

COMMODORE 64
SUBROUTINE COOKBOOK

DAVID D. BUSCH

Robert J. Brady Co., Bowie, Maryland 20715
A Prentice-Hall Publishing and Communications Company

Note to Authors

Do you have a manuscript or software program related to personal
computers? Do you have an idea for developing such a project? If
so, we would like to hear from you. The Brady Co. produces a
complete range of books and applications software for the personal
computer market. We invite you to write to David Culverwell,
Publishing Director, RobertJ. Brady Co., Bowie, Maryland 20715.

Publishing Director: David Culverwell
Acquisitions Editor: Gisele M. Asher
Production Editor: Janis K. Oppelt
Manufacturing Director: John A. Komsa
Art Director/Cover Design: Don Sellers
Assistant Art Director: Bernard Vervin

Typesetter: PageCrafters, inc. Oswego, New York
Printer: Fairfield Graphics, Fairfield, Pennsylvania
Typefaces: Omega (text); Cheltenham (display)

Commodore 64 Subroutine Cookbook

Copyright © i 984 by Robert J. Brady Company
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording. or by any information storage and retrieval
system, without permission in writing from the publisher. For information, address Robert J. Brady Co., Bowie
Maryland 20715.

Library of Congress Cataloging in Publication Data
Busch, David D.

Commodore 64 subroutine cookbook.
I ncl udes index.
1. Commodore 64 (Computer)-Programming. 2. Basic (Computer program language) 3. Subroutines (Com

puter programs) I. Title: Commodore sixty-four subroutine cook book.
QA76.8.C64B87 1984 001.64'2 84-2775

ISBN 0-89303-383-9

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc. Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

8485868788899091 929394 1098 765432 1

Preface
Introduction

II MERGING SUBROUTINES WITH YOUR PROGRAMS 1
Method #1: Special Utility Programs 2
Method #2: A Fast, Easy Merge 3
Method #3: Longer Merges 3
Sample Merging Run 4

~ USING JOYSTICKS 7
Joystick Subroutine 8
Move Object Left, Right 12
Move Object All Directions 16
Drawing Subroutine 19

~ USING THE CLOCK 25
Time Set 26
Elapsed Time 29
Timer 31

~ USING SOUND 37
Music 40
Siren 43
Computer Sound 45
Saucer Sound 48
Klaxon 50
Gunfire 52

~ OTHER COMMODORE 64 TRICKS 55
Screen, Border, and Color Changer 56
Color Peeker 58
Display Tester 61
Screen Blanker 63
Program Characters 65
Repeat Keys 69
Function Keys 70
Disk Command 73

iii

® BASIC TRICKS 77
Number Input 78
Letter Input 80
String Sort 82
Number Sort 84
Array Loader 86
Super Saver 89

'7f GAME ROUTINES 93
Deal Cards 94
Random Range 97
~~A~ ~
D~ 100
Delay Loop 102

~ DATA FILES 107
Data Files 11 0
Sequential File-Write to Tape 114
Sequential File-Read from Tape 115
Sequential File-Write to Disk 117
Sequential File-Read from Disk 119

W BUSINESS AND FINANCIAL SUBROUTINES 123
Loan Amount 124
Payment Amount 126
Number of Payments 128
Years to Reach Desired Value 130
Compound Interest 133
Rate of Return 134
Dollars and Cents 136
Temperature 138
Date Formatter 140
Menu 142
Time Adder 144
MPG 146

ll® ADD NEW FUNCTIONS TO COMMODORE BASIC 149
MOD Function 151
INSTR Function 153
Replace String 155
Insert String 156
LISTER 158
CHR$ Value 160
LINE INPUT 162
SWAP 164
STRING$ 165

iv

ilil BITS AND BYTES 169
Peek Bit 171
Bit Displayer 172
Bit to One 174
Bit to Zero 175
Reverse Bit 177
Binary to Decimal 178
Rounder 180

il~ COMMUNICA nONS 183
Program Transfer 184
Terminal 186

GLOSSARY 189

INDEX 193

v

How many times have you looked over a program listing in a magazine and thought, "Gee,
I could have saved a lot of time if I'd used this joystick subroutine in myown game program!"

Did you read an explanation of how to redefine your computer's character set to new and
exciting shapes, only to wonder, "Well, I think I understand how it works-but how do I actu
ally do it?"

Worse, do you find that examples are too complex to understand or that tightly packed pro
grams that you try to dissect are so interwoven and poorly commented that it's impossible
to extract the purpose of each statement? Have you been reading a lot of useful tips and pro
gramming tricks but losttrack of them because they were scattered among a few dozen books
and magazines?

This book may be the reference you need and may serve as your shortcut to programming
proficiency. Herein are a variety of programming "recipes" in the form of BASIC subroutines
that, for the most part, perform only a single task. Useful functions are laid out in subroutines
that you can transplant directly to your own programs.

In most cases, the routines are presented in simply constructed lines with only one or two
statements per line and no extraneous material. That makes it easy for you to look at the
routines, and discover on your own the function of each statement. But, to make sure that
you grasp each concept, there is a line-by-line description and an explanation of the important
variables used in each subroutine.

Some of the information in this book is available elsewhere, but you'd have to compile
a huge stack of material to collect all of it in one place. Instead of searching through back
issues of magazines, the reader can thumb through the Contents or Index, and find out how
to simulate joysticks or paddles, generate specific sound effects, program character sets, or
perform various types of sorts.

Most subroutine books concentrate on "general" business or personal routines. Those are
inc! uded here, too, but we've also emphasized Commodore-specific tips aimed at your special
needs. New capabilities have been added to Commodore BASIC. Special features such as
repeating keys, PEEKing colors or characters at a specific location, or changing screen and
border combinations are covered. Programming the special function keys and using the built
in real-time clock are also included.

Whether you're already expert in BASIC programming and looking for a handy reference
guide or a new user seekingaccess to sophisticated subroutine tricks, this book should satisfy
your hunger.

vi

••••. ,J ••

Be forewarned. This book is unlike any other collection of subroutines that you might
have seen before. Herein are 70 useful, ready-to-transplant subroutines and program
ming tips that you can use to make your own programs sizzle with joystick action or
resound with music. These are Commodore 64 specific routines that take the mystery
out of using function keys, designing your own character sets, and other special Com
modore 64 features.

Most "sugfolJtine" books are top.-heavy with exotic math functions and rarely used
s19~arprograms. Those were fine back iO the days when microcomputers were used

:,......--·~'primarily by scientists, computer nuts, andbther high-tech types who doted on newer
and better ways of doing Fast Fourier transforms.

However, the Commodore 64, while it is a powerful, capable microcomputer, is being
sold to a broad range of users. Many only want to play games. Many more are interested
in learning programming but may have a skimpy technical background otherwise. Then,
there are those of you who really do understand computers but would like to avoid
reinventing the wheel.

The Commodore 64 Subroutine Cookbook is meant for all of you. There are some
general, useful routines included here. But, the book also bristles with modules designed
specifically to perform some sorely needed tasks for the Commodore 64 alone.

Nine subroutines are included that add crucial BASIC functions that were left out of
PET 2.0 BASIC. You can now simulate the INSTR function of other BASICs, allowing
you to search a string of characters for a shorter string. SWAP variable values. Enter
commas into strings through an innovative INPUT routine.

Confused even by the most lucid explanations of using the joysticks to manipulate objects .
on the screen? Justtransplant one of FOUR joystick routines included in this book. We even
show you how to move your missiles and enemy aliens around on the screen.

If you find that even the Commodore 64's several hundred alphanumeric, graphics,
and special characters aren't enough for you, and you'd like to design your own special
characters, take heart. You don't need to comprehend all the gory details. A module
is included which you can use to redefine up to five characters with no problems. Using
the Commodore 64's real-time clock to measure elapsed time or to control outside events
is also provided for. Generate musical notes within your own programs-or add sound
effects. Ready-made subroutines are provided for your use.

vii

Or, manipulate your Commodore 64 to your heart's content. One subroutine will
automatically set screen and border colors. Blank the computer's screen, while preserv-
ing the data stored there. Turn the repeat key feature on and off. .

Games players will find tips on routines that spice up their own arcade-quality games,
while those interested in programming for business will revel in the user-friendly input
routines, menus, and sort routines.

More advanced programmers can use several routines as utilities to make their work
easier, while doing sophisticated "soft" POKing of individual bits within a multipur
pose Commodore 64 register.

We've gone light on the "basic" subroutines, although plenty of the more important
conversion and financial routines are provided. The emphasis here is on modules you
can't find anywhere else but which will help you improve your programming
immediately.

While several routines explain how to use the joysticks with the Commodore 64, this
book does not include a matching paddle routine. Paddle reading is very unreliable from
BASIC and is not recommended. Commodore has a nice machine language paddle
routine in its Programmer's Reference Guide that you can incorporate into your pro
grams if you wish.

Use of Commodore's special type of character, called "sprites," is not addressed here,
either. Sprite graphics allow defining screen objects that can be moved about the screen
by the user and are particularly useful for games. However, while the feature is very power
ful, BASIC is much too slow to handle moving them around the screen for any serious appli
cations. In addition, designing sprites and moving them is complex, and well beyond the
"subroutine" scope of this book. Typical sprite editor programs, such as that found in Tim
Onosko's "Commodore 64: Getting the Most From It" (Robert J. Brady Company) are f.i.ve
or six pages long. Commodore also has a very good sprite program in its Disk Bonus pack,
and a lengthy discussion of sprites in its Programmer's Reference Guide.

It is possible to write some very sophisticated, fast-moving games with BASIC using
user-defined characters, however. This book has a handy subroutine that lets you define
five characters of your own, and other modules show you how to manipulate characters
on the screen.

Sorting is another task that is typically very slow in BASIC. However, because of the
great demand for this routine, two sorts are included here. For limited-size lists, one
of them should be entirely acceptable.

How To Use This Book

To best utilize the information contained in this book, it would be helpful if you have some
familiarity with BASIC and know what a FOR-NEXT loop is. Ideally, you should have written
several programs on your own, and be ready to tackle some more sophisticated programming.
You don't NEED to understand exactly how the joysticks are read through the VIA ports on
the Commodore 64 to use these subroutines. But, if you are interested, books are available
that will explain these complex points to you. More complete explanations of the Com
modore 64's special features are contained in another of my books, "Blast Off With BASIC
Games for Your Commodore 64", also published by the Robert J. Brady Company.

While many of the subroutines in this book are ready-to-run programs in their own
right, they will be most useful to you when you transplant them into your own programs.

viii

In doing so, it may be convenient to relocate them. Some utilities are available to
renumber programs for you as an aid to relocating them.

To make things easier, the routines are divided into sections. The basic routine itself
is clearly labelled. This portion may be renumbered and placed wherever convenient.
If renumbering manually, make sure the GOTO's and GOSUB's in the new modules
are correct. You don't want a line that reads: "1000 GET A$:IF A$ = ""GOTO 160".

Another section of each subroutine will usually be labelled "Initialization." These
lines will contain values that must be set once during a program, before the routine is
run. Or, the variables will be those that must be defined by your program before calling
the subroutine. Frequemly, these lines can be deleted or an equivalent line placed Within
your own program. The explanation with each subroutine tells the purpose of the
important variables.

The purpose of all the variables that you need to define, as well as the variable returned
by the subroutine for your program's use, is explained as well. Because the operation
of many subroutines is rather complex, some of the variables used only internally, as
well as various operations, may not be explained. This should be rare, as the line-by
line descriptions cover nearly all the functions of every program. However, ifthis book
does not tell you what a variable does, it is information you do not need to know in
order to use the subroutine.

In some cases there are several related routines. For example, there are four joystick
routines. Some of the concepts are explained only once. You will be directed to look
at previous subroutines for longer explanations at times. This allows you to access the
routines in any order, without reading the entire book.

All the odd special Commodore 64 characters have been left out of this book. In some
cases, CHR$(147) is used for the "clear screen" symbol (reversed heart), while CHR$(17)
is used for "cursor down" (reversed Q). Both will perform their proper function, the
same as the actual symbols. Deleting the extra graphics makes the subroutines shorter
and easier to understand. You may want to add various cursor controls and color con
trols to the routines for your own use as programs are developed. This is a subroutine
cookbook; the finishing touches of the meal are up to you.

Variable names have been chosen, when possible, to reflect their functions in the
subroutines. In most cases, the variable names from one subroutine do not conflict with
those of another. However, when writing a complex program using several of these
modules, you should check to see that the same variable is not used twice for different
purposes. Keep in mind that only the first two letters are significant in Commodore 64
BASIC. So, PAYMENT, used in one subroutine, is actually the same as PAID, which might
be used in a second. You should take this precaution with any program you write,
whether "foreign" subroutines are being transplanted or not.

If you are eager to get started and have some experience in programming, you might
want to skip ahead to any subroutine that looks tempting. Those who are less sure of
themselves will want to start with Chapter 1, which discusses three ways of merging
an existing library of subroutines within your own programs.

Good luck. You should find this book a shortcut to programming proficiency. To
paraphrase a common saying, if you use a subroutine correctly three times, it will ge
a permanent part of your vocabulary. Given a bit of practice, you can soon have allytiur
friends drooling over your programs and asking you for your favorite subroutine recipes.

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisherofthis book have used their best efforts in preparing this book
and the programs contained in it. These efforts include the development, research, and
testing of the programs to determine their effectiveness. The author and the publisher
make no warranty of any kind, expressed or implied, with regard to these programs,
the text, or the documentation contained in this book. The author and the publisher
shall not be liable in any event for claims of incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of the text or the
programs. The programs contained in this book and on any diskettes are intended for
use of the original purchaser-user. The diskettes may be copied by the original purchaser
user for backup purposes without requiring express written permission of the copyright
holder.

TRADEMARKS OF MATERIAL
MENTIONED IN THIS TEXT

• PAC-MAN: Midway Mfg. Co., a Bally Company
• MASTERMIND: Invicta
• DUNGEONS & DRAGONS: TRS Hobbies, Inc.
• APPLE MACHINES: Apple Computer, Inc.
• RADIO SHACK MACHINES: Tandy Corporation

x

n IlM~lf~illm~ §Ull1IDlf@Ulli1liIIil~$)
Wlii1Iln Y @Ulllf IPlf@~lf~m~

2/ Commodore 64 Subroutine Cookbook

One of the best things about subrouti nes is that they can be reused many times within
t·

an existing program and put to work in many different pieces of software, as well. Once
you have typed in, say, a joystick routine from this book, you will not need to retype
it every time you write a new program requiring joystick handling. Because the
subroutines in this book have been designed as stand-alone modules, with both the in
put and output clearly defined, they can be recycled quite easily. You will wantto store
your subroutine "library" on disk or tape, and call them into your programs as needed.

Incorporating existing code into a program is called "merging" and can be accom
plished in many different ways. The very simplest can be used if only one stock
subroutine will be used in your new program. In such cases, just load the subroutine
you want into memory, and wrjte all the other program lines around it.

But, what if you wantto incorporate several subroutines into a program, or add them
to one which has already been written? Doesn't loading a new subroutine or program
destroy anything that is in memory? Not necessarily. This chapter will show you three
more ways of merging program lines and subroutines; none of them require a great deal
of programming expertise.

First, let's look at the two kinds of merging. In one case, your existing program and
the subroutines to be merged have line numbers that do not conflict. Perhaps one or
the other has low line numbers, while the code to be merged has high line numbers.
That is, your program is numbered from 100 to 1000, while the subroutine(s) to be added
all have line numbers higher th~n 1000. Computerists have a special name for this kind
of merge: "appending." One program or module is added to, or appended to, the end
of the other. This method is easiest to use, from the standpoint that there is no danger
that wanted program lines will be written over with those of the merged program.

However, in the case of true merges, your target program may have program lines
that are inclusive of those in the subroutine to be merged. Your program numbered from
100 to 1000 can be merged with a subroutine that is numbered from 500 to 600. If any
duplicate lines exist, those of the original program will be replaced by those of the
merged program. With some planning, such a merging scheme can also be successful.
You would need to make sure that there are no program line numbers in common by,
say, purposely leaving a gap between lines 500 to 600 in your original program. Or,
perhaps, those lines are occupied by a subroutine that you no longer want. When using
this type of merge, be certain that there are no "leftover" lines from the original
subroutine or program overlapping with those of your subroutine. For most, the append
type of merge is the safest and easiest to implement. .

Now, here are three more easy ways to merge any of the subroutines in this book with
your own programs.

METHOD #1: SPECIAL UTILITY PROGRAMS

Various vendors sell utility programs for the Commodore 64 which have merging
capabilities. Some also include other features, such as FIND or CHANGE commands,
which make them indispensable for the serious programmer.

One such utility was used to prepare many of the subroutines in this book. Several
components of each subroutine, such as the title block and REMarks, were subroutines
of a sort themselves, stored on a Commodore 64 disk in that form. Once a working
subroutine was developed, it was renumbered with high line numbers, and the added

Merging Subroutines With Your Programs /3

lines desired merged, using the programming utility'sMERGE"filename",8 command.
Subroutines can also be merged from tape using such a utility. For maximum flexibility,
this method cannot be beat as a fast, efficient way of adding this book's subroutines to
your own programs.

METHOD #2: A FAST, EASY MERGE

Here is a fast merging method that requires no software or programming on your part.
Its only limitation is that you can only merge as many lines as will fiton the Commodore
64's screen at once.

If you plan on merging frequently, it will be a good idea to renumber each subroutine
in this book with high line numbers that will not conflict with those of your program.
With long routines, strip off the unnecessary program lines, such as REMarks, title block,
and dummy data.

To merge, load the subroutine first, and LIST it to the screen. Then, LOAD the pro
gram you want to merge it with. Your subroutine will be gone, except that the listing
will still be in the screen editor's memory. Move the cursor up to each ofthe remaining
subroutine lines so thatthe cursor is within the line itself. Hit RETURN. The cursor will
drop down to the next line. Hit RETURN again. Repeat until all the subroutine lines
have been so treated.

Now, list your program. The subroutine will be merged (appended, actually) to the
end of your program. You can do an actual merge, with the subroutine located in the
middle of your target program, as long as no line numbers conflict. If any do, the
subroutine lines will replace those of your program.

Of course, only as many program lines as can fit on the screen, along with the LOAD
command, can be merged. But, since many of the routines in this book are very short,
you will be able to do the job in nine cases out of ten.

METHOD #3: LONGER MERGES*

This simple tape cassette procedure works for longer subroutines but must be followed
carefully and exactly. First, prepare an ASCII version of the subroutine to be appended
as follows. LOAD the subroutine and make sure that the line numbers are larger than
the line numbers in the programs you intend to append the subroutine to. Place a blank
tape in the cassette recorder, and rewind. Next type OPEN 1,1,2," ASCII-prog.
name":CMDl :LlST, and press RETURN. What this step does is open a data channel,
number one, with the cassette recorder specified as the output device, using the filename
"ASClI-prog.name." You can substitute your own program name for the second part
of the file name, but the total filename must be 16 characters or fewer. Then, CMDl
tells the Commodore 64 to route to the tape recorder anything that would have been
sent to the CRT screen. The following command, LIST, has the Commodore 64 list the
program (or subroutine) in the usual manner-except that the ASCII listing of the module
will be written to the tape instead of the screen.

*Adapted from a paper presented by Dr. Melvin E. Zandler, Chemistry Department, Wichita State
University, Witchita, Kansas (with permission).

4 / Commodore 64 Subroutine Cookbook

Once you have keyed in this coJllmand line, and pressed RETURN, the Commodore
64 wi II ask you to press PLAY and RECORD. Do so, and wait unti I the tape drive stops.
With the PLAY and RECORD buttons still depressed, type PRINT#l :CLOSE1 on the
keyboard and press RETURN. The cassette recorder will run for several more seconds
as the remaining data in the Commodore 64's buffer is written to tape and the file is
closed. You will now have an ASCII version of the subroutine on tape. Rewind the tape
and label it.

Next, load your main program into the Commodore 64. Mount the ASCII subroutine
tape in the cassette recorder, and TYPE OPEN1,l on the keyboard. Press RETURN. You
wi II be asked to press the PLAY button on the cassette recorder. When you have done
that, the recorder will run until the tape header with the filename is read ("ASCII
prog.name") and the recorder stops.

At this point, leave the PLAY key depressed. Next press CLR to clear the screen, and
type POKE 153,1 at the top of the screen, and press RETURN. The cassette drive will
run for a few seconds until the buffer is filled with characters. Now, alternately press
HOME and RETURN. Each time you do this, one of the subroutine lines from the buf
fer wi II be added to the main program in memory. When the buffer is empty, the recorder
will start again, and additional data read into the buffer. Repeat pressing HOME and
RETURN until the end of the fi Ie mark is sensed. At this point, a SYNTAX error will be
displayed on the screen.

Congratulations! You now have appended the subroutine to the main program with
all the program pointers properly adjusted. LIST the program to check. Rewind your
ASCII subroutine tape to make it ready to append to another main program. You can
repeat these steps as many times as necessary to add several subroutines to your main
program.

SAMPLE MERGING RUN

Subroutine (lines 10·250)

10 REM *********************
20 REM * *
30 REM * COMPOUND INTEREST *
40 REM * *
50 REM *********************

60 REM
70 REM
80 REM

90 REM

+ + VARIABLES ++
RATE: INTEREST RATE
YEARS: YEARS COMPOUNDED

100 REM FUTURE: FUTURE VALUE
110 REM AMOUNT: AMOUNT TO BE COMPOUNDED
120 REM

130 REM ----------------------------

140 REM *** INITIALIZE ***

150 RATE = 10

160 AMOUNT = 1000

170 PERIOD = 365

180 YEARS = 10

190 GOTO 260

200 REM *** SUBROUTINE ***

210 RATE = RATE/l00

Merging Subroutines With Your Programs /5

220 FUTURE = AMOUNT* (1 + RATE/PERIODS) [(PERIODS

YEARS) : LOAN = PAYMENT(l-(1 + RATE) "-NUMBER) /RATE

230 FUTURE = INT (FUTURE* 100 + . 5) /100

240 RETURN

250 REM *** YOUR PROGRAM STARTS HERE ***

Program Merged With Subroutine
260 PRINT CHR$(147);CHR$(17)

270 PRINT "COMPOUND INTEREST"
280 PRINT CHR$(17)
290 INPUT II INTEREST RATE II ; RATE

300 INPUT "YEARS TO BE COMPOUNDED" ; YEARS

310 INPUT "AMOUNT TO BE COMPOUNDED" ; AMOUNT

320 INPUT "COMPOUNDING PERIODS/YR" ; PERIODS

330 GOSUB 210
340 PRINT II FUTURE VALUE: II ; FUTURE

350 PRINT "DO IT AGAIN? "

360 PRINT TAB(4) "Y/N?"

370 GET A$: IF A$ =" " GOTO 370

360 IF A$ = "Y" THEN GO TO 260

370 IF A$= "N" THEN END

380 GOTO 370

8/ Commodore 64 Subroutine Cookbook

Let's start off with one of the most mystifying capabilities of the Commodore 64: joystick
manipulation of screen objects. All of us have marveled at arcade-qual ity games for the
Commodore 64 that let the player use a joystick to move a space ship, racing car, or
other token around on the screen, while firing "missiles" at oncoming attackers.

From a programmer's standpoint, the use of the joysticks breaks down into several
neat modules. We need to know where on the Commodore 64's screen the object to
be moved is. We also must check, as often as possible, the status of player's joystick
to see if it is pressed in any direction, or if the FIRE button has been depressed. If so,
the programmer must update the location of the object on the screen. This is usually
done by changing the value of the location where the object is printed, by adding or
subtracting. We need to put the object in the new position and, if we do not want to
leave a "trail" behind the object, erase its image from the old location.

Four subroutines that follow demonstrate alternate ways of moving objects in BASIC,
using the joystick as a controller.

The four different joystick routines have been included in this section to allow several
different types of object movement in your programs. The first joystick subroutine in
this section allows moving an object only in north, south, east, or west directions. The
next routine permits movement only left or right, but allows you to pick which row your
object wi II reside in. The third subroutine of the group allows diagonal movement for
games or other programs needing that flexibility. All will also tell you if the FIRE button
has been pressed.

One subroutine demonstrates how to "move" an object by erasing its old position
after the move has been made. The others illustrate leaving a "trail" behind the mov
ing object. Both types of movement will be useful for game programs.

A final subroutine, DRAW, brings all the elements together in a short program that
will allow you to draw on the screen using a joystick. Pressing number keys changes
the color of the cursor, whi Ie other keys change the cursor character itself.

JOYSTICK SUBROUTINE

WHAT IT DOES

Moves object north, south, east, and west, using joystick.

Variables

• CSCREEN: Start position in memory of a map of the color of each Commodore 64
screen location

• CHAR: Start position in memory of a map of which characters are displayed in each
Commodore 64 screen location

• E: End of character memory
• B 1: Current position of Object #1
• B2: Current position of Object #2
• DF: The difference between (SCREEN and CHAR
• M 1: Direction of move for Object #1, to be used to increment B 1

Using Joysticks / 9

• M2: Direction of move for Object #2, to be used to increment B2
• F1: Status of fire button #1
• F2: Status of fire button #2.

How To Use The Subroutine

The Commodore 64 has two ports which can accommodate, among other accessories,
one joystick each. Your games and applications can use the status of the joystick to con
trol the actions of your programs. Usually, the movement of the joystick directs the move
ment of an object on the screen. That is, when the joystick is pressed left, the object
moves left. Motion to the right, up, and down can also be accomplished.

There is no reason why a joystick could not be applied to other program tasks,
however. Such input might be appropriate for a very young user who does not know
how to type on the keyboard. Movi ng the joystick to the left might trigger one pictorial
"menu" choice; to the right another. Pressing the FIRE button could advance the pro
gram to the next screen, and so forth.

This subroutine, while written with object movement in mind, can easily be adapted
to that type of application. The basic routine will, if called repeatedly, monitor the status
of the joysticks and provide a value that indicates which way the cursor should move.
Only north, south, east, or west movement is allowed with this routine, which is best
suited for many "maze" and similar games. If you need diagonal movement as well,
try the third Commodore 64 joystick subroutine.

Call the subroutine whenever you wish to check on the status of the joysticks. The
value of M 1 or M2 can be used with Bland 82 (the current position of each object)
to move the object or to direct some other program action. Value of F1 and F2, the fire
buttons of each joystick, is also returned, although it is not used in this subroutine. You
can make pressing the FIRE button accomplish some other task, such as clearing the
screen:

465 IF Fl= 1 THEN PRINT CHR$(147)

This subroutine prints a ball character (81 in the Commodore 64 character set) on the
screen. You may change the character by substituting some other number for the 81
in line 510. Or, substitute variable CURSR for the 81, and define CURSR to any character
you wish.

The routine leaves a "trail" of the character behind it. You can erase this by POKing
B 1-M 1 with 32. Look at the following subroutines for a more complete use of this feature.

Variables Not To Be Changed By User

• CSCREEN: The position in memory of the start of the color memory map.
• CHAR: The position in memory of the start of the character memory map.
• E: End of character memory. You will not want your objectto move beyond this value,

or else it will be "off" the screen, and could destroy your program!
• OF: The difference between CSCREEN and CHAR. If variable B1 defines the current cursor

position in character memory (itwill be some number between CHAR and E), then POKing
B1 with a number will cause that character to appearon the screen. POKing B1 + OF with
a color number (0-7) will change the color of that character position.

10/ Commodore 64 Subroutine Cookbook

Line By Line Description

line 70: Define the start of the memory map which stores the screen color of each
of the 1000 Commodore 64 screen positions.

line 80: Define the start of the memory map which stores the code number for each
character stored in each of the 1000 Commodore 64 screen positions.

line 90: Initialize the position of objects number 1 and (B 1 and B2) to equal the start
of character memory.

line 100: Define the highest and lowest positions that you want an object to move
to; beginning and end of screen memory.

line 110: Calculate the difference between the start of screen memory and character
memory.

lines 290 to 300: Peek registers which store status of joystick 1 and joystick 2.

lines 310 to 320: Look at bit which tells whether FI RE button of either joystick is press
ed. NOTE: Using the AND operator and bit manipulation are explained much more
thoroughly in Chapters 5 and 11.

lines 330 to 340: Determine status of each joystick's switches.

lines 350 to 420: Depending on value of joystick status variable, J1 and J2, move
mentofobject is defined as +40 (down one whole row), -40 (up one whole row), + 1
(one position to the right), or -1 (one position to the left).

lines 450 to 460: Clear screen and access the subroutine.

lines 470 to 480: If either FIRE button is pressed, clear the screen. Your program could
initiate some other action, such as releasing a missile.

lines 490 to 500: Update position of object, B 1 and B2. If position is less than begin
ning of character memory, B, or greater than the end, E, negate this move.

lines 510 to 540: POKE new position of object, B 1 or B2, with character desired, in
this case the CHR$(81), "ball" character. Then POKE the corresponding position in color
memory with a color, different for each joystick.

line 550: Go back and repeat.

You Supply

• B1 or B2: Current position of object. This will be a number between CHAR and E.
Your program should always check to make sure that B 1 is never less than CHAR
or greater than E. You may want to define B 1 = CHAR at the beginning of the pro
gram to start in the upper left. That is done in this subroutine. Or, choose some other
position. Each movement of the cursor is made by changing the value of B 1 or B2,
and then POKing B1 or B2 with the number of the character you want. Erase B1 or
B2 from its old position by POKing its former value with 32 (a space).

Using Joysticks / 11

• M 1 or M2: Direction of move, to be used to increment B 1 or B2. If the cursor is to
move to the right one space, then Ml or M2 will equal + 1. If the move will be to
the left, Ml or M2 will equal -1. Upward movement is produced by making Ml
or M2 equal the value of one whole row, -40. Downward movement is accom
plished by making Ml or M2 equal +40.

RESULT

Object will move on screen under joystick control, in north, south,
east, or west directions.

10 REM ***********************
20 REM * *
30 REM * JOYSTICK SUBROUTINE *
40 REM * *
50 REM ***********************

60 REM *** INITIALIZE ***

70 CSCREEN = 55296
80 CHAR = 1024
90 B1 = CHAR: B2 = CHAR
100 B = CHAR: E = CHAR + 1000
110 DF = CSCREEN-CHAR
120 GOTO 450

130 REM ----------------------------
140 REM + + VARIABLES + +
150 REM F1: STATUS OF FIRE BUTTON 1

160 REM F2: STATUS OF FIRE BUTTON 2
170 REM M1: MOVE FOR JOY 1
180 REM M2: MOVE FOR JOY 2
190 REM B1: POST ION FOR OBJECT 1
200 REM B2: POSITION FOR OBJECT 2
230 REM CSCREEN: START OF COLOR MEMORY
240 REM CHAR: START OF CHARACTER MEMORY

250 REM E: END OF CHARACTER MEMORY
260 REM

270 REM ----------------------------

280 REM *** SUBROUTINE ***

12/ Commodore 64 Subroutine Cookbook

290 Jl=PEEK(56320)
300 J2 = PEEK(56321)
310 Fl=Jl AND 16
320 F2 = J2 AND 16
330 Jl=15-(J1AND15)
340 J2=15-(J2 AND 15)
350 IF J1=1 THEN Ml=-40:GOTO 390
360 IF J1 = 2 THEN Ml = 40: GOTO 390
370 IF J1 = 4 THEN Ml = -1: GOTO 390
380 IF J1=8 THEN Ml=l:GOTO 390
390 IF J2 = 1 THEN M2 = -40: RETURN
400 IF J2 = 2 THEN M2 = 40: RETURN
410 IF J2 = 4 THEN M2 = -1: RETURN
420 IF J2 = 8 THEN M2 = 1: RETURN
430 RETURN

440 REM *** YOUR PROGRAM STARTS HERE ***

450 PRINT CHR$(147)
460 GOSUB 290
470 IF Fl=O THEN PRINT CHR$(147)
480 IF F2=0 THEN PRINT CHR$(147)
490 Bl=Bl+Ml: IF Bl<B OR Bl>E THEN Bl=Bl-Ml
500 B2 =B2 + M2: IF B2 <B OR B2>E THEN B2 =B2-M2
510 POKE Bl,81
520 POKE Bl+DF,3
530 POKE B2,81
540 POKE B2 + DF ,5
550 GOTO 460

MOVE OBJECT LEFT, RIGHT

WHAT IT DOES

Moves object left and right only.

Variables

• ROW: Row to move object in
• B: Beginning of that row
• E: End of that row
• B 1: Position of object
• CURSR: Cursor character

Using Joysticks / 13

• CO: Cursor color
• MOVE: Direction of move
• CSCREEN: Beginning of color memory
• CHAR: Beginning of character memory
• DF: CSCREEN-CHAR
• F1: Status of FIRE button.

How To Use The Subroutine

While the Commodore 64's game port can be used with joysticks, paddles, and other
accessories, the joysticks are probably the most flexible controllers for games. They can
be used both to control movement in all directions, as well as just from left to right, like
a paddle.

