4200

2820 GOSUB 4400

2830 IF F4=1 THEN GOSUB 4900:GOTO 5000

The final few lines of the program provide the stock of words for
the player to guess. These are stored in DATA statements at line
11000. In the example given only four words are provided, but
this number can be increased as desired. One other change will be
needed to ensure that all these additional words are READ. The
variable 'R' needs to be set to a number between 1 and the number
of words in the DATA statement. Thus if there are 20 words stored
in the DATA statements the value of 'R' would be set to
R=1+INT(20*RND(1)). The DATA statement structure is as shown in
Program 4.6(z).

PROGRAM 4.6(z)
11000 DATA BUG,CBM,COMPUTER,TYPE

Once the sections of this program are typed in, you will have a
working word guessing game. What's more it's a game that you, the
reader, can understand and therefore modify. The words, as you
know, are stored in the data statements and these are readily
modified. You can substitute your own set of words or even give
the game some simple intelligence. Were the words in the DATA
statements to be graded from simple at the beginning to more
difficult towards the end, then one (or any other number of)
successful go(es) could add a constant to the READ loop so that it
reads more deeply into the DATA, thus yielding more difficult
words. Other display modifications are described in Part 2 of
Chapter 10.

4-26

CHAPTER

REACTION TESTER

n this chapter a program is developed that will enable your
C-64 to measure the speed of your reactions accurately. It
will do this by seeing how long it takes for you to press a
key once told to do so. It makes extensive use of one of the
clocks that is built into the C-64 and made accessible to you, the
programmer, for carrying out all sorts of programming tasks.

Computers are clearly pieces of equipment that work very rapidly
and to be able to do this, they need to get their co-ordination
just right! For this- reason they have several very accurate
time-pieces built into them. Some of these are used solely for
internal control functions but the C-64 designers have brought two
of these to the surface so that they can be accessed from BASIC
and, therefore, built into your programs.

Very conveniently, one of these is accessed as a string (TI$) and
one as a numeric variable (TI) and, as they are stored in this way
they can be very. simply displayed by means of PRINT statements.
Just to prove that try:

PRINT TI$, TI

This should have you a display of - well I don't really know! The
reason I don't know is that both of these clocks' times are reset
to zero when the machine is turned on. So, if you've just turned
on the numbers will be small, whereas if you've been at it all day,
the numbers will be large.

5-1

Whatever number you got, let's investigate it a little. Firstly,
TI$. We'll assume that the command 'PRINT TI$' yielded the result:

123456
In this case, the computer is reporting back that it has been

turned on for twelve hours, thirty four minutes and fifty six
seconds , i.e.:

12 34 56

Number of hours } T Number of seconds

Number of minutes

We can use TI$ to display the time of day as it's possible to split
up any string using RIGHT$, LEFT$ and MID$. The hours and seconds
are the easiest to get at as:

RIGHT$ (TI$, 2) gives the seconds and
LEFT$ (TI$, 2) gives the hours

To get at the minutes we need to start at the third character and
print the next two , i.e.:

MID$ (TI$,3,2) gives the minutes

With this knowledge we can now convert our C-64 into a clock.
Let's have a go. Firstly we'll say what we're doing , i.e.:

PRINT "<CLR> THE TIME NOW IS:"

Next we need only print the hours and minutes , i.e.:

PROGRAM 5.1(a)

200 PRINT"<CLR> <3 DCRSR> THE TIME NOW I
S:"

210 PRINT RIGHT$(TI$,2); " SECONDS"

220 PRINT MID$(TI$,3,2); " MINUTES"

230 PRINT LEFT$(TI$,2); " HOURS"

5-2

Great eh? Running this will give you the time - well-oops my
screen says that it's just after one o'clock whereas it's nearly
eight. What went wrong? That's it; you've guessed it: the screen
is reporting how long the computer has been turned on. What we
have to do if we wish to convert the machine into a timepiece is to
set it to the right time. When doing this TI$ is treated slightly
differently from any other string as each one of its six characters
has to be specified when assigning a value to it. Try resetting
the clock to zero with

TI$ = "000000"

Now, when you run Program 5.1 you'll get a very different time. Of
course you can set TI$ to any time you like with a straight
assignment. To improve the digital clock let's add a setting
feature. In order to get the time exactly right, it would be better
to input the hours, minutes and seconds separately using BASIC'S
feature of:

String Concatenation

This rather fancy name simply means string addition and with the
clock would enable us to input the hours as H$, The minutes as M$
and seconds as S$. Once these are stored in memory, they can be
added together to form TI$ i.e. TI$ = H$ + M$ + S$. Incorporating
these into Program 5.1(b) gives a time-setting feature. Add this
to 5.1(a).

PROGRAM 5.1(b)

100 INPUT "<CLR><3DCRSR>ENTER HOURS"; H$
110 INPUT "<DCRSR> ENTER MINUTES"; M$
120 INPUT "<DCRSR> ENTER SECONDS"; S$
130 TI$ = H$ + M$ + S$

Did your version run? Well, it would have done if each INPUT was
two characters long: if not, TI$ would have ended up the wrong
length! 1In a case like this, an error check is called for and, as
it is needed three times it is best written into a subroutine:
what it needs to do is:

* Check that the INPUT is the correct length.
* If correct, continue program execution.
* If incorrect, report to user and go back for another INPUT.

5-3

The requirement for the program to return to a line is best done by
the IF ... THEN test. However, this adds a slight complication,
which can be handled by means of a flag. When the INPUT is the
right length, this flag, say F, can be set to 1 and when the wrong
length set to zero.

A further complication arises from the fact that the test has to
be performed on either H$§, M$ or S$, calling for a flexible
subroutine. One way around this is to set the three strings to two
characters length at the beginning of the program and to check that
all of them remain at two characters after the INPUT. When one
string is no longer the correct length, an error is flagged. To
incorporate this into the overall program a few earlier lines need
to be changed to test the flag on RETURN, i.e.:

PROGRAM 5.1 (c)

90 F=1:H$="XX":M$="XX":S$="XX" :PRINT"<CLR>"
100 INPUT "<3DCRSR>ENTER HOURS"; H$:
GOSUB 300: IF F=0 THEN F=1: GOTO 100
110 INPUT “<DCRSR>ENTER MINUTES";M$:
GOSUB 300: IF F=0 THEN F=1: GOTO 110
120 INPUT "<DCRSR>ENTER SECONDS";S$:
GOSUB 300: IF F=0 THEN F=1: GOTO 120
150 STOP
300 IF LEN(H$)=2 AND LEN(M$)=2 AND LEN(S$)=2
THEN RETURN
310 PRINT "INPUTS MUST BE TWO CHARACTERS
LONG<SUCRSR>": F=0: RETURN

So far this clock is really a one-shot affair as it tells you the
time once and then dies. The next task is to keep it running.
Sorry, that should read "Your next task". Have a go at
Exercise 5.1. Don't worry if you have problems, it's fully
explained in the Solutions Chapter.

EXERCISE 5.1

Modify the digital clock program so that it
gives a continuous display of the time.
A possible solution is given on page 11.5.

5-4

T1

For more accurate timing purposes the second clock is most useful.
This appears in BASIC as TI. Once again this will yield a group of
numbers but this time these are organized differently. The number
on the screen is simply the number of one-sixtieths of a second
that have passed since you turned your machine on. Next try this
little exercise: type in:

TI$="000000" :PRINT TI

Having done this, you should have a screen display of about 1. So,
resetting TI$, resets TI: this will be most useful to us when
developing our reaction tester. Of course, if it's seconds that
we're interested in and not sixtieths then we need to divide TI by
60 and then take the integer to eliminate the fractions.

To get used to using TI, lets do a few timing exercises. Firstly,
lets get the C-64 to print "FRED" 50 times and see how long it
takes:

PROGRAM 5.1(d)

100 TI$="000000"

110 FOR Z=1 TO 50

120 PRINT “FRED"

130 NEXT Z

140 PRINT INT(100*(T1/60))/100; “SECONDS*

So that took approximately 1.86 seconds. Note the multiplication
and division by 100 on line 140: this gives us the first decimal
places for the seconds. What if we didn't ask it to print, try
REMing out Tine 120 i.e., 120 REM PRINT "FRED". This time it took
approximately 0.09 seconds. What if we remove line 120 altogether?
Do this and then re-run the program. Interesting eh?

This exercise tells us quite a lot about BASIC - not just about
timing!

Anyway,back to the reaction timer. What this program will do
eventually is to tell the user that timing is about to begin and
then, ask him/her to press a key. In the meantime we ought to
provide the player with something to keep their attention. One
thing that we can do is to flash though the colors on the screen
but to do that on the C-64 we will need to understand the command:

5-5

POKE

A very useful command is POKE, but one that differs somewhat from
most other BASIC commands. In affect all it does is allow you to
insert a particular number into a particular memory location. Thus,
the command to POKE a number into memory must specify both the
number and the memory location. For instance, the command:

POKE 828,90

will load a number 90 into memory location 828.Just what the effect
of this is will be investigated later! Basically POKE's are used
for two reasons:

(1) to store data in specific memory locations
(2) to control the inner workings of the C-64.

(1) There are many reasons for wishing to store data in specific
memory locations and some of these will be examined later in the
book.

(2) Many functions of the C-64 are controlled by the contents of
particular bytes of memory. For instance, the color that you see on
your screen is determined by the contents of the three memory
locations, 53280, 53281 and 646. Let's investigate this with a few
loops. As each color setting can range from O to 15, each of these
memory locations can be cycled through the range 0-15, i.e. looking
at all the screen colors:

PROGRAM 5.2
10 FOR X = 0 TO 15
20 POKE 53281,X
25 PRINT X

28 FOR P=1 TO 500:NEXT P
30 NEXT X

Return the screen back to original colors by holding the RUN/STOP
key and then pressing the RESTORE key. To examine border colors
modify line 20 to read:

20 POKE 53280,X

and run the program. Finally, to look at character color, modify
Tine 20 to read:

20 POKE 646,X

and run it. Really interesting eh?

5-6

Machine crashes

This color feature will be useful when trying to occupy the mind of
the user in the reaction tester. Many other features can be turned
on or 'enabled' by means of POKES. However, when POKEing around,
take care. Some POKEs will simply turn the machine off without much
ceremony. Just for fun(!), enter:

POKE 43,0
Now try and list whatever was in memory. What you have done with
this command is to cause a 'crash'. However, in this case it is a
recoverable crash that can be undone with a:

POKE 43,1
Not all crashes are recoverable, however, and with some of these,
you will Tose the contents of memory altogether. However, whatever
you POKE into wherever, you won't damage the computer. The worst

you will do is lose your program, so you can always just switch off
and start again.

PEEK
This command is the direct opposite of POKE, where one puts data
into memory, the other retrieves it. Actually PEEK 1looks into
memory and copies what it finds there. For instance, try:

PRINT PEEK (828)

i.e. PRINT what you find when you PEEK into memory location 828.

5-7

Reaction Tester

The first task is to tell the players the rules and in programing
terms, this is very straight-forward. If you wish to change this
part, e.g. add your own rules, then by all means do so. The more
you change things, then the more the programs become yours and the
more you will learn. Type NEW and then these lines.

PROGRAM 5.3

10 REM REACTION TESTER
20 PRINT"<CLR><12RCRSR>REACTION TESTER"
40 PRINT"<2DCRSR><4RCRSR>THESE ARE THE R

ULES"

50 PRINT"<DCRSR>WHEN TOLD TO DO SO YOU M
UST PRESS"

60 PRINT"ANY KEY. THE TIME IT TAKES YOU

T L1}

70 PRINT"PRESS THE KEY WILL BE CALCULATE
Dll

80 PRINT"AND ADDED TO YOUR TOTAL SCORE.

IF"

90 PRINT"YOU BEAT THE BEST SCORE THEN YO
U WIN."

Now the display is to be held on the screen until the player has
read the rules and then pressed any key (but not RUN/STOP!).

PROGRAM 5.3 (cont'd)

110 PRINT"<2DCRSR><4RCRSR>PRESS ANY KEY
TO BEGIN"

120 GET A$:IF A$=""THEN 120

125 PRINT "<CLR>"

The next part is to set up a Toop controlling the number of times
that the person's reaction will be tested. This is arbitrarily
set at ten times, although you may change this if you wish.

PROGRAM 5.3(a)

130 REM START OF REACTION LOOP
140 FOR X=1 TO 10:PRINT"<CLR>"

5-8

The number of times that we change the screen's color will be
random, so that the delay before the tests will not always be the
same. The random command in Program 5.3(b) dictates that the
colors will change at Teast once or at the most ten times prior to
the test.

PROGRAM 5.3(b)
150 FOR Y=1 TO INT(RND(1)*10)

The color to which we change the border and background colors will
also be random. There will be one random value for the border
color and another random value for the background color, thus
ensuring that they won't always be the same.

PROGRAM 5.3(c)

160 BI=INT(RND(1)*10)+1
170 B2=INT(RND(1)*10)+1

The random value is between 'l' and '10' inclusive; this gives an
acceptably wide color range and includes all the major colors.

After every POKE of color code values (Bl and B2) into memory a
small delay loop is required. This enables the user to recognize
the change of color before the next change. Not only does it make
a good and effective display, but it makes the time between each
test longer: although, hopefully not long enough to become tedious
or slow. For this purpose, a delay loop of 1 to 250 will be used.
If this delay is too slow or fast for you, then feel free to change
lines 190 and 210.

PROGRAM 5.3(d)

180 POKE 53281,B1

190 FOR DELAY=1 TO 250:NEXT DE
200 POKE 53280,B2

210 FOR DELAY=1 TO 250:NEXT DE
220 NEXT Y

Although we have called our loop 'DELAY' Tlines 190 and 210 end
with:

"NEXT DE'
This is because the Commodore 64 looks only at the first two

characters of a variable. The final line (220) completes the loop
'Y' which controls the number of times the colors change.

5-9

If we run this program as it stands, we will have some idea of what
the final game is going to look 1ike.

When the colors have stopped flashing, it's time to tell the player
to press a key. This will be done by the use of a large 'GO'
drawn on the screen. Before that, however, we need to test
whether the keyboard buffer is empty. If, while we were watching
the screen change color, we accidentally pressed a key (we wouldn't
really cheat, would we?) or were accidentally to hold down a key,
then the keyboard buffer would not be empty. The way to check
this is to use the GET command to say 'GET a character and if it is
something other than a null string ("") then go back and GET
another character'.

This is demonstrated in Program 5.3(e) which also gives us the
commands to draw our large 'GO', which is constructed by means of
multiple use of cursor controls on one line. This allows us to
draw a large construction in a relatively small number of lines.
Line 235 ensures that the screen color will not be the same as our
'GO' (because we would not be able to see it). This is done by
POKEing a 'l1' into 53281, making the screen color white. If this
color is not suitable for you, then feel free to change it, only
try to avoid it clashing with the color of the GO message, or you
won't be able to see it.

PROGRAM 5.3(e)

230 GET A$:IF A$<O""THEN 230

235 POKE 53281,1

240 PRINT"<CLR><6DCRSR>";TAB(7);"<RVSON
>EERERE<6LCRSR>MKDCRSR><LCRSR>MDCRSR>" 3
242 PRINT"<LCRSR>®DCRSR><LCRSR>®MDCRSR>
<LCRSR>BKDCRSR><LCRSR>M"

245 PRINT"<DCRSR><LCRSR>mmmmmm<UCRSR><LC
RSR>OBCUCRSR><2LCRSR>Mmm<4UCRSR>" 3

250 PRINT"<3RCRSR>mumamm<DCRSR><LCRSR>BL
DCRSR><LCRSR>®KDCRSR><LCRSR>m" 3

252 PRINT"<DCRSR><LCRSR>®DCRSR><LCRSR>
<DCRSR><H6LCRSR>mmummu<HCRSR>" 3

254 PRINT"<UCRSR>®<UCRSR><LCRSR>®<UCRSR>
<LCRSR>MKUCRSR><LCRSR>m" ;

256 PRINT"<UCRSR><LCRSR>BKUCRSR><LCRSR>®™
<7DCRSR>"

Once the message has been displayed, we can now accept a legitimate
input. Prior to accepting an input, the jiffy clock, TI, must be
set to zero.

5-10

PROGRAM 5.3(f)

260 TI$="000000"
270 GET A$:IF A$=""THEN 270

After accepting our input, another reading of the clock, *TI', must
be made. This will be stored in 'E' (for End), giving us our
reaction time. This time, however, is in 60th's of a second; to
convert we divide by sixty. The measurement of time for our
reaction tester needs to be accurate to two decimal places. The
effect is obtained, as before, by multiplying by 100, finding the
integer value and dividing by 100 afterwards, giving us our
reaction time to two decimal places.

PROGRAM 5.3(g)

280 E=TI/60
290 E=E*100:E=INT(E):E=E/100

Now we have your response time in seconds. The next step is to
display the time and then memorize it. It would be very simple to
add the time onto a total but, for the final stage of our reaction
tester, we will need to know each individual time, so we can
calculate the quickest and slowest. To be able to keep each of the
ten reaction times we will use a very special type of memory
location, called an array.

Arrays

An array is a series of related items; for example, if we had ten
reaction times they are all related because they are reaction
times! So these times can be labelled under one heading, 'T' for
time. So all our times can be stored under the collective heading
of 'T', the first time could be T(1), the second T(2), etc. Program
5.4 demonstrates the array T(X).

PROGRAM 5.4

5-11

Lines 1 to 3 set up a loop to give the array variable 'T' ten
values, T(1)=1, T(2)=2, etc, until T(10)=10. Then lines 4 to 6
print out the values of array T. Quite Togically, if we wanted
twenty values in array T, we simply increase the Toop value. Change
line 1 to

1 FOR X=1 T0O 20

then run it again - you will get a 'BAD SUBSCRIPT ERROR'. This
tells us we are trying to print more array values of T then there
are. If we don't tell the computer how many values of T there will
be, then only ten are assumed. So we can't print the eleventh value
of array T because there isn't one.

The command that tells the computer how many array values we need
is called

DIM

The DIM command, (DIM is short for DIMension) tells the computer to
allocate a given number of array locations to a certain variable.

e.g. DIM T(20)

will reserve twenty locations for the array T. Now if we change
Program 5.4 to Program 5.4(a) it will work properly:

PROGRAM 5.4(a)

DIM T(20)

FOR X=1 TO 20
T(X)=X

NEXT X

FOR X=1 TO 20
PRINT T(X)
NEXT X

NO TP wN

One thing to notice is, if we DIM an array with, say, fifty values,
these will automatically be filled with zeros. Run Program 5.4(b)
just to prove it.

5-12

PROGRAM 5.4(b)

1 DIM T(50)

2 FOR X=1 TO 50
3 PRINT T(X)

4 NEXT X

You can now delete lines 1 to 7.

Arrays can also be used with strings. We simply call them T$(X)
instead of T(X) for example, for our reaction game will have an
array to store the player's score and also another array storing
the top five player's names. These two arrays will be called MN$
and TN figure 5.1 shows how the arrays will be arranged.

FIGURE 5.1
The array diagram

We need to sort our scores inside the the array into numerical
order, i.e. the top score will be the first value of TN() and the
scorers name will be the first value of MN$. Program 5.4(c)
demonstrates this.

5-13

Program 5.4(c)

1000 REM ARRAY SORT

1005 DIM MN$ (5), TN(5)

1010 INPUT "NAME"; N$:INPUT"SCORE";N
1020 FOR X=1 TO 5

1030 IF TN(X)>N THEN U$=MN$(X):U=TN(X):
MNS(X)=N: TN(X)=N:N$=U$:N=U

1040 NEXT X

1050 FOR X=1 T0 5

1060 PRINT MNS(X),TN(X)

1070 NEXT X

Line 1030 may be a bit difficult to understand! If the value of
TN(X) is greater than our inputted score we will need to replace it
with 'N' and then change TN(X) into N. The same applies to MN$(X)
and N$. To do this an intermediate variable is used. U$ is set to
MN$(X) and U is set to TN(X). Then MN$(X) and TN(X) become N$ and N
respectively. Last but not Teast, N§ is set to U$ and N is set to U
(the old values of MN$(X) and TN(X)). When you run the program the
first time, both arrays MN$ and TN are empty, so provided you input
a positive number, your name and score will be stored in MN$(1) and
TN(1) . Experiment with this program a few times.

