

, " " '-. ' """"-

THE CENTURY COMPUTER
PROGRAMMING COURSE

for the

A complete guide to programming in BASIC

by

Professor PETER MORSE and BRIAN HANCOCK

of the Central London Polytechnic

CENTURY COMMUNICATIONS LTD
LONDON

I

;

r

....

,

,.~,

Peter Hancock 1985
. :::' . .

right of reproduction in whole or in part in any form '

in Great Britain in 1985
Communications Ltd.,

'i J."'.~J.':; Greek Street, London W1V 5LE

a 7126 0383 2 (paper)

ud~rnated directly from the authors' w-p disks by
NWL Editorial Services, Langport, Somerset, TAla 9DG

Printed in Great Britain by
Butler & Tanner Ltd, Frome, Somerset

. : .. : .. : . .:-.... : ..
.. .. : ::

.: .: ... ::: .. :: .::::.:

. .:.: . .

:
.

. .. . : .. :.: :

.:: : ... : . .:".:.::.:.::'.

::.:
,

: :>::. ..
.

, ... : :.:.:.:.:: .. :;:':

. ; :.: .. ; .
.. .. .
. : ... ::

. : ... : ..
... : : .

. : .. :

DEDICATION

To Vickie, Stella and our families

The authors wish to thank Ben Anrep,
Mark Siegler, Ian Adamson, Anne-Marie Thrysoe
and J amshid Siabi for their contributions and help

in producing this text.

' .

• ,
,

I

/

-":'\
.' :,{
':"'.

, , .

',\

" ..

.,
, .,

..

.,

'.

, ,
~, --
, '

Introduction

CONTENTS

PART ONE
FIRST STEPS

SECTION A: MEET THE COMMODORE 64
AI: The Commodore 64 microcomputer system

A2: Function of components

A3: Connecting up

A4: The keyboard

SECTION B: A TEST DRIVE
B1: Printing on the screen
B2: Colour
B3: Sound
B4: Sprite graphics
B5: Arithmetic

SECTION C: Basic BASIC
C1: The BASIC language
C2: A simple program
C3: A statement
C4: Statement numbers
C5: Instructions
C6: Numeric variables
C7: Strings and string variables
C8: Operators and operands
C9: Keying in a statement
C10: Correcting errors
Cll: Direct instructions
C12: Editing a program on the screen
C13: Listing a program on the screen
C14: Running the program
C15: Error messages
C16: How the program works
C17: Naming the program

v

.I

3

3

4

4

11
13
15
16
17

19
19
20
20
20
21
22
22
23
23
23
23
24
24
24
25
25

~--~-----=~--.----= ... --.. ~--.---~-----.-=----=~------.--.... -...... ~ .. --.. ----... -...... -~~ -- ----~~-~

G, VERIFYING, LOADING
G

?;ralm on cassette tape
pr() from memory

from cassette tape
_au.=" and catalogues

E: IMPROVING THE PROGRAM
comments - the REM statement

PRINT statement
',no- a loop

Stopping the program
E5: Testing for a condition
E6: Final edit and saving

SECTION F: DATA INPUT
Fl: Data
F2: READ DATA and RESTORE
F3: FOR TO STEP and NEXT loops
F4: Multiple INPUT
F5: Printing on the input line
F6: String INPUT
F7: READing large data lists
F8: Data types and data structures

PART TWO
- -

ESSENTIALS OF BASIC PROGRAMMING

SECTION G: PROGRAMMING METHODS
Gl: Programming
G2: Problem analysis
G3: Structure diagrams
G4: Classifying program modules
G5: Control structures
G6: The data table
G7: Describing the algorithm
G8: The pseudocode description
G9: Flowcharts
GI0: Testing the algorithm

SECTION H: CONTROL
HI: Control in programs
H2: Condition testing
H3: IF ••• THEN

•
VI

27
28
29
30

31
32
32
33
33
34

37
37
38
39
39
40
40
40

45
46
47
49
51
53
54
54
56
64

65
65
66

H4: GOTO instructions
H5:0NGOTO
H6: Decision structures
H7: Logical operators - AND/OR

SECTION I: ARITHMETIC AND FUNCTIONS
11: Arithmetic operations
12: Priority
13: Number
14: The E notation
IS: Rounding
16: How numbers are handled
17: Functions
18: List of functions used in Commodore BASIC
19: The standard mathematical functions
110: Trigonometric functions
Ill: Random numbers
112: User-defined functions

SECTION J: LOGICAL OPERATIONS
J1: Logic values and numeric values
J2: Boolean operators: the AND operator
J3: The OR operator
J4: The NOT operator
J5: Conditional operators
J6: Logic operations on conditional expressions
J7: Multiple logic on conditions
J8: Logical operations on numbers
J9: Priority
J10: Logical operations with strings
J11: Applications of logical operators

SECTION K: STRINGS
Kl: Strings
K2: Quotes
K3: String input
K4: Length of a string
K5: Null strings .
K6: String variables and dimensions
K7: Multi-dimensional string vari!lbles
K8: String and string array assignment
K9: Substrings and string slices
K10: String concatenation
K11: Comparing strings
K12: VAL and STR$
K13: ASC and CHR$

• •
VIl

/
, , , ,

66
67
68
73

75
75
76
77
78
78
79
80
82
83
84
85

87
87
88
88
89
89
91
92
94
94
95

99
100
100
101
102
102
103
104
105
105
106
108
109

1 ,
,

-- " "---"-'.-- --

screen
definitions

un'. Formatting numbers
M5: Word processing

'. , "

, ':,
, ':', ' .

G AND PLOTTING

SECTION N: SUBROUTINES
Nl: Subroutines
N2: Subroutine example
N3: Nested subroutines
N4: Recursive subroutines
N5:0NGOSUB
N6: Subroutine use

PART THREE

111
112
113
113
115
116
117
118
121
122

127
127
128
129
133

135
136
137
139
142
143

THE COMPLETE PROGRAMMING METHOD

SECTION 0: PROGRAMMING METHODS II
01: A Recapitulation
02: The rules of coding and design
03: Control structures in 64 BASIC
04: Program development
05: The complete programming method
06: An example of structured design
07: The program
08: The documentation

SECTION P: FILES
PI: Introduction
P2: Using other devices
P3: Files with cassette recorder
P4: Structure of files
P5: Using a disc drive

•••
Vlll

149
150
156
163
168
172
179
179

181
181
182
185
186

P6: Loading and saving programs
P7: Errors
P8: Working with files
P9: Random and relative files
PI0: The disc unit
Pll: Output to a printer

SECTION Q: COLOUR AND SOUND
Ql: Standard character mode
Q2: Screen and colour memory
Q3: Sound and music
Q4: Playing a note
Q5: Multiple voices
Q5: Filtering

SECTION R: GRAPHICS
R1: User defined (programmable) characters
R2: Defining characters
R3: Multicolour characters
R4: Extended background colour
R5: High resolution (bit map) mode
R6: Sprites
R7: Defining a sprite
R8: Sprite formation
R9: Sprite expansion
RIO: Sprite priority
Rll: Multicolour sprites
R12: Collision detection

SECTION S: LISTS and ARRAYS
SI: Introduction
S2: Dimensioning
S3: The index variable
S4: Lists
S5: String arrays
S6: Two-dimensional arrays
S7: Multidimensional arrays
S8: Use of arrays

SECTION T: SORTING, SEARCHING and / ,

STORING ARRAYS /
T1: Searching and sorting
T2: Bubble sort with flag
T3: Alphabetical sort
T4: Insertion sort
T5: Shell sort
T6: Quick sort
T7: Index sort

--

.
IX

187
187
188
188
189
190

191
192
195
196
199
200

201
202
204
205
206
213
214
214
218
219
220
221

223
223
224
224
228
229
230
232

237
239
240
241
243
247
250

1

I ,

-,
, ;

T8: Linear search
T9: Binary Search

SECTION U: MEMORY and MACHINE CODE
Ul: Binary systems
U2: The memory map
U3: PEEK and POKE
U4: The program area
U5: Systems variables
U6: The hexadecimal system
U7: Machine code programs
U8: The 6510 microprocessor chip
U9: The kernal
U1O: Input/output memory locations
U11: Complete memory maps

PART FOUR
THE APPLICATION OF PROGRAMMING

SECTION V: APPLICATIONS PROGRAMS
VI: Programming for applications
V2: Instructions and input checks
V3: Example programs
V4: Garnes programming
V5: Example program

APPENDICES
I ASCII and CHR$ codes

II Screen display characters and codes

III Abbreviations for BASIC keywords

IV Error messages

V Music note values

VI Program library

x

253
254

257
258
261
261
262
262
264
265
267
267
267

271
271
277
309
310

313

315

317

319

321

323

..

INTRODUCTION
The central conviction behind this book is that programming computers to solve
problems is essentially a language-independent activity. This means that there is
no reason why Commodore BASIC should not be learned in exactly the same
way as other high level languages: that is, with the fundamentals of
problem-solving and structured programming introduced at an early stage.

For the majority of readers, Commodore BASIC will be their first introduction
to computing; we hope that many will use it as a stepping-stone to more
advanced study and application. Good problem-solving and programming
habits will make easier both applications programming in BASIC and,
eventually, learning a different structured language, such as PASCAL (which
has a richer programming environment than BASIC). Once bad programming
habits are acquired they are difficult to break; thus, this book has been designed
to introduce readers to the elements of computer programming in a systematic
manner, with the emphasis on correct rather than merely adequate techniques.

Although the text is intended to be a serious treatment of Commodore BASIC,
as an introduction to computing it assumes no prior knowledge of computers
and only a minimal understanding of mathematics. (Without the maths you will
still be able to make your way through the book, but if you don't know what SIN
and COS are, you won't be able to write programs using them!) Above all we
intend to give readers a full introduction to the essential control and modular
structures present in structured computer languages, and the way in which they
operate in Commodore BASIC. We hope that with this behind them, readers
will be able to tackle other computer languages with an understanding of the
essentials of good programming in any language.

This approach also ensures that the reader who stays with his Commodore
machine will be able to maximise its potential. As it runs on one of the world's
most popular microcomputers, there can be little doubt that Commodore BASIC
will become one of the most commonly used computer languages. This, coupled
with the fact that more and more software is becoming available for it, makes it
all the more important that users attain a sound understanding of the language.
Most published programs in books and magazines have little in the way of
documentation; debugging them, normally a tedious and difficult task, becomes
easier when the techniques for doing so have been well learned.

This book introduces readers to three main sets of computer rules:

• the rules of using the computer system

• the rules of the Commodore BASIC programming language

• the rules of problem solving, data handling and structured programming
using Commodore BASIC

My this book was written
The wide availability of the Commodore machine demands that it be treated
seriously as a means of teaching programming methods to a large number of
people, and the programmer of any computer must understand the character
istics of the machine, the high level language by which it is used and controlled
(in this case BASIC), and the problem-solving techniques to which it can be
applied. We felt that a serious text was needed on Commodore BASIC which

J

gave the first-time user a worthwhile home tutor on computing. So we wrote
one!
Mo the book was written for
The book has been written for the home user or school user who has access to a
Commodore 64 and wants to learn how to program it from scratch. Experience
has shown that most Commodore users will buy more than one book on the
subject of programming their machine; this book will clear up a few
misunderstandings and confusions presented by other texts and will take the
reader further into programming techniques .

•
Xl

,
I ,
I

The text has also been designed as an aid to Commodore BASIC users who are
attempting serious applications and are having trouble designing error-free
programs.
The structure of the book .
The book is a complete self-study text, and should be worked through using the
machine, keying in exercises and programs as they arise.

The course has twenty-two sections and is divided into four parts. The table of
contents lists all the numbered headings within each section, thus describing the
study objectives and BASIC features covered in each part of the book. The
course is complete and comprehensive.
Part 1 The book begins with a brief introduction to the 64 and its keyboard, and
takes the reader on a 'test drive' of the machine. Then the programming begins
immediately: the user is taken through the operation of a simple program, as
well as how to save it, load it, list it and add improvements. Programs need data,
so the section finishes with an introduction to data handling.
Part 2 The essentials of BASIC programming are introduced, beginning with the
fundamentals of problem solving and structured programming in BASIC. The
properties and implementation of important language control structures, such
as decisions, loops, and subroutines, are introduced, together with the use of
arithmetic, functions, logic and strings. A detailed section on printing and
plotting on the screen gives an insight into the popular topics of graphics and
word processing.
Part 3 Now the book changes up a gear: the complete programming method of
structured design, coding, debugging and documentation is first taught. The
treatment of graphics continues with a study of the character set, codes, and
designing of special characters. This leads naturally into the use of colour and
sound, and accelerates into the fields of computer art, animation and some
sophisticated graphic toolkits. Theory is thoroughly and carefully covered.

The treatment of data structures and data handling is advanced by
investigating lists and arrays, and how to sort and search them. A fundamental
unit on the operation of the 64 is then taken, with a detailed consideration of
memory, its organisation and handling through peeking and poking, and the
discovery of how easy it is to run machine code programs. Some new tricks to
protect your programs are given,

The use of a floppy disk drive storage system is considered in some depth,
and the important topic of data file handling, so vital to real applications, is
covered.
Part 4 Finally, the book takes the student through more examples of applications
programming. The methodology taught in the earlier parts of the course is
applied to some interesting problems.

Remember, programming is learned most effectively through experience: the
exercises which appear in the text are intended to give you practice in
programming and to stretch you a little. If you do not understand something or
if you get stuck, don't be discouraged; go back over the section again. Take your
time, and don't be afraid to experiment with your own variations. See if you can
apply your own ideas on the 64!

We hope that you find learning BASIC programming with this book a
successful, enjoyable and useful experience, and that the knowledge and
programming skills obtained will be a step on the path to a more advanced use
of your Commodore or other computers for real applications and enjoyment.

Peter Morse
Brian Hancock
The Polytechnic of Central London
1985

..
XII

,

- --------- --- -.-..... --.. ~ -.--... -.---.-.----- _ , ... _._-----

PART ONE

FIRST STEPS

/

, ,

Section A: Meet the Commodore 64

A1: The Commodore 64 microcomputer system
The components of the minimum complete operating 64 system consist of:

• The Commodore 64 microcomputer, with keyboard and 64K RAM (Random
Access Memory)

• The 64 power supply, with the correct plug attached for your AC power
socket

• A domestic TV or a monitor for display

• The aeriaVantenna or connecting cable which connects the 64 to the TV or
monitor

The computer system can be operated without a recording device, but without a
cassette player or a floppy disc unit you will not be able to make a record of your
work, or use any of the commercially available software.

A2: Function of components
Here is a brief description of the functions of the components of a Commodore
microcomputer system.

Component
Commodore 64 computer
board

Keyboard

TV set

Cassette recorder

Printer

Power supply

Cables

Function

Data processing and control of information hand
ling: input from keyboard or cassette; output to TV
screen (or printer). Holds 64K of RAM memory. (K
stands for kilobyte. One byte is eight bits, which
are the binary digits 0 and 1 that computers use as
on-off switches. A kilobyte is roughly 1000 bytes,
actually 210 or 1024, the nearest binary number to
1000.)
Input of information. Programs, data and com
mands are keyed in.
Used as VDU (visual display unit) (colour if
possible). Provides on-line output of information:
visual display of programs, results (data, graphs,
pictures) and control commands. A colour set is
best, otherwise you will not be able to use all the
64' s functions; a purpose-made monitor is best of
all because it will give a better picture.
Off-line storage of information. Programs and data
are stored (recorded, or saved) as coded electro
magnetic impulses on cassette tapes. They can be
played back (loaded) at any time for w{e again.

,
Output device, to provide a permarient record of
the screen display, program listings or information
in the computer memory.
Supplies the DC current (9 volts at 1.0 amps and 5
volts at 1.5 amps) to run the computer, from the
household power supply.
To interconnect the devices which make up the
system.

3

1
I

The printed circuit board inside the Commodore 64 holds and connects the IC
(integrated circuit) microchips which provide the computing facilities. These are:

• the 6510 CPU (Central Processing Unit) microprocessor chip, the brain of the
system. This is an updated version of the 6502 chip that is used in many other
microcomputers, and performs all processing tasks.

• the ROM (Read Only Memory) chip, which holds the 8K BASIC interpreter
that translates BASIC instructions into the machine-code instructions that the
6510 operates with. The software or program data in this are fixed, hence the
name, and also stable: it remains when the power is switched off.

• the RAM (Random Access Memory) chips, which provide the memory store.
This memory is volatile: the data is stored as electrical impulses and is lost
when the power is switched off. This memory stores the BASIC program, the
values of variables (including some system variables that the computer uses to
organise its own affairs), a memory picture of the TV screen display, and the
stacks which hold the numbers whilst they are being manipulated. The
memory organisation is described in Section U of this book.

Also mounted on the circuit board are several other chips for handling graphics
and sound, the colour TV signal encoder and modulator circuits, and sockets for
the connecting cables to the TV and cassette recorder.

A3: Connecting up
Set aside an area to work in and set up your television, cassette recorder, printer
(if you have one), and the 64's power supply.

Connect the 64 to the television aerial with a lead connected to the TV socket
on the 64 and connect the Commodore cassette player to the back of the
computer.

Your system is now set up. Check that the TV is turned off, and that no
cassette keys are depressed. Plug the 64 power supply into AC (household)
power supply sockets and switch the sockets on if they have switches.

Switch on the TV and the Commodore 64. Choose a channel with the push
button or other channel select control and tune the TV to channel 36 UHF (UK)
until

(C) COMMODORE 64 BASIC V2

appears on the screen. Adjust the tuning until the display is clear, and the
brightness, contrast and colour (if you're using a colour TV) controls to get a
good picture without it being too bright (since you are going to spend some time
looking at it from close up).

On leaving your computer: leave it connected up; switch off the TV and the AC
power supply plugs; disconnect power plugs from sockets.

You now have an operating microcomputer system. The system needs no
maintenance other than the occasional cleaning of the tape heads on the cassette
player.

A4: The keyboard
The keyboard is very similar to that used on an ordinary typewriter, with a few
additional keys, as follows:
RETURN

RUN/STOP

Carriage return
Loads and runs a program from cassette when
used with the SHIFT key. Stops execution of your
program.

4

CTRL

C=

CLRlHOME

INST/OEL

CRSR t t

CRSR +7

Control key used with other keys to control the
computer.
Expands the range of the control function, Also
used when loading from tape recorder,
Moves cursor to top of screen, Used with the SHIFT

key to clear the screen.
Deletes a character, Used with SHIFT to insert a
character.

Moves the cursor up or down the screen (with
SHIFT key for up).

Moves the cursor left or right on the screen (with
SHIFT key for left).

EXERCISES WITH THE KEYS
RETURN

Type any character(s) on the keyboard. They will be displayed on the screen,
Now press RETURN: the Commodore will respond with some form of message, In
any exercise in this book, by the way, don't worry about doing the wrong thing:
you cannot damage the machine by pressing the wrong combination of keys,
CLRlHOME

Enter a few lines, separate them using the RETURN key, and press the CLR/HOME

key. The cursor (the square that flashes on the screen) will move to the top
left-hand corner of the screen. Now hold the SHIFT key and press CLR/HOME, The
screen will now clear (blank screen, except for the cursor).
CRSR t t and CRSR -

These keys, used with the SHIFT key, allow you to move the cursor around the
screen. To move the cursor up or left, the SHIFT key is also held down; to move
the cursor down or to the right, the cursor key alone is used,
INST/OEL

Enter this line:
PRINT "HELLO"

but do not press the return key. Now press INST/OEL key a few times, Notice
that each time the key is pressed a character on the screen is removed (deleted),
Delete all the characters, or clear the screen as above, and enter:

PRINT "GOODBYE" •
Again, do not press RETURN. Now using the cursor keys move the cursor back
over the second pair of quotes. Hold the SHIFT key down and press the CRSR -

key once, then press INST/OEL key four times. Now release the SHIFT key and
enter a space followed by NOW.
CTRL and RESTORE

The main purpose of the CTRL key on the Commodore is to change the colour of
characters produced on the screen, This can be done in two ways, Firstly,
pressing CTRL and holding it, press any of the digits marked 1 to 8, Release both
keys and now type any characters on the keyboard, The colour you selected will
now be displayed. Try this example: /

;'
Press CTRL and 2 I

Enter COMMODORE

Press the space bar, then CTRL and 3

Enter COMMODORE again
The screen will show:
COMMODORE COMMODORE

with the first word in white, the second in red,

5

-e
- ' --

I
• e · , ,
• ,
,

:'
j" -

e ,
, ,
e
e '

~: :
:'-, ,

Now press RETURN (forget. the ,message printed on the screen), Now press any
keys. Notice that whatever you write is printed in red, the colour you last
selected. To return to normal colour, hold the RUN/STOP key and press RESTORE.

The screen will clear and the colour return to normal.

Other keyboard features
Now look at the keyboard of the Commodore. Marked under many of the keys
are special graphics symbols. On each key are marked two symbols. These are
accessed using either the SHIFT or the C=, called the Commodore logo, or for
short the logo key.

For example, play with the Q key. Holding c= and Q produces [E' or holding
SHIFT and Q produces 00.

Try it with any of the alphabet keys and the ~, -, @, *, # and t keys. Each
produces a different symbol depending on whether you hold the SHIFT or logo
key. The full range of Commodore graphics is shown in program Intro 4 below;
type it in and RUN it: (It doesn't matter at this stage if you don't understand the
program; programming the 64 will be explained in later chapters.) The Com
modore supports two types of displays, either upper case and lower case, or
upper case with graphics. You cannot mix upper and lower cases with graphics.

Push the logo key down and press SHIFT. Now characters entered are
upper/lower case. Now, using the logo key, graphics can be entered, but not as
many as in upper case graphics.

To return to upper case graphics press c= and SHIFT simultaneously.

Keyboard practice
Press SHIFT and CLRlHOME to clear the screen. Use the cursor keys to move up,
down, left and right. Enter some text (anything you like) on the screen; then
move the cursor down and enter some more text. Do not press RETURN. The
cursor keys allow you to move around the screen and print characters any
where.

The many special features of the Commodore 64 will be dealt with in the rest
of the book; for now, here are a few introductory programs for you to key in and
run. They will give you practice in using the keyboard accurately.

1 - P R I N'T " "" I ''' 'I'"; '!'-''I''';'I '''''''''I'- 'I''';'I '''''I'''w'I~i' '1 ' '' IIG; ·II'' 'IIi::·III,·n'''lI~ ·IIt: ·II"'nhiw· HIP. '':C 0 M MO D () , , ' .. , ,Pol . .1< • .I!!...I!!·I,f.ki!l. ,T:!. ,I.;. ,!'I.,.!!!,.,!. I" h,1 "j" ii~IIIiH IIi" 1!1~"j11 H~I.IPIIH" "piIiRI II ,

ORE"
20 FOR A=l TO 1000
30 NEXT A
4 ,- F' c, I '" "T" ""'1'-:','-:'1""1''':'1''''1''''1'''''1''':'1''-'1''':'"-·"..-J'G"»§"lIb"lIG"!'Flln ":·lIl:;·lIr.:·'I'··nr.T;':'COM MO D ;) , ,l>i , .. , .~; .. 1:;, .,,1 . .I!,. ,1.1 . . '!' ,r,I4,f.,. ,<I. ,~,.I.T:!'lplllrj II:.! !I~\ liP' I," III «filiI.' KjtI I ~I ;1 Hliih •

ORE"
50 FOR A=l TO 1000
60 NEXT A
70 GOTO 10

6

,
'. "

\'-

r ,
. _ _-_ .. __ -, _._--- --_._ ,,, ,,,, ,,"',"-".-... _ "_._--,.-

1 £) PR I NT " 1'I"'r~i:lrii:lr~:I'~l'Vl!i'F~'UrtuLi·u"·D~·ftn5·u~·lI!;;lFulO·II~:EYBOARD TES I • . d. . . • _• ..1.1 .~itI "II HID M. IIIR It! I!Ii R~ I,IU H~! I :::HflO •

TERITlI"
20 PR I NT" :~r~:I~lIIii'IiSCREEN WILL SHOW A CHARACTE
R"
30 PR I NT" !i'II~'If'RESS THE CHARACTER AND SEE"
40 PR I NT" ,rnIiIlWHETHER YOU WERE RIGHT"
c;o_ F'R I NT " ':-'I" ::'I''''~'' ~ .~ .. m .. ~.,

60 PR I NT" '~:i~]~il~llPRESS A I<EY l."HEN READY !!lIl!"

7 0 PR I NT" ""~!''''~ II

71 FOR A=1 TO 100:NEXT A
75 GET A$
80 PR I NT "1~'n~'"iifIlPRESS A KEY WHEN READ Y
81 FOR A=1 TO 100:NEXT A
90 PR I NT I ""'!'""I"
100 IF A$="" THEN 60

PR 1 NT " ::':J "
S=30+INT(RND(1)*65)

"

110
120
130
(S)

F· R v N' II '":r''' '1';;'I'· .. 'I";;1'-"" ·'I' .. ·'I'·;;·'101I'· .. N~ .. II~i'H·;·"!ii· 1I" ·'I';·'''''II,·1IIO·u,;;·uI;·«,;·\,IO·u" C H R $, 1., :"' . . ~! .. 1.: .. !!.,.I.:.I.P.!.I.',!, .EI . .1.:.,1" Rill ftill ~"Ilil n, p. "', ,,,I ~I,,,, "', UIU ";' 'III iI

140 GET A$:IF A$="" THEN 140

": GO TO 120
160 C·Q T "IT" r.;;'~··I'····I·· .. '! ',·~~.;'H;;l'IO·"~il1 .. ·llho·H'"·u'"·ur;l,;"ur.;·u1 NCORREC' ... _ I. -. ~ j." a :11'J.m. ,~!. ,P.!.,.I.!.\.i.!.ijU K,I !B" tnll 1~ 1111 R~lIHH ttl niU" , TRY
AGAIN"
170 GOTO 140

10 PR I NT " :~:rriiWi:l "
20 FOR A=1 TO 8
30 READ B
40 FOR C-1 -L TO ")

..:..

50 PRINT CHR$ (B) ;
60 OR I NT II ';;'1

I .J h:!

II

70 NEXT C,A
100 DATA 5,28,30~~1,144,156,158,159

.I

7

:>

15 PR I NT "linl~·I!~·U.·U I I I I I I I
! I I "

20 . PR I NT "§'IIW'II~'HW'U 1 .. --.. _.l"-r·".I .. ., .. _, .. ",·_I..· .. ,I .. · .. r .. ·.I"·"r .. "L.., .. _L.-r-' .. "'I" .. J .. .,..·.I T .. .I , .. ·..l··

"T .. .I..-r· .. J .. - ·1 "

25 PR I NT" ifH~'UmR~'B I I I
I I I" ·
-0 PR I NT II ~;·IIh;'iI'"·"'"·1I . • ::.. ill 11i1i I ~I Rtv ~·~·······i~··.I·····I···..I··-1-··.l--I··-f.·-,.···.!··· .. I··-'···-I-···! ·r· .. ·I.···,···-I··HT··..1·· .. ,·····!··-TH

••
L."T'

, L M". I " ... ····T··-

I I ! I I I
I I "

40 PR I NT .. ~ll~'II~ 'U~'B 1 .. "·"· .. +··" .. ·_I...T "J ,. I....T .. .I· .. ·,,,J. .. "j",,.I,, .. ·,I· .. .,.-.l..-r .. ,J .. ·-r· .. .I ·, .. • .. I.. .. T , ..

······,-1···· .. ···,_·· .. "·,,1 II

50
I

60

PR I NT II ~·n~H~·IIw.·R I I ! I I I I
I I "

n I _'" , ,._ .. _ .. , L ,J _". , •..•.• , _ .. I .,.M. J -, ... I , J l-.. - , , F'R I NT .. ffi''' ~''I~'~''H II _. _. . ', -. -, -. ,- ,'

....... _LI ! J.

80 GOSUB 795
290 PR I NT" ffi·II~·IIIiiII~·H~·1I 1' _._" •• '1 .. " " _ - _ .. _ " .. , If

300 PR I NT "Iilnffi·Htiinniill! 0 I SH 1FT LOCI<

310 PR I NT" ~i!l~lIni~ffi'lIffi'ij If:a**I!!l!! I SHIFT KEYS
I"

320 PR I NT" ~'H~H;iH~'U~'1I1 'lUI I RUN/STOP

~ 4 0 F'R I NT" !;; · u~;"I;i·!!';·''';·11 ! -~. ... 11111 tI " 11tr. H!Ii. I

,11
i

CT I CONTROL

COJ'r1MODORE LOGO

CURSER UP/DOWN

I"

I"

I"

I"

360 P F\ I NT" pn!in!~iUltl]fii" I :'i;I·,: .. ·!lllll h. • CURSER .LEFT/RIGHT
,II ,
~7 0 PfU NT 11 ~'llffi'n~'UW'lIfu'~ I RS I RESTORE

380 PR I NT 1l 1ij'lIpTlI~'!!m'"liilll RE I RETUF\N

385 PR I NT II !ij'IIW. ·IIIRIlIRII~i'R! ';;acmrn I CLR/HOME
I"
~8 7 P R I NT II fu]Wllfj'lI!inl~" If.H I~
,II ,

INSERT/DELETE

III

I"

390 PR I NT II Wllf.illpi i! ~lIfiitl 1..1.. _ •• _ _ • .. • .. • .. ·_ .. ·_· .. • .. 1 II

400 PR I NT" ~!~Miin!~·nliili~·lIni'lIWRESS A KEY TO CONT I NUE
';;;\111 •
mit ~

410 GET A$:IF A$="II THEN 410
420 GOSUB 795

FI R '1" NT U ';j;:\' .. ·'I· .. ··I'···'I'· .. 'I''j''I'iii'I'M·'\'· .. l'· .. '\'·i·11';;;;1 II J. ~" . . r.' . . n .2!. r.1 . ..e'.,.;. ,II .. ~ . . r.I . .1.1 . • ,It

8

r
625 FOR A=l TO 13*40
630 PRINT" ";
6 3 5 N EXT: P R I NT" !u'«f,iHfriH.'IIWII

PRODUCED USIN

" . ,
670 GET A$:IF A$="" THEN 670
680 GOSUB 795
6 9 C_' F' c~ I "J T .. : ;;:I';;i' I';;i'I";i'I 'ui 'I "" 'I'-i'I~'I' -i'I'r.i'I'-:j'1'-"I"!'I"""lii"!; "III"'I!r."I!!;i"ulii' '' !J~ R AF' H I C S F' P. i~~ ,1I', I,r,, _!.",_ .t ·.m .. I! ... I.I!. ,t .. , •.... r; ... ~.i.r. .. t.I!~.I.t: , .11f1 i*nttll.hij. !iU

RODUCED USING LOGO KEY "
700 PR I NT" !i'lI~l!PlH~II~'II:~IIIF'RESS A KEY TO CONT I NUE

' II

710 GET A$:IF A$="" THEN 710
720 PRINT"::ll~i!"

730 END
795
800
810
820
830

/

P R I hoi T II ';;;:I''j'~'ii''I~''l b''nb;'UI;''ul ''' llr''II';'I" • I'~ ~U'. ,~!.I.,.I. ,P.!.lll jI1 "11111 I~ I .,1 ,

FOR A=1 TO 16
READ B$
PRINT B$; "~i~";
NEXT A

840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
985

READ A$: PR I NT: PR I NT" ::mnIW'lI!ii'!!flilmi'fl" A$ II ~i~ " ;
FOR A=l TO 14
READ B$
PRINT B$"~IIJI;

NEXT A
PR I NT: PR I NT" :i~1[Ji'H~il!~'!Umnl" ;
FOR A=l TO 15
READ B$
PRINT B$; " «ill" ;
NEXT A •
PR I NT: PR I NT II :~:miU~!lin 'I!~ 'nW'H" ;
FOR A=l TO 15
READ B$
PRINT B:t; "~i'"";
NEXT A
F' R I NT J I liiW'''II''j'lll:'ill'''''I'fii'I''ij'I'''j'lriil''''''I''ij'I" ;".1, Pol . .I.1<.I.,.t I!!. ,t .. .I." .e., .~A.I~ . .\."

990 RETURN
1000 DATA
C mm" , ... ~u !Iliff "

1010 DATA
S

1 ? ~ 4 5 6 7 8 9 - " " , ~ ... , ,-,~, , , , , , ,U,+,-, :t, ~
/ ,

" CT , Q, W, E ,R, T , Y ,U, I ,0, P, § ,'*, 'j' , R

1020 DATA .. " .. _ .. ASDC'GHJ .. ··L .. • II i!lll , U , , , " , , , ,r'., , . ,
11.11 11=11 RE " ,
1030 DATA",*,", ... ~~**~!~" ,Z,X,C,V,B,N,M, ",", ".
II II / .. II 'ii:;I** tlRU II II ':;jlJ.,t.ml!t II II 'j;;" HllH I.

, '"., .,;'1 , k:'t

2000 DATA ",1",."," ", II "," II II 11 , .. " 1/ II " , ,
11 .1 II. II II '1 , , , II II ... 1 .. II .. 1 II II lllid I II

, , ,II ~
II II II ,

9

,

2010 DATA II '1 ., I. qUill , II C) II , II ·",·· 11 , ..

, II II ,. II 111-''''1 11 ·····1"
,"'I ' , , II1" , " ",lIffll,"

" "I ,
II

"

2020 DATA " " " .. 7 "I:I~", lillii'll, 11• 11, 1I n , ,
" ,II I •• " .. j II , ,

DATA
" .. IJ. • If . ", , . '". , "".., II ...

3000 DATA
JI II " , , ,
3010 DATA
IftU, 1« II II

, IlIKI , It ..
11'\111 ..

3020 DATA
II liS II 11111" , n , m ,

3030 DATA

.. 1... .. 11, flAil, 11]",

"
,
II

"

II 11 ,
II If

"
" ,
"

"?" , . ,
" " II

"
II ,

II ;.:.:. .. II '.' II
, ::::;! , ::: ,

U_ll " " - ,
11 ,,, ... 11

II " " " , ,
II " II " ,
II .. " " .:.:.: ... ,

II 11 ,11 I"", 11"1 n , II.J.,II 't 11,.,..11

,
II

.. II
'''ftl

"
,
" ,

"m","
" II " ,

"
"
"

J1 , (I "l!II11 , II

II
,1", " 1

" " " , ,
"
II

" II , , II

" ,
•• , •• l. II , 11 .. .1 I. , II

,
"

I"," I"," II .. , If .. , .. II , II ..]I JI , ,

•

10

,
"
"

.. " .'" • ,lI • •

" ,
"I , ' "

"
" " ill ,

.. III .. ,
"

I"," " ,

" II 11 I

"I II II , ,
II

,
II,

I

,

" " ,
I.• ! II ,

", "I

.. III ..
III , II

--"

· ·

s ," '. ::'"
.'''
,'-

· · .' · .' · .

: ", ,": :
:,':,: :
: :',: ':,',
. .'

· ',' ,

',' ,

•

Section B: A Test Drive

Bl: Printing on the screen
To display information on the screen the keyword PRINT is used. For example,
key in P R I NT" 1 9 8 4 ". This will appear on the screen as you key in the
characters. The cursor remains flashing. Now press RETURN and 1984 will be
printed immediately below the instruction and the message.

READY

appears beneath. This is the 64 telling you that the last command has been
processed satisfactorily.

The screen can be cleared by embedding a SHIFT and CLR/HOME within the quotes
of a PR I NT command.

Type in the following:
PRINT "[SHIFT] [CLR/HOMEJ"

A reverse heart symbol appears after the first quote marks, and then the
screen clears leaving REA D Y and the cursor at the top left when RETURN is
pressed.

Now key in PR I N T Commodo re and press RETURN. Nothing happens and you
get the report:

a
READY

Something's wrong: the word to be printed has not been enclosed in quotation
marks. But if you key in P R I NT" Com mod 0 r e" and press RETURN, the word
COMMODORE will be printed on the screen. In a PRINT instruction such as this,
all letters, words and symbols to be displayed on the screen must be enclosed in
quotes.

Correcting mistakes
Now that you are entering commands, symbols and words on the input line,
sooner or later you are going to make typing mistakes. These are corrected first
by using the CRSR arrow keys to bring the cursor to the right of the letter you
wish to delete, then by pressing INST/OEL to delete the character. You then key in
the correction(s) and use thecRSR keys if necessary to get back to wherever
else you are on that screen.

/

EXERCISES
Key in some text and use the right and left arrow cursors and the INST/OEL key to .
edit (rewrite) the line.

The screen
The screen is divided up into rows of character-printing positions which may be
described as 'cells'. There are 25 rows of 40 cells. Each character or symbol
printed on the screen occupies a single cell.

11

I

"".- - - - - - - - - - - - - -

---- _- - ----------------~------------..
The screen is mapped out as shown in Figure 1:

o

1024
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

10
CO LUMN

20

Figure HI: Map of the screen's cells.

30 39

1063

2023

0

10

20

24

R
0
W

A particular cell or character position is referred to by row and column numbers.

Printing at different places on the screen
You can instruct the 64 to print text anywhere on the screen. Enter this line:

PRINT"
but do not press RETURN. Now press any sequence of cursor keys CRSR t ~

CRSA -; SHIFT CLR/HOME or CLRiHOME may be used at the start.Y au will see on the
screen symbols representing the cursor movement selected. Now enter any text
and then another set of quotation marks; then press RETURN. The text will be
printed where you specified.

Try this:
PRINT"[CLRJ[CDJ[CDJ[CDJ[CDJ[CRJ[CRJ[CRJ[CRJCOMMODORE"
This clears the screen and prints COMMODORE at position (5,4). The cursor

control symbols that you will use in this text are represented by the following
keys on your Commodore:

HM CLRiHOME

CLR SHIFT CLRiHOME ,ill'li -- 1. ,I

CD CRSR t ~ ""'I Appearance
111 •

.1.:.£ on screen
CR CRSR - Ig'lI
CL - SHIFT CRSR urn
CD - SHIFT CRSR t ~ ~1II:1 -
\l SPACE

12

You can print anywhere on the screen using the cursor control keys. Try
printing your name at different positions on the screen. Try printing Commod
ore at co-ordinates (0,31). You will see that printing continues on the next line.
Alternatively, you could use the following statement, which moves the cursor to
the required position on the screen.

POKE781,Row:POKE782,CoL:SYS65520
The locations 781 and 782 are the memory locations that control the cursor row
and column respectively, and the SYS command positions the cursor at the
specified location.

For example:
POKE781,7: POKE782,4: SYS65520: PRINT "Commodore"

prints Commodo re at line 8 column 5. There are several other ways the cursor
and characters may be printed at chosen positions on the screen, these again
involve specific POKEs. .

Spaces and overprinting
A space is obtained by pressing the SPACE key. P R I NT" " prints a space on the
screen. For example:

PRINT "A 6"

Try this:
PRINT"[CLR][CD][CD][CD][CD][CD][CR][CR][CR][CR]COMMO
DORE"
PRINT" [HM] [CD] [CD] [CD] [CD] [CD] [CR] [CR] [CR] [CRJ "

Separators
Different items to be printed on the screen can be included in a single PRINT
statement. The items are separated by the symbols ; or ,. These are called
delimiters. The semi-colon indicates that the next print position is at the next cell,
and the comma indicates that next print position is at column 0, 10,20 or 30 - as
appropriate. (PRINT on its own means print a line of spaces.)

Try, P R I NT" A " ; "B" , " C " , " D"

TAB
This function works like the tabulator on a typewriter. We have 39 TAB positions
along a row. For example:

PRINT TAB(14) ; "A"

PRINT TAB(5) ; "A";TAB(10);"B"

Note that the semicolon (;) after the TAB () and between items in quotes may
be omitted, and that there must be no space between TAB and its (bracket (ie.
TAB (5) and not TAB (5»). .

/

i

B2: Colour f

So far all the words printed on the screen have been in light blue on a blue
background. As an introduction to the powerful colour graphics and display
facilities on the 64, you can now print some words on the screen in different
colours against coloured backgrounds and borders. Study again the top row of
keys; the names of some of the colours available are written on the fronts of the
keys.

13

•

,

l

!
j

!
~
i
1

Changing the colour of characters on the screen
To change the colour of the letters, hold CTRL and press any number between 1
and 8 and release CTRL. Here are the results:

CTRL 1 black iiii
CTRL 2 white :iliI
CTRL 3 red !'iiil
CTRL 4 cyan Ih", Appearance
CTRL 5 purple ' ~:lIl on screen
CTRL 6 green m'il
CTRL 7 blue ~:m
CTRL 8 yellow ft~1

Now try this:
PRINT"RAINBOW"

but as you type each letter within the quotes, use CTRL 1 before typing R, CTRL

2 before typing A, CTRL 3 before typing I, and so forth, Don't forget the final pair
of quotes. Then press RETURN. The word rainbow will be printed in all the
different colours you have specified.

Note that as with cursor symbols, each control code (1 to 8) is shown asa
symbol; for example, white is E reverse E.

There are also eight more colours that can be accessed using the c= key,
holding it and pressing 1 through to 8 as an alternative control key. These
colours are:

C= 1 orange
c= 2 brown
c= 3 light red
c= 4 grey 1
c= 5 grey 2
c= 6 light green
c= 7 light blue
c= 8 grey 3

VJI!l
lin"
~It!'

'ift~1
1

1"11 .. ,,.
IlIn
~~
Iftll .,.

Appearance
on screen

You can also change the screen colour 'by using the following command:
POKE 53281, X

where X is any number between 0 and 15. Try this:
POKE 53281, 7

This will change the background colour to yellow. You can also change the
border colour by using

POKE 53280, X

where X is any number between 0 and 15. Try this:
POKE 53280, 7

It will change the border to yellow.
Now you will have yellow background and yellow border. To return to the

original border background and printing colour, hold the RUN/STOP key and
press RESTORE. The screen will clear and the border and background will be
same as they were before you changed them. Note that the PO K E value is one less
than it would be if you had keyed the colour using CTRL or C=.

Multiple commands
Multiple commands (more than one statement in a line) are possible in
Commodore BASIC. For example:

10 LET A=20:LET B=10:SUM=A+B:PRINT"SUM=";SUM

Note that statements are separated by colons. Also note the line number (10)
in front of the commands. When you press RETURN the 64 has. saved the
commands in its memory. You can run the line by using the command RUN and

14

,.

..

.~
, :·2Jf

'~
~

".' J
:'i~1
il
,,',:~

I
I ... ~

" '. ,,"
,,~

,:::t;

':,:'::,~
., '?;

. .
:,'

then RETURN. You can use the cursor keys to change anything in quotes, then
press RETURN and enter RUN and RETURN. This is a very powerful too!. By putting
the number 10 in front of the sequence of commands you have created a
program line, and you can run it, edit it and run it again as many times as you
like until you destroy it, or clear it from the computer's memory with the NEW
command. Imagine having to key in all those commands every time you wanted
to run the sequence again!

B3: Sound
The Commodore has a very sophisticated sound synthesis capability which may
be used to play music and to produce sound effects. This is done by setting the
parameters of the SID sound chip using POKEs like this:

POKE 54296,15: REM SET VOLUME TO MAX
POKE 54277,9: REM LOW ATTACK AND HIGH DECAY
POKE 54278,34: REM MID SUSTAIN AND MID RELEASE
POKE 54276,33: REM TRIANGLE WAVEFORM

.

Having set these (and other) parameters, you can now construct a program
capable of playing any sequence of notes.

This is done by POKEing the low and high frequency values of a note to be
played into the registers at locations 54272 and 54273 respectively. These values
can be obtained from the table of notes in the Appendix. For example:

POKE 54272,37:POKE 54273,17
This plays the note middle C. Note that the tone is continuous; to stop it, zeros
must be POKEd into the above registers.

Here is an example that plays a short tune: .

10 POKE 54296~15
20 POKE 54277,9
30 POKE 54278,34
40 FOR I=1 TO 11
45 POKE 54~76 "? ..:... , --1 ___

50 READ DE,LF,HF
60 POKE 54272,LF:POKE 54273,HF
65 POKE 1:'4":176 "" -' 4 ,-,Joj

70 FOR J=l TO DE
80 NEXT J,I
85 FOR I=O TO 7:POKE 54272+I,0:NEXT
90 DATA 250,21,154,250,28,214,180,28,214
,150,28,214,250,28,214,180,36,85
100 DATA 150,32,94,250,28,214,180,27,56,
150,24,63,250,21,154

/ ,

/

The first of the three data items read each time determines how long each note is
to be played, while the 2nd and the 3rd data items give the low and high
frequency values. To compose your own tune, you would have to change the
data items used in the DATA statement and change the value of the loop. The
above program uses only one of the three available voices. Study the program to
see if you can understand how it works, and don't be afraid to play with it. Don't
worry if you can't figure it out; sound will be covered fully in Section Q.

15

B4: Sprite graphics
This mode of graphics allows you to define small moveable objects that can be
used together with either character mode or high resolution graphics mode. This
is the procedure used to create a sprite:
1 Draw a 24 by 21 pixel array on a piece of paper.
2 Mark all the bits that you want to set.
3 Calculate the value for each byte by adding the numbers representing

the bits that are marked.
4 Use a loop to READ these values and POKE them into their respective

blocks (each block is 64 bytes long, i.e. 3 x 21).
5 Turn the sprite on by POKEing a particular register (memory location).
6 Tell the video chip which block contains data for your sprite.
7 Turn on the colour of the sprite.
8 Move your sprite onto the screen.

Figure B2: A sprite.

To display the sprite in Figure B1 on the screen, try the following program. To
form the data, add all the values in each byte (8 bits). Note that there are 3 bytes
in each row. For example, row 12 produces the following data items:

o + 0 + 0 + 0 + 0 + 0 + 2 + 1 = 3 for byte 1

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 for byte 2

128 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 128 for byte 3

Here is the program:

6 REM STORE SPRITE DATA IN BLOCK 13
10 . FOR M=O TO 62
20 READ SDAT
30 POKE 832+M,SDAT:NEXT M
35 REM TURN ON SPRITE 0
40 POI<E53269, 1
45 REM DATA IN BLOCK 1< .J

50 POKE2040,1~
55 REM COLOUR SPRITE IN CYAN
6 (_) POl~'E 5<"-'04 < . I~·. "_IL i' ., -'

16

65 REM MOVE SPRITE AROUND
70 FOR 1=249 TO ° STEP -1
80 POKE53248,150:POKE53249,I
90 NEXT I
100 GOTO 60
110 DATA 0,16,0,0,16,0,0,16,0,0,56,0
120 DATA 0,56,0,0,56,0,0,124,0,0,124,0
130 DATA 0,124,0,1,255,0,1,255,0,1,255,0
140 DATA
150 DATA
160 DATA

3,255,128,3,255,128,3,255,128
3,255~128,3,255,128,3,57,12B

2,124,128,2,56,128,0,16,0

To create your own sprite, all you have to do is to change all the data items. Try
running the program with the following direct commands to expand the sprite
in the X and Y direction:

POKE 53277,1
POKE 53271,1
POKE 53277,0
POKE 53271,0

B5: Arithmetic
Simple arithmetic can be performed in command mode, and quotation marks are
not needed:

PRINT 3+4 RETURN

The answer 7 is printed.
Try some other calculations using the operators -, /, * (multiply), and t (raise

to the power).
There is a priority of operations in a multiple calculation, which is: brackets,

raise to the power, multiplication, division, addition, item subtraction. For
example, try this:

PRINT 2*(100 - 3 * 5)/5 t2

/

17

·,

, ,',:;

..

',', .

Section C: Basic BASIC

: The BASIC language
book is all about BASIC, which is the most commonly used computer

. Just as English is a natural language used to communicate with
. BASIC is a formal language used to communicate with computers. Like

natural languages, BASIC has grammatical rules which, although they are fairly
. , must be strictly followed to ensure that the computer understands
exactly what it is being instructed to do.

BASIC stands for Beginners All-Purpose Symbolic Instruction Code. It was > invented in 1964 in the USA and is a combination of simple English and algebra.
·· BASlC is the language used throughout this book to write programs, which tell the

computer what to do, and set the sequence in which particular operations are to
be performed.

BASIC is a high-level programming language. Instructions written in BASIC are
translated (by the computer's built-in program) into the low-level programming
language (the machine code) that directly controls the switching of the electrical
impulses inside the microchips. High-level languages like BASIC are far easier to
write programs in than the low-level languages.

C2: A simple program
A sequence of BASIC statements is called a program.

10 INPUT A
20 INPUT B
30 LET S=A+B
40 PRINT S

In this case, line 20 can be deleted and line 10 changed to
10 INPUT A, B

because more than one variable - the values, here, of A and B - can be input on a
line. Also, the LET operator is optional here (more about that later); line 30 could
be 30 S=A+B.

This simple program prompts for inputs and then adds two numbers and
prints the result on the screen.

Before a program is keyed in it should be designed to make the computer do
exactly what is required. The way to do this is to write it down line by line on a
piece of paper - a process sometimes called coding.

A program which doesn't work as intended is said to contain errors, or bugs. If
it is asked to do something it can't do, or if an instruction has been left out, the
computer will respond with an error message. If the program runs without error
messages, but doesn't do what the programmer wanted it to do, then it is the
programmers' fault. In either case it must be corrected (edited, or debugged). This
is done while the program is in the computer, using the Commodo~e's powerful
editing facilities.

Editing or revising a program is part of the process of program development. At
any time before or after editing is finished and the program works, it may be
listed (printed on a printer), as well as saved by recording it on cassette tape or
magnetic disc, and stored so that it can be loaded back into the computer without
having to key it in again. A partly corrected or edited program - which may not
yet run properly - may be saved and worked on later should you so wish.

19

,'f

: ;

! .

The complete exercise of designing, coding, developing and documenting a
program is called programming.

C3: A statement
This is a line of a BASIC program, otherwise called a statement:

10INPUTA

A statement is also called a line. A statement can simply state something, or
instruct the computer to do something. It is composed of:

• a line number (in this case, 10)

• an instruction or command (I N PUT)

• and - maybe - variables (A)

Statements are either:

• executable (specifying an action, like INPUT A)
or

• non-executable (providing information only)

All variables used (such as A) have a start value of O.
10INPUTA

tells the computer to request the user to input a value for the variable A from the
keyboard.

C4: Statement numbers
Each BASIC statement or line must begin with a line number, 20 in this example:

20 INPUT B

The number 20 is called a line number, its value is chosen by the programmer. It
may be any number from 0 to 63999 inclusive. The computer uses the numbers
to keep the statements in order. Each statement has to have a unique line
number - if the same line number is used twice, the second line will replace the
first.

Lines may be keyed in in any order; the computer sorts them into the correct
sequence according to the line numbers. Statements are usually numbered in
tens so that additional lines may be easily inserted later if necessary.

C5: Instructions
A statement gives an instruction to the computer. In this example the instruction
is LET.

30 LET S=A+B

An instruction is called a statement type because it identifies a type of
statement. LET tells the computer to let the variable S have a value equal to the
sum of the values of variable A and variable B. But, the instruction LET is
automatically implied in a statement. Thus:

30 S=A+B

is equivalent to
30 LET S=A+B

20

·

" :

·

· ,
..:,

"':', ,:.

':,;
", .

" ::
, ','

..

': :)

... ,"

· : ' .,',

.......... C6: Numeric variables

A numeric variable is the name given to a storage location which holds a number
in the computer's memory. A numeric variable can have a name which is:

• a letter from A to Z, or

• a letter followed by a number, or
...........• • a group of letters and/or numbers .

••••• • •. Only the first two characters are recognised by the Commodore. For example, SUM and
\ SUMTOTAL will represent the same variable name, because they both start with

> SUo Some care must be taken over the choice of some variable names: the
name TOT A L will not be accepted by the Commodore, since the first

part of it (TO) is a Commodore keyword.
Numeric variables are used to represent numbers inside the computer: values

are given (assigned) to the variables, and these values are used in calculations. So
the variable is simply a symbol or a name chosen to represent the value of a
parameter or a quantity, ie. the number stored in the named memory location.
Variable names should not be too long or they will be tiresome to key in (which

i.is why single letters are usually used). For example:
S - speed
P RIC E - price of fish
SUM - sum of the first set of numbers
R 3 - resistor number three

In the sample program the statement
10 INPUT A

sets up a variable in the computer's memory with the symbolic name A. (It could
have been called NUM1, or even FIRST NUMBER.) The statement tells the
computer to ask the user to input a value for A when the program is run. If
the number 3 is keyed in, the memory cell allocated to A will contain the number

·· ··· 3. This value is then used in all calculations involving A until its value is
•.••.. changed.

,,' , :

In the statement
30 LET S=A+B

... or

30 S=A+B

S, A and B are the variables in the algebraic equation S=A + B. S is the unknown,
and will take the sum of the values of A and B. The computer will work out the
value of A + B and put the result in the memory cell it has allocated to the
variable S. The computer will not let you input LET A+B=S (it will respond with
a syntax error), because the variable to be given a value must come first. A+B is
not a valid variable name.

Variables are so called because their values can vary or change according to
the values that are input, or in the course of a program, when the computer is
instructed to do something which causes the value to change. (For constants,
which are quantities that do not change their value, a name or a symbol is set up
in the same way, by giving it a value with the equivalent of aLE T stqtement, but
it keeps the same value -like a variable that doesn't vary.) ;' . ,

Variable names may be of any length, but they must start with a letter, and
must contain only the alphanumeric characters (the letters A to Z and/or the .
numbers 0 to 9).

21

, " . ,

I i
•

~ : , ,
I

, ,

i :

"

C7: Strings and string variables

Strings
A string is a group of characters enclosed by quotation marks.

The following are examples of strings:

"PETER"
"12345"
"JANUARY 1ST 1982"
"1$ ** " ., .
"REF:A2"

As well as numbers, computers can also handle text or groups of characters.
To define a group of characters as a string, quotation marks are placed at the
beginning and the end. This tells the computer, for example, that the string
"P RIC E" means the characters P, R, I, C, and E and not the numeric variable
P RIC E, which was used above to mean the price of fish.

Strings can contain any character, upper or lower case, which prints on the
screen, plus spaces, except that a string cannot contain a pair of quotation
marks, because the computer thinks it has got to the end of the string when it
gets to the second set of quotes.

String variables
Strings can be handled by string variables, just as numbers can be manipulated
with numeric variables. A string variable is used to store a string. It consists of
one or two letters, either upper or lower case (depending on display mode),
followed by the $ sign; or a letter followed by a digit/letter and $ sign. For
example:

a$,z$,m$,A1$,AA$,AX$
Strings are assigned to string variables with LET statements, as with numeric

variables. For example:

10 LET A$="STRING 1"
20 PRINT A$

The memory store allocated to A$ will contain the string STRING 1. When the
program is run the computer will print the contents of memory store A$ on the
screen. Note that the string is printed without the quotation marks. The string
consists only of the characters inside the quotes.

C8: Operators and operands

Operators
Operators perform arithmetic, logical or conditional operations on variables or
numbers. In the sample program the line

30 LET S=A+B
uses two arithmetic operators: = and +.

Operands
Operands are the variables or numbers which are manipulated - operated on
by the operators. In line 10 above, the variables S, A and B are operands.

22

a

, "" ':, :::'::' :

\:

C9: Keying in a statement
The RETURN key must be pressed after each statement has been entered.

RETURN

RETURN

RETURN

RETURN

10 INPUT A
20 INPUT B
30 S = A + B
40 PRINT S

i'/"··· RETURN informs the computer that the statement (or line) is complete,
,i as carriage return on a typewriter means that the typist is ready to begin
" "".' new line.

ClO: Correcting errors
INST/OEL
The INST/DEL key acts as a backspace, deleting the character or symbol
immediately to the left of it. For example, you may get:

10INPUTS.
>i by accidentally pressing S instead of A. To correct this, press INST/DEL and you
\ get "

10INPUT
You may now continue and type in A.

CRSR

The cursor control keys move the cursor around the screen. To correct an
earlier mistake, use the cursor keys to move the cursor to a position immediately
to the right of the character to be changed, then use the INST/DEL key as above.

You may use the cursor key to return the cursor to the end of the line, if you
,"", have more to key in; otherwise, you may press RETURN immediately. You can
'" delete an entire line by holding down INST/DEL, but a quicker way is described

shortly.

Cll: Direct Instructions
Direct instructions are executed immediately. They do not need line numbers, as
they are not part of a program. They allow direct control over the computer.
Examples are RUN, LIST, LOAD, and SAVE. To execute such a command, key
in the command and press RETURN.

Most commands are also used as instructions in programs. Some instructions
that could be used as direct commands are not very useful in that role. Similarly,
some commands that could be used in programs never are. However, each
command has a role to play in the BASIC language, and individual commands
will be dealt with as they are encountered in the text.

You have already met the RETURN, INST/DEL and CRSR keys; these are
commands that don't print but act instantly. All the others need to be activated.

, I ,

" I

Cl2: Editing a program on the screen
There are many editing tricks, depending on what is necessary in an individual
program. You will learn these with experience. For example, you can edit a line
as described above, deleting characters and replacing them, or you can over
,write an entire line simply by entering a new line with the same line number. As
soon as you press RETURN, the new line will replace the old one. If you want to
move a line (effectively to renumber it) , move the cursor to the beginning of the

23

"""

." ','"

iine, overwrite the line number, key in the new number and press RETURN. Then
move to a clear screen line and type the 'old' line number, press RETURN and it
will be cleared from memory - a quick way to delete an entire program line.

C13: Listing a program on the screen
When the program has been entered into memory, to produce a listing on the
screen of all lines accepted by the computer key in:

LI ST

LIST is a command that prints on the screen and is executed when RETURN is
pressed.

Parts (only) of a program may be listed by including line numbers represent-
ing the range of lines to be listed: ..

LI S T 30 lists line 30
LI S T - 3 0 lists all lines up to line 30
LIS T 30- lists from line 30 to the end
LI S T 30 - 9 0 lists lines 30 to 90 inclusive

C14: Running the program
The simple program has been keyed into the computer line by line and entered
into memory; now see if it works. Give the computer the RUN command: press
RUN and RETURN. The RUN command starts execution of a program at the lowest
line number unless otherwise instructed (see below).

RUN is another command that is keyed in, appears on the screen, and will not
be . executed until RETURN is pressed. When this happens the program starts
operating. In the case of the sample program ADD E R, the computer will almost
instantly ask you to input a value for the first variable, A. Key in the number 3 in
response to the prompt (?) and press RETURN. The (?) will appear again
immediately: the computer is requesting another number to be assigned to the
variable B. Key in the number 5 and press RETURN.

The result (8) is printed on the screen. Notice the message that also appears:
the message J~EADY means that the command has been executed and your
program has finished.

We can also run the program from a line other than the first program line:
RUN . n will start execution from the line number specified (n).

RUN 20

will start executing the program at line 20.
Note that when the RUN n command is used, all statements before the

specified statement number (n) will be ignored, and any variables defined in
these statements will be considered by the computer to be 0 because it has not
run the lines. The program may not work, and an error message may result. All
values of variables are initialised to zero by the RUN command.

You can RUN the program as many times as you like: press RUN and RETURN

again. To get a listing, enter LIS T and press RETURN. The program can now be
edited if necessary.

C1S: Error messages
The computer tells you that it has finished running the program by giving you a
message on the screen:

READY
. .

This tells you not only that the program has finished but also that no errors were
found.

24

There are special diagnostic messages which appear on the screen if a program
does not work when it is run. These take the form:

XXXXXX ERROR IN LINE N

where XXX XXX indicates the type of error, and N the number of the line where
the program halted due to the error. There is a list of error codes in Appendix II.
The message helps in correcting or debugging the program; the line indicated in

:i the error message is not always the one which caused the problem, but it is
< always at least a clue to the nature of the problem.

"::':: ;""

iiii EXERCISES
.::,'::, :'" ',"

i .. i. Add an extra line at the beginning of the program. Key in:
5 PRINT "PROGRAM ADDS 2 NUMBERS"

and run the program, starting from different lines by using RUN, RUN 5, or
RUN 10 .

• Edit the program to obtain the original version.

i. C16: How the program works
10INPUTA

20 INPUT B

30 S=A+B

40 PRINT S

Line 10 tells the computer that a number must be input and
given the name A (ie. assigned to the variable A). The
computer reads the line and prints the prompt (?) on the
screen, reminding you to input a number. The computer will
wait until you key in a number. The number is then stored in
memory cell A. The computer goes to the next line.

Line 20 tells the computer that another number, to be assigned
to the variable B, must be input. The (?) appears on the screen
and the computer waits until you key in a second number,
which is stored in memory cell B. The computer goes to the
next line.

Line 30 tells the computer that a variable S is to be assigned the
value of the sum of the variables A and B. The numbers in cells
A and B are added and the sum is stored in cell S. The
computer goes to the next line.

Line 40 instructs the computer to output the value of S to the
screen. The computer looks for the next line, can find no more
statements to execute in the program, and gives a message
REA 0 Y on the screen, telling you that the program has
finished. The computer now waits for more commands.

C17: Naming the program
The program needs a name in order to: /

• differentiate it from other programs ;

• store it permanently (SAVE it)

• LOAD it back into the computer in order to run it

The program name can be any combination of characters, but to be used with the
SAVE and LOAD instructions it must start with a letter, and can have a
maximum of 16 characters in the name. For example, the short sample program
you have used is called ADDER. It is sensible to keep the program name short

25

-- - -

2

and relevant to the type of program. Programs which undertake various kinds of statistical analysis could be named: ,
"STATS 1"
" S TAT S 2" etc
Programs which perform calculations for experiments in the laboratory could be named:
"OPTICS 3"
"FRACTION"
" TI T RAT ION" etc
If spaces are used in program names, it is easy to misread them, or forget that there should be a space. If the program name is not one word, we can use an asterisk:
"PETER*1"
" F 0 CAL * LEN" etc
Program names should be written down in a directory, which enables the programmer to access a program library of programs stored on tape or disk.

26

... - ... ----------''" -'"-~' ';;";;- ==- .='=-' =-'==' ~~-~- - -- - - - -

:,:'.:
.:.

Section D: Saving, Verifying,
Loading and Listing

Dl: Saving the program on cassette tape
Programs must be saved because when the power supply is switched off (or
disrupted ~ variations in the mains supply can affect the computer) the RAM
memory and the registers in the CPU are cleared and the program is lost. (The
Random Access Memory is said to be volatile.) This means it would have to be
keyed in again ~ this would be all right for a five-line program, but a 50 liner
might take you an hour.

If a copy of the program has been recorded on magnetic cassette tape using
the SAVE command, it can be reloaded into the computer quickly, using the
LOAD command. (Tape storage is not as quick or reliable as floppy discs for
off-line storage, but it works, and it is a lot cheaper.)

Software (programs) stored on tape is available for use when needed, making
it permanent. Software also has to be portable. Programmers want their work to be
able to be used by other people with the same computer; software available on
cassette may be distributed to many users.

The SAVE command outputs the program to the cassette recorder. If the
cassette recorder is in record mode, a copy of the program will be made on the
tape.

Saving the program on tape
1 Make sure the cassette recorder is plugged into the Commodore.
2 Insert a new C5 or C12 computer cassette tape into the recorder. Short

cassettes are more convenient than long ones for our purposes.
3 Run the tape through on fast forward and then rewind, to tension the

. whole length of the tape evenly.
4 Set the tape counter to zero and run the tape forward five revolutions

(about 2 or 3 seconds). This takes the start to a point beyond any tape
leaders or opening kinks.

5 LIST the program on the screen.
6 Key in S A V E "A D D E R" (if you are saving the sample program from the

last section).
7 Press RETURN. The 64 will print a message on the screen which tells you

to press record and play on the tape player, putting it into the record
mode. Do so.

S The screen will go blank as recording begins. When recording is
complete a report will appear on the screen. The recorder will stop
automatically ~ press the STOP key. Make a note of the tilpe counter
reading for when you next save a program, and so that you will be able
to locate the program easily on the cassette.

9 You can check that the program is properly recorded before wiping it
out of the computer's memory. Rewind the cassette to before the start
of your recorded program and key in VERIFY, then enter the program
name between quotes. Press return and the message" PRE SSP LA YON
R E COR D E R" will be displayed. Press PLAY and the screen will clear.
The Commodore will display F 0 U N D "p R 0 G RAM N A ME" and the tape
will stop. Now press c= to shorten the delay before the recorder
re-starts.

27

',i. ._ > _____ _

10 When the program has finished playing back, aRE A D Y message means
the program was correctly SAVEd, but LOAD ERROR means the
recording is faulty and you should save it again.

11 When the program is saved, run the cassette on for a further five or so
more revolutions of the tape counter, ready for the next program.

V E R I F Y "N A ME" checks that the program is SAVED as named on tape against
the program and variables in the computer memory. If there is a match then the
Commodore will display

VERIFYING "PROGRAM NAME"
READY

If there is no match then a V E R I F Y ERR 0 R message will be given; V E R I F Y " "
will list the actual tape contents on the screen.

EXERCISES
• SAVE the program on to the tape .

• VERIFY the program saved properly.

D2: Deleting the program from memory
,

A sure way is to switch off the power, but this is not recommended. This should
only be done if the computer needs to be reset. It is much better to use the
command NEW.

NEW
The NEW command deletes any current program and variables from memory.
Use the NEW command before LOADing a program into the computer from
cassette tape, to erase old programs and data from memory.

There is another command that only affects the variables store, without also
clearing the program store, as NEW does.

C LR
The CLR command erases all the variables in the current memory. It can be
used as an instruction in a program, as can NEW, but since it would merely wipe

4

the program, its uses in programs are severely limited. (Try it, if you want to see "'"
a program self-destruct.) CLR is similarly useless in the middle of most
programs - it would mean redefining all variables.

EXERCISES
• Run the ADDER program. Enter P R I NT" SHIFT CLRiHOME" clear screen

symbol. Press RETURN to clear the screen. Enter GOT 0 40, then press return
again. The computer will print the value of S. Now enter CLR and press
RETURN then enter GOTO 40 RETURN. You will get a message 0 va ria b l e,
indicating that A + B=O because A andB have not been used, and assumed to
be zero, because the computer has wiped the value of S. (GOTO is an
important programming tool; it will be covered in due course.)

• LIST the program ADDER on the screen. Enter NEW and press RETURN. Then
enter LIST and press RETURN again. What happens? Why?

• Key in the first line of the program and press return. Switch off the power
supply. Switch it on again. What happens?

28

-- }

. Loading the program from cassette tape
LOAD "NAME"

- ':. '.

The command LOA D "n a me" waits for the cassette to play the
portion of tape with the program called "n a me" and copies
the program into the computer's memory. When the Com
modore finds a program it displays F 0 UN D "N A ME" . Press c=
to shorten the pause before loading commences.

.,

';'

,J'::: '

This means that you can start the tape, give the command
LOAD "name" and the computer loads nothing into its mem
ory until the signal it recognises as the name appears on tape.
You can thus search a tape for a program. The Commodore
will print on the screen the names of any programs it finds on
tape, before it encounters the specified program. " "

".:', "

LOAD "" This command, with nothing between the quotes, LOADs the
first program it finds on the tape.

LOADing procedure
. 1 Place the tape with the desired program in the cassette player.

2 Position the tape, using the counter, to a point just before the location
of the required program.

3 As a precautionary measure, clear the computer's memory using the
NEW command if a program has been RUN (executed) and is still in
memory.

4 Key in LOA D "A D D E R" and press RETURN.

5 When the 64 has found the program it will print F 0 U N DAD D E R on the
screen and will load after a short pause (shortened further by pressing
c=). Previous programs will also be listed but will not actually Load.

6 When the program is correctly loaded, the word RE A D Y will appear on
the screen to indicate that all is well. . '.

7 Press the STOP key on the recorder.
8 Remove the tape when finished.
9 LIST and RUN the program.

Causes of misloading
• Loading started in the middle of the program. If a mistake has . been made

with the start postion, rewind the tape completely and let the computer
search for the program name.

• The program is not on the tape. Check your directory!

• The program name is incorrect. Try again, making sure you have spelt it
correctly in the LOAD instruction. 1£ you fail again, run through the tape
using the LO AD" " command. This will load the next program each time. If
each program is not the one you want, repeat for the next program on the
tape. The 64 will print the names of all the programs on tape if/you use a
name that does not exist as a program name such as LOAD" Z ~IZ".

• Stray electromagnetic fields - from equipment such as a TV or a fluorescent
light being turned on - can spoil the program signals.

EXERCISES
1 Load the program ADDER. LIST and RUN it.
2 Delete it from memory using NEW.

29

: :i
I ,

r

, ,
I

; -

,

L i

i '.

I
I
; ; .
i ' : , , .
i '

D4: Program libraries and catalogues
You should start to keep proper documentation of your programs from the
beginning, or very soon your program library will be a jumble. A library is a
collection of programs stored on tape (or magnetic disc), but you will also need a
catalogue or directory, a list of the programs in your library together with other
important information about them. Start a notebook and keep a directory of all
programs you have entered and saved on tape. This will seem pointless at first,
but you will appreciate your systematic habits when you have accumulated a
large number of programs.

Each program you write should be:

o Named.

o Saved on a cassette tape.

o Listed (printed out) on a printer, if you have one.

o Documented and catalogued in your notebook.

The documentation, or complete collection of information about the programs
and files, should include:

o What the program does.

o How it does it.

o A listing . .

o A flowchart.

o How to use it in the program.

o When it was written and by whom.

Flowcharts will be introdllced in Section G.
A useful layout for the directory section of notebook-would be:
Program name: MOONLANDER
Cassette name: GAMES 3
Location: 100 - 120
Program length: 30 lines
Date created: 18.5.84
Author: PAUL NIXON
Function: Lands a spaceship on the moon
Use the labels on each side of the cassette. Write on each side:

-Cassette name or code.

- Date.

- Program names. Make sure these are correct in every detail!

Your directory should provide you with the more detailed information, such as
precisely where the program is to be found.

30

- .--..... _---_ .. _ __ ...• - "---- -_ - --_-. .. "". -

'; .'

.'

i~
Yi

Section E: Improving the Program

El: Adding comments: the REM statement
The REM (remark) statement is used for adding comments to a program. A REM
statement and anything following it on the same line is ignored by the computer
when the program is RUN. These comment statements are for the users' benefit
only. They can be used to explain what the program is doing at any given point.
For example:

REM **THIS PROGRAM ADDS TWO NUMBERS KEYED IN AND PRINTS THE
RESULTS
Notice how you can use asterisks as a visual device to separate the text from

the instruction.
100 REM **END OF PROGRAM**
The complete program including all REM statements appears on the screen

when using the LIST command.
The saved program ADD E R so far looks like this.

5 REM ** ADDER **
10 INPUT A
20 INPUT B
30 S=A+B
40 PRINT S

Now add some additional REM statements:

6 REM **THIS PROGRAM ADDS TWO NUMBERS KEYED IN
AND PRINTS THE RESULTS**

60 REM **END OF PROGRAM**

Key these extra statements in. LIST the program and RUN it.
Don't worry about the line numbers not being in intervals of 10. You can

renumber the program when all the extra lines have been added should you
need to.

REM statements can be added at the end of program lines as multiple
statements separated by colons. For example:

10 INPUT A : REM ENTER A VALUE FOR A
40 PRINT S : REM PRINT SUM f

/

This is very useful when individual program lines need comments. But
remember never to begin a multiple statement line with a REM statement. Any
statements after the REM would be ignored, because the computer, finding a
REM, will display the rest of the line but otherwise ignore it.

Change line 30 to
30 REM SUM: S=A+B
and RUN the program to test this.

31

E2: Using the PRINT statement
.

Messages and instructions to the user can be printed on the screen like this:
7 PRINT "INPUT TWO NUMBERS"
The message I N PUT TWO N U M BE R S is a string, and will be printed without the

quotes.
To print the numbers keyed in and the result:
40 PRINT Ao"+"oBo"="oS , " ,

,

A and B are the names of the variables to which the numbers keyed in are
assigned, and S is the variable that stores the sum of A and B, that is, the result.
Variables do not need quotes to be printed. The punctuation (semicolons) tells
the computer that you want close printing, with each print item (character or
variable) directly after the last, with no spaces between. The quotation marks
enclosing the symqols + and = mean that you want those symbols printed. The
semicolons are optional in PRINT statements of this type and may be left out.
Numeric variables will print with a following space so these are not needed as
part of the symbols display. '

To leave spaces between lines printed on the screen:
8 PRINT

The P R I NT instruction used on its own will print an empty line on the screen.
, "

Note that you now have a new line 40. Key in the new lines and the program
will look like this:

5 REM ** "ADDER" **
6 REM **THIS PROGRAM ADDS TWO NUMBERS KEYED

IN AND PRINTS THE RESULTS**
7 PRINT "INPUT TWO NUMBERS"
8 PRINT
10 INPUT A
20 INPUT B
30 S=A+B
40 PRINT A;"+"B:"=";S
60 REM **END OF PROGRAM**

E3: Adding a loop
The statement GOTO n transfers program execution to a specified line number,
n. For example:

50 GOTO 7
When line 50 is inserted into the program, after the computer prints the result on
the screen line 50 will send the computer back to line 7 to execute the program .
again from that line; and when the computer reaches line 50 again it will be sent
back to line 7, and so on. A loop has been constructed, and the program will carry
on looping forever or until it is stopped. ,

Key in line 50. RUN the program. Remember that with each loop the variables
are assigned fresh values. When you are tired of doing that, read on.

ON NV GOTO
This allows several possible transfers of control to lines of program, depending
on the value of the Numeric Variable NV. For example:

ON X GOTO 60, 70, 100,30,80
transfers control to line 60 if X = 1, line 70 if X = 2, line 100 if X = 3, and so on.

32

•

E4: Stopping the program

Press RUN/STOP to stop program execution. This does not work when executing
an input statement; in that case, wait until it is executing any other statement.

The STOP command stops a program with the message:
BREAK IN LINE N

The line number will be the program line the computer was executing when it
was stopped.

You can cancel the STOP command and continue the program with the CaNT
command as long as no change has been made to the program. This will allow
the program to continue from the line it was stopped at. Key inCaNT and press
RETURN to continue the program.

E5: Testing for a condition
In a program, decisions can be made that will affect what the computer does
next. A decision is made on the basis of whether a condition is true or false.

A condition has the form (X) (condition) (Y) where X and Yare numbers,
variables or expressions, and the condition is a conditional operator. The =
(equality) operator will be used here for the moment. The following are all
conditions:

X Y
A 23
B 2*3

Conditions are tested, and the next action is determined by the result of the test,
with the IF and THEN statements used together.

