

COMMODORE-64
DATA FILES
A BASIC Tutorial

COMMODORE-64
DATA FILES
A BASIC Tutorial

David Miller

A RESTON COMPUTER GROUP BOOK
Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data
Miller, David

Commodore 64 data files.

"A Reston Computer Group Book."
1. Commodore 64 (Computer)--Programming. 2. Basic

(Computer program language) I. Title. II. Title:
Commodore sixty-four data files.
QA76.8.C64M55 1984 001.64'2 83-26926
ISBN 0-8359-0797-X
ISBN 0-8359-0791-0 (pbk.)

Editorial/production supervision and interior design
by Barbara]. Gardetto

© 1984 by
Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be
reproduced in any way, or by any means, without
permission in writing from the publisher.

10 9 8 7 6 5 4 3 2

Printed in the United States of America

Honor thy father and thy mother
Deuteronomy 5:16

To our parents: Harold and
Frances Miller and Emily Mark for
their continued encouragement
and support.

contents

ACKNOWLEDGMENTS ix

PREFACE xi

INTRODUCTION xiii

COMMODORE-64 KEYBOARD xv

BOOKWARE xix

CHAPTER 1 Introduction to the Commodore-64's File Types 1

CHAPTER 2 BASIC Program Files 6

CHAPTER 3 Data File Introduction 18

vii

CHAPTER 4 Creating Sequential Files 32

CHAPTER 5 Appending Sequential Files 53

CHAPTER 6 Displaying Sequential Files 79

CHAPTER 7 Correcting Sequential Files 125

CHAPTER 8 Additional Sequential File Techniques 167

CHAPTER 9 DIF Files 212

CHAPTER 10 Random (Relative) File Introduction 232

CHAPTER 11 Home Inventory System (Advanced Random Access

File Manipulation) 264

CHAPTER 12 Planning a File System 330

APPENDICES A. Checksum Program and Values 382

INDEX 421

viii CONTENTS

B. Program List 404

C. Keyboard Values 406

D. Random (Relative) Files Without the Position

Parameter 409

E. Wedge Copier 418

acknotNledgments

I would like to express my sincere appreciation to Dave Stewart, Mark Stewart,
and Scott Bridston of Quality Computer Service for their patience and assistance.
They are an excellent Commodore dealer. Rob Tyler and Forrest Kendall provided
useful, timely suggestions and support. Ron and Elli Busch have courageously
served as helpful testers on this and on previous books. Finally, Bill Sanders, author
of Elementary Cummodore-64 et al. and a close friend from high-school days, gave
needed encouragement to proceed with this book as my first priority.

ix

preface

What exercise is to the body,
Programming is to the mind.

D.M.

The purpose of this book is to take some of the misery and mystery out of learning
to use the Commodore-64 's file structure. The book is aimed at people who would
like to learn to use the computer to assist them at home or at work by using the
file capabilities of the Commodore-64 personal computer. Commodore-64 Data
Files: A BASIC Tutorial is designed as a step-by-step tutorial. The book explains
some things that, without adequate manuals, take many painful hours of trial and
error to learn. Progress has been made in creating better file-handling techniques
and an explanation of some of these techniques is included.

Upon completion of the book, you should fully understand what files are and
how to use them. You will be able to create your own sequential or random access
files. Examples of both of these file types are included throughout the book. Program
examples include creation programs for: the stock market, mailing lists, inventories,
drill and practice, and medical records.

There are some very good data-base programs available commercially. If your
needs require an elaborate data base structure, you should probably use one of those
programs or pay a programmer to create one for you. Reading this book will not
make you capable of creating complete commercial data base programs, but with
practice, you will be able to effectively create and use any type of file you want.

xi

I really enjoy programming and creating programs for my own use. I like the
freedom programming gives me, because I can easily change or add to what the
program does. I hope this book conveys some of that enjoyment and freedom.

David Miller

xii PREFACE

Books . .. (should) be read
as deliberately and reservedly
as they were written.

H. D. Thoreau

introduction

No book is magic in that, by possessing the book, you possess the knowledge of
that book. Yet I have tried to make it relatively easy for ANYONE to learn to
meaningfully use the Commodore-64 personal computer.

No single book will suffice for everyone, and this book makes no claim to
being the exception. But I have attempted to make it useful for the beginner as
well as the more experienced Commodore-64 BASIC user. The program examples
cover the areas of home, education, business, hobby, or investment.

Computer vocabulary has been introduced very gradually. Readers somewhat
knowledgeable about the vocabulary may find the process repetitious at first, but I
have found this to be the best method for acquiring a working knowledge of the
multitude of "jargon."

The "system" approach has been used so the reader would not be overwhelmed
with a large number of different application programs. The programs presented are
intended to be useful as well as instructive. The programs build upon themselves
so that something that may appear awkward to an experienced programmer is used
to help explain a concept needed in later chapters.

Information for the more experienced BASIC user includes a thorough dis­
cussion of DIF files with application programs. Other items are: random (relative)
access files, automatic, initial use, file-creation techniques, and tape files.

You cannot just absorb this information. You must read the book and plan to

xiii

re-read and/or study the text and programs of parts that are at first unclear. Invest
time in learning how to get the most out of the Commodore-64. Experienced BASIC
users may find that they can either skip parts or proceed quickly through certain
sections. I would encourage everyone to finish the book.

Finally, a two-diskette set containing all the programs presented in the book
is available. You can make the diskettes yourself by typing in all the programs,
but if you just want to see the programs in operation, then you may want to purchase
the two diskettes. I sincerely hope you enjoy the book and find it instructive.

xiv INTRODUCTION

Commodore-64
keyboard

Everyone seems to have difficulty with at least some aspect of using a keyboard
to communicate with a computer. It does not seem to matter which computer it is
or even how much typing experience a person has. And until better methods of
human to machine communications are developed, we are stuck with learning to
effectively use the keyboard. This initial learning process is often very important.
Some people have become convinced that they cannot work with computers when,
in fact, they are simply having difficulty with the keyboard. Therefore, it is im­
perative for new computer users to become as familiar with the keyboard as possible.

The Commodore keyboard is laid out in a manner very similar to a standard
typewriter keyboard. The Commodore keyboard contains all the standard keys plus
some keys designed specifically for the computer. When the computer is first turned
on, the screen will display all typed keys in upper case mode. This means that all
letters typed will appear as capital letters. All keys that have two characters on the
key tops will display the lower character when the key is pressed by itself. The
upper character will be displayed when the SHIFf key is pressed and held and the
key containing the desired upper-portion character is also pressed. In other words,
to display the $ symbol on the screen, the SHIFf key must be pressed and held
while the key containing the characters $ and 4 is also pressed. Keys that do not
contain two characters on the key top but do contain graphic characters on the front

xv

of the key will display the graphic character that appears un the right side of the
key whenever the SHiFf key and that key are pressed.

The blinking box (called the cursor) can be moved around the screen with the
use of the CRSR keys and the SHiFf keys. Pressing the left/right arrow CRSR key
by itself will move the cursor to the right. Pressing the SHIFf key and the leftl
right arrow CRSR key will move the cursor back to the left side of the screen. In
either direction, when the cursor comes to the end of the line. the cursor will move
to the opposite side of the screen and either up or down a line. Pressing the upl

down arrow CRSR key by itself will move the cursor down the screen. With the
SHIFf key, the up/down arrow CRSR key moves the cursor up the screen but this
time it will not go beyond the top of the screen. Pressed by itself. the CLR/HOME
key immediately "homes" the cursor to the top left hand corner of the screen. Used
with the SHIFf key. this key clears the screen and then homes the cursor. The
INSTIDEL key by itself will delete characters to the left of the cursor. Used with
the SHIFf key. the INSf/DEL key will insert spaces to the right of the cursor.

To place the computer into the lower case mode, the Commodore key, in the
extreme lower left hand corner of the keyboard. and SHirT key must be pressed.
While in lower case mode, the keyboard functions very much like a typewriter
keyboard. The SHIFf key and a letter key will produce a capital letter. Without
the SHIFr key, letters are displayed in lower ca,c, Keys with two characters on
the key tops work in the same way they did in upper case mode. The CRSR. CLRI
HOME, and INST/DEL keys also function in the same way they did in upper case
mode. The left side graphic character is displayed by pressing the Commodore key
and the key containing the graphic symbol.

Of particular importance is the SHIrT/LOCK key. This key can be used to
display a number of characters that require the SHlI.,T key. but should NOT be
depressed whcn the RETURN key is used. The RETURN key is used to inform
the computer that the user has finished entering a line of instructions/information.
This key is the single most used key on the keyboard and the key that frequently
causes beginning computer users to wonder why the computer is not doing what
the user wants the computer to do. Most of the time, the RETURN key will need
to be pressed after you have finished typing a line even if the line only has a few
characters on it. The RETURN key informs the computer that the user is flnished
and wants the computer to do something. But if the SHIrT/LOCK key is depressed,
the RETURN key does not function as a RETURN key. It does not inform the
computer that the user is finished. This quirk of the Commodore keyboard has
caused many people to wonder if their computer was not broken. The "quick fix"
has been to unlock the SHirT/LOCK key and then press the RETURN key. The
RUN/STOP key and the RESTORE key sequence can be used to stop certain
programs or certain operations.

Finally, new users may experience problems with the auto repeat feature of
some keys. Depressing those keys (the SPACE BAR for one) for more than a
fraction of a second causes the key to automatically repeat itself. For certain keys,

xvi

this feature can be very useful. But until you get used to it, the auto repeat feature
may cause a few problems.

Although the standard Commodore BASIC interpreter allows 80 characters on
a line, it was necessary in the printing of this book to limit the number of characters
to approximately 57 per line. That is the reason you will see words split in two.
When you are typing in a line from a listing given in the book, it is preferable to
continue typing the line for as many characters as the BASIC interpreter will allow,
regardless of where the break occurs in the listing given in the text. And since the
Commodore screen display is normally only 40 characters per line, the break in
the text listing will not match the point at which you will actually be typing on the
next line. The point is that you do not need to break the line according to the text
listing if the line is longer than 57 characters. Therefore, do not expect the screen
listing to look exactly like the listing given in the book.

• An Important Note About the
Program Listings

There are two types of Program Listings: (I) Listings that appear within chapters,
and (2) Listings that appear at the end of the chapters. The first type of listings,
i. e., those that appear within the text of a chapter, have been typeset and are NOT
taken directly from a computer printout. Since these listings have been typeset, the
position of characters and spaces relative to other characters and spaces may not
match the actual position of characters and spaces when entered into the computer.
However, the second type of listing, i. e., listings that appear at the end of chapters,
do come directly from a computer printout. These listings have been photocopied
directly from my program listings. Therefore, in all matters, the listings at the end
of the chapter should be regarded as authoritative since they come directly from
working programs.

I printed these listings using a very good letter quality printer but, unfortunately,
one that did not have a printwheel with a slash through the zero, two distinct
characters for the lower case L and the number one (I), or a true up-arrow. There­
fore, it is imperative that you read the text and look closely at the printouts and
determine which character to type when entering these programs. The up-arrow
appears in the printouts as the' (raise to the power of) character. The inadequacy
of the printwheel was one of the reasons the listings within the chapters were
typeset.

xvii

booklNare

The programs in this book are available on two diskettes. Additional file programs
and documentation are also included. To order your two-diskette set, please send
$25 ($27.50 outside North America) to: C-64 FILES. AEN, 9525 Lucerne St.,
Ventura, CA 93004. California residents. please add 6% sales tax. Please be certain
to specify C-64 FILES 1

xix

1 introduction to
the Commodore-64®
file types

There are as many definitions of the word file as there are kinds of files. You can
quickly become confused if your understanding of the term differs from an author's
intended use, and dictionary definitions are of little use in the computer world of
today. Before becoming involved with the computer, my understanding of a file
was limited to information that was kept in a folder in a file cabinet. I think we
often learn best by trying to fit that which is new into something we already
understand. Therefore, following this idea, I will try to explain Commodore-64 file
structure in terms of a file cabinet.

In a four-drawer file cabinet, one drawer might be for accounts payable, while
another could be for accounts receivable, a third for personnel information, and the
fourth for inventory information. These are used only as examples to show that
each drawer might contain different file types. The file cabinet just as easily can
contain game instructions in one drawer, receipts in another, name and address
information in a third, and medical records in the fourth. The idea is of a file cabinet
containing different types of information. The Commodore-64 , s file cabinet is the
disk drive and diskette (or for those without a disk drive, the datassette recorder
and cassette tape. The majority of this book will be directed toward the reader with
one or more disk drives, but the first part of the book will include information

Commodore 64" is II registered tr(J(il'lIlIlrk oj' Commodore Business Machines. King oj' Prussia. Pa.

1

relevant to the reader with the datassette recorder). One type of file is a BASIC
program file. A second file type contains only data. Other file types are identified
by a three-character extension to their file names. Therefore, each diskette you use
is like a file cabinet. It is set up to accept and classify many types of files.

How do you know what files are on your diskettes? We will begin the tutorial
part of this book by going through all the steps necessary in order to find out just
what files are on your diskette. (If you are already acquainted with the procedure
used to start up the computer and disk drive, sometimes called booting the system,
you can skip the rest of this paragraph.) First, tum on the disk drive. Second, tum
on the computer. Third, if you have not yet turned on the monitor or TV, do so
now. Fourth, take your TESTIDEMO diskette and insert it into the disk drive with
the label side face up and last to go into the drive. Do not touch the cutout area
on the diskette. (If you have more than one drive, make sure to put the diskette
into the drive with a direct connection to the computer.) Make sure the drive door
is closed properly with the handle down. At this point, you should see the following
message displayed (the message may vary slightly due to different production runs):

**** COMMODORE 64 BASIC V2 ****
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

Fifth, type:

LOAD "$",8

Sixth, after you have finished typing, press the key marked RETURN on the right
side of the keyboard. The red light on the disk drive should come on. The screen
will display the message:

SEARCHING FOR $

Then:

LOADING

Soon the disk drive will stop, and the light will go out. The statement READY
should appear. (If you have not been able to get to this point with the computer,
try another diskette. preferably the diskette marked TEST/DEMO. If switching
diskettes does not work. you will need to check the manuals for your particular
system.)

At this point, type:

LIST

2 CHAPTER ONE

or

list

Remember to press the RETURN key when you have finished typing. The Com­
modore's operating system will recognize either upper case or lower case letters.
You will see a list with three things on each line of text:

1. A number representing the size of the file,

2. The name of the file,

3. A three-character file designator or extension.

The extension will indicate what type of file it is: PRG for a BASIC program file,
SEQ for a file containing only data in sequential order, USR for a user file, and
REL for a file containing only data in random or relative order. The name. consisting
of letters and/or possibly numbers, is the actual name of the specific file. The size
of the file is given as the decimal number of blocks or sectors (sections) in that
file. In our file cabinet example, this is the same information that might appear on
each folder. You might label each folder with (1) a name for the information within
the folder, (2) an extension indicating which drawer it goes in, and (3) how much
information it contains.

Most file cabinets do not have a list of all the files stored within them. It would
be a time-consuming job to update that list every time you added, changed, or
threw away a file, but Commodore-64's file-management system does just that and
does it automatically. The diskette's list of everything in the file cabinet is what
you get when you type LOAD "$",8 and then LIST. Typing this sequence shows
the list previously created by the file management system.

How are these files used? What are they? How are they different? Returning
to the file cabinet, the person in charge of that cabinet might put some rules or
locks on the drawers. In other words. he or she might say that the PRG file could
be used only in a certain way or only by certain people. The same could be true
of the other file types or drawers. This is exactly what Commodore-64's file­
management system has done. Each file type is used differently and can be used
only in certain specific ways. PRG files are instructions (also called programs) to
the computer to do something. Examples of such instructions would be:

40 IF NUMBER = 5 THEN 5000
50 GOTO 200
100 PRINT "HELLO"

Most SEQ and REL files are not computer instructions but contain information of
value to people, such as names, addresses, zip codes, payroll deductions, pay rates,

INTRODUCTION TO THE COMMODORE-54 FILE TYPES 3

or book titles. Often SEQ and REL files are just lists of such information. Such
lists, of course, would not make sense as instructions to the computer.

It should be clear that Commodore-64 files are used to store information just
as you or I use a filing cabinet, that there are different types of files, and that they
are used for different purposes. In the next chapter, we will look more closely at
the file types and how they are used. In subsequent chapters, we will look at two
of those file types, SEQ and REL data files, and examine how information is kept,
how that information is used, and how those files are created. The latter, creating
files, is the main emphasis of this book and will occupy the remaining chapters. If
you want to know how to create the BASIC files (programs), you will need to learn
programming. Effectively using the data files requires some knowledge of how to
program in BASIC. The programs discussed in this book will be BASIC programs,
and the discussion will be such that anyone willing to try the examples should learn
to program, as well as learn to create and use data files. In other words, although
the main emphasis of this book is on data files, you will learn a certain amount of
programming-BASIC program files, in order to be able to create, display, and
change data files. And I repeat, Anyone willing to try all the examples, and read
carefully through the discussion of the examples, can and will learn to program
and thus make effective use of data files. Individuals, no matter what their ages,
backgrounds, or experiences, can learn the information presented in this book.
Programming and file manipulation are a matter of learning how to give instructions
to the computer in a manner the computer can understand; or, more simply, pro­
gramming is learning how to talk to the computer and tell it what you want it to
do.

QUESTIONS

1. How are Commodore-64 file types identified?

2. What extension is used to identify BASIC program files?

3. What extensions are used to identify data files?

4. Which file type will this book emphasize?

5. What sequence should you type in order to see a list of the files on a diskette?

6. Which files contain instructions to the computer?

7. Which files contain information of value to people?

8. What information is shown when you ask to see a list of the files on a diskette?

4 CHAPTER ONE

ANSWERS

1. By the extension to their file names

2. PRG

3. SEQ or REL data files

4. Data files

5. LOAD "$",8
LIST

6. BASIC or other program language files

7. Data files

8. The size of the file, the file name, and the extension to the file name (or file
type)

INTRODUCTION TO THE COMMODORE-64 FilE TYPES 5

2BASIC
program files

In this chapter, we are going to take a closer look at the first main file type. This
would be the same as opening our file cabinet's top drawer for a quick look at what
is kept inside.

We begin with what is probably the most common type of file, the BASIC
file. Some of you might already be confused because you have always referred to
BASIC '"programs" rather than tiles. In reality. they are both. Suppose one drawer
in the file cabinet is used for games. Each folder contains the rules or instructions
for playing a different game. Most of the time, you would simply refer to the
folders as games, not files, yet they are really both games and files. When you
have taken one folder out of the file cabinet and are using the instructions to play
the game, it is nut a file; however. when you are finished with the game and want
to put it back in its place, it becomes a file, one of many game tiles.

The same is true of BASIC program files. The top drawer contains only BASIC
programs or computer instructions (rules). When the computer is using the instruc­
tions in one of those BASIC "folders," the instructions are a program, but when
the computer is not using the instructions, the instructions are stored as files. The
important thing to understand is that BASIC files contain only computer instructions
(programs). Some of those tiles contain larger or longer sets of computer instructions
than others, but a BASIC file can only be a set of instructions for the computer or,
therefore, a computer program. The second limitation of the top drawer, or "PRG"

6 CHAPTER TWO

file, is that it can only be a certain kind of computer program, a BASIC computer
program, not a FORTRAN computer program or a COBOL computer program.
(FORTRAN and COBOL are two other computer languages, just as BASIC is a
computer language.)

Let's look at the rules for using these BASIC computer program files. In our
mythical office, we have two main secretaries that can use BASIC program files.
Secretary number one can only go and get the file (LOAD). Secretary number two
can only put the file away (SAVE). These two secretaries or commands do not
have access to other drawers or file types.

Secretary number two (SA VE) can only put the file (program) currently in the
computer's memory in the file cabinet (disk).

Secretary number one (LOAD) is only able to get the file (program) from the
file cabinet (disk) and put it on the boss's desk (in the computer's memory). The
load command goes to the diskette and gets a specific file. In order to know which
file to get, the LOAD command must be given the specific name of the file: LOAD
"MATHDRILL",8 or LOAD "CHECKER",8. The quotation marks indicate the
beginning and ending of the file name. The number 8 represents the disk drive.
The disk drive is device number 8. (The keyboard is device number 0, the cassette
recorder, device number 1, modems are assigned device number 2, the screen is
device number 3, printers are device numbers 4 or 5, usually 4, and disk drives
are device numbers 8 through 11, usually just number 8. Nobody knows what
happened to device numbers 6 and 7!)

If the file name is not spelled exactly the way it is spelled in the list of all the
files on the diskette (in the file cabinet), then the LOAD command or secretary will
not be able to find the file and will come back and tell you "FILE NOT FOUND
ERROR". (The LOAD command will add the extension PRO and look for the file
name with that extension.) On the other hand, if the LOAD command does have
the exact name, it will go to the disk and get a copy of the file. Notice the use of
the word "copy." The LOAD command does not actually go and remove the file
from the diskette, as a secretary would remove a file from the file cabinet. The
LOAD command takes only a copy so that the original always remains on the
diskette. The copy of the file is loaded into the computer's memory, similar to a
secretary getting a file and putting it on the boss's desk. You, the boss, must then
decide what you want to do with the file. If you want to open it and look at it, you
use some form of the LIST command. (Type LIST or LIST 100-200, etc.) If you
want to see the program in operation, type RUN.

Secretaries, or BASIC file commands, must be given a specific file name.
Usually, after using the LOAD command, you will want to look at the instructions
(LIST) and perhaps change, add, or remove some instructions. When you have
finished, you may want to keep what you have done by giving the file to secretary
number two (SA VE) and telling the secretary the exact name you want this file
kept under. If you have made changes but still want to keep the original currently
on the disk, then the secretary must be informed of a new file name. If the secretary

BASIC PROGRAM FILES 7

uses the same file name as the file currently on the diskette, the red light on the
disk drive will begin blinking and the revised file will not be saved (unless you
have provided additional information indicating that you do want the old file re­
placed). This may not be what you want, so be careful what name you use (the
SAVE command).

Let's actually try some of these commands. You will need the TEST/DEMO
diskette and a new diskette. If you do not have a new diskette, you should: (1)
wait until you do have a new diskette before doing the next steps, or (2) use a
diskette that you know has some room on it and skip the first step below, or (3)
use an old diskette that contains information you no longer need. Use the information
from Chapter 1 to get the computer working; i.e., to boot the system. (Review the
procedure in Chapter 1, if necessary.) If you have the TEST/DEMO diskette in the
drive, remove the TEST/DEMO diskette and insert a blank or new diskette. If you
do not remove the TEST/DEMO diskette, you can destroy the information on it.
When you get the READY prompt on the screen and have chosen and inserted your
blank diskette, type the following carefully. (Remember to press the key marked
RETURN after each entry. You can use either upper case or lower case.)

OPEN 15,8,15

You should see:

READY

Then, with a blank diskette in the disk drive, type the following exactly as shown­
without spaces:

PRINT#15, "NEWO:FORM.10-20-84,84"

Remember to press the key labeled RETURN to indicate to the computer that you
have finished typing the above line. The disk drive makes a noise and the red light
comes on. The computer is transferring numerical information onto the diskette to
enable the computer to later find locations on that diskette. In about a minute, the
disk drive will stop and the red light will go out. Remember. this first step destroys
any existing information on an old diskette. This step is used to format a new
diskette or reformat an old diskette so that the diskette can store files. The FORMAT
command is usually used only once on each diskette. A second use erases whatever
is currently on the diskette.

All the characters you have typed in this formatting sequence have a specific
meaning. The OPEN command instructs the computer to open communication to
whatever file, device, and channel are specified by the numbers that follow it. In
the above instruction, file number 15 is used to coincide with the assigned (and
therefore nonarbitrary) command channel number. The first 15 could have been

8 CHAPTER TWO

any number between 1 and 255. But since the third number had to be a 15, it seems
logical and perhaps less confusing to use the same number for both the file number
and the channel number. As we saw previously, the device number (the middle
number in the OPEN statement) for the disk drive is usually 8. Therefore, the
command OPEN 15,8,15 instructs the computer to initiate communication through
file number 15 on device number 8 over (command) channel number 15.

The PRINT instruction has more strict syntax. No space may exist between
the T in PRINT and the # symbol. The comma and opening quotation mark are
also required. The word NEW instructs the computer that a new diskette is to be
formatted. This instruction may be abbreviated with just the first letter N. The zero
that follows the NEW instruction is the drive number of device 8 (the disk drive).
Zero is used for the first drive and 1 may theoretically be used for a second drive.
(Use of the 1 is not possible with two 1541 drives. An alternative for a second
drive is to change the device number to some number other than 8. The 1541 User's
Manual gives instructions on changing the default device number 8 by either typing
in some instructions or by physically opening the case and cutting a wire.)

After the zero, a colon is used to initiate the separation of the diskette's actual
name from all the other parameters. Here, the user has some choice in the name.
The name may be only sixteen characters in length and some control, escape, or
graphic characters may not work properly. But any combination of the twenty-six
letters of the alphabet and/or ten digits 0 through 9 should work without a problem.

The final part of this sequence is another unique feature to the Commodore
line of computers. First, a comma is used to indicate that the diskette's name has
been entered. Then, a two-digit code is allowed. This code is used throughout the
formatting of the diskette so that the computer can always know if diskettes have
been changed since the last diskette access. Therefore, no two diskettes should have
the same two-digit code. The reason for this seeming complexity is the great
flexibility the Commodore-64 possesses. A large number of devices or peripherals
may be connected to the Commodore-64 with few external connections to the
computer itself. Persistent and careful programmers may completely control the
access to any diskette. The price for this type of flexibility is a greater degree of
programmer knowledge and persistence.

Commodore has provided a degree of help by way of the DOS (Disk Operating
System) Wedge or the DOS Support Program. This utility program makes it easier
to use the BASIC file commands, or secretaries, and provides additional commands.
To load the DOS Wedge program, remove your newly formatted diskette and insert
the TEST/DEMO diskette. Then type:

LOAD "e-64 WEDGE",8

When the READY prompt returns, type:

RUN

BASIC PROGRAM FILES 9

You should see:

DOS MANAGER V5.1/071382

BY BOB FAIRBAIRN

(C) 1982 COMMODORE BUSINESS MACHINES

READY

(Some of your numbers may be different depending on when you received your
copy of the DOS Wedge.)

After loading the DOS Wedge, the LOAD and SAVE commands will work
the same as before, but less syntax is required to achieve the same results. By
loading the DOS Wedge, we have instructed the computer that we are going to be
primarily using the disk drive. In other words, we have put the computer into a
disk drive default mode so that it is not necessary to use the disk drive device
number 8. It is also not necessary to type the characters LOAD or SAVE in order
to accomplish those tasks. The following chart may make the point clearer.

Before DOS Wedge After DOS Wedge
Purpose you had to type: you only type:

To load a
program: LOAD "TEST", 8 !TEST

To save a
program: SAVE "PROGRAM",8 ~PROGRAM

To list the files
on a diskette: LOAD "$",8 @$

LIST
To format

diskette: OPEN 15,8,15
PRINT#15,"NO:FILE NAME,XX" @N:FILE NAME,XX

To run a program
directly from (No single step is available before
diskette: DOS Wedge) jMYPROGRAM

Because the DOS Wedge makes things easier and even provides us with additional
commands, throughout this book, wherever possible, all programs presented will
use the DOS Wedge syntax instead of the syntax necessary without the DOS Wedge.
This means that you will need to load the DOS Wedge before using any of the
programs presented in this book or that you will need to translate the syntax given
in the programs into the required syntax for programs to work without the DOS
Wedge. If you did not receive a copy of the DOS Wedge on your TESTIDEMO

10 CHAPTER TWO

diskette, or did not get a TESTIDEMO diskette with your disk drive, I would
suggest that you return to your dealer and ask for a copy of the DOS Wedge or
the TESTIDEMO diskette.

Now, let's actually try some of these commands. Remove the TEST/DEMO
diskette (or whatever diskette you used to load the DOS Wedge) and insert your
newly formatted diskette (the diskette named FORM. 10-20-84). Now type:

NEW

10 PRINT

20 PRINT "HELLO"

40 PRINT "I AM THE COMMODORE-64"

Check your typing to be sure you have typed everything exactly the way it is shown
above. The word NEW (in this case) erases any BASIC program that is already in
the computer's memory. It does not do anything to the diskette or any information
stored on a diskette. The numbers 10, 20, and 40 are line numbers in a BASIC
program. Line numbers can be any number from 0 to 65535. Usually, the numbers
chosen are not consecutive in order to allow other lines to be added, if necessary.
The word PRINT instructs the computer to display on the screen whatever follows
it and is between the quotation marks. So, since nothing follows the word PRINT
in line 10, a blank line will be displayed. Line 20 will cause the computer to display
the word "HELLO". Now, type the word RUN and press the RETURN key. Below
the word RUN, you should see: (1) a blank line, (2) the words between the quotation
marks followed by a blank line, and (3) the READY prompt.

HELLO
I AM THE COMMODORE-64

READY

You have just written and executed a BASIC program. The program is still in the
computer's memory, but if you were to turn off the computer now, you would lose
that program. It would be lost because it has not been permanently saved on tape
or diskette. We will take care of that with our next step.

The third step is to transfer (SAVE) the program in the computer's memory
out to a file on the diskette (or tape). This is easily accomplished by giving the file
to the SAVE secretary and letting the secretary do all the work. For those using a
disk drive and the DOS Wedge, simply type:

~HELLO

Or, for those using tape:

BASIC PROGRAM FILES 11

1. Type SAVE "HELLO"

2. Follow the screen instructions

A message similar to "SA VING HELLO OO,OK,OO,OO" should appear on the screen.
You do not have to add the file type indicator since this command, or secretary,
knows to add the standard indicator of PRG for BASIC programs. The secretary
or SA VE command has trans f erred a copy of the contents of the computer's program
memory to the diskette (or tape) and stored it in the file called "HELLO". If you
want to see the names of the files on the diskette while working under the DOS
Wedge, you need to type the command:

@$ (or >$)

You should see:

o "FORM.10-20-84 "84 2A
1 "HELLO" PRG
663 BLOCKS FREE

To see what is in the computer's memory, type:

LIST

The display should show:

10 PRINT
20 PRINT "HELLO"
40 PRINT "I AM THE COMMODORE-64"

READY

LIST is similar to @$ under the DOS Wedge in that (t:~S shows what is on a
diskette, and LIST shows what is in the computer's memory. Now, type:

NEW
LIST

The program is now gone and there is nothing in the computer's memory. To bring
it back, follow the directions for your particular system. For DOS Wedge disk drive
users, type:

IHELLO

For tape users:

12 CHAPTER TWO

1. Rewind tape.

2. Type: LOAD "HELLO"

3. When the screen returns and displays the message "FOUND HELLO", press
either the space bar, CTRL key, or the Commodore key in the lower left hand
corner.

Then for everyone when the screen displays "READY", type:

LIST

The program is back. Immediately after the IHELLO, the disk drive comes on for
a brief time. The computer is instructed to go to the diskette, bring in a copy of
the file called HELLO, and store that copy in its memory. When you type LIST,
you are telling the computer to show you what it has in its memory. Therefore,
the program now actually exists in two places: (I) in the computer's memory, and
(2) as a file on the diskette (or tape). Type carefully and add a fourth line like this:

60 PRINT "I AM A SMART COMPUTER"

Then, for disk drive users, type:

+-HELL02

For tape users:

1. Type SAVE "HELL02"

2. Follow the screen instructions.

For disk users, in order to see this new file on the diskette, type:

@$

Now, the list shows:

o "FORM.' 0-20-84
, "HELLO"
, "HELL02"
662 BLOCKS FREE

"842A
PRG
PRG

There are two files on the diskette. Both are BASIC program files (programs written
using the BASIC language). After you type .-HELL02 (i.e., give the HELL02
file to the SAVE secretary), the disk drive comes on briefly while the computer
transfers a copy of the contents of its memory to the diskette. The command ((i$

BASIC PROGRAM FILES 13

shows the new list of files on the diskette. Finally, type:

NEW
LIST

The program is gone. Type:

i HELL02

and the screen shows:

HELLO
I AM THE COMMODORE-64
I AM A SMART COMPUTER

READY

Now, type:

LIST

and the full program is back. Type:

RUN

(since the instructions are already in memory, a file name is not necessary), and
you should get the same message.

First, you erase the program in the computer's memory (NEW), and then ask
to see if there is anything left in the computer's memory (LIST) in order to verify
what you did. Next, i HELL02 tells the computer to access the diskette, load the
file called HELL02 into its memory, and begin operation according to the file's
instructions. LIST shows that the program is back in memory. To prove it, RUN
tells the computer to again operate according to the program's instructions.

Let's review from the viewpoint of the secretaries and file cabinet. Remember,
so far we have two main secretaries (and with the DOS Wedge we get at least one
more): number one (LOAD or I), number two (SAVE or +--), and number three
(LOAD and RUN or i). Remember that there is no comparable single-word
command outside the DOS Wedge that loads a file from diskette and immediately
begins execution of that program. For these secretaries to do anything, they must
be given a file name:

IMA TH. DRILL

i CHECKERS

14 CHAPTER TWO

(loads MATH. DRILL into the computer's memory from diskette)

(loads CHECKERS into the computer's memory from diskette
and immediately begins execution of the program's instructions)

+-ANYTHING (save the contents of the computer's program memory out to
the diskette with the file name of ANYTHING)

BASIC file commands and DOS Wedge commands must be given a specific file
name.

There are other BASIC and DOS Wedge commands that can be used with files.
The following chart summarizes these commands:

Purpose

To load a
program:

To save a
program:

To list the files on
a diskette:

To format
diskette:

To run a program
directly from
diskette:

To change the
name of a file:

To make a
backup copy of
a file on the
same diskette:

To scratch
(delete) files
from a diskette:

To switch
diskettes (i.e.
initialize a
change of
diskettes):

Before DOS Wedge
you had to type:

LOAD "TEST',8

SA VE "PROGRAM",8

LOAD "$",8
LIST

OPEN 15,8,15
PRINT#15,"NO:FILE NAME,XX"

(No single step is available before
DOS Wedge)

OPEN 15.8,15
PRINT# 15,"RO:FILE2 =FILEI"

OPEN 15,8,15
PRINT# 15,"CO:FILE2 = O:FILEI

OPEN 15,8,15
PRINT#15,"SO:FILENAME"

OPEN 15,8,15
PRINT# 15:'1"

After DOS Wedge
you only type:

(TEST

+-PROGRAM

@$

@N:FILE NAME,XX

i MY PROGRAM

@R:FILE2= FILE 1

@C:FILE2 = FILE I

@S:FlLENAME

(eil

BASIC PROGRAM FILES 15

These additional commands are generally less used but are good to have when you
need them.

I have used the concept of secretaries for a specific reason. I believe it gives
the impression that BASIC file commands and DOS Wedge commands are there
to help you. In the examples. the secretaries are really BASIC file commands.
BASIC file commands do certain things for you that a number of personal secretaries
might do. The only limitation is that you must be exact and specific with the
secretaries (commands). File commands must be used with a specific file name.

We have covered a lot of new information in this chapter. If something is not
clear, you should review it and use the Commodore-64 personal computer and disk
drive to better understand these concepts.

QUESTIONS

1. True or False: BASIC programs are stored on diskette as files.

2. What DOS Wedge command is used to show a list of files on a diskette?

3. What does DOS stand for?

4. How many main DOS Wedge commands are used with BASIC program files?

5. Which DOS Wedge command gets the program from diskette and immediately
begins execution or operation of the program?

6. Which DOS Wedge file command stores programs on the diskette as files')

7. True or False: The LOAD command actually removes the program from
the diskette and loads it into the computer's memory.

8. What happens when you save back to diskette a program you have changed,
and you save it under the same name?

9. True or False: LIST shows what is on the diskette.

10. What DOS Wedge command is used to prepare a new diskette to receive files?

11. True or False: BASIC programs are never files.

12. Explain what NEW (by itself) does.

16 CHAPTER TWO

ANSWERS

1. True

2. @$

3. Disk Operating System

4. 3

5. i with a file name

6. +- with a file name

7. False, it takes a copy.

8. The previous version is not erased and replaced with the new version unless
you have added the REPLACE character.

9. False

10. @N:FILENAME,XX

11. False

12. Erases whatever is in the computer's memory

BASIC PROGRAM FILES 17

3 data file
introduction

Using the analogy of the file cabinet example in the last two chapters, this chapter
is a quick look inside the DATA tile drawer and a superficial look inside the two
different kinds of file folders in this drawer. We will examine the characteristics
that are common to both kinds of DATA files and look at how you can access those
files.

Of the different types of files, we have seen that one type contains instructions
(called programs) for the computer: BASIC program files. One of the other types
usually contains information for people rather than machines. By this, I do not
mean that the computer cannot make use of the information, but that the information
usually is not in the form of direct instructions for the computer. An example of
an instruction for the computer is:

20 PRINT "HELLO, HOW ARE YOU?"

An example of information that is not in the form of a computer instruction would
be:

Title: C0l11l11odore-64 Data FiIes: A BASIC Tutorial

Author: David Miller

Publisher: Reston Publishing Co.

Address: Reston, Va.

18 CHAPTER THREE

This last example is the kind of infonnation usually kept in a data file. Before we
get into the process of actually storing and retrieving data files, we need to understand
the main difference between the two kinds of data files.

Data files have two ways of storing and retrieving infonnation. (Remember
that the infonnation really stays on the diskette and we are just getting a copy of
the infonnation!) These two ways of storing and retrieving infonnation are sequential
access and random access. A sequential access data file basically means that the
infonnation stored in the file is kept in sequential order. A random access data file
usually means that each part of the file is divided equally and can be reached directly
and at random instead of going through all previous records. The process of looking
at each record in order (sequence) to decide if it is the record you want is a
characteristic of sequential files and can require more time than the direct method
of random access files.

Commodore refers to random access files as relative files. But the tenn "rel­
ative" in the computer world often means "in relation to" and can be misleading
when used as the name of the method for directly accessing records within a file.
To further confuse matters, Commodore also provides a subset of their relative files
which they call random files. Since Commodore's random files are basically an
elementary version of their relative files, we will not cover them in a direct way.
Anything that can be done with Commodore's random files in the BASIC language
can be accomplished with relative files and in a much easier way. Therefore, any
mention in this book of random files is meant to refer to Commodore's relative
files, not Commodore's random files. In other words, whenever I use the tenn
"random access," I am talking about the same thing that Commodore is when they
refer to relative files. And, after checking with individuals at Commodore, I have
decided to use the tenn "random" rather than use Commodore's tenn of "relative"
because, in the long run, readers of this book will be less confused by a correct
application of the appropriate tenn.

The basic difference between sequential data files and random data files is
somewhat like the difference between a cassette tape and a phonograph record. If
I want to find a specific song on a cassette tape, even using the best available tape
deck, I must begin at the current location of the tape and proceed either forward
or backward, passing over all intervening songs until I have found the song I want.
The process proceeds in sequence, one song after another. For example, if I want
to play only the fourth song on the tape, I would have to advance the tape through
the first, second, and third songs until I get to the fourth one. On the other hand,
if the songs are on a phonograph record, all I would have to do to play the fourth
song would be to place the phono cartridge containing the needle at the start of the
fourth division instead of at the start of the first song. I can do that because I am
able to clearly see the divisions between songs and because those individual songs
are directly accessible. I do not have to go through the grooves of the first three
songs to get to the fourth. And moving the needle by hand takes only seconds. So
imagine that the data drawer contains two basic divisions: the first division contains

DATA FILE INTRODUCTION 19

files that operate in a way similar to cassette tapes, while the second division contains
files that operate like phonograph records in the way described.

But these two kinds of data files do have things in cOnuDon, just as tapes have
things in common with phono records. The most obvious common characteristic
is that they both usually contain information that is not in the form of instructions
for the computer. In other words, they contain information like lists of things,
addresses, receipts, and inventories. Second, both files make use of some of the
same BASIC file commands, but with different parameters.

Because these data files are not computer instructions, they cannot be used in
the same manner as BASIC program files. In other words, you cannot RUN a data
file, SAVE, or LOAD it. Those three commands, when combined with a file name,
are the computer's means of access to BASIC disk files. The obvious question,
then, is that if you cannot use RUN, SAVE, or LOAD with data files, how does
the computer get the information on the diskette in a data file or back off the diskette
from a data file?

To gain access to data files, you must use certain BASIC file commands in
specific ways, depending on the kind of data file you are accessing. Both sequential
and random access data files primarily use four types of commands: (1) OPEN, (2)
CLOSE, (3) some way of reading the file (INPUT# or GET#), and (4) some
method of writing to the file (PRINT#). Future chapters will examine in detail how
each of these is to be used for either of the two kinds of data files. For now, you
only need to understand the essential task of each command.

Again, the example of the filing cabinet is useful. In much the same way that
a secretary must open a file folder removed from the filing cabinet before making
use of any information contained in the file, so also must all data files be opened
before the information they contain can be put to use. And as the secretary should
properly close the file folder before replacing it in the filing cabinet, all data files
should be closed before ending the program or turning off the computer. If a secretary
does not close the file folder, some information might drop out and get lost. The
same is true if data files are not properly closed. This is usually only the case after
new information has been written to the file and the file not closed. Loss of infor­
mation should not occur after a data file has only been read and not closed.

INPUT#, PRINT#, or GET# are the main processes by which information
is either read from or written to the file. If you only want to see information already
in a data file, the BASIC file commands INPUT# and GET# are the commands
you would use. If you want to add information to the file or create a new file, use
the BASIC file command PRINT#.

At this point, let's try out some of this information on the computer. Turn on
the computer and the disk drive. (Refer to Chapters 1 and 2 if you are not sure
what to do.) When the cursor (blinking box) and the READY prompt appears, take
the TEST/DEMO diskette, insert it in the disk drive, and type carefully, remem­
bering to press the RETURN key after each entry. Below the READY prompt,
type:

20 CHAPTER THREE

LOAD "C-64 WEDGE",8

Remember, you can use either upper case or lower case letters. The disk will come
on, and after a short time you will see the READY prompt. Then type:

RUN

You should see:

DOS MANAGER V5.1/071382

BY BOB FAIRBAIRN
(C) 1982 COMMODORE BUSINESS MACHINES

READY

The numbers may be different depending on which version you are using, but a
similar message should appear. The READY is the BASIC prompt indicating that
the system is ready for you to use. Remove the TESTIDEMO diskette, take the
diskette that you formatted in the last chapter, and place it in the disk drive. Now,
type:

@$

You should see:

o "FORM.10-20-84
1 "HELLO"
1 "HELL02"
662 BLOCKS FREE

II 84 2A
PRG
PRG

Remember, @$ shows the names of the files on the diskette. Now, type:

NEW

This clears the computer's memory.

100 REM ***--DATA FILE EXAMPLE--***
110 :
120 :
130 REM **--FILE OUTPUT ROUTINE--**
140 OPEN 2,8,2, "O:ADDRESS FILE,SEQ,WRITE"
150 PRINT#2,"COMMODORE-64 IS A BRIGHT COMPUTER"
160 CLOSE 2

DATA FILE INTRODUCTION 21

For those using tape, the program should read:

100 REM ***--DATA FILE EXAMPLE--***
110 :
120 :
130 REM **--FILE OUTPUT ROUTINE--**
140 OPEN 2,1,1,"ADDRESS FILE"
150 PRINT#2,"COMMODORE-64 IS A BRIGHT COMPUTER"
160 CLOSE 2

Check your typing very carefully. I f you make a mistake, you can use the edit keys
(the CRSR keys and the INSTIDEL key) to correct the mistake, or type the entire
line over again. The computer will place the line in the proper sequence. Once
your program matches the program above, type:

~EXAMPLE

Or, for tape users:

SAVE "EXAMPLE"

and follow the screen prompts!
The program is now saved on the diskette (or tape) under the name EXAMPLE.

Disk users should type:

(il$

And you now see:

o "FORM.10-20-84
1 "HELLO"

"HELL02"
1 "EXAMPLE"
661 BLOCKS FREE

Next type:

LIST

"842A
PRG
PRG
PRG

just to see that the program is still in the computer's memory.
Then, type:

RUN

22 CHAPTER THREE

The disk drive comes on, but little happens on the screen. Once again. type:

(d$

This time you get:

o "FORM.10-20-84
1 "HELLO"

"HELL02"
"EXAMPLE"

1 "ADDRESS FILE"
660 BLOCKS FREE

"842A
PRG
PRG
PRG
SEQ

We have created a data file' Even though you did not actually see the data file
being written to the diskette, that is exactly what happened immediately after you
typed RUN and pressed the RETURN key. The reason you did not see anything
on the screen is that our BASIC program told the computer to print our information
to the disk (or tape) rather than to the screen.

We will look at this program to see what each line does and what the correct
syntax for each should be. Line 100 provides a name for this program. It is a good
practice to make the name of the program similar to the file name under which the
program is saved on disk. The one problem is that the file name cannot be more
than sixteen characters long, while there is no limit to the length the program name
can be. REM is a BASIC reserved word meaning remark, indicating that what
follows is only a comment by the programmer and will not be executed by the
computer. The characters and words ***--DATA FILE EXAMPLE--** are the
actual comment. Lines 110 and 120 contain colons that can be used to help separate
sections of programs. Line 130 names the routine to follow. Again, it is a good
idea to identify, with a REM statement, what it is that you are about to do. The
remark in this case indicates that we are creating a routine to write information to
the disk (or tape).

Line 140 tells the computer whether we are going to use the disk or the tape.
For disk, the syntax is OPEN 2,8,2, and for tape, the syntax is OPEN 2, I, I. The
first number represents an arbitrary number between I and 255 (usually between I
and 127) for the number of the tile we are going to be using. This number can
change from program to program even though we are accessing the same physical
file. In other words, the file number is not written to the diskette with the tile name.
It is just a number we temporarily assign to the file so that we can refer to that tile
by number rather than by name. The second number. either an 8 or a I. refers to
the number of the device we are using to save the data file. The disk drive's number
is 8, and the tape drive's number is I. These are usually unchanging numbers and
should be memorized as such for future use.

DATA FILE INTRODUCTION 23

The last number represents two different things, depending on the device being
referenced. The number following the 8 (i.e., 2) is a channel number on which the
data will be transmitted to the disk. This number is usually between 2 and 14.
Since it does not matter which channel we use, it is often recommended that the
channel number be the same number as that used for the file number (if the file
number is between 2 and 14). For tape users, the number following the 1 (the
device number) does not represent a channel number. Instead, it represents the type
of operation we will be performing on this data file. If the number is a 0 (zero),
the computer knows to read information from the data file. If the number is a 1
(as in our current program), the computer is instructed to write information to the
data file and place a special marker, called an End-Of-File marker (EOF), at the
end of the information, indicating that all information has been written. If the
number is a 2, then the computer is instructed to do the same as with a I, but to

·place an End-Of-Tape (EDT) marker instead of the End-Of-File marker.
We are going to open a file called "ADDRESS FILE". Notice the quotation

marks. These quotation marks must be included in the program statements. That
is how the computer understands where the specific file information begins and
ends. The 0: indicates the drive numbers 0 for the first drive, 1 for drive 2 (not
physically possible on the 64 equipped with two 1541 drives. Instead, the device
number of one of the 1541s should be changed according to the instructions given
in the 1541 User's Manual). Next, we tell the computer what type of file we want
ADDRESS FILE to be: SEQ (for a SEQuential access file). Finally, we must instruct
the computer how we are going to be using that file: WRITE, meaning that we are
going to write information into the file rather than read information from the file.

Then, we tell the computer that we are going to be adding information to the
file with the PRINT#2 statement. Line 1 SO also tells the computer what information
to put in the data file. Anything between the quotation marks will be written to the
data file on the diskette. The PRINT statement in this line does not print the string
(the information between the quotation marks) on the screen when the program is
RUN, as would normally be expected. This PRINT statement contains the file
number telling the computer to print to the diskette rather than to the screen. Line
160 contains the computer instruction to CLOSE the file whose number is 2.

We have now put information onto a diskette. The next task is to be able to
read back from the diskette what we wrote. There are a number of different ways
that we can read back the information, but for now we will use the single-program
approach and add more lines to the program that wrote the information to the
diskette. Type:

LIST

The program should still be in the computer's memory. Add the following lines
carefully:

24 CHAPTER THREE

170 :
180 :
190 REM **--FILE INPUT ROUTINE--**
200 OPEN 2,8,2,"0:ADDRESS FILE,SEO,READ"
210INPUT#2,LlNE$
220 CLOSE 2
230 :
240 :
250 REM **--DISPLAY ROUTINE--**
260 PRINT CHR$(147):REM CLR/HOME
270 FOR I = 1 TO 5
280 PRINT CHR$(17);:REM CURSOR DOWN
290 NEXT I
300 PRINT LlNE$
310 END

For tape users, line 200 should read:

200 OPEN 2,1,0,"ADDRESS FILE"

And add line 185:

185 INPUT "REWIND TAPE. PRESS RETURN ";L$

All the other lines are the same.
Check your typing. Then, type:

SAVE "@0:EXAMPLE",8

Or, using the DOS Wedge syntax:

-@O:EXAMPLE

Tape users do not need to use the @ (replace) symbol. Disk users must use the @
(replace) symbol, since the disk will not write over an existing file without that
symbol. This replaces the previous and shorter version of our program. Finally,
type:

RUN

No file name is necessary since the program, besides being on the diskette (or tape),
is also still in the computer's memory. This time the disk drive will come on for

DATA FILE INTRODUCTION 25

a brief time; then the screen will go blank, and the words "COMMODORE-64 IS
A BRIGHT COMPUTER" will be printed five lines from the top of the screen.

Let's examine each line of the additional program lines. Lines 170 and 180
provide a separation between the file output routine and the file input routine. Line
190 names the next routine. Line 200 informs the computer that we want to open
the file called "ADDRESS FILE" in order to be able to read the contents of that
file. We need to reopen the file in order to start at the beginning of the file so we
can read from the file what we have just written. We also want the computer to
identify that file as our number 2 file. We can use the number 2 since we closed
the original number 2 after we finished writing our information to it. Line 210 then
tells the computer to bring in, from that number 2 file (lNPUT#2), a copy of the
first (and in this case the only) piece of information in the file and store that
information in the string variable memory location we have labeled LINE$.

A string variable is identified in BASIC by a letter or letters followed by the
dollar sign, $. Variables are names assigned to locations in the computer's memory.
String variables can contain just about any value (i.e., numbers, letters, punctuation,
and so forth). They are referred to as "variables" because their values may vary
within a program; i.e., they are not constant. An example of a string variable might
be NAMES$, where the first value of NAMES$ is "ANDY", the second value is
"MARY", the third value is "PAUL", and the fourth value is "JANE". Therefore,
we are storing the contents of the first and only piece of information in the ADDRESS
FILE file in the computer's memory location labeled LINE$.

Line 220 is the same as line 160. We close the file before proceeding to the
display routine. Lines 230 and 240 again provide the separation between the various
parts of the program, while line 250 names the next portion of the program.

Line 260 instructs the computer to clear the screen by printing the value of
CHR$(l47). The value of the CLEAR SCREEN/HOME instruction as set by the
code for all characters is 147. The code used in the Commodore-64 and most micros
is called ASCII. It sets a decimal and hexadecimal value for all characters used.
If you look on page 136 of the Commodore-64 User's Guide and go down the page
under the column PRINTS until you find the key marked with CLR above the word
HOME, you will find a column to the right with the number 147. Therefore, the
value of the CLRlHOME key is 147. The reserved characters CHR$ can be used
with parentheses and a decimal value to display nonalphanumeric characters on the
screen.

Commodore provides another method by allowing you to actually enter non­
alphanumeric characters into a program line. These characters are then displayed
as graphic symbols both on the screen and in a printed listing. I will avoid using
these graphic symbols because they are not descriptive of their function. In addition
to remembering the purpose of the function (i.e., CLRlHOME means clearing the
screen and placing the cursor in the upper left hand comer of the screen), the use
of graphic symbols requires pure memorization of which symbol goes with which
function. The same can be said for the decimal values of these nonalphanumeric

26 CHAPTER THREE

keys. In the next chapter, I will show a method that can make use of CHR$ values
in a descriptive way.

One other major problem occurs with the use of Commodore's graphic symbols.
Many printers will not actually display these symbols properly. Unless you have
the Commodore printer or a printer with the right interface (equipment that translates
information from the computer to the printer), you are likely to get a variety of
strange characters and/or sounds. Even those with either the Commodore printer
or a printer with the right inteiface find it difficult to "read" a printed program
listing and harder still to type such a listing into their computer. Entering such a
listing also requires remembering the exact sequence of key strokes needed to obtain
the graphic symbol for these keys-the CLRlHOME key for example. Therefore,
whenever possible, I will use the ASCII value for various functions that do not
have a BASIC reserved word already established to accomplish the purpose of the
function.

Lines 270, 280, and 290 are a similar situation. There is no BASIC reserved
word to vertically position the cursor on the screen. If we want a statement to
appear on the fifth line from the top of the screen, we must either use the graphic
symbol for cursor down five times, or print five CHR$(17) instructions. We will
discuss the meaning of lines 270 and 290 (called a FOR-NEXT loop) in the next
chapter, so for now, simply understand that this is one method of spacing down
five lines from the top of the screen when executed immediately after a PRINT
CHR$(147)-CLRlHOME--instruction. Lines 270-290 position the cursor five
lines from the top of the screen and in the first column of that fifth line.

Finally, line 300 provides the instructions necessary to display the contents of
the string variable LINE$. Line 300 prints the value contained in memory l()Cation
LINE$ on the screen five lines from the top. The computer prints this information
on the screen because we have not told it that we want the information to go
anywhere else. The screen is the default for PRINT statements. Default in this case
means that a certain value, the screen, has been predetermined, and urness the value
is specifically changed, the predetermined value is taken as the desired value. Since
we have closed our data file and not used a file number in the PRINT statement,
the computer understands that we want the information printed on the screen.

This program is merely to give a brief explanation of the main file commands
used with either sequential or random access data files. It is not intended to be a
meaningful or useful program in any other sense. Such programs will begin in the
next chapter. Please review this chapter and the program example with explanation
until you are confident you fully understand what each of the BASIC data file
commands, OPEN, CLOSE, INPUT#, and PRINT#, does.

Finally, let's "clean up" our diskette so that we can put some serious programs
on it in the next chapter. By following the instructions given below, you will gain
practice in the use of two other BASIC file commands and learn about the two
modes in which the computer can operate. If you do not wish to erase these
programs, you can skip what follows and start Chapter 4 with a fresh diskette,

DATA FILE INTRODUCTION 27

provided you remember to first format the new diskette. (Refer to Chapters 1 and
2 if necessary.)Type:

@$

The list shows:

o "FORM.10-20-84
1 "HELLO"
1 "HELL02"
2 "EXAMPLE"
1 "ADDRESS FILE"
659 BLOCKS FREE

"842A
PRG
PRG
PRG
SEQ

Now, carefully type just the following:

@SCRATCH:ADDRESS FILE

Then, type @$ again. And ADDRESS FILE should be gone! Next, type:

@SCRATCH:HELLO
@RENAME:HELLO = HELL02

We have erased (SCRATCHed) one more file and changed (RENAMEd) the name
of another one. As the last step, type:

IHELLO
@SCRATCH:HELLO
+-HELLO

IEXAMPLE
@SCRATCH:EXAMPLE
+-EXAMPLE

This step puts HELLO and EXAMPLE back as the first two files on the diskette.
If you have followed these instructions carefully, the list of files should show:

o "FORM.10-20-84
1 "HELLO"
2 "EXAMPLE"
661 BLOCKS FREE

"842A
PRG
PRG

(If you want to see why I recommend use of the DOS Wedge, try the preceding
steps using all the procedure and syntax necessary under the standard operating
system; i.e. without the DOS Wedge.)

28 CHAPTER THREE

All the steps you have just taken have been done in what is called the immediate
mode, in which what you type is acted upon immediately after the RETURN key
is pressed. The immediate mode (sometimes called the direct mode) can be very
helpful in determining what errors exist in your programs. But most of the work
we will be doing will be in what is called the deferred mode (sometimes called the
indirect mode)---deferred because the computer does not follow the program in­
structions immediately. Rather, it waits until it is told to RUN the program. It
defers action until it is specifically told to act. This is the reason for the line numbers
in programs. Line numbers tell the computer the exact sequence by which the
computer is to follow the program instructions. In the next chapter, we will create
our first useful program.

QUESTIONS

1. Name the type of file that usually contains lists of information, rather than
computer instructions.

2. Give the two kinds of data files.

3. Which kind of data file is similar to a cassette tape?

4. How many characters maya file name contain?

5. True or False: You can RUN a data file just as you RUN a BASIC program.

6. Give the number of modes in which the computer can operate and name them.

7. Name the four operations usually used with data files.

S. What does REM stand for'?

9. What three-character file type designator is used for sequential files?

10. Explain what the BASIC reserved word INPUT, without a file number, does.

11. What symbol is used to designate string variables'?

12. What are variables?

DATA FILE INTRODUCTION 29

ANSWERS

1. Data files

2. Sequential access, direct access (random/relative access)

3. Sequential access

4. 16

5. False

6. 2; immediate and deferred

7. OPEN, CLOSE, some method of writing to the file (PRINT#), and some
method of reading from the file (INPUT# or GET#)

8. Remark

9. SEQ

10. Brings information into the computer from the keyboard

n. $

12. Names of locations in the computer's memory where values can be stored

30 CHAPTER THREE

• Program for DATA FILE EXAMPLE

100 RE~1 ':":":'--llATA ref U EXAHPLE--';":<o:'
110

RFi'1 --FILE OUTPUT ROll'I :-lE--':":'
120
110
140
150
1 f,O
1 70
180
19()
200
210
220
230
240
2')0
260
270
280
29u
300
l10

() PIN :2, » , 2 , " () : \ D D RES C; F [1 E, SEQ, Iv R 1 T E "
I'R I NT # 2 , "C: en! ~10 DO R I. - h 4 [S c\ B RIC H T C (m P l T F R "
CLOSE 2

1\ 1~1 ':":'--F 1 LE INPUT ROliTINE--'"
OPEN 2,8,2,"0:ADDRESS FILE,C;),J),READ"
i\PllT#2,LINE$
(;I"OSE 2

REM **--DISPLAY ROITINE--**
PRINT CHRS(147):REM CLR/HOME
FOR T = 1 TO 'j

PRJ:;! CIlR$(17);:REM CURSOR Do\,"J
:-lEXI' I
I' R I NT LI N E S
END

!iEADY •

• Program for EXAMPLE. TAPE

100 REM ***--EXAMPLE.TAPE--***
1 1 CJ
120
1 3 () R F ~1 o;q - - F I LEO tJ T P!I I' R 0 U T I:i E - ',,,,'
140 OPEN 2,1,1,"ADDRFSS FILE"
1')0 PRTNT#2,"C:OmlODORE-64 IS A BRleH] CO~IPUTEK"
160 CI.OSE 2
1 7 ()
ISO
185 INPUT "RE\JIND TAPE. PRESS KETl'KN ";L$
I () 0 R EH ':";, - - F I Lie J Pl!T ROUT J N E--':":'
200 OPEN 2,1,U,"ADDRES:; FILE"
210 INPUT#2,LTNES
220 CLOSE 2
210
240
2 .5 0 R E H ' ':' - - Il I S P I.A Y R 0 lJ T 1 :\ i> - ':":'
260 PR]NT CHRS(147):REM CLR/HO~E
270 FOR I = I TO ~

2')0 PR1:\T CIlRS(1i);:RCM CURSOR DOWN
290 NEXT T
lOO PRINT LINE
310 F'ID

RE,\TlY.

DATA FILE INTRODUCTION 31

4 creating
sequential
fl1es

We begin to get into the heart of our study with the first part of our examination
of sequential data files. First, let's briefly review. We have seen that there are
different types of files: BASIC program files, FORTRAN or COBOL (or any other
language) program files, and data files. You should now understand that program
files are files that contain specific instructions for the computer. Data files usually
contain only lists or data, not computer instructions. We have also seen that there
are two kinds of data files: sequential data files and random access data files. The
difference between these two kinds of data files lies in the way the information
within them is accessed, sequential requiring access one after the other, and random
allowing access to any record directly and immediately. In the last chapter, you
were introduced to a new set of BASIC file commands common to both sequential
and random data files. Now, we are ready to put some of this knowledge to work
and create some useful programs.

We will begin by taking another look at the program given in Chapter 3 and
modifying it.

100 REM ***--DATA FILE EXAMPLE--***
110 :
120 :
130 REM **--FILE OUTPUT ROUTINE--**

32 CHAPTER FOUR

140 OPEN 2,8,2,"0:ADDRESS FILE,SEO,WRITE"
150 PRINT#2,"COMMODORE-64 IS A BRIGHT COMPUTER"
160 CLOSE 2
170 :
180 :
190 REM **--FILE INPUT ROUTINE--**
200 OPEN 2,8,2,"0:ADDRESS FILE,SEO,READ"
210 INPUT#2,LlNE$
220 CLOSE 2
230 :
240 :
250 REM **--DISPLAY ROUTINE--**
260 PRINT CHR$(147):REM CLR/HOME
270 FOR I = 1 TO 5
280 PRINT CHR$(17); :REM CURSOR DOWN
290 NEXT I
300 PRINT LlNE$
310 END

This is the program from Chapter 3. Start the computer. When the cursor appears,
insert the TEST/DEMO diskette. Type:

LOAD "C-64 WEDGE"
RUN

Remove the TEST/DEMO diskette, take the diskette that you have been using, and
place it in the disk drive. Then, type the following to see the program instructions:

/EXAMPLE

Or without the DOS Wedge:

LOAD "EXAMPLE",8
LIST

Type:

RUN

Again, you should see the screen clear, and five lines from the top, the following
will appear:

COMMODORE-64 IS A BRIGHT COMPUTER

CREATING SEQUENTIAL FILES 33

Type:

@$

And you should see that ADDRESS FILE is back! Then, change line 150 to:

150 PRINT #1,"COMMODORE-64 IS OK"
LIST

to make sure the change was made. Then, type:

RUN

Yes, again! You should see:

COMMODORE-64 IS A BRIGHT COMPUTER

Why didn't we get our new message: COMMODORE IS OK') The reason lies with
the need to indicate to the computer that we want to replace our old data file with
a data file that has the same name but different data. As indicated in Chapter 3,
the replace character (if must precede the file name. So, add this replace character
to line 140.

140 OPEN 2,8,2,"(0 O:ADDRESS FILE,SEQ,WRITE"

Now, RUN the program again. This time you should see our new message five
lines from the top of the screen. It includes everything the ADDRESS FILE now
contains. Reopening a sequential data file with the replace character (u destroys
the original contents of the file. In some cases, this may be exactly what you want,
but in other situations you may not want to destroy the original contents; instead,
we might want to add to the file. Some BASIC languages provide a word for just
such additions to sequential files: APPEND. Commodore BASIC does not use
APPEND. Instead, we will need to add to the file once the file is in the computer's
memory and then use the replace character to write the larger file back out to
diskette. Now, we can begin on the programs for the Mailing List System.

MAILING LIST SYSTEM

I am not going to get involved in the discussion over flow-charting or structured
programming, but, as in building anything, you should have a plan. In this Mailing
List System, we will need several programs. The first program should create the

34 CHAPTER FOUR

file. That first program should probably have at least three different parts: an input
routine, a correction routine, and a file creation routine. With this minimum plan.
let's begin. We start with what might be called the initialization statements. Type:

NEW
100 rem ***--maiLcreate--***
110 :
120 :
130 rem **--initialization--**

At this point, do not worry about making mistakes in your typing. We will go back
and make corrections later. But please notice, I have switched into the upper/lower
case mode on the computer. I have done so in order to use a mixture of upper/lower
case characters in my screen displays for two reasons: (I) To give the screen displays
a professional look, and (2) so that program users will be able to enter lower case
letters when they type in their names and addresses. The upper/lower case mode is
obtained by pressing down on the Commodore key, the key in the extreme lower
left hand comer of the keyboard, and at the same time pressing the SHIFf key.
You can shift back and forth by holding the Commodore key down and alternately
pressing and releasing the SHIFf key. From this point on, most of the programs
will be presented as written in this upperllower case mode. All the listings will also
be displayed in lower case letters so that you will be able to easily understand which
characters should be entered as upper case characters.

Most COMMODORE program listings given in books or magazines display
the listings in upper case and use some procedure to indicate when an actual upper
case character is desired (such as underlining characters or words that actually are
upper case, or placing a special character before those characters that are upper
case). It is not necessary to follow this procedure, and I believe that it is actually
much easier to enter programs from a listing that will exactly match the listing once
it is entered in the computer. So from here on, in addition to loading the DOS
Wedge when you tum on the computer, you should shift into the upper/lower case
mode immediately. I know that this may at first prove awkward. But the benefits
of using lower case within programs far outweigh the initial awkwardness of shifting
from the normal upper case only mode into upper/lower case mode.

Lines 140 through 220 provide the method for using descriptive chr$() values
to obtain functions not directly developed in Commodore BASIC (i. e., with reserved
words). Enter the following:

140 home$
150 : :cd$
160::cu$
170 : :cI$
180 : :cr$

chr$(147):rem elr/home
chr$(17):rem cursor down
chr$(145):rem cursor up
chr$(157):rem cursor left
chr$(29):rem cursor right

CREATING SEQUENTIAL FILES 35

190 :blk$
200 :ylw$
210 :wht$
220 :rvs$
230 :

chr$(144):rem black
chr$(158):rem yellow
chr$(5):rem white
chr$(18):rem reverse video

The colons are used to help format the listing so that the lines are all straight and
easy to read. Each line sets a string variable equal to a specific chr$ () function.
The string variables defining colors will be used to set different colors for text at
certain points throughout the program. Continue typing:

240 dim line$(20)
250 poke 53272,23:rem upper/lower case
260 poke 53281,0:rem set bkgrd to black
270 :
280 :

Line 240 uses the dim (dimension) statement to reserve space in the computer's
memory for 20 lines of up to 255 characters per line. This number of lines will be
more than enough for a starter program. (In fact, a dim statement is not necessary
unless you will have more than 10 lines of information for any single set of
infonnation-lines.)

Line 250 introduces a new BASIC statement, poke. POKE is used to place
some value directly into the computer's memory. In this line, the decimal value of
23 is placed into memory location 53272. When this memory location contains the
value of 23, the computer switches into the upper/lower case mode. (A value of
21 switches the computer back to the upper case only mode.) The computer contains
many such "switches" that can be "set" using the poke statement.

Line 260 refers to another of these special memory locations. This location
(53281) is used to establish the color of the background. The value poked into
53281, (0), sets the background to black instead of the dark blue that is present
when you tum on the computer. There are sixteen colors available for the back­
ground, border, and text, each of which can be set to a different color. This "feature"
on the Commodore-64 is one of its best. Such versatility and flexibility are unusual
even for more expensive computers. At the same time, misuse of color can be
harmful to proper operation of the program. Misuse will not hurt the equipment,
but program users may experience eye strain at the very least. Type the following:

300 rem **--keyboard input routine--**
310 k = 1 :rem line counter
320 print home$:rem clr/home
330 print tab(5)
340 print rvs$; :rem reverse

36 CHAPTER FOUR

350 print "INSTRUCTIONS"
360 print ylw$:rem yellow
370 print "Type name and address as if"
380 print "addressing an envelope."
390 print" Do not use a comma or colon!"
400 print "Press ";wht$;"RETURN";ylw$;
410 print" after each line."
420 print
430 print "Type the word ";wht$;"END";ylw$;" when finished."

Upper case is achieved with either the SHIFf key or the SHIFf LOCK key. Line
300 labels the routine and line 310 uses a counter "k" to keep track of the infor­
mation-lines used. Line 320 uses the now-defined string variable home$----chr$(l47}­
to clear the screen and place the cursor in the upper left hand comer. Line 330,
print tab(5), provides for spacing five spaces from the left side of the screen. The
"print rvs$;" in line 340 indicates that the computer is to display the following line
in reverse video. This techique is common for screen titles but should be used
sparingly. The title is given in line 350 and is also displayed in upper case letters.
Line 360 informs the computer to use the yellow color for the text that follows.
Lines 370-400 provide instructions to the person entering information: in this case,
names, addresses, and phone numbers. All these lines are optional, but I have
included them because they help the user to enter the information correctly. And,
of course, the instructions themselves can be reworded to your own preference.

Line 400 first displays the word "Press" and a blank space using the previously
established color for text (yellow). But then the computer is instructed to switch
to white for the following word. The word "RETURN" in line 400 and the word
"END" in line 430 are, therefore, printed in white on a black background. Im­
mediately after the printing of these words, the text color is returned to yellow
(ylw$). Throughout the book, I will attempt to similarly "highlight" keys or char­
acters the program user should press or type. Such highlighting helps the program
user to specifically follow the instructions given. Again, conservative and appro­
priate use is best.

Line 410 contains a space immediately after the quotation mark, because,
without that space, the "a" in "after" would be placed right next to the "N" in
"RETURN". The semicolon following the ylw$ variable instructs the computer to
leave no space between the last displayed character and the next displayed character.

440 print
450 print "Type in line ";k;":"
460 poke 19,32:rem disable input?
470 input line$(k)
480 print
490 if line$(k) = "end" or line$(k) "END" then 540

CREATING SEQUENTIAL FILES 37

500 if line$(k) = ,,,, then print "We need some information." :goto 440
510 k = k + 1
520 goto 440: rem go back for more
530 :

These lines are the heart of the keyboard input routine. Line 450 instructs the user
which line is being entered. The first print (in line 440) prints a blank line. Next,
the phrase "Type in line" is displayed. The semicolon instructs the computer to
print the value of the numeric variable "k" immediately following the quotation
mark. Line 460 is another of those special locations that can be set in different
ways. Normally, the "input" statement displays a question mark. But line 450 does
not contain a question. Instead, this line is instructing the user what to do. Con­
sequently, I would rather not have a question mark displayed. Memory location 19
controls the prompt on an input statement. Altering that location, this time with a
value of 32, eliminates the question mark. Line 470 (input) accepts whatever is
typed in and stores it in line$(), the reserved memory, depending upon the value
of "k". Remember that we told the computer to reserve space for 20 possible lines
of line$. (Reserving multiple space for a variable creates an ARRAY for that
variable.)

The regular "input" statement does not allow certain punctuation to be entered.
That is the reason for the specific instructions regarding the comma or colon in line
390. Line 490 checks what was typed in to see if it equals the word "END" or
"end". Since the user could type in either upper case or lower case, we should
check for both. If it does equal either form of the word, the computer is instructed
to jump ahead to line 540 immediately. If it does not equal either an upper or lower
case form of the word "END", this line is ignored and the computer goes to the
next instruction in line 500.

Line 500 checks for a response that contains no information. Since it is possible
for a new user to accidentally press the RETURN key more than once, we should
make it impossible to do so. Without the check in line 500, such a mistake would
result in a number of blank information-lines. Once more, if the condition is not
met, this instruction is ignored and control passes to the next instruction. Line 510
is a method of increasing the line count. The first time through, k will equal I, so
the formula really is: k = I + 1 or 2. Once we have increased our line count, we
want to go back and get another line, which is exactly what line 520 does.

Next, type the following:

540 line$(k) = "*":rem separator for phone number
550 k = k + 1
560 print home$:rem clr/home
570 cd = 3:rem 3 lines down
580 gosub 9000:rem cursor down routine

38 CHAPTER FOUR

590 print "PHONE: ";:print "Press ";wht$;"RETURN";ylw$;" if
none."

600 input line$(k)
610 if line$(k) = "" then line$(k) = "NONE"
620 k = k + 1
630 line$(k) = "!":rem separator between sets of information
640 :
650 :

These may be the most confusing lines to understand. In order to easily separate
the name and address from the phone number, I have included a separator, "*",
on a line by itself. The reason for separating the phone number from the rest of
the information is that now we can use the first part of our information to produce
mailing labels. I have also included a separator, "!", to easily differentiate between
the name, address, and phone number of one person and the name, address. and
phone number of the next person. Therefore, line 540 sets the kth line of lineS
equal to "*". At this point, if the first line contains the name; the second line the
address; and the third line the city. state, and zip code; then the fourth line will
contain the word "END", and k will be equal to 4. By making the fourth line equal
to "*", we have actually accomplished two tasks: eliminating the word "END" and
establishing a one-character separator before the phone number. We could have
required the user to type the "*,, when he or she finished entering the name and
address, but I prefer to have the user type something natural within the context.
Line 550 increases the line count by one for the phone number.

Lines 560-580 are the instructions used to (l) clear the screen and home the
cursor, and (2) position the cursor three lines from the top of the screen. Line 570
uses a common variable that specifies the number of cursor down (cd) moves to
be made. Then. line 580 transfers control to a subroutine beginning at instruction­
line 9000. This subroutine will be explained in more detail at the end of the program.
Essentially, it is the same routine used in the EXAMPLE program to display the
message.

The GOSUB instruction in conjunction with the RETURN instruction allows
a programmer to transfer control from one location in a program to another location,
process the instructions in that subroutine. and then return control to the instruction
that follows the GOSUB statement. This instruction is especially useful for often­
used subroutines. These often-used subroutines can be located at the end of a
program and then called from various locations within the program. Once again.
this flexibility can be misused-and often is. A program that contains many un­
documented GOSUBS can be very difficult for even the original programmer to
"read" and/or decipher later.

Line 590 gives instructions about typing in the phone number with the word
"RETURN" displayed in white. Line 600 accepts whatever format the individual
uses to type in the phone number and stores the information in the string reserved

CREATING SEQUENTIAL FILES 39

memory. If the user just presses the RETURN key, then line$(k) is set to equal
the word "NONE". Line 620 again increases the count by one, this time for the
separator between sets of information. Line 630 makes the kth line of line$ equal
to "!". If the fourth line of line$ is "*,, and the fifth line is the phone number, then
k would be 6 and the sixth line would equal "!". This concludes the input routine.

The correction routine is next. Type:

660 rem **--correction routine--**
670 print home$:rem clr/home
680 cd = 3:rem 3 lines down
690 gosub 9000:rem cursor down routine
700 print "Do not change the line with the ";wht$;"*";ylw$;"."
710 print "This symbol is used as a separator."
720 print

These lines explain what the routine is, set the format for the correction routine,
and give instructions to the user about the separator "*". Line 660 labels the routine;
lines 670-690 clear the screen and place the cursor in the upper left hand comer
three lines from the top. Lines 700 and 710 print the instructions for the user. Line
720 prints a blank line after the instructions.

730 for i = 1 to k - 1
740 print i;" ";Iine$(i)
750 next i

Lines 730-750 make a loop used to get the information stored in the string reserved
memory and print that information on the screen. Line 730 is the first line of a
FOR-NEXT loop. It uses a counter (i) that starts with the value of I and counts
to the value of k minus I. In our example above, the sixth line was the last line
and so was set equal to "!". Since that line should not be changed, there is no
reason to display the line. Therefore, the counter only goes to k - 1 or 5. Line
740 prints the current value of the counter, a blank space, and then the information
contained in line$(i) stored in the computer's memory. Line 750 increases the
counter by one until the counter equals the value of k - 1. The instructions between
the FOR instruction and the NEXT instruction are executed the number of times
specified in the FOR instruction. To conclude the correction routine, type:

760 print
770 print "Change any line? ";
780 gosub 8000:rem yin input routine
790 print
800 if yes$
810 if yes$

"y" then 850
"n" then 830

40 CHAPTER FOUR

--- - ------------------------ -

820 :
830 goto 3000:rem file creation routine
840 :
850 print:input "Change which line? ";In
860 print
870 if In > k - 1 then print "Number too large!":goto 850
880 if line$(ln) = "*" then print "Line";ln;"is the *":goto 850
890 print "Line";ln;"now is:"
900 print line$(ln)
910 print
920 print "Line";ln;"should be:"
930 input line$(ln)
940 goto 660:rem correction routine
950 :
960 :

These lines are fairly standard correction routine lines. Line 760 prints a blank line
before the question in 770. Line 770 asks the necessary question and provides
instructions for answering it. Control is transferred to the Y /N (yes/no) subroutine
beginning at instruction-line 8000. In this subroutine, the user's response is stored
in the string variable yes$. When the user has responded with some form of either
a "y" or "n", control is returned to the instruction following the GOSUB instruction.
Line 800 checks the answer, stored in yes$, to see if it equals "y". If it does, the
computer is instructed to jump to line 850 and proceed. If it does not equal "y",
the computer goes to the next instruction in line 810. Line 810 checks for the
negative response of "n". If the value stored in yes$ equals "n", control is passed
to the instruction in line 830. Since the computer will not reach this point until the
value of yes$ is either a "y" or "n", no further checking need be done. With a
negative response, the computer is instructed to go to line 830. Since a negative
response indicates that the typist believes all the information-lines are correct, the
instruction in line 830 directs the computer to the file creation routine. A positive
response to the question in line 770 indicates that at least one of the information­
lines needs changing. Therefore, the computer is instructed to jump to the instruction
in line 850, which asks the user to indicate which information-line needs changing.

Line 850 requests the number of the line that needs changing and stores that
value in the variable "In". Notice that there is no dollar sign following In. This
indicates that this variable is a numeric variable rather than a string variable. Numeric
variables can only contain numbers.

Line 870 checks to see if the user has typed a number larger than the total
number of lines displayed. If that is the case, a message is printed and the computer
returns to line 850 to ask again for the number of the information-line to be changed.
Line 880 makes certain that the typist does not change the line with the "*". Line
990 prints the originally typed line, and line 930 waits for the user to type in the

CREATING SEQUENTIAL FilES 41

correct information. Finally, line 940 returns to line 660 to begin the correction
process over again. The correction process will be repeated until the user answers
the question in line 770 in the negative, indicating that all information-lines arc
correct. A number of other lines or checks could have been included, but for our

present needs these lines are sufficient.
The third and last major part of the program is the file creation routine. Type:

3000 rem **--file creation routine--**
3010 :
3020 rem *-pointer file-*
3030 open 2,8,2,"0:adrs-ptr,seq,write"
3040 print#2,k
3050 close 2
3060 :
3070 rem *-data file-*
3080 open 3,8,3,"0:adrs-data,seq,write"
3090 for i = 1 to k
3100 print#3,line$(i)
3110 next i
3120 close 3

3140 :

For tape users, the only lines that are different are lines 3030 and 301\0:

3030 open 2,1,1," ad rs-ptr"
3080 open 3,1,1,"adrs-data"

We are finally down to the actual file-handling routine. As you can sec, the routine
is quite short. The key to filing system programs is often in proper planning. If
you have tried to anticipate and provide for all possible requirements, present and
future, your data files can become very powerful and useful. If you are not careful
in your planning, however. you may tind that some of the information you thought
you had in the tile has been overwritten, lost, or is practically unavailable. This is
the reason for including the two single-character separators and the reason for lines
3020-3050 in this routine. Line 3030 opens a tile called "adrs-ptr" in the "write"
mode so that this file can receive information. This file is also identified as #2.
This first data tile will be used to keep track of the number of information-lines we
have in the second data file. This data tile provides a pointer value for the "adrs­
data" file. That is the reason for the name of this data file: "adn,-ptr."

Line 3040 prints the current value of k, which, in our example, should be a
"6." This is done to keep track of the total number of information-lines that will
be kept in "adrs-data" so that we know how many lines to read back into the

42 CHAPTER FOUR

computer with other programs. There are other ways to keep track of this number,
but with sequential files this is one of the easiest and clearest. Commodore provides
a useful reserved word (ST, for STATUS) that actually lets us know when the end
of the file has been reached. We will be making use of this handy feature in some
of our later programs. But at this point it is important to know the number of
information-lines and the process for obtaining that number.

Line 3080 opens the second data file also in the "write" mode and readies it
to receive our information. Lines 3090 through 3110 are essentially the same loop
as lines 730 to 750, but this time the information is printed to the diskette instead
of just the screen. Here, we do want to print the separator "!", so the counter goes
from 1 to the .value of k. Finally, we close the file in line 3120.

One additional comment needs to be made. Lines 3040 and 3100 print infor­
mation to the diskette rather than to the screen because the word print is immediately
followed by the # symbol (without an intervening space!), a number, a comma,
and the information that is to be written to the specific file. This is the method the
computer uses to distinguish between information that is to be sent to the disk
instead of the screen and, therefore, is absolutely necessary! If a file name has not
previously been identified with the number, an error will occur. If an incorrect
number is specified, information can be sent to the wrong file or be lost. It is very
important to keep the numbers consistent with the file names.

The only remaining lines that need be discussed are the two subroutines and
a routine to end the program. We will accomplish this with the next lines to enter.
Type:

5000 rem **--end routine--**
5010 end
5020 :
5030 :
8000 rem **--y/n input routine--**
8010 print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;" :";
8020 poke 19,32:rem disable input?
8030 input yes$
8040 print
8050 if yes$ = "y" or yes$ "Y" then yes$ = "y" : return
8060 if yes$ = "n" or yes$ = "N" then yes$ = "n":return
8070 print
8080 print rvs$;"lncorrect Choice!";ylw$
8090 print .
8100 goto 8000:rem ask again
8110 :
81~0 :
9000 rem **--cursor down routine--**
9010 for i = 1 to cd

CREATING SEQUENTIAL FILES 43

9020 print cdS;
9030 nexti
9040 return

These three short routines (or two subroutines and one routine, if you want) actually
reduce the amount of program instructions necessary in the entire program. As
indicated above, the "yIn input routine" and "cursor down routine" are "called" by
"gosub" statements in previous instructions. Control is transferred to the subroutines
until certain conditions are met or certain instructions are followed. Once the task
of the subroutine is finished, the "return" statement transfers or returns control back
to the i,p.struction that directly follows the gosub instruction. The "end routine" must
be placed between the "file creation routine" and the two following subroutines in
~r ~ stop the computer from again executing those routines. Entering such a
subroutine without the gosub statement will cause a "return without gosub error"
and cause the program to completely stop. In this situation, such an error would
not hurt anything since we are finished anyway, but it is not good programming to
allow such an error to occur.

Line 8010 instructs the user what to type. This line can be "read" and understood
by someone with a small amount of previous instruction. It will also be under­
standable to the original programmer six months from now. It says: Print (or display
on the screen) the words ''Type a " in the already set color for text (yellow).
Immediately follow that with a white capital "Y". Switch back to yellow for the
word" or " with a space on each side. Still on the same line, use white to display
a capital "N" followed by a final switch back to yellow, a space, and a colon. The
method used in line 8010 is far more descriptive than either of the following two
forms of this line:

8010 print "Type a ";chr$(5);"Y";chr$(158);" or " ;chr$(5);"N";chr$
(158);" :";

or the method that would place graphic symbols in place of the chr$() portions of
this instruction line.

