

TheWorking

Commodore

64

A library of practical

subroutines and programs

David Lawrence

Published by:
Sunshine Books (An imprint of Scot Press Ltd.)

Hobhouse Court,

19 Whitcomb Street,

London WC2 7HF

Copyright © David Lawrence

First published February 1983

Reprinted J uly 1983

Reprinted September 1983

Reprinted October 1983

Reprinted December 1983

All rights reserved. No part of this pub/ication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

ISBN 0 946408 02 5

Cover designed by
Three's Company.
Photograph of the Commodore 64
kindly supplied by Commodore UK.
Typeset and printed in Eng/and by
Commercial Colour Press, London E7.

2

CONTENTS

Page
Calling up Commodore 9

1 Good things in small packages
Clock 11
Graph 16
Texted 22

2 Programming tools
Merge 31
Delete 33
Renumber 35

3 The colourful 64
Artist 41
Characters 50
Sprites 60
Hi-Res 69

4 The 64 as secretary
Unifile 77
Unifilell 89
Nnumber 101

5 Home education
MultiQ 111
Words 119
Typist 125

6 High micro-finance
Banker 131
Accountant 139
Budget 148

7 Music 163

3

Contents in detail

CHAPTER 1
Good things in small packages

1.1 Clock-introduces the 64's flexible time function to create a colourful
way of telling the time.
1.2 Graph-build your own coloured three-dimensional displays.
1.3 Texted-your own simple word-processor.

CHAPTER2
Programming tools

2.1 Merge-allows you to keep useful modules on tape and string them
together when needed.
2.2 Delete-a routine enabling you to load an original program and delete
parts of it to suit new applications.
2.3 Renumber-give a professional look to your programs with this
renumbering routine.

CHAPTER3
The colourful 64

3.1 Artist-enables you to use the screen like an easel, painting on
coloured graphics characters, erasing and changing them, and saving them
onto tape.
3.2 Characters-allows you to create your own special characters, using
the user-defined character capability.
3.3 Sprites-Iets you move high-resolution designs easily around the
screen.
3.4 Hi-Res-introduces bit-mapped graphics, allowing you to set any
individual dot or pixel on the screen.

CHAPTER4

The 64 as secretary

4.1 Unifile-this uses the 64's strengths as a filing cabinet, enabling you
to store up to 500 entries, search for named items, and to amend or delete
them.

5

The Working Commodore 64

4.2 Unifile II-similar to the previous program, this tackles less
structured files and introduces the multiple search routine.
4.3 Nnumber-this copes with numeric data wh en you need to store
names of items along with a unit of quantity.

CHAPTER5
Home education
5.1 Multiq-this program explains how to enter a series of questions and
answers which form the basis for multiple choice tests.
5.2 Words-similar to Multiq, here the questions take the form of
pictures.
5.3 Typist-improve your touch-typing with this short, neat program.

CHAPTER6
High micro-finance

6.1 Banker-allows you to present your financial transactions in the form
of a neat bank statement.
6.2 Accountant-a simple way of keeping track of your accounts.
6.3 Budget-a powerful and flexible tooI allowing you to plan your
finances over a 12-month period.

CHAPTER 7
Music

The 64 has no less than three sound synthesisers. This program explains
how to develop your own music and embellish other programs in this book.

6

PROGRAM NOTES

A number of functions on the Commodore 64, as with other Commodore
machines, are dictated by 'control characters' which are contained in
ordinary strings and take effect when the string is printed. Control
characters can normally be recognised by the fact that they are inverse
characters (the colours of the background and foreground are reversed in
the character position) . The functions under the con trol of such characters
include cursor position, print colour, inverse (RVS) on and off, cursor
home and clear screen.

The following table shows the control characters as they appear in the
programs in this book:

BL.ACK

~,JH I TE

RED

C'T'AN

PUF.~PLE

C:i F.~EEt-~

BLIJE

'rEL.L.O~J

ORAHGE

BRO\.tJN

LIGHT RED

CiRElr' 1

CiRE'r 2

I

=
f::i

...
~:I

ii

....
I0:Il

m
~J

IJ.:

~

~Ii]

lO

7

The Working Commodore 64

LIGHT (,REEt··1 111

L.IGHT BL.IJE ~

GRA'r',
,_~I

111
818

r;,:\tl !3 ON ~

RVS OFF !!!!!!

UP ~l

DCI~JH :!!l

fUOHT ••
LEFT IB

8

Calling up Commodore

This book, and the series of which it forms a part, was undertaken to try
and fill what seemed to be a yawning gap in the provision of books for
home micro-owners. That gap was the absence ofworks aimed at fulfilling
the dream that I think almost every owner has, that the new machine will
not simply be a toy, not even an educational introduction to the silicon age,
but a tooI, taking over all kinds of tasks and opening up all kinds of
possibilities. The majority of books consist either of trivia or assume too
great a desire-perhaps even the capacity-to experiment.

I wanted to write a book based on asolid collection of programs that
would he worth having-pr'ograms that would handle such areas as data
storage, finance, graphics, music, household management and education.
Discussion of programming techniques would arise out of the programs
themselves rather than as part of a curriculum of 'things that should be
learned'. I hope that you will find the hook that has emerged from that
desire a useful one, not only as a way of learning new programming
techniques, but also as a collection of programs in itself, all of them tested
by an independent assessor for errors and offering a wide range of
applications that might only have been open to those prepared to huy
expensive commercial software or already able to write substantial
programs to fit their own needs.

In addition to the programs in this book you have the parts of the
programs-not as silly as it sounds for the programs in the book are written
in 'modular' form. That is tosay they are made up of clearly identifiable
functional units which, as you come to understand them, can be lifted out
and employed for your own purposes. Each module is commented upon
fully where it covers new ground and instructions are given for testing the
programs as the modules are entered.

In using this book, though you will find that th ere are sections where
general issues are discussed, it is not a book to be read but to be used. The
relevanee of the comments and advice will only be apparent when you have
taken the plunge and and begun the task of entering what appear at first to
be dauntingly long and complex programs. Here, the modular approach
will help to prevent programs becoming unredeemable tangles oferrors, sa
do test modules as suggested, especially in the early stages.

In the end however, the success or failure of the book must be judged on
whether it helps you to enjoy your 64. It is very much a '64 book' , for while
the general structure of the book is based upon its two predecessors in this

9

Calling up Commodore

series, the programs were adapted and new programs added to take
account of the 64's extraordinary abilities. While writing a book such as
this is hard work, I have nevertheless enjoyed the polish that the 64 has
given to programs that on less capable machines might have been far less
exciting. In using these programs you won't have to work quite as
hard-but the end product will be just as exciting.

Finally, no introduction to a book such as this could end without
expressing profound thanks to Commodore UK for all the facilities they
have made available and not least to Steve Beats at Commodore's UK
headquarters, for his patience in answering the idiotie questions that
opened up the 64 for me.

10

CHAPTERI
Good things in small packages

The programs in this book are intended to be put to work on a variety of
important applications. Because many of the applications are complex, so
are many of the programs. That should not be taken to mean that useful
programs cannot be compressed into a small space. As an introduction to
the approach adopted, this chapter presents three relatively short
programs that are anything but toys.

1.1 CLOCK
This program provides quite a pleasant introduction to some of the 64' s'

abilities-it's easy to enter, fun to leave running on the family TV and it
makes good use of the 64's flexible string and screen handling.

The program is exactly what it says, a doek, but you won't see a circle
and hands appear when it is run. The 64 dock uses two Hnes sweeping
aeross the screen, left to right for the minutes and downwards for the
hours, dividing the screen into different colour areas. All of this is only
possible because the 64 has a flexible time funetion which ean be set and
read in a straight forward way from within the program.

Clock: Table of Variables

cs Address of the start of colour memory
DT$ Formatted adaptation of TI$
H Hour value adjusted into screen units
M Minute value adjusted into screen units
Ml$,M2$ Two-eolour strings displaying hour and minute values
SS Address of the start of the screen
TI$ A system variabie eontaining the time by the internal

doek

MODULE 1.1.1

11000 REM~*I**'~I"****'****'~'*"*"*~
11010 REM INITIALISE TIME AND DISPLRY
11020 REM******************************11030 POKE 53280.0:POKE 53281.1
11 ü4121 n~PUT 11 ::'li[~:Pl...E:::l:::;E HiPI...iT Ti"'lE HC)I.JP (121
1....· :1. ;;::) : iJ .: 1",1:*:

11

The Working Commodore 64

:. 10~5(~1 I \",IPUT)'::r'::iH::>L._C-!:::::-::;C: :r. j'-,IF'!...i-j"" THE: I-'i J 1---!i...lTE: (I1

i::::Ci·.... ::5~:~I) : tI .; rti~f,:

1 :I O,:;~?j T I ::t::::;:H::~:+t'1::t-+ "0~3"

:!. :I. 121 '? !;:~ F' F: I I'H 11 :.1 i:.iI!Ill 5 1 0 1~5 ;;? 0 :? ~:i :::iI;::1 :35
4(j 4~5 ~50 :5::5 60 I'

1108121 SS=112124:CS=55296:FOR 1=0 TO 24
11090 POKE CS+40*I~0:POKE SS+40*I~160
11100 POKE CS+40*I+l~0:POKE SS+40tI+l}16

11110 POKE CS+40*I+38;0:POKE 88+40*1+38,
1. 6121

:i. ':I. 12121 POI<}:: C:::;:;-j'-40,'r: I +::?-:9" ri :POKE ::::;:::;-'!"40'lj":r. +::::':::i ..

MID'(STR'(!)}2):PRINT:NEXT
1 :1. :I. ~~;(~ ~::.!~: II···I'r 11 ~411 .: ti' I Ii:t (: ~;TF:::t <I) ,. ;;:~ >.;

This module allows the user to input the time in hours and minutes (12 hour
doek format), sets the timer and then displays the dock face,

Commentary

Line 11030: Two usdul memory loeations: 53280-redefines the colour of
the border around the screen, 53281 redefines the screen background
colour. Either of these can be reset instantaneously during the course of a
program. In this case the border is set to black and the screen to white.

Lines 11040-11060:: Hours and minutes are input in two digit form. They
are then added together and 00 is added for theseconds. The system is told
that this is TI$ and immediately resets the internal dock to count from that
time.

Line 11070: The screen is cleared, the print colour set to black and reverse is
set, then the figures are printed across the top of the screen. .

Lines 11080-11130: The black borders of the dock area are now put onto
the edge of the screen. When printing right to the edge of the screen it is
often more convenient to POKE characters onto the screen, since this
avoids We prim pOSition jUmping from one Hne 10 the next. In order to
POKE the screen successfully, two locations must be dealt with, one within
the screen memory itself (addresses 1024-2023) and the other within the
co10ur memory (55296-56295). All that this loop does is to POKE the first
two characters and the last two characters of the 25 Hnes on the screen with

12

Chapter 1 Good things in small packages

a character code of 160 (an inverse space) and the corresponding location
in the colour memory with zero, which turns that character position black.

Line 11140: The cursor is homed and the hours are printed down the left
hand side of the screen. The last value is printed separately with a semi
colon following, so that the screen will not scroll upwards, since it is on the
bottom line of the screen.

Testing Module 1.1.1

Insert a temporary line 11160 GOTO 11160 and run the module. You
should be asked to input hours and minutes, then the borders of the doek
face will be placed onto the screen. The temporary line ensures that the
screen does not scroll upwards to print READY when the module is
finished.

MODULE 1.1.2

12000 REM#*****************************
12010 REM CALCUlATE AND DISPLAY TIME
12020 FE~~*****'***********************
12830 M~INT((V~L(MID~(TI$,3,2))~0.8)*3/5
)

12040 H:2*VAL(MID$(TI$!lJ2))
12050 If M)=30 THEN LET H~H+l
12060 IF H)=24 TI-IEN LET 1-1=1-1-24
12070 IF M=0 THEN LET M=l
1. 20::::0 t'11 ~t:::. 11 Unt:1l:':il

11

1 ;?090 LET 1'",:1. :~;::::: L..i:::FT :'j::':: r',:I. ::j,: " ['1+4) + 11 r::ij" '1-'F.: I OI-IT ~~: (
1'-11;$: .. 36,-,t'!:;.
1;;-~:l (1121 t'1;?$::::: 11 ~'G::;;I

11

:i.;? 11. 0 LET 1"'I;~:::f.:::::L .. E:FT:l';: !"12:$: .. "'1-1"4::' +" ::11" +P I CiI·,!T:~:'::
r'1;2~t " :~:6"-i'11::'
J. ;~~ 1~~~ i] I:' F:~ I l···j 'T I! !~reflll .;

12130 IF H)0 THEN FOR 1=1 TO H:PRINT M1S

: t',IE)::T
12140 IF H(23 THEN FOP 1=1-1+1 TO 23:PRINT

t,t~~:*: : t'~E);:T
1215(21 p~~ I I"H r't~:,*: ,:

1:;:: 1 6 (I PF:: :r l',rr !, 11 !::iI!!!I~ll!!l)!!!I!!r.I!!r.I!!r.I!!)' IR Bilt I!H ilMlIll'J I!)I \!lIllIIJl ' BIU lIiU BIB" ft

_lID 1811\11111111 J 111111 l1li , DI '''11l1li1''!l1Illll!llIIII R" ,:

:!.;? 1. '?e DT:$::::LEFT::~:':: T I::i:= .. ;;~:::. "I"" II +t-1 I D~~: (T 1:$" :3,,2

)+" "+RIf3HT$(TI:$: .. 2:>

13

The Working Commodore 64

12180 FOP 1=1 TO LEN(DT$):PRINT MID$(DT$
) I .' 1.) .; 11 :!fIHIl .; : r··IE::<"!"
:I. 2:1. 9(1 GOTO 1;;::O:::::!J

This module derives the values necessary to create the display from the
internal doek and displays the time in two forms.

Commentary

Line 12030: There are 36 available spaces across the screen once the
borders have been drawn, sa the mimber of minutes must be divided by
60/36 (5/3) to obtain the right units to move across the screen.

Line 12040: There are 24 screen lines available, sa all that is necessary is to
multiply the hours by 2.

Line 12070: The program is designed always to display minutes, so that on
the hour the minute value increments to show one unit.

Line 12080: Ml$ is set equal to two cursor moves to the right plus the
purple control character and the reverse control character , followed by 36
spaces. If printed, this would show a purple line.

Line 12090: Ml$ is now changed sa that it becomes equal to the first four
control characters plus M spaces, then a red control character, then the
remaining spaces. This creates a new stringwhich changes colour at a point
defined by the value of M.

Lines 12100-12110: The same process is carried out for M2$, which will
begin blue and end white.

Lines 12130-12150: Ml$ is printed for as many lines as there are hours;
M2$ is printed on the remainder of the lines. The two strings thus define a
border between different colour are as dictated by the value of H.

Line 12160: The cursor is homed and the print position moved to about one
third of the way down the penultimate column of the screen, with the print
colour set to black.

Line 12170: DT$ is now defined as TI$ with two spaces inserted between
the hour, minute and second values. Throughout the course of the
program, the system has been updating TI$ sa that it always contains the
latest time.

14

Chapter 1 Good things in small packages

Line 12180: DT$ is printed down the right hand side of the screen. The
method used is to print one character at a time, then move the cursor down
and back.

Testing Module 1.1.2

Your dock should now be ready to run, with four different rectangles of
colour marking the lines for hours and minutes. The time is displayed
digitally on the right-hand side of the screen.

Having said what it should do, almost inevitably there will be errors in
what you have entered. If not here, then in later programs. From the kind
of queries that come to me it seems that many micro-owners find it very
difficult to know how to begin to deal with such errors and perhaps a few
basic guidelines might be of help:

1) Make the most of the help available to you. If there is an error message,
make sure you take account of it, noting the line where the error occurs and
the type of error.
2) Don'trun the program again to see ifit will work asecond time. Ifit does
work then you are in a worse state than you started since you have lost the
chance of running down the error for the present.
3) Use the direct mode (commands entered directly from the key board
rather than program lines) to print out the values of all the variables in lines
that appear to have an error. A ludicrous value will often give you the due
as to what is going wrong. An awfullot of almost indetectable errors result
from the simple mis spelling of a variabIe name, substituting 1 for I for
instance.
4) Follow the program through in your head or on paper, using simple
values so that you can see exactly what it should be doing at each point.
5) Don't be too hasty in making an alteration until you are sure that it is the
only one you want to make. Once you enter a change to a line, all your data
disappears and with it your chance to make further checks without running
the program again.
6) Save your program regularly as you discover errors and/or add new
lines. Many errors in final programs result from changes which were
entered into a program but never finally recorded on tape. All my
programs commence with the following 3 lines:

1 GOTO 3
2 SAVE 'XXXX':STOP
3 REM

These three lines allow programs to be saved with the command 'GOTO
2' (provided 'XXXX' is replaced with the program name. One incidental
side-bene fit is that I can always start my programs with GOTO 1 rather
than having to remember the first line number of the main program.

15

The Working Commodore 64

Everybody makes mistakes in designing and entering programs, the
differenee is whether they leam to eope with their mistakes eompetently.

Summary

Whether you like the doek is something only you ean say. Personally I
find it quite attraetive. Regardless of the dock, however, the techniques of
slicing up strings and of POKEing the screen and colour memory
eontained within the program will eome in useful in a wide variety of
programs, so it is worth entering the program and ensuring that you
understand how it functions.

1.2 GRAPH
Ifyou want to understand this program you can do no better than to look
at the box in whieh your 64 arrived. There you will find a colourful
three-dimensional bar chart-this program is an attempt to reproduce the
prbgram that generated the ehart. I say attempt, because on successfully
reproducing the chart on the box I discovered that the data it was given to
work on had been carefully ehosen to hide the limitations of the tightly
packed bars. Other data led 10 the graphics characters making up the bars
knocking holes in neighbouring bars, making the whole thing a great deal
less attractive than the box display.

This program, then, is a compromise, producing a less packed display
but one which will work on any set of data and still look as good-so good,
in fact, that when you have completed entering it, it is the kind of program
to caU the family in to impress them with your wizardry.

Colourful and practical, the displays produced will no doubt find many
applications. In addition the program provides a simple introduction to
the subject of saving data on tape and later reloading it.

Graph: Table of Variables

COS Three-character string used to decide colour of different
bars on the graph

F$ Formatting string of right cursor eharacters
Fl$,F3$ Formatting strings of down cursor characters
F2$ Temporary string derived from F$
HH(2,6) Array holding data for graph
NB Number of banks in front of each other (1-3)
ND Number of columns along the horizontal axis (1-6)
NR$ Name for horizontal axis
NV$(2) Names for each separate bank
TT$

16

Chapter 1 Good things in small packages

Temporary string used to format printing ofvertical axis
names

UV Number to be represented byeach unit on the vertical axis

MODULE 1.2.1

11888 REM#*****t***********************11010 REM ACCEPT DATA
11820 REM******************************
1. :1.0::::0 POI<:E ~5:::t~::::: 1. .' 1~:) : I t·iF·I.JT "::lII!:I!!.IDO "1"01..1 !.,.I I!::;

H TC! L.ORD FF.:ot'1 n~IPE (: ',.''t-.!::' : " .; 0$

11 04~:1 I F O~~:==" "r'" TI"·iE}·j 12420

1. :!. !215ü F'P I t·n !I :'I~:il II!II IIIRDlllnl"""DlI!lIi:.f:t::;F.:f~:PH"

111216121 PR I rH ":~~IITHFRF nF.:E 1:::1 ut·i 11':::; eH··1 THE

'./EPT I CFiL.L..'·r'" I'

1 1 ~:!'? 0 F' P I [·rr 11 :1!I:l:~n W:'I...!T t·iI...1 t'1 BEF: TCl BEF.: E P P E:::;
HfrED B'r' EACH!I
11 rn::~] II"iF'UT "Ut·~ I T : " .; UV

1,1 (1:;1(1 1 I··~PUT " :i!!J~'~Ht"IF FOr-~: HOR I ZOt·~TI1L.. 11::< 1 :::~"

.;HH::r.:

111 Ü0 PF: I i···IT Ij :]i!!:III!lI"r'IJU CF1l"'! 1"'lfT'/C eH··ir::: TO :::; I;:':;

COi....I...I!··1H::;" ;;

:1. 111 ('I 11··~r:.·UT 11 :1!!l-101.·~ t·1At·l'r' I.·~OI.JLD ',.'CJ\...l L I !<E : 11 .;

t·m

1112:~~1 F'P I i··n ":I!Ir.I!I:r;~T'OI...1 CI=lr··1 HF!'·... E O!··~[TU TI·-jF:E
t: Bfi t·.I!<: ::::;" 11

:I. 11 ::::Ia I !···\PUT I1 :~1·10~··1 r·1nN',.' !.·KlI.JI.... D ',,'01...1 L.. I!<F : 11 .;

tTB
11140 FOR 1=0 TO NB-l
1. :I. 1. ~::;~~ PP II·n !I :~liiil·IFII··1[FOP \·'EPT I CFiL. H>:: I ::;:; 11 .; I
-+- t.; : J t··IPI...IT I···I'·... ~~:.:: I ::. : t'~E:,::T I
11160 DIM HH'::2,6)
11170 PR I trr U:J" .;: F()P I ::::ü TC! tlB·l
11180 FOP J=l TO ND
:i. 11 ::~(1 PR I t-n ":m 1··~PI.JT BHt·W:!I.; 1+1. .;!I '•.•'FI 1....1...1 E I! .; .J
.; .. : !I .; : I I··~F'UT T
1. 1. ;~~m3 I F I I··H (T ,/1".1....'::.:> 1~~ TH[}·' F'P I t·n ":I!!7·... ALUE
TOO HlCiH.":CîOTO 1119121
11210 HHCI,J::'=T:NEXT JjI

The purpose of this straight forward module is to allow the input of the
data which will be used to build up and label the graph. Rather than ask the
user to input maximum and minimum figures for the range of values and
then calculate the units (which can re sult in extremely odd units), the

17

http:1��~PI.JT
http:t�iF�I.JT

The Working Commodore 64

program asks the user to specify how many units of the data input will be
represented byeach vertical unit on the graph. Names are given to the
horizontal axis and to the banks of 3-D pillars, starting from the back.
Finally data is requested in conformity with the structure chosen by the
us er.

Testing Module 1.2.1

Simply a matter of running the module to check the syntax is correct.
Nothing can be drawn yet.

MODULE 1.2.2

12000 REM#*****************************12020 REM DRAW GRAPH
12030 REM******************************
1. :?(I 4 0 F' 0 1< E ~5 ::::: ;? ::=.: 1. .' ~~I : PF.: I I'H " ~~.R1!!:[l!!m~(,[i.'!r.i.'!r.1!!r.i.'!t!!l!!!!!r.rtl

:~Ii.'!r.i.'!li.'!r.1U~J.~i.'!~ 11 .;

1;;-:'350 F:$:::::" ~DiIll1I11IlB"

1.:?O~;~::1 F··OP I:::l. T() ,:l:F'PH'rr F::~:,; ""'Ill~~

''III!'' : F ::j::::::F ~~;"i" !! ~nl! : j",\F>::ï

••""o""",m,,,,,m__••,,,,•• ,,.".,,,,," : PEt,'! JO CHI::IP L.1 t'~E
!I1. ;;:Ü:::';'1 FOP I:::: 1 TO 1~j : PP I Hl ~~ IiII 'II!il ... " .:

l ;~~r190 PP I r·.IT II

,J" : j"'!!:::: ::'::-T
1. ;~~:l. 00 F'P I t·n 11 ~" ,; : FOP I:::: :!. TC) ,::j.: FF I !···iT ":I!!Ii!!J.i!!l
:1!!)ItIUllllnlDDft" ,;
1. ;2 11 ~j P P I t·~ T ! I '"".""'''''''~•••''.'''''''.W.''''''''.'''"'''''''''''""m",''''''''''''.''"''''_''.' ,,,,,...,...,....,,
,••," : t··ID::T : REI"1 ;~:f:: ct-jj=IF.: 1.... I t·~E
i ;;~ :l ~~: 121 F 1. :$::::: 11 !::1L'!r.I!f.[!!ti.'!:r.~rL'!r.~L'!r.l!!rE!r.L'!rl!f.[1!!r.L'!l!f!~l1!!lJ[L'!I1!!l" : F':t. ::~~ 11 ~ ll\I! H
~1II1t".... II 'It'VIlIIllttIfttt'~IIiDlDtllltil!!HilllliIIa\lltII'!lItin!l : (::(1:$::::::" ri1ii!:l"
:I. ?:t 30 PF.: I t'~T 1I !:J.~t!!tl!!r.!!ml!!J.1!!r.~l!!ti!!:[~II!!J.I!!J.~!J.I!!J.I!!l:I!!Jl~:[I!IWr.@!:[!lll!I:[l!!ll! .;
j·,-!tH:,;

1. ;~: 140 FOP H:::::O '10 HB-'" :!. : PP I r··IT ";::f.l!!IIIIIIID" ,;

MIDS<FSl1.l2*<H+l»;MID$(COS.H+l,1);

l:? t !'.:;~J TT:$: ":::H"/~l 0:: H>+ 11 :t. 11 +:::;TR$ 0:: I...I\'!::O :FOP I~" :!. T

o L..Et··j':: TT ~~::)

i:? 160 PP I j··n t'1 I TI:$:';: TT ~t. I • 1 ::. .; "Ui!lr ' ,: : j···lD<T I • H

1.;;::: 1?~~i pr.;~ I !·-rr 11 ;~~ilttll!Uj!lI1[I~:[l!Ir.\!IlI!IU ~:;MI[I!I:[I!!:[i!l:[I!!:[I!!H IJmlllUl!r.J!I:[i.'!rl!lJ.i~l:::'

~B:t,'!lI'lJI!!l:I!!l:I!f.(I"

12160 f3$~fl$;fOR H=0 TO NB-l:PRINT MID$

0:: CO~t. H"l-l) 1.)

12190 F2$=lEFT$CFS.8+4*(ND-l)+H::O:PRINT F

1. ::r. ,; F;?J;

12200 FOP I=ND '10 1 STEP-l:IF INTCHH<HlI

18

mailto:J.~t!!tl!!r.!!ml!!J.1!!r.~l!!ti!!:[~II!!J.I!!J.~!J.I!!J.I!!l:I!!Jl~:[I!IWr.@!:[!lll!I:[l!!ll

Chapter 1 Good things in small packages

)/UV)=0 THEN 12270
12210 FOP J=1 TO INT(HH(H,I)/UV)+H
12220 IF INT(Hi-!(i-!,I)/UV)=0 THEN 12270
12::;:::::::(i I F .1:::=1 Ti-IH·I PF.: UH I! '~h:q "tIll".; t'i IIl:;j:: (C:O::~:.,

H+· 1. .' :!. ::. .; " i ~~llilil!!Duün.;

:I ;:~:;::::4~) I F J) 1 THEt'4 PF: T,··n 1ö i ;::ïll !~:·~ID!i!lllilmIIU'.;

1. :?;;;::::1·~; 1~;~E=:l'll C:t·..1Fil:;;:~:::; F1b:~E:' I1 ,: :~~" 1:1 I:~:J ~~!!! mB" IR:. 1&il:

mü ll .:

1 ?;;::50 !"1E>~T .J
1. ;~:;;260 PF=: I t·n 11 ~~~ '''Ij''

12270 PRINT:F2$=lEFT$(F2$JlEN(F2$)-4):PR
INT Fl$;F2$~ :NEXT I

.; F:?::f..;
1. :?::::: I?i 0 (lE}n' H

12310 FOP 1=1 TO ND:PRINT F3$;

12320 F2$=LEFT$(F$J9+4*<I-l»:PRINT F2$;

: FOR J:~'-l TC! t{B

1;;;:~:::::31;~i I F' .J~>:i. CiF(Hr1 (~"~~.I 1·.... 1) ::::0 'TI-·jE:!'··! F)F~ I I"~T i!

1. ;;':::::'::I·!~) F'r~: I r··I~r li)~:Rftij!! ,; : t··IE::·:;T .J.I:r.
1. ;;?:::::!5C:1 ()ET FI~f.:: I F F!~f.::::: 11 1I TH!::}·' 1. ;:::::?::~51~1
This is a fiddly module which is based, not on any clear set of methods but
simplyon the conditions that I found, in practice, had to be fulfilled to
complete an attractive presentation of the graph.

Commentary

Lines 12040-12060: The screen is set black and the brown base on which
the graph stands is painted in.

Lines 12070-12110: The grid surrounding the graph area is drawn, units
are marked down the sides and lines placed across to mark the five unit
levels.

Lines 12140-12160: These three lines determine a print position at the top
right hand corner of the screen and prmt the names of the three banks
there, down the screen, in colours corresponding to the banks themselves.
The screen position is determined using a chunk taken out of F$ and the
colour by printing a different one of the three colour control characters for
each execution of the loop.

19

The Working Commodore 64

Lines 12180-12300: Three loops are called upon in this section. The H
loop determines how many banks will be drawn in front of one another,
being also used to extract a colour control character from COS and to
determine how many down cursor characters will be printed, thus moving
the banks down consecutively. The I loop controls how many columns will
be printed across the screen, the J loop controls how high any particular
3-D block will be.

Line 12190: The horizontal print position at the start ofeach bank (they are
drawn from right to left) is calculated according to the bank-each bank
moves across one, giving the 3-D appearance to the three banks.

Line 12200: A column is not printed if the relevant array element in the
array HH is zero.

Lines 12230-12240: At the bottom of each column is printed the slanting
bottom which makes the column look as if it is resting on the surface.

Line 12260: When the top of the column is reached the sloping top is added.

Line 12270: For the next column, four characters are subtracted from the
cursor right string, defining the new print position.

Line 12280: The vertical print position is moved down before printing the
next bank.

Lines 12310 - 12340: In printing the banks the bottoms of the columns
have been corrupted. These are filled in.

Line 12350: The graph remains on the screen until a key is pressed.

Testing Module 1.2.2

Once again a straightforward matter of running the program and seeing
that the resultant display does look right. If you run into problems, then
the answer is to cut down the number ofbanks to one, and perhaps even the
number ofcolumns to one, to simplify yOUT analysis of what is going awry.
Look at the function of each of the loops separàtely to decide which of
them appears co be proàuclng the error. Thîs is a frustrating module to
debug so, if you think that a change to your Hnes would overeome the
problem, even though you ean't see where you have departed from the
listing given here, make the change and see-nothing here or anywhere else
in this book is sacrosanct.

20

Chapter J Good things in small packages

MODULE 1.2.3

:I. ;~~::':(:(1 II···IF'UT I' :1:!!~!!2!DO '/Ol...! i...' I ~:+I TO !::;A'·/E DATA
('·r',·... r··i> : 11 .; 0:*: : I F 0$::::" 1'.1" TI..·iE:J·' Er·m

1. ;~~3?O I !··~F'I...iT :~!:PO:~~; I T I Cl!"~ TAPE COPF:~EC:TL'r'.. T11

I..·IE]··! ~-4RETI...iPt··I~-.."" 11 .; !:::!:t : P:~::::::CHP~t: t:: i:3::'
:i. 23;:::(1 OF'D'1 :1. .. 1 .. :I. .' "GPfiPH 11

12390 PRINTll,NB;PI;ND;R';NH$;P$;UV
12400 FOP 1=0 TO NB-l:PPINT#l .. NV$t::I):FOR
J=0 TO ND:PRINT#l .. HH(I .. J):NEXT J;I

12410 CLOSE1:END
1. 2420 II···!PUT !, ~:;r.f!ifiF03 I T I01···i Tr"4F'E COPPEC:TL..'r'
THEt··1 :ëi?ETUFd··!!flIll·_·.... ".; CU: :DI 1"'1 H"/:$: (;? >.. HH r:: ;;?'., 6::
1. 2,:+:30 OF'Et·~ 1. .. 1. .. ~?t J 11 GF?'I=iPH 11

12440 INPUT#lINBINDJNH$.. UV
12450 FOP 1=0 TO NB-l:INPUT#1. .. NV$(I):FOR
J=0 TO ND:INPUT#1. .. HHt::I .. J):NEXT J .. l

12460 CLOSE1:GOTO 12000

Now that you have defined your graph, rather than lose the data and have
to enter it again, you can store it on tape. This module will allow you to do
that and to recall it subsequently. The module is designed to make tape
storage as easy as possible in that it gives you time to position your tape to

the correct place before it begins the pro cess of loading or saving.

Commentary

Line 12380: This line opens a file, a place into which data is to be placed,
and in this case the storage pi ace is the cassette recorder. The three figures
represent:

a) The number of the file-any instructions to store something in a file
must mention the file number
b) The device nurnber (the piece of equipment which is to receive the data)
with 1 representing the cassette recorder
c) The type of file-l means thaI it is a file into which data is to be placed
rather than one from which data is to be taken.

NB,ND,NH$ and UV are placed into the file (onto tape). Note the use of
the variabie R$ here, When storing data on tape the 64 is a Httle finnicky
about how each item is separated from the next-simply putting in
commas can reSUII In errors wnen UI~ UaLa is rtluallcll. l\~ wa" pl;finl;d in
Line 12370 as CHR$(13), the code for RETURN, and placing it between
items ensures that they are properly separated.

Line 12400: The program's arrays are printed one by one to the file.

21

The Working Commodore 64

Line 12410: When you have finished with a file forthetime beingit must be
CLOSEd. Pailure to do this will result in an error the next time you try to
OPEN a file of the same number.

Line 12420: This is the part of the module whieh loads back data into the
64. The only difference between the specifications for the two types is that
this one has a file type of 0, whieh means a file from whieh data will be
taken.

Lines 12440-12450: Data whieh was printed into the file is now recalled.
The safest way to build up your loading routine is to edit the line numbers
of the SAVE routine and change the PRINT commands to INPUT. That
way you know that the routine will piek up the data in exactly the same
order as it was stored. If the data is pieked up in the wrong order, not only
will it make nonsense of your program but an error may result in the
program stopping.

Testing Module 1.2.3

The simple test for this module is whether you ean input data to the
program, save it on tape and then reload it.

$ummary

This program is a tribute to the quality ofthe 64's graphics set and screen
handling. Once you have entered it you begin to see that it is not at all such a
difficult thing to use loops and simple calculations to draw shapes and
apparently solid objects at controlled places on the screen and that such
displays are one of the most effective ways of getting the facts across that
you will ever find.

1.3 TEXTED
The final program in this chapter is an attempt to provide some of the
simpier functions of a word processor in a relatively short and
uncomplicated program. The program is, of course, no match for a
professionally written machine-code based word processor, nor would it
be the tooi I would choose for writing a book like this one, if only because
Commodore UK were kind enough to provide me with a copy of their
excellent Easyscript program for the purpose. Nevertheless the program
wOrKS ano I wouW anel have chosen it mpreferenee to a typewriter for
many purposes because of the flexibility it provides in entering and editing
text before it is finally output onto paper. Of course, if you don't possess a
printer, then you will need to rush out and buy one to get the most out ofthe
program.

22

x

Chapter I Good things in smal/ packages

Texted: Table of Variables

A$ Line of text being entered
CH Code of character under flashing cursor
FNA(P) Calculates position in memory of flashing cursor in text

being entered
FNB(P2) Calculates position in memory of edit cursor in main

body oftext
LL Number of lines of text in main body of text
P Position of flashing cursor in line being entered
P2 Posi ti on of edit cursor down screen
PL Line number of edit cursor in main body of text
SP Number of spaces available at end of Hne when

formatting
SS Line number of first Hne of part of main text being

displayed
T$ Last character input when entering new Hne of text
Tl$ Character input as command in Move Edit Line module
TEXT$(500) Main array for the storage of text
TT$ Temporary storage of Hnes being entered into main body

of text
Number of lines of text extracted from batch of text being
inserted into main body

MODULE 1.3.1

11000 REM#*****************************
11010 REM INITIAlISE
12000 REM******************************
12010 PRUn ll :1 II .; : DH1 TE::·::T$(50J;:.i): LL::::1. :F'l::::l
1:202~~1 TE::·::T$ (0) ::: .1 :if'IUI"""........,........... ·!l!l!ll'····~,.~.·T'~
~~p'.....T'.....P-V·ill1ii!l'"11
:I. ;;:!j:~:O TE::-::T~t (1):::: 11 mh.~'jII"-'I!j!!1'"""IqJ,.·""'1r~
ppr....,IIIIIIi!'..,Iil!iflI'-'V......""'·....~iII"""'~l!

12040 DEF FNA(P)=1024+20*40+P
12050 DEF FNB(P2)=1.024+40*P2
12060 GOSUB 14110

This initialises the main variables and places beginning and end of text
markers into the main array.

MODULE 1.3.2

13000 REM#*****************************
13010 REM EDIT LINE

23

The Working Commodore 64

13020 REM******************************
:I. 3121 ::;:: (1 fl*: ::::: " 11

1. :3 ~J 4 0 p:~0 : r,;:' F.: I H T " ::l.::J.l!!ll!!:[!f.[I!!:[!!t~r.p.!ml!!J.I!!:[I!f.[!!IL~r.l!!l!!r.I!!r.!f.[I!!r.I![1!fJ "

.; fil:

13050 CH=PEEK(FNA(P»:POKE 54272+FNA(P),

14:POKE FNA(P),:1.60

13060 FOP TT=1 TO 5:NEXT TT:POKE FNA(P).

eH
1::::070 OET T~l: I F T:l:::::"!i THEJ·I ucnCi 131;::151;::1
13080 IF T'=CHRS(13) OR lENCAS)=81 THEN
GOSUB 14000:00TO 13050
1.::::~::r::'10 IF T~t="l" THEJi GO::::;UB :l~5i;::i!?II;::I: POKE Fl·1
B(PL-SS),62:GOTO 13040
13U30 IF T::J:::::;II.~._!I I=tH]) F'()0 T~"iEt··i 131;3~:H::l

J.:31 H~i I F T$:.:: 11 'E-" l=tt·mF'::.::o THEt-·1 P::::L..Et··j':: I::i:f.) '··1 :
GOI"O 1:~:: 15ü
13120 IF P)0 AND T$=CHR$(20) THEN A$=L..EF
T$(AS.P-l)+MID$(AS.P+l):P=P-l:GOT013150
13130 IF TS=CHR$(20) THEN 13050
1,3140 IF ·U:.C> 11 Il Ht·.jfIT:$:.::::::> "U' j::!r'UJ 'H:()Il~fi" TH
EN A*=LEFT*<A*,P)+T$+MID$(A$,P+1):P-P+l
1:~: 1:':i0 PR UH 11 ::::i1!!!1!!Il!!1!!I~rl!!l!!tl!!tl![~J.ll!J.~I2!lNI!!r.l!!rl!!ml!!r~Q!I ,; fl~'I:: : I
F T$= 11 UI~1t·m P)~'3 niEr··1 P:::::P··-l
1~316~~1 I F T:t:~: I! ~~" i::'t~D P<:l.. FH':: FI$::O -1 THH~ p:::::p
+1.
131. 70 C':îOTO], :~:!t;:rjO

The purpose of this module is allow the user to input and edit up to two
screen lines of text at the bottom of the screen and to edit those lines in
preparation for inserting them into the main body of the text with a
subsequent module.

Commentary

Lines 13050-13070: Our first encounter with a flashing cursor routine. On
the basis of user-defined function A, these Hnes PEEK the screen memory
at the point indicated by the variabie P and obtain the code ofthe character
located there. An inverse blue space is then POKEd into the same location,
left there for the duration of a short timing loop and then replaced by the
original character. If there has been no input from the keyboard, as
indiçatcd by thc OET statement, the process is repeated.
Line 13080: Pressing RETURN inserts the line into the main body of text
-a later module is needed. The Hne is also inserted automatically if the
length exceeds two screen Hnes-this may strip the final characters from
the Hne.

24

http:FNA(P),:1.60

Chapter 1 Good things in small packages

Line 13090: Pressing the '1' symbol allows the user to move into a
subsequent module which acts on the main body of text.

Lines 13100-13110: Pressing the left arrow symbol at the top left of the
keyboard moves the cursor either to the beginning ofthe line or to the end,
depending on its current position.

Lines 13120-13130: Provided that the cursor is not positioned at the
beginning of the line, pressing DELETE removes the character before the
cursor. Note that, using GET, the contral keys such as DELETE have no
effect unless they are PRINTed, so that if we do not print them we can
redefine their function.

Line 13140: If the character entered is not a cursor move arrow, then it is
assumed to be a character to be printed and it is added to the string in the
position of the cursor. If the cursor is in the middle of the string, then the
character is added in-it does not replace the character under the cursor.

Lines 13150-13160: The string is reprinted in its changed form. If the
input was a cursor arrow then the cursor position is changed accordingly.

Testing Module 1.3.2

By entering a temporary RETURN at Line 14000, you should now be able
to input text to the bottom of the screen and to edit that text.

MODULE l.3.3

14000 REM#"***************************
14010 REM INSERT lINE
14020 REM******************************
1. a!l [i :~; ~~I ::.::::::: ~?1

14040 IF lEN(AS)(41 THEN TT$(X)=lEFTS(A$
.' L..EN (AS;' -1) : A$::::: 11 11 : OOTO 14(17Ç:~

14050 FOP 1=41 TO 1 STEP-1:IF MIDCA.I,
:i. ::. () THEN r··IE:";'- I: I:::A 1 11 I,

14060 TT$(X):::::lEFT$(A$,I-l):A$~MID$(A$)I+
1.)

l40?(1 :x:=;:<+ 1 : I F A:$() 11 At·m A:$'(>" I! THEt·i (;
11

OTO 14(1,::1·0
14080 FOR I=lL+X TO PL+X STEP-l:TEXT$CI)
=TEXT$(I-X):NEXT I
14090 FOP 1=0 TO X-l:TEXT$(Pl+I)=TT$(I):

HE::<T

141 ~~1el fi$::: 11 ": F':::::~3 : F'P HiT l!::']".;: 1....1..":::L.l... +::-:; : f'::'L.:::W

L.. "r ~~:

25

The Working Commodore 64

14110 SS=Pl-7:IF ll-Pl{8 THEN SS=LL-15
141 ;;;:[::1 PP I !·..rr li ~·n~!:r.l!Il~rl!r.l!!ll!!t~tl!!:rl!!lN~r.I!lr.~!t~ltP.!ml~ll!!ll~r.I~~" .: F1:$.;
11 !~-::I!I.; : I F ~::; ~:::: .:::: (1 T1···1 Et··! ~:; ~::; ::: 0
14:l. 30 FOP I :<3~:; TO ::;:S+ 15: PF.: HH 1l riri" .: TE::<T:l <
I); :IF LEN(TEXTS(I»{40 THEN PRINT
14140 IF I=PL-1 THEN PRINT CHR$(62)
1415Ü t-iE::<T I: PR I t·n .1 ;~~ih

11 : F:r:::T1.JPt.~

The purpose of this module is to enter the current line into the main body of
text.

Commentary

Line 14040: If the line being inserted is less than 41 characters long it is
placed into the position indicated by the> edit cursor.

Lines 14050-14070: If the line is longer than 41 characters, these lines
search back for the ending of the last word which will fit fully onto the line
and make everything to the left of it the first line to be inserted and store it
in TT$. A$ is now redefined as what is left and the process is repeated. The
variable X records how many lines result.

Lines 14080-14090: The main body of text, from the edit cursor on, is
shifted to make room for the X new lines and the new lines are inserted.

Lines 14100-14110: A$ is set to a single space, the flashing cursor position
is set to zero ànd the edit cursor is moved down below the new lines. The
start of main text display is redefined so that the edit cursor remains
roughly in the middle.

Testing Module 1.3.3

You should now be able to insert lines of text into the main body of text by
pressing RETURN.

MODULE 1.3.4

15000 REM#*****************************
15010 REM MOVE EDIT LINE
15020 REM"""""""""""""""
1. 5ü:30 F'2;;;-"f:'l"-;:i::i
15~34121 GET Tl $: I F Tl :*:.:::::> 11 11 THE}·I 1. 5ü?~'3
15050 POKE 54272+FNB(P2),8:POKE FNB(P2),
62:FORIT 1=1 TO 20:NEXT
15060 POKE FNB(P2).32:GOTO 15040

26

Chapter 1 Good things in smal! packages

1. ::;I;~I?j21 1:::'l,.. :::::PI....+ (T 1. ~1:::::: 11 :"1") 'i-1 O:'M (T 1~~::: III.JII ::0 : 1F Pi....

<: 1. THE}·j PL.::::l

1~50:::0 PL..::::PL - (T 1$::::: 11)!!1" ::.·1 f;}+!':: T:I. :t::::!1 Ti n ::. : I F Ft..

::>1....1.... THEI··i PL..:::L..I....
15090 IF Tl$:::::CHR$(13::' THEN RETURN
15100 IF PL=)LL OR Tl$()CHR$(20) THEN 15
1:;;~O
15110 LL..=L..L-1:FOR I=PL Ta LL:TEXT$(I)=TE
::-::T::t,:(I"'" 1 ::. : HE)::T : TE::-::T$(LL+ 1) ~,::II IJ

1512(1 IF P L .. (U.... HHD Tl:$::~-::!lC" THEl·j FI:$::::TE>:Tf
.:: PL.::' + 11 !I: RETi..JPt..1
:I. :5 J.::::O I F T 1 $:::: 11 F' 11 THEH Om::I.JB 171211210
1. 5:i. 40
J. ~::; 15~::i

I F T 1. $:::: 11 :::!I
I F T 1 ~~:~,!:!!I F I1

THEJ·j
THEH

CiO::;:I.JB
OOSUB

1. ::::1~1i2l~3
1. i:;12i~?1121

15160 GOSUB 14110:00TO 15030

This module allows the main edit pointer to be moved about in the main
body of text, thus aUowing lines to be inserted at different points. From
this module the user is also able to caU up other modules which format the
text, output it to a printer or save it to tape.

Commentary
Lines 15040-15060: Flashing cursor routine for the main edit cursor.

Lines 15070-15080: These two Hnes move the main edit cursor up and
down. Single line moves are accomplished by the ordinary cursor move
arrows. Pressing U or D will result in a 10 Hne jump. Note the use oflogical
conditions to accomplish these moves. The expression (Tl$ = 'U') has a
value of zero when the condition is false and of minus one when it is true
and can thus be used to economically replace an IF statement such as IF
Tl$ = 'U' THEN etc.

Line 15090: Pressing RETURN will return to the text entry module.

Lines 15100-1511 0: Pressing DELETE removes the line beneath the
CUi~Ol.

Line 15120: Pressing C copies the line beneath the cursor to the bottom of
the screen for further editing.

27

The Working Commodore 64

Testing Module 1.3.4

You should now be able to move the main edit cursor, to delete lines and to
copy them back to the bottom of the screen.

MODULE 1.3.5

1601016000
REM
REM#*****************************

FORMAT lINE
16020 REM******************************
16121::::~"3 FOP 1:::1 TO L.L. ;~~: IF TE>::T$(I)::-.;;"" OP
TE::~:T~~(1+1,):::::'1 il THEH 161;;:~O

16040 SP=40-LENCTEXT$CI):FOR J=1 TO lEN
CrF::<"T$ (1+-1. ::. ::.
16Ia~:5~?j I F t'1 I IJ:!':: TF>::T ::~.:: I ..jo. :I.) .' ..:r .' :1.) {> Ii u THEI···j
i···IE)::T ,J; J:::::,J --,1
16060 IF SP{,J OR J=L.EN'::TEXT$'::I+l» THEN
161;::1:3 ~~1
16f:3?~j TE>~T~~:':: I) :::::TE::<T~~:< I) .+. " " +·L.Er':-T~t.:.:: TE::·::T~r. (I·t1) .. ,J-l)
1,6080 TEXT$(I+l)=MID$(TEXTS'::I+l),]+l):GO
TC! 11:~~:I.::I·t1
16090 IF LEN'::TEXT$(I+l)=)SP THEN 161201.6100 TE)1,T:$(I>:~TE::<T$(I).+.I! "+Tf::'::<T::j::(1+1:;'
16110 FOR J=I+1 TO LL:TEXT$(J)=TEXT$(J+l
):NEXT J:LL=Ll-l:PL~Pl-l·GOTO 16040
16120 NEXTI:RETURN
This module formats the text, that is to say the text is rearranged so that
empty spaces at the end oflines are, where possible, filled with words from
the subsequent lines.