An IF ... THEN statement has the form IF (condition) THEN (instruction). For
example:

IF A = B THEN PRINT "EQUAL"

IF A = 0 THEN A = 3

The instruction can be any valid instruction. The statement means IF (the
condition is TRUE) THEN (perform as instruction).

IF (the condition is FALSE) the computer ignores the instruction after THEN
and goes to the next line of the program. . ..

In the simple program ADD E R the IF ... THEN statement can be used to insert a
conditional test which will stop the loop without using a direct command. You
could insert another line:

15 IF A = 0 THEN STOP

This tells the computer that IF A = 0 (if it is TRUE that A is equal to 0) THEN it
should S TOP. IF A is any other value (if it is FALSE that A = 0) it ignores the
THE N S TOP instruction and moves to line 20. Enter this line into the program
and RUN it. Enter different non-zero values for A to see that if A is not zero then
the program continues as before. Enter • 000000001; only if A is~xactly zero
will the STOP instruction be executed. .

J

(Input 2 for B, and notice that the result is given as 2. This is because
calculations are only performed to a certain degree of accuracy. Now enter
.0000001 for A and input B as 2. The computer returns 2.0000001 as the
value of S - the number is within the limit of accuracy.)

Now you have some extra control over the program, but it is still not
satisfactory. I F A = 0 was used here because in this program it is not a value you
are interested in seeing added to 8 (a value used in this way is known as a
dummy or sentinel value - a value used as a signal to the computer, which would
not need to be entered in the course of normal inputs). This stops the program

33

h-
, I

i :

•
• ,

! ,
r: , ' .

, , ..
':;- 1-

i

.
" '- ' -

,- ,

• •

•

• '.

I

and you can continue it, but the program just goes back into the loop. What is
needed is a method of exiting from the loop to end the program, or continuing
with more program lines.

This can be done with a string condition. The conditional operators can also be
used to express relations between strings - either string variables or simple
strings.

Insert the following lines:

50 PRINT "RUN PROGRAM AGAIN? <YES/NO)"
55 INPUT A$. . .

56 IF A$ = "YES" THEN 7

Now when the program gets to line 50 it will print out the message and put the?
on the screen. There is no need to type quotes; whatever characters are typed in
will be stored as A$. The string is entered by pressing RETURN after keying in the
characters. Line 56 tells the computer to check if the characters in A$ are the
same as the characters of the string YES. If they are it goes to line 7; if they are
not, the program will continue to line 60. Notice that any string other than YES
will cause the program to continue to line 60.

EXERCISES
• Delete line 15 in the program, which is no longer needed .

•

• Insert the new lines 50, 55 and 56.

• RUN the program. Enter YES in response to the string input and see that the
program loops back to line 7.

• Next, enter NO to see that the program goes to line 60 and gives the message
REA D Y. RUN the program again. This time enter anything other than YES or
NO, to see that the program goes by default to line 60 if anything other than
YES is entered.

• Experiment with the string input. What happens if you press RETURN without
entering anything? What happens if you try to key in quotes around the
string?

E6: Final edit and saving
The program ADD E Ris complete and works. The lines could be renumbered,
however. The procedure for this is as follows:

1 LIST the program on the screen.

2

3
4
5

6
7
8

Use the CRSR t and CRSR ~ keys to bring the cursor to line 60 (the
bottom line of the program).
The new highest line number is 120.
Change 60 to 120.
Press RETURN. Line 60 remains, but it is duplicated by the new line 120.
Move cursor to free line. '
Delete old line 60 by entering 60 and pressing RETURN.

Change each line number in this way, going from highest to lowest
Lines that contain other line's numbers must have these changed to
their new numbers. In this program you must change line 56 to:

90 IF A$ = "YES" THEN 30
where 30 is the new line number corresponding to the old line 7.

9 Rename the program ADD E R 2, at the same time as you change the line
number of line 5 to 10. This program must have a different name, both
for your reference and for the SAVE and LOAD operations.

34

10 RUN the program to check that it still works, and that we have all the
lines, with any GOTO (line number) statements correctly renumbered.

11 LIST the new program and SAVE it.
12 Write the name of the program on the tape cassette, along with the tape

counter readings.
13 Put details of the program in your directory, and copy the listing (or

stick the printout) in the notebook you are using for documentation.

I

, ,

35

i -

':',
.. '

·

:,,:'.

.'
, ':.
',,':'::
, ':':

:'i)
': .

, ':
,,',

·
: ':

.'. ·

,.'
..

:::,
',,':":.

, ,":' ~'
'::
',,':
",".

,,':
· ',:':,

, ,': .

.. :: ·

•

SectionF: Data Input

Fl: Data
A program consists of two parts: instructions and the data on which instructions
act. So far you have met two types of data - numbers and characters. Groups of
characters are called strings. All data used in programs is. assigned to variables,
which are styled this way: ..

• numeric: A

• string: A$

• array: A(I) or A$(I), where I = 1, or the number of elements in the array.

An example of an array is a list of ten numbers A (1 0) . The first number is called
A (1) and the last A (10). You have seen that data is assigned to variables using
LET (optionally) and manipulated by INPUT:

LET A=3
LET A$="string"
INPUT A (enter 3 on input prompt)

Data can also be assigned using READ and DATA instructions:

READ A
DATA 3

assigns 3 to A.
The READ-DATA structure is powerful when the data to be used is constant,

when there is a large quantity of it and/or it is required to be used several times
in the program.

F2: READ DATA and RESTORE
Key in the following short program, which READs two numbers from a DATA
statement and prints them on the screen.

10 READ A,B
12 DATA 1,2
30 PRINT A,B

If a program contains READ-DATA statements, the 64 sets up a list of all the
data items in the DATA statements,. noting the line numbers where they occur.
It uses a data pointer to keep track of the data values assigned to variables as the
program runs. The pointer can be moved to the beginning of the data line using
the RESTORE instruction.

. . .

When running the program above, the 64 is instructed to read or assign a
number to the variable A. It looks at which item in a DATA statement is being
pointed to (in this case 1) and makes out assignment: A=1. The ppinter moves to
the next data item, which is then assigned to B. So the command

READ (variabLe, variabLe)
This assigns sequential data items by numbers, strings, and expressions in a
DATA list to the variables named in the READ statement.

BAD DATA ERROR or SYNTAX ERROR occurs if data is ofthe wrong type.
OUT 0 F DA T A ERR 0 R occurs if there are insufficient data items.
D A T A it em, i tern

37

This is a statement or line in a program which is part of its data list. Data items
are numeric or string. The data list is accessed by a pointer moving sequentially
for each READ instruction. DATA items are separated by commas. The 64 does
not care where the DATA lines are placed in the program.

EXERCISES
Key in this program, which reads and assigns strings.

10 READ A$, B$
20 DATA "COMMODORE",64
30 PRINT A$, B$

Remember the two data types: numbers and strings. A string need not be
enclosed within quotes in Commodore BASIC.

" ,

Controlling the DATA pointer: RESTORE
The DATA list is composed of data items on ~everal DATA lines. The data
pointer is initially set to the first data item in the program. It can be moved back
to the first item of the first data statement using RESTORE. For example, key in
and run this program:

10 READ A
20 PRINT A
30 If A=6 THEN RESTORE
40 GOTO 10
50 DATA 1,2,3,4,5,6

EXERCISE
Key in and run this program, in which the same data is used by a number of
variables.

10 READ A$,B$
20 DATA BRIAN, STELLA, PETER, VICKIE
30 PRINT A$,B$
50 READ C$,D$:PRINT C$,D$

Then add another line:

40 RESTORE

Run the complete program a few times and be sure you know how it works.

Position of DATA lines in programs
Program lines containing DATA items are best kept near to the respective READ
lines for speed of processing, unless a block of data needs to be accessed at
several points in a program, when it is best positioned at the end.

F3: FOR TO STEP and NEXT loops
When reading or inputting large amounts of data into a program, as for lists and
arrays, the FOR-NEXT repeating structure is a more powerful and elegant
method than GOTO n, which was mentioned in Section E3, for repeating the
input operation.

38

,,",",.,.

" '.

\ .

", :

, :' .

.
" ':.

Two statements are involved: .
1 a FOR TO STEP statement, and
2 a NEXT statement.

The structure of the statements is:

• FOR (loop counter variable) = (start value) TO (stop value) STEP (counter
steps each time)

• (Instructions to be repeated)

• NEXT (loop counter variable) .

If there is only one next statement referring to a FOR statement, the loop counter
(NEXT) variable can be left out. If the STEP value is I, STEP 1 can be left out of
the statement.

The NEXT instruction steps the repeat control variable to the next value.
,

For example, print the word COMMODORE seven times on the screen, using N
as the loop control value. 1 is the start value of N, 7 is the stop value, and STEP 1
is the stepping interval. .

10 FOR N = 1 to 7 : " REM STEP 1 IS OMITTED
20 PRINT "COMMODORE"
30 NEXT N :REM couLd be 30 NEXT

When the program is run, N takes the start value of 1 and the program is in the
1st repeat loop. COM MOD 0 R E is printed, and N steps the loop counter by the step
value I, sending the program back to 10. N now takes the value of 2, Commodore
is printed a second time - and so on until N takes the value of 7. At line 30 there
are no next N's, and control passes to the next line.

If you find FOR-NEXT loops difficult to understand, turn to section L where
loops are dealt with more thoroughly. Read it through and come back.

F4: Multiple INPUT
Remember that it is not necessary to have a separate INPUT line for each
variable. The INPUT instruction will handle multiple variables. Variables in the
same line are separated by commas.

INPUT (variabLe, variabLe)

For example:

10 INPUT A,B,C
20 PRINT A,B,C

On RUN the prompt? will be displayed. You can enter these values either
separated by commas or one item at a time (BASIC will continue to prompt with
?? until it has all the required values).

.I ,

;-

F5: Printing on the input line
A message can be printed on the input line by enclosing it in quotes before the
variable to be input, like this:

INPUT "PRINT ITEMS";A

10 INPUT "TEST";A

39

------------------------...
F6: String INPUT
Strings can be input without the quotes. Try:

10 INPUT A$
I , , '

This assigns the characters entered to the string variable A $. ' .

F7: READing large data lists
When reading data items into array variables, first dimension the array (tell the
Commodore how much space to reserve for the array in its memory) using DIM
variable (number of items). For example:

DIMA(100)
will reserve space for 100 items in a list of variables A (1)to A (100),

10 ' DIMA(100)
20 FOR N =1 TO 100
30 READ A(N) ,
40 NEXT
50 DATA (100 items) . •

EXERCISE
Write a programto read in a~d printlO numqers. (Use PRI NT ACN) in a loop).

Data size variable
. .

10 READ Z • DIM A(Z) •

20 FOR N=1 TO Z
30 READ A(N)
40 NEXT
50 DATA 17
60 DATA (17 items)

Line 10 assigns the value 17 to Z from line 50 and dimensions the list for 17
items. The program loops ' 17 times to read in the 17 data items in line 60.

EXERCISE
• Write a program for 5 data items and run it.

F8: Data types and structures
The data types of information or data which the Commodore uses in programs
are numbers, integers, characters, operators (Boolean or logical), or user
defined. Data types are organised, through allocation of variables, into data
structures. These are

o strings

o lists

o tables

o arrays

o trees

o stacks

o queues

40

, ::
. '.
" ' .
.':, '.

, ::

','.,'.

" '::
, :.

Numbers
Numbers are either integers - whole numbers, such as 1, 34, 0 and so on - or

i .. l\.lOn .'-' numbers. REAL numbers have a fractional part and can be represented as
decimals: 1.5, 9.36, -0.042

Characters
Characters are represented in the computer by integers, in an integer code

. known as the character code. Integers thus extend the range of data types to
..... The connection between integers and characters will be explored in
.'.i .• Section K.

On the Commodore you can have integer variables. These are specified by
using the percent sign (%) in the form:

10 INPUT A%

... Booleans are the result of a comparison or logical operation; for example, A is
....... greater than 1 is TRUE or FALSE depending on what is stored in variable location
< A. TRUE and FALSE are stored in the computer by assigning each an integer:

TRUE =-1
FALSE = 0

Commodore BASIC allows you to use the results of Boolean or logical
comparisons in arithmetic and PRINT statements. Handling this kind of data is
covered in Section R.

Data structures are dealt with throughout the text, but most extensively in
Sections K (Strings), S (Lists and Arrays) and T (Sorting and Searching).

Now you have met much of the terminology and jargon of programming; in
the next sections you will become familiar with some of these data types and
how BASIC uses them.

.I

f

41

, '

, ,

, '

"

'.,:.

':,
'.:.

',: .

",:.

:;

PART TWO

ESSENTIALS OF BASIC
PROGRAMMING

/

" I

,

,

Section G: Programming Methods I

Gl: Programming
Now that you can operate your computer and have written a short program, we
must look in greater detail at how computers solve problems. To enable a
computer to solve a problem, you must:

• produce a method for solving the problem, and

• produce a working program;

The method for solving a problem is called an algorithm. An algorithm is like a
cookbook recipe, and is written down in steps in a brief English style called
pseudocode, and the method by which we arrive at the recipe is called structured .
programmzng.

The problem must be broken up into smaller sub-problems, or sub-tasks, in a
step by step modular fashion, starting from the simple initial statement of the
problem and working down to lower levels of greater complexity (that is, in a top
down manner). As the problem is refined, the steps become more like the
operations the computer can perform. The final description of the lower level of
the algorithm will be in terms of the control and other structures of the language.

To help produce the algorithm, structure diagrams are used. The simplest of
these is a tree diagram. The pseudocode description of the algorithm is easily
written down from the descriptions of tasks in the tree diagram. This
pseudocode description of the algorithm cannot be keyed into the Commodore,
and it would not understand it anyway. Each section of the pseudocode must be
translated into its equivalent in BASIC, which the computer understands, to
produce a program.

For the computer to be able to run the program successfully and produce the
results required, there has to be a logical flow to the program. This is often
difficult to see from the structure diagram, and so another diagrammatic
technique is used to illustrate the flow of control through the program (that is, to
determine the order in which the program modules or sub-programs are
processed and the order of coding the specific instructions within each module.)
This technique uses flowcharts. These are also important for documentation
purposes; they will be described shortly.

Producing a working program means running and debugging it. Then the
program is tested with sample data and finally documented. In this first section
on methodology, problem-solving and coding the algorithm in BASIC will be
considered in more detail.

The first half of the activity we call programming is language independent. When
the problem solving method is produced, the algorithms and their representa
tion in pseudocode and flowchart form can be coded into any computer
language; they are thus portable from one machine and language to "another. But
then it is necessary to know the intended language thoroughly,/ and how the
fundamental programming structures used in the algorithm - deCisions, loops,
subroutines, subprograms, functions - can be implemented in that version of
the language which runs on the computer to be used.

Good coding habits are of the greatest importance - there are good and
not-50-good ways of turning the solution to a problem into a working program,
Style, presentation, ease of understanding, modularity, efficiency are all
important. Throughout this book the emphasis will be on correct problem
solving techniques and good programming practice, while a thorough know
ledge of BASIC is gained.

45

The first rule of programming is: program correctly from the start. Remember,
bad habits die hard!

The material in this Section may initially appear dense and difficult to follow.
Work through the text carefully, and refer back to this Section as often as you
feel necessary, as each of the topics covered in the following Sections (dealing
with the essential groundwork of the BASIC language) is introduced. The
exercises given in the text should be used to put into practice both the specific
techniques involved and the general approach to programming presented here.

G2: Problem analysis
Producing the algorithm, or method of solving the problem, is often the most
difficult part of programming, because it involves the most work. Careful
planning and organisation from the start are essential. The task is simplified
when a structured design method is used, coupled with a diagrammatic
representation of the algorithm using a structure diagram or flowchart. The
actual coding of the program in BASIC using the available language instructions is
then a straightforward matter.

To produce the algorithm, the programmer must:
1.1 State the problem.
1.2 Research the problem.
1.3 Design the algorithm.
1.4 Describe the algorithm in pseudocode and flowchart form.
Each of these steps must be broken down further. For example, to state the
problem:
1.1.1 State the problem fully.
1.1.2 Understand what is to be done.
To solve any problem you must know what the problem is and what is to be
done; later you work out how to do it. A complete statement of the problem
should include:
a What information or data is to be input.
b What answers or results are to be output.
c What operations are to be performed on the data.
At this stage a precise description of (c) may not be available.

Sample problems
• Write a program which will print out the sum and the average of five

numbers input at the keyboard.

• Design a computerised telephone directory, to contain up to fifty entries,
which may be updated and assessed in an enquiry mode.

In the first problem the input data, output data and operations are easy to see.
The second is much more complex and needs more researching and informa
tion.

In 1.1.1 and 1.1.2 above, the programmer must try initially to specify the
problem as exactly as possible. When the problem is analysed further, more
information - a more detailed specification - may be necessary

In order to research the problem:
1.2.1 Research and analyse the problem to see how the computer can handle

it.
1.2.2 Identify all formulae and relations involved.
1.2.3 Identify all data involved.
Here you begin to determine how the computer will solve the problem. You
need to find out and write down:

46

• What formulae and expressions are to be used.

• What kinds of data are involved - numeric, string, etc.

• What functions are involved.

• What input and output data are involved.

• What is the form of this data.

• How much data there is.

• What processing is to be done and how many times.

It is useful at this stage to start a data table (a table of variables, constants and
counters) to begin to decide how the data will be stored. Other questions to ask
when you are a little more experienced are:

• Have I solved a problem like this before?

• Can I use my solution or modify it?

• Has anyone else solved it?

• Where can I find their algorithm or program?

All the facts obtained from researching the problem should be written down. Otherwise the
programmer will find it necessary to research the same information again.

You can now begin to design the algOrithm, using structured methods.
1.3.1 Break the problem down into sub-problems.
1.3.2 Use a structure or tree diagram for clarity.
1.3.3 Classify modules or parts of modules for:

o input

o processing

o output
1.3.4 Use fundamental control structures.
1.3.5 Set up a data table.
1.3.6 Refine the algorithm until coding into BASIC is an obvious exercise.
Structured programming means designing the algorithm in a top down,
modular fashion, with step by step refinement of the solution starting from the
statement of the problem, which is placed at the highest level. The problem is
broken into sub-problems at successive lower levels. Structure diagrams or tree
diagrams are useful as a representation of this refinement process.

G3: Structure diagrams
These make it easier to break down the problem into distinct tasks and
sub-tasks, which eventually become simple enough to be coded directly in BASIC

instructions. One type of structure diagram is the tree diagram. This upside
down tree has its 'trunk' at the top of the page; it is called Box 1 and could have
the title 'Task to be done' or 'Problem to be solved'. For example, make a cup of
tea or find the average five numbers. /

The task is then broken down into things to do. These are sub-t~sks and each
has its own box. For example:

Box 1.1: First thing to do
Box 1.2: Second thing to do
Each sub-task is broken down into further sub-tasks: 1.1.1, 1.1.2 etc, each with

their own boxes, the things to be placed in them becoming progressively more
exact and simple.

47

Breaking down a task into a tree diagram:

1
first "WHAT IS TO ,

level BE DONE"
,

second
level

1.1 1.2 1.3
FIRST THING SECOND THING LAST THING
TO DO TO DO TO DO

third
level

1.1.1 1.1.2 1. 2.1 1. 2.2 1. 2.3 1. 3.1 1.3.2
Sub- Sub- Sub- Sub- Sub- Sub- Sub-
task task task task task task task

.

The sort of programs you will start to write in BASIC are sequential; that is, things
are done one after the other. You indicate the sequence by drawing the boxes
containing the tasks to be done in a straight line across the page next to each
other, like this:

1.2.1 1.2.2 1.2.3

The numbers contained within each box identify where the box is placed on the
tree. Take 1.2.3 for example: the first digit shows it comes from the first level 1
'What is to be done'. The second digit '2' shows it has come from the second
level box 1.2 'Second thing to be done'. The third digit '3' shows this box 1.2.3 is
the third sub-task in the sequence derived from 1.2 which in turn is derived from
1.

. Into the boxes go brief statements of the actions needing to be performed.
These are general statements at the top of the tree, ego 'Get Sum of numbers',
but become more specific at each lower level, so that 'Get Sum' is broken down
into 'Input first number', 'Input second number', 'Add the two numbers'.
Finally the instructions become detailed enough to form our English language
pseudocode which can be written out, ready to be translated into BASIC

instructions.

An example of a tree diagram
Here is an example. Suppose a robot has to be programmed to make a pot of tea.
The major task is broken down into sub-tasks, which are put in order across the
page:

1
Make a pot
of tea

::::::

1.1 1.2 1.3
80 i L Put tea Put water
water • pot • pot 1 n 1 n

48

-, :;
::',:

Each of these sub-tasks is still far too complicated for the robot; they must be
broken down further. Breaking 1.1 into sub-tasks, you get:

1.1
Boil
water

1.1.1 1.1.2 1.1.3
Fill the Kettle Plug in Kettle Wait Until
with Water and Turn On Water Boiling

The robot also needs to be told how to fill the kettle; this can be broken down as:

1.1.1
,Fill the Kettle
with Water

1.1.1.1 1.1.1. 2 1.1.1. 3
Put the Kettle Turn on Wait until
Under Tap Tap Full

G4: Classifying program modules
Most computer programs involve three activities: input, processing, and output.
As programs are designed and modules are formed, it becomes evident from the
pseudocode description of the algorithm which of the above functions the
modules should have. Depending on the problem and the result of the
algorithm design, modules may be separately designated input, processing, and
output functions, or may have these functions as sub-modules.

Module I
DATA
INPUT
Module

DATA
INPUT

Module I

PROGRAM

Module 2
PROCESSING
Module

OUTPUT

OR

49

DATA
INPUT

Module 2

Module 3
DATA
OUTPUT
Module

/

i
!

PROCESSING OUTPUT

(J]
Cl

1.1.1
Fill
the
Kettle
with
Water

1.1
Boil Water

1.1.2 1.1.3
Wait Plug
Until in the
Water Kettle
Boiling and

Turn \
On

1
Make a
Pot of

1.2
Put Tea
the Pot

1. 2.1
Get Tea
Pot

Tea

•
1.n

1. 2.2
Put in
2 Tea
Bags

1.3
Put Water
into the Pot

~

1. 3.1 1. 3.2
Take Pour
the Pot Water
to the into
Kettle Pot

1. 3.3
Stir
Tea
with
Spoon

~::c
OQIIl o

.... III
~ ::T ~.

S ~ o n
.... 0
.... S ::T
III :=..
.... III
0
crill
o
, III
crill
S-p..
1-" """ • ~
p..OQ
o ;;1
~ S

•
rJl
::Tn

~ ~
Dr ::T ~.

o ::l
<
~ ::T

~.

"d::l
.... OQ o rJl

~~
S (6
n rJl

§§
if<
cr
.... 0
o ::l
""OQ o :s

~.

p..
o ::T
<
::l::T . S;"

G5: Control structures
Control structures are the statements or groups of statements (modules) in a
program and algorithm by which the order of processing is controlled. Using
them properly is the most important part of programming.

BASIC is a line-numbered language. The order of processing in a program is
...... '-.r the lowest line number in the program sequentially through to the highest,

this is changed by using a control structure. Control structures link the
different modules in a program together, and are themselves modules.

To make algorithms language independent, they can be written using a standard
in pseudocode for the particular control structure, together with its

flowchart description. When the structures are coded into the BASIC language,
the instructions used and the order of statements in the structure may be slightly
different according to the version of BASIC and how 'structured' it is (how easily
it accommodates these control structures). The structures to be studied in BASIC

• Decision structures

• Transfer structures

• Loops

• Subroutines

• Nested structures

• Sub-programs

Decision structures
Computers make decisions by comparing the value of one variable against
another. For example:

I F A = 0 THE N (do something)
IF A $ = "y E S" THE N (do something)

To make decisions, computers use relational (or conditional) and logical
operators, like the equals operator above.

Commodore BASIC uses three decision structures:

• Simple decision

• Double decision

• Multiple decision

As a result of these decisions, control may be transferred to another program
module, or local processing within the structure may take place.

Transfer structures
Transfer structures are discussed further in Section H of this book. They include:

• unconditional transfer, a direct transfer of control using a GO TO (line
number) statement. Transfer is to another program statement o~ a module
consisting of a group of statements. GOTO is a very powerful structure and
must be used with care. !

• conditional transfer, in which transfer of control to another segment is made
as a result of a decision: for example, IF (condition is true) THEN GOTO (line
number).

Loops
The need for repetition of simple tasks is one of the fundamental reasons for
building computers. Loop structures are incorporated in most computer prog-

51

rams. A loop is a sequence of repeated steps in a program; this repetition must
be controlled. We shall see in Section L that repetition is controlled by counting
and by testing for a condition. Commodore BASIC uses a convenient and powerful
set of statements for controlling repetition by counting called FOR. .. NEXT
statements.

There are three common types of loop structure:
a Repeat (the process) (forever!)
b Repeat (the process) until (a condition is met).
c While (a condition holds) repeat (the process).
Structure (a) is of little use, but a programmer has to be aware orit and make
sure it does not occur. In structure (b) the condition is tested after processing; in
structure (c) the condition is tested before processing.

Subroutines
Structured programming involves breaking down a complicated problem into
separated independent program modules, called subroutines, which can be
worked on separately.

Subroutines are distinct from subprograms, which have similar properties in
that they are routines or groups of program statements that are repeated more
than once during a program run.

Subroutine modules have a unique address and can have a name (like a
person who lives in a house). Transfer of control to the subroutine from the main
program when the program runs is by reference to the subroutine address
through a subordinate call instruction. This is the GOSUB (address of subroutine)
statement. A return of control to the main program to carryon processing from
where it left off is through a RETURN instruction. Subroutines in Commodore
BASIC are explained in Section N.

Nested structures
These are program modules or structures that lie entirely within each other, iike
a set of Russian dolls.

A simple nested structure looks like this:

MODULE 1
MODULE 2
MODULE 3

In terms of program statements this would look like:

moduLe 1
10 _________ _
20 _________ _

moduLe 2
40 ______ _ ___ _
50 __________ _
60 _______ ___ _

moduLe 3
70 _______ _
80 _______ _

100 ______ __ __ _
110 __________ _
120 ______ ____ _
130 __________ _

140 _____ _

52

:'.' -

The flow of control is:

START MODULE 1
Y

TRANSFER CONTROL ~ START
TO MODULE 2

MODULE 2

~
TRANSFER CONTROL~.~START MODULE 3
TO MODULE 3 t

COMPLETE MODULE 3
~---------TRANSFER CONTROL

BACK TO MODULE 2

COMPLETE MODULE 2
~---------TRANSFER CONTROL BACK

TO MODULE 1

COMPLETE MODULE 1

Subroutines, subprograms, loops and decisions may be nested in programs.
Nesting is fully dealt with in Sections H, Land N.

G6: The data table
When designing a program it is important that. knowledge of data and
information pertaining to the problem is complete. All data will need to be
assigned a variable name, unless it is a numeric constant used in a formula.

The variable type will be either:
Numeric - numbers with names, such as A, N 1, CO U NT, A (I J)
String - characters with addresses, such as A $, A $ (I J) .
Logical - numbers of characters, such as A, A $, NOT B
Numeric variables will be integers, fractions, real and imaginary numbers.
Strings will be names, characters and symbols. Logical variables will be the
values TRUE or FALSE, -1 or 0 as appropriate to their use. Logic is dealt with in
Section J.

The programmer also needs to know whether the data is input, output or
intermediate. Intermediate data is used in the body of the program, for example
the value of a loop counter, or the intermediate result of a calculation.
Intermediate data is useful for testing and debugging purposes when running
the program or algorithm, using machine or hand traces.

The equations, functions and expressions that will use the variables will need
to be known. When dealing with equations, functions and expressions, the units
of the variables or parameters concerned must be known and should be stated.

The first and simplest data table to construct is a descriptive list of variables .to
be used in the program. This is important for documentation purposes. For
example: /

•
VARIABLE DESCRIPTION TYPE .,

A
B
SUM
A$

First number
Second number
Sum of A and B
User response to
RUN AGAIN?

Input
Input
Output
Output

For program design purposes, the value ascribed to each variable at different
points through the programs can be added. This forms a data table that is useful

53

for checking the algorithm before and after coding it into BASIC, and is also a way
of analysing errors in your own program, and understanding how other
programs work.

ALGORITHM VARIABLES
STEP

.

NUMBER
A B S COUNT A$ etc etc

MODULE 1
1.1
1.2

MODULE N
N .1
•

•

•

Loop counters are included in the list of variables. If their values are used for C,,!
calculation inside the loop, this should be stated. There are some examples of• ~
this type of data table in the text. '

Refining the algorithm
•

The tree diagram should be further broken down and refined until the final
sub-modules correspond to recognisable BASIC statements and structures. As
you get more experienced, you will recognise more complex structures, and the
solutions to problems will become apparent at earlier stages.

G7: Describing the algorithm
1.4.1 Write out the method of solving the problem (the algorithm) in steps, in

a simple English style (pseudocode).
1.4.2 Draw a flowchart showing how the program will run from start to

finish. . .
1.4.3 test that the algorithm will work before coding it into BASIC.

Having broken the problem down into subproblems to a stage where a BASIC

program can be written, there are more things to do before writing the BASIC

code, to ensure that the program will work and that other users can understand
it. The documentation of the algorithm description in pseudocode andlor
flowchart form is important. This is not part of the program itself,but is a
separate document which will also include a listing of the program. This is
important for other programmers, who may want to modify your program or
use it as part of a . larger program, and for you yourself, if you come back to it
after a period of time and cannot remember how you designed it or why you did
it that way. The program listing alone is often not enough, if the algorithm is
complex, to show how the program works.

G8: The pseudocode description
In the structure or tree diagram - which is drawn in rough on a piece of paper as
the solution is designed - each block or module down to the lowest level has an i'~
English description of the task to be done inside it. (The very lowest level tasks ':'i~

~
~ ~ 54

----------------------------------- --

will be described in sentences that are very similar to the BASIC program
statements themselves, as you will see in Section 0: Programming Methods II.)

The algorithm will be written out, in a step-by-step fashion, and will include
all the descriptions in the boxes. The highest or first level description (simple
box) will be the algorithm and program title. The second level will be the titles of

"" the program sections. Each of these major sections will encompass a further
" group of modules, all of which will be named in our description of the solution.

The lowest level of the tree diagram will be the specific instructions -the
computer has to perform. These will be translated into the BASIC language on an
almost one-to-one basis, and will contain the important and easily recognised
language structures for making decisions, branching and jumping, and repeti
tion that have been discussed. (A summary of pseudocode descriptions of some

_ control structures and their flowcharts with BASIC program equivalents is given
_ -in Section 0: Programming Methods II.) If you imagine turning the tree diagram
on its side and taking away the boxes, the descriptions that are left constitute a
>pseudocode description of the algorithm.

As an example, look at the tree diagram and the algorithm description for the
-. problem of asking the robot to make a pot of tea. Using the tree diagram the
-algorithm for making a pot of tea is written as a sequence of instructions (to be
coded later in a computer language). English is used as a pseudocode and the

is written directly from the sub-tasks in the bottom line of boxes in the
tree diagram. _

The boxes at higher levels in the tree are used to define distinct. modules.
Comments or REMARK statements identify each module and explain what is
being done in each algorithm section:

Remark * * ALgorithm for robot to make a pot of tea * *
Remark * Boi Lwater - task 1.1 *

1.1.1 Fill the kettle with water
1.1.2 Wait until the water is boiling
1.1.3 Plug in the kettle and turn it on

Remark * End of task 1.1 *
Remark * ModuLe: Put tea in the pot - task 1.2 *

1.2.1 Get tea pot
1.2.2 Put 200 tea bags in the pot

Remark * End of task 1.2 *
Remark * ModuLe: Put water in the pot - task 1.3 *

1.3.1 Take pot to kettle
1.3.2 Stir tea with spoon
1.3.3 Put lid on tea pot

Remark * End of task 1.3 *
Remark * * End of A Lgori thm - tea is made * *
The tree diagram shows why each part of the algorithm is included and why it

is in the particular position in which it has been placed on the tree. The tree
diagram contains information about three things:

• The problem broken down into different levels of detail, starting from the
general concept of what is done down to the specific activities and instruc-
tions which will enable the problem to be coded. /

I
•• The order in which instructions must be performed.

• The comments which must be included to explain what the program is doing.

"" EXERCISES
The algorithm has mistakes in it. Some instructions are spelt incorrectly and the
robot will not be able to recognise them; some instructions are in the wrong
order; some instructions are missing in the algorithm; some instructions are
missing in the tree diagram. Find the mistakes and correct them.

55

Expand the tree diagram and the algorithm to a further sub-task level. For .•..
example:

1.1.1 Fill the kettle
becomes

1.1.1.1 Put kettle under the tap
1.1.1.2 Turn on tap

and so on.
Draw a tree diagram and write the algorithm in pseudocode for a robot to set ".

up and switch on your Commodore 64. . .

G9: Flowcharts
Flowcharts are a second graphical method used in designing programs. They · •. ··
consist of linked boxes of different shapes. Each shape has a different use and, .
as with tree diagrams, each contains a brief description of what the program
should do at a particular point. .

It is harder to design programs using flowcharts than with tree diagrams~ •
Their power comes from using them to help make visible and describe the flow ".
of control in the algorithm and the resulting program. They are used to help
code the program into BASIC instructions, and later form an important part of the
documentation of a program. Note that flowcharts express the important control '
structures used in programming in diagram form.

Here is a selection of standard flowchart symbols. There are additional ones, .•.
but their usage varies. The conventions of use nmst be followed if you wish '.
other people to understand your flowcharts. For your own use, in 'analysing
programs, you may be less exact, but not less systematic. Flow inaprogram can .
be illustrated by blobs and rectangles, if the lines of flow are correctly shown and "
the right words are written in the blobs; doing it this careless way is all right for '"
yourself, but not if your flowcharts are to be comprehensible to others.

Flowchart symbols

t

A=B+C

INPUT
B

Yes

'.

.'
" ;

Flow lines. These connect the pl'ogramblo~ks. The
arrows show the direction of flow, anfiare very
important. . '.~ , . ., . ',' .

, ,

,
. ' .. .

This symbol represepts any kind of processing
function, or generalp;rogramming statements,
such as 'Purchase tea'or' LET A' = B + C

" ., '
. .

" , , "" . ,

f '
, ' , , , .. ,

'.,' -.'. ' ,-- . " , --"

: • ~:~-:. >

This represents a decision, with a conditional
test, such as 'Is there another shop open' or I F A =
3 THE N ••• It has a Yes/No branch, according to
whether the condition is True or False, which
determines the program flow.

This represents either output in the program to
the screen or printer, or input from the keyboard;
for example P R I NT" H A V E YOU A PAC K E T 0 F
TEA?" or INPUT B.

56

.",:
- 3:.

,'.

GOSUB
1~~~

• 0·
-®

(STOP)

This represents a named process that is speci
fied elsewhere, such as subroutine GO SUB 1000.
The subroutine would have a separate flowchart.

.' ."

This represents an exit to or entry from another
part of the flowchart, allowing one part of the
chart to be connected to another part. Used when
another direct line link would be confusing, or to
connect to a separate page.

This represents the crossing of two flow lines.
They are not connected.

This represents the junction of flow lines. The
two lines of flow join.

Terminal point, e.g. start, stop, pause .

..... A flowchart does not branch out like a tree diagram; it always converges to the
/ stop point. It has a direct relationship to the program it describes. Writing down
< a flowchart is rather like drawing a diagram of the program itself. Below are
'.' some examples of simple flow structures, with the program and the flowchart.

Simple sequences flowchart
Flowchart

START

x = 5

INPUT
Y

PRINT
X,Y

57

Program
10 LET X=5
20 INPUT Y
30 PRINT X, Y

',' .

.I
,

/"

=

1 '
; ,

i
L

i: , . ..
I

! i
T
!

) ,
I .
"

Decision and program branch flowchart
Flowchart Program

N

x = 1 ~

PRINT
X

STOP

40 IF Y=O THEN GOTO 70
50 LET X=100
60 GOTO 80

Yes 70 LET X=O
- 80 PRINT X

90 STOP

x - r/J

Notice that a flowchart symbol is omitted for line 60. This GOTO is indicated by /I;
the flow lines. The same is true of the GOTO in the conditional statement of line ..
40.
Loop flowchart

Flowchart ·
START

INPUT X

No

PRINT X

END

Program
10INPUTX
20 IF X=O THEN GOTO 50
30 PRINT X
40 GOTO 10
50 REM * * END * *

Notice that the above flowcharts represent the programs line by line. Flowcharts
can also be less detailed, and the flowchart symbols used to represent program

58

blocks (sequences of program instructions) or modules rather than one or two
They then describe a less detailed flow structure. You could have a flow

that waS represented like this:

START

PRINT

NSTRUCTION

INPUT

113
NUMBERS

FIND SUM,

AVERAGE

PRINT

RESULT

STOP

This is like a flowchart of a higher (less specific) level of a tree diagram. Each
section could have a more detailed flowchart drawn up to show the individual
lines of the program, or comments could be added to the blocks above, relating
the program lines to the blocks:

INPUT
10

NUNBERS
- - - Input loop in lines

40 to 60

/

!

You will soon start to write short programs, and should draw up flowcharts with
each program line or instruction indicated separately. Later, for longer programs
with large numbers of lines, the flowcharts must be condensed where the
sequence is simple to follow in the program, to keep them of manageable size.
Any complex manipulations should still be included in full.

59

•

Examples
Here is a flowchart for the robot, asking it to buy the tea.

START

ENTER
SHOP

Yes

PURCHASE
TEA

GO
HOME STOP

GO TO
ANOTHER

SHOP

Yes

No

In the same way as the 'making a pot of tea' problem, each of these boxes mu,
be broken down into simpler instructions. On a simple flowchart it may not be
possible to see how the problem has been broken down. Either the whole
flowchart must be drawn again with more detail, or a new, expanded flowchart
drawn at specific points; for example, EN T E R S HOP could be replaced with
following:

FIND
DOOR

OPEN
DOOR

WALK
IN

60

Here is a flowchart of a progam to input two numbers, output the sum, and ask
. if you want to run the program again.

START

NPUT
A

B

...•• DD A+B

.. PRINT
S

INPUT
1'.$

STOP

Yes

<

61

10 INPl,/T A
20 INPUT B
30 LET S = A + B
40 PRINT S
50 PRINT "RUN AGAIN?
(YES/NO)"
60 INPUT A$
70 IF A$ = "YES" THEN
GOTO 10
80 STOP

/ •

An example of structured design

Problem: find the average 6f five numbers:
Tree diagram

Find Average
of 5 numbers .

I .

:::::::
.

Get each
Set counter number, add Find Print
, sum to 0 it to the sum Average Average

Let Sum .. 0
Let Counter

.. 0 .

J

Add 1 Input Add End of .
to counter number number summing if

to sum counter = 5 . , .

J

Let Input Let If Counter Let print
Counter .. X Sum .. = 5 then Average Average
Counter+l Sum+X end summing =Sum/5 .

. . .

Note that the flowchart and program tesJ whether the counter value is less than
5, using the < symbol.
Program

10 REM "AVERAGE"
20 REM * * PROGRAM FINDS AVERAGE OF FIVE
NUMBERS INPUT * *
30 REM * * START * *
40 LET SUM = 0
50 LET COUNTER = 0
60 LET COUNTER = COUNTER + 1
70 INPUT X
80 LET SUM = SUM + X
90 IF COUNTER < 5 THEN GOTO 60
100 LET AVERAGE = SUM/5
110 PRINT AVERAGE
120 REM * * END * *

The operand / means divided by, and is equivalent to the + symbol.

62

SET
COUNTE

SET
SUM • 'Ii

Flowchart

EXERCISES

DD 1 TO
COUNTER

INPUT
X

ADD X
TO SUM

No

A=SUH / 5

PRINT
A

STOP

Yes

• Design an algorithm (using tree diagram) and write a BASIC program with a
flowchart to find the sum and average of ten numbers to be input at the
keyboard.

• Produce the tree diagram, flowchart and program which calculates the area of
any rectangle.

• Design the algorithm, BASIC program and flowchart which calculates the total
volume and weight of three boxes to be airfreighted from Lond9n to New
York. Use the following data: /

Box

1
2
3

Length
em

20
40
70

Test that it works!

Breadth Heigbt
em em

4 2
· 3 6
10 15

63

Weight
Kg

2
3.5

20

. .

•

"

GI0: Testing the algorithm
It is always best to make sure your method of solving the problem actually works
before coding into BASrc. This pre-coding check is often called a dnj run or a walk
through.

Using the data table, the values of all the variables, expressions and counters
must be checked through, module by module, through the algorithm. This will
uncover errors in the logic and method and will save time when debugging the
finished product later on. Professional programmers always do this, because
they work to tight time schedules, and by doing things properly at the start they
save time later on. Try a few walk-throughs on the simple programs you will be
designing at first, just to get the hang of it.

.'

You have now covered the first essential steps in designing a program, and
have seen a simple coding process. You have learnt about methods and concepts
and introduced some new terminology. After concepts you can go to detail: the
algorithm is ready to be coded into a BASIC program. In doing this, you must put
into the program the fundamental programming tools, which are language
structure and control structures. You have to know what these structures or
tools are before you can use them, and this requires a closer look at Commodore
BASIC.

,

" ,

..

64

=

, .

":,

Section H: Control

HI: Control in programs
The statements that make up a BASIC program are numbered. BASIC is thus a line
numbered language. Control in all BASIC programs is carried out by reference to
these line or statement numbers. The Commodore 64 will run a program from
the lowest numbered statement through to that with the highest number unless
instructed to do otherwise. This is exactly what this section is about: that we can
control the order in whiCh program statements are executed by using four
important instructions in Commodore BASIC:

• GOTO (for direct transfer)

• IF ... THEN (for decisions and branching)

• FOR ... NEXT (for loops and repetitions)

• GOSUB ... RETURN (for accessing program modules, or subroutines)

These instructions are used singly or combined with other instructions to form
groups of program statements called control structures. There are four principal
control structures:

• Decisions and branching

• Loops

• Subroutines

• Nested structures

The most important property of a computer is that it can be programmed to
make decisions, by using the relational or conditional operators of BASIC. In this
Section you will discover how to take decisions and branch to other parts of the
program.

H2: Condition testing
Conditional operators are also called relational operators, as they determine the
logical relationship between two expressions, numeric or string. The conditional
operators are:

Equality:
Inequality: <>
Greater than: >
Less than: <
Greater than or equal to: >=
Less than or equal to: < =

Conditional operators are executed in order left to right across a/statement,
unless they are in brackets. /'

Notice that three of the operators are complements or opposites of the other
three: this is often usefulin decision making. The complements are:

Operator Complement

equality =
greater than>
greater than or equal to >=

65

inequality <>
less than or equal to < =
less than <

..

-

H3: IF ... THEN
Conditional operators are used with IF ... THEN statements: IF (condition is
TRUE) THEN (perform an instruction). For example:

40 IF A=B THEN 10
50 IF C <= 6 THEN STOP
60 IF J > K THEN PRINT "J"

The format of the statement is: IF (condition) THEN (instruction).
Any BASIC instructions can be used in this kind of statement, . although a•.

number of them are unlikely to be useful, such as NEW or C L R. In general, if the
condition in the program line is TRUE then the instruction following the
condition is obeyed. If the condition is not TRUE (FALSE) then control passes to
the next line. This powerful facility enables the programmer to branch and
transfer control to another line in the program.

THE CONDITION

TRUE?

YES BRANCH

(TRUE PATH) .

NO BRANCH (FALSE PATH)
GO TO THE NEXT LINE

H4: GOTO instructions
The normal control sequence in a program is via numbered statements - from
the lowest to the highest. GOTO (line number) switches control to the line
number specified:

100 GOTO 20

As a command GOTO 30 executes a program from line 30. Unlike RUN, with
this method variables are not cleared before execution.

EXERCISES
Key in and run this program, which checks that only positive numbers are input
and gives BAD 0 A T A ERR 0 R message as well as prompting for the next input.
Notice the use of IF ... THEN and GOTO. Input both positive and negative
numbers.

10 REM**INPUT CHECK**
20 INPUT A
30 IF A}O THEN PRINT A
40 IF A(=O THEN PRINT"BAD INPUT"
50 INPUT"DO YOU WISH TO RE-ENTER (YIN)
II. A$,
70 IF A$="Y" THEN 20
80 STOP
90 REM**END INPUT CHECK**

66

Now try these exercises, which demonstrate the power of GOTO:

10 PRINT"CENTURY"
20 GOTO 10

10 GOTO 80
20 PRINT"COMPUTERS

. 30 GOTO 10
" . , ' .

40 PRINT"PERSONAL ";
50 GOTO 20
60 PRINT"COMMODORE ";
70 GOTO 40
80 GOTO 60

Key them in and study them. The second One is an example of what is called
'spaghetti programming'. Structured programming techniques have been de
signed to avoid the excessive use of GOTO statements. Now try another one:
input some graphics characters and wat,ch the pattern.

10 INPUT A$
20 PRINT A$;
30 GOTO 10

H5:0NGOTO
This instruction can be used to control the flow of a program. Its construction is
as follows: '

ON A GOTO L1,L2,L3, ••••• ,Ln

where A is a variable and L 1 - L n are line numbers in program. When A = 1
control goes to line L 1; when A=2 control goes to line L2; when A=n control
goes to line Ln. For example:

10 ON A GOTO 10,20,30,40

If A = 1 control goes to 10; if A = 2 control goes to 20 ... consider what happens if
A = 5, (or for that matter any number greater than 4). The Commodore will try to
find a line number corresponding to A = 5. As none exists, your program will
ignore the ON GOTO statement, and continue. If the value of the expression is
negative then error will result.

Try this: ;'
f

.I ,

10 INPUT"ENTER A NUMBER BETWEEN 1 AND 3
" • A ,
20
""'0 . ..:-

40

REMIF A(=O OR A>3 THEN 10
ON A GOTO 100,200,300
STOP

67

..

100 PRINT"YOU INPUT 1"
110 STOP
200 PRINT"YOU INPUT ~II

..:...

210 STOP
300 PRINT"YOU INPUT .oo:ru

-.J

310 STOP

The ON GOTO must be used carefully. To avoid error resulting, check the value
of the variable used before the ON GOTO statement.

The ON GOTO construction is useful when control needs to be sent to various
places in a program (for example, in menu selection - but that's for later in the
book).

H6: Decision structures

Double decisions
The simplest decision involves the evaluation of a logical condition - that is, a
condition that may have the value of true or false. A result of this evaluation
decides which part of a program is executed next. These parts of the program
called true task and false task.

The flowchart for the double decision structure is:

TRUE

FALSE

TASK

TRUE

TASK

It is called a double decision as there are two alternative modules that can be
performed. In the flowchart, if the indicated condition is true, then the program
section representing the true task is carried out; otherwise the program section
representing the false task is performed. Only one of the paths from the

68

condition test is taken, and the program will continue at the statement
represented by the arrow at the bottom of the flowchart. Each task can be a
single instruction, a statement, or a group of instructions.

The double decision structure is known by the general name of the IF ... THEN
ELSE decision structure. Its general form is: IF (condition) THEN (true) ELSE
(false).

This means: IF the condition tested is true THEN perform the true task, and IF
the condition is not true perform the false task. The algorithm description of it
would look like this:
1. Decision module
1.1 Do the test. If result is true then
1.2 Do true task.
1.3 Otherwise do false task.

This can be written formally in pseudocode as:

moduLe- decision

end moduLe

if condition
then true task
eLse faLse task
end if

End if and end module are bounds to the structure. In Commodore BASIC it is
coded as:

10 IF A>O THEN GOT0100(or 10 IF A>O THEN100)
20 REM *FALSE TASK* (ie. theCOTO is implied)

30 ••.
• • •
90 GOTO ·120
100 REM *TRUE TASK*
110 PRINT A

If the program did not branch to the true task starting at 100 and used:

10 IF A>O THEN PRINT A
20 REM FALSE TASK

in line 10, the true task would be processed and control would then pass to line
20 - the false task. In other words, both tasks would be processed! Watch out for
this. . .

Example: Input two names as strings. The program compares them and prints
them out in alphabetical order:

START
INPUT

A$
INPUT
B$

69

PRINT
B$

PRINT
A$

TRUE

/

i PRINT
A$

PRINT
B$

STOP

10 REM**ALPHA**
20 INPUT A$,B$
30 IF A$ < B$ THEN 70
40 PRINT B$
50 PRINT A$
60 GOTO 90
70 PRINT A$
80 PRINT B$
90 STOP
100 REM** END ALPHA**

The single decision

, .

This is a special case of the double decision structure in which there is only one
task to perform - the TRUE task.

TRUE

,

.

TRUE

TASK

. .

This is called an IF ... THEN decision structure. Its BASIC form is: IF (condition)
THEN (true). This means IF (the condition test is true) THEN (perform the true
task). The algorithm description would be:
1 Decision module
1.1 Perform test
1.2 If true, process true task
A brief formal pseudocode description is:

mod - Decision
if Condition

Then P
end if

end mod

70

Our basic statement is:
IF (condition) THEN (TRUE)
Example: Input numbers and stop if a number greater than 10 is input:

Start

Input A 10 INPUT A

F 20 IF A>10 THEN STOP

30 GOTO 10
T

STOP

Note the abbreviation of true to T and false toF.

Multiple decisions
There is often the need in programs to perform several tasks based on the result
of a set of conditions. To solve these problems a multiple decision structure can
be used. This kind of structure is especially useful in breaking up larger tasks
into smaller ones. Multiple decisions are most conveniently handled by multiple
logical operations. This is covered more fully in Section R, but we will consider
the conventional way of handling them.

As an example of multiple decisions, consider a vending machine: you put a
coin in and press the appropriate button for the item you want. Another
example would be a set of arithmetic testing programs, with questions in each.
The computer would ask you which set of tests you required, you ""ould key in
the reply and, from several alternatives, the required program w0uld run.

71

The flowchart for such a structure is:

START

PI

F

P2

F

p3

STOP

BASIC

10 IF (C1) THEN (P1)

20 I,F (C2) TH~N (P2)

30 IF (C3) THEN (P3) '-

, ,

where Cl, C2, C3 are the conditions and Pl, P2, P3 are the trUe tasks.
Example: Input any of three letters A, B, C and print out a corresponding

reply.

5 PRINT "ENTER A, 8 OR C"
10 INPUT A$
20 IF A$ - "All THEN GOTO 60 -
30 IF A$ - "8" THEN GOTO 80 -
40 IF A$ - II e" THEN GOTO 100 -
50 STOP
60

- ,

P.R IN T -"YOU INPUT A"
70 STOP
80 PRINT "YOU 'INPUT 8"
90 STOP
100 PRINT "YOU INPUT C"
110 STOP , t

,

The pseudocode description ofthisstru~ture is:
,

mod ",
case

i f C 1
then P1

if C2
then P2

if C3
then P3

end case
endmode

72

,

Programming with GOTO
When programming in BASIC, take great care in how you use the GOTO
statement. It takes two main forms. Used on its own it is called an unconditional
GOTO; when used with IF ... THEN it is called a conditional GOTO.

GO TO enables you to jump around in a program like a flea on a blanket -
don't do it! Try to code your program to execute in sequence and avoid letting it
become a bowl of spaghetti.· Excessive use of GOTO makes programs difficult to
refine and debug, and relationships between the program paths become difficult
to follow. However - do not take the other extreme and write awkwa:rd
complicated code to try and avoid GOTOs.

Ideally, unconditional GOTO statements should only be used to skip over
code and not to repeat code sections (i.e. they should only be used to transfer
control forward in a program). Do not put an unconditional GOTO inside a loop
or subroutine to jump out of it. Do not jump inside a loop orsubroutine, because
you'll find that jumping in and out of loops can cause unpredictable results.

Do not jump to another GOTO. For example:

100 GOTO 200
20.0 GOTO 300

EXERCISES
• Write a program to input integer numbers and stop if zero is input.

• Write a program to input integers and count the number of times zero is
input.

• Write a program to input integers and calculate the percentage of zeros input.

• Write a program which prints out the result of dividing any two numbers'
input and gives a BAD D A T A - TRY A G A I N message if any ofthe input values
•
IS zero.

• Write a program which will print out on request a lunch menu for the
different days of the week.

H7: Logical operators: AND/OR
You will be introduced to simple logical operations here, but logic is dealt with
more fully in Section J. Use of the AND and OR instructions enable you to
combine conditions together to make efficient multiple decision structures in
programs. I

AND combines relations so that the result of the logical operatiop' (condition 1)
AND (condition 2) - for example: .

(A = B) AND (B < 1)

is true when both conditions are true, and false when one or both conditions are
false.

OR combines relations so that the result of the logical operation (condition 1)
OR (condition 2) - for example:

(A = B) OR (B < > 1)
is true when either condition is true, and false when both conditions are false.

73

-

The expressions formed by the use of AND and OR are used with IF ... THEN ··
statements. For example: .

20 IF X >= 1 AND X <= 10 THEN PRINT
"BETWEEN 1 AND 10"
50 IF X < > 2 AND X < > 3 THEN PRINT ,

"X NOT EQUAL TO 2 OR 3"
40 IF A = B OR B = C THEN LET F = F + 1

We can also combine more than two conditions:
20 I F A = BAND B = C AND C = 20 THEN STOP

will stop if all three conditions are true. If one or more is false then the wt

expression is false. Similarly:
20 I FB = 2 OR B = 3 OR B = 4 THEN LET B ::: 1

will make B = 1 if B is equal to 2 or 3 or 4.
It is possible to use combinations of AND and OR.

30 IF (A = BAND B > 2) OR (A = 2 AND B = 3) THEN GOTO 60
The expressions in brackets are evaluated first. The first expression in

will be true if B is greater than 2 and equal to A. The second expression will
true if A is 2 and B is 3. The program will pass control to line 60 if either
expression in brackets is true. .

. '. . .

74

--------_ __ ...

Section I: Arithmetic and Functions ,

11: Arithmetic operations
•••... An important function of the computer is to evaluate formulae and expressions
•.....• similar to those used in standard mathematical calculation. Algebraic expressions

•..••...•. are written in BASIC using the following operators, with a set of variables or
numbers as the operands.

ARITHMETIC OPERATOR . EXAMPLE
Symbol name Priority BASIC Maths
t exponentiation
(raising to a power) 10

- negation 9 -A -A

* multiplication 8 A X B or a.b

/ division 8 NB A+B ort

+ addition 6 A+B A+B

- subtraction 6 A-B A-B

Note that negation operates on one operand - a unary operation (makes a
variable negative; for example, minus A) and that the subtraction operator uses
two operands - A minus B, a binary operation.

12: Priority

• All arithmetic, conditional and logical operations are assigned . a priority
number from 10 to 1. High priority is 10, low priority is 1.

• The priority of an operation determines the order in which it is evaluated in a
complex statement (in which more than one operation is to be performed).
High priority operations are performed earlier.

• Brackets (parentheses) are used in BASIC algebraic expressions. Brackets
clarify which expressions c0nstitute separate values to be operated on.
Expressions inside brackets are evaluated before the quantity is used in
further computation. With multiple (nested) brackets the evaluation proceeds
from the innermost bracketed expression to the outermost.

• For operations of equal priority in the same statement, evaluation is from left
to right. / ,.

Brackets can often be omitted when the sequence of evaluation is understood,
but there is never any harm in using them to ensure correct evaluation, or just
for clarity. Expressions may be tested by using PRINT as a direct command, for
example

PRINT 3*417t2

or by including them together with test values for variables in short programs
which can be edited and re-run:

10 A=1 :B=2:C=3
20 PRINT (-B+(Bt2-4*9+C)tO. 5) /2*A

75

ExampleI'): study th~ follmying, or better still check them on the Commo,dote
usirig test values. " " .'. '.. .. ' .' .' " '.

• Evaluation of A + B-C
In BASIC A + B - C or A+B-C operators have equal priority:
a) left to right: A + B
b) left to right: (A + B) -C

• Evaluation of ¥, (a x b) -+- c . .
In BASIC A * B/C or A * B/C, * has same priority as I
a) left to right: A*B
b) left to right: (A*B)/C

• Evaluation of (b2-6c/ + 5
In BASIC (B1' 2 - 6*C)1' 2 + 5
a) Inside bracket: exponentiation B1' 2
b) Inside bracket: multiplication 6*C
c) Inside bracket: subtraction (B1'2)--(6*C) . ,
d) Exponentiation «B1' 2)-(6*C)1' 2
e) Addition «(B1' 2)-(6*C)1' 2)+5

• Evaluation of -70+2x42X3--3x7
In BASIC -70 + 2 * 41' 2 * 3 -3 * 7
a) Priority 10: 41' 2
b) Priority 9: -70 (negation)
c) Priority 8, left to right: 2 * 16 * 3; 3 * 7
d) Priority 6, left to right: -70 +96 -21
Result: 5

EXERCISES

, ..

, '

• Write the orderin which the following BASIC expression is evaluated:
·.c.A + «B1' 3/C) - (A l' 2ID»*(E + F)/G

• Write down the BASIC expression for:
a) (u2 + 2asr
b) ut + 112 at2

c) -b + (b2 _ 4ac)1/2
2a

.

d) (Xa) 116

. , ..

. .

Work out the order in which each of the expressions is evaluated. Test your
results on the computer by writing short programs and inchld

2
e test values for,

the variables. In (c) testwhathappens when a=O and when b <4ac.

, .

.

13: Number
For calculations on the CoIllmodore 6{ a 'number' is a positive ' m. negative
decimal number whose magnitude is between an approximate minimum of

± j ' x 10-39 • •

and an approximate maximum of
± 2 x 1038

Zero is included in this range. The smallest number the computer cart handle is
, 2.9387359 X 10"-39 ' ,

The largest the computer can handle is
1.70141.18 X 1038

. ' .

The computer stores and calculates numbers internally to an accuracy of nine
or ten digits, but prints out the results of calculations to eight significant figures
only, rounding where necessary.

76

14: The E notation
The E or exponent or scientific notation is the notation computers use for input
and output of numbers having a large number of decimal digits. E should be
taken to read: 'times ten to the power of'. For example, 1. 73 ES is:

1.73 times 10 to the power of 5 = .73*101' 5 = 173000
Similarly, 3.8 E-7 is:

3.8 times 10 to the power of -7 = 3.8*101' -7 = .00000038
The computer will accept any number keyed in in this form, and will print out
numbers in this notation when their values are outside a certain range. For large
positive and negative numbers the E notation is automatically used by the
computer for numbers> = 109

. Numbers up to this figure are first rounded to 8
significant figures; trailing zeros are added until 1013 is reached.

Key in and run this program:

10 A = 9.9999993E12
20 PRINT A
30 A = A + 1E 5
40 GOTO 20

EXERCISES
• Key in and run the following simple program, which illustrates how numbers

are printed, the E notation, and the largest number which may be obtained:

10 A = 1
20A=A*10
30 PRINT A
40 GOTO 20

• Change line 10 of the program to each of the following and run the program
each time.

10 A = 1.00000000
10 A = 1.1111111
10A=1.7
10 A = 1. 7014118
10A=1.71

What conclusion do you draw?

• To show that negative numbers behave in the same way, change line 10 to
each of the following and run the program.

10A=-1
10A=-1.7
10 A = -1.7014118
10A=-1.71 ;'

/

/

• To show how small numbers are handled by the computer, a similar program
divides a number (A) by increasing powers of 10. Key this in and run it:

10 A = 1
20A=A/10
30 PRINT A
40 GOTO 20

77

• Change line 10 to each of the following and re-run the program:

10 A = 3
10A=2.9

Notice that 2.9387359E -39 is the smallest number before zero. Write this
number out in full. Can you think of any application for very large and very
small numbers?

IS: Rounding

Rounding up
The computer will print out computed values to an accuracy of 9 significant
figures, ignoring leading zeros. Digits after the 9th significant one will be
rounded up. For example if we key in

PRINT 0.1111111111 + 0.8888888888

the answer on the screen is 1. Try this:
PRINT 0.001

Adding two zeros after the decimal point forces the use of the E notation.

Rounding down
The INT function returns the nearest integer of the expression X, which is (= X;
that is, it rounds down. For example:

INT (3.9) = 3
INT (-2.8) = -3
INT (4-8.7 + 0.8) = -4

Try printing these functions. Notice that for negative numbers -6 is less than -5, ...
and so on. To round to the nearest integer, add 0.5 to the number first:

INT (3.9 + 0.5) = 4
INT (2.4 + 0.5) = 2
INT (-1.7 + 0.5) =-2
INT (~2.3 + 0.5) =-2

Notice this assumes that 0.5 rounds to 1.

INT (1.5 + 0.5)
INT (-1.5 + 0.5)

= 2
= -1

Entering the zero before the decimal point is optional.

16: How numbers are handled
All computers perform their arithmetic and processing using the binary number
system.

In the binary (base two) system only two digits are used, 1 and O. A group of 8
binary digits (bits) is called a byte, such as 10101101. This binary number means

lX27+ Ox26+ lX25+ Ox24+ lX23+ lx22+ oxz1+ lx2
and equals 128+0+32+0+8+4+0+ 1=173 in decimal.

Users and programmers, however, communicate with the computer in ·
decimal (base ten) notation. This is rather more convenient than using binary,
but it means that conversion from decimal to binary and vice versa is necessary,
and occurs inside the machine.

78

One byte is equivalent to a single character of the computer's character set. A
byte represents a number between 0 and 255 (decimal). (This is why the
character codes are in this range; a group of 8 zeros and ones can have 256
different states.) A digit or number is represented by one or several bytes,
according to its context in the computer.

A character input to the computer or output to the screen or printer is held in
one byte. Program line numbers, which are whole numbers 1 to 32999, are held
in two bytes.

Numbers are held in a form which occupies five bytes. The point to be noted
here is that conversion from decimal to binary and back is involved in the
operation of the computer, and this conversion is not always exact. This must be
allowed for in certain circumstances, especially where the computer is asked to
check whether two numbers are equal. A difference in the binary form of the
number, however small, will cause the computer to decide they are not equal. In
testing two numbers for equality, therefore, if non-integer values have been
utilised, and the value of one number atrivedat by calculation, the equivalence
check should be replaced by assessing the difference. A statement such as:

IF A B S (A - B)< 1E -4 THE N •••

which checks that the difference between the numbers is less than • 000 1, can
be used instead of IF A = B THEN ... , if either A or B has been calcqlated.

The 64 stores real numbers (decimal) in memory in the form
+M*2e

where M is called the mantissa and 0.5<M<1(It can never be one) and e is the
exponent, where 1<=e<=127. .

When you key in a number in a program, the 64 converts it into the form
above, and stores it as a sequence of binary numbers which take up 5 bytes. For
example, if you enter 4.2:

4.2 = 4.2 X lOe = 4.2 X 2e = 2.1 X21
= 1.05 X22

which is in the form +M*i so M = .525 e = 3
The 64 then does a decimal-to-binary conversion and stores e in the first byte

and M in the next four. It is evident from this representation that the maximum
number which can be stored is

0.99999999 * 2127 = 1.7014118 * 1038

and the smallest is

0.5 * Z-127 = 2.9387359 * 10-38

The forms in which numbers are held in the computer are considered in more
detail in Section U: The computer memory.

17: Functions
A function is defined as Y = F (X), or

'Y equals some function of X,F(X)'

,
I

/'

!

.

A function is the mathematical relationship between two variables X and Y
such that for each value of X there is a unique value of Y. In other words, it is a
mathematical operation which gives a number.

Y takes the function value and is the dependent variable. X.is the argument and is
called the independent variable.

F is the function name - square root, sine, natural logarithm, etc. In a program
statement we write, for example:

100Y=SQR(X)

79

,

=: i

The argument X can be a variable, a number or an expression. For example:

100 Y=SQR(9)

100 Y=SQRCB1'2 -4*A*O

The function - a mathematical operation that gives a number - is treated in BASIC

as a numeric expression, with priority 11.
The standard mathematical and trigonometric functions are important time

savers for programmers. They are the same as the function keys on scientific
calculators. (Other functions control or monitor the handling of data by BASIC,

rather than performing mathematics.) If the mathematical functions were not
available in BASIC, a programmer would need to write separate programs to
undertake their tasks every time they needed to be used!

18: List of functions used in Commodore BASIC
In this list of functions X is the argument: a variable, a number or an expression.
The first three sets of functions will be discussed in more detail later in this
section. Logic functions will be investigated in Section J, character and string ...
functions in Section K, printing functions in Section M and special functions in .•.•
Section U.

Standard mathematical functions
ABS(X)
EXP(X)

INT(X)

LOG (X)

SQR(X)

SGN(X)

gives the absolute value of X
gives eX, value of e raised to the power of X

gives the largest integer <= X (rounds down)

gives natural logarithm (value of logeX) ,

gives the value of \Ix or X1I2 (X positive)
gives sign of X (whether X is negative, positive or zero.

Trigonometric functions
SIN (X) gives the value of sine X (X in radians)

COS(X) gives the value of cosine X (X in radians)
TAN(X) gives the value of tangent X (X in radians)

ATN(X) gives the angle in radians whose tangent is X, arctangent X

Special mathematical functions
RND(A) random number generating function; gives the next pseudo-random .•.

number N from a fixed series of random numbers (O<=N<1). ·
Variable A starts the series. If A is greater than 0, a new random
number is returned. If A = 1 then the same number is returned, ••.
To start to generate random numbers from the same place, use ·
RND (-1).

FN calls up a previously defined user function specified by a variable.
Variables must be enclosed in brackets. For example: FNA(X),
FNB(Y)

Logical functions
AND logical operation between two operands. The left operand is .

number. The right is a number or a condition (result of another ,.
logical operation). The result is a Boolean data type and is TRUE or ..
FALSE. This is output by the Commodore as the left operand or-1

80

indicating true, or a 0 indicating false. ·· Operations are performed in
binary in the Commodore and AND has a priority of 3.

OR a logical operation between 2 numbers. OR has priority two.
NOT a logical function with a single numeric operand ..

NOT A =-1 if A = 0- false
NOT A = 0 if A =-1- true

The numeric operands are considered as FALSE if 0 and TRUE if any
other number.

Character and string functions
CHR$(X) 0(=X(=255 returns the single character whose code is X.
ASC(A$) when applied to the string A$, this function returns the code of the

LEN(A$)
VAL(A$)

first character in the string or 0 if the string is empty (null string).
returns the number of characters in the string.
turns a string in number representation into the number for calcula
tion: A $ =" 1 2 • 4", V A L(A $) = 1 2 • 4

STR$(N) turns the number in N into the string form.

Printing functions
POS(A) returns in A the next position on the screen where printing will

SPC(A)

TAB (X)

occur. For example:
10 PRINT 1234;
20B=POS(A)
30 PRINT B

Try this example and check it. B should return .6. This is because
1234 requires five print positions (including a trailing space) and
thus the next printing position is 6.
where A is a variable; tells the computer how many spaces to print.
For example:

10 PRINT 1234;SPC(4);1234

will print
1234 1234

places the print position in column X. If X>32 then column number is
the remainder when X is divided by 32. If it involves back spacing,
goes on to next line. Rounds X to nearest integer .

•...•.• Special functions
... FRE(N) returns the number of free bytes available; regardless of what value

N has .
...•.• PEEK(X) 0(=X(=65535 returns the value of the byte at address of X in RAM

or ROM memory .
......•.. SYS(X) as in USR, but no parameter is passed between BAsIcard machine

code routine. X is the starting address of the routine. /
USR(A) transfers control from BASIC to machine language routine whose

address is given by the contents of memory locations 784 arid 785
(user function jump). The parameter A is passed to the machine
language program and returns a value back to BASIC .

•• TI & TI$ return the contents of the timer which is updated every 1/60 of a
second.

81

•

19: The standard mathematical functions
ABS(X) returns the absolute or value or modulus of X, which may be a ..• ··

number, a variable or an expression. It returns the positive value of X
For example:

10 PRINT ABS(-3.7> gives 3.7
1 0 P R I NT A B S (4) gives 4

EXERCISE
Key in and run this program:

10 INPUT A,B
20 PRINT TAB(3);A;TAB(10);B
30 PRINT TAB(3);ABS(A-B)
40 GO TO 10

Input positive and negative values for A and B.

Now change line 30 to:
30 PRINT TAB(3);ABS(A*B)

and input some more values. Try replacing the * with l' or using ABS(SQR(A»
EXP(X) gives the value of the constant e raised to the power of the value of X .•

where X is a number or an expression. e = 2.7183 .
For example:

10 PRINT EXP(3.4) or
10 PRINT 2.71831'3.4

The function EXP is the inverse of LOG.

EXERCISES
• Using log tables, write a program to check the values of eX given in the log ••....

tables.

• Write a program which will calci.date Q from the expression:

Q = QO.e-tirc (In BASIC G = GO * E X P (- T I R * C»
If you know anything about electricity, you might recognise this ex-

• preSSIOn.

• Key in this program. It calculates a value for e from the formula:
e = (1 + lIN)1'N
where N is very large.

10 REM**VALUE OF E**
20 1=1
30 N=10'H
40 E= (1+1/N) IN
50 PRINT TAB(1)=N=TAB(12)=E . . .
60 I=I+1
70 IF 1(5 THEN 30

82

--------------- -

....... .,.\/., gives the value of the natural logarithm:
LOG(X) = Loge(x)

ate that 10glO(X) (common logarithm) = LOG(x)/LOG(10)
The LOG function is the inverse of EXP, so if EXP(X) = Y then (X) = LOG(Y).

is the natural logarithm of Y. The antilog is EXP(LOG(Y». The normal
oPI~r can be used if appropriate, as with common logs. For example

+ LOG(Y» gives the product of X and Y.

10 V=l
20 PRINT TAB(3);V;
TAB(lO);EXP(LOG (V»
30 Y=Y+l
40 GOTO 20

SQR(X) returns the square root of (X), (X) or XO.5• For example:
P R I N T S Q R (9) gives 3
PRINT SQR(23) gives 4.7958315
PRINT SQR (19 + 17> gives 6

SGN(X) returns + 1 if (X) is positive, 0 if (X) is zero, -1 if (X) is negative.
SGN is short for Sign or Signum (Signum doesn't sound like Sine). For

example:
P R I N T S G N (2 3) gives 1
P R I N T S G N (- 5) gives -1
P R I N T S G N (3 - 3) gives 0
P R I N T S G N (1) gives 1
P R I NT S G N (25 - (2 * 2 3)) gives -1
PI appears on the keyboard and screen as n. It is a function which has no

argument. It returns the value of n as 3.14159265.
Try these:
PRINT 3-n
PRINT 45*nl 180

110: Trigonometric functions.
SIN, COS, TAN
SIN(X), COS(X), TAN(X) give the value of the sine, cosine, and tangent of the
number or expression X, which is an angular measure. X must be ~r\. radians.

Angles are normally expressed in degrees: .
,

1 degree = nl180 RADIANS (1° = nl180radians)
To convert degrees to radians multiply by nl180. For example, if Y is our

measure of angle in degrees then: .

SIN(Y*n/180)
gives the correct value of Sine Y.

83

EXERCISES
• Generate a table of values for SIN (X), COS (X) and TAN (X) for every ,>n

degrees in the range 0 - 360 degrees.

• Write a program to verify the trigonometric formula:

SIN2(X) + COS2(X)= 1
1 + TAN2(X) = SEC2(X)

• Write a program to calculate the area of a triangle from a knowledge of
length of three sides and an angle.

ATN(X) gives the arc tangent of (X). The returned value is the angle in
radians for which the tangent would be given by the value of (X). To """
get the angle in degrees multiply by 180/n; that is, Y=180/n*A ""
gives arc TAN(X) in degrees.

111: Random numbers
Random number generators are useful for games and simulation in "
The numbers generated are part of a very long sequence of numbers (there are
65536 of them) and are in fact only pseudo-random, but good enough for most
purposes.

RND gives a random number greater or equal to zero but less than one.
10 A = RND(B)

where B is any positive or negative number. If a negative number is used,
value returned will always be the same for the same negative number.

10 A=-l
PRINT
A=A-l

RND(A)

40 GOTO 20

If you key in P R I NT R N D (1) you get a number like 0.112519041 or 0.437156825-
for R N D (1) always between 0 and 1 - which is not much use in that form. Y
need to be able to generate random numbers within a useful range according to a """
specific purpose. ""

To obtain a random number 0 - 9
To obtain a random number 0 - 9, multiply the function by 10 and take the
integer value.

PRINT INT(RND(1)*10)

RND(I)*10 gives random numbers between 0.000000000 and 9.999999999. INT """
will round these values down to integers 0 to 9.