Line 8020 is the already discussed way of disabling the question mark prompt
used for input statements. The user's response is stored in the string variable yes$
(line 8030). Line 8050 ch.ecks the answer stored in yes$ to see if it equals "y" or
"Y". If it does, the computer is instructed to store a lower case "y" in yes$ and
then "return" to the line following the gosub statement. If it does not equal "y" or
"Y", the computer goes to the next instruction in line 8060. Line 8060 checks for
the negative responses of "n" or "N". If the value stored in yes$ matches one of
those, the computer is instructed to store a lower case "n" in yes$ and then "return"
to the line following the gosub statement. If it does not match one of those negative
responses, the computer ignores this instruction line and proceeds to the following
instruction-line. If the computer ever reaches these next lines, lines 8070-8100,

44 CHAPTER FOUR

we know that the individual has typed something other than either a "y", "Y", "n",
or "N", Anything but one of these response", in this situation, can be viewed as
an incorrect response, Therefore, the instruction in line 8080 tells the user that he
or she has typed something wrong, Line 8 100 sends the computer back to line 8000
to inform the user to type some form of a "y" or "n", Although in this program
this subroutine is used only once, when we expand the program, this subroutine
will come in very handy,

The cursor down subroutine is basically a loop that extends for the number of
times specified in the numeric variable "cd", Notice that we can have a numeric
variable that uses the same characters as a string variable, with the only difference
being the $ that specifies a string variable, In this subroutine, cdS equals the cursor
down function or chr$(l7), while cd equals the number of cursor down moves we
want to make. Once the specified number of cursor down moves has been made,
control is transferred (returned) to the instruction following the gosub routine. The
computer keeps track of which instruction originated the transfer and thus can return
to the instruction that follows it.

If you have been following along and typing in the program, you can edit and
make corrections to the program by using the cursor keys on the right of the
keyboard. Once a correction has been made, pressing the RETURN key saves the
corrected version in the computer's memory, When all corrections have been made,
you should save this program on diskette (or tape) by giving it a name such as
"mail. create". Remember that to save a program, you type the word "SAVE" and
the program file name or, under the DOS Wedge, the left arrow and the program
file name, like this:

SAVE "mail.create",8
or
+-mail.create

Now type the @$ and see if the file name is listed, It should be listed like this:

o "form.10-20-84
1 "hello"
2 "example"
1 "addressfile"
12 "mail.create"
648 blocks free

" 84 2a
prg
prg
seq
prg

At this point, you can run the program and enter your own name, address, and
phone number if you wish. If you do not get the results given below, you will need
to check over the program listing to see that what you have typed is entered exactly
as given in this chapter. This checking process is often referred to as debugging a
program (i.e., finding the mistakes that have somehow found their way into the

CREATING SEQUENTIAL FILES 45

program). Often the mistakes result from unfamiliarity with the particular keyboard.
The more one uses the keyboard, the fewer the number of mistakes there will be.
Persistence and careful checking will eventually result in a program operating
correctly. The exhilaration associated with finally getting a program to operate
correctly is well worth the frustration all programmers go through in creating
programs.

But, I repeat- type carefully! This program has been thoroughly tested and
checked for errors. As listed in the book. the program is fully operational. If you
get an error message after you are finished typing in the program and have tried to
RUN the program, the most likely problem is with the typing, not the program
logic or any misprint of the listings! I cannot emphasize enough the aspect of careful
typing and reading for mistyped instructions. An example is the typing of a I (the
number one) instead of I (the lower case letter I). And for those who do not want
to spend the time keying in all these instructions, a diskette containing all the
programs is available. (Information on ordering the diskette is given at the beginning
of the book.)

One last note. I have added *'s and -'s as a personal preference to help set off
certain remarks. In addition, I purposely left out line numbers between 960 and
3000 to indicate that the line numbers do not need to have any specific sequence
or pattern and because future programs will add routines within this range of lines.

fv1y preference is to begin with line 100 for the program name. Furthermore,
I like to have each part or section of the program begin on some round number,
100, 300, 500, 1000, 3000, etc. with each line number some multiple of 10. This
numbering system is not always possible, and without a renumbering program it
is more trouble than it is worth. But if you have access to a utility program that
can renumber your program (such as SYSREso-'D from Solidus International)*, I have
found that it helps the readability to number by 10 beginning with line 100 and
jump to round numbers for major routines. The main point here is not to introduce
the numbering system I feel most comfortable with, but to stress the importance
of having a numbering system that you consistently follow whenever possible.
Careful attention to small details, like a consistent numbering system and program

format, can make life for any programmer much easier. Such attention to detail
can also help develop thinking patterns that aid in creativity and logical solutions
to difficult problems.

When you type the word "RUN", you become the user of the program. As the
user, you should see the screen clear and five lines down the message from lines
350-450 will appear. Type in a name and press the RETURN key. You are then
told to type in line number 2. If you want to type in a title for the name in the first
line, you can. If no title is needed, then type in the street address and press RETURN.
This process should continue until you type in the word "END" or "end." When
you do type some form of the word "END," you will be asked for the phone number

* Copyright i982 by Solidus international Corp .. North Vancouver. British Columbia. Canada.

46 CHAPTER FOUR

and told that, if there is no phone number, you should just press RETURN.
After the phone number has been typed, you are shown a list of the lines you

have typed and asked if you wish to change any of those lines. If you want to
change a line, you must answer the question with a "Y" (or a "y"). If you do not
want to change a line, either type an "N" or "n". If you need to make changes and
have typed a "Y" (or "y") , you will be asked which line number you want to change.
Respond with one of the numbers on the screen. You will be shown the originally­
typed line and asked for the correct information for this line. After typing in the
new line and pressing RETURN, you will be shown the list of lines again with the
new line in place of the old line this time.

You can make as many changes as you wish. When you are satisfied and do
not wish to make any more changes, a response of "N" (or "n") to the question
about changes will instruct the computer to write the information out to the disk.
The disk drive will come on for a few seconds, and the "ready" prompt will reappear.
(If you are using tape, the message "Press Play & Record" will appear. After you
press those keys on the recorder, the screen will go blank for some time. Eventually,
the "ready" prompt will reappear.) Now, for disk users, if you type "@$", in
addition to the previously created files, you should see:

0 "form.10-20-84 "842a
1 "hello" prg
2 "example" prg
1 "add ress fi Ie" seq
12 "mail-create" prg
1 "adrs-ptr" seq
1 "adrs-data" seq
646 blocks free.

Two additional files have been created with this one program: "adrs-ptr" has been
created to store the number of information-lines now in "adrs-data". In other words,
the first file keeps track of the amount of information in the second file.

But several questions present themselves at this point. How do I add more
names to this file? And how do I actually see what is in the file'? As you may have
realized by now, there are a number of possible answers. One answer would be to
add more lines to this program so that the program reads baek what it just wrote
to disk. Another answer is to write a separate program and possibly a program
menu that would be able to switch easily between programs that write information
and programs that read the information. In the next chapter, we will explore a
number of these possibilities and see a little of what can be done with the information
once it is safely and correctly on disk.

CREATING SEQUENTIAL FILES 47

QUESTIONS

1. True or False: Infonnation in a sequential access file can be overwritten by
additional infonnation.

2. What BASIC reserved word is used to initiate a sequential data file?

3. Name the three main parts (or routines) in the "mail.create" program.

4. What does reserving multiple space for a variable create?

5. What symbol did we use to separate sets of information?

6. What does DIM stand for?

7. "FOR I = 1 TO K" is the first line in what kind of loop?

8. The program user's response is tested by what kind of BASIC statement?

48 CHAPTER FOUR

ANSWERS

1. False; opening a sequential file with the REPLACE character (@) erases the
entire contents of any file with the same name. Without the REPLACE char­
acter, opening a sequential file that already exists and attempting to write to
that file produces an ~rror condition.

2. OPEN

3. INPUT, CORRECTION, and FILE CREATION routines

4. An ARRAY

5.

6. Dimension

7. A FOR-NEXT loop

8. An IF ... THEN statement. Check lines 490, 500, 610, 800, 810, 870, and
880.

CREATING SEQUENTIAL FILES 49

• Program for MAIL. CREA TE

100 rem ***--mail.creale--***
1 10
120

rem " 'I, - - in i t 1 n I I 7 a t i () n - - ;:: ;'~ 130
140
1~0
16()
1 7 ()
180
lc)O
200
21D
22(J
230

hom (' S c h r~) (147) : rem ell /home
: cd $ chrS(1 7) :rem cursr)r down
:cu$ chr$(14'5) : reIll cursor lip
:c1$ chr$(1 57) :rcrn cursut- [eft
:cr chrS(III :reIT! cursor ri :~ h t

: b 1 k$ c h r S ([44) : rem hi Ie k
: yll, $ chrS([')8) :rem ycl low
:lVht$ chr$(')) : rem \>/hi t I'

: r v s $ chr$(1S) : rl'ffi reversE' video

240 dim I ille$(2(J)
25D poke 'l272. :!'l: r-(!m upper/ lower en"'f'

260 poke 532S1 .0: rem spt bkgrd to black
270
2S0
'300 relll
J]O k =

320 print
3'J() print
34() print
3S0 print
160 print
'l70 pr i [) t

'380 print
3c)U print
400 print
410 pr i n t
420 print

'I' - - key b ();I r <I i n put r Il uti n e - - ':' "
: I'em 11 nc' C OUTlter
homeS: lem c I r fhom()
t;lil(',)
r\'s$;:rem rovcrsc
"1NSTRl'CTTONS"
vlw$:rcl'l yellow
l1Type Il;llll(' 8nd (lddt-f~SS as if"
I' (] (1 d res sin g <.1 n en vel () !) e • "
"Do not usc i1 comma 01' colon'"
"Press ";I,ht$;"RFTflR;\";y11,$;
" after c'deh 1 irlc'."

410 print "Type the h'ord ";I>/ht$;"END";ylw$;" when fini.shed."
440 pri,nt
4')0
460
470
480
4')0
SOU

print "Type in
p 0 k (' I CJ • 3 ;> : r f' III

input iine$(k)
print
if line$(k)
if line';;(k)
goto 440
k = k + 1

1 i !l (' tT; k ; " : "
disabll' input?

"end" or lincS(k) = "END" then ')4lJ
"" then print "\~e need some iniormation.":

got () 4 4 0 : r e f1j g (j b a c k for III 0 r e
')30
540 line$(k) = "':''':rem separator for phone number
550 k = k + I
',60 p r i n l h () IT! e S : r (' fit cl r f h (111]('

')70 cd = 3:rem:1 'ines down
5S0 gosub 9000:rem cursor down routine
S90 print "PHONE: ";:print "Press ";wht$;"FETURN";ylw$;" if

none."
hOD input line$(k)

50 CHAPTER FOUR

rem **--correction routine--**
prinl home$:rem clr/home
cd = 3:rem 3 1ines down
gosub 9000:rem cursor down routine

of information

print "Do not change the line with the ";wht$;"';''';ylw$;''.''
print "This symbol is used as a separator."

3060

print
for i = 1 to k - 1
print i;" ";line$(i)
next i
print

print
if yes$
if yes$

print

l1y"
"n"

then 850
then 830

if In > k - 1 then print "Number too large!":goto 850
i f 1 i n e $ (1 n) = ",;," the n p r in t "L i n e" ; 1 n ; "i s the ';"': got 0

print "Line";ln;"now is:"
print lineS(ln)
print
print "Line";ln;"should be:"
input line$(ln)
got 0 660: rem cor r e c t ion r 0 uti 11 e

3070 rem *-data file-*
3080 open 3,8,3,"0:adrs-data,seq,write"
3090 for i = 1 to k
3100 print#3,line$(i)
3110 next i
3120 close 3
3130
3140
')000 rem ,;q'--end rout i ne--';""
5010 end
5020
5030
8000 rem **--y/n input routine--**

8')0

CREATING SEQUENTIAL FILES 51

8ClICl
!'l020
8030
8040
8050
8060
S070
80S0
8090
H1UO
H I I 0
HUO

print "Type il ";\,'hL ;"Y";ylw$;" or ";whL$;"N";ylw$;"
poke 19,32:rcm disable input?
input yes$
print
if ye s$
i rye s $
print

"y" or yesS
"n" or yesS

"y" then yes$
"N" then yes$

print rvsS;"[ncorrect Choice''';ylw$
print
goto SOOO:rcn ask again

C) () 0 0 rem ':":' - - cur s C)'' d () W 11 r 0 uti n e - -,~ ':'
C) U 1 0 for i = 1 L () C d
'J()20 print cdS;
9030 next
'J040 return

ready.

52 CHAPTER FOUR

"y":return
"n":return

." .

5appending
sequential
files

Before we get into the subject of this chapter, a few comments are necessary. When
you first turn on your computer, if you have a disk drive, you should load the DOS
Wedge. And regardless of the hardware used to store and recall files (disk drive or
cassette recorder), you should switch into the upperllower case mode as soon as
possible. Please note that although the discussions in this chapter, and those that
follow in the sequential access section, are directed at disk users, Commodore-64
owners with the Commodore cassette tape unit can use all these programs by
changing the "open" instruction-lines to the specific parameters necessary for tape
use. A list of all such lines within each program is given at the end of the chapter.
I would also recommend that tape users (hut not disk users) store their programs
on one tape and use another tape on which to save their data. Regardless, tape
users must keep track of the exact location of their data file and remember to rewind
or exchange tapes he fore running any program. Besides the additional time needed
to load programs and data into the computer, tape use requires manual file man­
agement operations that the Disk Operating System handles automatically.

Now the fun begins. We have created a file, but as you will soon see, the
creation is one of the easiest parts of file manipulation. There are two things we
would immediately like to do with this file: add to the file, and read what is in the
file. Both tasks are easy to do, but because the job of reading is simpler to explain
and more rewarding, we will go over a short program to read the file first.

APPENDING SEQUENTIAL FILES 53

Type the following:

100 rem ***--mail.readerl--***
110 :
120 :
130 rem **--initialization--**
140 home$ = chr$(147):rem clr/home
150 ::cd$ = chr$(17):rem cursor down
160 :ylw$ = chr$(158):rem yellow
170 :
180 poke 53272,23:rem upper/lower case
190 poke 53281,0:rem set bkgrd to black
200 :
210 :
220 rem **--new lines for reader--**
230 print home$:rem clr/home
240 cd = 5:rem 5 lines down
250 gosub 9000:rem cursor down routine
260 print ylw$;"ONE MOMENT PLEASE!"
270 :
280 :

Lines 100 through 280 should be familiar. These are many of the same instructions
(with different line numbers in some cases) that we had in the "mail. create" program.
They perform the same functions in this program that they did in the "mail.create"
program. If you do not understand any of these instructions, refer back to Chapter
4 for a thorough discussion of each line. The only new instruction is line 260. This
line displays the message contained inside the quotation marks in yellow; i.c ..
yellow characters on a black background (line 190).

The next section of programming code brings the contents of the data file into
the computer's memory. Enter the following:

290 rem **--file input routine--**
300 :
310 rem *-pointer file-*
320 open 2,8,2,"0:adrs-ptr,seq,read"
330 input#2,rec
340 close 2
350 :
360 rem *-data file-*
370 dim tlines$(rec)
380 open 3,8,3,"0: adrs-data,seq,read"
390 for i = 1 to rec

54 CHAPTER FIVE

400 input#3,tlines$(i)
410 next i
420 close 3
430 :
440 tk = rec:rem total k = # of lines
450 :
460 :

Line 320 tells the computer that we want to use the disk and that we want to open
the "adrs-ptr" file as file #2 in order to bring in the number of information-lines
stored in our main data file. Remember, file numbers can go from I to 255 with
most numbers used under 127. Remember also that the number chosen is simply
an arbitrary assignment and in no way indicates the actual number of files in use
at anyone time. I avoid using the number I for a file number since disk drive
channel numbers only go from 2 to 14. Line 380 opens that main data file called
"adrs-data" as our second file. This instruction-line also opens the file in such a
way (read) that information can only be read from the file, not written to the file.

Line 330 brings in. from file #2, the value for the number of lines we wrote
to the diskette in our file creation program. If you are not clear on this, check back
to the explanation of lines 3010 and 3030 in the previous chapter. We are simply
reading back the number written in those lines. Line 370 reserves space in the
computer for the information we will be bringing in from the diskette. Since we
are not sure of the exact number of lines and the number will change every time
we add information, we should use the variable "rec", which will always equal the
number of lines (or records) that have been written.

Now, we can bring in a copy of the information contained in the file. Lines
390,400, and 410 bring in those data. Line 390 establishes the boundaries for the
loop we want. We want the count to go from the first to the last line of information
as represented by the variable "rec". Because we have identified the file by its
number, the computer understands that the input statement in line 400 refers to the
disk and not the keyboard. This instruction line tells the computer to go to the
diskette and obtain a copy of the information contained in the infomlation-line
specified by the variable i.

The operation is on the same principle as the logic of lines 3090 to 3110 in
our file creation program. But this time we are bringing information into the com­
puter from the diskette instead of transferring information from the computer to the
diskette. Now, the information physically exists in two locations. One location is
in the computer's memory, and the other location is still out on the diskette. By
bringing the information into the computer, we have not erased that information
on the diskette. Merely reading a file does not disturb the contents of that file.
Finally, line 420 closes the file.

If you run this program, you are not likely to see anything happen except the
appearance of the word "ready". We need a routine that will display the information.

APPENDING SEQUENTIAL FILES 55

We will become deeply involved in different ways of displaying our information
a little bit later, but for now the following routine will get the job done.

1000 rem **--display routine--**
1010 print home$:rem clr/home
1020 for i = 1 to tk
1030 print i;" ";tlines$(i)
1040 next i
1050 :
1060 :

Our input routine can be used in a number of different programs to bring in all the
information from the file, but our display routine will not be functional in very
many situations. We will alter this routine later to make it more usable (see Chapter
6). To conclude, type in two short routines already discussed:

5000 rem **--end routine--**
5010 end
5020 :
5030 :
9000 rem **--cursor down routine--**
9010 fo r i = 1 to cd
9020 print cd$;
9030 next i
9040 return

Save the program now as "mail.readerl", then type @$ to see the list of files now
on the diskette. Type:

~mail.reader1

@$

and you should see:

0 "form. 1 0-20-84 " 84 2a
1 "hello" prg
2 "example" prg
1 "address file" seq
12 "mail.create" prg
1 " adrs-ptr" seq
1 "adrs-data" seq
4 "mail.reader1 " prg
642 blocks free

56 CHAPTER FIVE

For tape users:

1. Lines 320 and 380 need to be changed to:
320 open 2,1,0, "adrs-ptr"
380 open 3,1,0,"adrs-data"

2. Insert the program tape and type:
save "mail. reader!"

3. Follow the screen prompts.

4. Then insert the data tape and rewind if necessary.

Finally, for everyone, type:

run

The information you provided when you used the "mail.create" program should be
displayed on the screen. If it is not, you need to check back over your programs
to see that they are entered exactly as given in this book.

So far, you have created a file, "adrs-data", and written the first group of lines
containing information to that file. Now, you have read that information back and
displayed it. Next, we need to be able to add more information to the file. If you
run the file creation program again and use a different set of information-lines,
what would happen? Would the new information be added to the file? Would the
old information be replaced? If you do not know for certain what would happen,
look at the explanation on page 33 concerning reopening a sequential data file.
Every time this program is RUN, the computer is instructed to open two new files,
"adrs-ptr" and "adrs-data", before writing any new information. But both files
already exist, so you will get a "file exists" error. Nothing will happen to the first
set of information-lines already on the diskette if you try to use this program to
add a second set of information-lines, but the information you just typed in will be
lost due to the error.

So, we need a third program to add more lines of information to our "adrs­
data" file. (For those of you itching to put all these programs into one large program,
have patience. I will eventually explain how these programs can be tied together
without actually existing as one large program.) This third program is really just a
modification of the file creation program. The modification needs to be done or,
as we have seen, the results will be worthless. The modification is relatively simple
if you closely follow the instructions given below.

Down to line 260 of the "mail.create" program (see the complete listing at the
end of Chapter 4), the new program can be the same with one minor change. So,
first load the "mail.create" program; then list it to see a complete listing of the
instructions in this program. Type:

imail.create
list

APPENDING SEQUENTIAL FILES 57

All the program will not fit on the screen at one time. The first instructions disappear
from view off the top of the screen. In BASIC, you can list to a certain instruction­
line number, or from a certain instruction-line number to the end of the program,
or from one line number to another, like this:

list - 200
list 350-
list 100-800

Line 100 should be changed to read:

100 rem ***--mail.adder1--**

Except for that one change, the "mail.create" program works fine down to line 260
for our new "mail. adder I " program. Be certain to make that change before con­
tinuing,

The next lines essentially come from our "mail.readerl" program. The num­
bering of the lines must be changed in order to fit these lines in between instruction­
line 270 and instruction-line 300. Type:

265 :
266 :
270 rem **--new lines for adder--**
271 print home$:rem clr/home
272 cd = 5: rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASE!"
275 :
276 :
277 rem **--file input routine--**
278 :
279 rem * -pointer fi le- *
280 open 2,8,2," 0: ad rs-ptr ,seq, read"
281 input#2,rec
282 close 2
283 :
284 rem *-data file-*
285 dim tlines$(rec + 100):rem add up to 100 new lines
286 open 3,8,3, "0: ad rs-data,seq,read"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 close 3

58 CHAPTER FIVE

291 :
292 tk
293 :
294 :

rec:rem total k

For tape users:

280 open 2,1,0,"adrs-ptr"
286 open 3,1,0,"adrs-data"

of lines

There are three basic parts to the code presented above.

1. Lines 270-274 instruct the computer to clear the screen and display a message
five lines from the top of the screen.

2. Lines 279-282 bring into the computer the number of information-lines (rec­
ords) that the "adrs-data" file contains.

3. Finally, lines 284-290 dimension the string array t1ines$O and bring the data
into the computer from the diskette, Line 285 informs the computer that it
needs to reserve space (dimension) for a certain number of information-lines­
the number of records already in the file, plus the maximum number of infor­
mation-lines a user can enter at anyone time before writing the information
back out to the file, Lines 286-290 bring the information into the computer.
Without the ability to physically add to the file on the diskette (there is no
APPEND command), it is necessary to bring all the information into the com­
puter's memory, add the new information to the previous information, and then
write the combined total information back out to the diskette.

Between lines 300 and 960 of "mail. create" , only one line needs to be changed
for the "mail.adderl" program. Line 830 still sends the computer to the routine at
3000, but now that routine is called "file addition routine" instead of "file creation
routine" .

830 goto 3000: rem file addition routine

The logic for the placement and numbering of these next two routines will become
clear a little later. For now, add these lines:

2000 rem **--repeat routine--**
2080 print home$:rem elr/home
2090 cd = 3:rem 3 lines down
2100 gosub 9000:rem cursor down routine
2110 print "Do you want to add more information?"
2120 gosub 8000:rem yin input routine

APPENDING SEQUENTIAL FILES 59

2130 if yes$
2140 if yes$
2150 :
2160 :

"y" then run
"n" then 5000

Line 2000 names the routine. Line 2080, as we have seen, clears the screen, and
lines 2090 and 2100 space down the screen three lines. Line 2110 prints the question
about additional information, and line 2120 transfers control to the "yin input
routine" at 8000 and waits for a response from the user. The computer knows to
wait for the response from the keyboard in the "yin input routine" because we have
not identified a file number with the input statement (line 8030). Lines 2130 and
2140 check the response. If the response equals "y", the computer is instructed to
"run" the program again. If the response is negative, control is transferred to the
instruction at 5000, the end routine. Line 50!O tells the computer to end this
program.

Neither of these choices writes anything to the diskette. That is the reason we
need another routine, our file addition routine. This file addition routine is very
similar to the file creation routine, but the changes are essential! First, we must
add the new information-lines to the existing information-lines; that is, we add the
number of information-lines already in the tile to the number of newly-entered
information-iines for OJ [(;yiscd infoffilation-line total. Typc:

3012 rem *-add new lines to exist. file lines-*
3013 for i = 1 to k
3014 tlines$(tk + i) = line$(i):rem tk + i, not tk + 1
3015 next i
3016 tk = tk + k
3017 :

Line 3014 is the heart of the routine. The string array, tlines$(), contains the
information from the diskette. The string array, line$(), contains the new information
that has just been entered from the keyboard. Line 3014 combines the two sets of
information by adding the information from line$() to the end of the information
in tlines$(). It is essential that the subscript read "tk + i" and not "tk + 1". If it
were to add only one, then only the last piece of new information would be combined
to the existing file. Finally, line 3016 totals the number of information-lines from
the diskette (tk) and the number of new information-lines entered from the keyboard
(k) to get a new total for tk. The logic for this line is the same as for our now­
standard "k = k + 1" lines. If you are not clear about this logic, it is best to just
accept that this is one way the computer totals things.

You must be careful about the choice of variable names. Variables that contain
(or are) reserved words must not be used. This is the reason we do not use totalines$
for our string array. Check your selection of variable names very carefully.

60 CHAPTER FIVE

Now, the only thing left is to change five lines in the "mail.create" program
for our new file addition routine.

Old line: 3030 open 2,8,2,"0:adrs-ptr,seq,write"
New line: 3030 open 2,8,2,"@0:adrs-ptr,seq,write"

Old line: 3040 print#2,k
New line: 3040 print#2,tk

Old line: 3080 open 3,8,3,"0:adrs-data,seq,write"
New line: 3080 open 3,8,3,"@!0:adrs-data,seq,write"

Old line: 3090 for i == 1 to k
New line: 3090 for i == I to tk

Old line: 3100 print#3,line$(i)
New line: 3100 print#3,tlines$(i)
For tape users: 3030 open 2,1,1, "adrs-ptr"

3080 open 3,1,1 ,"adrs-data"

The changes in each line are all small changes but are very necessary if the
"mail. adder!" program is to work. Line 3100 is changed to write the information
contained in the string array tlines$O instead of the contents of line$O. This last
is a very important change and will mess up the file badly if it is not made. The
(a: symbol is the replace symbol. With the addition of this character, the two existing
files are replaced by the updated files.

This procedure accomplishes what we want it to, but it is a somewhat dangerous
practice. For example, if the power goes out at the moment the newly updated files
are being written to the diskette, we might lose not only the information just entered,
but all our previous information as well. A better procedure is to rename the old
"adrs-data" file to something like "adrs-backup" and then write the updated file out
to the diskette. This practice is not possible with tape. It is also not needed if the
user does not rewind the tape before writing out the newly updated file.

One more line must be added to this new file addition routine:

3125 gata 2000:rem repeat routine

Once the information has been written out to diskette, control is transferred back
to the "repeat routine" to find out if any more information is to be added to the
file. The flow of logic in this program is from the keyboard input routine to the
corretion routine, from the correction routine to the file addition routine, from the
file routine back to the repeat routine. At the repeat routine, the user is asked if
additional information is to be added. If more information is to be added, the
program is instructed to "run" itself again. If no more information is to be added
at this time, the program is concluded by transferring control to the end routine
(lines 5000-5040).

APPENDING SEQUENTIAL FILES 61

We are finished with the program to add more information to our "adrs-data"
file. You should now save this new program to the diskette as "mail. adder!".

-mail.adder1

You can check your typing by going over the complete listing of the program given
at the end of this chapter. Please remember that it is very important to be following
along by typing the necessary lines on your Commodore-64.

We have three complete programs: "mail.create", "mail.readerl", and
"mail. adderl". The combination of these programs will create a file, add information
to the file, and read information back from that file. The three adequately dem­
onstrate the procedures used to accomplish these tasks. But the programs are not
really very useful or practical as they now exist. For instance, every time you run
the "mail.readerl" program you will read the entire file and display the entire file.
This happens even if you want only one name and address. After just a few names
and addresses are added to the file, the Jist begins to disappear off the top of the
screen during display. It is quite obvious that more modification needs to be done
in order to make these programs useful. If you are already a good programmer in
BASIC, you probably have some ideas about "features" or changes you would like
to see in one or more of these programs. If you have little experience in program­
ming, you will soon become much more experienced.

I am going to add a few "features" to these programs and fully explain each
additional step. So, if you would like to include these things and become more
experienced at programming, especially with file information data, follow closely
with the different programming lines and explanations given. If you don't need
these features or want to create your own, you might want to skip ahead to the
chapters on advanced sequential data file manipulation. Or, if you have had enough
of sequential data files, you might want to jump immediately to the chapters on
random access (i.e., direct access/relative access) data files. We will be using some
of these same routines in the chapters on random access, but I will not go into the
same explanatory detail as in these chapters. Let's begin adding features to our
three programs and making them more useful.

MAIL. AOOER2

We will begin by modifying the "mail.adderl" program. If you have used this
program to enter a number of names and addresses, you will have noticed that the
disk operates every time you have accepted a set of information-lines as correct.
This disk operation may not bother you if you are somewhat slow in typing or are
in no hurry to enter a large number of names and addresses, but there is no reason
that the disk needs to operate after every name. Why not write the information out

62 CHAPTER FIVE

to disk only after we have finished entering all our information-lines for the current
session? Such a change is clearly a preference h~ature that proponents and opponents
often argue about. In this situation, I prefer to enter all of my information before
writing any of it to the diskette. Even before typing in a second set of information­
lines, I may want to print a mailing label of the information I have just entered.
This is obviously a preference feature and will do little good if you do not have a
printer. If you do not have a printer, the routine may still be of interest because
we will be formatting our display in a new way.

So, the first two additional routines will be to the "mail.adderl" program. The
first routine will consist of adding lines of computer instructions to allow the user
to print out a mailing label of the infonnation just entered. The second routine
includes the computer instructions necessary so that the information will be written
to the diskette after all information for the current session has been entered and
corrected. The additional computer instructions necessary to include both of these
features are fairly small in number.

PRINT LABEL ROUTINE

We will begin with the print label routine. Add the following lines to the ·'mail.adderl"
program remembering that if the "mail.adderl" program is not already in memory,
you must load it into the computer's memory from the diskette or tape:

1000 rem **--print label routine--**
1010 print home$:rem clr/home
1020 cd = 3:rem 3 lines down
1030 gosub 9000:rem cursor down routine
1040 print "Would you like to print a"
1050 print
1060 print "mailing label now?"
1070 print
1080 gosub 8000:rem yin input routine
1090 if yes$ "y" then 1120
1100 if yes$ = "n" then 2000
1110 :
1120 print homeS: rem clr/home
1130 cd = 3:rem 3 lines down
1140 gosub 9000:rem cursor down routine
1150 print "Please make sure the printer"
1160 print
1170 print "is on and ready to use."
1180 print
1190 print "Are you ready to begin printing?"

APPENDING SEQUENTIAL FILES 63

1200 print
1210 gosub 8000:rem yin input routine
1220 if yes$ = II n" then 1 000
1230 :
1240 rem **--printer channel--**
1250 open 4,4,7
1251 :
1252 rem first 4 = file #
1253 rem second 4 = printer device #
1254 rem 7 = command for upper/lower case
1255 :
1260 for i = 1 to k
1270 if line$(i) = "*,, then i i + 1:goto 1300
1280 if line$(i) = "!" then 1300
1290 print#4,line$(i)
1300 next i
1310 close 4
1320 :
1330 :

Change lines 100 and 830 to:

100 rem ***--mail.adder2--***
830 goto 1000:rem print label routine

With these few additional instructions, we can now print a mailing label of the
infonnation just entered.

Line 1000 gives title to the routine. Lines 1010-1030 clear the screen and place
the cursor three lines from the top. Lines 1040 through 1060 print (display on the
screen) instructions for the user. Line 1050 prints a blank line so that any user
instruction that follows will not come immediately below the last line. Line 1060
prints the question, while line 1080 sends the computer to the "yin routine" to wait
for the response from the keyboard. Lines 1090 and 1100 check the response. If
the response is positive, which indicates that a printed label is desired, the computer
is instructed to jump over the next two lines and go on to the rest of the routine.
Line 1100 is only reached if the response is a negative response, indicating that
the user does not want a printed label. Negative responses end the routine and
transfer the computer to the instruction at line 2000 for the repeat routine. Lines
1120-1220 provide additional infonnation to the user and check to see that every­
thing is ready to print. If not, or if the user changes his or her mind, control is
returned to the original question.

Line 1250 opens the printer channel using the standard printer device number
of 4 and the command of 7 (indicating the desire to use both upper and lower case

64 CHAPTER FIVE

in the printout). The instruction in line 1260 is the now-familiar beginning of the
loop.

Lines 1270 and 1280 are different from anything we have had so far. Line
1270 checks the contents of each line$() string for the "*,, symbol. If, and only if,
it locates that symbol, it instructs the computer to add I to the value of the variable
i and then to proceed to the instruction at line 1300. The reason for this is simple
but hard to explain. When the computer comes to an asterisk, we do not want that
asterisk printed, nor do we want the phone number printed in a mailing label. So,
we skip printing the asterisk and the phone number by adding one to the counter
(i) and jumping to the end of the loop, line number 1300. Line number 1300
increases the counter by one more line, so we have skipped two lines in the file:
the lines that contained the separator symbol "*,, and the phone number. I think
this will become clear, if it is not already so, when you type in and try the routine.

Line 1280 does much the same thing. It tells the computer to jump over the
print statement and go to the instruction that increases the counter. We have the
effect, then, of skipping over the"!" separator symbol and not printing it either.
Line 1290 does the printing. It prints to the printer the contents of every string in
the line$O array that is not either a "*", "!", or phone number, unless the phone
number has been typed in before the "*,, symbol. The information is sent to the
printer instead of the screen because we have: (I) previously opened output to the
printer as file number 4. and (2) used the # symbol with a fiJc number in the print
statement. In the next chapter, we will see how we can send information to either
the printer or the screen with just one line of code, but for this routine the print #4
statement is sufficient.

Line 1300 increases the counter. When the loop is finished, when all lines of
information have either been printed or skipped and the i counter has reached the
value of k, the computer can go on to the next instruction "outside" the loop. Line
13lO is the first instruction outside the loop, and because we are finished printing,
we need to close the channel that we opened for the printer. It is especially important
to do this before attempting to do anything else, since strange things occur with
the Commodore-64 and an open channel to device 4. We are now finished with
the print label routine and control passes to the repeat routine.

REPEAT ROUTINE

The new repeat routine is even shorter and easier. Do the following very carefully:

1. List lines 3010-3017
list 30lO-3017

2. Use the cursor keys to:
change the line numbers 3010-3017,
so that they go from 20lO to 2070.

APPENDING SEQUENTIAL FILES 65

Lines 3010-3017 were:
3010 :
3012 rem *-add new lines to exist. file lines-*
3013 for i = 1 to k
3014 tlines$(tk + i) = line$(i):rem tk + i, not tk +
3015 next i
3016 tk = tk + k
3017 :

Those lines now become:
2010 :
2020 rem *-add new lines to exist. file lines-*
2030 for i = 1 to k
2040 tlines$(tk + i) = line$(i):rem tk + i, not tk +
2050 next i
2060 tk = tk + k
2070 :

3. Delete lines 3012-3017 by:

a. typing each line number

b. then pressing the {RETURN} key.
3012 {RETURN}
3013 {RETURN}
3014 {RETURN}
3015 {RETURN}
3016 {RETURN}
3017 {RETURN}
(line 3010 can stay as a separator)

4. Change line 2130 to:
2130 if yes$ = "y" then 300

5. Change line 2140 to:
2140 if yes$ = "n" then 3000

6. Delete line 3125
3125 {RETURN}

7. Optional! For disk users only.
If you want to, add:
3075 @ "rename: adrs-backup = adrs-data"
and eliminate the @ from line 3080.

They look like such small changes, but when viewed by the computer, the changed
and added instructions make quite a difference in the way the program works. The
program now becomes more practical. We have moved seven lines of code: 3010,
3012,3013,3014,3015,3016, and 3017. These lines are now part of the repeat

66 CHAPTER FIVE

l

routine instead of the file addition routine. By moving these lines, we have made
it possible to continue to add more lines of information before writing all the
information out to the diskette or tape. Once these lines have been moved to the
repeat routine, they must be deleted from the file addition routine. Then, lines 2130
and 2140 need to be altered to reflect the change of direction we want the computer
to take. We now have the flow of logic in order. The two subroutines that occur
after the end routine are "called" from various points within the program, but control
is always returned to the point of the originating gosub instruction. It may not
always be posssible to have every program proceed in order through the program
instructions, but it is a desirable goal. Proceeding in order makes the flow of logic
much easier to understand. This top-down approach to programming is one of the
reasons the "mail.adderl" program needs alteration and the reason line 3025 must
be deleted from this "mail.adder2" program. Line 3025 directs the flow of logic to
a previous routine, which asks if the user wants to add more information. In the
"mai1.adder2" program, the logic flows from the keyboard input routine to the
correction routine to the repeat routine and back again, until the user indicates that
he or she is finished entering information. Then, the logic drops from the repeat
routine (2000-2160) to the file addition routine (3000-3140) and to the end routine
(5000-5030).

The transferred lines need some further elaboration. Line 2030 is the start of
a loop. Again, the logic is fairly easy. We are going to keep the contents of the
string array line$O in the string array tlines$() also. Then. since we have the
information stored in two locations in the computer, we can use the line$() string
array over again. In other words, we have moved the information from one memory
location to another memory location. We have moved it from line$(l) to tlines$(tk
+ 1), and from line$(2) to tlines$(tk + 2), and so on. The instruction at 2060
helps us to keep track of all the lines that are typed in. Tk (which may stand for
total k) is a cumulative total of all the lines of infonnation. For the first set of
additional information-lines, the value of tk is the number of records already in the
file. After the first set of information-lines, tk becomes the value of tk plus the
number of lines of information just entered (k). And in the loop, we have moved
the contents of the second line$(i) to tlines$(tk + i), after tk has been updated by
tk = tk + k, and so on. This process can continue until we have accumulated 100
lines of information, or more if you have dimensioned tlines$O to more than 100.
You can make this number smaller or larger. The number 100 was a completely
arbitrary choice. If you are adding more lines of information, 2130 must direct the
computer to begin again by proceeding to the keyboard input routine.

In the next chapter, we will add some features to our display program and
combine all our programs so that they can operate together. When you have made
the necessary changes, be sure to save this new version. There are several ways of
saving a new version of the same program. But for now, type the following:

~mail.adder2

APPENDING SEQUENTIAL FILES 67

Then, type @$ and you should see:

0 "form.10-20-84 " 84 2a
1 "hello" prg
2 "example" prg
1 "address file" seq
12 "mail.create" prg
1 "adrs-ptr" seq
1 "adrs-data" seq
4 "mail.reader1 " prg
15 "mail.adder1 " prg
18 "mail.adder2" prg
609 blocks free

INSTRUCTIONS FOR TAPE USERS

Instruction lines that should be changed:

mail. reader 1
320 open 2,1,0, "adrs-ptr"
380 open 3,1,0, "adrs-data"

mail. adder I
280 open 2,1 ,0, "adrs-ptr"
286 open 3, I ,0, "adrs-data"

3030 open 2, 1,1, "adrs-ptr"
3080 open 3, I , 1 ,"adrs-data"

mail.adder2
280 open 2, I ,0, "adrs-ptr"
286 open 3,1 ,O,"adrs-data"

3030 open 2, 1,1, "adrs-ptr"
3080 open 3, I , I ,"adrs-data"

68 CHAPTER FIVE

QUESTIONS

1. True or False: Running the "mail.create" program a second time with new
information does no harm to the first information stored in the "adrs-data" file.

2. Give the name of the BASIC command that allows a programmer to place a
value directly into the computer's memory.

3. To what does line 3080 in the "mail.adderl" program print the information?

4. What is the BASIC word used to tell the computer to jump to a certain line
number?

5. Give the purpose of the symbols ~, I, and i under the DOS Wedge.

6. What is the procedure we used to add information to an existing sequential
data file?

APPENDING SEQUENTIAL FILES 69

ANSWERS

1. True

2. Poke

3. Disk or diskette

4. GOTO

5. ~ SAVE
I = LOAD

i = LOAD and then RUN with the equivalent of pressing the
RETURN key after each command

6. (I) Bring the contents of the existing file into the computer's memory.
(2) Add additional information to the information now in the computer's mem­
ory.
(3) Write the now combined information out to the diskette, replacing the old
file (or renaming the old file and then creating a new file with the original file's
name).

70 CHAPTER FIVE

• Program for MAIL.READER1
100
1 1 0
120
130
140
150
160
170
180
190
200
210
220
230
240
2S0
260
270
2S0
290
300
310
320
3Hl
340
350
360
370
3S0
390
400
410
420
430
440
450
460
1000
1010
1020
uno
1040
1050
1060
5000
5010
5020
sOJO
gOOD
gOlD
902D
9030
9040

rem **--initialization--**
homeS chr$(147):rem elr/home
::cd$ ehr$((7):rem cursor down
:ylw$ chr~(158):rem yellow

poke 53272,23:rem upper/lower case
poke 532S1,0:rem set bkgrd to black

rem ~~--new lines for reader--**
print home$:rem elr/home
cd = 5:rem 5 lines down
gosub 9000:rem cursor down routine
print ylw$;"ONE \IOMENT PLEASE'"

rem **--file input routine--**

rem *-pointer file-*
open 2,S,2,"0:acirs-ptr,seq,rcad"
input#2,rec
close 2

rem *-data file-*
dim tlincs$(rec)
open 3,8,3,"0:adrs-data,seq,read"
for i = 1 to rec
input#3,tlincs$(i)
next i
close 3

tk = rec:rem total k # of lines

rem **--display routine--**
print home$:rem elr/home
[or i = 1 to tk
print i;" ";tlines$(i)
next i

rem **--end routine--**
end

rem **--eursor down routine--**
[or i = 1 to cd
print ed$;
nex t i
return

ready.

APPENDING SEQUENTIAL FILES 71

• Program for MAIL. ADDER 1

100 rem ':":"~--mai I .adrlerl--':":":'
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
1')0 ::cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :hlk$ chr$(144):rem black
200 :ylw$ chr$(l58):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(IB):rern reverse video
230
240 dim Line$(20)
250 poke 53272,23:rem upper/lower case
260 poke 5J281,O:rern set hkgrrl to black
265
266
270 rem ~~--new lines for adder--**
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASE!"
275
27fJ
277 rem **--f11e input routine--**
278
279 rem ':'-po inter f i I C'-':'
280 open 2,8,2,"O:adrs-pLr,seq,read"
281 input#2,rec
282 close 2
283
284 rem ':'-da t il [i 1 e-':'
285 dim tlines$(rec + lOO):rem add up to 100 new lines
28(, 0 pen 3, 8 , 'j , "0 : ad r s - (1 a t cl , seq, rea d "
287 for i = 1 to rec
288 input#3,tLines$(i)
289 next i
290 close '3
291
292 tk = rec:rem total k # of lines
2 'Jl
294
300 rem **--keyboard input routine--**
310 k = l:rem 1 ine counter
320 print home$:rem elr/home
330 print tabeS)
340 print r vsS;; : rem reverse
350 print "l NST1\lJCTIOKS"
360 print ylw$:rC'1ll vellow
3 70 p r i n t " T v pen a III e and add I' C S S a s if"
3 8 0 p r i n t " add I' C S sin gail C n vela p e • "

72 CHAPTER FIVE

390 print "Do not use a comma or colon!"
400 print "Press ";wht$;"RETURN";ylw$;
410 print" after each line."
420 print
430 print "Type the word ";wht$;"END";ylw$;" when finished."
440 print
450 print "Type i.n line ";k;":"
460 poke 19,32:rem disable input?
470 input line$(k)
480 print
490 if line$(k) "end" or line$(k) = "END" then 540
500 if line$(k) "" then print "We need some information.":

goto 440
510 k = k + 1
520 goto 440:rem go back for more
530
540 line$(k) = "o''':rem separator for phone number
550 k '" k + 1
560 print home$:rem c1r/home
570 cd = 3:rem 3 lines down
580 gosub 9000:rem cursor down routine
590 print "PHONE: ";:print "Press ";wht$;"RETURN";ylw$;" if

none."
600 input line$(k)
610 if line$(k) = "" then line$(k) = "NONE"
620 k = k + 1
630 line$(k) = "!":rem separator between sets of information
640
650
660 rem **--correction routine--**
670 print home$:rem clr/home
680 cd = 3:rem 3 lines down
690 gosub 9000:rem cursor down routine
700 print "Do not change the line with the ";wht$;"':''';ylw$;''.''
710 print "This symbol is used as a separator."
720 print
730 for i = 1 to k - 1
740 print i;" ";line$(i)
750 next i
760 print
770 print "Change any line? ";
780 gosub 8000:rem yin input routine
790 print
800 if yes$ "y" then 850
810 if yes$ "n" then 830
820
830 goto 3000:rem file addition routine
840
850 print:input "Change which line? '';In
860 print
870 if In > k - 1 then print "Number too large!":goto 850
880 if line$(ln) = "*" then print "Line";ln;"is the '!<":goto 850
890 print "Line";ln;"now is:"
900 print line$(ln)
910 print

APPENDING SEQUENTIAL FILES 73

920 print "Line": 1 n: "should be:"
930 input line$(ln)
940 goto 660:rem correction routine
950
960

000 rem **--repeat routine--~-
2080 print home$:rem clr/home
2090 cd = 3:rem 3 lines down
2100 gosub 9000:rem cursor down routine
2 1 lOp r i n t " Do you wan t t 0 add m 0 rei n f 0 r- milt ion? "
2120 gosub 8000:rem y/n input routine
2130 if yes$ "y" then run
2140 if yes$ = "n" then 5000
2150
2160
3000 rem **--file addition routine--**
3010
3012 rem *-add new lines to exist. file lines-*
3011 for j = 1 to k
3014 tlines$(tk + i) = line$(i):rem tk + j, not tk + I
301S next 1

3016 tk = tk + k
3017
1020 rem *-pointer file-*
3030 open 2,8,2,"@O:adrs-ptr,seq,wrile"
3040 prillt#2,tk
3050 close 2
306U
3070 rem ':'-data f i I e-':'
3080 open '1,8,3,"@0:adrs-daLa,seq,write"
3090 for i = 1 to tk
'HOO print#3,tl ines$(i)
3110 next i
3120 close 3
3125 go to 2000:rem repeat routine
3130
3140
5000 rem **--end routine--**
5010 end
5020
5030
8000 rem **--v/n input routinc--**
801() print "Type a ";whl$:"Y":ylw$:" or ":wht$;"N";vlw$;"
8020 poke 19,32:rem disable input
8030 input yes$
8040
8050
8060
8070
8080
8090
8100
8110
8120

print
if yesS
if ves$

" tl Y
"n"

or yes$
or yes$

"y"
"N"

then yes$
then yes$

print
print rvs$;"Incorrect Choice''';ylw$
print
goLO 8000:rem ask again

9000 rem **--cursor down routine--**

74 CHAPTER FIVE

"v":return
"~It:return

." . . ,

9010 for i = 1 to cd
9020 print cdS;
9030 next i
9040 return

ready,

• Program for MAIL.ADDER2

100 rem ***--mail.adder2--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cdS chr$(17):rem cursor down
160 ::cuS chr$(145):rem cursor up
170 ::cl$ chr$ lS7):rem cursor left
180 ::cr$ chr$ 29):rem cursor right
190 :blk$ chr$ 144):rem black
ioo :ylw$ chr$ 158):rem yellow
210 :whtS chr$ 5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 dim line$(20)
250 poke 53272,23:rem upper/lower case
260 poke 53281,0:rem set bkgrd to black
265
266
270 rem **--new lines for adder--**
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASEl"
275
276
277 rem **--file input routine--**
278
279 rem *-pointer file-*
280 open 2,8,2,"0:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data file-*
285 dim tlines$(rec + 100):rem add up to 100 new lines
286 open 3,8,3,"0:adrs-data,seq,read"
287 for i = 1 to rec
288 input#J,tlinesS(i)
289 next j

290 close J
291
292 tk = rec:rem total k
293
294

of lines

APPENDING SEQUENTIAL FILES 75

300 rem **--keyboard input routine--**
310 k = l:rern line counter
320 print horne$:rem clr/home
330 print tab(5)
340 print rvs$;: rem reverse
350 print "INSTRUCTIONS"
360 print ylw$:rem yellow
370 print "Type name and address as if"
3(30 print "addressing an envelope."
390 print "Do not use a comma or colon!"
400 print "Press ";wht$;"RETURN";ylw$;
410 print" after each line."
420 print
430 print "Type the word ";wht$;"END";ylw$;" when finished."
440 print
4~0

460
470

print "Type in
poke 19,32:rem
input line$(k)

4(30 print:
490 if hne$(k)
500 if line$(k)

goto 440
510 k = k + 1

line ";k;":"
disable input

"end" or line$(k) = "END" then'i40
"" then print "We need some information.":

520 goto 440:rem go back for more
') 3()

540 line$(k) = "':''':rem separator for phone number
5~0 k = k + 1
560 print home$:rem clr/home
570 cd = 3:rem 3 lines down
580 gosub 9000:rem cursor down routine
590 print "PHONE: ";:print "Press ";wht$;"RETlIRN";ylw$;" if

none."
600 input line$(k)
610 if line$(k) = "" then line$(k) = "NONE"
620 k = k + 1
630 line$(k) = "!":rem separator between sets of information
640
650
660 rem **--correction routine--**
670 print home$:rem clr/home
680 cd = 3:rem 3 lines down
690 go sub 9000:rem cursor down routine
700 print "Do not change the line with the ";wht$;fI'~";ylw$;fI."
7ICJ print "This symbol is used as a separator."
720 print
730 for i = 1 to k - 1
74CJ print ." ";line$(i)
75CJ next i
760 print
770 print "Change ilny line? ";
780 gosub 8000:rem yin input routine
790 print
800 if yes$ "y" then 850
810 if yes$ "n" then 830
820

76 CHAPTER FIVE

830 goto 1000:rem print label routine
840
850 print:input "Change which line? '';In
860 print
870 if In > k - 1 then print "Number too large!":goto 850
880 if line$(ln) = "1,,11 then print "Line";ln;"is the '~":goto

850
890 print "Line";ln;"now is:"
900 print line$(ln)
910 print
920 print "Line";ln;"should be:"
930 input line$(ln)
940 goto 660:rem correction routine
950
960
1000 rem **--print label routine--**
1010 print home$:rem clr/home
1020 cd = 3:rem 3 lines down
1030 gosub 9000:rem cursor down routine
1040 print "Would you like to print a"
1050 print
1060' print "mailing label now?"
1070 print
1080 gosub 8000:rem yin input routine
1090 if yes$ "y" then 1120
1100 if yes$ = "n" then 2000
1110
1120 print home$:rem clr/home
1130 cd = 3:rem 3 lines down
1140 gosub 9000:rem cursor down routine
1150 print "Please make sure the printer"
1160 print
1170 print "is on and ready to use."
1180 print
1190 print "Are you ready to begin printing?"
1200 print
1210 gosub 8000:rem yin input routine
1220 if yes$ = "n" then 1000
1230
1240 rem **--printer channel--**
1250 open 4,4,7
1251
1252 rem first 4 = file #
1253 rem second 4 = printer device #
1254 rem 7 command for upper/lower case
1255
1260 for i 1 to k
1270 if line$(i) = ",~" then i i + l:goto 1300
1280 if line$(i) = "!" then 1300
1290 print#4,line$(i)
1300 next i
1310 close 4
1320
1330
2000 rem **--repeat routine--**
2010

APPENDING SEQUENTIAL FILES 77

2020 rem *-add new lines to exist. file I ines-*
2030 for i = 1 to k
2040 tlines$(tk + i) = line$(i):rem tk + i, not tk + 1
2050 nex t i
2060 tk = tk + k
2070
2080 print home$:rem clr/home
2090 cd = 3:rem 3 lines down
2100 gosub 9000:rem cursor down routine
2110 print "Do you want to add more information?"
2120 gosub 8000:rem yin input routine
2130 if yes$ "y" then 300
2140 if yes$ = "n" then 3000
2150
2160
3000 rem ~*--[iLe addition routine--**
3010
3020 rem *-pointer file-*
3030 open 2,8,2,"~jO:adrs-ptr,seq,write"

3040 print#2,tk
3050 close 2
3060
3070 rem *-data fi1e-*
3080 open 3,8,3,"@0:adrs-data,seq,write"
3090 for i = 1 to tk
3100 print#3,tlines$(i)

next: i
close 3

rem '*--end rouLine--**
end

r e ITt ,;, ,;, - - y / [1 .j n p \l t r 0 uti n e - - ':' ,;,

3]] 0
3120
3130
3140
5000
5010
5020
.5030
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120
9000
9010
9020
9030
9040

print "Tvpe a ";wht$;"Y";ylw$;" or
poke 19,32:rem disable input?
input yes~

'I ; 'w' h t $; 'I N I' ; Y 1 w $; If

pr in t
if yes$
if yes$
print

"y"
"n"

or
or

yes$
yes$

"y"
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice''';ylw$
print
goto 8000:rem ask again

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
reLurn

ready.

78 CHAPTER FIVE

"y":return
"n":return

." . . ,

6 displaying
sequential
files

In this chapter, we will begin to put together a system of programs and improve
our display program. When you want to use the "mail.readerl" program, you must
type: i mail.readerl if you have first loaded the DOS Wedge (if not, the following
sequence is necessary: load "mail.readerl",8 [RETURN] run [RETURN». And
when you are ready to add to the file, you need to type: i mail. adder2 (or "1"
depending on your preference). For occasional use, that amount of typing is not a
problem, but if you are going to use the programs quite often, the necessity of
typing a specific syntax and the file name can become bothersome. Besides, the
computer can help eliminate the need to type that, so why not let it do so? All that
is needed is another program. You will still have to type i and the name of this
new program. The difference is that when properly set up, you may need to do the
typing only once, and then you will be able to switch back and forth between
programs with little typing other than a number. You will then have a system of
programs that work together and are controlled by one master program.

Unfortunately, for tape users, this method depends upon the storage device
being able to access any of the programs in any order. Such access virtually
eliminates tape because of its sequential nature. A possible alternative is to combine
all these programs into one large program and, therefore, retain all parts within the
computer's memory. Separately, these programs contain between 20 and 25 K

DISPLAYING SEQUENTIAL FILES 79

(kilobytes: a kilobyte is roughly equivalent to a thousand characters) of program
code, which leaves approximately 13 to 18 K for data.)

Let's see how this can work. Make sure any program currently in memory is
saved on diskette, and then type the following:

new
100 rem ***--mail.menu--***
110 :
120 :
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cI$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230 :
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 6:rem set bkgrd to blue
270 :
280 :

These lines are essentially the same instructions used in the "mail.create'·,
"mail. adder! ", and "mail.adder2" programs. The differences occur in lines 100,
240, and 260. Line 100 indicates the name for this program, "mail.menu". Line
260 sets the background color to dark blue instead of the black color used in the
other programs. Different color backgrounds can be used to indicate different func­
tions. Line 240 is used to set the color of the border. In this menu program, we
do not need to dimension any string variables and can replace that instruction
contained in the other programs. Since Commodore's BASIC does not have a delete
instruction (an instruction that allows a programmer to delete a range of lines), it
is just about as fast to fe-enter these program lines as it is to load one of the other
programs, make the necessary changes, and then line by line delete instruction­
lines that will not be needed in this "mail. menu" program. Regardless of the method
you choose, the next group of program lines displays the choices available. Enter
the following carefully:

80 CHAPTER SIX

500 rem **--menu--**
510 tb = 5:rem tab value--5 spaces rt.
520 print home$: rem clr/home
530 print wht$
540 print tab(tb + 3)
550 print rvs$;
560 print "MAIL PROGRAM MENU"
570 print
580 print ylw$
590 print tab(tb)
600 print "1. FILE CREATION PROGRAM"
610 print:print tab(tb)
620 print "2. FILE ADDITION PROGRAM"
630 print:print tab(tb)
640 print "3. FILE DISPLAY PROGRAM"
650 print:print tab(tb)
660 print "4. FILE CORRECTION PROGRAM"
670 print:print tab(tb)
680 print "5. LIST OF FILES"
690 print:print tab(tb)
700 print "6. END"
710 print:print tab(tb)
720 poke 19,32:rem disable input?
730 input "Which Program Number? ";nu$
740 number = val(nu$)
750 :
760 if number = 1 then 1000
770 if number = 2 then 2000
780 if number = 3 then 3000
790 if number = 4 then 4000
800 if number = 5 then 5000
810 if number = 6 then 6000
820 :
830 rem *--incorrect choice message--*
840 print:print
850 print tab(tb)
860 print rvs$;"lncorrect Choice!"
870 print
880 print tab(tb)
890 print "Press ";wht$;"RETURN";ylw$;" to continue:";
900 gosub 19000:rem return key routine
910 goto 500:rem menu--check again
920 :
930 :

DISPLAYING SEQUENTIAL FILES 81

Line 540 uses a new BASIC statement-tab. This tells the computer to horizontally
tab over a certain number of spaces (the number stored in the numeric variable tb)
and then display the contents of the next print statement. I use a variable so that I
have to change only one instruction line (line 510) if I don't like the positioning
on the screen.

Line 740 uses the first of several instructions available to manipulate string
variable information. Instruction-line 730 stores the user's response in the string
variable nuS. Line 740 then takes the numeric value (val) of the string--(nu$).
Lines 760 to 810 check this value, now stored in two different memory locations,
number and nu$, and direct the computer to jump to the appropriate program
location. If the value of number is not between 1 and 6, the computer proceeds to
the "incorrect choice message" routine. After displaying the message, the computer
is directed to go to the subroutine located at line 19000. The full explanation of
this subroutine will be given in the proper sequence, but once the user has pressed
the RETURN key, control is returned to line 910, which sends control back to line
500, the instruction that once again begins the menu routine.

1000 rem **--file creation prog.--**
1010 print home$:rem clr/home
1020 cd = 2:rem 2 lines down
1030 gosub 9000:rem cursor down routine
1040 print tab(15)
1050 print rvs$;
1060 print "WARNING!"
1070 print:print
1080 print "If the 'adrs-data' file already exists,"
1090 print
1100 print "do NOT run this program!"
1110print
1120 print "Do you want the file creation program?"
1130 print
1140 gosub 8000: rem yin input routine
1150 if yes$ = "n" then 500:rem menu
1160 print:print
1170 print "Are you sure? Type ";wht$;"YES";ylw$;" if you are:";
1180 input yes$
1190 if yes$ = "YES" or yes$ = "yes" then 1210
1200 goto 1000:rem check again
1210 file$ = "MAIL.CREATE"
1220 gosub 7100:rem new program routine after question
1230 i "mail.create":rem load & run
1240 :
1250 :

82 CHAPTER SIX

Most of this routine is not necessary but does provide the user with enough infor­
mation and/or escape hatches so that, if line 1230 is finally reached, we can be
certain that the instruction has not been reached by accident. The purpose for
including so many checks is to indicate the necessity on the part of the programmer
to attempt to protect the user from making a disastrous mistake with files. The other
options do not contain the same potentially disastrous possibilities and, therefore,
the following routines do not need to provide the same level of error checking.

2000 rem **--file addition prog.--**
2010 file$ = "MAIL.ADDER2"
2020 gosub 7000:rem new program routine
2030 i "mail.adder2":rem load & run
2040 :
2050 :
3000 rem **--file display prog.--**
3010 file$ = "MAIL.READER2"
3020 gosub 7000:rem new program routine
3030 i "mail.reader2":rem load & run
3040 :
3050 :
4000 rem **--file correction prog.--**
4010 file$ = "MAIL.CORRECTION"
4020 gosub 7000:rem new program routine
4030 i "mail.correction":rem load & run
4040 :
4050 :
5000 rem **--list of files routine--**
5010 print home$:rem clr/home
5020 @"$":rem wedge/diskette directory
5030 print cu$;chr$(13):rem 13 = rtn
5040 print "Are you ready to return to the menu?"
5050 print
5060 gosub 8000:rem yin input routine
5070 if yes$ = "y" then 500:rem menu
5080 goto 5000:rem check again
5090 :
5100 :
6000 rem **--end routine--**
6010 poke 19,0:rem restore input prompt
6020 print home$:rem clr/home
6030 cd = 5:rem 5 lines down
6040 gosub 9000:rem cursor down routine
6050 print tab(tb)

DISPLAYING SEQUENTIAL FILES 83

6060 print rvs$;
6070 print "That's all for this session!"
6080 print:print:print
6090 print tab(tb + 5)
6100 print rvs$;
6110 print "See you next time."
6120 print ylw$
6130 cd = 10:rem 10 lines down
6140 gosub 9000:rem cursor down routine
6150 end
6160 :
6170 :
In the routines at 2000, 3000, and 4000. the first line titles the routine. The second
line sets the string variable fileS equal to the appropriate program name. The third
line transfers control to the new program routine, which is used to display the action
the computer is taking when the fourth line executes. This fourth line uses the DOS
Wedge syntax to load the specified program file and then begin execution according
to that program's set of instructions. The symbol used by the DOS Wedge to load
and run a program is the up arrow. This character is often printed out as ~ rather

than i. (Although it is not impossible to load and run one program from another
without the DOS Weuge, it is cerlainly more complicated and. at this stage, more
confusing.) In other words, we simply instruct the computer to go to the diskette,
load, and then run the new program. Control is transferred to the new program,
and the computer receives and follows the instructions contained in that program.
Such transfer of control erases the "mail.menu" program from the computer's
memory, replacing those instructions with the instructions in the selected program.
That is why it is very important to SAVE this "mail.menu" program to diskette
before RUNing it. Even though we are not finished with this program, the fourth
instruction in each of these routines is operational and will transfer control to the
appropriate program, erasing all your typing if you have not saved the program
lines to the diskette. The instructions will only become operational if the program
is RUN.

The list of files routine and the end routine contain little that is new. Again,
each of these routines can be accomplished with fewer lines of programming code.
but the additional lines give the user a more pleasing, easier program. You should
note that when used within a program the DOS Wedge syntax is a little different­
a difference I could not find documented anywhere. In the immediate mode, there
is no need for quotation marks surrounding the file name. Yet, within a program
or in the deferred mode, the quotation marks are essential. Therefore, to display a
list of files on a diskette, @$ (without quote marks) works fine from outside a
program, but @$ gives a syntax error if used within a program. Inside a program
(as an instuction-line with a line number), the syntax must be: ~v"$". The same
rule also applies to other DOS Wedge commands used from within programs.

84 CHAPTER SIX

The routine at 8000 (yin input routine) and 9000 (cursor down routine) are the
same routines presented in earlier programs. The code can also be found in the
complete listing of the "mail. menu" program given at the end of this chapter. The
routines at 7000 (new program routine) and 19000 (return key routine) are new and
will be covered in some detail. Neither of these routines is necessary since, in some
cases, single line instructions can accomplish the same thing. The inclusion of these
routines, though, makes the entire "mail.menu" program a much more "profes­
sional" looking program.

7000 rem **--new program routine--**
7010 print home$: rem clr/home
7020 cd = 2:rem 2 lines down
7030 gosub 9000:rem cursor down routine
7040 print "You have selected the ";file$:print:print "program."
7050 print:print:print
7060 print "Is this the program you want?"
7080 gosub 8000:rem yin input routine
7090 ifyes$ = "n" then 500:rem menu
7100 print home$:rem clr/home
7110 cd = 5:rem 5 lines down
7120 gosub 9000: rem cursor down routine
7130 print tab(tb)
7140 print rvs$;
7150 print "Please wait!"
7160 print:print:print
7170 print tab(tb + 5)
7180 print rvs$;
7190 print "I'm loading "
7200 print:print:print
7210 print tab(tb + 10)
7220 print rvs$;
7230 print file$
7240 poke 19,0:rem restore input prompt
7250 return
7260 :
7270 :

The main purpose of this routine is to notify the user that the computer is changing
programs. Some programs take a while to load from the diskette, and rather than
have the user sit with a blank screen, the program should inform what action is
being taken. The only action instruction comes in line 7240. Location 19 is restored
to the original value before the computer changes programs. It is a very good idea
to try to leave things in their original form when you leave a program. The same

DISPLAYING SEQUENTIAL FILES 85

principle can apply to the colors used for text, background, and border. But since
infonnation is still being displayed, it is acceptable to leave the color settings and
allow the next program to change the colors if necessary.

19000 rem **--return key routine--**
19010 poke 198,0:rem clr kbrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 then 19080: rem 1 = rtn
19070 goto 19050:rem if not 1 go back
19080 poke 198,1 :rem allow for cursor
19090 poke 631,0:rem clr kbrd
19100 nu$ = "":rem clr string variable
19110 return

The entire purpose of this routine is to check for the press of the RETURN key.
When the question mark used for the input prompt is disabled with a poke 19,32,
the actual input routine in the operating system is changed. Sometimes the changes
are desirable, and other times the changes require considerable code to fix. The
latter is the case in this situation. Location 198 is used to inform the computer of
the number of characters waiting in the keyboard buffer. Locations 631 to 640 are
the actual keyboard buffer area. These locations are cleared by the code in lines
19020 to 19040. Memory location 197 stores a value for each key pressed. Un­
fortunately, this value is not the same value used in detem1ining the code for all
characters (i.e .. ASCII). This value, stored in location 197, is a Commodore value
derived from the location of the keys on the keyboard. Furthermore, it is a rather
complicated calculated value. The best advice is to simply memorize the values of
desired keys or establish a table (list of values) of all the keys. A list of the values
obtained when each key is pressed is included in the appendix. The value of the
return key is one. Therefore, when the numeric variable x equals I, we know that
the return key has been pressed. The keyboard buffer must be cleared prior to the
check (the loop in lines 19020-19040), or x might pick up a previous return key.
When x does equal 1, the computer can proceed to the end of this subroutine. Lines
19080, 19090, and 19100 restore values and prepare the computer to leave the
routine. Line 19110 returns control to the instruction following the origination
instruction.

When you have all the program lines typed in, save it to disk as "mail. menu".

~mail.menu

The "mail.menu" program should take up 17 blocks and leave the diskette with

86 CHAPTER SIX

592 blocks free. Now, all that is needed to run any of our programs is: i mail.menu.
Then, choose a number and let the computer do the rest. Please notice that I have
included a choice for a program that we do not yet have, that is, file correction
program (lines 690 and 4000-4030) and an update to the "mail.readerl" program
called "mail.reader2" (lines 3010 and 3030). But we still do not have a system of
programs. What will happen, for example, when you are finished adding information
and the information has been written out to the disk? Will the program return you
to this new "mail.menu" program? If you are not sure, check any of our previous
programs to see if they contain instructions to load and run this "mail.menu"
program. Instead, each program contains an instruction-line, line 501 0, that ends
the operation of the program. That is the reason we must include instructions to
run "mail. menu" in each of our previous programs. We can add the necessary lines
to each program by loading the respective program into the computer's memory,
adding the appropriate line numbers, and then saving each program back to the
diskette under its same name. Type:

/mail.create

The return to menu routine is:

5000 rem **--return to program menu--**
5010 poke 19,0:rem restore input prompt
5020 rem clr/home cursor down routine
5030 print home$:cd = 5:gosub 9000
5040 print tab(5)
5050 print rvs$;
5060 print "LOADING THE MAIL.MENU PROGRAM"
5070 i "mail.menu"
5080 :
5090 :

When you have finished, type:

~@:mail.create

Follow the same procedure for "mail.adder2". Type:

/mail.adder2

Now, instead of retyping the above instructions, use the cursor up key to go to the
5 in line 5000. If you press the RETURN key on each of the line numbers between
5000 and 5090, those lines will be added to the "mail.adder2" program just as if

DISPLAYING SEQUENTIAL FILES 87

you had retyped them. Again, when you have finished, remember to save the
corrected version. Type:

+---(il: mail.adder2

If you display the directory, you will see that the "mail.adder2" program has
increased the number of blocks it uses by one to a total of 19. That increase thus
decreases the number of free blocks to 591. We now have a system of programs
that work together and are controlled by one master program. There is no need to
go through all the antics that are sometimes involved in building one large program.
In addition, it is much easier to make changes to individual programs than to change
something in a large program that might have an unnoticed effect. This borders
somewhat on programmer preference, but I have found this method to be easy.

We now have a system that will create a file, add to that file, and, in a primitive
way, read the file. Two main tasks are left: (I) improving the display features of
the "mail.readerl" program, and (2) creating a program that will change and delete
information in the tile. One other feature that we will add within our display program
is the reformatting of our data with the possibility of creating a new file for these
reformatted data. We will begin with the program to increase our display options.

MAIL.READER2

Our present program displays every line in the "adrs-data" file, including the two
separator symbols. You don't really want to see those symbols, so eliminating them
should be one of the first tasks in creating a new display program. What else would
be nice or useful to have in this display program'? The computer could display a
list of just the names of the individuals in the file. How about a list of the names
and addresses without the phone numbers? Can we get a display of a single name,
address, and phone number'? How about a single name and address, without a phone
number'? What about an alphabetical list'? Can we have a range of names and
addresses displayed rather than just the entire list or a single individual') The answer
to all these questions is "yes," we can do these things and others also. With all
these possibilities, the obvious solution would be to have a menu for these choices.

There are several ways to go about creating a program that uses the same
routines as other programs. The most obvious is to rekey in all the instructions
(i.e., type everything in again). A far better (and faster) method is to use a pro­
grammer's utility program that allows the merging of program segments. If you
have such a utility (such as the aforementioned SYSRES program), operational
routines can be saved separately on a diskette that contains a library of such routines.
Then, when you are creating a new program, these routines can be incorporated

88 CHAPTER SIX

directly into the new program without the necessity of retyping the instructions and
with the certain know ledge that the routines will operate correctly (if you have been
consistent and careful in the choice of your variable names, etc.). If the routine
needs to be placed at a different point in the new program, a renumber utility
program can alter the line numbers of the routine so that the routine will fit within
the desired program. The use of such utility programs is widespread among profes­
sional programmers and may help explain why a programmer's work will look
similar from program to program.

Without a utility program, you can approximate the library of routines by
loading a program that contains many of the routines you will be using, changing
instruction-lines and line numbers that need changing, deleting lines that will not
be used, and adding instruction-lines that are needed. This method is certainly more
time consuming than if you had access to a good utility program, but it is also less
expensive. The results, if you are careful, should be the same. I will give the
specific instructions necessary to change the "mail.adder2" program into our new
"mail.reader2" program. But if you become confused or lost, you can always tum
to the end of this chapter and type in the full listing of this "mail.reader2" program
directly or obtain the diskette. The instructions may sound complicated or time
consuming, but I assure you that the instructions will work if followed exactly. I
have tested these instructions to make certain that they do not contain errors.

First, load the "mail.adder2" program (but make certain that you have saved
any program in memory and/or that you have loaded the DOS Wedge program).
Type:

Imail.adder2

Change line 100 to:

100 rem ***--mail.reader2--***

Add line 225:

225 :bnk$ = chr$(10):rem blank line

Change line 240 to:

240 poke 53280,14: rem border It. blue

Change line 260 to:

260 poke 53281, 2:rem set bkgrd to red

DISPLAYING SEQUENTIAL FILES 89

Change line 270 to:

270 rem **--user message--**

And finally, change line 285 to:

285 dim tlines$(rec),nd$(rec),u(rec),r(rec),ad$(rec),zi$(rec)

Down to line 300, these are the only additions or changes that need to be made.
Beginning at line 300, we have a large number of instructions that are not needed
in "mail.reader2". If we could delete a range of lines, we would want to delete
everything from line 300 through line 960. Since we cannot, the next best thing is
to type the unnecessary instruction's line number and immediately press the return
key. The sequence of typing a line number and immediately pressing the return
key causes the computer to erase the previous instruction associated with that line
number and replace it with the new instruction. Since there is no new instruction,
the line number has no value and, therefore, ceases to be a part of the program.
We have deleted that line number and its unnecessary instruction. As troublesome
as it may sound, this delete sequence must be followed for all lines from 300 to
960. Since all the numbers are in increments of ten, we need not check the actual
numbers used. I found that the process takes about two minutes and has less chance
of error than re-entering all duplicate instruction-lines from scratch. But type care­
fully. A misplaced digit can result in the wrong line being eliminated.
{RETURN} indicates that the RETURN key is to be pressed.

300 {RETURN}
310 {RETURN}
320 {RETURN}
330 {RETURN}
340 {RETURN}

(all intervening numbers)

920 {RETURN}
930 {RETURN}
940 {RETURN}
950 {RETURN}
960 {RETURN}

90 CHAPTER SIX

When you have finished deleting the lines, list 300-960 in order to make certain
that all lines have been deleted. In the same way, delete all line numbers from
2000 through 2160 and 3000 through 3140.

The next group of instructions are the ones most likely to cause confusion.
The intent is to change the line numbers in the currently titled "print label routine".
By changing the line numbers, we will transfer the instructions in this routine to a
routine called "display routine" that will exist beginning with line number 10000.
First, list lines 1000 to 1100 by typing: list 1000-1100. Second, use the SHIFT
key and the cursor up/down key to move the cursor up to the 1 in line 1000. Third,
using just the cursor left/right, position the cursor on the second digit of the line
number (the first 0 in this case). Fourth, use the SHIFT key and the INST/DEL to
insert one space between the 1 and the first O. Fifth. type the number zero (press
the 0 key). Sixth, press the RETURN key to accept the line as correct. The computer
now has a line 1000 and a line 10000. The cursor should be blinking on top of the
1 in line 10 10.

You should repeat steps three, four, five, and six for the remaining lines. Then,
list line numbers 1110 to 1230 and begin with the second step. Again, steps three,
four, five, and six should be followed for each of these listed lines. When you are
finished, you will have the beginning of our new "display routine".

You now have two routines that are the same except for their line numbers.
We no longer need the instructions that exist between 1000 and 1330, so use the
method described above to delete these lines. Once again, although somewhat
tedious, this procedure is probably less prone to error than retyping all the instruc­
tions between 1000 and 1230. Please notice that you are to renumber only through
line 1230 but should delete the entire "print label routine" (including lines 1251,
1252, 1253, 1254, and 1255) once the appropriate lines have been copied to lines
10000 to 10230.

A few lines in this "display routine" must still be changed. Change line 10000
to:

10000 rem **--display routine--**

You can accomplish this change either by editing the existing line or typing the
line over again. If you want to make the change by editing the existing line, first
list line 10000 by typing: list 10000. Second, use the SHIFT key and the cursor
up/down key to move the cursor up to the 1 in line 10000. Third, using just the
cursor left/right key, position the cursor on the character p in the word print and
type: display routine. Fourth, use the cursor left/right key to place the cursor on
the first right-side dash. Fifth, use the INSTIDEL key to delete the now duplicate
letters e nit (reading from right to left in the same manner the DEL key functions).
Sixth, press the RETURN key to accept the corrected version of this instruction
line. This same procedure can be used to edit, correct, or change any existing
instruction line.

DISPLAYING SEQUENTIAL FILES 91

Continuing with the necessary changes in the new display routine, change line
10040 to:

10040 print "Would you like a paper print out?"

Delete lines 10060 and 10070:

10060 {RETURN}
10070 {RETURN}

Change the indicated lines to:

10080 gosub 18000:rem yin input routine
10090 if yes$ = "y" then 10120:rem prnt
10100 if yes$ = "n" then 10300:rem scrn
10210 gosub 18000:rem yin input routine
10220 if yes$ = "n" then 1 0000

Finally, add the following lines:

10240 rem *-printer disp!ay-*
10250 file = 4
10260 dvic = 4
10270cmnd = 7
10280 goto 10500: rem open instruction
10290 :
10300 rem *-screen display-*
10310 file 3
10320 dvic = 3
10330 cmnd = 1
10340 goto 10500: rem open instruction
10350 :
10360 :
10500 rem *-open instruction-*
10510 open file,dvic,cmnd
10520 retu rn
10530 :
10540 :
10550 :

This new display routine allows us to use one print statement in each of our
different display options. The output will go to either the printer (device number

92 CHAPTER SIX

4) or to the screen (device number 3), depending on the response given to the
question displayed by line 10040.

Two more routines need to be moved. List lines 8000 through 8120. Use the
procedure presented above to renumber these lines so that they are lines 18000
through 18120. First, list lines 8000 to 8120 by typing: list 8000--8120. Second,
use the SHIff key and the cursor up/down key to move the cursor up to the 8 in
line 8000. Third, use the SHIFT key and the INSTIDEL key to insert one space
before the 8. Fourth, type the number one (press the 1 key). Fifth, press the
RETURN key to accept the line as correct. Steps three, four, and five should be
repeated for each of the listed lines. When all the lines have been changed, the
routine still at 8000 needs to be deleted. Carefully delete lines 8000 through 8120
in the manner described above: 8000 {RETURN}, 8010 {RETURN}, etc. Finally,
the newly renumberd "y/n input routine" has one line that must be changed and
one line that should be added. Change line 18100 to:

18100 goto 18000:rem begin again

Add line 18130:

18130 :

The addition of this line is purely aesthetic. The longer the program, the more space
between routines is needed. Now list 5000 to 5090. Move the cursor up to the 5
in 5000. Type a number 8 in place of the 5 and press the RETURN key. Continue
to change each of the listed lines. Once all the lines have been changed, delete
lines 5000 to 5090. For aesthetic reasons, add 9050 : and 9060 :. To be sure that
all lines have been deleted, list 300-8000. If you have followed these directions
exactly, the only line that should show on the screen is line 8000.

To finish, we need two brief subroutines: the "return key subroutine" and the
"retum-to-menu subroutine".

19000 rem **--return key routine--**
19010 poke 198,0:rem clr kbrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 then 19080:rem 1 = rtn
19070 goto 19050: rem if not 1 go back
19080 poke 19,0:rem restore input prompt
19090 poke 198,1 :rem allow for cursor
19100 poke 631,0:rem clr kbrd

DISPLAYING SEQUENTIAL FILES 93

19110 nu$ = "":rem clr string variable
19120 retu rn
19130 :
19140 :
19150 :
20000 rem **--menu return routine--**
20010 print#file
20020 close file
20030 print
20050 print "Press ";wht$;"RETURN";ylw$;" to go to Display Menu:"
20060 gosub 19000:rem return key routine
20070 print
20080 goto 400:rem display menu routine
20070 print
20080 goto 400: rem display menu routine

The "return key routine" is the same one used in the "mail.menu" program. The
"return to menu routine" closes the file so that the user can decide differently on
every part of the program. Line 20080 returns the user to the menu.

With this last change, we have concluded the modification of the "mail. adder2"
program. The program in the computer's memorj is the "skeleton" of the soon-to­
be "mail. reader2". You may want to save this portion of the eventual complete
program out to either the diskette or tape. Line 1 00 should be changed to reflect
the correct name of this "program."

~shell

The "sheIr' program should be 12 blocks long, leaving 579 blocks free. There are
two reasons for saving an incomplete program. First, you might want to save an
incomplete program just to be certain that you do not lose many hours of work in
case the power should go out. Second, an incomplete program can serve as a "shell"
for other programs. This shell might be used to help create the correction program
for example.

Now, we need to fill in the "shell" with the remaining structure of the
"mail.reader2" program. We will begin with a menu of the options available. Type
carefully and add the following lines:

400 rem **--menu routine--**
410 tb = 5:rem tab value--5 spaces rt.
420 print home$:rem clr/home
430 print wht$
440 print tab(tb + 3)
450 print rvs$;

94 CHAPTER SIX

460 print "DISPLAY MENU"
470 print ylw$
480 print:print tab(tb)
490 print "1. INFORMATION--ORIG. ORDER"
500 print:print tab(tb)
510 print "2. NAMES ONLY"
520 print:print tab(tb)
530 print "3. INFORMATION--NO PHONE"
540 print:print tab(tb)
550 print "4. SPECIFIC NAME"
560 print:print tab(tb)
570 print "5. SPECIFIC NAME--NO PHONE"
580 print:print tab(tb)
590 print "6. INFORMATION--RANGE"
600 print:print tab(tb)
610 print "7. INFORMATION--ALPHABETICAL"
620 print:print tab(tb)
630 print "8. RETURN TO PROGRAM MENU"
640 print:print tab(tb)
650 input "Which Number Please ";nu$
660 number = val(nu$)
670 :

If you have been following along with our programs, these lines of code should
now be easy to understand. We are doing the same sequence of programming we
did when we created the "mail.menu" program. We format the menu display and
request a number. The next series of program lines is familiar also.

680 if number = 1 then 1000
690 if number = 2 then 2000
700 if number = 3 then 3000
710 if number = 4 then 4000
720 if number = 5 then 5000
730 if number = 6 then 6000
740 if number = 7 then 7000
750 if number = 8 then 8000
760 :

Now, you have the basic structure for the rest of the program. AIl that is necessary
is to fiIl in the code for each routine. But what happens if the user enters a character
other than a number between 1 and 8? This possibility is the reason for the incorrect
choice message routine that follows. If the number does not contain a value between
1 and 8, the computer will not branch to any of the major routines. Immediately

DISPLAYING SEQUENTIAL FILES 95

after the computer has checked the value of the number against the constant value
of 8 (line 750), the computer will proceed to the next instruction. Type the following:

770 rem *-incorrect choice message-*
780 print:print tab(tb)
790 print rvs$; "Incorrect Choice!"
800 print:print tab(tb)
810 print "Press" ;wht$; "RETURN" ;ylw$;" to continue:";
820 gosub 19000:rem return key routine
830 goto 400: rem menu--check again
840 :
850 :
860 :

This small routine displays a message whenever the user enters a number that is
not between I and 8. After the Incorrect Choice message (line 790) has been
displayed, the user is told to press the RETURN key (line 810) in order to again
be given the opportunity to enter a valid number (line 830). Once the user has
entered a valid number, control passes to the desired routine.

NOTE: The routines get progressively more difficult to follow, and it really is
not the intent of thIs book to teach the concepts behind routmes such as sortmg
and searching. But it is within its scope to present examples of such routines so
that readers can make use of these routines in their own file-manipulation programs.