A paddle is like "rheostat" orvolume control that returns an analog value to the Com
modore 64. That is, some number between 0 and 255 is supplied, depending on how
far the paddle has been turned. Unfortunately, a small movement of the paddle can result
in a large movement of the object on the screen. Paddles are NOT recommended from
BASIC by Commodore, because they can be unreliable.

Some games work better when the joystick control is used for movement left and right.
In such cases, the joystick will indicate a "zero" when not pressed in a direction and
a number when that switch is closed. This approach makes games programming simpler.
Move an object one position to the right when the right switch is pressed, and move
one position to the left when the left switch is pressed.

This subroutine will tell you whether or not either case has occurred, plus report on
the status of the FIRE button.

Your program should repeatedly check to see if MOVE has a value, and take action
accordingly. Your object might be located along the bottom of the screen, in a position
defined as, say, B1. This will be increased or decreased by one each time the joystick
is pressed right or left. Make sure that B 1 never exceeds the end of character memory,
when POKing objects to the screen. A more complete discussion of moving objects on
the screen is included with the previous subroutine.

Line By Line Description

Line 220: Define an array capable of keeping track of ten possible values for two differ
entjoysticks, even though only two positions and one joystick are used in this program.

Line 230: Define DATA for direction of movement when joystick is pressed in any
of the ten possible values. In this case, only two are used, to provide for movement left
and right.

Line 270: Clear screen.

Line 280: Define start of memory map that stores information about what color should
be printed in every screen position.

Line 290: Define start of memory map that stores information about what character
should be printed in every screen position.

Line 300: Define the row in which the object movement should take place. You may
redefine this as any value, 1 to 40.

14/ Commodore 64 Subroutine Cookbook

Line 310: Define starting position of object as the first position in the row chosen.

Line 320: Define maximum position of object as starting position, plus 39.

Line 330: Define minimum position of object as the first position on that row.

Line 340: Calculate difference between the start positions of the two memory maps.

Line 360: Define initial cursor character and color.

Line 390: PEEK joystick register for current value.

Line 400: Calculate switch status.

Line 410: See if FIRE button is depressed.

Line 420: Define next MOVE as J 1 element of array. If that array element equals zero,
then MOVE will equal zero.

Line 450: Access the subroutine.

Line 460: If MOVE is not 0, then erase object in old position of cursor, by POKing
a space, CHR$(32), there.

Line 470: Update position of 61, by adding MOVE.

Line 480: If MOVE would take cursor beyond limits, negate update.

Line 490: POKE cursor position with cursor character.

Line 500: POKE corresponding color location with color value.

Line 510: Go back and repeat.

You Supply

Just move joystick. ROW can be defined as the screen row on which the object moves.
CURSR can be defined as any character you wish, while CO will be the cursor color.
CO should be the color value you wish, minus one.

RESULT

Object will move on screen under joystick control, left or right only,

10 REM ******************
20 REM * *
30 REM * MOVE OBJECT *
40 REM * LEFT OR RIGHT *
50 REM * *
60 REM ******************
70 REM ------------------------------
80 REM + + VARIABLES + +
90 REM ROW: ROW TO MOVE IN
100 REM B: BEGINNING OF THAT ROW
110 REM E: END OF THAT ROW
120 REM Bl: POSITION OF CURSOR
130 REM CURSR: CURSOR CHARACTER
140 REM CO: CURSOR COLOR
150 REM MOVE: DIRECTION OF MOVE
160 REM CSCREEN: COLOR MEMORY
170 REM CHAR: CHARACTER MEMORY
180 REM DF: CSCREEN-CHAR
190 REM
200 REM ------------------------------

210 REM *** INITIALIZE ***

220 DIM D(10,2)
230 DATA 0,0,0,-1,0,0,0,1,0,0
240 FOR X= 1 TO 10
250 READ D(X,l)
260 NEXT X
270 PRINT CHR$(147)
280 CSCREEN = 55296
290 CHAR = 1024
300 ROW=5
310 Bl = CHAR + Row*40
320 E=Bl+39
330 B=Bl
340 DF = CSCREEN-CHAR
350 POKE 53281,1
360 CURSR=43:CO=2
370 GO TO 450

380 REM *** SUBROUTINE ***

390 JV = PEEK(56320)
400 F1 = JV AND16
410 Jl=15-(JVAND15)
420 MOVE=D(Jl,l)
430 RETURN

Using Joysticks / 15

16 / Commodore 64 Subroutine Cookbook

440 REM *** YOUR PROGRAM STARTS HERE ***
450 GOSUB 390

460 IF MOVE < > 0 THEN POKE B1,32

470 B1=B1+MOVE

480 IF B1 < B OR B1 > E THEN B1 = B1-MOVE

490 POKE B1, CURSR

500 POKE B1 + DF , CO

510 GOTO 450

MOVE OBJECT ALL DIRECTIONS

WHAT IT DOES

Moves object diagonally, and north, south, east, and west.

Variables

• CSCREEN: The position in memory of the start of the color memory map
• CHAR: The position in memory of the start of the character memory map
• E: End of screen in memory
• B1: Current position of cursor
• DF: The difference between CSCREEN and CHAR
• MOVE: Direction of move, to be used to increment B1
• CURSR: Cursor character
• CO: Cursor color.

How To Use The Subroutine

Games like Pac-Man'™) and maze chases work best if the object can only be moved in a
north, south, east, and west direction. Some programs need diagonal movement as well.

This subroutine will allow moving an object in any direction with a joystick. The move
ment can be adapted to many types of games, as well as other programs where input
with a joystick is desirable.

Call the subroutine every time you wish to check on the status of the joysticks. The
value of MOVE can be used with B 1 to move the object, or to direct some other pro
gram action. Value of F1, the FIRE button, is also returned, although it is not used in
this subroutine. You can make pressing the FIRE button accomplish some other task,
such as clearing the screen:

555 IF F1=0 THEN PRINT CHR$(147)

This subroutine prints a plus sign, CHR$(43), in the Commodore 64 character set,
on the screen. You may change the character by substituting some other number for
the 43 in the definition for CURSR in line 310.

The routine leaves a "trail" of the character behind it. You can erase this by POKing
B 1-MOVE with 32

Using Joysticks / 17

Variables Supplied By Subroutine

• CSCREEN: The position in memory of the start of the color memory map.
• CHAR: The position in memory of the start of the character memory map.
• E: End of character memory. You will not want your object to move beyond this value

or else it will be "off" the screen, and could destroy your program!
• 81: Current position of cursor. This will be a number between CHAR and E. Your

program should always check to make sure that 81 is never less than CHAR or greater
than E. You may want to define 81 = CHAR at the beginning of the program to start
in the upper left. Or, choose some other position. Each movement of the cursor is
made by changing the value of 81, and then POKing 81 with the number of the
character you want. Erase 81 from its old position by POKing its former value with
32 (a space).

• DF: The difference between CSCREEN and CHAR. If variable 81 defines the current
cursor position in character memory (it will be some number between CHAR and
E), then POKing B 1 with a number will cause that character to appear on the screen.
POKing 81 + DF with a color number (0-7) will change the color of that character
position.

• MOVE: Direction of move, to be used to increment B1. If the cursor is to move to
the right one space, then MOVE will equal + 1. If the move will be to the left, MOVE
will equal -1. Upward movement is produced by making MOVE equal the value
of one whole row, -40. Downward movement is accomplished by making MOVE
equal +40.

An additional feature has been added for diagonal movement. Instead of increment
ing MOVE by whole rows, a row MINUS one, or PLUS one is used. That is, adding -41
to MOVE will produce movement up one row, and over one character, or, diagonally
to the NorthWest. Adding - 39 will accomplish NorthEast movement, and values of
39 and 41, SouthWest and SouthEast, respectively.

Line By Line Description

Line 190: DIMension array to store ten possible values of joystick, with two ROWS
to keep track of two joysticks, even though only one is used in this program.

Line 200: Define DATA showing direction of MOVE, with -40 equivalent to North,
-39 equal to Northeast, -41 equal to Northwest, etc.

Lines 210 to 230: Read joystick directions into array.

line 240: Clear screen.

lines 250 to 260: Define start of character and color memory maps.

Line 270: Define beginning and end positions that cursor will move.

Line 280: Define initial cursor position.

line 290: Calculate difference between addresses of color and character memory
maps.

line 310: Define cursor and cursor color.

18/ Commodore 64 Subroutine Cookbook

Line 340: PEEK joystick register for current value.

Line 350: See if FIRE button is depressed.

Line 360: Check switch status.

Line 370: Defi ne next MOVE as J 1 element of array. If that array element equals zero,
then MOVE will equal zero.

Line 400: Access the subroutine.

Line 410: Update position of B1, by adding MOVE.

Line 420: If MOVE would take cursor beyond limits, negate update.

Line 430: POKE cursor position with cursor character.

Line 440: POKE corresponding color location with color value.

Line 450: Go back and repeat.

You Supply

Simply move joysticks. Define CURSR and CO to provide cursor character and color
of your choice.

RESULT

Object will move on screen.

10 REM ******************
20 REM * *
30 REM * MOVE OBJECT *
40 REM * ALL DIRECTIONS *
50 REM * *
60 REM ******************
70 REM ------------------------------
80 REM + + VARIABLES + +
90 REM CSCREEN: COLOR MEMORY
100 REM CHAR: CHARACTER MEMORY
110 REM DF: CSCREEN-CHAR
120 REM Bl: POSITION OF CURSOR
130 REM MOVE: DIRECTION OF MOVE
140 REM CURSR: CURSOR CHARACTER
150 REM CO: CURSOR COLOR
160 REM

170 REM ------------------------------

180 REM *** INITIALIZE ***

190 DIM D(10,2)

200 DATA -40,40,0,-1,-41,]9,0,1,-39,41

210 FOR X= 1 TO 10
220 READ D(X, 1)

230 NEXT X

240 PRINT CHR$(147)

250 CSCREEN = 55296
260 CHAR = 1024

270 E = CHAR + 1000: B = CHAR

280 Bl= CHAR

290 DF = CSCREEN-CHAR

]00 POKE 53281,1

310 CURSR=43:CO=2

320 GO TO 400

330 REM *** SUBROUTINE ***

340 JV = PEEK (56320)
350 F1=JVAND16

360 Jl=15-(JVAND15)

370 MOVE=D(Jl,l)

380 RETURN

390 REM *** YOUR PROGRAM STARTS HERE ***

400 GOSUB 340

410 Bl=Bl+MOVE

420 IF Bl<B OR Bl>E THEN Bl=Bl-MOVE

430 POKE Bl, CURSR

440 POKE Bl + DF , CO

450 GOTO 400

DRA~NGSUBROUTINE

WHAT IT DOES

Using Joysticks / 19

Draws on screen, changes cursor character and color as desired.

Variables

• B1: Current position of cursor
• MOVE: Direction of move, to be used to increment B1
• CURSR: Current cursor character
• CO: Current cursor color.

20/ Commodore 64 Subroutine Cookbook

How To Use The Subroutine

Using the Commodore 64 joystick to sketch on the screen is a natural application. This
subroutine, similar to the last, has the added feature of automatically changing the cur
sor character, as well as the cursor color, under direction of the operator. Pressing the
FIRE button will clear the screen.

You can adapt this subroutine to many different types of programs-for drawing floor
plans and other design projects.

Pressi ng any al pha key wi II cause the cursor to change to that letter or, if shifted, that
graphics character. Pressing a number key will cause the cursor to change to that color.
The cursor color, CO, is alternated with RED to show movement on the screen more
clearly. A short sound routine is also included to mark the movement around the screen
audibly.

Variables Supplied By The Subroutine

• B1: Current position of cursor. This will be a number between CHAR and E. Your
program shou Id always check to make sure that B 1 is never less than CHAR or greater
than E. You may want to define B 1 = CHAR at the beginning of the program to start
in the upper left. Or, choose some other position. Each movement of the cursor is
made by changing the value of Bland then POKing B 1 with the number of the
character you want. Erase B1 from its old position by POKing its former value with
32 (a space).

• MOVE: Direction of move, to be used to increment B 1. If the cursor is to move to
the right one space, then MOVE wi II equal + 1. If the move wi II be to the left, MOVE
will equal -1. Upward movement is' produced by making MOVE equal the value
of one whole row, - 40. Downward movement is accomplished by making MOVE
equal +40.

Line By Line Description

line 150: DIMension array to store ten possible values of joystick, with two ROWS
to keep track of two joysticks.

line 160: Define DATA showing direction of MOVE, with -40 equivalentto North,
- 39 equal to Northeast, - 41 equal to Northwest, etc.

lines 170 to 190: Read joystick directions into array.

line 210: Clear screen.

line 220: Define start of character memory map.

lines 250 to 290: Define registers for volume, voice, wave form, attack, and sustain
for sound routines.

line 300: Define initial values of cursor and cursor color.

line 330 to 380: PEEK joystick register for current value, then see if FIRE button
depressed, and check switch status. Do twice, once for each joystick.

line 410: Access the subrouti ne.

Line 420: Look for keyboard input, if none, then move on.

Line 430: Access sound routine.

Using Joysticks /21

Line 440: If possible MOVE does not equal 0, give MOVE that value.

Line 450: Update value of object 1, B1, with MOVE.

Lines 460 to 490: If MOVE will take object off the screen, negate update.

Line 500: POKE cu rsor position with cursor character, then POKE correspond i ng color
location with color value.

Line 510: If cursor color equals WHITE, flash cursor anyway, so user can follow
movement.

Line 520: If FIRE button pressed, clear screen.

Lines 540 to 550: If number key pressed, change cursor color.

Line 570: Change cursor to key that was pressed.

Lines 600 to 650: Sound routine. POKE desired VOLUME, WAVE form, ATTACK,
SUSTAIN, and note, into VCE.

You Supply

• CURSR: Current cursor character. This number is POKEd into B1 to paint on the
screen.

• CO: Current cursor color.

RESULT

Drawing on screen, with variety of colors and cursor characters.

10 REM *********
20 REM * *
30 REM * DRAW *
40 REM * *
50 REM *********
60 REM -------------------------------
70 REM + + VARIABLES + +
80 REM MOVE: DIRECTION OF MOVE
90 REM B1: POSITION OF CURSOR
100 REM CURSR: CURSOR CHARACTER
110 REM CO: CURSOR COLOR
120 REM

130 REM -------------------------------

140 REM *** INITIALIZE ***

22/ Commodore 64 Subroutine Cookbook

150 DIM D(10,2)
160 DATA -40,40,0,-1,-41,39,0,1,-39,41
170 FOR X=l TO 10
180 READ D(X,l)
190 NEXT X
200 V=53248
210 PRINT CHR$(147)
220 B1=1024
230 MOVE=l
240 POKE 53281,1
250 VOLUME = 54296
260 VCE = 54273
270 WAVE = 54276
280 ATTACK = 54277
290 SUS = 54278
300 CURSR=43:CO=2
310 GOTO 410

320 REM *** READ JOYSTICKS ***

330 JV=PEEK(56320)
340 F1=JVAND16
350 J1=15-(JVAND15)
360 JV=PEEK(56321)
370 F2=JVAND16
380 J2=15-(JVAND15)
390 RETURN

400 REM *** DRAW SUBROUTINE ***

410 GOSUB 330
420 GET A$: IF A$ < > " " THEN GOSUB 540
430 GOSUB 600
440 IF D(J1,1) < >0 THEN MOVE=D(J1,1)
450 B1 = B1 + MOVE
460 IF B1>2022 THEN B1=B1+ (D(J1,l)*-l)
470 IF B1 < 1024 THEN B1=B1+ (D(J1,l)*-l)
480 IF B1>2022 THEN B1=B1+ (D(J1,l)*-l)
490 IF B1< 1024 THEN B1=B1+ (D(J1,l)*-l)
500 POKE B1, CURSR: POKE B1+54272,CO
510 IF CO = 1 THEN POKE B1 + 54272,5: POKE B1 + 54272, CO
520 IF F1=0 THEN PRINT CHR$(147)
530 GOTO 410
540 IF A$< "1" OR A$> "8" GOTO 570
550 CO=VAL(A$)-l
560 RETURN
570 CURSR=ASC(A$)
580 RETURN

590 REM *** SOUND ***

600 POKE VOLUME, 15
610 POKE WAVE, 33
620 POKE ATTACK, 128
630 POKE SUS, 128
640 POKE VCE, 72
650 POKE VOLUME, 0
660 RETURN

Using Joysticks /23

0 ~
0 ~ - e
0 ®

@
0 0

~

26 / Commodore 64 Subroutine Cookbook

The Commodore 64 has a built-in timing mechanism that allows it to measure seconds,
minutes, and hours. This feature is known as the real-time clock, and it can be used by
the programmer to keep track of events, such as the length of time needed to complete
games. The three subroutines are your key to using the real-time clock of your Com
modore computer.

The clock measures time in %oth second intervals. Each of these tiny time increments
is popularly called a "jiffie." Two counters, TI and TI$, keep track of elapsed time since
the computer was turned on or since the clock was last reset by the user. That is, when
the computer is first turned on, TI and TI$ equal 000000, and start counting from that
point. You may access both TI and TI$ like any other variable. TI numbers the jiffies,
while TI$ keeps the actual seconds.

To find out how many jiffies have eiafJsed since the jiffie counier was iasi reset, assign
the value of TI to some other variable, as: "CU - TI." Similarly, you can take the pre
sent time and use it for programing purposes by assigning its value to a variable, as:
"CU$ = TI$." You can also set the proper time (the Commodore 64 uses 24-hour,
military-style time) by the reverse method: "TI$ = "120000."

Because the Commodore 64 real-time clock is accurate under most circumstances,
TI can be used to time events fairly precisely (one exception is noted below), with ap
proximately %oth second accuracy. This might be useful in competitive games, typing
tutors, and other programs that measure elapsed time accurately. TI$, which can be set
to the current time, keeps track of hours, minutes, and seconds.

Neither TI nor TI$ allows for time lost during input-output functions, such as loading
programs from tape or disk, or writing data to tape or disk. So, if your program writes
data files, it should not depend on TI or TI$ to be 100 percent accurate. And, don't ex
pect either to be correct after you have loaded or saved several programs.

The first subroutine of this group sets the real-time clock to the current time, given
in 24-hour military style. You can imbed this routine in your programs when you need
to access the time from your program. The next routine measures actual elapsed time.
This is accurate to the second (with the exceptions noted above) and can be used to
measure time to that degree of precision.

The final routine uses the computer as a timer. You may set the current time and the
time you want to be alerted. The routine will measure that interval and alert you. So
long as your program constantly compares TI$ with the finish time specified, you may
have it perform other tasks in the meantime, branching to your "time's up!" routine only
when the interval has elapsed. As written, this subroutine is much like an alarm clock;
however, the computer does nothing else during the timing cycle. Your programs can
perform other functions, and simply call the time-check subroutine frequently to see
if the desired time interval is up.

TIME SET

WHAT IT DOES

Sets Commodore 64 real-time clock.

Using The Clock / 27

Variables

• HR$: Current hours
• MINUTE$: Current minutes
• TI$: Commodore 64 real-time clock value.

How To Use The Subroutine

Many programs can use the built-in real-time clock of the Commodore 64 to measure
elapsed time, control events, or simply to keep the operator informed as to what time it is.

The Commodore 64 clock keeps 24 hour military time, and stores it in a variable,
TI$, which can be called from a program at any time. One-thirty P.M. would be stored
as 1/133000."

This subroutine prompts the user for the current hours and minutes. If fewer than 12
hours are entered, the routine asks if the time is A.M. or P.M. Illegal time entries, such
as 256300, are not allowed. Minutes and hours less than 10 must be entered with a single
digit; the added zero is appended automatically to produce, say, 090900.

Line By Line Description

Lines 160 to 200: User enters current hour, which is checked to make sure it is less
than 24.

Lines 210 to 250: If number of hours is less than 12, user is asked if A.M. or P.M. is
meant. If afternoon is specified, 12 is added to the value of HR, to conform with 24 hour
military-style time.

Lines 260 to 290: User enters current minutes, which are checked to see that they
do not exceed 59.

Lines 300 to 320: If value of HR or MINUTES is less than ten, a leading zeros are added
to fill out the string, e.g., 1/000900" (for 12:09 A.M.).

Line 330: TI$ is set equal to the hour and minutes input, plus 0 seconds.

You Supply

Subroutine asks for hours and minutes.

RESULT

Internal clock set to correct time.

28/ Commodore 64 Subroutine Cookbook

10 REM ************
20 REM * *
30 REM * TIME SET *
40 REM * *
50 REM ************
60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM HR$ HOURS
90 REM MINUTE$: MINUTES
100 REM TI$: CURRENT TIME
110 REM

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 GOTO 360

150 REM *** SUBROUTINE ***

160 PRINT "ENTER HOUR : "
170 INPUT HR$
180 HR=VAL(HR$)
190 IF HR>23 THEN PRINT "LESS THAN 24 HOURS,

PLEASE! " : GOTO 170
200 IF HR> 12 GOTO 260

210 PRINT"A.M. OR P.M."

220 GET A$: IF A$ = " " GOTO 220
230 IF A$= "P" THEN HR=HR+12:HR$=MID$(STR$(HR) ,2) : GOTO 260
240 IF A$= "A" GOTO 260
250 GOTO 220
260 PRINT" ENTER MINUTES : "
270 INPUT MINUTE$
280 MINUTE=VAL(MINUTE$)
290 IF MINUTE> 59 THEN PRINT "LESS THAN 60 MINUTES,

PLEASE! " : GOTO 270
300 IF HR<10 THEN HR$= "0" +HR$:IF HR<l THEN HR$= "00"
310 IF MINUTE < 10 THEN MINUTE$ = "0" + MINUTE$
320 IF MINUTE < 1 THEN MINUTE$ = "00"

330 TI$=HR$ + MINUTE$ + "00"
340 RETURN

350 REM *** YOUR PROGRAM STARTS HERE ***

360 GOSUB 160
370 PRINT TI$

Using The Clock /29

ELAPSED TIME

WHAT IT DOES

Measures difference between two times.

Variables

• MIN: Elapsed minutes
• SEC: Elapsed seconds
• TS: Jiffies at start
• TF: Jiffies at finish.

How To Use The Subroutine

In addition to TI$, the Commodore 64 also keeps track ofTl, which measures the number
of M.oth second intervals that have elapsed since the computer was turned on. Since these
increments, called "jiffies," are much more precise than counting seconds, they are
especially useful in game programs.

This subroutine takes the number of jiffies at the start and compares that with the
number at the finish, in order to determine the elapsed minutes and seconds. It is NOT
necessary to set the real-time clock to the correct time to run this routine. Note that the
subroutine should not be used to time very long events, because the jiffie counter will
reset after "999999," or, about 4.6 hours. Most programs will not need to time that long
a period for a single run.

Line By Line Description

Line 160: Set time at finish (TF) to equal current jiffie count, TI.

Line 170: Calculate number of seconds that have elapsed, by dividing the difference
between the starting jiffie count, TS, and TF by 60. Since jiffies are M.oth second inter
vals, this produces the elapsed seconds.

Line 180: Figure total elapsed minutes by dividing elapsed seconds, FS, by 60. Only
integer portion (whole minutes) is used.

Line 190: Remaining seconds are calculated by subtracting the number of seconds
in the elapsed minutes (MIN*60) from the total number of seconds elapsed (FS).

Line 200 to 210: Print results to screen.

Line 240: Take initial jiffie reading. This is the start figure for the timer.

Line 250: Wait for end of timing cycle. In this case, a simple GET A$ loop is used.
Your program may have a whole program, or some other routine, intervening instead.
When your routine or other event that you wish to time is finished, access the subroutine.

Line 260: Go to the subroutine. Figure out how much time has elapsed between the
execution of Line 240 and this line.

30/ Commodore 64 Subroutine Cookbook

You Supply

Your program should set TS to equal TI when you wish to start timing. When the end
of the timing cycle is over, call the subroutine.

RESULT

Elapsed time is measured.

10 REM ****************
20 REM * *
30 REM * ELAPSED TIME *
40 REM * *
50 REM ****************
60 GOTO 240

70 REM ----------------------------
80 REM + + VARIABLES + +
90 REM MIN: ELAPSED MINUTES
100 REM
110 REM

SEC: ELAPSED SECONDS
TS : JIFFIES AT START

120 REM TF: JIFFIES AT FINISH
130 REM

140 REM ----------------------------

150 REM *** SUBROUTINE ***

160 TF=TI
170 FS=INT«TF-TS)/60)
180 MIN= INT(FS/60)
190 SEC=FS-(MIN*60)
200 PRINT TAB(2) "IT TOOK YOU" jMIN
210 PRINT TAB(2) "MIN. AND" jSECj "SEC."
220 RETURN

230 REM *** YOUR PROGRAM STARTS HERE ***

240 TS=TI
250 GET A$: IF A$ = "" GOTO 250
260 GOSUB 160
270 GOTO 240

Using The Clock /31

TIMER

WHAT IT DOES

Sets computer as a timer.

Variables

• FH$: Finish hour
• FM$ Finish minutes
• FS$ Finish seconds
• FT$ Finish time.

How To Use The Subroutine

Having the computer signal us at some future time can be a useful function. This
subroutine sets the real-time clock to the correct time, then asks what time we want to
be alerted. It will then constantly compare the updated current time with the calculated
finish time, and when that time is reached, signal.

You are prompted for all the information needed.
Note that the computer can't do any other functions while this subroutine is running.

You might wantto change it so thatthe line which compares the currenttime with the
target time (IF VAL(TIME$) > VAL(FT$) GOTO ...) is imbedded within your main program
and checked before branching to each new function. Or, you could write a GOSUB
line that goes to that line repeatedly during FOR-NEXT or GET loops.

Line By Line Description

Lines 160 to 190: User enters current hour, which is checked to make sure it is less
than 24.

Lines 200 to 280: If number of hours is less than 12, user is asked if A.M. or P.M. is
meant. If afternoon is specified, 12 is added to the value of HR, to conform with 24 hour
military-style time.

Lines 290 to 300: User enters current minutes, which are checked to see that they
do not exceed 59.

Lines 310 to 320: IfvalueofHRorMINUTES is less than ten, a leading zeros are added
to fill out the string, e.g., "000900" (for 12:09 A.M.).

Line 330: TI$ is set equal to the hour and minutes input, plus 0 seconds.

Lines 350 to 390: User enters number of hours and minutes that are to be timed. These
values are stored in HR and MN, respectively.

Lines 400 to 410: Timing cycle starts, and current time reading is taken.

Lines 420 to 430: Current hour and minutes figured.

Lines 440 to 450: The finish hour and minutes are figured by adding current hour
and minutes to the desired timing interval.

32/ Commodore 64 Subroutine Cookbook

lines 460 to 480: Finish hour, minutes, and seconds in string form are constructed.

lines 490 to 500: If either minutes or hours at finish time are less than 10, leading
zeroes are added.

line 510: FT$, the finish time, is constructed.

lines 520 to 540: Finish time and current time are displayed to the screen.

lines 550 to 560: If current time, TIME$, does not equal the finish time, FT$, then
subroutine goes back to line 520, until time is up. Then, control drops to line 570, where
"time is up" message is printed to screen.

You Supply

Answer the requests from the prompts. You also might want to call a sound subroutine
of your choice atLine 570, to provide an audible alarm. Several sound routines are pro
vided in the next section of this book.

RESULT

Commodore 64 signals at end of requested time interval.

10 REM *********
20 REM * *
30 REM * TIMER *
40 REM * *
50 REM *********
60 GOTO 590

70 REM

80 REM

90 REM

100 REM

110 REM

++ VARIABLES ++
FH$: FINISH HOUR

FM$: FINISH MINUTES

FS$: FINISH SECONDS

120 REM FT$: FINISH TIME

130 REM

140 REM ----------------------------

150 REM *** SUBROUTINE ***

160 PRINT "SET CURRENT TIME"
170 PRINT "ENTER CURRENT HOUR : "
180 INPUT HR$
190 IF VAL(HR$) >23 GOTO 180
200 IF VAL(HR$) >13 GO TO 290
210 PRINT" ENTER A FOR A. M. "
220 PRINT" ENTER P FOR P • M. "
230 PRINT" CHOICE: "
240 GET A$: IF A$ = " "GOTO 240
250 IF A$ = "P" THEN GOTO 280
260 IF A$= "A" GOTO 290
270 GOTO 240
280 HR$ = MID$(STR$(12 + VAL(HR$)) ,2)
290 PRINT "ENTER CURRENT MINUTES: " : INPUT MN$
300 IF VAL(MN$) > 59 GOTO 290
310 IF VAL(HR$) < 10 THEN HR$= "0" +HR$
320 IF VAL(MN$) < 10 THEN MN$= "0" +MN$
330 T$=HR$+MN$+ "00"
340 TIME$ = T$

345 REM *** TIME TO BE MEASURED ***
350 PRINT" TOTAL TIME TO BE COUNTED:"
360 INPUT" ENTER HOURS: " i HR$
370 INPUT" ENTER MINUTES: " i MN$
380 HR=VAL(HR$)
390 MN=VAL(MN$)
400 PRINT TAB (4) "TIMING CYCLE"
410 T$ = TIME$
420 HN=VAL(LEFT$(T$,2))
430 MP=VAL(MID$(T$,3,2))
440 FM=MP+MN:IF FM>59 THEN FM=FM-60:HN=HN+l
450 FH=HN+HR:IF FH>23 THEN FH=FH-24
460 FH$ =MID$(STR$(FH) ,2)
470 FM$=MID$(STR$(FM) ,2)
480 FS$ = MID$(T$, 5)
490 IF VAL(FH$) <9 THEN FH$= "0" +MID$(FH$,2):

IF VAL(FH) <1 THEN FH$= "00"
500 IF VAL(FM$) <9 THEN FM$= "0" +MID$(FM$,2):

IF VAL(FM$) <1 THEN FM$= "00"
510 FT$=FH$+FM$+FS$
520 PRINT" (CLR) "
530 PRINT "FINISH TIME: "iFH$;":" iFM$
540 PRINT" CURRENT TIME: "i LEFT$

(TIME$,2);": "iMID$(TIME$,3,2) i":"
;RIGHT$(TIME$,2)

550 IF VAL(TIME$) >VAL(FT$) GOTO 570
560 GOTO 520
570 PRINT" TIME IS UP. " : RETURN

Using The Clock / 33

34/ Commodore 64 Subroutine Cookbook

580 REM *** YOUR PROGRAM STARTS HERE ***

590 PRINT
600 GOSUB 160

38/ Commodore 64 Subroutine Cookbook

The Commodore 64 has some of the best sound capabilities of any home computer.
When the machine is connected to a good-quality stereo system, the sounds duplicate
that of music synthesizers costing many times what the entire computer sells for.

The secret, of course, is the 6581 music synthesizer chip built into the Commodore
64. Earlier computers without this chip had much more primitive sound generation
capabilities. Some can produce sounds through only a single voice. The VIC-20 has three
musical voices and one "noise" generator with overlapping octaves. By comparison,
the VIC-20's musical capabilities don't hold a candle to the many areas of control that
the Commodore 64's synthesizer chip provides.

Yes, the Commodore 64 also has three voices. But, in addition to pitch and duration,
the user can specify the waveform of each voice-varying it from "sawtooth" to "pulse"
to "triangle" to "noise." These terms may not mean much to you. However, it is the
wave form of each musical note that helps give various musical instruments thei r distinc
tive "timbre", or sound quality. Your Commodore 64 can playa note with four different
waveforms, plus "filter" the waveform through a selection of "modulators."

Also important is the sound "envelope." This is controlled by the attack/decay and
sustain/release parameters. When a note is first played, it rises from zero volume to its
peak volume, then falls back to some middle range. The rate of rise is called "attack,"
while the speed of decline to the middle range is called "decay." That middle volume,
called "sustain," can also be controlled by the Commodore 64. When the note finally
stops playing, its rate of decline to zero volume is called "release." The attack/decay
and sustain/release properties of a trumpet note differ from those produced by a piano.
If we know each, we can duplicate the sound fairly closely with the Commodore 64.

That's the good news. The bad news is that BASIC V.2 does not have any commands
to perform this magic, other than tedious POKEs to various memory locations. For ex
ample, to playa single note in one voice to your specifications, you might have to in
clude the following program lines:

10 POKE 54296, 15
20 POKE 54273,34
30 POKE 54272,75
40 POKE 54276,65
50 POKE 54275,12
60 POKE 54274,200
70 POKE 54277,130
80 POKE 54278,66

(Sets volume)
(Plays middle
C on Voice 1)
(Sets pulse wave form)
(Sets hi pulserate)
(Sets low pulserate)
(Sets attack/decay rate)
(Sets sustain/release rate)

Length of the note is yet another parameter that must be taken care of by your pro
gramming, with a FOR-NEXT delay loop, or some other means. It's nice to have that
much control over a sound, isn't it? But who would want to do all that programming
three times over (for each voice)? Granted, every line shown above is not needed for
every note. Some are required only when you want to change some of the parameters
for a given voice. However, keeping track can be a pain, even when "offsets" and special
programming tricks are used to reduce the work.

There are several music "synthesizer" programs that will allow you to experiment
with the sound capabilities of this computer. These are long, complex, and beyond the
scope of this subroutine "cookbook."

