TheWorking
Commodore

TheWorking
Commodore

64

A library of practical
subroutines and programs

David Lawrence

Published by:

Sunshine Books (An imprint of Scot Press Ltd.)
Hobhouse Court,

19 Whitcomb Street,

London WC2 7THF

Copyright © David Lawrence
First published February 1983
Reprinted July 1983
Reprinted September 1983
Reprinted October 1983
Reprinted December 1983

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

ISBN 0 946408 02 5

Cover designed by

Three’s Company.

Photograph of the Commodore 64
kindly supplied by Commodore UK.
Typeset and printed in England by
Commercial Colour Press, London E7.

2

CONTENTS

Page

Calling up Commodore 9
1 Good things in small packages

Clock 11

Graph 16

Texted 22
2 Programming tools

Merge 31

Delete 33

Renumber 35
3 The colourful 64

Artist 41

Characters 50

Sprites 60

Hi-Res 69
4 The 64 as secretary

Unifile 77

Unifile I1 89

Nnumber 101
5 Home education

MultiQ 111

Words 119

Typist 125
6 High micro-finance

Banker 131

Accountant 139

Budget 148

7 Music 163

Contents in detail

CHAPTER 1

Good things in small packages

1.1 Clock—introduces the 64’s flexible time function to createa colourful
way of telling the time. v

1.2 Graph—build your own coloured three-dimensional displays.

1.3 Texted—your own simple word-processor.

CHAPTER 2

Programming tools

2.1 Merge—allows you to keep useful modules on tape and string them
together when needed.

2.2 Delete—a routine enabling you to load an original program and delete
parts of it to suit new applications.

2.3 Renumber—give a professional look to your programs with this
renumbering routine.

CHAPTER 3
The colourful 64

3.1 Artist—enables you to use the screen like an easel, painting on
coloured graphics characters, erasing and changing them, and saving them
onto tape.

3.2 Characters—allows you to create your own special characters, using
the user-defined character capability.

3.3 Sprites—lets you move high-resolution designs easily around the
screen.

3.4 Hi-Res—introduces bit-mapped graphics, allowing you to set any
individual dot or pixel on the screen.

CHAPTER 4

The 64 as secretary

4.1 Unifile—this uses the 64’s strengths as a filing cabinet, enabling you
to store up to 500 entries, search for named items, and to amend or delete
them.

The Working Commodore 64

4.2 Unifile II—similar to the previous program, this tackles less
structured files and introduces the multiple search routine.

4.3 Nnumber—this copes with numeric data when you need to store
names of items along with a unit of quantity.

CHAPTER 5

Home education

5.1 Multig—this program explains how to enter a series of questions and
answers which form the basis for multiple choice tests.

5.2 Words—similar to Multiq, here the questions take the form of
pictures.

5.3 Typist—improve your touch-typing with this short, neat program.

CHAPTER 6
High micro-finance

6.1 Banker—allows you to present your financial transactions in the form
of a neat bank statement.

6.2 Accountant—a simple way of keeping track of your accounts.

6.3 Budget—a powerful and flexible tool allowing you to plan your
finances over a 12-month period.

CHAPTER 7
Music

The 64 has no less than three sound synthesisers. This program explains
how to develop your own music and embellish other programs in this book.

PROGRAM NOTES

A number of functions on the Commodore 64, as with other Commodore
machines, are dictated by ‘control characters’ which are contained in
ordinary strings and take effect when the string is printed. Control
characters can normally be recognised by the fact that they are inverse
characters (the colours of the background and foreground are reversed in
the character position). The functions under the control of such characters
include cursor position, print colour, inverse (RVS) on and off, cursor
home and clear screen.

The following table shows the control characters as they appear in the
programs in this book:

ELHCE]
WHITE -
RET |
CYHMH

PURFLE

GREEM i
BLUE -
YELLOK |
ORAMGE ﬂ
BREOMM E

LIGHT EEDD &
GREY 1]
GREY & |

The Working Commodore 64

LIGHT GREEEM B
LIGHT BLLUE I3

GREHY =

CATERN] ¢

43

BWE OFF

ia

LIF

d

TZIbiH L)
FIGHT]
LEFT |

Calling up Commodore

This book, and the series of which it forms a part, was undertaken to try
and fill what seemed to be a yawning gap in the provision of books for
home micro-owners. That gap was the absence of works aimed at fulfilling
the dream that I think almost every owner has, that the new machine will
not simply be a toy, not even an educational introduction to thesilicon age,
but a tool, taking over all kinds of tasks and opening up all kinds of
possibilities. The majority of books consist either of trivia or assume too
great a desire—perhaps even the capacity—to experiment.

I wanted to write a book based on a solid collection of programs that
would be worth having—programs that would handle such areas as data
storage, finance, graphics, music, household management and education.
Discussion of programming techniques would arise out of the programs
themselves rather than as part of a curriculum of ‘things that should be
learned’. I hope that you will find the book that has emerged from that
desire a useful one, not only as a way of learning new programming
techniques, but also as a collection of programs in itself, all of them tested
by an independent assessor for errors and offering a wide range of
applications that might only have been open to those prepared to buy
expensive commercial software or already able to write substantial
programs to fit their own needs.

In addition to the programs in this book you have the parts of the
programs—not as silly as it sounds for the programs in the book are written
in ‘modular’ form. That is to say they are made up of clearly identifiable
functional units which, as you come to understand them, can be lifted out
and employed for your own purposes. Each module is commented upon
fully where it covers new ground and instructions are given for testing the
programs as the modules are entered.

In using this book, though you will find that there are sections where
general issues are discussed, it is not a book to be read but to be used. The
relevance of the comments and advice will only be apparent when you have
taken the plunge and and begun the task of entering what appear at first to
be dauntingly long and complex programs. Here, the modular approach
will help to prevent programs becoming unredeemable tangles of errors, so
do test modules as suggested, especially in the early stages.

Inthe end however, the success or failure of the book must be judged on
whether it helps you to enjoy your 64. It is very much a ‘64 book’, for while
the general structure of the book is based upon its two predecessors in this

9

Calling up Commodore

series, the programs were adapted and new programs added to take
account of the 64’s extraordinary abilities. While writing a book such as
this is hard work, I have nevertheless enjoyed the polish that the 64 has
given to programs that on less capable machines might have been far less
exciting. In using these programs you won’t have to work quite as
hard—but the end product will be just as exciting.

Finally, no introduction to a book such as this could end without
expressing profound thanks to Commodore UK for all the facilities they
have made available and not least to Steve Beats at Commodore’s UK
headquarters, for his patience in answering the idiotic questions that
opened up the 64 for me.

10

CHAPTER 1

Good things in small packages

The programs in this book are intended to be put to work on a variety of
important applications. Because many of the applications are complex, so
are many of the programs. That should not be taken to mean that useful
programs cannot be compressed into a small space. As an introduction to
the approach adopted, this chapter presents three relatively short
programs that are anything but toys.

1.1 CLOCK

This program provides quite a pleasant introduction to some of the 64’s
abilities—it’s easy to enter, fun to leave running on the family TV and it
makes good use of the 64’s flexible string and screen handling.

The program is exactly what it says, a clock, but you won’t see a circle
and hands appear when it is run. The 64 clock uses two lines sweeping
across the screen, left to right for the minutes and downwards for the
hours, dividing the screen into different colour areas. All of this is only
possible because the 64 has a flexible time function which can be set and
read in a straightforward way from within the program.

Clock: Table of Variables

CS Address of the start of colour memory

DT$ Formatted adaptation of TI$

H Hour value adjusted into screen units

M Minute value adjusted into screen units

M1$,M2$ Two-colour strings displaying hour and minute values

SS Address of the start of the screen

TI$ A system variable containing the time by the internal
clock

MODULE 1.1.1

=BT T EFLAY
A
. ':1 +]

ST THE HOUR o6

Y POKE
A THRLT
i HE

11

The Working Commodore 64

YRR LRFUT THE PITMHUTE

FUKE CSed@m T 0 FORE SE-ed B eI,

POEE CH+SE#I+39, 80 POKE S5+40%1+53,

HEWT 1

PREIHT J T ROk j
D0 PR INT HEET
AT T DECSTRECT 20

}
—-;

PLFRINT e

This module allows the user to input the time in hours and minutes (12 hour
clock format), sets the timer and then displays the clock face.

Commentary

Line 11030: Two useful memory locations: 53280—redefines the colour of
the border around the screen, 53281 redefines the screen background
colour. Either of these can be reset instantaneously during the course of a
program. In this case the border is set to black and the screen to white.

Lines 11040—11060: Hours and minutes are input in two digit form. They
are then added together and 00 is added for the seconds. The system is told
that this is TI$ and immediately resets the internal clock to count from that
time.

Line 11070: The screen s cleared, the print colour set to black and reverseis
set, then the figures are printed across the top of the screen.

Lines 11080—11130: The black borders of the clock area are now put onto
the edge of the screen. When printing right to the edge of the screen it is
often more convenient to POKE characters onto the screen, since this
avoids the print position jumping from one line to the next. In order to
POKE the screen successfully, two locations must be dealt with, one within
the screen memory itself (addresses 1024—2023) and the other within the
colour memory (55296—56295). All that this loop does is to POKE the first
two characters and the last two characters of the 25 lines on the screen with

12

Chapter 1 Good things in small packages

a character code of 160 (an inverse space) and the corresponding location
in the colour memory with zero, which turns that character position black.

Line 11140: The cursor is homed and the hours are printed down the left
hand side of the screen. The last value is printed separately with a semi-
colon following, so that the screen will not scroll upwards, since it is on the
bottom line of the screen.

Testing Module 1.1.1

Insert a temporary line 11160 GOTO 11160 and run the module. You
should be asked to input hours and minutes, then the borders of the clock
face will be placed onto the screen. The temporary line ensures that the
screen does not scroll upwards to print READY when the module is
finished.

MODULE 1.1.2

LEEEE FEME e el e el s e s e o
Teale REM CALCULATE AMD DISFLAY TIME
LR T o 0 0 o ol e
12630 M=TNTOOMRLCMIDECTIE, 20 @0 043, 20275
L2Edi H=2#VALCMIDECTIE, 1,200

l1z@Ea IF MZ=38 THEM LET H=H+1

l2acd IF Hr=24 THEM LET H=H-Z4

T2y IF M= THEM LET M=l

Rt b

M1F=""npERA

PEEsa LET MIf=LEFTHFOMLE Med+ "I +RIGHT 0
M1%, ZE-M0
12188 ME="

12118 LET M2%=LEFTFM2F, M+40+" A" +RIGHTFC
M2F Ze-M2

12126 PRIMT "sme;

L2lEe IF MG THER FOR IT=1 TO HIFEIMT MI1F
CHERT

12148 IF HIOEZ THEM FOR I=H+1 TO 22 PRIMT
Ma% HMERT

12158 FRIMT Ma¥:

Taled@ PRETET " s ooy el eT M i A e e o O e e o o e
A1 e e e

12178 DTF=LEFTFCTIH, 204" "+MIDFCTIH. 32,2
et R IGHTECTIR 22

13

The Working Commodore 64

; THEHT

A1 GOTO 153

128 FOR I=1 T0 LEMOUT$) PRIMT MIDSCTTE
| 1EEEe

This module derives the values necessary to create the display from the
internal clock and displays the time in two forms.

Commentary

Line 12030: There are 36 available spaces across the screen once the
borders have been drawn, so the number of minutes must be divided by
60/36 (5/3) to obtain the right units to move across the screen.

Line 12040: There are 24 screen lines available, so all that is necessary is to
multiply the hours by 2.

Line 12070: The program is designed always to display minutes, so that on
the hour the minute value increments to show one unit.

Line 12080: M13$ is set equal to two cursor moves to the right plus the
purple control character and the reverse control character, followed by 36
spaces. If printed, this would show a purple line.

Line 12090: M18$ is now changed so that it becomes equal to the first four
control characters plus M spaces, then a red control character, then the
remaining spaces. This creates a new string which changes colour at a point
defined by the value of M.

Lines 12100—12110: The same process is carried out for M2$, which will
begin blue and end white.

Lines 12130—12150: M1$ is printed for as many lines as there are hours;
M2§ is printed on the remainder of the lines. The two strings thus define a
border between different colour areas dictated by the value of H.

Line 12160: The cursor is homed and the print position moved to about one
third of the way down the penultimate column of the screen, with the print
colour set to black.

Line 12170: DTS is now defined as TI$ with two spaces inserted between
the hour, minute and second values. Throughout the course of the

program, the system has been updating TI$ so that it always contains the
latest time.

14

Chapter I Good things in small packages

Line 12180: DT$ is printed down the right hand side of the screen. The
method used is to print one character at a time, then move the cursor down
and back.

Testing Module 1.1.2

Your clock should now be ready to run, with four different rectangles of
colour marking the lines for hours and minutes. The time is displayed
digitally on the right-hand side of the screen.

Having said what it should do, almost inevitably there will be errors in
what you have entered. If not here, then in later programs. From the kind
of queries that come to me it seems that many micro-owners find it very
difficult to know how to begin to deal with such errors and perhaps a few
basic guidelines might be of help:

1) Make the most of the help available to you. If there is an error message,
make sure you take account of it, noting the line where the error occurs and
the type of error.

2) Don’t run the program again to see if it will work a second time. If it does
work then you are in a worse state than you started since you have lost the
chance of running down the error for the present.

3) Use the direct mode (commands entered directly from the key board
rather than program lines) to print out the values of all the variables in lines
that appear to have an error. A ludicrous value will often give you the clue
as to what is going wrong. An awful lot of almost indetectable errors result
from the simple misspelling of a variable name, substituting 1 for I for
instance.

4) Follow the program through in your head or on paper, using simple
values so that you can see exactly what it should be doing at each point.
5) Don’t betoo hasty in making an alteration until you are sure that it is the
only one you want to make. Once you enter a change to aline, all your data
disappears and with it your chance to make further checks without running
the program again.

6) Save your program regularly as you discover errors and/or add new
lines. Many errors in final programs result from changes which were
entered into a program but never finally recorded on tape. All my
programs commence with the following 3 lines:

1 GOTO 3
2 SAVE ‘XXXX’:STOP
3 REM

These three lines allow programs to be saved with the command ‘GOTO
2’ (provided ‘XXXX is replaced with the program name. One incidental
side-benefit is that I can always start my programs with GOTO 1 rather
than having to remember the first line number of the main program.

15

The Working Commodore 64

Everybody makes mistakes in designing and entering programs, the
difference is whether they learn to cope with their mistakes competently.

Summary

Whether you like the clock is something only you can say. Personally 1
find it quite attractive. Regardless of the clock, however, the techniques of
slicing up strings and of POKEing the screen and colour memory
contained within the program will come in useful in a wide variety of
programs, so it is worth entering the program and ensuring that you
understand how it functions.

1.2 GRAPH

If you want to understand this program you can do no better than to look
at the box in which your 64 arrived. There you will find a colourful
three-dimensional bar chart—this program is an attempt to reproduce the
prbgram that generated the chart. I say attempt, because on successfully
reproducing the chart on the box I discovered that the data it was given to
work on had been carefully chosen to hide the limitations of the tightly
packed bars. Other dataled to the graphics characters making up the bars
knocking holes in neighbouring bars, making the whole thing a great deal
less attractive than the box display.

This program, then, is a compromise, producing a less packed display
but one which will work on any set of data and still look as good—so good,
in fact, that when you have completed entering it, it is the kind of program
to call the family in to impress them with your wizardry.

Colourful and practical, the displays produced will no doubt find many
applications. In addition the program provides a simple introduction to
the subject of saving data on tape and later reloading it.

Graph: Table of Variables

CO$% Three-character string used to decide colour of different
bars on the graph

F$ Formatting string of right cursor characters

F1$,F3$ Formatting strings of down cursor characters

F2§ Temporary string derived from F$

HH(2,6) Array holding data for graph

NB Number of banks in front of each other (1-3)

ND Number of columns along the horizontal axis (1-6)

NH$ Name for horizontal axis

NV$(2) Names for each separate bank

TTS$

16

Chapter 1 Good things in small packages

Temporary string used to format printing of vertical axis
names
uv Number to be represented by each unit on the vertical axis

MODULE 1.2.1

11 GGG T P a0 0 3o o el o o e o
11818 BREM ACCERT DATA

L 1RZED BRE e e e o s o s s s e el sl e sl e e e
P1@zE POKE S323281, 15 IMFUT "TmeDo YO WIS
H T LOARD FREGM THP& CAHD T E

ti@ada IF oig="Y" THEM 12428

P1EEE PRIMT "Ik Rb e easeEarH
13BFH FEIMT "MRTHERE ARE 12 UMITES O THE

WMERTICHLLY."
11@?w FPIHT "HERIHFUT MUMEBER TO BE REFPRES
EHTED BY EARCH"
Ll THPLUT "LIHIT: " i
11@95 THFUT "MRRAME FOR HORTZOMTAL A=T2"

11188 PRINT “CImYOL CAM HAYE OHE TO S1x
COLUMRE, &

11116 IWPUT "EHOW MAMY WOULD Yo LIKE: ",
I

11128 PRIMT "MEEHOL CAM HAYE OHE TO THRE
E BAMKE, "

11z ITHPUT "EHOM MAMY WOULD YO LIKE: ",
MHE

Tiian FOR I=6 TO ME-1

lllﬁﬁ FRIMT "EReFAME FOR YERTICAL H=IS" 1
+15 D THRPUT MY I* HE’T I

1116@ TIM HHCZ. &

11178 PRIMT “3“: FDR I=8 T HME-1

11186 FOR J=1 TO HD

3119@ FRINT "EIMFLT BAME":I+1." YALUE":J

CTHFUT T

11¢@ﬁ IF THTCTAUN 2219 THEH FREINT "EMWMALLE
TOO HIGH, " :GOTD 11198

11218 HHOT, Ji=T HEZT J,1

S ¥

The purpose of this straightforward module is to allow the input of the
data which will be used to build up and label the graph. Rather than ask the
user to input maximum and minimum figures for the range of values and
then calculate the units (which can result in extremely odd units), the

17

http:1��~PI.JT
http:t�iF�I.JT

The Working Commodore 64

program asks the user to specify how many units of the data input will be
represented by each vertical unit on the graph. Names are given to the
horizontal axis and to the banks of 3-D pillars, starting from the back.
Finally data is requested in conformity with the structure chosen by the
user.

Testing Module 1.2.1

Simply a matter of running the module to check the syntax is correct.
Nothing can be drawn yet.

MODULE 1.2.2

1z8z8 REM DREAW GEAFPH

LT b ol sk e o o e s e s s e ol e o e e
1Za48 FOKE SE2281, 0 PRINT " UHRelnleledsTnT e e
BTeTRIwTRINTRN "

12658 Ff="ruknRl"

128e6 FOR I=1 TO 4:PRIMT FE"™H

W= N HERT
LZE7E PRIMT "R
e’ BEF 33 CHAR L THE
96 FOR D=1 TO 19:FRIMT "ABBBNL"

12188 PRINT "@&": FOR I=1 TO 4:FPRINT " sk
T e e R
z21ia PFRIHT ¢
we' | CHERT CEEM 28 CHAR LIHE

Talzi FLE=" afuerainla]su el el lpialanluTeramm" @ F fe " i
50 0 e e e O e B e e e e el B e R - 0= R
r14;5-‘,'13?:":1 FRIMT " afnlelalsaTniaTeTs]aT e nr el nTe e s nleTeTm " ;
AHE

12148 FOR H=8 TO HE~-1:PEIMNT “=vNEnNSNE"
MITECFE, 1 2% H+A L o0 s MIDECCOE HEL L 100

12158 TTHF=MHYEH +" #"+ITREIIN D FOR I=1 T
0 LEMCTTE:

l2ied PRIMNT MIDECTTE, D10 "I cHEXTT H
12176E PRINT " e EeTeleTed 1 5 00 DeTaTeleTed | o6 i alaTegs
TEIGIIETET S

LELEE FIF=F1% FOR M= TO HE~1-FMIMT MiLHE
D RE N B A

12158 FaE=LEFTFOFE. S+ 0 WD-1 M I RPRTINT F
18, F2%;

1a2@aa FOR I=HD TO 1 STEP-1:IF IHTOHHOH. I

18

mailto:J.~t!!tl!!r.!!ml!!J.1!!r.~l!!ti!!:[~II!!J.I!!J.~!J.I!!J.I!!l:I!!Jl~:[I!IWr.@!:[!lll!I:[l!!ll

Chapter 1 Good things in small packages

T 'i“'HH'H RIEE R 8 &
CHHOH, T L =n THEH 13
IF Je= l THEM FEIMNT * J?‘I‘c AR RN
aat ﬁ!ﬂﬁ'ﬂﬂmﬂiﬂﬂﬁ" ;

IF . THEM FREIMT " 3 ’ﬂ"'wmwm*” ;
REM OCHARD HREE YL St L8 T B BE B

HEHT J
FRIMT " Mg W
PRINT F2$=LEFT#(F2$, LEHF

SETOU
CFTECFE, D O3 FRINT FIE

I=1 TO HIGFRIMT Fof:

sl EFTHCFE, Sk -1 FRINT FEE;
T HE

Tl OR HHOE, T-10=0 THEH FRIHT ©

SETRT U el A BN
L . ‘1rl FeE s IR HF S THER 13RS
This is a fiddly module which is based, not on any clear set of methods but
simply on the conditions that I found, in practice, had to be fulfilled to
complete an attractive presentation of the graph.

Commentary

Lines 12040—12060: The screen is set black and the brown base on which
the graph stands is painted in.

Lines 12070—12110: The grid surrounding the graph area is drawn, units
are marked down the sides and lines placed across to mark the five unit
levels.

Lines 12140—12160: These three lines determine a print position at the top
right hand corner of the screen and print the names of the three banks
there, down the screen, in colours corresponding to the banks themselves.
The screen position is determined using a chunk taken out of F$ and the
colour by printing a different one of the three colour control characters for
each execution of the loop.

19

The Working Commodore 64

Lines 12180—12300: Three loops are called upon in this section. The H
loop determines how many banks will be drawn in front of one another,
being also used to extract a colour control character from CO$ and to
determine how many down cursor characters will be printed, thus moving
the banks down consecutively. The I loop controls how many columns will
be printed across the screen, the J loop controls how high any particular
3-D block will be.

Line 12190: The horizontal print position at the start of each bank (they are
drawn from right to left) is calculated according to the bank—each bank
moves across one, giving the 3-D appearance to the three banks.

Line 12200: A column is not printed if the relevant array element in the
array HH is zero.

Lines 12230—12240: At the bottom of each column is printed the slanting
bottom which makes the column look as if it is resting on the surface.

Line 12260: When the top of the column is reached the sloping top is added.

Line 12270: For the next column, four characters are subtracted from the
cursor right string, defining the new print position.

Line 12280: The vertical print position is moved down before printing the
next bank.

Lines 12310 —12340: In printing the banks the bottoms of the columns
have been corrupted. These are filled in.

Line 12350: The graph remains on the screen until a key is pressed.

Testing Module 1.2.2

Once again a straightforward matter of running the program and seeing
that the resultant display does look right. If you run into problems, then
the answer is to cut down the number of banks to one, and perhaps even the
number of columns to one, to simplify your analysis of what is going awry.
Look at the function of each of the loops separately to decide which of
themn appears to be producing the error. This is a frustrating module to
debug so, if you think that a change to your lines would overcome the
problem, even though you can’t see where you have departed from the
listing given here, make the change and see—nothing here or anywhere else
in this book is sacrosanct.

20

Chapter I Good things in small packages

MODULE 1.2.3

THFUT “lieDo wol WISH TO SAVE DATH
PiUOFIF BFs"NY THEW WD
TAFE COR

THFLT “fi!lﬁﬂ

S RECTLY . T
“‘FI’T! ;F lm

ITI l..!i l

el -' HT’:.F‘F hI! E D PMHECEE LD
: FOR I““U T B FRIMTH#L . HYEC I IR SN
= T MIGFRTIHTHEL HHOD, T o MERT 1. 1
BOCLOSEL CEMD
S THPLT " TERE O T
b AR TR e O

DIM HE
Padzi OFEN 1. 1.8, "GRAFH"
Tatdald TWPFUTHL HE, MDD HHE Y
A48 FOR T=8 TO HE-1: Iii;’" JTHL HVECL O FOR
il rﬂ" IHF'HI'#J HH*.T,,n JaripEsT J.0

Now that you have defined your graph, rather than lose the data and have
to enter it again, you can store it on tape. This module will allow you to do
that and to recall it subsequently. The module is designed to make tape
storage as casy as possible in that it gives you time to position your tape to
the correct place before it begins the process of loading or saving.

Commentary

Line 12380: This line opens a file, a place into which data is to be placed,
and in this case the storage place is the cassette recorder. The three figures
represent:

a) The number of the file—any instructions to store something in a file
must mention the file number

b) The device number (the piece of equipment which is to receive the data)
with 1 representing the cassette recorder

¢) The type of file—1 means that it is a file into which data is to be placed
rather than one from which data is to be taken.

NB,ND,NHS$ and UV are placed into the file (onto tape). Note the use of
the variable R$ herc. When storing data on tape the 64 is a little finnicky
about how each item is separated from the next—simply putting in
commas ¢an result 1n €rrors wien Le datd is 1€loaded. R was glofined in
Line 12370 as CHR$(13), the code for RETURN, and placmg it between
items ensures that they are properly separated.

Line 12400: The program’s arrays are printed one by one to the file.

21

The Working Commodore 64

Line 12410: When you have finished with a file for the time being it must be
CLOSEd. Failure to do this will result in an error the next time you try to
OPEN a file of the same number.

Line 12420: This is the part of the module which loads back data into the
64. The only difference between the specifications for the two types is that
this one has a file type of 0, which means a file from which data will be
taken.

Lines 12440 — 12450: Data which was printed into the file is now recalled.
The safest way to build up your loading routine is to edit the line numbers
of the SAVE routine and change the PRINT commands to INPUT. That
way you know that the routine will pick up the data in exactly the same
order as it was stored. If the data is picked up in the wrong order, not only
will it make nonsense of your program but an error may result in the
program stopping.

Testing Module 1.2.3

The simple test for this module is whether you can input data to the
program, save it on tape and then reload it.

Summary

This program is a tribute to the quality of the 64’s graphics set and screen
handling. Once you have entered it you begin to see that it is not at all such a
difficult thing to use loops and simple calculations to draw shapes and
apparently solid objects at controlled places on the screen and that such
displays are one of the most effective ways of getting the facts across that
you will ever find.