• Original Order Routine

1000 rem **--original order routine--**
1010 gosub 10000:rem display routine
1020 rem clr/home cursor down routine
1030 print home$:cd = 3:gosub 9000
1040 for i = 1 to tk
1050 if tlines$(i) = "*" then 1080
1060 if tlines$(i) = "!" then print#file,bnk$:goto 1080
1070 print#file,tlines$(i)
1080 next i
1090 goto 20000:rem menu return routine
1100 :
1110 :
1120 :

If you look closely, this routine is very similar to the original "mail.readerl" display

96 CHAPTER SIX

routine (lines 1000 to 1040). All this routine does is display all the infonnation
lines in the file in the order they were entered. But with lines 1050 and 1060, we
have eliminated the display of the separator symbols "*,, and "!". There are two
additional lines that are new. Lines 10 10 and 1090 direct the computer to separate
routines used by each of the main routines. Line 1010, as indicated by the rem
statement, will be the code that asks if the user wants the information displayed
on a printer or on the screen. This instruction uses a GOSUB statement which
directs the computer to go to the instructions that begin at line 10000 and follow
those instructions until the computer encounters a RETURN statement. At that
point, the computer returns to the instruction following the GOSUB instruction.
Line 1090 is the instruction that directs the computer to the routine that returns the
user to the DISPLAY MENU when the user is ready .

• Name Only Routine

2000 rem **--name only routine--**
2010 gosub 10000:rem display routine
2020 print home$:rem elr/home
2030 for i = 1 to tk - 1
2040 if tlines$(i) tlines$(1) then 2080
2050 if tlines$(i) = "!" then 2080
2060 goto 2150
2070 :
2080 rem *-line up numbers-*
2090 if i < 10 then print tab(3)
2100 if i > 9 and i < 100 then print tab(2)
2110 if i > 99 then printtab(1)
2120 :
2130 if tlines$(i)
2140 if tlines$(i)
2150 next i

tlines$(1) then print#file,i;tlines$(1)
"!" then print#file,i + 1 ;tlines$(i + 1)

2160 goto 20000:rem menu return routine
2170 :
2180 :
2190 :

This routine should not be very difficult to understand. We want to print only those
lines that follow the "1" separator. We print those lines because those are the lines
that should contain the names of the individuals. We need the instruction at 2040
because there was no separator for the first name. We use tk - 1 because we do
not want to get to the last "I" separator since there is no name to follow it yet. The
instructions in lines 20110 to 2110 provide for the alignment of the number that

DISPLAYING SEQUENTIAL FILES 97

precedes the name. This number is the number for the first line of information in
each set of information-lines .

• No Phone Routine

3000 rem **--no phone routine--**
3010 gosu b 10000: rem display routine
3020 print home$:rem clr/home
3030 for i = 1 to tk
3040 if tlines$(i) = "*" then i = i + 1 :goto 3070
3050 if tlines$(i) = "! II then print#file,bnk$:goto 3070
3060 print#file,tlines$(i)
3070 next i
3080 goto 20000:rem menu return routine
3090 :
3100 :
3110 :

This routine should look completely familiar. It is practically the same routine we
used to print a label in "mail.adder2" (lines 1260 to 1300 in that program). The
effect is the same here also. We can print a mailing label for every person in our
file with this routine. Because just about every type of printer handles things
differently, you will probably need to add some code to this routine to get the labels
spaced properly. One method of spacing would be to find out the number of lines
on the label and between labels and then adjust the routine to always space just
exactly that number of lines regardless of the number of lines to be printed. That
method would always start the printer at the top of the label and not center the
material on the label, but it is probably the easiest method to develop.

• Search Routine

4000 rem **--search routine--**
4010 gosub 10000:rem display routine
4020 print home$:rem clr/home
4030 print "Type the word ";wht$;"END";ylw$;" when finished."
4040 poke 19,32:rem disable input?
4050 print:input "Name to find: ";find$
4060 if find$ = "END" or find$ = "end" then 4240
4070 print
4080 for i = 1 to tk
4090 if tlines$(i) = find$ then 4110
4100 goto 4210
4110 if tlines$(i) = "*" then 4210

98 CHAPTER SIX

4120 if tlines$(i) = "!" then 4210
4130 print#file,bnk$
4140 print#file,tlines$(i)
4150 print#file,tlines$(i + 1)
4160 print#file,tlines$(i + 2)
4170 if tlines$(i + 3) < > u*" then print#file,tlines$(i + 3)
4180 if tlines$(i + 4) = "*" then 4200
4190 print#file,tlines$(i + 4):goto 4210
4200 print#file,tlines$(i + 5)
4210 next i
4220 print
4230 goto 4030: rem repeat until done
4240 goto 20000:rem menu return routine
4250 :
4260 :
4270 :

The routines begin to get more difficult now. To this point, we have not really
made any assumptions about the number of lines of information in each set. But
with this routine, we make the assumption that there are a maximum of five lines
containing information in any set. If you want a greater maximum, then additional
code will have to be added to print out those other lines. The additional code would
follow the pattern of 4170 to 4200. We begin in the same way with 4000,4010,
and 4020 (our routine name, gosub display routine, and clear screen lines). Line
4040 gives instructions to the user to type the word "END" when the user is finished
looking for a specific name. Line 4050 requests the name from the user and stores
that name in the string variable "find$". Line 4060 checks the contents of "find$"
to see if it contains the word "END" or "end". If it does, the computer is directed
to go to line 4240, which further directs the computer to go to the "menu return
routine". One might logically ask why 4060 does not instruct the computer to go
directly to the "menu return routine". The reason lies in the necessity of structuring
the various routines in the same way so that any programmer can locate the exit
point of the routine easily. There are a number of GOTO statements in this routine,
but all of them direct the computer (and any programmer) to various lines within
this routine. In following the logic of this routine (and all the other routines also),
one never needs to look outside the routine, except for the display routine and exit
routine, which are common to all other routines. The idea is to keep the flow of
logic in one place as much as possible. You enter at the top of the routine and exit
at the base of the routine. This is the case for all the routines.

Lines 4080 to 4210 are the heart of this routine. They are also the boundaries
of the loop used to find and print the information associated with a specific name.
Line 4090 checks the contents of tlines$(i) to see if it equals the contents of findS.
If it does, the computer is instructed to jump over the next instruction. If it does

DISPLAYING SEQUENTIAL FILES 99

not, the next instruction is executed. Line 4100 is reached only if the contents of
tlines$(i) and find$ do not match, and 4110 is reached only if they do match. Lines
4110 and 4120 check for the separators and skip them when they are found. At
this point in the routine, we have found the name we are looking for and now want
to print out the information associated with this name. We assume that the first
three lines will not contain a separator and, therefore, will automatically print those
lines. Lines 4140, 4150, and 4160 accomplish this task. Lines 4170 through 4200
are lines of code that require some thought. If the fourth information-line does not
contain the separator "*", then we want to print this line also (4170); but if it does
contain the separator, we do not want the fourth information-line printed. Rather,
we know that the fifth information-line contains something to be printed (the line
following the "*,, will have the phone number if there is a phone number). Line
4190 prints the fifth information-line. Line 4180 first checks the fifth information­
line to see if it contains the asterisk separator. If it does contain the separator, then
we need to jump over 4190 (the instruction that prints that fifth information-line)
and, instead, print the sixth information-line (4200). Go back through the expla­
nation if you are not certain you understand. We use this same routine, combined
with the previous one, for our next routine.

• Search Routine, No Phone

5000 rem **--search routine/no phone--**
5010 gosub 10000:rem display routine
5020 print home$:rem clr/home
5030 print "Type the word ";wht$;"END";ylw$;" when finished."
5040 poke 19,32:rem disable input?
5050 print:input "Name to find? ";find$
5060 if find$ = "END" or find$ = "end" then 5250
5070 print
5080 for i = 1 to tk
5090iftlines$(i) = find$then 5110
5100 goto 5220:rem next i
5110 if tlines$(i) = "*" then i = i + 1 :goto 5220
5120 if tlines$(i) = "!" then print#file,bnk$:goto 5220
5130 print#file,bnk$
5140 print#file,tlines$(i)
5150 print#file,tlines$(i + 1)
5160 print#file,tlines$(i + 2)
5170 if tlines$(i + 3) < > "*" then print#file,tlines$(i + 3)
5180 if tlines$(i + 3) = "*" then i = i + 1 :goto 5220
5190 if tlines$(i + 4) = "*" then i = i + 1 :goto 5220
5200 print#file,tlines$(i + 4):goto 5220
5210 print#file,tlines$(i + 5)

100 CHAPTER SIX

5220 next i
5230 print
5240 goto 5030:rem repeat until done
5250 goto 20000:rem menu return routine
5260 :
5270 :
5280 :

I included this routine for a number of reasons. First, it is a very useful routine
because, with a printer, one can print out a specific mailing label. Second, it shows
how two routines can be combined into a third routine. This latter point is the most
important reason. Very few programs will do everything anyone could ever want
of them, but if a person understands these separate routines, combining two or more
to form others should be possible. Quite a number of combinations are possible
and might be useful to some people.

As you can see, this routine is exactly the same as the previous one down to
the instruction at 5110. The only difference is that when we find the "*,, separator,
we add one to i. thus skipping the phone number. Lines 5130 through 5170 are
the same instructions as 4120 through 4170. The instructions at 5180 and 5190 are
the only different instructions. Both of those instructions are simply checking to
see which information-line contains the separator symbol and then advancing the
counter by one. The end of the routine is the same as the end of the previous
routine.

With the routines at 4000 and 5000, you have the ability to search for a specific
name and display that name, either with the phone number or without the phone
number. But both of these routines require that you know and type in the exact
spelling of the name, including spaces. That presents a reason for our next routine,
the range routine. With this routine, you will only need to know the starting and
ending information-line numbers to be able to display the information you want.
You can obtain those numbers from the "names only routine". I will present the
range routine only, but you might want to combine this routine with the "names
only routine" and possibly some others also.

• Range Routine

6000 rem **--range routine--**
6010 gosub 10000:rem display routine
6020 rem clr/home cursor down routine
6030 print home$:cd = 3:gosub 9000
6040 input "Type beginning line number please: ";bg
6050 print:print
6060 if bg < 1 then print "Number too small!":goto 6040
6070 input "Type ending line number please: ";ed

DISPLAYING SEQUENTIAL FILES 101

6080 print
6090 if ed > tk then print "Number too large!":goto 6070
6100 for i = bg to ed
6110 if tlines$(i) = "*" then i = i + 1 :goto 6140
6120 if tlines$(i) = "!" then print#file,bnk$:goto 6140
6130 print#file,tlines$(i)
6140 next i
6150 goto 20000:rem menu return routine
6160 :
6170 :
6180 :

Line 6040 asks for the beginning information-line number. Remember that you can
check the numbers first by using the "names only routine" or by actually including
that routine at the beginning of this one. Line 6060 checks the number typed to
see if it is less than 1, the number of the first information-line. If it is too small,
a message is printed and the user is again asked for a beginning number. Line 6070
requests the ending information-line number and goes through the same checking
process, this time for a number larger than the maximum number of information­
lines. Then comes our loop (6100 to 6140). I have included the code for printing
the infomlation without thc phone number (6110), thus providing a routine that can
print out a selected range of mailing labels.

I have tried to show how you can take various routines and combine them in
just about any way you might want. With the addition of each new routine, the
number of possible combinations of routines increases so much that no single
programmer could include all possibilities within one program, but, with a minimum
of understanding, everyone can create combinations of routines to meet their needs.

• Alphabetical Order Routine

We come now to the most complex of our routines. I will not even attempt to
explain the logic involved in all parts of this alphabetizing routine since complete
books have been written on various sorting techniques. The sort method I am
including is sometimes called the Quicksort technique. There are a number of other
public domain sorting routines that I could have used, such as the bubble sort or
the Shell-Metzner sort, but I decided on the Qucksort because it is very efficient
and somewhat less publicized. I modified the sort to enable it to work with string
variables. Otherwise, the sort subroutine is a standard routine that can be used in
a number of different ways to order lists composed of numbers or letters. For
example, if you want to display the information in the "adrs-data" file in zip code
order, you first need to access the zip codes and then use the Quicksort subroutine
to arrange the zip codes and their associated information-lines in either ascending
or descending order. The creation of such a routine would require that you com-

102 CHAPTER SIX

pletely understand another feature of this routine: the flexibility possible with string
variables and the manner of utilizing that flexibility. Again, I will not try to fully
explain the logic or programming power behind the BASIC statements of LEFf$,
MID$, or RIGHT$. I strongly encourage you to learn as much as possible about
these BASIC statements and how they can be used to take string variables apart
and put them back together in just about any way you want.

This alphabetizing routine will be presented in two sections. The first section
makes use of this string variable flexibility to: access the last section of characters
in that first information-line; reverse the order of that information-line, placing the
last section of characters first; (i.e .• David Miller becomes Miller, David); and then
combine all other information-lines associated with this first line into one long string
variable, ad$(i). The second section alphabetizes the list now stored in the string
variable nd$(j).

7000 rem **--alphabetical order routine--**
7005 rem clr/home cursor down routine
7010 print home$:cd = 5:gosub 9000
7020 print rvs$; "WORKING--PLEASE DON'T TOUCH!!"
7030 print ylw$
7040 :
7050 :
7060 rem *-get first info.-line-*
7070 for i = 1 to tk - 1
7080 if tlines$(i) = tlines$(1) then 7130
7090 iftlines$(i) = "!" then i = i + 1:goto 7130
7100 goto 7240:rem next i
7110 :
7120 :
7130 rem reverse order
7140 char = len(tlines$(i))
7150 for va = 1 to char:if asc(mid$(tlines$(i),va,1)) = 32 then vz = va
7160 next va
7170 if vz = 0 or vz > char then ad$(i) = tlines$(i):goto 7190
7180 ad$(i) = mid$(tlines$(i),vz + 1,char - vz) + ", "+

left$(tlines$(i), vz)
7190 ad$(i) = ad$(i) + "**" + tlines$(i + 1) + "**" + tlines$(i + 2)
7200 if tlines$(i + 3) < > "*,, then ad$(i) = ad$(i) + "**" + tlines$(i

+ 3)
7210 if tlines$(i + 4) = "*,, then 7230
7220 ad$(i) ad$(i) + "**,, + tlines$(i + 4):goto 7240
7230 ad$(i) = ad$(i) + "**,, + tlines$(i + 5)
7240 next i
7250 :

DISPLAYING SEQUENTIAL FILES 103

7260 :
7270 rem renumber for sort
7280 j = 1
7290 fo r i + 1 to tk
7300 if len(ad$(i)) > 0 then nd$(j)
7310 next i
7320 n = j - 1
7330 :
7340 :

ad$(i):j j + 1

As you can see, the routines get more complex. If you do not understand the leftS,
mid$, and rightS statements, the best thing to do is to get a clear definition of them
from a book devoted to teaching BASIC and then practice their uses. Essentially,
they perform the functions for which they are named. The leftS statement will
retrieve a specified number of characters beginning at the left side of a string variable.
Left$(a$,4) gets the first four characters of the string variable as; i.e., if a$ equals
"COMMODORE-64", left$(a$,4) is "COMM". The rightS statement retrieves a
specified number of characters from the right-most character of a string variable.
Right$(b$,3) gets the last three characters in the string variable b$; i.e., ifb$ equals
"COMMODORE-64", right$(b$,3) is "-64". The mid$ statement retrieves a spec-
died number of characters from a specified position \vithin a string variable.
Mid$(c$,2,6) gets the next six characters beginning at the second character in the
string variable c$; i.e. if c$ equals "COMMODORE-64", mid$(c$,2,6) is "OM­
MODO".

Therefore, the instructions in 7060 to 7100 identify the first information-line
in each set of data. I jncs 7130 through 7240 reverse the order of the first information­
line and then comhine all the other infomlation-Iines associated with it. Finally,
7270 to 7320 are the instructions that renumber the sets of information in such a
way that the sort subroutine can function.

7350 rem ***--quicksort--***
7360 sa = 1
7370 print:print
7380 print rvs$; "STILL WORKING--PLEASE DON'T TOUCH!!"
7390 u(1) 1
7400 r(1) n
7410 ua u(sa)
7420 ra r(sa)
7430 sa sa -
7440 uz
7450 rz
7460 x$
7470 c

ua
ra
nd$(int((ua + ra)/2))
c + 1

104 CHAPTER SIX

7480 if nd$(uz) = x$ or nd$(uz) > x$ then 7510
7490 uz = uz + 1
7500 goto 7470
7510 c = ca
7520 if x$ = nd$(rz) or x$ > nd$(rz) then 7550
7530 rz = rz - 1
7540 goto 7510
7550 if uz > rz then 7620
7560 s = s + 1
7570 t$ = nd$(uz)
7580 nd$(uz) = nd$(rz)
7590 nd$(rz) = t$
7600 uz = uz + 1
7610 rz = rz - 1
7620 if uz = rz or uz < rz then 7470
7630 if uz = ra or uz > ra then 7670
7640 sa = sa + 1
7650 u(sa) = uz
7660 r(sa) = ra
7670 ra = rz
7680 if ua < ra then 7440
7690 if sa > 0 then 7410
7700 rem sort completed!
7710 :
7720 :

Now, you have access to a sorting method. The only code necessary outside this
subroutine to transfer it to another program is to set:

1. The dim of uO and rO to the number of things to be sorted.

2. The numeric variable n = to the number of things to be sorted.

If you have a different sort method that you like or understand better and want to
include it instead, the code for your sort should replace the code between lines
7350 and 7700.

We still need to display the results after sorting. I am going to present the code
to display the results in an elementary way. This display routine may not work
exactly right if your original file is not in the following format:

Information-line # 1: First Last (name)

Information-line # 2: Address

Information-line # 3: City State Zip

Information-line # 4: *

DISPLAYING SEQUENTIAL FILES 105

Infonnation-line # 5: Phone number

Infonnation-line # 6: !

The new, alphabetized display should have the following fonnat:

Infonnation-line # 1: Last, First (name)

Infonnation-line # 2: Address

Infonnation-line # 3: City State Zip

Infonnation-line # 4: Phone number

I will leave to those of you who want to or are able to use the flexibility in string
variables to fonnat the display in any way you desire.

7730 rem **--display--**
7740 gosub 10000:rem display routine
7745 rem clr/home cursor down routine
7750 print home$:cd = 3:gosub 9000
7760 for i = 1 to n
7770 vz = 1:q = 1
7780 char = len(nd$(i))
7790 fo; va = 1 to char
7800 if mid$(nd$(i),va,2) = "**,, then 7820
7810 goto 7850
7820 zi$(q) = mid$(nd$(i),vz,va - vz)
7830 vz = va + 2
7840 q = q + 1
7850 next va
7860 :
7870 zi$(q) = mid$(nd$(i),vz,char - (vz - 1))
7880 :
7890 for e = 1 to q
7900 print#file,zi$(e)
7910 next e
7920 :
7930 print#file,bnk$
7940 next i
7950 goto 20000:rem menu return routine
7960 :
7970 :
7980 :

We now have an opportunity to create a sequential access file in a way that
may be more powerful than in our mailing list system. The usefulness of the new

106 CHAPTER SIX

file-creation method depends on the programmer's knowledge of and willingness
to work with string variables (i.e., leftS, mid$, rightS, len, str$, val, and dim). All
the associated information with tlines$(l), that is, the address, city, state, zip code,
and phone number, are stored in the string variable nd$(l). Everything for the next
name is stored in nd$(2), and so on. If you want to locate the zip code, all you
need to do is use the mid$ function to determine where in the string the zip code
is located. You could use the same mid$ function with our present file setup, but
it might be more difficult to precisely locate the zip code. (For instance, some
people might put the zip code on a separate line, while others would put it on the
same line as the city and state. If everything is combined into one string variable,
it might be easier to locate for all possible situations.) I have used a lot of conditional
statements because there are many possibilities, and the correct choice often depends
upon a number of factors: the programmer's experience and preference, the value
of the file being established, the necessity of backup, the amount of use the file
will get, and so forth. The code necessary to establish a separate file for our now­
alphabetized information should be easy to develop.

Have you saved this new "mail.reader2" program? If not, be certain that the
program is still in memory and type the following:

~mail.reader2

By using a different name from our original display program, the number 2 instead
of the number 1, we have not written over that original program. Now, the list of
files should show:

o "form. 1 0-20-84 " 84 2a
1 "hello" prg
2 "example" prg
1 "address file" seq
12 "mai I.create" prg
1 "adrs-ptr" seq
1 " ad rs-d ata" seq
4 "mail.reader1 " prg
15 "mail.adder1 " prg
19 "mail.adder2" prg
17 "mail.menu" prg
12 "shell" prg
37 "mail.reader2" prg
542 blocks free

The number of free blocks may be different, depending on the number of blocks
used in the "adrs-data" sequential file. If you have already added a few names and
addresses, then the number of blocks in that file will be larger than one and the

DISPLAYING SEQUENTIAL FILES 107

number of free blocks will be less than 542. In the next chapter, we will examine
ways of correcting, changing, or deleting information from our file.

QUESTIONS

1. True or False: Commodore-64 BASIC allows you to run a program from
within another program.

2. What Commodore BASIC word allows you to horizontally position text on
the screen?

3. Which BASIC word is used to instruct the computer to go to a subroutine?

4. Which BASIC word is used to instruct the computer to return from a sub­
routine?

5. True or False: In programming, it is a good idea to have just one main
entrance and exit point in every routine.

6. Name three public domain sorting routines.

7. What are the three main BASIC words that provide a great deal of power in
working with strings?

8. What BASIC word retrieves a specified number of characters from a specified
position within a string variable?

9. Name four other BASIC words that can be used in some way with string
variables.

10. True or False: When you save a file with the same name as a file already
on the disk, the first file is replaced by the second file.

108 CHAPTER SIX

ANSWERS

1. False. Possible only after loading the DOS Wedge

2. TAB. Must be used in a print statement

3. GOSUB

4. RETURN

5. True

6. Bubble, Quicksort, Shell-Metzner

7. LEFf$, RIGHT$, MID$

8. MID$

9. LEN, STR$, VAL, DIM

10. False. Unless the replace character (@) is used

DISPLAYING SEQUENTIAL FILES 109

• Program for MAIL. MENU

100 rem ***--mai1.menu--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 6:rem set bkgrd to blue
270
280
500 rem **--menu--**
510 tb = 5:rem tab value--5 spaces rt.
520 print home$:rem c1r/home
530 print wht$
540 print tab(Lb + 3)
550 print rvs$;
560 print "MAIL PROGRAM MENU"
570 print
580 print ylw$
590 print tab(tb)
600 print "1. FILE CREATION PROGRAM"
610 print:print tab(tb)
620 print: "2. FILE ADDITION PROGRAM"
630 print:print tab(tb)
640 print "3. FILE DISPLAY PROGRAM"
650 print:print tab(tb)
660 print "4. FILE CORRECTION PROGRAM"
670 print:print tab(tb)
680 print "5. LIST OF FILES"
690 print:print tab(tb)
700 print "6. END"
710 print:print tab(tb)
720 poke 19,32:rem disable input?
730 input "Which Program Number? ";nu$
740 number = val(nu$)
750
760
770
780
790
800
810
820

if
if
if
if
if
if

number
number
number
number
number
number

110 CHAPTER SIX

1 then 1000
2 then 2000
3 then 3000
4 then 4000
5 then 5000
6 then 6000

830 rem *-incorrect choice message-*
840 print:print
850 print tab(tb)
860 print rvs$;"Incorrect Choice!"
870 print
880 print tah(tb)
890 print "Press ";wht$;"RETlJRN";ylw$;" to continue:";
900 gosub 19000:rem return key routine
910 goto 500:rem menu--check agaiIl
920
91()
1000 rem **--file creation prog.--*
1010 p~int home$:rem clr/home
1020 cd = 2:rem 2 lines dowIl
1030 gosub 90()0:rem cursor down routine
1040 print lab(15)
1050 print rvs$;
1 06 0 p r i n t " WAR N I '~G 1 "

1070 print:prinL
1080 print "If the 'adrs-data' file already exists"
1090 print
1100 print "do NOT run this program!"
1110 print
1120 print "Do you want the file creation program?"
1130 print
1140 gosub 8000:rem vln input routine
11~0 if yes$ = "n" then 500:rem menu
1160 print:print
1170 print "Are you sure? Type ";wht$;"YES";ylw$;" if you are:";
1180 input yes$
1190 if yes$ = "YES" or yes$ = "yes" then 1210
1200 goto 1000:rem check again
1210 fileS = "~1AIL.CREATE"
1220 gosub 7100:rem new program routine after qIlestion
12jU '''mail.create'':rem load & run
1240
1250
2000 rem **--file addition prog.--**
2010 fileS = "~1AIL.ADDER2"
2020 gosub 7000:rem new program routine
2030 '''mail.adder2'':rem load & run
2040
20')0
lO 0 0 rem '" ':' - - f i 1 e dis pIa y pro g . - - '--,'
3010 fileS = "MAIL.READER2"
3020 gosub 7000:rem new program routine
3030 '''mail.reader2'':rem load & run
3040
1050
4000 rem **--file correction prog.--c¥
4010 fileS = "MAIL.CORRECTION"
4020 gosub 7000:rem new program routine
4030 '''mail.correclion'':rem load & rUIl
4040
4050

DISPLAYING SEQUENTIAL FILES 111

5000 rem **--list of files routine--**
5010 print home$:rem clr/home
5020 @"$":rem wedge/diskette directory
5030 print cu$;chr$(13):rem 13 = rtn
5040 print "Are you ready to return to the menu?"
5050 print
5060 gosub 8000:rem yin input routine
5070 if yes$ = "y" then 500:rem menu
5080 goto 5000:rem check again
5090
5100
6000 rem **--end routine--**
6010 poke 19,0:rem restore input prompt
6020 print home$:rem clr/home
6030 cd = 5:rem 5 lines down
6040 gosub 9000:rem cursor down routine
6050 print tab(tb)
6060 print rvs$;
6070 print "That's all for this session!"
6080 print:print:print
6090 print tab(tb + 5)
6100 print rvs$;
6110 print "See you next time."
6120 print ylw$
6130 cd = 10:rem 10 lines down
6140 gosub 9000:rem cursor down routine
6150 end
6160
6170
7000 rem **--new program routine--**
7010 print home$:rem clr/home
7020 cd = 2:rem 2 lines down
7030 gosub 9000:rem cursor down routine
7040 p r i nt'" You h a v e s e 1 e c ted the "; f i 1 e $: p r in t : p r i n t

"program."
7050 print:print:print
7060 print "Is this the program you want?"
7070 print
7080 gosub 8000:rem yin input routine
7090 if yes$ = "n" then 500:rem menu
7100 print home$:rem clr/home
7110 cd = 5:rem 5 lines down
7120 gosub 9000:rem cursor down routine
7130 print tab(tb)
7140 print rvs$;
7150 print "Please wait!"
7160 print:print:print
7170 print tab(tb + 5)
7180 print rvs$;
7190 print "I'm loading "
7200 print:print:print
7210 print tab(tb + 10)
7220 print rvs$;
7230 print file$
7240 poke 19,0:rem restore input prompt

112 CHAPTER SIX

7250
7260
72 70
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120
9000
9010
9020
9030
9040
9050
9060
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110

return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input?
input yes$
print
if yes$
if yes$
print

"y" or yes$
"n" or yes$

"Y" then yes$
"N" then yes$

print rvs$;"Incorrect Choicel";ylw$
print
gotu 8000:rem check again

rem **--cursor down routjne--**
for i = 1 to cd
print cdS;
next i
return

rem **--return key routine--**
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next j

x = neek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn
goto 19050:if not 1 go back
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nuS = "":rem clr string variable
return

"y":return
"n":return

ready.

." . . ,

DISPLAYING SEQUENTIAL FILES 113

• Program for SHELL

100 rem ***--shell--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 : bnk$ c hr$ (10): rem blank line
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 2:rem set bkgrd to red
265
266
270 rem **--user message--¥c
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem CUrsor down routine
274 print ylw$;"ONE MO~lENT PLEASE'"
275
276
277 rem **--fi1e input routine--**
278
279 rem *-pointer file-*
280 open 2,8,2,"0:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data fi1e-*
285 dim llines$(rec),nd$(rec),u(rec),r(rec),ad$(rec),zi$(rec)
286 open 3,8,3,"0:adrs-daLa,seq,read"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 close 3
291
292 tk = rec:rem total k # of lines
293
294
8000 rem **--return Lo program menu--**
8010 poke 19,0:rem restore input prompt
8020 rem clr/home cursor down routine
8030 print home$:crl = 5:gosub 9000
8040 print tabetb)
8050 print rvs.$;
8060 print "lOADING THE MAIL MENU PROGRA'l"
8070 ·"mail.menu"

114 CHAPTER SIX

8080
80')0
0000 rem **--cursor down routine--**
9010 for i = I to cd
9020 print cdS;
9030 next i
9040 return
9050
0060
10000 rem **--dispJay routine--**
10010 print home$:rem clr/home
10020 cd = 3:rem 3 lines down
10030 gosub 9000:rem cursor down routine
10040 print "lVould you like a paper print out?"
10050 print
10080 gosub 18000:rem yin input routine
10000 if yes$ v then 10120:rem prnt
10100 jf yes$ = "n" then 10300:rem scrn
10110
10120 print home~:rem clr/home
10130 cd ,- J:ren 3 lines down
10140 gosub 9000:rem cursor down routine
10150 print "Please make sure the printer"
10]60 print
10170 print "is on and ready to use."
10180 print
IOlCJO print "Are you ready to begin printing""
10200 print
10210 gosub 18000:rem yin input routine
10220 if yes$ = "n" then 10000
10230
10240 rem *-printer display-*
102S0 file 4
10260 dvic = 4
I027U cmnd = 7
10280 go to 10500:rem open instruction
10290
10300 rem *-screen display-*
10310 file 3
10320 dvic = 3
10330 cmnd = 1
10340 goto 105UO:rem open instruction
IU350
10360
10500 rem *-open instruction-*
10510 open file,dvic,cmnd
10520 return
10530
IOj40
IUj50
18000
18010
18020
18030
18040
18050

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";whl$;"N";ylwS;"
poke 19,32:rem disable input?
input yes$
print
if yes$ = "y" or yes$ "Y" then yes$ = "y":return

.If • . ,

DISPLAYING SEQUENTIAL FILES 115

18060 if yes$ ~ "n" or yes$ ~ "N" then yes$ "n":return
18070 print
lS080 print rvs$;"Incorrect Choice!";ylw$
18090 print
18100 go to 18000:rem begin again
18110
18120
181'30
19000 rem **-return key routine--**
19010 poke 19S,0:rem clr kbrd buffer
19020 for i ~ 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x ~ peek(197):rem store key press
19060 if x = 1 then 19080:rem 1 ~ rtn
19070 go to 19050:rem if not 1 go back
19080 poke 19,O:rem restore input prompt
19090 poke 19S,l:rem allow for cursor
19100 poke 631,0: rem cJ r kbrd
19110 nuS ~ "":rem clr string variable
19120 return
19130
19140
19150
20000 rem **--menu return routine--**
20010 print#file
20020 close file
20030 print
20040 poke 19,32:rem disable input?
200')0 print "Press ";wht$;"RETCRN";ylw$;" to go to Displ:l\"

Menu:"
20060 gosuh 19000:rem return key routine
20070 print
20080 goto 400:rem display menu routine

ready.

116 CHAPTER SIX

• Program for MAIL.READER2

100 rem ':";":'--l11ai 1. rCilder2--''':'':'
I 10
120
130 rem o;";'--in i tialization--';";'
140 homeS chr$(147):rem clr/home
1~0 : :cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
100 :hlk$ chr$(144):rem hlack
200 :ylw$ chr$(158):rl'm yellow
210 :wht$ ehr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :hnk$ chrS(10):rem blank line
230
240 poke 5328CJ, 14: rem border ~ It. bl ue
2')0 poke 53272,23:rem llpper/lower Cilse
260 poke 53281, 2:rem set bkgrd to red
26')
266
270 rem **--llser message--¥·
271 print home$:rem elr/home
272 cd ~ ~:rem ') lines down
27') gosllb 90DO: rem cursor down routine
274 print ylw$;"ONE MCJMEtlT PLEASE!"
275
276
277 rem **--fjle input routine--**
278
279 rem *-pointer file-*
280 open 2,8,2,"O:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data file-*
285 dim tlines$(rec),nd$(rec),u(rec),r(rec),ad$(rec),zi$(rec)
286 open 3,8,3,"0:adrs-daLa,seq,read"
287 for i ~ 1 to rec
288 input#3,tlines$(i)
289 next
290 close 3
291
292 tk ~ rec: rcm total k
293
294
29)
400 rcm **--menu--**

of lines

41CJ tb ~ 5:rem tab value--5 spaces rt.
420 print home$:rem elr/home
430 print whLS
440 print tab(tb + 3)
450 print rvs$;
460 print "DISPLAY MENU"

DISPLAYING SEQUENTIAL FILES 117

470 print ylw$
480 print:print tab(tb)
4 9 0 p r i n t "1. I N FOR ~1 A T ION - - 0 RIG. 0 R D E R "
500 print:print tab(tb)
510 print "2. NAMES ONLY"
520 print:print tab(tb)
530 print "3. INFORMATION--'lO PHONE"
540 print:print tab(tb)
550 print "4. SPECIFIC NAME"
560 print:print tab(tb)
570 print "5. SPECIFIC NAME--NO PHONE"
580 print:print tah(tb)
590 print "6. INFORMATION--RANGE"
600 print:print tab(tb)
610 print. "7. INFORMATION--ALPHABETICAL"
620 print:print tab(tb)
630 print "8. RETURN TO PROGRAM MENU"
640 print:print tab(tb)
650 input "Which 'lumber Please ";nu$
660 number = val(nu$)
670
680
690
700
710
720
730
740
750
760

if
if
if
if
i f
if
if
if

number
number
number
number
number
number
number
number

2
1
4
5
6
7
8

then 1000
then 2000
then 3000
then 4000
then 5000
then 6000
then 7000
then 8000

770 rem *-incorrect choice message-*
780 print:print tab(th)
790 print rvs$;"Incorrect Choice l "

800 print:print tab(tb)
810 print "Press ";wht$;"RETllRN";ylw$;" to continue:";
820 gosub 19000:rem return key routine
830 go to 400:rem menu--check again
840
850
860
1000 rem **--original order routine--**
1010 gosub 10000:rem display routine
1020 rem clr/home cursor down routine
1030 print home$:cd = 3:gosuh 9000
1040 for i = 1 to tk
1050 if tlines$(i) = ",," then 1080
1060 if tlines$(i) = "I" then print#file,bnk$:goto 1080
1070 print#file,tlines$(i)
1080 next i
1090 goto 20000:rem menu return routine
1100
1110
1120
2000 rem **--name only routine--**
2010 gosuh 10000:rem display routine
2020 print home$:rem clr/home

118 CHAPTER SIX

2030
2040
2050
2060
2070
20S0
2090
2100
2110
2120
2130
2140
2150
2160
2170
21S0
2190
3000
3010
3020
3030
3040
3050
3060
3070
30S0
3090
3100
3110
4000
4010
[>020
4030
4040
4050
4060
4070
40S0
4090
4100
4110
4120
4130
4140
4150
4160
4170
41S0
4190
4200
4210
4220
4230
4240
4250
4260

- 1 for i = 1 to tk
if tlines$(i)
jf tlines$(i)
goto 2150

tlines$(l) then 20S0
"!" then 20S0

rem *-line up numbers-*
if i < 10 then print tab(3)
if i > 9 and i < 100 then print tab(2)
if i > 99 then print tab(l)

jf tlines$(i)
if tlines$(i)

tljnes$(l) then print#file,i;tlines$(l)
"!" then print#file,i + l;tlines$(i + 1)

next i
goto 20000:rem menu return routine

rem **--no phone routine--**
gosub 10000:rem display routine
print home$:rem elr/home
for i = 1 to tk
if tlines$(i) = II,:,,, then i = i + l:goto 3070
jf tlines$(i) = "!" then print#file,bnk$:goto 3070
print#file,tlines$(i)
next i
goto 20000:rem menu return routine

rem **--seareh routine--**
gosub 10000:rem display routine
print home$:rem elr/home
print "Type the word ";wht$;"END";ylw$;" when finished."
poke 19,32:rem disable input?
print:input "Name to find: ";find$
jf findS = "END" or findS = "end" then 4240
print
for i = 1 to tk
if tlines$(i) findS then 4110
goto 4210
if tlines$(i) II,:,,, then 4210
if tlines$(i) "!" then 4210
print#file,bnk$
print#file,tlines$(i)
print#file,tlines$(i + 1)
print#file,tlines$(i + 2)
if tlines$(i + 3) <> II,:,,, then print#file,tlines$(i + 3)
if tlines$(i + 4) = II,:,,, then 4200
print#file,tlines$(i + 4):goto 4210
print#file,tlines$(i + 5)
next i
print
goto 4030:rem repeat until done
go to 20000:rem menu return routine

DISPLAYING SEQUENTIAL FILES 119

4270
5000 rem **--search routine/no phone--**
5010 gosub 10000:rem display routine
5020 print home$:rem elr/home
5030 print "Type the word ";wht$;"END";y1w$;" when finished."
5040 poke 19,32:rem disable input?
5050 print:input "Name to find: ";find$
5060 if findS = "END" or findS = "end" then 5250
5070 print
5080 for i = 1 to tk
5090 if tlines$(i) findS then 5110
5100 go to 5220:rem next i
5110 if tlines$(i) II,:,,, then i = i + 1:goto~220
5.1 20 if t 1 i n e s $ (i) = "!" the n p r in t # f i 1 e , b n k $: got 0 5220
5130 print#file,bnk$
5140 print#file,tlines$(i)
5150 print#file,tlines$(i + 1)
5160 print#file,tlines$(i + 2)
5170 if tlines$(i + 3) <> "*" then print#file,tJines$(i + 3)
5180 if tlines$(i + 3) = "':0" then i = i + l:goto ')220
5190 if tlines$(i + 4) = II,:,,, then i = i + 1: goto 5220
5200 print#file,tlines$(i + 4):goto 5220
5210 print#file,tlines$(i + 5)
5220 next i
5230 print
5240 goto 5030:rem repeat until done
5250 goto 20000:rem menu return routine
5260
5270
5280
6000 rem **--range routine--**
6010 gosub 10000:rem display routine
6020 rem elr/home cursor down routine
6030 print home$:ed = 3:gosub 9000
6040 input "Type beginning line number please: ";bg
6050 print:print
6060 if bg < 1 then print "Number too smalll":goto 6040
6070 input "Type ending line nuber please: ";ed
6080 print
6 0 9 0 i fed. > t k the n p r i n t " N u m b e r too 1 a r g e ! " : got 0 6 0 7 0
6100 for i = bg to ed
6110 if t1ines$(i) = "':0" then i = i + 1:goto 6140
6120 if tlines$(i) = "," then print#file,bnk$:goto 6140
6130 print#file,tlines$(i)
6140 next i
6150 goto 20000:rem menu return routine
6160
6170
6180
7000 rem **--alphabetieal order--**
7005 rem elr/home cursor down routine
7010 print home$:ed = 5:gosub 9000
7020 print rvs$;"\,lQRKING--PLEASE DON'T TOUCH' ,II
7030 print ylw$
7040
7050

120 CHAPTER SIX

7060
7070
7080
7090
7100
7110
7120

info .-line- t,

- 1
tlines$(l) then 7130

rem *-get first
for i = 1 to tk
if tlines$(i)
if tlines$(i)
go to 7240:rem

"!" then i = i + 1:goto 7130
next i

7130 rem reverse order
7140 char = len(tlines$(i»
7150 for va = 1 to char:if asc(mid$(tlines$(i),va,l» 32

then vz va
next va 7160

71 70
7180

if vz = 0 or vz > char then ad$(i) = tlines$(i):goto 7190
ad$(i) = mid$(tlines$(i),vz + l,char - vz) + ", " +
left$(tlines$(i),vz)

7190 ad$(i) = ad$(i) + "'~*" + tlines$(i + 1) + "~"l<" +
tlines$(i + 2)

7200 if tlines$(i + 3) <> "~,,, then ad$(i) = ad$(i) + "**" +
tlines$(i + 3)

= "*" then 7230 7210
7220
7230

if tlines$(i + 4)
ad$(i) ad$(i) +
ad$(i) = ad$(i) +

"*'1<" + tlines$(i + 4):goto 7240
"",;,,, + tlines$(i + 5)

7240 next i
7250
7260
7270 rem renumber for sort
7280 j =

7290 for i = 1 to tk
7300 if len(ad$(i» > 0 then nd$(j)
7310 next i
7320 n j - 1
7330
7340
7350 rem ***--quicksort--***
7360 sa = 1

print:print

ad$(i): j j + 1

print rvs$;"STILL
u(1) = 1

7370
7380
7390
7400
7410
7420
7430
7440 uz
7450 rz
7460 x$
7470
7480
7490
7500

WORKING--PLEASE DON'T TOUCH!!"

r(l) = n
ua u(sa)
ra r(sa)
sa sa - 1

ua
ra
nd$(int«ua + ra)/2»

c = c + 1
if nd$(uz) = x$ or nd$(uz) > x$ then 7510
uz = uz + 1
go to 7470

7510 c = ca
7520 if x$ = nd$(rz) or x$ > nd$(rz) then 7550
7530
7540
7550
7560

rz = rz - 1
go to 7510
if uz > rz
s = s + 1

then 7620

DISPLA VING SEQUENTIAL FILES 121

7570 t$ = nd$(uz)
7580 nd$(uz) nd$(rz)
7590 nd$(rz) tS
7600 uz = uz + 1
7610 rz = rz - 1
7620 if uz =
7630 if uz =
7640 sa = sa
7650 u(sa) =
7660 r(sa) =
7670 ra = rz

rz
ra
+
U7.

ra

1

or
or

uz
uz

< rz
> ra

7680 if ua < ra then 7440
7690 if sa > 0 then 7410
7700 rem sort completed'
7710
7720
7730 rem **--dispLay--**

then 7470
then 7670

7740 gosub 10000:rem display routine
7745 rem clr/home cursor down routine
7750 print home$:cd = 3:gosub 9000
7760 for i = 1 to n
7770 vz = l:q = 1
7780 char = len(nd$(i»
7790 for va = 1 to char
7800 if mid$(ndS(i),va,2) = ",;":,,, then 7820
7810 go to 7850
7820 zi$(q) = mid$(nd$(i),vz,va - vz)
7830 vz = va + 2
7840 q = q + 1
7850 next va
7860
7870 zi$(q) = mid$(nd$(i),vz,char - (vz - 1»
7880
7890 for e = 1 to q
7900 print#file,zi$(e)
7910 next e
7920
7930 print#file,bnkS
7940 next i
7950 goto 20000:rem menu return routine
7960
7970
7980
8000 rem **--return to program menu--~~
8010 poke 19,0:rem restore input prompt
8020 rem clr/home cursor down routine
8030 print home$:cd = 5:gosub 9000
8040 print tab(tb)
8050 print rvs$;
8060 print "LOADIriG THE MAIL i'1f'\!.! PROGRA"1"
8070 '''mail.menu''
8080
8090
9000 rem **--cursor down routine--**
9010 for i = 1 to cd

122 CHAPTER SIX

9020
9030
9040
9050
9060
10000
10010
10020
10030
10040
100')0
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
102'30
10240
10250
10260
10270
10280
10290
10300
10310
10320
10'3'30
10340
10350
10360
10500
10510
10520
10530
10540
10550
18000
18010
18.020
18030
18040
18050
18060
18070
18080

print cdS;
next i
return

rem **--display routine--**
print homeS:rem clr/home
cd = 3:rem 1 lines down
gosub 9000:rem cursor down routine
print "Would you like a paper print out?"
print
gosub 18000:rem y/n input routine
if ves$ v then 10120:rem prnt
if yes$ = ";1" then 10300:rem sern

print home$:rem clr/home
cd = 3:rem '3 lines down
gosub 9000:rem cursor down routine
print "Please make sure the printer"
print
print "is on and ready to use."
print
print "Arc you ready to begin printing?"
print
gosub 18000:rem yin input routine
if yes$ = "n" then 10000

rem *-printer display-*
f i 1 e 4
dvic = 4
cmnd = 7
goto 10500:rem open instruction

rem *-sereen display-*
f i 1 (> 3
dvic = 3
cmnd = 1
go to 10500:rem open instruction

rem *-open instruction-*
open file,dvic,cmnd
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input?
input yesS
print
if yes$
if yes$
print

"y" or
"n" or

yes$
yes$

print rvsS;"1ncorrect

"Y" then yes$
"N" then yes$

Choice!";ylw$

"y":return
"n":return

.".
o ,

DISPLAYING SEQUENTIAL FILES 123

18090 print
18100 golo 18000:rem begin again
18110
18120
18130
19000 rem **--return key routine--**
19010 poke 198,0:rem clr khrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 then 19080:rem 1 = rtn
19070 golo 1905CJ: i [not 1 go back
19080 poke 19,0:rem restore input prompt
19090 poke 198,1:rem allow for cursor
19100 poke 631,0:rem clr kbrd
19110 nuS = "":rem clr string vQriable
19120 relllrn
19130
19140
19150
20000 rem **--menu retllrn routine--**
20010 print#filc
20020 close file
20030 prinL
20040 poke 19,32:rem disable input?
20050 print "Press ";wht$;"RETURN";ylw$;" to go to the DispJay

~1 c n u : " ;
20060 gosllb 19000:rem retllrn key routine
20070 print
20080 goto 400:rem display menu routine

ready.

124 CHAPTER SIX

7 correcting
sequential
files

If you saved the "shell" program, you can load this file and use it as the basis for
our "mail. correction" program. A few lines will need to be changed to reflect needs
within this specific program, and the display routine may not be needed, but making
use of the "shell" is much easier than retyping instruction-lines used by other
programs.

The first change is with line 100, which should be changed to reflect the proper
name for this program. Type:

100 rem *** --mail.correction--***

Then change the following lines to:

240 poke 53280, 5:rem border = green
260 poke 53281,11:rem set bkgrd = grey1
285 dim tlines$(rec)
20010 rem if printer used:print#file
20020 rem if printer used:close file
20030 print:print
20050 print "Press ";wht$;"RETURN";ylw$;" to go to the

Correct. Menu :";

CHAPTER SEVEN 125

The "return to program menu" routine, lines 8000 to 8100, needs to be moved to
lines 4000 to 4100 and then deleted from 8000 to 8100. The easiest way to do this
is to:

list 8000-8100

Use the cursor up key (SHIff and up/down arrow CRSR key) to go up to the 8
in 8000. Press the key with the number four (4) on it, changing the line number
from 8000 to 4000. Then press the RETURN key. The cursor will drop to the next
line number, 8010. You should repeat the procedure for each of the listed lines.
When you have changed the line-numbers, the instructions still exist at lines 8000
to 8100. The last step is to delete these instruction-lines by typing the line-number
and immediately pressing the RETURN key:

8000 {RETURN}
8010 {RETURN}
8020 {RETURN}

8080 {RETURN}
8090 {RETURN}
8100 {RETURN}

The display routine is not necessary in this "mail.correction" program, but you can
leave it as part of this program in case you ever want to print out information that
has been changed or deleted. If you do not want to leave the display routine in the
program, you will need to follow the procedure just described and delete the
instructions in lines 10000 to 1 0550.

If you did not save the "shell" program, you will need to retype all the instruc­
tions included in it for the "mail.correction" program (see the listing at the end of
Chapter 6). All that remains is to fill in the "shell" with instructions specific to our
present program needs. Once again we need a menu, so our routine beginning at
line 400 will be much the same also.

400 rem**--menu routine--**
410 tb = 5:rem tab value--5 sps.rt.
420 print home$:rem clr/home
430 print wht$
440 print tab(tb + 3)
450 print rvs$;
460 print "CORRECTION MENU"
470 print ylw$

126 CHAPTER SEVEN

480 print:print tab(tb)
490 print "1. CHANGE OR CORRECT IN,~O."
500 print:print tab(tb)
510 print "2. DELETE INFORMATION"
520 print:print tab(tb)
530 print "3. WRITE REVISED FILE"
540 print:print tab(tb)
550 print "4. RETURN TO PROGRAM MENU"
560 print:print tab(tb)
570 input "Which Number Please" ;nu$
580 number = val(nu$)
590 :
600 if number = 1 then 1000
610 if number = 2 then 2000
620 if number = 3 then 3000
630 if number = 4 then 4000
640 :
650 gosub 7000:rem incorrect choice
660 goto 400:rem menu routine
670:
680:

By now, these statements should be familiar enough that no further explanation
need be given. We are going to simply display a menu of a number of choices on
the screen. If the user has not typed a valid number, control is first transferred to
the "incorrect choice routine" at line 7000 and then returned to the instruction (line
570), which again asks for a number. (The incorrect choice routine, 7000-7090,
is listed at the end of the chapter within the mail. correction program. This routine
does not contain any new code.)

The correction and deletion routines presented next are only one method out
of many possible methods for accomplishing the same task. Some may object to
rewriting the entire file for a single correction, but, for now, the method we will
use is to bring the entire file into memory, make our necessary corrections or
deletions, and then write the file back out to disk again.

CORRECTION ROUTINE

1000 rem**--correction routine--**
1010 print home$:rem clr/home
1020 cd = 3:rem 3 lines down
1030 gosub 9000:rem cursor down routine
1040 print tab(tb)

CORRECTING SEQUENTIAL FILES 127

1050 print "Type a ";wht$;"0";ylw$;" when finished."
1060 print:print tab(tb)
1070 poke 19,32:rem disable input?
1080 input "Display which line? ";nb$
1090 if nb$ = "0" then 20000:rem menu
1100 nb = val(nb$)
1110 rem incorrect choice/ask again
1120 if nb > tk then gosub 7000:goto 1000
1130 cd = 4:gosub 9000:rem crsr down 4
1140 print tab(tb - 1)
1150 print nb;" ";tlines$(nb)
1160 print:print tab(tb)
1170 print "Is this correct? "
1180 print:print tab(tb)
1190 gosub 18000:rem yin input routine
1200 if yes$ = "y" then 1 000
1210 print:print tab(tb)
1220 print "Type in the correct information:"
1230 print: print tab(tb - 1)
1240 print nb;" ";:input cinfo$
1250 print:tlines$(nb) = cinfo$
1260 rem clr/home--cursor down routine
1270 print home$:cd = 3:gosub 9000
1280 print:print tab(tb - 1)
1290 print nb;" ";tlines$(nb)
1300 print
1310 goto 1160:rem ask again
1320 :
1330 :

We ask for the line number the user believes to contain incorrect information. The
line of information is displayed. If it is not correct, the individual is given an
opportunity to type in the correct information. The amount of new information or
corrected information is not limited except by the normal character string limitation.
This feature is one big advantage over other correction methods, which may require
that the corrected information be exactly the same number of characters as the
original information. Finally, the corrected information is displayed and the correct
information question is repeated. Line 1200 checks for a positive response to the
question about correct information. If the information is correct, the user is taken
back to the original request concerning the line number to be displayed. Line 1090
checks for a "0", which indicates that the user wishes to return to the menu. Line
1250 is the instruction that actually exchanges the corrected infonnation for the old
information. You will notice that nothing is written to disk at this time. This may

128 CHAPTER SEVEN

cause problems for some individuals. Under this system, it is possible to make a
number of changes before the file is rewritten to the disk. It is also possible,
therefore, to forget to write the corrected file back to disk. Such a system may be
impractical in certain situations, for example, when a somewhat forgetful person
is making the changes. But, for our purposes, we want to make all corrections and
deletions before rewriting the file.

DELETION ROUTINE

The deletion routine is more complicated than the correction routine.

2000 rem **--delete routine--**
2010 print homes$:rem clr/home
2020 cd = 3:gosub 9000:rem crsr down 3
2030 print tab(tb)
2040 print "Type a ";wht$;"O";ylw$;" when finished."
2050 print:print tab(tb)
2060 poke 19,32:rem disable input?
2070 input "Delete which line? ";nb$
2080 if nb$ = "0" then 20000:rem menu
2090 nb = val(nb$)
2100 rem incorrect choice/ask again
2110 if nb > tk then gosub 7000:goto 2000
2120 cd = 4:gosub 9000:rem crsr down 4
2130 print tab(tb - 1)
2140 print nb;" ";tlines$(nb)
2150 print:print:print tab(tb)
2160 print "Are you sure?"
2170 print:print tab(tb)
2180 print "Type ";wht$;"YES";ylw$;" if you are sure!";
2190 input yes$
2200 if yes$ = "YES" or yes$ = "yes" then 2240
2210 goto 2000:rem begin again
2220 :
2230 :
2240 rem *-display deleted info.-*
2250 j = nb
2260 if tlines$(j) == "!" then 2290
2270 j = j + 1 :goto 2260
2280 :
2290 rem *-format numbers & display-*

CORRECTING SEQUENTIAL FILES 129

2300 rem clr/home--cursor down routine
2310 print home$:cd = 3:gosub 9000
2320 for i = nb to j
2330 if i < 10 then print tab(3)
2340 if i > 9 and i < 100 then print tab(2)
2350 if i > 99 then print tab(l)
2360 print i;" ";tlines$(i)
2370 tlines$(i) = "DELETED":d d + 1
2380 next i
2390 print
2400 print "DELETING THIS INFORMATION"
2410 :
2420 :
2430 rem *-renumber w/out del.info.-*
2440 q = 1
2450 for i = 1 to tk
2460 if tlines$(i) = "DELETED" then 2490
2470 tlines$(q) = tlines$(i)
2480 q = q + 1
2490 next i
2500 :
2510 rem subtract # of lines deleted for new total
2520 tk = tk - d
2530 d = 0: j = 0
2540 print
2550 goto 20000:rem menu
2560 :
2570 :
2580 :

There are other ways of doing the same thing we did in this routine. Some of the
other ways might be shorter, but this way is understandable. Several things need
to be done in this deletion routine. First. the information to be deleted must be
identified, displayed, and then deleted (lines 2000 to 2400). Second, the information
following the deleted material must be renumbered (instruction-lines 2430 to 2490)
so that there are no empty information-lines; otherwise, an ERROR will occur when
these information-lines are encountered. Finally, the number of deleted information­
lines must be subtracted (line 2520) from the original total number of lines.

Down to line 2160, there is nothing new. It is essentially the same beginning
as the correction routine. At 2250, we set a counter U) equal to the line number of
the name to be deleted. Next, we increase the counter by one until we have found
the information-line for the end of the information associated with the individual
to be deleted (i.e., the separator symbol "!"). We know which information-lines

130 CHAPTER SEVEN

to delete: the lines beginning with nb and going through j, so now we can use a
loop (2320-2380) to delete our information. We use another loop (2450-2490) to
do the resequencing of the remaining infonnation. We usc two additional counters:
to keep track of the new infomlation line-numbers and d to keep track of the number
of deleted lines. The q is set to I for the beginning of the file, but it could be set
to nb, the start of the deleted material. Line 2460 is the key to the resequencing.
If tlines$(i) equals the word "DELETED", then the counter q is not increased while
the counter i is increased. Remember that q is keeping track of the new line numbers
while i is the old line number. Line 2470 resequences the t1ines$ string array. Line
2520 subtracts the number of deleted lines from the original number of lines (tk).
Line 2550 is necessary in case more infonnation is to be deleted during this session.

3000 rem **--file output routine--**
3010 :
3020 rem *-user message-*
3030 rem clr/home--cursor down routine
3040 print home$:cd = 3:gosub 9000
3050 print rvs$;
3060 print tab(tb)
3070 print "UPDATING FILES."
3080 print: print: print tab(tb + 10)
3090 print rvs$;: print "PLEASE WAIT!"
3100 :
3110 rem *-delete/rename backup-*
3120 open 3,8,3,"@0:adrs-backup,seq,write"
3130 close 3
3140 CiD" scratch: adrs-backup"
3150 @"rename:adrs-backup=adrs-data"
3160 :
3170 rem *-pointer file-*
3180 open 2,8,2,"((vO:adrs-ptr,seq,write"
3190 print#2,tk
3200 close 2
3210 :
3220 rem * -data fi le-*
3230 open 3,8,3, "O:adrs-data,seq,write"
3240 for i = 1 to tk
3250 print#3,tlines$(i)
3260 next i
3270 close 3
3280 :
3290 rem * -user message/menu-*
3300 rem clr/home--cursor down routine

CORRECTING SEQUENTIAL FILES 131

3310 print home$:cd 5:gosub 9000
3320 print tab(tb)
3330 print rvs$;
3340 print" ALL FINISHED"
3350 cd = 10:gosub 9000
3360 goto 20000:rem menu routine
3370 :
3380 :
3390 :

There is something different with this file routine. Where did "adrs-backup" come
from? The DOS command "open" will create a tile by that name if the file does
not already exist. Therefore, if the file "adrs-backup" does not already exist, the
command open "adrs-backup" will create a file by that name. Next, we delete that
file since it must either be an empty file or a now unnecessary backup copy. (The
first time this program is used there will not be an "adrs-backup" file.) Line 3150
renames the fIle "adrs-data" (which now contains our uncorrected information) so
that it becomes ·'adrs-backup". Finally, we open a new "adrs-data" file and write
out our corrected information to it (lines 3220-3270). Line 3360 returns to the
menu. At this point. if you have not already done so, you should save this program
to the diskette that contains all the other Mailing List System programs.

~maiLcorrection

Typing (d$ now should show:

0 "form.10-20-84 " 84 2a
1 "hello" prg
2 "example" prg
1 "address file" seq
12 "mail.create" prg
1 " adrs-ptr" seq
1 "adrs-data" seq
4 "maiLreader1 " prg
15 "maiLadder1 " prg
19 "mail.adder2" prg
17 "mail.menu" prg
12 "shell" prg
37 "mail.reader2" prg
27 "mail.correction" prg
515 blocks free

It is not necessary to make changes in the "mail. menu" program in order to include
this "mail.correction" program. Remember that additional code was added in an-

132 CHAPTER SEVEN

ticipation of this program. The Mailing List System should now be complete. (A
complete list of the final Mailing List System programs, in proper order, is provided
at the end of this chapter.)

This general method of correcting or deleting information has the added benefit
of providing us with a backup copy of our precorrected "adrs-data" file. The se­
quence of opening and deleting a backup file, renaming the uncorrected file as the
new backup, and writing out the corrected information to a new file under the
original file name is a very useful routine. If you have two disk drives, you can
put the backup in one drive and the new master in the other drive and have the
computer switch between the two drives. The more drives one has, the greater the
flexibility in manipulating files in this manner.

Even without two drives, the "adrs-data" file and the "adrs-backup" file can
be put on two different diskettes. Some method of making the computer pause after
line 3150 would be necessary in order to allow the user to swap diskettes. Two
possibilities would be (I) a loop of a certain duration, or (2) an input statement
informing the user that it is time to switch diskettes.

Although the Mailing List System is complete, the system is by no means a
commercial data-base program. Many additional routines, programs, and/or features
can be added to accomplish specific needs. For example, it would be a good idea
to have a program that would copy the "adrs-data" file onto a different diskette. A
program that allowed the user to expand the information concerning a particular
person would be handy in certain circumstances (i. e .. increase from six lines of
information to seven or eight lines).

Perhaps the most useful additional program would be one that translated the
"adrs-data" file into a format that a word processor could use to merge with a form
letter to produce personalized form letters. This task is very easy to do since the
format of the "adrs-data" file fits with the format many word processors use for
just such address Jiles. The advantage of using an existing file for the personalized
form letter is the obvious lack of duplication of effort. In other words, if the names
and addresses already exist, you do not need to retype them again in the format
needed by the word processor.

The advantage of maintaining the names and addresses in a file external to the
word-processing system are many. First, you are not limited to a single word
processor if you happen to find a better one later. Second, the flexibility and
versatility of an external file are far greater than the flexibility or versatility of a
file created within the limitations of a specific word processor. Third, external files
are more easily sorted and displayed in a variety of ways.

To conclude this chapter, I will present the structure for a program that trans­
forms the "adrs-data" file into the format required for the mail merge portion of
Commodore's Easy Script program. The process of using information created by
one application program with another application program is often referred to as
integration of data.

The first task is to read in the information from the "adrs-data" file. Second,

CORRECTING SEQUENTIAL FILES 133

fonnat the infonnation so that all sets of infonnation have the same number of
infonnation-lines and that the separator symbols (* and 1) are not part of the new
file information. Third, access the first or last name and include it as the last line
of each set of infonnation. This first or last name is used for the greeting portion
of the fonn letter. Fourth, if you require other variable infonnation included in
each letter, the program should allow for the addition of such variable infomlation
to each set of infonnation. Finally, write the restructured file out to the diskette.
The infonnation is now in two separate files. It still exists in the Hadrs-data" file,
and it also now exists in a file that can be used by Easy Script's mail merge portion
for the creation of personalized fonn letters.

In the next chapter, we will take a look at some more techniques for accessing
sequential data files.

QUESTIONS

1. True or False: Under the correction method presented in this chapter, cor­
rected infonnation is immediately written to the disk.

2. What happens to the original Hadrs.data" file once infomlation in it has been
changed?

3. What is the BASIC command used to remove unwanted files?

4. What is the BASIC command used to change the name of files')

5. True or False: Two disk drives are necessary in order to back up a data file.

134 CHAPTER SEVEN

ANSWERS

1. False

2. It becomes "adrs.backup".

3. Scratch

4. Rename

5. False

CORRECTING SEQUENTIAL FILES 135

• Program for MAIL. CORRECTION

100 rem ***--mail.correction--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :bnk$ chr$(10):rem blank line
230
240 poke 53280, 5:rem border = green
250 poke 53272,23:rem upper/lower case
260 poke 53281,11:rem set bkgrd = grey1
265
266
270 rem **--user message--~~
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASE!"
275
276
277 rem **--file input routine--**
278
279 rem *-pointer file-*
280 open 2,8,2,"0:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data file-*
285 dim tlines$(rec)
286 open 3,8,3,"0:adrs-data,seq,read"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 close 3
291
292 tk = rec:rem total k # of lines
293
294
295
400 rem **--menu routine--**
410 tb = 5:rem tab value--5 sps.rt.
420 print home$:rem clr/home
430 print wht$
440 print tab(tb + 3)
450 print rvs$;
460 print "CORRECTION MENU"

136 CHAPTER SEVEN

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

print ylw$
print:print labetb)
pri nt "1. CHANGE OR CORRECT I'HO."
print:print tabetb)
print "2. DELETE INFORMAT10N"
print:print tabetb)
print "3. WRITE REVISED FILE"
print:print tabetb)
pr i n L "4. RETURN TO PROGRAM ~lENU"
print:print tabetb)
input "Which Number Please";nu$
number = val(nu$)

if
if
if
if

number
number
number
number

1 then 1000
2 then 2000
3 then 3000
4 then 4000

gosub 7000:rem incorrecl choice
goto 400:rem menu routine

rem **--correction routine--~~
print home$:rem clr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routine
print tabetb)
print "Type a ";wht$;"O";ylw$;" when finisheri."
print:print tabetb)
poke 19,32:rem disable input?
input "Display which line? ";nb$
if nbS = "0" then 20000:rem menu
nb = valenb$)
rem incorrect choice/ask again
jf nb > tk then gosuh 7000:goto 1000
cd = 4:gosub 9000:rem crsr down 4
print tabetb - 1)
print nb;" ";tlines$enb)
print:print tabetb)
print "Is this correct? "
print:print tab(tb)
gosub 18000:rem yin input routine
if yes$ = "y" then 1000
print:print tab(tb)
print "Type in the correct information:"
print:prinl lab(tb - 1)
print nb;" ";:input cinfo$
print:tlines$enb) = cinfo$
rem clr/home--cursor down routine
print home$:cd = 3:gosub 9000
print:print labetb - 1)
print nb;" ";tlines$enb)
print
go to 1160:rem ask again

CORRECTING SEQUENTIAL FILES 137

I '34 ()
2000 rem ':'--delete routine--':":'
2010 print homp$:rern clr/home
o 0 cd = J:gosull 900():rem crsr down '3
030 print tah(tll)
040 print "Tl'pe a ";wht ;"0";y1w$;" when finished."

:ZO~O print:print t,1b(tll)
o 6 0 p 0 k e 1 9 , '3:2 : rem dis il hIe i n p u \ ')

2070 input "Delete Id1ich line? ";nbS
OSO if nbS = "0" then 20000:rem menu

2090 nb = vHI(nh$)
2100 rem inc () r r c r L c hoi c: e / ask a g a i n
2110 if nh > tk then gosub 7000:goto :2000
2120 cd = 4:gosub 9000:rern crsr down 4
2130 print tilb(tb - 1)
2 1 40 p rill t n b ;" "; t 1 i n e s $ (n b)
2150 print :print :print tabetb)

160 print "Are you sure'i"
:2 1 7 () p rill t : p r i n t tall (til)
21S0 print "Tl'pe ";ldltS;"YES";yLwS;" if you are sure''';
2190 input es$
2200 if yes = "YE:;" or yes$ = "yes" then 2240
2210 goto 21)01):rem hegin again
2220
2230
2240 rem *-Jisplay deleted info.-*
2:250 j = nil
:2 2 6 () if tl i n e s $ (J) = '" 'I the n :2:2 'l ()
2270j = i + l:goto 2:26()
22S0
229() rem *-format numbers & display-*
23()O rem c I r/home -cursor down rout i ne
:2310 print hOll1e$;cd = 3:gosull 9ClOO
2320 for i = nil to j
2330 if i 10 then print tah(J)
2340 if i 9 ilnd i < 100 then print tab(2)
2350 if i 'l'l then print tabCl)
23(,0 print i;" ";tlinesS(i)
2370 tlines$(i) = "DLLETED":d = d + 1
23K!) next i
Fl90 print
:2 400 p r i n t "D [L E T I i\ C: T H J S J:\ F CJ R ~1 A T [I) N "
:2410
2420
2430 rem *-renumber wlout del.info.-*
2440 q = 1
24S() for i = 1 to Lk
2460 if t I i llesSe i) "DELETED" then 2490
2470 tlillesS(q) = t1ines$(i)
24KO q = q + 1
2490 llext
2)ClO
25lU rem subtract # ()j lines deleted for new total
2)21) lk = tk - d
2 5H) d = O:j = 0
2)4!) [Hint

138 CHAPTER SEVEN

2550 goto 20000:rem menu
2560
2570
2580
3000 rem **--file output routine--**
3010
3020 rem *-user message-*
3030 rem clr/home--cursor down routine
3040 print homeS:cd = 3:gosub 9000
3050 print rvs$;
3060 print tab(tb)
3070 print "UPDATING FILES."
3080 print:print:print tab(tb + 10)
3090 print rvs$;:print "PLEASE WAIT!"
3100
3110 rem *-delete/rename backup-*
3120 open 3,8,3,"@0:adrs-backup,seq,write"
3130 close 3
3140 @"scratch:adrs-backup"
3150 @"rename:adrs-backup=adrs-data"
3160
3170 rem *-pointer fi1e-*
3180 open 2,8,2,"@0:adrs-ptr,seq,write"
3190 print#2,tk
3200 close 2
3210
]220 rem *-data file-*
3230 open 3,8,],"0:adrs-data,seq,write"
3240 for i = 1 to tk
3250 print#3,tlines$(i)
3260 next i
3270 close 3
3280
3290 rem *-user mcssage/menu-*
3300 rem clr/home--cursor down routine
]310 print home$:cd = 5:gosub 9000
3320 print tab(tb)
3330 print rvs$;
3340 print "ALL FINISHED"
3350 cd = 10:gosub 9000
3]60 goto 20000:rem menu routine
3370
]]80
]]90
4000 rem '"':'--return to program menu--""
4010 poke 19,0:rem restore input prompt
4020 rem clr/home--cursor down routine
4030 print home$:cd S:gosub 9000
4040 print tabCtb)
4050 print rvs$;
4060 print "LOADING THE MAIL \lENU PROGRAM"
4070 '''mail.menu''
4080
4090
7000 rem **-incorrect choice message-**
7010 print:print:print tab(tb)

CORRECTING SEQUENTIAL FILES 139

7Cl20 print rvsS;"Tncorrect ChoLce'"
7010 print:print tllb(tb)
7 0 4 0 p r i n t "p res s "; \oj 11 t S ; " RET URN" ; y 1 w S ;" toe () n tin u e : " ;
7 CI C, Cl gus II h 1 9 (] (] (] : r e III ret urn k C' r 0 uti 11"

7U6lJ return
7070
7080
7 ()C) 0
'lOOCl reIll --cursor down routinc--':"
c)OIO fur 1 = 1 to cd
QU20 print cdS;
q 0 J U II" X t i
c) U 4 U r' (' t urn
90 -) I)
c)lJCl()
ICiOCH) rern ',",' -clisp:"V routine--':""
10CllO print hornc$:rcm clr/home
lClO~O cd = 3:rC'Ill 3 I ines down
10030 gosub 90()O:rem cursor down rnutine
IO()4() print "h'ould vou I ike a paper print oul?"
IClO'iO print
IOIl,'31l gosub 18C1UO:rE'm yin input ruutine
] Oil (J 0 i j e s S " v" the n 1 0 I 2 (] : r (' m p I' n t
]Illll() if es$ = "n" then 103(]O:rem scrn
I Il I] ()
11)12(1 print homeS:rcIII cir/home
I U I 30 c ri = 1: rem J 1 i II e s dow n
]0140 gosub q()OO:rcm cursor down rnlltinc
10150 print "Please mlIke sure the printer"
lIJlGO print
10170 print "is un 11nrl ready to usc."
11l181l print
lOIc)O print "Arc yuu ready to begin printing?"
11l2ClO print
I 0 2 1 () g 0 5 ubi 8 I) U I) : I' e III Y / n i n put r 0 uti n f'
111220 if vesS = "n" then 10ClOO
1023U
1 0 ~ 4 0 rem ':' - p r i n t e r dis pIa _ ':'
IO:ZSO file 4
I02()O dvic = 4
10270 cmnd = 7
10280 goto IO'iOD:rcIIl open instruction
IIl290
10300 rem ':'-slrE'en display-':'
10310 file J
10j 0 dvic)
1UJJO cmnd]
lO'j40 goto lOSIlU:rcITl open instruction
10350
IC),)GO
10500 rem
10510 open

- () P e fl i fl S t rue l i 0 fl - ;:~

filc,dvic,cmnri
lOC,20 return
10530
10540
10')50

140 CHAPTER SEVEN

18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140
19150
20000
20010
20020
20030
20040
20050

rem ':":'--y In i npul rOllt ine--':<>:'
print "Type a ";whtS;"Y";ylw$;"
poke 19,32;rem disable input?
input yes$

ur ";whtS;"N";yl r$;"

print
if ves$
if ves$
p r in t

"y" or yes$
or yesS "n"

"y"

"N"
then yes$
then yes$

prinl rvs$;"lncorreet Choieel";ylw$
print
goto 18000:rem begin again

rem **--return key routine--**
poke 198,O:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn.
goto 19050:if not 1 go back
poke 19,0:rem restore input prompt
poke 198,1:rem allow for cursor
poke 631,0:rem elr kbrd
nuS = "":rem elr string variable
return

rem **--menu return routine--**
rem if printer IIsed:print#file
rem if printer used:close file
prinl:print
poke 19,32:rem disable input?

"y":return
" n 11 : ret urn

print "Press ";wht$;"RETURN";ylw$;" to go to the

Correct.Henu:";
20060 gosub 19000:rem return key routine
20070 print
20080 goto 400:rcm Jisplay menu rouLine

ready.

." . ..

CORRECTING SEQUENTIAL FILES 141

o
1

"form.l0-20-84 " 84 2a
prg
prg
seq
prg
seq
seq
prg
prg
prg
prg
prg

2
1
12
1
1
4
15
19
1 7
12
37
27
515

"hello"
"example"
"address file"
"mail.create"
"adrs-ptr"
"adrs-data"
"mail.readerl"
"mail.adderl"
"mail.adder2"
"mail.menu"
"shell"
"mail.reader2"
"mail.correction"

blocks free.

ready •

prg
prg

• Program for MAIL.MENU

100 rem ***--mail.menu--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(14S):rem cursor up
170 ::cl$ chr$(l57):rem cursor left
180 : :cr$ chr$C 29): rem cursor right
190 :blk$ chr$(144):rem black
200 :yiw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border: It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 6:rem set bkgrd Lo blue
270
280
500 rem **--menu--**
510 tb = 5:rem tab value--5 spaces rt.
520 print home$:rem clr/home
530 print wht$
540 print tab(tb + 3)
550 print rvs$;
560 print "MAIL PROGRAM MENU"
570 print

142 CHAPTER SEVEN

580 print ylw$
590 print tab(tb)
600 print "1. FlU: CREATTO:-J PROGRAM"
610 print:print lab(lb)
620 print "2. FILE ADDITION PROGRAM"
630 print:print tah(th)
640 print "c). FILE DT:;PJAY PROGRAM"
650 print:print tabeth)
660 print "4. FIll': CORRECTION f'ROGRA'j"
670 print:print tah(tb)
680 print "S. LIST OF FILES"
690 print:print tab(tb)
700 print "6. END"
710 print:print tab(th)
720 poke 19,32:rem disable input?
730 input "Which Program Numb er 7 ";nu$
740 number = val(nu$)
750
760
770
780
790
80D
810
820

if
if
if
if
if
if

number
number
number
number
number
number

1 then 1000
2 then 2000
3 then 3000
4 then L,OOO
5 then 5000
6 then 6000

830 rem *-incorrect choice message-*
840 print:print
850 print tab(tb)
860 print rvs$;"Tncorrect Choice!"
870 print
880 print tahetb)
890 print "Press ";wht$;"RETURN";yl,v$;" to cuntinue:";
900 gosub 19000:rem return key routine
910 goto SOO:rem menu -check again
no
930
1000 rem **--file creation prog.--~·
1010 print homeS:rem elr/home
1020 cd = 2:rem :2 lines down
1030 gosub 9000:rem cursor down routine
1040 print labelS)
1050 print rvs$;
lU60 print "WARNING!"
1070 print:print
1080 print "If the 'adrs-data' file already exists"
1090 print
1100 print "do :J01' run this program!"
1110 print
1120 print "Do you want the fill' creation program?"
11')0 print
1140 gosub 8000:rem yin input routine
1150 if yesS = "n" then 500:rcm menu
1160 print:print
1170 print "Are you sure? Type ";wht$;"YES";ylw$;" if you are:";
11KO input yes$
1190 if yes$ = "YES" or yesS = "yes" then 1210

CORRECTING SEQUENTIAL FILES 143

1200 goto 1000:rem check again
1210 fi1e$ = "MAIL.CREATE"
1220 gosub 7100:rem new program routine after question
1230 ·"mail.create":rem load & run
1240
1250
2000 rem **--file addition prog.--**
2010 file$ = "MAIL.ADDER2"
2020 gosub 7000:rem new program routine
2030 ·"mail.adder2":rem load & run
2040
2050
3000 rem **--file display prog.--**
3010 file$ = "MAIL.READER2"
3020 gosub 7000:rem new program routine
3030 ·"mail.reader2":rem load & run
3040
3050
4000 rem **--file correction prog.--**
4010 file$ = "MAIL.CORRECTION"
4020 gosub 7000:rem new program routine
4030 ·"mail.correction":rem load & run
4040
4050
5000 rem **--list of files routine--**
5010 print home$:rem clr/home
5020 @"$":rem wedge/diskette directory
5030 print cu$;chr$(13):rem 13 = rtn
5040 print "Are you ready to return to the menu?"
5050 print
5060 gosub 8000:rem yin input routine
5070 if yes$ = "y" then 500:rem menu
5080 goto 5000:rem check again
5090
5100
6000 rem **--end routine--**
6010 poke 19,0:rem restore input prompt
6020 print home$:rem clr/home
6030 cd = 5:rem 5 lines down
6040 gosub 9000:rem cursor down routine
6050 print tab(tb)
6060 print rvs$;
6070 print "That's all for this session!"
6080 print:print:print
6090 print tab(tb + 5)
6100 print rvs$;
6110 print "See you next time."
6120 print ylw$
6130 cd = 10:rem 10 lines down
6140 gosub 9000:rem cursor down routine
6150 end
6160
6170
7000 rem **--new program routine--**
7010 print home$:rem clr/home

144 CHAPTER SEVEN

7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
71 70
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120
9000
9010
9020
9030
9040
9050
9060
19000
19010
19020
19030
19040
19050
19060
19070
19080

cd = 2:rem 2 lines down
gosub 9000:rem cursor down routine
print "You have selected the ";file$:print:print "program."
print:print:print
print "Is this the program you want?"
print
gosub 8000:rem yin input routine
if yes$ = "n" then 500:rem menu
print home$:rem elr/home
cd = 5:rem 5 lines down
gosub 9000:rem cursor down routine
print tab(tb)
print rvs$;
print "Please wait'"
print:print:print
print tab(tb + 5)
print rvs$;
print "I'm loading "
print:print:print
print tab(tb + 10)
print rvs$;
print fileS
poke 19,0:rem restore input prompt
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;" :";
poke 19,32:rem disable input?
input yes$
print
if yes$
jf yes$
print

"y"
un"

or
or

yes$
yes$

"y"
"N"

then yes$
then yes$

print rvs$;"lncorrect Choicel";ylw$
print
goto 8000:rem check again

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem **--return key routine--**
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn
goto 19050:if not 1 go back
poke 198,1;rem allow for cursor

"y":return
"n":return

CORRECTING SEQUENTIAL FILES 145

190c)() poke 631,0:rem clr kbrd
19100 nuS = "":rem clr string variable
19110 return

ready .

• Program for MAIL. CREATE

100 rem ***--mail.create--***
I 10
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/homc
1')0 ::cd$ chrS(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
1 70 :: c I $ c h r $ (1 57) : r e 1Il C II r s 0 r 1 eft
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):relll black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18) :rem reverse video
230
240 dim line$(20)
250 poke 53272,23:rem upper/lower case
260 poke 53281,0:rem set bkgrd to black
270
280
300 rem **--keyboard input routine--**
310 k = l:rem line counter
320 print home$:rem clr/home
330 print tab(,)
340 print rvs$;:rem reverse
3')0 print "INC;TRL:CTIONC;"
360 print ylw$:rem yellow
370 print "Type name and ilclclress as if"
380 print "addressing an envelope."
390 print "Do not use a comma or colon!"
400 print "Press ";wht$;"RETURN";ylw$;
410 print" after each line."
420 print
430 print "Type the word ";wht$;"E~D";ylw$;" when finished."
440 print
4 ")0
460
470
480
490
500

print "Type in
poke 19,32:rem
input line$(k)
print
if line$(k)
if line$(k)
goto 440

')10 k = k + 1

line H;k;":"
disable input?

"end" or line$(k) = "END" then 540
"" then print "We need some information.":

520 goto 440:rem go back for lIlore
')30

146 CHAPTER SEVEN

540 line$(k) = "':''':rem separator for phone number
550 k = k + 1
560 print home$:rem clr/home
570 cd = 3:rem 3 lines down
580 gosub 9000:rem cursor down routine
590 print "PHONE: ";:print "Press ";wht$;"RETURN";ylw$;" if

none."
600 input line$(k)
610 if line$(k) = "" then line$(k) = "NONE"
620 k = k + 1
630 line$(k) = "!":rem separator between sets of information
640

rem **--correction routine--**
print home$:rem clr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routine
print "Do not change the line with the ";wht$;""";ylw$;"."
print "This symbol is used as a separator."
print
for i = 1 to k - 1
prinL
next i
print

i;" ";line$(i)

print
if yes$
if yes$

"y"
"n"

then 850
then 830

rem *-pointer file-*
open 2,8,2,"0:adrs-ptr,scq,writc"
print#2,k
close 2

850

CORRECTING SEQUENTIAL FILES 147

close 3

rem **--return to program menu--¥¥
poke 19,0:rem restore input prompt
rem cJr/home cursor down routine
print home$:cd = S:gosub 9000
print tab(tb)
print rvs$;
print "LOADING THE ~lAIL MENU PROGRAM"
""mail.menu"

rem **--y/n input routine--**

3120
3130
3140
5000
SOlO
S020
S030
S040
SOSO
S060
S070
SOSO
S090
SOOO
SOlO
S020
S030
S040
8050
S060
S070
808ll
S090
SIOO
SllO
S120
9000
9010
9020
9030

p r i n t "Ty pea "; w h t $; "y" ; y 1 I, $;" 0 r "; I'; h t$; "N" ; y 1 w S ; "
poke 19,32:rem dis3ble input?
input ves$
print
if yes$
if yes$
print

"y"
"n"

or
or

yes$
yes$

ny"
"N"

then yes$
then yes$

print rvs$;"Incorrect (:hoice''';y1w$
pr i n t

goto 8000:rem ask 3gain

rem **--cursor down routjne--**
for i = 1 to cd
print cdS;
next i

9040 return

ready.

148 CHAPTER SEVEN

"y":return
"n":return

." . . ,

• Program for MAIL.ADDER2

1 00 rem ,', ':' ':' - - m ail . add (' r 2 - - ,:,,:q,
1 10
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chrS(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 : :crS chr$(29):rem cursor right
190 :blkS chr$(144):rem black
200 : yllvS cilrS(1'58): rem yellow
210 :whtS cilrS(5):rem white
220 :rvsS cilrS(18):rem reverse video
230
240 dim 1 ine$(20)
250 poke 532 2,23:rem upper/lower case
260 poke 532Rl,0:rem set bkgrd to black
265
266
270 rem **--new lines for adder--**
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MO\lE,\T PLEASE!"
275
276
277 rem **--file input routine--**
278
279 rem *-pointer file-*
280 open 2,R,2,"0:adrs-ptr,seq,read"
281 inpllt#2,rec
282 close 2
283
284 rem -data [ile-':'
285 dim tlinesS(rec + 100):rem add up to IOD new lines
286 open J,8,J,"():acirs-data,seq,read"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 cLose 3
291
292 tk = rec:rem total k
293
294

of lines

JOO rem **--keyboard input routine--**
310 k = l:rem Line counter
320 print homeS:rcm clr/home
330 print tabeS)
340 print rvs$;: rern reverse
350 print "TNSTRl'CTTO\S"
360 print ylw$:rern vellow
370 print "Type narne and address as if"
380 print "addressing an envelope."

CORRECTING SEQUENTIAL FILES 149

390 print "Do not use a comma or colon l "

400 print "Press ";whL$;"RETURN";ylw$;
410 print" after each line."
420 prinL
430 print "Type the word ";wht$;"F.ND";ylw$;" when finished."
440 print
450
460
470
480
490
500

print "Type in
poke 19,32:rem
input line$(k)
print
if line$(k)
if line$(k)

go to 440
510 k = k + 1

line ";k;":"
disable input?

