
OsbomeMcGraw+lill THE
~=-

®

George Stewart

The C-64®
Program FactoryTM

George Stewart

Osborne McGraw-Hill
Berkeley, California

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book
distributors outside of the U.S.A., please write to
Osborne/McGraw-Hill at the above address.

The Program Factory is a trademark of the author.
Mastermind is a registered trademark of Invitica Plastics.
Spirograph is a registered trademark of Kenner Products, Inc.
C-64 is a registered trademark of Commodore Business
Machines, Inc.
Epson is a trademark of Epson America, Inc.

-The C-64® Program FactoryTM -------------

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publica
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 8987654

ISBN ()'88134-15()'9

Judy Ziajka, Acquisitions Editor
Karen Hanson, Project Sponsor
Harry Wong, Technical Reviewer
Ted Gartner, Copy Editor
Judy Wohlfrom, Text Design
Donna Behrens, Composition
Yashi akita, Cover Design

To my wife Marguerite, who encouraged me to write this book (and
designed the office in which I wrote it).

Table
Of Contents

----~ =====-----------------------------

Introduction Xl

Chapter 1

Making Mazes 1

Chapter 2

Hidden Words 15

Chapter 3

The Matchmaker 31

Chapter 4
Crossword Puzzle 49
Designer -Part 1
Chapter 5

Crossword Puzzle 65
Designer -Part 2
Chapter 6

The Codebreaker 87

Chapter 7

Blackjack '84 101

Chapter 8

Billiard Practice 119

Chapter 9

Tic-Tac-Toe 135

Chapter 10

Quiz Master 159

Chapter 11

Speed Drills 169
Chapter 12

Text Scanner 185
Chapter 13

Guess My Word 195
Chapter 14

Poetry Generator 211
Chapter 15

Electronic Loom 225
Chapter 16

Designs in a Circle 245
Chapter 17

Secret Messages 259
Chapter 18

Blazing Telephones 277
Chapter 19

Nutritional Advisor 289
Chapter 20

The Time Machine 299

Index 319

-Acknowledgments ---------

The author is grateful to the editors at Osborne/McGraw-Hill
for their professionalism and kindness during the writing of
this book. Thanks in particular to Susan Sitkin for her help in
keeping this work on schedule.

IX

-Introduction --------------
Your Commodore 64 has a tremendous amount of power hidden away
inside. And it doesn't take a spreadsheet or word processing program to
unleash it, either. The programs presented in this book will put your
C-64 computer to work right now as a puzzle generator, entertainer,
teacher, creative assistant, and general helper.

Most of the programs let you contribute something as well-so that
the program and its results have your own personal touch. You'll be able
to enjoy these programs for a long time to come -changing them every
now and then to suit a special purpose or simply for variety.

If you're interested in how programs work, you'll get an inside view
from the commentary that accompanies the program listings. Many of
the techniques and ideas can be adapted to your own programming
projects.

The step-by-step method of presentation and many of the programs
are adapted from the author's Program Factory series appearing each
month in Popular Computing magazine. However, all of the programs in
this book (the new ones as well as the adaptations) have been designed
or redesigned specifically for computers that run Commodore BASIC,
taking advantage of graphics, sound, and disk file capabilities wherever
possible.

Contents of the Book The 20 programs fall into five categories:

• Puzzles generated by the computer and printed on paper. The fin
ished puzzles may be used without further reference to the
computer.

• Games and simulations for one or more persons; the computer
plays an active role in the games.

Education and self-improvement projects to teach and exercise
your mind on just about any subject you can imagine.

• Creativity and art projects -the computer becomes a way of
extending your imagination.

• Handy tools - programs for use around the computer-age home or
office.

xi

xii The C-64 Program Factory

Chapter Organization Each chapter starts off with a little
background and introductory material about the subject at hand. A de
scription of the main programming methods or techniques used
in the program follows.

The program listing comes next. It is presented in blocks of approx
imately 10-25 lines, each block accompanied by some explanatory com
ments. Another section gives hints and tips for using the program, with
suggestions for program changes in some cases.

Computer Requirements To run these programs you'll need a
Commodore 64 computer with Commodore BASIC built-in. Many of the
programs assume you have a printer attached as device number 4 and a
disk drive attached as device number 8. If you don't have one of these
attachments, simply skip the program options that require the disk or
printer; you can still use the program with the minimal C-64 system
(keyboard and television set).

Suggestions for Entering the Programs Type slowly and care-
fully when entering the program lines. Check your work as you go
along. Before trying to run the program, save it on disk (if available)
and get a printout on paper. Compare the printout line for line with the
listing that appears in this book. A program is like a genetic code -one
little bit out of place and a useless mutation may result.

Be especially careful to distinguish the letter 0 from the number 0
and the letter I from the number 1. Whenever you see a pair of quotes in
a listing, as in "", count the number of empty spaces between the quotes
and be sure to type in the same number on your computer. Sometimes
there are no spaces at all inside the quotes. We call that a null string,
and it's important that you type in a null string when that is called for.

After making a visual, line-for-line check of your program, try to
run it. To determine whether your version is working or not, compare
your results (shown on your computer screen) with the photographs or
sample printouts given in the chapter.

Program Disks All of the programs in this book are available on
5-1/4 inch disk. For prices and details write to the author, care of:
Commodore 64 Factory, POB 137, Hancock, New Hampshire 03449.

Chapter 1

Making Mazes

If you like solving mazes, you'll find making them even more challeng
ing. But telling your computer how to make mazes is the most interest
ing challenge of all.

A maze is like the floor plan of a house with only one entrance and
one exit. In making a maze, the first step is to picture the house with
walls dividing it into rooms, but without any doors between the rooms
or in or out of the house. Next you add doors until you have one path
between any two rooms in the house. Finally, you add an entrance and
an exit anywhere you like.

Figure 1-1 shows a 4 X 4 maze. Verify for yourself that there is only
one path between any two rooms. Try closing the entrance and exit and
opening new ones: you still will have a perfectly good maze because its
internal structure always remains the same.

1

2 The C-64 Program Factory

Figure 1-1. 4 X 4 maze

-Construction Procedure ---------
A maze is divided into three types of rooms while it is being
constructed:

• Living quarters (LQ): rooms that are connected by doorways.

• Planned expansion (PE): rooms that are adjacent to the living
quarters but don't have doors yet.

• Unused space (US): rooms that are not adjacent to the living quar
ters and have no doors.

The abbreviations LQ, PE, and US will indicate variable storage loca
tions in the program shown later in this chapter.

Here are the steps for building a maze (refer to Figure 1-2):

1. Divide the maze into rooms and mark all rooms US.

2. Randomly select a room to be the LQ.

3. Locate all US rooms adjacent to the LQ and add them to the PE
list.

4. If no PE rooms remain, go to Step 8; otherwise, continue.

5. Randomly select a room from the PE list. Add a connecting door
to the LQ (if more than one LQ room is adjacent, randomly
select one).

Making Mazes 3

us us us us us US PE US

us US PE US US PE LQ PE
I---

US PE LQ PE US PE LQ PE

us US PE US us US PE US

A B

US PE PE US US PE PE US

PE LQ LQ PE PE LQ LQ PE
- - I---

US PE LQ PE PE LQ LQ PE

US US PE US US PE PE US

c D

Figure 1-2. First four steps in creating a maze

6. Mark the new room as LQ; mark all PE rooms resulting from this
addition.

7. Go back to Step 3, using the new LQ room as the starting point.
8. Randomly select an entrance On the top and an exit on the bottom.

You can verify that this procedure works by using it to create a 4 X 4
maze On paper. Figure 1-2 shows a few steps in the process.

-How the Program Stores the Maze ----
The maze is stored inside the computer as a two-dimensional array
called M(,). Any room at row R, column C corresponds to the array
element M(R,C). A number stored in each element indicates whether
the room is LQ, PE, or US.

4 The C-64 Program Factory

PE PE PE US -1 -1 -1 0 V ..,
M(2.1)
(Initial LQ

LQ LQ LQ PE 3 5 2~ -1 area)

LQ PE PE US 8 -1 -1 0

PE US US US -1 0 0 0

Figure 1-3. Maze under construction with LQ/PE/US and with numerical
coding

Figure 1-3 shows a maze under construction using the LQ/PE/US
coding system and again with the computer's numerical coding system.
All US rooms are represented with O. All PE rooms are represented as
-1. All LQ rooms are represented by a positive number from 1 through
15 with one exception. The very first LQ room is a special case because
it has no doors. Thus, it has a door code of 0, the same code as a US
room. To distinguish this first LQ room from unused space, 16 is added
to its initial door code.

The number of an LQ room is calculated by assigning the numbers
1, 2, 4, and 8 to its four walls, as shown in Figure 1-4, and taking the
sum of all walls with doors.

-The Program -------------
Throughout this book, the programs will be presented in short logical
blocks to keep the explanations short and clear. However, you can just
enter the listings and return to the explanations at a later time.

Setting Up the Program Constants

The first block initializes the random number generator (so you'll get
different mazes each time you rUfl the program) and sets up certain
constant values:

1 (3 I t'WUT "EHTEP H F.~At'mOt1 !',lUt1BER ",;:X:
20 X=RHD(-ABS(X»
30 CLP
40 CS$;CHP$(147): REM CLEAR SCREEN

Making Mazes 5

70 S6S;CHR$(15): REM 6 LINES/IHCH PRINTER CODE
80 S9$=CHR$(8): PEM 9 LINES/INCH PRINTER CODE
130 W$=CHR$(166): REM SOLID BLOCK CHARACTER
14(1 OF'$=" ": !;'~Et'1 m'lE ::;PI=!CE 11",1 QUOTE:;:;

Line 30 erases the previous contents of all variables and arrays; after
creating a maze, the program can start over at this line (if you ask for a
new maze).

Lines 70 and 80 store printer control codes for use with the Commo
dore MP8-801 printer (or other compatible models). Outputting 86$ to
the printer selects a line spacing of 6 lines per inch; outputting 89$
selects a line spacing of 9 lines per inch. The latter spacing allows the
printing of mazes in which there are no gaps in the vertical walls.

Lines 130 and 140 store the characters used to represent walls and
open areas within the maze. W$ is a solid block and OP$ is a single
space.

If you don't want to use the solid block for walls (or if your printer
can't produce that character), set 86$ and 89$ equal to the null string (a
pair of double quotes with no spaces in between them), and set W$ equal
to a single "X".

2

Figure 1-4. The numerical codes used to represent which walls of a cell
are open

6 The C-64 Program Factory

Defining the Size of the Maze

The following lines request the maze dimensions and then set up the
necessary arrays:

150 F'R I tH "EtHER 1"lAZE LEtKiTH f1t·m L,j I DTH"
16(1 PRlt·H "(LL .. L,jL,j) ".
1 70 I t·4F'UT F.:j::., C>(
1?3 F:::<= I tH .: F.:::<)
175 C;'::=HH(O:)
180 FX=2/3*RX*CX
190 DIM MCRX,CX) .. FR(FX) .. FC(FX) .. VU(4)
;2C.:W t'4=0

In line 180, FX is the maximum number of planned expansion cells
(PE) allowable based on the maze dimensions RX and CX. M(,)stores
the maze, and FR() and FC() store the row and column locations of the
PE cells. VUe) stores the contents of rooms adjacent to the most
recently added LQ room. N stores the number of PE cells (0 when we
first begin).

Identifying the First Room

The program selects the first room of the living quarters (LQ) by ran
domly picking a row R and a column C.

210 R=INT(F.:ND(l)*RX)+l
220 C=INT(F.:ND(l)*CX)+l
2:3(1 CO=(:
240 F.:~3=F.:
250 t·1(R .. C)=16

In line 250, M(R,C) gets the special value of 16, which indicates it is
the first LQ room. As doors are added to this room, it will take on
values from 17 to 31.

Identifying the PE Areas

It's time to identify all the rooms. To do this, the program must look at
the four adjacent rooms (left, right, up, and down).

;26(1 OO::;UE: 15;2~3
270 IF VU(1)()0 THEN 320
;2:::~3 t·i=t·i+ 1

290 FF.: ([·4;' :;-.::F:
3tH;) FC (toO =C+ 1
::::10 t'H F.: , C+1)::-··1
320 IF VU(2)()0 THEN 370
33121 t·4~::t·~+ 1
:~:40 FTo?.;: t·4;' =R+ 1
35~:;' Fe (t·4 ;. =C
360 t1(F.:+i.,C):::··-i
370 IF VU(3)()0 THEN 428
3:::(1 1··4;=t·4+ 1
::::90 FF.: (t·n ::::F.:
4'JO FC(t·4):=C--1
4 :l (1 t'1';: F.: .' C --1) ::::-1
420 IF VU(4)()0 THEN 470
4:::: '21 t+:: t·H- 1
44.21 FRd·D=F.:-i
45(1 FC O-Lo:;:C
46121 t1(R-l.,C):::-1

Making Mazes 7

The subroutine call at line 260 gets the view from the current room
and stores it in array VU(). This facilitates the updating of the PE list.
VU(l) through VU(4) list the contents of the rooms to the right, below,
to the left, and above, respectively. If VU() refers to a room that is
beyond the boundaries of the maze, its value is set to -l.

The program checks the contents of all four views VU(l) through
VU(4). We'll look at lines 270-310 as an example. These lines check
VU(I).

Whenever VU(1) is 0 (line 270), indicating a room with no doors, the
program adds 1 to the PE counter N (line 280). The PE counter stores
the row and column address of the room that is referenced by VU(l)
(lines 290-300). Finally, the room is marked as a PE room in line 310.

Checking for New Expansion

After checking all four views, the program continues. First it tests the
value of the PE counter, N.

47121 IF N=0 THEN 84121

If N is 0, there are no more PE rooms, so the program advances to
line 840. However, if there are PE rooms remaining, the program ran
domly selects one to become the newest addition to the LQ area.

8 The C-64 Program Factory

496 F~INT(RND(l)*N)+l
~51~1~3 F.~:::FF<:';: F)
516 C:~FC(F)
:;::20 CiU:::UE: 1520
530 P=INT(RND(1)*4)+1
540 IF VU(P)(=0 THEN 530
550 M(R,C)=2t(P-l)
566 FF: 0:: F::' =FF.:';: I"~)
:570 FC(F)=FC(t·~)
5:3121 H~::t'i·~ 1
590 OH P GOTO 600,660,726,790
61216 MCRJC+l)=MCR,C+l) OR 4
650 OOTO 266
660 M(R+l,C)=M(R+l,C) OR 8
II (1 (30TO 26(1
726 M(R,C-l)=M(RJC-l) OR 1
?7(1 OOTO 2r'::6
790 M(R-l,C)=M(R-l,C) OR 2
:;::::::0 (30TO 26121

Lines 490-510 select a room from the PE list. This room, M(R,C),
shares at least one common wall with the LQ area. The program must
select a wall to remove so M(R,C) can become part of the LQ area.

The subroutine call at line 520 gets the view from M(R,C). Line 530
randomly selects a direction P (right, down, left, up). If the room in that
direction is in the LQ area (line 540), the wall between the two rooms is
removed.

This is a two-step process: line 550 stores the open-door code in
M(R,C); but the open-door code of the other room (the "destination
room") also must be updated. Lines 590-830 update this code by using
the OR function.

Look at lines 600 and 650 as an example. These lines operate when
P=l, indicating that the target room is to the right of M(R,C) and giving
it an array address of M(R,C+ 1). The program computes the value
M(R,C+1) OR 4, which opens the appropriate door in the target room
without affecting any of its other four doors.

Lines 660-830 handle P=2, P=3, and P=4 in an analogous manner.
In every case, the program jumps back to line 260, using M(R,C) as the
new LQ room.

Locating the Entrance and Exit

This repetitive process ends when no more PE rooms remain (when
N=O in line 470). The following lines select entrance and exit cells.

840 M(R0,C0)=M(R0,C0) AND 15
890 SC=INT(RNDC1)*CX)+1
900 EC=INTCRND(I)*CX)+1
910 M(l,SC)~M(l,SC) OR 8
960 M(RX,EC)=MCRX,EC) OR 2

Making Mazes 9

Recall that the first LQ room, M(RO,CO), receives a special code of
16. During the course of the maze construction, additional open-door
codes are added to this value, depending on which doors of M(RO,CO)
are opened. Line 840 converts the special code into a standard code
ranging from 1 to 15.

Lines 890 and 900 select entrance and exit cells for the maze. Lines
910 and 960 remove the outer wall of the entrance cell.

The maze is complete as far as the computer's digital logic is con
cerned. Now the program makes it visible, by printing it on the display
or outputting it to a printer.

Printing the Maze

The following lines let you select the output device:

970 D'·/=1
9:30 PF.: I tH II :::ELECT OUTPUT DE',,.. I CE II
99~j PF.:ltH "l=DISPLfN 2=PRII·..rrERII
1 '.300 I t·~PUT D'.l
1010 IF DV(>l AND DV()2 THEN 980
1020 IF DV=l THEN 1050
1 ~j30 OPEt·~ 1, 4
1 ~)40 (:to1D 1

The program assumes that "device 4" is your printer. If you have
another device number assigned to your printer, change "4" to the cor
rect value in line 1030.

1050 PRINT CS$;S6$;: REM CLEAR SCREEN,
SELECT 6 L!IN PRINTING

1090 FOR R=1 TO RX
1100 FOR C=1 TO CX
1110 pF.:Hn l,J$;
11213 IF (MCR,C) AND 8) () 0 THEN 1190
1170 PF.:ltH ~J$.:
11 :::0 (JOTO 12~210
119'.:.1 PF.: I t·n OF'S.:
1200 t·1E>::r C
1210 PRINT W$;S9$: PRINT S6$;: REM SELECT 9 L!IN

PRINTING THEN RETURN TO 6 L!IN

10 The C-64 Program Factory

1220 FOR C=l TO CX
1230 IF (M(R,C) AND 4) () 0 THEN 1300
12:30 PR WT L,tl:: ,;
1290 GOTf) 1 ::: 1 (1

1 :::~30 F'F: I t-n OP$;
1310 PR I t-n OF'$,;
132(1 t'jE:>::T C
1330 PRINT W$;S9$: PRINT S6$;: REM SELECT 9 L/IN

PRINTING THEN RETURN TO 6 L/IN
134(1 t'jE:,;:T R
1350 FOR C=1 TO ex
136121 PR HH L,j$,;
137121 IF (M(RX,C) AND 2) () 2 THEN 144121
142~1 pF.:nH OP::L
14~:0 GO TO 145~1
144(1 PR I t..JT ~J$,;
1450 HDn' C
1460 PRINT W$;S9$: PRINT 86$;: REM SELECT 9 L/IN

PRINTING THEN RETURN TO 6 L/IN
1470 IF DV=2 THEN PRINT'!,: CLOSE 1
149(1 HjPUT "::;ELECT: I-F.:EPEAT 2--t'~HJ t'1fiZE 3-Et-W" ,; CT
1495 IF CT(1 OR CT)3 THEN 1490
1500 ON CT GOTO 970,30,151121
1510 Et-m

Line 1050 erases the screen (if the CRT was selected) and activates
the standard printer character set (if the printer was selected).

In printing the maze, the program starts at row 1 and counts up to
row RX (the bottom row). For each row, it counts from column 1 to
column CX, the right-hand column.

Printing a row of cells requires two lines on the display or printer:
one for the top of the cell, consisting of horizontal walls and openings,
and one for the middle of the cell, consisting of vertical walls, doors, and
spaces. Lines 1100-1210 print the horizontal walls; lines 1220-1340 print
the vertical walls. Lines 1350-1460 print the last row of horizontal walls,
completing the maze.

Here's the subroutine that gets the four views (right, below, left,
above) from a cell and stores them in array elements VU(I) through
VU(4).

1520 IF C()CX THEN 1550
1 :53(1 '·/U (1 ;. :::-·1
1540 (30TO 156~J
1550 VU(l)=M(P,C+l)
1560 IF R()RX THEN 1590
15?~1 ',/1)(2)::::-1

1 ':~;:::~) GOTO 16[H)
1590 VU(2)=M(R+l,C)
1600 IF C()1 THEN 1630
1610 ' ... 'UC:;::)=-1
1 ~':;2~) (iJ)TO 164(1
1630 VU(3)=M(R,C-l)
1640 IF R()1 THEN 1670
1650 '·/Ur.:4)=-1
1660 C;OTO 168121
1670 VU(4)=M(R-1,C)
1680 RETURH

Making Mazes 11

-Suggestions for Using the Program ----
Try the maze with small dimensions (4 X 4, 5 X 6, and so on). Direct all
output to the display (select slot 0) to speed the debugging process. You
can use the following subroutine to obtain a printout of the maze at any
time during construction:

1740 FOR 1=1 TO RX
1750 FOR J=1 TO ex
1760 PRIHT MCIJJ);TABCJ*3);
1 770 t'~EXT J
1780 PRltH
1 790 t'~EXT I
181210 PRltH
1810 RETURt~

Add GOSUB 1740 at strategic points in your program. For example,

is a good idea, because it will give you a printout each time the program
prepares to add a room to the living quarters.

After debugging the program, delete line 475 and lines 1740-1810.
The printed maze is composed of X's for walls and blanks for doors

and spaces. Use this formula to calculate the space required for a maze
of dimensions RX by ex:

Width = 2 X RX + 1
Length = 2 X ex + 1

12 The C-64 Program Factory

Figure 1-5 shows a maze created on the Commodore MPS-80l print
er with block graphics at 9 lines per inch. The Commodore 64 took sev
eral minutes to create the maze (not including printing time).

Although a Commodore printer can produee mazes as large as 39
columns in width, mazes wider than 19 columns or taller than 11 rows
will either appear scrambled or will scroll off the C-64's 40-column

Figure 1-5. A completed maze printed with block graphics at 9 lines
per inch

Making Mazes 13

screen. One solution is to limit the size of your maze by rejecting large
row or column sizes with the following line:

176 IF (RX>l1) OR (CX>19) THEN 150

When an invalid row or column size is entered, line 176 will make the
user reenter the row and column dimensions for the maze. If you also
want to protect against invalid input of zero or negative numbers for
row or column sizes, you could try the following version of line 176:

176 IF (RX<I) OR (CX<I) OR (CX> 19) OR (RX> 11) THEN 150

This chapter has been adapted from "Making Mazes" by George Stewart. appearing in
the November 1982 illue of Popular Computing magazine, Copyright 1982 Byte Publica
tions, Inc. Used with the permission of Byte Publications, Inc.

Chapter 2

This program generates hidden-word puzzles that are more challenging
and entertaining than those you're likely to find in newspapers or game
magazines.

The puzzles are more fun because you choose the words that are hid
den and more challenging because words can be spelled in any of eight
directions (most versions of this puzzle use only four directions).

Figure 2-1 shows a sample puzzle created by the program. The solu
tion to the puzzle is given in Figure 2-2.

Depending on the size of the puzzle grid and the vocabulary you
choose, the program could need from five minutes to more than an hour
to generate each puzzle. So if you're thinking of using puzzles as gifts or
party favors, don't wait until the last minute to start your computer.

-How the Program Creates the Puzzle --
To generate a hidden-word puzzle, the program must first create an
array representing the puzzle. It then tries to fit all the words into the
array, filling the remaining spaces with randomly chosen letters. The
words may be written in anyone of the eight directions.

15

16 The C-64 Program Factory

Animals

G T B T J WB S E C A B P K

WAAT 0 I T V N R S X T K

G W L B L A N N B 0 Y we B

YAK L R F DOT C R NOT

R F U F I D C C A 0 F A M .J

E S I 0 T ROT 0 D Reo B
N S E C D A 0 R G I U I N R
H P 0 G G Z N G E L F L K A
Z I 0 A U I L I L E D E E e
MD 0 N P L R E L B D P Y C
WE S ALAMA N D E R N 0
H R T U V AMG F 0 X A Z 0
A P E G e B F L Q F V N R N
U Z G I E TOY 0 e E K L U

Figure 2-1. The names of 25 animals are hidden among the letters

The process involves nine steps:

1. The program creates a two-dimensional array and stores a
hyphen (-) in each array location or cell.

2. The program creates a randomly ordered list of all the cells,
which it uses to examine each cell in turn.

3. If the cell under examination contains a letter, the program
moves to the next cell in the list. If the cell contains a hyphen, the
program attempts to fit a word into a path that intersects the cell
in one of the eight directions.

4. The program starts with the major path -the path that touches a
border of the puzzle at each end.

5. The program tries to find a word that fits the path: the word
length must be the same and the letters must coincide with any
letters already filled in along that path. If the program finds a
matching word, it fills in all the cells along the path and returns
to Step 3 using the next cell in the list.

Hidden Words 17

Animals

Figure 2-2. Solution to Figure 2-1

6. If none of the words fits, the program establishes a subpath in the
same direction and returns to Step 5.

7. After trying all subpaths without finding a match, the program
shifts directions (moving clockwise) and returns to Step 4.

8. After trying all eight directions without matching, the program
leaves that cell blank, selects the next cell in the list, and con
tinues at Step 3.

9. When all cells have been examined, the computer fills all the
empty cells with randomly chosen letters, completing the puzzle.

To see this series of steps more graphically, refer to the partially
completed puzzle in Figure 2-3.

Refer to Figure 2-4. Suppose the computer starts with direction 6
(northwest): ---* RU To fill the pathway, the computer must find a six
letter word ending in RU If it can't, the computer tries a shorter path
in the same direction. The next path contains five cells: ---* R. The com
puter looks for any five-letter word ending in R.

18 The C-64 Program Factory

The program continues in this fashion until all cells have been exam
ined and filled in.

c o M p u T

R

C

E R

A

* M

Figure 2-3. A puzzle under construction: hypens indicate empty cells; an
asterisk marks the current cell, and the current pathway is
circled

(N orthwest)
6

(North)

7
(Northeast)

8

(West) 5 ----*---- 1 (East)

4
(Southwest)

3

(South)

2
(Southeast)

Figure 2-4. Words can run in any of these eight directions

Hidden Words 19

-The Program ------------
The program is presented in logical blocks. Type them in as you read
along.

Storing Rows, Columns, and Other Constants

The first block sets up the program constants.

5 1 HPUT "EtHER A F.: A t·m Ot'l 1··lUt'lBER "; >::
7 X=RHD(-ABS(X»
1121 1"lF::::::6
:20 t'lC=6
:3~j t·lC=t'lF.:*t'lC
40 ::;PS;:::" - "
:i~~ t'lKS::::":+'''
60 DeS:::"+-"
70 t·H,j=t1
8'~ F.:EAD ~JD$
9~j I F ~JDS="""" THEt·l 12121
100 t·n,J::::t·u,J+ 1
11~) GOTO :3~]
120 DIM MS(MR.MC),WDS(HW),D(8,2),SQ(NC),WU(NW),

~JQ(N~J)
1 :30 F.:ESTORE
140 FOR 1=1 TO HW
15t1 F.:EAD l,mS (I :;.
1613 t'~E::-':T I
170 READ l,ms
180 DRTA BASIC,NEW,NEXT,PRIHT,CURSOR
190 DATA DISK,RUN,STOP,HOME,BIT,BYTE
200 DATA BUS,BUG,REM,RAM,ROM,/
:21(1 FOR D=i TO 8
220 READ D(D,1),D(D.2)
2:30 t·lE::-::T D
240 DfHA ~j., L 1., L L 0. l,. -l.d)., --1,. -1.. --1. -,-1. (1,'·'1.. 1

Lines 5 and 7 set the random number generator. Type a different
number each time you run the program for a different word arrange
ment.

MR is the number of rows in the grid. MC is the number of columns.
Change these values to suit your preference. The computed value NC is
the number of cells in the grid. How large should you make the grid?
Experiment to find out what size gives you the best results. Here are a
few guidelines:

• The larger the grid with respect to the word list, the more
difficult the puzzle will be. However, a smaller grid with plenty of
words packed in makes the puzzle more interesting.

20 The C-64 Program Factory

• At least one of the grid's dimensions, including the diagonal, must
be large enough to accommodate the longest word in the word list.

• To improve the chances of fitting in all your words, choose MR and
MC so that the number of cells in the grid (MR X MC) is 25 to 50
percent greater than the total number of letters in the word list.
For example, if your longest word is 10 characters and the word
list consists of a total of 100 characters, you might use MR=12 and
MC= 12 for the grid.

Lines 70-110 count the words in the word list. Line 120 sets up the
arrays used in the program. Lines 130-170 re-read the word list, storing
it in the array WD$().

The word list is stored in DATA lines 180-200. For the time being,
use the words provided; after you have the program running, replace
them with your own. Insert as many extra DATA lines as you need
between lines 180 and 200, and use as many words as you wish. Be sure
to include the HI" character after the last word, (1.<; shawn in line ~wo.

Lines 210-240 define the eight directions for the computer. (Refer to
Figure 2-4.) A pair of numbers is associated with each direction
number 1 through 8. The two numbers indicate vertical and horizontal
increments of the path. For example, direction 1 (east) is defined by the
pair (0,1), which indicates a zero vertical movement and a positive hori
zontal (left-to-right) movement. Direction 7 (north) is defined by the
pair (-1,0), which indicates an upward vertical movement and a zero
horizontal movement.

Although the program normally uses all eight directions, you can
make the puzzles easier by eliminating directions 4, 5, 6, and 7. The
easiest way to do this is to change line 240 to read as follows:

2*) DtiTA 0., 1 .. 1 .' 1 .. 1 .. 0 .. -.. 1 .' 1 .. ~1., 1 .. 1 , 1. , 1 .' [1, --1 .. 1

Printing Introductory Messages

The following lines print an introductory message and set up the grid:

250 PRINT CHRS(147);: REM CLEAR SCREEN
;2150 PF.: I tH "H I DDEH·-i,.jORD PUZZLE OEt·1EF:ATOF:"
270 F'RltH
;~::::O PR WT "OF: I Ii ~:n ZE I ~:; " ,'1f::: " B'r' II t'1C
290 F'F.: nn
::::0(1 F'F.: I tiT II '",'OCI=tBULAF;:'r' COIHFI I t·1S " t·H,J " ~'K1RD::;."
:;:10 PRItH
:320 PR I tiT "~:;ETT I tlf3 UP THE CF.: I II. Pl_EA~:;E I·,m IT. "
330 FOR R=l TO MR

Hidden Words 21

340 FOR C=1 TO MC
::::50 rtf (F::.' C::' =::;F'$
:360 HE::<T C.' F.:
37(1 F.: E t'l
380 FOR C=1 TO HC
39~3 :::;0 (C) =(1
400 t·lD::!· C
410 FOR C=1 TO HC
420 Q=INT(RHD(l)*NC::'+l
430 IF SQ(0)()0 THEH 420
44~3 :::Gi..;: 0:' =C
450 t·lO:T C
460 FOR W=l TO NW
4;:'0 ~'JO(~'J)::;-cO

+:::0 ~'.IU (l,j) ::'0
4::"0 t·jEi-::T [,j

500 FOR W=1 TO NW
510 0=IHT(RHD(1)*NW)+1
520 IF WO(Q)()0 THEN 510
~:;:::!J21 ~'JI) (0) :::-cl .. J
~3';+O HC::T' I.,J

Line 350 stores a hyphen (SP$) in each cell to indicate that the cell is
empty. Lines 380-450 define the sequence in which the computer will
examine the grid for empty cells. The sequence is randomized so that
you can produce different puzzles using the same word list and grid
dimensions. Lines 460-540 define the sequence in which the computer
picks words to fit into the grid.

Checking the Puzzle Status

Now the program can start checking the grid cells.

~:;~50 t'lF =i21
::5 6 I) ~'J f1:::: t·j ~'J
::570 REI"l
5::~0 DI=1
:;::"(1 F'I~:IrH "::nf1F.:TI I'K, TO FILL II··j THE CiF.:ID ••
600 FOR QF'=1 TO NC
I:: 1 (1 CF'=:::;c! (OF')
620 CR=INT«CF'-l)/MC)+l
630 CC=CP-(CR-l)*MC
640 IF MS(CR .. CC)()SP$ THEN 1779
650 IF Wf1()0 THEN 680
61::0 F'F.: I i'H 1\ U::::ED ALL THE ~JOF.:D:3 1\

1:~65 G!P:::::i"lC
6?0 CiOTO 1780
680 M$(CR .. CC)=MKS

1\

22 The C-64 Program Factory

MF is a status flag (this will be explained later). WA is the number
of words available; initially, it is the same as NW, the number of words
in the vocabulary. When no words are left, the program quickly fills in
all blank cells with randomly chosen letters.

DI is the starting direction. You may wish to set DI =2 so that the
program starts with a diagonal (southeast) direction. In any case, DI
changes as needed, so that all eight directions are tried.

Grid cells are numbered from left to right. The variable CP is the
current cell number, which ranges from 1 to NC. Lines 620 and 630
calculate the row and column "address" (CR,CC) of the cell using the
value of CPo

Line 640 checks whether the cell is filled. If it is, the program jumps
to line 1779 and calls for the next cell. Line 650 checks whether all the
words have been used. If they have, the program jumps to line 1730 and
fills the cell with a randomly chosen letter. Line 680 marks the current
cell with an asterisk (MK$) so that it is readily visible inside each path
and subpath that is generated later.

Finding the Current Direction

Given an empty cell, the program now finds the major path containing
that cell.

690 m::::::: 1
70121 IF.:=D(DI., 1)
7H3 IC=D(DI .. 2)
720 F:T=l
730 IF IR(121 THEN RT=MR
740 IF IR=121 THEN RT=CR
7S3 CT=l
760 IF IC(121 THEN CT=MC
770 IF IC=12I THEN CT=CC
7:3~) BF.:=CF.:
79(j BC::::CC
81210 IF «BR=RT) AND (IR()I21)) OR «BC=CT) AND

(IC()I2I)) THEN 84121
::: U3 BF.:=BF.:- I R
:::2fl 1:C=£:(:-' 1 C
83121 GOTD 800
:::4~) PT=: 1
850 IF IP)0 THEN RT=MR
860 IF IR=121 THEN RT=CR
:::7~) CT= 1
88121 IF IC)0 THEN CT=MC
890 IF IC=12I THEN CT~CC

9(Hj EF.:=CR
:310 EC=CC

Hidden Words 23

920 IF (EF.:=RT) AND (IR()0) OR «EC=CT) AND
(IC{)0)) THEN 960

93~Z1 EI?::::EF.:+ I F.:
940 EC::::EC+IC
9~30 (iOTO 920

DR, initialized in line 690, counts the number of directions tested for
a given cell. When all eight directions have been tried (DK =8), the pro
gram changes the asterisk back to a blank and skips to the next cell.

Lines 700-830 find the beginning cell in the path. IR and IC are the
row and column increments that correspond to direction DI. The row
and column limits are stored in RT and CT respectively.

The program starts at the current cell and steps through the grid in
the specified direction until it reaches one of the limits RT or CT. That's
how it finds the beginning position (coordinates BR,BC) of the path.

Lines 840-950 find the ending cell in the path (coordinates ER,EC) in
the same manner.

Finding the Current Subpath

The following block of lines builds a string containing the contents of
the major pathway and tries each subpath in the major pathway:

96121 UP:::ER
970 IF BR)ER THEN UR=BR
9CO L.F::=E:f':
990 IF ER{ER THEN L.R=ER
1 'JO~1 UC=EC
1010 IF EC)EC THEN UC=BC
1 02~1 U::::::EC
1030 IF EC{BC THEN L.C=EC
1040 F'F::C<BF.:
1050 PC=EC
1060 P$;;::"": REi'l t,lO ::;pnCE::; 11",1 OUOTE::;
1070 PS=P$+M$(PR,PC)
10:::0 pr;::::PI?+ I F.:
1 ~j90 PC::::F'C+ I C
1100 IF (PR)=L.R) AND (PR(=UR) AND (PC)=L.C) AND

(PC(=UC) THEN 1070
1111~1 PL,::::LEr'~(F't)
112(1 (;:to::;; J.
1130 C! 1$:::::F'$
114~:1 (:12$::::t'W::$
11 ::;(1 130:;UB 21,:1-0

24 The C-64 Program Factory

1 :l i~:O ~:;F':;:;;CIF

1170 FOR LS=l TO SF
1180 FOR RS=F'L TO SP STEF' -1
1190 CP$=MIDt(P$,LS,RS-LS+l)
1 ::2UO CL ;:;;:LE:li I CF'$:O

The variable P$ stores the contents of the path. To generate sub
paths, the pro gam refers to P$ rather than stepping through the grid
array each time. In line 1190, MID$(P$,LS,RS-LS+ 1) is the current
subpath.

Fitting a Word to the Subpath

Next the program attempts to fit a word into the subpath.

1210 1}:::1

1 ;220 l'J~~l,JO 0:: I) >
1230 IF LENO::WD$(W»=CL THEN 126U
1 :240 1'1F~'0
1 :25121 CiOTO 11::50
:[:21::0 1'1F~: J.
127 0 FOR C=l TO CL
1280 Wl$=MID$(CF'$,C, 1)
1290 IF W1S=SF'S OR Wlt=MK$ OR Wl$=MID$(WD$(W>,C, 1)

THE I·' 1.32>:)
1. :;:I2IU C:::CL
1:: 1. 121 I''IF:: U
1 :3:20 !··iE:O::T C
1330 IF MF=0 THEN 1650

Lines 1210-1220 select the number of the first word in the random
sequence. Line 1230 checks whether the word's length matches that of
the current subpath.

In line 1240. MF is a status indicator: MF=O signifies that a word
cannot be used in the path for some reason (it has been used alrea.dy, is
the wrong length, or contains a conflicting letter).

Lines 1270-1320 compare the trial word WD$(W) with the contents
of the subpath. If the word doesn't match, the program selects another
word (see line 1650).

Adding a Word to the Puzzle

If the word matches, it must be implanted in the grid. The following
lines perform this task:

1 3410 nu:::::~mt':: ~J:;'
13510 IF LS(=l THEN 13910
1360 FW$=DC$+FWt
137121 U::::::L:::··'1
13::;:i21 CiOTO 1 :35(1
13910 IF RS)=PL THEN 1430
141010 FW$=FW$+DC$
1410 P::::::F.::::+ 1
1420 CiOTO 1390
14:::::~~1 F'R= 1
14411 R<E: F.:
14~::;0 C::::BC
1460 RC$=MIDS(FW$,PR,I)
1470 IF RC$=DCS THEN 1490
1480 M$(R,C)=RC$

Hidden Words 25

14910 IF (R=ER AND IR(>0) OR (C=EC AND IC()0)
THEt,~ 1540

15~)(1 C=C+ I C
15110 F:=R+IR
15210 FR=PF.:+ 1
153[1 GOTO 14610

Line 1340 stores the current word in FW$. Lines 1350-1420 pad the
word with dummy characters DC$ so that its length matches that of the
major path P$. Lines 1430-1530 insert the word into the grid one letter
at a time.

Checking the Word List

After adding a word, the program must do quite a bit of housekeeping.

15410 IF (Q=WA) THEN 15810
1550 FOR QI=Q TO WA-l
1560 WQ(QI)=WQ(QI+l)
157(1 t'lE>::T G! I
1 ~5::::e ~JA::::~·JA-l
159~j ~·JU (~'J)::" 1
1 1:·010 R::;;=:3P
1 IS Ie I..:;::::::::;p
1621a Di<:::::::;:
1 f~:-:::~71 PF.: I t..JT II ~.j ",;: F:Ei"1 1 ::;PFICE fIFTEF.: ~.J

16410 COTO 16'?0
1 f:;~1;1 0::=0+ 1
1660 IF '::O(=WA) THEN 1220
167(1 tlE>n' F::::, U::
169121 DI:::DI+1
170~) Df:::=DK+1
171121 IF DI)8 THEN DI::::1
1720 IF DK(=8 THEN 7100

26 The C-64 Program Factory

1730 IF MF()O THEN 1779
1740 M$(CP,CC)=SP$
177::" F'P HIT l-jC:--C!P;" "_;. 1~:f.:.t'1 1. :;:;F'fKE Itj C!UClTE::;
1 ?:::C1 t-E-:;T elF'
17::: 1 F'F: I I--IT· F'P I I-n "F I LL I l-jU I II UI-jU::;ED BUll I!::::; "
1782 FOR OP=1 TO NC
17:::::3 CP:;:::':;O(G!P)
1784 CR=INT«CP-1)!MC)+1
1785 CC=CP-(CR-l)tMC
1?86 IF M$(CP,CC)()SPS THEN 1789
1?87 Mt(CP,CC)=CHRS(INT(PND(1)*26)+65)
1 ('::::9 1-,jE:-::T OF'

Lines 1540-1580 update the list of available words and words used.
When a word WD$(W) is used, WU(W) is set to 1 (line 1590). Lines
1650-1670 cause the program to select the next word and subpath. Line
1690 selects a new direction. Line 1720 checks whether all eight direc
tions have been tried; if they have, the program has exhausted all possi
bilities for the current cell, so it restores a blank in that cell (line 1740).
Line 1780 moves the program on to the next cell.

After all cells have been tried, lines 1781-1789 fill the empty cells
with randomly chosen letters.

Printing the Puzzle

When all cells have been examined, the puzzle is complete. The follow
ing block of lines lets you select which output device to use for the
puzzle:

1790 F'F.:!tn
1 ::::00 F'R I t-IT "F'UZZU':: COt'1F'LETED" "
1:::;:J.0 F'RUH
1 :::::~::O D',,.':"; 1
1 ::::::;:0 H-iF'UT ":::;ELECT OUTPUT TO· l---CVr 2--F'F.: H-In::r~: "; D',/
1840 IF DV()l AND DV()2 THEN 1830
1850 IF DV=1 THEN 18('0
1868 OPEN 1,4 CMD 1
1878 PRINT CHPS(14?);

Lines 1820-1850 let you specify the output device. The program
assumes that device number 4 is your printer. If necessary, change 4 to
the appropriate number in lines 1860 and 1950.

The following lines print the puzzle:

1900 CiO:::;UE: 20?0
1 ~<20 F'r? I tlT

Hidden Words 27

19:~:O IF" D '.,.' '<2 THEI·j F'b:: I tH# 1. .. : CLO:::;E 1-
1 :)4U I HF'UT II F'PE:::;::; F:ETUFJl FOP HI DDEt·l l,JOF.:D L I :;:;T II .; D::!::
1950 IF" DV=2 THEN OPEN 1,4: CMD 1
1 :)6~J F'F: I 1··lT
197121 F'F: an II T!"'IE HI DDEJl I.,JOF:TY::; m:::E: II

19:~~:O F'F: I t·n
2000 FOR QI=l TO HW
2010 IF WU(QI)()O THEN PRINT WD$(QI)
,2 02 ~=1 I··j E):: T C! I
,2040 F'F: I In
2050 IF DV=2 THEH PF:INT#l, : CLOSE 1
;2~36(1 I i'·WUT II :::ELECT: 1-F.:EPEAT 2"··I·lEl,J PUZZLE :::'~Er'lD II .; ::<
2062 IF X(l OR X)3 THEN 2060
2064 OH X GO TO 1810,250,2066
2066 EtlD
2070 FOR TF.:=1 TO MF.:
2080 FOR TC=1 TO MC
:2090 PF.: I tn t'1$ (TF.: .. Te) II II j. 1~:Er'1 1 :;PACE I t·l OUOTE:;
::: 1 OCi HE:(T TC
211121 PRItH
2120 t'~E)H TF.:
2130 RETURN

Line 1900 calls a subroutine to print the puzzle. A subroutine is used
here to facilitate testing of the program.

Lines 1940-2020 print the list of words that were used. The computer
isn't always able to fit the entire vocabulary into the grid. Line 2010
ensures that only those words actually used in the grid are printed.

After printing the puzzle, lines 2060-2064 print a continuation menu
with three options: reprint the current puzzle, create a new one, or quit.

The subroutine in lines 2070-2130 prints the puzzle one line at a time
with a space added after each letter. You can change the proportions of
the puzzle by storing more spaces inside the quotes in line 2090.

Finding a Substring

Finally, here's the subroutine that searches for one string inside
another:

2140 I~F=0
2150 IF Q2$= "" THEt·l F.:ETURt·l: F.:Et1 t'm SPACES I t·l GiUOTE::;
2160 IF Q0+LEN(Q2$)-1)LENCQ1$) THEN RETURN
2170 IF MID$(Q1$,Q0 .. LEN(Q2$))=Q2$ THEN 220121
21 :::~) Qe=G!0+ 1
219~1 GOTO 2160
2200 QF=Qe
2210 RETURt·~

28 The C-64 Program Factory

The U.S.A.

YKCUTNEKLWZEI KTGDNAJ YI{AMP
OI{EGONWO VBQI{;-';EW.JEI{SEY EO
S l' Q K C P l' S [) M 0 N T A ~ A .J X H NUB N lJ
HAW A (. l! M I{ S K K X W K I{ 0 Y WEN I{ N C

AFI{I SOQSTTESIJHCASSAMSSODD
E:\1Y NHWYWHEHAlJYBLHLYATF N
I{ (; A S 0 A W W H ~ B N A :-.; (J (; ELM (; T A A

R'.:I BlJlJADAVEN:-';TI WEVDNCFLNL
A:-';WMAI ATLXI B.J EULAUI QCHAAS
S E G Z H L A R.J L A E H (; S :-.; (j H L L S N (' A I
:-';ORTHDAKOTAMOAI S S I{NlJOVXI{E
:-.; M C Y I I :-.; R W L P I HAS A E .J A H [: r: Y I])
Al SXGMAYBFOKXRWKYEQCTWKVO
Z:-';HRXCOOAXACPL:I MAI'HEHVB:-';H
ZNOOHMCAI:-'; GI{ VTSEWRDTWVIi:
M E H TIP P S S S S I MOl CUI A N R D Q
G S C :-.; 0 K X A A T S A.J.J.J I{ S H K I Q 0 F
VOGKCFSAI EAL MSOMI SSOURI 1';
STTKIOLB :';XNLHTYKFFPTCACA
DANCXHCONNECTI CUTLAMAWNHG
TGROEI MARKI WBUNYNKAAUYOV
J CXYMOKI RI YGSUXUSTLHCCZLH
FVTQWR OWADZRPSAI ZMWOWI UC
GULCEYEMGRAAO LVQSKEXMRJ
AVDANRVVLRWHPAVQROJNLEASM

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana

Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania

Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

Figure 2-5. The names of all 50 states are hidden in the grid

Hidden Words 29

This handy subroutine searches for Q2$ inside Ql$ starting at posi
tion QO. Upon return from the subroutine, QF gives the position ~t
which Q2$ starts in Ql$; QF=O indicates that Q2$ was not found.

-Testing and Using the Program -----
For large vocabularies, puzzle construction may take as long as 30 min
utes. The giant U.S.A. puzzle in Figure 2-5 required four hours to
generate.

The program prints various messages during the process to let you
know it's working. For example, you will see SETTING UP THE GRID.
PLEASE WAIT. while the program initializes the random word and
cell sequences, W when it implants a word, F when it cannot place a
word and implants a randomly chosen letter. Before moving onto a new
cell, the program prints the number of cells remaining to be examined.

-Viewing the Program's Operation
While testing the program, reduce the vocabulary to three or four short
words and the maze dimensions to 4 X 8. To obtain a printout of the
puzzle in progress, intersperse GOSUB 2070 statements at strategic
points in the program. For example, the statement

685 PF.: I tH: PF.: I t·n: F'F.: I tH "TF.:'T' I tKi A t'~D'J CEL.L ••• ":
GOSUB 2070: PRINT

prints the puzzle in its current form followed by the word it is trying to
fit in. An asterisk marks the currently selected cell.

Delete line 685 after you have the program running.

This chapter is adapted from "Hidden Words" by George Stewart, appearing in the
December 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 3

The Matchmaker program enables you to create a never-ending series
of personalized logic puzzles. What are logic puzzles? They are puzzles
in which, given a set of logical clues, you are to reach the one and only
solution that satisfies each of the conditions presented by the clues.

For example, if Ann likes alligators, then Cathy detests cats. If
Cathy likes alligators, then Bill likes birds. If Ann detests alligators.
then Cathy detests cats. If Cathy detests cats, then Bill likes alligators.
Match each person with his or her favorite animal. The answer is given
at the end of this chapter.

Perhaps your tastes run toward mysteries: If the murderer does not
have a blue pickup. then the postman has red hair. If the postman does
not have a tattoo, then the milkman does not have a blue pickup. If the
milkman does not have red hair, then the postman does not have white
overalls.

If the murderer has a tattoo, then the garbageman has white over
alls. If the garbageman does not have a tattoo, then the milkman does
not have white overalls. If the garbageman does not have a blue pickup,
then the postman has red hair. If the garbageman does not have a blue
pickup, then the postman does not have red hair.

Describe the murderer. (The answer is also given at the end of this
chapter.)

31

32 The C-64 Program Factory

-Supplying Lists of Clues -------.
The Matchmaker starts with two lists that you provide: the first is a list
of characters, and the second, of attributes. The favorite animal puzzle
is based on the lists shown in Table 3-1.

With the character and attribute lists, the Matchmaker formulates a
system of logical propositions or clues concerning the pairings of items
from the two lists. Taken together, the clues imply a unique solution in
which every item from the first list is paired with one and only one item
from the second list.

Propositions can take four forms:

• p implies q

• not pimpl1:es q

• p implies not q

• not p impl1:es not q

In formal logic, p is known as the antecedent and q as the consequent.
In our puzzles, p and q stand for pairs of items from the two lists. The
logical operator not indicates that a pairing is not true. Here are a cou
ple of examples: If Bm likes cats then Ann l1'kes alligators corresponds
to p implies q, while if Ann detests (does not 11'ke) cats, then BW 11'ke8
birds corresponds to not p implies q.

The favorite animal puzzle includes all four types of propositions.
Read through the puzzle again, identifying the four types.

In order to realize the extent of the Matchmaker's talents, try to
construct your own logic puzzle using the data in Table 3-1. The trick is
to give only enough clues so there will be a unique solution. You must

Table 3-1. Two Lists for the Favorite Animal Puzzle

Characters Attributes

Ann Alligators

Bill Birds

Cathy Cats

The Matchmaker 33

also take care not to create invalid logical systems, that is, puzzles for
which there is no solution.

Go ahead, try it. Then read on to see the Matchmaker's way.

-How the Program Generates a Puzzle ---
The first challenge for the computer is to generate all potential solu
tions before any clues have been given.

For two lists of n items, there are

n X (n-l) X (n-2) X ... X 1

potential solutions. (Technically, the formula gives the number of per
mutations of a set of n objects.) For groups of three, six matchups are
possible; for groups of four, 24 matchups are possible.

As an exercise, list all potential solutions to the favorite animal puz
zle, assuming that no clues have been given yet. Hint: the first might be
Ann likes alligators, Bill likes birds, and Cathy likes cats.

The program generates each potential solution and stores the solu
tion as a column in a truth table. A truth table represents the true or
false value for every combination of items from two groups. Table 3-2
shows a truth table for the favorite animal puzzle. Each row in the
table corresponds to a pair of items; each column corresponds to a puz
zle solution.

A T or F in the table indicates whether a given pair is true or false
for the corresponding solution. For instance, at the intersection of row
Al and column 1 we find a T, indicating that in solution 1, Ann likes
alligators. At row Bl, column 1, we find an F, indicating that in solu
tion 1, Bill does not like alligators.

Using the potential-solution truth table, the Matchmaker generates
a succession of clues. There are several steps in this process.

First the program randomly selects a potential solution. From the
corresponding solution column in Table 3-2, it randomly selects a pair.
This pair becomes the antecedent in the proposition p implies q.

Next the program randomly selects another pair from the same
solution column. This pair becomes the consequent in the proposition p
implies q.

Refer to Table 3-2. Suppose the program randomly selects solution 4
(column 4). Then it randomly selects the pairing Al (corresponding to
Ann/alligators). The truth value of that pair in column 4 is F, indicating

34 The C-64 Program Factory

Table 3-2. Truth Table Showing Potential Solutions to Logic Puzzles
With Three Items in Each List (A.B,C) and (1,2,3)

Pairs Solution Number

1 2 3 4 5 6

Al T T F F F F

A2 F F T T F F

A3 F F F F T T

Bl F F T F T F

B2 T F F F F T

B3 F T F T F F

Cl F F F T F T

C2 F T F F T F

C3 T F T F F F

that Ann does not like (detests) alligators. Suppose the program then
randomly selects C3 (Cathy/cats). The truth value is also F, indicating
that Cathy detests cats.

Putting the two pairs together, we have the proposition: if Ann
detests alligators, then Cathy detests cats. We know that the clue is con
sistent with at least one of the solutions because the pairings are taken
directly from one of the solutions.

Before accepting the clue, the program checks it against all pre
viously generated clues to ensure that

• The clue is not redundant; that is, the clue must eliminate at least
one potential solution.

• The cumulative effect of the preceding clues and the latest one is
to leave at least one solution; otherwise, the puzzle would be
insoluble.

If both conditions are satisfied, the clue is accepted and the pro!~ram
continues. If either condition is not satisfied, the clue is discarded and
the program generates a new candidate.

The Matchmaker 35

Table 3-3. Effects of Four Clues on the Potential-Solution List

Consistency With
Potential Solutions

Clues: 1 2 3 4 5 6

Al implies not C3 F T T T T T

CI implies B2 T T T F T T

not Al implies not C3 T T F T T T

not C3 implies B 1 T F T F T F

Table 3-3 shows the effects of four clues on the list of potential
solutions.

The Matchmaker continues generating clues until only one solution
remains. At that point. the puzzle is complete.

-The Program -------------
We present the program in logical blocks. The first block reads in the
data lists and creates several arrays.

10 PRINT CHRt(14?);' REM CLEAR SCREEN
:20 F'F.: I tH "THE t'1ATCHI"ii=11<:EF.: "
~~:O F'F: I trr
4U I t·ii'ur "arrEF: I=i F:i:::lt·IDClI'! tjut'l:E:f:::F: "; ::<
50 X=RND(-ABS(X»)
(;:1;;; DnTA ::::
/0 DHTfi E; t·iOT F'A I RED mTlL I '3 PH I F:ED 1,1 ITi·-j
:::0 Df1TF1 fi.. r: .. C
:9C1 DflTH 1.,;;::: .. 3
11jO I?EJW t·i
11121 t··I::;:::: 1
120 FOR J=1 TO N
130 t'·I:::;"tl::;¥,J
14U 1··lEi·:;T .J
1 ~5~:1 tlC::::t'Hll
160 DIM A(N),F'T(N):k(N) .. C(N) .. T(NC .. NS):F~NS .. NS) ..

FT(NS) .. P(NS .. 3) .. HS(2,N),TFS(2)

36 The C-64 Program Factory

170 READ TFS(1),TF$(2)
180 FOR J=1 TO 2
190 FOR K=l TO N
200 READ AS(J,K)
2 J i) IIE:}:T 1<., J

Lines 40 and 50 set the random number seed. Enter a different
number each time you run the program; otherwise, the program will
generate the same series of puzzles.

Lines 60-90 determine what kinds of puzzles are generated. Line 60
gives the number of items in each list. The number must be 3 or 4. Line
70 gives the verbs that relate the items from the two lists. Line 80
contains the list of characters. Line 90 contains the list of attributes.

(For the time being, use the rather abstract data provided; it will
simplify the discussion of the program. After testing the program, you
can personalize the puzzles by making your own lists. Instructions for
personalizing the program are given later in this chapter.)

Lines 110-140 compute the number of potential solutions NS. This
value depends on N, the number of items in each list. For N=3, NS=6;
for N=4, NS=24; for N=5, NS=--=120. Unfortunately, the Commodore
doesn't have enough memory to store this many potential solutions. Line
150 computes the number of combinations of items from lists 1 and 2.

Line 160 sets up the arrays. A(), PT(), C(), and K() are used during
the generation of the NS distinct solutions. T(,) is a truth table repre
senting these solutions. It corresponds to Table 3-2. For example, 1'(2,3)
indicates the true/false value for pair 2 in solution 3.

P(,) stores the propositions. F(,) is a truth table indicating the
results of each proposition. It corresponds roughly to the right side of
Table 3-3. As an example, F(I,2) indicates whether proposition 1 is con
sistent with solution 2.

FT() is a truth table showing the cumulative effect of all preceding
propositions. As an example, FT(1) indicates whether solution 1 is con
sistent with all preceding clues.

A$(,) stores the two lists. A$(1,3) is the third item in list 1, for
example. TF$() stores the verbs used to relate items from lists 1 and 2.

Lines 170-210 read the data into the appropriate arrays.

Generating Potential Solutions

The next logical block generates the truth table T(,). Recall that a
truth table represents the true or false value for every combination of
items from two groups.

,~:::::o FUr.:: J::: 1 TO 1"·1

;~:4(1 f1 0:: J):::: 1.
.~:~iO !"~E::<T .J
26~j P::::(l
;~:?(I U>:l
.~:::::id I::i 0:: r'T < L.C >) c" 1
290 PT(L.C)=PTO::L.C)+i
300 IF PT(LC)(=N THEN 330
310 PT(LC)=PT(LC)-N
J:20 GOTO :;:1)(1
330 IF AO::PT(LC»=O THEN 290
J40 C(LC)=PT(lC)
350 K(lC)=K(LC)+1
':::60 f:, (For (LC)) :"0
370 IF LC=N THEN 400
~:::::0 LC=LC+ 1
.:::~:!121 GOTO 2::H~1

·~·~:w P"F'+ 1
~10 FOR J=1 TO N
420 T«J-l)*N+C(J),P)=l
4::::0 t·IE::<T .J
440 fl(PT(LC)):::::1
450 f;::(LC):~:O

4(;~) LC:::::U:>-··l
470 IF LC=0 THEN 500
480 IF K(LC):::::N-LC+l THEN 440
490 UOT() 2::::(1

The Matchmaker 37

In lines 230-390, the program generates all arrangements of the
items in list 2: 123, 132, 213, 231, 312, and 321.

For each triplet, A is inserted ahead of the first number, B ahead of
the second number, and C ahead of the third number. This gives us the
following sequence of triplets: A1B2C3, A1B3C2, A2B1C3, A2B3C1,
A3B1C2, and A3B2C1.

Each triplet thus produced constitutes a potential solution to the
logic puzzle. For instance, A1B2C3 represents the solution: A is paired
with 1, B with 2, and C with 3.

Lines 400-430 record the details of each solution in the truth table
T(,).

Lines 440-490 set the program to generate the next arrangement of
items (for example, 123).

Making and Selecting Propositions

After the truth table is completely filled in, the program can begin
making logical propositions.

38 The C-64 Program Factory

500 PRINT CHR$(147);
::5 J. (I i'l: I j'IT Ii THE: :'ifHCHt'lflf:[j;:: I:::;"
~:i212t F'F: I HT
r::;:)o F'f;: I t··IT "COt·l:::TRUCT I t·lei Fi LOCi I C F'UZZU':::"
54121 PRHH
556 PR un "FF.:Ot1 "t·j" DfHA F'ri I P:3. "
56~) F'PItH
~:580 PP I tH "!='LEr:j:::;E ~'JA IT. "
600 PU:::0
61121 00'=0
6~~CI F'C:;;O
6:30 F'!-1~=1~1
640 FOR J=1 TO NS
65121 F'T I..J) = 1
660 t·lE::<:T .J

In line 650, the array FT() is filled with 1's, indicating that none of
the solutions has been ruled out yet.

The next lines randomly select a proposition.

676 G=IHT(PND(l)*NS)+i
680 P=INT(RHD(l)*NC)+1
690 Q=INT(RND(l)*NC)+l
700 Pl=INT«P-l)!N)+l
710 P2=P-(Pl-1)*N
720 01=INT«Q-l)!N)+1
730 02=O-(Ol-1)*N
740 IF (Pl=Ol) OR (P2=Q2) THEN 670

760 C!"/=T<O .. en
770 IF (PV=PO) AND (QV=c!O) THEN 670
? ::: 0 F' I··j ::: F'tl + 1
7 :~!O F' (F' [.!. 1 ::0::: u
::::00 F' (Fl·I., :2) :=:F'
::::10 P(F'I'-L :3)~-'O

Lines 670-690 randomly select solution G, antecedent pair P, and
consequent pair Q. G ranges from 1 to NS (the number of solutions); P
and Q range from 1 to NC (the number of combinations).

Lines 700 and 710 break P into two numbers, PI and P2, corre
sponding to the items P represents from lists 1 and 2. For example,
P=6 breaks down into PI =2, P2=3. This stands for the pair item !2, list
I/item 3, list 2.

Lines 720 and 730 accomplish a similar function for Q, QI, and Q2.
At this point, we have an antecedent pair PI-P2 and a consequent

pair QI-Q2. Typical values might be A2 and B3, producing clues like
this: if A2 then B3.

However, it is possible to have duplicate pairs like A2 and A2-

The Matchmaker 39

which would produce useless propositions such as: if A2, then A2. In
fact, even if the two pairs have just one item in common, as in A2-C2,
the resultant proposition will also be useless, as in if A2, then C2.

Line 740 eliminates all such "weak" propositions from consideration.
Lines 750 and 760 get the truth values of the antecedent PI-P2 and

the consequent QI-Q2 for solution G. The truth table entries T(P,G) and
T(Q,G) contain this information.

Line 770 ensures that there is some variety from one proposition to
the next by comparing the current proposition with the previous one. If
both have the same form, the current proposition is rejected and a new
one is selected. For example, if the current proposition and the previous
proposition both have the form not p implies q, the current one is
rejected.

At this point, the proposition has passed first inspection. Lines 780-
810 increment the proposition counter and store the details of the latest
proposition in the array P(,).

Testing the Clues

Now the Matchmaker tests the effects of the latest clue on each of the
potential solutions.

820 FOR J=1 TO NS
:::::3121 I='T==1' < F'.' J>
:::: ':.H~I ur :~r < I), J::'
850 IF PV()PT THEN 890
868 IF QV~QT THEN 890
:::;:'0 F'';: F'I"i.' J::O ::'121
;::::::0 COlO ~!Olj
:::9(j F';: F'I"l.') >,,: 1
~~iOO l'lEi'::'- J
;:)1 0 FHo=U
920 FOR)=1 TO NS
930 IF FT(J~=l AND F<PN,J)=0 THEN FA=FA+l
9,'1·0 I··IE>::T J
958 IF FA)O THEN 980
:316121 F'I···I::oF'H j
~~I?(I COTO f':;i:~~1

988 IF FH+FC~=NS THEN 628

For each potential solution column, the program examines the truth
values PT, QT of the pairs PI-P2 and QI-Q2 (lines 820-840). It compares
these with the truth values PV, QV of the latest clues (lines 850-860). If
PT=PV and QT=QV, then the solution is consistent with the latest clue.

40 The C-64 Program Factory

The result of the comparison is stored in array F(,) (lines 870 and 890).
Lines 910-960 determine whether the latest clue has actually pro

vided any new information, that is, whether it has ruled out any solu
tions that were previously viable. FA counts the number of solutions
ruled out by the latest clue. If FA =0, the latest clue is redundant, so the
program rejects it by decrementing the proposition counter in line 960
and going back to line 670 for a new clue.

Line 980 ensures that at least one solution remains viable after the
latest clue. FC counts the total number of solutions eliminated by pre
vious clues. FA + FC gives the total eliminated when the latest clue is
taken into account. If the sum equals or exceeds the number of solutions
NS, the puzzle is insoluble. In that case, the program erases the entire
sequence of propositions and starts over by going back to line 620.

Completing the Puzzle

After passing all these hurdles, the clue is finally accepted.

~:I~}U FC::Fj=I+FC
1000 FOR J=1 TO NS
1010 IF F(PN,])=0 THEN FT(])=0
102121 i·iE:::r;
103121 IF FC~NS-l THEN 107121
1 040 F'CI:~:F'"

j W::iO 00=(1',/
1 ;J(:~C1 UClTO'::?O

Line 990 updates the counter FC for solutions eliminated. Lines
1000-1020 update the cumulative truth table F(), which shows whether
a given solution has been eliminated by any proposition thus far.