1.3 TEXTED

The final program in this chapter is an attempt to provide some of the
simpler functions of a word processor in a relatively short and
uncomplicated program. The program is, of course, no match for a
professionally written machine-code based word processor, nor would it
be the tool I would choose for writing a book like this one, if only because
Commodore UK were kind enough to provide me with a copy of their
excellent Easyscript program for the purpose. Nevertheless the program
works and I would and have chosen it in preference to a typewriter for
many purposes because of the flexibility it provides in entering and editing
text before it is finally output onto paper. Of course, if you don’t possess a
printer, then you will need to rush out and buy one to get the most out of the
program.

22

Chapter 1 Good things in small packages

Texted: Table of Variables

A$ Line of text being entered

CH Code of character under flashing cursor

FNA(P) Calculates position in memory of flashing cursor in text
being entered

FNB(P2) Calculates position in memory of edit cursor in main
body of text

LL Number of lines of text in main body of text

P Position of flashing cursor in line being entered

P2 Position of edit cursor down screen

PL Line number of edit cursor in main body of text

SpP Number of spaces available at end of line when
formatting

SS Line number of first line of part of main text being
displayed

TS Last character input when entering new line of text

Ti1$ Character input as command in Move Edit Line module

TEXT$(500) Main array for the storage of text

TTS$ Temporary storage of lines being entered into main body
of text

X Number of lines of text extracted from batch of text being

inserted into main body

MODULE 1.3.1

AGE P sl oo el el e e e el e e
REM IHITIALIZE

e o o o e e e
FRIHT"I; (DIM TEATHCSEE LL=1 FL=1
TEXT$(0)=" TV WV VY V¥ Vv e v

R
o4] 5

i i
R

bRy oy |
R R

[e i
[it

20 PO PR e

[
b)

3

12048 TEF FHh'k:mia.4+2@$4@+P
| ZE56 uFF FHE 2= 1024 +40HF2
| PREE

This initialises the main variables and places beginning and end of text
markers into the main array.

MODULE 1.3.2

1 ZEEE
1@l HEEM EDIT LIME

23

The Working Commodore 64

1 R Pl e ot e bl el b o
Fgmy M
S RS DR B S LD DI LG L LI LI

RE
128568 CH=FEEK CFHACFD S (POKE S4272+FHAO 2.
14 FOKE FrACE ., L

PEREE FOR TT=1 TO S HEST TT: POEE FHACH2,

= THEM GEOTO 1205
1[F*'“l HF-’E' 137 il[LEHOAF =21 THEH
T EAEA G011 Sass
IF T‘F““”T" THEH h... AN
R GUTO 15848
TIF T#sUer ART FOE
A LR Tt FHHIIF THEM =i, rh‘l“‘f‘""l
1 a1 T

1%

THEM 1204

13120 IF FoU AND TH=CHR$CZE) THEHW Fs=LEF
THOEE, P13 A MITECRE, Pl D Pf=1 GOTOI 3156
13138 IF T 287 THEW 13850

1514 O FHD TECEUMY TH
AR HMIDFCFAF Priy PsPel
15156 FRINT "oy e sspen s
FoT§="01" FHD P38 THEH FsPel

12160 IF T#="0" AND FLEMAE:I-1 THEW P=p
+1

13178 GOTO 13E5E

The purpose of this module is allow the user to input and edit up to two
screen lines of text at the bottom of the screen and to edit those lines in
preparation for inserting them into the main body of the text with a
subsequent module.

Commentary

Lines 13050—13070: Our first encounter with a flashing cursor routine. On
the basis of user-defined function A, these lines PEEK the screen memory
at the point indicated by the variable P and obtain the code of the character
located there. An inverse blue space is then POKEd into the same location,
left there for the duration of a short timing loop and then replaced by the
original character. If there has been no input from the keyboard, as
indicated by the GET stalement, the process is repeated.

Line 13080: Pressing RETURN inserts the line into the main body of text
—a later module is needed. The line is also inserted automatically if the
length exceeds two screen lines—this may strip the final characters from
the line.

24

http:FNA(P),:1.60

Chapter I Good things in small packages

Line 13090: Pressing the ‘1" symbol allows the user to move into a
subsequent module which acts on the main body of text.

Lines 13100—13110: Pressing the left arrow symbol at the top left of the
keyboard moves the cursor either to the beginning of the line or to the end,
depending on its current position.

Lines 13120—13130: Provided that the cursor is not positioned at the
beginning of the line, pressing DELETE removes the character before the
cursor. Note that, using GET, the control keys such as DELETE have no
effect unless they are PRINTed, so that if we do not print them we can
redefine their function.

Line 13140: If the character entered is not a cursor move arrow, then it is
assumed to be a character to be printed and it is added to the string in the
position of the cursor. If the cursor is in the middle of the string, then the
character is added in—it does not replace the character under the cursor.

Lines 13150—13160: The string is reprinted in its changed form. If the
input was a cursor arrow then the cursor position is changed accordingly.

Testing Module 1.3.2

By entering a temporary RETURN at Line 14000, you should now be able
to input text to the bottom of the screen and to edit that text.

MODULE 1.3.3

Db o o s o e S o e e i s e
REM IM=ERT LIME

TAEZE REMsEE Sk f i e ko g e g
GEAEE s

B4l IF LEMORAFEX ST THEM TTEO=LEFTERE
sLEMHCAEI -1 AF="" CE0TO 1467
].-h'.!rl...! Foke T=d1 TO 1 STEP-1:IF MIDECHE. T,
17 OTHEM MEST T I=d1

1* Gel TTHECE =LEFTFCRE, IT-10 PE=MIDERF, [+
J

4uﬁﬁ wmEal TR RS AMD AFCT " THEMW G
nru 1A

14Bs6a FOR I=LL+s TO PL+s STEF-1 TESTEC I
STERTECI~E0 T MESRT 1

14855 FOR T=0 TO #-1 TESTHFPL+Is=TTH0I
MEHT

1 1BE AE=" "IP=@CFRIMT "0V L L=Lls FLaR
Lot

25

The Working Commodore 64

il
LIDLILIED ATATH PiTI!lTEhE“ﬂI ﬁli“ui'l]" FFE

14118 5E=PL-7 IF LL-PLIE
SR THT e

- “ -“—

9 SECH THEM S50
14136 FOR I=55 T0 S5+15:PRINT "W, TEXTH:
1% 1F LEHCTERT$013044@ THEM FRINT
14148 IF I=FL-1 THEM FRIHT CHRECEZ)
14158 MEXT T:FRINT “ i

YOURETLIRM

The purpose of this module is to enter the current line into the main body of
text.

Commentary

Line 14040: If the line being inserted is less than 41 characters long it is
placed into the position indicated by the > edit cursor.

Lines 14050—14070: If the line is longer than 41 characters, these lines
search back for the ending of the last word which will fit fully onto the line
and make everything to the left of it the first line to be inserted and store it
in TTS. A$is now redefined as what is left and the process is repeated. The
variable X records how many lines result.

Lines 14080—14090: The main body of text, from the edit cursor on, is
shifted to make room for the X new lines and the new lines are inserted.

Lines 14100—14110: AS$ is set to a single space, the flashing cursor position
is set to zero and the edit cursor is moved down below the new lines. The
start of main text display is redefined so that the edit cursor remains
roughly in the middle.

Testing Module 1.3.3

You should now be able to insert lines of text into the main body of text by
pressing RETURN.

MODULE 1.3.4

15EEE EEMESEEEEEEEEEEEEEE RS EER R R
SRR PEM MOWE EDIT LIME

XAARE &k '1"1* S B R e s e e

S

|1ET T1%:]'F T THEM 15673
FORE D4272+FHBORE Y 8P0KE FHECPZ,

| .IT I:= 1 T ZEcT

FORE FMBOPZ2, 320 GOTD 150483

Chapter I Good things in small packages

PTEEVE PL=PLACT 1= 0 TEECT =0 2 0 TR FL
1 THEM Fl=l
E PLEPL-CTLE="0" 0 1B c T UE="T1" 0 0 TR PL
THEH F L =L
© TIE=CHREFCLEY THEM FETHPH
Ll OF T 0HRESC2E

lU LL»L!wl FOR T=Pl 7O L TESTECT =Tk
HERT CTEATECLL+1 D=

IF FLALL FAMD Ti$="C" THEH A$=TEXT#
CORETURH

IF Tlg="F" THEM GOZLE
A TF TiF="2" THEM G
.ﬁ IF Tig="F" THEM GiE Lk
e GOSUE 141100 G0TO 1565

!—l—'-

This module allows the main edit pointer to be moved about in the main
body of text, thus allowing lines to be inserted at different points. From
this module the user is also able to call up other modules which format the
text, output it to a printer or save it to tape.

Commentary
Lines 15040—15060: Flashing cursor routine for the main edit cursor.

Lines 15070—15080: These two lines move the main edit cursor up and
down. Single line moves are accomplished by the ordinary cursor move
arrows. Pressing U or D will result in a 10 line jump. Note the use of logical
conditions to accomplish these moves. The expression (T1$=‘U’) has a
value of zero when the condition is false and of minus one when it is true
and can thus be used to economically replace an IF statement such as IF
T1$= ‘U’ THEN etc.

Line 15090: Pressing RETURN will return to the text entry module.

Lines 15100—15110: Pressing DELETE removes the line beneath the
LuLdUI,

Line 15120: Pressing C copies the line beneath the cursor to the bottom of
the screen for further editing.

27

The Working Commodore 64

Testing Module 1.3.4

You should now be able to move the main edit cursor, to delete lines and to
copy them back to the bottom of the screen.

MODULE 1.3.5

IO LLg IF TERT$¢I0=0" 0
freet THER 16120

PmdR-L EMCTEATSC I 00 FOR J=1 TO LEM
THC 14100

IF MITECTERTECIH10, 0, 100" " THEN

IF SRCT R JELEHOTESTEC D102 THEM

: *H TESTECL»=TESTEC 2" "l BEFTELCTERTEL

s J=10

I TE: ATHECT] o IR CTESTEC T+ N RN

3 LEH TEXTECL+L) pmsah

Tl amTESTECT
IF T~-T_+ T L -]'

.' J.P~~5:’.=~':T JrLb=LL~1 PLsRL -

Slas MHEXTT CRETURHN
This module formats the text, that is to say the text is rearranged so that

empty spaces at the end of lines are, where possible, filled with words from
the subsequent lines.

Line 16030: When an empty line is entered into the main body of text it will
not be formatted. Empty lines can thus be used to separate paragraphs or
other lines the user does not wish to have run together.

Lines 16040—16080: The space at the end of the line is calculated and an
assessment is made of whether there is a word at the beginning of the next
line which will fit the space—if so it is transferred.

Lines 16090—16110: If the whole of the next line will fit onto the end of the
current line then it is added and the file collapsed to cover the resulting
space,

Testing Module 1.3.5

If youinput a series of single word lines to the main body of text you should
now be able to enter the main edit mode, press F and see the words run

28

Chapter I Good things in small packages

together into continuous lines. You can also insert short lines into the
middle of the main text and then reformat it.

MODULE 1.3.6
DPAGE FE M b b o e R e

17818 REM QUTFUT TO PRIMTER
17EZE FFM*###?#¢¢¢¢#$*¥+##¢#¢###*@**###

J.F"“ ORPEM 1.4 =]

17¥ade TF ==L THEH 1716464

ITHWH IF TERTE =" THEM PEIMTHI, "V H=E
A1 00T 1FEd8

17 1 H‘IHTﬂl TEATE "

17078 TF Hel=LL THER 17168

{7REA PRIMTH#1, TEXTECH+1 1 IF TERTSCHH10="
" THEH PRINT#1,""

LPREE =42 GO0TO 17043

171BB FRINT#L, " CLOSEL: RETURN

This simple module opens communication with the printer (device 4) and
prints out the main body of text. Text is printed in 80 column format (ie two
screen lines make one printed line), and clear lines are printed wherever
thereis a clear line in the main text. Note that though the program itself will
happily deal with characters in lower case mode (press SHIFT and
COMMODORE key together), most printers require a special command
to actually output lower case characters. This is not provided since it
differs from printer to printer. Your printer manual will provide the
necessary information.

MODULE 1.3.7

TR T e o o S
1EEB1E HEM THTA FILE
LERZA REFS R b s e e e
1E@28 FPRINT "TIMSFOSITION THPE CORERECTLY.
THEM SRETURM S

TEE4E THPUT "MOTOR WILL STOP AUTOMATICHL
L EREPORE 1R,V OPOEE 1, 3R

15656 PRIMT “COMMAMDE AYATLAELE: " FRIMT
"R G EAYE DATA" CPREIMT UM L0RD DHTHY
LERGE THPUT "eRRdHICH D0 YO REQUIRE: " o;

OH @ GOTO 18026, 18128

1Ea7E BETURH

1ﬁl 1 PORE 1.7 FOR I=1 TO 2008 HEXT
18820 OFEM 1, 1.2 "TEXTED PRIMNTH#1.PLFEI

29

http:F::ETI...IF

The Working Commodore 64

1Ll

AR FOR D=6 T0 LU FFE=TESTEO T 4+%8% FR]
“FEHERT I

RETURH

cL B ETESTED™ : THPUT#L L FLLLL

[=@ TO LL: THPUTHL. TEXTHC T HEY

12146 FOR T=06 T LL

1156 TF TESTECD 2R THEM TEXTEC =LEF
#F TECT D LEMOTEATECT D010
IF TESTECD="@" THEW TEHETECD 2=tY

BITE MEST 1 RETURH

A standard data-file module.

Summary

The techniques used in this program of altering something while you are
looking at it on the screen bear some study since this is by far the easiest way
(for the user) of altering strings and can be written into a variety of
programs where string data, having been input has to be changed—

including, if you wanted to, most of the programs in this book.

Texted: Summary of one-key instructions
Text entry mode:

Text characters may be entered at position of flashing cursor.
Left and right arrows move cursor over string.

‘<’ moves cursor to beginning or end of line.]’ calls up main edit module.

RETURN places current string into the main body of text.

Main edit mode:

RETURN returns to previous mode

U,D and up and down cursor arrows move main edit cursor
DELETE removes line beneath main edit cursor

C copies line beneath main edit cursor

P sends text to printer

S saves text on tape

F formats text

30

CHAPTER 2

Programming Tools

Having been introduced to some of the 64’s capabilities we now depart
from the normal format of the book for a brief space to present three
tightly packed programs which will provide you with essential tools
enabling you to merge separate programs together,renumber them and
delete whole sections with ease. The programs are densely packed for the
simple reason that, using the Merge routine, they are intended to be strung
together and then added to the end of existing programs without taking up
too much memory space. When you have finished merging in extra sections
to your program and renumbering it, the Delete routine will happily delete
itself and its two companions!

2.1 MERGE

This program, together with the other two presented in this short chapter,
is a must for those who intend to take modular programming seriously.
Using this tiny program hours of work can be saved by keeping useful
modules on tape and simply stringing them together with the press of atape
recorder button. In presenting the program I am indebted to Steve Beats of
Commodore UK, who suggested to me the basic idea from which it was
developed. »

There are no modules in the program—at eight lines it would hardly be
worth it and yet a program such as this will make modular programming
come alive for you.

What the program does is to pick up another program, or section of a
program from tape and to enter it into the 64 without danger of losing what
is already there—unless the line numbers coincide, in which case the first
program will be overwritten.

MODULE 2.1.1

ll:]ll |
Lolsg"TEETY
EolEd, LPORE LG
15 L PRIMT e
GETH#1.AF FPRIMT RE; IF 5T THEM o323

O

31

The Working Commodore 64

53995 IF AFCTHRFC1E)
63996 PRINT “G0TO ¢
E £32, 13 POKE

R OPOKE 1983

3R

Commentary

Line 63991: The file which this program will read is a listing of any other
program which was stored on tape using the following command: OPEN
1,1,2“TEST’:CMDI1:LIST. The CMD command means that anything that
would normally be output to the screen is actually sent to the file number
specified—in this case a file opened to the cassette recorder. The only
distinctive thing about the file is the secondary address, which is 2,
meaning that this is an output file which will have a special end of file
marker printed at its conclusion. The LISTing of the program is sent, not
to the screen, therefore, but to the cassette recorder, not in the same form
that a program is normally stored but in ASCII format or character for
character what you would see on the screen if the program were listed out.
When the cassette recorder stops, without switching off the cassette
recorder you must finish the file off by entering: PRINT #1: CLOSEl
which ensures that the final characters of the program are printed and the
file properly closed.

Lines 63994—63995: Skipping over line 63992 for a moment, the merge
program now begins to pick up the characters of the program listed onto
tape, until it reaches a RETURN code, signifying the end of a line.

Line 63996: This strange line is actually the key to the program. Having
picked up aline and printed it onto the screen, the program now prints, just
underneath the line, the command GOTO 63992 and the cursor home con-
trol character. Following this, three RETURN codes are POKEd into the
keyboard buffer, the area of memory which stores any keys which have
been pressed but not yet acted upon, and the number three is POKEd into
location 198, which records how many keys have yet to be acted upon.
Having done this the program now ENDs. Or at least it would do, except
that the 64 now believes that RETURN has been pressed three times and
procceds to react accordingly. The effect of this is to move the cursor down
over the line picked up from tape and printed on the screen and over the
GOTO 63992. The result is that the line is entered into the memory just as if
you had placed the cursor over it and pressed RETURN. The program then
begins again at 63992.

32

Chapter 2 Programming Tools

Line 63992: This line of mysterious POKE commands is there to overcome
a basic problem—whenever a new line is entered to a program, all existing
files are CLOSEd. When the first line of the new program is entered, the
file to the cassette recorder is closed and any instructions to GET from it
will result in an error. The file cannot be re-opened with a Basic command
because we are already past the file header, which would tell the 64 that a
file has been found on the tape. What the POKEs do is cheat a little and tell
the 64 that file number one, with a secondary address of zero, is open to the
cassette recorder. The second line can now be picked up, and so on ad
infinitum.

Eventually the program encounters the end of file marker which means
that the listing is complete and then the second part of line 63994 (IF ST
THEN 63999) detects this and jumps to the last line. Normally the program
will stop with the error message OUT OF DATA. This means the merge has
been a success.

In actual use this program is by no means fast. It alternates between the
blank screen of tape-loading and flashes of lines at the top of the screen. It
needs a good tape, since a tape with dropouts may well crash the whole
thing. But given a little care this is a program you will come back to time
and time again—try it and see.

2.2 DELETE

When developing programs which use similar modules to programs you
have previously entered, a useful ability is to be able to load the original
program and delete only those parts that are not needed for the new
application. This 12 line routine will allow you to do just that.

The routine is based upon the extremely clear and simple way in which
program listings are set out in the memory of Commodore computers.
Each program line in the memory begins with two link bytes of memory
which specify the start address in memory of the next line. This is followed
by two bytes which record the actual line number. What this routine does is
to scan along the line numbers between a start number specified by the user
and a finish number also user specified. When the address of the final line
to be deleted is found, the program simply sets the next line address in the
first line to be deleted to point to the line after the last line to be deleted. The
effect of this is to produce a single line stretching from the beginning of the
first line to be deleted to the end of the last. Deletion can now be
accomplished by merely deleting the first line—all the others go with it.

MODULE 2.2.1
22VEE THPUT "FIRSTLIME TO EBE DELETED:":D

Ty —

ear 1E IMPUT "LAST LIWE TO BE DELETED: ", D

{ON]

33

The Working Commodore 64

83715 DEF FHIOHCH=FEEK (X +250#FEER (+1 0
EAVIE DEF FHHLCH)= AND 255

EArlY DEF FHMHZCAT=THT O 2568

EAVER LA=ZE43

R LM=FHIOHCLA+2: IF LML THEW LA=FHD
HOLHD Ea0TO 23738

Eeaedd DETRET=LA

DAVIE LM=FHDHCLA+Z2 IF FHDHCLA»=@ THEH &
A7 e

£27E5 IF LHO=D2 THEM LA=FHDHCLAN CGOTD &3
Yok

VR POKE DSTART,FHHL LAY CFOEE DETART+1
s FHHZ LAY

EAVTE FOKE DETHRTH4, 142 F0K T=5 TO 1@:F0
FE DETARTHI, 32 HEXT

Commentary

Line 63715: This function, which can be useful in a variety of contexts,
converts a two byte number of the kind that most computers work with,
into a normal decimal number in the range 0-65535. The two byte number
effectively has a base of 256, that is to say that it is composed of up to 255
units and a second digit of up to 255*256, in the same way that 99 is 9 units
and 9 times 10. Just to confuse you, however, the digits are stored back to
front, with the higher value byte coming second.

Lines 63716—63717: These two user-defined functions do the opposite job
of transforming a decimal number into a two byte form.

Line 63720: LA is set equal to the start address of the first line of the
program.

Line 63730: LN is set equal to the value of the third and fourth bytes of the
line—the line number—and if this is less than the value of the first line to be
deleted then LA uses the two link bytes to jump to the start address of the
next line. The process is repeated until a line number is found which is equal
to or greater than the first line number to be deleted.

Line 63740: The start address of the first line to be deleted is stored in the
variable DSTART.

Line 63750: Using the FNDH function, the variable LA shoots up the

memory from line start to line start, and with each jump the variable LN is
set equal to the line number found there. If FNDH finds a memory location

34

Chapter 2 Programming Tools

with zero in it, where there should be a pair of link bytes, it has reached the
.end of the program.

Line 63755: Each time a new line number is found, it is compared with the
number of the last line to be deleted. If the last line has not been reached,
the next jump is made.

Line 63760: If the program has reached this point, it has found the last line
to be deleted and into the two link bytes at DSTART it POKEs the address
of the line after the last line to be deleted.

Line 63770: The first character of the new single line block to be deleted is
made into a REM statment and a series of exclamation marks are POKEd
in after the REM to mark the line to delete.

The routine has now finished its job and all that remains is to enter the
number of the line marked and press RETURN—the whole block, from a
few lines to a complete program, will disappear.

In practice, this routine is best used with the merge routine in the
previous section of this chapter (load the merge routine and either add this
one or merge it), since this will allow the routine to be added to existing
programs from which you wish to extract some lines while discarding
others. It takes only moments to run and can save a lot of key pounding!

2.3 RENUMBER

One thing that everyone wants to do is to have neatly numbered programs
—somehow it makes all the difference between something that looks
professional and something which appears downright sloppy. Using the
relatively short program presented here, you can renumber to your heart’s
content, though it isn’t what you’d call fast and it does impose a simple
limitation on the range of program lines.

The program will renumber any program, including GOTOs, GOSUBs,
ON...GOTOs and GOSUBs and line numbers following IF...THEN,
What it will not do is relocate the program in the memory, so it cannot add
digits to a GOTO (etc.) or subtract digits, for to do so means moving the
whole of the program that follows the altered address. It is not that that is
impossible, or even particularly difficult, it is simply that to be at all
practical it must be done in machine code, which is outside the scope of this
book.

It is because of that limitation that all the programs in this book, which
were renumbered using this routine (where line numbers are irregular it is
because changes were made late in the process), begin at 11000, thus
ensuring that all line numbers have five digits.

35

The Working Commodore 64

The way in which the renumbered program is structured can be
controlled by the use of formatting lines within the program to be
renumbered. Look closely at the programs in this book and you will see
that the modules almost invariably start with a REM statement, and that
the first character after the REM is a ¢ #” symbol. The renumber program is
so designed that it starts renumbering at 11000, and continuesin steps of 10
until it comes across such a line, then it increments the line number to the
next 1000 up.

Not only does this make for easily readable programs, it means that you
can control the structure of the program to be renumbered. Say you have
an existing program from which you want to use three or four modules, but
the present line numbers do not conform to the structure you want for the
new program—not enough space between the modules, say, to merge in
something else you have on tape. By inserting two REM statements, whose
first character is a ‘#’ and then renumbering, you automatically open a
gap of 2000 where the REM statements are located—hardly complex!

MODULE 2.3.1

EAERE CLECDIM SZ20506, 1 T LA=ZRds FRE=LA
312 DEF FHDHOS =FEEK (e +230%FEEE CE+1 0

FEELE DEF FHHL O =4 AMD 255

ARR1E DEF FHHE O i=THT O 2588

saEEE IF PROEFHDHCLAY THEH &2

3 LA=FHDHCLAY C HL=FHIHCLA+YZ 2 IF HL=6
THEH GOTO &350

k]

RaEEE IF PEERCLA+YZ =143 THEM FP=FHDHOLA
SEOTO E3EEE

EEE PP=PF+4

Tl IF PEFF RRAAETEY THEW oaEde
gadeE D= IF PEERCPPH] D=3 THEH =]
i IF PEEh CRR+1+E0048 OF FEEE (FF+1+

53257 THEM 53200

SoaEEE GOTO E2E7E

BT IF (PP3<>137 AMD PEEKIFP)C>14
THEM 632

FETE A:IF PEEKIFP+11=32 THEM %=

ﬁﬁi””" FOR I=1+5 TO S+%0IF PEER CFF

aidE OF FEEECFF+T2EET THEM GOTO &31468

'&BBJ LET GUEF=GLGEFCHRECFEEK CFF+T 30 CMEST
EEE GHRVALCGEE L 1=208 0 LEsF DG 2ES] 0

:
-
ot
i

-y

193 IF L2=E3000 THEM FRINT “UMDEFITHED
LIME AT LIME";ML:STOF
63055 IF L2=0G THEW 53188

Chapter 2 Programming Tools

ESENDHELD) |LESFIDHCL 142> Ll L+ 10
U FE.E'["L]+4;-];', HHT' FWN"'._

ZnET M s=LLCLET Z2021 0 1 =Py

IF FEEECRF4+S4mimdd THEMN PReFPRo-eS e
GOTO S e

EE1ES GOTOD &22RE

63]4ﬁ FrRIHMT "HOM-~STRHDARED EQHHHHU FHT L.TH
- ML ETOR

FOFR=PRa] GOTO SE3HREH

) I ey o S I W R N T

B3 IF PEEECLA+A =143 AMD PEERECLA+S =3
#THT"LL+1uﬁm- 1Humh

‘T‘« —
2 Tl
""{
:‘
I
I
e

+
"
i
K]
t
]
ek
-
-
"1
-
=
.— I
E]
X%
=
P

KE LHlm,FHHIiLL “POKE LH+.(FHHJI

LET LL=LL+18:LET LA=FRIHCLAL G070

TF &= THEM =TOF
FOR I=8 T0 21-1

kR T=10 TO 5 POKE
ST BN TR

AL T ST

Commentary

Line 63000: The array ZZ will be used to record the addresses of GOTOs
etc. that need to renumbered and the new number they are to be given.