"end" or line$(k) = "END" then 540
"" then print "We need some information.":

520 goto 440:rem go back for more
530
540 line$(k) = "'"":rem separator for phone number
550 k = k + I
560 print home$:rem clr/home
570 cd = J:rem 3 lines down
580 gosub 9000:rem cursor down routine
590 print "PHONE: ";:print "Press ";wht$;"RETURN";ylwS;" if

none,."

600 input line$(k)
610 if line$(k) = "" then line$(k) = "NONE"
620 k = k + 1
630 line$(k) = "!":rem separator between sets of information
640
650
660 rem **--correction routine--**
670 print home$:rem elr/home
680 cd = 3:rem 3 lines down
690 gosub 9000:rem cursor down routine
700 print "Do not change the line with the ";wht$;"':''';ylw$;''.''
710 prinL "This symbol is used as a separator."
720 print
730 for = 1 to k - 1
740 prinL i;" "; line$(j)
750 next i
760 print
770 print "Change any line? ";
780 go sub 8000:rem yin input routine
790 print
800 if yes$ "y" then 850
810 if yes$ "n" then 830
820
830 goto 1000:rem print label routine
840
850 print:input "Change which line? '';In
860 print
870 if In > k - Lhen print "Number too large''':goto 850
880 if lineS(ln) = ",:," then print "Line";ln;"is the ':''':goto 850
890 print "Line"; In;"now is:"
900 print line$(ln)
910 print

150 CHAPTER SEVEN

920 print "Line";ln;"should be:"
930 inpuL line$(ln)
940 goto fifiO:rem correction routine
950
960
1000 rem **--print label routine--**
1010 prLnt home$:rem clr/home
1020 cd = 3:rem 3 lines down
1030 gosub 9000:rem cursor down routine
1040 print "Would you like to print a"
10';0 print
1060 print "mailing label now?"
1070 print
1080 gosub ROOO:rem v/n input routine
1090 if ves$ "v" thpn 1120
1100 if yes$ = "n" then 2000
1110
1120 print homeS:rem clr/home
1130 cd = 3:rem 3 1 Lnes down
1140 gosuh CJOClO:relll cursor down routine
1150 print "Please make sure the printer"
1160 print
1170 pri.nt "is on and ready Lo use."
1180 prLnt
1190 pri.nt "Are you ready to begin printing?"
1200 print
1210 gosub 8000:rem yin input routine
1220 if yes$ = "n" then 1000
1230
1240 rem **--printer channel--**
1250 open 4,!+,7
1251
1252 rem first 4 = file #
1253 rem second 4 = printer device #
1254 rem 7 command for upper/lower case
1255
1260 for i 1 to k
1270 if line$(i) = ",:,,, then i = i + l:goto 1300
1280 if line$(i) = "!" then 1300
1290 print#4,line$(i)
1300 next i
1310 close 4
1320
1330
2000 rem **--repeat routLne--**
2010
2020 rem *-add new lines to exist. file lines-*
2030 for i = 1 to k
2040 tlines$(tk + i) = line$(i):rem tk + i, not tk + 1
2050 next i
2060 tk = tk + k
2070
2080 print homeS:rem clr/home
2090 cd = 3:rem 3 lines down
2100 gosub 9000:rem cursor down routine
2110 print "Do YOll \.;ant to add more information)"

CORRECTING SEQUENTIAL FILES 151

2120
2130
2140
2150
2160
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
31 10
3120
3130
3140
5000
5010
5020

gosuh 8000:rem yin input routine
if yes$ "y" then 300
if yes$ = "n" then 3000

rem **--file addition routine--**

rem *-pointer file-*
open 2,8,2,"(clf):adrs-ptr,seq,write"
print#2,tk
close 2

rem *-data file-*
open 3,8,3,"@0:adrs-data,seq,write"
for i = 1 to tk
print#3,tlines$(i)
next i
close 3

rem **--end routine--**
end

rem **--y/n input routine--**
5030
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120

p r i n t "T y pea "; w h t $; " y ., ; y 1 w $;" 0 r "; w h t $; " N" ; y 1 w $; "
poke 19,32:rem disable input?
input yes$
print
if yes$
if yes$
print

"y" or yes$
"n" or yes$

"Y" then yes$
"N" then yes$

print rvs$;"Incorrect Choicel";ylw$
print
goto 8000:rem ask again

9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cdS;
9030 next i
9040 return

ready.

152 CHAPTER SEVEN

"y":return
" n":return

." .

• Program for MAIL.READER2

100 rem ***--mail.reader2--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 : :cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 : rvs$ chr$(18): rem reverse video
225 :bnk$ chr$(10):rem blank line
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 2:rem set bkgrd to red
265
266
270 rem **--user message--**
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASE!"
275
276
277 rem **--file input routine--**
278
279 rem *_pointer file-*
280 open 2,8,2,"0:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data file-*
285 dim tlines$(rec),nd$(rec),u(rec),r(rec),ad$(rec),zi$(rec)
286 open 3.8.3,"0:adrs-data,seq,read"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 close 3
291
292 tk = rec:rem total k # of lines
293
294
295
400 rem **--menu--**
410 tb = 5:rem tab value--5 spaces rt.
420 print home$:rem clr/home
430 print wht$
440 print tab(tb + 3)
450 print rvs$;
460 print "DISPLAY MENU"

CORRECTING SEQUENTIAL FILES 153

470 print ylw$
480 print:print tab(tb)
490 print "1. l:I!FOI'~1ATTO!'\--ORIG. ORDER"
500 prinl:print tRh(th)
510 print "2. ~AMES ONLY"
520 print:print tab(tb)
530 pr i nt "3. INFORMATION--NO PHONE"
540 print:print tab(tb)
550 print "4. SPECIFIC NAME"
560 print:print tab(tb)
570 print "5. SPECIFIC NAME--!,\O PHO"!'''
580 print:print tab(tb)
590 print "6. TNFORMATTON--RA!'\GE"
600 print:prlnt IRb(tb)
610 print "7. lNFOR'lATION--ALPHABETTCAL"
620 print:print tab(tb)
630 print "8. RETURN TO PROGRAM MENU"
640 print:print tah(tb)
650 input "Which Kumher Please ";nu$
660 number = val(nu$)
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
1000
1010
102CJ
1030
]04CJ
lCJ50
]060
1070
1080
1090
1100
1110
1120

if number 1 then 1000
if number 2 then ClOCl
i [number 3 then 3000
if number 4 then 4000
if number 5 then ')000
if number 6 then 600(]
if number 7 then 7000
if number 8 then 8000

rem *-incorrect choice message-*
print:print tab(tb)
print rvs$;"Tncorrect Choice!"
print:print tab(th)
print "Press ";wht$;"RETlJRN";ylw$;" to continue:";
gosuh]9000:rem return key routine
goto 4UO:rem menll--check again

rem **--original order routine--**
gosub 10000:rem display routine
rem clr/home cursor down routine
print home$:cd = 3:gosub 90(]0
for i =] to tk
if tlines$(i) = ",~" then 108(]
if tlines$(i) = "!" then print#file,bnk$:goto 1080
print#file,tlines$(i)
next
goto

i
OOOO:rem menu return routine

2000 rem ~~--name onl routine--**
20]0 gosuh 10000:rem display routine

154 CHAPTER SEVEN

2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240

clr/home
- 1

print home$:rem
for i = 1 to tk
if tlines$(i)
if tlines$(i)
go to 2150

tlines$(l) then 2080
"!" then 2080

rem ':'-line up numbers-':'
if i < 10 then print tab(3)
if i > 9 and i < 100 then print tab(2)
if i > 99 then print tab(l)

if tlines$(i)
if tlines$(i)

tlines$(l) then print#file,i;tlines$(l)
",,, then print#file,i + l;tlines$(i + 1)

next i
goto 20000:rem menu return routine

rem **--no phone routine--**
gosub 10000:rem display routine
print home$:rem clr/home
for i = 1 to tk
if tlines$(i) = "'"" then i = i + l:goto 3070
if tlines$(i) = "!" then print#file,bnk$:goto 3070
print#file,tlines$(i)
next i
goto 20000:rem menu return routine

rem **--search routine--**
gosub 10000:rem display routine
print home$:rem clr/home
print "Type the word ";wht$;"END";ylw$;" when finished."
poke 19,32:rem disable input?
print:input "Name to find: ";find$
if findS = "END" or findS = "end" then 4240
print
for i = 1 to tk
if tlines$(i) findS then 4110
goto 4210
if tlines$(i) It,:,,, then 4210
if tlines$(i) "!" then 4210
print#file,bnk$
print#file,tlines$(i)
print#file,tlines$(i + 1)
print#file,tlines$(i + 2)
if tlines$(i + 3) <> ",:,,, then print#file,t1ines$(i + 3)
if tlines$(i + 4) = ",:,,, then 4200
print#file,t1ines$(i + 4):goto 4210
print#file,tlines$(i + 5)
next i
print
goto 4030:rem repeat until done
goto 20000:rem menu return routine

CORRECTING SEQUENTIAL FILES 155

42~O

4260
427()
5000 rem **--search routine/no phone--**
5010 gosub 10000:rem display routine
5020 print home$:rem clr/home
5030 print "Type the word ";wht$;"El\lJ";ylw$;" when finished."
5040 poke 19,32:rem disable inpul 7
')050 print:input "Name to find: ";find$
')060 if findS = "END" or find = "end" thPll SF:'I)
~070 print
50bO for i = 1 to tk
5090 if tlines$(i) findS then SIlO
5100 goto ,)220:rem next i
511'0 if tlines$(i) ",:,,, then i = i + l:goto 5220
5120 if tlines~(i) = "I" then print#fiie,hnk$:goto 5220
5130 print#file,bnk~
'1l40 print#filp,t I ines$(j)
5150 print#file,tlines$(i + 1)
5160 print#file,tlines$(i + 2)
5170 if tl ines$(i + 3) <> II,:,,, then print#file,tlines$(i + 3)
5180 if tlines$(i + 3) = II,:,,, then i = i + l:goto ')220
5190 if tlines$(i + 4) = ",:," then i = i + l:goto 5220
5200 print#file,tlines$(i + 4):goto 5220
5210 print#filp,tlines$(i + 5)
5220 next i
5230 print
5240 goto 5030:rpm repeat until done
5250 goto 20000:rem menu return routine
5260
5270
5280
6000 rem 'H' - - r;l n g e r 0 uti n e - - ':":'
6010 gosub 10000:rem display routine
6020 rem clr/home cursor down routine
6030 print home5:cd = 3:gosuh 9000
6040 input "Type beginning line numbpr pLease: ";bg
6050 print:print
6060 if bg < 1 then print "Number too small!":goto (,040
6070 input "Type ending Line nuber please: ";ed
601:30 print
(,090 if ed > t k then print "Nuiliber too largp I": goto 607()
6100 for i = hg to ed
()110 if tlines$(i) = ",;,,, then i = i + l:goto 6140
6120 if tlines$(i) = "I" then print#filp,bnk$:goto 6140
6130 print#file,tlines$(i)
6140 next i
6150 goto 20000:rem menu return routine
6160
6170
6180
7000 rem **--alphahetical ordpr--**
7005 rem clr/home cursor down routine
7010 print home$:cd = ~:gosub 9000
7020 print rvs$;"WORKING--PLEASE DO:J'T TOUCH!!"
7030 print ylw$

156 CHAPTER SEVEN

7040
7050
7060 rem *-get first info.-1ine-*
7070 for i = I to tk - I
708U if tlinesS(i) tlinesS(I) then 7130
7090 if tlines$(j) "!" then i = j + l:gOlco 7130
710U goto 7240:rem next i
7110
7120
7130 rem reverse order
7140 char = len(tlines$(i))
7150 for va = 1 to char:if asc(mid$(tlines$(i),va,l)) 32

then vz V3

next va 7160
7170
7180

if vz = 0 or vz char then adS(i) = tlines$(i):goto 7190
ad$(i) = mid$(tlines$(i),vz + I,char - vz) + ", " +
left$(tlines$(i) ,vz)

7190 ad$(i) = ad$(i) + ",:":,,, + tlinesS(i + 1) + !!,n" +
tlines$(i + 2)

7200 if II inesS(i + 3) /> II,:,,, then adS(i) = ad$(i) + !!,:,~,,, +
tlinesS(i + 3)

",:," then 7230 721(1
7220
7230
7240
72 SO

if tlines$(i + 4)
adS(i) ad$(i) +
adS(i) = ad$(i) +

1';:~;:::" + tlines$(i + 4) :got()
",:":,,, + tlines$(i + 5)

ne x t i

7260
7:2 70 rem r e n l1 m b e r for so r t
7280 .i =
7290 for i = 1 to tk
7300 if len(adS(i)) > (I then nd$(j)
7310 next i
7320 n = j - 1
7130
7340
73~0 rem ***--4uicksort--~~~
7360 sa = 1
737() print:print

ad$(i): j

240

j + 1

7380 print rvs$;"STlLL \VORKING--PLEASE DON'T TOUCH!!"
7390 u(l) = 1
7400 r(l) = n
7410 ua u(sa)
7420 ra r(sa)
743CJ sa sa - 1
744U 117. ua
74') () r z r a
746() x$ nd$(int«ua + ra)/2))
7470 c = c + I
7480 if nd$(uz) = xS or nd$(llz) > xS then 7510
7490 uz = uz + 1
750CJ goto 747U
7510 c = ca
752CJ if x$ = ndS(rz) or x$ > ndS(rz) then 75~O
7530 rz = rz - 1
7540 goto 75lC)
755CJ if uz) rz then 7620

CORRECTING SEQUENTIAL FILES 157

7560 s ~ s + I
7570 t$ ~ Ild$(llOC)
7580 nd$(uz) nd$(rz)
7590 nd$(rz) t$
7600 llZ ~ llZ + 1
7610 roc ~ rz - 1
7620 if llZ ~

7630 if llZ ~

7640 sa ~ sa
7650 ursa) ~
7660 r(sa) ~

7670 ra ~ rz

rz
ra
+
uz
ra

1

or
or

uz
uz

< rz

> ra

7680 if ua <' ril then 7440
7690 if sa 0 then 7410
7700 rem sort completed!
7710
7720

7730 rem **--display- **

then 7470
then 7670

7740 gosuh 10UOU:rem display routine
7745 rem cLr/homc cursor down routine
7750 priut home$:cd ~ 3:gosub 9000
7760 for i ~ 1 to n
7770 V7 ~ l:q ~ 1
7780 char ~ len(nd$(i»
7790 for va ~ 1 to char
7800 if mid$(nd$(i),va,2) ~ II,:"~:,,, then 7820
7810 goto 7850
7820 zi$(q) ~ mid$(nd$(j),vz,va - vz)
7830 vz ~ va + 2
7840 q ~ q + 1
7850 nex t va
7860
7870 zi$(q) = mid$(nd$(i),vz,char - (vz - 1»
7880
7890 for p ~ I La q
7900 print#filp,zi$(p)
7910 next e
7920
7930 print#file,bnk$
7940 next i
7950 goto 20000:rem menu return routine
7960
7970
7980
8000 rem **--return to program menu--~·
8010 poke 19,0:rem restore input prompt
8020 rem clr/home cursor down routine
8030 print home$:rd ~ ~:gosub 900U
8040 print Lab(th)
8050 print rvs~;

8060 print "LQ,\J)J:iC THE ~lAlL MEt(U PROGlU\l"
8070 A"mail.menu"
8080
8090
9000 rem ,:q'--cursor down routine--"':'

158 CHAPTER SEVEN

9010 fur i = 1 to cd
9020 print cdS;
9030 nE'xt
9040 return
9050
9060
10000 rem **--display routinc--**
10010 print home5:rem clr/home
10020 cd = 3:rem 3 lines down
10030 gosub 9000:rem cursor down routine
10040 print "\"ould you like a paper print out?"
10050 print
10080 gosuh 18000:rem y/n input routine
10090 if jes$ "v" then 10120:rem prnt
10100 if yeoo$ = "n" Ihen 10300:rem scrn
10110
10120 print hume$:rem clr/home
10130 cd = 3:rem 1 lines down
10140 gusub 9000:rem cursor down routine
10150 pri nt "Please m:lke sure the printer"
10160 print
10170 print "is on and ready to use."
10180 print
10190 print "Are you ready to begin printing?"
10200 print
10210 gosub 18000:rem y/n input routine
10220 if yes$ = "n" then 10000
10230
10240 rem *-printer display-*
lCl2S0 file 4
10260 dvic = 4
10270 cmnel = 7
10280 golo 10~00:rem open instruction
10290
10300 rem ~ screen display-*
10310 file 3
10320 elvic = 3
10330 crnnd = 1
10340 golo 10500:rem upen instruction
10350
10360
10500 rem *-open instruction-*
10510 open file,dvic,cmnd
10520 return
10530
10540
10550
18000 rem **--y/n input routine--**
18010 print "Tvpe i1 ";wht$;"Y";ylw$;" or ";"ht$;"N";ylw$;"
18020 poke 19,12:rern disable input?
18030 input ve S
18040
18050
18060

print
if yesS
j f ves$

18070 print

TTyn

Hn "
or yes$ "y" then ves$
or yes$ "N" then yes$

18080 print rvsS;"lncorrect Choicel";ylw'S

IIV": return

" " n : return

." . . ,

CORRECTING SEQUENTIAL FILES 159

18090 print
18100 goto 18000:rem begin again
18110
18120
18130
19000 rem **--return key routine--**
19010 poke 198,0:rem clr kbrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 Lhen 19080:rem 1 = rtn
19070 goto 19050:if not 1 go back
19080 poke 19,0:rem restore input prompt
19090 poke 198,1:rem allow for cursor
19100 poke 631,0:rem clr kbrd
19110 nu$ = "":rem clr string variable
19120 return
19130
19140
19150
20000 rem **--menu return routine--**
20010 print#fi Ie
20020 close file
20030 print
20040 poke 19,32:rem disable input?
20050 print "Press ";whtS;"RETURN";ylw$;" to go Lo the Display

Menu:";
20060 gosub 1900U:rem return key routine
20070 print
20080 goto 400:rem display menu routine

ready.

160 CHAPTER SEVEN

• Program for MAIL. CORRECTION

100 rem ***--mail.correction--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 : :cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(l58):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :bnk$ chr$(10):rem blank line
230
240 poke 53280, 5:rem border = green
250 poke 53272,23:rem upper/lower case
260 poke 53281,11:rem set bkgrd = greyl
265
266
270 rem ':'--user messagc-- --,'
271 print home$:rem clr/home
272 cd = 5:rem 5 lines down
273 gosub 9000:rem cursor down routine
274 print ylw$;"ONE MOMENT PLEASE!"
275
276
277 rem **--file input routine--**
278
279 rem *-pointer file-*
280 open 2,8,2,"0:adrs-ptr,seq,read"
281 input#2,rec
282 close 2
283
284 rem *-data file-*
285 djm tlines$(rec)
286 open 3,8,3,"0:adrs-data,seq,rcad"
287 for i = 1 to rec
288 input#3,tlines$(i)
289 next i
290 close 3
291
292 tk = rec:rem total k # of lines
293
294
295
400 rem **--menu routine--*'
410 tb = 5:rem tab value--5 sps.rt.
420 print home$:rcm clr/home
430 print wht$
440 print tab(tb + 3)
450 print rvs$;
460 print "CORRECTION MEN!'''

CORRECTING SEQUENTIAL FILES 161

470 print ylw$
480 print:print tah(th)
490 print "I. CIL\~;C;E OR C:ORREc:r INFO."
500 print:print tah(th)
510 prin t "2. DELETE INFOR'lA TrON"
520 print:print tah(tb)
5 3 0 p r i n t "3. \v R L T ERE V J ') ED FlU:"
540 print:print tab(tb)
550 print "4. RETURN TO PROGRAM MENU"
560 print:print tab(tb)
570 input "h'hich ~illmber Please"; nuS
580 number = val(nu$)
590
600
61U
620
630
640

i f number
if n LIlli b (' r
if nllmber
jf number

then 1000
') then 2000
:3 then 3UOO
4 then 4000

650 gosub 7000:rcm incorrect choice
660 goto 400:rem menu routine
() 70
680
10UO rem **--correction routine--**
101U print homH$:rem elr/home
1020 cd = 3:rem 3 lines down
1030 gosub 9000: rem cursor down roul i IIC'
1040 print tab(tb)
1050 print "Type a ";wht$;"0";y1w$;" when finished."
1060 print:print tab(tb)
1 0 7 0 p 0 k e 1 9 , 3 2 : r C' III dis d b 1 e i n p II t ?

1080 input "Displav which line'! ";nhS
1090 if nbS = "0" then 20000: rem l11(Onu
1100 nb = val(nb$)
1110 rem incorrelt ehoile/ask again
1 LUI i f n b > t k the n go sub 700 CJ : got () 1 000
1130 cd = 4:gosub 9000:rem ersr down 4
1140 print tab(tb - I)
11SU print nb;" ";tLinC's$(nb)
116U print :print tab(tb)
1170 print "Is this correct? "
1180 print:print tab(tb)
1190 gosub 18000:rem y/n input routine
1200 Lf YC's'l) = "v" then 1000
1210 print:print tab(tb)
1220 print "Type in the correct information:"
1230 print:print tab(tG - 1)
1240 print nb;" ";:input cinfo$
1250 print:tlines$(nb) = Llnfo$
1260 rem clr/home--cursor down routine
127U prinL home$:cd =]:gosub 9000
1280 print:print tab(tb - 1)
1290 print nb;" ";tJines$(nb)
1300 print
1310 go to 1160:rC'm ask again
1320
1330

162 CHAPTER SEVEN

1340
2000 rem **--delete rOuline--*~
2010 print home$:rem clr/home
2020 cd = '3:gosuh 0000:rem crsr down '3
2030 print tabCtb)

040 print "Type a ";wht$;"O";vlwS;" when finished."
2050 print:print tah(tb)
2060 poke)9,3 :rem disable input?
2070 input "lJelete which line') ";nh$
2 0 8 0 i f nbS = "0 " the n 2 0000 : r e I!l :n e n u
2090 nh = valCnbS)
2100 rem incorrect choice/ask again
2110 if nb tk then gosub 7UOO:gClto ~OOO
2120 cd = 4:gosub 9000:rem crsr do:,n 4
2130 print tab(tb - 1)
2140 print nb;" ";tlines$(nb)
2150 print:print:print lab(tb)
2160 print "Arc' vou sure?"
2170 print:print tab(tb)
2180 print "Type ";whtS;"YES";yl\,$;" if you are sure l ";

2190 input ves$
2~UO if esS = "YES" or yesS = "\'es" then 2240
2210 goto 2UOO:rem begin again
2220
2230
2240 rem *-display deleted info.-*
2250 J = nb
2260 if tlines$(j) = "I" then 22'J0
2270 j = j + I :goto 2260
2280
2200 rem *-iormat numbers & display-*
23UO rem clr/home--cursor down routine
2310 print home$:cd = 3:gosub 'JUOO
232U for = nb to j
2330 jf 10 then print tabC])
2340 if 9 and i < 100 then print tab(2)
2350 if i 09 then print tabCl)
2360 print i;" ";tUnesS(i)
2370 tLines$(i) = "DELETED":d = d + 1
2'38U next i
2390 print
2400 print "DELETI\JG THIS I\JFORNATION"
2410
242U
2430 rem *-renumber w!out del.inio.-*
2440 q =
2450 for i = I to lk
246U if tLines$(i) = "DELETED" then 2490
2470 tlines$(q) = tlines$Ci)
2480 q = q + 1
24')0 nex 1 i
2500
251U rem subtract # of lines deleted for new total
252U lk = tk - d
2530 d = O:j = 0

540 print

CORRECTING SEOUENTIAL FILES 163

2550 goto 20000:rem menu
2560
2570
25S0
3000 rem **--file output routine--**
3010
3020 rem *-user messnge-*
3030 rem clr/home--cursor down routine
3040 print home$:cd = 3:gosub 9000
3050 print rvsS;
3060 print tab(tb)
3070 print "lJPDATINC FILES."
3080 print:print:print Lab(tb + 10)
3090 print rvs$;:print "PLEASE WATTI"
3100
3110 rem *-delete/rename backup-*
3120 open 3,8,3,"(GI():adrs-backup,seq,write"
3130 close 3
3140 Q~"scratch:adrs-backup"
3150 @"rename:adrs-backup=adrs-dilta"
3160
3170 rem *-pointer file-*
31S0 open 2,8,2,"@0:adrs-ptr,seq,\Hite"
3190 print#2,tk
'32ClO close 2
3210
3220 rem ':'-data [i le-':'
3 30 open 3,8,3,"0:adrs-datd,seq,write"
3240 for i = 1 to tk
3250 print#3,tlinesS(i)
3260 next i
327Cl close 3
3280
3290 rem *-user message/menu-
3300 rem clr/home--cursor down routine
3310 print home$:cd = 5:gosuh 9000
3320 print Labetb)
3330 print rvs$;
3340 prinL "ALL FINISHED"
3350 cd = 10:gosub 9000
3360 goto 20000:rem menu rouLine
33 70
3380
3390
4000 rem **--return to program menu--**
4010 poke 19,0:rem restore input prompt
4020 rem clr/home--cursor down routine
4030 print home$:cd = 5:gosub 9000
4040 print tah(tb) .
4050 print rvs$;
4()60 print "LOADING THE MAIL \lENli PROGRA~l"
4070 '''mail.menu''
4080
4090
7000 rem **-incorrect choice message-**
7010 print:print:print tab(tb)

164 CHAPTER SEVEN

7020 print rvsS;"Incorrec:t Choiee l "

7030 print:print tab(tb)
7U40 print "Press ";wht$;"RETuRN";ylw$;" to continue:";
7U50 gosub 19000:rem return key routine
7060 return
7070
70SU
7090
9000 rpm ~ --cursor down routine--*~

9010 for i I to cd
902(] print cdS;
90'30 next i
9040 return
90')0
9060
10000 rem ':""--display routlne--':":'
IU(]lO print home$:rem elr/home
IOU20 cd = 3:rem 3 Lines down
IUU30 gosub 9000:rem cursor down routine
10040 print "\';ould you like a paper print out')"
IClCl50 print
1(]080 go sub lSOOO:rcm yin input routine
l0090 if yes$ "y" then 10120:rem prnt
lOlOO if yes$ = "n" then 10'll)U:rem sern
1 0 1 10
lCl120 print home$:rem clr/hume
10130 cd = 3:rem 3 lines down
10140 gosub 9000:rem cursor down routine
LUlSO print "Please make sure the printer"
10160 prjnt
10170 print "is on and ready to use."
101S0 print
lOl90 print "Are you ready to begin printing?"
10200 print
L0210 gosub IBOOO:rem yin input routine
10220 if yes$ = "n" then 10000
10230
10240 rem ':'-printcr c1isplay-':'
10250 file 4
10260 dvic = 4
10270 cmnd = 7
102S0 goto lO'iOO:rem open instruction
10290
103UO rem *-screen display-*
10310 fjle 3
1032() dvic = 3
10330 (mnd = 1
10340 gotu 10S00:rem open instruction
10350
10360
1050 (] rem ':' - 0 pen i 11 S t rue t ion -,~
10510 open file,c1vic,cmnd
1052CJ return
105:lO
10540
10550

CORRECTING SEQUENTIAL FILES 165

18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120

rem '"':'--v/n inpl1t routine--':":'
print "Type a ";wht5;"Y";ylw$;"
poke 19,J2:rem disable input?
input yesS

or ";wht$;"N";ylt,.,l S;"

18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140
19150

print
if yes$
if yes$
print

"y"
"n"

or
or

yes$
yes$

"y"
"0;"

then yes5
then yes$

print rvs$;"Incorrect Choice!";ylw$
print
goto 18000:rem begin again

rem **--return key routine--**
poke 198,O:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no v,lLl1e
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem I = rtn.
goto 19050:if not 1 go back
poke 19,0:rem restore input prompt
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nuS = "":rem clr string vClriable
return

20000 rem **--menu return routine--**
20010 rem jf printer used:print#fiLe
2UU2U rem jf prinLer used:r10se file
20030 print:print
20040 poke 19,32:rem disable input?

"y":return
"n":return

20050 print "Press ";wht$;"RETURN";ylw$;" to go to the
Cor r c ct. [VI €' n u : 'I ;

20060 gosub 19000:rem return key routine
20070 print
20080 goto 400:rem display menu routine

ready.

166 CHAPTER SEVEN

." . . ,

8 additional
sequential file
techniques

We are going to explore some other ways to work with sequential files and look
at additional techniques for file handling. In this chapter, I am going to concentrate
on the file routines of the various programs presented and not discuss the rest of
the programming. The listings for the complete programs are included at the end
of this chapter along with an explanation of the new commands used in these
programs.

We will begin with a series of programs that allows an individual to practice
math and keep a record of the scores achieved. These programs are essentially drill
and practice and may not be the best educational use of the computer. But for the
purpose of demonstrating how files can be used in a variety of ways, these drill
and practice programs will be sufficient.

We again start with careful thought and preparation. We need a separate pro­
gram for each mathematical operation, along with a program for the scores. This
means that another program menu would be convenient. The essential difference
between the operation programs is the sign of the operation: .. + " for addition, .. x "
for multiplication, etc. With the exception of division, the numbers can be displayed
in basically the same way. Therefore, the program presented for addition can also
be used for subtraction and multiplication with changes made to only seven lines:
100,480, 510, 830, 840, 850, and 1170. In all those lines, the references to addition

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 167

should be changed to the desired operation. After the "addition" program has been
typed in, the procedure to make the necessary changes should be:

1. Load the "add" program:
/add

2. List the first line to be changed:
list 100
100 rem ***--addition--***

3. Make the necessary change for the specific program:
100 rem ***--subtraction--***
or
100 rem ***--multiplication--***

4. List the next line and make the changes.

5. Repeat for each of the seven lines.

The seven lines with their changes follow:

add 100 rem--addition--***
subtract: 100 rem--subtraction--***
multiply: 100 rem--multiplication--***

add 480 input "number you are adding by? ";max$
subtract: 480 input "number you are subtracting by? ";max$
mUltiply: 480 input "number you are multiplying by? ";max$

add 510 {same as 480}
subtract: 510 {same as 480}
multiply: 510 {same as 480}

add
subtract:
multiply:

add
subtract:
mUltiply:

add
subtract:
multiply:

add
subtract:
multiply:

830 c a + b
830 c a - b
830 c a * b

840 s$ H+'.
840 s$
840 s$ "x"

850 sn$ "addition"
850 sn$ "subtraction"
850 sn$ "multiplication"

1170 print tab(tb
1170 print tab(tb
1170 print tab(tb

+ 2) rvs$;nc$;" 's ";sn$;" practice."
+ 1) rvs$;nc$;" 's ";sn$;" practice."

1) rvs$;nc$;" 's ";sn$;" practice."

168 CHAPTER EIGHT

Once all the changes have been made, save the new program:

+-SUBTRACT or ~MULTIPLY

The program for division has additional code because the numbers must be formatted
differently, and provision has been made so that all problems come out even.

All these programs can be included in one large program, but the flow of logic
in the program would not be as easy to follow as it is with separate programs. Little
would be gained by forcing everything into one program since BASIC allows us
to switch from one program to another if you are using a disk drive.

We must carefully consider what we want to save in our scores data file. There
are several pieces of information that might be important to save, but a good rule
is to save only what is absolutely necessary-what it would be hard or impossible
to calculate from existing information. For example, we could save the total number
of problems, the number correct, the number wrong, the percentage, the name of
the individual, the kind of mathematical operation, the number of digits chosen,
and so on. If the programs were slightly altered, we could also save the actual
problems missed, the number of tries on a particular problem, and the last question
the person tried. Obviously, all this information is not necessary, although certain
individuals might value and save information that others would not want.

So the first step is to decide what information to save. In this example, we
will save four things: the type of operation, the number of digits in the operation,
the number of correct answers, and the number of wrong answers. Once we decide
what to save, we need only save the assigned variables for these pieces of infor­
mation. The code to do this is given below.

3000 rem **--file input/output--**
3010 :
3020 rem *-user message-*
3030 poke 19,0:rem reset input prompt
3040 cd = 5:gosub 9000:rem crsr down 5
3050 print tab(8)
3060 print rvs$;
3070 print "UPDATING FILES."
3080 print:print:print tab(B)
3090 print rvs$; "PLEASE WAIT!"
3100 :
3110 rem **--file input routine--**
3120 k = 1
3130 open 3,8,3,cv$ + ",seq,read"
3140 input#3,s$(k):rem sign
3150 input#3,dt(k):rem # of digits

ADDITIONAL SEOUENTIAL FILES TECHNIOUES 169

3160 input#3,cr(k):rem # of correct
3170 input#3,wr(k):rem # of wrong
3180 if status 0 then k = k + 1 :goto 3140
3190 if status = 64 then k = k + 1
3200 :
3210 rem status = O--all ok
3220 rem status = 64--eof
3230 rem status not 0 or 64--1 st use
3240 :
3250 s$(k) = s$:dt(k) = dt:cr(k) = cr:wr(k) wr
3260 close 3
3270 :
3280 :
3300 rem **--file output routine--**
3310 open 4,8,4," (21 0:" + cv$ + ",seq,write"
3320 for i = 1 to k
3330 print#4,s$(i):rem sign
3340 print#4,dt(i):rem # of digits
3350 print #4,cr(i):rem # of correct
3360 print#4,wr(i):rem # of wrong
3370 next i
3380 :
3390 close 4
3400 :
3410 :

Some of this should be familiar. But the sequence and a few commands may appear
different.

Remember that in our Mailing List System programs, we used one program
to create the "adrs-data" file and another program to add to it. Such a sequence is
usually necessary when creating a file that will later be added to. The use of the
"status" command eliminates the need for two separate programs. Now, we have
the following sequence: The first time the program is run, the computer will attempt
to read infonnation from a file that does not yet exist. When it finds that no such
file exists, it creates the file and then writes the first set of information into the file.
Thus, the file is created and the first set of infom1ation is written into the file. The
second time (and succeeding times) the program is run, the computer reads the
infonnation from the file because it finds that such a file does exist. We have
accomplished in one routine what would normally have taken two routines to do.

The status command provides us with the current "status" of the system fol­
lowing an input/output (I/O) operation. The first time this program is used, the
status will indicate that no information has been read into the computer, because
no such file yet exists. Since nothing has been read into the arrays, the counter (k)

170 CHAPTER EIGHT

retains the value of one (I). Control passes to line 3250, which stores the value of
the current session's infonnation in the appropriate array. Since the array now
contains some infonnation, we can proceed to write that infonnation out to the
diskette. The file output routine accomplishes the task of writing the infonnation
to the diskette in pretty much the same manner we have used before.

But you should notice that we are using a variable for the file name. In our
Mailing List System programs, we always used the constant Hadrs-data" for our
file name. But in this situation, and many file routines, it is more convenient to
assign a variable as the file name. Anytime an individual uses any of these programs,
the infonnation is kept in a file under that person's name. By using a variable for
the file name, we eliminate the need for separate programs for each person that
uses any of the math operation programs.

You must be careful to type your name the same way every time you use the
programs. For example, if I answer that my name is DAVID the first time I use
these programs, the file will be created under the name of DAVID. If I come back
later and answer that my name is DAVE, a new and separate file will be created
for DAVE. This need for consistency is the reason the entered name (line 560) is
converted to lower case characters (7000-7180). It is also the reason the variable
cv$ (instead of name$) is used for the file name. It is possible to have at least three
different logical fonns of the same name: DAVID, David, or david. Without the
conversion routine, each of these fonns would create a new file. With this conversion
routine, the name is always changed into lower case letters and, therefore, one file
is created and updated with the file name appearing in lower case characters. As
with most things, there are advantages to the use of a variable for the file name,
but there are also disadvantages. The user may get tired of being required to type
his or her name. But the use of a variable for the file name remains a popular
programming technique. The variable must be a string variable since no file name
can begin with a number. (The file name can contain a number but just cannot
begin with a number.)

The file routine used in the program "math. scores" is very similar to the one
just discussed, but instead of writing infonnation to the disk, this routine reads
infonnation from the disk.

380 rem **--file input routine--**
390 dim s$(100),dt(100),cr(100),wr(100)
400 open 2,8,2,cv$ + ",seq,read"
410 k = 1
420 input#2,s$(k): rem sign of operation
430 input#2,dt(k):rem # of digits
440 input#2,cr(k):rem # of correct
450 input#2,wr(k):rem # of wrong
460k=k+1
470 if status = 0 then 420

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 171

480 close 2
490 :

This time the status function is used to test for the end of file number 2, or the end
of the data. If the status function is not included, we have no way of telling how
much information or how many records exist in the file. We did not keep track of
that information by writing out a counter to the file as we did in the Mailing List
System. Without the status function, we would experience an "end of data error"
and the program would halt-the RUN/STOP key would need to be pressed to
bring the computer back. But with the status function, the computer is instructed
to get information only so long as an error condition does not exist. Then. when
the end of the file or "end of data error" occurs, the computer is infonned to go to
the next instruction (line 480) and proceed from there. At this point, we close the
file, since we are now cel1ain that we have all the information the file contains.
The use of the status function saves both programming and disk space.

You should notice one other major difference in this routine. In most of our
programs, we have used FOR ... NEXT loops. Hut this time. we do not know
how many items the file contains and, therefore, we do not know how large the
counter needs to eventually become. It is true that we could pick an arbitrary number,
but a better method is the one used in this routine. This method is still a loop, since
the computer is instructed to follow the instructions down to line 470 and then go
back to the instruction at line 420 and do everything over again. What gets us out
of this loop') The status function does when it executes as the end of the file is
encountered. When this loop is finished, we should have the values we want from
the file and can proceed to the display routine.

These math programs provide additional file handling techniques. as well as a
set of useful drill and practice programs. The menu program uses the same method
we have been using to display a set of choices and then run the appropriate program.
Apart from file handling. the math programs also have some programming tech­
niques that might prove interesting.

To conclude this chapter, I have added two other programs that make use of
file handling and fit our purpose of demonstrating filing techniques. The programs
are presented in a rough form. Individuals may wish (and, in fact, are encouraged)
to add parts to these programs or modify the format. The final programs present
an elementary method of drill and practice on any subject.

With the exception of the menu program and its associated lines in the various
math programs, these math programs can be adapted to tape use by changing all
lines that open a disk file. The programs are of moderate size and will require some
time to load from tape. In fact. because the Commodore-64 uses a serial process
for its disk access (where information is fed from the computer to the disk one
piece at a time, similar to character by character) instead of the more common
parallel process (where information is fed from the computer to the disk in groups,
similar to word by word rather than character by character), the loading of these

172 CHAPTER EIGHT

programs and the Mailing List System programs can take quite a bit of time. There
is another significant difference between disk use and tape use. Disk use allows us
to reduce the time in certain applications even more. The random-access section
of this book will demonstrate that it is not necessary to read in all the data in order
to display, add to, or change that information. In fact, some might find that the
applications presented in this sequential access section might better be implemented
by random access programs. If that is the case for you, I would encourage you to
make the necessary changes in the Mailing List System and Math System programs
after reading the random-access section so that you have random-access files instead
of sequential access files.

By now, some of you have no doubt found out that certain of these commands
can be abbreviated and that there are "shortcuts." I have intentionally avoided using
these abbreviations and shortcuts because my purpose is to make the code as self­
explanatory as possible. I encourage you to follow the example set in this book,
but it is not necessary to spell out some of these commands or include the rem
statements in order for these programs to work. One argument against including
this expanded code format is that the program will operate faster since each line
and each character in the line must be interpreted by the command processor. I
personally have not found a significant difference in speed of operation for file
application programs once the program has been loaded into the computer. But,
the inclusion of all the rem statements and unabbreviated code does greatly expand
the size of the file and, therefore, requires more time to load into the computer. If
the slowness of the loading process seems to bother you, you might want to redo
the programs without the rem statements and the unabbreviated code. I would
suggest that you maintain a copy of the original program becuase I have found that
a fully documented program is worth a little extra load time.

In the final chapter on sequential access files, we will take a brief look at the
possibility of a standard method for storing data so that the data can be used by a
variety of commercial programs.

NEW COMMANDS OR TERMS IN THE FOLLOWING
PROGRAMS

1. Raise to the power of the number following this symbol (when used as
a math function).

2. RND Generate a random number.

3. INT Take only the integer portion of the number in parentheses.

4. LEN Find the length of the string in terms of the number of characters in
the string.

5. STR$ Convert the specified number into a string value.

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 173

6. VAL Give the numeric value of a string.

7. SGN Returns the signum function.

8. DEF FN Define a function. This useful command allows a programmer to
set a single variable equal to a complete equation.

QUESTIONS

1. A good rule to follow in deciding what information to save is to save (A)
everything possible, (B) as little as possible, (C) only what is absolutely nec­
essary.

2. True or False: It is possible to delete and rename files from within a program.

3. True or False: It is never possible to use a variable as a file name.

4. What type of variable can be used as a file name?

5. Which BASIC statement retrieves only the integer portion of a number?

6. Which BASIC statement converts a number into a string?

7. Which BASIC statement converts a string into a number?

8. Which BASIC statement can be used to test for the end of a sequential access
file?

174 CHAPTER EIGHT

ANSWERS

1. C

2. True

3. False

4. String

5. INT

6. STR$

7. VAL

8. STATUS

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 175

• Program for MATH.MENU

100 rem ***--math.menu--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157): rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,I4:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 6:rem set bkgrd to blue
270
280
500 rem **--menu--**
510 tb = 10:rem tab value-l0 spaces rt.
520 print home$:rem clr/home
0)30 print wht$;
540 print tab(tb)
550 print rvs$;
560 print "tlATII PROGRAM MENU"
570 print
580 print ylw$
590 print tab(tb)
600 print "1. ADDITION"
610 print:print tab(tb)
620 prlnt "2. SUBTRACTION"
630 print:print tab(tb)
640 print "3. MULTIPLICATION"
650 print:print tab(tb)
660 print "4. DIVISION"
670 print:print tab(tb)
680 print "5. SCORES"
690 print:print tab(tb)
700 print "6. INFOR!lATION"
710 print:print tabetb)
720 print "7. LIST OF FILES"
730 print:print tab(tb)
740 print "8. END"
750 print:print tah(tb)
760 poke 19,32:rem disable input?
770 input "\vhich Program Number? ";nu$
780 number = val(nu$)
790
800
810
820
830

176

if number 1
if number 2
if number 3
if number 4

CHAPTER EIGHT

then 1000
then 2000
then 3000
then 4000

number
number

if number
if number

5 then
6 then
7 then
8 then

5000
6000
70UO
8000

rem *-incorrect choice message-*
print:print:print tab(tb)
print rvs$;"Incorrect Choice!"
print:print tab(tb)
print "Press ";wht$;"RETURN";ylw$;"
gosub 19030:rem return key routine
goto 500:rem menu--check again

840 if
850 if
860
870
880
890
900
910
920
930
940
950
960
970
1000
1010
1020
1030
1040
1050
2000
2010
2020
2030
2040
2050
3000
3010
3020
3030
3040
3050
4000
4010
4020
4030
4040
4050
5000
5010
5020
5030
5040
5050
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110

to continue:";

rem **--math.add--**
fileS = "~lATH.ADD"
gosub 17000:rem new program routine
'''math.add'':rem load & run

rem **--math.subtract--**
fileS = "MATH.SUBTRACT"
go sub 17000:rem new program routine
'''math.subtract'':rem load & run

rem **--math.multiply--**
fileS = "MATH.HULTIPLY"
gosub 17000:rem new program
'''math.multiply'':rem load &

rem **--math.divide--**
fileS = "MATH.DIVIDE"

routine
run

gosub 17000:rem new program routine
'" mat h.di.vide":rem load & run

rem **--math.scores--**
file:!; = "HATH.SCORES"
gosub 17000:rem new program routine
'''math.scores'':rem load & run

rem **--information--**
print home$:rem clr/home
print "This is a series of math drill and"
print
print "practice programs. It is designed to"
print
print
print
print
print
print
print

"allow for as much flexibility as pos-"

"sible. The question about the number of"

"digits might, at first, seem confusing."

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 177

6120 print "The question simply asks for the great-"
6130 print
6140 print "est number of digits possible in either"
6150 print
6160 print "figure. The next two questions further"
6170 print
6180 print "allow you to limit the possible prob-"
6190 print
620U print "lems. for example, if you wanted to"
6210 print
6220
6230
6240
6250
6260
6270
6280
6290
6 C:l00
6310
6320
6330
6340
6350
6360
() 3 70
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
654U
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670

178

gosub 19000:rem return key routine

print "practice mUltiplying by'S', you could"
print
print "choose three digit numbers and then"
print
print "answer with a '5' for each of the next"
print
print "two questions. You would then be given"
print
print "problems like: 345 x 5 or 823 x 5."
print
print "Another example would be to add two"
print
print "digit numbers by answering the ques-"
print
print "tions in this way:
print
print tab(tb):print "How many digits--2"
print
print tab(tb):print "Largest number--99"
print
print tab(tb):print "Smallest number--l"
print

gosub 19000:rem return key routine

print "You could then get problems like:"
print
print tab(tb):print "58 + 34 or 87 + 9."
print
print "Trying the different possibilities will"
print
print "soon indicate the flexibility."
print
print " The division section will only"
print
print "offer problems that come out even. You"
print
print "may have to wait a short time for the"
print
print "next problem. This is because the num-"
print
print "hers generated must meet certain spec-"
print

CHAPTER EIGHT

6680
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
68CO
C870
6880
6890
6900
6910
6920
6930
6940
6950
6960
6970

print "ifi.cations. The process speeds up when"
print

gosuh 19000:rem return kev routine

print "the number being divided contains at"
print
print "least two more digits than the divisor."
print
print This is not a professiona I program"
print
print "and, therefore, does not do a lot of"
print
print "error checking. You can crash the pro-"
print
print
print

"grams with confusing ansl>'ers or . " lTI1S-

print "takes in typing. These programs were"
print

6980

print "done mainly to demonstrate, in a useful"
print
print "manner, certain file handling capabi.l-"
print
print "ities and techniques."
print

gosub 19000:rem return key routine

goto 500

7000 rem **--list of files routine--**
7010 print home$:rem clr/home
7020 @"$"
7030 print cu$;chr$(13):rem 13 = rtn
7040 print "Are you ready to return to the menu?"
7050 print
7060 gosuh 18000:rem yin input routine
7070 if yes$ = "y" then 500:rem menu
7080 goto 7000:rem check again
7090
7100
8000 rem **--end routine--**
8010 poke 19,0:rem restore input prompt
8020 print homeS:rem clr/home
8030 cd = 5:rem 5 lines down
8040 gosuh 9000:rem crsr down routine
8050 print tab(tb - 5)
8060 print rvs$;
8070 print "That's a11 for this session!"
8080 print:print:print
8090 print tab(tb)
8100 print rvs$;
8110 print "See YOll next time."
8120 print ylw$
8130 cd = 10:rem 10 lines down

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 179

8140 gosub 90()():rl':n ersr dowll routine
8150 elld
SI60
S17D
gOOD rem **--cursor down routine--**
90lD for i = 1 to cd
LJ020 print cdS;
9D30 next
')04D return
90,)O
gOGO
17000 rom ¥¥--new program routinc--**
I 701 Cl P r i n t I, () IIll' ~ : r f' III e] r / h () nl('

1702D cd = :':rl'm 2 lines dO\dl
17030 gusu h q()I)(I: n'l1I C r,~ r d ()"n rou tine
17040 print "1'011 11'1\'(' scleeLe'1! the ";file$:prinL:print "progralIl."
1 7 Cl 5 () p r i n t : p r I II I : p rill I
17Cl60 print "I,e.; tille.; IIH' pro['Jam you want""
17070 print
170RO gosuh 1,';I,IIiI:rr'l1I v/Il IIIPl1t routine
170,)() if ycc;c, = ",," the'll ',(II):I'C'11I menu
17100 print home$:rem elr/home
1711() cd = S:rC'1n S lines down
17L)() gOSll\J 9(J()(): rem ersr down rOllt inl'
j 7 I 'j() P r i n t tel b (t b - ')
17i4U print
I 7 I S D p rill t

rvs$;
"Please wait!"

l716() priIIL:print:prinL
17170 print tab(tb)
l71t]O priliL rvs$;
1719() print "1'111 lO'ldillg ••.
172()() print:prlllt:p:'iIlL
17210 prinL tdh(th + R)

rvs$;
Ii 1 c

l722() print
17230 print
17240 puke 1 (J , () : r (' rn
172S0 r"turll
172 (,()
In 7()

res t () r (' i n put pro m p t

I R () () (] r- C In ':';" - - y / II i n put r 0 u t j n e - - ,:q
LkClIll print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
lflO:)l)]Joke' 19,32:rem disable input
1 8 OJ [) i n p 1I t yes $
Ik()40 priliL
I RIJ,)O if Yl's$
IkO('O if yes$
Ul070 print

"y"
"n"

or
or

yes$
yes$

"y"
"N"

then yes$
then yes$

ISDflO print rvs$;"lncr)rrert C'hoice!";ylw$
lS090 print
1 fll () () got u I R () il 0: r c' III (h e c k :J ,', il i n
lfll10
IS120
19000 rem ~*--rC'turn key routine--**
19011J print

"y":return
"n":return

1902 Cl p ri n t "I' r C' s s "; \,' h t ;" R ET URN" ; y 1 w $;" to con t j n u e : " ;

180 CHAPTER EIGHT

." . . ,

19030 poke 198,O:rem clr kGrd buffer
19040 for i = 631 to (14ii
19050 poke i ,U:rem fl(l vdlue
19060 next I

19070 x = peek(197):rem store key press
19080 if x = 1 then 19100
19()90 goto 19070: if not 1 go bilCk
19100 poke 198,I:rem allow 1 for cursor
19110 poke 631,O:rem clr kbrd
19120 IlU$ = "":rem clr slring variable
19130 print home$:rem clr/home
19140 return

ready.

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 181

• Program for MATH.ADD

100
110
120
130
140
150
160
170
180
190
200
210
220
225
226
227
230
240
250
260
262
263
265
266
270
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
400
410
420
430
440
450
460
470
480
490

182

rem ***--addition--***

rem **--initializBtion--**
homeS chr$(147):rem clr/home
: : cd $ c h r $ (17): rem cur s 0 r down
: :cu$ chr$(145) :rem cursor up
::cl$ chr$(157):rem cursor left
::cr$ ehr$(29):rem cursor right
:blk$ ehr$(144):rem black
:ylwS chr$(158):rem yellow
:wht$ chr$(5):rem white
:rvs$ chr$(18 :rem reverse video
:bnk$ ehr$(10 :rem blank line
:brn$ chr$(149 :rem brown
:bue$ chr$(31 :rem hlue

poke 53280,14:rem border = It.blue
poke 53272,23:rem upper/lower case
poke 53281, 7:rem set hkgrd to ylw
dim s$(100),dt(100),cr(100),wr(100)
tb = 5:rem tab value

rem **--variable list--**
rem a
rem b
rem c
rem d
rem q'
rem w
rem Z

top number
bottom numher
correct answer
student's anSwer
counter
previous anSwer
number of tries

rem cr # of correct answers
rem wr # of wrong answers
rem dt # of digits
rem da # of digits in a
rem db # of digits i n h
rem de # of digits i n c
rem dm # of digits in max amnt
rem other variables are descriptive

rem **--request user info.--
print brn$:rem brOwn text/ylw bkgrd
poke 19,32:rem disable input?
rem elr/home--cursor down 3
print home$:cd = 3:gosub 9000
input "How many digilS? ";digit$
print:print:print
print "What is the largest figure for the"
input "number vou are adding by? ";max$
print:print:print

CHAPTER EIGHT

500 print "khat is the smallest figure for the"
510 input "number vou are adding by? ";mn$
520 dt = val(digit$):max : val(max$):mn = val(mn$)
530 digit = val(digit$)
540 digi t = 10 • digit
550 print:print:print
560 input "What is your name? ";name$
570
580 rem convert to lowercase
590 cv$ = nameS
600 gosub 7000:rem lowercase subroutine
610
620
630 rem **--create problem--**
640
650 dm = len(maxS)
660
670 rem when b'S digits < dt
680 if dt = dm + 1 or dt < dm + 1 then 750
690 dm = 10 • dm
700 b = int(rnd(O) * dm)
710 if b < mn then 700
720 if b > max then 700
730 goto 800:rem get # for a
740
750 z = 1
760 b = int(rnd(O) * digit)
770 if b < mn then 760
780 if b > max then 760
790
800 a = int(rnd(O) * digit)
810
820 rem *-answer-*
830 c = a + b
840 s$ = "+":rem determine operation
850 sn$ = "addition"
860 if c < 0 then 760:rem for subtract.
870 if c = w then 760:rem previous ans.
880 w = c
890
900
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

rem
rem
a$
da
a$
da
b$
db
b$
db
c$
dc
c$
dc

':":'--display problem--':""
determine lengths
str$(a)
len(a$)
right$(a$,da - l):rem no sign
len(a$)
str$(b)
len(b$)
rightS(b$,dh - l):rem no sign
len(b$)
str$(c)
len(c$)
right$(c$,clc - l):rem no sign
len(c$)

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 183

1150 rem format
1160 print home$:rem clr/home
1170 print tab(tb + 2) rvs$;nc$;"'s ";sn$;" practice."
1180 cd = 3:gosub 9000:rem crsr down 3
1190 print tab(4)
1200 print "Type the word ";blk$;"END";brn$;" when finished l "

1210 cd = 5:gosub 9000:rem crsr down 5
1220 print tab(22 da):print a$
1230 print tab(22 - (db + l»:print s$;b$
1240
1250 rem draw line
1260 q = 1
1270 if da > db then q = 0
1280 print tab(22 - (dt + q»
1290 for i = 1 to (dt + q)
1300 print " "
1310 next i
1320
1330
1500 rem **--get answer--**
1510 print
1520 print tab(22 - de)
1530 input answerS
1540
1550 if answer$ = "END" or answerS = "end" then 2000
1560 d = val(answer$)
1570 if d c then 5000:rem correct
1580 if z < 3 then 6000:rem wrong
1590
1600 rem give answer after 3 tries
1610 print:print:print:print tab(8)
1620 print "No, the answer is ";bue$;c;brl\$
1630 print:print:print tab(8)
1640 print a;" ";8$;" ";b;" ";c
1650 print:print:z = l:wr = wr + 1
1660 print tab(8)
1670 print "Press ";blk$;"RETURN";brn$;" to continue: ";
1680 gosub 19000:rem return key routine
1690 go to 630:rem another problem
1700
1710
1720
2000 rem **--total routine--**
2010 rem c1r/home--cursor down 5
2020 print home$:cd = 5:gosub 9000
2030 print tab(8)
2040 print "You got";bue$;cr;brn$;"right l "

2050 print:print tab(8)
2060 print "You missed";bue$;wr;brn$;"."
2070
2080
3000 rem **--fi1e input/output--~¥
3010
3020 rem *-user message-*
3030 poke 19,0:rem reset input prompt
3040 cd = 5:gosub 9000:rem crsr down 5

184 CHAPTER EIGHT

3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
5000
5010
5020
5030
5040
5050
5060
5070
5080

print tabeS)
print rvs$;
print "UPDATING FILES."
print:print:print tabeS)
print rvs$;"PLEASE WAITI"

rem **--file input routine--**
k = 1
open 3,8,3,cv$ + ",seq,read"
input#3,s$(k):rem sign
input#3,dt(k):rem # of digits
input#3,cr(k):rem # of correct
input#3,wr(k):rem # of wrong
if status 0 then k = k + l:goto 3140
if status = 64 then k = k + 1

rem status O--all ok
rem status 64--eof
rem status not 0 or 64--1st use

s$(k)
close 3

s$:dt(k) = dt: cr(k) = cr:wr(k)

rem **--file output routine--**
open 4,8,4,"@0:" + cv$ + ",seq,write"
for i = 1 to k
print#4,s$(i):rem sign
print#4,dt(i):rem # of digits
print#4,cr(i):rem # of correct
print#4,wr(i):rem # of wrong
next i

close 4

rem **--return to program menu--**
poke 19,0:rem restore input prompt
rem clr/home cursor down routine
print home$:cd = S:gosub 9000
print tab(tb)
print rvs$;
print "LOADING THE MATH MENU PROGRAM"
'''math.menu''

rem **--correct answer routine--**
cd = 5:gosub 9000:rem crsr down 5
print:print tab(lS)
print "GOODI"
for i = 1 to 1000:next i
cr = cr + 1
goto 630:rem another problem

wr

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 185

6000
6010
6lJ20
(,030
6040
6050
6060
6070
(,080
6090
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
71 70
7180
9000
9010
9020
9030
9040
90 e)o
9060
9070
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110

rem **--wrong answer routine--**
cd = 5:gosub 9000:rem crsr down 5
print:print tab(8)
print "No, Please try again."
z = z + 1
print
for i
goto

to 1000:next i
1150:rem ask again

rem "" convert to lowercase-­
for cv = 1 to len(cvS)
x = asc(mid$(cv$,ev,l»
if x > 192 then x = x - 128
ncS = nc$ + ehr$(x)
next cv

ev$ = ne$
f = asc(left$(ev$,l»
f = f + 128
ne$ = ehr$(f) + right$(ev$,len(cv$)- 1)
return

rem na$
rem ev$
rem nc$

originally typed name
converted to lowercase
1st I etter/llppprCf-lse

rem **--eursor down routine--**
for i = 1 to cd
print ed$;
next i
return

rem **--return key routine--**
poke 198,0:rem elr khrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn.
goto 19050: if not 1 go hack
poke 198,1:rem allow for cursor
poke 631,0:rem elr kbrd
nuS = "":rem elr string variable
return

ready.

186 CHAPTER EIGHT

• Program for MATH.SUBTRACT

100
110
120
130
140
150
160
170
180
190
200
210
220
225
226
227
230
240
250
260
262
263
265
266
270
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
400
410
420
430
440
450
460
470
480
490

rem ***--subtraction--***

rem **--initialization--**
homeS chr$(147):rem clr/home

:cd$ chr$(17):rem cursor down
:cu$ chr$(145):rem cursor up
:cl$ chrS(157):rem cursor left
:cr$ chr$(29):rem cursor right

:blk$ chr$(l44):rem black
:ylw$ chr$(l58):rem yellow
:wht$ chr$(5):rem white
:rvs$ chr$(18):rem reverse video
:bnk$ chr$(10):rem blank line
:hrn$ chr$(149):rem hrown
:bue$ chr$(31):rem hlue

poke 53280,14:rem border ~ It.blue
poke 53272,23:rem upper/lower case
poke 53281, 7:rem set bkgrd to ylw
dim s $ (100) , d t (100) , c r (100) , w r (100)
tb ~ 5:rem tab value

rem **--variable list--**
rem a
rem h
rem c
rem d
rem q
rem w
rem z

top number
bottom number
correct answer
student's answer
counter
previous answer
number of tries

rem cr # of correct answers
rem wr # of wrong answers
rem dt # of digits
rem da # of digits in a
rem db # of digits in h
rem de # of digits in c
rem dm # of digits in max amnt
rem other variables are descriptive

rem **--request user info.--**
print brnS:rem brown text/ylw bkgrd
poke 19,32:rem disable input?
rem clr/home--cursor down 3
print home$:cd ~ 3:gosub 9000
in put "H 0 \" rna n y dig its? "; dig itS
print:print:print
print "What is the largest figure for
input "number you are subtracting by?
print:print:print

the"
";max$

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 187

',00
') I (1

')20
')30
'i4()
')50
,)hU
')70
5 fj()
)9()

I) il ()
61CJ
C,20

p r I II I

ill P 11 I

d t

"h'!t:tl 1:-'; th(' ;-.;m:lllest f i~:urc" fill

f1!l U J:l h c C\'o 11 (l r- (' S II h t r (.1 c t i [] h v)

1':II(rllc:IIS):"H = v:ll(rnilxS):l11(1 =
d i i t

dig i t
\ ;[I (d I ~, I IS)
I !) A Ii i c: i t

p r- i 11 t : p r i [1 t

i 11 put " \\' h d I
Ilr- i)It
1 ~-1 \' () 11 r n;l m ('

r (, ~n (' () ! I \ (-' I t ()

CV) = Il(\![]C~

gC)'-';U\J j()(ln: 1 I'm I () h l' r ((1 S (, :--; U \) 1 I) 11 t iii ('

63(J rem ", --(['(':\1 (' prohl('rn--':""

640
() " () d III = I (' rI (Ill;} X :~)

('6()

il ()

(,81'1

()C)U

7 Uti
71 ()

1'(,[11 h'11C'll I\'.c-; (li~~its
i I' d t = d ill + I () r rI t
rI III = 1 () A rI In

I) = I III I [' 11 d (i,I I d n)

I j II);111 tirE' (1 7 (III
7:'(1 i I iJ miIX t hell jl)l)

d t
rim +

7 j U ~ () I () 1'1)1): u' nr ~ C' t I () r
7411
7, II
7()()

77il
7HO
7<)11
HOO
SIO

iJ
I I
i I

:J =

H20 [eIII

H'30 (

iJ
i>

jill (r 11 rI (II)
[!In thorr
m:l x t h,' n

i III (I rr d (I»)

~" -:l n ;-) \\' (' r - ;:~

il - b

d I I~ I t
7 iII)

7IJO

',' rI I g I I)

H ~ () s S = "- 11 : r C' rn d (' t (' r- 1:1 i 11 t' () pC' r- d t i () tI

(~ C; tiS 11 $ = "s II h t r d C t i (l [) II

f,(,U II II Ihen ()(1:rl'I1I 1,,1' "uhlrircl.
fl 7 I I I
HHII I,'

H')ll
')1)1)

1(11111

III I II
I (I III
I I)j()
1()4()

I II SO
IUb()
I III I)
11);.11"
1 ('liJII

I I III,
II I I',

1 1~i1
I .~ ()

I 1411

[

r (' 1'1

r (' [1

,,~

dil
,,~

del
I')'.'

db
hS
rI h
(S
Ii,
c S
rI('

= h thpn 7()1,1:rl'nl pr(l\'i(lll<-; (1n::-;.

- (! i .c..; 1) 1 ;1 Y 1) I i) I) 1 1\ 111- - ;:' ;"

(1 (\ t c' r r! i [I (, 1 I' ~ I ~c2, t ! I .~..,

,,(I') (,I)

I" II (iI S 1
righl (il.~,dd

1(,11(,,$)
s t r $ (b)
1(' n (I) S)
rig 11 t S (t) S , d h
Ie [[(1>', I
"I rS (()
IE' n (c S)

r·i~htS(('" ,j(

I ~ n ((,;)

l):r('J"";"l n() Sigll

1):[('iJI 110 sign

i 1 : r (' [ll i1 U s i g 11

188 CHAPTER EIGHT

t hr\"
" ' ;[!l!l:)

vdl (IJIrIS)

1150 rem format
1160 print homeS:rem clr/home
1170 print tab(tb + 1) rvs$;nc$:"'s ":sn$:" practice."
I1S0 cd = 3:gosub 9000:rem crsr down 3
1190 print tab(4)
1200 print "Type the word ":blk$:"END":brn$:" when finished!"
1210 cd = 5:gosub 9000:rem crsr down 5
1220 print tab(22 - da):print a$
1230 print tab(22 - (db + 1)):print s$;b$
1240
1250 rem draw line
1260c!=1
1270 if da > db then q = 0
12S0 print tab(22 - (dt + 'I»)
1290 for i = 1 to (dt + q)
1300 print" !1

1310 next
1320
1330
1500 rem **--get answer--**
1510 print
1520 print tab(22 - de)
1530 input answerS
1540
1550 if answerS = "END" or answerS = "end" then 2000
1560 d = val(answer$)
1570 if d c then 5000:rem correct
1580 if z < 3 then 6000:rem wrong
1590
1600 rem give answer after 3 tries
1610 print:print:print:print tabeS)
1620 print "No, the anSI.;er is ";bue$;c;brn$
1630 print:print:print tab(A)
1640 print ,-1;" ";~$;It ";b;" ;c
1650 print:print:? = l:wr = wr + 1
1660 print lab(S)
1670 print "Press ":blk$:"RETURN";brn$:" to continue:
1680 gosub 19()O():rem return key routine
1690 goto 6JO:rem another problem
1700
1710
1720
2000 rem **--total routine--**
2010 rem clr/home--cursor down 5
2020 print home$:cd = 5:gosub 9000
2030 print tabeS)
2040 print "You got":bue$;cr;brn$;"right'"
2050 print:print tabeS)
2060 print "You missed";bue$;wr;brn$;"."
2070
~OSO
3000 rem **--file inpul/output--**
3010
3020 rem * user message ~

3030 poke 19,O:rem reset input prompt
3040 cd = 5:gosub 9000:rem crsr down 5

" . ,

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 189

3050
306CJ
3070
3CJSO
3090
3100
3110
3120
3130
314CJ
31 SO
3160
3170
31S0
3190
3200
3210
3220
3230
3240
3250
3260
3270
32S0
330CJ
3310
332CJ
333CJ
3340
33sCJ
3360
3370
33S0
3390
3400
3410
4000
4010
4020
4030
4040

print tabeS)
print rvs$;
print "UPDATING FILES."
print:print:print tabeS)
print rvs$;"PLEASE WAIT!"

rem **--file input routine--**
k = 1
open 3,S,3,cv$ + ",seq,read"
input#3,s$(k):rem sign
input#3,dt(k):rem # of digits
input#3,cr(k):rem # of correct
input#3,wr(k):rem # of wrong
if status 0 then k = k + l:goto 3140
if status = 64 then k = k + I

rem status
rem status

O--allok
64--eof

rem status not 0 or 64--1st use

s$(k)
close 3

s$:dt(k) = dt: cr(k) = cr:wr(k)

rem **--file output routine--**
open 4,8,4,"@O:" + cv$ + ",seq,write"
for i = 1 to k
print#4,s$(i):rem sign
print#4,dt(i):rem # of digits
print#4,cr(i):rem # of correct
print#4,wr(i):rem # of wrong
next i

close 4

rem **--return to program menu--0~
poke 19,0:rem restore input prompt
rem clr/home cursor down routine
print home$:cd = 5:gosub 9CJCJCJ
print tab(tb)

40';CJ print rvs$;
4060 print "LOADING THE ~lATH MENU PROGRM1"
4070 '''math.menu''
40S0
409CJ
41CJO
5000 rem *--correct answer routine--**
5010 cd = 5:gosub 9000:rem crsr down 5
502CJ print:print tab(IB)
503CJ print "GOOD'"
5040 for i = 1 to IOOO:next i
')050 cr = cr + 1
5060 goto 630:rem another problem
5070
SOSO

190 CHAPTER EIGHT

wr

6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
71 70
7180
9000
9010
9020
9030
9040
9050
9060
9070
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110

rem **--wrong answer routine--**
cd = 5:gosub 9000:rem crsr dCNn 5
print:print tabeS)
print "No, Please try again."
z = z + 1
print
for i to 1000:next i
goto 1150:rem ask again

rem **--convert to lowercase--**
for cv = 1 to len(cv$)
x = asc(mid$(cv$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cv$ = nc$
f = asc(left$(cv$,l))
f = f + 128
nc$ = chr$(f) + right$(cv$,len(cv$)- 1)
return

rem na$
rem cv$
rem nc$

originally typed name
converted to lowercase
1st letter/uppercase

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem **--return key routine--**
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn.
go to 19050:if not 1 go back
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nuS = "":rem clr string variCible
return

ready.

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 191

• Program for MATH.MULT/PL Y

100 rem ***--multiplication--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 : :cd$ chr$(17) :rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :bnk$ chr$(10):rem blank line
226 :brn$ chr$(149):rem brown
227 :bue$ chr$(31):rem blue
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 7:rem set bkgrd to ylw
262 dim s$(100) ,dt(100) ,cr(100) ,wr(lOO)
263 tb = 5:rem tab value
265
266
270 rem **--variable list--**
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

a
b
c
d
q
w
z
cr
wr
dt
da
db
dc
dm
other

top number
bottom number
correct answer
student's answer
counter
previous answer
number of tries
of correct answers
of wrong answers
of digits
of digits in a
of digits in b
of digits in c
of digits in max amnt
variables are descriptive

400 rem **--request user info.--**
410 print brn$:rem brown text/ylw bkgrd
420 poke 19,32:rem disable input?
430 rem clr/home--cursor down 3
440 print home$:cd = 3:gosub 9000
450 input "How many digits? ";digit$
460 print:print:print
470 print "What is the largest figure for the"
480 input "number you are multiplying by? ";max$
490 print:print:print

192 CHAPTER EIGHT

5 0 0 p r i n t " \y hat i s the s C1 aLL e s l fig u ref 0 r the"
510 input "number vou are muLliplving by" ";mnS
') 20 d t = val (dig it::;) : m a x = v Cl L (III Cl X S) : m n = val (m n $)
530 digit = val(digitS)
540 digit = 10 • digit
5 50]H i n t : 1'r i n l : p r i n t
560 input "h'hat is your name') ";name$
570
580 rem convert lo lowercase
590 cv$ = nameS
600 gosub 70(1):rem lowercase subroutine
610
620
630 rem **--create problem--**
640
650 do = len(max$)
beO
670 rem when b's digits < lit
680 if dt = dm + 1 or dt < dm + 1 then 7~0
690 dm = 10 • dm
700 b = int(rnd(O) * dm)
710 if b < mn then 700
720 if b > max then 700
730 go to 800:rem gel # for a
740
750 z = 1
760 b = int(rnd(O) ~ digit)
770 if b < mn then 76CJ
780 if b > max then 760
790
800 a = int(rnd(O) ~ digit)
810
820 rem ~ answer-*
830 c = a';' b
840 s$ = "x":rem determine operation
850 sn$ = "multiplication"
860 if c < 0 then 760:rem for subtract.
870 if c = w then 760:rem previous ans.
880 w = c
890
900
1000 rem
1010 rem
1020 a$
1030 cia
1040 a$
1050 da
1060 b$
1070 db
1080 b$
1090 db
1100 c~
11 I 0 dc
1120 c$
1 I 30 de
1140

--display problem--
determine lengths
str$(a)
len(a$)
right$(a$,da - 1):rem no sign
len(a$)
str$(b)
len(b$)
right$(b$,db - l):rem no sign
len(b$)
slr$(c)
len(c$)
right$(c$,dc - I):rem no sign
len(c$)

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 193

1150
1160
1170
11S0
I 190
1200
1210
1220
1230
1240
1250
1260
1270
12S0
1290
1300
1310
1320
1330
1500
1510
1520
1530
1540
1550
1560
1570
15S0
1590
1600
1610
1620
1630
1640
1650
1660
1670
16S0
1690
1700
1710
1720
2000
2010
2020
2030
2040
2050
2060
2070
20S0
3000
3010
3020
3030

194

rem format
print home$:rem clr/home
print tab(tb - 1) rvs$;nc$;"'s ";sn$;" practice."
cd = 3:gosub 9000:rem crsr down 3
print tab(4)
print "Type the word ";blk$;"END";brn$;" when finished!"
cd = 5:gosub 9000:rem crsr down 5
print tab(22 - da):print a$
print tab(22 - (db + 1»:print s$;b$

rem draw line
q = 1
if da > db then q
print tab(22 - (dt
for i = 1 to (dt +
print
next i

" ".

o
+ 'I»
q)

rem **--get answer--*
print
print tab(22 - dc)
input answerS

if answerS = "END" or answerS = "end" then 2000
d = val(answer$)
if d c then 5000:rem correct
if z < 3 then 6000:rem wrong

rem give answer after 3 tries
print:print:print:print Lab(S)
print "No, the answer is ";bue$;c;brn$
print:print:print tabeS)
print a;'1 ";S$;'I I';b;" ";c
print:print:z = 1:\;1' = wr + 1
print tab(8)
print "Press ";blk$;"RETURN";brn$;" to r:ontinue:
gosub 19000:rem return key routine
goto 630:rem another problem

rem **--total routine--**
rem clr/home--cursor down 5
print home$:cd = s:gosub 9000
print tabeS)
print "You got";bue$;cr;brn$;"right l "

print:print tab(8)
print "You lllissed";bue$;wr;brn$;"."

rem **--file input/outpuL--**

rem *-user message-*
poke 19,0:rem reset input prompt

CHAPTER EIGHT

3040 cd ~ S:gosuh ()OOI):rcrn crsr do\,'n)
30')0 print tah(8)
3060 print r\s$;
1070 prin t "(I[,DATI;;e; Fl LES."
1080 print:print:print tab(8)
'3 0 9 0 p r i n t r v s S ; " P U: A S F Iv A T T ' "
lIDO
3110 rem ':' --file input routine- '"
312() k ~ 1
313D open 3,8,3,cvj; + ",st'Cj.read"
3140 input#3,s5(k):rt'rn sign
31')0 jnput#3,dt(k):rpm # of digits
116D input#3,cr(k):rt'rn # of correct
1170 input#3,wr(k):rern # of wrong
1180 if status 0 then k ~ k + l:goto 3140
3190 if status ~ 64 then k ~ k + 1
'3200
3210
3220
3230
3240

rem
rem
rpm

status
status
status

O--all ok
()4--eo f

not 0 or 64--1st use

32')0 s$(k) s$:dt(k) ~ dl: rr(k) = cr:wr(k) wr
1260 close 3
3270
'32 80
3300 rem **--fiLe output routint'-- *
3110 open 4,8,4,"@0:" + cvS + ",sPCj,write"
3120 for i ~ 1 to k
3'3'30 print#4,s$(i):rem sign
3340 print#4,dt(i):rem # of digits
33')0 print#4,er(i) :rt'rn # of correct
3360 print#4,wr(i):rern # of wrong
'3'37D nt'xt
338D
'3 '3 C) ° c los e 4
')4 DO
3410
4000 rt'm **--return to program rnenu--**
4010 poke 19,0:rem restort' input prompt
4D20 rem elr/home cursor down routine
4030 print home$:cd ~ 5:gosuh qDOO
4040 print tab(tb)
4050 print rvs$;
4060 print "LOADING THE ~lATH ~lE;;{] PROC;RMl"
4070 '''math.menu''
4080
40qO
41DO
5000 rem **--correct answer routint'--
501D cd ~ S:gosub 9000:rt'm crsr down 5
5020 print:print tab(18)
5030 print "GOOD'"
5040 for i = 1 to 1000:next i
50')0 er = cr + 1
,)06U goto ()3CJ:rem another problem
,)07D

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 195

5080
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
7000
7010
7020
7030
7040
7050
7060
7070
70RO
7090
7100
7110
7120
7130
7140
7150
7160
71 70
7180
9000
9010
9020
9030
9040
9050
9060
9070
19000
19010
19020
19030
19040
19050
19060
19070
190RO
19090
19100
19110

rem '1- I' - - w r () n g an s w err out in e - ~:, ~:~

cd : 5:gosub 9000:rem crsr down 5
print:print tab(8)
print "No, Please try again."
z ~ z + 1
p r L n t
for i to 1000:next i
goto 1150:rem ask again

rem **--convert to lowercase--**
for cv = 1 to len(cv$)
x = asc(midS(cvS,cv,1»
if x > 192 then x = x - 128
nc$ = ncS + chr$(x)
next cv

cv$: nc$
f : asc(left$(cv$,1»
f : f + 128
ne$ = chr$(f) + right$(ev$,lcn(ev$)- 1)
return

rem naS
rem cv$
rem nc$

originally typed name
converted to lowercase
1st letter/uppercase

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem ':":'--return key rOlltine--':":'
poke 19R,0:rem clr khrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x : peek(197):rem store key press
if x : 1 then 19080:rem 1 = rtn.
goto 19050:if not 1 go back
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nuS = "":rem clr string variable
return

ready.

196 CHAPTER EIGHT

• Program for MA TH.DIVIDE

100 rem o:":":'--division-- ---,-
110
120
13l)
140
1 SO
160
170
180
19D
200
21D
220
225
226
227
230
240
2')0
260
2 () 2
263
265
266
270
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
400
410
420
430
440
450
460
470
480
490

rem **--initialization--**
homeS chr$(147):rem clr/home
: :cd$ chr$(17):rem cursor do\,n
: :cuS chr$(145):rem cursor up
: :cl$ chr$(157):rem cursor left
: :cr$ chr$(29):rem cursor right
:blk$ chr$(144):rem black
:ylw$ chr$(1)8):rPI:l yellow
: \v h t $ C 11 r $ (':,) : r e ~l \'1 hit e
:rvs$ cilrS(18):r'pm reverse video
:bnk$ chrS(lU):rem blank line
:brn$ chrS(14C):rem brown
:bue$ chrS('ll):rPlll blue

poke 53280, 14:rel'1 border = It.blue
poke ,)3272,2J:rem upper/lower case
poke 53281, 7:rem set bkgrd to ylw
d i III 50 $ (100) , d t (100) ,c r (1(0) , wr (100)
tb = 5:rem tab value

rem **--variable list--**
rem a
rem b
rem c
rem d
rem q
rem w
rem z
rem cr

divisor
dividend
correct 3nS\Oler
student's answpr
C () II Tl t e r
previous c-iIlS\v'er

number of trips
of corroct answers

rem wr # 0 f wrong answers
rem dt # of digits
rem da # of digits in a
rem db # of digits in b
rem de # of digits in c
rem dm # of digits in max amnt
relll other variables are descriptive

rem **--request user info.--**
print brn$:rem brown text/ylw bkgrd
poke 19,32:rem dis~ble inl,ut ?
rem clr/holllC'--eursor do\,n 3
print hOllleS:cd = 3:gosub 9000
input "How many digits! ";digit$
print:print:print
p r i n t "\, hat i s L h P I a r g C' s t fig u ref 0 r the"
input "nurlhpr you iHC' dividing hy? ";max$
print:print:print

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 197

500 print "\~hat is the smallest figure for the"
510 input "number \"elU are dividing by? ";mn$
520 dt = val(digitS):max = val(max$):mn = val(mn$)
530 digit = val(eligit$)
540 digit = 10 • digit
550 print:print:print
560 input "\\That is your name? ";name$
570
580 rem convert to lowercase
590 cv$ = nameS
600 gosub 7000:rem lowercase subroutine
610
620
630 rem **--create prohlem--**
640
650 dm = len(max$)
660
670 rem when b's digits < dt
680 if dt = elm + 1 or dt < dm + 1 then 750
690 dm = 10 • clm
700 b = int(rnd(O) * dm)
71() if h < mn then 700
720 if b > max then 700
730 goto 800:rem get # for a
740
750 z = 1
760 h = int(rnd(O) * digit)
770 if b < mn then 760
780 if b > max then 760
790
800 a = int(rnd(O) * digit)
810 if a = 0 or a < b then 800
820
830 rem *-answer-*
840 def fn mod(c) int((il/h - int(a/h»':' b + .05) " sgn(R/b)
850 c = int(a)/(h)
860 c = int(e)
870 s$ = "/":rem determine operation
880 sn$ = "division"
890 if c < 0 then 760:rem for subtrRct.
900 if c = w then 760:rem previous ans.
910 if fn mod(rm) <> 0 then 800
920 w = c
930
940
1000 rem **--display problem--**
1010 rem determine lengths
1020 a$ str$(a)
1030 da len(a$)
1040 a$ rightS(a$,da - l):rem no sign
1050 da len(aS)
1060 b$ strS(b)
1070 clb]en(b$)
1080 b$ right$(bS,dh - l):rem no sign
1090 db 1 e [1 (h)
1100 c$ str$(e)

198 CHAPTER EIGHT

1110 de
c S
de

len(c$)
right$(cS,dc
len(eS)

rem format

- 1): r e [I) nos i g n

print home$:rem elr/home
print tab(tb + 2) rvs$;nc$;"'s ";sn$;" practice."
cd = 3:gosub 9000:rem crsr down 3
print tab(4)

11 :2 0
1 130
1140
1150
1160
1170
1180
1190
1200
1210
122U
1230
1240
1250
1260
1270
Ino

print "Type the word ";blkS;"END";brn$;" "'hen finished!"
cd = 5:gosub 9000:rem crsr down 5

1290

print tab(l8)
for i = I to dt + 1
;>rint "-";
next i
print
print tab(18 - db) b$;")";ilS

1~00 rem **--get ilnswer--**
1510 prjnt:print cu$;cuS;cu$;cu$;
1520 print tab«18 + da) - (de - 1»
1530 input answerS
1540
15.~0 if answerS = "END" or answerS = "end" then 2000
1560 d ~ val(answer$)
1~70 if d c then ~UDO:rem correct
1~80 if z < 3 then 6DOO:rem wrong
1590
1600 rem give answer after 3 tries
1~10 print:print:print:print Lab(8)
1620 print "No, the answer is ";bue$;c;brn$
1630 print:print:print tab(8)
1640 print a;" ";00$;" ";b;" ;c
1650 print:print:z = l:wr = wr + I
166U print tab(8)
1670 print "Press ";bIk$;"RETURN";brn$;" to continue:
1680 gosub 19000:rem return key routine
1690 goto 630:rem another problem
1700
1710
1720
2000 rem ':' ':'--t 0 La 1 r () II t i ne--':<>:'
2010 rem clr/home--cursor down 5
202U print home$:cd = 5:gosub 90UO
2030 print tilb(8)
2040 print "You got";bue$;cr;brn$.;"right l "

2050 print:print tabeS)
2060 print "You missed";bue$;wr;brn$;"."
2070
2080
3000 rem **--file input/output--**
3UIO
3020 rem *-user message-*
3030 poke 19,0:rem reset input prompt
3040 cd = S:gosub 9000:rem crsr down 5

" . .