Line 16030: When an empty line is entered into the main body of text it will
not be formatted. Empty lines can thus be used to separate paragraphs or
other lines the user does not wish to have run together .

Lines 16040-16080: The space at the end of the line is calculated and an
assessment is made of whether there is a word at the beginning of the next
line which will fit the space-if so it is transferred.

Lines 16090-16110: If the whole ofthe next line will fit onto the end ofthe
current line then it is added and the file collapsed to cover the resulting
~paçe.

Testing Module 1.3.5

Ifyou input a series of single word lines to the main body of text you should
now be able to enter the main edit mode, press F and see the words run

28

Chapter 1 Good things in small packages

together into continuous lines. You can also insert short lines into the
middle of the main text and then reformat it.

MODULE 1.3.6

17000 REM#*****************************
17010 REM OUTPUT Ta PRINTER
17020 REM******************************17030 OPEN 1J4:X=1
17040 IF X=LL THEN 17100

17tJ5t:1 1 F "TE:<;1:t n.::::. == 11 11 THEJi PP I HT#:i. .. " 1/ : ;:<:::::~:

+1 : (~;OTO 1.7040
1. ?060 PP I t·iT ~f.l .' TE::·::T ,t 0:: ::<) .; '0 ".;

17070 IF X+1=Ll THEN 17100

171;38'.3 PFUtH#l.., T(;:<;1$(;:-::+1.::O: IF Tr:~::n,rC:<'+'l)::::"

1\ THEt-.! I::'f~: I HT# 1 .' 11
11

17090 X==X+2:GOTO 17040
171. 0121 PR I t··IT# 1.' 11 " : CL.D~::;E 1. : F::ETI...IF.:t··1

This simple module opens communication with the printer (device 4) and
prints out the main body oftext. Text is printed in 80 column format (ie two
screen lines make one printed line), and clear lines are printed wherever
there is a dear line in the main text. Note that though the program itself will
happily deal with characters in lower case mode (pI1ess SHIFT and
COMMODORE key together), most printers require a special command
to actually output lower case characters. This is not provided since it
differs from printer to printer. Y our printer manual will provide the
necessary information.

MODULE 1.3.7

18000 REM#*******************'*********18010 REM DATA FILES
18020 REM******************************
i :312130 PR I tH 11 ::1!!l:::F'O~::; I T I 01',·1 TFiPE COF.:RECTl'r'.,
THEt.~ ;:.iPETURN!!-·- 11

1. ::::1?14f.1 I t··IPUT 11 t·1OTOF.: I..JI LL.. ~:nop AUTOt'ÎFlT I CflL.

1.... \' : " .; !)~i- : POI<E 19;;~., 7 : POI<E 1.! ::':9

t ::::050 PF:: I t··IT 11 cOt1r'1F1t·ms l=t',m I LF'iBLE : 11 : F'R I j'H

"U!!U) ::;;nVE DfiTt1": F'r.:: I tH 11 :I!!t~) L.ORD DffHi"

1. ;;;;1I;)66 I tir'UT 11)~~'JH I CI·i DO 'T'OI,.! REQ.U I RE : 11 .: IJ. :
ON Q GOTO 18080 .. 18120
180?O HETUPt'4
18080 POKE lJ7:FOR 1=1 TO 2000:NEXT
1:::09(1 OPHi 1! 1 " ;;;::.' 11 TE~nED 11 : PP UH4*:t .. PL.. :PP I

29

http:F::ETI...IF

The Working Commodore 64

tH#l.Il...l...
1. ::;: U::1t;:i FOP I :::::~::I TO L..L.: FF:*:::::Ti::'::·::·f:*: (I) .-j.." !J:! II : F'Fn
I··H ~t:L .' FT ~~: : I···i E::-n I
18110 Cl...OSE1:PETURN

:I. i::: 1:?O ()F'EH 1.1 ~~I., I! TE::(TED 11 : :r. t··1PI..JT 1*:!' .1 Pl... .. l...L.
1.1

1813121 FOP
T : CL.O:::E 1

1=121 TO Ll...:INPUT#l .. TEXT$(I):NEX

18140 FOP 1=0 TO LL
1. :31 5~::1 I F TE::·::T:1t (I) () I1 (~! I! T1···1 EI···i TE::·::T'1::':: I) :::::L.EF

T$(TEXT$(I) .. LEN(TEXT$(I»-l)

1816121 I F n::::·::T:~; (: I ::. :::" C~~ I! Tj-iEJ~ n::'::':T:~: <I >::::: I! "

18170 NEXT I:PETURN

A standard data-file module.

Summary

The techniques used in this program of altering something while you are

looking at it on the screen bear some study since this is by far the easiest way

(for the us er) of alteringstrings and can be written into a variety'of

programs where string data, having been input has to be changed

including, if you wanted to, most of the programs in this book.

Texted: Summary of one-key instructions

Text entry mode:

Text characters may be entered at position of flashing cursor.

Left and right arrows move cursor over string.

'-' moves cursor to beginning or end of line. 'j' calis up main edit module.

RETURN places current string into the main body of text.

Main edit mode:

RETURN returns to previous mode

U,D and up and down cursor arrows move main edit cursor

DELETE removes line beneath main edit cursor

C copies line beneath main edit cursor

p sends text to printer

S saves text on tape

F formats text

30

CHAPTER2
Programming Tools

Having been introduced to some of the 64's capabilities we now depart
from the normal format of the book for a brief space to present three
tightly packed programs whieh will provide you with essential tools
enabling you to merge separate programs together ,renumber them and
delete whole sections with ease. The programs are densely packed for the
simple reason that, using the Merge routine, they are intended to be strung
together and then added to the end of existing programs without taking up
too much memory space. When you have finished merging in extra sections
to your program and renumbering it, the Delete routine will happily delete
itself and its two companions!

2.1 MERGE
This program, together with the other two presented in this short chapter,
is a must for those who intend to take modular programming seriously.
Using this tiny program hours of work can be saved by keeping useful
modules on tape and simply stringing them together with the pre ss ofa tape
recorder button. In presenting the program I am indebted to Steve Beats of
Commodore UK, who suggested to me the basic idea from which it was
developed.

There are no modules in the program-at eight lines it would hardly be
worth it and yet a program such as this will make modular programming
come alive for you.

What the program does is to piek up another program, or section of a
program from tape and to enter it into the 64 without danger oflosing what
is already there-unless the Hne numbers coincide, in which case the first
program will be overwritten.

MODULE 2.1.1

6 :~:: :::;(::1121 F P I t,n 11 ::':'J 11 ,;

6:::i:}:,:l CW'[H :I. 1 " 0.1 11 TEST 11
,I

63992 POKE 184,1:POKE 185!96:POKE 186!1:
r'::'C!I<E 15:?, 1 : PF.: I trI" I! ::1E!lll
63994 GET#l,A$:PRINT AS; :IF ST THEN 6399
9

31

The Working Commodore 64

63995 IF A$()CHR$(13) THEN 63994
f3::':996 FT I t·n 11 OOTO 6::::::39;;;;:;:::~1I.; : POKt.: 631., 1:;: : P
OKE 632J13:POKE 633J13
63997 POKE 198J3:END
6::::::399 CI.... O:~;E 1

Commentary

Line 63991: The file which this program will read is a listing of any other
program which was stored on tape using the following command: OPEN
1,1,2 'TEST' :CMDI :LIST. The CMD command means that anything that
would normally be output to the screen isactually sent to the file number
specified-in this case a file opened to the cassette recorder. The only
distinctive thing about the file is the secondary address, which is 2,
meaning that this is an output file whieh will have a special end of file
marker printed at its conclusion. The LISTing of the program is sent, not
to the screen, therefore, but to the cassette recorder, 1I10t in the same form
that a program is normally stored but in ASCII format or character for
character what you would see on the screen if the program were listed out.
When the cassette recorder stops, without switching off the cassette
recorder you must finish the file off by entering: PRINTffl: CLOSE!
which ensures thal the final characters of the program are printed and the
file properly closed.

Lines 63994-63995: Skipping over line 63992 for a moment, the merge
program now begins to piek up the characters of the program listed onto
tape, until it reaches a RETURN code, signifying the end of a line.

Line 63996: This strange line is actually the key to the program. Having
pieked up a line and printed it onto the screen, the program now prints, just
underneath the line, the command GOTO 63992 and the cursor home con
trol character. Following this, three RETURN codes are POKEd into the
keyboard buffer, the area of memory whiehstores any keys whieh have
been pressed but not yet acted upon, and the number three is POKEd into
location 198, which records how many keys have yei to be acted upon.
Having done this the program now ENDs. Or at least it would do, except
that the 64 now believes that RETURN has been pressed three times and
procccd~ to rcact aCWI tlingly. The effect ofthis is to move me cursor down
over the line pieked up from tape and printed on the screen and over the
GOTO 63992. The result is that the line is entered into the memory just as if
you had placed the cursor over it and pressed RETURN. The program then
begins again at 63992.

32

Chapter 2 Program ming Tools

Line 63992: This line of mysterious POKE commands is there to overcome
a basic problem-whenever a new line is entered to a program, all existing
files are CLOSEd. When the first line of the new program is entered, the
me to the cassette recorder is closed and any instructions to GET from it
wiIl result in an error. The file cannot be re-opened with a Bàsic command
because we are already past the file header, which would tell the 64 that a
file has been found on the tape. What the POKEs do is cheat a little and tell
the 64 that file number one, with a secondary address ofzero, is open to the
cassette recorder. The second line can now be picked up, and so on ad
infinitum.

Eventually the program encounters the end of file marker which means
that the listing is complete and then the second part of line 63994 (IF ST
THEN 63999) detects this and jumps to the last line. Normally the program
will stop with the error message OUT OF DATA. This means the merge has
been a success.

In actual use this program is by no means fast. It alternates between the
blank screen of tape-Ioading and flashes of lines at the top of the screen. It
needs a good tape, since 'a tape with drop outs may well crash the whole
thing. But given a little care this is a program you will co me back to time
and time again-try it and see.

2.2 DELETE
When developing programs which use similar modules to programs you
have previously entered, a useful ability is to be able to load the original
program and delete only those parts that are not needed for the new
application. This 12 line routine will allow you to do just that.

The routine is based upon the extremely clear and simple way in which
program listings are set out in the memory of Commodore computers.
Each program line in the memory begins with two link bytes of memory
which specify the start address in memory of the next line. This is followed
by two bytes which record the actualline number. What this routine does is
to scan along the line numbers between a start number specified by the user
and a finish number also user specified. When the address of the finalline
to be deleted is found, the program simply sets the next line address in the
first line to be deleted to point to the line after the last line to be deleted. The
effect of this is to produce a single line stretching from the beginning of the
first line to be deleted to the end of the last. Deletion can now be
accomplished by merely deleting the first line-all the others go with it.

MODULE 2.2.1

637ü(1 I t'~PUT 11 F I R:::;TL I NE TO BE DELETEIl : 11 .; D
1.
6:371 ~~I
.-,
.:::.

I t·4PUT "LA::H L I t'~E TO BE IJELETED;" ,; ti

33

The Working Commodore 64

63715 DEF FNDH(X =PEEK(X)+256*PEEK(X+1)
63716 DEF FNH1(X =X AND 255
63717 DEF FNH2CX =INT(X/256)
6:3726 L.A=2ü49
63730 lN=FNDH(L.A+2):IF LN(D1 THEN lA=FND
H(L.A):GOTO 63730
6:374~j mnAF.~T=lA
63750 LN=FNDHeLA+2):IF FNDHCLA)=0 THEN 6
:::::76121
63755 IF lN(=D2 THEN lA=FNDH(lA):GOTO 63

6376121 POKE DSTARTJFNHl(lR):POKE DSTRRT+l
.. Ft'~I-12 (Ui)
63770 POKE DSTART+4, 143:FOR 1=5 TO 10:PO
KE DSTART+IJ33:NEXT

Commentary

Line 63715: This function, which can be useful in a variety of contexts,
converts a two byte number of the kind that most computers work with,
into a normal decimal number in the range 0-65535. The two byte number
effectively has a base of 256, that is to say that it is composed of up to 255
units and a second digit of up to 255*256, in the same way that 99 is 9 units
and 9 times 10. Just to confuse you, however, the digits are stored back to
front, with the higher value byte coming second.

Lines 63716- 63717: These two user-defined functions do the opposite job
of transforming a decimal number into a two byte form.

Line 63720: LA is set equal to the start address of the first line of the
program.

Line 63730: LN is set equal to the value of the third and fourth bytes of the
line-the line number-and ifthis is less than the value of the first line to be
deleted then LA uses the two link bytes to jump to the start address of the
next line. The process is repeated until a line number is found which is equal
to or greater than the first line number to be deleted.

Line 63740: The start address of the first line to be deleted is stored in the
variablt: D:START.

Line 63750; Using the FNDH function, the variable LA shoots up the
memory from line start to line start, and with each jump the variabie LN is
set equal to the line number found there. IfFNDH finds a memory location

34

Chapter 2 Program ming Tools

with zero in it, where there should be a pair of link bytes, it has reached the
end of the program.

Line 63755: Each time a new line number is found, it is compared with the
number of the last line to be deleted. If the last line has not been reached,
the next jump is made.

Line 63760: If the program has reached this point, it has found the last line
to be deleted and into the two link bytes at DSTART it POKEs the address
of the line after the last line to be deleted.

Line 63770: The first character of the new single line block to be deleted is
made into a REM statment and a series of exclamation marks are POKEd
in after the REM to mark the line to delete.

The routine has now finished its job and all that remains is to enter the
number of the line marked and press RETURN-the whole block, from a
few lines to a complete program, will disappear.

In practice, this routine is best used with the merge routine in the
previous section of this chapter (load the merge routine and either add this
one or merge it), since this will allow the routine to be added to existing
programs from which you wish to extract some lines while discarding
others. It takes only moments to run and can save a lot of key pounding!

2.3 RENUMBER
One thing that everyone wants to do is to have neatly numbered programs
-somehow it makes all the difference between something that looks
professional and something which appears downright sloppy. Using the
relatively short program presented here, you can re nu mber to your heart's
content, though it isn't what you'd call fast and it does impose a simple
limitation on the range of prograHllines.

The program will renumber any program, including GOTOs, GOSUBs,
ON... GOTOs and GOSUBs and line numbers following IF ...THEN.
What it will not do is relocate the program in the memory, 80 it cannot add
digits to a GOTO (etc.) or subtract digits, for to do so means moving the
whole of the program that follows the altered address. It is not that that is
impossible, or even particularly difficult, it is simply that to be at all
practical it must be done in machine code, which is outside the scope ofthis
baok..

It is because of that limitation that all the programs in this book, which
were renumbered using this routine (where line numbers are irregular it is
because changes were made late in the process), begin at 11000, thus
ensuring that allline numbers have five digits.

35

The Working Commodore 64

The way in which the renumbered program is structured can be
controlled by the use of formatting lines within the program to be
renumbered. Look closely at the programs in this book and you will see
that the modules almost invariably start with a REM statement, and that
the first character after the REM is a ' fI:' symbol. The renumber program is
so designed that it starts renumbering at 11000, and continues in steps of 1°
until it comes across such a line, then it increments the line number to the
next 1000 up.

Not only does this make for easily readable programs, it means that you
can control the structure of the program to be renumbered. Say you have
an existing program from which you want to use three or four modules, but
the present line numbers do not conform to the structure you want for the
new program-not enough space between the modules, say, to merge in
something else you have on tape. By inserting two REM statements, whose
first character is a '#' and then renumbering, you automatically open a
gap of 2000 where the REM statements are located-hardly complex!

MODULE 2.3.1
63000 CLR:DIM ZZ(500Jl):LA=2049:PP=LA
63010 DEF FNDHeX)=PEEKeX)+256*PEEKeX+l)
63013 DEF FNH1(X)=X AND 255
63016 DEF FNH2(X)~INT(X/256)
63050 IF PP()FNDH(LA) THEN 63060
63053 LA=FNDH(LA): :NL=FNDHCLA+2):IF NL=6
3000 THEN GOTO 63500
63058 IF PEEK(LA+5)=143 THEN PP=FNDH(LA)

6::;::12159 PF'=PF'+4
63060 IF PEEK (PP)()167 THEN 63070
63062 S=0:IF PEEK(PP+l)=32 THEN 8=1
63064 IF PEEK (PP+l+S>(48 OR PEEK (PP+l+
~::;) >57 THEt·4 632~30
153065 GOTO ~':'3076
63070 IF PEEK (PP)(>137 AND PEEK(PP)()14
1 THEI'-·I 6320~3
63076 LET S=0:IF PEEKepP+l)=32 THEN 8=1
t:'::::~3::::(~~ 130$= 11 11 : FOt;,: I::::: 1+8 TO 5H3: I F PEEr::: (F-)F'
+1)(48 OR PEEr:::(PP+I»57 THEN OOT 0 63140
63085 LET GG$=GGf+CHR$(PEEKepP+I»:NEXT
63090 GG=VAL(GG$):Ll=2049:L2=FNDH(2051):
LL;:::: 11 ~'3(~~'3
6312193 I F L.2:::6::=':OÜ~~1 THEt·~ FR I tH "Ut·.IfIEF I t'~ED
l I I"~E AT L 1 t'~E 11 ,; Nl : STOF'
63095 IF l2~GG THEN 63100

36

Chapter 2 Pragramming Taats

63097 Ll=FNDH(L1):L2=FNDH(Ll+2):LL=LL+10

63098 IF PEEK(Ll+4)=143 AND PEEK(l1+S)=3

5 THEN ll=1000*INT«LL+1000)/1000)

!::.::.:~::t:;;t9 CiOTO 6::::0:~(~:

63100 lET ZZ(ZI,0)=ll:lET ZZ(ZI,l)=PP+S:

ZI==ZI+l

63110 IF PEEK(PP+S+6)=44 THEN PP=PP+6+S:

130TO 6:~:ü'?6

63135 GOlO 63200

1:::'3140 PP I '··ff' !··IClt·i·..·::HHt·-!IiI::Ii:;::D COr'W!HI'·m AT 1.... 1!""
11

Eli.; HL. : :;::;TOP
63200 PP=PP+l:GOTO 63050
6350ü LA=2049:ll=10000
63503 IF PEEK(lA+4)=143 AND PEEK(LA+5)=3
5 THEN ll=1000*INT«Ll+1000)!1000)
63505 IF FNDH(lA+2)=63000 THEN 63600

63510 rOKE LA+2,FNR1(lL):POKE lA+3,FNH2(

ll....)

63520 LET Ll=lL+10:lET lA=FNDH(lA):GOTO

1:;:35(13
63600 IF 21=0 THEN STOP
63605 FOP 1=0 TO 21-1
63610 FOP J=1 TO 5:POKE ZZ<I,l)+J,ASC(MI
DS(STRS(ZZ(I,0»,J+l):NEXT J
E::::':620' t·iE)::T I
1:;31:::'5~~1 STOP

Commentary

Line 63000: The array ZZ will be used to record the addresses of GOTOs
etc. that need to renumbered and the new number they are to be given.

Lines 63010-63016: The same functions as in the block delete routine. If
you merge the two together you will need to delete this set.

Lines 63050-63059: PP is a pointer that scans the memory for GOTOs etc.
rt starts at the beginning of the program area at 2049. Every time it reaches
the start of a new line the line address variabie (LA) is incremented. The
line number of the current line is stored in LN and the program stops
working at line 63000-the start of this routine. PP now jumps to the first
character of the line.

Lines 63060-63065: These lines check when THEN is found in the
memory, to see if it is followed, either immediate1y, or after a space, bya
number. The variabIe S simply records whether a space is present. If
THEN is not followed by a number, PP moves on.

37

The Working Commodore 64

Lines 63070-63085: If the code for GOSUB or GOTO is found the
program checks to see whether a space follows or not. GG$ is constructed
out of the digits of the line destination. Less than five digits produces an
error message at line 63140.

Lines 63090-63099: GG is set equal to the GOTO or GOSUB destination.
The routine now scans up the line numbers in the program from the start,
looking for the destination. For each line that is examined, the variabie LL
is incremented by 10, starting at 11000, and thus records what the line
number will be once the program is renumbered-the line cannot be
renumbered at this point since there may be another GOTO pointing to it.
When REM # is encountered LL increments to the next 1000 upwards.

Line 63100: At this point the correct line number has been found, so the
address of the GOTO is stored in the array ZZ along with its future line
number (LL).

Line 63110: If the 6th character after the GOTO or GOSUB is a comma, it
is assumed thatthis is an ON...GOTO-GOSUB and PP is moved on and
the new line destination picked up by an earlier part of the routine.

Line 63200: The process continues, with PP moving up the memory until
Line 63000 is encountered.

Lines 63500-63520: These lines start at the beginning of the program and
renumber the lines only (remembering REM #).

Lines 63600-63650: All that remains is to take the addresses of all the
GOTO-GOSUB destinations out of ZZ and to POKE the new
destinations into the five bytes following each address-they have already
been calculated.

TlIuuglI Llds prugraHl llut:s HUL l:umpart: lH spt:t:ll ur flt:xilJlllLy wlLll a
good machine code utility, it does do the job, as the programs in this book
illustrate. If you do not own a machine code renumber routine then I
predict that you will come back to this routine more often than almost any
you possess.

38

Chapter 2 Programming Tools

When merged WÎth the two previous utilities, with all three isolated from
each other by STOP statements, you will have built for yourself a powerful
three function tooI which will make your programming more pleasant and
your programs more presentabIe.

39

CHAPTER3

The Colourful 64

The Commodore 64 provides an almost bewildering array of graphics
capabilities. The shapes and colours that it can display are enough to cover
almost any imaginable need and certainly enough to keep the amateur
artist occupied for a lifetime. In this chapter you will find four graphics
programs which will allow you to explore the world of the graphics
character set, user-defined characters, sprites and bit-mapped graphics. A
mere four programs are by no means the last word in what the 64 can
achieve so the programs are designed as tools, whose object is to allow you
to feed into your later programs all the colourful features that willlift them
out of the ordinary run.

3.1 ARTIST
Few home micros have a graphics character set as useful as that of
Commodore machines. Using the combinations of characters available
from the keyboard it is very difficult to think of anything that could not be
drawn in some shape or fashion. This is extremely useful when livening up
the output of the most mundane programs, especially when combined with
the 64's excellent colour eapabilities.

One limitation to all of this is in the ereative proeess of aetually
developing graphics displays. Of course, this ean be done purely with print
statements in a program, but getting the print statements exactly right,
with a variety of eolour commands, reverse eommands and so forth, with
eaeh line having to be defined separately ean be an extremely tedious
process. What is really needed is a way of using the screen rather like an
easel, painting on graphics characters in a variety of colours, erasing,
changing at will and then, for the sake of posterity or at least for the sake of
other programs which eould use the design created, saving the design onto
tape. All of this the eurrent program sets out to do.

Along the way you will piek up a fair amount of information about how
to manipulate the screen and colour memory, together with useful memory
locations for controlling such characteristics as print colour.

Artist: Table of Variables

The current cursor position
CO(3) Co-ordinates of two corners of design to be saved
CC

41

The Working Commodore 64

CT 	 Temporary storage of cursor position
CU 	 Current cursor colour
Dl$ 	 Values of characters in design to be saved
D2$ 	 Colour values of characters to be saved
D3$,D4$ 	 Temporary copies of Dl$ and D2$
MODE 	 Defines which of a variety of colour characteristics is

being addressed
PC 	 The colour of the character in position PP
PP 	 The original contents of the current cursor location
PT 	 Location in memory of the two corners held in array CO

MODULE 3.1.1

11880 REM#*****************************
11810 REM 	 VARIABLES
11020 REM****'*'***********************
11030 R$~CHR$(13)

Hardly fair to caU this a module, but its presence does mean that if you
decide to develop the program further, there is a proper area set aside for
the necessary variables. The string actually defined is a standard-data file
separator.

MODULE 3.1.2

12008 REM#*'*,******,*",,********,*****
12818 REM 	 CURSOR~MOVE!PRINT
12020 REM*'****'**'**'****"*********'**
1. Z~~JJü PR I tH IJ ::']" ;

12048 POKE 650,255:GET Af

12058 CC=PEEK(211)+PEEK(210>t256+PEEK(28

9):PP=PEEK(CC):PC=PEEK(CC+54272)

12860 POKE CC,42:POKE CC+54272!CU:FOR 1=

lT015:NEXT:POKE CC,Pp:POKE CC+54272,PC

1. ;;;:070 I F !:~i:l::::: 11 1I THEH 12(14(1
t ;;?Ü:::::0 I F CC) 19:::::~:: AI··m t1~~:::::: IJ :~r' THE]'~ 1;~:li4(i
1;;~!2I91~1 I F C[:::::;;;::!2I2:;: fiHD FU:::::: ".," THEH 1;;;::040
12108 I F CC::::: 18;;-~4 F"it·m l=i$::::" U' THEt·4 1. :~~0·::j.I;::1
1. 21. 10 I F CC(11;~11;4 l=1r·l(I l=i:t.~ ":l" THEt·~ l :~:I2t·::I·~~
1212(:;1 I F fl::l""":l" OF;;: H:t·..., 11 :L'f.!" OR FI:iJ;:""'" ~ft" OP fi
:f.:::: 11 11" THEN F'F.: I tH 1:::1:$.; : OOTO 1 ;;~1~11::j.1~1

12130 IF A$=CHR$(133) THEN MODE=l
12148 IF A$=CHR$(137) THEN MODE=?
12150 IF A$=CHR$(134) THEN MODE~3
12155 IF A$~CHR$(138) THEN 12030

42

11

Chapter 3 The Colourful 64

12160 IF (MODE=l OR MODE=2 OR MODE::::3) AN
D A:t:~:: 11 .~".iI n-IEr'~ t'10DE=t'10DE +" :5 : CiOTO 12€140
12170 IF A$=CHR$(135) THEN INV=(INV=0)
12180 IF A$=CHR$(139) THEN MODE=6
12190 IF R$=CHP$(136) THEN MODE~7
12200 IF A$=CHR$(140) THEN MODE=8
l:~::;-:10 IF 1-1ODE:::1 Ht·m fq::)::::"l" fit·m !::I::~{::::":::l\

THEN POKE CC+54272,VAl(At}-1:GOTO 12040
12;;~;?O I H1ODE::::: 1 • 5f=tt·UJA:$}= 11 1." Flt·m nJ(:::: I! :::; 11 T
HEN POVE CC+54272,8+VAL(AS)-1:GOTO 12040
1 2 ~t312t I F t-mDE:::: ;;~ 1::1 WJ ::1::1:.)::: " 1 Il j::II··.jl! fU:.C:: ! I :::: 11

THEN POKE 53281)VAl(A$)-1:GOTO 12040
1. ::?;:?r.~·O I F t''lCiDE::::;;:. ~i AHD A:n·::::; 11 1. 11 m··1]) fi$:(:::::" H

TH[}.I POKE ~:i:3;;~e:l..' 8-HhlL':: FI$:) --1 : GOTO 1;?I;:H~~I
:l ;?;~:5~::1 I F t'IODE::::::;: !==tt·m f'1:$=)::::!1 1" AHD A${:::: 11 !:::: 11
THEN POKE 646,VAl(A$)-1:GOTO 12040
1. ;;? 26 ~::i I F t'10D E:::::3 ,,:i m·m l==t$::::.::::: 11 :I. mm !:ll'::: :::: 11 :::;:11

" T\-"IEJ·! F'ot:::E 646., :j+1•• ,1 liL (A$) --:I. : GOTO 1;;::~34~?1
1. ;2;;;-~7~~1 I F j'-10DE{)r5 OP (A$() 11 R11 Ar·m Fl:'!:.() 11 n 11

m·m I::I~~:':::::> 11 :;:; "::' lHn·! :i. ;~::~:;~:O
:!. ;;~;~::;::tj I F A~~:::: 11 F.: 11 THE}~ C;O::;::UB 13121~:'1~~1
1;?;?Stü I F 1::1$::: 11 IJ 11 THE~··I GOSUB 13[11~;(:1

:I. ;:?:3~:'i~?I I F:- !::!::~:::" ::::!I ïHE}~ CiCl:::::UB 1. 400[1
12310 CC=CT:GOTO 12040
12:;:2(1 I F t-'IODE::::::;: f:I~·m A$):::::" 111 AHD f"I::\:~<:~:!I :::: 11

THEN CU::::VAL(AS)-l:GOTO 12040
1;?:::::~:121 IF It-.lV=-l THEN PPlt··iT "~~";
1. 2340 F'F.: I HT Rf..: .:I1 !!!!!ll!

12350 GOTO 12040

This module is really all that is needed to turn your screen into a graphics
easel. lts purpose is to allow you to move a flashing cursor around the
screen, printing characters, changing them, erasing them, changing
colours for foreground and background of characters

Commentary

Lines 12040.,....12070: This routine provides a flashing cursor under user
control.

Line 12040: This POKE sets the repeat characteristic so that a key, once
held down, will continue printing the same character . The second part of
the line receives any single character input from the keyboard.

43

http:j::II��.jl

The Working Commodore 64

Line 12050: CC is set equal to the address in the memory of the current
print position. PEEK(211) gives the position along the line (0-39) while
PEEK(210)*256 + PEEK(209) gives the memory address of the beginning
of the line. PP is set equal to the screen code of whatever is currently
occupying the position where the cursor is about to flash. PC is the colour
of the character in that position.

Line 12060: An asterisk, screen code 42, is now POKEd into the position
where the cursor is meant to flash and the current cursor colour CU, is
POKEd into colour memory at the corresponding position. A short timing
loop keeps the asterisk on the screen for a moment, then the orginal
character (code PP) and the original colour (PC) are rePOKEd into the
memory.

Line 12070: If no key has been depressed then the cycle is repeated.

Lines 12080-12110: These lines check that if cursor move arrows are
input, the cursor does not attempt to move off the screen.

Line 12120: If a cursor control is input and passes through the tests in the
four Hnes above it is immediately printed and the program returns to the
flashing cursor routine.

Lines 12130-12200: Using the function keys on the right of the keyboard
as inputs, these lines allow the user to specify different modes which permit
different colour characteristics to be set.

Line 12130: Pressing key f1 puts the program into MODE 1. In this mode,
pressing any of the keys 1 to 8 will redefine the colour of any character over
which the cursor is currently placed. The colour will be that indicated on
the front of the key.

Line 12140: Pressing f2 allows the same procedure to rede fine the screen
background colour.

Line 12150: Pressing f3 allows the resetting ofthe print colour by the same
procedure.

Line 12160: Since there are in fact 16 colours available, input of the left
arrowat the top left hand corner of the keyboard while in MODEs 1,2 or 3,
redefines the mode so that entry of keys 1-8 will provide the colour that
would normally be obtained by pressing that key together with
Commodore logo key. The characteristic redefined will be the same as that
referred to by the main mode number.

44

Chapter 3 The C%urfu/ 64

Line 12170: On pressing f5 the inverse characteristic is set or reset-thus
allowing inverse characters to be printed.

Line 12180: On pressing f6 the program will allow the saving of the
design created. The correct procedure will be explained in detail later.

Line 12190: Pressing f7 does nothing at all except to redefine into a non
effective mode. This allows the user to print the numbers 1-8 on the
screen rather than redefine a colour characteristic.

Line 12200: Pressing f8 allows the user to change the cursor colour to
any of the first eight colours. This is useful if the screen colour has been
re-defined in such a way that the cursor is no longer clearly visible.

Lines 12210-12220: If MODE is 1 or 1.5 then the colour input is
POKEd into the colour memory for the current square.

Lines 12230-12240: If MODE is 2 or 2.5 the new colour code is POKEd
into location 53281, which sets the screen background colour.

Lines 12250-12260: If MODE is 3 or 3.5 then the new colour code is
POKEd into location 646, which dictates the current print colour.

Lines 12270-12310: When in MODE 6 this routine relates to the saving
of either small or large designs. Input of Rallows the definition of a
rectangle of screen to be saved. D saves a small-scale design. S saves the
whole screen to tape.

Line 12310: CT is used to save the current cursor position, which may be
altered during the SAVE routine.

Line 12320: If MODE is 8 then the new colour code is stored in the
variabie CU.

Line 12330: If the inverse characteristic is set (INV = -1) the RVS ON
control character is printed, thus inverting the next character to be
primea.

Line 12340: If the program has reached this point then whatever
character was input is printed onthe screen and the reverse off contral
character is printed following it.

45

The Working Commodore 64

Testing Module 3.1.2

After entering this module you should be able to create designs on the
screen at will, using the whole character set available from the keyboard.
All the colour redefinition commands should be available but you will not
yet be able to save any design you create.

MODULE 3.1.3

f3000 REM#*****************************
13010 REM SAVE DESIGN
13020 REM******************************
:1 :::1?!:~:0 13ET T~~:: J F T~~::::" 11 THEt·~ 1:31;:r~:!J
131214'.3 IF T::~() I! 1" ,:::!t-f[i T::I::()":?" THH·! kETI.. H;;~t··1
13050 COCVALCT$)*2-2)=PEEKC211):COCVALCT
$)*2-1)=INT«CC-1024)/40):RETURN
1. :306 ~~1 F.: I::: 1"'1 ~P: :+::tjl::+::1jI: **:i'::+::+: *:+::+::+::+: :+::+::+::+: ~~ ~~:+: :+: :$: :I~:+:*:+i:+::+:
13070 CT=CC:POKE 646,CU
13080 IF CO(0)(=CO(2) AND CO(1)(=CO(3) T
HEt·i 1:3:i. 1~?i
1:30~-:;tü PP I tH 11 ::F.:t::CTfH··!OLE I r'1PF.:Or~'Efon.. "" DEF I !···i
E::D. " .; ; p:' 0F:: I ~~: 1. TO 100(1; t'~E::n
13UK1 PRHH ":::::!

".; : F:f:::.Ti...IRH
13118 IF (CO(2)-CO(0)-1)*<CO<3)-CO(1)-1)
.(;;?:-:;:I. T1···1 H·! 131.40.

]. ::~: 1~~:~?I F'P I I'H 11 ~:~[lE:;:; I Or··1 TOO L.fiF.:CJE.".; : FOR I::::

1. TO 11~W:l(1: HD:;T
131.JÜ F'RltH 1I::::i

11 • .'
13140 FOP 1=1 Ta 2:PT=1024+40*CO(I*2-1)+
CO(I*2-2):TC(I)=PT:TC(I+2)=PEEK(PT)
13150 POKE PT,42:POKE PT+54272,CU:NEXT
13160 HW!..!T ";:::TTi'''II:::::;:;E PO UH:;:; Cl. 1<" .;: \' ""lD : 11 .;

G!$; I F o::~:::::: !i \' iI TH[}., :t:31 7121
1:316;;;:: Pr-:~ n1T 11 ;~I

Ii : FOP I::: 1 TO 2: POKF: TC (I :;. , TC (1+2) : t··IE)::T
13:!. 64 RETI...IPt·~
13170 IJ 1. :l::::: 11 11 : D;?::~:::::: 11 IJ : FOP I ::::CO (1 ::. ,,;,,1 TCI CCI (
3)-1:FOR J=CO(0)+1 TO CO(2)-1
1:;1 1;;:;0 TI 1. ;f:'''''D 1.'};.+Ci IH,+- (, r'EEI{ ,;: 1. ~');?"!'+·+fi*:[1 ,J> :;. ; r'u
KE 1024+40*I+JJ42
1.3190 D2$=D2$+CHR$(PEEK(55296+40*I+J»:P
m:::E 5~5;;:~9(:"+A[I* I +.,J, 1;::1 : I···IE::<' .J.,:r.: Pf~: I t·n 11 :1" .;
13200 D3$=Dl$:D4$=D2$:FOR I=CO(l)+1 TO C
O(3)-1:FOR J=CO(0)+1 TO CO(2)-1
46

http:F:f:::.Ti

Chapter 3 The C%ur/ul 64

13210 POKE lB24+40*I+J~ASC(LEFT$(D3$~1»)
:D3$=PIGHT$(D3$~LEN(D3$)-1)
13220 POKE 55296+40*I+J.ASC(LEFT$(D4$,1)
):D4S=RIGHT$(D4$,LEN(D4$)-1):NEXT J.1
1. ::::?3ü PR I tH II;;::ITH I::: I S ~,.IHAT I~::: BE I r"!O :::fl'iE
D.. " : FOP 1:::::1 TO lO~~10: t··IE::.::T
1:::::~~~~+~~l I '···IF'IJ 'T 11 ~*.I()!:~ I TIClt··, "rF1F'f::: C:CtF.:r-;::E:C:Tl."",I" 'T
HEt-~ RETUF.:t·~:".; 1):$
1. :~::?:;0 pr.;' I t·n· 11 ~

:I. :::::::~:6ü OPEt·~ 1..,:1.., 1. • "fifH I ~::T 11 : FOP I :;;;:~3 TO :B: F'
RINT#l,CO(I):NEXT:PRINT#I,LEN(Dl$)
13270 FOP 1=1 TO LEN(Dl$):PRINT#I,ASC(MI
D$(DIS.I,I» RS ASC(MID$(D2$,I,l»:NEXT
13280 CLOSE1:RETURN

The purpose of this module is to allowasmali design to be defined on the
screen and then saved economically.

Commentary

Lines 13030-13050: If, in the previous module, MODE 6 is set and then R
pressed these three Hnes accept the input of a further character which must
be a 1 or a 2. If 1 is pressed, the current cursor square is defined as the top
left-hand corner of a rectangle to be saved, 2 defines the bottom right-hand
corner. These two squares are actually outside the design to be saved, they
define an outside border to what is to be saveà. The positions in memory of
the two design corners are stored in the array co. Note that this array has
not been declared since it has less than 10 elements-simply inputting a
value to it will set it up satisfactorily. CO(O) or CO(2) is set to the position
ofthe cursor in the row, as indicated by PEEK(211). CO(1) or CO(3) is set
to the current screen Hne number + (actual memory position-screen
start)/40.

Lines 13060-13280: These lines allow the saving of the rectangle
previously defined.

Line 13070: The print colour is set temporarily to the colour of the cursor.

Line 13080: A check is made that avalid rectangle has been defined ie that it
has length and width). If not, an error message is printed.

47

The Working Commodore 64

Line 13110: Data for the design will be temporarily stored in a string so a
check is made that the string will not be too long. An error message is
printed if the string is likely to be toa long.

Lines 13140-13160: U sing the co-ordinates contained in the array CO, the
corners of the rectangle are rePOKEd onto the screen and the user is asked
to confirm the correctness of the rectangle to be saved.

Line 13170: The two strings which will be used are initialised. The two
loops combine to mean that J characters (the width of the design) will be
read from the screen for I lines (the height of the design).

Lines 13180-13190: On the basis of the addresses provided by the loops,
the screen and colour memory are PEEKed, and the values added to the
storage string in the farm of characters of that code value. The two strings
thus rormed would make no sense printed out, they are merely a simple
way of temporarily storing a series of values without having to set
complicated pointers to a position in an array. After this is done, an
asterisk is POKEd into the screen location and its colour characteristic set
to black, making the processing of the design visible.

Line 13200: A copy of 01$ andD2$ is taken, then two more loops areused
to POKE back onto the screen the characters which have been stored,
together with their colour characteristics. Each time a character is POKEd
back onto the screen the two strings are stripped of their left-hand
character, so that it is always the first character of the string which is used.
It is this stripping process that necessitates the creation of a temporary
copy of the two original strings. The sole purpose of these two loops is
really to re-assure the user that the design is going to be saved correctly.

Lines 13240-13280: The design is saved onto tape.

Line 13260: The values in the array CO are saved, together with the length
of Dl$ (which is also the length of D2$).

Line 13270: A lOOP equal to me length Of Dl$, saves the values of the
characters of bath strings (ie the values taken from screen and colour
memory). Unfortunately the two strings themselves cannot be saved onto
tape since they may contain non-printing characters which the 64 is not
capable of saving in string farm.

48

Chapter 3 The Colourful64

Testing Module 3.1.3

You should now be able to save a design onto tape. If the redisplay of the
design is satisfactory, it is likely that the saving is being done correctly, but
this can only be fully tested if you subsequently enter at least the relevant
module of the program Words, which is intended to make use of the
designs so created.

MODULE 3.1.4

14000 REM#*****************************14010 REM SAVE SCREEN
14020 REM******************************
:I. 4031:~1 PF.: I TH ";:P()::; I T I Cil"~ TAPE CORRECTL."r'.. T
HEt',1 f;,:ETUf';::r'~: 11 ,; 1)$
1. 41214ü pr:;:: I I'·n IJ;~

11 ,; : OPD',I :l. .. 1 .. 1. .. 11 SCREEt,~ 11

14050 FORI=0T0999:PRINTll .. PEEK(1024+I):P
RINT#1 .. PEEK(55296+I):NEXT:CLOSE1:RETURN
If, during the execution of Module 2, MODE 6 is set and S then pressed,
this module will ensure that the whole of the contents of the screen are
saved to tape. This is done by the uncomplicated method of PEEKing the
contents of the memory from 1024 to 2023 (the screen memory) plus the
equivalent colour memory locations and saving the values. A later
program can read the values from tape and POKE them back into the same
locations.

Summary

This program is capable of providing a great deal of fun but its greatest
contribution is the capacity that it gives you to design complex graphics
with ease, editing them at will and simply calling them up for use in
subsequent programs. You should also, based on the techniques employed
here. have no difficulty with subsequent programs of your own which need
to POKE the screen and colour memory.

Going Further
1) No provisionis made to save the screen background colour-it would be

a simple matter to add this.

2) Why not add a display on the bottom line of the screen to show which

mode is currently set.

Artist: Table of one-tey commands

f1 Allows redefinition of colour of character under cursor

f2 Allows redefinition of screen colour

f3 Allows change of print colour

49

The Working Commodore 64

f4 Erases current design
f5 Sets or resets RVS
f6 SAVE mode
f7 Dummy mode
f8 Allows change of cursor colour

Allows entry of second colour set in modes 1-3

SAVE mode:
R then 1 or 2 defines corner of rectangle to be saved
D saves small scale design
S saves whole screen

3.2 CHARACTERS
No matter how good the character set provided by a home micro, there is
bound to come a time when the character you want is not available. It may
be that you want to print in another language and use characters with
accents, or in abstruse mathematical symbols, or it may be that you need
something rather special to put the finishing touches to your latest game.
Whatever it is that you need, the 64 is waiting to meet that need with its
user-defined character capability.

When the 64 is started up, all its potential characters are stored in its
Read Only Memory, in a section beginning at address 54248. Each
character takes the form of eight bytes of memory and the 8*8 grid of dots
making up each character is represented by the individual bits of the eight
bytes set aside for each character. For instanee, if the eight bytes of
memory for aparticularcharacterwere 128, 64, 32,16,8,4, 2and 1then, in
binary notation they would be 10000000, 01000000, 00100000, 00010000,
00001000,00000100,00000010 and 00()()()()()1. Now place those values in a
grid:

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

The bits which are set (or on) define a character (in this case a diagonalline)
with each set bit being translated into one pixel on the screen.

50

Chapter 3 The C%ur/u/ 64

That's all very weU but since the character data is stored in Read Only
Memory, it cannot be changed-it is permanently set wh en the ROM chip
is manufactured. Fortunately the 64 provides a neat way around the
problem but to understand it we first have to examine the method by which
the video display is generated.

All the tasks relating to the video screen on the 64 are handled by a
separate chip, the 6567 Video Interface Chip (or VIC II chip). This
workhorse handles both the screen itself and the characters which are to be
placed onto the screen, defining an area of memory in which the screen
information will be stored and another it will draw up on for character
data.

Contrary to what you might expect, the VIC II does not draw its
character data from the ROM at address53248. The reason for this is that
the VIC II is only capable of perceiving 16K ofmemory at one time, so with
the screen memory in its normal position at 1024-2023 in the memory,
character data must be drawn from somewhere between 0 and 16383 in the
memory. To achieve this, the operating system cheats a little and makes the
VIC 11 believe that there is copy of the character set data located at
4096-6143. Whenever the VIC II looks at that memory area it detects the
character set data, despite the fact that in actual fact that area of memory
will probably be filled with a Basic program.

This may seem a little abstruse but it is ofvital importance since it means
that, rather than looking for its character data in the ROM, which cannot
be altered, the VIC 11 looks for thedata in Random Access Memory
(RAM), that is to say memory that the user can get at and alter. Of course
it's not quite that simpie. We have alreadynoted that when the VIC Illooks
at the memory area from 4096 onwards, it is not aetually those addresses
that it sees but an image of the eharaeter data in the ROM. Fortunately, this
is a feature of only two bloeks ofmemorywithin the 16K bloek, 4096-6143
and 6144-8193. Ifthe VIC II is instrueted to seek its character data from
any ofthe other 2K blocks within the total16K, then it will not see the ROM
image but will take the data which is actually in memory and treat it as if it
were the eharacter set.

The question now becomes, which block shall we specify? The first one
available is 2048-4095 but this has the slight drawback that it is where the
Basic program starts and POKEing it with new character data will crash the
program. We could use the bloeks at 8192, 10240,12288 or 14336, but
unfortunately this would mean that we would have to limit the area
available to the Basic program quite drastically since otherwise there
would be a danger that a large program wouW overwrite tl1~ area uscd fur
characters. The solution adopted here is to move the whole area that the
VIC II chip addresses further up into the memory.

You will remember that the VIC II is capable of seeing a 16K chunk of
memory at one time, however it is not fussy which 16K block it sees. There

51

The Working Commodore 64

are four such blocks, beginning at 0, 16384,32768 and 49152. Moving to the
block at 49152, while providing the maximum memory area for Basic,
presents the problem that that is where the ROM is, so we shall ask the VIC
11 to address the 16K block starting at address 32768. Having done that, all
that remains is to specify where in that block the character data will be
taken from and wh ere the screen data will be located. There will now be
30K of memory available for a Basic program (2048-32767) and the
potential for a user-defined character set in the RAM above 32768,

No doubt all this seems inordinately complicated, In fact it is simply a
matter, given the 64's flexible memory structure, of a few POKEs and the
job is done, On the basis of the changes wrought by those POKEs, the
program which follows will allow you to completely redefine all or part of
the 64's character set and to store your new character set so that it can
picked up and used by other programs,

Characters: Table of Variables
A$ Single key command obtained by use of GET
Cl Original colour of screen at location CC
CC Current position of flashing cursor in the screen memory
CH Number of current character in character set
CP Pointer to location in memory of character CP
MM Value input to change CP
PI Row of cursor position on screen
P2 Column of cursor position on screen
PP Original contents of screen at location CC
TT«7,7) Used to allow the manipulation of data for current

character

MODULE 3.2.1

11000 REM#*****************************
11010 REM RE-ARRANGE MEMORY
1102011030 REM******************************paKE 53281J6:PRINT CHR$(142)

11040 POKE 52J128:POKE56,128

11050 POKE 56334,PEEK(56334)AND 254

11060 POKE 1JPEEK(1) AND 251

11070 FOP 1=0 TO 2047:POKE 32768+I,PEEK(

11 rll?~~l POKE 1,PEEK(1)OR4
F"V "E ~- ,.' ,'., ,-, i nj:"rl/" C' '·','·,'-',,1 " nr~ 11.:l. Q19(i 1... r!.,.... ..~II::I ,.~l .~:II:.~ .. r'o C:•••.• I" ••:' ~~t ...~I ..:j"'") ... 1"1:,

:I. :I. 1~::10 POKE56578JPEEK(56578)OR3

11. 110 POKE 56576, (PEEK(56576)AND252)ORl

111 ~~:~~I F'O!<E 64::;:: .. 136

J 113~j POKE 53272,32

52

Chapter 3 The Colourful64

The purpose of this module is to accomplish all the changes to memory
structure specified above and to copy an initial character set into the RAM
area specified.