Lines 63010—63016: The same functions as in the block delete routine. If
you merge the two together you will need to delete this set.

Lines 63050—63059: PP is a pointer that scans the memory for GOTOs ¢tc.
It starts at the beginning of the program area at 2049. Every time it reaches
the start of a new line the line address variable (LA) is incremented. The
line number of the current line is stored in LN and the program stops
working at line 63000—the start of this routine. PP now jumps to the first
character of the line.

Lines 63060—63065: These lines check when THEN is found in the
memory, to sce if it is followed, either immediately, or after a space, by a
number. The variable S simply records whether a space is present. If
THEN is not followed by a number, PP moves on.

37

The Working Commodore 64

Lines 63070—63085: If the code for GOSUB or GOTO is found the
program checks to see whether a space follows or not. GG$ is constructed
out of the digits of the line destination. Less than five digits produces an
error message at line 63140.

Lines 63090—63099: GG is set equal to the GOTO or GOSUB destination.
The routine now scans up the line numbers in the program from the start,
looking for the destination. For each line that is examined, the variable LL
is incremented by 10, starting at 11000, and thus records what the line
number will be once the program is renumbered—the line cannot be
renumbered at this point since there may be another GOTO pointing to it.
When REM # is encountered LL increments to the next 1000 upwards.

Line 63100: At this point the correct line number has been found, so the
address of the GOTO is stored in the array ZZ along with its future line
number (LL).

Line 63110: If the 6th character after the GOTO or GOSUB s a comma, it
is assumed that this is an ON...GOTO—GOSUB and PP is moved on and
the new line destination picked up by an earlier part of the routine.

Line 63200: The process continues, with PP moving up the memory until
Line 63000 is encountered.

Lines 63500—63520: These lines start at the beginning of the program and
renumber the lines only (remembering REM #).

Lines 63600—63650: All that remains is to take the addresses of all the
GOTO—GOSUB destinations out of ZZ and to POKE the new
destinations into the five bytes following each address—they have already
been calculated.

Though s program does not comipare i speed or (lexibility wiil 4
good machine code utility, it does do the job, as the programs in this book
illustrate. If you do not own a machine code renumber routine then I
predict that you will come back to this routine more often than almost any
you possess.

38

Chapter 2 Programming Tools

When merged with the two previous utilities, with all three isolated from
each other by STOP statements, you will have built for yourself a powerful
three function tool which will make your programming more pleasant and
your programs more presentable.

39

CHAPTER 3
The Colourful 64

The Commodore 64 provides an almost bewildering array of graphics
capabilities. The shapes and colours that it can display are enough to cover
almost any imaginable need and certainly enough to keep the amateur
artist occupied for a lifetime. In this chapter you will find four graphics
programs which will allow you to explore the world of the graphics
character set, user-defined characters, sprites and bit-mapped graphics. A
mere four programs are by no means the last word in what the 64 can
achieve so the programs are designed as tools, whose object is to allow you
to feed into your later programs all the colourful features that will lift them
out of the ordinary run.

3.1 ARTIST

Few home micros have a graphics character set as useful as that of
Commodore machines. Using the combinations of characters available
from the keyboard it is very difficult to think of anything that could not be
drawn in some shape or fashion. This is extremely useful when livening up
the output of the most mundane programs, especially when combined with
the 64’s excellent colour capabilities.

One limitation to all of this is in the creative process of actually
developing graphics displays. Of course, this can be done purely with print
statements in a program, but getting the print statements exactly right,
with a variety of colour commands, reverse commands and so forth, with
each line having to be defined separately can be an extremely tedious
process. What is really needed is a way of using the screen rather like an
easel, painting on graphics characters in a variety of colours, erasing,
changing at will and then, for the sake of posterity or at least for the sake of
other programs which could use the design created, saving the design onto
tape. All of this the current program sets out to do.

Along the way you will pick up a fair amount of information about how
to manipulate the screen and colour memory, together with useful memory
locations for controlling such characteristics as print colour.

Artist: Table of Variables

CC The current cursor position
CO@(3) Co-ordinates of two corners of design to be saved

41

The Working Commodore 64

CT Temporary storage of cursor position

CU Current cursor colour

DI1$ Values of characters in design to be saved

D2$ Colour values of characters to be saved

D3$,D4% Temporary copies of D1$ and D2$

MODE Defines which of a variety of colour characteristics is
being addressed

PC The colour of the character in position PP

PP The original contents of the current cursor location

PT Location in memory of the two corners held in array CO

MODULE 3.1.1

Hardly fair to call this a module, but its presence does mean that if you
decide to develop the program further, there is a proper area set aside for
the necessary variables. The string actually defined is a standard-data file

separator.

MODULE 3.1.2

1;mu@

"1 w15

B

-
KO

=)
R T

= f

PR N

)

(XN
cAen g

PR TR

=i

iPP=

R ol e e s s e e
p[n CURSORE MOWE , PRIHT

s e o o e e s e
FTHT “ﬂ"

""1

?f”“wh+PEEl'“ﬁ

F|.4¢ [H}F ,,,,,,, - .LU'FHP I=
rFUP E CCOPPPO ﬂ ST NS ST S
A I’HFH 1 i

i FMD FEe 'm" Tk 12
23 HMI AE=2E" THEM 1.
24 FHD FEe=tiE THEM 1
1%&4 FHD FE="T1 THEM 1. -
HP ﬂ o= Y IR gt O
ST 1ER4a
i3 THEM MODE=]
| "’J THER MO
IF HI iHri'l‘-} THE R ML e
IF AF=CHEF{138s THEM 1283540

F‘EE} v

Chapter 3 The Colourful 64

COTE=1 Ok r'ﬂ'ﬂ'lf"“”-::};':f Cikr PRI =5 Mk

THF H Wi lUF =MOTE-+. 5 GOTO 126848

a0 THEM T e O T =0

HUDE-ﬁi

HHDE
1

— el
e

l.t CHREEC LS 3 ;
OTF MOTIE=1 HHH H1%w . {] Mf Tttt
g rn!E *!k SAZTEMALCAE -1 GIOTH 1”&49
; FARHDAE =" 1" FAND Sgl=tEt T
hrH iim i : L CHE - ﬁﬁTﬂ plE Ay
TEaz@d IF MODE=Z AMND AEE=U1" [MD AEd="E
T$4rti F ik i E? ...~“4L O - 11 GOTO 12846
e SOAHD AFF="1Y FRD AFO=TE
LB PO AE -1 GOTO L2Eag
HHW ﬂ¥ w1 /MDD FEC=NEY
ae L GOTO 126
‘*ﬁ"i” AR AFC=t R
;~1'nnrn 1'u4m
WU R FE T

l_&_._‘:—_\i-—h!-—l-g__‘.g..a.
el O LN

J.."I'T'H 1r .
HHh FEC S THER 12326
IF AF="FE" THEM Gl
- AT THERM G I
FoFdE=tat THEM GO
A e 1 SEOTO 12agdA
A IF l!HI!t-“" Hll]’i HEz=" 1" (MDD AFC=Ee
CEDTO 2R
IF IH'"’-~1 THFH FFTm .

R T "I

This module is really all that is needed to turn your screen into a graphics
easel. Its purpose is to allow you to move a flashing cursor around the
screen, printing characters, changing them, erasing them, changing
colours for foreground and background of characters......

Commentary

Lines 12040—-12070: This routine provides a flashing cursor under user
control.

Line 12040: This POKE sets the repeat characteristic so that a key, once
held down, will continue printing the same character. The second part of
the line receives any single character input from the keyboard.

43

http:j::II��.jl

The Working Commodore 64

Line 12050: CC is set equal to the address in the memory of the current
print position. PEEK(211) gives the position along the line (0-39) while
PEEK(210)*256 + PEEK(209) gives the memory address of the beginning
of the line. PP is set equal to the screen code of whatever is currently
occupying the position where the cursor is about to flash. PC is the colour
of the character in that position.

Line 12060: An asterisk, screen code 42, is now POKEd into the position
where the cursor is meant to flash and the current cursor colour CU, is
POKEd into colour memory at the corresponding position. A short timing
loop keeps the asterisk on the screen for a moment, then the orginal
character (code PP) and the original colour (PC) are rePOKEd into the
memory.

Line 12070: If no key has been depressed then the cycle is repeated.

Lines 12080—12110: These lines check that if cursor move arrows are
input, the cursor does not attempt to move off the screen.

Line 12120; If a cursor control is input and passes through the tests in the
four lines above it is immediately printed and the program returns to the
flashing cursor routine.

Lines 12130—12200: Using the function keys on the right of the keyboard
asinputs, these lines allow the user to specify different modes which permit
different colour characteristics to be set.

Line 12130: Pressing key f1 puts the program into MODE 1. In this mode,
pressing any of the keys 1 to 8 will redefine the colour of any character over
which the cursor is currently placed. The colour will be that indicated on
the front of the key.

Line 12140: Pressing f2 allows the same procedure to redefine the screen
background colour.

Line 12150: Pressing f3 allows the resetting of the print colour by the same
procedure.

Line 12160: Since there are in fact 16 colours available, input of the left
arrow at the top left hand corner of the keyboard whilein MODEs 1,2 or 3,
redefines the mode so that entry of keys 1-8 will provide the colour that
would normally be obtained by pressing that key together with
Commodore logo key. The characteristic redefined will be the same as that
referred to by the main mode number.

44

Chapter 3 The Colourful 64

Line 12170: On pressing f5 the inverse characteristic is set or reset—thus
allowing inverse characters to be printed.

Line 12180: On pressing f6 the program will allow the saving of the
design created. The correct procedure will be explained in detail later.

Line 12190: Pressing f7 does nothing at all except to redefine into a non-
effective mode. This allows the user to print the numbers 1-8 on the
screen rather than redefine a colour characteristic.

Line 12200: Pressing f8 allows the user to change the cursor colour to
any of the first eight colours. This is useful if the screen colour has been
re-defined in such a way that the cursor is no longer clearly visible.

Lines 12210—12220: If MODE is 1 or 1.5 then the colour input is
POKEd into the colour memory for the current square.

Lines 12230—12240: If MODE is 2 or 2.5 the new colour code is POKEd
into location 53281, which sets the screen background colour.

Lines 12250-12260: If MODE is 3 or 3.5 then the new colour code is
POKEd into location 646, which dictates the current print colour.

Lines 12270—12310: When in MODE 6 this routine relates to the saving
of either small or large designs. Input of R allows the definition of a
rectangle of screen to be saved. D saves a small-scale design. S saves the
‘whole screen to tape.

Line 12310: CT is used to save the current cursor position, which may be
altered during the SAVE routine.

Line 12320: If MODE is 8 then the new colour code is stored in the
variable CU.

Line 12330: If the inverse characteristic is set (INV =-1) the RVS ON
control character is printed, thus inverting the next character to be
printed.

Line 12340: If the program has reached this point then whatever
character was input is printed on the screen and the reverse off control
character is printed following it.

45

The Working Commodore 64

Testing Module 3.1.2

After entering this module you should be able to create designs on the
screen at will, using the whole character set available from the keyboard.
All the colour redefinition commands should be available but you will not
yet be able to save any design you create.

MODULE 3.1.3

CREIEIEY REDTH A N R R A R
118 FEM SAVE DESIGH
5] REWW#¢¥**F*¥¢FF¥$¥$¢F**iﬁ@%*ﬁ#%%#
GET TH: %5

“mﬁ AMD COCLso=C0oEy T

G PRINT "SRECTAMGLE [MPROPERLY DEFIH
VOFOR Il TD 1086 HENT

13108 PRINT "8

U RETURM

SLLE TF CCOCRr-CO0E =1 %0300 {10

THEH 12146,

3128 PRINT "MDESIGH TOD LARGE, ") FOR I=
TOLGEE : HERT

E130 FRIMT “#

;_.n b Bt

12148 FOR I=1 TO 2 FT=1829+
CO¢ 1%z =20 TOCI=PT TE(142
13158 FOKE FT,42:POKE
13160 THFLT ”».'.‘ﬂTHI'
O TF G=y THEN 12178
13162 PRINT "

FOR I=1TO 20POKE TOOID, TOCI+20 HENT

m,ﬁufﬂEﬁT
I AR S IR

A - N 1) a1 T OO
g a1 TOE OO0 -1
1“1“” I!H Dl'FH HFEFCPECR D LOEa 4w T+ J0 2 - FO
FE 18Zd4+4iel+T, 42

12190 TPE= D ¢+er$ FEr}(fﬂ“3h14H¢1+T-s!

39—1'FHP'T-sh.u.51 0 lnaﬂ:'.

http:F:f:::.Ti

Chapter 3 The Colourful 64

ot TR T RO L EFTECDEE

FLEMODEE -1
.an¢14r P BEFTECDE, o

penf UM T Dbk, LR T 'HE"’T J.1

& r'I'Tiu ”‘FHI” 15 WHAT Is s BETHG SRVE

T, -Fuﬁ T=1 TO 1680 HEXT

JREPEEAT .HFH* "}l‘ITIwH THFE COREECTLY. T

HEH RETURM: " O3

1REE0R PRIMT ”ﬂ

ﬂ“:

THEsd OFEM L3101 RETISTY CFOR I=8 T Z°F

PJHSHl-lH‘I' HEL1 FRIMT#] LEMCDLED

122708 FOR T=1 T0O LEMODLIE) FRIMTH#1., 850

TECIE, T 1o ke ASCOHITEIDEE, T 0 llzsT

Tmzein CLOSEL CRETURM

BORORE 1833
.,mHnE I\

The purpose of this module is to allow a small design to be defined on the
screen and then saved economically.

Commentary

Lines 13030—13050: If, in the previous module, MODE 6 is set and then R
pressed these three lines accept the input of a further character which must
bealora2.If 1is pressed, the current cursor square is defined as the top
left-hand corner of arectangle to be saved, 2 defines the bottom right-hand
corner. These two squares are actually outside the design to be saved, they
define an outside border to what is to be saved. The positions in memory of
the two design corners are stored in the array CO. Note that this array has
not been declared since it has less than 10 elements—simply inputting a
value to it will set it up satisfactorily. CO(0) or CO(2) is set to the position
of the cursor in the row, as indicated by PEEK(211). CO(1) or CO(3) is set
to the current screen line number + (actual memory position-screen
start)/40. :

Lines 13060—13280: These lines allow the saving of the rectangle
previously defined.

Line 13070: The print colour is set temporarily to the colour of the cursor.

Line 13080: A check is made that a valid rectangle has been defined ie that it
has length and width). If nct, an error message is printed.

47

The Working Commodore 64

Line 13110: Data for the design will be temporarily stored in a string so a
check is made that the string will not be too long. An error message is
printed if the string is likely to be too long.

Lines 13140—13160: Using the co-ordinates contained in the array CO, the
corners of the rectangle are rePOKEd onto the screen and the user is asked
to confirm the correctness of the rectangle to be saved.

Line 13170; The two strings which will be used are initialised. The two
loops combine to mean that J characters (the width of the design) will be
read from the screen for I lines (the height of the design).

Lines 13180—13190: On the basis of the addresses provided by the loops,
the screen and colour memory are PEEKed, and the values added to the
storage string in the form of characters of that code value. The two strings
thus formed would make no sense printed out, they are merely a simple
way of temporarily storing a series of values without having to set
complicated pointers to a position in an array. After this is done, an
asterisk is POKEd into the screen location and its colour characteristic set
to black, making the processing of the design visible.

Line 13200: A copy of D13 and D2$ is taken, then two more loops are used
to POKE back onto the screen the characters which have been stored,
together with their colour characteristics. Each time a character is POKEd
back onto the screen the two strings are stripped of their left-hand
character, so that it is always the first character of the string which is used.
It is this stripping process that necessitates the creation of a temporary
copy of the two original strings. The sole purpose of these two loops is
really to re-assure the user that the design is going to be saved correctly.

Lines 13240—13280: The design is saved onto tape.

Line 13260: The values in the array CO are saved, together with the length
of D1$ (which is also the length of D2§).

Line 13270: A loop equal 1o the length of D13, saves the values ot the
characters of both strings (ie the values taken from screen and colour
memory). Unfortunately the two strings themselves cannot be saved onto
tape since they may contain non-printing characters which the 64 is not
capable of saving in string form.

48

Chapter 3 The Colourful 64

Testing Module 3.1.3

You should now be able to save a design onto tape. If the redisplay of the
design is satisfactory, it is likely that the saving is being done correctly, but
this can only be fully tested if you subsequently enter at least the relevant
module of the program Words, which is intended to make use of the
designs so created.

MODULE 3.1.4

14818 EEM SAVE SCREEM
DB TR o e o ol e o e o e o ol ol
A PREINT “"SFOSITION TAPE CORRECTLMY. T
HEM RETURM:"; 2%
14@4E PRIMT "

"OCOPEM 1411, "ESCEEEM"
1407568 FORI=ATOHS3 PRIMTH#] . FEEEC1A24+T 0 P
EIMT#1PEEE IS+ CHEST - CLOSEL RETURH
If, during the execution of Module 2, MODE 6 is set and S then pressed,
this module will ensure that the whole of the contents of the screen are
saved to tape. This is done by the uncomplicated method of PEEKing the
contents of the memory from 1024 to 2023 (the screen memory) plus the
equivalent colour memory locations and saving the values. A later
program can read the values from tape and POKE them back into the same
locations.

Summary

This program is capable of providing a great deal of fun but its greatest
contribution is the capacity that it gives you to design complex graphics
with ease, editing them at will and simply calling them up for use in
subsequent programs, You should also, based on the techniques employed
here, have no difficulty with subsequent programs of your own which need
to POKE the screen and colour memory.

Going Further

1) No provision is made to save the screen background colour—it would be
a simple matter to add this.

2) Why not add a display on the bottom line of the screen to show which
mode is currently set.

Artist: Table of one-key commands

f1 Allows redefinition of colour of character under cursor
2 Allows redefinition of screen colour
3 Allows change of print colour

49

The Working Commodore 64

f4 Erases current design

fs Sets or resets RVS

f6 SAVE mode

f7 Dummy mode

8 Allows change of cursor colour

- Allows entry of second colour set in modes 1-3
SAVE mode:

R then 1 or 2 defines corner of rectangle to be saved
D saves small scale design

S saves whole screen

3.2 CHARACTERS

No matter how good the character set provided by a home micro, there is
bound to come a time when the character you want is not available. It may
be that you want to print in another language and use characters with
accents, or in abstruse mathematical symbols, or it may be that you need
something rather special to put the finishing touches to your latest game.
Whatever it is that you need, the 64 is waiting to meet that need with its
user-defined character capability.

When the 64 is started up, all its potential characters are stored in its
Read Only Memory, in a section beginning at address 54248. Each
character takes the form of eight bytes of memory and the 8*8 grid of dots
making up each character is represented by the individual bits of the eight
bytes set aside for each character. For instance, if the eight bytes of
memory for a particular character were 128, 64, 32, 16, 8,4, 2and 1 then, in
binary notation they would be 10000000, 01000000, 00100000, 00010000,
00001000, 00000100, 00000010 and 00000001. Now place those valuesin a
grid:

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

The bits which are set (or on) define a character (in this case a diagonal line)
with each set bit being translated into one pixel on the screen.

50

Chapter 3 The Colourful 64

That’s all very well but since the character data is stored in Read Only
Memory, it cannot be changed—it is permanently set when the ROM chip
is manufactured. Fortunately the 64 provides a neat way around the
problem but to understand it we first have to examine the method by which
the video display is generated.

All the tasks relating to the video screen on the 64 are handled by a
separate chip, the 6567 Video Interface Chip (or VIC II chip). This
workhorse handles both the screen itself and the characters which are to be
placed onto the screen, defining an area of memory in which the screen
information will be stored and another it will draw upon for character
data.

Contrary to what you might expect, the VIC II does not draw its
character data from the ROM at address 53248. The reason for this is that
the VIC II is only capable of perceiving 16K of memory at one time, so with
the screen memory in its normal position at 1024—2023 in the memory,
character data must be drawn from somewhere between 0 and 16383 in the
memory. To achieve this, the operating system cheats a little and makes the
VIC II believe that there is copy of the character set data located at
4096—6143. Whenever the VIC I looks at that memory area it detects the
character set data, despite the fact that in actual fact that area of memory
will probably be filled with a Basic program.

This may seem a little abstruse but it is of vital importance since it means
that, rather than looking for its character data in the ROM, which cannot
be altered, the VIC II looks for the data in Random Access Memory
(RAM), that is to say memory that the user can get at and alter. Of course
it’s not quite that simple. We have already noted that when the VIC II looks
at the memory area from 4096 onwards, it is not actually those addresses
that it sees but animage of the character data in the ROM. Fortunately, this
is a feature of only two blocks of memory within the 16K block, 4096—6143
and 6144—8193. If the VIC II is instructed to seek its character data from
any of the other 2K blocks within the total 16K, then it will not see the ROM
image but will take the data which is actually in memory and treat it as if it
were the character set.

The question now becomes, which block shall we specify? The first one
available is 2048—4095 but this has the slight drawback that it is where the
Basic program starts and POKEing it with new character data will crash the
program. We could use the blocks at 8192, 10240,12288 or 14336, but
unfortunately this would mean that we would have to limit the area
available to the Basic program quite drastically since otherwise there
would be a danger that a large program would overwrite the aiey used for
characters. The solution adopted here is to move the whole area that the
VIC II chip addresses further up into the memory.

You will remember that the VIC 1I is capable of seeing a 16K chunk of
memory at one time, however it is not fussy which 16K block it sees. There

51

The Working Commodore 64

are four such blocks, beginning at 0,16384,32768 and 49152. Moving tothe
block at 49152, while providing the maximum memory area for Basic,
presents the problem that that is where the ROM is, so we shall ask the VIC
I1to address the 16K block starting at address 32768. Having done that, all
that remains is to specify where in that block the character data will be
taken from and where the screen data will be located. There will now be
30K of memory available for a Basic program (2048—32767) and the
potential for a user-defined character set in the RAM above 32768.

No doubt all this seems inordinately complicated. In fact it is simply a
matter, given the 64’s flexible memory structure, of a few POKEs and the
job is done. On the basis of the changes wrought by those POKEs, the
program which follows will allow you to completely redefine all or part of
the 64’s character set and to store your new character set so that it can
picked up and used by other programs.

Characters: Table of Variables

A Single key command obtained by use of GET
Cl Original colour of screen at location CC
CC Current position of flashing cursor in the screen memory
CH Number of current character in character set
CP Pointer to location in memory of character CP
MM Value input to change CP
Pl Row of cursor position on screen
P2 Column of cursor position on screen
PP Original contents of screen at location CC
TT(7,7) Used to allow the manipulation of data for current
character
MODULE 3.2.1
L GEREY e b ot ol o o o oo b ol o o
P1ELE RE FARRANGE MEMORY
11826 Aok
1B 1sE PRIMT CHE
11846 vEOSEL LB RO !t E‘*‘v—_‘-,- 1a%
11850 F‘l W E -". --1 PFI CEEAEG Y AND 25
T1eaa POkE ' .: HiH
P1E7E l AN TiRORE SEVes+T FEEKY
= TR :-:,'
1] F‘ Lok E"["! U RN
11 POKE S6734, FEEK ¢ S6R3 240 iF’l
1 F"rJP E‘:nr:.""f."!-' : I-'E:E £
1) iy
1
1

193
[V

Chapter 3 The Colourful 64

The purpose of this module is to accomplish all the changes to memory
structure specified above and to copy an initial character set into the RAM
area specified.

Commentary

Line 11030: This sets the machine in capital characters mode, since only the
first of the two available character sets on the 64 is going to be usable once
the VIC II stops looking at the ROM image.

Line 11040: These two POKEs set the top of the area available for the Basic
program in such a way that any program entered will not be capable of
interfering with the area of memory set aside for characters. 30K of
memory is available under this setting.

Lines 11050—11060: These two POKEs switch off the keyboard scan so
that no interrupts can disturb the next section of the program and then
make the ROM character set visible to the program by switching off the
normal process of input and output. During the loop that follows, the only
way to stop the program will be to switch off the machine.

Line 11070: This copies the character set from ROM to the memory area
beginning at 32768—this involves the transfer of 2K bytes.

Lines 11080—11090: These switch the normal input—output regime back
on and restore the normal interrupts.

Lines 11100—11110: These two POKE:s first ready the VIC II chip for a
change of memory block and then specify Block 1 (32768—49151).

Line 11120: This location is outside the VIC II chip and is the operating
system’s guide to where screen memory is to be located—in this case
starting at 256*136 = 34816.

Line 11130: The location at which the VIC II expects to find both screen
and character data within its 16K block is dictated by the contents of
address 54272—the upper four bits for the screen, the lower four for the
character set. This POKE sets the upper four bits to 0010, which signifies
the 1K block starting at 32768 + 2048 for the screen, and the lower four bits
to 0000, specifying that character data will be taken from 32768+ 0. TO
arrive at other possible locations in the 16K block, the formula to dictate
the POKE would be (SCREEN START-BLOCK START)/1024)*16 +
(CHARACTERS-BLOCK START)/2048). The screen can only start at a
1K boundary within the block and characters at only a 2K boundary. Note

53

The Working Commodore 64

that we could have left the screen at 1024 and the character memory at
4096, except that in this 16K block of memory as in the block starting at
address zero, the VIC II sees a ROM image at 4096 onwards.

Testing Module 3.2.1

The test for this module is quite simple. Run it and the machine will lock up
for a while—there is nothing you can do to interrupt it. When the READY
comes up on the screen, nothing should have changed—which shows that
the module has worked! If the module has not worked, then the screen will
be filled with garbage.

MODULE 3.2.2

—

f-:fH!'IH [e e o e o ol ol b b e sl e e o e e
FEM FREINT GEID
P T o A A e
A CH==E DIM TTHOV, 7y
2R FRIMT "TINCOFOR I=1 TO 2 PRINT "o
NEPR U CMEXT
«_Eﬁﬂ FRINT "3 "
B CF =R TR DHEE

L]g':"',' PR LN
-,

1R PRINT "R FOR I=CR TD CP+7FOR T

TO & STEF ~1

'}ﬁzﬂ IF CPEEECT: AMD 21I0=21Y THEHM FRIH
i mi it ,

1e 'H~'H IF CFEEECTY AMD Z4T0=@0 THEH FRIMT

L

1?1@@ MEAT T PRIMTHEST 1
118 PREINT "THSICHARACTER HUMEER : FH
e leE THPUT "PMUMEBER TO MOWE FﬂIHTEF
RETEF ., 20" MM O UMM

12128 IF CHOE THER CH=R

2l TR CHX25% THEH Ok=sss
12158 IF M= THEHN 1326886
PRler GOTO 2ada

e 4

There are many ways in which new characters can be entered into the
character memory. You can, if you wish, draw them on an 8*8 grid,
translate the lines of dots into binary and then into decimal, enter the
figures as data statements and then POKE them into the memory.
Fortunately, it is much easier to get the 64 to do the work by drawing the
current character grid on the screen and then allowing it to be easily
manipulated. This module draws the character grid, the next one allows
manipulation.