When you've finished playing with program 5.4(c), you can delete
it, as it is not the version that will be included in the reaction
tester game. However, it does demonstrate the sorting technique
that will be used in the game. Now back to the reaction tester....

PROGRAM 5.5

300 PRINT TAB(10);"<2DCRSR>THAT TOOK";Ej
" SECONDS"

310 T(X) = E

320 FOR DELAY=1 TO 1000:NEXT DE

330 NEXT X

There is a delay here (320) so the player can read the display
before the 'X' loop which controls the number of tests is closed
using a NEXT statement (330). Line 310 stores the time taken in our
time array (T()).

Once the loop has been completed, i.e. all ten reaction tests have
taken place, the player is to be presented with the average score
for all the tests, and his shortest and fastest scores, the values
of 'BB' and 'SS' are to be set at the start of each test.

5-14

PROGRAM 5.5(a)

115 BB=0:5S=99

340 PRINT"<CLR> THAT WAS YOUR LAST GO"
350 FOR X='1 T0 10

360 TT=T(X)+TT

370 IF T(X)>BB THEN BB=T(X)

380 IF T(X)<SS THEN SS=T(X)

390 NEXT X

400 PRINT"YOUR TOTAL TIME WAS:";TT;"SECO
NDS"

410 PRINT"YOUR FASTEST TIME WAS:";SS;"SE
CONDS"

420 PRINT"YOUR SLOWEST TIME WAS:";BB;"SE
conps"

After a small delay a check is made to see whether we have a new
best score, the lowest score being the best. Here we make use of a
similar routine to that used in Program 5.4(c)

PROGRAM 5.5(b)

430 FOR X=1T0 5

440 IF TN(X)>TT THEN F=1

450 NEXT X

460 IF F<>1 THEN 560

470 PRINT TAB(13);"<2DCRSR><RVSON><RED>
NEW BEST SCORE<RVSOFF><BLUE>"

480 IN;UT"<DCRSR><4RCRSR>WHAT IS YOUR NA
ME ";A

490 A$=LEFT$(A$,8)

500 FOR X=1 TO 5

510 IF TN(X)>TT THEN U$=MN$(X):

U=TN(X) :MN$(X)=AS$:TN(X)=TT:A$=U$

520 NEXT X

530 FOR X =1T0 5

540 PRINT TAB(15);MN$(X);TN(X)

550 NEXT X

A point to note is that the arrays TN() and MN$() are not DIMed
at the start of the program (or anywhere else for the matter) This
is because we use no more than the allowable ten array values. If
we used more than 10 then the arrays would have to be DIMensioned.
However, we need to set them with large values at the start of the
program so that the first time will be the shortest, Program
5.5(c).

5-15

. PROGRAM 5.5(c)

2 FOR X=1 TO 5
3 TN(X)=99:MN§(X)="X"
4 NEXT X

A1l that is left now is to ask the player if (s)he requires another
go. If yes, then we need to reset TT (the score total), and F(the
new best score flag), to zero and then the game will loop back to
line 110, thus avoiding printing the rules, or resetting the best
score variable.

PROGRAM 5.5(d)

560 PRINT"<4DCRSR><4RCRSR>DO YOU WANT
ANOTHER GO?(Y/N)"

570 GET A$:IF A$="" THEN 570

580 IF A$="Y" THEN F=0:TT=0:GOTO 110
590 PRINT “BYE":END

Now you have a fully functional computer reaction tester game with
which to delight and amuse your friends!

Another reaction program could ask the user to press a particular
key rather than any key. Apart from anything else, this would be
good practice on learning the layout of the keys.

One way this new game could be developed is to have all the letters
on DATA statements, much in the same way as we choose our words in
the Hangman game.

PROGRAM 5.6

10 R=INT(RND(1)*26)+1

20 FOR X=1 TO R

30 READ A$

40 NEXT X

50 PRINT A$

1000 DATA "A","B","C","D",...etc..."X","
YII’IIZH

When run, Program 5.6 will print a random letter. This small

routine will be a very useful way to get a random letter, but there
is a much better way and that is to use the CHR$() command.

5-16

CHR$()

Every key on the Commodore keyboard has a special code which the
computer uses to identify that character.

Try
PRINT CHR$(47)

and you should get '/'. That's because the CHR$() command tells
the computer to print the character that corresponds to the CHR$()
value of '47'.

A1l the symbols have their own code number. For instance, can you
see what this does? -

PRINT CHR$(13)

Well, 13 is the code number for the RETURN key. As your computer
can't display 'RETURN' without being told to PRINT it, it has
actually done a RETURN instead. This makes the computer start a new
line.

There is a full list of the CHR$() values in Appendix 3 and it is
quite interesting to see what some of them are. Here are a few
examples, but first make sure you are in lower case mode by
pressing SHIFT and & .

PRINT CHR$(142)

Now we are in upper case mode. Try this:

PRINT CHR$(158)

and the cursor has become yellow.

So the CHR$() command can be used to find our random letter. Also
we need to find a random number between 1 and 26, and this time we
simply print the CHR$() value to get our letter.

PROGRAM 5.7

10 R=INT(RND(1)*26)+1
20 PRINT CHR$(R)

5-17

Well! What went wrong there? Why didn't it print a letter? Although
the computer printed the CHaRacter responding to the random number,
it wasn't a letter. If we run Program 5.7 again, we still won't get
a letter. This is because the CHR$() value of the letters is
greater than '26'. So what value do letters start at? An easy way
of finding out it to ASC().

ASC()

The ASC() command is the opposite of CHR$(). Whereas CHRS$()
converts a number into the appropriate character, ASC() converts a
character into the appropriate number. For example ...

PRINT ASC("/")

The result will be '47', and if you remember, that was the
character number we printed earlier. So if we tell the computer to
print the ASC() value of 'A', then we will know where the Tletter
characters start. You must always remember to enclose the character
in quotes when using ASC().

PRINT ASC("A")

This should respond with '65'. So clearly the letters start at
165' . Just to test this, type in Program 5.7(a).

PROGRAM 5.7(a)

10 FOR X=65 TO 91
20 PRINT CHR$(X)
30 NEXT X

When run, this program will print the letters ‘A*' to ‘'Z' thus
proving our theory.

Now that we understand how to use these commands, we can begin to
develop our program, or rather ... you can. The program is left for
you to create. The structure will be similar to that of the
Reaction Tester program but, before you begin, here's a little
nudge in the right direction.

PROGRAM 5.7(b)

10 R=INT(RND(1)*26+65)

20 PRINT "PRESS THIS KEY";CHR$(R)

30 GET A$:IF A$="" THEN 30

40 IF ASC(A$)=R THEN PRINT "VERY WELL DO
NE": STOP

50 GOTO 30

5-18

CHAPTER

PART ONE

User-Defined Graphics

y using the Commodore 64's user-defined graphics it is

possible to define a character of your own design and then

call it up in programs as and when it is required. Once

defined, this character can be treated as any other and it
answers to the name that you give it, a name that can be any one of
the characters on the keyboard or anywhere in the character set.
The character you define is made up from an 8x8 matrix, of little
squares known as pixels. These are set to either full or empty by
reference to the patterns stored in the character data which is
stored in the ROM. The computer could actually store the data as a
series of 64 separate memory locations each of which is set to 'on'
or 'off', thus defining the matrix as shown in Figure 6.1.

olol1l1]1f1]o]o olofrl1i1{1]o]o
ofoj1f1]1]|1]o0]o0 ofol1fifrf1]o]fo
ojlolof1]1fofofo ofofo}1}1{o]o]o
1111l]1]1 SRt EREESER NS R
olofol1]1fofo]o 0lo]o 1{ofo]o
oj1)1fr]1frfar]o of1jrftirfafifo
of1]olojolof1]o oj1]jojofololt]o
tlifofolofofa|1] |1 ofofofo}1}l1
FIGURE 6.1

Defining a character by using individual bytes for each pixel would
use up 64 memory locations for each character and, by the time a
few characters have been stored, they start to gobble up a lot of
the computer's memory. However, help is at hand in the way the
computer stores data generally!

The microprocessor chip on which the C-64 is based - the 6510 « is
referred to as an 8-bit chip, which means that each character is
stored in memory as eight 'bits' of data. This block of eight bits
is known as one 'byte'. As the chip is a ‘'digital' microprocessor,
each of the bits of data can be set only to 'on' or 'off', i.e. a
'1' or a '0'. Thus, only one byte is needed to store each of the
rows for each character shapes, so a total of 8 bytes are needed to
hold the entire shape of each of the C-64's characters.

The method of cramming up to eight bits of character information
into the byte simply takes account of binary notation (see Appendix
I). When using this technique it is necessary to add up the
elements of the character bit by bit, to end up with the number to
be POKEd into memory. Thus, to store the top line of the dancing
man shown in Figure 6.1, the addition sum shown in Figure 6.2 is
performed.

(0x128)+(0X64)+(1x32)+(1x16)+(1x8)+(1x4)+(0x2)+(0x1)=60
0 0 1 1 1 1 0 0 =00111100,

FIGURE 6.2
From Figure 6.2 the elements of the row add up to: 32+16+8+4=60.
Thus the number '60' must be POKEd into memory. To obtain POKE

values for the whole figure, each row must be considered
separately, as shown in Figure 6.3.

6-2

BINARY CALCULATION DECIMAL

12864 [32 16 [8 4] 2|1
ojojijiij1fofo 32+16+8+4 = 60
ojojif1|1j1fo]o 32+16+8+4 = 60
ojlojofif1fjoflo|o] 16+ = 2
tiadatafafafa}a] 128+64+32416+8+44241 = 255
ofofof1}j1]o]o]fo 16+8 = 2
0 1i,ff1,§;1s'v1~' 1f14o0 64+32+16+8+4+2 = 126
of1joJofjojofijo 64+2 = 66

{1]ofolool1}a] 128eea+2e1 = 195
FIGURE 6.3

Having calculated the values needed to define a character, these
values must be stored in the area of memory where the VIC II chip
looks for its characters. As this is a fairly complicated process,
it's easiest to use a utility program to help. Part Two of this
chapter develops such a utility and during its development, the
whole process of defining characters will be explored.

Before you set out to develop a program of this complexity, it is a
good idea to LOAD and RUN Honey.Aid. In addition to using
Honey.Aid as a tool, we will incorporate a Honey.Aid command into
the Char.Gen program, and thereby speed it up considerably.

6-3

PART TWO

A Graphics Utility: Specification

This wutility will provide a facility for the creation of a
user-defined graphics character. The character will be designed on
a ‘screen' or matrix which represents a single character about
eight times full size, see Figure 6.4, and the actual form of the
character will be displayed during the design process. By moving a
block, , which represents a single pixel, around the character
matrix and storing it where desired, a character will be built up,
jts POKE values calculated and stored in RAM. Provision will be
made for storing these POKE values in DATA statements for
jncorporation into the user's program. To facilitate its use along
with the user's own program, the graphics utility program will be
numbered from line 60000 onwards.

FIGURE 6.4

Relocating the character set.

The C-64 comes with its own ready-drawn character set - these are
the characters that you see on the screen when you press the keys.
These, however, are stored in ROM, or Read only Memory, and it
isn't possible to change them. Thus, if you want to define a new
character set, then it is first of all necessary to move the
existing set into RAM where you can operate on it. As each
character occupies 8 bytes and there are 256 different characters
in the upper case graphics character set to be moved, 8 x 256 or
2048 bytes need to be re-located. In the ROM, the standard
characters are located from 53248 ($0000) onwards and one
recommended place to move these to is 12288 ($3000). A fairly
straight-forward PEEK/POKE routine would appear to perform this
operation i.e.

6-4

FOR 1=0 TO 2047:POKE(12288+I),PEEK(53248+1):NEXT

However, because of the way the various chips inter-relate, a few
other things need to be done before this removal process can be
carried out.

Protecting the top of memory

Once this is done, a copy of the character set exists at the top of
the RAM. Of course, this is quite likely to be overwritten by any
program that tries to use the same piece of RAM. This problem can
be overcome by persuading the C-64 that RAM ends lower down than it
really does. A switch-on the computer checks through the RAM and
calculates just how much memory is available. Once the calculation
is done, the location of the top of memory is recorded in memory
locations 55 and 56. If these values are fixed and set to a lower
figure the C-64's BASIC thinks that memory ends earlier and doesn't
overwrite your character set. Before moving down the top of memory,
Just do a little check on what memory is available by entering:

PRINT FRE(0)-(FRE(0)<0)*64*1024

The machine will then respond with 34618 if Honey.Aid is in
(otherwise 38909).

Next move down the memory by means of:
POKE 55,0: POKE 56,48

Once this is done, check memory availability again with another
'"PRINT FRE(0)-(FRE(0)<0)*64*1024' and you should find the new value
is 10237 which is some 24406 (28671) less.

Now, let's investigate the workings of the keyboard a 1little, in
particular the:

Keyboard Buffer

When any data is entered into the computer via the keyboard, the
C-64 automatically puts it into the keyboard buffer, which is ten
bytes of memory located from 631 to 640. In order to keep track of
what's in this buffer, one other byte located at 198 is used. Just
to investigate the operation of this buffer, type in Program 6.1.

6-5

PROGRAM 6.1
2 PRINT "<CLR>";
5 T$=CHR$(34)+CHR$(20)+" <KRVSON>T<RVSOF>"
+CHR$(34)+CHR$(20)
6 M$=CHR$(34)+CHR$(20)+" <RVSON>MRVSOF>"
+CHR$(34)+CHR$(20)
10 PRINT:PRINT"<HOME>";CHR$(34);:FOR X=0
T0 9
20 IF PEEK(X+631)=20 AND X<10 THEN PRINT
T$; :NEXT:GOTO 10
30 IF PEEK(X+631)=13 AND X<10 THEN PRINT
M$ 5 :NEXT:GOTO 10
40 PRINT CHR$(PEEK(X+631));:NEXT:PRINT C
HR$(34) :PRINT PEEK(198);:G0TO 10

When you RUN this program, it will print in the top left-hand
corner of the screen the current contents of the keyboard buffer.
Underneath this it will print what value is stored in 198, i.e. the
number of characters that the C-64 thinks are in the buffer. Why is
this a zero? Well, at turn on and various other times, the buffer
gets filled up with garbage that just shouldn't be there. What
Jocation 198 tells you is the official story. The C-64 will only
read the number of characters that location 198 tells it are there,
the rest it ignores.

To watch the buffer in action run Program 6.1 and while it is

running type in FREDFREDFRED and you will see that the buffer now
contains:

"FREDFREDFR"
and the line below tells you that 198 now contains the value 10.

Next, type in SID and see what happens. Anything happened? No,
nothing happens because the buffer is full. It is a First In, First
Out device which means that the first item put in i.e. the 'F' of
the first 'FRED' is maintained ready for retrieval.

To investigate the buffer further, press RUN/STOP and then modify
Program 6.1 to do the following

* accept the first 10 keyboard entries

* perform a 'GET'

* store the result in A$

* display the first character to come out of the buffer,

6-6

PROGRAM 6.1(a)

45 IF PEEK(198)=10 THEN GETA$:PRINT"<4DC
RSR>"A$

50 GOTO 10

(remove the GOTO 10 on line 40)

When you RUN this, repeat the above procedure by attempting to type
in three 'FRED's. As you enter the 'E' of the third 'FRED', the
buffer will fill i.e. 198 contains a '10'. However, immediately
afterwards, the 'GET' will be performed and a character taken from
the buffer to be stored in A$ and PRINTED on the screen. Thus, the
letter 'F' will be taken from the buffer and the remaining 9
characters moved along one to the first 9 positions. When the next
letter 'E' is entered, it will be placed initially in location 10
of the buffer, only to be shuffled forward as an 'R' is extracted
by the GET. You may now stop the program by pressing RUN/STOP, but
do not erase the program yet.

Addressing the keyboard

Before we can re-locate the character set, one other formality is
needed, a necessity because of the important role that the keyboard
plays. As it forms the main communications channel between the
user and the operating system, the keyboard is scanned
continuously. This scanning must be turned off or disabled before
copying the character set. Scanning is turned off by setting bit
zero of 56334 to zero and re-enabled or turned on by setting this
bit to one. One problem with this process is that it is only bit
zero of 56334 that needs to be changed with the remainder staying
as it was. To do this without a lot of PEEKing and POKEing we may
make use of :

LOGICAL OPERATORS (a digression)

AND -~ Perform a logical AND

It may be clearer if we first examine an electronic AND gate - your
C-64 is just full of them! What an AND gate does is to accept two

electrical signals, compare them and produce an output based on
this comparison. Figure 6.5 shows such a device with inputs 1 and 2

and output OP.
IP1—
oP
IP2—

AN ELECTRONIC AND

FIGURE 6.5

6-7

In operation, this gate looks at IP1 and IP2 and, if they are both
set at 5 volt, then OP is set at 5 volt. However, if either or both
IP1 and IP2 are set at zero volts, the OP is set at zero volts. In
computer terms, the 1 state is referred to as 'TRUE' and the zero
as FALSE so the AND gate rules read: the output of a gate is TRUE
if input 1 AND input 2 are TRUE. For all other cases, the output is
FALSE or zero.

It is convenient to express these states in a TRUTH TABLE, see Fig.
6.6.

IP1 IpP2 op

=00
— OO
—OoO0O0O

TRUTH TABLE FOR
ELECTRONIC AND

FIGURE 6.6

To use this, read along the line that has the requisite states of
IP1 and IP2 and column 'OP' will then give the logical state of the
output, 'OP'.

For instance, taking a value of IP1=0 and IP2=1, line 2 gives the
state of OP as 'O' (FALSE).

OR Perform a logical OR

As with 'AND', this operator performs a 1logical bit-by-bit
comparison between the two pieces of data. What this means is that
each bit of the data is tested and if either one OR the other is
equal to 1, then a TRUE position obtains and the resultant bit is
set to 1.

This is represented on the truth table, Figure 6.7. On this the

two possible inputs are labelled IP1 and IP2 while the output is
labelled OP.

6-8

This is represented on the truth tadble, Figure 6.7. On this,the

two possible inputs are labelled iP1 and IP? while the output is
labelled OP.

IP1 IF2 oP
0 0 0
1 C 1
0 1 1

TRUTH TABLE FOR
LOGICAL R

FIGURE 6.7

Logical operators and eight bits

So far, all the operators have been shown operating upon single
bits of data. However, when logical operations are carried out on
an eight bit number, each bit of that number is treated
individually. Take for example the situation where 1007((01100100,)
is ORed with 5010(001100102). The process is simply one of ORing
bit by bit or, as it is otherwise known, bitwise operation. Figures
6.8 and 6.9 show the stage-by-stags process where first of all the
first zero of 100 is ORed with tne first zero of 50 to yield a
zero. Next the second character of the 100 (a zero) is ORed with
the second character of the 50 (a one) to yield a 1. Figure 6.9
shows the various stages of the process along with the results.

Thus, when 100 is ORed with 50 the result is:

01 1 0 0 1 0 0 = 1007,
RO 0 1 1 0 0 1 0 = 501,
=0 1 1 1 0 1 1 0 = 118y

FIGURE 6.8

6-9

Decoding this by means of the truth table, Figure 6.7, starting
with bit 0 gives:

bit ORed with 0 gives
ORed with 1 gives
ORed with 0 gives
ORed with 0 gives
ORed with 1 gives
ORed with 1 gives
ORed with 0 gives

ORed with O gives

ORFROOROO
ORMPRFOREO

~NooOpPwNh—O

i.e.01110110
FIGURE 6.9

Back to the project ...