Numbers 1-10
, Although 0 to 9 gives ten values, the range 1 to 10 would be more useful. This is
obtained by adding one to the RND function:

PRINT INT(RND(1)*10+1)

84

~~~------- " - -



Suppose you wanted random numbers generated for simulating a dice roll. 
You would use: 

PRINT INT(RND(1)*6+1) 

Random numbers for a card game 
There are 4 suits, with 13 cards per suit = 52 cards. So if you used: 

PRINT INT(RND(1)*52+1) 

you could select cards at random. Think about how you could identify the suits 
and not deal the same card twice. 

A final test simulates the tossing of a coin. There are two choices, heads or 
tails. Taking the integer value of RND(1)*2 will generate 0 or 1. 

Run the program, which keeps a continuous count of 1000 throws. 
. . 

10 PR I NT II :1;:!l§rU~.l~ljili'I~·HTHROWS;:~iJ~·I~·~~Ii·flD-fEADS~irri!l~·lil . -' . .. 

1R1~·n~·~~·H~IiK~·~~·II.i'lHinl~·H[iH!i1Il~lin A I L S II 
• 

20 H=T=O 
30 FOR N= 1 TO 1000 
40 S=INT(RND(1)*2) 
50 IF S=1 THEN H=H+l 
60 IF S=O THEN T=T+l 
70 PR I NT II ;ili:I" ; N; II ;::~:r.!l" ; H; II ~~:~:lIif~~lli'HIi'lIji'I'I'Ij'~~'I~'II~'HIi'IIJi'i'H" ; 
T 
80 FOR M=1 TO 200:NEXT M 
90 NEXT N 

112: User-defined functions 
Although Commodore BASIC is rich in functions, there is always a requirement to 
define your own. This facility saves programming time and improves program 
structure and compactness. Very complex functions can be defined and called 
with a single letter name. The function is established using the DEFine 
instruction. FN is printed by the Commodore automatically. 

DEF FNvariable(argument) = expression 
The naming variable is any legal variable. The argument is called a dummy 

variable. The expression can contain variables other than those specified in the 
argument. The function is called using 

FNvariable(argument) 
To illustrate, run this program. 

5 LET Y=2 
10 DEF FN A(X)=X+Y 
20 PRINT FN A(I) / 

! 

Here the function is called A. It is a function of variable X and is the sum of X and 
Y. Various values can be assigned to X as in 20, or assign it previously. 

Use DEF FN to define complex functions, as seen by obtaining values of 
SINH(X) in this program. 

85 



10 DEF FN V(X)=(EXP(fr*XI80)-EXP(n*(X-X-X 
)/180»/2 
20 FOR X=-360 TO 360 STEP 45 
30 PRINT X,FN VeX) 
40 NEXT X 

Check the table generated with your book of tables. 

TI, TI$ The timer function functions TI and TI$ relate to the real time clock 
return the contents of the timer. This value is updated at every 1160 of a 
To reset the timer, use: 

T 1$="000000" 

The first two digits represent the hour, the next two minutes and the third hOT.~· 
digits represent seconds. For example: . 

TI$="013000" 

will set the timer to 1 hour and 30 minutes. 
Examples: 

1 0 TI$="OOOOOO" 
20 PRINT TI$ 
30 GOTO 20 

10 TI$="OOOOOO" 
20 PRINT TI/60 
30 GOTO 20 

86 



Section J: Logical Operations 

... Jl: Logic values and numeric values 
When using the logical capability of Commodore BASIC, you must distinguish 
between logical values and the numeric values produced by logical evaluation. 
Logical value is the value of an expression using the criteria: 

... • any non-zero value of the expression = TRUE 

.. • a zero value of the expression = FALSE 

.. When an expression is logically evaluated, it is assigned one of two numeric 
values: true = -1, false = O. 

· J2: Boolean operators: the AND operator 
., The AND operator forms a logical conjunction between two expressions 

' _., involving conditional operators: 

• If both expressions are TRUE the conjunction is TRUE 

• If one or both are FALSE the c'onjunction is FALSE 

• The numeric value of TRUE is -1 

• The numeric value of FALSE is 0 

• All non-zero values are TRUE 

For example: 

100 IF (A = 10) AND (B<>3) THEN 60 
200 PRINT (A AND B) 

In line 100, if the relation A = 10 is TRUE and the relation B<>3 is TRUE then 
control will pass to line 60. If either or both of the relations is FALSE then control 
passes to the next line. In line 200 the computer will not print A + B; it will print 
the value A and BANDed bitwise. So if 

A=15andB=6 

The relation (A AND B) will print 6. Since A is 00001111 in binary and B is 
00000110, A AND B will give 

00001111 = A 
00000110 = B 
00000110 = 6 

Truth table for AND 

A B 
TRUE TRUE 
TRUE FALSE 
FALSE TRUE 
FALSE FALSE 

A and B are conditional expressions. 

AANDB 
TRUE 
FALSE . 
FALSE 
FALSE 

87 

• • , 

/ 



J3: The OR operator 
The Boolean operator OR forms the logical disjunction of two expressions 
involving conditional operations: 

• If either or both of the expressions is TRUE the OR disjunction is TRUE 

• If both expressions are FALSE the OR disjunction is FALSE 

For example: 

100 IF (A>1) OR (B = 0) THEN STOP 
200 PRINT (C OR D) 

In line 100 if either of the expressions (A>l) and (B - 0) are TRUE the 
will stop. If both are FALSE control passes to the next line. In line 200 if L-

and D=l, C OR D will give 11 as follows: ' 
, 00001010 (10 in binary) 
00000001 (1 in binary) 

00001011 = 11 

, ' 

Truth table for OR 

A B AORB 

TRUE TRUE TRUE 
TRUE FALSE, TRUE 
FALSE TRUE TRUE 
FALSE FALSE FALSE 

A and B are conditional expressions. 

J4: The NOT operator , , 

. ' 

NOT logically evaluates the complement (reverse) of a given expression. For ' 
example: ' 

30 IF NOT (A = B) THEN ,STOP 
100 PRINT NOT A 

In line 3D, if (A=B) is FALSE, then NOT (A=B) = NOT FALSE = TRUE, and the ' 
program stops. In line 100, if A=O = FALSE, the NOT A = TRUE = -1. So -1 is .,. 
printed. If A=29 then NOT A= -30 is printed. ' 

29 = 00011101 in binary 
NOT 29 = 11100010 + 

00000001 

11100011 = -30 ' 

Truth table for NOT 

A NOTA 
TRUE FALSE 
FALSE TRUE 

A is a conditional expression. 

88 

, , 

, 

- '.. 



J5: Conditional operators 
There are two ways to use conditional operators in logical evaluations. 

To check the numeric value of an expression 

100 IF A = 3 THEN 60 
200 IF B<>C THEN STOP 

The numeric value produced by the logical operation is not important. The 
computer is concerned only with the truth or falsity of the condition indicated in 
the IF ... THEN statement, which determines whether the instruction is executed. 
When the specified condition is present (TRUE), the statement after THEN will 
be carried out. 

Checking an expression 

In this case the numeric values are required, where TRUE = -1 and FALSE = O. 

200 PRINT A < B 
300 PRINT A = 3 

The PRINT statement used as above will give the numeric values produced by 
logical evaluation. Line 200 is evaluated as a logical expression, so that if it is 
TRUE that A is less than B, -1 will be printed, and if A is equal to or bigger than 
B, the expression is false and 0 will be printed. 

Line 300 is interpreted by the BASIC as: 'Print -1 if A=3 and 0 if A does not 
equal 3'. The numeric value of the logical evaluation is distinct from the logical 
value of the expression. 

J6: Logic operations on conditional expressions 
IF (condition) AND (condition) THEN ... 

or 
IF NOT (condition) THEN ... 

The effect of the logical operators AND, OR and NOT on conditions which are 
TRUE or FALSE gives a result which is TRUE or FALSE and on which the 
IF ... THEN instruction acts accordingly. 

For example: 

100 IF (A>10) AND (B = 0) THEN 20 
200 IF (A = 0) OR (B =0) THEN STOP 
300 IF NOT (A = B) THEN PRINT "A<>B" 

These all mean: IF (combined result is TRUE) THEN (do it); IF (combined result 
is FALSE) go to the next line of the program. Using logical operations is a way of 
combining conditional operators in a statement. If (condition1) AND (condition 
2) AND (condition 3) evaluates as TRUE or FALSE THEN ... act accorpingly. For 
example (note brackets): j 

60 IF ((A>B) AND (C>A) AND (D>C» THEN STOP 
AND 

IF (condition 1) 
TRUE 
TRUE 
FALSE 
FALSE 

AND (condition 2) 
TRUE 
FALSE 
TRUE 
FALSE 

89 

THEN (result) 
TRUE 
FALSE 
FALSE 
FALSE 



For example: 
Condition 1 My age is > 12 years 
Condition 2 My age is < 20 years 
Result I am a teenager. . .. , 

IF (my age> 12 years) AND (my age < 20 years) THEN (I am a teenager). Runtfie i 

program: 

10 INPUT" INPUT AGE";A 
20 IF A}12 AND A(20 THEN 50 
30 PRINT"YOU ARE A TEENAGER" 
40 STOP 
50 PR I NT "YOU ARE NOT A TEENAGER" . · 

OR 
IF (condition 1) 
TRUE 
TRUE 
FALSE 
FALSE 
For example: 

OR (condition 2) 
TRUE 
FALSE 
TRUE 
FALSE 

Condition 1 . I earn wages . 

THEN (result) 
TRUE 
TRUE 
TRUE 
FALSE 

Condition 2 I get pocket money 
Result I have money 

IF (I earn wages) OR (I get pocket money) THEN (I have money). Here is a . 
program. 

,; 

10 PRINT"INPUT AMOUNT OF WAGES AND POCKE 
T ·MONEY YOU GET" 
20 INPUT W,P 
30 IF W>O OR P}O THEN 60 
40 
50 
60 

NOT 

PRINT "YOU 
STOP 
PRINT"YOU 

IF (NOT (condition» 
TRUE 
FALSE 
For example: 

HAVE NO MONEY" 

HAVE"·W+P;"POUNDS'" ,. . 

THEN (result) 
FALSE 
TRUE 

Condition I have money 
Result I do not have money 

, , 

IF (NOT (I have money» THEN (I don't have money). Here's a program. 

5 PRINT"ARE YOU A LIAR" , . ' , 

10 INPUT"AMOUNT OF MONEY";M 
20 IF NOT M}O THEN 50 

.. 

30 PRINT"APPARENTLY YOU DO NOT HAVE MONE .. 
Y" 
40 STOP 
50 PRINT"YOU DO HAVE MONEY REALLY 

90 

":)" • • 



J7: Multiple logic on conditions ' 
Multiple logical operations on conditions are often useful. They take the form: 

, 

IF «C1) AND (C2» AND «C3) AND (C4»THEN ••• 

C1 :=: Condition 1 
C2 :=: Condition 2 
C3 :=: Condition 3 
C4 ~ Condition 4 . , . - - . 

IF «C1 AND C2) OR (C3 AND C4» THEN ••• 

The above statement means that IF conditions 1 AND 2 are obeyed, OR 
conditions 3 AND 4 are obeyed, then the combined expression is TRUE, and the 
instructions will be executed; that is, either pair of conditions being both TRUE 
will give the result. . . 

IF «C1 AND C2) AND (C3 AND C4» THEN 

In this statement all four conditions must be true to give the result, 
What do the following imply? 
IF «C1 OR C2) AND (C3 OR C4»THEN ••• . 
IF «C1 OR C2) OR (C3 OR C4» THEN ••• 

. . 

Notice the importance of brackets in the statements. Their placing gives a clear 
logical meaning to an expression. Any bracketed expression will be evaluated 
first. The result (TRUE or FALSE) obtained from the bracketed expression will be 
used in evaluating the whole expression. 

A practical example of multiple logical operations on conditions would be 
obtaining a loan. The relevant conditions could be: 

C1 :=:. Husband is over 21 years old 
C2 :=: Husband's salary is over 5,000 per year 
C3 "- Wife is over 21 years old 
C4 :=:Wife's salary is over 5,000 per year 

A stateinent can be written which indicates whether the bank-will grant the 
family a loan to buy a car: 

IF «C1 AND C2) OR (C3 AND C4» THEN loan granted. 

EXERCISES 
Key in and run the program which illustrates this: 

10 INPUT"AGE OF HUSBAND";HA:INPUT"AGE OF 
. . 

WIFE"·HW:INPUT"HUSBANDS SALARY"·SH , ' - , 
15 INPUT"WIFE SALARY";SW 
20 IF (HA)21 AND SH)5000) OR (WA>21 AND 
S~)5000) THEN 40 
30 PRINT"SORRY NOT ELIGIBLE FOR LOAN":ST 

I 

OF' 
40 PRINT"LOAN AVAILABLE" 

• Write a program which inputs four numbers and outputs a message if any of 
them are zero. . . 

91 



- ------------

J8: Logical operations on numbers 
... 

The logical operations AND, OR, NOT, when applied to numbers, returtl a i 
number as the result. The rules for the operations on two numbers X and Yare · ' ... 
given in the following truth tables. Non-zero values may be either positive or 
negative. Take for example: 

7 AND 3 
The Commodore converts both numbers to binary, then performs the bin. 
logical operator on the numbers, and then converts to decimal and returns the 
result to BASIC. 

Thus 7 AND3: 

7 is 00000111 in binary 
3 is 00000011 in binary 

Now AND each byte: 
10 gives 0 
11 gives 1 
11 gives 1 

Thus the result is 3. Now consider 7 0 R 3. 

7 = 00000111 
3 = 00000011 
1 V 0 gives 1 
1 V 1 gives 1 
1 V 1 gives 1 

Thus the result is 7. 

The NOT operator is slightly different. It returns a negative number 1 
than the original number. Consider: 

or 

B=2 
NOTB =-3 
B=4 
NOTB =-5 

B =-2 
NOTB = 1 
B =-5 
NOT B = 4 

X 
. X 

X 

AND 
. Y 

. 
1 
0 

XANDY 
X 

. 
0 

that is, X and Y returns X if Y is 1; 0 if Y is zero . . 

OR 
X Y XORY 
X 1 1 
X 0 X · . 

That is, X OR Y returns 1 if Y is -1; X if Y is zero. 

NOT 
Y NOTY 
-1 0 
0 -1 

That is, NOT Y returns 0 if Y is -1; ~1 if Y is zero. 

92 

'. 

, 



Examples: 

7 AND'3 - 3 -
7 AND 0 - 0 -
5 OR 2 - 7 -
5 OR 0 - 5 -
NOT 8 - -9 -
NOT 0 - -1 -

EXERCISES 
• Key in the examples given above as direct commands, and verify the rules of 

logical operations on numbers . 

• Key in and run the following programs: 

10 REM**LOGIC 1** 
20 INPUT A,B 
"0 oj 

40 
50 
60 
70 

PRINT "A=";A;"B=";B 
PRINT"A AND B =";A AND B 
PRINT"A OR B =";A OR B 
PRINT"NOT B =";NOT B 
GO TO 10 

5 REM**LOGIC 2** 
10 REM**THIS PROGRAM TESTS THE LOGICAL 0 
R OPERATOR ACTING ON A NUMBER AND A 
15 REM CONDITION TOGETHER ** 

, . . 

20 PRINT"Y=10*<7 OR A=3) II 

30 INPUT"ENTER A VALUE FORA PLEASE ";A 
40 Y=10*<7 OR A=3) , 
50 PRINT"IF A=";A;"THEN Y=";Y 
60 PRINT 
70 
80 

PRINT"WHAT,ARE YOUR CONCLUSIONS ??" 
GO TO 30 

, , .-. , 
, . 

5 REM**LOGIC 3** . 
10 INPUT A 
20 PRINT 77+(10 AND 
30 GOTO 10 

/ 
I 

i 

A-<) -oj 

93 

-



J9: Priority 
OPERATOR 

=,<>,<,<=,>,>= 
NOT 
AND 
OR 

PRIORITY 

5 
4 
3 
2 

Priority rules are strictly obeyed. If brackets are not used properly when 
operators act on conditions the desired result will not be achieved. For amJ: 

NOT (FALSE AND FALSE) gives NOT FALSE= TRUE 

but 

NOT F A L SEA N 0 F A L S E gives T RUE AND F A L S E = F A L S E 

Exactly the opposite. 

EXERCISES 
• Key and run this program, which checks priority. 

10 A=l 
20 B=l 
30 PRINT NOT(A=O AND B=O) 
40 PRINT NOT A=O AND B=O 

• What result would the following give? 
PRINT 5 AND 3 OR 0 OR NOT 7 AND 4 

, , 

, 

• Key in and run program LOG~C 4, which tests priorities. 
, , 

5 REM**LO~IC4** ., 

" 

10 REM** TH l S . PROGRAM TESTS MULT I Pl~E LOG " 
Ie OPERATORS ** 

, 

3 ORO OR NOT 7 AND 4 
, , , , 

20 A=5A~JD 
30 PRINT"5 AND 3 OR 0 OR NOT 7 AND ' 4="; 

, , 

40 PRINT:PRINT . . ',, ' 

50 B=( (4 AND 2) AND NOT (0 AND 3) ) . OR ' ( ( ' ,,' 
OR 0) AND(40R 0» 

60 PRINT"«4AND 2) AND NOT(O AND 3»OR( 
(3 OR 0) AND(4 OR (1»=";B 

J10: Logical opetations with strings 
Logical operations using'AND, OR and NOT may be performed on 
string expressions. For example: 

1 0 I F (A $ = B $) AND, (C $ = 0 $) 0 R ,CD $= E $) THE N • • • • • 
50 PRINT NOT A$ = B$. 

Two strings cannot be djrectly operated on by any logical operator 
string cannot have logical values. For example, A$ AND B$, A$ OR B$, 
are meaningless expressions. 

94 



EXERCISES 
• Key in 

PRINT NOT "A" = "B" 
and 

P R I NT" A" = "B" AND "B" = II C" 0 R "G II =" E " 
to test the rules of logical string operation. Try other combinations. 

• Write a program which requests a name and then checks to see if it corresponds to several strings stored in the program, printing out a message to say if the word was found. 
• Write a program to test the truth table for AND, OR and NOT. 

Jll: Applications of logical operators ' 
• Simple conditional tests 
• Multiple conditional tests 
• Multibranch GOTO and GOSUB . 
• Finding the maximum and minimum values 

. 
• Checking characters input 
• Checking input values . 
• Testing for zero 
• Default values 

Simple conditional tests 
,' •. IF (logical operation) THEN (statement). If the logical operation is TRUE the •• statement is executed. AND, OR and NOT operators are used . . 

'. Multiple conditional tests 
< IF «condition 1)) AND (condition 2) OR (condition 3) THEN (statement). If the ' ..... multiple logical operations are TRUE the statement is executed. 

..•.. Finding maximum and minimum values 
? The AND operator can be used to find the maxima and minima of two numbers ,. X and Y. . 

.I 

f 

10 INPUT X,Y 
20 PRINT"MAX IS"; (X AND X>=Y)+(Y AND Y>X 
) 

30 
) 

PRINT"MIN IS"~ (X AND X<=Y}+(Y AND Y<X , . 

95 

" , 

i 

I 

,I 

:i 
! 

:i , 
;, 

I: 
• 

-

, 

j- -

i. 
, 

II ' 

I
,' i, , r -

I 
I ' 

• 
I 

I , I 

i 
I 

I 

\ 



or we could program this as 

10 INPUT X,Y 
20 IF X)=Y THEN 50 
30 PRINTIMAX=";y;IJMIN=";X 
40 STOP 
50 PRINT"MAX="=X="MIN=";Y . . . 

Which do you think is the best method? 
Finding the largest number in a list is another application. If you have a list ...•. 

numbers A(l) to A(N), you can compare the first two, A(l) and A(2), and put the ... 
largest of these into a variable L by the statement: 

LET L = (A(1) AND A(1» = A(2) +A(2) AND A(2»A(1» 

You then compare this value of L with the next number A(3) and make L take 
the larger value of the two, and so on through the list. 

LET L = (L AND L> = A(3» + (A(3) AND A(3»L) 

The program asks you to input how many numbers will be in a list A. Y 
then input the numbers A(I). These are printed on the screen together with . 
largest value. Two loops are used, the first to input the numbers and the second · 
to perform the comparisons. Key in and run the program. 

10 REM**LARGEST** 
20 INPUT"HOW MANY 
30 DIM A(N) 
40 FOR 1=1 TO N 
50 INPUT A (l) 
60 NEXT 1 

. . 

NUMBERS";N 

70 L=(A(l) AND A(1»=A(2»+(A(2) AND A(2 
) )A (1) ) 

80 FOR 1=3 TO N 
90 L=(L AND L)=A(I»+(A(I) AND A(I»L) 
100 NEXT 1 
110 PRINT"LARGEST NUMBER IS";L 

This is an appropriate place to emphasise the care needed in · n T'r 

logical operations. There are two areas where the most problems arise: the ·· 
setting of conditions, and the grouping of these conditions in a logical 
that will produce the required result. 

96 



10 INPUT A 
20 IF A(O OR A)9 THEN 100 
30 INPUT B 
40 IF 8(10 OR B)99 THEN 200 
50 INPUT C 
60 IF C(100 OR C)999 THEN 300 
70 PR I NT II ~:~:~:lffi'll" ; A; II ;:m~I~'~~'!!~illffl'H~lmj'lfii1l~ll" ; B; II ~~i:r~:lij'Hrri'll~nllii]~-"~i'1I 
~]~1~~·1~·".1.1i11ii·1" ; C 
80 STOP 
100 PRINT"A OUT OF RANGE" 
110 GOTO 10 
200 PRINT"B OUT OF RANGE" 
210 GOTO 30 
300 PRINT"C OUT OF RANGE" 
310 GOTO 50 

97 

.I • 

, , 

-, 

i. 
I, 

i 
I;; 
, ' 
, I " 

~ , 

'j 

I 
; f i 
,'i ' 
Ii 

I I: 
: i 

; 

I 
:- ! 

• 





------------------------------------~. 

Section K:, Strings . 
" . -' - -

., . 

Kl: Strings 
A string is a set of characters enclosed by quotation marks, For example: "THIS 
IS A STRING", or the null string "" (no characters). These are strings: 

. . . 
"ALL OF STRING" 
"JANUARY 1ST 1982" 
"URGHH!" 
"FAB**-+/ !3" 
" . "(String of spaces) 
"1234" 
"" (Null string) 
Two kinds of data which <;omputers halldle are: , 

. - _.'. . . 
numeric - numbers 

, . 

alphanumeric ~ names or text · ., 

. ' - - , . 

The way a computer deals with text is called string handling. Strings deal with 
alphanumeric information. The sequence of alphanumeric characters is handled 
in a string as a single unit of data. 

Characters are defined as literals when placed inside quotes. They are taken 
literally to represent themselves. Strings are therefore literals. Characters are 
identifiers where they are not enclosed in quotes. Thus, for example, A 
represents or identifies a numeric variable and A$ identifies a string variable. 
· DIM A$(N) 

where N is the number of elements in the string A $. 

All characters in your computer's character set can be used in strings. Run this 
program; it illustrates that most of the character set can be included in strings. 

10 FOR A=l TO 255 
11 IF A=5 OR A=13 OR A=17 OR . A=20 OR A=2 
S OR ' A=29 OR A=30 ORA=31 THEN ' 30 .' , 
12 I~ A=141 bR A=144 OR A=145 OR A=14S ' 0 ,., 

. . , . . . 

R A=156 OR A=157 OR A=15S THEN 30 
13. IF A=159 THEN 30 , 
15 IF A=19 ORA=147 THEN 30 
20 PRINT CHR$(A) ,A 
30 NEXT A 

. , . , / 
, 

/ r 

, . 

This program traps certain codes (all the colour codes, and cursor movement 
ones). 

Examples of the sort 0'£ text we may want the computer to handle are: 

• a telephone directory 

• names and addresses 

• a timetable 
• 

• expenses and details 

99 

" , 

! , 
, l , 
; i 

, 

-[ 

II 
>, , 



-

. 
• 

Computers store all this textual information as strings. String manipulation by . 
the computer would, for the telephone directory, need to deal with: \ 

Creating the telephone directory ..•.... ,~ 
Sorting the names and numbers into the correct order . 
Searching the directory for somebody's number 
Revising the directory (updating or adding an entry) 
Printing the directory in whole or in part. 

• 

K2: Quotes 
All strings are enclosed in quotes " " when: 

• used in programs with the PRINT instruction, as in 
20 PRINT "STRING" 

• assigned in a program to a string variable, for example 
30 A$ = "STRING" 

• in a data statement when the string contains (,),(:), or (;). 

Note: you cannot enter quotes from the keyboard (using INPUTA$, for 
or using quotes as part of the string). This can only be done by adding the r111"h 

character (CHR$(34)) to the string. Try the folloWing example: 

10 INPUT A$ 
20 A$=CHR$(34)+A$+CHR$(34) 
30 PRINT A$ 

-, . 

Now A$ will have as its first character a quote". 

K3: String input . 

, 

As can be seen from the example above, string input is exactly the same 
numeric input. The only major difference is that, if you just press the 
marked return, A$ will contain nothing; whereas on numeric input (INPUT A) •• 
zero is returned. When the computer is waiting for INPUT, pressing . 
RUN/STOP key has no effect. The only way to break outis to hit the RUlli/STOP ' 
the RETURN keys together. . . ' . . 

I There is a second way to input string data and that is using the 
statement. This statement does not wait until a key is pressed; if none is 
it returns with an empty string. Enter this program and run it. 

10 GET A$ 
20 PRINT A$;" "; 
30 GO TO 10 

Press the RUN/STOP key to break execution of the program; enter the ' 
line and re-run the program. 

10 GET A$: I F A$="" THEN 1 0 

Now whenever a key is pressed it is printed on the screen with one space 
between each character, not as before, when if no keys were pressed 

100 



• 

were printed. This shows that the statement GET A $ scans the keyboard once; it 
no key is pressed it returns with a null string (empty). The use of GET A$ has 
many applications. Enter this program and run it: 

10 PRINT"PRESS A KEY WHEN READY" 
20 GET A$:IF A$="JI THEN 20 
30 PRINTJlYOU PRESSED ";A$ 

Line 20 sends the program back to the beginning of the line as long as no key has 
been pressed. Now enter and run this program: 

10 PRINT"PRESS 6" 
20 GET A$:IF A$="" THEN 20 
30 IF A$="6" THEN 60 
40 PRINT"OBEY INSTRUCTIONS! !" 
50 GOTO 20 
60 PRINT"THANK YOU" 
70 STOP 

- - ,- -

Line 20 does the same as before, but line 30 now checks that the right key has 
been pressed. If 6 was pressed, the program goes to line 60. If any other key was 
pressed, it goes to 40, prints the message, and then is sent back by line 50 to line 
20, which waits for another key to be pressed. 

Games programs, which require interaction, often use GET in a loop, so that 
every time the program loops, it checks which key, if any, is being pressed. 

K4: Length of a string 

LEN(A$) 

The length of a specified string A$ is obtained by using the function LEN(A$). 
The length is given as the number of characters and is the current length of a 
string. Spaces are included in the length of a string. 

Run these programs: 

10 A$="COMMODORE 64" 
20 PRINT LEN(A$) 

Check that the result is 12. 

10 A$="A 0" ..... 
20 PRINT TAB(10);A$ 
30 PRINT"LENGTH=";LEN(A$} 

101 

, 

/ 

j 



Now run this program. 

20 FOR N=l TO 255 
30 A$=A$+CHR$(96+INT(RND(1)*16» 
40 NEXT N 
50 PRINT A$ 

The string A$ is filled with graphics characters of codes 96 - Ill, and then 
printed. The maximum length of a string is 255 characters long. Alter line 20 in 
the above program to read 

20 FOR N=O TO 255 

to show this. 

K5: Null strings 
A string with no characters is called a null string. For example: 

LET A$ = "" 
The length of the string is O. 

A string which contains spaces is not a null string. A space is the character 
obtained by pressing the space bar. The null string is returned by GET A$ if no 
key is being pressed. - . 

EXERCISES 
• Key in and run the following program: 

10 A$="" 
20 · PRINT 

PRINT 30 
A$ 
LEN(A$) 

• Key in and run this program: 

10 
20 
30 

A$- II ~.... ';oij II - 'I ..... ,-.... _.-_ .. _ ... 
R h . lit 

PRINT A$ 
PRINT LEN(A$) 

K6: String variables and dimensions 
The statement 

DIM A$(N) 

where N is any number and A$ is any legal string variable, is a dimension 
statement that allows you to store string data. Thus for example: 

DIM A$(20) 

would reserve space for 20 strings, of any length (up to 255 characters). 

102 



Consider this program: 

10 DIM A$(3) 
20 FOR N=l TO 3 
30 READ A$(N) 
40 PRINT A$(N):NEXT N 
50 DATA COMPUTERS,ARE,PHENOMENAL II 

K7: Multi-dimensional string variables 
-

These are dealt with in greater depth in Section S, on arrays. They are created 
and referenced in terms of their position in the multidimensional array. Think of 
how a book is built up. The individual strings or words on a page are created and 
referenced as: 

• a string (a word) 

• a list, row, line or column (a one-dimensional array) 

• a page or table of rows & columns (a two-dimensional array) 

• a book of many pages (a three-dimensional array) 

A two-dimensional string array is like a single page of a book, where the words 
are referenced in row and column position. 

A$ (row no., column no.) ego A$(4,6) 
and a three-dimensional array ... 

A$ (page number, row number, column number) 
and a four-dimensional array ... 

'-

A$ (book number, page number, row number, column number) 
What would be the format for the next two dimensions up? Try setting up and 
reading a three-dimensional string array; use four pages as an example. 

Page 1 will contain names of fish 
Page 2 will contain names of mammals 
Page 3 will contain names of fruit 
Page 4 will contain names of plants 

The arrays or tables on each page will be ordered according to size. 

5 REM 4 PAGES, 3 ROWS, AND 2 COLUMNS 
10 DIM A$(4,3,2) 
20 FOR P=l TO 4 
30 FOR R=l TO 3 
40 FOR C=l TO 2 / 
50 READA$(P,R,C):NEXT C,R,P ;' 
60 DATA MINNOW,PERCH,BARBEL,PIKE,COD,SHA 
RI< 
70 DATA MOUSE,RAT,CAT,DOG,PIG,HORSE 
80 DATA NUT,GRAPE,APPLE,ORANGE,BANANA,ME 
LON 
90 DATA LOBELIA,DAISY,ROSE,SUNFLOWER,WIL 
LOW,CORNATION 

103 

, 

i 

, 
i 

i: 
I 
I 



100 REM PRINTIMG ARRAY 
110 FOR P=l TO 4 
120 PRINT"PAGE"=P:PRINT 

• 

130 FOR R=l TO 3 
140 FOR C=l TO 2 
150 PRINT A$(P,R,C):NEXT C,R 
160 PRINT:NEXT P 

EXERCISES 
- - - , 

• Key in and run the program. Draw on paper the organisation or structure of> 
the data with its coordinates. Here is Page 1 with strings and coordinates. .. 
. Minnow (1,1,1) . 

Perch (1,1,2,) 
Barbel (1,2,1) 
Pike (1,2,2) 
Cod (1,3,1) 
Shark (1,3,2) 

Use a command mode to access single strings: for example, 

PRINT A$(2,1,2) 

K8: String and string array assignment 
Strings are assigned to string variables using the LET, READ and 
instructions. For example: 

A $ = "A S T R I N G" or 
INPUT A$ or 
READ B$ 

This establishes a value for the string. The value may be a literal value in . 
quotation marks, or a string or substring value. . 

Here is a program which assigns 3 strings to the string array variable A$(3). 

10 DIM A$(3) 
20 A$(1)="COMMODORE" 
30 A$(2}="COMPUTING" 
40 A$(3)="COURSE" 

Using the INPUT instruction and a loop: 
FOR I =1 TO N:INPUT A$(I):NEXT I 

allows you to enter and assign N strings when diinensioned with DIM A$(N) . ..•.. 
Using READ and DATA: 
FOR 1=1 TO N:READ A$(I) :NEXT 
DATA D, •••••••••• N items 

EXERCISE 
• Write programs to create a 3x3 table or array of names, occupations and 

salaries using INPUT, READ, and LET assignment techniques with loops. . .. 

104 



• Write a program which will update your table as occupations and salaries 
change. 

K9: Substrings and string slices 
A substring or a string slice is any set of consecutive characters taken in sequence 
from the parent string. The Commodore has several functions which allow 
strings to be subdivided: 

LEFT$(A$,N) 
RIGHU(A$,N) 

. . 

Where N is the number of characters. Thus if 
A$ = "ABCDEFGH" 

LEFT$ (A$, 2) returns AB 
RIG H T $ ( A $ ,2) returns GH 

There is a third string function: 
MID$(A$,M,N) 

where A$ is the string, M is the starting position and N is the number of 
characters. Thus if A $ = "A BCD E F G H" then MID $ (A $ , 2 , 2) would return CD. 
Try this program: 

10 A$="CENTURY COMPUTING COURSE" 
20 PRINT LEFT$(A$,S) 
~o PRINT MID$(A$,9~10) 
40 PRINT RIGHT$(A$,6) 

. . 

. 

For example, for the string" ABCDEFG", a substring is "CDEF", or "ABC", or 
"G". A substring can be a single character. For example, try this program: 

10 A$="NAME AGE" 
,....-
• .!.. u B$=" TOt"! 16" 
7(" • • "_I _ : C$="BILL 14" 
40 D$="JANE 17" 

KIO: String concatenation 
A$ + B$ 

/ 

Concatenation means chaining strings together. It is derived from the word 
catenary, meaning chain. What the computer does is to 'add' them together to 
form a new string. 

105 

i. 
" 
'I , 

" 
, , . . , 

• 
• 

I 
, I 
:" 



"COM"+"PU"+"TER"="COMPUTER" 

10 A$="COM IJ 

20 B$="PU" 
30 C$="TER" 
40 T$=A$+B$+C$ 
50 PRINT T$ 

You cannot subtract, multiply, or divide strings, or raise them to powers, 
because they are not numbers. Although the 'adding' of concatenation uses 
same symbol, it is not an arithmetic operation. Key in and run the imp 
program given above. 

Now try this program: 

10 INPUT A$,B$ 
20 PRINT A$,B$,A$+B$ 
30 A$=A$+B$ 
40 PRINT A$ 
50 A$=A$+A$ 
60 PRINT A$ 

Notice in line 30 the string has been incremented by adding B$ on to A$. 
gives a new A$ made up of the old A$ plus B$. The statement in line 50 
equivalent, in string terms, to having a line which for numeric variables 3Vfl 

LET A = A + A. 

KII: Comparing strings 
The conditional operators =, <>, <, <=, >, >= may be used between strings 
string variables using the IF ... THEN instructions. For example: 

IF A$ = "YES" THEN GOTO ..•. 
IF N$ = B$ THEN PRINT •••• 
IF A$ = B$ THEN GOTO •••• 

When the computer compares strings of characters, it does so by comparing 
ASCII code of each of the characters in sequence. A string is found to be 
than another if it comes first in alphabetic order. If the strings contain nUluh 
you must rememberthat numeric codes are less than alphabetic codes; this 
affect comparisons. (See appendix for the character codes.) Strings are imd. 
in order of characters from left to right. For example: 

"Aa" > "AA" "All < "B" 
"a" > "ZII "AB" < "AZ" 
"b" > "a" II A " < "AA" 
"z1" > "Z1" "2" < "5" 
"Smith" > "SMITH" "6" < "QII 

, 

Key in and run the next program. Input the strings above plus others you W,Ult 

to try and it will print out their relative alphabetic orders. 

106 



,-_._--- --- --- -

10 INPUT A$,B$ 
20 IF A$>B$ THEN 60 
"<0 .~ IF A$=B$ THEN SO 
40 PRINT A$;" < ";B$ 
50 STOP 
60 PRINT A$;" > II. B$ , 
70 STOP 
80 PRINT A$;" - ";B$ -• 

90 STOP 

This reveals a method for putting names into alphabetic order, as in a telephone 
directory. There is also a method of searching it, since you can check whether 
any name in the list is equal to the desired name. Here's another example of 
string comparison: 

10 
20 
"<~.u 

PRINT"DO YOU UNDERSTAND STRINGS" 
INPUT"ANSWER YES OR NO";A$ 
IF A$="YES" THEN 60 

40 PRINT"THEN READ THIS SECTION AGAIN!!" 

50 STOP 
60 PRINT"YOU ARE A GENIUS! I" 
70 STOP 

EXERCISES 
• The telephone program sets up a telephone directory with names and 

telephone numbers. It will search through its lists to find the telephone 
number corresponding to a given name. Run and analyse the program to find 
out how it works. 

10 REM**TELEPHONE** 
20 REM**PROGRAM SETS UP A TELEPHONE** 
21 REM**DIRECTORY AND USES IT ** , 

30 PRINT"HOW MANY NAMES DO YOU WISH TO E 
NTER INTO THE DIRECTORY". . . 
40 INPUT N 

, 

50 PRINT 
60 PRINT" INPUT ";N;" NAMES (UPTO 
ERS) AND NUMBERS(S FIGS) PAIRS" 
70 DIM A$(N) 
80 DIM B$(N) 
90 DIM D$(20) 
100 PRINT 
110 PRINT 

' . . 

12C) 
130 
140 

PRINT"NAME";TAB(22);"NUMBER" 
PRINT 
FOR F=1 TO N 

107 

20 U~TT 
/ 

j 

~.......,.-"~.----' 
,l o 'r -' 
r' 

, 

I 

, 

I 
I 

I 
; i 
I ' 
I 

, 

~ -
l 
f: 

i, 

I, 
} 

I ' , " 
i. ! 

; i 
j , 
,~ 

i! -'. 



---------------

150 INPUT AS(F),BS(F) 
160 NEXT F 
170 PRINT"~':~" 

, 

175 PRINT I NAME I ;TAB(22);"NUMBER" 
180 FOR F= 1 TO N 
190 FOR F= 1 TO N 
200 PRINT AS(F);TAB(22);BS(F) 
210 NEXT F 
220 PR I NT II PRESS ANY I<EY TO CONT I NLJE n 

230 GET AS:IF AS="" THEN 230 
240 
250 
260 

, 270 
280 
290 
.300 
310 
,':~() -'-
340 
:'!:50 
-"6-• .j I) 

370 
380 
.390 
400 
410 
420 
430 

PR I NT II :~:I" 
PRINT 
INPUT"WHAT NAME";DS 
REM**NEXT PART OF THE PROGRAM** 
REM**SEACHES FOR THE NAME ** 
PRINT , . , 

PRINT DS; 
FOR F=l TO N 
IF AS(F)=DS THEN 370 
NEXT F 
PRINT 
PR I NT II NAl'lE NOT FOUND II 
GOTO 260 
PRINT TAB(22);BS(F) 
PRINT 
PRINT 
INPUT"ANOTHER NAME (YIN) 
IF QS="?" THEN 400 
IF QS="Y" THEN 240 
PRINT 

"; OS 

. ' 

• Modify the program to create your own directory with your friends' names 
and addresses, or birthdays or telephone numbers. 

a) Redesign the program 
b) Document it 
c) Key it in 
d) SAVEit " , 

e) Debug it 
f) S A V E the working version 
g) Put it in your personal tape library 
h) Enter details in your notebook 

K12:VAL and STR$ 

, . 

, 

" ' 

, , 

The function VAL converts a string (only containing nume.ric data) to a numeric 
variable. . ,. ., ' 

108 

;,:;: -

'~'4 



. '. :' 

:( 
.,'" 

" : 

.,',' , 

','," 

':,i: .,: ' 

:', ' 

':; :' 

,", 
.: : 

;', 
. 

" _. , _ .•......... _ .... , •••.............•.•• _-

Enter and run this program: 

10 A$-"1"""<4" .- ""' • .J . 

20 A=VAL(A$) 
30 PRINT A$,A 
40 A=A+4 
50 PRINT A 

STR$(N) returns the value of (N), a numeric expression, as a string. For example: 
S T R$ (3.4) gives "3.4" 
S T R $ (3 * 31) gives "93" 
S T R $ ( 5 Q R ( 4 » gives "2" 

STR$ is the complementary or opposite function to VAL. 
To see STR$ in operation, and the complementary functions of VAL and STR$, 

try this program: 

10 X=3 
20 
'. -~O 
'J 

40 
50 
60 
70 
80 

Y=0.5 
A$=STR$(X/Y) 
PRINT A$,VAL(A$) 
B$=A$+STR$(X) 
PRINT B$,VAL(B$} 
C=VAL(STR$(VAL(A$)+VAL(B$)}) 
PRINT C 

K13: ASC and CHR$ 
The purpose of the instructions ASC and CHR$ is to convert from the code to 
character and vice versa. 

ASC is a function which takes a character or a string and gives as a result the 
numeric (ASCII) to which the character corresponds. For example: 

ASC("S") gives 83. 
AS C " ABC D") gives the ASCII code for A, which is 65. 
AS C (X$) gives the ASCII code for the first character in X$. 

CHR$ is a function which gives as a result the single character whose ASCII 
code is given by N. CHR$ does the opposite of ASC. For example: 

CHR$(A+B+C) 
CHR$(X/Z) / 

• 
CHR$ (1 NT( RND ( 1 ) *255) ) gives a random number in the range 9'to 255 
C H R $ (36) gives "$" 
CHR$ (83) gives "S" 

Try this program, which prints all the characters used on the Commodore. 

10 FOR 1=32 TO 255 
20 PRINT C,HR$ (I) ""; 
30 NEXT 

109 

-- ,_ ........ _. _- '.-_ .. _-, 
fi , ! 
: i 

, " 

i' 

[I 

, . 
i:, ' 
·1, 
i" iii 
i' 

, 
!: 
'1 
'I 

I 
I!: , 

I 
:1 
I' 

(' 
, 

i '. 

I LL-



:'",--
','.'" 

- ~~. 

EXERCISES 
• Write a program which inputs a number of strings and calculates the total 

number of characters in each, and the total number of characters in all the · ... 
strings. 

• Write a program which calculates the total price of items in a shopping list, 
after receiving and printing out the string inputs of each item and its cost. 

. . 

• Write a program which will print a calendar for any month of next year. Key ··· 
in the month names and lengths as a string in the program. • .... 

110 

. . 

' .. ' 

• 

. . 

- .--



Section L: L~ops 

You have already used loops in the course. ,The simple GaIa loop was 
introduced in Section E as a method of jumping back to a previous program line 
to repeat a program operation. The classical FOR. .. NEXT loop was defined and 
used in Section F, which considered data INPUT. Multiple loops were used In 
the last Section to create and print out a string array. Loops are so impor:tant that 
they deserve a Section on their own. . . 

Ll:Loops 
A loop is a block of instructions that the computer executes repeatedly until a 
terminating condition is met. The usefulness of loops can be seen by considering 
three forms of a program to print out the first one hundred positive.int.egers. 

10 PRINT 1 
20 PRINT 2 
30 PRINT 3 
• • • • • 

• •••• 

• • • • • 
100 PRINT 100 . . 

This program, which does not use a loop, is 100 statements long. This next 
program uses a conditional jump loop which does the same thing and uses only 
five statements. . . 

" 1 10 C== .. 
· . 

20 PRINT C 
30 C=C+l 
40 IFC(=100 THEN 20 
50 STOP ' 

. - , 

.. , 

The third program uses a FOR. .. NEXT, loop which is the commonest method of 
looping in BASIC , the most economical in program lines, and the most versatile 

'. and powerful. ' . 

10 FOR F=l TO 100 
. . 

20 PRINT F 
30 NEXT F 
40 STOP 

. '. All loops have these four characteristics: 

Initialisation (start value counter) 

BODY 'of loop 

• Modification of counter 

• Exit condition or repeat condition 

111 

" ' 
, 

I' 
t 

/ , .. 

, 

, 
i 

I , 
I, , , 

" 
I 
I , 
I , 

I , 
, 

l ' 

. ; 
-! 

i 
I' , 
• , , 
I , 

[ ; 

H 
I 

, 
; : 
I 



There are two types of loop structure in programming. 

• The repeat-until structure, which means repeat the task until the exit condition · 
is true. 

• The while-do structure, which means while the repeat condition is true, do the 
task continuously. 

The differences in the structures are, firstly, the order in which the loop 
characteristics are placed in the program. 

Repeat-until 
• Initialise counter 

• Task 

• Modify counter 

• Test EXIT condition 

While-do 
• Initialise counter 

• Test REPEAT condition 

• Task 

• Modify counter 

The essential difference is where the condition is tested and whether it is for exilt 
or repeat. The other important difference is that the consequence of the order 
that the ta~k is processed at least once in the repeat-until structure, whereas · .> 
need not be processed at all in while-do. . 

All programming languages use these structures, and some include 
instructions REPEAT, UNTIL, WHILE, DO. Commodore BASIC does not, and 
the structures are formed using conditional coro statements and FOR.. ,~,,~ 
statements. 

In the case of repeat-until loops, the complement of the exit test condition 
also used; this allows a more elegant program. FOR. .. NEXT loops are a 
case of the while-do structure. 

To compare the three looping methods, a common example will be studied: a 
program that inputs and prints ten numbers. 

L2: Counters 
A counter is a variable used to count the number of times an event takes 
during a program. For example, a loop counter will count how many times 
letter, number or string occurs. Counters are used to provide information and to 
control processing. 

Variables used for counters are usually I, J, K, L, M, N, COUNT, NUM. 
and lower case letters are treated identically. 

Initialisation 
When counters are used in programs they must be assigned a start or iniH 
value. This will usually be 

LET C = 0 when counting events 
LET C= 1 for loops 

112 



Incrementing 
Each time the event occurs or the program loops, the counter value is increased 
by one: 
. LET C= C+ 1 

Normally the counting is done in ones, but the start and stop values of 
counters can be set to any positive, negative, integer, real number, or value 
which is the result of calculating an expression. This will be illustrated in 
FOR ... NEXT loops. 

L3: Counting events 
To count events in a program, the following steps must be taken: 
1 Set the counter variable C to 0: LET C=O 
2 Set up a conditional test for the event: IF (condition of event occurring 

is true) THEN ... 
3 Increment the counter when the event occurs: ... THEN LET C=C + 1. 
4 Print out the number of times it has occurred: PRINT C. 
For example, count the number of times the vowel E occurs in a sentence. 

10 INPUT"KEY IN A SENTENCE";AS:PRINT AS 
20 C=O:REM INITIALISE COUNTER .' 
30 FOR N=l TO LEN(AS):REM SEARCH THE COM 
PLETE STRING 
40 IF MIDS(AS,N,l)="E" THEN C=C+l 
50 NEXT 
60 PRINT"E ENCOUNTERED";C;"TIMES" 

EXERCISES 
• Write a program which generates 100 random integers between 1 and 10 and 

counts the number of times 7 is generated. 

• Change the above program to count how many numbers of 5 or less are 
generated. 

/ , 
J . . 

p 

L4: Repeat-until loops 
In repeat-until loops: 

• the program will loop until the exit condition is true. 

• the exit test is below the task. 

• the task is executed at least once. 

113 

• 

r 

r 

! i 
, 

i i 
: i . . 

:], 

I , 



I 
<-,,:, -

-'''; -, 

, ; 

I 

-' , , 
- r 

, i 

i i 
I: 
( 
; , 

: ; 

, 
, 

, . 

Structure 

START 

SET 
COUNTER 

TASK 

EXIT 

NO 

STEP 
COUNTER 

YES 

BASIC example 

10 C=1 . 

20 INPUT A:PRINT A 

30 IF C=10 THEN 60 
, , 

40 C=C+1 

50 GOTO 20 

60 REM EXIT 

. . . , 

Complement version 

10 C=1 

20 INPUT A: PRINT 

30 IF C<10 THEN , l T 
C=C+1: GOTO , 20 

, -, , , 

40 REM EXIT 

, ' 

Using the complement of the EXIT test condition gives a more elegant program . .... 
It is a repeat test: '. '. 

C = 1 0 exit condition ' 
C < 1 0 repeat condition 

Stepping the counter before' the exit test is an alternative. 
The test condition changes. The complement version is 

Structure 

START 

C=1 

Complement 
BASIC 

10 C=1 

20 INPUT A: PRINT A 

30 C=C+1 

40 IF C<=10 THEN 20 
. . 

50 REM. EXIT 
• 

, 

, ' , 

-, . 

• 

" ". . ; 

INPUT a 
PRINT a 

In the compLement version a ' repeat 
condition is tested. For example: 

C=C+1 

YES NO 

C<=10 - repeat condition 
C>=10 - exit condition 

. " ' i ' 

114 

, 
-



When using counters for repeat-until loops, be ~arefi:t1 to set the exit conditions' 
properly (or their complement) to achieve the correct number or passes through 
the loop. 

EXERCISES ' 
, . 

• 
• Study this program, which prints the seven times table. Noticetheuse of the 

AND operator in line 50 to line up the numbers printed. 

10 PR I NT .. ::'::ISEVEN TIMES TABLE .. 
20 N=l 
'TO .-, 

40 
50 

PRINT N;"*7= 
,IF N(20 THEN 
STOP 

READY. 

"; N*7 
N=N+l:GOTO 

. 

'"':!'o ~-' -

. . 

• Write a program which calculates and prints the squares and cubes of powers 
of even numbers between 10 and 30. The counter will need to be incremented 
by 2 each time. 

• Write a program which uses two counters to print the squares of numbers 
5.00, 4.75, 4.50 ... 3.00 in that order. 

L5: While-do loops 
In these structures: 

• the program will not loop until a repeat condition is true; 

• the repeat test is above the task, and 

• the task need not be performed. 

Structure 

START 

SET 
COUNTER 

TASK 

STEP 
COUNTER 

NO 

YES 

BASIC Example 

10. C=1 

20. IF C<=10. THEN 
GOTO 40. 

3D GOTO 70. 

40. INPUT A: 
PRINT A 

50 C=C+1 

60 GOTO ' 20 

70 REM EX IT 

• 

Complement 

10. C=1 

20. IF C>1D THEN 
GOTO 60. 

30 INPUT A: 
PRINT A 

40 C=C+1 

50 GOTO 20 

60 REM EXIT 

/ 
/ 

/ 

. . ..' . 
- - . . . '. " - - -

Again, the complement version is neater. The complement ofthe repeat test is 
an exit test. Counters are rarely used to perform this kind of loop. Instead we 
use the more powerful FOR ... NEXT structure. 

115 

I 



L6: FOR ... NEXT loops - -:- ','1-
-_, c-

.- - - -

FOR. .. NEXT loops are a special BASIC language implementation of the wh 
loop structure. They do not need a repeat condition test statement; 
Commodore does this automatically when it executes the FOR. .. NEXT. . 

To be able to leave out this condition test (and the GOTO), certain things havp 
to be specified: 

• the final value of the counter; 

• the STEP value of the counter; and 

• a statement which steps the counter to the NEXT value. 

The FOR ... NEXT loop is set up using four instructions: FOR, TO, STEP aml'~ 
NEXT. Using the While-do structure, consider the FOR ... NEXT form in > " 

example. 

While-do characteristics 
for FOR .. . NEXT 

Structure 

START 

Set c'tr 
range/step 
value 

Yes 

TASK 

Take the 
NEXT value 
of C 

No 

EXIT 

Program 

" , 

10 FOR C=1 TO 10 STEP 2 

I nit i ali set h e co u n t e r •• ,.," 
range to start va ·lue T 
find value, and STEP ' 
value. 

Test the repeat 
condition. 

. -:-

This test is built-in · . 
and needs no program 
statement. The 
Commodore jumps to 
line 40 when the 
statement is false 
(ie. when C>10)' 

20 INPUT A: PRINT A 

30 NEXT C 

40 REM: EXIT 

This is obviously a more convenient and powerful way of looping. The loop goes 
from the first value to the last value of the counter (or covers the range) by 
adding the defined STEP value to the previous value of the counter each time it 
loops until the repeat condition is false. . 

116 

-,' 
\' 



FOR ... NEXT definition 
FOR (variable) = (first value) TO (last value) STEP (step value) 

FOR C=N TO M STEP X. 

where C is the counter variable or control variable of the loop and N, M and X 
• • are numerIC expresslOns. 

C, N, M and X can be any legal numeric variable. It is initialised at value N. N, 
M and X may take any values, positive or negative, as long as repe~ted additions 
of X to N will reach M. If STEP is omitted, + 1 is assumed. NEXT C indicates last 
line of the loop. It adds X to C and repeats the task if the total is less than M. The 
program loops back to the line after the line with the FOR ... TO ... STEP 
instruction. 

L7: FOR ... NEXT flowcharts 
FOR ... NEXT loops are used so frequently that a condensed version of the 
standard flowchart is used. 

I' ......, 
. . ENTRY 

\,. ./ 
I 

START 
VALUE 

END L OOP 

STEP 
VALUE 

BODY 

I' " SHRT 

" ./ 

C = 1 

C<=10 

C = C+2 

YES 

PRINT C*C 

. . 

. 

. . 

REPEAT 
OUT 0 F. 

CONDIT ION 
TEST 

TO BODY OF LOOP 

. 

NO 
PRINT 

END 

. . . 

/ 
STOP 

" 
117 

. 

LOOP 

• 

. 

. 

'" 
./ 

/ 
· f 

" .' 

. , I 

i ' , . 

l : 

.. ~ i 



- -_._--- " .. __ ._---- - _.----.-------_._-------

L8: FOR ... NEXT examples 
The FOR ... NEXT loop has a fixed procedure, unlike loops formed with 
conditional GOTO instructions. A FOR ... NEXT loop is formed in a program like 
this: 

10 FOR F=O TO 100 STEP 2 
• • • • • • 
• • • • •• (body of loop) 
40 NEXT F 

• . The FOR statement initialises the loop. 

• 0 is the start value. 

• 100 is the stop value. 

• F is the counter variable and is initialised as O. 

. • STEP 2 is the increment. 
- .-. -

• NEXT F is the last line of the loop and increments the counter F by the STEP 
value. 

You can also decrement the counter (decrease it). For example: 
10 FOR F=100 TO 0 STEP-2 

(where the decrement is 2). 
The loop will be exited in the first example when F)100 and in the second 

when F(O. F will take values 0, 2, 4 ... 98, 100 in the first case, and 100, 98 ... 4, 2, 
o in the second. Any program lines in the body of the loop will be repeated 
time the program loops. 

. - - - . . 

Try these simple examples: 

10 FOR F=2 TO 4 STEP 1.3 
20 PRINT F 
30 NEXT F 

10 FOR F=4 TO -1 STEP -1 
20 PRINT F 
30 NEXT F 

10 FOR F=-2 TO 4 STEP 2 
20 PRINT F 
30 NEXT F . . . 

40 PRINT 
50 PRINT"F EQUALS II-F- .. , , 

Convince yourself that this does not work: 

118 

ON EXIT" 



------------------- -

10 FOR F=2 TO 4 STEP -1 
20 PRINT F 
30 NEXT F 

The next one is an interesting example of the inaccuracies in the computer's 
arithmetic: 

10 FOR F=1.2 TO -0.3 STEP -0.2 
20 PRINT F 
30 NEXT F 

10 FOR N=l TO 15 STEP 1 
20 PRINT N,N*N 
30 NEXT N 

You can use the value of the control variable in calculation within the loop. Edit 
STEP 1 so that line 10 reads: 

10 FOR N=1 TO 15 

and run it again. STEP may only be omitted for a step of + 1. In the program, 
line 10 allows N to go from 1 to 15 with a step value of 1. That is to say, N takes 
the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 each time performing the 
calculations within the loop. 

The next program illustrates the use of different values for the step. The value 
can be positive or negative, integer or non-integer. In the case of decimal 
increments or decrements there is the pOSSibility of rounding errors if the loop is 
executed many times - it is therefore advisable to use integer values for the step 
and divide by the appropriate power of ten, if the loop variable is to be usedin 
calculations. If this were done in the program below, lines 130 and 140 would 
read: 

130 FOR N= 10 TO 56 STEP 7 
140 PRINT Ni10; TAB(8);(N/10)t2 

The program calculates squares and cubes for: 

1, 4, 7, ...•.••. 31 (Line 20) 
120, 115, 110, ••.•...• 60 (Line 70) 
1, 1.7, 2.4, •••••....•.. 5.6 (Line 130) 

5 REM**MULTILOOP** / 
• 

10 PRINT"~""UMBER"; TAB (8) ; "SQUARE"; TAB 920 
);"CUBE" 
20 FOR N=1 TO 31 STEP 3 
30 PRINT N; TAB (8) ; N·t2; TAB (20) ; N·t·3 
40 NEXT N 
50 PR I NT" :~:i:~r!i:PRESS ANY KEY TO CONT I NUE" 
55 GET A$:IF A$="" THEN- 55 
57 PR I NT" ::".:1" 

119 

, -
~-----~ 



60 PRINT"NUMBER";TAB(8);"SQUARE";TAB(20) 
• "CUBE" , 
70 FOR N=120 TO 60 STEP -5 
80 PRINT N; TAB (8) ; N-t-2; TAB (20) ; N-t-3 
90 NEXT N 
100 PR I NT ":~l:~l:!i:PRESS ANY KEY TO CONT I NUE" 
105 GET A$:IF A$="" THEN 105 
110 PRINT" :~J" 
120 PRINT"NUMBER'''TAB(8) = "SQUARE";TAB(20 , . . 
);"CUBE" 

-
130 FOR N=1 TO 5.6 STEP 0.7 
140 PRINT N;TAB(8) ;N-t2;TAB(20) ;N-t-3 
150 NEXT N 

In the next program, the total is represented by T, which is initialised equal 'v 

zero (line 10) _ Each time the program goes through the loop the INPUT 
is added to T (line 40) so that when the loop (lines 20 to 50) is exited, T ')rp 'nf 

the sum of the ten numbers input. The program evaluates the average bv 
dividing the total by the number of numbers input_ 

5 REM**AVERAGE** 
10 T=O 
20 FORN=l TO 10 
30 INPUT X 
40 T=T+X 
50 NEXT N 
60 PRINT"AVERAGE = ";T/10 

The next program illustrates a loop used to print a table_ In this case a heading is 
given (line 70) and this must be outside the loop, as it is only required at the 
beginning_ All names and ages are required to be tabulated, so the print 
statement doing this (lines 140, 150) must be within the loop_ Finally, the 
average age, to be printed underneath, is required, so the print statement (lines 
170, 180) is inserted after the loop has been completed_ 

10 REM**LOOPS3** 
20 PR I NT II ::'nH I S PROGRAM PR I NTS OUT THE NA 
ME AND AGE OF A GROUP OF PEOPLE AND "; 
25 PRINT"WORKS OUT THE AVERAGE AGE" 
30 PRINT 
40 INPUT"ENTER NUMBER IN GROUP";X 
50 T=O 
60 PRINT"NAME","AGE" 
70 FOR N=l TO X 
80 INPUT"ENTER NAME 
90 INPUT"ENTER AGE 
100 T=T+A 
110 PRINT N:t,A 
120 NEXT N 

, " " 

"; N$ . 
" ; A 

130 PRINT"AVERAGE AGE= ";T/X;" YEARS" 

120 



L9: Loops of variable length 

The first value, final value and step of a loop may have any values (including 

variables, which may be specified using INPUT). The first example shows a 

simple program which allows all conditions in the FOR statement to be specified 

using the INPUT statement. . 

10 REM**VARLOOP** 
20 INPUT"TYPE INITIAL VALUE"; I 
30 INPUT"TYPE FINAL VALUE";F ' 

. ' . 

40 INPUT"TYPE STEP";S 
50 PRINT"X", "X'r-2+4*X-3" 
60 FOR N=I TO F STEP S 
70 Y=N 'r2+4*N-3 
80 PRINT N,Y 
90 NEXT N 

It is important in such calculations to avoid the case where division by zero . 

occurs. A simple example of how this may be done (line 40) is shownbelow. · 

5 REM**DIVZER** 
10 PRINT"X","l/(X-3) 
20 PRINT 
30 FOR N=-9 TO 15 STEP 3 
40 IF N-3=0 THEN 80 
50 Y=1/(N-3) 
60 PRINT N,Y 
70 GOTO 90 
80 PRINT N,"INFINITY" 
90 NEXT N 

The final program in this section illustrates another way of having a variable 

loop size. The operator may use this program for any number of numbers 

between 1 and 100. A marker (in this case -1) is set to indicate when the input is 

complete, allowing a jump out of the loop (line 69). This is a dummy value - a 

value not normally entered. , . 

Remember: do not jump into the middle of a loop. A loop must always be entered 

from the FOR statement. 

5 REM**STDDEV** 
10 T=O:S=O:C=O 
?;, 
~V PR I NT" :~:ITH IS PROGRAM 

AND STANDARD DEVIATION 
"":!" (, ._' ~~ PRINT" NUMBERS" 
40 PR I NT II ::':m-i I S PROGRAM 

AND STANDARD DEVIATION 
4·5 PR I NT" NUMBERS" 
50 PRINT 

WORKS 
OF A 

ltJORKS 
OF A 

OUT AVERAGE 
SET OF" . / , , 

.1 , 
'. I 

OUT AVERAGE 
SET OF" . , 

60 PRINT"ENTER NUMBERS ONE AT A TIME. TY 
pr
o C. 

- ' f)' j • 

--,1 TO FINISH" 
FOR N=l TO 100 

- -----------~====-=-

121 

-' " 



80 INPUT X 
90 IF X=-1 THEN 140 

, 

100 T=T+X 
110 S=S+ X 'r2 
120 C=C+1 
130 NEXT N 
140 PRINT 
150 PRINT"AVERA6E IS ";T/C 
160 PRINT"STANDARD DEVIATION 
C- (T IC) ,'t2) 

IS "·SQR(SI , ' 

The procedure used in this program can confuse the flow of ~ programimd must ', 
be used with care. It is useful on occasion, but it is preferable to have onlyone i 
entry and one exit from a loop. In this program, the loop may be exited from lirie ' •• ' , 
90 in addition to the normal termination, when N)100. ' 

Ll0: Nested loops 
You can place one loop inside another loop, so that every time the program goes 
through the outside loop, it will perform the inner loop sequence. The inner 
loop must be entirely within the outer loop. Loops are said to be NESTEDone ' .• 
inside the other. Loops can be nested to any depth; that is, you can have as '.' 
many loops as you wish, as long as they're correctly arranged. 

30 FOR A = 1 TO 6 
40 FOR B = 1 TO 3 

• • • • • • • • • • 

• • • • • • • • • • 

80 NEXT B 
• • • • • • • • • 

120 NEXT A 

i nne r Loop 

outer Loop 

to have a third loop correctly placed, it would have to be inside the B (inner) 
loop, or outside the A (outer) loop. Crossing the loops must be avoided. 

A program like this would run without giving you an error message, but it will 
not give you the correct answers: 

10 FOR A = 1 TO 6 

20 FOR B = 1 TO 3 

• • • • • 

• • • • • 

60 NEXT A 

• •••• 

80 NEXT B 

122 

" '--,:~ 



To illustrate the use of nested loops, here are two programs. The first evaluates 
and prints out the squares, cubes and fourth powers of the first ten integers. 
Each number (N = 1 TO 10) is to be raised to the appropriate power (E = 1 TO 4). 
Note that the loops are correctly nested. 

20 FOR N = 1 TO 10 

30 FOR E = 1 TO 4 

• • • • • • • • • • • • • 

50 NEXT E 

• • • • • • • • • 

70 NEXT N 

5 REM**NEST1** 
10 PRINT .. ~:t.\UMBER"; TAB (7) ; "SQUARE"; TAB (14 
);"CUBE";TAB(21);"4TH POWER" . 
20 FOR N=1 TO 10 
30 FOR E=l TO 4 
40 PRINT TAB«E-1)*7);INT(N1E); 
50 NEXT E 
60 PRINT 
70 NEXT N 

You will get a printout that starts off like this: 
NUMBER SQUARE CUBE 
111 
248 
3 9 27 
4 16 64 

4th POWER 
1 
16 
81 
256 

You can see the sequence of operations by tracing the program. 

Line 20: Nt1 N=2 
I I 

Line 30: E=1 E=2 E=3 E=4 E=1 
I I I I I 

Line 40: Nt1=1· Nt2=1 N;3= 1 Nt4=1 Nt1=2 

Line 50 

Line 60: PRINT 

Line 70: 

Notice how line 40 uses the value of E to format the output. 

E=2 
I 

Nt2=4 

L __ 
/ etc. 

• 

The flowchart for this program, using the flowchart symbol already introduced 
for FOR ... NEXT loops, will look like this: 

123 



" START , 

~ , 
, 

• , , 

PRINT 

TITLES , , " 

, 

+ , 

, 

Ne 1 , 

N>10 

"" N~N+l 
, ' , , 

/ , 

, 
E=1 " 

E>4 ....., 
,. E=E+1 r , , 

, ' 

+ , , 

, 

"-
PRINT 

N**E 

, , 
" ,. 

\... PRINT 
./ BLANK 

LINE 

, / , 
, 

" STOP 

" ./ 

EXERCISES ' 
Write programs using loops to perform these operations: , 

• Calculate the reciprocals (UN), logarithms LOG(N) and cubes (L t3) of even 
numbers between 20 and 36 and print them out in a table, 

• An object is dropped, and,the variation of distance s with time t is given by s 
= 4.9t2• Print a table of the distances fallen for each second from 1 to 15 
seconds. 

• Evaluate and print the values of 3X2 + 4X -7 f~~ values of X between 6 and 8 
in steps of 0.25. 

• Evaluate SIN(X) for values of X from 0° to 360° in intervals of 10°. Remember 
you must convert ,. from degrees to radians. Print out the results in two 
columns, 

, 

• Print a table of the discount at 5%, 10%, 15%, 20% on articles from $100 to 
$200 in steps of $10. 

• Find the sum of ali odd numbers between 39 arid 75. 

• Find the sum of the series 1, 1, 2, 3, 5,8 ... (the Fibonacci sequence)' to 20 
terms. (Each term is the stun of the previous two terms.) 

124 



• Find all numbers less than 50 which can be written as the sum of two squares. 
(for example, 13 = z2 + 32

) 

• A ball is dropped from a height of twenty metres and rebounds one-half the 
height on each bounce. What is the total distance it travels? Assume the ball 
stops bouncing on its hundredth bounce. 

125 

;' 
I 

, / 

, , '" ... ... , . -' '--- - --





~, 
.-'" ;."',,, , 

<.\'::: , 
,%;:: 

Section M: Printing and plotting 

Ml: The print screen 
. 

The print screen is a 25 row by 40 column character grid,.. Each element of the 
grid is a character cell. The rows are numbered 0 - 24 vertically from the top, and 
the columns 0 - 39 from the left horizontally. Each character cell has a row 
column coordinate. Characters are printed on the scr~en using the PRINT 
instruction. The print screen and the plot screen · (wl1ich is used for high 
resolution graphics) are the same areas ofthe screen, but are accessed through 
different coordinate systems. The plot screen has a finer gtidmesh than the print 
screen. 

M2: The plot screen 
. . . . 

The Commodore 64 has available a high resolution plot screen. This is composed 
of 40 bytes across by 25 bytes down the screen. As each byte holds 8 bits, 64,000 
bits of information can be used for graphics in the high resqlution mode. Each bit 
makes a pixel (or picture cell); each pixel in the 320 by 2QO pixel scree~ can be 
altered by POKEing a 0 (to turn off the pixel) or a 1 (to turn it on) into the 
respective memory location that is allocated to that pixel. The screen will occupy 
8K of memory, so it is necessary to move the screen upwards in memory to 
display the full graphics capability. 

To locate any pixel On the plot screen at point (X, Y), the following formula is 
used: 

ROW=INT(Y/8) finds row 
COL = I NT ( X / 8) finds character position 
LIN = (Y AND 7) finds line of character position 
BIT = 7 - (X AND 7) finds bit of the character byte 
BYT= start of screen memory address + ROW*320 + COL*8 + LIN 

The following statement will set the point (X, Y): 
POKE BYT ,PEEK(BYT) OR 2tBIT . 

Enter the following program and run it: 

10 XC=150 
20 YC=100 
30 RD=90 
40 POKE56576, (PEEK (56576) AND 252)OR 2 
50 
60 
7 '-, "-.-
80 
90 

POKE53272,8 
POKE53265 , PEEI< (53265) 
FOR I=O TO 999 
POKE 16384+1,230 
NEXT r 

100 FOR 1=1 TO 8000 
110 POKE 24576+1,0 
120 NEXT I 
130 GOSUB 1000 

OR 32 

140 GET AS:IF AS="" THEN 140 
150 GOSUB 2000 
160 STOP 

127 

/ 

;' 



-

1000 FOR D=O TO 360 STEP 0~5 
1010 . RA=D*'rr/lS0 
1020 X=XC+RD*COS(RA) 
1030 Y=YC+RD*SIN(RA) 
1040 Xl=INT(X/S):B=7-(X AND 7) 
1050 Yl=INT(Y/S):L=Y AND 7 
1060 C=Yl*320+Xl*S+L 
1070 POKE24576+C,PEEK(24576+C) 

.10S0 NEXT 
1090 RETURN 
2000 POKE 56576,151 
2010 POKE 53272,21 
2020 POKE 53265,155 . 
2030 RETURN 

OR 2'lB 

The screen will first show a random picture of coloured objects which will clear. 
This is done in lines 70 to 120, which clears the SCreen and colour memory; In .. . 
line 130 a subroutine is called (line 1000) to plot a circle on the screen. In line 140 ........ . 
the program waits until a key is pressed then goes to 2000 to return to a normal 
screen. To return to normal Screen, hold the RUN/STOP key, then depress . the 
RESTORE key. . 

Note: As you will see, it takes quite along.timeto clear the screen and do any ··· •. ·.· ........ · 
plotting. In the machine code section of this book, routines will be given to 
enable you to execute clearing the screen much more quickly. 

M3: PRINT definitions 
PRINT ITEM (separator) ITEM (separator) ... printsITEMs on the screen. Items 
are separated by commas or semicolons; these are called separators~ ITEMs are 
written to the display file for output to the screen. 

. . . 
; I T EM is printed in the next character position on the screen, for example 

PRINT AS; B . 
, I T E M is printed at the next 10th column position. 

If there is no separator at the end of the PRINT statement, the carriage return 
character is output, and the next printing will occur on the next line. 
ITEM 

ITEMs can be 

• null, ie. nothing , . ' . 
, . .-

• a number or numerical expression 

• a string or string expression 

• TAB(N) 
• Colour items: using the control key, ego P R I NT "[ CT R LJ [1]" . 

PRINT 
PRINT 
PRINT "STRING" 
PRINT AS 
PRINT CHRS(A) 

PRINT 1234 

prints a blank line 
prints a string expression 
prints a string expression 
prints the ASCII . character represented by the 
numeric variable A. 
prints number 1234. 

128 



p 

':;:C 

f' 
~D: 
~l;~~ .. 

,' .. :,' 
~ci;:: 

f 

PRINT N 
PRINT X 2+Y /3. 
PRINT "<cursor con
troL keys specifying 
row and co Lumn>" 

PRINT TAB(N) 

PRINT "<coLour con
troL keys>" 

PRINT SPC(N) 
PRINT POS(N) 
PRINT "CLR/HOME" 

LIST 

LIST L1 - L2 

LIST - L 
LISTL-

prints a number N. 
prints a number. 
moves the cursor to the row and column specified, 
using the cursor commands up, down, left, right 
and home. See later in this Section on various 
supplementary methods of formatting output. 
moves the print position to column N. For exam
ple (and remember that semicolons are optional 
here): ." 

PRINT TAB(5) '''NAME'''TAB(15) 'A$ , , ' 0 " 
changes the c;:olour of characters printed on the 
screen. The effect lasts until the colour. is changed. 
.Colour items are .set up using ' the . CTRL and 
number keys . 
prints N number of spaces. 
returns the current print position. 
(press HOMEiCLR key); clears the screen 
lists a program in memory on the screen starting 
from the lowest line number onwards. 
lists program lines L1 to L2 

lists program lines from· start to line L. 
lists program lines from line L omvards. 

M4: Formatting numbers 
Consider a table of numbers containing integer and decimal parts in which the 
decimal points are aligned and all numbers are printed to a given number of 
decimal places. Zeros are to be added where required or the nUll1ber truncated. 
Signs will be included.' . ' 

Unformatted 

3.61 
-21 .4 
2 
.36428 

Formatted 

3.610 
-21.400 

, ' -

2.000 
.364 

The first method is to set up a print image, a standard number format to which all 
numbers in the table will be printed. In the program below, the print image is 
created with integer characters r and decimal characters d (lines ' 10, 20). The 
print position for the table starts at t (line 40).Jlor each number input (lines 
50,60) the number of characters d are counted (line 80) to the decimal (lines 100-
110). Consider 3 conditions: 

• the number is integer only (line 130). The required number of zeros to/make 
our number fit the image are added (line 130) using a string of zerosf:$ (line 
6) and then print the number (line 150) at the top position by adding spaces to 
fit the image. 

• where there are more decimal digits than required (line 135). In this case the 
length of the number string is reduced and then it is printed. 

• trailing zeros need to be added (line 140). 

If a number that is out of range is entered the program provides a prompt. · . 

129 



EXERCISE 
• Enter the pro.gram and test it by cho.o.sing an image and enter a wide range o.f 

numbers. 

1 PR I NT II ~'::I" 
5 S$=" " 
6 Z$="OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO" 
7 C$= II ·0i!I"" -"";~'-'f'·~:r'i!il¥i'I'~''i'I·i!i'1'71'-~·p(I·!i:I·r.i'~~·~'I·T12'1~'~iltiml'jii:I" !*:J.!!.I.I!!.I.f!!.I.!!04.P.! . ,tAo ..t.!:!-I . ..I.!! .l!!.I. ... . .. .... !!.1. A.! . .. 0. .I!!.I . . .... . . 

8 D $ = II ~il~'ilIlH~'II~'lIfiijrU!iIIi'RIi'IIIUUnm1lfdli'Hnu'Ij'H~'H!iHn~K~'il~·mii'HID·II.·II~nl~i·U~·II" 

10INPUT"INPUT REALFIELD";R 
20 INPUT"INPUT DECIMAL FIELD";D 
30 INPUT"HOW MANY NUMBERS";N 
40 . INPUT"TAB POSITION"; T: PRINT"~']" 
50 FOR 1=1 TO N . 
60 PRINT LEFT$(C$,2);:INPUT"INPUT NUM~ER 
";N$ 
70 LN=LENCN$):Di=o 
80 FOR J=l TO LN 
90 IF MID$(N~,J,l)="." THEN 110 
100 Dl=Dl+1:NEXT J 
110 IF D1)R+l'OR D1>R+D+1 THEN PRINT"NUM 
BER OUT OF RANGE":GOTO 60 
120 IF Dl=LN THEN N$=N$+ ..... +LEFT$(Z$,D): 
GO TO 145 
130 IF LEN(N$)-D+l>D THEN N$=LEFT$(N$,Dl 
+l+D):GOTO 145 

, . . " \ ! 

140 N$=N$+LEFT$(Z$,D-(LN-(D1+1») 
145 M=LEN(N$) 
150 PRINT LEFT$(C$,(10+I»;LEFT$(D$,T);L 
EFT$(S$,(R~Dl»;LEFT$(N$,M) 

160 NEXT I 

Defining printing functions 
A neat way o.f justifying and rounding numbers uses the DEF FN instructio.ns. 

Justifying 

DEF FNj(n) = (LEN(STR$( INT<n»» + (n<1) - (n<O) -(n=O) 

First define a functio.n which will line numbers up under the decimal po.int. 
Co.nsider a number n=132.463. If the po.sitio.n o.f the decimal po.int is fixed as p, 
to. print the number start at co.lumn p-3 o.r p-i, where i is the number o.f digits in 
the real part. The number o.f digits is fo.und in the real part o.f anumher by: 

• taking the integer part o.f the number I NT ( a ) 

• turning this into. a string S T R $ ( I NT ( n ) ) 

• taking the length o.f the string LEN ( S T R $ (I NT ( n ) ) ) 

So. fo.r mo.st numbers the functio.n LEN ( S T R $ ( I NT ( n ) ) ) will yield the number 
o.f the co.lumns back from the decimal po.int to. start printing. Ho.wever, numbers 
less than 1 must be considered, the number 0 and negative numbers. 

130 

, .. 2 



Numbers less than 1 
These are printed with no zero before the decimal point: .ON, or .0123. Try this: 

.- ... . 

PRINT .0123 .. . 
PRINT 0.0123 

The integer value of .0123 is O. As a string, 0 has the length 1. The printing of the 
number .0123 will start one place to the left of the decimal point column, which 
is incorrect. The function must be corrected for this. 

For numbers less than 1 a column must be added to the decimal point position 
P. This is done by testing if the number is < 1 and subtracting one from the value 
of the function if it is. This is best done logically: 

+(n< 1) 

n < 1 will give the value 1 if TRUE, 0 if FALSE. Try this: 
PRINT .03< 1 

and 
PRINT 3< 1 >. 

So our function now becomes: 
(LEN(STR$(INT(n»»+(n< 1) 

Negative numbers . 

. . 

. ~ , 

Negative numbers are <0 but also <1 which has been corrected intthe function. It 
is recorrected by subtracting one from the function if the nUll).ber is negative, . . 

usmg 
-(n<O) 

. 
Negative numbers are printed with the sign first. The integer value of a 
negative number is given as the integer part of a rounded up number: 

INTC-30.1) = -31 

The length of the string of this integer value will be 3; that is, it includes the 
negative sign. 

So our function now is: 
• 

DEF FNj(n) = (LEN(STR$(INT(n»» + (n< 1) -(n<O) 

Zero 
The number zero is less than .1, which has been corrected for, so one must be 
subtracted from our function with: 

-(n=O) 

The complete justifying function is: 
D EF N j (n) = (L E N ( S T R $ (I N TC n ) ) » + (n < 1) - Cn <0) - (n = 0 ) 

Choose the decimal point position as column p' and print ~umber n as: 
PRINT N;TAB(p-FNj(n»;n 

, -.' , . . 

EXERCISES 
• Key in and tun the example program, then save it. 

, 

I 
• 

10 DEF FNJ(N)=(LEN(STR$(INT(N»»+(N(I)
(N(O)-(N=O) 
20 INPUT"INPUT DECIMAL POINT COLUMN )=13 
". p. PRINT" .. q" , • 1.,,1 

30 READ N 
40 PRINT N;TAB(P-FNJ(N»;N 

131 

, 
, 



50 GOTO 30 
60 DATA 100.6,0.3,0.5,10.6,-35.9,0.222,1 
2345.00,0.1231,0.00 

Rounding 
DEF FNr(n) = (INT(n*10td+.5»/10id 

where r (n) is the function, n is the number, and d is the number of decimal 
places. This function rounds numbers to d places of decimals, for example 
n=3.4372 d=2. 

n*10id = 343.72 
n*10td+.5 = 344.22 
INT(n*10id +.5) = 344 
INT(n*10td +.5)/10td = 3.44 

Key in, run and save the following program. . ... 

1 ° DEF FNR (N) = <I NT ( N* 1 ° "1"'D+ • 5) ) / 10 ·t·D 
20 INPUT"INPUT NUMBER OF DECIMAL PLACES" 
;D: PRINT"~'" 
30 READ N 
40 PRINT TAB(3)(N;TAB(15)=FNR(N) . . ~ . 
50 GO TO 30 
60 DATA 3.6322,.0355,25,-23.46,789,-.123 
45 

U sing the functions together 
Care must be taken here, as the program must justify with the rounded number 
and print as: 

PRINT TAB(p-FNj<FNr(n»;FNr(n) 

EXERCISE 
Produce the following program by merging and editing the two previous 
programs. Run it and save it. 

10 DEF FNJ(N)=(LEN(STRS(INT(N»»+(N(1)
(N<O)-(N=O) 
20 DEF FNR (N) = (INT (N*10·"!"·D+. 5) ) /10 -t·D 
30 INPUT"INPUT DECIMAL POINT COLUMN )=13 
.. ; P 
40 INPUT"INPUT NUMBER OF DECIMAL PLACES" 
• D: PRINT''''''''II , I ••• J 

50 READ N 
60 PRINT N;TAB(P-FNJ(N»;FNR(N) 
70 GOTO 50 
80 DATA 100.6,0.3,0.5,10.6,-35.9,0.222,1 
2345.00,0.1231,0.00 

132 

• 

'.; . 
", . 

'" ' . 
, ' :, ". 

'.,':: 
, '. : 

.:. ":,'::' 

" ":'. 
, ,', 

" \',:: 

. . 



M5: Word processing 
In word processing and computer typesetting, the text to be printed can be 
formatted or adjusted for line width and the margin space on either side. 
Additional words and characters can be inserted. Real formatting consists of 
placing spaces of different sizes in between words to make the words exactly fit 
the line. 

In the word processing program below, once you have entered the left and 
right margins (the numbers of the columns where printing is to start and stop on 
each line) you can enter the text that you want printed. The main body of the 
program starts at line 80, which checks to see if the control keys have been 
pressed. The next part of the program from line 1000 calculates the number of 
words that will fit on to the line length specified. This is done as follows: 

• Line 1000 checks to see if the number of characters remaining in the original 
text is less than the length. If it is, the line is printed on the screen; if it isn't, 
spaces are inserted between the words in S$. 

• Line 1030 tests to see if the last character minus one is a space. If it is, the 
original text is altered so that S$ contains the text up to this character, and B$ 
will contain that part of S$ after the space. Line 1090 then inserts spaces into 
the text in S$ so that it can be printed in the specified form. 

The POKE and SYS commands in lines 170 and 180 are to move the cursor to the 
right place on the screen. 

10 
20 

INPUT"SPECIFY LEFT 
INPUT"SPECIFY RIGHT 

30 PR I NT II ::I~I" 
35 LI=O 
40 IF L)R THEN 20 
50 PRINT TAB(L-l);L 
60 PRINT TAB(R-3);R 

MARGINE: 
MARGINE: 

". L , 
"; R 

70 PRINT TAB(L);:FOR 1=1 TO R-L:PRINT"-" 
; : NEXT I 
80 S$=" .. :B$= .... :PRINT:PRINT TAB(L); 
90 GET A$:IF A$="" THEN 90 
100 IF ASC(A$)=13 THEN PRINT:PRINT TAB(L 
>;:S$="":LI=LI+l:GOTO 90 
110 X$=A:t 
120 IF ASC(A$)(> 20 THEN 150 
130 IF LEN(S$)>0 THEN S:t=LEFT$(S$,LEN(S$ 
)-I):GOTO 160 
140 GOTO 90 
150 S$=S$+X$ 
160 IF LEN(S$)«R-L+l)THEN PRINTX$;:GOTO , , 

90 ! 

170 GOSUB 1000:POKE 781,LI+2:POKE 782,L: 
SYS65520:PRINT TAB(L);S$:S$=B$:B$= .... 
180 LI=LI+l:POKE 781,LI+2:POKE 782,L:SYS 
65520:PRINTTAB(L);S$;:GOTO 90 
1000 IF RIGHT:t(S:t,l)=" "THEN S$=LEFT$(S$ 
,LEN(S$)-l):RETURN 

133 

I 

I 
I' 
I, 
I 

, 1 , I 



1010 I=R-L+l 
1020 1=1-1 
1030 IF MIDS(SS,I,l)=" "THEN 1040 
1035 GOTO 1020 
1040 SP=R-L+I-I 
1050 BS=RIGHTS(SS,SP) 
1060 1=1-1 
1070 SS=LEFTS(SS,I) 
1080 1=1-1 
1090 IF MIDS(SS,I,.l)<>1I IITHEN 1110 
1100 IFMIDS (SS, 1-1,1) <)11 "THENSS=LEFTS (S 
$,1)+" "+RIGHTS(S$,LEN(S$)-I):SP=SP-l 
1110 IF SP=O OR 1=1 THEN 1120 
1115 GOTO 1080 
1120 IF SP>O THEN I=LEN(SS):GOTO 1080 
1130 RETURN 

EXERCISES 
• Key in and save the program. 

• Set different margins, and study the method using ragged and formatted 
text. 

• Think about how you might modify the program to delete and insert words 
or characters. 

, , ' 

134 

a 



':', 
::;', 
,-. 
, 

-- ---~----,-:--~- ---

Section N: Subroutines 

Nl: Subroutines 
A subroutine in BASIC is a program module performing an allotted task and is 
entered using a GaSUB statement. The section of the program is exited by a 
RETURN statement, which sends the computer back to the line following the 
GaSUB statement. A subroutine must only be entered via a GaSUB statement 
and exited by a RETURN statement. 

So these two instructions are used to create subroutines: 
GOSUB (line number) transfers control to the specified line number 
RET U RN leaves subroutine and returns control to the line 

immediately after the GaSUB instruction which 
transferred control to the subroutine. 

Here is an example of the program structure for these instructions: 

100 
110 
120 
130 
140 

-500 
510 

(3) 520 

L 530 
540 
600 

• • • 
GOSUB 500 ------- (1) -..., 

• • • 

• •• 
GOTO 600 
~~~ *SUBROUTINEj 

• . . (2)
• • •
RETURN
END •

• GaSUB goes immediately to line indicated (500)

• continues program (lines 500 - 540) until RETURN reached

(4)

• program returns to line 120 (the line immediately after the GaSUB state
ment).