Line 1030 serves the very important function of determining
whether the puzzle is complete. When FC=NS-1, only one solution
remains, and the puzzle is solved and ready for presentation.

On the other hand, if more than one solution remains, lines 1040 and
1050 record the latest truth values so they will not be repeated in the
next clue.

Printing the Puzzle and Clues

The following lines let you select the output device for the puzzle:

1 O?~J F'F: I tli CHF::t. (14?;'.;: F:G1 CLEJiF: ::;C:F.:EEtl
1 U::;::12I r:'F: I I··IT "T I··IE F'UZZL.E I::; PEJiD'r'."
1 Ij5!O F'F: II·n

The Matchmaker 41

1 J. 00 D"/~:: 1
111 (I PP I rH Ii OUTPUT TO 1-- II I ::;PUW ;2-F'R I ~HEF.: "
112(1 I t'~F-IYI" "::;a.ETT 1 OF.: 2".; Ii
1130 IF DV()l AND DV()2 THEN 1090
114~) I t·WUT "PRE::;:::; F.:ETUF.:t·l ~'U-IEt-~ F.:EAD'T'''.; RTS
11 ~;~:1 PfU t··ITCHF.:$ (1.4?).;: REt'1 CLEF'iF:: ::;CF.:Ea·j
1155 IF D"'=2 THEN OPEN 1,4: CMD 1

If your printer has a device number different from 4, change 4 to the
correct value in line 1155. After printing the puzzle, the program will
give you the option of reprinting it to another device, so it's a good idea
to start with output to the CRT.

Before printing any clues, the program prints the two lists, so you'll
know what items are to be matched.

11 (:;121 PF:: I IT! "t-1ATCH LEF T COL.Ut-1t·i I .. j I TH f<: I CiHT COLUt1t·i"
11,(,,'21 F;-F.: II'of .
1 1::::: Ci F' F: H·r!" HI];:':>:::) "':: "IT' t .;: ;;::: ::. ")"
1 1. ::)(:1 F'P Hrr
120'21 FOR J=1 TO N
121'21 PRINT AS(l,J) TAB(30) A$(2 .. J)
1220 t·lE::<T J
12:3(1 PF.: I ~H

After this, the program prints the clues.

1240 IF D"/=2 THEI"~ F'F.: ItH:1:J: 1,: CLo::::r:: 1.
1 ;25~7.1 I t·WUT "F'F.:E:3::; F.:ETURt·~ TO ::;;EE 'r'OUF.: CLUE:3".; F:T$
1260 IF DV=2 THEN OPEN 1 .. 4: eMD 1
1270 F'F.:nrr
12:::~3 rr.;: I tH "HERE f=lF:E: THE CLUE:::;; ••• "
129121 F'F:: un
1308 FOR J=1 TO PN
1310 i3=F'(J .. l)
132.3 p;:::p (.J , ;2)
1330 O:::F' (.J .. :3)
1 :::4~:1 P'..i:;:;T (F' .. Ci)
1 :350 C!',/;;:-'T (I)., Ci)
1360 Pl=INT«P-l)/N)+l
1370 F'2=P-CP1-1)*N
138'21 01=INT«Q-l)/N)+1
1390 Q2=O-(OI-1)*N
14i2l121 PI? Hrl" "I!=' II Fit (1. .. F'1::' " " 'iF:t..;: P',,i+ 1:;' I!

I! li$(2., F'2>
141121 F'PHH "THEt·~ " A$:(1.- 01:;' II " TF:t(C!',/+l) "

142121 F-P I i··rr
1-;+3~~1 liE:;<"!" .J

if II

42 The C-64 Program Factory

If your printer has a device number different from 4, change 4 to the
correct value in line 1260. In lines 1300-1420, the program reconstructs
each clue by cross-referencing P(,) and T(,). Let's take clue 1 for an
example. G=P(l,l) stores the solution column number from whieh the
clue was drawn. P=P(1,2) and Q=P(1,3) store the rows corresponding to
the antecedent and consequent pairs. Therefore, PV=T(P,G) gives the
truth value of the antecedent, and QV=T(Q,G) gives the truth value of
the consequent. By way of illustration, assume G=4, P=l, and Q=9.
Reading PV and QV from Table 3-2, we can recover the first clue: not
Ai implies not C3.

Lines 1400-1430 print the clue in more conversational form, using
the verbs provided in line 70.

Printing the Answers

After printing all the clues, the program offers to give the answers.

1440 I i:::- D"/'~2 THai F'P I t·jT:j:I: 1. .. • CUY3E 1
14::,13 II'WlJr "F'I?E:::;::; F:ETUPii Tel ::::;[E: II-'It:: mj::;i .. :E:F.:::::; ". E]ti:
1460 IF DV=2 THEN OPEN 1 .. 4 eMD 1
1 ,::j. 1'0 F'F: I I'fr
14:::0 F'P II'--IT "HEPE ,:iPE THE l=itt::;I.,JEF::::;
1490 F'F:: I liT
1500 FOR J=1 TO NS
1510 IF FT(J)=l THEN X=J
1 ':3::20 t!D:T J
1530 FOR L=1 TO Ne
1540 IF T(L,X)=0 THEN 1580
1550 Pl=INT«(L-l)!N)+l
1560 P2=L-(Pl-l)*N
J.5(,0 F'F:IIIT r1$(1,F'1: ' " "IFt'.=:) " " Hl'2,F'2)
1 ~:YXI t·iD::T L

If your printer's device number is not 4, change 4 to the correct
value in line 1460.

In lines 1500-1520, the program recovers the solution by examining
each element of FT() to find the one element that equals 1. The sub
script of that element is the solution number.

Lines 1530-1580 go through each row of the truth table, looking only
at column X (the solution column). If the truth value at that row-column
intersection is 0 (for false), the program skips to the next row. When
ever it finds a 1 (for true), it prints the pairing in conversational form.
For any given solution column, there will be only N true pairings,
resulting in N positive statements of the form Pl-P2 is paired with Ql-

The Matchmaker 43

Q2. Note there is a single space inside each pair of otherwise empty
quotes in lines 1400-1410.

Starting Over

The following lines give you three choices: reprint the same puzzle,
create a new puzzle, or quit:

1590 F'F:ltrr
1592 IF DV=2 THEN PRINT#l, CLOSE 1
l'5:::1~5 I j··I::'UT "F'r;:f'::::;:::'; i?ETUr;:ii F'ClI? I .. JOf':f::::;HEET".: 1~:T::j;:

1596 IF DV=2 THEN OPEN 1,4: CMD 1
1600 UCI:::::UI: 1. ?20
lC:'~21 F'F::It·IT
162/j O[!::;UB 1 ::::::0
16:::~j IF' D'.,.'''''2 THE}·! F'F::nn:!:l:1., • CU:I::::E: 1
1 (:':+0 PF.: I tiT
1 (::::50 F:H1
11'; I::: ~-::I F' F: I 1"·1 T " ::: r:: u:: cr .
lC7(1 r::'[;:II·rr II

11::::=:~j F'F: I ~rr II

16:)(1 I t·iPUT :::'

IFDi I E}J F' '-' Z Z i_ E "
:>ll[}.1 PUZZLE"
::::--El-HI"

1695 IF 8(1 OR ~/0 THEN 1660
1700 ON S OOTO 1070,500,1710
1';::= 1. 0 E1'-iD

If your printer's device number is not 4, change 4 to the correct
value in line 1596.

Lines 1600 and 1620 call the following subroutines that you may find
helpful in the testing phase:

J ~",20 PF.: I in "HCF:E Hr.::E Hl_L THE \"fiL 1 II com: I '···Ifn I OI··iS"
1. ?Jlj F'R I trr
1 ~:'lO F'P WT
1750 FOR LZ=l TO Ne
1?60 Zl=INT((LZ-l)!N)+l
1770 Z2=LZ-(Zl-1)*N
1780 PRINT CHPS(64+Z1); CHR$(48+Z2) TAB(S)
1?90 FOP PZ=1 TO NS
1208 IF T(LZ,PZ)=0 THEN 18~n
l:::W F'F'HiT "T".;
1 :32121 (;OTO l. :::40
18:3121 F'RltH "F".:
184(1 ['lE>::T F'Z
1 ~350 F'F.: un
18612! r·lE>::T LZ
1 ~::?O F:ETUF::!~
1 ~:::::::i2J F'P I I·rr "HEF.:E I:::; TI·-IE ::::,OLUT I ;~Ii"i !,JUF:I<::;;HEE:T"

44 The C-64 Program Factory

U390 F'F.: UH
1900 FOR 12=1 TO PN
191 CI Ci2=F'':: 1 Z .. 1 :'
1 ::;:-20 F'Z::::F" E, :2:<
19::;:C1 I}Z:::P <:: 12., :::: >
1 :~~,~O F';:':>.::T':: PZ, CiZ:<
1 ~~5C1 O;<=T':: OZ.' CiZ:'
1 '~:'-:;~i IF F':<=O THEI·I C 1 $;;:::" *1"
1 Cj'?I::-i IF' P:"::::: 1 THDi C 1 :leo: !I "

1 ::~:::O IF 0)"::=121 THEH C2$"';: II W'
1990 1 F 0:'·::= 1 Tf-IH~ C2*:;:~ II "

2000 Zl=INT«PZ-l)!N:<+l
2010 22=PZ-(Z1-i)tN
2020 Z3=INT«OZ-1~!N:<+1
2030 Z4=QZ-(Z3-1>*N

G'E}1

F: E: 1"1

2040 P$=CHR$(64+Z1)~CHR$(48+i2)
2050 0$=CHR!(64+Z3)+CHPt(48+Z4)

1 ~::,;:-nC:E

.L :::;?HCE

20i':::~.3 PF I In c U Fl',,> iI C,?t I)Jl HI: (1121..' '
2070 FOR JZ~l TO NS
2080 IF F(IZ,]Z\=0 THEN 2110
20;·;:tU F'F:I!·n 11-;-".,
210U CiOTO 2120
2110 F'Fdtn 'T",
:2120 W::<T .JZ
:21 :::0 F'F: I tiT
,=: 140 t~[::T I Z
,21 ~::;o F:ETUI?i·~

1:
,. ! l)UUTE~:, I

I f! OUO"~E::;

Lines 2040 and 2050 build the antecedent and consequent pairs
using a letter for the first element and a number for the second.

-Testing the Program ---------.

After typing in the entire program, run it. Eliminate any obvious typ
ing errors you may have made. Figure 3-1 shows a sample run of the
program for comparison,

The program solution worksheet is similiar to that shown in Table
3-3, but with the following notation: the letters A, B, and Care us.ed in
place of the items in list 1; the numbers 1, 2, and 3 are used in place of
the items in list 2. The symbol # stands for not and the symbol =>
stands for implies, Accordingly, B3=>#Al is shorthand for if B is
paired with 3, then A is not paired with 1.

After you are satisfied that the program is running properly. you
may wish to delete lines 1595, 1600, and 1620, which call the trouble
shooting subroutines. On the other hand, you may find it instructive to
leave them in; the program can serve as a logic tutor in that way.

RUN
THE MATCHMAKER

ENTER A RANDOM NUMBER

THE MATCHMAKER

THE MATCHMAKER IS

CONSTRUCTING A LOGIC PUZZLE

FROM 3 DATA PAIRS.

PLEASE WAIT.

THE PUZZLE IS READY.

OUTPUT TO I-CRT 2- PRINTER
SELECT I OR 2 1
PRESS RETURN WHEN READY

The Matchmaker 45

MATCH LEFT COLUMN WITH RIGHT COLUMN
(LIKES)

ANN
BILL
CATHY

ALLIGATORS
BIRDS
CATS

PRESS RETURN TO SEE YOUR CLUES

HERE ARE THE CLUES ...

IF ANN LIKES ALLIGATORS
THEN BILL DETESTS CARS.

IF CATHY DETESTS BIRDS
THEN BILL LIKES CATS.

IF BILL DETESTS BIRDS
THEN CATHY DETESTS ALLIGATORS.

PRESS RETURN TO SEE THE ANSWER

HERE ARE THE ANSWERS

ANN LIKES CATS
BILL LIKES ALLIGATORS
CATHY LIKES BIRDS

PRESS RETURN FOR WORKSHEET

Figure 3-1. Sample run of The Matchmaker (keyboard entries are
underlined)

46 The C-64 Program Factory

HERE ARE ALL THE VALID COMBINATIONS

Al TTFFFF
A2 FFTTFF
A3 FFFFTT
BI FFTFTF
B2 TFFFFT
B3 FTFTFF
CI FFFTFT
C2 FTFFTF
C3 TFTFFF

HERE IS THE SOLUTION WORKSHEET

AI=>ItB3
ItC2=>B3
ItB2=>ItCI

SELECT:

TFTTTT
FTFTTF
TTTFTT

I - REVIEW PUZZLE
2 - NEW PUZZLE
3-END

Figure 3-1. Sample run of The Matchmaker (keyboard entries are
underlined) (continued)

-Personalizing the Program ------
When you're ready to begin generating your own personalized puzzles,
change lines 60-90 to suit your preferences.

First decide how many items to include in each list; you must choose
either three or four. Lists of four items will produce the more difficult
puzzles.

Make up the items for each list. Use characters in list 1 (line 80) and
attributes in list 2 (line 90). Start with attributes that are mutually
exclusive, such as red hair, black hair, blond hair. That makes things a
little easier to keep track of.

Finally, select the verbs that will be used to indicate whether a given
pairing is true or not. Use verbs with opposing meanings, such as
detests/likes, is not/is, or does not have/has. Store the two verbs in line
70. Be sure to put the negative verb first.

By choosing the list items carefully, you can come up with some very
interesting puzzles. Remember to use a different random number each
time you run the program to generate a different series of clues.

The Matchmaker 47

To get you started, here are the data lines used to generate the puz
zles at the beginning of this chapter. For the favorite animal puzzle:

60 DATA 3
70 DATA DETESTS,LIKES
80 DATA ANN,BILL.CATHY
90 DATA ALLIGATORS,BIRDS,CATS

To describe the murderer:

60 rniHI 4
70 DATA DOES NOT HAVE,HAS
80 DATA THE MURDERER, THE MILKMAN,THE POSTMAN,

THE C;m;::BfKiEt'lFlt·1
90 DATA WHITE OVERALLS,A TATTOO,RED HAIR,

Ii BU..IE F' I CI<UF'

-Answers to Puzzles ------------
Favorite animals: Ann likes cats. Bill likes alligators. Cathy likes birds.

Describe the murderer: The murderer has white overalls. The
milkman has a tattoo. The postman has red hair. The garbageman has a
blue pickup.

Chapter 4

=:::--er-ossword~Jluz-zle~-==
~-........ -.............. -.~~--~~~~~--............................. _-_._._-_ __ -..... .

~-_~~=:~~stgn~r= _=P~_~=-l--=-==

This program generates eye-catching patterns for crossword puzzles.
You can use these patterns to create personalized crossword puzzles. All
you need is a good vocabulary, some free time, and a large eraser.

Even readers who don't enjoy crossword puzzles will find the Cross
word Puzzle Designer an interesting exercise in array manipulation
and print formatting.

A separate program that helps you fit a word list into a puzzle pat
tern is given in the next chapter.

-How Crossword Puzzle Designer Works --
A lot of care goes into the creation of the puzzle pattern before there's
any thought about fitting in the words. Good puzzle patterns have the
following properties:

• Solid blocks are arranged in symmetric, geometric, or representa
tional patterns.

49

50 The C-64 Program Factory

• Every possible path is numbered.

• Only one set of numbers is used for both horizontal and vertical
paths.

Figure 4-1 illustrates each of these properties.
The Crossword Puzzle Designer starts by creating an empty grid

that it divides into four numbered quadrants, as shown in Figure 4-2.
The grid can range in size from 3 X 3 to 19 X 19.

To start, a certain number of randomly selected cells in quadrant 1
are marked as block cells (the black cells in a printed puzzle). The resul
tant pattern of blocks is rotated 90, 180, and 270 degrees and copied into
quadrants 2, 3, and 4 respectively. This produces a radially symmetri
cal pattern: each of the four quadrants looks the same when viewed
from the centerpoint. Of course, other types of symmetry are possible,
but this one seems to give pleasing results.

Marking the block cells is only the program's first pass. The pro
gram begins a second pass for quality control by examining every path
to find if any are too short (you may specify 2 or 3 as the minimum path
length).

Block cell ---

Head cell for vertical path

~I---I---+--- Head cell for

horizontal path

Potential head cell is not numbered because
horizontal path would be too short

Figure 4-1: An illustrated puzzle pattern

- ---------~---------------

Crossword Puzzle Designer - Part 1 51

I I
r-- 1 2-

r--4 3-

I I

Figure 4-2: Four symmetrical quadrants of a puzzle pattern

The program looks for each potential head cell (the numbered cell
that starts a path). Potential head cells are immediately below or to the
right of block cells. An imaginary boundary of block cells surrounds the
grid, so that every cell in the top row and left column is a potential head
cell.

After finding a head cell, the program checks the length of the two
paths (horizontal and vertical) originating there. If one of the paths is
long enough, but the other is too short, the short path is left unused. If
both paths are too short, the head cell is blocked out. To preserve the
grid's overall symmetry, the corresponding cells in the other three
quadrants are blocked out as well.

Finally, the program numbers the paths by locating the head cells
and numbering them.

~The Program------------
The first block prints a title, asks you to input the puzzle size, and
initializes the arrays.

10 PRINT CHRS(147);. REM CLEAR SCREEN
:20 PF.: I t·n" CRO:;::;~,jCJl·?D F'U::ZLE Pf=tTTEf:::I···1 CiG4ERFITOR"
::::0 F'RltH
4~) I t·1PUT "PUZZLE ::; I 2[:: .:: :::-,,19::0 ".; 1"1

52 The C-64 Program Factory

50 IF M)=3 AND M(=19 THEN 80
60 F'F.: I trr II I t·j"/I:iL I D :::; I ZE. II

;:"0 (;OTO 40
:::;;) t·j::: I I·rr.:: 1"1..";2;'
::Hj EO=~j
100 IF N()M!2 THEN EO=l
11121 tK: =t'1 * 1"1
120 NB=INT(NC!4)+1
130 DIM M$(M+l .. M+l),PL(M,M).AD(NC .. 2),RC(NC .. 2)
133 S6$=CHR$(15):S9$=CHR$(8)
135 PQ=4: REM PRINTER/S DEVICE NUMBER
1,:1-0 :::;C:t:::::"_,,"
150 BK$=CHRS'::166): REM BLOCK CHARACTER
160 ::W:t:::: II ": F:Er'1 :::;: :::;F'I=II:r:: I t·j C!UOTE::':;
1;:"0 BL$=CHRS(166)+CHR$(166)+CHRS(166)
180 VL$=CHR$(125): REM VERTICAL LINE
190 HL$=CHR$(96)+CHR$(96)+CHR$(96)

The variable M is the overall grid size, and N is the size of each
quadrant. Lines 90 and 100 determine whether M is even or odd; EO
stores 0 when M is even and 1 when M is odd_ This information is
needed later when the puzzle is printed, because odd-sized grids cannot
be cut down the middle. They have a center column and row which
must be taken care of separately.

NC is the total number of cells in the grid. NB determines the
number of blocks that will be stored in the grid-one for every four
cells. However, the final number is usually higher because of blocks
added during the check for short paths.

The array M$(row,column) stores the grid. For instance, M(1,2) is
the cell at row 1, column 2. PL(row,column) indicates whether a grid
cell is numbered or not; that is, whether it is a head cell. For instance, if
a path originates at row 1, column 2, PL(1,2) stores the path number; if
no path originates there, PL(1,2)=0.

AD(path number, direction) stores the length of each path in each
direction. For instance, AD(3,1) stores the length of path 3 down;
AD(3,2) stores the length of path 3 across. AD(,)=0 indicates that a
path is unused.

Finally, RC(path number, location) stores the row and column address
of each path's head cell. RC(5,1) stores the row of path 5; RC(5,2) stores
the column address of path 5.

86$ and 89$ are printer control codes used to select spacing of 6 or 9
lines per inch on the Commodore MP8-801 printer and compatible mod
els. Use 86$=" " and 89$=" " if your printer doesn't have variable line

Crossword Puzzle Designer-Part 1 53

spacing. PQ is the device number normally assigned to the printer.
Change the number if necessary for use with your printer.

SC$ and BK$ indicate whether a grid cell is a letter cell or a block.
The other variables assigned in lines 160-190 are used when the puzzle
is printed.

Setup of the Puzzle's Design

The next lines set up the parameters for a specific pattern. They are
executed each time you ask for a new pattern.

2~XI I t'lPUT "EJnEf~: 11 F::r~t,mot'1 t'Wt1BEF~: ",; [;':1',,1
210 X=RND(-ABS(RN»
2:20 I 1"iPUT "t'1 I t,j I t"lI..It'1 ~JOFHI LHiCiTH (2 OF:: :::) iI ,; 1"lL.
230 IF ML(2 OR ML)3 THEN 220
2,:::'121 PP I I',n "I I,ll T I flL I Z I I"le) "
2~50 OO:;:;UB 154(1

RN sets the random number generator seed so you can repeat a puz
zle design. ML sets the minimum word length -something that can
have a great effect on the puzzle's appearance. For puzzles smaller than
7 X 7, you will probably want to specify a minimum word length of 2
when you run the program; otherwise too many blocks will be filled in.
Line 250 calls a subroutine that clears out all the arrays.

Marking the Blocked-Out Cells
The following block prepares the initial puzzle pattern:

2611 F'P I tH "F I I~:::;T F'fl:::;:::;"
270 FOR J=1 TO NB/4+1
280 R=INT(RND(l)*(N+EO»+l
290 C=INT(RND(1)*(N+EO»+1
300 IF M$(R,C)=BK$ THEN 280
31(1 t'lC$=::BI<$
:::::~;(j CiO::;;UB 149~:1

330 1"jE::<T J

Lines 270-300 randomly block out NB/4+ 1 cells from quadrant 1.
For every cell blocked out in quadrant 1, lines 310 and 320 block out a
corresponding cell in quadrants 2, 3, and 4, producing a total of NB + 4
blocked-out cells. Line 330 repeats the process until the variable J has
counted to NB/4+1.

54 The C-64 Program Factory

Checking for Path Length

Now for the quality control check.

::;:'+(1 F'F: I liT "::;ECCiI"ID PI:r::::;:;"
:~:'::)O FIF"=:12I
360 FOR R=l TO N+EO
370 FOR C=1 TO N+EO
380 IF MS(R,C)=BKS THEN 590
390 H::;:~C"- J
41210 IF MS(P,HS)=BK$ THEN 430
4:l (1 H:::;'-~H::;""-l
4:2(1 (iOTO 4fi0
4JIZ1 HE:=:C+"l
440 IF MS(P,HE)=BKS THEN 470
4':50 HE::::HE -1-1
460 COTO 440
471) \i:::;:=F:""" i
480 IF MS(VS,C)=BKS THEN 510
49(1 '·,.'::;=',/::;;"-1
5~J0 (iOTO 4:::0
::510 '·,.'[::::F:+l
520 IF MS(VE,C)=BKt THEN 550
::5:3 (1 ' E-::= "/ [+" 1
'::;·:+0 COTO 5:2121
550 IF HE-HS)ML OR VE-VS)ML THEN 590
:::;(;0 r:IF" 1
~:i?O NC$=BKS
~58~3 GO::;UB 1490
590 ~'lD::T C
1S0~3 ~"1E::< T I:;::
1510 IF AF=l THEN 350

In line 350, AF is a status indicator whose function is explained
below. Lines 360-600 examine every cell in quadrant 1 one row at a
time. If a cell is not a block, it is assumed to be part of a path. Lines
390-460 measure the length of the horizontal path containing that cell.
Lines 470-540 measure the length of the vertical path. If either of the
paths satisfies the minimum path length requirement, the cell is
allowed to remain as is (line 550). If both of the paths are too short, the
cell is blocked out. Line 560 sets AF= 1, indicating that a cell is going to
be changed. Lines 570 and 580 change the cell in quadrant 1 and all
corresponding cells in the other quadrants.

When the program reaches line 610, every cell in quadrant 1 has
been checked. If AF=l, a cell has been changed to a block. That addi
tional block might have created additional short paths, so the quality
control check (lines 340-600) is repeated.

Crossword Puzzle Designer - Part 1 55

Numbering the Paths

When the program goes through the check without finding a short path,
the check is complete and the cells can be numbered.

(;2~j F'R I tH "t·~Ut'1BEF.: I t·1G THE F'ATH~:; [·1 0 !.,j ••• "
63'3 H~:::12I
64121 FOP F.:= 1 TO t"1
65121 FOR C= 1 TO 1"1
66121 IF MS(R.C)=BKS THEN 91210
670 IF MS(R-i.C)(>BKS THEN 780
6f:;:0 l,lE=:F.:+ 1
690 IF M$(VE.C)=BK$ THEN 720
?00 ',/[::::',/E + 1
? 1 ~j OOTO 69121
?2121 IF VE-R(Ml THEN 78121
'?30 F'I"-l::::Pt·l+ 1
74121 PL';: R .. C) ;"PI··l
'?5121 PC';:PH.l)=:i?
'7\;121 F.:C':: F't-L 2) =C
770 AD(PN.l)=VE-R
?8121 IF MS(R.C-l)(>BKS THEN 90121
79121 1-I[:::C+1
8121121 IF MS(R,HE)=BKt THEN 83121
::: 1121 HE~~HE + 1
::::2(1 OOTO ~300
83121 IF HE-C(ML THEN 900
84121 IF Pl(P,C»0 THEN 89121
:::5121 F't-l:.~F'I'-·I+·l
:::6121 PL 0:: F.: .' C) ":PI··j
:::?(1 PC':: Pt·j, 1 ::0 :~:F:

;::::3~) PC':: Pt··I.- 2::0 =:C
89121 AD(PN,2::O=HE-C
9121121 HE::<T C
91121 HE::-I.T P
These lines examine every cell to find the head cells (cells that will

be numbered in the final puzzle pattern).
PN counts the number of head cells found. This is not the same as

the total number of paths, since a single head cell often references hori
zontal and vertical paths.

Lines 660-720 determine whether a cell heads a vertical path. If it
does, lines 730-770 record the relevant information: the head cell count
is incremented; the head cell number is stored in PL(,); the row and
column of the head cell are stored in RC(,); and the path length is
stored in AD(,1).

Lines 780-890 perform a similar function for horizontal paths. Lines
900-910 repeat the process until every cell in every row is checked.

56 The C-64 Program Factory

Puzzle Options Menu

Now the pattern is complete. The program gives you several options: to
view or print a miniature version (in case a large version won't fit on
the screen), to view (or print) the puzzle, to view (or print) the path
directory, to file the puzzle on disk, to erase and start a new puzzle, or
to quit.

:;;12(1 F'I? I I'rr "F'UZZLE F'f1TTEF:I~ I::::; !?LJ1D'r'" 'I

9:::0 F'I? II'n
:~1::::~5 F'F: II",IT "1,,,',/ I EI .. I 1'1 I Ii I ""'F'UZZL,,["
94~~1 F'F: II'n ":2",',/ I E~'~ THE [>::F'HHDED F'U::ZU::"
9~:5(1 F'F:: I HT ":}"""/ I EJ.1 F'I::m"l II 1 !;'ECT'OF:'1'''
96(1 F'F:: UH "4"F'I LE THE i='UZZLE"
~;?O F'F: I IH ":5 "EF::n::;;E 1=lt'iD :::;rHF::T fi l'lE}j F'UZZLE"
::;1::::0 P!? Hn "()'I)U IT • "
',1'1~1 F'F: I I-IT
1000 I tWUT ":::;ELECT 1.,,(:" .. :::;
1010 IF 3(1 OF:: 3)6 THEN 930
1020 ON S GO TO 1042 .. 1050,1090,1250,20(1,1040
104CI EtlD

Line 1020 selects the program block corresponding to the option you
select.

Viewing the Puzzle

Here are the lines that enable you to view the miniature puzzle (use
these lines if the puzzle size is greater than 13):

1 04:~: l~i(}3UI: 2C1~~C!
1 ~}::J.:::: UO::;UI: 21 :::;:0
1044 CiC!::;UE: 21:::::U
1045 CiOTO 9:::0

Line 1042 calls a subroutine to select the output device. Line 1043
calls a subroutine to print the miniature puzzle. Line 1044 calls a sub
routine to restore the video display as the output device. All these sub
routines are explained in detail later. Line 1045 returns to the option
menu.

Here are the lines that print the full-size, presentation-quality puzzle
pattern:

l050 CiO:::;IJE: 20:~~0
106C1 Ci(l::::UE: 1 (::30
107'0 CC!:::;UI: :21 CI2I
1 (1::::0 CiOTO ~n0

Crossword Puzzle Designer-Part 1 57

The lines are the same as for the miniature puzzle, except that line
1060 calls a subroutine to print the full-size puzzle.

Displaying the Path Directory

Here's the subroutine that displays the path directory.

109121 CiO::;UI: 20::;'0
1100 F'F::ItH
11 :l121 FF.: I HT "tiCPO:;:;::;"
1120 PF.: I tn "PATH #" TAB (1121) "LEI'-4I3TH"
1130 FOR QI=1 TO PN
1140 IF AD(QI,2»O THEN PRINT QI; TAB(10);AD(QI,2)
11 :;0 t·4E::<T G! I
1160 F'F.:ltH
1:[?C1 F'F: I I··IT 'I DUW·l"
11 ::;:0 F'P HH "F'flTH ~*" n:IB':: lI2l::' II L.EHCTH"
1190 FOR QI=1 TO PN
1200 IF AD(QI:1»0 THEN PRINT QI; TAI:(10);AD(QI,1)
121[1 t·4E>':T or
1 :23121 CiO::;UB 2160
1240 ('iOTO 9:30

Line 1090 calls a subroutine to select the output device. Lines 1100-
1150 print all the horizontal paths. For each path number QI,
AD(QI,2»0 indicates that a path exists. In that case, line 1200 prints
the path number followed by the path length.

Lines 1160-1210 print all vertical paths in a similar fashion.
Line 1230 restores the video display as the output device, and line

1240 returns to the menu.

Saving the Puzzle on Disk

Here are the lines that file the puzzle pattern on disk.

1 :;250 PR I tn
1260 FO$::-.:" ::'::~JOr;,:D" +" • Ii +f~: I CiI·-IT$: C;::T F.: $ (F:t-D)

LEH(STR$(RN»-l)
1262 FO:t==:FO$+"." +R: I CiI-IT:$: (::;TfU (t'1) , L.Hl':: :::;rF.:$ (r'1)) J.)
1 :';::70 PF.: I t·rr "F I L I I·W PU:2:2LE II'j "FOt
12:30 OPEt·j 1., :::) 4, "I]!O : "+FO$'+'" .' ::;EC!, L,J"
132(1 PI? I I··rr# 1.,1"1
1330 FOR 1=1 TO M
1340 FOR J=1 TU M
1350 PRINTI!, MS(I,J)
1360 PRIHT#l, PL.(I,])

58 The C-64 Program Factory

1 ~::?(1 HE>::T .J, I
:t::::~!O PF:UnlH .. F't-J
1400 FOR 1=1 TO PN
1410 PRINT#l .. AD(I,l
1420 PRINT#1, AD(I .. 2
1430 PRINT#l, RC(I,l
1440 PRINT#1, RC(I .. 2
145U 1··iE:<T I
1,:+(;U CLU:::,E:: 1
l·t?U CiOTU :::n0

Lines 1260-1262 construct an output file name XWORD and store it
in FO$, along with the random number you supplied and the puzzle
size. For example, if you have supplied the random number 1234 and
puzzle size 9, the file will be named XWORD 1234.9.

Line 1280 opens a new file under the name in FO$.
Lines 1320-1380 print M, the puzzle size; M$(I,J), the contents of

each cell (either a block or a blank); and PL(I,J), the path number to be
printed in that cell (non-head cells are numbered 0).

Lines 1390-1450 print details about each path: PN, the number of
paths; AD(I,l) and AD(I,2), the path length in the vertical and horizon
tal direction; and RC(I,l), RC(I,2), the row and column addresses of the
path's head cell.

Line 1460 closes the file, and line 1470 returns to the menu.
The following subroutine stores the contents of NC$ in symmetrical

positions in quadrants 1 through 4:

14:::121 1?E11
1490 M$(R,C)~NC$
1500 M$(C,N+H+EO+I-R)=NC$
1510 M$(N+N+EO+i-R,N+N+E::O+l-C)=NCt
1520 Mt(N+N+EO+1-C,R)=NCt
1 :530 F:ETUI?I··j

The variable EO effects the calculations only for odd-sized patterns
since EO=O when M is even and EO=l when M is odd.

Preparing a New Puzzle

Here is the subroutine that erases an existing puzzle pattern and pre
pares for a new one.

1540 FOR 1=0 TO M+l
1550 FOR J=0 TO M+l
1560 IF 1=0 OR J=O OR I=M+l OR J=M+l THEN 1600

Crossword Puzzle Designer - Part 1 59

1570 MS(I,])=SC$
l~:;:=:CI Ft. ': I" J)='(j
1 ~)::)O OOTO 1610
1600 MS(I,])=BK$
1 C 1 CI l'l[::n J
11<20 j',le'::T I
1630 FOR 1=1 TO NC
li,>:IO HD(1,1),;,121
1(;'5U !:::!D (I " ;2) ::::121

1 :::'60 l;r:::::-::T I
1 :;)?CI F:ErUl~:ll

For every row I, M$(I,O) represents the left boundary of the puzzle
and M$(I,M + 1) represents the right boundary. Similarly, for every
column J, M$(O,J) represents the top boundary and M$(M+1,J) repre
sents the bottom boundary.

Lines 1540 and 1550 and 1610 and 1620 cause I and J to count from 0
to M+l. The subscripts 0 and M+1 are used to generate an imaginary
boundary around the grid. A block character is stored in each of these
boundary cells (line 1600). For all non boundary cells, line 1570 stores a
blank character SC$ to indicate that the cell is available for a letter or a
block.

Line 1580 stores a 0 in every element of PL(,), indicating that no
cells have yet been numbered.

Lines 1630-1660 store 0 in every element of AD(,1) and AD(,2),
indicating that no paths exist yet. Line 1670 returns to the main
program.

Printing the Expanded Puzzle

The following subroutine prints the puzzle in expanded form. It is pre
sented here in blocks for easier reading. The first block prints the top
line of each row of cells.

1 C:::::O F'!~: I tn ::;6$,; "F'!...i2ZLl:~ *1 ,. FJ,;
169121 FOR OR=1 TO M
1?00 FOR OC=1 TO M
l?lU PRINT VLS;HL$;
1 ?::W 11[)::T !}C

II 11 .

1730 PRINT VL$;S9$ PRINT S6$;

r'1L:

The next block prints the second line of each row. For head cells, this
line contains the path number. For other cells, it contains spaces or
block characters.

60 The C-64 Program Factory

1740 FOR OC=1 TO M
1 ;r5121 Pi': I ~·rr ' L.:t.:
176121 IF MSCQR,QC)=BKS THEN 1800
177121 IF PL(QR,QC»O THEN 1820
1 7C:lj F'F: I tn ::::F':t.:

1 :::1211] F'F.: I tn BU.:
1 :::: 10 CiOTO 1 :::'50
1820 QIS=STR:tCPL(OR,QC))
1830 OI:t=LEFTS(QI$+SP$,3~
1::::'1-0 PR HH :) I:t.:
1 ::=:'50 HE>::T oe
1860 PRINT VLS;89S: PRINT 86$;

Lines 1820-1840 handle the case of head cells. QI$ contains the
appropriate head cell number.

The following block prints the last two lines of each row of cells.
These lines consist of spaces for path cells and block characters for
block cells.

1870 FOR OC=1 TO M
:l :;:::::0 PP I t··IT !/L..t.;
1890 IF MS(QR,QC)()BKS THEN 1920
191210 rRnn BL:t.:
1910 (JOTO 19:;:0
192121 F'P I HT :3P$.:
1 '~:::r:1 t·lE::-n I)C
1940 PRIHT VL$;S9$ PRINT 36$,
1950 FOR OC=l TO M
196121 PR II·n ',,lUI:.:
1970 IF MSCOR,QC)()BKS THEN 2000
1 '~:::::rl PI? II·n BL.$:
1 ~:;3S~>:1 CiOTO 20 1 ~21
21]00 F'RI~H :::P:t.:
;21] 10 t·lE::<T OC
2020 PRINT VL$;S9$ PRINT S6S,
2030 l·lE::<T OF.:

All the cells have been printed at this point. Now the program adds
a bottom line to close the puzzle.

2040 FOR I)C=1 TO M
2051] PRINT VL.S;HL.$,
2060 HE::·::T CC
2070 PRIHT VL$;S9:t: PRINT S6$,
20:::121 F:ETUF.:t·l

Line 2080 returns to the main program.

Crossword Puzzle Designer - Part 1 61

Finally, here are the subroutines to select an output device and re-
store the display as the output device.

:20~!(1 F'f::: nn
2 1 ~j I:) Ii './ ::::: 1
.::: 11 121 I l"~F'UT ":;::EU::::Cr 1. II:r. :::F'!...i::I'r' :2 !='::;: I 111FT:" .: II',,.'
2120 IF DV()l AND DV()2 THEN 2090
2130 IF DV=2 THEN OPEN i,PO eND
21·::0 r::ETUF:I'1
:211::U J I: D',,.';:,,~: THE}·I PF: I i···iTrl:l., : CUY::E 1
211'0 FETUFl1
2180 FOR 11=1 TO M
2190 FOR J1=1 TO M
220U PRINT 86$; Mt(Il,Jl),
:2::21 Cl r1E:::r J 1
::: ~:: ~: I) F' F: HI T :::: ::~ :1;
2::::::::0 t1C<T I 1
22::::'::; F'F: I liT :::;6:t.;
:2:240 F:ET i .. lr::: I' I

-Testing and Using the Program ------
Many of the key sections of the program are set up as subroutines to
facilitate testing and debugging the program.

Perhaps the most useful is the puzzle printout subroutine (lines 1680-
2080). To get a printout of the pattern, insert the command GOSUB
1680 at strategic points in the program. For instance. add line 335
GOSUB 1680 to see the initial pattern before the quality control check.
Add line 615 GOSUB 1680 to see the pattern after the quality control
check.

Typically, you will view the puzzle first and perhaps examine the
word path directory. If you like the puzzle, you'll file it on disk for later
use. Then you can erase and start over with a new random number and
a new minimum word length.

When generating small puzzles, the program may occasionally pro
duce one that consists entirely of blocks. Simply erase the puzzle and
generate a new one using a different random number seed. Use a min
imum word length of 2 to reduce the chances of this happening.

-Printing Considerations ---------
In printed form, each cell requires four columns and four lines. Adding
one column for the right boundary and one line for the bottom boun-

62 The C-64 Program Factory

PUZZLE # 32050 . 3

4

It I! II IE
9

:'1 11

II
1il ~I.

~'1CFW::;:3

2

14

F'FiTH # LEtlCiTH
1 5
4 ~

'-'
7 5
9 4

10 4
11 <0

.~

L,: '" '-'
14 '" .~

DOWtl
PATH It LEHCiTH

2 4
3 '" .J

5 <0
.J

6 '" .J

7 '" .J

8 '" .J

9 '" ~,

12 4

10

Figure 4-3: Sample results of the program showing the miniature puzzle.
the full-size puzzle, and the word directory.

Crossword Puzzle Designer - Part 1 63

dary, we have the following formulas for puzzle dimensions:

columns = 4 X size + 1

lines = 4 X size + 1

Accordingly, a 19 X 19 puzzle requires 77 columns and 77 lines in
printed form, which almost fills an 8-1/2 X 11 sheet of paper.

Figure 4-3 shows sample results of the program using the Commo
dore MPS-80l printer. If you have another printer, you may need to
make these changes:

133 ::;6$=11 II: 89$=1111
150 :E:I<$= II #": PEt'1 BLOCh: CHf,F.:ACTEF.:
17(1 :E:L$::: II ### II
1 ::!I~1 \.'L$= II ! II
190 HL$='"-·_-"

Chapter 5 presents a program that reads and places words in the
puzzle patterns created by this program.

Chapter 5

In the last chapter, you generated empty crossword puzzle patterns. In
this chapter, you complete the puzzles by supplying answers and clues.

Selecting answers that fit together is often a tedious and time
consuming project. It can also be frustrating. Using Crossword Puzzle
Designer, your computer eliminates much of the tedium, yet still allows
you to make your own creative finishing touches. More than any other
puzzle project in this book, Crossword Puzzle Designer involves a good
deal of collaboration between you and your computer.

-How Words Are Stored in the Puzzle ---

The puzzle pattern in Figure 5-1 was created by the program developed
in Chapter 4. The fill-in program presented in this chapter can recover
the puzzle pattern directly from a disk file. But what if you don't have
such a disk file? The fill-in program also gives you the option of storing
the pattern recovery information in DATA lines in the program. DATA
lines are explained later in this chapter.

65

66 The C-64 Program Factory

PUZZLE #4321. 7.3

Figure 5-1. A puzzle pattern

Once you have recovered the pattern through a disk file or DATA
lines, you can begin attempting to fill in words with the program. It
reads in a word list that you provide and tries to fill each path from the
word list. After it has tried all paths or used up all the words, the pro
gram lets you take over, filling in the gaps and changing any paths you
don't like.

The result of this collaboration is a solved crossword puzzle; you
must then make up the clues to go with the words. For example, if your
puzzle has BIT in the path I-across, you might use the clue "A binary
digit" or "What the programmer did to the incompetent computer
repairman."

Figure 5-2 shows the puzzle after the computer has automatieally
filled in words and before you have had a chance to perfect it. In this
case, the computer used a word list of 67 common BASIC keywords.

Obviously, you must complete the paths that contain hyphens--the
computer cannot fill these paths from its word list. Referring to Figure
5-2, you might use ARC in path 3-across; ARC isn't a BASIC keyword,
but at least it can easily be related to programming. Path I2-acro8s is

Crossword Puzzle Designer-Part 2 67

Solution Word Directory

ACROSS: DOWN:
1 2 3 4 5 6 7 1 ASC 1 ABS

1 A S C # A C 3 A-C 2 SGN
2 B G # # T 0 5 T-O 3 ATN
3 S N # N # S 6 SN- 4 COS
4 # # # # # # # 9 DIM 7 DEF
5 D # D # D I M 12 E-E 8 DET
6 E - E # # N 0 13 F-T 10 INT
7 F L # T D 14 -TD 11 MOD

Figure 5-2. A partial solution for the puzzle pattern in Figure 5-1

more challenging: E-E. If you can't come up with a computer word that
fits this pattern, go ahead and broaden the scope a little. The word
EWE fits, so use it. Later you can come up with a clever hint, however
tenuous, that relates to programming.

Paths that are filled indirectly through the completion of intersect
ing paths create another problem. When the program fills a path, it
does not check all the intersecting paths that may be affected. As a
result, the puzzle may contain "words" that are unusable. You will have
to make a number of path replacements to eliminate these nonwords.

Figure 5-3 shows the finished puzzle with a set of clues. Of course,
this is just one way of completing it; you might find better words to use.

Notice that some of the words that were taken from the original
word list have been replaced. For example, INT was changed to ISO
and DET to DEN. Such replacements are required to eliminate
non-words.

-The Program --------------

The program uses numerous subroutine calls (for instance, line 70 ON S
GOSUB 1840,2170). The subroutines are explained in a separate section
after the full program has been presented.

Before trying this program, you should have read Chapter 4 and run
the pattern generation program. That way you'll have some puzzle pat
terns stored in disk files and ready to use. If you want to create your

68 The C-64 Program Factory

Across
1 BASIC function to get the ASCII code of a character
3 Inverse of the tangent function is the ____ -tangent
5 Also, besides

6 Abbreviation for IBM's System Network Architecture
9 BASIC statement to create an array

12 Opposite of RAM

13 BASIC command to erase a resident program
14 Abbreviation for End of Data

Down
1 BASIC function that always returns nonnegative numbers

2 BASIC function that tells whether a number is positive, negative, or zero
3 Inverse of the BASIC TAN function
4 Opposite of the BASIC SIN function

7 Favorite resting place for programmers and lions

8 Found on the grass when programmers are going to bed and milkmen are
making their deliveries

10 International Standards Organization

11 BASIC function that returns the remainder of .r after integer division by m

Solution Word Directory

ACROSS: DOWN:
1 2 3 4 5 6 7 1 ASC 1 ABS

1 A S C /I A R C 3 ARC 2 SGN
2 B G /I /I T 0 0 5 TOO 3 ATN
3 S N A /I N /I S 6 SNA 4 COS
4 /I /I /I /I /I /I /I 9 DIM 7 DEN
5 D /I D /I D I M 12 EWE 8 DEW
6 E W E /I /I S 0 13 NEW 10 ISO
7 N E W /I E 0 D 14 EOD 11 MOD

Figure 5-3. A perfected solution to the puzzle of Figure 5-1

own patterns manually. you should still read the text of Chapter 4. This
chapter's fill-in program uses many of the same arrays as the pattern
program.

Crossword Puzzle Designer - Part 2 69

Menu Options

The first block of the fill-in program prints a title and menu:

10 F'F:II'H CHP:t114l.' "CF'O:::;:::;l,jCIF:U I:UZZLE i:U_-li1"
:?U 10:' F.: HH
:~:f~l F'F: II·-./'r "i-·LOAD f:'fnT[};'~··1 FF:U!'i D I ':;f iI

40 F'F: I ~··IT "2 --F:EnD F'HTTEI?I·l F!;':Q'1 DHTH i ... I !!e:::;"
~:;o I ~'~F'UT ::~
ISO IF:::;:::: 1. nl·m ::>.:::2 THEI'l 212~
70 ON S GOSUB 1840,21l0

The two menu options are to load pattern from disk and to read
pattern from data lines. Use the first option in conjunction with puzzle
patterns created by the program of Chapter 4; use the second option if
you have stored the pattern recovery information in DATA lines.

Line 70 calls the pattern recovery subroutine that you select.

Storing the Word List

The following lines read in the word list and set up a few other vari
ables and arrays:

:::0 F'F: un
90 F'F: I trr "pJ:::::m I l'iCi TI·!!: ~,JUI?]'I L. I :::;T"
1 UC F:EHD l·iI,J
110 DIM WD$INW),WLINW),DT(2,2)
L2k) DIll, 1);~:1
131;;) Ii I I 1. , 2''';121
1·\.0 IiI ':;2.' 1.) :::::11

1 ::;0 Ii I 12., 2):c: 1
1 CO ::::;(:$::: " .. "
165 F'Z::::'4
170 FOP W=l TO NW
1 f:: (j F' E: F'iD ~.JD :*: (I,J)
1 ::! 0 I,.i L.ll,j) '" l'l
:20121 t1E::::':: T l,j

The words are contained in DATA lines at the end of the program.
NW is the number of words. WD$() stores the words. WL() lists the
index numbers of each available word. Initially, WL(W) = W for every
W, since none of the words have been used yet. When a word WD$(W) is
used, that index is removed from array WL().

DI(,) stores the direction increments for horizontal and vertical
paths. The first subscript indicates the direction (1 =vertical, 2 = hori
zontal) and the second subscript indicates the increment (1= row

70 The C-64 Program Factory

increment, 2=column increment). For instance, DI(l,l) gives the row
increment for vertical paths, and DI(1,2) gives the column increment
for vertical paths. The values are 1 and 0 respectively (see Figure 5-4).

In line 165, PZ is the device number normally assigned to the print
er. If your printer has another device number, change 4 in line 165
accordingly.

Filling In the Puzzle

The program now asks whether it should fill in all the paths without
pausing or request your approval before inserting a word into a path.

21 CI F'j~: I j·..rr
:22~~! F'P I i···IT I. ~:;'rHPT I H'~i TO FILL. I !-··I TI· .. IE Pl...l~:~:~L..E·1
2 :3la FI F ::::: 121
241a F'F: I !'H "<C>OtH I j'K!ClU:::; F I Li.. I '·1 OF:"
250 F'F~: I ~·rr "(F.:)EI~UE:::;T I=WF'FfJ'.,.':::iL.. f~OF: EACH ~'lCJF:lr::'"
:26~:1 I I"~PUT "E~HEF.: (C) OF: (FD".; CF.:$
:~:?O IF' CF.:J": I'I~: II THr::H :~:~jC1

The variable AF stores the choice you make (O=request approval for
each path, l=continuous fill-in).

EP - Horizontal paths
Row increment = 0
Column increment= 1

Vertical paths
Row increment=l
Column increment = 0

Figure 5-4. Illustration of the direction increments for paths

Crossword Puzzle Designer - Part 2 71

Filling the Paths

Now the program is ready to fill in the words. It tries every path
number; for each path number, it tries both the vertical and horizontal
directions if appropriate. The following lines select the path number
and direction:

:;:00 l,jU::~O

::: 1 (I I?Et'1
320 FOR P=l TO PN
:=':30 For~: Ii;;: 1 TO ~~
340 IF AD(P,D)=0 THEN 790
3513 !30::;UE: 171210
360 IF SF=0 THEN 798

The variable WU stores the number of words used. P is the path
number; it counts from 1 to PN, the highest path number used. For each
path number, D counts from 1 to 2, which represents the two possible
path directions (1 = down, 2= across).

Line 340 determines whether a path exists in a given direction. If no
path exists, the program jumps to 790, which checks the next path
number. Refer to Chapter 4 for an explanation of the array AD(,).

If the path exists, the subroutine called in line 350 gets its present
contents.

The variable SF indicates whether the path contains any spaces. If
there are no spaces present (SF = 0), the path is already complete, so the
program skips to the next path (line 360).

Given a path containing spaces, the program attempts to fill it in
from its word list.

370 IF WU=NW THEN 688
::;: (:: 121 F' F.: II'H
::;:90 F'R ItH "1"~Hj F'frrH :::;E:L.E::CrED."
4\)0 F·F.: an "CHECK H~C, THE loJ(JI':D l... E;" " •• "
41 ~3 l·j:= 1
420 WT$=WDS(WL(W))
430 IF L.EN(WTS)=Pl THEN 470
44(:1 l·.I=:l.J+ j
450 IF W)NW-WU THEN 680
46el CiOTO 420
4 7121 CiI]~:;UB 154~.1
480 IF XF=1 THEN 440
49(1 CiO:::;UB 1621:',1
500 IF WTt=T$ THEN 440
~51 ~j PF: I t·rr "PL.ACED Ii ~'.I()F?D:"
520 IF AF=l THEN 620

72 The C-64 Program Factory

When WU = NW, all the words in the list have been used; in that
case, the program skips to the next logical block (line 370). Otherwise, it
tries to find a matching word starting with the first word available
(W = 1 in line 410).

If the length of the chosen word WD$(W) is not the same as the path
length PL, the program skips to the next word (lines 430-460). If the
lengths are the same, the subroutine called in line 470 checks whether
WD$(W) can be plugged into the path without changing any of the let
ters that have been already filled in. The variable XF indicates whether
a conflicting character exists. If it does, the program tries the next
word (line 480). If the word fits, the subroutine called in line 4901 plugs
it into the path.

Upon return from the subroutine, line 500 checks to see whether the
replacement string WT$ is the same as the path's original contents T$.
The two are the same only under special circumstances explained later.
If WT$ is not the same as T$, the program has indeed filled a path, and
line 510 prints a message to that effect.

The Request-Approval Option

Line 520 checks whether you have selected the request-approval option.
If you have, the following lines let you view and approve the latest word
path assignment:

~:)::::U F'I? I ITT
~5':+O CU::;:U:B 23121121
~5~:i 121 F' F: I I·rr
~56(1 F'r: I t·IT ":}{::CCET'T OF: {C)I=Ii··ICEL THE j..JOf?D?"
~.5?121 I [·JPUT "<n> OF.: (C>"., I=iCJ
':i(;:(":1 IF HC:.t:":" fI" THD·I 1:;;2CI
'590 IF FiCt<>" C" THE}l 49121
60/21 loJ'T$:::::n,
IS:. ('I CiOTU 490

The subroutine called in line 540 prints the puzzle in its current
form. Lines 560-590 ask you whether you accept or want to cancel the
change. If you cancel it, lines 600 and 610 restore the old contents of the
path by setting WT$=T$ and returning to line 490, which puts WT$
into the current path. Upon returning from that subroutine, line 500
detects that a change was canceled and jumps to 440, which selects
another word to try.

Crossword Puzzle Designer - Part 2 73

Updating the Word List

After a word has been placed in a path and accepted, the following lines
remove the word from the list of words available:

620 IF W=WN-WU THEN 660
630 FOP I=W TO NW-WU-l
640 WL(I)=WL(I+l)
,;:;30 t·IE:n I
660 ~'!!...I::::~,JIJ+ 1
6?O CUTCI ?9(1

WL(I) contains the index or subscript of the word just used. To elim
inate that subscript from the list, every succeeding element in the list
WL() is moved down one: WL(I + 1) replaces WL(I), WL(I + 2) replaces
WL(I + 1), and so forth.

Line 670 causes the program to select the next path in the puzzle.

Adding a Word Not on the List

What happens when the program cannot find a word that fits a given
path? The following lines allow you to add a word not on the original
list:

6::30 F'F.: I tH
rS9~j F'R I tH "CAt·l .. ' T F I t·m FI trlf-=tTCH I t··IO ('KlF.:D."
700 IF AF=l THEN 790
.? 1121 F'R I tH "Uit·j 'r'OIJ HEI_P? THE F'tiTH I::; HI OHL I 13HTEIJ : "
72121 PF.:I~H
73[1 GO::;Ur: 2:::n30
74(1 F'PltH
,?5~3 ><:C::::0
(0) Cil):;UB 2520
77121 I F j..JT~t.:::::"" THEI'l 79121: F.:Et'1 t··IO ::::;F'F1CE:; Hl OUCHES
7:::(1 CO:3UB 16;20

If you have specified the automatic fill-in option, the program skips
to the next path without asking you for help with the current path (line
700). Otherwise, the program will ask you to fill in the path.

The subroutine called in line 730 prints the puzzle with the current
path highlighted. Line 760 calls a subroutine to get your suggested word
for the current path. Line 770 checks whether you indeed supplied a
word; WT$=" " indicates that you did not supply a word in the subrou
tine at line 2520; in that case, the program skips to the next path.

74 The C-64 Program Factory

If you did enter a replacement word, the subroutine called in line
780 plugs it into the puzzle.

The following two lines select the next direction and the next path
number:

?90 ~··IE::::T Ii
::: 121121 ~.j E::fT P

A Chance to Correct

After trying all combinations of directions D and paths P, the program
gives you a chance to perfect the puzzle by modifying any path you
choose. Here is the puzzle-perfection menu:

:;::1121 Pr.:~I~H

:::,"2(1 F'P I ~·n 1/ PUZZLE COt1PLETE"
::::]0 F'R I ~H
:::4(1 PF: I ~·n "1-PF.: I ~··IT m~: f:::EV I :3E PUZZLE"
:::~)0 F'P I ~H I! 2-PF.: I tH THE W)F':D D I F:ECTOF.:'T'"
:::60 PR I ~H ";3-::;AVE THE PUZZLE Ot·j D I ::;K"
:::?O F'P I ~··IT "4-Et-m
:::80 I t··IPUT "::;ELECT 1. ·-4") :;E
89121 IF SE(l AND SE)4 THEN 81121
900 ON SE GO TO 91121.117121.131121,153121

The menu options are to print or revise the puzzle, print the word
directory, save the puzzle on disk, or end. Line 900 jumps to the logic
corresponding to the option you select.

Printing the Puzzle

Here's the puzzle-printing logic:

91121 F't::: an
:;1~212! CiO~::;t.lI: 26~:::;U
9:313 F':~O

940 F'F.: I tn
:9::)1) (iO::;UE: :2:::13(1
960 F'F:: I tH
97'~1 CiO::tIB 271[1
:j::~~~, F'~::Ilrr "E}nEF: :3TFiI?TII··IC; r;:: C 1.,.1 HtLD !~(:H_ .. '_WII··i"
99(1 PF:Hn "OF F'HH-I TO BE CI·-ifitWED"
10012' mpUT "F.:O~'L COL 0:: EtHEr.: (I .. 121 TO 01...1 IT''', i?, C
101121 IF P(l OF:: P)M OR C(l OR C)M THEN 838
102121 II··lF·UT "E~HE];:: II I F:E:CT I Ci/·I 0: IDOl,.!!·! ' 2 "fKF.:c)::::;:::; ::0 " ; D
11338 IF D()l AND D()2 THEN 1828

Crossword Puzzle Designer-Part 2 75

1 04·1;:) F'~;F'I_':: F:., C:'
1050 IF AD(P,D»O THEN 1880
1 OCC1 F'I~: I trr "t··IU :::tICH F'HTH. TI?'r' FIGH I 1·1"
1 ~J71;) GOTD :);:::121
10::::1;) F':::::F'L. < F:, C)
1 C'l 9 121 Ut::I::::Ur: 1;:"013
111210 F'I~: I 1",iT "TI···IE: P!:iTH I::::; 1···\ I Cd· Ii, •. I CiiTTET"
1 110 F'I?Itrl"
11 ;;::;::1 CiO::::Ur ;:::::0121
11::::121 F'F: I liT
1 :L 4U ::<C:::: 1.
1150 CiCt:;;;UP ;?':::;;~:Cr

l16U (;,OTO :::::30

The subroutine called in line 920 lets you select either the display or
the printer for output. If you have a printer handy, you should get a
hard copy of the puzzle before you begin changing it. The subroutine
called in line 950 prints the current maze, and the subroutine called in
line 970 restores the display as the output device.

Lines 980-1070 let you specify a path in terms of the path's starting
row and column and its direction.

The subroutine called in line 1090 builds up a copy of the path's con
tents, and the subroutine called in line 1120 prints the puzzle on the
display with the specified path number P, direction D highlighted.

The subroutine called in line 1150 lets you correct a path's contents
or leave the path as is. Line 1160 returns to the menu.

Here's the logic to print the contents of all paths (print the word
directory);

:t 1.;;'0 UO::;UP 2C:::;er
1 U::O F'P Hfr
1190 FOR D=2 TO 1 STEP -1
1 ~2CII2I I r: D:<2 Ii··iEll F'F: I !··IT "f:II~F:CC:<::;:"
1 ;::! J U I r: D'l n·IEI·1 F'r;: I I·rr "DO~'H::"
122121 FOR F'=1 TO F'N
1 ;:::::::121 CiCt:::;IJE: 1 ?CIC1
124121 IF PL=O THEN 1260
1;;;:50 pr;: HIT F' .. " "; T~;: F:EI'i :I. :::;PI:::ICr::: H·I G!uun:::::;
1 ::26121 "·IDn F'
1 ~27121 F'F: I I',n
1 ~'2::::0 ilE::-n it
1. ;:29121 UO::::i.n:: :;::? 1 U
1 .::: 121121 13 CIT U :::: 1 (:1

The subroutine called in line 1170 selects the output device. Lines
1190-1280 print the contents of each path; the paths across are printed
first.

76 The C-64 Program Factory

The subroutine called in line 1290 restores the display as the output
device, and line 1300 returns to the menu.

The following lines store the puzzle data in a disk file. You can
reload the same disk file later on to do more work on it.

1 ::: 1 0 I [!PUT "I!HI'IE THE OIJ"[l>UT F I L.E" .; FOJ
1 ::::2121 F'P II·n "F I 1... I r·ll:) F'UZZL.E: r II " FU~r.:
1:::::'::12! UFEt·1 i .. :::, ,1, "@-J . "+FOl 1-" , ::;[I}., t·m IrE"

Line 1310 prompts you to name the output file. Line 1330 create the
file, erasing any preexisting file with that name.

These lines store the data:

1370 PRHHIL t'1
1380 FOR 1=1 TO M
1390 FOR J=1 TO M
1400 PRINT#i,MS(I,J)
1410 PRINT#I)PL(I)J)
1420 t·lE:x:T J I I
1,+40 F'RltH#l .. F't'l
1450 FOR 1=1 TO PN
1460 PRINT#I,AD(I)l)
1470 F'RINT#I .. ADCI .. 2)
1480 F'RINT#l .. RC(I .. l)
1490 PRINT#1)RC(I)2)
1500 t·lD':T I
151~.3 CLO:::E 1
1520 CiOTO f:: 1 (1

Lines 1370-1500 print the data in the same sequence that was used
by the pattern program so you can reload the puzzle from disk later on.
Line 1520 returns to the menu.

Here's the logic to end the program:

-Subroutines -------------

Much of the program logic is placed in subroutines to shorten the pro
gram and facilitate debugging. There are nine subroutines in all.

The following subroutine compares a word WT$ with a path's con
tents T$. If WT$ fits into the path without any conflicts, the subroutine
returns 0 in variable XF. If there are conflicts, it returns 1 in XF.

1 ~5 4121 ::::F:::: (1

1550 FOR QI=1 TO PL
1560 WC$=MID$(WTt,QI,l)
1570 TC$=MID$(T$,QI,l)

Crossword Puzzle Designer - Part 2 77

1580 IF TC$=SC$ OR WC$=TC$ THEN 1600
159121 ::<F=l
1600 t·jE:·::T Q 1
1610 PETUPt·j

The next subroutine replaces the contents of path number P, direc
tion D (determined by row increment IR and column increment Ie)
with WT$.

1620 F<:::::F.:C';: p) 1)
16:~!la C::::F:C<P, 2>
1640 FOR QI=l TO PL
1650 M$(P,C)=MID$(WT$,QI,l)
166121 F;:::::F.:+ I F.:
167t1 C:~:C+ IC
168121 t·jE::-n I) I
1690 F::ETUPt·j

The following subroutine builds up a string T$ containing the con
tents of a path. SF = 0 indicates that the path contains no spaces (that is,
it is already filled in).