Commentary

Line 11030: This sets the machine in capital characters mode, since only the
first of the two available character sets on the 64 is going to be usabie once
the VIC 11 stops looking at the ROM image.

Line 11040: These two POKEs set the top of the area available for the Basic
program in such a way that any program entered will not be capable of
interfering with the area of memory set aside for characters. 30K of
memory is available under this setting.

Lines 11050-11060: These two POKEs switch off the keyboard scan so
that no interrupts can disturb the next section of the program and then
make the ROM character set visible to the program by switching off the
normal process of input and output. During the loop that follows, the only
way to stop the program will be to switch of[the machine.

Line 11070: This copies the character set from ROM to the memory area
beginning at 32768-this involves the transfer of 2K bytes.

Lines 11080-11090: These switch the normal input-output regime back
on and restme the normal interrupts.

Lines 11100-11110: These two POKEs first ready the VIC 11 chip for a
change of memory block and then specify Block 1 (32768-49151).

Line 11120: This location is outside the VIC 11 chip and is the operating
system's guide to where screen memory is to be located-in this case
starting at 256*136 = 34816.

Line 11130: The location at which the VIC 11 expects to findboth screen
and character data within its 16K block is dictated by the contents of
address 54272-the upper four bits for the screen, the lower four for the
character set. This POKE sets the upper four bits to 0010, which signifies
the IK block starting at 32768 +2048 for the screen, and the lower four bits
to 0000, specifying that character data will be taken from 3Z7015 +O. Ta
arrive at other possible locations in the 16K bloek, the formula to dictate
the POKE would be (SCREEN START-BLOCK START)/1024)*16 +
(CHARACTERS-BLOCK START)/2048). The screen can only start at a
1 K boundary within the block and characters at only a 2K boundary. Note

53

The Working Commodore 64

that we could have left the screen at 1024 and the character memory at
4096, except that in this 16K block of memory as in the block starting at
address zero, the VIC 11 sees a ROM image at 4096 onwards.

Testing Module 3.2.1

The test for this module is quite simpIe. Run it and the machine willlock up
for a while-there is nothing you ean do to interrupt it. When the READY
comes up on the screen, nothing should have changed-which shows that
the module has worked! Ifthe module has not worked, then the screen will
be filled with garbage.

MODULE 3.2.2

12000 REMI'****************************
12010 REM PRINT GRID
12020 REM************************,*****
12030 CH=0:DIM TT%(7,7)
1. :~~040 FP BH "::D".;: FOP I ~~:::[TO :::;:: F'R I NT ~I11

In II!I'I!IIIIIIIIIIII ": t·~ E;>{T
12t150 PPltn " u ~

12060 CP=32768+CH*8
120?~~1 FR I tH ";::''Iti'' ,: : FOP I ::::CP TO CF'+7 : FOP J
::::7 TO (I STEP ,-1
1. ~:~3:::~1 I F (PEE!<: (I > r:/t·m ;;: tJ) ::::;;? lJ i 1--1 Ei"i F'R I r'~
T "~ ",:
1. :~~12t90 I F (PEEI< 0:: I > Flt·m ;;;: tJ::' :::-~O H-IEt'i Pr(I j'H

U!!!!! !I ,;

12100 NEXT J:PRINT:NEXT I
1: ;;2:1. :I. (~I F'R I tn 11 ::]!fl~::HARACTER 1··4I...1t'lBEF.:: 11 .: CH
1,;;~ 1;;?0 II-'4PUT 11 :~lRJt'1BEF:: TO t'K",,..E PO I tHER : 0:: ~~I::::
PEDEF" ::0 : " ,: r1t'1 : CH=CH+t1t1
12130 IF CH(0 THEN CH=0
12140 IF CH)255 THEN CH=255
1,2150 IF MM=0 THEN 13000
:I. ;~~ 16121 130TO 1:~:la4ü

There are many ways in which new characters can be entered into the
character memory. You can, if you wish, draw them on an 8*8 grid,
translate the Hnes of dots into binary and then into decimal, enter the
fîgures as data statements and then POKE them into the memory.
Fortunately, it is much easier to get the 64 to do the work by drawing the
current character grid on the screen and then allowing it to be easily
manipulated. This module draws the character grid, the next one allows
manipulation.

54

Chap/er 3 The Colourful64

Commentary

Lines 12040-12050: An 8*8 box is outlined in the top-left hand corner of
the screen.

Line 12060: The position of the current character's data is calculated.

Lines 12070-12100: An eniarged version of the current character is
printed in the box outlined. Note the use of AND here to get at the contents
of individual bits within the eight bytes of memory for the character. All
that AND does in this context is to compare two binary numbers and
produce a third which has only those bits set which were also set in both the
two numbers originally compared. Thus if 193 is ANDed with 129
(Binary:ll000001 AND 10000001) the result is 129 since bit 6 in the first
number is not set in the second as weIl. ANDing the value of a byte with
21(J) where J is from 0 to 7, will show whether bit J is set or not-remember
that bits are numbered from 0-7 right to Ieft.

Lines 12100-12160: The number of the character displayed is given and
the us er has the option to move the character pointer within the 255
characters. If zero is input, the program moves on to the next module.

Testing Module 3.2.2

Once again, the test is quite simpIe. If the module has been correctly
entered, running the program will result (af ter a pause) in the printing ofan
enlarged version of '@' on the screen. You should also be able to page
through the other characters.

MODULE 3.2.3

1301013000 REM#*****************************REM REDEFINE CHARACTER

13020 REM******************************
13121::::ü F'F:: I tH 11 :l

TrJ" : REI·'·' 4(1 SPACES

1. 3Ü40PP UH "~ ... I ..' TO H·,'.,.'EF.:T".,!.," IVrI1" TO
t'1 I RRO~::")J .' =-.,.~: ..' TO RETURt·.11I11

1. ::::(150 FR I tH 11 IV 1" TO I t'iK I t'i ::aX.lARE 11 : PR I H
T ":::11 ... ~) ..' TO BL.f!HI<: 3G!UARE"

13060 PRINT "5WT" TO TU F::t·i" .' .' .' =!.'p., TO PL.
11

neE::' IH "'iEt'10R"r' !!
1:~Wf?(1 PF.:HH "IB"·])'" TO ::;;A"/E Ui A DF1TR FILE
!I ...~" =-" C..' TO PI CK I...IP ::;ET FF.:Ot'1 TAPE 11

1. ::;:0:30 F'R I tH 11 IW·/'··I·' TO HORr1AL I !:;E t1EI"10R'r' FIt--!
D Erom!!

55

The Working Commodore 64

:I. :3 1(1(1 PF;: I t-n "~ CI...IP::;OP ':ippm'.I:::; TO 1""10 "/E !l
131 H~I PI:;;:HH "!~II.;

1:31 20 GET 11$
13130 CC=PEEK(211)+PEEK(210)*256+PEEK(20
9):PP=PEEK(CC):Cl=55296+CC-34816
13140 C2=PEEK(Cl)
13150 POKE CC,42:PCWE Cl,l
13160 FOR 1=1 TO 15:NEXT:POKE CC,Pp:POKE

Cl., C:;;:: : I F 1::1~t-:::: 1I!1 THEI"-·l 1. 3 1 20
13170 Pl=INT«CC-34816)/40):P2=CC-(34816
+4(1:I\,:P1. ::.
1.:31. eü I F .:: P 1)~21 Hr·m A:t~.:::":l"::' OP .:: P 1,(7 Fii"U)
Fi:t::::: 11 :~l;;) THEJ·I PI~: I t·n fi$.; : GOTO 13120
1. 319121 1 F (P~:A] ANI! A~~::::" m~"::. OF.: (P2<::? Ht·.jfi
1=1:$:::::" ~II"::' THEl1 FR I t··IT f:i:l.; : OCiTCI 1 :~:: 12~j
1. ::::;?f:KI I F A:$:::::: 11 111 THEI"-4 er;:: I t-n 11 ~i~~ ";
1:::::21121 IF A$::::::"lj" THEl4 PPIt-.JT "~ rJ".;
1. 32~"2~"3 I F Fi:$<::> " I 11 THEt'1 1. :?::~::f:l?I
13230 FOR 1=0 TO 7:FOR J=0 TO 7
13240 IF PEEK(34816+I*40+J::'=32 THEN 1326

13250 POKE 34816+40*I+J!32:POKE 55296+40
*I+J,182:GOTO 13270
13260 POKE 34816+I*40+J, 160:POKE 55296+4
!?1:IjI:I ooj-•..:r., 1:::: 1
1. :3;??~J t·H::)-:;-r J .. I
1. 328~?1 I F Fl$::::: 11 p I! T~·IEt··1 :::,OTO 1. ~~iJ4(j
1 :3:;::~~~1;:1 I F FH·:::::> 11 1"1 !I THE}·j 13:::70
i3300 FOR 1=0 TO 7:FOR J=0 T07:TT%(I,J)=
~::1 : t··IE>f.T J .. I
13310 FOP 1=0 TO 7:FOP J=0 TO 7
1:3320 IF PEEK(34816+40*I+J)=160 THEN TT%
(I., ·])=1
133:3~~1 t··IE:-::r .J .. I
1. :::::::~;4121 PR I tH 11 ~:;öJ".; : FOP 1~~:OTC)7' : FOP .J:::::~;' TO ':::I:::;-r
Ep···· :1. : I F Tn;: (I .. J::':;;:: t THEt'i F'P INT 11 ~i::!~ ~";
1. :3:::::50 I F TT;~: (I .' J::' ~.::ü TI-iEt-i F'F.: 1tH ft:: ".;
13360 NEXT J:PRINT:NEXT I
1:~!':P~3 I F t=t:lj::() 11 T II THE~'~ 1. 8450
18380 FOR 1=0 TO 7:FOR J=0 TO ?:TT%CI .. J::'

=121 : t··IE::<T .J., I

1~390 FOR 1=0 TO ?:FOR J=0 TO 7

13400 IF PEEK(34816+40*I+J)=160 THEN TT%

(7......1 .' 7'~ I:;':::: 1.

56

http:PPIt-.JT

Chapter 3 The Colourful 64

1. :341, [I !··U:~::<T ,J., I
:i'::>::J.:?O F>P nH 11;:3".: : FOR I =0TO? :FOP j::~:? TO 1~1:::n
EP-l: lF TT;·;;< 1.,.»:::::1 THEH pF.:Hrr nmb:~~ ~".;

:I. J4:::::0 I F Tr·;:.:: I .' .J) :::~~1 THEt-·' F'R I tH ":: ".:
1J448 NEXT j:PRINT:NEXT I
1. 34:~(~1 I F FI~:'::::) 11 P" THEj"~ 1:::::51 f:~1
13468 :FOR 1=0 TO 7:TT%(O,!)=0:NEXT
13470 FOR 1=0 TO 7:FOR J=0 TO 7
1,3480 IF PEEK(3481,6+40*I+,J)=160 THEN TT%
(O,I)=TT%(8,I) OR 2t(7-J)
1. ::':49[1 j···IE;:<T .J .. I
13500 FOR 1=0 TO 7:POKE CP+I .. TT%C0,I):NE
::<T : c;OTO :I. 2040
1::;::'5:i (::1 I F f,~t:<) 11 D11 THH·I 1. 355121
135;;;::121 OF'Et··1 :1., 1 , 1. .' 11 CHAPI=!(::TEF.::::;; 11

13530 FOR 1=0 Ta 2047:T%=PEEKC32768+I):P
l~: I t··IT:It:l , T;·;' : t·~D::T
1 J::i"lO CL..O:3E 1
1::':55(1 I F ~i~~:{) 11 C11 THEH 1. :359!21
1. 3560 OPE}·j 1., 1 , ~).' öl CHHRI:::II::TEP:;:; 11

13570 FOP 1=0 TO 2047:INPUT#1. .. T:POKE 327
6:::+ I .' T : HE::-n'
t :~:: ~3 ::; 1;::1 C: 1.... Cl ::; E:l
1. ::::590 I F j::j:'r..:::::> 11 j'i 11 THEH :!. :)66(1
13680 POKE 52,168:POKE56,160:CLR
13610 POKE56578,PEEK(S6578)OR3
13620 POKE 56576,(PEEK(56576)AND252)OR3
13630 POKE 53272,21
1. ::::r;4~~1 POi<:E IS4:~:., 4
:!. :?6S0 E]·m
1. :::::1;6~::1 CiOTCI 1:3 1;2121

This module performs a variety of functions to do with the manipulation
of the character on the screen, allowing it to be redefined, placed back into
memory and SAVEd to tape among other things.

Commentary

Lines 13030-13100: Brief instructions for the use of the module are
prmted on the screen.

Lines 13120-13160: This moduleholds no surprises. Itis simplythe cursor
flash routine from the Artist program.

57

The Working Commodore 64

Line 13170: Cursorposition:P1 is therow down from the top oÎthe screen,
P2 is the column across from the left.

Lines 13180-13190: Limits of cursor movement with the 8*8 square.

Lines 13200-13210: Pressing 1 inks in a green square, pressing 0 blots out a
square.

Lines 13230-13270: These two loops scan across the square reversing the
inked-in or blank elements, thus producing an inverse character .

Line 13280: Input of R returns to the previous module.

Lines 13290-13360: This routine produces a mirror image of whatever is
the grid-ie the character is apparently seen from behind.

Line 13300: The array TTOJo is cleared.

Lines 13310-13330: The contents of the screen are transferred to the
array. The screen cannot be manipulated directly since this might result in a
square being transferred from the left to right and then read twice,
producing nonsense.

Lines 13340...:..13360: Having transferred the contents of the grid to the
array the information is now read back onto the screen but the horizontal
element is reversed so that position 7 is placed into position zero.

Lines 13370-13440: The contents of the grid are turned 90 degrees
anti-clockwise.

Lines 13420-13440: Thecontents ofthe array are put back onto the screen
anti-clockwise-thus position 0,7 becomes position 0,0 and position 0,0
becomes position 7,0.

Lines 13450-13500: The redefined character is placed back into the
character memory. It now becomes a permanent part ofthe user-defined
set.

Line 13460: Since only eight bytes are required for each character, only
eight bytes of the array, line zero, 0-7, need be cleared.

Lines 13470-13490: Each line ofthe array is scanned and when an inked-in
square is detected, it is translated into a single bit in one of the eight bytes
used to define the character. Having used AND to read individual bits,
nûte the use of OR to manipulate individual bits. When twû binary

58

Chapter 3 The Colourful 64

numbers are ORed, all the bits whieh are set in either (or bath) are set in the
resulting number. Thus to OR a number with 2T(J), where J is from 0 to 7
means that bit J will be turned on, regardless of whether it was on or off
before.

Line 13500: The eight bytes of the array are plaeed into the memory at the
position previously oeeupied by the character which has been redefined.

Lines 13510-13540: The area of memory starting at 32768 is stored onto
tape in the form of integer numbers.

Lines 13550-13560: A previously stored eharaeter set ean be picked up
from tape for further manipulation. NB This is also an example of how
your new character set ean be pieked up by another program for
subsequent use.

Lines 13590-13650: If the 1?rogram is terminated, the memory must be
reset to its original condition-unless you wish to go on using your new
character set with another program you are going to laad. Failure to reset
the memory would mean that subsequent programs will be deprived of 8K
of memory and forced to use the redefined character set.

Line 13600: Basic is reset to its fuIl potential size.

Lines 13610-13620: The bank of memory addressed by the VIC 11 is reset
to 3 (0-16383).

Lines 13630-13640: The screen is reset to start at 1024 (its normal
position) and the character memory reset to 4096 onwards.

Testing Module 3.2.3

Since this is a long module with a variety of funetions, it is suggested that
you test each function as it is entered. Note that if a particular function is
faulty and you have entered changes to a Hne, there is no need to RUN the
program from the start. Simply GOTO 12000 since the eharacter set, whieh
is above the Basic area, and the memory strueture are undisturbed by the
entry ofnew lines. Ifall is weIl, the functions described in the commentary
will be available.

SummRry

This is, as you will discover , an extremely enjoyable program to use, purely
for its own sake but its real power comes in what it ean do in livening up the
output of your other programs. Because it does not actually relocate Basic,
only limits the spaee available, new programs ean be loaded into the

59

The Working Commodore 64

machine to make use of the redefined character set. Ifthe machine has been
switched off since the character set was redefined, or the memory
normalised, all that needs to be done is to add the first module to the front
of subsequent programs (minus lines 11050-11090) and then to load the
redefined character set from tape using the routine at 13560-13580. But
do remember that if you redefine the letter A as a space invader character
th en every A output by the program, even in the program listing, will be
redefined. Por the sake of legibility it's usually better to stick to redefining
the graphics characters !

Quite apart from the general usefulness of the program, however, you
have also been introduced to some ofthe possibilities opened up by the 64's
flexible memory structure and the techniques necessary to make the most
of what is available. Ifyou want to look further into memory manipulation
you will need to get hold of a copy of the Programmers Reference Manual
-with this program under your belt you should have na difficulty
understanding and applying what you find there.

Going Further

1) One simple addition to the program would be a routine to allow the
position of two characters to be swapped, or for a redefined character10 be
placed at another location in the character set.
2) Making up a whole new character set with this program would be
extremely time consuming. Why not try adding some block manipulation
commands which would allow you to invert, turn, mirror etc. a whole set
of characters between specified limits. Program listings look extremely
interesting with all the letters upside-down!

3.3 SPRITES
With the Characters program entered we have prepared the way for an
examination of one of the features of the 64 that other micro-owners can
only dream of-sprites . With the advent of the 64, gone are the days when
only machine code programmers could make high-resolution designs move
smoothly and easily around the screen with an eerie realism. In the field of
games especially, sprites represent a revolution in affordable micros.

In essence, a sprite is very little different from the user-defined
characters we have been experimenting with. A great deal of technical
imagination and competence has gone into the creation of the sprite
facility, but when it comes to the user's part, a sprite is just a larger
character which eau be more flexibly rnoved around the screen.

Like the characters of the normal character set, sprites are defined by a
series of bytes stored in RAM. Instead of an 8*8 grid, however, sprites use a
grid which is 24 dots across by 21 down. Clearly this cannot be defined by
the 64 bits present in eight bytes. In fact, each row of a sprite is defined by

60

Chop/er 3 The Colourful 64

three bytes (24 bits) and, since there are 21 rows, it takes a total of 63 bytes
to define a sprite. Sprite data can be stored at any secure place within the
16K block of memory addressed by the VIC 11. Within this block, up to
eight sprites can be defined at any one time but many more sprite designs
can be held in reserve, if necessary, for instant activation

The main locations in memory which control the use of sprites are as
follows:
a) 2040-2047: These eight locations are the sprite pointers. Their function
is to indicate where in the 16K block the data for any particular sprite is to
taken from. Since sprites are stored in blocks of 64 bytes (though they only
use 63), the 256 values that can be POKEd into each pointer allow them to
cover the whole of the 16K block. Thus, the data for sprite 2 will be taken
from the memory at 64*PEEK(2042).
b) 53269: The sprite enable register. A sprite is only visible when the
corresponding bit in this register is set.
c) 53248-53264: The sp rite position registers. These work in pairs from
53248 to 53263, defining the X and Y co-ordinates of the top left-hand
corner ofthe sprite grid on the screen. However, since the screen is actually
wider (320 pixels) than the maximum value storable in a single byte (255),
one bit at location 53264 is used to remember whether the position of each
sprite on the X axis is more than 255. This gives a total of 512 possible
positions on the X axis and 256 on the Y axis.
d) 53287 - 53294:The sprite colour registers. Each sprite can take on any of
the 64's 16 colours, simply by POKEing the correct value into the appro
priate register. There are in fact more locations than this which are relevant
but these will do to be going on with.

The final issue to be decided is where to put the sprite data. Ifyou only want
three sprites, then a practical place is the Cassette Input-Output buffer
which is located from 828 to 1019 (obviously you can't load or save data
while the sprites are located there). Ifyou want more sprit es than that then
you must set aside an area of memory for them, exactly the same situation
as with user-defined characters. For the sake of variety, for our
sprite-defining program we shall adopt a different solution to that offered
for the Characters program. What we shall do is shift the start of the Basic
program from 2048 to 4096, thus leaving ourselves 2K of memory in which
to store up to 32 separate sets of sprite data. This is convenient in that it
involves absolutely no shifting around of the video memory
structure-what it will involve, however, is a resetting of the Basic start
address before the program is loaded.

Having do ne that, the program, like the character generator, will allow
the definition and manipulation of the sprite grids and the option of saving
them to tape for use by later programs. The simplest way to enter this
program is to first load Characters and adapt that program.

61

The Working Commodore 64

Loader Program for Sprites

The following lines are NOT part of the main program, they are intended
to be entered into the 64 and saved onto tape before the main program is
entered and saved. The function of the program is to reset the beginning of
Basic and then to load the main program into the reconfigured memory:

100 REM********************************
110 REM LOADER
120REM********************************
130 POKE43,I:POKE 44, 16:POKE 4096,0:CLR
140 LOAD 'SPRITES'

Commentary
Locations 43 and 44 are the pointers used by the system to the beginning of
the Basic program, normally containing the values 1 and 8 (location
1+256*8 =2049). All that the main line does is to alter this value to 4097.
The first program byte must always be a zero, so this is POKEd in then the
memory is cleared, completing the reconfiguration. When this has been
done the main program is loaded automatically. At the risk of boring you,
remember that this is NOT part of the main program-to include it at the
beginning of the main program would chop off the first 2K of the program
when it was run.

Sprites: Table of Variables

(where different from Characters)

SP Address of current sprite pointer
SC The address of the sprite colour register
SS Start of sprite data
FNS(SN) Start of block of data for sprite SN
SN Sprite number
TT«20,23) Array for temporary manipulation of sprite data
MM Value to move SN

MODULE 3.3.1

1200012002 REM#*****************************REM SET UP SPRITE POINTERS
12005 REM******************************
12010 SP~2040:8E=53269:88~2048
12020 DEF FNS(SN)=SS+64*<SN)
12030 SN=0:DIM TT%(20123):POKE 53281,6

The variables declared here are explained in the table of variables.

62

Chopter 3 The Colourful 64

MODULE 3.3.2

13000 REM#*****************************
13010 REM PRINT GRID
13020 REM******************************
13030 POKE53269,1:POKE 53287,1:POKE SP,F
r'~ ~:; (~:;t-~) ,l6 4
13040 POKE 53248,0:POKE 53264,1:POKE 532

1. ::::a~i:;O pr.;: I t··IT ":]".;: FOR: I:::: 1 TO 11: Pf~: I I·n "~~

11 IIiIIDlDI lID U. , 11....... \II\III...".fllllil....1IIII11 "

13ü6~~1 PF;: I tH 11 l!1IIIJli 11 11 1111'111"\111"l1li \111 DI IJl'1I11111:it ,

: r··IE::':;T

11

1:3121::: 0 PR I t··1 T 11 :"W:~, I:i:' If~i:IB M:\I i:i:~. f:?i.I:!:'~ Iri:JI i:illl:i:j~ I:::i~ 81:i:j=- f~:j:
1l

13~~1::~1(1 PR I t·n ";:::jb".;: FOF.: I :::::Ft··l!;::;';: !::;H:;' TO Ft-~~::; (::;
N)+62 STEP 3:FOR J=0 TO 2
13100 FOR K=7 TO 0 STEP -1
1:::: 11 f.I 1 F (PEEK (I +,J:;' m·m ;;~:·W:;' =2 'ft::: THEt·~ PR
UH 111 11 .;

1. :3120 I F (PEEK (I +J::' f1t·m 2 ·rt:::) ::::0 Tt·IEt·~ PR I t·i

13130 NEXT K,J:PRINT:NEXT I
1. :3140 PR I r-H 11 :q[lES I m··1 HUr'1BEp: 11 .: ~::I···I
131 5~?I I !··4PUT 11 tKli1BER TO tfIO'·... E PO I t-HER : (121:::::R
EDEF. > : !I .; tfWI : :::!··i:::~::t·.I+r'1~1
13160 IF SN(0 THEN SN=0
13170 IF SN)31 THEN SN=31
13180 IF MM=0 THEN POKE 53248,0:POKE 532
64,1:POKE 53249.200:GOTO 14000
13190 GOTO 13000

Almost exactly the same as the grid drawing module in Characters.

Commentary

Line 13030: 53269 is the sprite enable register-this POKE sets bit zero and
turns on sorite o. 53287 is the colour register for sorite zero and the POKE
sets the colour to white. The sp rite zero pointer is set to point to the first 64
byte block in the reserved memory area.

Line 13040: Sprite zero is set at 256 on the X axis and 80 on the Y axis.

63

The Working Commodore 64

Lines 13050-13080: The outline of the grid is printed.

Lines 13090-13130: The I loop looks at the sprite data in groups of three,
the J loop looks at eaeh byte, the K loop looks at eaeh bit. A circle is printed
for eaeh set bit.

Lines 13140-13190: The user ean move the sprite pointer. Note that it is
the area of memory pointed to by the sprite pointer, not the actual sprite
pointer that is ehanged. In this program we shall always be using sp rite
zero.

Testing Module 3.3.2.

On running this module (remember that the loader program must first have
been run) a garbage sprite will appear to the right of the grid and the
individual dots will be filled in.on the grid. It is sometimes difficult to see
the eorrespondenee between the two beeause of the automatic shadowing
plaeed into sprites. Two set bits on the same line with a spaee between them
will actually appear as a block of black.

MODULE 3.3.3

14000 REM******************************
14010 REM REDEFINE SPRITE
14020 REM******************************
1 4 '.:"f3i:"::i PI? I I'H ":l

!="i" : REt'1 :39 SF'FIC:E~::;

1412140 F$::: 11.",.."'....11.1111l1li.................. ,"
14050 PF.: I tH F:l~.: 11 ::V I ..' I t·NERT"
1406121 PR UH F$:.: 11 ~i" r'v t'1 I RF.:m?"
14~370 F'R UH F$.;" =1'- F.:" F.:ETURt·~"
14c::'1::aj PPUH F$.: 1I~~"'1 ..' HH::: H~"

14~)90 PPHH F:i-.; "::1\"'121'" BL.FIt-·IK"
14H.m PRINT F:f..; I1SWT'" TURN"
1411 (I PR I NT F$.; 11 ::t ... F' ..' t'1Et'10R I'rlll
1.::\·12~~1 PRHH F$.; "rWD'- SA',/E II
1413~) PRH·IT F:$.; "=- ... L. ... LCII=iJ) 11

14:1.40 F'RHH F$.; "IiW'E'" El·IIJ"

14151;;:1 PI:;;: I tn F~t.;" ::t=IPF:OI.,~:::; t'10 '",'E 11

14160 PF.: I t·n "!="i".;

1'41 Tt! CiET A$
14180 CC~PEEK(211)+PEEK(210)*256+PEEK(20
9):pp=PEEK(CC):Cl~55296+CC-1024

14190 C2=PEEK(Cl)

14200 POKE CC)42:POKE Cl,l

64

Chapter 3 The C%urful 64

14210 FOR 1=1 TO 15:NEXT:POKE CCJPP:POKE
Cl .• C2 : I F FI~t::::1I \I n·iEt·i 1417f:3

14220 P1=INTCCCC-1024)/40):P2=CC-(1024+4
12!:+:P 1)
14;;:~3121 I F (P 1)121 AHD n:t-:::":l":;' OP (F' 1<:21~1 FiI··.II)

FU:::".:: H)!!1") THEt··1 Fr? I tH A$.: :GOTO 1417121
1. 4240 I F (F'~;:)(1 AND A$=" U') OR (P2<23 Fit··m

FI:t.= 11 .,"::' THEl·1 PF.: I tH A:$:.: : GOTO 14170
:l4:~5~3 IF 11~f:=II:l1l TI·-IH·' pr~:Hn "liiiitlU'.; : GOTO 1
41 ?121
1,~·;;~6~:1 IF A$::::"t21" THEt-~ PFHHT !Ir.;! mr.1".; : 130TO

:I. 417~~1
1. 4::~~712i I F Al:'C>" I 11 THHi 14::::3~~1
14288 FOR 1=8 TO 20:FOR J=0 TO 23
14298 IF PEEK(1.024+I*40+J)=32 THEN 14310
14388 FOKE 1824+40*I+JJ32:POKE 55296+40*
I+J.182:GOTO 14~20
14310 POKE 1824+I*40+JJ81:POKE 55296+40*
I ..t-J'. lel
14328 NEXT]JI:GOTO 1417121
1. 4::':::::~3 I F F1:*:::: lil? 11 n·IEt··! COTO 130:3~::1
14:34~3 I F A$() 11 f'1" THEI"~ 1. .::j.,::J.20
14350 FOR 1=0 TO 20:FOR J=0 TO 23:TT%(IJ
.J) :::~) : HE::·::T J., I
14360 FOR 1=0 TO 20:FOR J=12I TO 23
14370 IF PEEK(1024+40*I+J)=160 THEN TT%(
I .. J)::::!
14380 t·~E;:'::T ..J.I I
1. ,:n9~::1 PP HH 11 ~Pl.: : FOfU ::::OTO;;?n : FOF.: .J ::::~;~:::rnJB ~;:
TEP···:l : I F rr;·~ (I IJ)::::: 1. THEt··! F'F.: I t·n "ii~ !a".:
1. ,:t~H~I(1 I F Tr·~.:: I .' J::' ::::(::1 T~·iFt··1 PP I "H ":: ".:
14410 NEXT J:PRINT:NEXT I:GOTO 14170
1. 4,:i:~:(i I F Fi$:() 11 T 11 Tt-IEl',,! 1. ,'V5I2iO
14430 FOP 1=0 TO 20:FOR J=12i TO 23:TT%(I,
.J::' :::~J : I···IC::T J, I
14440 FOR 1=0 TO 20:FOR J=0 TO ~u
14450 IF PEEK(1024+40*I+])=81 THFN TT%(2
i;:~·-.J .' ;;::(1 ..·• I:;' ;::; 1.
1. 4460 1···!E::.n .J.I I

l,::j4 7~~1 PF UH 11 ~II .; : FOP I :::::1~rrO~~121 :FOP .J=23Tm'3 :::

TEF'~-1 : I F TT;'~ (1 .' J::' ::; 1 THEN PP I t-H 11 UII~~)iI .:

14';+:=i~::i I F TT;'~ (1 .' .J)::;::0 THEH F'R I tH iI:W ~".:

14490 NEXT]:PRINT:NEXT I:GOTO 14170
14~50~~ I F !=I:*:{) 11 P" Tt·IH·! 14560

65

http:FiI��.II

The Working Commodore 64

14510 FOR 1=0 Ta 20:FOR J=0 TO 2:TT%(I!J
::. :::::121 : t··iE}::T ,J., 1
14520 FOR 1=0 TO 20:FOR J=0 TO 2:FOR K=0

TO ?
1453121 IF PEEK(1024+40*I+J*8+K)=81 THEN T
T%CI!J::'=TT%(I,J) OR 2t(7-K)
14:::i4~:1 1"-11::::<1 K.,.J .. I
14550 FORI=0T020:FOR J=0 TO 2:POKE FNSCS
N)+I*3+J .. TT%(I .. ,J):NEXT J .. I:GOTO 13030
1456~:'1 I F 11:$:() ":::; 11 THO~ 1462~j
1. 45.?0 PR I ~H 11 ;::i!!m[l.lfll!!rl~IN~!!l!!rI!lII!!J.!!l:lf.[!!ll!!r!!ml!!l!!rl!!l~,:[p.lr!!lUiil-·1

Oi".1 t'1A1'-·!'r' ::::PR I TE::~: TO BE :::FiVED: .: t·H··I11

14580 IF NN<l OR NN)32 THEN 14570
14590 OPH4 1.. 1. .' 1. .' 11 :::PR I TE:;:; 11 : PF:~ H·IT #:l .' t·H··!
14600 FOP 1=0 TO NN*64-1:T%=PEEK(SS+I):P
RI !·Ht.!: 1.' r"~ :t··IEXT
1461. 0 CLO~::E 1.
l46;~::0 I F I~$() 11 L 11 THEI"~ :1. 466~?1
1,::'tt::::::0 OPEt·4 :l.' 1. .. rL, 11 :;::PFn Tr:~:::; 11 : H·IF'UT:ff 1., Ht·~
14640 FOR 1=0 TO NN*64-1:INPUT#l,T:POKE
:=':P+ I .. T : t'~E::n
1465~'3 CL.O:;:;[1
1. 46.:60 I F !=1:*:.:::::> 11 E 11 THEt·~ 1468121
14670 POKE 53269 .. 0:POKE 43 .. 1:POKE 44 .. 8:P
OKE-2048!0:CL.P:END
146~::0 1 F A~l:.::::) 11 >:: 11 THEN 147'4~'3

1469121 I l"~ PUT " !=!~l~l!f.[l!!llnl!!l.~r.P.!1!!I'-l)!!lIf.[I!!r.l!!Il!!t!f.[i!!ll!!l.l!!ll!!ml!!ll!!lii j(··II...I
t1BER TO E::-:;CHAr·iGE ~'.II n'l : 11 .: :::;~~
1471210 IF 82(121 OR 82)31 THEN 1469121
14710 FOR I=FNS(SN) Ta FNS(SN)+62:LET Tl
=PEEKCI):POKE I,PEEKCI+FNSCSN)-FNSCS2»
14720 POKE I+FNS(SN)-FNS(S2) .. Tl:NEXT
14730 130TO 13~:~B0
1'::}74121 IF A~t:()"C" THEt·~ 14G4~?I
1475121 IF PEEK(53276)AND 1=1 THEN POKE 53
276., ~1 : GOTO 141 7~?1
1. ,;t 76121 1t'~F'UT 11 ~~:::1L~ll!!t~rl!np.!ll!!:rI!!r.I!!:[l!!ll!!ll!!rl!!ll!!r.I!!r.I!!I!!rl!!l)!q!!ml!!ll!!lI t··IP
UT COL.OI.W FOP (11 .:: ~}-"15) : 11 .; C 1
1':+ 77~ I Fe 1(00f.:C].)- 15THr::JWiT.~ I tH 11 ~l

":OOTO 1.476(1
1·:+7:::(1 I NF'UT 11 ;::E..'1!!r.L~l)![l!!lP.(.[l!!ll!!r.I!!r.l!!t(.[I!!II!!r.I!!:rl!!l:I!!J.I!!:rJ!l':l)·'!J.I!!Ip.!ll!!J.m t·iP
UT COL.ClUF~ FOF.~ 10 <tl-·l. 5::' : 11 .: c;~::

66

Chapter 3 The Colourful 64

1.479(1 IFC;;::(OOF.:C2> 15THE~'~PR I t'~T 11:l
!I : GOTO 14 7:::a~1

1.4::;::00 I ~·WUT 11 rii-'1~ll!!le[~ll!!ll!!:[l!!tl!!ll!!:rl!!tl!!rl!!J.I!!J.l!!ll!!J.!!!rl![l!!ll!!rl!!ll!!t!QI t'4F'
I..rr COL.OI..JF.: FOR 11. (0-15::': 11 .; c:::
14::;:: 1121 I FC3<JJORc:::r> 15THEJiF'F.: I HT 1I:l

II:GOTO 148130
14820 POKE 5328S, (PEEK(S3285)AND240::'ORC1
:POKE 53287,(PEEK(53287)AND240)ORC3
14830 POKE 53286, (PEEK(53286) AND 240) 0
R C2:POKE 53276,1:GOTO 14170
1. ,q·::;::41?1 GOTO :i. 41. 70

This module serves the same purpose as the character rede fine module in
the last program.

Commentary

Lines 14050-14150: Instructions for the use of the module.

Lines 14170-14210: Standard cursor move module.

Line 14220: Row and column ofthe cursor on the grid.

Line .14330: R returns to previous module.

Lines 14340-14490: Clockwise turn.

Lines 14500-14550: Redefined sprite is placed back into memory. The I
loop scans each row of the grid, the J loop scans in groups of three bytes,
the K loop scans each bit.

Lines 14560-14610: The sprite data is saved onto tape. The userhas the
option of declaring how many sprites are to be saved. This makes it
possible to save three sprites, which can be stored in the tape input buffer of
a subsequent program.
If any sprite is called up from tape for further manipulation, sprites
currently in the memory are lost.

Lines 14660-14670: This routine switches off the sprite, normalises the
memory and end:! the program.

Lines 14680-14730: X allows the current sprite data to be exchanged with
data at another position-particularly useful when making up a set of
three.

67

http:COL.OI..JF

The Working Commodore 64

Lines 14740-14830: This routine enables the user to enter or leave sprite
multi-colour mode.

Line 14750: If multi-colour mode is set (ie the corresponding bit in the
sprite multi-colour register at 53276 is set) and this function is called, then
multi-colour mode is reset (turned off) for sprite zero.

Lines 14760-14800: The enigmatic 01, 10 and 11 in these prompts refer to
bit combinations on the sprite grid. When in multi-colour mode, the sprite
is regarded as having only 12 dots across (though they are twice as long).
Bit~ are read in pairs from the left and, naturally, form pairs of 00,01 ,10 or
11. Each of these three combinations will produce a different colour in
multi-colour mode, with 00 being the screen background coloured by the
sprite multi-colour register at 53285. The 10 colour is dictated by the
ordinary sprite colour register. 11 colour comes from the sprite
multi-colour register at 53286.

Testing Module 3.3.3

All the functions described in the commentary should be available once
this module has been entered. As with the equivalent module in
Characters, it is better to test each function as it is entered.

Summary
A little thought about this program will demonstrate just how easy sprites
are to use once the functions of a few memory locations are understood.
The program itself will provide an endless series of sprites which ean be
stored for future use on a separate tape. The techniques contained in the
program will make it a simple matter to make the best use of such sprites in
your own creations.

Going Further

1) The program makes no provision for one other sprite function, and that
is the expand capability, which doubles the height or width of the sprite
(same number ofbytes-just made longer). This would be a simple matter
to add since all that is involved is setting the corresponding bit in the
register at 53277 for the horizontal expansion anà '53Z71 fOr me vertiCal.
For the purposes of this program the correct bit is zero.
2) It would be useful to be able to pick up only part of a set of sprites from
tape, say one at a time, to decide whether you wanted to compile it into the
eurrent set. A slight change to the 10ad routine would enable you to do this.

68

Chapter 3 The Colourful 64

3.4 HI-RES
Though the possibilities provided by user-defined characters and sprites
are almost limitless, the 64 does provide yet another major graphics mode,
bit-mapped graphics. What this means is that rather than being able to
address a minimum of one of the 1000 character squares on the normal
screen, the user is able to set any individual pixel (short for picture element)
or dot on the screen. In this mode line drawings and curves can be drawn on
the screen, though to make the fullest use of it you will need to get hold of
the graphics extension cartridge for the 64, which will provide you with a
variety of flexible graphics commands.

To understand the program given here it is necessary to know a little
about the way the bit-mapped screen is set up. The screen itself contains
320*200 separate positions, a total of 64000. In order to store each of these
separately, 8000 bytes of memory are needed, providing 64000 individual
bits. Each ofthe standard character positions requires eight bytes (the 8*8
grid that we used for u~er-defined graphics). Starting from the top
left-hand corner of the screen, the first 8 (0-7) bytes of the screen memory
are used to create what would be on the normal screen the first character
position. The second eight bytes form the second 8*8 grid and so on along
the line. Since there are 40 character positions in a line, each line takes 320
bytes. In actual fact, because the bit-mapped mode enables individual
pixels to be addressed, this line of 8*8 grids is capable of holding eight
single pixel thickness lines (though if you drew them all it would look like a
solid bar).

The 8K of memory necessary to hold the bit-mapped screen is obviously
not storable in the normallK screen memory nor, in fact, can it even use
that area as a part of its area, since 1024 to 2023 is used to store colour
information for the bit- mapped screen. The solution adopted in the
program that follows is to locate the screen beginning at 8192, leaving 6K
of memory for the Basic program, with the option of relocating Basic if the
program is developed and lengthened. Using the program given here you
will be able to use the bit-mapped screen as a sketch-pad, using either the
cursor move arrows or a simple line-drawing algorithm to create a design
on the screen.

Hi-Res: Table of Variables

DX Distance between ends of line along X axis.

DY Distance between ends of line along Y axis.

FNPE The value that must be POKEd into PP to erase pixel

X,Y.
FNPP The location of the byte in which pixel X,Y falls.
FNPV The value that must be POKEd into PP to set pixel X,Y.
MO The current mode of the program.

SC Start of screen.

69

The Working Commodore 64

SL The slope of the line to be drawn.
Xl,X2 X co-ordinates of ends of line to be drawn.
Yl,Y2 Y co-ordinates of ends of line to be drawn.

MODULE 3.4.1

10000 REM#*****************************

10010 REM INITIALISE HI-RES SCREEN
10020 REM*************~****************
1.(:I(:I2,~: CL$:::III1: IHPUT 1I::1~:[:LEAP ~:;CPEH~ ('TI t··I)
: 11 .: CL.~~:

10025 REM POKE 44,64:POKE 43.1:POKE 1638
4 .. 0: eL.R
10027 DEF FNPP(X)=SC+320*INT(Y/8)+8*INT(
;-::,/:::::;. +CI.~ At·m 7::'
10028 DEF FNPV(X)=PEEKCFNPP(X» OR (2t(7
_. (;:.:: At·m 7»::'
10029 DEF FNPEeX)=PEEKCFNPP(X» AND (255
-2f(7-(X AND 7»)
10030 POKE 53272,ePEEK(53272»OR 8:POKE
53265,PEEK(53265) OR32:SC=81.92
1ü035 I F CUt.= 11 !.. ~ 11 niEt·~ 10050
10040 FOR I=SC TO SC+7993:POKE IJ0:NEXT
10050 FOR 1=1024 TO 2023:POKE IJ6*l6+12:
t·~E>::r
10060 MO%(0)=2:MOXC1)=5:MO%e2)=10

This module configures the screen memory for the bit-mapped mode,
defines some useful functions and clears the high resolution screen.

Commentary

Line 10025: The POKEs in this REM statement are not necessary for the
running of this program. They are included in order that if you wish to
expand the program in such a way that it may overrun the screen at 8192
and onwards, you will have the necessary information to relocate Basic. As
with the Sprites program, the POKEs should be included in aloader
program which is run BEFORE the main program. The program as given
here works happily within the 6K of memory up to 8192-there is no
necessity even to set a limit to the top of Basic.

Lines 10027-10029: The use of these functions is given in the table of
variables.

70

http:OR32:SC=81.92

Chapter 3 The Colourful 64

Line 10030: 53272 is the register normally used to control where the VIC 11
looks for character data, in this case it will dictate the beginning of the
bit-mapped screen. POKEing 8 in here sets the screen start to 8192.
POKEing 53265 with 32 sets the bit-mapped mode.

Lines 10035-10040: In Line 10022, the user was given the option of
clearing the screen. During the development of the program, when the
program is stopped and RUN-RESTORE pressed, alterations can be
made to the program without affecting the contents ofthe screen at all. On
running the program again it saves time not to have to clear the 8000 bytes.

Line 10050: This line clears the normal screen memory area, which is now
employed to hold the colour data for each of the 1000 normal character
positions.

Testing Module 3.4.1

On first running the program, the screen should immediately fill with
garbage. Gradually this will clear, leaving a screen which may still be
covered with coloured squares corresponding to the position of characters
on the normal mode screen. These too should then begin to clear and the
screen be set to white. When the module is finished, press RUN and
RESTORE to return to normal mode.

MODULE 3.4.2

11121121121 REM#*****************************
11010 REM DRAW ON SCREEN

111212121 REMI*****************************

11030 X=160:Y=96:MO=I:POKE 1024; (PEEK(10

24)AND240) OR CMO*2)

11040 TT=PEEKCFNPP(X»

11 i~14;? CiET H:":: r. F t:I:~:() " " TI"'IEI"~ 11. 05~1

11044 POKE FNPP(X)JFNPV(X):POKE FNPP(X);

FNPE(X):GOTO 11842

11050 POKE FNPP(X);TT

111216121 1 F r·10<3 THEt··! ;:'::~:::::-::-- (Fi:t.:::::" ••" At··IJ) ;:,::·c::: 19

::. -I- (fi~~::::: 11 ml H At·m :-:;:::·(1::'

11062 1 F t'10:::::3 THH·I ::.:;::::;:.:;-- Hl:;:':: F1::P::: " ~n" l=ir'U) ::-:;<:

31. ~1) + 10:~~ (FI~:::::" mB" f~I···ID ;:'::> 1~j)
1. 1~~170- I F t'K') <: ::;;! T I-I Et·~ "r'::::: ',.':: A:f.:: 11 :~ 11 AH D I.,) .~:: 1 9 1
) + (Ai:::: 1I:l" fH'm "(>(3::'
1.1. ~~7;;;:: I F t"\O::;;;:3 THEH 'TI:;:'T'-1 (ft..:: A~r.:;:: 11 :~r' Fit·m ''f'(

1:3;~:) +1o'+: (I=i~t::: ":l" AND ',.1)- 1.~::t;'

1,1075 1HU::::: ":.1a' 11 THEt4 tKI:::t'1O+ 1 : t'10:::j"10+4*':: t"IO):]

):POKE1024:(PEEK(1024)AND240)OR(MO*2)

71

The Working Commodore 64

11080 IF MO=l THEN POKE FNPP X JFNPV(X)

11090 IF MO=0 THEN POKE FNPP X ~FNPE(X)

1.11 ~m I F 11:$:::::: 11 :!. 11 THEH >:: 1=::-:; : ITIj, =IT1

j, 1. 11 (I 1 F ~,:f:::: 11 ;.2 11 THEt·~ ;:.:::~::~~:::<: ITI;~::::::I·rl

1 :!. :1. 20 I F Fi:*:::: lil..." HiEt·i OO:::::I..JB 1;?(i(K1

11 ;?Of:i OOTO 11 [14~;:J

t J 499 ('jOTO 1 i 49~?

This module allows a flashing pixel to be moved around the screen, inking
in and erasing individual pixels.

Commentary
Line 11030: X and Y are the co-ordinates of the pixel on the 300*200
screen. The flashing pixel cursor is set to the middle of the screen. The first
position in normal screen memory is POKEd with a value which produces a
colour indicator of the current mode (black = O,red = 1,
purple = 2, blue = 3). Effects of modes will be explained later.

Line 11040: The state of the screen at the position at which the cursor is to
be flashed is obtained.

Lines 11042-11050: The cursor is flashed on and off until a key is pressed.