- - -

It is vital to ensure that a subroutine is not entered aCcidentally when writing a
program. Note that line 140 does this by using a GaTa statement to bypass the
subroutine. Line 600 could continue the program or end it; it is good practice to
end a program with the highest number, but in this case 1 40 S TOP could also be
used.

Subroutines are often used for repeated procedures and are unique program
structures:

Main routine

100
110 GOSUB 500
120 4~~------

130
140 GOSUB 500
150 4.~-----

160

Subroutine

500 REM * SUBROUTINE *
510
520

;'
/

I

530 REM * END OF SUBROUTINE *
540 RETURN

135

I ,

i r-
; -

I
" I'

; -
;

I
~ i
i ;

I '

I
II q

I .'

I '
I

I

i -
, i

i ,

I
I ,

: I , ,-

,
-

: I

i

The computer stores the line number of the GOSUB instruction (whereas it
doesn't with a GOTO). The RETURN instruction transfers control back to the
line number after the latest GOSUB. As shown above, this means that you can
enter a subroutine repeatedly in the course of a program.

N2: Subroutine example
The example program given below evaluates the circumference and area of a
circle, and has a subroutine to round the results to two decimal places. The
program works as follows:

• calculates the circumference (line 40), and makes this figure equal to variable
Z (line 45), which is the variable the subroutine will round.

• enters subroutine (line 50).

• corrects answer to 2 significant figures (subroutine lines 200 - 230), and
returns with rounded value of Z to line 60, which

• prints out circumference (line 60).

The same procedure is then repeated for the area, the subroutine being entered
(called) again in line 90. Lines 200 to 230 of the program are then executed again,
but the RETURN statement this time returns control line to 100 (the next line.
after the last GOSUB statement).

It is essential to have line 110, which prevents the subroutine being entered
accidentally when the calculation is complete.

10 REM**CIRCLE**
20 INPUT"ENTER RADIUS";R
30 PRINT"::'~RADIUS IS "; R
40 C=2*-rr*R
45 Z=C
50 GOSUB 200
60 PRINT"CIRCUMFERENCE IS I/;Z
70 A='rr*R ·'t2
80 Z=A
90 GOSUB 200
100 PRINTI/AREA IS ";Z
110 GO TO 300
120 REM**MUST NOT ENTER A SUBROUTINE EXC
EPT BY A GOSUB**
200 REM**SUBROUTINE TO CORRECT TO TWO DE
CIMAL PLACES**
210 Z=INTC100*(Z+.00S»
220 Z=Z/100
230 RETURN
240 REM**END OF SUBROUTINE**
300 REM**END OF PROGRAM**

The second example is a program to evaluate the sum of the series 1 + 1 /2 ! + 1 /
3 ! + ••• + 1 /1 O! to 6 decimal places. (The exclamation mark (!) means factorial.
Factorial 5 (5!) for example is 5 x 4 x 3 x 2 x 1.

136

..

In this program there are two separate subroutines, both entered repeatedly.
The first is to evaluate the fractions and the second corrects the answer to 6
decimal places. Although it is not essential to use subroutines in such a program
it does improve the structure and make it considerably easier to follow the
sequence of operations.

10 REM**FACTORS**
40 S=O
50 FOR Z=1 TO 10
60 GOSUB 200
70 T=l/X
90 S=S+T
100 PRINTZ;" TH TERM IS
110 NEXT Z
120 GOSUB 300
130 PRINT

II. T ,

140 PRINT"SUM OF SERIES n;v
150 GOTO 400
200 REM**SUBROUTINE FACTORIAL**
210 X=l
220 FOR N=l TO Z
230 X=X*N
240 NEXT N
250 RETURN
300 REM**SUBROUTINE TO 6 D.P.**
310 V=INT(lE6*(S+5E-7»
320 V=V*1E-6
330 RETURN
400 REM**END**

Results on screen:

1 TH TERM IS 1
2 TH TERM IS 0.5
3 TH TERM IS 0.166666667
4 TH TERM IS 0.0416666667
5 TH TERM IS 8.333333334 E -03
6 TH TERM IS 1.38888889 E -03
7 TH TERM IS 1.98412698 E -04
8 TH TERM IS 2.48015873 E -05
9 TH TERM IS 2.75573192 E -06

10 TH TERM IS 2.75573192 E -07

SUM OF SERIES 1.7182862 /

Trace the program through for the first two terms to ensure that you c~n follow
the flow.

N3: Nested subroutines
This technique is similar to nested loops in that a subroutine is entered from
another subroutine. In the simple example given below, the program enters the
first subroutine (line 300) and from within this calls up the second subroutine

137

_ __ _ - ... ,._ ''''' .. ,_._ " _ .. """"", '- " . "'. -" "", ... , ;;, ',',': - """ ". "" _ " ",' ", ",", ',' '.", .. "·" T· .. ·,

(line 320 calls up a subroutine at line 400), which is completed and returns (line
420) to the first subroutine which is then completed. See the diagram below of
the program flow.

Hand trace this program to discover the result of running it. . (Note: this
program is used only to illustrate nested subroutines; the calculation carried out
clearly could be done more easily without them.)

10
20
'0 '-'
40
50
300
310
.::. 70

REM**SUBROUTINE1**
M=5
GOSUB 300
PRINT M
GOTO 500

REM****lST SUBROUTINE****
M=M+l
GOSUB 400

340
350
400
410
420
430
500

REM**RETURN TO MAIN PROGRAM**
RETURN
REM**********************
REM****2ND SUBROUTINE****
M=M*(M+1)l2
RETURN
REM**********************
REM****END OF PROGRAM****

The diagram illustrates the procedure in the above program for two nested
subroutines.

(7)

30 GOSUB 300
40
50 GOTO 500
300
310 .•..
320 GOSUB 400

....... 330· .•..
~- 340 RETURN

(5)
350
400
41 0

"-420 RETURN
430 ..•.
500

(1)

(2)

(3)

1 Subroutine 1 is called at 30. Enter first subroutine at 300.
2 Start executing first subroutine.
3 Subroutine 2 is called at 320. Enter second subroutine at 400.
4 Execute second subroutine.
S RETURN at 420 returns program to 330.
6 Continue execution of first subroutine.
7 RETURN at 340 returns program to 40.
8 Statement to avoid entering subroutines accidentally.
The second example is typical of a computer games program. The nested
subroutine ensures that the computer's move is printed out each time before the
player makes his move.

138

-

--0 . --.-

, --:-
- --.-.

-
,

10 REM**NESTSUB**
20 REM**PART OF GAMES PROG**
30 X=3
40 GOSUB 600
50 PRINT"YOUR MOVE WAS ";M
60 PRINT"COMPUTER MOVE ";X
70 STOP
600 REM**SUBROUTINE PLAYER**
·610 GOSUB 700
620 INPUT"YOUR MOVE"-M

'. ,
630 RETURN
700 REM**SUBROUTINE COMPUTER**
710 PRINT"COMPUTER MOVE ";X
720 RETURN

Note that it would make no difference if the nested (called from a subroutine)
subroutine were to start at a lower line number than the subroutine which called
it. Subroutines are always discrete program modules, wherever they are located
•
In a program.

N4: Recursive subroutines
A recursive subroutine is a subroutine that calls itself. This facility is not
available in some versions of BASIC used on other computers. For some purposes
it can be a very useful program structure. From within a subroutine, a GOSUB
instruction is used to transfer control so that the program re-enters the
subroutine. The computer stores each GOSUB call, with the line number to
RETURN to, just as if the GOSUB call had been made to a different subroutine.
The RETURN instructions are executed in reverse sequence to the order in
which the GOSUB instructions were encountered.

The example program below evaluates the factorial of any number N, input as
an integer less than 30. First the program, then the explanation:

10 REM**RECSUB**
·20 INPUT"TYPE A NUMBER LESS THAN 20";N
30 IF N>20 THEN 200
40 GOSUB 100
50 PRINT F
60 GOTO 220
100 REM**SUBROUTINE**
110 IF N<>l THEN 140
120 F=l
130 GOTO 180
140 N=N-l
150 GOSUB 100
160 F=F* (N+l)
170 N=N+1
180 RETURN
200 REM**END SUB**
210 PRINT"OBEY INSTRUCTIONS":GOTO 20
220 REM***END**

/

To help decipher the program flow, you can insert PRINT statements and add a
counter, in order to code the GOSUB and RETURN instructions with a number

139

~

~
~ ,

[

-

to indicate the sequence in which the recursive calls are performed. Add the
following lines to the program:
5 C=O

35 PRINT N
45 C=C+1

(sets counter to count GOSUB
calls)
(prints first value of N) ,
(first GOSUB call from main

, program) ,
5 5 P R I NT" RET URN TOM A I N PRO G RAM" (final RETURN executed)
145 C = C + 1 (increments counter each time

146 PRINT"GOSUB CALL"; C

147 PRINT"N = ";N

155 PRINT"RETURN CALL"; C

156 C=C-1

GOSUB isused recursively)
~ ,(prints each time GOSUB is used

, recursively)
(value of N before each recursive

, COSUB call)
(prints each RETURN call as made,
corresponding to the GOSUB call
of the same number)
(decrements counter as each RE
TURN is executed)

165 PR I NT" F= "; F ~ ' (value ofF at each stage)
175 PRINT"N = ";N (value ofN at each stage)
Then run the program for N =3. The resulting 'machine trace' screen display is:

3
GOSUB CALL 2
N=2
GOSUB CALL 3
N=1
RETURN CALL 3
F=2

' N=2
RETURN CALL 2
F=6
N=,3
RETURN TO MAIN PROGRAM
6

. ~

If you draw up a trace using the data from this display (as below), you'll see that
the GOSUB at line 150 is executed for each value of N from 1 to N. The RETURN
calls are then made for each value from 1 to N, calculating F each time (line 160)
and incrementing N (line 170), so that the value of factorial N is calculated as
lx2x3 ... X N. The flowchart of this program is quite simple, but the algorithm
is not clear unless the sequence of GOSUB and RETURN calls is understood.

The computer stores each GOSUB call in sequence in a portion of memory
called the GOSUB stack, and each RETURN instruction removes one of these
stored GOSUBs, passing control to the line after the GOSUB call. Confusion is
possible with recursive subroutines because the RETURNs are made to the same
program line each time (line 160 in this case).

50 GOSUB(1)
60
100 N=3
110
120
130

N=2 "-N = 1
F = 1

140 N-2 , N-1 '
150 GbSUB(2) ~OSUB(3)
160
170
180

,', "

main)

140

s:

Flowchart: RECSUB
. .

, " '"

. , ..

.

START

.' INPUT .
N

GOSUB
lf3f3

PRINT
F

STOP

Yes N =

F 1 --

RETURN

• , .

N - 1

GOSUB
lf3f3

.

F=F*(N+l)

N - N+ 1 -

• .. ' ..
' .

(.-' ,

141

---tA

.. ,

' ; . .

I
Ii
I'
!

I
,

" I

,

RETURNS TO LINE
AFTER LAST GOSUB
CALL .

!'

Notice that line 130 passes control to the RETURN statement bf lirte180. Check
for yourself that line 130 could be a RETURN instruction and the program would
still run correctly. This is likely to result in a less visible flow in the program, .
however.

The next program has a subroutine (starting at line 100) which calls itself in
line 150. As for the previous program, insert suitable PRINT statements to print
out the values of the variables and the number of GOSUB calls made. Hand trace
the program for suitable integers, e.g. 15 and 25. The program evaluates the
highest common factor of the two numbers input. Note that in this case there are
no processing statements between the GOSUB call in line 150 and the RETURN
instruction of line 160. The sequence of RETURNs will be executed by control
going repeatedly to line 160 (the line after the GOSUB call), which does the next
RETURN, until the last stored GOSUB is encountered, which will pass control
back to line 50 of the main program.

5 REM**HCF ** .. , - -

10 INPUT"ENTER TWO POSITIVE INTERGERS";M . .
,N
70 GOSUB 100
30 PRINT"HCF OF M AND N IS " • P ,
40 END
100 REM**SUBROUT I NE ** ..
110 P=N
120 N=M-N*INT(M/N)
130 M-o -,
140 IF N=O THEN 160
150 GOSUB 100
160 RETURN
200 REM**END SUB**
"'iO ..:.. ... REM**END**

. .

N5:0NGOSUB
- ". '

ON nv GOSUB L1, L2, L3, . . -. . .
This allows several possible transfers of control to a subroutine, depending on
the value of the numerical variable nv. For example:

10 ON X GOSUB 1000, 3000, 1500

transfers control to subroutine:

at Line 1000 IF X = 1
at Line 3000 IF X = 2
at Line 1500 IF X = 3

10
"'0 ..:..

40
50
60
70
80

PRINT"MAIN PROGRAM"
INPUT"ENTER 1 OR 2 ";X
IF X<l OR X>2 THEN 20 .
ON X GOSUB 100,200
PRINT"MAIN PROGRAM ENDS"
PRINT"NOW BACK TO MENU"
PRINT
GOTO. 10

142

p

100
110
200
210

PR I NT" FIRST SUBROUT I NE" .
RETURN
PRINT"SECOND SUBROUTINE"
RETURN

This technique can be combined with the use of GET togive an instantaneous
jump to the required subroutine. The program waits for a key to be pressed and
then jumps to the required subroutine.

10 PRINT"ENTER 1 OR 2 "
20 GET A$: IF ." A$="" THEN 20

, '

30 I FA$< >" 1" AND ' A$< > "2," THEN
40 ON', VAL (A$) GOSUB '100,200
50 GOTO 10
100 PRINT"FIRST SUBROUTINE"
110 RETURN
200 PRINT"SECOND SUBROUTINE"
210 RETURN

" , ,

N6: Subroutine use

, . . -

20
'1 -

. .. '

.'

.' ,

,

As an example of the use of subroutines, here is a guess-the-numbergame. The
program has three subroutines, one to get the number (lines 160 - 190), one to
check the guess (lines 210 - 300), and one for the success message (lines 350-
410), which sets the marker MARK to tell the main program, which is the loop
between lines 50 and 140, whether the number N (computer's number) is the
same as G (the player'S guess). This defines whether the success subroutine has
been called as a result of the conditional test in line 110.

5 REM**GUESSNUM**
10 MARK=O
20 TRIES=O
30 PR I NT" :~:K3UESS MY NUMBER.""," NUMBER IS

BETWEEN 1 AND 99"
35 REM**GET NUMBER**
40 GOSUB 150
50 TRIES=TRIES+l
60 INPUT"ENTER YOUR GUESS";G
80 REM**GOSUB CHECK**
90 GOSUB 200
100 REM**GOSUB SUCCESS**
110 IF 01=0 THEN GOSUB 350

REM**CHECK MARK**
, '

IF MARK=l THEN 500
GO TO 50

"
120
130
140
150
160
170

REM**GET NUMBER SUBROUTINE**
N=INT(RND(1)*99)+1
RETURN

• 143

. /

I

REM**CHECK SUBROUTINE**
OI=ABS(G-N)
IF 01)50 THEN PRINT,,"FREEZING"

200
210
220
230
0"

IF 01)25 ANO 01(=50 THEN PRINT,,"COL

240 IF 01)10 AND 01(=25 THEN PRINT,,"*WA
RM*"
250 IF 01)4 ANO 01(=10 THEN PRINT,,"**H
OT**"
260 IF DI)O ANO 01(=4 THEN PRINT,,"** *B
OILING* **"
270 RETURN
350 REM**SUCCESS SUBROUTINE**
360 PR I NT" ~"::I:~:I:!ir!l:r!ll:ij:I:!ll:!lllm!i:Ii:t$$$$$$$$$$$" ; TAB (15.·
) ;"$ SUCCESS $"; TAB (30) ; "$$$$$$$$$$" '.
370 P R I NT" .. :I'.., .. ··'r"·'I I·· .. 'lr·'I· .. 'I'~·'I,.·i',. .. 'r·'I' .. ·'I\i··I'""I"':'I'T'I I T TO OK ". T R I ;.. J!~.!! ... ~ .. ~~.I!! .. !! .. I!!~.I!!. l.I.I!!.I.!! .. P.! .. ,h~!~.I!!.I.I.!. • . . .
ES;" TRIES"
380 MARK=1
390 RETURN
500 REM**ENO/RE-RUN MOD **
510 INPUT"ANOTHER GO ? ";A$
520 IF A$= THEN 510
530 IF A$="Y" THEN 10
540 PRINT"OK, BYE"
550 END

The structure of the program is thus:

Module 1: . .

1 Initialise success marker MARK and variable
guesses made (TRIES)

to store number of

2 Print instructions
3 Call GET NUMBER subroutine

Module 2 (main program loop):
1 Increment TRIES
2 Input guess
3 Call CHECK subroutine
4 Check if Guess equals Number. If it is, then call SUCCESS subroutine
5 Check marker. If Success subroutine has been called (MARK=l), then

GOTO END/RERUN module
6 Loop back to Input guess again (1)

Module 3 (GET NUMBER subroutine):
1 Define random number 1 - 99 as number N
2 Return , .

144

"

'" """", -_ .. "-",_.,,,,- -,--_ ... _ .,"""''''''_ .,"'"_.- "''''''', ._ "",.,

Module 4 (CHECK subroutine):
1 Set variable DIFF equal to ABS difference of guess and number
2 Check value of DIFF, print appropriate message
3 Return

. I Module 5 (SUCCESS subroutine):
.~

1 Print success message, number of guesses made
2 Set MARK equal to 1
3 Return

Module 6 (END/RERUN module):
1 Print prompt for input
2 Input response to Another go? (A$)
3 If replay required (A$ = "Y") then GOTO Module 1,3
4 If A$ not "Y" then print end message
5 Stop
Notice that, although this program has been modularised rather artificially to
demonstrate its principles, it consists of an introductory section and a main
program loop with both conditional and unconditional calls to subroutines
within a short main program loop. This makes the structure of the program
clear, and minimises the use of GOTO statements, which would be required in

. profusion if the program were written in a linear, rather than a modular fashion.
It is perfectly possible to write the program in this linear manner, but the
structure will not be as visible.

You should also note that the END/RERUN module is not a subroutine, but
uses GOTO to pass control to this section from the main program, with a
conditional GOTO to pass control back to the main program if required.
Conditional GOTOs are preferable program structures to unconditional GOTOs,
and while the END module could be a subroutine, RETURNing to the main
program loop, further conditions would need to be inserted to pass control to
Module 1 for a new number to be defined. The subroutine would also need to be
exited by a GOTO for the program to stop. There is another solution, however,
involving a nested subroutine, which we will set as an exercise.

EXERCISE
Rewrite GUESSNUM with the END/RERUN module as a subroutine. The
procedure should be as follows:

ENDIRERUN SUB

• Prompt for player input, and get response as before.

• If RERUN not required, bypass 3 and 4 below, by a GOTO the RETURN line.

• GOSUB to GETNUMBER subroutine. This is a nested subroutine. The new
value of N will be set by this operation.

• Re-initialise TRIES as 0 and MARK as O.
/

• Return. ;

The main program loop is then returned to. The main program must then test
whether it is to exit (rerun not required) or continue (new game started). We
could set another marker to test this, but in effect we have done this by re-setting
MARK if a rerun is required.

Rewrite the main program loop, so that on return from END/RERUN
subroutine, the program loops back only if MARK = O. If MARK = 1 then the
program will not loop back and you can either insert a GOTO to bypass all the
subroutines to an end program procedure, or STOP the program before the
subroutines.

145

, ,
i
I:
" i,

, ,

Insert an additional subroutine which prints
1;"ST" , .2;"ND", 3;"RD"

and then TH for other numbers into the FACTORS program (unit N2:
Subroutine example) which you should have saved.

, ,, ;11i

• Write a program which determines how many rolls of a die are required to ,
produce a total score greater than 100 . . Use subroutines to produce . the .••.
random numbers for the die rolls and print out the results. ,

• Let the computer choose a four digit number with no two digits alike. You try
to guess the number chosen. The computer indicates H (too high), L (too low)
or R (right) for each digit in turn and determines how many guesses are
required to get the correct number. Use subroutines to create the number,
input the operator's guess and give the response to each guess.

.
•

.
. ,

-'. i

•

146

, . .

,,'

:'

:.':. .
.:,.
',"

' ..

.':

.;; .

PART THREE

THE COMPLETE
PROGRAMMING METHOD

.I
•

i
!

•

Section 0: Programming
Methods II

01: A recapitulation
Before you are introduced to advanced BASIC programming, it may be useful to
recap what you have studied so far.

The method to design the solution or algorithm to a computational problem
using top down analysis has been explained. You have seen how to break down a
problem into sub-problems which form program modules (using tree diagrams).
You know how to describe the algorithm in concise English sentences called
pseudocode, and how to determine and illustrate the flow of control in the
problem solution by drawing a flowchart. When designing the solution, you
recognise the usefulness of the fundamental programming tools of:

• decision making

• branching as a result of decisions

• direct transfer from one point in the algorithm to another

• repetition

These control structures, as they are called, which are present in all computer
languages, have been discussed in some depth, together with other important
BASIC language fundamentals. The techniques of:

• decision making

• numeric processing

• character handling with strings

• looping through counting and condition testing

• handling of output by printing and plotting

and the realisation of modular techniques in programming by using subroutines
have all been covered.

What's next?
The second phase of the programming method is producing the program itself.
It is important to do this now, so that the programming tool kit is complete
enough to investigate and use the more sophisticated information-handling
facilities to be introduced a little later:

• logical operations on data

• character codes /

• moving graphics I

• graph plotting

• constructing and searching list and data arrays

• how to sort information into order

Once these skills have been mastered, the complete programming expertise can
then be applied to real applications. First you must learn how to code the
algorithms into BASIC language programs, and then debug, test and document

149

--......
them. Further important design rules will be introduced, and finally a summary
of our complete programming method will be provided with a flowchart and
worked example.

So: given an algorithm - which is written in steps in a description called
pseudocode - together with a flowchart - which shows how the steps of the
solution are combined in sequence for the computer to solve the problem - we
must now:
a code the algorithm in Commodore BASIC

b debug and test the program
c document the program

02: The rules of coding and design
Code on a one~to-one basis.
If the description of the algorithm is correct then coding on an almost one-'to-one
basis from statements in the pseudocode or the flowchart is possible. If you
cannot code from the flowchart or pseudocode then further refinement .of the
algorithm is necessary.

Pseudocode descriptions in formal mode of the BASIC language control
structures for decisions and loops are given later in this section. You will notice
that the description itself is concise, with the terms almost the same as BASIC

statements. This is not unusual, as BASIC was designed to do this very thing and
is English-like in its syntax.

To be able to code at all you must of course
Know the BASIC language and its rules.
It is probably the rightlanguage for the job; on the Commodore you don't have
much choice! Actually, it is a question of the ease of programming specific
applications that generates different languages. Most things can be done in
BASIC, although perhaps not efficiently or elegantly. It is often useful to identify
the kind of processing that will be required. When designing the algorithm
consider whether the problem is a scientific or a business application, whether
extensive calculations will be performed or large amounts of list processing
done, whether the data is extensively numeric or string, and whether the
program will be interactive, with a lot of user dialogue.

When coding, avoid spelling and formatting mistakes.
Define and contain each module with REM statements.
For example:

100 REM * SORT MODULE *
200 REM * THIS MODULE SORTS STRINGS *
• • • • •

• ••••

• • • • •

500 REM * END SORT *
Terminate your program properly.
You may have noticed that 64 BASIC does have a special end-of-program
statement which is the END statement. You can, however, put one in using a
REM statement. For example: .

REM ** End of progam **
The Commodore does not process REM statements, but only notes them. When
the above line runs, the program will finish elegantly with a READY message.
You can also stop a program with the STOP statement. Main modules should
finish like this, with subroutines programmed at higher line numbers term
inated with a REM statement. When terminated with STOP a message BREAK
AT LINE ... will be given. .

150

, -
" ". :; :c-:

5 REM * NAME OF PROG *
10 REM * MAIN MODULE *
20 GOSUB 500
30 STOP"
40 REM * END MAIN *
500 REM * SUBROUTINE *
600 RETURN
700 REM * END SUBROUTINE *
800 REM * END OF PROGRAM *

You could also use a GOTO 800 at line 30 to terminate execution on the last
program line, or better (because neater) an END statement.
Always code according to the logical order of processing.
This is usually ensured if you · code from a flowchart, with your flowchart
structured into modules, ie. if you have flowchart groups for the modules in the
program. Take care with the control structures and avoid unnecessary branch
ing, especially with GOTO instructions. Try to make your programs both
readable and efficient - but above all readable!

User friendly programs
Design your programs with the user in mind - and that includes you! Directions
to users should be concise and as few as necessary, both in the program and in
the user guide, if your program is large enough to merit one. Where the user
needs a number of instructions to operate the program, these can be built into an
optional 'help' module or subroutine.

100 REM * USER INSTRUCTION *
110 REM * DIRECTS USER TO HELP SUBROUTINE *
120 PRINT "FOR INSTRUCTIONS PRESS H

PRESS ANY OTHER KEY TO CONTINUE"
130 GET A$: IF A$ = "" THEN 130
140 IF A$ = "H" THEN GOSUB 1000
150 REM * END USER INST *
•• ••••••
1000 REM * HELP SUBROUTINE *
•• ••••••

•• ••••••
1200 RETURN
1210 REM * END HELP *

Users need to know:

• how to run the program

• what form of input data is required

• what output is produced

•

Your program should check on the range and type of input data. If the input
data is out of range or incorrect, the program should not stop with aI) error, but
continue with a message to input correct data. After you have /designed a

. I

program to do a specific task, it is often possible to make it more general - that
is, to do several similar tasks. As you become more skilled and confident in
programming you will be able to generalise, writing a subroutine that enables
users to select options from a menu. This is similar to the exercise you have seen
in multiple decision structures. More user friendly tips are given in the section on
documentation, and useful routines in Unit V2 . .

151

- -- ----

Designing program layout
You must make your program readable. The program design will be modular,
containing specific identifiable segments, subroutines and modules. These
should be labelled in the design of the algorithm and transferred in the coding
orocess.
Each module should be titled or labelled with its function.
For example, as in this program:

10 REM "AVERAGE"
20 REM * PROGRAM AVERAGES ANY NUMBERS INPUT *
30 REM
40 REM * USER ROUTINE *
50 REM * CHOICE OF NUMBERS INPUT *
60 INPUT "HOW MANY NUMBERS DO YOU WISH TO AVERAGE"; N
70 DIM A(N)
80 REM * INPUT ROUTINE *
90 REM * NUMBERS INPUT TO ARRAY *
100 PRINT "INPUT NUMBERS"
110 FOR I = 1 TO N
120 INPUT A(I)
130 NEXT I
140 REM
150 REM * PROCESSING ROUTINE *
160 REM * COMPUTES AVERAGE *
170 SUM = 0
180 FOR J = 1 TO N
190 SUM = SUM + A(J)
200 NEXT J
210 AVERAGE = SUM/N
220 REM
230 REM * OUTPUT ROUTINE *
240 PRINT "THE AVERAGE OF"
250 FOR K = 1 TO N
260 PRINT A(K); " ";
270 NEXT K
280 PRINT "IS"; AVERAGE
290 REM
300 REM * END AVERAGE *

Design your program so that related statements are together.
For example, input/processing/output statements:

• All input statements will be at the beginning of a simple sequential program,
processing in the middle, and output normally at the end.

• For a modular program, input, processing and output routines will be
separate modules or groups of statements within a single module.

• Subroutine modules will usually be placed separately at the end of a
program.

Insert REM statements between program modules as separators.
Program modules are then easily identified. Use blank REM lines, lines of
asterisks, or spaces.
Plan your program layout before coding.
The printed listing of your program is important. Choose a maximum line
width. Break longer lines into shorter ones in REM statements by using spaces.
Compensate for overrun. For example:

REM * AAAAA
AAAAA +

152

Note: remember the maximum line length is 40 characters on the screen, and
each BASIC line can only be two lines long.
The layout should reflect the modular structure of the program.

1 .

2.

2.1

2.2

3.

Designing program output

, .

For the user, the output is the most important part of the program . . Take time
planning it. The output instruction in 64 BASIC is: PRINT, command.
Results should be output with related test.
Label all your numerical output. For example:

I YEARI 1974 I NET INCOME I $5678.65 instead of 1974 5678.65
AVERAGE AGE OF BOYS IS 15 YRS 3 MONTHS rather than 15 3

Display large amounts of output as a table, histogram or graph, and give titles.
For example:

TABLE 1: NET INCOME FOR B. JONES FOR YEARS 1978-1980 i /

YEAR
1978

NET INCOME
$2018.45

. /

Box your tables if possible. The user should not have to look up the program
listing to see what the numbers in the output mean.
Design your output to be easy to read.
Plan it to be attractive to any user of your program including, of course, yourself.
Graphics is a powerful tool for this.

153

Align, space and justify the output.
Plan your output with reference to the screen size and divisions. For tables, align
information central to the heading: justify characters left and numbers right,
except align signs vertically (there are routines in the text for doing this)._ For
example:

STUDENT CODE NAME
876-340 JIM SMITH
27-210 HUNGFO
453-003 SARAH JAY
1-025 DRACULA

Fill in with zeros to get decimal placing correct.
Use space carefully.

NUMBERS
15.003

815.231
-4.000

-100.100

Print output horizontally wherever possible. For example:

TABLE OF POWERS OF 2
2
4
8
16
32 etc

should be:

2
64

TABLE OF POWERS OF 2

4
128

8
256

Do not overdo explanations.

Be succinct.
Make your abbreviations clear.

16 .
512

NDTC=NUMBERS OF DAYS TO CHRISTMAS
Display input data as an option.

32
1024

Allow checking of input data before processing. Make your program check for
incorrect or bad input data.

•

Modular design
Break problems down into sequences of steps to produce programs in which
different kinds of activities are separated. out. These distinctive program
modules are our subroutines or subprograms. Each module has its own name and
address, but in BASIC they are usually referred to by address only: GOTO 100,
GOSUB 3300, where the address is the line number of the first statement in the
module.

There are good reasons for modular design and the use of subroutines and
sub-program modules. They make the logic of the program - its flow - easier to
follow. The clarity of the structure of the main program is improved, while
program design is proceeding by referring to the number of the module intially,
instead of starting to write out the code of the module at that point. The module
can be coded as a separate entity. .

154

"

2

Independent testing of modules is possible, but care must be taken that all
variables have been declared and have their correct values at the start of the
module. Debugging is simpler with this approach,since the module is isolated.
You can lea"ve the coding of a module until a later stage, but you must know
what it will do when coded.

If a module has to be used several times in a program from different places it
need only be written once, and called into action from these points by reference
to its line number.

Program modules can be designed to run sequentially:

START

MODULE 1

INPUT

MODULE 2

PROCESSING

MODULE 3

OUTPUT

STOP

/
,

i'
i

This structure is convenient for simple programs. However, programs can be
structured in terms of subroutines and subprograms being called from a short
and simple main program module.

155

i

l '

l
, 0

;
o

o

,

o •

-; ,
•
1 ,

I ,

f '
;: .
•

:: :
rit :

START

MAIN

MODULE

STOP

MODULE 2

MODULE 3

This structure is convenient for longer, more complicated programs with many
modules and nestings. Subroutines automatically return to the next line in the
main program through the RETURN statement. Other modules are called by
GOTO (line number) and return by GOTO (line number) instructions. GOTO
must be used with thought and care and not excessively. Use a GOSUB unless a return
to a different point in the main module is needed or a multiple return is possible
as a result of a decision to be made within the module.

Nested modules can be treated as other modules and called from within the
subroutine or sub-program, by GOSUB and GOTO instructions. Nested loops
must be contained within the same module, however.

03: Control structures in 64 BASIC

• Each control structure is a program module.

• A formal pseudocode description of each structure is given of the general
form of the control structure.

• A flowchart description is given of the general form.

• The BASIC version is given of the general form.

• A simple example illustrates the BASIC form of the control structure.

• Structures will be written in indented form in the pseudocode version for
clarity. REM statements must be used to show the start and stop lines for
program modules.

• P is a processing operation. It can be a single instruction, a statement or a group
of statements.

• In the formal pseudocode each structure will commence with the title module
(abbreviated to mod), and end with the statement endmodule (abbreviated to
endmod),

• In BASIC each structure will be bounded by REM * S TAR T MOD * and REM
ENDMOD statements.

• Flowcharts will be bounded by START and STOP symbols.

156
,
,

The structures summarised are:
Decision structures

• single decision IF ... THEN structure

• double decision IF ... THEN ... ELSE structure .

• multiple decision case structure

Loop structures

• repeat-forever structure

• repeat-until structure

• whilecdo structure

• FOR ... NEXT structure

The names of the structures are implemented as actual programming language
structure.s in other languages and some forms of BASIC. The FOR ... NEXT
structure is a special form of while-do loop, given a specific implementation in
BASIC.

Decision structures
Single decision: The IF ... THEN structure

IF (condition true) THEN (do something)

Pseudocode

mod
if(condition)

then P
endif

endmod

BASIC

10 REM * START MOD *
20 IF (COND) THENP
30 REM * ENDMOD *

Flowchart

START

STOP

For example: input a number and if it is positive, print it.

BASIC

i
I

• .I

Pseudocode

mod
input A

10 REM * START MOD *
20 INPUT A

P

if A > 0
then print A

endif

30 IF A > 0 THEN PRINT A
40 REM * END MOD *

end mod

157

,
J ,

,

;

i

i.

i:
I '. ,

"
!:
:'
: ~ : ,
i ;

I ;'

" ;
L '

-;-

I

I :,-

.
,

I ,
' ;

,
,

,

i

I ,

I , ,

I': ,

Double decision: The IF ... THEN ... ELSE structure
IF (condition true) THEN (do something) otherwise (if condition is false) do something

else

Pseudocode

mod
if(condition)

then P1
else P2

endif
endmod

Flowchart

P2

BASIC

10 REM * START MOD *
20 IF (COND) THEN G010 50
30 (FALSE TASK P2)
40 GO TO 60
50 (TRUE TASK P1)
60 REM * ENDMOD *

START

T

PI

STOP

To perform the true task (PI in the pseudocode) first, the BASIC implementation
of the structure would test the complement of the condition, so that in the
program below, for example, A > B would be replaced by A (B, and lines 50 and
70 swapped. Note that the standard form of complement would be B (= A, but
we have defined the input numbers as unequal in this case.

For example: input two unequal numbers and print the largest.

Pseudocode

mod
input A, B

if A > B
then print A
else print B

endif
endmod

BASIC

10 REM * STARTMOD *
20 INPUT A, B
30 IF A > B THEN 70
40 PRINT B
50 GOTO 80
60 PRINT A
70 REM * ENDMOD *

Multiple decision structure: The case structure
With this structure the program must select and perform one of several
alternative tasks. The conditions in this case structure are sequential, not nested
and mutually exclusive.

158

Pseudocode Flowchart

mod START
case

if(c'ondition 1 • true) 1 s
then P1
if(condition 2 • true) 1 s
then P2 P1
if(condition 3 • true) 1 S

then P3
F endcase

endmod

P2

BASIC
P3

10 REM * STARTMOD *
20 IF C1 THEN P1
30 IF C2 THEN P2
40 IF C3 THEN P3
50 REM * ENDMOD *

STOP

For example: Test whether a number input is positive, zero, or negative, and
print the result.

Pseudocode

mod
input A
case

if A<O
then print"NEGATIVE"

if A=O
then print"ZERO"

if A>O
then print"POSITIVE"

end case
endmod

Flowchart

START

INPUT A

F

F

STOP

159

PRINT
NEGATIVE

PRINT g J----1

PRINT
POSITIVE

,

~---------------------------- ... --. -

,

.L

, ,
,

; I , , . .

,

BASIC

10 REM * STARTMOD *
20 INPUT A
30 I F A < 0 THEN PRINT "NEGATIVE"
40 IF A = 0 THEN PRINT "ZERO"
50 IF A > 0 THEN PRINT "POSITIVE"
60 REM * ENDMOD *

Alternatively, conditional and unconditional GOTO statements could be used to
implement this structure. This would be appropriate if the processing section of
a program after the decision were several statements long.
BASIC

10 REM * STARTMOD *
20 INPUT A
30 IF A < 0 THEN 69 30 IF A<O THEN PRINT "NEGATIVE"
40 IF A = 0 THEN 80 OR 40 IF A=O THEN PRINT "ZERO"
50 IF A > 0 THEN 100 50 IF A>O THEN PRINT "POSITIVE"
60 PRINT "NEGATIVE" 60 REM * ENDMOD *
70 GOTO 110
80 PRINT "ZERO"
90 GOTO 110
100 PRINT "POSITIVE"
110 REM * ENDMOD *

Loop structures

The repeat-forever loop
This loop is normally useless. The only conceivable result is to stop the program
with an arithmetic overflow report or a user break.

Pseudocode,

mod . j
repeat
P
forever

endmod

Flowchart

START

p

BASIC

10 REM * STARTMOD *
20 P
30 GOTO 20
40 REM * ENDMOD *

This structure is for demonstration only; it must be avoided in programs. It can
sometimes occur in error. Use the RUN/STOP key if you suspect your program has
entered such a loop (because nothing happens).

The repeat-until loop
Repeats processing until a condition is true. These structures loop until a specific
termination condition is met, for example until a counter reaches a certain value
or until a dummy or sentinel value is input. The important characteristic of this
loop structure is that the repeat test (or exit test) is at the bottom of the loop, after

160

· __ _.. .. _ _ -_ .. __ __ .- --------.... ------------------~"'__1

.. ..

th~ processing body. The program lines making up the body of the loop (P) will ..
be executed at least once. The repeat condition can use any conditional operator
or its complement (reverse), for example equals = or not equal <>. Use of the
complement often leads to a more elegant program.

~ ,

•

Pseudocode

mod
repeat

P
untiL(condition is

endmod

BASIC

10 REM * STARTMOD *
20 P
30 IF (COND) THEN SO
40 GOT020
SO REM * ENDMOD *

BASIC using complement

10 REM * STARTMOD *
20 P

true)

30 IF (COMP COND) THEN 20
40 REM * ENDMOD *

Exit requires no specific instruction.

Flowchart

STAR

P

s'rop

For example: input and print strings until the sentinel value LAST is input.

Pseudocode

mod
repeat

input A$
print A$

unt i L A$=" LAST"
end mod

BASIC

10 REM * STARTMOD *
20 INPUT A$
30 PRINT A$
40 IF A$ = "LAST" THEN 60
SO GOTO 20
60 REM * ENDMOD *

BASIC using complement

10 REM * STARTMOD *
20 INPUT A$
30 PRINT A$
40 IF A$ <> "LAST" THEN 20
SO REM * ENDMOD *

161

Flowchart

START

INPUT A/t

PRINT A/t

I

F

STOP

,
;:

, ,
"

I
, ,

I
;

I , ,
, ,
1 , ,
I:
, ,
", .
i ,
I
i.

• ::

, ..

.1 ,

i;

'r ;

':', ;

, ;
·

·
· ·
: i
.', ;
" .
. ': .
_,: i
, !

•

While-do structure ·
While a condition holds (TRUE), keeps repeating the processing until the
condition is broken (FALSE). The condition can be, for example, that a
loop-counter variable value is not equal to its final value (I F N < 1 0 THE N ._ .).
The process will then repeat until it is. The condition may also be set so that a
sentinel value has not occurred (I F N < > 6 THE N .••). These conditions are set
so that the true pathway is the process task, and the false is the exit. The
while-do loop is characterised by having the repeat test carried out prior to the
body (Le. at the top). No processing will happen if the repeat test is false at the
first encounter, and the body of .the loop will not be entered.

Pseudocode .

mod
whi Le(condi tion • , s

do P
endwhi Le

endmod

BASIC

10 REM * STARTMOD *
20 IF (COND) THEN 40
30 GOTO . 60
40 P
50 GOTO 20
60 REM * ENDMOD *

Flowchart

true)
START

COND EXIT

T

p

Using the complement of the repeat condition gives a neater program .

BASIC with complement

10 REM * STARTMOD *
20 IF (COND) THEN 50
30 P
40 GOTO 20
50 REM * ENDMOD *

For example: While the value of the square of consecutive integers is le~s than
100, print them on the screen. '

Pseudocode

mod
n = 1
whi Le n*n<=100

do print n*n
n=n+1

end whi Le
endmode

FOR ... NEXT loop

BASIC (complement)

10 REM * STARTMOD *
20 N = 1
30 IF N*N>100 THEN 60
40 PRINT N*N
45 N = N + 1
50 GOT050
60 REM * ENDMOD *

Repeats a process a stated number of times. These are in fact while-do loops and
have the repeat test at the top of the loop.

162

,

!
, i

>.

For example: Print the values of the first ten integers.

Pseudocode BASIC

mod
n = 1 .

,WhiLe n < = 10
do print n
n = n + 1

end whi Le
endmode

10 REM * STARTMOD *
20 FOR N = 1 TO 10
30 PRINT N
40 NEXT N
50 REM *ENDMOD *

FOR ... NEXT loops have their own flowchart symbol, because they are used so
extensively in BASIC. ,

Ordinary

N - 1

EXIT

. YES

PRINT

1'1 = N+l

This illustrates both a
While-do and a FOR
NEXT structure. .

Special

N - 1 NO

< - 10 EXIT

-~N = N+l

YES

PRINT
N

This is a condensed version. It groups together
the FOR - NEXT - STEP instruction elements,
which the standard form separates.

(

04: Program Development
Program development includes debugging the program of errors, testing to see if
it behaves as specified and gives the desired results, and documentation, which
tells users how to run the program. ,/ , .
Debugging ;'
The 64 machine has good editing facilities and error messages. The error
messages have a brief statement of the type of error: It seems inefficient to
correct errors one at a time, because there is seldom only a single error;
programming mistakes tend to compound one another. But error messages are
produced singly, when an error stops the program. Thus you must deal with the
errors as they occur. You may notice a number of errors on carefully looking
through the listing; any you spot should be edited out at once.

· 163

Get to know your computer error codes.
This wiH happen automatically in time (as you make mistakes!) but it is
worthwhile studying the codes. They define the ways in which run-time errors
occur, and an understanding of them will help you avoid bugs.
Keep notes on mistakes you make and how you correct them.
This should become an automatic part of your personal documentation. Keep
copies of old program listings. Record the errors you have made, the corrections
you tried but which did not work, and what you learned in developing the
program.
Trace the impact of any error through the problem.

Syntax errors
These are caused by BASIC statements you key in which do not obey the language
rules of 64 BASIC. If there is an error the interpreter will say S Y N T A X ERR 0 R IN
LIN E N on the screen. To correct this type of error you must compare the syntax
you have written with the rules of BASIC.

Program logic errors
These are the result of bad logical design of the program. They can be avoided if
care is taken in design and coding; if a program produces incorrect results then .
there is an error in the flow of logic in the program. This may only occur with ·
certain values of data.

If each program section or module has been tested independently, then the
linking of the modules is incorrect. You can test program sections as follows: .
a Insert a temporary breakpoint into the program, at an appropriate

point, using a STOP instruction.
b Print out values of intermediate results to the screen.
c It is important to print out the values of variables used in making a .

decision and those used in loops, either counter loops or FOR. .. NEXT
loops.

d Go back to the pseudocode or flowchart and modify the steps which are
in error. Walk through the algorithm, using a flowchart, to check the
step sequence, and hand trace the program with selected values of data
and/or variables. Be careful! Often changes in one part of the algorithm
cause changes in the others. Remember that solving one problem may
cause a new one.

e Change the documentation if necessary. Note down the changes you
have made, or lines you have deleted. Keep program listings.

f Re-test the complete program, using a variety of data.
Each testing statement in a complex program should be headed by a remark
statement.

1000 REM - DEBUG
-
-
-
-
- REM - END DEBUG

These temporary REM statements are later deleted by keying in their line
numbers, as are the testing statements. It is very easy to leave in test instructions
unless they are marked.

164

Inserting break points
You can stop a program at any point and obtain the values of variables,
expressions, etc to test calculations or check for errors. This is done by inserting
a group of"statements which will output the values we want and then stop the
program. .

MODULE
_ Add test output of variables
_ Insert a STOP statement

CONT will restart the program.
Individual modules or sections of programs can be tested this way. The

program has to be RUN, of course, from the required module line number. Care
should be taken when this is done that variables needed in the module have
declared properly and that the values of parameters passed to the module are as
required. Remember that you can INPUT the values of variables directly if
necessary, using the command mode, and using LET statements, which is
implied by the 64:

X (2) = 2 0 etc.
The value of any variable at the point the program crashed can also be obtained
by keying a statement without the line number, and again using the computer
in command mode:

PRINT A$
PRINT X(3)

The commands RUN N (where N is the line number you · wish to run the
program from) and GOTO N enables you to run the program starting at any
point. Using GOTO N does not negate the initialisation of variables that occurs if
the program has already run. For example, if you input:

10 A = 1
20 B = 2
30 PRINT A, B

Enter GOTO 30. This prints 0, O. Now enter RUN followed by GOTO 30; this
prints 1, 2 as A and B have been assigned the values 1 and 2 respectively.

Run-time errors
These are a result of programmer carelessness and do not prevent the interpreter
from translating the program. They make the program crash when you attempt
to run it; that is, they prevent the program from running to completion.
Common run-time errors include:

• arithmetic overflow

• lack of data for processing

• failure to complete loop increment and subroutine section statements

• subscript out of range /

• memory full /
•

• integer out of range
,

As you have seen, run-time errors cause diagnostic system messages to be
printed. These appear on the screen and are called error messages. These errors
can then be traced through the type of error given by the code and the line
number at which the program stopped.

165
f

.

• , ,
i

; .

Error messages
Error messages or reports are presented on the screen when a program stops for
any reason, either as a result of successful completion (no more program lines),
an instruction or command (STOP, BREAK), or a run-time error. The 64 gives an
error report code, with a brief statement in the form:

[XXXXXX ERROR] IN LINE N

where XXXXXX is type of error. Report codes are crucial aids to debugging
programs; without them, you would know only that there was an error, but not
where it occurred or what type of error it was. The error message at least gives
clues. The cause of an error might be earlier in a program than the line where the
program stopped; for example, where a numeric value wrongly defined or
generated by the program causes another expression to cause an arithmetic
overflow. But without the message you might have no idea where to start

. looking.

Lists of error messages and their meanings for the Commodore 64 is given in
Appendix IV.

Testing and verification

Testing comes after debugging a program. Its purpose is to ensure that the
program is logically correct, produces correct answers and meets the specifica
tion of its purpose.
First test each module separately.
Each procedure and subroutine should be treated as if it were a separate
program. Test for:

• good data - the expected type and range of inputs

• bad data - out-of-range and incorrect type inputs

Try to ensure that each procedure fails softly. For bad data (particularly in a data
entry module), following each input a check routine or procedure should be
used to give an error message if the range is incorrect, or to check the type of
input and correct syntax. This is best done with strings, which are more flexibly
handled. See Section V, which deals with input checks at length.
Combine the modules and test the complete program.
If there is a logical error (that is, if the program does not produce the intended
results) insert additional test statements which will:

• output intermediate results

• output values of variables at each stage

• output results of expressions at each stage

• output values of the loop counter at each pass

• output results of array manipulation after each operation

• output values of parameters before and after a subroutine's entry and return

Provide for exceptions.

• test all data in the program

• screen all data

• process only good data

• output bad data saying why it was bad

Let your program stop elegantly.

• When there is no data input or data available, the program should tell you so

166

• 64 BASIC programs are interactive. The user can control program continuation
with:
910 PRINT "PROCESSING ENDED - MORE DATA? YES OR NO"
920 INP.UT A$
930 IF A$ = ."YES" THEN 100
940 PRINT "GOODBYE"
950 END
960 REM PROGRAM END

Rewrite the program until you are satisfied with it.
Remember the program should be:

• structured

• easy to read

• easy to understand

• handle exceptions

• be as efficient as possible

• documented

and it must solve the problem as specified!
Put clarity before efficiency.
A good program algorithm does not have to be clever, difficult to understand or
run super-fast. If you do not understand how the algorithm works, don't use it
- rewrite it or use another method. Programs will work correctly if the rules of
the language are obeyed, and the program will work to specifications if the
algorithm is properly designed. .

Documentation
Annotate and document your program to create a readable program.
Write an explanation for each program module or segment. At the beginning of
each segment provide suitable comments which explain:

• the purpose of the algorithm

• the variables and their significance (the values they store)

• the results expected

Use comments only where necessary:

• don't comment each program line

• don't explain the obvious

• at the beginning of the program, provide a block of comments that explain
the program at each module and provide a comment which explains what the
module does in relation to the program.

Clear comments should appear separated from program code. The clearest
comments are framed. For example:

, !
10 REM * * * * * * *

,
i* *

20 REM * SUBROUTINE TO i *
30 REM * CALCULATE N TO 2 D • P • *
40 REM * *
50 REM * * * * * * * * *

Lines of asterisks provide visible dividers between sections of program.
Use comment in the program and in the output to the screen or printer. Use

blank REM lines or spaces as separators in the program. For large programs
write a reference document:

167

• Describe the algorithm you used. If it is not original you should include a note
of its source, author, version, and type of computer it was written on.

• Explain how you wrote the program, the reasons for writing it, the type of
computer used and memory required.

• Make a note of areas that may need improving, or could be modified for
different purposes.

• Which modules are general (menus, subroutines), and which require specific
kinds of input.

• Explain the scope and limitations of the program.

• Include your name, and the date of production.

List the tests you made and data used. Reproduce some of the results of the
tests.

List performance tests (eg. how long it takes the program to run).
Give user instructions and reproduce the output of a run and explain to the

user how he uses the program.
Give the program characteristics. Explain any abnormal behaviour of the

program (eg. response to bad input).
And finally, write a user guide, for an ordinary user, not for a computer

expert. It should explain:

• the purpose of the program

• the algorithm

• how to run the program

• what input is needed

• what results are printed

• how to use the menu (if included)

05: The complete programming method
Summan;: the structured programming method
1 Produce the algorithm.

1.1 State the problem fully
1.1.1 State the problem
1.1.2 Understand what is to be done
1.2 Research the problem
1.2.1 Research and analyse the problem to see how the computer can handle

1.2.2
1.2.3
1.3
1.3.1
1.3.2

1.3.3

it
Identify all formulae and relations to be used.
Identify all data involved
Design the algorithm, using top-down structured methods
Break the problem up into sub-problems or modules
Use a structure diagram or tree diagram to help in breaking down the
problem
Start classifying modules or parts of modules as:

o output

o processing

o output
,

168

. .
.

..
.

1.3.4 Utilise the fundamental control structures in the modules:

o decision structures

o transfer structures

o loops

o subroutines

o nested structures

o subprograms
1.3.5 Set up a DATA TABLE in which all data types are classified as:

o variables

o constants

o counters

o functions (if using a Commodore and the DEF FN instructions)
1.3.6 Define the algorithm further until coding it into a BASIC language

program is an easy and obvious exercise.
1.4 Describe the algorithm in pseudocode and flowchart form
1.4.1 Write out the final algorithm (now in modular form) in small steps in an

abbreviated English style called pseudocode. Each module should be
treated separately and labelled.

1.4.2 Illustrate the logical flow of control in the algorithm by constructing a
flowchart.

1.4.3 Test the algorithm, if necessary using a hand trace or walk through.

2 Produce the program.

2.1 Code the Algorithm in 64 BASIC
2.1.1 Code on a direct basis from the pseudocode or flowchart description in

line-numbered BASIC statements, module by module.
2.1.2 Implement the fundamental control structures, used in their 64 BASIC

• verSlOns.
2.2 Debug and test the program
2.2.1 Debug the program. Check the program variables against your algo

rithm test. Correct syntax, run time, and logical errors.
2.2.2 Test the program for further logical errors. Run the program with

sample data.
2.3 Document the program. For a full documentation, you should:
2.3.1 Produce a programmers' guide, consisting of:

2.3.2
2.3.4

o pseudocode

o flowchart

o variable table or data table

o program listing

o test results or sample printout
Detail the steps that producing the program involved.
Write a user guide.

169

/

,

"

Summary of the method in flowchart form
Here is a diagrammatic summary of structured programming:

A

START

FIND OUT WHAT YOU
HAVE TO DO.
STATE THE PROBLEM

DRAW A STRUCTURE
DIAGRAM OF HOW YOU
ARE GO I NG T.O SOLVE

THE PROBLEM.
(THE ALGORITHM)

WRITE A
DESCRIPTION OF
THE ALGORITHM.

PRODUCE A
FLOWCHART

CONDUCT A
WALKTHROUGH

170

Yes

"

CODE INTO BASIC

RUN A TEST

Yes

No

TEST FOR RUN TIME
& L.OGIC ERRORS

TEST. FOR EXCEPTIONS
& GET SOMEONE ELSE TO
TRY IT OUT.

•

Yes

No

WRITE DOCUMENTATIO
OF HOW IT WORKS.

FLOWCHARTS
AND DOCUMENTATION

OF HOW TO RUN THE
PROGRAM.

END

No

171

FIND ERRORS AND
CORRECT

THIS PROBLEM NEEDS
A RE-THINK. PUT
EVERYTHING ELSE ASIDE.
AND DON'T RUSH

I

f .
- !

c

06: An example of structured design
1 Problem statement.
Write a program that computes and prints the average or Mean (M) and Standard
Deviation (S) of a collection of N data items. To compute S use the formula:

Standard Deviation = ';sum of squares of items -(Mean)2
N

2 Find out what you have to do (research the problem).
You are given most of the information in the question, but some is missing. The
question does not tell you how to compute the Mean, or average. This is done
using the formula:

Mean = (sum of all numbers)
N

You now have all the information you need to start designing the algorithm.
3 What is involved in this problem?
You can now define the outline procedure:

• You have to INPUT the numbers, and

• perform two calculations on these numbers. First calculate the Mean and then
use the Mean value to calculate the Standard Deviation, then

• output the results.

4 Design the algorithm.
This describes the detailed procedure for the steps needed to solve the problem:

• INPUT: the numbers must be input into an array because they will be needed
twice in the calculation module.

• Calculate the Mean: add all the numbers in the array and divide by N.

• Calculate the Standard Deviation: total the squares of all the numbers in the
array and use the formula to calculate S.

• Output: the results should be printed on new lines with the words
MEAN = (vaLue)
STANDARD DEVIATION = (vaLue)

5 The tree diagrams.

1, Compute and print

Standard Deviation

and mean

1.1 Input 1.2 Calculation 1.3
Print

Data Results
-

Each of modules 1.1, 1.2 and 1.3 will be subroutines. These will be
called in the appropriate sequence by the main program module.

172

•
•

1.1.1

CRElITE ARRAY

I L
1.1.1.1 1.1.2.1 .
DIMENSION PRINT

ARRAY
INPUT

REQUEST:
Y(50) HOIi MANY

l..tiuwmas.?

1. 2.1

FINO MEAN

1.2.1.1

SUM ALL

ELEMENTS

FOR 1=1 TON

LET SUM = SUM + Y(I)

1.1
INPUT

1.1. 2 1.1. 3

ASK HOW MANY INPUT N NUMBERS
/

NUMBERS AND

INPUT N

1.1.2.2

INPUT N

1. 2.

FIND MEAN AND

DEVIATION

173

.
1.1.2.3

PRINT N 1.1.3.2

FOR 1=1 TO N,

INPUT Y(I)

STANDARD .

1. 2.2

CALCULATE STANDARD

DEVIATION

1.2.1.2

DIVIDE SUM BY NUMBER

OF ELEMENTS

LET MEAN ""

SUM DIVIDED BY N

• ,

• .
.I

•

1.2.2.
CALCULATE STANDARD
DEVIATION

1.2.2.1.
CALCULATE SUM OF

THE SQUARES

1.2.2.1.1.
INITIALISE
VARIABLE

1 . 2 . 2 . 1 .2.
FOR EACH
ELEMENT GET
SQUARE, ADD
TO TOTAL

LET SUM
SQR=~

FO R 1=1
TO N

LET SUM
SQR=SUM
SQR+Y(I)
**2

.

1 . 3 . 1
PRINT

/

(t ON
SPECTRUM)

1.3
OUTPUT
RESULTS

"MEAN " . - ,
MEAN

174

1 . 2 . 2 . 2 .
USE FORMULA TO
CALCULATE STANDARD
DEVIATION

S = SQR((SUMSQR/N)
- (MEAN**2j)

(t ON SPECTRUM

~
1 . 3 . 2
PRINT "STANDARD
DEVIATION = "; S

6 The flowcharts.

The main program module flowchart:

/

\.
STARr

~

INPUI'

Pro :E:llURE
.

.

p~S

Pro:EllURE

OUTPur

Pro:EllURE

,
.

/ .."

STOP -

/

,::

175

The INPUT subroutine flowchart:

/
ENTER

'\

\.. ~

,

CREATE
ARRAY
y(50)

.

PRINT
"HOW MANY

NUMBERS?"

INPUT
N

I = 1 /,
1 > N ... RETURN

\.. ./

I - I + 1 -

INPUT
NUMBER
Y (I)

176

The processing subroutine flowchart:

•
/ '" ENTER
\. ~

LET
SUM = 0

W

I - 1 -

I > N

I - I + 1 -

-,-
LET SUM
= SUM +

Y(I)

~ ,

,

I = 1

I > N

I = I + 1
. ,

LET SUMSQR
- SUMSQR + -

(Y(I)Z

LET S=SQR
«SUMSQR/N)
-(MEAN**2)

-f
/

RETURN
\..

177

" ./

LET MEAN
- SUM/N -

~

LET SUMSQR
= 0

.. J

SPECTRU
USES I ,

M FORMULA
NOT **

I

!

The output subroutine flowchart:

" " ENTER

"-
:.

PRINT
"MEAN -" -

,

\ . . .
PRINT
MEAN

PRINT
"STANDARD .

DEVIATION="
.

,
. '.-

,
· PRINT

S

'. -

" '\

RETURN
"- ./

178

"--

.

..

07: The program
5 REM **SDEVIATION **
10 REM **MAIN PROGRAM MOD**
20 REM **INPUT DATA **
30 GOSUB 100
40 REM **CALCULATE **
50 GOSUB 200
60 REM **PRINT RESULTS **
70 GOSUB 400
80 END
90 REM **END MAIN **
100 REM**INPUT SUBROUTINE**
105 DIM Y(50)
110 1 NPUT " ::'}iot.!J MANY NUMBERS"; N
120 FOR 1=1 TO N
130 INPUT Y (l)

140 NEXT 1
150 RETURN
160 REM**END INPUT SUB **
200 REM**CALCULATION SUB **
210 SUM=O
220 FOR 1=1 TO N
230 SUM=SUM+Y(I)

.
240 NEXT 1
250 MEAN=SUM/N
"'6 -L ~{J

~-- -.. F! 1 -, ~

290
::)i) 0
310
320
400
410
420
4
~.'::,0

440
450
460

SUt1SR=0
FOR 1=1 TO N
SUMSR=SUMSR+(Y(I)l2)
NEXT 1
S=SQR ((SUMSR/N) - (MEAN-r2))
RETURN
REM**END CALC SUB **
REM**OUTPUT SUB **
PRINT
PRINT"MEAN= ";MEAN
PRINT
PRINT"STANDARD DEVIATION=
RETURN
REM**END OUTPUT SUB **

08: The documentation

" • S ~

J

!

/

• This program will compute and print the Mean and Standard Deviation of a
collection of data items (numbers).

• It allows for a maximum of 50 items to be entered. You can increase the size of
array Y if you wish to deal with more data.

. 179

• The numbers can be of any size, positive or negative, to the limit of the
computer's handling capacity. This is large; you will not exceed it.

• To run the program key in RUN, and enter numbers one at a time, and press
RETURN after each one has been keyed in.

Sample run to find Mean and Standard Deviation of 30, 31, 32, 5, 6, 7, 10, 13, 27,
3:

HOW MANY NUMBERS? 10
30 31 32 5 6 7 10 13 27 3
MEAN = 16.4
STANDARD DEVIATION = 11.45603

EXERCISE
The example program to compute and print the standard deviation of a set of
data items does not include a pseudocode description of the algorithm, and the
documentation process is incomplete in other ways, too. Complete the program
ming procedure by doing the following:

• Write out a pseudocode description of the algorithm.

• Perform a pre-coding walk through, checking the values of the variables,
counters and expressions for each subroutine module.

• Key in the program and debug it.

• Insert breakpoints in each subroutine and perform a program trace. Insert
PRINT statements to print out values of variables, counters and expressions.

• Obtain a program listing from the printer and run the program for a sample
set of data. Keep a copy of the printer output.

• Document the program fully in your notebook.

180

Section P: Files

P1: Introduction
The standard input and output (referred to as I/O devices) on the 64 are the
keyboard and the screen. These are utilised in BASIC by means of the INPUT and
PRINT commands respectively. Programs are loaded and saved on the cassette
drive, so this is another I/O device. For those users who have a Commodore disk
drive, this section covers that as well. A printer is specifically an output device
only.

The idea of a file is that data can be kept separately from a program. For
example, a program could be written to store your bank account records (date,
details of receipts/payments, etc.). This information would be both kept and
updated (new information added, old data removed). Try writing such a
program using data statements, and you will soon see that there must be a better
way. The better way is the use of data files.

All the time that you have been using the 64 and studying this course, you
have been using files. When you save a program to tape (or disc), that isa file. A
file · contains any information. Basically, the Commodore supports three
different types of files: program, sequential data files and random data files. The
last two need further explanation.

A sequential file is a file that stores information one item after another. The
information can only be accessed by reading one item at a time. If a file contains
100 items and you wish to access the 95th item, you must read 94 items out to get
to the 95tl;l. Sequential files are used on a cassette player. A random access file
would allow you to access the 95th item directly (but this can only be done with a
disk drive).

P2: Using other devices
BASIC supports extended statements for handling files, namely PRINT#,
INPUT#, GET#. Before you can explore these, three other statements also have
to be introduced: these are OPEN, CLOSE and CMD.

Basically, OPEN and CLOSE open and close files for output to a device. In
technical terms, OPEN opens a channel to the device and CLOSE closes it. The
format the Commodore uses is:

OPEN LFN, DVN, SDN, STRING
CLOSE LFN

where
LFN
DVN
SDN
STRING

logical file number
device number
secondary device number
file name

/ Here is a simple example; enter this program and run it: t

10 OPEN 1,3

/ ,

"'0 PR I NT"" 1 """ij"'lI'-"I''''I'''' ' I'~I'-~'"II~;' II'' ''I ''''UI '''II~;'RIU'unU'PUT TO SCRE L tt..., ... j.t~.I .I!!-l!!~.~! . . 11 .. [1.111 I" H~I \" H U II~' ~'" uu •

EN"
30 CLOSE 1

181

-

Examples:

10 OPEN 1,1,1, "TAPE FILE":PRINT #1, "WRITE TO TAPE"
10 OPEN 2,1,0, "TAPE FILE":INPUT #2 A$:REM**DATA**
10 OPEN 3,4:PRINT #3, "OUTPUT TO PRINTER"
10 OPEN 4,8,3,"0:DISK-FILE, S,W,":PRINT #4,"DATA TO DISK"

P3: Files with cassette recorder
Cassette tapes are useful for storage of files because they have an enormous
capacity; the longer the tape, the greater the storage. The major drawback in
using long tapes is the length of time it takes to find the required data. The most
suitable method is to use C-12 or C-1S tapes for data storage and to keep data
files on different tapes from your program tapes. For both types of tape you
must keep an index (using the tape counter) to where the files are on the tapes.

Because data files on a cassette tape are sequential, if a file needs to be
updated this can be done only by reading the whole file into memory, altering it
and then saving it again. If your files grow too big to put in memory, there are
two possible solutions: either split the file up into several files, or upgrade your
system by getting a floppy disk drive. A disc system is expensive but allows
greater flexibility than using cassettes.

Writing data to a file
The PRINT # statement is used.

Try this example:

10 OPEN 1,1,1,"ALPHABET"
20 PR I NT# 1 , II ABCDEFGH I Jl<LMNOPQRSTUVl1JXYZ"
30 PRINT#l,"END OF ALPHABET II
40 CLOSE 1

Enter this program and run it.
Now enter the next program, rewind the tape to the beginning of the file you

created above and run it.

'J .-)
.~t_

OPEN 1,1~O,"ALPHABET"

INPUT#l.A$

11. ,-.
:. '-'

,

INPUT#l~B$

PRINT A:!:, B$
CLOSE 1

The screen should show:
ABeD ... (end of alphabet)
Now consider this program:

182

10 OPEN 1,1~1,IITEST'1

20 A$="TEST"
30 B$="TEST1"
40 C$=ITEST2"
50 PRINT#l,A$,B$,C$
60 CLOSE 1

This writes three strings to a file (or does it?). Enter it, and run it. Now rewind
the tape and enter and run the next program.

10 OPEN 1,1,0,"TEST"
20 INPUT#l,A$,B$,C$
30 PRINT A$
40 PRINT B$
50 PRINT C$
60 CLOSE 1

Look at the output and the program carefully. Notice that A$ contains Test Testl
Test2, and B$ and C$contain nothing.

What has happened is as follows:
. If you printed A$, B$, C$ in the first program to the screen rather than to the

cassette, the output would be separated by 1 to 10 spaces, depending on the
length of each string. Thus, the screen would show:

Test (spaces) Test1 (spaces) Test2 (carriage return -
CHR$(13»

Now the cassette would contain a similar pattern.
In the above program, your input from the cassette, A$ contains Test Testl

Test2 (carriage return) including the spaces. The input statement takes the
carriage return on tape as an end of data marker. There are two solutions: either
enter one line of data per print statement or use an end of data marker (a carriage
return).

Consider, and run, each of these three programs. They do exactly the same
thing.