54

Chapter 3 The Colourful 64

Commentary

Lines 12040—-12050: An 8*8 box is outlined in the top-left hand corner of
the screen.

Line 12060: The position of the current character’s data is calculated.

Lines 12070—12100: An enlarged version of the current character is
printed in the box outlined. Note the use of AND here to get at the contents
of individual bits within the eight bytes of memory for the character. All
that AND does in this context is to compare two binary numbers and
produce a third which has only those bits set which were also set in both the
two numbers originally compared. Thus if 193 is ANDed with 129
(Binary:11000001 AND 10000001) the result is 129 since bit 6 in the first
number is not set in the second as well. ANDing the value of a byte with
21(J) where J is from Oto 7, will show whether bit J is set or not—remember
that bits are numbered from 0-7 right to left.

Lines 12100—12160: The number of the character displayed is given and
the user has the option to move the character pointer within the 255
characters. If zero is input, the program moves on to the next module.

Testing Module 3.2.2

Once again, the test is quite simple. If the module has been correctly
entered, running the program will result (after a pause) in the printing of an
enlarged version of ‘@’ on the screen. You should also be able to page
through the other characters.

MODULE 3.2.3

12000 HEMERE R RSSO
1260168 FEM EEDEFIHE CHARACTER
TZEZR FEMHE R R
1E8E6 PRIMT "0

TTTICREEM 48 SFACED
1agdid FREIMT "@°1 TO IMWERT" ... "W'M° TO
MIERECQRE", ., "®°FE" TO RETUREH"
Laess PRIMT "E°L17 TO IMK IM SCGUARRE":PRIH
T "a @ TO BLAME SRUARE"
12868 PRIMT “E'T7 TO TURH",.."sF TO FL
ACE IH MEMORY?
lﬂﬁ?ﬁ FRIMT "@'D° TO SAYE IH A DATA FILE
HOCT TOOPICKE WP SET FEOM TAPE!
FEIMT " M7 TO HORMALISE MEMORY AH

.Eu

1 &
o EHDY

55

The Working Commodore 64

S1RE FREIMT "@ CUREZOR AREDWE TO MOvE"

]1H FREIHT "

AT HE

: J“FFFI"J1'+FE SR RE R TR P
RN b Lok I T A)

FOEE 2101
TS MEHT POKE OO R ROREE
Ir A= THEN ;

wIHT D~ 3R 16 A48 PE=CD- 0 245 6

17 *r
+4H$P1
13180 IF CP12@ AMD AE= "1 OR CFLOT RRD
FE="m s THEM PRIMT A% GOTO 13124
13156 IF (P28 AMD AE="B") OR (P27 AMD
=Ny THEN PRIMT A% GOTO 13156
AR TF FE=01Y THEM PRIMT “Rig "

IF Ag="@" THEW PRINT "G 3"
G228 IF REFCHOIY THEM 13258

6 FOR I=6 TO 7:FOR J=@ TO 7
7B IF PEEKC 34816+ Td@eTom3s THEM 13

Lo g .
.rﬂclb“»

24],

“-t,“M !HCH 1w 5
T=E TO 7RO Je@ TOFPTTWOL, JTom

lH FHF I= T ViFOR J=@ TO 7
SEEE IF PEERCE4Z1EGER T+ To=100 THEH TTH

J %hIHT“i“' FORI=@TOV FORE J=7 TO BST
ToIF TTHCT . I0=1 THEW FRIMT "Eid e
SECIF TTHCT Jh=@ THEH FREIMT & "

4 HEWT T FRIMT HEST 1

GOTE BgastTY O THER 173450

=6 FHF Imﬁ TV FOR J=@ TO FTTHCL, T
T J. 0

SR FOR D=0 TO FIFOR =8 TOOF

s IF FEREK SIS0 T+ T =180 THEH TTH
P T]

http:PPIt-.JT

Chapter 3 The Colourful 64

MEST J.1
: TH f i 'i” ; l"l AR I=@ATOV FOR J=7 TO @asT
. THEH FRIHT "G "
T, Tren THEN FRINT "3
MEWT TiPRINT:HEHT 1

IF FAEC3"F" THEM 13516

CFOR T=6 700 7:TTHOE, Ti=f MEXT

FOR I=6 TO 7iF0R J=0 TO 7

IF PEEK(34515+40k1 112160 THEN TTH
T 3 OOR ETCTT

FOFOKE CPATLTTHCR, Do HE

HF‘FH LI AT A '::'

FHF T=8 Ti) 264 Tm ---- rrrir,57n~+r' F
S TaHERT

1 LOEE 1

IF Aga THFH 135
IWEH I.Ln. FUHER A TERS
- I~==l?..1 T 2847 IMPUTEL, T POEE 327

'w"u" THEM 13656
POKESE, {668 TLR

R R RS N R

-H,iPEEthuq.mcHHDEEE?URS

LETRR R IR RN it

This module performs a variety of functions to do with the manipulation
of the character on the screen, allowing it to be redefined, placed back into
memory and SAVEd to tape among other things.

Commentary

Lines 13030-13100: Brief instructions for the use of the module are
printed on the screen.

Lines 13120—13160: This module holds no surprises. It is simply the cursor
flash routine from the Artist program.

57

The Working Commodore 64

Line 13170: Cursor position:P1 is the row down from the top of the screen,
P2 is the column across from the left.

Lines 13180—13190: Limits of cursor movement with the 8*8 square.

Lines 13200—13210: Pressing 1 inks in a green square, pressing 0 blots outa
square.

Lines 13230—13270: These two loops scan across the square reversing the
inked-in or blank elements, thus producing an inverse character.

Line 13280: Input of R returns to the previous module.

Lines 13290—13360: This routine produces a mirror image of whatever is
the grid—ie the character is apparently seen from behind.

Line 13300: The array TT% is cleared.

Lines 13310—13330: The contents of the screen are transferred to the
array. The screen cannot be manipulated directly since this might resultina
square being transferred from the left to right and then read twice,
producing nonsense.

Lines 13340—13360: Having transferred the contents of the grid to the
array the information is now read back onto the screen but the horizontal
element is reversed so that position 7 is placed into position zero.

Lines 13370—13440: The contents of the grid are turned 90 degrees
anti-clockwise.

Lines 13420—13440:; The contents of the array are put back onto the screen
anti-clockwise—thus position 0,7 becomes position 0,0 and position 0,0
becomes position 7,0.

Lines 13450—13500: The redefined character is placed back into the
character memory. It now becomes a permanent part of the user-defined
set.

Line 13460: Since only eight bytes are required for each character, only
eight bytes of the array, line zero, 0-7, need be cleared.

Lines 13470—13490: Each line of the array is scanned and when an inked-in
square is detected, it is translated into a single bit in one of the eight bytes
used to define the character. Having used AND to read individual bits,
note the use of OR to manipulate individual bits. When two binary

58

Chapter 3 The Colourful 64

numbers are ORed, all the bits which are set in either {or both) are set in the
resulting number. Thus to OR a number with 2](J), where J is from 0 to 7
means that bit J will be turned on, regardless of whether it was on or off
before.

Line 13500: The eight bytes of the array are placed into the memory at the
position previously occupied by the character which has been redefined.

Lines 13510—13540: The area of memory starting at 32768 is stored onto
tape in the form of integer numbers.

Lines 13550—13560: A previously stored character set can be picked up
from tape for further manipulation. NB This is also an example of how
your new character set can be picked up by another program for
subsequent use.

Lines 13590—13650: If the program is terminated, the memory must be
reset to its original condition—unless you wish to go on using your new
character set with another program you are going to load. Failure to reset
the memory would mean that subsequent programs will be deprived of 8K
of memory and forced to use the redefined character set.

Line 13600: Basic is reset to its full potential size.

Lines 13610—13620: The bank of memory addressed by the VIC I is reset
to 3 (0-16383).

Lines 13630—13640: The screen is reset to start at 1024 (its normal
position) and the character memory reset to 4096 onwards.

Testing Module 3.2.3

Since this is a long module with a variety of functions, it is suggested that
you test each function as it is entered. Note that if a particular function is
faulty and you have entered changes to a line, there is no need to RUN the
program from the start. Simply GOTO 12000 since the character set, which
is above the Basic area, and the memory structure are undisturbed by the
entry of new lines. If all is well, the functions described in the commentary
will be available.

Surnumnary

This is, as you will discover, an extremely enjoyable program to use, purely
for its own sake but its real power comes in what it can do in livening up the
output of your other programs, Because it does not actually relocate Basic,
only limits the space available, new programs can be loaded into the

59

The Working Commodore 64

machine to make use of the redefined character set. If the machine has been
switched off since the character set was redefined, or the memory
normalised, all that needs to be done is to add the first module to the front
of subsequent programs (minus lines 11050—11090) and then to load the
redefined character set from tape using the routine at 13560—-13580. But
do remember that if you redefine the letter A as a space invader character
then every A output by the program, even in the program listing, will be
redefined. For the sake of legibility it’s usually better to stick to redefining
the graphics characters!

Quite apart from the general usefulness of the program, however, you
have also been introduced to some of the possibilities opened up by the 64°s
flexible memory structure and the techniques necessary to make the most
of what is available. If you want to look further into memory manipulation
you will need to get hold of a copy of the Programmers Reference Manual
—with this program under your belt you should have no difficulty
understanding and applying what you find there.

Going Further

1) One simple addition to the program would be a routine to allow the
position of two characters to be swapped, or for aredefined character to be
placed at another location in the character set.

2) Making up a whole new character set with this program would be
extremely time consuming. Why not try adding some block manipulation
commands which would allow you to invert, turn, mirror etc. a whole set
of characters between specified limits. Program listings look extremely
interesting with all the letters upside-down!

3.3 SPRITES

With the Characters program entered we have prepared the way for an
examination of one of the features of the 64 that other micro-owners can
only dream of —sprites. With the advent of the 64, gone are the days when
only machine code programmers could make high-resolution designs move
smoothly and easily around the screen with an eerie realism. In the field of
games especially, sprites represent a revolution in affordable micros.

In essence, a sprite is very little different from the user-defined
characters we have been experimenting with. A great deal of technical
imagination and competence has gone into the creation of the sprite
facility, but when it comes to the user’s part, a sprite is just a larger
character which can be more flexibly moved around the screen.

Like the characters of the normal character set, sprites are defined by a
series of bytes stored in RAM. Instead of an 8*8 grid, however, sprites usea
grid which is 24 dots across by 21 down. Clearly this cannot be defined by
the 64 bits present in eight bytes. In fact, each row of a sprite is defined by

60

Chapter 3 The Colourful 64

three bytes (24 bits) and, since there are 21 rows, it takes a total of 63 bytes
to define a sprite. Sprite data can be stored at any secure place within the
16K block of memory addressed by the VIC II. Within this block, up to
eight sprites can be defined at any one time but many more sprite designs
can be held in reserve, if necessary, for instant activation

The main locations in memory which control the use of sprites are as
follows:
a) 2040—2047: These eight locations are the sprite pointers. Their function
is to indicate where in the 16K block the data for any particular sprite is to
taken from. Since sprites are stored in blocks of 64 bytes (though they only
use 63), the 256 values that can be POKEd into each pointer allow them to
cover the whole of the 16K block. Thus, the data for sprite 2 will be taken
from the memory at 64* PEEK(2042).
b) 53269: The sprite enable register. A sprite is only visible when the
corresponding bit in this register is set.
¢) 53248—-53264: The sprite position registers. These work in pairs from
53248 to 53263, defining the X and Y co-ordinates of the top left-hand
corner of the sprite grid on the screen. However, since the screen is actually
wider (320 pixels) than the maximum value storable in a single byte (255),
one bit at location 53264 is used to remember whether the position of each
sprite on the X axis is more than 255. This gives a total of 512 possible
positions on the X axis and 256 on the Y axis.
d) 53287—53294:The sprite colour registers. Each sprite can take on any of
the 64’s 16 colours, simply by POKEing the correct value into the appro-
priateregister. There are in fact more locations than this which are relevant
but these will do to be going on with.

The final issue to be decided is where to put the sprite data. If you only want
three sprites, then a practical place is the Cassette Input—Qutput buffer
which is located from 828 to 1019 (obviously you can’t load or save data
while the sprites are located there). If you want more sprites than that then
you must set aside an area of memory for them, exactly the same situation
as with user-defined characters. For the sake of variety, for our
sprite-defining program we shall adopt a different solution to that offered
for the Characters program. What we shall do is shift the start of the Basic
program from 2048 to 4096, thus leaving ourselves 2K of memory in which
to store up to 32 separate sets of sprite data. This is convenient in that it
involves absolutely no shifting around of the video memory
structure—what it will involve, however, is a resetting of the Basic start
address before the program is loaded.

Having done that, the program, like the character generator, will allow
the definition and manipulation of the sprite grids and the option of saving
them to tape for use by later programs. The simplest way to enter this
program is to first load Characters and adapt that program.

61

The Working Commodore 64

Loader Program for Sprites

The following lines are NOT part of the main program, they are intended
to be entered into the 64 and saved onto tape before the main program is
entered and saved. The function of the program is to reset the beginning of
Basic and then to load the main program into the reconfigured memory:

100 REM********************************

110 REM LOADER

120 REM*® ##H ko sk koo ook sk skook ok ook o o o ok
130 POKE43,1:POKE 44,16:POKE 4096,0:CLR
140 LOAD ‘SPRITES’

Commentary

Locations 43 and 44 are the pointers used by the system to the beginning of
the Basic program, normally containing the values 1 and 8 (location
1+256*8 =2049). All that the main line does is to alter this value to 4097.
The first program byte must always be a zero, so this is POKEd in then the
memory is cleared, completing the reconfiguration. When this has been
done the main program is loaded automatically. At the risk of boring you,
remember that this is NOT part of the main program—to include it at the
beginning of the main program would chop off the first 2K of the program
when it was run.

Sprites: Table of Variables
(where different from Characters)

SP Address of current sprite pointer

SC The address of the sprite colour register

SS Start of sprite data

FNS(SN) Start of block of data for sprite SN

SN Sprite number

TT((20,23) Array for temporary manipulation of sprite data
MM Value to move SN

MODULE 3.3.1

F'EH##*IW4"1‘+*“I‘-I*I‘.i#?#*?ﬁ#?#??ﬂéﬂ'?*?ﬁ#?ii# s ek
2 REM SET UP SPRITE POINTERS
P%M#¥#+¥+++++*++#+¢#++##¥+¥¥¥#++#
R =S S .
DEF FHE(SH:
Cheo ITH TT72050, 2595 POKE 53281, 6

The variables declared here are explained in the table of variables.

62

Chapter 3 The Colourful 64
MODULE 3.3.2
5 REM FRINT GRID
1A PEH¥++#+++#*+##++##++#+++**++fﬁ#
% FH%E? s, 1 PORE 53287, 1 POEE SFLF

nakukf SEE4L 0 POME SZze4. 1 POKE SEE

TagEd PRINT "0 FOR I=1 70 131:RRINT "0E
Ll ﬂﬂﬂ&ﬂh!iﬁﬂhﬁ!lﬂﬂlhﬂhl”
12868 PRINT "THEkinEEbEERDrERERRDRNRNEE:"

5; ERIMT "l
13080 PRINT " ERsEaEsEaERE LN L AR

fE)elt FFIHF “@ﬁw' FOR T=FREOSMY TO FHE0E
w WTER 2FOR J=0 T0 2

131688 FOR L”? T8 STEF ~1

1a11e IF CPREEKCI+HTY AHD 2t =21 THEM PR

Tl{T ll”ll'

1 IFH IF CFEERECTHTY AMD 21 =0 THEH PREIH

a 33 MEST Ko T FREIMT -HEST 1

H14@ PRINT "YROESIGH HMUMBER: " Sk

1 5E]HFHT “HHNPEF TO MONE FPOTHTER C@=p
EIEF. MG R Rt R e CE g R

= EE IF EMCE THER Sh=@

21TE IR BMZEY THEM Sk=21
A1EE IR M= THEM POKE S3248. 8 POKE 532
S 1 POEE SE243, 280 - G0T0 143f“

Al GUTO 1S

Almost exactly the same as the grid drawing module in Characters.

Commentary

Line 13030: 53269 is the sprite enable register—this POKE sets bit zero and
turns on sprite 0. 53287 is the colour register for sprite zero and the POKE
sets the colour to white. The sprite zero pointer is set to point to the first 64
byte block in the reserved memory area.

Line 13040: Sprite zero is set at 256 on the X axis and 80 on the Y axis.

63

The Working Commodore 64
Lines 13050—13080: The outline of the grid is printed.

Lines 13090—13130: The [loop looks at the sprite data in groups of three,
the Jlooplooks at each byte, the K1oop looks at each bit. A circleis printed
for each set bit.

Lines 13140—13190: The user can move the sprite pointer. Note that it is
the area of memory pointed to by the sprite pointer, not the actual sprite
pointer that is changed. In this program we shall always be using sprite
7ero.

Testing Module 3.3.2.

On running this module (remember that the loader program must first have
been run) a garbage sprite will appear to the right of the grid and the
individual dots will be filled in.on the grid. It is sometimes difficult to see
the correspondence between the two because of the automatic shadowing
placed into sprites. Two set bits on the same line with a space between them
will actually appear as a block of black.

MODULE 3.3.3

PIEE REM SRR AR A
G168 REM REDEFIME SFRITE
2 FLE M A o A R A A
V30 PRIMT "0
A REM 39 SPACES

14
14
146
146

14248 Fr=" MeeRbREDRRRENRERRNGRNERENR]"
14258 PRIMT FE:"a°1° IWVERT"
14868 PRIMT F£: "R M7 MIKRORE"
14878 FRINT F2: 3R EETURHY
14826 PRIMT F£:"E°17 IHk IHY

14336 FRIMT FE:"9°6° BLAMK"

1416803 PRIMNT F&:"R°T7 TLHEM"

14118 FRIMT F3:"a7F7 MERORY"

141268 FRIMT F£I"RD7 ZAVE"

141326 PRIMNT FE:&7L 7 LOARDY

14148 PRIMT F "W E7 EHDY

14158 PRIMT F£i"oARROME MOVE"

1418 PREIMT "8

1417e DET AF

141 W CC=PEEK 21 v+FPEERCE1D M 255+PEEK (28
W FP=PRER OO C1=00290+ 00~ 182
1419@ LE=FEER LY

Tqzae FOKE CC.42POKE C1,1

64

Chapter 3 The Colourful 64

14216 FOR I=1 TO 15 HEAT:FOKE CCLFPPOKE
C1.020 IF AgE="" THEH 1417@
220 FL=INTCO00-1E240 /40 0 FEsCi- | 1E24+d

CR1IE AMDY FE=UT100 OF CFLOZR FRD
d THEM PEIMT AE: G070 141768

ddet TF CFEFE AMD FHE=TY D OOR O CPZC2E MMD
Hf*"M”" THEM FRIFNT HE GOTO 14178

19258 TF AE="1Y THEM FREIHNT "kl GOm0 1
417

Td2ed IF Ag="i" THEM PEIMNT “58 R Gl

IF AFCETTY THEM 14330
th iﬂﬁ T 2 FOR J=6 TO 23
DB THAE+ =3 THEM 143168
de T 0 EE FORE 35238+d 0%

4pju FHIF luhn
AT B2 GOTO 14

d lﬂ FikE 182d- Tad@eT om] cPORE S5 RE-rd G
F1 181
4
4
G

MEWT T, T:GOTO 14176

@ IF A¥="F" THEM GOTO 136328

G IF AFC3UM" THEM (4428

0 FOR D=0 TO 26 FOR J=A TO 23:TTHOI,
B MERT T T

S FOR I=6 T0 2080 FOR Je=@ TO 23

370 IF PEEKC1024+48%1+10=160 THEM TTHe

L rlE AT I 1

A PRIMT S FORT=@TOZE FORE J=20T0E w
CIF O TTHCT. Toa=) THEM FEIMT "hﬁ LA
e IR TTHOL, To=8 THEM FRIMT "& "

41 MEST T RPRIMT HEST G070 1417@

. IF HECXTY THEM 14566

Bk Te=k TO 26RO J=8 TO 223 TTHCL,
wid D EST T]

A48 FOR I=@ TO 26:FO0FE J=@ TO 26

4450 1F FEEKC1B24-+4B¥I+T=21 THEM TTH(Z
AT FF-T g

1445@ MEST J.1

134V PREIMT"S" PORI=ATOZE FOR J=23T08 =
TEF=1:TF TTaCT . Joa=1 THEM PEINT "Ewl" .
TadEe IF TTHOL, Jr=0 THEM FRIMT "& 0"
ldqﬁu HEST JIPRIMT S HESAT T:0G0TO 14178
14566 TF AFCEURY THEN 14565

14

65

http:FiI��.II

The Working Commodore 64

145168 FORE I=60 TO 28:F0F J=G TO Z2:TTH0I.J
puml i HEET T,
14528 FOR I=6 TO 20:FOR J=G TO 2:FOR K=3
T
14558 IF FEEE C1@24 3% T+ TH5 -+ 3=21 THEH T
Tl Ja=TTHT . V'EE T e
11'1H Hr Tk
14556 FORIs= ﬂ1H“H Fog J=@ TO 2 POEE FHSOS
Mo TR+ T TTEOT T MEST J. 1G0T 12058
1458 IF FRECEYEY THEM 14628
14578 FREIMT " selulelan]aTeTelel sl s e e nTnl el e el u el sTe ok i
Cid MARY SFRITES TO BE SHWEﬂi“JHH
Ta&EEE IR MR HF FHEZE THEM 1457
145926 OPEM 1.1.1,"S5PRITES": PFIHT#l HH
146688 FOR I=@ 1u B d -] Ta=PERER (S5+] 5 F
RIHTHL . T HEXRT
1deii CLOZE 1
Tacad IF Hi”T”L“ THEM 1Asea
Taeze OFEM L1108, "SPRITES" C THFUTHL HH
1adadE FOR I=B TO Hbsed~1 C THPUTHL . T FOKE
SFAT T HERT
14a56G CLOSEL
Tdeas IF HEC:YE" THEM 146268
14678 POKE Soa2ebH. @ PORE 432
ClEE ZRG=, B CLRF EMD
A TF HECHDEY THEM 147968
146598 THFUT v orleleTn]RTa]sTale]nTe e W a] e eTa]nTa e o g &1]
MEER TO ESCHEMGE WITH: " S2
17 TR S2as OF S2231 THEM 14690
14?1@ FOR I=FRDOSRe T0 FHECsk >+ LET T1
=FEERCT FOKE T, rFFPuT!Frﬁn FHE OS2
11? 7 FOKE T+FHECEM I ~FHS O “
14758 GOTO 12666
14748 IF R0 THER 14mdE
14756 IF |FF!="”?FWHHD 1=1 THEHM FEE 532
YL B GOTO 14176
147EE THRFUT * GesaleaInTelaTeTnlnls] Tl n ol el eTeTede e T f-1F
LT COLDUR FOR 81 c@-150 " 000
1477R IFC1ICAOREC I 1S THEMPRIMI T
HGOTO 14768
147EE IWPLT v ﬂ-ﬂﬂmﬂ‘lﬂmli[!'I!'IFIEIE'IFIBIEZFTﬂIBIﬁIﬁIFI!'IFIIHF
AT OO FOR 1@ 8-S ok

SLUPOERE 440 80F

66

Chapter 3 The Colourful 64

1470 TFC2CB0RCE 1S THEMPRINT
VIGOTO 147E0
14EAR THFUT FaiaaDesale e a e oI e aTaToTe0] 1P
UT COLOUR FOR 11 (B=15): 03
14516 IFCECRORCE ISTHEMPRIHT
IGOTO 14866

14820 FOKE S2285. (PEEK 52225 AHDE4R0RC1
P SEET . CPEEK CSEEET I AMIEE) RS
145 '

T
G

] ke = JOREERCRIZESY AMD 2480 O
FoCe s POE 1GOTO 14178
1446 i

This module serves the same purpose as the character redefine module in
the last program.

Commentary
Lines 14050—14150: Instructions for the use of the module.

Lines 14170-14210: Standard cursor move module.
Line 14220: Row and column of the cursor on the grid.

Line 14330: R returns to previous module.
Lines 14340—14490: Clockwise turn.

Lines 14500—14550: Redefined sprite is placed back into memory. The I
loop scans each row of the grid, the J loop scans in groups of three bytes,
the K loop scans each bit.

Lines 14560—14610: The sprite data is saved onto tape. The user has the
option of declaring how many sprites are to be saved. This makes it
possible to save three sprites, which can be stored in the tape input buffer of
a subsequent program.

If any sprite is called up from tape for further manipulation, sprites
currently in the memory are lost.

Lines 14660—-14670: This routine switches off the sprite, normalises the
memory and cnds the prograin.

Lines 14680—14730: X allows the current sprite data to be exchanged with
data at another position—particularly useful when making up a set of
three.

67

http:COL.OI..JF

The Working Commodore 64

Lines 14740—14830: This routine enables the user to enter or leave sprite
multi-colour mode.

Line 14750: If multi-colour mode is set (ie the corresponding bit in the
sprite multi-colour register at 53276 is set) and this function is called, then
multi-colour mode is reset (turned off) for sprite zero.

Lines 14760—14800: The enigmatic 01, 10 and 11 in these prompts refer to
bit combinations on the sprite grid. When in multi-colour mode, the sprite
is regarded as having only 12 dots across (though they are twice as long).
Bits are read in pairs from the left and, naturally, form pairs of 00,01,10 or
11. Each of these three combinations will produce a different colour in
multi-colour mode,with 00 being the screen background coloured by the
sprite multi-colour register at 53285. The 10 colour is dictated by the
ordinary sprite colour register. 11 colour comes from the sprite
multi-colour register at 53286.

Testing Module 3.3.3

All the functions described in the commentary should be available once
this module has been entered. As with the equivalent module in
Characters, it is better to test each function as it is entered.