171210 F'L:=HD(P.,D>
1 1'10 I R::::Ii I'; II, 1)
11'2121 I C::::II I (Ii, 2)
17::::!21 P::::F.:C';: F', 1,
1740 (>:F:C (F' .. 2.;.
17 5!21 Tt::;::"": !?Et'l '·II:! :::.PHC[:::: Iii C'I..J(JTT::,
17 (:~ I) :::: F ,,:: 121
1770 FOR 1=1 TO PL
1780 Tt=T$+M!fR,C)
1790 IF Mt(R,C)=SC$ THEN SF=!
U::!21121 I~: :.::!? + 1 R
1 (:: 1121 C::cC+' I C
1 ~~~2121 HE>:T I
1 ::::::::121 F:ETUi?l:,j

Here's the subroutine that loads a puzzle pattern from a disk file:

1 ~::41) F:'I;: II:·iT "::::F'EC I F'r'H'!E CHHRFICTf:~F.: U',:D ru I I··II! I ::I::Yrf.:="
1 ::::::';CI F'r;- I trr "~:I BLJ)Cf; .;: ;:::'F~:E>::::; FET'JF:I·I 1 F I·IOT !},IUI,.ltl''',
1 :::::;::;"::; DI<t":"'" r:::r:]'1 !iU :;;r'HCC::: Iii I,'!JU'!T:;,
1 ::::(;:0 I I~F'UT E:f::t
1 :;::7 !21 I'!l<:*:~"": FEl'! 110 :::rHCI:::::; I Ii c:uur::s
1 f:i::::~:1 IF 1:1<::1:.::::"" THDI 194U: F:EI'I 110 :::;F"::ICE::; III I)Ur:JTL::

78 The C-64 Program Factory

1 :::91) F'F: II·n "'::PEC I r'T' TI·lf::. IIEI .. j Ci,WIF:HCTFI? Til ;:::::E"
1 ~:~OO PF' I tH "Fe)l? BLOCI:::::, ,;: kEiUFii T<:I U:::T,,i[H'~," I :::1 ",: t·!I:~I;'

191 CI IIIPUT I'W::*-
19:20 IF III<!::::"" ·TT·IDI 1··il<l::1:I<'/:' I?EI'! liU ::::F'f~CE:: I II i)UClTE:::;:
1 SqO I tIF'UT "'.,.' I EJ..I 11 I ::;1< Ii I F:ECTCiF:'r' I. 'r',l.l./I),I ", 't'il
1 :::H:;: IF' ','1·1:1:::::" II" ·n .. !EJ·l 1. ~)'::l':::;

194::: I f~- 'r'!·!J::.:" C! II 'Ii I E:::· 1 :3TU1'
1944 GOSUB 2900 REM GET DIS~ DIRECTORY
1 :;:!-:l'::; F'f~: I I':T "[lITEF: Tl··II::: PHTTE:;:;::'I F 1 1..":: ilri!'If:: 'I

1 ::Y5C1 I i·l!>i!! F I;t
196121 OPEN 1,8,4,FI!
1 ~~?C1 Ii',IF'UHll, 1"1
197 1 IF ST=C1 THEN 1980
1 :f?::: r>p II··IT II F I L..E ~'!OT r~o:_.I!··iD": ::::1..1:::,[1 I::'!; I ill" :

CiUTO 194C:
198121 DIM MJIM .. M),PL(M .. M)
1990 FOR 1=1 TO M
2000 FOR J=1 TO M
2010 INPJTUl C$
2020 IF C$~BKt THEN C$=NK$
2030 1'1$ (I, J) ::::C~t
2040 INPUT#l, PL(I,J)
:?I:J~::;(;'I !'jE::T }, I
2070 INPUT#l PN
2080 DIM HII(PN,2),RC(PN)2),PI)(PN~
2090 FOR 1=1 TO PN
:::: 1 UU HIF':"iTH 1, mJ (I .' 1.)
::::[.I. CI H·lF'UTlll, r:ID';: T, .7::)
:=:L:~CI Hii:'UT#l, F:C< 1,1"
2130 INPUT#l, RC(I,2)
2140 !I[::T I
? 150 Cl"O:::;[1.
2::' (:u r;:E:TUI?!'!

Lines 1840-1920 let you replace the block character used in the disk
file with another of your own choice. If you are going to print the puzzle,
you may need to use this option. For example, the pattern program
(Chapter 4) uses CHR$(166) as a block character. However, many print
ers won't print a block for this character. In that case, you can tell the
program to replace the backspace character with an alternate, such as
a number sign (#) or an asterisk (*).

Line 1940 gives you the option of viewing the disk file directory
before naming the file you want to load. You may also type Q to stop the
program at this time. Lines 1945 and 1950 prompt you to specify the
name of the pattern file. If you are using the results of the Puzzle Pattern
Designer program, the file will be named XWORD.xx.xx. If you are

Crossword Puzzle Designer - Part 2 79

recovering a file previously generated with this fill-in program, specify
the corresponding name.

Line 1971 checks for disk error; in case of an error the program will
give you another chance to specify the file name or stop the program.

Here's the subroutine to read a pattern from DATA lines:

;~:]. 7'121 F::EJ1D t1
218121 DIM MS(M,M),Pl(M,M)
219121 FOR 1=1 TO M
220121 FOF:: J=1 TO M
221121 READ M$(I,J),PL(I,J)
222121 t'lE::<T J, I
2::24121 1~:EFm PI'~
2::25121 DIM AD(PN,2),F::C(PN.2)
2260 FOR 1=1 TO PN
;227'1~) f~:EFiD liD.:: I ,]. :. " HI! (1, :?), r;'c (J:, 1. :" r::c ' I ,'I
;~:2~~:(1 !'I[>::T I
229121 F.:ETUF.:t,,1

If you select this option, you must have previously stored the appro
priate data in the line range 2721 to 2899.

The data must be arranged in the following way:

1. The puzzle size M.

2. Two numbers for each puzzle cell: M$(I,J) (the contents of the
cell- a block, a letter, or a blank); and PL(I,J) (the number of the
path originating in that cell-O if no path originates there).

There are M X M puzzle cells, and the relevant data must be
arranged as:

M$(l,l), PL(l,l)
M$(1,2), PL(1,2)
M$(1,3), PL(1,3)

M$(l,M), PL(l,M)
M$(2,1), PL(2,1)

M$(M,M), PL(M,M).

3. The number of paths PN.

80 The C-64 Program Factory

4_ For each path number P=l through PN, there must be four
numbers:

AD(P,l) (the length of the path down-O=no path)
AD(P,2) (the length of the path across-O=no path)
RC(P,l) (the number of the row containing the head cell, the

first cell in the path)
RC(P,2) (the number of the column containing the head cell).

This order may seem somewhat tedious to maintain; nevertheless,
there may be times when you'll want to use the manual procedure. Fig
ure 5-5 shows a sample set of DATA lines you can use to try this option.

The presentation-quality puzzle

The corresponding puzzle recovery data

;:: :::: 121 f3 IWiT i=l :::
2810 DATA -,1,#,0,-,2
:::::::2121 DfITt::j) _, J 4, -"', 121

2838 DATA -)5,-,0,#,121
2::;:4121 Df:ITfl 5
2858 DATA 3,121,1,1
2860 DATA 2,8,1,3
2878 DATA 0,3,2,1
2880 DATA 2,121,2.2
2890 DATA 0,23,1

Solution Word Directory

1 2 3
1 A /I F
2 BIN
3 S F /I

ACROSS:
3 BIN
5 SF

DOWN:
1 ABS
2 FN
4 IF

Figure 5-5. A completed 3 X 3 puzzle generated with DATA lines
2800-2890 as listed

Crossword Puzzle Designer - Part 2 81

The next subroutine prints the puzzle in an M X M grid, adding
column and row numbers along the margins for reference.

2312!1O ()h::":F:C (F', J :'
2:::::121:::: I)C::::h:C I. F'., ::: >
;2:304 Ul:"U
;~::::: 11~~1 r::'f? I HT !I F:E:i'l 4 ~:I::'I!iE::; .L:I '.!UOTE::::
232121 FOR 01=1 TO M
2330 PRINT RIGHT$(STR$(QI),l~,
2:::::4121 I···IE::::T OJ
2J '5CI F'F: I I··IT
:=:Jt:::O r::'F: 11···IT
2370 FOR 01=1 TO M
2:::::::::121 F'F: I t·IT L .. CFTt <: :3lF:J'; I) 1:, + " " .' 'I >:. fC!::t'1 .? :::F'(:ICE::::

2390 FOR OJ=l TO M
:=:~00 IF QL=Pl OR OI()QR OR QJ()UC THCN 2470
241121 F'F: I t·n CI·iF:l'; 1. ::::1.:: F:i::i'1 FE",.'[!?~:;[: CHI
242121 PRINT Mt(QI,QJ);
;;;:,:I:::U F'F: IIfl" CHf::t I. I. ,11:::):· I?E:1"1 F:E:"/EJ~:~='::f::: ':)Fr
:~:440 OI?:::OF:·: IF:
24~:;0 (:!I::::::::)I::+ J: c:
:~:4:::;~::; CLOI.... + 1
:=:41::: CI CJ CIT 0 ~>1 ::::: CI
24('0 F'F:ItIT 1"1:t(CtI,(I};';
2,:1::::0 III:::::T (i}

:~:490 F:'F: HIT
2~)0I2! tiC:T Q I
2~51~) F:E:TUr;::!1

The following subroutine asks you to enter a word to be placed in the
current path. If the word you enter is the wrong length, it will be
rejected. If the word has conflicting characters, it will also be rejected,
except when XC = 1. This is true during the perfection phase of the pro
gram, when you can change a path's contents even if it has been com
pletely filled in.

;~:~:;Z::I2I F'F: I Ifr "EJ·1TTJ~: I::i ~'IUr.::[I (t.::t.IC'Tli'" I! r:'L" ;. I'

:~:~:;:::CI F'F: I l·./r "OF:: n:·[EJoIF'T'T' L .. J I· I i:=.: Tel:~;I< I F' "i1·IE F'rlll"I"
2:::;:::~::; ~,JTt····· II II. r::[I'1 liC) :::::F'rIC[::::; I II (IUUTC::::
2 :::>+ CJ 11"1 F' U T I .. .rri
2~Y:;CI 1 r: 1,ITI'::::" I! THf::11 F::E:TUF'!'I
2560 IF l[N(WT$)=F'L TH[N 2590
2:'::;?C1 F'F: II'IT l'I .. Jf?Clt·iU LE':I·IUTH" 'T'F:'r' f:IC,f:1 I H. II

:~:: ~:;;3 (:1 Ci () ~:; U:E: 1 ::>l CI
2600 IF XF=G OF: XC=l THEN 2630
261. [1 F'f~: I tIT "COI·WL. I CT I 1··le C:HHP!:II::TE:T~'" TFdl" I~Cif:1 I H" "

82 The C-64 Program Factory

2620 COTCI 2:::i:2~J
26:::1j UCI::tIB 11:::20
:264121 I?ETUFJi

Here are the subroutines that select the output device (lines 2650-
2700) and restore the CRT as the output device (lines 2710-27201).

26::iO D'o/::: 1
2660 11··IF'UT ":::ELECT 1. Ii I ::::;::"1._':1'[' :2-'PF: 11·ITEf.: "., D'.,.'
26'70 IF D',r::::> 1 FJI·m II'",'<::::: TI!EJi :2f.:>:::O
2680 IF II'o/=2 THEN OPEN 1,PZ CMD 1
2?1)12i F:E:H,iF:r·1
:~? 1. 0 IF' D'.,.':::::2 THEJ·I F'F: I !H!:! 1,' CLCi::::F 1
2?2(1 F:ETUI?I··!

The following subroutine loads the disk file directory and prints it
on the screen:

:29121121 F'P I I···IT "LO':::ID I IKi II I f?ECrUF:'r'" " " "
2901 o F'E: I' I 1, !:: .. ,:J" ";t, ::;;:::J}., kEHI'"
:?~)o:;-: 11 .. 1":121
2910 IF 8T=64 THEN 2980
:~:: ::<2!21 C [T!t 1. .' H:t
2922 IF lEN(At)=O THEN 2902
2930 IF A$)CHP:t(31) AND A${CHRt(128) THEN 2938
2932 IF IW=0 THEN 2910
29:::4 I l,J'O
2~)35 F'I? an
2:)::;!? COTO 2:::~ 1 U
;? 9::;: :~:: I ,.'.1 ::;:: 1.
:~::~!:=::::~ F'P I I·n nf.:
2')4CI CiCITU 2:::' J I:)
2::}CCJ CUY:;i:: 1
:~:::} :::: '5 F' F: I t·n
29:)C' r,::ETI...!F.:I···1

Line 2930 sifts out all the non text characters from the file directory
information. Line 2935 prints a carriage return after each sequence of
textual information. When viewing the directory, you will have to ignore
certain spurious information that appears on the first few lines of the
directory list. However, you'll be able to recognize when the listing of
valid file names begins. There will be several delays during the listing
process while the program sifts through all the extraneous data. Note
that this subroutine does not erase the resident program from memory
as the ordinary command LOAD "$",8 does.

Crossword Puzzle Designer - Part 2 83

DATA Lines

All the data items are placed at the end of the program listing. If you
are going to read a puzzle pattern from DATA lines, you must put the
appropriate data in lines ranging from 2721 to 2899. (See Figure 5-5 for
sample lines to use.) If you are going to load data from a disk file, you
cannot put any pattern recovery data in the program.

The word list starts at line 3000. It consists of the word count NW
followed by the words. For instance, if you have 100 words, line 3000
should be 3000 DATA 100. Here is the word list used to fill in the
puzzles:

JC!ClOUHTI=! (;~5

3010 DHTA HBS,ASC,ATN,CRLL,CLR,CONT
3020 DATA COS,DATA,DEF,DET)DIM,END,EXP
2030 DATA FN,FOR,FRE,GET.GOSUB,GOTO. IF
3040 DATR INPUT,INT,LEN,LET,LIST,LORD
3050 DATA LOG,MOD,NEW,NEXT,NOT,ON,OR
3060 DATA PEEK,POKE,POS,PRINT,READ,PEM
3070 DATA RESTORE,RESUME,RETURN.RND,RUN
3080 DATA SAVE,SGN.SIN,SQR.STEP,STOP
3090 DATA TAP,TAN,THEN,TO,TRACE,USR,VAL
3100 DATA BASIC,KEYWORD,ADDITION
2110 DATA MULTIPLICATION,BINARY
2120 DATA INTEGER,EXPONENTIATION
3140 DATA ~RECISION

-Using the Program -----------
Here's the typical sequence for using the fill-in program in conjunction
with the pattern program of Chapter 4:

1. Run the pattern program and save the pattern in a disk file
XWORD xxxx.xx. Get a printout of the puzzle.

2. Type in this chapter's fill-in program using the word list provided
or replacing it with your own.

3. Run the program. Select the disk file option, and load the data
from XWORD xxxx.xx.

4. Select the continuous fill-in option for speed or the request
approval option for your own curiosity to help you check that the
program is working properly.

5. After the program has tried to fill all the paths, print the puzzle.

84 The C-64 Program Factory

Hints

ACROSS

2 BASIC function that always returns a nonnegative number
3 BASIC statement that gets data from DATA statements
4 BASIC statement that tells the computer to ignore what follows
5 Equally at home in a math textbook and on a dessert plate
6 MeA
8 Good fuel for programmers, spelled the Italian way

11 Short for "No more kites in our inventory until Rover returns"
15 What Lady Augusta Ada Byron, the Countess of Lovelace, exclaimed upon

seeing her first stallion

Figure 5-6. A ready-to-use puzzle

Crossword Puzzle Designer-Part 2 85

18 Ancient vessel for storing soda pop
20 The sound of many cows
21 BASIC function to generate random numbers
22 BASIC function for measuring strings
23 BASIC program that retrieves programs into memory
24 Logically, the last word in a BASIC program

DOWN

1 Programmer's word for "invoke"
3 BASIC statement to allow re-reading of DATA
4 BASIC statement to return from an error-handling routine
5 Based on the maximum number of digits a computer can store for a single

number
6 The programmer applied his brakes too hard and went ---- - ----
7 BASIC function gets the code for a character
9 BASIC function is the inverse of TAN

10 BASIC function is the opposite of SIN
12 Reserved word of a computer language
13 BASIC statement at the end of a subroutine
14 BASIC statement used to set up an intrinsic function; also commonly found

in roadside signs: WATCH OUT FOR ___ DOG
16 Common command to list disk files; when spoken indicates confusion or

dumbfounded condition
17 BASIC statement to create an array
19 BASIC statement to close a loop

Solution

.L # # a N :3: # #

X # N :3: 'I # a N
:3: # (l # # N I a
N (l [l V 'I 0)f #
I .L # # 1 S #
a :3: :3: .L S V)f

s # (l (l [l I 0 I
0 :) # 0 # :) .L #
:) S # .L # :3: N D
V H S I (l 1 #
:3: I d # W
a v :3: (l # # S I:[

(; 1 0 6 8 L 9 9

a v 0
(l # #

0 0 W
M. # I
J,. # a
:3: :3: #
)f W N
[l .L
V S V
:3: #

:3: (l #

V # #

v !: (;

Figure 5-6. A ready-to-use puzzle (continued)

'1 (;1
II
01
d 6
:3: 8
a L
9
9
'I v
'I !:
V (;

:) 1
1

86 The C-64 Program Factory

6_ Make any changes necessary to complete and perfect the puzzle.

7. Print out a final copy of the puzzle solution and the word direc
tory.

8. Make up clues for the word list.

9. Assemble your clues with the earlier puzzle, and you have a com
plete puzzle. The condensed puzzle from Step 7 represents the
solution to the puzzle.

Figure 5-6 is a complete puzzle package consisting of the presenta
tion puzzle, a set of clues, and a solution.

The steps for creating a puzzle without a prepared pattern disk file
are the same, except that you must prepare the data lines as in Figure
5-5. You will also have to create a presentation puzzle.

Chapter 6

···········'I'Ile---=QjOeareaker
.............................. _ .. _-------

With the Codebreaker program, you compete against your computer in
a game known as "Bulls and Cows" or "Mastermind."

In this two-player game, one player (the codemaker) makes up a
secret code and the other player (the code breaker) tries to guess the
code. After each guess, the codemaker scores the codebreaker, who uses
this information to come up with another guess. The object of the game
is to guess the code in as few tries as possible.

Codes are made up of a sequence of four letters taken from the set:
A,B,C,D. For example, AAAA, ABCD, DCBA, and BAAB are all valid
codes. There are 256 ways of combining the characters into codes.

Each guess receives two scores:

• The number of characters positioned correctly, called "hits"

• The number of characters positioned incorrectly, called "misses."

If a guess includes a character that is not found in the code, the
character is not scored at all.

Table 6-1 gives several examples of scoring. Take a minute to study
the sample guesses and scores to be sure you understand the scoring
system.

87

88 The C-64 Program Factory

Table 6-1. Sample Scoring for Secret Code BDBA

Guess Score Comments

Hits Misses

AAAA 1 0 The A in the rightmost posi-

tion is a hit; the other A's

don't count.

ABBB 1 2 The B second from the right

is a hit; the A is a miss; one of

the other B's is a miss; the

remaining B doesn't count.

BCAB 1 2 The B in the leftmost position

is a hit; one of the other B's

and the A are misses; the C

doesn't count.

DBAB 0 4 All four characters are misses,

i.e., all are in the secret code

but none is positioned as

guessed.

BDBA 4 0 All four characters are hits.

The Codebreaker program lets you play the role of codemaker or
codebreaker. In the latter case, the program makes up secret codes and
scores your guesses. When you take the role of codemaker, the program
functions as the code breaker.

You may be surprised to find that the program is an exceptionally
good guesser. The process it uses is very systematic - no intuition or
artificial intelligence is involved. Of course, you don't have to tell your
friends that.

Two people can play this game by taking turns as codebreaker and
letting the computer score each player. The player who guesses the
secret code in the fewest tries wins the round.

Figure 6-1 shows a sample run of the program.

-Secrets of Codebreaking -------
Most players eventually come up with some kind of system for guessing.
The Codebreaker has its own method too: the program makes its first

THE CODEBPEAf(ER

ENTER A RANDOM NUMBER 335

ONE MOMENT PLEASE . . .

GUESS, KEEP SCORE, OR OUIT?
ENTER {G) {S) OR (0) G

I HAVE A SECRET 4-DIGIT CODE,
CONSISTING OF THE SYMBOLS /ABCD/.
ANY SYMBOL MAY REPEAT.
HERE ARE EXAMPLES: AAAA DeBA DACC

INPUT YOUR 4-DIGIT GUESS ABCD

HERE IS THE SCORING RECORD

(i 1 . ..1 [:::;:::;

I··H) •
:[

TF: II=tl._
CODE
flBCD

HIT < :::;',
.... , .. :;

INPUT YOUR 4-DIGIT GUESS BBCn

HERE IS THE SCORING RECORD

(;I . ..IE::;::::; TI:;: I fi!_. HIT < ::;;;,
"'·10. CODE

1 nBCD
_ .

(1 . ,
'-.'

;2 BBCD 4 121

'/UI...1 Hf:I'·/E CiUE:3:::;ED THE CODE J t··,

GUESS, KEEP SCORE, OR QUIT?
ENTER (G) (S) OR (Q) S

-:::

MAKE UP A SECRET 4-DIGIT CODE
CONSISTING OF THE SYMBOLS /ABCD/,
ANY SYMBOL MAY REPEAT.

The Code breaker 89

PRESS {RETURN) AFTER YOU HAVE WRITTEN
DOWN YOUR SECRET CODE
CAN I SCORE MYSELF (YIN) N

t1''f' C':i U I:~ ::; :::; I ::; f:lI:i 1:1 A
ENTER HITS, MISSES 1 0
*'*******************

Figure 6-1. Sample run of The Code breaker

90 The C-64 Program Factory

Wr' CiUE:3::; 18 FIBBB
ENTER HITS, MISSES 3. 0
;oj,

t1'r' CiUE::::3 1:3 ABBe
ENTER HITS. MISSES 4. 0
DID IT IN 3 TRIES'

GUESS, KEEP SCORE. OR QUIT?
ENTER (G) (S) OR (Q) Q

REFtD'T'.

Figure 6-1. Sample run of The Codebreaker (continued)

guess arbitrarily. It then gets the scores (number of hits and misses)
and records that information.

For subsequent guesses, the program starts with a potential guess or
hypothesis chosen from a list of all possible codes. The computer
assumes the hypothesis is correct and scores each of its previous guesses
against it. If all its scores are consistent with the scores actually
received, the program uses the hypothesis as its next guess. If any of the
scores are different from the scores you provided, the program discards
that hypothesis and gets another.

If you make a mistake in scoring, the program cannot test its
hypothesis properly. Eventually, it tries all possible codes without
finding one that is consistent with the previous scoring. In that case, the
program asks you to check your scores and correct the error.

-The Program ------------
The first block of the Code breaker program prints a title:

10 PRINT CHRS(147);: REM CLEAR SCREEN
;~:~) PF: II·-.IT "THE CODEBI~:EFH:::EI:;::"
::::(1 F'Fo: un
40 I t·lPUT "EtHEP !=I F:Flt·m(X1 !·j! .• It'IJ::EF::".: ::.::
50 X=RND(-ABS(~»)
6(1 F'F:un

'('0 F.: H·!
::::0 F'R II·-n "OHE tKWIEt·!T PLEfI:::)E • •
90 F.:Et1

The Code breaker 91

"

Lines 40 and 50 let you set the random number generator so the
program won't start with the same secret code each time you run it.

Storing Hits, Misses, and Codes

The next lines construct a list of all possible codes:

1 ()121 LG'-~ 1 0
110 DIM P$(256),GU$(LG),Sl(LG),S2(LG)
120])13:$::;::" fWCD I'
1~0 FOR P1=1 TO 4
140 FOR P2=1 TO 4
150 FOR P3=1 TO 4
160 FOR P4=1 TO 4
170 IX=(P1-1)*64 + (P2-l)*16 + (P3-1)*4 + P4
180 P$(IX)=MID$(DGS:Pl,l) + MID$(DG$,P2.1)

+ MIDt(DG$,P3,1) + MID$(DGt,P4, 1)
190 NEXT P4,P3,P2,Pl

LG is the maximum number of guesses you are allowed before the
computer reveals the secret code. P$() contains all possible codes.
GU$() contains the guesses that the codebreaker (you or the computer)
makes. 81() and 82() keep track of the scoring for each guess: 81()
stores hits, and 82() stores misses.

For instance, GU$(I) stores the first guess; 81(1) stores the number
of hits assigned to that guess, and 82(1) stores the number of misses.
DG$ contains the four characters that can be used in codes.

Lines 130-190 generate all possible codes in the following order:
AAAA, AAAB, AAAC, AAAD, AABA, AABB, AABC, AABD, AACA,
and so forth, up to DDDD. Those familiar with counting in different
bases will recognize that the computer is counting from 0 to 255 in base
4 using A for 0, B for 1, C for 2, and D for 3.

Printing the Menu Options

The next lines print a menu on the screen:

200 PRINT CHR$(l47);: REM CLEAR SCREEN
::: 1121 P F: nn
2;:20 F'P I t··!T "CiUE::;;:::;., !<EEF' ::X:()I?E.. OF: C!U I r·? I!
;~::::::O I !·WUT I! Et·rn=.:F.: (I:i) <:3) ()F.: (0)"; C$

92 The C-64 Program Factory

241~1 IF C$:::=" Ci" THE}·! :2:::0
2~)CI IF C:t::::"::::" THE},J ~::;':1-U

:=:';11 IF Cj:<::"C!" THEJi 210
2?C! DiD

The menu offers you three options: guess (act as the codebreaker),
score (act as the codemaker), or quit.

The Guess Option

In the next block of lines, the computer randomly selects a secret code
and presents instructions for guessing:

::: ::;;: 0 Ci H :;~ C1
290 CR=INT(RHD(1)+256) + 1
:~:OCl C:Dt:=r<~ < CF:)
310 PRIHT CHRt(147): REM CLEAR SCREEH
:~::W F'F: HIT "I !'-!I::I\IE r7i :::E:CF.:ET 4-' D I CiT T CODE.,"
~~:::::C! F'F: nrr "CCIi!::)I ::::T H·!ei OF THE :3'-r't''IJ::UL.:; .'" ,; D(;,t ,: ".' • "
J,;ICI F'F: I t·n "AI'N :3',.'!"1t:OL. ! '11=1 'I' REF'Er:IT. II

35121 F'F: I j·n "HEPE 1=lf<:E E::::nl"IF'L E:3: l=if~Flfi DCI:r:1 mKe:"

GN stores the latest guess number. (It is set at 0 before you make
your first guess.) CR is a random number from 1 to 256. CD$= P$(CR)
is the computer's secret code.

Checking Your Guesses

The following lines accept your guesses and score them until you guess
correctly or run out of chances:

360 F'F-,: I In
::::70 I HF'UT" I [··IFUT 'r'Oi.JF: 4,,]) I Ci 1 T CiUf::S:::".; CU:J
380 IF LEN(CiUS)()4 THEH 360
:::9121 m'i:::: C, 1"·1 + 1
4rJ~) l:iU:;' (Cit··I) ::::OIJt
411) fH::::::CDl
4 :21::1 C! $,=: C:i LL1;
4:30 C;O:::::U:E: 1. 21 0
44i2' ::: 1 (m··!) ::::::::: 1
4 :)(1 :::: 2 ((d'l) :::: :::; ;::
460 CiCt:;;UB 11:1. ~J
470 IF Sl(GH)(:4 THEN 508
,:j.:30 PP I HT "'r'OU HH"/E Cil...lE:::;:::ED THE COIlE

: II ") CiI··I.;" TF: I E::::;: ! "
49121 CiOTCI :::~ 1 t2t
500 IF GH(LG THEN 360
'51 t2t F'F: I tIT "1'~Ct 1"10F:E: CiU [:;:;:::; E:::;; LEF·T."

:::;;,20 F'F.: I t-.IT "t'l'T' ::;ECF.:ET CODE I::: ".: CD$
:530 Ci::nO ;,211~1

The Code breaker 93

The subroutine called in line 430 scores your guess. Upon return
from the subroutine, 81 contains the number of hits, and 82, the
number of misses. These values are saved in 81(GN) and 82(GN).

The subroutine called in line 460 prints a cumulative scoring record
starting with your first guess and ending with your most recent one.

Line 470 determines whether you have guessed the secret code yet.
When 81= 4, all characters in your guess are hits and you have guessed
the secret code.

If you haven't guessed the code correctly, line 500 determines
whether you have reached LG, the maximum number of guesses
allowed. If you haven't, the program prompts you to make your next
guess.

The Score Option

In case you choose the "score" option, the following block of lines takes
over, printing the instructions and prompting you to select a secret code:

54121 PRINT CHRS(147): REM CLEAR SCREEN
:55~) F'f;': II·-.IT "t'lfH:::[UF' FI ::::ECRET 4'~ II I ('j I T CODE"
56(1 F'F: I tH "em·!::: I ::;;T I "·113 OF THE ::;\'t'U::OL.::: ""; DCi:t.; " ... "
~5'?~~1 PF.: I r-.IT "lit·Yr' ::::'r't'1BOL t'lA'l r.::EPEAT."
5!:~121 PF:: HlT "PRE:::::::; {f:iETURI···I) I=IFTEF.: 'r'OU HFIVE I.·m I1"TE!"l"
:59121 F'~:: I t·rr "DOI.,Jt-.! \'OUF:: :3ECE:ET CODE";
600 I I···IPUT F.:T$
605 ::;:;::;t::::" t·]"
61 (I HlPUT "CfH·j I :3COF.:E 1·'l'r':;::[L .. F ('r'/t·O II .: :::::;:;$.:
62~~1 IF :;:;::;${)" 'I'" THH1 640
6J(1 I t·1PUT "H·ITEr.;: 'l"OUR :::;;E::Cr;:ET CODE ") CD:$:

Line 610 gives you the choice of scoring the computer's guesses or
letting the computer score itself. To make this latter option possible, you
must reveal your secret code to the computer (line 630). There's no cause
for alarm, however; the part of the computer that guesses never "talks"
to the part that scores.

The Computer's Initial Guess

Now the computer is ready to make its first guess:

64121 (i1"j::1
65121 Pt·j::::1
66121 PFUtH

94 The C-64 Program Factory

678 GU$(GN)=P$(PN)
(;:;::121 F'F: I I"IT "t'1',' (;iUE::;;:::; I'::: ": !::iiJ!' eli ,I ,
690 IF ::):::::i::::'" 'T'" THD',I ?r3CI
lOO I~$::::CD$
'(1 121 c!;t:::::CiUJ «(3rl::O
,?;;;~O (;;C!::::I.JI: 1 ;21.121
?30 F'P I I'rr "::::COr.::c I:::: "; ~:; I.;" 1-1 IT, ':::.1 nrlD

'? 4 ('I COlO ?GI2I
'?~::;121 I rlPUT "EJHE:F: HI r:::.' t11 :>:,[', "; :::;:1, ';;;::
'(60 IF (81)=0) AND (31(~4) AND (32)=0) AND

0: ::;;2(::4::0 I:IIID 0:: ::; :l1:=;~>::::4::' TH[J~ ?~:ICI

'?70 F'I? I iff ":::;CUP I Ill::; EPF:Of,', F'L,E:{::;;:: kl:::::II"
,?~:::~C1 CUTel C:::C1
'?:) 121 ::; 1. 0:: C) 1'[:0 I::: :::; 1
::::0[1 :::;;;20: Cd'!:O :~:::;2
810 IF 31()4 THEN 84121
:::~;:W F'I? I ITT' "II HI }: T J i,1 ", I::ill:" T!:: J E:::::; 1 "
:::.::::: (:1 Ci 0 T CI ;:: 11:,:1

GN is the guess number and is initially set to 1 for the program's
first guess. PN, the pattern number, keeps track of the number of pat
terns (codes) the program has tried already. Initially, PN=1 since the
program starts with the first pattern in the array P$(). This is the
arbitrary guess referred to previously.

Lines 700-740 perform the self-scoring procedure, while lines 750-
780 perform the manual scoring procedure. Line 760 checks for impos
sible combinations of hits and misses.

Lines 790 and 800 save the hits and misses assigned to the latest
guess. Line 810 determines whether the latest guess was incorreet (S1
<> 4). If it was incorrect, the program will attempt to guess again.

The Computer's Subsequent Guesses

The following lines allow the computer to come up with subsequent
guesses based on previous scoring:

:::~ 4 0 F' i'I::: r:' !,~ + :.
85121 IF PN)256 THEN 10121121
:::60 F'F: I !'rr ":+; ",
:::? 121 r:l. ,,,: 121
880 FOR IH=l TO (;iN
::: ~) U or:::: Cil.J:~ 0:: I 1,1 ::'
::':11210 flt:::::F'l(F'I-~::'

:3:L 121 C:O::::UI: l.;: 1 C1
928 IF 81=81(11-1) AND S2=S2~IH) THEN 950

930 I t .. I::"Cii··1
940 FI. .. "::1
9~::;121 1"·1 E >::1" I H
960 IF FL=l THEN 840
9?~) F'r.:: I tH
9::::0 CiI',~;::::C;I"l+ 1.
:;~~~'121 130TO 1:;-;:'0

The Code breaker 95

Line 840 increments the pattern number. When PN>256, all pat
terns have been tried without success, and a scoring error has been
made. In that case, line 850 jumps to an error-handling routine. If
PN < = 256, P$(PN) becomes the computer's next hypothesis.

Line 860 prints an asterisk on the screen each time the program
adopts a new hypothesis. This is to reassure you that the computer is
working during the sometimes lengthy pauses.

Lines 880-950 test the hypothesis by reviewing the previous guesses,
scoring each guess under the assumption that the hypothesis is correct,
and comparing the resulting scores with the scores actually received.

FL is a flag indicating whether the hypothesis conflicts with the
scoring in previous guesses. Whenever a conflict is found (line 920), the
program rejects the hypothesis and moves on to the next one (line 960).
If a hypothesis produces no conflicts, it is accepted and used as the next
guess (lines 980 and 990).

Scoring Errors

If the program tries all 256 possible codes without finding one consis
tent with your previous scoring, you have made a scoring error. The
following lines let you review the scoring and back up to where the
error occurred:

10fKI F'F: II··IT
1 (j 1 (I F'F.: I t·ll "':::CCF:: I HCi EPROP,,"
1 020 PF.: I tH "F'LEfl:::[PE',/ lEI.,.' ',.'OUP :::C::OF: I HCi"
1 O::::~3 F'F: I I··n "f=!t·m T\'PE I t·~ TI .. IE: ~··IUt'mEI? (W THE"
1 040 F'F.: I t-n "1: t'lF'F::OF'EF:L .. ''I'' ::::Cm;:ED CiUES:;. 11

1 £1::;!21 CiO::t!E: 111 I)
106C1 II··WUT "I t'lPF.:OPEF.:L.'-r' ::::CORE]) GUE:3::;::::: 11 .; t'1C,
1070 IF MCi(l OR MG)GN THEN 1000
1 O!:;::O (3t·~:::t'1Ci

1 (1::K1 F',"4=" 1
111210 GOTO 1::;::::0

The subroutine called in line 1050 prints the scoring record. Lines
1060 and 1070 let you specify the incorrectly scored guess. Line 1080

96 The C-64 Program Factory

resets the guess number counter GN, and line 1090 resets the current
pattern number PN. In line 1100, the program jumps back to the section
that prints the computer's guess and asks you to score it. The computer
then reasserts the guess GU$(GN) so you can score it again.

The Codebreaker program uses four subroutines in conjunction with
its main program: one to print the scoring record, another to score
guesses, a routine to modify a portion of a string, and a routine to search
for a character within a string.

Scoring Record Subroutine

The following lines let you review the entire sequence of guesses and
scores starting with the first guess:

1111Z1 r'F: I t'rr
112121 PP I I'rr "HERE I ::: THE ::::J:OF: I tiC; r::r::::CClF:D"
11 :;:1) F'F: I ",IT
114121 PF.: I tH "I3UE::;:::: ": TliB 0:: ::::) ,: "TF' I nL. " , THE:' 1.?) .'

II HIT < ~:; > " .: Tr~!B < ;::::~5 > ,; II "J'l I ::::;~::; < E::::; > "
1150 PI? I t'rr "I'K!." ,: TnI: 0:: :::::' ,: "CODI:::"
116121 FOR J=l TO GN
117121 PRINT J;TAB(S);GU$(J);TRE:O::l?),Sl(]),

1 1 ::;:121 [,-If:: ::n ..:r
119121 F;:ETUF.:I'1

Scoring Subroutine

The scoring subroutine is made up of two parts. The first block finds all
the hits (correctly placed characters):

1 ;2121121 F;:Et'1
1 '21121 :::: 1 ::::C!
122121 :;;;:~:::::(:!

123121 FOF: J=1 TO 4
1240 IF MIDS(Qt],l)()MIDt(A$,], 1) THEN 1360
125121 :::: 1 :::::;::l +- 1
1 ~'2 61~1 :Dlf :~, flt
12 (' 121 Z r:: ~~:::: " t!: F: E t1 1 ::;;r'I=!l::E I Ii eli) :}TT: ::.

1 :2913 CiO::::UB 1 :;:=:(1
1 :::::rJO FI$=::zc:t
1 ~J 1121 Zfl;$:::::(U
1 ::::2~3 ZB$:;::" ::'::"
1 ~3:::::0 ZP;::::,J

- - --------------------------------~---------

1 :::::4121 00::':;1..1]::: 1 ~:;::::U
1 ::::::~ 121 C!:t :::: ::: Cl
l:::(:lj 1··lD:TJ

The Code breaker 97

On entry to this subroutine, A$ contains the secret code and Q$ con
tains the guess. Lines 1240-1360 compare each character in A$ with the
corresponding character in Q$. Whenever a match is found, the pro
gram increments the hit counter 81. In this case, the program must blot
out the character that was a hit so it won't affect the scoring of misses
later on. Lines 1260-1300 replace the hit character in A$ with a space,
and lines 1310-1350 replace the hit character in Q$ with an X.

The second part of the scoring subroutine finds all the misses (incor
rectly placed characters):

137121 FOR J=1 TO 4
138121 ZS=MID$(Q$,J, 1)
1 :JS1CI 012!:::: 1
140121 C! ll~:I=--t$
14112! CQJ::c:Z$
1420 (30:::UB J. (:00
1,+:::121 F:::::OF
144121 IF F=O THEN 1510
14~::;C1 ::::2:::::::::2+ 1
146~3 Zfi:t:":fi$
147121 a:;$:::::" ": !:;:EI'! :1. :::;F'I::II::E II··! C!UOTE:::
1 4 ::;:: 121 ::T' ::or
14·9121 Cil)::::UJ:: 1 ~S30
1 ::,12Il1 F1::~:o;2C:t

1 ~51O !'IE>:T J
1 ~520 F.:ETUI~:I-~

Lines 1370-1510 examine each character in the guess Q$ to see if that
character can be found anywhere in the secret code A$. Remember that
the hit characters have already been blotted out from both Q$ and A$.

Lines 1400-1430 search for character Z$ inside A$. In line 1430, F is
the position at which Z$ is found; Z= 0 indicates the character was not
found. Each time a character is found, the program increments the
"miss" counter 82 and blots out from A$ the character counted as a
mISS.

After checking all four characters in Q$, line 1520 ends the subrou
tine with a return to the main program.

String Replacement Subroutine

The following subroutine replaces a portion of a string. This function is
used several times during scoring.

98 The C-64 Program Factory

15:~:I~j ZCJ" I! i!. I?LI'I !.j!:: :~;r:'r:CE'; I II IY;UT[':;
1540 IF ZP=l THEN 1560
1550 ZCt=LEFTt(ZA$,ZP-l)
1 ~)6C1 :::CJ·=:;::C$+ZJ::i:
1':570 IF LEl·I(ZI:,J'·····L .. Eli.::::E:J:,·····Zi·:'ll·:·;·:::ITliEil F:[~r: .. .tI?I:
1580 ZCt~ZCt+R!GHT$(ZAJ,LEN(ZAJ)-LEN :Pt)-ZP+l)
1 ~:):::II) F:ETUF:II

On entry to the subroutine, ZA$ contains the string to be changed;
ZB$ contains the new information to be put into ZA$; and ZP contains
the starting position for the replacement. Upon return from the subrou
tine, ZC$ contains the changed version of ZA$.

For a typical example, suppose ZA$="ABCD", ZB$=" ", and ZP=3.
Upon return from the subroutine, ZC$="AB D".

String Search Subroutine

Here is the subroutine that searches for one string inside another string:

1 CUe: OF::::n
1618 IF LEN(02$)=0 THEN RETURN
162e: IF OO+LLN(Q2tl-l)LEN(Qlt) THEN RETURN
1630 IF MIDt(Qlt,QO,LEN(Q2! ')~Q2$ THEN 1660
1 C4C1 :!(}:: !1(}I·l
16~50 CiOTO 162!;::1
1. (; 021 CI F:,,: IX1

1 (::"?(:I !?~~TUr~:t·~

On entry to the subroutine, Ql$ is the string to search through, Q2$
is the string to find, and QO is the position at which to begin the search.
On return from the subroutine, QF is the position at which Q2$ hegins
in Ql$. QF = 0 if Q2$ is not found in Ql$.

For a typical example, if Ql$="ABAB", Q2$="B", and QO=3, the
subroutine will end with QF=4.

-Testing and Using the Program ----
After entering the entire program and eliminating all typographical
errors, test the scoring subroutine as follows:

Run the program. Select the Quit option from the menu. Now type in
these lines without line numbers:

A$="BDBA"
Q$="BCAB"

G08UB 1210
PRINT 81,82

The Codebreaker 99

The computer should print the two numbers 1 and 2 (the number of
hits and misses for guess "BCAB" when the secret code is "BDBA").

If you get some other values, check all the subroutines carefully for
typographical errors.

When the program is running correctly, it should guess your secret
code within four to six tries. The number of guesses required is deter
mined by where the secret code is located in the computer's internal list
of codes P$(). With a little experimentation, you can find out which
secret codes will take the computer the most tries to find.

This chapter is adapted from "The Code Breaker," by George Stewart, appearing in the
December 1982 issue of Popular Computing magazine. Copyright 1982 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 7

Blackjack or Twenty-One is one of the most popular card games in
gambling houses. The rules are simple, and winning is not too difficult.
This chapter's program turns your computer into a Blackjack dealer so
you can sharpen your skills without risking a thing-except, perhaps, a
little pride.

The rules of Blackjack have been changed a little to keep the pro
gram from getting too long. This should be acceptable even to veteran
Blackjack players, since there are dozens of variations of the game. This
version is called Blackjack '84. .

-Object and Rules of Blackjack '84 ----
You play Blackjack '84 against the computer, which is also referred to as
the dealer. The object of the game is to acquire a hand that totals 21 or
less without going over, or "busting." The hand with the highest total
not exceeding 21 wins. Aces are worth 11 or 1 points; jacks, queens, and
kings each have a value of 10; and the other cards are worth their index
(2,3,4, and so forth). A card's suit (hearts, clubs, spades, and diamonds)
has no effect on its value.

In playing against the computer you place bets using imaginary

101

102 The C-64 Program Factory

chips. At the start of the game, you have 100 chips. To start each hand,
you must bet five chips, called the ante; this amount serves as the win
nings pool. As play progresses, you may increase the size of the win
nings pool.

The dealer and player both initially receive two cards. The player's
cards are both visible, while only one of the dealer's cards is visible. In
this way you can never tell precisely how good or bad the dealer's hand
is. Since you are not playing against other bettors, where each player's
cards are dealt face down so players cannot see each others' hands, hav
ing the values of both cards exposed doesn't matter. The dealer doesn't
care what you have.

After totaling your first two cards, you have four options: increase
your bet, receive another card (hit), stand on your present hand, or
review the current status of the game.

You can continue hitting and betting until you bust or are satisfied
with your total. If you bust, the round ends immediately, and the dealer
takes the winnings without having to show his hand or draw additional
cards. (That's one of the advantages of being dealer.)

If you stand, the dealer then takes a turn at improving his hand.
However, the procedure for doing so is predetermined. If the dealer's
total is less than 17, he must draw a card; if it is 17 or more, he must
stand. A lack of flexibility is one of the disadvantages of being dealer
and is your key to beating the computer.

After the dealer stands, the two hands are totaled and compared. If
you win with a total of 21 (Blackjack), you receive triple the amount in
the winnings pool. If you win with a total under 21, you receive double
the amount in the pool. If you lose to the dealer or bust (draw a total
over 21), the winnings pool goes to the dealer. If both hands have the
same total, the hand containing the fewest cards (the lowest card count)
wins. If the card counts are the same, the round is judged a tie; the bet
remains on the table and a new hand is dealt.

Figure 7-1 shows a sample run of Blackjack '84.

-How the Deck Is Formed -------
The computer-dealer uses a standard 52-card deck, which is ordinary in
every way except that it only exists in digital form in the computer's
memory.

BLACf:::,JACK ", 84

ENTER A RANDOM NUMBER 32858
ENTER YOUR NAME: SAM

SAM STARTS WITH 180 CHIPS.
THE t:\I'"ITEI::; ::5
PRESS RETURN TO START
HERE/S THE FIRST ROUND

SAM HAS 95 CHIPS LEFT
AFTER MAKING THE ANTE.

SHUFFLING THE CARDS ... STANDBY

DEfilE!?" :::; !"Wi!,m:
[";:"n r ::::~"":1

::::fU"I' :::; !"'!C1b,lD:
[f:lfll'J [1=14':]

Blackjack '84 103

BET, HIT, STAND, or REVIEW CARDS?
EJHEF: B,...'H ::::,/F: B
SAM HAS 95 CHIPS.
BET HOW MUCH NOW? 45

BET, HIT, STAND, OR REVIEW CARDE?
EJJTEF: B,...'H",":::::/I?: :::

DEALER'S TURN DEALER STANDS

PRESS RETURN TO REVEAL THE WINNER
::::fH'1':::: Hmm'
[::::I/jIIJ [P,r.]
SAM'S SCORE IS lQ

m:nu:J';:" ::::; ! .. -It'it,,JD:
[!<.1< J ::: ::::1':1
DEALER'S SCORE IS

Figure 7-1. Sample run of Blackjack '84

104 The C-64 Program Factory

SAM NOW HAS 150 CHIPS.

PLAY ANOTHER HAND? (YIN) Y

SAM HAS 145 CHIPS LEFT
AFTER MAKING THE ANTE.

m::r:IL_EF~"'S HAt·m:
[7?] [2>1<J

:::Ftt'1":3 HFlt·m:
0:::.] ::9ifJ

BET, HIT, STAND, OR REVIEW CARDS?
EJHER E:./!-Io''''::::/I~:: B
SAM HAS 145 CHIPS.
BET HOW MUCH NOW? 100

BET: HIT, STAND, OR REVIEW CARDS?
l::t·lTEF: B,/H,/:::,/R: :::;

DEALER'S TURN: HIT
[?tJ

HIT
[H3+]

PRESS RETURN TO REVEAL THE WINNER
:::Ht"I," :::: HAt·m:
0<+] [9tfJ
SAM~S SCORE IS 19

DEHLER .. ' :::; Hf~t·m·

[74] (2+J [7tJ [104]
DEALER'S SCORE IS 26

DEALER BUSTS. SAM WINS 210

SAM NOW HAS 255 CHIPS.

Figure 7-1. Sample run of Blackjack '84 (continued)

PLAY ANOTHER HAND? (YIN) Y

SAM HAS 250 CHIPS LEFT
AFTER MAKING THE ANTE.

t~E~J HAt·m

DEALEF.:'" S HAt·m:
[??] [6.]

:=;Fit'1"":=; HFlt·m:
[7 ...] [:3+]

Blackjack '84 105

BET, HIT, STAND, OR REVIEW CARDS?
EtHER B/H/:::;,··'F;:: H
[9+]

BET, HIT, STAND, OR REVIEW CARDS?
EtHEF.: B,/H""'::;/R: ~:
SAM HAS 250 CHIPS.
THE BET I::; 5

DEALEF.: .. ' ::; HF:t·m:
[??J [6tJ

::;f·H'1···:3 HAt·lD:
C;:'.J [:3+] [9+]

BET, HIT, STAND, OR REVIEW CARDS?
ENTER B/H/S/R: B
SAM HAS 250 CHIPS.
BET HOW MUCH NOW? 100

BET, HIT, STAND, OF.: REVIEW CARDS?
ENTER B/H/S/R: S

DEALER'S TURN: HIT
[4tJ

DEALEF~ STAt·m::;

Figure 7-1. Sample run of Blackjack '84 (continued)

106 The C-64 Program Factory

PRESS RETURN TO REVEAL THE WINNER
::::Flt'1" ::;: HI=ltm:
[7+J rJt!'J [9..,.J
SAM/S SCORE IS 19

DEfiLEF: / :::; HI:i1'm:
[(;>1-, J [6'1/1< J [,l. J [5+]

DEALER"S SCORE IS 21

SAM NO~ HAS 150 CHIPS.
PU:I'T' l=tr'WTHEP HfitjIi'-;O .:: 'r',,/,-i::' ti

Figure 7-1. Sample run of Blackjack '84 (continued)

The deck is actually a 52-element array called D(). D(52) is the top
position on the deck; D(51) is one card down, and so forth. D(l) is the
bottom position on the deck. The 52 distinct cards are represented by
the numbers 0 through 51. Zero is the ace of hearts, 1 is the 2 of hearts,
and so forth until 51, the king of spades. The computer shuffles the
cards by storing the numbers 0 through 51 at random positions in the
array D().

The computer keeps four additional lists. CP() keeps track of which
cards are being held by the player or the dealer. F$() stores the 18 card
names or indexes: ace, 2, 3, and so forth, through jack, queen, and king.
S$() stores the four suits: hearts, diamonds, clubs, and spades. V()
stores a numerical value assigned to each of the 12 indexes. For exam
ple, V(l) is 11, V(2) is 2, and V(13) is 10.

How does the computer translate the card numbers 0 to 51 into card
indexes and suits?

Let's look at indexes first. Card indexes repeat in blocks of 13. These
blocks correspond to the four suits; for example, 0, 13, 26, and :39 all
correspond to aces; 1, 14, 27, and 40 all correspond to 2's; and so forth.
The modulo 13 function expresses this correspondence nicely. Any card
number can be expressed in modulo 13, which produces a number from
o to 12. By adding 1, you get a number from 1 to 13 that corresponds to

Blackjack '84 107

the 13 possible index names. This may be more easily seen with the
following formulas:

Index number = Card number modulo 13 + 1

Index name = F$(Index number)

To determine a card's suit, we observe that card values 0-12 are
hearts, 13-25 are diamonds, 26-38 are clubs, and 39-51 are spades. Di
viding a card number by 13 and discarding the fractional portion of the
quotient gives a number from 0 to 3. Adding 1 gives a number from 1 to
4, which corresponds to the four suits. The formulas to do this are

Suit number = Integer part of card number / 13 + 1

Suit name = S$(Suit number)

-The Program --------------
The first block of the program sets the screen color scheme, prints a
title, and sets up certain values.

1 POKE 53281,1: REM SCREEN=WHITE
2 POKE 53280,1 REM BORDER=WHITE
3 NMS=CHR$(30): REM CHARACTERS=GREEN
4 PRINT NM$;: REM SET GREEN COLOR
10 F'f,,: un (HPJ I J..:1 7> ,;: F:EI"'! CLEfiF: ':;CRI:EI'I
;;::0 F'I';:: I tH "BLACKJI=iCf::: .. :::::,t"
30 F'F:: I tn
40 I t'lF'UT "EHlEF.: fl F:I=iI'HJC)I"1 t,li.Jt'IBU? ";::
50 X=RNDI-ABS(X»
ISO ::=';C:'" 1 0121
'?O l=it',I"'5
:::0 D:::;~' 1 7

NM$ is the code for green, the color that is used for most of the pro
gram's output. Lines 40 and 50 let you set the random number function
(used later in the program) so the program won't shuffle the deck the
same way every time you run it.

se is the number of chips held by the player. Initially, this is a value
of 100. AN is the automatic minimum bet, or ante, for each new hand.
DS is the point at which the dealer stands. You may change any of these
values to suit your preference.

108 The C-64 Program Factory

Storing the First Round

The next program block creates the card lists and other arrays.

90 DIM D(52),CP(52),F$(13),S$(4),CL$(4),
;,1 <: ~::,' 1. J :; " Ii <: ::2) , ',,.. ;: 1:::::' , T <::2:1, C <:2' , F'I'-U: (:::)

1 00 F'fl~t (1.) ,~:" DEI=ILEF.:"
110 FlU:':: ::::) :;:; "PI_A'r'ER "
1 ::::0 I tWUT "EIHI::f? \'OU[;: 1",iFWIE: "; F'I,ll;: :;:::;.
130 F::EI'i
140 FOR J=1 TO 13
1~:;(I F:EflD r't(])
1 (~(:I t'lE::-n .J
170 DATA A,2,3,4,5,6,7,8,9, 1(1,J,Q,K
180 FOR J=1 TO 4
1 ::KI FERD ::;f;. C:E:
195 SS(J)=CHRS(SB)
196 CL$(])=CHR'(CB)
200 t'lE::::T ..:r
210 DATA 115,28,120,144,122,28,97,144
220 FOR J=1 TO 13
2::::121 F:r:::rUI ',/(.1')
240 t'lE>,:r J
250 DATA 11,2,3.4,5,6,7.8,9,10,10,10,10

In addition to the arrays discussed previously, we have CL$(), H(,),
A(), T(), and PN$().

CL$() stores the color code for each of the four suits. H(player num
ber, card number) stores the contents of each hand. H(1,) refers to the
dealer, and H(2,) refers to the player. For instance, H(1,2) is the dealer's
second card and H(2,3) is the player's third card. The second element of
H(,) is a card number from 0 to 5l.

A(player number) stores the number of aces in each hand. T(player
number) stores the total points in each hand. PN$(player number) stores
the names of the dealer and player.

Lines 140-250 read in the card index names, suit names, color eodes,
and card values.

The following lines print an introduction to the first round:

:::0) F'F: I I'rr
2?Ct F'r.;:: HIT PI",Il: <: 2 > " ::;THVT::;; ~'H TI'I " :::;C " CH I P:::;. "
:~::::a) F'F:' I tiT "THE FltiTE I::='; "Ht'l
29121 I tlF'UT "PF.:E:3:::; F.:ETUF:t'l TO :::;HWT" ,; rJt~
::;:U() F'F.: I I'IT "HERE ':3 THE F I F::3T I?OUt'm • • ."

Blackjack '84 109

Dealing a New Hand

Each time a new hand is dealt (except after a tie), the program executes
the following block, which bets another ante:

310 IF SC)=AN THEN 350
:~:;;W F'F:ltH "'T'OU CI=tI···I'··T I"IHKE THE fil·HE."
3J0 FF:ItH "0f1t'lE O"/EF:."
J40 D·m
350 F'F:IIH
:::: 6 (r ~::; C: :~ :::; c·~ FlI"~
::::?~j F'B:=:I=tt·1
:~~DO F'F:HH F'I-·IJ(2) " 1--11:1::;;" :::;(: "(J·II F':::; LEFT"
J90 i:::'P I tH "rIFTEr::: t'lr1V I t··IG THE I=!I·HF. II

4Ij~) F'P I t·n

Line 310 checks to see whether the player has enough chips to make
the ante. If not, the game ends. Lines 360 and 370 deduct the ante from
the player's score SC and add it to the player's bet PB.

The next block starts a new hand by dealing two cards each to the
dealer and player:

410 F'F: I trr II !'~EL,j I-Iflt·m"
4;;2121 :::;F::::O
430 FOr::: CN=1 TO 52
44(1 CF' >:: CI'-·I) :::121
450 1··lE:::T Ct·1
460 T';: 1) :::()
4?(jr';::2:;':::::~)

4~::::O c:.:: 1 :;. ::::1)
491~~ C';::2:;' "::\::1
500 FOR WH~l TO :2
~51 (1 Cil):;::UB 1490
~:;20 CiCJ:3UE: 1490
~:;:m OO:3Ur: 1'(:3121
'::;,:+(1 CiCl:::;Ur 1 :::::::0
5~50 t··IDn 1.,jH

SF is a control variable that determines whether the dealer's first
card is dealt face down (SF = 0) or face up (SF = 1). During a game, the
card is always face down; when the scores are revealed, it is face up.

Lines 430-450 empty the list of cards in use. Lines 460-490 set the
hand totals and card counts equal to O. The loop from 500 to 550 deals
two cards to each player. (Throughout the program, the variable WH
indicates whose hand is being hit, displayed, scored, and so forth
WH = 1 for the dealer and WH = 2 for the player.)

110 The C-64 Program Factory

Bet, Hit, Stand, or Review

The player and dealer each have two cards now. The following block
gives the player a chance to increase the bet, get another card, stand, or
review the totals.

560 IF T(2»21 THEN 1100
57(1 ~'.'H:=:::
~:5:3~j F'P un
~:59(1 F'F.: I "H "BET., HIT) ::::Hlt··/II., or:,: I? E: './ lEt·.! CHF:D::::'"
6~.1(1 I t··IF'UT "EtHEF.: B/I-'/:~~;/I? "; 'rlU.
f':' 1121 IF 'r't·l$() " E:" THEt··1 f.)}::0
61:i B::::(1

6;2121 F'P I t··IT FlU (::::;. " Hn:~·;" :::';1:: "CH IF::;. "
6:::;:(1 I t·lPUT "BET HOI.·j t'·IUCl·1 1··II:I~·r· "; B
64(1 IF B)SC OR B(0 THEN 620
65121 :3 C:::::::;;C··-B
'::6~3 F'B::::PB+ B
6?121 CiCiTO 5::::121
6~::O IF 'r'I'··i.:t<:>" H II THD·I?::)I21
t::~:~O C;C):3UI: 1. 490
'(('Ie1 .J::~C (2::'
? 1i2I Ci(Y;UB 19,:';0
?;~121 F:'P I t-n CIU
l30 C;Ct::::UB Il:::(1
-;;'40 coro ~:;60
?~)CI IF 'r't·U()" F:" THEt-·1 C:·ll2l
l60 PPINT CHRS(147);
7?O F'F,: I HT FlU: 0: 2::''' fli=I::;" ::;;r::: "CJ·ll !>:::. "
l:::)CI P!? I tH "ll···IE I:I::::"I I::;:" PI:
190 FOF: WH=l TO 2
:::[1121 CiO::;UB 1 7::0
::: 1 (1 Cil):::UB 1 :::::::C1
::::2 ~::I 1"·1 U::T ~·H·I
:::;30 GCJTO 570
:::·:+0 :r F 'y'ltt::" ::'::" . n-!EJl ::::60
::::50 CiCiTO ':5('0

Line 560 checks the player's total, T(2). If T(2) is greater than :n, the
player is busted. Each time the player receives a new card, the pro
gram returns to this line, rechecking the total for a bust.

If the player isn't busted yet, he or she gets to choose an option: bet,
hit, review cards, or stand.

Lines 620-670 handle the betting option. Lines 690-740 handle the
hitting option. The subroutine called in line 690 draws a card from the

Blackjack '84 111

deck. The subroutine called in line 710 derives the index and suit of the
card just drawn. Line 720 names the card just drawn.

Lines 760-830 review all the relevant information about the current
round.

Dealer's Turn

When the player stands, the program gives the dealer a turn:

:360 L,.IH:::: 1
:::?I?I F'F: I IH
~~:::::CI F'F: I I·n "DEJiLE!~:" ::;; Tur;::!"·i·
890 IF T(l)(DS THEN 920
:::11)0 F'P I HT "DEfiLEF' ::;;'T' fi t·iD:3 "
91;21 CiOTO ~:)9~Z1

:~'212t F'F.: I tH "H IT"
::':<KI CiO:::;UB 14::;'0
:3',:+0 J::"C';: 1)
::"~50 CiU:::I..II: 1960
9C:0 F'F.: II·n CJi:t
::"7'121 CiU:;UI: 1 ?:Xl
:3:::121 CiOTO :3::')0

Line 890 determines whether the dealer has reached the number 17
(DS), at which he must stand. If the dealer's score is less than DS, he
must draw a card (line 930). The subroutine called in line 950 identifies
the card just drawn, and line 960 prints that information. The dealer
continues drawing cards until the total reaches or exceeds DS.

The next block displays and totals up the player's and dealer's hands:

99121 F'F:: nn
1121121121 II··WUT "PPE::::;:::; I?ETUFJ·I TO F:E:",i!::::Hl_'IT'IE

1 .. .1 I 1'ltIEF: "; Eta:
101(1 :::F:::: 1
102121 L·JH::::2
1030 PRINT CHR$(147);
1 ~340 IJO:;UB 1 ::::30
10512! PP I trr Ptl$';: ;~:) " ,,:::; ::;COF.:E I::; " TO: 2:'
106121 1.·JH::::1
1 ~)7'121 PP I tH
10:::0 OO:::UB 1 ::::::121
112190 F'P I t··IT "DE:=II_Ef;:" ::; :3COFT:: I:;:; " TO:: 1 :'

In line 1010, SF is set to 1 so that the display-hand subroutine will
show the dealer's first card (hidden until now).

112 The C-64 Program Factory

Finding the Winner

The program now compares the two hands and determines the wiinner.

1 :l (lei F'F: I I·rr
1110 IF T(2)(=21 THEN 1140
1 12121 F'F: I tH Fl-l:t (;;;::) ;" B 1 . .1::::; T::; " DEJIL.ER L"I I I'Y~ "; :::>1::
113121 GOTO :I ::;:::::0
1140 IF T(I)()T(2) THEN 1170
11 ~:)O F'F: I I···IT "::::;CClF:E:::; 1:i!:~:E THE ::::;At'u:::."
1 1 ,'::;0 CiCiTO 1:::: 10
1170 IF T(2)()21 THEN 1210
1 :I. ::::0 F'F;: I HT II [:U:::ICf::.JnCf: I ".: FlU (2) ; II L,J IIY: "; F'r:~:::::
1:1.90 sc~sc + PB+3
1. ;;~J;:Kj ClOTO 1. ::'=;::::1;:'1

1210 IF T(:I.)(=21 THEN 1250
1 ;2213 F'G: I HT "l![HLEF: BU:~;T:::;. "; F'tU (2) .:" [,J I I'E:; II· P}):'I':::::
1230 SC=SC + PB*2
1 ~;A(1 UOTO 1:::::::121
1250 IF T(2)(=T(1.) THEN 1290
12E;12I F'r.:: HIT Fll:;t c;:::. .;" L,m··I:::; "; PJ:::+:~::

127121 SC=SC + F'B*2
1 :2~~:0 (,OTO 1. 3::::(:1
1.:290 F'r,: an II DE: FI L.E F.: I.,m·v:; "; r:'[:
1 :::: 1211?1 ciI:n U 1 :-:: :::: Ci

If the player is busted, the player loses the hand, regardless of the
dealer's score (lines 1110 and 1120). If the player's and dealer's scores
are the same, the program skips to a tie-resolution routine (lines 1150
and 1160). If the player has 21. he wins triple the amount bet (lines 1180
and 1190) -even if the dealer has busted.

If the player's score is higher than the dealer's, the player wins dou
ble the amount bet (lines 1260 and 1270).

Finally, if the dealer's score is higher than the player's, the player
loses the amount bet (line 1290).

Resolving Ties

Here's the routine to resolve ties:

1310 IF C(2)=C(1) THEH 1360
1320 HC=-1*(C(1)C(2» + -2*(C(2»C(1»
13::::121 T (1··le:o :::(1
1 ::}1-0 F'F: I In II L..UI.·.IE::::;T cm;::I! COUI···IT I.,.! I I',,!:::;, II

J. :'::50 CilJfiJ 1.17()
1 JCO F'R II···IT II ::::;TmmUfT • "
1 ::::? (1 Ci CI T U 4::: 121

Blackjack '84 113

This routine awards the win to the holder (player or dealer) of the
fewest cards. Line 1320 calculates HC, the number of the player with
the most cards. That player's total, T(HC), is set equal to 0, and the
totals are compared again, forcing player HC to lose (lines 1330-1350).

If both players have the same card count, the bet remains the same
and a new hand is dealt.

Starting a New Round

The last block of the main program displays the player's winnings and
an offer to play again.

13:3[:1 F'P I t·n
1390 F'fU tH Fl·I:$: (2) .;" t·~m'.1 HA:::: ".: '3C.; "CH I F'::;. "
14~3[j H~PUT II PLFI"r' fH·lOTHEf::: HFltW";:' Cr',·ll> "; '-r'l'-H
141(1 IF '/1'·1:*::: II t·~ II THEI'-·I Elm
1421Z:I I F 'T't'~$<> "'T' " THE}·I 1. ::::::;:0
1430 FOR WH=l TO 2
1440 FOR)=1 TO C(WH)
1450 CP(H(WH,])+1)=0
1460 t'~Ei-::T .J., ~.IH
1470 PRINT CHRS(147);
14!:::121 (30TO J 1 (1

If the player agrees to play again, lines 1430-1460 remove each play
er's cards, one at a time, from the cards-in-use list. The program then
jumps back to the new-hand routine.