Lines 11060-11072: In mode 3, pressing the cursor arrow results in the
flashing pixel moving 10 positions in the required direction (within screen
limits). In modes 0,1 and 2 the cursor moves only one space at a time.

Line 11075: The unshifted function keys, from top to bottom, are used to
set the modes. If the mode is changed the colour indicator is changed.

Lines 11080-11090: If the mode is zero (black) then the pixel at the cursor
position is blanked. If the mode is 1 (red) then the pixel is inked in. The
remaining two modes allow the cursor to be moved around, slow or fast,
without affecting what is on the screen.

Lines 11100-11120: These inputs relate to the next module.

72

Chapter 3 The Colourful 64

Testing Module 3.4.2

You should now be able to move the tiny cursor around the screen, drawing
or erasing.

MODULE 3.4.3

12000 REM#*****************************
12010 R~M LINE DRAWING

12020 REM******************************

1. :;:: l;j ;~:: 5 >:: :::: >:: 1. : \t ::::: Irf 1

12030 DX=X2-Xl+SGN(X2-Xl):DY=Y2-Yl+SGNeY

:?_.I/:I.)
12032 IF ABS(DY»ABSeDX) THEN 12200

12035 SL=ABS(DY/DX)-0.5

12040 FOP 1=1 Ta ABS(DX)

12050 IF MODE=l THEN paKE FNPP(X»)FNPV(X

12055 IF MODE=O T~EN POKE FNPP(X),FNPE(X
)

12060 IF SL)0 THEN Y=Y+SGN(DY):SL=SL-l:G

aT(I 1:;? ~::h::; Cl

12070 SL=SL+ABS(DY/DX)

12100 X=X+SGN(DX):NEXT I

121 ;;-~0 F.:ETUFi::t.~

12200 SL=RBS(DX/DY)-0.5

12210 FOP 1=1 Ta ABS(DY)

12220 IF MODE=1 THEN POKE FNPP(X),FNPV(X

)

12225 IF MODE=0 THEN paKE FNPP(X),FNPEex

12230 IF SL)0 THEN X=X+SGN(DX):Sl=Sl-l:G

OTO 12~~30

12240 SL=SL+ABS(DX/DY)

12250 Y=Y+SGN(DY):NEXT I

1;2300 PETUF~:t'i

This module provides for the drawing of straight lines between points
defined by the user. It is an adaptation of a method known as Bresenham' s
algorithm and a version of it is often used in those Basics which have line
drawing commands.

Commentary

Line 12025: The values XI and YI were defined when the user input I-at
that point they were set equal to the X and Y positions of the cursor. X2 and
Y2 were set on input of 2. The line will be drawn from Xl,Yl.

73

The Working Commodore 64

Line 12030: DX and DY are set equal to the distance between Xl and X2,
and Y1 and Y2, plus one. The SGN function means that it does not make
any difference if the distance is positive or negative (if it is negative then
minus one will be added rather than 1).

Line 12032: The line-drawing algorithm us es the greater of the two
differences as the basis of its calculations so it is faster to have two separate
routines.

Line 12035: SL is the slope, or ratio between DX and DY minus 0.5.

Lines·12040: The loop is as long as the difference along the X co-ordinate.

Lines 12050-12055: Depending on whether the mode is 0 or 1, a single dot
on the line is erased or drawn. Note that nothing will happen in modes 2 or
3.

Line 12060: According to the ratio between DX and DY, SL may now
indicate that the next dot should move up or down the Y axis. If so the Y
position is changed and SL is reduced by one.

Line 12070: The slope value is added to SL each time a dot has been
printed.

Line 12100: The X position is incremented for each iteration of the loop.
Once again the SGN function takes care of Hnes which move backwards
along the axis.

Lines 12200-12250: Exactly the same routine for those cases where DY is
greater than DX.

Testing Module 3.4.3

You should now be able to specify a start and end point for a line (1 and
2)then to draw it or erase an existing line, depending upon whether mode 1
or 0 is set.

Summary

This program is intended as na more than an appetiser for the possibilities
raiseä by the bit-mapped mode. FuH use of bit-mapped graphics requires
same careful thought as to what you wish to achieve and same often
complex mathematics to achieve it. Should you decide to go further, the
techniques given here, and the functions used to locate individual pixels,
will make the task that much easier.

74

Chapter 3 The Colourful 64

Going further

1) Why not add a facility allowing the saving of a screen of graphics onto
tape-you'll need a fairly long tape but the routine would be simple
enough.
2) Computer graphics books provide a number of algorithms which allow
the drawing of cirdes and arcs. Why not add a module to the end of the
program to achieve this-the main drawback will be lack of speed.

75

CHAPTER4
The 64 as Secretary

Sooner or later, most micro-owners realise that their new digital friend
really comes into its own when it is storing information, processing it and
presenting it in a variety of ways that would be laborious in the extreme if
done manually. They then begin the task of writing simple programs which
will store their friends' names and addresses or catalogue their record
collection. They may end up with half a dozen programs, each limited to a
single use, and yet each program employing much the same methods.

In this chapter we begin a section of more substantial programs by
examining how a single program can be written to satisfy a wide variety of
filing needs without the constant need for rewriting every time a new
application comes along.

4.1 UNIFILE
The first program is called Unifile and, in the form presented here, it is
capable of storing up to 500 entries, as weIl as allowing the user to search
through them for named items, to amend entries and to delete them. Quite
apart from the wide applieations of su eh a program, I hope that the simple
act of entering it and understanding the methads used will provide you with
a host of ideas for further applications.

Unifile: Table of Variables

IN Flag indicator used to show whether the program has
been initialised.

A OJo(499,X-1) Records the length of individual items in each entry.
A$(499) Main file array.
B$(X-l) Holds names of item types for eaeh entry.
FF Flag indicator used to determine whether a user search

has been successful.
IT Number of entries in file sa far.
PU usea in Dinary sean;n w inOl~älç UluulJçr vf .,çar"h

samples necessary.
PP Pointer to start position of eurrent item to be printed

from an entry.
R$ Separator for use in saving data on tape.

77

The Working Commodore 64

SI Temporary search pointer for user search module.

SS Main search pointer in binary search module.

T1$ Temporary storage string used to build up new entry.

TI OJo (20) Temporary storage for length of items being built up

into new entry.
x Rolds number of items specified for each file.
z Indicator for number of program function to be called

up from main menu.

MODULE 4.1.1

1101210 REM#*****************************
111~:ll [i REJo1 t'1Et·-II...!
11020 REM******************************
11 [130 POI<E 5:3;;;:81 .. 7 : PR I tH 11 ::1I!!JIIII''''IiBlI\II'''1!B8I1
."I~;.Jr·~ I F I L.E 11

11 [14~'3 PR I t·n 11 :!!l:s.:r:r.::Ot1t1ANDS RVA I LRE:L.E : 11

11 ~::150 PR ItH "l[~1!lij 1) EtHEF.: It··IFOPt'1FH ION"
11 ~?:16r::1 pr-;:: I t·n ":~~ ;?) ~:~;EFiRCH/'D I ~:;;PL.A'r'",·'CHf1HCiE
11

1. 1. i~170 PF.: I HT 11 :!!l ::::) DRTFI F I LE~:; 11

:I. 11;:"):::0 PR ItH ":!!l 4) ~::;ET UP t'iEI.'J F I I....E 11

1 :1.(190 PRII',n ":I!!l 5)STOP"

111121121 1 NPUT I! :~="IH I eH DO "rOU PEOU I PE : 1I .; ? :

F'F.:HH ":1".;

11110 IF 2)3 OR IN~1 THEN 1114121
111 ;2[1 PF.: I tH "::'!mlJ.ll[I!!J.J..[I!!IOIlll''II·HH I N I T

I f-iL I :::;ED I,JET. 11 : FOf~: I;;:;: 1 TC! :I. 121121121 : I"~E:::<T

111 :30 130TO 11 f::.1~j~~1

11140 ON Z GOSUB 1360121 .. 17121121121 .. 180121121 .. 12121121121

.. 1115B:GOTO 11000

111 ~5~) PF.: I tn ":l!!m~tl!!ll!!ll![f!l1.~t!!II!!J'IIIl111'''''I~''F I L I NO

~:;'r'~:;TEr'1 CLOSED 11 : END

The purpose of the module is to present all the functions which the
program makes available and to allow the user to make a choice
between them. As a rule of thumb, any complex program which does
not begin with a clear-cut menu of what the program does, is a bad
pruglam. Alld if you donol agree with that statement now, you
certainly will at some time in the future when you have to return to a
complex program which has not been used for a few weeks and find
youself spending half an hour going through the listing trying to
remind yourself what it does and how.

78

Chapter 4 The 64 as Secretary

Commentary

Line 11030: A typical use of Commodore's flexible cursor control
commands. The string clears the screen, moves the cursor down one
space, across to the middle of the line, sets the RVS ON characteristic
and prints in green.

Lines 11110- 11130: No program ean be sueeessfully run unless the
arrays it uses have been set up. In this program the variabie IN is set to
1 when that happens. If IN is not equal to 1 then the only functions
available from the menu are initialisation (setting up the arrays) and
stop.

Line 11140: For those to whom this command is new, ON...GOSUB
and ON...GOTO are simply ways of cutting down on lists of messy
IF ... THEN... GOSUB (GOTO) statements. The command will choose
the destination in the list whkh is designated by Z.

At this stage, all that can be tested is that the module presents a neatly
ordered menu page and accepts an input. The only input that will not
produce an error report is 5-program stop.

MODULE 4.1.2

1200012010 REM#*****************************REM STRUCTURE OF FILE
12020 REM******************************1;;~(:I:3i21 CLR: DI 1"1 A:$ (4::~1~:'~) :pr;,: ItH ":011181"111'1111111
~1II111ll1~l~ijF I LE ::rrF.:UCTl.JRE": I t'i~·";: 1 : R$=CHR:.t: (1:3::'
12~7.1::::5 I t·WUT "lJlAPE "r'OU LORD I t'm F'r.;,:ot" Tf1F'E

('T'/t'·!) : 11 ,; G!~t : I F I~U:::: 11 'T'" THEH 11 ft00
1. :2~340 I"',IF'UT 11 :f.[Q-IOL·J t'1AH'r' I TEr'1!:;; I t'·1 EF1CH E
I·HF.:"r' : " .; ;,.,: : D :U', B:$: C"':---:l ::. .' A;,;; (>::I.:31S·" ;,.;; 1 :;.

1:;~I~i5~~1 F'P I Hl 11 :~~".; : FCJF.: I ;:;;;C1 TO ;:':;'--1.: F'F~ I NT "::,

1"iI~it'1E OF I TEt'1" ,; ::rïF.:$ (1+1. ::. ,; 11 : !I ,; : INPUT 1)$

12060 B$(I)=Q$:NEXT I:GOTO 11000

This module performs the essential function of setting up the arrays
which will be used to store the program data-until it has been called
Up, the program cannot be used. Onee data has becn clltcrcd, calling up
the module again will result in the 10ss of all the data-the memory is
wiped clean ready for a new set of data. The use of the main variables is
explained in the table of variables and during the subsequent
commentary on the program.

79

The Working Commodore 64

Commentary

Line 12030: Note that before any array is dimensioned, the memory
must be cleared. Failure to do this results in the REDIMMED ARRAY
error message.

Line 12040: Unifile does not dictate to the user how many items the
typical entry ean eontain, it is up to the user to specify. Dnee this is
done the program configures the pointer array A 010 and the item title
array B$ accordingly.

Lines 12050-12060: Having specified the number of items per entry, the
items are named eg name, address, telephone number. Note that
because the memory has been cleared, the module cannot RETURN to
the menu, it has to be given the specific line to GOTO.

Testing Module 4.1.2

On calling up the module you should be asked to specify the number of
items per file and to give names to the items.

MODULE 4.1.3

1300013010 REM#*****************************REM EN TRY OF NEW ITEMS
13020 REM******************************
1:::::~33el T 1. :t~~ 11 11 : PH I HT 11 :'l~)JIIit.'J'''lItDillilIll!U'lg:t··IE
~,J I TEt'i!:;: 11

13(i4t~1 F'R r~n 11)!:III11I1lUtDlIIIRIlI"IIU"'IIliIlI!llIllllIlIln"IIIIIHII .: I
T.; 11 I TËI"1S !30 FFiR 11

1. :3~150 PR I tn 11)!!tll'[:Ot,'!t'1F'1HDS Fi',lA I LFIBLE : 11

1:31216(1 F'R I tH 11 :~II):jl~tHEr~;: I TEt'i !::F'EC I F I EI! 11

l3~~170 PF.: I I·rr 1I1>:lI HPI...IT " ZZZ .,' TO PETUFH··I TO
r'1Et'~Ui{~)"

1:3~18~~1 FOR 1::1:121 TO ::<;..... 1,: PR un F,::t.:: I) .; lt : 11.; : n·1
PUT 0$: IF G!*::I: II ZZ;2: 1I THEN ~~ETUPN
131219121 IFLENCT1$)+LENCQ$)(=255THEN 13110
1]1(1f1 F'P I NT "f::l~~·,IT~~I.r' TOO L.ONG. 11 : FO~: J::::: 1 T
o 3000:NEXT J:HETURN
13110 T1S=Tl$+Q$:TI%(I)=L.EN(Tl$):NEXT I:
PF~ I NT " :QUI~fI I ï ..13120 GOSUB14000:GOSUB 15000:80TO 13000
The purpose of this module is to accept the input of the items specified
by the user and to compile them into an entry ready for the main file,

80

Chapter 4 The 64 as Secretary

Commentary

Line 13080: Using the variabie X to determine the number of
repetitions, the program prompts the user to input eaeh of the named
items.

Lines 13090-13100: Individual entries ean be a maximum of 255
characters long-the maximum length of a single string on the 64. These
Hnes check that the limit is not being exceeded.

Line 13110: The item input is added to the temporary storage string T1$
and the length of the entry 50 far is recorded in TIOJo. Note that TIOJo
was not dcclared in the initialisation module. Simply mentioning it in
the course of the program, automatically dimensions it with 10 elements
(0-9). If you want to have entries with more than 10 items then you
must deciare a bigger TI% in the initialisation module.

Testing Module 4.1.3
At this stage, by entering temporary RETURNs at lines 14000 and
15000, you should be able to eaU up this module and be prompted to
input items under the names you have specified. Note that th ere is not
yet any provision to enter these into the file.

MODULE 4.1.4

1400014010 REM#*****************************REM BINRRY SEARCH
1402014030 REM**************'*************'*IF lT=0 THEN SS~0:RETURN
141214~~1 PO:::-~ ItH':: L.OG (I T::' ,/L.OCi (~~::. ::. :58=2 't"PO-l
14050 FOR I=PO T00 STEP-l
14060 IF A$(SS)(Tl$ THEN SS=SS+2tI
14070 IF A$(S8»Tl$ THEN SS=SS-2tI
14080 IF 98(0 THEN 88=0
14090 IF 88)IT-l THEN 88=IT-1
14100 NEXT I:IF A$(SS)(T1$ THEN SS;SS+1
1411 ~~1 F.~ETUR:N

Of all the modules in this program, this one is most likely to look like
double duteh on first sight. In reality ît is very Simple, but first you nccd
to understand the basic principles that lie behind a method of searching
for something called the binary search, which dramatically reduces the
amount of work needed to find the right place for a new item in an
ordered list of data.

81

The Working Commodore 64

Consider the following example:

We have established a file containing 2,000 names in alphabetical order
and there is a new name to be inserted, whose rightful place will actually
be at position 1731, though this has yet to be determined. The search
routine therefore begins by examining the first name in the file, decides
that the new name will come after it and moves on to the second name.
Eventually, after examining 1732 names, the search routine finds a
name which the new name should come before and it knows that it has
found the right place to insert the new name. This is a straight forward
procedure and one that is easy to program but compare it with this:

The search procedure begins by examining the name in position 1024 of
the file, because 1024 is the greatest power of 2 that can be fitted into
the total number of names in thc- file. The name at 1024 is found to be
alphabetically less than the new name, so the search routine adds 1024/2
to the original 1024 and moves on to name number 1536. That name is
stilliess than the new name, so 1024/4 is added to 1536, making 1792.
Now something different happens-name number 1792 is alphabetically
greater than the new name-the solution is to subtract 1204/8, giving
1664. The search routine goes on adding or subtracting decreasing
powers of 2 to build a search pattern that looks like this:

1644 (then add 64)
1728 (then add 32)
1760 (then subtract 16)
1744 (then subtract 8)
1736 (then subtract 4)
1732 (then subtract 2)
1730 (then add 1)

The number of comparisons needed to find the correct place in the file
has been reduced from 1732 to 10. The power of the binary search
should be apparent.

Line 14030: If there are no items in the file yet, then the right position
does not have to he calculated.

Line 14040: The LOG function is used to find the maximum power of 2
that will fit the current number of items.

Lines 14050-14100: The hinary jump is performed, with checks to see
that the search is not leaving the ends of the file.· One final comparison
is made when the loop is finished and the correct position has been
determined and stored in the variabie SS.

82

Chapter 4 The 64 as Secretary

Testing Module 4.1.4

Full testing of the module will have to wait until the next module has
been entered but a check that the syntax is correct can be made by
simply calling up the insert module, from which this module is called.

MODULE 4.1.5

15000 REM#*****************************
1~iü 10 F:EI"1 I t·-!::';;ERT
15020 REM******************************
15030 IF IT=0 THEN GOTO 15060

15040 FOP I=IT Ta SS+1 STEP -l:A$(!)=A$(

1·-1)

15050 FOR J=0 TO X-l:A%(I~J)=A%(I-1JJ):N

E::n ..:r.' I

15060 A$(SS)=Tl$:FOR 1=0 TO X-l:A%(SS.I)

=TI%(I):NEXT:IT=IT+1:RETURN

The correct position having been determined, this module moves all
the entries from that position onwards, one space up the file, together
with their associated pointers in A 010. The new entry is placed into
position SS of the file, and the pointers which show the length of the
individual items are placed into the same position in A %.

Testing Modules 4.1.4 and 4.1.5

You should now be able to input entries to the file which will be
placed into alphabetical order. To check this you must stop the
program and print out, in direct mode, the contents of A$(O), A$(1)
etc. You should also check that the pointers stored in the same line of
A% do in fact point to the last character of each item in the entry.

MODULE 4.1.6

18000 REM#'****************************
18010 REM DATA FILES
18020 REM******************************

1:::~:::t:::::0 FP I ~H JI :mPO~: I T I OH Tf=!F'E CORRECTL1TI .,

THEt.~ ~-F.tHER!!-·- 11

1. :3040 I t,lPUT 11 t'lOTOF.: ~,~ I U. STOP
L' I : 11 ' Ir:'I.t: : F'[ll:'E 19') 7: pnt::-E 1, :-;gT .• I.:J..:t:· •.• r·" _,... .fl _r _ ...

RUTOt'lRT I CAL

1. ::::12150 PP I t-.!T 11 :!!l:acot1t'lANDS AVA I LABLE: 11 : F'P I H
T ")!!Ii 1) ::;A\,'E DATA": F'R I Hl " 2::' L.OAD ItATFIII
1::=':060 I t·lPUT ":~:c:;.,JH I eH DO ITIOI..I RE@j I RE : 11 ,; G! :
ON Q GOTO 18070~18120:RETURN

83

The Working Commodore 64

18070 POKE 1.7:FOR 1=1 TO 2000:NEXT
1:::::O:::::~?I OPEl~ :1..,:1.., 1., 11 Ut·~ IFILE" : PR I tH#:I. .' IT., p~t.
.f :x:
18090 FOP 1=0 TO IT-l:PRINT#I.A$(I):FOR
J=0 TO X-l:PRINT#l.A%(I.J):NEXT J,I
18100 FOP I~0 TO X-1:PPINT#1,B$(I):NEXT
18110 ClOSE1:PETURN
UH20 OF'[}~ 1..1.,121-, IIUHIFIL..E": lHPUT#l. IT, ::.:::

DIM B$(X-l),A%(499.X-l)

18130 FOP 1=0 TO IT-1

18132 GET#l,T$:IF T$()CHR$(13) THEN AS(I
)=A$(I)+T$:GOTO 18132
18134 FOP J=0 TO X-l:INPUT#I.A%(I.J):NEX
T J, I
18140 FOP 1=0 TO X-l:INPUT#I.BS(I):NEXT
18150 ClOSEl:PETURN

Now that you can input some data to the file, the first thing to do is to
store some data on tape then, as you enter new modules or change lines
to correct errors, you will not have to go through the chore of
re-entering all the data every time.

Commentary
Line 18040: Having positioned your tape, you may wish to first place it
into RECORD or PLAY mode and run up to precisely the point
indicated by the tape counter. When the precise point is reached,
pressing RETURN switches off the cassette recorder motor by the use of
these two POKEs.

Line 18070: The recorder motor is switched back on before any data is
recorded and a header printed in addition to that added automatically
by the operating system-this helps to ensure that you do not record on
the non-magnetic leader of the cassette if you are starting from the
beginnning.

Lines 18120-18140: Data which was printed into the file is now
recallea. Nate that lJecaUse the stnngs In the main me may he more than
80 characters long, we cannot use the INPUT commando Instead, each
character of the strings in the main file is picked up separately using
GET, and each entry is considered complete when a carriage return
character is picked up from tape.

84

Chapter 4 The 64 as Secretary

Testing Module 4.1.6
The simple test for this module is whether you ean input data to the
program, save it on tape and then reload it.

MODULE 4,1.7

17000 REMI*****************************
17'01[1 REt'1 :::EARCH

17020 REM******************************

1. 7[13[1 ::: 1::::(1 : FF=121 :F'P I tn 11 ::1~JIIIIIIIII\IIllI!I'Ii\IPI'Ifl;IlIi'DlIIRI
~!:il~:~::=';EfjRCH 11

17040 PPItrr n:!!t;Cot'1t'1Fil',m!:: l=t',/AILABL..E: 11

1. ?O~)() PR UH "),l 1I)~iI HPUT I TEt" FOP t·,IORr1AL
::;;EFIPCH 11

17(160 PF:: I t-n 11 1I0~if'RECEDf::: ~,J I TH ..' I I I ..' FOF.:
I"··' TTII=iL :::EARCH ti
17(17121 PP I t-n 11 1IB)~if'RECEDE L"I I TH ..' ::::~:~: ," FOP
::;:;PFC I FiL. :::EJiRCH 11

t 70:::::0 PRHn 11 1I0mi~tHEr~;:!! FOR FIRST ITEt"
m~ FIL.E 11

1. ('[19121 FR I trr 11 :~I!fMtI" ••II.".'llltillllllll.l.
JjjjJIIII!\ItIII l\1li1 1!IIt1'" ,:11

1. 7 J. [1(1 T 1 $:::" " : I r'~F'UT" ~T1:1 t'~F'UT :::::EFIPCH CClt'1t'1fl
1'·m:!I;TU:
17'110 IF L.EFT~~:(Tl~1:: .. :::::){)"III" TI'1Et~ 1?140
17120 T1S=RIGHT'(T1$JLEH(Tl$)-3):GOSUB 1
4000:S1=SS:IF Sl)IT-1 THEN RETURN
17' 1 ::::~~! CiOTO 17;;::·,+121

::.::;:::;:::; I!:i. .? l·:H::! 1 F LEFT:$: (T 1$) :;:) (> 11 THEI··,I 1'(' 1 ~SIO
17150 FF=0:Tl$=RIGHT$(Tl$JlENCT1$)-3):FO
R 1=81 TO IT-1:FOR J=1 TO LEH(RS(I»
17160 IF MID'(A'CI)JJJL.ENCT1'»=Tl$ THEN
FF;1:31=I:J=lENCA$(I):I=IT-l

17170 I",!E::<T ,J" I: IF FF=l THH4 T1:$::::"::;::::;:::::"'+'T1
::1:. : OOTO 1'?240
17:l :30 1~:ETUF.:t-·!
1·(':l. 9r1 I F T 1 ~*':~~ 11 11 TI-iEt'i :I. 7'24'21
17200 FF=0:FOR 1=81 TO IT-l:PP=0:FOR J=0

TO ::·,:·..··1
17210 If MID$(A$(I)!ff~l)A~(I!J)-fP)~T1t
THEN FF=1:S1=I:J=X-l:I=IT-1
17220 PP=A%(IJJ):NEXT J:NEXT I:IF FF=1 T
HU·i 1?::?4!J
1 ?;?:30 F~:ETI...IF.:t··1
17240 IF 81)IT-1 THEN 81=IT-1

85

The Working Commodore 64

17250 IF lT=0 THEN RETURN
17260 IF 81(0 THEN 51=0
17:~~7~') PP I I··n "::1!!l:EtHR'r' ".; S 1+1 .: " : _...):111 : PF'~::~~j
1. 7:;-:8121 FOR 1=:t1 TO ::.::-_.1.: F'P I HT" Mh" .; F.l~t 0:: I ::0 .; 11 : ~-:II

;MID$(A$(81::O,PP+l.A%(Sl.I::O-PP)
17;251~j PF'=A;'~ (::; 1 .' I ::0 : t'~E:~n I: S 1 =8 1+1 : pr;,: I ~H 11

;::1~lmlLllII!!IP.f,[l!!l!f.[I!!r.l!!m~!f.IQ""III"'ItI\ll" ft "

17:3121121 F'F:: I I'H ~~;EARCH!! =::Cit'1t·1F'it·mS AVA I LRF.:
11

LE:"

1731 ti PR I tH 11 :~l 1IIII):~f~ENTEF.:~ FOP ~·~E>::T I TEt'1 il

l7:~:;~:~3 PP I HT 11 I);~'" AAI=! ..' TO Ar'1Et·m ..'

l7:::r3121 F'R I tH .)0•... eee ..' TO cm·n I t··IUE ~::;EARC
11

H"
1 734'3 PR I tH 11 1Ia:>~~1'" :1*" FOI.... L.Ol,.IED B'T' t··IO. TO
t'10'.,,'E PO 1!'HER 11
1735121 PF.: I NT 10:1" ZZZ ..' TO OU I T FUHCT lot··! ..'11

17:36ü P$::::: 11 11 : I t·WUT 11).'!=,~H I CH DO ''f'OU F.:EOU I P
E: 11 .; P$

17::::7~1 I F PS::::: 11 ecc 'I THEt·~ 1711 (1

1. 738121 IF F'l:;;:: "" THEt·4 17;~~4121
17::::~:h3 IF p~r.:":::IAI1fi" THEt··! OOSUB 16000: OOTO
1724121
174(1(1 I F 1:::'$== 11 22;": 11 THEr-~ F.:ETURH
:1. 741 (I I F LEFT:t (P::\::.' 1) ::; 11 # 11 THH~ ::::;1 =::::;1 +V~1L. (
MID$(P$,2»-1:GOTO 17240
1742121 S1=Sl-1:GOTO 17240

Having placed your data into the 64 it would be nice to think that you
cûuld get it back again. The purpose of this module is to enable you to
do just that, retrieving the information stored in a variety of ways that
make the filing system more useful.

Commentary
Lines 17110-17130: If the item to be searched for is preceded by the
letters 111, then the binary search module is called up to find an entry
which begins with the letters specified or the one nearest to the right
position if there is no correct entry. Note that this will not necessarily be
the first item in the file to satisfy the condition, so if you are using the
initial search function to find the first entry beginning with L, for
instanee. you win get an entry beginning with Land can page backwards
to see if it is the first. HILA would get you closer, while IIILAAAA
should do the trick unless you are storing some very unusual names.

86

Chapter 4 The 64 as Secretary

Lines 17140-17180: Preceding the item to be searched for with SSS will
result in the whole file being scanned for that combination of
characters-it doesn't have to be a whole item. SSSLO would pick up
any entries containing London, loganberries or hello. This search is
necessarily slower than any of the others.

Line 17190: If you have pressed RETURN, without an input, the first
item on the file will be displayed.

Lines 17200-17230: Any other input will be understood as a full item to
be searched for and only those entries which have an item in exactly that
form will be returned. Note, in this routine, how the pointer array A(,
which gives the position of the last character of each item in an entry, is
used to extract items from the entry even though there is no visible
marker for the items if an entry is printed out in direct mode.

Lines 17270-17290: The entry which the search module has discovered
is printed onto the screen.

Lines 17300- 17420: Having displayed an entry, the program now gives
you the option of viewing the next entry, amending the entry,
continuing the search specified, moving to another entry by entering
NN, where NN is a positive or negative number to move along the file,
or returning to the main menu. If a recognisable input is not made, the
same entry is displayed again.

Testing Module 4.1.7

You should now be able to display any data that you have stored and to
search through it using the search methods described. You cannot yet
amend entries.

MODULE 4.1.8

16000 REM#*****************************16010 REM CHANGE ENTRY
16020 REM******************************
16~J30 ::;1==:::1-1 :Tl::~:::::1I1I

l60412i PP::::1;1: FOP I=:~~I TO ::<-·1: pF.:nH 11 ::'l{.fEtHP
'1" ".; ::;;1+1.; 11 : -:I!f.!"
t 605[1 PF.: I ~-n 11 &ii" ,; B:i- 0:: I) .; 11 : ~" ; r" I D:i- (A~t 0:: ::;; 1) .' PP
·+-1 .' A~,~ (~::; 1.' I) _·PP)
16~~16121 FR I tH 11 !:i~~II,OO)lmmt!:OO:~1.~J''''''''''J'''JI
f:ij::iFlt'1Et.m 11

H:'12I7 ~'3 PR UH 11 Jr:r.::Ot'1t'lm·mS 11 VA I L FfBL. E : 11

16r::18~1 F'P I tH ":~ lI)ii:.EtHEP!! LEAVES I TE]'1 UN

87

The Working Commodore 64

CHAt·H3ED"

H;;~?I9ü F'P UH l)iiIHPUT t·H:}.1 I TEt'1 TO PEPL.J=,
11

CE m··IE :;::;j··IOI.·.lt··1 1I

11:; 1~~I(1 PP I t·H 11 I)ii" DDD" DEL.ETE::: l'~HOLE E1H

1611121 F'P I tH 11 I)§W' ZZZ·' L..E~:,'''''ES F:JHR\I 1...II'·iCH
fit'WED '1

161 ;?~3 C!$::::: 11 : INPUT 11 :O'.IH IeH DO ''f'OU REGlU IP11

E: ".: 0$
1. 61::::ü I F G!~~::: 11 ZZ;;~ 11 THEt'1 F;::ETI...IRt··1

11;::; :1. 40 I F G!$:::: 11 JI THEt·i O:;.::::t'1 I]):$: (f1:$ (~::t >.' FP+ 1.'

16150 I FO$::::: iI DDI) 11 Ti"'IEI"~ CiO::::UB 161 ::::0 : PETI...IF.:t-1
16160 PP=A%CS1,I>:T1$:::::Tl$+C!$:TI%CI)=L..ENC
Tl$):NEXT I:GOSUB 16i80:GOSUB 140ü0
16170 81=8S:GOSUB 15000:RETUPN
16180 FOR J=81 TO IT-l:A$(J)=A$(J+1):FOR

K=0 TO X-l:A%(JJK)=A%CJ+1.K):NEXT KJJ
16190 IT=IT-l:RETURN

The purpo.se o.f this mo.dule is to. allo.w yo.u to. make changes to. items in
entries which have already been sto.red, witho.ut having to. make the
who.le entry o.ver again, as wen as to. delete items or who.le entries if
desired.

Commentary

Line 16140: The mo.dule's metho.d o.f wo.rking is similar to. that o.f the
main input mo.dule, except that if RETURN is pressed, the item being
input is defined as being the current item o.n display.

Line 161BO: This routine moves all the following entries in the file down
one place, thus erasing the current entry.

Testing Module 4.1.8

You sho.uld now be able to amend items in an entry arrived at in the
search module o.r to delete the who.le entry. If this module is working
co.rrectly. then the pro.gram is ready fo.r use.

Summary
Vou have now completed the entry of a substantial and complex
program which I hope yo.u will find useful in a variety of applications.
Along with that process you have also learned a number of techniques

88

http:witho.ut
http:purpo.se
http:PETI...IF

Chapter 4 The 64 as Secretary

which will stand you in good stead whenever you decide on ambitious
programs of your own to store and process non-numeric data.

More importantly, however, if you have taken the trouble to
understand what you have been entering, tracing through the functions
of the individual lines, as well as the overall functions of thè modules,
you will have gained confidence that substantial and complex programs
are not always as awesome as they are made out to beo Using a modular
approach, which breaks down the program into a series of manageable
tasks, applications like this one can be developed by anyone who is
prepared to invest a litde time (and a little hair).

Going Further

1) If you have a printer then you will want to add same
provision for outputting entries or groups of entries onto
paper. The easiest way to do this would be to add another
command to the second part of the Search Module.

2) One interesting challenge would be to see whether you
could give the program the ability to deal with numeric
data as well as non-numeric. This would involve setting
up a numeric array with 500 elements, with provision to
input values to it and perhaps same search commands
along the lines of 'find any entries which hold a value of
greater than X'. There are quite a large range of
applications where the ability to store one or more
numeric items would be an advantage.

4.2 UNIFILE U-DATABASE
After entering Unifile and debugging it, the last thing that you may
want to face is a variation on the same theme. If so, feel free to skip this
program for the present and move on to greener pastures. At same
stage, however, you will want to come back to this program to solve at
least some of the problems that Uni file is not designed to cope with.
Unifile is fine for files which have a regular structure, and many do.
Equally, there are a large number of applications where you simply do
not know in advance how many items there are going to be in a
particular entry. You may, for instance, want to catalogue your books.
You could set up the original Unifile program to request author and
title, but with probably many more than one baak by most authors,
tagging the author's name onto every individual tide is going to be a
considerable waste of space.

Unifile II is designed to cope with such less structured files. It is more
flexible than Uni file in that you can go on adding items to an entry as
long as you like within the overall limit of 255 characters and can
specify a more complex form of search which will seek out any entries

89

The Working Commodore 64

which contain Up to 10 separate search targets. This flexibility has a
price, however, in that the program is more complicated to use-there
are none of the easy prompts to dictate which item to input next. In
addition, if you want to label items within an entry with a title, you will
have to specify what those titles are and attach them in a coded
form-the program has no idea what is coming next so you have to.

Because the program is similar in structure to Unifile, the easiest way
to enter it is to first load Unifile itself. As you enter Unifile 11 you will
find that many of the program Hnes are identical, or nearly so, even if
the numbering differs. Renumbering those Hnes before going on to deal
with the differences will save you an enormous amount of time.

UnifiIe 11: Table of variables

B$(49) Contains the optional item titles specified.
EX Temporary indicator to show that an extra item has been

added to an entry during the Amend module.
FNA(SI) Function which extracts from the value of the last

character in an entry the number of items within that
entry.

FNB(SI) Function which obtains the position of the last character
of an item within an entry. This function must be used
within a loop with a loop variabie I specifying the number
ofthe item.

NN Temporary variabie registering the number of items
within an entry being input.

SS$ Item extracted from entry on the basis of FNA and FNB.
S2 Temporary pointer used during searches.
S3 Temporary record of value of SI during multiple search
TI«49) Temporarily used to store the position of items within an

entry that is being input.
TN The type number of an item if one is specified.

MODULE 4.2.1

11000 REM#*****************************
11010 REt" t1ENU
11020 REM******************************
1. 1. 121::::0 POI<E 5:3;:~:::31.,?: PF.: I t-n 11 :10",l1lil1li"",,,
.....I~~...It·~ I FILE 11

11040 PR I tn 11 :l!!m:COt'1t'1At·m~:; AVA I LABL.E : "
111;;:15(1 F'R I~H 11 :~T~J~ 1>EtHEr;': I ~·~FOF.:t'1AT I m·~ iI
11060 PR I t-n "'~ :::::;. ~::;EARCH""'D I ~::;PLA'r' /CHi1t·K'jE
11

ll0'?O PRHH ":~ ;:::::. HE~,J T'r'PE 1"iRt'lES 11

11 ~J:3~~1 PP I r·n 11 :I!!l 4)DATA FILES II

90

Chapter 4 The 64 as Secretary

11090 PPltH ":~ 5)::;ET UP t-~E~'~ FIL.E!'
l111Z1~.1 PP I t-n ":~ 6) ~:;TOF' 11

1.1.1. :1.0 H-IF'UT ":a,JHICH DO ',.'01..1 PEG!I...lIPE: 11.; z:
PF.: I I'H 11;]")

11120 IF 2)4 OR IN=1 THEN 11150

1 1. 1. 3121 PI:;:: I trr 11 ~1mm~m~~r.!!1!!J"''''''''''t--IOT I t-~ I T
I AL 1!::;ED ',"ET .. 11 : FOR I::: 1 TO 1~~10~J : t'~E~n
1114~j GOTO :i 1. ~~~'3~;J
11150 ON Z GOSUB 131210121,1712100,1901218,28000
,12000,11160:GOTO 1112100
1 1 16121 PI~:: I tH 11 :~t~I~I~J.e.IL'!l~l.I!!J:!llL'!J"'\IIlI'IIII11Ii:"F I L I ~'-\Ci
!::;'r'::nf:]" CLOSED 11 : r:J'm
A standard menu module,

MODULE 4.2.2

12008 PEM#*****************************
12810 REM INITIALISE FILE
12020 REM.*****************************12030 CLR:DIM A$(499),B$(49),TI%(49):IN=

1

12~40 DEF FNA(SI)=ASC(RIGHT$(A$(S1),I»+

1

12050 DEF FNB(Sl)=ASCCRIGHT$(A$(SI),FNA(

SI)--1+1:;')

1. 2860 GOTO 111~11~10

The module initialises the arrays and returns immediately 10 the menu.

MODULE 4.2.3

1312100 REM#*****************************1312110 REM ENTRY OF NEW ITEMS
13820 REM******************************
1. :3ü:3el T 1 $:::-~" ti : H~~=-l : TI+:::~~ : PR I t-n ti ;:'1Q'"'I\II'''
.1I!II"'IJI~I::t·-!E~'J I TEr'18"
1. 3(140 PP I ,'n ":O...'III'.. ' '" .. " ••" ...li".; I
T; 11 I TE::W:: ':::0 FFir.:~ 11

1:3~?150 PR I ~n 11 :~t:r;or1t1At-mS H'lA 1LFfBLE : 11

1.3060 PH I NT 11 :!lI[>:S:::tHER I TEt" TO BE INPUT"
1. :3~i70 PR I t·n "IYEt'nER ,,:+: .,' TO TERr1 I NFiTE T
HlS RECOPD"

91

The Working Commodore 64

1. :~:~~I:::[i PP I tH "1=::·:~Et-nEF.~ .' tNt··1 " FOF.: I TEI"1 T\'P
Eli
1. :::H39 0 PI:;;~ IHT 1111::::):11 t'~PUT ..' ZZZ ..' TC! PETI...lF:!··j TC!

t'lEl·lUUI!!l 11

t :;: l ~~1I0 I t·4PUT 0$: I F G!$::::: 11 ZZZ 11 n-lEt··1 PETUF.:t-·'
1::,:: 1 U3 I F 0$= 11 ZZZ 11 TI-I Et-4 F.:ETURH
1. 31 ~j) I F L..EFT:$':: C!:$:., 1) <::> 11 lil THEH 1 j 15(1
13130 TN=VAL(MID$(Q$;2)):TN:TN+10
1:::: 1. 4121 PP I r-n tl:lll .; I::;'':: n·!·.1. 1.) .; " : 11.; : (iOTO 1. :3 :1. [1121
1. :::: 15(1 IF Tt·.j-C>O THEJi O$::::O::r+ I! l!l'H1 I D~t (STP$ (
HO., ;;;::>: n~::::0
13168 IF lEN(Tl$)+LEN(Q$)+NN+2(=255 THEN

1:;: 1:::~~1

1.:;: 17121 PP I t-n Ii r::iEtHPV TOO Lm-m. ti : FOP .J:~-.: 1 T

o 3000:NEXT J:PETURN
131 :::(:1 I F O:f= II:+: 11 THH·' CiOTO 1::::20~3
13190 T1$=Tl$+Q$:TI%CNN+l)=LENCT1$):NN::::N
t·H.. l : GOTO 131 [1[1
1321210 FOP 1=0 TC! NN:Tl$=Tl$+CHR$(TI%(I»
:NEXT:T1S=T1$+CHR'(NN+l)
1321121 pr;~ I NT ti)!f.iIl~,J!1 I Til: 130!:::;I..JB 14~30(1 : CiO!:;I.JB 15
I;;ml::j : OU i I.J 1 :.::~j~K1

This module is equivalent to the entry module of Unifile but is more
complex for two reasons:

1) 	 There must be provision within the module to teIl the
program when an entry is finished. This is done by
entering an asterisk without other input.

2) 	 Since there is no regular structure to the file, regular
prompts for the names of items to be input cannot be
provided. There is, however, provision in the program
for items to be named. Such names, and the numbers to
be given to them are defined by a subsequent module-in
this module the item name can be attached to an item by
first of all entering the 'i' symbol followed by the number
previously given to the desired type name.

Commentary

Lines 13100-13140: If an entry begins with the 'T' symbol then tbe
cnaracters fOllowing it are taken to be the number of an item name to be
attached to the item about to be input. The input prompt is now
repeated under that type name. The type number is stored at the end of
the item, its value increased by ten so that it will always be a two digit
number (there are 50 possible type numbers/names).

92

http:CiO!:;I.JB

Chapter 4 The 64 as Secretary

Line 13200: To the string of items which has been built up is now added
a number of characters whose code value is equal to the position of the
last character of each item. To the very end of the string is added
another character whose code value is equal to the number of items in
the entry. Note that when saving the entries onto tape, these characters
must be translated into numbers since the characters may fàll outside
the range of those which can be saved in character form.

Testing Module 4.2.3

The module cannot be fuUy tested but a running check can be made by
entering temporary RETURNs at 14000 and 15000. You should then be
able to enter items and terminate the entry with an asterisk.

MODULE 4.2.4

14000 REM#*****************************14010 REM BINARY 8EARCH
14020 REM*******************'**********14030 IF IT=0 THEN S8=0:RETURN1. 4t14~~i PO::::: 1t-n (L.OG';: I T) /1....013 (2)) : :::;:::~-:::2 '1'PO-l
14050 FOR I=PO TO 0 STEP-l
14060 IF A$(SS)(Tl$ THEN SS=SS+2tI
14070 IF A$(SS»Tl$ THEN 88=88-2111.4080 IF SS{O THEN 85=0
14090 IF 38)IT-l THEN 85=IT-l
14100 NEXT I:IF A$(SS)(Tl$ THEN SS=SS+l
1411 (I RETUpr··1

A standard binary search module as in Unifile.

MODULE 4.2.5

15000 REMI*****************************1512110 PEt'1 IN::;EfU

15020 REM******************************
15030 IF IT=0 THEN GOTO 15050
15040 FOR I=IT TO 83+1 STEP -l:A$(I)=A$(
1,-1 ::. : HE:;·;:T
15050 A$(SS)=T1$:IT=IT+l:RETURN

A straightforward insertion module.

93

The Working Commodore 64

Testing Module 4.2.4 and 4.2.5

You should now be able to enter items and have them saved in the main
file array (A$). This can only be checked in direct mode.

MODULE 4.2.6

19121121121 REM#*****************************
19010 REt1 I TEM TI,..PE t~AME~3

19121212119030 FOR
REM******************************

1=0 TO 49 STEP 10

19040 PR I tH 11 ~'''''''''''''''''''''II''~I TE~1 NAt1ES

11

1~,050 P\~:IHT IIUI ,:: FOR .J::::I TO 1+10: PRINT .]
+1,: ") 11 ,: B$(.J) : t'~E::n J
1906~3 PRINT 1I:c::or'1t1At,W::; A\,IAILABLE; 11

19070 PR I NT .):1'" ZZZ .,' =G!U I T 1111

1:,080 PR I t-n 11 I>." I I I / =I TEM/DELETE 11

1912190 PR I tH 11 I)!I/ NNN / =t~E~<T PAGE 11

1910€1 I NPUT IJ ="JH I eH DO 'flOU REQU I RE : 11 ,: G!$;

I F Q$= 11 ZZZ 11 THEt-4 RETURt-~

1911121 IF 'G!$="t,~t-U~" THEt~ HE::,:;r I: RETURt-~

1912~'3 IF O$()II I I lIlTHEN GOTO 1901210

1. 913121 1t'~PUT 11 FCiS IT Im~ HUt1BER: 11 ,; G!
19140 PR I HT "lt~At1E OF TIT'PE OR ::J.::ETURH!! T
Cl IJELETE: II

1915121 1:;1$= 11 11 : I t',\PUT G!$: E:$ (G!-1) =G!$: GOTO 1904
o

This is a new module ena,bling the user to define item types. The module
simply displays the contents of the array B$ in groups of 11 and gives
the user the option to input a type name to a particular position in the
array. Once entered, a type name can be attached to an item or input as
described under Module 4. Type names can be redefined simply by
entering a new name in the position occupied by an old one or deleted
by pressing RETURN when asked for a type name.

Testing Module 4.2.6

Enter some type names then go back to the main input module and
enter 'i' followed by the number of a type name you have defined. The
prompt should be repeated under the desired type name.

94

Chapter 4 The 64 as Secretary

MODULE 4.2.7

20000 REM#*****************************
20010 REM DATA FILES
20020 PEM******************************
;201;J30 FF:: I t-n 11 :~13f'O::'; I T I m·~ TFIF'E COHRECTL'r'.,
THEH ~~}nEH~~-1I

2004121 I HPUT II 1·10TOF.~ l,~ I!...L ~:::TOP Fi 1...1 TOt'1AT I CFI!...
L.. 'r' : 11 .; 0$: PCWE 19;;;~.' 7 : POVE 1., :39
;20050 PR I t-n 11 :1!!:r:~[:Ot1t'1At·mS AI'lA I UlBL.E : 11 : F'R I t·4
T 11 :l!!lh 1::0 :::;~1""'E DFHA 11 : PR 1t-n " 2::0 L.OAD DATA 11

2Ia06~~1 II"WUT I1 :~l:J.,~H I eH DO 'r'OU RE OU IHE : 11 .; 0 :
ON Q GOTO 20070~20l50:RETURN
20070 POKE 1 .. 7:FOR 1=1 TO 2000:NEXT
20~::1::::(1 OF'Et·~ 1., 1 .' 1. .' "Ut··1 1FILE 11 : PH I t·n#- 1 .' I T
20090 FOP S1=0 TO IT-1:PRINT#1 .. FHA(S1)
20100 FOP I=1 TO FNA(51)-1:PRINT#1,FNB(S
1 ::. : t'~E::<T I
20110 PPINT#1,LEFT$(A$(S1),LEN(A$(Sl»-F
t·~F1 (::::; 1)) : r·4E::·::T S1

;~:O:l. ;:~:0 FClF.: 1::::0 TO 4:3: I F B$ (I ::. ="" THa·~ B::l!: 0::

I ':I ::: 11 "

20130 PRINTll,B$(I):NEXT
20140 CLOSE1:PETUPN
;~~O 1~5~'3 OPEt·~ 1.' 1 .. 1] .. "UtH F I L..E 11 : H~pl...Ini:l. .' I T
20160 FOP 51=0 TO IT-1:INPUT#1 .. NN
;;"~I;H?O TT$::::1i 11 : Fm~~I:::::t TO t·H··I·l: H~PUT#l .. TT: TT
$=TT$+CHR:t(TT):NEXTI:TT$::::TT$+CHR$(HN-1)
20180 GET#1 .. T$:IF T$()CHR$(13) THEN A$CS
1)=A$(Sl)+T$:GOTO 20180
20185 A$(Sl)=A$(Sl)+TT:t:NEXT Si
20190 FOP 1=0 TO 49:INPUT#1}B$(I):HEXT
20200 CLOSEl :RETURN

A standard data-file module.