Using Sound /39

The intent is to provide you with "plug in" subroutines that you can use in your own
programs immediately, even if you can't tell a synthesizer from photosynthesis. This
chapter contains five subroutines that have broad application in many games
programs-or which can be used to spice up your general programming efforts.

The fi rst routi ne generates musical notes when the keys of the home row, and the row
above, are pressed. Others produce a grating siren sound, a madcap computer gone
berserk, eerie flying saucer noises, and other effects.

You may want to experiment with each of these, using some of the suggestions pro
vided, or with ideas of your own. Change the val ues of FOR-N EXT loops. Use different
voices, as suggested. You should be able to develop new sounds on your own, until
a whole library of sound effects is available.

In general, music and sound effects generation on the Commodore 64 is accomplished
by POKing various values to several memory locations, or registers. For example, the
volume of all three voices can be controlled by POKing values from 0 to 15 in location
54296. Unfortunately, the Commodore 64 does not allow you to control the volume
of each voice separately. A 0 will "turn off" all the voices at once, while POKing 15
to 54296 will produce maximum volume.

The three music voice registers are located in pairs at 54272/54273,54279/54280,
and 54286/53287. POKing pairs of values to these registers will produce musical notes
that more or less correspond to the notes of the musical scale. The actual values are
listed on pages 163-164 of the Commodore 64 User's Guide supplied with the computer.

In addition, you also need to POKE a waveform, to registers located at 54276,54283,
and 54290, for the three voices, respectively. A value of 17 POKed to any of these
registers will produce a "triangle" type waveform, while 33 will generate a "sawtooth"
waveform. A 65 produces a pulse wave, with 129 delivering nothing but a random
sounding noise. Try substituting each of these in various sound routines to hear the
changes for yourself.

But wait! There's more. When using pulse waveforms, each voice has yet one more
pair of registers that need to be POKEd to supply pulse rate. Finally, you may choose
attack and decay rates. Each are separate values but, since the combinations of the two
produce unique numbers, you may add your chosen attack rate to your chosen decay
rate and POKE a single number to one register for each voice. Sustain/release are set
up in a similar manner.

Anotherfactor, the length of time each note is played, is controlled by your program.
A note can begin when you POKE a value 1 to 15 into the volume register, and end
when a 0 is POKEd to that location. In between, you might have a FOR-NEXT loop pro
viding the desired amount of delay. This could be varied by your program, as you desire:

10 INPUT "LENGTH OF NOTE WANTED (1 TO 10) " ; DELAY

20 GOSUB 100

100 POKE VOLUME, 15

110 POKE VOICE, 128

120 FOR N == 1 TO DELAY

130 NEXT N
150 POKE VOLUME,O

160 RETURN

40/ Commodore 64 Subroutine Cookbook

In this example, the note will play for as long as the FOR-NEXT loop in lines 120 to
130 takes to execute. Then, the POKE in line 150 will turn volume to 0, effectively silen
cing the note. Notice that the sound is still playing; we just cannot hear it. To repeat
that note, it is necessary only to set the volume again. The POKE to 36874 is not needed.

Therein we have the second way of determining the length of a note. POKE the voice
register with a 0 and that note is turned off and inaudible, regardless of what the volume
register is set at. Make this substitution in the example above:

10 INPUT "LENGTH OF NOTE WANTED (1 TO 10)" ; DELAY

20 GOSUB 100

100 POKE VOLUME, 15
110 POKE VOICE,128

120 FOR N = 1 TO DELAY

130 NEXT N

150 POKE VOICE,O

160 RETURN

Now, the volume is still on high, but we cannot hear the note because the voice register
is turned off. The first example used is a way of controlling the length of all the notes
being played by all the voices simultaneously. This second example shows how to vary
the length of a note played by an individual voice, without altering those of the other
voices. Combinations of these two can be used to produce sophisticated sounds and
melodies.

MUSIC

WHAT IT DOES

Uses keyboard to generate various musical notes.

Variables

• VOLUME: Address to POKE volume
• VCE: Voice currently being used
• L TH: Length of note.

How To Use Subroutine

As written, it will produce a note of the musical scale each time one of the keys of the
Commodore 64 are pressed. You could alter-to produce those same notes when other
keys are DESCRIPTION or when certain program conditions are met.

An array, P(n), stores the numbers which must be POKEd to any sound register to pro
duce a note from the scale. Array N(n) stores the CHR$ value of the keys which corres
pond to those notes.

Using Sound /41

Line By Line Description

Lines 140 to 160: Define volume register, voice to be used, and length of note as
variables.

Line 170: Set sawtooth waveform.

Line 180: DIMension array to store names of notes, note values, and keys which cor
respond to them on the Commodore 64 keyboard.

Lines 190 to 270: Read note names, note values, and keys which correspond to them
into arrays.

Lines 330 to 340: Set attack/decay and sustain/release.

Line 350: Wait for key to be pressed.

Line 360: If key was RETURN, subroutine is over.

Lines 370 to 390: Check to see if key pressed was legal note.

Line 410: POKE volume to maximum.

Line 420: POKE voice chosen with appropriate note.

Line 430: Delay, providing length of note.

Line 440: Turn the volume off.

Line 450: Turn the note off.

Line 460: Go back and wait for next key to be pressed.

You Supply

L TH controls the length of the note. A larger value produces a longer note. You change
to another voice by making the following substitutions:

For Voice #2:

150 VCE = 54275
170 POKE 54283,33
330 POKE 54284,128
340 POKE 54285,128

For Voice #3:

150 VCE = 54287
170 POKE 54290,33
330 POKE 54291,128
340 POKE 54292, 128

RESULT

Music played from Commodore 64 synthesizer.

42/ Commodore 64 Subroutine Cookbook

10 REM *****************
20 REM * *
30 REM * MUSICAL NOTES *
40 REM * *
50 REM ************~****
60 REM -----------------------------
70 REM + + VARIABLES + +
80 REM VOLUME: LOUDNESS REGISTER
90 REM VCE: VOICE
100 REM LTH: LENGTH OF NOTE
110 REM
120 REM -----------------------------

130 REM *** INITIALIZE ***

140 VOLUME = 54296
150 VCE = 54273
160 LTH=200
170 POKE 54276,33
180 DIM NME(14) ,NT$(14) ,p(14)
190 FOR N= 1 TO 14
200 READ NME(N)
210 NEXT N
220 FOR N= 1 TO 14
230 READ NT$(N)
240 NEXT N
250 FOR N=l TO 14
260 READ P(N)
270 NEXT N
280 DATA3,3,4,4,5,6,6,7,7,1,1,2,3,3
290 DATAA,W,S,E,D,F,T,G,Y,H,U,J,K,O
300 DATA 34,36,38,40,43,45,48,51,54,57,61,64,68,72
310 GOTO 480

320 REM *** SUBROUTINE ***

330 POKE 54277,128
340 POKE 54278,128
350 GET A$:IF A$= If II GOTO 350
360 IF A$=CHR$(13) THEN RETURN
370 FOR N= 1 TO 14
380 IF A$=NT$(N) GOTO 410
390 NEXT N
400 GOTO 350
410 POKE VOLUME, 15
420 POKE VCE,P(N)
430 FOR DELAY = 1 TO LTH:NEXT DELAY
440 POKE VOLUME, 0
450 POKE VCE,O
460 GOTO 350

Using Sound / 43

470 REM *** YOUR PROGRAM STARTS HERE ***

480 GOSUB 330

SIREN

WHAT IT DOES

Siren sound routine to produce sounds for games, other applications.

Variables

• Volume: Volume register
• H1: Voice #1, high
• L 1: Voice #1, low
• W1: Wave form voice #1
• A 1 : Attack/decay voice #1
• 51: Sustain/release voice #1
• SAW: Sawtooth waveform.

How To Use Subroutine

Call subroutine when siren sound is desired.

Line By Line Description

Line 160: Define volume register as variable.

Lines 170 to 210: Define registers to POKE notes, waveform, attack/decay and sus
tai n/release parameters.

Line 220: Define sawtooth waveform value as variable, SAW.

Lines 250 to 290: Poke volume, waveform, attack/decay, and sustain/release values
to proper registers.

Lines 300 to 390: POKE sounds to produce siren effect.

You Supply

No user changes required. However, voice of siren may be changed by making the
following substitutions:

For Voice #2:

H1:54275
L1: 54274
W1: 54276
A1: 54277
51: 54278

44 / Commodore 64 Subroutine Cookbook

For Voice #3:

H1: 54280
L1: 54279
W1: 54283
A1: 54284
51: 54285

RESULT

Siren sound emitted for game play or other applications.

10 REM *********
20 REM * *
30 REM * SIREN *
40 REM * *
50 REM *********
55 REM -------------------------------------
60 REM + + VARIABLES + +
70 REM VOLUME: VOLUME REGISTER

80 REM Hl:

90 REM Ll:

100 REM Wl:

VOICE # 1, HIGH

VOICE # 1, LOW

WAVE FORM VOICE 1

110 REM Al: ATTACK/DECAY VOICE 1

120 REM Sl: SUSTAIN/RELEASE VOICE 1

130 REM SAW: SAWTOOTH WAVEFORM

140 REM -----------------------------------

150 REM *** INITIALIZE ***

160 VOLUME = 54296

170 H1 = 54273

180 L1 = 54272

190 W1= 54276

200 Al = 54277

210 Sl = 54278

220 SAW=33

230 GOTO 410

240 REM *** SUBROUTINE ***

250 POKE VOLUME, 15
260 POKE Wi, SAW

270 POKE Ai, 16

280 POKE Sl, 16

290 POKE Hi, 36

300 FOR J = 1 TO 5

310 FOR N=34 TO 72

320 POKE Hl,N

330 POKE Ll,N+75
340 NEXT N

350 FOR N=72 TO 34 STEP -1

360 POKE Hi, N

370 FOR 1=1 TO 40:NEXT I

380 NEXT N

390 NEXT J

400 REM *** YOUR PROGRAM STARTS HERE ***

410 GOSUB 250

COMPUTER SOUND

WHAT IT DOES

Using Sound / 45

Computer-like sound, for games, other applications.

Variables

• VOLUME: Volume register
• H1-H3: Voices #1-3, high
• L1-l3: Voices #1-3, low
• W1-W3: Waveform voice #1-3
• A1-A3: Attack/decay voice #1-3
• 51-53: Sustain/release voice #1-3
• SAW: Sawtooth waveform.

How To Use Subroutine

Call subroutine when sound is desired. Random, computer-like sound is produced.
Subroutine selects random note for all three voices, and plays a number of them, deter
mined by LTH.

Line By Line Description

Line 170: Define length of routine.

Line 180: Define volume register as variable.

46/ Commodore 64 Subroutine Cookbook

Lines 190 to 330: Define registers to POKE notes, waveform, attack/decay and sus
tain/release parameters, for all three voices ..

Line 220: Define triangle and sawtooth waveform value as variables, TRIANGLE and
SAW.

Line 360: Set volume to maximum.

Lines 370 to 460: Set envelope parameters for all three voices.

Line 490: Start loop from 1 to LTH.

Lines 500 to 520: Choose random note for each voice.

Lines 530 to 550: POKE the random note to each voice.

Line 560: Wait random period of time.

Line 570: Repeat loop.

Line 580: Turn volume off.

You Supply

L TH may be redefined to produce longer computer sound effect.

RESULT

Computer-like sounds emitted for game play or other applications.

10 REM ******************
20 REM * *
30 REM * COMPUTER SOUND *
40 REM * *
50 REM ******************
60 REM ---
70 REM + + VARIABLES + +
80 REM VOLUME: VOLUME REGISTER

90 REM Hl-H3: VOICES #1-3, HIGH

100 REM L1-L3 : VOICES # 1-3, LOW

110 REM Wl-W3: WAVE FORM VOICE 1-3

120 REM Al-A3: ATTACK/DECAY VOICE 1-3

130 REM Sl-S3: SUSTAIN/RELEASE VOICE 1-3

140 REM SAW: SAWTOOTH WAVEFORM

150 REM --

160 REM *** INITIALIZE ***

170 LTH=100
180 VOLUME = 54296
190 H1=54273
200 Ll = 54272
210 Wl = 54276
220 H2 = 54280
230 L2 = 54279
240 W2 = 54283
250 H3 = 54287
260 L3 = 54286
270 W3 = 54290
280 A1 = 54277
290 A2 = 54284
300 A3 = 54291
310 Sl= 54278
320 S2 = 54285
330 S3 = 54292
340 TRIANGLE = 17
350 SAw=33
360 POKE VOLUME, 15
370 POKE W1, TRI
380 POKE W2, TRI
390 POKE W3 , SAW
400 POKE Al, 128
410 POKE Sl, 128
420 POKE A2, 128
430 POKE S2, 128
440 POKE A3, 128
450 POKE A4,128
460 POKE H1,36
470 GOTO 610

480 REM *** SUBROUTINE ***

490 FOR N= 1 TO LTH
500 R1 = INT(RND(1) *35)
510 R2=INT(RND(1)*35)
520 R3=INT(RND(1)*35)
530 POKE L1,R1+70:POKE Hl,Rl+30
540 POKE L2,R2+70:POKE H2,R2+30
550 POKE L3,R3+70:POKE H3,R3+30
560 FOR J=l TO INT(RND(1)*15) : NEXT J
570 NEXT N
580 POKE VOLUME, 0
590 RETURN

600 REM *** YOUR PROGRAM STARTS HERE ***

610 GOSUB 490

Using Sound / 47

48/ Commodore 64 Subroutine Cookbook

SAUCER SOUND

WHAT IT DOES

Flying saucer-like sound, for games, other applications.

Variables

• VOLUME: Volume register
• H1: Voice #1, high
• L 1: Voice #1, low
• W1: Waveform voice #1
• A 1 : Attack/decay voice #1
• Sl: Sustain/release voice #1
• SAW: Sawtooth waveform.

How To Use Subroutine

Call subroutine when sound is desired. Wavering, flying saucer-like sound is produced.

Line By Line Description

line 170: Define volume register as variable.

lines 180 to 220: Define registers to POKE notes, waveform, attack/decay and sus
tain/release parameters.

line 230: Define sawtooth waveform value as variable, SAW.

lines 260 to 290: Poke volume, waveform, attack/decay and sustain/release values
to proper registers.

lines 300 to 370: POKE sounds to produce saucer effect.

You Supply

No user changes recommended.

RESULT

Flying saucer-like sounds emitted for game play or other applications.

10 REM ****************
20 REM * *
30 REM * SAUCER SOUND *
40 REM * *
50 REM ****************
60 REM ----------------------------------
70 REM + + VARIABLES + +

80 REM VOLUME: VOLUME REGISTER

90 REM H1: VOICE # 1, HIGH

100 REM 11: VOICE # 1, LOW

110 REM W1: WAVE FORM VOICE 1

120 REM A1: ATTACK/DECAY VOICE 1

130 REM Sl: SUSTAIN/RELEASE VOICE 1

140 REM SAW: SAWTOOTH WAVEFORM

150 REM ------------------------------

160 REM *** INITIALIZE ***

170 VOLUME = 54296

180 H1 = 54273

190 11 = 54272

200 W1 = 54276

210 A1 = 54277

220 Sl = 54278

230 SAW=33

240 GOTO 400

250 REM *** SUBROUTINE ***
260 POKE W1, SAW

270 POKE A1, 128

280 POKE Sl, 128

290 POKE VOLUME, 15

300 FOR N=l TO 100

310 POKE H1, N/2 + 30

320 POKE 11,N/2+75

330 FORG=lT020:NEXTG

340 NEXT N

350 POKE VOLUME,O

360 POKE W1, 0

370 POKE A1, 0

380 RETURN

390 REM *** YOUR PROGRAM STARTS HERE ***

400 GOSUB 260

Using Sound / 49

50/ Commodore 64 Subroutine Cookbook

KLAXON

WHAT IT DOES

Klaxon sound routine to produce sounds for games,
other applications.

Variables

• VOLUME: Volume register
• H1: Voice #1, high
• L 1: Voice #1, low
• W1: Waveform voice #1
• A 1: Attack/decay voice #1
• S 1: Sustain/release voice #1
• SAW: Sawtooth waveform.

How To Use Subroutine

Call subroutine when klaxon is desired.

Line By Line Description

Line 180: Define volume register as variable.

Lines 190 to 250: Define registers to POKE notes, waveform, attack/decay and sus
tain/release parameters.

Line 260: Define sawtooth waveform value as variable, SAW.

Lines 290 to 320: Poke volume, waveform, attack/decay, and sustain/release values
to proper registers.

Lines 330 to 380: POKE sounds to produce klaxon effect.

Line 390: Turn volume off.

You Supply

No user changes required.

RESULT

Klaxon sound emitted for game play or other applications.

10 REM **********
20 REM * *
30 REM * KLAXON *
40 REM * *
50 REM **********
60 REM ---------------------------------
70 REM + + VARIABLES ++
80 REM VOLUME: VOLUME REGISTER

90 REM Hl: VOICE # 1, HIGH

100 REM Ll: VOICE # 1, LOW

110 REM Wl: WAVE FORM VOICE 1

120 REM Al: ATTACK/DECAY VOICE 1

130 REM Sl: SUSTAIN/RELEASE VOICE 1
140 REM SAW: SAWTOOTH WAVEFORM

150 REM ---------------------------------------

170 REM *** INITIALIZE ***

180 VOLUME = 54296

190 Hl = 54273

200 L2 = 54272

210 Wl = 54276

220 Al = 54277

230 Sl = 54278

240 S2 = 54285

250 S3 = 54292

260 SAW=33

270 GOTO 420

280 REM *** SUBROUTINE ***

290 POKE VOLUME, 15

300 POKE Wl,SAW

310 POKE POKE Al, 128

320 POKE Sl, 128

330 FOR J=l TO 5

340 FOR N= 1 TO 100

350 POKE Hl, N/2 + 30

360 POKE Ll,N/2+70

370 NEXT N

380 NEXT J

390 POKE VOLUME, 0

400 RETURN

410 REM *** YOUR PROGRAM STARTS HERE ***

420 GOSUB 290

Using Sound / 51

52/ Commodore 64 Subroutine Cookbook

GUNFIRE

WHAT IT DOES

Gunfire sound routine to produce sounds for games,
other applications.

Variables

• VOLUME: Volume register
• H1: Voice #1, high
• L 1: Voice #1, low
• W1: Waveform voice #1
• A 1: Attack/decay voice #1
• Sl: Sustain/release voice #1
• SAW: Sawtooth waveform.

How To Use Subroutine

Call subroutine when gunfire is desired.

Line By Line Description

Line 150: Define volume register as variable.

Lines 160 to 190: Define registers to POKE notes, waveform, attack/decay parameters.

Lines 220 to 310: POKE sounds to produce gunfire effect.

Line 330: Access the subroutine.

Lines 340 to 360: Choose random delay between shots.

Line 370: Repeat shot.

You Supply

No user changes required. Noise voice must be used.

RESULT

Gunfire sound emitted for game play or other applications.

10 REM ***********
20 REM * *
30 REM * GUNFIRE *

40 REM * *

50 REM **********

55 REM ---------------------------------
60 REM + + VARIABLES ++
70 REM
80 REM

90 REM

VOLUME: VOLUME REGISTER
H1: VOICE # 1, HIGH
11: VOICE # 1, LOW

100 REM W1: WAVE FORM VOICE 1

110 REM A1: ATTACK/DECAY VOICE 1
120 REM Sl: SUSTAIN/RELEASE VOICE 1

130 REM ------------------------------

140 REM *** INITIALIZE ***

150 VOLUME = 54296
160 W1 = 54276

170 A1 = 54277
180 H1 = 54273

190 11 = 54272
200 GOTO 330

210 REM *** SUBROUTINE ***

220 FOR N=15 TO 1 STEP-1
230 POKE VOLUME,N
240 POKE W1, 129
250 POKE A1, 15
260 POKE H1,40
270 POKE L1, 200

280 NEXT N
290 POKE W1, 0
300 POKE A1,0
310 RETURN

320 REM *** YOUR PROGRAM STARTS HERE ***

330 GOSUB 220
340 R= INT(RND(1) *150)
350 FOR N=l TO R
360 NEXT N

370 GOTO 330

Using Sound /53

~ I (Q)1i:lhl®If C@IlilllIlilll@©i@If® (fl)~ I

1rIfn~Ik~

56/ Commodore 64 Subroutine Cookbook

Here is a group of routines that will let you perform specific tasks peculiar to Commodore
computers. Some of these consist of a couple simple POKEs and, admittedly, could
be carried out almost as easily from the keyboard in direct mode. However, they have
been included as subroutines for several reasons.

First, it is typical for users to forget the most needed PEEKs and POKEs particularly
at the times when they are most needed. It is time-consuming to look them up. In addi
tion, some POKEs need an argument. For example, you could look up the proper number
to POKE to change the screenlborder color combi nation and then type that in from the
keyboard. A subroutine in this section will calculate the numbers for you and do all the
work. You just press the color key at the top of the keyboard. That subroutine could
be used in many different graphics programs. Or, you include it in games.

You may also want to perform a function under program control, such as altering which
keys repeat automatically and which don't. By having the proper subroutine available,
this task can be carried out quickly by your program, at the user's discretion.

A variety of housekeeping subroutines are included in this section. One will allow
you, under program control, to set the color of the screen, border, and characters.
Another dissects the proper nybble from a color memory byte and tells you what color
has been set in a given screen memory location.

Also included is a subroutine that makes using the special function keys much easier.
These keys can have a variety of tasks assigned to them in you r programs. Games, for
example, commonly perform some chore when a certain function key is pressed. You
might have Fl pause the game, while F3 quits the game entirely. F5 could clear the
screen, while F7 would exchange sides. Other function keys could display the score
or do some other function.

Remembering all those complex disk commands is made a bit easier by one subroutine
that takes care of them for you.

"Display Tester" prints horizontal and vertical lines on the screen, as well as a series
of color bars that allow you to adjust your color television or monitor for best image.

Those wanting to use user-defined character sets will like the drop-in module that
allows changing up to three characters, while leaving the others unaltered. Some tips
on calculating the necessary numbers while designing your characters are also included.

The final module in this group allows turning your computer's repeat key feature on
and off under program control.

SCREEN, BORDER, AND COLOR CHANGER

WHAT IT DOES

Changes color combination of screen, border and characters.

Variables

• SCREEN: Screen color
• BRDR: Border color
• CCHARS: Character color.

Other Commodore 64 Tricks / 57

How To Use Subroutine

One useful feature for games and other programs is the ability of the Commodore 64
to change the colors of the screen, border, and characters as required. In the 64's com
panion computer, the VIC-20, this can be accomplished by looking up the proper
number to POKE to a location in a table. This subroutine takes care of all the POKing
automatically. Just specify the colors desired, using actual names, for screen, border,
and character colors.

Various colors, corresponding to the colors on the key tops, have been defined as
variables. That is, DARK = 1 (black), WHITE = 2, and so forth. DARK is used instead of
BLACK because the Commodore 64 recognizes only the first two letters of a variable
name. Therefore BLACK and BLUE are the same variable, BL.

In this subroutine the screen has been predefined as red, border as white, and
characters as white.

Line By Line Description

Lines 150 to 180: Define the colors as variables.

Lines 190 to 210: Define memory addresses to POKE to change background, border,
and character colors.

Line 250: Change background color.

Line 260: Change character color.

Line 270: Change border color.

Lines 300 to 320: Define desired combination.

You Supply

A value for SCREEN in the range 1 through 8. For convenience, the actual color names
may be used instead. Also, supply a value for BRDER, using the same scheme. To change
the character colors, define CCHAR as the desired color in the same manner.

RESULT

Screen, border, and character colors change.

58/ Commodore 64 Subroutine Cookbook

10 REM *******************
20 REM * *
30 REM * SCREEN, BORDER, *
40 REM * COLOR CHANGER *
50 REM * *
60 REM *******************
70 REM ----------------------------
80 REM + + VARIABLES + +
90 REM SCREEN: SCREEN COLOR
100 REM
110 REM

BRDER: BORDER COLOR
CCHARS: COLOR OF CHARACTERS

120 REM

130 REM ----------------------------

140 REM *** INITIALIZE ***

150 DARK = 1: 'WHITE = 2
160 RED=3:CYAN=4
170 PURPLE = 5 : GREEN = 6
180 BLUE = 7 : YELLOW = 8
190 BACKGROUND = 53281
200 SURROUND = 53280
210 LTTERS=646
220 GOTO 300

240 REM *** SUBROUTINE ***

250 POKE BACKGROUND, SCREEN-l
260 POKE LTTERS,CC-l
270 POKE SURROUND,BRDR-l
280 RETURN

290 REM *** YOUR PROGRAM STARTS HERE ***

300 SCREEN = DARK
312 BRDER = BLUE
323 CCHARS = 'WHITE
330 GOSUB 250

COLOR PEEKER

WHAT IT DOES

Determines character color in a certain memory location.

Other Commodore 64 Tricks /59

Variables

• COLR$(n): Color
• ADDRESS: Location to PEEK.

How To Use Subroutine

It may be convenient for some programming applications to determine what color is
in a certain spot on the screen. For example, you may write a game program where the
obstacles are various characters, but they are all blue, while the player's ship is another
color. To detect a collision, check to see if the color of the space about to be occupied
is blue.

However, the color memory of the Commodore 64 stores the colors in "nybbles"
rather than full bytes. If a full 256 colors were available with the Commodore 64, then
an enti re byte would be required to assign one number to each color, since the largest
number that can be expressed with a single byte is 255. This is not the case. In fact, 16
colors are used by the Commodore 64 (colors 0 through 15), and can be expressed by
the first four bits of a given color memory location byte. The other four bits are of no
concern and, in fact, contain random information (termed "garbage" in computer slang.)
Half a byte is termed, jocularly, a "nybble" and we need a special technique to read
only that part of a full byte.

POKing a color to a location produces the expected results. If you want to change
the color of location X to white by POKE X,l, the technique works just fine. However,
PEEKing that same location could yield several different decimal numbers, all of which,
expressed in binary, end with "0001." That is, 10100001, 01100001, and 1110001
might be returned from a color memory location, but a four would mean that the color
in that place on the screen would be white. Only the last four bits "count" when work
ing with this type of nybble.

This subroutine filters out the undesired bits by using a technique known as Boolean
logic. Boolean math compares each bit of one byte with the corresponding bit of another
byte. The result depends on what type of operator is used, the most common being AN 0,
OR and NOT. With the AN D operation, if both bits are 1, the result is 1. All other com
parisons produce a value of O. The OR operation produces a 1 if either bit is 1, while
NOT complements each bit. Boolean math is discussed in more detai I later in this book.
For this section, we need to know more of how AND works. The particular bit or bits
looked at depends on the number we choose to AND with. You will remember in
Chapter 2, various numbers were ANDed with a PEEK to determine the status of a given
joystick switch bit. For color memory, we want to know about all of the first four bits
(reading left to right) of a byte, so we AND with 15, which is 00001111 in binary. Here
are a few examples:

COLOR MEMORY BYTE: 11010001
AND with 15 00001111
RESULT: 00000001

COLOR MEMORY BYTE
AND with 15
RESULT:

01100001
00001111
00000001

60/ Commodore 64 Subroutine Cookbook

You'll see by following along the columns that the result equals one only when the
corresponding bit in both the color memory byte and 15 equal 1. Since the second four
bits of the binary equivalent of 15 decimal are always 0, the result will always be o.
Since the first four bits of 15 are all 1 's, the result will be 1 only if there is also a 1 in
the color memory byte.

Since 11010001 and 01100001 both will produce white in color memory, and we
have returned a value of 00000001 by ANDing with 15, the operation has effectively
filtered out the unwanted bits.

Line By Line Description

line 70: DIMension an array to store the names of the colors.

lines 80 to 110: Read those names into the array from data statements.

line 130: Find address of color memory.

line 140: Define CHOICE, location to be PEEKed.

line 150: Add CHOICE to start of color memory.

line 160: PEEK CHOICE, then AND it with 15.

line 290: Print color name from array COLR$(n).

You Supply

The memory location you wish to PEEK, variable ADDRESS. This is determined byad
ding CHOICE (the offset of the address you wish to look at) to CSCREEN (the start of
color memory). In the example, location 25 is used.

RESULT

Variable C will store the number of the key that is the same as that
in location ADDRESS. String array COLR$(C) will print the name of

that color.

10 REM ****************
20 REM * *
.30 REM * COLOR PEEKER *
40 REM * *
50 REM ****************

60 REM *** INITIALIZE ***

70 DIM COLR$ (15)

80 FOR N=O TO 15

90 READ COLR$(N)

100 NEXT N

110 DATA BLACK, WHITE,RED, CYAN, PURPLE, GREEN,

BLUE, YELLOW, ORANGE, LT. ORANGE

Other Commodore 64 Tricks / 61

120 DATAPINK,LT.CYAN,LT.PURPLE,LT.GREEN,LT.BLUE,LT.YELLOW

130 CSCREEN = 55296

140 CHOICE=25

150 ADDRESS = CSCREEN + CHOICE

160 GOTO 270

170 REM ----------------------------
180 REM + + VARIABLES ++
190 REM COLR$(N): COLOR

200 REM

210 REM

220 REM

ADDRESS: LOCATION TO PEEK

230 REM *** SUBROUTINE ***

240 C = PEEK (ADDRESS) AND15

250 RETURN

260 REM *** YOUR PROGRAM STARTS HERE ***
270 PRINT

280 GOSUB 240

290 PRINT II COLOR II ; COLR$ (C)

DISPLAY TESTER

WHAT IT DOES

Displays color bars, horizontal parallel lines, and vertical parallel
lines, to check out video display.

Variables
None.

How To Use Subroutine

This subroutine will provide a quick check of the Commodore 64 video monitor or your
color television. Some misadjustments may produce bending horizontal or vertical lines
or poor color reproduction.

Running the subroutine will produce parallel, horizontal lines to check your entire
screen. Pressing any key will clear the screen and print vertical bars instead. Pressing

62/ Commodore 64 Subroutine Cookbook

the key another time will print color bars, displayed in the same order as the colors ar
rayed on the number keys on the keyboard. You can then adjust your set or monitor
for best color and contrast.

Line By Line Description

Lines 70 to 90: Read color codes into array.

Line 100: DATA of codes to print given colors.

Line 180: Clear screen.

Lines 190 to 220: Print horizontal lines to screen, then wait for a key to be pressed.

Lines 230 to 270: Clear screen, then print vertical bars, and wait for a key to be pressed.

Lines 280 to 350: Print color bars to screen.

You Supply

Set adjustments.

RESULT

Better display quality or rough diagnosis of a problem.

10 REM ******************
20 REM * *
30 REM * DISPLAY TESTER *
40 REM * *
50 REM *****************

60 REM *** INITIALIZE ***

70 FOR N=l TO 8

80 READ COLR(N)

90 NEXT N

100 DATA 144,5,28,159,156,30,31,158
110 GOTO 410

120 REM ----------------------------
130 REM
140 REM

150 REM

+ + VARIABLES ++
NONE

160 REM ----------------------------

170 REM *** SUBROUTINE ***

180 PRINT CHR$(147)

190 FOR N= 1 TO 999

200 PRINT CHR$(196) i

210 NEXT N

220 GET A$: IF A$ = " " GOTO 220

230 PRINT CHR$(147)

240 FOR N= 1 TO 999

250 PRINT CHR$(212) i
260 NEXT N

270 GET A$: IF A$ = " " GOTO 270
280 PRINT CHR$(147)

290 FOR ROW = 1 TO 24

300 FOR N = 1 TO 4

310 FOR CO=l TO 8

320 PRINT CHR$(COLR(CO)) i

330 PRINT CHR$(18) iCHR$(32) i

340 NEXT CO

350 NEXT N

360 PRINT

370 NEXT ROW

380 GET A$: IF A$ = " " GO TO 380

390 RETURN

400 REM *** YOUR PROGRAM STARTS HERE ***

410 PRINT

420 GOSUB 180

Other Commodore 64 Tricks / 63

SCREEN BLANKER

WHAT IT DOES

Allows blanking the Commodore 64 screen, while preserving data
printed there.

Variables

None.

How To Use Subroutine

The normal "clear screen" routine destroys the data printed there. You may want to
temporarily clear the screen to hide its contents from the operator. Or, your game may
be writing some message to the screen, and you want to reveal it to the player all at
one time.

64 / Commodore 64 Subroutine Cookbook

This subroutine wi II temporari Iy change the screen and character color to match the
border color, obscuring the writing on the screen. Call the first routine when you want
screen blanking. Then, have your program call the second routine to restore the image
to its original state.

Line By Line Description

Line 130: Blank screen.

Line 160: Restore screen.

Line 200: Access subroutine.

Lines 210 to 220: Delay before restoring screen.

Line 230: Access restore subroutine.

You Supply

No user changes required.

RESULT

Screen image blanked.