As we were saying! The keyboard is the main means of communication
between the user and the computer and it is necessary at times to
break the link.

One memory location - 56334($DCOE) - contains one bit of data - bit
0 - that turns the keyboard ON when it's set to 1 and OFF when it's
set to zero. To set it, two of the logical functions, AND and OR
are used.

Firstly, to set just one bit of a byte to zero we AND it with a
byte that contains all 1's except at the location to be set. Thus,
when that bit is ANDed with the zero present it is automatically
switched to a zero. Hence to set bit zero to zero, we AND the byte
with a 25410(111111102) i.e.t

this 1 0 1 1 0 0 1 1 1
ANDedwith 1 1 1 1 1 1 1 1 O
gives 1 0 1 1 0 0 1 1 0
FIGURE 6.10
If you're unsure of the process, substitute any number you wish for
the top number and you'l1l find that it will remain unchanged except
for bit zero which will be switched to a zero.

Putting this into practice to turn off the keyboard is:

6-10

PROGRAM 6.2

X = PEEK(56334)
Y = X AND 254
POKE 56334,Y

or, putting it into one line:
POKE 56334, (PEEK(56334)AND 254)

To turn the keyboard on again or to 're-enable' it, bit zero needs
to be re-set to a '1l'. In this case, the byte is ORed with a 1 i.e.
seven zeros and a 1 in bit zero. This process will leave all the
bits ORed with the zeros as they were but set bit zero to a 'l'.
Figure 6.11 shows this process in action:

this 1 0 1 1 0 0 1 1 0O
ORedwith 0 0 O O O O O 0 1
gives 1 0 1 1 0 0 1 1 1

FIGURE 6.11
Thus, the two lines to turn the keyboard off and then on again are:

POKE 56334,PEEK(56334)AND 254 Turn off keyboard
POKE 56334,PEEK(56334)0R 1 Turn on keyboard

Our short demo programs (6.1 and 6.1a) can help to illustrate that
process too if we set it to turn off the keyboard when, say 3
characters have been inputted. A slight problem might arise here
though, as, once the keyboard is turned off there is no easy way
remaining to talk to the computer. Therefore, the turning-back-on
procedure must be programmed BEFORE the keyboard is disabled. Lines
60 and 70 perform this ON/OFF function, with a suitable delay
between.

PROGRAM 6.2(a) (add these lines to the program 6.1 and 6.1a)

47 IF PEEK(198)=3 THEN 60

60 POKE 56334,PEEK(56334)AND 254:PRINT"<
6DCRSR> KEYBOARD OFF":FOR X=1 TO 1000

70 NEXT:POKE 56334,PEEK(56334)0R 1:PRINT
"<UCRSR> KEYBOARD ON":FOR X=1 TO 1000:NEXT
80 GOTO 10

(delete 1ine 50)

Run this program and watch what occurs as you type in keyboard

characters. You may then save this program and erase the memory
(type in NEW).

6-11

The VIC II CHIP and the 6510

The next task to be tackled is the relocation of the character set
and to do this, the role of the VIC II chip needs to be examined.
The C-64 contains many chips including the two that are very much
concerned with day-to-day operations, the 6510 and the VIC II chip.
The 6510 is the main microprocessor in the C-64 while the VIC II
chip handles all of the video outputs to the screen, leaving the
6510 free to get on with its own tasks. Many functions call for
the interaction of one of these with the other and this is
particularly true during the translation of a command into an
actual screen display. To wunderstand how this works, it's
necessary to look into the operation of the ROM. This is the
program that is built into your machine and, in effect, makes the
machine work. It has to run this program pretty quickly and so
it's not written in BASIC but in the language that the chip itself
uses, machine code.

Let's take a sample statement and see how the 6510 handles it.
Take the statement:

PRINT "A"

This will cause the C-64 to print an 'A' at the next cursor
position.

The first thing that the 6510 must do is to work out what 'PRINT'
means. As this is a command word, it is not stored in memory as
five separate letters but as a ‘'token', a one byte number that is
the code for 'PRINT'. Thus, the 6510 sees 'PRINT', works out what
its token is and then looks through the ROM to find that token.
When it finds it, in a table, it finds an address there too, the
address being the start address of the machine-code program which
brings about a 'PRINT'.

6-12

It then jumps to this address and starts to run the machine-code
program stored there. The first task assigned by this program is
to find out where to print, i.e. to look up in memory what the
current cursor position is. Next it looks at what comes after the
PRINT and, on finding a quote sign ("), takes the 'A' and uses a
special algorithm to convert it to screen code which turns out to
be '1' in this case. The 6510 now puts this 'l' into the
appropriate screen memory location. It must then look at what the
current character color is and insert the appropriate code for it
into the color RAM area.

Having carried out all these tasks, the cursor position must be
updated, i.e. moved one position to the right, and the 6510 is then
free to Jook for the next job to do and simply carries on.

However, nothing has got printed onto the screen yet, all the 6510
has done is to update the screen's RAM area. This is where the VIC
IT chip comes in!

The VIC II chip carries out many screen control functions and is
constantly updating the screen's contents. In fact, it is
constantly scanning through the screen RAM memory and looks, in
turn, at the contents of each individual screen memory location.
When, in our example for instance, it looks into location 1064, it
finds a 'l1'. This it must translate into an appropriate screen
image with shape and color.

Before it can find the appropriate shape data, the VIC II chip must
find out the address of the character shape data. To do this it
needs to refer to two memory locations: the first of these is at
56576 (actually a register of one of the CIA chips) and the second
at 53272 which is one of the VIC II chip's own registers. Once
this address is found, it can look through the data stored there
and pick out the appropriate pixel pattern. Next it must find the
color data for that character and this it simply looks up in the
color RAM, which is always stored in the same place.

Having acquired all the necessary data, the VIC II chip can go
ahead and display the 'A' on the screen. Figure 6.12 illustrates
this entire process.

6-13

6510/VIC II INTERACTION
DURING EXECUTION OF A

PRINT "A"
TTTTTTTIT]
o
SN
ua 9
£ah /
HH 203z’
%@J@ﬂ ‘X&‘&
—_— — —— |
TU YT
- CURRENT
SCREEN START |
1024 5
What 6510 does: What VIC II does:
* find token * Jook in 1064
* find subroutine * find pixel
data for '1'
* find cursor
* find color
* find quotes data for 1064
* calculate screen * produce
code for 'A' pixel pattern
* store 'A's' * display on
code screen

FIGURE 6.12

6-14

Normally, when the 6510 looks at the memory in 53248 to 57343
($0000 to $DFFF) it sees the Color RAM (at $D800) and the so called
Input/Output devices i.e. the VIC II chip (at $D000), the SID
(Sound Interface Device) chip (at $D400) and the two CIA (Complex
Interface Adaptors) chips, (at $0C00 and $0D00). However, the
Character ROM is there also and we need to arrange for the 6510 to
'see' the Character ROM instead of the Color RAM and I/0 devices.
This is quite easily achieved by changing bit 2 of memory location
1. This is normally set to 1 which allows the 6510 to see the
Color RAM and I/0 devices. If bit 2 is changed to a zero, however,
the 6510 sees the Character ROM in this space.

Before we rush into doing this, we need to consider what would
happen to the C-64 if the 6510 can no longer see the Color RAM and
the 1/0 chips. The only real problem lies with the two Complex
Interface Adaptors (CIA's). These chips handle all the
Input/Output, from and to the keyboard, the tape cassette reader
(if any), the disk drive (if any) and the RS232 (if any). If the
CIA's cannot be seen by the 6510 then no input or output to these
devices can be handled.

At first sight, this doesn't appear to be a problem. Surely, if we
make sure that the Char.Gen program is not inputting or outputting
to the keyboard, tape, disk or RS232 while we are copying the
character ROM to RAM, then there isn't a problem, is there? Well,
yes, the keyboard is the trouble. The 6510 checks the keyboard
every one sixtieth of a second to see if any key has been
depressed. In order to check the keyboard, the 6510 needs to be
able to see the two CIA's which it can't do if we've set bit 2 of
memory location 1 to a zero. It would see the character ROM, and
treat the character it found as an instruction from the keyboard -
disaster!

Keyboard checking normally goes on all the time, the program which
the C-64 is currently running being interrupted in order to do
this. We need to stop this interruption temporarily, therefore,
while we use the 6510 to copy the Character ROM. Fortunately, this
is quite simple. What we do is stop the system clock which
measures the sixtieths of a second and this stops the keyboard
scanning routine from interrupting. To stop the clock we must
change bit zero of memory location 56334 ($DCOE) to a zero. To
restart the clock, following the move we change the same bit to a
one. Since this memory location is a register on one of the two
CIA's, we can only change the value while the 6510 can see the
CIA's.

6-15

So the plan of action works out to be:
(1) Stop the system clock controlling the keyboard scan by
changing bit zero of 56334 to zero.

(2) Let the 6510 see the Character ROM instead of the CIA's by
changing bit 2 of memory location 1 to a zero.

(3) Copy the Character ROM to RAM, using the 6510.

(4) Let the 6510 see the I/0 chips again by changing bit 2 of
location 1 back to a one.

(5) Restart the system clock by changing bit zero of 56334 back
to a one.

Putting that into the program:

PROGRAM 6.2(b)

Stop system clock 60030 POKE 56334,PEEK(56334)AND 254

Let 6510 see ROM & 60040 POKE 1,PEEK(1) AND 251: FOR I=0 TO
copy character 2047:POKE I+12288,PEEK(I+53248) :NEXT

ROM to RAM

60050 POKE 1,PEEK(1) OR 4
Restart system clock 60060 POKE 56334,PEEK(56334) OR 1

Finally the VIC II chip needs to be told just where you are putting
your new character set. To find where it is stored, it looks in
location 53272, so to redirect the VIC II chip to the new location,
type in:

60070 POKE 53272, (PEEK(53272)AND 240)+12

We shall be using two special characters in the character generator
program and these are redefined during the initialization. The
characters that we will redefine are those which represent 254 and
255 and are thus stored in:

12288+ (254*8)=14320
12288+(255*%8)=14328

The character representing 255 will be a totally filled-in square.

i.e. The pixels on each line coincidentally add up to 255 also =~
see Figure 6.13.

6-16

= 255
= 255

255

255

255

255

255

255

FIGURE 6.13

Memory locations 14328 to 14335 are, thus, filled with 255's i.e.
FOR X=0 TO 7:POKE(12288+255*8)+X, 255

Figure 6.14 shows the other character, 254. This one has some empty
pixels represented by a zero (0).

255
129

129

1]

H

129

129

129

o|lo|o|o|o|o =

129

]

wlo|lo|lo|lo|lo|lo}
~lo|lo|lo|lo|lo]|o

= 255

mwlolo|lo|lo|lo|o|w

~lo|lo|lo|lo|o|o}fm
mlojlo|lo|lo|o|o

FIGURE 6.14

6-17

Two different numbers need to be POKEd in to define this character,
255's into the zero'th and seventh locations and 129 into the
middle six locations, i.e.

FOR X=1 TO 6:POKE(12288+254*8)+X,129
POKE(12288+254*8)+0, 255
POKE(12288+254*8)+7,255

NEXT X

In use, the character generator program will be suitable for
redesigning any character in the character set i.e. from 0 to 253
(254 and 255 being used in the Char.Gen program). Lines 60110 and
60120 ask for the value of the character which is to be defined and
store this in the variable CH.

When the program so far is run, it will move the character set and
ask which character is to be re-defined. When running this program,
you may be struck by the interminable time taken to move the
character set. However, once this has been done, it doesn't need to
be done again. Indeed, it is important that it isn't done again.
For if a character has been redefined then moving the character set
again will destroy the redefinition. One way to handle this would
be to ask whether or not the character set has been moved, using an
INPUT or GET. However, a more subtle way of checking this exists
as, during the initialization procedure, byte 53272 was set by
loading in a '12', i.e. setting bits 3 and 2 to 1's. Thus, a check
of this byte will tell whether or not the character set has been
moved. What is needed therefore is a way of looking at the byte but
ignoring all the bits other than 3 and 2. This can be achieved by
ANDing the contents of 53272 with '12' and then checking whether
the resultant value is 12. If you're not sure, check it below.

00001100
ANDed with O 0 0 0 1 1 0 O
12 equals 0 0 0 01 1 0 0 =12
and, 1 0111100
ANDed with O 0 0 0 1 1 0 O
12 equals 0 0 0 0 1 1 0 0 =12

FIGURE 6.15

Whatever the number is that is ANDed with 12, any 1's other than
those in the 3rd and 2nd bit are stripped off by the 12's zeros.
This is frequently known as stripping bits off by means of an AND
function.

6-18

Thus, a BASIC 1ine is required which says: If the result of ANDing
the number with 12 equals 12, then Jump over the character moving
sub-routine i.e.

60000 GOSUB 62000: IF PEEK(53272)AND 12=12 THEN 60080

The subroutine at 62000 in left upto you: it is for a title page
should you wish to include one.

Adding all the various parts of the initialization procedure, gives
the routine as in Program 6.3.

PROGRAM 6.3

60000 GOSUB62000

60010 IF (PEEK(53272)AND12)=12THEN60080

60020 PRINT"<CLR><BLU><11DCRSR><2RCRSR>
PLEASE WAIT WHILE CHAR SET MOVED"
:POKE55,0: POKES6, 48

60030 POKE53280, 3: POKE53281,1:POKES6334
,PEEK(56334) AND254

60040 POKEL,PEEK(1)AND251:FORI=0T02047:
POKEI+12288,PEEK(1+53248) :NEXT

60050 POKEL,PEEK(1)OR4

60060 POKE56334,PEEK(56334)0R1

60070 POKE53272, (PEEK(53272)AND240)+12

60080 FORX=0TO7:POKE14328+X, 255: NEXT

60090 FORX=1T06:POKE14320+X,129: NEXT

60100 POKE14320,255:POKE14327,255

60110 PRINT"<CLR><5DCRSR><BLU><2RCRSR>W
HICH CHARACTER WOULD YOU LIKE"

60120 INPUT"<4RCRSR>TO DEFINE(O TO 253)
"3 CH

60130 IFCH<=00RCH>2530RCH<> INT(CH) THENG
0110

One of the features of the character generator will be its ease of
use and this 1is defined principally by the graphics. The main
feature of the graphics is the design matrix. In this, a blown-up
version of the character matrix is set up using PRINT statements.
These create an eight by eight (8x8) matrix within which the new
character 1is designed. Lines 60150 to 60170 of Program 6.4(a)
contain this section. In addition to displaying the character as
designed in its enlarged format, the program will actually POKE the
character to the screen without any enlargement, all that is
necessary being a POKE,CH:

6-19

PROGRAM 6.4(a)

60140 PRINT"<CCLR>C4DCRSR><PUR>HERE IS Y
OUR CHARACTER SO FAR:<GRY2> ";:PO
KE1214,CH

60150 PRINT"<HOME>"TAB(7)"<7DCRSR><RED>
<RVSON>WAASARAAAA " : FORX=1T08

60160 PRINTTAB(7)"<RED><RVSON>%CGRN>*"%
LY T <RED>$||

60170 NEXT:PRINTTAB(7)"<RED><RVSON>“~wma
LE S TR

When the program is being used to design a charecter, the filled-in
square is moved about the matrix by means of four keys, the chosen

ones being:
}
W
L

o

left 4—A S—Ppright

down
FIGURE 6.16

So that this is clear to the user, the keys and their functions are
displayed on the screen, arranged in the same pattern as on the
keyboard. To control the actual operation of the generator, the
function keys are used and, once again, they are displayed on the
screen by means of simple PRINT statements. Lines 60180 to 60240 in
Program 6.4(b) complete the display:

PROGRAM 6.4(b)

60180 PRINT"<4DCRSR><GRY3> W-uP"

60190 PRINT" A-LEFT S-RIGHT"

60200 PRINT" Z-DOWN" :PRINT"<RETURN>
-END C.GEN";

60210 PRINT"<3UCRSR>"TAB(18)"<LTBLU>IKG
RY3> F1-SET PIXEL"

60220 PRINTTAB(18)"<LTBLU>RKGRY3> F3-CL
EAR PIXEL"

60230 PRINTTAB(18)"<LTBLU>RKGRY3> F5-DI
SPLAY DATA"

60240 PRINTTAB(18)"<LTBLU>BKGRY3> F7-CL
EAR BOARD<BLU>"; '

6-20

The Function Keys

The C-64 has eight function keys, 1,3,5 and 7 being available by
simply pressing the function keys alone. By means of the SHIFT and
these keys, function keys 2,4,6 and 8 are activated. As with all
the other keys on the keyboard, each has a characteristic ASCII
code assigned. Thus, the pressing of f1 (function key 1) can be
detected by 1looking for a CHR$(133). The relevant codes for the
function keys are:

fl CHR$(133) f2 CHR$(137)
3 CHR$(134) f4 CHR$(138)
f5 CHR$(135) f6 CHR$(139)
f7 CHR$(136) f8 CHR$(140)

FIGURE 6.17

Designing the character

To define each individual character, 64 pixels need to be defined
i.e. eight bytes of eight bits each. During processing, this data
could be stored as a single stream of 64 characters but Commodore
BASIC provides a much easier way of doing this by means of

Two dimensional arrays

Two dimensional arrays utilize the same names as single dimensional
arrays, and can in the same way be used to store both numeric and
string data.

i.e. A(X,Y)
AB(X,Y)
A9(X,Y)...etc.

In effect, a two-dimensional array is a rectangular matrix of cells
that can be visualized as a series of pigeon holes with X rows in
one direction and Y columns in the other. See Figure 6.18.

6-21

A4 x 7 array An 6 x 11 array
eg A(4,7) eg W$(6,11)

FIGURE 6.18

In an array, each cell can be addressed individually by defining
its co-ordinates in each direction i.e.:

12345678

1

cell(1,3)” 2
2 - e 11(4,5)
> |__——cel1(7,6)

6
/7
cell(5,2) 8

An 8 x 8 Array
FIGURE 6.19

Such an array as in Figure 6.19 can be used to store the character
as it's being defined with each row i.e. A(1,1) to A(1,8) being
stored in one byte. As with single-dimensional arrays, the
two-dimensional variety needs to be DIMensioned prior to use.

Auto-repeat on all keys

To move the cursor around the screen, the cursor control keys which
are, very conveniently, fitted with an auto-repeat feature, are
used. However, Char.Gen utilizes the W,A,S and Z keys for cursor
control and these do not normally feature auto-repeat. However,
this feature is very readily turned on generally by means of:

POKE 650,128 (or by REPEAT 1)

6-22

Prior to the design of the character, an initialization procedure
is required to set X and Y (the co-ordinates of the design cursor)
to 1 (line 60250). In addition, the character to be re-designed
needs to be cleared as, prior to this process, it contains one of
the C-64's standard characters.

60250 X=1:Y=1:POKE 55296+328,0

A GET A$ 1is used to accept an input from the keyboard and one
precaution that is well worth taking when using GET A$ is to ensure
that the keyboard buffer does not get full up with garbage. It is
quite easy for the user to press two keys down or hold one down too
long, especially as the repeat on all keys has been turned on. As
discussed above, one location in memory, 198, records the number of
bytes stored in the keyboard buffer. By setting this to zero, the
C-64 is persuaded that the keyboard is empty. Thus, to empty the
keyboard buffer, enter:

60280 POKE 198,0

The specially designed character that represents the current design
cursor position is changed to black and this is moved around the
design square in much the same way as in etcha-sketcha, by
incrementing and decrementing its X and Y co-ordinates. Lines
60300 to 60330 in Program 6.4(d), simply check for the control keys
being pressed and move the cursor accordingly.