MODULE 4.2.8

21000 REM#*****************************
? j 1211 VI FIIH[T Tm·~AL ~~:UBPOUT I t'~E~~;
21020 REM******************************
21030 SS$~MID$(A$(S2))PP+l)FNB(32)-PP::':R
ETUP"'~
21040 FF=O:Tl$=RIGHT$(Tl$)LENCTl$)-3):FO
P S2= 51TO IT-l:FOR J=1 TO LEN(A'(I)

95

The Working Commodore 64

21858 IF MID$(A$(S2))J)lEN(Tl$))=Tl$ THE
N FF=1:81=82:J=LENCA$(82)):82=IT-l
21068 NEXT JJS2:RETURN
21870 FF=8:FOR 82=81 TO IT-1:PP=8:FOR 1=
1 TO FNA(82)-1:GOSUB 21838
21080 IF 88$=Tl$ THEN FF=1:S1=82:I=FNA(S
2)-1:82=IT-l:GOTO 21120
21090 IF LEN(SSS)(4 THEN 21110
;;: 1. 1Ü~~I I F t'1 I D~t (::;;::;;:f..' L.a~ (:::;::;:$:::' "'''~?, 1::.::::: 11 lil THH~
SS$=LEFT$(SSSJLEN(8S$)-3):GOTO 21080

21 :i. 1~~1 PP:::Ft'iH (82)
21120 NEXT IJS2:RETURN

The module consists of three routines which are more economically
placed here since they are called by different parts of the program.

Commentary
Line 21030: This line can be caUed from within two loops: an S2 100

specifying the line in the main file and an I loop specifying the item
number within the particular entry. It then extracts, in the form of SS$,
item Tof entry S2.

Lines 21040-21060: Equivalent to the special search routine in Unifile.

Lines 21070-21120: A straight forward item search. The I loop uses
FNA to discover how many items there are in the entry (FNA(S2) = the
number of items there are in entry S2 plus 1 for the indicator at the end)
and then caUs up 21030 to extract the individual items. Items with type
indicator are compared with and without the type suffix.

Testing Module 4.2.8

The module cannot be checked until the foUowing module has been
entered.

MODULE 4.2.9

17000 REMI'*'****"*******'************
1. 7(11~?1 REr'1 ::;:;EARCH
17028 REM*"*******""*********"*****
], ?I;B0 S 1 =='.;:1 : FF=0 :PH I t-n 11 :1!!J11 111 111 111.. '111l1li11111 IiIIIII IDI I
:::ijb~~;EARCH 11

171~H~3 FF.: I tH 11 :~:t:[:Ot'1t1RI··m:::: ':::1 1",18 ILRBLE : 11

1?ü5~~1 PR 1tH ":!!l l)iH t'~PUT ITEr', FDP t·KlF.:r'IAL
3EAF.:CH"
1. 7ü6~) FR I NT 11 IIC'U:::'PE:TEDE l·.1 I TH ..' I I I " FOP

I t·~ I T II=tL... ::;EARCH 11

96

Chapter 4 The 64 as Secretary

1{,~3?~3 PR I NT l)fiiiPRECEDE ~'.I I TH ..' :::::;:;S ..' FOP11

::::F'EC I Hl. :::;EAPCH 11

1708(1 F'F:UH 11 l)fiii~EtHERB.!!D. FOP FIF.~!:n ITH1
m~ FIL.ElI
17090 PP I tH lle'~i'" t'1t'1r'1'" FOF.: t'1UL.. TI F'L.E !3EFmIJ

eH"
1? 1~~J~21 F'R I tH ")!!l!!l:II"ltlll",.,II•••e••JI.IIJIIII!III1
.1•• IiII!IIII •••• lll/IIiftlt.lI~nl!

1?' 11 0 T 1 :~::::~~ 11 IJ : II'·WI...IT 11 ::'::!:::EFiPCH COt'1r'1~1t·m: 11 .: T 1

J: IF L.EFT:t.(TU: .. :l.)()" 'lIlTHH·1 1?1:3121
17120 L.ET TN=VAL..(MID$(T1SJ2»+10:GOTO 17
1 H~I
1. ? 1::::[1 I F TI+C>~?I HiEt··1 L.ET T1~'::::T 1:1:+ 11 lIJ +t'1 I D~t
(STR$(TN)J2):TN=0

1117140 I F LEFT$ (T 1:t.' ::::) () I I I!I n1E}~ 1717121
17150 Tl$=RIGHT$(T1$JLEN(Tl')-3):GOSUB 1
4000:S1=S8:IF 81)IT-1 THEN RETURN
17'160 Tl$::::" 1 1 1 "+Tbl: CiOTO 17::':H3
17170 I F L.EFT;$':: T 1 ~f..' :3) <:> 1I ::;::::::;: II THEr"\ 172~3ü
17:1. :;:::0 iJO:::::Uf:: ;~: 1. 04'-~ : I F FF:.:.: 1 THEH T 1 :$:::: 11 :::;:;:;:::; 11

+Ti :*: : GOTO 17310
171 ::'f(l PETUPN
1. 7;:~~1?t0 I F LEFT:$ (T 1::r.' :;,::;. () 11 Mt1M 11 TI·"IEt·~ 17;;;-~7e
17;~~ 1Cl CiETZ$: Il··H::'UT IJ H!!:t'~Ur1BEF;~ OF I TEt'1::;: TO
!::;EAF.:CH FOf:;~: 11 .; 1'·U·i
l7;~2~1 FOF.: K:::::ü TO NN···l: F'R I tH IJ :3Et1F.~CH I TEf1
11 .: K+1.; : I I"~PUT t'lt.:: 1<::' : j···IE>::T t:::
1?230 FOP K:0 TO NN-l:Tl$=M$(K):S3=S1:GO
SUB21070:IF FF=0 THEN RETURN
17240 IF 83()S1 THEN 17230
1(";;::50 t··IE:~::T V
1'?~~6(1 LET T 1 $= IJ t1t'1r'1 1J : GOTO 1?::; 1 0
17270 1 F Tl :*:::;;;lI 11 THEI"" 1. 7':31 ~::I
17280 OOSUB 21070
17290 IF FF=l THEN 1?310
173(10 RETURH
17310 IF 81>IT-1 THEN 81=IT-1
17320 IF IT=0 TH EH RETURN
17330 IF 81.<0 THEN 81=0
17S!40 pr.:: I HT I! ::':'!~1!'~.i[~}.-ITP'I.,.' lt.: S: :l ..J,·:1. .: IJ : _)~~IJ : F'p·"oO :
S2=Sl:FOR 1=1 Ta FNA(S1)-1
17:345 IF 1....' 12:::: I HT';: 1/12:;' THEt·~ I NF'UT 11 111"1 0 F.:
E".;TT$
17350 GOSUB 21030:IF LEN'::SS$)(4 THEN 173
:3~3

97

The Working Commodore 64

1T::6i21 I F t'1 I TI$ (R I m-IT~l (: :::::::~~:., ::::::. .' 1. .' 1.) <:> 11 'lil TH

Et··1 17:3::::ü

1737121 F'R I tH B:t (VI::IL.. (F.: I C:iHT~:':: ::::::;~t: .' 2::') '-11 ::. .; 11 :

".: : :::::::~t:o-::LEFT~t (:::::::*:.' LEN (:::::;$) '~3)

1. T3a~1 PR I I'H ::;::::$
1739~ PP=FNB(Sl):NEXT 1:81=81+1
1"?4(1(1 PP I !'-fT 11 :~~h.~·t::Et1PCH!! :;::Cit'1t1At·-lD:::: HVA I LJ:I
BlE: I!

1. 74 H3 F'rn tH ":t!!~ 1I[>~:IIr:étHEF.:!! FOP t··!E::H I TH'! 11

1. (,4:?ü PF.: I I"~T 11 1III:>:~:11'" Al=tA '" TO At'1Et'~D ,.'

174:3121 PR I tH 11)::1'" eec'" TC! COHT I HUE ::::EI=tF.:C
11

HII

1744~?1 PFUH 11 I):~""*I:'" FOI....LO~,.IED m·1 !···II). TO
t'10VE PO I tHEr.:: 11

1745121 PR I tH I, IU>:~~I" 2;:2 ..' TO OUT T FI..Jt·K:T IOt··I·"
111. (":+60 P:$:::: 11 : I i··iF'I..,iT 11 :~m.~H I eH DO ',-'01...1 REOU I F.~

E: 1'.: P::I::

17470 IF Tl$!~lIr'1r'1to'!1I l=tt·m :::l·CIT TI-IHi 1"?:;;::3~~1

1. ?4::::0 I F F':$:::::: 11 eec 11 RHIi ::: 1. <: I T THEJ··I l? 14121

1';::'490 IF P:$::::1I11 THH1 17::':10

1. 75~?lf.I I F F'~l::; I! lli=1A Ii THH1 GO:3UB 16m:m: GOTO

l?:31.ü

1. ?~51 f:l I F P:~:::: 11 ZZZ 11 THEt·~ RETUF.:N
1?~;:;:~I2I I F LEFT:t. O:I~*" .. 1)::: ":1* 11 TI-IH~ S 1 :::::; 1+ 1,.,1 14 l.. (
MIDS(PS .. 2»-1:GOTO 1"?310
17530 81=81-1:00TO 17310

Similar to the Search module in Unifile, but making provision for the
multiple search and for type names.

Commentary

Lines 17110-17130: Note the way in which this routine detects whether
an item with a type number attached is being searched for and then
requests input under that type heading, tagging the type number onto
the end of the item.

Lines 17140-17160: An initial search as in Unifile.

Lines 17170-17190: Special search making use of the routine in the
previous module.

Lines 17200-17260: The new multiple search routine. It requests the
user ta specit'y the number ot Itemsto tJe searchea rOf, men to input me
inçiividual item (type numbers are not dealt with). A search routine is
called up at 21070-21120. Before each search item is specified, a record
is taken in the form of the variabie S3 of the value of the search pointer
SI. When the routine at 21070 returns to this routine the value of S3 is

98

http:FOI....LO

Chapter 4 The 64 as Secretary

again compared with SI. If SI is different from S3 then it is dear that
the two items were not present in the same entry. On first finding one of
the specified search items, the search is reset to the first of the specified
search items in order to ensure that the whole list of search items is
compared with the items in the entry.

Line 17280: If the search has reached th is point the input is assumed to
be an item to be searched for with a normal search and the search
routine at 21070 is called up. Note the use of the flag FF in all these
search routines to indicate whether something has in fact been found.

Lines 17340-17390: Starting at the beginning of the chosen record, the
routine at 21030 is called up to extract individual items. Type names are
printed where the 'T' symbol is present 2 characters from the end of the
item.

Testing Module 4.2.9

You should now be able to page backwards and forwards through the
entries and search using the methods described in the commentary.

MODULE 4.2.10

18121121018810 REM#*****************************REM TELESCOPE FILE
18028 REM******************************1812130 FOP 1=81 TO IT-l:A$(I)=A$(!+l):NEX
T: IT=I1-"'1 : PETUPH

This one line routine telescopes the file when deletions are being made.

MODULE 4.2.11

16000 REM#*****************************
16010 REM CHANGE ENTRIES
16020 REM************'*****************1~:';~:IJI2I !::,:: 1=:=: 1-1 :T 1. ~t:::: 11 11 : t·n·4=-.. 1. : Tt·4:::::~.?t
1612140 PP=0:S2=SI:FOR 1=1 TO FNA(SI)-1
1 (;~::'1:~O Pr.~ I tH 11 ::1!!F.}nt~:'''' "; S 1"'" 1. .: 11 : ._11

1612169 GOSUB 21030:IF LEN(SS$){4 THEN 160
:30
1,:;~~170 1 F t'Î I D$ (!:::;!:;;~t., LEJl (!:;;::;:;:'r.) ~:: .. 1 >() 11 1.. 11 THE
t4 1,':;'(:3510

16'.1:::1;::1 PR I tH B$ (",.'I=tL.':: R I CiHT$ (!::;!:~;:t:., 2) ::0 -11) .: " :

11.; LEFT$ (SS$) l...Et·i (!3!::;~~:) -:3) : GOTO 16101~1

1612IS'Ü PP I tH S::;j;:
1,:::; 1(1(1 PR I tH 11 ::!!I!!l@!!lI!f,Cor'1t'1fit·mS A\,IA I LABL.E : 11

99

The Working Commodore 64

1. 611 ~3 PH I tH 11 1I[>iii.;:.f::ETUPt·~~ L..EFi'-,,'[:3 I TEt-' tH··'

CHFit'~I3ED "

1612(1 PR UH 11 Ilf>liit·iE~-·1 I TEt-' Er·m H~G ~-.l I TH ..,:+:

16:[::::0 FR I ,··n II)U;':EPU,CEt'1EtH OF I TEt-1 IJ I S 11

PL..A~'ED'I

1614~?t PR UH 11 I>~k'" ~~ZZ·' r;n..II TS ~H THOUT CHfi

HGE!::"

1. 615121 FR I tH " I)~V DDD" DELETE:=:: THE l,JHOLE

EJ·ITR'r'"

181 ~;0 PR I ~n u 1I)~k" RPF:: " F:Et'IO',_-'E:;::; TH I !:: I TEt'1

FF.:CIr'1 EtHP'r' "

11; 1. -.:"121 O:i-::::" 11 : I t·~P!...IT "f::îll.,.IH I eH DO ',-'OU PEG!U I F.:E

; iI ; O:t

16180 IF 0$::::"Z2Z" THEt·i PETUPH
161 ~'3ü I F cu::::: 11 PF::F.:" THEH GOTO 16::::1210
16~~0tl I F G!$= 11 nnD 11 THEH OO:3I...1B 1:::a)l2l[j : PETUP
t·i
16210 IF lEN(Tl$)+LEN(Q$)+NN+2{255 THEN
GOTO 162:3(1
16220 PR I HT !I r~~·nR'i TOO L..ot·m 11 : FOk: J::: 1. TC!

:30[1(i : t'4E}::T : RETIJRH

1.1:;;;;::::':121 D::::::0: IF 1:;::IGHT~~:(O:t..- 1)::::"*" THEt·~ E;:<:::::1

:G!$=lEFT$(Q$,lEN(QS)-l)

1. 6240 I F C!~l=:::: II!I THEt~ T1. :f:::::T 1. $+!:;::::f. : T I ;.~ (t·4t··I+ 1

)=LENCT1$):NN=NN+l:GOTO 16300

16250 I F L.EFT ~~: (0$., 1) () 11 ·r·1! TI-IEt·~ 16;;?i::f.1

16260 TN~VAL(MIDS(Q$,2))+10:PRINT B$(TN
11 ::0 .: 11 : ".; : G~$:::: 1111 : I ~..jF'UT G!$

1627~3 O$::::G!:t,+ 11 lil -".. r'l ID$ (STP$ (n·f;' .. :?)

16280 Tl$::::Tl,+QS:TI%(NN+l)=lEN(Tl$):NN=N

16290 IF EX::::1 THEN 16050

16300 PP=FNB(Sl):NEXT I

16310 FOR 1=0 TO NN:Tl$=Tl$+CHR$(TI%(I»

:NEXT:TlcTl+CHP'(NN+l)
1. 6:3::~:t21 F'I:;;: II·n !l)!lIL-JA I Til: OOSUB 18000: G03UB 1

4000:GOSUB 15000:RETURN

Equivalent to the UniftIe change module.

Commentary

Line 16230: Entering an item ending with a * indicates that a new item is
to be placed into the entry before the item currently on display. The

wo

http:f::�ll.,.IH

Chapter 4 The 64 as Secretary

variabie EX (EXtra) is set to one to show that this has happened. In
Line 16290 this variabie is used to ensure that the item on display is not
lost.

Testing Module 4.2.11

You should now be able to delete entries, to change items or to insert
items. If this module is functioning correctly then the program is ready
for use.

Summary

Given that their applieations will be different, this program has all the
strengths of the original Unifile program and I hope you find it useful.

In addition, I hope that entering the program has given you same
insights into the advantages of a modular style of programming. On the
basis of the original Unifile modules the original version of this program
taak Iess than a single morning to write for the simple reason that the
clear structure provided by a modular program makes it absolutely clear
where any necessary change:; have to be made.

Provided that you are not absolutely desperate for memory space,
you will save time and tears in your programming by setting out your
programs in clearly defined functional units. Not only does this make
the programs more readabie, it inereases the likelihood that you will be
able to eaU the same routine from different parts of the program, eases
replacement of functions you think you ean improve on at a later date
and, not least, makes it easier to lift whole seetions out of the program
for subsequent use in other applications.

Going Further

1) The multiple search routine makes na provlSlon for
specifying the type names of items. Lines 17110-17130
provide a clear example of how su eh an ability could he
provided.

2) Professional databases usually have the ability to search
for entries which have, say, four out of eight search
targets present. CouId you adapt the present program to
aehieve the same.

4.3 NNUMBER
Having entered two programs which are capable of dealing with a
variety of needs in the field of storing non-numeric data, we turn our
attention now to the problems of keeping track of numbers. Although
most numeric applica1ions need 10 be specifically addressed to a
particular problem, NNumber (short for Name and Number) is very

101

The Working Commodore 64

much like the two Unifile programs in that it is intended to be a general
purpose tooI for applications where you need to store the names of
items, units of quantity associated with them and to be able to add
together the items invarying quantities. In case it seems to you that you
never want to do that, perhaps I should say that the idea the program
grew out of was a calorie counter that enabled the user to store a
dictionary of up to 500 foods and to calculate with ease the calorific
cost of a day's or a weèk's meals. The present program is just as
capable, without alteration, of calculating invoices as it is of helping
with weight watching.

Because the style of the program is very similar to the two Unifiles,
and many of the functions similar , comments and testing suggestions
have been abbreviated as much as possible.

NNumber: Table of variables

A$(499,1) Main dictionary array.
C(499) Values associated with units specified in main dictionary.
CT Temporary variabie used to cumulate the sum of items in

current list.
CU Number of items in current list.
NN$ General name for items being recorded.
IN Initialisation flag.
IT Number of items stored in main dictionary.
NN Temporary storage for value associated with new item

being input.
PO Used to determine number of comparisons in binary

search module.
QQ$ General name for quantities associated with items being

recorded.
R$ Separator used in data file saving.
SS Search pointer for binary search.
T(49) Values associated with items stored in T$.
T$(49,1) Storage of current list.
Tl$ Temporary storage of item name being input.
T2$ Temporary storage of units associated with T1$.

MODULE 4.3.1

11000 REMI*****************************
1. 1. 81 ~ REt1 t1EHU

11020 REM******************************
1. 1. ü:3f1 POKE :i32:31,., 1:::: :PP I t-n 11 ::1~)"""'''''1
n~~:t~AME AND t·~UMf.:ER!!1I
11, 04ü Pf;,: I t..JT 11 :~!!l~:Cm1t·1AI'·m::; ,::,'.iFI I I..JlBLE : 11

102

Chapter 4 The 64 as Secretary

1. 1U::5~-~1 l)DISPLAY CURRENT LIS
Til
1106(1 PFH-IT ;;::) I i··1F'UT TO CI...Il~:PEJn L.. I :::::T titi

1111 (}?12i PPII.rr :3:) ::nf1F::T FRE:::;H L I :::::T 11

11t liJ :::: ~~1 F'F I I·H 4)DELETE FPOM CURRENT LI

11 09~~1 F'P I t-rr 11 ~:i) F::-n"Et·m DI (:T I Ot·~AF;'~'1""
111 ()C! PF: IHT 6) D 1 ::;PL..ri'T' D I CT 1cn··.I!=JP'r' ti11

1. :i :I. :I. ~?I F'F:: I t-n ti ?) DfHA FI U:::;:; !I
1. :i. 1;::~O P!~: I I·n f:::) I r·l I T I I:::IL. I ;::;E 1111

111. ::':121 Fr:: I t-n 9:;' STOP 1111

11141~1 I t·~PUT ti :f!t=.,JH I eH DO '·r'0 !...! PEC!U IFE : " .; ~: :

F'P I t-n ti ~~J" .;

11150 IF IN()0 OR 2=8 OR 2=9 THEN GOTO 1

11 :l :::;0 F'P I HT 11 ::':'1::i[~l~JNJ!llp.!W!lI!!JJ!lm~:~\!III\I!ilDlIl\iI\lllI\lll'lInl!m···Ii~l"r I
i···1 I T I !::IL I ;::;ED 'T'ET 11

11170 FOR 1=1 TO 2000:NEXT:GOTO 11000
11180 IF IT)0 OR 2=2 OR 2=3 OR 2=5 OR Z=
7 OR 2=8 OR 2=9 THEH 11210
11190 FR I t-n 11 ::'1::i[J!ll~r.I~r.P.fI.P.qN~l~mp.!l~r.p.!)"'RIi1'IIri'iIIlIi~'It·KI

Dfi"H1 'T'ET 11

11200 FOP 1=1 Ta 2000:NEXT:GOTO 11000
11210 ON Z GOSUB 13000,14000,14120,19000
,150121121,18000,21211211210,12000,11230
1 :I. :::20 GOlD t 1000
11 ;2::::~::1 PR I tH 11 :1~I{'IJ[~r~m~I~I~I~r.~JBl\llllIl!IIIIlI!llI""mu'f:it·Hi
r'lI::: f-1t··ID j··.I!...It'1F.:EP 11

:I. 3. :?40 PP I r··IT :!!:[~:IIiDl""IIiI'JII'lif'F::CIl3PI::lr'1 TEFt" I11

~·.IFiTED 11 : EJm

Standard menu module.

MODULE 4.3.2

12000 REM#*****************************
12010 REM INITIALISE
12020 PEM******************************
12030 CL..P:DIM A$(499;1);C(499),T$(49;1);
T':: ,+:::1::' : CI,.,IF::F::""'(I ; I T·.;;;O ; 1 H'" 1 ; r;:;t.;"·Ct'm;~; .:: 1. ::'i:;'
1. :;~O:::::~; I I··~F'UT 11 :!!:r:iFif~:E 'r'OU L.ORD I 1··Ki Fr~:0!·'1 TAPE

.;: 'T' /H > : I' .: G!::j:: : I F G!:*:"'" 'I \11' THEt··! :1. 1000
l21~H·O I t··IF'UT I' :~ll··IFlt'1E FOP ITEt'1::;; : 11 .; t·n·u:
1. ;;~050 I r'iF'UT 11 :~l·~I=ti'1E FOP (1:::;:::;;OC 1fiTED OUFlI··n I
T'i : 11 .; G!c!::j:: : OOTO 11.1)~?10

103

The Working Commodore 64

Initialisation of variables. The module also allows the user to specify the
name of the item type to be stored and the general name of the units e.g.
Food/Units, Product/Package type.

MODULE 4.3.3

1500015010 REM#*****************************REM EXTEND DICTIONARY
1502121 REM******************************
15030 IF ITEMS{500 THEN 1505015f.H·(I F'P I tn ")!!I::îllllllllt'-IC1 !"1ORE POOl"1 It··! D I CT 1Cl
t-ifIR'r' tl : FOF.: 1=-:1 TO 20121121: HE::<T : PETUF.:t··!
1505Ç~ PRItn u:1!l..1l......"IIIII~..··IE~,~ ITEt'1!3 FOF: DI
CT 1m··!I:IR'1"'~tt
15fl60 PR I tH It :!I.:rg~11 .; r·n··l:t:. : I Hr"!...IT !I:':: HI=!I"1E OP
'?;?Z·.. TO OI...IIT>: I!.; TU:
15ü7~1 I F Tl ;$:::::!I ZZZ 11 THEt-4 F.:ETURt·~
1~5(1Gü PI? UH 11 :!!~It ; 01]$.: : I HPUT Il: 11 .: T;;;~:t
15~"39ü F'RltH ":19]URtHIT'r' PER ".: T:?::t.:.: : INPl..JT
W··!
E::; 10~1 HWUT 1I:1!!l':flF.:E THE~::E CORRECT ("r'/lD: 11

.: 1]$: IF O::r.:::::"NIl THEt··1 [iOTO 15f.150
15110 GOStJB 16000:GOSUB 17000:IT=IT+l:GO
TO 15050

The input module for the main dictionary. Having specified the general
name for the items and their units, the user is requested to input item
n'ame, unit name and basic quantity per unit (ie calories, price, volume).

MODULE 4,3.4

1612100 REM#*************'***************
16010 REM BINARY SEARCH

1603016020 REM******************************IF IT=0 THEN SS=0:RETURN
1. 6fj<~·O PO::: I r··IT':: LOCi (I T) ,/1...013 (;;;::)) : ~:;~:;~:::;;;:: 11='0'··1
16050 FOR I=PO TO 0 STEP -1
16060 IF At(SS,0)(T1$ THEN SS=SS+2tI
16070 IF A$(SS,0»T1$ THEN SS=SS-2tI
16080 IF 88(0 THEN 88=0
16090 IF 88)IT-1 1HEN 88=11-1
1E:; 10~:?J t'~E>n I

104

Chapter 4 The 64 as Secretary

16110 IF A$(SS,0)(T1$ THEN SS=SS+l
161 20 F.:ETUR~·~

A standard binary search module.

MODULE 4.3.5

17000 REM#*****************************
17010 REM INSERT ITEM
17020 REM******************************
17030 IF IT=0 THEN GOTD 17060
17040 FOP I=IT TO 8S+1 8TEP-l:AS(I,0)=AS
r:: 1--·1., ~::J) :l=i:i-(I., 1 :)=A~t(1,-1., 1.)
17050 C(I)=C(I-1):NEXT
17060 A$(88,0)=Tl$:A$(SSI1)=T2$:C(SS)=NN
: i:;:~ETURt··1

A standard insertion module.

MODULE 4.3.6

18000 REM#*****************************
18010 REM USER SEARCH
18020 REM******************************
1::::(130 ::;::::::::0: T 1 $::= 11 :I~ 111

1::KI4t1 PR I tH 11 :J:!fJ!llHIIDI"'JIIU'DI"'JI~:r::EHRCH~1I
1. ::;:12150 Fr.:: I tn lI:m TEN ~·~Ut~BEP: 11 .: ::::~:::+ 1.
11:1(160 F'R I t·n 11 :~J:~II .: t·.lt·.I~t..: 11 : 11 .: FI~t.: (!::/::: .' 121)
1. :;::C.J70 F'P I Hl !I :!!~II .: OO~r..: 11 : 11 .: Fl:t (:::S.' 1. >

1:;::(1::;:0 PP INT 11 JOUfitH I1'TI PER Fi:t (::;8., 1.) .: 11 :
11.:

1. :;::: 090 P R I tH 11)!!i iilllllllllllllllHt I!l~ tlllIllIi .. iII!Ilt til ~U!III1lIlI ,/I!lIII" ••11 11 ti 11
1I!IIIIIfIItRlil\llltltlltll.I. 1I

], ::! 1 ~?I(1
1::;!:!. 1~~I

PR I tH
PP I r-H

IIIICCIr'Wlflt·m:;:: Fj"lH I I.... F1f.:LE : 11

11 :!!!ifi) ITEt'1 TO HE :::::Ei=tPCHED F
Or.;~ 11

18120 PRINT 11)~*~ THEN NUMBER TO MOVE
POltHEpll

U::130 PRH-IT 11)"'DDD'" TO DEL.ETE ITEt'1 11

l:~;:i.40 p~:nn 11 >'-222'" TO GlUIT"
1. ::: 15ü T 1 ~t::::: 11 11 : II··iF'!..JT 11 :~:r?:I...I!-·1 I eH DO l'rlOU PEG!U I
r';:~E : " .: Tl $
1. :::: t 60 I F Tt $<=> 11 DDD 11 THEt··1 1:3:t. 9[1
18170 FOP I=S8 TO 1T-l:A$(1,0)=A$(I+l.0)
:A$(I,l)=A$(I+l,l):C(I)=C(I+l>:NEXT

105

The Working Commodore 64

1818121 IT=IT-l:GOTO 18040
1.:;::; 19~~ I F T1. ~t:::~ 11 ZZZ 11 TI-IE!···I PETI...Ipr·j
H'QI2!0 I F L..EFT:t~ (T 1:*:.' 1. ::. () II:+: 11 THEt·~ GO~;I..JI:: 16
00121 : OOTO 1822~3
18210 SS=SS+VRL..(MID$(T1.$.. 2»
182212! IF 88)IT-1 THEN 88=IT-1
18230 IF 88<0 THEN 88=0
1. ::;::;;;::40 GOTO 1. :;::1;;.141;:,

The main user search module.

Testing Modules 4.3.1-4.3.6

You should now be able to enter data and to check its proper insertion
into the main dictionary (sorted by item name) by using the search
module.

MODULE 4.3.7

20000 REM#*****************************
20010 REM DATA FILES
20020 REM******************************
;2mf:m PF.: I HT :!!:r~'O:::; I T I OH TAPE COF.:F.:ECTL.. \' .'11

THEt-·' ~:ETUF.:I"-·I~·······II
;;;:1;?104i21 I t·~PUT 1l1"10TOR 1.,.\ I !.... L :3TOP 111...lTOt'1HT I Ct-::IL..
1....'/ : Ii .; O~t :POKE 1. :3;;;:: .. 7 : POI<E 1 .. ::::9
;~~(~(15el PR J. ~H 11 :~:eCot'1t'1AI··m::; t1VA I L..f1BLE : 11 : Fr.:: I H
T H)!!~ll)::;:;R',,.'E DFiTFi ll : PPltH I!N2>l...OFUi DATRIl
~?006~~1 I ~·~PUT II.~~H I eH DO ',.'01...1 I? EO 1...1 I f~:E : iJ .; G! :

ON Q GOTO 20070,20140:RETURN
20070 POKE 1 .. 7:FOR 1=1 TO 2000:HEXT
;?'210::::~) OPEI"~ 1., 1 .' ;2 .. 11 t-n·4Ut'1BEP!I :PfU tn# 1.. t·n·u:., p
JQQJR$,CUJR$IIT
20090 IF CU=0 THEN 20110
20100 FOP 1=0 TO CU-l:PPINT#1IT$(I .. 0) .. R$

T:*: (I .' :[) .' R~l., T (I) : t··iE::.::T
20110 IF lT=0 THEN 20130
20120 FOR 1=0 TO IT-1:PRINT#1 .. A$(110),RS
.A$(I.l),RS .. C(I>:NEXT
20130 ClOSE1:RETURN
;212114121 OPEH 1 .. 1 .' ~;:I.I 11 Nt··IUf1BEF.:" : H~F'UT:I* 1. .. I··n·~:r., I}
(lt.. CU., IT
20150 IF CU=0 THEN 20170
20160 FOP 1=0 TO CU-l:INPUT#1 .. TS(I .. 0),TS
.:: I .' 1 :;. .. T (I) : HE;'-:T

I

106

Chapter 4 The 64 as Secretary

20170 IF IT=0 THEN 20190
20180 FOP I=0 TO IT-l:INPUT#1,A$(I,0))AS
(I .' :I. ::. .' C (I) : t··IE:~::T
20190 CLOSE1:RETURN

A standard data-file module. Save your data!

MODULE 4.3.8

14000 REM#*****************************
14010 REM EXTEND CURRENT LIST
14020 REM******************************
1·::j.iz.r3t1 I F CU~-.::5[1 TI-iE}·1 F'P I tn 11 ;:'J:f.I!!Uf.OOIl!OO:Q"".
~1lIU1II''::URPEtn l. I ~:n t··im·.\ FULL. 11 : RETUHI"'\
:I. ·:+O'::\-O PP I tH 11 ::1!!)'DlIIIBllIRr~l::~:::IDD I T I Ot·1~:;; TO CUPR
El·!T 1.... I ~3T!!1I
140:i[l pp ItH 11)!Ildi ll .: ~H·U:.: 11 (., ZZZ ..' TO G!I...! I T::' :
11.; : I t·1PI..JT T1~f. : I F T1::1:::::: 11 Z~?Z 11 Tr..jEt··j r';;:ETI...IF:t··!
14060 GOSUB 16000:IF A$(SS,0)=Tl$ THEN G
OTO :l4~~J::::0
14(1';::'121 PP I I··fr 11 N~t:f'OOD 1...1!···II<t·ml.·.IH., PLEI::r:::E CHE
CI<" 11 : FOP I:::: 1 TO 2121ü0: I"~E::<T : F:ETURt·~
14080 PF.: I NT 11 :!!~11 .: GK!$.: : 11 .: 14$ (S~~:., 1.) : I t.~PUT11 11

:~nl...lf!l·H 11"'1) : 11 .: C!

140::~121 nWI..JT 11 :!!l!!!r:IIFIFo::E THE!:;::E CORPECT (',.'/lD:

11 .: 0$: I F 0$:::: 11 N11 TI-IH·I 1.:+m~IÜ

141.00 T$(CU,0)=A$(SS,0):T$(CU,1)=STR$(Q)
+ 11 11 ·-jo·fi;$:':: ::;~::; .. :[::. : T (CU::' :::I:;WC':: ~:;~:::::. : CU:::::CU+ 1
14110 GOTO 14000
Up to this point you have been able to input to the main dictionary and
manipulate the data but the main point of the program is what can be
extracted from the dictionary and stored in a temporary list known as
the current list. This module begins the process by allowing the us er to
name an item in the dictionary and to specify how many units of that
item are to be added to the current list. The binary search module is
called up to check that the item input is actually present in the
dictionary.

MODULE 4.3.9

13000 REM#*****************************
13010 PEM DISPLAY CUP RENT LIST
13020 REM******************************

107

http:1!���II<t�ml.�.IH

The Working Commodore 64

13030 IF CU=0 THEN RETURN
1. 3ü4~3 PF.: I I'n ":]11 : Cf::::tl : FOP I::::ü TC) CI.J·,··l: F'P I r',i
T 11)!!C IJ .: I··H·U:.: : " .: T:*:.:: I .' (1::'11

1 :::::05ÜF'P I tH ":I!f.I I1 .: 00:;'.: 11 : .: Tl: (1 .' 1) : F'R I tH ":~l11

OUAI'H I rTl: 11 .; T (I)
1. :7;:12160 PP I HT 11 :~llooooooooo(toOO()ooooooooooo

()OOOOOOOOOOOOOOII
1:3~~17~3 I t,~PUT 11 PPE~:::;:::; ~F~ETI...1Pt··I~ FOP t'~E>n' I TE
t'1 : 11 .:.O:l : PF:: I tH 11 :-n"
1. :30::;::121 FP I I'··IT "

:-Tn ll

13898 CT=CT+T(I::':NEXT I
1::': 11210 F'F.~ I tH "r:"I!!ITOTf1L: I" .; cr
1::=.: 11 f1 II··WI...IT ":Qif'RESS v.F~ETUPt'·I!!!!!! TC! (:;0 F.:I::II:~:K

TO t'1HRJ".: 0:$: : FETURt'i
Having input items to the current list, this module allows the current list
to be output to the screen and creates a total of the values associated
with the items in the current list.

MODULE 4.3.10

19880 REM#*****************************
19010 REM CURRENT LIST DELETIONS
19820 REM******************************
19030 IF CU=0 THEN RETURN

.1:;.t040 FOP 1::::0 TO CU-"l: 0$::"11 : PRltH "~~~".; T
$(1,,0) : PF::UH ":~:jll.; Tt.:: I.' :t::'
1. ::::·1]5121 I HPUT 11 H!!:Jnm):::DEl..ETE if.~ ~'~ETUPt',I::::t'~E>::T ~a
!!!!22Z=OU I T : It .; G!:t : I F O:t::: tl ZZZ It THEt·~ PETUPt··j

19~"3€;0 I F O$() 11 DDD I! THEt'·1 t--IE>::T I: PETI.../Pt··j

19070 FOP J=I TO CU-l:Tf(J,0)=Tf(J+1J0):

T$(JJ1)=T$(J+1Jl)~T(J)=T(J+l):NEXT

19080 CU=CU-l:PETUPN
19f19QI ::::;TOP

The purpose of this module is to allw the user to page through the
entries to the current list and to delete at will. There are no complex
search functions, it is simply a matter of paging through each item, one
at a time.

Testing Modules 4.3.8-4.3.10

You should now be able to set up a current list, to display it and delete

from it at will.

108

http:4.3.8-4.3.10

Chapter 4 The 64 as Secretary

MODULE 4.3.11

14120 REM #****************************14130 REM INITIALISE CURRENT LIST
14140 REM *****************************
1·::j.î.5ü FOR 1::=1 TO :;~'3:T$(I.,~3):::::"l':T~t:(I.'1)::::1l
11 : T(: I) ~~:1?1 : CU:::::I;) : RETURN

Since the current list is only meant to be a temporary one, which may be
reset frequently, this module empties the current list arrays and zeros
the current list pointer. If the module functions correctly, the program
is ready for use.

Summary

This program is yet another example of the power of modular
programming. Despite the fact that the application is very different,
many of the modules have been lifted, with or without modification,
from the previous two programs.

As you progress as a programmer you will quickly leam that, written
into functional units which are properly separated from each other, a
collection of methods of doing things is even more important than a
collection of programs. A library of programs will stand you in good
stead until a new application comes along. A library of methods,
properly expressed in working modules, will enable you to tackle those
new applications with hardly any effort at all. New methods are all
around you in magazines and books like this one (of course there are no
books quite like this one) so do try to keep track of them if they look
good, even if you can't quite see their relevance at the moment. Within
a week or two you may weIl find that they are just what you are looking
for to complete that program that is giving you so much trouble

109

http:1�::j.�.5�

CHAPTERS

Home Education

One field where micro computers are really only just beginning to make
their mark is that of education. No school is complete today without one or
two computers scattered around. But it's not just in the classroom that
computer-aided learning is relevant-affordable computing power means
that all the benefits can be brought home. In this chapter there are three
programs which provide a sampler of educational applications, whatever
your age.

5.1 MULTIQ
This program is a favourite of mine. When I wrote it I was satisfied that it
was a competent piece of work that would do the job that it was designed
for. It was not until I entered a mass of questions and tried it out on people
that I realised that such programs make learning as addictive as any game.

Like Vnime, this program is a chameleon, designed to change its colour
to suit your need. At one moment it may be a French tutor, a few minutes'
htter you may have it setting complex questions on 19th century history.
The aim of the program is to allow you to do all this and more, without
making any changes in the program itself.

Multiq: Table of variables

AA Temporary variabie storing answer selected by user.

A$(1,499) Main array containing questions and answers.

D(1,9) Pointer to beginning of groups of item types in main

array.
D$(9) Array containing item types.
IT Number of items stored in main array.
NA$(l) Array containing general names for questions and

answers.
P1,P2 Pointers to range of files to be drawn on to generate

questlOnS.
PP Pointer to wrong answer being selected from array.
Q(4) Used in setting up multiple choice test.
Ql Position of random answer drawn from file.
Q2 Position of correct answer in possible answer array Q.

111

The Working Commodore 64

QT Total questions asked.

QU Indicator to type of questions required in question

generating module.
R$ Data file separator.
RR Right answers.
SU Temporary variable used in calculating groups in array

D.
TY Number of type names entered.

MODULE 5.1.1

11008 REMI*****************************
111211 ~~I PEt1 f'1H·IU
11020 REM******************************
11 '2130 PO!<E 53~;f:~ 1 .' 15: PF~ I tn 11 ::J.l!fm"1I\I1l1II IIII11!1 111 DI DI I
m~J·1UL.TIG! 11

11. 0,:H~ PF.: I HT !! :OCot'1t1AHII::; fl\,'A I LJ,BL.E : "
11 J;:i50 PF.: I NT 11),1 J~I:;' I t·WUT HEJ·J I TEt1S 11

11. 060 PR I HT " ;;;:) ~:;EARCH,·"'DELETE"

11 (17~3 PR I tn 11 :;:) EtnEF~ t·~E'.·.1 T'r'PE:;:;"

11,IZI::.:aj Pr.~ I tn " 4) GEI···IEF.:ATE C!UEST I m'~:3 11

1U3gel PF.: un ~i:;' D I ::;F'l..A'r' OF.: RE:::ET ::;;C elF:: E!I
11

1.1,1~~~"3 PPlt-n " 6)DfHA FILESII
111113 PFntn 7) ItHTIALI::;E"11

111 ;;~et F'F.: I I"~T :3) 8Tt]F' I!JI

11. 1::::121 I t,W'UT 11)'O~.IH I CH DO '1"01..1 REC!U I RE : 11 .; Z :

PF;: I NT "~:l".:

11140 ON Z GOSUB 13000/16000/121,00/17000

.18000,19000. 120001 11150:GOTO 11000

111-50 PF.: I tH 11 ::'D~l)nIWf.[!!I!!lJf.[l!Il!!I!!ll~II!l.J""I\II""lInlll~
CLASSRoor'1 CL.OSET! It : END

A standard menu module.

MODULE 5.1.2

12000 REM#*****************************
12810 REM INITIALISE
12020 REM******************************
12030 CLR:DIM NA$(I);Q(4)/A$(1,499),D$(9
),D<1;9):R$=CHR$(13)
12~)40 H~F'IJT ")!I.IIARE 'r'OU LORII H40 FR0 \'" TAPE

('11/1"1) : ti .: G!S : I F Q$:::: "'1)" THEt·i 110(H)
1~~~:?I5[1 PR I toH "::1CII"""JIIIIIIII~E~:n STF.:I..JCTUF.:
Eli

112

Chopter 5 Home Educotion

1:2'-.::160 H·IF'UT I! :~r.l·iAr·1E FOP Flt·.ISHEH: 11 .; t'~f1$ (121::'

i 2:070 I I"~PUT 1I)!!lP.NFWIE FOR (!!JEST I Ot·~ : " .; 1"~I1:$: (1

)

L2f1::::0 I NF'UT ti :!!lo:.fIRE THE3E CORF.:ECT .:. "1) /t·D : "

.; 0$: JF O:$:= 11 t··I" THEH 121!.150

1;;~090 D$ ((I)::: 11 Ut'4T'T"PED 11 : T'T";::: 1

121 (10 FF.: I HT 11 ;:'lf!!UJIIIIJDIIII..IIIJII........U:lilT'T"PES 11

1Z1 H.'! f'F.:nH ":!!1:ilIt-IF'UT ···ZZZ··' TO OU1T: 11

1;;~ 1. ;;)'} FR 1tH 11 J!llT'r"PFS I t'~PUT ~:;o FAR: - 11 ; : I F

T'T":::: 1 THEt·~ PR I tH "II··KIHE 11

1;;~1:::H3 IF rr"()J. n-lEI"~ F'RUn ").l" : FOF.: I::::fj TO

T'T"-:L : FR I l'H 11 ~J" .; I -I- 1 .; "._ 11.:"; IJ!':: I) : t'~E::(r

ti .;121 "H::1 I !···IF·UT 11 :a:t··IEl..l T'T"PE: G!$: I F 0$= 11 ZZZ"

THEr-·1 111~1(1121

1 :~~ 1. 50 H4F'UT "lil I:::; TH I::; CORF~ECT Cl/lD: 11 .; I)

1. :f. : IFC! 1. $= "r··I" THEt·~ 1. 2lI21~:'i
1.;;~16~1 IF T'T"::::l0 THEN PRltH ":~:r::t'40 r10F.:E ROO
r'1" : FOP I:::: 1. TO ;21~m0: 1··4E::<T : GOTO 11. 0~.?10
12170 D$(TY)=QS:TY::::TY+1.:GOTO 121.00

This module initialises the main variables and allows the user to specify
the general name for questions and answers. The user mayalso specify
up to nine type names which will be used later on to make the tests more
difficult.

MODULE 5.1.3

13000 REM#*****************************
13010 REM INPUT OF NEW ITEMS
13020 REM******************************
1 :3030 PF: I tH "::1~t''''.II'''II'''J''''N·~D·J I TEf'lS"
: PP I I'H ":!!tJ'" ?:?:Z ..' TO G!U I T 11

1:~:~~14C.:~ I F I T)::::500 n·IEt·~ PF.: I tH "ll::t·m 1'1DRE P
OOM:FORI::::1 TO 2000:NEXT:RETURN
1~;:050 PF.: I t·n "l.".; 1'··1 A$ (~.3) .: 11 : 11 .: : I t·~F'1...IT Tl:$: I
F T 1. :t::= 11 ZZZ 11 THEN 1::::1 6(1

.: 11 :1306~) PR I I··n 11 :~" t··!A$:':: :I. ::. .; : 11 .; I t·WUT T~~~~:: I
F T;~~~t~':: 11 ZZZ 11 THEt'1 PETUF::I-'4
13070 IF TY~l THEN T~~:OOTO 18188
1::,:~j80 PF.: I NT "IIIIIT'T"PE:": FOR I:::: 1 TO Pr': PI:;;: I tH

I.; D$(I-l) : t'~E><T I
13090 II"4F'UT ":e!m.JH I CH IS I T : 11 .: T : T=T ~'l
1:310121 PR I t·n " :01l1t'1i IlII".IIIJ1~·~D,l I TEr'1!:';:: 11

113

The Working Commodore 64

1. :311121 PP I tn 11)!!l':sj~" .; t··IFU:: (121 ::. .; 11 ~" .: T1.:t : PR I t·n "

:!!,,:~II ; t'.IA$ (],) .; II!!" .; T;;;;::~:

1.:::: 1;':;;:0 PR I t-H 11 :qk~.rrITIPE!!" .; D:$: (T::' : I t·~PUT 11 :1!!.FiF.:

E THE::;:;E COPREeT (I·rl,/H): 11.; 0$

1.:;: 13'.::1 I F Q$() 111,.111 THEI"~ 1::.:r1~~I~:~

1.3140 D(0,T)=D(0,T)+1.:T1.$=CHR$(48+T)+T1$
13150 GOSUB 14000:GOSUB 15020:GOT013000
13160 SU~0:FOR 1=0 TO 9:D(1.I)=SU:SU=SU+
~(0)I):NEXT:RETURN

This module accepts input of questions and answers under the headings
specified by the user, allowing a type to be attached if types have been
entered.

Commentary
Line 13070: If TY is equal to 1, no type names have been entered and
the type is set to 'Untyped'.

Line 13140: The relevant element in the first column of the array D is
increased by 1, registering the fact that the type group has increased.
The type number is attached to the front of the answer in the form of a
character between 0 and 9;

Line 13160: The second column of the array D is adjusted so that it
contains the start position of each type group.

MODULE 5.1.4

14000 REM#*****************************
14010 REM BINARY SEARCH
1.4020 REM******************************
14030 IF IT=0 THEN SS=0:RETURN
1. 4~~4el PO::: I t-n (LOG (I T::' l'L.DG':: 2)) : 8'3=2 'tf'O··.. l

1.4050 FOR I=PD TO 0 STEP-I

14060 IF A$(0.SS)(T1S THEN SS=SS+2tI

14070 IF A'(0,88)Tl$ THEN 88=SS-2tI

14080 IF SS(0 THEN 83=0

1.4090 IF 8S)IT-1 THEN SS=IT-1

14100 NEXT I:IF A$(0,SS)(T1S THEN SS=SS+

1

1. 411 ~~1 r.~ETUFn··1

A standard binary search module. Note that since the items are sorted
by answer and the answers have the type group character attached to the

114

Chapter 5 Home Education

front, the actual sort is first of all by type-untyped groups will occur
first in the file.