10 OPEN 1,1,1~"TESTA"

A$="TEST"
30 B$="TEST1"
40 ·C$="TEST2"

PRINT#l.A$
PRINT#l,B$
PRINT#l,C$
CLOSE 1

50

183

/
,

I

10 OPEN 1.,l,l,"TESTB"
20 A$="TEST"
30 B$="TEST1"
40 C$="TEST2"
50 .D$=", II
60 PRINT#1.,A$,D$,B$,D$,C$
70 CLOSE 1

10 OPEN 1.,1,1,"TESTC"
20 A$="TEST"
30 B$="TEST1"
40 C$="TEST2"
50 D$=CHR$(13)
60 PRINT#l,A$,D$,B$.,D$,C$
70 CLOSE 1

Line 10
Line 20

opens a logical file number (channel) which will be referred to as 1.
then says that this file number (channel) will send output to the
screen which is referred to as 3 (the device number of the screen).
This is a stream. Thus the stream is associated with a channel. Line 20
prints information to logical file number I, which outputs it to device
3 (the screen).

Line 30 closes the channel and frees it for later use.
The following table shows the devices available:

Device Device

Cassette 1

Printer 2

Screen 3

Printer 4 or 5

Disk 8 to 11

no. Secondary number

O=input
1=output
2=output with Eot

0

0, 1

O=upper case/graphics
7=upper/lower case

O=program fi le load
1=programme fi le save

2-14 = data channels
15 = command channel

String

Fi le Name

Control register

Text

Drive No.
Program name as
above.
Drive No., fi le
name, fi le type,
read/write
command.

Now enter this program, rewinding the tape.to the beginning of file TE S T A.

184

-

10 INPUT"ENTER A,B, OR C";A$
20 IF A$<>"A" AND A$<>"B" AND A$<>"C" TH
EN 10
40 OPEN 1,1,0,"TEST"+A$.
50 INPUT#1,A$,B$tC$
60 PRINT A$
70 PRINT B$
80 PRINT C$
90 CLOSE 1

Run the above program 3 times. Enter first a, then b and finally c. The results
should be the same. .

P4: Structure of files
Files should be an ordered collection of data. If you mix numeric, string or
integer in your data items, make sure you know in what order they are written
so that they can be read properly. For long files, it is a good idea to have two or
more files containing the information.

For example, consider a payment account structure:
Date PaytQ Debit Credit Current account

If you construct one file this way:

Date
00-00-00

6
characters

Record

Pay to Debit
'Name' 0000

20 4
character Figs.

,

Credit
0000

4
Fig s •

Current Account
000000

6
Figs .

... the file could become quite large. Each time an entry is to be added the whole
file must be read into memory, updated and written back. As the file becomes
bigger, memory will fill up and no more data can be accepted. One solution is
to have a file for each item, read the file out, insert a new tape, write it out, insert
old tape, write it out, etc. Another solution is to leave a large gap; read tape,
rewind tape, rewrite, read next file, rewind to start of that file, rewrite, etc.

Yet another solution is to create one file, work out how much memory each
record takes up, then limit the file to that number of records, create a new file
and continue . .

,

185

Thus,

Date Pay to Name Debit Credit Current Account
Record 1

·Record 2
F i l e 1

Record N

Date Pay to Name Debit Credit Current Account Record N+ 1

F i l e 2

Last record .

This can easily be achieved by keeping a record, in the file, of the number of
entries, and updating it for each new record created.

Finally, it is important that a marker (record) is kept to indicate an end of file,
otherwise you will get an error. The simplest and best way, when using string
data, is to write EOF into the file and check for it when reading the file, using a
statement like

IF A$ = "EOF" then •••••
,,- ' .

P5: Using a disc drive
The use of a disc drive is highly recommended, as it saves a lot of time in loading
and saving programs. For serious programs and more specifically file handling
applications, the use of a disc drive is essential. The cost of a single disc drive is
higher than that of a cheap cassette recorder, but it is not a luxury.

Unlike most computer systems, the 64 does not possess a D.O.S (Disk
Operation System). Commodore calls their disc unit intelligent. This means that
you can send it commands. For example: to create a sequential file, the sequence
is as follows:

OPEN 1,8,2,"0: Fi Le
PRINT#1, "Data"

where

Name S W" , , .

F i LeN a m e = name of the file
S = sequential
W = write

will create a file which is sequential and can be written to.
When you close the file (CLOSE 1) your file can now only be read.

OPEN 1,8,2,"0: Fi Le Name, S,R"
INPUT#1,Data

(where R = read) will read data from the file.

.

.
, ".

The Commodore disc drive uses 5 114 inch single sided single density magnetic
discs. Before these can be used they must be formatted for the Commodore (the
same applies to any other computer.) The surface of the disc must be divided
into tracks; for the Commodore 64 there are 35 tracks each subdivided into
sectors. Formatting tells the disc where each track is and how many sectors.
Also, each disc is given a name and an identification code (ID).

186

To format a disc:

OPEN 1,8,15
PRINT #1, "NO: Fi Le Name, ID"
C LOS E '1

where:
1
8

15
N
o

file number
disc unit
command channel
new
drive 0

This takes about one minute and the disc is ready to be used. It is a good idea
to format discs as you buy them, so that you know they are all formatted and to
save time later on.

P6: Loading and saving programs
When a formatted disc is first inserted into the Commodore 64 disc drive, and on
every subsequent use of it, you must execute the following statements:

OPEN 1,8,15
PRINT #1, "I"
CLOSE 1

This must be done every time a disc is inserted into the drive. Basically, I
(initialise) reads the name and 1D of the disc and allows its use.

To save a program, use:

SAVE" Fi Le' Name", 8
and to load:

LOAD "Fi Le Name", 8.

P7: Errors
When an error occurs, the indicator light on the front of the disc drive will flash.
This means that you must clear the error before any other operation is done with
the drive. To accommodate Commodore 'intelligent drive' you must run the
following program:

10 OPEN 1, 8 , 15
20 INPUT.l~A$~B$,T,S
30 PRINT AS BS . ~

40 PRINT T~S
50 CLOSE 1

/

A$ and B$ contain the error number and message respectively. T/~nd 5 contain
the track (T) and sector (5) where the error occurred; 0 indicates a syntax error. If
you execute the above program when no error has occurred, you should get this
printed on the screen:

o OK
00 00

showing no error has occurred. Whenever any files are used, it is a good idea to
check the command channel (as above) to see if any errors have occurred. This
should be done after each read or write operation.

187

P8: Working with files
The Commodore drive supports the following files:

Program (load/save)
Seq (sequential)
Rei (random access)

You have read in the cassette section above about sequential files, but there are a
few differences when using the disc drive. Use OPEN LFN, 8, channel, O:name,
type, direction. For example, to write a file:

OPEN 1,8,10,"0:Fi Le,S,W"
and to read this file, use this:

OPEN 1,8,10"0:Fi Le,S,R"
Try this example:

10 OPEN 1,8,15
20 OPEN 2,8 9 10,"FILE,S,W"
25 INPUT#l,AS,BS,T,S
26 IF AS<>"O" THEN 90
30 FOR I=l TO 10
40 PRINT#2,I
50 NEXT
60 INPUT#l,AS,BS,T,S
70 IF AS<>"O" THEN 90
80 PRINT"DATA WRITTEN":GOTO 100
90 PR I NT" ::":ERROR
100 CLOSE 2:CLOSEl
110 END

"AS;BS;T;S

It is unlikely that you will get an error. If you do, the most likely cause is that
that file already exists. Enter this: .

OPEN 1,8,15
PRINT #1,"SO: Fi Le"
CLOSE 1

Now enter the above program, changing the following lines:

20 OPEN 2,8,10,"Fi Le,S,R"
40 INPUT #2,1
45 PRINT I
80 PRINT "Data read"

P9: Random and relative files
The advantage of a random file is that it removes the necessity of reading all the
data from the beginning of the file in order to find the data that you want.
Random files are organised in records, and each record can be accessed
individually. The best way to work with random access files is to use relative files.
Each relative file can have 720 records, each record having up to 254 characters.
To create a relative file, use this format:

OPEN fiLe #, device #, channeL #, name,L, + CHR$(record Length)

188

- - ---_ .. _._ ... __ -----_0----------- ------------

: --

Thus:
OPEN 2,8,2"Fi Le,L," + CHR$(100)

this file will be associated with device 8 (disk), channel 2, and will contain 100
records. •

Once such a file has been created, it can be referenced using a simpler form of
OPEN:

OPEN fiLe #, devi ce #, channe L #, "Name"

This format knows the file is relative, and allows both reading and writing.

Using relative files
Before you can read or write to a relative file, you must position the record
pointer to the required record. Use a statement like this:

PRINT #15, "P" CHR$(2) CHR$(1) CHR$(O) CHR$(20)

in which
P C H R $ (2) . is the channel number
C H R $ (1) C H R $ (0) is the record number in low-high order
C H R $ (20) is the position in record

You must give record numbers in low-high order because although you can
access 720 records, CHR$ can only access from 0 to 255. Thus, for example, to
access record 256, the low (rec#lo) is 0 and the high (rec#hi) is 1. To convert a
number to low-high, divide it by 256 and take the integer_ T~ get the low,
multiply the integer by 256 and subtract from original number. For example (ree
is the record number):

rechi = INT(Rec/256)
recLo = rec -256 * Rechi

. ',',

Also, a relative file is like a sequential file in that you must write into it a
separator, comma or carriage return, so that input picks up the right data. This
must be taken into account when working out the record length. For example:

Record structure name, address, phone no.
No. of characters 20, 30, 10
TotaL characters 20 + 30 + 10 + 3 -- 63

including the two commas and a carriage return.

P10: The disc unit . ,

This section is only for reference for those who wish to experiment with the disc
unit. It gives the error codes and a brief description of them, and the format of
disc storage. Further details can be found in the handbook delivered with the
drive.

Disc formats: Structure of individual directory entries
Byte Definition
o File flag OR' ed with $80

0= DELETED
1 = SEQ
2 = PRG
3 = REL

1 - 2 . First data block track and sector.
3 - 18 Reserved for file name.

/ ,

j

19 - 20 ,> Track and sector of first side sector block (REL files only).
21 ' Record size for REL files.
22 - 25 Not used.

189

, , '

26 - 27
28 - 29

Track and sector of replacement file using '@' operations.

Number of blocks in file.

Standard file formats . .
. Definition Byte

0-1
2- 255

Track and sect.or of next sequential block.
Reserved for file storage.

Ptt: Output to a printer
There are two ways of connecting a printer, depending on whether you are

using the Commodore printer or some other make, for which you would have to

buy a standard RS232 plug-in module.

To operate a printer with the Commodore 64 you have to learn another

command: the CMD command. As the C;:ommodore has no directed List

command (List# output device), a channel to the printer is opened using:

OPEN 4,4,0 or 4,5,0 (upper tase/graphics)

OPEN 4,4,7 or 4,5,7· (upper/Lower case)

Then enter the CMD command: '

. C M D 4.
followed. by

LI ST

CMD directs all output that would go to screen to the device selected (in this

case the printer). You can also use the PRINT# command to print information to

the printer. For example:

.10 OPEN 4,4,0 , .
20 INPUT "Enter your name" JA$

- .. .

30 PRINT "Your name is" jA$
40 PRINT#4, "Your name is" JA$
50 CMD 4
60 LIST
70 PRINT#4
80 CLOSE 4

Finally, this section does not cover two specialised features of the disc unit, as

they are really beyond the scope of this text. These are the commands to

program the disk controller, and the block commands. Use of the block

commands to access the track and sectors is messy, and best avoided unless you

wish to experiment. These things are covered in detail in the drive manual.

190

- ::',
: :, ': ,:

Section Q: Colour and Sound

The Commodore 64 provides 16 colours that can be used with characters,
border, screen, and various graphics modes (such as programmable characters,
sprites, and high resolution graphics). This is a powerful and useful facility
which will add to your enjoyment in programming. It will greatly increase the
visual impact of games you may write and can be used to make program output
clearer by colouring output messages and results. This section deals with the
standard character mode and round-up of colours; graphics are covered in the
next section. .

Ql: Standard character mode
The Commodore 64 assumes this mode when you switch on, with the border
(outer part) and screen (inner part) colours being light blue and blue
respectively. The colour of these areas of screen can however be changed to any
of the available 16 colours. This is done by POKEing the code (see table Ql) of
the required colours into the registers at locations 5~280 and 53281. The
following colours are available:

.

COLOUR CODE COLOUR OBTAINED BY
CTRL+

0 black [1] or CHR$(144)
1 white . [2] or CHR$(5)
2 red [3] or CHR$(28)
3 cyan [4] or CHR$(159)
4 purple [5] or CHR$(156)
5 green [6] or CHR$(30)
6 blue [7] or CHR$(31)
7 yellow [8] or CHR$(158)

C=+
8 orange [1] or CHR$(129)
9 brown [2] or CHR$(149)
10 light red [3] or CHR$(150)
11 grey 1 [4] or CHR$(151)

. 12 grey 2 [5] or CHR$(152)
13 light green [6] or CHR$(153)
14 light blue [7] or CHR$(154)
15 grey 3 [8] or CHR$(155)

..

.
TABLE Ql: COLOUR TABLE AND CODES

I

So to change the border colour to black, all we have to do is:
;

f

POKE 53280,0

and to change the screen colour to white:

POKE53281,1
Now to see all the possible combinations of border and screen colours, run the
follOWing program:

191

10 FOR I=O TO 15
20 FOR J=O TO 15
30 POKE 53281,1
40 POKE 53280,J
50 FOR K=l TO 500
60 NEXT K,J,I

The outer loop (I) changes the screen colour once for every 16 border colour
changes by loop (J). It is possible to change the text colour too. This can be done
either by using the CTRL or the C= along with the number keys, or by POKEing
the colour code into location 646 which determines the current · colour for
characters.

Now add the following lines to the program above:

25 FOR L = 0 TO 15
45 POKE 646, L
46 PRINT "[CLR][CDJ[CDJ[CDJ[CRJ[CRJCOMMODORE 64"

and change line 60 to read:

.60 NEXT K,L,J,I
and run the program again. The prompt COMMODORE 64 will be printed in all
the available colours.

Q2: Screen and colour memory
.

The screen on the Commodore 64 has 40 columns and 25 rows, making the
screen size 1000 bytes long (see Fig. Q1). These 1000 bytes are located at
addresses 1024 to 2023 on the screen memory. Associated with these 1000 bytes
of screen memory are 1000 bytes of colour memory, which are located at 54272
locations further on; that is, the colour memory starts at location 55296 through
to 56295 (see Fig. Q2). Characters are displayed on the screen by either
PRINTing them there, or by POKEing the respective memory location with the
screen character code (see list of codes in the Appendix) . Note that the screen
character code is different from the ASCII character code. But you will not see
anything on the screen just by POKEing the screen memory with the character
code, since you have not POKEd the corresponding colour memory with the
colour code. To work out positions on the screen memory and the correspond~
ing colour memory, use the following formulas:

Screen position = 1024+C+40 * R
Colour position = screen position + 54272

where C and Rare column and row respectively. So to put a purple A at column
20, row 12, use: . . .

or

P = 1024+20+12 * 40

POKE P,1
POKE P+54272,4

POKE 1024+20+12 * 40,1
POKE 55296+20+12 * 40,4

The following program will display all the screen characters and their codes:

192

10 PRINT";""
20 P=1024+20+1*40
30 POKE 54272+P,4
40 FOR 1=1 TO 255
50 POKE P,I
60 PR I NT" CODE= " ; I" ""
70 FOR J=1 TO 200:NEXT J,I

This method of outputting characters on the screen can be used to produce
animation. This effect is demonstrated by the next program. The cursor keys are
used to make an asterisk move around the screen.

PR I NT II ;r,'q II
t • • J

R=O:C=O
10
20
30
40

IF C(O THEN C=39:R=R-l
IF C)39 THEN C=O:R=R+l

50 IF R(O THEN R=24:C=C-l
60 IF R)24 THEN R=O:C=C+l
70 P=1024+C+R*40
80 POKE 54272+P,3
90 POKE P,42
100 GET A$:IF A$="" THEN 30
110 IF A$=CHR$(17) THEN R=R+l
120 IF A$=CHR$(29) THEN C=C+l
130 IF A$=CHR$(145) THEN R=R-l
140 IF A$=CHR$(157) THEN C=C-l
150 POKE P,32:GOTO 30

Demonstrate the importance of the statement PO K E P, 3 2 at line 150 by
changing the line to read:

150 GOlD 30
Now run it again. As you move the character around, you keep duplicating the
character in the new position, as previously you were erasing the old position by
putting a space at that position.

In the next example, a micro snake moves at random around the screen. The
snake is a la-element string of characters. Each element is printed individually in
sequence as the direction of the snake changes.

1 C_' F'R I I\JT" ""'1" • F'Ol,"E 5''"'80 5· POl,"EO::;'?81 ' I.. t •• 1.. r··.. "_'", .. ". p.. '-',"-._ , • ...}

20 DIM R(12) ,C(12)
30 REM SNAKE CHARACTERS ,!

40 FOR 1=1 TO 10:READ A$:S$=S$+A$:N~~T
50 REM START COORDINATES
60 FOR 1=1 TO 12:READ R(I),C(I):NEXT
70 GOSUS 230
80 REM NEW DIRECTION
90 FOR 1=1 TO 100
100 SR=INT(RND(1)*3+1):SC=INTCRND(I).3+1
)

193

COMMODORE SCREEN AND COLOUR MEMORY MAPS

1024
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

o 10
COLUHN

20

Figure Ql: Screen memory map

o

55296
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10
COLUHN

?O

Figure Q2: Colour memory map

194

30

"

30

39

1063
1

2023

39

56295

o

10

20

24

0

10

20

24

R
o
w

R
0
W

110 FOR J=l TO 3
120 R(l)=R(l)+(l AND SR=l)+(O AND SR=2)+
(-1 AND SR=3)
130 Ctl)=C(l)+(l AND SC=l)+(O AND SC=2)+
(-1 AND SC=3)
140 REM CHECI< EDGE
150 IF R(I)(O OR R(1»23 OR C(l)(O OR C(
1»39 THEN 90
160 REM SHIFT COORDINATES
170 FOR 1<=11 TO 1 STEP -1
180 R(I<+l)=R(I<):C(I<+l)=C(K):NEXT
190 GOSUB 230
200 NEXT J,I
21 (J PRI NT II :'~"
220 END
230 REM SUNROUTINE PRINT
240 POKE 781,R(12):POKE 782,C(12):SYS655
20:PRINT" II

250 FOR 1=10 TO 1 STEP -1
260 POI<E 781,R(I+l):POI<E 782,C(I+l):SYS6
5520: PRINT"f.?~"MID$ (S$, 1,1)
270 NEXT
280 RETURN
290 DATA M,I,C,R,Q,S,N,A,I<,E
300 DATA 11,22,11,21,11,20,11,19,11,18,1
1,17,11,16,11,15,11,14,11,13,11,12,11,11

Here is how the program works:
Line 20 dimensions the row and column arrays
Line 40 reads the 10 character stringS$
Line 60 reads the start coordinates for printing the snake
Lines 90 -130 select a new direction from randomly generated coordinates of

the snakes head
Line 150 edge boundary value is checked
Lines 160 - 180 give new print coordinates for the array

Q3: Sound and music
I

Sound on the 64 is created by the powerful 6581 SID chip, which i.s capable of
producing three different voices, each having eight octaves. Of these voices one,
two or all three can be played simultaneously. Production of sound is done by
POKEing values (0 - 255) into the 28 registers concerned with sound generation.
These registers are located at memory locations 54272 to 54300 in the memory
map. The registers are:

195

Register

Voice 1
o
1
2
3
4
5
6

Voice 2
7
8
9
10
11
12
13

Voice 3
14
15
16
17
18
19
20

21
22

24

25

26
27

Action

low frequency value of note
high frequency value of note
low pulse
high pulse
waveform
attack/decay
sustain/release

low frequency value of note
high frequency value of note
low pulse
high pulse
waveform
attack/decay
sustain/release

low frequency value of note
high frequency value of note
low pulse
high pulse
waveform
attack/decay
sustain/release

low frequency cut-off (0 - 7)
high frequency cut-off (0 - 255)
resonance (bits 4 - 7)
bit 0, filter voice 1 (turn off voice 1)
bit 1, filter voice 2 (turn off voice 2)
bit 2, filter voice 3 (turn off voice 3)

volume control voice 1, voice 2 and voice 3
(bits 0 - 3)

access to output of envelope
generator voice 3
digitalized output from voice 3
digitalized output from envelope generator 3

Q4: Playing a note
In order to be able to play a note on the 64, we must set parameters such as
attack/decay, sustain/release, volume, etc of the voice concerned. These para
meters are as follows (enter the program lines as they are given):

Volume
The 4 least significant bits of the register of location S + 24 control the volume for
all three voices, where S = 54272. Since only 4 bits control the volume, therefore
the maximum volume setting is 15 (ie 0 lowest and 15 highest). If a value higher
than 15 is used, depending on what bit is set, then filtering operation will be
carried out on the respective voice output. So the volume is set using the
following command:

196

10 S = 54272
20 POKE S + 24, 15; REM SET VOLUME TO MAX.

Attack/decay
Controls the rate at which the note rises to its peak volume and then falls again.
The 4 L.S.B. of the registers at locations S + 5, S + 12 and S + 19 control the
decay for voices 1, 2 and 3 respectively, and the 4 M.S.B. of these registers
control the attack. .

Location ATK4 ATK3 ATK2 ATK1 DEC4 DEC3 DEC2 DEC1

54277 128 64 32 16 8 4 2 1

54284 128 64 32 16 8 4 2 1

54291 128 64 32 16 8 4 2 1

30 POKE S + 5, 9 : REM A = 0, D = 9
This produces no attack, but a fairly long decay for voice 1.

Sustain/release
As in attack/decay there are three registers for the three voices, and the sustain
and release for each voice is controlled by one register. These registers are
located at addresses S + 6, S + 13 and S + 20 for voices 1, 2 and 3 respectively.
The sustain/release register prolongs a note at a certain volume and releases it.

Location SUS4 SUS3 SUS2 SUS1 REL4 RE L3

54278 128 64 32 16 8 4

54285 128 64 32 16 8 4

54292 128 64 32 16 8 4

40 POKE S + 6, 40 : REM 8 = 32, R = 8
This produces low sustain and high release for voice 1.

Waveform .
The waveform for each voice is set separately. There are
four types available: triangle, sawtooth, pulse and noise.

Location triangLe sawtooth puLse

54276 17 33 65 [-------- --
54283 17 33 65

• ___ ' ___ M. ,._ ._,_,,_
.~--~. --54290 17 33 65

50 POKE S + 4, 33; REM SAWTOOTH WAVEFORM
This provides voice 1 with a sawtooth waveform.

High frequency/low frequency

-

REL2 R E L 1

2 1

2 1

2 1

• nOlse

129 .. -,-'~
129
--~ ---..
129

I

There are three pairs of registers for the three voices. Each pair provides the low
and high frequency value of the note to be played. The value to be POKEd into
these registers can be obtained from the frequency value table in the Appendix.

60 POKE 54272,37 : POKE 54273,17

197

- - _ _--- -- - -- --- - ----- _ _-_ _ ... __ ._ _._ __ _ _ - -----_ .. _

This will play middle C note on voice 1 provided that the other parameters have
already been set. Try running the program given so far. Note that all you hear
is a continuous sound. Now add the following lines and try again:

70 FOR I = 1 TO 100: NEXT
80 FOR I = S TO S + 6 : POKE I, 0: NEXT

Line 70 determines how long the note is played for and line 80 resets all the
registers associated with voice 1. Going through all this to play one note seems
funny, but once you have set the parameters they need not be altered unless it
is necessary for some special effect.

Now try the following program, which plays a tune on voice 1.

5 9=54272
10 POKE 9+24,15
20 POKE 9+5,29:POKE 9+6,9
30 FOR J=1 TO 8
40 POKE 9+4,32

. 50
60
~()

READ LF,HF,D
POKE 9+1,LF:POKE
FOR 1=1 TO D*20
NEXT I,J

9, HF: POI<E 9+4,33
I _

80
90
100
110
120
130

FOR K=9 TO 9+6:POKE K,O:NEXT K
DATA 17,37,10,21,154,10
DATA 25,177,10,28,214,10
DATA 30,141,10,28,214,10
DATA 25,177,10,21,154,10

Here is how the program works:
Line 10 sets volume to maximum
Line 20 sets attack/decay and sustain/release
Line 40 selects sawtooth waveform for voice 1
Line 50 sets the low frequency, high frequency and duration
Line 60 plays notes on voice 1
Line 70 provides appropriate delay between notes

Now add the following DATA statements to the program of example 1 to playa
nice tune. Note that you should change the loop value at line 30, since there is
more data: change line 30 to read:

30 FOR J = 1 TO 87
The data for the above program is as follows:

i 0'-; .z.. __ 1._~ DATA 17 ~7 10 ry1 1~4 t~ .L ,-J;., 'J'~"::"'.L,...J ,.1. ... _
1 1 ,-, ... 1 _ _ DATA 25,177,10,28,214,10
1 • = .<..J DATA ~O,141,10,28,214,10
117 DATA 25,177,10,21,154~10
120 DATA 17,37,10,21,154,10
1 "":i c: ..:.. DATA ~~ 177 10 ry8 ry14 1-...:...-' , ,", _" ,~ ,Jt... ,(J
1'-'6 L DATA ~ - 1 41 1 - '":>8 ~ 14 1 0 "-'U , .L ,U ,..:... , -"- . ,.L
1 ~(\ -.J _.- DATA 25,177,10,21,154,10
140 DATA ~'":> '":>'":>7 10 '":>8 '":>14 10 ..::.....::... ,~..:.. , -"' ..:.. , ~ ,
145 DATA 74 7~ l r 78 l~L 10 • .:., ,J, !J , . ..:.- , '::'w ,

146 DATA 40,200,10,38,126,10

198

150 DATA 34,75,10,28,214,10
160 DATA 17,37,10,21,154,10
165 DATA 25,177,10,28,214,10
166 DATA 30,141,10,28,214,10
170 DATA ' 25,177,10,21,154,10
180 DATA 25,177,10,32,94,10
185 DATA 38,126,10,43,52,10
186 DATA 45,198,10,43,52,5
190 DATA 38,126,10,32,94,10
191 DATA 34,75,18
200 DATA 17,37,10,21,154,10
205 DATA 25,177,10,28,214,10
206 DATA 30,141,10,28,214,10
210 DATA 25,177,10,21,154,10
270 DATA 30,141,18,28,214,5
??5 -- DATA 30,141,5,28,214,5
??6 DATA 30,141,5,28,214,5
??7
~- DATA 25,177,18
230 DATA 22,227,10,28,214,10
"'7.5 '-=-0_' DATA 34,75,10,38,126,10
"<6 ..:....j DATA 40,200,10,38,126,10
240 DATA 34,75,10,28,214,10
250 DATA 40,200,18,38,126,5
"0:."5 .L-I DATA 4- "r- 5 78 1"6 r I) , .L)0 , , . .:, , , -J

256 DATA 4~ "o~ ~ -8 1"6 r ~, ~,-J,~ , L ,-J

257 DATA 34,75,18
260 DATA 25,177,10,32,94,10
'-'60::-.L .I....) DATA 38,126,10,43,52,10
266 DATA 45,198,10,43,52,10
267 DATA 38,126,10,32,94,10
270 DATA 45,198,18,43,52,5
275 DATA 45,198,5,43,52,5
"'6 , DATA 4':- 198 C" 4< .:-" 0::--J, ,-J, -...J, .-J ,-J
'")8(1
.~ - DATA 38,126,18,34,75,18

Q5: Multiple voices
So far you have heard only one of the three individually programmable voices.
As mentioned earlier, two or all three voices could be used simultaneously. To
use all three voices together, set the parameters of voices 2 and 3 as y,6u did with

. 1 ;' VOice . I

Now try the following program, which is an extended version of one of those
above:

5 5=54272 . ,

10 POKE 5+24,15
20 POKE S+5,46:POKE 5+6,0
21 POKE 8+12,29:POKE 8+13,127

199
•

22 POKE 5+19,36:POKE 5+20,31
30 FOR J=1 TO 24
40 POKE S+4,32:POKE 5+11,64:POKE 5+18,12
8
50 READ LF,HF,D,Ll,Hl,L2,H2
60 POKE 5+1,LF:POKE 5,HF:POKE 5+4,33
63 POKE 5+8,Ll:POKE 5+7,Hl:POkE 5+11,65
66 POKE S+15,L2:POKE S+14,H2:POKE 5+18,1
29
70 FOR 1=1 TO D*10
80 NEXT I,J
90 FOR K=S TO 5+24:POKE K,O:NEXT K
100 DATA 17,37,10,4,73,68,149,21,154,10,
0,0,0,0
110 DATA 25.177,10,6,108,0,0,28,214,10,0
,0,0,0
115 DATA 30,141,10,7,163,115,88,28,214,1
0,0,0,0,0
117 DATA 25,177,10,6,108,0,0,21,154,10,0
,0,0,0
120 DATA 17,37,10,4,73,68,149,21,154,10,
0,0,0,0
125 DATA 25,177,10,6,108,0,0,28,214,10,0
,0,0,0
126 DATA 30,141,10,7,163,115,88,28,214,1
0,0,0,0,0
130 DATA 25,177,10,6,108,0,0,21,154,10,0
,0,0,0
140 DATA 22,227,10,7,163,115,68,28,214,1
0,0,0,0,0
145 DATA 34,75,10,6,108,0,0,38,126,10,0,
0,0,0
146 DATA 40,200,10,5,185,91,140,38,126,1
0,0,0,0,0
150 DATA 34,75,10,8,147,0,0,28,214,10,0,
0,0,0

Q6: Filtering
Another feature of the SID chip is the provision of filtering facilities. Filtering
simply means changing the harmonic contents of a waveform. There is a low
pass filter, a band pass filter and a high pass filter. These are controlled by bits
4,5 and 6 of the register at location 54296. So if we wish to turn on the high pass
filter, we must POKE the register with 64. There are other filters that can be used
to 'turn off voices; these are controlled by bits 0, 1 and 2 of the register at
location 54295.

200

·
·
·

, ':

Section R: Graphics

•

The Commodore 64 is a powerful graphics computer, capable of displaying
up to 16 colours. The graphics capabilities of the 64 are provided by the powerful
6567 video interface chip, also known as the VIC-II chip. This is a multi-purpose
colour video controller, with 47 controllable registers that can be accessed by the
commodore processor chip, the 6510; and it is capable of addressing 16K of
memory at a time. It provides a variety of graphics modes, including the 40
column by 25 lines character display mode, 320 by 200 fixed high-resolution
display mode, and the moveable object blocks called sprites.

The graphics display modes are:
Character display modes

• Standard character mode

• Multicolour character mode

• Extended background colour mode

High resolution (bit map) mode

• Standard bit map mode

• Multicolour bit map mode

Sprites

• Standard sprites

• Multicolour sprites

Rl: User defined (programmable) characters
The VIC-II chip gets its character from the , character generator ROM, which
starts at location 53248. This chip contains the patterns required to form all the
characters and symbols that can be seen on the keyboard.

The Commodore 64 allows manipulation of the patterns located in RAM for
games, letters in different alphabets, mathematical symbols and other special
symbols and shapes, all called user-defined or programmable characters. A normal
character set contains 256 characters, each character being made up of an 8x8
pixel array. This means that a full character set requires 2K (256X8) bytes of
memory. This 2K can be accommodated in anyone of the 4 possible blocks of
16K memory, so a method is needed to tell the VIC-II chip which block to look
for. The action of switching from one block to the other is known as banking, and
each block is called a bank. Switching banks requires control of bits 0 and 1 of
port A of CIA#2 chip at location 56576. This is done as follows:

POKE 56576,(PEEK(56576) AND 252) OR A

where A can be one of the following values: /
• ;'

I' .

Value Bits Bank Starting VIC II chip
of A location range
. .

0 00 3 49192 49192 - 65535
1 01 2 32768 32768 - 49191
2 10 1 16384 16384 - 32767
3 11 0 0 0-16383

201

Bits 0 and 1 of port A are set to output by setting bits 0 and 1 of location 56578
to a 1. So we must use the following instruction before we change banks:

POKE 56578,PEEK(56578) OR 3
Telling the VIC-II chip which bank to look at for data is not enough. It must

also be told where in the bank data the character memory is. This is done by
controlling the register at location 53272. The lower 4 bits of this register is used
to control where the character set is located (only bits 3,2 and 1 are used), while
the upper 4 bits control the location of the screen memory. To change the
character memory location, use the following statement:

POKE 53272,(PEEK(53272) AND 240) OR A

where A has one of the following values:

- --
Value of A Bits Location of character memory

0 XXXXOOOX 0
2 XXXXOOlX 2048
4 XXXXOI0X 4096
6 XXXXOllX 6144
8 XXXXlOOX 8192
10 XXXXIOlX 10240
12 XXXXllOX 12288
14 XXXXlllX 14336

x = DON'T CARE

R2: Defining characters
A character on the Commodore 64 is made up of an 8x8 pixel array. Here is the
character R as it appears on the screen (but greatly magnified). The character is
produced by linking in individual pixel elements: .

o
1
2 ;
3
4
5
6
7

76543210
Binary data

01111100
01000010
01000010
01111100
01001000
01000100
01000010
00000000

Decimal Data

124
66
66

124
72
68
66
o

Each character row has 8 bits or 1 byte. Each bit is either 1 if it is set, or 0 if it is
unset. Therefore each character row can be described as a combination of l's and
0' s. These combinations are seen in the array of l's and 0' s next to the character.

Notice that the.1's in the diagram above give the character R. The binary
number of row 0 IS: ..

01111100

This 8-bit binary number has to be represented as a decimal number. To find it,
multiply each binary bit or digit by a power of 2 according to its position.

7654321 0
2222222 2

Only the binary l's attribute; add these to get the decimal value. So:
o 1 1 1 1 1 0 0 binary
= 26+ 25+ 24+23+ 22

= 64+32+ 16+8+4 = 124 decimal.
Check that the decimal values for each character row byte is correct for R. Once
these decimal values for producing character R have been calculated, they have
to be put into memory. This is done as in this program:

202

•

10 PR I NT II :~J"
20 REM CHARACTER MEMORY AT 8192
30 POKE53272,(PEEK(53272) AND 240)+8
40 FOR 1=0 TO 7
50 READ ' C:POKE8192+I,C:NEXT
60 DATA 124,66,66,124,72,68,66,0

Run the program. Note that the writing on the screen goes funny. Now press
some keys: all you get is useless shapes. However, if you press the @ key you
will see R is displayed on the screen. This is because @ is the first character of
the screen characters (see list of characters in the Appendix) and what you have
done is to reprogram it to represent character R. Here's how the program works:
Line 30 tells the VIC-II chip that the character memory starts at

location 8192.
Line 40
Line 50

sets up the loop for reading the data for character R.
reads the data and reprograms the @ key to represent
character R.

In the above program location 8192 of BANK a was used as the character's
memory location. If, for example, you wished to use location 8192 of BANK 1 as
the starting character memory location, you would add the following statements
to the program:

15 POKE 56578,PEEK(S6578) OR 3
16 POKE 56576,PEEK(56576) OR 2

and change line 50 to read:

50 READ C:POKE 24576 + I,C:NEXT
Location 24576 is obtained by the following formula:

memory location = BANK number * 16384 + character memory.
Since we are using bank 1:

Location = 1 * 16384 + 8192 = 24576.
To program the R key to represent our defined character we use the following
formula:

character address = character code * 8 + memory location = 18
* 8 + 24576 = 24720

so line 50 is changed again to read:
50 READ C:POKE 24720 + I,C : NEXT

Now by pressing the R key, the character R will be printed on the screen.
To program more than one character, add 8 more data values for each

character, and increase the loop value by 8. Code in the following program and
run it. Press the @, A and B keys, and notice that each key is programmed to
represent different shapes.

10 ere· T I\.IT II 1'1'11 11
f ,La"i I,.J

REM CHARACTER MEMORY AT 8192 I

AND 240}OR i8
FOR T -(-) '0 ry-:,!" .J.. - _ i ..:....._.

!

READ C:POKE8192+I,C:NEXT
t..r) '-J ,,_ DATA 124,66,66~124,72,68,66,0

7 0 DAT,A ~~~ 1~9 1~9 i~O 1'"'0 1,..,0 1ry9 ry5~ ~ n L~J, L , L ,~~/, ~/, ~;, ~ ,k ~
80 DATA 60,60,24,255,24,36,68,129

203

..

It seems pointless to program characters that are already available to us from the
Commodore's character set; the whole idea of programmable characters is to
define characters that don't already exist. To make use of some of the characters
in the character set, they must be copied across from ROM into RAM memory.

Try the following program, which copies the first 128 characters of the ROM
characters into RAM. LIST the program on the screen and run it. Note the
changes occurring on the patterns displayed on the screen as each character is
copied across.

10
20
30
40

POKE53272,(PEEK(53272)AND 240)OR 8
POKE56334,PEEK (56334) AND254
POKE1,PEEK(I)AND 251
FOR 1=0 TO 1023

~

50 POKE 8192+1,PEEK(53248+I)
60 · NEXT
70 POKE I,PEEK(l)OR 4
80 POKE56334,PEEK(56334) OR 1

Here is how the program works:

Line 10

Line 20
Line 30
Lines 40 - 60
Line 70
Line 80

tells the VIC-II chip to look at location 8129 onwards for its
character data.
turns the keyscan interrupt off.
turns the 1/0 ROM off and switches in the character ROM.
copy 128 characters (1024 bytes) from ROM into RAM.
turns the I/O ROM on.
turns the keyscan interrupt on.

When the program is first run, the screen display goes strange. This is because
line 10 instructs the VIC-II chip to look at locations 8192 onwards for its character
data, and since you have not copied any character across or programmed any
character at this stage, contents of RAMs chosen at random are displayed.

Now any key that we press will be displayed on the screen, except when using
the CTRL 9 keys to obtain reverse characters. Pressing CTRL 9 keys followed by
any key will not display that character in inverse video, but a strange looking
pattern, because only 128 out of 256 characters are copied to RAM.

R3: Multicolour characters
Normally Commodore 64 displays its characters in only one of the 16 available
colours. It is, however, possible to have a character displayed in 4 out ofthe 16
available colours, hence the name multicolour characters. The Commodore is
put into multicolour character mode by setting or unsetting bit 4 of the
multicolour character register at location 53270. This is done as follows:

POKE 53270,PEEK(53270) OR 16

To turn multicolour mode off, use:
POKE 53270,PEEK(53270) AND 239

Once you are in in multicolour mode, the character space that was 8x8:dots
becomes 4 pairs of dots across by 8 dots down. These 4 bit pairs will determine
the colours in which characters are displayed on the screen.

204

•

1 Bit pair

00

_ ~r~ ___ D_es_c_r2ip~t_io_n _______ -_+''''''I_=.=~_1_~_c_~_io_-;-_'-_- ---j/

01

10

11

dot colour same as screen colour
dot colour specified by the
contents of register #1
dot colour specified by the
contents of register #2
dot colour specified by bits
0,1 and 2 of the colour memory
(foreground colour)

53281
53282

53283

colour RAM

So to display the programmed character in multicolour, first put the Commod
ore into multicolour mode. This is done as follows:

POKE 53270,PEEK(53270) OR 16

Then use the CTRL key with a numbers key. This changes the foreground
colour. Now if you press any of the programmed keys (ie. @, A and B), you'll
see the shapes represented by these keys displayed in more than one colour.
The colours at which characters are displayed depends on the bit pair pattern.
Alternatively, you can provide the desired colours for colour registers #1 and
#2. Add the following lines to the program of example 2 and RUN it:

35 POKE 53280,4:POKE 53281,3
36 POKE 53282,2: POKE 53283,0
37 POKE 53270,PEEK(53270) OR 16

Line 35 sets border and screen colours to purple and cyan respec
tively.

Line 36 sets register #1 colour (bit pair 01) and register #2 colour (bit
pair 10) to red and black respecitively.

Line 37 puts commodore into multicolour mode.
Here is another example program. Key it in and try it.

10
.,-
..::.U

30
40

N
45
50
60
70

PR I NT 111""1"
1. .11

POKE53270~PEEK(53270)OR 16
POKE53281,0:POKE53282,7:POKE53283,4 ,
PRINT:PRINT"A BCD E F G H 1 J K L M
a"
REM SELECT RANDOM FOREGROUND COLOUR
FOR 1=1 TO 15
POKE55296+40+I,INT(RND(1)*7+1)
NEXT

80 GOTO 80

Line 20
Lines 50 - 70

sets bit pairs 01 to yellow and bit pairs 10 to purple.
select random foreground colour (bit pair 11) for the 15
characters printed on the screen.

/ ,

R4: Extended background colour ;'
" . ,

This mode enables you to control the background, as well as the foreground
colour of each character on the screen. As usual there is a price to be paid for this
extra facility; you are restricted to use of only the first64 characters of character
ROM or the first 64 characters of pro gam mabie characters, instead of the usual
256; The reason for this is that two bits (6 and 7) of the character codes are used
to select the background colour. This means that a screen character code of
greater than 63 will put on the screen the character corresponding to itself in the
first 64 characters, but in a different background colour.

205

For example, if you POKE 1 into the screen memory, letter A will be
displayed, and if you POKE 64, then again letter A will be displayed, but in a
different background colour. The following table gives the registers associated
with each set of 64 characters.

Character code Bit 7 Bit 6 Background colour register

0- 63 a a 53281
64 - 127 a 1 53282
127 -191 1 a 53283

· 192 - 255 1 1 53284
Only characters with code greater than 63 will have different background colour,
because the register at location 53281 sets the screen colour. Thus characters
with codes a - 63 will have screen colour · as their background colour.

The extended colour mode is switched on by setting bit 6 of the register at
location 53265. This is done as follows: .

POKE 5 3 2 6 5 , PEE K (5 3 2 6 5) 0 R 6 4

to turn off this mode we have to reset the bit 6 as follows:
POKE 53265, PEEK (53265) AND 191

Note: this mode does not work with multicolour characters. Key in the follOWing
program, which displays the letter A on the screen in different background
colour.

5 PRINT"~'::1";

10 POKE 53265,PEEK(53265) OR 64
?()- PovE~7~81 ()·F·ovE~~ry8~ ~ _ ra•• ...J oJ.L , _ • r"o. ~ -_,..;.... ,,;:..., "_.

30 POKE53283,15:POKE53284,7
40 PRINT"BIT 7 BIT 6"
50 PRINT" 0
60 POKE 1095,1
70 t"RINT: PRINT" 0
80 POKE 1095+80,65
90 PRINT:PRINT" 1
100 POKE 1095+160,129
110 PRINT:PRINT" 1
120 POKE 1095+240,193

(111
-'

1 II

0"

1"

R5: High resolution (bit map) mode
This mode is useful when writing games, plotting graphs (generally short
recursive routines, such as drawing lines, circles, cubes, etc), because it can
manipulate every individual dot (pixel) on the screen. The high resolution
screen consists of 320 (40 X 8) horizontal pixels by 200 (25 X 8) down, giving a
total of 64000 pixels on the screen. These figures come from the fact that the
normal screen display on the 64 is 40 character spaces across by 25 down, with
each character space being made up of 8 bytes or 64 bits.

. .
In order to manipulate every pixel on the screen, a single bit of memory must

be allocated to each · pixel. This, however, requires 8000 (64000/8) bytes of
memory. When the Commodore is put into high resolution mode, it is asking
the VIC-II chip to display the contents of 8000 bytes of memory on the screen, so
it must tell the VIC-II chip which 8K section of memory to display. This is done
as follows:

POKE 53272,(PEEK(53272) AND 240) OR 8

206

.:/ ,

.-- -

Now the Commodore is put into high resolution mode by setting bit 50f the
register at location 53265. This is done as follows:

POKE 53265,PEEK(53265) OR 32 .. '

To come out of high resolution mode bit 5 of the register is reset as follows:

POKE 53265,PEEK(53265) AND 223

To see what happens when you turn on high resolution mode, run the following
program:

5 REM SWITCH TO BANK 1
10 POKE 56576,(PEEK(56576) AND 252) OR 2
15 REM HIGH RES. SCREEN STARTS AT 8192 OF BANK 1
(I. E. 24576)
20 POKE 53272,8
25 REM SWITCH TO HIGH RES. MODE
30 POKE 53265,PEEK(53265) OR 32

The pattern displayed on the screen is unusual shapes of random colours, which
can . be cleared by POKEing the desired colour code into character screen
memory. Colour in high resolution mode is not provided by colour memory, as
is the case with character modes, but it is taken from the character. screen
mer:nory (the first 1000 bytes of each bank, except bank 0 which starts at 1024) .

.. The upper 4 bits of character screen memory becomes the colour of bit(s) that
is/are set (i.e. foreground) in the 8x8 character space, while the lower 4 bits
become the colour of bits that is/are unset (ie background). So the following
formula is used to calculate the value for colour to be POKEd:

VaLue = foreground coLour code * 16 + background coLour code

To have a blue background, with light blue foreground, POKE the character
screen memQry with 230 (1 4 * 1 6 . + 6). This is done as follows: "

. . .

40 FOR I = 0 TO 999: POKE 16384 + 1, 230: NEXT

Now press STOP/RUN and RESTORE keys together to get the Commodore to
standard character mode. Add line 40 to the program and run it again. Notice
that those unusual square shapes disappear, but there are still screenfuls of
garbage. What you see is the contents of 8K RAM, and it must be cleared so that
you can draw your desired shapes on the screen. To clear this 8K screert you
must unset these locations - POKE 0 into them. This takes rather a long time, so
be patient. Again, get out of high resolution mode and add the following line to
the program:

50 FOR 1 = 0 TO 8000: POKE 24576,0: NEXT

. /

Watch the screen being cleared gradually. Once the sCreen is completely free of
garbage, you can start plotting shapes on the screen. The process df clearing the
screen and 'Setting the desired colour using BASIC is rather slow and time
consuming, especially if you have to clear the screen every time you wish to
draw a new graph; to speed it up a machine code routine is used that does it in
a matter of seconds. Full description ofthis routine is given in SectionU; for now
it saves a considerable amount of time.

Having cleared the high resolution screen we can now plot graphs or draw
lines or circles by turning on pixels of the high resolution screen. This is what
high resolution screen looks like:

207

byte 0 8 16 - - - - - - 312
byte 1 9 - - - - - - - 313
byte 2 10 - - - - - - - 314
byte 3 1 1 - - - - - - 315
byte 4 12 - - - - - - - 316
byte 5 13 - - - - - - 317
byte 6 14 - - - - - - - 318
byte 7 15 - - - - - - - 319
byte 320
byte 321
byte 322
byte 323
byte 324
byte 325
byte 326
byte 327
-
-
-
-
-
-
-
byte 7680 - - - - - - 7992
byte 7681 - - - - - - - 7993
byte 7682 - - - - - - - 7.994
byte 7683 - - - - - - - 7995
byte 7684 - - - - - - - 7996
byte 7685 - - - - - - - 7997
byte 7686 - - - - - - 7998
byte 7687 - - - - - - - 7999

To set a pixel on the screen, you must know how to find the correct bit in the
character memory. This becomes a fairly simple task by using the following
formula:

ROW = INT(X/8) finds row
COL = I NT (Y / 8) finds the character position
LIN = (Y AND 7) . finds the line of that character position (0 - 7)
BIT = 7 - (X AND 7) . finds bit of that byte

Putting these together provides the following formula, which calculates the byte
in which character memory point (X, Y) is located: .

BYTE~start of high resolution screen (24576)+ROW*20+COL*8+LIN

Now to set a pixel at point (X, Y), use:
POKE BYTE,PEEK(BYTE) OR 2-BIT
Now that you can control any pixel on the screen, try plotting something on

the screen. You can now use routines to draw lines, circles, ellipses, spirals,
cubes, etc. The following is a program that draws a line between two specified
points:

208

• . .

..

' :.

:::
',,'.

·
, :, ~

..
"~

, ',:;'.

,
',,",
.,': :

:;

, ",
:::'.

" ':;::
":'.::

' ... ,:,:.

" ::::'i'
':,:
·

" "

, :«
':'.
',' .

.. ,

""
'. :

":'.
','.

·
, ',',

---;' •

5 REM CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FOREGROUND C
ODE + "BACI<GROUND CODE II

•

20 INPUT CC
30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POKE49175,CC
50 SYS(49152)
55 REM START & END POINTS OF LINE
60 PRINT"ENTER XS,YS,XE,YE";
70 INPUT XS,YS,XE,YE
80 POKE56576,CPEEK(56576)AND 252)OR 2
9 ,-, c·Ot.··E5~'")7'") 8 v. r~·" _''':-'':'' ,

100 POKE53265,PEEK(53265) OR 32
110 XA=XE-XS:YA=YE-YS
120 A=(XA AND(ABS(XA)}=ABS(YA»)+(YA AND
(ABS(XA)(ABS(YA»)
17-. ..:,.()

140
150
160

X=o:y=o:X=X+XS:Y=Y+YS
FOR 1=1 TO ABS(A)
Xl=INT(X/8):B=7-(X AND 7)
Yl=INT(Y/B):L=Y AND 7

170 C=Yl*320+X1*8+L
180 POKE24576+C, PEEK (2457 6+C) OR 2 -1"'B
190 X=X+XA/ABS(A):Y=Y+YA/ABS(A)
200 NEXT
210 DATA 160,32,162,0,169,0,157,0,96,232
,208,250,23B,8,192,136,208,244
220 DATA 160,4,162,0,169,0,157,0,64,232,
208,250,238,26,192,136,208,244,96

The logic in line 120 checks which is the greater of the distances to be covered
between the points, and makes A equal to that, since the smaller value will be in
a false statement, and will be evaluated as O. The program library (see Appendix)
has an expanded version of this program (called CUBE).

Now key in the following program, which uses the cursor control keys to
draw shapes on the screen.

5 REM CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FOREGROUNtr C

- /
ODE + BACI<GROUND CODE II !

20 INPUT CC
30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POKE49175,CC
50 SYS(49152)
60 PRINT"ENTER START POINT X & Y ";
70 INPUT X,Y

209

--... 1

80 POKE56576,(PEEK(56576)AND 252)OR 2
90 POKE53272,8
100 POKE53265,PEEK(53265) OR
110 Xl=INT(X/8):B=7-(X AND 7)
120 Yl=INT(Y/8):L=Y AND 7
130 C=Yl*320+Xl*8+L .
140 POKE24576+C,PEEK(24576+C)
150· GET A$:IF A$="II THEN 150
160 IF A$=CHR$(17) THEN Y=Y+l
170 IF A$=CHR$(29) THEN X=X+l
180 IF A$=CHR$(145) THENY=Y-l
190 IF A$=CHR$(157) THEN X=X-l
200 GOTO 110

OR 2lB

~1) DATA 16- ~ry 16~ - 169 n 1~7 0 96 ry-~ L ... (.... U, "':"k, L, (J, , , ~ "., , k~.J"':::'

,208,250,238,8,192,136,208,244
220 DATA 160,4,162,0,169,0,157,0,64,232,
208,250,238,26,192,136,208,244,96

, , ' , '

Note that most program lines are common to both programs, as is true for the
programs to follow. The differences are in the actual ,routines that are required
to draw lines, circles, ellipses etc. It can be seen from these programs that most
drawing is done utilising loops. To draw a circle you need to choose a suitable
STEP value for a loop that runs either from 0 to 360 (degrees), or 0 to 2 * n
(radians). You also have to set a centre to put the circle where you want it, and
a radius such that it will fit the screen.

5 REM CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FOREGROUND C
ODE + BACKGROUND·CODE· II

20 INPUT CC
30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POI<E49175,CC
50 SYS(49152)
60 PRINT"ENTER CENTRE CORD. (XC,YC)U;
70 INPUT XC,YC
80 INPUT"ENTER RADIUS(RD) ";RD
90 POKE56576,(PEEK(56576)AND 252)OR 2
1 - -. POF E5-'""'7'"' 8 (){) . r'. .;j"::,,,::, ,

11~1 F'ovE=~""6= PEEvl=~ry6=·)··OR ~? r... ,J.":'.L.. ,J, f '\ .,J.J...:..,. -.i - -J.i!...

120 FOR 0=0 TO 360·STEP· 0.5
130 RA=D*n/180
140 X=XC+RD*COS(RA)
150 ¥=YC+RD*SIN(RA)
160 Xl=INT(X/8):B=7-(X AND 7)
170 Yl=INT(Y/8):L=Y AND 7
180 C=Yl*320+Xl*8+L
190 POKE24576+C, PEEK (24576+C)OR 2·:I··B
200 NEXT

210

210 DATA 160~32,162,0,169,0,157,0,96,232

,208,250,238,8,192,136,208,244
220 DATA 160,4,162,0,169,0,157,0,64,232,

,
208,250,238,26,192,136,208,244,96

Lines 130 - 140 converts to radians, in which all the trigonometric functions of
the computer work, and calculates the horizontal component, and line 150 the
vertical. Having set the basic values, you can introduce variations within the
loop into the above program. You can calculate the radius value and get a spiral
plot. Alter line 120 as follows and run it:

120 RA = D * n I 180: R D = RA * 10

Calculating additional values, all within the loop, and using the loop values as
a basis, provides complex shapes fairly easily. Alter line 120 to read:

120 RE = D * n 1180:RD = 90 * SIN(RA * 6)

Run the program. From a simple circle, you now have the basis for a polar graph
plot and can identify a scale of values for plotting that will fit the screen. To draw
an ellipse, for example, you have to provide a vertical radius and a horizontal
radius. So make the following changes in the program of example 8 for drawing
an ellipse: .

75 INPUT"ENTER HORIZ. & VERT. RADIUS";HR,VR
140 X = XC + HR * COS(RA)
150 X = YC + VR * SIN(RA)

where HR and VR are the horizontal and vertical radiuses. The programs of
examples 9, 10, and 11 provide further patterns utilising the SIN and COS
functions:

5 . REM CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FoREGROUND C
ODE --I- BACKGROUND CODE II

20 INPUT CC
30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POKE49175,CC
50 SYS(49152)
80 POKE56576,(PEEK(56576)AND
90 PoKE53272,8

252)oR 2

100 POKE53265 ,PEEK (53265) OR
110 FOR X=20 TO 300 STEP 0.2
120 IF X=160 THEN 150
130 I=(X-16Q) 13
150 Y=130-ABS(90*SIN(I)/I)
160 Xl=INT(X/8):B=7-(X AND 7)
170 Yl=INT(Y/8):L=Y AND 7
180 C=Yl*320+Xl*8+L
190 PoKE24576+C, PEEK (24576+C)OR 21£
200 NEXT

211

•
"

/

210 DATA 160,32,162,0,169,0,157,0,96,232
,208,250,238,8,192,136,208,244
220 DATA 160,4,162,0,169,0,157,0,64,232,
208,250,238,26,192,136,208,244,96

-

5 REM CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FOREGROUND C
ODE + BACKGROUND CODE II

20 INPUT CC
30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POKE49175"CC
=--) ..J'-_

80
SYS(49152)
POKE56576,(PEEK(56576)AND

90 POKE53272,8
100 POKE53265,PEEK(53265) OR
110 FOR x=o TO 320 STEP 0.5
120 Y=100+40*SINeX/8):GOSUB
1 7 -
4 -..:.0 Y=100+15*COS(X/R):GOSUB
140 NEXT:END

252)OR 2

160
160

160 X1=INT(X/8):B=7-(X AND 7)
170 Yl=INT(Y/8):L=Y AND 7
180 C=Yl*320+Xl*8+L
190 POI<E24576+C, PEEK (2457 6+C) OR 2 "i--B
200 RETURN
210 DATA 160,32,162,0,169,0,157,0,96,232
~l)O ~=o- ~~8 8 lQ~ 1~6 ~08 ?44 ,..:... t.-l, ..:-. ..J , ..:... _, ,. , ~ ..:... " -J ,.,,:.... , .-

220 DATA 160~4,162,0,169,0,157,0,64,232,

208,250,238,26,192,136,208,244,96

._-----'

5 REN CLEAR SCREEN AND PUT COLOUR USING
MACHINE CODE(LINES 10-50)
10 PRINT"ENTER COLOUR AS 16*FOREGROUND C
ODE + BACKGROUND CODE ,.
20 INPUT CC

212

-

30 FOR 1=0 TO 36:READ J:POKE49152+I,J:NE
XT
40 POKE49175,CC
50 SYS(49152) .
80 POKE56576,(PEEK(56576)AND 252)OR 2
90 POKE53272,8
100 POKE53265,PEEK(53265) OR 32
110 FOR x=o TO 320 STEP 0.2
120 PI=4*ATN(1):M=X*PI/180
130 Y=90*SIN(15*M)*COS(I.2*M)
140 Y=Y+I00
160 Xl=INT(X/8):B=7-(X AND 7)
170 Yl=INT(Y/8):L=Y AND 7
180 C=Yl*320+Xl*8+L
190 POKE24576+C, PEEK (24576+C) OR . 2 'r-B .
200 NEXT
210 DATA 160,32,162,0,169,0,157,0,96,232
,208,250,238,8,192,136,208,244

., "

220 DATA 160,4~162,0,169,0,157,0,64,232,

208,250,238,26,192,136,208,244,96

R6: Sprites
A sprite is a small graphics object which can be displayed anywhere on the
screen. Under normal circumstances up to 8 sprites can be displayed at anyone
time and they can be mixed with either graphics or text. The colour, movement,
magnification etc. of each sprite are controlled by 46 . special registers called
sprite registers. These registers are located at memory locations 53248 to 53294 in
the memory map. Each sprite has its own definition location, colour register,
position register, and has its own bit fQr collision detection.

Sprite registers
Memory location Description

53248
53249
53250 - 53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273

sprite 0 X position
sprite 0 Y position
sprites 1 - 7 X and Y positions /
most significant bit of X position (1 bit per sprjte)
bit map mode and vertical pixel scrolling . .'
raster register
light pen X position
light pen Y position
turn sprite ON/OFF
multicolour character mode and horizontal pixel scrolling
sprite expand in Y direction
character memory pointer
interrupt request

213

Memory location
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287 - 53294

Description
disable interrupt
sprite priority
multicolour sprite mode

· sprite expand in X direction
sprite sprite collision
sprite background collision
border colour .
background colour 0
background colour 1
background colour 2
background colour 3
sprite multicolour 0
sprite multicolour 1
colour for sprites 0 - 7

R7: Defining a sprite
.

Sprites are defined in a similar fashion to that of programmable characters,
except that they are 24 by 21 dots requiring 63 (24 * 21/8) bytes of memory. This
63 bytes of memory form a block in which sprite data is stored.

R
o
w

1

21

Column

.L

Figure Rl: Sprite definition block

24

.

,

-

The block consists of21 rows and each row contains 3 bytes. A sprite definition
looks as follows: .

byte 1 byte 2
byte 4 byte 5

• •

•

•

•

byte 3
byte 6

•

•

•

byte 61 byte 62 byte 63
Each bit set to 0 will display whatever data is behind the block, and each bit set
to 1 will display the sprite foreground colour.

R8: Sprite formation
To form a sprite you must take a series of steps. The text outlines these steps

. below, and creates a program in the process.
First, work out the data for the required sprite and place it in a 64 byte block

in memory. To do this you mustfirst draw the sprite on a 24 by 21 point grid and
add on the values of all the bits set to 1, just as you did for a programmable
character.

214

Consider the problem of creating a car as our sprite object. The data for such
an object is as listed in lines 120 to 150 of the following program.

byte 1 byte 2 byte 3

• .. >tI •

Figure R2: The car sprite

Now you must store these data in memory. Allocate a block in memory where
data will be stored. These blocks start at location 0 and go up to 16320. This
means that there are 255 blocks in each 16K memory. However, the first block
that can be used safely is block 11 and then blocks 13 onwards. Locations 1024 to
2047 are also unuseable, because the screen memory resides there. The
following equation gives the block starting address:

address = bLock * 64

So if you were to use block 11 for the sprite, the starting address would be:

address = 11 * 64 = 704
Now that you have your data and the starting address of the block, POKE them
into the block as follows:

10 FOR M = 704 TO 766
20 READ SDAT
30 POKE M,SDAT:NEXT M

Having stored the data in memory, next you must tell the sprite pointer which
block contains our data. Since there can be 8 sprites displayed at anyone time,
there are therefore 8 memory locations associated with the 8 sprites. These bytes
are always located as the last 8 bytes of the 1K screen memory. Normally, on the
Commodore 64, this means that they begin at location 2040. Remember that if
we move the screen memory, the sprite pointers also move.

The following table gives the addresses associated with the 8 sprites .
. , -

address 2040 2041 2042 2043 2044 204512046 2 047
sprite number 0 1 2 3 4 5 6 7

• ,....._~ b.... ... , - . - - ,
. . /

So to set the sprite pointer of sprite 7 to the 11th block in memory/use: ,

40 POKE 2047, 11 '
Note that it is possible to allocate the data in block 11 to more than one sprite.
So if you wish to create two identical sprites, you must POKE the block number
into the respective memory location.

Next you must turn on the required sprite. To turn on any sprite you must
POKE into the sprite enable register at location 53269. This register has a bit
allocated to each of the 8 sprites, and the value to be POKEd depends on the
sprite number.

215

sprite number 7 6 5 4 3 2 1 0
value 128 64 32 16 8 4 2 1

So to turn on sprite 7, set that bit to a 1.
50 POKE 53269,128

To turn on more than one sprite, you must add up the values of the bits set to
1 and then POKE it into the sprite enable register. For example, to turn on sprite
o and 7, use:

POKE 53269,129

A sprite is turned off by setting the bit corresponding that sprite to a O. The
following statement will do this:

POKE 53269,PEEK(53269) AND C255 - vaLue)

So to turn off sprite 7, use:
POKE 53269, PEEK(53269) AND 127

Next, add the colours. A sprite can be in any of the 16 colours available on the
64. Each sprite has its own colour register and these are located at addresses
53287 to 53294 respectively. POKEing the colour code into the respective colour
register will display all the bits set to 1 in the specified colour, and all the bits set
to 0 will be transparent; that is, the data behind the sprite will be displayed. So
to set the foreground colour of the sprite to purple we use:

60 POKE 53294,4

This allows our sprite to be displayed in only one colour. It is, however, possible
to use up to four colours in our sprite. The multicolour mode will be discussed
later.

Finally, move the sprite onto the screen. If the program is run as it is so far,
you will not see your sprite. This is because it is positioned off the visible part of
the screen. To move it onto the visible section of the screen, POKE the X and Y
coordinates into the X and Y position registers. There are a pair of these registers
associated with each sprite. So to move the sprite to point (150,200), use the
following statement:

70 POKE 53262,150:POKE 53263,200

Enter the above line and re-run the program. The sprite is now displayed at
position 150,200. To make the sprite move across the screen, you must POKE·
into the X register a value between 0 and 320. But the maximum value that an
8 bit register can handle is 255. To get around this problem, use the X MOST
SIGNIFICANT BIT register location 53265. This register has its 8 bits associated
with each sprite respectively. By setting the bit corresponding to your sprite to
a I, you now can handle a number as large as 512; thus it gives you 512 possible
positions in the X direction. However, only values between 0 and 343 are needed
for the present display area. To demonstrate the point, add the following lines
to the program and run it.

80 FOR I = 0 TO 343
100 POKE 53262,I:POKE 53263,200:NEXT I

The program stops with the message ILLEGAL QUANTITY ERROR IN lOa, for
the reason specified above. Now add the following lines and try it again.

90 MSB = INTCI/256):X = I - 256 * MSB
100 POKE 53262,X:POKE 53263, 200
110 POKE 53264,MSB + 127:NEXT I

Line 90 assigns value a or 1 to variable MSB and also works out the X position
of the sprite on the screen. Line 110 sets the bit 8 of the X MOST SIGNIFICANT
BIT register to a 1 or a depending on the value of I.

216

Here is the complete program listing:

5 PRINT"~"
10 FOR M=704 TO 766
20 READ SDAT
30 POKE M,SDAT:NEXT M
40 POKE53269,128
50 POKE2047,11
60 POKE 53294,4
70 FOR 1=0 TO 343
80 MSB=INT(I/256):X=I-256*MSB
90 POKE53262,X:POKE53263,200
100POKE53264,MSB+127:NEXT I
110 GOTO 60
120 DATA O,O,O,O,O,O,O,u,O,O,O,O,O,O,O,O
,0,0
130 DATA 7,254,0,8,65,0,24,64,128,248,64

64 ~~5 ~~5 ~~~ ~~~ ~~c ~54 ~ ,~~ ,L~ ,~~4,~~~,~~~,~

140 DATA 255,255,255,255,255,255,28,0,56
,8,0,16,0,0,0,0,0,0
150 DATA 0,0,0,0,0,0,0,0,0

The vertical movement of sprites is a straightforward business, since there are
no extra attachments or bit setting involved. This is demonstrated by the
following program, which defines a shape that is more likely to move upwards
than a car would be. Key in the program and run it.

c:- c'!:"INTI"'I" . .J i r-\ I I •• , .

10 FOR M=704 TO 766
20 READ SDAT
30 POKE M,SDAT:NEXT M
40 POKE53269,128
50 POI<E2047, 11
60 POKE 53294;1
70 FOR 1=249 TO 0 STEP -1
8 t) F'ovE~~~6~ 15n·POKEC:-~~6~ I r··.. ,J.JJI!.. ~, V _ -~4 ~ • ...)~ -',

90 POKE53264,MSB+127:NEXT I
100 GOTO 60
110 DATA 0,16,0,0,16,0,0,16,0,0,56,0 /
120 DATA 0,56,0,0,56,O,O,124,0,0,12~~ 0
130 DATA 0,124,0,1,255,0,1,255,0,1,255,0

140 DATA ~ ~c:-c 1?8 ~ ~c:-~ 1?8 ~ ~~~ 1~8 . -,~~~, - ,~,~~~, - ,~,~~~, ~

150 DATA 3,255,128,3,255,128,3,57,128
160 DATA 2,124,128,2,56,128,0,16,0

217

: i

, , -.

- " ,-- ,-,
E

, 'r ,

- ,-

-" : .
•

I ,
'-'

\: , ,

,- , -, .
, ,-

: -~ :'

I ;
, I

,

,

, ; i
; : I
I " L i i
:r : i .
-' 1_-,: ;-
, !
; i

,

; :
- ,. I

i i
~ ~

: '
I

i'
: - I .

, ;

, -;
-, , I

,: i ; ,- , ,
-,' -

F

R9: Sprite expansion
Having defined a sprite and displayed it on the screen, you can now double it up
in height, width or both, by expanding it. Each dot in the sprite doubles in
dimension.

To expand horizontally, set the corresponding bit of the SPRITE EXPAND IN
X DIRECTION register at location 53277 to al. This is demonstrated inline 170 of
our next program

sprite no 7 6 5 4 . 3 . 2 1 0
X expand 128 64 32 16 8 4 2 1
value

So if you wish to expand sprites 5 and 7 in X direction, use the following
command:

POKE 53277,160
To unexpand a sprite in X direction, set the corresponding bit of the register

to a O.
POKE 53277,PEEK(53277) AND (255 - vaLue)

Expanding and unexpanding of a sprite in Y direction is done in a similar
manner, except that you must set or unset the SPRITE EXPAND IN Y
DIRECTION register at location 53271 (see line 170). To expand sprites 3 and 7
in Y direction, use the following command:

POKE 53271,136
and to unexpand a sprite in Y direction use the following command:

POKE 53271,PEEK(53271> AND (255 - vaLue)

z::: c'R T "'T 1/ l'I'q 1/
...J I .L iill f : • . J

6 REM STORE SPRITE DATA IN BLOCK 11 .
10 FOR M=704 TO 766
20
30
~s:=: "-'-
40
45
50
60
70
0-uO
8:5

READ SDAT
POKE M,SDAT:NEXT M
REM TURN ON SPRITES 1,3,5 AND 7
POI<E53269, 170
REM SET SPRITE POINTERS TO BLOCK 11
POI<E2041 , 11
POKE204.3, 11
POKE2045,11
POKE2047,11
REM SET SPRITE COLOUR

Q, 0_ c'Ol/E c--;r"'88 7 ~ r··. , '""'1..:.... ,

100 POKE 53290,13
110 POKE 53292,3
120 POKE 53294,10
125 REM POSITION SPRITES ON SCREEN
130 POKE53250,160:POKE53251,52
140 POKE53254,160:POKE53255,86
150 POKE53258,150:POKE53259~150

218

•

160 POKE53262,150:POKE53263,190
165 REM EXPAND SPRITES IN X ~ Y DIRECT.
170
180
185
190
195
200
205
210
215
220
'"'"TO ,L,-.,J

240
250

POKE53271,136:POKE53277,160
R=3:C=14:GOSUB 300
PR I NT " ITlJNE X PANDED"
R=11:C=8:GOSUB 300
PRINT"MIEXPANDED . IN Y DIRECTION"
R=16:C=8:GOSUB 300
PRINT"~~:EXPANDED IN X DIRECTION"

,

R=23:C=6:GOSUB 300
PRINT"~.EXPANDED IN X & Y DIRECTION"
GOTO 220
DATA 0,16,0,0,16,0,0,16,0,0,56,0
DATA O~56,0,0,56,0,O,124,O,O,124,O
DATA O,124~0,1,255,0,1,255,0,1,255,0

260 DATA 3,255,128,3,255,128,3,255,128
< '"'5~ 1'"'8 < '"'55 1'"'8 < 57 1'"'8 270

280
..... 9-.::. U

DATA
DATA
REM

__ I,.L~, .A- ,'-',4 ,.L- ,~, ,..:..
2,124,128,2,56,128,0,16,0

300
310
<'"'c) ,_, .:...

REM***** SUBROUTINE PRINT§R,C *****
POKE 781,R:POKE 782,C:SYS 65520
RETURN

RIO: Sprite priority
Another important feature of the VIC chip is that it enables allocation of priority
to either background object (or data), or the sprite. In other words, the sprites
have the ability to be behind or under other objects on the screen. Run anyone
of the programs given so far and then LIST the program on to screen. Notice that
the sprite covers the text under it. This is because the corresponding bit of the
SPRITE-BACKGROUND priority register at location 53275 is unset (ie. set to 0),
thus giving the sprite higher priority than the background object. For the
background object to be displayed in front of the sprite, you must set the bit to a
1. Type the following command and notice the change: . .

POKE 53275,128
. ' ,

This point is demonstrated effectively by the following program. Key it in and
run it. · .

5 CoD I I\IT " ""I" ,1\1"'1 I •• '

10 FOR M=704 TO 766
20 READ SDAT
30 POKE M,SDAT:NEXT M
40 POKE53269,128
50 POKE2047,11
60 POKE 53294,4
70 POKE53271,128:POKE53277,128
80 POKE781,20:POKE782,5:SYS65520

\ ' "

;

"

/

9Q PR I I'~T ··!IiI·I······ , , " , .. ,. , , ,., 'v········· " ... ,',•................ ' ' ,................. .
. : •..........•...................... '•..... ' •....•.................... , ,• : •....•................. , ...•. ,•..•.•...•... ,' ,•.•.......................................•.•

219

' ',•................ II : ... ,•..... ': :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;.:.

110 FOR J=1 TO 2
POKE 53275,0
IF J=2 THEN POKE 53275,128
FOR 1=0 TO 343
MSB=INT(I/256):X=I-256*MSB
POKE53262,X:POKE53263,196
POKE53264,MSB+127:NEXT I
NEXT J
GOTO 60

,

120
130
140
150
160
170
180
190
200 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0
210 DATA 7,254,0,8,65,0,24,64,128,248,64
,64,255,255,252,255,255,254
220 DATA 255,255,255,255,255,255,28,0,56
,8,0,16,0,0,0,0,0,0
230 DATA 0,0,0,0,0,0,0,0,0

.
Let the sprite go across the screen twice. Notice that during the first path the
sprite is displayed in front of, and during the second part behind, the
background object. Line 110 sets up a loop of count 2. Line 120 gives the sprite
higher priority between background and foreground when the loop value is 2.

Although you can fix priority between background objects and sprites, you
cannot fix priority between sprites themselves: the sprite-to-sprite priority is
fixed. Sprite 0 has the highest priority and sprite 7 the lowest. This means that
sprite 0 will cover all other sprites if they are positioned in the same area of
screen. To see this happen make the following change in the program of
example 14: .

150 POKE 53262,150:POKE 53263,202
Now run the program, and note that sprite 5 will cover part of sprite 7 because
of its higher priority.

Rll: Multicolour sprites
The sprites created so far have been in one colour only, but it is possible to create
sprites in four different colours in each sprite. The principle is basically the same
as in multicolour characters. However, the horizontal resolution is halved, and
the colours are determined by bit pairs; that is, there are now 12 pairs of dots
across instead of 24. The follOWing bit pairs determine the colours for the sprites:

bit, pair description

00 screen colour
01 multicolour register 0 (location 53285)
10 sprite foreground colour
11 multicolour register 1 (location 53286)

So to create a multicolour sprite, you must turn on the multicolour register at
location 53276. This is the command:

POKE 53276, va Lue
where value is any value between 1 and 255. For example, to put sprites 3 and

220

7 into multicolour mode, we must POKE 128 + 8 = 136 into the multicolour
register. To do this, add the following line to the program of example 14:

121 POKE 53276,136
Also, since the bit pairs 01 and 11 will take their colour from multicolour
registers 0 and 1 respectively, you must therefore POKE these locations with the
desired colour code. Add the following line to the program and run it.

122 POKE 53285,1 :POKE 53286,14
To turn off the multicolour mode, use the following command:

POKE 53276,PEEK(53276) AND (255 - vaLue)

R12: Collision detection
This is another important feature provided by the VIC chip. Two registers at
locations 53278 and 53279 detect sprite-to-sprite collision, and sprite-to
background object collision respectively. Each sprite has a bit associated with it
in each of these registers and the bit will be set if a collision occurs. For example
if sprites 3 and 5 are involved in a collision, then the bits associated with the two
sprites in the sprite-to-sprite collision register will be set. The bits in this register
will remain set until the register is PEEKed. PEEKing this register will automati
cally unset the register. The sprite-to-background object detection is done in the
same way.

.I
, ,

!

221

Section S: Lists and arrays

51: Introduction
You have been have studying simple variables to handle strings and numbers,
but there are many occasions when the programmer needs to use lists of strings
or numbers, such as, for example, a class list of students and examination
marks. A simple variable may be allowed to represent several values, but only
one at a time, because each variable has only one part of memory allocated to it.