Summary

A little thought about this program will demonstrate just how easy sprites
are to use once the functions of a few memory locations are understood.
The program itself will provide an endless series of sprites which can be
stored for future use on a separate tape. The techniques contained in the
program will make it a simple matter to make the best use of such sprites in
your own creations.

Going Further

1) The program makes no provision for one other sprite function, and that
is the expand capability, which doubles the height or width of the sprite
(same number of bytes—just made longer). This would be a simple matter
to add since all that is involved is setting the corresponding bit in the
register at 53277 tor the horizontal expansion and 53271 for the vertical.
For the purposes of this program the correct bit is zero.

2) It would be useful to be able to pick up only part of a set of sprites from
tape, say one at atime, to decide whether you wanted to compile it into the
current set. A slight change to the load routine would enable you to do this.

68

Chapter 3 The Colourful 64

3.4 HI-RES

Though the possibilities provided by user-defined characters and sprites
are almost limitless, the 64 does provide yet another major graphics mode,
bit-mapped graphics. What this means is that rather than being able to
address a minimum of one of the 1000 character squares on the normal
screen, the user is able to set any individual pixel (short for picture element)
or dot on the screen. In this modeline drawings and curves can be drawn on
the screen, though to make the fullest use of it you will need to get hold of
the graphics extension cartridge for the 64, which will provide you with a
variety of flexible graphics commands.

To understand the program given here it is necessary to know a little
about the way the bit-mapped screen is set up. The screen itself contains
320*200 separate positions, a total of 64000. In order to store each of these
separately, 8000 bytes of memory are needed, providing 64000 individual
bits. Each of the standard character positions requires eight bytes (the 8*8
grid that we used for user-defined graphics). Starting from the top
left-hand corner of the screen, the first 8 (0-7) bytes of the screen memory
are used to create what would be on the normal screen the first character
position. The second eight bytes form the second 8*8 grid and so on along
the line. Since there are 40 character positions in a line, each line takes 320
bytes. In actual fact, because the bit-mapped mode enables individual
pixels to be addressed, this line of 8*8 grids is capable of holding eight
single pixel thickness lines (though if you drew them all it would look like a
solid bar).

The 8K of memory necessary to hold the bit-mapped screen is obviously
not storable in the normal 1K screen memory nor, in fact, can it even use
that area as a part of its area, since 1024 to 2023 is used to store colour
information for the bit- mapped screen. The solution adopted in the
program that follows is to locate the screen beginning at 8192, leaving 6K
of memory for the Basic program, with the option of relocating Basic if the
program is developed and lengthened. Using the program given here you
will be able to use the bit-mapped screen as a sketch-pad, using either the
cursor move arrows or a simple line-drawing algorithm to create a design
on the screen.

Hi-Res: Table of Variables

DX Distance between ends of line along X axis.

DY Distance between ends of line along Y axis.

FN PE The value that must be POKEd into PP to erase pixel
X,Y.

FN PP The location of the byte in which pixel X,Y falls.

FN PV The value that must be POKEd into PP to set pixel X,Y.

MO The current mode of the program.

SC Start of screen.

69

The Working Commodore 64

SL The slope of the line to be drawn.

X1,X2 X co-ordinates of ends of line to be drawn.
Y1,Y2 Y co-ordinates of ends of line to be drawn.
MODULE 3.4.1

1EEEE REMH ek
18818 REM IMITIALISE HI-RED SCEEEH

1AGZA FEM$E S g i
12z CLeg=""IHPUT "TICLEARR SCREEEH oYM
COCLE

1BRZS REM FOEE 44,84 FORE 43, 1 FIOKE 1633
B LR

18827 DEF FHFP O =S0e R @ THT O 20+ 2 THT ¢
ASETRY MDD T

o DEF FHPWOA=PEEKOFMPRF GO OR (2107
 HHD a0

]ﬁﬂ;f DEF FHPF' A=PEEKCFHER GO D AMD 255

.'mf

o FOKE

nas IF ﬁftirﬁ“’THEn 1mmnm'”

IBEan FOR 1=5C TO SCHTEDEPOKE 1,80 HERT
1EE5E FOR I=1824 TO 2023 POKE 1.6%1e4+1:2:
HEST

VREISE MOXOAT =2 MOKRC LY =5 MOXC2 =10

This module configures the screen memory for the bit-mapped mode,

defines some useful functions and clears the high resolution screen.

Commentary

Line 10025: The POKEs in this REM statement are not necessary for the
running of this program. They are included in order that if you wish to
expand the program in such a way that it may overrun the screen at 8192
and onwards, you will have the necessary information to relocate Basic. As
with the Sprites program, the POKEs should be included in a loader
program which is run BEFORE the main program. The program as given
here works happily within the 6K of memory up to 8192—there is no

necessity even to set a limit to the top of Basic.

Lines 10027—-10029: The use of these functions is given in the table of

variables.

70

http:OR32:SC=81.92

Chapter 3 The Colourful 64

Line 10030: 53272 is the register normally used to control where the VIC 11
looks for character data, in this case it will dictate the beginning of the
bit-mapped screen. POKEing 8 in here sets the screen start to 8192.
POKEing 53265 with 32 sets the bit-mapped mode.

Lines 10035—10040; In Line 10022, the user was given the option of
clearing the screen. During the development of the program, when the
program is stopped and RUN—RESTORE pressed, alterations can be
made to the program without affecting the contents of the screen at all. On
running the program again it saves time not to have to clear the 8000 bytes.

Line 10050: This line clears the normal screen memory area, which is now
employed to hold the colour data for each of the 1000 normal character
positions.

Testing Module 3.4.1

On first running the program, the screen should immediately fill with
garbage. Gradually this will clear, leaving a screen which may still be
covered with coloured squares corresponding to the position of characters
on the normal mode screen. These too should then begin to clear and the
screen be set to white. When the module is finished, press RUN and
RESTORE to return to normal mode.

MODULE 3.4.2

T LG R bl o o o o o o o o o e o o e e

Pl BEM DEAM O SCREEM

1L e ey e o e o o 0 0 o o e o o

T1AZ6 w=1ef =28 ml=1 FOKE 1824, (PEEKCLE
A aFEMTEAE Y R M
L1G@a@ TT=PEEK CFMFF =

11R42 GET MAE: TR FE THEM 116856

110144 rﬂhE FHrrf%W.FHPﬂuH" FORE FHFFCAY .
FHFE 0 11642

11858 POKE FHPE ST TT

I1asa IF MOCE THEM sk CRE="0" AMD #0331
pECAE=CRE AMD HE

1186z IF MD=3 THEM FspE- @ RE="n" PAHD =
16018 CRE="1" AMD H 16

11678 IF RMOEE THEH Yo=Y dSE=tme BHD Y191
ACAE="TT OFAHT YRR

11872 IF Wl=3 THEM Y=Y l0%RE="H" AND Y4
TEm e LS E="TT" AMI Y100

11875 IFAE="#®"THEM FMO=P0] 0P 0 P02
S POKE LEZ , CPEEK C 1024 s HHDZ4E 10RO)

71

The Working Commodore 64

116 IF MO=1 THEHM FOKE FRHFPF D CFRPY O
11K IF Mi=a THEM FOEE FHEFOSD FRFE O
111 IF AE="1" THEM #1=k:iY1=Y

1 IF RE="gh THEM sy =)

11 PFoAE="0" THER GOELE B

Pleee GOTO 11840

Piams GOTO 11435

This module allows a flashing pixel to be moved around the screen, inking
in and erasing individual pixels.

Commentary

Line 11030: X and Y are the co-ordinates of the pixel on the 300*200
screen. The flashing pixel cursor is set to the middle of the screen. The first
position in normal screen memory is POKEd with a value which produces a
colour indicator of the current mode (black=0,red=1,
purple = 2,blue = 3). Effects of modes will be explained later.

Line 11040: The state of the screen at the position at which the cursor is to
be flashed is obtained.

Lines 11042—11050: The cursor is flashed on and off until a key is pressed.

Lines 11060—11072: In mode 3, pressing the cursor arrow results in the
flashing pixel moving 10 positions in the required direction (within screen
limits). In modes 0,1 and 2 the cursor moves only one space at a time.

Line 11075: The unshifted function keys, from top to bottom, are used to
set the modes. If the mode is changed the colour indicator is changed.

Lines 11080—11090: If the mode is zero (black) then the pixel at the cursor
position is blanked. If the mode is 1 (red) then the pixel is inked in. The
remaining two modes allow the cursor to be moved around, slow or fast,
without affecting what is on the screen.

Lines 11100—11120: These inputs relate to the next module.

72

Chapter 3 The Colourful 64

Testing Module 3.4.2
You should now be able to move the tiny cursor around the screen, drawing
or erasing.

MODULE 3.4.3
GG REMHREEEE R R R
REM LIHE TIRALTNG
AR
1]

e LB Ts Ee LB O

1 F HL-iP?'}HF”Lﬂﬂﬁ THEM 12560

K 1 -I N"‘Jn wd

RN i o T

MODE=1 THEM POKE FHEE s, FHEY

1eEse T

J"ri‘ur IF MaDE=8 THEH PORE FHPPOS) FHPECS
:; TFosl e THEM YWY+ SGH T s D8 eSl -1 00

. o T AT

b ‘]1 Toda TEWT 1

FETL lF‘H

s T AT), B

Rk T=1 T HJ 1 ﬂ

IF MODE=1 THEH r'LJl’ B FRPR D PR

—

IF MODE=E THEM FOKE FHPFORD, FHPE S
SLIE THEM MsM+SGHCDRY SL=5l-1 0

=l ,”_.1 .E o Tl' T
i PHERT T

This module provides for the drawing of straight lines between points
defined by the user. It is an adaptation of a method known as Bresenham’s
algorithm and a version of it is often used in those Basics which have line
drawing commands.

Commentary

Line 12025; The values X1 and Y1 were defined when the user input 1 —at
that point they were set equal to the X and Y positions of the cursor. X2 and
Y2 were set on input of 2. The line will be drawn from X1,Y1.

73

The Working Commodore 64

Line 12030: DX and DY are set equal to the distance between X1 and X2,
and Y1 and Y2, plus one. The SGN function means that it does not make
any difference if the distance is positive or negative (if it is negative then
minus one will be added rather than 1).

Line 12032: The line-drawing algorithm uses the greater of the two
differences as the basis of its calculations so it is faster to have two separate
routines.

Line 12035: SL is the slope, or ratio between DX and DY minus 0.5.
Lines 12040: The loop is as long as the difference along the X co-ordinate.

Lines 12050—-12055: Depending on whether the modeis O or 1, asingle dot
on the line is erased or drawn. Note that nothing will happen in modes 2 or
3.

Line 12060: According to the ratio between DX and DY, SL may now
indicate that the next dot should move up or down the Y axis. If sothe Y
position is changed and SL is reduced by one.

Line 12070: The slope value is added to SL each time a dot has been
printed.

Line 12100: The X position is incremented for each iteration of the loop.
Once again the SGN function takes care of lines which move backwards
along the axis.

Lines 12200—12250: Exactly the same routine for those cases where DY is
greater than DX.

Testing Module 3.4.3

You should now be able to specify a start and end point for a line (1 and
2)then to draw it or erase an existing line, depending upon whether mode 1
or 0 is set.

Summary

This program is intended as no more than an appetiser for the possibilities
raised by the bit-mapped mode. Full use ot bit-mapped graphics requires
some careful thought as to what you wish to achieve and some often
complex mathematics to achieve it. Should you decide to go further, the
techniques given here, and the functions used to locate individual pixels,
will make the task that much easier.

74

Chapter 3 The Colourful 64

Going further

1) Why not add a facility allowing the saving of a screen of graphics onto
tape—you’ll need a fairly long tape but the routine would be simple
enough.

2) Computer graphics books provide a number of algorithms which allow
the drawing of circles and arcs. Why not add a module to the end of the
program to achieve this—the main drawback will be lack of speed.

75

CHAPTER 4
The 64 as Secretary

Sooner or later, most micro-owners realise that their new digital friend
really comes into its own when it is storing information, processing it and
presenting it in a variety of ways that would be laborious in the extreme if
done manually. They then begin the task of writing simple programs which
will store their friends’ names and addresses or catalogue their record
collection. They may end up with half a dozen programs, each limited to a
single use, and yet each program employing much the same methods.

In this chapter we begin a section of more substantial programs by
examining how a single program can be written to satisfy a wide variety of
filing needs without the constant need for rewriting every time a new
application comes along.

4.1 UNIFILE

The first program is called Unifile and, in the form presented here, it is
capable of storing up to 500 entries, as well as allowing the user to search
through them for named items, to amend entries and to delete them. Quite
apart from the wide applications of such a program, I hope that the simple
act of entering it and understanding the methods used will provide you with
a host of ideas for further applications.

Unifile: Table of Variables

IN Flag indicator used to show whether the program has
been initialised.

A% (499,X-1) Records the length of individual items in each entry.

A$(499) Main file array.

B$(X-1) Holds names of item types for each entry.

FF Flag indicator used to determine whether a user search
has been successful.

IT Number of entries in file so far.

PO Used in binary search to ludicate nuiber of scarch
samples necessary.

PP Pointer to start position of current item to be printed
from an entry.

R$ Separator for use in saving data on tape.

77

The Working Commodore 64

S1 Temporary search pointer for user search module.

SS Main search pointer in binary search module.

T1$ Temporary storage string used to build up new entry.

TI1%(20) Temporary storage for length of items being built up
into new entry.

X Holds number of items specified for each file.

Z Indicator for number of program function to be called

up from main menu.

MODULE 4.1.1

T 1EAEY IR T ab b gl s o e s e e e e g e e ol ol
Llate EEM MEML

11656 FLH++++¢¥+#*+#+#+*¥**+**+**+#+++*
11820 POKE S3221. 7 FREINT "TTdhbkbhE RN
PRBICERIFILE"

114l FRIMT "AEERCOMMANDS RYATLABLE "
116858 PRINT "Ry 1PEMTER THFORMAT IOH"
Pleed FRIMT "m0 ZSERECHASDTSPLAY S CHRMGE
11878 PEIMT "8 =3DATH FILES

TigsEe PRINT "H 425ET UP MEW FILE"

118268 FRIMT @ SaETOR

11188 IHPLT "MERIHTCH DO YO BREQUIRE Y2
FRIWMT "%

111l IF 3 0O IM=1 THEM 11146

11128 PREIWNT “TIlelslelelevichEhpRERERECOT IHIT
TALISED YET."FOR I=s1 T 1068 HEST

1113E GoTo 1 1A0E

11148 OW 2 GAOSUR 13086, 1 7EAG, {=ER5E . 12EE6
yI11E@GOTo 11663

111568 PREINT " elelelasiseleiiehikmbhnniichr 11 IHG

=YETEM CLOSED" EMI

The purpose of the module is to present all the functions which the
program makes available and to allow the user to make a choice
between them. As a rule of thumb, any complex program which does
not begin with a clear-cut menu of what the program does, is a bad
prograin. And if you don't agree with that statement now, you
certainly will at some time in the future when you have to return to a
complex program which has not been used for a few weeks and find
youself spending half an hour going through the listing trying to
remind yourself what it does and how.

78

Chapter 4 The 64 as Secretary

Commentary

Line 11030: A typical use of Commodore’s flexible cursor control
commands. The string clears the screen, moves the cursor down one
space, across to the middle of the line, sets the RVS ON characteristic
and prints in green.

Lines 11110—11130: No program can be successfully run unless the
arrays it uses have been set up. In this program the variable IN is set to
1 when that happens. If IN is not equal to 1 then the only functions
available from the menu are initialisation (setting up the arrays) and
stop.

Line 11140: For those to whom this command is new, ON...GOSUB
and ON...GOTO are simply ways of cutting down on lists of messy
IF...THEN...GOSUB (GOTO) statements. The command will choose
the destination in the list which is designated by Z.

At this stage, all that can be tested is that the module presents a neatly
ordered menu page and accepts an input. The only input that will not
produce an error report is 5S—program stop.

MODULE 4.1.2

P T s e o e o o o 0 o o o o o
EEM STEUCTUREE OF FILE
T T o o o e oo e e o o e o o e e o e o

Claf Y‘LH AFCaRm TPRINT "rhibEhRERpe
~TLE STEUCTURE" TH=1 RE=CHREFC1350
IHFUT YERARE YOU LOATIMG FREOM THFE
pPUIEE TR GEsTYT OTHER 110686

A THEFLIT " alEREHIN MANY T'TFH'" IH ERCH E
ITEY " e DM B -1 0 s FiCa@i 10

TE2AZ8 FPREIMT "Wy oFORE Is@ T S-1FRINT "A@
MAME OF TTEM"; STR$(I+15:": "0 THPUT 04
TEEel BECTI=0F MERT I:GOTO 1100

This module performs the essential function of setting up the arrays
which will be used to store the program data—until it has been called
up, the program cannot be used. Once data hias been entered, calling up
the module again will result in the loss of all the data—the memory is
wiped clean ready for a new set of data. The use of the main variables is
explained in the table of variables and during the subsequent
commentary on the program.

79

The Working Commodore 64

Commentary

Line 12030: Note that before any array is dimensioned, the memory
must be cleared. Failure to do this results in the REDIMMED ARRAY
error message.

Line 12040: Unifile does not dictate to the user how many items the
typical entry can contain, it is up to the user to specify. Once this is
done the program configures the pointer array A% and the item title
array B$ accordingly.

Lines 12050—12060: Having specified the number of items per entry, the
items are named eg name, address, telephone number. Note that
because the memory has been cleared, the module cannot RETURN to
the menu, it has to be given the specific line to GOTO.

Testing Module 4.1.2

On calling up the module you should be asked to specify the number of
items per file and to give names to the items.

MODULE4.1.3

B B L e e e oo e e e e e e e e b o

REM EWMTREY 0OF HEL ITEME

s o b o sl e e e e s o e e s e o
'J TidF=" " PRTHT " CTo 00 e B B B B B B E

M ITEH')
e

12048 PRIMT "rhlbRhbkEhibbbhEheh bR 1
T:" ITEMZ S0 FARY

12850 PRIMT “RNECOMMANDS BVYATILABLE
12860 FRINT "MEs8@EdTER ITEM SPECTFIEDY
13678 PRINT "@s8IHPUT 72227 TO RETURM T0O
MEH! Jagar

138 FOR I=0 TO X1 FRIMT BECIo":"TH
FUT G TF QE="ZZ8" THEM RETLIRH

12850 IFIF“'T1£'+LEH'Hi'fﬁ’W5THFH 1321
1231688 PRIMT "”"HFP TOO LOMG. " TFOR =
0 SRERHEXT J:RETLUREM

13118 T1$=T1F+0%: TIHC I =LENCTLEY (HEXT 1:
FRINT "HRWEIT"

PH12E GUSURL4808: GOSUR 15688 : GOTO 13880

16
1T

The purpose of this module is to accept the input of the items specified
by the user and to compile them into an entry ready for the main file.

80

Chapter 4 The 64 as Secretary

Commentary

Line 13080: Using the variable X to determine the number of
repetitions, the program prompts the user to input each of the named
items.

Lines 13090--13100: Individual entries can be a maximum of 255
characters long—the maximum length of a single string on the 64. These
lines check that the limit is not being exceeded.

Line 13110; The item input is added to the temporary storage string T1$
and the length of the entry so far is recorded in TI%. Note that TI%
was not declared in the initialisation module. Simply mentioning it in
the course of the program, automatically dimensions it with 10 elements
(0-9). If you want to have entries with more than 10 items then you
must declare a bigger TI% in the initialisation module.

Testing Module 4.1.3

At this stage, by entering temporary RETURNSs at lines 14000 and
15000, you should be able to call up this module and be prompted to
input items under the names you have specified. Note that there is not
yet any provision to enter these into the file.

MODULE 4.1.4

B R M s e e e

18 REM BIMREY SERRECH

B REMAE RS R R e kg

AT IT=8 THEM SS=6:RETLREM

G PO THT CLOGCT TR ALOGCEY b L E8=21P0-1

3 FOR I=FO TO & STERP-1

FEEE IF H$quU‘TII THEH E
v FOEEATIE THFH

AT 1F BECH THEM =2

S8 IF Eg}ITnl THEH "ﬁxlel

BE MEST I:IF RAFCESMITIE THEMW S55=55+1

18 RETLRH

g
padbicy Fice

.
i

BoLf e B e
=

i B
L
Y
24

L

L
[xxi
Ty
o™

= ek bk el Bt bk Bk el feeb Jek el b
ALY
—
R
-
Lol

Of all the modules in this program, this one is most likely to look like
double dutch on first sight. In reality it is very simple, but Iirst you need
to understand the basic principles that lie behind a method of searching
for something called the binary search, which dramatically reduces the
amount of work needed to find the right place for a new item in an
ordered list of data.

81

The Working Commodore 64

Consider the following example:

We have established a file containing 2,000 names in alphabetical order
and there is a new name to be inserted, whose rightful place will actually
be at position 1731, though this has yet to be determined. The search
routine therefore begins by examining the first name in the file, decides
that the new name will come after it and moves on to the second name.
Eventually, after examining 1732 names, the search routine finds a
name which the new name should come before and it knows that it has
found the right place to insert the new name. This is a straightforward
procedure and one that is easy to program but compare it with this:

The search procedure begins by examining the name in position 1024 of
the file, because 1024 is the greatest power of 2 that can be fitted into
the total number of names in the file. The name at 1024 is found to be
alphabetically less than the new name, so the search routine adds 1024/2
to the original 1024 and moves on to name number 1536. That name is
still less than the new name, so 1024/4 is added to 1536, making 1792.
Now something different happens—name number 1792 is alphabetically
greater than the new name—the solution is to subtract 1204/8, giving
1664. The search routine goes on adding or subtracting decreasing
powers of 2 to build a search pattern that looks like this:

1644 (then add 64)
1728 (then add 32)
1760 (then subtract 16)
1744 (then subtract 8)
1736 (then subtract 4)
1732 (then subtract 2)
1730 (then add 1)

The number of comparisons needed to find the correct place in the file
has been reduced from 1732 to 10. The power of the binary search
should be apparent.

Line 14030: If there are no items in the file yet, then the right position
does not have to be calculated.

Line 14040: The LOG function is used to find the maximum power of 2
that will fit the current number of items.

Lines 14050—14100: The binary jump is performed, with checks to see
that the search is not leaving the ends of the file.-One final comparison
is made when the loop is finished and the correct position has been
determined and stored in the variable SS.

82

Chapter 4 The 64 as Secretary

Testing Module 4.1.4

Full testing of the module will have to wait until the next module has
been entered but a check that the syntax is correct can be made by
simply calling up the insert module, from which this module is called.

MODULE 4.1.5

15088 FEEM#EfEsiEd i ek esy
15818 FEM IHZER
IR A b R R s A B L EAEEEE AL EEEEEELE S
15828 TF IT=0 THEM GOTO 1956E8

i

12843 FOR I=IT TO S5+l STEP -1 FAFCI0=A%C
I-1%

15858 FOR J=8 TO W=l ARl Jo=REol-1,T0 00
BT Jo1

15800 AECSEI=TIF FOR I=@8 TO H-1 FARC55. 13
=Tlac T MERT IT=IT+1 KETUKH

The correct position having been determined, this module moves all
the entries from that position onwards, one space up the file, together
with their associated pointers in A%. The new entry is placed into
position SS of the file, and the pointers which show the length of the
individual items are placed into the same position in A%.

Testing Modules 4.1.4and 4.1.5

You should now be able to input entries to the file which will be
placed into alphabetical order. To check this you must stop the
program and print out, in direct mode, the contents of A$(0), A$(1)
etc. You should also check that the pointers stored in the same line of
A% do in fact point to the last character of each item in the entry.

MODULE 4.1.6

16 REMEE RO R R AR

A
2016 REM DATR FILEZ
B2@ REMEER sk H“I“l*#*l“l‘#*'!‘#**
A

g

:‘3 ;:ﬂ b u

FRIMT "emosITION TAFE CORERECTLY
EH EMTER®E--"
'1?.14!21 THFPUT "MOTOR MILL STOP AUTOMATICAL
SO FOKE 192,V PUEE 1,59
ASE PR INT "AFACOMMAMDS AYATLARELE " FRIM
®i 1 0SAYE DATAY PRIMT " ZHL0AT DAETAY
*»;;,x»- IMFUT “eEdHICH DO YO REQUIRE "0
DOGOTA 12RTH, 18128 FETURH

_'}-i

ey
T’x

;_;_ﬂu_.r-._.._{,_s,a_;,_.
-y
=

]
Ty
Eace

IR
¥

i3

83

The Working Commodore 64

Taeye PORE 1.7 FOR I=1 TO 2806 HERT
]U”“ﬁ OFER 101, 1 "UMIFILE" PRINT#1, 1T, %
1E0SE FOR T=0 TO IT-1:FRIMTH#1.A$C10:FOR
JmE T W1 FRIMTHL AGOT Tt HE=T T
12166 FOR 1=@ TO -1 FRIMT#1, B$0I HERXT
=il CLOSE> CRETUREH

teize OFEH 11,8, "UMIFTLE" "THPUTHL ., I7, 4
DIM BFECA~10 Auid4R2, k-1

18158 FOR I=0 T0 IT-1

18128 GETHL. T IF T LOHREEOLEY THEM AFCI
peHECT AT GOTO 181322

18134 FOR J=8 TO @-1: THPUTHEL HRCT T bER
T I.1

Laddan FOk T=& T H*lilHPUT#l BEo Ty i HERT
12156 CLOSEL RETURH

Now that you can input some data to the file, the first thing to do is to
store some data on tape then, as you enter new modules or change lines
to correct errors, you will not have to go through the chore of
re-entering all the data every time.

Commentary

Line 18040: Having positioned your tape, you may wish to first place it
into RECORD or PLAY mode and run up to precisely the point
indicated by the tape counter. When the precise point is reached,
pressing RETURN switches off the cassette recorder motor by the use of
these two POKEs.

Line 18070: The recorder motor is switched back on before any data is
recorded and a header printed in addition to that added automatically
by the operating system—this helps to ensure that you do not record on
the non-magnetic leader of the cassette if you are starting from the
beginnning.

Lines 18120-18140: Data which was printed into the file is now
recalled. INote that because the strings in the main file may be more than
80 characters long, we cannot use the INPUT command. Instead, each
character of the strings in the main file is picked up separately using
GET, and each entry is considered complete when a carriage return
character is picked up from tape.

84

Chapter 4 The 64 as Secretary

Testing Module 4.1.6

The simple test for this module is whether you can input data to the
program, save it on tape and then reload it.