MODULE 5.1.5

15000 REM#*****************************

1~5rll [1 PH" I r··I:::;:EFT

15020 REM******************************15030 IF IT=0 THEN 15060
15040 FOR I=IT TO 88+1 STEP -1
15050 FOR J=0 Ta l:A$(J,I)=A$(JJI-l):NEX
T .L I
15060 A$(0JSS)=Tl$:A$(lJ8S)~T2$:IT=IT+l:
PFTI..JRI···i

A standard insertion module.

Testing Modules 5.1.1-5.1.5

You should now be able to enter data and store it in the main arrays,
sorted by type number.

MODULE 5.1.6

19000 REMI'****************************19010 REM DATA FILES
19020 REM***********'******************
1::HJ:3~~1 PR I tH 11 :1!!r.J:' 0:;:; I T I m·~ TAPE COPRECTL..'·r' T
HEt·~ ~f':ETl...IPt'.I!!---- 11

1. :~fl214~~1 I HPUT 11 t'10TOP ~I~ I LL STOP fiUTOt'1Fff I Dil....
1..',.' : " .: c!:f. : POKE 1.9;2.,7: POKE :1..,3:3
19[6121 PP I I'H 1\ :11!T:~COr'1t'1!=tr·m~:::; FiVR I U":!BLE : " : PR Tt-4
T 11 M~ 1::' :;;:R'",'E DFHA 11) .' .. " 2) LORD DFITH 11

1:::HJ6~~ I t·WUT "1~'H-1 I CH DO ',.'01..1 F.:EOI.J I F.:E : 11 .: G! : (I
N Q GOTD 19070J19130:RETURN
19070 POKE 1,7:FOR 1=1. TO 2000:NEXT
1::'<0::;:r1 OPEt·i 1. .' 1 .. ;;-~., "!"'1ULT I I) 11 : F'f~: I tH# 1 .' 1 T .; F::::\::.: T
',!.l

19090 FOR 1=0 TO TY-l:PRINT#1,D$(I);P$;D
(0 .. I);P$;D(1 .. 1):NEXT
19100 FOP 1=0 TO IT-l:PRINT#lJA$(0,!);Pf
.; f1~f.~: 1 J I) : NE;x;T
19110 PRINT#1 .. NA$(0);P$;NA$(1)
13120 CLOSE1:RETURN

,1 :;'11 :;':121 OF'EI·-n .. 1.' (I .. 11 t'1UL.T I G!" : I HPUT# 1., I T.' T'r'
19140 FOR 1=0 Ta TY-1:INPUT#IJD$(!)JD(0 ..

115

The W orking Commodore 64

I) .' D (1 .. 1) : t~E~n
19150 FOR 1=0 TO lT-1:INPUT#l,A$(0 .. I),A$
(1 " I) : I'~E::<T
19160 INPUT#1 .. NA$(0) .. NA$(1)
19170 CLOSE1:RETURN

A standard data-file module.

MODULE 5.1.7

16000 REM#*****************************
16010 REM USER SERRCH/DELETE
16020 REM******************************
160::::~'3 ~:;~:;::::ra

1612140 PR I t-n ":1U"""""'f:il:l3EARCH 11

16050 IF 88)IT-1 THEN 88=IT-l
16060 IF S8{0 THEN 58=0
16(17~1 PR 1tH 11 .JIIII" ••"""''''''J'''''J'JI~
I TEt'1:3;:~ 11 .: I T -'1
16121:::121 PR I HT 11 :!!=::::[It·1r'1F'it·ms A'.lFI 1L.FfBLE : 11

1.6~~19~~1 PR I t-n ":.):I~ETURH!!!!! FOP t··'E~<T 1TEr·,
\I

161 ~::IO PI? I"H "11 :>f::F·OS,····!··~EC:i t··II..H'1BEJ':~ TO t'1O\IE
PO I "HEF:: 11

1611 (1 F'R I NT "!NI):1'" DDD'" TC! DELETE I TEr'1 11

16120 PF:::ItH ".):if"ZZZ'" TO en.HT Fl..JNCTIOtv'
1. 61 :30 PF:: I tH 11 :!!l" .; :FOP I::::: 1. TO 1121
161*'3 PRINT "~«

",; :t··ID::T
1615121 pr.;: I ~H 11 i::~ t ! t i i 1. rn::r··IT~-;':'·r' t'K!: - 11 .; ~::;S+ 1 :
FR I t-n 11 :!!1:::~11 ,; t'1 I rtl: <R:$ (~~I .' ~:;S ::0 .' ;;::)

1(; 16~'3 PR ItH 11)'J:::~" .; A$ (1 " ::;:S) : FR I HT ":P.!l::~".: D$ (
VAL(LEFT$(A$(0JSS)Jl»)
161 70 01 $::::: 11 11 : I r·~PUT 11 :P.!Ie!mlll..~H 1eH DO ''f'OU F.:EOI...1
IF.:E: 11 .; ou::
1~7,1::::121 IF 01$()IIDDD" THEN 16210
16190 D(0,TEMP)=D(0JTEMP)-1:FOR I=88 TO
IT-l:A$(0,I)=A'(O,I+l)
16200 A$(l,I)=A$(l,!+l):NEXT I:IT=IT-l:0
OSUB 13160:GOTO 16040
1. ~;;;;:~:l (~ I F I] 1$::::: 11 ZZZ 11 THEl~ F.:ETUF.:r·~
16:;-~20 I F Q 1$= 11 11 THEr-4 !::;~::;:::::!;!=;+ 1 : GOTO 16'340
16230 SS=SS+VAL(QlS):GOTO 16040
16240 OOTO 16240
A straightforward user search module.

116

Chapter 5 Home Education

MODULE 5.1.8

1700017010 REMREM#*****************************RANDOM QUESTIONS

17020 REM******************************

1. ?~J~:(1 01..1='.3
17[14~) PE~ I tH 11 ::1!!J""",.",,,r::ij:'~]UEST I ot.~S 11

17050 FR I HT 11 :l!!tl!!t::DO '-rOU l,J I ~::H 14H~3~~EP~: TO B
t:. nPA~·.lr··1 OHL.''f'"
171216~'3 HWUT 11 FROt1 THE :3FH'1E G!1..,lP:::T:lOt·i T'T'PE

Cl! t··1) : 11 .; I)~t : PR I HT 11 ~ln .:
1?07~~1 I F c!:$::=. iiiT'" THEt-i eH..!::: 1
17080 Pl=0:P2=IT:Ql=INTCRND(0)*IT-l):Q2=
INTCRND(0)*5):Q(Q2):::::Ql
17090 IF QU=0 OR D(0,VALCL.EFT$(A$(0,Ql),
1»)(5 THEN 17110
17100 Pl=D(1,VAl(lEFT$(A$(0,Ql),1»):P2=
D(0,VAlClEFTCAC0,Ql),1»)
17110 FOP 1=0 TO 4:IF I=Q2 THEN 17150
17120 PP=P1+INTCPND(0)*P2):IF PP=Q(Q2) T
HEH 17120
17130 FORJ=0 TO I:IF Pp:::::Q(J) THEN 17120
17140 NEXT J:Q(I)=PP
1? 150 t'4E::<T I
:I. ? 16ü PR I I··rr 11)!!I!!II!!:G 11 .; t'iR~t (1) .: 11 : IH" .: A$ (1 .' I) <O~i
:;)

], 71 7~) F'P INT 11 :~!!!1!!lJr!!~~p' .: 1"~I=t$':' [I) .; 11 : 1:"

1718~~1 FOR 1::::0 TO 4: PP I tn 1+1.; 11) " ; f1 I D$':'

A$(0,Q(I»,2):NEXT
1. 7' 190 Fr:: I J·n 11 :I!!f:t·n-I I CH DO '/OU TH I t··W: I ~::; THE
PI OHT H!··~:::I.·.1EP?"

17'2~~lü II··WIJT 11 :~r.rr''r'PE I t··1 THE NUf1BER: li ; AA :I]
T==OT+1
17210 IF AA-l=Q2 THEN 1?250
1. 7';;:~~'2rJ PP I tH 11 J.L,~pmK;! THE COF.:PECT ANS~·~ER
1.•JA::;: 11

17230 PRINT MID$(A$(0,Q(Q2»,2):GOTO 172

17240 POKE 53281,0
17;:~:0~~1 F·F.: I NT .. ;;:a:~W~I!!".f.IIDf.l" ; fOf~; 1'··1. TO 11; f'R: I
t·n RI GHT ! 11 : t·4E>n11

17260 FOP 1=1 TO 15:POKE 53281,I:FOR J=l
TO 200:HEXT J.I:RR=RR+l

1. ?;;::7f1 I:;:'P I tH IJ :I!!:C:~:ETI...IRI··~~ FOP NEJ'j OI..JE::rr I ot'4

117

The Working Commodore 64

OF.~ "ZZZ ..' TO OU I T FUNCT I mi : 11

172::::121 O$~~: 11 11 : I t·4PUT 0$: I F 0$:::: 11 ZZZ 11 THH~ PE
TURt·~
1?';;;5!~~1 PF.: I tH 11::1".;: GOTO 1?1218(1

This is the only really original module in the program. lts purpose is to
generate a random question, to display five possible answers on the
screen and to accept an input from the user specifying the right
answer-or at least attempting to.

Commentary

Lines 17050-17070: This routine sets the difficulty of the test. Possible
answers will either be drawn from the whole of the file, in which case
many of them will probably. be inappropriate and make the task of
selecting the right answer much easier. Alternatively, answers ean be
drawn only from the same type, making the task more difficult, since all
the answers williook at least possible.

Line 17080: A random question is drawn from the file and a random
position for its position number chosen in the array Q.

Lines 17090-17100: If QU is zero, or if there are not five answers in the
type group, then the range of possible alternative answers is the whole
file P1-P2. If QU is 1 and there are at least five answers in the same
group as the right answer, PI and P2 are reset to the beg inning and end
of that group.

Lines 17110-17150: Four random answers are chosen from the range
set by PI and P2. A check is made that the randomly selected answer is
not the same as the correct answer or a previously se1ected random
answer.

Lines 17160-17200: The question is printed, together with the five
possibIe answers and the user is asked to specify which is correct. The
variabie QT, recording the total number of questions, is incremented.

Lines 17240-17260: The user is rewarded by a multi-eoloured series of
screen background changes and the variabie RR is incremented.

Testing Module 5.1.8

Ir you nave some óata reaóy to reload, you should now be able to
generate your own multiple choice tests. You will only be able to
generate the harder form of test if you have entered sufficient data for
the program to regularly light upon a group of five answers of the same
type.

118

Chapter 5 Home Education

MODULE 5.1.9

18000 REMI*****************************
:[:::121 1 0 F.: El"1 :3CcrR E
18020 REM******************************
1::::[I:3~3 PR I t-n I! ::'lQ"BtIll"IIBIII"J'III'J:i~r:;COF.~E 11 : I
F OT=0 THEN RETURN
1. :::;:Ü'H?I F'F.: I tH ":!!l:GiTOTAL C!UEBT I m·~s ~ 11 .: OT
1. E:~35~'3 PR I tH ":!!'eOPPECT At-~S~·.!EP!;:';;:".; PF::
180t':;:O PF~ I !·n 11 :1!!t.::::;COPE : " .; I tH (: ((RP-'I~n /5) .l (Cl
rij.:. :::::.):+:], ~1~3::' .; 11 ~.~ 11

1. :::~:17~'3 I HPUT 11 :~.IDO l'rlOU !..~ I !;::H TO ZEF.:O !::;:COF.:E
('rl •.···t·.!) : 11 .: 0$

1:::08(1 IF G!~t=lIlr TI-!Et·~ G!T::::0: RR::::0
1::;::090 F:E'TUF:t·~

This module keeps the score, adjusted for the fact that one in five
answers would be correct if the answers were only chosen randomly.

Summary

This is quite a powerful program, but remember that you will only
eonfirm that for yourself by entering enough data to make it enjoyable.
The program is also a reminder that whenever possible, if you are going
to write a complex program, you may as weIl go a little further and
write a multi-purpose one, saving yourself a great deal of work in the
future.

Going further

1) As presently constituted, the program checks that the same answer is
not displayed twiee for a question. What it does not do is to check that
two different answers might actuaUy be the same. Could you insert a
check to deal with this.
2) The question of rewards for success is an interesting one-adults
seem to find success its own reward when playing with, I mean using,
this program. For children, however, all manner of rewards are
possible. What about tagging a short game onto the program which ean
only be aecessed for three minutes or so when a number of answers are
answered eorreetly.

5.2 WORDS
Onee you have a program that works weU, you soon find that it suggests
other uses to you. Sueh was the case with MultiQ, and the result was
this program, whieh ean be used as an enjoyable word-learning aid for

119

The Working Commodore 64

children in the earliest stages of reading. The only real difference
between this program and MultiQ is that the questions take the form of
pictures and the answers are possible words to go with the pictures.

As for the pictures themselves, they are no more than the output from
another program in the book, Artist, picked up from tape and loaded
into this program's dictionary. The capacity of the program, as
presented here is 50 pictures, though another set could be picked up
from tape if so desired. Designs meant to be used by this program must
use only the bottom 10 lines of the screen, since the top part of the
screen is needed for the questions and·prompts.

W ords: Table of Variables

AOJo Stores data for design characters and colours.
B% Co-ordinates of corners of designs.
FNA(SS) Value of element in A % whose position is dictated by the

location of the corners of the design.
FNB(SS) Actual character code derived from FNA.
WW$ Answer input in response to question module.

MODULE 5.2.1

11000 REM#*****************************
1. 101 [1 F.:Er'l t'1E1"-HJ
11.020 REM******************************
1. 10::::Ç~ POKE 5:3281" 15 :PI? I t-n 11 ~"J~'CII."IIiIll""""1
IIft:~,','OF.:m:; n

1104tl PR I HT 11 J[:Ot1t'1Ar,m~::; 1=i',lA I LRELE : 11

11050 PF.: ItH 1I :1!!l ~a1) IHPUT t'~H,1 In::t'l:=; 11

1. 1~'360 PP I HT 11 2::' ~:;Efl~-;;:Clt-"DELETE 11

1. 1. 0'?~'3 PP I"-fr ,! :3::' CiEt'·IEPFHE G!1...IE ~::::r I m'~:::; I!
11 ~:'1:30 PR IHT 4) 11 1!:;PLI=i '/ OF.: I?C~;ET !::;CORE 1111

1.1~J9(1 PRlt-n 5)DATA FIL..E!3"11

1. 1100 FR I tH 6) I t',l I T I I1L I SE" 11

11111;;:1 PRltH 11 7)~:nOF'1I
11. 1:2l3 I ~'WUT 11 :~n..~H I eH DO "r'OI...! RE OU I PE : II .; 2: :

F' F.: I t-n ":::1" ,;

11130 ON Z GOSUE 13000 .. 15000 .. 16000 .. 17000

,16000,12000,11140:00TO 11000

11. :1.40 F'R I tH "::R~l'!II!!II!!II!!I"I!!n'l~I!!l~I!!lII''' II''''''''.1
."1~300DB'T'E 11 ; END

A standard menu module.

120

Chapter 5 Home Education

MODULE 5.2.2

121210121 REM#*****************************12010 REM INITIAlISE

121213012020 REM******************************
ClR:DIM Q(4»A$(49)~A%(49,255)!B%(
49~4):IT=0:R$=CHRS(13)

1;'~040 OOTO 11000
1. ;;~~)6I?i GOTO 1100~)

lnitialisation of the main variables.

MODULE 5.2.3

138121013810 REMREMI*****************************INPUT OF NEW ITEMS
1312120 REM******************************
13~ne PR I NT 11 ~1I'J''''''''Jlnll'13'~EL,J I TEi"1S 11

1.304121 I FIT):::: Hj~3 THEN PF.: UH 11 :~:r:t·m t'1OF.:E R
OOM:FOR 1=1 TO 2000:NEXT:RETURN
1. :30~i0 I HPUT 11 :a;:'O;:; I T I OH n:IPE CORHECTl'T' "
THEH :.f'~ETURt~!!: 11 .; G!~t:
1. :312161?1 PR I tn II:JII: OPEr'~ 1 .. 1 .' 0" 11 mn I ~:n : FOR11

1=121 TO 4:INPUT#1;B%(IT.I):HEXT
13070 FOR 1=0 TO B%(IT .. 4)-1:INPUT#1 .. C1 .. C

13880 A%(IT.I)=256*Cl+C2-32767:NEXT I:Cl
O~:;:E 1 : !;!~:= I T
1309121 PR I tn 11::111 ,; : GO!;:;UB 1412100
t 311210 1HP UT H ;:«[10 '1'01..1 L,~RtH TH I:::; ('TI,/t'D: 11 ,;

I).:t. : I F G!:t~':!:" t·i" THEt·4 RETUF.:t,~
1:;: 110 1t,~F'UT 11 LJORII TO GO LoJ I TH PICTURE; 11 ,; 1",1
:t

1:::::1:2121 INPUT I::; THIf.; COF.:RECT (1r',/t'D: "; GU::
11

IF Cht="H" THHi 13090
13130 A$(IT)=W$:IT=IT+l
1::::140 INPUT "AI"40THER PICTUf;':E (l'j)/lD: 11 ,; G'~$:
IF G!:l:::::"I,,11I THEN 1300121
1:3150 F.~ETUF.~H

This module picks up from tape designs created by Artist and allows the
user to tag the right word onto them.

121

The Working Commodore 64

MODULE 5.2.4

14000 REM#*****************************
14010 REM PRINT DESIGN
14020 REM******************************
14030 PP=0:FOR I=B%(SSJ1)+1 TO B%(SS,3)
1
14040 FOP J=B%(SS,9)+1 TO B%(SS,2)-1
14050 PP=PP+l:Tl=A%(SS,PP)+32767:POKE 10
24+40*I+J,INT(Tl/256)

14060 POKE55296+40*I+J,Tl-256*INT(Tl/256

::. : t·~E::(T .J., 1

1407~3 RETUF.:t·~

This module makes use of the two defined functions to extract the
correct characters and colours from the numeric values saved by Artist
and to POKE these onto the screen and into the colour memory.

Commentary

Line 14030: BOJo(SS, 1) and B%(SS,3) record the vertical co-ordinates of
the top left and bottom right cörners of the design.

Line 14040: B%(SS,O) and B%(SS,2) record the horizontal co-ordinates
of the same corners.

Testing Modules 5.2.1-5.2.4

You should now be able to load designs created by Artist, see them
reprinted on the screen and then loaded into the main array with a
chosen word associated with them.

MODULE 5.2.5

18000 REM#*****************************
18010 REM DATA FILES
18020 REM******************************
1::HJ:::0 PF.~ IHT 11)!!m:'Ot; IT ION TAPE CORRECTL'r' T
HE 1'··1 $:ETUF:t'4!-- 11

1::;:12140 I t'~PUT "r'1OTOF~: ~,~ I II STOP FiUTClr'1fiT I CFIL
L',-I: 11 .: 0$:POI<E 1::~~~., 7 : POKE 1., :39
1fX1!50 F'F.~ IHT 11 ÄJli(:ot1t1AI-·-\r):;:i A"l f:II L.I;iBL.E ; 11 Fr.: I N ;

T "lH l) SR"lE DFrn=t 1l .' .' 11 2) LORD DATA 11i

1:::n}60 I NF'UT 11 .~JH I CH DO ',-101) F.:EQU I RE : 11 .; G"J. ; 0
N Q GOIO 18070,18130:RETURN
18070 F'OKE 1,7:FOR 1=1 TO 2000:NEXT

122

Chapter 5 Home Education

18080 OF'ENL L 1.r "i"IOFWS" :PRINT#1,. IT
18090 FOR 1=0 TO IT-l:PRINT#l;AS(I);RS;B
~'~(I,I4)
18100 FOP J=0 TO B%(I;4)-1:PRINT#lJA%(I;
J::O : 1",IE::.::1 J
18110 FOR J=0 TO 3:PRINT#1;B%(IJJ):NEXT
'...T ' ".I.
18120 CLOSE1:RETURN
1::.: 1:;:(1 OPEt·~ 1 ,I 1 .' (1" 11 ~"IOFm:3 fI : 1[',IPIJT:I=I: 1 J I T
18140 FOR 1=0 TO lT-l:INPUT#l,A$(I);B%(I

18150 FOR J=0 TO B%(I,4)-1:INPUT#1JA%(I)
J) : t'~D::T ,,J
18160 FOP J=0 TO 3:INPUT#lJB%(IJJ):NEXT
J"I
18170 ClOSE1:RETURN

A standard data-file module.

MODULE 5.2.6

15000 REM#*****************************15010 REM USER SEARCH/DElETE
15020 REM*'*"""***"""""""""
15030 SS=0:IF lT=0 THEN RETURN
1.51!:140 PR I NT "::'!2IjlIIIIIII...... I1I1' ••J:iI:.f::;EARCH 11

15050 IF 85)IT-l THEN 55~IT-l
15060 IF SS(0 THEN 85=0
15~370 PR I tH ..J'...JBI'.'II1I'I..'IIIIIIII .. III11'I~fI,

I TEt1S::::" ,; I T

15121::;:0 PF.: I HT 11 ~::or'1r1AI"m::; AI,m IU=tBLE : "

1. 509C.::1 FR 1t-n 11 :~. >;I:.f!:ETI...IF.:t·~!! FOF.: HEi.::1 ITEt1
11

151 ~~1Qi F'F:: I HT "I >:~F'OS,""HEO t·HJt'1BEF.: TO t101'/E
POINTERIl
15110 PP I tH 1111)~•., DDD ..' TO DEL.ETE I TEt'1 11

1. 51 :~21?1 PI;': I rH 11111):~I" ZZZ " TO OU I T FUt-IeT I ot·~ 11

1513[1 PF.: I tH 11 :1U~lqlll .: Af (SS:) : GOSUB 14J;;KIO
151413 O:t= 11 " : INPUT "*:l!l)!!II!!I8.WI!!W~nJH I CH DO "r'
OU PEG!!) I \:;;:E : 11 .: G~$

1515~'3 IF O$()IIDDD Il THEN 1:i190

15160 FOR I=SS TO IT-1:FOR J=0 TO 255:A%

(I,J)=A%(I+l,J):NEXT JJI
15170 FOR I=SS TO IT-1.:A$(I)=A'(I+l):FOR

123

http:I:.f!:ETI...IF

The Working Commodore 64

J=0 TO 4:B%(I,J)=B%(I+l.J):NEXT J,I
15180 IT=IT-l:GOTO 15040
1519121 IF GJ.$::::IIZZZ" THEt,~ PETURt-i
1520~, I F G~~t.::::" 11 Tt'IEt,~ ~:;~::;:::::::;S+ 1. : OOTO 15040
15210 SS=SS+VAl(Q$):GOTO 15040
15;;-~20 CiOTO 15220

A simple user search module.

MODULE 5.2.7

16000 REM#*****************************
16010 REM RANDOM QUESTIONS
16020 REM******************************16030 Ql=INTCRND(O)*IT):Q2=INT(RND(O)*5)
: C!(O~~):::::Ol
16040 FOR 1=0 TO 4:IF I=Q2 THEN 16090
16050 PP=INT(RND(0>*IT)
16060 IF PP~Ql THEN 16050
16070 FOR J=0 TO I:IF PP=Q(J) THEN16050
16080 NEXT J:Q(I)-PP
1.6090 t'~E>::T I
16100 ~:::;~:::;:::::O 1 : PI:;;~ IHf 11 ~]II : Om::UB 1.40tH3
1. 6110 PR I NT .. ::Ii " ,: : FOP I :::::Ij TO 4: F'F.: UH ")!!l"
.: Fi$ (Cl (I ;.) : HE::<T
16120 PI:;:: UH 11 :~=T'T'F'E I t-4 THE F,: I GHT ~·,IORD FO
R THE PICTURE:II:INPUT WW$:QT=QT+l
16130 I F I,~~·U:()A:*' (01.) H"Et'1 FR I NT "~,H;;:OtK:i!
THE AHSL'lER ~·,Im:; M,n; A$ (I) 1. :;. : GOTO 161.60
1614121 PR I tH ")!!IIF.: I GHT ~ I OHTf::îP I OHTb.P I OHHF:
I GHTiF.: I GHT::F.: I GHTl'iF.: I GHT 11 : PF.:=RR+ 1
1615121 FOR 1=121 TO 15:POKE 53281JI:FOR J=1

TO 15121: t'~E::<T J.' 1
1616ü n~PUT "U'1ORE ("r'/lD: ".; O~t.: lF 0$:::::'111'11
THEt'1 16~'300
16170 RETURt-l

This module is equivalent to the random question generator of MultiQ
but simpier in that it always chooses possible answers [rom thc whole of
the file of iteD'ls present.

MODULE 5.2.8

170121121 REM#****'**********************,*

171211 Ü R:Ei"l SCOfo!:E

124

Chapter 5 Home Education

17020 REM******************************
1712130 IF OT=0 THEN RETURN
1704(1 PR INT 11 ~~J""'J"""'J'J:aN:::CORE 11

l7'f215~3 PR I ,··n 11 :8.l~liTOTAl. OUEST I mm :11 ; OT
1. ?~16121 PH I tH It :n'::OF.:F.:ECT At--IS~,JEH~:;:",: RF.:
1. '?QJ?!21 PF.: I tH 11 :l!IlfSCOPE : 11 i I tH (((PP-'OT ,/5> , (0
T* • ::: >) :+: 1~)a) .; 11 ~,~ 11

i 7~~1:::~~1 II"WIJT "'....DO "r'OU I.'~ I ::;H TO ZEF~O :3COHE
CTI/t··!) : " .: 0$

17'090 IF fJ.$=/flT'" THEH OT:::::t1: RF:::::::~)
1. 71 0121 PETURt',1

The same function as the score module in MultiQ.

Summary

This again is a program which requires some work if it is to be of any
use, since the small designs it uses take same time to build up in
quantity. One easy answer would be to get together with some other 64
owners and swap tapes of designs. Micro-computing doesn't have to
isolate you from the rest of the world!

Going further
1) The question of rewards rears its ugly head even more pronouncedly
with th is program-try to think of ways in which a correct answer can
be more excitingly rewarded.

5.3 TYPIST
Not all education is about manipulating complex data. Much of the
most important learning we do involves the training of responses and
computers excel at that, which is why pilots, navigators and the like now
begin their careers in front of computer simulators rather than the
expensive and risky real thing. This program is not quite as grandiose as
that, but it is nevertheless àn extremely effective learning tooI.

Of all the programs that I have written, this one must come close to
being my favourite. lts presence here proves that a program doesn't
have to be long to be useful. This one is short, neat and good at what it
sets out to do, which was to help me improve my touch typing. Of all
the versions that have been written, the 64version is by far the best, so I
hope ÎI fimls a place in yOUI collcçtion.

Typist: Table of Variables

C$ Une of spaces used to clear Hnes of text.

eH Number of characters in tests so far.

125

The Working Commodore 64

RIGHT Number of correct characters.

SUM Number of characters entered.

TI System variabie counting time elapsed in 60ths of a

second.
TT$ Temporary storage for time taken.

MODULE 5.3.1

11000 REM#*****************************
11010 REM PRINT KEYBOARD
11020 REM******************************
111213121 POKE 53281~6

1 t ~?14~J PR I t··IT 1I ~l!1.l1 UIIIIIIIRlIIIIIFIHIII_

...... a"
11 eI5~"3 \=u:=" f-1234567f::90+-'-f::"
:l1~?t6~3 PRIrn 11 !I ,; : FOR I==1 TO 14: PPItH
":JIj :@" ,; t'1 I D~t.:: A:$: .. I .. 1 ::. ,; : t'~E~'::T
1. 1~:r?o PR I tn ":an ::.CIII ::([III!I :::@"
:I. 1121:::'::0 PR I I'n 11 I::~

11

111;39121 Fi:$::::::" CH·JERT'rIU I OP(sn~"l"
1. 11 ~"3J:::1 PF::~ II'H 11 ::~ =[:c~" ,; :FOF~~ I:::: 1 TO LEN
(\:u:::. : PR I tH lil ~ !!!:'.ll" ,; 1'11 D:f. (FI~r." 1 ,I 1) ,; : t',IE:;:.:;-r
1. 111 0 Pr.:~ I tn "* ::f::F.:1II ::Wil
ll1.2~) PPltH 11 IIII;:;~

"
11130 \=i~t-;:;:; 11 Ft:::;:[IFGH.JI<l. : ,; ;:;:; 11

11140 F'F.: Itn 11 k:~::F1t :t:m~!" ,;
1115121 FOI;': I.::: 1 TO L.Et-4 (\~;t-:;. ; F'F.: I tH "lil h.~ !!::I!" ,; 1"1
I D:f (Ft:$:" 1 .. 1 :;. ,; : !",IE:;H
11. 16~~i PR I tH tal :;f::RI ::f!"11

111,7121 l=i$::: 11 Z::<CI,.,IBt,~t'1" " / 11

1. 1. 1:3(1 F'R I tH" • ~
11

11l9~j PP I tH 11 ~.. :::J.::III ::lSHIl !!" ,;
11 :;;::m1 FOR 1==1 TO L..Et,~ (A~t::. : PR I tH 111 ~~ !!:I!II ,; t'1
I D:$:':: Al:" I " :I. ::. ,; : j",IE;:'::T
1. 121 (1 F'P II'H "~~ÏII ::f.:;HI =\'1"1 ~ 11

1. 1~~;;;::~'3 F'P I tn 11 I ~
"

I 11

The purpose of this module is simply to print out a fairly crude copy of
the 64's keyboard on the screen, thus allowing the user to look at the
screen rather than at the keyboard when an input is being made.

126

Chapter 5 Home Education

Commentary

Lines 11050-11070: This section, like those that follow,prints out the
irregular ends of the keyboard (things like the RETURN and RESTORE
keys) which spoil the regular pattern, then prints out a line of blàck
inverse spaces and superimposes upon that line the names of the
alphanumeric keys in the appropriate places. A black inverse line is then
placed underneath the row of keys.

Testing Module 5.3.1
The module should print a copy of the keyboard in the top half of the
screen.
MODULE 5.3.2

1200012010 REMREM#*****************************ACCEPT INPUT

12020 REM******************************

120:3~3 31..11"1:::::(1: CH:::::~3: fUGHT=0: RE::nORE: TT$=="00
0t100 11

1. ~:;;:~::'14~) C~l:= 11

11

::;::121
1:2 ~~6 0 P R I ~n ";:S:l!Il!I~'.[~IIUl!I8.l:e.:rm:[I~l'JI'

12070 FOP LINE=l TO 3:PRINT cs; :NEXT:PRI

f··n 11 :-rr:tl"
1:~:m::~::'1 IF LH~(i=I$:)39 THEt'4 PRIHT "~3TPItK; T
00 LONGII:STOP
1.21219121 FR I I'H "I".; A~t : PR I tn :l~h.~" .; : FOP I::::: 111

TO LEI···I':: l=tt::::.
1;;~ 1t1t;::1 OET T~f: I F T$=" 11 THEt·~ 12 H30
12110 I F T$::::: 1I:l" OR T$:::::" :!!l" OR T:$===" .111 OF.: T
::t:::::::" 11" OR T$==CHP$ (1:;:) TI-IEt'4 GOTD 12U30
12120 IF 1:::::1 TH EN TI$=TT$
12:1. ::::~'3 :::'::I...Ir1::::;::;I...It1+ 1 : PR I tH T:$:.; 11 U'.;

12140 I F T $'::::::'1''11 D:f, 0,:$=., I.' 1) THEt'4 FR INT "fil

U'.; : (iOTO 121[Hj

1:~~ 150 RI CiHT=R I CiHT+ 1 : ~~E::'::T I: PR I HT "!!": eH:::::

CH+LENCAf):TT$=TI$

• '-'TR'*' (I LolT I"t:"o TI-"LI'T' "-·llt1·,L'1'-·1t'':;'... . i1. ~::'~1 ..•• _ PI"',r:. I L.ITI 1 11 'IIITIIITIIITII'III
.J;I....~oIP..u::" ,I .:- ',.. • '. • 1"1 " P:, _ ...' r .."' ':'... ':Tö ~~1
11

12170 PRINT STR$(INT'::SUM/(TI/6000»)/100)
11

1;~~ 18~3 I t·~PUT 11 r'10RE (',.' ...··t·~) : 11 .; G!:t
12190 POKE 780/0:POKE 781J21:POKE 782,0:

127

The Working Commodore 64

SYS 65520:PRINT CS
12;;~00 I F (J.$()'I H1I n·IEI··~ 12el5el
1;;:21~3 Hm
This module prints out a line of text to be copied, then accepts key by
key input, keeping track of time, success rate and indicating errors.

Commentary

Line 12050: Text to be copied is stored in DAT A statements at the end
of the program. These DAT A statements should be terminated with a
line reading simply STOP, as in the example lines given, which causes
the program 10 begin READing again.

Lines 12060-12090: These line~ use the string of spaces (C$) to dear the
area where text is to be printed, print the text and move the print
position down to accept input on the line beneath.

Une 12110: Cursor move arrows are not accepted as an input.

Line 12120: The program keeps track of the time taken 10 input the text,
but timing commences only after the first letter of each line is input and
is suspended between lines. The total time taken so far is stored in TT$,
to which TI$ (see last program) is set at the beginning of each line.

Lines 12130-12150: The last letter input is printed. If it is wrong it is
indicated by an error and the print position is returned to that point.
Total number of keys pressed and the number correct are recorded.

Lines 12160-12180: On finishing the line the percentage success rate is
displayed. The system variabie TI, which stores the same value as TI$,
but expressed in 60ths of a second, is used to calculate the number of
characters per second input. The seemingly convoluted formula ensures
that two decimal places are normally printed.

Line 12190: This line demonstrates an alternative method of dictating
the position at which the next character is to be printed. To use this
methad, zero must be POKEd into location 780, the row position into
781 and thc column into 782. Calling the ROM routine at 65520 llH::n
moves the print position to that point. This metbod can be used to
replace strings using cursor control characters. Here it is simply used to
dictate that tbe MORE. prompt is overprinted witb a line of spaces if
the program is continuing.

128

Chapter 5 Home Education

Testing Module 5.3.2

This module cannot be tested until same DATA is entered for the
program to READ. Enter another module at 13000, consisting of the
text you wish to practise on, terminate it with a DATA line reading
STOP and then run the program. You should be faced with the first line
of text stored as DATA and be tested as described in the commentary.

EXAMPLE OF PRACTICE TEXT

1300013010 REM#*****************************REM DATA FOR TESTS

13020 REM******************************

13~::1::':~~1 DATI4 11 mmF : U<,J l:i::::DF : LKJ ASDF ;LK
J A::;II
1:3040 DfiTA "A!3DF : UCT I=iSDF : LI<:J AS: IIF ,:U:::
JA:::::"
13050 Df1TA IIt'1 I=iD fiDD AnDS,; A:::K LAD ALL F
FIL.L.::: 11

IIA u:m1:306(1 DATA AD finI! ArtD:::::,: F"1:::K ALL F
AL.U'::: II
1. :3~37~?1 Dt=iTI=i 1114 Fm I4I1D ADDS.: ASK u:m ALL F
AL.LS II
1:30::::~~1 DATA ~::TOP

Summary

This is a program which can only really work for you if you use it
seriously. One way of making the best use of it is to get hold of a book
of typing exercises and use that as the basis of the data you enter. Given
the effort you will find it an effective tooI in improving your touch
typing.

Going further

Correct technique in typing depends upon using the right finger for the
key. Drawing upon a typing tutor it should be a simple matter to colour
the keys on the key board to give an indication of which finger should
be used. At the very least it would be good practice in using the colour
characteristics within a string.

129

CHAPTER6
High Micro-Finance

Despite the jokes about f1 million gas bills, one thing that computers do
superbly weIl is to handle financial information. It is not only the fact that
they are able to store and process the data so much more quickly than a
human being, it is as much to do with their ability to present the facts in
dear, understandable ways. In this chapter you will find three home
finance programs that use both the 64's calculating abilities and its flexible
screen handling to take some of the mystery out of money.

6.1BANKER
Our first program is Banker, a simple tooI which is designed to allow you to
keep up with the state of your bank account before the dreaded envelope
from the bank drops onto the doormat. The program deals with payments
and receipts, regular payments and one-off items, producing a neatly
formatted statement for any month you care to specify. In the course ofthe
program you will begin to tackle some of the problems of setting out
numeric data in a comprehensible form on the screen.

Banker: Table of Variables
A(99,l) Storage of payment amounts and day of payment.
A$(99, 1) Storage of payment names and months in which payment

is to be made.
CD Flag indicating whether payment is credit or debit.
CR$ Separator for data files.
IN Initialisation flag.
M Month number minus 1.
MM Temporary variabie used in formatting payment

amounts.
MM$ Used to contain the formatted payment amount.
MO$ Storage of names of months.
PA Number of payments stored.
R$ Temporary string storing months in which payment is to

be made.
S Temporary storage for day of payment in month

specified.

131

The Working Commodore 64

SUM U sed to cumulate amounts for running total in statement.

MODULE 6.1.1

11000 REM#*****************************
11010 RH1 t'1Et-~U

11020 REM******************************
l. 11::r:;~"3 POKE 5:32;31 .. 7 ; PR I tn !I ::'l!l,......'11
.'II.I~:mRHKEP te"
1. 1~~14~3
1. 1. ~j~j~~1

PR I t-n
FR I t-n

11 :~J.!f.[:Ot'1t'1Rt·m!:3 RVA I LI=tBLE : "
":P.!~ 1.) 1"iEL,~ F'Fllrll"1E1'-HS"

111216121 FR I HT 11)l 2) E;:-::m1 I t··IE/DELETE F'A lrl l"1Et··'

11 i?l,(~)
1. 10::::(1
11 [190

PR I i··n
PR I HT
PR I tH

1I :i!!l
":I!f.l
11 :!!l

:3) PP I rrr ::-:HATEr'IEJ·n 11

4::' DATI=t F I LE:3 11

5) I t·~ I T I AL 1!:;;E 11

111~~1121
111 1(1

PRINT
II··lPUT

1I:P.f.l 6)STOP"
1I :~J.~lIn,~H I CH DO IrlOU F.~EC!U I PE : 11 .: ~~

: PRlt·.jT "~l".;

11120 IF 2=5 OR 2=6 OR IN=l THEN 11140
1113~?I PR I t-n" :!I1.~mp.!J.I!!J.l!!l.Q"'''''III, ..·mT I t·l I T I AL 1
SED. " : FOP I::::: 1 TO 20~30: '··~E;:.n : GOTO 110~m
1114(1 IF PA()0 OR (Z()2 AND Z()3) THEN 1
1.16~~i
11150 PP I NT 11 :~:[I~l.l!!J.~J.t[I!!r.l!!lIl111l111'.'f.::;Or.~plrl .. t·iO DI1TA

'riET" 11 : FOP I::'.;: 1 TO ~~~?I~~I2I: t·iE::<T : OOTO 111~10(1

111.60 ON Z GOSUB 13000,14000 .. 15000,16000
) 12f10~~1., 111 :::0
1. 1. 1?~~I CiOTO 11 (:Klü
11. 1::::[1 Pr.~ I~-n 11 ~:m~m~:Dm!!J.'-!J.~:[!!!Q"""'.""'IlII'"
~.ïr:i'BAt'4KEP 11

1119~~1 PP I rH 11 ~]II'III"IIIII111J"I!!IICLm:;ED FOP BUS
I t·.IE::;:;::;; 11

1.12121(1 Et·m

A standard menu module.

MODULE 6.1.2

1200012010 REM#****************************~REM

I

VH~IHBLES

1204012020 PEM******************************CLp:IN=l:DIM A$(9911),A(99,1):A(0)
1.) ::::~799
1212'5~) F.:ESTOPE

132

Chapter 6 High Micro-Finance

121216121 S~t::::: 11 "

1212170 DIM MO$(11):FOR I=e TO 11:READ AS:
MO$(I)=A$:NEXT:CR$=CHR'(13)

1208121 DATA JANUARY,FEBRUARY,MARCH,APRIL,

MAY.JUNE,JULYJ AUGUST. SEPTEMBER. OCTOBER

12090 DATA NOVEMBER. DECEMBER.
1;211~~) GOTO 11 ü(:l~~1

Initialises variables and then places month names into MO$.

MODULE 6.1.3

1300121 REM#*****************************
131211121 REM ENTER NEW ITEMS
13020 REM******************************
1::::~:::t:3~3 F'F.: I t-rr 11 :1l!!lllJ::il:::JIIIIIIIII'.... ' DI l1li. l1li .., 1t··1 D-.I I n::w;::;
~" I':ut:=

1:~n;)4[1 PR ItH 1) CF.:ED I Til : F'RIHT 2)DEBI 11 11

T"
130$3 INPUT IIllllllt,JH I CH DO IlOU REOU IRE : 11 .; CD
: CD:;:;:CJ)-1
1:~:l36G I I··~PUT 11 :l!!re!m··lt"1t1E OF PAI'r't'lEtH: 11 ; G!S
1. 312170 It'~PUT 11 :~Flr'10UtH : 11 .: 0
1:::I21:::m IHPUT 11 :I!!l'101'·ITH~-:: (E. G. 0112140710>: 11 .; R

:$: PR I ~-.\T 11 ~"'''''''81'''\111'''''J'.'JI" ,;131219121 FOR 1=1 TO LENeRS) STEP 2:LET M=VA
LCMIDSCPS.I.2»-1
131121121 IF M)=0 RND M<=11 THEN GOTO 13130
1::;:: 11 0 F'P I ~-n :F'P I"H 11:-11 t,·P'lAL I D 1"'1ONTH I t'4PUT

:"1"1"
1312121 FOP J=1 TO 2e00:NEXT:GOTO 13080
1.::': 13f1 PF.' I tn t'1O~t. (t',) j 11 ,/ 11.; : t'~E::n : F'F:: I tH
1. :;:: 14121 I t·WUT ":1!I1DR'l OF F'fi'r't'1EtH: 11 .; ::;;

1:315~::1 H~PUT 11 ~l!!1::F1F.~E THE:::;E CORF.~ECT Cr",,·'t·.j):

IJ .; T~t : I F T:$::::: II NI! THEt·~ F'R 1tH" ~1" .; : 130TO 1:::;:0m3

13160 PR=PA+l:FOR J=PR-1 TO 0 STEP -1

13170 IF S<A(J.l) THEN FOR K=0 TO l:A$(J
+1.K)=A$(J.K):A(J+l.K)=ACJ.K):NEXT K,J
131 e~::1 J::;:;.J +1 : A$ (.J , 1.):::: "0Ü[I~?I0000~30J;;:1i;) 11

13190 FOR 1=1 TO LENCR$) STEP 2:M=VALCMI
TI:; (f;,~$" I .' 2::' ::.
1::::2~1ü A$(J.' 1)=l..EFT$(A$(.]" 1)" r1-1)+IIj,I'·'-FUG
HTCA(J.l),12-M):NEXT
13210 RS(J.0)=Q$:A(J.0)=Q:A(J.l)=S
13220 IF CD=1 THEN AC],0)=ACJ.0)*-1
l3~?:30 RETURt·,1

133

The Working Commodore 64

The purpose of this module is to allow the input of payment names and
the associated data.

Commentary

Lines 13080-13130: The months in which a payment is made can vary
between one for a one-off payment and 12 for a regular standing order.
Months are input in the form of a string of two digit numbers which are
read and checked, then the month names are printed on the screen as a
check. This simple method of entry allows a high degree of flexibility
without complex programming.

Line 13170: Payments are stored in a single array according to their date
of payment. Insertion is accomplished by simply scanning the file from
the highest day value.

Lines 13180-13200: These Hnes set up a month indicator consisting of
12 zeros. The months specified are then scanned and the corresponding
positions in the indicator are set to 1.

Lines 13220: Payments and receipts are both input as positive sums. If a
debit is specified by the variabie CD, the amount is multiplied by minus
one.

MODULE 6.1.4

14000 REM#*****************************14010 REM EXAMINE/DELETE ITEMS
14020 REM******************************1.40::::0 FOP 1:::0 TO PFi-·l: F'R I ~H "::I".:
14t~4[1 F'R I tH 11 :LPHr't1EtH : 11 .; Ii$ (I .' (1)
1. 4050 Fr;:: II'H 11 :~:r-itKII..JtH : 11 .; I' <1 .' C;::1 >

1406121 F'P I tH 11 :Q'1OtHH::; : 11 .; : FOF.: .J:::: 1 TO 12

14(17~3 I F t'1 I D$ (A$ <I .' 1 ::. .' J., 1 ::. ::::" I" THH~ PR I t··1

T t'10$(J-··l::'.; "/".;
14080 NEXT .J:PPINT
1409121 FR I I'H ":!!mAlr OF PI=tlrt1EtH: .; A (I .' 1) 11

t 41121(1 PP I ~·rr 11)!!1!!l!!:r:4~4C(lto1t'11=i~·m~=; Ot·~ FU~··ICT I m~ V

[Iri!:;; : ~" : F'R I ~Tr ":m ... t'~E:":T I TEt1 11 :

141lQI F'RItH ":~:: - OUIT": F'RItH ":~:: DEL.E

TE ITEt1"

14120 PF.~ I tH "lil,jH 1eH DO l'rlOU F.~EOU I RE: ?III

141 :;:(1 GET (.!$: I F 0$::::" 11 THEt-·' 141 :3~~

14140 IF ASC(Q$)()140 THEN 14170

14150 FOR J::::I Ta PA-l:FOR K=0 TO l:A$(J)

134

Chapter 6 High Micro-Finance

K)=A$(J+IIK):A(J,K)=A(J+l,V):NEXT KJJ
14160 PA=PA-l:RETURN
14170 IF ASCCQS)=133 THEN NEXT I
1. 418~"3 RETURt,1

A simple user-search module which prints out payments and the months
in which they are to be made and allows deletion using three of the
function keys to input commands.

Testing Modules 6.1.1-6.1.4

You should now be able to input payments and the months in which
they are to be made and to scan through them, deleting as you wish.

MODULE 6.1.5

16~?101211601121 REMRErtl*1::;::;:**:+;:+:*****:4t:********:+:*****:Ij!::+l*
DATA FILES

161212121 REM******************************
16~?r3121 PI:;:: I NT II F'O~:; I T I Ol"~ Tf:,PE.' THEH ~.pETI.JF.ti

!!!!!I iI: I \··.IPUT 11 (FIUTOt'lfiT I C t'1O TOF.: ::':iTOP): 11 ,i G~:$
1604121 POKE 192,7:POKE 1,39
16~~15C1 PR I tH 11)!!PU'iCE PECORDEF.: I ~.~ CORRECT
1"10DE I 11 : I t·~PUT 11 THH~ PRES::: ~:ETURt·m!: 11 .; G!$
16060 POKE 192,7:POKE 1,39
160,?'f~ FF:: I t··IT 'I r::l~F·i...lHCT I OH:;'::; ~:I'''''F1 I LfiBLE : II : PH I
t··IT 11 ~~11 ::0 SA\,IE DATA 11 : PR I tH 11 :~:t2) LOt,D DATA 11

16121:::0 I t··IPUT 11 :a,JH I eH DO I/OU PEG!U I F.:E : 11 .; Q :
ON Q GOTO 16100)16150
16J;::190 F.:ETUrn·~
16100 POKE 192,0:FOR I=1 TO 5000:NEXT
1. 611 ~3 OPEH 1 .. 1 .' ;;~ .. 11 Bnt'~I<EP 11

16 L2121 PI~: ItH# 1 .1 PFl

16130 FOP 1=0 TO PA-l:PRINTI1 .. A$(I)0),CR
$,A$(I,1),CPS,A(I,0),CR$,A(I,1):HEXT
16140 CLOSE1:RETURN
1. 6150 OPEI"~ 1., 1 .t 121" 11 F.:At'~KEP 11

16160 I I···IPUT# 1.' PFi
16170 FOP 1=0 TO PA-l:INPUT#1,A$(I,0),A'
(I .. l) .. A(I .. 0),oR(I,1):NEXT
1. 61 :;::0 CLOSE 1
1. E: 19~:::t GOTO 11 ~::t~~1~j

A standard data-file module.