Consider the following short lists of names and marks. .
SMITH 50
JONES 45
BROWN 82
BLACK 36

To represent this list completely using simple variables, you would need 4 string
variables and 4 numeric variables. With lists containing several hundred items,
this becomes unmanageable. To provide a more convenient method of accessing
this type of information, the computer needs to do two things:

• reserve enough storage in memory for all the items in the list (called the
dimensioning arrays), and

. . ,

• provide some way of identifying each item in the list (subscript or index).

82: Dimensioning
The dimension statement DIM is used to reserve storage space for a list or array
to contain numbers. DIM A (N) sets up an array A with space for N numbers. A
may be any legal variable. The Commodore will accept both upper and lower
case letters; a (N) will signify the same array as A (N). N may be a number, a
numeric variable or an expression.

A dimension statement must be declared before the array can be used. This is
usually done at the beginning of a program, unless the value N is to be set equal
to an expression or a variable which will be calculated later in the program.

These statements in a program -

10 DIM A(10)
20 DIM 8(15)
30 DIM C(30)

/

or
/

10 DIM A(10),8(15),C(30)

- will reserve storage for a list A containing 10 numbers, a list B containing 15
numbers and a list C containing 30 numbers. The values of each· element
(number) in an array are automatically set (initialised) as zero. The message 0 U T
o F ME M 0 RYE R R 0 R will be displayed if there is no room for the array (that is, if
N is too large).

223

53: The index variable ·
The index variable N is used to locate a member of a list. The form A (N) is used
to locate the N'th number of a list A (L), where 1 < = N < = L. If N = 5, then A (N)
refers to A (5) , the fifth number in the list. The program below establishes a four
element list, so that:

A (1) = 1
A (2) = 4
A (3) = 9
A (4) = 16

and prints out the second and fourth elements.

10 DIM A(4)
20 FOR N=l TO 4
30 A(N)=N*N
40 NEXT N
50 PRINT"SECOND ELEMENT IS U;A(2)
60 PRINT"FOURTH ELEMENT IS U;A(4)

54: Lists
Many types of problem involve a set of values, and it is convenient to store such
items in a list. The next program illustrates the idea. Assuming that a list of the
squares of the first 20 integers is required, it is necessary to reserve storage for
the twenty numbers (1,4,9 etc. up to 400) and this is done in line 20. The loop
(lines 30 to 50) pu ts A (1) = 1 , A (2) = 4 ••• A (20) = 400 and it is thus possible to
use any item of this list at a later date, using the index variable. Line 60 prints out
4 and 16 and the loop (lines 80 -100) will print out the complete list of numbers.

10 REM'lHL I ST **
?()
~~ DIM A(20)
3i) FOR N=l TO 20
40 A(N)=N*N
<=:() - NEXT N
60 PRINT A(2)~A(4) . .
70 PRINT
80 FOR N=l TO 20
90 PRINT A(N)
100 NEXT N

Here are some example programs illustrating the use of lists.

Simple allocation of elements in a list
Look at the program. What will be printed out when the program is run? Check
by entering and running the program.

224

10REM**LIST1**
20 DIM A(4)
30 A(U=10
40 A ("2) =58 .
50 A(3)=72
60 A(4)=20
70 PRINT A(1)~A(2)
80 PRINT
90 PRINT A(3)-A(2)

Allocating elements in an array .
This technique uses the the READ and DATA statements. What will be printed
out when the program is run? ..

10
20
30
40
t::(-1 . .J _

60

DIM B(6)
FOR N=l TO 6
READ B(N)
NEXT N
PRINT 3*B(2)
PRINT B(6)-B(4)

70 PRINT 2*B(3)-B(1)
80 DATA 14.25.36.47.58.69

" .'

Allocation of values to the elements in a list
Here a loop and the INPUT statement are used. The value of the control variable
(N) of the loop is used to specify each element of the list in turn. Again, study
the program and try to work out the results, then check by keying it in and
running it. .

10 REM**LIST2**
20 DIM A(4)
30 FOR N=1 TO 4
40 PRINT"ENTER A(";N;")";
50 INPUT A(N)
60 NEXT N
70 PRINT A(1)*A(3)
80 PRINT
90 PRINT A(3)-A(2)

Dimensioning lists in a program

/

All lists used in a program must be dimensioned. Hand trace this program and
decide what are the 10 elements in list B(N).Check by entering and running the
program.

225

5 REM**LIST3**
10 DIM A(20),B(10)
20 FOR N=1 TO 20
30 A(N)=N*N
40 NEXT N.·
50 FOR N=l TO 10
60 B(N)=A(2*N)-A(2*N-l)
70 NEXT N
80 FOR N=1 TO 10
90 PRINT B(N)
110 NEXT N

, .

Using a variable in a DIM statement

. .

A variable may be used in a DIM statement, provided its value is assigned before
the DIM statement"is reached. Enter the next program and run it for X==20.

5 REM**LIST4**
10 INPUT X
20 DIM A(X)
30 FOR N=l' TO X
40 A(N)=SQR(N)
50 PRINT A (N)
60 NEXT N

Use of lists to store data
. . - :

The program OHMS LAW illustrates the use of lists to store data from a set of
electrical Circuit experiments. The voltmeter and ammeter readings from each
experiment are stored in the lists A (N) and V (N) as they are input. Notice that
it is essential to dimension storage space for the derived lists of results R (N) ,
(line 60). The loop (lines 60 to 90) enables the readings to be stored for use in the
later loop (lines 130 to 170), which performs the calculation and prints out the
results of each experiment, giving the current in amps, the voltage in volts, and
the resistance in ohms derived by the formula R=V / lin line 140. Line 120
initialises a variable T' which has each resistance in turn added to it. This enables
line 200 to print the average resistance value.

Notice that if line 50 came before the DIM statements, . th~ program could use
DIM A (X), etc. to set the size of the arrays, as in program LIS T 4 above.

10 REM**OHHS LAW**
20 PRINT"OHMS LAW RESULT"
30 PRINT"UPTO 20 PAIRS OR READINGS"
40 DIM A(20),V(20) ,R(20)
50 INPUT"ENTER NUMBER .OF · READINGS";X
60 FOR N=l TO X
70 INPUT"ENTER CURRENT IN AMPS";A(N)
80 INPUT"ENTER VOLTAGE IN VOLTS";V(N)
90 NEXT N

226

100 PRINT"AMPS";TAB(S);"VOLTS";TAB(16);"
OHMS"
110 PRINT"****************************"
120 T=O

•

130 FOR N=l TO X
140 R(N)=V(N)/A(N)
150 T=T+R(N)
160 PRINT A(N);TAB(S);V(N);TAB(16);R(N)
170 NEXT N
lS0 PRINT"****************************"
190 PRINT
200PRINT"AVERAGE RESISTANCE ";T/X" OHMS
"

Another example of storing data
This program shows image positions (V) and magnifications (M) for a convex
lens, given the focal length of the lens (F) and the object distance (U).

5 REM**CONVEXLENS**
10 PR I NT" ~TrH I S PROGRAM SHOWS THE . POS I TID

- ' . ' - ." - -,

N AND MAGNIFICATION OF THE IMAGE "; ' . .
. .

15 PRINT"PROOUCED BY A CONVEX LENS" .'
20 PR I NT" ******************************* . ,
*********"
30 DIM U(12),V(12),M(12) ,

. "

40INPUT"ENTER FOCAL LENGTHIN CM.";F ,
50 PRINT"ENTER OBJECT DISTANCE IN CM"
60 FOR N=l TO 12
70 INPUT U(N)
80 V(N)=U(N)*F/(U(N)-F)
90 M(N)=V(N)/U(N)
100 NEXT N
110 PRINT"U";TAB(S);"V";TAB(22);"M"
120 FOR N=l TO 12
130 PRINT U(N);TAB(S);V(N);TAB(22);M(N)
140 NEXT N . /

,
' I

227

, .

, . ,

The screen display will look like this :

THIS PROGRAM SHOWS THE POSITION AND
MAGNIFICATION OF THE IMAGE PRODUCED
BY A CONVEX LENS

U
10
20
30
39.555
40.555
50
60
70
80
90
100
120

V
-13,333333
-40
-120
-3555.5056
2922.8829
200
120
93.333333
80
72
66.666667
60

S5: String arrays

M
-1.3333333
-2
-4
-89.887639
72.0772073
4
2
1.3333333
1
0.8
0.66666667
0.5

The DIM statement for string arrays has the form
DIM A$(N)

where N = number of strings.
DIM A$ (3) will reserve storage space for 3 strings A$(l); A$(2), A$(3), each of

any length up to 255 characters. Each letter of each string can be accessed
separately, as with a string variable. Substrings may also be allocated using the
LEFT$, RIGHT$ and MID$ functions, which will return the specified characters.
For example, if

A$(2) = "EFGH"
then

MID$(A$(2),2,3) = "FGH"
The two programs below show these operations. Key them in and run them.
Note that space may be included as letters, as can any other character usable in
a string.

5 REM**STRING ARR1**
10 DIM A$(4)
15 PRINT"ENTER ANY CHARACTERS"
20 FOR N=l TO 4
30 INPUT A$(N)
40 NEXT N
50 PF~INT MID$ (A$ (4) ,3~ 1) ; II "; MID$ (A$ (3) ~
2,1)
60 PRINT
70 PRINT A$(l);" II·A$(?i. 1I

, _of !I ";A$(3)

228

10 REM**STTR ARR2**
20 DIM A$(3)
30 A$(l)="ABCD"
40 A$(2)="EFGH" .
50 A$(3)="IJKL"
60 PRINT MID$(A$(2) ,4,1); II ";MID$(A$(3),
2,1)
70 PRINT
80 PRINT MID$(A$(2) ,2,3)
90 PRINT MID$(A$(1),3,2)

56: Two-dimensional arrays
A 2-D (two-dimensional) numeric array is dimensioned by the statement:

DIM ACR,C>
where A is any legal variable, R is the number of rows and C is the number of
columns. All elements are set as zero.

The simple array is one-dimensional, and contains just a linear sequence of
items. But arrays can have more than one dimension:

4
10
16
22

6
12
18
24

8
14
20
26

This is a numeric array consisting of 4 rows of numbers in 3 columns. Storage
would be reserved by the statement:

10 DIM AC4,3)

In an array A C R, C) any element can be accessed, so that in the array above
A C 2,1) = 10, A C 3,2) = 18, etc. An array of two (or more) dimensions is also
known as a matrix (plural matrices).

The following program establishes an array and prints out two selected
elements and then the complete array:

10
'":>v-..:..

"'0 ._'

-40

REM**ARRAY**
DIM A(10,9)
FOR R=l TO 10
FOR C=l TO 9

50 A(R,C)=R*C
60 NEXT C,R
70 PRINT A(lO,6),A(5,3)
80 PRINT
90 FOR R=l TO 10
100 FOR C=l TO 9
110 PRINT TAB(3*C);A(R,C);
115 I F A (R , C) < 10 THEN PR I NT " ";
120 NEXT C
130 PRINT:PRINT:PRINT TAB(3);
140 NEXT R

229

r'
t

.I

Line 20 allocates the appropriate storage. Nested loops (line 30 to 60) are used to
allocate values to the elements in the array. Line 70 prints out two elements in
the array. Nested loops (lines 90 to 140) print out the complete array. .

Why is line 130 required? A system is needed to keep track of the elements in
the array. In general, it is easiest to use R to represent the rows and C the
columns and always to access the rows before the columns. Note the use of the
TAB function to give a dear printout.

1

2

3

4

5

etc.

2

4

6

8

10

3

6

9

12

15

4

8

12

16

20

5

10

15

20

25

6

12

18

24

7

14

21

28

8 9

16 18

24 27

32 36

30 · 35 .·· 40 45

, , ," ,

String arrays can also have more than one dimension. 2-D String arrays are
dimensioned by a statement of the form

DIM A$(R,C)

where R is the number of rows, C is the number of columns. Try this program:

10 REM**2DSTRING**
20 DIM A$(3.,3)
30 PRINT"::"'..ENTER ANY CHARACTERS MAX 5 LET
TERS " .
40 FOR R=l TO 3
50 FOR C=l TO 3
60 PRINT"ROW ";R;"COL ";C
61 PRINT
65 INPUTA$(R,C)
70 NEXT C,R
80 FOR R=1 TO 3
90 FOR C=1 TO 3
100 PRINT TAB(C*7);A$(R,C);
110 NEXT C
120 PRINT
130 NEXT R

57: Multidimensional arrays .
. .

Multidimensional arrays are available for both numbers and strings, although a
3-D string array is rarely needed in a program. The easiest way of thinking of
these arrays is as follows:

A (P, R, C) is a 3 dimensional array: page, row, column.
A (B, P, R, C) is a 4 dimensional array: book, page, row, column.

230

2 ,,_, """" , _ _ _ _"" ,,_'_. ,'_,-'_' 'n_ ,-' " _" _ .,,~L:K """"'"

A 5-dimensional array would be a library, on the basis of this analogy. These
arrays require DIM statements to reserve the necessary storage. A simple
example of a 3 dimensional array (which needs 3 nested loops) is given below.

h

10 REM**3DLIST**
100 DIM A(3,2,4)
110 FOR P=l TO '7

.j

1"-~() FOR R=1 TO " ~
130 FOR C=1 TO 4
140 A(P,R,C)=P*R*C
150 NEXT C,R,P
160 PRINT A(2,1,3)
170 PRINT
180 FOR P=1 TO -.,)

190 FOR R=l TO 2
200 FOR C=l TO 4
210 PRINT A(P,R,C);" II.

" 215 IF A(P,R,C) < 10 THEN PRINT" " .
~

220 NEXT C
",""=!"o
.L~_. PRINT
~'40 L NEXT R
'-"=0 ~~- PRINT
260 NEXT P

The similar program below, extended by a dimension, shows a 4-dimensional
array printed out in a suitable form.

10 REM**4DARRAY**
100 DIM A(2,3,4,5)
110 FOR B=l TO 2
120 FOR P=1 TO 3
130 FOR R=1 TO 4
140 FOR C=1 TO 5
150 A(B,P,R,C)=B*P*R*C
160 NEXT C,R,P,B
170 PRINT A(1,2,3,4);" "A(2,2,3,3)
180 PRINT
190 FOR B=l TO 2
200 FOR P=1 TO 3

220
PRINT "BOOK";B;";PAGE";P
FOR R=1 TO 4

230 FOR C=l TO 5
240 PRINT A(B,P,R,C)" ";
245 IF A(B,P,R,C) <: 10 THEN PRINT"
250 NEXT C
260 PRINT
270 NEXT R
280 PRINT
290 NEXT P
300 NEXT B

231

,I

I
l,i •
, .

•

Here is a 3-D version to try.

5 REM**3D STRING ARRAY**
10 DIM A:t(3,3,3}
20 FOR P=l TO 3
30 FOR R=l TO 3
40 FOR C=l TO 3
50 INPUT AS(P,R,C}
60 NEXT C,R,P
70 FOR P=l TO 3
80 FOR R=l TO 3
90 FOR C=l TO 3
100 PRINT AS(P,R,C);" u;
110 NEXT C
120 PRINT
130 NEXT R
140 PRINT
150 NEXT P

S8: Use of arrays

-, ,'.

A simple example of the use of 2-D arrays is shown in the seat booking program
below. A small theatre consists of 10 rows of seats with 6 seats in each row.
Some seats may already be reserved. These are input when the program is run.
When a new booking is made the requested seat, if available, is sold. If the seat
is not available the customer is asked to choose another row. The sections of the
program are as follows:

1 Initialise an array to represent the 10 rows of 6 seats (line 30). All
elements in this array are 0, and represent unbooked seats.

2 Input seats already booked (lines 40 - 130).
2.1 Input row and seat number of booked seats. If input is 0 for the row

number, program goes to 2.3.
2.2 If seat already booked (array element = 1), print message to user. Seat

is booked by placing a 1 in the appropriate array element.
2.3 Program prints prompt, then halts until C is input.
3 Customer request for seat is input (lines 165 - 240).
3.1 Rowand seat required are input. If seat already booked (array element

= 1), program goes to 4.
3.2 Seat is booked.
3.3 Menu is printed to enable user to choose to book another seat or to view

seating plan.
3.4 If seat booking is requested, program returns to 3.1. If seating plan

option is chosen, program goes to 5.
4 Seat available module (lines 300 - 450).
4.1 Seat unavailable message is printed, then variable SEATS is set at zero,

and the loop checks if at least one seat is free in this row, setting SEATS
= 1 if seat is free (Current Row R, checked for S(R,1) to S(R,6)).

4.2 If no seats in this row (Seats = 0), program passes to line 440 and prints
message, then returns to menu (3.3).

4.3 If at least one seat is free, the loop at lines 390 to 410 prints out the
numbers of the seats free, and the program returns to the menu.

232

~,- -~-'- ----

5 View seat plan module (lines 500--600).
5.1 Nested loops are used to display seat plan, row 10 being at the top, as

O's and l's.
5.2 Copy option is given, to print out the seating plan.
5.3 Menu presented for end of program or return to book seats. Program

goes to 3.1, or proceeds to 6.
6 Program ends. Instructions given to restart if required without using

RUN and clearing the data stored in the array.

10 REM**THEATRE**
20 REM**INITIALISE ARRAY**
30 DIM 8(10,6)
35 REM**INSERT SEATS ALREADY**
36 REM**BOOKED **
40 PRINT"INPUT SEATS THAT ARE BOOKED.","
INPUT 0 TO FINISH"
50 INPUT"ROW ?";R
60 IF R=O THEN 130
80 INPUTIi~EAT ?";C
100 IF t;(R,C)=1 THEN PRINT"ROW
T "; C; "ALREADY BOO!<ED"
110 S<R,C)=1

1.:3.:0 F't::) I NT" "I'll"
~ ", I •• 11

I.E • C). II ~!='"A
,f~., ~~

140 INPUT"ENTER C TO PROCEED TO BOOKING"

F'R I "IT" "'11" i" ~ I •• :!

REM**CUSTOMER REQUEST FOR**
REM-lHSEAT
INPUT" ENTER ROv.J REQUFSTED
INPUT"SEAT NUMBER ";C
IF S(R,C)=l THEN 300
S(R,C)=1

" " R , I

;A$
150
160
165
170
180
190
200
,.., 1 .)
.L- ,I. " PRINT"THIS SEAT

PRINT"ROItJ "; R; "
PRINT

FREE. NOW BOOI(ED"
??C-l
~~ "'-~ SEAT "C

260 PRINT"BOOK ANOTHER SEAT (S) OR VIEW
","SAETING PLAN (P) ? ENTER S OR P II

270 INPUT A:t-
280 IF A$="S" THEN 170

GO TO 500 :290
3{)O
-v 1 -.,::. ()

REM**SEAT UNAVAILABLE**
PRINT"REQUESTED SEAT NOT AVAILABLE"

.'::'70 SEATS=O
FOR N=1 TO 6

340 IF S(R,N)=1 THEN 360

~L(-l
·.JW _'

SEATS:::: 1
NEXT N

370 IF SEATS=O THEN 440
380 PRINT"SEATS FREE:";
390 FOR N=1 TO 6

233

,

;

400 IF S(R,N)=O THEN PRINT
410 NEXT N
420 PRINT"."
430 GOTO 450

N-U u. , ,

440 PRINT"NO SEATS ARE FREE IN ROW
450 GOTO 260
490 REM**SEATING PLAN**
500
510
520
c:--:r0 w·,:",

540

PR I NT II ""1"
I •• J

FOR R=l TO 10
X=11-R
PRINT TAB(5);"ROW
FOR C=l TO 6

550 PRINT S(X,C);
560 NEXT C
570 PRINT
580 NEXT R

II ; X ; TAB (12) ;

". R ~

590 INPUT "ENTER E TO END, S TO BOOK SEA
TS"~A$

600 IF A$="E" THEN 630
610 PR I NT II ::'::1"
620 GOTO 170
6.30 PRINT"PROGRAM STOPPED USE GOTO 170 T
o RESTART"
640 REM**END OF PROGRAM**
650 END

This is the screen display at the end of the seat plan print routine (the first
prompt has been responded to with a user input):

ROW 10
ROW 9
ROW 8
ROW 7
ROW 6
ROW 5
ROW 4
ROW 3
ROW 2
ROW 1

000000
000000
000000
000000
000000
000000
000100
100000
1 111 1 1
000000

INPUT C
INPUT E

TO COPY, ANY TO PROCEED
TO END, S TO BOOK SEATS

The variables used in the theatre booking program are as follows:
5(10,6)

R
C
A$
SEATS

N

array to store 10 rows of 6 seats (value 1 when set booked booked, 0
when free). '
current row of array in processing.
current seat number in processing.
user input string for menu choices.
marker used to indicate whether seats are free in current row. Set to
o when no seats free, 1 when seats available.
loop variable. Value used in processing inside loops to check
availibility, and print seat numbers.

234

=- - --"----~-... ~, ,~---

R loop variable used to print seat plan. Note this is the same as the
variable for Rows above. This name may be used in two different
ways in this program because the value of the simple variable R is

• re-initialised by the input line 170 on return to the seat selection
routine.

X variable used for reverse printing of the seating rows.
C Loop variable for seats in seat plan printing. As with R above,

re-initialised as simple variable on return to to seat selection routine.
Note that the use of variables in two ways, as with Rand C in this program, is
possible only if the simple variables will be re-initialised every time they are
used; otherwise problems can arise. A loop variable erases a simple variable of
the same name. It would be better practice to use different names for the two
types of variable.

Note: For simplicity this chapter assumes there are N elements in an array A (N) •
In fact there are N+ 1 elements as the Commodore creates the element A (0) too.
If your application is short of memory, don't waste this extra element.

/ ,

, ,

235

d

,

Section T: Sorting, Searching and
Storing Arrays

•

Tl: Searching and sorting
Searching a list of numbers (or strings) for specified values can obviously be
done much more efficiently if the numbers (or strings) are sorted according to
some specified order, commonly alphabetical order or ascending numerical
order. In electronic data processing, groups of records (files) can be handled
more efficiently if the records are pre-sorted into a specified order (e.g. merging
transaction files into a master file). Various techniques have been developed to
sort data, and several of the simpler methods are illustrated in this section
together with two simple methods of searching lists.

There is a considerable difference in the efficiency of the various sorting
techniques, depending on the type and volume of data to be sorted. A technique
which is good for a random list of numbers may not be appropriate for a list in
which only one number is out of sequence. For random lists the quick sort and
shell sort techniques are very much faster than a bubble sort. Deciding on which is
the most suitable method is largely a matter of experience, and you should
experiment, using the different techniques for equivalent sets of numbers, and
timing the sort procedures.

Many sorting algorithms exist, of which the simplest is the bubble sort.
The bubble sort is used for sorting numbers (or strings with appropriate

alterations) into ascending or descending order. The principle of the bubble sort
is to compare adjacent numbers and change positions if they are in the incorrect
order. This is done for elements 1 and 2, then 2 and 3,3 and 4 ... X -1 to X at the
end of which the highest number is in the Xth position. This is repeated (and the
next highest number bubbles up to the X -lth position) and repeated again, until
the ordering is complete. ,
, The following program is a bubble sort to put numbers into ascending order.
The sorting routine itself is in lines 130 to 225.

10
20
<0
.j -

40
45
50
60
70
80
90
100
110
120
130
140
150
160

REM**BUBBLE**
PRINT"NUMBER OF ITEMS TO BE SORTED"
INPUT"MAXIMUM NUMBER IS 50 "-X ,
IF X>50 THEN 30
DIM A(X)
PRINT"ENTER NUMBERS
FOR N=l TO X

ONE AT A TIME "

INPUTA(N)
NEXT
PR I NT "1""1'-'I'j'I'Di'I~"!'''i~~''ul'''U'"'llbUIAIII 'NSORTED LIST" ,,,, .!!..P...I. •.... !!<.r .. I~1 ft 9 JR I'" "11111'-'

FOR N=l TO X
PRINT A(N);" ";
NEXT
PRINT
REM**SORTINGROUTINE**
FOR N=l TO X'-l
FOR M=l TO X-N

237

.I

i

170 C=A(M)
180 D=A (M+i)
190 IF C(=D THEN 220
200 A(M)=D
210 A(M+l)=C
220 NEXT M,N
230 REM**END OF SORT**
240 PRI NT" :ij:r~r~lm'II~'U~'II~'lIlnSORTED LIST"
250 FOR N=1 TO X
260 PRINT A(N);" ";
270 NEXT
280 PRll\iT
290 END

Here is a diagram in table form of the operations performed inthe course of
the sort:

START

. .

A(1) 129
A(2) ' 267
A(3) 56
A(4) 41

M=1

129
267

Pass

N --

M=2

56
267

Sample printout: .

UNSORTED LIST

1

3

M=3
.

41
267

TabLe Operations
, "

Pass 2 Pass 3
.

N' = 2 N - 3 - .

.

START M=1 M.=2 START ,.,=1 .
PASS PASS

2 3

129 56 56
. 41

56 129 41 41 . 56
41 129 129

267 267

129 267 56 41 69 43 99 90 4 8

SORTED LIST
4 8 41 43 56 69 90 99 129 267

"

FINISH
, ' ,

41
56

129
267

To illustrate the operation of the program, take the first four of these numbers
and see how the program sorts them:

Bubble sort for 4 numbers A (1) , A (2) , A(3), A (4)' input as12 9, 267,
56, 41

, '

The procedure is as follows:
The program goes through the list comparing successive number pairs. For

example: A (1) and A (2) , then A (2) and A (3) .• If A (1) >, A (2) then they are
swapped, so that A (2) becomes ' A (1) and A (1) becomes A (2). If A (1) <
A (2) then they are left as is. The largest number in the list will finally be in the
highest position, ie. A (4) .

238

•

2
=

""",. ""', ' . , " ,

On the first pass three comparisons are made, and the largest number will end
as A (4). On the second pass two comparisons are made, and the largest
number will be in position A (3) . On the third pass we make one comparison.
The larger !lumber will be A (2). There is no need for any more passes; the
smallest number .will be A (1) .

There are four numbers, so X = 4.
X ':' 1 passes are needed, so N = 1 TO (X - 1) = 1 TO 3 passes

. . - .

For each pass from 1 to X - N comparisons are needed, so M = 1 to (X - N)
• compansons.

T2: Bubble sort with flag

10REM**BUBBLE**
20 PRINT"NUMBER OF ITEMS TO · BE.SORTED"·
30 INPUT"MAXIMUM NUMBER IS 50 "; X ··,
40 IFX>50 THEN 30
45 DIM A(X)
50 PRINT"ENTER NUMBERS ONE AT A TIME "
60 FOR N=l TO X
70 INPUT A(N)
80 NEXT
90 PR I NT II ~P1J:~n~nJi!:I:!l:ri!i:I~jjH~'U~HnUNSORTED LIST II
100 FOR N=l TO · X
110 PRINT A(N);" n;
120 NEXT
130 PRINT
140 REM**SORTING ROUTINE**
150 FOR N=l TO X-1
160 S=O
170 FOR M=l TO X-N
180 C=A(M)
190 D=A(M+1)
200 IF C{=D THEN 240
210 A(M)=D
220 A(M+l)=C
"""0 c-l ",:".j' ~-

24·0 NEXT M
250
260
270
280
290
300
310
7,""0 .~, ..:... -

IF 5=0 THEN 280
NEXT N
REM**END OF SORT**
PR I NT n ''''i'''''I';;;'I''''u'"II~;'1IInlIra1150RTED . I .r.:.I,V,I ••. <!. PI !If!! I~! II~I nIH ti •

FOR N=l TO X
PRINT A(N);" ";
NEXT
PRINT
END

LIST"

.'

,
I

/

In order to ensure that the sort is completed as quickly as possible, a flag (in this
case the variable 5) is introduced, to indicate if it has been necessary to swap

239

elements in the list; S=l when a swap has occurred and sorting will continue
until S=O at line 215. This prevents unnecessary sorting taking place. The
procedure and program are otherwise the same as the bubble sort. The lines 145,
205 and 215 have been inserted into the above BUBBLE program.

EXERCISE
Draw up a table of operations for this program, as was done for the BUBBLE.

. .

T3: Alphabetic sort
The bubble sort (and all other sorts) may be used to sort strings by using
appropriate string variables and string arrays.

5 REM**ALPHASORT**
10 PR I NT " ~'}-tOW MANY STR I NBS II

20 PRINT"MAXIMUM 10 CHARACTERS"
30 INPUT X
35 PR I NT" ::':~"
40 DIM A$(X)
50 FOR N=l TO X
60 INPUT A$(N)
70 NEXT
80 PR I NT" :1" : PR I NT" Jii:!iI;~:lIij"K~'H~'IUNSORTED LIST"
90 FOR N=l TO X
100 PRINT A$(N);" ";
110 NEXT
120 PRINT
130 REM**SORTING ROUTINE**
140 FOR M=l TO X-I
150 FOR N=1 TO X-M
160 IF A$(N+1»=A$(N) THEN 200
170 T$=A$ (N+i)
180 A$(N+1)=A$(N)
190 A$(N)=T$
200
'?1f"t
- ~I

?.ll.() - . -~
260

NEXT N,M
PR I NT" J.ir~1:~11i1111i~pi1lS0RTED
FOR N=l TO X
PRINT A$(N);" ";
NEXT
PRINT
END

LIST"

Some care must be exercised if the above sort is to be used on numbers entered .
as strings. The example given below shows that it will work, provided 'one
ensures that all numbers entered have the same number of figures. To illustrate:
Incorrect use:

HOW MANY STRINGS
MAXIMUM 10 CHARACTERS

240

-

·

.' , ". · .
·
·

2

UNSORTED LIST
123 99 543 6 456 897 567 21 345 45

SORTED LIST
123 21 345 45 ' 456 543 567 6 897 99

Correct use:

HOW MANY STRINGS
MAXIMUM 10 CHARACTERS

UNSORTED LIST
123 099 543 006 456 897 567 021 345 045

SORTED LI ST
006 021 045 099 123 345 456 543 567 897

T4: Insertion sort
This is a sort which is more efficient than the bubble sort and is also the basis of
an even faster sort called a shell sort. Speed is a prime consideration when
sorting large amounts of data. Consider the list of numbers:

3 2 5 4 1

Starting with the first entry in the list, 'a comparison is made with the second.
Then they are swapped if necessary. Then the second is compared with the
third, a swap performed if required, and if a swap was made, the first and
second are compared again, and swapped if necessary. Then the third item is
compared with the fourth, and so on. The list above will be sorted like this:

I I
Swap 3 2

t t
2 3

I I
3 5

I I
Swap 5 4

t t
4 5

I I
Swap 5 1

t t
1 5

I . I
Swap 4 1

t t
1 4

/ I I •

Swap 3 1 ;'
••

t t
,

1 3
I I

Swap 2 1
t t
1 2

241

Consider the list A (1) , A (2) .•. A (X) . To insert item A (I + 1) in the correct
position: "

Let T = A (I + 1), then if T > = A (I) no swap is necessary and no further
comparisons are required. If T < A (I) let A (1+1) = A (I) and move on to' A (I
- 1); then if T> = A (I - 1), let A (1) = T and insertion is complete. If T < A (1
-1), let A (1) = A (I - 1), and so on down the list.

The various steps the program will make are therefore as follows:
" ,

1 Set J = I and T = A(I+ 1)
2 If T> = A(J) let A(J+1) = T and stop
3 Let A(J + 1) = A(J)
4 Let J = J - 1
5 If JO let A(J + 1) = T and stop. If not, go to (2). _
6 Repeat for each value of I (from 1 to N -1) where N = number in list.

A trace of the program, using the example list again, can be shown like this:

Start

A (1) =3
A(2)=2
A(3)=S
A(4)=4
A(S)=1

1=1

J=1

T=3

2
3

1=2 1=3

J=2 , J=3

T=S T=4

3 ,

S
S

5 REM**INSERT**

1=4

J =2 J=4 J=3 J =2

T=4 T=1 T=1 T=1

4 3
4

S

10 I NPUT II ::':'JENTER NUMBER OF NUMBERS
20 DIM A(X)
30 PR 1 NT" ;'":ENTER NUMBERS ..
40 FOR N=1 TO X
50 INPUT A(N)
60 NEXT
70 PR I NT II ;"::I:i~:r~n]il~·HIiiIl~'II~·II~·HUNSORTED LIST"
80 FOR N=1 TO X
90 PRINT A(N);" ";
100 NEXT
110 PRINT
120 REM**SORT ROUTINE**
130 FOR 1=1 TO X-I
140 J=I
150 T=A (1+1)
160 IF T)=A(J) THEN 200
170 A(J+i)=A(J)
180 J=J-l
190 IF J)=l THEN 160
200 A(J+l)=T
210 NEXT
220 PR I NT II ~eiT~l~n~·llffi·n~·fi~rusORTED LIST"

242

)

. , .' .

,

, ,

J = 1

T=1

2

II·X
~

,

,

, , . '

,

, ,

, ,

J =0

T=1

1

.. " -

2

230 FOR N=l TO X
240 PRINT A(N);" ";
250 NEXT
260 PRINT
270 END

.. ' -

T5: Shell sort
The procedure in this sort is to precede an insertion sort by a process which,
considering a list of numbers to be placed in ascending order left to right, will
move low values to the left and high values to the right more quickly.

Consider an 8 element list A (8), holding the values: 74, 32,59, 46, 26, 9, 62,
42. The sort proceeds in the following stages:
a Divide the 8 by 2 and compare elements 4 positions apart in the list,

swapping if necessary:

A (1) A(2) A(3) A(4) A(5) A(6) A (7) A(8)

I I
)6

I I
46 6

1
2 4'2 74 32 59 9

Compare:
A(l) and A(5) Swap
A(2) and A(6) Swap
A(3) and A(7) In order - leave
A(4) and A(8) Swap

New list:

26 9 59 42 74 32 62 46 .

b Divide the 4 by 2 and compare the elements 2 positions apart in the list
and swap if necessary:

2
1
6

I
59

I I
9 42

5~ I
74

4~ I
Swap 32

I I
74 Swap 62

/
I I

4'6 42 32 !
f

New list:

26 9 59 32 62 42 74 46

c Divide 2 by 2 and compare elements 1 apart in the list, which is using
the equivalent of an insertion sort to give the final order:

9 26 32 42 46 59 62 74

243

The steps we make in the program are as follows:
a Select an integer S (number of positions apart from comparison). This is

usually taken as I NT (N / 2) where N = number of items in the list.
b Sort the lists of items S positions apart, by comparing and swapping if

necessary.
c If S < 1 then stop, since the list is sorted.
d If S> = 1 then pick a new value of S (usually IN T (S / 2), and repeat

steps b) to d) as often as necessary.

10 REM**SHELL**
20 I NPUT II ::~:ENTER HOW MANY NUMBERS II ; X
30 DIM A(X)
40 PRINT"::'::ENTER NUMBERS ONE AT A TIt-1E"
50 FOR N=l TO X
60 INPUT A(N)
70 NEXT
80 PRINT
90 PR I NT II :"I~rr::I:i!!:I~·"~l~·Hm·\lUNSORTED
tOO FOR N=l TO X
110 PRINT A(N);" ";
120 NEXT N
130 PRINT

LIST"

~.r··- _. __ ,. _______ .,-

'-----

190
200
210
72c)
--t-"'O . ,
.':"'_J

REM**SORTING
S=X
5=INT(S/2)

ROUTINE**

IF 5<1 THEN 400
FOR 1<=1 TO S

240 FOR I=K TO X-S STEP K
"I-T u- ...

260 T=A (I+S)
270 IF T)=A(J) THEN
280 A(J+S)=A(J)
290 J=J-S
300 IF J)=l THEN 270
:310 A(J+S)=T

,32{)
<~._, . .::,U

NEXT I,K
GO TO 210

340 REM**END OF SORT**
400 PRINT
410 PH I NT II :mwi:I:En~'II~'~w,'H~rHSORTED LIST"
420 FOR N=l TO X
430 PRINT A(N);" ";
440 NEXT
450 REM**END**

244

Hand trace of shell sort
Consider the 8 element list 74, 32, 59, 46, 26, 9, 62, 42 .

X=8

Line No.

200 S=8

210 S=4

220

230 K=1

240 1=1 2

250 J=1 2

260 T=26 9

270

280 A(Sl=74 A(6l=32

290 J = -3 ' -2

300

3

3

62 ,

• •

, ,

. -.

4

4

42

A<8l=46

o

2

2 4

2 4

32 46

3 4

3 4

3 4

62 46

310 A(1l=26 A(2l=9 A(7l=62 A(4l=42 A(6l=32 A(8l=46 A(7l=62 A(8l=46

320

330

340
,
,

, '

At this stage (1) the list is 26, 9, 59, 42, 74, 32, 62, 46.

245

' / ,
•

;'
" •

S=2

~"--""-"--------------------------------

•

• 210 S=2 S=l

220

230 K=l 2

240 1=1 2 3 4 5 6 2 4 6

250 J=l 2 3 4 5 6 2 4 6

260 T=59 42 74 32 62 46 32 42 46

270

280 A(6l=4 A(7)=74

290 J=2 3

300

310 A(3l=59 A(4l=42 A(5l=74 A(4l=32 A(5l=62 A(8l=46 A(4l=32 A(6l=32 A(8l=46

At this stage (2) the list is 26, 9, 59, 32, 62, 42, 74, 46.
The final stage is the comparison of neighbouring elements, using the

insertion sort technique, to which the Shell sort routine is equivalent when S=1.
This is perhaps more easily seen considering the trace below of the operation of
the Shell sort program on a simple 5-item list, in which only two passes need to
be made.

-----_ .. - .. ~

Bubble sort

t, "t, If'

~
.... ~" _ r.-Io" ~

~~ ',........,{,~ -_. -. -
, '/ ~.," 1~.! l(((((« . ""

246

•

Start

A 111 =2

A(21=4

A (31 =1

A141=3

A151=5

Pass 1

s - INT5(2 2

K - 1

I L " I = 2
.

J = 1 J = 2

T=A131 T=A141

1

3

2

4

I = 3 I = 2 I = 2

J = 3 J = 2 J = 2

T=AISI T=A 141 T=A151

,

3

2 2

4

5 5

Pass 2

S INT 2(2 - 1

K - 1

I - 1 I 2

Start J = 1 J = 2

Pass 2 T=A121 T=A131

1 1

3 3 2

2 3

4

5

I - 3

J = 3

T=A 141

3

4

I - 4

J = 4

T=A lSI

4

5

inish

1

2

3

4

5

The two methods of tracing a program illustrated here should show you the
method by which a systematic analysis can be made of the changing values of
variables in a program as processing proceeds. This is a procedure you should
put to use when designing a program (Le. in checking that the algorithm will
work as intended) and when checking the operation of other people's programs
that you wish to analyse. The procedure is also a great help in debugging a
program. Break points inserted into the program (STOP commands), after which
you can print the values of variables by direct commands, or PRINT statements,
inserted as appropriate to print the values of variables at each step in the
program, will enable you to check that the values occurring in the program are
the same as the ones your trace diagram shows.

T6: Quick sort
This is a fast sorting technique which works by subdividing the list into two
sub-lists and then subdividing the sub-lists. The principle of the quick sort is as
follows: consider a list A (X) containing X numbers. In this example, X = 8 and
the numbers are as shown below. The following steps are carried out:

1 Initialise two pointers, I and J, at opposite ends of the list. Let X(I) be the
reference number. In the example, this is 63.

I J
63 27 43 96 72 31 82 43 --

2 Compare the two numbers indicated by the pointers and swap if
necessary.

I J
43 27 43 96 72 31 82 63 . -

3 Move the pointer opposite the reference number one place towards it.

, I J
43 27 43 96 72 31 82 63 / -

4 Repeat steps 2 and 3 until I = J. , ,

I J
43 27 43 96 72 31 82 63 -

I J
43 27 43 96 72 31 82 63 -

I J
43 27 43 63 72 31 82 96 -

247

43 27

43 . 27

43 27

43

43

43

I
63 -

31

31

72

I
72

I
63 -

31

J
63 -

72

J
82

82

82

96

96
•

96

When this stage has been reached the list has been split into two sub-lists. The
reference number is now in its correct position in the list, and the sub-lists are
the numbers to the left and right of this position.
S One of the lists is stored for future sorting (see below) and the other is

taken through steps 1 to 4 above.

(43 27 43 31) 63 (72 82

4

96)

-------~------- ------.....-_-->

I
43 -
31

31

New

[31
31 -
31
27

continue with
sub-List

27 43

I
27 43

I
27 43

Sub-List

27 43]
27 43

27 43
31 43 -

• c'o r re c t 1 n
position

• ln

J
31

J
43 -
J
43 -

in correct
position

t .
correct

position

, ' . ,

store
sub-List

, , .

6 This process is repeated, in each case storing a sub-list where neces-'
sary, and finally going back and sorting all stored sub-lists so that
eventually each number is in the correct position.

The left-hand and right-hand numbers of a list are denoted by subscripts Land R
respectively. The pointer positions are denoted by I and J and a flag S is set to
indicate the pointer at the reference number, so that:

S = 1 if reference number at pointer I
S = -1 if reference number at pointer J

248

_ _------------------ _

>,-
--->

1.::

- -:.,
-"

.:.

--\

, ':
... "

.

'.

'::".
',',:

:::
• '".

, ','

a

If at the end of step 4 the reference number is at I (as in the example) then the
list has been split into:

• reference
sub-List sub-List
(L, ... ,1 -1) 1 (I + 1, , R)

"

The right-hand list is remembered by setting up a stack, using an array S (P, 2)
with P initially set to zero. As each sub-list is stored, let:

P = P + 1, S(P,1) = 1 + 1 and S(P,2) = R

The array S is initially dimensioned as S (X, 2) for a list with X elements. P
indicates the number of the sub-lists; S (P, 1) the left-hand element and
S (P, 2) the right-hand element of the sub-list. In the example given, at step 5
you will have the first sub-list generated stored by setting: .

P = 1, S(P,1) = 6 and S(P,2) = 8
, '.

Thus each list to be stored is placed in sequence into the array, this process being
known as PUSHing on to the STACK.

When the sub-list that the program continues with finally has only . one
number, you must return to sort the stored lists. Retrieve a stored sub-list (POP
a list out of the STACK) by letting: . . "

L = S(P,1),R = S(P,2) and P = P - 1

and continuing until all the lists are sorted.

10 REM**QUICK**
20 INPUT" ::'~!ENTER HOIf.J MANY NUMBERS"; X
30 DIM A(X) ,S(X,2)
40 PRINT"~::!ENTER NUMBERS ONE AT A TIME"
50 FOR N=l TO X
60 INPUTA<N)
70 NEXT
80 PRINT
9 (F'P I' NT" rr·ij'·Y :·/· .. ·!!n'IIIi1IIO·iI1;;·O!P.·UJ::"IB 'NcORTt='D J I " > •• ,I . I!! .t m.f.~ .'1R III' UtI mn Hii' Mlit liW oW I _

100 FOR N=l TO X
110 PRINT A(N);" ";
120 NEXT
1~0 PRINT
180 REM**SORTING ROUTINE**
190 P=O
200 L=l
210 R=X
220 I=L
230 J=R
240 S=-l
250 IF A(I)(= A(J) THEN 300
260 T=A (I) ..
270 A (l) =A (J)

29() ,
":/' - -.--,00

310
''''''c . .:JL)

A(J)=T
~=-S ~ .

IFS=l THEN I=I~l

IF S=-l THEN J=J-l
IF I(J THEN 250

249

LIST"

!

-/
,

340
"7'::-0 ..,:. • ..J

360
370
380
390

IF 1+1)=R THEN 370
P=P+1
S(P,l)=I+l
S(P,2)=R
R=I-l
IF L<R THEN 220
IF p=o THEN 450

400 L=S(P.,l)
41.0 R=S(P,2)
420 P=P-l
430 GOTO 220.
440 REM**END OF SORT**
450 PRINT
460 PR I NT If J.m!1:r.i:I:!lllil~·ijlii1l~·HlUn~]SORTED LIST If
470 FOR N=l TO X
480 PRINT A(N);" ";
490 NEXT
500 REM**END**

•

Lines 190 - 230
Line 240

initialise P, and set values for L, R and the pointers I and J.
sets the flag which indicates the position of the reference
pointer (S = -1).

Lines 250 - 290

Lines 300 - 320

Line 330

Lines 340 - 360
Lines 370 - 380

Line 390
Lines 400 - 420
Line 430

make the interchange of A(I) and A(J) if necessary and reset
the flag.
move whichever of I and J is to be moved, according to how
the flag is set. . . .
checks if I is at the end of the list, bypassing the sub-list
storage routine.
'push' sub-lists on to the stack.
check if the sub-list has more than one element, sending
control back to line 220 if it has. . .
sends control to the print routine if no sub-lists are stored.
'pop' sub-lists out of the stack.
starts the sort routine for the 'popped' sub-list.

T7: Index sort
When data records or files contain several fie/ds of information, it is often
necessary to sort them according to one particular item. An index sort routine
makes this possible. For example, consider a series of records, each containing a
reference number, name, sex, age, home town and occupation:

10 SMITH MALE
32 ENFIELD GROCER
21 OXFORD BUTCHER
20 JONES FEMALE

Each record contains six fields. It may be required to sort these records
alphabetically by name (field 2) or numerically by age (field 4). A sort of the type
presented here enables sorting to be done for any of the fields. Since it uses
string arrays to hold records and performs an alphabetical sort, it is necessary for
all numerical items in any field to contain the same number of digits: for example
010, 020, 100, 200 instead of 10, 20, 100,200, using leading zeros to maintain the
value.

250

· --------------------------------------~-----------------------
The procedure is as follows:

1 Set up an array N$ (N, L) containing N records, each of L fields. For
ex~mple, an array N $ (10,5), to represent 10 records, each with 5
fields. .

2 Decide on the key field - the fields you wish to sort - say the J th field.
You must then set up an array K$ (N) to store it, and let K$ (R) =
N$(R,J) for the number of records (FOR R=1 TO N) so that the list
K$ (N) will then contain the items you wish to arrange in order.

3 Sort the key field into ascending order. This is done in the subroutine
starting at line 900 by counting how many times each element in the
array K$ (N) is > = the other elements (including itself). This sort uses a
numerical array X (N) to store the result of this count (P) for each
element, by setting X (P) to equal N, when K$ (N) is the item being
checked. .

First set P = 1 (since each item is equal to itself) and then check through
the other items of K$ (lines 920 to 970), making the count by letting P
= P + 1 when the element is > = another element. If the elements are
equal, the original order in N$ is kept (line 960): (ie. test first element of
K$ and set X (P) = 1, reset P, test second element of K$ and set X (P)
= 2, etc.) For example, with 10,30,20,40 as the K$ list, the array X (4)
would hold the values:

10 X (1) = K$ (1)
30 X(3) = K$(2)
20 X (2) = K$ (3)
40X(4)=K$(4)

Printing out K$ (X (1 » to K$ (X (4)) in order will give the sorted
order of K$ elements.

,

4 The array N $ (X (N), L) will now consist of the records sorted in the
appropriate order, according to the field chosen, and is printed out
using the loop variables R and I to access N $ (X (R) , I) in lines 290 to
340. . .

10 REM**INDEX**
20 PR I NT" ::'::SORT I NG RECORDS"
30 PRINT"ENTER MAXIMUM NUMBER OF CHARACT
ERS IN ANY ' ITEM"
40 INPUT C
50 INPUT"ENTER NUMBER OF RECORDS";N
60 INPUT"ENTER NUMBER OF ITEMS IN RECORD
II. L ,
70 REM**INITIALSE ARRAYS**
80 DIM N$(N,L),K$(N),X(N)
90 REM**INPUT RECORDS**
100 PRINT" ::':j"
110 FOR R=l TO N /

! . -

120 PRINT"ENTER ";L;" ITEMS FOR RECORD · "
;R . .

130 FOR 1=1 TO L
140 INPUT N$(R,I)
150 N$(R,I)= LEFT$(N$(R,I) ,C)
160 NEXT I,R
170 PRINT
180 INPUT" ;''lIJH I CH I TEM I S SORT I NG KEY"; J

251

190 FOR R==1 TO N
200 K$(R)==N$(R,J)
210 NEXT
220 GOSUS 900
230 PRINT
240 PR I NT" ::':~~mnffi'IIliiHffi'II~j'H~'ISORTED RECORDS ' ARE" . .
250 PRINT
260 FOR .R=l TO N
270 FOR 1=1 TOL
280 PRINT ' N$(X(R),I);" u;

· 290 NEXT I .
300 PRINT
310 NEXT R
~20 INPUT"DO YOU WISH TO CONTINUE Y/N";Y
$
-~o '::".J

. 340
400
890
900
910
920
930
940
950
960
970
980
990
1000

IF Y$="Y" THEN '180
STOP
REM**PROGRAM END**
REM**SORTING SUBROUTINE**
FOR A=l TO N
P=1
FOR S=1 TO N
IF K$(A»K$(S) THEN P=P+l
IF 1<$ (A') =K$ (B) THEN 960
GOTO 970
IF A)BTHEN P=P+l
NEXT .B
X(P)=A
NEXT A

RETURN
1010 REM**END OF SUBROUTINE**

For example, if you input a storage array of 4 records with 3 fields, maximum 6
characters in any item, and use as input data: ..

SMITH 460 OXFORD
JONES 080 LEEDS
BROWN 730 YORK
WHITE 095 BATH

results are as follows: ..
a using field 1 as key sorted records are:

BROWN 730 YORK
JONES 080 LEEDS
SMITH 460 OXFORD
WHITE 095 BATH

b using field 2 as key sorted records are:
.

JONES 080 LEEDS
WHITE 095 BATH
SMITH 460 OXFORD
BROWN 730 YORK

252

·~····-···'-···-···'-------T·-"Tur - T

2

=

c using field 3 as key sorted records are:

WHITE
JONES
SMITH
BROWN

095
080
4'60
730

•

BATH
LEEDS
OXFORD
YORK

T8: Linear search

•

The most straightforward way of looking for a particular number in a list of
unsorted numbers is to examine the list one by one, in each case comparing with
the 'wanted' number. '

In this program a set of random numbers is created between 100 and 199 and it
is arranged so that there is only a single occurrence of each number. This is in
lines 40 - 60. The list is printed' out in lines 70- 110. The search routine is then
carried out in lines 200 - 300. Clearly a number near the beginning of the list is
found quickly but one at the end rather slowly. For a 50 element list the average
number of searches will be 25.

10
20

REM**SEARCH1**
DIM A (100)

40
50
60
65
66

INPUT" ~'::IENTER NUMBER LESS THAN 100 II ; N
IF N)100 THEN 30
FOR M=1 TO N

- > • •

A(M)=INT(100*RND(1)}+100
IF M<>l THEN 70
NEXT M

70 FORR~l TOM-l
80 IF A(M)=A(R) THEN 60
90 NEXT R,M
100 PR I NT" ::'lJNSORTED LIST II
110 FOR M=1 TO N
120 PRINT A(M);" ";
130 NEXT
140 PRINT
200 REM**LINEAR SEARCH**
210 PRINT"ENTER NUMBER BETWEEN II
220 INPUT"l00 AND 199"; X,'
230 FOR 1=1 TO N
240 IF X=A(I) THEN 290
250 NEXT
260 PRINT"NUMBER NOT IN LIST"
270 PRINT"AFTER "·N-" SEARCHES" , ,
280 GOTO 400
290 PRINT"FOUND
ES"
400 'REM**END**

II·X· II , , AFTER ... I . II , ,

, ,

SEACH , ,
!

If a number occurs more than once in the list, it will be necessary togo through
the complete list and test each item. Make the following modificfltions to the
program:

253

Delete lines 70, 80 - this allows numbers to occur several times. Edit line 90 to
read:

90 NEXT M

Insert line 225, a flag to test if number is present (1) or not present (0):

225 S = 0
Replace 240:

240 IF X = AU) THEN PRINT 'NUMBER' ;X;"IS ELEMENT' ;I;"OF LIST"

Insert 245:

245 IF X = AU) THEN S = I:REM FLAG SET

Replace 270:

270 IF S= 0 THEN PRINT "NUMBER NOT IN LIST"

Delete lines 280,290, 400.

T9: Binary search
This is a much faster search technique than the linear search but can only be
used fora list that has already been put in order. In many. applications you will
be dealing with an ordered list and under such circumstances. this is the
appropriate method to use. . .

In the program the binary search technique is in lines 500 to 600. Theidea is to
compare the wanted number with the middle item of the ordered list. The
wanted item is then either smaller (in which case it is in the first half of the list)
or larger (in which case it is in the second half of the list) than the middle item
(unless it is equal to it, in which case the search is already completed). The
process is repeated, in each case halving the list. Consider a search for 30 in the
following list: .

1 2 46 8 1 0 1 2 1 4 1 6 .1 8 20· 24 28 3 O. . 36

The first choice is 14 (middle). The list is now:
• d.

16 18 20 24 28 30 36

and the next choice is 24 (middle). The list is now:

28 30 36

Now 30 (middle) is selected, and the number is found in three searches
(compared with fourteen using the linear search).

In the program the following sections occur:

• Setting up and printing initial unordered list (lines 10 - 150).

• Sorting this list into order and printing it (lines 200 - 330).

• Binary search with printout (lines 500 - 680).

10 REM**SEARCH2** . ; , '

20 DIM A(50)
30 INPUT" ::~:iENTER
40 IF N>50 THEN
50 FOR M=1 TO N

NUMBER LESS THAN 50"jN

60 A(M)=INT(100*RND(1»+100
70 IF M<>l THEN 90
80 NEXT.M
90 FOR R=1 TO M-l

254

100
110
120
130
140
150
160
200
210
220
""<0 4"_'

240
,.,1:',-
LW")

':'6(' ~ J

270
280
290
3,Of)
<10 'oJ _

~'-'O ~ .-, ~-

«0 . ..,$._-

340
350
360
100
380
390
400
410
500
510
c:-,..., --j
-1L l_"

C"":!' O .,J __ " _

0::.:40
'-' -
!:" c; -
..J~'U

560
570
580
590
600
610
620
h~-'- .~.O

640
650
660

. 670
680
690

IF A(M)=A(R) THEN 60
NEXT R,M
PRINT"~IUNSORTED LIST"

••
FOR M=1 TO N
PRINT A(M);" ";
NEXT
PRINT
REM**INSERTION SORT"
FOR 1=1 TO N-l
J=I
T=A (1+1)

IF T)=A(J} THEN 280
A(J+l)=A(J)
J=J-1
IF J)=1 THEN 240
A (J+l) =T
NEXT
REM**END OF INSERTION SORT**
PRINT"SORTED LIST"
FOR M=1 TO N
PRINT A(M);" ";
NEXT
PRINT
PRINT"ENTER NUMBER REQUIRED BETWEEN
AND 199"
INPUT"TO FINISH ENTER 999";X
IF X=999 THEN 700
PRINT
PRINT"SEARCH "~N~" ITEM LIST" , .
REM**BINARY SEARCH**
L=1
H=N
r'=(l
~ .
M=INT ((H+L) 12)
C=C+1
IF X=A(M) THEN
IF L>=H THEN 660
IF X)A(M) THEN 610
H=M-l
GOTO 540
L=M+1
GOTO 540
PRINT"NUMBER FOUND ";X
PRINT"AFTER "; C;!I SEARCHES"
GOTO 350
PRINT"NUMBER NOT FOUND"
PRINT"AFTER ";C;" SEARCHES"
GOTO 350
REM**END SEARCH**

255

I
i

/

,

•

Results:

TYPE NUMBER <50
UNSORTED LIST
144 128 117 118 101 189 111 198
150 107 188 197 172 106 157 . 148
168 160 130 181 100 165 175 133
186 190 155 167 199 138 122 163
131 142 113 143 154 194 119 153

SORTED LI ST
100 101 106 107 111 113 117 118
119 122 128 130 131 133 138 142
143 144 48 150 153 154 155 157
160 163 165 167 168 172 175 181
186 188 189 190 194 197 198 199

.

TYPE NUMBER REQUIRED BETWEEN 100 AND 199 .

TO FINISH TYPE 999

SEARCH 40 ITEM LIST
FOUND 198 AFTER 5 SEARCHES

- ,

-

256

.

Section U: Memory and Machine '
Code

VI: Binary systems
Digital computers operate with sequences of numbers in the binary number
system. Binary numbers are numbers to base 2, while the 'normal' number
system is decimal (base 10). The binary system uses only two digits, 0 and l.
These are binary digits (bits). The computer holds a bit as a voltage level (+5v or
Ov) in a switched pathway.

In the decimal system, a number, for example 418, is coded as a number using
the digits 0 to 9. The coding is based on powers of ten. 418 means: (4 times 10 to
the power 2) + (1 times ten to the power 1) + (8 times ten to the power 0).

In the decimal system, a number, for example 418, is coded as a number using
the digits 0 to 9. The coding is based on powers often. 418 means: (4 times 10 to
the power 2) + (1 times ten to the power 1) + (8 times ten to the power 0).

+ (1 X 101
) + (8X100)

+ 10 · + 8 -- 418

The binary system of coding uses powers of two in exactly the same way. The
number 13 is represented as: .
(1 X 23

) + (l X22) + (O x i) + (I X2o)
1 1 0 1
8 + 4 + 0 + 1

The binary number 101110 is evaluated as:
(lX25) + (O X24) + (1X23) + (lX22)

32 + 0 + 8 + 4

Binary number 1101
= 13 Decimal equivalent

+ (1 X21) + (O X2o)
+ 2 + 0 4610

Key in the following program, which converts decimal numbers to their binary
representation:

10 REM CONVERTS DECIMAL TO BINARY
20 I NPUT II ::':~:!jTji£NTER DEC I MAL NUMBER II ; N
30 M=N:B$="":Z$="OOOOOOO"
40 L=INT(N/2)
50 B=N-2*L
60 IFB=l THEN A$="1"
70 IF B=O THEN A$="0"
80 B$=A$+B$
90 N=L
100 IF L)O THEN 40
110 B$=LEFT$(Z$,8-LEN(B$»+B$

.I
, . ,

1'70 F'R I NT II ";;'1'''' ''''''''' M· II IS 11 ., B$·, II I'" _ .E!.1.1J .!.I~" , ,'4 BINARY"
130 INPUT" :'-il:f!:I~'~~'~ffilIANO THER GO (YIN)
140 IF A$="Y" THEN 20

257

"; A$

.,'. ,

Input sequences of numbers to familiarise yourself with the binary system.
The program only deals with positive whole numbers. Trace the program to see
how it works, using the examples 13 and 46 given above as inputs. Non-integer
numbers are dealt with by using an exponent, as with the E notation system for
decimals. Binary numbers have a binary point, and bits to the right of the point
are binary fractions, representing the reciprocal power of two. The binary
number 1.101, for example, represents:

+ (I ii)
+ .125 = 1.625

You may have noticed that binary numbers as seen above are all ' positive.
Negative numbers are dealt with using a particular form of binary representa
tion. The method used by the Commodore to 'store numbers is described later in .
this Section.

A byte is a sequence of 8 bits. The sequence of 8 bits represents a number
between Q·and 255 decimal, 00000000 and 11111111 binary. The Commodore
uses 8 bit words, ie. l' byte. ·

U2: The memory map
Memory in computers is organised as a linear sequence of addresses. Each
address is a memory location or memory cell holding a single byte. The binary
numbers in these locations are interpreted as numbers, characters or instruc
tions, depending on their context in the computer memory. The organisation of
the memory is constant, but the space occupied by each area of memory varies
according to the program and its requirements. As an obvious example, a long
program takes up more space for storage than a short one. Memory is of two
types:

Read Only Memory (ROM) is fixed and cannot be altered. It contains the BASIC

interpreter program, and is built into the computer in manufacture.
Random Access Memory (RAM) is variable, multi-purpose memory that holds
the current program and all the other elements of data required to run the
program.

Data can only be extracted (read) from ROM and is permanent. RAM memory
can be both read from and written to. Inserting a value into a memory location in
RAM (writing or storing) will wipe out or overwrite the existing data at that
address.

Memory capacity is referred to as the number of Kilolnjtes (k) involved. 'Kilo'
means one thousand, but a kilobyte is actually 1024 (210

) bytes (the closest binary .,
number to 1000).

The Commodore 64 has a complex memory map. It is called the 64 because
there is 64k of memory available to the processor and also because it has 64k of
RAM. This may seem strange because when the machine is powered up it says
38911 Bas; c Bytes free.

Consider the fundamental memory map (as shown in Fig. Ul). The numbers
shown on the left are the hexadecimal starting addresses of the blocks of
memory. Notice that there is both an 8k basic section (AOOO - BFFF) and the
kernal section (EOOO - FFFF). The kernal will be dealt with later; without going
into detail here, it is possible to reorganise memory using a special port on the
6510 microprocessor to select different arrangements.

The basic memory map (Default) is shown in Fig. U2. The figures shown in
the box will be explained later, but they refer to various flags in the machine. For · .
the moment it is sufficient to assume the memory is as in the map.

258 -.- .
.

8K KERNAL ROM
EOOO-FFFF . , OR

RAM
. •

DOOO-DFFF 4K I/O OR RAM
,CHARACTER ROM

- . .

COOO-CFFF 4K RAM

8K BASIC ROM
OR •

AOOO-BFFF RAM
, OR

• ROM PLUG-IN
-

8K RAM
8000-9FFF OR

ROM PLUG-IN
-

.

,4000-7FFF - 16K RAM
,

. -

,
.

.

I -

0000-3FFF I
16K RAM .'

Figure VI: Fundamental memory map
-

8K KERNAL ROM

4K I/O
. c.

•

4K RAM (BUFFER)
-

8KBASIC ROM

This is the default BASIC mem or y

map which provides BASIC 2.0 and

38 K contiguou s bytes of user RAM.

Figure V2: Basic memory map

259

.

8K

16K

16K

RAM

RAM

RAM
-

-

,

-

.

OR

--

- -

EOOO

0000

, cooo

AOOO

8000

/

!

4000

0000

•

-
The complete memo:ry organisation of the Commodore 64 is listed in the
Commodore manual under the heading Commodore 64 Memory Map, Column 1
shows the label, column 2 the hex address, 3 the decimal equivalent and 4 a
short description, The label is called a mnemonic - this is a short easily
remembered name, for example, Lastpt (last temporary string address), Most of
the locations (labels) will have little meaning to you, but some can be used to
gain a better understanding of the Commodore,

Warning: Locations 0000 and 0001 should not be altered. If you accidentally
alter these, you will probably need to switch the machine off,

Here is a list of the most useful locations,
TXT T AB 43 - 44 Pointer to start of BASIC text.
V ART A B 45 - 46 Pointer to start of BASIC variable,
A R Y TAB 47 - 48 Pointer to start of BASIC arrays,
STREND 49 - 50 Pointer to end of arrays plus one,
ME M S rz 55 - 56 Highest address use,d by BASIC (Ramtop).
CUR LI N 57 - 58 Current BASIC Line number. ..
OLD LI N 59 - 60 . Previous BASIC Line number,
S T A C K 256 - 511 Stack.
KEYD 631- 640 Keyboard buffer queue (FIFO),
COLOR 646 Current character colour code.
G D COL 647 Background colour under cursor.

Note: The keyboard buffer is called a FIFO (First In First Out); this means that the
first character typed in will be removed first. The stack is an area of memory
reserved for special needs.

.. .
When BASIC calls a subroutine, it puts its return address of the stack. When it

hits an RTS (return from subroutine) statement, BASIC 'pops' the return address
of the stack. The stack is called a LIFO (Last In First Out), meaning that the last ·
entry is removed before any other.

Your program is stored in memory (RAM) in the following way.

F F FF

8k KernaL
4k Bu ff e r
8k BASIC

. 4k 1/0
BFFF

Unused by
. program

Arrays used

VariabLes
used

system
variabLes

0000

=- y - - -- -, --

highest address used by BASIC
(MEMSIZ)

end of arrays + 1 (STREND)
end of arrays

start of arrays (ARYTAB)

start of variabLes (VARTAB)

start of text (TXTTAB)

. ,

260

.0<

"

:>

" ,
"

VARTAB, TXTTAB, ARYTAB and STREND are not fixed but are controlled by

your program. In computer terms they are dynamic variables. The start of text is

usually fixed but the start of variables (and consequently start of arrays) are

moved up in memory. Thus when you run a program it creates its variables and

arrays at the end of your program in memory. When your program stops

execution (the ready message appears), try entering a new line and use the

GOT a statement; it works, but all variables are now undefined. Run this

program:

10 INPUT A
20 PRINT A
30 PRINT At2
40 PRINT At3

Now enter GOTO 20 at the end and run it again. The same results will be

printed. Now add this line:

50 PRINT At4

and run it with the GOTO 20. Notice the difference. The variables have been

reset to zero because a new line has been entered, showing that the memory

used to store variables is placed at the end of your program and is overwritten

by new program lines.

U3: PEEK and POKE

The PEEK and POKE instructions have been introduced for specific purposes in

connection with the display file and character storage. This should have given

you some understanding of their uses. Now that you have been introduced

more generally to the way memory is stored in a computer, you will notice that

these instructions provide direct access to the memory of the computer.

PEE K (N) returns the value (in decimal notation)" of the number stored in

binary form in the memory byte of address N.

For the Commodore, ROM extends from EOOO - FFFF and AOOO - BFFF, and

RAM from 0000 to AOOO (address in hexadecimal).

PO K EM, N places into the memory address M the binary form of the decimal

number N. N must be in the range 0 to 255 (to fit in a single byte), whereas M

must be in the range 0 to 65535. ROM may not have values POKEd into it.

In general, PEEK is used to extract from memory any values useful to a

program, and POKE to insert values into memory. Remember that the values

(entered and returned in decimal notation) can be numbers or characters.

Machine-code programming is performed by POKEing into a specified sequence

of addresses the values which correspond to instructions which the 6510 central

processor chip understands. This sequence of instructions is then called from

within a BASIC program, in a similar fashion to calling a subroutine, and is

executed. At the end of the machine-code program, a return instruction passes

back control to the BASIC program.

PEEK will be used to investigate how numbers and program lines are stored in

the Commodore. Different types of number have different formats, in which they

are held. The normal number in memory is held by 5-byte floating point binary

form. Thus 5 bytes of memory are used.

U4: The program area

The line numbers in a program are stored in 2 bytes of memory. Numbers in a

program listing are stored as their printed characters, then in 5-byte form.

261

"

i
"

Enter the program below. It PEEKs the memory locations of the program
storage area (from the start of the program listing), after printing out the
numbers as instructed in the first three lines. For each memory location it prints
out the address, the contents of the address as a decimal number, and the
character string corresponding to it.

10 PRINT 23
20 PRINT 123 E 8
30 PRINT 123 E -8
40 PRINT ""
50 A=PEEK(43)+256*PEEK(44)
60 PRINT A;TAB(10);PEEK(A);TAB(20);
70 IF PEEK(A) >= 32 OR PEEK(A) < 127 THEN
PRINT CHR$(PEEK(A»
80 PRINT"CONTROL CHARACTERS OR KEYWORDS"
90 A=A+1

100 PRINT:GOTO 60

At first sight the listing displayed does not make much sense. Press the RUN/STOP

key and run the program again, but press the CTRL key and hold it down so that
it slows down the listing on the screen, so that you can see what is happening.
The PEEKs in line 50 set A to the value of the first memory address of the
program storage area.

US: Systems variables
The system variables area of memory is a fixed area. These generally occupy
either one or two bytes. .

Single byte variables are stored as a number. between 0 and 255 decimal, and
two-byte variables between 0 and 65535. In a two-byte variable there are 16 bits
which can store i 6 -I, which is 65535. When PEEKing a two byte number in
memory, you must remember that the first value returned multiplied by 256 plus
the next value give the required number.

In the case of line numbers the procedure is slightly different; the value of the
first number returned plus 256 multipled by the second gives the line number.

Summary
Two byte number
Line numbers

A*256+b
A+256*b

U 6: The hexadecimal system
Hexadecimal (often abbreviated to hex) is another numbering system much used
in computing, although it has no practical application for beginning program
mers since it is primarily used in machine-code programming. Whereas binary is
base 2, and decimal base 10, hexadecimal is base 16. This is a convenient system
for computers using 8-bit words, since 16 x 16 = 256. Any value which is held in
a single byte can thus be represented by a two-digit hex code. The system uses
the digits 0 to 9, and goes on with A, B, C, D, E and F, to represent the numbers
1 to 16.

262

Here is how the system counts:

Decimal Hexadecimal

o
1
•

•

9
10

•

250

254
255

o
1
•

•

9
A

•

FA

FE
FF

(15 X 161) + (10 X 16°)

(15 x 161
) + (14 x 16°)

(15 X 161
) + (15 x 16°)

As with any number system, you could go on (256 is 100 hex, etc), but the use of

hexadecimal is in representing binary numbers in a more convenient form than

strings of l's and O's, which are difficult to read and easy to make mistakes with

(unless you are a computer).

The advantage of hexadecimal notation is that any 8-bit binary number is

convertible to hex far more easily than into decimal, due to the relationship of

base 2 and base 16 numbers. Base 16 is base 2 to the 4th power, and this means

that the 8 bits of a byte can be divided into two sets of four bits (remember 1111

binary = 15 decimal = F hex) and converted to the corresponding two hex digits.

For example, the number 116 decimal is in binary 01110100. Split into two

groups of four bits, 0111 and 0100, each group is converted to a hex digit

0111 binary (7 decimal) is 7 hex
0100 binary (4 decimal) is 4 hex

The number in hex is 74. Check this:

(7 x 161
) + (4 x 16°) = 112+4 = 116.

To avoid possible confusion when both hexadecimal and

being used, a small h should be used after a hexadecimal mm

above would be 74h and 5Dh. Hex numbers are grouped uitw,

leading zero should be used for numbers less than 16 decimal, .+,'
should be written OCh, not C or Ch.

Similarly, numbers up to 65535 decimal (held in two hvt

representable with four hex digits. Thus 11111111111111

and 1010110100111110 is 1010 (A)/1101 (D)/0011 (3)/1110 \"'1'

the value of this in decimal.

263

The program library (in the Appendix) has programs which convert decimal '
to hex and vice versa (H EX DEC and DEC HEX). Analyse these programs to see
how they work. The ASC and CHR$ functions are used to check the hex
notation, or produce it.

The last number system commonly used in computing is the OCTAL
numbering system. Octal uses the digits 0 - 7 inclusive. Thus 10 octal is 8 in
decimal, ie. 1 *8 + 0*8 which gives 8 (any number raised to the power 0 gives 1),
also 15 octal is 1 * 8 + 5 * 8 which gives 8 + 5 which is 13 decimal.

Summary
Number systems covered:

hexadecimal (16)
decimal (10)
octal (8)
binary (2)

Consider:
.. R3 + R2, + Rl + RO . + R-1 + R-2 + R--3 ..

where R is the radix or base of the number system. Thus if R = 2 (binary) and
you had a number 1011, this could be represented as

1 *2 3 + 0*2 2 + 1 *2 1 + 0*2 0

which gives 8+0+2+ 1 = 11 decimal.
The above notation is useful as a way to convert between real numbers of

different bases.

U7: Machine code programs
Although it is beyond the scope of this book to explain the concepts of machine
code programming, a brief introduction to the use of machine code programs is
useful. When you have entered a machine code you execute it using the
following command:

SYS(X)
where X is the address of the start of your routine.

You can enter machine code programs in a number of ways, then enter the
decimal equivalent and POKE into memory. If the machine code routine is given
in hexadecimal code, then it must be converted into a decimal equivalent
manually or by including a hex-dec conversion routine. The use of an assembler is
highly recommended, as it makes the writing of machine language routines
considerably easier. They are not expensive. Also, if you are interested in
machine code, it is worth getting an assembler and an editor. (An assembler
allows you to look at machine code programs in mnemonic form rather than
decimal or binary, and an editor allows you to edit and examine the running of
your program.)

It is important that you save a program containing machine code before you
execute it, or you will lose it if it doesn't work first time; the Commodore will not
respond to you. This is because once you execute a S Y S statement, the monitor
program is halted while your routine executes. If your routine errors, it won't be
able to return to monitor or BASIC and so the Commodore will crash. This won't
cause any damage, but the only solution is to switch off and then on again (as
the Commodore has no reset button). The RUN/STOP key is called a soft reset, but
it only works when either BASIC or monitor is in operation.

The writing of machine code routines without an assembler and an editor can be
tedious, butin the long run is worth while.

Next follows an introduction to the 6510 processor and to running machine
code on the Commodore, followed by two programs for you to try. After this is a

264'

list of monitor routines and a short description of their uses. For further
information a disassembler should be obtained and further investigation will be
needed to fully understand machine code programming .

••
•

UB: The 6510 microprocessor chip
The Commodore 64 has a CPU (Central Processing Unit) called a 6510, an
upgraded version of the 6502. It is not the purpose· of this book to reach the
basics of machine codes; there are a number of excellent books that cover the
6502. But here is a short introduction to the 6510.

The 6510 is an eight bit processor. This means it can handle numbers from
0-255 directly, in binary 11111111 to 00000000 (ie. 8 bits). It also has a 16 bit
address bus. Thus it can address 216

- 1 memory locations of 64k. All the major
operations are carried out in a register called the accumulator, including adding,
subtracting and logic operators. It also has two 8 bit index registers referred to as
the x and y registers. These are used mainly to act as counters or index and are
often used in association with the accumulator. .

Any machine code program must start and end somewhere in memory. To
keep track of your program, there is a register called the program counter, which
keeps track of where the next instruction will be found in memory.

The final register is the stack pointer. The 6510 has a special area of memory
called the stack; it is very useful · when writing machine code programs. It
operates on the principle of Last In First Out (LIFO). This means that if two
numbers are pushed onto the stack, the last number on the stack is the first out.
Thus the stack can be used as a convenient store for numbers (i.e. entered
information can be put on the stack for processing later).

As in BASIC, machine code programs use subroutines. When a subroutine is
called it pushes its return address onto the stack. (The address in the program
counter.) When returning from a subroutine the return address is pulled off the
stack and put in the program counter and execution of the code is resumed from
there.

The 6510 can address 64k (64 x 1024 bytes) of memory, each 1024 bytes is split
into 4 units of 256 bytes, which are called pages. Thus there are 64 times 4 pages
which is 256 pages. The two most important pages are page 0 and page 1.

Page 1 is the stack (explained above) and page 0 is referred to as zero page.
Zero page can be used as extra registers to the 6510 - using its addressing modes
for example.