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 199

3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
5000
5010
5020
5030
5040
5050
5060
5070

print tab(i:l)
print rvs$;
print "UPDATING FILES."
print:print:print tabeS)
print rvs$;"PLEASE WAIT!"

rem **--file input routine--**
k = 1
open 3,8,3,cv$ + ",seq,read"
input#3,s$(k):rem sign
input#3,dt(k):rem # of digits
input#3,cr(k):rem # of correct
input#3,wr(k):rem # of wrong
if status 0 then k = k + 1:goto 3140
if status = 64 then k = k + 1

rem status 0--a11 ok
rem status 64--eof
rem status not 0 or 64--1st use

s$(k)
close 3

s$:dt(k) = dt: cr(k) = cr:wr(k)

rem **--file output routine--**
open 4,8,4,"@0:" + cv$ + ",seq,write"
for i = 1 to k
print#4,s$(i):rem sign
print#4,dt(i):rem # of digits
print#4,cr(i):rem # of correct
print#4,wr(i):rem # of wrong
next i

close 4

rem **--return to program menu--**
poke 19,0:rem restore input prompt
rem clr/home cursor down routine
print home$:cd = 5:gosub 9000
print tab(tb)
print rvs$;
print "LOADING THE MATH MEi'lU PROGRAM"
A"math.menu"

rem **--correct answer routine--**
cd = 5:gosuh 9000:rem crsr down 5
print:print tah(18)
print "GOODI"
for i = 1 to 1000:next i
cr = cr + 1
goto 630:rem another problem

200 CHAPTER EIGHT

wr

5080
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
71 00
7110
7120
7130
7140
7150
7160
71 70
7180
9000
9010
9020
9030
9040
9050
9060
9070
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110

rem **--wrong answer routine--**
cd = 5:gosub 9000:rem crsr down j

print:print tab(8)
print "No, Please try agaj n."
Z = Z + 1
print
for i to 1000:next i
goto 11S0:rem ask again

rem **--convert to lowercase--**
for cv = 1 to len(cv$)
x = asc(mid$(cv$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cv$ = nc$
f = asc(left$(cv$,l))
f = f + 128
nc$ = chr$(f) + right$(cv$,len(cv$)- 1)
return

rem na$
rem cv$
rem nc$

originally typed name
converted to lowercase
1st letter/uppercase

rem **--cursor down routine--**
for. i = 1 toe d
print cdS;
next i.
return

rem **--return key routine--**
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn.
go to 19050:if not 1 go back
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nu$ = "":rem elr string variable
return

ready.

ADDITIONAL SEQUENTIAL FILES TECHNIQUES 201

• Program for MA TH. SCORES

100 rem ***--math.scores--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 : :cu$ chr$(l45) :rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :bnk$ chr$(10):rem blank line
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 2:rem set bkgrd to red
265
266
270 rem **--user message--~~
280 print home$:rem clr/home
290 cd = 5:gosub 9000:rem crsr down 5
300 poke 19,32:rem disable input?
310 input "Student's name please: ";na$
320 rem convert to lowercase
330 cv$ = na$:gosub 7000
34Q gosub 10000:rem display routine
350 print home$:cd = 5:gosub 9000
360 print ylw$;"ONE MOMENT PLEASE!"
370
380 rem **--file input routine--**
390 dim s$(100) ,dt(100) ,cr(lOO) ,wr(100)
400 open 2,8,2,cv$ + ",seq,read"
410 k = 1
420 input#2,s$(k):rem sign of operation
430 input#2,dt(k):rem # of digits
440 input#2,cr(k):rem # correct
450 input#2,wr(k):rem # wrong
460 k = k + 1
470 if status = 0 then 420
480 close 2
490
500 rem **--display scores--~~
510 gosub 6000:rem titles routine
520 j = 1
530 for q = 1 to k - 1
540 if s$(q) "+" then s$(q) "ADD"
550 if s$(q) "" then s$(q) "SUB"
560 if s$(q) "x" then s$(q) "MLT"
570 if s$(q) "/" then s$(q) "DIV"
580 if q < 10 then print#file,"";tab(1) q;:goto 600

202 CHAPTER EIGHT

590 print#file,"";q;
600 print#file,"";Lab(lO) s$(q);
610 print#file,"";tah(19) dt(q);
620 if cr(q) > 9 then u = - 1
630 print#file,"";tab(28 + u) cr(q);
640 u = 0
650 if wr(q) > 9 then u = - I
6(10 print#file,"";tah(35 + u) wr(q)
670 u = 0
680 j = j + 1
690 rem 19000 is rtn key routine
700 rem 6000 is titles routine 7
710 if j , 15 then gosub 19000:gosub 6000
720 next q
730
740 ~osub 19000:rem rtn key routine
750
760
800 rem **--return to program menu--c~
810 poke 19,0:rem reslore input prompt
820 rem clr/home cursor down routine
830 print home$:cd = 5:gosub 9000
840 print tabeS)
850 print rvs$;
B60 print "LOADnC THE MATH ME';U PROGRAM"
870 '''math.menu''
:380
890
900
6000 rem **--titles routine--**
6010 print home$:rem cJr/home
6015 print tab(17) nc$:print:print
6020 print "SESS.";
6030 print tab(7):prirrt "OPERATION";
6040 print tab(l8): prirrt "DIGITS";
() 0 5 0 p r in t tab (26) : p r in t "c 0 R R E C T" ;
6060 print tah(34) :print "WRONG"
6070 return
6080
6090
6100
7000 rem **--convcrt to lowercase--**
7010 for cv = I to len(cv$)
7020 x = asc(mid$(ev$,cv,I»
7030 if x > 192 then x = x - 128
7040 nc$ = neS + chr$(x)
7050 next cv
7060

cv$ = nc$
f = asc(left$(cv$,I»
f = f + 128

7070
7080
7090
71 00
7110
7120
7130
7140

ne$ = chr$(f) + right$(cvS,len(cv$)- 1)
return

rem na$
rem cv$

originally typed name
converted Lo lowercase

ADDITIONAL SEQUENTIAL FILES 203

7150
7160
71 70
7180
9000
9010
9020
9030
9040
9050
9060
9070
10000
10010
10020
10030
10040
10050
10080
10090
10100
1011 0
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
1033()
10340
10350
10360
10500
10510
10520
10530
10540
10550
18000
18010

rem nc$ 1st letter/uppercase

rem ~~--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem **--rlisplay routine--**
print home$:rem rlr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routine
print "\~ould you like a paper print out?"
print
gosub 1800():rem yin input routine
if yes$ "y" then 10240:rem prnt
if yes$ = "n" then 10300:rem scrn

print home$:rem clr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routine
print "Please make sure the printer"
print
print "is on and ready to use."
print
print "Are you ready to begin printing?"
print
gosub 18000:rem yin input routine
if yes$ = "n" then 10000

rem *-printer displuv-*
f de 4
dvic = 4
cmnd = 7
goto 10500:rem open instruction

rem *-screen display-*
f i 1 e 3
dvie = 3
cmnd = 1
go to 10500:rem open instruction

rem *-open instruction-*
open file,dvic,cmnd
return

rem *~--y/n input rouline--**
print "Type a ";whl$;"Y";ylw$;" or ";wht$;"\";ylw$;"

204 CHAPTER EIGHT

." . ..

ISU;!I) poke 19,'ll:rprn <lisai)]" illPllt
] H 0 'j I) j n I'll t v (' S S
1 » IV.()

lSlJ'l(J
18()(,1J

['1

if
i f

i 11 t

vesS
\ L' S S

13(17() print

"y" U r- yes: "I'''
lin" ()r ves) " .\~ "

thell ypsS
thE' (1 Vf'sS

1oUdO pl-jnt rv,;C;;"[IIC(]rrl"li Clluj(·I";y11;$
180YI) print
1 ") 1 I) () g () t () 1 I I IJ 0: I (' 1'1 bel', i n d 1'. : I i ((

1 0 1 1 0
[812(1
1 3 1-)(J
1 l) I) I)() t l'lil ':' '" -- - ret u r (I k e J r () u 1 I (I (' - - ::' :'

] 90 I II P rill t

"y" : return
"n" : retur-n

['l02() print "Press ";vdllS;"krr::Rt\";y1\,$;" to contj(lIle:
1 9 WI 0 jl () k (' 1 eli) , 0 : r (' III C Irk In Ii Ii u f f (' I

]904U for L = 611 to (,40
II]()C,O poke· i ,O:rem no v:1!uc
I()I)(,() TIl'x1 j

19070 x = peek(1 (7): tC'ITI st ore kr'y press
]9080 jf x = I then]9]OO:rem I rtn.
] I) () q () g () t () 1 () I) 7 (): i f n () I 1 go I;: 1 c k
1 9 1 () () P 0 k (' 1 Y , 0 : rem r,' s tor c j n p (j t P r (J m I' t
lY11U poke]98,I:rem illlo\, for CrHsor
I I) I :.' () P (J k C' (,] j , () : t e '" (1 I k b r d
I Y 1 3 () nuS = "!I: r C' rn c 1 r s t r j n g v In i :1 b 1 e
1914() j =
1 () 1 'i \) r (' t 11 r 11

ready.

ADDITIONAL SEQUENTIAL FILES 205

• Program for CREA TE Q & A

100
110
120
110
140
150
160
170
180
190
200
210
220
225
210
240
250
260
262
263
264
265
266
500
505
510
520
530
540
5')0
560
570
580
590
600
610
620
630
640
6')0
660
670
680
690

rem ***--create q & 8--***

rem **--initia1ization--**
homeS chr$(147):rem cir/home
: :cdS chr$(17): rem cursor dovIn
::cu$ chr$(145):rem cursor up
::c1$ chr$(157):rem cursor 1efl
::cr$ chr$(29):rem cursor righl
:b1k$ chr$(144):rem black
:ylw$ chr$(158):rem yellow
:wht$ chrS(5):rem whilp
:rvs$ chr$(18):rem reverse video
:bnkS chrS(10):rem blank Une

poke 53280,14:rem border = It.blue
poke 53272,23:rem upper/lowpr case
poke 53281, O:rem sel bkgrd to red
dim q$(50),a$(50)
k = 1
poke 19,32:rem disable input

rem **--input rouline--**
pri nt yl \,$
print home$:ccl = 5:gosub 9000
input "Subject name? ";sub$
subS = subS + If.quest"
print home$:cd = 5:gosub 9000
print "Type ";wht$;"END";ylw$;" when finished."
print:print
print "QUESTION #";k;":"
print
input q$(k)
if q$(k) = "no" or q$(k)
print:print
print "ANS\~ER:"
print

"end" then IOOD

input a$(k)
print home$:cd
print q$(k)
print

5:gosub CJOOO

print a$(k)
prinl

700 print "Is this correct? It;
710 gosub 18000:rem yin input routine
720 if yes$ = "n" then 540
730 k = k + 1
740 goto 540
750
760
1000 rem **--filp output routine--**
1010 open 2,8,2,sub$ + ",seq,write"

206 CHAPTER EIGHT

102U print!i2,k-l
1030 for j =] to k-l
1040 print#2,q$(j)
105U print#2,aS(j)
1060 next j
1070 close :2
lOBO poke 19,0:rem restore input prompt
1090 end
1100
1 1 10
1120
9000 rem **--cursar down routine--**
9010 for i = 1 to cd
9020 print cdS;
9030 flext i
9040 return
rl050
9060
9070
18000 rem **--y/n input routine--**
lS010 print "Type a ";,,cht$;"Y";ylwS;" or ";wht$;"N";ylw$;"
lS020 poke 19,32:rem disable input?
lS030 input yesS
lSU40
lS050
1S060
18070
18080
lS090
lS100

ready.

print
if yes$
if yes$
print

"v" or yesS
"n" or yes$

"Y" then yesS
"N" then yes$

print rvs$;"lncorrect Choice!";ylw$
p r in t
gota lS000:rem begin again

"v":relurn
"~":return

.11 • . .

ADDITIONAL SEQUENTIAL FILES 207

• Program for DRILL & PRACTICE

100 rem ***--drill & practice--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 : :cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
225 :bnk$ chr$(10):rem blank line
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 2:rem set bkgrd to red
265
266
270 rem **--user message--**
280 print home$:rem clr/home
290 cd = 5:gosub 9000:rem crsr down 5
300 poke 19,32:rem disable input?
310 input "Subject's name please: ";sb$
320 rem convert to lowercase
330 cv$ = sb$:gosub 7000
340 sb$ = cv$ + ".quest"
350 gosub 10000:rem display routine
360 print home$:cd = 5:gosub 9000
370 print ylw$;"ONE ~lOMENT PLEASE!"
380
390
400 rem **--file input routine--**
410 dim q$(50),a$(SO)
420 open 2,8,2,sb$ + ",seq,read"
430 input#2,j
440 for i = 1 to j
450 input#2,q$(i):rem questions
460 input#2,a$(i):rem answers
470 next i
480 close 2
490
500 rem **--display questions--**
510 i = rnd(O) * 10:za = i:i = int(i)
520 if i > j or i < 1 then 510
530 print home$:cd = 5:gosub 9000
540 print "Answer with ";wht$;"END";ylw$;" when fjnished."
550 print:print
560 print q$(i)
570 print:print
580 input "Your answer is: ";ans$
585 nc$ = ""

208 CHAPTER EIGHT

590 ev$
595 De$
600 cv$
610 print

ans$:gosub 7000:ans$ = ev$
""
a$(i):gosub 7000:a$(i) = cvS

620 if ans$ = "end" then 1000
630 if ans$ = aSCi) then print "CORRECT":a
640 if z > 0 then 700
650 print "No, try once more."
660 print
670 z = 1
680 a2 = a2 + 1
690 goto 570
700 print "No, the answer is: ";a$(i)
710 m = m + 1
800 z = 0
810 print.
820 for k = 1 to 1000:next k
830 got.o 500
880
890
900
1000 rem **--display seore--**
1010 a2 = a2 - m
1020 a = a - a2
1030 print home$:ed = 3:gosub 9000

a + l:goto 800

1040 print "You got";8;"right on the first try."
10~0 print:print
1060 print "Yo).! got";a2;"right on the second try."
1070 print:print
1080 print "You missed";m;"answers."
1090 end
1100
1110
6000 rem **--titles routine--**
6010 print home$:rem clr/home
6015 print tab(17) ne$:print:print
6020 print "SESS.";
6030 print tab(7) :print "OPERATION";
6040 print tab(18):print "DIGITS";
6050 print tab(26):print "CORRECT";
6060 print tab(34):print "WRONG"
6070 return
6080
6090
6100
7000 rem **--convert to lowercase--**
7010 for cv = 1 to len(cv$)
7020 x = asc(mid$(cv$,cv,I))
7030 if x > 192 then x = x - 128
7040 neS = ne$ + chrS(x)
7050 next cv
7060
7070 cv$ = ne$
7080 f = ~sc(left$(cv$,l))
7090 f = f + 128
7100 nc$ = ehr$(f) + rightS(cv$,len(ev$)- 1)

ADDITIONAL SEQUENTIAL FILES 209

7110
7120
7130
7140
71')0
7160
71 70
7180
9000
9010
9020
9030
9040
9050
9060
9070
10000
10010
10020
10030
10040
10050
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10500
10510
10520
10530
10540

210

return

rem na$
rem c v:;
rem nc$

originally typed name
converted to lowercase
1st letter/uppercase

rem **--cursor down routine--**
for d = 1 to cd
print cd$;
next d
return

rem **--display routine--**
print home$:rem elr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routine
print "Would you like a paper print out?"
print
gosub 18000:rem yin input routine
if yes$ "y" then 10240:rem prnt
if yes$ = "n" then 10300:rem sern

print home$:rem clr/home
cd = 3:rem 3 lines down
gosub 9000:rem cursor down routinerun
print "Please make sure the printer"
print
print "is on and ready to use."
print
p r i n t "A r e you rea d y t 0 beg i n p r i n tin g ? I,
print
gosub 18000:rem v/n input routine
if yes$ = "n" then 10000

rem *-printer display-*
file 4
dvic = 4
cmnd = 7
goto ID500:rem open instruction

rem *-screen display-*
file 3
dvic = 3
cmnd = 1
goto ID5DD:rem open instruction

rem -open instruction-*
open file,dvic,C:!llnd
return

CHAPTER EIGHT

10550
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140
19150

ready.

rem **--y/n input routine--**
print "Type a ";whL$;"Y";ylwS;"
poke 19,32:rem disable input?
input yes$

or ";'w'ht$;"N";ylw'$;"

print
if yes$
if yes$
print

"y" or yes$
"nn or yesS

"Y"
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice''';ylw$
print
goto IBOOO:rem begin again

rem **--return key routine--**
print

"y":return
"n":rclurn

print "Press ";wht$;"RETURN";ylw$;" to continue: ";
poke 198,O:rem ell' kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100:rem 1 = rtn.
goto 19070:if not 1 go back
poke 19,0:rem restore input prompt
poke 198,1:rem allow for cursor
poke 631,O:rem clr kbrd
nu$ = "":rem clr sLring variable
j = I
return

." . . ,

ADDITIONAL SEQUENTIAL FILES 211

9DIFfiles

One of the more exciting possibilities in file handling is the prospect of a standard
format for transferring file information. At least one such standard is now being
supported by a number of major pieces of application soft v. arc. The OIF file format
was developed by Software Arts, writers of Vi~iCalc. It b important to keep in
mind the intent of this standard. The standard does not suggest that all files be
stored according to the DIF format. Such a requirement would place an impossible
burden on too many application~ to make the standard truly acceptable. Instead,
the standard suggests a specific format for file transfer.

If you never expect to transfer your file information from one program to
another. you have no real need to use DIF. But if you wish to have different
programs share the same data, then a standard such as DIF is very valuable. For
example, if you never expect to use another program with your Mailing List System
names and addresses, then there is no reason to store those names and addresses
according to the OIF format. On the other hand, if you want to use Calc Result
(or some other OIF-supporting spreadsheet program) with the scores obtained from
the math system, then the OIF format becomes important. Without the standard,
it would be necessary to type all the scores into the Calc Result program. With
OIF, Calc Result can read the scores directly from the disk. On a small file, retyping
is not a big consideration, but as the file grows, it becomes a major problem.

212 CHAPTER NINE

Regardless of the file size, rekeying the information for every application program
that makes use of the same data is annoying, inconvenient, and unnecessary. If an
application program such as Calc Result makes use of. or supports, the DIF file
format, any information stored according to that standard can be used by that
application program.

Most application programs supporting DlF actually offer you two methods of
saving your infornlation or data. The first or standard method is the most efficient
and effective way to store information for the specific program. The second method
is the DIF format. In other words, the file is saved twice, once in the normal manner
according to the program needs, and the second time in a format that allows other
programs to access and use the information. This two-method system is necessary
because the DIF format (or any standard format) is not a very efficient way of
storing and retrieving information. Let's look at the DIF format and use it to store
the scores from the Math System so that Calc Result can directly access those
scores.

Before getting into the exact way DIF files are stored, it is necessary to un­
derstand that, in order to make a standard method of saving information, the file
must contain information about itself: where it starts and ends, whether the infor­
mation is numeric or alphabetic. label information, or actual data. The creators of
DIF decided that all DlF files must be divided into two basic parts. The first part
contains information about the file itself, and the second contains the actual data.
The first part is called the Header Section and the second part the Data Section.
Next. since there are many ways of displaying information, they decided to group
all information into two categories: Vectors and Tuples. Basically, Vectors and
Tuples are just columns and rows. Finally, each piece of information must carry
with it the type of information it is: numeric, alphabetic (alphanumeric), or special
(descriptive). To distinguish between these types of information, they assigned the
following codes: a "0" indicates numeric information, a "I" indicates alphanumeric
information, and a "- I" indicates special or descriptive file information.

The only other major decision to be made is the exact organization of the file.
This organizational decision is indeed more complex, but it does follow a logical
pattern and can be learned with practice. The Header Section (the part of the file
that carries information about itself) comes tirst. Obviously, then, the Data Section
comes after the Header Section. The beginning and ending of each of these sections
must then be indicated in some way.

If you remember, in the Mailing List System we used two symbols as separators,
the"!" and the ,,*" (see Chapter 4). In much the same way, the creators of DlF
have used symbols to set off the beginning and ending points of the two file sections.
The word 'TABLE" is used to begin the file and is the first entry in the Header
Section. The characters "EOD" (End Of Data) are used as the last entry of the file
and the end of the Data Section.

Finally, something must divide the two sections. The DIF creators decided that
the division should occur in the Header Section and had to be the last entry in that

DIF FILES 213

section. That last entry, then, has to follow the pattern for the Header Section. This
means that the division between the Header Section and the Data Section needs to
be in the following format:

DATA
0,0

We now have the beginning and ending of the file and the division between the
two sections.

REM **--HEADER SECTION--**
TABLE

DATA
0,0

REM **--DATA SECTION--**

EOD

The two sections are organized in slightly different ways. The Header Section
requires three lines of information for each entry, while the Data Section uses two
lines of information for each entry.

HEADER SECTION

The first line in each entry of the Header Section gives the topic of the entry.
TABLE, VECTORS, TUPLES, and DATA are the usual topic lines. The second
line in each entry gives numeric information about each topic, such as the number
of VECTORS and the number of TUPLES. The third line allows for a name for
each topic if a name is necessary. A typical Header Section might look like the
following:

214 CHAPTER NINE

TABLE
0,1
"SCORES"

VECTORS
0,5

TUPLES
0,4

LABEL
1,0
"SESSION #"

LABEL
2,0
"OPERATION"

LABEL
3,0
"DIGITS"

LABEL
4,0
"# CORRECT"

LABEL
5,0
"# WRONG"

DATA
0,0

(I have added the colons to separate the individual entries.)
Remember that this is the way the information would look in the file and that

this section contains information about the file itself. Since VECTORS and TUPLES
are basically columns and rows, it is not too difficult to understand the numeric
information required in the second line of information in each entry of the Header
Section. The first number is the VECTOR number or column number. The second
number is a specific value related to the topic of the entry.

DIF FILES 215

Math scores
Session # Operation Digits Correct Wrong

1 ADD 2 8 2
2 MUL 3 12 8
3 D1V 3 7 13
4 SUB 5 24 1

For example, in a table of five columns, the second line of information under the
topic of VECTORS would be "0,5". Since the topic "VECTORS" is not actually
in the table, it does not have a column number (Vector name), so the "0" is first.
The "5" indicates the value relating to the topic, VECTORS or five columns. Under
the topic of LABEL, you can list the actual names of the columns, their relative
positions, and any specific value. With a LABEL, the value is usually "0" in a
simple table. TUPLES, or rows, might have a second line of "0,4" indicating that
the topic TUPLES was not actually in the table but had a value of 4 (i.e., 4 rows).The
value for the topic TABLE is the version number and must be a "1". So we see
that the Header Section describes a file of information that, in our example, consists
of 5 columns and 4 rows (5 VECTORS and 4 TUPLES).

DATA SECTION

Each entry of the Data Section consists of two lines of information. The first line
is numeric and gives two pieces of information: the type of information and the
value associated with that information. The second line provides alphabetic infor­
mation associated with the entry. For instance, if the information being stored was
the number "62.5", the Data Section Entry would be:

0,62.5
V

If the information being stored was the word "PERCENT", the entry would be:

1,0
"PERCENT"

In the first example, the information or data is numeric, so the first number in the
first line of this entry is a "0". The value associated with this entry is the information
itself, "62.5". The second line of a numeric piece of information can have one of
five possibilities:

216 CHAPTER NINE

1. V for a numeric value.

2. NA for not available; the numeric value is O.

3. ERROR when an invalid calculation has resulted in an error; the numeric value
is O.

4. TRUE for the logical value; the numeric valu!;! is 1.

5. FALSE for the logical value; the numeric value is O.

These five possibilities lend greater flexibility to those who may have need for
complex data manipulation. In simpler files, numeric information will usually have
a second line of "V".

In the second example, the information being stored is alphabetic, so the first
number in the first line of this entry is a "1". The value associated with alphabetic
information is usually "0" so that the first line is "1,0". The second line provides
alphabetic information about the entry, and since the information is alphabetic, this
second line is the information itself. In other words, if the information is alphanu­
meric (a HI" is indicated in the first line of the entry), the second line contains that
alphanumeric information.

The other possibility for an entry in the Data Section is that of a special value.
There are two special values: one for the beginning of each Tuple and one for the
end of the Data Section. Information is grouped within the Data Section by TUPLES
(rows) with a special entry marking the beginning of each TUPLE. The entry for
this beginning is:

-1,0
BOT

And the entry for the end of the Data Section is:

-1,0
EOD

The first number in the first line is the type of information (a "- 1" indicating a
special entry), and the second is the value associated with that entry (a "0" for
special entries). The second line contains either a BOT for Beginning Of Tuple or
EOD for End Of Data.

We should now be able to write out a sample TUPLE for the file using the
scores from the Math System.

-1,0
BOT

(beginning of tuple)

(Continued on following page)

DIF FILES 217

0,1 (math session number)
V

1,0 (type of operation)
"ADD"

0,2 (number of digits)
V

0,15 (number correct)
V

0,2 (number wrong)
V

-1,0 (beginning of next tuple)
BOT

The words in parentheses would not be included in the file. They are there to help
explain each entry. Again, I have added the colons to separate each entry.

The organization of the Header Section and the Data Section allows for a large
variety in file manipulation, far more variety than I have gone into with this ex­
planation. Further information on the structure and flexibility of DIF files can be
obtained from: (I) the OIF Clearinghouse, POB 527, Cambridge, MA 02139, or
(2) by reading the information contained in the VisiCalc program, or (3) by reading
"DIF: A Format for Data Exchange between Applications Programs," BYTE MAG­
AZINE, November, 1981, p. 174, or (4) in the comprehensive new book The DIF
File by Donald H. Bei!, Reston Publishing Company, Reston, V A 22090.

Now, we should be able to write a simple program that will refonnat our math
scores file in such a way that it conforms to the DIF standard. The first part of this
program reads the scores into memory. The second part does the reformatting.
Again, I will only present the code that relates to file handling. The entire program
is included at the end of the chapter.

370 rem **--file input routine--**
380 dim s$(100),dt(100)'cr(100),wr(100)
390 open 2,8,2, cv$ + ",seq,read"
400 k = 1
410 input#2,s $(k):rem sign of operation
420 input#2,d t(k):rem # digits
430 input#2,c r(k):rem # correct

218 CHAPTER NINE

440 input#2,wr(k):rem # wrong
450 if s$(k) "+" then s$(k) = "ADD"
460 if s$(k) "-" then s$(k) = "SUB"
470 if s$(k) "x" then s$(k) = "ML T"
480 if s$(k) "/" then s$(k) = "DIV"
490 k = k + 1
500 if status = 0 then 410
510 close 2
520 :
530 :

This is virtually the same routine we used for the "math. scores" program. The next
part of the program is designed by following the necessary organization of either
the Header Section or the Data Section.

1000 rem **--dif routine--**
1010 print home$:cd = 5:gosub 9000
1020 print rvs$; "WRITING DIF FILE"
1030 print
1040 j = k - 1: nv == 5: nt = k - 1
1050 q$ = chr$(34):rem quote mark
1060 rem j = cou nter
1070 rem nv = number of vectors
1080 rem nt = number of tuples
1090 file$ = cv$ + ".dif"
1100 open 3,8,3,"@0:" + file$ + ",seq,write"
1110 :
1120 :
2000 rem **--header section--**
2010 :
2020 print#3, "TABLE"
2030 print#3,"0,1"
2040 print#3,qncq$
2050 :
2060 print#3,"VECTORS"
2070 print#3,"0, ";nv
2080 print#3,qq
2090 :
2100 print#3, "TUPLES"
2110 print#3,"0,";nt
2120 print#3,qq
2130 :

DIF FILES 219

2140 print#3, "DATA"
2150 print#3, "0,0"
2160 print#3,qq
2170 :
2180 :

These lines create the Header Section. They follow the rules uf the Header Section
in that each entry has three lines: the topic line, the numeric line. and the title or
string line. The instructions at line 1040 could be handled with input variable
statements instead of constants. Line 1090 combines the name of the file with the
suffix ·'.DIF" to distinguish between the two files. This suffix may be required for

some application programs.
The next section of code creates the Data Section.

3000 rem **--data section--**
3010 :
3020 print#3," -1,0"
3030 print#3,"BOT"
3040 :
3050 print#3,"1 ,0"
3060 print#3,q$"Session #"q$
3070 :
3080 print#3,"1 ,0"
3090 print#3,q$"Operation"q$
3100 :
3110 print#3,"1 ,0"
3120 print#3,q$"Digits"q$
3130 :
3140 pri nt#3," 1 ,0"
3150 print#3,q$"Correct"q$
3160 :
3170 print#3,"1 ,0"
3180 print#3,q$"Wrong"q$
3190 :
3200 for i = 1 to j
3210 :
3220 print#3," - 1 ,0"
3230 print#3,"BOT"
3240 :
3250 print#3,"0,";i:rem math session #
3260 print#3,"V"
3270 :
3280 print#3,"1 ,O":rem operation

220 CHAPTER NINE

3290 print#3,s$(i)
3300 :
3310 print#3,"0,";dt(i):rem # of digits
3320 print#3,"V"
3330 :
3340 print#3,"0,";cr(i):rem # correct
3350 print#3,"V"
3360 :
3370 print#3,"0,";wr(i):rem # wrong
3380 print#3,"V"
3390 :
3400 next i
3410 print#3," -1,0"
3420 print#3,"EOD"
3430 :
3440 close 3
3450 :
3460 :
3470 :

We include the labels with the Data Section so that Calc Result will view them as
data and include them in the display. (Calc Result does not support the "LABEL"
topic in the Header Section.) Once the label information has been included, we
write out the actual data by printing the contents of the various arrays. We use a
loop to accomplish this. When the loop is finished, the special entry EOD is written
and the file closed. Now, we should have a program that will create a duplicate
file of an individual's math scores in the DIF file format.

We are able to create a DIF file that can be accessed by DIF supporting
application programs. One other step remains. We may need to use data obtained
with an application program. This requires that we create a program that reads DIF
files. Reading a DIF file is simply reading a sequential file that has its information
stored in a specific order. The following program will read a Calc Result DIF file.
The display portion of the program is \eft in its original form since each file may
require a different display format.

370 rem **--file input routine--**
380 dim a$(200),s(200),n(200)
390 open 2,8,2,cv$ + ".dif,seq,read"
400 k = 1
410 input#2,t$:rem read the topic name
420 input#2,s,n:rem vector #, value
430 input#2,s$:rem string value
440 if t$ = "VECTORS" then nv = n

DIF FILES 221

450 if t$ = "TUPLES"
460 if t$ <> "DATA"
470 :

then nt = n
then 410

480 input#2,s(k),n(k):rem data 1st line
490 input#2,a$(k):rem data 2nd line
500 if a$(k) = "EOO" then 540
510 k = k + 1
520 goto 480
530 :
540 close 2
550 :
560 :
1000 rem **--display routine--**
1010 print home$:cd = 5:gosub 9000
1020 for j = 1 to k
1030 print s(j);",";n(j)
1 040 print a$(j)
1050 next j
1060 :
1070 :

The display routine is left in its elementary fonn since the point of the program is
to show how to access files from DIF supporting application programs. All these
lines should be familiar. Line 460 tells the computer to go back to line 410 until
T$ equals "DATA". At that time, the computer is to drop down to the loop used
to read and store the Data Section information (lines 480 through 520). When a$(k)
reads the value "EOD". we know that the file is finished, and we need to close the
file and proceed to the display routine.

As with all programs. there are other ways of writing a DIF reader program
and obtaining essentially the same results. We could have read and saved all the
information contained in the Header Section. We could have used a number of
GOSUBS (especially in the DIF creator program). But most of these differences
are stylistic differences and not substantive differences.

You now have the ability to read and write DIP files. That ability may not
prove immediately useful, but I think you will find that this may eventually be the
most valuable thing you have learned in this book. If you are not completely sure
you understand the format. a second look through this chapter and additional work
with DIF creator or reader programs should make you comfortable with DIF.

I have not tried to explain all the possibilities or variations of DIF. This chapter
is intended only as an introduction to this file transfer standard. I firmly believe
that some such standard is essential if micros are to be taken seriously.

I will conclude this chapter with a tutorial on the specific procedure necessary
to transfer the information stored in the scores files to the Calc Result program

222 CHAPTER NINE

(CBM 64 Advanced Version). This section will be useful to you only if you have
Calc Result and have actually typed in and .un the math system programs. You
will need to have typed in the "scores.dif' program discussed in this chapter also.
(Diskettes containing all the programs in this book are available for those who do
not want to type in every program. See the Bookware page in the front of the book
for ordering information.)

STEP 1: Type: Iscores.dif

STEP 2: Type RUN and press the RETURN key.

STEP 3: Answer the question with your name if you have used the Math System,
or with the name of someone who has used the Math System.

STEP 4: The disk comes on. Soon the READY prompt returns. ***--VERY
IMPORTANT--*** Turn off the Commodore-64 at this point.

STEP 5: With the Commodore-64 off, put the Calc Result cartridge in the
Commodore-64 cartridge slot. Place the Calc Result diskette in the 1541 disk drive.

STEP 6:
necessary.

Tum on the Commodore-64. Read the screen and press any key, if

STEP 7: After the Calc Result display appears, remove the Calc Result diskette.
Replace the Calc Result diskette with the diskette used to create the new DIF file.
Press the F7 key. Do not press the RETURN key! Do not press the RETURN key
from this point on unless given specific instructions to do so.

STEP 8: Next press the D key.

STEP 9: Now type the D key once more.

STEP 10: Press the L key. The disk drive will come on and a list of the files
on the diskette will be displayed.

STEP 11: Press the CRSR down key to move the cursor rectangle over the name
of the newly created DIF file (the file with the ".dif' extension). When the correct
file is under the cursor (the file name is highlighted), press the RETURN key. Then
immediately, press the RETURN key a second time.

STEP 12: Near the top of the screen the computer asks the question: FROM
AI. Press the RETURN key to indicate acceptance of this location as the starting
point for the DIP file.

STEP 13: Once again, near the top of the screen, the computer displays the
question: BY ROWS OR BY COLUMNS.

STEP 14: Press the C key.

STEP 15: The disk drive comes back on and soon the screen displays information
that originally came from the Math System programs.

DIF FILES 223

STEP 16:

STEP 17:

STEP 18:

Press the F7 key again.

Press the G key.

Press the F key.

STEP 19: Finally, press the L key. The numbers should now be lined up under
the proper column titles. Further adjustment can be made to the column widths and
so on.

At this point, the scores obtained under the Math System can be manipulated in
any fashion desired within the bounds of the Calc Result program.

No attempt is made to explain the reason for each step. If you want to understand
why various keys are pressed while in Calc Result, obtain a copy of the Calc Result
manual or purchase one or more of the books that are being published on the use
of spreadsheet programs.

QUESTIONS

1. True or False: DIF suggests a standard way of saving all files.

2. Name the two parts of a DIF file.

3. Which part contains information about the file itself?

4. Which part contains the actual file information?

5. How many lines are associated with each entry in the Header Section?

6. How many lines are associated with each entry in the Data Section?

7. What value is used to indicate numeric information in the Data Section?

8. What value is used to indicate alphanumeric information in the Data Section?

9. What characters are used as the last entry in a DIF file?

224 CHAPTER NINE

ANSWERS

1. False

2. Header Section and Data Section

3. Header Section

4. Data Section

5. 3

6. 2

7. 0

8.

9. EOD

DIF FILES 225

• Program for SCORES.DfF

100
110
120
130
140
150
160
170
180
190
200
210
220
225
226
227
230
240
250
260
265
266
270
280
285
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
1000
1010
1020

226

rem ***--scores.dif--***

rem **--initialization--**
homeS chr$(147):rem clr/home
: :cd$ chr$(17):rem cursor down
: :cu$ chr$(145):rem cursor up
: :cl$ chr$(157):rem cursor left
: :cr$ chr$(29):rem cursor right
:blk$ chr$(144):rem black
:ylw$ chr$(158):rem yellow
:wht$ chr$(5):rem white
:rvs$ chr$(IH):rem reverse video
:bnk$ chrS(10):rem blank line
:brn$ chrS(149):rem brown
:bue$ chr$('ll):rem blue

poke 53280,14:rem border = It.blue
poke 53272,23:rem upper/lower case
poke 53281, l:rem set bkgrd to wht

rem **--user message--¥¥
print blk$;home$:rem clr/home
print tab(10) "DIF TRANSLATION"
cd = 5:gosub 9000:rem crsr down 5
poke 19,32:rem disable input?
input "Student's name please: ";na$
rem convert to lowercase
cv$ = na$:gosub 7000
print home$:cd = 5:gosub 9000
print blk$;"ONE HOC1ENT PLEASE!"

rem **--file input routine--**
dim s$(100),dt(100),cr(100),wr(100)
open 2,8,2,cv$ + ",seq,read"
k = 1
inp~t#2,s$(k):rem sign of operation
input#2,dt(k):rem # of digits
input#2,cr(k):rem # correct
input#2,wr(k):rem # wrong
if s$(k) "+" then s$(k)
if s$(k) "" then s$(k)
if s$(k) "x" then s$(k)
if s$(k) "/" then s$(k)
k = k + 1
if status = 0 ~hen 410
close 2

rem **--dif routine--**

"ADD"
"SUB"
"NLT"
"DIV"

print home$:cd = S:gosub 9000
p r i n t r v s $; "Iv R I T r '\ G D IFF I L E "

CHAPTER NINE

1030 print.
1040 j ~ k - l:nv ~ ~:nt ~ k
1050 '1$ ~ chr$(34):rem quote mark
1060 rem j counter
1070 rem nv number of vectors
1080 rem nt number of tuples
1090 fi leS cvS + ".riif"
1100 open '3,8,'3,"@0:" + fileS + ",seq,write"
1 110
1120
2000 rem * --header scction--**
2010
2020 print#3,"TABLE"
2030 print#3,"0,1"
2040 print#3,q$ncSq$
20')0
2060 print.#3,"VECTORS"
2070 print#3,"0,";nv
2080 print '3,qq
2090
2100 print#3,"TUPLES"
2110 print#3,"0,";nt
2120 print.#3"qq
2130
2140 print.#3,"DATA"
2150 print#3,"0,0"
2160 print#'3,qSq$
2170
2180
3000 rem *--data section--*
3010
3Cl20 print#3,"-1,0"
3030 print#3,"BOT"
3040
30')0 print#3,"I,O"
30bO print#3,q$"Session #"q$
3070
3080 print#3,"I,O"
3090 print 113,q$"Operation"q$
3100
3]10 print#3,"1,0"
3120 print#3,qS"Digits"q$
3130
3140 :lrintI!3,"I,O"
31')0 print#3,q$"Correct"q$
3160
3170 print!f3,"1,0"
3180 print#3,qS"\vrong"q$
3190
3200 for i ~ 1 to j
'3210
'3220 print#3,"-1,0"
3230 print#3,"BOT"
3240
3250 print#3,"O,";i:rem math s(,ssion #
32('0 print#3,"V"

DIF FILES 227

3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
5000
5010
5020
5030
5040
5050
5060
5070
5080
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
71 70
7180

print#3,"1,0":rem operation
print#3,s$(i)

print#3,"0,";dt(i):rem # digits
print#3,"V"

print#3,"0,";cr(j):rem # correct
print#3,"V"

print#3,"0,";\,'r(i):rem # wrong
print#3,"V"

next i
print#3,"-1,0"
print#3,"EOD"

close 3

rem--end routine--**
poke 19,0:rem restore input prompt
poke 53281, 6:rem set bkgrd to blu
print wht$
print home$:cd = 5:gosub 9000
print rvs$;"ALL FINISHED"
end

rem **--convert to lowercasc--**
for cv = 1 to len(cv$)
x = asc(mid$(cv$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cv$ = nc$
f = Bsc(left$(cv$,l))
f = f + 128
nc$ = chr$(f) + right$(cv$,len(cv$)- 1)
return

rem na$
rem cv$
rem nc$

originally typed name
converted to lowercase
1st letter/uppercase

9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cdS;
9030 next i
9040 return

ready.

228 CHAPTER NINE

• Program for READ. OfF

100 rem '**--reAd dif -***
I 10
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
ISO ::c[\$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 : ylw$ chrS(l5i3): rem yello\,
210 :whtS (IH~'(~) :rem white
220 :rvsS chr$(IS) :rem reverse video
225 :bnk$ chr$(IU):rem blank line
226 :brnS chrS(149):rem brown
227 :bueS chrS(31):rem blue
230
240 poke ~3280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, I:rem set hkgrd to wht
265
266
270 rem ¥¥--user message--**
280 print blk$;home$:rem clr/home
285 print tab(15) "DIF FILE"
290 cd = 5:gosub 9000:rem crsr down 5
300 poke 19,32:rem disable input?
310 input "Fi Ie name please: ";na$
320 rem convert to IOhercase
330 cv$ = nAS:gosub 7000
340 print homeS:crl = 5:gosub 9000
350 print blk~;;"(]\I' ~1(]01ENT PLEASE!"
360
3 7 0 rem ':' ':' - - f i 1 e i n put r 0 uti n e - - ':":'
380 dim as((0),s(200),n(200)
390 open 2,8,2,cvS + ".dif,seq,read"
400 k = 1
410 input#2,t$:rem read the topic name
420 input#2,s,n:rem vector #, value
430 input#2,s$:rem string value
440 if t$ = "VECTORS" then nv = n
4~0 if tS = "TUPLES" then nt = n
460 if t$ <> "DATA" then 410
470
480 input#2,s(k),n(k):rem data 1st line
490 input#:2,a (k):rem data 2nd line
500 if as(k) = "EDD" then 540
510 k = k + 1
520 goto 480
530
540 close :2
550
560

DIF FILES 229

1000
1010
1020
1030
1040
10')0
1060
1070
5000
5010
5020
5030
5050
5060
5070
5080
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
9000
9010
9020
9030
9040

rem **--dispJay routine--**
print home$:cd = 5:gosub 9000
for j = 1 to k
print s(j);",";n(j)
print a$(j)
next j

rem--end routine--**
poke 19,0:rem restore input prompt
poke 53281, 6:rem set bkgrd to blu
print wht$
print rvs$;"ALL FINISHED"
end

rem **--convert to Iowercase--**
for cv = 1 to len(cv$)
x = ase(midS(ev$,ev,l»
if x > 192 then x = x - 128
ncS = ne$ + ehr$(x)
next ev

cv$ = nc$
f = asc(left$(cv$,l»
f = f + 128
nc$ = chr$(f) + right$(ev$,len(ev$)- 1)
return

rem na$
rem cvS
rem ne$

originally typed name
converted to lowercase
1st letter/uppercase

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

ready.

230 CHAPTER NINE

o "form.J(J-20-84
"hello"

" 84 2a
prg

1 2
1
1
4
J 5
19
1 7
1 ;'
37
27
25
23
23
23
23
17
7
16
1 2
8
338

"example"
"address file"
"mail.create"
"adrs-ptr"
"adrs-data"
"mail.rearlerl"
"mail.arlderl"
"mail.adder2"
"mail.menu"
"shell"
"mai 1. reader2"
"mail.correction"
"math.menu"
"math.add"
"math. subtract"
"math.multiply"
"math.divide"
"math.scores"
"create q & a"
"drill & practice"
"scores.dif"
"read.dif"

blocks free.

ready.

prg
seq
prg
seq
seq
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg
prg

DIF FILES 231

1 0 random (relative) file
introduction

The biggest barrier I have found in explaining random-access files is fear. People
are afraid that random access is too hard for them to learn. Actually, once you
understand the principles behind sequential access, learning to work with random
access is not that difficult. I believe that if you have followed all the examples in
the previous chapters, you will be able to learn to work with random files. Don't
become intimidated by the different approach random access requires.

If you have skipped the sequential-access chapters and are just starting this
book, there are a few points that must be understood. For those who have read all
the previous chapters, the following information is repeated from Chapter 3.

Data files have two ways of storing and retrieving information. (Remember
that the information really stays on the diskette and we are just getting a copy of
the information!) These two ways of storing and retrieving information are sequential
access and direct (random) access. Sequential access data files mean that the in­
formation stored in the file is kept in sequential order. Direct access data files
usually mean that each part of the file is divided equally and can be reached directly
and at random instead of going through all previous records. The process of looking
at each record in order (sequence) to decide if it is the record you want is a
characteristic of sequential files and can require more time than the direct method
of random access files.

232 CHAPTER TEN

Commodore refers to random access files as relative files. But the term "rel­
ative" in the computer world often means "in relation to" and can be misleading
when used as the name of the method for directly accessing records within a file.
To further confuse matters, Commodore also provides a subset of their relative files
which they call random files. Since Commodore's random files are basically an
elementary version of their relative files, we will not cover them in a direct way.
Anything that can be done with Commodore's random files in the BASIC language
can be accomplished with relative files and in a much easier way. Therefore. any
mention in this book of random files is meant to refer to Commodore's relative
files, not Commodore's random files. In other words, whenever I use the term
random access, I am talking about the same thing that Commodore is when they
refer to relative files. And, after checking with individuals at Commodore, I have
decided to use the term "random" rather than use Commodore's term "relative"
because, in the long run, readers of this book will be less confused by a correct
application of the appropriate term.

The hasic difference between sequential data files and random data files is
somewhat like the difference between a cassette tape and a phonograph record. If
I want to find a specific song on a cassette tape, even using the best available tape
deck, I must begin at the current location of the tape and proceed either forward
or backward, passing over all intervening songs until I have found the song I want.
The process proceeds in sequence, one song after another. For example, if I want
to play only the fourth song on the tape, I would have to advance the tape through
the first, second, and third songs until I get to the fourth one. On the other hand,
if the songs are on a phonograph record, all I would have to do to play the fourth
song would be to place the phono cartridge containing the needle at the start of the
fourth division instead of at the start of the first song. I can do that because I am
able to clearly see the divisions between songs and because those individual songs
are directly accessible. I do not have to go through the grooves of the first three
songs to get to the fourth. And moving the needle by hand takes only seconds. So
imagine that the data drawer (in a file cabinet) contains two basic divisions: the
first division contains files that operate in a way similar to cassette tapes, while the
second division contains files that operate like phonograph records in the way
described.

But these two kinds of data files do have things in common, just as tapes have
things in common with phono records. The most obvious common characteristic
is that they both usually contain information that is not in the form of instructions
for the computer. In other words, they contain information like lists of things,
addresses, receipts, and inventories. Second, both files make use of some of the
same BASIC file commands, but with different parameters. Both sequential and
random-access data files primarily use four types of commands: (I) OPEN, (2)
CLOSE, (3) some way of reading the file (lNPUT# or GET#). and (4) some
method of writing to the file (PRINT# J. With this minimum background. we are
ready to begin the study of random access files.

RANDOM (RELATIVE) FILE INTRODUCTION 233

There are usually two kinds of random access tiles: (I) random files that consist
of undivided equal-length records, and (2) random tiles that consist of divided
equal-length records.)\."otice the only difference is that in one kind the records are
divided into parts, while in the other kind the records remain as a whole. This latter
kind will be discussed first.

UNDIVIDED RANDOM FILES

Normally, undivided random files are easy to create and use. In fact, they are
usually very similar to sequential files in that the contents of a keyboard line equal
the contents of the complete record. It should, therefore, be easy to access individual
records. U nfortunatel y, the use of undivided random access (Commodore's "rela­
tive") files is unreliable on the Commodore 64. Page 35 of the 1541 User's Manual
indicates that the position parameter is "optional" and implies that undivided random
(relative) files are possible. Without going into great detail at this point (the appendix
contains a full description detailing the problems that exist with files created without
a position parameter), I found these undivided random-access files to be unusable.
Without the position parameter, every fifth record beginning with record 6 would
"hang" the computer (cause the computer to completely stop, requiring a full reset­
the STOP and RESTORE keys) when that particular record was accessed. Then,
beginning at record 66, the problem advanced one record. Record 67 and every
following fifth record would cause the computer to hang. The explanation for the
cause of this problem is quite strange. Without the position parameter. the 64 begins
storing information 13 spaces into each record. That means that if I were trying to
store my name in record one, the first available space in that record would not
contain the D in David. The D would not be stored until space 13. The a would
then be in space 14. the v in space 15, and so on. This pattern exists for every
record except those records that cause the computer to hang. When the computer
stores information in those records, it does begin with the first space. The INPUT#
command apparently looks for information to begin 13 spaces into each record and
hangs the computer when it comes to these records that have information stored
beginning with the first space.

lf you have not followed this explanation, it is not that important. The point
is that without the position parameter (the main distinguishing difference between
undivided and divided random access files), undivided random access files on the
Commodore 64 do not function reliably. If the position parameter is included and
set to one. undivided records can be used without a problem. For practical purposes,
the position parameter is not optional and, therefore. technically undivided random
access is not available on the Commodore-64. This distinction is mainly technical
and semantic and should not hinder anyone from doing what he or she desires on
the 64 provided he or she includes the position parameter.

234 CHAPTER TEN

DIVIDED RANDOM FILES

Both kinds of random files must consist of equal-length records. This means that
you must decide on the length of the longest record you will ever have. For instance,
in our Mailing List System. each line had a maximum length of 80 characters
because that is the maximum number of characters allowed in a single Commodore
keyboard line. Probably none of your lines (or records) actually had the maximum
length, but that was the length possible for each record. You did not need to specify
this number. because in sequential files, the next record begins immediately after
the end of the last character and the record delimiter, no matter what the actual
length of the record. But you must specify the maximum length in random files
because the next record does not begin immediately after the last character in the
previous record. It actually begins the specified record length after the beginning
of the previous record. regardless of the number of characters in that record.

For example. if the length is given as 50, it means that each record has a
maximum of fifty characters possible and that each record begins fifty characters
(i.e .• spaces, or bytes) from the start of the previous record. If the first record
begins at byte 0, the second begins at 50, the third record at 100, and so on. You
do not need to be concerned with the actual location on the disk. It is important to
understand that, since each record must be of equal length, it is very easy for the
computer to calculate the starting position of each record and possible for you to
specify any record in any order. You must provide the computer with that maximum
length by assigning a value after the L parameter (for length) that follows the file
name in random files. The number given after the L in an OPEN statement indicates
the maximum number of characters or bytes you expect in any record in that file.
It also indicates that each record will be that number of characters or bytes long.

If you have a record that is not as long as the number given after the L. you
will have a certain amount of disk space that is unused. So it is important to figure
carefully and keep the number after L as low as possible. If the number is very
large but most of your records are rather small, you will be wasting a lot of disk
space. A certain amount of wasted disk space is inevitable in using random files,
since few files will contain infonnation of exactly equal length. But in using random
files, you are willing to waste a little disk space in order to gain the advantage of
much faster disk access.

The divided random file consists of records that are broken into varying-length
parts or fields. Each record is the same length, but within each record the fields or
parts of the record can be of varying lengths. In other words, a random access file
that consists of records with a length of 100 characters or bytes can have each
record divided into parts of equal or unequal lengths. The first field might be 25
bytes (spaces) long. the second field 10 bytes, the third field 15 bytes and the last·
field 50 bytes. The total number of bytes or characters equals 100. but no two fields
need be the same length.

RANDOM (RELATIVE) FILE INTRODUCTION 235

In our Mailing List System example. with random hies that contained divided
records. we could specify a certain length for the first name and other lengths for
the last name, city, zip code. and so on. Each record, therefore, could contain a
complete set of the infonnation needed for the Mailing List System. Under sequential
access, the complete set of infonnation usually required six or seven records (lines).
For instance, if we decide that each line of information or each record would have
no more than 150 characters in it, we could further decide that the first field of
each record would exist from byte ° to byte 10, the second from byte 11 to byte
15. the third field from byte 16 to byte 30, and so on. Each record could contain
the first name in the first field. the middle initial in the second field, the last name
in the third held, the numerical address in the fourth field, the street address in the
fifth field, any apartment number etc. in the sixth field, the city in the seventh field.
the state in the eighth field, and the zip code in the ninth held. Under this setup,
it would be easy to access any part of any record in any order we desire. For
example, if we just want the zip code and first name in that order. we would have
no trouble accessing just that information.

I have been using the term byte in connection with the word character so that
you might get used to the idea that the length of a record is measured in bytes.
Each character or number is one byte. If a file has equal-length records of 50. that
is 50 bytes. If the second field begins 27 characters from the first character, that
is the 27th byte of the record. To access that byte, we set the position parameter
to the desired location.

At this point. a short tutorial may best explain the exact syntax and operation
of random-access files. Take a formatted diskette that has plenty of room on it or
fonnat a new one (refer to Chapter 2 if necessary). Load the DOS Wedge from the
TEST/DEMO diskette (refer to Chapter 3). Enter thc following program (in lower
case mode):

100 rem ***--random file example--***
110 :
120 :
130 rem **--file output routine--**
140 open 2,8,15:rem open command chnl
150 open 3,8,4,"random example,I," + chr$(50)
160 for i = 1 to 25
170 gosub 1000:rem figure rec.# routine
180 print#2, "p" ;chr$(4) ;chr$(rlow) ;chr$(rhigh);chr$(1)
190 print#3,"record";i
200 print#2, "p" ;chr$(4) ;chr$(rlow) ;chr$(rhigh) ;chr$(20)
210 print#3,"abcdef";i
220 next i
230 close 3: close 2
240 input "Press 'RETURN' to continue: ";r$

236 CHAPTER TEN

250 :
260 :
1000 rem **--figure ree.# routine--**
1010 rlow = i
1020 rhigh = 0
1030 if rlow > 255 then 1050
1040 return
1050 rhigh = int(rlow/256)
1060 rlow = rlow -- 256 * rhigh
1070 return

There are a lot of different numbers in these routines, but if you have gone through
the sequential access portion of this book, the numbers in the "open" statements
should be familiar. For those who may have skipped over the sequential-access
portion, I will brietly explain each value. The first number after the word "open"
is the file number: 2 in line 140 and 3 in line 150. The 8 in both lines refers to the
disk drive device number (random access is not available to tape users). The third
number after the "open" command is the channcl number. For disk use, channel
numbers should nonnally be between 2 and 14. The number 15 in line 140 is
reserved for the operating system's command channel. Quite often the file number
and the channel number are arbitrarily assigned the same number to avoid the need
to remember additional numbers. In this case. I intentionally assigned different
numbers in order to more clearly distinguish which values should be used at specific
times.

Line 150 contains additional differences. First, there is no longer the need to
indicate the type of file or the access mode. Second, the "L" or "I" parameter must
be included with separating commas. Third, the actual length of each record must
be specified within the chr$ parentheses. As stated previously, random access files
must consist of equal-length records. This means that you must decide on the length
of the longest record you will ever have. In this example. the length is specified
as 50. In other words, each record in this file called "random example" will have
50 spaces available to it. Again, this does not mean that each record must actually
contain 50 characters, but that no record may contain more than 50 characters.

Line 160 defines the dimensions of our loop used to quickly and easily write
information to this file. We are going to have 25 records, so the value of the numeric
variable i will vary from I up to 25. Line 170 sends control to a subroutine located
at line 1000. All the code in this subroutine could have been included in the program
at this point. but I chose to put this code into a subroutine because other portions
of our example program will eventually need to make use of the exact same in­
structions. The purpose of this subroutine is stated in the title. The routine is designed
to separate the decimal value of the record number into its low-byte and high-byte
values.

It is at this point that confusion usually bcgins. All the numbers specified in

RANDOM (RELATIVE) FILE INTRODUCTION 237

chr$ statements are decimal numbers (base 10) except the number used to determine
which record we are accessing. That number, in Commodore's operating system,
must be expressed in something like a base 256 format. This means that the number
20, for example, would equal a 0 for the high-byte value (the number 20 is less
than 256) and a 20 for the low-byte value. In other words, if I wanted to see what
was in record 20, I would tell the computer to show me what was in the record
specified by: chr$(20) + chr$(O) (low-byte is specified first). If I wanted to see
what was in record 258, I would tell the computer to show me what was in the
record specified by: chr$(2) + chr$(l), or the value of the first number 2 added
to the value of the second number. The value of that second number is not 1.
Instead its value is 256. The high-byte value is multiplied by 256. If the high-byte
value were 2, the first number (2) would be added to 512 (256 times 2). If the
high-byte value is 3, the first number is added to 768 (256 times 3), etc. The routine
at WOO is used to convert decimal value record numbers into their low-byte (rlow)
and high-byte (rhigh) values. If you have not followed the explanation for this
routine, you only need to know that the routine, or some similar set of instructions,
is necessary in order to access the desired record number. Once the computer has
a value for the numeric variables "rlow" and "rhigh", control can be returned to
the file output routine.

The following two paragraphs should be read very carefully!

Line 180 is an example of what Commodore calls the "POSITION COM­
MAND". This instruction is used to position the computer: (I) to the desired channel
number, (2) to the desired record number, and (3) to the desired position within
the specific record. The position of each of these values, relative to each other, is
fixed and not arbitrary (i.e., channel number, low-byte record number, high-byte
record number, position within the record). Since a string of numbers inside chr$
parentheses is not very descriptive, I prefer to assign the desired values to descriptive
variables and use the variables in place of the actual numbers. Later, this method
of using descriptive variables will be expanded; but for now the variables rlow and
rhigh, as explained above, indicate the actual record number.

180 print#2, "p" ;chr$(4) ;chr$(rlow);chr$(rhigh) ;chr$(1)

The number immediately following the # symbol must be the file number used
in the open statement for the specific file. In line 180, this number is a 2, which
was the file number used with the operating system's command channel. The "p"
is used to tell the computer that this is a "position command" instruction. The first
number used inside chr$ parentheses in line 180 must be the channel number chosen
for use with the random access file (i.e., the third number in the open statement
for that file). This point has caused a great deal of confusion and probably is one
reason some people have felt that similar programs act in different ways at different
times. In this example, the 4 is the channel number and is the number to be used

238 CHAPTER TEN

in the first chr$ parameter. If the file number (3) is used instead, unpredictable
results can occur. If both file number and channel number are the same, no problem
should occur. Future programs will follow the convention of using the same number
for both the file number and the channel number. The only reason it is not done
in this example is to provide a clear distinction between the two numbers.

The second and third chr$ 0 values are the low-byte and high-byte values for
the record number. The last number in line 180 is the number Commodore indicates
is optional. For all practical purposes this value is not optional and should be set
to one even if the record will not be further divided. You should also notice that
this number is the only value that is different in line 200. The last value used with
chr$ in the "position command" instruction is the specific position within the record
for the current information (in either read or write mode). Therefore, chr$(l) in
line 180 indicates that the first piece of information is to begin in the first space of
the record. The chr$(20) in line 200 indicates that the second piece of information
is to begin at the twentieth space of the record. The information that is to be written
in those two locations is given in the line that follows each (190 and 210). The
number after the # symbol in line 190 is the file number of the random access file
specified in the open command (line 150). The information (in either constant or
variable form) that follows the comma is the information that is written to the
diskette. In line 190, that information consists of the word "record" and the value
of the variable i. In line 210, the information consists of the characters "abcdef"
and the value of the variable i. Line 230 closes both files once the value of i has
exceeded the number specified in line 160. Line 240 is our method of pausing
before the next routine.

300 rem **--file input routine--**
310 open 2,8,15:rem open command chnl
320 open 3,8,4,"random example,I," + chr$(50)
330 for i = 1 to 25
340 gosub 1000:rem figure rec.# routine
350 print#2, "p" ;chr$(4) ;chr$(rlow);chr$(rhigh); chr$(1)
360 input#3,a$
370 print as;
380 print#2, "p" ;chr$(4) ;chr$(rlow) ;chr$(rhigh) ;chr$(20)
390 input#3,b$
400 print tab(15) b$
410 next i
420 close 3:close 2
430 input "Press 'RETURN' to continue: ";r$
440 :
450 :

This routine is essentially the same as the file output routine, with the only real

RANDOM (RELATIVE) FILE INTRODUCTION 239

difference occurring in lines 360, 370, 390, and 400. In those lines, information
is obtained from the diskette and then displayed on the screen instead of written to
the diskette. Notice the semicolon at the end of line 370. It is there for screen
formatting purposes only. In all other aspects, the parameters within the routines
are the same with the same meaning. The parameters do not need to be the same
as those used in the file output routine (i.e .. when information is written to the
diskette), but it is often easier to keep track of which number goes where if the
same numbers are used. The one exception to this rule is the position parameter.
If these numbers are not kept the same, unintended results will occur. In other
words, the last numbers in lines 350 and 380 should be the same as those used in
lines 180 and 200. Otherwise, file numbers and channel numbers (except channel
15) can be changed as long as the previously accessed file output routine has closed
the files.

The files need to be closed in a specific order also. Regardless of the number
of files used, the command channel file must be the last file closed. If it is closed
before the random access file is closed, file errors might occur. The display lines,
lines 370 and 400, do not need to be located where they are. They can be placed
anywhere before the "next i" instruction. The last routine provides an example of
the ability to access any of these records at random.

500 rem **--random access routine--**
510 input "Which record number ";nb$
520 nb = val(nb$)
530 if nb = 0 then 900:rem end
540 if nb > 25 then 510:rem ask again
550 i = nb:gosub 1000:rem figure rec.#
560 open 2,8,15:rem open command chnl
570 open 3,8,4,"random example,I," + chr$(50)
580 print#2, "p" ;chr$(4);chr$(rlow);chr$(rhigh);chr$(20)
590 input#3,b$
600 print b$;
610 print#2, "p" ;chr$(4);chr$(rlow) ;chr$(rhigh) ;chr$(1)
620 input#3,a$
630 print tab(15) a$
640 close 3: close 2
650 goto 510
660 :
670 :
900 rem **--end routine--**
910 end
920 :
930 :

240 CHAPTER TEN

This routine provides the first real example of what random access is all about.
The user can indicate any record number between 1 and 25 in line 510, and the
computer will go to that record number and obtain the information in whatever
order the programmer has specified. Notice that I turned the position statements
around. The first information obtained and displayed is the information stored
beginning at the twentieth byte or space in the record. The second piece of infor­
mation obtained is the information stored at the first byte or space of the record.
And the record numbers do not have to be given in order. We can ask for record
21 and then ask for record 2. Or. ask for record 9 and then record 19. The order
does not matter, because the computer has been instructed to go directly to the
specified record and the specified location within that record. Once again, the same
values were used for all parameters, but with the exceptions noted in the description
of the file input routine, these parameters could have different values.

When you have finished entering the program instructions, save them to the
diskette as "random test 1".

-random test 1

Then. run the program:

run

For a short time. the disk drive red light should come on and the cursor should
disappear. Eventually. the statement from line 240 will be displayed on the screen
and the red disk light will go out. When you are ready, press the RETURN key
and watch the screen carefully. Two columns should appear. If you do not get two
columns on the same line. check line 370 for the semicolon. The left-most column
should contain the word "record" (or RECORD if you are in upper case mode) and
an increasing number. up to the number 25. The right-most column should contain
the characters "abcdef" (or "ABCDEF") and the same increasing number, up to
25. When the number 25 has been reached, the statement from line 430 should be
displayed.

Again, when you are ready. press the RETURN key. Now, you will be asked
to indicate which record number you wish to see. Indicate record number 11. This
time you should see two columns but in reverse order. The characters "abcdef 11"
should be in the left-most column and the word "record 11" should be in the right
hand column. At this point, you can try out additional record numbers. I would
also encourage you to experiment with different combinations of these instructions
and parameters just to see what happens. You can also substitute the word "GET#"
for the word "INPUT#".

RANDOM (RELATIVE) FILE INTRODUCTION 241

MEDICAL RECORDS SYSTEM

With this background, we are going to go over what I hope is a useful program.
The example is a file used to store personal family medical records. In these random
file examples, I will not go over all the routines as I did in the sequential file
examples. Instead, I will concentrate on the file routines. The complete listing for
the program will be found at the end of the chapter.

If you take a look at the complete listing, you will see that we begin with a
menu routine. The first thing that needs to be done the first time the program is
used is to set the value of the record pointer to zero and write that value out to a
sequential file. After setting the pointer value that first time, the program instructions
automatically update the pointer value. The record pointer file is used to keep track
of the total number of records in the random file.

• File Output Routine

Next comes a keyboard input routine in order to obtain our original information.
We are asking the user to supply: (I) the name of the individual (name$). (2) the
date (dte$), (3) the type of record. that is. whether it is a record of a Dr. Visit.
Medication, IlIncss, Accident or Injury, Shot or Immunization, or X-ray (type$).
and (4) any miscellaneous information such as the name of the medication and
frequency of use, the kind of illness, location of injury, and so on (misc$). Once
we have all our information and have verified that it is correct, we are ready to
write that information out to the disk file.

1700 rem **--file output routine--**
1705 :
1710 rem *-pointer file-*
1715 rem must set ptr. before first use
1720 open 2,8,2," med-records.ptr,seq,read"
1725 input#2,ptr
1730 close 2
1735 ptr = ptr +
1740 :
1745 rem *-data file-*
1750 open 15,8,15: rem open command chnl
1755 open 3,8,3,"med-records,I," + chr$(50)
1760 rem I in line 1755 is letter not #
1765 rem 50 in line 1755 is rec.length--not # of records
1770 chnl$ = chr(3):rem channel #
1775 rlow ptr:rem low byte of rec.#
1780 rhigh = O:rem high byte of rec.#

242 CHAPTER TEN

1785 if rlow > 255 then gosub 15000
1790 rec$ = chr$(rlow) + chr$(rhigh)
1795 :
1800 pztn$ = chr$(1):rem position
1805 print#15," p" ;ch n 1$; rec$; pztn$
1810 print#3,name$
1815 :
1820 pztn$ = chr$(15):rem position
1825 print#15, "p" ,chnl$; rec$; pztn$
1830 print#3,dte$
1835 :
1840 pztn$ = chr$(26):rem position
1845 print#15," p" ;chnl$; rec$; pztn$
1850 print#3,type$
1855 :
1860 pztn$ = ch r$(28): rem position
1865 print# 15," p" ;chnl$; rec$; pztn$
1870 print#3,misc$
1875 close 3:close 2
1880 :
1885 :
1890 rem *-update ptr file-*
1895 open 2,8,2,"@0:med-records.ptr,seq,write"
1900 print#2,ptr
1905 close 2
1910 goto 500:rem menu
1915 :
1920 :
1925 :

There are three parts to this output routine. The first part (lines 1710-1735) accesses
the pointer file and updates the pointer value. The second part (lines 1745-1875)
defines the data file and writes the infonnation to it. Finally, the last part (lines
1890-1905) again accesses the pointer file, this time to write out the new value of
the pointer. We are concerned with the second part since that is the part that deals
with a random access file.

Line 1750 opens the operating system's command channel as file number 15.
Line 1755 opens the random access file "med-records" as file number 3 on channel
number 3 with a length of 50 bytes available for each record. The two rem lines,
1760 and 1765, clarify two points in line 1755. The lower case I on some printers
looks the same as the number 1. It is very important to understand that the character
1 in line 1755 is the lower case letter I and not the number I. In addition, you

RANDOM (RELATIVE) FILE INTRODUCTION 243

should clearly understand that the number inside the parentheses specifies the length
of each record rather than the total number of records.

Line 1770 is the first line used to help make the parameters, in the "position
command" instruction, descriptive. The string variable chnl$ is used to store the
value of the channel number. Since that value is used with the chr$ instruction, a
string variable can be used to describe the complete instruction with its value. Line
1775 defines the numeric variable "rlow" as equaling the current value of the pointer
(ptr) or the total number of records so far plus one (line 1735). Line 1780 establishes
the value of the high-byte part of the record number as zero. This value should
only change if the number of records goes above 255 (line 1785). If the number
of records does get above 255, the routine at 15000 converts the record number to
its appropriate low-byte and high-byte values. Line 1790 combines the chr$ values
of both rlow and rhigh into the single string variable rec$. Once again, this is
possible because the values were expressed as chr$ values. At this point, we have
the channel number in the chnl$ variable and the record number in the rec$ variable.
Line 1800 defines the current position within the record that we want to write our
first infomlation to. The pztn$ variable (for position) can also be used, because the
value of the position within the record is defined with a chr$ statement. (The variable
cannot be pstn$ due to the embedded reserved word "st" used to indicate the status
of an input/output operation.) The "position command" instruction now becomes
(line 1805): print# 15, "p";chnl$;rec$;pztn$. This is more descriptive and under­
standable than the format suggested In the 1541 User's Manual:
print# 15, "p"chr$(3)chr$(1)chr$(O)chr$(I).

The same sequence is followed for the rest of the information that is to be
written to the file. The position variable needs to be set before every "position
command" instruction or the next information will write over the information just
written in that location. As soon as the last piece of information for this record has
been written, the random access file is closed and then the operating system com­
mand channel is closed.

One point should be emphasized before moving on. Notice that it is not nec­
essary to use string arrays: name$O. We do not have to use string arrays because
of the versatility of random files. In this program, the information for a complete
record is written to the disk before additional information is obtained from the user.
The idea that we can use the disk without extensive use of string arrays will become
more apparent with the section on reading and displaying our medical information .

• File Input Rouune

We move now to the section of our program that allows us to see the information
we have stored in the "med-records" file. In this first section, we read the file and
immediately display the information.

244 CHAPTER TEN

2000 rem **--read file routine--**
2010 gosub 10000:rem display routine
2020 :
2030 rem *-pointer file-*
2040 open 2,8,2," med-records.ptr,seq,read"
2050 input#2,ptr
2060 close 2
2070 :
2080 rem *-data file-*
2090 open 15,8,15: rem command channel
2100 open 5,8,5,"med-records,I," + chr$(50)
2110 rem I in line 2100 is letter not #
2120 chnl$ = chr$(5):rem channel #
2130 for rec = 1 to ptr
2140 rlow = rec:rhigh = 0
2150 if rlow > 255 then 15000
2160 rec$ = chr$(rlow) + chr$(rhigh)
2170 print
2180 :
2190 :
2200 pztn$ = chr$(1): rem position
2210 print#15," p" ;chnl$; rec$; pztn$
2220 input#5,name$
2230 :
2240 :
2250 pznt$ = chr$(15):rem position
2260 print#15,"p" ;chnl$;rec$;pztn$
2270 input#5,dte$
2280 :
2290 :
2300 pztn$ = chr$(26):rem position
2310 print#15,"p" ;chnl$; rec$; pztn$
2320 input#5,type$
2330 :
2340 :
2350 pztn$ = chr$(28): rem position
2360 print#15, "p" ;chnl$; rec$; pztn$
2370 input#5,misc$
2380 :
2390 :
2400 rem *-display information-*
2410 gosub 16000:rem get full type msg.

RANDOM (RELA liVE) FILE INTRODUCTION 245

2420 :
2430 rem clear screen/crsr down 5
2440 print home$:cd = 5:gosub 9000
2450 :
2460 print:print#file,""tab(tb) "1. NAME: ";name$
2470 print:print#file,""tab(tb) "2. DATE: ";dte$
2480 print:print#file,""tab(tb) "3. TYPE: ";tp$
2490 print:print#file,""tab(tb) "4. MiSe: ";misc$
2500 print:print#file," "tab(tb)
2510 print "Press ";wht$;"RETURN";brn$;" to continue:";
2520 gosub 19000:rem return key routine
2530 next rec:rem dsp next set of info.
2540 :
2550 :
2560 close 5 :close 15
2570 print home$:cd = 5:gosub 9000
2580 print tab(tb + 3):print rvs$;"ALL FINISHED"
2590 cd = 10:gosub 9000:rem crsr down 10
2600 gosub 20000:rem menu return routine
2610 goto 500:rem menu
2620 :
2630 :
2640 :

The first thing that is done is to name the routine (line 20(0) and ask if the user
wants a paper printout (line 2010). Next. the pointer file is accessed and the value
of the pointer (the number of records currently in the data file) is stored in the
numeric variable "ptr". It is not necessary to immediately close the pointer file
(med-records.ptr), but it is a good programming habit. In line 2090, the operating
system command channel is opened with the data file, "med-records". opened in
line 2100 as our third accessed file. It is defined as having records of 50 bytes or
characters in length. Line 2120 sets the channel number to five because the number
three channel might already be opened by the display routine. Lines 2140 to 2160
establish the necessary values for the record indicator with lines 2200 to 2370 nearly
duplicating lines 1800 to 1870 of the file output routine. The only difference comes
in the third line of each set. This time we are bringing information in (input#)
instead of writing information out (print#). Again, the middle line of each set is
the "position command" instruction and clearly indicates that we are providing the
computer with the channel number, the record number, and a position within the
specified record. Once we have values for all the desired variables, we proceed to
the display portion of the routine-lines 2400 to 2500. Lines 2510 and 2520 wait
until the user presses the RETURN key. When the RETURN key is pressed, the
process begins again with the next set of information obtained by reading the next

246 CHAPTER TEN

record in the data file. The entire routine is repeated until the complete file has
been read and displayed.

The subroutine at 16000 has a very specialized purpose. The purpose of this
subroutine is to match the single character symbol with its complete corresponding
"type" name: for example, exchange "d" for "Dr. Visit". Once the exchange has
been made, control is returned to the statement immediately following the GOSUB
statement. Then, instead of displaying the value of the variable we brought in from
the diskette, we display the value of the variable "tp$" obtained from the subroutine.

The only section of the program left to examine is the search routine. Lines
3000 to 3250 establish exactly what we will be searching for, and lines 3280 through
3750 conduct the actual search and display the results.

3280 rem **--file input routine--**
3290 :
3300 rem *-pointer file-*
3310 open 2,8,2," med-records.ptr,seq,read"
3320 input#2,ptr
3330 close 2
3340 :
3350 rem *-data file-*
3360 open 15,8,15:rem open cmnd chnl
3370 open 5,8,5,"med-records,I," + chr$(50)
3380 rem I in line 3370 is letter not #
3390 In = len(srch$):chnl$ = chr$(5)
3400 for rec = 1 to ptr
3410 rlow = rec:rhigh = 0
3420 if rlow > 255 then 15000
3430 rec$ = chr$(rlow) + chr$(rhigh)
3440 :
3450 print#15, "p" ;chnl$; rec$;pztn$
3460 input#5,find$
3470 :
3480 cvt$ = left$(find$,ln)
3490 gosub 17000:rem convert to I.c.
3500 if srch$ <> cvt$ then 3750
3510 :
3520 for k = 1 to 4
3530 if k = 1 then pt$ = chr$(1)
3540ifk = 2 then pt$ = chr$(15)
3550 if k = 3 then pt$ = chr$(26)
3560 if k = 4 then pt$ = chr$(28)
3570 print#15, "p" ;chnl$; rec$; pt$
3580 input#5,info$(k)

RANDOM (RELATIVE) FILE INTRODUCTION 247

3590 if k = 3 then type$
3600 next k
3610 :
3620 :

info$(k):gosub 16000:info$(k) = tp$

3630 rem *-display information-*

3750 next rec
3760 :
3770 :
3780 close 5:c/ose 15

This is an elementary search and display routine. Lines 3300 to 3330 open the
pointer file and obtain the value of the pointer. The data file is then opened (line
3370) and defined.

Next comes a technique that allows the user to search for just the beginning
portion of a field in case the user does not know the complete spelling of the entire
field. The search is limited to just the number of characters the user has supplied
in answer to the question in line 3200 (see the program listing at the end of this
chapter). We determine this number (line 3390) and then use the number in 3480
to limit the number of characters that will go through the process of conversion to
lower case. Once those characters have been converted to lower case, we can
compare then to the characters supplied by the user (srch$). If they are not equal,
the computer is instructed to increment the value of "rec" and proceed.

Line 3400 establishes the boundaries for a loop. Within that loop, we look for
just the desired part of each record. When that part is located, the rest of the
information associated with that part is read in (3520 to 3600) and displayed (lines
3630 to 3710). Those instruction-lines are skipped for information that does not
match or equal the string variable for which we are searching (line 35(0). When
the entire file has been searched, the file is closed, and control is transferred back
to the beginning of the search routine to see if the user wishes to search for more
information.

This program provides a reasonable example of the techniques involved with
creating, adding to, and reading from a random access file. It does not get too
fancy, yet it is a useful program. You may want to supply additional routines.

At this point, you should find yourself capable of "reading" a program listing.
As we progress through the book, the amount of text decreases while the amount
of program instructions that you should "read" increases. In Chapter 11, we will
use random files in a more elaborate manner.

One additional comment needs to be made in concluding this chapter. There
are a variety of ways of using random-access files of either the divided or undivided
kind. The method presented in this chapter is not meant to suggest itself as the only

248 CHAPTER TEN

method or even the best method. It is a method that does work and is understandable.
In working with files, I have found that comprehension is of more value than
program efficiency or speed. And one cautionary note: things don't always function
as they seem they logically should, especially when working with random files of
the undivided kind. For this reason, I would not encourage extensive use of the
undivided type of random files until you are very comfortable with the way they
operate.

QUESTIONS

1. Name the two kinds of random files.

2. True or False: Random files can contain records of different lengths.

3. What are the two BASIC words used to obtain information from a diskette and
place information on a diskette?

4. True or False: In random files, the next record begins immediately after the
last character in the previous record.

5. What parameter must an OPEN command have in a random file?

6. True or False: Random files waste disk space but have much faster disk
access than do sequential files.

7. True or False: The relationship that exists between the various parts of a
divided random-access file can be defined in the following way: A random­
access file consists of equal-length records. Each record may consist of equal
and/or unequal length fields. The number following the L parameter in an
OPEN statement indicates the length of each record.