Subroutines

The following lines draw a card from the deck and add it to player
WH's hand:

1~90 IF CR)0 THEN 1670
1 ::'00 F'F:lt·n
1 ~) 1 0 F:Et"1
1 ~5:;;:O F'F: II·n ":::::I .. ·IUF·F·L I i···le:; THE: CflF.:D::::""" ::;Ti=lrlDB'T'"
1::5:;:0 F::Hl
1 :::'4(j F'R I t··IT
1550 CA=52-C(1)-C(2)
1560 FOR)=1 TO CA
1~)7(1 D(J)""· l
1 ~)::::(1 t·1E:>::TJ
1590 FOR)=1 TO 52
1600 IF CP(J)=-l THEN 1640
1610 CD=INT(RND(l)*CA)+l

114 The C-64 Program Factory

1620 IF D~CD)()-l THEN 1610
16::;:!121 II < CD) ::;;'],,·1
16,:+121 l·jC<T }
1650 PRINT CHR$(147);
1 (:;6(1 C!?::'CA
1 C'?CI (:",.'::::D (CR)
1 C::;:(I CT' (C'.,.'·+ 1 .,::: 1
1 (~':11:1 U?::::: C i;:: 1
1700 C(WH)=C(WH)+l
1710 H(WH,C(WH»=CV
1 72(1 F:[~TUF:I··I

Line 1490 determines whether any cards remain in the deck. When
CR= 0, all the cards have been dealt. In this case, the entire deck must
be shuffled (all but the cards that are currently in use).

Lines 1550-1660 shuffle the cards that are available. CA is the
number of cards available.

Lines 1670-1710 pull a card from the top of the deck and put it into
the hand of player WH (lines 1700 and 1710).

Line 1720 returns to the main program.
The subroutine to total a player's hand is as follows:

1 ?:~:f1 TT:::::O
1740 1=1(!".IH>::::1j
1?50 FOR J=1 TO C(WH)
1760 C}/::::H (L,H·i,. ..:r)

1770 VL=CV-INT(CV!13)*13+1
1?80 IF VL=1 THEN AfWH)=A(WH)+l
:1.790 TT:::::"rT+'.,.'(',/I....:,
1 C:Cli2t t·lC<T .J
HHCJ F'RHn
1820 IF TT(=21 OR A(WH){=O THEN 1860
1 :::;::::121 TT::TT""lC1
184121 A(WH)=A(WH)-l
1 !35C1 (JOTO 1 f:;::::21;3
1 (::60 T (I.,H'I) ::::rT

1 :::? '.:,1 r.:: E T U FJ·I

Line 1730 sets a temporary subtotal TT to O. Line 1740 sets the ace
counter A(WH) to O. The ace counter is needed because aces can be
evaluated as either 11 or 1.

Lines 1750-1800 add up the values of all the cards in the hand of
player WHo Line 1770 calculates the card value using CV modulo 13.

When the program reaches line 1820, it has a temporary total. If the
total indicates a bust, it may still be possible to save the hand by eval
uating the aces as 1's instead of as l1's. Line 1850 performs this evalua-

Blackjack '84 115

tion. If there are any aces in such a hand, the program subtracts 10,
giving the ace its optional value of 1 instead of the previously assigned
value of 11.

The following lines constitute the display-hand subroutine:

1 ~::::::::U F'I;'II'Tr F'I'U: < I,JH' .; " / :::; HfIIHI·"
19nn FOR J=1 TO C<WH)
191 :21 C:{I:~::J[: 1. :3'60
19~::O F'F: I ~·n (1-.11:.;
1. 9 :;:: C; I'·! r.;:;:.:: T J
1940 F'P I I··n
1. :)5121 i:;::E:TUF:I·1

The variable J counts from 1 to the number of cards in the hand; for
each card, the subroutine called in line 1910 gets the card's index and
suit name. Line 1920 displays this information,

The last subroutine in the program derives a card's index and suit
based on its card number,

1 96 la C ,,",I ::;:: t···! < !",ll"'I., .J)

197 121 VL=CV-INT(CV!13)*13+1
1980 SU=INT<CV!13)+1.
1990 IF WH()l OR J()l OR SF()O THEN 2020
:? (;11:) 121 Cl·lj' c:: " [';'~;'] "

:~:u 1. 121 COTel 20::::C!
20212! ctH::::::" ["+Cl.:r < ':::;!...I::' +F:r: < ',/L > +::;>~.: ::'::;1..1) +1··lt1$+"] "
2U:3121 F:ETU;:'::~··I

Line 1970 calculates CV modulo 13 to get the card's value. Line 1980
uses integer division to get the card's suit,

When the dealer's first card is being shown (WH = 1, J = 1), the vari
able SF in line 1990 determines whether the value will be revealed or
masked with a string of question marks.

CN$ in line 2020 is a string composed of the card's index and its suit.
CL$(SU) sets the suit color, and NM$ restores the "normal" green color.
Line 2030 ends the subroutine with CN$ containing the card identifi
cation.

-Testing the Program ----------
After typing in the program and removing all obvious typographical
errors, test the card-shuffling subroutine by adding these lines:

;~:c 1 l,JH::=2
282 FOR QQ=1 TO 52

116 The C-64 Program Factory

;;;::::::::: (30::;IJI:: 149121
284 PRINT CV+l; TAB(10);
285 J=I: GOSUB 1970: PRINT CNS
2:::6 CF' (C',/+ 1 :0::::(1
;~::::7 C (l,lH)::::(1
::: ::::: ::: 1"·1 [:::1 C! I)
:::::::9 :::;TOF'

Run the program. It should print the contents of a shuffled deck,
showing card numbers and the corresponding indexes and suits. The

Table 7-1. Typical Contents of a Shuffled Deck

Card Card

No.
Index and Suit

No.
Index and Suit

11 QUEEN OF HEARTS 13 ACE OF CLUBS
28 3 OF DIAMONDS 36 JACK OF DIAMONDS
15 3 OF CLUBS 50 QUEEN OF SPADES

38 KING OF DIAMONDS 49 JACK OF SPADES
8 9 OF HEARTS 14 2 OF CLUBS
7 8 OF HEARTS 42 4 OF SPADES
4 5 OF HEARTS 46 8 OF SPADES

40 2 OF SPADES 39 ACE OF SPADES
48 10 OF SPADES 44 6 OF SPADES
29 4 OF DIAMONDS 43 5 OF SPADES
22 10 OF CLUBS 2 3 OF HEARTS
37 QUEEN OF DIAMONDS 1 2 OF HEARTS
31 6 OF DIAMONDS 45 7 OF SPADES
0 ACE OF HEARTS 35 10 OF DIAMONDS

16 4 OF CLUBS 26 ACE OF DIAMONDS
30 5 OF DIAMONDS 47 9 OF SPADES
17 5 OF CLUBS 23 JACK OF CLUBS
25 KING OF CLUBS 51 KING OF SPADES
27 2 OF DIAMONDS 18 6 OF CLUBS
33 8 OF DIAMONDS 34 9 OF DIAMONDS
41 3 OF SPADES 21 9 OF CLUBS
24 QUEEN OF CLUBS 32 7 OF DIAMONDS
10 JACK OF HEARTS 6 7 OF HEARTS
3 4 OF HEARTS 5 6 OF HEARTS
9 10 OF HEARTS 19 7 OF CLUBS

20 8 OF CLUBS 12 KING OF HEARTS

Blackjack '84 117

results should be similar to the listing in Table 7-1, but the card
sequence will be different.

Card number 0 corresponds to the ace of hearts, 1 to the 2 of hearts,
and so forth, up to card 51, which corresponds to the king of spades.

If your listing contains all 52 cards and the pairings correspond to
those in Table 7-1, you can be reasonably sure the program is playing
with a full deck.

Delete lines 281-289 and start enjoying Blackjack '84!

Chapter 8

···················Biltiard=P-p·actice
-~-----

The Billiard Practice program turns your C-64's display into an
electronic billiard table. This "table" is primarily for practicing and
experimenting with different kinds of angle shots, but it can also be
used in simplified games of billiards.

The table has no pockets and only two balls - a cue ball and an
object ball. At the beginning of each round, the balls are spotted (posi
tioned) at randomly chosen locations. You can shoot the cue ball at the
object ball directly or bounce it off one or more of the rails.

You specify the direction of your shot with degrees. Imagine the
degrees on the face of a clock: 0 degrees is at 3 o'clock; 90 degrees at 6
o'clock; 180 degrees at 9 o'clock; 270 degrees at 12 o'clock, and 360
degrees at 3 o'clock. Figure 8-1 shows several cuing directions and the
corresponding angles.

The Billiard Practice program lets you check the angle you have
selected before you actually shoot the ball. It extends a line from the
ball through the angle you specify. The line stops at the rail or the object
ball, whichever comes first.

When you shoot the ball, it travels in a straight line until it hits the
object ball or strikes a rail. After striking a rail, the ball bounces in a

119

120 The C-64 Program Factory

Figure 8-1. Degrees are used to specify cuing directions

different direction. That direction is determined by the law of physics
which states that the angle of deflection equals the angle of inflection
(see Figure 8-2).

Unlike real billiards, the electronic version is not affected by friction
or gravity. The cue ball rolls at a constant speed until it hits the object
ball, which stops it immediately.

It is possible to shoot the cue ball in such a direction that it will
never hit the object ball. To prevent the ball from rolling indefinitely,
you can set the maximum number of bounces allowed; the ball will

Billiard Practice 121

Figure 8-2. The angle of deflection (B) always equals the angle of
inflection (A)

always stop after the specified number. You can also follow the course of
the ball over an unlimited number of bounces. To do this, set 0 as the
maximum number of bounces. In that case, the cue ball will stop only if
it hits the object ball. Figure 8-3 shows the program in use.

-The Program --------------
The first block sets up the constants used to control the screen graphics:

10 c::;$:~:CHP$< 147)
1 ;;~ HO:t:::CHF.:::!:: r:: 19;'
1;:;:; p'·.'$=CHfU':: 1::::>: t·H'1:t:'''CHF.::t.:: 146:;'
18 RC$=CHR$(17): LC=25: GOSUB 1590: VM$=SO$
20 F.:C$=CHF.:$(29): LC=40: GOSUB 1590: HM$=SO$
22 SM=256tPEEK(648)
:24 0'1:=55296
26 EO=1: REM WHITE EORDEF.:
28 FE=5: REM GREEN FELT
30 OC=7: REM YELLOW OBJECT BALL
32 CC=2: REM RED CUE BALL
34 DT=87: REM PATH INDICATOR
36 BL=81: REM BALL

122 The C-64 Program Factory

CUE ANGLE = 45 ~X BOUMCES
i-DRAW ANGLE 2-CHAM6E AM6LE
3-SHOOT 4-MEW BALL
E~T[R YOUR CHOICE 1-5 ?

3

S-I1ORE

STOPPED AfTER 3 BOUNCES.
PRESS RETURN TO CONTINUE?

•

Figure 8-3. Sample screens of Billiard Practice

Billiard Practice 123

38 BO$=CHRS 5): REM PRINT BORDER COLOR
40 FES=CHRS 30): REM PRINT FELT COLOR
42 PC$=CHRS 32)· LC=40 GOSUB 1590 BLS=SO$

The subroutine called in lines 18, 20, and 42 returns a string of char
acters. As a result, VM$ contains 25 "cursor-down" codes, HM$ con
tains 40 cursor-right codes, and 80$ contains 40 blank spaces. HM$
and VM$ are used to control the cursor position, and 80$ is used to
erase a line on the display.

8M is the start of the C-64 screen memory; storing a code 0-255 in
screen memory puts a character on the screen. CM is the start of the
C 64 color memory; storing a color code 0 -15 in color memory changes
the color of the character at the corresponding location on the screen.

Setting Up the Tone Generators

The next block sets up the C-64's tone generators:

44 FOR R=54272 TO 54296: POKE P,O· NEXT R
46 D I t'1 '.,.'':: ::::)
48 FOR K=l TO 7: V(K)=54271+K: NEXT K

52 READ FL,FH,PL,PH,WF,AD,SR,VL
54 DATA 1,2,3,4,5,6,7,8
56 POKE V(FL),100: POKE V(FH),30
58 POKE V(PL),0: POKE V(PH), 18
60 POKE V(WF),65
(::;2 F'Of::E ',,I';: AD) .' 121
64 POKE 1,/';: ::;;1:;: ::. .' 121
66 POKE V(VL),15

The program uses tone generator 1, which is controlled by memory
locations 54272 to 54278 and 54296. The array V() stores these memory
addresses. The variables listed in line 52 store the eight indexes used to
specify which address is needed. For instance, V(WF), where WF=5, is
the address of the waveform control register. To set the waveform to a
value WT, use POKE V(WF),WT, which is equivalent to POKE 54276,
WT.

For a fuller explanation of the use of C-64 tone generators, refer to
Chapter 7 of Your Commodore 64 by John Heilborn and Ran Talbot
(Osborne/McGraw-Hill, 1983).

Storing Math Constants and the Table Layout

The program next sets up several numeric constants and other control
variables.

124 The C-64 Program Factory

oS ::::: F' I:c;4,+:AT t·~ < 1 >
70 l::F;=;;:::+:F' I ,":36121
(2 READ W0 .. WZ .. L0 .. l:
74 DATA 0 .. 39 .. 5 .. 24
?6 L><:=L.Z--I_O+ 1
? :::: i . .J:;·:;" ~{::: -·l.,J (1 +- 1
:::0 BIt::: 1.
10U C»[:D+'1:1:I
110 E:C::::.f.{Dt.2
1. ;:2U ::::::::"~'J::<··2+f:C:
130 l·r"r"=:U-:;·-;:::+,E:C
i :::iO 1·'jJ:::::::J

PI is the ratio of a circle's circumference to its diameter, CF is the
conversion factor for degrees to radians; it is needed because Commo
dore BASIC's trigonometric functions require that angles be measured
in radians rather than degrees,

WO, WZ, LO, and LZ are the outlines of the table. BD is the ball's
diameter measured in pixels (picture elements). CX is the diameter
squared-a useful value later on when figuring whether the cue ball
has hit the object ball. BC is the minimum distance required between
the ball and the rails when the balls are initially spotted. XX and YY
define the size of the area in which the balls may be spotted at the
beginning of a round. MB in line 150 is the maximum number of
bounces before the ball stops; the program lets you change this value
before shooting the ball.

Figure 8-4 gives a pictorial representation of many of these variables.

Initializing the Screen

The next lines set the screen color, clear a five-line text window, and
prompt the user to enter a random number:

160 POKE 5:3280 .. BO
17121 POKE 53281 .. FE
180 PRINT C8$;BO$
190 GOSUB 1460 REM CLEAR TEXT WINDOW
200 I i~F'UT "UlTEF.: fi I;': fit·m CWI t·jUt'1BEF.: ".; F::>::
210 RX=RND(-ABS(RX»)

The following block of lines randomly selects locations for the cue
ball and object ball:

290 X=INT(RND(l +'XX)+BC
;:::00 ;rl::::: I I·rr;: F:t·m (1 t.1/lrl) + Be
:310 Xl=INT(RND()t.XX)+BC
320 Yl=INT(RND()*YY)+E:C

Billiard Practice 125

Figure 8-4. Billiard table mapped onto the X -Y coordinate system of a
high-resolution graphics screen

330 IF (XI-X)t(XI-X)+(YI-Y)*(YI-Y)(BC+BC THEN 290
:;::·;+0 ~iCi::;4~5

The coordinate pairs X,Y and Xl,Yl specify the location of the cue
ball and object ball respectively. Lines 290-320 ensure that the initial
position will always be at least two ball diameters away from every rail.
Look back to line 110, ball clearance (Be) = 2 x ball diameter (BD). Line
330 ensures that balls are separated from each other by at least two ball
diameters. Line 340 sets the initial cuing angle to 45 degrees.

Spotting the Balls

The following lines put the cue and object balls on the table at their
random locations X,Y and Xl,Yl:

;1·50 PI~: I HT C:::.::/::
460 HC=CC: OE:~:BL

465
4;:'0
47':;
~·;:::;O
4;:::~::;

490

'''''1_.1 I
'::"T-T

GO:3UI: 1 ::i50
HC>::::OC:· CiJ::"~BL

The cue ball is red and the object ball is yellow.

126 The C-64 Program Factory

Menus

Using the text window at the top of the display, the program presents
you with a menu of options.

~51 (1 (JO::;UE: 146~j
~515 CF'=O
5:20 CiCl::::;UE: 144C1
~53C1 F'R I I·n i?'· ... $:.; "CUE l=ttKiU'~" ".' :::1::,. "

l'iIT:: r:CIUtjeE::; .". "; In:
535 CP=lGOSUB 1440
54121 F'I~:~ Hn p' :$:;" l-···DF:I=ii .. j FIi!Cii_E ,·-CHI:lr·I(JE nt!i=iLE"
545 CP=2:GClSUB 1440
'Y50 F'P I t·IT r~:',"'$; ";:-:::;HOUT 411[1 .. 1 BHLL

':;+IOFE "
555 CP=3:GOSUB 1440
'5ell F'R I In F.:',/:t;" EIHEI~: 'r'C1Uk CliU I ::E 1··,'::; "
:56:::: F' F: nn p "/ $;
~56r5 I tlF'UT 1'10
570 IF MO(1 OP MO)5 THEN 510
580 ON MO GClTU 700 .. 800 .. 860,210 .. 590
'5::)(1 (;1):::;U1:: 146121
600 F'F: I tn F.:',,.'$:;" 6··C!,··ii=iI··ICiE !'1FI:: DOUr·li::::: cuu!rr

'? ~ .. ·!)U 1 T!I

1::;::~5 J ijr:'UT 1'11:1
630 IF MU(6 OF: MO)7 THEN 510
640 IF MO=7 THEN 670

Line 530 prints the current angle setting and maximum bounce
limit.

Because of the limited space available for text, the menu is divided
into two pages. The first page gives you five options: I-DRAW ANGLE,
2-CHANGE ANGLE, 3-SHOOT, 4-NEW BALL POSITION, and
5-MORE (the next menu page). The second menu page gives you two
additional options: 6-CHANGE THE MAXIMUM BOUNCE COUNT
and 7-QUIT.

The following block of lines performs options 6 and 7:

650 CP=2GOSUB 1440
6~52 F'F: I t··IT 1::::',/;1;:.;
(::5'=.:; IIJF'UT "!!Gi ~'1n;.: BOUt·iCE CUUrlT ': U;;!IO L I i'l I I' ", ilL:l
I::'::;::: l .. m;.:.',.,'rli ' t'lrJ >
1~:CI21 UUTO '::; 1 0
6?O PF.:lt-rT C::::;$..
1:::::(1 ElW

Billiard Practice 127

Checking the Cuing Angle

If you select option 1 (DRAW ANGLE), the following lines draw a dotted
path extending from the cue ball at angle AG:

70121 Ci():;:;Ur:: .l ;2:::0
? :I.!:) F' ::: ::~ ::.:: +- .[! >:

730 HC=CC OB=DT
?4() C;O:::;UJ:: 1 :~:,~()
'('50 F'>:;:::;:<+-D>:;
7eO F"r':::'r'+D'T'
??U "IC::::FE
7 '::: I2i C:i 0:::; U B 1 :::::'l 121
790 CiCiTU ~51 121

The subroutine called in line 700 calculates DX and DY, the X and Y
increments that will produce a line from the cue ball at the specified
angle AG. Figure 8-5 illustrates these values.

The coordinate pair PX,PY identifies the first point of the path to be
drawn. Line 730 sets the color and shape of the dots. The subroutine
called in line 740 draws a dotted line starting at PX,PY and ending at
the object ball or a rail, whichever it hits first.

Lines 750-780 repeat the process exactly, except that now the back
ground color number is used, which erases the dotted line. Line 790
jumps back to the menu.

- TAN (A)

Figure 8-5. Calculating the X and Y increments that produce a
desired direction

128 The C-64 Program Factory

Changing the Cuing Angle

The following lines let you change the cuing angle:

800 CP=4GOSUB 1440
::::02 F'F.: I t··IT Fd,/$.:
:::1214 II··WUT "[tHEI? 1··1E~~ r1tKiU:'=~ (1" 1·-:3~:::;~~" ~:I ": f=IUY
806 AG=INT(VAL(AG$)*10+.5)!10
810 IF AGC.l OR AG)359.9 THEN 800
820 IF AG!90C)INT(AG!90) THEN 510
830 AG=AG+. 1· R[M TO AVOID VERTICAL AND HORIZONTAL

Lines 820-830 make sure that you do not select angles that are per
pendicular to any of the rails, that is, angles of 90, 180, 270, or 360
degrees. Eliminating these angles from consideration simplifies the
program's logic. Such angles aren't useful in bank shots anyway, since
the ball always bounces straight back, recrossing its original location. If
you are attempting a direct shot at the object ball and you need one of
these angles, simply add 0.001 to the desired angle. The program will
accept almost perpendicular angles, and the effect will usually be
identical to that of truly perpendicular angles.

If the angle you enter is within limits, line 820 jumps back to the
menu.

Shooting the Ball

The next block of lines shoots the ball:

::::60 r·H::::::1j
::::?O CilJ::::UE: 123kl
:::::::~3 HC:=CC· OB=E:l
:::90 F'::<"::-::
900 F"/::::'r'
91 (1 FU!<.E "/, i::ID .i, :::

912 FOKE V(FH),255
914 POKE V(VL), 15
:::: i:::: i,n:::.: 12:::4

91::: C"iO::::UB 1660

922 Z'rl;:p"r'
:~;1::24 CiO:::UE: 1 ~55C1
9::;:0 0>:>: I trr;: ;=0>::)
:~;i':+0 IXr';::ItH;:P'r')
950 IF QX(O OR QX)=WX OR QY(0 OR QY)=lX THEN 104(1
960 HC=FE: GOSUE: 1550

Billiard Practice 129

971:: C;;O:::;UI: 1 ~::;50
980 IF (Xl-QX)*(Xl-QX)+(YI-QY)*(Yl-QY)(=CX

THEl~ 1.170
9~~~~1 E:::<=F';'::
1. 000 r:'T':::::P'T'
1 '~11 121 F' ;:':::::: F' ::.:: -I- IJ::.::
102121 F"r'::::F"T'+ D'T'
1 ~}::::l2I CiOTO 9:30

NB keeps track of the number of bounces that have occurred. The
subroutine called in line 870 calculates the X and Y increments, as
shown in Figure 8-5.

Lines 910-918 produce a click to simulate the striking of the ball
with the invisible cue stick. Lines 920-924 redraw the cue ball at its
current location.

Line 950 determines whether the ball has hit one of the rails. If it
has, the program jumps to another block of lines presented in the next
section. If the ball has not hit a rail, lines 960 and 970 move the ball to
its next location. Line 960 erases the old ball, and line 970 draws a new
one in the new location.

To leave a trail of the cue ball's path on the screen, delete line 960.
This will produce some interesting patterns on the screen, especially
when the maximum bounce count is unlimited.

Line 980 determines whether the cue ball has hit the object ball.
When the distance between the two balls is less than or equal to the ball
diameter, the balls have hit. In that case, the program jumps to a block
of lines shown next.

Hitting a Rail

When the ball hits a rail, the following lines take over:

1040 POKE V(AD),3
1042 POKE V(FH),8
1044 POKE V(VL),6
1 (146 I.H:::~~~~5

104:::;: CiO::::;UB 1. 6(J)
1 (150 t'lB==t'H::+ 1
1060 IF NB()MB THEN 1120
1 (17121 C;Ci!:;UB 14150
10i::(1 F·r.:: I I··n F.: ',/;t .: ":::;TOF'F'ED 1=IFTE:F.: ".: i···Il;::.;" I:ClUI·K:E:::;."
1090 CiOTO 1200

130 The C-64 Program Factory

11:~:U I r:. CI:;:::O m,: CI;:':;:::.c::I,.I:: THD'~ II::::"· D::
1130 IF QY(O OR QY)=LX THEN DY~'DY
11,::1·(:: F'::.::"r:::: -I II::
11 ~;U F"'r':":I:'['+D'-r'
116121 (iOTO ::no
Lines 1040-1048 make a short beep to simulate the bounce. Line 1050

increments the bounce counter, and line 1060 checks to see whether the
number of bounces equals the maximum bounce limit. If it does, the
ball stops and lines 1070-1090 print a message in the text window.

If the bounce count is not equal to the maximum limit, lines 1120 and
1130 make the necessary changes in DX and DY to effect the change in
direction. If the ball has hit the left or right rail (QX < 0 or QX >=
WX), the sign of DX is reversed. If the ball has hit the top or bottom
rail (QY < 0 or QY >= LX), the sign of DY is reversed.

Lines 1140 and 1150 compute the next position PX,PY in the path of
the cue ball. Line 1160 returns to a previous line in the shooting routine.

When the cue ball hits the object ball, the following lines produce a
click and print a message in the text window:

1170 POKE V(AD),6
1172 POKE V(FH),240
1174 POKE V(VL),10
11 ?I:) ~H::~ 1 :2~"
1. I?::: i3U::;UI: 11::(:U
:[1 :::U CiU::;Ur:: 1':i·I:'O
1190 F'r<: I iiT F:"i:¥.' /I c:mrrnCT l:!r:'TEi? "; riI:," BOUI·ICC:.:."
1200 CP=lGOSUB 1440
1 2121 ~i F' F: lilT F:',/l;
121 U I HF'UT "PF:C::;:::: F::ETUr:::11 TO COIIT I i·!UI:: ': [J·lt
1215 HC=FE:GOSUB 155U
1 ::::20 CiOTO '~::5~:!

Subroutines

The first subroutine calculates DX and DY, as illustrated in Figure 8-5.
The subroutine is used by the draw-angle routine and the shoot-ball
routine.

1 :2 ::::: 121 i:i :::: n (}+: c: F
1240 TA=AES(TAH(A
1250 SX=SGH(COS(A tBD
1260 SY~SGN(SIN(n tBD
1270 IF Tn(1 THEH 310
1 :::::::::121 D'T':~::::;'r'

1290 D:";::::: 1 ,'Tll¥':::::

l:::OC! F::E:'TU!:;>~I
1 :::: t 121 II»:::::>::
1 ::::::::121 D'r'= TI=I!p:::;'-r'
1:::3U I?ETUI?~I

Billiard Practice 131

Line 1230 converts the angle from degrees to radians. Line 1240
saves the tangent of the angle; this value tells us the ratio that must
obtain between DX and DY in order to produce the desired angle.

Lines 1280 and 1290 calculate DX and DY for angles closer to the
vertical direction than to the horizontal; lines 1310 and 1320 calculate
DX and DY for angles closer to the horizontal direction than to the
vertical.

The next block of lines is used by the draw-angle routine to extend a
line from the cue ball to a rail or to the object ball:

134U I)::'::': I ~rr,;: P::<:;'
1::: ~=; 0 (I 'l'~; I ~'I T >:: Foil' :;,
1360 IF (lX(0 OF:: I)X)=WX OR QY(U OF::

(lY)=LX THEN RETURN
1370 IF (Xl-(lX)*(Xl-I)X)+(Yl-QY)t(Yl-QY:;'(=CX

THEJ·I F:EfUf':i·1

1::::;::;;; C)O::::;UE: 1 :?5C1
1::: 9 121 F' :::: :;:-c F' ::.:: + II ;:::
l·:~·I)CI F"T':::::P'/+D'r'
141 ~:1 (iUTe! 1 :>10

On entry to this subroutine, QX,QY identifies the next point in the
path. Before the point is plotted on the screen, line 1360 checks for
impending collisions with each of the rails, and line 1370 checks for
impending collisions with the object ball. In the case of an impending
collision, the subroutine returns control to the main program.

On the other hand, if the ball is not about to be stopped by a rail or
another ball, lines 1380-1400 plot the next point and calculate new coor
dinates PX,PY.

The next lines contain two subroutines that facilitate use of the text
window:

14::=:9 ;:iOTO 14=:~:!
1440 PRINT HOt;LEFT$(VM$,CP);
1 ,+5:21 I?ETUF.:I··~
1460 F'F:: UH HOt:;
1470 FOR LL=1 TO 5
14:::0 PF.: I tH F:',,.'J.;
1490 F'P II·rr BL.:l:.:

132 The C-64 Program Factory

1 :::)(:11) r·iE::<T Ll_
1 r51. U F'I=: II·n HO$.;
1,540 F.:ETUPt·i

The subroutine at 1440-1450 positions the cursor to the first column
of line number CPo The subroutine at 1460-1540 erases the five-line text
window at the top of the screen.

The following subroutine plots an object on the screen and sets its
color:

1550 RL=ZX+W0+40*(ZY+L0)
1560 POKE CM+RL,HC
1570 POKE SM+RL,OB
1 ~):::(J F.:ETUm·i

HC is the color code for the object, and OB is the shape code. RL is
the offset needed to indicate the intended position of the object within
screen memory or color memory.

Here's the subroutine (referred to at the beginning of the program
listing) that creates a repeating string of characters:

159~) ::'::0$::::""
1600 FOR K=l TO LC
161 (1 ::;::O$:::::::;O$+F.:C:t
1620 t·iD::T 1<
16JD F::ETUF,Ji

Upon return from this subroutine, SO$ contains a string of charac
ter RC$. The number LC is its length.

Finally, we have a subroutine to produce a sound:

1660 POKE V(WF),0
1670 POKE V(WF),WT
16:::'21 RETUPti

Line 1660 turns the sound generator off, and line 1670 starts it again
using the waveform indicated by WT. The program uses a white-noise
waveform for the clicks and a pure tone for the bounces. The program
does not have to turn off the sound because it has previously set up a
high decay rate; the sound tapers off by itself.

-Testing and Using the Program ----
When testing the program, omit line 960. That way, the cue baH will
leave a trail showing where it's been.

When you run the program, your screen should resemble those

Billiard Practice 133

shown in Figure 8-3. Try all of the menu options to verify that each of
them works. Set the maximum bounce limit (MB) in line 250 to 10 or
more, and angle the cue ball so that it won't immediately hit the object
ball.

Remember that the program will not accept angles that are exact
multiples of 90 degrees. It will add 0.1 to any such angles you enter. For
most shots, the results will be the same as if you used the exact angle.

You may notice that the ball occasionally bounces away from a rail
before it actually comes in contact with the rail. This happens when the
next available position on a path doesn't allow enough room for the ball
to be drawn without biting into the rail. Don't worry; the ball's subse
quent positions are calculated correctly (even though the ball couldn't
be drawn at the point of contact with the rail).

Another peculiarity sometimes arises when the cue ball hits the
object ball. The cue ball may actually merge with the object ball on the
screen. Of course, real billiard balls don't behave this way-they bounce
away from each other. However, the program's simulation of billiards
ends at the instant of contact, and the merging of the balls is just an
interesting aftereffect. Ambitious readers may wish to enhance the
program by allowing the balls to bounce apart realistically. Without
gravity and friction to slow them, the collisions could go on forever.

-Suggested Games -------------

One of the simplest games for one or two players is Call the Shot. Each
player starts with new ball positions (menu option 4). Before shooting,
the player specifies which rails the ball will bounce off of en route to the
object ball. The player may check the angle using option 1 before shoot
ing the ball. The object of the game is to bounce off the most rails before
hitting the ball; but remember, the player must specify the number of
bounces that will be used.

Another game is Circles. The goal is to encircle the object ball in the
path of the cue ball without hitting it. This game requires that you
delete line 960 and set the maximum number of bounces to four or five.

Finally, players may take turns at One-upmanship. Players start at
level 0, meaning that they must hit the ball without using any bounces.
Each player starts a turn with new ball positions. The players try to hit
the object ball using the number of bounces corresponding to each level.
If a player succeeds in hitting the object ball, he advances to the next

134 The C-64 Program Factory

level (the number of bounces required is increased by 1) and continues
with new ball positions. A player continues shooting until he misses, at
which time the turn passes to the other player.

By prior agreement, players mayor may not be allowed to use option
1 to check their angles before shooting.

Chapter 9
•••••••••••••• m ••••• ___ •

i1c!f'ac~{)e=·· -.......... _ _-_. ~-==-=~-.-.... .

Although the rules and strategies of tic-tac-toe are simple, setting up
your computer to play well is no mean task. In this chapter, your com
puter plays the game to a win or a draw every time. Compared to a
good human player, the tic-tac-toe program's only weakness is its occa
sional passivity: settling for a draw when a victory is possible.

In addition to making your computer a good tic-tac-toe player, this
program exemplifies three techniques that are just as applicable to
more complex games like checkers and chess:

• Prepared opening moves.

• Lookahead -checking the consequences of a proposed move by
looking ahead to subsequent moves.

• Heuristics -selecting moves based on principles of good strategy.

-Playing Tic-Tac-Toe ----------
Tic-tac-toe is played on a 3 X 3 grid. Two players take turns marking
cells on the grid. The starting player (player X) marks with an X and
the second player (player 0) marks with an O.

The first player to place three marks (X's or O's) in a row, column, or

135

136 The C-64 Program Factory

() x () () x x

x () () () x x () ()

x () x x x () x o x

Figure 9-1. A win for player X, a win for player 0, and a tie

diagonal wins. If all the cells are filled without either player winning,
the game is a tie. (See Figure 9-1.) Before each subsequent game, play
ers reverse their playing order, so that the second player becomes the
starting player, and vice versa.

The simplest strategy for the game involves three steps:

1. If you can win on your next turn, do so.

2. Otherwise, if your opponent can win on his next turn, block him.

3. If neither condition is true, take any cell you can.

o *
o x

x x *

Figure 9-2. Player ° is trapped; player X has two winning moves,
indicated by asterisks

Tic-Tac-Toe 137

x *
x

* 0

Figure 9-3. Player 0 can foil a trap by taking either safe cell, indicated
by an asterisk.

It doesn't take a human player long to come up with some improve
ments or refinements for Step 3. Good strategy is based on the idea of
the trap.

A trap is a mark that gives you two winning opportunities for your
next turn. (See Figure 9-2.) Your opponent will only be able to block one
trap so you'll still have one winning opportunity.

Conversely, to avoid defeat at tic-tac-toe, you can prevent your oppo
nent from setting such a trap. (See Figure 9-3.)

Preventing traps is not always easy. In some cases, you must look two
turns ahead to spot a potential trap. Furthermore, player O's very first
mark can set up a possible loss. Figure 9-4 shows the seven configura
tions that player 0 must avoid on his first turn.

-How the Program Plays Tic-Tac-Toe
In the following discussion the computer plays both roles - player X
and player O. Occasionally, it may sound as if the computer is playing
against itself, but keep in mind that in an actual game you play one role
and the computer plays the other.

Both players' first marks are treated as special cases. The program
plays these turns "by the book" without looking ahead or using heuristic
methods.

Before making subsequent marks for either player, the program

138 The C-64 Program Factory

applies five tests. The first two correspond to steps 1 and 2 of the stra
tegy outlined previously.

1. The program looks for winning marks-marks that will complete
a path. If it finds any, the program randomly chooses between
them.

X center,
o any side:

x

o

X corner,
o near side:

x

o

X corner,
o far corner:

x

o

X side,
o far corner:

x

X corner,
o near corner:

x

o

o

X side,
o near side:

o

x

X corner,
o far side:

x

o

Figure 9-4. The seven losing positions for player 0

Tic-Tac-Toe 139

2. If the program cannot find any winning marks, it checks whether
it can block the opponent from winning on his upcoming turn
(looking one turn ahead). The program blocks the first such path
it finds.

3. If the program still hasn't marked a cell, it begins looking for
cells that will trap the opponent on his upcoming turn. The pro
gram chooses the first such cell it finds.

4. If none of these checks has resulted in a cell selection, the pro
gram looks for cells that will prevent the opponent from setting a
trap on his next turn. This involves looking ahead two turns.

5. The program applies a heuristic method to choose among the cells
that have passed test 4. It chooses the cell that has the fewest
paths that don't include any of its own marks. This makes sense
the fewer paths there are without a player's mark, the fewer
chances the opponent has to win the game. However, the principle
does not always produce the most aggresive strategy, hence the
program's occasional willingness to settle for a draw when a win
is possible.

-The Program -------------

The first block resets the random number generator.

:l 0 I f··iF·UT "EtHEF: FI F:AtmOI'! t'HJr1BEf,: ",::":
20 X=RND(-ABS(X»

Array Definitions

The next block creates several arrays and reads in certain data that is
stored in the program:

30 DIM TC(3,3),OK(9,3),T(3,3),P(2~,DI(4,2),
PL(S,3),NW(2),P$(2)

40 FOF: P= 1 TO ::::
~:5~1 FOR C>.:: J. TO :~:
60 1~:EI:m Tn~, C)
lU t·1E>-::T C, F:
90 DATA 2:3,2,3,J.,3,2,3,2
100 FOR DN=l TO 4
110 FOR DV=l TO 2
120 READ DI(DN,DV)

140 The C-64 Program Factory

1 :'::: ~:1 til::: :.: T JJ 1,/ .' J]I-.j
1 ~5(3 Nnl=i 0.' 1, 1, 1, 1.' !21., 1",,1
160 FOR PN=1 TO 8
170 FOR PA=1 TO 3
180 READ PL(PN,PA)
1 ~h3 tJE::-::r F'A.' F'l-j
:210 Ii H T A 1, 1 , 1· i , J. , .?' .l , 1. .' :::., :[, 2, ::::, 1, :::, .:1-., 1., =: .' J .'

::::,1,1,3, 1.' 1.
220 RV$=CHR$(18) NM$=CHR$(146)
:2:~:0 oCt(1 >::~" "
240 OCt(2)=CHRt(118): .REM CROSS
250 OC$(3)=CHRt(119): REM CIRCLE
:21:;0 F':;' (1) :::" !·"II.Jt'lAt·j"
:270 P:t: (:2) :::" CClt1PUTEF.:"
:~:::::(1 :::C (1) ::=(1
290 ::::C (:2) :::::(1

:::OC1 T13=0
~: 1 U F::E:t1
:320 F:EJol
330 pel)=1 REM 1ST PLAYER IS HUMAN
340 P(2)=2 REM 2ND PLAYER IS COMPUTER
.:::~K1 C:iI}rC!:::::~lc!

Refer to Figure 9-5 while reading the following explanations of the pro
gram's arrays.

Array TC(row,column) stores an image of the tic-tac-toe board. For
row R, column C, TC(R,C)=O indicates an empty cell; TC(R,C)=l indi
cates an X; and TC(R,C)=2 indicates an O. OK (turn number, attribute)
keeps track of all the prospective cells that prevent the opponent from
setting a trap on the next turn. T(row,column) stores the type of each
grid position -center, corner, or side. This information comes in handy
when the computer is analyzing the board position before making its
first mark as player O.

P(player type) keeps track of who the players are: player tllpe=l
indicates a human, and player type=2 indicates the computer. Depend
ing on how P(l) and P(2) are set, the program may play the computer
against itself, the computer against a human, or it may allow two
humans to play with no active involvement from the computer at all.

DI(direction number, vector) stores the direction increments of the
four possible directions of a path. This same array was also used pre
viously by the Hidden Words and Crossword Puzzle programs. PL(path
number, attribute) stores information about the eight paths on a tic-tac
toe grid.

NW(path number) identifies paths that contain a specified number of
one player's marks. P$(player type) stores the name assigned to each

Tic-Tac-Toe 141

Path 1: Path 2:

* * * *

*

*

Path 3: Path 4:

* *

* *
* *

Path 5: Path 6:

* *

* *

* *

Path 7: Path 8:

* * *

* * *

Figure 9-5. How several arrays and variables are used (continued on
next page)

142 The C-64 Program Factory

The array T(.) stores the type Ilumber of {""ch n·ll: ({"Ilter=2, side=3

T(.)= 2 3 2
3 1 3
232

In the following situation, for player X, NW(l)=l since path 1 contains 2 X's and
no O's

X X T(.)= 0 1 1
2 1 2

0 X 0 0 2 1

0 X

Figure 9-5. How several arrays and variables are used (continued)

player type. "HUMAN" is used for player type 1. but you may ehange
line 270 to use your own name instead. OC$(character type) stores the
characters used when the grid is displayed: "X", "0", and "-". SC(player
type) keeps track of how many wins each player has. The variable TG
counts the number of tie games.

Lines 40-90 read the various cell types into T(,): 1 =center,
2=corner, 3=side. Lines 100-150 read into DI(,) the direction vectors
used to generate the eight possible tic-tac-toe paths. For path P, DI(P,l)
is the row increment and DI(P,2) is the column increment.

Lines 160-210 read into PL(,) the attributes of the eight possible
paths. For path P, PL(P,1) is the starting row, PL(P,2) is the starting
column, and PL(P,3) is the direction.

Lines 330 and 340 determine who the players are. P(N)=1 means
that player N is a human player, and P(N)=2 means that player N is the
computer.

Starting a New Game

The next block of lines starts a new game:

:::CI2I P:::::::F' < J. ::-
~:?O F' <:: 1) ::::F'';: 2::'
:~: :::: 121 P (2) ":r :::
:::90 PRINT CHRt(147)
,:j.12I0 F'PII···IT "TIC-Tf:IC-'-TClE"
41 (1 t'1t·j==.(1
4:~,:1 FOF: F:::= 1 TO ::;:
.:+=:(1 FOP C=~ 1. TU :::
4··:+0 rc < I~: .. C > :::(1
45~1 t·H':::::<T C .. F:

Tic-Tac-Toe 143

Lines 360-380 make the two players swap marks before each game.
(Line 350 causes the program to skip these lines for the first game.) MN
is the move number, initially o. A complete move consists of two marks
-one X and one O. Lines 420-450 empty the grid to get ready for a new
game.

Getting the Next X or 0

Now the program is ready to get a mark:

4 ?~j r'lf·i~.:I·'11··I+ 1
,:1-:::: .:) P ti ,.= J.
4:),) p::.:::(1

~30(1 CiCl::::UB ~::12!2U
~510 F'PHH
~:5;20 F'F: Hn P:*:';: F' (FlO) .:" TO t'H7iRI< FII··l ".: 0($:;:: F't··I+ 1)
53(1 ON P(PN) GaSUB 82(1 .. 100121

First the move counter is incremented and the player number is set
to 1 (lines 470 and 480). The subroutine called in line 500 prints the
tic-tac-toe grid in its present state, and line 510 indicates whose turn it
is to move.

Depending on the type of the current player (human or computer),
line 530 calls one of two subroutines: one (at line 820) marks a cell from
the keyboard; the other (at line 1000) marks a cell using program logic.

Evaluating the Results

After the human or computer makes a selection, the program evaluates
its effect.

144 The C-64 Program Factory

54(1 :::V=:;:
~:; 5 (1 ::fi =:F' t·j
~56(1 CO:::;UI: :2240
~:S?O PI? I rTf
580 IF N)O THEN 640
590 IF MN=6 THEN 730
600 IF MN~5 THEN 690
610 IF PN=2 THEN 470
1;2(1 Fti:=F'I'-H-l
6::::0 OCiTO 49121
:::,:t~21 F'::;:t·j~,j':: ti:>
65(1 GO::;UI: :202~')
6f;;~~1 F'F.~ ItH P$ < P >: F'rD > ;" ~j nt::; 1 "
670 SC(P(PN»=SC(P>:PN»+l
i::::;:O C;UTO 7::::0
69E1 F"='~1
700 CiCY:;UI: 2U2()
710 PI?ltH "TIE: 13Ht'1["
?;20 TO'=TCi+ 1

The subroutine called in line 560 searches all eight paths to see if the
current player P(PN) has won. N>O indicates a win; in that case, lines
640-680 announce the winner's name.

If N=O, the computer checks the turn number MN to see whether
the game has ended in some other manner. There are only 9 cells in the
grid, and each move puts two marks (an X and an 0) on the grid. Ordi
narily, MN can never exceed 5, since the X of move number 5 always
takes the ninth cell (2+2+2+2+ 1 =9 cells). However, if a player cancels
the game, MN is set equal to 6. Line 590 detects that condition and
jumps to the continuation menu.

When MN=5, the computer deduces a tie (there is no winner and all
cells are marked) and announces that fact (line 600 and 690-720).

Othbwise, MN is less than 5, so the program gives the next player
a turn.

The End of a Game

At the end of a game, the following lines print a continuation menu:

'?:;: 121 F' F,~ I r-H
;;'::3':; Et·j:::: 1
;;',:+0 I HF'UT "EJrrEF:~ 1. FUF: I·II:JJ Cin!'1t::., .:::. TO C!U IT", Ei·t
750 IF EN=l THEN 36121
760 IF EN(>2 THEN 7:;:0
'?70 F'F.: I tH

'?::::~1 F'P I ~H F'$ 1);" ~'WI'~ "; ~:::;C < 1 >
no F'F: I !·n F'J 2::'.;" ~'WI'~ "; ~:;c <::;:' >
::::iJCI F'f;: I HT "T E CiHt'1C::; "; TCi
::;: 10 Et·jD

Tie-Tae-Toe 145

If you elect to quit playing, lines 780-800 print the totals.
The two major subroutines "human's turn" and "computer's turn"

are presented next.

Human's Turn

Here's the routine for the human's turn:

:320 F'F.: I rn "l,JH I CH CELL~' EJ·ITER I?Ul'~· COL.: .. .it'1I·1 .. "
::::~::U I t·wur "< 121 .. 0 "" t·H'::I ... 1 Cr::WIE, "; F:t'l, Ct'1
84121 IF I?M=C1 AND CM=C1 THEN 95121
85121 IF I?M(l OR RM)3 OR CM(l OR CM)3 THEN 898
860 IF TC(RM .. CM)=0 THEN 98U
:::?U F'r;:: I ,·n "1··KlT li\,'H 1 LHI:LE"
::;:::;:0 CiUTU 9121(1
:::9~~1 F'fd trr "Hj"/ALI D t'10 ',/E"
90(1 F'I~:: H·IT "11 .. 11:: I:CII:::!F.:D L.OOI<:::; U I<:r::: TH E; : "
:) 1 CI 1=':;:'121
9:2121 Ci(Y~;UB ::?U2U
:~<::O F'P I I·n "t·IOl,.1 TF:'/ fief! I t··I"
94121 COTO :::213
95121 F'I~: I t·n I' Cfir·IC[LLED Tf-WIT Cinl"1E:,"
96(,1 1"11,,-;1:;;
:}?121 FETUF:r·1
980 TC(RM,CM)=PN
::;191(.1 FE TUF:I··j

Lines 820 and 830 prompt the player to specify a cell in terms of its row
and column number. Rows are numbered from top to bottom, columns
from left to right.

If the player enters 0,0 for the row and column, the current game is
canceled. Any other invalid row-column pair causes the program to
reprint the current grid (lines 900-940) and repeat the prompt.

Given a valid row-column pair, line 860 determines whether that cell
is empty: TC(RM,CM)=O. If the cell is empty, line 980 marks it. Line
990 returns to the main program.

Computer's Turn

The program uses prepared "book" moves only for the first X and the
first O. The first X is a random selection, and the first 0 is determined

146 The C-64 Program Factory

by the location of the first X. For subsequent moves, the computer uses
its lookahead logic.

Playing by the Book
er's first X or 0:

Here are the lines that handle the comput-

1000 IF MN)l THEN 1210
1010 IF PN()l THEN 1060
1 U:;::O CiCi::::UB :2620
1030 r;::t'I;::F.:T
1 U·:1-0 Ct'j:CT
1050 UOTO 19~~O
1 !jf;O T:=T < F:r'L ct'D
1 ;21'7 0 CiO:::;UE: 2620
In~n ON T GOTO 1090,1110,1140
1U90 IF T(RT,CT)=3 THEN 1070
1100 GOTU 1 J. :::~)
1 :t 1 ~~j F:T=:2
11:20 CT=:2
11:::0 C,OTO 11 ::::Ij
1140 ON T(RT,CT) GOTO 1180,1150,1170
1150 IF ABS(RT-RM)=2 OR ABS(CT-CM)=2 THEN 1070
:l16121 GOTO 11 :::0
1170 IF ABS(RT-RM)=l OF: ABS(CT-CM)=l THEN 1070
11 :::::0 l?t'1=I::::T
11 ~K1 ct'l:=CT
1 ;'20121 (30TO 1990

If move number MN is greater than 1, line 1000 causes the program
to jump to the lookaround program logic described in the next section.
If MN=l and PN=l, then it's time to make the first mark, an X. The
subroutine called in line 1020 selects a cell at random, and lines 1030
and 1040 save the cell's address in variables RM and CM. Line 1050
jumps to the end of the computer's-turn subroutine.

Lines 1060-1200 take over when the computer is player 0 and the
move number is 1. The general purpose of these lines is for player 0 to
find a cell that avoids all seven losing game positions shown in Figure
9-4.

In line 1060, the variables RM and CM contain the row and column
of the most recent move; in other words, they tell the program what cell
contains an X. Line 1060 determines what type of cell-center, eorner,
or side-the X is in. Based on this information, the computer randomly
selects an empty cell and checks to see whether that cell is safe given
the location of the X. If the cell is not safe, the program randomly
selects another cell and repeats the safety check.

Tic-Tac-Toe 147

The subroutine called in line 1070 randomly selects an empty cell
T(RT,CT) as a candidate for player O's next move. Line 1080 jumps to
the appropriate safety check depending on the type of cell that is
already marked with an X.

Lines 1090-1100 handle the case of an X in the center; player 0 must
not select a side cell (T=3).

Lines 1110-1130 handle the case of an X in the corner; player 0 must
select the center cell.

Lines 1140-1170 handle the case of an X in the side; player 0 must
not select a near side or the far corner.

Once the program has located a safe cell, lines 1180 and 1190 store its
row and column address, and line 1200 jumps to the end of the
computer's-turn subroutine.

Looking Ahead In the case of second and subsequent turns, the
program no longer plays using prepared moves. It first checks to see
whether it can win with one mark:

1210 IF MN)2 THEN 1240
1220 IF PN=2 THEN 1340
1 :;DO UOTO 15~j(1
1 :240 ::;A::::;F'I'-~
125121 :::L::::2
1 :260 CiO:=;;UB 2240
1270 IF N=0 THEN 1340
1280 M=INT(RND(l).N)+l
1 :29(1 P'-=W,j';: t'1)
13~~1I21 CiO:=;;UB 24::3121
1310 F.:t1::::1~:U
1 :;::20 ct1:::CO
1 :;::::::(1 CiOTO 199121

Lines 1210-1230 check to see whether the computer is making its
second mark. If it is, there's no point in looking for a winning cell yet (it
takes three marks to fill a path). In the case of move 2 for player X, line
1230 jumps to a trap-prevention routine. In the case of move 2 for player
0, line 1220 jumps to a trap-setting routine described later on.

Looking for a Winning Cell For move number MN equal to or
greater than 3, lines 1240-1330 look for a winning cell. The subroutine
called in line 1260 counts the number of unblocked paths containing at
least two of player PN's marks. If N=O, there are none, so the program
skips to the defensive move routine.

148 The C-64 Program Factory

If N is greater than 0, then the array NW(,) lists the paths that
contain winning cells. Line 1280 randomly selects one of these paths,
and the subroutine called in line 1300 finds the row and column of the
open cell in that path.

Now that the program has located a winning cell, lines 1310 and
1320 store its row and column address, and line 1330 jumps to the end of
the computer's-turn subroutine.

Preventing Imminent Defeat If the program can find no win
ning cell, it next checks to see whether it must prevent its opponent
from winning on his next turn:

130:1·0 :::H:<::--F'I"i
13512i :::L":2
1360 !:iC::::UJ:: ,;:24121
1370 IF N=0 THEN 1430
13:::(1 F'::IH'J f: ti'
1 :::::::Ij:) Cdj::::UE: 24:::::Ci
1 ':+00 F:t'1:::::f:::O
141 (I CI'1:::::CU
1,:120 CiCiTCI 1990

Line 1340 sets SA equal to the number of the opposing player (when
PN is 1, ST is set to 3-1 = 2; when PN is 2, ST is set to 3-2=1). The
subroutine called in line 1360 counts the number of unblocked paths
containing at least two of the opposing player's marks. If N=O, there are
none, so the program skips to the trap-setting routine.

If N is not 0, there is at least one way for the opposing player to win
on his next move. Lines 1380 and 1390 find the opponent's winning cell,
and lines 1400 and 1410 store its row and column address so the comput
er can claim it. Line 1420 jumps to the end of the computer's-turn
subroutine.

Setting a Trap If the computer still hasn't made a selection for
player number PN, the computer now looks for a move that will trap the
opponent and guarantee a win on the computer's next turn.

1438 IF MN=2 THEN 150121
1440 :;::rl:=F't··1
1 ':VSO CiIY::UJ:: ,;>::OJ
1460 IF N()2 THEN 1580
14 ("U i~:t'1::::F:',.:

1 ,:~:::(1 C::1'1::~C',/

14:;lij UUTCI 1 :~19U

Tic-Tac-Toe 149

If the computer is making its second mark (MN=2), there is no way
it can set a trap yet, so line 1430 causes the program to skip to the next
logical block.

Otherwise, the program looks for a move that will create a trap. The
subroutine called in line 1450 tests every empty cell to see which, if any,
produces a trap. If N=2, the program has found such a cell, and lines
1470 and 1480 store the cell's row and column number so the computer
can claim it. Line 1490 jumps to the end of the computer's-turn
subroutine.

Foiling a Trap If no opportunities to set a trap are found, the
program checks every empty cell to see which one will prevent the
opponent from setting a trap on his next turn. This is the farthest look
ahead the program takes:

1 ':500 F'::::U
151U FOR PM=1 TO 3
1520 FOR CM=l TO 3
1538 IF TC(RM,CM)()0 THEN 1760
1540 TC(RM,CM)=PN
1 ~.5 5 U ::; Fi ::::Ttl
1 ~5:::0 :::::L"~2
J ~:,?O C1C!:::;UB 224121
1580 IF N=0 THEN 1680
1590 IF MN=2 AND PN=l THEN 1720
1600 F':::::I"H,j (1)
161. 0 CiU::;UB 2,:1:::C
1 ::; ;2121 :::; /::/ :~: J .. -F'!:
1638 TC(RO,CO)=SA
16·:1C! ::::1..><:
1 :::~~5Ct CCt:::;UD 2:>::J.0
1660 TC(RO,CO)=8
i (;'('U (::;OTO 1? 1 0
1680 IF MN=2 AND PN=l THEN 1750
1 C ~:II2! :::: 1=1 :::: J .. p tj
1?UO CO:::UD 21::60
1710 IF N=2 THEN 1750
1 ?2~~1 F::7.F+l
17:;:0 01< >:: F, 1) ::::Pt'l
:l ?'::i-Ij JI< (I::· 2) :::Ct'l
1?50 TC>::RM,CM)=U
171::0 ilC:r 0,1" F:t'1

The variable F counts the number of safe cells (those that will pre
vent the opponent from setting a trap). In lines 1510-1700, the computer

150 The C-64 Program Factory

tries marking each empty cell in the grid (one at a time). For each cell
marked, the program looks to see whether its opponent can set a trap.

In lines 1730 and 1740, for each safe cell F that is found, OK(F,1)
stores its row and OK(F,2) stores its column location.

Heuristic Method After the program has located all the safe
cells, it applies the heuristic method to choose among them:

1 7::::lIj :::Ai::~:-F'ri

1800 FOR CN=1 TO F
1810 TC(OK(CN,1),OK(CN,2»)=PN
1 :::::20 G 0:;::: U I:: ;;::;2·:1-0
1830 TC(OK(CN,1),OK(CN,2)=0
1 :340 UI< (Cli '::.' :;::;t'1
1 ~Y::iO ilE::-n CH
1860 IF F()l THEN 1890
1 ::F CI Cli:::: 1
1:::::::::0 UUTO 1970
1. :~:90 ::;t'l:::: 1
1900 FOR IT=2 TO F
1 ~) 2 (I :::; t'l:::: IT
1 ::nu 11E::1 IT
1940 CN=INT(RND(l)*F)+i
1950 IF OK(CN,3)=UK(SM,3) THEN 1970
1960 CiOTO 1940
197'0 f<:t1=Of<':: Cl~, 1.)
1 S~::::O Ct'1::::0f< «(:1 i, 2)

The program marks each safe cell (line 1810) and counts how many
unblocked paths M remain. For each safe cell F, OK(F,3) stores the
number of unblocked paths that remain when that cell is marked.

Lines 1900-1930 compare the results of these trial marks to see
which marks result in the fewest number (8M) of unblocked paths.
Lines 1940-1960 randomly pick safe cells until finding one that leaves
8M unblocked paths.

Now that the program has located a suitable cell, lines 1970 and 1980
store its row and column address so the computer can claim it.

Ending the Computer's Turn The following lines end the
computer's-turn subroutine.

199~ TC(RM,CM)=PN
20(1121 PF: II·n "CCIr'1F'UTEI?HII<E':; !?UI.,1 Ii, :;:1·'1;" CCIL..Ut'1I1 "; [t'l
:2011) F.:ETUF.J~

Tic-Tac-Toe 151

Line 1990 marks the player's number PN in grid location
TC(RM,CM). Line 2000 announces the move, and the line 2010 returns
to the main program.

Printing Subroutine

Here's the subroutine to print the tic-tac-toe board:

21212121 c!F.:::::F'L':: P.' 1)
20:::121 OC::;;PL (F' .. ;2:'
;~:~j40 Dt-i::::F'I_ 0: F' .. :~::'
2U~)O I)L':.121
2060 F'F.: II'fr
21217121 FOF.: 01::::1 TO 3
208121 PRINT SPC(3);
289121 FOR OJ=1 TO 3
2100 IF OL=3 OR OI()OR OR 0J()OC THEN 2188
;:211121 F'F: HH F:',/;t;: FEI'! FE '",'Er:::::::;;::: F'R HIT II'IU
212121 PF.:INT OC$(TC(01 .. 0J)+I) ..
213121 PRINT NM;t;· REM NORMAL PRINTING
~14U OR=0F.:+DI(DN .. 1)
2158 OC=OC+DI(DN .. 2)
;~: 160 OL :::::C!L -I- 1
2:l?C1 (;OTO ;21 :;:)U
2180 PRINT OCf(TC(OI,QJ)+lj,
2:l ::10 PI? I liT " ".. PEJ1 :\. :::':F'fIC[T:\ OUClTE:::::;
2,::0121 r··IC<T OJ
,?;:21C1 PP UH
,~:220 I'~D:T C! I
2;:~~:::121 F:ETUF:r~

The subroutine is designed to highlight path P. This comes in handy
whenever a game ends with a win: the computer highlights the winning
path. The value of P (set before the subroutine is called) determines
which path is highlighted. If P=O, no path is highlighted.

Line 2100 determines whether the next cell to be printed is part of
the highlighted path. If it is, lines 2110 and 2120 print that cell flashing;
otherwise, line 2180 prints it normally. Note that there is a single space
in quotes in line 2190.

Auxiliary Subroutines

This subroutine analyzes the contents of all eight paths:

2 ;:~: ,I 121 rj::: ~j

::::::::;CI 1'1:1j

152 The C-64 Program Factory

2260 FOR P=l TO 8
22?0 klJ:=:F'L 0:: F' .. 1 >
2:2:::~) CU=PL_ 0:: P .. :2:;'
:~:290 Dt·~::::F'I... 0:: F' .. :3 >
:::::300 !··!F:=:C:!
:~:::: 10 !'W ::;.: 0
::::320 FOR CE=1 TO 3
2:330 IF TC(RU,CU)=O THEN :::::380
2340 IF TCO::RU,CU)=SA THEN 2:3?0
2350 ,'!F::::t'lF+ 1.

2:380 kU=RU+DI(DN,l>
2390 CU~CU+DI(DN,2)
:2 ,:+00 t·jE:::·n· CE
2410 IF NF()SL OR MF)0 THEN 2440
.:::':+212! t·j=!·j+ 1
2·:t:~:o lH,j (!i:' ::::F'
2440 IF MF)0 THEN 2460
.~:4:;1) t'l="t'l+ 1
2·:1-60 t·lEi'::T F'
:2·:+"70 RETUF.:I·,,!

The variable N counts the number of unblocked paths containing at
least SL of player SA's marks. Variable M counts the number of paths
containing none of the other player's marks.

Upon return from this subroutine, the array NW(,) lists the path
numbers of all unblocked paths containing at least SL of player SA's
marks.

The following subroutine locates the first opening in path P:

24:::::0 r.::O::::(!
.:::':+90 C:O:::(1
::2~5(1(1 F:T::::PL ': p. J. :'
;2:~ 10 CT:=F'U:F'.,:2)
2520 Dt-j::-'F'L 0:: F' .. ::: >
2530 FOR CE=1 TO :::
2540 IF TC(RT,CT)()0 THEN 2580
2::550 PO::::F.:T
:2560 (:O:=[T
2570 CE:=:;::
2580 RT=RT+DI(DN, 1)
2590 CT=CT+DI(DN,2)
26(H) !··lEi'::T CE
:2610 PETUPtl
Upon return from the subroutine, RO is the row number of the open

path and CO is the column number.
Here is the subroutine that randomly selects an empty cell:

2620 RT=INT(RND(1)+3)+1
2630 CT=INT(RND(1)*3)+1
2640 IF TC(RT,CT)()0 THEN 2620
2650 F:ETUPt'1

Tic-Tac-Toe 153

Upon return from the subroutine, RT is the open cell's row number
and CT is the column number,

The last subroutine looks for an opportunity to set a trap (mark a
cell that creates two winning threats for a player's next turn).

2660 FOR RB=l TO 3
2670 FOR CB=1 TO 3
2680 IF TC(RB,CB)()0 THEN 2780
:26 Slid :::;L:= 2
2700 TC(RB,CB)=SA
2710 (:JO::::UB :2~'240
2720 TC(RB,CB)=0
2730 IF N(2 THEN 2780
,::: ~:' 4 0 i? '.,' ::::: [~: B
:2?::;O (:\,':::::C[;
,2,(:',::U CB=:;:~:

277U F:f::::::::
2?::::U HE::-::r CB, FE:
:2 ::::: 0 I;:) I? E:T U I:::: ~i

On entry to the subroutine, SA is the number of the player trying to
set the trap. On return from the subroutine, N=2 indicates that a trap
was found, and RV,CV identify the row and column of the open cell that
sets the trap.

-Using the Program ----------
Figure 9-6 shows a sample run of the program.

It is very easy to modify the program. For example, you can set it so
that two people can play against each other, rather than one person
playing against the computer. Simply make these changes:

26121 I HPUT "ElITE:F.: THE Ilnl'IE: OF F'L .. fl'r'[F' l· ",: F't: 11)
270 II-IF'UT "ElITEr~: nlr:~ 1'lm"IE:: OF F'I,JI'r'[F: :?: "; F':J (:=::'
530 ON P(PH) GOSlB 820,820

Alternatively, you may find it interesting to watch the computer play
against itself. Make these changes:

:>:::[1 F';t':: 1:::" CC!:'lF'I .. !'T[F:"
:?~:'O F'::J: (:::: ::::" CCWIF'UTEP"
530 ON P PH) GOSUB 1000, iGor

154 The C-64 Program Factory

T I C-'TAC-TOE:

HUMAN TO MARk AN X
WHICH CELL? ENTER ROW COLUMN.
(0,0 = NEW GAME) 3, ~

CCWIPU'ITi;: TO miF:l< i:lil 1.1
COMPUTER TAKES ROW COLUMN

H:..Jr'1Hli TO I'!HI?!' H!·i.
WHICH CELL? E:NTER ROW,COLUMN.
(0,0 = NEW GAME) ~) 3

COMPUTER TO MARK HN 0

.-:'

.::: ..

COMPUTER TRKES ROW :OLUMN 3

u ><

HUMAN TO MARK AN X
L1H I Ci! 'Tl.l' []iTEr;: !?m,j, (ClUJ!'!!'!"

Figure 9-6. Sample run of Tie-Tae-Toe (keyboard entries underlined)

(O,0 - NEW GAME) 3 1

(I ;<

COMPUTER TO MARK AN 0
COMPUTER TAKES ROW ") .. _'

._- -- 0

.- 0 ><
>< 0 ><

HUMAN TO MRRK AN X

COL_Ut1J···J

WHICH CELL? ENTER ROW,COLUMN.
(0,0 = NEW GAME) 1, 2

..... () ><
~":: 0 ><

COMPUTER TO MARK AN 0
COMPUTER TAKES ROW

.- >: I)

(I 0 . .'
" '. () .