10 REM ****************
20 REM * *
30 REM * BLANK SCREEN *
40 REM * *
50 REM ****************
60 GOTO 190

70 REM ----------------------------
80 REM

90 REM

100 REM

++ VARIABLES ++
NONE

110 REM ----------------------------

120 REM *** BLANK SUBROUTINE ***

130 POKE 53265, PEEK(53265) AND 239

140 RETURN

150 REM *** RESTORE SUBROUTINE ***

160 POKE 53265, PEEK (53265) OR 16

170 RETURN

180 REM *** YOUR PROGRAM STARTS HERE ***

190 PRINT
200 GOSUB 130
210 FOR N = 1 TO 1000
220 NEXT N
230 GOSUB 160

Other Commodore 64 Tricks / 65

PROGRAM CHARACTERS

WHAT IT DOES

Redefine five characters to user-specified set.

Variables

None.

How To Use Subroutine

The Commodore 64 allows redefining its character set. The existing characters are con
structed on an eight by eight-dot matrix, with the first and last columns usually empty,
and the bottom row empty. That arrangement leaves space between each character and
the next. Look at how a letter "A" is put together. Each "0" is considered a blank space,
and each "1" a dot that is filled in:

o 0 0 1 1 0 0 0
o 0 100 100
01000 0 1 0
o 111 1 1 1 0
010 0 0 0 1 0
010 0 0 0 1 0
01000 0 1 0
o 0 0 0 0 000

See the letter" A" in that pattern? Since each row is eight characters across, and each
character is either a zero or a one, it is convenient to think of each row as a byte and
to store it that way in memory. Eight consecutive bytes will store the eight rows needed
to describe a given character.

This is exactly what the Commodore 64 does. The information on the letter "A" begins
at memory location 53256 and continues for eight bytes. The first line above, 00011000,
in binary, is 24 in decimal. Similar eight-byte groups are found in memory to tell the
computer how to form all the alpha and graphics characters, including reversed
characters.

Unfortunately, characters are actually stored in ROM. We can READ the information
but not change it. However, when the Commodore 64 wants to find out how to build
a given character, it does not go directly to the proper ROM location. Instead, it checks
a RAM location, which tells it where to find the beginning of the character memory.

66 / Commodore 64 Subroutine Cookbook

If you change this, you must arrange to have ALL the characters you want to use moved
to the new location. The Commodore 64 will not go back and forth, looking in ROM
for some characters, and RAM for others. Normally, this is accomplished by COPYI NG
from ROM the information about all the characters you want to use and then modify
ing only those you want changed.

That is what is done in this subroutine. The first step is to tell the Commodore 64 not
to look at the normal location for its character information but to start at 12288 decimal
instead. Because this location is BASIC RAM, we have to protect it by lowering the top
of RAM memory. That is accomplished by POKing 48 into 52 and 56 decimal, which
are the registers that keep track of how much RAM is available for programs. Once those
pointers have been changed, your program will not use any of the memory set aside
for characters. The new character set wi II be safe.

Next, we will copy 64 characters from ROM into the protected RAM locations. This
is with a FOR-NEXT loop, which PEEKs in the ROM, extracts a byte, and POKEs it in
the next location of the protected area.

If the program did nothing more than that, then the character set would look exactly
the same, except that the Commodore 64 would be obtaining the information from a
different place. Instead, we will POKE some new data into the locations for some selected
characters that are not needed by our program. These characters are "at" sign (@), the
exclamation point (!), and the greater than symbol (», the less than symbol «), and
the equals sign (=). The characters chosen now are defined beginning at 12288, 12552,
12784, 12768, and 12776, respectively.

We POKE those new values, determined by laying out an 8 x 8 dot grid. Some sam
ple characters are supplied as DATA lines. To form your own, change the binary values
obtained to the decimal equivalent, and substitute in the DATA lines.

Line By Line Description

Lines 120 to 140: Protect memory, and redefine where computer collects its character
set from.

Lines 160 to 200: Copy old characters, arrange for new set.

Lines 220 to 250: POKE new data for @ character.

Lines 270 to 300: POKE new data for! character.

Lines 320 to 350: POKE new data for > character.

Lines 370 to 400: POKE new data for < character.

Lines 420 to 450: POKE new data for = character.

Lines 470 to 510: DATA lines with new character data.

Line 540: Print new characters.

You Supply

New DATA lines corresponding to your redesigned characters. Layout your characters
in an 8 x 8 grid, as shown above, and convert each byte to binary. This can be done
by taking each of the eight bits, from right to left, and multiplying by 2 to the P power,
where P is the position, from the right, of that bit.

For example, 10010111 would be:

1 ti mes 2 to the zeroth power
1 times 2 to the first power
1 times 2 to the second power
o times 2 to the third power
1 times 2 to the fourth power
o times 2 to the fifth power
o times 2 to the sixth power
1 times 2 to the seventh power

Total:

(1)

(2)
(4)

(0)

(16)

(0)
(0)
(128)

151 decimal

Other Commodore 64 Tricks / 67

Repeat for each byte, to the total of eight in the matrix.

RESULT

Pressing "@", "!", II <", II _", and ">" keys, or using them in a
program will produce new, redefined characters.

10 REM **************
20 REM * *
30 REM * CHARACTERS *
40 REM * *
50 REM **************
60 REM ---------------------------
70 REM

80 REM

90 REM

+ + VARIABLES + +
NONE

100 REM ---------------------------

110 REM *** INITIALIZE ***

120 POKE 52,48: POKE 56,48: CLR

130 POKE 56334,PEEK(56334)AND254

140 POKE1,PEEK(1)AND251

150 REM *** COPY OLD CHARS ***

160 FOR I =0 TO 511

170 POKE I + 12288,PEEK(I + 53248)

180 NEXT I: POKE1, PEEK (1) OR4

190 POKE 56334, PEEK(56334) ORl

200 POKE 53272, (PEEK(53272)AND240) +12

210 REM *** CHANGE @ ***

68/ Commodore 64 Subroutine Cookbook

220 FOR N = 12288 TO 12288 + 7

230 READ H

240 POKE N,H

250 NEXT N

260 REM *** CHANGE ! ***

270 FOR N=12552 TO 12552+7

280 READ H

290 POKE N,H

300 NEXT N

310 REM *** CHANGE > ***

320 FOR N = 12784 TO 12784 + 7

330 READ H

340 POKE N,H

350 NEXT N

360 REM *** CHANGE < ***

370 FOR N = 12768 TO 12768 + 7

380 READ H

390 POKE N,H

400 NEXT N

410 REM *** CHANGE = ***

420 FOR N = 12776 TO 12776 + 7

430 READ H

440 POKE N,H

450 NEXT N

460 REM *** SUBSTITUTE YOUR DATA ***

470 DATA 226,164,27,40,108,176,175,132

480 DATA 195,195,68,60,24,24,60,24

490 DATA 255,129,189,165,165,189,129,255

500 DATA 195,195,68,60,24,24,60,24

510 DATA 255,129,189,165,165,189,129,255

520 REM *** YOUR PROGRAM STARTS HERE ***

530 PRINT CHR$(147)

540 PRINT"! = > <@"

Other Commodore 64 Tricks / 69

REPEAT KEYS

WHAT IT DOES

Changes repeat keys and cursor color

Variables

• YES: Repeat all keys
• NO: Don't repeat
• SHADE: Color for cursor.

How To Use Subroutine

This subroutine allows turning "ON" or "OFF" the repeat key feature of your Com
modore 64. Poking memory location AGAIN with variable YES will turn on the repeat
feature. POKing AGAIN with NO will turn it off.

As a secondary function, the subroutine will also change the cursor color.

Line By Line Description

Lines 150 to 220: Define colors as vairables.

Lines 230 to 240: Define YES and NO variables.

Lines 250 to 260: Define addresses to POKE for repeat keys and cursor change.

Line 290: Define cursor color.

Line 300: Change cursor color.

Line 310: Change repeat key feature.

You Supply

• Variable YES or NO
• A value for SHADE, the cursor color.

RESULT

Either key repeat feature is turned ON, OFF, and cursor color
adjusted.

70/ Commodore 64 Subroutine Cookbook

10 REM ****************
20 REM * *
30 REM * REPEAT KEYS, *
40 REM * CURSOR COLOR *
50 REM * *
60 REM ****************
70 REM ----------------------------
80 REM

90 REM

100 REM
110 REM

++ VARIABLES ++
YES: REPEAT KEYS

NO: DON'T REPEAT
SHADE: NEW COLOR OF CURSOR

120 REM

130 REM ----------------------------

140 REM *** INITIALIZE ***

150 DARK = 1

160 WHITE=2

170 RED=3
180 CYAN=4

190 PURPLE = 5

200 GREEN=6
210 BLUE=7

220 YELLOW = 8

230 YES=128
240 NO=O

250 AGAIN=650

260 CURSR = 646

270 GO TO 340

280 REM *** SUBROUTINE ***

290 SHADE = RED

300 POKE CURSR,SHADE-1

310 POKE AGAIN, YES

320 RETURN

330 REM *** YOUR PROGRAM STARTS HERE ***

340 GOSUB 290

FUNCTION KEYS

WHAT IT DOES

Sends control to various subroutines, depending on which special
function key has been pressed.

Other Commodore 64 Tricks /71

Variables

• A: Value of function key pressed.

How To Use Subroutine
The Commodore 64 function keys are nothing more than normal keyboard keys similar
to those more commonly used. The difference is that no alphanumeric character is assign
ed to the function keys, like the letters A to Z, or numbers 0 to 9. Nor is a punctuation
mark or other special character alloted to the function keys, like the"." or "," or Con
trol key. The function keys actual do nothing but tell the computer that their particular
key was pressed.

To oversimplify things a bit, when you press the letter A, the Commodore 64 knows
that CHR$(65) (which corresponds to the letter A) has been pressed. Similarly, when
the space bar is pressed, the computer recognizes CHR$(32.) The special function keys
just return a CHR$ code of their own which, while not a letter of the alphabet, like
CHR$(65), can be processed by the computer just as if a letter or number key were
pressed. In the Commodore 64, the function F1, F3, F5, and F7 correspond to
CHR$(133), CHR$(134) CHR$(135) and CHR$(136) respectively. The shifted function
keys (F2, F4, F6, and F8) return CHR$(137) to CHR$(140).

To "program" them to perform some special function, it is necessary to determine
which has been pressed, and then direct control of the program to an appropriate
subroutine that actually carries out the function we want.

This FUNCTION KEY subroutine checks to see if one of the function keys has been
depressed (CHR$(133) to CHR$(140)) and then sends the program to one of eight dum
my subroutines. As written, the subroutine does NOTHING. You should substitute
subroutines of your own for the dummies, in order to accomplish the task you want.

For example, one may be to clear the screen; another to change the real-time clock.
You may use as many or as few as you wish. To filter out unwanted function keys, change
line 170 to send control back to line 140 if an unneeded key is pressed:

170 ON A-132 GOSUB 210,230,250,270,290,310
175 GOTO 140

The above line will ignore function keys F6 and F8.

Line By Line Description
Line 140: Wait for user to press a key.

Line 150: Find out ASCII, or CHR$ code for that key.

Line 160: If key was not a function key, go back and wait some more.

Line 170: Depending on which key was pressed, access subroutine corresponding
to that key.

Lines 210 to 360: Dummy subroutines to be replaced by user.

You Supply

• Subroutines as needed
• Modifications to filter out unwanted keys.

72/ Commodore 64 Subroutine Cookbook

RESULT

Pressing function key leads to various subroutines.

10 REM *****************
20 REM * *
30 REM * FUNCTION KEYS *
40 REM * *
50 REM *****************
60 GOTO 140

70 REM ----------------------------
80 REM

90 REM

100 REM

110 REM

+ + VARIABLES ++
A: VALUE OF FUNCTION

KEY PRESSED

120 REM ----------------------------

130 REM *** SUBROUTINE ***

140 GET A$: IF A$ = " " GOTO 140

150 A=ASC(A$)

160 IF A < 133 OR A> 140 GO TO 140

170 ON A-132 GOSUB 210,230,250,270,290,310,330,350

180 REM *** YOUR PROGRAM STARTS HERE ***
190 GOTO 140

200 REM *** DEFINE FUNCTIONS HERE ***
210 PRINT" Fl PRESSED"

220 RETURN

230 PRINT" F3 PRESSED"

240 RETURN

250 PRINT" F5 PRESSED"

260 RETURN

270 PRINT" F7 PRESSED"

280 RETURN

290 PRINT" F2 PRESSED"

300 RETURN

310 PRINT" F4 PRESSED"

320 RETURN

330 PRINT" F6 PRESSED"

340 RETURN

350 PRINT" F8 PRESSED"

360 RETURN

Other Commodore 64 Tricks / 73

DISK COMMAND

WHAT IT DOES

Displays a menu that user can choose from to carry out formatting
of new disk, scratching of unwanted programs from disk, initializing

disk, or validating disk.

Variables

• NC: Number of menu choices.

How To Use Subroutine

This subroutine can be appended onto the end of any program, given line numbers that
do not conflict. Then, by RUNning that portion, various disk commands can be carried
out quickly.

The routines include formatting a new disk and killing unwanted programs from the
disk. (This is also recommended over the SAVE"@O:filename",B command, which can
destroy files.) The menu selections also allow validating and initializing a disk.

You may add your own functions by writing additional routines, appending the choice
to the menu, and increasing NC to reflect the new number of choices.

Line By Line Description

Lines 150 to 250: Menu of command choices.

Line 260: If number entered larger than NC, number of choices, go back and wait
some more.

Line 270: Access desired subroutine.

Lines 320 to 430: Ask for disk name and ID, then format new disk.

Lines 440 to 550: Ask for name of program to be scratched, then erase from disk.

Lines 560 to 610: Initialize disk.

Lines 620 to 670: Validate disk.

You Supply

• A value for NC whenever the menu is enlarged.

RESULT

Disk functions carried out automatically.

74/ Commodore 64 Subroutine Cookbook

10 REM ****************
20 REM * *
30 REM * DISK COMMAND *
40 REM * *
50 REM ****************

60 REM *** INITIALIZE ***

70 NC=4

80 GOTO 300

90 REM ----------------------------
100 REM

110 REM

120 REM

+ + VARIABLES + +
NC: NUMBER OF MENU CHOICES

130 REM ----------------------------

140 REM *** SUBROUTINE ***

150 PRINT CHR$(147)

160 PRINT TAB (6) "** MENU **"
170 PRINT CHR$(17)jCHR$(17)
180 PRINT TAB(J) "1. FORMAT NEW DISK"

190 PRINT TABO) "2. SCRATCH PROGRAM"

200 PRINT TAB 0) " 3. INITIALIZE"

210 PRINT TAB (J) "4. VALIDATE"

220 PRINT CHR$(17)

230 PRINT TAB (6) "ENTER CHOICE"

240 GET A$: IF A$ = " " GOTO 240

250 A=VAL(A$)

260 IF A< lOR A>NC GOTO 240

270 ON A GOSUB 330,450,570,630

280 RETURN

290 REM *** YOUR PROGRAM STARTS HERE ***

300 PRINT

310 GOSUB 150

315 REM *** COMMANDS ***

320 REM -FORMAT-

330 PRINT CHR$(147)

340 PRINT" INSERT DISK TO"

350 PRINT "BE FORMATTED."

360 PRINT

370 INPUT "DISK NAME: ";N$

380 INPUT" ID? (2 CHAR) : " ; ID$

390 ID$ = LEFT$ (ID$, 2)

400 OPEN15,8,15

410 PRINT # 15, "NO :N$, ID$"

420 CLOSE 15

430 GO TO 310

440 REM -SCRATCH-

450 PRINT CHR$(147)

460 OPEN15,8,15

470 PRINT "NAME OF PROGRAM"

480 PRINT "TO BE SCRATCHED : "

490 PRINT

500 PRINT" < RETURN> TO QUIT. "

510 INPUT PROGRAM$

520 IF PROGRAM$ = " " THEN CLOSE 15: GOTO 310

530 PRINT # 15, "SO: PROGRAM$ "

540 PROGRAM$ = " "
550 GO TO 470

560 REM -INITIALIZE DISK-

570 PRINT CHR$(147)

580 OPEN15,8,15

590 PRINT#15," I"

600 CLOSE 15

610 GOTO 310

620 REM -VALIDATE-

630 PRINT CHR$(147)

640 OPEN15,8,15

650 PRINT#15, "V"

660 CLOSE15

670 GOTO 310

Other Commodore 64 Tricks / 75

78/ Commodore 64 Subroutine Cookbook

Here are some BASIC routinesthatwill make your programming a bit easier. These are
general subroutines that can be applied to many different programs. Two are " user in
terface" routines that trap errors by permitting the operator to enter ON L Y the type of
input that is required by the program. If numbers only, or alpha characters only, are
desired, that is what the routines will accept. All other characters are ignored. By using
these, you can explore the concept of error traps and see how avoiding improper en
tries can reduce the frustration of first-time users of your programs.

Three sort routines are included for those who need to rearrange lists of numbers or
strings. Two bubble sorts are included, as these are the easiest to understand and to
modify.

Loading arrays with data is one of the most frequent requirements for any BASIC pro
gram. Beginners are often confused by arrays. Yet, this is one of the most important con
cepts after FOR-NEXT loops, and program branching (GOTO, GOSUB). The array
loading subroutine is included here primarily for educational value. If you don't under
stand how to fill an array, you probably couldn't use it properly. The example presented
is a fully-working program that the user can RUN and experiment with until arrays are
more fully understood.

The array routine can be transplanted to other programs, however, and interfaced with
disk or tape read/write routines, provided later in this book, to build a complete data
base program with permanent files.

"Automatic Saver" is a program development util ity that helps protect the user from
data loss due to power outages. It makes periodic saves more convenient, especially
when using disk drives, which do not lend themselves to using the same file name over
and over easily.

These BASIC tricks are all simple enough to find their way into many of your programs.

NUMBER INPUT

WHAT IT DOES

Allows user to input only numbers

Variables

• I: Number entered
• 1$: String entered.

How To Use Subroutine

Well-written programs include features that trap possible errors by the user-or avoid
them entirely. When numbers only are expected for INPUT, an elegantly constructed
program will accept only numeric entries and reject everything else.

The most common procedures all have drawbacks. A line like "10 INPUT A" will
indeed accept only numbers. However, if a user happens to enter a string instead, only
a cryptic liRE-DO FROM START" message will be displayed. That's not much help for
a naive operator.

Basic Tricks / 79

Another less-than-perfect solution is to use a line like "10 INPUT A$:A = VAL(A$):IF
A < 1 GOTO 10". If the user enters alpha characters, the program loops back and the
input must be repeated.

This subroutine takes a different approach. It totally ignores non-numbers; if the
operator presses an illegal key, it isn't even echoed to the screen. The keyboard responds
only when numeric keys are pressed.

The secret is a GET A$ loop. If the user presses a number key, that letter is added to
1$. When A$ equals CHR$(13), a carriage return, then input is over. Otherwise, the loop
repeats allowing additional numeric entries.

When the subroutine ends, variable I will have the value of the user's entry.

Line By Line Description

Line 140: Wait for user entry.

Line 150: If key pressed was RETURN, then input is finished.

Line 160: If key was less than 0 or greater than 9, go back and wait for another entry.

Line 170: Print acceptable key pressed to screen.

Line 180: Add key to previous entries.

Line 190: Go back for more entries.

Line 200: Variable I equals value of entries.

Line 230: Access the subroutine.

You Supply

User may change the upper and lower limits in line 160 to restrict the range of numbers
to be entered. This might be useful when getting input for, say, a menu with only five
choices. All numbers over five, and all alpha characters would be ignored.

RESULT

Only user numeric input, in the form of positive numbers, is allowed.

10 REM ****************
20 REM * *
]0 REM * NUMBER INPUT *
40 REM * *
50 REM ****************
60 REM -----------------------
70 REM
80 REM
90 REM
100 REM

++ VARIABLES ++
I : NUMBER ENTERED
1$: STRING ENTERED

110 REM -----------------------
120 GOTO 230

80/ Commodore 64 Subroutine Cookbook

130 REM *** SUBROUTINE ***

140 GET A$: IF A$ = " " GOTO 140

150 IF A$=CHR$(13) GO TO 200

160 IF A$< "0" OR A$> "9" GOTO 140

170 PRINT A$;

180 I$=I$+A$

190 GOTO 140

200 I =VAL(I$) : PRINT

210 RETURN

220 REM *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 140

LETIERINPUT

WHAT IT DOES

Allows user to input only alpha characters.

Variables

• 1$: String entered.

How To Use Subroutine

At times you will want only alpha characters to be input in a program with all other en
tries, such as numbers or graphics characters, to be ignored. For example, word games
might allow only the 26 letters A-Z, while rejecting other keys entirely.

This subroutine does exactly that. The user may enter any alpha character. Others
are ignored. If the operator presses an illegal key, it isn't even echoed to the screen. The
keyboard responds only when alpha keys are pressed.

The secret is a GET A$ loop. If the user presses a letter key, that letter is added to 1$.
When A$ equals CHR$(13), a carriage return, then input is over. Otherwise, the loop
repeats allowing additional alphabetic entries.

When the subroutine ends, variable 1$ will have the value of the user's entry.

Line By Line Description

Line 130: Wait for user entry.

Line 140: If key pressed was RETURN, then input is finished.

Line 150: If key was less than A or greater than Z, go back and wait for another entry.

Line 160: Print acceptable key pressed to screen.

Line 170: Add key to previous entries.

Line 180: Go back for more entries.

Line 210: Access the subroutine.

You Supply

Basic Tricks / 81

User may change the upper and lower limits in line 150 to restrict the range of alpha
characters that can be entered. This might be useful when getting input for, say, a game
like Mastermind(TM) where only the letters A-E are wanted. All numbers, graphics, and
alpha characters larger than E can be ignored.

RESULT

Only user alpha input is allowed.

10 REM ****************
20 REM * *
30 REM * LETTER INPUT *
40 REM * *
50 REM ****************
60 REM -----------------------
70 REM

80 REM

90 REM

+ + VARIABLES + +

I$: STRING ENTERED

100 REM -----------------------
110 GOTO 210

120 REM *** SUBROUTINE ***

130 GET A$: IF A$ = II II GO TO 130

140 IF A$=CHR$(13) GOTO 190

150 IF A$ < II A II OR A$ > II Z II GO TO 130

160 PRINT A$;

170 I$=I$+A$

180 GOTO 130

190 RETURN

200 REM *** YOUR PROGRAM STARTS HERE ***

210 GOSUB 130

82/ Commodore 64 Subroutine Cookbook

Variables

STRING SORT

WHAT IT DOES

Alphabetizes a list.

• NU: Number of items to be sorted
• US$(n): Array storing list to be sorted.

How To Use Subroutine

Sorting a list is a common need for many programs. Data files, mailing lists, and other
groups may be more easily handled when sorted. This routine is a simple bubble sort
which will alphabetize any list that has been loaded into an array, US$(n).

Although as written the subroutine asks the user to enter the list from the keyboard,
any means can be used to load the array. The file may also be read from disk or tape,
for example, using one of the routines presented later in this book.

The bubble sort is so-called because each entry in the array is examined and then
allowed to rise up past the one below until it encounters a "smaller" item. When
comparing strings, smaller is defined as an entry that, when alphabetized, comes before
the larger entry. That is, "computerization" is smaller than "contain" even though it
has the same number of letters, because it would be placed on an alphabetized list
first. In computer terminology, we would say that: "computerization" < "contain" is
a true statement. In making the comparision between strings, the Commodore 64 will
look at as many characters in the string as necessary to differentiate. For example,
"contain" < "contains."

In the bubble sort, each element of the array will gradually rise until it encounters
a smaller item. Gradually, each member of the list "floats" up to its proper place in the
array.

While such sorts are not very fast, small lists of, say, 30 or 40 items, the speed is
satisfactory.

Line By Line Description

Line 130: Define NU, the number of units in the array to be sorted.

Line 140: DIMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A disk or tape file
read routine could be substituted for these lines to sort an existing string file.

Line 210: Start loop from 1 to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 less than the number of items to be sorted.

Line 230: Make A$ equal to the N 1 th item of the array.

Line 240: Make B$ equal to the item following A$ in the array.

Basic Tricks / 83

Line 250: If the "higher" element, A$, is already smaller than B$, then B$ remains
where it is, and the inner loop steps off the next value of N 1.

Lines 260 to 270: If B$ is smaller than A$, then the two strings are swapped, with
B$ moving ahead one element, and A$ being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.

Lines 300 to 320: The sorted list is printed to the screen.

You Supply

• Define N U, the number of items to be sorted
• Supply the data for the array, US$(n).

RESULT

List is sorted alphabetically.

10 REM ***************
20 REM * *
30 REM * STRING SORT *
40 REM * *
50 REM ***************
60 REM ----------------------------
70 REM

80 REM

90 REM

100 REM

+ + VARIABLES ++
NU: NUMBER OF ITEMS SORTED

US$(N): ARRAY WITH ITEMS

110 REM ----------------------------

120 REM *** INITIALIZE ***

130 NU=10

140 DIM US$(NU)

150 GOTO 350

160 REM *** SUBROUTINE ***

84 / Commodore 64 Subroutine Cookbook

170 FOR ITEM = 1 TO NU

180 PRINT" ENTER # II j ITEM

190 INPUT US$(ITEM)

200 NEXT ITEM

210 FOR N= 1 TO NU

220 FOR Nl= 1 TO NU-N

230 A$=US$(Nl)

240 B$=US$(Nl+l)

250 IF A$ < B$ THEN GOTO 280

260 US$(Nl) =B$

270 US$(Nl+l) =A$

280 NEXT Nl

290 NEXT N

300 FOR N= 1 TO NU

310 PRINT US$(N)

320 NEXT N

330 RETURN

340 REM *** YOUR PROGRAM STARTS HERE ***

350 GOSUB 170

NUMBER SORT

WHAT IT DOES

Sort group of numbers by size.

Variables

• NU: Number of items to be sorted
• US(n): Array storing list to be sorted.

How To Use Subroutine

Sorting a list of numbers is a common need for many programs. Checking account files
and other groups of numbers often have to be sorted to be most useful. This routine is
a simple bubble sort, which will sort any group of numbers that have been loaded into
an array, US(n).

Although as written the subroutine asks the user to enter the number list from the
keyboard, any means can be used to load the array. The fi Ie may also be read from disk
or tape, for example, using one of the routines presented later in this book.

The bubble sort is so-called because each entry in the array is examined, and then
allowed to rise up past the one below until it encounters a "smaller" item. Numeric

Basic Tricks / 85

sorts are easier to understand than string sorts, because simple number comparisons
are used. That is, 1237 is always larger than 32.6, and smaller than 7844. Gradually,
each member of the list "floats" up to its proper place in the array.

While such sorts are not very fast, with small lists of, say, 30 or 40 items, the speed
is satisfactory.

tine By Line Description
Line 130: Define NU, the number of units in the array to be sorted.

Line 140: DIMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A disk or tape file
read routine could be substituted for these lines to sort an existing string file.

Line 210: Start loop from 1 to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 less than the number of items to be sorted.

Line 230: Make A equal to the N 1 th item of the array.

Line 240: Make B equal to the item following A in the array.

Line 250: If the "higher" element, A, is already smaller than B, then B remains where
it is, and the inner loop steps off the next value of N 1.

Lines 260 to 270: If B is smaller than A, then the two numbers are swapped, with B
moving ahead one element, and A$ being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.

Lines 200 to 320: The sorted list is printed to the screen.

You Supply
• Define NU, the number of items to be sorted
• Supply the data for the array, US(n).

RESULT

List of numbers is sorted by size.

10 REM ***************
20 REM * *
30 REM * NUMBER SORT *
40 REM * *
50 REM ***************
60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM NU: NUMBER OF ITEMS SORTED
90 REM US(N): ARRAY WITH ITEMS
100 REM

110 REM ----------------------------

86 / Commodore 64 Subroutine Cookbook

120 REM *** INITIALIZE ***

130 NU=10
140 DIM US(NU)

150 GOTO 350

160 REM *** SUBROUTINE ***

170 FOR ITEM = 1 TO NU

180 PRINT" ENTER # " ; ITEM
190 INPUT US(ITEM)

200 NEXT ITEM

210 FOR N=l TO NU

220 FOR N1 = 1 TO NU-N

230 A=US(N1)

240 B=US(N1+1)

250 IF A < B THEN GOTO 280

260 US(N1) =B

270 US(N1+1) =A
280 NEXT N1

290 NEXT N

300 FOR N=l TO NU

310 PRINT US(N)

320 NEXT N

330 RETURN

340 REM *** YOUR PROGRAM STARTS HERE ***

350 GOSUB 170

ARRAY LOADER

WHAT IT DOES

load array with data.

Variables

• NROWS: Number of rows in array
• NCOLUMNS: Number of columns in array.

How To Use Subroutine

An array is a table with rows and columns storing lists of data. In a checkbook register,
each row might contain information about a single check/deposit transaction. The col
umns would contain specific entries, such as check number, payee, date, and amount.

Basic Tricks /87

Once a data file has been assembled with such information, a routine is needed to
load it into an array where it can be manipulated, sorted, added to, or entries deleted.
This subroutine does exactly that. Although written for a string array, it can be converted
to a numeric array simply by deleting the variable type specifier, 1/$." That is,
DTA$(row,column) should become DTA(row,column), and A$ should be changed to A.

Study this example to learn more of how arrays work, as they are one of the most i m
portant concepts in BASIC programming.

Line By Line Description

Lines 140 to 150: Define number of rows and columns in the data file. User should
change these numbers to reflect their own data.

Line 160: Dummy data, in this example a name, address, and phone number.

Line 170: DIMension array to size specified by values of NR and NC.

Lines 200 to 210: Begin nested loops which repeat for the number of rows, and the
number of columns.

Line 220: READ item of DATA.

Line 230: Place data in current array element, defined by ROWand COLUMN in FOR
NEXT loop. Each time through the inner loop, column will be incremented by one, while
ROW remains the same. When finished, ROW is incremented by one, and the inner
loop repeats. As a result, DTA$(1,l) is loaded first, followed by DTA$(1,2) and
DTA$(l ,3). Then, DATA$(2, 1), and so forth, are filled from the DATA.

Lines 240 to 250: Increment the FOR-NEXT loops.

Line 290: Access the subroutine.

Lines 300 to 350: Print out the data loaded into the array.

You Supply

The number of rows, NROWS, and number of columns, NCOLUMNS should be
specified. Data can be supplied from DATA lines or, better, read in from disk or tape.

RESULT

Data list is loaded into array.

88/ Commodore 64 Subroutine Cookbook

10 REM ****************
20 REM * *
30 REM * ARRAY LOADER *
40 REM * *
50 REM ****************
60 GOTO 280

70 REM ----------------------------
80 REM

90 REM
100 REM

110 REM

+ + VARIABLES + +
NROWS: NUMBER OF ROWS

NCOLUMNS: NUMBER OF COLUMNS

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 NROWS=2

150 NCOLUMNS = 3

160 DATA JOE,2 PINE,232-4531,SAM, 1 ROE, 445-3622
170 DIM DTA$(NR,NC)

180 GOTO 280

190 REM *** SUBROUTINE ***

200 FOR ROW = 1 TO NROWS

210 FOR COLUMN = 1 TO NCOLUMNS

220 READ A$

230 DTA$(ROW,COLUMN) =A$

240 NEXT COLUMN
250 NEXT ROW

260 RETURN

270 REM *** YOUR PROGRAM STARTS HERE ***

280 PRINT

290 GOSUB 200
300 PRINT r r NAME ADDRESS PHONE r r

310 PRINT

320 FOR ROW = 1 TO NROWS

330 FOR COL = 1 TO NCOL

340 PRINTDTA$(ROW,COL);" ";

350 NEXT COL

360 PRINT

370 NEXT ROW

Variables
• F$: Name of your program.

SUPER SAVER

WHAT IT DOES

SAVES program to disk.

How To Use Subroutine

Basic Tricks / 89

Frequent SAVING of a program under construction is good insurance against losing hours
of work to a power failure or accidental keyboard lockup. The fast operation of a disk
drive makes this step easy.

However, it is sometimes advisable to save a program under a different name each
time so that, if necessary, one can go back to an earlier version when a later incarna
tion has gone awry. In addition, saving a program by writing over the earlier version,
using the SAVE"@:filename",8 syntax can be dangerous. Under some conditions, a file
can be destroyed. Rather than SCRATCH the old file before resaving, use this subroutine
to create a new filename automatically.

The subroutine takes the name of the program you specify, F$, in line 130, and adds
to it the current time on the real-time clock, TI$. So, each SAVE during a session will
have filenames like "TEST120330", "TEST132015", and so forth. After all work is finish
ed, simply SCRATCH the unwanted versions, and save the final copy.

Renumber the subroutine with high line numbers, say, 30000 and over. Then, each
time you wish to SAVE the file, type RUN 30000. The rest is automatic.

Line By Line Description
Line 130: F$ is defined as "TEST" plus the current TI$. User should substitute their

own program name for "TEST".

Line 140: If total filename is more than 16 characters, the maximum allowed by the
Commodore 64, the rightmost 16 characters are taken and used instead.

Line 150: The file is saved under the filename F$.

You Supply

Define a filename, which should be 10 characters or less, to allow for the 6 characters
ofTl$. If your filename is longer than 10 characters, no error will be generated. Instead,
it will be shortened. For example, "TEST PROGRAM" might be SAVEd as "ST
PROGRAM123412."