S. What is the length of each record measured in?

9. True or False: Random files require greater use of string arrays than do
sequential files.

RANDOM (RELATIVE) FILE INTRODUCTION 249

ANSWERS

1. Divided and undivided random files

2. False

3. INPUT#, PRINT#

4. False

5. L

6. True

7. True

8. Bytes

9. False

250 CHAPTER TEN

• Program for RANDOM FILE
EXAMPLE

100 rem ***--random file example-- **
110
120
130 rem **--file output routine--*~
140 open 2,8,15:rem open command ellnl
150 open 3,8,4,"random example,l," + chr$(50)
160 for i = 1 to 25
170 gosuh 1000:rem figure rec.# routine
180 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh);chr$(1)
190 print#3,"record";i
200 print#2,"p";chr$(4);chr$(rlow);chrS(rhigh);chr$(20)
210 print#3,"ahcdef";i
22Cl next i
230 close 3:close 2
240 input "Press 'RETURN' to continue: ";r$
250
260
300 rem **--file input routine--**
310 open 2,8,15:rem open command chnl
320 open '3,8,4,"random example,l," + chr$(50)
330 for = 1 to 25
340 gosuh 1000:rem figure rec.# routine
350 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh);chr$(1)
360 inpul#3,a$
370 print a$;
380 p r in t # 2 , " p" ; c h r $ (4) ; c h r $ C r 1 old; c h r $ (r h i g h) ; c h r $ (20)
390 input#3,b$
400 print tahClS) b$
410 next i
420 close 3:close 2
4JO input "Press 'RETUR ' to continue: ";r$
440
450
500 rem ':":'--random ilccess routine--':":'
510 input "lVhich record number";nb$
520 nb = va1(nb$)
530 if nb = 0 then 900:rem end
540 if nil > 25 then 510:rem ask again
550 i = nb:gosub 1000:rem figllre rcc.#
560 open 2,8,15:rem open command ehnl
570 open 3,8,4,"random eXilmplc,l," + chr$(50)
580 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh);chr$(20)
590 input#3,b$
600 print b$;
610 print#2,"p";chr$(4);ehr$(rlow);cllr$(rhigh);chrS(1)
620 input#3,a$
630 print tab(l5) a$
640 close 3:close 2
6S0 goto 510
660
670
gOO rem **--end routine--**

RANDOM (RELATIVE) FILE INTRODUCTION 251

910 end

920
930
1000 rem ':":'--figurc rec.# rout ine--':":'
1010 rlow i
1020 rhigh = (I
](no if rieJ\' ~S'i thell H),i)

IU40 retul-n
[0')0
[060
lCJ7Cl

rhigh ~

rlow
t" (' t urn

i II L (rio w / :' ~) r,)
rll)h' - ~S() rhigh

252 CHAPTER TEN

• Program for MEDICAL REC. SYS.

rem ~:~ ;'- -initialization--**
homeS chr$(l47): rem elr/home
: : cd $ chr$(17) :rem cursor down
: :cu$ c h '" $ (1 4 c)) : rem curSOT up
: : c 1 $ clnS(I')7):rem C \l r;'.:; OJ' left
: : c r $ c hrS (2'J):rem c u ,'S 0 r eight
:blk$ chr$(144) :rem black
:ylw$ chr$(l58) :rern ye llow
:whlS chr$(5):rem white
:rvs$ chr$(18):rem reverse video
:hnk$ chrS(IO):rern blank lin e
: IHn$ chrS(14() :rem broh'll
:hue$ c 111 S (ll):rern blue

RANDOM (RELATIVE) FILE INTRODUCTION 253

610 print "2. READ RECORD"
620 print:prinl tab(tb)
630 print "3. SEARCH RECORD"
640 print:print tab(tb)
650 print "4. SET POINTER"
660 print:print tab(tb)
670 print "5. LIST OF FILES"
680 prinl:print tab(tb)
690 print "6. END SFSSTOf\"
700 print:print labetb)
710 poke 19,32:rem disable input?
720 input "\vhich Number Please? ";nu$
730 number = val(nu$)
740
750
760
770
780
790
800
810

if
if
if
if
if
i f

number
number
number
number
number
number

1 then 1000
2 then 2000
3 then 3000
4 then 4000
5 then SOOO
6 then (lOOO

820 gosub 14000:rem incorrect choice
830 goto 500:rem display menu again
840
850
1000 rem **--write record routine--**
1005 rem clear screen/crsr down 5
IlllO print hom,,$:cl1 = 5:gosub 9000
1015
1020
1025 rem *-name information-*
1030 print "Type in individual's name please: "
1035 print:input nameS
1040 if len(name$) 13 then nameS = left$(name$,13)
104') print:print
1050
1055
1060 rem *-date information-*
106) print "Tvpe in the dale in the form: 2-9-86."
1070 print:input dte$
1075 if len(dte$)) 10 then dte$ = left$(dtc$,IO)
1080
1085
1090 rem *-type of information-*
1095 gosuh 11000:rem dsp info. types
1100 print tab(tb):input typeS
1105 cvt$ = typeS
1110 gosub 17000:rem convert to I.e.
1115 typeS = cvt$
1120
I 125
1130 rem *-misc.information-*
1135 rem clear screen/crsr down 5
1140 print home$:cd = 5:gosub 9000
1145 print "Type in any misc. information: "
1150 print:print

254 CHAPTER TEN

1155 for i = I to 21
1160 print chrSCI75);:rem underline
1165 next i
1170 print:prinl:print
1175 print "Do not go beyond the end of the line!"
1180 rem crsr up 5
1185 print cu$;cu$;cu$;cu$;cu$
1190 input misc$
1195 if len(misc$) > 21 then misc$ = left$(misc$,21)
1200 rem strip excess undFrline char
1205 sp = 21:s$ = misc$:gosub 12000:miHc$ = s$
1210
1215
1400 rem ~-diHplHv for correction-*
1405 gosub 16000:rem get full type msg.
1410
1415 rem cle~r screen/crsr down 5
1420 print home$:cd = 5:gosub 9000
1425
1430 print: print tabC (11) "1.
1435 print:print Labetb) "2.
1440 print:print tab(tb) "3.
1445 print:print tab(tb) "4.
1450 print:print tab(tb)

NAME:
DATE:
TYPE:
~1T S C :

1455 print "Is this correct? "
1460 print:print tab(tb)

";name$
";dte$
";tp$
";misc$

1465 gosub 18000:rem yin input routine
1470 if yes$ = "y" then 1700
1475
1480 print:print tabetb)
1485 input "h'hich number is wrong? ";nb$
1 4 9 0 n b = \' ,1 1 (n b $)
1495 if nb 1 or nb > 4 then gosub 14000:goto 1480
1500 if nb = 1 then gosub 11000:rem dsp info. types
1505 print:print:print tab(tb) "Type in correct information: "
1510 print:print tHb(th):input cinfo$
1 51 5 if n bIt hen [] am c $ 1 eft $ (c i n f 0 $, 1 3) : got 0 I 4 1 5 : rem ask a g a i n
1520 if nb 2 then dte$ left$(cinfo$,10):goto
1525 if nb 3 then typeS left$(cinfo$,l) :goto
1530 if nb 4 then misc$ left$(cinfo$,21):goto
I 5 J ')
1')40
1700 rem **--file output routine--**
1705
1710 rem *-pointer file-*
1715 rem must set ptr. before first use
1720 open 2,8,2,"med-records.ptr,seq,read"
1725 input#2,ptr
1730 close :2
1735 ptr = ptr +
1740
1745 rem *-data filc-*
1750 open 15,H,IS:rem open command chnl
1755 open 3,8,J,"lIled-records,l," + chr$(50)
1760 rem J in 1 ine 1755 is letter not #

1415:rem ask again
1400:rem ask again
1415:rem ask again

1765 rem ~O in 1 ine 1755 is rec.length-~not # of records

RANDOM (RELATIVE) FILE INTRODUCTION 255

1770 chnl$
1775 rlow
1780 rhigh
1785 if rlow
1790 rec$
1795

chrS(3):rem channel #
ptr:rem low byLe of rec.#
O:rem high byte of rec.#
> 255 then 15000
chr$(rlow) + chr$(rhigh)

1800 pztn$ chr$(l):rem position
1805 print#15,"p";chnl$;rec$;pztn$
1810 print#3,name$
1815
1820 pztn$ = chr$(15):rem position
1825 print#15,"p";chnl$;rec$;pztn$
1830 print#3,dte$
1835
1840 pztn$ = chr$(26):rem position
1845 print#15,"p";chnl$;rec$;pztn$
1850 print#3,type$
1855
1860 pztn$ = chr$(28):rem position
1865 print#lS,"p";chnl$;rec$;pztn$
1870 print#3,misc$
1875 close 3:close 15
1880
1885
1890 rem *-update ptr file-*
1895 open 2,8,2,"@0:med-records.ptr,seq,write"
1900 print#2,ptr
1905 close 2
1910 go to 500:rem menu
1915
1920
1925
2000 rem **--read file routine--**
2010 gosub 10000:rem display routine
2020
2030 rem *-pointer file-*
2040 open 2,8,2,"med-records.ptr,seq,rcad"
2050 input#2,ptr
2060 close 2
2070
2080 rem *-data file-*
2090 open 15,8,15:rem open command chnl
2100 open 5,8,5,"med-records,l," + chr$(50)
2110 rem 1 in line 2100 is letter not #
2120 chnl$ = chr$(5):rem channel #
2130 for rec = 1 to ptr
2140 rlow = rec:rhigh = 0
2150 if rlow > 255 then 15000
2160 rec$ = chr$(rlow) + chr$(rhigh)
2170 print
2180
2190
2200 pztn$ = chr$(l):rem position
2210 print#15,"p";chnl$;rec$;pztn$
2220 input#5,nameS
2230

256 CHAPTER TEN

2240
2250 pztn$ ~ chr$(l'i):rem position
2260 print#]'i,"p";chnl$;rec$;pztn$
2270 input#5,ute$
2280
2290
2300 pztn$ = chr$(26):rem position
2310 print#15,"p";chnl$;rec$;pztn$
2320 input#5,type$
2330
2340
2350
2360
2370
2380
2390

pztn$ = chr$(28):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,mis(S

rem *-displny information-*
gosub 16000:rem get full type msg.

rem clear scrcen/crsr down 5
print home$:cd ~ ~:gosub 9000

print:print#file,""tab(tb) "1.
print:print#file,""tab(tb) "2.
print:print#file,""tab(tb) "5.
print:print#file,""tab(tb) "4.
print:print#file,""tab(tb)

NAME:
DATE:
TYPE:
~1I se:

";name$
";dte$
";tp$
";misc$

2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
20)10
2520
2530
2540
2550

print "Press ";wht$;"RETlJRN";brn$;"
gosub 19000:rem return key routine
next rec:rem dsp next set of info.

to continue:";

close 5:close))
print home$:cd ~ 5:gosub 9000

2560
2570
2580
2590
2600
2610
2620
2630

print tab(tb + 3):print rvs$;"ALL F1C!ISHED"
cd ~ 10:gosub YOOO:rem crsr down 10

2640

gosub 20000:rem menu return routine
goto SOO:rem menu

rem **--search routine--**
rem clear screen/crsr down 3
print home$:cd ~ 3:gosub 9000
print tab(tb) "SEARCH FOR "

"1. NAME"
"2. DATE"
"3. TYPE"
"4. MISe"
"5. DID SEARCH"

3000
3010
3020
3030
3040
300)0
3060
3070
3080
3090
3100
3110
3120
3130 if
3140 if

print:print
print:print tab(tb)
print:print taheth)
print :print tall(tb)
print:print tab(tll)
print:print lab(tb)
prinl:print tab(tb)
nb ~ val(nbS)

"Which number') ";: input

nb
nb

thCll pztn$
2 then pztn$

chr$(l):b$
chr$(lS):bS

"N A~lE"
"DATE"

nbS

RANDOM (RELATIVE) FILE INTRODUCTION 257

3150
3160
3170
3180
3190

if
if
if
if

nb
nb
nb
nb <

3 then
4 thcn
5 then
I or nb

pztn$ = chr$(26):b$ "TYPE"
pztn$ = chr$(28):b$ "~l T::; C"
500:rem menu
> ') then gosub 14000:goto 3000

3200 print:print:print tab(tb) "\~hich ";b$;:input "?";srch$
3210 gosub 10000:rem display routine
3220
3230 cvtS = srch$
3240 gosub 17000:rem convert to l.c.
3250 srch$ = cvt$
3260
3270
3280 rem **--file input routine--**
3290
3300 rem *-pointer file-*
3310 open 2,8,2,"med-records.ptr,seq,read"
3320 input#2,ptr
3330 close 2
'33 4 0
3350 rem *-data file-*
3360 open 15,8,IS:rem open command chnl
3370 open 5,8,5,"med-records,I," + chr$(50)
3380 rem I in line 3370 is letter not #
3390 In = len(srch$):chnl$ = chr$(5)
3400 for rec = 1 to ptr
3410 rlow = rec:rhigh = 0
3420 if rlow) 255 then 15000
3430 rec$ = chr$(rlow) + chr$(rhigh)
3440
3450 print#IS,"p";chnlS;rec$;pztn$
3460 input#5,fjnd$
3470
3480 cvt$ = left$(find~,ln)

3490 gosub 17000:rem convert to l.c.
3500 if srch$ <> cvtS then 37)0
3510
3520 [or k to 4
3530 if k then pt$ chr$(1)
3540 if k 2 then pt$ chr$(15)
3550 if k 3 then pt$ chr$(26)
3560 if k 4 then ptS chr$(28)
3570 print#15,"p";chnl$;rcc$;pt$
3580 input#5,info$(k)
3590 if k = 3 then typeS = info$(k):gosub 16000:info$(k) tp$
3600 ncxt k
3610
3620
3630 rem *-display information-*
3640 rem clear screcn/crsr down 5
3650 print homc$:cd = 5:gosub 9000
3660
3670 print:print#fjle,""tab(tb) "1. NAHE: ";info$(l)
3680 print:print#fi le,''''tab(tb) "2. DATE: ";info$(2)
3 6 9 0 p r i n t : p r in t # f i Ie, '''' tab (t b) "5. T Y P E: "; in f 0 $ (3)
3700 print:print#file,""tab(tb) "4. HISC: ";info$(4)

258 CHAPTER TEN

3710 prinL:l'rinl#fi le,""tab(tb)
3720 print "Prpss ";wht$;"I\ETCRN";brn$;" to continue:";
3730 prinl:print:print
3740 gosub 19000:rem return key routine
37S() next rec
3760
377 ()
3780
3790
3800
3810
3820
3830
3840
38')0
3860
3870
3880
3890
3900
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
42')0
4260
4270
4280
4290
4300
4310
4320
4330
4340
43')0

close 5:close 15
rem clear screen/crsr down 5
print home$:cd = 5:gosuh 9000
print tab(tb + 3) "Search Complpted!"
cd = 10:gosub 9000
print Ulb(tb)
print "Press ";wht$;"I\ETUI\N";brn$;" to continue:";
gosuh 19000:rpm return key routine
close filp
goto 3000:rem search again

rem 0 set pointpr--**
print home$:rem clr/home
print tab(tb + 5) "SET POINTER"
print:print
print "You should only need to set the pOinter"
print
print "the first time the program is used."
print
print "That first time, lhe value should be"
print
print "set to a '0'. After that, if the ptr."
print
print "file ~lED-RECORDS.PTR is not erased, "
print
print "this routine should not be needed. If"
print
print "the pointer file is erased, use this"
print
print "routine to reset the value of the ptr."
print
print "to the correct number of records."
print:print
print "Press ";wht5;"RETURN";brn$;" to continue:";
gosub 19000:rem return key routine
print home$:cd = 3:gosuh 9000
print "Do you want to set a value for the"
print
print "pointer? ";
gosub 18000:rem yin routine
if yes$ = "y" then 4310
goto SOO:rem menu
pr in t
print "Type in a value for the pointer:
input pl rS
print:print
print "rs this the correct value: ";ptr$

RANDOM (RELATIVE) FILE INTRODUCTION 259

4360 print
4370 print "Type ";wht$;"YES";brn$;" if it is: ";:input yes$
4380 print
4390 if yes$ ~ "YES" or yes$ = "yes" then 4410
4400 goto 4000:rem begin again
4410
4420 rem *-pointer file-*
4430 print:print "ONE MOMENT PLEASE!"
4440 ptr = val(ptr$)
4450 open 2,8,2,"@0:med-records.ptr,seq,write"
4460 print#2,ptr
4470 close 2
4480 print
4490 print "The pointer has now been set to: ";ptr
4500 cd ~ 5:gosub 9000:rem crsr down 5
4510 print "Press ";wht$;"RETURN";brn$;" to continue:";
4520 gosub 19000:rem return key routine
4530 goto 500:rem menu
4540
4550
4560
5000 rem **--list of files routine--**
5010 print home$:rem clr/home
5020 @"$":rem wedge/diskette directory
5030 print cu$;chr$(13):rem 13 ~ rtn
5040 print "Are you ready to return to the menu?"
5050 print
5060 gosub 18000:rem yin lnput routine
5070 if yes$ ~ "y" then 500:rem menu
5080 goto 5000:rem check again
5090
5100
6000 rem **--end routine--**
6010 poke 19,O:rem restore input prompt
6020 print home$:rem clr/home
6030 cd ~ 5:rem 5 lines down
6040 gosub 9000:rem crsr down routine
6050 print tah(tb - 5)
6060 print rvs$;
6070 print "That's all for this session!"
6080 print:print:print
6090 print tab(tb)
6100 print rvs$;
6110 print "See you next time."
6120 print brn$
6130 cd = 10:rem 10 lines down
6140 gosub 9000:rem crsr down routine
6150 eno
6160
6170
9000 rem **--cursor down routine--**
9010 for i ~ 1 to cd
9020 print cdS;
9030 next i
9040 return
9050

260 CHAPTER TEN

CJ060 :
[0000 rem **--dispIBY routine--**
[0010 print home$:rem clr/home
10020 cd = 3:rem 3 lines down
10030 gosub CJOOO:rem cursor down routine
10040 print "Would you like a paper print out?"
10050 print
[0080 gosub 18000:rem yin input routine
[OOc)O if yes$ "y" then 10[:20:rem prnt
10100 if yes$ = "n" then 10100:rem scrn
1 0 I [0
10120 print home$:rem clr/home
10130 cd = 3:rem 3 lines down
10140 gosub c)OOO:rem cursor down routine
10150 print "Please make sure the printer"
10160 print
10170 print "~is on and ready to use."
1 0 1 8 () p r i n t
1 0 1 CJ 0 p r i n t "A r e y 0 II rea d y t 0 beg i n p r i n tin g ') "
10200 print
10210 gosub l8000:rem yin input routino
10220 if yes$ = "n" then 10000
10230
10240 rem *-printer display-*
10:2")0 file 4
Ill260 dvic = 4
10270 cmnd = 7
10280 goto 10S00:rem open instruction
10290
10300 rem *-screen display-*
10310 fi Ie 3
10320 dvic = 3
1 ()DO cmnd = 1
10340 goto 10'i00:rem open instruction
103")0
10160
10500 rem *-open instruction-*
10510 open file,dvic,cmnd
10520 return
10530
10';40
10'i50
1100() rem **--dispIBY type info--**
11010 rem clear screen/crsr down :2
11020 print home$:cd = 2:gosub 9000
11030 print tab(tb)
11040 print rvs$;"TYPE OF RECORD"
11050 print:print
IlOilO print tab(th) "D--Dr. visit"
11070 print
[1080 print tab(tb) "N--Medication"
110CJO print
11100 print tab(tb) "I--Tllness"
11110 print
11120 print tab(tb) "A--Accident/injury"
11130 print

RANDOM (RELATIVE) FILE INTRODUCTION 261

11140 print tab(tb) "S--Shot/immunization"
11150 print
11160 print tab(tb) "X- X-Ray"
11170 print
11180 print tab(tb) "Which type of record?"
11190 print tab(tb) "(Type: D,~l,J,A,S, or X.)"
11200 print
11210 return
11220
11230
11240
12000 rem **--strip excess underline character--**
12010 s2$ = s$
12020 i = 1
12030 if mid$(s2$,i,11 = chrS(175) then 12070
12040 i = i + 1
12050 if i > sp then 12070
12060 goto 12030
12070 s$ = leftS(s2S,i - 1)
12080 return
12090
12100
12110
14000 rem *-incorrect choice message-*
14010 print:print tab(tb)
14020 print rvs$;"Incorrect Choice!"
14030 print:print tab(tb)
14040 print "Press ";wht$;"RETURN";brn$;" to continue:";
14050 gosub 19000:rem return key routine
14060 return
14070
14080
14090
15000 rem **--figure rec.# routine--**
15010 rhigh = int(rlow/256)
15020 rlow rlow - 25h rhigh
15030 return
15040
15050
15060
16000 rem **--full type message--'¥
16010 if typeS "d" then tp$ "Dr. visit"
16020 if typeS "m" then tp$ "Medication"
16030 if typeS "i" then tp$ "Illness"
16040 if typeS "a" then tp$ "Accident/injury"
160')0 if typeS "s" then tp$ "Shot/immunization"
16060 if typeS "x" then tp$ "X-Rays"
16070 return
16080
16090
16100
17000 rem *':'--convert to lowercase--':';'
17010 nc$
17020 for cv = 1 to len(cvt$l
17030 x = asc(mid$(cvtS,cv,l)
17040 if x > 192 then x = xl- 128

262 CHAPTER TEN

17050 nc$ = nc$ + chr$(x)
17060 next cv
17070
170S0 cvt$ = ncS
17090 f = asc(left$(~vt$,I))
17100 f = f + 12S
17110 nc$ = chrS(f) + right$(cvt$,len(cvl$)~ 11
17120 return
17130
17140 rem cvt$
171')0 rem nc$
17160
17170
171S0

converted to lo~ercase

1st letter/uppercase

lS000 rem **~~y/n input routine~~**
18010 print "Type a ";lvht$;"Y";brn$;" or ";wht$;"N";brnS;"
IS020 poke 19,32:rem disable input?
ISCJ:lO input yes$
18040
IBOSO
IBOoO

pr i n t
i f yesS
i f vesS

IS07U print

" y "
"n"

or vesS "1''' then yes$
or vcs$ "Nil then ves$

IBOSO print rvs$;"Tncorrect C:hoicel";brn$
IBO'lU print
18100 goto 18000:rem he"in 'lgain
IS I 10
18120
lS130
19000 rem **~return key routine~~**

19010 poke 198,O:rem clr khrd huffer
19020 for i = 631 to 640
IY010 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
190GO if x = I then 19050:rem I = rtn
19070 goto 19050:rem if not 1 go hack
lc)OBO poke 198,1:rem allow for cursor
19090 poke G31,O:rem clr kbrd
1 I) 1 (J CJ n ll:£ = "": rem c 1 r s t r i n g va ria b I e
1 9 1 I 0 poke 1 () , 3 2 : rem disable input'
1 I) 1 2 0 ret urn
1 <) 1:) (J

1 I) I 40
19150
20000 rem **~~menu return routine~~**
20010 print#file
20020 close file
200')0 pr i n t

0040 poke 19,12:rem disable input?

" y ":returTl
"n":return

20050 print "Press ";wht$;"RETURN";brn$;" to go to Medical
~le n u : "

20060 gosuh 19CJCJO:rem return key routine
20070 print
20080 return

ready.

.11. . ,

RANDOM (RELATIVE) FILE INTRODUCTION 263

11 home inventory
system: advanced
random access
file manipulation

We are going to look at a simple, yet fairly complete, random access system for
home inventory. We will examine the file handling portions of the various programs
in detail with the expectation of modifying them for use with other applications.
The purpose of such modification is to suggest the possibility of the development
of a general purpose data base system.

There are seven programs in this home inventory system: "homeinv . menu" ,
"homeinv. write", "homeinv.read", "homeinv . search" , "homeinv .correct", "home­
inv.trans", and "homeinv.copy". Each program name attempts to describe the main
function of the particular program. Homeinv.menu is the general menu that allows
the user to easily switch among the other programs. Homeinv. write is used to create
and add to the inventory file. Homeinv.read displays the entire inventory file in the
order the information was entered. Homeinv.search is really the heart of the system.
This program has a menu of its own with seven options. Six of these options relate
to pulling specific information from the file and displaying it. The next program,
"homeinv . correct" , allows the user to change or delete information in the inventory
file. Homeinv.trans provides a translation of the inventory file into the DIF format.
The final program, '.'homeinv. copy", produces a backup copy of the file on any
diskette the user chooses.

264 CHAPTER ELEVEN

CREATE HOME INVENTORY

The "homeinv .menu", "homeinv. trans", and "homeinv . copy" programs do not con­
tain any new programming code or code not contained in another program, so they
will not be discussed. The first program we will look at is the "homeinv. write"
program. The complete listing for this program is given at the end of this chapter.
You will probably find it helpful to first look over the program before reading this
description.

There is one piece of code that needs explaining. Each of the input sections
includes an "sp" value. This "sp" value is the number of spaces that the various
inputs are allowed in the file. This value is checked to see that the user does not
exceed the allotted amount. The "go sub" routine is used to print the varying number
of underline spaces.

Lines 1000 to 2000 are the instructions used to check the infonnation and allow
the user to change anything before the infonnation is written to the disk.

Lines 2000 to 3000 are the file-handling lines and will be discussed in detail.

2000 rem **--file output routine--**
2010 :
2020 rem *-pointer file-*
2030 open 2,8,2,"inventory.ptr,seq,read"
2040 input#2,ptr
2050 close 2
2060 if status = 16 then 3000
2070 ptr = ptr + 1
2080 :

Line 2060 is our method of checking whether or not the file has already been
created. If the file exists, then the status variable will not equal 16 and no error
should occur in bringing in the value of the pointer. But, if this is the first time
the program has been used, an error will occur. The error will occur when line
2040 tries to bring in a value for ptr, since no such value has yet been written to
the disk. When the error occurs, the status variable will register a value of 16
(unrecoverable read error). We do not wish the program to halt when this error
happens; rather, we want the problem fixed. So we use the routine located between
lines 3000 and 4000 to write out a value for ptr and then return to the beginning
of the file output routine to start the process over. After use of this error routine,
a value does exist on the disk, and line 2040 can input a value for ptr without an
error occurring. Once we have a value for the pointer, we add one to that value.

2090 rem * -data file- *
2100 open 15,8,15:rem open command chnl

HOME INVENTORY SYSTEM 265

2110 open 3,8,3,"inventory.rec,I," + chr$(100)
2120 rem I in line 2110 is letter not #
2130 chnl$ = chr$(3): rem channel #
2140 rlow = ptr:rem low byte of rec.#
2150 rhigh = O:rem high byte of rec.#
2160 if rlow > 255 then gosub 15000
2170 rec$ = chr$(rlow) + chr$(rhigh)
2180 :
2190 pztn$ = chr$(1):rem position
2200 print#15, "p" ;chnl$; rec$; pztn$
2210 print#3,item$
2220 :
2230 pztn$ = chr$(25):rem position
2240 print# 15, "p" ;chnl$; rec$; pztn$
2250 print#3,serl$
2260 :
2270 pztn$ = chr$(40): rem position
2280 print# 15, "p" ;chnl$; rec$; pztn$
2290 print#3,cst$
2300 :
2310 pztn$ -= chr$(50):rem position
2320 print#15,"p" ;chnl$; rec$;pztn$
2330 print#3,room$
2340 :
2350 pztn$ = chr$(70):rem position
2360 print#15, "p" ;chnl$; rec$; pztn$
2370 print#3,desc$
2380 close 3:close 15
2390 :
2400 :
2410 rem *-update ptr file-*
2420 open 2,8,2,"(ilO:inventory.ptr,seq,write"
2430 print#2,ptr
2440 close 2
2450 :
2460 :
2470 goto 4000:rem repeat routine
2480 :
2490 :

Lines 2190 to 2370 instruct the computer to write out the information collected
from the user to the inventory file. Each piece of information is given a certain
max i mum number of spaces. Most information will not take up the maximum, so

266 CHAPTER ELEVEN

some space in each field will be left blank. Item$ infonnation can contain up to
24 characters or bytes of information (23 characters of infonnation and 1 byte for
the delimiter). Serial$ information can have up to 15 bytes of infonnation. Cst$
infonnation has a maximum of 10 bytes, room$ infonnation 20 bytes, and Desc$
can have up to 30 bytes of infonnation.

When all the infonnation has been transferred to the disk, the pointer value is
written out to its sequential file. The user is queried about adding more infonnation
to the file and the appropriate action taken upon obtaining a response.

DISPLAY HOME INVENTORY

The "homeinv.read" program is really the reverse of the routine just covered. The
word input# is substituted for the word print#, and the values of the variables are
formatted for display on the screen rather than being written to the disk. Otherwise,
the routines are very similar. Each field of each record is read into the computer
from the disk and displayed. When all records have been read in and displayed,
the user is transferred to the "homeinv.menu" program.

SEARCH/SORT HOME INVENTORY

The main piOgram of this Home Inventory System is the "homeinv. search" program.
There are six sort or search routines and an option to return to the main home
inventory menu.

1. Search For Item

2. Search For Serial #

3. Search For Cost

4. Search For Room Items

5. Sort Items--Alpha. Order

6. Sort Items--Serial #

7. Return to Home Inv. Menu

Numbers 1,2, and 4 use a common search subroutine. The two sort options (numbers
5 and 6) use a common sort subroutine, the Shell-Metzner sort. Option number 3
uses its own search routines for both parts of this selection. We will cover the
common search subroutine first.

16000 rem **--common search routine--**
16010 :
16020 :

HOME INVENTORY SYSTEM 267

16030 rem *-data file-*
16040 open 15,8,15:rem open command chnl
16050 open 5,8,5,"inventory.rec,I," + chr$(100)
16060 chnl$ = chr$(5):rem channel #
16070 :
16080 rec = rec + 1
16090 rlow = rec:rhigh = 0
16100 if rlow > 255 then gosu b 15000
16110 rec$ = chr$(rlow) + chr$(rhigh)
16120 :
16130 print#15," p" ;chnl$; rec$; pztn$
16140 input#5,find$
16150 :
16160 rem convert to lower case
16170 In = len(srch$)
16180 cvt$ = left$(find$,ln)
16190 gosub 17000:find$ = cvt$
16200 :
16210 if srch$ = find$ then 16330
16220 if rec < ptr then 16080
16230 scf = 1 :rem set search comp.flag
16240 rem clear screen/crsr down 5
16250 print home$:cd = 5:gosub 9000
16260 print tab(tb + 3)
16270 print "Search Completed!"
16280 for k = 1 to 1000:next k
16290 cd = 10:gosub 9000:rem crsr 10
16300 close 5 :close 15
16310 return

.Same code as file input routine

16590 retu rn

This subroutine is common to the first two options and to the room search option.
Each option routine that uses this subroutine establishes the necessary conditions
prior to entering the subroutine. The values of srch$ and pztn$ are determined prior
to the "gosub" statement in each of the option routines. Once these values are
known, the specified part of the file can be searched for any match (line 16210).
If a match occurs, control passes to the instructions at lines 16330 to 16590. These
instructions read in from the diskette the infonnation associated with the item

268 CHAPTER ELEVEN

searched for. The "return" statement in line 16590 returns control to the instruction
following the "gosub" statement in the original option routine-\, 2, or 4. When
a match does not occur, the record counter (rec) is first checked to see that its value
does not exceed the value of the total number of records (ptr); then the record
counter is incremented by one and the process is repeated.

The next section of code discussed is part one of the Search For Cost option.
In lines 3000 to 3200, a decision is made by the user: whether to search for items
above a certain cost or items below a certain cost. The appropriate part of this
option routine is then given control. The following code is for items above a specific
value.

3200 rem **--items above $ amount--**
3205 rem clear screen/crsr down 5
3210 print home$:cd = 5:gosub 9000
3215 input "Above which amount? ";amt
3220 gosub 10000:rem display routine
3225 rem clear screen/crsr down 2
3230 print home$:cd = 2:gosub 9000
3235 print#file,""tab(10) "ITEMS ABOVE $";amt
3240 print#fi le,bnk$: pri nt#fi le,bnk$
3245 gosub 22000:rem open file
3250 for w = 1 to ptr
3255 gosub 23000:rem figure rec.#
3260 :
3265 pztn$ = chr$(1):rem position
3270 print# 15, "p" ;chnl$; rec$; pztn$
3275 input#5,item$
3280 :
3285 pztn$ = chr$(40):rem position
3290 print#15,"p"; chnl$; rec$;pztn$
3295 input#5,cst$
3300 :
3305 c$ = cst$
3310 if left$(c$,7) = "DELETED" then 3345:rem next w
3315 if left$(c$,1) = "$" then gosub 11000:rem strip $
3320 if val(c$) ;. amt then 3330
3325 goto 3345:rem next w
3330 ttlamt = ttlamt + val(c$)
3335 print#file,item$;
3340 print#file,""tab(18) cst$
3345 next w
3350 :
3355 print

HOME INVENTORY SYSTEM 269

3360 print#file,"TOTAL VALUE = ";ttlamt
3365 gosub 24000:rem close files
3370 gosub 21000:rem clear variables
3375 gosub 20000: rem menu return
3380 goto 600:rem menu
3385 :
3390 :

The items that are valued above a certain amount are searched for in line 3320.
The amount is previously detennined in line 3215 and displayed in 3235. Line 3250
begins a loop that extends through 3345. Each record is searched for costs that
exceed the specified amount. Line 3320 says that, if the cost of the record being
examined exceeds the amount specified, then control is passed to line 3330. When
such an item has been found, (1) a running total is kept of the cumulative value of
these items (line 3330), and (2) the item and its value are displayed (lines 3335
and 3340). After all the records have been examined, the total value of all items
above the specific amount is given (3360), and control is transferred to the file
closing (3365) and housekeeping subroutines (3370 and 3375). Finally, control is
shifted back to the menu for further instructions (3380).

The routine to find items below a certain value is virtually the same as that
just given. The only significant difference occurs in line 3740 where the sign is
reversed. We are looking for items whose value is less than the specified amount.
Those items whose value is greater than the specified amount are passed over.

We have looked briefly at the first four options, the search options. The next
two options are sort options and use a common sort subroutine, the Shell-Metzner
sort. I will explain only the procedures involved in setting up and using a sort
subroutine with Commodore disk files. We will look first at the alphabetizing
routine.

5000 rem **--sort items alpha.order--**
5010 q = 1 :rem valid record counter
5020 rem clear screen/crsr down 5
5030 print home$:cd = 5:gosub 9000
5040 print tab(5) "WORKING--PLEASE DON'T TOUCH!"
5050 gosub 22000:rem open file
5060 pztn$ = chr$(1):rem position
5070 for w = 1 to ptr
5080 gosub 23000: rem figure rec.#
5090 :
5100 print#15," p" ;chnl$; rec$; pztn$
5110 input#5,item$
5115 if itemS = "DELETED" then 5170:rem next w
5120 :

270 CHAPTER ELEVEN

5130 rem convert to upper case
5140 cvt$ = item$:gosub 17500:item$ = cvt$
5150 a$(q) = item$:rem store in array for internal sort
5160 q = q + 1
5170 next w
5180 :
5190 :
5200 gosub 24000:rem close files
5210 n = q - 1
5220 print:print:print
5230 print tab(5) "STILL WORKING--PLEASE WAIT!"
5240 gosub 25000:rem sort routine
5250 :
5260 :
5270 rem display results
5280 gosub 10000:rem display routine
5290 rem clear screen/crsr down 5
5300 print home$:cd = 5:gosub 9000
5310 for i = 1 to q - 1
5320 print#file,i,a$(i)
5330 next i
5340 :
5350 gosub 21000:rem clear variables
5360 gosub 20000:rem menu return
5370 goto 600:rem menu
5380 :
5390 :

The keys to this routine are (1) reading in only the item names, (2) storing them
in a string array, (3) sorting them with the sort subroutine located between 25000
and 25150, and (4) displaying them in their now-alphabetized order.

A separate record counter is used (line 5010) to keep track of the valid records
since there may be some records that have been deleted and now contain the value
"DELETED". If there are such records, they are skipped and the loop (w) is
increased by one. But the valid record counter (q) is not increased. If the record
is not valid (it contains "DELETED"), it is also not included in the string array of
valid records to be sorted. Once the loop is completed, the string array a$O should
contain all the valid item names. A new warning message is displayed (line 5230),
and control is transferred to the sort subroutine. When the sorting has been com­
pleted, the results are displayed through another loop (lines 5310 to 5330).

The last two lines in this routine (5360 and 5370) are common to all the routines
and simply "clean up" various conditions that may have been "set" during execution
of the routine.

HOME INVENTORY SYSTEM 271

The last of the options, sort by serial number, again makes use of the left$
and mid$ string array commands. It is also the longest of the routines. The routine
sorts by serial number and then displays the resulting list in serial number order,
along with the associated item name. It is conceivable that an individual or insurance
company would need all the associated information instead of just the item name.
Therefore, if you are interested in developing a completely useful Home Inventory
System, you might wish to add the code necessary to display all related information
in both serial number order and alphabetical order.

6000 rem **--sort items serial#--**
6010 q = 1 :rem valid record counter
6020 rem clear screen/crsr down 5
6030 print home$:cd = 5:gosub 9000
6040 print tab(5) "WORKING--PLEASE DON'T TOUCH!"
6050 gosub 22000:rem open file
6060 :
6070 for w = 1 to ptr
6080 gosub 23000:rem figure rec.#
6090 :
6100 pztn$ = chr$(1):rem position
6110 print#15,"p" ;chnl$; rec$;pztn$
6120 input#5,item$
6125 if item$ = "DELETED" then 6230:rem next w
6130 :
6140 pztn$ = chr$(25):rem position
6150 print#15,"p" ;chnl$; rec$; pztn$
6160 input#5,serl$
6170 :
6180 rem convert to upper case
6190 cvt$ = serl$:gosub 17500:serl$ = cvt$
6200 :
6205 rem combine for internal sort
6210 a$(q) = serl$ + "*" + item$
6220 q = q + 1
6230 next w
6240 :
6250 gosub 24000:rem close files
6260 n = q - 1
6270 print:print:print
6280 print tab(5) "STILL WORKING--PLEASE WAIT!"
6290 gosub 25000:rem sort routine
6300 :
6310 rem display results

272 CHAPTER ELEVEN

6320 gosub 10000: rem display routine
6330 rem clear screen/crsr down 5
6340 print home$:cd = 5:gosub 9000
6350 for i = 1 to q - 1
6360 rem separate and display
6370 la = len(a$(i))
6380 print#file,i;
6390 if mid$(a$(il,j,I) = "*,, then 6410
6400 j = j + 1 :goto 6390
6410 print#file,left$(a$(il,j - 1);
6420 print#file, ""tab(18) mid$(a$(i),j + 1,la)
6430j = 1
6440 next i
6450 :
6460 gosub 21000: rem clear variables
6470 gosub 20000:rem menu return
6480 goto 600:rem menu
6490 :
6500 :

Lines 6140 to 6160 bring in the serial number of each item. If the serial number
has been deleted (contains the word "DELETED"), the record is skipped as in the
previous routine. In fact, the two sort routines have nearly identical beginnings.
The main difference occurs in lines 6180 to 6190 when the serial number, instead
of the item name, goes through the conversion to upper case. The only other major
difference occurs when the item name is concatenated (joined) to the serial number.
Line 6210 combines: (1) the existing value of the serial number (serl$), (2) the
current value of the item name (item$), and (3) a separator (the asterisk) into one
new string array value, a$(q).

Once the entire file is read and the correct number of valid records determined,
control is passed to the sort subroutine (line 6290). Lines 6310 to 6440 are used
to display the results of the sort. Here again, we need to make use of the power
of the left$, mid$, and len functions. The numeric variable la is set to equal the
length of each of the string arrays (line 6370). The mid$ function is used to determine
where in the string the asterisk is located (6390). The left$ and mid$ functions are
used to print out the desired parts of the string in a acceptable format (6380 to
6420). This sequence is repeated until all valid records have been displayed in serial
number order. The end of this routine is the same as the end of the other five
routines.

This concludes the discussion of the Search/Sort Home Inventory \home­
inv.search) program. There are a number of other points that could be discussed,
but those points relate mainly to different techniques of programming in BASIC
rather than techniques for working with Commodore BASIC files. By now, if you

HOME INVENTORY SYSTEM 273

have worked through all the programs, you should be able to "read" a program and
recognize some of the different techniques used.

CORRECT HOME INVENTORY

The next program in this Home Inventory System provides the ability to change or
delete information in the "inventory.rec" file. Both parts of this program make use
of two routines: a "file output routine", and a "file input routine". These two routines
have been used in our other programs in this system. The "correct record routine"
(lines 1 000 to 2000) is essentially thi! same as the correction routine in the
"homeinv.write" program (lines 1000 to 2000). The difference is, in the "home­
inv. write" program, the information being checked for accuracy comes from the
keyboard. In the "homeinv.correct" program, the information comes from the disk.
That is the reason for line 1110. This line transfers control to the file input routine,
which inputs from the specified record on the disk the values for item$, serl$, cst$,
room$, and desc$. These values are then displayed, and a check is made to see if
they are correct.

At this point, one other new line of code is encountered (line 1040). Lines
1040, 1280, 1290, and 1450 are all related. All deal with a string variable called
ftag$. Line 1040 sets the original value of ftag$ equal to the word "NO". This
indicates that no information has yet been changed. Lines 1280 and 1290 check
the value of ftag$ and direct the computer accordingly. If the information is correct
and no change has been made, the value of ftag$ is still "NO", and the computer
is directed to start this routine over again. If the information has been changed, the
value of ftag$ will have been changed by line 1450 to "YES", indicating altered
information. If the information is correct and has been changed, we are now ready
to write that information back out to the file on the disk (the file output routine).
This technique allows the user to scan through the records if he or she is not sure
of the record number of the incorrect information.

The deletion routine is a relatively uncomplicated routine. The suspected record
is brought in from disk (line 21(0) and displayed (lines 2180 to 2220). A request
is made of the user to see if this is the information to be deleted. If it is not, the
deletion routine starts again. If the information is to be deleted, the user is required
to type the word "YES" rather than just the "Y". If "YES" is typed, all string
variables are given the value "DELETED", and control is passed to the file output
routine where "DELETED" replaces the now deleted information. Notice that the
entire file does not need to be resequenced and rewritten to the disk. Instead, only
the information requiring change is affected.

The change and delete routines for random access files are considerably easier
than similar routines for sequential access files. This ease is one of the major
strengths of random files. Access is direct to any part of the file desired. In fact,

274 CHAPTER ELEVEN

in a very large inventory system, it is possible to read from disk and check only
the desired part of the record, rather than the entire record. Programming can often
be simpler and easier to read. There is less need for string arrays and, therefore,
less need for large amounts of internal computer memory. The disk can be used as
an extension of the internal memory with random files since the same principles
are involved. The major difference is in the time involved, disk access being much
slower than internal memory access.

At the end of the chapter, I have included the first two programs of another
system, a Magazine Article System, created by modifying this current Home In­
ventory System. (The full Magazine Article System is included on the diskettes
mentioned in the front of the book.) The modification is not extensive. The main
reason for including the first portion of the Magazine Article System is to suggest
the possibility of a general purpose data base program. All our systems have included
some method for: (1) creating and adding to a file, (2) displaying information from
that file in various ways, and (3) editing the file. These are the essential charac­
teristics in any data base system. It should be possible to create a general purpose
data base system that would request certain necessary information from the user.
Based on the supplied information, this general data base system would create a
file and set up the procedures to display and edit information in that file.

The better commercial data base programs have expanded on these essential
characteristics. They have added features that some users may need but others will
never use. One feature that I feel is essential is transportability of file information.
If a data base system does not allow some method of universal access to the files
created under its system, I believe that system is severely limited in its usefulness
to anyone other than the casual user. Files created under a general data-base system
must be able to be accessed by other commercial application programs! Without
such access, the user must reenter data in each application program used with the
file information. This is the reason DIF is so important (see Chapter 9). Some
general purpose data base systems do support DIF, while others at least make their
files available through normal Commodore DOS file structure.

In the Preface, I said that "Reading this book will not make you capable of
creating complete data base programs ... ", but at this point. you should have an
appreciation of the effort that goes into creating a good general purpose data base
system. For your individual use, you may find that you can create a semi-general
purpose data base system, a system that can serve your needs but would not be
universal in meeting the needs of everyone. This is the reason for including the
beginning of the Magazine Article System as a modification of the Home Inventory
System. Structured carefully, with enough user-supplied variables, this series of
programs can form the basis for such a personal data-base system.

The next chapter will deal with the planning necessary in creating the prugrams
for any file system. The example will be a Stock Market System for keeping track
of the price and volume changes of certain issues.

HOME INVENTORY SYSTEM 275

QUESTIONS

1. What BASIC reserved phrase is only used the first time the "homeinv. write"
program is run?

2. Give the name of the string variable that allows us to use one search routine
for three different program modules.

3. What sort routine is used in both systems in this chapter?

4. What word means "joining string variables together"?

5. True or False: It is more difficult to change information in a random-access
file than in a sequential file.

276 CHAPTER ELEVEN

ANSWERS

1. Status = 16

2. Find$

3. Shell-Metzner

4. Concatenate

5. False

HOME INVENTORY SYSTEM 277

• Program for HOMEINV.MENU

1 00 rem ,', ,', ':' - - Il 0 m e i n v • me Tl u - - ':' ','
1 10
120

rem *--initia1ization--** 130
140
150
160
170
ISO
190
200
210
220
230

homeS chr$(147) :rem c1r/home
: : c rl $ chr$(17):rem cursor cl O\·in

: : c u $ chr$(145):rem cursor up
: : c I $ chr$(157):rem cursor Ie f t
: : c r $ ellr$(29):rem cursuI' right
:b1k$ chrS(144) : rem b I ac k
:1'1w$ chr$(ISS): rem yel 10\;,'

: \,[11 S chr$(5) : rem white
:rvsS chr$(IS) : rem reverse vidpo

240 poke 5J280,14:rem border = It.blue
250 poke 53272,21:rem upper/lower easp
260 poke 5J2SI, 9:rem set bkgrrl to brn
270
2S0
500 rem **--menu--**
510 tb = 10:rem tub value-l0 spaces rt.
S 2 0 p r i nth 0 m C' (; : r e 111 c I r / hom e
530 print \-ihtt;
540 print Llb(tb)
550 print rvs$;
560 p r in t "!! 0 'II: I ~ V E:1 I n I; Y C; Y C; T F ~1"
570 print
5S0 print ylwS
590 print tab(tb)
600 p r in t "1. \~ I, I T Ii R E COR D"
GI0 print:print tab(tb)
620 print "2. READ RECDI,])"
630 print:print tab(tb)
640 print "1. SEARC!! RECORD"
650 print:print tab(tb)
66D print "4. C:UI,RECT RECORD"
6 7 0 P r i n t : p rill t tab (t b)
() S () p r i n l "5. T R A :1 C; L,\ T E R L c: () R D"
690 print:print tub(tb)
7()() print "6. ('OPY Fli E"
71D print:print tilb(th)
7 :2 0 P I' i n t "7. LIS T 0 I, F I L E C; "

73() print:print tab(tb)
74() print "s. F~,D"
75U prinL:print tab(tb)
7 6 () p 0 k e 1 9 , '3 2 : r e IT) dis a hie i n put ')
770 input "\~hich Program Numher'? ";nuS
780 number = va1Cnu$)
7 c)CJ

ROO
HID
S2()
83U

278

if number then
i [number :2 then
if number '3 then
i [number 4 then

CHAPTER ELEVEN

I()DU
:2()()()

)()()()

4()()(J

840 if number 0, then ')000
850 if number h then hOOD
860 if number 7 then 7000
870 if number 8 then 8000
880
890 rem *-incorrect choice message-*
900 print:print:print tabeth)
910 print rvs$;"Incorrect Choice'"
920 print:print tab(tb)
930 print "Press ";,-ht$;"RETURN";ylw$;" to continue:";
940 gosub 19030:rem return key routine
950 got 0 500: r co m I" e n L C he c k a g a in
960
970
1000 rem ':":'--wr i te record program--"'"
1010 fileS = "HOMEINV.HRlTE"
1020 gosub 17000:rem new program routine
1030 '''homeinv.write'':rem load & run
1040
1050
2000 rem **--read record program--**
2010 fileS = "HOMEINV.READ"
2020 gosub 17000:rem new program routine
20::10 '''homeinv.read'':rem load & run
2040
20 ~O
3000 rem **--search record program--¥"
30 I 0 f i 1 e $ = "If ml E It\ V • SEA R C H"
3020 gosub 17000:rem new program routine
3030 '''homeinv.search'':rem load & run
3040
3050
4000 rem **--correct record program--**
4010 fileS = "HOMEINV.CORRECT"
4020 gosub 17000:rem new program routine
4010 '''homeinv.correct'':rem load & run
4040
4U')0
30UO rem **--trans. record program--**
3010 fileS = "HO~lEu\V. TRANSLATE"
')020 gosub 17000:rem new program routine
5030 ·"homeinv.trans":rem load & run
5040
5050
6000 rem ¥¥--copy file--**
601U fileS = "Hot1EINV.COPY"
6020 gosub 17000:rem new program routine
6030 ·"homeinv.copy":rem load & run
6040
60')0
7UDO rem '~"--l i st 0 r r i I cos routine--'<O:'
7Ul0 print home$:rem clr/home
7U20 @"$"
7U30 print cu$;c:hr$(11):rem 13 = rtn
7Cl40 print "Are you ready to return to the menu?"
7050 print

HOME INVENTORY SYSTEM 279

7060 gosub 18000:rem yin input routine
7070 if yes$ = "y" then 500:rem menu
7080 goto 7000:rem check again"
7090
7100
8000 rem **--end routine--**
8010 poke 19,0:rem restore input prompt
8020 print home$:rem clr/home
8030 cd = 5:rem 5 lines down
8040 gosub 9000:rem crsr down routine
8050 print tab(tb - 5)
8060 print rvs$;
8070 print "That's all for this session!"
8080 print:print:print
8090 print tab(tb)
8100 print rvs$;
8110 print "See you next time."
8120 print ylw$
8130 cd = 10:rem 10 lines down
8140 gosub 9000:rem crsr down routine
8150 end
8160
8170
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cd$;
9030 next i
9040 return
9050
9060
17000 rem **--new program routine--**
17010 print home$:rem clr/home
17020 cd = 2:rem 2 lines down
17030 gosub 9000:rem crsr down routine
17040 print "You have selected the ";file$:print:print

"program."
17050 print:print:print
17060 print "Is this the program you want?"
17070 print
17080 gosub 18000:rem yin input routine
17090 if yes$ = "n" then 500:rem menu
17100 print home$:rem clr/home
17110 cd = 5:rem 5 lines down
17120 gosub 9000:rem crsr down routine
17130 print tab(tb - 5)
17140 print rvs$;
17150 print "Please wait!"
17160 print:print:print
17170 print tab(tb)
17180 print rvs$;
17190 print "I'm loading ••.• "
17200 print:print:print
17210 print tab(tb + 8)
17220 print rvs$,
17230 print fileS

280 CHAPTER ELEVEN

17240
17250
17260
17270
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
191 10
19120
19130
19140

reildy.

poke 19,O:rem restore input prompt
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;"
poke 19,32:rem disable input 7

input yes$

or ";wht$;"N";ylw$;"

print
if yes$
if yes$
print

"yU
"n"

or
or

yes$
yes$

"Y"
"N"

then yes$
then yes$

print rvs$;"lncorrect Choice!";yLw$
print
goto 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,O:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100
go to 19070:i£ not 1 go back
poke 198,l:rem allow 1 for cursor
poke 631,O:rem clr kbrd
nuS = "":rem clr string variable
print home$:rem clr/home
return

• If. . ,

HOME INVENTORY SYSTEM 281

• Program for HOMEINV. WRITE

100 rem ***--write inventory rec.--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem elr/home
l'iO : :cd$ ehr$(17) :rem cursor down
160 ::eu$ ehr$(145):rem cursor up
170 ::cl$ chr$(I'i7):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 ·:ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230 :bnk$ chr$(10):rem blank line
240 : brn$ chr$(149): rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280,14:rem border = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to ylw.
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

'~'~--variab I es J ist--':":'
rlow 10\; byte of ree • #

rhigh hLgh byte of rec • #
file file # in open cmnd
dvic l~ e vic e # in open cmnd
cmnd command # in open emnd

ptr pointer for # of reed's
chnB channel # in open emnd

rec$ ree.# from rlow & rhigh
pztn$ position wit hi n record
itemS name of item
serl$ serial # of item
est$ cost of item

roomS location of item
desc$ description of item

sp # of spaces for input

1000 rem **--keyboard input routine--**
1005 print ylw$
1010 tb = 8:rem tab value
1015 poke 19,32:rem disable input?
1020
1025
1030
1100 rem **--name of item--**
1105 print home$:rem clr/home
1110 print tab(lO) rvs$; "ADD TO HO~lE INVENTORY"
1115 cd = 7:gosub 9000:rem crsr down 7
1120 print "1. Type in item's name please: "
1125 print:print

282 CHAPTER ELEVEN

1130
1135
1140
1 145
1150
1155
1160
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
12 60
131J0
l305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545

sp = 23
gosub 5000:rem input subroutine
input itemS
if len(item$) > 23 then itemS = left$(item$,23)
s$ = item$:gosub 12000:item$ = s$

rem **--serial # of item--**
print home$:rem elr/home
print tab(lO) rvs$; "ADD TO HOME INVENTORY"
ed = 7:gosub 9000:rem ersr down 7
print "2. Type in item's serial # please: "
prinL:print
sp = 14
gosub 5000:rem input subroutine
input serl$
if len(serl$) > 14 then serl$ = left$(serl$,14)
s$ = serl$:gosub 12000:serl$ = s$

rem **--cost of item--**
print homeS:rem cir/home
print tab(lO) rvs$; "ADD TO HOME INVENTORY"
cd = 7:gosub 9000:rem crsr down 7
print "3. Type in item's cost please: "
print:print
sp = 9
gosub 5000:rem input subroutine
input cst$
if Ien(cst$) > 9 then cst$
s$ = cst$:gosub 12000:cst$

rem ¥¥--room of item--**
print home$:rem clr/home

left$(cst$,9)
s$

print tab(10) rvs$; "ADD TO Hm1E TtiVENTORY"
cd = 7:gosub 9000:rem crsr down 7
print "4. Type in item's room please: "
print:print
sp = I CJ

gOBub 5000:rem input subroutine
input roomS
if Ien(room$) > 19 then roomS = left$(roomS,19)
s$ = room$:gosub 12000:room$ = s$

rem **--desc.of item--**
print home$:rem cIc/home
print tab(lO) rvs$; "ADD TO HOME TNVENTORY"
cd = 7:gosub 9000:rem crsr down 7
print "5. Type in item's description please: "
print:print
sp = 29
gosub 5001J:rem input subroutine
input dese$
if len(desc$) > 29 then desc$ left$(desc$,29)

HOME INVENTORY SYSTEM 283

l'i')Cl s$
15') ')
1~6Cl

desl'):gosub I:'OI){l:ciesc';

1600 rem ';";'-d lSI' loy for corr-ec t i on--';'
161 ()
1 6 20 r- e m C 1 e ~l r s ere e n / c r s r cl ,)I, II 3
1630 print home~:cd '3:g0-:"lh I)()()()

p r i n t : p r- ill) tall (t h) "I. I]' I' i'l :
print:prLnt tab(th) II')

p r i n t : p r i n t tab (t h) 11 ') •

p r i Ii t : prj !l t tab (t h) 114.
P rill t : p r -l Il t tab (t h) "-).
print :print [an(th)

'---; f-' R H :
I II C, r :
!, () 1Ii'1 :
[ll"; C :

print "ls this correc)')"
prillt :print tab(tb)

, it emS
";sC'rlS
";cstS
";roor:JS
";cicsc,S

1 () 4 0
16')(J

166Cl
167Cl
16HU
16'JCl
1700
1710
172 ()
Ino
1740
1 7 ') I 1
176(J
177U
17S0
1790
1RO(J
1H10
182CI
183Cl
1840

gosub 18()()O:rem yin ill!'lll rOlltine
i [VPS) = "'i" then :'1)1111
pri~t:print' tAll(t h)
in put II \ ...) hie h n u m b c r 1:-'; \y' r () n g 'I II; n h S
nil = vul(nbS)
if nb I then sp
if nb t h co n sp 14
if nh J then sp q

if nh 4 then sp 1'1
j f nb S then sp :..: ()

if nb <] or nh > -, thell go s Il b 14DO():g())o

print home$:cd = 8:goSlli> '1()()O

IH~(J p rill t "Type in c () r r c() information:
IH60 print
1870 gosuh 'JODO:rclll input (-(lilt ine
1880 input cinfo$
18 C)() s$ = cinfo.$:gosuil 1~1)lli):(ill!") = s"

I 7,)1)

I 9 () () i f n b = I the nit pm Sic' [t S (c i n f 0 S , .' \) : ,', Il t IJ I (, () I) : rem

1910

1')20

I ') '3 (J

1940

1'J~()

I C) bO
2()ClCl
2CJ 10
202()
2030
2040
20')0
'2()60
2070
2(J8D

dsk d g;J i n

if nh = 2 then se r IS ~] c' r t $ (c i n f il ~, , 1 4) : L; () I () 1 (, III) : r e 111

dsk dgain
i f nb = '3 then cst S 1 eft) (c i n f n $, I)): (~I) t '1 I h () () : r e [](

11 sk d ga in

if nb = 4 then roomS 1 c· [) $ (c i n f () $, I I)) : g () t () 1 hI) () : r e [](
dsk agaill
i f nb = S thpn desc$ I " r t S (c i n r oS , ~ I)) : L; () t () I h () () : r e III
;1 sk again

rem '"-poi ntp!, fi 1 c-';'

ope fl 2, 8 , L , II i Ii V e n tor Y • J) L r , ,-:- e q , r l';! d "
input#2,ptr
close '2
if status
ptr ptr+

1 () the II 'lO Cl ()
1

~11()(1 reM ddt a f i [p-';'
:'IDD open]'l,H,I'l:r(,1ll opell cOMm11nti ChIll

284 CHAPTER ELEVEN

3,8,:),"inventory.rcc,l," +
in line 2110 is leLLer not

chr:t;(l):rem channel #
ptr:rem low byte of ree.#
O:rem high hyte of rec.#

2]10 open
2120 rem 1
2130 chnlS
2140 r 1 o\{
2150 rhigh
2160 if rlow
2170 rec$
2180

> 255 then gosub 15000
chr$(rlow) + chr$(rhigh)

2190 pztn$ chr$(I):rem position
2200 print#15,"p";chnl$;recS;pztn$
2210 print#3,item$
2220
2230 pztn$ = chr$(25):rem position
2240 print#15,"p";chnl$;rec$;pztn$
2250 print#3, serl$
2260
2270 pztn$ = chr$(40):rem position
22HCl print#15,"p";chnl$;rec$;pzLn$
2290 print#3,cst$
2300
2310 pztn$ = chr$(50):rem position
2320 print#15,"p";chnl$;rec$;pztn$
2330 print#3,room$
2340
2350 pztn$ = chr$(70):rem posiLion
2360 print#15,"p";chnl$;rec$;pzLn$
2370 print#3,desc$
2180 close 3:close 15
2390
2400
2410 rem *-update ptr file-*

chr$(lOO)

2420 open 2,8,2,"@0: inventory.ptr,seq,write"
2430 print#2,pLr
2440 close 2
24:)0
2460
2470 goto 4000:rem repeat routine
2480
2490
3000 rem **--first time use only--**
3CJJO close 2
3 CJ:2 0 0 pen 2, 8 , 2 , " i [1 V e n tor y • p t r , seq, w r i t e"
30:1Cl print#2, "0"
3040 close 2
3050
3060 goto 2000:rem begin file routine
3070
3080
4000 rem **--repeaL routine--**
4010 print home$:rem clr/home
4020 cd = 3: rem ') 1 ines down
4030 gosub 9000:rem crsr down routine
4040 p r i n t " Do you wan t to add m 0 rei t ems ') "
4050 print
4060 gosuh 18000:rem yin input routine
4070 if yesS = "y" then 1000

HOME INVENTORY SYSTEM 285

4080
4090
4100
5000
5010
5020
5030
5040
~O')O

5060
~070

5080
5090
5100
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
9000
9010
9020
9030
9040
9050
9060
l2000
12010
12020
l2030
12040
12050
12060
12070
12080
12090
12100
I 21 10

if yes$ "n" then 6000

rem **--input subroutine--**
for i = 1 to sp
print chr$(175); :rem underline
next i
print:print:print
print "Do not go beyond the end of the line!"
rem crsr up)
print cu$;cu$;cu$;cu$;cu$
return

rem **--return to inv.menu--**
poke 19,0:rem restore input prompt
print home$:rem c1r/home
cd = 5:rem 5 lines down
gosub 9000:rem crsr down routine
print tab(tb)
print rvs$;
print "LOADING THE fNVENTORY MENU"
""homcinv.menu"

rem **--cursor down routine--**
[or i = 1 to cd
print cdS;
next i
return

rem **--strip excess underline character--**
s2$ = s$
i = 1
if mid$(s2S,i,l) = chr$(17,) then 12070
i = i + 1
if i > sp then 12070
goto 12030
s$ = 1eft$(s2$,i - 1)
return

14000 rem *-incorrect choice message-*
14010 print:print tab(tb)
14020 print rvs$;"Incorrect Choice!"
14030 print:print tab(tb)
14040 print "Prc'ss ";wht$;"RETL:RN";y1w$;" to continue:";
14050 gosub 19000:rem return key routine
14060 return
14070
14080
14090
15000 rem **--figure rec.# routine--**
15010 rhigh = int(r1ow/256)

286 CHAPTER ELEVEN

15020 rlow rlow - 256 - rhigh
15030 return
15040
15050
15060
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120

reddy.

rem **--y/n input routine--**
print "Type a ";whtS;"Y";ylw$;"
poke 19,32:rem disable input?
input yes$

or ";wht$;"N";ylw$;" ."

print
if yesS
if yesS
print

"y"
"n"

or
or

yes$
yes$

"Y"
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice!";ylw$
print
goto 18000:rem begin again

rem **-return key routine--**
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i ,O:rem no value
next j

x = peek(197):rem store key press
if x = 1 then 19080:rem 1 = rtn
goto 19050:rem if not 1 go back
poke 198,1:rem allow for cursor
poke 631,0:rem clr kbrd
nu$ = "":rem clr string variable
poke 19,32:rem disable input?
return

"y":rcturn
"nn:return

HOME INVENTORY SYSTEM 287

• Program for HOME/NV.READ

100 rem ***--read inventory rec.--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem c1r/home
ISO : :cd$ chr$(17):rem cursor down
160 ::cu$ chr$(14S):rem cursor up
170 : :cl$ chr$(lS7):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rern black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(S):rem white
220 :rvs$ chr$(18):rem reverse video
230 :bnk$ chr$(10):rem blank line
240 :brn$ chr$(149):rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280,14:rem border = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to brn.
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

**--variables I ist--''':'
rlow low byte of rec.#

rhigh high byte of rec.#
file file # in open cmnd
dvic device # in open cmnd
cmnd command # in open cmnd
. pt r pointer for # of reed's

chnl$ channel # in open cmnd
rec$ rec.# from rlow & rhigh

pztn$ position within record
itemS name of item
serl$ serial # of item

cstS cost of item
roomS location of item
desc$ description of item

sp # of spaces for input

1000 rem **--rcad file routine--**
1010 print ylw$
1020 tb = 8:rem tab value
1030 gosub 10000:rem display routine
1040
1050 rem *-pointer file-*
1060 open 2,8,2,"inventory.ptr,seq,read"
1070 input#2,ptr
1080 close 2
1090
1100 rem *-data file-*
1110 open 15,8,15:rem open command chn1
1120 open 5,8,5,"inventory.rec,1," + chr$(100)

288 CHAPTER ELEVEN

1130 rem 1 in line 1120 is letter not #
1140 chnl$ = chr$(5):rem channel #
1150 for rec = 1 to ptr
1160 rlow = rec:rhigh = 0
1170 if rlow > 255 then 15000
1180 rec$ = chr$(r10w) + chr$(rhigh)
1190 print
1200
1210
1220 pztn$ = chr$(l):rem position
1230 print#1S,"p";chn1$;rec$;pztn$
1240 input#5,item$
1245 if itemS = "deleted" then 1600
1250
1260
1270 pztnS = chr$(25):rem position
1280 print#15,"p";chnl$;rec$;pztn$
1290 input#5,serl$
1300
l'310
1320 pztn$ = chr$(40):rem pOSition
1330 print#15,"p";chnl$;rec$;pztn$
1340 input#5,cst$
1350
1360
1370 pztn$ = chr$(50):rem position
1380 print#15,"p";chnl$;rec$;pztn$
1390 input#S,room$
1400
1410
1420 pztn$ = chr$(70):rem position
1430 print#15,"p";chnl$;rec$;pztn$
1440 input#5,desc$
1450
1460
1470 rem *-displav information-*
1480
1490 rem clear screen/crsr down 5
1500 print home$:cd = 5:gosub 9000
1510
1520 print:print#file,""tab(tb) "1. ITEM: ";item$
1530 print:print#file,""tab(tb) "2. SER#: ";serl$
1540 print:print#file,""tab(tb) "3. COST: ";cst$
1550 print:print#fi1e,""tab(tb) "4. IWON: ";room$
1560 print:print#file,""tab(tb) "'S. DESC: ";desc$
1570 print:print#file,""tab(tb)
1580 print "Press ";wht$;"RETURN";ylw$;" to continue:";
1590 gosub 19000:rem return key routille
1600 next rec:rem dsp next set of info.
1610
1A20
1630 close 5:close 15:print#file:close file
1640 print homeS:cd = 'S:gosub 9000
1650 pri.nt tab(th + 3):print rvs$;"ALL FJNIS!!f,D"
1660 cd = 10:gosub 9000:rem crsr down]0
1()70 print tab(tb) "Press ";wht$;"RETl"RN";ylw$;" to continue:";

HOME INVENTORY SYSTEM 289

1680 gosub 19000:rem return key routine
1690
1700
1710
6000 rem **--return to inv.menu--**
6010 poke 19,O:rem restore input prompt
6020 print home$:rem elr/home
6030 cd = 5:rem 5 lines down
6040 gosub 9000:rem ersr down routine
6050 print tab(tb)
6060 print rvs$;
6070 print "LOADING THE INVENTORY ~lE:iU"
6080 '''homeinv.menu''
6090
6100
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cdS;
90]0 next i
9040 return
9050
9060
10000 rem **--display routine--**
10010 print home$:rem elr/home
]0020 cd = 3:rem 3 lines down
100]0 gosub 9000:rem cursor down routine
10040 print "\.Jould you like a paper print out'J"
10050 print
10080 gosub 18000:rem yin input routine
10090 if yes$ "y" then]0120:rem prnt
10100 if yes$ = "n" then 10300:rem scrn
10110
]0120 print homeS:rem clr/home
10130 cd = 3:rem 3 lines down
10140 gosub 9000:rem cursor down routine
]0150 print "Please make sure the printer"
10160 print
10170 print "is on and ready to use."
10180 print
10190 print "Are you ready to begin printing?"
10200 print
10210 gosub 18000:rem yin input routine
]0220 if yes$ = "n" then 10000
]02]0
10240 rem *-printer display-*
10250 file 4
10260 dvic = 4
10270 cmnd = 7
]0280 goto 10S00:rem open instruction
10290
10300 rem *-srreen display-
10310 filel
10320 dvie = 3
10330 cmnd = 1
10340 goto 10500:rem open instruction
10350

290 CHAPTER ELEVEN

10360
10500
10510
10520
10530
10540
10550
15000
15010
15020
15030
15040
15050
15060
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120

re<1<iy.

rem *-open insLruction-*
open file,dvic,cmnd
return

rem **--figure ree.# rouline--**
rhigh = int(r10w/256)
rlow rlow - 256 * rhigh
ret u 1" n

rem **--y/n input routine--**
print "Type a ";whL$;"Y";ylw$;"
poke 19,32:rem <iisable input?
input yes$

or ";wht$;"N";yl\\r$;"

print
if yes$
if yesS
print

"y" or
Hn" or

yes$ "Y"
yesS liN"

then yes$
then yes$

print rvs$;"Ineorreet Choicel";ylw$
print
go to 18000:rem begin again

rem **-return key routine--**
poke 198,0:rem elr kbrd buffer
for i = 631 to 040
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = I then 19080:rem 1 = rtn
goto 19050:rem if not 1 go back
poke 198,I:rern allow for cursor
poke 611,0:rem elr kbrd
nuS = "":rern clr string variabJe
poke 19,32:rern disable input?
return

"y":return
"n":rcturn

HOME INVENTORY SYSTEM 291

• Program for HOMEINV.SEARCH

100 rem ***--search/sort homeinv.--***
110
120
130 rem **--initialization--**
140 homeS chrS(147):rem clr/home
150 :: cdS chr$ (17): rem cursor down
160 ::cu$ chr$(14~):rem cursor up
170 ::cl$ chrS(I~7):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvsS chr$(18):rem reverse video
230 :bnkS chr$(10):rem blank line
240 :brn$ chr$(149):rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280,14:rem border = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to brn.
300
310
320
33()
340
350
360
370
380
390
400
410
420
430
440
4SD
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

'~'~--va ria b 1 e s I i st--'~':'
rlow low byte of rec.#

rhigh high byte of rec.#
file file # in open cmnd
dvic device # in open cmnd
cmnd command # in open cmnd

ptr pointer for # of reed's
chnlS channel # in open cmnd

rec$ rec.# from rlow & rhigh
pztn$ position within record
itemS name of item
serl$ serial # of item

cst$ cost of item
roomS location of item
desc$ descri ption of item

sp # of spaces for input

500 rem *-pointer file-*
510 open 2,8,2,"inventory.ptr,seq,read"
520 input#2,ptr
530 close 2
540 dim a$(ptr)
')')0

5(,0
60D rem **--menu routine--**
61D print ylw$
620 tb = 8:rem tab value
('3D poke 19,32:rem disable input?
640 rem clear screen/crsr down I

292 CHAPTER ELEVEN

650 print home$:cd = I:gosub 9000
660 print L3b(tb + 3) "SEARCH/SORT MENC"
670 print
680 print:print t3b(tb)
690 print "I. Search For Item"
700 print:print tab(tb)
710 print "2. Search For Serial #"
720 print:print tab(tb)
730 print "3. Search For Cost"
740 print:print tab(tb)
750 print "4. Search For Room Items"
760 print:p,rint tab(tb)
770 print ''i. Sort Ttems--Alpha. Order"
780 print:print tab(tb)
790 print "6. Sort ltems--Serial #"
800 print:print tab(tb)
810 print "7. Return to Home Inv. Menu"
820 prinl:prinL tab(tb)
830 print tab(tb):input "Which number please? ";nb$
840 nb = val(nbS)
850
860
870
880
890
90()
910
920
930
940
950
960
970
980

if nb
if nb
if nb
if nb
if nb
if nb
i [nb
print
go sub
goto

1 then 1000
2 then 2000
3 then 3000
4 then 4000
5 then 5000
6 then 6000
7 then 7000

14000:rem incorrect choice
600:rem menu

1000 rem **--search [or item--**
1010 gosub 10()00:rem display routine
1020 rem clear screcn/crsr down 5
1030 print home$:cd = S:gosub 9000
1040 input "Which item'? ";srch$
1050 rem convert to lower case
1060 cvt$ = srch$:gosub 17000:srch$ cvt$
1070 rec = 0
1080 pztn$ = chr$(I):rem position
1090 gosub 16000:rem common search
1100 i[scf = 1 then 1120:rem srch comp
1110 gosub 13000:rem common display
1120 gosub 21000:rem clear variables
1130 if rec = ptr or rec > ptr then 1150
1140 goto 1080:rem continue search
1150 gosub 20000:rem menu return
1160 goto 600:rem menu
1170
1180
2000 rem **--search [or serial #--**
2010 gosub 100()():rem display routine
2015 rem clear screen/crsr down 5

HOME INVENTORY SYSTEM 293

2020 print home$:cd = 5:gosub 9000
2030 input "\'Jhat serial number? ";srch$
2040 rem convert to lower case
2050 cvt$ = srch$:gosub 17000:srch$ = cvt$
2060 rec = 0

070 pztn$ = chr$(25):rem position
2080 gosub 16000:rem common search
2090 if sef = 1 then 2110:rem srch comp
2100 gosub 13000:rem common display
2110 gosuh 21000:rem clear variables
2120 if rec = ptr or rec > ptr then 2140
2130 goto 2070:rem continue search
2140 gosub 20000:rem menu return
2150 goto 600:rem menu
2160
2170
3000 rem **--search for cost--**
3010 ttlamt = O:rem zero out total amt
3020 rem c I ear screen/crsr do\,n 5
3030 print home$:cd = 5:gosub 9000
3040 print tab(tb) "SEARCH FOR ITEMS .•• "
3050 print:print:print
3060 print tab(tb) "A •... Above a certain amount"
3070 print
3080 print tab(tb) "B Below a certain amount"
3090 print:print
')l00 print tab(tb) "Which letter ";wht$;"A";ylw$;" or ";wht$;

"B";ylw$;" :";
3110 input ItS
3120 jf It$ = "A" or It$ = "a" then 3200
3130 if ItS = "B" or lt$ = "b" then 3500
3140 gosub 14000:rem incorrect choice
3150 goto 3000:rem ask again
3160
3170
3200 rem **--items above $ amount--**
3205 rem clear screen/crsr down 5
3210 print home$:cd = 5:gosub 9000
3215 input "Above which amount? ";amt
3220 gosub 10000:rem display routine
322~ rem clear screen/crsr ~own 2
3230 print home$:cd = 2:gosub 9000
3235 print#file,""tab(lO) "fTEMS ABOVE S";amt
3240 print#file,bnkS:print#file,bnk$
3245 gosub 22000:rem open file
3250 for w = 1 to ptr
3 55 gosub 23000:rem figure rec. H
3260
3265 pztn$ = chr$(l):rem position
3270 print#IJ,"p";chnl$;rec$;pztn$
3275 input l,item$
3280
3285 pztn$ = chrS(40):rem posit jon
3290 print#15,"p";chnlS;rec$;pztn~:
3295 input#5,cst$
3300

294 CHAPTER ELEVEN

3305 c$ = cst S
3310 if leftS(,S./) = "DELETED" then 3345:recl next \.J

3315 if leftS(cS.l) = "$" then gosub 1100(l:rem strip S
3320 if val(cS) amt then 3330
3325 golo 3345:rem next w
3330 ttlamt = ttlamt + val(cS)
3335 print#file,item$;
3340 print#file,""tab(18) cstS
334') next w
335U
3355 print
3360 print#file,"TOTAL VALUE = ";ttlamt
3365 gosuh 24000:rem close files
3370 gosub 10UU:rem clear variables
3375 gosub 20000:rem menu return
3380 goto 60U:rem menu
3385
3390
3500 rem **--items below $ amount--**
3510 rem clear screen/crsr down 5
3520 print home$:cd = 5:gosuh 9000
3530 input "below \vhich amount? ";amt
3540 gosub 10000:rem display routine
3550 rem clear screen/crsr down 2
3'560 print home$:cd = 2:gosub 9000
3570 print#file,""tab(lO) "ITEnS BELO\'I $";amt
35f30 print: print
3590 gosub 22000:rem open file
3600 for w = 1 to ptr
3610 gosub 23000:rem figure rec.#
3620
3630 pztn$ = chrS(l):rem position
3640 prinliilS."p";chnl$;rec$;pztn$
3650 input#~, i tcmS
3660
3670 pztn$ = chrS(40):rem position
3680 print#IS."p";chnl$;rec$;pztn$
3690 input#'5,cst$
3700
3710 c$ = cst$
3720 if left$(c$,7) "DELETED" then 3790:rem next w
3730 if left$(c$,l) "$" then gosub 11000:rem strip $
3740 if val(c$) < amt then 3760
3750 goto 3790:rem next w
3760 ftlamt = ttlamt + val(c$)
3770 print#file,item$;
3780 print#file,""tab(18) cst$
3790 next "
3800
3810
3820 print
3830 print!lfile,"TOTAL VALUE = ";ttlamt
3840 gosub 24000:rem close files
3850 gosub 21(lUU:rem clear variables
3860 gosub 2(JOUO:rem menu return
3870 goto 600:rem menu

HOME INVENTORY SYSTEM 295

3880
3890
4000 rem **--search for room items--**
4010 gosub 10000:rem display routine
4020 rem clear screen/crsr down S
4030 print home$:cd = S:gosub 9000
4 0 4 0 i n put " Iv hie h roo m ? "; s r c h $
4050 rem convert to lower case
4060 cvt$ = srch$:gosub 17000:srch$ cvtS
4070 rec = 0
4080 pztn$ = chr$(SO):rem position
4090 gosub 16000:rem common search
4100 if scf = I then 4120:rem srch comp
4110 gosub 13000:rem common display
4120 gosub 21000:rem clear variables
4130 if rec = ptr or rec > ptr then 4150
4140 goto 4080:rem continue search
4150 gosub 20000:rem menu return
4160 goto 600:rem menu
4170
4180
SOOO rem **--sort items alpha.order--**
5010 q = l:rem valid record counter
5020 rem clear screen/crsr down S
S030 print home$:cd = 5:gosub 9000
S040 print tabeS) "WORKING--PLEASE DON'T TOllCH'"
S050 gosub 22000:rem open file
5060 pztn$ = chr$(1) :rem position
S070 for w = 1 to ptr
S080 gosub 23000:rem figure rec.#
5090
S100 print#15,"p";chnl$;rec$;pztn$
SIlO input#5,itemS
5120
5125 if itemS = "Dr:LETED" then 5170
5130 rem convert to upper case
5140 cvt$ = item$:gosub 17500:item$ cvt$
5150 a$(q) = item$:rem store in array for internal sort
S160 q = q + 1
S170 next w
5180
'i190
5200 gosub 24000:rem close files
5210n=q-l
5220 print:print:print
S 2 3 0 p r i n t tab (S) " S TI L L lVO R KI N C - - P LEA S E \, AI T ' "
5240 gosub 25000:rem sort routine
5250
S260
5270 rem display results
5280 gosub 10000:rem display rouline
5290 rem clear screen/crsr down 5
5300 print home$:cd = 5:gosub 9000
5310 for i = 1 to q - I
S320 print#file,i;a$(i)
S330 next i

296 CHAPTER ELEVEN

5340
5350
5360
5370
5380
5390
6000
6010
6020
6030
6040
6050
6070
6080
6090
6100
6110
6120
6125
6130
6140
6150
6160
6170
6180
6190
6200
6205
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450

gosub 21000:rem clear variables
gosuh 20000:rem menu return
goto 600:rem menu

rem **--sort items serial #--**
q = 1:rem valid record counter
rem clear screen/crsr down 5
print home$:cd = S:gosub 9000
print tab(5) "WOI\KING--PLEASE DON'T TOUCH!"
gosub 22000:rem open file
for w = 1 to ptr
gosub 23000:rem figure rec.#

pztn$ = chr$(1):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,item$
if itemS = "DELETED" then 6230

pztn$ = chr$(25):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,serl$

rem convert to upper case
cvt$ = serl$:gosub 17500:serl$

rem combine for internal sort
a$(q) = serl$ + II,:,,, + itemS
q = q + 1
next w

gosub 24000:rem close files
n = q - 1
print:print:print

cvt$

print tab(5) "STILL IWRKING--PLEASE WAIT!"
gosub 25000:rem sort routine

rem display results
gosub 10000:rem display routine
rem clear screen/crsr down 5
print home$:cd = 5:gosub 9000
for i = 1 to q - 1
rem separate and display
la = len(a$(i»
print#file,i;
if mid$(a$(i),j,l) ",:," then 6410
j = j + 1:goto 6390
print#file,left$(a$(i),j - 1);
print#file,""tab(18) mid$(a$(i),j + 1,la)
j = 1
next i

6460 gosub 21000:rem clear variables
6470 gosub 20000:rem menu return
6480 goto 600:rem menu

HOME INVENTORY SYSTEM 297

6490
6500
7000 rem **--return to homeinv.menu--
7010 poke 19,0:rem restore input prompt
7020 print home$:rem clr/home
7030 cd = 5:rem 5 lines down
7040 gosub 9000:rem crsr down routine
7050 print tab(tb)
7060 print rvs$;
7070 p r i n t " LOA DIN G THE H 0 HE I N V. :1 E N U"
7080 '''homeinv.menu''
7090
7100
7110
9000 rem **--cursor down routine- ¥¥

9010 for i = 1 to cd
9020 print cd$;
9030 next i
9040 return
9050
9060
9070
10000 rem **--display routine--**
10010 print home$:rem clr/home
10020 cd = 3:rem 3 lines down
10030 gosub 9000:rem cursor down routine
10040 print "Ilouid you like a paper print out?"
10050 print
10080 gusub 18000:rem v/n input routine
10090 jf yes$ "y" then 10120:rem prnt
10100 if yes$ = "n" then 10300;rem scrn
10110
10120 print home$:rem clr/home
101 30 c cI = 3: r e III J 1 in e s dow n
10140 gosub 9000:rem cursor down routine
10150 print "Please make sure the printer"
10160 print
10170 pri nt "i.s on and ready to use."
10180 print
1 0 1 9 0 p r i n t " Are you rea d y t 0 beg i n p r i n tin g ') "
10200 print
10210 gosub 18000:rem y/n input routine
10220 if ves$ = "n" then 10000
10230
10240 rem * printer display-*
10250 file 4
10260 dvic = 4
10270 cmncl = 7
10280 goto IOSOO;rem open instruction
10290
10300 rem * screen display-*
10310 file 3
10320 dvic = 3
10330 cmnd = 1
10340 goto 10S00:rem open instruction
10350

298 CHAPTER ELEVEN

10360
10500 rem *-open inslruction-*
10310 open file,dvic,cmnd
10320 reLurn
10330
10540
10550
11000 rem
11010 Ie

--strip $
len(e$)
right(cS,lc
a$

11020
11030
11040
110')0
11060
11070

as =

c$ =

return

- 1)

rem *-display information-*

rem clear screen/crsr down 5
print homeS:cd = 5:gosub 9000

print:printllfile,""t8b(tb) "1.
print:print#file,""t8b(tb) "2.
print:print#file,""tab(tb) "3.
print:print#file,""tab(tb) "4.
print:print#file,""tclh(th) "5.
print:print!,'file,""tab(tb)

ITE~l :
SER#:
COST:
ROOH:
DESC:

13000
13010
13020
13030
13040
130S0
13060
13070
13080
13090
13100
13110
13120
13130
13140

print "Press ";wht$;"RETURN";yl,,'$;"
gosuh 19000:rem return key routine

13150
13160
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090

return

rem *-incorrect choice message-*
print:print tab(th)
print rvs$;"Incorrect Choicc'"
print:print tah(tb)
print "Press ";wht$;"RETURN";ylw$;"
gosuh 19000:rem return key routine
return

15000 rem **--figure rec.#) 255- ~~

13010 rhigh = int(rlow/250)
15020 rlow rlow - 250 * rhigh
15030 return
15040
lS050
15060
16000 rem **--common search routine--**
16010
16020
10030 rem *-data file-*
16040 open 15,8,15:rem open comm8nd chnl

"; i ternS
";serl$
";cst$
";room$
";desc$

to continue:";

to continue:";

16050 open 5,tl,S,"inventory.rec,I," + chr$(IOO)
16060 chnl$ = chr$(S):rem channpl #

HOME INVENTORY SYSTEM 299

16070
16080 rec = rec + 1
16090 rlow = rec:rhigh = 0
1610() if r10w > 2)'; then gosuh 1500CJ
16110 re($ = chrSCrlow) + chr$Crhigh)
16120
161'3c) print#15,"p";chnl$;rec$;pztn$
16140 input#5,find$
161')0
16160 renl convert to lo,,'er case
1617c) 1 n = len(srchS)
16180 cvtS = left$(findS,ln)
16190 goslIiJ 17000:findS = cvtS
16 00
16210 if srch$ = find$ then 16]]0
16220 jf rec ptr then 16080
16230 scf = l:rem set search comp.f1ag
16240 rem clear screcn/crsr down 5
1 6 2 SOp r i n l h 0 III e S : c d 'i : g 0 s 1I h 9 () 0 CJ
16260 print taiJ(th + 3)
16270 print "Search Completed'"
16280 for k = I to 100C):next k
16290 eel = 10:goS11b 9000:rem crsr 10
16300 close 5:(lose 15
16310 return
16320
16330 p7tn$ = chrS(1):rem position
16340 print#I~,"p";chn1S;re($;pztn$
16350 jnput#'i,item$
16360
16370
16380 pztn$ = chr$(2'»):rem position
16390 print#15,"p";chnl$;rec$;pztn$
16400 inpllt#'),serIS
16410
16420
16430 pztnS = chrS(40):rem position
16440 print 15,"p";chnl$;recS;pztnS
16450 inpllt#S,cstS
16460
16470
16480 pztn$ = chrS(50):rem position
16490 print#I'i,"p";chnl$;recS;pztnS
16'JCJO input#~,roomS
16')10
16520
16530 pztn$ = chr$(70):rem position
16')40 print#15,"p";chnl$;recS;pztn$
16~50 input#S,desc$
16';60
16570
16'i8() close 'i:closc Ie)
165c)() return
I 66()()
16610
16620

300 HOME INVENTORY SYSTEM

17000 rem **--converl to lowcrcasc--**
17UIO n c S ""

for ev = 1 to len(cvtS)
x = asc(mid$(cvtS,cv,I))
if x ~ 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cvt$ = ncS
f = asc(left$(cvL$,I»
[=f+128

7020
17030
17CJ40
17CJSO
1 7()60
171J70
17080
17090
171 CJU
171ICJ
I 7 1 :2 CJ
1713CJ
17140
171')0
17U)()
17170

n c S = C h r :5 (f) + r j g Ii L S (c v t $,If' n (c v t $) - I)
return

rem cvtS
rem ne$

converted to lowercase
1st letter/uppercase

1 7180
175CJCJ rem **--convert to uppercase--**
17SlCl nc$
17520 [or cv = 1 to len(cvt$)
17')30 x = asc(mid$(cvt$,cv,I))
17540 if x) 64 anrl x < 91 then x
173')0 ncS = nc~ + chr$(x)
17560 next cv
17')70
17°,80 cvt$ nc$
17')90
17bCJCJ
17610
17620

ret urn

rem **--y/n input routine--**

x + 128

18000
IHOICJ
IS020
18030
18040
18050
18060
ISU70
1808U
18090
18100
18110
IB120

priIlt "Type a ";whtS;"Y";ylwS;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input
input yes$
print
i f yes$ "y" or y"s$ fly" then yes$
if ves$ "n" or yes$ "Nit then yes$
print
prillt rvs$;"lncorrect Choicel";ylw$
print
goto 18()()():rem begin again

IB130
19000 rem **-return kev routine--**
19010 poke 198,O:rem elr kbrd buffer
19020 for i = 631 to 64U
19030 poke i,O:rem no value
1 C) 0 4 0 n ex l i
19050 x = peek(197):rem store kev press
19060 if x = 1 then 19080:rem 1 = rtn
19070 goto 19050:rem if not 1 go back
I C) I) 8 () p 0 k e 1 9 8 , 1 : r (' 111 a 1 low for cur ~ () r
I () () 9 () p u k e 63 1 , 0 : rem c Irk b r d

"y":return
"n":return

." . . ,

CHAPTER ELEVEN 301

19100
19110
19120
19130
19140
19150
20000
20010
20020
20030
20040
20050

20060
20070
20080
20090
20100
20110
21000
21010
21020
21030
21040
21050
21055
21060
21070
21080
21090
22000
22010
22020
22030
22040
22050
22060
22070
23000
23010
23020
23030
23040
23D,)0
23060
23D70

nu$ = "":rem clr string variable
poke 19,32:rem disable input?
return

rem **--menu return routine--**
print#file
close file
print
poke 19,32:rem disable input?
print tab(3) "Press ";wht$;"RETURN";ylw$;"
Search ~lenu:"
gosub 19DOO:rem return key routine
print
return

rem ':n:' __ c I ear
item$
ser 1$
cst$

room$
desc$

scf
return

""
""
""
""
o

rem --open data {ile--**
open 15,8,15:rem open command chnl
open 5,8,5,"inventory.rec,I," + chr$(100)
chnl$ = chr$(S):rem channel #
return

rem **--figure record number--**
rlow = w:rhigh = 0
if rlow > 255 then gosub 15000
rec$ = chr$(rlow) + chr$(rhigh)
return

24000 rem **--close [jles--**
24010 close 5
24020 close l'i
24030 return
24040
24050
24060
25000 rem **--shell-metzner sort--**
25010 m = n

302 CHAPTER ELEVEN

to go to

-- ----

25020 m = int em / 2)
25030 if m = 0 then 25150
25040 j = l:k = n - m
2')050 i = j
25060 z = i + m
25070 if aSCi) < a$(z) then 25120
25080 t$ = a$(1):a$(i) = a$(z):a$(z) t$
25090 L = i - m
25100 if 1 < 1 then 25120
25110 goto 25060
2')120 j = j + 1
25130 if j > k then 25020
25140 goto 25050
2')150 return

ready.