PROGRAM 6.4(d)

60300 IFA$="A"ANDX>1THENX=X-1
60310 IFA$="S"ANDX<8THENX=X+1
60320 IFA$="W"ANDY>1THENY=Y-1
60330 IFA$="Z"ANDY<8THENY=Y+1

Function Key'Functions....

fl:Set Pixel

If fl1 is depressed it means store current cursor position as a
character element. This is detected when A$=CHR$(133) and the array
location corresponding to the current cursor position is set to 1,
j.e:

60350 IF A$=CHR$(133) THEN A(X,Y)=1

6-23

Then the current square on the character grid is set to a solid
color and the color RAM is set. The position on the character
matrix is found relative to the top left-hand corner in terms of X
and Y i.e. X+Y*40 and this is added to the co-ordinate of that
point - 1024+287. This is required to change the data which is in
a matrix format (X,Y) into the format that the screen understands
i.e. running along in rows of 40 characters. A similar calculation
is carried out for the color RAM. Once this is done, the subroutine
moves to line 60570 to update the current character stored in
memory i.e.

60350 IF A$="<F1>" THEN A(X,Y)=1:
POKE 1024+287+X+Y*40,255:
POKE 55296+287+X+Y*40,6:G0TO 60570

f3:Clear Pixel

When a pixel that has previously been set needs to be cleared, this
function does the job. It simply reverses the procedure of fl by
setting the relevant array position to zero, poking a space onto
the screen and finally setting the color RAM to background. Being
so similar to the Set Pixel function the code is virtually
identical i.e.

60360 IF A$="<F3>"THEN A(X,Y)=0:POKE
1024+287+X+Y*40,254: POKE 55296+287+X+Y*
40,5:G0TO 60570

f5:Display DATA/store in program

When this function is called, the program will ask the user where
the DATA statement for that particular character should be stored.
If a line number of zero is indicated, then the DATA for that
character will be displayed but not stored. When a 1line number is
entered, a line will be inserted into the program which contains
the requisite DATA for that character. This is a rather complicated
process and will be discussed later.

60370 IF A$="<F5>"THEN 60400
f7:Clear Board

Essentially, this function scraps the design work done to date and
wipes the slate clean. In other words, it clears the design matrix
and prepares it for start. The command CLR does this by setting all
the variables and arrays back to zero, and, once this is done, the
program is re-routed to the beginning of the input routine, i.e.

60380 IF A$="<F7>" THEN CLR:DIM A(8,8):G0TO 60110

6-24

f5:Display DATA/store in program - the details

This is activated by pressing function key 5 and as it is required
to do two different jobs, it starts with a prompt which tells us
what these jobs are and asks for a line number INPUT, i.e. LN. In
an attempt to avoid overwriting either the program to which
user-defined graphics will be added or the Char.Gen program itself;
Tine numbers between 10000 and 60000 are suggested. To strengthen
this ‘'suggestion', an error-check is made in lines 60400-60420
which re-routes the program back for another INPUT when lines lie
outside this range.

Once the INPUT has been accepted, the prompt is deleted by printing
spaces over it, Tines 60430 and 60440 in Program 6.4(e). In
addition to the code for f5, this 1listing provides the whole
program for the character design routine.

PROGRAM 6.4(e)

60250 X=1:Y=1:POKE55296+328,0

60260 FORB=0TO7:POKE12288+B+CH*8,0:NEXT
:POKE650, 255 '

60270 GETA$:IFA$=""THEN60270

60280 POKE198,0

60290 POKE55296+287+X+Y*40,5+A(X,Y)

60300 IFA$="A"ANDX>1THENX=X-1

60310 IFA$="S"ANDX<BTHENX=X+1

60320 TFA$="W"ANDY>1THENY=Y-1

60330 IFA$="Z"ANDY<8THENY=Y+1

60340 POKE55296+287+X+Y*40,0: IFA$=CHR$(
13) THEN61000

60350 IFA$="<F1>"THENA(X,Y)=1:POKE1024+
287+X+Y*40, 255: POKE55296+287+X+ Y*
40,6:60T060570

60360 IFA$="<F3>"THENA(X,Y)=0:POKE1024+
287+X+Y*40,254: POKE55296+287+X+Y*
40,5:60T060570

60370 IFA$="<F5>"THEN60400

60380 IFA$="<F7>"THENCLR:DIMA(8,8):G0T0
60110

60390 GOT060270

60400 PRINT"<HOME>ENTER LINE NO. FOR DA
TA STATEMENT" :PRINT"(10000-60000)

60410 PRINT"OR ZERO FOR DISPLAY ONLY"-I
NPUTLN

60420 IF(LN<100000RLN>599990RLN<>INT(LN
))ANDLN<>OTHEN60400

60430 PRINT"<HOME>";:FORC=1T03:FORD=1T0
38

60440 PRINT" " ;:NEXT:PRINT:NEXT:PRINT"<
HOME><18DCRSR>";

6-25

Prior to PRINTing the actual DATA onto the screen, the POKE values
need to be found and this can be done by PEEKing the actual
locations where these are stored. Once the values have been found
they could be stored on the screen or in an array. In this program,
neither of these courses are chosen, the data being stored in one
variable C$, made up from the relevant PEEKs. To do this, the
string is built up with alternate PEEK values and commas. One
problem is created by this procedure, the presence of a final comma
on the 1line. This 1is removed by adding a delete character
(CHR$(20)) to the end of the string and deleting the last comma. If
you're not too sure about this, type in Program 6.5(a).

PROGRAM 6.5(a)

10 C$="":FOR X=1 TO 10
20 C$=C$+"A"+" . 1]

30 NEXT X

50 PRINT C$

When this is run, C$ should be PRINTed as a string of ten A's
separated by commas with a comma at the end. Now modify this by
adding line 40 of Program 6.5(b)

PROGRAM 6.5(b)
40 C$=C$+CHR$(20)

Once the new line is added, the string C$ will then consist of the
ten A's separated from each other by commas but the final comma
will have been deleted. So it does work! Once you are satisfied
that the program works, delete lines 10 to 50, either by typing in
the numbers or by means of the Honey.Aid command :

DELETE (A Honey.Aid command)

Its descriptive name tells you Jjust what this command does, the
syntax being just 1ike that of LIST. Hence, to delete lines 10 to
QO of a program, three of the four different methods could be used;
]le.

* delete the lines individually
DELETE 10 <RETURN>
DELETE 20 <RETURN>
etc.

* delete the block
DELETE 10 - 40 <RETURN>

* delete up to line 40
DELETE -40 <RETURN>

6-26

The other allowable method is DELETE 40 but as this would delete
the bit of program that you need it's not a good idea to use it
here. Go steady with DELETE though, it's useful but dangerous! It
has been set up so that 'DELETE' on 1its own won't delete
everything, (unlike LIST which will 1list everything) but it is
still powerful!

Back to CharGen. . «

So far the data line has been created and if a line number is
PRINTed onto the screen prior to this, all the elements of a DATA
statement will have been created. So far this has not been entered
into the program and this now needs to be done.

Self modifying programs

In order to enter a line into a program the computer needs to be in
edit mode i.e. with a 'READY' sign displayed and the cursor
flashing. Of course, the computer 1is not in this state once a
program is running and the machine would need to encounter an 'END'
to turn on the 'READY' sign.

When doing an edit manually the process would be to type in the
line and then press <RETURN> to add the line. So far we've worked
out how to print the line and if we then follow this with an 'END'
the computer will return to EDIT mode. Test this out with the
following line. In this we'll attempt to modify a program that
prints 'FRED' to one that prints 'FRED IS OK'. The task then is to
change the program.

10 PRINT "FRED" into 10 PRINT "FRED"
20 PRINT "IS OK"

What 1is needed, therefore, is a line to create line 20 and one
problem that arises immediately is that of printing quotes i.e. *
onto the screen. Actually, this is no problem since, ASCII code 34
is the quote sign.

PRINT CHR$(34)

should print a quote sign onto the screen. Try it and see. The next
stage is to print the whole line and this time let's do it from
within a program:

10 PRINT "FRED"

20 PRINT"20 PRINT";CHR$(34);"IS OK";C
HR$(34)

999 END

6-27

Now when this is 'RUN', the program will yield:

FRED
20 PRINT"IS OK"

READY
B <CURSOR>

FIGURE 6.20

From this stage, the cursor would need to be moved up four lines so
that it is over line 20. This can be done in the program by adding
a line to move the cursor up four lines.

30 PRINT "<4UCRSR>"

When this is added and run, the display will be as in Figure 6.20
but with the cursor flashing over line 20. At this stage, if you
press RETURN, you will enter (edit) line 20 into the program. Press
RETURN now, then type in LIST 1-999. You will then see the program:

10 PRINT"FRED"

20 PRINT"IS OK"

30 PRINT"<4UCRSR>";
999 END

You had to physically press the RETURN key to enter line 20 into
memory. We actually want the computer to do this itself. We can
force the computer to read a RETURN key press without actually
pressing RETURN by placing a value of 1 into the keyboard read
location (198), meaning a key has been pressed, and placing the
value of a RETURN key (13) into 631 (the keyboard buffer). Modify
lines 20 and 30 to now read:

20 PRINT"20 PRINT";CHR$(34);"IS OK";CHR$(34)
30 PRINT"<4UCRSR>";POKE 631,13:POKE 198,1

Now run the program and it will yield the following display:

READY
20 PRINT"IS OK"
M <CURSOR>

FIGURE 6.21
Now type LIST 1-999 and the new program will be:

10 PRINT"FRED"

20 PRINT"IS OK"

30 PRINT"<4UCRSR>";POKE 631,13:POKE 198,1
999 END

So far so good. The program modifies itself, but what would happen
were it to be incorporated into a longer program? To find out,
modify the program by adding the following lines (the program is
simply going to go through a PRINT loop):

20 PRINT"20 PRINT";CHR$(34);"IS OK";CHR$(34)
40 FOR X=1 T0 10

50 PRINT X

60 NEXT X

Now run the program. The display will be overlayed with the numbers
1 to 10. Type in LIST 1-999 and you will see that line 20 was not
changed as it was before. The reason for this is that the computer
will not check the keyboard buffer until the program calculations
are complete (the FOR...NEXT loop is finished). It is necessary to
have the computer perceive an END or an INPUT in order to force it
to check the keyboard buffer. Modify 1ine 30 to now read:

30 PRINT"<4UCRSR>";POKE 631,13:POKE 198,1:END

RUN the program, then LIST 1-999 and you will see that line 20.
again, has been changed. However, we must now realize that the
FOR...NEXT Toop has not been executed. We can force the computer to
execute the loop by means of typing in GOTO 40. Type this in now
and you will have the numbers 1 through 10 printed on the screen.
Of course, we want the computer to do this itself, without our
having to type in GOTO 40. What is necessary is a repetition of the
procedure used to enter line 20, i.e.

PRINT the new line onto the screen

move the cursor onto this line

force a RETURN into the keyboard buffer

tell the computer that this RETURN is in there
force the computer to look into the buffer to see
what to do next by means of an END

* % % o

In order to intégrate this into the program, the 'GOTO' is added to
the program before the earlier 'keyboard buffer' line and this is
modified to contain an additional CHR$(13) i.e. Program 6.6(a).

PROGRAM 6.6(a)
20 PRINT"20 PRINT";CHR$(34);"IS OK";CHR$(34)
25 PRINT"GOTO 40"
30 PRINT"<5UCRSR>":POKE 631,13:POKE 632,
13:POKE198, 2: END

Now, at long last, when this is RUN, the program will insert the
new line 20 followed by the 'GOTO', cursor up over this and then

6-29

RETURN over the two lines, one a line edit and the other a direct
GOTO command. One other little refinement could be added to this
line and that is to print the 'GOTO' in background color so that
the user is not aware of its presence. This is, in fact, done on
line 60490 of Program 6.6(b). One warning though, if something of
a different color occupies that space on the screen, the GOTO will
be seen! You can now type in DELETE 1-999 (assuming Honey.Aid has
been RUN), to remove these lines from our Char.Gen program.

When integrated into the Char.Gen program, this process will enter
the DATA 1line and then restart the program. The routine is shown
in Program 6.6(b).

PROGRAM 6.6(b)

60440 PRINT" ";:NEXT:PRINT:NEXT:PRINT"<HOME>
<18DCRSR>" 5

60450 IF LN>0 THEN PRINT LN;

60460 PRINT"DATA";:IF LN>O THEN PRINT CH;",";
60470 C$="":FOR C=0 TO 7:C$=C$+STR$(PEEK(12288+
CH*8+C))+","

60480 NEXT:C$=C$+CHR$(20) :PRINT C$:IF LN=0 THEN
LN=1:GOTO 60500

60490 PRINT"<WHT>GOTO 60500<5UCRSR>":POKE 631
,13:POKE 632,13:POKE 198,2:END

60500 PRINT"<HOME><2DCRSR><ORNG> <RVSON>PRESS
ANY KEY TO CONTINUEKRVSOFF><BLU>"

60510 POKE 198,0

60520 GET A$:1F A$="" THEN 60520

60530 PRINT"<HOME><2DCRSR><30 SPACES>"

60540 IF LN=0 THEN DIM A(8,8):G0T0 61000

60550 PRINT"<HOME><18DCRSR>";:FOR C=

1 7O 70:PRINT" ";:NEXT

60560 GOTO 60140

This subroutine requires one final section to yield an overall
workable Char.Gen program. This is the routine that loads the array
A(X,Y), converts the information into a POKE value and POKE's that
into memory. It is called each time a new pixel is incorporated
into a character and the POKE value for the character is thus
updated. As each cell of the array, in the X direction, represents
a value equivalent to a two raised to its positional value, a loop
is used to calculate the total value of A, i.e. for the pixel
pattern:

Positional value 7 6 5 4 3 2 1 0
0 1 1 0 0 1 1 0
bit value 0 +26+254+0+ 0 +22+21 40
in decimal = 0+ 64+32+0+ 0 +4 +2 +0-=102
FIGURE 6.22

6-30

The summation is performed by the loop:
FOR B = 1 TO 8:A=A(B,Y)*2 (8-B):NEXT

A slight warning: the array place numbers are stored from right to
left, while the bit numbers are, by convention, from left to right.

i.e.
X value 12345678 array(X,Y)

bit value 76543210
Testing for bit 3 : A

A(B,Y) *2 (8-5)
1 *2 (3)
18 = 8

i.e. A

and A

Once the byte value is calculated, it is POKEd into the appropriate
location and the program returned for the next INPUT (line 60570 of
Program 6.6(c)). Actually, as you will see, we have used an AND
instead of the FOR....NEXT loop:

PROGRAM 6.6(c)

60570 A=PEEK(12287+Y+CH*8) :IFA(X,Y)=0TH
ENA=AAND (255-(2T(8-X)))

60580 IFA(X,Y)=1THENA=AOR(2T(8-X))

60590 POKE12287+Y+CH*8,A:G0T060270

Read DATA/create character subroutine

When a program utilizes custom-designed characters, one necessary
function is their creation from the DATA statements where all the
necessary information is stored. In Char.Gen, the characters are
created during the running of the program but, as this function is
integrated with the rest of the program, it is not suitable for
incorporation into the user's own program. To overcome this
problem, a small routine is created which will read in the DATA and
POKE it into the appropriate memory locations. Program 6.6(d)
shows the routine along with an explanation of its function, and
into this is built the facility for creating a specified number of
characters (N).

6-31

PROGRAM 6.6(d)

60610 FOR Y = 1 TO N:READ A:FOR X=0 TO 7

read character number

60620 READ B:POKE 12288+A*8+X,B

60630 NEXT : NEXT

read eight lines of character Y, store as appropriate

Destroy unwanted program routine

Once the characters in a program have been defined, the Char.Gen
program can be deleted and the largest part of this is the question
and answer session. Any program that is as drastic as this needs
lots of warnings! In addition, the initialization procedure sets
out to find the number of characters concerned. Program 6.6(e)
shows this part of the program.

PROGRAM 6.6(e)

61000 PRINT"<CLR><2DCRSR><4RCRSR>HAVE Y
OU FINISHED USING"

61010 INPUT"<DCRSR><4RCRSR>CHAR.GEN (Y/
N)";AS:IFA$="N"THEN60110

61020 IFA$<>"Y"THEN61000

61030 PRINT"<2DCRSR><4RCRSR>WARNING:THI
S ROUTINE DELETES THE"

61040 PRINT"<DCRSR><4RCRSR>CHARACTER GE
NERATOR."

61050 PRINT"<2DCRSR><4RCRSR>ARE YOU REA
LLY SURE THAT YOU'vE"

61060 INPUT"<DCRSR><4RCRSR>FINISHED (Y/
N)" ;AS: IFAS="N"THENEND

61070 IFA$<>"Y"THEN61060

61080 PRINT"<2DCRSR><4RCRSR>HOW MANY CH
ARACTERS HAVE YOU":INPUT"<DCRSR><
4RCRSR>REDESIGNED" ;N

BEFORE YOU RUN THIS SAVE IT - IT DESTROYS PROGRAMS!

Once it is established that the user really does want to eliminate
the Char.Gen program, deletion can begin. In this program use is
made of Honey.Aid's DELETE function although the job can be done,
albeit much more slowly, using ordinary BASIC. To do this, the
individual line numbers would need to be printed and then RETURNed
over.

6-32

However, Honey.Aid to the rescue! In the final program, the moving
down of the character set will still be required so the first
DELETE starts at 60080. Also the generation of the character is
required, defining the end of the DELETE as 60599. Thus, the first
delete is from 60080 to 60599. It isn't possible to use DELETE in
program mode, so once again we must resort to printing onto the
screen and RETURNing over it.

The program from line 61000 onwards can then be deleted in one go,
i.e. DELETE 61000- leaving just one final DELETE to be done, line
60000. This Tine, the first in the Char.Gen program, by-passes the
moving of the character set once the program has been run. When
this line has been removed, it exposes line 60010 which is not
otherwise used, and this functions in the same way that 60000 did
but directs the program over the now missing section.

Finally, the number of characters defined (N) 14s written
permanently into the program by inserting a LET statement into the
program in order to define the value of N in a permanent line.
Program 6.6(f) shows these final few lines in action and completes
the functional character generator program.

Program 6.6(f)

61090 PRINT"<CLR><WHT><2DCRSR>"

61100 PRINT"DELETE60080-60599<2DCRSR>"

61110 PRINT"DELETE61000-<2DCRSR>"

61120 PRINT"6U600 N=";N

61130 PRINT"60000"

61140 PRINT"PRINT"CHR$(34)"<CLR><BLU>"C
HR$(34)

61150 PRINT"<HOME>";

61160 FORX=631T0635:POKEX,13:NEXT:POKE1
98,5:END

PART 3
Using Char.Gen

To use Char.Gen you must first load and run Honey.Aid, then load
and run Char.Gen. The program on the disk has been modified to run
more quickly than the version described in the previous sections.

To see Char.Gen in action, let's define a character and incorporate
this into a short program. First of all RUN Char.Gen and the
machine will ask:

WHICH CHARACTER WOULD YOU LIKE TO DEFINE?
Enter: 1253

6-33

This character is to be replaced by that shown in Figure 6.23.

FIGURE 6.23

To create this character, the relevant blocks need to be filled in.
The first block that needs filling on the top row happens to be the
first block in the row. As the cursor is already at this block when
the program runs it is only necessary to press fl to set the pixel.
At this stage, next to the message "HERE IS YOUR CHARACTER SO FAR"
will appear the first dot of the character. The rest of the
character can then be built up using the keys:

W Move cursor up

A Move cursor left

S Move cursor right
z Move cursor down

and to set the actual characters:

f1l sets the current cursor pixel
as part of the character

f3 clears the current cursor pixel
and deletes it from part of the
character

f5 calculates the POKE values for
the re-designed characters

f7 clears the character designed to
date ready to start again.