The 6510 CPU has a limited instruction set (58 instructions) but has 13 possible
addressing modes. While it is not the purpose of this book to go into great detail
of the CPU, to give a general introduction, a few example programs and all the
information needed to use the 64 in machine code are Included.

For all but the shortest programs, an assembler should be obtained, as writing
programs, converting to decimal and using BASIC to POKE them into memory is
slow and very tedious.

There follows a couple of useful programs that clear the high resolution screen
and change the screen colour. (You may remember that in the gr~phics section
using BASIC to do this was very slow and time consuming.) These programs are
first given in assembly listing, followed by a short BASIC program to demonstrate
its use. Both routines are essentially the same, the differences being the amount
of memory cleared and characters POKEd (ie. to clear screen poke 0, to change
colour poke colour code). .

265

Routine for clearing the high resolution screen

HEX ADDRESS HEX CODE DECIMAL ASSEMBLER MNEMONICS
COOO AD 20 160 32 LDY #$20
C002 A2 00 162 0 LDX #$00
C004 A9 00 169 0 LDA #$00
C006 9D 00 60 157 0 96 L1: STA $6000,X
C009 E8 232 INX
CODA DO FA 208 250 BNE L1
COOC EE 08 CO 238 8 192 INC L1+2
COOF 88 136 DEY
C010 'DO F4 208 244 BNE L1
C012 60 96 RTS

The X register is used as an index to store the accumulator in 6000h upwards
(STA $6000,X); when X=l, value in A is stored at 600lh. The X register can only
hold up to 255; then it cycles to zero again. It is incremented and tested for zero.
This is done at lines 5 and 6 (using INX and BNE 11, where 11 is a label). When X
does not equal zero it will jump to 11, store A at address+ X and continue. When
it equals zero it will increment the byte (memory location) 2 bytes on from 11, the
high order byte. Thus 60 becomes 61 after 255 increments for X, and now the
accumulator will store from 6355 + X. Next the Y register is decreased by one. As
Y contains 32 it will next contain 31. Consider that X goes from 0 to 255, 32 times;
this is 256 x 32, which is 8k. Thus this routine will clear 8k of memory for the
high resolution screen. The last two instructions are B N E LI and R T S. The B N E
L I will branch when Y register does not equ/ll zero; when it does the R T S
(return from subroutine) will be executed. This is necessary because BASIC calls
this routine as a subroutine, and when the R T S is executed it returns to BASIC.

The next routine changes the colour of the high resolution screen. The only
differences between the two routines is that this one clears 1K of memory; and
that thus L D Y # $ 4 and the colour code (xx= 16* foreground + background) is
loaded into the accumulator. Note that the area of memory used for the two
routines is different (see the high resolution graphics for details).

Routine for changing colour of the high-res screen

HEX ADDRESS
COOO
C002
C004
C006
C009
CODA
COOC
COOF
C010
C012

HEX CODE
AD 04
A2 00
A9 xx
9D 00 40
E8
DO
EE
88

FA
08 CO

DO F4
60

DECIMAL
160 4
162 0
169 xx
157 0 64
232

08 250
238 8 192
136
208 244

96

ASSEMBLER MNEMONICS
LDY #$04
LDX #$00
LDA #$xx

L 1: STA $4000
INX
BNE L 1
INC L1+2
DEY
BNE L 1
RTS

Here is a BASIC program that loads these routines into memory and executes
them. '

10 For A=O to 18
20 READ B
30 POKE A + LOC,B
40 NEXT B
50 SYS(LOC)
60 POKE LOC + 1,4
70 POKE LOC + 8,64

266

=

75 INPUT"ENTER COLOUR AS 16*FOREGROUND
COLOUR + BACKGROUND COLOUR";COlOUR
80 POKE LOC + 5,COLOUR
90 SYS(LOC)

100 EN'D .
110 DATA 160,32,162,0,169,0,157,0,96,232
120 DATA 208,250,8,192,136,208,244,96

Note that LOC is the location when the machine code is stored (normally COOOh
i.e. 49152 decimal).

U9: The kernal
As far as the user is concerned, the Commodore 64 machine seems only to work
in BASIC. But BASIC is only one aspect of the machine. BASIC is a language, defined
in terms of the operations and structures it performs and allows; BASIC does not
handle input or output to any device (screen, keyboard, printer etc). These and
many other tasks are performed by the kerna/.

The kernal can be considered the heart of the machine; all input/output,
memory management and the running of the BASIC language is done through
the kernal. Thus it is possible to replace BASIC with another language, which is
then linked into the kernal. From the user's point of view, the kernal's routines
are used by calling them to perform various tasks.

In the Commodore 64 manual you will find a table of user callable kernal
routines and a short description of their use; they are given for your reference
and experimentation. To fully understand them, it would be necessary to use a
disassembler to follow what these routines do.

Uto: Input/output memory locations
The Commodore 64 manual includes a complete list of all addresses in the 64
that affect colour, sound, high resolution, and other special features. These
include using light pens, joysticks and a real time clock (in hours, minutes,
seconds and tenths of a second). Again, it is beyond the scope of this book to
explain their use, but by all means experiment with them till you gain some
understanding of them.

Utt: Complete memory maps
The following locations are used by the 64 for setting up its memory map.

Name Bit Direction Description
LORAM 0 Output Control for RAM/ROM at

AOOO to BFFF (BASIC)

HIRAN 1 Output Control for RAM/ROM at
EOOO to FFFF (kernal)

CHAREN 2 Output Control for 110 ROM at
DOOO to DFFF /

These are the first 3 bits of the 6510 Input/Output control port sitlfated at location
0001.

The Commodore 64 manual includes tables showing how memory can be
arranged in the Commodore 64.

267

"

•

PART FOUR

APPLICATION PROGRAMS

/
/

, /

Ii

'·i:·

,

,, -"' - ,-"""" .. "" ,-"""

Section V: Applications Programs
•

VI: Programming for applications
You have been introduced to the full set of Commodore BASIC instructions. A
wide range of operations has been covered, including loops, lists, array
manipulation, sorting and subroutines, as well as the implementation of control
structures. These are the raw material of programming. The combination of
what you have . learned about program design and the task you wish the
computer to perform produces an applications program.

There are no rules to derive algorithms. If-there were, they could be coded into
a master program that would write your programs for you. This book illustrated
ways of thinking about problems, but each program you wish to write presents a
unique ,set of circumstances. Familiarity with . the lfl,nguage and · control
structures, and with existing solutions,to a variety of problems, make it easier to
program; but the art and craft of progr~mming becomes easier · only with
practice. Tl:te importance of keeping notes about programs you have written,
and on solutions to problems you have found in analysing other programs, is
that it will prevent you having to re-invent the wheel. As you write more
programs yourself, you will find that you come to recognise the method (or
methods - there is seldom only one way to perform a given task!) by which you ·
can implement and code each module of your program.

Modular, structured program design methods help to break down a pro
gramming problem to these recognisable chunks, and as you gain experience
you will begin to recognise aspects of programs as problems you already know
how to solve. You will also become familiar with the types of data structure
requited in a program to make it possible to manipulate the data efficiently, and
grasp more quickly and clearly that, for example, a given set of data is more
efficiently handled in a multi-dimensional array than in separate lists, or that a
similar routine in different program · modules could be handled by a single
subroutine if suitable variables were initialised before calling the subroutine.

Experience cannot be transferred, and there is no substitute for practice, but
examples can be given. In this final part of the book, you will find examples of
the important topic of user-friendly programs, and then examples of programs
written to perform specific tasks, to illustrate the process of designing
applications programs. Games programming is briefly dealt with, too, since
games are a good testing ground for problem-solving .· and programming
techniques.

" ' . ,

V2: Instructions and input checks
If you have written your own program, you know which inputs the program
requires, in what form and when. You know, for example, that when;ANOTH ER
GO? appears on the screen, you must press the vkey to run the pros,ram again.

, . - . I

Now consider what happens if someone else wishes to use the program (or if
you return to it after some weeks). There, is not enough information available to
the user. , The term user-friendly is applied to programs which have sufficiently
clear and precise instructions to tell someone who .hasnever seen ,the program
running exC\ctly what to do. You should always, attempt to make our programs
reasonably accessible. To continue the example of running a program again, the
line: .

60 PRINT "AGAIN?"

271

j: ,

,
i_
,

,
Ii

,
~ :
"
" ,
i, ,
r
i ~
,

could be followed by

70 INPUT A$
80 RUN

or

or

70 IF A$='"' THEN 70
80 RUN

70 IF A$="" THEN 70
80 IF A$="Y" THEN RUN

These need different responses. You could use for the first PRESS RETURN TO
RUN AGA I N, for the second H IT ANY KEY TO RUN AGA I N, for the third AGA I N?
(PRE S S Y 0 R N), or similar instructions appropriate to the program.

The user recognises that an input prompt requires string or numeric input,
according to its form, but (as you shall see later) there may be reasons for
requesting a number in string form, and in any case it must be made clear what
is required. You should be careful to , use, for example:

" I N PUT FIR S TWO R D" not "I N PUT A $ "
, '

, "E N T ERA N U M B E R 1 TO 10" not" I N PUT X" ,

" M 0 NTH (1 TO 1 2)" not "M 0 NTH? "

since if the user does not know what A or A$ are in the context of the program
he or she is unlikely to respond correctly, and might try entering JAN orM ARC H
for the month.

,

You should also avoid the use of instructions grouped together: ,
. ' - -

10 PRINT"INPUT CURRENT,P.D, KNOWN AND UNKNOWN RESISTOR

or

20 INPUT A,B,C,D

10 DIM A(10,3)
20 PRINT "INPUT MATRIX"
30 FOR F = 1 TO 10
40 FOR N = 1 TO 3
50 INPUT ACF,N)
60 NEXT N
70 NEXT F

It is very easy for the user to forget which of the inputs is currently required. The .'.
information also fails to include the units of the values required, and does not ..•..
print the input values on the screen. This would be a better format, providing
both clear instructions and visible input values:

10 PRINT
20 INPUT
30 PRINT
40 PRINT
50 INPUT
60 PRINT

"INPUT CURRENT , IN AMPS"
A
"CURRENT =". A· "AMPS" II

"INPUT P.D. IN VOLTS"
B

,

" P • D. = "; B; " VOLT S "

A look at any reasonably complex user-friendly program will show you that :'I "

significant portion of any application program is instructions. Instructions
should be concise, but only to a degree that !Itill provides adequate information ..
Expanded instructions can form part of the documentation of a program, but ..
program ' itself must contain the basic instructions ' required to ensure correct
input and manipulation. The program MAT T M U L T in the program library
Appendix) has a good approach to the array entry problem. Try to write
yourself, then compare the two routines.

272

..

<-

_c -
.-: :

The combination of good instructions and input checks is the best method of
reducing user error. The human being is less reliable than the computer, and far
more inaccurate results or program crashes occur due to input error than to bugs
in the program (assuming it has successfully completed a sequence of dry runs).

Checks to reduce 'the possibility of human error, or to prevent bad effects from
it, are the means by ' which a program is 'idiot-proofed' or 'mug-trapped'.
Commercial programs designed for inexperienced users often have as much
space devoted to input checks as to the program proper. You can assume some
awareness in the users of your programs, and trust that they will enter 2 and not
TWO, for example, but check routines can ensure that simple keyboard errors
are not passed over. Subtle errors or straightforward mistakes are less easy to
deal with.

It is a simple matter to check that an entered value is within an acceptable
range:

10 INPUT "INPUT MONTH (1 TO 12)";M
20 IF M>12 OR M<1 THEN 10

Since the month is to be input as an integer, you could add a line to check this:
30 IF INTCM)<>M THEN 10

In fact one line will do it all:
20 IF INTCM)<>M OR M>12 OR M<1 THEN 10

It is better to have a statement specifically stating that there was an error in
input. To continue with the same example, you could have these lines:

20 IF INT(M)=M AND M<=12 AND M>=1 THEN 50
30 PRINT "INPUT ERROR:RE-ENTER MONTH"
40GOT010
50 PRINT "INPUT YEAR (AS 82 FOR 1982, ETC.)"
60 • • • • •• (rest of program)

The user is informed what is wrong, and told what to do. Make sure you see
why the new line 30 had to have both the relational and logical operators

V switched round to make the program work.

To enable re-use of check or error routines, it is convenient to place them in
subroutines. The following date entry routine uses a subroutine to print an error

...... message for a few seconds (line 500) which is used if any of the checks shows an
error. The routine checks the following:

• day of month between 1 and 31 (line 40)

• month between 1 and 12 (line 90)

• year between 1911 and 1998 (line 140)

• whether the year is a leap year, and if it is not, that 29 February has not been
entered (line 190)

• that days which do not exist in some months have not been entered (line 210).
:, :', " .

,', '

•.•.•. Check the logic used in these lines to see how it works. The lines are good
examples of how multiple conditions can be combined, but for that reason they

••... are a little difficult to follow. /

10 PRINT ":~ENTER DATE"
20 PRINT "DAY?"
30 INPUT D$:D=VAL(D$)
40 IF 0>=1 AND 0(=31 THEN 70
50 GOSUB 500
60 GOTO 20
70 PRINT "MONTH? (1 TO 12)"

273

I
· f

"',
"

""

80 INPUT MS:M=VALCMS)
90 IF 1'1>=1 AND M{=12 THEN ' 120
100 GOSUB 500
110 GOT070

. .

120 PRINT "YEAR? (AS LAST 2 DIGITS)"
130 INPUT YS:Y=VAL(YS)
140 IF Y>10 AND Y<99 THEN 170
150 GOSUB 500
160 GOTO 120
170 REM *CHECJ< DAY ' US MONTH*
180 REM *LEAP YEAR*

: "

190 IF INT«Y+1900)/4)<>(Y+1900)/4 AND M
=2 AND D=29=-1 THEN 220
200 REM *SHORT MONTHS*

. . .

210 IF «M=2 AND D>29) OR «M=4
M=9 OR M=11)AND D=31»=0 ' THEN

'/<"0 _0_'
240
245
248
250

BOSUB 500
GOTO 10
REM •••• PROGRAM
TS="/"
YY$="/19" .
PRINT DS;TS;MS;YYS;YS

760 REM •.•.••••
270 REM••
400 GO TO 999
490 REM **ERROR NOTICE** . .

OR M=6 OR
240

500 PRJ NT '.' **** INPUT ERROR****" .
502 PR I NT "PLEASE FOLLOW I NSTRUCT IONS" , '.'
504 .PRINT "PRESS ANY I<EYTOSTART "
510 GET A$:IF A$="" THEN 510
520 PR I NT "~'.~"
530 RETURN
999 END

It is also a simple matter to put in input checks that print the input, and invite
the operator to check if it is correct, and to re-input if an error has been made.
This is important where multiple data entries are being made, since an error
would otherwise require entering everything again. As an example, here is a
check routine for string input:

10 INPUT"HOW MANY NUMBERS"; X
40 FOR N=1 TO X . .

50 PRINT "INPUT STRING";N .
60 INPUT W$(N)
70 PRINT W$(N)
80 PRINT "IF INCORRECT PRESS E TO RE-ENT .

ER"

274

85 PRINT "PRESS ANY OTHER KEY TO CONTINU
E IF OK."
87 GET A$

,)

90 IF A$= '~" THEN GOTO 87
100 IF A$ ="E" THEN GOTO 50
110 NEXT N

Rather than check each value, it is sometimes better to wait until all entries have
been made, and then print them out for checking. This routine does this for a list
of numbers:

5 Z$=" II

1 0 PR I NT II ,.. .. .,ii'l'~r.1!I1 - .. " --... ~ .. "~ - -.. " .. ,, -.-... ~ -... - _.-........ -.... _"
_ I. .d ... :«1. .-t. . •• r _ . . .

. -.--.... - - .. -.~ - ... - .. - .. -1 II

20 PRINT"'~~I ENTER DATA ITEM : ~m
I"

.• ;~
.:'1

.30 PR I NT II 'E~ 1. •• _ _ _ ••• _ •• - _. __ ._ -_ •.• _-........... , - -._ .•. ;.,

- ----:", - •..• -1 II

40 PR I NT " '-'ar"l'-'Ilil n:, rt !t.!t .. -· "._." ·· .. _ _-.... · .. -1 •• _ ••• ... •••• _ • ..-........ _-.... ,_ •••

II: • • • • •• J
...... _ ... _ __ _._ __ ... __ .., II

50 FOR A=l TO
60 . PRINT":~ I ~

::~ !~ft

4

.~
b.

';:;~

'" I"
IlI!II ~ III ."~ l1li •• _ ... _. , ..

62 P R I NT" ':',:' I II1II-........ _ ... __ :;;;·1 II1II--_ __ "1 IIIH·-·---· .. ·_ .. _·· .. · , ,-, Il!If
,:II h..i1 k."'I , ... ~

I"
65 NEXT
70 PR I NT I' .~~ l.· .. ···~ ... -··-·-.. ·-.. ··---·· .. -··-·,-· .. --· .. ····-... · .. ···-··._ __ .,.-", , - _ .. __ ... _ ...

--.-----.-.• ..J II

80 DIM A$ (20) : FOR A=l TO 20.
85 PR I NT II ;~"r~1:~:Ii.ln~·I!j·IiUIi~~·Hmllnrll~·IIIi·Kli'HiU~1Iinl" ;
86 FOR B=lTO 5
90 GET A$:IF A$="" THEN 90
100 IF ASC(A$)=46 THEN140
120 IF A$=CHR$(13) THEN 155
130 IF ASC(A$)(48 OR ASC(A$»57 THEN 90
135 A$(A)=A$(A)+A$
140 P~INT A$;
150 NEXT B

i

I

155 PR I NT " ;:sit~l:~l:iiniThl:!!r~r!iniljli.li!TIi1.!i:I:ilil:i!l:r.n:!in~l~aoAT A COR
RECT:ENTER N IF NOT"
156 GET A$:IF A$="" THEN 156
157 PR I NT " :;;;:lr .. ·I'-:'t· .. 'lo;;r.··I· .. ·l'='1'='1~·l';;'f';;;'I~:'I~·:l'q,. .. O'Ii~~·:r~'ljl~l .~ .. I!!~.I!!~.I!! . .I!!~.I!!~.l'! .!!4.l!.t1!! .1!!4.1!!4.!!4.!! l!.4.I!!~. 04.9. 1!!4.<! .Il

"
158 IF A$= " N'" THEN PR I NT " ::3:iilirenJiilflllllilliHi'J·.·m
ili1llilli'I"~'II~Ij"H II : A$ (A) = II II : GOTO 85
160 PR I NT II ~ll:eilil:!!lii·lfllillil ""J·ijj"lilijj·li·I~·IiUIiIi·HIi·ft "

275

170 NEXT A
300 C=1
310 PR I NT" ~:iU:r.TI:Ei:I:~l]!:I:eni1:!il:!!lJ.1" ; : FOR A= 1 TO 4
331 FOR B=1 TO 5
332 F=LEN(A$(C»

-:r~4 oJ-j

';:'.35

, 340

IF F=5 THEN 335
A$(C)=A$(C)+LEFT$(Z$,5-F)
PR I NT "~'u-;;'I 1IIt1'" A$ (C) • "!!!!!!" • IRK",", , ,

C=C+l
NEXT B: PRINTCHR$ (13) ; "~~l";
NEXT A

'50 PRINT"-'" . . eJ :;q I. ... - _~--... - .. - -.--.-.. ---.. -." ,. _._ ... _.~._ _ .. _ ... w • • • _

....... - _ •.• _J II

The virtue of using string input is that instead of stopping the program with an
error message if an invalid entry is made (a letter, character that is non-numeric,
or more than one decimal point), as occurs with a numeric input/ the string
input can be accepted whatever the characters input. The inputted string must
be checked, however, or else the user gets an error message when using VA L to
convert to a numeric value. This requires a routine like the following:

5 REM "STRINGNUM"
7 X $ - " ···'~· ·I···l·-··I· .. ·'···l·-·I·Oo'I..,·-'···l···'~ ··I ·I~'~·lo;:;or···I····r.-··I·~I··'I~··I~·I" -- .P.!.i,!!..2! .f! .. ~! •. I!! .P.Pi.I.!! •. !!! •. !!! .!!.I.!!! .. E! . . !l.I.I!! .. I!! •. I!! •. I!! .. I!! .. !! •. ~! .. fl .. f!.
8 Y $ = " ~l~ .. nn~·~~·Kmjuml~lllillli·U~·~~·H~ij~·Il~j'lmIii'Dj'!Pll~liI~l~·Hjlfli~'~~lil '

Ii1liliRlllliI~'" "
9 'PR I NT" ~"j"
10 PRINT LEFT$(Y$,0);LEFT$(X$,5);"INPUT
NUMBER"
20 INPUT N$
30 DP=O
40 IF N$=" ',' tHEN 100
50 FOR F=1 TO LEN(N$} '. '
60 IF ASC(MID$(N$,F»=47 OR ASC(MID$(N$,
F»(46 OR ASC(MID$(N$,F»)57 THEN 100
70 IF ASC(MID$(N$,F»=46 THEN DP=DP+l
80 NEXT F
90 IF DP)l THEN 100 '
95
100

IN
105
110
115
130
150
180
190
200

GOTO 130
PRINT LEFT$(Y$,0);LEFT$(X$,5);"ERROR :
INPUT" .
PRINT "PRESS ANY , KEY TO CONTINUE" '
GET A$: IF A$="" THEN, 110 " . '
GOTO 9
REM .• REST OF PROGRAM •.
PRINT "NUMBER ENTERED IS ";VAL(N$)
PR I NT .. PRESS ANY KEY TO CONT I NUE II .

GET A$:IF A$="" THEN 190
GO TO 9 .

276

•

',' .

" '.

", ,

,

: :
, " '.

" " , :.
, ":':

" :,:":.

Line 20 inputs the string. Line 30 sets a variable to store the number of decimal
points. Line 40 checks that RETURN key alone was not pressed, and passes
control to line 100 to print an error message if it was. Lines 50 and 80 set a loop
for the number of characters in N $, and line 60 uses AS C to check whether
characters other than numbers and the decimal point are present, and goes to
100 for an error message if they are. Line 70 adds 1 to the variable D P for each
decimal point found in N$. After the loop, line 90 sends control to 100 for an
error message if there is more than one decimal point. Line 95 bypasses the error
routine, and line 150 uses V A L to return the number for printing. At this point, if
the number were needed for calculation, a variable could be set (N = V A L (N $»)
to store the value.

V3: Example programs
Here are some examples of applications programs of various types, as follows:

• REACT: reaction time testing.

• BINGO: creation, calling and checking of cards for playing Bingo on the
computer.

• REF.INDEX: the calculation of refractive indices from the angle of deviation
and prism angle data producd by spectrometer experiments .

• . SERIES: the summing of a convergent series to a given degree of accuracy .
•

• ELEMENT: the calculation of empirical chemical formulae from the percen-
tage composition of compounds, or the percentage composition from the
numbers of atoms of each element in the molecule.

•
None of these programs are particularly complex, and they deal with fairly
straightforward applications. However, the principles involved are valid for any
size of program, and the programs themselves demonstrate many of the
techniques and procedures introduced earlier in the text. More examples of
applications programs and useful subroutines are to be found in the program
library provided in the Appendix, but they are not as fully annotated . . The
programs here are presented as problems and solutions, with some discussion
of the approach to the problem. The procedure is then presented, and the
derived program. .

Please remember that any program can be written in different ways, even
given that the algorithm is exactly the same. This variety of solutions means that
there is never only one correct program.

"REACT"
Problem: to use the computer to assess response times in reaction to a signal. An
average should be taken of a number of timings.
Research the problem: the timing function can be used to calculate the time
preceded by a random delay to prevent anticipation. Computing time must be
allowed for in the result. The number of timings desired should b~, lnput and
used to set up a loop. / ' ,'

Procedure: the program will have a loop structure, determined by the input of
the number of tests required. Outside this loop will be the instructions at the
beginning of the program, and the output of average reaction time.

This timing module is the core of the program. The input module (instruc
tions, 'get ready' messages and an input for the number of timings required) and
the output module (average time) are easily built around this. You can proceed
to key in a version of this module, having decided your structure for the
program, and test/debug the timing module, before using the editing facilities to

277

modify this module as required and key in the input and output modules. The
procedure in this simple linear program is as follows:

Input module
1 Give instructions
2 Input number of tests required (A)
3 Initialise array for timings, B (A)
4 Initialise variable for total timings, X
5 Initialise FOR ••• N EXT Loop (1 TO A)

Timing module
1 Give 'get ready' message
2 Provide random delay to prevent anticipation
3 Set timing function
4 Give signal
5 Wait for key to be pressed
6 Calculate reaction time.
7 Store result as B (A)
8 Add B (A) to X
9 Repeat 1-8, A times
Output module
1 Calculate average reaction time .
2 Print average time
The timing module could be coded, run and tested as follows:

Timing Module Program Listing
•

5 PR I NT " ::':~"
7 X $ - " ~i'I'Oi'I''''I'''''I'Oi'I'-·'r'''I~~'-·'rOi'l·';'I·-'l'm~'''''l'-·or;;;'I':i't';;l·'''r;;, ~·'I'Ui~~;'I'' - •• ~,~.&~.~~.~ •• ~~~~.~.~~
9 V $ = " ~lli1lii'lli1llill~ll1iriJi~lilInlnmilIiU~lnSIl~l~'lilfliftlilllii~~nllinl~nllillfi1lij'ijinor"
~lliHlilInnift "
10 PRINT "ON YOUR MARKS"
20 FOR 1=1 TO 1500:NEXT I •
30 PR I NT "PRESS ENTER WHEN READY II
40 PRINT II <GET SET)"
50 FOR L=l TO RND(1)*500:NEXT L
60 REM* CALCULATE REACT. TIME *
70 PRINT "~~~";: TI$="OOOOOO"
90 PRINT LEFT$(Y$,10);LEFT$(X$,10);"iii:***

GO ***": PRINTTAB (10) ; "ij;::*** GO ***"
100 SEC = TI/50
110 GET A$: IF A$<) CHR$ (13) THEN' 100
120 PRINT LEFT$ (Y$, 15) ; LEFT$ (X$, 10) ; "miRE
ACT TIME";SEC;" SECONDS"

Now here is the full program followed by the flowchart.

278

5 PRINT "::'::\"
7 Y $ - " "i!I·;;;>i~'I=I~·I·O'I"""~I~" I" '·r""I·"'~'-'I'O:'I~" I·~I"'I~~~'~'""I'~I''''I'''I'""I~'I'' - ~~~~~~~~.~,.~.lh~~~~~~~.A .•
B X $ = II njltil.'lIiU~lUir",l.lililliljjl~Ui"liUfDi1\iil~IIJDH[ia~"ilnl~1linIUjiWII~fa

Iiilli1ti11~li1flm ",
10 PRINT "REACTION TEST"
20 PRINT "~------------"
30 PR I NT" SCREEN WILL SHOW -(GET SET>" ·
40 PRINT "PRESS ENTER EACH REACTION TIME

AND THE AVERAGE WILL BE DISPLAY"
50 INPUT "HOWMANY TESTS REQUIRED ";A
60 DIM B(A)
70 PR I NT ":~:~": X=O
80 REM •••
100 REM ** TEST LOOP **
110 FOR N=l TO A
120 PRINT "ON YOUR MARKS"
130 FOR 1=1 TO 1500:NEXT I
140 PRINT "PRESS ENTER WHEN READY"
150 PRINT "{GET SET)"

START

PRIN'I'

INS'IRUC-
TION

PAUSt:

LET X = ~

INPUT
TESTS
REQUIRED

SET ARRAY
B (A)

---~

279

/

N = 1

N N+l

).A

PRINT
PROMPTS

SET
TIMING
VARIABLES

PRINT
II GO II

LET B(N) =
TIME

PRINT
TIME

ADD TIME
TO X

INPUT
NEWLINE

PRINT
AVERAGE
TIME

280

STOP

160 FOR L=l TO RND(1)*500:NEXT L
170 REM •••
180 REM CALCULATE REACT. TIME
190 REM ••••

•

200 TI$="OOOOOO":PRINT"~"
210 PRINT LEFT$(Y$,12);LEFT$(X$,20);"**
GO **"
220 B(N)=TI/60
230 GET A$:IF A$<>CHR$(13) THEN 220
240 PRINT LEFT$(Y$,20);LEFT$(X$,15);B(N)
;" SECONDS" '
250 X=X+B(N)
260 PRINT "PRESS ANY KEY TO CONTINUE"
270 GET A$:IF A$="" THEN 270
280 PRINT ":1":NEXT N
290 REM ••.
300 REM * END STOP *
310 PRINT "::'::/" :PRINT ,
320 FOR N= 1 TO A
330 PRINT "B(";N;"):";B(N);" SECONDS"
340 NEXT N:PRINT
350 PRINT "AVERAGE TIME WAS ";X/A;"SECON
DS"

,

Comments: the use of an array (8 (A » allows flexibility in adding further
manipulations (full printout or standard deviation, for example) if desired, by
adding a further module to the program.

The same principle could be used to time other processes. The accuracy of the
allowance for the delay due to computing time becomes less important as the
time being measured increases. To derive a stop-watch program you would
need a start and stop routine. Try to write such a routine, and note how the
program is set so that the computer waits until a key is pressed. ,

"BINGO"
Problem: in a Bingo game, the caller shouts out the numbers between 1 and 99
in a random order and each player has a card with a set of numbers (say 15) in
this range. The cards for each player contain different sets of numbers. The
winner of the game is the player whose list of numbers is called first. The
program should play the game for up to four players and check the validity of
the winning player's card. /

,

Outline procedure: modules 'are required as follows: /'
1 Set up game
2 Play game
3 Result of game
Procedure will be as follows:
1.1 Write preliminary instructions
1.2 Set up caller's numbers
1.3 Set up players' numbers
1.4 Display players' numbers

281

2.1 Display caller's numbers (one at a time)
2.2 Allow interruption by player
3.1 Display players' numbers
3.2 Display numbers called
3.3 Check winning card
1.1 These are the instructions needed to start the game. At each stage in the

program it is essential to give clear directions to the user on how to
proceed. . .

1.2 The caller's numbers require a random list of the integers 1 to 99 (each
number occurring only once) which will be put in array A (99).

1.3 The players' cards require 4 sets (cards) of 15 random integers in the
range 1 to 99 (ie. different numbers). The cards should have an ordered
list of numbers and each list is a different set of numbers. These will be
put into arrays Q (1 5), R (1 5), S (1 5) and T (1 ~) .

1.4 Display the players' cards on the screen and allow time for the players to
take down the numbers.

2.1 Display the caller's numbers one at a time on the scteen in large form.
2.2 Allow the display to the interrupted when a player calls 'house' (ie.

thinks that all the numbers on his card have been displayed).
3.1 Repeats 1.4 for players to check their numbers. .
3.2 The numbers called (i.e. those actually displayed in 2.1) are sorted into

numerical order (and put into array P (99) which contains between 15.
and 99 numbers) and displayed on screen.

3.3 The winning card is selected and the numbers on this card are put into
the array V (1 5) . These numbers are then compared with the numbers
called in P (99) to check that they are correct.

Algorithm description .
1.1 This section gives the minimum instructions required to play. You may

want to key in fuller details of the game of BINGO (Lines 350 to 490 in
program). . .

1.2 Set up the caller's numbers. Flowchart:

INITIALISE
ARRAY
A(99)

N ~ 1

----.... ----j N~N+l

SET X :::::

N>99 ~-

RANDOM NO.

LET
A(X)~I<

282

1 - 99

2

This routine starts at line 1350, clearing the screen. The above routine is contained
within the caller's numbers subroutine (lines 1350 to 1420), but note that this
could be a subprogram sequence as part of the main program, as it is only
executed once.
1.3 Setting up (the BINGO cards). Flowchart:

.

I'

DIMENSION
ARRAYS

'.

I'

J = 1

J=J+l
J ;-15

1.
x = RANDOM NC

o - 99

I = 1 I>
J - 1 I-

....-11-------t 1=1+ 1
I'

Yes
x = P (I)

J NO

\...-----~--

'---.----....

FOR EACH
NUMBER

"\ ALREADY
CHOSEN

P(J) = x

"
LET Y = ¢

GOSUB
SORT

GOSUB
ALLOCATE

/
,

R 15 FO
NU MBERS

In the program this routine begins at line 700. Note array P (99), Which is used
in the sorting routine (although containing only 15 numbers) and is then used
again later for the caller's numbers. Lines 720 - 800 carry out the selection of the
15 random numbers. Subroutine 1470 -1600 is a shell sort as described in Section
T (a fast sort is needed as at a later stage we aresortiilg nearly 100 numbers.)
Subroutine 890 - 970 puts the numbers into the appropriate array.
1.4 ' This subroutine (lines 1020 -1130) displays the numbers on the cards in

a tabular form.
2.1 Display caller's numbers and interrupt if 'House' is called. Flowchart:

283

~-- ..

Z = I

N=Z
1-_-iN>99 ~--

_--iN=N+l

Z = Z+l

No

GOSUB
DISPLAY
A(N)

P(N) - A(N)

PAUSE

PRINT
BINGO

-

This subroutine takes numbers generated and displays them 16 times their
normal size and places them in an array P. Variable Z counts the number of
numbers called. At the end of this subroutine the numbers called have been put
into the array P (which will contain Z numbers).
3.1 This repeats step 1.4. .
3.2 This routine (lines 540 - 650) calls a sort subroutine at line 1470 which

3.3
sorts the list P (Z) into numerical order and prints it out on the screen.
This subroutine (lines 1650 - 1960) has two parts. .'

, - '

a Select the winning card and arrange for the winning list of
numbers to be put in the array V (1 5) (lines 1700 - 1720).

b Check the numbers on the winning card. It is necessary to search the
ordered list P containing Z numbers for the numbers in the
ordered list V containing 15 numbers. If any number is missing
the card : is not complete. If all numbers are · present then
CON G RA T U LA T ION S is printed.

ThE'! quickest search method is as follows:

• Search for V (1) in list P until it is found, say P (1 2) .

• Search for V (2) in list P beginning at P (13) etc.

284

: -: --- <
- --:-- _.

:,

The search will end as soon as a number in list V is not in list P but will contiilU~
for all 15 numbers in list if they appear in list P. The flowchart for this search is
given below:

,;

/"

H = 1

G = 0

N - 1 - .

N > 15

77 '7 N - N+1 -
YE S

G = 1
YES

G = 1 ? NO

/ ,
NO PAUSE

\.. .-/
YES .

PRINT yeN) V(N)=P(M)
CORRECT

PRINT
NO ' CONGRATU-

LATE

, M = M+l • ,

. /' '\

• STOP
'- .-/

NO

H = Z+1? PRINT
NOT

COMPLETE
I I

YES T
/ , ,

PRINT yeN) RETURN
,

G 1 TO -- NOT CALLED GAME

285

i; 'i' i(,
"

I, ,
;

, •
I, \ , , , ,
ii

! I ,
'j , "

\
:! , I i

i ,
i

i" ,

I

! ,

j ,
, ,
j! ,
I

'I
!I , '

r

i "
,

f

,
, ,

i-

,
; i
, i

,

" I
; i
' "

Data table
The following variables lire used:
Q(15), R(15), S(15), T(15) are the arrays containing the players' numbers.
A(99) is the array containing the numbers for the caller.
P(99) is the array containing the numbers actually

called, and is also used as a temporary storage in
setting up the players' numbers and in the sorting
routine.

X is a random number between 1 and 99.

z
y

V(15)

G

V, J, I, K, A, N
5
B

M

:.
.'

is a counter for numbers called.
is the number of elements present in an array to be
sorted .

is an array containing 'winning' list numbers

is a flag used in subroutine CHECK.
are used as loop variables in the program.
is the search position pointer in subroutine SORT.
is used as an array index pointer in subroutine
SORT.

is the code for array P in the 'check numbers'
section.

,

Comments: If you wished to play with your own Bingo cards and let the
computer be the caller only, then you could delete these modules of the
program:

1.3 Set up players' numbers.
1.4 Display players' numbers.
3.1 Display players' numbers.

•

-, :

These latter two modules are the same subroutine. You could also revise the
program and include, as an option in the user instructions routine at the
beginning, the choice of the two different modes of play. .

286

,.

' . . ':,

------------------------------------_ _-

Here are the complete flowchart and the program for BINGO:

/ ""'\
START

\. ~

t
-

INSTRUCT
SUB

t
CALLERS
NUMBERS

SUB .

t SORT
SUB

PLAYERS t NUMBERS
SUB

t ALLOCA TE
SUB ·

DISPLAY
CARDS

SUB

t
CALL

NUMBERS
SUB

-

DISPLAY
CARDS

SUB

t
DISPLAY
CALLERS
NUMBERS

SUB .

f
/

CHECK /
SUB !

+
/

......,

STOP
\. ~

287

5 REM *** BIN B 0 ***
7 X $ = " :fu1!!tmliili.liil~J:!!t!!lili.li.l:i.lilmt!!iE!l:~r~tP.ilml'i!i]"
8 Y$= "lii1lilfllilUnilillJliDlmmlilDlli'nl'UIiJ"IliIlm"nH'on
~IDqi'lliI1iftift II

10 DIM P (99) , Q (15) ,R (15) , S (15) , T (15) ,v <1
5)
20 REM *** 1.1 INSTRUCTION ***
30 BOSUB 330
40 REM *** 1.2 CALLERS NUMBERS ***
50 BOSUB 1350
60 REM *** 1.3 PLAYERS NUMBERS ***
70 BOSUB 700
80 BOSUB 890
90 REM *** 1.4 DISPLAY CARDS***
100 BOSUB 1020
110 REM *** 2.1 CALL NUMBERS ***
120 REM *** 2.2 INTERRUPT ***
125 REM CALL FIRST CARD
130 Z=l
140 BOSUB 1180
150 PRINT "~''j" .
160 PRINT LEFT$(Y$,14);LEFT$(X$,14);"***
********"
170
180
190
RS"

PRINT TAB(14);"***BINBO***"
PRINT TAB(14);I***********" •

PRINT:PRINT TAB(7);"CHECK YOUR

200 FOR 1=1 TO 500 :NEXT I

NUMBE

210 REM *** 3.1 DISPLAY CARDS ABAIN ***"

220 BOSUB 1020
230 REM *** 3.2 DISPLAY NUMS. CALLED *** .
"
240 BOSUB 540
250 REM ***3.3 CHECK WINNINB CARD***"
260 BOSUB 1650
270 BET K$:IF K$="11 THEN 270
280 IF B=l THEN 140
290 END
300 REM *** END M A I N ***
310 REM ••
<"', REM .,J "'-",J • • • •

330 REM *** INSTRUCTION SUB ***
340 REM .••
350 PRINT "::".3"
370 PRINT TAB(2};"********INSTRUCTIONS**
******":PRINT
380 PRINT TAB(2);"FOUR BINGO CARDS ARE G
IVEN"
400 PRINT TAB(2);"LISTS Q,R,S AND Til

288

" ·
. ,",

:;

'"

, .' ': '~:.

, -':",::
, ". '

'" '.
, :.'::':.
" ',', '
""
": :

·

'. ":'::'

·

, "

..
·

·
"'.,':: :

· ..

. .

·
·

· ·

410 PRINT TAB(2):;"CHOOSE YOUR CARD AND C
" .

OPY" .' ..

420 PRINT TAB(2);"NUMBERS DOWN WHEN SHOW
"

Nil
,

430 PRINT TAB(2);"**********************
"

*****"
440 PRINT TAB(2);"A$ NUMS. CALLED CROSS

"

THEM"
450 PRINT TAB(2);"DEF YOUR LIST. THE WIN
NING"
460 PRINT "fAB(2);"CARD IS THE FIRST COMP
LETED"
470 PRINT TAB(2) "WHEN READY PRESS A KEY"

480 GET E$:IF E$="II THEN 480
490 RETURN
500 REM •.
510 REM •••
520 REM .•
530 REM .•
540 REM *** DISPLAY CALLERS ***
545 REM *** NUMBERS SUB ***
550 REM • •
560 PR I NT "~I] II
565 PRINT LEFT$(Y$,6);LEFT$(X$,4);"CALLE
RS NUMBERS" .
570 PRINT TAB(6);"***************"
580 PRINT ;",:PRINT TAB(10);"****WAIT**
**":y=z
590 GOSUB 1470
600 FOR N=l TO Z:PRINT P(N);TAB(5):;

" "

610 NEXT N:PRINT
620 PRINT TAB (2) ; "PRESS A KEY TO CHECf-::: R
ESULT"
630 GET G$:IF G$:::"" THEN 630
640 PRINT "~]"

650 RETURN
660 REM .•
670 REM ••
680 REM •••
690 REM ...
700 REM **PLAYERS NUMBERS SUB **
710 REM ..•
720 FOR U=l TO 4
730 FOR J=l TO 15
740 X=INT(RND(1)*99) ·
750 S=O: REM FLAG OFF
760 FOR 1=1 TO J-l
770 IF X=P(I) THEN S=l
780 NEXT I

289

/

!' , t

, "':",, ' , '.

----------------~---j

790
800
810
820
8 ""' ... ;.t)

840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010

IF S=l THEN 740
P(J)=X:NEXT J
Y=15:GOSUB 1470
GOSUB 890
NEXT U
RETURN
REM ••
REM ••
REM •••
REM ••
REM *** ALLOCATE SUB
REM ••
FOR J=l TO 15
IF U=l THEN Q(J)=P(J)
IF U=2 THEN R(J)=P(J)
IF U=3 THEN S(J)=P(J)
IF U=4 THEN T(J)=P(J)
NEXT J
RETURN
REM •.
REM ••

REM ••
REM ••

. ,

1020 REM *** DISPLAY CARDS SUB ***
1030 REM •• ,

1040 PRINT "::".:!": PRINT: PRINT
1050 PRINT TAB(2);"HAND Q";TAB(lO);"HAND

R";TAB(18);"HAND S";TAB(26);"HAND T"
1060 FOR J=l TO 15
1070 PRINT TAB(5);Q(J);TAB(13);R(J);TAB(
21);S(J);TAB(29);T(J)
1080 FOR 1=1 TO 500:NEXT I
1090 NEXT J
1100 PR I NT "PRESS A I(EY TO CONT I NUE II
1110 GET D$: IF D$ =" II THEN ' 111 (I
1120 PR I NT "::':'J"
1130 RETURN
1140 HEM ••
1150 REM ••
1160 REM ••
1170 REM .•
1180 REM *** CALL NUMBERS SUB ***
1190 REM ••
1210 PRINT "PRESS ANY KEY TO STOP WHEN Y
OUR CARD IS COMPLETE"
1220 PR I NT II ;~~" LEFT$ (Y$, 15) ; LEFT$ (X$, 11) ;
A (Z>
1240 P(Z>=A(Z)
1250 FOR 1=1 TO 2000:NEXT I
1260 PRINT "~"LEFT$(Y$,14);LEFT$(X$,11); .

290

,
-. -_ .
- c-·

, .

" "
1270 GET C$:IF C$<>"" THEN 1300
1275 Z=Z+1
1280 IF Z=100 THEN PRINT "ALL NUMBERS CA .
LLED":GOTO 1300
1290 GOTO 1220
1300 RETURN
1310 REM ••

1-:[-:; i-I ._',). .. _.
., . • ~4') .L . j 'I.

1 -rc;:- ')
.· ~),Jt

REM ••
REM ••
REM ••
REM *** CALLERS NUMBERS SUB ***
DIM A(99) 1360

1370 PRINT "~:~": PRINT LEFT$ (Y$, 14) ; LEFT$ (
X$,10);"** WAIT .**"
1380 FOR N~1 TO 99
1390 X=INT(RND(1)*99)
1400 IF A(X)<>O THEN 1390
1410 A(X)=N:NEXT N
14· 20 RETURN
1430 REN ••
1440 REM ••
1450 REM ••
1460 REM ••.
1470 REM**** SORT SUB ****
1480 REM ••
1490 S=Y
1500 S=INT(8!2):IF 8>=1 THEN 1520
1510 GOTO 1600
1520 FOR K=1 TO 8
1530 FOR A=K TO Y~8STEP K
1540 B=A:T~P(A+S)
1550 IF T>=P(B) THEN 1580
1560 P(B+S)=P(B):B=B-8 '
1570 IF B)=1 THEN 1550
1580 P(B+8)=T:NEXT A,K
1590 GOTO 1500
1.~OO RETURN
1610 REM •.
1 L ':'(1 h'EM \J~ .. ~ ,_ ••

REM ••
1640 REM .•
1650 REM ***CHECK WINNING CARD***
1660 REM ••
1670 PRINT":':~": PRINT

I

t

1680 PRIN1- TAB(2);"~rrYPE NAME OF WINNING
CARDS" ;

1690 INPUT A$:IF A$<>"Q"
A$<>"S" AND .A$<>"T"THEN

1695 PR I NT" ~'::I"

291

A"ID A$/ -'-" Co" .~ .. --.. ... I' AND
1680

---.

1700 FOR N=l TO 15
1710 IF A$="Q" THEN V(N)=Q(N)
1714 IF A$="R" THEN V(N)=R(N)
1718 IFA$="S" -THEN V(N)=S(N)
1719 IF A$="T" THEN V(N)=T(N)
1720 NEXT N
1730 M=l :REM CALLERS ARRAY INDEX
1740 8=0:PRINT
1750 FOR N=l TO 15:REM N CARD ARRAYINDE
X
1760
1762

IF G=l THEN 1810
IF' V(N)=P(M) THEN PRINT V(N)·"CORRE ,

CT"
1770 IF V(N)=P(M) THEN 1810 ·
1780 M=M+l:IF M=Z+l THEN PRINT V(N);"NOT

CALLED"
1790 IF M=Z+l THEN G=l:REM INCORRECT FLA
8
1800 GOTO 1760
1810 NEXT N
1820 IF 8=1 THEN PRINT "CARD ";A$;" NOT
COMPLETED TRY A8AIN":RETURN
1830 GET Al$:IFA1$="" THEN 1830
1840 PRINT "~T'
1850 PRINT LEFT$(Y$,8);LEFT$(X$,5};"****
***************"
1860 PRINT TAB(8);"**CONGRATULATIONS**"
1870 PRINT
1880 PRINT

TAB(8};"*******************"
TAB(8)~"*******BINGO*******" . .

1890 PRINT TAB (8) ; "*******.************"
1900 PHINT TAB(S)."****CARD ":;A$." WINS* . . .,

1910 PRINT TAB(S);"*******************"
1950 PRINT :PRINT "GAME ENDED USE RUN TO

RESTART"

, .

" , . ___ .

1960 RETURN

"REF.INDEX"
•

Problem: in a laboratory experiment with a spectrometer, a series of measure
ments are made of the prism angle A and the angle of minimum deviation D for
various prisms. The refractive index of each is then determined using the
formula:

N=

, ' . , ' , , ' , ' .
A table of results is required, and an average of the refractive index results for
each prism. Six prisms and four measurements for each prism are to be allowed
for.

292

, .

Research the problem: since we are using up to six prisms and each one can have
four readings it is convenient to use nested loops and two-dimensional arrays to
store the input. In this way A (3 , 4). can, for example, represent the third prism,
fourth readi1}g of prism angle. Lists will be used to refer to the prisms and the
quantities associated with them so that, for example, Z(3) can represent the
average refractive index of the third prism.

Angles will be input in degrees. Since the formula for. the calculation requires
the use of the Sine function SIN, the program will need to convert to radians.
This will have to be done before the refractive index is calculated. A simple input
check can be provided in a subroutine. Zero entries in the input loops will
signify end of prisms or end of readings.

Outline procedure:
1 Input: data
2 Calculate: refractive indices and averages
3 Output: results in suitable tabular form

Detailed procedure:
Input
1.1 Arrays and Lists
1.2 FOR each Prism (1 to 6)
1.3 Set Z as zero
1.4 Input Prism number
1.5 I F Prism = 0, GOTO 3.1
1.6 FOR each Reading (1 to 4)
1.7 Input Prism Angle
1.8 If Angle = 0, GOTO NEXT Prism
1. 9 Input Minimum Deviation
Processing
2.1 Convert angle to radians
2.2 Convert minimum deviation to radians
2.3 Calculate Refractive Index
2.4 Round to 3 decimal places
2.5 Add Refractive Index to Z
2.6 N EXT Reading . ,
2.7 Average R. 1= Z divided by number of readings
2.8 Let Average R.I = Z(N)
2.9 NEXT Prism

Output
3.1
3.2
3.3

Print Headings
FOR Each Prism
FOR Each Reading

3.4 If Reading no 0, print Prism, Numi?er, Angle, Minimum Deviation,
Refractive Index

3.5
3.6
3.7
3.8
3.9
3.10
Correct
4.1
4.2

N EXT Reading
NEXT Prism
Print Headings
FOR Each Prism
Print Prism Number, Refractive Index
N EXT Prism

Input null string if error, C if correct Error subroutine
Return

/

!

Note: subroutine called after each input. All entries can be re-input if incorrect.
See program listing.

293

\'i ~ !
!' !

Data table
P(6) Prism number
A(6,4)
D(6,4)
N(6,4)

Z
Z(6)

N,M
X,Y
A$

Four Angles of measurement for each of 6 prisms
Minimum Deviations, for each value of A (6 , 4)
Results of refractive index calculation for each experiment, derived
from the values stored in arrays A and D
Variable to store totals of minimum deviations
Average refractive index for each prism, from the average of the four
values stored in array N.
Used as loop variables for input
Used as loop variables for printout
Used as input for error check subroutine. Null string if incorrect, C if
correct.

Flowchart:

•
/ ST ART

'\

"- ./
' .

.

DIMENSION
ARRAYS .

N - 1 OUTPUT
N>6 /,

7
RESULTS STOP

N=N+l \.. ./

I
,

• -
LET

Z - 0
'.'

.... \

INPUT
, PRISM ,

NUMBER

®

294

j

;'::':':'

---:-'::";

'~f
"

,. "

A

,

•

"

B

No

Yes

ANGL
~

o

CONVERT
TO RADIANS

CALCULATE
R.I.. ADD

"-' TO Z

GOSUB
INPUT
CHECK

GOSUB
INPUT
CHECK

Yes

295

es

No

M = 1
1-----IM>4

------~M=M+l

INPUT
ANGLE

CALCULATE
AVERAGE

FOR

, ,

! -

20 REM ** REF. INDEX **
30 PRINT "~'::I**REFRACTIVE INDEX**"", "USIN
G SPECTROMETER"
40 PRINT "ALLOWS UP TO SIX PRISMS AND F
OUR SETS OF RADING FOR EACH"
50 REM ** DIMENSION ARRAYS **
60 DIM Z(4),P(6),A(4,6),D(6,4),N(6,4)
70 REM .•
80 REM •.
90 REM ** INPUT DATA LOOP **
100 FOR N=l TO 6:Z=O
110 INPUT "ENTER PRISM NUMBER INPUT 0 TO

FINISHII;P(N)
120 PRINT "PRISM NUMBER";P(N)
130 GOSUB 640
140 IF A$<>"C" THEN 110
145 IF P(N)=O THEN 460
150
l L -,-,0

REM •••
REM ••

170
180

HEM ** START
FOR M=1 TO 4

READINGS LOOP **

190 PRINT "INPUT PRISM ANGLE IN DEGREES
INPUT 0 TO FINISH"
200 INPUT A(N,M)
210 PRINT "ANGLE OF PRISM";A(N,M)
220 GOSUB 640
. ,,..0-...:..--,

?40 ~. .P

N,M)

IF A$<>"C" THEN 190
IF A(N,M)~O THEN 390
INPUT "ENTER MIN.DEV. IN DEGREES";D(

250 PRINT
260.GOSUB

"MIN.DEV.:";D(N'I M)
640

270 IF A$<>"C" THEN 190
280 REM ** CONVERT DEGREES TO **

** RADIANS **
300 A=A(N,M)*f!/180:D=D(N,M)*fr/180
310 REM ** REFRACTIVE INDEX **
320 N(N,M)=(SIN«A+D)/2)/SIN(A/2)
330 N(N,M)=INT(1000*N(N,M)+.5)/l000:Z=Z+
N(N,M)
340 NEXT·M
<5-
0 • .} 0

<60 '-'
380
:390
T N

REM ** END READING LOOP **
REM ** AVERAGE TO 2 DEC. PLACES **=
REI"! ••
Z=Z/(M-l):Z(N)=INT(100*Z+.5)/l00:NEX

400 REM ** END INPUT LOOP **
420 REM
430 REM ••
440 REM ** PRINT OUT **

296

450 REM ..
460 PRINT "PRISM * ANGLE * MIN.DEV*RF.IN
.*******************"
470 FOR Y=l TO N-l .
480 FOR X=l TO 4
490 IF A(X,Y)=O THEN 510
500 PRINT P (Y). TAB (6) • "*'" A (X y). TAB (14) . ." . ,
;"*";D(X,Y);TAB(24);"*";N(X,Y)
510 NEXT · X,Y
520
530
540
545
55(>
560
570
580
590
600
610

PRINT"*******************"
PRINT"AVERAGE REFRACTIVE INDICES"
PRINT"*******************"
REM *** NUMBERS SUB ***
PRINT "PRISM REF.IND."
FOR X=l TO N-1
PRINT P(X),Z(X)
NEXT X
PRINT"************************"
60TO 700
REM ..

640 REM ** CORRECT ERROR SUB **
650 PRINT "INPUT C IF CORRECT OTHERWISE
PRESS ENTER"
660 INPUT A$
670 PRINT "~'::I"
680 ' RETURN

• 690 REM •.
695 REM ** END SUBROUTINE **
700 END

Sample printout:

PRISM * ANGLE * MIN.DEV * RF.IN.

1 * 59.8 * 40.5 * 1. 54
2 * 60.1 * 40.2 * 1 .533
2 * 61.2 * 45 .. 3 * 1 .574
2 * 62 * 45.1 * 1 .562
2 * 62.5 * 45.4 *1.558
************************************ r

AVERAGE REFRACTIVE INDICES

PRISM
1
2

REF.IND.
1. 54
1. 56

/

Comments: Note the importance of a check subroutine in this type of multiple
entry program. It gives the user the chance to verify that the input data is
correct. It might have been better to have written a program to deal with any
number of prisms and any number of readings. Consider what changes this
would make to the program.

297

~,

! 1 ,

I

There are many other physics experiments which may be treated in a similar
way. For example:

• The value of the gravitational constant, g, by simple pendulum, using the
time period equation

T = 2ny'1i g

for experiments with pendula of various lengths I to determine the average
value of g resulting.

• The determination of the velocity of sound, using a resonance tube to find the
1st and 2nd resonance lengths (Ll and):.,2 respectively) and using the
equation

V = 2f(L2 - Ll)
where f = frequency of the sound, and V the velocity.

"SERIES"
Problem: to sum the series that gives the value of e raised to the power x. This is:

X · 1 2 3 n e = + x + x + x + x + - - -2! 3! n!
for any value of x, with an accuracy of 1 part in 100,000 (ie; 10-5

, .00001).

Research the problem: this is the E P function on the computer, evaluated as a
series. The resulting value for example, of e3

, would be approximately the value
of EXP(3) if you used it on the computer. This is a convergent series; the value of
each term gets smaller.' For example, if we take .

2, x2 is 4 = 2 while x3 = 8 = 1.333 ... - - -2! 2xl 3! 3x2xl

At a certain point, the effect of adding the value of another term is to increase
the sum by less than the accuracy required. The summing is then finished.
Procedure: this requires a procedure which allows any term in the series to be
calculated from the previous term. This is the basic algorithm for summing many

• senes.

At this stage you should consider whether this is a specific problem or
whether it could be extended to deal with other, similar series-sum problems. It
is important to make this decision before the program is written, as it is
time-consuming to modify a program at a later stage. The answer is yes. We can
then restate the problem as: a program is required which will sum a convergent
series to any desired accuracy (subject to the limitations of the computer's
arithmetic), provided that any term may be expressed as a function of the
previous term, with the information needed being the first term and the
common ratio. The common ratio is the equation that enables us to calculate any
term from the previous one.

For your problem; take the exponential series:

eX = 1 + x + x2 + + n-1
X + ... -2! (n..1)!

nth term

298

In this series the first term is 1. The common ratio =

nth term . The nth term is xn
•
1 and the

(n::J.)th- term • . (;.:j)!
(n_1)th term is · J5.n.2 • The ratio is Kn

.
1

. (n-~ll = K. .
(n-2)! (n-1)! xn

• n-1
An accuracy is required of one part in 100,000 (10-5

). When the effect of adding
another term increases the sum by less than this, the program should stop
processing and output the result.

Outline procedure
1 Input necessary information
2 Sum series term by term
3 Compare sum with previous value
4 Print result when sums differ by less than required value
Detailed procedure
Input
1.1
1.2
1.3
1.4

Common ratio - may be easiest to have a replaceable line in program.
First term - easily input
Accuracy - easily input
Value of X - easily input

Sum
2.1 Initialisation - set 1st term equal to given value which in turn is the sum

of the series at this stage.
2.2 Next term - may be calculated by multiplying first term by common

ratio.
2.3 Sum - may be calculated by adding this term to previous sum.
Comparison
3.1 Compare this sum with previous value, then EITHER go to 4.1 if the

difference is less than that required OR go back to 2.2 if difference is
more than that required.

Output results
4.1 Name of series
4.2 Accuracy
4.3 First term
4.4 Value of X
4.5 Sum of series
4.6 Number of terms
Variables table
Input
A$ Name of Series
A Value of first term in series
X Value of X
D Accuracy required (difference between terms, such that program termin

ates when: difference smaller than this).
Processing and output .I ,

T Value of current term being processed I

N Number of terms
51 Value of Sum of series of N-l terms
5 Value of Sum of series to N terms
51-5 Difference between the sums of the series to the Nth and (N_1)th

terms, checked against value of D .
T=T*XI(N-1) Calculates value of next term in series from current term.
The common ratio is set in line 260. This line must be changed for different

• senes.

299

• , ,
" I ,

START .

, . .

.
PRINT

INfO ·

STOP

,
INPUT
DATA

.

, .

h-ERM VALUE
• FIRST

h-ERM NUMBER
bF TERMS = 1

NEWSUM =
FI RST TERM

. .

.

t- . "\

SUM . =
NEWSUM

.

.

INCREMENT
NO. OF
TERMS

,
CALC ULA TE
NEXT TERM /

VALUE

NEWSUM =
NEWSUM PLU
TERM

t
NEW _ Yes

OLDSUM
>D

}o .

PRINT
RESULTS

, ,

. •
/

STOP
'"

300

10 PR I NT "::I:~"
1 4 X $ = " ··?I"'i~·-rI~·''''i·I'''·~··T111=1'·i·I·-··I·;;'f'''i·I·-'r;;:'I·'';o!·''··r.·;·I~I·"··I·:;;o('''·I·'TI·-i·I'' J0A~~I .• ~. L •. ~.~L~~ •••• ·.·h'J.·L
18 Y $= " nn~·I~·Bj'"~U~·U~·II~·U~·HIi1J11~·j·U~H~·n'·H~HPfI.·"njil~·lIn.Hifnmlljnlliflnljf~ji'"

Ii'B~l~llilliln"rRW I .

20 PRINT TAB(14): "**SERIES **"
•

24 PRINT"THIS ' PROGRAM SUMS ANY SERIES WH
ICH IS CONVERGENT AND WHERE ANY TERM MAY

40 INPUT
50 PRINT
60 INPUT
;TM
70 INPUT
80 INPUT
90 T=TM '
100 N=l
110 Sl=TM
120 S=Sl

"ENTER NAME OF .THE SERIES";N$
ft willi

••
"ENTER THE VALUE OF FIRST TERM"

"ENTER VALUE OF X";X
"ENTER ACCURACY REQUIRED";AC

130 REM *** CALCULATE NEXT TERM ***
140 N=N+l:T=T*X/(N-1)
150 REM ** CALCULATE NEW SUM **
160 Sl=Sl+T
170 REM ** COMPARE SAND Sl **
180 IF ABS(Sl-S»AC THEN 120
185 PRINT"::'~SUM OF "; N$;" SERIES"
190 PRINT "*****************************
******"
195 PRINT"TO AN ACCURACY OF";AC:PRINT
200 PRINT"FIRST TERM=";TM;"VALUE OF X=";
X
210 PRINT "SUM"Sl;"NO. OF TERMS";N .

Sample printout:

SUM OF EXPONENTIAL SERIES

TO AN ACCURACY OF .00001
FIRST TERM = 1
VALUE OF X = 1
SUM 2.7182815
NO. OF TERMS 10

, ,
;'

I

/

Now consider how you might improve upon this program. (Ideally, this should
have been considered at the planning stage, not after coding.) We should
perhaps include a subroutine to correct the sum to the appropriate number of
decimal places or routines to enable the user to check that input data is correct.

301

~ ...
i

I

l
i

1-

I,
i -

"ELEMENT"
Problem: to calculate for a chemical compound:
a percentage elemental composition and molecular weight, or
b molecular formula
from inputs of, for a); number of atoms each element and for b) percentages of
each element. These are complementary calculations.
Research problem: A program is required that performs two separate operations.
The common requirements will be the element names, symbols and molecular
weights. These will be input and stored as data in arrays on the computer. This
will require an input routine that is not used every time the program is run, and
could be edited out. The elements involved should be capable of being changed
to facilitate different analyses, and this must be allowed for in the program. This
is an advantage over the alternatives of either defining all data with LET
statements or the use of DATA and READ.
. The program must be split into two processing sections. The first of these
(percentage elemental composition and molecular weight) requires an input for
the number of atoms of each element. A loop can be used for this, using the loop
variable to access the stored element names. Molecular weight equals the
number of atoms of each compound multiplied by the atomic weight, and this
can be calculated within the input loop. Molecular formulae are then derived
from the atomic symbol,· plus the. number of atoms, for each of the elements
concerned.

Percentage composition for each element is the number of atoms of the
element, times the atomic weight of the element, divided by the molecular
weight.

The second section of the program.requires an input loop for the percentage of
each element. The proportion of atoms of each element will then be the
percentage divided by atomic weight. This can be calculated within the input
loop. To calculate the molecular formula, it is necessary to know the minimum
(to give the smallest number of atoms of any of the elements) elemental
proportion. This can be checked through another loop. The number of atoms of
each element is then the proportion of each element divided by the smallest
proportion. This could be rounded to integers, but will be done to two dedmal
. places because the actual molecular formula may be a multiple of the derived
formula. This possibility should also be indicated to the user. Zero inputs will be
required when elements do not occur in the compound concerned.

For a common organic analysis the following data will be stored via the input
routine:

HYDROGEN
CARBON
NITROGEN
OXYGEN
PHOSPHOROUS
SULPHUR
CHLORINE
BROMINE

H
C
N
o
P
S
CL
BR

1.008
12.01
14.008
16.00
30.98
32.06
35.457
79.916

The data entry module is keyed in and the data input as above. The procedure
for the program is given' below.

Detailed procedure:

1 Data entry module
1.1 Dimension arrays for data: element names, element symbols, atomic

weights
1.2 FOR each input (1 to 8)
1.3 Input name, symbol, atomic weight
1.4 GOTO subroutine to justify atomic weight (5 below)
1.5 NEXT input

302

•• -, -------..,....----------------------.-"",,',"" ... " -.~~"'" - --- ".---. ' ... -.-"----,~-."'.

2 Menu
2.1 Print instructions and menu
2.2 If second calculation required, GOT 0 4
2.3 If firs t' calculation required, proceed to 3

•

3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5

3.1.6
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

3.2.8
3.2.9
3.2.10

4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

4.1.6
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.2.6
4.2.7
4.2.8
4.2.9

4.2.10
4.2.11
4.2.12
4.2.13

Percentage element calculation
Input:
Reference for compound
Initialise arrays, molecular weight variable
FOR each element (1 to 8) ,
Input number of atom,s present' "
Calculate total molecular weight (molecular weight plus (number of ,
atoms * atomic weight))
Next element
Processing!output:
Print reference, molecular weight
FOR each element (1 to 8)
Print symbol, number of atoms
N EXT element ' , " •
FOR each element (1 to 8),
If no atoms present, GOT 0 3.2.10 ,
Calculate percentage as (number of items atomic weight) divided by
molecular weight of compound, times 100
GO SUB (5) for rounding and justification of results .
Print element symbol, percentage '
N EXT element

,

Molecular formula calculation
Input:
Reference for compound
Initialise arrays
FOR each element (1 to 8)

,

.
" , '

,
Input percentage present
Calculate proportion ' of element as percentage present divided by
atomic weight '
N EXT element
Processing! ou tpu t
Print reference
Set C = 100 for percentage calculation
FOR each element (1 to 8)
If proportion is zero, GOTO 4.2.6
If proportion less than current value of C, then let C equal proportion of
element i

N EXT element
FOR each element
If proportion is zero, GOTO 4.2.12
Number of atoms equals proportion divided by smallest proportion
present, C
GO SUB (5) for rounding and justification to 2 decimal points.
Print symbol, number of atoms
N EXT element
Print user warning that multiples of this calculated formula may be the
actual formula

303

,
i ,
I i

" l ' , ';

I '
,

'I
, ,
I .
,
i
r i
,
, '

i i

I :

Ii ,I
i ! I
i ! i
i i , , , ,

L ;

j j
i (
; I

L i ,

! I
, "

1 'i
i I
i:

,\ , , '
!

1

1

, ,

1 ,

I
I
Ii

i!~

I
-"

--....
5 Subroutine to round and justify

(Input of number of decimal places (P) and number to be justified (N)
from data defined in main program modules) .

5.1 X$ set to contain P zeros
5.2 Integer value set as XN
5.3 Decimal value set as XD
5.4 Define X$ as rounded number string
5.5 X$ returned to main modules for printing

6 Auto;run.
An automatic RUN routine using GOTO 200 is used to prevent the user
entering RUN accidentally after LOADing

Variables table
Input and main program sections:
E$(8,lO) Holds element names
5$(8,2) Holds element symbol
M(8) Holds atomic weight
E Loop variable in main program
X Loop variable in input routine
A$ Menu choice
R$ Reference for compound
MOL WT Molecular weight
A(8) Holds input of number of atoms of element
P(8) Holds input or calculated percentage of element
N(8) Holds calculated number of atoms of element
C Constant for calculating percentages

Round and justify subroutine:
N Holds number for operation of subroutine .
X$ Holds string form of number returned by subroutine
XN Holds integer value of N
XD Holds decimal value of N
F Loop variable in subroutine

304

,- '"
START .

"
DHIENSION

DATA ARRAYS

i .

INPUT

DATA

.

INPUT

CHOICE

A$=H
YES

NO
-

INPUT
FOR EACH

NUl.ffiER OF - E:CEloIENT

ATOMS -
.

PRINT REF, .

I~OL. WT,
.

FORMULA

1 -
CALCULATE

PERCENTAGE

FOR EACH
roo ELEMENT

PRINT

PERCENTAGE

I

"

/

~

r

~

305

.

INPUT

PERCENTAGE

FIND

LOI"lEST

PERCENTAGE

.i
CALCULATE

NUHBER
.

OF ATOMS

PRINT .

SYMBOL, NO

OF ATo/~S

...... t

PRINT

INSTRUCTIONS

r
STOP

" ~

FOR EACH
ELElolENT

FOR EACH
ELENENT

/

--....
5 PR I NT " ::".:1"
14 REM ********************************
15 REM 1.DATA ENTRY. ROUTINE CAN BE
16 REM DELETED WHEN ENTRY COMPLETE.
17 REM ********************************
20 DIM E$(S)
30 DIM S$(S)
40 DIM M(S)
55 PRINT
60 FOR X=1 TO 8
65 REM ** ELEMENT NAME **
70 INPUT "ELEMENT NAME";E$(X)
75 REM ** ELEMENT SYMBOL **
SO INPUT "ELEMENT SYMBOL":;S$(X) . ,- .
S5 REM ** ATOMIC WEIGHT **
90 INPUT "ATOMIC MASS"; r'1 (X)
91N=M(X):P=3:GOSUB 2000:X$(X)=X$:NEXT
125 PR I NT " 7.:1 ELEMENT SYMBOL MOL. WT. II

126 FOR X=1 TO 8
130 PRINT X~ TAB(3):;E$(X):; TAB(14):;S$(X) . . . ~

;TAB(27~LEN(X$(X»);X$(X)

150 NEXT
151 PR I NT II ~nf'RESS ANY KEY, TO, CONTI NUE~ti!"
152 GET Z$: IF Z$='"' THEN 152
159 REM ******************************
160 REM LINES 15 TO 160 CAN BE 'DELETED
161 REM AFTER DATA ENTRY AND REST OF
162 REM PROGRAM ENTERED MUST USE *GOTO
163 REM 200* TO USE PROGRAM,NOT RUN~TO
164 REM PRESERVE DATA
165
17()

REl"1
REM

END 1.

180 HEM
199 REM *************************
201 REM 2. PROGRAM MENU TO CHOOSE
2(>2

"'0" L _ ._~

"10 ..:... -..

REM CALCULATION.
REM *************************
PRINT "CHOOSE CALCULATION REQUIRED:-

220 PRINT

, '

,

, .

230 PRINT"TO INPUT NUMBER OF ATOMS AND G'
ET PRECENTAGE ELEMENT COMPOSITION AND";
2~2 PRINT" MOLECULAR WEIGHT INPUT ,E"
240 PRINT
250 PPINT "TO INPUT PRECENTAGE ELEMENT A
NALYSIS AND GET MOLECULAR FORMULA";
255 PRINT"INPUT M" ,

260 INPUT A$
270 IF A$<>"E" AND A$<>"M" THEN GOTO 260
280 PR I NT II ~::I"

306

, '.'

290 IF A$="M" THEN GOTO 1000
292 REM ************
295 REM ** END ?

~. ** "
296 REM , ************
297 REM ******************
298 REM ~ PRE CENT ELEMENT -,

"-' -
299 RE!'-l ******************
300 PRINT "ENTER REFERENCE FOR THE COMPO
UND"
310 INPUT R$
320 REM ** INITIALISE **

DIM A(S)
MOLWT=O
DIM P(S)
FOR E=l TO 8

340
350
360
~70 PRINT "NUMBER OF ATOMS OF ";E$(E);"?
II

380 INPUT A(E)
390 MOLWT=MOLWT+(A(E)*M(E»
400 NEXT E
'~10 c'RINT , q"
l_I' c 1 ••• 1

420 REM *CALCULATION AND PRINT RESULTS*
430 PRINT "MOLECULAR WEIGHT AND COMPOSIT
ION"
440 PRINT
450 PRINT "REF:";R$
460 PHINT
470 PRINT "MOL.WEIGHT= ";MOLWT
480 PRINT
490 PRINT "MOL. FORMULA: ";
500 FOR E=l TO 8
510 IF A(E»l THEN PRINT S$(E);A(E);
520 IF A(E)=l THEN PRINT S$(E);" ";
530 NEXT E
540 PHINT II~"",
550 FOR E=l TO S
560 IF A(E)=O THEN GOTO 620
565 REM *CALCULATE PERCENTAGES*
570 P(E)=A(E)*M(E)/MOLWT*100
580 N=P(E)
=9(-) 0-':> ...J _ 1-":'"

I 600 SOSUB
610 PRINT
)) ; X$

2000
"PEF~CENT "; S$ (E) ; TAB (l8-LEN ';)($

620 NEXT E
01 ""jC:-

0..:...;;)

630
635
640

REM *COPY
GOTO 1800
REM
REM

645 REM

HERE FOH PRINTED RESULTS*

** END 3. **

307

, I
,

,

'I

650 REM
993 REM ********************
994 REM 4. MOLECULAR FORMULA
995 REM ********************
1000 PRINT "ENTER REFERENCE FOR COMPOUND
"
1010 INPUT R$
1020 REM **DIM ARRAYS**
1030 DIM PCB)
1040 DIM N(8)
1050 PRINT
1060 REM **INPUT PRECENTAGES**
1070 FOR E=l TO 8
lOBO PRINT. "PERCENT OF
1090 INPUT peE)

";E$(E);"?" . .

1095 REM **CALCULATE PROPORTION*
1100 N(E)=P(E)/M(E)
1110 NEXT E
1120 PR I NT "~'::I"
1130 REM **CALCULATE AND PRINT RESULTS**

1140 PRINT
1145 PRINT

"*MOLECULAP FORMULA*";
•

TAB(O);"*******************"
1150 PRINT
1160 PRINT "REF:";H$
1170 PRINT
1175 REM **CALCULATE MINIMUM**
1176 REM **PROPORTION ELEMENT*
1180 C=100
1190 FOR E=l TO 8
1200 IF N(E)=O THEN GOTO 1220
1210 IF N(E)(C THEN C=N(E)
1220 NEXT E
1225 REM **DERIVE FORMULA**
1230 FORE=l TO 8
1240 IF N(E)=O THEN GO TO 1290
i ':i<=() F'-':i .LL..-J -L

1260
1270
1280
1290
1295

1300
Y BE
1302

N=N(E)/C
GOSUB 2000
PRINT S$(E); TAB(8-LEN(X$»;X$

• •

NEXT E
REM *COPY HERE FOR PRINTED RESULTS*

PRINT "MULTIPLES OF THIS FORMULA MA
THEil ;
PRINT "ACTUAL FORMULA IF AT LEAST 2

ATOMS OF",
1 :::::04 EACH EL.EMENT PRESENT"
1320 REM

308

1330 REM **END 4. **
1340 REM ***********
1780 REM
1790 REM

•

1795 REM ** ENDRUN INSTRUCTIONS**
1800 PRINT LEFT$(Y$,O);LEFT$(X$,20);"USE

GOTO 200 TO RUN AGAIN.",
1802 PRINT "USE GO TO 3000 TO SAVE"
1810 STOP
1820 REM
1825 REM *** END PROGRAM ***
1830 REM
2000 REM ******************
2002 REM 5. SUBROUTINE TO ROUND
2004 REM AND JUSTIFY.
2006 REM ******************
2010 X$=""
2020 FOR F=l TO P
2030 X$=X$+"O"
2040 NEXT F
2050 XN= INT(N)
2060 XD= INT(101P*(N-XN)+0.5)
2070 X$=STR$(XN)+"."+LEFT$(X$,P+1-LEN(ST
R$(XD»)+LEFT$(STR$(XD)+X$~P)

2080 RETURN
2090 REM
2095 REM ** END SUB **
2889 REM ****************
2980 REM
2990 REM AUTO-RUN ROUTINE
2995 REM ****************
3000 SAVE "ELEMENT"
3010 GOTO 200
3020 REM ** END PROGRAM LIST **

V 4: Games programming
Games are applications programs which are not of a type which fulfils/a specific
purpose in a functional context; that is, they are not written to dp' a specific
scientific, educational or data-manipulation task. In other words, tHey are only
games; But this does not mean that, as programming tasks, they are frivolous.
The enjoyment of playing the game on or with the computer is the application
for which the program is written, but the task of programming a game is often
difficult: Games programming is good practice for finding, deriving and coding
algorithms and producing efficient and user-friendly programs. Graphics man
ipulation plays a larger part in games programming than in most applications
programs, and such programs are also more interactive, requiring repeated
inputs and outputs.