HOME INVENTORY SYSTEM 303

• Program for HOMEINV. CORRECT

100 rem ***--correct/rlelete inv.--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem c1r/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :b1k$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230 :bnk$ chr$(10):rem blank line
240 :brn$ chr$(149):rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280.14:rem border = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to brn.
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

*'~--variables I ist--'""
rlow low byte of rec.#

rhigh high byte of rec.#
file file # in open cmnd
dvic device # in open cmnd
cmnrl command # in open cmnd
ptr pointer for # of recd's

chnl$ channel # in open cmnd
rec$ rec.# from rlow & rhigh

pztn$ position within record
i tem$ name of item
serl$ serial # of item
cst$ cost of item

roomS location of item
desc$ description of item

sp # of spaces for input

500 rem *-pointer file-*
510 open 2,8,2,"inventory.ptr,seq,read"
520 input#2,ptr
530 close 2
540
550
560
600 rem **--menu routine--**
610 print ylw$
620 tb = 3:rem tab value
630 poke 19,32:rem disable input
640 rem clear screen/crsr down 3
650 print home$:cd = 3:gosub 9000

304 CHAPTER ELEVEN

660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

1290

1300
1310
1320
1330
1340
1350

print tab(8) "CORRECT/DELETE MENU"
print:print:print
print:print tab(tb)
print "C Correct Inventory Record"
print:print tab(tb)
print "D •••. Delete Inventory Record"
print:print tab(tb)
print "R •••• Return to Inventory Menu"
print:print tab(tb)
print tab(tb):input "Which letter please? ";lt$
if lt$ "c" or lt$ "c" then 1000
if lt$ = "D" or lt$ = "d" then 2000
if lt$ = "R" or It$ = "r" then 3000
goto 14000:rem incorrect choice
go to 750

rem **--correct record routine--**
tb = 8:rem tab value
rem clear screen/crsr down 5
print home$:cd = 5:gosub 9000
flag$ = "no":rem info not yet chgd
print "Type a '0' to return to the menu."
print:print
input "Correct which record? ";rec
if rec 0 then 600:rem menu
if rec > ptr then 14000

gosub 5000:rem file input routine

rem **-display for correction--**

rem clear screen/crsr down 3
print home$:cd = 3:gosub 9000

print:print tab(tb) "1.
print:print tab(tb) "2.
print:print tab(tb) "3.
print:print tab(tb) "4.
print:print tab(tb) "5.
print:prjnt tab(tb)

ITEM:
SER#:
COST:
ROOM:
DESC:

print "Is this correct? "
print:print tab(tb)

";item$
";serl$
";cst$
";room$
";desc$

gosub 18000:rem yin input routine
if yes$ = "y" and flag$ "yes" then 6000:rem info has
been changed
if yes$ = "y" and flag$
not been changed
print:print tab(tb)

"no" then 1000:rem info has

input "Which number is wrong? ";nb$
nb = val(nb$)
if nb 1 then sp
if nb 2 then sp
if nb 3 then sp

23
14

9

HOME INVENTORY SYSTEM 305

1360 if nb 4 then sp 19
1370 if nb 5 then sp 29
1380 if nb < 1 or nb > 5 then gosub 14000:goto 1300
1390 rem clear screen/ersr down 8
1400 print home$:ed = 8:gosub 9000
1410 print "Type in correct information: "
1420 print
1430 gosub 7000:rem input routine
1440 input cinfo$
1450 flagS = "yes"
1460 s$ = cinfo$:gosub 12000:cinfo$ = s$
1470 if nb = 1 then itemS left$(cinfo$,23):goto 1140:rem

ask again
1480 if nb = 2 then serl$ left$(einfo$,14):goto 1140:rem

1490

1500

1510

1520
1530
1540
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

306

ask again
if nh = 3 then cst$ left$(cinfo$, 9):golo
ask again
if nb = 4 then roomS left$(cinfo$, 19) :goto
ask again
if nb = 5 then desc$ left$(cinfo$,29):goto
ask again

rem **--delete record routine--**
tb = 8:rem tab value
rem clear screen/crsr down 5
print home$:cd = 5:gosub 9000
print "Type a '0' to return to the menu."
print:print
input "Delete which record? ";rec
if ree 0 then 600
if ree ptr then 14000

gosub SOOO:rem file input routine

rem **-display for deletion--**

rem clear screen/crsr down 3
print home$:cd = 3:gosub 9000

print:print tab(tb) "1.
print:print tab(tb) "2.
print:print tab(tb) "3.
print:print tab(tb) "4.
print:print tab(tb) "5.
print:print tab(tb)

TTH1:
SER#:
COST:
ROO:-1:
DESC:

print "Delete this record? "
print:prinl lah(tb)

";item$
";serl$
";cst$
";room$
";desc$

gosub 18000:rem yin input routine
if yes$ = "y" then 2290
goto 2000:rem ask again
print:print tab(tb)
print "Are you sure? Type ";wht$;"YES";ylw$
print:print tab(tb)
print "to delete this record. "; :input yes$

CHAPTER ELEVEN

1140:rem

1140:rem

1140:rem

2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320

if yes$ = "YES" or yes$ "yes" then 2350
goto 2000:rem ask again
itemS "DELETED"
serl$ "DELETED"
cst$ "DELETED"

roomS "DELETED"
desc$ "DELETED"
goto 6000:rem file output routine

rem **--return to inv.menu--**
poke 19,0:rem restore input prompt
print home$:rem clr/home
cd = 5:rem 5 lines down
gosub 9000:rem crsr down routine
print tab(tb)
print rvs$;
print "LOADING THE INVENTORY MENU"
"'''homeinv.menu''

rem **--file input routine--**

rem *-data file-*
open 15,8,15:rem open command chnl
open 5,8,5,"inventory.rec,1," + chr$(100)
chnl$ = chr$(5):rem channel #
rlow = rec:rhigh = 0
if rlow > 255 then 15000
rec$ = chr$(rlow) + chr$(rhigh)
print

pztn$ = chr$(l):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,item$

pztn$ = chr$(25):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,serl$

pztn$ = chr$(40):rem position
printtl15,"p";chnl$;rec$;pztn$
input#5,cst$

pztn$ = chr$(50):rem position
print#15,"p";chnl$;rec$;pztn$
input#5,room$

HOME INVENTORY SYSTEM 307

5330 pztn$ = chr$(70):rem position
5340 print#15,"p";chnl$;rec$;pztn$
5350 input#5,desc$
5360
5370
5380 close 5:close 15
5390 return
5400
5410
5420
6000 rem **--file output routine--**
6010
6020
6030 rem *-data file-*
6040 open 15,8,15:rem open command chnl
6050 open],8,J,"inventory.rec,1," + chr$(lOO)
6060 chnl$ chr$(J):rem channel #
6070 rlow rec:rem low byte of rec.#
6080 rhigh O:rem high byte of rec.#
6090 if rlow > 255 then 15000
6100 rec$ chr$(rlow) + chr$(rhigh)
6110
6120
6130 pztn$ = chr$(1):rem position
6140 print#15,"p";chnl$;rec$;pztn$
6150 print#3,item$
6160
6170
6180 pztn$ = chr$(2S):rem position
6190 print#1'5,"p";chnl$;rec$;pztn$
6200 print#],serl$
6210
6220
6230 pztn$ = chr$(40):rem position
6240 print#1S,"p";chnl$;rec$;pztn$
6250 print#],cst$
6260
6270
6280 pztn$ = chr$(50):rem position
6290 print#IS,"p";chnl$;rec$;pztn$
6]00 print#3,room$
6]10
6320
6]]0 pztn$ = chr$(70):rem position
6]40 print#IS,"p";chnl$;rec$;pztn$
6]50 print#3,desc$
6]60
6]70
6380 close]:close 15
6390
6400
6410 goto 600:rem menu
6420
64]0
6440
7000 rem **--input subroutine--**

308 CHAPTER ELEVEN

7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
9000
9010
9020
9030
9040
9050
9060
9070
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
15000
15010
15020
15030
15040
15050
15060
18000
18010
18020
18030
18040
18050
18060
18070

for i = 1 to sp
print chr$(175); :rem underline
next i
print:print:print
print "Do not go beyond the end of the line!"
rem crsr up 5
print cu$;cu$;cu$;cu$;cu$
return

rem **--cursor down routlne--**
for i = 1 to cd
print cdS;
next i
return

rem **--strip excess underline character--**
s2$ = s$
i = 1
if mid$(s2$,i,1) = chr$(175) then 12070
i = i + 1
if i > sp then 12070
go to 12030
s$ = left$(s2$,i - 1)
return

rem *-incorrect choice message-*
print:print tab(tb)
print rvs$;"Incorrect Choice!"
print:print lab(tb)
print "Press ";wht$;"XETl:RN";y1w$;" to continue:";
gosub 19000:rem return key routine
return

rem **--figure rec.# routine--**
rhigh = int(rlow/256)
rlow rlow - 256 * rhigh
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;"
poke 19,32:rem disable input?
input yes$

or ";wht$;"N";ylw$;"

print
if yes$
if yes$
print

"y" or
"n" or

yes$
yes$

"y"
"N"

then yes$
then yes$

"y":return
"n":return

." . . ,

HOME INVENTORY SYSTEM 309

18080 print rvs$;"Incorrect Choice!";ylw$
18090 print
18100 goto 18000:rem begin again
18110
18120
18130
19000 rem **-return key routine--**
19010 poke 198,0:rem clr kbrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 then 19080:rem 1 = rtn
19070 go to 19050:rem if not 1 go back
19080 poke 198,1:rem allow for cursor
19090 poke 631,0:rem c1r kbrd
19100 nuS = "":rem c1r string variable
19110 poke 19,32:rem disable input?
19120 return

ready.

310 CHAPTER ELEVEN

• Program for HOME/NV. TRANS

100 rem ***--homeinv.translate--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 : :cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230 :bnk$ chr$(10):rem blank line
240 :brn$ chr$(149):rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280,14:rem border = It. blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to brn.
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

'"*--variables list--"*
rlow low byte of rec.#

rhigh high byte of rec.#
fi Ie file # in open cmnd
dvic device # in open cmnd
cmnd command # in open cmnd

ptr pointer for # of recd's
chnl$ channel # in open cmnd

rec$ rec.# from rlow & rhigh
pztn$ position within record
itemS name of item
serl$ serial # of item

cst$ cost of item
roomS location of item
desc$ description of item

sp # of spaces for input

500 rem *-pointer file-*
510 open 2,8,2,"inventory.ptr,seq,read"
520 input#2,ptr
530 close 2
540
550 dim item$(ptr),serl$(ptr),cst$(ptr),room$(ptr),desc$(ptr)
560
570
580
1000 rem **--file input routine--**
1010
1020

HOME INVENTORY SYSTEM 311

1030 print home$:cd = 5:gosub 9000
1040 print tab(8) rvs$; "READING FILE INFORMATION!"
1050 rem *-data file-*
1060 open 15,8,15:rem open command chnl
1070 open 5,8,5,"inventory.rec,1," + chr$(100)
1080 chnl$ = chr$(5):rem channel #
1090
1100
1110 for k = 1 to ptr
1120 rlow = k:rhigh = 0
1130 if rlow > 255 then 15000
1140 rec$ = chr$(rlow) + chr$(rhigh)
1150 print
1160
1170
1180 pztn$ = chr$(l):rem position
1190 print#15,"p";chnl$;rec$;pztn$
1200 input#5,item$(k)
1210
1220
1230 pztn$ = chr$(2S):rem position
1240 print#15,"p";chnl$;rec$;pztn$
1250 input#5,serl$(k)
1260
1270
1280 pztn$ = chr$(40):rem position
1290 print#15,"p";chnl$;rec$;pztn$
1300 invut#5,cst$(k)
1310
1320
1330 pztn$ = chr$(50):rem position
1340 print#15,"p";chnl$;rec$;pztn$
1350 input#S,room$(k)
1360
1370
1380 pztn$ = chr$(70):rem position
1390 print#lS,"p";chnl$;rec$;pztn$
1400 input#5,desc$(k)
1410 next k
1420
1430
1440 close 5:close 15
1450 print home$:cd = 5:gosub 9000
1460 print tab(5) "Insert diskette tor translation!"
1470 print:print
1480 print tab(8) "Press ";wht$;"RETURN";ylw$;" to continue: "
1490 gosub 19000:rem return routine
1500
1510
1520
2000 rem **--create dif file--**
2010
2020 rem clear screen/crsr down 5
2030 print home$:cd = S:gosub 9000
2040 print tab(11) rvs$;"WRITING DIF FILE"
2050 rem nv = number of vectors

312 CHAPTER ELEVEN

2060 rem nt = number of tuples
2070 nv = 5:nt = ptr + 1
2080 q$ = chr$(34):rem quote mark
2090 open 2,8,2,"homeinv.dif,seq,write"
2100
2110 rem *-header section-*
2120
2130 print#2,"TABLE"
2140 print#2,"0,1"
2150 print#2,qq
2160
2170 print#2,"VECTORS"
2180 print#2,"0,";nv
2190 print#2,qq
2200
2210 print#2,"TUPLES"
2 2 2 0 p r i n t # 2 , "0 , " ; n t
2230 print#2,qq
2240
2250 print#2,"DATA"
2260 print#2,"0,O"
2270 print#2,qq
2280
2290
2300 rem *-data seetion-*
2310
2320 print#2,"-1,0"
2330 print#2,"BOT"
2340
2350 print#2,"1,0"
2360 print#2,q$"JTEW'q$
2370
2380 print#2,"I,O"
2390 print#2,q$"SERIAL #"q$
2400
2410 print#2,"1,0"
2420 print#2,q$"COST"q$
2430
2440 print#2,"1,0"
2450 print#2,q$"ROOM"q$
2460
2470 print#2,"1,0"
2480 print#2,q$"DESC."q$
2490
2500 for i = 1 to ptr
2510
2520 i$ = item$(i)
2530 if left$(i$,7) "DELETED" then 2790:rem next i
2540 e$ = est$(i)
2550 if left$(e$,I) "$" then 2570
2560 goto 2610
2570 Ie len(c$)
2580 a$ right$(c$,lc - 1)
2590 e$ = a$
2600
2610 print#2,"-1,0"

HOME INVENTORY SYSTEM 313

2620 print#2,"BOT"
2630
2640 print#2,"1,0"
2650 print#2,item$(i)
2660
2670 print#2,"1,0"
2680 prlnt#2,serl$(i)
2690
2700 print#2,"0,";val(c$)
2710 print#2,"V"
2720
2730 print#2,"1,0"
2740 print#2,room5(i)
2750
2760 print#2,"1,0"
2770 print#2,desc$(i)
2780
2790 next i
2800 print#2,"-1,0"
2810 prin't#2,"EOD"
2820
2830 close 2
2840 print home$:cd = 5:gosub 9000
2850 print tab(14) "ALL FINISHED"
2860 print:print
2870 print tab(8)
2880 print "Insert Program Diskette!"
2890 print:print:print
2900 print tab(8) "Press ";wht$;"RETURN";y1w$;" to continue: "
2910 gosub 19000.rem return routine
2920
2930
2940
3000 rem **--return to inv.menu--**
3010 poke 19,0:rem restore input prompt
3020 print home$:rem clr/home
3030 cd = 5:rem 5 lines down
3040 gosub 9000:rem crsr down routine
3050 print tab(8)
3060 pr:i nt rvs$;
3070 print "LOADING THE INVENTORY MENU"
3080 ·"homeinv.menu"
3090
310CJ
3110
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 prjnt cdS;
9030 next i
9040 return
9050
9060
9070
15000 rem **--figure rec.# routine--**
15010 rhigh int(rlow/256)
15020 r]ow = rlow - 256 * rhigh

314 CHAPTER ELEVEN

15030 return
15040
1 5050
15060
19000 rem **-return key routine--**
19010 poke 198,0:rem c1r kbrd buffer
19020 lor"i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = peek(197):rem store key press
19060 if x = 1 then 19080:rem 1 = rtn
19070 goto 19050:rem if not 1 go back
19080 poke 198,1:rem allow for cursor
19090 poke 631,O:rem clr kbrd
19100 nuS = "":rem cir string variable
19110 poke 19,32:rem disable input?
19120 return

ready.

HOME INVENTORY SYSTEM 315

• Program for HOME/NV. COPY

100 rem ***--copy file info.--*~
110
120
130 rpm **--initialization--**
140 homeS chr$(147):rem clr/homp
150 : :cdS chr$(17):rem cursor down
160 : :cuS chr$(l45) :rem cursor up
170 : :cl$ chr$(l57) :rem cursor left
180 ::cr$ chrS(29):rem cursor right
190 :blk$ chr5(144):rem black
200 :ylw$ chrS(158):rem yellow
210 :wht$ chr$(5):rem whiLe
22() :rvs$ chr$(18) :rem reverse video
230 :bnkS chr$(10):rem blank line
2 4 0 : b r n S c h r $ (I 4 9) : reIn b row n
250 :bue$ chr$(31):rem blue
260
270 poke 53280,I4:rem bord~r = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to bro.
300
310
320
'330
340
350
360
370
380
J9()
400
410
420
430
440
450
460
470
480
490

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

':":' - - v a ria b 1 e s lis t --':":'
rlow low byte of rec.#

r high high byte of rec.#
file tile # in opeIl cmIld
d vic device /1 in open cmnd
cmnd command # in open cmIld

ptr pointer for # of recd's
chnl$ channel # in open cmnd

rec$ rec.# from rlow & rhigh
pztn$ position within record
itemS flame of item
serI$ Sf'r i a 1 # of item
cst$ cost of item

roomS location of item
desc$ description of item

sp # of spaces for in pu t

500 rem '"-point(>r file-'"
510 open 2,8,2,"inventory.ptr,,~cq,read"
520 input#2,ptr
530 close 2
540
550 dim item$(ptr),serl$(ptr),cst$(ptr),roomS(ptr),desc$(ptr)
560
570
580
1000 rem '"':'--f i I pin pu t rout i n('--':":'
1010
1020

316 CHAPTER ELEVEN

1030 print 1;()lre :cn ~ '5:gosub 9000
1040 print t"he R) rvsS; "READING FILE [::FOR:1.\TICJNI"
1050 ren ':'-rJdt file-':'
1060 opf'n IJ,8,1~:rl'l1l open comoancl chill
1070 open 'i,S,5,"inventory.rec,I," + chr$(100)
10S0 chnl$ ~ chr$(5):rem channel #
1090
1100
1110 for k ~ I to ptr
[120 rLow ~ k:rhigh ~ 0
1130 if rlow > 255 then [SOOO
1140 rec$ ~ chr$(rlow) + chrS(rhigh)
1150 print
1160
1170
l1S0 pztn$ ~ chr$(1):rem position
1190 print#lc),"p";chlll$;rec$;pztn$
1200 inpuL#5,ilem$(k)
1210
1220
1230 pztn$ ~ chr$(2'l):rem position
1240 prinl#15,"p";chnl$;rec$;pztn$
1250 input#5,serl$(k)
126U
1270
1280 pztn$ = chr$(40):rem position
1290 print#15,"p";chnl$;rec$;pztn$
llOO lnput#5,cst$(k)
1310
1320
1330 pztn$ ~ chr$(SO):rem position
1340 print#15,"p";chnl$;rec$;pztn$
1350 inpnl#5,room$(k)
1360
!l70
1380 pztn$ = chr$(70):rem position
1390 print#15,"p";chnl$;rec$;pztn$
1400 input#5,desc$(k)
1410 next k
1420
1430
1440 close 5:close 15
1450 print home$:cd = 5:gosub 9000
1460 print tabeS) "Insert diskette for copy!"
1470 print:print
1480 print tabeS) "Press ";wht$;"RETURN";ylw$;" to continue: "
1490 gosub 19000:rem return routine
1500
1 5 I 0
1520
2000 rem ':'--fi Ie output routine--':":'
2010
2020
2030 print homeS:cd ~ 5:gosub 9000
2040 print tabUl) lVS$; "HRITING FILE T:1FOR>1ATIO\'"
2050 rem *-data fjlc-*

HOME INVENTORY SYSTEM 317

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

open IS,A,15:rem open command chnl
open J,8,3,"inventory.bak,1," + chr$(IDO)
chnlS = chrS(3):rem channel #

[or k
rlow
rhigh
if rlow
rec$

1 to plr
k:rem low byte of rec.#
O:rem high byte of rec.#
> 255 then 15000
chr$(rlow) + chr$(rhigh)

pztn$ = chr$(J):rem position
p r i n t # 1 5, " p" ; c h n I ~ ; r e c $; p z t n $
print#'l, itcm$(k)

pztn$ = chr$(2S):rem position
prillt#l'J,"p";chnl$;rec$;pztn$
prinL#J,serl$(k)

pzln$ = chr$(40):rem position
print#15,"p";chnl$;rec$;pztn$
print#3,cst$(k)

2330 pztn$ = chr$(50):rem position
2340 print#15,"p";chnl$;rcc$;pztn$
2350 print#3,room$(k)
2360
2370
2380 pztnS = cilr:)(70): rem position
2390 p r i n t # I C, , "p" ; c h n I $; r c c $; p z t n $
2400 p r i n t # '3, cI esc S (k)
2410 next k
2420
24:10
2440 close 3:c1050 1~

2450 print home$:ccl = 5:gosub 900()
2460 print tab(8) "ALL FINlSHED"
2470 print:print
248() print tab(8) "Press ";wht$;"RETlJR'l";ylw$;" to continue: "
24~D gosub 19000:rem return routine
2500
2 5 1 (l
2S20
JOOO rem **~~rpturn tn inv.mcnu~~**

301D poke 19,1):refll rcstrlrc input prompt
3 0 2 0 p r i nth" ell' S : rpm c 1 r / hom e
:3 030 c cI = '): r f' m 'i 1 i n L' s cI 0" n
:3 040 g 0 s lJ b c) () CI C) : r (' mer s r cI 0 w n r 0 uti n e
3050 print tubeS)
3060 print rvsS;
3070 print "UnD!NC TIlF INVENTORY NENl'"
3 0 8 0 '" hom e in\' . ill C' Ill' 11

318 CHAPTER ELEVEN

3090
3100
3110
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cdS;
9030 next i
9040 return
9050
9060
9070
15000 rem **--figure rec.# routine--**
15010 rhigh = int(rlow/25b)
15020 rlow rlow - 256 * rhigh
15030 return
15040
15050
15060
19000 rem **-return key routine--**
19010 poke 198,O:rem clr kbrd buffer
19020 for i = 631 to 640
19030 poke i,O:rem no value
19040 next i
19050 x = pcek(197):rem store key press
19060 if x = 1 then 19080:rem I = rtn
19070 goto 19050:rem if not 1 go bRck
19080 poke 198,1:rcm allow for cursor
19090 poke 631,0:rem clr kbrd
19100 nuS = "":rem clr string variable
19110 poke 19,32:rem disable input?
19120 return

ready.

HOME INVENTORY SYSTEM 319

• Program for MAGAZINE.MENU

100 rem ***--magazine.menu--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
500 rem **--menu--**
510 tb = 10:rem tab value-lO spaces rt.
520 print homeS:rem clr/home
530 print wht$;
540 print tab(tb)
550 print rvs$;
560 print "~lAGAZINE ARTICLES SYSTEM"
570 print
580 print ylw$
590 print tab(tb)
600 print "1. WRITE RECORD"
610 print:print tab(tb)
620 print "2. READ RECORD"
630 print:print tab(tb)
640 print "3. SEARCH RECORD"
650 print:print tab(tb)
660 print "4. CORRECT RECORD"
670 print:print tab(tb)
680 print "5. TRANSLATE RECORD"
690 print:print tab(tb)
700 print "6. COpy FILE"
710 print:print tab(tb)
720 print "7. LIST OF FILES"
730 print:print tab(tb)
740 print "8. END"
750 print:print tab(tb)
760 poke 19,32:rem disable input?
770 input "Which Program Number? ";nu$
780 number = val(nu$)
790
800
810
820
830

320

if number 1
if number 2
if number 3
if number 4

CHAPTER ELEVEN

then 1000
then 2000
then 3000
then 4000

840 if number
850 if number
860 if number
870 if number
880

5 then 5000
6 then 6000
7 then 7000
8 then 8000

890 rem *-incorrect choice message-*
900 print:print:print tab(tb)
910 print rvs$;"lncorrect Choice'"
920 print:print tab(tb)
930 print "Press ";wht$;"RETURN";ylw$;" to continue:";
940 gosub 19030:rem return key routine
950 goto 500:rem menu--check again
960
970
1000 rem **--write record program--**
1010 file$ = "MAGAZINE. WRITE"
1020 gosub 17000:rem new program routine
1030 '''magazine.write'':rem load & run
1040
1050
2000 rem **--read record program--~~
2010 file$ = "MAGAZI:-JE.READ"
2020 gosuh 17000:rem new program routine
2030 '''magazine.read'':rem load & run
2040
2050
3000 rem **--search record program--**
3010 fileS = "MAGAZINE. SEARCH"
3020 gosub 17000:rem new program routine
3030 '''magazine.search'':rem load & run
3040
3050
4000 rem **--correct record program--**
4010 fileS = "~lAGAZINE.CORRECT"
4020 gosub 17000:rem new program routine
4030 '''magazine.correct'':rem load & run
4040
4050
5000 rem **--trans. record program--**
5 0 1 0 f i J e S = " ~1 A G A Z I N E • T R A t\ S LA T E "
5020 gosub 17000:rem new program routine
5030 '''magazine.trans'':rem load & run
5040
5050
6000 rem **--copy file--**
6010 fileS = "~lAGAZINE.COPY"
6020 gosub 17000:rem new program routine
6030 '''magazine.copy'':rem load & run
6040
6050
7000 rem **--list of files routinc--**
7010 print home$:rem clr/home
7020 @"$"
7030 print cu$;chr$(13):rem 13 = rtn
7040 print "Are you ready to return to the menu?"
7050 print

HOME INVENTORY SYSTEM 321

7060 gosub 18000:rem yin input routine
7070 if yes$ ~ "y" then 500:rem menu
7080 goto 7000:rem check again
7090
71 00
8000 rem **--end routine--**
8010 poke 19,0:rem restore input prompt
8020 print home$:rem clrlhome
8030 cd ~ 5:rem 5 lines down
8040 gosub 9000:rem crsr down routine
8050 print tab(tb - 5)
8060 print rvs$;
8070 print "That's all for this session!"
8080 print:print:print
8090 print tab(tb)
8100 print rvs$;
8110 print "See you next time."
8120 print ylw$
8130 cd ~ 10:rem 10 lines down
8140 gosub 9000:rem crsr down rouLine
8150 end
8160
8170
9000 rem **--cursor down rouLine--**
9010 for i ~ 1 to cd
9020 print cdS;
9030 next i
9040 return
9050
9060
17000 rem **--new program routine--**
17010 print home$:rem clr/home
17020 cd ~ 2:rem 2 lines down
17030 gosub 9000:rem crsr down routine
17040 print "You have selected the ";file$:print:print

"program."
17050 print:print:print
17060 print "Is this the program you want?"
17070 print
17080 gosub 18000:rem yin input routine
17090 jf yes$ ~ "n" then 500:rem menu
17100 print homeS:rem clr/home
17110 cd ~ 5:rem 5 lines down
17120 gosub YUUU:rem crsr down routine
17130 prinL tab(tb - 5)
17140 print rvs$;
17150 print "Please wait!"
17160 print:print:print
17170 prinL tab(tb)
17180 print rvs$;
17190 print "I'm loading •••• "
17200 print:print:print
17210 print tab(tb + 8)
17220 print rvs$;
17230 print fjle$
17240 poke 19,0:rem restore input prompt

322 CHAPTER ELEVEN

17250 return
17260
17270
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140

ready.

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$:"
poke 19,32:rem disable input?
input yes$
print
if yesS
if yes$
print

y or yesS
"n" or yes$

"Y" then yes$
"N" then yes$

print rvs$:"Incorrect Choice''':ylw$
print
goto 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";vlw$;" to continue:";
poke 198,0:rem elr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
n e xli
x = peek(197):rem store key press
if x = 1 then 19100
goto 19070:if not 1 go back
poke 198,1:rem allow 1 for cursor
poke 631,0:rem clr kbrd
nu$ = "":rem elr string variable
print home$:rem elr/home
return

." . . ,

HOME INVENTORY SYSTEM 323

• Program for MA GAZINE. WRITE

100 rem ***--write magazines rec.--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem while
220 :rvs$ chr$(18):rem reverse video
230 :bnk$ chr$(10):rem blank line
240 :brn$ chr$(149):rem brown
250 :bue$ chr$(31):rem blue
260
270 poke 53280,14:rem border = It.blue
280 poke 53272,23:rem upper/lower case
290 poke 53281, 9:rem set bkgrd to ylw.
300
310
320
330
340
3'50
360
370
380
390
400
410
420
430
440
445
450
460
470
480
490

rem
rem
rep,]
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

':":'--var ia bles list--':O{C
rlow low byte of rec.#

rhigh high byte of rec.#
file file # in open cmnd
dvic device # in open cmnd
emnd command # in open emnd
ptr pointer for # of reed's

chnl$ channel # in open cmnd
rec$ rec.# from rlow & rhigh

pztn$ position within record
titlS name of article
auth$ author of article
magz$ name of magazLne

dte$ date of art/# of mag.
pageS page # of article
codeS description of article

sp # of spaces for input

1000 rem **--keyboard input routine--**
1005 print ylw$
1010 tb = 8:rem tab value
1015 poke 19,32:rem disable input
1020
1025
1030
1100 rem **--name of article--**
1105 print home$:rem clr/home
1110 print tab(lO) rvs$; "ADD TO FILE OF ARTICLES"
1115 cd = 7:gosub 9000:rem crsr down 7
1120 print "I. Type in article's name please: "

324 CHAPTER ELEVEN

1125 print:print
1130 sp = 23
1135 gosub SOOO:rem input subroutine
1140 input titl$
1145 if len(titl$)) 23 then titl$ = loft$(tit1$,23)
1150 s$ = titl$:gosuh 12000:tit1$ = s$
I 1 55
1160
1200 rem **--author of article--**
1205 print home$:rem clr!home
1210 print tab(10) rvs$; "ADD TO FILE OF ARTICLES"
1215 cd = 7:gosub 9000:rem crsr down 7
1220 print "2. Type in article's author please: "
1225 print:print
1230 sp = 14
1235 gosub 5000:rem input subroutine
1240 input auth$
1245 if len(auth$) ~ 14 then auth$ = left$(auth$,14)
1250 sS = authS:gosub 12000:auth$ = s$
125)
1260
1300
1 ')0')

1310
131 5
1320
1325
1330
1315
1) 40
]]45
1150
135)
1360
1370
1172
1) 7 4
]] 7h
1) 7 H
1380
1382
1384
13B6
138H
1390
1192
1394
1400
1405
1410
14 I 5
1420

rem **--name of magazine--**
print home$:rem clr!home
print tab(10) rvs$; "ADD TO FILE OF ARTICLES"
cd = 7:gosub 9000:rem crsr down 7
print "3. Type in magazine's name please: "
print:print
sp = 19
gosub 5000:rem input subroutine
input magz$
if len(magzS) > 19 then magzS = left$(magz$,19)
s$ = magz$:gosub 12000:magz$ = s$

rem **--date of magazinc--**
print homc$:rem clr!home
p r i n t tab (1 0) r v s $; "A D II T 0 FILE 0 FAR TIC U: S "
cd = 7:gosub 9000:rem crsr down 7
print "3. Type in magazine's date please: "
print:print
sp = ')

gosuh 5000:rem input subroutine
input dte$
if 1en(dte$) > 9 then dte$
s$ = dte$:gosub 12000:dte$

rem **--page# of article--**
print home$:rem c1r!home

left$(dte$,9)
s$

print tab(lO) rvs$; "ADD TO flU: OF ARTICLES"
cd = 7:gosub 9000:rem crsr down 7
print "4. Type in article's page Ii please: "

1425 print:print
1430 sp = 4
1415 gosuh 5000:rem input subroutine
1440 input pageS

HOME INVENTORY SYSTEM 325

1445 if len(pageS) > 4 then page$
1450 s5 = pageS:gosuh 12000:page$
1455
1460

left$(page$,4)
s$

1500 rem **--categeory of article--**
1505 print home$:rem c Ir/home
1510 print tab(lO) rvs$; "ADD TO FILE OF ARTICLES"
ISIS cd = 7:gosub 9000:rem crsr down 7
1520 print "5. Type in article's category/code please:
15:Z5 print:print
15JO sp = 9
1 5 J 5
1540
1545
1550
1555
1560

gosub 5000:rem input subroutine
input codeS
if len(codeS) > 9 then codeS
s$ = code$:gosub 12000:codeS

leftS(codeS,9)
s$

1600 rem **-display for correction--**
1610
1620 rem clear screen/crsr down J
16JO print home$:cd = J:gosub 9000
1640 165
16') 0 p r i n t : p r i n t lab (t b) "1. T 1 T L E: "; tit I $
1 () 6 0 p r i n t : p r i n t t 3 b (t b) 112. A lJ T II R :
1670 print :print tab(tb) "J.
1675 print:print tab(tb) "4.
1 68 n p rill t : p r i n t tab (t b) II).

1 6 9 0 p r i n t : p r i n t tab (l h) " () •
1700 print:print tab(tb)

\JA C:ZN :
DATE:
PAC; Ie
CODl

1 7 lOp r i n t "I s t his cor r e c t 'J "

1720 print:print tab(tb)

";authS
";magz
";dte$
";pagc$
";code$

1710 gosub 18000:rem yin input routine
1740 if yes$ = "y" then 2000
1750 print:print tab(lb)
1760 input "which number is \,rong' "; nbS
1770 nb = val(nbS)
1780 if nb 1 then sp 23
17')0 if nil 2 14 thcn sp
1800 if nb:1 1') then sp
1805ifnb 4 'J then sp
1810ifnh 5 4 then sp
180ifnil 6 9 thcn sp
1830 if nil < 1 or nb > 6 th('n gosuh 14000:goto 1750
1840 print homeS:cd = 8:gusub ')UliO
1850 print "Type in correct information: "
1860 print
1870 gosub 5000:rem input ruutine
1880 i'nput cinfoS
1890 s$ = cinfo$:gosub 12000:cinfo$ = s$

"

1900 if nb = 1 then litl$ left$(cinfoS,23):goto 160U:rem
ask ag;lin

1910 if nil = :2 then aUlhS
ask ngClin

1920 if nb = 3 then magz$
as \; a g;l i n

326 CHAPTER ELEVEN

left$(cinfo), 14) :goto 16ll0:rC1'1

left$(cinfo$,10):goto 1600:rem

192)

1930

1940

1950
1960

if
ask
if
aSK

if
'1 s k

nb = 4 then dte$ leftS(cinfo$,9):goto
a ga L!l

nb = 5 then pageS 1 eft S (c i [I f 0 $, 4) : go l 0

again
nb = b Lhen codeS left$(cinfo$,9):golo

again

2000 rem **--file output routine - ¥

2010
2020 rem *-pointer file-*
2030 open 2,8,2,"magazines.ptr,seq,recld"
2040 jnput#2,ptr
2050 close 2
2060 if status 16 then 3000
2070 ptr = ptr + I
2080
2090 rem -datu file-*

l'i,8,15:rem open command chnl
3,8,1,"magazines.rec, I," " chr$(85)
in line 2110 is letter not #

chrS(3):rem channel #

2100 open
2110 open
2120 rem I
2131l chnl$
2140 rlc)\,
21'iO rhigh
2160 if rIo"
2170 rec$
2180

ptr:rcm 10" byle of rcc.#
O:rem high byte of rec.#
> 255 Lhen gosub 15000
chrS(rlo,,) + chr$(rhigh)

2190 pztn$ chrS(1):rcm posltlon
2200 p r i n t # I 5 , "p" ; c h n 1 $; r e c :\ ; P L l [I S
2210 print#3,titl$
2220
2230 pztn$ = chr$(25):rem position
2240 prinl/l 15, "p"; chnl$; recS; pLl nS
2250 print#3,authS
2260
2270 pzLn$ = chrS(40):rem pusition
2280 prinlI!15,"p";chnIS;rec$;p7tn$
2290 print#3,magz$
2300
2302 pztnS = chr$(60):rem position
2304 print#IS,"p";chnl$;rec$;pztn$
2306 prinl#3,dtc$
2308
2310 pztn$ = chrS(70):rem posltion
2320 pr lnt#lS,"p";chnlS;recS;pztn$
2330 print#3,pageS
2340
2350 pZLn$ = chrS(75):rem position
2360 print#IS,"p";chnl$;recS;pztnS
2370 print#3,code$
2380 close 3:closc l~

2390
2400
2410 rem *-updHle ptr f1Ie-*
242CJ open 2,8,2,"@O:nwgc17ines.ptr,seq,IHile"
24')0 print#2,ptr

1600:rem

16()():rem

lb()O:rem

HOME INVENTORY SYSTEM 327

2440
2450
2460
2470
2480
2490
3000
3010
3020
3030
3040
:3050
3060
3070
3080
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
5000
5'010
5020
5030
5040
5050
5060
5070
5080
5090
5100
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
9000
9010
9020
9030
9040
9050
9060

close 2

goto 4000:rem repeat routine

rem **--first time use only--**
close :2
open :2,8,2,"magazines.ptr,seq,write"
print#2,"O"
close 2

goto 2000:rem begin file routine

rem **--repeat routine--~~
print home$:rem clr/home
cd = 3:rem 3 lines down
gosuh 9000:rem crsr down routine
print "Do you want to add more articles?"
print
gosuh 18000:rem y/n input routine
if yes$ "y" then 1000
if yes$ = "n" then 6000

rem **--input subroutine--**
for i = I to sp
print chr$(175);:rem underline
next i
print:print:print
print "Do not go beyond the end of the line'"
rem crsr up S
print cu$;cu$;cu$;cu$;cuS
return

rem **--return to lnv.menu--~~
po k e 19,0: rem res tor e in put pro III p t
print home$:rem clr/home
cd = S:rem 5 lines down
gosuh 9000:rem crsr down routine
print tab(tb)
IJrlI1L rvs$;
print "l(lADING TilE t1AGAnNES ~1E'W"
"'II . " magazlIle.menu

rem **--cursor down routine--**
for i = I to cd
print cdS;
next i
return

12000 rem **--strip excess underline character--**
12010 s2$ = s$

328 CHAPTER ELEVEN

12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
15000
15010
15020
15030
15040
15050
15060
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
18130
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120

ready.

i = 1
if mid$(s2$,i,1) = chr$(175) then 12070
i = i + 1
if i > sp then 12070
goto 12030
s$ = left$(s2$,i - 1)
return

rem *-incorrect choice message-*
print:print tab(tb)
print rvs$;"Incorrect Choice!"
print:print tab(tb)
print "Press ";wht$;"RETURN";ylw$;" to continue:";
gosub 19000:rem return key routine
return

rem **--figure rec.# routine--**
rhigh = int(rlow/256)
rlow rlow - 256 * rhigh
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input?
input yes$
print
if yes$
if yes$
print

"y" or yes$
"n" or yes$

"y" then yes$
"N" then yes$

print rvs$;"Incorrect Choice!";ylw$
print
goto lS000:rem begin again

rem **-return key routine--**
poke 19S,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19050:rem 1 = rtn
goto 19050:rem if not 1 go hack
poke 19S,1:rem allow for cursor
poke 631,0:rem clr kbrd
nuS = "":rem clr string variable
poke 19,32:rem disahle input?
return

"y":return
"n":return

." . . ,

HOME INVENTORY SYSTEM 329

--- --- ---

12planning
a file system

Rather than present another chapter explaining the programming of another system,
this chapter will present the procedures involved in conceiving and creating a file
system. I will use a Stock Market System as the example. Although shorter than
previous chapters, this chapter is no less important.

There are five main steps involved in conceiving and creating a specific data­
base system.

1. Know your subject.

2. Plan carefully and organize your thoughts.

3. Make preliminary decisions on the number of main variables, the length of
each record, and, if necessary, the lengths of fields within each record.

4. Roughly plan the sequence of the data-base operation and the code for each
part of that operation.

S. Begin on the code for the first part of the system.

Some programmers will argue with either the sequence of the steps or the steps
themselves. Some may say that such an outline is too limited. All may be right. I
am merely trying to give a limited amount of guidance in the development of a
specific file system. Some systems analysts are carried away with the precode

330 CHAPTER TWELVE

procedures. But one thing is clear. A certain amount of planning before coding is
absolutely necessary!

STOCK MARKET SYSTEM

Results of the previous day's trading activity are printed in most daily newspapers.
Normally, these results include such things as: 52-week high and low stock price;
stock symbol; latest dividend; a yield figure; PIE ratio; sales; daily high, low, and
closing price; and, possibly. the amount of price change from the previous day.
This information is available for active issues on the New York and American
Stock Exchanges. Less information is given for Over the Counter or NASDAQ
issues, option, commodity, and bond trading. There are figures for the various
averages: NYSE Index, Dow, Standard & Poors, American Index, NASDAQ Com­
posite and/or Industrials, to name just a few. There are other key items to watch:
gold, interest rates, value of the dollar overseas, money supply, President's daily
intake of vitamins, and so on. As you might guess, the list is limitless.

Although an investment record may contain more variables than maintaining
information on your own library, the principle is the same. You must thoroughly
know your subject in order to be able to make decisions concerning the information
to be saved. The first step in planning your data base should be deciding which
information is of value (i. e., what information to save).

In our Stock Market System, I am going to severely limit the amount of
information saved. Individuals may wish to keep additional information they believe
to be important. For each issue, we will save the daily high, low, and closing price,
plus the day's volume, PIE ratio, and date. In addition, we will save any price that
makes either a new high or new low for that issue.

Steps two and three somewhat blend together at this point. In the planning.
decisions are made. Most stock prices are under $1000 per share, so I will allow
a maximum of three places before the decimal point. Prices are usually given in
terms of eighths of a dollar (i.e., 3/8 or 112). With a little extra planning and coding,
significant disk space can be saved on each issue. If the extreme right figure is
always viewed as the decimal portion of the stock price, then four digits will
represent all stock prices up to $999 and 7/8 per share. (This price would be saved
on the disk as 9997.) Saving the high, low, and close each day already means 15
bytes per issue per day (4 bytes for the number plus one byte for the delimiter for
a total of 5 bytes for each high, low, and closing price).

Volume can be handled in somewhat the same way. Most papers indicate the
sales volume only in hundreds of shares sold per day. A volume of 2000 shares
would be displayed as 20. Since virtually every stock trades under 9,999,900 shares
in one day, we can limit the number of places to six (99999 plus one for the carriage
return delimiter). All PIE ratios are under 999 for any issue. This necessitates
another four bytes for each issue. Finally, we will save the trading date with each

PLANNING A FILE SYSTEM 331

record (ten more bytes). That brings the total number of bytes for each issue to 35:
4 for the PIE ratio, 6 for the volume, 5 for the high, 5 for the low, 5 for the close,
and 10 for the date. We will save any new high or new low price in a separate
sequential file.

Next, we must decide on the number of issues to follow on a daily basis. This
is an individual choice and often depends on the time available for closely following
the market. A reasonable figure to start out with is ten issues. If a number greater
than ten is used, the string array variable chosen for the stock names will need to
be dimensioned to the proper number. With the number of stocks determined, we
can calculate the maximum number of bytes used for each day's transactions. Ten
stocks, each requiring 35 bytes, mean a length of 350 bytes per trading day. Based
on approximately 170,000 available bytes on a single-sided diskette. we can store
just under 500 days' trading information. That is about a year and a half of stock
market activity for ten issues on a single data diskette.

Step four is a rough plan of the sequence of programs and the code within each
program. Following the procedures we have used in our previous examples, we
need programs that will create the necessary files and daily add to those files.
Second, we need programs to display, in a variety of ways, the information either
stored in the file or derived from the information stored. Finally, we must have
correction programs.

I am going to introduce another method of creating random files. I have included
a program that will only be used once for each set of stocks followed. The "stock. menu"
program indicates that, when the user chooses the first option, the "stock. add"
program is run. The very first time (and only the first time) the ··stock.menu"
program is run and the number one selection is made. the computer will load a
program that is called "stock. add". In reality, this is a program used one time to
create the "stock.ptr" (stock pointer) file and the "stock. high/low" file. It also
provides the user with some information on the general operation of the Stock
Market System. Once these files have been created and the user has indicated that
the information has been absorbed, this program renames itself on the diskette so
that it now has the program file name "stock.oldadd". Then, it renames a second
program from its original "stock.realadd" file name to the necessary "stock. add"
file name. Finally, the user is given the choice to either return to the main Stock
Menu or to add the first day's trading activity. The "stock. menu" program always
runs a program called "stock. add" . The first time it runs one program (originally
called "stock.add", renamed to "stock.oldadd"), but every time after that, it runs
another program (originally called "stock.realadd", renamed to "stock. add"). The
different programs share the same file name, "stock. add", but at different times.
In summary, the first program is designed to create the necessary files and then
rename both itself and the real "stock. add" program. The real "stock. add" (originally
"stock.realadd") program is designed to daily update each individual stock's file.
The explanation may sound complicated, but the operation itself is surprisingly
simple.

332 CHAPTER TWELVE

Within the file addition program, the sequence of operation is fairly standard.
We need to read in: (1) the value of the file pointer (add one to that value), (2) the
symbols for the various stocks, and (3) their current high and low price. Next, the
previous day's figures must be entered for each issue and checked for accuracy.
The previous day's figures must also be compared to the current high and low, and
if they exceed those figures, they need to replace the appropriate figure. Finally,
all the new information must be written to the disk.

The editing programs should follow a similar pattern but with a few exceptions.
The pointer should be determined by an input from the keyboard. The high, low,
close, volume, and PIE should come from the disk instead of the keyboard, with
corrections coming from the keyboard.

The display programs are more difficult to structure in any absolute manner.
The only certain structure is that information comes from the disk and is displayed
either on the screen or through the printer. In between, a variety of steps can take
place. The information can be used to calculate certain values that may be used to
evaluate a particular situation and project the price movement of the stock. Or the
disk information may simply be formatted for display on either the screen or the
printer. The information may be used to graph the price movement of the stock or
compare its movement against that of another stock or average. The display portion
of the Stock Market System is the core of the system and is usually not a fixed set
of programs. User needs change and require that the display programs change. In
the system presented, the display programs will be limited in their scope. We will
display individual stock histories, along with some calculated figures, averages,
price and volume changes, and the like. We will not get into graphic representation
of stock performance in this book. (A future book will deal with graphic represen­
tation of data base information, because it is such a broad topic that it requires a
book of its own.)

The final step is coding the programs according to the plans established. At
the end of this chapter, you will find minimum programs designed according to the
structure outlined in this chapter . You are encouraged to take these minimum
programs and expand upon them to fit your own interest, or alter them to cover a
topic of your own design. It is only by practical experience that you will learn to
create Commodore-64 BASIC files.

QUESTIONS

1. True or False: Good programmers can just sit down and start writing code.

2. What is the first step in planning a data base system?

3. Give the three main parts to any data base system.

4. Which part must be flexible as user needs change?

PLANNING A FILE SYSTEM 333

ANSWERS

1. False

2. Deciding which infonnation is of value

3. Creation and addition, display, correction

4. Display

334 CHAPTER TWELVE

• Program for STOCK. MENU

100 rem ***--stock.menu--***
110
120
130 rem **--initialization--**
160 home$ chr$(147):rem clr/home
150 : :cd$ rhr$(17):rem cursor down
160 : :cu$ rhr~(145):rem cursor up
170 ::cl$ chr$(157):rem cur or left
180 ::rr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280, 14:rem border = It.blue
250 poke S3272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
500 rem **--menu--**
510 tb = 10:rem tab value-IO spaces rt.
520 print home$:rem clr/home
530 print wht$;
540 print tab(tb)
550 print rvs$;
560 pr in t "STOCK S YS rE~l ~lENL1"

570 print
580 print vlw$
590 print (ab(tb)
600 print "1. ADD STOCK IliFO."
610 print:print tab(tb)
620 print "2. DISPLAY STOCK INFO."
630 print:print tab(tb)
640 print "3. DISPLAY HI/LOW VAU:ES"
650 print:print tab(tb)
660 print "4. CORRECT HI/!.O\' VALUES"
670 print:print tab(tb)
680 print "~. CORRECT STOCK DATA"
690 print:print tab(tb)
700 print "6. DIF TRANSLATIOli"
710 ~rint:print tab(tb)
720 print "7. LIST OF FILES"
730 print:print tab(tb)
740 print "8. END"
750 print:print tab(tb)
760 poke 19,32:rem disable input?
770 input "Hhich Program liumber" ";nu$
780 number = val(nu$)
790
800
810
820
830

if
if
if
if

number
number 2
number 3
number 4

then 1000
tben 2000
then 3000
then 4000

PLANNING A FILE SYSTEM 335

840
850
860
870
880

if
if
if
if

number
numher
number
n u m b (' [

5
6
7
8

then 5000
t h (' n 6000
L h e [I 7000
then 8000

890 rem *-incorrect choice message-*
900 print:print:print tab(tb)
910 print rvs$;"Incorrect Choice!"
920 print:print tab(tb)
930 print "Press ";wht$;"RETURN";ylw$;" to continue:";
940 gosub 19030:rem return key routine
950 goto SOO:rem menu--check again
960
970
I 000 rem ':":' - - s t 0 (k ,1 d d pro g r a m- - ':":'
1010 fileS = "STIICK.ALlD"
1020 gosuh l7DO(): [PIT! new program routi n('
1030 '''stock.add'':rpm load & run
1040
1050
2000 rem ':'--st oc k display program--'~'~

2010 fileS = "STOCK.DISPLAY"
2020 gosub 17000:rem new program routine
2030 '''stock.display'':rem load & run
2040
20'50
3000 rem **--display hi/low progrdm--¥¥
'JUJU fileS = "STOCK.DSP HT/LOI.J"
3020 gosub 17000: rem ne,,' program rout i ne
303l) '''stock.dsp hi/low":rem load & run
3040
30SCl
400U rem *~--corr~(hi/low program--**
4010 f i 1 e$ = "STOCK .('In HI/LOW"
4020 gosuh 17()OU:rcm new program routine
4030 '''stock.crt hj/low":rem load & run
4040
40S0
SOOO rem **--corrccL stock program--¥¥
SOlO fileS = "STOCK.CORRECT"
5020 gosub 17000:rem new program routine
')030 '''stock.correct'':rem load & run
5040
C)oso
6000 rem **--translate stock 1nfo- **
6010 fileS = "STOCK.TRANSLATE"
6020 go sub 17000:rem new program rouline
6030 '" stuc k.trdnslate":rem load & run
6040
6050
7000
7010
7020
7030
7040

rem
pri n t
@"$"
print
p r i n t

7050 print

'"--I ist of fi les routine--l,'l,'
home$:rem clr/home

cuS;chr$(l Cl):rem 13 = rtn
"I\re you ready to ret urn to

336 CHAPTER TWELVE

lhe menu')"

7060 gosub 18000:rem yin input routine
7070 if yes:5 ~ "y ,. the n 500: rem men u
7080 goLo 7000:rem eheck again
7090
71 00
8000 rem **--end routine--**
8010 poke 19,0:rem restore input prompt
8020 print home$:rem elr/home
8030 cd ~ 5:rem S lines down
8040 gosub 9000:rem ersr down routine
8050 print tab(tb - 5)
8060 print rvs$;
8070 print "That's all for this session'"
8080 print:print:print
8090 print tab(tb)
8100 print rvs$;
8110 print "See you next time."
8120 print ylw$
8130 ed ~ 10:rem 10 lines down
8140 gosub 9000:rem crsr down routine
81'JOend
8160
8170
9000 rem **--eursor down routine--**
9010 for i ~ 1 to ed
9020 print cdS;
CJ030 next i
9040 return
9050
9060
17000 rem ¥¥--new program routine--**
17010 print home$:rem elr/home
17020 cd ~ 2:rem 2 lines down
17030 gosub 9000:rem ersr down routine
17040 print "You have selected the ";file$:print:print

"program."
17050 print:print:print
17060 print "Is th j s the program you want')"
17070 print
17080 gosub 18000:rem yin input routine
17090 jf yes$ ~ "n" thenSOO:rem menu
17100 prj~t homeS:rem elr/home
17110 cd ~ 5:rem 5 lines down
17120 gosub 9000:rem ersr down routine
17130 print tab(tb - 5)
17140 print rvs$;
171,)() print "Please wait'"
171hO prin\:print:print
1717C1 print tab(Lb)
17180 print rvs$;
1719D print "I'm loading "
1720D print:print:print
17~10 print tab(tb + 8)
17220 print rvs$;
17230 print flle$
17240 poke 19,0:rem restore input prompt

PLANNING A FILE SYSTEM 337

17250
17260
17270
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140

ready.

return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;"
poke 19,32:rem disable input?
input yes$

or ";wht$;"N";ylw$;"

print
if yesS
if yes$
print

"y" or
"n" or

yes$
yes$

"y"
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice!";ylw$
print
go to 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,0:rem clr kbrd buffer
for i ~ 631 to 640
poke i,O:rem no value
next i
x ~ peek(197):rem store key press
if x ~ 1 then 19100
goto 19070:rem if not 1 go back
poke 198,l:rem allow 1 for cursor
poke 63l,O:rem clr kbrd
nuS : '''':rem clr string variable
print home$:rem clr/home
return

338 CHAPTER TWELVE

." . . ,

• Program for STOCK.ADD

100 rem ***--initalize stock files--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$ 157):rem cursor left
180 ::cr$ chr$ 29):rem cursor right
190 :blk$ chr$ 144):rem black
200 :ylw$ chr$ 158):rem yellow
210 :wht$ chr$ 5):rem white
220 : rvs$ chr$ 18): rem reverse video
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
1000 rem **--information--**
1010 print home$:rem clr/home
1020 print "Before you can enter any daily stock"
1030 print
1040 print "information, you must decide which"
1050 print
1060 print "stocks you will be following. This"
1070 print
1080 print "program will ask you to enter the name"
1090 print
1100 print "or symbol of ten stocks and their re-"
1110 print
1120 print "spective values for the high and low"
1130 print
1140 print "prices within the last 12 months. If"
1150 print
1160 print "the high or low values are not known,"
1170 print
1180 print "simply enter a '0'. The high and low"
1190 print
1200 print "values will automatically be updated"
1210 print
1220
1230 gosub 19000:rem return key routine
1240

1250 print "when daily prices exceed or are less"
1260 print
1270 print "than the values in the HI/LOW file."
1280 print
1290 print "If you need to change any information"
1300 print
1310 print "in the HI/LOW file, choose #4 CORRECT"
1320 print
1330 print "HI/LOW from the main program menu. Once"

PLANNING A FILE SYSTEM 339

1340 print
1350 print "you have finished entering the infor-"
1360 print
1370 print "mation in this program, you will be"
1 c:l80 print
1390 print "given a choice to enter the first"
1400 print
1410 print "dav's prices ur to return to the main"
1420 print
14 c:l0 print "program menu. After this first time,the"
1440 print
1450 print "ADD STOCK [CiFO. (#1) will not show all"
146() print
1470
1480 gosub 19000:rem return key routine
1490
1 ') 0 0
1510
1')20
1')30
1')40

print "this text or require you to update the"
print
print "Hl/L()\~ fi Ie. [f you \'>,:a n t to
print
print "this information, type a 'y'

1')')0 print
1560 print "type an 'N'."
1')70 print
1580 gosub 18000:rem y/n input routine
1')90 if yes$ = "y" then !ClOO
1600 gosub 19000:rem return key routine
1610
1620

000 rem **--keyboard input ruutine--*~
010 for k = I tu 10
020 print homc$:rem c1r/hume

re-read"

if not,

2030 print "Tvpe in the name of the stock or its"
2040 print

"

2050 print "symbol. You will be given a chance to"
2060 print
2070 print "make corrections later."
2080 print
2090 print "Stock #";k;": ";: input stk$(k)
2100 print
2110 gosub 16000:rem remainder routine
2120 print "Jf you arc not sure of the ";wht$;"hi";ylw$;"

value for"
2130 print
2140 print "the previous 12 months, enter a '0'."
2150 print
2160 print "12 month ";wht$;"hi";y1w$;" value for ";stk$(k);":

";:input hi$(k)
2170 gosub 16000:rem remainder routine
2180 print ''If you are not sure of the ";whtS;"low";y1w$;"

value for"
2190 print "the previous 12 months, enter a '0'."
2200 print
2210 print "12 month ";wht$;"low";ylw$;" value for ";stk$(k);":

";: input low$(k)

340 CHAPTER TWELVE

2220
2230
3000 rem **--correction routine--**
3010 rem clr/home crsr down 5
3020 print home$:cd ~ 5:gosub 9000
3030 print
3040 print "1. ";stk$(k)
3050 print
3060 m ~ val(hi$(k»:gosub 17000:rem convert to fraction
3070 print "2. Hi va1ue ";rn;" ";f$
3080 print
3090 m ~ val(low$(k»:gosub 17000:rern convert to fraction
3100 print "3. Low value ~ ";rn;" ";f$
3110 print
3120 print "Is this correct? ";
3130 gosub 18000:rem yin input routine
3140 print
3150 if yes$ ~ "n" then 3170
3160 goto 3250:rem next i
3170 input "Which number is wrong? ";nb
3180 print
3190 if nb then input "Correct stock name or symbol: ";

stk$(k)
3200 if nb 2 then input "Correct hi value: ";hi$(k)
3210 if nb ~ 3 then input "Correct low value ";low$(k)
3220 if nb < 1 or nb > 3 then print "INCORRECT CHOICE!"
3230 goto 3000:rem ask again
3240 print
3250 next k
3260
3270
4000 rem **--file output routine--**
4010
4020 rem *-stock pointer file-*
4030 open 2,8,2,"0:stock.pointer,seq,write"
4040 print#2,"0"
4050 close 2
4060
4070 rem *-hi/low data file-*
4080 open 3,8,3,"0:hi/low data,seq,write"
4090 for k ~ 1 to 10
4100 print#3,stk$(k)
4110 print#3,hi$(k)
4120 print#3,low$(k)
4130 next k
4140 close 3
4150
4160
5000 rem **--rename files routine--**
5010 @"r:stock.oldadd=stoek.add"
5020 @"r:stock.add=stoek.real"
5030 rem elr/home crsr down 5
5040 print home$:cd = 5:gosub 9000
5050 print "Do you want to add the first day's"
5060 print

PLANNING A FILE SYSTEM 341

5070 print "stock prices? ";
5080 gosub 18000:rem y/n input routine
5090 print
5100 if yes$: "y" then '''stock.add'':rem load & run stock.add
5110 '''stock.menu'':rem load & run menu
5120
5130
9000
9010
9020
9030
9040
9050
9060
16000
16010
16020
16030
16040
16050
16060
16070
16080
16090
16100
16110
16120
16130
16140
16150
16160
16170
16180
16190
16200
16210
16220
16230
17000
17010
17020
17030
17040
17050
17060
17070
17080
17090
17100

rem **--cursor down routine--**
for i : 1 to cd
print cdS;
next i
return

rem **--reminder routine--**
print home$:rem clr/home
print tab(8)
p r i n t "",:", ,", --- R E~lF:~!B ER - -- ':":'" ';';""

print
print "You must add the fraction as the last"
print
print
print
print
print
print

"digit' 21 5/8 should be entered as: 215"

"If the number has
"enter a '0' after
"should be entered

no fraction, please"
the number! 21 even"
as: 210"

print tab(ll) "1/8 --------- 1"
print tab(ll) "1/4 --------- 2"
print tab(ll) "3/8 ------- - 3"
print tab(ll) "1/2 --------- 4"
print tab(ll) "5/8 --------- 5"
print tabell) "3/4 --------- 6"
print tab(ll) "7/8 --------- 7"
print tab(ll) "EVEN -------- 0"
print
return

rem ':"'--convert to frac t i on--''':'
f = m - int(m/l0) ':' 10
m = int(m/10)
if f 0 then f$ = ""
if f 1 then [$ "1/8"
if f 2 then f$ "1/4"
if f 3 then f$ "3/8"
if f 4 then f$ "1/2"
if f 5 then f$ "5/8"
if f 6 then f$ "1/4"
if f 7 then f$ "7/8"

17110 return
17120
17130
18000 rem **--y/n input routine--**
18010 print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
18020 poke 19,32:rem disable input?
18030 input yes$

342 CHAPTER TWELVE

." . . ,

18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140

print
if yes$
if yes$
print

"y" or yes$
"n" or yes$

"Y" then yes$
"N" then yes$

print rvs$;"Incorrect Choice''';ylw$
print
goto 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,O:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100
goto 19070:rem if not 1 go back
poke 198,l:rem allow 1 for cursor
poke 631,O:rem clr kbrd
nuS = "":rem clr string variable
print home$:rem clr/home
return

PLANNING A FILE SYSTEM 343

• Program for STOCK. REAL

100 rem ***--udd stock inforrnation--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
1 SO :: cd$ chr$(17): rem cursor down
160 : :cu$ chr$(14'5) :rem cursor up
170 ::cl$ chrS(157):rem cursor left
180 ::cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 : rvs$ chr$(18): rem reverse video
23U
240 poke 5328D,14:rem border = It.blue
2')0 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrrl to brn
270
280
290 rem **--variables list--**
300 rem stk$ stock symbol
110 rem hi$ current hi price
320 rem 10w$ current low price
110 rem dte$ date
34U rem nh$ = new high
35U rem hl$ new low
360 rem f$ fraction
370 rem pe pie ratio
380 rem vol sales volume
390 rem h daily high price
4UU rem low daily low price
410 rem c daily closing price
420 rem cr corrected figure
43U
440
450 rem **--file input routine--**
460
470 rem *-pointer file-*
48U open 2,8,2," stoc k.pointer,seq,read"
490 input#2,ptr
C)OO close 2
51U ptr = ptr +
520
530 rem *-high/low file-*
540 open 3,8,3,"hi/low data, seq, read"
550 for k = 1 to 10
S6U input#3,stk$(k)
S7U input#3,hi$(k)
SilO input#3,low$(k)
590 next k
600 close 3
610
620

344 CHAPTER TWELVE

630 k = 1
640 print ylw$
G50 poke 19,32:rem disable inPlt ?
660
670
1000 rpm **--keyboard input routine--**
1010
1020 rem *-date information-*
1030 rem clr/home crsr down 5
1040 print home$:cd = 5:gosub 9000
1050 input "Type in today's date: ";dte$
1060 print:print
1070 print "Todav's date is ";dte$
1080 print:print
1090 print "Is this correct? ";
1100 gosub 18000:rem y/n input routine
1110 if ves$ = "v" then 1160
1120 pri~t:input-"Type in the correct date: ";rlte$
1130 go to 1060
1140
1150 rem *-stock information-*
1160 print home$:rem clr/home
1170 poke 19,32:rem disable input
1180 print tabeS) wht$;stk$(k)
1190 print:print:print tabeS) ylw$;
1200 print stk$(k);"'s ";wht$;"P/E RATIO";ylw$;" for ";dte$;":

";:input pe
1210 print:print:print tabeS)
1220 prlnt stk$(k);'''s ";wht$:"VOLU~lF:";vlw$;" for ";dte$;": " ..

input vol
1230 gosub 16000:rem reminder routine
1 240 p r i n t s t k $ (k) ; '" s "; w h t $; "H I Gil" ; y I w $;" for "; d t e $; ": " ..

input h
1250 gosub 16000:rem reminder rOlltine
1260 print stk$\k);"'s ";wht$;"LOW";ylw$;" for ";dte$;": ";:

input low
1270 gosub 16000:rem reminder routine
1 280 p r i n t s t k $ (k) ; " 's "; w h t $; "c: LOS E" ; vi w $;" [0 r "; d t e $; ": " ..

input c
1290
1300
2000 rem **--correction rontine--**
2010 rem clr/home crsr down S
2020 print home$:cd = 5:gosub 9000
2030 print
2040 print stk$(k);"'s data for ";dte$
2050 print:print
2060 print "1. P/E ratio ---- ";pe
2070 print "2. Volume ------- ";vol
2080 m = h:gosub 17000:rem convert to fraction
2090 print "3. High --------- ";m;" ";f$
2100 m = low:gosub 17000:rem convert to fraction
2110 print "4: Low ---------- ";m;" ";f$
2120 m = c:gosub 17000:rem convert to fraction

PLANNING A FILE SYSTEM 345

2130 print "5. Close -------- ";m;" ";f$
2140 print
2150 print "Is this correct? ";
2160 gosub 18000:rem yin input routine
2170 print
2180 if yes$ = "n" then 2220
2190
2200 goto 3000:rem exchange routine
2210
2220 input "Which number is wrong? ";nb
2230 if nb < 1 or nb) 5 then print:print "INCORRECT CHOICE!":

goto 2140
2240 print
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340

input
if nb
if nb
if nb
if nb
if nb
goto
print

"The correct
1 then pe
2 then vol
3 then h
4 then low
5 then c

2000:rem ask

figure
cr
cr
cr
cr
cr

again

3000 rem **--exchange hi/low--**

";cr

3010 if h > val(hi$(k» then hi$(k) = str$(h):nh$ = "*"
3020 if low < val(low$(k» then low$(k) = str$(low):nl$ "*"
3030 if val(low$(k)) = 0 then low$(k) = str$(low)
3040
3050
4000 rem **--dat~ file update--**
4010 rem clr/home crsr down 5
4020 print home$:cd = 5:gosub 9000
4030 print tab(11) rvs$;"ONE MOMENT PLEASE!"
4040 print:print:print:print
4050 print tab(lO) "Updating ";wht$;stk$(k);'''s'';ylw$;'' file."
4060
4070 cvt$ = stk$(k)
4080 gosub 14000:rem convert to 1.c.
4090 stk$ = cvt$
4100
4110 open 15,8,15:rem open command chnl
4120 open 3,8,3,stk$ + ".data,l," + chr$(35)
4130 rem I in line 4120 is letter not #
4140 rem 35 in line 4120 is rec.length--not # of records
4150 chnl$ chr$(3):rem channel #
4160 rlow ptr:rem low byte of rec.#
4170 rhigh O:rem high byte of rec.#
4180 if rlow) 2S~ then lS000:rem rec.# routine
4190 rec$ = chr$(rlow) + chr$(rhigh)
4200
4210 pztn$ = chr$(l):rem position
4220 print#15,"p";chnl$;rec$;pztn$
4230 print#3,dte$
4240
4250 ss$=str$(pe):gosub 20000:pe$=ss$
4260 pztn$ = chr$ (ll):rem position

346 CHAPTER TWELVE

4270 print#15,"p";chnl$;rec$;pztn$
4280 print#3,pe$
4290
4300 ss$=str$(vo1):gosub 20000:vol$=ss$
4310 pztn$ = chr$ (15):rem position
4320 print#15,"p";chnl$;rec$;pztn$
4330 print#3,vol$
4340
4350 ss$=str$(h):gosub 20000:h$=ss$
4360 pztn$ = chr$ (21):rem position
4370 print#15,"p";chnl$;rec$;pztn$
4380 print#3,h$
4390
4400 ss$=str$(low):gosub 20000:1ow$=ss$
4410 pztn$ = chr$ (26):rem position
4420 print#15,"p";chnl$;rec$;pztn$
4430 print#3,low$
4440
4450 ss$=str$(c):gosub 20000:c$=ss$
4460 pztn$ = chr$ (31):rem position
4470 print#15,"p";chnl$;rec$;pztn$
4480 print#3,c$
4490
4500 close 3:close 15
4510
4520 nh$ = "":nl$ = ""
4530 k = k + 1
4540 if k < 11 then 1150:rem next stock
4550
4560
5000 rem **--hi/low file update--**
5010 open 3,8,3,"@0:hi/low data,seq,write"
5020 for k = 1 to 10
5030 print#3,stk$(k)
5040 print#3,hi$(k)
5050 print#3,low$(k)
5060 next k
5070 close 3
5080
5090
6000 rem **--pointer file update--**
6010 open 2,8,2,"@0:stock.pointer,seq,write"
6020 print#2,ptr
6030 close 2
6040
6050
7000 rem **--return to main menu--**
7010 print home$:rem clr/home
7020 cd = 5:gosub 9000:rem crsr down 5
7030 print tab(14)
7040 print rvs$;"PLEASE WAIT!"
7050 print:print:print
7060 print tab(ll)
7070 print "LOADING STOCK.MENU"
7080 ·"stock.menu"
7090

PLANNING A FilE SYSTEM 347

7100
9000
9010
9020
9030
9040
9050
9060
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14 120
14130
14140
14150
14160
14170
15000
15010
15020
15030
15040
15050
16000
]6010
16020
16030
16040
16050
16060
16070
16080
16090
16100
16110
16120
16130
16140
16150
16160
16170
16180
16190
16200
16210
16220
162~0

348

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem **--convert to lowercHse--**
nc$
for cv = 1 to len(cvt$)
x = asc(midS(cvt$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cvt$ = nc$
f = Hsc(left$(cvt$,l))
f = f + 128
nc$ = chr$(f) + right$(cvt$,lenCcvt$)- 1)
return

rem cvt$
rem nc$

converted to lowercase
1st letter/uppercase

rem **--figure rec.# routine--**
rhigh = int(rlow/256)
rlow rlow - 256 * rhigh
return

rem **--reminder routine--**
print home$:rem clr/home
print tab(8)
p r i n t ""':": ':' ':' - - - R Ei1 E~l11 ER - -- ,:":,,:,,:,,:,,,
print
print "You must add the fraction ilS the Last"
print "digit! 21 5/8 should be entered dS: 215"
print
print "If the number has no fraction, please"
print "enter a '0' after the number! 21 even"
print "should be entered as: 210"
pfint
print
print
print
print
print
THint
print
print
print
return

tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)
tabC1I)
tabCll)

CHAPTER TWELVE

"1/8
"1/4
"3/8
"1/2
"5/8
"3/4
"7/8
"EVEN

--------- 1"
--------- 2"
--------- 3"
--------- 4"
--------- 5"
--------- 6"
--------- 7"
-------- 0"

17000
17010
17020
17030
17040
17050
17060
17070
17080
17090
17100
17110
17120
17130
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140
191')0
19160
20000
20010
20020
20030
20040

ready.

rem '}:~~--convert to frae tion--':":'
f = m - int(m/10) ~:, 10
m = int(m/lO)
if f 0 then f$ ""
if f 1 then f$ "1/8"
if f 2 then f$ "1/4"
if f 3 then f$ "3/8"
if f 4 then f$ "1/2"
if f 5 then f$ "5/8"
if f 6 then f$ "3/4"
if f 7 then f$ "7/8"
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";y1w$;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input?
input yes$
print:print
if yes$ "y" or yes$
if yesS = "n" or yes$
print

"yn
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice!";ylw$
print
go to 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = I then 19100
goto 19070:rem if not 1 go back
poke 198,l:rem allow 1 for cursor
poke 631,O:rem elr kbrd
nuS = "":rem elr string variable
print home$:rem elr/home
return

rem **--strip sign routine--**
Igth len(ss$)
s2$ right$(ssS,lgth - 1)
ss$ s2$
return

6" . . ,

PLANNING A FilE SYSTEM 349

• Program for STOCK.DISPLA Y

100 rem ***--display hi/low data--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29) :rem cursor right
190 :blk$ chr$(l44) :rem black
200 :ylw$ chr$(l58):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
500 rem **--file input routine--**
510 open 2,8,2,"hi/low data,seq,read"
520 for k = I to 10
530 input#2,stk$(k)
540 input#2,hi$(k)
550 input#2,low$(k)
560 next k
570 close 2
580
590
1000 rem **--rlisplay routine--**
1010
1020 rem *-titles-*
1030 print ylw$
1040 print home$:rem clr/home
1050 print "Stock Symbol";
1060 print Lab(18) "Hi Value";
1070 print tab(28) "Low Value"
1080 print
1090
1100 rem *-stock name-*
1110 for k = 1 to 10
1120 if k < 10 then print tab(l)
1130 print k;" If;
1140 print stk$(k);
1150
1160 rem *-high value-*
1170 m = val(hi$(k))
1180 gosub 17000:rem convert to fraction
1190 hi$(k) = str$(m)
1200 print tab(18)
1210 print hi$(k);" ";f$;
1220
1230 rem *-low value-*

350 CHAPTER TWELVE

m = val(low$(k» 1240
1250
1260
1270
1280
1290

gosub 17000:rem convert
low$(k) = str$(m)

to frlction

print tab(28)
print low$(k);" ";f$

1300 next k
1310
1320 cd = 5:gosub 9000:rem crsr down 5
1330 gosub 19000:rem return key routine
1340
1350
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090

rem **--return to main menu--**
print home$:rem clr/home
cd = 5:gosub 9000:rem crsr down 5
print tab(ll)
print rvs$;"ONE MOMENT PLEASE!"
print:print:print
print tab(11)
print "LOADING STOCK.MENU"
""stock.menu"

2100
9000
9010
9020
9030

rem **--cursor down
for i = 1 to cd
print cd$;
next i

9040 return
9050
9060

--convert to fraction--
m - int(m/l0) * 10

17000 rem
17010 f =
17020 m =
17030 if
17040 if
17050 if
17060 if
17070 if
17080 if
17090 if
17100 if
17110 return
17120

int(m/lO)
f 0 then f$
f 1 then f$
f 2 then f$
f 3 then f$
f 4 then f$
f 5 then f$
f 6 then f$
f 7 then f$

"If
"1/8"
"1/4"
"3/8"
"1/2"
"5/8"
"3/4"
"7/8"

rem **--y/n input routine--**
17130
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110

print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
poke 19.32:rem disable input?
input yes$
print
if yes$
if yes$
print

"y" or yes$
or yes$ "n"

"y"
"N"

then yes$
then yes$

"y":return
"n":return

print rvs$;"Incorrect Choice!";ylw$
print
goto 18000:rem check again

PLANNING A FILE SYSTEM

." . ..

351

18120
19000 rem **--return key routine--**
19010 print
19020 print "Press ";wht$;"RETUR~";y1w$;" to continue:";
19030 poke 198,O:rem clr kbrd buffer
19040 for i = 631 to 640
19050 poke i,O:re~ no value
19060 next i
19070 x = peek(197): rem store key press
19080 if x = 1 then 19100
19090 goto 19070:rem if not 1 go back
19100 poke 198,l:rem allow 1 for cursor
19110 poke 631,O:rem clr kbrd
19120 nu$ = "":rem clr string variable
19130 print home$:rem clr/home
19140 return

352 CHAPTER TWELVE

• Program for STOCK.DSP HI/LOW

I I) D r (' m ':":";, - - dis P I a y s t n (k [11 s tor ,~- - ',".".'
I I ()
121)
1 3 CJ r ~ c, - - i nit I il i z a t. i () 11 -~ -

1 !+ (J h () t' S c h r S (! !+ 7) : reIn (I r / h () m C~
I ') D : I~ ,I c h r S (.! I) : r (' m II I .~ [) r d () " :1

l() () : c uSc h r S (14 'i) : r (' In cur S i1 r II p
1 7 U : cIS (h r S (1 'i 7) : r l' J!i C 11 r sur I C' f t

P30 :crS rhrSC ~()): rem C1]r C'ur ri ,,1]1

lc)() :hlk chrS(144):rem hi "k
21)() : v I wS ~ chr'5! I -)'l): rein ':,. i low

210 :\,l1t$ chr$(:;):rl'([I white'
22U : rvs$
2'30

cllr~(l8):cPIll reverse virlco

240
2 5 ()
26D
27 ()
2RIl
290
HlO
1 I ()
32()
33ll
'140
\,)0
360
no
380
39()
!, () 0
I, 1 (J

420
4'10
440
4'i()
1,60
470
480
490

po k C'

P () i\ ('
poke

r e tl!

rc III
rpm
rem
r-em

rem
r e ;11

r (' rn
r('m
rem
r cr-)

rerYJ

rem
rem
r- (> m

r (' 01

rem

rem
rem
rem
rem

'i1280, 14: '~C'm
c) '-L:~ 7 2 , ~l ~-~ : 1- (, m

h 0 r d!, r It.. bit((,
upp(·r '1 ()v..' 2r C;l~(>

se't bkgrd to brn 'j3~Rl, 9:reEI

'.; I k $
hl~

1 OloJ S
<lteS
nhS
II I S
t
pc
vol
h
I () \,'
c
I;

av
dp

V

I
, 2
cd
z2
rn

st 11ck symb) 1
C 1.1 r r E' nth i 11 r I (~)

currer-it 1 ()w pr i ('C

date
nPh' high
n(',,· low
frd(t ion

pie Lllio

sales vll]llmc

d ail y h i g h P ric l'
(~,-! i low pr i ((-'
rl, I j ! vel () Sill;~)1 ric P

temp. stnck #
Cl\/f'ragt' vnl urn('
,-1 v e r (l g (' I) r J. C P

(I I)." ; II h P r i «("., / G conv.
] _"-; t (' 1 () S e p r I (l'

i ,l,~t c 1 nSf} pr i ('C

d iff. h (' t \, (' (' n c 1
common \/:\ r conv.

PLANNING A FILE SYSTEM 353

630 :
]000 rem **--file input routine--'~
1010
1020 rem *-pointer file-*
1030 open 2,8,2,"stock.pointer,seq,rearl"
1040 input#2,ptr
1050 close 2
1060
]070 rem *-high/low file-*
1080 open 3,8,3,"hi/lcJI' data,seq,rearl"
10YO for k = 1 to]0
]100 input#3,stk$(k)
1110 input#3,hi$(k)
1120
1130 m = val(hi$(k»
1140 gosub 17000:rem convert to fraction
1150 hiS(k) = str$(m) + " " + f$
1 I () 0
1170 input#3,10w$(k)
1180
1190 m = val(low$(k»
1200 gosub 17000:rem convert to fraction
1210 10w$(k) = str$(m) + " " + f$
1220
1230 next k
1240 close 3
1250
1260
1270 tb = 10
1280 print ylw$
1290 poke 19,32:rem disable input?
1300
131 ()
2000 rem **--display stock names--~~
2010 rem clr/home crsr down 3
2020 print home$:cd = 3:gosub 9000
2030 print tab(tb) rvs$;"STOCK HISTORY"
2040 prinl:print
2050 for k = 1 to 10
2060 if k < 10 then print tab(tb + 1) k;" ";stk$(k):goto 2080
2070 print tab(tb) k;" ";stk$(k)
2080 next k
20') 0 p r i n t tab (t b + 1) "lIS toe k ~1 e n u "
21 ()() p r i n t : p r i n t : p r i n t tab (t b)
2110 input "Which Number? ";w$
2120 w = val(w$)
2130 if w < 1 or w > 11 then 13000:rem incorrect # routine
2140 if w = 11 then 7000
2150
2160
3000 rem **--titles--**
3010 print home$:rem clr/home
3020 Iglh = len(stk$(w»
3030 print tab«40 - Igth)/2) wht$;stk$(w)
3040 print yLw$
3050 print:print

354 CHAPTER TWELVE

3060 p r i n t " D ATE"; tab (1 0) "V 0 L "; tab (I 5) " H T "; t a h (23) " L 0 Iv" ;

tab(31) "CLOSE"
3070
3080
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
41 70
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470

rcm **--data file input--**

cvt$ = stk$(w)
gosub 14000:rem convert to l.c.
stk$ = cvt$

open 15,8,15:rem open command chn1
ope n 3 , 8 , 3 , s t k $ + ". d a t ,\ , I ," + c h r ~ (35)
rem 1 in line 4070 is letter not #
rem 35 in 1 i ne 4070 is rec. I ength--not # of records
chnl$ = chr$(3):rem channel #

for kx = 1 to ptr
rlow kx:rem low byte of rpc.#
rhigh = O:rem high byte of rec.#
if rlow > 2~5 then lS000:rem rec. # routine
recS = chr$(rlow) + chr$(rhigh)

pztn$ = chr$(l):rem position
print#l'i,"p";rhnl$;rec$;pztn$
input#3,dte$
print citeS;

pztn$ = rhr$ (11):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,pe$

pztn$ = chr$ (15):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,vol$
print tab(lO) vol$;

pztn$ = chr$ (21):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,h$

m = val(h$)
gosub 17000:rem convert to fraction
h = m
for z = 1 to len(hS)
if mid$(h$,z,l) = ",," then nh$ "~,,,

ncxt z
print tah(14) h;f$;nh$;

pztn$ = chr$ (26):rem position
pri nt#lS, "p"; chnl$; rec$; pztn$
input#3,low$

4480 m = val(low$)
4490 gosuh 17000:rem convert to fraction
4500 low = m

PLANNING A FILE SYSTEM 355

for z = I to len(low$)
if mid$(low$,z,l) = ",:,,, then nl$
next z
print tab(22) low;f$;nl$;

pztn$ = chr$ (31):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,c$

c = val(c$)

"*"
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4020
4630
4640
4050
4660
4670
4080
4690
4700
4710

if kx = I then cl = c:vl val(vol$)
if kx = ptr then c2
cv = c
z2 = cv

= c

gosub 12000:rem convert to decimal
cv = z2
m = c
gosub
c = m

17000:rem convert

print tab(30) e;f$

4720 nh$ = "":n15 = ""
4730 av av + val(vol$)
4740 ap = ap + cv

next kx

close 3:close 15

to fraction

gosub 19000:rem return routine

rem **--display second page--**
print hDme$:rem elr/home
tc = 5

4750
4760
4 770
4780
4790
4800
4810
4820
5000
)010
5020
5030
5040
5050
5060
5070
5080
5090
5100

print tab((40 - Igth)/2) wht$;stk$(w)
print:print ylw$
print tah(tc) "Current l'/E ratio ";pe$

Cj 1 10

print
print tab(tc) "Current high price
print
print tab(tc) "Current low price
p r in t

5120 av = BV I (kx - 1)
5130 av$ = str$(av)
5140 for q = I to len(av$)
5150 if mid$(av$,q,l) = "." then dec
5160 next q
5170 print tab(tc) "Average volume
5180 print
5190
5200 ap = ap / (kx - I)
5210 ap$ = str$(ap)
5220 for q = I to len(ap$)
5230 if mid$(ap$,q,l) "" then dec

356 CHAPTER TWELVE

";hi$(w)

";lol,$(w)

q

";left$(av$,dec + 2)

q

next q
print tab(tc) "Average price

print
print tab(tc) "Last price
z2 = c2
gosub 12000:rem convert to decimal
c2 z2

c 1
gosub 12000:rem convert to decimal
c1 z2

cd c2 - c1

";leftS(apS,dec + 2)

";c;f$

print:print tab(tc) "Price difference"

5240
5250
5260
5270
5280
5290
5300
5310
5320
5330 z2
5340
5350
5360
5370
5380
5390
5400
5410
6000
6010
6020
6030
6040
6050
6060
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
9000
9010
9020
9030
9040
9050
9060
12000
12010
12020

print tab(tc) "from 1st record = ";cd

rem **--another stock--**
gosub 19000:rem return routine
poke 19,32:rem disable input?
av = O:ap = 0
goto 2000:rem start again

rem **--return to main menu--¥¥
print home$:rem clr/home
cd = 5:gosub 9000:rem crsr down 5
print tab(14)
print rvs$;"PLEASE WAIT!"
print:print:print
print tab(ll)
print "LOADING STOCK.MENU"
·"stock.menu"

rem **--cursor down
for i = 1 to cd
print cdS;
next i
return

routine--'"'~

rem }:<'~--convert

z2 = z2 1 10:s3
dc = (dc '" 10)1
1 1000

to decimal--""
= int(z2) :dc = z2 - s3
8:z2 = s3 + dc:z2 int(z2 * 1000 + .5)

12030 return
12040
12050
13000 rem **--incorrect number routine--**
13010 print:print
13020 print tab(tb) rvs$;"INCORRECT NUMBER!"
13030 gosub 19000:rem return routine
13040 go to 2000:rem dsp menu again
13050

PLANNING A FILE SYSTEM 357

13060
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
15000
15010
15020
15030
15040
15050
16000
16010
16020
16030
16040
16050
16060
16070
16080
16090
16100
16110
16120
16130
16140
16150
16160
16170
16180
16190
16200
16210
16220
16230
17000
17010
17020
17030
17040
17050
17060

358

rem **--convert to lowercase--**
nc$ ""
for cv = 1 to len(cvt$)
x = asc(mid$(cvt$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cvt$ = nc$
f = asc(left$(cvt$,l))
f = f + 128
nc$ = chr$(f) + right$(cvt$,len(cvt$)- 1)
return

rem cvt$
rem nc$

converted to lowercase
1st letter/uppercase

rem **--figure rec.# routine--**
rhigh = int(r10w/256)
rlow rlow - 256 * rhigh
return

rem **--reminder routine--**
print home$:rpm clr/home
print tab(8)
p r i n t ""':":' ,:q -- - R EM EMBER-- - ':":<>:' ,:":,,,
print
print "You must add the fraction as the last"
print "digi t! 21 5/8 should be entered as: 215"
print
print "If the number has no fraction, please"
print "enter a '0' after the number! 21 even"
print "should be entered as: 210"

tab(ll) "1/8
tab(ll) "1/4
tab(ll) "3/8
tab(ll) "1/2
tab(ll) "5/8
tab(ll) "3/4
tab(ll) "7/8

print
print
print
print
print
print
print
print
print
print
return

tab(ll) "EVEN

rem ':":'--convert to
f = m - int(m/lO) ;:'
m = int(m/lO)
if f 0 then f$
if f 1 then f$
if f 2 then f$
if f 3 then f$

CHAPTER TWELVE

--------- I"
--------- 2"
--------- 3"
--------- 4"
--------- 5"
--------- 6"
--------- 7"
-------- 0"

frac t ion--':":'
10

""
"1/8"
"1/4"
"3/8"

17070
17080
17090
17100
17110
17120
17130
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120

if f 4 then f$ "1/2"
if f 5 then f$ "5/8"
if f 6 then f$ "3/4"
if f 7 then f$ "7/8"
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";y1w$;" or ";wht$;"N";y1w$;"
poke 19,32:rem disable input?
input yes$
print:print
if yes$ "y" or yes$
if yes$ = "n" or yes$
print

"Y"
"N"

then yes$
then yes$

print rvs$;"Incorrect Choice!";y1w$
print
goto 18000:rem check again

"y":return
"n":return

19000 rem **--return key routine--**
19010 print:print

." . ..