6-34

Going through the first two lines of the character the operations
are, press:

1, S, f1, S

, f1, S, f1, S
f1l, S, fl,
fl, S, f1
fl, A, f1, A

fl, A, f1, A

fl, A, f1, A

fl, A, fl

W, S, S, fl

fl, A, f1, A, fl
, f1, S, f1, S, fl
, f1, A, fl

wn

E I I IR R SRV V)

ok % % Ok Ok Ok %k % *
-

f
Z
VA
YA
YA
yA
VA
JA
W
W
W
W

Whoops! That's one too many. To correct this press f3, to clear
the last pixel. Remember, if you press fl in the wrong place, f3
will correct it. If you find that there are too many changes
needed, simply press f7 to clear the whole board.

Now that you've designed the whole character and you're sure that
no changes are needed, press f5. The computer will ask:

ENTER LINE NO. FOR DATA STATEMENT
(10000-60000) :0R ZERO FOR DISPLAY ONLY

Just to test out the program enter a zero and the screen will then
display the relevant DATA statement below the design matrix. In
addition a message will be given to:

PRESS ANY KEY TO CONTINUE
Once a key is pressed, the program returns to its entry mode.

Now to transfer the DATA statement into your own program, once
again press f5. The 'AT WHICH LINE...." message will re-appear and
this time you should enter the relevant line number, say, 10000.
When you press <RETURN>, the DATA statement will reappear, this
time along with a 1ine number. After a second or so, the "PRESS ANY
KEY..." message will reappear and, on doing this you will return
once again to the 'Which character' message.

If you wished to design another character you would first clear the
design matrix by pressing f7 and then begin again. You can go on
to define all the characters that you need and you may find some
changes appearing on the screen if you redefine those characters
used by Char.Gen itself! However, for now just stick to the one
character.

6-35

Next, to get into the program termination phase press <RETURN> and
you will be asked:

HAVE YOU FINISHED USING CHAR.GEN (Y/N)?

On entering a 'Y' you then be warned and then asked:
WARNING: THIS ROUTINE DELETES THE CHARACTER GENERATOR
ARE YOU REALLY SURE THAT YOU'VE FINISHED (Y/N)?

Once the decision has been made, you will be asked:
HOW MANY CHARACTERS HAVE YOU REDESIGNED?

Enter a 'l1' and press <RETURN>.

You will now be 1left with the remnants of Char.Gen, lines
10000-10010, 60010-60070, 60600-60640.

In order to utilize Char.Gen it needs to be called with a GOSUB
60010. Program 6.7 illustrates a simple technique for utilizing the
character. It is displayed by POKEing it into the screen.

PROGRAM 6.7

10 GOSUB 60010:A=32

20 FOR X=1 TO 1000:POKE 1023+X,A:
A=PEEK 1024+X:POKE 1024+X,253:
POKE 55296+X,6:NEXT

30 END

When you run this its a good idea not to clear the screen first,
just type RUN <RETURN>. Can you see from line 20 what it does? All
it's doing is storing the character ahead of the space ship and
then placing it back behind it as this moves on. Quite like a
sprite eh?

One last thing about redefining characters, don't forget that
you're using them as you change them. Let's have a little play with
Char.Gen! Change lines 60130 so that it allows all characters to be
defined, i.e. change the 253 into a 255. Then run the program and
select '254' for the character to be redefined. Now, when the
display is put onto the screen, you will see the '254' characters
melt away before your very eyes as line 60260 gets to work. If you
now create characters, you will find that the design matrix is made
up of these - as you create them. By making regular grid-type
characters, all kinds of patterns can be made.

6-36

CHAPTER

BALL GAMES

n this chapter, we will develop further the ideas explored in

Chapter 5. Some of the techniques explored in Chapter 5 will

be extended to develop a breakout type of game which uses

graphics interactively. This is really a fancy way of saying
that the player will control the screen display by way of the
keyboard.

One of the features of the C-64's screen is that it is ‘'memory
mapped' which means that every character space or cell on the
screen has a memory location allocated to it. Thus, if the value 90
is stored in the appropriate Tlocation for the screen's top
left-hand corner, then a 90 (in CBM code, a diamond) will be
displayed on the screen. However, you may not be able to see it if
the screen's background color and the character color are one and
the same - blue on blue is none too clear, nor is green on green.
In any program, therefore, it is advisable to make sure that the
colors are those that you want by setting them appropriately. Thus
the stages are:

* Set border color
* Set screen background color
* Set character color

The order is none too important but they all need doing!

The screen colors are quite easily set by single POKEs but in order
that a screen display can have more than one color on it, each
character cell can be set individually. If the character is not
set, you may be lucky and your characters may be visible - on the
other hand you may be unlucky.

The C-64 screen is divided into 1000 cells; 40 across each line and
25 down -see Figure 7.1.

<4——40 columns across ——p

A

25 lines down

FIGURE 7.1

Its top left-hand location, the 'home' position is mapped to memory
location 1024 and the other cells along the top row, to locations
1025, 1026, etc. A further memory location, 55296, contains the
color information for the top left-hand screen cell. The next 39
locations hold color information for the remainder of the screen's
top row, the following 40 for row two, etc. This whole area of
memory is known as the 'color RAM'.

Enough talking, let's have a go! Program 7.1 POKEs onto the screen
an 'A' on a white background with a green border.

PROGRAM 7.1

Set border to green 10 POKE 53280,5
Set screen background

to white 20 POKE 53281,1
POKE a '1' onto

screen home position 30 POKE 1024,1
Set color of screen

home position 40 POKE 55296,7

7-2

In Tine 40, a '1' was POKEd into the screen memory and a letter 'A'
appeared on the screen. These screen POKE codes are a Commodore
form of ASCII code and the whole range of these is listed in
Appendix 3. They can be investigated by modifying Program 7.1
slightly so that it cycles through them all. Try it with:

PROGRAM 7.2

10 POKE 53280,1
20 POKE 53281,2
25 FOR X=0 TO 255
30 POKE 1024+X,X
40 POKE 55296+X, X
50 NEXT X

When Program 7.2 is run, the whole character set is displayed in
the first two and a half rows of the screen. Each character is a
different color as the value stored in the color RAM is incremented
on each pass through the loop. However, as there are only 16 colors
and most of the values POKEd into the color RAM were over 16, the
computer was clearly working on it! What was happening, in fact,
was that only the least significant nybble of the color RAM was
being used to define the color. The remainder was being stripped
off by means of a logical operator, so....

EXERCISE 7.1

What Togical operation is used to remove the
most significant nybble? An answer is given
on page 11-6.

Suppose now we wanted to fill the entire screen with the POKE
character '83'. One way of doing this would be to enter '2000
Tines of program - 1000 assigning the character and another 1000
giving it a color, starting:

PROGRAM 7.2(a)

POKE 1024,83
POKE 55296,2

énd ending...
POKE 2023,83
POKE 56295,2

That would be a very laborious process, to say the least! As we saw
in Program 7.2, we can use variables when POKEing. Thus, if we
wished to fill up the whole screen with the character '83', we can
use a loop. As there are 1000 locations between '1024' and '2023'
(and also between '55296' and '56295'), the loop will need to run
from '0' to '999', i.e.

PROGRAM 7.2(b)

20 FOR X=0 TO 999
30 POKE 1024+X, 83
40 POKE 55296+X,2
50 NEXT X

That short program (1996 1lines shorter than Program 7.2(a)) fills
the screen with bright red hearts (all together now: AAH!). The
next leap forward will be to have 1lines of different colored
hearts: one line red, one blue, etc. The problem with trying to do
this is that each 1line holds forty characters and the Tloop in
Program 7.2(b) was just too long. What is needed, therefore, is a
loop just 40 characters long i.e.,

PROGRAM 7.3

20 FOR X=0 TO 39
30 POKE 1024+X,83
40 POKE 55296+X,2
50 NEXT X

Now, when this is run one line of red hearts will be displayed
across the screen. They are all the same color though! Let's add
another loop to run through the 16 colors:

PROGRAM 7.3(a)

10 FOR Y=0 TO 15

20 FOR X=0 TO 39

30 POKE 1024+X,83

40 POKE 55296+X,Y:REM CHANGE COLOR
50 NEXT X

60 NEXT Y

7-4

Now, at least we've got the 16 colors but they're all on the top
line. What we need now is to increase the values for the two POKES
by 40 on the second loop as the second now starts at 1064. For the
third Tine an increase of 80 is needed and 120 on the fourth etc.
This can be achieved by adding 40 times the Y value to each POKE,
i.e. on the first loop 40*0=zero is added, on the second pass
40*1=40 etc. Incorporating this in a program yields:

PROGRAM 7.3(b)

10 FOR Y=0 TO 15

20 FOR X=0 TO 39

30 POKE 1024+X+Y*40,83
40 POKE 55296+X+Y*40,Y
50 NEXT X

60 NEXT Y

EXERCISE 7.2

Change Program 7.3(b) so that the hearts are
POKEd column by column instead of row by row.
A possible answer is given on page 11-6.

We now have the tools to start on the ball game and to POKE in the
wall simply calls for a 3 x 7 loop using a POKE character of 160,
an off-reverse space (i.e. a brick!).

Program 7.3(c)

10 PRINT"<CLR>"

20 FOR Y=3 T0 7

30 FOR X=0 TO 39

40 POKE 1024+X+Y*40,160
50 POKE 55296+X+Y*40,Y
60 NEXT X, Y

EXERCISE 7.3

Modify Program 7.3(c) so that the lines start
at the top of the screen, but retain their
original colors. A possible answer is given
on page 11-6.

7-5

A MOVING BALL

Probably the most important part of the game will be the simulation
of a bouncing ball. Big oaks from little acorns grow, so we shall
start by making the ball move across the top of the screen. If we
choose a ball-like character say a 'e'(POKE 81) we may move this
across the screen by means of straight-forward POKES:

PROGRAM 7.4

10 PRINT"<CLR>"

20 FOR X=0 TO 39

30 POKE 1024+X,81 : REM 8l='e'
40 POKE 55296+X,2

50 NEXT X

When run, the program only draws a line of red balls across the
screen leaving a trail behind it. On a black and white television,
they may be completely invisible, so, if you can't see them, change
line 40 to POKE color 10 instead of color 2. What we need to do
now is to wipe out that trail. This can be done most readily by
POKEing a space (a POKE of 32) behind the ball, thus ensuring that
only one ball is on the screen at a time. This extra POKE can be
included in the loop but care must be taken to ensure that its
location is always one behind the ball i.e. the ball is at 1024+X
and the space is at 1024+X-1.

PROGRAM 7.4(a)

10 PRINT"<CLR>"

20 FOR X=0 TO 39

30 POKE 1024+X,81
40 POKE 55296+X,2
45 POKE 1024+X-1,32
50 NEXT X

EXERCISE 7.4

Modify Program 7.4(a) so that the ball moves
across the bottom of the screen. A possible
answer is given on page 11-6.

7-6

Before entering Program 7.4(b) examine it and see if you can
predict the way in which the ball will move (no prizes for a
correct guess).

PROGRAM 7.4(b)

10 PRINT"<CLR>"

20 FOR X=0 TO 20

30 POKE 1024+X+Xx*40,81

40 POKE 55296+X+X*40,2

50 POKE 1024+X-1+(X-1)*40,32
60 NEXT X

The ball stops short of the bottom line to avoid POKEing anything
into non-screen memory locations: always a sensible precaution.

EXERCISE 7.5

Change Program 7.4(b) so that the ball moves
diagonally from bottom right to top left. A
possible answer is given page 11-6.

A Randomly Moving Ball

Now to extend the moving ball idea a 1ittle. Suppose we want to
increase the row position and decrease the column position of the
ball at the same time thus giving a diagonal movement from the top
right to the bottom left. The major problem of wiping out the trail
that the ball leaves is overcome by introducing variables 'XX' and
'YY', which 'remember' the position of the ball before it moves on.

PROGRAM 7.5

10 PRINT"<CLR>"

20 X=0 : Y=0

30 POKE 1024+X+Y*40,81
40 POKE 55296+X+Y*40,2
50 YY=Y : XX=X

60 Y=Y+1 ¢ X=X+1

70 IF Y=24 THEN STOP

80 POKE 1024+XX+YY*40,32
90 GOTO 30

Before 'X' and 'Y' are given new values in line 60, 'XX' and 'YY*
are set to the old values (line 50) and so the old position is
wiped out in line 80. Program 7.5 stops when the ball reaches the
bottom. Checks for the edges of the screen are very important.

7-7

By now you should have realized that the problem of the bouncing
ball is not as straightforward as our first attempts might have led
us to believe. Sometimes it 1is necessary to increment the column
(X), sometimes the row (Y) and sometimes both. Then of course,
sometimes it is necessary to decrement them and finally sometimes a
mixture of the two is needed.

To simulate a randomly-moving ball, use can be made of the random
number generator within the 64. Run the following short program:

PROGRAM 7.6
1 PRINT INT(RND(1)*2):G0TO 1

This produces a series of randomly chosen zeros and ones. When you
get bored press ‘'RUN/STOP'. One small point about RUN/STOP! It
does, in fact, stop the program as you'd expect but what about when
you press it by mistake? Fortunately BASIC has a way out of this
disaster; it's the command...

CONT

This is a shorthand form for ‘continue' and tells the computer to
continue executing the program from where it last stopped. Try it
out now; type in:

CONT

The program should continue by giving you even more random numbers.

In the randomly moving ball program it will be necessary either to
increase each row or column (add +1) and/or decrease each column
or row (add -1) in order to generate a random bounce. The random
number generator can be used to do this. Two more variables will be
required to handle this random bounce - XI and YI. These will
control the sign of the increments XX and YY. 'XI' controls the 'X'
increment and 'YI' controls the 'Y' increment. See lines 120 and
130.

PROGRAM 7.7

10 REM RANDOMLY MOVING BALL
20 PRINT "<CLR>"

30 X=10

40 Y=10

50 POKE 1024+X+Y*40,81

60 POKE 55296+X+Y*40,2

70 XX=X:YY=Y

80 XI=INT(RND(1)*2)

90 IF XI=0 THEN XI=-1

100 YI=INT(RND(1)*2)

110 IF YI=0 THEN YI=-1

120 X=XX+XI

130 Y=YY+YI

135 IF X>38 OR X<1 THEN STOP
140 IF Y>23 OR Y<1 THEN STOP
150 POKE 1024+XX+YY*40, 32
160 GOTO 50

Lines 135 and 140 make sure that the ball doesn't stray out of the
boundaries we have allowed for it, i.e. the screen. Since we want
XI and YI to be either -1 or +1, and these are not consecutive
numbers, we first let XI be either 0 or 1 (line 80) and then, if
it's 0, we change it to -1 (Tine 90). If it's 1, we leave it alone.
This is repeated for YI in lines 100 and 110.

When Program 7.7 is run it will, eventually, reach one of its
limits and the program will stop. To remedy this situation, we
must change lines 135 and 140 so that the ball 'bounces'.

PROGRAM 7.7(a)

135 IF X>38 OR X<1 THEN XI=XI*-1:G0TO 120
140 IF Y>23 OR Y<1 THEN YI=YI*-1:G0TO 120

Multiplying a number by -1, in effect, simply changes its sign, so
+1*-1 results in -1 and -1*-1 gives us +1. Thus lines 135 and 140
change the direction of the ball when it reaches an extreme value.
By going to Tine 120, the new value of XI or YI is added to X, thus
giving the ball a new direction away from the offending edge.

In developing the randomly bouncing ball we have investigated many
important graphics techniques, not all will be called for in the
first game we develop but, eventually, we will need them all.
Overall, the endlessly bouncing ball program looks like Program
7.7(b).

7-9

PROGRAM 7.7(b)

10 REM AN ENDLESSLY BOUNCING BALL
20 PRINT "<CLR>"

30 X=10:Y=10

40 XI=1:YI=1

50 POKE 1024+X+Y*40,81

60 POKE 55296+X+Y*40,2

70 XX=X:YY=Y

80 IF X>38 OR X<1 THEN XI=XI*-1
90 IF Y>23 OR Y<1 THEN YI=YI*-1
100 X=XX+XI

110 Y=YY+YI

120 POKE 1024+XX+YY*40, 32

130 GOTO 50

EXERCISE 7.6

Amend Program 7.7(b) so that the ball's
initial position 1is random. A possible
answer is given on page 11-6.

The program we have so far, bounces the ball from any edge of the
screen but for the first game, the ball should only bounce from
the bottom if the bat is in position; also when the ball approaches

the wall, its bounce depends upon how many bricks have been
demolished.

What 1is needed is a function which will enable one to look at a
particular screen location (especially the one into which the ball
is about to move) and to report back what is seen: the PEEK
command!

Program 7.9 illustrates how we can use PEEK to bounce a ball from a
line drawn using character code 160 (reverse space).

When this program 1is run, it may look very similar to the one
earlier in this chapter, but the bounce is caused by a different
logic. Before, we constantly kept a check on the values of 'X' and
'Y', and when they reached their extreme values we effected a
bounce. In Program 7.9, however, line 115 checks the location
into which we are going to move to see if anything is in the way.
If there isn't anything, then we make the ball move as before, but
if there is (in which case A=0), then we can't let the ball move
into that position. So line 116 changes the row increment
variable, YI, and the program branches back to 1ine 100 to work out
the new position.

7-10

PROGRAM 7.9

10 REM ENDLESSLY BOUNCING BALL

20 PRINT "<CLR>"

21 FOR X=0 TO 39

22 POKE 1024+X,160:POKE 55296+X,0
23 NEXT X

30 X=10:Y=10

40 XI=1:YI=1

50 POKE 1024+X+Y*40, 81

60 POKE 55296+X+Y*40,2

70 XX=X:YY=Y

80 IF X>38 OR X<1 THEN XI=XI*-1
90 IF Y>23 OR Y<1 THEN YI=YI*-1
100 X=XX+XI

110 Y=YY+YI

115 A=PEEK(55296+X+Y*40) AND 15
116 IF A=0 THEN YI=YI*-1:GOTO 100
120 POKE 1024+XX+YY*40,32

130 GOTO 50

If we hadn't used 'AND 15' on line 115, then the value of 'A' would
have been '224'. The 'AND 15' part gives the lowest numeric value
of'the color in that location,

EXERCISE 7.7

Rewrite Program 7.9 so that a line (character
160) s drawn vertically from the ninth
location at the top (1033) and finishing at
the bottom equivalent (1993). The command
to draw the 1lines should take the place of
the present lines '21' to '23'. Line 116
will also have to be changed. A possible
-~ answer is given on page 11-7.

The logic behind the bounce is controlled by looking at the color
of the byte that we are about to move into. If the color is 0
(the color of our wall) then we react. However, if we POKE spaces
instead of reverse space characters (Program 7.9(a)), thus removing
the line from sight, the ball will still bounce as if the wall is
there.

PROGRAM 7.9(a)
22 POKE 1024+X,32:POKE 55296+X,0

7-11

This is because the color memory locations are still black, so a
different PEEK value is needed, that of the character in front.
If it is a wall then its PEEK value is needed. If the byte in
front is the wall, then the PEEK value will be '160'- the character
code for a reverse space. So, for a perfect 'Bounce Game', we
need to replace lines 115 and 116 with:

PROGRAM 7.9(b)

115 A=PEEK(1024+X+Y*40)
116 IF A=160 THEN YI=YI*-1:GOTO 100

Now we have two ways of making the ball bounce. Firstly by
keeping a constant check on the values of 'X' and 'Y' and secondly,
by means of the PEEK command.

Armed with this knowledge and experience (not to mention the PEEK
and POKE commands) we can seriously start to produce a ball game.
To make a fresh start, type in NEW, after saving the program if you
wish, and we will begin in earnest.

A Moveable Bat

The bat will move to and fro along the bottom Tine of the screen,
key '1' being used to move the bat left and '9' to move it right.
Obviously, an INPUT command can't be used or the program will stop
after each entry and wait until the RETURN key 1is pressed.
Instead, the 'GET' command is used which means that characters can
be entered straight from the keyboard without having to press
RETURN. To demonstrate this, enter the program below:

PROGRAM 7.10

10 PRINT"<CLR>"

20 GET A$:IF A$="" THEN 20

30 IF A$="1" THEN PRINT “LEFT"
40 IF A$="9" THEN PRINT "RIGHT"
50 GOTO 20

The program will not leave line 20 unless a key is pressed, and if
that key is not '1' or '9, then it is ignored.