HUMAN TO MRRK AN X
WHICH CELL~ ENTER ROW COLUMN .
.:: U . 0 HEJ,,J CiJ=It'1E> 1, j

/ ::.:: 0
() () ::.;:
::.;: () ,.;:

TI E CiI=l!"IE

Tic-Tac-Toe 155

,::.,

1.

Figure 9-6. Sample run of Tic-Tac-Toe (keyboard entries underlined
(continued)

156 The C-64 Program Factory

ENTER 1 FOR NEW GAME. 2 TO QUIT 1

TIC-TAC-TOE

COMPUTER TO MARK AN X
COMPUTER TAKES ROW .

1

><

HUMAN TO MARK AN 0

c: CI I.. U t'l t·~

WHICH CELL? ENTER ROW,C:OLUMN.
< 0, 1~1 :::: t··IE],j GAt'1E) ::::., 1.

><

COMPUTER TO MARK AN x
COMPUTER TAKES ROW ,:;;,

>< -~ -
(I >< .-.

1·-IUt'lFH·1 TO t'WIF:I:: m'1 0

C:OLUt'1t··j

WHICH CELL? ENTER ROW,COLUMN.
(0,0 = NEW GAME) 3 1

><
o ::.:~ ._.
"... ...• CI

COMPUTER TO MARK AN ~

1

COMPUTER TAKES ROW COLUMN 2

Figure 9-6. Sample run of Tic-Tac-Toe (keyboard entries underlined
(continued)

(I }:: -
.•. - (I

HUMAN TO MARK AN (I

WHICH CELL? ENTER ROW. COLUMN.
(0.0 = NEW GAME) 1, 3

,:.:: ::{ CI
(I X'·'
._ ••. I)

COMPUTER TO MARK AN X
COMPUTER TAKES ROW 3 COLUMN 2

>< ~ (I
(I ~ -

- ~ I)

COt1PUTEF~ ~J I t·l::; !

Tic-Tac-Toe 157

EtHEr::: 1 FOP 1'·1 E 1,.1 l~il::1t'1E, ::: TO C!U I T ..L

T I C·-Tf=tC··-TOE

HUMAN TO MARK AN X
WHICH CELL? ENTER ROW, COLUMN.
(O,0 = NEW GAME) 0, 0
CANCELLED THAT GAME.

EtHER 1 FOR t·lEL,J GAt'1EJ 2 TO G'JU I T 2

HUt'1fH··1 I,JOt'l ~j
COt'1PUTEF.: I .. JOt·l 1
TIE C;F'it'1E:3 1

Figure 9-6. Sample run of Tic-Tac-Toe (keyboard entries underlined
(continued)

158 The C-64 Program Factory

-How to Lower the Computer's IQ --
After playing against the computer a while, you may find it frustrating
that the computer never loses. If you playas well as the computer does,
every game will end in a draw.

To add a little variety and uncertainty to the game, you can simplify
the computer's playing strategy in several ways.

First you can eliminate the computer's prepared move for the first 0
by skipping that section of its logic. One change does this:

After you make this change, you'll notice the computer often step
ping into the losing situations of Figure 9-4.

Alternatively or in addition, you can eliminate the computer's ability
to set traps or detect them by making this change:

1500 GOTO 1020 REM CHANGED FROM: F=0

After you make this change, the computer's game playing will be
reduced to the lowest level of strategy outlined at the beginning of this
chapter. Even at this level, the computer may surprise you by making a
(randomly) brilliant move.

Chapter 10

Can you name the capital city of Illinois? What is the French word for
acorn? How many grams are in an ounce? What baseball team won the
pennant in 1968? Just about everybody needs to memorize something
from time to time.

This chapter presents Quiz Master, a program that will help you
learn information on any subject you choose. Quiz Master will ask you
questions, check your answers, and keep your score until you have
learned as much as you want. The program will even give hints to help
you as you're learning.

What kinds of information can the program teach? Just about any
thing involving pairs of short facts: states and capitals, foreign lan
guage vocabulary, English and metric measures, ball teams and pen
nant years, events and dates, words and their synonyms, words and
their antonyms, and so forth.

The program requires you to supply the data; this data is used to ask
the questions as well as to give you the correct answers.

The data used is kept in what is commonly called a database. A data
base is a list of items that have something in common. It could be a list
of names and addresses, metric and English conversions, and so on. We
have included with the program two ready-to-use databases - the

159

160 The C-64 Program Factory

names of states and capitals and the names of French and English
foods.

Like the data pairs, the database for the program also requires a
title, two questions, and the number of data pairs there are. Here is a
short example:

Title: ***Weights and Measures***

Question 1: What is the English equivalent of ... ?

Question 2: What is the metric equivalent of ... ?

Count: 6

Data pairs: 1 meter, 1.1 yard
1 liter, 1.06 U.S. quarts
1 kilogram, 2.2 pounds
0.9 meter, 1 yard
0.95 liter, 1 U.S. quart
454 grams, 1 pound

The title identifies the subject of the quiz. Questions 1 and 2 are used
with the first and second items in each pair, thus allowing you to prac
tice naming the second or first item of each pair. For example, a type 1
question might be: "What is the English equivalent of 1 meter?" and a
type 2 question might be: "What is the metric equivalent of 2.2 pounds?"

The data pairs must be set up consistently so that the questions will
always be applicable. In our example, the first item in each pair is a
metric quantity and the second item is an English quantity.

-The Program ------------,
The first block resets the random number generator so the program
will present you with a different series of questions each time you run
it. The lines also clear the screen and set the color to green.

1. (1 I "IPUT "EI'HEF:: f'i F:f=II"mO!"1 HUt,mET: "; I::::
20 R=RNDC-ABSCR))
:?:::, F'f,: nn CHR:t C 1 ~::i::::;' ,; CHF:t: 0:: 14?). F'EJ! LT i:;F'EEJ~ ,';:

Cl..!=I !F: .~;C:;:r::.EI'·1

Reading the Database

The next lines read in the database and print a title on the screen:

:::~O I?HiD T$
4~:1 F'RItH T$~

50 F'F:nlT
60]) HI O:t <:2)
70 READ 0$(1),0$(2)
:::::U FEHIi I"~
~~ DIM L$(N,2)T(N),S(N)
1f:KI F I) F: J::: 1 T (I "·1
110 REHD L$(],1),Lt(J,2)
120 I"H:~:<T .J
1 :::~~:~; 1···IU::t,,,"": f?!::J1 I!O :;::F'r::'CL:":::: I i"Y:: I D[OUOTE:::;
126 RV$=CHR$(18): REM REVERSE ON
127 NR$=CHR$(146) REM REVERSE OFr

Quiz Master 161

T$ contains the database title. The array Q$() contains the two ques
tions. Array L$(,) holds the database. For instance, array element
L$(l,2) contains the second item of the first data pair. Array S() is used
to shuffle the questions so the computer won't ask them in the same
order in case you repeat the quiz. NU$ is an empty or "null" string.
There are no spaces inside the quotes.

Printing the Menu

Here are the lines to print the main menu:

13~j TC::::1j
1 .:+ CI ·TT·I ::: 121
15121 FOR 1=1 TO 2
160 PRINTJ; TAB(5); O$(J)
17(1 t·![:::'T J
1::::0 C::::O
:l ::::~5 I t·lF'UT ":3ELECT 1 OP 2 ".: C
190 IF C()1 AND C()2 THEN 200
195 ON C GO TO 220,250
:~:Cl(J I='!;:: I liT
:211a ceHO 1'::;0
2 .:2121 I):", 1
;2::30 f1::::::2
240 C;ClTCI ~~?Cl
2~5(~1 1)::<2
21::::U H~: 1

Variable TC keeps track of the total correct answers during a single
quiz. Lines 150-170 print the menu. Lines 180-210 get your selection and
branch to the appropriate section of the program.

The variables Q and A, set in lines 220-260, keep track of which type
of question you selected; a single routine handles both question types.
For example, Q=2 and A=l when you have selected question type 2.

162 The C-64 Program Factory

Shuffling the Question Sequence

Now it's time for the program to shuffle the questions:

2?CI F'f:: I It!
2::0 PF: I liT "TH!::F:[;,j I LL I:;[", ii,!I !Jli[~>T 1. rlrl':;"

300 FOR J=J TO N
:::! (::1 T r:: J:I:::C!

~'::2CI II[::T J
330 FOR J=l ~C N
340 R=INT(RND(l)tN)+l
350 Ir T(R)=l THEN 340

,:;:?O T < F:) ::::: I.
::::::0 IIE:::1 ,T

The lines set up a random sequence for asking the questions, Array
8() contains the sequence, For any subscript N, 8(N) specifies which
data pair is used for the Nth question in the quiz.

Lines 300-320 set every element of T() to 0, indicating that none of
the positions have been used yet, Lines 330-380 assign each data pair to
a randomly selected position, If the position has already been assigned,
that is, T(R)< >0 in line 350, the program selects another random
number. The process continues until all of the data pairs have been
assigned to a question in the quiz.

For instance, after line 380, the array 8() might look like this:

8(1)=5
8(2)=1
8(3)=3
8(4)=2
8(5)=6
8(6)=4

indicating that the first question asked will involve data pair 15; the
second question, data pair 1, and so forth.

Questions and Answers

Now comes the question-and-answer routine. First we present the lines
that print the question and accept your answer:

: ',~ ~ i F' C! r;' J:::: 1.'1" (I I:
480 Wlt=Lt(S(J),Q)

410 W2S=LS(S(J),A)
"j, ;;: 0 LJ1 = U.:J~ (~,~ 2 $: :'
,1,30 tl1,::=I'IU$
440 rop 31=1 TO LA
450 l'l~::o.l"1$+" +'''
:teu ,'j[;::TJ 1
470 F'F:IIH
4::XI F'f?ItH ..T,;", !!,;I)~i-(G!)

490 F'P I tH P',,.'$,;
~50l1 F'f,: nn lH $,:
~5 U~ F'h: HIT HI?:$:;
~::;:: (I F:r:; !,~ u ~t
'::;2'::: II'WUT F:$

Quiz Master 163

Line 390 causes J to count through each of the N questions. Wl$
contains the word to be included in the question, and W2$ contains the
correct answer. Lines 440-510 set up a mask M$ to be used in giving
hints,

Lines 480-510 print the question, plugging in the appropriate word
from the database. Line 525 inputs your answer,

Checking Your Response

The next lines evaluate your answer:

'5~::I~i IF F::tC:",'" THEI'j 5,::'121
~::;<lUJ::!'
'5':;121 C;UTO ~?::~C1

56121 IF F:S=W2$ THEH 660
570 IF MS=W2S THEN 690
580 IF P$=NU$ THEN 600
~59C1 F'I? I I'H "I I",ICOF:F:[CT. "
600 Fd::;::I"~US
,505 I t'WUT "T'r'F'E I--H I in elF: ;;:::-Ci [',iF UF' ", F.:$
61 (I I I::: F::t:<> " 1" TI-IE1,1 ';::,liJ
,::20 CiU;:::UE: ::::O~j

630 COTO 4'?12i
,5':+0 IF F::$:::::" 2" THE1~ 690
650 ccno 600
I:::CO F'F: I I'n "CClpr;':Ecr' "
S?0 TC=TC+l
,; ~::: 0 Ci ii T C! ?::: U
:::~::!O F'I:::: I i'n "THE C:OPF:ECT 1:lrt:;~'~EF: 13"
70(1 F'P un I?',/:t;
'('10 F'F: I in ~,J;2$
;:';;2121 F'f,: I ITT !,W::\::
7:;:121 I~Dn J

164 The C-64 Program Factory

If you type a slash "/" in response to the question, the program ends
the quiz and prints your score up to that point. Otherwise, line 560
compares your answer with the correct answer.

If your answer is correct, the program jumps to a congratulation
routine at line 660. Otherwise, the program prepares to give you a hint.
Line 570 checks if the next hint completely reveals the answer; if it
does, the program jumps to line 690, skipping the hint routine. Other
wise, the program asks whether you want to see the hint or give up. The
subroutine called in line 620 performs the hint routine.

The following lines take over when you have tried all the questions or
have stopped the quiz by answering with a "/".

740 F'F'It-iT
:~::50 F'F: I :IT "'r'OU CiUT ".' Ie::" COkF:ECT OUT c)r:· ", Ii
76(1 F'PHH "1Y::HW ", TIL" iiIl·ITC:::>.;'
'77~j C:;:::[I

77::: I t,jF'i,JT "T':'F,!:::: J.,I'1!ri;::E: r:'FHcr I (::[;;::'-I)U IT" ,: C
780 IF C=2 THEN END
?~~I2I COTO 1 :~:O

Here's the hint routine:

::::00 TH":TH+ 1
::;: J 121 PP I In "EJiCH',: ::::-rriiny;:; r'OF: H I'1'r':::;TEF":' L_ETn~r:::""
:::;;:0 F'F: I I'rr "HEF.:E 1:3 'r'UUF: HI I-.IT: II,

:~:JO F'P I t-.IT F:'.,.':$,:
::}:1- 0 F' F.: I t'rr t'1:t
:::::50 F'P I I'n r'W::!:: ,:
860 P=INT(PND(l)*LH)+l
::::';:"U IF t'HD~HY!:l, F: .. 1) <:}"+''' THEJ,I ::>::;CI
880 ZBS=MID$(W2$,P, 1)
::::90 ZC;:;J::"'I"IU$
900 IF 2=1 THEN 920
910 ZCS=LEFTS(M$,R-l)
9:2(1 ZCt:=:ZC$+ZI:::~

930 IF LEN(M$)-LEN(ZBS)-P+l=O THEN 950
940 ZCS=ZCS+RIGHTt(M$,LEN(MS)-L[N(ZBS)-R+l)
9 ~:j C1 tHe::: C:1:.
9CO PETUF.:I'j

Whenever you request a hint, the program increments the hints used
total TH (line 800), gives you the hint M$ (lines 820-850), and modifies
M$ to produce the next hint (lines 860-950).

Initially, the hint consists of a string of asterisks, one for each char
acter in the answer. After each hint is given, a randomly selected aster
isk is replaced with the character that belongs in that position. Line 860

Quiz Master 165

randomly gets a character for position R. ranging from 1 to LA (the
length of the answer). Line 870 determines whether that character has
been revealed yet in the hint. If it has, the program tries another char
acter position. If it hasn't, the program uncovers the corresponding
character (lines 880-950).

The Database

The only thing missing from our program now is the database. This is
where you customize the program. Store the database in DATA state
ments starting with line 970. Here is a short sample database, French
and English foods. Input the lines so you can test the program:

970 DATA *** FRENCH/ENGLISH FOODS ***
980 DATA WHAT IS THE FRENCH WORD FOR .. .
990 DATA WHAT IS THE ENGLISH WORD FOR .. .
1 C1812i DATA 24
1018 DATA ACORN, LE GLAND DU CHENE, APPLE,LA POMME
1028 DATA ASPARAGUS, LES ASPERGES, BEEF, LE BOEUF
1038 DATA BREAD, LE PAIN, BUTTER, LE BEURRE
1040 DATA CAULIFLOWER, LE CHOU-FLEUR, CHEESE,

LE FROt'11=1CiE
105121 DATA DATE, LA DATTE, DOUGHNUT,

LE F'ET DE t·Wr·lt·lE
1860 DATA EGG, L/OUEF, EGGPLANT, LA AUBERGINE
1070 DATA FISH, LE POISSON, GINGERBREAD,

LE PFi I , .. j D'" EF' I CE
1080 DATA GRAPEFRUIT, LA PAMPLEMOUSSE, GRAPE,

LE GRAIN DE RAISIN
1090 DATA HONEY, LE MIEL, LEMON, LE CITRON
1100 DATA MUTTON, LE MOUTON, PEACH, LA PECHE
1110 DATA SUGAR, LE SUCRE, SYRUP, LE SIROP
1120 DATA TURKEY, LE DINDON, YAM, L~IGNAME

Another useful database, states and capitals, is given next:

370 DATA **t STATES AND CAPITALS +*+
980 DATA WHAT IS THE CAPITAL OF ...
990 DATA WHAT STATE HAS THE CA~ITAL CITY OF ...
I U0121 DrlTA '::;0
101U DATA ALABAMA, MONTGOMERY, ALASKA, JUNEAU
1020 DATA ARIZONA, PHOENIX, ARKANSAS, LITTLE ROCK
1030 DATA CALIFORNIA, SACRAMENTO, COLORADO, DENVER
1040 DATA CONNECTICUT, HARTFORD, DELAWARE, DOVER
1050 DATA FLORIDA, TALLAHASEE, GEORGIR, ATLANTA
1 UC:Ci DrlTH HI~~"!~ I I, Hot·IClUJL..U.· I Df=1I10, r:O I :::;1::

166 The C-64 Program Factory

ENTER A RANDOM NUMBER

*** STATES AND C~PITALS ***
1 WHAT IS THE CAPITRL OF ...
2 WHAT STATE HAS THE CAPITAL CITY OF ...

::; EL.E C T 1 Of? ;;: 1

THERE WILL BE 50 QUESTIONS. STANDBY.,.

1 . WHAT IS THE CAPITAL OF.,.
;~1:~~"",£111",~~
'···I'/C
I t··ICm?F:ECT .
rYPE 1-HINT OR 2-GIVE UP 1

EACH * STANDS FOR A MYSTERY LETTER.
HEP!:: I::::; ',-'OUP H I tiT: ~::fI:j;I:£:J

1 . WHAT IS THE CAPITAL OF ...
~1~~III,·,inl]~m
"~I

I I·~COG::I?E:C:T.
TYPE 1-HINT OR 2-GIVE UP 1
EACH * STANDS FOR A MYSTERY LETTER.
Hf.PF I:::; ',-'OUF: H I in: :::£:n;:j;l:'~

1 . WHAT IS THE CAPITAL OF ...
~~ 1 ~I ~ lIL:,:!ol] ~~ ~Il
HI... J.::A 1',·1 'T'
CC)F'F:ECT I

2 . WHAT IS THE CAPITnL OF ...
U~::$-~:~J
r:i1.J ::::; T I II
C()RF:FCT I

3 . WHAT IS THE CAPITAL OF ...
11I~::UI~I::Ij:*l~::JI
"~I

I I··ICORI?ECT .
TYPE I-HIN" OR 2-GIVE UP 1
ERCH * STANDS FOR A MYSTERY LETT!::R.
I·-IEF:[1:: 'r'Ul.JF' HI HT: ;:r:j;:Cil:l::1:1::I:::I

Figure 10-1. Sample run of states and capitals quiz

3 . WHAT IS THE CAPITAL OF ...
I m ::~ m I ~Jli:::ij::8 ::~ ~A
"~I

I tK:OF:F,:[T T •
TYPE i-HINT OR 2-GIVE UP i
EACH * STANDS FOR A MYSTERY LETTER.
HEF::E I::: 'r'OUI? H I Iff': ;:nII~t:n:j:~

3 . WHAT IS THE CAPITAL OF ...
1I~~~I~I:::tl!::$~:::II:~
,":>

I HCOF.:I~:E:::T .
TYPE i-HINT OR 2-GIVE UP 2
THE CORRECT ANSWER IS
~r~t:m,'JI.IIII111~

4 . WHAT IS THE CAPITAL OF ...
lIiI:;:llQlU :;:!m] ~~ ~ U:l
...

YOU GOT 2 CORRECT OUT or 50
USING 5 ~INT(S).

Quiz Master 167

Figure 10-1. Sample run of states and capitals quiz (cont1>nued)

1 Cf?Ci IIf71fA I U_ I I·m I :::;;.. ::;F'F: I t··ICiF· I ELD., I I·m I fH·~I=t ..
I I·m 1 AI·!fiF'OL I :~;

1880 DATA IOWA .. DES MOINES .. KANSAS .. TOPEKA
1090 DATA KENTUCKY .. FRANKFORT .. LOUISIANA ..

Pf::nm~ r;:OUCiF:
1100 DATA MAINE .. AUGUSTA, MARYLAND .. ANNAPOLIS
1110 DATA MASSACHUSETTS, BOSTON, MICHIGAN .. LANSING
1120 DATA MINNESOTA .. ST. PAUL .. MISSISSIPPI, JACKSON
1130 DATA MISSOURI .. JEFFERSON CITY .. MONTANA .. HELENA
1140 DATA NEBRASKA, LINCOLN .. NEVADA .. CARSON CITY
1150 DATA NEW HAMPSHIRE .. CONCORD .. NEW JERSEY ..

TRf.:t·ITOH
1160 DATA NEW MEXICO .. SAHTA FE .. NEW YORK .. ALBANY
1170 DATA NORTH CAROLINA .. RALEIGH .. NORTH DAKOTA,

B I :::; 1"1 FIl? C!<
1180 DATA OHIO .. COLUMBUS .. OKLAHOMA, OKLAHOMA CITY
1190 DATA OREGON, SALEM .. PENNSYLVANIA, HARRISBURG

168 The C-64 Program Factory

1200 DATA RHODE ISLAND, PROVIDENCE, SOUTH CAROLINA,
c:ouwm II=i

1210 DATA SOUTH DAKOTA, PIERRE, TENNESSEE,
t··lFf3H I I_LE

1220 DATA TEXAS, AUSTIN, UTAH, SALT LAKE CITY
1230 DATA VERMONT, MONTPELIER, VIRGINIA, RIGHMOND
1240 DATA WASHINGTON, OLYMPIA, WEST VIRGINIA,

CHHF:I_E::;:;Tot·j
1250 DATA WISCONSIN, MADISON, WYOMING, CHEYENNE

Figure 10-1 shows a sample run of the program using the states and
capitals database.

Use your imagination to think up other possibilities. Just be sure to
set up the database along the same lines as the examples.

Chapter 11 -s -eeG-ml)rillsm"m-m-__ ---.&r~ ___ m m"mmmm __ ""~"""""_""""""""~"""""""""" ~ ___ "mm""" __

This chapter's program, Speed Drills, can help you master situations
like the following:

• You're standing at the grocery checkout counter trying to double
check the cashier and the cash register, but you just can't keep up.

• You're speeding down the highway calculating your gas mileage,
but you run out of fuel before the answer comes to you.

• You're at a dinner party and the person next to you starts talking
about the national defense budget. You'd like to state the figure on
a per capita basis, but the conversation has moved to French wines
by the time you have the problem worked out.

These are typical situations that require you to think fast on your feet.
This program will help you to add, subtract, multiply, and divide
quickly and easily.

The method used is drill and practice, but with a timer added. You
specify the range of numbers to be used and the time limit per question.
You can even set an error tolerance of 0 to 25 percent. This is used in
case you're more interested in learning to make quick estimates than to
calculate exact answers.

169

170 The C-64 Program Factory

-Program Operation ----------

The program starts by displaying the menu shown in Figure 11- L
Items 1 through 4 determine what kind of drill is used: item 1 indi

cates that the current operation is addition; item 2 shows the respective
ranges for the first and second operands, A and B (10 to 99 in both
cases).

Item 3 lists the error tolerance: 0 percent, meaning that no error is
allowed. An error tolerance of 25 would mean that your answer could be
within 25 percentage points of the correct answer and still be counted
as correct.

Item 4 gives the time limit (in seconds) for answering each question.
A value of 0 means no time limit-you have all the time you want to
answer each question.

To change any of the settings, enter the corresponding item number.
To start the drill, press RETURN on an empty line.

When you start the drill, the program randomly chooses operands A
and B according to the specified range and operation and displays an
incomplete equation. For example:

50+85=

Type in the answer (use DEL to erase errors). Press RETURN when
you are finished. If time runs out before you press RETURN, the pro-

t'lATH DF.: I LU;

1-0PERATION: A + B

1~1 (::::A(:::: 10 (::::B(::: 99

3-ERROR TOLERANCE: 0 %

4-TIME LIMIT: 10 SECONDS

SELECT (1)-(4) TO CHANGE DRILL
OR <RETURN) TO START

Figure 11-1. Start-up menu

Speed Drills 171

gram will accept whatever you have typed in so far. The program will
then tell you whether your answer is correct or close enough (within the
specified error tolerance).

You can then press RETURN to continue with another question, C to
set up new drill parameters, or S to stop. In the latter case, the program
will print out your score.

-Program Listing -------------
The first block sets up the screen colors and resets the random number
generator so you will receive a different set of problems each time you
run the program:

1 POKE 53280,1 REM WHITE BORDER
2 POKE 53281,1 REM WHITE SCREEN
:~: F'r::: I HT CHF::$: 0:: 1 ~54 >.:: F:E:t'1 L. I CiHT BLJ .. i[
1 U I !'!F'UT "FJrrEF: f:' kAI··mOI'·1 I'~UI'''IBH: "j F:
20 R=RNDO::-ABSO::R»

Line 10 prompts you to enter a randomly chosen number, which is
used as the seed to determine the subsequent results of the RND func
tion. If you enter the same number each time you run the program and
if the drill settings are the same, you will receive the same series of
problems.

Setting Up the Variables

The next lines set up arrays, counters, and other control variables:

30 DIM L0:(2),U(2>,A(2),ODt(2),CUt(2)
40 01lt(1)::::"'1"
~:;O o I):$: (;~~) ,,," B"
CO EtU::::CI-IF:$ 0:: 1:3 >
70 BKt=CHRt(157)
:3(1 Dl. .. :~:::CHF::t: 0:: ;20)
>::::::: ::: 1 :;t:::::" ": F:EJo1 1. ::::FHCE I I'~::::: I m.:: OUOT[::::
:~:IO 1··IU:t::::"": FE 1"1 110 ::::F',=,CE:::: 11'·1:::: I DE OUOTE::::
:::'12 F:C::l:~"~CJ·!r:U 0:: 1?:'
:~I ::: L .. C:::: :2 ~:::;
9·:+ CiC!:::::UB 1 :::::60
:::1'] ',,.' t'1:t =: ::::: o:r
96 RCS=CHRS(102)
97 L .. [::::4121
::;:1:::; CiO::;:UB 1 ::::60
::;19 L1I:j,::::::::Ol

172 The C-64 Program Factory

100 CLS=CHRS(147) REM CLEAR SCREEN
103 HOS=CHRS(19)· REM HOME CURSOR
105 RVS=CHRS(18)· REM REVERSE ON
107 NR$=CHRS(146)· REM REVERSE OFF
108 CU$(l)=RV$+SlS+NR$+BKS
109 CU$(2)=SlS+BKS
11 CI 1,,.'I,,j;::4U
130 READ OPS,L(1),U(1),L(2),U(2),ER,TL
140 IIl·nf:1 +, 10., :::,p:~, 10, 9::::'., (I, 10
145 GOSUB 1938: REM SET UP TONE REG/S
1 ~)C1 cerro 420
1 i;;;: U I<R ::::: 0
:l ? CI f::: I) c::: 12!

The arrays store the various drill settings and parameters for the
two operands A and B. L() stores lower limits; U() stores upper limits;
A(), the values assigned to operands A and B; and OD$, the operand
names ''A'' and "B",

Lines 4{}-109 store certain keyboard and video codes required for
some special techniques used in the keyboard entry phase of the
program.

EN$ is the RETURN character. BK$ is the cursor-left character.
DL$ is the DEL character; the command PRINT DL$ causes the cursor
to back up and erase the preceding character. 81$ is a single space and
NU$ is a null (empty) string.

Lines 92-95 store 25 consecutive cursor-down codes in VM$; the
string is used to position the cursor on the screen in later parts of the
program. Lines 96-99 store 40 consecutive dashes in LD$.

The screen control codes CL$, HO$, RV$, and NR$ are explained by
remarks in the program. CU$(I) and CU$(2) are solid and reverse
blocks; they are used to create a blinking cursor effect during the actual
math drill.

Line 110 stores your display's width (characters per line). Line 130
reads the initial settings for the current operation, the lower and upper
operand limits, the error tolerance, and the time limit. Change any of
the values in DATA line 140 to make the drill start with the type of
problem you want. If you change the data, be sure to list your new data
in the proper order:

140 DATA operator, lower limit for A, upper limit for A, lower limit
for B, upper limit for B, error tolerance, time limit

The subroutine called in line 145 sets up the tone generator, which is
used to signify time out during a drill. Line 150 jumps to a block that
checks the validity of the math operator (the first item in line 140).

Speed Drills 173

Lines 160 and 170 return the counters to zero for correct answers
(KR) and questions attempted (KQ).

Main Menu

The following lines present the main menu:

1 :::::121 r:'F: ll·rr (::1..$:
19121 F'F:H·IT :::::F'C< <,,/1+··1.1. >,·'2) "t'WiTI-1 DI?ILU::"
:200 F'P I '···IT
21 I) F'I? 11'f1' "l····UF'EF:nT I CII··I: l=i ".: OF';:!:::" f.:"
:::::::;:1::) F'F: II·!T·
230 F'F: an ":>RHIICif.:::::: ".: L.'< 1 :;. .: "(":Fi{::::" .: U';: :I.) .:
2':+(1 F'F:UTr ",~:: ",: 1. .. <:2>.; ":::::::::B·:::::=".; U<:?:;.
:~: ':KI F' F: I I·n
2;;::0 F'F.: I I··IT "3··E F.:F.:ClF' TClU:F:f:I~'ICE:: ".; I HT < ER+. 112!0+. ~:5 > .: ";;"
:~:? 121 F F: I I·-n
:2:::(1 F'P nn "4 T H'IE L HlI'T: ".: TL..;" :~::ECOtllY::;"

~~90 F'F: I I·-n Ult

~::::U F'F'I !··IT "::;ELECT ::: 1),<:4:> TO CHf~t'lCir:: DF: ILL."
:34121 F'P I tiT" OF: <F.:E:T·UF~:I··j> TO ::::-rHPT II· ::: ~:) ° :::: :::: CI
~:::::CI I llFur ';:;
:3712! IF 8(12! OR 8)4 THEN 180
:~::::li F'F: an
3912! ON 8+1 GO TO 76li,400,490,660,7212!

Lines 210-280 display the current drill parameter settings. Lines
360-390 get your selection and respond accordingly.

Changing the Arithmetic Operator The following routines
take care of the four options presented in the main menu. Here's option
1 (change operator):

400 F'F: I tH "::;ELECT nt·1 OF'ERfn I Ol·j: I- "": ,.' ",

40r:::; O[='$::::I···IU:t
41 (I I tWUT OF';i:
420 (:I 1$::::" -+ '-':+:,/": r;r::t'1 1"·10 '::F'HCE::; I ij::; InE OUOTE:::;
4::::12! CI:2:;':c-.:OF"t:
44~~1 C:P:::::1
4~:512i GO:::;:UI: 17::::0
4(:1~1 I F""OF
470 IF IP=O THEN 4(10
4:30 COTO 1.::::0

The operator you enter is stored in OP$. The subroutine called in line
450 ensures that OP$ is among the valid operators (+, -, *, and I).

174 The C-64 Program Factory

Changing the Limits Here's menu option 2 (change operand
ranges):

490 FOR J=1 TO 2
~500 F'P I ITr "Lm'~EF:: LII"'I I T F'CI!? ".; OD'" 0: J > ..
~51 0 I I'~PUT L 0: J >
520 IF L(J»=O THEN 550
'5:30 F'R ItH "1'lIYn BE :> OF,: ~:: (:1"
~:S'::J.O ()OTO 50U
~::?50 F'F un "UPPEr.:: U 1"'1 I T FOP ".; OD:t: C}:' .:
5:::::~?1 HlF'UT U 0: J >
570 IF J=l OR IP(4 OF U(J»0 THEN 610
~5:::0 PF:HH "FOR DI"iI::;IutL UPF'EF: L.HnT OF J::"
~:;90 F'F: Il-H "1'1u:::;"r BE: > U"
:::00 CiOTO ~::?5121
61121 IF LIJ><=U(J> THEN 648
620 PP I t·n "1"11 .. .1:::;-1- BE: ::: UP ::::: ".; L.. 0: J::'
6:~::~) (iOTO r3<50
I:;>:J.O 1··IDn .J
S50 COTO 1 ::::121

Lines 520-540 require that the lower limits for both operands be
nonnegative. Lines 570-600 require that operand B's lower limit be
greater than 0 when the operation is division; this prevents an attempt
to divide by o. Lines 610-630 require that the upper limit of an operand
be greater than or equal to the operand's lower limit.

Setting the Error Tolerance Option 3 sets the error tolerance:

6(:0 PF: I t··IT "ENTER ERI?OF TOLEF:f1t·jC;E., 121 .. · .. 25;·;"
67121 F'R I I~T "0: () ::~ t·IU !'o'WIF:C" I tl OF E:F:I?OF:::' ".
6 :::: (I E: !?~: 121
6:;::5 II·IF'UT f::1?
690 IF ER(O 0 UP ER)25 THEN 660
;;'00 ER:::ER,..'l.I2ICI
? 10 (iOTO 1 :::1;)

Line 690 ensures that the tolerance you enter is between 0 and 25
percent. Line 700 converts the percentage into a decimal ratio.

Resetting the Time Limit The next block handles option 4 (reset
time limit):

,?;~)::I PI? II'-iT "EtHEF T II"IE L I 1"1 IT.. 1)'''1. 20 :::ECOI'W:::;"
'7::::0 I t·jF'UT 11 0: i):"'I'W 1_ I to'l IT::' ".; TI ...
?40 IF TL(0 OF TL>120 THEN ;;'20

Speed Drills 175

Starting the Drill

If you select the start drill option, the program continues with the fol
lowing block:

760 IF IP(>2 OR U(1»=L(2) THEN 800
??O PI? I IH "r:l]l,JU::;T !~:I:II'K,C:::; :;:;Oll'-IHT"
;:':;;::0 pFoWrj" "UPF'EI? L H'n: T fl E; :::. Ok::: LUI .. JU: L. 11"1 I T F.:"
?9C1 CiCiTU 49(:1
800 IF IP(4 Ok 1..1(2»0 THEN 850
:310 H? IIH "UF'F'EF: L I ["'1 I T f~OF: OF'H:r:It·.j]) r: (II I ",,' I :::;UP) "
:::::~~O F'I? I tH "['lIY::;T BE >121. EI'jTEP t·j[}.[UF'PEr::: 1_ I I'll T ".
::;:::U II··jF:'ur U (2)
84U IF U'2)(=0 THEN 810

These lines make a final check of the operand ranges to ensure that
subtraction problems will always produce a nonnegative result (760-
790) and that division by zero is not attempted (800-840),

Now the program generates random values for operands A and B:

::;:~:;121 FOR J.:: 1 TO :2
::~: I::;: ~J I"'!:[::t .. (J)
:::: ? ~j 1·.j2 :::: U (.J)
:::::3CI C{):::UP i. T:=';O
89U IF J=2 AND IP=4 AND NR=0 THEN 880
JOO 1:::1;:: J):::['jF:

:) 1. >21 1··11:::::1" J

The subroutine called in line 880 gets a random value between Nl
and N2 inclusive. The subroutine is called twice, once for each operand,
with Nl and N2 set accordingly. The random values for A and Bare
stored in A(l) and A(2) respectively. Line 890 prevents an attempt at
division by 0 and gets a new divisor if necessary.

The following lines compute the correct answer, depending on which
operation has been selected:

920 UN IP COlU 930,950,980,1000
:)3C1 F:::::H (1.) +·H (::2.;
f:t 0 Cd:YfU 1.121 1. Ct
950 IF A(1)(A(2) THEN 850
:~II;::U F:::=n ': 1) " .. r:1 (:2)

:)?U CiCITCI 1. I) 10
'~I :;:: U F: ::: r=1 (1) :,~: Ii (,;:)
):)121 CiOTU 1 () 1 121
J UOCl P:::::::i < :I. > ,..-:rl <;2 >
1010 TR=HF.:S(RtER)

176 The C-64 Program Factory

IP ranges from 1 to 4, depending on which operation has been
selected. Line 920 selects the appropriate program logic. The result of
the operation is stored in R.

Whichever operation has been selected, the program continues at
line 1010, which uses the error tolerance ER to compute the allowable
error. For example, given an error tolerance of 10 percent (ER=O.l) and
a correct answer of 34, the allowable error is 3.4.

Displaying the Problem

The program has the answer figured out now, so it is ready to display
the problem:

1 U:;:O ::'F:: I ~n CLt
1 0:2::~ CF'= 11
I C('4 UCl'~:I_:I: 1 'j 1 0
1 U:=::~; F'F' un LD.l
lU,::C I~f'<;
1 0:2::' !~,U:,Ur: 1 ::n 12!

1 u=:~j F'F: HiT :::;F'C < ::: >; 1::1': 1 :.) OF'J, HI,::;: >; 11 :::: 11

1 U 4 ~=I T I .:t" uoouou 11 I?E}1 ,::::EF:Cl T I 1'1[r;:
1050 COo, 1
l >~1r~ CI !=<t:::; IHJt
1063 POKE 198,U REM EMPTY K~YBOARD BUFFER
we::; ~'J:::: 1
lUlO PRINT CUtISGN(W+l>+l), REM PRINT CURSOR
1U75 W=-W REM SWITCH CURSORS FOR NEXT TIME
lU80 TF=0 REM TIME-OUT FLAG

Lines 1020-1025 clear the screen and divide it into two windows.
Line 1030 prints the problem. Line 1040 resets the C-64's timer to zero.
The variable CO, initialized in line 1050, keeps track of the cursor posi
tion on the display. G$ will hold your answer in string form; line 1060
initially sets it to a null or empty string value.

Line 1070 prints a character that serves as the cursor position indica
tor. Line 1180 resets the time-out flag TF to zero, indicating that you
haven't run out of time yet.

Inputting Your Answer

The next lines handle your keyboard input during the timed portion of
the program.

1 .~ 1 Ci UET I<l
1120 IF KS=NUS lHEN 1380
1 j I:'~::I F:E}1

Speed Drills 177

For timed input, the program cannot use INPUT, which causes the
computer to stop and wait. During the wait, the program would not be
able to check the timer. Instead, the program uses the GET statement,
which gets a character, if it is available, but does not stop and wait for
one.

Line 1110 tries to get the character into K$. If no key is available, K$
is set equal to the null string. In that case, line 1120 causes the computer
to go directly to the check-timer routine starting at line 1380.

If K$ is not a null string, the following block determines whether it
is an acceptable character for the program:

11 7 0 IF K$=ENS THEN 1420
1180 IF Kl=DL$ AND CO)l THEN 1270
119121 I r:. ':<:l<" 121" OF.: I<t::> " ::'"".' ::=!I···ID I<::${> """ THE}·I J.:::8C1
1 ::::4CI Ci:$::::::Ci:$+I::.:;t
1 :2~5C1 CCI::;CQ+ 1.
12(::121 C;OTO 1340
J.27121 IF CO{)2 THEN 30121
1 :~ ::: CI Ci :to:: I··KJ ,~
1 :2~!O CiCiTCi 1:31 U
131210 Gt:=LEFTl(G$,CO-2)
1:;! 1 0 C(}"CCi 1
1330 PRINT CUS'2); :REM ERASE CURSOR
134121 F'F: I J·IT 1<-*.;

Line 1170 checks whether you have pressed RETURN, signaling that
your answer is ready. Line 1180 checks whether you have pressed DEL to
delete a character; if you have, lines 1270-1330 handle it.

Line 1190 checks to see whether you have entered one of the other
allowable characters. If you have, program block 1240-1260 adds that
character to your input field G$, increments the position counter CO,
and jumps to the character display statement at line 1340.

After completing each keyboard input cycle, the program updates
the timer:

1:::::::0n'1";;I,,.'i=IL.' T I ::I:~ >
139121 IF TL=O OR TM(TL THEN 1070
J. ,;:1· (j Ij T·F,,:: 1

Line 1380 converts the C-64's timer value into a number TM. If TM
is less than the time limit or the time limit is 0, line 1390 jumps back to
the keyboard input routine. Otherwise, your time is out, so line 1400 sets
the time out flag.

-------------------------~.------

178 The C-64 Program Factory

Checking Your Answer

When you press RETURN or time runs out, the program evaluates your
answer:

1. 4;:':CI Ci:::"/I=iL' C:t::.
1 ,:+::::121 1<. I}::: f::: 0 + 1
1440 PRINT CU$(2): REM ERASE CURSOR
J. 44:~: CF'::::::::
1 +14 C;O::::UB 1~) 1 r
1450 IF TF=0 THEN 1470
1460 COSUB 2010: REM SOUND BUZZER
146':i F'F.: I tH " T 11"'IE: .. ' ::; UF'"
1470 IF ABS(G-R)(=TR THEN 1520
1. ,::j.~!0 Pi? nn " I liCOF:I~:[CT, ",;
1 ':500 PF: I liT " COF'l?r:::cr Ht,~:::;!,'.lFJ? 1:3 ",; F:
1':510 GOrO 1591:1
1 '::):20 I<R::I:P+ 1
15::::0 IF I?()G TH[N 1570
1~:)4C1 F'RII'IT
1 ~:5::iO F'P I tn " COFPECT"
1 ':560 CiOTCI 1'590
1 ~5?O FE}!
J. '::::::::::'1 F'F: I ITT "CUY::[OIOUUH I THE E::<ACT A I"E; I"J Ef,: I ~:; "; F:

Line 1420 converts G$ (your input) into a numeric value. Line 1430
updates the questions-attempted counter. Line 1440 erases the blinking
cursor. Line 1442-1444 position the cursor to line 8 before the program
prints its evaluation message. If time elapsed before you pressed
RETURN, lines 1460-1465 sound a "buzzer." At this point, whatever you
have typed in so far is accepted as your answer.

Line 1470 checks to see whether your answer is close enough to the
correct answer. If it is not, lines 1490-1510 are run; otherwise, lines
1520-1580 are performed.

Continuation Menu

The following block prints a continuation menu offering three options:
continue, change drill, or stop.

1 ':590 CF'::::: 1 ,::j
1 ~:;~~::; ()O::::UE: 1910
1 ':::i9? I:'I? II,IT " F'F.:[:::S" •• "
l'j:):::: F'F.: I liT
J. (::00 F'F.: Ilfl" ::::!:'C (:;:: :'; 1:::',/:$;" !:':ETUF.:l1 ",; I'~F:$,;" TO cm-n I [',IUE"
1 CC1~:i F'P II",IT
1::::1 U F'r.:: I In :::;F'C':: ::;;': r::',/:I:::" C ": !'IF::$: ,:" TO Cl'lfir,lCiE Dr;: ILL"

Speed Drills 179

1 C: 1'::; F'F: I i,IT
:I. C2CI F'I:;: II'iT :3F'C 0:::::: >, i?'.,,'j::,," :::; ", I'~F::*, ,;" TO :3rOF'''
1C23 POKE 198,0 REM EMPTY KEYBOARD BUFFER

1630 IF CQ$=EN$ THEN 760
1C4C1 IF C:C!i~:::::":::;1f Tl-IEI'I 1(;('121
1 (;;-)121 I F COt:::::" C:" l'l,!t::t! 1 ::::U
:I CC:CI l:iOTO 1. (:;;2~5
U::?U F'F: un CLt
16::::U CF'c:6
:I. C:::"'~:I CU::;UB 191 J2I
1 ? 0121 F:Ei"1
1?0::;; FI? I IH " 'T'OUF: :::;CClI?E·"
1 ? J. (I I' F: I /,1 T
:I. ';:' I'::; F'f;: I 1'-iT " F'F.:OEt,EJ'1::::; 'fF: I r:::D: "; I<C'
1 ?;~:(i F'F:I!,n
l7:::'5 F'I? nn " 1::!t'j::::;I .. ,IEF:ED C:OFF:ETTI_'T': ",; i<P
1. 7:::121 F'F: I I",IT
1 7;:'::; F'r? II'IT " :::,C(:JFE: ",; I liT 0:: 1<F:.'l:Ct'~ 1 UO+. '5:0
1 ?4CI I='F: I liT
1 ?,::!~::; Ei~D

11"/11
.' ,'II

Lines 1590-1595 position the cursor inside the lower screen "win
dow." Lines 1597-1620 print the three options. Lines 1625-1660 get your
answer and respond accordingly.

If you selected the Stop option, lines 1705-1745 print your cumulative
scores and end the program.

Subroutines

The following subroutine returns a random integer between N1 and N2
(inclusive):

1?~5U !"jCi ,':/,-.J;;?--.. I ,11. 'i 1.
176U NR=INT(RND(l)*NG)+Nl
1 ??O F:E:TUF:tJ

NR is the random integer.
Here is the string search subroutine:

l?:;:::U OF:::O
1?90 IF Ct2t=NUt THEN RETURN
1800 IF QP+LEN(Q2$)-1)lEN(Ql$) THEN RETURN
1810 IF MID$(01$,OP .. LEN(02$»=Q2$ THEN 1840
:l ::::20 OPc.:I)F'+ 1.
1 U~:U CiUTO 1. :::UU
1 U40 OF~::(}F'

1 U::::iC! I?ETUr?t'j

180 The C-64 Program Factory

On entry to the subroutine, Ql$ is the string to be searched, Q2$ is the
string to find, and QF is the starting position. Upon return from the
subroutine, QF is the position at which Q2$ begins in Ql$. QF=O indi
cates that the string was not found or that Q2$ was an empty string.

The next subroutine builds up a string of consecutive characters:

1!3i'::U ::::;0:$:':;""
187U FOR K=l TO LC
1880 SO$=SO$+RC$
1. !:!~KI II[:<T 1<
i ~)()U I?ETUF:r·1

The subroutine stores the number LC of character RC$ in the string
80$.

These next lines position the cursor to a specified display row:

191U PRINT HO$;LEFT$(VM$,CP);
1 ::!20 FETUF:I···I

CP is the destination row number ranging from 0 (top row) to 24
(bottom row).

The following subroutine initializes the C-64's tone registers to pro
duce a time out buzzer sound. However, these lines do not actually pro
duce the sound:

1930 FOR R=54272 TO 54295
1:)32 F'UI<[P .. 0
1 :::1::4 IIE:::r F:
1936 POKE 5429~, 15
1 ~:'~':·iO Di?:::::54:2?2
1950 FUR P=BR TU BP+6
1 :)~::O I?E:I=ID '.,.",,.'
1 :f?!2J F'O!:l: F:, '.,."'/
1 ::!!::!I) I!E::r F:
1 :::! !:!::; F: [1'1 [I
1 ~):::IO DHHj 1. ~)~:;,
:~:!jC!Cr F:E:TUPI·I

r:: ,;;...

:i (:0

r, :I ('

1 1::--,
1'-, ,
r·· ,::.

1 1:::'
-,

!,jF I:m '31;:
!XI 1210 24U

Finally, here's the subroutine to sound the buzzer for about one
second.

2011) POKE BP+4,0
2U20 PUKE BR+4,65
2030 REM POKE 54296,15
2040 FUR 3=1 TO 300
,2(1~::;O l·jE:::T J
2060 POKE: BR+4,Q
,207(:1 Rf::rUF:11

MTH DI(ILLS

i-OPERATION A + B

2-RAN6ES 18 (=A(= 99 & i8 (=8(= 99

3-ERROR TOLERANCE 8 %

4-TII''I: LII1IT: 18 SECONDS

SELECT (1)-(4) TO CHAN6[DRILL
OR (RETURN) TO STAI(T ?

51 + 97 148

CORRECT

PRESS ...

• ; •• III:J;. TO CONT I NU[

~ TO CHAN6[DRILL

.. TO STOP

Figure 11-2. Sample run of Speed Drills

Speed Drills 181

182 The C-64 Program Factory

22 + 48 = 7

T It'E'S UP
IMCORRECT. CORRECT ANSWER IS 78

PRESS ...
;JaIl13: TO CO 1fT INU[
~ TO CHANS[DRIll
_ TO STOP

.,... SCORE:
naeLEIIS TRIED: 15

AaSWERED CORRECTLY: 14
SCORE: 93 if.

REM".
II

Figure 11-2. Sample run of Speed Drills (continued)

Speed Drills 183

-Hints for Using the Program
Figure 11-2 shows a sample run of the program.

When you first run the program, select a time limit of 0 (no limit)
and then start the drill. Practice using the keyboard input routine, test
ing RETURN and DEL and all the acceptable input characters (digits and
decimal point). Occasionally there will be a slight delay between typing
a character and seeing it on the display.

When you have the feel of the input process, reset the drill with a
timer setting of 200. If you can get the correct answer 75 percent of the
time, reduce the time limit. Once you can answer 75 percent of the prob
lems within the new time limit, reduce the time limit again. Repeat the
process for various operations and operand ranges.

Now you're ready for life in the fast lane!

Chapter 12
...... _--------

.......... -=~'fext-- , "...-_. __ ... __ _--

What constitutes good writing? Many factors are involved, and some of
them (style, for instance) are quite difficult to evaluate with a computer.
Other writing elements, however, are easily measured by the computer's
statistical powers. This chapter presents Text Scanner, a program that
measures average sentence length and average word length.

With this program you'll be able to measure your own writing as
well as your favorite passages from literature. You can compare the
analyses of samples from scientific journals, newspapers, computer
manuals, and so forth. With these results, you can draw your own con
clusions about the effects of sentence and word lengths on readability.

The program can read word-processed documents stored in disk files
as well as samples you type in at the keyboard.

In addition to its practical applications, Text Scanner illustrates sev
eral useful techniques for text processing.

-How Text Scanner Works
Here is the overall structure of the program. It starts with the general
outline shown in Figure 12-l.

The outline is written in a near-English form called pseudo-code.

185

186 The C-64 Program Factory

Main program:
Initialization:

Sentence_delimiters are: period. exclamation point. question mark. and
end_of._text_mar ker

Word_delimiters are: sentence_delimiters. space. hyphen. end_of_line.
and double_quote

Letters are: upper and lower case alphabet
Sentence-. word-. character-. and letter-counters = 0
End initialization block

Print title and menu
Analyze text
Print statistics
End main program

Analyze_text
End_of_text=false
Do until end_of_text=true:

Analyze_a_sentence
If end_of_sentence=true then add 1 to sentence_counter
End do-block

End analyze_text procedure

Analyze_a_sentence
End_of_sentence=false
In_a-----Sentence=false
Do until end_of-----Sentence=true or end_of_text=true:

Analyze_a_ word
If end_of_word=true then add 1 to word_counter
End do-block

End analyze_a_sentence procedure

Analyze_a_word
End_of_word=false
In_a_word=false
Do until end_of_word=true or end_of_sentence=true or

end_of_text=true:
Get character C
If C=end_of_text_marker then end_of_text=true
If C is a letter of alphabet then do:

If in_a_word=false then in_a_word=true
If in_a_sentence=false then in_a_sentence=true
Add 1 to letter _counter
End if-block

If C is a word-delimiter then do:
If in_a_word=true then end_of_word=true
If C is a sentence-delimiter and in_a-----Sentence=true then

end_of_sentence=true
End if-block

If end_of_text=false then add 1 to character _counter
End do-block

End analyze_a_word procedure

Figure 12-1. Program description in structured pseudo-code

Text Scanner 187

The form of the pseudo-code emphasizes the program's logical struc
ture. This structure is made up of a main program with three auxiliary
procedures. In the BASIC program presented in the next sections, the
procedures are treated as subroutines. In the pseudo-code outline, an
underscore character is used to connect words that correspond to a def
inite entity (a variable or a procedure).

Text Scanner counts sentences, words, and letters. The task sounds
simple, but it is actually quite complex.

To count sentences, the program looks for sentence delimiters-a
period, an exclamation point, or a question mark. But what if the text
contains an ellipsis-three periods in a row? Or suppose a very dra
matic passage ends with two exclamation points. The program cannot
assume that a sentence has ended each time it reads a delimiter.

To count words, the program looks for word delimiters -a space, a
hyphen, or a carriage return. The program must again watch for
sequences of delimiters; otherwise, two hyphens (--) used as a dash
would appear to mark two words instead of one.

The answer to these problems is that the program must keep track
of whether it is in the middle of a sentence or a word. For example, if a
delimiter is encountered in the middle of a word, then the end of the
word has been found. But if the delimiter is not in the middle of a word
when reached, the delimiter has no effect on the word total.

This explains the use of the true/false variables in the
in_a_sentence, in_a_word, end_of_text, end_of-sentence, and
end_of_word procedures (refer to Figure 12-1).

Other punctuation also requires special consideration. Apostrophes,
for example, must not be treated as word delimiters; otherwise, didn't
would be treated as two words. These punctuation marks should also be
ignored in counting the length of a word.

-The Program -------------

The BASIC program is presented in logical blocks. Type them in as you
go along. The first block defines certain delimiters and returns
various counters used in the program to zero. The first block appears as
follows:

10 PRINT CHR$(147)
2~) ::; 1 $= II ": F.:Et1 1 ::;PACE I t·~::; I DE G!UOTE::;
::::~) t'~U$= II ": F.:Et-1 t·w :3F'ACE::; I t·4S I DE C!IJOTES
4~~1 ET$=t'~U$

188 The C-64 Program Factory

50 EL$=CHR$ (1 :;:)
60 CR=~j
70 EL=l
80 N5=0
90 N~J=0
100 ~~C=0
110 tH=0
130 PRItH

ET$ is an arbitrarily chosen end-of-text character. We've assigned it
the value of a null string" ", but any character may be used. When the
program reads this character, it sets the end_of_text=true. EL$ is the
end-of-line character stored when you press RETURN. It counts as a
word delimiter.

CR stores the number of characters left in the text input buffer. EL
is another status variable used in the keyboard input logic. NS, NW,
NC, and NT count the number of sentences, words, characters, and let
ters that have been read.

Printing the Title and Menu

The next block prints a title and menu:

140 PR I tH II THE TE:X:T :::;CAt'H~ER II
150 PRItH
160 PR I NT II I ~~PUT FROM: l-~(E'T'BOAf;,~D 2-D I 51< II
165 n~PUT It~
170 IF IM()l AND IM()2 THEN 16121
180 IF IM=l THEN 220

Before using option 2 (input text from disk), you must put a text file
on the disk using a word processing program. The file should contain
the same type of information as might be entered from the keyboard.
Carriage returns will be treated as word delimiters. Other eontrol
characters like line feeds, tabs, and form feeds will have no effect on the
program's analysis.

If you select option 2, the following lines let you specify the input file
name:

200 I NPUT II V I E~J D I SI(FILE D I RECTOF.:'t' CT' /tD II i 'T't·~$
202 IF '-.IN$= "'-.1 II THE~~ (";OSUB 290121
204 PRINT
205 INPUT "t~AME OF THE I~~PUT FILE II j FI$
210. OPEt~ 1 .. 8 .. 2) FI$+"., SEQ) f;,~EAD"

Analyzing the Input Text

The next block performs the analyze_text procedure:

22121 ET=6
230 GOSUB 37121
246 IF ES=6 THEN 266
250 t·~S=t·~S+ 1
266 IF ET=0 THEN 236

Text Scanner 189

At the beginning of this routine, ET is set equal to false (throughout
the program, 0 indicates false and 1 indicates true). The subroutine
called in line 230 analyzes a word. Line 240 verifies whether a sentence
has ended during the execution of the analyze_word subroutine. If so,
the sentence counter is incremented. The program next checks to see if
the end of text was reached. If not (ET=O, or false), the program jumps
back to line 230 to repeat the analyze_a_sentence procedure.

If the end of text has been reached (ET=l), the program continues
with the next block, which prints the statistics and ends the program:

270 PRI~n
286 PR I tH /I SEtHEt'lCES: /I j t·~S
29~3 PR I tH II ~JORDS: /I.; t·n,J
300 IF NS=6 THEN 336
316 SA=INT(NW/NS*100+.5)/100
326 PR I NT /I AVERAGE ::;EtHEt-~CE LEt·lOTH: ".; :3A.; II ~,JOF.:m:; /I

336 IF NW=IZI THEN 366
346 WA=INTCNT/NW*166+.5)/166
35121 PR I tH "A"lERACiE ~JORD LEt·lOTH: "; ~JA; II LETTERS
36121 PR I tH /I TOTAL CHf1RACTEF.:S f:::EAD: /I.; t·K
365 Et·m

The calculations for averaging sentence and word lengths are
simple:

Average sentence length = words/sentences

and

Average word length = letters/words

Lines 300 and 330 prevent division by zero in case no words or no
sentences were found in the text. Line 310 calculates the average sen
tence length rounded to two decimal places, and line 340 calculates the
average word length rounded to two decimal places.

190 The C-64 Program Factory

Analyzing a Sentence

The following block performs the analyze_a_sentence subroutine:

:370 E8=1O
380 1:3=0
3910 GOf;UB 440
41010 IF EW=IO THEN 4210
4110 t·~~~=t·~~~+ 1
4210 IF ES=IO AND ET=IO THEN 390
4310 RETURt·~

First the end_of-sentence and in_a_sentence flags are set equal
to 0 (false). Then line 390 calls the analyze_a_word subroutine. If a
word was ended during the execution of the subroutine, the program
adds 1 to the word total. If the program has found neither the end of a
sentence nor the end of the text (ES=O and ET=O), it goes back to the
analyze_a_word subroutine.

If a sentence has ended or the end of text has been reached, the
subroutine ends and returns control to the main program.

Analyzing a Word

Here is the analyze_a_word subroutine:

4410 E~~=IO
4510 I~~=IO
460 ON 1M G08UB 6100,7710
470 IF C$=ET$ THEN ET=l
4:::0 IF C$='ET:t OF.: C$("A" OF.: C:t.) CHF.: $ (122) OF.: ([:$)"Z"

AND C$(CHF.:$(97» THEN 5310
4910 IF IW=B THEN IW=1
5010 IF 1:3=0 THEN IS=1
51 ~:1 t-lT=t-lT + 1
5210
5310

5:32
54121
5510

56121
~:57a
5810
59121

CiOTO 56121
IF [:$="." OF.: C$=" I II OF.: C$="?" OP C$:::::31$:
THEt·~ 540
IF C$<>" -" At·m C$()EL.$ THEt··1 560
IF IW=l THEN EW=l
IF (C$="." OF.: C$="!" OF.: [$::::: II ";''') i=lt·m 1:=;:::: 1
THEt·~ E::;::::: 1
IF ET=l THEN 590
tK:=t·K:+ 1
IF EW=0 AND E8=B AND ET=12I THEN 460
F.:ETUF.:t·~

Text Scanner 191

The end_of_word and in_a_word flags are set to zero (false) in
lines 440 and 450. Then the program gets a character from the text
buffer. Line 460 gets a character from either the keyboard or the disk
file, depending on the value of 1M you specified previously.

Upon return from either of the subroutines (at 600 or 770), C$
contains the character. If the end of text was reached, C$ is equal to
the special end-of-text character ET$; in that case, line 470 sets the
end_of_text flag to 1 (true).

Line 480 determines whether C$ is a letter. If it is, lines 490-510
make the necessary changes to the in_a_word flag, in_a_sentence
flag, and letter _counter.

Lines 530-532 determine whethr C$ is a letter. If it is, line 540
checks the status of the in_a_word flag; if the flag is 1 (true), the
delimiter ends the word, so the end_of_word flag EW is set to l.

Line 550 checks whether C$ is a sentence delimiter and changes the
end_of_sentence flag EF if appropriate.

Line 570 adds 1 to the character _count unless C$ is the end-of-text
character.

If the end_of_word, end_of_sentence, and end_of_text flags
are all 0 (false), the program jumps back to get another character.
If any of them is true, the subroutine ends and returns to the
analyze_a_sentence procedure.

Inputting From the Keyboard

You must type a quotation mark at the beginning of each line of text you
enter. Otherwise, Commodore BASIC's input routine will stop at the
first comma you type.

The keyboard input subroutine allows you to enter text without wor
rying a great deal about line breaks: you can press RETURN after any
word or sentence. Be sure not to press RETURN in the middle of a word,
because RETURN counts as a word delimiter. To end keyboard entry,
press RETURN on an empty line.

6(H3 C$=ET$
610 IF CR)0 THEN 730
620 IF EL=l THEN 660
630 C$=EL$
640 EL=l
65~3 (;jOTO 76~)

660 PRIl'n

192 The C-64 Program Factory

67~) F'R I tH "T'r'PE A OUOTE, THEt·~ EtHER TE::<T"
6:::~) :E:$=I··lU$
69(1 I t'lF'UT B$
7121121 :E:L=LEt·~ 0:: B$)
71121 CR=BL
72121 IF CR=12I THEN 76121
7:;:(1 EL=12I
74121 C$=MID$(B$,BL-CR+l,l)
75121 CR=CR-~ 1
?6~:1 F:ETURt·l

C$ is initially set to the end-of-text marker. The subroutine will
return with this character only if you press RETURN on an empty line or
if you type the end-of-text character somewhere inside a line.

The subroutine draws characters one at a time from a buffer B$.
When the buffer is empty (CR=O), the program prompts you to enter
another line. However, before doing this, the program must account for
the RETURN you pressed to end the line. Line 630 sets C$ to this charac
ter and jumps to the end of the subroutine.

However, suppose you have pressed RETURN on an empty line to sig
nify the end of text. In this case only, EL is set equal to 0 (line 730) so
that the next time the program tries to read the buffer, line 62:0 will
discover that EL=O and will not try to get another line of input.

Inputting From a Disk File

The following lines read from a text file:

?7(1 CiET# 1, C$
771 PRINT C$;: REM SHOW EACH CHARACTER AS ITS READ
772 IF ST=12I THEN 78121
?74 IF ~;T<)64 THEt'l F'fHtH "FILE ".;FI:t.;" I~:; t·lOT

A"/A I LA:E:LE. "
776 C$=ET$
78121 IF C$=ET$ THEN CLOSE 1
79121 RETURt·l

Line 770 gets a character from the disk file. In case of a file input
error other than end of file, line 774 prints an error message along with
the current statistics. If the character is the predesignated end .. of-file
marker ET$, or if the end of file is reached, line 780 closes the file. Line
790 ends the subroutine.

Disk Directory

Here's the subroutine to read a disk directory:

29121121 PFi:I tH "LOAD nw D I PECTOR'r'" •• "
291211 OPEt,~ 1 " ::! .. 4,. "S J ::;EG! " F.:EAD "
291212 I~·J::::I2I
291121 IF 8T=64 THEN 298121
:292[1 GET# 1) AS
2922 IF LENCAS)=12I THEN 291212

Text Scanner 193

293121 IF AS)CHR$(31) AND A$(CHR$(122) THEN 2938
2932 IF IW=12I THEN 291121
:29:;:4 I L·J=12I
2935 PRItH
2937 GOTO 291121
29:38 I L·J= 1
2939 PRItH AS,;
294121 GOTO 291121
298121 CLO:3E 1
2985 PRIt'n
299121 RETURt'l

Refer to Chapter 5 for an explanation of the logic used (the line
numbers are identical),

-Using the Program -----------
Passages from Scientific American magazine, William Faulkner, and
Ernest Hemingway were run through the program. Here are the
results:

Scientific
American

Average sentence length 14.00

Average word 4.76

Faulkner Hemingway

20.55 16.92

3.92 4.46

Where does your writing fall on the scale?

Chapter 13

How do you learn to spell a list of words when no one's around to call
them out to you? One way is to memorize the entire list and practice
writing it. The problem with this method is that it encourages you to
learn the words in a fixed sequence. Later you may draw a blank when
trying to spell a word out of sequence. This chapter's program, Guess
My Word, offers an interesting alternative.

Given a word list that you provide, the program randomly selects a
word and prompts you to guess what it is.

The program is almost identical to the game Hangman but without
the hangman imagery. In our program, a panic meter shows the
number of incorrect guesses you make for each word. The object of the
game is to guess the word before the meter reading goes off the scale.