WHAT IT DOES

File can be saved repeatedly under updated names.

90/ Commodore 64 Subroutine Cookbook

10 REM ***************
20 REM * *
30 REM * SUPER SAVER *
40 REM * *
50 REM ***************
60 GOTO 170

70 REM ----------------------------
80 REM

90 REM

100 REM

+ + VARIABLES ++
F$: NAME OF YOUR PROGRAM

110 REM ----------------------------

120 REM *** SUBROUTINE ***

130 F$= "TEST" +TI$

140 IF LEN (F$) > 16 THEN F$ = RIGHT$ (F$, 16)

150 SAVE F$,8:END

160 REM *** YOUR PROGRAM STARTS HERE ***

170 PRINT

94 / Commodore 64 Subroutine Cookbook

Games are probably one of the most popular programming exercises, for beginners and
advanced users alike. On your first day with a computer you can easily learn to write
a "Craps"-playing program. Somewhere short of your first year with the machine, you
will probably investigate writing an arcade-quality joystick-activated shoot-em-up.

In either case, you can use the routines in this book to avoid reinventing the wheel. Ac
tually, the subroutines useful for games programming are not confined to this section. Many
of the modules presented so far can be transplanted to games programs. These include all
of the routines in Chapters 2,3, and 4. Many of those in Chapter 5, such as setting screen
and border colors, using function keys, or determining screen color at specific locations are
handy. User-defined character sets is a popular mainstay of games programming.

Here are five more subroutines that are particularly applicable to games. Three deal
with universal"tools" of games: decks of cards, rolling pairs of dice, or flipping coins.
The dice module is especially flexible, as it allows you to define how many sides each
die will have. Dungeons and Dragons players take note!

Randomness is an essential factor in many types of games, and one subroutine in this
section allows you to specify the drawing of random numbers in any range you choose.
If your game happens to need random numbers larger than 1 00 and smaller than 999,
the routine can handle that nicely.

Arcade-style programs frequently need a slowdown feature. Delay loops that change
in length, getting faster or slower, are a neat way to accomplish this. A subroutine is
provided that does all the work for you.

DEAL CARDS

WHAT IT DOES

Shuffle and deal deck of cards.

Variables

• DECK$(n): Deck of cards
• CARD$: Card drawn from deck
• DRAW: Random number.

How To Use Subroutine

Many game programs require dealing a deck of cards. Your own programs may simulate
drawing from a randomly shuffled deck simply by calling the subroutine beginning at
line 370. The deck has already been assembled (lines 210-360) using the Commodore
64 graphics characters for suits, and the numbers or words for the value of the cards.

If you need to determine the rank of the card for your program, all cards through the
10 may be ascertained by a line such as: "V=VAL(CARD$)".

IFV=O then four more lines are needed, such as, "IF LEFT$(CARD$, l)="J" THEN
V = 11" or "IF LEFT$(CARD$,l) -"Q" THEN V -12."

This is a very fast shuffling routine, which requires only 52 tries to deal 52 cards. Some
slower algorithms (a formula for performing a task, or computing a result) may repeatedly
access "empty" deck positions when looking for the remaining cards.

Game Routines / 95

The routine starts off by setting NC (number of cards) to 52. In line 41 0, the computer
selects a number between 1 and NC (52 this time), and that element of DECK$(n)
becomes the card drawn. This leaves a "hole" in the deck at position DRAW. We fill
it up by taking the last card in the deck, which is DECK$(NC), and place it in
DECK$(DRAW). This leaves the "hole" at the end, but we then change NC to equal
NC-1, sothe computer will only draw from the elements 1 through 51 on the nexttime
through. Third time, it will choose 1 through 50, and so forth. It does not matter that
we have mixed up the order of the deck, as we wantthe cards shuffled in the first place.

Each element of DECK$(n) consists of a number, or face card name, plus the Com
modore 64 CHR$ value for the suit (either 193,211,218 or 216-DATA in line 140).
This produces a full deck of 52 cards.

Line By Line Description
Line 130: DIMension an array to represent the deck of cards.

Lines 160 to 190: READ CHR$ codes corresponding to the graphics characters for
individual suits into array.

Line 210: Begin FOR-NEXT loop from 1 to 4, one trip through for each individual suit.

Line 220: Increment CU, which keeps track of which element of DECK$(n) is being
created. CU will range in value from 1 to 52.

Lines 230 to 290: Create the face cards for each suit.

Lines 300 to 330: Create numbered cards for each suit, through a FOR-NEXT loop
from 2 to 10 (deuce to ten). A string representation of each number is added to " OF "
and the suit symbol, SUIT$(SUIT).

Line 340: Repeat loop.

Line 350: Define number of cards, NC, as initially equalling 52.

Line 360: GOTO main program.

Line 370: If any cards are remaining, access the "draw" routine.

Lines 380 to 390: If none remaining, tell player that the deck has been dealt.

Line 410: Draw a random card number smaller than NC, the number of cards
remaining.

Line 420: Make card drawn, CARD$, equal the DRAW element of the array DECK$(n).

Line 430: Place the last card in the array in the hole left behind by the drawn card.

Line 440: Reduce the size of the deck by one card.

Line 480: Access the subroutine.

You Supply
No user input needed.

RESULT

Deck of 52 cards may be dealt out as needed.

961 Commodore 64 Subroutine Cookbook

10 REM **************
20 REM * *
30 REM * DEAL CARDS *
40 REM * *
50 REM **************
60 REM -----------------------
70 REM
80 REM
90 REM
100 REM
110 REM

+ + VARIABLES + +
DECK$(N): DECK
CARD$: CARD DRAWN
DRAW: RANDOM CARD

120 REM -----------------------
130 DIM DECK$(52)
140 DATA 193,211,218,216

150 REM *** READ SUITS ***

160 FOR N = 1 TO 4
170 READ A
180 SUIT$(N) = CHR$(A)
190 NEXT N

200 REM *** ASSEMBLE DECK ***

210 FOR SUIT = 1 TO 4
220 CU=CU+1
230 DECK$(CU) = "ACE OF "+SUIT$(SUIT)
240 CU=CU+1
250 DECK$(CU) = "KING OF "+SUIT$(SUIT)
260 CU=CU+1
270 DECK$(CU) = "QUEEN OF "+SUIT$(SUIT)
280 CU=CU+1
290 DECK$(CU) = "JACK OF "+SUIT$(SUIT)
300 FOR N=2 TO 10
310 CU=CU+1
320 DECK$(CU) =STR$(N) + " OF "+SUIT$(SUIT)
330 NEXT N
340 NEXT SUIT
350 NC=52
360 GOTO 470
370 IF NC < > 0 GOTO 410
380 CARD$= " "
390 PRINT" DECK GONE! ! "
400 RETURN
410 DRAW = INT(RND(l)*NC) +1
420 CARD$=DECK$(DRAW)
430 DECK$(DRAW) =DECK$(NC)
440 NC=NC-1
450 RETURN

460 REM *** YOUR PROGRAM STARTS HERE ***
470 PRINT
480 GOSUB 370
490 PRINT CARD$

RANDOM RANGE

WHAT IT DOES

Game Routines / 97

Allows choosing random numbers in any range.

Variables
• HIGH: Top of range
• MINIMUM: Bottom of range
• DF: Difference
• NU: The number chosen.

How To Use Subroutine
What makes a game a game and nota test? Randomness is one element found in many,
but not all, games. Random numbers selected by the computer determine the changes
in some games that the player must contend with. Lacking randomness, a game is either
a test of memory or a contest of strategy. A little of all three elements makes for a good
game, and this subroutine lets you get greater control over randomness than unadorned
Commodore 64 BASIC.

The Commodore 64 can choose pseudorandom numbers. That is, although they ap
pear to be random, the numbers actually are drawn from a long list. Even though the
sequence is the same each time, the list of numbers is very long, and the starting posi
tion is usually different, so the numbers appear to be random to the player.

Some BASICs allow choosing a random number larger than one, but smaller than
another integer, with the simple command RND(N), where N is the upper limit. RND(7)
would produce numbers from one to seven, for example. The Commodore 64 will
generate random numbers larger than zero and smaller than one. So, we might get
.74329 or .15832 or some other value. To get numbers in a given range 1 to N, we must
multiply the random number by N and add one. That is, INT(RND(1)*7) + 1 will pro
duce numbers larger than one and no larger than seven.

But, what if some other range is desired-such as numbers between 43 and 198? This
subroutine will pluck them out of random land for you. From user-supplied minimum
and maximum numbers, it will select random integers only in the desired range.

Line By Line Description

Lines 160 to 180: Define the highest random number desired, the lowest, and find
the difference between them.

Line 200: Choose a random number in the range 1 to OF, the difference, then add
the minimum number to that to produce a number in the desired range.

98/ Commodore 64 Subroutine Cookbook

Line 230: Print the result.

Line 240: Access the subroutine.

You Supply
• Define HIGH and MINIMUM to set the limits for the random range you want.

RESULT

Only random numbers in the specified range will be produced.

10 REM ****************
20 REM * *
30 REM * RANDOM RANGE *
40 REM * *
50 REM ****************

60 REM ------------------------
70 REM
80 REM
90 REM
100 REM
110 REM
120 REM

+ + VARIABLES + +
HIGH: TOP OF RANGE
MINIMUM: BOTTOM OF RANGE
DF:
NU:

DIFFERENCE
NUMBER CHOSEN

130 REM ------------------------
140 GO TO 230

150 REM *** INITIALIZE ***

160 HIGH = 100
170 MINIMUM = 15
180 DF=HIGH-MINIMUM+l

190 REM *** SUBROUTINE ***

200 NU=INT(RND(l)*DF) + MINIMUM
210 RETURN

220 REM *** YOUR PROGRAM BEGINS HERE ***

230 PRINT NU;
240 GOSUB 190

COIN FLIP

WHAT IT DOES

Flips coin, producing heads or tails.

Game Routines / 99

Variables

• FLIP: Random value, either one or two
• FLlP$: Name of side chosen
• COIN$(n): Coin array.

How To Use Subroutine

Some beginner level statistical experiments and a few games need to simulate coin flips.
For example, you may want to construct a loop that flips a coin 1000 times and adds
up the number of heads and tails to check the randomness of your computer.

This subroutine will flip the coin for you, producing the name of the side-either
"HEADS" or "TAl LS"-after each flip. The module can be adapted to larger ranges of
choice, with more than two names to be applied. For example, the array names might
be NORTH, SOUTH, EAST, and WEST, and the 2 in line 180 changed to a 4. Then,
random directions will be chosen.

Line By Line Description

Lines 140 to 150: Define array as "HEADS" and "TAILS".

Line 180: Produce value for variable FLIP of either 1 or 2.

Line 190: Assign "HEADS" or "TAILS" to FLlP$, depending on which random number
was chosen.

Line 220: Access the subroutine.

Line 230: Print result.

You Supply

• No user input needed.

RESULT

Coin flipping simulated.

10 REM *************
20 REM * *
30 REM * COIN FLIP *
40 REM * *
50 REM *************
60 REM ------------------------
70 REM
80 REM

90 REM
100 REM

110 REM

+ + VARIABLES + +
COIN$(N): COIN ARRAY

FLIP: RANDOM VALUE 1-2
FLIP$: SIDE FLIPPED

120 REM ------------------------

100/ Commodore 64 Subroutine Cookbook

130 REM *** INITIALIZE ***

140 COIN$(l) = "HEADS"

150 COIN$(2) = "TAILS"
160 GOTO 220

170 REM *** SUBROUTINE ***

180 FLIP=INT(RND(1)*2) +1
190 FLIP$ = CO IN$ (FLIP)

200 RETURN

210 REM *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 180

230 PRINT FLIP$
240 GOTO 220

DICE

WHAT IT DOES

Simulates roll of dice.

Variables

• 01: Value of Die #1
• 02: Value of Die #2
• ROLL: Total of roll.

How To Use Subroutine

This dice rolling subroutine includes a short sound module to provide an additional bit
of realism. It will roll two dice, each producing a number between one and six. The
value of each die, as well as the total roll, is figured.

Dungeons and Dragons players can specify how many sides each die in the pair will
have. In adapting this subroutine for that feature, you might want to add a line like
INPUT"ENTER NUMBER OF SIDES";SIDE before each roll. If only one die is needed,
both will be rolled anyway. Just choose which one will "count" ahead of time, either
01 or 02. Variable ROLL will store the total count.

Line By Line Description

lines 150 to 160: Roll two dice, each producing numbers in the range 1 to SIDES,
with SIDES defined as the number of sides you wish on the dice.

line 170: Make ROLL the total of the two dice.

Came Routines / 101

Line 190: Beginning of sound routine. Set volume to maximum.

Line 200: Poke a note to sound register.

Line 210: Delay a while.

Line 220: Poke a note to different sound register.

Line 230: Another short delay.

Line 240: Turn both sound registers off.

Line 250: Return to main program.

Line 280: Define number of sides on dice.

Line 290: Access the subroutine.

Lines 300 to 330: Print results of roll.

You Supply

• Number of sides of die.

RESULT

N-sided dice are rolled, and the value of each plus total roll reported.

10 REM ********
20 REM * *
30 REM * DICE *
40 REM * *

50 REM ********
60 GOTO 270

70 REM ----------------------------
80 REM
90 REM
100 REM

110 REM
120 REM

+ + VARIABLES + +
Dl: DIE # 1 TOTAL
D2: DIE # 2 TOTAL

ROLL: TOTAL OF ROLL

130 REM ----------------------------

140 REM *** SUBROUTINE ***

102/ Commodore 64 Subroutine Cookbook

150 Dl= INT(RND(l)*SIDES) +1
160 D2=INT(RND(1)*SIDES)+1

170 ROLL=D1+D2
180 REM *** DICE SOUND ***
190 POKE 36878,15
200 POKE 36874,150
210 FOR N= 1 TO 100:NEXT N
220 POKE 36877,255
230 FOR N=l TO 100:NEXT N
240 POKE 36877,0:POKE 36874,0

250 RETURN

260 REM *** YOUR PROGRAM STARTS HERE ***

270 PRINT
280 SIDES=6
290 GOSUB 150
300 PRINT" DIE # 1: " jD1
310 PRINT" DIE #2:" jD2
320 PRINT" TOTAL: " ;
330 PRINT ROLL

DELAY LOOP

WHAT IT DOES

Delays loop changes in length.

Variables

• DELAY: Initial delay
• CHANGE: Amount of change.

How To Use Subroutine

I n games, delay loops are frequently used to display messages on the screen for a given
length of time. However, another important use is to control the speed of movement
or some other play action. By having a FOR-N EXT loop count off between each move,
a short delay can be built in. A loop from 1 to 100 might slow things down appreciably,
while setting the upper limit to 10 would produce only a negligible impact.

This subroutine allows the user to vary the length of the delay loop so that action will
get faster and faster-until the FOR-NEXT loop is performed only once each time and,
therefore, has almost no effect on the program.

Alternatively, the loop can get longer and longer, so the program will slow down.
You might want to place some upper limit, so that the action doesn't stop completely
after a few minutes.

Line By Line Description

Line 140: Set initial delay to 1000.

Line 150: Set change factor to .9.

Line 180: Count off the delay.

Line 190: Change value of delay.

Line 230: Access the subroutine.

Line 240: Inform player that delay is finished.

Line 250: Repeat, with shortened delay.

You Supply

Game Routines /103

An initial value is needed for DELAY. A high number will start the program off very slow
ly. A lower numberwill produce a more moderate beginning speed. You also must define
the amount of CHANGE. Fractional numbers will cause DELAY to get smaller each time.
That is, if DELAY is 1000 at first, and CHANGE is .90, then DELAY will be set to 900
on the second time through the loop, 810 the third time, and 729 the third time.

As decimal fractions approach 1.0, the amount of speedup each time will be smaller,
producing a slower acceleration. Smaller fractions, such as .75 or even .50 will rev up
the speed quite quickly.

CHANGE can also be defined as a number larger than one. Setting it to 1.1 will slow
ly increase the delay each time. Any number larger than 1.5 (such as two or three) will
probably slow down the program much more than you desire.

RESULT

Program speeds up, or slows down gradually, at a rate selected by
user.

10 REM *********
20 REM * *
30 REM * DELAY *
40 REM * *
50 REM *********
60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM DELAY: INITIAL DELAY

90 REM CHANGE: AMOUNT OF CHANGE

100 REM

110 REM

PLUS OR MINUS

120 REM ----------------------------

130 REM *** INITIALIZE ***

104/ Commodore 64 Subroutine Cookbook

140 DELAY = 1000
150 CHANGE = .90
160 GOTO 230

170 REM *** SUBROUTINE ***

180 FOR N = 1 TO DELAY
190 NEXT N
200 DELAY = DELAY*CHANGE
210 RETURN

220 REM *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 180
240 PRINT II FINISHED II
250 GOTO 230

108/ Commodore 64 Subroutine Cookbook

A "file" is any collection of information that is stored on disk or tape. Computer soft
ware is a type of fi Ie called a program fi Ie. These fi les can be loaded by the Commodore
64 and can provide the BASIC interpreter with instructions that can be used to perform
a task. Raw information can also be stored as a file, even though the computer cannot
load it and act on it directly. These "data files" must usually be loaded into memory
through another program or subroutine, which contains the actual instructions for ac
cessing the information.

Data files are one of the basic tools of business and personal programming, as they
let you keep permanent records that can be accessed, printed out, manipulated, and
otherwise used in a practical manner. Data files are akin to programs in that, lacking
some mass storage for the data (or program), we would have to type the information
in every time we turned on the computer. In many ways, however, a computer program
is a more complicated file. Programs have line numbers and links that tell the computer
where the next line number is. Data files consist of just an ASCII representation of the
information as it was written to the disk or tape; they are words, numbers, and punc
tuation, and almost nothing more.

There are three basic types of data files available to Commodore 64 users: sequen
tial, random access, and relative files. Disk drive users may take advantage of all three
types. Those who are confined to cassette data storage may use only sequential files.
Because this type is easiest to understand and use, sequential fi Ie systems are emphasized
in this book.

The Commodore 64 cassette recorder is a good analog to sequential fi les, i.e., serial
files. A program is a sequential file, stored one byte at a time, on your program tape
ordisk in the same order in which it is LISTed. In the case of cassette tapes, the program
is continuous on one long piece of tape. On disks, programs are also written or read
serially, but the actual sectors in which the information is stored is not always consec
utive. If there is not enough room on a single track, the disk drive will often continue
on a different track, called an extent, leaving behind a pointer to tell itself where to pick
up the next piece of the program.

In either case, however, program files are only written or read from the very first byte
to the last, in sequential order, regardless of the physical order of the media. Sequen
tial data files operate exactly the same way. If your program needs some information
for the middle of a data file, it must read in the entire file, make any changes it wants,
and then write the entire file back to the tape or disk.

To read a given data fi Ie, we first OPEN a channel for that information to be sent. Then,
we INPUT# (with the # being followed by the number we have assigned to the input
channel, e.g. INPUT#l) data to a variable of our choice. Writing to a disk or tape file
is done by OPENing a channel for output, and using the PRINT# statement to print in
formation from a variable to the file.

To help your Commodore 64 keep its files and the devices it uses straight, each of
the devices has been assigned a device number. The keyboard is device number zero;
the cassette tape recorder device number one; the screen device number three; and so
forth. A serial printer is assigned device numberfour, while the first disk drive in a system
is usually assigned device number eight.

So, simply by substituting one device number for another, we can direct fi les to where
we desire, within limits. For example, to SAVE a program to cassette, we can type:

SAVE" filename" ,1

Data Files / 109

If no device number is indicated, the computer assumes we mean device number one,
the "default" value. That is why your cassette SAVEs do not include the numeral one.
To SAVE the same program to disk, device number 8, we would type:

SAVE" filename" , 8

Using a numeral four, instead, would send the file to the printer. Logically, we could
even list a program to the screen by SAVE"filename",3, except that the Commodore
64 defines the screen, as well as certain other devices, as "illogical" when used with
certain commands, such as SAVE. However, another command is available in BASIC,
that of "CMO" which will redirect output intended for the screen to another device.
Typing CM04:LlST will cause a program to be listed on the printer instead of the screen,
assuming we have OPENed that device first.

As mentioned, it is usually necessary to open a data "channel" to send information
from one device to another. This is done with the OPEN command.

The particular channel we use is given a number of its own. Which number is assigned
to the data channel is not particularly important. However, a given channel can only
be used to send information to one device at a time. To make the data channels easy
to keep track of, it is often convenient to give them the same number as the device we
are using. So, to open a cassette data file, we might type:

OPEN 1,1,1, "filename"

The first 1 is the number of the data channel or, as it is also called, the "logical file
number." The second 1 is the device number or the cassette tape. The third 1 is referred
to as the "secondary address", an instruction to the computer on what to do with the
data. In this case, "1" means to write the data.

We could just as easily have used:

OPEN 2,1,1, "filename"

This would mean that logical file, or data channel number 2, was being used with
device number 1, to perform task number 1 (write), with the filename within quotes.
However, we will follow the convention of using the same logical file number as the
device number.

What about that secondary address number? What other options are available? For
tape usage, there are two more. We may specify, "0", which signifies reading a file from
the tape, or "2", which will open the channel for writing to the tape, but place a special
"end-of-tape" marker at the end of the fi Ie. In read i ng that fi Ie, the Commodore 64 wi II
progress no further, until the EOT marker is removed.

OPEN just prepares the data channel for us, however. To actually read or write data,
we must use PRINT#or INPUT#, with each followed by the logical file number we are
using.

You may have guessed that SAVE or LOAD are modified forms of the OPEN com
mand, which combine OPEN with PRINT or INPUT in one statement. Since that is true,
the secondary address numbers may be used with them, as well. So, it is possible to enter:

SAVE" filename 11,1,2

This writes the program to device number 1 (the cassette recorder) and places an end
of-tape marker after it. The numbers have a slightly different meaning when loading a
program from the tape.

110/ Commodore 64 Subroutine Cookbook

To load the file back into the memory location from which it was SAVEd enter:

LOAD" filename "1, 11

Disk files use the same format, with device number 8, the disk drive, substituting for
the 1, the cassette drive, in the device number specification. Disk drive users can also
follow the filename with a file type specifier, generally "5" (for "sequential") or "P"
(for "program"). You also need to tell the disk drive which direction the information
will flow, using "w" for write and "R" for read.

So, a sequential disk writing OPEN statement might be:

OPEN 8,8,8, "0: filename,S, WIt

The equivalent read statement would be:

OPEN 8,8,8, "0: filename,S,R" .

You can examine the sequential file tape and disk read/write routines in order to under
stand this method of data storage better.

The Commodore 64 also can use random access files, when updates to a file are fre
quent and relative files which are not generally used in BASIC 2.0. Both are types of
files that allow accessing any given record within a file, either for reading or writing,
while ignoring the rest of the file. Random files are much faster than sequential files,
because only a small bit of information needs to be read into memory at a time. However,
their use is much more complex and too ambitious for this collection of subroutines.
Instead, we offer, as the first module in this section, a faster data file routine that can
be used by disk or tape owners alike and requires no lengthy accesses to mass storage
media. Instead, the entire data file is stored within the program itself.

DATA FILES

WHAT IT DOES

Imbeds data files in program listing.

Variables

• R: Number of items in file
• DTA$(n): Array storing data file
• FIELD$(n): Field names.

How To Use Subroutine

Sometimes we like to keep track of information that is entered into a program permanent
ly. Storing data on cassette or disk with the Commodore 64 is relatively simple, but each
method has drawbacks.

To use disk files, you must have adiskdrive, which are more expensive than cassette
recorders like the Commodore Datasette. Commodore 64 disk files are far from a univer
sal tool, available to everyone. But, because of the header written on tape data files,
writing to cassette and loading data from tape is relatively slow. In addition, how do

Data Files / 111

you know your data was recorded successfully? The Commodore 64 uses special cir
cuitry that makes its cassette recorder much more reliable than those used on some other
computer systems. Because of this, it can use much less expensive tapes than other com
puters. These tapes do have dropouts-places with no iron oxide available to record
information. That is why it is wise to VERIFY any program that is SAVEd.

Because it is so simple to check a program, why not simply store data within a pro
gram itself? At the end of the RUN, SAVE the new program, VERI FY it, and you can be
assured that your information is safely transferred to tape.

This subroutine allows you to do that, storing data in the program in the form of DATA
lines. It shows you the lines already entered so that the new one may be placed at the
end. It also prompts you to make one other change, which tells the program how many
items of data have been entered.

Then, in running the program, you can search for an item of data. The Commodore
64 will loop through all the items in the file, display each field, or tell you that the item
is not in the fi Ie.

The program first reads the DATA into a two dimensional string array, DTA$(row,col
umn). Two nested FOR-NEXT loops read all these data into the proper places in the ar
ray DTA$(row, column). In line 1060, the first loop starts from 1 to R, which is the number
of rows and which is defined in line 201. Then, the second loop starts, from 1 to 3, the
number of columns. Each time through the second loop, one of the data items is stored
in DTA$(ROW,COLUMN).

When all three have been read for a particular record, the program advances to line
1100. This line sends control back to line 1060 for the next ROW. After all the data
has been read, a menu is presented which offers the choice of adding a listing or retriev
ing a record. If retrieval is chosen, the user is asked to enter a string to search for. This
string is stored in variable NME$, and a FOR-NEXT loop from 1 to R looks at column
#1 of each row until a match is found.

If so, the data are displayed on separate lines. If no match is found, the computer tells
us the bad news. In either case, the program returns to the main menu. If we want to
add a name, instructions appear telling the user to add the DATA line to the last one
shown and to change line 201 so that R is defined as one larger. The new value of R
(R + 1) is displayed to make this very simple. The program then lists all the lines from
200 to 999 and turns the computer over to the user in command mode.

The program line number chosen should be one larger than the last used (Le., on the
initial RUN, 206 should be used). This will make it possible to fit the maximum number
of OAT A lines to be entered. Actually, the OAT A can be inserted anywhere in the pro
gram, but it is much neater if they are located all in one consecutive block.

Line By Line Description

Line 200: OAT A for names of each of the three fields used by this program. User should
change these to names of actual fields in his or her data file.

Line 205: Initial, dummy data, showing the format for the first items of data in the file.
Additional entries should follow this format.

Lines 1020 to 1040: Read names of fields into array.

Line 1050: Dimension array to R + 5 rows, and three columns, allowing forfive new
items to be entered in each session.

112/ Commodore 64 Subroutine Cookbook

Lines 1060 to 1100: Read existing data lines into the array.

Lines 1110 to 1180: Print menu, get user choice of add listing or retrieve information.

Lines 1190 to 1260: Instructions for updating data file.

Line 1270: List current data to screen.

Lines 1280 to 1310: User enters name to search for.

Lines 1320 to 1340: Program searches for item desired.

Lines 1350 to 1380: Item was not found.

Lines 1390 to 1450: Item was found and is listed to the screen.

You Supply

Data and program line changes as prompted by the routine are needed. The first three
DATA items should be the names of your fields, i.e., NAME, ADDRESS, PHONE.

RESULT

Data file is imbedded in the program and can be SAVEd reliably.

10 REM **************
20 REM * *
30 REM * DATA FILES *
40 REM * *
50 REM **************
60 REM ----------------------------
70 REM

80 REM

90 REM

100 REM

110 REM

+ + VARIABLES + +
R: ITEMS OF DATA

DTA$(N) : DATA FILE

FIELD$(N): FIELDS

120 REM ----------------------------

130 REM *** INITIALIZE ***

200 DATA NAME, ADDRESS, PHONE

201 R=l

205 DATA JOE, 1 PINE ST. ,232-1347

1020 FOR N= 1 TO 3

1030 READ FIELD$(N)

1040 NEXT N

1050 DIM DTA$(R+ 5,3)

1060 FOR ROW = 1 TO R

1070 FOR COLUMN = 1 TO 3

lOBO READDTA$(ROW,COLUMN)

1090 NEXT COLUMN

1100 NEXT ROW

1110 PRINT CHR$(147)

1120 PRINT "DATA BASE"

1130 PRINT "1. ADD LISTING"

1140 PRINT "2. RETRIEVE"

1150 GET A$: IF A$ =" " GOTO 1150

1160 A=VAL(A$)

1170 IF A< lOR A>2 GOTO 1150

11BO ON A GOTO 1190, 12BO
1190 PRINT CHR$ (147)

1200 PRINT " TO ADD LISTING ENTER"

1210 PRINT" DATA LINE FOLLOWING"

1220 PRINT " LAST ONE SHOWN. "

1230 PRINT "HIT ANY KEY"

1240 GET A$: IF A$ = " " GOTO 1240
1250 PRINT" TYPE THIS LINE FIRST: "

1260 PRINT" 201 R=" jR+1
1270 LIST 200-999

12BO PRINT CHR$(147)

1290 PRINT" ENTER NAME TO"

1300 PRINT" SEARCH FOR:"

1310 INPUT NME$
1320 FOR ROW = 1 TO R

1330 IF DTA$(ROW,l) =NME$ THEN GOTO 1390

1340 NEXT ROW

1350 PRINT" = = NOT FOUND = = "

1360 PRINT" HIT ANY KEY"

1370 GET A$: IF A$ = " " GOTO 1370
13BO GOTO 1110

1390 PRINT" FOUND: "
1400 PRINT FIELD$(l) j":" j DTA$ (ROW, 1)

1410 PRINT FIELD$(2) j":" jDTA$(ROW,2)

1420 PRINT FIELD$(J) j":" jDTA$(ROW,3)

1430 PRINT "HIT ANY KEY"

1440 GET A$: IF A$ =" " GOTO 1440

1450 GO TO 1110

Data Files / 113

114 / Commodore 64 Subroutine Cookbook

SEQUENTIAL FILE-WRITE TO TAPE

WHAT IT DOES

Writes a sequential data file to tape.

Variables

• NI: Number of items in file
• DT A$(n): Array storing data file.

How To Use Subroutine

Cassette users can only access sequential files. This subroutine provides a sample file
writing routine that will take data that has been loaded into a string array, DTA$(n), and
write it to tape. The same routine can be used with numeric arrays, simply by remov
ing the variable type specifier, "$", from DTA$(n).

Your program should also update NI each time more items are added to the array.

Line By Line Description

Line 140: Set number of items in file to 10.

Line 150: DIMension DTA$ to NI elements.

Line 170: OPEN the data fi Ie given the filename in quotes. You can substitute you r
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: Print, as the first item in the data file, the number of items in the file, NI.

Lines 190 to 210: PRINT each of the items in the array to the data file.

Line 220: CLOSE the fi Ie.

You Supply

• Your program must furnish data for DTA$(n), either from keyboard entry, or loaded
from some tape or disk file.

• The counter NI should be redefined to reflect the number of items in the file each
time an update is made.

• You should substitute your fiI~name for "filename" in line 170.

RESULT

Data file written to tape.

10 REM *******************
20 REM * *
30 REM * SEQUENTIAL FILE *
40 REM * WRITE TO TAPE *
50 REM * *
60 REM *******************
70 REM ---------------------------------
80 REM

90 REM
100 REM

110 REM

+ + VARIABLES + +
NI : NUMBER OF ITEMS IN FILE

DTA$(N): ARRAY STORING FILE

120 REM ---------------------------------

130 REM *** INITIALIZE ***

140 NI = 10 :DIM DTA$(NI)

150 GOTO 240

160 REM *** SUBROUTINE ***

170 OPEN 1,1,1, "FILENAME"
180 PRINT # 1,NI

190 FOR N= 1 TO NI

200 PRINT#l,DTA$(N)

210 NEXT N

220 CLOSE 1: RETURN

230 REM *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 170

Data Files / 115

SEQUENTIAL FILE-READ FROM TAPE

WHAT IT DOES

Reads a sequential data file from tape.

Variables
• NI: Number of items in file
• DT A$(n): Array storing data file
• AD: Amount of room beyond number of items in file to allow for expansion.

How To Use Subroutine
Cassette users can only access sequential files. This subroutine provides a sample file
reading routine that will take data that has been written to tape and load it into a string

116 / Commodore 64 Subroutine Cookbook

array, DT A$(n). The same routine can be used with numeric arrays, simply by removing
the vadable type specifier, "$", from DTA$(n).

The routine will first read NI, the number of items in the file, from the tape. Then,
the array is DIMensioned to NI +AD. This will allow AD more elements in the array
for expansion during the session.

NOTE: You cannot reDIMension the array without generating an error. AD should
be defined large enough to allow plenty of space for additions during anyone session.
Your program should also update NI to equal NI +AD before writing back to tape, if
you use the Write Routine supplied with this book.

Line By Line Description

Line 140: Set number of items that can be added to the file in one session to 10.

Line 160: OPEN the data file given the filename in quotes. You can substitute your
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 170: INPUT the number of items currently in the file.

Line 180: DIMension the array to NI plus AD, allowing room for additional items.

Lines 190 to 210: INPUT each of the items in the array to the data file.

Line 220: CLOSE the file.

You Supply

• Your program should change the counter NI to reflect the number of items in the file
each time an update is made.