19020 print "Press the ";wht$;"RETURN";ylw$;" key to continue:";
19030 poke 198,O:rem clr kbrd buffer
19040 for i = 631 to 640
19050 poke i,O:rem no value
19060 next i
19070 x = peek(197):rem store key press
19080 if x = 1 then 19100
19090 goto 19070:rem if not 1 go back
19100 poke 198,l:rem allow 1 for cursor
19110 poke 631,O:rem clr kbrd
19120 nuS = "":rem c1r string variable
19130 print home$:rem c1r/home
19140 return

ready.

PLANNING A FILE SYSTEM 359

• Program for STOCK. CRT HI/LOW

100 rem ',-- ':'--correct stock info.--"""
110
120
130
140
150
160
170
180
190
2()O
::10
220
23U

rem **--initialization--**
home$ chr$(147):rem elr/home
: :cd$ chr$(17):rem cursor down
: :cu$ chr$(145):rem cursor up
: :cl$ chr$(157):rem cursor left
: :cr$ chr$(29):rem cursor right
:blk$ chr$(144):rem black
:vlw$
:whtS
:rvs

,hr (I',,'l):rem yellow
chr:)('): rem whi te
cl,($(]:~):rem reverse vidE")

:2 1+ () p 0 k c' r\ ~) K (), Ii:: r C' In h 0 r d e r = 1 t • h 1 u e
:? 'J (i po k e ')'):2"7 '1 , ~: .-_~ : r (' jr] It P per / low pre a s (,
:; () IJ P () k c ',u I, '): I' c'Ti) set b kg I' rj l () b r n
no
~ S')
:'fJ()

'ji)U

) 11.1

'3 ~ ()
ill)
I i, (I

')) '_=i(J

r C' m **--variabLes list--**
rem stk$ sLock svmbol
r t' rn
r c j~l

rem
1 (y (J r l' m

hL$
zowS
d t e$
nhS
hz$
f$

~ 7 () r f' m I) ,>

'3 I) IJ rem v () 1
'l9() rem h
40U rpm ! t l ',,\

410 rem {

4 ') () reIn

44() Tem "
4 'i ()
~ (i()

cur r e nth 1 prj c [~
current low price
rL1L e
new high
new low
fraction
Ii / E' C i __ i. \ i 0

"'dies volume
= dHI Iv high price

I] it I] ".' 1 :)\,' f)r i ce
,jdilv closing price

~ ,,"retlr'd figure
"'" C· l[i! r!l ()]1 I.' (1 r. con v •

t I' III p. :0 toe k #

47() le "':'--program title /msg.--':":'
!,I)I) prill! home~:rem clr/hollle
4l)() cd = 5:gosub 9000:rem crsr down ~

D() print toh(lO)
'ill) jJrint rvs$;"CORRECT STOCK HISTORY"
52IJ print:prillt:print:print
') '\ () P rill t tab (I 2) "0 n e M () m ell t P 1 e (' s e I "

'j4U print:print:print:print.
5'iO prinl tdld, S) "L,uading Stock Information."
,)6()

570
I () () 0 r ern':":' - - [i i f' i II P II I rOll t: j II e - - * ;"
1010
11120 r e I[J ':' - i' () i (I t (' I f i I (' - *
]030 opell !,8,~,"st(Jck.pojnter,seq,read"
1040 inputH2,ptr

360 CHAPTER TWELVE

1050 close 2
1060
1070 rem *-high/low file-*
1080 open 3,8,3,"hi/low data,seq,read"
1090 for k = 1 to 10
1100 input#3,stk$(k)
1110 input#3,hi$(k)
1120
1130 m = val(hi$(k))
1140 gosub 17000:rem convert to fraction
1150 hi$(k) = str$(m) + " " + fS
1160
1170 input#3,10w$(k)
1180
1190 m = val(low$(k))
1200 gosub 17000:rem convert to fraction
1210 low$(k) = str$(m) + " " + f$
1220
1230 next k
1240 close 3
1250
1260
1270 tb = 10
1280 print ylw$
1290 poke 19,32:rem disable input?
1300
1310
2000 rem **--display stock names--~~
2010 rem clr/home crsr down 1
2020 print home$:cd = l:gosub 9000
2030 print tab(tb) rvs$;"CORRECT STOCK HISTORY"
2040 print:print
2050 for k = 1 to 10
2060 if k < 10 then print tab(tb + 3) k;" ";stk$(k):goto 2080
2070 print tab(tb + 2) k;" ";stk$(k)
2080 next k
2090 print tab(tb + 3) "11 Stock Henu"
2100 print:print tab(tb + 3)
2110 input "Which Number? ";w$
2120 w = val(w$)
2130 if w < 1 or w > 11 then wr w:gosub 13000:goto 2000
2140 if w = 11 then 7000
2150
2160 rem clr/home crsr down 5
2170 print home$:cd = 5:gosub 9000
2180 print "\vhich record for ";wht$;stk$(w);ylw$;" (l to";str$

(ptr);")? ";
2190 input rk
2200 if rk < 1 or rk > ptr then wr rk:gosub 13000:goto 2160
2210
2220
3000 rem **--data file input--**
3010
3020 cvt$ = stk$(w)
3030 gosub 14000:rem convert to l.c.
3040 stk$ = cvt$

PLANNING A FILE SYSTEM 361

3050
3060
3070
3080
3090
3100
31 10
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470

open 15,8,15:rem open command chnl
open 3,8,3,stk$ + ".dala,l," + chrS(35)
rem I in line 3070 is lelter not #
rem 35 in line 3070 is rec.length--not # of records
chnl$ chr$(3):rem channel #

rlow rk:rem low byte of ree.#
rhigh O:rem high byte of ree.#
if rlow > 255 lhen 1s000:rem rec. # routine
recS = chr$(rlow) + chr$(rhigh)

pzlnS = chr$(1):rem position
p r i n t # I .5 , "p" ; c h n 1 $; r e c $; p z t n $
input#3,dlc$

pzln$ = chr$ (11):rem position
prinl#1s,"p";chnl$;rec$;pztn$
input#3,pc$

pzln$ = chr$ (15):rem position
print#15,"p";chn]$;rec$;pztn$
inpul 3,vol$

pzln$ = chr$ (21):rem position
p r i n l # IS , " p" ; c h n 1 S ; r e c $; p z t n $
inpulfl3,hS

pztn$ = chr$ (26):rem position
print#15,"p";chnlS;rec$;pztnS
input#3,low$

pzln$ = chr$ (31):rem position
print#15,"p";chnl$;rcc$;pztn$
input#3,c$

close 3:close IS

pe val(pe$)
vol val(vol$)
h val(hS)
low val(low$)

3480 C vdl(L$)
3490
3500
4000 rem **--correction routine- **
4010 flagS = "off":rcm info.unchanged
4020 rem clr/home crsr down 5
4030 print homcS:cd = 5:gosub 9000
4040 print
4050 print slk$(w);"'s data for ";dte$
4060 print:print
4070 print "1. PiE ralio ---- ";pe
4080 print "2. Volume ------- ";vol
4090 m = h:gosub 17000:rem convert to fraction

362 CHAPTER TWELVE

4100 print "3. High --------- ";m;" ";f$
4110 m = 10w:gosuh 17000:rem convert to fraction
4120 print "4. Low ---------- ";m;" ";f$
4130 m = c:gosub 17000:rem convert to fraction
4140 print "5. Close -------- ";m;" ";f$
4150 print
4160 print "Is this correct? ";
4170 gosuh 18000:rem yin input routine
4180 print
4190 if yes$ = "n" then 4240
4200
4210
4220
4230
4240
4250

if flagS = "off" then 2000:rem info not changed &. ok
go to 5000:rem file correction

number is wrong? ":nb input "Which
if nb < 1 or
goto 4150

nb > 5 then print:print "IKCORRECT CHOICE!":

"P/E"
"VOL"

4260 if nb 1
4270 if nh = 2
4280 if nb = 3

then info$
then info$
then info$ "HI":gosub 16000:rem reminder

routine
4290 if nb = 4 then info$ "LOW":gosub 16000:rem reminder

routine

4300 if nh = 5 then info$ "CLOSE":gosuh 16000:rem reminder

4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420

routine
print
print "The correct ";info$;"
if nb 1 then pe cr
if nb 2 then vol cr
if nb 3 then h cr
if nb 4 then low cr
if nb 5 then c cr
flagS "on":rem info changed
goto 4020:rem ask again
print

5000 rem **--file correction--**
5010 rem clr/home crsr down 5
5020 print home$:cd = 5:gosuh 9000

figure

5030 p r i n t tab (11) r v s $; "0 N E ~1O ~1 E N T P LEA S E , "
5040 cd = 7:gosub 9000:rem crsr down 7

:input cr

5050 print tab(10) "Updating ";wht$;stk$(w);"'s";ylw$;" file."
5060
5070 cvt$ = stk$(w)
5080 gosub 14000:rem convert to l.c.
5090 stk$ = cvt$
5100
5110 open 15,8,15:rem open command chnl
5120 open 3,8,3,stk$ + ".data,l," + chr$(3S)
5130 rem 1 in line 5120 is letter not #
5140 rem 35 in line 5120 is rec.length--not # of records
5150 chnl$ chr$(3):rem channel #
5160 rlow rk:rem low byte of rec.#
5170 rhigh O:rem high hyte of rec.#

PLANNING A FILE SYSTEM 363

5180 if rlow) 255 then ISOOO:rem rec.# routine
5190 rec$ = chrS(rlow) + chr$(rhigh)
5200
5210 pztn$ = chrS(I):rem position
5220 print#IS,"p";chnl$;rec$;pztn$
5230 print#3,dte$
5240

5250 ss$=str$(pe):gosub 20000:pe$=ss$
5260 pztn$ = chr$ (11) :rem position
5270 print#15,"p";chnl$;rec$;pztn$
5280 print#3,pe$
5290
5300 ss$=str$(vol):gosub 20000:vol$=ss$
5310 pztn$ = chr$ (15):rem position
5320 print#15,"p";chnl$;rec$;pztn$
5330 print#3,vol$
5340
5350 ss$=str$(h):gosub 20000:h$=ss$
5360 pztn$ = chr$ (21):rem position
5370 print#15,"p";chnl$;rec$;pztn$
5380 print#3,h$
5390
5400 ss$=str$(low):gosub 20000:low$=ss$
5410 pztn$ = chr$ (26):rem position
5420 print#15,"p";chnl$;rec$;pztn$
5430 print#3,low$
5440
5450 ss$=str$(c):gosub 20000:c$=ss$
5460 pztn$ = chr$ (31): rem posi tion
5470 print#15,"p";chnl$;rec$;pztn$
5480 print#3,c$
5490
5500 close 3:close 15
5510
5520
6000 rem **--another stock--**
6010 rem clr/home crsr down 5
6020 print home$:cd = S:gosub 9000
6030 print stk$(w);"'s file has been updated!"
6040 gosub 19000:rem return routine
6050 poke 19,32:rem disable input?
6060 Hoto 2000:rem start again
6070
6080
7000 rem **--return to main menu--**
7010 print home$:rem clr/home
7020 cd = 5:gosub 9000:rem crsr down 5
7030 print tab(14)
7040 print rvs$;"PLEASE \,JAIT!"
7050 print:print:print
7060 print tab(ll)
7070 P r i n t " LOA DIN G S TOe K . ~1 E N U "
7080 '''stock.menu''
7090

364 CHAPTER TWELVE

71 00
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cdS;
9030 next i
9040 return
9050
9060

13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
15000
15010
15020
15030
15040
15050
16000
16010
16020
16030
16040
16050
16060
16070
16080
16090

rem **--incorrect number routine--**
wr$ = str$(wr)
zw = len(wr$)
rem clr/home crsr down 5
print home$:cd = 5:gosub 9000
print right$(wr$,zw - 1);" is not a valid choice."
print
print"Please try again!"
gosub 19000:rem return routine
return

rem **--convert to lowercase--**
nc$ "n
for cv = 1 to len(cvt$)
x = asc(mid$(cvt$,cv,l))
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cvt$ = nc$
f = asc(left$(cvt$,l))
f = f + 128
nc$ = chr$(f) + right$(cvt$,len(cvt$)- 1)
return

rem cvt$
rem nc$

converted to lowercase
1st letter/uppercase

rem **--figure rec.# routine--**
rhigh = int(rlow/256)
rlow rlow - 256 * rhigh
return

rem **--reminder routine--**
print home$:rem clr/home
print tab(8)
p r in t "':' ,:,,:,,~ ':' -- - R EMEMBE R- - - ':":' ,:":",,,
print
print "You must add the fraction as the last"
print "digit! 21 5/8 should be entered as: 215"
print
print "If the number has no fraction, please"
print "enter a '0' after the number' 21 even"

PLANNING A FILE SYSTEM 365

16100
16110
16120
16130
16140
16150
16160
16170
16180
16190
16200
16210
16220
16230
17000
17010
17020
17030
17040
17050
17060
17070
17080
17090
17100
17110
17120
17130
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130

print "should be entered as: 210"
print
print tab(ll) "1/8 --------- 1"
print tab(ll) "1/4 --------- 2"
print tab(ll) "3/8 --------- 3"
print tab(ll) "1/2 --------- 4"
print tab(ll) "5/8 --------- 5"
print tab(ll) "3/4 --------- 6"
print tab(ll) "7/8 --------- 7"
print tab(ll) "EVEN -------- 0"
print
return

rem ~'*--convert to frac t ion--~'*
f = m - int(m/lO) '0 10
m = int(m/lO)
if f 0 then f$ ""
if f 1 then f$ "1/8"
if f 2 then f$ "1/4"
if f 3 then f$ "3/8"
if f 4 then f$ "1/2"
if f 5 then f$ "5/8"
if f 6 then f$ "3/4"
if f 7 then f$ "7/8"
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;" or ";wht$;"N";ylw$;"
poke 19,32:rem disable input
input yesS
print:print
if yes$ = "y" or yes$ = "Y" then yes$
if yes$ = "n" or yes$ = "N" then yes$
print
print rvsS;"Incorrect Choice!";ylw$
print
goto 18000:rem check again

rem **--return key routine--**
print:print

"y":return
"nff:return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100
goto 19070:rem if not 1 go back
poke 198,1:rem allow 1 for cursor
poke 631,0:rem clr kbrd
nuS = "":rem elr string variable
print home$:rem clr/home

366 CHAPTER TWELVE

." . . ,

19140 return
19150
19160
20000 rem **--strip sign routine--**
20010 19th 1en(ss$)
20020 s2$ right$(ss$,lgth - 1)
20030 ss$ s2$
20040 return

ready.

PLANNING A FILE SYSTEM 367

• Program for STOCK. CORRECT

100 rem ***--translate stock info.--***
110
120
130 rem **--initialization--**
140 homeS chr$(147):rem clr/home
150 : :cd$ chr$(17):rem cursor down
160 ::cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border = It.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

**--variables list--*'"
stk$ stock symbol

hiS current hi price
zow$ current low price
dte$ date

nh$ new high
hz$ new low

f$ fraction
pe p/e ratio

voz sales volume
h daily high price

20W daily low price
c da ily closing price

cr corrected figure
m common var. conv.
w temp. stock #

rlow low byte of rec.#
rhigh high byte of rec.#
file file # in open cmnd
dvic device # in open cmnd
cmnd command # in open cmnd

ptr pointer for # of recd's
chnl$ channel # in open cmnd

rec$ rec.# from rlow & rhigh
pztn$ position within record

560 rem **--program title /msg.--**
570 print home$:rem clr/home
580 cd = 5:gosub 9000:rem crsr down 5
590 print tab(IO)
600 print rvs$;"TRANSLATE STOCK HISTORY"
610 print:print:print:print
620 print tab(l2) "One Moment Please!"

368 CHAPTER TWELVE

630 print:print:print:print
640 print tab(8) "Loading Stock Information."
650
660
1000 rem **--file input routine--**
1010
1020 rem *-pointer file-*
1030 open 2,8,2,"stock.pointer,seq,read"
1040 input#2,ptr
1050 close 2
1060
1070 rem *-high/low file-*
1080 open 3,8,3,"hi/low data,seq,read"
1090 for k ; 1 to 10
1100 input#3,stk$(k)
1110 input#3,hi$(k)
1120
1130 z2 ; val(hi$(k»
1140 gosub 12000:rem convert to decimal
1150 hiCk) ; z2
1160
1170 input#3,zow$(k)
1180
1190 z2 = val(zow$(k»
1200 gosub 12000:rem convert to decimal
1210 zow(k) = z2
1220
1230 next k
1240 close 3
1250
1260
1270 tb ; 10
1280 print ylwS
1290 poke 19,32:rem disable input?
1300
1310
2000 rem **--display stock names--~~
2010 rem clr/home crsr down 1
2020 print home$:cd = l:gosub 9000
2030 print tab(tb) rvs$;"TRANSLATE STOCK HISTORY"
2040 print:print
2050 for k = 1 to 10
2060 if k < 10 then print tab(tb + 3) k;" ";stk$(k):goto 2080
2070 print tab(tb + 2) k;" ";stk$(k)
2080 next k
2090 print tab(tb + 3) "11 Stock Menu"
2100 print:print tab(tb + 3)
2110 input "\vhich Number? ";w$
2120 w ; val(w$)
2130 if w < 1 or w > 11 then wr w:gosub 13000:goto 2000
2140 if w = 11 then 7000
2150
2160
3000 rem **--dif file setup--**
3010
3020 rem clr/home crsr down 5

PLANNING A FILE SYSTEM 369

3030 print home$:cd = 5:gosub 9000
3040 print tab(5) rvs$;
3050 print "DIF TRANSLATION IN PROGRESS."
3060 print:print:print
3070 print tab(8) rvs$;
3080 print "PLEASE DO NOT TOUCH!!"
3090
3100 cvt$ = stk$(w)
3110 gosub 14000:rem convert to I.e.
3120 stk$ = cvt$
3130
3140 open 15,8,15:rem open command chnl
3150 open 3,8,3,stk$ + ".data,l," + chr$(35)
3160 rem I in line 3150 is letter not #
3170 rem 35 in line 3150 is rec.length--not # of records
3180 chnl$ = chr$(3):rem channel #
3190 rem nv = number of vectors
3200 rem nt = number of tuples
3210 nv = 8:nt = ptr + 1
3220 q$ = chr$(34):rem quote mark
3230 open 2,8,2,stk$ + ".dif,seq,write"
3240
3250
4000 rem *-header section-*
4010
4020 print#2,"TABLE"
4030 print#2,"0,1"
4040 print#2,qq
4050
4060 print#2,"VECTORS"
4070 print#2,"0,";nv
4080 print#2,4q
4090
4100 print#2,"TUPLES"
4110 print#2,"0,";nt
4120 print#2,qq
4130
4140 printI/2,"DATA"
4150 print#2,"0,0"
4160 print#2,qq
4170
4180
5000 rem *-data section-*
5010
5020 print#2,"-1,0"
5030 print#2,"BOT"
5040
5050 print#2,"1,0"
5060 print#2,stk$(w)
5070
5080 print#2,"1,0"
5090 print#2,"52 \.JK.HI"
5100
5110 print#2,"1,0"
5120 print#2,"52 WK.LO\.J"
5130

370 CHAPTER TWELVE

5140 print#2,"-1,0"
5150 print#2,"BOT"
5160
5170 print#2,"1,0"
5180 print#2," "
5190
5200 print#2,"0,";hi(w)
5210 print#2,"V"
5220
5230 print#2,"0,";zow(w)
5240 print#2,"V"
5250
5260 print#2,"-1,0"
5270 print#2,"BOT"
5280
5290 print#2,"1,0"
5300 print#2,q$"DATE"q$
5310
5320 print#2,"1,0"
5330 print#2,q$"P/E"q$
5340
5350 orint#2 "1 0"
5360 print#2:q$:'VOL."q$
5370
5380 print#2,"1,0"
5390 print#2,q$"HI"q$
5400
5410 print#2,"1,0"
5420 print#2,q$"LOW"q$
5430
5440 print#2,"1,0"
5450 print#2,q$"CLOSE"q$
5460
5470 print#2,"1,0"
5480 print#2,q$"S2 WK.HI"q$
5490
5500 print#2,"1,0"
5510 print#2,q$"52 WK.LOW"q$
5520
5530
6000 rem **--read/write data--**
6010 for rk = 1 to ptr
6020 rlow rk:rem low byte of rec.#
6030 rhigh = O:rem high byte of rec.#
6040 if rlow > 255 then 15000:rem rec. # routine
6050 rec$ = chr$(rlow) + chr$(rhigh)
6060
6070 pztn$ = chr$(1) :rem position
6080 print#15,"p";chnl$;rec$;pztn$
6090 input#3,dte$
6100
6110 pztn$ = chr$ (11):rem position
6120 print#lS,"p";chnl$:rec$;pztn$
6130 input#3,pe$
6140
6150 pztn$ = chr$ (15):rem position

PLANNING A FILE SYSTEM 371

6160 print#15,"p";chnl$;rec$;pztn$
6170 input#3,voz$

pztn$ = chr$ (21):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,h$

6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310 pe
6320 voz
6330 h
6340 zow
6350 c
6360

pztn$ = chr$ (26):rem position
print#15,"p";chn1$;rec$;pztn$
input#3,zow$

pztn$ = chr$ (31):rem position
print#15,"p";chnl$;rec$;pztn$
input#3,c$

val(pe$)
val(voz$)
val(h$)
val(zow$)
val(c$)

6370 print#2,"-1,0"
6380 print#2,"BOT"
6390
6400 print#2,"1,0"
6410 print#2,dte$
6420
6430 print#2,"0,";pe
6440 print#2,"V"
6450
6460 print#2,"0,";voz
6470 print#2,"V"
6480
6490 z2 = h
6500 gosub 12000:rem convert to decimal
6510 h = z2
6520
6530 print#2,"0,";h
6540 print#2,"V"
6550
6560
6570
6580
6590

z2 = zow
go sub 12000:rem convert to decimal
zow = z2

6600 print#2,"0,";zow
6610 print#2,"V"
6620
6630 z2 = c
6640 gosub 12000:rem convert to decimal
6650 c = z2
6660
6670 print#2,"0,";c
6680 print#2,"V"
6690
6700 next rk
6710

372 CHAPTER TWELVE

6720 rem *-a11 finished-*
6730
6740 print#2,"-1,0"
6750 print#2,"EOD"
6760
6770 close 2
6780 close 3:c1ose 15
6790
6800 print home$:cd = 5:gosub 9000
6810 print tab(14) "ALL FINISHED"
6820 print:print
6830 print tab(8)
6840 rem print "Insert Program Diskette!"
6850 print:print:print
6860 print tab(8) "Press ";wht$;"RETURN";y1w$;" to continue: "
6870 gosub 19030:rem return routine
6880
6890 rem *-another stock-*
6900 poke 19,32:rem disable input?
6910 goto 2000:rem start again
6920
6930
7000 rem **--return to main menu--**
7010 print home$:rem c1r/home
7020 cd = 5:gosub 9000:rem crsr down 5
7030 print tab(14)
7040 print rvs$;"PLEASE WAIT!"
7050 print:print:print
7060 print tab(ll)
7070 print "LOADING STOCK.MENU"
7080 A"stock.menu"
7090
7100
9000 rem **--cursor down routine--**
9010 for i = 1 to cd
9020 print cd$;
9030 next i
9040 return
9050
9060
12000 rem **--convert to decima1--**
12010 z2 = z2 / 10:83 = int(z2):dc = z2 - s3
12020 dc = (dc * 10)/ 8:z2 = s3 + dc:z2 int(z2 * 1000 + .5)

/ 1000
12030 return
12040
12050
13000 rem **--incorrect number routine--**
13010 wr$ = 8tr$(wr)
13020 zw = 1en(wr$)
13030 rem c1r/home crsr down 5
13040 print home$:cd = 5:gosub 9000
13050 print righf$(wr$,zw - 1);" is not a valid choice."
13060 print
13070 print"P1ease try again!"
13080 gosub 19000:rem return routine

PLANNING A FILE SYSTEM 373

13090
13100
13110

14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
15000
15010
1')020
15030
15040
15050
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140

ready.

return

rem **--convert to lowercase--**
nc$
[or cv = 1 to len(cvt$)
x = asc(mid$(cvt$,cv,l»
if x > 192 then x = x - 128
nc$ = nc$ + chr$(x)
next cv

cvt$ = nc$
f = ascCleft$(cvt$,l»
f = f + 128
nc$ = chr$(f) + right$(cvt$,len(cvt$)- 1)
return

rem cvt$
rem nc$

converted to lowercase
1st letter/uppercase

rem **--figure rec.# routine--**
rhigh = int(rlow/256)
rlow rlow - 256 * rhigh
return

rem **--return key routine--**
print:print
print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,0:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100
goto 19070:rem if not 1 go back
poke 198,l:rem allow 1 for cursor
poke 631,O:rem clr kbrd
nuS = "":rem clr string variable
print home$:rem clr/home
return

374 CHAPTER TWELVE

• Program for STOCK. TRANS

100 rem ***--correct hi/low data--***
110
120
130 rem **--initialization--**
140 home$ chr$(147):rem clr/home
150 ::cd$ chr$(17):rem cursor down
160 : :cu$ chr$(145):rem cursor up
170 ::cl$ chr$(157):rem cursor left
180 : :cr$ chr$(29):rem cursor right
190 :blk$ chr$(144):rem black
200 :ylw$ chr$(158):rem yellow
210 :wht$ chr$(5):rem white
220 :rvs$ chr$(18):rem reverse video
230
240 poke 53280,14:rem border = 1t.blue
250 poke 53272,23:rem upper/lower case
260 poke 53281, 9:rem set bkgrd to brn
270
280
290 rem **--program title /msg.--**
300 print home$:rem c1r/home
310 cd = 5:gosub 9000:rem crsr down 5
320 print tab(lO)
330 print rvs$;"CORRECT HI/LOW INFO."
340 print:print:print:print
350 print tab(ll) "One Moment Please!"
360 print:print:print:print
370 print tab(7) "Loading Stock Information."
380
390
400 tb = 10
410 print y1w$
420 flag$ = "off":rem info unchanged
430
440
450 rem **--file input routine--**
460
470 open 2,8,2,"hi/low data,seq,read"
480 for k = 1 to 10
490 input#2,stk$(k)
500 input#2,hi$(k)
510 input#2,low$(k)
520 next k
530 close 2
540
550
560 rem **--hi/low correct menu--**
570 poke 19,32:rem disable input?
580 rem clr/home crsr down 3
590 print home$:cd = 3:gosub 9000
600 print tab(tb) rvs$;"CORRECT HI/LOW INFO."
610 print:print
620 print tab(tb - 3) "1. Display HI/LOW Information"

PLANNING A FILE SYSTEM 375

630
640
650
660
670
680
690
700
710
720
730
740
750
760
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
11 50
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
2000
2010
2020
2030
2040
2050
2060

376

print
print tab(tb - 3) "2. Correct HI/LOW Information"
print
print tab(tb - 3) "3. Return to Main Stock Menu"
print:print tab(tb - 3)
input "Which Number? ";w$
w = val(w$)
if w < 1 or w > 3 then wr w:gosub 13000:goto 560
if w 1 then 1000
if w 2 then 2000
if w 3 and flag$
if w 3 and flag$

"off" then 7000
"on" then 4000

rem **--display routine--**

rem *-titles-*
print ylw$
print home$:rem clr/home
print "Stock Symbol";
print tab(18) "Hi Value";
print tab(28) "Low Value"
print

rem *-stock name-*
for k = 1 to 10
if k < 10 then print tab(1)
print k;" ";
print stk$(k);

rem *-high value-*
m = val(hi$(k»
gosub 17000:rem convert to fraction
print tab(l8)
print str$(m);" ";f$;

rem *-low value-*
m = val(low$(k»
gosub 17008:rem convert to fraction
print tab(28)
print str$(m);" ";f$

next k

cd = 5:gosub 9000:rem crsr down 5
gosub 19000:rem return routine
go to 560

rem **--display stock names--**
rem clr/home crsr down 1
print home$:cd = l:gosub 9000
print tab(tb) rvs$;"CORRECT STOCK HISTORY"
print:print
for k = 1 to 10
if k < 10 then print tab(tb + 3) k;" ";stk$(k):goto 2080

CHAPTER TWELVE

2070 print tab(tb + 2) k;" ";stk$(k)
2080 next k
2090 print tab(tb + 3) "11 Henu"
2100 print:print tab(tb + 3)
2110 input "vihich Number? ";w$
2120 w = va1(w$)
2130 if w < 1 or w > 11 then wr w:gosub 13000:goto 2000
2140 if w = 11 then 560
2150
2160
3000 rem **--correction routine--**
3010 flagS = "off":rem info unchanged
3020 rem c1r/home crsr down 5
3030 print home$:cd = 5:gosub 9000
3040 print
3050 print "1. ";stk$(w)
3060 print
3070 m = val(hi$(w»:gosub 17000:rem convert to fraction
3080 print "2. Hi value ";m;" ";f$
3090 print
3100 m = val(low$(w»:gosub 17000:rem convert to fraction
3110 print "3. Low value = ";m;" ";f$
3120 print
3130 print "Is this correct? ";
3140 gosub 18000:rem yin input routine
3150 print
3160 if yes$ = "n" then 3180
3170 go to 2000:rem another stock
3180 input "Which number is wrong? ";nb
3190 print
3200 if nb then input "Correct stock name or symbol: ";

stk$(w)

3210 if nb = 2 then gosub 16000:input "Correct hi value: ";
hi$(w)

3220 if nb = 3 then go sub 16000:input "Correct low value: ";
low$(w)

3230 if nb < or nb > 3 then print "INCORRECT CHOICE!"
3240 flagS = "on":rem info changed
3250 goto 3020:rem ask again
3260 print
3270
3280
4000 rem **--file output routine--**
4010
4020 rem *-hi/low data file-*
4030 open 3,8,3,"@0:hi/low data,seq,write"
4040 for k = 1 to 10
4050 print#3,stk$(k)
4060 print#3,hi$(k)
4070 print#3,low$(k)
4080 next k
4090 close 3
4100
4110

7000 rem **--return to main menu--**

PLANNING A FILE SYSTEM 377

7010
7020
7030
7040
7050
7060
7070
7080
7090
71 00
9000
9010
9020
9030
9040
9050
9060
13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
16000
16010
16020
16030
16040
16050
16060
16070
16080
16090
16100
16110
16120
16130
16140
16150
16160
16170
16180
16190
16200
16210
16220
16230
17000
17010
17020

378

print home$:rem clr/home
cd = 5:gosub 9000:rem crsr down 5
print tab(ll)
print rvs$;"ONE MOHENT PLEASE!"
print:print:print
print tab(ll)
print "LOADING STOCK.MENU"
'''stock.menu''

rem **--cursor down routine--**
for i = 1 to cd
print cdS;
next i
return

rem **--incorrect number routine--**
wr$ = strS(wr)
zw = len(wr$)
rem clr/home crsr down 5
print home$:cd = 5:gosub 9000
print right$(wr$,zw - 1);" is not a valid choice."
print
print"Please try again!"
gosub 19000:rem return routine
return

rem **--reL-inder routine--**
print home$:rem clr/home
print tabeS)
pr i n t ""':":":":'-- - R EMEMBER--- ':'" * ,:","
print
print "You must add the fraction as the last"
print "digit! 21 5/8 should be entered as: 215"
print
print
print
print
print
print
print
print
print
print
print
print
print
print
return

"If the number has no fraction, please"
"enter a '0' after the number! 21 even"
"should be entered as: 210"

tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)
tab(ll)

"1/8 --------­
"1/4 --------­
"3/8 --------­
"1/2 --------­
"5/8 --------­
"3/4 --------­
"7/8 --------­
"EVEN --------

rem **--convert to fraction--**
f m - int(m/l0) * 10
m = int(rn/lO)

CHAPTER TWELVE

1"
2"
3"
4"
5"
6"
7"
0"

17030
17040
17050
17060
17070
17080
17090
17100
17110
17120
17130
18000
18010
18020
18030
18040
18050
18000
18070
18080
18090
18100
18110
18120
19000
19010
19020
19030
19040
19050
19060
19070
19080
19090
19100
19110
19120
19130
19140

ready.

if f 0 then f$ "n

if f 1 then fS "1/8"
if f 2 then f$ "1/4"
if f 3 then f$ "3/8"
if f 4 then f$ "1/2"
if f 5 then f$ "5/8"
if f 6 then f$ "3/4"
if f 7 then f$ "7/8"
return

rem **--y/n input routine--**
print "Type a ";wht$;"Y";ylw$;"
poke 19,32:rem disable input?
input yes$

or ";wht$;"N";ylw$;"

print
if yes$
if yes$
print

"y" or
"n" or

yes$
yes$

"y"
":.!"

then yes$
then yes$

print rvs$;"Incorrect Choice!";ylw$
print
goto 18000:rem check again

rem **--return key routine--**
print

"y":return
"n":return

print "Press ";wht$;"RETURN";ylw$;" to continue:";
poke 198,O:rem clr kbrd buffer
for i = 631 to 640
poke i,O:rem no value
next i
x = peek(197):rem store key press
if x = 1 then 19100
go to 19070:rem if not 1 go back
poke 198,1:rem allow 1 for cursor
poke 631,O:rem clr kbrd
nuS = "":rem clr string variable
print home$:rem clr/home
return

." . . ,

PLANNING A FILE SYSTEM 379

appendices

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

CHECKSUM PROGRAM AND VALUES

PROGRAM LIST

KEYBOARD VALUES

RANDOM (RELATIVE) FILES WITHOUT THE POSITION
PARAMETER

WEDGE COPIER

381

Appendix A

CHECKSUM

I developed the following "checksum" program to help readers know if the programs
they have entered have been typed in correctly. The checksum program generates
cumulative values at specified points within each program. Theoretically, the user
should be able to match his/her values with the values published for each program.
If the values do not match, then the typist knows that the program has not been
entered exactly as given in the book. The location of the incorrect values should
give a clue as to the general location of the typing error(s). The process should
work something like this:

1. Type in some program published in the book.

2. Save the program out to diskette or tape.

3. Type "new" and then load the program back into the computer. (This step is
taken only as a precaution against a number of possible problems.)

4. Type:
poke 43,peek(45)
poke 44,peek(46)

5. Load in the "checksum" program:
/checksum

6. Add the last line number of the program to be checked as a new line number
for the "checksum" program and as a part of a data statement for that new
instruction. For example, if the last line number in the program you are checking
is 19150, you type: 19150 data 19150, 0, 0. Ifthe last line number you entered
was 770, then you type: 770 data 770,0,0

Once this step is done correctly, run the checksum program and observe the
values generated and displayed on the screen. If the screen values match the printed
values, you can be fairly certain that you have entered the program correctly. If
the screen values do not match the printed values, then something has been entered
that does not match exactly with the printed listing. (Notice that I did not say that
some error had been entered.) It is quite possible to not match the checksum values
yet have a correctly operating program by making changes at some noncritical
point(s).

• Limitations

There are four basic limitations to use of this checksum program:

382 APPENDICES

1. For some people, the process involved may prove too awkward to be useful.
If the procedure outlined above is not followed exactly, the program will not
work correctly and may generate incorrect values.

2. The checksum program will check to see that everything is included. In order
to match the printed values, you must enter programs EXACTLY as given in
the book-spaces, rem, etc. Everything must be exactly as shown in the book.
One missing space somewhere near the beginning of the program would throw
all the generated values off.

3. It is possible for all the values to match yet the program might not work. The
checksum program will not catch transposed characters. For example, an in­
struction line containing "pimt" has the same characters as "print", and the
checksum values for these two words would be the same. But the program
containing "pimt" would not work until the characters "i" and "r" were turned
around.

4. If the program to be checked has line numbers below 100, Step 6 above needs
to be changed. Instead of entering the last line number as a part of the checksum
program, enter all lines you want checked as data statements with line numbers
from 90 to 99. For example: 90 data 10, 20, 30; 92 data 40,0,0

For these reasons, I am not certain how useful the checksum values will be.
On the hope that some readers might find it easier to locate typing errors, I decided
to include these values and the checksum program. Please be certain that you enter
the checksum program correctly. Good luck!

APPENDICES 383

• Program for Checksum

10 rem ***--checksum--***
11
12
13 rem **--information--**
14 input "program name ";fi1e$
15 print chr$(147)
16 print tab(12) file$
17 print chr$(10)
18 print chr$(10)
19 print tab(3) "Line #";
20 print tilb(20)"Checksum"
21 print chr$(10)
22
23
24 rem " "--main 10op--""
25 x = peek(44)*256 + peek(43)
26 read number
27 for i = 2048 to x-I
28 z = peek(i)
29 t = t + z
30 if z 0 then 45
11 next i
32
33
34 rem **--al1 finished--**
35 print t
16 poke x,D
37 poke x + 1,0
38 poke 43,1
39 poke 44,8
40 close 4
41 end
42
43
44 rem **--zero subroutine--**
45 10 peek(i + 1)
46 ho peek(i + 2)
47 if i + 3 > x -1 then 50
48 11 peek(i + 3)
49 hI peek(i + 4)
50 i = i + 4
51 line = hI * 256 + 11
S2 if line = number then 57
53 if line> number then read number:gotp 52
54 if flag$ = "on" then print t:flag$ = "off"
55 t = t + 10 + ho + 11 + hI
56 goto 31
57 if flilg$ = "on" then print t:flag$ = "off"
58 t = t + 10 + ho + 11 + hI
59 if line 0 then print tab(6) line;:goto 63
60 if line < 1000 then print tab(4) line;
61 if line> 999 ilnd line < 10000 then print tab(3) line;
62 if line' 9999 then print tab(2) line;

384 APPENDICES

63 print tab(20)
64 10 = O:ho = 0:11 O:hl 0
65 flagS = "on"
66 read number
67 goto 31
68
69
70 rem **--data statements--**
100 data 100
400 data 400
700 data 700
1000 data 1000
1500 data 1500
2000 data 2000
2500 data 2500
3000 data 3000
3500 data 3500
4000 data 4000
4500 data 4500
5000 data 5000
5500 data 5500
6000 data 6000
6500 data 6500
7000 data 7000
7500 data 7500
8000 data 8000
8500 data 8500
9000 data 9000
9500 data 9500
10000 data 10000
18000 data 18000
19000 data 19000
20000 data 20000

APPENDICES 385

• Chapter4

mail.create

Line # Checksum

100 1517
400 52032
700 109895

3000 148363
5000 162713
8000 165854
9000 187945
9040 191012

0 191012

• Chapter 5

mail.reader1

Line # Checksum

100 1566
400 42856

1000 49872
5000 56396
9000 59627
9040 62410

0 62410

mail.adder1

Line # Checksum

100 1482
400 83509
700 142134

2000 179895
3000 196160
5000 223483
8000 226495
9000 248103
9040 250786

0 250786

386 APPENDICES

mail,adder2

Line #

100
400
700

1000
2000
3000
5000
8000
9000
9040

o

• Chapter 6

mail,menu
Line #

100
700

1000
2000
3000
4000
5000
6000
7000
8000
9000

19000
19110

0

shell

Line #

100
8000
9000

]0000
18000
19000
20000
20080

0

Checksum

1483
83383
142266
180264
234798
260960
276470
279331
300767
303554
303554

Checksum

1388
72831
108490
154875
164756
176121
187786
205864
231735
271601
293323
299051
317506
317506

Checksum

1114
66710
85255
90070
144881
167918
192950
206793
206793

APPENDICES 387

mail,reader2

Line #

100
400
700

1000
2000
3000
4000
5000
6000
7000
7500
8000
9000

10000
18000
19000
20000
20080

o

• Chapter 7

mail,correction

Line #

100
400

1000
2000
2500
3000
4000
7000
9000

10000
18000
19000
20000
20080

o

388 APPENDICES

Checksum

1567
66329
129154
156490
175714
206069
224078
271545
325186
360128
451365
515118
534018
538750
594532
618214
643214
657841
657841

Checksum

1845
64283
116190
170464
251961
262295
318301
338006
353411
357996
413172
436560
461536
479399
479399

mail.menu

Line #

100
700

1000
2000
3000
4000
5000
6000
7000
8000
9000

19000
19110

o

mail.create

Line #

100
400
700

3000
5000
8000
9000
9040

0

mail.adder2

Line #

100
400
700

1000
2000
3000
5000
8000
9000
9040

0

Checksum

1388
72831
108490
154875
164756
176121
187786
20'5864
231735
271601
293323
299051
317506
317506

Checksum

1517
52032
109895
148363
163511
182233
203578
206337
206337

Checksum

1483
83383
142266
180264
234798
260960
277268
296565
318275
320754
320754

APPENDICES 389

mail.reader2

Line #

100
400
700

1000
2000
3000
4000
5000
6000
7000
7500
8000
9000

10000
18000
19000
20000
20080

o

mail.correction

Line #

100
400

1000
2000
2500
3000
4000
7000
9000

10000
18000
19000
20000
20080

o

390 APPENDICES

Checksum

1567
66329
129154
156490
175714
206069
224078
271545
325186
360128
451365
515118
534018
538750
594532
618214
643214
657841
657841

Checksum

1845
64283
116190
170464
251961
262295
318301
338006
353411
357996
413172
436560
461536
479399
479399

• ChapterS

math.menu

Line #

100
700

1000
2000
3000
4000
5000
6000
6500
7000
8000
9000

18000
19000
19140

o

math.add

Line #

100
400
700

1000
1500
2000
3000
4000
5000
6000
7000
9000

19000
19110

o

Checksum

1395
64675
109181
118345
129179
139787
149913
159762
241781
318096
334120
359711
407170
429663
454250
454250

Checksum

1329
70052
120224
146056
190994
225689
239130
297619
317277
330121
342793
368016
'373345
391827
391827

APPENDICES 391

math.subtract

Line #

100
400
700

1000
1500
2000
3000
4000
5000
6000
7000
9000

19000
19110

o

math.multiply

Line #

100
400
700

1000
1500
2000
3000
4000
5000
6000
7000
9000

19000
19110

o

392 APPENDICES

Checksum

1590
70187
121239
14737l
192852
2271 SO
240735
299625
319204
332192
345024
370551
376008
394411
394411

Checksum

1817
70543
121733
148217
193648
228084
241723
3008')9
320504
333546
346438
371824
377329
395798
395798

math.divide

Line # Checksum

100 1354
400 69367
700 119719

1000 154819
1500 194134
2000 231062
3000 244314
4000 303897
5000 323494
6000 336404
7000 349716
9000 374625

19000 380466
19110 399142

0 399142

math.scores

Line # Checksum

100 1551
400 59788
700 107941

6000 133834
7000 152241
9000 177683

10000 1R3191
18000 237923
19000 260978
19150 287502

0 287502

create q & a

Line # Checksum

100 1461
700 66294

1000 74584
9000 87290

18000 92491
18100 1118')6

0 1118') 6

APPENDICES 393

drill & practice

Line #

100
400
700

1000
6000
7000
9000

10000
18000
19000
19150

o

• Chapter9

scores.dif

Line #

100
400

1000
2000
3000
5000
7000
9000
9040

o

read dif

Line #

100
400

1000
5000
7000
9000
9040

o

394 APPENDICES

Checksum

1813
'i8183
101498
110924
126367
145412
170715
176745
232116
254869
281798
281798

Checksum

1463
66157
89608
110865
127906
167513
181427
206600
209539
209539

Checksum

1268
63810
89913
96589
109368
134234
137001
137001

• Chapter 10

random example

Line #

100
400

1000
1070

o

medical rec.sys.

Line #

100
400
700

lOOO
1500
2000
2500
:3000
3500
4000
4500
5000
6000
9000

10000
18000
19000
20000
20080

o

Checksum

2077
45090
82157
90135
90135

Checksum

2228
56353
115803
139059
238936
326784
397527
422434
509910
577787
670275
681432
699789
725833
731773
909606
933388
958436
97090C
97090()

APPENDICES 395

• Chapter 11

homeinv.menu

Line #

100
700

1000
2000
3000
4000
5000
6000
7000
8000
9000

18000
19000
19140

o

homeinv.write

Line #

100
400

1000
1500
2000
3000
4000
5000
6000
9000

18000
19000
19120

o

396 APPENDICES

Checksum

1634
68830
114634
125170
136489
148197
160386
171484
182760
198731
224073
271317
293701
318151
318151

Checksum

2194
56554
74608
176161
273463
340743
350228
367330
381348
401463
444282
467932
488755
488755

homeinv.read

Line #

100
400

1000
1500
6000
9000

10000
18000
19000
19] 20

o

homei nv .sea rch

Line #

100
400
700

1000
2000
3000
350(')
4000
5000
6000
6500
7000
9000

10000
18000
19000
20000
251')0

o

Checksllm

2082
'lfd86
74004
138059
183423
203277
20R849
272562
295904
316718
316718

Checksum

2178
56512
97490
139251
172053
205286
303638
366286
400214
467297
548214
550555
'l7()'i87
'i7('083
817237
840881
864'J')()
')36205
936205

APPENDICES 397

homeinv.correct

Line # Checksum

100 2079
400 56383
700 98442

1000 122999
1500 220553
2000 228407
3000 304435
5000 324733
6000 373290
7000 426145
9000 440484

18000 484180
19000 507162
19120 527886

0 527886

homeinv.translate

Line # Checksum

100 2016
400 56260

1000 84409
1500 150698
2000 153766
2500 208751
3000 256893
9000 276581

19000 290770
19120 311479

0 311479

homeinv.copy

Line # Checksum

100 1761
400 56200

1000 84311
1500 149936
2000 153381
2500 222979
3000 226260
9000 246335

19000 260179
19120 281020

0 281020

398 APPENDICES

magazine. menu

Line #

100
700

1000
2000
3000
4000
5000
6000
7000
8000
9000

18000
19000
19140

o

magazine.write

Line #

100
400

1000
1500
2000
3000
4000
5000
6000
9000

18000
19000
19120

o

Checksum

1689
69525
115441
126247
137848
149595
162090
173506
184602
200749
226124
273163
295500
319919
319919

Checksum

2147
56507
77783
206902
313941
385783
396109
413825
427998
448024
491734
5]4668
535533
535533

APPENDICES 399

• Chapter 12

stock.menu

Line #

100
700

1000
2000
3000
4000
5000
6000
7000
8000
9000

18000
19000
19140

o

stock.add

Line #

100
400

1000
2000
3000
4000
4500
5000
6000
7000
9000

18000
19000
20000
20040

o

400 APPENDICES

Checksum

1486
73560
118872
128519
140382
152328
164379
175613
187198
202855
228425
275319
297726
322475
322475

Checksum

2245
51019
80695
141724
200146
212699
295836
303604
314659
321560
339336
437539
460271
488338
493315
493315

stock. real

Line #

100
1000
1500
2000
3000
4000
5000
9000

18000
19000
19140

o

stock.display

Line #

100
400

1000
2000
3000
4000
4500
5000
6000
7000
9000

18000
19000
19140

o

Checksum

2258
33873
120219
138560
184516
232862
251233
276304
341085
363886
388412
388412

Checksum

2302
51076
90739
124318
151804
167747
239504
279090
337201
347409
365120
487147
510226
535676
535676

APPENDICES 401

stock.dsp hi/low

Line #

100
1000
2000
9000

18000
19000
19140

o

stock.crt hi/low

Line #

100
400
700

1000
2000
3000
4000
7000
9000

18000
19000
19140

o

402 APPENDICES

Checksum

2066
42856
83525
101668
127594
149803
174378
174378

Checksum

2062
51510
98078
108753
146495
175582
229792
242200
261116
344074
366442
391149
391149

stock. correct

Line #

100
400

1000
2000
3000
3500
4000
5000
5500
6000
7000
9000

18000
19000
200()0
20040

o

stock.trans

Line #

100
400

1000
2000
3000
4000
5000
5500
6000
6500
7000
9000

19000
19140

o

Checksum

2080
50822
81394
115174
157084
223447
225516
310900
395050
397613
412439
430305
545452
568663
596856
601753
601753

Checksum

2238
51486
103257
134701
163954
211183
227722
268470
272892
333362
382462
400130
465575
490382
490382

APPENDICES 403

Appendix B

PROGRAM LIST

I.
MAILING LIST SYSTEM PROGRAMS

1. MAIL.MENU (Chapters 6 and 7)

2. MAIL.CREATE (Chapters 4 and 7)

3. MAIL.ADDERI (Chapter 5)

4. MAIL.ADDER2 (Chapters 5 and 7)

5. MAIL.READER2 (Chapters 6 and 7)

6. MAIL.CORRECTION (Chapter 7: two programs)

7. SHELL (Chapter 6)

II. MA TH SYSTEM PROGRAMS

1. MATH.MENU (Chapter 8)

2. MATH.ADD (Chapter 8)

3. MATH.SUBTRACT (Chapter 8)

4. MATH. MUL TIPL Y (Chapter 8)

5. MATH.DlVIDE (Chapter 8)

6. MATH. SCORES (Chapter 8)

7. SCORES.DlF (Chapter 9)

III. DRILL & PRACTICE PROGRAMS

1. CREATE Q & A (Chapter 8)

2. DRILL & PRACTICE (Chapter 8)

IV. DlF PROGRAMS

1. SCORES.DlF (Chapter 9)

2. READ.DlF (Chapter 9)

3. HOMEINV.TRANS (Chapter 11)

4. STOCK.TRANS (Chapter 12)

V. MEDICAL RECORDS SYSTEM PROGRAM

1. MEDICAL REC.SYS. (Chapter 10)

VI. HOME INVENTORY SYSTEM PROGRAMS

1. HOMEINV.MENU (Chapter 11)

404 APPENDICES

2. HOMEINV.WRITE (Chapter 11)

3. HOMEINV.READ (Chapter 11)

4. HOMEINV.SEARCH (Chapter II)

5. HOMEINV.CORRECT (Chapter II)

6. HOMEINV.TRANS (Chapter 11)

7. HOMEINV.COPY (Chapter 11)

VII. MAGAZINE CATALOG SYSTEM PROGRAMS

1. MAGAZINE. MENU (Chapter II)

2. MAGAZINE. WRITE (Chapter II)

VIII. STOCK MARKET SYSTEM PROGRAMS

1. STOCK. MENU (Chapter 12)

2. STOCK.ADD (Chapter 12)

3. STOCK.REAL (Chapter 12)

4. STOCK.DISPLA Y (Chapter 12)

5. STOCK.DSP HI/LOW (Chapter 12)

6. STOCK.CRT HI/LOW (Chapter 12)

7. STOCK. CORRECT (Chapter 12)

8. STOCK. TRANS (Chapter 12)

APPENDICES 405

Appendix C

KEYBOARD VALUES

The following is a list of the values obtained by pressing a key and PEEKing at
location 197:

KEY VALUE

A 10
B 28
C 20
D 18
E 14
F 21
G 26
H 29
I l')

J 34
K 37
L 42
H 36
N 39
0 38
P 41
Q 62
R 17
S 1 '3
T 22
U]0
V 31
W 9
X 2j
Y 2~

Z 12
1 56
2 59
:3 8
4 11
5 16
6 19
7 24
8 27
9 32
0) ')

4]
+ 40
P 46
':' 4lJ

4')
')0
- -,
) ,

406 APPENDICES

47
44

/ 55
F1 4
F3 5
F5 6
F7 3

INST/DEL 0
RETURN 1
CRSR RIGHT/LEFT 2
CRSR UP/DOWN 7
CLR/HOME 51
UP ARROW 54
ENG.POUND 48
LEFT ARROW 57
RUN 63
SPACE BAR 60
NO KEY 64

There is a somewhat obscure pattern in the assignment of the keyboard values.
Begin at the number 3 key, proceed down to the W key and then to the A key.
Jump up to the top row and the number 4 key. Drop to the bottom row and the
key in the direct line from the number 4 key (Z). Move up to the key above it (S)
and then to the key above that key (E). Drop to the bottom row and the key
immediately before the previously used bottom row key. (In this instance, it should
be the SHIFf key which comes immediately before the last used bottom row key
of Z. The SHIFf key is not actually assigned a value and that is probably why the
numbers 15 and 52 are not used.) To begin the cycle over again, jump to the next
key on the top row (5) and follow the same sequence of two more keys down, up
to the top row, down to the bottom row, up two more keys, complete the cycle by
dropping to the bottom row and the key just before the last-used bottom row key.
Surprisingly, the sequence even "wraps around" the keyboard and pretty much stays
consistent. It would appear that the left arrow key was originally intended to be in
the location of the CTRL key but for some reason was moved. This is obviously
speculative, but the pattern does suggest that the left arrow key is not where it
should be. The values of the keys are given below, this time in numerical order.

VALUE
o
1
2
3
4
5
6
7
8
9

10
11

KEY
INST/DEL
RETURN
CRSR RIGHT/LEFT

F7
F1
F3
F5

CRSR UP/DOWN
3
W
A
4

APPENDICES 407

12 !
13 S
14 E
15 CWT USED)
16 5
17 R
18 D
19 6
20 C
21 F
22 X
24 7
25 Y
26 G
27 8
28 B
29 H
30 V
31 V
32 C)

33 I
34 J
35 0
36 M
37 K
38 0
39 N
40 +
41 P
42 L
43
44
45
46 P
47 .
48 ENG.POUND
49 ~:~

50
51 CLR/HOME
52 (NOT USED)
53
54 UP ARROI']
55 /
56 1
57 LEFT ARROW
58 (NOT USED)
59 2
60 SPACE BAR
61 (NOT USED)
62 Q
63 RUN
64 NO KEY

408 APPENDICES

Appendix D

RANDOM (RELA TIVEj FILES WITHOUT
THE POSITION PARAMETER

The problem with random (Commodore's relative) files without the position pa­
rameter can be easily demonstrated by slight modification of the "random test"
program. The purpose of the modification is to eliminate the position parameter
from the position command statements and to bypass those statements that refer to
the second field within each record. After starting up the system and loading the
DOS Wedge, load the random test program or type it in from the listing given at
the end of Chapter 10. Then, make the following changes:

1. Line 18O--delete the position parameter (the last chr$ value).

2. Add line 195: 195 goto 220.

3. Line 35O--delete the position parameter (the last chr$ value).

4. Line 37O--delete the semicolon.

S. Add line 375: 375 goto 410.

6. Line 61O--delete the position parameter (the last chr$ value).

7. Add line 575: 575 goto 610.

8. Line 63O--delete the tab(l5) leaving the statement as: print a$.

When you have finished making these changes, save the program as "random test
2":

~random test 2

If you are using the same diskette that was used to create the first "random example"
file, you should scratch that file or insert another formatted diskette before contin­
uing. We want to be absolutely certain that we will not pick up any extraneous
characters. Another possibility would be to change the name of the file in lines
150, 320, and 560 to something other than "random example". When you are
certain you have followed all the steps, run the program.

@scratchO:random example
run

The first part of the program creates a random (relative) file without using the
position parameter. Each record should contain the word "record" and the actual
number of the record. Since we have not specified a position parameter, it is logical
to assume that the "r" in "record" would exist at the first space or byte of each

APPENDICES 409

record. It should also be possible to input and display the contents of each record.
As we will soon see, both of these assumptions are incorrect. When the disk drive
has stopped, the file "random example" should be on the diskette with twenty-five
records and each record should be 50 bytes (spaces) in length. The message: Press
RETURN to continue: should be displayed on the screen. When you are ready,
follow the directions and press the RETURN key. The disk drive should come back
on and the screen should display:

record 1
record 2
record 3
record 4
record 5

After the fifth record is displayed, the disk drive continues to run but no further
information is displayed on the screen. In the past, I have waited for as long as
five minutes before stopping the program. You do not need to wait. Instead, press
the RUN/STOP key and at the same time press the RESTORE key. This combination
of keys halts the operation of the computer and eventually stops the disk drive. In
order to continue, you will need to manually close the files. Type:

close 3
close 2

Then, switch back to lower case and type:

goto 500

By manually closing the files, we are able to go on to the next portion of the
program and double-check the apparent problem. The screen should display the
question: Which record number? Answer with the number 5. The disk drive should
come on and the screen should show:

record 5
Which record number?

Type the number 7 in response to the request for the next record number. Again,
the screen should show:

record 7
Which record number?

At this point, we know that there is information in records one through five and

410 APPENDICES

record seven that we can access with a simple input# statement and without a
position parameter. But the computer stopped working the last time when it came
to record six. It will also stor when it comes to record II and every fifth record
thereafter until record 66. At record 66, the problem advances one record and again
proceeds for every fifth record. I stopped tracking the pattern at record 100. You
can check this out by answering with record numbers on either side of records 6,
11, 16, and 21. Since this test only created 25 records, you cannot go above record
25. But if you answer with record number 6, 11, 16, or 21, the computer will again
"hang" with the disk drive continuing to run. In other words, the computer can
properly access records with the exception of every fifth record. If you have tried
one of the "problem" records, you will need to press the RUN/STOP key and at
the same time press the RESTORE key. This combination of keys halts the operation
of the computer and eventually stops the disk drive. In order to continue, you will
need to manually close the files. Type:

close 3
close 2

Then, switch back to lower case. This demonstration confirms the existence of a
problem with random (relative) files created without the position parameter but does
not explain why the problem exists or what the actual problem is. If you are interested
in discovering what the problem is, you will need to modify the "random test 2"
program further. The following changes need to be made:

1. Add line 505: 505 x = 1

2. Add to the end of line 610: ;chr$(x)

3. Change 620 to: 620 get#3,a$

4. Change 630 to: 630 print "Byte (space)";x;a$

5. Add line 635: 635 x = x + 1

6. Add line 637: 637 if status = 0 then 610

7. Add line 645: 645 x = 1

These changes allow us to "get" and display each byte of the record until we come
to the end-of-record marker. We have added a position parameter to line 610 that
will start at position 1 and increase by I byte until the status variable indicates a
value other than zero. In other words, we should be able to see what is in each
record beginning at the first byte or space of the record. When all the additions
and changes have been made, save the program as "random test 3":

~random test 3

Then, type:

APPENDICES 411

goto 500

Begin answering the record number question in the same way you did before. Type
the number 5. The screen should show:

Byte (space) 1 #
Byte (space) 2
Byte (space) 3
Byte (space) 4
Byte (space) 5
Byte (space) 6
Byte (space) 7
Byte (space) 8
Byte (space) 9
Byte (space) 10
Byte (space) 11
Byte (space) 12
Byte (space) 13 r
Byte (space) 14 e
Byte (space) 15 c
Byte (space) 16 0

Byte (space) 17 r
Byte (space) 18 d
Byte (space) 19
Byte (space) 20 5
Byte (space) 21
Byte (space) 22

Which record number?

Answer with record number 6. This time the computer will not "hang". Instead,
the screen will show:

Byte (space) 1 r
Byte (space) 2 e
Byte (space) 3 c
Byte (space) 4 0

Byte (space) 5 r
Byte (space) 6 d
Byte (space) 7
Byte (space) 86
Byte (space) 9
Byte (space) 10

412 APPENDICES

We now have the answer to what caused the computer to "hang" when it tried to
access record number six. Records one through five do not actually have the in­
formation beginning with the first byte of each record. As demonstrated when we
just now asked for record number five, the "r" in the word "record" did not come
until the 13th byte or space of that record. But record number six does begin storing
the information in the normal first byte of the record. Therefore, when the file input
routine in lines 300 to 450 tried to bring information in from the file, the input#3,a$
statement (line 360) for some reason began reading every record at the 13th byte
of that record. But when it came to the sixth record, it did not find any information
at the 13th byte of that record. The computer had stored the information where it
should have stored all the information in every record-in the first 8 bytes of the
record. In other words, when the information was written, the computer stored the
information in most of the records in the wrong location. But in those records that
appeared to be causing the computer to "hang", the information was actually stored
in the correct location. This fact indicates that the operating system has an additional
problem because the computer was able to "read" the records that had information
stored in the wrong location and was not able to read records that had the information
stored in the right location. Yet, as you saw when you ran the first "random test"
program in Chapter 10, the process works properly if the position parameter is
included at every step. Therefore, until Commodore releases a new version of its
DOS operating system, I would not recommend use of undivided random files
without a position parameter.

APPENDICES 413

• Program for Random Test 2

100 rem ':":":'--randon1 file cXdlllple-- """'
110
120
130 rem **--file output routine--**
140 open 2,8,lS:rclll open command chnl
ISO 0 P P [l '3, 8 , 4 , "r '] n d 0 m e x <l III P 1 e , 1 ," + c h r $ (S U)
160 for i ~ 1 to 2S
170 gosub 1000:rem figure rec.# routine
180 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh)
190 print#3,"recurd";i
195 goto 220
2. 00 p r in L # 2 , "p" ; c h r $ (4) ; c h r $ (rIo w) ; c h r $ (r hi g h) ; c h r $ (20)
210 print#3,"abcdef";i
220 next i
230 cluse

input
3:c10se 2
"Pres,.; 'RETURN' to continue: ";rS 240

2')0
260
300
310
320
330
34D
350
360
\ 7 ()
'\ 7 5
380
390
400

rem **--file input routine--**
open 2,8,1~:rem open command chnl
upen '3,8,4,"ranciom example,l," + chr$(~O)
for i ~ 1 to 25
gosub 1000:rem figure rec.# routine
print#2,"p";chr$(4);chr$(rlow);chr$(rhigh)
input#3,a$
print a$
goto 410
p r i n t # 2 , "p" ; c h r $ (4) ; c h r $ (rio w) ; c h r $ (r h i g h) ; c h r $ (20)
input#J,bS
print tab(IS) b$

410 next i
420 close 3:clo,.;p
430 input "Press 'RETURN' to continue: ";r$
440
450

~OO rem **--random access routine--**
JIo input "\,hieh record number";nbS

20 nll ~ val(nb$)
530 if nb ~ 0 then 90():rem end
S4() if nll > 2') then SIO:rem ask again
550 i ~ nb:gosub 1000:rem figure rec.#
)6U open l ,8, 15: rem open command chnl
c,70 open '~1,8,4,"r;lj)dom eXilJllpLe,l," + chr$(,)iJ)
:'7,) goLo b10
S80 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh);chr$(20)
j<)CJ input#J,b$
I) 00 P r i n t b $;
610 print#2,"p";chr$(4) ;chr$(rlow) ;chr$(rhigh)
620 inpllt#3,a$
630 print a$
640 close 3:close 2
0,)0 goto ')10
bfiO

414 APPENDICES

670
900 rem **--cnd routine--**
910 end
920
930
1000 rem **--figure rec.# routine--**
1010 rlow i
1020 rhigh = 0
1030 if rlow > 255 then 1050
1040 return
1050 rhigh = int(rlow/256)
1060 rlow rlow - 256 * rhigh
1070 return

ready.

APPENDICES 415

• Program for Random Test 3

100 rem ***--random file example--***
110
120
130 rem **--file output routine--**
140 open 2,8,15:rem open command chnl
ISO open 3,8,4,"ranclom example,l," + chr$(5U)
160 for i = 1 to 25
170 gosub 1000:rem figure rec.# routine
180 print#2,"p";chrS(4);chr$Crlow);chr$(rhigh)
190 print#3,"record";i
195 goto 220
200 p r i n t # 2 , "p" ; c h r $ (4) ; c h r $ (rl ow) ; c h r $ (r h i g h) ; c h r $ (2 ()
210 print#3,"abcdef";i
220 next i
230 close 3:close 2
240 input "Press 'RETURN' to continue: ";rS
250
260
300 rem **--file input routine--**
310 open 2,8,15:rem open command chnl
320 open 3,8,4,"random example,l," + chr$(50)
330 for i = 1 to 25
340 gosub 1000:rem figure rec.# routine
350 print#2,"p";chr$(4);chr$(rlow) ;chr$(rhigh)
360 input#3,a$
370 print a$
375 go to 410
380 print#2, "p";chr$(4) ;chr$(rlow) ;chr$(rhi.gh) ;chr$(:ZO)
390 input#3,b$
400 print tab(15) b5
410 next i
420 close 3:close 2
430 input "Press 'RETURN' to continue: ";rS
440
450
500 rem **--random access routine--**
505 x =
510 input "Which record number";nh5
520 nh = val(nb$)
530 if nb = 0 then 900:rem end
540 if nb > 25 then 510:rem ask again
550 i = nh:gosub 1000:rem figure rec.#
560 open 2,8,15:rem open command chnl
570 open 3,8,4,"random example,l," + chrS(50)
575 goto 610
580 print#2,"p";chr$(4);chr$(rlow);chr$(rhigh);chr$(20)
590 input#3,b$
flOO print b$;
610 print#2,"p";chr$(4);chr$(rIClw);chr$(rhigh);chr$(x)
620 gct#3,a$
630 print "Byte (space)";x;a$
635 x = x + 1
637 if status = 0 then 610

416 APPENDICES

640 close 3:close 2
645 x = 1
650 goto 510
660
670
900 rem **--end routine--**
910 end
920
930
1000 rem **--figure rec.# routine--**
1010 rlow i
1020 rhigh = 0
1030 if rlow 255 then 1050
1040 return
1050 rhigh = int(rlow/256)
1060 rlow rlow - 256 * rhigh
1070 return

ready.

APPENDICES 417

Appendix E

WEDGE COPIER

• Instructions

1. Type in the program "wedge copier".

2. Save it to a diskette.

3. Run the program and follow the screen directions.

4. At this point, you have two options:

a. Load the program called "c-64 wedge" from the "tesUdemo" diskette and
save it back out to the diskette containing the copy of the "dos 5.1" wedge.
You can save the program under a name easier to type, such as "wedge".
Then, in order to institute the wedge, just type: load "wedge" ,8. Follow
with the run command and the "dos 5.1" program will be loaded and
initiated.

b. If you do not want to bother with saving a copy of the "c-64 wedge",
then every time you want the wedge, you will need to type: load "dos
5.1" ,8,1: sys 52224. The wedge should then become active .

• Program for Wedge Copier

100
110
120
1')0
140

rem ***--wedgc copier-- c ¥¥

rem **--read in wedge--**
dima(1000)

1"0 i =
160 print chrS(147):print:print:print
170 print "Insert TEST/DEMO diskette and press"
lRO print:print
190 input "'RETURN' to continue:";,,$

00 print rhrS(147):print:print:print
210 p r in t tab (5) "R E A DIN C WE DC E. P LEA S E H A IT! "
220 print
230 open 2,8,2,"0:dos 5.1,prg,read"
240 get#2,a$
250 a$ = as + chrS(O)
2GO a%(i) = asc(a$)
270 print ".";
280 i = i + I
290 if status
JOO close' 2

418 APPENDICES

o then 240

310 print:print:print
320 input "Insert nevi diskette. Press 'RETl:RN' :";w$
330
340
3S0 rem **--write out wedge--**
360 print chr$(147):print:print:print
370 print tabeS) "WRITING \'EDGE. PLEASE WAIT!"
'380 opcn 3,8,3,"0:dos 5.1,prg,write"
390 for k = 1 to i-I
400 print#3,chr$(a%(k»;
410 next k
420 close 3
430
440
450 rem ** -end--**
460 print chr$(147):print:print:print
470 print tail('i) "ALL FINISHED! I"

480 end

APPENDICES 419

index

(cl 10,12,13, 15,21,22,23,25,28,34,47,56,68,84,87,
88

> 12
/ 10, 12, 13, 15,28,33,57, 87, 223
~ 10, II, 13,15,22,25,28,45,56,62,67,86-88,94,107,

169, 241
10, 14,79,87, 173

238
o 7, 9, 24
1 7, 9, 23, 24
2 7, 23, 24
3 7,93
4 7,64,65,93
7 7,64
8 2, 7, 8, 9, 10, 23, 24, 237
15 8,9,237,243

420 INDEX

A

B

c

Add information, 20, 34, 53, 57, 59, 60, 62, 67, 88
Alphanumeric information, 213, 216, 217
Applications software, 218, 221, 222, 264, 275
APPEND, 34, 59
Arrays, 38, 55, 59, 60, 61, 65, 67, 131, 170, 171,221,244,

271-275
ASCII, 26, 27, 86

BASIC, xvii, 2, 3,4,6,7,9, 11-13, 15, 16, 18-21,23,26,27,
32-36, 58, 62, 80, 82, 103, 104, 169, 233, 273, 333

Blocks, 3, 12, 13, 22, 23, 28,45, 56, 68, 86, 87, 107, 108
Booting the system, 2, 8
BOT,217
Byte, 235, 236, 241, 243, 246, 267, 331, 332

Cassette tape, 1, 19,20,53,233
Channel number, 8, 9, 24, 55, 65, 237-240, 243, 244, 246
CHR$(), 25, 25, 35, 36, 44, 237-239, 244
CHR$(17), 25, 27
CHR$(147), 25, 26, 27, 37
CLOSE, 20, 21, 22, 24, 25, 27, 43, 55,65,94,233,240,244,

246
CLR/HOME, xvi, 26, 27
COBOL, 7, 32
Code, 4,80, 169, 173,218,265,269,274,330,331
Colon, 9, 23, 36, 38, 215, 218
Color, 36, 37, 80
Columns, 213, 215, 216, 223, 224
Comma, 38, 43, 239
Command channel, 8, 237, 238, 240, 243
Commodore, 9, 19,26,27,34,36,43,53,62,65,80,86,133,

223, 233-235, 238, 239, 270, 273, 275, 333
Commodore key, 12,35
Computer instruction, 3, 4, 6, 18, 20, 32, 63, 84, 88, 233

INDEX 421

D

Concatenate, 273
Constant, 171, 220, 239
Copy information, 19,26,55,232,264
Counter, 40,101, 130, 131, 170, 172,269,271
CRSR keys, xvi, 22, 126,223
CTRL key, 13
Cursor, xvi, 20, 27, 37, 39, 40, 44, 45, 64, 87, 91,126,223,

241

Data, 2, 3, 80, 172,212-217,222,275
Datassette recorder, I, 2
Data base, 264, 275,330,331,333
Data tiles, 4, 18, 19,20,23,24,27,32,42,54,55,62, 169,

233, 243, 246-248, 270
Data section, 213-222
Decimal, 26, 36, 237, 238
Default, 10, 27
Deferred mode, 29, 84
DEF FN, 174
Delete, 80, 90, 91, 126-133,264,271,273,274
Delimit, 267
Device number, 7, 8, 9, 10, 23, 24, 64, 92, 93, 237
DIF, 212ff., 264, 275
DIM (DIMension), 36, 59, 67, 80, 105, 107,332
Direct access, 19, 62, 232, 233, 241
Direct mode, 29, 84
Disk, 7,11,21,23,24,47,53,55,62,63,127-129,171-173,

235,242,244,265,267,274,275,331,333
Disk drive, 1,2,7,8,9, 10, 13, 16,20,23,47,53,133, 169,

223,237,241
Diskette, 1,7-14,21-24,27,28,45,55,56,60-63,67,84-86,

132-134, 223, 236, 239-241, 247, 264, 268, 332
Dollar sign ($),2,3, 12,21,26,28,45,47
DOS (Disk Operating System), 9, 53, 132, 138, 275
DOS Support Program, 9
DOS Wedge, 9, 10, II, 12, 14, 15, 16,28,33,35,45,53,79,

84, 89, 236
DOS Wedge Chart, 10, 15

422 INDEX

E

F

G

Edit Keys, 22
End,25
EOD, 213,217,221, 222
EOF (End-Of-File), 24
EOT (End-Of-Tape), 24
Error messages, 265

File not Found, 7
End-Of-Data, 130, 172
File exists, 57

Extension, 2, 7

Features, 62
Field, 235, 236, 248, 267, 330
File, 1,8,23,83, 134, 167, 170, 172,212,213,218,222,242,

247, 249, 264-267, 274
File cabinet, 1, 18, 20
File folder, 20
File input routine, 26
File management system, 3, 53
File name, 7, 8,9, 12, 15, 16,21,23,45, 17l
File number, 9, 24, 55, 60, 65, 237-240, 243
File output routine, 26
File type, 2, 3, 4, 6, 7, 12, 18, 32, 237
FOR-NEXT, 25, 27,40, 172,240
Format, 8, 9, 21, 28, 236
Form letters, 133
FORTRAN, 7, 32

GET#, 20, 233, 241
GOSUB, 39, 41, 44, 45,67,222,247,265,268,269
GOTO, 99
Graphic symbols, 26, 44

INDEX 423

H

I

K

L

M

Header section, 213-215, 218-222
Hexadecimal, 26
High-byte, 237-239, 244

IF-THEN, 38, 41, 44, 45,60,64,65,82,95-106
Immediate mode, 29, 84
Indirect mode, 29, 84
INPUT#, 20, 25, 26, 27, 233, 234, 241, 246, 267
Input/Output (lIO), 170, 244
INSTIDEL xvi, 22, 91, 93
INT, 173
Integration of data, 133
Interface, 27

Keyboard, xv-xvii, 35, 38, 46, 55, 60, 61, 64, 67, 86, 234,
235, 242, 274, 333

Kilobytes (K), 80

Label, 215-216, 221
LEFT$, 103, 104, 107,272-273
LEN, 107, 173, 273
Line numbers, 11,22,29,46,54,58,84,89-91,126,128
LIST, 2, 3, 7, 10, 12, 13, 14,22,24,57,58
LOAD, 2, 3, 7, 9, 10, 12, 14, 20, 21,57,79, 84
Loops, 55, 65, 67, 86, 131, 133,221,222,237,248,270,271
Lower case, xvi, 3, 8, 21, 35, 38, 44, 64, 236, 243, 248
Low-byte. 237, 239, 244

Memory, 7, 11-15,22,25,26,27,34,36,38,54,59,63,67,
84, 94, 127, 275

424 INDEX

N

o

p

MIDS, 103, 104, 107, 272-273
Monitor, 2

NEW, 8,9, II, 12, 14, 21
Numeric information, 213-216, 220
Numeric variables, 38,41,45, 82, 86, 105,237-238, 244, 246,

273

OPEN, 8,9, 10,20-27,43,53,55,57,59, 132,233,235,
237-239

Parameters, 9, 20, 53, 233-241, 244
Parantheses, 26, 237, 238, 244
Peripherals, 9
Phonograph Records, 19, 20, 233
Pointer, 42, 242, 243, 246, 248, 265, 267, 332, 333
POKE:

19, 86
197, 86
198, 86
631-640, 86
53272, 36
53281, 36

Pos~ion, 234. 236. 238-241. 244. 246
PRG, 3.6.7, 12, 13
PRINT, 12, 18,27
PRINT#, 8, 9, 10,20-24,27,43,233,246,267
Printer, 63-65, 92, 97, 98. 101, 333
Program, 2, 3,4,6, 7, II, 12, 13, IS, 18, 23, 35, 39, 43, 46,

57,79,80,87,89, 167, 169,274
Programming, 4, 39,44.46,62,83-85,95, 167, 171, 172,241,

246, 265, 273. 275, 330

INDEX 425

Q

R

s

Quotation mark, 11, 24, 37, 84

Random access, 19,27, 32, 62, 173,232-243, 248, 274, 332
Random order, 3, 264
Read, 47, 53, 55, 57, 62, 88, 222, 239, 274
READY, 2, 8, 9,11,12,13,14,20,21,47,55,223
Record, 19,55,59, 172,232-244, 248, 267-275, 330-332
REL, 3,4
Relative order, 3, 19,62,233
REM, 21, 22, 23, 25, 173, 243
RENAME, 28, 61
Replace symbol (@), 25, 34, 61
Reserved words, 60
Retrieve information, 19,24,26,47,53,213,222,232,239,

333
RESTORE, xvi, 234
RETURN, 39, 44, 97, 269
RETURN key, xvi, 2, 3, 8, 11, 20, 23, 29, 38,40,45,46,47,

79,82,86,87,90,91, 93, 96, 126,223,241,246
RIGHT$, 103, 104, 107
RND, 173
Rows, 213-217, 223
RUN, 7, 9, 11, 14,20-25,29,34,57,84,223,241
RUN/STOP, xvi, 172,234

SAVE, 7, 8, 10, 11, 12, 14,20, 25,45,62, 84, 86, 169
Screen, xvi, xvii, 24, 26, 27, 34, 35, 37, 39, 40, 43, 46,47,

58-65,82,97,223,240,267,333
SCRATCH,28
Search, 96, 99ff., 248, 267
Semicolon, 37, 38, 240, 241
Separators (*, !), 39, 65, 97, 100, 130, 134, 273
SEQ, 3,4,24

426 INDEX

T

u

Sequential access, 19,27,53,57,62,79, 167, 173,221.
232-237. 242, 267. 274, 332

SeriaL 172
SGN, 174
SHIFT key xv, xvi
SHIFT/LOCK. xvi
SPACE BAR, xvi, 13
Special Value, 217
Sort, 96, 102ft'., 133,267,270-273
Sorting-Bubble sort, 102
Sorting-Quicksort, 102
Sorting-Shell-Metzner, 102,267,270
STATUS (ST)' 43, 170, 172,244,265
STR$, 107, 173
String variables, 26, 27, 36. 37,41,44,45,59-61,65,67,

80-84.99, 102-107. 128, 131. 171,220.244,271-275
Store information, 19.24.26,47,53,213.222,232,239,331,

332
System. 79, 87, 129,133,212,264,275,330,333

TAB, 82
Table, 213-215
Tape, 11-13,22-25,42.45,47.53.57,59.61,63,67,68,79.

172, 173, 233, 237
TEST/DEMO, 2, 8, 9, 10, 11, 20, 23, 33, 236
Top Down Programming. 67, 94
Topic, 220
Tuples, 213-217
TV, 2

Upper case. 3. 8, 21, 35, 37, 38. 64, 273
Upper case only mode. xv, 36, 53, 241
Upper/lower case mode, 35, 36
User, 83. 128,244, 246, 248, 266-269, 274, 275, 332
USR,3

INDEX 427

v

w

VAL, 82, 107, 174
Variables, 26, 27, 36, 37,38,41, 44, 45, 55, 60, 65, 80,82,

99,102-107, 169, 171, 220, 237-239, 244, 247, 265, 267,
273, 274, 330, 331, 332

Vectors, 213-216

Word Processor, 133
WRITE, 24, 42, 43, 47, 57, 59,61,63

428 INDEX