309

BASIC, an interpreted language, is often slow for games purposes. Fast action
graphics games (Space Invaders and their spawn) are written in machine code
for speed of operation, as are tactical games where exhaustive exploration of
possible moves is required (such as chess). Effective games can be programmed
in BASIC, however, if the amount of calculation is not too great.

An area of overlap between games and application programming is the degree
of simulation. A program, given data and rules for manipulating the data,
simulates a situation. In a serious application, this would be a real situation,
with the manipulations performed as known or hypothesised relations from
scientific knowledge. A game simulation would use invented relationships, or
perhaps simplified formulae if it dealt with a 'real' situation. The techniques
would be essentially the same, and are used in a program in the same fashion.
From the point of view of this book, games may be considered as programming
exercises; all the techniques you have learned can be put to use in writing games
programs.

V5: Example program
This game is an implementation of a favourite game for computers, which has
existed since the days of printout-only terminals (which is where the instruction
PRINT in BASIC comes from, as a hangover from hard-copy terminals transferred
to implementation on a screen). The basic idea, upon which many variations
have been created, is that a landing must be made on the lunar surface at a speed
low enough to prevent a crash. Rockets can be fired to slow the craft, but the fuel
supply is finite. If the fuel supply is exhausted, a crash is inevitable. The game
was originally played with a printout of the data only. This version uses one side
of the screen for a graphic display, and prints the data on the other.

5 REM ** LAN D E R
7 Y $= "Ir.-Hru'U~'Hru'~~'UWIllij'n~'H~·I~l~TIlJj'U!iinru·H~'~iii'llru'~ru'H~llpifi~'Uffi'lIlifU~'.pfllru·U~'U~'II~'II~'II~'~~'Rlifll~fl
iil~'HII~~'lIill~'HIiI~'~ "
8 X $ - " ''''r "'I'-'t- " I'-~'-" I'''''I~''I'ti't''' ''I'-''-'I~''I';;''~I' ;;>1'-'1'-' ~";r" I~"I'- 'l~" I~;~ " - .r!, t1~,1!! !!, ,!!~J!. '\!!' .'!, .!!~,!!, ,!!,I,\!!, ,\!!~,<:'I,!!.,~'I.!!' ,1!!'1.~:, .. r:, '\!!' ,I! ,P.!, hi
10 PR I NT" ~'::I"; TAB (1 0) ; "*LANDER*
12 PRINT TAB(5);"LUNAR LANDING GAME."
14 PRINT TAB(5);"YOU ARE INITIALLY 500 M
ETERS"
16 PRINT"ABOVE THE SURFACE OF THE MOON."

18 PRINT"YOU HAVE 100 FUEL UNITS."
20 PRINT "PRESS R TO FIRE ROCKETS"
22 PRINT "TO SLOW DESCENT. EVEPY FIRING iI

24 PRINT "USES 5 FUEL UNITS. YOU MUST LA
ND"
26 PR I NT "SLOWER THAN 8 TO SURV I VE. " ,
28 PRINT "GOOD LUCK"
30 PRINT:PRINT "PRESS A KEY TO START"
40 GET A$:IF A$="" THEN 40
45 REM ** INITIALISE **
60 PRINT ":~~";LEFT$(Y$, 15) ,LEFT$(X$,20);"
..... L.J .. ,n,lmoul_mu.tWIUIlIt ••••• I"' ... "
70 F=100
80 H=500
90 8=15

310

,

95 REM ** START OF LOOP **
100 V=O
110 IF H{600 THEN PRINT
;LEFT:f(X~~20-H/30);"

120 PRINT"~:FUEL "; F
121 PRINT"HEIGHT ";H

"

125 PRINT "SPEED:":S:" " . .

II ~:~" ; LEFTS (YS, 20)

135 REM ** CHECK ROCKETS **
140 GET A1S:IF A1S="" THEN 140
145 IF A1S="R" AND F>=5 THEN V=5
150 IF V THEN PRINT "~";LEFTS(YS,20';LEF
TS(XS,21-Hl30);"V V"
160 IF F(5 THEN PRINT";:~I"; LEFTS (YS, 7) ; LEF
TS(XS,I);"*EMPTY*"
170 F=F-V
180 S=S+2--V
190 PR I NT II ;:':1" ; LEFTS (Y$, 20) ; LEFTS (X$, 20-H
/30);" ";TAB(20);" ..
195 REM ** CHECK IF LANDED **
200
210
"';-":)(1
-~- --

226
.,.,.-_~ r-. .• 1 ...:-.--. --

IF H{30 THEN GOTO 230
H=H'-S
GOTO 100
REM ** LANDING RESULT **
PRINT"~J]"

PR I NT II ~'::I"
235 IF 5<4 THEN PRINT ";~::i"LEFT$(Y$,10);LE

FT$ (X$, 21> ; II PERFECT LAND I NG"
240 IF S{ 4 THEN PR I NT II ;~::j" LEFT$ (Y$, 10) ; LE
FT$(X$,2U; "BUMPY BUT SAFE"
250 IF S>=8 THEN PRINT ";::W'LEFT$(Y$, 10);L
EFT $ (X $, 21) ; "CRASHED Arm SMASHED"
260 PRINT" ;~W'LEFT$ (Y$,O); LEFT$ (X$, 12); "AN
OTHER GAME? (INPUT Y OR N)"
270 INPUT A2$
280 IF A2$="Y" THEN GOTO 45
290 REM ** END **
121 0 PR I NT" ;:::iFUEL "; F

Lines 10 to 30 print instructions, and line 40 stops the program until a key is ..
pressed. Lines 50 to 90 clear the screen, print the 'lunar surface' and set the \ >

variables: F is fuel units, H is height above surface, S is speed of descent. ·· . .
. '.

The main program is in the loop between lines 100 and 220. V is set to . ,,.,..,
flag, and the craft is printed by line 110 if the scale set allows it to be " .. 5.]. r~~tl. ·
The craft disappears off the top of the screen if the hight is greater than , . . ,i« "
120 prints the current data. Note the spaces after the variables to
values decrease, or in the case of speed becoming positive after being "

311

Line 140 checks if the R (for rocket) key is being pressed. If it is, V is set to 5.
Line 150 prints rocket exhausts below the craft if the R key was pressed
(evaluated by V = 0 = False if not pressed, V = 5 = True if pressed). The fuel is
checked (line 160) and reduced by the value of V if not empty. The speed is
adjusted by increasing it, then reducing it by the value of V if the rockets have
been fired. Line 190 overprints the craft and rockets, and 200 checks if the ·
surface is near enough for landing to be assumed. If it is, control is transferred to
the landing message section. If not, the height is adjusted and the program
loops back to repeat the process.

Notice that the variable V is used in three ways within the loop, and that the
loop structure, using the GET instruction to see if the player has input
instructions, is common in interactive games. It provides a simulation of a
real-time process. In this game, the speed is assumed to be metres per second
(hence the simple LET H = H - S of line 210). It is actually nominal 'metres' per
program loop! Other games can wait for inputs, but the use of a loop allows the
inexorable attraction of gravity to go on its way unless the player does
something.

Programming for this type of game can show the programmer that certain
structures of programs are inefficient in program execution, since conditional
branches to routines requiring calculations will noticeably slow the loop. In the
interests of a good game, structured programming practice may be set aside and
speed of execution can become , a goal in itself. However, remember not to
transfer these techniques to serious programs!

Garnes programming can become extremely complex, considering the strategy
and tactics which must be built into the response from the computer. Lander,
however, is only the simplest type of game. If this area interests you, you can
put to work the techniques you have learned in this text to analyse some of the
tactical games in the popular computing magazines. In order to appreciate the
problems involved, you could start by writing a program to play noughts and
crosses. You may think it is a simple game, but it is surprisingly difficult to
program! ,

312

- - - .. .'-

, .

.,

. : ~

APPENDIX I:CHR$ COD
This appendix shows you what characters will appear if you PRIN1'C

i]". [J;
for all possible values of X. It will also show the values obtained by ' h1T

PRINT ASq"X"), where X is any character you can type. This is
evaluating the character received in a GET statement, converting
case, and printing character based commands (like switch to u
that could not be enclosed in quotes.

PRINT$ CHR$ PRINT$ CHR$ PRINT$ CHR$ ' PRNT$

& 38 @ 64 Z

0-4 ,
39 A 65 [

WHITE 5
(B 66 # 40

6 - 7
C 67]) 41

Disables SHIFT C= 8
D 68 i * 42

Enables SHIFT C= 9
E 69 + 43

10~ 12
F 70 E3 44 ,

RETURN 13 G 71 [fJ 45
SWITCH TO 14 H 72 rn 46 LOWER CASE •

15 / 47 I 73 B
16 0 48 J 74 EJ

MOVES CURSOR DOWN 17 1 49 K 75 U
INVERSE VIDEO 18 2 50 L 76 D
HOME CURSOR 19 3 51 M 77 0

90

91

92

93

94

95

96

97

98

99

100

101

102

103

DELETE CHARACTER 20 4 52 N 78 0 104

21- 27 5 53 0 79 ~ 105

RED 28 6 54 P 80 ~ 106
.

Q 81 EJ 107
CURSOR RIGHT 29 7 55

30 8 56 R 82 0 108
GREEN

BLUE 31 9 57 S 83 ~ 109

SPACE 32 58 T 84 / lZJ "· 110 .

.
U 85 .

33 • 59 ,

" 34 60 V 86 <
W 87 # 35 61 -

$ 36 > 62 X 88

% 37 ? 63 Y 89
•

313

PRINT$. CHR$. PRINT$ CHR$ PRINT$ CHR$

D 116 CLR HOME 147 ~ 178

~
.

8J 117 INST OFF 148 179

l&l 118 Brown 149 D 180

[] 119 Lt. Red 150 (] 181

[I] 120 Grey 1 151 [] 182

[] 121 Grey 2 . 152 D 183 .

[l] 122 Lt. Green 153 U 184

EE3 123 Lt. Blue 154 ~ 185

iJ 124 Grey 3 155 0 186

rn 125 156 ~ 187

[U 126 CRSR 157 ~ 188

~ 127 158 - ~ 189

128 159 ~ 190

Orange 129 SPACE 160 ~ 191

IJ 130 161

131 ~ 162

132 D 163
.

f1 133 0 164

£3 134 LJ 165

.- £5 135 R 166

£7 136 [] 167

£2 137 ~ 168

£4 138 ~
-

169

£6 139 [] 170
- -

£8 140
. [E 171

SHIFT RETURN 141 C. 172

SWITCH TO 142 [B 173
UPPER CASE

143 EiJ 174

BRK 144 D 175

CRSR 145 [l3 176

RVS OFF 146 ~ 177

Codes from 128 to 255 are the reversed images of codes 0 to 127

314

APPENDIX II: SCREEN DISPLAY
CHARACTERS AND CODES

the following chart lists all of the characters built into the Commodore 64
character sets. It shows which numbers should be POKEd into screen memory
(locations 1024--2023) to get a desired character. Also shown is which character
corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that
you cannot have characters from one set on the screen at the same time you have
characters from the other set displayed. The sets are switched by holding down
the SHIFT and c= keys Simultaneously.

Codes from 128-255 are reversed images of codes 0-127

POKE SET 1 SET 2 POKE SET 1 SEl2 POKE SET 1 SEl2

o @ @ 21 U u 42 *

1 A a 22 V v 43 + +

2 B b 23 W w 44 , ,

3 C (24 X)(45 - -
4 D d 25 Y y 46 • •

5 E e 26 Z z 47 / /

6 F f 27 [[48 o o
7 G 9 28 £ £ 49 1 1

8 H h 29]] 50 2 2

9 30 i i 51 3 3
-

10 J J 31 52 4 4

11 K k 32 SPACE SPACE 53 5 5

12 L 33 54 6 6

13 M m 34 " " 55 7 . 7

14 N n 35 # # 56 8

15 o o. 36 $ $ 57 9/ .9i? liii :\
16 P 37 % % p -;:5:-;;8--t--::~: -1,-...•• .22... -: .. , .•. :,, 7),' ","j,

-----ll----~-- -----ll----J--- -----11---1- " ---,
17 Q

1\ 18 R

19 S

20 T

q 38 & & 59 ; '.'.' ':::"',',:,,::,,:.','

r

s

t

39 . . 60 < ,.i\ :
40 ((

41))

315

61

62

= L

> I

•

'," ·':i'·:' .",' . ' .. ::" '

: , ... :. :
" ", '

-

POKE

63

64

65

66

67

68

69

70

71

72

73

74

75

. 76

77

78

79

80

81

82

83

84

-------------------... !I

SET 1 SET2 POKE SET 1

)) 85 G3 - -

E3 E3 86 ~
[t] A 87 C
rn B 88 l+J
B ~ 89 [] L

D 0 90 [[]

U E 91 EE
D F 92 £;

0 G 93 rn
0 H 94 [TI

bJ I 95 ~
~ J 96 SPACE

~ K 97 []

0 L 98 ~
~ M 99 D
0 N 100 D
0 0 101 lJ
0 P 102 ~
II Q 103 []

D I R 104 ~
[tJ S 105 r"J
D T 106 []

316

SET 2 POKE

U 107

V 108

W 109

X 1 10

Y 1 1 1

Z , 12
-

EI3 11 3

IJ 114

[I] 115

~ 116

~ 117

SPACE 118

[] 119

~ 120

D 121
- 0 122

0 123

R -
124

D 125

~ 126

~ 127

[]

SET1

[B

~
[g

EiJ
0
U3
E'3
m
~
0
[]
[]

D
U
~
0
~
~
~
~
~

SET 2

[B

~
~
EiJ
0
U3
~

. Efj
~
0
[]
[]

D
Ll
~
~
~
~
~
~
~

-

, ',',

.,:,:.
" ".

, ."
' ..
:. :

APPENDIX III: ABBREVIATIONS
FOR BASIC KEYWORDS

Commodore 64 BASIC allows you to abbreviate keywords by typing the first one
or two letters of a word followed by the SHIFTed next letter. Words will be listed
in their full form whether entered as abbreviations or in full.

Com
mand

ABS

AND

ASC

ATN

CHR$

CLS

CLR

CMD

CONT

COS

DATA

DEF

DIM

END

EXP

FN

FOR

FRE

GET

GET#

GOSUB

GOTO

IF

INPUT

INPUT#

Abbrev
iation

A SHIFT B

A SHIFT N

A SHIFT S

A SHIFT T

C SHIFT H

CL SHIFT 0

C SHIFT L

C SHIFT M

C SHIFT 0

NONE

D SHIFT A

D SHIFT E

D SHIFT I

E SHIFT N

E SHIFT X

NONE

F SHIFT 0

F SHIFT R

G SHIFT E

NONE

GO SHIFT S

GO SHIFT 0

NONE

NONE

I SHIFT N

Appearance
on screen

A 1IJ
A IZI
A [!J

A [J

C []

CL 0
C 0
C IS)

C 0
COS

D : ~

D El
D ~

E !2;

E ~

FN

F 0
F 0
G

GET#

GO'.]

G H

IF

INPUT

I Z
317

Com
mand

INT

LEFT$

LEN

LET

LIST

LOAD

LOG

MID$

NEW

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

PRINT

PRINT#

READ

REM

Abbrev
iation

NONE

LE SHIFT F

NONE

L SHIFT E

L SHIFT I

L SHIFT 0

NONE

M SHIFT I

NONE

N SHIFT E

N SHIFT 0

NONE

o SHIFT P

NONE

P SHIFT E

P SHIFT 0

NONE

?
•

P SHIFT R

R SHIFT E

NONE

RESTORE RE SHIFT S

RETURN RE SHIFT T

RIGHT$ R SHIFT I

RND R SHIFT N

Appearance
on screen

INT

LE ~

LEN

L D
L tJ
L n
LOG

M ~ I
NEW

N D

N C
ON

0 :::J
OR

P 11

P C
POS

? •

P LJ
/

~ .
• R ,

I
• ,

REM

RE [.]

RE r::
R ~]

R V1

Com
mand

RUN

SAVE

SGN

SIN

SPC(

SQR

STATUS

STEP

STOP

STR$

Abbrev
iation

R SHIFT U

S SHIFT A

S SHIFT G

S SHIFT I

S SHIFT P

S SHIFT Q

ST

ST SHIFT E

S SHIFT T

ST SHIFT R

Appearance
on screen

R
~

1,

S ["j

S r::::
S
~

~

S n
S •
ST

ST
r,

S C
ST H

318

Com
mand

SYS

TAB(

TAN

THEN

TIME

TIME$

USR

VAL

VERIFY

WAIT

Abbrev
iation

S SHIFT Y

T SHIFT A

NONE

T SHIFT H

TI

TI$

U SHIFT S

V SHIFT A

V SHIFT E

W SHIFT A

Appearance
on screen

S =:1
T :.1
TAN

T [~

TI

TT$

U [,!

V ["j

V .-
~

W ["j

APPENDIX IV: ERROR
MESSAGES

•

BAD DATA When the program was expecting numeric data, string data was
received from an open file.
BAD SUBSCRIPT An attempt was made to reference an element of an array
whose number is outside the range specified with DIM.
BREAK Program execution has stopped as a result of hitting the. STOP key.
CAN'T CONTINUE The CONT command will not respond: either the
program has not been run, or a line has been edited, or an error has been
encountered.
DEVICE NOT PRESENT One of the commands OPEN, CLOSE, CMD,
PRINT#, INPUT# or GET# has attempted to access an unavailable VO device.
DIVISION BY ZERO BASIC will not divide a number by zero.
EXTRA IGNORED An attempt has been made to INPUT too many items of
data.
FILE NOT FOUND Tape: no End Of Tape marker found. Disk: no file with the
requested name exists on disk.
FILE NOT OPEN The file specified in a OPEN, CLOSE, CMD, PRINT#,
INPUT# or GET# has not been OPENed.
FILE OPEN You have attempted to OPEN a file with a file number which is
already in use.
FORMULA TO COMPLEX It is sometimes necessary to split complex string
expressions and formulae which use many layers of brackets to allow BASIC to
process them correctly.
ILLEGAL DIRECT You have tried to use an INPUT statement in direct mode.
This is not allowed.
ILLEGAL QUANTITY The value of an argument is outside the allowed range.
LOAD Unspecified tape error.
NEXT WITHOUT FOR Loops incorrectly nested or FOR ... NEXT statements
incorrectly matched.
NOT INPUT FILE INPUT or GET used with a file specified as output only.
NOT OUTPUT FILE PRINT used with a file specified as input only.
OUT OF DATA Insufficient DATA items for the current READ statement.
OUT OF MEMORY No RAM available for program or variables. Usually
either: program too large, too many FOR loops or too many GOSUBs.
OVERFLOW BASIC cannot handle numbers larger than 1.701418838

.

REDIM'D ARRAY An array may only be DIMensioned once within a
program.
REDO FROM START You have tried to type characters into a numeric
variable using INPUT. Retype the entry correctly. / ,
RETURN WITHOUT GOSUB RETURN statements must always' be matched
with GOSUB .statements.
STRING TOO LONG 255 characters is the maximum allowed in a string.
?SYNTAX ERROR Spelling, punctuation or other similar problems have
produced an unrecognisable statement.
TYPE MISMATCH You have confused numbers and strings within a
statement.

319

UNDEF'D FUNCTION You have tried to use DEF FN to access a user-defined
function which you have not yet defined.
UNDEF'D STATEMENT You have tried to use RUN, GOTO or GOSUB with a
non-existent line number.
VERIFY The program on tape or disk is not identical to the program currently
held in memory.

320

-

NOTE

0
1
2
3
4
5
6
7
8
9

10
11
16
17
18
19
20
21
22
23
24
25
26
27
32
33
34
35
36
37
38
39
40
41
42
43
48
49
50
51
52
53
54
55
56
57
58
59

APPENDIX V: MUSIC NOTE
VALUES

MUSICAL NOTE OSCILLATOR FREQ

OCTAVE DECIMAL HI LOW

C-O 268 1 12
C#-O 284 1 28
D-O 301 1 45
D#-O 318 1 62
E-O 337 1 81
F-O . 358 1 102
F#- O 379 1 123
G-O 401 1 145
G#-O 425 1 169
A-O 451 1 195
A#-O 477 1 221
B-O 506 1 250
C-1 536 2 24
C#- l 568 2 56
D-1 602 2 90
D#-l 637 2 125
E-1 675 2 163
F-1 716 2 204
F#-1 758 2 246
G-1 803 3 35
G#-l 851 3 83
A-I 902 3 134
A#-l 955 3 187
B-1 1012 3 244
C-2 1072 4 48
C#-2 1136 4 112
D-2 1204 4 180
D#-2 1275 4 251
E-2 1351 5 71
F-2 1432 5 152
F#- 2 1517 5 237
G-2 1607 6 71
G#- 2 1703 6 167
A-2 1804 7 12
A#-2 1911 7 119
B-2 2025 7 233
C- 3 2145 8 97
C#-3 2273 8 225

I

D-3 2408 9 104 i I'
D#- 3 2551 9 2471
E-3 2703 10 143
F-3 2864 11 48
F#-3 3034 11 218
G-3 3215 12 143
G#-3 3406 13 78
A-3 3608 14 24
A#-3 3823 14 239
B-3 4050 15 210

321

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

64 C-4 4291 16 195
65 C#-4 4547 17 195
66 . D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#-4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#-4 7647 29 223
75 B-4 8101 31 165
80 C-5 8583 33 135
81 C#-5 9094 35 134
82 D-5 9634 37 162
83 D#-5 10207 39 223
84 E-5 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 B-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A#-6 30588 119 124
107 B-6 32407 126 151
112 C-7 34334 134 30
113 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
117 F-7 45830 179 6
118 F#-7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A-7 57743 225 143
122 A#-7 61176 238 248
123 B-7 64814 253 46

322

Appendix VI: Program Library

This appendix contains applications and utility programs and routines, and
games. Some of these have been referred to in the main text. Due to lack of
space, the programs are not fully documented.

"CUBE"
This program gives the computer the capacity to draw a line between specified
plot co-ordinates. Commodore BASIC does not provide us with a LINE instruc
tion that does this automatically, but you may be interested in the method,
which is the way the LINE instruction automatically calculates the points to plot.
As it stands, the program gets the values of X and Y, using a READ statement. It
is possible to INPUT for two sets of X, Y points, giving an error message if the
points are out of range. Line 110 calculates the X and Y axis differences between
the specified points. Line 90 defines the variable A as the greater of these. In the
loop (I = 1 to ABS(A), since A may be negative) XA and YA are decremented or
incremented (as X and Yare positive or negative) by the distance to be covered
between points, divided by the number of steps needed.

10 POKE53272,S
20 POKE56576,PEEK(56576) AND 254
~o POI(E53272, S
40 POKE53265,PEEK(53265) OR 32
50 FOR 1=0 TO 999:POKE163S4+I,230:NEXT
60 FOR 1=0 TO SOOO:POKE24576+1,0:NEXT
70 FOR J=l TO 12
80 READ XS,YS,XE,YE
90 XA=XE-XS:YA=YE-YS:A=(XA AND(ABS(XA»=
(ABS(YA»»+(YA AND(ABS(XA)«ABS(YA»»
100 X=O:Y=O
110 X=X+XS:Y=Y+YS
120 FOR 1=1 TO ABS(A)
130 X1=INT(X/S):B=7-(X AND 7)
140 Y1=INT(Y/8):L=Y AND 7
1.50 C=Y1*320+X1*8+L
160 POKE24576+C,PEEK(24576+C) OR 2lB
170 X=X+XA/ABS(A):Y=Y+YA/ABS(A)
180 NEXT I,J
190 DATA 132,80,172,80,172,80,172,120
200 DATA 172,120,132,120,132,120,132,80
210 DATA 152,60,192,60,192,60,192,100'
220 DATA 192,100,152,100,152,100,15~~60
230 DATA 132,80,152,60,172,80,192,60
240 DATA 132,120,152,100,172,120,192,100

323

"LISSAJOUS"
A program to produce intricate and interesting patterns, named after the
mathematician who discovered the equation that produces them. You merely
enter the values of A, Band C in response to the prompts and watch the patterns
develop.

10 INPUT"INPUT A1 (INTEGER 1 TO 10) " • A 1 ,
?(I - -' INPUT" INPUT B 1 (I !'HEGER 1 TO 10) ";Bl
"":!" .) ._' " INPUT" INPUT Cl (0 TO <) '-' ";Cl
40 PI=4*ATN(1)
50 POKE56576,PEEK(56576) AND 254
6 1)- p. 0'/ E c""" '":'7 '":' 8 r..... ,J . .:...... L,
70 POKE53265,PEEK(53265) OR 32
80 FOR 1=0 TO 999:POKE16384+I,230:NEXT
90 FOR 1=0 TO 8000:POKE24576+I,O:NEXT
100 FOR 1=0 TO 300 STEP 0.1
110 Y=100+50*SIN(Bl*PI*I/100)
120 X=160+80*SIN(C1+Al*PI*I/100)
130 X1=INT(X/8):B=7-(X AND 7) .
140 Yl=INTCY!8):L=Y AND 7
150 C=Yl*320+Xl*8+L
160 POI<E24576+C, PEEK (2457 6+C) OR 2 ·l·B
170 NEXT

"CODER"
The computer chooses a four-digit code sequence comprised of the digits 1 to 6.
You input your guess for this code sequence. The computer prints your guess,
checks for the number of digits in the correct place which correspond to the
code, storing this as AST (for asterisk), and then checks through the remaining
digits for numbers which occur in the code sequence, but are not in the correct
place (DOLLAR). These values are then printed. This information helps you to
refine your next guess. 15 goes are allowed, and if you haven't got the code in 15
tries, it is printed out for you. The program is structured with a sequence of calls
to subroutines. Note that the code can include repeated digits, and analyse the
checking procedures to see how this is dealt with.

5 REM**CODER**
6 D $ II '''' II ""'rw 'II r Y'I~' 'II'."'" ,. 'II"' "II~ '11 ,....1, ,_.,' r- 'II'" 'I'" '11,""11,· "'11"'" "II" "II" 'III" '''I IW

'1/' "-III'" 'I'" '1]1" "1"" II,w"1 , .. 'II' ".111""1'" ', ... '11'-' 'II" ''(. = J!.i.!! .I!!~.I!I .. t!! .. ~!.I.!! .. eli. ~! .. e!~. !1~ . !l.!. !I .. !1~.¥.! -I.I!!<.!! .. P.i •. ~!.I. @I.I.!!.J! .. !! .. r.1.I .e!.J.~! .. !! .. Il .. f-! .. t!! .. !!4.~ .. @!.\'!!4
" -l'- 'I'-" I'-'I'-;>t";'~~ II .I!! .~~ .I!! .. @t •• F.!.I.!!.I.I!I.I
10 GOSUB 1000
20 REM**INITIALSE AND CHOOSE CODE**
30 GUESS=O
40 C$=""
50 N$="123456"
60 FOR F=l TO 4
70 C$=C$+MID$(N$,(INT(RND(1)*5+1»,1)

324

.. ,.;

. . .
, ',':,:

:' ,:::,: .
, :', :<,;

'.'

80 NEXT
90 INPUT" :~::Iri'iIENTER YOUR GUESS"; GS
100 PR I NT "'~l:IGUESS!llll ';~+ !~y~a$~ru"

110 MARR=o
120 GOSUB 400
130 IF MARK=1 THEN 90
140 GUESS=GUESS+l
150 PR I NT II ;:W' ; LEFT$ (DS , GUESS+2) ; "ffi'II" ; GS; T
AB (7) ;

160 GOSUB 500
170 GOSUB 600
180 PRINT AST~TAB(9)=DOLLAR - -
200 REM**SEE IF 15 TRIES OR CODE CRACKED
**
210 IF AST=4 OR GUESS=15 THEN 2000
220 REM**LOOP TO NEXT GUESS**
230 GOTO 90
400 REM**CHECK INPUT**
410 FOR F=1 TO LEN(G$)
420 IF ASC(MIDS(GS,F,I»)54 OR ASC(MID$(
GS,F,I»(49 THEN MARK=1
430 NEXT
440 IF LEN(GS)(>4 THEN MARK=t
450 IF MARK=O -rHEN RETURN
460 PRINT U;F.W'; LEFTS <DS,GUESS+3) ; "WHAT ";
GS;" TRY AGAIN"
470 FOR 1=1 TO 100:NEXT
480 PRINT "~";LEFTS(DS,GUESS+3);"

490 RETURN
500
510
.".~O -.I

REM** FIND + NUMBER**
AS=CS:AST=O
FOR F=1 TO 4

II

IF MIDS(AS,F,l)<>MIDS(GS,F,l) THEN 5
70
540
550
F)
560
F)

AST=AST+l
GS=MIDS(GS,I,F-t)+"O"+MIDS(SS,F+1,4-

•
AS=MIDS(AS,I,F-1)+"X"+MIDS(A$,F+l,4-

570 NEXT
580 RETURN
600 REM**FIND S NUMBER**
610 REM
620 DOLLAR=O
630 FOR F=1 TO 4
640 FOR N=1 TO 4
650 IF MID$(AS,F,I)<> MIDS(SS,N,1)

325

/

660 DOLLAR=DOLLAR+l
670 A$=MID$(A$~1,F-l)+"X"+MID$(A$,F+1,4-
F)
680 G$=MIDS(GS,1,N-l)+"O"+MIDS(G$,N+i,4-
N)

690 NEXT N
695 NEXT F
700 RETURN
1) - - F'R I NT " ;···-..... I~"I ... "I';;j'I"-'I"-'~·'I'~'I'TIr. .. UIO·II';·II .. ·IIr.;·m;;·IIG"II'''IIG;·D~·HI:;'II'''IIr.nI-'UI:;·IICODE { 00 ill ,.m .. I.~ • . t.·t!!!· .P.!.I.F.! .. 1!l.1.~ .. ill H,.itlll I~I HIlI III" "I AJI ~IIII!' pi HIli p111 a II'
R"
1 0 1 0 PR I NT " ~·lim]!ti ·HrifUlirU~R~H!ilI~·H~~"UPilHif!~]W. ·II***** "
1 020 PR I NT" :r.iWnlli·il~ll~·lIjiIlI&IICOMPUTER CHOOSES 4 NUM
BERES BETWEEN"
1030 PR I NT" ~'H~H TO 6 AND AT RANDOM, REP AT
ITIONS BEEING "
1040 PR I NT It ~'H~rIALLOWED, FOR EXAMPLE ~~H 232':~1.

"
1050 PR I NT" m'l!Inl!YOU ENTER A SEQUENCE OF 4 N
UMBERES"
1 060 PR I NT" ~'H~nHE COMPUTER TELLS YOU HOW
MANY "
1070 PR I NT" ~i'Kii"lIARE RIGHT AND I N THE I R CORR
ECT "
1080 PR I NT" fuUf;f\IPOS r T I ON, DENOTED BY :l:l+!!l!!! OR

"
1090 PR I NT fI ~mnr~;r.t!m~ DENOT I NG RIGHT NUMBER B
UT IN"
1100 PR I NT" Uillpi'liWRONG POS I T I ON. YOU HAVE UPT
o 15"
1110 PR I NT fI [i.lllif!IGUESSES"
1120 PR I NT")mnlliiPRESS A KEY WHEN READY-ri~"

1130 GET AS:IF AS="" THEN 1130
1 140 PH I NT" I"'ij" • RETURN • - ,. _.j •

2000 REM**ENDROUTINE**
2010 IF AST=4 THEN 2050
2020 PR I NT II ::']!':1I15 TR I ES AND NO SUCESS.
E WAC: I"IIJ". CS·· ,, " ;;!" • END -......l lilt !.II ,nlll a •

2030 PR I NT II PHESS A I<EY TO END"
2040 GET AS:IF AS="" THEN 2040

PR I NT" :"::\" : END
2050 PR I NT" ::'::I~!(!r:iaSUCESS I N S.III~:: ": GUESS = " . .

TR I ESIIIIH:~I" i

2060 END

326

COD

.... '11"'" 111 ••

h:II,:lfl

,

=

, -:-:
- ':-- ,-. '

. .

"GRIDHUNT"
The computer hides itself on an 8 by 8 grid, which is displayed on the screen.
You input your guesses of the co-ordinates, the guessed square is marked, and if
not correct 'the computer gives a prompt for its direction from this square, using
compass directions.

1 REM**GRIDHUNT**
10 PR I NT II ::'::r51GR I DHUNT II
1 c: D $ = II "ill'Ri'I":"I1'""'I~'I"" ''C'''''1ro''I~''I'iiil'''''I'm'i'-'I'-'1'~" I""'I'iii'lr'i'l"!ii'I'-'I"';'I""'1 '-'1 " '-' .I. ... <., ,~".f! .. f! .. f!~ .~.I.I!! .. ~ .. < . . m .. m~.f! .. J!! •. f! .. I!! I.t I!!.J!~ .!!~.!!.

1 7 L $ = "' ~mrp'~'II~'lInliillj1lrHliflfill~'II\iiI~1~'lIiH~'H~'H~1~'lUill~'lllin:~'H~l~'lIial~'IIIi'II~'lIanIfiiU~'~'~

~1lRlli'Rm'nIi'R~]1if8 "
20 FOR X=2 TO 16 STEP 2
30 PRINT"~~~"; " :1fI'2i:\"; LEFT$ (L$, X+l) ; X/2; ";'::!"; L
EFT$ (D$, X+2) ; "~'H"; X/2
40 PR I NT II ";~"i'I'~'I'iii'l" • LEFT$ (L$ X \ • "+" • "';;;:1" • LEFT$· ~ I ~.,J.I; ... " .'-" • - '. .!--. " . 7...
(D$~19);LEFT$(L$,X);"+"

50 PR I NT II ;~" ; LEFT$ (D$ ~ X + 1) ; II ~n~'H+ II ; " ;:::1" ; LEFT
$ (D$, X + 1) ; LEFT$ (L$, 18) ; II + II
60 NEXT
70 E=INT(RND(1)*8)+1
75 N=INT(RND(1)*8)+1

G=(E-l)*8+N
t1=O

100 PR I NT II ~::!" ; II ~rij:rr:!TW' ; LEFT$ (L$. 20) ; "YOUR GU
ESc. - II • II ';;;~'-"I'''''I'''' J'''''I'-'''" • LEC'T$ (I $ "f)' II ACROCS" II 1o.J • '~1I~i.!! .. m .. e; .. r.!. ,m", I - '- ',...:.. ., ~ :

1 1 (, T N F' U T II 'j"··'·i;;'I .. ,tj'I·-'I·· .. 'I,."'I' .. i'J'-·I'a'I'-'I'-" .. ··'1·;,;;'I' .. ·'I'njlll .. i'I';;:j 'I'"·j'I '~'ri;·III -·'I' .. ·'J·;;i'1···"IGUE S S
J !u'!J .I:! •. t! . . ~ . . j!! .. ~! .t.~!.J .I!! .. C!.\. ~.1. ~.I.I!!. p . . E!. p.\.~! .I.r.! ,I.P.! .iP.l 1:! . . ~! .. ~.t.I: ! .I.l!!.

II. A
~

1 ?()- F'R I NT" " ~''';'I' ''''I 'ii'!':'''''i'l" • L!='FT$ (i .;1:: ?6'·" _ , !';n:t .~ .. ~ :...c!.I.r... ,- '--- ,.- ~!I

'iij·!·iij'I·-;·!·"j·l'ij·I-:;·! II. LC'FT$ (L$?O)·" DOW"'?" .""I.t .• d~·I .r. .. tl. ... m' l , '- , .- _, 1"\1 •

H. D
~

131 FOR X=l TO 5
F'R I N-r "·"~I II. LEC'T$ (D$ "':'-'-D*"" LEFT$ (I $ 1 1 i ~'\I:! . I • .,...:-' .-:...,.. '~'- •• . . .

+A *' 2) • .. ';;i '1m mm tI , ~,1t flf... •.•

1« c'R I "'T "';;;:1'" LC"FT$ (D$· . ? D ?) • LC'C'T·:t: (L$· 1 .-1._' I i f ~ ~n'. , l-. , _ I ~ .- ~ '-I -fo" .,
+A* 2) ; II "'U,"
134 NEXT X
135 PR I NT ")~:~"; LEFT$ (D$, 2+D*2) ; LEFT$ (L$, 1
+A*2);"*"
140 PR II'H" ::::/" ; LEFT$ (D$, 7) ; LEFT$ (L$., 24) ; "

" ; D; II :::::1" ; LEFT$ <0$,9 >; LEFT$ (L$, 20) ;
145 M=M+l
150 C=(A-l)*8+D
160 IF C=G THEN 300
165 PRINT"I AM ";
170 IF N=D THEN 210
190 IF N>D THEN PRINT"S";
':J O(} IF-
~ - - N<D THEN PRINT"N";
'::0 i n I F-. ,--.L. _- E ····A " , THEN PRINT"E" ;

E<A THEN PRINT"W";

327

I

j .
.'

240
250

"

PRINT" ";TAB(62);"OF
FOR 1=1 TO 5000:NEXT
FOR X=3 TO 10

YOU"

260 PR I NT ";::~"; LEFT$ <0$, X) ; LEFT$ (L$, 20) ; "
II

270 NEXT
280 GO TO 100
290 END
300 PR I NT" ~~:lGOT ME IN"; M;" MOVES"
310 PRINT"PRESS A KEY TO END"

•
320 GET A$:IF A$="" THEN 320
330 PR I NT" ~T' : END

, .

. ,
, ,

"MATTMULT"
,,' '

The program multiplies two square matrices. A two-dimensional matrix is stored
as a two-dimensional array, with the size input. Matrix multiplication requires
the number of columns in one matrix to be equal to the number of rows in the
other. The matrices are set up as square arrays of equal size in this program, and
nonsquare matrices may be multiplied by entering 0 for the elements of a row or
column which is unused. Users familiar with matrix arithmetic will be able to
derive from this program the routines to handle other matrix operations. The
method involves nested FOR ... NEXT loops, in conjunction with three arrays in
this program, the third array holding the resultant matrix.

Other points to be noted are the input and error routines. The input routine
prompts for inputs by row and column number, and when all elements have
been entered the error-check subroutine is called, so that the user can check the
whole matrix at once. This avoids the possibility of confusion over row/column
numbers.

5 REM**MATTMULT**
10 PR I NT II ;,'::r!ir~l~n:ell~'Q~'U~]~i'fl~'1I1i1l~1a:l]12D MATR I X MULTI PL
I CAT IONll!l!!"

M' M'

15 PR I NT "IiHIiIl~'~~'ft!ilt~lli,,************************
':!ill.
20 PR I NT " ;::I:Ew!r~:[~nmi:r~l~UiI1UL T I PL I ES SQUARE MAT
RICES TO USE FOR"
30 PRINT'JnJ~ON-SQUARE MATRICES ENTER MAT
RIX SIZE"
40 PRINT"~TK~nO ACCOMADATE, AND ENTER ZERO
ES "
50 PRINT"~~~'IFOR EXAMPLE TO MULTIPLY A (1)

(2) (3)"

60 PRINT"Jn~'. BY A (4) il1UmH5) Y.l~I·lfIrIlH6) ..,"" ENT
ER 3 AS MATRIX SIZE,"
70 PR I NT" fiillffi 'Q~ '~~'U~'H~K~'lffifftIiH~'H~'H~IlENETR 1 COLUMN AND
ONE ROW"
80 PR I NT" ~'II~'IIIiiQ~'II~'H~ 'Hfj'II~ 'II~i'U~UnaH, REST o. ENTER MATR I
CES ROW"

328

"
95 A$="

• II

•

1 00 PR I NT" mf'RESS A I<EY TO CONT I NUE"~ij"
105 GET Z$:IF Z$="" THEN 105
1 1 0 0 $ - " '''''lr'Y'' 'I'''''I'' ' 'I'''''I~~r'''I''';'I'''''I'''''I''~I ';" I'''''I~''I ~"I'''''I'''' ~'-"I""'r~"I';;"[""lr"~'''''I'-'1 r'" I'-" lr''I' '- 'I''' ; ' I''''~ • - .m,.~I·I.P.kP.!,.~!.; . P'I .. m.1. m, '~~' .!! .. ~ .. \!!,."I .. J!! .• m.I.p.! .. E! .. \!!.I.I!! .. I!!. P.!,.<:!. J!! .• ~!.I.I!!<.I!!' .I!l. tl •. I!l,.I!!-t~,. I~,

:~Tm:mn'r~T.iW::I"
1 1 1 L $ = " ~·lIiu~·n~·II~]~lIli·~~·H~·"IilI~·III" l~Ulij'lIlii]pilllii~liilllu· lI~i· "lii'n~ll~lII* ·HIii·II~II~·II~·II~iNIU·"~ ·HIii'H

1ii]~1I1ii ·H~IIIii·Uill~lIill~UIii·II~UIii·H~·II~·II~·~I"l!~·1!1111Ii!lIiiH II

112 PR I NT" ~T' LEFT$ (D$, 21) ; "**fk'ENTER MATR I
X SIZE"
11 <" I "'PUT" ';;;~''j'''r . ~r .. 'I' .. 'I' .. ·'I' .. ·''' .. ·'I'-·'I' .. ·'I'·;'I'· .. l'i·'1' .. ·'·'j'·I· .. · ·I',;;~~·I' .. ·I·.··I·; .. ·I·-·I'-~' .. ·'I" • c

.J ''I '''':I.E!.i.\!l-i.i!I .. t!! .. P.! .. I!!U! .. 1.! .. J!!. ,[:<.1.1 ,1.1 •. 1.I,.I.!. JI .. <'.I.1.! .. P.I.) .. ,~ •. E!.I.P.I.I.P.!. ,
114 DIM A(S,S),B(S,S),C(S,S)
120 PR I NT" :~ :Ii'i'ENTER MATR I X ONE ENTER m'l:om F
OR "
130 PRINT"UNUSED ELEMENTS"
135 PRI NT"~i~"; LEFT$ (0$,21) ; A$
140 FOR F=l TO S
150 FOR N=l TO S
160 PR I NT" :~~~:m" ; LEFT$ (D$,21> ; "ROW "; F; II CO
LUMN "; N;" ?";
170 INPUT A(F,N)
180 PR I NT II :~~lIinl" ; LEFT$ (D$, F *3) ; LEFT$ (L$, N*6
-6) ; A (F ,N) "iiii!"
190 NEXT N,F
200 M=1
210 GOSUB 500
220 PR I NT II ~'::IMATR I X
230 FOR F=1 TO S
240 FOR N=l TO S
250 PR I NT II ;::::nilH" ; LEFT$ (D$, 21) ; "ROW
LUMN ";N; II ?";
260 INPUT B(F,N)

II-F-" !' , CO

270 PR I NT II ;:i~1m~" ; LEFT$ (0$, F *3) ; LEFT$ (L$, N*6
-6) ; B (F , N) "·f.ffi"
280 NEXT N,F
290 M=2
300 GOSUB 500
310 PRINT"~~I~;;:MATRIX 1 * MATRIX 2 ':W'
320 FOR F=l TO S
330 FOR N=1 TO S
340 FOR L=1 TO S
350 C(F,N)=C(F,N)+A(F,L)*B(L,N)
360 C(F,N)=INT(C(F,N)*1E5+.5)/IE5

I

I
• ,

:370 PR I NT" ;~:I" ; LEFT$ (D$,F *3) ; LEFT$ (L$, N*6-
6) ; II :'l~" ; C (F ,N) ; II '::il"
380 NEXT L,N,F
390 END
500 . PRINT";~~I"; LEFT$ (D$, 21) ; A$

329

510 PR I NT" ;:~'1" ; LEFT$ (D$, 20) ; II !ii ~ARE ALL ENTR
IES CORRECT fI;;::? (Y IN):ij";
520 INPUT B$
530 IF B$="Y" THEN RETURN
540 PR I NT" ;::!I" ; LEFT$ (D$, 21) ; II ";;:J-lO~J MANY INC
ORRECT ENTRIES ? -~:ij";

550 INPUT EN
560 FOR F=l TO EN
570 PR I NT" ;'::1" ; LEFT$ (D$, 20) ; A$; 11 ::::t" LEFT$ (D$
,21> ;A$; " ;:::~";LEFT$<D$,21); " mIERROR ~;: ";F;

571 PRINT" ROW:::iI";
580 INPUT R
590 PRINT
COLLUMN

II :~::I" ; LEFT$ (0$, 21) ; LEFT$ (L$, 7) ; II

II. ,
600 INPUT C
610 PR I NT .. :::W' ; LEFT$ (D$, 21> ; A$; "~W' ; LEFT$ (
D$,21);"ENTER CORECT NUMBER ";
620 INPUT N
630 IF M=1 THEN A(R,C)=N
640 IF M=2 THEN B(R,C)=N
650 PR I NT" ~::I" ; LEFT$ (D$, R*3) ; LEFT$ (L$, C*6-
6) ; II "; II :::::\" ; LEFT$ (D$, R*3) ;
660 PRINT LEFT$(L$,C*6-6);N
670 NEXT F
680 PR I NT .. :::~'~:ij II ; LEFT $ (D$, 21) ; A$
690 GO TO 510
700 HEM**END**

Example print-out:

ENTER MATRIX 1
ENTER 0 FOR UNUSED ELEMENTS

1

o

o

2

o

o

MATRIX 2

o

3

o

o

o

o

3

o

o

4

5

6

MATRIX 1 * MATRIX 2 GIVES:-

o

o

o

o

o

o

32

o

o

INPUT R(RUN) OR E(END)

330

,

"HEXDEC"
This converts hexadecimal numbers up to FFFF (65534 decimal) into decimal.

•
.

1 REM**HEXDEC-lH
10 DIM A(4)
20 N=O
30 PRINT"~'::lHEXADICIMAL TO DECIMAL"
40 PRINT
50 PRINT"ENTER HEXADECIMAL NUMBER 4 CHAR
ACTERS LONG ";
60 INPUT"LETTERS MUST BE CAPITOLS";HS
65 G=4
70 FOR F=l TO LEN(HS)
80 A(F)=ASC(MID$(HS,F,l»
90 IF A(F»=65 AND A(F)(=70 THEN A(F)=A(
F)-55:GOTO 110
100 A(F)=A(F}-48
11.0 G==8-1
120 A(F)=A(F)*16lG
140 N=N+A(F)
150 NEXT
160 PRINT"DECIMAL NUMBER IS

"DECHEX"

" • N ,

This program converts decimal (base 10) numbers up to 65534 to their four-figure
hexadecimall(base 16) equivalents. Hexadecimal numbers use the digits 0 to 9
plus the letters A to F. This requires a means of deciding which character is to be
printed, after the decimal number has been broken down.

1 REM**DECHEX'lH
10 DIN A(4)
20 PR I NT" ::":IDEC I MAL TO HEXADEC I 1'1AL CONVERS
ION"
30 PRINT"NUMBER MUST BE POSITIVE AND LES
S THAN 65535 11

40 INPUT"ENTER DECIMAL NUMBER";N
50
60
70
80
90

A(1)=INT(N/4096)
B=N-A(1)*4096
A (2) =INT <B/256)
C=B-?'l (2) *256
A I -:r \ - T hiT (r. . 1 ') ,.~:. , -.a.i'f i,./ b

100 A(4)=C-A(3)*16
110 FOR F=l TO 4
120 X=48
130 FOR Y=O TO 15

331

/

140 IF X=58 THEN X=65
150 IF A(F)=Y THEN A$=A$+CHR$(X)

. 160 X=X+l
170 NEXT Y,F
180 PRINT N;" IS ";A$;" IN HEX"
190 END

"RES CODE"
This program calculates resistor values from inputs of the colour bands on the
resistor. Three bands are input, end band first, using the abbreviations given.
The first two bands define the basic value and the third the multiplier.

1 REM**RESCODE**
5 DIM A$(3),Z(3)
10 PR I NT """'I'ffi'I'"i'I'!i'IP.i:w.rU&;·11~1ulii'1l' · III;j·H~'1t1 .. -.......................... _ .. -............................... II

I . ,rI, " ,1i ,4. ,' , ·,·tIt lUll \I H. Rft! P I.:tt r I ..,

20 PR I NT 11 ffil!ifU~lllii~ffill~·~ 1 rr~CODE :~~II ~I!COLOUR]11"
30 PR I NT II ~·mu·II~·H~r~~·H~·~ 1 · .. · .. · · .. 1 · · · .. •· .. · ·1 "

40 FOR A=l TO 12
50 READ A$,B$,Z
60 PR I NT "Iii'HffilmrH~iHnnU I
70 NEXT

IlIUl II • A$' II :~jl' I P"'I" • B$' II :!:UI ! II 11ft, " :'11 ill, !I ·:!fll

80 P R I NT II §nl~nl~·lIm·U~·mi·~ 1 .. ·• • .. · · - 1..· • · • .. • •1 ':ii!"
90 PRINT"ENTER THREE CODES FOR RESITOR"
100 RESTORE:FOR A=l TO 3
110 INPUT A$
140 FOR 8=1 TO 12
150 READ C$,D$,Z
160 IF A$=C$ THEN 190
170 NEXT B
180 PH I NT CHR$ (13) ; "i.II NCOREeT CODE REENT
ER":A$=" ": RESTORE: GO TO 110
190 A$(A)=A$:Z(A)=Z:RESTORE
200 NEXT A
210 PRINT"~']"
220 FOR A=l TO 3
230 PRINT "CODE "; A;" IS "; A$ (A)
240 NEXT A
250 N=Z(l)
260 N=N*10+Z(2)
265 IF Z(3»9 THEN 330
270 PRINT"RESISTANCE IS
280 FOR A=l TO Z(3)
290 PRINT"O " ;
.300 NEXT A

332

" • N' ~ ,

310 PRINT" OHMS"
320 END
330 PRINT N/Z(3);" OHMS"
340 END.
1000 DATA RE,"RED ",2,BL,"BLACK ",O,BR
,"BROWN ",1,OR,"ORANGE",3,YE,"YELLOW",4
1010 DATA GR,"GREEN ",5,BL,"BLUE ",6,VT
,"VIOLET",7,GY,"GREY ",8,WH,"WHITE ",9
1020 DATA GO,"GOLD ",10,SI,"SILVER",100

"FRUIT"
The program simulates a fruit machine. It allows you to continue playing until
your money runs out (which it will eventually) and you can then 'borrow' more.
Points to be noted in the program are the overprinting of a string to simulate the
spinning of the wheels, and the logic used to check wins and amount (if any)
won. The program loops back unless the money has all gone.

10 REM**FRUIT**
? (c'R TNT " '·I"I····I· .. ··I· .. j·I··'I·iii·I· .. "I~i'····I~·,····I··:·,1V·nt:;·n';;111;"m;;·H~'"'"·""II'·;~""!lnN EAR ME D ~),... • I!! .. J!! •• P. ••. J!! .• t ..• t!!. J..'.I!!~.I!l~.I!!~.r:~,. flJll III "~I \II" III HJIl Kill II b,"1lI liI-I

BANDITI!lI!l"
30 PR I NT" :~!l:~r~:lirlllifll~r~~nm~YOU HAVE i'i'3f 2~~1 TO GAMBLE

"
40 PR I NT" ~'!I~'U~lIID'EACH ROLL COSTS milO P ih:"
50 PR I NT" :fu~I:il:!lifilji'il':if'AYOUTS:]!TWO THE SAME PAYS

vlll120 [:)" i II • ,

60 PRINT TAB (10) ; "~1nHREE THE SAME PAYS fi'a
40 P"

70 PRINT TAB (10) ; ":~~EXCEPT ·f.~~:I***!f!!!!rr:!lI WHICH
PAYS Fi'il£: 1 • 00"
80 PR I NT " :~nlifl!~l~i·Rf.nl~ll!if!!~·Olilliill~ll~·II~~f'RESS KEY 5 TO ST A
RT:il"
90 GET Z$:IF Z$="" THEN 90
1 00 PR I NT II ~':~"
110
120

...... II
"1

II

134
1~.5

C$=":C2. 00": A$="*oJ!f.,JljIlolji·.1:'"
PR T NT" ·;;;qo;;;:I· .. ·I· .. ··I~j·I·"·ul· .. II,.lIJ;;·IIJU'AJ;;·I";·IIt:;lIONE

.t.. « h~I~ .• m .. ~ .. !.,!" H.B my "til tlt!! HIH HU IUD ARMED BANDIT"

j

PR I NT " r.·HID·n~ .. II~·H~ .. H I'·w .. ' , , (m I " ~ .. , !. M'·.···.·,·.·.·········.·.·······.·····.·.·.···.·.·.··•......................... " IU ,

P, R I NT" Ii·HIi·~~ .. II~ .. H~ .. ~ ! ii'R'i' :::;::::!::::;!;:::::::;:::;:::::;!:::::!:::!:::::::::::::!:::::::!:::::::=:::!:!:::::!:!:::!:::!:!:!:::!:::::::::fUa I "
"'

....................... ,•... ,' .. , , ,
PR I ""T" ~·RIi .. II~ .. HliniU I iliII·· .. ··::::::::::::;:::::::::::::;:::::;::: I 'I ', " -......... .. ;.:.:.;.:.:.;.;.;.:.!.:.!.!.:.:.:.;.V!II\ I " · , ·•..•........................ '" .'

1<'6 PR I NT "~·III;i·III,,·II~·HJ·"·" Itil'''J';':::::::::::::::::::::::::::::::::::: '_' 1111t ,,1 1l I •••••••••••••••••••••••••••••••••••• ,. :.:.:.:.:.:.!.:.:.:.!.:.:.;.!.:.:.:.jU~ I " '.' • •••••••••••.••••••••••••••••••••• ·,1

1<'8 '-' P R I N T " fu'U' ,"'Uii'II~"~fu I I 'm",'," :.:.:. :.;.:.:.:.!.:.:.:.:.:.:.!.:.:.:.:.:.:.;.:.;.:.;,:.:.:.;.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.!.:.:.;.:.!.:.:.:.:. ;.1111 ' " .. '" n 11l ••••••••••••••••••••••••• , ••••••• , •• ,1 I .. ." , .. .

333

1 .59 P R I NT J 1 pillliil~i]~'II~'1I I iiin:~:~:~;~:;:i:~:~:~:~:;:~:;:;:;:~:~:~:;:;:~:;:~:;:;:~:~:~:;:~:;:;:~:1:~:;;i:~:~;~:~:~:;:~:~~:~:~:~:~:~:~:~:;:;:;:r~i ! II
1 40 P R I NT II IUljrU~'n~lIjnl I iT~:~:~:;:~:~:~:~:;:ir;i:;:~:~:~:~:~:~:;:~:;:~:'f.~~~;;: ,"-', oof~m:~:~:~:~:l:~:;:;:l:f:~:;:~:;:~:j:~:~:;:;:~:;:;:;:~:~:
~'~ I II
141 PR I "~T II ~'a~lUi~liilllrft I i\;I:~:i:~;~:~;~:i:~:;:;:~:~:~:~:~:~:;:~:;:~:~:~a~;:: : ' mif~H:~:~:~:;:~:;:;:[:;:~:~:;:~:;:;{:~:~:;:~:r:;:;:;:~:
~ I"
142
143
144
I"

P R I N T J I I:Mlfln'iI"IJii'U~ 'if I iiill":::::::::::;::::::::!::;:::::::::::::::::::;:::::;!:!:::::!:::!::;::::!:!:::::::::!::;::::::!::::::::: :::::::::;::1I',lJ' I II '" 1ft IIIK UiU '" lit It 81 :-:.;.:.:.:-:,:.;.:.:.:.:.:.:.;.: .:.:.:.:.:.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:-:.;,:.:.;-: .:.;.; .:.:.:.} «

1 4 5 P, R I N T II ~"~jj'II~"Hli"~"11 I 00''''1'' :::::: :::::::::::::::::::::::::;:::::::::::~::::::!:::::::::::::::::::::::::!:!:::::!:::::!::::::::::: :;:::; !:::::llllJa I II '•..............•..•............. , ' ... '.' , ······1' ' , ,., ,.
146 PR I NT It ~·HIP.·II~liUH~ ·lIlfil L. .. _ _ •••.• .1 "

1 4 7 P R I N T .. ';;~~'I'jji'I'-'I' .. ·'I~'I···'I·-'I' .. ·'I'"·II'"l'!;;lI';·UI::·II";lI~;·DI"·""' ·II'''II'''. L~l';;o'l , !n'J.~! .. <!.I.!!.t.I!l. J! .. P.! . . e! .. I!l. III." .I~I HflIlIlIIlWllljllliill Bjll ,~I IIPI!!IlI H.,I

" ; CHR$ (13) ; TAB (12) ;
149 PRINT" ·t~1 !!\llf;:-:! ~!!f:'~ ~f'~~ ~JlI";CHR$(13) ;TAB(
12);"':la W~~"

150 GET Z$:IF Z$="" THEN 150
155 IF Z$<>"5" THEN 150
160 B$="II:FOR F=l TO 3:A=INT(RND(0)*6)+1

170 B$=B$+ ".~!~ ~~!!" +M I D$ (A$, A, 1)
180 NEXT
190 F$= II ·f.m !l!!ff*::~ "'II + $;:~:;: 1I!!"1I1i1 "

200 FOR F=l TO 10
210 PR I NT II :::I:!iriinil~r~n:!il:~I~ri!!1~I~r!lPiK~lljr"~IIiH~·ft~·nf~· H~llfii"" II ; LEFT:$ (
F$,7)
220 F$=RIGHT$(F$,4)+LEFT$(F$,3)
230 NEXT
240
245

F'R I '" T II '''·!I'···'I'''·'I'- ·'I'''·'''-·~·;;'I'''·'I'·~I';·''IM·n .. ·111M·UI;·U·"IIr.II"·,,r.n,,"!',;·!'r."Un " B:$ I,{, !::UI..E! •. P.! .. !! •. !'.,.~! .. ~! .. \!!. "!'W' ",I ,I HI" fl,1 I" Hill ilillll~1 i", iill ,I R; •

FOR Z=l TO 1000:NEXT ,
250 W=(MID$(B$,4,1)=MID$(B$,8,1»+(MID$(
B$,4,1)=MID$(B$,12,1»)
255 W=W+(MID$(B$,8,1)=MID$(B$,12,1»
260 IF W=-l THEN C=.20
265 IF W=O THEN c=o
266 IF W=-3 AND MID$(B$,8,1)="*" THEN C=
1.0
270 C$=MID$(C$,l,l)+MID$(STR:$(VAL(RIGHT$
(C$,4»+C-.l0),2)
271 IF LEN(C$)=4 THEN C$=C:$+"O"
272 IF LEN(C$)=2 THEN C$=C$+".OO"
273 IF LENCC$)=3 THEN C$=LEFT$(C$,l)+"O"
+MID$(C:$,2,2)+"0"
290 IF VAL(RIGHT$(C$,4»>=.10 THEN 131
300
<'lu-'-'
<?c-) --' ""-

<40 .J

PR I NT II ;~rp.i:!:~l:enr."d* YOU ARE BROI<E. * II
INPUT" ¥.illBORROW i'l'l!f.:2.00:::i ? (Y IN) 11; M$
IF M$= II Y II THEN PR I NT" "1"1" : GOTO 110 1, .n

PR I NT 1I ·r.~ITlIBETTER LUCK NEXT T I ME miir:::il"
END

334

',;

\. .

: :, ::"""'\

" "

, ':' ...
, ',:
'" .

, :',
, :<,

.

.
" ' .

", '.

"ASTEROIDS"
The program puts you at the helm of a Mars shuttle disguised as an asterisk.
Avoiding the Nova Heat you have to weave through the strangely square low
albedo asteroids that look surprisingly like inverse squares, Your controls are
fairly minimal- not much money: on the Mars run smuggling algae these days,
so you have a button marked 1 to go left.and one marked 0 to go right,

5 REM**ASTEROIDS**
10 PR I NT" :'Ji1il!!!:[i1il:[~:IIf1'IIID'II~'lHii'lIij'mu'Hpi'Winl~·~~·tim·lIrg'ilASTERO I DS "
20 PR I NT" :i1illU'~IU'II~nl~'UjiUij'IIIT~AVO I D BLACK ASTERO I DS. II

30 PR I NT ":r.n:i!:n~i1rj'~~WOU STEER YOUR SH I P <*) BY
"
40 PR I NT II ~HIiiIf'RES8 I NG ' 1 TO GO L.EFT AND I) "

50 PR I NT" ~-"~nO GO R I GHHJ~"
60 FOR 1=1 TO 1000:NEXT
65 PRINT":~::I"
70 8=0
80 C=10
9 0 U $ = II :i.::!:~n:m:!:!irP.!~:r.n:~:i1iTen:jiiT~:mr~:I)!ir~Wi:I:~!ti!n:E!:rjiirr.n~p.n:TIn:~i:ti.iWiW!rtiT~n:~Tjii1:i!!:1

:~Tr.n:i.!niWiTi!i:ri~:I"
1 0 0 R $ == " ~i~~·IIiR·II~K~·II~·Hffi·I"Hbi'U~·tiID·H~·H~·IIIU·H~~ID"~·II~'lIpi'1I~·tlni'lRi'U~npi illii'lflii 11~'II~H\ii'miin~'IWi'H

~'H~'UII~~II~'~~'II~'i~'U ,.
110 PRINT:PRINT LEFT$(U$,6);LEFT$(R$,C);
11*11

115 IF PEEK«6*40)+C+I024)=160 THEN 200
120 L=C
130 GET A$:IF A$="" THEN 150
140 C=C-(C)l AND A$="1")+(C{39 AND A$="O
")
145 IF C{=O THEN C=2
146 IF C)=39 THEN C=38
150 PRINT LEFT$(U$,RND(I)*24);LEFT$(R$,R
ND (1) *39) ; "~~ ~""; LEFT$ (U$ ~ 25) ;" "
160 S=S+1

,

170 PRINT LEFT$(U$,6);LEFT$(R$,L);" ,.
175 FOR 1=2 TO 6
176 PR I NT" :~:~" ; LEFT$ (U$, I) ; LEFT$ (F:$,L) ; II "

177 NEXT
180 GOTO 110
200
210
220

PR I NT" ::']"
PR I NT" ;_ooyoU CRASHED" Ubi.

INPUT"ENTER Y TO PLAY
STOP";A$

,
i'

i

AGAIN OR N TO

230 IF A$=" Y II THEN PR I NT" rFJ" : GO TO 65
240 IF A$="N" THEN END
250 GOTO 200

335

"SOCCER"
A program to create a football league table of results and points. The results are
first entered one at a time and stored in a file (cassette) called FOOTBALL. When
the 'display results' option is selected from the menu, the stored results are
analysed and points are allocated to each team. This produces the points table,
which is sorted in order of points after each results entry.

10 DIM TM$(22),PL(22) ,PT(22),WN(22) ,DW(Z
2),LS(22) ,FO(22) ,CO(22)
20 PR I NT" :~::I" : PR I NT TAB (17) ; "MENUE"
30 POKE 781,4:POKE 782,5:SYS 65520:PRINT
.. l •••••••• INPUT RESULTS"
40 POKE 781,6:POKE 78Z,5:SYS 65520:PRINT
.. 2 ••.••... PRINT RESULTS"
50 POKE 781,8:POKE 782,5:SYS 65520:PRINT
"3 ••••••.• GET TABLE"
60 POKE 781,10:POKE 782,5:SYS65520:PRINT
"4 ••..•.•• UPDATE TABLE"
70 POKE 781,12:POKE 782,5:SYS65520:PRINT
"5 •••••••• PRINT TABLE"
80 POKE 781,14:POKE 782,5:SYS65520:PRINT
H6.~~ STORE TABLE"
90 POKE 781,16:POKE 782,5:SYS65520:PRINT
"7 ••••••.• INITIALISE TABLE"
100 POKE 781,18:POKE782,5:SYS65520:PRINT
"8 E"'D" • • • '" • I"'"

110 GET I{Y$; IF KY$=" "THEN 100
120 IF KY$="8" THEN END
130 ON VAL(KYS)GOSUB 200,400,1000,1200,1
cc ,-];-) 18{-)C) '?n'-'(1 ...J;. - , -_ 'J ~ .~ 'i -"

140 GOTO

160
i -,,-,
"'- $ ~'"

2~)5

'7'10 ~ -

REI'1
F!EM
REM

r'R.r-CHRS (1 "T \ t....r -.- -- • _ .L --f ,

INPUT SUBROUTINE

OPEN1,1,1~"FOOTBALL"

PRI NT "::'::1" : PRINTTAB (5) ; "ENTER XXX TO E
"I'M. ..
, "'i L!

230 POKE78l,10:POKE782,5:SYS65520:INPUT"
HOME TEAM n;HT$
240 IF HT$="XXX" THEN PRINT#l,HT$::GOTO 3
10
250 POKE781,10:POKE782~30:SYS65520:INPUT

HS
260 PoKE781.14:POKE782.5:SYS65520:INPUT" , '

GUEST TEAM ";GT$
270 POKE781,14:POKE782,30:SYS65520:INPUT

AS

336

280 PRINT#1,HT$;CR$;GT$;CR$;HS;CR$=AS=CR
. - -

$

290 POKE781,10:POKE782,17:SYS65520:PRINT
"

"
310
32CJ
33(!

350

- " -,
POKE781~14:POKE782,17:SYS65520:PRINT

CLOSE 1
RETURN
REM
REM
REM

";:GOTO 230

400 REM**** PRINT RESULTS SUB ***
410 PR I NT" ::"l" : L=3: M= 1
420 POKE781,I:POKE 782,10:SYS65520:PRINT
"FOOTBALL RESULTS"
430 OPEN1,1,0,"FOOTBALL"
440 INPUT#l,HT$,GT$,HS,AS
450 IF HT$="XXX" THEN 670
460 POKE 781,L:POKE 782,O:SYS65520:PRINT

M
470 POKE 781,L:POKE 782,4:SYS65520:PRINT

HT$
480 POKE 781,L:POKE782,15:SYS65520:PRINT
"V
490

"-GT$,
POKE 781,L:POKE782,32:SYS65520:PRINT

He - 11 -" - AS ~.....J, ,
500 FOR 1=1 TO 22
510 IF HT$=TM$(I) THEN 530
520 NEXT I:GOTO 580
530 PL(I)=PLCI)+l:FO(I)=FO(I)+HS:CO(I)=C
OCI)+AS:IF HS(=AS THEN 550
540 PT(I)=PT(I)+3:WN(I)=WN(I)+1:GOT0580
550
560
570
<="0(-
~1~_J _J

517'0
600
610

IF HS(AS THEN 570
PT(I)=PT(I)+1:DW(I)=DW(I)+I:GOT0580
LS (I) =LS (I) + 1
FOR 1=1 TO 22
IF GT$=TM$(I) THEN 610
NEXT I:GOTO 660
PL_CI)=PL(I)+l:FO(I)=FO(I)+AS:COCI)=C

", ".

O(I)+HS:IF AS(=HS THEN 630 j j

620 PT (I) =PT (I) +3: WN (I) =I,<JN (I) + 1: GOT0660 >\

630 IF AS(HS THEN 650 ; .~ •. ,
640 PTCI)=PTCI)+1:DW(I'=DW(I)+1:GOTO

LS (I) =LS (I) + 1 650
660
, '1-' a, ...

L=L+2:M=M+1:GOTO 440
CLOSE 1

680 GET AA$:IF AA$=U" THEN 680
690 RETURN
700 REM
710 REM

337

.

720 REM
1000 REM***** GET TABLE SUB ****
1010 PRINT"~'T'
1020 OPEN1,1,0,"POINTTAB"
1030 FOR 1=1 TO 22
1040INPUT#I,TM$(I',PL(I',WN(I),DW(I',LS
(I' , FO (I) ,CO (I' ,PT (I)
1050 NEXT I
1060 CLOSE 1
1070 RETURN
1080 REM
1090 REM
1100 REM
1200 REM***** UPDATE TABLE SUB ****
1210 PRINT"~:~": POI<E781, 12: POKE782, 15: SYS6
5520:PRINT"UPDATING TABLE"
1220 FOR 1=1 TO 21
1230 FOR J=l TO 22-1
1240 IF PT(J+l)(PT(J) THEN 1330
1250 PP=PT(J+1):PT(J+l)=PT(J):PT(J)=PP
1260 PP$=TM$(J+l):TM$(J+l)=TM$(J):TM$(J)
=PP$
1270
1280
1290
1300
1310
1320
1330
1340

PP=FO(J+l):FO(J+1)=FO(J):FO(J)=PP
PP=CO(J+1):CO(J+1)=CO(J):CO(J)=PP
PP=PL(J+1):PL(J+l)=PL(J):PL(J)=PP
PP=WN(J+1):WN(J+1)=WN(J):WN(J)=PP
PP=DW(J+1):DW(J+l)=DW(J):DW(J)=PP
PP=LS(J+1):LS(J+1)=LS(J):LS(J)=PP
NEXT J,I
RETURN

1500 REM***** PRINT TABLE SUB ****
1510 PRINT"~':l": LI=O
1520 POKE781,LI:POKE782,0:SYS65520:PRINT
"TEAM PL W D L F";
1530 PRINT II A PT":LI=2
1540 FOR 1=1 TO 22
1550 POKE 781,LI:POKE 782,0:SYS 65520:PR ·
INT TM$(I);TAB(9);PL(I);TAB(14);
1560 PRINT WN(I);TAB(18)=DW(I);TAB(22);L . . . -
S(I);TAB(26);FO(I);
1570 PRINT TAB(30);CO(I);TAB(35);PT(I) . . .

1580 LI=LI+l:NEXT I
1590 GET AA$:IF AA$="" THEN 1590
1600 RETURN
1770 REM
1780 REM
1790 REM

REM***** STORE TABLE SUB 11:-300
1810
1820

PR I NT" ::':'-" : CR$=CHR$ (13)
OPEN1,1,1,"POINTTAB"

338

1830 FOR 1=1 TO 22
1840 PRINT#1,TM$(I);CR$;PL(I);CR$;WN(I);

/

CR$;DW(I);CR$;LS(I);CR$;
1850 PRINT#l~FO(I);CR$;CO(I);CR$;PT(I)
1860 NEXT I
1870 CLOSE 1
1890 RETURN
1970 REM
1980 REM
1990 REM
2000 REM***** DIVISION ONE CLUBS ****
2010 FOR 1= 1 TO 22
2020 READ TM$(I)
2030 NEXT I
2040 DATA ARSENAL,A VILLA~BIRMHAM,COVNTR
Y,EVERTON,IPSWICH,LEICTER,LIVPOOL
2050 DATA LUTON T,MAN UTD,NORWICH,NOTTM
F,NOTTS C,RANGERS,STHPTON,STOKE C
2060 DATA SUNLAND,TOTNHAM,WATFORD,W BROM
_,WESTHAM,WOl_VES.
2070 RETURN

"WP"
The program produces a word-processing effect by shifting the entered text so
that it fits a specified margin.

10 INPUT"SPECIFY LEFT MARGINE:
20 INPUT"SPECIFY RIGHT MARGINE:
30 PR I NT " 1~IJiI •• . ,1

35 LI=O
40 IF L)R THEN 20

... L
~

"; R

50 POKE 781,LI:POKE 782,L-l:SYS 65520:PR
INT L
60 POKE 781,LI:POKE 782,R-2:SYS 65520:PR
INT R
70 PRINT TAB(L);:FOR 1=1 TO R-L:PRINT"-"
; : NEXT I
80 S$="":B$="I1:PRINT:PRINT TAB(L);
90 GET A$: IF A$="" THEN 90 / ,

100 IF ASC(A$)=13 THEN PRINT:PRINT~AB(L)
;:S$="":LI=LI+I:GOTO 90
110 X$=A$
120 IF ASC(A$)<> 20 THEN 150

, ,.:.'

130 IF LEN (S$) >OTHEN S$=LEFT$ (S$, LEN (S$,i>
-l):GOTO 160
140 GOTO 90
150 S$=S$+X$

339

-

160 IF LEN(SS)«R-L+l)THEN PRINTXS;:GOTO
90

170 GOSUB 1000:POKE 781,LI+2:POKE 782,L:
SYS65520:PRINT TAB(L);SS:SS=BS:B$=""
180 LI=LI+l:POKE 781,LI+2:POKE 782,L:SYS
65520:PRINTTAB(L);SS;:60TO 90
1000 IF RIGHTS(SS,l)=" "THEN SS=LEFTS(S$
,LEN(SS) - l):RETURN
1010 I=R-L+l
1020 1=1-1
10:30 IF M 1 OS (SS , I , 1) =" 1I THEN 1040
1035 GOTO 1020
1040 SP=R-L+I-1
1050 BS=RIGHTS(SS,SP)
1060 1=1-1
1070 SS=LEFTS(SS,I)
1080 1=1-1
1090 1 F M 1 OS (S$, I , 1) < > " " THEN 11 1 0 .
1100 IFMIOS(SS,I-l,I)<>" "THENSS=LEFTS(S
S, I) +" "+RIGHTS (SS, LEN (5S) -I) : 5P=SP-l
1110 IF SP=O OR 1=1 THEN 1120
1115 GOTO 1080
1120 IF SP)O THEN I=LEN(SS):GOTO 1080
1130 RETURN

340

'-> -'

The Century Computer Programming Course provides
the Commodore 64 with a manual worthy of the
machine. Designed to provide the Commodore 64
owner with a full course in Commodore BASIC, it
includes nearly 200 programs, plus subroutines, and
hundreds of hints and tips on getting the most from
your micro and its peripherals.

All you need is an hour a day and your Commodore 64.
The Century Computer Programming Course provides
the rest:
* Step-by-step through the BASIC language * Understanding how a program works * j-iow to design and structure programs * Debugging and tracing programs * Understanding how to use discs and printers. * Each stage illustrated with example programs and

exercises * A comprehensive program library, games to play
while you learn, useful programs for home, school or
college, subroutines to write into your own
programs - all tested and ready to key in.

Designed by a team of educationalists, The Century
Computer Programming Course is the ideal manual for
the beginner, although the advanced programming
techniques will equally appeal to the experienced
Commodore 64 user. .

, .~:.

ISBN 0 7126 0383 2
CENTURY COMMUNICATIONS L TO £10.95