• You should subsitute your file name for "filename" in line 160.

RESULT

Data file read from tape.

10 REM *******************
20 REM * *
30 REM * SEQUENTIAL FILE *
40 REM * READ FROM TAPE *
50 REM * *
60 REM *******************
70 REM -----------------------------------
80 REM

90 REM
100 REM

110 REM

+ + VARIABLES + +
NI: NUMBER OF ITEMS IN FILE

DTA$(N): ARRAY STORING FILE

120 REM -----------------------------------

130 REM *** INITIALIZE ***

140 AD = 10: GOTO 240

150 REM *** SUBROUTINE ***
160 OPEN 1,1,0, "FILENAME"

170 INPUT # 1,NI

180 DIM DTA$(NI+AD)

190 FOR N= 1 TO NI

200 INPUT # 1,DTA$(N)
210 NEXT N

220 CLOSE 1: RETURN

230 REM *** YOUR PROGRAM STARTS HERE ***
240 GOSUB 160

Data Files / 117

SEQUENTIAL FILE-WRITE TO DISK

WHAT IT DOES

Writes a sequential data file to disk.

Variables

• NI: Number of items in file
• DT A$(n): Array storing data file.

How To Use Subroutine

Disk users can access sequential, random access, and relative files. Sequential files are
the most popular because they are easiest to understand. With disk, such fi les are even
respectably fast. Explaining random access and relative files is a task requiring many
changes and beyond the scope of this book.

However, this subroutine provides a sample sequential file writing routine that will
take data that has been loaded into a string array, DTA$(n), and write it to disk. The same
routine can be used with numeric arrays, simply by removing the variable type specifier,
1/$/1, from DTA$(n).

Your program should also update NI each time more items are added to the array.

Line By Line Description

Line 140: Set number of items in file to 10.

Line 150: DIMension DTA$ to NI elements.

Line 170: OPEN the data file given the filename in quotes. You can substitute your
own filename, or a variable, like F$, and then define F$ through user INPUT.

118/ Commodore 64 Subroutine Cookbook

Line 180: Print, as the first item in the data file, the number of items in the file, NI.

Lines 190 to 210: PRINT each of the items in the array to the data file.

Line 220: CLOSE the file.

You Supply

• Your program must furnish data for DTA$(n), either from keyboard entry or loaded
from some tape or disk file.

• The counter NI should be redefined to reflect the number of items in the file each
time an update is made.

• You should substitute your filename for "filename" in line 170.

RESULT

Data file written to disk.

10 REM *******************
20 REM * *
30 REM * SEQUENTIAL FILE *
40 REM * WRITE TO DISK *
50 REM * *
60 REM *******************
70 REM -------------------------------------
80 REM

90 REM
100 REM

110 REM

+ + VARIABLES + +
NI : NUMBER OF ITEMS IN FILE

DTA$(N): ARRAY STORING FILE

120 REM ------------------------------------

130 REM *** INITIALIZE ***

140 NI=10

150 DIM DTA$(NI)
160 GOTO 250

170 REM *** SUBROUTINE ***

180 OPEN 8,8,8, "O:FlLENAME,S,W"
190 PRINT#8,NI
200 FOR N= 1 TO NI

210 PRINT#8,DTA$(N)

220 NEXT N

230 CLOSE 8: RETURN

240 REM *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 180

Data Files /119

SEQUENTIAL FILE-READ FROM DISK

WHAT IT DOES

Reads a sequential data file from disk.

Variables

• NI: Number of items in file
• DTA$(n): Array storing data file
• AD: Amount of room beyond number of items in file to allow for expansion.

How To Use Subroutine
This subroutine provides a sample file reading routine that will take data that has been
written to disk, and load it into a string array, DTA$(n). The same routine can be used
with numeric arrays, simply by removing the variable type specifier, "$", from DTA$(n).

The routine will first read NI, the number of items in the file, from the disk. Then, the
array is DIMensioned to NI +AD. This will allow AD more elements in the array for ex
pansion during the session.

NOTE: You cannot reDIMension the array without generating an error. AD should
be defined large enough to allow plenty of space for additions during anyone session.
Your program should also update NI to equal NI +AD before writing back to disk, if
you use the Write Routine supplied with this book.

Line By Line Description
Line 150: Set number of items that can be added to the file in one session to 10.

Line 170: OPEN the data file given the filename in quotes. You can substitute your
own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: INPUT the number of items currently in the file.

Line 190: DIMension the array to NI plus AD, allowing room for additional items.

Lines 200 to 220: INPUT each of the items in the array to the data file.

Line 230: CLOSE the file.

Lines 260 to 280: Print data file to screen.

You Supply
Your program should change the counter NI, which should be redefined to reflect the
number of items in the file each timean update is made. You should subsitute yourfile
name for "filename" in line 160.

RESULT

Data file read from disk.

120/ Commodore 64 Subroutine Cookbook

10 REM *******************
20 REM * *
30 REM * SEQUENTIAL FILE *
40 REM * READ FROM DISK *
50 REM * *
60 REM *******************
70 REM ---------------------------------------
80 REM + + VARIABLES + +
90 REM NI : NUMBER OF ITEMS IN FILE

100 REM DTA$(N): ARRAY STORING FILE

110 REM AD:

120 REM

NUMBER OF EMPTY SPACES AT

END OF FILE

130 REM -------------------------------------

140 REM *** INITIALIZE ***

150 AD= 10

160 GOTO 250

170 REM *** SUBROUTINE ***

180 OPEN 8,8,8, "O:FILENAME,S,R"

190 INPUT # 8,NI

200 DIM DTA$(NI +AD)

210 FOR N= 1 TO NI

220 INPUT # 8,DTA$(N)

230 NEXT N
240 CLOSE 8: RETURN

240 REM *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 180

260 FOR N= 1 TO NI

270 PRINT DTA$(N)

280 NEXT N

~ I IBUll~fiITIl®~~ h<dl IFfiIID<ID.ITIl~fi<ID.lll
~ unlhlf@Ull ltfiITIl ®~

124 / Commodore 64 Subroutine Cookbook

Although business programs have much in common with games and utilities in BASIC,
they also have their own special requirements. A business application will rarely deal
with RN D but wi II often have to hand Ie dollars-and-cents. Money matters-figuri ng loan
amounts, monthly payments, interest-and formatting of the output are all important
considerations. Business applications also involve keeping track of the date or time, in
order to pinpoint when a transaction took place.

The business subroutines in this book are not limited to those in this chapter. When
writing your own programs, you might want to take advantage of special user input
routines, or sorts, like those in Chapter 6.

Business programs also have a need for keeping records. The results of one session
may have to be stored for access in the next session. This brings up a requirement for
data files which were discussed in the last section.

The subroutines in this chapter all handle some aspect of business. The first three
calculate loan amounts, number of payments, and monthly payment. The number of
years required to reach a given savings goal is handled by another subroutine, while
compound interest is calculated by an additional module. Correct formatting of dollars
and-cents and dates are also accounted for by another pair. Temperature conversion
and figuring miles per gallon (MPG) are also included as examples of the types of
algorithms that might be useful in a typical business program.

Making your program easier to use through a clever menu isalso explained. You may
substitute the tasks of your choice and then write the appropriate branches.

LOAN AMOUNT

WHAT IT DOES

Calculates size of loan, given monthly payment, interest rate, and
length of loan.

Variables

• RATE: Interest rate
• LOAN: Amount of loan
• NUMBER: Months of loan
• PAYMENT: Monthly payment.

How To Use Subroutine

This routine will calculate the maximum amount of money that can be borrowed, given
a fixed interest rate, the desired monthly payment, and the months the loan will run.

You might use this subroutine to calculate how expensive an automobile you can buy
given, say, a 36 month repayment period, a 15 percent interest rate, and the top monthly
payment you can afford, say, $200. In this case, the subroutine would deliver the answer:
$5769. Since very few cars can be purchased for that little, you might wantto play with
the figures a bit. What if a 48 month loan is taken out instead? In that case, a more
reasonable $7186 can be borrowed.

Business and Financial Subroutines / 125

Having these figures available allows the purchaser to make some intelligent deci
sions. For example, extending the loan by 12 months provides $1417 more principal
to borrow, but at the cost of $2400 in additional payments ($200 x 12). Is the purchase
worth an additional $1000 in interest? Or can the auto be financed by finding the extra
$1400 from some other source, such as trading in a third car that the owner had planned
on keeping an extra year? Or, should you shop a bit more extensively for a better interest
rate? If your credit union offers a bargain-basement 12 percent interest rate, you can
borrow $ 7594 at the same interest rate-more than $400 more without i ncreasi ng the
monthly payment.

Or, if you already have the car picked out, this routine will tell you how much down
payment you will have to come up with to make up the difference between the loan
amount and the price of the car.

Line By Line Description

Lines 150 to 170: Define the interest RATE, monthly PAYMENT you can afford, and
the NUMBER of payments to be made. Your program can substitute INPUT lines to
receive these figures from the user.

Line 200: Change yearly interest rate in whole percent to decimal figure per month,
e.g., 12 percent equals 12/1200 or .01 per month.

Line 210: Calculate loan amount.

Line 220: Round off to two decimal places.

Line 230: Return to main program.

Line 240: Access the subroutine.

You Supply

You must define these variables:

• PAYMENT (the monthly payment desired)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• NUMBER (number of months loan will run).

The subroutine will return LOAN, or the maximum loan amount given those
parameters.

RESULT

Loan amount calculated.

126/ Commodore 64 Subroutine Cookbook

10 REM ***************
20 REM * *
30 REM * LOAN AMOUNT *

40 REM * *
50 REM ***************

60 REM ----------------------------
70 REM
80 REM
90 REM

+ + VARIABLES + +
RATE:
LOAN:

INTEREST RATE
AMOUNT OF LOAN

100 REM NUMBER: MONTHS OF LOAN
110 REM PAYMENT: MONTHLY PAYMENT
120 REM

130 REM ----------------------------

140 REM *** INITIALIZE ***

150 RATE=10
160 PAYMENT=10
170 NUMBER = 36
180 GOTO 250

190 REM *** SUBROUTINE ***

200 RATE = RATE/1200
210 LOAN = PAYMENT*(l-(l +RATE)J\-NUMBER) IRATE

220 LOAN = INT (LOAN* 100 + .5) 1100

230 RETURN

240 REM *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 200

PAYMENT AMOUNT

WHAT IT DOES

Calculates monthly payment given interest rate, number of payments,
and loan amount.

Variables

• RATE: Interest rate
• LOAN: Amount of loan
• NUMBER: Months of loan
• PAYMENT: Monthly payment.

Business and Financial Subroutines / 127

How To Use Subroutine

This routine will calculate the monthly payment given a fixed interest rate, the loan
amount, and the months the loan will run.

You might use this subroutine to calculate your monthly auto payment given, say,
a 36-month repayment period, a 15 percent interest rate, and an amount to be financed
of, say, $8000. It wi II produce the answer, $277. By shopping around for different interest
rates, or varying the number of payments, you can calculate the affect on your monthly
payment until a satisfactory amount has been worked out.

The subroutine would also be valuable for those considering consolidating a number
of debts. Add up the current pay-offs of the loans you wish to combine and then use
this subroutine to calculate how much your new monthly payment will be.

Line By Line Description

Lines 150 to 170: Define the amount of the LOAN, the interest RATE in whole per
cent per year, and the NUMBER of monthly payments. Your program can substitute
INPUT lines to have this information entered by the user.

Line 200: Change RATE to percentage.

Line 210: Calculate PAYMENT.

Line 220: Round off PAYMENT to two decimal places.

Line 270: Print result.

You Supply

You must define these variables:

• LOAN (the original amount to be financed)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• NUMBER (number of months loan will run).

The subroutine will return PAYMENT, which is the monthly payment, against principal
and interest.

RESULT

Loan payment calculated.

128/ Commodore 64 Subroutine Cookbook

10 REM ******************
20 REM * *
30 REM * PAYMENT AMOUNT *
40 REM * *
50 REM ******************

60 REM ----------------------------
70 REM
80 REM
90 REM
100 REM
110 REM
120 REM

+ + VARIABLES + +
RATE:
LOAN:

INTEREST RATE
AMOUNT OF LOAN

NUMBER: MONTHS OF LOAN
PAYMENT: MONTHLY PAYMENT

130 REM ----------------------------

140 REM *** INITIALIZE ***

150 LOAN = 100
160 RATE=10
170 NUMBER = 36
180 GOTO 260

190 REM *** SUBROUTINE ***

200 RATE = RATE/100
210 PAYMENT=LOAN*(RATE/12)/(1-(1+ (RATE/12)) "-NUMBER)
220 PAYMENT = INT(PAYMENT*100 + .5) /100
230 RETURN

250 REM *** YOUR PROGRAM STARTS HERE ***

260 GOSUB 200
270 PRINT PAYMENT

NUMBER OF PAYMENTS

WHAT IT DOES

Calculates number of payments given interest rate, monthly payment,
and loan amount.

Variables

• RATE: Interest rate
• LOAN: Amount of loan
• NUMBER: Months of loan.

Business and Financial Subroutines / 129

• PAYMENT: Monthly payment
• WP: Number of whole payments
• FP: Amount of final payment.

How To Use Subroutine
This routine wi II calculate the number of payments given a fixed interest rate, the loan

amount, and the monthly payment required.
You might use this subroutine to calculate how long your auto loan will run, given

an interest rate of, say, 15 percent, a loan amount of $8000, and a monthly payment
of $250. Since most automobile loans are for fixed periods of 18, 24,36, or48 months,
the figures will be approximate. That is, an answerof41 months will be produced using
the 15 percenti$250/$8000 example. So, you will know that you can borrow somewhat
more than $8000 for 48 months, or somewhat less for 36 months.

More commonly, you will use this subroutine to figure out how long it will take to
payoff a debt, such as a credit card account, with an open-ended number of payments.
If your charge card balance is $3000, and you plan on making $150 monthly payments
until it is paid off, given an 18 percent monthly interest rate, the program will inform
you that it will take 24 months to dispose of the balance.

Line By Line Description
lines 170 to 190: Define the amount of LOAN, the interest RATE, in whole percent,

and the monthly PAYMENT desired. Your subroutine can substitute INPUT statements
to have this information supplied by the user.

Line 220: Change RATE to monthly decimal value, that is, 12 percent per year equals
12/1200 or .01 per month.

Line 230: Calculate number of payments.

Line 240: Calculate number of whole payments.

Line 250: Figure amount of final, partial payment.

Line 280: Access the subroutine.

Lines 290 to 310: Print results.

You Supply
You must define these variables:

• LOAN (the original amount to be financed)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• PAYMENT (the amount of the monthly payment.

The subroutine will return NUMBER, which is the numberof monthly payments that
will be required.

RESULT

Number of loan payments calculated.

130/ Commodore 64 Subroutine Cookbook

10 REM *******************
20 REM * *
30 REM * NUMBER PAYMENTS *
40 REM * *
50 REM *******************
60 REM -------------------------------------
70 REM + + VARIABLES + +
80 REM RATE: INTEREST RATE
90 REM LOAN: AMOUNT OF LOAN
100 REM NUMBER: MONTHS OF LOAN
110 REM PAYMENT: MONTHLY PAYMENT
120 REM WP: NUMBER OF WHOLE PAYMENTS
130 REM FP: AMOUNT OF FINAL PAYMENT
140 REM
150 REM ----------------------------------

160 REM *** INITIALIZE ***

170 LOAN = 1500
180 RATE=12
190 PAYMENT = 100
200 GOTO 280

210 REM *** SUBROUTINE ***

220 RATE=RATE/1200
230 NUMBER=LOG(PAYMENT/(PAYMENT-AMOUNT*RATE)) /LOG(l+RATE)
240 WP = INT (NUMBER)
250 FP=PAYMENT*(NUMBER-WP)
260 RETURN

270 REM *** YOUR PROGRAM STARTS HERE ***

280 GOSUB 200
290 PRINT WPj "PAYMENTS OF $ "jPAYMENT
300 PRINT "PLUS FINAL PAYMENT OF"
310 PRINT "$" JFP

YEARS TO REACH DESIRED VALUE

WHAT IT DOES

Calculates number of years required to reach desired amount, given
interest rate, and original amount.

Business and Financial Subroutines / 131

Variables

• RATE: Interest rate
• YEARS: Years compounded
• FUTURE: Future value desired
• AMOUNT: Amount to be compounded.

How To Use Subroutine

This routine will calculate the number of years required to reach a desired money value,
given a fixed interest rate, and the original investment value. The routine assumes that
no additional amounts are added to the principal. That is, an original amount is deposited
in a bank and left there to accumulate for a number of years. An inheritance might be
placed in the bank and allowed to build until retirement, college, or some other need
for the mOtley arises.

Line By Line Description-

Lines 160 to 190: Define FUTURE, desired future value, the interest RATE in whole
percent per year, and the PERIODS, the number of compounding periods per year. Your
subroutine can substitute INPUT statements to allow the user to enter these figures.

Line 220: Change RATE to decimal figure.

Line 230: Calculate number of years needed to produce the goal value.

lines 240 to 260: Figure number of whole months and years.

Line 290: Access the subroutine.

Lines 300 to 370: Print results.

You Supply

You must define these variables:

• FUTURE (desired future value)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• PERIODS (number of compounding periods per year).

The subroutine will return YEARS, or the number of years that will be required to reach
the desired value.

RESULT

Years calculated.

132/ Commodore 64 Subroutine Cookbook

10 REM ******************
20 REM * *
]0 REM * YEARS TO REACH *
40 REM * DESIRED VALUE *
50 REM * *
60 REM ******************

70 REM --------------------------------
80 REM + + VARIABLES + +
90 REM RATE: INTEREST RATE
100 REM
110 REM
120 REM
1]0 REM

YEARS: YEARS COMPOUNDED
FUTURE: FUTURE VALUE DESIRED
AMOUNT: AMOUNT TO BE COMPOUNDED

140 REM -------------------------------

150 REM *** INITIALIZE ***

160 RATE=10
170 AMOUNT = 1000
180 PERIOD =]65
190 FUTURE = 2000
200 GOTO 290

210 REM *** SUBROUTINE ***

220 RATE=RATE/100
2]0 YEARS = LOG(FUTURE/AMOUNT) /((LOG(l + RATE

/PERIODS))*PERIODS)
240 MTH=YEARS-INT(YEARS)
250 MTH = INT(MTH*12)
260 YEARS = INT (YEARS)
270 RETURN

280 REM *** YOUR PROGRAM STARTS HERE ***

290 GOSUB 220
]00 PRINT CHR$(147)
]10 PRINT "$" ; AMOUNT; " WILL"
]20 PRINT "COMPOUND TO $" ; FUTURE
]]0 PRINT "IN " ; YEARS; " YEARS
]40 PRINT MTHS; " MONTHS"
]50 PRINT "AT" jRATE*100j" PERCENT"
]60 PRINT "COMPOUNDED "j PERIODS
]70 PRINT "TIMES A YEAR. "

Business and financial Subroutines / 133

COMPOUND INTEREST

WHAT IT DOES

Calculates compounded amount of investment, given original value,
interest rate, and time period.

Variables

• RATE: Interest rate
• YEARS: Years compounded
• FUTURE: Future value
• AMOUNT: Amount to be compounded.

How To Use Subroutine

This routine will calculate the compounded future value of an investment, given the
interest rate, present value, and original amount.

You might use this subroutine to calculate how much your savings account will be
worth if allowed to compound for a given period of time.

Line By Line Description

lines 150 to 180: Define original principal AMOUNT, the interest RATE in whole
percent, and the number of YEARS to be compounded.

line 210: Change RATE to decimal value.

line 220: Calculate FUTURE value.

line 230: Round off value to two decimal places.

Line 260: Access the subroutine.

lines 270 to 300: Print results.

You Supply

You must define these variables:

• AMOUNT (the original amount)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• YEARS (number of years to be compounded).

The subroutine will return FUTURE, or value of the compounded investment.

RESULT

Compound interest calculated.

134/ Commodore 64 Subroutine Cookbook

10 REM *********************
20 REM * *
30 REM * COMPOUND INTEREST *
40 REM * *
50 REM *********************

60 REM -----------------------------------
70 REM
80 REM
90 REM
100 REM

+ + VARIABLES + +
RATE: INTEREST RATE
YEARS: YEARS COMPOUNDED
FUTURE: FUTURE VALUE

110 REM AMOUNT: AMOUNT TO BE COMPOUNDED
120 REM

130 REM ----------------------------------

I 140 REM *** INITIALIZE ***

150 RATE=10
160 AMOUNT = 1000
170 PERIOD=365
180 YEARS = 10
190 GO TO 260

200 REM *** SUBROUTINE ***

210 RATE=RATE/100
220 FUTURE = AMOUNT* (1 + RATE/PERIODS) A (PERIODS*YEARS)
230 FUTURE = INT (FUTURE* 100 + .5) /100
240 RETURN

250 REM *** YOUR PROGRAM STARTS HERE ***

260 GOSUB 210
270 PRINT CHR$(147)
280 PRINT "$" ; AMOUNT; " LEFT"
290 PRINT YEARS; " YEARS WILL"
300 PRINT " GROW TO $" ; FUTURE

RATE OF RETURN

WHAT IT DOES

Calculates interest rate, given present and future value, and number
of compounding periods.

Variables

• RATE: Interest rate
• YEARS: Years compounded

Business and Financial Subroutines / 135

• FUTURE: Future value
• AMOUNT: Amount to be compounded.

How To Use Subroutine
This routine will calculate the interest rate on an investment, given the present value,
future value, years compounded, and number of compounding periods. You could use
this to figure what sort of a return your investments are providing you, as a means of
deciding whether to continue or look for new investments.

Line By Line Description
Lines 150 to 180: Define the present (or original) value of the investment, the number

of YEARS it has or will be compounded, and the FUTURE (or current, if the investment is
an old one) value. Your subroutine can substitute INPUT lines to have user enter these values.

Line 210: Figure interest RATE.

Line 220: Change RATE to whole percent.

Line 250: Access the subroutine.

Lines 260 to 310: Print results.

You Supply
You must define these variables:

• AMOUNT (present value)
• FUTURE (future value)
• YEARS (number of years to be compounded)
• PERIODS (number of compounding periods).

The subroutine will return RATE, the interest rate.

RESULT

Interest rate calculated.

10 REM ******************
20 REM * *
30 REM * RATE OF RETURN *
40 REM * *
50 REM ******************
60 REM ---------------------------------
70 REM + + VARIABLES' + +
80 REM RATE: INTEREST RATE
90 REM YEARS: YEARS COMPOUNDED
100 REM FUTURE: FUTURE VALUE
110 REM AMOUNT: AMOUNT TO BE COMPOUNDED
120 REM

130 REM -------------------------------

136 / Commodore 64 Subroutine Cookbook

140 REM *** INITIALIZE ***

150 YEARS = 10
160 AMOUNT = 1000
170 PERIOD = 365
180 FUTURE = 2000
190 GOTO 250

200 REM *** SUBROUTINE ***

210 RATE = ((FUTURE/AMOUNT)II(l/(PERIODS*YEARS))-l)*PERIODS
220 RATE=RATE*100
230 RETURN

240 REM *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 210
260 PRINT CHR$(147)
270 PRINT "$" ; AMOUNT
280 PRINT "TO PRODUCE $" ; FUTURE
290 PRINT "IN " ; YEARS; "YEARS"
300 PRINT "REQUIRES AN INTEREST"
310 PRINT "RATE OF " iRATE

DOLLARS AND CENTS

WHAT IT DOES

Formats dollars and cents.

Variables

• A: Dollars and cents amount to be formatted
• D$: The dollar figure, formatted.

How To Use Subroutine

Business programs frequently work with money, and it is desirable to format the dollars
and cents output into conventional form. That is, the decimal point is followed by two
numbers only, and a trailing zero or two will be included as needed. A figure should
appear as $12.50 or $13.00 rather than $12.5 or $13.

This subroutine wi II round off any fractional cent larger than one-half cent to the next
larger penny and round anything smaller to the next lower amount. The correct number
of zeros will be added to amounts evenly divisible by 10.

NOTE: the caret symbol (II) in the program listing stands for the UP ARROW on the
Commodore 64 keyboard, the key between RESTORE and "*".

Business and Financial Subroutines 1137

Line By Line Description

Line 140: Define dollars and cents amount to be formatted.

Line 170: Define number of decimal places to round off figures. For dollars-and-cents,
P will always equal 2.

Lines 180 to 190: Round off figure by adding 5.5, multiplying it by 100, taking the
integer part of the result, and dividing by 100.

Line 200: Produce string representation of result.

Lines 210 to 240: Check 0$ for a decimal point.

Line 250: If no decimal point found, add ".00".

Lines 260 to 300: If only one number to right of decimal point, add "0."

Line 330: Access subroutine.

Line 340: Print result.

You Supply

Your program should define A, the dollars-and-cents amount to be formatted. The routine
will return 0$, which is the formatted figure.

RESULT

Dollar amount is properly formatted for display.

10 REM *********************
20 REM * *
30 REM * DOLLARS AND CENTS *
40 REM * *
50 REM *********************
60 REM ----------------------------
70 REM
80 REM
90 REM
100 REM
110 REM

+ + VARIABLES + +
A: DOLLARS AND CENTS

AMOUNT TO BE FORMATTED
D$: DOLLAR FIGURE

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 A=55.345
150 GOTO 330

160 REM *** SUBROUTINE ***

138/ Commodore 64 Subroutine Cookbook

170 P=2
180 C=A+5.5*10"-(P+l)
190 B=INT(C*10"P)/10"P
200 D$= "$" +STR$(B)
210 FOR N=l TO LEN(D$)

220 T$=MID$(D$,N,l)

230 IF T$= ". " GOTO 270
240 NEXT N
250 D$=D$+" .00"
260 RETURN
270 L$ = LEFT$ (D$, N)
280 R$=MID$(D$,N+l)

290 IF VAL(R$) <10 THEN R$=R$+ "0"
300 D$=L$+R$
310 RETURN

320 REM *** YOUR PROGRAM STARTS HERE ***

330 GOSUB 170
340 PRINT D$

TEMPERA11JRE

WHAT IT DOES

Calculates Celsius and Fahrenheit.

Variables

• F: Fahrenheit temperature
• C: Celsius temperature.

How To Use Subroutine

This subroutine will convert Celsius temperatures to Fahrenheit and vice versa. The sam
ple routine has a short INPUT section that asks for the temperatures to be entered from
the keyboard.

Line By Line Description

Lines 150 to 160: Figure Fahrenheit temperature.

Lines 170 to 180: Figure Celsius temperature.

Lines 210 to 250: User enters temperature to convert.

Lines 260 to 270: Check to see if Fahrenheit or Celsius.

Business and Financial Subroutines / 139

Lines 280 to 290: If wrong, make user reenter.

Lines 300 to 310: Access proper subroutine.

Line 320: Print results of conversion.

You Supply

• You should define a value for either F or C, depending on which way the conversion
will go. This will usually be input from the keyboard.

• The alpha character ending the input, either "F" or lie", should be supplied to deter
mine which type of conversion will be activated.

RESULT

Temperature converted to alternate value.

10 REM ***************
20 REM * *
30 REM * TEMPERATURE *
40 REM * *
50 REM ***************

60 REM *** INITIALIZE ***

70 GO TO 200

80 REM ----------------------------
90 REM + + VARIABLES + +
100 REM
110 REM
120 REM

F: FAHRENHEIT
C: CELSIUS

130 REM ----------------------------

140 REM *** SUBROUTINE ***

150 C=VAL(AN$)
160 F=INT((9/5)*C+32):RETURN
170 F=VAL(AN$)
180 C = INT((F-32) * (5/90)) : RETURN

190 REM *** YOUR PROGRAM STARTS HERE ***

140/ Commodore 64 Subroutine Cookbook

200 PRINT

210 PRINT" ENTER TEMPERATURE"

220 PRINT" IN THIS FORM: "
230 PRINTCHR$(34)i52CjCHR$(34)i" OR II

240 PRINT CHR$(34) i98FiCHR$(34) i"."
250 INPUT AN$
260 A$ = RIGHT$(AN$, 1)
270 IF A$= "F" OR A$= "C" THEN GOTO 310
280 PRINT "WRONG FORMAT. "
290 GO TO 220

300 IF A$= "F" THEN GOSUB 190
310 IF A$= "e" THEN GOSUB 170
320 PRINT F i "F. = "i C; "C. II

DATE FORMATIER

WHAT IT DOES

Formats dates to MM/DDIYY style.

Variables

• DTE$: Date
• MNTH$: Months
• DAY$: Day
• YEAR$: Year.

How To Use Subroutine

This subroutine will accept input of month, day, and year, and format it into MMiDD/YY
style. That is, December 3, 1947 wi II be displayed as 03/12/47 or 03/12/1947. As written,
the modu Ie prompts the operator to enter the val ues. It disallows illegal months (smaller
than one or larger than 12.) Other checks are made to make sure the day of the month
is acceptable. For example, June 31 and February 30 are not allowed. February 29 is
permitted only during leap years.

Where needed, a leading zero is added, along with backslashes to produce the desired
format. This subroutine can be{lsed in any business program where the operator is asked
the date, and it is important to have a uniform format.

Line By Line Description

Line 160: Enter month to be formatted.

Lines 170 to 180: Check to see that MNTH is at least 1 but no more than 12.

Line 190: If MNTH is less than 10 then MNTH$ = "a" plus the string representation
of MNTH. That is, "9" becomes "09."

Business and Financial Subroutines / 141

Lines 200 to 220: Enter day of month, which must be at least 1 and less than 31.

Line 230 to 250: Check to see if month should have only 30 days, and force user to
reenter if an illegal date has been entered.

Line 260: Enter year.

Lines 270 to 310: If leap year, then February may have 29 days, otherwise, only 28
allowed.

Line 320: If DAY is less than 10 then add leading "0."

Line 330: Construct MM/DDIYY string.

Line 370: Access the subroutine.

Line 380: Print result.

You Supply

The date to be formatted must be supplied from the keyboard.

RESULT

Properly formatted date.

10 REM ******************
20 REM * *
30 REM * DATE FORMATTER *
40 REM * *
50 REM ******************
60 GOTO 360

70 REM ----------------------------
80 REM

90 REM
100 REM

110 REM
120 REM
130 REM

+ + VARIABLES + +
DTE$: DATE
MNTH$: MONTHS
DAY$: DAY
YEAR$: YEAR

140 REM ----------------------------

150 REM *** SUBROUTINE ***

142/ Commodore 64 Subroutine Cookbook

160 INPUT" ENTER MONTH: " ; MNTH$

170 MNTH=VAL(MNTH$)

180 IF MNTH < 1 OR MNTH> 12 GOTO 160
190 IF MNTH<10 THEN MNTH$= "0" +RIGHT$(MNTH$,l)

200 INPUT" ENTER DAY : "; DAY$

210 DAY=VAL(DAY$)

220 IF DAY < 1 OR DAY> 31GOTO 200
230 IF MNTH=4 OR MNTH=6 OR MNTH=9 OR MNTH=l1 GOTO 250

240 GOTO 260

250 IF DAY> 30 GOTO 200
260 INPUT" ENTER YEAR : "; YEAR$

270 YEAR = VAL (YEAR$)

280 IF YEAR/4 < > INT (YEAR/4) GO TO 310
290 IF MNTH = 2 AND DAY> 29 GOTO 200

300 GOTO 320
310 IF MNTH = 2 AND DAY> 28 GOTO 200

320 IF DAY < 10 THEN DAY$= "0" +RIGHT$(DAY$,l)

330 DTE$=MNTH$+ "/" + DAY$ + "/" +YEAR$
340 RETURN

350 REM *** YOUR PROGRAM STARTS HERE ***

360 PRINT CHR$(147)
370 GOSUB 160

380 PRINT DTE$

MENU

WHAT IT DOES

Menu template for user programs.

Variables

• NC$: Number of choices on menu.

How To Use Subroutine

Most programs with more than one function feature a menu of choices for the user to
select from. This subroutine is a menu "template" that can be fleshed out with choices
of your own selection and routines that fulfill each menu item.

If you define the number of selections on the menu at the beginning of your program,
the menu will automatically reject illegal choices, i.e., those that are out of the allowed
range. User input for up to nine selections is by pressing a single key.

Once the operator has selected a menu item, the routine branches to modules writ
ten by the user to carry out the menu functions. To expand the number of menu items,

Business and Financial Subroutines /143

redefine NC. If more than nine choices are listed, you will have to sacrifice single key
entry. Replace line 240 with INPUT A$. Then, any number can be entered.

Note that no menu functions are provided at lines 1000,2000,3000, and 4000; you
must write those routines yourself.

Line By Line Description

Line 70: Define number of menu choices available.

Lines 150 to 160: Clear screen, and present menu title. Line 160 may be changed
by user to label specific menu.

Lines 180 to 210: Labels for the menu choices.

Line 230: Prompt user choice.

Line 240: Wait for user input.

Lines 250 to 260: If entry is less than 1 or larger than the number of choices available,
go back and continue waiting.

Line 270: Access subroutine specified by user, at Lines 1000,2000,3000 or 4000.