7-12

EXERCISE 7.8

Write a program that will output "CORRECT" if
the '0' key is pressed first followed by the
'K'" key and will output "INCORRECT" if any
other key or combination of keys is pressed.
A possible answer is given on page 11-7.

For the finished game, the bat will be made two characters long and
it will move along the bottom line of the screen (locations 1984 to
2023) by means of the 'l' and '9' keys. The variable 'BC' will be
used as the bat column variable and 'CB' as the one that
'remembers' where the bat was (similar to 'X' and 'XX' in the
moving ball program). A further refinement is added so that the
program checks that the bat stays on the screen. This time we
check that 'BC' 1lies between '0' and '38' inclusive (NOT '39'
because the bat is two characters long).

PROGRAM 7.10(a)

10 REM MOVING BAT

20 PRINT "<CLR>"

30 GET A$:IF A$="" THEN 30

40 IF A$="9"AND BC<38 THEN BC=BC+2:GOTO

50 IF A$="1" AND BC>0 THEN BC=BC-2:GOTO

60 GOTO 30

70 POKE 1984+CB,32 : POKE 1984+(CB+1,32

80 POKE 1984+BC,160: POKE 1984+BC+1.160
90 POKE 56256+BC,0 : POKE 56256+BC+1,0

100 CB=BC

110 GOTO 30

EXERCISE 7.9

Amend Program 7.10(a) so that the bat size is
three characters long. A possible answer is
given on page 11-7.

7-13

Building The Wall

Using the logic demonstrated in Program 7.3(a), we will build a
multi-colored wall. The top two lines of the screen will be left
to display the current score and other such data.

PROGRAM 7.10(b)

5 REM DRAW THE WALL

10 PRINT"<CLR>"

20 FOR X=0 TO 39

30 FOR Y=2 TO 7

40 POKE 1024+X+Y*40,160
50 POKE 55296+X+Y*40,Y
60 NEXT Y,X

Demolishing The Wall

Now that the wall has been built, it is necessary to think about
how the ball will demolish it! The blocks can and will be removed
by POKEing a space character into that location. To experiment
with this, enter the following command:

PROGRAM 7.10(c)
POKE 1164,32

and a block will disappear from the screen. To make the game
slightly easier, the blocks will be removed two at a time. It is
necessary, therefore, to ensure that the POKE statements are made
only with columns 2, 4, 6 and so on up to 38, i.e. the column
variable must be an even number.

EXERCISE 7.10

Extend the wall-building program so that the
wall will first be built and then demolished
brick by brick and row by row. A possible
answer is given on page 11-7.

Suppose that the wall is still complete and the ball is approaching
the tenth row. Since ten is an even number, there's no problem -
we just clear a section of the wall and bounce the ball away.
However, if the ball was approaching the 13th column, it's not so
straight-forward. Since 13 is an odd number we need to remove two
blocks starting at the 12th column. So it is necessary to check
whether the column variable is even or not.

7-14

Program 7.10(d) distinguishes between even and odd numbers. Line
20 does the actual calculations (if A=3 then INT(A/2)=1, whereas
A/2=1.5).

PROGRAM 7.10(d)

10 INPUT"NUMBER";A

20 IF INT(A/2)<>A/2 THEN PRINT"ODD":GOTO
10

30 PRINT"EVEN":GOTO 10

Now, to put two of the programs together - the one that builds the
wall followed by the endlessly bouncing ball. It will be slightly
different in the final version because the ball will only bounce up
from the bottom if the bat is in the way, whereas it bounces
automatically in the current program whenever it reaches the bottom
of the screen, i.e. when Y=24.

First enter the wall building program, Program 7.10(b) and then
Program 7.11.

PROGRAM 7.11

100 REM BOUNCING BALL

110 X=11:Y=11

120 XI=1:YI=1

130 POKE 1024+X+Y*40, 81

140 POKE 55296+X+Y*40,2

150 XX=X:YY=Y

160 IF X<1 OR X>38 THEN XI=XI*-1
170 IF Y<1 OR Y>23 THEN YI=YI*-1
180 X=XX+XI

190 Y=YY+YI

200 A=PEEK(1024+X+Y*40)

210 IF A<>160 THEN 260

220 YI=YI*-1

230 IF INT(X/2)<>X/2 THEN X=X-1
240 POKE 1024+X+Y*40,32

250 POKE 1024+(X+1)+Y*40, 32

255 IF X<1 THEN YI=1:GOTO 160
260 POKE 1024+XX+YY*40,32

270 GOTO 130

7-15

Line 230 makes sure that the bricks are demolished in the correct
pattern (i.e. 'X' is an even number). Line 180 ensures that if the
ball breaks through the wall then it bounces before it reaches the
top line (remember the top line is reserved for scoring details).
The rest of the program is straight-forward. If the value of 'A'
is '160' (the wall), then a block is removed and a bounce is
performed. If 'A' is not '160' then the ball moves continuously
along its previous path.

EXERCISE 7.11

Modify Program 7.11 so that the ball starts
off in a random position. Make sure that the
start position is below the wall. A possible
answer is given on page 11-7.

The Final Program

So, now that we've done all the hard work, it's simply a matter of
putting all the pieces together and coming up with the finished
product. We've used three subroutines, for moving the bat, for
moving the ball and the initialisation routine (building the wall,
serving the ball etc); rather than giving the 1ist in one go, we'll
first look at each subroutine separately. You may now LOAD BREAKOUT
from the disk and follow the explanations of the program sections.

Program 7.12 is the subroutine for moving the bat along the bottom
of the screen. This subroutine is called twice for every once that
the ball moving subroutine is called, thus enabling the bat to move
faster than the ball. The character for the bat has been changed
from 160 (a reverse space) to 60 (a less-than sign). This now
allows us to react differently every time we hit either the bat or
the wall.

PROGRAM 7.12

3000 REM MOVING THE BAT

3010 GET A$:IF A$="" THEN RETURN

3020 IF A$="1" AND BC>0 THEN BC=BC-2:GOT
0 3050

3030 IF A$="9" AND BC<38 THEN BC=BC+2:G0
TO 3050

3040 GOTO 3060

3050 POKE 1984+CB,32:POKE 1984+(CB+1,32
3060 POKE 1984+BC,60:POKE 56256+BC,0
3070 POKE 1984+BC+1,60:POKE 56256+BC+1,0
3080 CB=BC

3090 RETURN

7-16

Next to be developed is the subroutine for moving the ball, Program
7.12(b). On the return from this subroutine, a check is made on
the value of NB - if it is '0' then a new ball is not necessary
(and the RETURN has been made via line 2210, indicating a valid
move). This illustrates the important idea of passing information
to and from subroutines by flags, which are set to particular
values.

Notice that after we PEEK into the next location (line 2060),
before anything else is done, a check is made to see if the ball is
approaching the bat. If it is, then the value of A is 60 and the
ball is bounced away - line 2065.

The other addition to this subroutine is the score element in line
2090, the 'Y' value being used to calculate the score. 'Y' is
subtracted from ten and this value is multiplied by '5' so the
bricks nearer the top are worth more points than the bricks lower
down, e.g. if Y=3 then 10-3=7 and 7*5=35 so 35 points are scored
for removing a top brick.

PROGRAM 7.12(b)

2000 REM MOVING BALL

2010 YY=Y:XX=X

2020 IF X<1 OR X>38 THEN XI=XI*-1
2025 IF X<0 OR X=0 THEN XI=+1
2030 IF Y<2 OR Y=2 THEN YI=+1
2035 IF Y>23 THEN NB=1:RETURN
2040 X=XX+XI

2050 Y=YY+YI

2060 A=PEEK(1024+X+Y*40)

2065 IF A=60 THEN YI=YI*-1:G0TO 2040
2070 IF A<>160 THEN 2140

2080 YI=YI*-1

2090 SC=SC+5*(10-Y)

2100 IF INT(X/2)<>X/2 THEN X=X-1
2110 POKE 1024+XX+YY*40,32

2120 POKE 1024+(X+1)+Y*40, 32
2130 GOTO 2010

2140 POKE 1024+XX+YY*40, 32

2150 IF Y=1 THEN YI=1:G0TO 2010
2160 POKE 1024+X+Y*40, 81

2170 POKE 55296+X+Y*40,2

2180 RETURN

7-17

Now for the final subroutine - Program 7.12(c) - or, rather, the
final two subroutines in one. Lines 1000 to 1050 are concerned
with building the wall, displaying score information, setting SCore
to '0' and Ball to 'l' (the ball number currently in play). Three
goes have been allowed and a check has been made towards the end of
the subroutine on the value of the current ball number. This part
is needed only at the beginning of each new game.

The second part of the subroutine is concerned with serving a new
ball, and so 'NB' is reset to zero (remember it would have been set
to 'l' in the previous subroutine to indicate the last ball had
been lost) and Tines 1240 to 1270 ensure a random starting position
(from row 10) and initial random direction. Best score will be
explained in the next section.

PROGRAM 7.12(c)

1000 REM INITIALIZATION ROUTINE

1010 FOR X=0 TO 39

1020 FOR Y=2 TO 7

1030 POKE 1024+X+Y*40,160

1040 POKE 55296+X+Y*40,Y

1050 NEXT Y,X

1060 BC=0

1070 POKE 1984+BC,60:POKE 56256+BC,0
1080 POKE 1984+BC+1,60:POKE 56256+BC+1,0
1090 PRINT"<HOME>SCORE:";SC;TAB(12);"BAL
L:":B,"BEST:";BEST

1100 B=1

1110 SC=0

1120 REM NEW BALL SERVED

1130 NB=0

1140 Y=11

1150 X=INT(RND(1)*36)+2

1160 YI=1

1170 XI=INT(RND(1)*2)

1180 IF XI=0 THEN XI=-1

1190 RETURN

The final part of the listing - Program 7.12(d) - is the main
program that controls the calling of the subroutines.

The program loops around lines 60 to 160, continually checking to
see whether a new ball is necessary (lines 80 to 130), or if all
the bricks have been demolished. The maximum possible score is set
to 3300 (line 70), and a bonus of 1000 is also made for each ball
left over after the wall has been demolished.

7-18

When the current game is over - either all 3 balls have been used
or the entire wall has been demolished - lines 180 to 220 display
the score and prompt for the next game. The best score ('BEST')
is initially set to 0 and a check is made in line 190 to see
whether the current score is better, with appropriate action being
taken.

PROGRAM 7.12(d)

5 PRINT "<CLR>"

10 REM FINAL PROGRAM

20 POKE 53281,1

30 POKE 53280,1

40 BEST=0

50 GOSUB 1000

60 GOSUB 2000

70 IF SC=3300 THEN 170

80 IF NB=0 THEN 140

90 IF B=3 THEN 180

100 POKE 1024+X+Y*40,32

110 B=B+1

120 GOSUB 1120

130 GOSUB 3000

140 GOSUB 3000

150 GOTO 60

160 PRINT"<HOME>SCORE:";SC;TAB(12);"BALL
<"sB,"BEST: "3 BEST

170 REM GAME QVER

180 PRINT"GAME ","QVER"

190 IF SC>BEST THEN PRINT"NEW BEST SCORE
":BEST=SC

199 PRINT"SCORE",SCORE

200 PRINT" PRESS ANY KEY FOR ANOTHER GO"
210 GET A$:IF A$="" THEN 210

220 PRINT"<CLR>":SC=0:B=0:NB=0:G0TO 50

So that's the game. Finito!! You can improve the game by
incorporating some of the exercises that you've done, e.q.
introducing a skill factor via a variable bat size of '1' or '2' or
even '3' characters long and by improving the bounce features of
the ball as it comes off the bat.

This program has been explained in a fair amount of detail, and
hopefully has stimulated you along the way such that you have
evolved some ideas of your own for video games. There really is
an almost infinite variety of games that could be devised. We
shall look at a couple of spin-offs from this game in the rest of
the chapter, but by now you should be busy thinking up your own.

7-19

PART TWO

Balltrap

This is the first of the two games that are a direct follow-on from
the work done during the development of the breakout game. All the
techniques used in this game will already be familiar to you. So
it's merely the logic (or algorithms) that has to be explored.

The aim of this game is to trap a bouncing ball in a 'basket' at
the top of the screen - not by moving a bat, but by drawing colored
lines from which the ball can bounce and hence be guided towards
the desired destination.

Programs 7.13 and 7.14 will illustrate the concepts discussed. The
actual BALLTRAP game can be loaded later in this chapter.

First of all, Program 7.13 looks at the drawing of the lines. As
before, the 'l1' and '9' keys control sideways movement but in
addition here, the 'Z' and 'M' keys control movement up and down
the screen. Since this time the aim is to leave a trail, the
coding is a lot easier. Once again the top row is being kept for
scoring details.

PROGRAM 7.13

10 REM COLORED LINE

20 PRINT "<CLR>"

30 BX=10: BY=10

40 POKE 1024+BX+BY*40,160

50 POKE 55296+BX+BY*40,2

2000 GET A$:IF A$="" THEN 2000

2010 IF A$="1" AND BX<>0 THEN BX=BX-1:G0TO 2060
2020 IF A$="9" AND BX<>39 THEN BX=BX+1:GOTO 2060
2030 IF A$="Z" AND BY<>24 THEN BY=BY+1:GOTO 2060
2040 IF A$="M" AND BY<>1 THEN BY=BY-1:GOTO 2060
2050 GOTO 2000

2060 GOTO 40

Better Bouncing
Now for the bouncing ball! To create this it would be possible to
use exactly the same code as before, but this time the aim is to

obtain a more realistic bounce. The following diagrams illustrate
some of the problems:

7-20

Example 1

@&E0
A
L)

row

BE
2@
@]
56789

ONOOH

column

Example 2 dm
5 2/@0)
row 6] |7@] |
712|@
8@
56789
column
Example 3

row

In the previous program, position (9,4) would have been examined
(using PEEK) and, if found unoccupied, the ball would have moved
there. However, in the first two examples, the dotted ball
indicates a more realistic move and, in Example 3, the ball really
ought simply to retrace its steps.

The other case that must be considered is illustrated in Example 4.

Example 4 4
5 @
row 6| (7@
7117@
8|@®
567 8910111z

column

7-21

This time (X,Y+YI), i.e. (8,4), and (X+XI,Y), i.e. (9,5), will have
been checked, and being found to be empty, the ball will be moved
to (X+XI,Y-YI), i.e. (9,4), which is occupied by the wall!

What is needed in this case is for the ball to retrace its steps,
so that after (X,Y+YI) and (X+XI,Y) have both been checked,
(X+XI,Y+YI) is checked and if found to be occupied, both XI and YI
are altered.

This is done in Program 7.14 (lines 250 to 340) which draws some
random lines to test this ball-bouncing logic. In this program,
the variables that were used last time to 'remember' the old
position of the ball are not necessary now because in lines 250,
280 and 310, the relevant shape code is found before XI and YI are
altered.

PROGRAM 7.14

10 REM DRAWING ASSORTED LINES

20 FOR X=10 TO 35

30 POKE 1104+X, 160:POKE 55376+X,2

40 NEXT X

50 FOR Y=1 TO 15

60 POKE 1114+Y*40, 160:POKE 55386+Y*40,

70 NEXT Y

80 BX=10: BY=20

200 REM BETTER BOUNCING BALL

210 X=5: Y=20

220 XI=1: YI=1

230 IF X<1 OR X>38 THEN XI=XI*-1
240 IF Y<1 OR Y>23 THEN YI=YI*-1
250 A=PEEK(1024+X+Y*40)

260 IF A<> 160 THEN 280

270 XI=XI*-1

280 A=PEEK(1024+X+(Y*40)+YI*40)
290 IF A<>160 THEN 310

300 YI=YI*-1

310 A=PEEK(1024+(X+XI)+(Y*40)+YI*40)
320 IF A<> 160 THEN 340

330 XI=XI*-1:YI=YI*-1

340 POKE 1024+X+Y*40,32

350 X=X+XI:Y=Y+YI

360 POKE 1024+X+Y*40, 81

370 POKE 55296+X+Y*40,2

380 GOTO 230

7-22

Now for the trap. This has to be made in a different color and
also has to be surrounded by a border of the same color that the
Tines will be drawn in. One suggested color scheme is white for
the background, a black ball and red for the trap. (The 1line
numbers used are as they will appear in the final program.) You may
now LOAD BALLTRAP from disk and follow these sections.

PROGRAM 7.14(a)

4000 REM DRAWING THE TRAP

4010 FOR X=1 TO 4

4020 POKE 1148+X,160:POKE 55420+X,2

4030 POKE 1188+X*40,160:POKE 55460+X*40,2
4040 POKE 1228+X,160:POKE 55500+X,2

4042 POKE 1109+X,83:POKE 55381,5

4044 POKE 1249+X,83:POKE 55781,5

4050 NEXT X

4060 RETURN

The next Program (7.14(b)) handles the scoring - again a ‘'best
score' is used to add interest. This time, of course, since the
ball has to be trapped in the shortest possible time, 'B3' is
initially set to 1000, and this also provides the time limit so
each time the program loops a check is made to make sure that this
1imit has not been exceeded.

The final problem arises when attempting to determine exactly when
the ball has been trapped - and this is quite easily done by
filling the trap with green hearts. Thus when the PEEK value of the
next co-ordinate is 83 the ball has hit a heart and is now in the
trap.

So here's the final listing, subroutine by subroutine (remember to
include the one above for drawing the trap!).

7-23

PROGRAM 7.14(b)

1000 REM TINITIALIZATION ROUTINE
1010 T=0:SC=0

1020 TF=0

1030 X=INT(RND(1)*38)

1040 Y=INT(RND(1)*23)

1050 IF X<11 AND X>1 THEN 1030
1060 XI=1:YI=1

1070 BX=38:BY=23

1080 POKE 1024+BX+BY*40,160
1090 POKE 55296+BX+BY*40,2
1100 RETURN

Program 7.14(c) should present no great difficulty as the
techniques have already been well explored. Lines 1100 to 1130
give a random starting position for the ball (ensuring that it
isn't in the trap to start with!). Lines 1140 and 1150 make sure
that the ball is initially moving away from the trap, and lines
1160 to 1190 set the starting position of the line to the bottom
right-hand corner.

The flag TF, "trapflag", is used in a similar way to the way NB,
“newball", was used last time and is set to 1 only when the ball
enters the trap.

PROGRAM 7.14(c)

2000 REM DRAWING THE LINES

2010 GET A$:IF A$="" THEN RETURN

2020 IF A$="1" AND BX<>0 THEN BX=BX-1:G
070 2070

2030 IF A$="9" AND BX<>38 THEN BX=BX+1:
GOTO 2070

2040 IF A$="Z" AND BY<>2 THEN BY=BY-1:G
070 2070

2050 IF A$="M" AND BY<>23 THEN BY=BY+1:
GOTO 2070

2070 POKE 1024+BX+BY*40,160

2080 POKE 55296+BX+BY*40,2

2090 RETURN

So far, this program is very similar to the earlier ball game
except that, this time, if no key is pressed or the wrong key is
pressed the program RETURNs.

7-24

PROGRAM 7.14(c) contd.

3000 REM MOVING THE BALL

3010 IF X<1 OR X>38 THEN XI=XI*-1

3020 IF Y<1 OR Y>23 THEN YI=YI*-1

3060 A=PEEK(1024+X+(Y+YI)*40)

3070 IF A<>160 THEN 3090

3080 YI=YI*-1

3090 A=PEEK(1024+(X+XI)+(Y+YI)*40)

3100 IF A<>160 THEN 3120

3110 XI=XI*-1

3120 POKE 1024+X+Y*40,32

3130 X=X+XI

3132 IF X>38 OR X<1 THEN XI=-XI:GOTO 3130
3140 Y=Y+YI

3142 IF Y>22 OR Y<2 THEN YI=-YI:GOTO 3140
3150 A=PEEK(1024+X+Y*40)

3160 IF A=83 THEN TF=1

3170 POKE 1024+X+Y*40,81

3180 POKE 55296+X+Y*40,2

3190 RETURN

The only addition to this subroutine has been lines 3150 and 3160
which check (before printing the ball!) to see whether or not the
trap has been entered, and if so the "trapflag" is set.