MODULE 4.1.7
LAt R R R R EEERE L AL RS EEL L EE L P
176160 FEM SEARCH

FEZE R D e oo ol o e o e
?ﬂ*@iFFxBIPRIHT 1T e e e e
AMEE
EOFRETHT " RERCOMMAMDS AYATLABLE "
PESE PRINT "M MERIMFUT ITEM FOR HOREMAL
SERRCH"
17888 PREINT " WRFRECEDE WITH “TI1° FOR
THITIAL SEARCHY
17E7E PRINT " @HEFRECEDE WITH "S85 FOR
SFECTAL SEARDH"
17@EE FREIMNT " mrEEMTERS FOR FIRST ITEM
oM FILE"
LVESE FRTRT " TS0 0 0 e o0 o o o o o o o o o o 0
ol o R B el R B
171688 Tlg="" THPUTTTIRIHNFUT SEARCH COMPH
HU TITLE

Fiie IF LEFTECTIH, 20201710 THEM 17148
lrlaﬁ TIE=RIGRTECTLIE, LEMCT 1E 350 G0E0E 1
ARG = = IF S1501T-1 THEM RETLURER
GOTO 17
IF LEFTECT1#, 200885 THEM 17196
FR@ TIE=EIGHTECTIE LEMNCTLE 32 1FD)
1070 IT-1:FOR J=1 TO LEMCHECID
l 1ER IF MIDECASCIY, T LEMSTLE =T1$ THEH
FF=1:51=] J=lEMCAECT 20 0 I=]T1
17178R HEST T, I¢IF FF=1 THEM TiF="2m5"+T1
ﬁ..uTu 17
TIER I‘L‘THFH
A IF TldE="" THEM 17240
BFF=@CFOF I=S1 TO IT-1:PP=0:FOR T=@

-

Tell IF MIDFCRECT PRl RN Jo-FFI=TLE
THEH FR=1 1=] J=x~1:I=]T~1
1722 PR=ANCT T HERT JOMERT [2IF FR=1 T
HEM 17&443
Teah RETURH
A IF 5131T7-1 THEM 51=IT-1

xS

~J mf 1

T3 e

85

The Working Commodore 64

IF IT=8 THEM RETLEH

IF S1<8 THEM S1=8

| FETE FRINT “TIREMTRY "iS1+10" W r|:--- i
FOEE FOR I=@ T el I'T*THT“Eﬁ" E'? o0 e
SATTECHECS] 7, PR L, ARCEL, 10 ~FR Y

17258 PP=FA®S1, I0 HEST T81=51+1 FFRIMT "
s T T e TecT T T O I O e o B S N e e

17268 PRIMT "@SESCARCH®E ZRCOMMAMDE AYVATLRE
LE:"

FEIMT "M @>A3HTER®E FOR MHEST ITERY
3 PRINT " m-# AART TO HAREMT
FRIMT " @@ CoCs TO COMTIMUE SEAREC

17340 PRIMT " ®:@7#° FOLLOWED BY MWL TO
PivVE FOIMTERY
17358 PRIMT " @@ 2227 TO GUIT FUMCTIONS
17268 P THPUT "WERWMHICH Do YOl EEDUTE
E:"iFE
1?137'&:1 IF PE="COC" THEM 17118

TAEE IR PE="T OTHEM 1796
IF PE="RHAR" THEM GOEUE 18086 GOTO

1748 IF FE="228" THEM RETLREH

17418 IF LEFTHECPF, La="R" THEM =l=Hl+WHLC
MIDECFF, 2001 GOTO 17240

17d2@ S1=51-1:G0T0 17244

Having placed your data into the 64 it would be nice to think that you
could get it back again. The purpose of this module is to enable you to
do just that, retrieving the information stored in a variety of ways that
make the filing system more useful.

Commentary

Lines 17110—17130: If the item to be searched for is preceded by the
letters III, then the binary search module is called up to find an entry
which begins with the letters specified or the one nearest to the right
position if there is no correct entry. Note that this will not necessarily be
the first item in the file to satisfy the condition, so if you are using the
initial search function to find the first entry beginning with L, for
instance, you will get an entry beginning with L and can page backwards
to see if it is the first. IIILA would get you closer, while IIILAAAA
should do the trick unless you are storing some very unusual names.

86

Chapter 4 The 64 as Secretary

Lines 17140—17180: Preceding the item to be searched for with SSS will
result in the whole file being scanned for that combination of
characters—it doesn’t have to be a whole item. SSSLO would pick up
any entries containing London, loganberries or hello. This search is
necessarily slower than any of the others.

Line 17190: If you have pressed RETURN, without an input, the first
item on the file will be displayed.

Lines 17200-17230: Any other input will be understood as a full item to
be searched for and only those entries which have an item in exactly that
form will be returned. Note, in this routine, how the pointer array A(,
which gives the position of the last character of each item in an entry, is
used to extract items from the entry even though there is no visible
marker for the items if an entry is printed out in direct mode.

Lines 17270—17290: The entry which the search module has discovered
is printed onto the screen.

Lines 17300—17420: Having displayed an entry, the program now gives
you the option of viewing the next entry, amending the entry,
continuing the search specified, moving to another entry by entering
NN, where NN is a positive or negative number to move along the file,
or returning to the main menu. If a recognisable input is not made, the
same entry is displayed again.

Testing Module 4.1.7

You should now be able to display any data that you have stored and to
search through it using the search methods described. You cannot yet
amend entries.

MODULE 4.1.8

TEE0E BEMEREEReskf ek ek b dnkokfsy
1oe1e REM CHAMGE EHTREY

LEBZE REMEREREREERREIRRRR R
1620 S1=51-1:T1F=""

16646 FP=G FOR I=B TO %~1:FRINT "CENTR
WO ELHL

LEASE PRINT B BC10 " B NI (AS51) PP
+1aHaEL, To-FRy

1EBEE FRINT " e a a M B BB n RN
AAHMENT

16E7@ PRIMT "MBCOMMANDE AYAILAELE : "
1E@BA FRINT "M WE@EMTER® LERVES ITEM UM

87

The Working Commodore 64

CHAEHGED "

1EASE FRINT " ®GEIMFUT HEM ITEM TO REEFLA
CEOHE SO

1E1E8 PRIMT " weE°DDD7 DELETES MHOLE EMT
“:llll

lella PREIMT " B 2227 LEAVEDS EMTEY LIMCH
AHGE D

16128 GF=""ITHPUT "EEWHICH DD You REGUTE

AR 2
16138 IF QFE="202" THEM RETUREH
lelde IF OF="" THEM QF=MIDFCAFEL FRPL,

- r...' |Z..- 3
: --“"iTHi"TH[‘H GRELUE 1elsd: EETURH
“ G TIE=TLEHRE T I T sl B
LB 16180 GOSUE 14080

&1 VE .=.E= 1EE0E RETURN

16186 FOR J=51 T0 17- LIAECINSRETHL) (FOR
Py T Ii"'l Fips T Ko TR L b S HMERT KT
16126 IT=IT-1'RETLEH

The purpose of this module is to. allow you to make changes to items in
entries which have already been stored, without having to make the
whole entry over again, as well as to delete items or whole entries if
desired.

Commentary

Line 16140: The module’s method of working is similar to that of the
main input module, except that if RETURN is pressed, the item being
input is defined as being the current item on display.

Line 16180: This routine moves all the following entries in the file down
one place, thus erasing the current entry.

Testing Module 4.1.8

You should now be able to amend items in an entry arrived at in the
search module or to delete the whole entry. If this module is working
correctly, then the program is ready for use.

Summary

You have now completed the entry of a substantial and complex
program which I hope you will find useful in a variety of applications.
Along with that process you have also learned a number of techniques

88

http:witho.ut
http:purpo.se
http:PETI...IF

Chapter 4 The 64 as Secretary

which will stand you in good stead whenever you decide on ambitious
programs of your own to store and process non-numeric data.

More importantly, however, if you have taken the trouble to
understand what you have been entering, tracing through the functions
of the individual lines, as well as the overall functions of thé modules,
you will have gained confidence that substantial and complex programs
are not always as awesome as they are made out to be. Using a modular
approach, which breaks down the program into a series of manageable
tasks, applications like this one can be developed by anyone who is
prepared to invest a little time (and a little hair).

Going Further

1) If you have a printer then you will want to add some
provision for outputting entries or groups of entries onto
paper. The easiest way to do this would be to add another
command to the second part of the Search Module.

2) One interesting challenge would be to see whether you
could give the program the ability to deal with numeric
data as well as non-numeric. This would involve setting
up a numeric array with 500 elements, with provision to
input values to it and perhaps some search commands
along the lines of ‘find any entries which hold a value of
greater than X’. There are quite a large range of
applications where the ability to store one or more
numeric items would be an advantage.

4.2 UNIFILE II-DATABASE

After entering Unifile and debugging it, the last thing that you may
want to face is a variation on the same theme. If so, feel free to skip this
program for the present and move on to greener pastures. At some
stage, however, you will want to come back to this program to solve at
least some of the problems that Unifile is not designed to cope with.
Unifile is fine for files which have a regular structure, and many do.
Equally, there are a large number of applications where you simply do
not know in advance how many items there are going to be in a
particular entry. You may, for instance, want to catalogue your books.
You could set up the original Unifile program to request author and
title, but with probably many more than one book by most authors,
tagging the author’s name onto every individual title is going to be a
considerable waste ot space.

Unifile II is designed to cope with such less structured files. It is more
flexible than Unifile in that you can go on adding items to an entry as
long as you like within the overall limit of 255 characters and can
specify a more complex form of search which will seek out any entries

89

The Working Commodore 64

which contain up to 10 separate search targets. This flexibility has a
price, however, in that the program is more complicated to use—there
are none of the easy prompts to dictate which item to input next. In
addition, if you want to label items within an entry with a title, you will
have to specify what those titles are and attach them in a coded
form—the program has no idea what is coming next so you have to.

Because the program is similar in structure to Unifile, the easiest way
to enter it is to first load Unifile itself. As you enter Unifile II you will
find that many of the program lines are identical, or nearly so, even if
the numbering differs. Renumbering those lines before going on to deal
with the differences will save you an enormous amount of time.

Unifile I1: Table of variables

B$(49) Contains the optional item titles specified.

EX Temporary indicator to show that an extra item has been
added to an entry during the Amend module.

FNA(S1) Function which extracts from the value of the last
character in an entry the number of items within that
entry.

FNB(S1) Function which obtains the position of the last character

of an item within an entry. This function must be used
within a loop with a loop variable I specifying the number

of the item.

NN Temporary variable registering the number of items
within an entry being input.

SS$ Item extracted from entry on the basis of FNA and FNB.

S2 Temporary pointer used during searches.

S3 Temporary record of value of S1 during multiple search

TI((49) Temporarily used to store the position of items within an
entry that is being input.

TN The type number of an item if one is specified.

MODULE 4.2.1

11 EIRE R E DI o e ol s e e A e
118168 REM MEHML

T 1ENZEY FE o 0 0 o 0 A
Plgza PORE S3281,. 7V PRINT "TIFERNNBRRNRDRe]
R HIFILE"

tip4e PRIMT "ERERCOMMANDES AVAILAELE "

11856 PRIMT "¥efd 1GEHTEE IWFORMATION'
1135'2 FRIMT "8 235EARCHATITEPLAYACHAMGE
11,1 B PRIMT "W Z0HEM TYPE HAMESY

ligea PRINT "M 45DATHR FILEZ"

90

Chapter 4 The 64 as Secretary

FRIMT “® S3EET UF MEM FILE"
FREIHT "M e TOR"Y

THFUT "MERJHICH DO YOU REGLIIEE "

1" ""‘]H .

IF Z%4 0OR Th=1 THEH 111756

FRIMT CTeeaseeeph e ner0T IHNIT
SED WET."FOR T=1 TO 1888 HERT
1,(4 GIOTO 11866
153@ OW 2 GOSUE 132006, 170908, 12808, Zukhag
Sleaaa, 111ea: GOTO 11860

11168 FRINT " ellelalnaleIaleleb i minbmime 1. THG
SMETEM CLOSEDY EHD

A standard menu module.

kR ¥]
—

—I.!_.'_]—l!—l,—.llzl

;_
,—-a e
X3 il-:s Eax]

,_;

MODULE 4.2.2

128168 BREM IMITIALTEE FILE
1EENEE R T o e b 0 o oo o o o e s o e e e e
1"'1:1 S CLECTIM AFC450 BECARL TIR420 0 [H=

126048 DEF FHACSL D=RASCORTGHTECRECS1 0, 100+

126856 TEF FHECS1)=ASCIRIGHTECRECS1 FHAY
513-T+170
L2BER GOTO L 186

The module initialises the arrays and returns immediately to the menu.

MODULE 4.2.3

1ZEEE REMEEERCEE R b ok S
12018 REM BEMTEY OF MEW ITEME

15020 REMssefie ek gk w ok oy
1858 Tif="" Hu=-1 TH=0:PREIHT "TeNnNkkNx
INRERRRIEEIEL TTEMSY

1240 F’F-{IHT "ERRNERNERRRENEREEPERERRRE]
T:" ITEMZ =0 FRR"

1 EE5E i’F]'HT TERLOMMANDS AVATILABLE "
Taeed PRINT “ME-deHTER ITEM TO EE IMPUT®
12870 PEIMT "##EMTERE %7 T0O TERMIMATE T
H RELORT"

5 i'_'{l "x

Hn'l

91

The Working Commodore 64

1HEEE FPRINT "®-@8EHTER 7 MHHS FOR ITEM TYF

EII

17820 FREINT "mCAIHPUT 722070 TO FEETUEH T
MEHLIETH"

TEE THFUT G ITF GFE="I22" THEM EETUREH

Tt

1ad

__
N RN

2118 IF @F="Z27" THEH RETLUEH

21260 IF LEFTHECEE, Lo T THEH 1731568
4128 TH=YALCMIDECOE, 200 TH=TH+ 10

A1 FPRIMTUTT CRECTH- 11000 oy cGlT O 8
51

A IF THER THEM GE=sfE+ 0 +MIIE S TRE]
20 TH=8
IF LEMOT 1 # s +LEMCGE pAHH 2 I=255 THEH

PR e N S
2] Lo 0

1217 PFIHT "HEMTRY TOD LOMG, " FOR J=i T
O BAEE:HEXT T RETURM

153180 IF GfF="#%" THEM GOTO 13280

13196 T1E=T1$+0E TIXOHH+1 =L ENCT 180 Hb=H

AL GEOTO 14168

1zea@ FOR I=0 TO MW T1E=TIiF+CHRECTINI I 22
PHERT T1E=T 1 E4CHEE CRP4-1 D

12216 FRIMT “EMbATT! GOEUELSE0E GOSUE 15
Lkt 1A P LT 1Ak

This module is equivalent to the entry module of Unifile but is more

complex for two reasons:

1) There must be provision within the module to tell the
program when an entry is finished. This is done by

entering an asterisk without other input.

2) Since there is no regular structure to the file, regular
prompts for the names of items to be input cannot be
provided. There is, however, provision in the program
for items to be named. Such names, and the numbers to
be given to them are defined by a subsequent module—in
this module the item name can be attached to an item by
first of all entering the ‘}” symbol followed by the number

previously given to the desired type name.

Commentary

Lines 13100—-13140: If an entry begins with the ‘T’ symbol then the
characters following it are taken to be the number of an item name to be
attached to the item about to be input. The input prompt is now
repeated under that type name. The type number is stored at the end of
the item, its value increased by ten so that it will always be a two digit

number (there are 50 possible type numbers/names).

92

http:CiO!:;I.JB

Chapter 4 The 64 as Secretary

Line 13200: To the string of items which has been built up is now added
a number of characters whose code value is equal to the position of the
last character of each item. To the very end of the string is added
another character whose code value is equal to the number of items in
the entry. Note that when saving the entries onto tape, these characters
must be translated into numbers since the characters may fall outside
the range of those which can be saved in character form.

Testing Module 4.2.3

The module cannot be fully tested but a running check can be made by
entering temporary RETURNSs at 14000 and 15000. You should then be
able to enter items and terminate the entry with an asterisk.

MODULE 4.2.4

NG EARE R E 2 AR EEE L EEERT EL IR AL E B L EE L
FEM BIMARY SERRCH
[o T o 0 o o e
g IR IT=E THEHM 25=@:RETIIEH
PO=TRTCLOG T AL DGC2 0 BE8=2 10~ 1
FOR I=F0 TO &8 STER-1
F HECEEIITIE THEN Hu
HECSETLE THEH
S EEaR THEM =
8 S IT~1 THEH “‘m
HE”T IT'IF AFCE52TiE THEM SE=Sh+d
RETLIREH

A standard binary search module as in Unifile.

MODULE 4.2.5

1SEEE REM#EEEEEEEEEEF SRR R ER R SRR
15618 REM IMSERT

LREZE FE M on o g ok ik
15@EE TF IT=6 THEM GOTO 15058

15040 FOR I=1T TO S5+1 STER -1 A1 =HEC
T=1 tHEWT

15A5E MAFCES=TIE IT=IT+1 EETURH

A straightforward insertion module.

93

The Working Commodore 64

Testing Module 4.2.4 and 4.2.5

You should now be able to enter items and have them saved in the main
file array (A$). This can only be checked in direct mode.

MODULE 4.2.6

TRERE REMHE R R R R
12618 REM ITEM TYFE HAMESD

1REAZER PFH++#++¥#+++#+*¢+¢+*++*+++*+#+++
19E28 FOR T=0 T0O 49 ZTER 14

12846 PPIHT“TﬂlillllllﬁlﬁlllLJHITEM HFME S
190568 PRINT UG FOR J=I1 T I+18:FEINT T
A1 AN I BECTN HERT T

19868 PRINT “SRCOMMAMDES AVATLABLE: Y
196870 PFRINT " 808 222 =u)IT"

12088 PRIMT " @ 111 =ITEM-TELETE"
19658 FRINT * @38 HHN =MEST PAGE"

13188 IHFUT "EIHICH D0 YO RERUIRE: " UE:
IF QF="ZZ2" THEM RETLIRHM

12116 IF QF="HHH" THEH HEXT T RETLREH
19126 IF Q%"I11IY THEM GOTO 123686

121368 IHPUT "@POSITION HUMBER: "

19146 FRIMT “EHAME OF TYPE OF SRETLIEHSE T

0 DELETE:"
19156 CF="": [HPUT 0 B Gt R EOTOL SE
A

This is a new module enabling the user to define item types. The module
simply displays the contents of the array B$ in groups of 11 and gives
the user the option to input a type name to a particular position in the
array. Once entered, a type name can be attached to an item or input as
described under Module 4. Type names can be redefined simply by
entering a new name in the position occupied by an old one or deleted
by pressing RETURN when asked for a type name.

Testing Module 4.2.6

Enter some type names then go back to the main input module and
enter I’ followed by the number of a type name you have defined. The
prompt should be repeated under the desired type name.

94

Chapter 4 The 64 as Secretary

MODULE 4.2.7

SEEEE R R e
SEE18 EEM DATH FILES

ZEAZE RPEMEFSESEEE AR R ok
SEEEE PRINT "SEFOSITION TRFE CORRECTLY.
THEM MEHTERE--"

ZEE4E THRPUT "MOTOR WILL STOP AUTOMATICAL
LY NG RECPORE 122,V POKE 1,29

SEESE PEINT eRCOMMAMDS AYATLABLE: " 'FRIN
T "BEi 125AME DATA" (PREIMT " 20L0ORD DIHTHY
SEEsE THPUT "MEAHICH DO YO REGUIRE "G
O GOTO 287w, 201560 RETURM

SREAVE FOKE 1.7 FOR T=1 TO 20868 HEST
2SR OFEM 1,101, "UMIFILE" " FREINT#1.IT
1P FOR S1=@ 70 IT-1: PEIMTH#I1, FHACSL
SEl|g FOR I=1 TO FHACSL2 -1 FEINT#1.FHECS
10 HERST 1

28118 PRIMTHLLEFTEAECS1 0, LEMCHECS L 2 0 -F
HACEL 0 i HERT =1

212G FOR I=8 TO 42 IF BECIx="" THEM E#d
Ik

SE1TR PRIMTHL,BFCIY MEST

2148 CLOSEL REETURH

215 OFEM 1.1.8, "UMIFILE" (IHFUTH#1.IT
AEle FOR 1= TO IT-1 0 THFUTHL MM

ZELVE TTE="" FORI=1TO MH-1:IMFUTH#L.TTITT
F=TTEACHRECTT o HERKTI TTH#=TTE+CHREFCHH~1 D
2RlEd GETHL, T IF T$OHOHREECLEY THEM R$FCE
PoampFcsl 0T GOTO 20128

ZE1ES RS i=RECSL04TTE HMEKT S1

2A1Ee FOR I=@ TO 4% THPUTH#H1 . BECT) HERT
sEzeE CLOZEL RETLREH

il

i

A standard data-file module.

MODULE 4.2.8

21000 FEMSEEEERE SRR R

2AE1E FUMCT TOMAL SUBROUTIHES

SEZE REMEsREE Rk R R

21326 SSF=MINECRECSIN, PR+ FHECEZ-FFF
ETLIEH

oyE4R FR=0:T1$=RIGHTHCT1E, LEMCT1E-30 F0
FomZx S1TO IT-1:FOR J=1 T LEMOAFCION

95

The Working Commodore 64

21850 1F MIDSCRSCS2), T LENCTI#:)=
M FF=1:51=52: J=LEHCAFCE2)) 52=1T~
21066 MEXT J.52 RETURN.
21678 FF=6:FOR 52=5

T]I THFH FF 1 Slmbg T=FHECE
ﬂﬂTi 211

Fald4 THEW 211148

a3, 1 a=" 10 THEH
ZpG0OTD 21az6

oo s T T 1
"IH”H IF LEMLZE
ZiieE IF MIDECSSE. LEM
SEF=l EFTHCE5%, LENSS
21119 PP=FHE
21128 MHExT 1.5

& FEETLIRH

The module consists of three routines which are more economically
placed here since they are called by different parts of the program.

Commentary

Line 21030: This line can be called from within two loops: an S2 loo
specifying the line in the main file and an I loop specifying the item
number within the particular entry. It then extracts, in the form of SS$,
item I of entry S2.

Lines 21040—-21060: Equivalent to the special search routine in Unifile.

Lines 21070—21120: A straightforward item search. The I loop uses
FNA to discover how many items there are in the entry (FNA(S2)=the
number of items there are in entry S2 plus 1 for the indicator at the end)
and then calls up 21030 to extract the individual items. Items with type
indicator are compared with and without the type suffix.

Testing Module 4.2.8

The module cannot be checked until the following module has been
entered.

MODULE 4.2.9

17 CAGALA T T 06 o A S o o 4 O o o
17013 BREM SEARCH

1R B o oo ol e e e o o o o o o o e sl o A S e
IVEZEE Si=@ FF=@ FRIMT "7I"ENENnRERRneRaNRI
TS EHRCHY

17348 FRIMT "eECOMMAMDS SVYATLARLE "
1758 PRINT "M ms=RIMPUT ITEM FORE HORFAL
SEARCHY

17858 PRINT " meBFEECEDE WITH “TI1° FOR
IMITIAL =ERRCH"

96

Chapter 4 The 64 as Secretary

17E78 FRIMT " BSRPRECEDE MITH "S85 FOR
SFECIAL SERRCHY

17EEE FEIMNT Y @xEENHTERR FOR FIRST ITEM
oM FILE"

17898 FEINT Y #>E MMM FOR MUOLTIFLE SERR
CH

L7 1EE0 FRIET RO o i o o o o o o o o O o o 00 o 0 0 o o o
CLLEEEEE TR T T Ml

17118 Tig=""IWFUT "ESEARCH COMMAMD: " T
FIF LEFTHFCTLIE, 100" THEM 17136

17128 LET TH=YALCMIDEFCTIE, 2o+ 18 G0TO 17
1i@

171280 IF THOXE THEM LET T1#=T1g+" 1"+MIDE
ESTRFLFHJ.?. Tt

17148 TF LEFTECTLIE,E3000"IT1Y THEH 171768
17150 T1F=RIGHTECTLI$, LEMCTIE) -0 1 GOSUE 1
HEQEA T S1=550IF 513171 THEM RETURR
1718 T1g="T1T"+T1%: hHFH 17318

1717a IF iFFT$ TiE a0 mmmn THEM 1728
17188 GOSUR 21640 IF Frml THERM T1#d="&m
+T1$ nn1u 1“*1u

156 RPETURR

S TF LEFTHFCTLE . 00" MMM THEMN 17278
172168 GETEE: ITHFUT "GHUMBER OF ITEMS TO
SEHECH FOR M

17226 FOR E=G TO k- RIMT "SEARCH ITEM
”;F+L IHFHT HIr}l HF T }

% IF FF=a THEH PEFUFH
5 OTF 530551 THEN 17239
4 HF“T s
A LET Tig="mMmM" GOTO 17216
TF Ti="" THEM 17316
A GOEUE 21878
17208 IF FF=1 THEM 17318
FEEE RETURH
’ IF Z15%1IT-1 THEMW Z1=IT-1
IF IT=8 THEHM RETURH
a3 IF S148 THEM Z1=8
3 OPRIHT CIBPEEHTRY 0 ELe] 0 a PR
=Rl FOR I=1 TO FHROS1:-1
IF IA1&2=IHTCIA 12> THEM IMFUT "EMOR

Ev:TT4
17250 GOSUE 21009300 IF LEMCSS$1<4 THEM 173
:.’H

97

The Working Commodore 64
17PEEE IF MIDECRIGHTECSEE, 3.1, 120301 TH
EH 17380

i NSRS A

ITE7E PRIMNT BEOVALCRIGHTS

" Fu= EFTHEOSSE, LEHCS5E

17380 PRIMT

17398 FP=FHBCST 0 WEST Ti5l=51+1

17488 PRINT "sffEEARCHS RUOMMARDS AVAETLA
BLE:"

17418 FRINT "8 #-A3EHTER® FOR HEST ITER"
17428 PRIMT " ®-# A8 TO AMEMDS

1742368 PRIMT " @@ CO07 TO COMTIHULE SEARC
H"

17446 PEINT " ®x#"#° FOLLOMED BY HO. TO
MOWE POIMTER®

17458 PRINT " B 222 TO SUIT FUMCTION.
1FAER Pdm 0 THPUT "HRER[HICH DO Y00 RESUIR
EoviPE

17478 IF Tig="prMM" AHD 51017 THER 17230
PP4ee IF FPE="000Y RAMD S100IT7 THEM 17146
17498 IF Pg="" THEH 17216

17P5EE T PE="EREY THEM GOSUE 1REEE: GOT0
17RLE

17516 IF PE=YFZEY THEM RETUREH

1752 IF LFFT‘FL. P, 1a="4" THEM Z1=31+VAL.C
MIDFECFE, 2301 GOTH 17316
AT B -l -1 GOTO 17318

Similar to the Search module in Unifile, but making provision for the

multiple search and for type names.