135

http:pETI.JF.ti

The Working Commodore 64

MODULE 6.1.6

17080 REM#*****************************
17010 REM FORMAT MONEY
1702017030 REM******************************MM=MM+10000.001
17840 M$=MID$(STR$(MM)J3.LEN(STR$(MM)-3

17050 FOR FF:::::1 TO 7:IF t'1ID~t.(t1$JFF.,1)()"t1
" THE~~ F.:ETURt~
171216121 1·'1$:::::LEFT:$:(t'1$., FF-l)+" "+F::IGHT~t(t'1:f.J 7····

FF::' : t'~E::n FF

This short module is a simple method of achieving a standardised
format for the amounts of money that are to be printed by the next
module.

Commentary

Line 17030: This module is called up from a variety of pi aces in the next
module of the program and works on values drawn from different
variables. In order to achieve this, the value to be formatted must first
be stored in the variabie MM. The first step of the formatting process is,
assuming that the amount will not exceed f9999.99p, that 10000.001 is
added to the amount. This gives a standardised length of nine characters
(including the decimal point), of which the first and last characters are
redundant.

Lines 17040: The value is now converted to a string and stripped of its
first and last character (the Is). Note that when converting a number to
a string using the STR$ function, a space is automatically added to the
front so that the second character of the number will actually be in
position 3 in the string.

Lines 17050-17060: In this particular program we do not require
leading zeros, so this routine scans the string converting any leading
zeros to spaces. The result is a string which is invariably seven
characters long, including two decimal places. Such strings can be
printed in columns in the confidence that the positions of their decimal
points will always coincide.

MODULE 6.1.7

15000 REMI*****************************
15005 REM COMPILE STATEMENT
15010 REM******************************
136

Chapter 6 High Micro-Finance

15~3~:0 PF.: I tH 11 :~J'I"" ..",..,r::f:nRTEr1Et-n11i :
:::;1..11'1:::::0
1::i~"3:30 1j··~F'\...IT 11 :~:NUr'1BEP OF t10tHH FOP ~::nATEt1
EHT: ".;0
15040 IF Q=1 THEN 15080
15050 FOR Ql=1 TO Q-l:FOR 1=0 TO PA-l:IF

t'1 I D$ (A$ <. I .. 1) .' G! 1 .. 1) {)" 1" THEt·~ 15070
15060 SUM=SUM+ACI .. 0)
151~170 t'~E;{T I.' G! 1
1. 5J;:1:::0 PF.: 1 j'H 11 :.1:8".'........,,,.=-11 .; 1"10J <Q--1 >

1.5(190 F'F.: I j'H Illii~.JI.""', ..,.,',....'..""IIIJ.1
~BI TEt'1a"IIIlTOTALtI!lI

1510121 F'R I ~n IIIBALAt'~CE C/F.""""""""
."""'" ,: 151. 1(1 1 F SUt1<)'3 THEt·~ PF.: I tH 11 r:i" ,:

1.5120 LET MM=ABS(SUM):GOSUB 17000:PRINT

t1:f:
15130 FOP 1=0 TO PA-I

15141;:1 IF 1''1ID:f(A:f.(1.,1)., GL 1)()" 1" THEt,~ 152

21~1

1.5150 LET t1r1=R(I., 1.::' : GOSUB 17ea30: pF.:ltn "I

" ,; MI IJ$ (t1:t .. 2,; ::::).: : PR I NT 11 1"'111 .:

15U3121 IF A(I.·0)(I!:1 THEt,~ PRINT "r~".;

15170 PRINT A$(I .. 0)

1~51. ::::0 F'F.: I NT 11 """""11''''''''''''''1".; :MM~AB8(ACI .. 0»:GOSUB 1700(1:PRINT M$;

11 ,;1519~3 SUr'1=SUr1-+'F1 (I .' (I) : PF.: I tn .,... : I F ::;U r·,
,:;)3 THEt,~ PF.: I tH 11 r:a" ,;
15200 MM=ABSCSUM):GOSUB 17000:PPINT MI
1.521(1 CiET A$: IF A$::::1I11 THEN 1521121
1. ~52;20 r~E::n I: I j··4PUT 11 k:F:ETURt·~!!!! TO COtn I HUE
• IJ • '.,1
. ,','''1

152:3~3 F.:ETURN
This module produces neatly formatted monthly statements-the whole
point of the program,

Commentary

Lines 15030-15070: The month indicators of all the paymems swreà
are scanned to see if any payments have been made under the headings
for months prior to the statement. Such payments are cumulated to
provide a balance of the account at the beginning of the specified
month.

137

http:Illii~.JI

The Working Commodore 64

Lines 15100-15120: The balance is printed, making use of the previous
module to format it. Note how easily a negative balance can be
indicated by printing the red control character.

Lines 15130-15220: The file of payments is now scanned for those
which apply to the current month. Each time a relevant payment is
found, the day is printed on the left hand side of the screen, using the
format module to standardise the printing, but cutting off the added
decimal points. Then the payment name is printed, then the amount,
with the red control character added if a debit is referred to. Finally, the
payment is added to the variabie SUM and the current balance is printed
next to the amount of the payment, again in red if the balance is
negative. The 64's flexible cursor control makes the construction of
such tables a matter of ease-if it doesn't look right, simply add one
more or less cursor moves until it does.

Line 15210: Payments are printed one at a time, the next payment
awaiting the pressing of any key. This prevents payments scrolling off
the top of the screen before they can be examined.

Testing Modules 6.1.6-6.1. 7

If you have saved some data you should now be able to load it back into
the 64 and caU up a monthly statement, with the amounts and payment
titles neatly formatted in columns. If the formatting of the monthly
statement is correct then the program is ready for use.

Summary

This straight forward program raises some interesting questions about
the degree of sophistication required to make a program useful.
Inputting the months in the form of a string is, in many ways, rather
crude compared to specifying whether the payment is to be made
monthly, quarterly or annually and leaving it to the program to insert
the payment in the relevant months. Such an added facility would be
easily possible but it would increase the program leng th and reduce the
flexibility inherent in specifying months in a straightforward way, which
allows even irregular months to be entered. When designing your own
programs you will need 10 be constantly aware ot this tension between
what it is worth doing automatically· and what it is worth leaving to the
user-the answer may well vary from user to user but complexity for the
sake of it can be costly in terms of memory and can actually reduce the
usefulness of a program.

138

Chapter 6 High Micro-Finance

Going jurther

1) The deletion module is extremely eTUde in that it only allows the user
to page through the entries one by one. Why not add a facility to specify
a positive or negative jump, using one of the previous programs as an
example.
2) Another improvement would be to add a binary search module to
replace the present scan from the end of the file when inserting items.
3) The month indicators use a whole 12 bytes for each payment. Using
what you have learned about AND and OR, you should be able to store
and retrieve the same information from 2 bytes (ie one element inan
integer array).

6.2 ACCOUNTANT
This program won't actually cook the books for you but it will make
them very much easier to keep and will present them in an orderly
format whenever you wish, with provision for single items, main
headings and sub-headings in the printing of the actual accounts.

Accountant: Table of variables

A$(1,99) Main file of names of payments.
A(l,99) Main file of amounts of payments.
C$ Line of spaces used in clearing text.
C(l) Array storing number of items on creditldebit side of

accounts.
CD Indicator of whether item is a credit or debit.
CR$ Data file separator.
OR Used to record the number of items under a single main

heading.
HH$ Temporary storage of main heading name in user search

module.
IN Initialisation indicator.
M$ String in which formatted money amount is stored.
MM Temporary variabie used in formatting money.
PL Place in file for insertion of new sub-heading.
SS Temporary variabie used to cumulate items under a main

heading.
TT Used to cumulate items in accounts.

MODULE 6.2.1

11000 REM#*****************************

11010 REM r1ENU
11020 REM******************************

11 ~330 POKE 5:32:31., 7 : PR I tH 11 ::Jmall""""1

139

The Working Commodore 64

."'FlCCDUI"~TAtH~11
1104121 PP I NT 11)'1~J:l::m1r1At,m~::: ,=,I·/A I LABLE : 11

1, 11215~'3 PR I tH 11 ~1!!1~ 1 >I NPUT t'H::~·j HEtiD I t'm::: 11

11C161?1 PRItH 1I:1!!l 2)CHAt·mE/DELETE ITEt't:: 1I
11(170 PRUH IIJ!~ 3)PfUtH ACCOUtH~::;1I

11. m::0 PF.: I tH lI)'l 4) DATA F I l.ES 11

110gel PFU NT lil! 5) BH T I Al. 1 SE ACCDI..II'H::'::; 11
1111;30 PRUH lI:ra 6>::nOp
1111 ~::1 I t'WUT 11 '-I:C·JH I eH DO IlOU PEGJ.U I RE : 11 ,: Z
: PRlt-n 11::':]11;
11120 IF 2(1 OR 2)4 OR IN=1 THEN 11140
1113~'3 PR I tH 11 ::1~P.lrP.lI0.I!!Il!JIII'''Ii'III'lIJllltKIT I N I T I
Hl 1::;:ED 11 : FOR I::: 1 TO 20f.1~j: t'4E::<T : OOTO 1112100
11140 IF Z(4 AND Z)0 THEN GOSUB 13000:PR
UH ";]",:
11150 ON Z GOSUB 14000,17000,19000,20000
,12000, 11170:Z:::0:GOTO 11000
1.1160 .
1. :I. 170 PF.: I tH 11 ::1~[1!!1I!!II!!II!!I!!IPW!f.[I!!:t:QlJ""'II"IIIIIJ'''J::iI:1
FiCCOUtHA~~T~1I
11l. :;::0 PR I tH 11 :I!!:t:QlII" II .. II .. Cf·j:;;:OGPAt1 TEPt'1 I t'4
FITEDII :EHD

Standard menu module.

MODULE 6.2.2

12000 REM#*****************************
l.20l.0 REM INITIALISE
12020 REM********',***********"*,,,***
12030 CLR:DIM A$Cl,99),AC1,99):CR'=CHR$(
1:3>
1. 2(14E:1 C:$::::: 11

"

Initialisation module.

MODULE 6.2.3

13000 REM#*****************************

13010 REM CREDIT OR DEElT?

13020 REM******************************

13030 Pr:~ I tH ~~iU..I!!~Q"""""'11) CF.:ED11

140

Chapter 6 High Micro-Finance

I T:~r~IIIIIIIIt2)DEB I T"
1304(1 I "'WIJT 11 :~tQ"""IIII"I".I,~H I eH DO \'01..1
PEOI.J I RE : 11 .; CD : CD:::CD--l : RETURH

Before the input of any item the user is asked to specify whether the
item is a credit or debit.

MODULE 6.2.4

14000 REM#'******'**************'******
14010 REM INPUT HEADINGS
14020 REM****"*****'******************
1. 4~3::::~3 FR I tH 11 ::'IO..J I11\11!IIII.....llIIr::il~·~E~,1 I TEr1::: :

11 .; : I F CD:::~3 THH~ FR INT 11 eRED IT 11

1412140 I F CD~-::; 1 THEt·~ PR: I tH 11 DEB I T ti

14(i~50 FR: I tn 11 :~I S THE I TEt'1 : 11 : Fr-;,: I ~n ti UI!.!

1) A ::H HOLE I TEr'l"
1412i6~) F'1~Utn ")!!l ;;~)f=1 r'1AIN HEADINCi tl :PfUtH
11 :~l ;;:) A ::;UB-'HEAD I t·.IO 11

l4(~7~'3 PP I I··n ":I!f.l I t··IPl.JT " 0" I F ',,'01...1 ~·.l 1~3H TO
G!UIT'I

14~):::~~1 II"WUT ":!!l"'LEASE SPEC I F',,' : 11 .; T'r'PE
14090 ON TYPE GOTO 15000;15000J16000
141 ~~1~~i R:ETUF.:N

When inputting an item the user is asked to specify whether it is a main
heading,a sub-heading or a single item. When the accounts are printed,
main headings have no sums placed against them, sub-headings are
placed underneath their respective main headings and a sub-total
printed for the group, and single items stand alone with a sum against
thern.

MODULE 6.2.5

15000 REM#***********~******'**********15010 REM SINGLE ITEM OR MRIN HEADING
15020 REM*******************'**********
15030 C!:::I;1: I t·WUT 1\),U'iAt'lE OF I TEr'l : 11 .; 0$

1504[1 IF r~F'E{)2 THEH INF'UT ":!!f'it10UtH FOR

ITEJ1: ".i G!
1~505~:1 It~PUT 11 :JJ:cr S TH I ~::; CORRECT ('r' ...··t·D: 11 ; F.:
:*: : I F F,::t=" t··1 1I niEt··1 14~]t10
l5~~16~1 I]:t~.:: 11 ;.~ 11 +G!~f. : I F rr'PE::::2 TI''''EH G!~r.;;:: 11 *11 +r1 I
11$(0$: .. 2)

141

http:t��IPl.JT

The Working Commodore 64

15070 A$CCD,C(CD»=Q$:ACCD,C(CD»=Q:C(CD
)=C(CD)+I:GOTO 14000

This module receives the input of main headings or single items.

Commentary

Line 15040: An amount is only requested if the item is not a main
heading.

Line 15060: An indicator is tagged to the beginning of the item-OJo for a
single item, * for a main heading. These will never be printed but will be
used by the program to identify the different types.

Line 15070: Note how the variabie CD is used to specify which side of
the main arrays the name and amount will be stored.

MODULE 6.2.6

161210121 REM#*****************************
16010 REM SUB-HEADING
16020 REM******************************
1. 6(1::::121 I t'~PUT 11 :IfGI NPUT t'~Ar'1E OF r'1A I t·~ HEI:m I N

IJ: 11.; G!$: I)$:::::II*"+Q$

16040 FOP 1=121 TO C(CD)-1:1F A$(CD,I)=Q$

THH4 1606121
16t215~3 ND::T: PP I t-n 11 ~:::ORR\' .' HO HEF1D I t'·IG OF T
HAT NAt'1E! 11 : FOP I:::: 1 TO ;2~~1I;::10: t·~E::.::r
1606(1 PL::::: I -I- 1 : I I"~PI...IT 11 :1!I"NAr'1E OF SUB....HEAD I t·~
C;: ".;Q$
1607(1 I t·4PUT 11 :mr10UNT FOF.: !:;UB·-HEAD I t·m : 11 ; Gl
16~~180 II"WUT 11 :mARE THES:E CORRECT (Y/t.4) : 11

.; P$: I F F::$= 11 N11 THEN GOTO 141211:'::10
1609121 0$:::: 11 ~l" +Q$
161121121 FOR I~C(CD)+l TO PL+l STEP -l:A$(C
D,I)=ASCCD,I-1):ACCD,I)=A(CD,I-l):NEXT
16110 A$(CD,PL)=Q$:ACCD,PL)=Q:CCCD)=CCCD
)+1 : GOTO 14~300

This module accepts the input of sub-headings.

Commentary

Lines 16030-16050: The name of the relevant main heading is requested
and checked against the headings in the file. If the main heading is not
present then an error message is generated. Note the way a loop is used

142

Chapter 6 High Micro-Finance

to conduct the search, with the program dropping out of the loop if the
item is found and the value ,Of the 10,Op variabie I being used t,O
determine the point at which the sub-heading will be inserted.
Completing the loop means that the main heading is not present.

Lines 16090-16110: The sub-heading is tagged with a $ symbol and
added t,O the main file immediately following the relevant main heading.

Testing Modules 6.2.1-6.2.6

You sh,Ould now be able to input credit ,Or debit items to the account and
have them properly inserted into the correct side of the main file (credit
side =0, debit side = 1). This can only be checked in direct m,Ode.

MODULE 6.2.7

20000 REM#*****************************
20010 REM DATA FILES
20020 REM******************************
20121:30 PF.: I tH 11)!§'OST I ot-~ TAPE COF.:RECTLIrl .' T
HEt'1 ~,f::ETUF.:t·~!!--·- 11

21~1040 INF'UT 11 t'10TOF.: toH L.L. :::;TOP AUTm'lAT I CAL.
LI·rl : 11.; 0$: P'OKE 192.,7: POI<E 1.,39
;:':~jr150 PR I tH IIlt~r::~COt'1r'1At·mS AI'lA 1LABLE : 11 : PF.: I
t-fT 11 i001) ::;R\,IE I1FHA 11 : PR HH 1IJ.t2) LORD DATA 11

;;~(106ü I HPUT 11 :1!!f~.I~H 1eH IlO IrlOU REOU 1RE : 11 .; G! :
ON 0 GOTO 20080,20140
20070 RETURt·4

11;21Z1(i80 FOF.: I=0 TC! 1: IFA:; (I .. (I)::::! 11 THEt·4 Af
(I .1 (1 >::-.:: 11 11: t··IE::-::-r
20090 POKE 1 .. 7:FOR 1=1 TO 2000:NEXT
;?O 1. 0C,3 OPH~ 1., 1 .' ;;;-:.' 11 ACCOUNr:: 11

20110 FOR 1=0 TO l:PRINT#l.CCI):IF CC!)=
I] THEN 2013121
20120 FOR J=0 TO C(I)-l:PRINT#l.A$(I,J) ..
CR$.R(I .. J):NEXT J
20130 NEXTI:CLOSE1:RETURN
2014~"3 OPEN 1., 1 .' 121., 11 t"=ICcOUtHS 11

;21~115(1 FOP I ==t;::1 TO 1.: n~F'UT:I*1 .' C (I) : IFC (I):::

F:t THEH ;;-~f~11 7[1
20160 FOR J=O TO C(I)-I:rNPUT#l~Af(!/J),
14 (I .' ..r) :t'~E::<T J
20170 NEXT I:CLOSE1:RETURN

A standard data-file module.

143

The Working Commodore 64

MODULE 6.2.8

2112190 REM#*****************************
21010 REM FORMAT MONEY
21020 REM********************'*********
2112130 MM=MM+1000e.001:M$=MID$(STR$(MM»)3
.. 7)
21040 FOP P=1 TO 3

;~~ H215~~1 I F t'1l D~~: (1"1:$: .. P .. 1)":::" 121" r"$=L.EFT:$'::
THEt·~
t1$., P·-l) + 11 +R I ol-n:$ n'1~t. .' 7 '-P) : t··IE::H11

2106121 RETUf;,~t··1

This module performs the same function as the formatting module in
the last program.

MODULE 6.2.9

171211219 REM'*t*********************,*****
17010 REM CHANGES AND DELETIONS
17029 REM******************************1703121 FOR 1=121 TO CCCD)-l
1712140 PR 1t-n "::Jl'l':ii.1l"'III11I11""ICHF'1NGE OR DE
LETE~"
17B!:i~j I F LEFT$ (Flt. (CD., I) .' 1) () 11 $ 11 THEN F'R I
tH iI:L~I~J".; r1ID~l(A$(CD., 1:;'.,2).;
17(16121 IF LEFT:t.(f1~·HCD., I) .. 1):"*" THEN L.ET
HH$=MID$(A$(CD .. I) .. 2):PRINT
17'e7~'3 I F L.EFT$(AS (CD., I) .' 1. ::':::::" $: 11 THEt·~ PR I N
T 11 :r.!I~l" .; HH$: PR I tH 11 :~" .; f'1 I D:$: (fl$ (CD.1 1) .' ~~~ ::. .;
1712180 IF A(CDJI)=0 THEN 1710121
1. 712190 PR 1 tH 11.""'''''111''''''111

.; : t"t1:::A (CD., I
):GOSUB 2100B:PRINT M$
1. 711210 PR I tH 11 i:i.[![1!I10.m0.t~:r::ijl=:Ot1t'1At·m!3 ~11...'Fi IHL.AB
L..E ot·~ FUt·K:T I Ot·~ KPrl :::::: 11

1. 7' 11121 PP ItH 11 :!!I~ F1. .- t·1E::.::T ITEt1 11

171 ~~~I:':i PI~;~ I tH II:~ F:] CI-IAt·,jCiE f1t'10UtH 11
171. :;:121 PF:: rt·n 11 :~J F5 - PETUF.:t-4 TO t1Et.4U 11

1. ? 14121 PP I t-n 1I:1!!l F~:: ... DEL..ETE I TEt1"
1 7 t 5~1 PR I t-H 11 :~l!!l'l·H-l I eH DO l·rIO!...! REOI...! I PE : ? 11

1716121 OET C!$: I F 0$= 11 11 THEt·4 1716~'3
1717~ IF Q'~CHR;~14~) THEN G05UB 16000:R
ETUF.~t··1
17180 IF Q$=CHR$(135) THEN RETURN
1719121 IF Q$()CHR$(134) OR L.EFT$(A$(CDJI)
,1):::"*," THEN OOTO 17240

144

Chapter 6 High Micro-Finance

1. 7'~~~~30 I t·4PUT ":~I~lIt=1t'1OUtH TO BE RIIDEII: il .: I)
17210 II"WUT ":8~I:::: THITT' COPF.:ECT ('l.··.. H); ".: f;':
:$
1. 7'2;;;::~~1 I F F.::$:() "1"1" T~'IEt'1 14 (CD .. I ::. :::::A (CD) I) +0 :
CiOTO t ?1~140
1. 7';2:3~3 PF.: UH ":-rIT'''.;: FOP L::: 1 TO :3: PfiU tH C
:$.: : NE::<T :PF.: I tH "~1Tn".:: GOTO 17200
17240 NEXT I:RETURN
This module allows the user to page through the items on the specified
side of the accounts and to change or de1ete items.

Commentary

Lines 17050-17090: These conditions deal with formatting the different
types of item. If the item is not a sub-heading then the item name is
printed, its name also being stored in HH$ if it is a main heading. If the
item is a sub-heading then the previously stored main heading title is
printed above it to indicate the group in which it falls. Finally, if the
item is a single item or a sub-heading then the previous module is used
to format the amount associated with it before printing.

Lines 17190- 17230: If the f3 key is pressed f or a single item or
sub-heading, the us er has the option to change the amount associated
with an item by inputting a positive or negative number. Note the use of
C$ to clear the prompts if an error is made.

MODULE 6.2.10

1800018010 PEM
REMI'**'*****************'*******DELETIONS

18020 REM******************************
1.80~:[t PL:::::I: IF LEFT$(A$(CD., Pl.)., 1)(}II*" TH
EH GR=t:GOTO 18060
1:3(140 GR==(1
18050 CiR==GF.:+ 1 : I F LEFT:*, (Fi$':: CD., PL.+GR) ! t ::.::::: 11

:t- II TI-IEt·i GOTO 1805121
18060 FOR K=Pl TO CCCD)-GR-1:RCCD .. K)==A'::C
D.K+GR):A$(CD .. K)=R'(CD.K+GR):NEXT
18070 CCCD):::C(CD)-GR:I:::I-GP+l:PETUPN

This module accomplishes any deletions specified in the previous
modulI;.

Commentary

Line 18030: PL is set equal to the value of the loop variabie in the
previous module. In the case of sub-headings and single items, the

145

The Working Commodore 64

variabIe OR, which indicates the number of items to be deleted, is set
equal to one.

Line 18040: In the case of main headings, the variabIe OR is
incremented to take account of the main heading itself and all its
sub-headings, since these must be deleted along with the main heading.

Line 18060: OR is used to determine how many items will be overwritten
in the file and by how much the value in the relevant side of the array C
must be reduced.

Testing Modules 6.2.8-6.2.10

You should now be able to input data and to page through it, changing
the associated amounts or deleting items at wilI.

MODULE 6.2.11

19000 REM#*****************************
19010 REM PRINT ACCOUNTS
19020 REM******************************
1. 9~~13121 LET PAS::::: 11 CRED 1T" : I F CD:::; 1. THEt·~ PAf::::

"DEBIT"

19~j4~"3 TT=0: :::;::;~~:121 : FR I t·n 11 ::JQ''''''''.III11I~::iI'' ,; PA

:f. ,: 11 :l'!l"
19050 FOR 1=0 TO C(CD)-1.:TT=TT+A(CD,I)

1906~'3 PR I I···IT "l1li" ,: : I F I ;~~:::: I tH':: I /~~::. THEt,~ PF.:

II'H "U'.;

19070 IF LEFT$(A:$(CD.I 1::'.11):::":+:" THH~ PRH4

T

190:3~3 IF LEFT$(A$(CD.I 1::' .. 1):::"$11 THEN PRIN

T "nl'''.;
19090 PRINT MID$(A$(CDJI)J2::'
1~jU3QI IF LEFT$(I=i$(CD.1 1::'.11.) ",::":+; " THEI"'\ l.S415
(1

19110 PR I tH 11 ,.,......,"'11 .:
19120 IF LEFT$(A:t(CD,. I) .. 1):=II~.~II THEH PRIH

T11 ~"II"""""""I"MM=A(CD,I::':GOSUB 21000:PRINT M$19130 ,:
1914~~1 I F L.EFT ,t.:: 14$ (CD" I ::. .. 1 ::':::::":1-" Tr-IEt'i S:~:::::::;

~;+A<C:r:t.· 1::
1~:H5~'3 1F ::;;::;::::r1 OR L.EFT$(Af.(CII, 1+1.).11.):::":$:"

THEt·~ 1918~~1

1916(1 PP I NT 11II'.........-···-----·:I!!JI

_"lil" .;

146

http:1+1.).11
http:6.2.8-6.2.10

Chapter 6 High Micro-Finance

19170 MM=SS:GOSUB21000:PRINT MS:SS=0
191 ::::0 GET . GO~t : I F CiCi~~:::::" 11 THEI···I 191 :::~::I
191 :3f:1 I'··I[>::T I: r.::'p I trr 11 . "81IIIIIJ\IIIIIII l1li"'""" '"
~anllH"ln."IIII-- -~""·"--""'·-- "
1. :3;;-~t1~::1 PR I tH" ~rrOTAL!!!!!: I11"...'I\II..'.'.t.IIII1I11D11
U-lIDO" ,;
19210 MM=TT:GOSUB 21000:PRINT Mi
13;2Z~) FF.: I tH 11 :r!r::F'PE::::;:::; Fit·rr' KE'T' TC! 01...1 I T ;J

1:);:~~30 GET OC}$:: I F GO:$::~': IJ 11 H·IE}·' 1 ::~;;::::.:O

1. :3;;>+0 PETURt',l
1. :31;2$ZI ::;TOP

This module is parallel to the print statement module In the last
program.

Commentary

Line 19060: To ensure that it is clear which sum goes with which
amount, items and their associated amounts are printed alternately in
black and green.

Line 19070: A clear line is left before a main heading is printed.

Line 19080: Sub-headings are inset two spaces.

Lines 19100-19140: For sub-headings and single items, the item name
and the associated amount are printed. Sub-heading amounts are
printed in a separate column and the total of sub-items under a main
heading is cumulated in SS.

Lines 19150-19170: At the end of a group of sub-headings the total for
the group is printed.

Line 19180: Once again items are printed one at a time, with the next
item awaiIing Ihe pressing of any key.

Lines 19200-19210: The total for the relevant side of the accounts is
printed.

147

The Working Commodore 64

Testing Module 6.2.11

Having input some data, you should now be able to display either side
of the accounts. Note that only one side at a time ean be displayed.

Summary

By now you should be becoming familiar with tbe tecbniques involved
in adding and deleting items without disturbing the overall order of the
file. You wiIl also have learned something of the sbeer fiddliness of
displaying even simple figures on the screen in weU formatted form. It is
worth reviewing some of the methods used bere before continuing
becaJlse in tbe next program we shall be dealing with and displaying
data of mucb greater complexity tban anytbing eneountered so far.

Going further

1) One useful added facility would be the ability to print the balance
between the two sides of the account when either side is displayed.
2) As in the previous program, if you are going to store large numbers
of items you will want to change tbe present us er search module, which
can only page through tbe items one by one. Be careful in doing this
however, since tbe module must be able to detect the main headings as it
passes tbrough the file, especially for tbe purposes of deleting. Simply
jumping through the file without regard for this need could result in
disaster.

6.3 BUDGET
We now turn our attention to tbe most complex and difficult program
ypu will encounter in tbis book. Budget is a powerful and flexible
financial aid whicb enables the user to plan finanees over a 12 month
period and to examine the consequences of 'what .. .if' decisions about
income and expenditure. Intelligently used, it can provide some
surprising insights into a family's finances over the year to come, quite
apart from illustrating some of the pro bi ems of working with large
bodies of numeric data. Tbe arrays used by the program store some 800
different numeric values.

Budget: Table of variables

BA(1,ll) Cash balance [or each month.

BD(1,11) Balanee of budgeted payments over actual payments.

Cl(1,l1) Main income.

C2(l, 11) Supplementary income.

CU

148

11

Chapter 6 High Micro-Finance

Temporary variabie used in calculating cumulative
surplus/deficit.

FO$ Cursor control string used in formatting tabie.
H Indicator showing which side of arrays is to be

addressed.

Variabie used to ensure proper handling of 12 month

periods which pass beyond end of calendar year.

MI Temporary variabie for month to start table display.

M2 Temporary variabie recording change of current month.

MM Current month number.

MO(l,29) Average monthly payment for each payment heading.

MO$(ll) Month names.

MY Temporary variabie used in formatting money figure.

MY$ String storing formatted money figure.

N(l) Number of items on both sides of arrays.

PA(l ,29, 11) Amounts associated with payment headings.

PA$(1,29) Names of payment headings.

PP Temporary variabie used to indicate position of item to

be changed in array.
PT(l,l1) Monthly totals of expenditure.
R$ Data-file separator.
T(1) Temporary variable used to calculate total amount set

aside in average budget allowance.
TT Temporary variabie used to calculate total payments for

items included in average budget calculation.
Y Month number of end of year.

MODULE 6.3.1

21000 REM#*****************************21010 REM DATA FILES
21020 REM******************************
;;~ UJ30 PR UH 11 r::PO::H T I ot·~ TAPE COF.:F.:ECTL'l.. T
HEr,,' ~:ETUF.~t'H!--"-· 11

21 (140 1"'WUT 11 r'lOTOF.: L'J ILL STOP RUTOt'1AT ICRL
L'r' : 11 ,; 0$: POKE 192 .. 7 : POI<E 1.,,:39
;?:t ~::t50 F'R Il'n ")!I,t:[:Ot'1r1At'm~:::; I=! "/fi I LABLE : 11

21 ~160 PF.: I NT 11 ii 1.) ~:;H\,'E DfHH 11 : PF.: I NT 11 2) LO
AIJ tIATA"
21 (17'0 I NF'I..IT "lvJH I eH DO ..,.01..1 REG!U I R:E ; Ol G! : Cl
N Q GOIO 21080,21130:RETURN

"

21080 POKE 1~7:FOR 1=1 TO 2000:NEXT
210::?~3 OPEt,~ 1" 1 " 1. " 11 BUDGET 11 : FR I NT:IH " t'm., F.:$"
Y:FOR H=0 TO 1:PRINT#1 .. N<H)

149

The Working Commodore 64

21100 FOR 1=0 TO 11:PRINT#I,Cl(H,I),R$,C
;;~ (H, 1) : NE::·:;r I
211 Hl FOR I=~::;t TO t··I(H)·-l: IF PA$(H., I)::::" 11 T
HEt·~ F'A:t <: HJ I) ::::: 11 11

21120 PRINT#l,PA$(H,I):FOR J=0 TO 11:PRI
NT#l,PA(H,I,J):NEXT J,I,H:CLOSE1:RETURN
:;:: 11 :3~~ OPEI'-~ 1., 1.' 121., 11 BI...IDOET 11 : H~PUT# 1.' t'lt1.' 'r :F
OR H=0 TO l:INPUTll,N(H)
21140 FOR 1=0 TO 11:IHPUT#I,Cl(H,I),C2(H
.' 1 ::0 : HE::<T I
21150 FOP 1=0 TO N(H)-l
21160 INPUT#l,PA$(H,I::O:FOR J=0 TO 11:INP
UT#I,PA(H,I,J):NEXT J,I
21170 GOSUB 14000:NEXT H:CLOSE1:RETURN

The complexity of this data-file module should convince you of the need
to save data at regular intervals to tide you over the errors which are
inevitable in entering a complex program such as this one.

MODULE 6.3.2

11000 REM#*****************************1101 i~1 REI"1 t'1Et·~U

11020 REM******************************
1. 1.121:.:a~1 PCWE 53281.1 1~: : PF.: I t·n 11 ::10""DlJIII'''''J::i
:'i-iOt'1E BUDOET 11

1 1. 04~'3 PR I I·n ":~:[eI.:m=Ut·4CT 1ot·~:;:; fi\,'F'f I LABLE : 11

11(15~'3 PRHH 11 li1)DISPLA"~ ""lotHHL'r AHAL'r'::n
,-. I1
.;:0

1. 1060 FR ItH 2) CHAHGE:::: 1111

11 (17~) PP ItH " :;:::0 t··IE~,4 :F.:UDOET HEAD I t·m!;:: 11

11 (180 PR Itn 4) DELETE BUDGET HEAD IHIJ 1111

1109(1 PR I t·n 5::0 HESET H'r'POTHET I Cf:IL F I GUR
E

11
Ç,'II
'-'

11 H30 PRINT 11 6::OF.:E:::ET t"IOtHH"
1111121 pF.:nH T'DATA FILE!;:;"11

1112~'3 FPHH " 8HtHTIF'iL.IS:E II
11130 PPltH 9)STOP"11

1.1140 1t··IPUT 11 Ma.JH ICH DO I,.'OU F.:EGlU IPE : 11 ; Z :
PRItH ";)" i ; Ir Z{5 THEJ~ l.1 J.6e
11150 ON 2-4 GOSUB 15000,17000121000,120
00111190:GOTO 11000
1116~~1 FR I NT 11 :~I!!l~eII!!:OOP.!lm:roo."l) PERL DATI~": FF.:
IHT 11 2) H'T'POTHET ICAL DATA 11

150

Chapter 6 High Micro-Finance

111 7~3 I t'WUT "='~H IeH DO "r'OU REOU I RE : 11 .; H : I
F H(l OR H)2 THEN 11170
1. 11 :::m PF.: I tH ":J": H~H-l : Ot·~ Z CiO!:;I.JB 1::::~?II2I~::t .. 1
9000 .. 16000 .. 20000:GOTO 11000
11. 19121 F'P I tH ":1!!:[!!1!!lL~lJ[1!!1!!1!!11!!1!!J""IIB"lIIf~:4HOt1E B
UIII3ET TEF.:t'1 I t'~ATED" :Et·m

A standard menu module with the addition of the facility to de fine
whether the realor hypothetical side of the arrays is being addressed. The
distinction bet ween these two will be explained later.

MODULE 6.3.3

12000 REMI*****************************
12010 REM INITIALISE
12020 REM******************************
1. ~~::~n0 eLR

12040 DIM PA$(1 .. 29) .. MO(1 .. 29) .. PA(lJ29 .. 11)

.' F'T (1 .' 11) J BD (1 .' 1. 1) .' C 1 (1 J 11 ::. .' BA (1 J 11 ::.

12050 DIM C2(lJ11):R$=CHR$(13)
12060 DATA JANUARYJFEBRUARY .. MARCH .. APRIL ..
MAY .. JUNE .. JULY,AUGU8T .. 8EPTEMBER
1.2070 DATA OCTOBER,NOVEMBERJDECEMBER
12080 DIM MO$(11::':RESTORE:FOR 1=0 TO 11:
PEAD MO$(I::':NEXT
f209~:3 1HPUT ".ARE 'r'OU LORD I 1'··113 FR 01"1 TAPE

('-r' ,···'t··1) : " ,; 0$: I F C!~t= "'r' 11 THE~4 CiOTO 110(10
12100 I t'~PUT 11 :1!!f:ilJ t·,IPI...IT 1··R.lt'1BER OF CI...IRREHT t"
OtHH : 11 ,: t'1 t'1 : t'It'1:::: r" t'1'- 1 : "r':::: t,1t1 + 1. 1
12110 GOSUB 18000:GOSUB 16000:GOT011000

Initialisation module.

MODULE 6.3.4

18000 REM#*****************************
18010 PEt'1 I t·,\COt-1E
18020 REM******************************
1:::~3:30 F'R I tH "::1mI NPUT r1A I t'~I HCOt1E 11~::; FOt.
L.I...!L',I ~:~: : 11

18040 FOR I=MM TO Y:I1=I:IF 11)11 THEN 1
l:::::Il-·L?
l8~~50 F'R I NT r10$ (I 1.) .; " : " : I HPI...lT ""'''''''111.'''DlI'' ,: IC 1 (H" I 1 ::. : t'~E>::T

151

http:CiO!:;I.JB

The Working Commodore 64

1:3~360 PR I tH 11 ::1~DTHEF.: AtH I c: I PATED I Hem'1E :
11

18070 FOR I;MM TO Y:I1=I:IF 11)11 THEN I
1=11·"12
1:::121:::0 PR I tH \''1(1$ (I 1 ::0 ,: 11 : : I HPUT 11 """"'111••"111 ,: C2 (H" I 1 ::0 : NE~n I
18090 GOSUB 14000:RETURN

This module accepts input of income under the headings of main income
and supplementary income,

Commentary

Line 18040: Whereas data is stored in the arrays in the order
January-December, the 12 month period which the program is capable of
covering can begin in any calendar month. Accordingly, the variabie 11 is
used to ensure that when the twelfth month is completed, the loop moves
on to address the first month of the calendar year.

Line 18050: Note the way in which the variabie H is used to determine
which side of the arrays is addressed.

Testing Modules 6.3.2-6.3.4
By inserting temporary RETURNs at 14000 and 16000, you should now be
able to input income data for the 12 months from your chosen starting
month, For the moment, stick to inputting to the real side of the
arrays-all will be made clear later.

MODULE 6.3.5

16000 REM#*****************************
16010 REM INPUT OF PAYMENTS

16020 REM******************************
16~~130 PRltH \I::1U*'J""'''JI~IHPUT OF BI LU:;
, 11

16~~14~::t PF.~ I tH "IiiF'RECEIIE t'~Ar1E OF I TEt1 ~,~ I TH A" * .' I F 'r'OU 11) 11 DO t~OT ~,JANT I T BUDGETED. 11

1605(1 Pf:::ItH "::l~(,'ZZZ'" TO QUIT)"
1. 6060 INPUT ":!lJ:tiEI=iD I t·m FOP BI LL : 11 .: 1:;),$: I F
O:t= 11 ZZZ 11 THEN GOSUB 1400~j: F.ETUF.:t··\
16070 N(H);N(H)~l
161Zr8r:1 I F t~ (H) ;=30 THE\"~ Hn·D ::::;;-~9 : PR HiT 11 NO
t10RE ROON": FOR I::::: 1 TO ;;;:Ü~~1(1: NE::.:;r : RETUPt,~
1609~} PA$ (H.' t'i (H) "-1 >=G!$: F'F.: I HT 11 :"1:f'f1'r't1Et'H:3

Ut.mER 11 ,: 0$,: 11 : :I!I]"

152

Chapter 6 High Micro-Finance

16100 FOP I=MM TO Y:Il=I:IF 11)11 THEN 1
1::::11 ..··12
1t':; 1 i ~~1 F'R I tH 11 :-)"""""111t10~:. (1 1 ::. : I t·~PUT
;F'A(H,N(H)-1~I1):NEXT I
l612~~1 OOTO :l6F1~K1

This module accepts the input of bill headings and associated amounts.

Commentary

Line 16040: The program has the facility to calculate an average monthly
figure which will cover the yearly total of payments under any payment
headings. Preceding the payment name with a * excludes the particular
payment from this process-ie it is treated as a one-off item.

Line 16070: The variabie H is used to increment one or other side of the 2
element array N, which records the number of payments stored on each
side of the array.

Lines 16090-16110: Having specified the payment title, input is requested
for each of the 12 months in the period covered.

Testing Module 6.3.5

You should now be able to input a number of bills and find them stored in
the zero side of arrays P A$ and PA-again sticking to the real side of the
arrays. The temporary RETURN at 14000 should be retained for this test.

MODULE 6.3.6

14000 REM#*****************************
14010 REM UPDATE BUDGET

14020 REM******************************

14~?130 T(H) ~:::0
14040 FOP 1=0 Ta N(H)-1:BU=0:IF LEFT$(PA
:$: <1'-1., I) .' 1 :;.;::: ";+:" THEt-4 14061~,

14050 FOP J=0 TO 11:BU=BU+PA<H,I,J):NEXT
:MO(H,I)=BU/12:T(H)=T(H)+MO(H,I)

1412160 t·~E::<T I

14070 TT=0:CU=0:FOP I=MM TO Y:ll=I+12*<I

:> 11) : PT .:: H, I :l) ;:::(1

14080 FOR J~0 TO N<H)-l:PT(H,Il)~fT'::HJll
)+PA(H,J,Il):NEXT J:TT=TT+PT(H,Il)
14090 FOR J=0 TO N(H)-l:IF LEFT$(PA$(H,J
::',1)::::11*\1 THE\"-~ rr:::;TT·-PR'::H .. J.< 11.:;': \···IE>n" J
14100 BD(H,I1::'=T(H)*(I-MM+l)-TT:CU=CU+Cl

153

The Working Commodore 64

(H,I1)+C2(H,I1)-PT(H,I1):BA(H,I1)=CU
14110 NEXT I:RETURN

This module performs all the calculations necessary for the construction
of the table of figures we are working towards.

Commentary

Lines 14040-14060: Monthly average budget figures are calculated and
stored in the array MO. The cumulative total for these figures is stored in
the array T. The process is not carried out for payment headings
commencing with a * .

Line 14070: Note the use of the logical condition (I> 11) to calculate the
value of 11. If 1 is less than or equal to 11 then this condition will have a
value of zero and will make no difference to the value of 11. When 1 is
greater than 11 the condition will take on the value minus one and can be
used to reset 11.

Line 14080: The total of all the bills to be paid in a particular month are
cumulated in the relevant line of the array PT. TT is used to hold the
cumulative total of these monthly totals.

Line 14090: From TT are now subtracted the amounts associated with any
items that are not to be included in the average budget calculations. TT
now contains the cumulative total of items which are included in the
average budget calculation.

Line 141000: The balance of the budgeted figure over actual payments is
now stored in the array BD by multiplying the average monthly payment
by the number of months and subtracting the actual payments on
budgeted items up to the relevant month. The balance of the two forms of
income over the total actual payments for the month is stored in the array
BA.

Testing Module 6.3.6

ft is dittIcult to tully test this module until the module which displays the
table has been entered, but it is a good idea to enter some data since this
will call up the module and check the syntax for you. Ifyou are confident
that the module is functioning correctly, then it is a good idea to save the
data you have input on tape.

154

Chapter 6 High Micro-Finance

MODULE 6.3.7

22000 REM#*****************************
22010 REM FUNCTIONAL SUBROUTINES
22020 REM******************************22030 MY=INT(ABS(MY)+10000):MY$=MID$(STR
:;' (t'1'''') .1 3) : 1F t1'r'):::20t1~3121 THEt,~ l"l,,..~t::: 11 #4*## 11

2~~~:H,~~1 1:;::ETUFl~

A formatting routine which returns a four digit number with leading zeros
in neeessary. If the figure being proeessed is greater than ;(9999 it is
displayed as 'ij: ij: ij: ij: , to show that it is outside the range that ean be
aeeurately displayed by the program. The program ealculations are
unaffeeted by this.

MODULE 6.3.8

1300121 REM#*****************************13010 REM DISPLAY FIGURES
13020 REM******************************
1:::;:12130 Pr.;: 1I'H fl ::1!!JI1I11i1'''''IIII'''''f~~,mRV~3HEET 11

1. 31~14~~1 I I"~PUT 11 t'~Ur'1BER OF r'10NTH TO START: 11 .; r'l
1:IF M1(1 OR M1)11 THEN 13040
1305121 Ml=Ml-l:IF MM-Ml-12*(Ml)MM-l)(4 TH
EN Ml=MM-4-12*(MM(5)

130?~~ PP I tH 11 U?:G10HTH ,;fl

1::::~3:::0 FOR.J::::t'l1 TO 1"11 +:} : PP UH 11 rijmC II .: LEFT:t
(MO$(.J+12*(.J)11»;]);
1. :::(i9 (I t·n:: ::.:;,- .J: F' F:: I tH "Uit: !:IE: If:$ fl

13110 FOP 1=0 TO N(H)-l:IF I()15 THEN 13
1. 4~~1
1.:;: 12~0 rHP1...IT "r~:.J::ETUF.!t'4!! TC! CL.EAF.: SCREEt,~ A
I'·m cmrr I t'4UE : fl .; crr. : PF:: I HT !I !=11!!t1!f,[!!~"
13125 FOR .J=1 TO 20
1. ::.:n 3121 PFU tn 11

.. ; t',IE~n .J; FR I t-n Ol !*it!I~I~"

1. :::::1 4r?1 PR un 11 iJ.C1I ,: LEFT:f: (PA$ (H., I) .' L2) : FR
II'H "~"I1"""J"'''1!11I ,;
1:31 ~ie FOR J:::::I"'ll TO t'11 +:;: : PF';: I tH 11 U!1t=" ,: : t1'r':::: I
NT(PA(H)I)J+12*(J)11))):GOSUB 22030

155

The Working Commodore 64

1316121 PRltn t'11-r'~t.; : HE::.::T .J: PF.:IHT I'nl~r:ij".:

13170 MY=INTCMOCHII)):GOSUB 22030:PRINT
M',-l$: t'~E::'::r I

1:319~1 I I'~PUT 11 IPRESS ~:ETUPt·~~ TO DI ~':;Pl..AITI
m'-IfR. 1.(~:; I ~:; : 11 ,; G!:l
1:3~?~~121 PH I HT \I ~:f.l!f.[l!!li!f.l" : FOF.: I:::: 1 TO 2~3: PR Itrr 11

11

13210 NEXT I:RESTOPE:FOR J::::l TO 12:READ
fl:;' :·t··!E>n :PH I tH I! ;:::1IU~l).Ii"

13220 DATA TOTAL/BUDGET/BUDGET BALHIMAIN
INCOME! SUPP. INCOME,TOTAl IHCOME

13230 DATA CASH BALANCEICUM. BALANCE
1:3;24~'3 FOR I:::: 1 TO f:3: F.:EFiD A$: PH I rH 11 n~f:::lll ,;
A$

1:3~~6ü FO=*:=" ~'Ii""""""'I"
13270 FOP I=Ml Ta Ml+3:11=I+12*CI)11):PP

INT ";;;.[~m@!l"

13;;~80 P[':: I t,n FO$.; 11 UW I .: : r'l'r'::::F'T (H" 1 1. :; : PR I tH

"lil" ,; : I F t'llrlG3 THEt,~ PR I NT 11 f:ij" .;

13290 GOSUB 22030:PRINT MYS:PRINT

l3::::~?I~~1 FR UH FO~f. ,; 11 n~:~".; : t"I'r'::::T 0 ..1) : FP UH "11".:

: I F r'''-r'(0 THEt,~ PH I tH 11 f::il" .;

1331121 GOSUB 22030:PPIHT MY$:PRINT

1. ::':32121 PP I tH FO~r..; 11 SiM;" .; : W-r'::::BD (H., I 1. ::0 : FR I I"H
11 1" ,; : I F "'l'T'«(1 THEt',1 pr;: I t'n "r~" ,;
1.3330 GOSUB 22030:PRINT MY$:PRINT
1:3340 PH I t·n FO$,; "nr.r:" ,; : t'1'T';:::C 1(H .. I 1) : PR I tH
"1".; : IF 1"1 I'r'<JJ THEt',1 F'RUn IIf:ijll.;
13350 GOSUB 22030:PRINT MY$:PRINT
1. :336121 PI:;;: I I'H FO$,; 11 U;:~;" .; : 1"1'T'~:::C2 0:: H., 11.) : FR I trr
"11" ; : I F 1"1'r'{0 THEt·~ PF.: UH 11 r~" ,;
13370 GOSUB 22030:PPINT MY$:PRINT
1:33er~1 FR I t-n FO:$: ,; 1IIiiH lI .; : r'1'/:::::r1 11)+C 1. (H., I 1>-1121121
IJ~3 : PF.: I t-n "1" ,; : I F t'1'r'<),) THEt-4 F'R I I'H "f:ij" ,;
1339121 GOSUB 22030:PRINT MY$:F'RINT
1:34~~I~:i PI,,:: ItH FUl:.; 11 ~i::~:~:".; :r"'r':::Wr'-PT (H., 11>-1 ~Iti
1210: F'F.: I I'H "I" ,; : I F r'I'r'(!2I THEt,·! PR I t·n H f::ij" .:
13410 GOSUB 22030:PRINT MY$:PRINT
1.342(1 PP I t-n FO~f. ,; "UW' .; : t'1'r':::::BA H.. I 1) : Pt-;;: I tH
"1" ,: : I F r'1'-r'<)'3 THEt,~ FF:: I tH 11 f~"

156

http:1IU~l).Ii

Chopter 6 High Micro-Finonce

13430 GOSUB 22030:PRINT MY$:PRINT
1:;:44121 FO$==FO$+ "."'''" : t'~E::<T I
1:::A5~'3 I 1··~PUT 11 BIIDO YOU !.. j I !:;H TO PEV I E~,·l F I GU
r.~P:; ('T' ,.lt·.1) : 11 .; 0$

134·60 I F 0$:::: 11 'rl 11 THEH 13~36f1

1:~:4 7121 RETURI'~

In the last program we noted that display modules &re often the most
complex of a program whose task is to present a table of data, and this one
is certainly no exception. Having said that, it should be noted that beneath
the superficial complexity this is a relatively simple module which picks up
figures which have already been calculated and places them on the screen.
It looks complex only because of the sheer number of figures which are to
be displayed.