After the ball enters the trap, it would look more effective were
the ball to continue to move until it hits the back of the trap,
and this is accomplished by the following subroutine, Program
7.14(d) (and is an example of one subroutine calling another!).

PROGRAM 7.14(d)

5000 REM BALL IN TRAP
5010 GOSUB 3000

5020 IF X<>8 THEN 5010
5030 RETURN

Now for the final part of the program, which loops around lines 55
to 130, constantly checking that time is still available (line 100)
and that the ball hasn't been trapped (line 80, via the flag 'TF').
Again, the line-drawing subroutine is called twice for every once
that the ball-moving subroutine is called.

7-25

PROGRAM 7.14(e)

5 PRINT"<CLR>"

10
20
30
40
50
55
60
70
80
90

100
110
120
130
140

REM BALL TRAP
POKE 53281,1:POKE 53280,1
T1$="000000":5=T1
GOSUB 4000:REM THE TRAP
GOSUB 1000:REM INITIALIZATION
S=T1
T=INT(((S/60)*100)/100)
GOSUB 3000:REM MOVING THE BALL
IF TF=1 THEN 140
PRINT"<HOME>TIME:";T
IF T=120 THEN 240
GOSUB 2000:REM DRAWING THE LINES
GOSUB 2000:REM DRAWING THE LINES
GOTO 55
GOSUB 5000:REM CHECK TRAP

150 IF T>BS THEN 180
160 BS=T
170 PRINT"NEW BEST TIME",T

180
190
195

FOR X=1 TO 500
NEXT X
GET A$:IF A$O""THEN 195

200 PRINT"PRESS ANY KEY FOR ANOTHER GO"

210

GET A$:IF A$="" THEN 210

220 PRINT"<CLR>":GOTO 30

230

REM OUT OF TIME

240 PRINT"OUT OF TIME fiiiie
250 GOTO 180

7-26

PART THREE

Blockade

Now for the final part of this project. PART 2 improved upon the
ball-movement from the breakout game and we will now improve upon
the user control aspect of the game. In the breakout game, the user
controls the (limited) movement of the bat and in balltrap this was
extended to draw lines anywhere on the screen. This blockade game
is a game for two people, who simultaneously draw lines on the
screen, trying to avoid going over any lines already drawn. The
first person to cross a line loses the game! Of course, the
movements are not simultaneous - they just happen so quickly that
it appears that way! Programs 7.15(a) to 7.15(c) will be used to
illustrate the concepts.

The keys to be used for the different directions are:

Player 1 .

quxt

@\

A
\ 4
Player 2 ‘
0
M
L

\ 4

Player 1 will be assigned the coordinates (AX,AY) with increments
AR and AC, while Player 2 will have (BX,BY) with BR and BC as the
increments. Diagonal movements are not permitted, so this
introduces a further constraint to the problem.

First of all, the coding for Player 1 is developed in Program
8.15(a). This subroutine evaluates the new direction if one of
the four controlling keys is pressed; otherwise, the direction
remains the same as it was before and the RETURN is made from line
1010. However, if one of the controlling keys has been pressed,
then both AC and AR are made zero before proceeding (diagonal
movement not being permitted means that one of these increment
variables must always be zero). By the time 1ine 1060 is reached,
there is only one possibility left - "A" has been pressed. So, of

7-27

course, it is not necessary to test for this.

PROGRAM 7.15(a)

1000 GET A$

1010 IF A$<O"Z" AND ASO"X" AND ASO"Q"
AND A$<>"A"™ THEN RETURN

1020 AR=0:AC=0

1030 IF A$="Z" THEN AC=-1:RETURN

1040 IF A$="X" THEN AC=+1:RETURN

1050 IF A$="Q" THEN AR=-1:RETURN

1060 AR=+1:RETURN

This subroutine must of course be called, and the initialization
and calling procedure is developed in Program 7.15(b).

PROGRAM 7.15(b)

10 PRINT"<CLR>"

20 AX=0:AY=0

30 AR=1:AC=0

50 POKE 1024+AX+AY*40,160:POKE 55296+AX
+AY*40,2

60 GOSUB 1000

70 AX=AX+AC

80 IF AX=39 THEN AX=0
90 IF AX=-1 THEN AX=38
100 AY=AY+AR

110 IF AY=24 THEN AY=1
120 IF AY=0 THEN AY=23
130 GOTO 50

Once this section is inserted, the program will run but does not
yet have the characteristics required in the game. However, if

you insert the

following lines - Program 7.15(c) - then you'll

begin to get the idea of the game.

PROGRAM 7.15(c)

25 SC=0

35 SC=SC+1

125 A=PEEK(1024+X+Y*40)

127 1F A=160 THEN 140

130 GOTO 35

140 PRINT "SCORE=";SC

150 PRINT "PRESS 'P' TO PLAY AGAIN"
160 GET A$:IF A$ <> "P" THEN 160
170 GOTO 10

7-28

From this stage, it's simply a question of getting similar
subroutines for Player 2 and deciding on the strategy and, hence,
scoring of the game. There are two choices, either the game is
lost when a player moves over a location which his opponent has
already occupied, or the game is lost when a player moves over any
square which has been occupied, and the first player to win, say,
10 games is the overall winner.

These two alternatives will be incorporated in the same program,
INPUT statements being used to determine the player's colors.
First, the two subroutines corresponding to the above listings, one
for Player 1 and one for Player 2, are given in Program 7.16(d).
Obviously, these are basically identical, the major difference in
their use being how the program calls each one. First type in NEW,
then load in the BLOCKADE program from disk by LOAD"BLOCKADE",8.

PROGRAM 7.16(a)
For Player 1:

1000 REM PLAYER ONE

1010 GET A$:IF A$="" THEN 1090
1020 IF A$<>"Z"™ AND A$<>"X" AND A$<>"Q"
AND A$<>"A" THEN 1090

1030 AC=0: AR=0

1040 IF A$="Z" THEN AC=-1:GOTO 1090
1050 IF A$="X" THEN AC=+1:G0TO 1090
1060 IF A$="Q" THEN AR=-1:GOTO 1090
1070 AR=+1

1090 AX=AX+AC

1100 IF AX=40 THEN AX=0

1110 IF AX=-1 THEN AX=39

1120 AY=AY+AR

1130 IF AY=24 THEN AY=1

1140 IF AY=0 THEN AY=23

1150 RETURN

For Player 2:

2000 REM PLAYER TWO

2010 GET A$:IF A$="" THEN 2080
2020 IF A$<O"N"™ AND A$<>"0"™ AND ASK>"Me
AND A$<>"L™ THEN 2080

2030 BC=0:BR=0

2040 IF A$="N" THEN BC=-1:G0TO 2080
2050 IF A$="M" THEN BC=+1:G0TO 2080
2060 IF A$="0" THEN BR=-1:GOTO 2080
2070 BR=+1

2080 BX=BX+BC

2090 IF BX=40 THEN BX=0

7-29

2100 IF BX=-1 THEN BX=39
2110 BY=BY+BR

2120 IF BY=24 THEN BY=1

2130 IF BY=0 THEN BY=23

2140 RETURN

As this is a two-player game, it would look much more professional
were players' names to be input, rather than using the terms
'Player 1' and 'Player 2'. The next subroutine, Program 7.16(b),
prompts for the players' names and colors (displaying an
appropriate message depending on whether both colors are the same
or not). It initializes the scores and sets up the board (again
using row 0 for scoring details). Notice that a check is made on
the length of the players' names (lines 3020 and 3040) and if
either is greater than 11 characters long it has to be input again
in an abbreviated form. Also, a check is made on the color number
input, to ensure that it is in the correct range.

PROGRAM 7.16(b)

3000 REM START POINT

3005 Z=PEEK(53281) AND 15

3010 INPUT"NAME OF PLAYER ONE";P$

3020 IF LEN(P$)>11 THEN 3010

3030 INPUT"NAME OF PLAYER TW0";Q$

3040 IF LEN(Q$)>11 THEN 3030

3050 PRINT"COLOR CODE (0-15) FOR ";P$;
3060 INPUT C1

3070 IF C1l=Z THEN 3050

3080 PRINT"COLOR CODE (0-15) FOR ";Q$;
3090 INPUT C2

3100 IF C2= Z THEN 3080

3110 IF C2=C1 THEN PRINT"AVOID ALL LINE
S": GOTO 3130

3120 PRINT"AVOID ALL YOUR OPPONENT'S LI
NES"

3130 PRINT"PRESS ANY KEY TO BEGIN"
3140 GET A$: IF A$="" THEN 3140

3150 S1=0:52=0

3160 PRINT "<CLR>" P$;S1,P2;S2

3170 RETURN

The next subroutine, Program 7.16(c), initializes the players'
starting positions.

7-30

PROGRAM 7.16(c)

4000 REM START POSITIONS
4010 REM PLAYER ONE

4020 AX=0 : AY=1

4030 AR=1 : AC=0

4040 POKE 1024+AX+AY*40,160
4050 POKE 55296+AX+AY*40,C1
4060 REM PLAYER TWO

4070 BX=39 : BY=23

4080 BR=-1 : BC=0

4090 POKE 1024+BX+BY*40,160
4100 POKE 55296+BX+BY*40,C2
4110 RETURN

Finally, to the central part of the game - Program 8.16(d) - which
serves to call the initializing subroutines and then repeatedly
calls 1000 and 2000. As it returns, it checks that the line isn't
drawing over an opponent's line already there (lines 60 and 100),
or any line when both players are using the same color. When this
check is positive, the appropriate player's score is incremented
and then a further check is made to see whether it has yet reached
10 (1ines 190 and 230).

PROGRAM 7.16(d)

10 REM BLOCKADE

20 REM

30 GOSUB 3000 : REM START POINT
40 GOSUB 4000 : REM START POSITIONS
50 GOSUB 1000 : REM PLAYER ONE

60 A=PEEK(55296+AX+AY*40) AND 15
70 IF A=C2 THEN 160

80 POKE 1024+AX+AY*40,160

90 POKE 55296+AX+AY*40,C1

100 GOSUB 2000 : REM PLAYER TWO
110 A=PEEK(55296+BX+BY*40) AND 15
120 IF A=C1 THEN 250

130 POKE 1024+BX+BY*40,160

140 POKE 55296+BX+BY*40,C2

150 GOTO 50

160 POKE 1024+AX+AY*40,102

170 POKE 55296+AX+AY*40,C1

180 FOR X=0 TO 300 : NEXT X

190 S2=S2+1

200 GOSUB 3160 : REM PRINT SCORE
210 IF S2=10 THEN A$=Q$: GOTO 350
220 PRINT" PRESS SPACE BAR TO CONTINUE"
230 GET A$: IF A$<O" ™ THEN 230

7-31

240 GOTO 40

250 POKE 1024+BX+BY*40,102

255 PRINT "<CLR>"

260 POKE 55296+BX+BY*40,C2

270 FOR X=0 TO 300 : NEXT X

280 S1=S1+1

290 GOSUB 3160:REM PRINT SCORE

300 IF S1=10 THEN A$=P$:GOTO 350

310 GOTO 220

320 GET A$:IF A$O" " THEN 230

330 GOTO 40

340 REM THE END

350 PRINT"CONGRATULATIONS t!!! “;A$
360 PRINT" PRESS ANY KEY FOR A NEW GAME

370 GET A$: IF A$="" THEN 370

380 PRINT "<CLR>"

390 GOSUB 3050:REM TO COLOR CHOICE
400 GOTO 30

At this stage you have your third 'bouncing-ball' game and, once
again, further developments are up to you. Using the ideas in
parts 1, 2 and 3 of this chapter, there are many possible
variations on the game and the more you modify them, the more you
can identify with them as your own creations! One thing you could
try is changing the logic behind moving the ball in Breakout. For
instance, you could try pokeing the space BEFORE you actually poke
the ball into the next screen location. There are lots of
possibilities.

7-32

CHAPTER

PART ONE
Sprightly Sprites

further advanced feature of the C-64 is its ability to use
sprites or, in the Commodore jargon, Moveable Object Blocks
(MOBs). Eight different sprites, numbered from zero to 7,
can be used at any one time. These are really rather
well described by the dry name 'Moveable Object Block', as they are
just that: a large block approximately 7% characters in size,
which is very readily moved about the screen. In addition,
facilities are available for checking when sprites collide either
with other sprites or with objects in the background. In its
simplest form, a sprite is a character object (3x2%) of a
single color. They can, however, be enhanced by being designed in
three colors or expanded to twice the size in either the horizontal
or vertical directions or both. Thus, the available features of
sprites are:

* Normal size - 3 characters by 2% characters.

* Expanded horizontal size - 6 characters by 24 characters.

* Expanded vertical size - 3 characters by 5 characters.

* Expanded both axes - 6 characters by 5 characters.

* Three colors, any of above sizes (multicolor mode).
In fact, the sprite's size is more accurately defined in terms of
pixels. As Figure 1 shows, each normal-sized sprite occupies a

rectangle 24 pixels wide in the horizontal direction and 21 pixels
in the vertical.

8-1

l‘ Al pixels ’,

BYTE 1 BYTE 2 BYTE 3 \
BYTE 4 etc
21 ?ixels
Y
FIGURE 8.1

As a single-color sprite is made up of pixels that are either on or
off, each pixel requires one bit of information to define its
state. To store all the information necessary to define a sprite,
therefore, 24x21=504 bits of memory are needed. This is arranged in
bytes as shown in Figure 8.1, with the eight top left-hand pixels
stored in the first byte, the top middle eight bits being stored in
byte 2 etc. Calculations to work out the byte value for each group
of eight pixels are done in exactly the same way as for the
graphics characters discussed in Chapter 6. Thus, the sprite shown
in Figure 8.2 is defined by the POKE values:

— 0 128,65
7,113,173

\\28 30,8
56,12,0

FIGURE 8.2

EXERCISE 8.1

Calculate the POKE values for the first 12
bytes of the sprite shown in Figure 8.3.

FIGURE 8.3

For the control of sprites, an area of memory is reserved, starting
at 53248. Thus, the addresses of the various sprite functions are
located in the 46 bytes following this base address. As it's far
easier to remember numbers of two digits than the five-digit memory
locations, all sprite function addresses are given as R+N where
R=sprite base register address of 53248 and N=sprite number.

Sprite Variety

The discussion so far has considered only the simplest of sprites
but other varieties exist, as described above. The nature of each
sprite other than the normal sized, single-colored variety is
described below, i.e.

* Expanded horizontal sprites

One byte, 53277 (R+29) stores information about the horizontal size
of sprites, each bit defining the scale of one particular sprite.
For instance, to expand sprite number O horizontally, bit 0 of
53277 (R+29) is set to a 1. When expanded horizontally, each
horizontal pixel of the sprite is doubled and thus the resolution
remains at 2 even though the sprite occupies 48 pixels on the
screen. '

* Expanded vertical sprites

One byte, 53271 (R+23) stores information about the vertical size
of sprites. As with the horizontal size, each bit defines the scale
of one particular sprite. When expanded vertically, each vertical
pixel of the sprite is repeated and thus the resolution remains at
21.

8-3

* Expanded both axes

When both the relevant bits are set to 1 then both axes are
expanded. Thus, if both bit 2's of R+23 and R+29 are set to 1 then
sprite 2 appears as a double sized sprite.

* Review of sprite size definition

Figure 8.4 shows the two size bytes set and reviews the effect this
has on the relevant sprites.

Address 76 54 3210 Register
53271 1lofof1fof1{1{0] R+ 23 (vertical)
53277 1j0J1(1]1j0]0}|1 R + 29 (horizontal)
Sprite Horizontal Vertical
number scale scale
0 double single
1 single double
2 single double
3 double single
4 double double
5 double single
6 single single
7 double double
FIGURE 8.4

* Multicolor sprites

A1l eight sprites can be defined as multicolored by setting the
relevant bit of R+28 (53276) to a 1, i.e.

76 54 3210

53276 0Oj1f1]1j0f0j0]|1 R+28

means that sprites 1,2,3, and 7 are single color and sprites 0,4,5
and 6 are multicolored.

8-4

Multi-colored sprites can have up to three different colors defined
in the usual C-64 way, but two of these must be common to all
sprites. Thus some sample allowable combinations are:

Sprite 0 red yellow blue
Sprite 1 red yellow white
Sprite 3 red yellow purple

It is the method of storing the color data that gives rise to this
limitation as the least-significant nybbles (LSN - remember, a
nybble is half a byte - i.e. four bits) of two bytes are made
available for storing the two common sprite colors and one LSN for
each of the individually defined colors i.e.

Register Effect

number

(R+...)
37 set overall color 1
38 set overall color 2
39 set sprite 0 to sprite color
40 set sprite 1 to sprite color
41 set sprite 2 to sprite color
42 set sprite 3 to sprite color
43 set sprite 4 to sprite color
44 set sprite 5 to sprite color
45 set sprite 6 to sprite color
46 set sprite 7 to sprite color

FIGURE 8.5

As multicolor sprites are more complex than the single colored
variety, more information is needed to define them fully. In
multicolor mode, each pixel can be off, color 1, color 2 or sprite
color. Two bits of information are needed to store the four
possible states. These are allocated as below:

bit 1 bit 2 resultant
state state color
0 0 background
(transparent)
1 color 1
(general)
1 1 color 2
(general)
1 0 sprite color
(individual)
FIGURE 8.6

Thus, multicolored sprites have only half the resolution of single
colored ones in the horizontal direction (12 pixels) as the bits
are paired, each bit pair containing the information necessary to
define one two-pixel element.

Putting this into practice, Figure 8.7 shows the top left-hand
corner of a sprite, both as it is stored and as it appears on the
screen.

Bit-pairs.cee...
" P A P A A
ololoft{ala] 1f{1 [1f1 [1f{o/ Blcifcelce|c2]|cof
O[O jO(1 (11 [1{1]1]1] BlCl[{C2]|C2 [C2}
oloJoloJoli]1[1 [1]1/ BIB [c1]c2]c2)
0{010[0]0J1]1]1) B|B | Cl]|C?
ofoJol11lof1f0} B|{Cl|CO|CO/
ofo[ofo]ofi]1]0) B[B [CI]CO|
Sprite ... Sprite ...
as stored on screen
B = background
Cl = color 1
C2 = color 2
C0 = sprite color
FIGURE 8.7

The Sprite Generator: SPRITE.GEN

As with user-defined graphics, sprites will be examined during the
development of a sprite generator, a utility that facilitates the
design of a sprite and its incorporation into a sprite-using
program. In structure, this is identical to the Char.Gen program
developed in Chapter 6. As Char.Gen was described in detail in
Chapter 6, only the differences between Sprite.Gen and Char.Gen are
covered in detail in this chapter.

During operation of the program, the sprite will be built up pixel
by pixel and continuously displayed on the screen. The sprite
chosen for this honor will be sprite zero but at the end of the
process, the design can be transferred to any other sprite.