You Supply

• Define NC to equal the number of menu choices.
• Write subroutines to accomplish your various tasks, using line 270 as a model to direct

control.

RESULT

Operator can select from list of menu choices.

10 REM ********
20 REM * *
30 REM * MENU *
40 REM * *
50 REM ********

60 REM *** INITIALIZE ***

70 Nc=4
80 GOTO 300

90 REM ----------------------------
100 REM + + VARIABLES + +
110 REM NC: NUMBER OF MENU CHOICES
120 REM

130 REM ----------------------------

140 REM *** SUBROUTINE ***

144 / Commodore 64 Subroutine Cookbook

150 PRINT CHR$(147)

160 PRINT TAB (6) "** MENU ** II
170 PRINT CHR$(17)iCHR$(17)
180 PRINT TAB(J) "1. FIRST CHOICE"
190 PRINT TAB(J) "2. SECOND CHOICE"
200 PRINT TAB(3) "3. THIRD CHOICE"
210 PRINT TAB (J) "4. FOURTH CHOICE"
220 PRINT CHR$(17)
230 PRINT TAB(6) "ENTER CHOICE"

240 GET A$: IF A$ = " " GOTO 240
250 A=VAL(A$)
260 IF A< lOR A>NC GOTO 240
270 ON A GOSUB 1000,2000,3000,4000
280 RETURN

290 REM *** YOUR PROGRAM STARTS HERE ***
300 PRINT
310 GOSUB 150
320 END

990 REM *** FIRST SUBROUTINE ***
1000 RETURN

1990 REM *** SECOND SUBROUTINE ***
2000 RETURN

2990 REM *** THIRD SUBROUTINE ***
3000 RETURN

3990 REM *** FOURTH SUBROUTINE ***
4000 RETURN

TIME ADDER

WHAT IT DOES

Totals seconds, minutes, and hours.

Variables

• TM: Total minutes
• TS: Total seconds
• TH: Total hours
• MIN: Minutes to be added in
• HOUR: Hours to be added in
• SEeS: Seconds to be added in.

Business and Financial Subroutines / 145

How To Use Subroutine
Various programs, such as timers, must add minutes and seconds and hours, and come
up with a total, despite the clumsy base-60/base-24 numbering system combination.

This subroutine takes the total seconds, minutes, and hours at any time and adds in
user-supplied figures, producing a new set of totals.

Line By Line Description

Lines 160 to 180: Define the current total minutes, hours, and seconds.

Lines 190 to 210: Define the number of hours, minutes, and seconds to be added
to the above variables.

Lines 240 to 300: Add current total to additional minutes, seconds, and hours, in form
of total number of seconds ..

Lines 280 to 290: Figure whole hours, and subtract that number of seconds (hours x 3600)
from the total number of seconds.

Line 300 to 310: Figure whole minutes, and subtract that number of seconds
(minutes x 60) from total seconds.

Line 340: Access the subroutine.

Lines 350 to 380: Print the results.

You Supply

You must supply start up values for TS, TM, and TH, or else they will default to those
shown in lines 160 to 180. You may change these defaults to zeros if you wish. Your
program should furnish MIN, HOUR, and SEeS values.

RESULT

New total time calculated.

10 REM **************
20 REM * *
30 REM * TIME ADDER *
40 REM * *
50 REM **************
60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM TM: TOTAL MINUTES
90 REM TS: TOTAL SECONDS
100 REM TH: TOTAL HOURS
110 REM MIN: MINUTES TO BE ADDED
120 REM HOUR: HOURS TO BE ADDED
130 REM
140 REM

SECS: SECONDS TO BE ADDED

150 REM ----------------------------

146 / Commodore 64 Subroutine Cookbook

155 REM *** INITIALIZE ***

160 TM=54
170 TH=40
180 TS=30
190 MIN=30
200 HOUR=2
210 SECS=30
220 GO TO 340

230 REM *** SUBROUTINE ***

240 TM = TM + MIN*60
250 TS = TS + SECS
260 TH = TH + HOUR* 3600
270 TS=TM+TS+TH
280 TH= INT(TS/3600)
290 TS=TS-TH*3600
300 TM= INT(TS/60)
310 TS=TS-TM*60
320 RETURN

330 REM *** YOUR PROGRAM STARTS HERE ***

340 GOSUB 340
350 PRINT CHR$(147)
360 PRINT "SECONDS: "jTS
370 PRINT" MINUTES: " j TM
380 PRINT "HOURS: "jTH

MPG

WHAT IT DOES

Calculates auto miles per gallon.

Variables
• BEGN: Starting odometer reading
• ODOM: Current odometer reading
• GALLNS: Gallons of gas consumed between readings.

How To Use Subroutine
This routine will figure your gas consumption, given the starting and ending odometer
readings and number of gallons of gas consumed. To be accurate, you should top off
your gas tank before writing down BEGN value, and top it off again when recording
ODOM. Any gas put in between those two should be added to the final fill up. In other
words, the MPG can be figured for the aggregate of a number of tanksful of gas.

Business and Financial Subroutines /147

Line By Line Description
Lines 140 to 160: Define current ODOMeter reading, the BEGN, or initial odometer

reading, and the number of gallons, GALLNS of gas used. Your subroutine can use IN
PUT statements to allow the user to enter these values.

Line 190: Calculate MPG.

Line 200: Round off MPG.

Line 230: Access the subroutine.

Lines 240 to 250: Print results.

You Supply
You need to enter values for BEGN, aDaM, and GALLNS, as outlined above. Variable
MPG will store final miles per gallon figure.

10 REM *******
20 REM * *
30 REM * MPG *
40 REM * *
50 REM *******

RESULT

MPG calculated.

60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM BEGN: STARTING ODOMETER
90 REM ODOM: CURRENT ODOMETER
100 REM GALLNS: GALLONS GAS USED
110 REM

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 ODOM = 36420
150 BEGN = 36001
160 GALLNS = 13 .8
170 GOTO 230

180 REM *** SUBROUTINE ***

190 MPG= (ODOM-BEGN)/GALLNS
200 MPG=INT(MPG*10+ .5)/10
210 RETURN

220 REM *** YOUR PROGRAM BEGINS HERE ***

230 GOSUB 190
230 PRINT CHR$(147)
250 PRINT "MPG= " jMPG

GOSUB

1SI1 GOT
~ ... ,. =
=--= rn

:::a c:
z

II (0) I A@l@l M®w IFUllITJ1<eltfi@ITJ1~ 1r@
C®I[ffiI[ffi®cdl®If® IB3@\~fi~

ISO/Commodore 64 Subroutine Cookbook

When compared to the BASICs supplied with other computers in the same price range,
the BASIC 2.0 included in the Commodore 64 stacks up very well indeed. It has a power
ful screen editor that allows changing program lines just by typing over them, and most
of the features of standard Microsoft BASIC.

However, a few statements found in most BASICs have been omitted. Some of these are
handy to have, others almost crucial for serious programming. The subroutines in this section
show you how to simulate these important features with your Commodore computer.

If your only familiarity with BASIC is through your use of your Commodore 64, some
of these statements and functions may appear strange to you. You may even wonder
what they can be used for. A few are rather rare and not commonly found in the majority
of BASICS. This section will try to show you how to use the new functions, as well as
providing tips on why you'd want to put them in your own programs.

Commodore Basic V.2 has some serious deficiencies in the area of manipulating strings
of characters. For example, it is somewhat tedious to find out whether a given string
is located within a second string that is the same size or longer. Other BASICs have a
statement called I NSTR which wi II do this automatically, returning a val ue equivalent
to the position in which the substring is found (or 0 if it is not found).

This capability might be useful in writing a word processing program or a game pro
gram in which we might want to find out if the string entered by the user has a target
word or phrase.

For example, MAIN$, as INPUT, might equal "My name is Michael." We wish to
know ifthe substring "name is" (SUB$) is included and, if so, where. Running the INSTR
subroutine will tell us that "name is" starts at position 4 in MAIN$. In all probability,
the name itself, Michael, begins at position 4 + LEN(SUB$) + 1 or position 12. To ex
tract that name from the string, we take each middle character of MAIN$ until we en
counter a space. That might be accomplished like this (with I being the start position
of the SUB$, as determined by INSTR):

1000 E = LEN(MID$(MAIN$, I))
1010 FOR N= I TO E
1020 T$ = MID$(MAIN$, N, 1)
1030 IF T$=CHR$(32) GOTO 1060
1040 NME$ = NME$ + T$
1050 NEXT N
1060 RETURN

Sometimes, after extracting a desired string in this manner, you will want to replace
it with another string of your choice. This is most common in word processing programs,
where a word or phrase will be replaced.

The MID$ = (referred to as "MID$ on the leftofthe equals sign)function permits you
to replace a portion of MAIN$ with SUB$. SUB$ has to be of the same length as the
string it replaces. If you want to insert a LONGER string to replace a SHORTER one,
use another subroutine, INSERT A STRING.

Another statement likely to be valued by those handling text and other strings using
commas (one of several so-called "string delimiters") is the LlNEINPUT feature. Your
user may type in any characters to the INPUT prompt. Keys will be accepted until
RETURN is pressed, as normal. However, the question mark prompt can be changed
to any character of your choice-or omitted entirely.

Add New Functions To Commodore Basic /151

STRING$ adds a feature to BASIC 2.0 that allows easily building a string of any
size, using a character of your choice. Say you need a string, BALL$, composed
of 20 solid ball graphic characters (CHR$(81)). This subroutine will build it for you
automatically.

MOD is a math-type function that returns the remainder when a number is divided by
another. There are many applications for this feature in games and other programming.

SWAP is a handy way to exchange the values of two variables, even though the SWAP
statement is not included in PET BASIC 2.0. Sorts and other modules that you might design
can use this feature.

LISTER and CHR$ are two modules that handle chores that can also be taken care of quickly
from command mode, just by typing in the command. However, by including either in your
BASIC program with high line numbers, like 30000 and 31000, you can call them at any
time by typing the shorter RUN 30000 or RUN 31000.

MOD FUNCTION

WHAT IT DOES

Simulates MOD function found in other BASICs. Returns remainder
when one number is divided by another.

Variables

• MOD: Remainder when NU is divided by DIV
• NU: Counter being checked for remainder
• DIV: Divisor.

How To Use Subroutine

Frequently, itwill be desirable to know the remainder when one number is divided by
another. For example, you may wish to display 16 lines of a data file on the screen of
the Commodore 64 and then pause until the user presses a key.

MOD will check to see when a counter, NU, is evenly divisible by another number.
When data items number 16,32,48, etc., are displayed, the pause routine can be called.
If the number is not evenly divisible, MOD will equal something other than zero-the
remainder.

So, using this function, lines such as the following are legal:

100 IF MOD = 0 GOSUB 200

200 PRINT If HIT ANY KEY TO CONTINUE If
210 GET A$: IF A$ = If If GOTO 210

220 PRINT CHR$(147)
230 RETURN

152/ Commodore 64 Subroutine Cookbook

Line By Line Description

Line 140: Divide counter, NU, by DIV. Subtract from that the integer portion of the
same result, producing the remainder.

Line 170: Define divisor.

Line 180: Increment counter.

Line 190: Access the subroutine.

Line 200: Test to see if evenly divisible.

Line 210: Return to line 180 to repeat.

You Supply

You should provide a value for the divisor, DIV, each time it is changed. That is, if you
always want to check to see if the number can be divided evenly by 16, DIV can be
defined once atthe beginning ofthe program. Your counter, NU, should be changed
in value by your program so that it can be checked against FLAG. You may check other
variables simply by making NU equal to them just before calling the subroutine. NU
itself will NOT be altered by the subroutine. For example:

100 NU=C

110 GOSUB xxx

RESULT

MOD will equal remainder; zero if none.

10 REM ***********
20 REM * *
30 REM * MODULUS *
40 REM * *
50 REM ***********
60 REM -----------------------
70 REM + + VARIABLES + +
80 REM MOD: RESULT

90 REM NU: COUNTER

100 REM DIV: DIVISOR

110 REM -----------------------
120 GOTO 180

130 REM *** SUBROUTINE ***

140 MOD = NU/DIV-INT(NU/DIV)

150 RETURN

Add New Functions To Commodore Basic /153

160 REM *** YOUR PROGRAM STARTS HERE ***
170 DIV=)O

180 NU=NU+l

190 GOSUB 140

200 IF MOD = 0 THEN PRINT NU; " EVENLY DIVISIBLE BY" ; DIV

210 GOTO 180

INSTR FUNCTION

WHAT IT DOES

Simulates INSTR function found in other BASICs. Checks string for
inclusion of shorter substring.

Variables
• MAIN$: String to be searched for the substring
• SUB$: The substring you are looking for
• BEGN: Starting position for the search
• PLACE: Position where the substring was found, if found.

How To Use Subroutine

Checking one string of alphanumeric characters for the inclusion of a smaller string is
done with the INSTR statement in many BASICs. But, even though the Commodore 64
lacks this feature, this subroutine will mimic it quite closely.

It will run through each character in the main string (MAIN$), beginning at position
BEGN. The routine then checks to see if the next LTH characters of MAIN$ equal the
substring, SUB$. LTH is the length ofthe substring. If so, then PLACE is given the value
of the starting position. If SUB$ is not present, PLACE will equal O.

Note: this subroutine will find only the FIRST occurrence of the SUB$ in MAIN$. If
you want to check further, make BEGN equal PLACE + LTH + 1, and run the subroutine
again. In this case, the search will begin after the place where the substring was first
located.

If you wish to find a word, rather than a series of characters, you should add spaces
to either side of SUB$, when you enter it. That is, entering "and" will locate those letters
in "sand" or "inland" as well as" and" used as a distinct word. So, entering" and ",
that is, "(SPACE)and(SPACE)" will search only for those occurrences that stand alone.
Unfortunately, punctuation marks will count as a character, so words searched for at
ends of sentences have to specify only the initial space.

Line By Line Description

Lines 150 to 170: Define main string of characters, the substring to be searched for,
and the beginning search point.

Line 200: Determine length of substring.

154 / Commodore 64 Subroutine Cookbook

Line 210: Start FOR-NEXT loop from beginning point, BEGN, to length of the MAIN$.

Line 220: If a string corresponding to the MID$ portion of MAIN$ defined by the FOR
NEXT counter and the length of the substring equals SUB$, then return. That is, when
MID$(MAIN$, PLACE, LTH) equals SUB$, then SUB$ has been located in MAIN$ at
position PLACE.

Line 230: Repeat loop.

Line 240: If SUB$ was not found, then PLACE equals o.
Line 270: Access the subroutine.

Line 280: Print result.

You Supply

You should supply a value for MAIN$ and SUB$ each time the routine is run. BEGN
will always have a default value of 1, unless you define it as something else just before
calling the subroutine.

RESULT I
Position of string searched for will be stored in variable PLACE~_. _~

10 REM *********
20 REM * *
30 REM * INSTR *
40 REM * *
50 REM *********
60 REM --------------------------------
70 REM ++ VARIABLES + +
80 REM MAIN$: STRING TO BE SEARCHED

90 REM SUB$: STRING TO BE SEARCHED FOR

100 REM BEGN: START POSITION FOR SEARCH

110 REM PLACE: POSITION WHERE FOUND

120 REM

130 REM ----0.---------------------------

140 REM *** INITIALIZE ***

150 MAIN$ = "THIS IS THE STRING"

160 SUB$ = "THE"

170 BEGN=l

180 GOTO 270

190 REM *** SUBROUTINE ***

Add New Functions To Commodore Basic 1155

200 LTH=LEN(SUB$)
210 FOR PLACE=BEGN TO LEN(MAIN$)
220 IF MID$(MAIN$, PLACE, LTH) =SUB$ THEN RETURN
230 NEXT PLACE
240 PLACE = 0 : BEGN = 1
250 RETURN

260 REM *** YOUR PROGRAM BEGINS HERE ***
270 GOSUB 200
280 IF PLACE = 0 GOTO 310
290 PRINT fI FOUND AT POSITION fI ; PLACE
300 END
310 PRINT flNOT FOUND. fI

REPLACE STRING

WHAT IT DOES

Simulates MI D$ = function found in other BASICs. Replace middle
portion of a string with another string.

Variables
• T ARGT$: Main string
• SUB$: String to be replaced
• PLACE: Position to put SUB$.

How To Use Subroutine
Replacing the middle portion of a string with another string can be useful, especially
in word processing programs. This subroutine will allow replacing any number of
characters in a main string, TARGT$, with an equal number of characters, SUB$.lfyou
want to insert a string that is larger or smaller than the one replaced, you should use
the next subroutine.

This routine will replace only an equal number of characters. For example, you may
take a string such as RETAIN, and change it to REPAIR, by making T ARCT$ = "RETAIN",
SUB$ -"PAIR", and PLACE = 3. The subroutine will start at position three in the target
string, and substitute the SUB$.

You Supply

• Define TARCT$, SUB$, and PLACE just before the subroutine is called.

RESULT

T ARGT$ will be changed to include SUBS.

156/ Commodore 64 Subroutine Cookbook

10 REM *******************
20 REM * *
30 REM * REPLACE STRING$ *
40 REM * *
50 REM *******************
60 REM ----------------------------
70 REM + + VARIABLES + +
80 REM TARGT$: MAIN STRING
90 REM SUB$: STRING TO BE REPLACED
100 REM PLACE: POSITION TO PUT SUB$
110 REM

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 SUB$ = "TEST"
150 TARGT$ = "REPLACEMENT MADE"
160 PLACE=7
170 GOTO 240

180 REM *** SUBROUTINE ***

190 L$=LEFT$(TARGT$,PLACE)
200 R$ =MID$(TARGT$,PLACE + LEN(SUB$) + 1)
210 TARGT$ = L$ + SUB$ + R$
220 RETURN

230 REM *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 190
250 PRINT TARGT$

Variables

• TARGT$: Main string

INSERT STRING

WHAT IT DOES

Inserts string into another.

• SUB$: String to be inserted into main string
• PLACE: Position to put SUB$.

How To Use Subroutine

Sometimes, a string to be inserted may need to be longer or shorter than the string re
placed. This subroutine takes care of that with a few limitations.

Add New Functions To Commodore Basic /157

Like all Commodore 64 strings, neither TARGT$ nor SUB$ can be longer than 255
characters. The resulting string with SUB$ inserted must be shorter than 255 characters
as well.

In the subroutine as written, the target string is "THIS IS THE MAIN STRING OF
CHARACTERS", while the SUB$ is defined as "TEST". Since the PLACE where we want
to insert it is position 7, the new string will read: "THIS IS THE TEST MAIN STRING
OF CHARACTERS".

Line By Line Description

Lines 140 to 160: Define the SUB$, the TARGT$, and PLACE where the SUB$ will
be inserted.

Line 190: Take the leftmost characters in the target string, up to, and including, posi
tion PLACE.

Line 200: Take the rightmost characters in the target stri ng, starti ng with one after posi-
tion PLACE.

Line 210: Construct new target string, from L$, SUB$, and R$.

Line 240: Access the subroutine.

Line 250: Print result.

You Supply

Values for:

• The main string TARGT$
• The string to be inserted SUB$
• The position where it will be put, PLACE.

RESULT

TARGT$ will have SUB$ inserted in it, at position PLACE.

10 REM ******************
20 REM * *
30 REM * INSERT STRING$ *
40 REM * *
50 REM ******************
60 REM ----------------------------
70 REM

80 REM

90 REM

+ + VARIABLES + +
TARGT$: MAIN STRING

SUB$: STRING TO BE INSERTED

100 REM PLACE: POSITION TO PUT SUB$

110 REM

120 REM ----------------------------

158/ Commodore 64 Subroutine Cookbook

130 REM *** INITIALIZE ***

140 SUB$ = "TEST "
150 TARGT$ = "TARGET STRING LETTERS"
160 PLACE = 12
170 GOTO 240

180 REM *** SUBROUTINE ***

190 L$=LEFT$(TARGT$,PLACE)
200 R$ = MID$ (TARGT$, PLACE + 1)
210 TARGT$ = L$ + SUB$ + R$
220 RETURN

230 REM *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 190
250 PRINT TARGT$

LISTER

WHAT IT DOES

Simulates LLIST function found in other BASICs. Send program
listings to serial line printer.

Variables

None.

How To Use Subroutine

Sends current program in memory to line printer. You may renumber and include at
the end of your program with, say, line numbers beginning at 30000. Then, type RUN
30000 to produce the listing.

If you are using one of the other merging techniques described in Chapter 1 you may
also store this subroutine on disk with a high line number, then type MERGE"LlSTER"
or MERGE"LlSTER",8 to append it to your program. Call it as needed.

This subroutine works only with serial printers, such as the Commodore 1525. Parallel
printers require a special hardware adapter and software.

Line By Line Description

Line 130: CLOSE channel 4, just in case it had been left open previously.

Line 140: OPEN fresh channel.

Add New Functions To Commodore Basic /159

Line 150: Redirect any output normally going to the screen, device #1, to device #4,
the printer.

Line 160: LIST program (sends listing to printer).

Line 170: CLOSE channel, end.

You Supply

If you wish, you may edit line 160 to read LIST 0-29999 so that after the subrouti ne has
been renumbered to 30000 or higher, only the program will be listed.

Or, you can edit the LIST line at any time so that selected lines will be listed to the
lineprinter. Changing the line to LIST 100-500 will cause the lineprinter to print only
those lines, inclusive.

RESULT

Listing sent to line printer.

10 REM **********
20 REM * *
30 REM * LISTER *
40 REM * *
50 REM **********
60 GOTO 190

70 REM ----------------------------
80 REM
90 REM
100 REM

+ + VARIABLES + +
NONE

110 REM ----------------------------
120 GOTO 210

130 REM *** SUBROUTINE ***

140 CLOSE4
150 OPEN4,4
160 CMD4: LIST 230-
170 PRINT # 4 : CLOSE4
180 END

190 RETURN

200 REM *** YOUR PROGRAM STARTS HERE ***

210 PRINT
220 GOSUB 140

160/ Commodore 64 Subroutine Cookbook

CURS VALUE

WHAT IT DOES

Returns Commodore CHR$ code for any key.

Variables

• A: CHR$ value of last key pressed.

How To Use Subroutine

When POKing to character memory, or printing graphics or alphanumerics via PRINT
CHR$(n), it is necessary to know the special Commodore CHR$ code for a given key.
If many keys are used, looking them all up on a table in a reference book can be time
consuming. Instead, add this subroutine to the end of your program, and call itas needed.

Just why wou Id you wantth is capabi I ity?The answer lies in the differences in the ways
computers and human beings like to process information. People are comfortable
handling mixtures of alpha and numeric characters; computers recognize just binary
numbers-ones and zeros. When string data is fed to a Commodore 64, it must be con
verted to a series of numbers that the processor can handle.

ASCII, or American Standard Code for Information Interchange, is one standard of
communication that has been agreed upon so that computers can exchange
alphanumeric information in a form that is common to processors with differing
operating systems and languages. Commodore departs somewhat from this code for the
Commodore 64, especially when using the graphics characters. PEEKing and POKing
characters is done using the Commodore character set listing, not the standard ASCII
table. However, the standard alphanumeric symbols are accurately portrayed with the
CHR$(n) statement. That is, PRINT CHR$(65) wi II produce an uppercase" A" in Com
modore BASIC, just like in other BASICs.

But even if you don't have a modem and aren't communicating with other com
puterists, there are many times when it is necessary to translate a string into the cor
responding ASCII code, or vice versa. In some cases, only a few characters need to be
converted, so a table of codes and their string values will do the job. Other times, longer
messages must be deciphered.

One good application for ASCII characters in programs is in game-writing. Writers
of BASIC adventure-style programs may wish to "hide" messages from those casually
listing the program. The CHR$(n) function can be used to assign the desired string values
to string variables that are called at appropriate points in the program. CHR$(n) returns
a one-character string that corresponds to the ASCII code of n. For example, PRINT
CHR$(65) will produce an uppercase "A" on the screen.

A BASIC adventure might have use for a message such as:

"LOOK IN THE HOLLOW STUMP. "

This hint could be labeled Hl $, and concatenated using CHR$(n), and the ASCII codes:

Add New Functions To Commodore Basic / 161

100 DATA 76,111,111,107,]2,105,110,]2,116,104
,101,]2,104,111,108,108,111,119,32,
115,116,117,109,112,]2

110 FOR N= 1 to 25: READ A
120 H1$=H1$+CHR$(A)
1]0 NEXT A

Additional DATA lines and FOR-NEXT loops could be used to put any number of
messages into string variables which are difficult to read accidentally. Of course, any
knowledgable programmer could pick the BASIC game apart, or enter PRI NT H 1 $ from
command mode once the program has been run past the initialization point. But, this
technique assumes that the object is to protect the game player who innocently LISTS
the program and doesn'twantto spoil the fun. The same method can be used to "hide"
program credits within BASIC code.

Line By Line Description

Line 140: Wait for user to press a key.

Line 150: Find ASCII value of that key.

Lines 160 to 170: Print result.

Line 210: Access the subroutine.

You Supply

Just press the key that you want to check.

RESULT

Variable A will equal CHR$ value of that key.

10 REM **************
20 REM * *
]0 REM * CHR$ VALUE *
40 REM * *
50 REM **************
60 GOTO 180

70 REM ----------------------------
80 REM
90 REM
100 REM

+ + VARIABLES + +
A: CHR$ VALUE OF KEY

110 REM ----------------------------
120 GOTO 200

1]0 REM *** SUBROUTINE ***

162/ Commodore 64 Subroutine Cookbook

140 GET A$: IF A$ = " " GOTO 130

150 A=ASC(A$)

160 PRINT" CHR$ VALUE OF KEY" ; A$

170 PRINT" IS : ";A

180 RETURN

190 REM *** YOUR PROGRAM STARTS HERE ***
200 GOSUB 140

210 GOTO 200

LINE INPUT

WHAT IT DOES

Simulates LINE INPUT function found in other BASICs.
Allows entering string delimiters into strings.

Variables

• AN$: INPUT returned by user
• PROMPT$: Prompt character.

How To Use Subroutine

If you ask the user of a program to enter a string, and a comma or other character such
as a quotation mark is entered, the extra is ignored. These characters that are ignored
during string INPUT are known as string delimiters. However, sometimes it is desirable
to allow such input, as when an entire phrase or sentence is entered. Such a routine
wi II also avoid an error by naive users who don't know enough to avoid pressing string
delimiter keys during their input.

This subroutine will repeatedly poll the keyboard using a GET A$ loop, and add any
characters to AN$. Commas may be entered, and input can be ended only by pressing
RETURN (CHR$(13)). The keys pressed are printed to the screen just as with normal
INPUT, and a question mark prompt is displayed. To the user, the change is invisible,
except that string delimiters may be accepted. If you wish, your program can look for
string delimiters that are NOT wanted in the input, and eliminate them.

In addition, the prompt character can be changed or eliminated, which is especially
useful for entries for which a question mark is inappropriate.

Line By Line Description

Line 60: Define the character to be used as a prompt.

Line 150: Print the prompt character to the screen.

Line 160: Wait for user input.

Add New Functions To Commodore Basic /163

Line 170: Only if the key pressed was RETURN, then end the subroutine.

Line 180: Add key pressed to the answer string, AN$.

Line 190: Print the current key pressed to the screen.

Line 200: Go back for another entry.

Line 220: Access the subroutine.

Line 230: Print result, the user entry.

You Supply

• PROMPT$ may be redefined as any character you wish.

RESULT

Your finished INPUT will be stored in AN$.

10 REM **************
20 REM * *
30 REM * LINE INPUT *
40 REM * *
50 REM **************
60 PROMPT$ = "?"
70 GOTO 220

80 REM ----------------------------
90 REM + + VARIABLES + +
100 REM AN$: INPUT RETURNED
110 REM PROMPT$: PROMPT CHARACTER
120 REM

130 REM ----------------------------

140 REM *** SUBROUTINE ***
150 PRINT PROMPT$;
160 GET A$: IF A$ = " " GOTO 160
170 IF A$ = CHR$ (13) THEN RETURN
180 AN$ = AN$ + A$
190 PRINT A$;
200 GOTO 160

210 REM *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 150
230 PRINT
240 PRINT AN$

164 / Commodore 64 Subroutine Cookbook

SWAP

WHAT IT DOES

Simulates SWAP function found in some other BASICs.

Variables

• A$: First variable
• B$: Second variable.

How To Use Subroutine

Exchanging the value of one variable for that of another cannot be done in one step in
Commodore 2.0 BASIC found in the Commodore 64. This feature is useful in sorts and
some other types of programming where the value of one variable needs to be traded
with the value of another.

This subroutine wi II do that for you for any two string variables. To use it with numeric
variables, either use a second identical subroutine, with the string identifiers removed
(i.e., DUMMY = A, A = B, B = DUMMY). Or, a less elegant way is to change the numeric
variables to strings before calling the routine. This can be done as follows: A$ = STR$(A):
B$=STR$(B):GOSUB xxx: A=VAL(A$):B=VAL(B$).

Not exactly efficient, right? Use two subroutines instead, one for strings and one for
numbers.

Line By Line Description

Lines 130 to 140: Define initial value of A$ and B$.

Line 170: Temporarily assign A$ to a dummy variable, DUMMY$.

Line 180: Make A$ equal to B$.

Line 190: Make B$ equal to DUMMY$, which stores the original value of A$.

Line 220: Print original value.

Line 230: Access the subroutine.

Line 240: Print the results.

You Supply

• Values for A$ and B$, or A and B, the two variables which must be swapped.

RESULT

Values exchanged.

10 REM ********
20 REM * *
30 REM * SWAP *
40 REM * *
50 REM ********

Add New Functions To Commodore Basic /165

60 REM ----------------------------
70 REM
80 REM
90 REM
100 REM

+ + VARIABLES + +
A$: FIRST VARIABLE
B$: SECOND VARIABLE

110 REM ----------------------------

120 REM *** INITIALIZE ***
130 A$ = "FIRST"
140 B$ = "SECOND"
150 GOTO 220

160 REM *** SUBROUTINE ***
170 DUMMY$ = A$
180 A$=B$
190 B$ = DUMMY$
200 RETURN

210 REM *** YOUR PROGRAM STARTS HERE ***
220 PRINT "A$ = " ; A$; "B$ = " ; B$
230 GOSUB 170
240 PRINT "A$ = " ; A$; "B$ = " ; B$

STRING$

WHAT IT DOES

Simulates STRING$ function found in other BASICs.

Variables

• L TH: Desired length
• COMP$: Character or string used to assemble finished string
• STRNG$: The finished string.

How To Use Subroutine

You may wish to define a string as being composed of 40 spaces, to clear a line. Or, build
a string made up of the word "HI" repeated 12 times. Both can be accomplished with this
subroutine. The main limitation is thatthe resulting string must be 255 characters or shorter.

166 / Commodore 64 Subroutine Cookbook

Line By Line Description

lines 140 to 150: Define the character to be used as the component string and the
length of the desired string.

line 180: Null any previous value of STRNG$.

Lines 190 to 210: Build new string of desired length, using COMP$.

line 240: Access the subroutine.

Line 250: Assign value of STRNG$ to chosen variable.

Line 260: Print new variable.

You Supply

• Define L TH with the desired number of times the component string wi II be repeated.
If the component string has more than one character, this length will NOT be the same
as the length of the finished string.

• Supply a definition for COMP$, which may be either the actual characters or their
CHR$ codes.

RESULT

Variable STRNG$ will be assembled using l TH copies of COMP$.

10 REM ***********
20 REM * *
30 REM * STRING$ *
40 REM * *
50 REM ***********
60 REM ----------------------------
70 REM
80 REM
90 REM
100 REM
110 REM

+ + VARIABLES + +
LTH: DESIRED LENGTH
COMP$: COMPONENT STRING
STRNG$: FINISHED STRING

120 REM ----------------------------

130 REM *** INITIALIZE ***

140 COMP$ = " A "
150 LTH=10
160 GOTO 240

170 REM *** SUBROUTINE ***

180 STRNG$ = " "
190 FOR N=l TO LTH
200 STRNG$ = STRNG$ + COMP$
210 NEXT N
220 RETURN

Add New Functions To Commodore Basic /167

230 REM *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 180
250 B$=STRNG$
260 PRINT B$

....
Q
Q
Q
Q
~

~

o
o
o
~

~ -1---
g~
Q
Q

o
1

o
o
1
1
1

o
o
o o
o .,.... .,.... .,....

170/ Commodore 64 Subroutine Cookbook

This section is for those at the threshold of advanced programming. All but one of the
routines in this part ofthe book deals with viewing and manipulating the individual bits
within single bytes in your computer's memory.

As you know, each memory location stores a single, 8-bit byte. The binary numbers
look something like this:

10110111

In many cases, the value of this whole byte is of use to us. For example, in character
memory, when we find a "1010001" (81 decimal), we know that the graphic "ball"
character has been printed there. Using a full byte allows us to have a total of 256 com
binations in that location and, therefore, 256 different characters.

However, some functions do not have that many possibilities. A feature may be on
or off, for example. We could store a "1" in that location (00000001 in binary) if the
feature is on, and a "0" (00000000 in binary) if it is off. You can see, though, that the
other seven bits will never be used.