Commentary

Lines 13040-13050: The table displays the figures for four months from
the month specified by the user. However, running over the end of the
current 12 month period would make a nonsense ofthe table so, if afigure
less than four months from the end of the period is input, the start month
is reset.

Lines 13060-13100: The heading of the table is printed, consisting of the
first three letters of the relevant months and a heading for the 'average
budget' column.

Lines 13100-13170: Payment names are obtained from the array PA$
and printed in the left-hand column. Following the name, the figures for
the four months and the average budget figure for the item are printed
across the screen, separated by graphics characters into columns, with the
previous module being used to format the amounts with leading zeros if
necessary. Fifteen lines are printed, with provision to clear the screen and
print another 15 if that is not sufficient. The program can handle up to 30
payment headings.

Lines 13210-13240: The titles for the figures given in the second part of
the table are read from the DAT A statements and printed down the left
hand side of the screen-the table heading remaining undisturbed (the
budget column heading is now redundant but is not erased).

Lines 13260-13440: Despite its length, a simple routine which, using the
string FO$ to determine the position of the column, prints the relevant
figures for each month down the screen opposite their headings. At the
end ofeach month's column, five cursor right characters are added to FO$

157

The Working Commodore 64

and the process is repeated in a fresh column for the next month. Note the
use of the red and black control characters to show whether an item is
positive or negative. Note also, in Lines 13380 and 13400, the temporary
variabie MY, from the formatting module, is used to add a figure to one
previously printed. To do this the 10000 which was added in the
formatting process must first be subtracted.

Testing Modules 6.3. 7-6.3.8

lf you have some data stored yOll should now be able to display it on the
screen. Ta check the table (apart from the fact that it is properly displayed)
you must understand what the various figures mean:
TOTAL This is the total of all payments to be made in the month.
BUDGET The same for each month, this is the average sum that

will have to be set aside in order to cover all the
non-excluded bills in the 12 month periad. An average
budget will not necessarily cover all the payments up to
any particular month (eg if all the payments were made in
the first month). This figure records whether the amount
set aside in the average budget is ahead or behind the
actual payments it is meant to cover. At the end of the 12
month period it will be zero.

MAIN INCOME/SUPP. INCOME/TOTAL INCOME
These are self explanatory.

CASH
BALANCE The difference between income and outgoings for the

relevant month.
CUM.
BALANCE The difference between total income and total payments

since the beginning of the 12 month period.

Note that there will be small discrepancies since only integer figures are
displayed, while the actual calculations are performed on the full figures.
Thus the monthly budget for a payment of f47 will be displayed as f3 but
this will not affect the proper calculation of the total monthly budget.

MODULE 6.3.9

19000 REM#*****************************

19010 REM CHANGES
19020 REM******************************

191:3:30 PF.: I NT I! :J:!!:IU!IIII'Dt'II!i'III1II1'III''''''''J!J::iI~~[:HFiHO
ES II
19~}:+~~ PF.: I t-rr 11 :1!I.=::or1t1At·m::~ FiVA I LHBLE : 11

158

Chapter 6 High Micro-Finance

1. :::1F:l5~~1 PF.: I tH " ~hl) CHtit·KiE BUDGET HEtiD 11

19(16~) PF.: I t-n 11 2) CHI=tr'KiE r'1ti I t·~ I t·~'...'m'1E 11

19~J70 PP I tH 11 :3) CHfil··-IGE ADD:r T I Cil··iFIL I t··ICOt1E

"

. 1. ::'10:::0 II··4PUT ")!!IH·JH rCH DO 'r'OU PEOI...1 I PE : 11 .; G!G!
:ON QQ GOSUB 19100.19190,19190
19090 GOSUB 14000:RETURN
19112n21 I NPUT Ol S:t'4At1E OF BUGET Hf::'fm TO BE
CHFit-4GED : " .: G!$
19110 FOR 1=0 TO N(H)-1:IF Q$(>Pti$(HJ!)
THD·' E~1::':0
19120 PP=I:GOTO 19140
1. :3113(1 NE::.::T I: F'P I tH ")!!U TEr·, 1··mT FOUt·m 11 : Fm~:

1=1 TO 2000:NEXT I:RETURN

19141;:1 F'R ItH 11 ~"l~" .; PFU: (H ! F'F') : PR I t-rr ":~:cn HPlj

T t·-IEl·.1 Al"1OUtH OP .,:+: ..' TO L.EI::I'·lE: :W'

19150 FOP I~MM TO Y:I1=I+12*<I)II)

19160 PP I tH r'1O:$:';: I 1.) : F'R 1tH 11 ~"'III"'IIB"'III'III"
: " .: PI=t.:: H.. PP.' I 1.).; : I t··IF'I..JT 0:*:

1917~") IF Q$()",t. 1I THEH PA(H .. PF·.' 11):::::'./nI.... (G!$

19180 HEXT I:RETURH

19190 I F G!O=~:;2 THEt··1 PR I t··IT I/ ::'J:i[!!l"1A I H I HCOt'1E

. ·11·.'
1. 9200 I F QG!=::;:: THEH PF.: I tH 11 ::J':5l:ffiDD I T I Ot·ml...

I t·H::or·1E : 11 .;

1. 9;;::~j5 PR I tH (.,. :;: •• ' L.EA....'ES Ut.4CHANCiED) 1111

19210 FOP I=MM TO Y:ll=I+12*(1)11)
1. :3;;;:~2ü PF:: 1tH r'1O$ (1 1.) : F'R 1 t·n 11 :-""'"l1li111111"'.
: 11.;

19230 IF QQ=2 THEN PRINT Cl(H)11);

19240 IF QQ=3 THEN PRINT C2(H.ll);

192:il~1 I I"~F'UT 0$: I F C!~r.()" *" AND 00=2 THn·,

Cl(H,Il)=VAl(Q$)

1:~1~?6~'3 I F Gl$() 11:+; 11 ANI! 00:::::3 THEI"4 C~2';: H.I I 1. ::.:::::

.... 1 Hl (Q~t::.

19270 NEXT I:PETURN

Ifa change to an item already entered is required this module which allows
the user to specify whether the item to be changed is a payment heading,
main or supplementary income. The relevant figures are then displayed
and the user can either confirm each figure by entering a * or entering a
new value.

159

The Working Commodore 64

MODULE 6.3.10

2001020000 REM#*****************************REM DELETE BUDGET HEAD
20020 REM******************************
;;;-~(10::::0 I t·4PUT 11 :!!I::NAt'lE OF BUDGET HE~1n TC! DELETE: 11 0$,;

20050 FOR 1=0 TO NCH)-l:IF Q$=PR$(H.I) T
HEt,~ 2~::1~:'~8~3
20(170 HE::H I: F'F.~ I tn IJ :I!JI'JII TEt1 tKrr FOUt·m 11 : FO
R J=1 TO 2000:NEXT J:RETURN
20080 NCH)=NCH)-I:FOR J=I TO NCH)-1:PA$C
H.' J) :::PA:t (H .' J +1)
20090 FOR K=0 TO II:PACHIJ,K)=PACHIJ+I,K
):HEXT K,J:GOSUB 14000:RETURN

This module allows any budget heading to be deleted.

MODULE 6,3.11

17000 REM#*****************************17010 REM REGISTER MONTH
17020 REM******************************
17t;::130 F'F.: I tn ":1~JJ'.''''''f=-~~JPDFITE r'lOt·HH 11

l7~34~} 1t'WUT 11 mIHPUT t-~Ur'lBEF.: OF CURREtH t1
Ot-HH : 11 ,; t'12 : I F t12<:0 OR t'12) 12 THEt,~ -1704121
17050 M2=M2-1:IF M2=MM THEN RETURN
17060 IF M2(MM THEN M2=M2+12
17070 FOR I=MM TO M2:Il=I+12*(I)11)
1708~) F'R I NT 11 :1~)I""""f:i:~JF'DATE t10NTH "
17090 PF.: Itn 11 :mI t·4PUT IN FULL At'10UtHS FOR
t',IE~n "; t10$ (I 1. ::. ,; 11 : :~l"

17'1~~~~1 FOP J::;~~1 TO t··I(fO ..··l: PRHH PA;l(ü., ,n.; 11

(11 .; PA (1~1 " ,.1" I 1) .; ::. : 11 ,; : I t'~F'UT PF'i C121, .J , I 1) 11

17110 t'~E:X:T J

1712ü I t'~PUT 11 f::{ef,I'-1A I t·~ INCor1E : 11 ,; Cl (121" I 1)

171 :30 I t'~PUT 11 &ii:~FtItIt I T I m'iAL I t·,ICIJro1E : 11 ,: C2 «(1.,
I 1) ; t'~E::-::T I
17140 MM=M2+12*<M2)11):Y=MM+l1:H=0:GOSUB

14000:GOSUB 15000:RETURN

The purpose of this module is to all ow for changes of month. When the
user specifies that the current month has changed then new figures are
requested for each payment heading and the income types, for each of the

160

Chapter 6 High Micro-Finance

months which have passed and are now to be tagged onto the end ofthe 12
month period. Thus if the old period began with May and the new one
begins with July, then the user will be requested to input figures for May
and June only, since these now become the last two months of the 12
month period.

Testing Module 6.3 .11

You should now be able to change the figures for payment headings or
income, to delete payment headings and to change the period which the
program is set to cover. To test the last module you will need to insert a
temporary RETURN at line 15000.

MODULE 6.3.12

15000 REM#*****"*'********************
15010 REM SET UP SHADOW ARRAYS
15020 REM******************************
1.:H33~3 T(1)::::T(0)
15040 FOR 1=0 TO N(0)-1:PA$(I~I)=PA$(0~I

):MO(I,I)=MO(0~I)

15050 FOR J=0 Ta 11.:PA<1~I~J)=PA(0,I,J):

NE;:-:;r J.' I
15060 FOR J=0 Ta 11:PT(1,J)=PT<0,J):BD(1
,J)=BD(0,J):Cl(1,J)=Cl(0,J)
15070 BA(1,J)=BA(0,J):NEXT J:N(1)=N(0):R
ETUF.~N

This simple module is one of the most important in the program. What it
does is to copy the data you have input to the real side of the arrays, into
the hypothetical side. One of the main points of this program is that you
can choose to input data to the hypothetical side of the arrays to test the
effects of a financial decision, and this will have no effect whatsoever on
the real data.

All the operations of the program can be performed on hypothetical
data and, when you are satisfied, all you have to do is to call up this
module and the data in the hypothetical side is instantly reset to the real
data. This module is automatically called up when the month is reset,
otherwise the two sides of the tables would be working on different
periods.

Testing Module 6.3.12

In fact you can now test the hypothetical sides of all the functions simply
by specifying hypothetical data when the functions are called up. Add and
subtract items from both sides, then use the table display to check that

161

The Working Commodore 64

neither side is affecting the other. Then use this module to copy the real
data into the hypothetical side. Note that the hypothetical side is empty on
first initialising the program.

If the hypothetical side functions work properly then the program is
ready for use.

Summary

This long program is powerful, properly used, although it takes practice
to get the most out of it. Taken seriously it can give you some surprising
information about the state of your finances throughout the year-when
things will be tight and when there might be a litde to spread around,how
payments might be re-arranged to ensure a Httle more at Christmas or for
holidays, what might be the overall effect of a new commitment or of
increased income.

Remember, however, that this book is intended to set your 64 to work
for you. Ifyou have successfully overcome the problems of debugging this
program then there is no reason why you should not go on to adapt it to
other uses which require flexible input and manipulation of data, together
with dear presentation in the form of tables and the possibilities of
running two sets of data at the same time. The program can be looked
upon as a foundation for putting your 64 and your new found confidence
to work.

Going further

1) The program might be more useful if you had the facility to copy the
hypothetical arrays into the realones, once you decide to go ahead with
something you have assessed. This should only involve a tiny change to
one module.
2) Savings in the length of the program could result from cutting down the
number of arrays by packing the same amount of data into fewer but more
complex arrays. You might then be able to print the data with a small
number of loops.
3) If you wish to change only a single value for a payment or for income,
you have to work through all twelve payments. Try adding the facility to
jump into the middlc of thc period and to escape from the series when you
have completed the change you want to make.

162

CHAPTER7
Music

One of the joys of the 64 is the way in which the quality and sheer cleverness
of the sound capabilities open up a whole new world of possibilities for
home micro- owners. In the not toa distant future whole books will na
doubt be written on the uses ofthe 64's Sound Interface Device (SID) chip.

The sheer complexity of the SID chip's capabilities means that na one
program can do full justice to them and one chapter of a general work
cannot serve as more than an introduction to the almost infinite
combinations of sounds available. Having said that, however, the
program presented here is one which provides a firm foundation for future
experimentation and creation. The purpose of the program is not simply to
allow the us er to input and play tunes (which it does) but to allow every part
of the SID to be directly available to the us er . Most things that the SID is
capable of.achieving can be done quite simply using the program as a tooI.

The first thing to remember is that a normal musical note is not simply a
vibration of a certain frequency, it is in fact a combination of different
frequencies, high and low. To create a note therefore requires the input of
two separate frequencies, one high and one low. Each of the SID's three
voices has provision for these two inputs for each note that is played. The
program must be capable ofaccepting notes in a way comprehensible to the
user and then translating the notes into a farm usabie by the SID.

Secondly, the intensity of any particular note varies in a complex way as
the note is played:

a) The first phase of the note is known as the ATTACK. This is the speed
with which the sound rises from nothing to its peak. The shorter the period
of the attack, the more twangy the quality of the note.
b) The second phase is called DECAY and during this phase the note falls
away from the original peak.
c) After this first falling away, the note enters the SUSTAlN phase, which
determines the length of the main body of the note.
d) Lastly. the nûte fades awav in the RELEASE phase which, like the
ATTACK, can be sharp or gradual.

Different musical instrurnents have different qualities of tone, quite
independent from the not es they play and the shape of those notes. These

163

The Working Commodore 64

differences depend upon the waveform of the sound produced by the
instrument.

The SID permits each of its three voices to produce any one of three
musical waveforms and another white noise waveform which is useful in
the creation of sound effects.

Of the three mUsical waveforms one, the pulse waveform, is itself
capable of a considerable degree of variation by clianging the length of the
pulses which go to make up the waveform.

Having finally produced the desired frequency, tone and shape of note,
the SID chip allows the notes to be filtered. This means that different
frequencies within the note can be reduced in loudness, while others are left
untouched.

Music: Table of variables

FIOJo(3): Filter characteristics for the three voices.

HFOJo(2,

1000): High frequency values for each note in tune to be played.

IN: Initialisation pointer.

LFOJo(2,

1000): Low frequency values for each note in tune to be played.

R$: Separator for data files.

NL: Length of note.

NO OJo (1 ,95): High and low frequency values for the 96 notes available.

NT: Note value taken from Appendix M of user manual.

VOOJo(2,6): User-defined values to be POKEd into the SID chip to

determine sound characteristics of the three voices.
VS(: Address of the start of a voice in the SID.
WFOJo(2,
1000): Waveform values for each note to be played.
WW: Waveform value for each individu al note.

MODULE 7.1.1

11121121121 REM#*****************************
111211 [1 REr1 t'1Et'HJ
1112120 REM******************************
11121:310 POI<E 5:32::: 1 " 15 : PR I tH 11 ::1Q IIIU 11111., "'1
~lIDr~i:l·1U::; I C 11

1104121 PP I tH ":::~)::Ot·1t'1At,m::; AVFi I LABLE : 11

11.~~1512t PRHH "QU):::ET VOlCE"

11 e16~3 PR I tH ":~;, F'LA'r' FF.:E::iEtH TUNE"

1. H370 PHUH lI:m>COt·1Pll.E TUt'~E"
11080 PRltH 1I:l!!l4>DATA FILE~:;"
11 ~~19(1 PP I tH ":I!!l5) I HIT I Al. I S;E 11

1110~:1 PR I I'H ":i!!)5) STOP

164

Chapter 7 Musie

11. 11 t;:,:1 I HPUT 11 :!f.r::t,JH I eH DO 11'01..1 PEG!U I ~:E : 11 .; Z :
PRINT ":JII.;
111. 2~3 I F I t,I:::~3AI··m.:: Z(5::' THEt-WF.: I tH 111HOT I t·~ I TI A
L I ~:;ED ! 11 :FOP I::::: 1T02000 : NE::<T : GOTO 11 m"30
11130 ON Z GOSUB 15000.14000,13000.17000
,12000,11140:GOTO 11000
11 14(1 PF.: I tH 11 :'»..~~81!l.n!:OO:~QI"""JJ"J'"
f~:..ijt'1U::; I C TERt1 I t·~ATED Ol : Et·m

A standard menu module.

MODULE 7.1.2

18000 REMI**_**************************
18010 REM DATA FOP NOTE TABlE
18020 REM******************************
18030 REM NOTE FREQUENCIES
18040 DATA 268,284,301,318)337J358)379,4
01,425,451,477,506
18050 DATA 536.568,602,637,675,716,758,8
03,851,902,955,1012
18060 DATA 1072,1136)1204,1275,1351,1432

18070 DATA 2145.2273,2408,2551,2703,2864
,3034,3215,3406)3608,3823,4050
18080 DATA 4291,4557,4817,5103.5407,5728
.6069,6430,6812.7217.7647)8101
18090 DATA 8583.9094.9634,10207,10814,11
457,12139,12860.13625.14435,15294,16203
18100 DATA 17167.18188,19269,20415.21629
,22915.24278.25721.27251,28871.30588
18110 DATA 32407
18120 DATA 34334,36376)38533,40830)43258
J45830J48556,51443,54502.57743J61176
1::: 1:3ü mrni 64:;:: 1.4

The data in this table is simply a shorthand way of entering the high and
low frequency note values. Each number represents 256 times the high
frcquency note yulue plus the low frequency value.

MODULE 7.1.3

165

The Working Commodore 64

12999 REM#*****************************
12910 REM SET UP TABLES
12020 REM******************************
1203121 CLR:DIM NO~(1~95):FOR 1=121 Ta 95:RE
AD NN:NO%(e~I)=INT(NN/256)
12040 ~J%(I~I)=NN-256*INT(NN/256):NEXT
121215121 DIM ~O%(2}6)~FI%C3)!LF%(2}1000)}HF
%(2~1000)}WF%(2}1000)
1297121 IN=I:RS=CHP'(13)
12QI:::0 OOTO 11 ~~10kl

The use of the main variables defined here is explained in the table of
variables.

Commentary

Lines 12030-12040: High and low frequency values for each of the 95
notes are read and decoded. They cannot be stored in single number form
in the array, since it is an integer array and can only hold numbers up to
32767. The note values are placed into NOO!o(O) for high and NO%(1) for
low.

Testing Module 7.1.3

After calling up this module, you should be able to read from the table high
and low frequency values approximately the same as those in Appendix M
of the User's Manual. Note that they will not be exactly the same since the
values used here are taken from the Programmers Reference Manual
whose table differs slightly.

MODULE 7.1.4

15121121121 REM#*****************************15010 REM '.lOICE SETTINGS
15020 REM******************************
15~::n(1 I ~·WUT "::1QF,/O I CE t'HJr'1BER (1-3):" ,: V : I
F V(1 OR '.,1)3 THEN 15030
15040 VS=54272+7*CV-l)
1~i05~"3 PR I NT "::1Q"II'II"'''f~~'lO I CE" ,; '",I
15060 REM******************************
15k'37(1 Tl $=" PUU:;E ~,~/F liJ I DTH (LOL,J: 121-255) : "
15~18~j PF.: I tH "I" ,; T :l $,; VO;:.~ (I",I.~ 1 "~~); :0$::::" "
15f:t5'~~ H11::'UT 0$: I F G!f-'C)"" THE]'~ "I"O~'~ .;:"/'-1 ,,2:::0
:::;',lAL.':: I~!$ >
15100 REM**"**************""********
1,511~::1 Tl~~,::::IIPULSE l'VF v~IDTH (HIGH: ~3-15): 11

1512~J PF.:II'H Tl$;VO(~(V-l,,::::) At,m 15.; :I~~$:::::""

166

Chapter 7 Musie

151:3121 IHPUT 0$: I F G!$() "" THEN '",'(I(~ (',....-1 .' ::::)
::::J",'AL (G!$)

1514121 REM******************************1515121 T 1 :*::::: 11 F.:mmOl"1 t·.JO I ~:;E ~,.I/F (1 =ot~/0=OFF)

:"

1516121 PRINT T1$;(VO%(V-1J4) AND 128)/128

.; : 0$::: 11 11

1517ü I I"~F'UT G!$: I F O:$() 11 11 THEt·~ '.,.'m·;:.:, '",'-,1 J 4::'

=(VO%(V-1J4) AND 126) OR (VAL(Q$'*129)

15180 REM******************************

1519Ç::1 T 1 $=11 PULSE ~'J/F (1 ==Ot'k\3==OFF::' : 11

1520121 PRINT T1$;(VO%(V-1J4) AND 64)/64;:

Q$:::::IIII

15210 I t·WUT 0$: 1F Q$() 11 11 THEt·~ I".IO~·~ (V-I., 4)

=(VO%(V-1,4) AND 190) OR (VAL(Q$)*65)

15220 REM******************************
1523~Z1 T 1 $= 11 SA~,nOOTH I.,J,....F (1 :::(It.t/I2I=OFF) : 11

1524121 PRINT T1S;(VO%(V-1J4) AND 32)/32;:

G!$="II

1525121 I t·~PUT C!f: 1 F O$() 11 11 THEI"~ ',/m:: (',/-]. .' 4)

=(VO%(V-1J4) AND 222) OR VAL(Q$'*33

15260 REM******************************

15270 T 1 :$::::" TR I Fit·KiLE ~'~/F (1 =ON,.... 0=OFF:;. : 11

15280 PRINT Tl$;(VO%(V-1J4) AND 16)/16;:

0:;'= 11 11

15290 I t·~PUT 0$: I F I~J.$(} 11 THEN \,'(1;-:; (Y-l. .f 4)
11

=(VO%(V-IJ4) AND 238) OR VAL(Q$'*17
15300 REM*****~*'~*****~*~'****'******
1. :i:305 T 1 $::: 11 D I SABLE TH I S va ICE (, 1:::;'r'ES/[I::::N

Cl) : "

15310 PRINT Tl$;(VO~(V-1J4) AND 8)/8; :Q$

::::1111

1115:32(1 I t·WUT 0$: I F G!:$:() 11 THEt-4'm·~.;: \'--1 .' 4:;'
=(VO%(V-1J4) AND 246) OR VALCQ$)*9
15330 REM******************************
l. 5:340 T 1 $= 11 R I t·4G f10D. +~:HF.:$ (v> + 11 ~~ ITH 11 +8T11

R$C'.,,'-l-:;:*(V==I;')+11 (1==ON/0==OFF): 11
1535121 PRINT Tl$;(VO%(V-l.~4) AND 4)/4; :Q$
::: 11 11

1536ü I Nf'UT G!$: I F G!:.t-<:>"" THEN ,,/IJ(~ ':: l·f·'-1. .' 4:;'
=CYO%(V-1J4) AND 250) OR VAL(Q$)*5
15370 REM******************************
15::::::;:::(::1 T 1 $::::: 11 SI"'~4CHRON1::;;E 11 +STF.:$ ('....)+" ~,J 1TH 11 t
8TR$':: 1,/-1-::;::* (V::: 1;.) + 11 (1:::::Ot-4/'.::1=OFF) : 11

167

The Working Commodore 64

15390 PRINT Tl$;(VO%(V-lJ4) AND 2)/2; :0$
::: 11 11

15400 I t'~PUT 0$: I F O~r.{) 11 11 THEN VO;'~ (\,I_~ 1 " 4)
:::(VO%(V-IJ4) AND 253) OR VAL(0$)*2
15410 REM******************************
154:;;~el T1:t-= 11 FITTACK C'T'CLE (121--15): 11

15430 PRINT Tl$;(VO%(V-1J5) AND 240)/16;
:G!$::::OIII

15440 I \"~PUT 0$: 1 F G!$() " " THEN I,/O;~ (',/-]. " 5)

=(VO%(V-1J5) AND 15) OR VALCQ$)*16

15450 REM******************************

1546~'3 TI $::::: 11 DECA"r' CI'r'CL..E (~3-15): 'I

1547~'?I PR I tH .Tl:$,; ',/CI~'; (1,,1--1 .' 5) At'm 15,;: 0$=" "

1548Ç,:1 I HF'UT 0$: I F 0$0() 11" THEN l,lOÏ'~ ('",'-1 "~5)

:::::(VO%(V-1J5) AND 240) OR VAl(Q$)

15490 REM******************************

1. 551;;KI T 1. $= 11 :;:;!J!:nFI I t·~ Clr'CLE 0:: 0·- l, 5::0 : 11

15510 PRINT Tl$;(VO%(V-IJ6) AND 240)/16;
: Q:$:::::"II
155~~~0 I t'~PI...lT G!$: I F G!$() 11 11 THEH Vo;.~ 0:: 1",1_1 " 6::0
=(VO%(V-1J6) AND 15) OR VAL(Q$'*16
15530 REM******************************15540 T 1 ~t:::: 11 F.~ElEA!:;E Clr'CLE 0:: 121·15::0 : 11

15550 FR I HT T1:$= ,; I,/O~'~ 0:: '",'_1 "6) At,m 15,:: 0$= 11 11

1556~'3 II"·\PUT o:t: I F Of(} 11 11 THEH I",IO;'~ 0:: '",'-1 "6)
:::(VOXO::V-l,J6) AND 240) OR VAL(Q$)
15570 REM*********************"*'*'***

:I. ~55:::0 TU:::::: 11 F I L. TEr~: L.m,~ CUTOFF 0:: 121--7::0 : 11

1:i59~3 PR I HT Tl:$.: F I:'~ 0:: ~3) At~D 7,: : G!$:::: 11 11

1.5~:':I:;H3 INPUT 0$: IF G!~t-()"II THEH FI~'~(0)=(FI
%(0) AND 248) OR VALO::Q$)
15610 REM*************"*'************,
1562~3 T 1 $::::: 11 F I l..TER Hl CiH CI..JTOFF 0:: 0--;;::55::' : 11
1. !5E:::::0 PRUH TU; ,; F I:'·~ 0:: 1 ::0 ,; : Of'"!!: 11 11

1115640 I t'4PUT 0$: I F Q${) 11 THH·I F I ;,~ (1) ::::: '",' Al...
(0$)
15650 REM******************************
1566~3 Tl $:::: 11 F I L. TEP RESONANCE <~3--15::O : 11

15670 PRINT Tl$j(FI%(2) AND 240)/16; :QI=
1111

1568(1 IHPUT 0$: IF O:f.()"11 THEN FI::-~(:;;~):::(FI
%(2) AND 15) OP VALCQ$::O*16
15690 REM******************************
15700 T 1. $:::: 11 F I L TER TH I S "lO 1CE (1. ::::"~E2;,,"'I2I:::~t,m

168

Chap/er 7 Musie

):"

15710 PRINT Tl$;(FI%(2) AND 2t(V-l»!2t(

V-1 :;..; : 0$:::: 11 "

1572121 I t'~F'UTG!$: I FÇ'~$() 11 11 THEN F I ;';.:: 2) =(F I ;,; (

2) AND (255-2t(V-l») OR VAl(Q$'*2f(V-l)

15730 REM"*""**"*"*""**"**'*"*
15740 IF V() 3 THEN 1578121

l575~'3 T 1 $=" CUT -OFF 1·... 0 I CE :3 .:: 1::;;;ITIE:::/~~1:::::~m) :

11

1576~J F'F.: I tH Tl:$.; (FI~,~ (3) At·m 128)./1;~8.; : Q$
=1111

1577~'3 I t'~F'UT Q$: I F Q~r() 11 11 THEt·~ F I ;.~ (:3):::: (F I
%(3) AND 127) OR VAL(Q$)*128
15780 REMt*t**'********,*",,*,,******,
1579121 T1$= 11 H I GH···PAS!:: F I L. TEF.~ (1 =oH.·la::::OFF)
·u

1~i:::00 PI:;;: UH Tl $.; (F n~ (:3) Flt·m 64:;' /64.; : Q$= 11

11

1.5:310 I~~PUT 1]$: IF O${>IIII THEI"~ FI~·~(3)=(FI
%(3) AND 191) OR VAl(Q$)t64
15820 REM******************************
1. 5::;:::::aZ1 Tl :*,= 11 BAHD'-PASS F I L TEF.~ (1 =ON/0=OFF)
·11

1.5:::4121 PRltH Tl$.; (FI:";(3) AND 32).····32.: : G!$=II
11

1.5::;:5121 It·~PUT G!$: IF Q$()" 11 THEN FI~'~(3)=(FI
%(3) AND 223) OR VAL(Q$)*32
158612115870 REMt""****'*'**'**"'***'*"*"

Tl $=" LO~~'-F'ASS F I L TER (1 =m~/0=OFF) :
11

1.588121 PRItH TU:; (FI;~(::::) AND 16)./16;: 0$:::::"
11

15R7.'t;;:1 n~PUT G!$: IF Q$()"" THEH FI(~(:3)::::(Fl

%(3) AND 239) OR VAL(Q$)*16
15900 REM**********'*****'*********"**15910 Tl$="'·/OLUt1E SETTlt·m (0-15):"
1592~3 PRltH Tl$.: FI('~(3) AHD 15.i: G!$=II"
159::::~3 I HPUT G!$: I F O${) 11 11 THEt·~ F 1 ~...~ (:;1):::::F I :'~
(3) Ol~~ VAL(I~$)

15'40 POR I~0 TO 6:IF VO~(V-l!I»255 THE

N GOTO 1597121:NEXT
15950 FOR 1=0 Ta 8:IF FI%CI»255 THEN GO
TO 1597~~: t~EXT
15960 RETUF.:t·~

169

The Working Commodore 64

15:37~'3 PP I tH 11 :30F.:F.:'T'! THEF.:E·' ::; F'H'~ FPPOr-::: 11",1
'rOUP I t'~PUT 11

159:::~"3 pr.:: I tH 11 PLEA:3E GO THPOUCiH TH 1:3 ',/0 I C
E fiCiA HL 11

15990 FOP 1=1 TO 2000:NEXT:GOTO 15000

Though this module looks dauntingly long, it is in fact extremely simpie.
lts purpose is to allow the us er to address all the relevant functions in the
SlO chip separately. The values are then stored in the arrays VO% and
FIOJo until such time as a tune is to be played.

Commentary

Lines 15030-15040: V is set equal to the voice number which the user
desires to set. The address 54272 is the start of the SlO chip, with the main
parts of each voice taking 7 bytes of data, sa that the start position of the
relevant voice is caIculated by 15040.

Lines 15060-15130: These two routines set the pulse width if the user
wishes to use the pulse wavefarm. The current value of each is displayed
and is left unchanged if RETURN is pressed.

Lines 15140-15170: This routine sets the random noise waveform for the
voice. Notice that here we are addressing, not the whole of a byte in the
computer, but one bit (th ere are eight bits, or on-off switches, in each
byte). In order to do this we make use of the ANO and OR functions. Ta
show whether a particular bit is set we print the value in the array ANOed
with 2 to the power of the number of the relevant bit-the bits being
numbered from 0 to 7 in increasing value from right to left. If the bit is set
(on) then the same value is returned, if it is not set then the value zero is
returned. In order to render the value returned either a zero or a one, it is
divided by 2 to the power of the bit number. Ta change the value of the
desired bit requires that the value of the whole byte is ANDed with
255-2Tbit number.: this results in the desired bit being set to zero, and all
others being unchanged. The individual bit is now ORed with the 1 or 0
input, thus setting its value to either 0 or 1 as desired.

Line 15170: Note that though the bit we de sire to set is number 7 (value
128), we actually OR the byte with 129, thus setting bit 7 and bit o. This is
because the waveforrn values do not actually produce a tone unless bit 0is
set.

Lines 15180-15290: These three routines perform the same function for
bits 6-4, the three ather waveforms.

170

Chapter 7 Music

Lines 15300-15400: These two routines allow the user to modulate the
output of this voice with the waveform and note shape of another voice
with often surprising results. The other voice need not be set to actually
play, but it must have waveform and note shape values entered. The use of
these two functions will only be discovered by experimentation.

Lines 15410-15560: These four routines all ow ATTACK, DECAY,
SUSTAlN and RELEASE to be set. Note that in these routines, instead of
setting individual bits, we set groups of four bits. ANDing the byte value
with 240, then ORing it with a value from 0-15, acts upon bits 0-3. ANDing
the byte with 15, then ORing it with a value (0-15)*16 acts upon bits 4-7.

Lines 15570-15680: The frequencies at which the SID's filters operate can
be set by the user using these three routines. These values wiIl then apply to
all voices for which filters are set.

Lines 15690-15890: The remaining sections all ow the user to set the three
types of filter available either to on or off. The high pass filter passes
unchanged frequencies above the previously set value. The low pass filter
perfarms the same function for low frequencies. The bandpass filter
allows through a band of middle range frequencies. If all three filters are
set then the volume of the whole note will be reduced. The user has the
choice of wh ether any particular voice will be filtered or not.

Lines 15730-15770: In the case ofvoice 3 thereis a special bit which allows
the output of the voice to be cut off.

Lines 15910-15930: The volume at which notes are played is set for, all
voices simultaneously.

Lines 15940-15990: Since there are na error checks on the input ofvalues
up to this point, the contents of the arrays are checked in order to
determine that there are na values greater than 255, since trying to POKE
such a value into a single byte would result in the program stopping.

Testing Module 7.1.4

It is not possible, at this point, to fully check the module, since there is na
routine to actually play a tune. However a reasonabie check can be made
by carefully noting the inputs made and then, wilh [he help of tht: listing,
printing out the values in the arrays VOOfo and FI% to check that they
correspond with what has been input. For instanee, if the maximum value
is input for each prompt, with the voice being set to 1, then V0070 (0,2-6)
should contain 255.

171

The Working Commodore 64

MODULE 7.1.5

131211210 REM#*****************************
13010 REM SET UP TUNE IN ARRAY
13020 REM******************************
13030 RESTORE:FOR 1=0 Ta 95:READ A:NEXT
1304121 TL=0:FOR I~0 Ta 2:VL=1
1312150 READ NT,NL:IF NT=0 THEN 13140
13060 WW=VO%(I,4):IF NT(0 THEN NT=-NT:WW
=1
13065 NT=12*INT(NT/16)+NT-16*INT(NT/16)
1312170 IF NL()1 THEN 13090
13080 HF%(I)Vl)=NO%(0,NT):LF%(I)Vl)=NO%(
l,NT):WF%(IJVL)=WW:VL=VL+l:GOTO 13050
13090 FOP 3=1 Ta NL-l:HF%(I,VL)=NO%(0!NT
):LF%(I!VL)=NOX(l,NT):WF%(I!VL)=WW
13100 '·/L='·/L+1 : ~4E::·::r 3 .
13110 HF%(I,VL)=NO%(0.NT):LF%(I.Vl)=NO%(
1.NT):WF%(I!VL)=WW-l:VL=Vl+l
13120 IF WF%(I,VL-l)(0 THEN WF%(I,VL-l)=
1
1313~'3 CiOTO 13050
13140 IF Vl)TL THEN TL=VL
1:~: 150 NE~-':T I
1 :3160 RETURl-1

This module takes the tune specified by the user in the form of data
statements, and compiles it into a form which is playable by the SID. The
reason that this is necessary is that it allows the program to cope with
different note lengths. The aetual notes played by the program are all the
same length, dictated by a timing loop. Longer notes are played by running
together a series of notes to the required length-no division between the
individual parts of the notes is diseernable. Note lengths ean vary from
voice to voice but obviously must be sueh that all the voices being used are
eo-ordinated.

To set up the data for a tune, all that is neeessary is to record, for each
note, its number in Appendix M ofthe User's Manual, and its length. The
units in which length is recorded will depend upon the shortest no te it is
desired to play. By shortening the timing loop at Line 14180 it will be
possible to play short er notes, but this means that longer notes will have to
bc IIlelde up of morc of UIC lilluner un1rs. Tne OrawlJacK IQ Wis is Wat eacn
individual unit of a note, no matter how short or long the timing loop
makes it, takes up a space in each of the arrays LFOJo, HFOJo and WFOJo so
that as the timing loop shortens, so the memory required to hold a tune ofa
given length increases proportionately.

172

Chapter 7 Musie

Commentary

Line 13030: As the voice settings and note values are changed during the
development of the tune, it will be necessary to read the tune data several
times. Since the table of note values is placed before the actual tune data, it
is necessary to reset the DATA pointer using RESTORE and to READ
through the note table to the beg inning of the tune data each time. The
DATA pointer cannot be set to any particular desired point in the
program, it can only be reset to the beginning of the data or left pointing to
the item of data following the last one read.

Line 13040: This loop will ensure that the tune data for each voice is
compiled. The variabie VL is used to store the length of the tune for each
particular voice.

Line 13050: Note value and note length (NL) are read from the tune data. If
the note value is zero, then the program takes that voice's data to be
complete and moves on to the next.

Line 13060: The value for the waveform of the current voice is read from
the array VO%. If the note value is a minus number, then the waveform
value is reduced by 1, thus turning off bit zero of the waveform value,
which will give a silence of length NL rather than a soundednote.

Lines 13070-13080: If note length is 1, then the high frenquency and
waveform data are stored in the relevant arrays and the voice length is
increased by 1.

Lines 13090-13130: If the note length is greater than 1, then NL-l
successive spaces in the array are filled with the frequency and waveform
values. On the last unit of the note, the waveform value is reduced by 1,
thus allowing the note to fade away naturally. Ifno data other than 0,0 are
entered for a voice (ie you do not wish to use that voice) then it is possible
for the waveform to have a value of -1, which wouid stop the program if it
were attempted to POKE it in. Line 13120 checks that this does not occur.

Line 13140: Thelength ofthe tune for the current voice (VL) is compared
with TL, which contains at first zero and, subsequently, the length of the
longest voice/tune. This ensures that, when the tune is played, it does not
stop before the fuIl content of each voice/tune is exhausted.

Testing Module 7.1.5

Onee again, this module cannot be fully tested untH the tune b actudlly
played. However, if some tune data such as that given in Module 8 is
entered, with a waveform set for at least voice 1, calling up this module
should place the correct high and low frequency values into HF% and
LF% and the waveform values into WFOJo.

173

The Working Commodore 64

MODULE 7.1.6

14000 REM#*****************************
14010 REM PLAY TUNE
14020 REM******************************

14030 FOR 1=54272 TO 54296:POKE IJ0:NEXT

14040 FOR 1=0 TO 2:VS=54272+7*I

14050 POKE VS+2.VO%(I.2)

14060 POKE YS+3,YO%(I,3)

14070 POKE YS+5.VO%(I,5)

14080 POKE YS+6,YO%(1,6)

14~~i90 I"~E::'::T I

14100 POKE 54293,FI%(0)

14110 POKE 54294,FI%(1)

14120 POKE 54295.FI%(2)

14130 POKE 54296,FI%(3)

14140 FOR 1=1 TO TL

14150 POKE 54272,LF%(0,I):POKE 54279,LF%

(l,I):POKE 54286,lF%(2,I)

14160 POKE 54273,HF%(0,I):POKE 54280.HF%

(1,I):POKE 54287,HF%(2,I)

14170 POKE 54276,WF%(0,I):POKE 54283,WF%

(I,I):POKE 54290,WF%(2,I)

14180 FOR TT=1 TO 80:NEXT TT,1

14190 FOR TT=1 TO 200:NEXT:POKE 54296.0

14200 FOKE 54276.1:POKE 54283.1:POKE 542

:3l~3 o' 1
1421 (1 RETURH

This module POKEs the voice characteristics set in Module 4 into the SID,
then successively POKEs in the high and low frequencies, together with the
desired waveform to produce the notes that make up the tune.

Commentary
Line 14030: The SID chip is initialised by POKEing zero into each of its
locations.

Lines 14040-14090: The voice settings specified in Module 4 are POKEd
into the SID.

Lines 14100-14130: filter settings are shareQ byeach voice, mey are
POKEd in only once.

Lines 14140-14180: Foreach note, up tothetune length (TL), thehighand
low frequency values are placed into the first two bytes of each voice

174

http:54280.HF

Chapter 7 Music

location of the SID, followed by the waveform into the fifth location of
each voice. This activates the desired note, which is played for as long as the
loop at 14180 lasts.

Line 14190: At the conclusion of the tune a slightly longer loop is used to
allow the sound to die away, then the three waveforms are set to silence.

Testing Module 7.1.6

Quite simpie. Ifyou have entered some tune data, initialised the program,
set at least one voice and then compiled the tune, you should now be able to
play your creation. The specimen data given in Module 8 plays a scale of C
with the first two voices.

MODULE 7.1.7

17000 REM#*****************************
17010 REM DATA FILES
17020 REM******************************
17~B0 1I··~PUT 11 :.POS ITI Ot'4 TAPE THEt~ ~,f.::ETUF.:
1"~ !!!!-.- .", 11 .; C! $

1. 7040 PRItH "lIJU)SA',/E" :PRINT "2)LOAD II
17051;:1 IHPUT "='~H 1eH DO 'T'OU F.:EOU 1RE : 11 G!
17060 ON Q GOTO 17070,17130:RETURN

;

1707~3 OPEt,~ 1.' 1 " :~:: .. t11.JS I C 11 F'F.: I tH# 1. .. TL11 :

17080 FOP 1=0 TO l:FOR J=0 TO 95:PRINT#1
,NO%(I .. J):NEXT J .. I
17090 FOR 1=0 TO 2:FOR J=0 TO 6:PRINT#1 ..
VO%(I,J):NEXT J,I
17100 FOR 1=0 TO 3:PRINT#l,FI%(I):HEXT
17110 FOR 1=0 TO 2:FORJ=0TOTL:PRINT#l,LF
%(I,J);P';HF%(I,J);P$;WF%(I,J):NEXTJ .. I
17120 CLOSE1:RETURN
1. 7130 OPEt,~ 1, 1 "0,, "t1U!:;: 1 C 11 : 1t·4PUT# 1 " TL
17140 FOR 1=0 TO l:FOR J=0 TO 95:INPUT#1
,NO%(I,J):NEXT J,I

17150 FOR 1=0 TO 2:FOR J=0 TO 6:INPUT#1 ..

17160 FOR 1=0 Ta 3:1NPUT#l,FIX(I):NEXT

17170 FOR 1=0 TO 2:FORJ=0TOTL:INPUTll,LF

%(I,]),HF%(I.]),WF%(I,]):NEXTJ.I

17180 CLOSE1:RETURN

This is a standard data-file module which allows the tune data to be stored
on tape.

175

The Working Commodore 64

MODULE 7.1.8

19000 REM#*****************************
19010 REM DATA FOR VOICE 1
19020 REM******************************
13~.::t.:"~1 --~~ IIATA ..~4:.. ol ~ I ,_1':1",' ? ,I ~q ~ 41... ,I r-. ~ ,- "1.....'" ~ ~Q 1~ ~1~,:,••1 .:::.." A~ ~ J 'J_' ,I,38,1,36;2,48,1!48,1,0,0
20000 REM~*****************************
20010 REM DATA FOR VOICE 2

2003020020 REM**********************'*******DATA 36,2,38,2,40,2,41,2,43,2;45,2
,147,1 2.1 4E~.t 2.1 (1.1 0

21000 REM'**************'**************
21010 REM DATA FOR VOICE 3
21020 REM******************************
;;-~10::::Ç~1 mnA el.< ~~1

Commentary

Lines 19000-21030: Specimen data to play a scale of C. Note that if you
wish to use avoice you must still enter 0,0 for it.

Summary
This program will only be the beginning of your adventures with the 64's
sound capabilities. It is a workhorse which will allow you to develop your
own musie, which can then be transferred to other programs, using only
the arrays in which it is stored and Module 6, which actually plays the tune.

Going !urther

Provided that you do not run into too many limitations of memory, there
are several ways in which this program could be extended:

1) Why not give yourself the ability to enter the wavefarm for each note,
rather than simply for each voice? It is simply a matter of including a third
value for each note to be played.
2) If you want to play langer tunes, why not adapt the program sa that it
uses a variabie length loop to dietate the length of the note,thus saving
massively on the amount of array space needed. All that would need to be
stored in the final array would be the note value and its length, the latter
being used to dictate the duration of the timing loop. Unfortunately th is
can only be done for one voice, since the timing loop dictates the lengtb of
the nûte for illl tbrcc Yoicc~.
3) Ifyou want langer tunes with more than one voice, what about giving the
program the capability to compile parts of a tune which can be picked up
later by a playing program whicb has no need for the memory consuming
DATA statements.

176

	The Working Commodore 64 01
	The Working Commodore 64 02
	The Working Commodore 64 03
	The Working Commodore 64 04
	The Working Commodore 64 05
	The Working Commodore 64 06
	The Working Commodore 64 07
	The Working Commodore 64 08
	The Working Commodore 64 09
	The Working Commodore 64 10