Commentary

Lines 17110—17130: Note the way in which this routine detects whether
an item with a type number attached is being searched for and then
requests input under that type heading, tagging the type number onto

the end of the item.

Lines 17140—17160: An initial search as in Unifile.

Lines 17170—17190: Special search making use of the routine in the

previous module.

Lines 17200—17260; The new multiple search routine. It requests the
user to specify the number of items to be searched ror, then 1o input the
individual item (type numbers are not dealt with). A search routine is
called up at 21070—21120. Before each search item is specified, a record
is taken in the form of the variable S3 of the value of the search pointer
S1. When the routine at 21070 returns to this routine the valuc of S3 is

98

http:FOI....LO

Chapter 4 The 64 as Secretary

again compared with S1. If S1 is different from S3 then it is clear that
the two items were not present in the same entry. On first finding one of
the specified search items, the search is reset to the first of the specified
search items in order to ensure that the whole list of search items is
compared with the items in the entry.

Line 17280: If the search has reached this point the input is assumed to
be an item to be searched for with a normal search and the search
routine at 21070 is called up. Note the use of the flag FF in all these
search routines to indicate whether something has in fact been found.

Lines 17340—17390: Starting at the beginning of the chosen record, the
routine at 21030 is called up to extract individual items. Type names are
printed where the ‘T’ symbol is present 2 characters from the end of the
item.

Testing Module 4.2.9

You should now be able to page backwards and forwards through the
entries and search using the methods described in the commentary.

MODULE 4.2.10

TR o 0
BOREM TELESCOFE FILE

P T 0
TS FOR T=21 TO IT=-1 AECTI=HECTI+1 0 HEX
IT=IT~1:REETUREH

This one line routine telescopes the file when deletions are being made.

MODULE 4.2.11

LEDEE FE MR A

16616 REM CHAMGE EMTRIES

LEAZE REMEERREREE RO R R

HOEl=El-1T1ds" " =1 TH=R

PP=@ G251 FOR I=1 TO FHACS1I-1

FRIMT "TWEMTRY ";S1+1:4:~0

1666 GSUE 21656 1F LEH(SE4)<4 THEN 166

=10

1EETE IF MIDECSEE, LEHCEEE -2, 113" 1" THE

HoLERSE

16680 PRINT BEOYALCRIGHTSCEES, 200-11%; "
CLEFTHCEGE, LEMCSES -3 60T 16188

1EASE FRIMT 555

TE1RE PRINT " e OMMANDS BYATLABLE @

99

The Working Commodore 64

161168 PRIMT Y H-@ETURMSE LEAYVES ITEM UM
CHAMGED™
16128 PRIMT " ®REMEM TTEM EMDIHG WITH - #
1alz@d PRIMT " MCRREPLACEMEMT OF ITEM DIS
FLAYED™

ﬁ@é4a PRIMT " BeB 222 GUITS WITHOUT CHA
R

TEi%E PFRIMT " K

ERHTRY"

18168 PREINT * @26 FRES FEMOYES THIS ITEM
FROM ERTRY" ,

16170 ChE="" 1 THPUT YSMIMICH DO YOU RESUIRE
DU E

18128 IF QF="Z27" THEM RETURH

1E1536 IF RE=tRRER" THEH GOTO 14366

Tegdd IF QF="DDDY THEH GOSUR 196060 RETUR

SR DO DELETES THE WMHOLE

1ez1e IF LEMOCTLIE L ERCE M2 0255 THEM
GOTO 18236
16?:@ PRINT "fSEMTEY TOO LOMG" FOR J=1 T0O
TG HERT CRETLREH

]Hmﬂu Ew=@ TF HIGHTHOGE, o="%" THEMN =]
E=LEFTHOOE LEMHIQE 10

1248 IF OF="" THEM Tif=TI1E+S5F TINIMHM+]
pwml ERCTLE) MMM+ L GOTO 162680

1e250 IF LEFT#O0$, 10021 THEM 16226
T2 TH=VALCMIDECRF 200+ 18 PRIMT B$CTH~
Tisamwo o= THPUT 0%

EEVE LE=EL" TR IDECSTRECTH 20

ITEZ288 T1E=TI$+0F TIXOMHMS1 2=LEHCTLE Y M=
H+1

lea5@ IF Ex=1 THEHM 146856

152860 PP=FHECSLY (HEST I

1218 FORE T=8 TO MM TIE=TIF+CHRECTIH I » o
THEST " T1E=T1$+CHEE MM+ 1 2
At FEIMT YembEITY GOSUE 126060 GosUE 1
-mrm |1|“i”HI 15EEE RETLRM

f

—n
LS

H

i %

i

Equivalent to the Unifile change module.

Commentary

Line 16230: Entering an item ending with a * indicates that a new item is
to be placed into the entry before the item currently on display. The

100

http:f::�ll.,.IH

Chapter 4 The 64 as Secretary

variable EX (EXtra) is set to one to show that this has happened. In
Line 16290 this variable is used to ensure that the item on display is not
lost.

Testing Module 4.2.11

You should now be able to delete entries, to change items or to insert
items. If this module is functioning correctly then the program is ready
for use.

Summary

Given that their applications will be different, this program has all the
strengths of the original Unifile program and I hope you find it useful.

In addition, I hope that entering the program has given you some
insights into the advantages of a modular style of programming. On the
basis of the original Unifile modules the original version of this program
took less than a single morning to write for the simple reason that the
clear structure provided by a modular program makes it absolutely clear
where any necessary changes have to be made.

Provided that you are not absolutely desperate for memory space,
you will save time and tears in your programming by setting out your
programs in clearly defined functional units. Not only does this make
the programs more readable, it increases the likelihood that you will be
able to call the same routine from different parts of the program, eases
replacement of functions you think you can improve on at a later date
and, not least, makes it easier to lift whole sections out of the program
for subsequent use in other applications.

Going Further

1) The multiple search routine makes no provision for
specifying the type names of items. Lines 17110—17130
provide a clear example of how such an ability could be
provided.

2) Professional databases usually have the ability to search

for entrics which have, say, four out of cight secarch
targets present. Could you adapt the present program to
achieve the same.

4.3 NNUMBER

Having entered two programs which are capable of dealing with a
variety of needs in the field of storing non-numeric data, we turn our
attention now to the problems of keeping track of numbers. Although
most numeric applications need to be specifically addressed to a
particular problem, NNumber (short for Name and Number) is very

101

The Working Commodore 64

much like the two Unifile programs in that it is intended to be a general
purpose tool for applications where you need to store the names of
items, units of quantity associated with them and to be able to add
together the items in varying quantities. In case it seems to you that you
never want to do that, perhaps I should say that the idea the program
grew out of was a calorie counter that enabled the user to store a
dictionary of up to 500 foods and to calculate with ease the calorific
cost of a day’s or a week’s meals. The present program is just as
capable, without alteration, of calculating invoices as it is of helping
with weight watching.

Because the style of the program is very similar to the two Unifiles,
and many of the functions similar, comments and testing suggestions
have been abbreviated as much as possible.

NNumber: Table of variables

A$(499,1) Main dictionary array.

C(499) Values associated with units specified in main dictionary.

CT Temporary variable used to cumulate the sum of items in
current list.

CuU Number of items in current list.

NN$ General name for items being recorded.

IN Initialisation flag.

IT Number of items stored in main dictionary.

NN Temporary storage for value associated with new item
being input.

PO Used to determine number of comparisons in binary
search module.

QQ3 General name for quantities associated with items being
recorded.

R$ Separator used in data file saving.

SS Search pointer for binary search.

T(49) Values associated with items stored in T$.

T$(49,1) Storage of current list.

T1$ Temporary storage of item name being input.

T2% Temporary storage of units associated with T18$.

MODULE 4.3.1

11E0E REMES s s 0 m ok R ok
11918 REM HMEHL

L LR B Pt b e o ol o b e o
118ER POKE S3281, 12 PRIMT "TrhaieNNNRaRkN
WAHAME AMD HUMBERS"

11846 PRIMT "fEECOMMAEMNDS AYATLABLE S M

102

Chapter 4 The 64 as Secretary

DIEE PRIMT " Eile PaDT=FLAY CURREEMT I3
Tll

11Eed FRIMT O 3 THPLUT TO CLREREEMT LIZT®
A FRIHT A0ETHET FRESH LI=TT

Ak PREIMT M A3NELETE FROM CUREREMT LI

e

ERR
e e)

|—-{-i:!i—‘-|-—(l-—"-.'-‘-':—ﬁl-—'-h—‘-

AOFREINT Ao TEMD TITCTIOMARY Y

B FRIMT O E3DISFLAY DICTIOMERY®
A FRINT " .-ﬂHTH FILES

Z8 FRINT O EATHITIALTIZE"

S FRIMT " HAETORY

4 THFUT el TICH T YOLD BEGUTIRE "8

T I

a8 IF THOE OF Z2=8 0R Z=52 THEM GOTD 1

LL
K 2]
- =

T
i

mﬂ FRIWT " rreialeledalsieialelom i b bmhemE0T 1
ITIALTSED YET"

117 FOR T=1 T 2086 HEST (GOTO 118680
18a IF IT:B OF Z=2 OF 2=3 OF Z=5 OF &=
Ok =5 OF Z=9 THEM 11214

1115 FPIHT BT e e ey AT e T e O i B O R B 1)
THHTH YET

Tlede FOR JT=1 T Z800R:MEST GOTD 116866
11 1n O 2 GOSUR 12000, 14080, 14120, 19380

ru gl eTeTr BN ReleTrl e IS I Bedet

ol (200’ ool

PlPPTHT ”1ﬂﬂﬂﬂﬂﬂﬂﬂﬂmmmUWNW@WWWW&W&M
Mk ARD HUMEBERY

Lgdid PRIMT "HeukhRhRRRBRE- - O0REAN TERMIT
PHATET DM

Standard menu module.

MODULE 4.3.2

: ALE : 45]' 11144"Ti')

T } !HFFMH TT~U~IH 1iEd=CHEE 150
SEEE THFUT “ERREE YO LOADIHG FROM TAFE
AR T RE L TE O QE="YY O OTHER 1186

P2edd THPUT “eiEdAME FOR ITEMZ " HME

1@ IMFUT "sMAME FOR ASSOCTHTED GURMTI
THOOUCDE CGOTO 11E8es

103

The Working Commodore 64

Initialisation of variables. The module also allows the user to specify the
name of the item type to be stored and the general name of the units e.g.
Food/Units, Product/Package type.

MODULE 4.3.3

BEE REMEEREEREERE R
@18 REM EXTEND DICTIOMARY

T REMEEEFEEERREER R R
p6 IF ITEMZISEE THEW 15656

S046 FRIMT "efmBH0 MORE ROOM IM DICTIO
HARY" S FOR I=1 T0 ZEBE:NERT RETURH

1505H PRIMT “TIEBNERRERIARIEL [TEMS FOR DI
LT TOHFR: @

H PRIMT “WMEA"; HRE: THRUT % CHAME OF
COTOOGUITH M TLE

IF T1$="ZZ2" THEM RETLIRH

G FRIMT "8 008 S IMFUT " Tas

A6 PRIMT "MEUAMTITY PER "0 T2%: IMPUT
HH

15180 IMFUT “MBRRE THESE CORRECT 0W/hD "
J0EIF OF="N" THEM GOTO 15650

15116 GOSUR 1e@@e: GOUWUE 17800 IT=IT+1 G
O 15R5H

The input module for the main dictionary. Having specified the general
name for the items and their units, the user is requested to input item
name, unit name and basic quantity per unit (ie calories, price, volume).

MODULE 4.3.4

11y

A PEH###+#¥¥++#¢+++*#¥b+¥¥+$¥+¢#*#¢
A REM BIMARY SE
' PLH###*+##++++++#++¥+##+¥¢¥ﬁ¢¢¢¢¢
16626 IF IT=0 THEH Zh=@:REETURH

Tl Pl HTOLOGO I T L0560 2 5E=2 101
1ERSE FOR [=FO TO @ STEF -1

160RR TF MRS 800T1F THEM S8=55424]1
16878 IF FFCES,8.:T1E THE? et o
1eBmEa IF SS90 THEH e

18858 IF 555171 THFH “”~IT 1

1ei@l MEST 1

i el
Ty Ty

KA 5%]
3

b

104

Chapter 4 The 64 as Secretary

lelle IF AECES.@CT1E THEM 55=55+1
1alz8 RETUREM

A standard binary search module.
MODULE 4.3.5

17EEAE FE Mk e e e el e e o e el e o e e o
17@18 REM IMSERT ITEM

TTEIEE RO Db e b sl e el el e e e
17EzE IF IT=8 THEM GOTO 17A&E

17@4p FORE I=IT TO 2541 STEP-1:AFCI.00=AF
'Iml A HECTL L0 =AECT~1,10

1 I DT =T tHERT

1 'Eﬁﬁﬁ;ﬁb:T1$3H$ﬂE' 10=T2%: COS5=MH

=
m I RN
— t'_l't
:Slt 1

A standard insertion module.

MODULE 4.3.6

TEEAG B T e e o o o o o e o o o o o o o e
18818 REM USER SEARCH

TR B s o e o e o o e o o s ol o o o e o o o ol o o o o e
1EEa28 S5=@ TiE="%l"

12648 PRIMT 77000 0 00 e e e R H
18856 PRINT "SMITEM HUMEER: ""“+1

12066 PRIMNT “aF" HHE: ") Hif PN

19E7E PRIMNT "eM 00 " " AECS -1'

19888 PEINT "MRUAHTITY FEP ” sHAFCES 10
"ICUES)

TG PR TR 0 5l 80 800 e o o 5 e o o o 0 ol o o

o0 o o o o B

121968 PRIMT "®COMMAMDS AVATLABLE @

12118 PRIMT " 95HE =ITEM TO BE SEARERCHED F
Qi

j@lae PRINT ¢ =% THEHM HUMBER TO MOWE
FOTHTER"

12128 PRIHT "DDD’ T DELETE ITEM"
18148 PRIMT " BOZEESOTO o aIT"

12158 T1$m““:IHFUT HEMHICH DO YOU REEQLT
RE:":T1%

1aied IF T1g20000D" THEM 18126

12176 FOR I=%5 TO IT-1:'A%C1.00=R$ECI+]1.60
AECT L1 0=RFCIRL L L0 0O om0 T D HERT

105

The Working Commodore 64

H IT=IT-1 G0OTO 156468
il TF Tig="Z228Y THEM FEETLIRER
n'f LEFTi TII Poadev" THEM GOSUE 1e

CEOTO 1eEed

A SE=SEHYRALCMITECTI$, 200
' g HIT1 THEM S8=]T-1
THEM H&=

The main user search module.

Testing Modules 4.3.1-4.3.6

You should now be able to enter data and to check its proper insertion
into the main dictionary (sorted by item name) by using the search
module.

MODULE 4.3.7

R EVENGIEY T L b oo o e ol e bl o e
SEE18 BEM DATH FILES

TR 0 b e o s o o e e o e e e e
SEBEE PRIMT "W OSITION TAFE COREECTLY.
THEM @RETLIRH B "

“EEAE THPUT “MOTOR WILL STOF AUTOMAT ICAL
LA B PORE 152, 7 ROKE 1,33

ZARSH FRINT e COMMANDE AYAILABLE " PRI
T "EERL GEAVE DATAY CPRINT "EE>LOAT DRETA"
dEed THPUT "PMUHICH T8 YO RECUIRE: "o
O GOTO SBR7E, 21468 RETURM

SRATA POKE 1.7 FOR I=1 TO 206@:HEXT
“ﬂﬂ”ﬁ CPEM 1.1.2, "HHUMEBER" (PEIHNTH#1 HHF B
FoLNE. RE OO ESIT
AREEER TR Cli=E THER 231166
SE1DE FOR Is=@ TO CU-1FRIMTHL, TECD. 80 FE
CLa L RELTOL D THEST
BOTF IT=@ THEW 28126

2R FORE T=28 TO IT-1 FRIMTH#1.AFCT B0, RE
CHECT L0 B O T HERT
2130 CLOSEL RETURHM

SE1dE OFEM 1.1 8 "HHUMBER" D THPLITH L MHE,
R CLLTT
Z':".'i:"ﬂ.ﬁl:“'fl IF Cll=8 THEH “111 a5

FSR1ed FOR T=@ TO CU-1 ITHPUTH#L. TEI.60. T
'I Ta,TaTh MERT

106

Chapter 4 The 64 as Secretary

SElve IF IT=8 THEH 28153

JHIEH FORE I=@ T IT-1:IHFUTHL AECT B AF
Ll Dol MERT

1@13@ CLOSEL "REETLREH

A standard data-file module. Save your data!

MODULE 4.3.8

11HHH e B e e o o o o o o o e sl e e e s o
14818 EEM ESTEMD CUREREWHT LIST
'. hFH*#+###¢*#++#*#+**+W*****+#+++#

v : CUEEE THEM FRINT U Urdelelalele ek Rt
hmmmLHPFFHT LIST MOW FULL. " EETLREM

TAEdE PRINT "TiehEErEREAATDITIONS TO CURRE
EHT L IoTEm

TAEsE PRIMT "ol o MHHE COEEE T T T
HOCTHPUT Tl IF T*t“”“ i! FHEH FETLIRH
LA 1§ ZHI 1aERE: IF AECSS, 80=T1F THEM
0T 198ei

1T ix rr e GO UMKMOWH . FLERZE CHE
ChL Y ROR T=1 TR SREG MEST: FFTHPH

TaaEg PRIMT “e o0ag: "o omgEdsm, Lo THPUT oo
BEAIHMTITY "o 0

T4ae ITHFLT "eeEERE THESE CORRECT CWet:
U TR CHEREmRY THER 1 aEng

1JLHW TECCLY Bo=HE ﬁ.ﬁ' THECCU N L DB TRECD
e RRECES CINE TR I T A E S |
14118 GOTH 14uuﬁ

R
12

Up to this point you have been able to input to the main dictionary and
manipulate the data but the main point of the program is what can be
extracted from the dictionary and stored in a temporary list known as
the current list. This module begins the process by allowing the user to
name an item in the dictionary and to specify how many units of that
item are to be added to the current list. The binary search module is
calied up to check that the item input is actually present in the
dictionary.

MODULE 4.3.9

TR FE D e e e e o s o o R
12618 REM DISFLAY CURREMT LIST

FEIE RE MRk ok

107

http:1!���II<t�ml.�.IH

The Working Commodore 64

13838 IF Cl=@ THEHM RETURH

13840 PRINT"DM:CT=0 F0K I=@ TO C-1'PRIH
T "HE" HEE I TECL A

1258 PREIMNT "W oo " " TECT, 10 FRIMT "H
GILAMTITY ", TCI)

152858 PRIMT BRSO S 0000
T D D Lo D b D D D D

12872 IHPUT "PRESS SRETUREH® FOR MEXT ITE
Mot BEPRINT "TTT
12828 PRIMNT "
:"mll
12850 CT=CT+TCI HERT I
121688 PRINT "#eETOTAL " OT
172118 IHPUT "MEPRESS SRETURHE TO GO EACK

TO MEHU"; OF EETUREM

Having input items to the current list, this module allows the current list
to be output to the screen and creates a total of the values associated
with the items in the current list.

MODULE 4.3.10

TG P ol o e ol s ol sl ol e e ot e ol ol ol e ol e e
12618 FPEM CURREHT LIST DELETIOMS

126268 IF ClU=8 THEM RETURH

12848 FOR I=6 TO CU-1:0F=""'PRIMT "&ZM":T
FC1.800 PREIMT "M":T#CT. 12

19658 IMPUT "EDDD=DELETE®d WRETUREN=MEST

WoZZ=GUTT " ITF QF="Z2Z2" THEW RETURH
1@ IF QeU"D0DY THEM HEST I:RETUEH
19676 FOR J=1 T0O CU-1:TECT@M=TEIT+1,80:
THECT 10=TECI+1, 10 TCId=TCI+1 0 HEAT
1zazd Cl=CU-1:RETUREH
19Ea%E STOF

The purpose of this module is to allw the user to page through the
entries to the current list and to delete at will. There are no complex
search functions, it is simply a matter of paging through each item, one
al a time.

Testing Modules 4.3.8—4.3.10

You should now be able to set up a current list, to display it and delete
from it at will.

108

http:4.3.8-4.3.10

Chapter 4 The 64 as Secretary

MODULE 4.3.11

14120 REM SHSReessssfspiensnebihio
14136 REM IMITIALISE CURREMT LIST

14140 REM ssbib e b s s s oo
14156 FOR I=1 TO S8 THCIB0="" THI, 11="
TR L= RETURN

Since the current list is only meant to be a temporary one, which may be
reset frequently, this module empties the current list arrays and zeros
the current list pointer. If the module functions correctly, the program
is ready for use.

Summary

This program is yet another example of the power of modular
programming. Despite the fact that the application is very different,
many of the modules have been lifted, with or without modification,
from the previous two programs.

As you progress as a programmer you will quickly learn that, written
into functional units which are properly separated from each other, a
collection of methods of doing things is even more important than a
collection of programs. A library of programs will stand you in good
stead until a new application comes along. A library of methods,
properly expressed in working modules, will enable you to tackle those
new applications with hardly any effort at all. New methods are all
around you in magazines and books like this one (of course there are no
books quite like this one) so do try to keep track of them if they look
good, even if you can’t quite see their relevance at the moment. Within
a week or two you may well find that they are just what you are looking
for to complete that program that is giving you so much trouble.....

109

http:1�::j.�.5�

CHAPTER 5

Home Education

One field where micro computers are really only just beginning to make
their mark is that of education. No school is complete today without one or
two computers scattered around. But it’s not just in the classroom that
computer-aided learning is relevant—affordable computing power means
that all the benefits can be brought home. In this chapter there are three
programs which provide a sampler of educational applications, whatever
your age.

5.1 MULTIQ

This program is a favourite of mine. When I wrote it I was satisfied that it
was a competent piece of work that would do the job that it was designed
for. It was not until I entered a mass of questions and tried it out on people
that I realised that such programs make learning as addictive as any game.

Like Unifile, this program is a chameleon, designed to change its colour
to suit your need. At one moment it may be a French tutor, a few minutes
later you may have it setting complex questions on 19th century history.
The aim of the program is to allow you to do all this and more, without
making any changes in the program itself.

Multiq: Table of variables

AA Temporary variable storing answer selected by user.

A$(1,499) Main array containing questions and answers.

D@,9) Pointer to beginning of groups of item types in main
array.

D$(9) Array containing item types.

IT Number of items stored in main array.

NAS$(1) Array containing general names for questions and
answers.

P1,P2 Pointers to range of files to be drawn on to generate
questions.

PP Pointer to wrong answer being selected from array.

Q@) Used in setting up multiple choice test.

Q1 Position of random answer drawn from file.

Q2 Position of correct answer in possible answer array Q.

111

The Working Commodore 64

QT Total questions asked.

QU Indicator to type of questions required in question
generating module.

R$ Data file separator.

RR Right answers.

SU Temporary variable used in calculating groups in array
D.

TY Number of type names entered.

MODULE §.1.1

A T A
B REM MEML

S REEMESEEE AR RN R R
28 PURE 52281, 153 PREIMT "TTHeREehERREND]
T'[! l”

FRIMT “ECOMMAHDE AYATLABLE: "

FREINT "H 312 IHFUT HEW ITEMEZ®

FREIMT " E}SEHEGHEDELETE“

FRIMT " Z3EMTER HMEW TYFEST

FRIMT * 4 GEHERATE RQUESTIOHZ"
FRINT " S30DIT5RLAY OF RESET SCORE"
FEIMT " el2DATA FILESY

FREIHMT " VrIMITIALISE"

FRIMT " SaETOoR"

THPUT "ECRIHICH T w00 RESITRE "2
1 "':!” ;

HH < GOSUR 12800, 1800 . 121068, 17008
A= P 1 A R B T T I I]3[4 GOT FI 11HL1M
1115” PPIHT S ELIGBILICLICRICIDLIEU) Y]]]
CLASSROOM CLOSEIDM (EMND

EaA Y RN

11

[IRCI W PSS Y
Y

=%

pte ot W ek bl o e
"_ﬂ-l--...‘ 'f“—""rl

ERa IR I _J_:
A}

=} 3

~d

THL R] peet peb et b IR

l“l-i'-'sI

ER

£t o) i TR

e
1
| i‘_{l e Rt EALE YRR AR B Ry E vy Eus s

A standard menu module.

MODULE 5.1.2

T 2R PEPT e e s ol o o s e b e b e e e e o
lzeie FEM INITIALISE

128268 REMESEERERR R R b

Teaze CLREDIM HAFCL . o4l A0l 4350, IECs

2.1 B RE=CHRE 1S

lea4a ITHFUT "MmARE YOU LOADIHG FROM TRFPE
Che b R T G THEM 11688

12a%E FRIMT "TIEIRERERREERETEST STRELUCTUR

F,‘ Hi

112

Chapter 5 Home Education

12aed THEUT "BLHAME FOR AMSHER " SHAS @
1”ﬁ”ﬁ THPUT " ABMAME FOR QUESTION: " MR

]“ﬂJﬁ THFUT "HEFERE THESE CORRECT oW /MHio®
SEECTEF BE=U"HY THEW 12658

1 2658 DECE="LNTYFED" 1 TYY=1

12168 FRIMT "ThERRENrhepppsaENar Y Fes
12118 PRIMT "HaIMFUT <2227 TO aUIT: "
12128 PREIMT "WMATYPELZ IHPUT 20 FAR: -~ IF
Tr=1 THEM PREIMT "#HOHE"

12128 IF TY<21 THEM FRIMT "W" FOR I=@ T0
Te=1 FRINT "3 T+l " B DECT S CHEST
12148 THRPUT “MERHEDN TYRFE: " 0E: IF QE="Zz22"
THERM 1166

12158 THRFUT "mmis THIS CORRECT oMM "0
1#:IF QIF="H" THEHM 12186

Taled ITF TY=18 THEW PRIMT "AF0 MORE ROO
PPCROR T=1 TO Z0@0:MEST (GOTO 1168868

12178 TECTY =% TY=TY+1 GOTO 12166

This module initialises the main variables and allows the user to specify
the general name for questions and answers. The user may also specify
up to nine type names which will be used later on to make the tests more
difficult.