8-6

Initialization

You can now Tload in the SPRITE.GEN program and follow the
explanation of segments. Once designed, sprite data can be stored
anywhere within the 16K block of memory that is currently visible
to the VIC II chip. In our case this means the first 16K of
memory. There is just one restriction however - the first byte of
the 63 making up the sprite must be stored at the start of a 64
byte block 0, 64, 128 etc.. One such block lies within the cassette
buffer Tocated from 828 to 1023. Its start address is 13x64 or 832,
and the pixels of an empty sprite can be loaded in with a:

FOR X=0 TO 62:POKE 832+X,0:NEXT X
Once a sprite is defined, it needs to be assigned a number and the
C-64 needs to be told that sprite N is located at block X. This is
done using a block of memory from 2040 to 2047 as:

POKE 2040+N,13

start of / * \ start

sprite sprite address
location number of data block
pointers i.e.13%64

Thus, the address of sprite zero is POKEd in location 2040, that
for sprite one into 2041 etc. Therefore, the first few lines of
Sprite.Gen read:

PROGRAM 8.1
Clear screen 60000 GOSUB 62000:PRINT "<CLR>"

Set screen color 60010 POKE 53280,3:POKE 53281,1:
Report sprite zero

at block 13 POKE 2040,13
Set sprite zero
to empty 60020 FOR X=0 TO 62:POKE 832+X,0:NEXT

The subroutine called from 1ine 60000 puts a title page onto the
screen, should you wish to include it. Once defined, the sprite
needs to be switched on or, in the jargon, 'enabled'. This is done
by setting individual bits of byte R+21 to one. Bit zero controls
sprite zero, bit one sprite 1 etc. i.e.

bit number 7 6 5 4 3 2 1 0
R+21 [ofojofofof1]o]0]

turns sprite 2 on, i.e.
POKE R+21,4

Finally, the sprite needs to be given a location on the screen,
there being 200 addressable positions in the vertical (Y) direction
and 320 in the horizontal (X).

To define a vertical (Y) position on the screen, one byte is used
for each sprite, the actual bytes being: R+l for sprite 0, R+3 for
sprite 1, R+5 for sprite 2 etc. So, to set a Y position of 100 for
sprite 0, the requisite command is:

POKE R+1,100

In the case of the X direction, life's a bit more complicated as
any one of the 320 horizontal points needs to be addressed. As some
of the numbers 0-319 are greater than the maximum value that can be
stored in a single byte, extra capacity needs to be found.
Eight-bit arithmetic is clearly insufficient and sixteen bit
arithmetic is used. Actually, that's not quite true - indeed, two
bytes are used but only 9 bits of these are actually needed. The
extra one bit required per X address can be provided for all eight
available sprites in one byte, R+16 being used for this. As with
other bit-wise storage, bit zero is used for the Most Significant
Bit of sprite zero's X address, bit 1 for sprite 1 etc. Let's
investigate this by setting an address of 300, for sprite 3, and
calculating the POKEs required.

The least significant byte cannot exceed 255, so bit zero for the
most significant byte needs to be set to 1. As this has a place
value of 256, the content of the least significant byte needs to be
44 (300-256) i.e.

MSB LSB

ojojofotojofof1 0j0|1j0j1j11]040

0+ O+ O+ O+ O+ O+ O+256 + O+ 0+32+ O+ 8+ 4+ 0+ 0 = 300
Using this knowledge, the next 1ine of Sprite.Gen can be written:

PROGRAM 8.2
Switch on sprite zero 60030 POKE 53269,1:

Set Y co-ord for display sprite POKE 53249,74:
Set X co-ord for display sprite POKE 53264,1:POKE 53248,35

8-8

Once the basic sprite is set up, the other parameters, size and
color need to be defined, this routine simply setting the variables
for:

* horizontally enlarged sprite: EX=1
* vertically enlarged sprite : EY=1

* multicolor sprite s MC=1
color 1 : Cl
color 2 s C2
sprite color : CO

Lines 60040 to 60130 of Program 8.3 carry out this function and set
up the sprite by means of the relevant POKEs.

PROGRAM 8.3
60040 C0=6
60050 PRINT"<GRY1><CLR><4DCRSR>"TAB(12)
s INPUT"ENLARGED X <3LCRSR>";A$
:IFA$="Y"THENEX=1:G0T060060
60055 IFA$<>"N"THEN60050
60060 PRINTTAB(12);:INPUT"<3DCRSR>ENLAR
GED Y <3LCRSR>";A$: IFA$="Y"THEN
EY=1:60T060070
60065 IFAS<>"N"THENPRINT"<5UCRSR>":GOTO
60060
60070 MC=0:PRINTTAB(11);:INPUT"<3DCRSR>
<RED>M<BLU>DU<KPUR>L<ORNG>T<BRWN>IK
GRY1>C<GRN>OKLTRED>L<GRY2>0<LTBLU
SUKRED>R<GRY1> <3LCRSR>";A$: IFA
$="N"THEN60120
60075 IFAS<>"Y"THENPRINT"<5UCRSR>":GOTO
60070
60080 MC=1
60090 INPUT"<RED><2DCRSR><3RCRSR>MULTIC
OLOUR #1 (.<RVSON> <RVSOF>)<GRY1>
<5LCRSR>";:C1
60095 IF C1<OORC1>15THENPRINT"<4UCRSR>"
1607060090
60100 INPUT"<BRWN>XDCRSR><3RCRSRO>MULTIC
OLOUR #2 (<RVSON> <RVSOF>)<GRY1>
<5LCRSR>";C2
60105 IF C2<00RC2>15THENPRINT"<3UCRSR>"
:G0T060100
60110 POKE53285,C1:P0KE53286,C2
60120 IFMC=0THENPRINTTAB(4);
60122 PRINT"<BLU><2DCRSR><4RCRSR>SPRITE
COLOUR ";:IFMC=1THENPRINT"(<KRVSO
N> <RVSOF>.)";

8-9

60124 INPUT"<GRY1> <5LCRSR>";C0%$:CO
=VAL (C0$): IFCO=0ANDCOS$<>" 0" THENCO
=99

60126 IF CO<OORCO>15THENPRINT"<4UCRSR>"
1607060120

60130 POKE53287,C0:POKE53277,EX:POKES32
71,EY:POKE53276,MC

Screen display

With the Targer screen display required by sprites, no room remains
for the clear cursor display that was provided on the Char.Gen
program. Also, the initial grid must be simplified to a grid of
dots. A much simpler program results as lines 60140 to 60170
testify.

PROGRAM 8.4

60140 PRINT"<CLR><3DCRSR>";TAB(27);"<BL
U>YOUR" :PRINTTAB(27) ;" SPRITE"

60150 PRINT"<HOME><DCRSR><RED><RVSON>

":FORX=1T

021

60160 PRINT"<RED><RVSON> <RVSOF ><GRN>..
............ ceceeesess <RED>RVSON
> <RVSOF>"

60170 NEXT:PRINT"<RED><RVSON>

<BLU>"

Set sprite and display

As with Char.Gen, the array for data storage is DIMed, although
this time it is somewhat larger at 24x21. The initial cursor
position is then set to 1 (X=1,Y=1). Once this is done, the sprite
is cleared to zero in memory and auto-repeat on all keys is turned
on.

Once an input has been made, the current cursor position color is
reset and then the input is decoded-lines 60300 to 60340 of Program
8.5. The cursor color is set back to zero (black) and a check made
for a RETURN (CHR$(13)) input. The current sprite form 1is then
displayed to the right of the screen, lines 60400 to 60450.

8-10

PROGRAM 8.5

60250 X=1:Y=1:POKE55296+81,0:IFZX=0THEN
ZX=1:DIMA(24,21)

60260 FORB=0T062:POKE832+8,0:NEXT:POKEG
50,128:POKE53269,1

60270 GETA$:IFA$=""THEN60270

60280 POKE198,0

60290 POKE55296+40+X+Y*40,5+A(X,Y)

60300 IFA$="A"ANDX>ITHENX=X-1

60310 IFA$="S"ANDX<24THENX=X+1

60320 IFA$="W"ANDY>1THENY=Y-1

60330 IFA$="Z"ANDY<21THENY=Y+1

60340 POKE55296+40+X+Y*40,0: IFA$=CHR$(1
3)THENG61000

Tests are then made for the pressing of the function keys, again as
was done with Char.Gen.

fl: set current pixel in sprite

This function is virtually identical to the corresponding function
in Char.Gen: it first sets the relevant cell in the array A(X,Y) to
1, turns the screen location ON and sets the screen color. It then
sends the program to the routine at 60570, where the pixel is set
in memory i.e.

PROGRAM 8.6
set array 60350 IF A$="<f1I>"THEN A(X,Y)=1:
set screen pixel POKE 1024+40+X+Y*40,160:
set screen color POKE 55296+40+X+Y*40,6:
GOTO update sprite GOTO 60570

The first task is to calculate the byte number (C) for a given
array position X. This is defined by C=INT((X-1)/8).

Next, the POKE values for the individual bytes need to be
calculated by means of a loop which adds up the individual bit
values, i.e.:

PROGRAM 8.7

Calculate byte position 60570 C=INT((X-1)/8)
: 60575 A=PEEK(829+Y*3+C):IFA(X
Add up bit values =AAND(255-(27(8-(X-(C*8
60580 IFA(X,Y)=1THENA=AOR(2"(
)))
Store value in memory 60590 POKE829+Y*3+C,A:G0T060270

, V)=
))))
8-(X
7

8-11

OTHENA
)
-(C*8)

f3: turn current pixel off in sprite

This function is very similar to fl but in reverse. Little
explanation seems necessary.

PROGRAM 8.8

unset array 60360 IF A$="<Ff3>"THEN A(X,Y)=0:
clear screen pixel POKE 1024+40+X+Y*40,46:

set screen color to POKE 55296+40+X+Y*40,5:
background

GOTO update sprite GOTO 60570

f5: Print DATA on screen

As sprites are so much larger than individual characters, it is not
possible to display both the sprite DATA and the design matrix on
the screen at the same time. It is necessary, therefore, to split
the two processes such that f5 simply covers the ‘'display on
screen' routine.

To prepare the screen, the message "YOUR" and “SPRITE" are blanked
off and the sprite is turned off (POKE 53296,0). Next, the first
three bytes are recovered (FOR D=0 TO 2) by a PEEK into the storage
location and these are prepared for printing onto the screen. Line
60410 does this by stripping off the extra space inserted by the
C-64's BASIC and then prints this and the following comma. Once the
0 TO 2 Toop has been executed, the 0 TO 20 loop increments to read
the next three bytes of the sprite.

Once the user has finished with the DATA and presses any key, the
screen is again set up as before.

PROGRAM 8.9

60370 IFA$="<F5>"THEN60400

f6: Write DATA into program

As this is the same as for Char.Gen, no explanation is needed.

PROGRAM 8.10
60375 IFA$="<F6>"THEN60460

8-12

f7: Clear design matrix

To carry out the clearing of the matrix, it is only necessary to
clear the various variables and the screen. The command CLR does
the first job and a GOTO 60000 the second: line 60390 completes the
input Toop by jumping back to the GET.

PROGRAM 8.11

60380 IF A$="<f7>"THEN CLR:GOTO 60000
60390 GOTO 60270

Store sprite in DATA statements.

First the work sprite is turned off (POKE 53269,0) and then comes
the interrogation to find out where the sprite is to be stored, at
what line interval and, finally, an error check in an attempt to
prevent over-writing (1ine 60475).

PROGRAM 8.12

60460 POKES53269,0

60465 PRINT"<RED><CLR><3DCRSR>AT WHICH
LINE DO YOU WISH TO STORE YOUR"

60470 INPUT" SPRITE DATA(10000-60000)
n ,LN

60475 IFLN<100000RLN>59999THEN60465

60480 INPUT"<3DCRSR>LINE NUMBER INCREME
NTS OF";SP

Next the sprite number and its storage block are inputted.

PROGRAM 8.13

60485 INPUT"<3DCRSR>WHICH SPRITE WILL T
HIS BE(0-7) <4LCRSR>" ;SN

60487 I1FSN<OORSN>7THENPRINT"<5UCRSR>":G
07060485

60490 PRINT"<3DCRSR>AT WHICH BLOCK DO Y
OU WANT THE DATA TO"

60492 INPUT"BE STORED (0-255) <5LCRS
R>" ;BN

60494 IFBN<OORBN>255THENPRINT"<6UCRSR>:
607060490

8-13

Once the sprite's general data is collected, it has to be stored
prior to being loaded into DATA statements. As the rest of the data
for these is POKEd into memory, it would seem logical to store the
sprite's general data in the same way. The process is further
assisted by the presence below the cassette buffer of enough empty
bytes to store the sprite general data. Lines 60495 and 60500 store
these eight bytes.

PROGRAM 8.14

60495 POKE8B24,SN:POKE825,BN:POKE826,C0:
POKE827 ,EX

60500 POKES828,EY:POKE829,MC:POKE830,C1:
POKE831,C2

Once these bytes are in place, a single re-load routine will store
both the general and specific data in DATA statements. One of the
important features of such a procedure is that the data is -
organized in a systematic way. When this is done, the DATA can be
used to reconstruct sprites on demand. Recovery of the data and its
insertion into the program follows much the same pattern as that
used for the DATA only module.

PROGRAM 8.15

60505 PRINT"<BLUDXCLR>*:FORX=0T06:PRINT
:PRINTLN+X*SP; “DATA" ; :FORY=0TO09

60510 A$=STR$(PEEK(824+X*10+Y)) :PRINTRI
GHT$(A$,LEN(A$)-1) ;:PRINT",";

60515 NEXT:PRINTCHR$(20);:NEXT:A$=STR$(
PEEK(824+X*10+Y))

60520 PRINT","RIGHT$(A$,LEN(A$)+1):PRIN
T"<WHT>GOTO60530<HOME>" ;

60525 FORX=0T07:POKE631+X,13:NEXT:POKE1
98,8:END

60530 PRINTTAB(6)" <RED><2DCRSR><RVSON>
PRESS ANY KEY..TO CONTINUE <RVSOF
>n;

60535 GETAS$:I1FA$=""THEN60535

60540 GOT061000

Once Sprite.Gen has been used to create a sprite and store it in
memory, the program that will be using this will need to be able to
decode it satisfactorily: the implication of this is that the order
and location of storage must be defined in such a way that the
reading-back routine performs its task in the right order. It is
this routine which remains once the termination procedure has been
called, the stages it goes through being:

8-14

* reset all sprites to unexpanded single color.

* READ in sprite general data to define block,
number, size, color etc.

* READ pixel data and POKE into appropriate
location: assign sprite general data.

Only the penultimate stage gives rise to a slight complication, as
single bytes are used to store data for all eight sprites. Taking
Tine 60660 as an example, this stores the X expansion data. Say,
then, that sprite 3 is to be expanded in the X direction and that
sprites 5 and 7 have already been set to expanded. In this case, EX
is set to 1. Thus working through line 60660:

Sprites 5 and 7 are already set to expanded, i.e. location 53277
appears as:

7 6 5 4 3 2 1 0
l1{fof1j0fj0j0f{f0]|oO
128+ 0432+ 0+0+0+0+0 = 160
i.e. a PEEK (53277) would yield 160.

EX=1

Sprite number (SN)=3
60660 POKE 53277,PEEK(53277)0R((2 SN)*EX)
PEEK (53277)=160

the line simplifies to:

60660 POKE 53277,(160 OR 243*1)
i.e. 60660 POKE 53277,(160 OR 8*1)
i.e. 60660 POKE 53277,(160 OR 8)

i.e.

1j]0j1]0|l0]J0]O0O{foO
ofojofojoj1f{ofo
1j0j1]0f0|l1|0}]0O
128+ 0+32+0+8+0+0=168

8-15

1ine 60660 then becomes:

60660 POKE 53277,168

A similar process is used to set the Y expansion and multicolor
modes in lines 60670 and 60680.

PROGRAM 8.16

60605 POKE53277,0:POKE53271,0:POKZ53276
,0

60610 FORY=1TON:READSN,BN,CO,EX,EY,C,C
1,C2:FORX=0T062

60620 READC :POKE (BN*64)+X,C

60630 NEXT

60640 POKE2040+SN,BN

60650 POKE53287+SN,CO

60660 POKE53277,PEEK(53277)0R((2TSN)*EX

60670 gOKE53271,PEEK(53271)0R((2TSN)*EY
60680 gOKES3276,PEEK(53276)OR((ZTSN)*MC
60690 iFMC=lTHENPOKE53285,C1:PUKE53236,
60700 %EXT:RETURN

Sprite.Gen removal routine

Once the necessary sprites have been developed, the bulk of
Sprite.Gen can be removed. This is done in exactly the same way as
was done in Char.Gen. Therefore, no explanation is necessary.

PROGRAM 8.17

61000 PRINT"<BLU><CLR><2DCRSR><4RCRSR>H

: AVE YOU FINISHED USING"

61010 INPUT"<DCRSR><4RCRSR>SPRITE.GEN (
Y/N)";A$: IFA$="N"THEN60050

61020 IFA$<>"Y"THEN61000

61030 PRINTTAB(4)"<2DCRSR>DO YOU WISH T
0 CREATE THE SPRITE"

61040 PRINTTAB(4)"<DCRSR>SUBROUTINE FOR
YOUR PROGRAM?"

61045 PRINTTAB(4)"<RED><DCRSR><RVSON>WA
RNINGKRVSOF>:<BLU> IF YOUR REPLY
IS |Ylll

8-16

61050 PRINTTAB(4)"THEN SPRITE.GEN WILL
BE DELETED"

61060 INPUT"<DCRSR><4RCRSR>CREATE SUBRO
UTINE (Y/N) <3LCRSR>";A$:IFA$="
N"THENEND

61070 IFA$<>"Y"THENPRINT"<2UCRSR>":GOTO
61060

61080 PRINTTAB(4)" <2DCRSR><BRWN>HOW MAN
Y SPRITES HAVE YOU":INPUT"<DCRSR>
<6RCRSR>DESIGNED <4LCRSR>";N

61090 PRINT"<CLR><WHT><2DCRSR>";

61100 PRINT"DELETE60000-60599<2DCRSR>"

61110 PRINT"DELETE61000-<2DCRSR>"

61120 PRINT"60600 N=";N

61140 PRINT"?2"CHR$(34)"<CLR><BLU>"CHR$(
34)

61150 PRINT"<HOME>";

61160 FORX=631T0634:POKEX, 13:NEXT:POKE1
98,5:END

With this book came a disk containing Sprite.Gen. You may now
experiment with this program. Make sure that you LOAD and RUN
Honey.Aid first, as the Sprite.Gen program uses the DELETE function
of Honey.Aid.

8-17

PART 2
Using Sprite.Gen

In Part 2 of this chapter, we will develop a game called Target
that uses Sprite.Gen to generate a sprite and then explore its
various features.

Target: The Game

The aim of ‘'Target' is to hit a target in the center of the screen
with a circular missile, which can be controlled in three axes by
the pressing of certain keys. Two keys control its X and Y
direction (Z and X respectively) while the two unshifted cursor
keys control the Z direction, the cursor Qg key moving the missile
into the screen while the cursor key moves it towards the
player.

As the target is suspended in space, the missile can pass either
below or above the target and, in order to score a hit, the missile
must be at the correct height. While attempting to hit the target,
the player must avoid obstacles on the screen and a.collision with
one of these terminates the game as does the hitting of the target.
On termination the player's progress is reported, along with the
running time of the game.

How it workSeese.

An imaginary Z co-ordinate for the target is generated by means of
a random number function. As the Z-axis of the missile is adjusted
it may yield a location coincident with the target or one either in
front of it or behind it. When the X, Y and Z co-ordinates of the
missile and target coincide then a hit is scored and that round of
the game is concluded with a congratulatory message. When the Z
co-ordinate of the missile is in front of the target, the missile
must pass in front of it and when its co-ordinate is behind the
target, the target must obscure the missile as they pass.

8-18

Sprite precedence

The three dimensional effect is most readily achieved by utilizing
the sprite precedence feature which defines the order in which
sprites appear to pass in front of each other. In the Commodore
pecking order, sprite 0 always passes in front of all other sprites
and 7 always hides away at the back. What is actually required in
this game is one sprite - the missile - which passes, sometimes in
front of and sometimes behind a second sprite. Not too easy to
achieve that, so three sprites are used, 0 and 2 for the target and
1 for the missile. The two targets can then be switched on and off
to allow the ball to pass in front of or behind these as
appropriate.

Sprite collisions

First though: what is a colli