-How Guess My Word Works -------

The program first gives a clue as to how long the word is: it displays one
hyphen for each letter. The player then attempts to guess the letters of
the word. Each time the player guesses a letter correctly, the program
fills in the corresponding blank or blanks.

Each time the player guesses incorrectly, the panic level on the

195

196 The C-64 Program Factory

meter increases. The program allows the player to make 10 wrong
guesses before the meter fills up; however, you can easily modify the
program to increase or decrease the number of incorrect guesses
allowed.

Your word list can consist of a group of words on a given topic or it
may be a collection of words that are hard to spell. (The sample run of
this program shown later in the chapter uses a list of elements as an
example.)

You have a great deal of freedom to select words for the list. Indude
as many words as you wish, subject to your computer's memory limita
tions. The only limitation is that words can be no longer than 19 letters.

-The Program ------------

The first part of the program sets up a large number of constants. The
explanation for most of the lines is provided in REM (remark) state
ments at the end of each line.

14 TC$=CHR$(31): REM TEXT COLOR, BLUE
16 RD$=CHR$(28): REM RED
18 GC$=CHR$(30): REM GREEN
20 NF=10: REM NUMBER OF ERRORS ALLOWED
21 IF t·FU OR t·W)!3 THEt·~ F'RItH "ERROF.:: t·W OUT

OF' F.:At·WE H·I L H~E 2l1": :::TOP
22 ::: 1 $=" ": REt1 1 :::F'ACE I t·E I DE OUOTE::::
24 t·~U$="": REt'l t·W ::::PACE:::: I t·~::: I DE OUOTE:3

NF in line 20 determines the number of incorrect errors you can
make before the program gives you the answer. You can set this to any
value between 1 and 13. inclusive. Line 21 ensures that NF is within
range before continuing.

81$ is a single space. NU$ is simply a null or empty string; there are
no spaces inside the quotes.

The next block builds up some longer string constants:

26 RC$=CHR$(17): REM CURSOR DOWN 1
2:=: LC=24
30 (30::::U8 1920
32 CD$=SO$: REM CURSOR DOWN 24
34 RC$=CHR$(29): REM CURSOR RIGHT 1
36 LC=4(1
::;:::: GO::;IJE: 192~~1

40 CR$=SO$: REM CURSOR RIGHT 40

42 RCS=CHRS(157): REM CURSOR LEFT 1
44 U>4~)
46 CiO::;UB 192(1
48 CFS=SO$: REM CURSOR LEFT 40
56 RC$=CHRS(183): REM HIGH DASH
52 LC=t·jF:+:3-2
~54 GO::;UB 1920
56 TLS=SO$: REM TOP LINE OF BOX
58 RCS=CHRS(175): REM LOW DASH
60 LC=t·jF:+::;:-2
62 CiO~3UB 192(1
64 BLS=SOt: REM BOTTOM LINE OF BOX
6f':: F:CS=CHRS (32)
l[l LC=40
72 GU::;UB 192~3
74 SSS=SOS: REM 46 BLANK SPACES

Guess My Word 197

The subroutine called in line 30 and in several other lines creates a
string of repeating characters. LC is the length of the string, and RC$ is
the character that is repeated. The variables CD$, CR$, and CF$ are
used to control the cursor position.

The following lines creates the panic meter -a single string of
graphic and cursor control characters:

76 BXS=CHRS(111)+LEFTS(TLS.NF:+:3-2)
77 BXS=BX$+CHRS(112): REM TOP OF BOX
78 BXS=BX$+CHRS(17)+LEFTS(CFS.NF*3)
86 BX$=BX$+CHRS(168)+LEFTS(BLS.NF:+:3-2)
81 BXS=BXS+CHR$(186): REM BOTTOM OF BOX
:::2 "/~'~=40
84 BB=INT«VW-NF:+:3)!2): REM BOX COL.
86 BA=18: REM BOX ROW
88 HO$=CHR$(19): REM HOME CURSOR
96 CS$=CHR$(147): REM CLEAR SCREEN
92 LL= ("/~·J-26) /2

VW is the display width. BA and BB are the row and column loca
tions for the panic meter on the screen display. LL is the column loca
tion for the available character list (the alphabet) on the screen display.

Reading the Word List

The next block reads in the word list and certain other data.

:::: 16 F:EAD TL$
::::26 F:EAD t~l'J
336 DIM WL$(NW).WU(NW).RV$(2)

198 The C-64 Program Factory

332 RV$(1)=CHR$(18): REM REVERSE ON
334 RV$(2)=CHR$(146): REM REVERSE OFF
340 FOR J=1 TO NW
350 F.:EAD L,JL$ (.J)
360 WL$(J)=LEFT$(WL$(J', 19): REM LIMIT LENGTH TO 19
370 I,oJU(.])=0
380 t'lE:"':T J
41 [1 AZ$= 01 ABCDEFGH I J~::U'H,mF'OF.::;TU',,IL,J::'::'T'Z 01

430 WT=0: REM WORDS TRIED
440 WC=0: REM WORDS GUESSED

Lines 310-380 read the vocabulary title TL$, the number of words
NW, and the words themselves WL$(). WU() keeps track of which
words have been used during the running of the program. Line 360
ensures that none of the words exceeds 19 characters. Longer words
would upset the carefully formatted display used during each round of
the word-guessing game.

Displaying the Title and Instructions

The next lines print a title and brief instructions on the screen.

442 POKE 53280,1: REM WHITE BORDER
444 POKE 53281,1: REM WHITE BACKGROUND
450 PRINT C8$;TC$
460 I t'~PUT 01 EtHER A F.: FII··mot1 t·lUt'1BEF.: 01.; f;,:
470 R=RND(-ABSCR»
4 75 PF~ I trr CSt
4:::~j PR I tH TAB ((',,II,oJ-21) ,/2::' .; "GUE::;:; t1'T' I,oJaRD"
49(1 pF.:nn
50[1 PR I tH 01 GUE::;::; Ot-lE LETTEF.: AT A T I t'1E 01

51~) PF.:ltH
520 PR I tH 01 IF 'T'OU t'lAKE 01.; t·lF ; 01 L,jROt·j(J GUE::;SES, "
53[1 PR I trr "I L,j I t·l. IF '1'OU CiUE::;::; i=ILL THE LETTER:;"
~.541] PF.: I trr "OF THE L,JORD.. 'T'OU L,J I t·l. "
542 PF.: I trr
55~) PR I ~n "THE SUBJECT I::; ",; F.: ',,I $ (1) ; TL$; t·lF.:$
56~) C: 1 =2::::
562 C2= (''l'L,J-l :~:) /'2
564 PT$:: 01 PRE::;::;; At·j'·r' KE'T' 01

570 CiOSUB 1510: REM PROMPT FOR ANY KEY

Line 550 prints the subject of the vocabulary list. In the example
used in this chapter, the vocabulary contains a list of chemical elements,
so the title is "Elements."

The subroutine called in line 570 prompts the user to press any key
and then waits until the key has been pressed.

Guess My Word 199

Starting the Game

The next lines control the game play and the continuation menu:

~580 PF.~ I tH C::;$
64121 GOSUB 77121: REM PLAY ONE ROUND
645 PRINT CS$;LEFT$(CD$,12);
65121 IF WT=NW THEN 720
660 HlPUT "PU1'r' ACiAHl Cr""'lD ".; 'Tll$
6?121 IF 'T't-l$="t·l" THEH 73121
6:30 IF 'T't·j$= "'T'" THHl 5:::0
690 l~iOTO 66,,1
?;2121 F'R I tH II t·W t'10RE ~KJF.~D:; LEFT. II

73(1 PF.~ I tH II ~JOr.m:; TR I ED: ".;~.JT

7':+~:1 PfU tH II CORRECT At'lS~JERS: ".: ~JC
760 Et·m

The subroutine called in line 640 plays one round of the game. Upon
return from the guess-a-word subroutine, line 650 checks if any words
remain. When WT (words tried)=NW (number of words), no words
remain, so lines 720-760 end the game.

Lines 660-690 give the player a chance to continue playing or to quit.
If the player elects to quit, lines 730 and 740 print the total words tried
and total correct answers.

Guess-A-Word Subroutine

This subroutine is the heart of the program. As usual, it will be pre
sented in several blocks.

77121 GOSUB 1934: REM DRAW BOX
?80 F==0: REM HUMBER OF ERRORS
8121121 BF=a: REM BLANKS FILLED
::: 1 (1 U:t$=AZ$
:32121 ~oJT=~.JT+1
830 WN=INT(RND(l)*NW)+l
84121 IF WU(WN)=l THEH 83121
:::5121 L,JU':: ~'JI"l) == 1
:::6121 ~'J$="'JL$ (~,Jt'l)
:::7~:1 LE==LEt'l (LoJ$)
872 BC=(VW-CLE+l)*2)/2

:::9~) C1=2
900 CiO:;UB 19:;:(1
910 FOR LP=l TO LE
9:20 F'RHH SU.: "_".:
9::::~) t·4E><:r LP

200 The C-64 Program Factory

94121 PRINT LEFTSCCDS,I)
96121 PRINT LEFT$(CRS,LL);LAS

Lines 780 and 800 set the error and blanks-filled counters to O. Line
810 sets the letters-available list LA$ to include the entire alphabet. The
program keeps an updated list of letters available on the screen to help
the player remember which letters have been tried.

Line 820 increments the words-tried counter WT. Line 830 randomly
selects a word number WN. Line 840 checks the list of words used
WU(); if WU(WN)=l, the word has already been used, so the program
goes back to line 830 for another word number.

In line 860, W$ stores the selected word. Lines 870-930 set up the
word clue, which consists of a single hyphen for each letter of the word.
BC is the starting column for the clue.

Line 960 prints the list of letters available -at this point, all 26 let
ters of the alphabet.

Inputting a Letter
letter:

97121 U=7

:374 (30::;UB 19::::121

The next lines prompt the player to guess a

9::;:(1 F'R I tn "CiUES:3 A LETTEF.: II j

990 C2=P08 (~3)
11~H3121 CL$=LA$
1 (I 1 '.::1 Cir)::;UB 169121

The subroutine called in line 1010 waits for the player to type one of
the characters in CL$; since CL$=Q1$, the subroutine waits for the
player to type one of the available letters.

Upon return from the subroutine, the program has the player's
guess stored in LA$. It removes the guessed letter from LA$ so that
letter won't be tried again:

1'.::12121 C2=(1
11213121 C;O::;UB 193121
112132 PRltH 8::;$;
11214121 L$=C$
11215121 ZAS=LA$
11216121 ZBS=::;1 S
11217121 ZP=G!F
11218121 G08UB 184121
11219121 LAS=ZA$
11(1(1 C1=4
111[1 C2=LL

1112 130:3UB 19:3(1
1120 PRItH LA$

Guess My Word 201

Line 1030 erases the GUESS A LETTER prompt. Lines 1040-1090
remove the letter guessed from the list of letters available, LA$. Actu
ally, the letter L$ is replaced with a blank space S1$. Line 1120 prints
the updated LA$.

Displaying Correct Letters The program next locates every
occurrence of the guessed letter L$ in the secret word W$:

11 :3(1 ::;P= 1
114(1 LF=~~1

1150 C! 1 $=l·J$
1160 C!2$=L$
1170 C!(1=::;P
11 :::0 (JOSUB 1 77~)
1190 IF QF=0 THEN 1270
1200 LF=LF+l
1210 C2=BC+l+(QF-l)*2
122(1 C 1 =2
1222 GOSUB 19:3(1
12:3~) PRUn L$,;
1240 ::;P=QF + 1
1250 GO TO 11 7~)

The variable LF keeps track of the number of times the letter occurs
in W$. Each time a letter is found, line 1230 prints it in the corre
sponding blank space in the clue.

Checking for Completed Words After counting and marking
all occurrences, the program considers several possibilities:

1270 IF LF=0 THEN 1400
1280 BF=BF+LF
1290 IF BF(LE THEN 970
130~) l·JC=~JC+ 1
13H) Cl=7
1320 C2=('./~J-7)/2
1330 GO:3UB 193~)
1340 PRltH I3C$; "GOOD! ! ! "; TC$
1350 Cl=23
1360 C2=('./W-13)/2
1370 PT$="PRESS At'N KE'T'''
1380 GOSUB 1510
1390 F.:ETURt~

If LF=O, no occurrences were found, so the program continues at the

------------------------------~------------

202 The C-64 Program Factory

incorrect guess block (line 1400). If LF>O, line 1280 adds LF to the
blanks-filled total. In line 1290 if BF<LE, all blanks have not yet been
filled, so the program goes back to line 970 to prompt the player for
another guess. Otherwise, all blanks are filled, so the player has guessed
the entire word correctly.

Line 1300 increments the words-correct total. Line 1340 prints a con
gratulatory message, and lines 1350-1380 print a continuation message.

Handling an Incorrect Guess Here is the block that takes over
when the player guesses an incorrect letter:

14121121 F=F+l
1410 GOSUB 1968
142121 IF F(NF THEN 97121
1430 Cl=7
144121 C2=(VW-32)/2
1450 GOSUB 193121
146121 PR I tH RD$;" t·m t10RE TURt·t3 LEFT. At·~S~JEF.: 1:3 •.. "
1470 PRINT LEFT$(CR$,(VW-LE)/2);GC$;W$;TC$;
148121 GO TO 135121

Line 1400 adds 1 to the error total. Line 1410 increments the panic
meter. In line 1420 if F<NF, the player still has chances remaining, so
the program jumps back to line 970 to get another guess.

Otherwise, no chances remain, so line 1460 prints the correct
answer. The program then jumps back to the continuation message
block.

Unrestricted Character-Input Subroutine

This subroutine displays a blinking prompt message and waits until a
character is pressed before returning control to the line that invoked
the subroutine:

151121 POKE 198,0: REM EMPTY KEYBOARD BUFFER
1512 I.oJ= 1
1518 PRHH R'·I$(SGt·~(W+l)+1) j: REt1 S~oJITCH

FOREGROUND/BACKGROUND
1520 W=-W: REM NEXT TIME DO OPPOSITE
1530 GOSUB 193121
154121 PRItH PT$j
1550 GET C$
1560 FOR XX=1 TO 3121
157121 t'~EXT XX
158121 IF C$=NU$ THEN 1518

Guess My Word 203

1590 GOSUB 1930
1600 PRINT RV$(2);LEFT$(SS$,LEN(PT$»);
1620 RETURt·~

The C-64 has a keystroke buffer that allows you to enter information
even before the computer requests it. Such an advanced entry might be
confusing in this application, so line 1510 erases any keystrokes before
continuing.

Lines 1512 to 1520 set the display for normal or reverse color,
depending on the value of W. The subroutine called in line 1930 posi
tions the cursor to row C1, column C2 (set previously), and line 1540
prints the prompt stored in PT$. Line 1550 checks the keyboard for an
available character; if no key has been pressed, the program reprints
the prompt-this time in the opposite coloration (reverse/normal). If a
key has been pressed, line 1590-1600 erases the prompt and line 1620
ends the subroutine.

Restricted Character-Input Subroutine

The next subroutine also gets a single keystroke; however, unlike the
previous subroutine, this one will only accept characters from a speci
fied set:

1690 PT$=S1$
1692 GOSUB 1510
1700 IF C$=S1$ THEN 1690
1710 G!0=1
1720 Q1$=CL$
1736 Q2$=C$
1746 GOSUB 1776
1756 IF QF=6 THEN 1690
1 766 RETURt·~

On entry to the subroutine, CL$ contains the acceptable character
list and C l,C2 specifies the row and column where the prompt should
appear.

The subroutine sets the prompt equal to a single space and then calls
the unrestricted character input subroutine. Upon return from that
subroutine, C$ contains the character pressed. The program refuses to
accept a space (S1$) or any character not contained in the list CL$.
Lines 1710-1750 determine whether C$ is in the list CL$.

String Search

The following subroutine searches for one string inside another. The
subroutine is called by several other parts of the program.

204 The C-64 Program Factory

1770 c!F=0
1780 IF Q0+LENCQ2$)-1)LEN(Q1$) THEN RETURN
17910 IF MID$CC!1$,Q0,LENCQ2$»=Q2$ THEN 18210
1800 00=00+1
1::: 1 ~Z1 GOTO 1 7:::~J
1 :::2(1 G!F=G!0
18:310 RETUf;,:t·l

On entry to the subroutine, ZA$ is the string to be searched, ZB$ is
the string to search for, and QO is the starting position for the search.
Upon return from the subroutine, QF is the position at which ZB$ is
found in ZA$. QO=O indicates the string is not found.

Midstring Replacement Subroutine

This subroutine replaces a portion of a string. It is used to blot out
characters from the letters-available string, ZA$=LA$. Each time the
player guesses a letter from LA$, this subroutine replaces that letter in
LA$ with the character ZB$=Sl$.

1840 ZC$=t·lU$
1850 IF ZP=l THEN 1870
1860 ZC$=LEFT$(ZA$,ZP-l)
187~J ZC$=ZC$+ZB$
1880 IF LEN(ZA$)-LEN(ZB$)-ZP+l=0 THEN 1900
1890 ZC$=ZC$+RIGHT$(ZA$,LEN(ZAS)-LEN(ZB$)-ZP+1)
19(1(1 ZA$=ZC$
191 (;I F:ETUFJl

On entry to the subroutine, ZP is the starting position for the
replacement, ZA$ is the string to be modified, and ZB$ is the new con
tents to be plugged into a portion of ZA$. On return from the subrou
tine, ZA$ has the same length as it did initially, but a portion of its
contents starting at position ZP are replaced by the contents of ZB$.

Repeating Characters

Here's the subroutine that builds up a string of repeating charaeters:

1920 ::;O$=t·lU$
1922 FOR K=1 TO LC
1924 ::a)$=::;O$+F:C$
1926 t·lE:x:T K
1928 RETUF.:~·~

RC$ is the character to be repeated, LC is the length of the string,
and SO$ is the resultant string.

Guess My Word 205

Cursor Positioning

The next two lines move the cursor to any character position on the
screen:

1930 PRINT HOS;LEFTS(CDS,C1);LEFTS(CR$,C2);
1932 F.:ETUF.:t·4

On entry to the subroutine, C1 and C2 are set to the destination row
and column locations. C1 can range from 0 to 23 and C2 from 0 to 39. In
line 1930, HO$ homes the cursor to the upper-left corner of the screen;
CD$ and CR$ move the cursor down to the specified row and right to
the specified column.

Drawing the Panic Meter

These lines draw the panic meter with a panic level of 0 (no errors
made yet):

1934 C1=BA-1
1936 C2=INT«VW-l1)/2)
1938 C;OSUB 1930
1940 PRItH F.:DS.: "PAt'4IC t1ETER".;
1942 Cl=BA
1944 C2=BB
1946 GO:3UB 1930
1948 PRINT BXS;TCS;
1966 RETUF.:t·~

First the program prints a label, PANIC METER, over the meter.
C1 is set to the row just over the box, and C2 is set to the starting
column for the label. Lines 1946-1948 print the meter (referred to in the
program's remarks as a box).

Setting the Panic Level

Whenever the player guesses an incorrect letter, the following routine
increases the panic meter reading:

196::: Cl=BA
1970 C2=BB+(F-l'.3
1972 GO:::UB 1930
1974 PRINT RDS;RVS(1);LEFTS(SSS,3);
1976 PRINT CHRS(17);LEFTS(CFS,3);
1978 PRINT LEFTS(SSS,3);RV$(2);TCS;
1980 RETURt'4

206 The G-64 Program Factory

The panic meter occupies two rows and NF X 3 columns on the dis
play. Line 1974 fills the appropriate portion of the top row, and line 1978
fills in the appropriate portion of the bottom row.

The Data

The next lines give the title of the word list, the number of words it
contains, and the words themselves.

2050 DATA ELEMENTS
206[1 DATA 10
2070 DATA HYDROGEN,HELIUM,QXYGEN,NITROGEN
2080 DATA CARBON,CHLORINE,SODIUM,FLUDRINE.

t·jEm·~., I=iRCjOt·j

-Hints for Using the Program
Figure 13-1 shows a sample use of the program.

Guess My Word may be used for spelling practice or for vocabulary
building. For spelling practice, select difficult words that exemplify a
group of phonetic rules you want to learn. For vocabulary building,
select a group of unfamiliar words relating to a single topic.

ERTER A RANOO" "U~[R ? 4321

Figure 13-1. Sample run of Guess My Word

GUESS m IoIlRD

GUESS O"E LETTER AT A TIM[

Ir wY2~ 1PK~ou13uE~O=tLGV~fStftTERS
or THE WORD, YOU WIN.
THE SUBJECT IS ~UiU"o;

ABCOErGHIJKL""OPQRSTUUWXYZ

GUESS A LETTER

Guess My Word 207

Figure 13-1. Sample run of Guess My Word (continued)

208 The C-64 Program Factory

- - It

ABeD fSHIJKl MOPQ STUUWXYZ

GUESS A LETTER

PANIC METER IIII ____________ ~

- "" R 9 0 ..

A co GH JKL 1! PO S UIJI4XYl

GUESS M LETH:R

P Alii C rM~[;..:H;.:.R:..-___ .., ~------~
Figure 13-1. Sample run of Guess My Word (continued)

CAR 8 0 ..

I) GH H::l PO S UIJWXYZ

6000 I ~ !

PAM I C .:.:M£:..r:.:E;,;R:..-___ ~ ____J

PLAY AGA [" ('UM) ? H
WORDS TR[ED: 1
CORRECT AMSI-4£RS:

READV.

Guess My Word 209

Figure 13-1. Sample run of Guess My Word (continued)

210 The C-64 Program Factory

Be sure to set up the word list in the order shown: the title, the
word-count, and then the list of words. Begin each numbered data line
with DATA, and do not put any spaces inside the words.

Two individuals can playa game using this program by taking turns
guessing letters. A player gets one point for each letter guessed cor
rectly. When a guessed letter occurs more than once in a word, the
player gets an extra point for each extra occurrence.

A computer can't really write poetry any more than it can paint a pic
ture or conceive an idea. You can, however, use the Poetry Generator
program to generate randomly selected words that fall into a grammat
ical skeleton. The result will sometimes pass for a real poem, while
other times the computer outputs a silly but entertaining parody of a
poem.

The vocabulary and poem structure that you provide have everything
to do with the quality of the final result. While randomly chosen vocabu
laries produce interesting and surprising results, adding more struc
ture gives the poems greater coherence.

The Poetry Generator program is quite simple; it makes no preten
sions to having artificial intelligence. However, if you put some thought
into compiling the vocabulary and designing the formats, you can count
on getting some amusing and even amazing results.

To illustrate, the favorite words and verse formats of three poets
were fed into the Poetry Generator. Figure 14-1 shows the results; the
poems were edited for obvious grammatical errors.

-How the Poetry Generator Works -----
Two data structures determine the type of poems produced: the vocabu
lary, stored at the end of the program, and the poem formats, entered
from the keyboard when you run the program.

211

212 The C-64 Program Factory

William Shakespeare

Shall I compare thee to a minion's bosom?
Thou are more tyrannous and more twain
Saucy senses do assail the obsequious lips of sense,
and nymph's music hath all too tender a muse.

Shall I compare thee to a tomb's duty'?
Thou art more seemly and more marig-old.
Sovereig-n loves do assail the tender minions of love,
And s~'llable's actor hath all too decrepit a sphere.

Emily Dickinson

The bird covets her own victory;
Then guesses the company;
In her silent truth buzz no more.

The definition presumes her own thing-;
Then covets the victory;
Of her condensed journey buzz no more.

The thing presumes her own civility;
Then advocates the nectar;
With her forbidden victory perish no more.

Robert Frost

The guests are arched, yellow, and reluctant,
But I have seeds to wake,
And g-rounds to find before I dwell,
And orchards to stop before I hear.
The birches are snowy, long, and lone.
But I have stones to wake.
And steeples to see before I look,
And birches to prefer before I taste.

Figure 14-1. The Poetry Generator produced these verses using- the words
and formats of William Shakespeare, Emily Diekinson, and

Robert Frost

Along with each word you include in the vocabulary, you must indi
cate the part of speech using the eight category codes listed in Table
14-1. For example, RED should be identified as category 2 (adjective),
FALLS as category 5 (intransitive verb), and HITS as category Ei (tran
sitive verb),

Creating a poem format is quite simple. First make up a sample
poem. Then replace each variable word (each word that you want the
program to fill in) with the appropriate code. Leave the other words and
punctuation as they are. As an example, suppose you take the following
impressionistic triplet as a model verse.

Poetry Generator 213

Table 14-l. Word Categories Used in the Poetry C;enerator

Category (example)

Noun (mountain)

Adjediv(' (frost,')

Advprb (happily)

Pn'))(lSition (into)

Intram;itive verb (remain)

Transitiw verb (take)

Subordinate eonjunction (if)

Coord i nate eonju netion (and)

THE DEWDROP HANGS FROM A TWIG
IN LATE WINTER -
A WINDOW INTO SPRING

The grammatical skeleton for that verse is

THE noun intransiti1.'e verb preposition Anou.n
preposition adjective noun
A noun preposition noun

The corresponding poem format is

THE 154 A 1
421-
A141

('ode Number'

2

;)

4

Ii

We simply substitute a code number for each italicized word. Notice
that we include the articles (THE and A) and the dash as fixed ele
ments; they will appear "as is" in every random poem produced accord
ing to this format.

One further detail about poem format. To tell the program to end a
line, you include the special code 9. With this in mind, the actual poem
format you would specify to the program is

THE 1 54 A 194 2 1 -9A 1 4 19

214 The C-64 Program Factory

When the program is reading a poem format, it replaces each
number 1 to 8 with a randomly chosen word from the corresponding
category. Each time the program encounters a 9, it ends the line and
starts a new one. Any other characters in the poem format remain in
their places in the final poem.

The Poetry Generator does not check for subject and verb agreement
or the proper spelling of inflected words. For example, if your vocabu
lary includes verbs in the third person singular and your format
includes a plural subject, you may end up with results like

THE GLUM BULL AND THE BLUE MOON
STALKS THE REBELLIOUS HIGHWAY

Accepting such minor imperfections keeps the program short and
simple. Don't hesitate to edit the poems for grammatical correctness.
After all, even real poets occasionally need a little help.

-The Program -------------
The first block sets certain C-64 features and resets the random number
generator so that a different series of poems is produced each time you
run the program.

10 POKE 53280" 1
20 pm:::E 53281" 1
22 PD=4: REM DEVICE NUMBER OF PRINTER
24 DV=l: REM DEFAULT DEVICE=TV
26 MP=l: REM DEFAULT NUMBER OF POEMS
28 t~U$="": REt1 ~m SPACES I t,~S I DE QUOTES
:30 I ~4PUT II ENTER A RAt~DOt'1 NUMBER "j R
40 R=RND(-ABS(R»
50 PR I tH " m~E t10MEtH ••• "

If your printer has a device number other than 4, change line 22
accordingly.

The next lines read the vocabulary list, which is stored in DATA
statements at the end of the program. You can include any number of
words in the vocabulary as long as the last word is followed by a slash
(J). The program achieves this flexibility by reading the word list twice:
once to see how many words are in each category and a second time to
put the words into the appropriate data structures.

Poetry Generator 215

Surveying the Word List

The following lines make the first pass through the vocabulary list:

60 D!t'1 t·W::)
;::'0 F.EAI! ~J$
:30 I F ~'J$=",/" THEt·~ 120
90 READ T
100 t·~(T)=t·~(n+l
1110 GOTO 70
120 DIM Wl$(N(I».W2$(N(2».W3$(N(3».W4$(N(4»
130 DIM W5$(N(5».W6$(N(6».W7$(N(7».W8$(N(8»

Line 70 reads each word and line 90 reads the corresponding cate-
gory code.

The array N() stores the total number of words in each category.
For instance, N(1) is the number of nouns (category 1). The program
continues reading words until it encounters the end-of-data marker, a
slash (j). You must end the word list with this symbol.

After reading all the words, the program creates separate arrays for
each type of word. In lines 120 and 130, each array is dimensioned to
hold the number of words in the corresponding category. For instance,
W1$() is designed to hold the the N(1) nouns that your vocabulary list
contains.

Reading in the Vocabulary

The next block of lines rereads the vocabulary list, this time putting
each word into the appropriate array.

140 RESTORE
150 READ ~J$
160 I F ~J$=" (''' THEt·~ 430
170 READ T
180 ON T GOTO 190.220.250.280.310.340,370.400
190 Kl=Kl+l
200 ~J1$(KI)=~J$
210 GOTO 150
220 K2=1·<2+ 1
230 ~J2$ (K2) =~J$
240 GOTO 150
2510 K3=K3+1
2610 ~J3$ (K3) =~J$
2710 GOTO 150
280 K4=K4+1

216 The C-64 Program Factory

290 ~J4$(K4)=~J$
:300 (iOTO 150
:310 K5=K5+1
:320 ~'J5$ (K5) =~J$
:330 GOTO 150
340 K6=K6+1
:350 ~J6$ (K6) =~J$
360 GOTO 150
370 k7=K7+ 1
:380 ~'J7$ (f(7) =~J$
:390 GOTO 150
400 K8=K8+1
410 ~J8$(K8)=~J$
420 GOTO 150

Line 150 reads the word W$, and line 170 reads its corresponding
category number T. Depending on the value of T, line 180 selects the
appropriate logic to put W$ into the correct array. The counter vari
ables Kl. K2. and so on ensure that words are added to successive array
locations within each category. By the time the program reads the end
of-data marker in line 160. all the words have been placed into the
appropriate arrays.

The Menu

The next lines print a title and instructions and prompt you to enter the
poem format.

430 t'~L$=CHR$ (13)
440 F$="POEt1 9 9 2 1 4 A 2 1 9 THE 1 3 5.99
450 PRINT CHR$(147)
460 PRItH SPC(13) "THE C-64 POET"
470 PRItH
480 PR I tH "FORt1AT CODES:"
490 F'F.: un" 1-t·lOUt·l 2--ADJECTI "lE"
500 F'F: I tH" 3-AD',/EF.:B 4-F'F.:EF'O:3 I T I Ot·~"
510 PF: I tH" 5- I tHRAt·~::; I T I ',IE i,,"ERE:"
520 PRltH" 6-TRAt'lSITI',lE VERB"
530 PR I t~T" 7-SUBOFm I t·lATE COt'UUt'~CT I Ot·~"
540 PF.: I tH" 8-COt-l.JUt·~CT I Ot·l"
55~3 PR I tH" 9-t'lEloJ L I t'~E"
560 PR I tH" ALL OTHER CHARACTEF.:S ARE USED AS·- IS"
570 F'R I tH "THE CURREtH FORt1AT IS"
580 PRINT CHR$(18); F$; CHR$(146)
590 F'R I tH "EtHEF.: A t'~EL,J FORt1AT OF.: PRESS (RETURltD'"
60~Z1 Fl$=""
610 It'~PUT Fl$

620 IF F1S(>NU$ THEN FS=Fl$
630 I t·lPUT "HQLoJ t1At·l'T' PO Et't:: "; t'1P

Poetry Generator 217

640 PR ItH "OUTPUT TO: 1-r ... ' 2--PR ItHER"
650 I t·lPUT "SELECT 1 OF.: 2 ".: D'·/
660 IF DV(>l AND DV(>2 THEN 640
670 IF DV=l THEN 680
672 OPEt·~ 1.1 PD
674 Ct1D 1

Line 430 stores the control code for a new line (a carriage return,
ASCII 13). Line 440 assigns an initial value to the poem format.

Lines 570-590 print the current format. Line 600 prompts you to
enter a new format line or press RETURN, which leaves the existing
format line.

Line 630 asks you to specify the number of poems MP to be gener
ated; each poem will be different (except for random coincidences).

Lines 640-674 let you specify what output device to use for the poem.

Poetry Generation Logic

The following block of lines generates MP poems using the poem format
F$:

680 FOR J=l TO MP
690 FOR K=l TO LENCFS)
700 SS=MIDS(FS.K.l)
710 IF :::S)="I" At·m :3S(="9" THEt·l 74(1
720 OLoJ$=S$
730 GOTO 92~)
740 ON VALeS$) GOTO 750,770.790,810,830,

:::5~), :37~j. 890, 910
750 OW$=Wl$(INT(RND(l)*N(l»+l)
760 GOTO 920
770 OW$=W2$(INT(RND(I)*N(2»+1)
78~j GOTO 920
790 OW$=W3$CINTCRND(1)*N(3»+1)
:::00 OOTO 92[1
810 OW$=W4S(INT(RND(1)+N(4»+1)
:::2[1 OOTO 920
830 OW$=W5$(INTCRND(1).NC5»+1)
:::40 GOTO 920
:::50 OWS=W6$CINTCRND(1)*NC6»+1)
860 GO TO 92[1
:::70 OW$=W7$(INT(RND(I)*NC7»+1)
:::80 GOTO 920
890 OW$=W8$(INTCRND(I)*N(S»+1)
900 GO TO 92[1

218 The C-64 Program Factory

91 ~j Cll'J$=t·~L$
920 F'F.:II·H mJ:t.;
93121 t'~Ei<T K
94~j F'FUtH
:315121 t·~E::<T J

Lines 680-950 constitute a repetitive procedure or "loop." During
each pass through the loop, the program produces one poem. The larger
loop contains a smaller one: lines 690-930. This smaller loop examines
each character of the format and takes appropriate action depending on
whether the character is a category number, an end-of-line code, or a
literal.

Here's a summary of the logic that evaluates each character S$ of
the poem format F$:

1. If the character is a category code, select a word at random from
the appropriate category, store that word in OW$, and go to Step 4.

2. If the character is the end-of-line code, store NL$ in OW$, and go
to Step 4.

3. Otherwise, store the character in OW$.

4. Print OW$.

The variable S$ holds the character of the format that is currently
under examination. Line 710 determines whether S$ is a one of the
preset codes.

If it is not either of those, the character is treated as a literal and is
immediately assigned to the output variable OW$ (line 720). If S$ is a
category code from 1 to 8 or the end-of-line code 9, line 740 selects the
appropriate logic for each specific category.

Consider the case of S$="l" as an example. All eight categories are
handled similarly.

Lines 750 and 760 handle the case of S$="l", which ndicates a noun.
Recall that N(l) is the number of words in category 1. Accordingly, line
750 gets a random number from 1 to N(l) and uses that number as a
pointer to one of the words in W1$(). The randomly chosen word is
stored in OW$, and the program jumps to line 920, which prints OW$.

Line 930 causes the program to loop back for the next character of
the format until all of its characters have been handled.

Displaying the Continuation Menu

After all the poems have been printed, the following lines print a contin
uation menu:

960 IF DV=l THEN 980
970 F'R ItH# 1 J

975 CLO:3E 1
9:::0 PRItH "cmnIt'~UE Of;,: G!UIT"
990 CI~$= II C II
995 I t~PUT II T''''PE C OR Q "; CQS:
11211210 IF CI~$="C" THEt·~ 45~:3
1010 IF CI~$()"G!" THEt·~ 9:::t1
1020 END

The Data

Poetry Generator 219

Store your vocabulary list in DATA lines starting with 1030. For the
sake of testing the program, use this special list:

1030 DATA NOUN,1,ADJ,2,ADV,3,PREF'.4
11214121 DATA BE-VERB.5,DO-VERB,6,SUB.CONJ.,7.CONJ.,8
1050 DATA ,/

When using this list, the program should print NOUN whenever the
format calls for a noun, ADJ whenever the format calls for an adjective,
and so forth.

After running the program with this test list, type in the vocabulary
list given in Figure 14-2.

1030 REM 66 NOUNS
1040 DATA RIVER, 1, WATER, 1, POOL, 1, MIRROR, 1,

SCENE, 1, BUBBLE, 1
1050 DATA FALL, 1, YEAR, 1, MAZE, 1, DANCE, 1,

FLIGHT, 1, PICTURE, 1
1060 DATA STREAM, 1, HEART, 1, MIND, 1, WATERFALL,

1, BED, 1, COURSE, 1, SHADOW, 1
1070 DATA FORM, 1, IMAGE, 1, SCREEN, 1, CHILD, 1,

GARDEN, 1, STRAND, 1
1080 DATA PEBBLE, 1, SAND, 1, FLOWER, 1, MOTHER,

1, TIME, 1, SPOT, 1
1090 DATA IMAGINATION,!, LIFE, 1, STONE, 1,

BOWER, 1, SUMMER, 1, MEADOW, 1

Figure 14-2. Sample vocabulary for the Poetry Generator .

220 The C-64 Program Factory

1100 DATA THUNDERSTORM,!, GRASSHOPPER, 1,
CYCLONE, 1, ROOT, 1, WOOL, 1

1110 DATA WILDERNESS,!, NIGHT, 1, BRIDE, 1, BODY,
1, SPRING, 1, SEED, 1, MILK, 1

1120 DATA SURFACE, 1. THICKET, 1, ARROW, 1.
MANTLE, 1. WILDERNESS. 1

1130 DATA SUNLIGHT, 1. SAND-DUNE, 1, TRAIN, 1,
CLOUD, 1, RAIN, 1

1140 DATA KEY, 1, WINDOW, 1, TREE, 1, MUSIC, 1,
SNOW, 1, MOUNTAIN, 1, FEATHER, 1

1150 DATA VOICE, 1, TWILIGHT, 1, EARTH, 1, DOOM,
1, ACCEPTANCE, 1, TIME, 1, TRUTH,!,
PATIENCE, 1, FACT, 1, FEAR, 1. SILENCE, 1,

BIRD,!, YEAR, 1, WHISPER, 1, FEAT,!, HOPE, 1
1160 DATA INNUMERABLE, 2, IRREVOCABLE, 2

MICROSCOPIC, 2, PURE, 2, FAIL, 5, UNDAUNTED, 2
DIMINUTIVE, 2. SINGLE, 2. MERE, 2

1170 DATA FAITHFULLY. 3, MARVELLOUSLY, 3, ALWAYS, 3,
HEARS, 6, SUBTRACTS, 6, RECEIVES, 6

1180 DATA DARES, 6, FAILS, 5, FORSAKES. 6, AT, 4,
OF, 4, BY, 4, ABOVE, 4, UNDER, 4, FROM, 4,
AND, 8, BEFORE, 7

1190 REM 17 INTRANSITIVE VERBS
1200 DATA REVOLVES, 5, BREAKS, 5, WATCHES, 5,

SCREAMS, 5. FADES, 5
1210 DATA FLOWS, 5. TALKS. 5, RETURNS, 5, RUNS. 5,

EXISTS, 5. NODS. 5. LIVES. 5
1220 DATA REMEMBERS. 6. REMEMBERS. 5. REMAINS. 5,

WONDERS. 5, VANISHES, 5. WISHES, 5
1230 REM 15 PREPOSITIONS
1240 DATA IN, 4, ON, 4. BESIDE, 4, WITH, 4, FROM, 4,

TO, 4, OVER, 4, UNDER, 4, BY, 4
1250 REM 5 CONJUNCTIONS
1260 DATA AND, 8, OR, 8, BU1~ 7, WHILE. 7,

BECAUSE,7
1270 REM 31 ADJECTIVES
1280 DATA TURNING, 2, DARK, 2, SUSPENDED, 2,

UNCHANGING, 2, FRAIL. 2,
1290 DATA RIPPLING, 2. SAME. 2, EACH, 2, FORMER, 2,

REFORMING, 2, LOW, 2
1300 DATA ROCKY. 2, INTANGIBLE, 2. GLASSY, 2,

SHIMMERING, 2, SECRET. 2
1310 DATA PAST, 2. RED, 2, YELLOW, 2. ALONE. 2,

LITTLE, 2

Figure 14-2. Sample vocabulary for the Poetry Generator (continued)

Poetry Generator 221

1320 DATA CRACKED, 2, DARKENED, 2, FADED, 2,
VARNISHED, 2, FOREIGN, 2

1330 DATA WHITE, 2, WILD, 2, CEASELESS, 2, GRAY, 2,
AGELESS, 2

1340 REM 15 TRANSITIVE VERBS
1350 DATA CHASES, 6, DECEIVES, 6, IGNORES, 6,

SAVES, 6, MAKES, 6, GIVES, 6
1360 DATA SEVERS, 6, OPENS, 6, CLOSES, 6, SEES, 6,

INSTRUCTS, 6, STRIKES, 6
1370 DATA MARKS, 6, FILTERS, 6, PASSES, 6
1380 REM 10 ADVERBS
1390 DATA ONCE, 3, TWICE, 3, NEVER, 3, STILL, 3,

ONCE, 3, AGAIN, 3, SHYLY, 3
1400 DATA FAST, 3, EVER, 3, NEVER, 3, HAPPILY, 3,

SILENTLY, 3
1410 DATA BALL,!, HAT,!, RED, 2, BLUE, 2, FAST, 3,

SLOWLY, 3
1420 DATA UNHAPPILY, 3, HITS, 6, EATS, 6, DRINKS, 6,

LISTENS, 5, IN, 4
1430 DATA ON, 4, OFF, 4, AND, 7, OR, 7, BUT, 7,

WHILE, 8, BECAUSE, 8
1440 DATA /

Figure 14-2, Sample vocabulary for the Poetry Generator (continued)

Figure 14-3 shows a sample run of the program usmg this
vocabulary.

-Putting the Program to Work ------
Now the research begins. Select an assortment of words - take them at
random from a book of poems or any other source. Type them into
DATA lines starting with line 1030. Remember that the last line of your
vocabulary list must be

line number DATA /

substituting an appropriate line number for the italicized words.
Experiment with various formats. Try including prefixes, suffixes,

222 The C-64 Program Factory

THE C-64 POET

FORMAT CODES:
i-NOUN 2-ADJECTIVE
3-ADVERB 4-PREPOSITION
5-INTRANSITIVE VERB
6-TRANSITIVE VERB
7-SUBORDINATE CONJUNCTION
8-COt'UUtK:T I ON
9-t'~E~'J L I t'~E
ALL OTHER CHARACTERS ARE USED AS-IS

THE CURRENT FORMAT IS
8J.I __ ... :I_~
ENTER A NEW FORMAT OR PRESS (RETURN)
"99A THOUGHT, B'T' THE COt1t10DOF.:E99 I F THE 2 1 5 3,

91'JHO 6 THE 2 At·m 2 1 ?999 II
HOW MANY POEMS 3
OUTPUT TO: I-TV 2-PRINTER
::;ELECT 1 OR 2 1

A THOUGHT, BY THE COMMODORE

IF THE RIPPLING SCREEN RETURNS SLYLY,
WHO CHASES THE MICROSCOPIC AND PURE WATER?

A THOUGHT, BY THE COMMODORE

IF THE FORMER WATERFALL NODS FAITHFULLY,
WHO DECEIVES THE MERE AND TURNING HEART?

A THOUGHT, BY THE COMMODORE

IF THE BLUE SHADOW WATCHES NEARLY,
WHO MARKS THE SHIMMERING AND DARK WATERFALL?

Figure 14-3. Sample run of the Poetry Generator

COtHIt·~UE OR QUIT
T',1PE C OR Q C

THE C"~64 POET

FOPt'1AT CODE::;:
1-NOUN 2-ADJECTIVE
3-ADVERB 4-PREPOSITION
5-INTRANSITIVE V~RB
6-TRANSITIVE VERB
7-SUBORDINATE CONJUNCTION
8-COtHut~CT I ON
9-t~E~J LINE

Poetry Generator 223

ALL OTHER CHARACTERS ARE USED AS-IS
THE CURRENT FORMAT IS
;oo~g""' •• =-__ III_~
ENTER A NEW FORMAT OR PRESS (RETURN)

HOW MANY POEMS 3
OUTPUT TO: i-TV 2-PRINTER
SELECT 1 OR 2 1
F'OEt1

MICROSCOPIC BEACH IN A BLUE GARDEN
THE HAT SILENTLY WATCHES.

F'OEt1

BLUE WATER FROM A ROCKY MIND
THE SCREEN FAITHFULLY NODS.

POEt1

ROCKY MAZE ON A BLUE SCREEN
THE BALL TWICE EXISTS.

COtH n~UE OR QU IT
T',1PE C OR Q C

Figure 14-3. Sample run of the Poetry Generator (continued)

224 The C-64 Program Factory

and inflectional endings for special effects. For instance, the format
fragment

6ING THE IS OF YOUR 19

might generate

WALKING THE RIVERS OF YOUR MIND

On the other hand, it might equally well generate the less exeiting

BREAKSING THE DRESSS OF YOUR LAWN

depending on how well your vocabulary is suited to the poem format.

This chapter is adapted from "Roll Over, Robert Frost" by George Stewart, appea.ring in
the February 1983 issue of Pvpular Computing magazine. Copyright 1983 Byte Publica
tions, Inc. Used with the permission of Byte Publications, Inc.

Chapter 15 ._._-_._. __ .. __ ... __ .. _ ... __ ... _ ... _ _ ... __ ._-----

The Electronic Loom program turns your computer screen into a grid
on which you can create colorful designs. You specify the length and
width of the design (it must fit on your display), and the program
creates patterns by combining any characters your computer can dis
play and print using any of the eight primary C-64 colors. Common
punctuation marks and other symbols work well for giving a rough
approximation of real loom work.

If you're interested in weaving, you can use the program as a plan
ning aid to visualize patterns before weaving them on a loom. You can
associate some characters with specific weaving techniques. For exam
ple, a block of hyphens might represent a plain weave, a block of alter
nating hyphens and equal signs might represent a twill weave with its
characteristic diagonal pattern, and a repeating pattern might repre
sent a satin weave (see Figure 15-1).

You can also use the program to create any number of designs
flags, cartoons, and so forth.

The best way to understand the program's operation is to look at its
menu.

225

226 The C-64 Program Factory

P 1 a; n

T\~lil1

-=-=-=-=-=-=-=-=-=-=-
=-=-=-=-=-=-=-=-=-=-=
-=-=-c-=-:-=-.-=-=-=
=-=-a-=-:-=-=-=-=-=-=
-=-=-2-=-=-=-=-=-=-=-
=-=-=-=-=-=-=-=-=-=-:

Satin
=====-=====-==
-=====-====:;:-=
:-=====-=====-
==-=====-=====
===-=====-====
====-=====-===

Figure 15-1. Sample weave patterns

THE ELECTRONIC LOOM

1 - VIEW

2 - PRINT

3 - CHANGE A ROW

4 - CHANGE A COLUMN

5 - COPY A ROW

6 - COpy A COLUMN

7 - COPY A BLOCK

8 - FILL

9 - END

-===
=-!::=
==-=
===-

The first option shows the latest version of the design. When you
start, the design is filled with hyphens. The second option lets you print
the current design. The third and fourth options let you change the con
tents of a single row or column. Changing a row is comparable to
replacing one horizontal thread with another. Changing a column, how
ever, is comparable to replacing a vertical thread -something you can't
do on a real loom.

Electronic Loom 227

The fifth and sixth options let you copy one row or column to another
row or column. The seventh option copies a block (a rectangle). This is
especially handy when you've created a picture or a pattern inside the
space of several rows and columns. You can duplicate the picture by
copying the rectangle that contains it to another part of the grid. The
eighth option lets you fill all areas of the design with a single character.
Option nine ends the program.

-The Program -------------

The first block initializes the display and certain other constants:

1 T::'::$=CHM~$ 0:: 5 ;.
:2 C~:;$=CHR$ 0:: 147)
:3 POKE 5:3280., 0
4 POKE 5:3281, (1
5 ::; 1 $= " ": M~H1 1 ::;PACE I t·lS I DE G!UOTES
6 t·lU$="": REt'1 t·w SPACE:; I t'l::; I DE G!UOTE:::;
7 F.~'./$=CHM~$ (1 E:)
8 t'lP$=CHM~$ 0:: 146;'
9 S9$=CHP$0::8): S6$=CHR$(15): PEM PRINTER

L I t'~E SF'AC I t··ICi
10 D'./=4: REM PRINTER DE'./ICE NUMBEP
20 VS=25: PEM DISPLAY SIZE
:30 VL='./S-2: REM USABLE DISPLAY LENGTH
40 VW=40: REM DISPLAY WIDTH
50 TB$=::; 1 $+ "_=+ >C>::. II

60 t'lC=LEt-l 0:: T8$)
7~j I L= I tH 0:: 1,/l,J,l::::)
:::0 CL$=t'lU$
:32 FOP C= 1 TO :::
:::4 MEAD CL
86 CL$=CL$+CHP$(CL)
:3::: t'4E;'~T C:
90 DATA 144,5.28.159,156,:30,:31.158

Line 9 sets the line-spacing codes used for the Commodore MPS-801
printer. If you have a different printer, see "Using the Program" at the
end of this chapter. Line 10 sets the printer device number. If your
printer has a different device number, change line 10 accordingly. Line
20 sets the display size to 25, indicating the display holds 24 lines. Line
40 sets the display width to 40.

Line 50 stores in TB$ all the characters that may be used to make up
the loom design. You may change the characters; simply include your

228 The C-64 Prograrr Factory

selections inside the quotes. It's a good idea to have a space as one of the
characters; using the blank space, you'll be able to erase parts of the
design. Include as many characters as you wish inside the quotes; how
ever, 15 characters is probably the most you would need. Line 70 calcu
lates the number of 8-character fields that will fit on each display line.

Lines 80-90 store the eight color codes in CL$.

Inputting the Design Grid Size

The next block of lines prints a title and prompts you to specify the size
of the design grid:

100 PRINT CS$;TX$;SPC«VW-19)!2);
102 TL$=" THE ELECTF.:m·~ I C LOOt'1"
104 FOR J=l TO LEN(TLS)
105 L$=MID$(TL$,J,l)
106 CO$=MID$(CL$,INT(RND(1)t7)+2,1)
107 PRINT CO$;L$;
1.218 t'~E::n J
109 PR nn n::$.;
11'Z1 F'RItH
120 I t'WUT "HOl,l t'1At'N F.:m,l::;'? "; Ri'::
125 IF RX(l THEN 120
130 I t'~PUT "Hl)l.l L,l I DE 1:3 EACH POL,P ",: l,J>::
135 IF WX(l THEN 130
140 IF WX(VW-2 THEN 170
15.21 PF.: I tH "L,j I DTH t'1U:3T BE LE:3::; THAN ",; ',,.'L,J-2
160 GOTO 13.)
17.21 DUl D$(P::O
1 ::::0 (:$=T;<$+" ::.:;" + n:$: PEt1 HH TI AL ::::T ITCH T'T'PE
190 GO::;UB 57(1

Given a display width of VW, the maximum design width is VW-3.
There is no logical limit to the number of rows because the program
breaks the design into pages. However, if you specify too many rows,
your computer will run out of memory when it tries to create the pat
tern array D$() in line 170. Each element of D$() corresponds to one
row of the design.

Line 180 sets the initial grid-fill character to a white "X", and the
subroutine called in line 190 fills D$() with the character in C$.

Displaying the Menu

The next lines print the main menu:

2(10 PR I tH CSt ,; "T'T'PE I t,~ THE t'~Ut'1E:EF.: OF 'T'C/UP CHO I CE"
210 PRItH

22121 pF.:nn
;23~3 PRItH
24~3 PF.: I tH
25121 PRItH
26121 PRUn
270 PRIHT
28121 PRnn
290 PRItH
:30121 PRIHT
310 G!=12I

"1-"lIEW'
"2-PRItH"
3-CHAt'K;E
4-CHAt'~GE
5-COPIT' A
6-COPIT' A
7-COP'r' A
8-FILL"
9-Et·m"

312 I~~PUT Q

A RmJ"
A COLUt'1t·4"
RO~J"
COLUt1t·~"
BLOCK"

315 IF Q(l OR Q)9 THEH 21210

Electronic Loom 229

32121 ON Q GOSUB 630,123121,79121,100121,129121,134121,
145121 , 34~j, ~::::(1

::::30 GOTO 2121121

The nine options are treated as subroutines. Line 320 selects the
appropriate subroutine depending on your selection of Q.

On completion of the subroutine you select, line 330 causes the pro
gram to jump back to the start of the main menu.

Filling the Grid

The next lines handle option 8 (fill the grid):

:34121 PRItH "SELECT THE FILL CHARACTEF.:"
350 GOSUB 390
36121 (JOSUB 570
37121 F.:ETURt·4
380 Et·m

The subroutine called in line 350 prints the list of available design
characters and gets your selection. The subroutine called in line 360
fills D$() with the character you select. Line 370 returns to the main
program. Line 380 ends the program (option 9).

Choosing a Design Character

Here's the subroutine that prints the design characters and accepts your
selection. It is used during completion of several menu options:

;:::90
:395
400
405
410
415

FOF.: J= 1 TO tK;
NC$=RIGHT$(Sl$+STR$(J),2)+S1$
PRItH t·~C$.;
PRIHT MID$(TB$,J,l);;
IF J-INT(J/IL)*IL=0 THEN 425
PR I tH ~;PC (4) .;

230 The C-64 Program Factory

42~) GOTO 435
425 F'RItH
43(1 PF.: I tH
435 t·4Ei<T .]
440 PfHtH
445 PR I tH ":::ELECT A CHAF.:ACTEF.: (EtHER 1-".: t'4C; ") ";
45~3 I t'~PUT .]
455 IF .](1 OR J)NC THEN 390
460 C$=MID$(TB$,J,l)
465 FOF.: .]=1 TO 8
470 NC$=RIGHT$(Sl$+STR$(J),2)+S1$
475 PRItH t~C$;
480 PRINT MID$(CL$,.],1);RV$;Sl$;NR$;TX$;
485 IF J-INT(J/IL)*IL=0 THEN 500
490 PRINT SPC(4);
495 GOTO 510
500 PRHH
505 PRItH
510 t·4E:X:T .J
515 PRnn
520 I t·4PUT ":3ELECT A COL OF.: (EtHEF.: 1-8) ";.]
525 IF 3(1 OR J)8 THEN 390
530 C$=MID$(CL$,J,1)+C$+TX$
560 RETURt·4

Line 390 counts from 1 to NC (the number of design characters
available). For each character, lines 395 and 400 print the character
number, and line 405 prints the corresponding character. Line 410
causes the program to skip to a new line after 1L characters have been
displayed on a single line.

After all NC characters have been displayed, lines 440-455 get your
selection. Lines 460-530 get your color selection in a similar fashion. C$
contains a color code and the character followed by the text color code.
Line 560 returns with your selection stored in C$.

The following lines fill the entire design with C$:

570 FOR J=1 TO RX
580 II$ (3) =t'~U$
590 FOR K=1 TO WX
600 D$(J)=D$(J)+C$
610 t'~EXT K,J
620 RETURt·~

Line 580 sets D$(J) equal to an empty string, and line 600 repeatedly
adds C$ to D$(J) until K characters have been added. This process is
done for every row D$(J) of the design.

Electronic Loom 231

Viewing the Design

The next block of lines handles option 1 (view the design):

63'21 PRINT CSt;
640 GOSUB 168'21
650 FOR J=l TO RX
660 PRItH R'./$;
680 PRINT RIGHT$(Sl$+STR$(J),2);
690 PR nn t'~R$;
7'210 PRIt·n D$(J)
710 IF J-INT(J/VL)*VL)0 OR J=RX THEN 750
720 INPUT "PRESS (RETURN) FOR MORE ";Q$
730 PR I ~n CS$.;
740 GOSUB 1680
750 t'~EXT J
760 I t'~PUT "PRESS <RETURt·D TO CotH I NUE "j G!$
77121 PR I t·nCS$';
78121 RETURt·~

The subroutine called in line 640 prints a line of column headings to
help you reference specific areas of the design. The loop from 650 to 750
is repeated once for each row of the design.

Line 700 prints the row. Line 710 checks if the current display page
is full; if it is, line 720 prompts you to press RETURN for the next page of
the design.

Changing a Row

Here's the logic for option 3 (change a row):

79121 I t'~PUT "SPEC I F'r THE ROl,J TO t10D I F'r ",; R
8'21121 IF R(l OR R)RX THEN 79121
81121 GOSUB 168121
82121 PRINT RV$;
83121 PRINT RIGHT$(Sl$+STR$(R),2);
84121 PR I NT t'~R$ j
85121 PRHH D$(R)
86121 I t~PUT "EtHER FIRST COLUt1~~ TO BE CHANGED "; C 1
87121 I t~PUT "EtHEF.: LAST COLUMt~ TO BE CHAt·mED "i C2
880 IF Cl(l OR Cl)C2 OR C2)WX THEN 850
89121 GOSUB 39121
90121 F$=t'~U$

910 FOR J=l TO C2-C1+1
92121 F$=F$+C$
930 t'~EXT J
940 ZA$=D$(R)

232 The C-64 Program Factory

95~3 ZB$=F$
96121 ZP=(Cl-1)*3+1
97~) GO:::UB 1810
980 D$ (F:) =ZA$
99121 F.~ETUPt·~

After you specify the row to be modified, the program prints its cur
rent contents along with a column heading and row label.

The subroutine lets you insert a single character into one or more
contiguous columns on the selected row. Lines 860 and 870 prompt you
to specify the starting and ending columns, and the subroutine called in
line 890 gets your character selection.

Lines 900-930 build F$, a string of character C$ that fills the column
range specified. Lines 940-980 plug F$ into the row starting at column
Cl. Refer to line 960. Since each character occupies three columns (two
color codes plus one character code), t.he actual starting location of the
character is (Cl-l)X3+1. The subroutine called in line 970 performs
the actual modification of the row contents.

Changing a Column

The following lines handle option 4 (change a column);

1 Lj00 I t'~PUT "SPEC I F'r' THE COLUt'1t·~ TO t'10D I F'r' ".: C
1010 IF C(1 OP C)WX THEN 100121
11212121 FOP J=1 TO RX
1 '33~J PF.~ I NT P",.'$.:
11214121 PPINT RIGHT$(Sl$+STP$(J).2);
11215(1 F'R I tH t·~F~$.:
11216121 PRINT MID$(D$(J),(C-l).3+1,3)
107121 IF J-INT(J/VL)*VL)0 OR J=RX THEN 110121
11218121 I t'~PUT "Pf;,~ES:; (F.:ETUF.:tD· FOr.:~ t''iCIRE "; I~$
109121 PR ItH CS$.:
110121 t·~E;'::T J
lila mpUT "EtHEF.~ THE F I F.:::::T ROL,J TO BE CHAt·H3ED "; PI
112121 I t'~F'UT "EtHEF.: THE :::ECOt·m RO~J TO BE CHAt·WED ".: F.:2
113121 IF Rl(1 OF.: Rl)P2 OF.: R2)RX THEN 111121
114f:l GOSUB 39~J
115121 FOF.: J=Rl TO R2
116121 ZA$=D$ (,J)
117121 ZB$=C$
1180 ZF'=(C-l)*3+1
119121 GOSUB 1:::1121
12121121 D$(J)=ZA$
121~) t·lEXT J
1220 RETURt·~

Electronic Loom 233

The logic to modify a column is similar to that for modifying a row
except that the program cannot address a column quite so simply. For
each row R. D$(R) represents the row. In contrast. for each column C.
the program must look at the Cth element of every row in the range
specified.

Line 1000 gets the column number and lines 1110 and 1120 get the
range of rows to be modified in that column. Lines 1150-1210 plug char
acter C$ into the appropriate location of every row in the range speci
fied. Again the apparent column number C must be adjusted to give the
real column number: (C1-1)X3+1. See line 1180.

Printing the Design

The following lines handle option 2 (print the design):

1230
1241!:1
1250
1260
127(1
1275
128t1

OPEN l,DV: REM OPEN PRINTER CHANNEL
FOR J = 1 TO Rio:
PRINT#I,S6$;D$(J);S9$
t'~E::-::T J
PRINT#I,S6$: REM RESTORE NORMAL SPACING
CLOSE 1
RETURt·~

Line 1230 activates the printer. Line 1250 prints the contents of row
J; the line is repeated once for each row in the design. 89$ causes the
listing to be printed at nine lines per inch.

Copying a Rowand Columns

The logic to copy one row (option 5) is quite straightforward:

1290 I ~~PUT "SPEC I F'r' THE ::;OUf;,:CE -f;,:IJL.J ".; F.: 1
1 :300 I t'~PUT "SPEC I F'T' THE DE::;T I t·lAT I m·l-F.:mJ ".; F:2
1310 IF Rl(1 OR Rl)RX OR R2(1 OR R2)RX THEN 1290
1320 D$(R2)=D$(Rl)
1330 RETURt~

After you specify the source row (the row to use as the original copy)
and destination row (the row to be changed into a copy of the original).
line 1320 makes the change.

The subroutine to copy a column (option 6) is a little more complex
because of the difficulty of addressing a column:

1340 I t~PUT "SPEC I F'r' THE ::;OUf;,:CE --COLUt1t·j "j C 1
1350 I HPUT "SPEC I F'r' THE DE:3T I t'~AT I m·1-COLUt1t·~ "; C2

234 The C-64 Program Factory

1360 IF Cl(l OR Cl)WX OR C2(1 OR C2)WX THEN 1340
1370 FOR J=1 TO RX
1 :38~3 ZA$=D$ 0:: J)
1390 ZB$=MID$(D$(J),(Cl-l)*3+1,3)
1400 ZP=(C2-1)*3+1
141~3 GOSUB 1:31~)
1420 D$O::J)=ZA$
1430 t'~E>::T J
1440 RETURt·~

The loop from line 1370 to line 1430 copies the Jth character of the
source column into the Jth position of the destination column. The sub
routine called in line 1410 performs the actual character replacement.

Copying a Block

Here's the logic for option 7 (copy a block):

145121 PR I tH "SOUf;,:CE BLOCI<:"
146121 PR I tH " E~HEF.: F.:JJl.J 8: COL t,W "'::; OF THE ••• "
147121 WPUT " UPPER LEFT COF.:t'~EF.: (F.: 1 , C 1) "; F.: 1 , C 1
1480 I t'~PUT " LJJl.JER R I I3HT CORt'~ER 0:: R2, (2) ",; R:2., C;:~
1490 IF Rl(1 OR Cl(1 OR R2(Rl OR C2(CI OR C2)WX

OR R2)RX THEN 145121
15121121 PRltH
1510 PF.:ltH "DE:;Tlt·mTIOt-~ BLOCk:"
152121 PR I tH " EtHER Rm,J S, COL t,W ,.' ::; OF THE ••• "
153121 I t'~PUT " UPPER LEFT CORt'~EF: 0:: R3" C3' ",; F.::~:, C3
154121 F.:L=R2-R 1
1550 RL'J=C2-C 1
1560 IF R3(1 OR R3)RX OR C3(1 OR C3)WX THEN 1580
1570 IF R3+RL(=RX AND C3+RW(=WX THEN 1600
15:3~) PF.: I tH "COF"T' L,JOULD E::<:CEED LOCJtol BOUt,WAAF.: I ES"
1590 130TO 145~Z1
1600 FOR J=0 TO RL
1610 ZA$=D$(R3+J)
1620 ZB$=MID$(D$(Rl+J',(Cl-1)*3+1,(RW+l)*3)
163121 ZP=(C3-1)*3+1
164121 130SUB 1810
1650 D$(R3+J)=ZA$
166(1 t'~E>::T .]
1670 F.:ETUf;,:t-~

Lines 1460-1530 prompt you to specify the details of the block-copy
information. First you define the source block by locating the upper-left
corner and lower-right corner (lines 1470-1490). Then you define the
upper-right corner of the destination block; the program assumes that
the destination block is the same size as the source block.

Electronic Loom 235

Lines 154(} 1590 ensure that the source and destination blocks are
within the boundaries of the loom. The loop from 1600 to 1660 copies the
specified block, one row at a time.