The Commodore computer makes multiple use of many memory locations by using
individual bits to represent different conditions. It is necessary, then, to look at one bit
within a byte to see whether a feature is on or off. Similarly, when we want to change
that condition, we may need to POKE ONLY that bit and leave the others, which per
tain to other features, unchanged.

You'll remember in Chapter 5 that Boolean math is used to do certain bit-level opera
tions. ANDing was introduced and used in the examples given forfiltering outthe "up
per" four bits (or nybble) of a color memory byte. The OR and NOT operators were
briefly mentioned as two of the other more frequently used Boolean tools. Where AN D
produced a 1 after each bit-to-bit comparison only when both bits are 1, OR will pro
duce a 1 if either bit is one, while NOT produces the opposite of the value used.

For example:

Original byte: 10110110 OR
Comparison byte: 01100011
Result: 11110111

IF NOT A = 1 will produce a zero (false) value if A does equal 1. There are a number
of other Boolean operators, including exclusive OR (XOR), but none of these are used
in this book. What these subroutines let you do is manipulate individual bits, in order
to set certain registers which may not require an entire byte. Rather than POKing a
number into a memory location and changing the contents of bits that do not concern
you, use the "soft" POKing routines presented here to alter only the desired bit.

One of the subroutines in this section will allow PEEKing at any given bit within a
byte. Another will set any chosen bit toone, turning a feature "on." A third will set any
bit to zero, turning that feature "off." What if you don't care whether the bit is on or
off but would like to set itto the other condition? In computer programming, this is known
as a "toggle." Hitting the switch one time turns the feature on or off, depending on its
previous condition. Hitting it again does the reverse. The "reverse bit" subroutine will
toggle any bit you like for you. Another routine, "Bit Displayer", will show the status
of all the bits in a byte. In effect, it translates the byte into binary.

The final subroutine rounds off numbers, to any specified degree of precision. While
not dealing with bits, it is included in this section as a general number crunching utility.

Bits and Bytes / 171

PEEK BIT

WHAT IT DOES

Looks at status, 0 or 1, of any selected bit in a given byte.

Variables

• ADDRESS: Location to PEEK
• BIT: Bit to examine
• V: Value of that bit, either 0 or 1.

How To Use Subroutine

The Commodore 64 gets maximum mileage of its RAM locations by using many for
multiple purposes. A given register has eight bits, making up its byte. The status of one
bit might be used to indicate whether a certain feature is on or off. Another bit in the
same byte might be used to toggle some entirely different function.

Accordingly, it is useful to look at just one bit in a byte, to see its status. Your pro
gram may take some action based on what is found, i.e., "I F V = 0 TH EN PRI NT"TH E
FEATURE IS OFF."

NOTE: The caret symbol (") indicates the up-arrow key, located between RESTORE
and "*" on your Commodore 64 keyboard.

Line By Line Description

Line 70: Define ADDRESS to PEEK.

Line 80: Define BIT to look at.

Line 180: Determine number to AND with byte.

Line 190: AND byte with P to determine status of the bit.

Line 220: Access subroutine.

Lines 230 to Line 240: Print results.

You Supply

Define:

• BIT as the bit
• 1-8 that you want to examine
• ADDRESS as the memory location to be PEEKed.

V will indicate whether the bit is on or off, by equaling either 1 or o.

RESULT

Status of bit displayed.

172/ Commodore 64 Subroutine Cookbook

10 REM ************
20 REM * *
30 REM * PEEK BIT *
40 REM * *
50 REM ************

60 REM *** INITIALIZE ***

70 ADDRESS = 36879
80 BIT=3
90 GOTO 220

100 REM ----------------------------
110 REM
120 REM

130 REM
140 REM

+ + VARIABLES + +
ADDRESS: LOCATION TO PEEK

BIT: BIT TO EXAMINE
V: VALUE OF BIT

150 REM

160 REM ----------------------------

170 REM *** SUBROUTINE ***

180 P=BIT-l
190 V= (PEEK(ADDRESS)AND(2 p))/(2 p)
200 RETURN

210 REM *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 180

230 PRINT CHR$(147)

240 PRINT V

BIT DISPLA YER

WHAT IT DOES

Shows pattern of all eight bits within a byte.
Converts the decimal value to binary.

Variables

• ADDRESS: Location to POKE
• BIT$: Bit pattern.

How To Use Subroutine

This subroutine will display all of the bits within a byte. Each position will be indicated
by a one or a zero.

NOTE: The caret symbol (II) indicates the up-arrow key, located between RESTORE
and "*" on your Commodore 64 keyboard. You could also use this subroutine to provide

Bits and Bytes / 173

a quick way of converting a number from decimal (in the range 0 to 255 only) to binary.
Simply POKE the number to an unused memory location, and then immediately call
this subroutine to PEEK that address. Quite a roundabout way of performing the task
but useful if you are writing software that you deliberately want to be difficult to change,
e.g., protection purposes.

This subroutine will also serve as a means of converting decimal numbers smaller
than 255 to binary. Simply substitute your variable for PEEK(ADDRESS), and define the
variable as the decimal number you want to convert.

Line By Line Description
Line 70: Define address to be PEEKed.

Line 170: Null any previous value of BYTE$.

Line 180: Provide TAB to print result.

Lines 190 to 230: Repeat through each bit of byte AND each bit with the next highest
power of two, and store the result in G$, which will store the on/off status of each bit.
Then, add G$ to BYTE$.

Line 270: Access subroutine.

Line 280: Print result.

You Supply

• Define ADDRESS as the memory location, in decimal, that you want to PEEK.

The subroutine returns BIT$, which is a representation of all the bits within that byte.

RESULT

All bits within a byte are displayed.

10 REM *****************
20 REM * *
30 REM * BIT DISPLAYER *
40 REM * *
50 REM *****************

60 REM *** INITIALIZE ***

70 ADDRESS = 36879
80 GOTO 260

90 REM ----------------------------
100 REM
110 REM
120 REM
130 REM
140 REM

+ + VARIABLES + +
ADDRESS: MEMORY BYTE

TO DISPLAY
BIT$: BIT PATTERN

150 REM ----------------------------

174 / Commodore 64 Subroutine Cookbook

160 REM *** SUBROUTINE ***

170 BIT$= ""
180 PRINTTAB(4) " " ;
190 FOR N=7 TO 0 STEP-l
200 V= (PEEK(ADDRESS)AND(2 N)) /(2 N)

210 G$=MID$(STR$(V) ,2)

220 BIT$ = BIT$ + G$

230 NEXT N
240 RETURN

250 REM *** YOUR PROGRAM STARTS HERE ***

260 PRINT

270 GOSUB 170

280 PRINT" ADDRESS: "; ADDRESS

290 PRINT PEEK(ADDRESS); " = "
300 PRINT TAB(4)BIT$

DITTO ONE

WHAT IT DOES

Soft POKEs any desired bit within a byte so that it now has the value
of one, without changing any other bits.

Variables

• ADDRESS: Location to POKE
• BIT$: Bit to change to one.

How To Use Subroutine

This subroutine will take any bit within a byte and change that value to one, regardless
of what it was before. None of the other bits within the byte will be altered. This abi lity
is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the Commodore 64.

NOTE: The caret symbol (A) indicates the up-arrow key, located between RESTORE
and "*" on your Commodore 64 keyboard.

Line By Line Description

line 70: Define ADDRESS to PEEK and POKE.

line 80: Define BIT to change to a value of 1.

line 170: POKE BIT to one.

Bits and Bytes / 175

You Supply

• Define ADDRESS as the memory location, in decimal, that you want to POKE.
• BIT should be given the value of the bit, 1-8, that you want changed to a value of one.

RESULT

Bit within a byte is changed to one.

10 REM **************
20 REM * *
30 REM * BIT TO ONE *
40 REM * *
50 REM **************

60 REM *** INITIALIZE ***

70 ADDRESS = 36878
80 BIT=3
90 GOTO 200

100 REM ----------------------------
110 REM
120 REM
130 REM
140 REM

+ + VARIABLES + +
ADDRESS: LOCATION TO POKE
BIT: BIT TO CHANGE TO ONE

150 REM ----------------------------

160 REM *** SUBROUTINE ***

170 POKE ADDRESS, PEEK (ADDRESS) OR(2 BIT)
180 RETURN

190 REM *** YOUR PROGRAM STARTS HERE ***

200 PRINT
210 GOSUB 170

BIT TO ZERO

WHAT IT DOES

Soft POKEs any desired bit within a byte so that it now has the value
of zero, without changing any other bits.

176 / Commodore 64 Subroutine Cookbook

Variables

• ADDRESS: Location to POKE
• BIT$: Bit to change to zero.

How To Use Subroutine

This subroutine will take any bit within a byte, and change that value to zero, regardless
of what it was before. None of the other bits within the byte wi II be altered. This ability
is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the Commodore 64.

NOTE: The caret symbol (A) indicates the up-arrow key, located between RESTORE
and "*,, on your Commodore 64 keyboard.

Line By Line Description

Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to change to a value of o.
Line 170: POKE BIT to one.

You Supply

• Define ADDRESS as the memory location, in decimal, that you want to POKE.
• B IT should be given the value of the bit, 1-8, that you want changed to a value of zero.

RESULT

Bit within a byte is changed to zero.

10 REM ***************
20 REM * *
30 REM * BIT TO ZERO *
40 REM * *
50 REM ***************

60 REM *** INITIALIZE ***

70 ADDRESS = 36879

80 BIT=3

90 GOTO 200

100 REM ----------------------------
110 REM

120 REM

130 REM
140 REM

+ + VARIABLES + +
ADDRESS: LOCATION TO POKE

BIT: BIT TO CHANGE TO ZERO

150 REM ----------------------------

160 REM *** SUBROUTINE ***

170 POKEADDRESS,PEEK(ADDRESS)AND(255-(2 BIT))
180 RETURN

190 REM *** YOUR PROGRAM STARTS HERE ***

200 PRINT
210 GOSUB 170

REVERSE BIT

WHAT IT DOES

Bits and Bytes / 177

Soft POKEs any desired bit within a byte so that it now has the
opposite value without changing any other bits.

Variables

• ADDRESS: Location to POKE
• BIT: Bit to reverse.

How To Use Subroutine

This subroutine will take any bit within a byte and change that value to the opposite
of what it was before. If the bit was one, it will be changed to zero. A zero bit will be
given a value of one. None ofthe other bits within the byte will be altered. This ability
is useful for toggling certain features within a multipurpose byte that may also be used
to control other parameters of the Commodore 64. Using this subroutine, it is not
necessary to know whether the feature is on or off. "Reverse Bit" will change it to the
other status automatically.

NOTE: The caret symbol (II) indicates the up-arrow key, located between RESTORE
and "*,, on your Commodore 64 keyboard.

Line By Line Description

Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to reverse.

Lines 170 to 180: Find out value of the bit, then reverse that, using OR.

You Supply

• Define ADDRESS as the memory location, in decimal, that you want to POKE.
• BIT should be given the value of the bit, 1-8, that you want changed to reverse in value.

178/ Commodore 64 Subroutine Cookbook

RESULT

Bit within a byte is reversed.

10 REM ***************
20 REM * *

30 REM * REVERSE BIT *

40 REM * *

50 REM ***************

60 REM *** INITIALIZE ***

70 ADDRESS = 36878

80 BIT=3

90 GOTO 210

100 REM ----------------------------
110 REM

120 REM

130 REM

140 REM

+ + VARIABLES + +
ADDRESS: LOCATION TO POKE

BIT: BIT TO REVERSE

150 REM ----------------------------

160 REM *** SUBROUTINE ***

170 M= 1-(PEEK(ADDRESS)AND(2 BIT)) /(2 BIT)

180 POKEADDRESS,PEEK(ADDRESS)AND(255-(2 BIT))OR(M*(2 BIT))

190 RETURN

200 REM *** YOUR PROGRAM STARTS HERE ***

210 PRINT

220 GOSUB 170

BINARY TO DECIMAL

WHAT IT DOES

Changes binary number to decimal equivalent.

Variables

• A$: Binary number in string form
• A: Decimal equivalent.

Bits and Bytes I 179

How To Use Subroutine

Several of the subroutines in this book, and many more that you will prepare, will re
quire supplying decimal equivalents of binary numbers. For example, producing pro
grammed character sets involves setting each bit of a byte either ON or OFF depending
on the desired status of the equivalent picture element. Once the binary number has
been "designed," the user needs the decimal equivalent for the appropriate POKE
statement.

This routine will calculate the decimal numbers for you. Just enter the binary number
when asked. The routine will check to see that ONLY l's and O's have been entered,
then figure the result.

NOTE: The caret symbol (") indicates the up-arrow key, located between RESTORE
and 1/*" on your Commodore 64 keyboard.

Line By Line Description

Lines 150 to 160: Look at each binary character, and raise any l's to the power of
2 indicated by its position within the byte.

Lines 200 to 210: Ask user for binary number to convert.

Lines 220 to 270: Check for presence of illegal characters.

Line 280: Access subroutine.

Line 290: Print result.

You Supply

• Enter the binary number to be converted.

RESULT

Binary number converted to decimal.

10 REM ******************
20 REM * *
30 REM * BINARY/DECIMAL *
40 REM * *
50 REM ******************

60 REM *** INITIALIZE ***

70 REM GOTO 200

80 REM ----------------------------------
90 REM + + VARIABLES + +
100 REM A$ Binary number in string form.
110 REM A: Decimal equivalent
120 REM

130 REM ----------------------------

180/ Commodore 64 Subroutine Cookbook

140 REM *** SUBROUTINE ***
150 FOR N=l TO LEN(A$)
160 A=A+2/tVAL(MID$(A$,N,1)
170 NEXT N
180 RETURN

190 REM *** YOUR PROGRAM STARTS HERE ***
200 PRINT CHR$(147)
210 INPUT "ENTER NUMBER TO CONVERT: "; A$
220 FOR N= 1 TO LEN(A$)

230 T$=MID$(A$,N,l)

240 IF T$ = "0" OR T$ = "1" GOTO 280
250 PRINT "NOT BINARY NUMBER"
260 PRINT CHR$(17)

270 GOTO 210
280 GOSUB 150
290 PRINT A$" = "jA

ROUNDER

WHAT IT DOES

Rounds positive number, and cuts off after desired number
of decimal places.

Variables
• A: Number to be rounded
• P: Digits desired to right of decimal point
• B: Rounded value.

How To Use Subroutine
The Commodore 64 is sometimes a great deal more accurate than we need. For exam
ple, our car may get 24.3459121 miles per gallon, but we would be happy to know
that it is close to 24.3. This subroutine can be used to produce the desired degree of
precision, while still rounding the numbers so that the figure is as accurate as the signifi
cant digits reflect.

NOTE: The caret symbol (~) in the program listing stands for the up-arrow key, located
between RESTORE and "*,, on your Commodore 64 keyboard.

Line By Line Description
Line 150: Define number to be rounded.

Line 160: Define number of digits to right of decimal desired.

Line 190: Add rounding factor.

Bits and Bytes / 181

Line 200: Take integer portion of number multiplied by 10 raised to P power, and
divide that by 10 raised to P power.

Line 230: Access subroutine.

Line 240: Print result.

You Supply

You should define A to be the number to be rounded. P will equal the number of digits
to the right of the decimal point that you want. The subroutine will return B, the rounded
value. If B has a fractional decimal part that ends in zero, the zero will not be printed,
even though that many decimal places have been requested. For example, if two decimal
places are desired, 55.344 and 55.399 will be returned as 55.34 and 55.4 respectively.

RESULT

Number rounded as specified.

10 REM ***********
20 REM * *
30 REM * ROUNDER *

40 REM * *
50 REM ***********

60 REM ------------------------------
70 REM
80 REM
90 REM
100 REM
110 REM
120 REM

++ VARIABLES ++
A: NUMBER TO BE ROUNDED
P: DIGITS DESIRED TO

RIGHT OF DECIMAL POINT
B: ROUNDED VALUE

130 REM ------------------------------

140 REM *** INITIALIZE ***

150 A=55.534
160 P=2
170 GO TO 230

180 REM *** SUBROUTINE ***

190 C=A+5.5*10"-(P+1)
200 B=INT(C*10"P)/10"P
210 RETURN

220 REM *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 190
240 PRINT B

GRfETINGS, DAVID!
'-lOW'S YOUIZ MOM?

II ~ I CC@lTIDllTIDlUllIlililcc@11i:il@Ilil10 @1ITilcrlll
(Q)1i:lh1 ~If Til JP)10

184/ Commodore 64 Subroutine Cookbook

Communications is rapidly becoming one of the most popular applications for computers
like the Commodore 64. The machine needs only to be coupled with a low-cost device
called a modem. A modem converts the computer's signals into sounds that can be
transmitted over the telephone wires. In addition, some sort of communications soft
ware needs to be written to allow the Commodore 64 to talk to the other computers.

BASIC is generally too slow to communicate in such a manner, because the data must
be sent out in serial fashion, a byte at a time, and received the same way. It is easy enough
to send data one way, but when the Commodore 64 tries to talk and listen at the same
time, the speed of the BASIC interpreter becomes a limiting factor. However, there are
several applications which can use BASIC quite handily, and this section has two
subroutines that allow you to experiment with both of them.

The first is a quick way of sending Commodore 64 programs from your computer to
another in the same room. You can hard-wire the two together through a null modem
adapter (cost: about $30), and an accessory RS232 adapter for your Commodore 64.
The other computer also needs to be equipped with an RS232 serial port of its own.
This form of communications is one-way only, but allows sharing your BASIC programs
with users of other computer systems, particularly those with similar BASICs. The Apple
and Radio Shack line both have many similarities with Commodore Basic 2.0, and the
author has successfully transferred many programs to each. Some modifications have
to be made to make the programs compatible. But, editing out special graphics
characters, screen formatting characters, etc. before the program transfer wi II help a great
deal.

The second subroutine-actually a full-fledged program-in this section is a simple
BASIC terminal routine. You cannot upload or download text and are limited to 300
baud, but true two-way communications is possible. If you have more advanced re
quirements, check into one of the many faster machine-language terminal programs
available for the Commodore 64.

PROGRAM TRANSFER

WHAT IT DOES

Allows sending program listing out RS232 interface.

Variables

None.

How To Use Subroutine

Because the Commodore 64's BASIC is fai rly compatible with that of other computers,
it may be desirable to send a program listing to another machine. If a Commodore 64
is equipped with an inexpensive RS-232 interface (about $40.00) and the other com
puter has the same, a cable, a null modem adapter, and this subroutine are nearly all
that is needed. The other computer should have a terminal program that wi II allow dump
ing the transmitted file to disk or tape.

Communications and Other Tips / 185

Be sure and include the null modem adapter (available from most computer stores)
when communicating directly between two computers with no modem in between.
Otherwise, each will be sending to the other's SEND line and trying to receive from
the connected computer's RECEIVE line. In truth, the SEND/RECEIVE lines need to be
matched. A null modem will do this.

Simply load the program you want to transmit, and either MERGE this subroutine or
type in the characters from the keyboard. You should type them all in before hitting
RETURN. Baud rate will be set for 300; your receiving computer should be set likewise.

Line By Line Description

Line 130: OPEN RS232, set for 300 Baud.

Line 140: Redirect screen output to RS232 instead.

Line 150: List desired program lines.

Lines 160 to 170: CLOSE RS232 channel.

You Supply

• Program to upload.

RESULT

Program listing is transmitted out R5-232 interface.

10 REM ********************
20 REM * *
30 REM * PROGRAM TRANSFER *
40 REM * *
50 REM ********************
60 GOTO 130

70 REM ----------------------------
80 REM

90 REM

100 REM

+ + VARIABLES + +

NONE

110 REM ----------------------------

120 REM *** SUBROUTINE ***

130 OPEN 2,2,3,CHR$(J8) +CHR$(160)

140 CMD2

150 LIST

160 PRINT#2

170 CLOSE 2

180 END

186 / Commodore 64 Subroutine Cookbook

TERMINAL

WHAT IT DOES

BASIC terminal program.

Variables

• B$: Character sent
• C$: Character received.

How To Use Subroutine

BASIC is just about fast enough to allow the Commodore 64 to communicate at 300
baud if nothing fancy is attempted. This subroutine wi II fetch characters from the RS232
line, and send keyboard characters out that serial interface. Anything sent or received
will be echoed to the screen.

Line By Line Description

line 130: OPEN RS232 channel for 300 baud communications.

line 140: GET from channel #2, a character, if available.

line 150: GET a character from the keyboard, if a key is depressed.

line 160: If a key was depressed, print that character to the screen.

line 170: If user enters CHR$(95) (back arrow), stop communications.

line 180: Get character from RS232, if available.

line 190: Print keyboard or character from RS232 to screen.

line 200: Go back and get more characters.

line 210: CLOSE the RS232 channel.

You Supply

• No user changes needed.

RESULT

Dumb terminal communications using BASIC.

10 REM ************
20 REM * *
30 REM * TERMINAL *
40 REM * *
50 REM ************
60 REM ----------------------------

+ + VARIABLES + + 70 REM
80 REM
90 REM
100 REM

B$: CHARACTER SENT
C$: CHARACTER RECEIVED

110 REM ----------------------------

120 REM *** SUBROUTINE ***

130 OPEN2, 2,3, CHR$ (38) + CHR$ (160)
140 GET # 2 , A$
150 GET B$
160 IF B$< >"" THEN PRINT#2,B$;
170 IF B$ = CHR$ (95) THEN GOTO 210
180 GET # 2, C$
190 PRINT B$;C$;
200 GOTO 150
210 CLOSE 2

220 REM *** YOUR PROGRAM STARTS HERE ***

230 PRINT

Communications and Other Tips /187

Algorithm: A formula or method for performing a given task, such as
MPG =MILES/GALLNS.

Alphanumeric: Characters that are letters or numbers, as opposed to graphics or con
trol characters. Alphanumerics include the upper and lowercase alphabet, as well as
the digits ° to 9.

AND: Boolean operator that compares each bit of a byte with the corresponding bit
in another byte, and produces a 1 if both are equal to 1.

Append: To add to the end of, as to append one file onto another.
Array: A method of storing information in the computer's memory. An array can have

one dimension, as A$(n), with each element (or "compartment") in the array storing
one piece of information. Arrays may also have more than one dimension, e.g.,
A$(row,col), and store rows and columns of information. Multidimensional arrays are
like tables with horizontal and vertical slots.

Arrays may also be either of the numeric or string type. With a numeric array, each
element can store one number; a string array can accommodate a single string per com
partment but that string can be up to 255 bytes long and, therefore, contain more than
one character.

ASCII: American Standard Code for the Interchange of Information. A common code
used by most computer systems for storage of information, especially text files. It pro
vides a basis for sharing files between unlike computers. Commodore computers use
a modified form of this code, which must be converted to standard ASCII when com
municating to other systems.

Binary: The base-two number system used by computers, which consists of 1 's and
O's only.

Bit: The smallest unit of information that can be processed by the Commodore 64;
short for binary digit. A bit represents either 1 or 0, with eight bits making up a single byte.

Boolean math: A type of algebra named for George Boole, which uses two-valued
variables (on/off,true/false) suitable for use by binary computers like the Commodore
64. Certain boolean operators, such as AND and OR, are used with many subroutines
to examine memory registers on the bit level.

Channel: A line of communication used by the Commodore 64 to send or receive
information.

189

190/ Commodore 64 Subroutine Cookbook

Character set: A table listing "definitions" of the characters used by the Commodore
64. By changing the definition, the user can make the computer display a different,
customized character in place of the standard ones provided.

Color memory: A set of RAM locations that keep track of what color is being displayed
in any corresponding screen location.

Cursor: The block character, or any other character,used to mark the current prin
ting position on the screen.

Decimal: Base-l0 numbers; the commonly used number system. The Commodore
64 asks for decimal numbers, and returns decimal numbers for PEEK and POKE opera
tions, even though it processes them in binary form internally.

Decrement: To decrease a variable by one. However, the word is also commonly
used as a verb when the number is being decreased by some larger amount, as to "decre
ment by two."

Default: Any value used automatically if no other value is supplied by the program
or user.

Download: To capture a file through telecommunications into the Commodore 64's
memory buffer, and then write it to tape or disk for permanent storage. Programs or text
files can be transmitted to your computer through a modem, and then downloaded.

File: Any collection of information on disk or tape. Basic and machine-language pro
grams, as well as text material, are all files. The Commodore 64 treats program files dif
ferently than other files, as they are sent to certain specific memory locations with the
correct links so that they can be RUN.

Format: In disk-drive usage, to make a new, unused disk ready for data storage. This
is done using the NEW command with the Commodore 64. Certain information is placed
on the disk marking the available sectors and readying a directory to store a listing of
the SAVEd programs.

Function key: The row of four keys at the extreme right of the Commodore 64
keyboard, which can be used as additional keys to direct control to subroutines or func
tions of the programmer's choice.

Increment: To increase the value of a variable by one. This is also commonly used
as a verb to denote increasing a variable by any amount, such as "to increment by four."

Initialize: To set variables to a desired beginning value at the start of a program, or
at the beginning of a subroutine. For example:

10 B=O
20 INPUT A

30 B=B+A
40 PRINT B
50 GO TO 20

You would want to initialize B, as in line 10, each time the subtotal should be eliminated,
and the addition started from zero again.

Jiffie: A %oth second interval used by the Commodore 64 to keep track of elapsed time.
Garbage: Random information with no meaning. Every memory location contains

something. If it is not meaningful information placed there by the computer or user, it
is termed garbage.

Glossary / 191

Merge: To combine two programs in such a way that their line numbers become
mixed. While MERGING may produce interleaved programs, if there are duplicate line
numbers, the program added will write over the same lines in the original program.

Modem: Mod u I ator-d emod u lator. A device that converts the Commodore 64's signals
to sounds that can be transmitted over telephone lines. The modem also receives sounds
and converts them back for the Commodore 64 to use.

Monitor: The television-like device used to display video information.
Null modem: An adapter plug or cable that reverses the SEND and RECEIVE lines of

two RS-232 serial interface devices. It enables two computers to be wired directly
together to communicate without one computer's SEND signals being sentto the SEND
lines of the other and RECEIVE trying to RECEIVE from the other.

Nybble: Four bits; half a byte. Often used when a feature has only 16 possible
conditions and, therefore, can be expressed in four bits instead of the full eight in a byte.
The rest of the byte (the other nybble) can be used by the computer for other data registers
or left as random garbage.

Offset: A way of addressing memory through the use of a relative address rather than
an absolute address. If a certain memory block is located between 30000 and 31000,
we can POKE the first location in that block by either of the two methods following:

10 POKE 30000,X

10 OFFSET = 30000

20 POKE OFFSET + 1, X

The second method is often more clear and can also be used when the memory location
defined by OFFSET can vary, as the Commodore 64's color memory changes depending
on the amount of RAM installed.

OR: A Boolean operator that is used to compare one byte with another on a bit for
bit level. If a bit and the corresponding bit in the other byte are either 1, OR will pro
duce a 1 as the result.

Oscillator: An electronic device that, in the Commodore 64, produces a sound when
the proper POKEs are performed to the volume and sound registers.

Parallel: A method of transferring data an entire bit at a time, by sending each of the
eight bits along a separate parallel address line simultaneously. Serial transfer, on the
other hand, transmit each of the eight bits one at a time.

Port: One of the "windows" used by the Commodore 64 to talk to the outside world.
The joysticks send information to the computer through a port.

Prompt: A message to the computer user asking for information. The following IN
PUT statement includes a prompt.

10 INPUT "ENTER YOUR NAME" ; A$

Pseudo-random: Numbers which appear to be random but which are actually taken
from a very long list of numbers. The I ist is so long that ittakes a great deal of time before
it repeats, and since the computer usually starts at a different position in the list each
time, the series seems to be different.

192/ Commodore 64 Subroutine Cookbook

Random access: A method of getting data, either from memory or from disk, which
allows going directly to the information required and using it, without accessing any
of the other information in the file or memory.

Real-time clock: The built-in clock in the Commodore 64 that keeps track of elapsed
time since the computer was turned on or since the clock was last reset by the user.

Register: A location storing a status of some type. Some types of registers are located
in the Commodore 64's microprocessor and can be accessed only through machine
language. Some memory locations in the Commodore 64 perform a register-like func
tion, telling the computer whether a certain feature is ON or OFF, or the volume of a
sound oscillator, or some other status.

Rheostat: A variable resistor, like those used in paddles, which lets more electricity
flow when turned one way and less when turned the other.

R5-232: A serial interface device that allows the Commodore 64 to communicate with
devices like printers or modems one bit at a time.

Sequential: A serial file access method in which each piece of information is stored
after another and must be written or accessed in that fashion.

Serial: Sequential data storage or transfer.
String delimiter: A character that the computer recognizes as the "end" of a given

string input. The most common are commas and quotation marks.
String variable: A variable that can store alpha information only. Strings can include

numbers, punctuation marks, and graphics, but the computer recognizes them only as
characters, not as values.

Subroutine: A program module that performs a specific task, called through the
GOSUB statement, and ending with RETURN, which directs program control back to
the instruction following the GOSUB.

Toggle: A feature that can be either ON or OFF is sometimes "toggled" between the
two, like a lightswitch.

Upload: To store a file from disk or tape in the Commodore 64's memory buffer and
then send it through telecommunications to another computer, which can then write
it to tape or disk for permanent storage (downloading.)

Voice: Oneoffouroscillators in the Commodore 64 that produce sounds. Three have
overlapping music ranges, while the fourth voice produces "noise."

A
Add New Functions to BASIC, 149
AND, 59, 170, 173

BASIC tricks, 77
baud, 185, 186

B

binary, 60, 65, 66, 179
bit, 59, 60, 66, 170, 171, 172, 173,

174, 175, 176, 177, 178
Bits and Bytes, 169
Boolean, 59, 170
Business and Financial Subroutines,

123

c
channel, 109
character sets, 56, 65, 66, 94
character memory, 10, 59, 17, 20
communications, 184, 185
Communications and Other Tips,

183
controller, 1 3

D
data files, 108,110,111,112,114,

116,117,119
default, 156
disk, 56, 73,89, 108, 110, 112,

117,118,119

193

E
envelope, 38

F
file, 108, 110, 111, 112, 114, 116,

117,119
function key, 56, 71

G
Game Routines, 93

I
integer, 181

J
jiffie, 26, 29
joystick, 8, 9,11,14,16,17,18,

20,59

M
menu, 9,42, 124
merging, 2, 3,4
Merging Subroutines, 1
modem, 184, 185

N
NOT, 59, 170, 173
nybble,59

194 / Commodore 64 Subroutine Cookbook

o
Other Commodore 64 Tricks, 55
OR, 59, 170, 173

p
paddle, 13
pseudorandom, 97

R
random, 45, 46, 94, 95, 99, 110,
124
real-time clock, 26, 29, 30
register, 10, 38, 39, 40, 41, 45, 48,
50, 171
ROM, 65, 66

S
screen memory, 10, 59, 17,20
sector, 108
sequential, 108, 115, 117
sort, 78, 82, 83, 84
sound, 20, 38, 39,40,41,43,45,
48, 101

T
TI,TI$, 26, 27, 29, 30, 32,89
toggle, 170

U
Using Joysticks, 7
Using the Clock, 25
Using Sound, 37
utility, 2

W
wavefurm, 38,43,45,48, 50

Whet Your Programming Appetite With a "Cookbook" Approach . ..
Write Quality Programs on the Commodore 64!

Accla im (rom prepublication reviewers:
" ... thi s book offers excel lent line·by-line descriptions for each subrout ine
presented ... a great aid for beginners who know BASIC and for experienced users ali ke'

" ... very, very accurate .. . here's an author w ho knows his subject thoroughly!"

COMMODORE 64 SUBROUTINE COOKBOOK
David D. Busch

Here's a programming "cookbook" that offers a potpourri of machine-specifi c
subroutines designed to help improve your programming expertise on the Commodore
64' This\unique programming guide includes 70 ready-tn-merge subroutines plus pro
grammiJg tips to make your own programs sizzle! These easy-tn-follow subroutines are
ingredients to " recipes" for you r programming proficiency, designed to take the mystery
out o f designing character sets, using function keys, joystick action , sound, and other
special features of the Commodore 64. No more "stewing" over exotic, top-heavy math
fuottions and stati stics! Complete with line-by·line descriptions of each subroutine · ,
presenled, th is book also includes:

• SUbroutines for generating musica l notes or adding sO~lIld effects w ithin your own
programming!

• Subroutines for businesslfinancial users and advanced programmers as well '
• Subroutines for adding your own special characters when the Commodore 64 's are

not enough for your needs!
• Tips on routi nes to make your games of arcade qua l ity!
• Plus-a comprehensive glossary and index!

CONTENTS
Merging Subroutines With Your Programs/Using Joysticks/ Using The Clock/ Using
Sound/ O ther:e:ommodore 64 Tricks/BASIC Tricks/Game Routines/Data Files/Business
And FinanCial Subroutines/ Add New Functions To Commodore BASIC/ Bits And Bytesl
~9JWl~.a tions And Other Tips/G:;lossaryllndex

ISBN 0-89303-383- 9