Auxiliary Subroutines

Here's the subroutine to print column numbers over the grid:

1680 PRI~n RV$j
1690 PRINT SPC(2);
1700 FOR C=1 TO WX
1710 CC=C-INT(C/10)*10
1720 IF CC=5 OR CC=0 THEN 1760
1730 PRIt·n ".".:
1740 GOTO 1770
1760 PRINT RIGHT$(STR$(CC)J1);
1770 NEXT C
1790 PR I tHNR$
1800 RETURN

The heading consists of a dot for every column except for column
numbers ending in 5 or O. In these cases, the program puts in a 5 or O.
Line 1710 calculates CC, the column number modulo 10 (the remainder
after integer division of the column number by 10). When CC=5 or
CC=O, the program prints a 5 or a O.

The final subroutine replaces a portion of a string with the contents
of another:

1810 ZC$=NU$
1820 IF ZP=1 THEN 1840
1830 ZC$=LEFT$(ZASJZP-1)
1840 ZC$=ZC$+ZB$
1850 IF LEN(ZA$)-LEN(ZB$)-ZP+1=0 THEN 1870
1860 ZC$=ZC$+RIGHT$(ZA$JLEN(ZA$)-LEN(ZB$)-ZP+1)
1870 ZA$=ZC$
1880 RETURN

On entry to the subroutine, ZP is the position for the replacement,
ZA$ is the string to be changed, and ZB$ is the string to be plugged
into ZA$. On return from the subroutine, ZA$ contains ZB$ starting at
position ZP.

-Using the Program ----------
Figure 15-2 shows a few steps in a sample use of the program. The
figure illustrates several tricks in using the program that might not be

236 The C-64 Program Factory

Figure 15-2. Sample use of the Electronic Loom

Electronic Loom 237

Figure 15-2. Sample use of the Electronic Loom (continued)

238 The C-64 Program Factory

Figure 15-2. Sample use of the Electronic Loom (continued)

Electronic Loom 239

Figure 15-2. Sample use of the Electronic Loom (continued)

---------------------------------~------~--

240 The C-64 Program Factory

Figure 15-2. Sample use of the Electronic Loom (continued)

Electronic Loom 241

Figure 15-2. Sample use of the Electronic Loom (continued)

242 The C-64 Program Factory

Figure 15-2. Sample use of the Electronic Loom (continued)

evident from the preceding discussion; it is more concise to simply show
the program in use.

Figure 15-3 shows a sample design created with the program. The
design was printed using condensed line spacing: instead of the usual 6

+-----------------------------------+ + .. * .. * * * ... * * * ... * .. * .. * ... *.+ +-****--*--**_*-&_1_ .. -**_*******-***+ +.* .. * .. * .. * .. * I ,it.*. 1*' 1*' .* .. *.+ +=-=-=-=-=-=-=-=-*1*-=-=-=-=-=-=-=-=+ +-=-=-=-=-=-=-=-=*1*_-=-=-=-=-=-=-=-+ +.* .. *. '*1 .* .. *.*. fl ,*.*. 1*' .*. 1*' .*.+ +***************.*.*.***************+ +.*. 1*' .* .. * .. * .. 1*" .* .. * .. * .. * .. *.+ +-----------------------------------+
!1:II:il:lA:ll:l:lfl:l:li:ll:il:l*!lt
+.* .. *. 1*' .* .. *.*. t .*.* .. *. 1*' .* .. *.+
t:;:;:;:;~;:;~;:;:I:;:;:;:;:;:;:;:;:!
+.*. '*1 ._. 1*' .*.*.1.*.*. 1*' 1*' .* .. *.+
+***************.*!*.***************+ +.* .. *. '*1 1*' .* ... * ... *. 1*' 1*' .* .. *.+ +-----------------------------------+

Figure 15-3. Design created with the Electronic Loom and printed
at 9 lines per inch

Electronic Loom 243

lines per inch, the printer line spacing is set to 9 lines per inch, thus
producing a denser, more interesting result. If your printer won't
respond to the codes S9$ and S6$ set in line 9, look in your printer
owner's manual for control codes to select this feature.

Suppose you find that the code sequence 27,65,6 selects 12 lines per
inch (as does the Epson MX-80 printer). To activate this feature, set
S9$=CHR$(27)+CHR$(65)+CHR$(6) and S6$=CHR$(27)+CHR$(65)+
CHR$(12).

This chapter is adapted from "The Electronic Loom" by George Stewart, appearing in the
June 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publications, Inc.
Used with the permission of Byte Publications, Inc.

Chapter 16
•• _~_W¥

.~~~~~:I:)~sjg!lS •••••.•.•... ~l!~:m~~~@r:cle·~~m=···=-=

Remember the Spirograph design toy? It consists of a large fixed circle
and a selection of smaller circles, ellipses, and other shapes. The large
circle has cogs on its inner surface, and all the smaller shapes have cogs
on their outer surfaces.

To draw a design, you select one of the smaller "rotator" shapes and
place it inside the larger "fixed" circle. Place them both on a sheet of
paper, place a pen into a hole on the rotator, and using the pen as a
handle, begin to turn the rotator inside the fixed circle. As it moves, the
pen creates a design on the paper. You can get an astounding variety of
designs by varying the smaller figure's size and shape.

In this chapter, you turn your C-64 computer into an electronic Spiro
graph. Unlike the real thing, you'll only work with a single type of
rotator - the circle. Even so, you'll find plenty of variety among the pos
sible designs. By modifying some of the formulas, you can depart from
the circle-within-a-circle family and venture into some very unusual
patterns. The program uses the C-64's high-resolution graphics and lets
you print your designs on the Commodore MPS-801 printer. Figures
16-1 and 16-2 show sample designs created with this program.

Producing high-resolution graphics on the C-64 requires the memory
access operations PEEK (examine a memory location) and POKE (store
a value in memory).

245

246 The C-64 Program Factory

Figure 16-1. Sample designs created using the standard
circle-within-a-circle formula

Designs in a Circle 247

Figure 16-1. Sample designs created using the standard
circle-within-a-circle formula (continued)

Figure 16-2. Sample designs created using the modified
circle-within-a-circle formula

248 The C-64 Program Factory

Figure 16-2. Sample designs created using the modified
circle-within-a-circle formula (continued)

Designs in a Circle 249

-The Program -------------

The designs are drawn on a high-resolution display that is completely
separate from the ordinary text display. The first block reserves
memory for this high-resolution display and sets up certain program
constants:

2 GOTO 9:::(1(1
4 REM DON/T DELETE LINE 4
5 POKE 5328121,1: REM WHITE BORDER
6 POKE 53281,1: REM WHITE SCREEN
7 PRINT CHR$(154);: REM LIGHT BLUE
::: D It'1 t'1 ;.~ 0:: 7)

9 FOP B=0 TO 7
1(1 t'1;'~O::B)=::2l(7-B)
11 ~'4E)<T B
12 8C=11/15: REM ADJUST HORZ/VEPT SCALE
14 CX=160: CY=100
15 RR=INT(CY/8C): REM MAXIMUM CIRCLE RADIUS
;2Lj Gt'1=245?6
21 Ct'1= 16384
30 CC=14*16+1: REM LT BLUE ON WHITE
4121 CS$=CHR$(147): REM CLEAP SCREEN
44 t·4U$="": F.: E t'1 t~O SPACE::; I t·4::; I DE G!UOTE::;
5121 PI=4*AH4(1)
55 PR=4: REM PRINTER DEVICE NUMBER

Line 2 jumps to a routine that protects an area that stores graphic
images. Line 4 is the point of return from the routine; as the remark
says, this line should remain in the program.

The array M%() is used to analyze the contents of the graphics
memory one bit at a time. The eight elements of M%() correspond to the
place values of the eight bits in a byte, as shown below:

Bit number:

Place value:

o 1 234 5 6

128 64 32 16 8 4 2

7

1

The use of M%() is explained in more detail later in this program
commentary.

se is a scaling factor that makes circles look like circles rather than
ellipses when they are drawn on the screen. Before plotting a point X,Y,
the program multiplies Y by se.

ee determines the foreground and background color of the graphics
screen. To calculate ee, multiply the foreground color code by 16 and
add the background color code. For a foreground color of light blue
(code 14) and a background color of white (code 1), ee=14XI6+1=225.

250 The C-64 Program Factory

The point CX,CY is the center of the fixed larger circle in which
designs are drawn. GM and CM are the starting locations of high
resolution graphics and color memory.

PR is the printer device number. If your printer has a device
number other than 4, change line 55 accordingly.

Printing the Title

The next block of lines prints a title and sets up the graphics memory
color scheme.

90 PP I tH CS$
95 PF.: I tH :3PC: < '?:J; "t.t.t. DE:::; I Cit·j:::; I r·j A C I F.:CLE t.t.t."
96 F:E]'1
U30 PRItH
11215 PF: I tH "EF.:A::; I tK, COLClF: t'IG101?'r'. 1.,1 A I T 1. (1 :::;ECCltHI:::;."
1 08 (JOSUE: 95~3

The subroutine called in line 108 fills graphics memory with the
background color specified by line 30.

Setting the Circle Parameters

The next program block prompts you to specify the circle sizes and
other details that determine the final appearance of the design:

11C1 PRHH
112 F'R I tH "F:AD I U::; OF F I ::ED c: I F:CLE .: 1 C1··· "; F:F.:; " :. "
114 HWUT PA
115 IF F:A(ll21 OF: RA)RR THEN 112
117 PRWT
12121 PF.: I tH "F:AD I U::; OF' F:Onn I He; C I F.: c: U:: .: J. ... " , F:FI; ", "
125 I NF'UT F:B
140 IF RB)RA OR RB(l THEN 115
145 F'F: I tH "II I :::::TAtK:E OF PEJ~ FF:CIt'1 CEtHER 11·-".; F:B.; " :. "
1 :;~3 HlPUT D
155 IF D(1 OF: D)RB THEN 145
15? t'1::;::::F.:B
16(1 PR I t..JT "::;TEF' :::; I ZE '1- "; t'1:::;; " ;. "
1 (:'5 I HPUT :::;F'
17121 IF SF(1 OR SF)MS lHEN 160
1 ~~o Hl=::;F/'RA
2011 AI=Hj
260 HlPUT "ERASE HI -RE::) t'1 Et-WR 'T' is/Tn''.; 'r'tH
,270 IF 'rll:f.;::.," r·j" THEtl :3:5121
:2:::0 PF: I tH "ERA':; I t·le; HI -F'FS t'1Et'IOP'r'. 1'11=1 I T ,'+:-'; :::;ECotlD:~:;."
290 GOSUB 91121: REM ERASE

Designs in a Circle 251

:35121 F'P1tH "l,JHILE DPI=t(,J I t·m 1:3 H~ F'POGF.:E:::;::3 ..
F'PE::;:::; l=t t·~ ',-' "

:352 PRItH "KE'T' TO RETURt·~ TO t1Et-~U • "
::::5:;: F'PltH
354 PRItH "tKll,J F' F.: E ::; ::; F:ETUF.:t·~ TU :3TAPT DRmJIt·W. "
:38'21 II·iPUT ;<1<$:

Refer to Figure 16-3 for a pictorial explanation of many of the quan
tities referred to in this block.

Four key parameters are set during this specification dialogue. RA
is the radius of the fixed outer circle. The upper limit for RA is deter··
mined by the maximum Y coordinate that will fit on the screen, taking
into account the use of the scaling factor se.

RB is the radius of the rotating inner circle. D is the distance of the
pen from the center point of the rotating circle MS is the maximum
step size allowed; it is always set equal to the radius of the rota.ting
circle.

Rotating
circle

Pen loeation

Figure 16-3. Parameters that determine the design

252 The C-64 Program Factory

Lines 260-290 gives you an opportunity to erase the high-resolution
graphics memory before beginning the drawing. When running the
program, you should always select this option for the first drawing. For
later drawings, you may decline to erase the graphics screen so that a
new drawing can be superimposed upon a previously drawn image.

Drawing the Design

The next block of lines draws the design:

390 GOSUB 990: REM SWITCH TO GRAPHICS
430 A=0: REM INITIAL ANGLE
440 GOSUB 820: REM COMPUTE NEXT X AND Y VALUES
450 GOSUB 870: REM PLOT X,Y
460 A=A+AI: REM NEXT ANGLE
4S<(1 (JET C:t
500 IF C$=NU:t THEN 440

These lines comprise a loop (a repeating sequence): a plot a point,
rotate the inner circle, and plot another point. The loop continues until a
key is pressed.

The subroutine called in line 390 switches from the text display to
the graphics display. Line 430 sets the initial angle. The subroutine
called in line 440 calculates the correct X and Y coordinates for angle
A, and the subroutine called in line 450 plots the point. Line 460 rotates
the inner circle by adding an increment to angle A. Before continuing,
line 490 checks to see whether a key has been pressed. If none has been
pressed, line 500 jumps back to calculate the coordinates of the next
point.

Continuation Menu

If a key has been pressed during the drawing loop, these lines print a
continuation menu:

~5 1(1 CiCl:::tIB
520 F'F: I tn
r:::'-I'-' ._1.-::"::' PF:ItH
~5:2 :~: F'R I trr
524 F'PItH
c,-.t:"
,_I t::. ,_I F'F:HH
~5::::l1 F'P I tH
'540 F'I? I tH
542 PF.: ItH
544 F'RltH

1030: PEM PESTORE TEXT DISPLAY
C::::t
"F' r::<ED U RCLE F:fHJ H.I::; ::;:" .; F:H
"Wt·jEF: C I F:Cl_E F:f:m IU~:; ::::" .; PI:
"F'Et·j D I ::nl=ttK:E < I t·jt·jEF.: elF:" > :~:" .; Ii
":::;TI::P :::; I ;~E :=: "; :3r:'

" 1·_·COtH I HUE DF:m,J I t··lei"
"2-CHAt'lCiE c: I F:CLE r:'fiF:~it'1ETEF::::;"
":;:-F'R I t·jT DE:::; I Cil··j"

545 PP I tH "4-FF.:EEZE DF.:A~J I t·w"
546 F'F.: I tH "5-EHD P F.: 0[; F.: At'1 "
552 I t·4PIJT C
555 IF C(1 OF.: C)5 THEN 530
560 ON C GOTO 610,110,630,570,9910

Designs in a Circle 253

The five continuation options are: 1 - CONTINUE DRAWING,
2 - CHANGE CIRCLE PARAMETERS, 3 - PRINT THE DESIGN,
4 - FREEZE DRAWING (view the design without changing or adding
points to it), and 5 - END.

If you select option 2, change circle parameters, the program simply
jumps back to the specification dialogue.

Continuing and Freezing the Design

The next block handles options 1 and 4 (continue the drawing and
freeze the drawing):

570 AI=0: F.:EM AHGLE INCF.:EMENT IS 0
5f:0 (iOTO 612
610 AI=IH: F.:EM SET NON-ZERO AHGLE INCREMEHT
612 GO::;UB 990
615 PRIt·nCS$
(::2~J GOTO 440

For the freeze option, lines 570 and 580 set the angle increment to 0
before reentering the drawing routine. For the continuation option, line
610 sets the angle increment to a nonzero value and line 612 jumps back
into the drawing loop.

Printing the Design

Because of variations in the way printers handle high-resolution graph
ics, the following block of lines works only with the Commodore
MPS-801 printer or other compatible graphics printers:

630 OPEt·~ 1., F'F.:
640 FOF.: Yl=0 TO 28: F.:EM 29 7-DOT POWS
650 F'RIHT#1,CHF.:$(8); :F.:EM GF.:APHICS MODE
660 FOF.: PX=0 TO 319
670 OC=128: F.:EM GRAPHICS CHARACTER CODE
680 FOF.: Y2=0 TO 6
690 P'T'='r'l ~?+'r'2
700 IF F'Y)199 THEN Y2=6: GO TO 740
710 MA=GM+40*(PY AND 248)+(PY AND 7)+(PX AND 504)
720 BV=SGN(PEEK(MA) AND M%(PX AND 7»

2b4 The (>64 Program Factory

730 OC=OC OR M%(7-Y2)*BV
740 t·IE::<T 'T'2
750 PRINT#I,CHRt(OC);
76(1 t~E>n F'>::
77~3 PRHlT#L
780 t'~E>n 'T'l
7::H3 CLO::;E 1
:::00 (iOTO 520

The MPS-80l prints graphic data in columns that are seven dots
long, as shown in Figure 16-4. The program must do quite a few compu
tations to translate a screen of video dots into a page of printed dots.

Line 630 sets up the printer as output device number PR (PR must
be correctly set in line 55).

The graphics screen consists of 320 columns numbered 0-31H and
200 rows numbered 0-IHH. Copying a screen to the printer involves
printing 29 rows in which each row contains 320 7-dot columns.

~---- 320 "columns" of graphic units -----l

\ ~

\
\ .
\ .
\ .
\ .

"\ .
•
•

graphic unit
7 dots per J

~---

Figure 16-4. Printing graphics units on the Commodore MPS-801

Dc·signs in a Circle 255

Twenty-nine rows of seven dots gives 208 dots in the vertical dimension
three more than the graphics screen actually contains. Accordingly, the
last three dots of the 29th row are always printed as blanks.

Variable Y1 in line 640 counts through all 29 rows. Variable PX in
line 660 counts through all 820 columns. Variable Y2 in line 680 counts
through the 7-dot columns that make up a graphics character on the
MPS-SOI printer. Line 650 sets the MPS-S01 printer in the dot graphics
mode, and line 670 initializes OC (the output character) to a graphics
value (graphics characters are greater than or equal to 12S).

Yl and Y2 together produce PY, the vertical axis coordinate of the
point being printed, according to this formula:

PY=YIX7+Y2

Line 700 checks whether PY is one of the three nonexistent graphics
rows mentioned previously. If it is, the program advances to the next
coordinate. Otherwise, the program examines the on/off status of point
PX,PY. Line 710 finds the memory location MA that contains the
desired point. Line 720 uses the array M%() to determine whether the
point is on or off. The expression PX AND 7 makes all but the three
least significant bits of PX zero, producing a value from 0 to 6. The
expression PEEK(MA) and M%(PX AND 7) returns a 0 if the indicated
point is off and the place value of the point if it is on.

Line 730 incorporates the current point status into the output char
acter code OC. After all seven dots of the graphics until have been
accounted for, line 750 prints the graphics character OC. After a full
320 graphics units have been printed, comprising one output row, line
770 prints a carriage return to start a new line.

After all 2S graphics rows have been printed, line 790 closes the
printer device and line SOO jumps back to the continuation menu.

Subroutines and Auxiliary Routines

Some of the program logic is put into subroutine form to facilitate pro
gram debugging and to make the main program logic easier to follow.

Calculating a Point on the Design These lines calculate the
coordinate of a point on the design, based on the current parameter
setting:

820 X=(RA-RB)+COS(A)+D*COS«RA-RB)+A!RB)
830 Y=(RA-RB)+SIN(A)-D+SIN«RA-RB)+A!RB)

-------------------------~-----------

256 The C-64 Program Factory

840 PX=INT(ABS(X)+.5)+SGN(X)+CX
850 PY=INT(SC+(INT(ABS(Y)+.5)+SGN(Y)+.S))+CY
:::60 F:ETUR~'~

Lines 820 and 830 are based on standard math formulas for "circles
within circles," or epicycloids. Both X and Yare computed as functions
of the angle A, which is measured in radians rather than degrees (1
radian = 180/PI).

Initially X and Yare calculated with respect to the origin 0,0. Line
855 adjusts X and Y since the center point of the design is actually at
CX,CY. Note the use of the scaling factor SC in line 850 to compensate
for a vertical bias present in most television images.

Plotting a Point Given a coordinate pair PX,PY, the following
subroutine plots the corresponding point in graphics memory:

870 IF PX(0 OR PX)319 OR PY(0 OR PY)199 THEN RETURN
880 MA=GM+(40+(PY AND 248))+(PY AND 7)+(PX AND 504)
890 POKE MA,PEEK(MA) OR M%(PX AND 7)
:~1(10 F:ETUF:r'!

MA is the memory address that contains the point. However, MA
contains seven other points as well (one for each of the eight bits in a
byte). The expression M%(PX AND 7) in line 890 indicates which bit is
referenced by PX,PY. Refer to Your Commodore 64 for a full explana
tion of graphics-plotting techniques.

Initializing Graphics and Color Memory Before doing any
graphics, the program must load a uniform background and fore
ground color scheme into color memory. The following subroutine does
this:

910 FOR J=GM TO GM+7999 REM FILL GRAPHICS MEMORY
920 pm:::E J) 0
93(1 NE::-::T J
940 F:ETURr~

Before the first design is drawn, the high-resolution graphics
memory must be erased (otherwise, it will contain an undesirable dot
pattern). When changing design parameters, you may also want to erase
the graphics area before drawing the new design. These lines do the
erasing:

950 FOR J=CM TO CM+999
960 POKE J,CC REM CC = FG*16+BKG

97121 t'~E::<T .J
98121 F.~ETUF.~t·4

Designs in a Circle 257

Switching Between Text and Graphics The program uses two
separate memory areas to store text (such as the menus) and graphics.
The next block of lines switches from text to graphics:

99121 POKE 56576, (PEEK(56576) AND 252) OR 2
10121121 POKE 53272,8
lela POKE 53265,PEEK(53265) OR 32
102121 RETURt·4

The next block switches back to text from graphics:

11213121 POKE 56576, (PEEK(56576) AND 252) OR 3
1040 POKE 53272,21
112150 POKE 53265,PEEK(53265) AND 223
1 ~::16[1 F.~ETUP~··I

Allocating Memory for Graphics The final two routines pro-
tect memory for the high-resolution graphics screen and release the
memory at the end of the program.

SI~3eJl21 POI<E 52/64
981121 POKE 56,64
9:::20 CLR
98:3121 OOTO 4
991121 POKE 52,128
992121 POKE 56,128
993121 CLR
9940 END

-Using the Program -----------
You should be able to duplicate the designs shown in Figure 16-1.
Experiment with different values for the larger circle, smaller circle,
pen location, and step size.

One thing you'll notice is that the program draws designs very
slowly. This is because of the large number of calculations that must be
made before each point is plotted.

To reduce your waiting time, select a larger step size. This will cause
the design to be drawn in dotted lines; however, you will quickly see the
general outline of the design. If you like the design, you can go back to
the continuation menu, select the change circle parameters option, and
change only the step size (leave all other parameters unchanged).

For solid line designs, select a step size of 1. Designs using this step

258 The C-64 Program Factory

Figure 16-5. Sample printout of overlaid designs

size may take as long as 30 minutes to complete -so be sure you have
previewed the design using a larger step size.

You'll notice that the program keeps drawing the design, even after
it begins retracing lines it has already drawn. At this point, stop the
drawing by pressing any key and you will see the continuation menu.

To superimpose one design upon another, select the change circle
parameters options, enter new values, but do not erase the graphics area
when the program gives you that as an option. Your previous drawing
will remain on the screen while the new one is drawn.

Figure 16-5 shows a sample printout. If you plan to make such prin
touts, set SC=1 in line 12 before running the program.

Variations You can select another family of designs by changing
the formulas. However, you must take care in making such changes or
the design will exceed the limits of the C-64 graphics window.

The following changes produced the pictures shown in Figure 16-2:

820 X=(RA-RB)*COS(A)+D*COS«RA+RB)*A/RB)
830 Y=(RA-RB)*SIN(A)-D*SIN(CRA+RB)*A/RB)

Chapter 17

Cryptography, or secret writing, has been in use for almost 4000 years.
Diplomats, military personnel, religious figures, and furtive lovers have
all used it to send private messages through public channels. And a lot
of people practice it just for fun.

The Secret Message Processor (SMP) program presented in this
chapter turns your C-64 into a full-function code machine. The pro
gram converts English or any other language (plaintext) into apparent
gibberish (ciphertext) and vice versa. The text is entered from the
keyboard or read from a disk file, and the result is displayed on the
monitor, output to a printer, or saved in a disk file.

In a typical use of the SMP, you and a friend both have access to a
C-64 computer. The two of you agree on a key value prior to sending the
secret message. You run the SMP, input the key value, and type in the
plaintext. The program outputs ciphertext to a printer or disk file. You
send your friend the printout or disk.

When your friend receives the ciphertext, the process is repeated:
running the SMP, entering the key value, and typing in the ciphertext
or loading it from disk. Presto! The program restores the original
message.

Well, not quite presto: the program processes sample text at the rate
of 3.478 characters per second, or 0.2875 seconds per character. At this
rate, it takes 11.5 seconds to process (encipher or decipher) a line of 40
characters and over 21 minutes to process a lOOO-word document.

259

260 The C-64 Program Factory

The processing delay is acceptable for short messages, but is too slow
for longer documents. Fortunately, the program offers a disk-to-disk
option that allows you to ignore the program while it processes a long
prepared document. You can read the processed text later without any
delay for processing. This procedure is explained later.

-Secrets of the SMP ----------
We'll start with a few definitions.

A cipher is a process that converts plaintext into ciphertext or vice
versa. The two general categories of ciphers are transposition and
substitution.

Transposition ciphers rearrange the letters of the plaintext accord
ing to a definite set of rules. The resultant letter-frequency distribution
(the number of A's, B's, C's, and so forth) remains the same, but the
sequence is changed.

Substitution ciphers replace each letter of the plaintext with another
letter by using a replacement table. The letter-frequency distribution is
different in the plaintext and ciphertext, but the sequence of letters is
the same -that is, the nth letter in the plaintext produces or eorre
sponds to the nth letter in the ciphertext.

Figure 17-1 shows examples of each type of cipher.
The cryptographic method employed by the SMP is a form of substi

tution cipher.
The program has a list of 64 characters (the cipher list) that can be

processed. Any eharacters that aren't in the list are left as is (not pro
cessed). Cipherable characters are the apostrophe, the hyphen, the dig
its 0 through 9, and all uppercase and lowercase letters.

The SMP also has a list of numbers known as a "key stream." Each
cipherable character of the plaintext is paired with a number taken
from the key stream, as shown in the following example:

Message:
Key stream:

m e e t
47 17 19 34

m e
56 3

a t
4 57

7 p m
58 34 36

Given a character-number pair, the program derives the ciphertext
charaeter.

The SMP can generate a very large number of different key
streams; to decipher a message, you use the same key stream that was
used to encipher it. The "key value" determines which key stream is
used.

Secret Messages 261

TRANSPOSITION: Write down the message one line at a time. five l'olumns to a
line. Read off the ciphertext one column at a time.

THE N
E W P A
SSW 0 R
DIS
eRA B T
R E E

Plaintext: THE ~EW PASSWORD IS CRABTREE.

Ciphertext: TESDCRHWS REE WIAE POSB.NAR T.

SUBSTITUTION: Replace each letter with its third successor in the alphabet:

A B C D E F G H I .J K L M N 0 P Q R S T LT \' W X Y Z

D E F G H I .J K L M N 0 P Q R S T LT \' W X Y Z A B C

Plaintext: THE NEW PASSWORD IS CRABTREE.

Ciphertext: WKH QHZ SDVVZRUG LV FUDEWUHH.

Figure 17-1. Examples of simple transposition and substitution ciphers

After pairing the plaintext characters with numbers from the key
stream, the program follows these steps:

1. Find the location of character e within the 64-character cipher
list. By convention, the first position in the list is position 0, and
the last is 63. Therefore, the position of character e is a number
from 0 to 63. Refer to this number as pre), short for position of e.

2. Take the number n that is paired with character e, and calculate
n XOR pre). (The XOR operator is explained next.) The result of
this calculation is a number ranging from 0 to 63. Call it p(d).

3. Locate the character within the cipher list at position p(d). Call

262 The C-64 Program Factory

that character d. It is the ciphertext character corresponding to
plaintext character c.

-The XOR Operator ---------

The XOR is a binary logical operator. Given two numbers A and B,
XOR compares their binary representations one bit at a time to produce
a result C. The outcome of each bit-to-bit comparison determines the
on/off status of the corresponding bit in the result C.

The following table summarizes the rules for comparing bits from A
and B.

A XOR B = C

0 0 0
0 1 1
1 0 1
1 1 0

For example:

Binary Decimal

(1) A 10101110 174

B 01110111 119

C 11011001 217

(2) A 11011001 217

B 01110111 119

C 10101110 174

(3) A 11011001 217

B 10101110 174

C 01110111 119

As illustrated in these examples, XOR has a special property: if C=A
XOR B, then A=C XOR Band B=C XOR A. In other words, the same

Secret Messages 263

function that generates C can be used to regenerate either of the origi
nal operands when the other operand is known. That's why the SMP is
able to encipher or decipher a message using the same program logic.

For a specific example refer to the message shown in Table 17-1. The
position of M, the first letter of the message, in the cipher list is 24; in
short, p("M")=24. The key stream number assigned to M is 47. Calculat
ing 24 XOR 47 produces the number 55. The character in the cipher list
at position 55 is "r." By doing the same for each letter and number, you
encode the entire message.

The deciphering process is exactly the same. The ciphertext charac
ters are paired with numbers from the original key stream, and the
preceding steps 1 through 3 are repeated.

Table 17-2 illustrates the calculations for deciphering the sample mes
sage. Note that it is identical to Table 17-1, except that the data from
columns 1 and 2 are exchanged with the data from columns 4 and 5.

You can sum up the enciphering/deciphering process with two equa
tions. Remember that p(character) refers to the position of character

Table 17-1. Steps for Enciphering- the Messag-e meet me a1 7 pm

Cipher-list' Cipher-list
Input Position Ke~' Stn-am Position p(d) Output

Charaeier (' pie) Value n = pie) XOR n Character d

m ~1 47 Sf) R
e J(j 11
e J(j 19 ::l L
t :)1 :i4 61 X

m 24 ,'if) :l~ u
e Itj :1 19 h

a 12 4 /l 6
::l 1 57 :3/l A

7 9 51l 51 N
p 27 :)4 57 T
m 24 3(j (if) W

*Cipher list: '-0123456789abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

264 The C-64 Program Factory

Table 17-2. Steps for Deciphering the Message R-LX uh 6A NTW

Cipher-list* Cipher-list
Input Position Key Stream Position p(d) Output

Character e p(c) Value n = p(e) XOR n Character d

R 55 47 24 m
1 17 Hi e

L :~ 19 Ifi e
X iiI :14 :)1 t

u ;~2 5G 24 m
h 19 :) Hi e

6 Il 4 12 a
A :11l [il ;n t

N GI fiS 9 7
T ;:)7 ;q 27 p
W 6(J :lli 24 m

*Cipher list: '-OI23456789abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

within the cipher list. Knowing p(character}, you can find character, and
knowing character, you can find p(character}.

To encipher c:

p(d) = p(c) XOR n

To decipher d:

p(c) = p(d) XOR n

-Source of the Key Stream ---------
The sequence of numbers that comprises the key stream is the key to
enciphering or deciphering a message. Once a message has been enci
phered, only the identical keystream can restore it to plaintext.

When this cryptographic method is used manually, both parties
(sender and receiver) keep a printed copy of the key stream. They may
even have a book of different key streams and a prior agreement about
which key stream to use on each given day.

Secret Messages 265

The key stream we'll use is built right into the C-64. It's more com
monly known as the random number generator, or RND in BASIC.

The RND function returns an apparently random value greater than
or equal to 0 and less than 1. The value is not really random; it is
determined by a "seed value" hidden in the C-64's memory. Each time
the C-64 executes the RND function, the seed value changes, so that the
next time RND(l) is used, it generates a different value. After a very
large number of uses, RND(l) completes its sequence and starts over.

Our key stream must consist of numbers between 0 and 63. To scale
the result of RND(l) into the range 0-63, we multiply by 64 and take the
integer portion of the result.

We must also be able to generate a repeatable sequence of numbers.
To do this, we use the RND function with a negative argument greater
than -32768 and less than O. This "primes" the RND function with a
particular seed value. For instance, using RND(-l) establishes 1 as the
seed. Subsequent uses of RND(l) will return the sequence 0.328780872,
0.978964086, 0.895758909, 0.161031701, Scaling to the present
range produces 21, 62, 57, 10,

In summary, the C-64 has a built-in "book" of key streams. To select
a given key stream for enciphering, specify a negative number from
-32767 to O. The same number must be used as the key to decipher a
given message.

-The Program --------------

The program is presented in logical blocks. Type them in as you read
along. Before you begin typing, put your C-64 into lowercase mode by
pressing the SHIFT and COMMODORE keys together. This will allow you
to type in certain string constants correctly.

The first block sets up certain useful display and string constants.

1 Poke 657J128: rem disable uc/lc switch
;2 Pri~t chr$(14);: rem lowercase disPla~
10 s 1 $=" ": r·er'·1 1 sP .:I.CEl' i ·n:$. i de q u.otes
20 fIU.$="": re-r(1 rio $oP .aI.ees iris i de q u.otes
30 cs$=chr$(147): rem clear screen
40 et$=chr$(26): rem end of text si9nal
50 el$=chr$(13): rem end of line si9nal
60 Pr=4: rem Printer device number
65 tv=3: rem tv devic~ number
66 di=2: rem d~t. inPut eh~nnel no.
68 do=3: rem data output channel no.

266 The C-64 Program Factory

Lines 1 and 2 lock the C-64 into lowercase mode.
ET$ is the end-of-text character that IT W be used to terminate key

board or disk entries. It corresponds to 1 e keyboard character CON

TROL Z. If your printer has a device num ,r different than 4, change
line 60 accordingly.

Storing the Cipher List

The next lines set up the cipher list:

70 tb$="'" -~312:3456?:::9"
80 tbt:=t.bS+" ~.bcdef9h i .j k 1 r(lnop q r's t.U.'o/l .. .I;'::::I z"
90 tbS=tbS+" ABCDEFGH I ']I<U1t·mF'G!F.:~3TIJ"/~J::~''''Z''
100 tl::::len(tbS)
110 if tl=64 then 150
120 P r' i nt "crl.3.r·a.ct.E'r' ta.b 1 E' delE'S not cont3. in"
13121 P r' i nt "64 cha,r'3,ctE'r·s. CHI ", t CO'(lt i nu,E'. "
140 ::.toP
150 for t.=1 to t.l-l
160 if midS(tbS,t.Jl)(midS(tbS,t+l .. l) thE'n 185
170 P r' i nt "i n',) 3, 1 i d C i P he-r' 1 is t. -- chE'ck SE·q u,,;:·ncE'. "
180 stoP
185 'nE'xt t

TB$ contains the cipher list (the list of cipherable characters). It is
very important to type the table exactly as shown: 64 characters listed
in ascending order according to their C-64 keyboard codes. To type in
lines 70-10 correctly, you must have your computer in lowercase mode
(press tLe SHIFT and COMMODORE keys together until your display
shows lowercase letters).

Lines 110-130 ensure that the list does contain 64 characters; how
ever, it is up to you to ensure that the correct characters are used and
that the sequence is correct.

Lines 110-185 check the cipher list for valid length and sequence.

Displaying the Menu

The next block prints a menu:

19~3 P r' i 'nt Cs.S
200 P r' i 'nt "se·cr'E't. rnE'SS,3.'::'e' P r'OCE'ssor'"
210 Pr·i'nt.
;2;~0 i nP u, t "r'e',ld t.>.?)<t. fr'orn: 1-k e~ bO.2l,t"'d 2-d i sk "):E,

230 if s(>1 and s(>2 thE'n 220
235 lc$=nuS: rem dE'activate lowercase- oPt.ion

Secret Messages 267

236 uc$=nu$: rem de~ctivate uPPercase oPtion
24121 inPut "outPut tCI: i-tv 2-disk :;l-Pr'inter' Iljd
25121 if d()l and d()2 and d()3 then 2410

The variable S indicates the input device (l=keyboard, 2=disk file);
D indicates the output device (I=CRT, 2=disk file, 3=printer).

Based on your specifications for Sand D, the following block sets up
the necessary input/output channels:

26121 if s=1 then 2910
27121 inPut "vieIJ) disk dir'l5'ctc,r'::,I (::lin)? "j ::tn$
272 i f ~ n$()"!::I" the'n 2810
274 90sub 291210
28121 fi$=nlJ.$
282 i nP u t, "'Mwle the i nP u t f i l e: "j f i $
284 if fi$=nu$ then 19121
285 oPen di J 8 .. 2J fi$+" J SE'q " r'ea,d"
29121 on d 90to 4I21aJ31a,38121
31121 inPut "',liel,) disk dir'el:tor':,I (::I,.."n)? "; :::In$
:312 if !::I n$() "!:I " then 32121
314 '30sub 291210
32121 fo$=nu$
322 i nPIJ.t "na.me the Ol..1t~·IJ.t fi le·: "j fo$
324 if fo$=nu$ then 19121
:33121 oPen do., 8, 3J "1!12I: "+fcl$+" J se'1' IJ.It"·i te"
36121 90to 41121
38121 oPen dOJPr: rem oPen Printer ch~nnel
385 lc$=chr$(17): rem activate lowercase
387 uc$=chr$CI45): rem activate uPPercase
390 Qoto 410
4121121 oPen dOJtv: rem oPen tv channel

The variables LC$ and UC$ are used to force the printer into lower
case mode.

Inputting the Key Stream

The following block asks you to input the key and then selects the cor
responding key stream:

41121 k::l=12I
412 inPut "erlter' the ke::l (l2I=no Pr'cII:essin9): "j k:::l
415 P r' i nt "secret messa,9e- P r'CII:eSSClr' a.t 1"lor'k. 1,.Ja it"
42121 r=rnd(-abs(k::l»

Line 412 prompts you to enter the key. When using the program,
enter any whole number or fraction from 0 to 32767. The program con-

----------------------- -

268 The C-64 Program Factory

verts your entry into a negative value that can be used to reset the ran
dom number seed.

To turn off the code processor, enter 0 as the key; the input text will
be output to the specified device (CRT, disk file, or printer) without any
changes. The no-processing option comes in handy when entering a
lengthy text, as explained at the end of this chapter.

Line 420 sets the random number seed according to your specifieation.

Initializing Counters and Buffers

The next block of lines initializes certain counters and buffers before
the text processing begins:

4:3121 6·1 == 1
44(1 cr·==121
442 ot$=nu.$

The variable EL indicates the end-of-line status. EL=l indicates that
a carriage return has just been read. Two consecutive carriage returns
are equivalent to an end-of-text character. CR counts the characters
remaining in the program's input buffer; when CR=O, the program gets
another line of input from the keyboard or disk file. OT$ is the output
line; as each character is processed, the program adds it to OT$. When
a carriage return is read, the program outputs OT$ to the CRT, disk
file, or printer.

Inputting a Character

The logic for inputting from disk and keyboard is broken into two
blocks. Here's the routine to input a character from a disk file:

444 if s=l then 46121
446 get#di,c$
448 if st==121 then 66121
45121 if st()64 the'n Pt-·int. "fi lIE' e·r·r·l:Jr·, ca.nce-U·ng

U"Je I:JPer·.a.t.il:ln"
452 c$=et$
454 gotl:J 66121

Line 444 causes the computer to skip to the next block in case input
is from the keyboard. Line 446 attempts to get a character, and line 448
determines whether the attempt was successful. If not, lines 450-454
terminate the processing of text.

Secret Messages 269

The following lines get a character from the keyboard:

460 c$=e-t$
470 if cr)0 then 630
480 if el=l then 550
490 c$=el$
51313 el=l
510 90to 6713
550 Print
560 P r' i nt "t~ p e 3. q IJ.ote I then a line elf t.ext"
570 Pr·int "enter ·In emPt~ li'fle to qIJ.it"
575 b$=rIIJ.$
580 inPlJ.t b$
6130 bl=len(b$)
610 cr·=bl
620 if cr=0 then 740
630 el=0
640 c$=mid$(b$lbl-cr+1,1)
650 cr==c:r-1

The routine draws characters one at a time from a buffer B$. When
the buffer is empty (CR=O), the program prompts you to enter another
line. The program assumes an end-of-text condition upon reading two
consecutive carriage returns or a single end-of-text character (ET$).

Processing the Character

Upon completion of lines 444-650, the variable C$ contains the charac
ter just read. The following lines process the character:

660 if k~=0 then 740
670 90slJ.b 950
680 a=ix
690 if a=0 then 740
7130 a.=s.-1
710 b=int(rnd(1)*tl)
720 c=(s. and not b) or Cb and not a)
730 c$=Mid$(tb$lc+1,1)

In line 660, the program checks to see if the code processor is turned
off (KY=O). If it is, the program skips the rest of the processing section
and goes to the output routine. Otherwise, the program continues with
the subroutine called in line 670, which searches for the character C$
inside the cipher list TB$.

270 The C-64 Program Factory

If A=O in line 690, the C$ is not in TB$ so the program skips to the
output section. Otherwise, the variable A contains a number from 1 to
64. Subtracting 1 from A (line 700) brings it into the range 0-63. Now A
corresponds to p(c) in the preceding examples.

Line 710 gets the next number from the key stream (that is, the ran
dom number generator) and stores it in B. The subroutine called in line
720 calculates A XOR B and stores the result in the variable C. The
variable C corresponds to d(c) in the preceding examples. Finally, line
730 replaces C$ with the corresponding character from the cipher list.

Adding to the Output Buffer

The following block of lines adds C$ to the output buffer and prints the
buffer in case C$ is a carriage return or an end-of-text character.

740 ot$=ot$+c$
750 if c$()etS and c$()el$ then 444
780 Printldo,lc$;ot$;
790 if c$()et$ then 442
800 P r' i ntldo J

810 close di
820 close do

In line 740, C$ is added to the current contents of the output buffer
OT$. Line 750 causes the program to loop back for another character
unless it is a terminating character (carriage return or end-of-text).

In case of a terminating character, line 780 prints the current buffer
contents on the specified output device. If the character is a carriage
return, line 820 jumps back for another character from the input
device. If the character was an end-of-text marker, lines 800-820 close
the input and output devices.

Displaying the Continuation Menu

The following lines print a continuation menu:

830 P r· i 'fit "P r'ocess i n9 camP 1 lS·te"
860 i nP IJ.t "(c)ont i nlJ.e or' (q)u. i t? "; cq $
870 if cq$="c" then 190
880 if c'-l$()"q" then 860
890 Poke 657,0: rem enable uc/lc switch
895 e'nd

Secret Messages 271

If you select the continue option, the program resumes at the main
menu, allowing you to specify new input and output devices and a new
key.

Searching the Cipher List

Here's the subroutine to search for a character within the cipher list:

95121 11=121
96121 u.l=t1+1
97121 ix=intCCul-l1)!2)+11
98121 tc$=mid$(tb$,ix,1)
99121 if tc$=c$ th~n 11214121
1121121121 if tc$(c$ th~n 11=ix
11211121 if tc$)c$ then u.l=ix
11212121 if 11(u.1-1 then 97121
11213121 ix=12I
11214121 r·etu.r·n

Simple sequential search logic has been used in other programs in
this book (see the Guess My Word program). However, because of the
length of the search list, the sequential search technique is too slow.
Instead, a "binary search" technique is used. A binary search divides
the list into successively smaller intervals until the desired data is found
or the interval is null (no data between the interval's lower and upper
limits).

The lower limit of the interval is set to 0, and the upper limit set to 1
more than the length of the cipher list TB$ (lines 950 and 960). IX is an
index pointing to the current search location. It is always set equal to a
midpoint between the lower and upper limits (line 970). Line 980 exam
ines the TC$, the character at position IX in TB$. If it matches C$, the
search ends, and the subroutine returns to the main program with IX
containing the location of character C$ inside the cipher list.

If TC$ does not match C$, the program resets either the lower or the
upper limit, depending on whether TC$ precedes or follows C$. The
midpoint IX is recalculated for this new interval, and the checking pro
cess is repeated.

The cycle continues until the program finds a matching character or
until the interval defined by LL, VI., contains no character positions
(UL-LL= 1). In the latter case, the search fails, so IX is set to 0, indicat
ing that C$ is not found in TB$.

This searching method is three to four times faster than a sequential
search for a list of this size. However, it will only work if the characters

272 The C-64 Program Factory

in TB$ are given in ascending order of ASCII codes. That is why lines
70-90 must be entered exactly as shown.

Reading the Disk Directory

These lines read the disk directory without erasing the resident pro
gram (unlike the ordinary LOAD "$",8 command):

29121121 P r' i nt "1 aa.d i n9 d i r'ectar'~ ••• "
291121 aPe'fl 1) 8) 4) "$) seq) r·ea.d"
292121 11,J=12I
293121 if st()0 then 304121
294121 get*' 1) a.$
295121 if lenCa$)=12I then 2920
296121 if a$)chr$C31) and a$<chr$(122) th~n 312110
2970 if iw=0 then 2930
2980 il)J=0
299121 Pr'int
:3000 9atcI 2930
301121 if iw=12I then wl=!
312115 i 1 •• .1= 1
302121 P r· i nt .;.$.;
3023 I,.J 1 =I,J 1 + 1
3024 if wl<17 then 312130
3026 Pr·int
:3028 I,) 1 =121
:30310 '~I::rtCt 293(1
:3040 close 1
:3050 P r' i nt
3060 t-·etlJ.r·'(j

When you run the program, expect a delay while the computer
searches for file names among all the other directory information.

-Using the Program ----------
Figure 17-2 shows a sample run of the program, illustrating the
keyboard-to-TV option for enciphering and the keyboard-to-TV option
for deciphering. The sample run shows what happens when an incorrect
key is used to decipher a message.

-Tips for Processing Lengthy Texts ---
As mentioned previously, if you are enciphering or deciphering a
lengthy text, you may not want to sit at the keyboard waiting for the

Secret Messages 273

computer to process one line at a time. Using the disk-to-disk option
(input from one disk file, output to another) can free you to do other
things while the computer processes the entire text.

Suppose you want to send a lengthy document to a friend. Run the
SMP, specifying the keyboard as the input device and a disk file
PLAINTEXT as the output device. Enter a key of 0 (no processing).
Type in the text, which will be stored on disk without the delay of
processmg.

When you've stored the text on disk, set the computer to input from
the disk file PLAINTEXT and output to another disk file CIPHER
TEXT. Enter a nonzero key. The computer will process the text and
save the results in the output file CIPHERTEXT; you won't have to be
around during this possibly lengthy process.

Then send just the CIPHERTEXT file to your friend. The recipient
sets the program to input from CIPHERTEXT and output to a new file

~ECkE! MESSAGE PROCESSOR

READ TEXT FROM: I-KEYBOARD 2-DISK 1
OUTPUT TO: i-TV 2-DISK 3-PRINTER 1
ENTER THE KEY (0=NO PROCESSING): 32050
SECRET MESSAGE PROCESSOR AT WORK. WAIT

TYPE A QUOTE, THEN A LINE OF TEXT
ENTER AN EMPTY LINE TO QUIT
Th@ n~w Pas~word is
r30 SXz ~wwCUnSm sw

t~Pe a quots. th~n a line of text
.nter an @mPtw line to quit
9r'3,P E'fr'u, i t
Lz2:3f5J o Arfl

twPe a quote. then a line of text
.nt.r an emPt~ line to quit

Processing complete
{c)ontinu€ or (q)uit? c

Figure 17-2. Sample run of the Secret Message Processor

274 The C-64 Program Factory

read text from: l-ke~bo~rd 2-disk 1
outPut to: 1-tv 2-disk 3-printer 1
~nt~r the ke~ C0=no Processin9): 32050
aecret messa9~ Processor at work. wait

t~Pe a quote. then a line of text

,,:','; 1:.I::'j' ~,n l:?r:';P t.:::l 1 i 'ne t::: '1IJ, i t.
r30 SXz '~wCUnSm ew
Th~ new Password is

t~P. a quote, then a line of text
enter an emPt~ line t.o quit
L.z23fS'] o Arl',
':ilr' .3,P i,fr'u i t

twPe a quotel then a line of text
enter an emPtw line to quit

Processing comPlete
(c)ontinue or (q)uit? c

SECRET MESSAGE PROCESSOR

READ TEXT FROM: I-KEYBOARD 2-DISK 1
OUTPUT TO: I-TV 2-DISK 3-PRINTER 1
ENTER THE KEY (0=NO PROCESSING): 114
SECRET MESSAGE PROCESSOR AT WORK. WAIT

TYPE A QUOTE, THEN A lINE OF TEXT
ENTER AN EMPTY lINE TO QUIT
r30 SXz '~wCUnSm ew
4~t III X2M7DV-C 99

t~Pe a quotel then a line of text
enter an emPt~ line to quit
lz23f5JclArl'1
U-,3,c-'=!Kh9':iI

Figure 17-2. Sample run of the Secret Message Processor (conh:llupd)

t~Pe a quote. then _ line of text
enter an emPt~ line to quit

Processing comPlete
(c)ontinue or (q)uit? q

r·ea.d::l.

Secret Messages 275

Figure 17-2. Sample run of the Message Processor (continued)

called PLAINTEXT and then enters the correct key. When the process
ing is complete, your friend then sets the computer to read from
PLAINTEXT and output to the CRT or printer and now enters a key of
O. The plaintext is displayed or printed without the delay of processing.

-How Secure Is the Ciphertext? ------
Cryptanalysts (codebreakers) often study the frequency distribution of
characters within the ciphertext to help them break the cipher. This
technique is of little use with ciphertext from the SMP because the dis
tribution of letters in its ciphertext is almost uniform. (See Table 17-3.)

The very fact of uniform frequency distribution might lead a crypt
analyst to suspect the use of a key stream substitution cipher. However,
breaking such a cipher is difficult and time-consuming.

Table 17-3. Frequency Distribution of Characters in the Ciphertext

Plaintext

AAAAAAAAA
111111111

Joe Joe Joe

Key

:~2050

12a45
41200

Ciphertext

OK059vXco
B1uvcbC2k
B-f gwO lKG

276 The C-64 Program Factory

If a cryptanalyst can obtain a large sample of ciphertext, he may
eventually break the code. The cryptanalyst starts by assuming that
certain words occur in the text ("the," for example) and then applies
various mathematical operations to the ciphertext, trying to obtain
"the." Once he has recovered a single word of plaintext, he may be able
to infer the nature of the key stream might be inferred, since it is not
truly random, only pseudo-random. (If it were a truly random key
stream, the cipher would be virtually unbreakable without prior knowl
edge of the key stream.)

The only way for a person who is not a cryptanalyst to break the
code is by trial and error, assuming the person has a copy of the SMP
program. This time-consuming method requires the would-be code
breaker systematically to try different keys and see the results on the
ciphertext.

In summary, the SMP produces ciphertext that is secure against
attack by nonexperts. However, don't expect it to fool the National
Security Administration!

This chapter has been adapted from "Secret Messages" by George Stewart, appearing in
the April 1983 issue of Popular Computing magazine. Copyright cq983 BYTE Publica
tions, Inc. Used with the permission of BYTE Publications, Inc.

Chapter 18
..........• --... ~~ ..•....... -.--~ -•.• - ~- ---~--..... ---.•..... --

·····~=Blazm~ele=hones==
........ _~c............. _g __ ._.~_ P~_ __

Harry was plain old 273-2255 until he found out about ape-call. Sue
suffered along with 468-5477 until she discovered hot-lips. And Frank
never really appreciated his 683-4323 until he noticed mud-head.

How about your telephone number? Would you like to add a little
"ring" to it? The Blazing Telephones program will help you find out
what words (if any) are hidden in those seven digits.

The technique of replacing digits with letters is often used by busi
nesses. A barbecue stand, for example, may ask the local telephone
company for the number 737-3744 (pure pig) or 255-2333 (all beef),
depending on its culinary persuasion. Although telephone companies
are not obligated to honor such requests, most of them will try to do so if
it is possible.

The situation facing the private individual is less encouraging. The
telephone company cannot comply with all personal requests for a spe
eific number. Furthermore, you probably already have a telephone
number that is widely known by friends and associates.

But serendipity is on your side. By conducting an exhaustive search
through all 2187 possible letter eombinations, chances are good that
you'll find a viable alternative to the plain numeric sequence. But
exhaustive searches tend to be exhausting. That's where Blazing Tele
phones comes in.

277

278 The C-64 Program Factory

-The Method

Any person who uses a phone will recognize the two objects portrayed
in Figure 18-1. They are reproduced here to emphasize the correspon
dence between the digits 0-9 and the letters A -P and R-Y (the letters Q
and Z are omitted on the dials).

For each digit in your phone number, three different letter replace
ments are possible. The numbers 0 and 1 are exceptions; the telephone
dial offers no replacements for them. Thus, for a seven-digit number,
the total number of distinct letter combinations is 37 or 2187, and fewer
if the number includes 1's or O's.

This combinatorial problem is solved by a simple exercise in eount
ing. The trick is to count in base 3. All base 3 numbers are composed of
three distinct symbols: 0, 1, and 2. For example, the decimal or base 10
number 19 is represented in base 3 as 201 (2 X 32 + 0 X 31 + 1 X 3°).

For seven-digit telephone numbers, the program counts from 0 to
2186 in base 3. (If your telephone number contains more or fewe]' than
seven digits, the program automatically adjusts the base 3 counter to
match the number of possibilities for that number.) Each base 3
number acts as a mask or key for generating the 2187 possible alpha
betic sequences.

Consider the phone number 352-5562. The first digit is a 3. Accord
ing to the telephone dial layout, 3 corresponds to the letter triplet
D,E,F.

Which letter is chosen? Here's where the key comes in. Each digit of
the key is either 0, 1, or 2. In the case of a 0, the first letter in the triplet
is used; in the case of a 1, the second letter; and in the case of a 2, the
third letter is used.

The first base 3 number generated is 0000000 (seven digits are
required since the phone number contains seven digits). The first digit
in the key is 0, so D is taken, which is the "Oth" letter in the triplet
D,E,F. The second digit in the phone number is a 5, which corresponds
to the triplet J,K,L. The key has a 0 in the second position, so the Oth
letter, J, is selected.

The following table shows letter replacements for the phone number
352-5562 using the three keys 0000000, 0000001, and 0002100:

Phone number:
Key:
Letter sequence:

352 556 2
000 0 000
DJAJJMA

Blazing Telephones 279

[] I A~C I I DEF I 3

I G:I I [!] 5 IMNOI 6

I P~S I IT~vl IWXYI 9

0 IOPERI
0 0

Figure 18-1. Pushbutton and rotary dial telephone faces

280 The C-64 Program Factory

Phone number:
Key:
Letter sequence:

Phone number:
Key:
Letter sequence:

352 5 562
o 0 0 0 0 0 1
DJAJJMB

352 5 5 6 2
o 0 0 2 100
DJALKOA

In a similar manner, all 2187 keys can be used to generate a total of
2187 distinct names for this one phone number!

To be sure you understand the method, compute the resultant letter
sequence for the phone number 266-7883 and the key 2020101.

-The Program ------------.

The first block sets up the program's constants:

i Cbl~CHR$(147): REM CLEAR SCREEN
2 RV$=CHR$(18): REM REVERSE PRINTING
3 NR$=CHR$(146): REM NORMAL PRINTING
4 81$=" ": REt1 1 SPACE IHSIDE QUOTES
5 t'~U$="": REt1 t·m SPACES I t·~s I DE G!UOTES
6 PR=4: REM PRIHTER DEVICE HUMBER
1121 t1D=15
2121 DIt1 KCMD)
:3121 P$= II 121121121111 ABCDEFGH I JKU1t·~OPRSTU'·/~J)<'T'"
5121 MG=2

PR is the printer device number. If your printer has a different
number, change line 6 accordingly.

MD in line 10 is the maximum number of digits allowed in a phone
number, not including 1's and O's, which are not changed by the pro
gram. Line 20 creates an array to store the current base 3 number.
Each element in the array K() corresponds to a base 3 digit. K(l) con
tains the least significant digit, and K(MD) stores the most significant
digit.

The variable P$ in line 30 stores the letter triplets. Since there are
no letter replacements for the numbers 0 and 1, the triplets 000 and 111
are used for these numbers respectively. When entering this line, be
sure you leave out the letters Q and Z, which do not appear on the tele
phone dial. Line 50 determines how many spaces are used between each
column when the names are printed.

Blazing Telephones 281

Displaying the Menu

The next block prints a menu of options and gets your selection:

60 PF.:ItH CS$j
70 PF.:HH
80 PF.:INT RV$j: REM REVERSE
90 PF::ItH SPCC (40-17)1'2) j IIBLAZH~G TELEPHot-4ESII
lee PRINT NR$;: REM REVERSE OFF
110 PRINT
12121 PR I tH II 1-CotNERT t-lAME TO t~Ut1BEr;~ II
130 PR I NT II 2-Cot'~VERT NUt1BEF.: TO NAt1E II
14121 PRINT 113-QUITII
150 PRINT
16121 INPUT IISELECT 1, 2, OR 3? II;CH
170 IF CH()1 AND CH()2 AND CH()3 THEN 11121
18121 ON CH GOTO 19121.36121,11219121

The menu offers two options: (1) convert a "phone name" or alpha
betic sequence into a telephone number, or (2) generate all possible
alphabetic sequences for a given telephone number. The first option is
useful if you are a businessperson looking for desirable phone numbers
to request from the telephone company. The second option is for those
who already have a number.

Converting a Name to a Phone Number

The following lines perform the name-to-number conversion:

i ~-10 F'R ItH
2121121 PN$=t~U$
:21215 I t'~PUT II ENTER NAME: II j PN$
21121 IF PN$=NU$ THEN 190
22121 FOR CN=1 TO LENCPN$)
23121 C$=MID$(PN$,CN,1)
24121 Q0=1
25121 Q1$=P$
26121 Q2 •• C$
27121 GOSUB 1100
28121 PS=QF
290 IF PS=0 THEN 320
3121121 PD=INT«PS-1)/3)
31121 C$=CHR$(PD+48)
32121 PRINT C.;
33121 NEXT CN
34121 PRINT
35121 GOTO 7121

282 The C-64 Program Factory

PN$ stores the alphabetic sequence. The program examines each
character C$ of the sequence. The subroutine called in line 270 searches
for C$ inside the translation list P$. If the C$ is contained in P$, line
300 derives the corresponding telephone digit PD, and line 310 converts
that number to its corresponding ASCII character C$. Line 320 prints
the result.

After every character in the sequence has been examined, line 350
returns to the main menu.

Converting a Phone Number to a Name

The second option is more complicated. Here's the first block:

.:;:6121 PF.: I tH
:~?0 Pt'~$=~~U$
375 I t'~PUT II E~nER PHm'~E t'~Ut1BER: II; Pt'~$
380 IF PN$=NU$ THEN 360
:390 PL=LEt~ (Pt'~$)
4010 t·m=0
410 FOR CN=1 TO PL
420 C$=MID$(PN$,CN,l)
4310 IF C$)= 112 II At,1D C$(= "9" THEt·~ t·m=t~D+ 1
440 ~~EXT Ct·~
450 IF ND)0 THEN 480
460 PR I tH "NO TRAt~SLATABLE DIG I TS FOUt~D. II

470 GOTO 360
480 IF ND(=MD THEN 510
490 PRINT "TOO MAWr' DIGITS. MA~< IS ";MD
500 GO TO 360

PN$ stores the phone number. Lines 400-440 count the number of
translatable digits ND in PN$. (Translatable digits are numbers 2
through 9.) The program rejects PN$ if it contains fewer than 1 or more
than MD translatable digits.

After confirming that phone number PN$ is acceptable for transla
tion, the next block prompts you to specify the form for its voluminous
output. For a seven-digit number, the program is going to generate as
many as 2187 names. It is important to set up the output in a condensed
yet readable format.

510 PR I NT "OUTPUT TO : I-TV 2-PR I tHER II
515 OD=1
520 I t'~PUT II SELECT 1 OR 2? "; OD
530 IF ODC)1 AND OD()2 THEN 510

Blazing Telephones 283

560 I ~J=PL +t1G
570 PR HH II t1A>U t1Ut1 L H~E ~H DTH (" j HL II -81~n? II

575 UJ=40
580 I ~'~PUT II RETURN=40 : II j UJ
610 IF LW(IW OR LW)80 THEN 570
620 IL=INTCLW/IW)
630 PR I ~H II PR I ~n HmJ MAt·N L I ~·~ES BEFOF.:E PAUS I t·m? II
635 ~·~p=e
640 I ~~PUT II RETURt·~=t·40 PAUSE): II i t·~p
660 IF NP(0 THEN 630

Lines 510-550 select the TV or printer. Lines 560-610 determine the
number of names printed on each line. IW equals PL (the length of each
name) plus MG (the number of spaces between names). Lines 570 and
580 prompt you to enter LW (the line width), which must be wide
enough for a single name and at most 80 characters. When running the
program with a printer for output, specify the widest line your printer
can handle.

Lines 630-660 give you the option of having a pause after a specified
number of lines are printed. If you are outputting to the C-64 display,
specify a pause after each 24 lines.

Printing a Title

The following lines print a title on the display or printer:

670 IT=l
680 U'~=1
690 IF OD=2 THEN OPEN 1,PR: CMD 1
700 PR I NT I tH (, 31ND+ • 5) j II D I ::;T I t·4CT t~At1ES FOR "; Pt'~$
710 PRHn
720 FOR TD=l TO ND
730 K(TD>=0
740 t·4EXT TD

Lines 670 and 680 initialize the items-per-line counter and lines-per
page counter.

Line 690 begins routing output to the selected device, and line 700
prints the title. The expression 3/\ ND calculates the number of distinct
names; ND is not the total number of digits, but the total number of
translatable digits.

Lines 720-740 set all the base three digits to 0, the first key value
used in converting the number to a name.

284 The C-64 Program Factory

Generating a N arne

The next lines produce a single name by applying the key value in K()
to the number in PN$:

."5121 D:::: 1
766 FOR CN::::1 TO PL
776 CS=MIDS(PN$,CN,l)
786 IF C$< 11211 OR C$) II 9 11 THE~'~ 82121
79121 PD=VAL(CS)
806 CS=MIDS(P$,PD*3+1+K(D),1)
:::16 D=D+l
:::2121 F'F.~ I t·4T (:$ j
:336 t·l E ::<1 Ct-l

D is a pointer indicating which base 3 digit to use for the next digit
in PN$. The loop from 760-830 examines each character of PN$, load
ing it into the variable C$. Line 780 determines whether C$ is a trans
latable digit. If C$ is translatable, lines 790 and 800 perform the
translation on C$. Line 790 increments D -in effect pointing to the
next digit of the base 3 key. If C$ is not translatable, it is printed "as is,"
and the pointer D is left unchanged.

The program continues this process until all the characters of PN$
have been processed.

Making Line and Page Breaks

Upon completion of the preceding block, the computer has printed a
single name. The next block checks to see whether it's time to start a
new line or to pause between "pages."

846 IF IT)=IL THEN 88121
856 IT=IT+l
866 PRINT SPC(MG);
:376 GOTO 970
886 IT=l
896 PRItH
900 IF NP)0 AND LN)=NP THEN 936
910 Ul=Ul+l
920 GOTO 970
930 U'l=l
946 IF OD=2 THEN PRINT#l.
950 I t·1PUT II PF.:ESS RETURt·l TO COtH I t·1UE II; E~'l$
96121 IF OD=2 THEN CMD 1

Lines 840-870 insert a carriage return after IL names have been

Blazing Telephones 285

printed. Lines 880-960 insert a pause in the output after the specified
number of lines NP.

At this point, the program has completed the process of converting a
name, printing it, and adjusting the format.

Generating the Next Key

Now the program is ready to generate the next base 3 key:

97(j DP=1
99121 KCDP)=KCDP)+1
1121121121 IF K(DP)(=2 THEN 75121
11212121 I(CDP)=0
103121 IF DP=ND THEN 112160
11214121 DP=DP+1
11215121 GOTO 99121

First a general description of what's going on: each successive base
3 key is generated by adding 1 to the current value. To do this, the
program mimics the manual method of adding 1. As you read the fol
lowing steps, keep in mind that the program is using base 3 arithmetic,
which allows only the digits 0, 1, and 2.

1. Set the current digit pointer to the least significant digit. In this
program, that's defined as the leftrrwst digit (ordinarily the
rightmost digit is the least significant).

2. Add 1 to the digit indicated by the digit pointer.

3. If the result is less than 3, the process is complete. Otherwise, set
the digit to 0 and carry a 1 to the next step.

4. If the digit pointer is already at the most significant (that is, the
rightrrwst) digit, there is no place to put the carry: the largest
number possible for the number of digits available has already
been generated, so the process is complete.

5. Otherwise, move the digit pointer to the next digit on the right,
and go back to Step 2.

Figure 18-2 gives a few examples of the process.
Now back to the details of the program. In line 970, the digit pointer

DP is set to 1, the least significant digit. Line 990 adds 1 to the corres
ponding base 3 digit. Line 1000 determines whether the result exceeds
2, necessitating a carry to the next digit position. If no carry results, the
newest key is ready, so the program jumps back to line 750 to generate
another name.

286 The C-64 Program Factory

Carry 1
I

N 0000000 N 2110010
+ 1 4- 1

N+1 1000000 N 4- 1 0210010

Carry 1 1 Carry 1111111 No more digits
II lilOIl available = Done

N 2202222 N 2222222
+ 1 + 1

N + 1 0012222 N + 1 0000000

Figure 18-2. Samples of base 3 counting as performed by the program

If there is a carry, line 1020 sets the current digit to O. Line 1030
determines whether any more digits are available to store the carry. If
DP is less than ND, the program continues at line 1040, which incre
ments the digit pointer and then continues with the addition process.

If DP equals ND, no more digits are available: that is, the last key in
the series has been generated, so the number-to-name generation is
complete. In that case, the following lines reroute the output to the dis
play and jump back to the main menu:

U~i60 F'F.: un
11217121 IF OD=2 THEN PRINT#lJ: CLOSE 1
1080 GOTO 70

Ending the Program

There's one more line to the main program. It corresponds to option 3
(quit):

10910 Et·m

String Search Subroutine

The following subroutine probably looks familiar; it is used in numerous
programs throughout this book.

1-CONVERT NAME TO NUMBER
2-CONVERT NUMBER TO NAME
:3-QUIT

BEl Eel 1, 2, OR 3? i

ENTER NAME: BUSY BEE
287'9 ;2:3:3

Blazing Telephones 287

____ .~.=_II_.=_.=unOOII.

I-CONVERT NAME TO NUMBER
2-CONVERT NUMBER TO NAME
3-I~UIT

SELECT 1, 2, OR 3? 1

ENTER NAME: NUMBER 1
686237 1
____ .~.=_n_.=_.=_I8:[I]II.

i-CONVERT NAME TO NUMBER
2-CONVERT NUMBER TO NAME
3-QUIT

SELECT 1, 2, OR 3? 2

ENTER PHONE NUMBER: 424-6245
OUTPUT TO: I-TV 2-PRINTER
SELECT 1 OR 2? 1
MAXIMUM LINE WIDTH (1121 -8121)?
RETURt·~=4121 : 32
PRINT HOW MANY LINES BEFORE PAUSING?
RETURN=NO PAUSE): 4

2187 DISTINCT NAMES FOR 424-6245

GAG-MAGJ HAG-MAGJ IAG-MAGJ
GBG-MAGJ HBG-MAGJ IBG-MAGJ
GCG-MAGJ HCG-MAGJ ICG-MAGJ
GAH-MAGJ HAH-MAGJ IAH-MAGJ
PRESS RETURN TO CONTINUE
GBH-MAGJ HBH-MAGJ IBH-MAGJ
C;CBREA~(I H 78121

Figure 18-3. Sample run of Blazing Telephones

288 The C-64 Program Factory

11121121 GlF=12I
111121 IF QI2I+LEN(Q2$)-1)LEN(Q1$) THEN RETURN
112121 IF MID$(Ql$,QI2I,LEN(Q2$»=Q2$ THEN 115121
113121 QI2I=G!13+ 1
114121 GOTO 111121
115121 G!F=QI2I
1160 RETUR~~

On entry to the subroutine, QO is the starting position for the search,
Q1$ is the string to be searched, and Q2$ is the string to search for. On
return from the subroutine, QF points to the starting position of Q2$ in
Q1$. QF=O indicates the string is not found.

-Running the Program --------
Figure 18-3 shows a sample run of the program. To be sure you have
entered the program correctly, try to duplicate the results shown.

When using the number-to-name option, it is not necessary to process
the entire number at once. You may find it helpful to enter only a part
of the number at a time (for example, the initial three-digit extension of
your telephone number). This reduces the output list to just 27 names.
Once you have found a suitable name for part of the number, concen
trate on the other portion.

If your number contains any 1's or D's, it's a good idea to enter only
the segments on either side of these digits. For example, given the
number 665-8415, you should enter the number as 66584, which pro
duces only 243 distinct names. Among them you'll find NOJUG, NOLUI
("no Louie"), and OOLUH. Now combine the names with the last two
digits to get NOJUG-15, NOLUI-15, and 00LUH-15. All of these are
more memorable than the original number sequence.

Who knows what bright new name may be hiding inside your tele
phone number?

Chapter 19

A one-ounce bag of potato chips provides 150 calories, 2 grams of
protein, 14 grams of carbohydrates, and 10 grams of fat. Two peanut
butter cups give you 180 calories, 4 grams of protein, 17 grams of car
bohydrates, and 11 grams of fat.

All this information (and quite a lot more) is printed on food pack
ages for those who care to know. Almost all prepared foods include sim
ilar information.

But how does Grandmother's pineapple upside-down cake stack up?
How nutritious is your favorite quiche recipe? When it comes to fresh
foods or recipes that you prepare, analyzing your nutritional intake can
be complicated.

The Nutritional Advisor program gives you the essential information
-calories, carbohydrates, fats, and proteins -about the foods you pre
pare. Used in conjunction with standard nutritional requirement tables,
the program will help you plan a balanced diet.

You may also find it interesting to do food cost/value studies. For
example, ounce for ounce, which is a cheaper source of protein: potato
chips or filet mignon? The program will help you make such
comparisons.

289

290 The C-64 Program Factory

-Program Operation ----------

The program includes data about 48 foods commonly used as cooking
ingredients. You can easily expand the list to include unusual ingre
dients that you use. For each food, the following need to be included:

1. Food name
2. Measurement unit
3. Calories
4. Protein (in grams)
5. Carbohydrates (in grams)
6. Fat (in grams)

Items 3 through 6 are based on one measurement unit of the ingredient.
For instance, the sample entry

MILK, CUP, 165, 8, 12, 10

indicates that one cup of milk contains 165 calories, 8 g of protein, 12 g
of carbohydrates, and 10 g of fat.

The program prompts you to list the ingredients of the recipe one at
a time. If the ingredient you give is contained in the program's list, the
program will name the appropriate measurement unit and ask you to
specify the quantity used. For example, after you type "milk," the pro
gram will ask, "How many cups are used?"

If the ingredient you specify is not in the list, the program will tell
you so and give you three options:

1. See food list
2. Enter data for ingredient
3. Enter a new ingredient name

Option 1 lets you check the list to see exactly how many foods are
known. For example, if you specify flour as an ingredient, the program
will print, "No data available on flour." Examine the food list and you'll
see entries for whole wheat flour and white flour. Select option 3 and
enter the appropriate ingredient -exactly as it is listed in the food list.

Option 2 lets you enter the correct information for an unlisted ingre
dient. For instance, if your recipe includes anchovies, you can type in
the appropriate nutritional information taken from the package" How
ever, information entered this way is not permanently stored in the list
for use the next time you run the program. To do that, you must add the
information for each data record in the program's DATA lines, as ex
plained later.

Nutritional Advisor 291

After typing in all the ingredients, enter an empty line (press
RETURN in response to the prompt, "Ingredient?"). The program will
ask how many servings the recipe makes. Ordinarily, you should enter
the number of people the recipe is intended to serve; however, for some
recipes like those for breads or pies, you may want to know the nutri
tional makeup of the full recipe. In that case, enter 1.

Finally, the program gives you a nutritional analysis of a typical
serving. Figure 19-1 shows a sample run of Nutritional Advisor.

-Program Listing -------------

The first block prints a title and initializes the totals for calories (CA),
protein (PR), carbohydrates (CB), and fats (FA).

1 CS$=CHR$(147): REM CLEAR SCREEN
2 RV$=CHR$(18): REM REVERSE PRINTING
3 NR$=CHR$(146): REM NORMAL PRINTING
.::j. :; 1 $= /I /I: F,:Et1 1 :3F'ACE I t·4S I DE OUOTE::;
~:5 t·4U$= /I ": REt1 t·m SPACE::; I t·l::; I DE OUOTE::;
6 G!T$::::CHF.:$ (34)
1 (1 PF.: I t-H CS$
:20 F'F~ I t-H "THE t·lUTR I T Iot-mL AD"f I ::;;0 F.: "
::::~~1 F'F.: I t-H
4~.3 PF.: I t-H "T'r'PE I t·l THE F:EC I F'E"
5~Z1 PR It-H "ot·4E HJGRED I Et-H AT A T It1E"
6~1 CA=0
?0 PR=0
80 CE:==0
90 FA::::~~1

QT$ is a double quote character. CA, PR, CB, and FA are totals for
various food components.

Entering an Ingredient

The next block prompts you to enter an ingredient name and then
searches for that name in the food list:

1~H3 PRHH
11 ~3 PR I t-n "T'r'F'E At·l Et'IPT'r' L I t·4E FOR TOTAL::;"
1 :2£1 F'R I t-H "T'r'PE A SLA~:;H (,/) TO !:;EE FOOD L I :::;T"
130 I G$=t·JU$
135 I t·lPUT "1"lE)<T I t·H3F.:ED I Et-H "; I Ci$
140 IF ICi$=NU$ THEN 580
145 IF' 113$="/" THEt·l ::::30

292 The C-64 Program Factory

THE NUTRITIONAL ADVISOR

TYPE IN THE RECIPE
ONE INGREDIENT AT A TIME

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (I) TO SEE FOOD LIST
NEXT INGREDIENT FLOUR
t·m DATA A',iA I LABLE m~ " FL.OUR "
TYPE 1 TO SEE FOOD-LIST

~, .:.,

2 TO EtHER DATA FOR "FLOUR"
3 TO ENTER A NEW INGREDIENT NAME.

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (I) TO SEE FOOD LIST
NEXT INGREDIENT WHITE FLOUR
HOW MANY CUP(S) ARE USED 1.75

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (I) TO SEE FOOD LIST
NEXT INGREDIENT BUTTERMILK
NO DATA AVA I LABLE m~ "BUTTERt1 I Lf:::"
TYPE 1 TO SEE FOOD-LIST

1
t1 I LI<

2 TO EtHER DATA FOR "BUTTEF.~t'1 I LK"
3 TO ENTER A NEW INGREDIENT NAME.

~'~H I PP I t·m CF.~EAt'1
COTTAGE CHEESE
CHEDDAR CHEESE
CREAt1 CHEESE
EGGS
BUTTER
t1AF.~GAR I ~~E
I',~EGETABLE [I I L
GROUt·m BEEF
CHICKEt·~
LAt1B
HAt1
COD
FLOU~mEF.:
CRABt1EAT
TUt'~A
CiREEt·~ :3t'~AP BEAt·~S

Figure 19-1. Sample run of Nutritional Advisor

(3REEH L I t1A BEAt·~S
RED KIDNEY BEANS (CANHED)
BROCCOLI
CABBAGE
CARROT:;
CAUL I FLOLoJER
lia~::E..'i:.~.Il.J::;l~.""I]Z.'.ZI.lJ.
CELER'r'
CORt·~
MUCHF.:OOt'1S
Ot·~ IOt·~S
GREEH PEAS (CANHED)
POTF'HOES
TOMATOES (CANNED)
:::p I ~·'ACH
APPLE:::
:E:~1t·~At·m
BLUEBERRIES (CANNED)
PEACHE::: (CAt'~~~ED)
PINEAPPLE (CANNED)
F.:A I S I t·~!3
COF.:t·~ t1EfiL
~'JH I TE FLOUF.:
WHOLE WHEAT FLOUR
BROLoJt·~ RICE
'.,JH ITE RICE
t·mODLES
OATt'1EAL
!::UGfiF.:
AU1m·m:::
~'JAU.~UT:::
~;~::t.'io"~.IlI.I::;lZ.n..ooI.II.~L.J.
Et·m

Nutritional Advisor 293

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (!) TO SEE FOOD LIST
NEXT INGREDIENT MILK
HOW MANY CUP(S) ARE USED 1.5

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (!) TO SEE FOOD LIST
NEXT INGREDIENT BUTTER
HOW MANY 1!4-LB STICK(S) ARE USED .33

Figure 19-1. Sample run of Nutritional Advisor (continued)

294 The C-64 Program Factory

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (/) TO SEE FOOD LIST
NEXT INGREDIENT EGGS
HOW MANY EGG(S) ARE USED 1

TYPE AN EMPTY LINE FOR TOTALS
TYPE A SLASH (!) TO SEE FOOD LIST
I"~E);:T I 1··lGF.:ED I r::t-n
HOW MANY SERVINGS DOES THE RECIPE MAKE 6
EACH SERVING CONTAINS

;21. ,:L 4 Cf,LOF.: I E:3
6.5 GRAMS PROTEIN
27.5 GRAMS CARBOHYDRATE
~3. 5 GRAt'l::; FAT

TYPE 1 TO ANALYZE ANOTHER RECIPE
.2 TO Elm.

,''',
,:::.

Figure 19-1. Sample run of Nutritional Advisor (cont?:nued)

150 RE:3TORE
160 READ N$,U$,Nl,N2,N3,N4
1 ?1C:1 IF t·l$=" am" THHl 26(21
180 IF N$()IGS THEN 160

Line 135 gets the ingredient name you type in and stores it in IG$.
Line 150 resets the DATA pointer so that the program starts searching
for the ingredient at the beginning of the food list.

Line 160 reads a complete food "record" consisting of a name N$,
measurement unit U$, calories Nl, protein N2, carbohydrate N3, and
fat N4.

Line 170 checks whether the last record has been encountered. The
last data record must include END as the food name, and include
dummy values for all the other items (see line 1210).

Line 180 compares the food name just read with the value stored in
IG$. If they don't match, the program reads the next record.

Finding a Matching Food

The following lines are executed after the program finds a matching
record in the food list:

Nutritional Advisor 295

190 F'F.: an "Hm,j t'1At,J'r' "! U:f; ,: " < ::=.:) AF.:E U:::ED" ,:
;200 U:::::(1
205 It'WUT U
21121 CA::::CA+t'i 1 :<t:L1
2;2~~1 PF.:=F'R+t'Q:t.U
:;2:30 CB=CB+tn:t.U
24121 Ffl=FA+t-~4*U
:250 GO TO 1 ~)121

Line 190 requests the quantity needed. When you provide that
information (line 200), the program can compute the nutritional contri
bution of the given ingredient (lines 210-240).

Finding an Unknown Food

The lines that follow are executed when the program cannot find your
ingredient in its food list.

26121 F'F.: mT "t'm DATA FI'.,.'fi IL.FIBLE ot'i ",: OT$,; Wi ,: OTS
:2,?1;;,1 F'P I I'H "T'r'F'E 1. TO :::E-:E FOOD· .. L I :::T"
28121 F'RItH " 2 TO EtHEF.: DATA F'OP ",: OT:,$:,; W$,: Ins
:29~j F'P I tH " :::: TO EtHEP fi t'iEl,J I t'H3PED I EtH t'jAt'1E."
:3(10 ::::::::1
3t15 I t'~PUT S
31121 IF 3(>1 AND S(>2 AND S(>3 THEN 270
32121 ON S GO TO 33121,470,10121

Lines 260-300 print the option list referred to previously and input
your selection. Line 320 jumps to the program black corresponding to
your selection.

Displaying the Food List

Here's the block that displays the food list:

:3::::~) L,C:::::(1

::::4(1 F:E::::TOF.E
350 PERD N$,US,Nl,N2,N3,N4
36121 PR I tH t·~$
37121 I F t'~$=" Et,m" THEt'i 1 CH3
::::8121 LC=LC+l
39121 IF LC(24 THEN 350
4~jl2l U:::=(1
410 F'P I NT P',.'$,:
42121 nWUT "PRES::: RETURt,~ TO COtH HiUE : " ; PTS
43121 PR ItH t'~P$,:
46121 CDTO 350

296 The C-64 Program Factory

The variable LC counts the number of lines printed; after the
twenty-fourth line, the program inserts a pause so you can read a full
display before continuing.

Line 340 resets the data pointer to the start of the food list; line 350
reads a data record. Line 370 checks if it is the end-of-data record. If
not, line 380 increments the lines-printed counter, and lines 390-430
insert a pause after every twenty-fourth line.

Adding a New Food

The following lines provide option 2 (enter unlisted data):

4?0 PR I tH "EtHEF.: t'lEA::;UF.:Et'1EtH Ut·~ I T FOF.: ".; I Ci$
4::a3 U$=""
485 I t'~PUT U$
490 F'F: I tH "CALOR IE::; PEF.: "; LI$
5'~H3 t·~ 1 =0
5~)5 I r-1PLIT t-~ 1
510 PF.: I tH "PF.:OTE I t,~ 0:: G.::O PER "j U$
520 t~2=~3
525 I t'~PUT t'~2
5:30 PF: I tH "CAF.:BOH'r'DF.:ATE 0:: Ci.) PEF.: "; U$
540 t-B=f1
545 I t-1PUT t'13
550 F'F.: I tH "FAT (Ci.) PER "; U$:
56121 tN=~3
565 I t'lPUT t-14
57~) C;OTO 19121

The variables used in lines 480, 500, 520, 540, and 560 correspond to
the variables used in the READ statements in lines 160 and 350. The
program simply fills each variable using your keyboard inputs rather
than reading them from the food list.

Line 570 causes the program to continue just as if the data had been
read in from the food list.

Displaying the Results

The final block of the main program requests the number of servings,
performs the final calculations, and prints the results.

58121 PR I tH "HOloJ t'1A t-l'T' ::;EF:",/ I t'H3::; DOE:; THE F.:EC I FE t1Af(E II j

59121 I t'lPUT t,~S
600 IF NS(l THEN 580
610 PR I ~n "EACH :;EF:.'",' I t'4G COtHA I t,~S II
62121 PF.: I tH I ~n 0:: CAl-llS* 1 f1+. 5::0,/ 1121 j" CALOF.: IE:;"

Nutritional Advisor 297

630 PRItH INHPR/'t-~S*10+. 5),/10;" GF~At18 p~:OTEm"
640 PRItH ItH(CB/~·~8*10+. 5)/10.;" Gf;,:At18

CAf;,:BOH'r'DRATE
650 PRINT I~H(FA/~·~8*10+. 5)/10;" GM:At18 FAT"
660 PRINT
670 PR I NT "T'r'PE 1 TO At'~AL'r'ZE At'~OTHEF~ F~EC I PE"
680 PRItH " 2 TO am."
690 It~PUT 8
700 IF 8(>1 AND 8(>2 THEN 670
710 ON S GOTO 10.720
720 E~~D

The Food List

That's the end of the program logic, but the food list is still missing. The
food list occupies 48 DATA lines from 730 through 1200. You can add or
subtract items anywhere in this range. However, be sure that line 1210
remains the last record in the list. It is a special end-of-data record.

Here's the food list. Type it in very carefully, and be sure rwt to
include any spaces that aren't shown here. It is particularly important
not to include spaces after a food name. Otherwise, when you request a
food type, you will have to include that trailing space or the program
won't find it in the list.

730 DATA MILK.CUP.165.8.12.10
740 DATA WHIPPING CREAM,CUPJ860.4.6.94
750 DATA COTTAGE CHEESE. CUP. 240. 30. 6. 11
760 DATA CHEDDAR CHEESE.1-INCH CUBE,70.4.0.6
770 DATA CREAM CHEESE.OZ.105.2.1.11
780 DATA EGGS.EGG.75,6.0.6
790 DATA BUTTER.1/4-LB STICK,800.0.0.90
800 DATA MARGARINE.1/4-LB STICK.80G.0.0.91
810 DATA VEGETABLE OIL. TABLESPOON. 125.0.0. 14
820 DATA GROUND BEEF.LB.1307.112.0.91
830 DATA CHICKEN,LB.1326.114.0.91
840 DATA LAMB.LB.1675.107.0.75
850 DATA HAM.LB.1547.85.0.117
860 DATA COD.LB.777.128.0.23
870 DATA FLOUNDER. LB. 914. 137.0.37
880 DATA CRABMEAT. LB. 480. 75. 5. 11
890 DATA TUNA.LB.907.133.0.37
900 DATA GREEN SNAP BEANS.CUP.25.1.6.0
910 DATA GREEN LIMA BEAN8.CUP.140.8.24.0
920 DATA RED KIDNEY BEAN8 (CANNED).CUP.230.15.42.0
930 DATA BROCCOLI.CUP,45.5.8.0
940 DATA CABBAGE.CUP.40.2.9.0

298 The C-64 Program Factory

950 DATA CARROTS. CUP. 45, 1,10.0
960 DATR CAULIFLOWER.CUP,30,3.6.0
970 DATA CELERY. CUP. 20. 1,4,0
980 DATR CORN.CUP,170.5,41,0
990 DRTR MUCHROOMS,1!2-CUP, 12.2.4,0
1000 DRTR ONIONS.CUP.80,2,18,0
1010 DRTA GREEN PEAS (CANNED).CUP,68,3.13.0
1020 DRTR POTRTOES.MED.SIZE POTATO,100,2.22.0
1030 DRTA TOMATOES (CRNNED),CUP,50.2,9,0
1040 DRTR SPINACH.CUP.26.3,3.0
1050 DRTA RPPLES.CUP.100.0,26,0
1060 DRTR BRNRNR,MED.SIZE BANRNR.85.0.23,0
1070 DATA BLUEBERRIES (CANNED),CUP,245,1,2,0
1080 DATA PEACHES (CANNED).CUP.200,0,52,0
1090 DATA PINEAPPLE (CANNED),SLICE,95.0.26,0
1100 DATA RAISINS.CUP,230,2.62.0
1110 DATA CORN MEAL.CUP,360.9,74.4
1120 DATA WHITE FLOUR,CUP,400,12,84,0
1130 DATA WHOLE WHEAT FLOUR.CUP,390, 13,79,2
1140 DATA BROWN RICE,CUP,748,15,154.3
1150 DATA WHITE RICE.CUP,692,14,150.0
1160 DATA NOODLES,CUP.200,7.37,2
1170 DATA OATMEAL. CUP, 150,5,26,3
1180 DATA SUGAR. CUP, 770,0, 199,0
1190 DATA ALMONDS.l!2-CUP,425,13, 13,38
1200 DATA WALNUTS.l!2-CUP,325.7,8,32
1 ;:~ 1 ~=1 DAHl EI·m.," ", 121, (1. (1, 121

The food list is based on data from the U.S. Department of Agriculture. The data is
available in many encyclopedias and books. One handy compilation can be found in Let's
Get Well. by Adelle Davis (New York: Harcourt Brace Jovanovich, Inc. 1965).

Chapter 20
--_ .. __ .. _ .. _-- ---- _----------_._--------

~===Ille 'fime -Machine

A calendar is a bit like a time machine. It helps you wander through the
past and future. In this chapter, we present the Time Machine pro
gram, which produces calendars from March 1920 through November
2009.

In addition to performing mental time traveling for fun, the pro
gram has practical benefits as a scheduling tool for the home or office.
Before printing a month's calendar, you can insert information about
birthdays, appointments, social engagements, deadlines, holidays, and
other events. You can even save and retrieve calendar information to
and from disk, so you won't have to retype it every time you want
another printout.

-Anatomy of a Calendar
The Time Machine program arranges the calendar in the traditional
table of four to six rows by seven columns. The rows correspond to
weeks, and the columns to days of the week. The cell where each row
and column intersect may represent an actual date in the month, or it
may be empty. Figure 20-1 shows a sample personalized calendar from
the Time Machine.

299

300 The C-64 Program Factory

How much information is needed to produce an accurate monthly
calendar? Just two factors are involved: the number of days in the
month and the weekday on which the month begins.

,

SI ~dm: ._H_~_a_d_i~", ... g __________________ _

' '~ "'EPTEI1BER 1984

SUH TUE

I~i' 30 PM
IF'OT lUCK
1~3UPPER

IlABOF:
IDR',
I

ISCHOOl
1~'TARr"
18 3121

I
I
I

IClO:'E
WOOL
II"OF:
,",lanEF'

I
!

21

111RIL
IMORTGAGE
I PR','I"EIH
I

I
I

31

IBETHRIN
ISTARTS
ISCHOOL
I TClDA',
I !

'3 I 10 I

I

~I

1:"CHOOl
IBOARD
1;- 30 PI"
I
!

111

II·lflTHAllAEI. I
lET I
I:;OCCEP I
IPRRCTICE I
I !

16 I 17 I 1:3 I

I I:"OCCEF'
I IADRl1S
I IF IELD
I !

I I
2,,: I 24 I 25 I

:.~~
Note Lines
(minimum one
per cell)

Date
Line

13 I

26!

I

~

THU

I
6 I

13 !

20 I

FRI

IDItHlER
IAT
IBAPT'S
I
I

271

SAT

I FRAflCHlA I
! S~'I I ~H1 I HG I
I PART'.'
12 F'11
I
I

1mIF'
ITO
11'IAll
I
!

71

I
I
I
I
!

141

21 I

I
I
I
I
I

281

I
I
I

11

I
I
I
I
I

:3 I

I
1.51

221

I
I
I
I
I

291

~.--t
I
I
I
I
I

~-
Empty
Cell

I
I
I
I
I

Cell (minimum
dimensions 4
columns by
5 rows

Figure 20-1. Sample personalized calendar

The Time Machine 301

Initial Calculations

Finding the number of days in a month is a trivial exercise. even for a
computer. February. of course. is a special case because its length
depends on whether the year is a leap year. Leap years are those that
are evenly divisible by 4. unless the year happens to be the first year of
a new century. such as 1900 or 2000. A year that begins a new century
is a leap year only if it is evenly divisible by 400. According to these
rules. 1984 is a leap year because it can be divided evenly by 4. and 2000
is a leap year because it can be divided by 400.

Finding the weekday on which a month begins is more difficult. One
method involves referring to three tables. each consisting of hundreds of
numbers and letter codes. A simpler method uses a known base date and
extrapolates forward from that date. For example. if we know that
March 1. 1920. occurred on a Monday. we can calculate the day of the
week for any subsequent date.

The Time Machine uses the latter method. Because of practical lim i
tations in the precision of numbers in Commodore BASIC. the calcula
tions are limited to a span of approximately 89 years.

Data Structures

Two arrays store the key information about each monthly calendar. The
calendar array C(cell number) maps each day of the month onto its cor
responding position among the 42 possible cells (6 weeks multiplied by 7
days per week equals 42). For instance. if the first of the month falls on
a Saturday. C(7)=1. since that Saturday is in column 7.

After the number 1 is assigned to one of the first seven cells in C().
all of the other numbers from 2 through the last day of the month are
assigned in sequential order. For example. if C(7)=1, then C(8)=2.
C(9)=3. and so forth. What about all the unused cells before the first
and after the last day of the month? They are set to zero.

The array MS$(date.note-line) stores the reminder notes that you
have assigned to certain days of the month. For instance. MS$(5.1)
stores line 1 of the notes for the fifth day of the month; MS$(5.2) stores
line 2 of the notes for the fifth of the month; and so forth. The notes are
printed in the corresponding cell of the monthly calendar.

Since the notes are stored separately from the calendar mapping. it
is possible to change months while retaining the notes. For example. you
may have certain monthly obligations that remain the same from month

302 The C-64 Program Factory

to month (rent due on the first, for example). The program lets you
recalculate C() for a different date while retaining the contents of
MS$(,).

--The Program ---------.---.----------------

The first block defines four useful numeric functions:

10 DEF FN Ml(X)=X-INT(X!4)*4
20 DEF FN M2(X)=X-INT(X!100)*100
30 DEF FN M3(X)=X-INT(X!400)t400
40 DEF FN M7(X)=X-INT(X!7)*7

All of the functions calculate X modulo N, which is the remainder of
the quotient:

X

N

Function M 1 calculates X modulo 4; M2 calculates X modulo 100;
M3 calculates X modulo 400; and M7 calculates X modulo 7.

Storing Information About the Calendar

The next block of lines stores fundamental information about the 12
months and weeks of the year:

50 DIM MO$(12),MD(12),WYS(7),C(42)
1::0 FOF: t'1:::: 1 TO 1:2
70 READ MO$(M),MD(M)
:::: (1 t·l D-::T t1
'~n FOF.: Ii= 1 TO 7
HJt1 F::EAIi l,l'r'$ (Ii)
110 t·lE::-n D
120 DATA JANUARY,31,FEBRUARY,28,MARCH,31,APRIL,30
130 DATA MAY,31,JUNE,30,JULY,31,AUGUST,31
140 DATA SEPTEMBER,30,OCTOBER,31,NOVEMBER,30,

DECEt1BEF.:) :::: 1
150 DATA SUN.MON,TUE,WED,THU,FRI,SAT

MD$() stores the names of the months; MD(), the number of days in
each month; WY$(), the abbreviated names of the days; and C(), the
number assigned to each of 42 possible calendar cells.

When typing in the DATA lines, take care not to add spaces before
or after the commas since this will upset the calendar format.

The Time Machine 303

Storing Miscellaneous Constants

The program needs a few other constants as well.

15;;::
153
154
160
170
1 G.J
190
:200
:2 J.1~1
22ft
:23.3
:24121
:250
:260
27~j

::; 1$=" ": F.:Et'1 1 :::WACE Hj::::I DE OUClTE::;
tKI$::::" ": F.:Et'1 t·m ::;F'fiC:E::::; I t··I:::; I DE UUOlT:::;
QC$=S1$: QL=40: GClSUB 2370: SS$=QS$
mJ=s
DL=S
PR=4: REM PRINTER DEVICE NUMBER
OT$=CHR$(34): REM QUOTE
CT=I~1
1,,il,J =::: (1

MW=INT«VW-l)!7)
1,,iL==66
ML=INT«VL-S)!6)
VL$=CHR$(12S): REM VERTICAL LINE
HLS=CHR$(192): REM HORIZONTAL LINE
D It1 t'1:::;$ (31 .. t'1L .. --1)

DW and DL are preset values for cell width and cell length, respec
tively. The program gives you an opportunity to change these (reformat
the calendar). PR is your printer's device number. Change it in line 180
if necessary. QT$ is the character for a double quote. This character is
needed when storing data in a disk file.

VW is the maximum calendar width measured in actual characters;
from this, the program derives MW, the maximum width of a calendar
cell. VL is a maximum calendar length in lines, and ML is the derived
maximum length of a cell. Even though your C-64 display allows only
40 characters by 25 lines, you can design a larger calendar format for
output to a printer; VW=80 and VL=66 correspond to standard 80-
column, 66-line printer paper. CT is the display slot number.

VL$ and HL$ are the characters used for vertical and horizontal
lines, respectively. Finally, MS$(31,ML-l) is the array that stores the
daily reminder notes.

-Inputting the Month and Year ------
The following short block gets initial values for the calendar month and
calendar format:

2::::(1 C,(I:::UB 450
29~3 CiC!::::UB 117(j

The subroutine called in line 280 asks you to enter the month and
year of the desired calendar and then fills in the array C() according to

304 The C-64 Program Factory

certain date calculations. The subroutine called in line 290 prompts you
to specify the output format of the calendar.

The Main Menu

The following lines print the main menu:

J~J~) F'F.: un
::: 1 ~J F)F.: I t-H "1-F'F.: I tH t'1 I t·l I ATUF.:E CALEt·mAF.:"
32~J PF.: I t-H "2-F'F.: I t-H FULL -..:;:; I ZE CALEt-mAF.:"
::::::;::t1 F'F: I t-H "3-ED I T CALEt·mF,F.: tKlTE::;"
J4~) F'F.: I t-H "4-F.:EFOF.:t1AT FROt'l D I Sr::: OF.: r::E'T'BOAFm"
3513 F'F.: un "5-CHAt'lIJE CALHIDAF.: t'1Ot-HH"
::::6121 F'F.: I t-H "6-::;fi"/E t·WTF.:::; l=tt·m FOF.:I"'1AT CIt·l D I ::;r<"
::::?12I F'P I t-H "7-CiU IT"
:38121 pF.:nn
39(:1 nlPUT ":3ELECT 1 -_.?: ".; F'
41313 IF F(l OF: F)7 THEN 3121121
41121 IF F=7 THEN END
42121 ON F IJOSUB 820)169121,20713,117121)45121,99121
430 COTO 3~J~J

The seven options available are: 1- PRINT MINIATURE CALEN
DAR, 2 - PRINT FULL-SIZE CALENDAR, 3 - EDIT CALENDAR
NOTES, 4 - REFORMAT FROM DISK OR KEYBOARD, 5 - CHANGE
CALENDAR MONTH, 6 - SAVE NOTES AND FORMAT ON DISK,
and 7 - QUIT.

Line 420 calls the subroutine corresponding to your selection. Upon
completion of the subroutine, line 430 jumps back to the start of the
main menu.

Change Calendar Month

Here's the first part of the subroutine to change the calendar month:

4 ~5 t1 F'F.: I t-H
46121 PF.: II'-H "I t·lPUT THE CALEt-WAP Mot-HH A::; t'lC1t-HH .. 'T'EI=tF.:. "
47121 PR I t-H "FOF.: E::<:AMPLE: 1, 19:::4 FOF.: .Jl=tt·lUI=tF.:'T' 1 ~~:::4. "
,:+:::(1 PF.: I t-H "',/AL I D t'lot-HH::; AF.:E :::., 192(1 TO 11, 2009"
49t1 pF.:Hn
5121121 F'F.: I t-H "t·l(ll.J T'r'F'E I t·l THE ,"lC1t-HH 1::ltm 'T'EI:1f;::"
51 (1 HlPUT t'L'T'
52(1 IF Y(192121 OF.: Y)2009 THEN 45(1
53(1 IF Y=192(1 AND M(3 THEN 45121
54121 IF Y=21211219 AND M)11 THEN 45121
55(1 IF M(l OF: F)12 THEN 45(1

The Time Machine 305

Lines 520-550 ensure that the month and year you enter are within
the acceptable ranges.

The next part of the subroutine initializes the calendar framework
C():

560 H$=MO$CM)+STR$CY)
57~:3 LH=LEH C H$)
580 PRIHT
590 PR I HT "Cot-~STRUCT I NO A CALEt·mAF.: FOF~"
60(1 PRItH i-I$.;" • • •
610 FOR CH=l TO 42
62(1 CCCt·D=0
630 t'~EXT Ct·~

H$ is the calendar heading (for instance, "January 1984"). Lines 610-
630 set every cell in the calendar to 0, indicating that no dates are
assigned yet.

At this point, the program needs to know how many days are
between the base date (March I, 1920) and the first day of the month
you have selected. The next lines make that calculation:

640 'T'l ='1'-1920
650 IF M(=2 THEN 680
660 t'l1 =t1-:3
67~j GOTO 700
680 t'11 =t1+9
690 'T'l='T'l-l
700 JD=INTC1461*Yl/4)+IHT«153*Ml+2)/5)

Lines 640-690 convert the actual month M and year Y into relative
values Ml and Yl based on the starting point of March I, 1920. Yl is
years elapsed, and Ml is months elapsed within the last year. For
instance, for calendar month May 1970, we get Yl=Y-1920=50 and
Ml=M-3=2, indicating a span of 50 years and two months.

Line 700 calculates the number of days represented by that span.
The expression INT(1461*Yl/4) gives the total number of days in Yl
years. The expression INT(153*Ml+2)/5) gives the number of days in
M 1 months. Adding these two expressions gives the total number of
days JD in the span from March I, 1920, up to the first day of the
month for the specified calendar month.

(The calendar logic summarized here is presented in greater detail
in Dr. Dobbs Journal #80, June 1983, page 66, "Julian Dates for Micro
computers," by Gordon King.)

Given the number of days elapsed, the program can complete the
calendar calculations.

306 The C-64 Program Factory

710 WD=FN M7(JD+l)
720 IF (FN M1(Y)=0 AND FN M2(Y)()0) OR

FN M3(Y)=0 THEN 750
730 LF'=0
740 130TO 760
750 LP=l
760 LD=t1D (t1)
770 IF LP=l AND M=2 THEN LD=29
780 FOR D=l TO LD
790 C(D+~m)=D
8',)0 t'~Ei-n D
810 RETURt~

Line 710 computes WD=JD+ 1 modulo 7. the weekday on whic:h the
first of the month falls. The value returned ranges from 0 to 6. Zero
represents Sunday. 1 Monday. and so forth.

Lines 720-770 determine whether it is a leap year and then set the
last day of the month LD. Line 770 adjusts LD for February in a leap
year.

Lines 780-800 number the calendar cells with the appropriate day
numbers. Line 810 returns to the main program.

Print Miniature Calendar

The next block of lines prints a miniature calendar. as shown in the
sample run later in this chapter (Figure 20-2).

Here are the line that print the miniature calendar:

820 GOSUB 2240
830 PRINT TAB«20-LH)/2+i);HS
:::40 FOR D= 1 TO 7
850 PRINT LEFTS(WY$(D),2); S1$;
860 t'~E:X:T D
:::70 PR I t-n
880 FOR D=1 TO LD+WD
890 IF C(D)()0 THEN 920
900 PRINT Sl$;S1$;
910 GOTO 930
920 PRINT RIGHT$(S1S+STR$(C(D»,2);
930 PF: nn ::; 1$;
940 IF FN M7(D)=0 THEN PRINT
950 t'~E)<T D
960 PRIt-n
970 GOSUB 2330
980 RETURt·j

The Time Machine 307

The subroutine called in line 820 lets you select the output device
(display or printer). The loop from 840 to 860 prints the abbreviated
day-of-week headings.

The loop from 880 to 950 prints the dates in the appropriate column
locations for each week of the calendar. Line 940 starts a new row of
dates after every week is completed.

The subroutine called in line 970 resets the display as the output
device, and line 980 returns to the main program.

Save Calendar to Disk

The next block saves the calendar notes and format in a disk file:

990 PRItH
1000 'T't·iS=" t·i"
1010 HiPUT "',/IBJ DISI< DIF.:ECTOR'T' ('·r',/t·D? ".; 'T't·l$
1020 IF 'T't·iS= "'T'" THEt·i GOSUB 29'.30
1030 FO$=t·iUS
104.3 I t·iF'UT "t'iAt1E OF OUTPUT FILE "; FOS
1050 IF FO$()NU$ THEN 1070
1060 F'R I tH "DATA t·lOT STOF.:ED"
1065 RETURt·i
1070 OPEt·i 2,8,3," (~0 : "+FOS+" .. :3EG!, ~JR ITE"
1072 IF ST=0 THEN 1080
1074 PRHH "DISI< ERF.:OR. DATA t·lOT STORED"
1076 RETURt·i
1080 PRItH#2, OJ
1090 PR I tH#2, CL
1100 FOR eN=1 TO 31
1110 FOR L=1 TO CL-l
1120 PRINT#2, QTS;MSS(CN .. L);QTS
113(1 t·iE:'<T L .. Ct·i
114C1 CLO:::;E 2
115.) PfU tH "DATA !:HOPED Hi "j FOS
116.:1 F::E TUF.: t·i

Line 1040 prompts you to enter a file name. Line 1070 creates the
output file, erasing any existing file by that name. If a disk-related
error occurs, the program will inform you and return to the menu.
After evaluating the source of the error, rerun the program and try
again.

Lines 1080 and 1090 print the cell width and cell length, and the loop
from 1100 to 1130 prints the entire contents of the notation array
MS$(,). Every line of text is printed inside quotes so that the program

308 The C-64 Program Factory

will be able to retrieve the lines correctly, even if they contain commas
or colons.

Reformat Calendar

Here is the subroutine that lets you reformat a calendar by loading one
from disk or by typing in new specifications. The subroutine starts by
printing a short menu:

1170 F'PHH
11 :::0 F'F.: I tH 11 CALEt·WAF.: FOF.:t'lAT:"
119~J F'F.: I tH "1-EtHEP FPOt'l f:::E'T'BOAF.:D"
L'2(10 F'PItH "2-LOAD F F.: ot1 DISf::: FILE"
121 (1 I t·lF'UT " ::;ELECT 1 OF.: 2 ".; CD
1220 IF CD()1 AND CD()2 THEN 1170
1230 IF CD=2 THEN 1470

The menu gives you two options: enter specifications from keyboard,
or load them from disk. These lines handle keyboard input:

124~J F'R ItH
125(1 F'F.: I tH "EPAS I t·W OLD t·jOTE::; ••• "
1260 FOR CN=0 TO 31
1270 FOR L=1 TO ML-1
1280 MSS(CN,L)=NUS
1290 HD::T L} ell
13(10 PF.: I tH
1310 PRltH "EtHEP CELL l,JIDTH (4-".; t'n,J.; ";'''
1320 PP I tH "(PETUPt·i=" .; m·J.; ") "
133(1 CJ·J=DloJ
1340 I t·iPUT D·J
1370 IF CW(4 OP CW)MW THEN 1300
13:::~) PP I tH
1390 PF.:ltH "EtHEP CELL LEtKiTH (2-" j t1L.; ")"
1400 F'R I tH "(F.:ETUPt·l=" .: DL.; ") "
1410 CL=DL
142~) I t·lPUT CL
1450 IF CL(2 OR CL)ML THEN 1380
1460 GOTO 1610

The loop from 1260 to 1290 erases the previous contents of the nota
tions array MS$(,). Lines 1300-1450 prompt you to enter the cell width
and cell length. DW and DL are default values given if you press
RETURN without typing in any specifications.

The next lines handle disk input:

The Time Machine 309

14 70 ITlt·~$=" t·~"

1480 H~PUT "1,/ I E~J D I :;:;1< D I F.:ECTORITI <'rl/t·n·) ".; Irlt'l$
149~1 I F ITlt'~$=" 11''' THEt·l CiO:::;UB 29~Zn:3
15~30 F I $=tKI$
1505 HlPUT "t'~At'lE OF HlF'UT FILE "j F U
1510 IF FI$(>NU$ THEN 1525
1515 PF.: I tH "DATA t·WT LOADED"
1520 (iOTO 1170
1525 OPEt·~ 2.,8,3, FI$+", SEO, F.:EAD"
1530 It'~PUT#2, C~J
1540 H~PUT#2, CL
1550 FOR CN=1 TO 31
1560 FOR L=1 TO CL-1
1570 INPUT#2,MS$(CN,L)
1580 t'~EXT L J ct~
1590 CLO:::E 2
1592 IF ST=0 OF.: 3T=64 THEN 1600
1594 PR I tH "D I ::¥ ERROF.:. DATA t·WT LOADED."
1596 I]OTO 1170
1600 PF.: I tH "DATA LOADED FROt'l ".; F I $

Line 1505 prompts you to enter a file name, and line 1525 attempts to
open the specified file for inputting.

Lines 1530 and 1540 input the cell width and cell length, and the
loop from 1550 to 1580 inputs every element of the note array MS$(,).
If a disk error occurs, lines 1594-1596 inform you and restart the
calendar reformatting routine.

After keyboard or disk specification is complete, the next lines per
form a few other calculations related to calendar format:

161 (1 PL,1=CvJ:+:7+ 1
1620 HB=CL-1
1630 OF=INT«CW-3)/2)
1640 OL=PL,J
1650 OC$=HL$
166(1 GOSUB 2370
1670 R$=G!:::$
16:::0 RETURt·l

PW is the rightmost column position of the calendar in its new for
mat. NB is the number of message lines available within each cell. OF
is the offset required to center each day-of-week name within its
column. Lines 1640-1670 store a string of horizontal lines in R$, forming
a horizontal line of length pw.

Line 1680 returns to the main program.

310 The C-64 Program Factory

Full-Size Calendar Printout

The calendar printout subroutine is the longest part of the program, so
it will be broken into smaller segments. The first part prints the title
(month and year) and day-of-week headings:

169121 OOSUB 224121
17121121 PRItH R$
171121 TB=INT«PW-2-LH)/2)
172121 PRINT VL$;SPC(TB);H$;SPC(PW-LH-TB-2);Vl$
173121 PRItrr R$
174121 FOR DR=1 TO 7
175121 IF DR=! THEN PRINT VL$;
176121 IF DR(>l THEN PRINT S1$;
177121 PRINT SPC(OF);WYS(DR);SPC(CW-4-0F);
178(1 t·iE::H DR
17'9121 PF.: I tH I,/LS

Line 1690 lets you select the output device (display or printer).
Throughout this printing section, the SPC function is used instead of
TAB to advance the print position. SPC(n) outputs a string of n spaces.

Line 1720 prints the heading centered over the calendar, and line
1770 prints each day-of-week name centered over the corresponding
column in the calendar.

The next part of the subroutine prints the note lines (there are NB
note lines in each cell):

1 :3121~j PF.: I tH fU
181121 LW=-INT(-(LD+WD)/7)
182121 FOR W=l TO LW
183121 FOR L=l TO NB
184121 FOR DR=1 TO 7
1 :35[1 F'R ItH I,/l.$.;
186121 DN=DR+(W-l)*7
187121 M$=MS$(C(DN),l)
188121 PRINT M$;SPC(CW-LEN(MS)-l);
1 f::90 t·lE>::T III=t
19~::K1 PF.: I trr '.,IL$
191121 t'lE>::T L

Line 1810 calculates the number of rows (Sunday through Saturday
cycles) that must be printed to cover the first of the month through the
last of the month. Depending on the length of the month and on where
the first day of the month falls in the week, from four to six rows may
be required.

Line 1820 starts a loop that counts through each of the LW rows.

The Time Machine 311

Each calendar row consists of NB note lines followed by a date line (see
Figure 20-1). Line 1830 starts a loop that counts through the NB note
lines. Line 1840 starts a loop that counts through the seven days. Line
1870 gets the appropriate note for each numbered cell, and line 1880
prints it in the cell.

Line 1890 selects the next day, and line 1910 selects the next line.
After all of the note lines have been printed for a given calendar week,
the program moves on to the next block, which prints the date lines:

1920 FOR DR=1 TO 7
19 ::: 0 P F.: I tH '.,.'L:t. ;
1940 DN=DR+(W-l)*7
1950 IF C(DN)(>0 THEN 1980
1960 PRINT SPC(CW-l);
1970 GOTO 2000
1980 DTS=STRS(C(DN»
1985 DTS=RIGHTS(DTS,lEN(DTS)-I)
1990 PRINT SPC(CW-lEN(DTS)-l);DTS;
:~:~)00 t'~E;:'::T DR
2010 PR I t-n l·llS

The loop from 1920 to 2000 counts through seven days of the week.
DN is the cell number, which ranges from 1 to 42. Line 1950 determines
whether that cell is numbered. If it is not numbered, line 1960 fills the
cell with spaces. Otherwise, lines 1980-1990 put the number into the cell
in right-justified form (the number is always printed at the extreme
right side of the cell).

Here is the final part of the calendar-printing subroutine:

2~)2~~1 PR I t·n RS
2 J;::1:;:(l t·lE:,::T L·~

:2(l40 F'F.: I tH
:205~) CiO::;Ur:: 23:~:~3

2060 RETURt·l

Line 2020 prints a horizontal rule, and line 2030 advances to the next
week number. After all LW weeks are printed, the calendar is complete.
The subroutine called in line 2050 resets the display as the output
device, and line 2060 returns to the main program.

Edit Calendar Notes

The next group of lines lets you add or change the contents of any num
bered calendar cell.

312 The C-64 Program Factory

:21217121 F'F.: I tH
:2iJ:::I~1 F'F.: I tH "ADD t',IOTE::: TO 1"Hi I CH [l1:I"I"E') < 1,-" ,: LD ,: " ::0 "

212190 :::D::::6
21 ~X1 I t'~F'UT "EI'HEF.: ~j TO C!U IT: ",: ::m
2116 IF 8D(1 OF.: 8D)LD THEN RETURN
:2120 pF.:Hrr
:21 :::0 F'F: I tH "EtHEF.: ",: t'm ,:" l'lOTE L. I j"iE:::.

t'Wi:::: LEI'-,ICiHj:=:" ,: U,J-1
214121 FOF.: L=1 TO NB
215121 F'F.:nrr "LmE "j 1_
:216~j 'n-:::t=tiU:t
:2170 I t'WUT T;:.::$
218121 IF LEN<TXS»CW-1 THEN TX:t=LEFT:t(TX:t,CW-l)
219121 MS:t(SD,L)=TX$
22(Hj I~E>n' L
221(1 F'F.:HH
2;;':212! F'F.:Un "TE::(T ::::TOF:ED."
22::::0 C10TO 2C170

Lines 2080-2110 prompt you to select a date. (Typing a 0 ends the
editing session and returns you to the main menu.) The loop from 2140
to 2200 inputs the NB lines required to fill that cell. Line 2180 ensures
that the lines you enter will fit into the cell by chopping off extra. char
acters on the right side of the line. Line 2190 stores each line in the
appropriate location in MS$(,).

Auxiliary Subroutines

The next subroutine lets you select an output device:

:224121 F'RIIH
2250 F'F: I tH "OUTPUT TO: 1-1'.... 2-PF: I tHEF:"
:2260 OD=1
2270 I t'iPUT ":::ELECT 1 OF: 2: ", OD
228121 IF OD()1 AND OD()2 THEN 2248
2290 IF OD=1 THEN F.:ETUF.:N
23~j0 OPHI 1, PR
;2:310 Ct1I1 1
2:32(j RETUF.:t·i

If you select printer output, lines 2300-2310 route the output to that
device. (PR, set in line 180, must be the device number of your printer.)

Here are the lines that restore output back to the video display:

233121 IF OIl=1 THEN F.:ETUF.:N
2:::::4'.3 F'R I tH# 1 "

2350 CLOSE 1
2355 OD=1
2360 RETUF.:t·l

The Time Machine 313

The next subroutine generates a repeating string of characters:

2:37(1 G!S$=tKI$
2380 FOR QQ=l TO QL
;239~3 G!S$=QS$+QC$
2400 t'lE:~::T G!Q
;241 0 RETUR~l

On entry to the subroutine, QL is the length of the string and QC$ is
the repeating character. On return from the subroutine, QS$ consists of
QL of character QC$.

Disk Directory

The final subroutine reads the disk directory and prints all file names
on the screen. There is a slight delay while the computer sorts through
extraneous information.

;29~Z10 PF.: I t-n II LOAD I t·H3 D I f~:ECTOF.:IT' ••• II

291 (1 OPEt·l 1 .. ::: .' 4., II $.. ::;EQ., F.:EFiD II
2920 IL,J=0
2930 IF ST()0 THEN 3040
2940 GETI1,A$
2950 IF LENCAS)=0 THEN 2920
2960 IF AS)CHRS(31) AND A$(CHR$(122) THEN 3010
2970 IF IW=0 THEN 2930
29:::~3 I L·J=0
;2990 PF.: I t-n
30~30 OOTO 293~:1
3010 IF IW=0 THEN WL=l
3~315 I L'J::,~ 1
::m2~3 PRIt-n A$;
3~323 L·JL::::L,JL + 1
3024 IF WL(17 THEN 3030
3026 PF~ I t-n
302::: L·JL::::(1
303(1 OOTO 2930
304[1 CLOSE 1
::::05f~ PfUtH
306~3 F.:ETURt·l

314 The C-64 Program Factory

-Using the Program ---------

Figure 20-2 shows a sample run of the program using the display for
output. You should be able to get the same results.

Once you have become familiar with using the program with output
to the Commodore display, try printing some calendars. Experiment
with different line-space values and character sets that may be available
with your printer. Check in your printer manual for ways of selecting
alternate print modes.

You may also find it convenient to change certain default settings of
the program, in particular

• Cell width DW$ (line 160)

• Cell length Dr $ (line 170)

• Maximum tot: J width of calendar VW (line 210)

• Maximum total length of calendar VL (line 230)

• Character used for vertical lines VL$ (line 250)

• Character used for horizontal lines HL$ (line 260).

f tlFIIT THE C:iiLEt·WAF: t'1OfHH fi:3 t'1CItHH., 'r'ERF:.
FOR EXRMPLE: 1,1984 FOR JANURRY 1984.
VALID MONTHS ARE 3)1920 TO 11,2009

NOW TYPE IN THE MONTH AND YEAR
12 , 19:::,:+

CONSTRUCTING A CRLENDAR FOR
DECEMBER 1984 . . .

CALEt·mnF.: FOF.:t'lRT:
i-ENTER FROM KEYBOARD
2-LORD FROM DISK FILE
::;ELECT 1 OF.: 2 1

ERASING OLD NOTES ...

ENTER CELL WIDTH (4- 11)
:F.:E:TUF:t-~:::: ~::; >

c::'
...• !

Figure 20-2. Sample run of the Time Marhine

ENTER CELL LENGTH (2- 10)
.: Fd::r U F: t'j:::: ~.5)

4,

i-PRINT MINIATURE CALENDAR
2-PRINT FULL-SIZE CALENDAR
3-EDIT CALENDAR NOTES
4-REFORMAT FROM DISK OR KEYBOARD
5-CHANGE CALENDAR MONTH
6-SAVE NOTES AND FORMAT ON DISK
'(",-OUIT

:;ELECT 1-7: i

OUTPUT TO: 1-TV 2-PRINTER
SELECT 1 OR 2: 1

DECEt1E:ER 1984
SU MO TU WE TH FR SA

i
;2 ~, 4 C' 6 7 ::: . .:. ,_I

9 10 11 P .::.. P '-' 14 15
16 17 18 19 20 21 22
.-,.-,
.:!..:J 24 25 26 27 2::: '-:If~

'::"-'

30 31

i-PRINT MINIATURE CALENDAR
2-PRINT FULL-SIZE CALENDAR
3-EDIT CALENDAR NOTES
4-REFORMAT FROM DISK OR KEYBOARD
5-CHANGE CALENDAR MONTH
6-SAVE NOTES AND FORMAT ON DISK
7-QUIT

SELECT 1-7: 3

ADD NOTES TO WHICH DATE? (1- 31)
ENTER 0 TO QUIT: 17

The Time Machine 315

ENTER 3 NOTE LINES. MAX LENGTH= 4
LH4E 1
Lt'l/ ::;
l_ I t'lE 2
AT

Figure 20-2. Sample run of the Time Machine (continued)

316 The C-64 Program Factory

L I t'~E ::::
?: 0~3

TEi<:T ::nOPED.

ADD NOTES TO WHICH DATE? (1- 31)
ENTEP 121 TO QUIT: 5

E~'~TEF.: :3
L I t'~E
PR'r'

1

LIt·lE 2
F:EtH
LH~E
$37121

.-. . :;,

NOTE LINES. MAX LENGTH= 4

ADD NOTES TO WHICH DATE? (1- 31)
ENTEP 121 TO QUIT: 21

ENTER 3 NOTE LINES. MAX LENGTH= 4
'-.1 tiE 1
Xt1A::;
LIt·lE 2
I,/AC.
L I t·lE :;:
! I I

TE><T ::;TORED.

ADD NOTES TO WHICH DATE? (1- 31)
ENTER 0 TO QUIT: 0

1-PRINT MINIATURE CALENDAR
2-PPINT FULL-SIZE CALENDAR
3-EDIT CALENDAP NOTES
4-REFORMAT FROM DISK OP KEYBOARD
5-CHANGE CALENDAR MONTH
6-SAVE NOTES AND FORMAT ON DISK
7-C!UIT

:ELECT 1-?: :2

OUTPUT TO: 1-TV 2-PRINTER
SELECT 1 OR 2: 1

Figure 20-2. Sample run of the Time Machine (continued)

._-_.
DECEt1BER 1984

SW'~ t1ot~ TUE WED THU FFH

IPA'T' I I
IREtH I 1
1$:37101 I

21 ~::: I 41 51 61 71

I I I I I I
1 1 I I I I
I I I I 1 I

91 110 I 11 I 121 1:::: I 14 I

ILWSI I I 1~<t1AS I
IAT I I I IVAC. I
17:10101 I I I! ! ! I

161 17 I 181 191 2101 21 I

I I I
I I I
I 1 I

2:::: I 241 251 261 271 281

I I
I 1
I I

:::0 1 :31 I

I-PRINT MINIATURE CALENDAR
2-PRINT FULL-SIZE CALENDAR
3-EDIT CALENDAR NOTES
4-REFORMAT FROM DISK OR KEYBOARD
5-CHANOE CALENDAR MONTH
6-SAVE NOTES AND FORMAT ON DISK
7-G!UIT

The Time Machine 317

SAT I

1
I
1

1 I

E: I

15 I

I
1
I

221

I
I
1

291

Figure 20-2. Sample run of the Time Machine (continued)

318 The C-64 Program Factory

SELECT 1-7: 6

VIEW DISK DIRECTORY (YIN)? N
NAME OF OUTPUT FILE DECEMBER

i-PRINT MINIATURE CALENDAR
2-PRINT FULL-SIZE CALENDAR
3-EDIT CALENDAR NOTES
4-REFORMAT FROM DISK OR KEYBOARD
5-CHANGE CALENDAR MONTH
6-SAVE NOTES AND FORMAT ON DISK
7-QUIT

SELECT 1-7: 7

READ',...

Figure 20-2. Sample run of the Time Machine (continued)

-Index
A

AND function, 9
Antecedent, logical, 32

B

Base 3 counting, 285-86,
(Figure 18-2) 286

Billiard Practice program, 119-34
sample screens, (Figure 8-3) 122
suggested games, 133-34

Blackjack '84 program, 101-17
card deck, 102, 106-07,

(Table 7-1) 116
object and rules, 101-02
sample run, (Figure 7-1) 103-06

Blazing Telephones program,
277-88

C

base 3 counting, 285-86,
(Figure 18-2) 286

program logic, 278-80
sample run, (Figure 18-3) 287
suggestions for using, 288

Cathode ray tube (CRT).
Chapter organization, xii
Ciphers, 260-61, (Figure 17-1) 261
Codebreaker program, the, 87-99

program logic, 88-90
rules and object, 87
sample run, (Figure 6-1) 89-90

Computer requirements, xii
Consequent, logical, 32
Creativity and art projects

Designs in a Circle, 245-58
Electronic Loom, 225-43
Poetry Generator, 211-24

Crossword Puzzle fill-in program,
65-86

procedure for using, 65-67
sample puzzles, (Figure 5-1) 66,

(Figure 5-3) 68, (Figure 5-6)
84-85

Crossword Puzzle pattern gener-
ator program, 49-63

printing, 61-63
procedure for constructing, 49-51
properties of puzzles, 49-50,

(Figure 4-1) 50
sample patterns, (Figure 4-3) 62,

(Figure 5-1) 66, (Figure 5-6) 84
Cryptography. See Secret Messages

D

Designs in a Circle program,
245-58

compared to Spirograph, 245
printing, 253-55, (Figure 16-5)

258
samples, (Figure 16-1) 246-47,

(Figure-16-2) 247-48
variations on formulas, 258

Device numbers, xii
Disk, program, available from

author, xii
Disk file directory subroutine, 82

E

Educational programs
Guess My Word, 195-210
Quiz Master, 159-68
Speed Drills, 169-83
Text Scanner, 185-93

319

320 The C-64 Program Factory

Electronic Loom program, 225-43
colors, 225, 228
design characters, 227-28
menu options, 226-27
printing considerations, 227,

242-43
sample run, (Figure 15-2) 236-42

Epson printer, 243

G
Games

Billiard Practice, 119-34
Blackjack '84, 101-17
Codebreaker, the, 87-99
Tic-Tac-Toe, 135-58

Guess My Word program, 195-210
hints for using, 206-10
program logic, 195-96
purpose of, 195
sample run, (Figure 13-1) 206-09

H

Head cells, 50-51
Hidden Words program, 15-29

construction procedure, 15-18,
(Figure 2-3) 18

I

description, 15
determining the ideal puzzle size,

19-20
making easier puzzles, 20

Instructions for entering
programs, xii

K

Key stream, 264-65

L

Logic, formal, 32
Logic puzzles. See Matchmaker
Lowercase letters, 265-66

M
Making Mazes program, 1-13

construction procedure, 2-3
defined, 1
printing, 9-10, 11-13

Matchmaker program, the, 31 .. 47
construction procedure, 33-35
defined, 31
personalized versions, 46-47

Mazes. See Making Mazes
Modulo function, 302

N
Null string, xii
Nutritional Advisor program, :~89-98

cost/value studies, 289

o

database required, 290-91,
297-98

operation, 29{)-91
purpose, 289
sample run, (Figure 19-1) :~92-94

OR function, 8

P

Permutations, 33
Poetry Generator program, 211-24

constructing a word list, 221-22
format specifications, 212-14
program logic, 211-14
sample poems, (Figure 14-1) 212
sample run, (Figure 14-3) 222-23
sample vocabulary,

(Figure 14-2) 219-21
Popular Comput1:ng magazine, xi
Printer

control codes, 243
device number, xii

Program disk available from author,
XII

Programs
instructions for entering, xii
types of, xi

Pseudo-code, 185-87, (Figure 12-1) 186

Puzzles

Q

Crossword Puzzle Designer,
Part 1, 49-63

Crossword Puzzle Designer,
Part 2, 65-86

Hidden Words, 15-29
Making Mazes, 1-13
Matchmaker, the, 31-47

Quiz Master program, 159-68
building the database, 159-60
sample database, 165-68
sample run, (Figure 10-1) 166-67

R
Random number seed, 36
RND function, 265

S
Secret Messages program, 259-76

binary search subroutine, 271-72
definitions, 260
instructions for using, 272-75
key stream, 264-65
processing lengthy texts, 272-75
processing rate, 259-60
program logic, 260-64
sample run, (Figure 17-2) 273-75
security, 275-76

Sound, 123, 180
SPC function, 310
Speed Drills program, 169-83

hints for using, 183
operation, 170-71
sample run, (Figure 11-2) 181-82

Spirograph. See Designs in a Circle
program

Stopping a program, xii

Index 321

Subroutines

T

binary string search, 271-72
disk file directory subroutine, 82
sequential string search, 37-39
string replacement, 97-98

Text Scanner program, 185-93
preparing a word processing

disk file, 188
program logic, 185-87,

(Figure 12-1) 186
purpose, 185

Tic-Tac-Toe program, 135-58
lowering the computer's playing

ability, 158
program logic, 137-39
sample run, (Figure 9-6) 154-57
strategy, 135-37

Time Machine, the, 299-318
calendar format, 299-300,

(Figure 20-1) 300
data calculations, 301, 305-06
data structures, 301-02
menu options, 304
modifications to, 314
sample run, (Figure 20-2) 314-18
uses, 299

Tools, handy
Blazing Telephones, 277-88
Nutritional Advisor, 289-98
Secret Messages, 259-76
Time Machine, the, 299-318

Truth table, 33

X

XOR operator, 262-63

Look for these Osborne McGraw-Hill Commodore 64® books.

Your Commodore 64®: A Guide to the Commodore 64 Computer
Commodore 64® Fun and Games

Available at computer stores and book stores everywhere. Or order
direct by calling TOLL-FREE: 800-227-2895. In California call
800-772-4077.

THE C-64 PROGRAM FACTORY

Here's a book that will put your C-64 to work right now as an enter
tainer, puzzle generator, teacher, and creative assistant.

Written by George Stewart, author of POPULAR COMPUTING's
column "The Program Factory," these programs can easily be keyed
into your computer.

This collection includes many entertaining programs-
• The Matchmaker
• The Codebreaker
• Blackjack '84
• Poetry Generator
• The Time Machine

Beginners will enjoy quick access to these programs, and experienced
users who would like to understand how the programs work can learn
from the explanations that accompany each program.

The C-64 Program Factory is ideal for any C-64 user looking for
programs that provide hours of fun and learning!

C-64 is a registered trademark of Commodore Business Machines, Inc.
Program Factory is a trademark of the author, George Stewart.

ISBN 0-88134-150-9