MODULE 5.1.3

SRR REMEEE R R R R R

EETH MEM IMFUT OF MEW ITEME

"EZH e TS0 0 R AR A R o
428 FRIMNT ""MEINNRERERRRRRRRIGHEL [TEMSY

FEIHT VRN ZES T TO UITe

aada IF ITH=588 THEHW FPREIMT "M MORE R

QOMCFOR I=1 T0 2880 HEST EETURH

L2E060 FREIMT "Wm" HAECas ;" " D IHPUT Ti$:]

FoT1#="222" THEM 12166

12020 PRINT "BRE" SRAECL "0 THRFUT TaE:

F TaF="222" THEM RETUREH

L3ave IF TY=1 THEW T=@:00TQ 13166

12@80 FRIMT "ETYFE:":FOR I=1 TO TY:FRINT

IOFCT~12 HERT 1

1338 THFUT "MERIHICH I3 IT:":T:T=T-1

13160 PRINT "MoebbEkhERBRRBREIEL ITEMZ!

i

113

The Working Commodore 64

15118 PRIMT “HRE" CHAECG "W TLE FREINT O

R CHAECL L R TR

131 2B PRIMT "'ﬁiuﬂ'f'F"E!” SOECTHTHPUT " emrE
E THESE CORRECT WMD" I0F

1E126 IF QF vy THEH 123668

12148 Dod, T ""JJ' B Tr+l TIg=UHREF CAE+T0+T1F
13156 GOSUER 14808 GOSUE 1S90 GOTO1 2008
12158 Sl=Gc FOR Te=@0 TO Q0001 Tkl Sl =504+
@, Tt HEAT EETLREH

This module accepts input of questions and answers under the headings
specified by the user, allowing a type to be attached if types have been
entered.

Commentary

Line 13070: If TY is equal to 1, no type names have been entered and
the type is set to ‘Untyped’.

Line 13140: The relevant element in the first column of the array D is
increased by 1, registering the fact that the type group has increased.
The type number is attached to the front of the answer in the form of a
character between 0 and 9.

Line 13160: The second column of the array D is adjusted so that it
contains the start position of each type group.

MODULE 5.1.4

]
L

[R b]
P]

REMEEEEFEEEERERRERRRERRRRRE RN
REM EINARY SERRCH
FEMESEEEEEFEERRRERRREERE SRR AN
IF I1T=R THEM 55=@:RETURM
POSTHTCLOGEIT 3 /LOGE2) 5522 190~
14655 FOR T=F0 TO 0 STEF-1

14060 1F A$(H,55)¢ '
1487 TF FE0, 5505
1436 IF S50
14050 IF S5] 1 55=1T-
14106 HEAT 1:1F A$CR,55<T1% THEM 5555+
1

14118 RETURH

Ecy

—
&b g

A

_H
&

i
Doy o=

Y B Y

—
i
(R
o
l:l

A standard binary search module. Note that since the items are sorted
by answer and the answers have the type group character attached to the

114

Chapter 5 Home Education

front, the actual sort is first of all by type—untyped groups will occur
first in the file.

MODULE 5.1.5

TEIEIEIEY R A 0 o
GE1E REM O THIERT
15020 REME Rk R g g G R
GEOTF IT=8 THEW 158k
15@48 FOR I=IT TO &5+1 STEF -1

FRTE FOR J=8 T L AFCT, To=RECl, I-10 T HER

l‘riﬂf*'-ﬁl FECE, Soi=TIE REC] BRo=Ta® I T=1T+1"
RETURERM

A standard insertion module.

Testing Modules 5.1.1—5.1.5

You should now be able to enter data and store it in the main arrays,
sorted by type number.

MODULE 5.1.6

TSAEIE [e et s sl o o o ol o o o el oo e i e e e o
19“11 FEM DHTH FILES
[REla Rt B A E L LR EEE LA EEEEEEEELE L LY
14H?ﬁ FPRINT "EEFOSITION THRFE CORRECTLY T

HEM HEETLIR ..

PR THELT "MOTOR WILL STOF AUTOMATICHAL

LA " EFEPOREE 192,V OFOEE 1,55

12E5E FRIMT "ERSCOMMARTS AYATLARBLE " PRI

T "Ri 1 oSAWE DRTAY, . " 20L0AT DARTH"

T2aed THFUT "@lHICH D0 20 FEODIRE " R0

MO GOTH 11ﬂ“m 13156 RETUER

] B7yE FPOKE 1.7 FOR I=1 TO 2886 HE=T
1SR UFEHl...?.“HULTIU”iPHIHT#lslT}H$JT

"'1 z_-‘x

..a_“

ATk FOR T=@3 TO TY-1:PREIMTHL.DECIRED
sEEITICL T iHERT

Fidk I=8 TO IT-1 FREIMNT#1. A6, 12 FR$
LA THERT :
FRIHTHL MAF OGS i RE MRS LS

S8 CLOSEL EETURH

. ‘lﬁﬂ OPEML L 8 MU TIRY THPUTHL . IT. TY
1914% FOR T=8 TO TY-1:IHFUTHL.DECT D DO,

IRy RN 1]
=
Foemd P

!

L - '=7€f e
AR S I RS
R
LY

B b e
LY TN L
5
e
-

115

The Working Commodore 64

I3.DC1, 10 HERT

12156 FOR I=8 TO IT-1:IHFUT#1.A%CE, 1) HE
1. T iMERT

19168 THFUTHL MAFCE HAECLD

121va CLOSEL -HETUREH

A standard data-file module.

MODULE 5.1.7

1EGER PEMEEEECEEEEEEEEEERRE R
16618 REM USER SEARCH/DELETE
o
e

FPIHT geo 111 LT T TIEEE R
SE3IT-1 THEM S8=1T~1

A IF S5C6 THEM SEs0

B FRINT NEBmDRRENNNENBN RSB RN RN
5=t IT=1

8@ PRIMT "S@COMMAMDE AYATLABLE: "

30 FRINT " S#SRETURNE FOR MEXT ITEM

il iad L

—

£
1=
1&
IT

i m [RN

1elgn PRIMT "# >F05/HEG HUMBER TO MOWE
FOIHTER"
16118 PRIMT "® @' DDD° TO DELETE ITEM®
16128 PRINT "m >@8°Z22° TO OUIT FUMCTION"
10178 PEIMT "#d"; FOF I=1 TO 18
1&14@ FRINT "ﬂﬁ

CHEET
18158 FRINT “ﬁ?ﬂﬂ???ﬁ??FHTP? TR ot o
FREIMT "aE" imMIDECRECR, S8, 20
Tl PRIMT "MRE" AFC1 55 PRIMNT ma; TEe
MALCLEFTECAF A, BS0 L aa
15178 GILE="" 0 THPUT slelemlHICH T0 w00 RESL
TRE: " 01%
1elon IF Q140000 THEM 16218
Telsd DoE, TEMP »=T0 8, TEMF »~1 FOR I=55 TO
IT=1 FFCA. Ti=AE B, T+1
1 E2RE H$i1=IF=H${151+1?1HEHT T2 IT=1T~1:04
OSUE 13160 G070 1ERd6
lezid TF 1F="2Z2" THEH RETLIRMH
16220 IF Qlg="" THEH SS=5041:G0T0 15046
18250 SE=SS4+VALCOIE GOTO 16043
1248 GOTO 16248

A straightforward user search module.

116

Chapter 5 Home Education

MODULE 5.1.8

P B o o o N A
FEM EAMDOM CLEST IOMS

[T e o
AL

FEIMT "IrReepNpRRRERRREAIEST TOMS
HEE PRIMT “MEREDO YO WIZH AMSHERS TO B
IR AR R

FRGE [MPUT "FROM THE SAME GUESTIOW TWFE
MM IR PRINT D

1?@7@ IF L=ty THEM Q=]

1vezn Pl= PE=IT @l =IHTORMICE I ET T-1 0 e
THT CRRDCE DS R h=E1]

178368 IF QU= 0OF DOa, VALLEFTECAECE, B10,
Tadoadd THEM 17116

17188 Pl=DC] WHLCLEFTECHFCE. L, 1000 IFE=
Ded VAL CLEFTECAFCRALLT 2, 120

17119 FOR T=i@ TO 40IF I= Dh THEM 17156
17128 PR=F1IAIMTORMDCA ER20 0 TF FR=oEy T
HEM 17122

17158 FORI=6 TO IT:IF FP"“‘T! THEH 17124
17148 MEST Jaolar=pFp

I¥158 MEST T

Péleed PRIMT "BEER" CHAFECL 20" " AL Doz

AN BN i
iR R IS O

k]
ST
%

ini

W OFRIHNT " SleleeE HAECas " R

BE FOR T=@ TO 4:FREINT I+1;") "iMID%C
GRS TN 20 HERT

9@ FRIMT “EHICH Do 200 THIME TS THE
GHT HRSLER?"

Eﬁﬂ THFLUT “ALdTYPE IW THE HMUMBER:"HA: 0

]|..1H IF ARA~1=02 THEM 17258

1va2l FRINT "FmWEOHGT THE CORRECT AMSWER
fHE "

172528 PRIMT MITECRFOR, COREY 2, 20 1GOTD 172
T

17246 PLOKE r~"“3

Ly FRIMT Tlﬂmﬂﬂmm"iﬁﬂﬁ‘lml T 11:FRI

HT " RIGHT " tHERT

IPded FOR I=1 TO 13:'POKE 532281, 1 FOR J=]
TO 2 MEST T, 1 REE=RE+]

I¥PE78 FRINT "HEMEETURMNSE FOR MEW SUESTION

117

The Working Commodore 64

DR EZE T GUTT FLUMCTION:"

I7aER GE=""THFUT oF: IF QFE="2220" THEM FE
TLIEH

17ame PRIMT "0 G070 17820

This is the only really original module in the program. Its purpose is to
generate a random question, to display five possible answers on the
screen and to accept an input from the user specifying the right
answer—or at least attempting to.

Commentary

Lines 17050—17070: This routine sets the difficulty of the test. Possible
answers will either be drawn from the whole of the file, in which case
many of them will probably. be inappropriate and make the task of
selecting the right answer much easier. Alternatively, answers can be
drawn only from the same type, making the task more difficult, since all
the answers will look at least possible.

Line 17080: A random question is drawn from the file and a random
position for its position number chosen in the array Q.

Lines 17090—-17100: If QU is zero, or if there are not five answers in the
type group, then the range of possible alternative answers is the whole
file P1-P2. If QU is 1 and there are at least five answers in the same
group as the right answer, P1 and P2 are reset to the beginning and end
of that group.

Lines 17110—17150: Four random answers are chosen from the range
set by P1 and P2. A check is made that the randomly selected answer is
not the same as the correct answer or a previously selected random
answer.

Lines 17160—17200: The question is printed, together with the five
possible answers and the user is asked to specify which is correct. The
variable QT, recording the total number of questions, is incremented.

Lines 17240—17260: The user is rewarded by a multi-coloured series of
screen background changes and the variable RR is incremented.

Testing Module 5.1.8

IT you have some data ready to reload, you should now be able to
generate your own multiple choice tests. You will only be able to
generate the harder form of test if you have entered sufficient data for
the program to regularly light upon a group of five answers of the same
type.

118

Chapter 5 Home Education
MODULE5.1.9

FE M3t s bk gk h e e e e o
FEM SCORE

P o R R A
A FPREIMT "I ebNNENEEeYRRBRREESSICCOREEY | 1
FoOT=8 THEW RETLEHM

SEdE PRIMT "HEETOTAL CUESTIONS "o oT
SESE PRINT "HACORRECT AMSHER:D: " RR

SEEl PRIMT "MESCORE: " THT OO IRRE-T <5000
L SRRINE N RE DA

THPUT "HaDo YOu WTsH T JERD SCORE

pIving
IF Gp="y" THEM OT=@:RR=
RETLRH

This module keeps the score, adjusted for the fact that one in five
answers would be correct if the answers were only chosen randomly.

Summary

This is quite a powerful program, but remember that you will only
confirm that for yourself by entering enough data to make it enjoyable.
The program is also a reminder that whenever possible, if you are going
to write a complex program, you may as well go a little further and
write a multi-purpose one, saving yourself a great deal of work in the
future.

Going further

1) As presently constituted, the program checks that the same answer is
not displayed twice for a question. What it does not do is to check that
two different answers might actually be the same. Could you insert a
check to deal with this.

2) The question of rewards for success is an interesting one—adults
seem to find success its own reward when playing with, I mean using,
this program. For children, however, all manner of rewards are
possible. What about tagging a short game onto the program which can
only be accessed for three minutes or so when a number of answers are
answered correctly.

5.2 WORDS

Once you have a program that works well, you soon find that it suggests
other uses to you. Such was the case with MultiQ, and the result was
this program, which can be used as an enjoyable word-learning aid for

119

The Working Commodore 64

children in the earliest stages of reading. The only real difference
between this program and MultiQ is that the questions take the form of
pictures and the answers are possible words to go with the pictures.

As for the pictures themselves, they are no more than the output from
another program in the book, Artist, picked up from tape and loaded
into this program’s dictionary. The capacity of the program, as
presented here is 50 pictures, though another set could be picked up
from tape if so desired. Designs meant to be used by this program must
use only the bottom 10 lines of the screen, since the top part of the
screen is needed for the questions and prompts.

Words: Table of Variables

A% Stores data for design characters and colours.

B% Co-ordinates of corners of designs.

FNA(SS) Value of element in A% whose position is dictated by the
location of the corners of the design.

FNB(SS) Actual character code derived from FNA.

WW§ Answer input in response to question module.

MODULE 5.2.1

11 CAREA T o o el e o
11e1e REEM MEML

11E2E FEMESREEE e o i o e e
118728 FOKE 232581, 15 PEINT "IrGeibimaibmm
WEAOEDE"

11848 PRIMT "#SC0MMAMDE AVATLABLE "

11826 PEIMT "M 13 IMPUT HEW ITEMZ"

1188 FRIMT " 22SEARCHASTELETE"

11@vE PRIMT " Z0GEMERATE GUESTIOMZ®

Az PRIMT " 40DISPLAY OF RESET SCOREM
wRa FEIMT " S30DATA FILES"

188 FEIMT " a3 IMITIALIZE"

11118 FRIMT " FaETOP"

11128 TMFUT "MCMHICH DO YOLU RERUIRE: " 20
FEINMT "1";

11128 0OM 2 GOSUE 12808, 1568608, 16086, 17066
1T, 12808, 11 198 G070 11800

11148 FRINT "XSeleTsIeleleleeaerEmkneRenrN ey
MRIAGODDEYE" - EMD

14
11
11

A standard menu module.

120

Chapter 5 Home Education

MODULE 5.2.2

O REMEEEESEEEEEREER SRR
5 REM IMITIALISE
ZEZE FEMRESEEERERERE R A
76 CLRDIM GBodn, AECASD, A4S, 2550, Bl
49,40 IT=0: RE=CHRE (13
G4 GOTO 11680
BEl GOTD 11968

Initialisation of the main variables.

MODULE 5.2.3

TEIRARE PR P R e R N A A e

1168 FEM O IMFUT OF HEW ITEMS

2@ PRIMNT "I SNNERRRRRNRNRIEL T TEMS"
44 IF ITH=188 THEH FREIMT "dF0 MORE R

|H IH FOR I=1 TO 2060 HEAT: RETURM

1aa58 THPUT "R 0SITION TARPE CORRECTLY.

THEMH SRETURHS: * ; Of

13068 PRINT "I":OFEM 1. 1.8 "ARTISTY (FOR

T= TO 4 THPUTHL BSCIT, I HEXT

]":'1'71'-’%71 FOE I=0 T0 BacIT.dr-1:IHPUTH#1.01.0

1 SEEE HROTIT. D= Se T LR D22 PEY HEST T 0L

OEE]l 88=IT

12828 PRIMT "W GOSUR 14060

12108 IHMPUT "800 YO MAMT THIS OYepa .

CoF IF CiFE="H" THEM RETUEH

12118 IHPUT "WORD TO GO WITH PICTURE: "W

¥

12128 IHPUT IS5 THIS CORRECT oY /M2 0E:

IF CF="W" THEMW 1328946

131350 MECTTr=ME: TT=IT+1

12148 IWMPUT "AMGOTHER PICTURE CYeHs v aE:

IF Cg="%" THEHM 136806

131568 REETURN

This module picks up from tape designs created by Artist and allows the
user to tag the right word onto them.

121

The Working Commodore 64
MODULE 5.2.4

T GG T e oo b o o o o 0 0 0 0 o o o
14816 RFEM FRIMT DESIGH

1E2E PEH#***##+++++#¥+++#+¢*++#¢$++#+*
140536 PF=EFOFE T=ByLo@h, | e i 3
1

1B FUP
14058 PR=
::.4+~1H+I+T IHT T1 S

14066 Pn}ﬁrﬁzgﬁaqm¢1+7 T1~oSERTHT T A 256
W HEET J. 1

146878 RETUREH

This module makes use of the two defined functions to extract the
correct characters and colours from the numeric values saved by Artist
and to POKE these onto the screen and into the colour memory.

Commentary

Line 14030: B%(SS,1) and B%(SS,3) record the vertical co-ordinates of
the top left and bottom right corners of the design.

Line 14040: B%(SS,0) and B%(SS,2) record the horizontal co-ordinates
of the same corners.

Testing Modules 5.2.1-5.2.4

You should now be able to load designs created by Artist, see them
reprinted on the screen and then loaded into the main array with a
chosen word associated with them.

MODULE 5.2.5

LEREE REMEREREEEE R R R
15816 REM DATA FILES

1BE2E REMEREREEEEEEREEEEREE R i
1BAZE FRINT "MEPOSITION TAFE CORRECTLY T
HEH SRETLRH®-~"

15048 IMPUT "MOTOR WILL STOP AUTOMATICAL
Liy: 0% POKE 192, 7 POKE 1,39

10956 PRINT “MSOMMANDS RYRILABLE: " :FRIN
TV 1)SFVE DTAR 23LOAD TATRA"

15060 IHFUT "WWHICH DO 'vOU REGUIRE: ;60
N B_GOTO 18676, 18136 RETLRH

13878 POKE 1.7 FOR 1=1 10 2006:NEXT

122

Chapter 5 Home Education

L@ OFEML. 1.1 "WOREDS CFRIMTH#L.IT
128596 FOR I=8 T3 IT-1:FRIMTHL. AFCIN RER
O o

@1en FOR JT=6 TO BT 431 FRIMNTH#1.HRCT,

3 HERT T
2110 FOR J=@ TO 3:PRIMT#1,BXCL, T3 HEST
5

CLEEEL TEETLREH
OPEML. 1. @, "WORDE" THFUTHLLIT
FOR T=@ TO IT-1: THFUTHL AFCT 2, BRI

0 G
fa YB3
B

—— e b 1
i}

o

R

il

ford s et dede bt ped feed .

FX Ry ¥ B

FOR J=0 TO Bxol, 431 THFUTH#] . A=CT,
LA
FOR J=8 TO 3 THPUTHL BROL, T i HERT

=
DR ER RN

0

g e g bk

5178 CLOSEL: RETURH

A standard data-file module.
MODULE 5.2.6

15800 REMFEEEEEEEREEREEEE R R
131l FEM S HEARCHATELETE

TEUEE M A e
 DEEE mmel s IR IT=8 THEM RETURH

136@48 PRINT "IrapihasEERRREER-E ARECH
153858 IF SZ5IT-1 THEM S5=I1T-1

15EeE TF 5508 THEM ZS5=3

L5EFE FRIET e e B e eI 6 T o o G o e v e i O D e R
ITEME=";TT

1aEme FRINT ECOMMAHDS AVATILABLE "

15056 PEINT "M8 AFETLREH® FOR HEST ITEM
15188 FREINT '@ XF05/HEG HUMBER TO MOVE
FOIMTER"

15118 PRIMT "m @°DDD TO DELETE ITER"
15128 FRINT "o 2R°Z252° TO GUIT FUMCT ION®
12128 PRIWT "HIeEE A% C2Z0 (GOEUE 1 4a0ae
15148 CeE="" 0 THPUT " aelnaialsiamaliH I OH T Y
DL REGIIRE " 0F

12156 IF GV DDDY THEM 131598

1918 FOR T=25 TO IT-1:FOR J=@ TO 2550 F/k
CL TR oT+d . T iMERT Ju1

15178 FOR I=55 TO IT-1:AFCIa=FAECI+10 FOR

123

http:I:.f!:ETI...IF

The Working Commodore 64

Je=@ TO G BHOT, Ja=RROI+1, T iHERT Ju1
19188 IT=IT-1:G07T0 13848

15128 IF QF="Z22" THEM EETUEH

PEead IF @F="" THEM SS=Hh+] GOT0 156846
15218 SE=5E+VALCRFED CGOTO 15646

13226 GOTO 152z

A simple user search module.

MODULE 5.2.7

FE M AR A AN A A
FEM RAMDOM GUESTIOMS

FLE P A A A A
=TT CRMDOROKIT) B2=THT CRHDCB 5
A FOR 1=8 T0 4:1F 1=2 THEN 16695
B OPP=IHTCRMICE 4T)
G OIF PP=01 THEM 16056
B FOR J=@ TO I:IF PF=@(J) THEM1SESE
BOHEMT Jrfdla=pp
MEXT 1
A0 SE=01cPRINT "I GOSUE 14606
1@ FRIMT "#&i": ‘FOR I=@ TO 4:FRIMT "a"

GHC T30t HEWT
18156 FRINT "METYFE IH THE RIGHT WORD FO
B THE PICTURE: " THFUT WWE:0T=0T+]
16126 IF WWECOREIELY THEH FRINT “HROHG!
THE RHSWER WRS &' A$C01D:GOTO 16166
16148 PRINT "AMRIGHT MR IGHTIR I GHTWR 1GHT &
IGHTER IGHTER IGHTTRIGHT " © RRE=RR+1
16158 FOR I=@ TO 15:POKE SI281.1:FOR J=1
TO 1SEHEAT 1.1

LELER TMPUT "ERIORE Y M3 08 IF [ty
THEN 16686
16178 RETURM

P ten et
Ty O Iy (T

YRR
3) e T

E L7

A R B

5]
£
5
a

NE

T
R X

RN L
¥

e vl
DD O
o o

Iy
-
%

T

MHHH,_‘H;_;H..
[
= i

_.U Ty

{Qt—ir—bx~s

This module is equivalent to the random question generator of MultiQ
but simpler in that it always chooses possible answers from the whole of
the file of items present.

MODULE 5.2.8

1?9@@ PR e s e e e o o
17¥@18 REM SCORE

124

Chapter 5 Home Education

IFRza IF GT7=6 THEM RETLEH

17346 FRINT "TrEEErDENBEREBERRFCCORE"
17656 PRIMT "MeRTOTAL GUESTIOMZ: "I LT
17EREH FRIMT "MCORRECT AHSHERS: "SRR

LPETE PRIMT "B@SCORE: ") INTCCCRR~(IT 50" 00

LE.PRCERG 305

i7esa IWPUT "Dl YOl WISH TO ZERD SCORE
e T E

17858 IF OF="Y" THEH OT=6:FR=Q

17168 RETURM

The same function as the score module in MultiQ.

Summary

This again is a program which requires some work if it is to be of any
use, since the small designs it uses take some time to build up in
quantity. One easy answer would be to get together with some other 64
owners and swap tapes of designs. Micro-computing doesn’t have to
isolate you from the rest of the world!

Going further

1) The question of rewards rears its ugly head even more pronouncedly
with this program—try to think of ways in which a correct answer can
be more excitingly rewarded.

5.3 TYPIST

Not all education is about manipulating complex data. Much of the
most important learning we do involves the training of responses and
computers excel at that, which is why pilots, navigators and the like now
begin their careers in front of computer simulators rather than the
expensive and risky real thing. This program is not quite as grandiose as
that, but it is nevertheless an extremely effective learning tool.

Of all the programs that I have written, this one must come close to
being my favourite. Its presence here proves that a program doesn’t
have to be long to be useful. This one is short, neat and good at what it
sets out to do, which was to help me improve my touch typing. Of all
the versions that have been written, the 64 version is by far the best, so I
hope It finds a place in your collection,

Typist: Table of Variables

C3 Line of spaces used to clear lines of text.
CH Number of characters in tests so far.

125

The Working Commodore 64

RIGHT Number of correct characters.

SUM Number of characters entered.

TI System variable counting time elapsed in 60ths of a
second.

TT$ Temporary storage for time taken.

MODULE 5.3.1

T1EEE REM ok sl ol e s o e e
11@1a EEM FEINT KEYBORREI

Tiaza FOKE 532816
11G48 FRIMT "Z'I!'JII

PR R
11858 Af="+1234567 258 +-£"
118eE PRIMT " YiFOR I=1 TO 14:FRIMT

.1
opm o MIDECRE. D10 HEXT
SEOFPRIMT " won ADm et
FREINT W

ey
et e
[y e]

0)
[y ixl

Hf="CWERTYU T OFEE T
F’F:IHT X WSO CFOR I=1 TO LEH
CHEYCFEIMT "EE B MIDECAE, T, 100 THEST
11116 PREIMT "4 SHa .-
11128 PRIMT ¢ W
11158 MF="AEDFGHIKL: i ="
1114@ PEIMT I 2t B E1
11158 FORE I=1 TO LEMCAEX CFREIMT "mE W3 p
IDECAF, T, 105 "HEAT
11168 PRIMNT "o sREg .
11178 AF="Z-CWEHM, . /"
11128 PRIMT " ma
n
11128 PRINWT " SR EtHEm B
112688 FOR I=1 TO LEMCAF: FREIMT "m@E ®E M
TDECAE, T, 100 tHEST
11218 FEIMT "8 #SHE | =t-m "

1
1

— T

| s
R
- 5

11228 PREIWT ¢ L}
112z PRIMT ¢ me =
. 1"

The purpose of this module is simply to print out a fairly crude copy of
the 64’s keyboard on the screen, thus allowing the user to look at the
screen rather than at the keyboard when an input is being made.

126

Chapter 5 Home Education

Commentary

Lines 11050—11070: This section, like those that follow,prints out the
irregular ends of the keyboard (things like the RETURN and RESTORE
keys) which spoil the regular pattern, then prints out a line of black
inverse spaces and superimposes upon that line the names of the
alphanumeric keys in the appropriate places. A black inverse line is then
placed underneath the row of keys.

Testing Module 5.3.1

The module should print a copy of the keyboard in the top half of the
screen.

MODULE 5.3.2

T2ERE BRI b e g ol o
12018 REM RCCEPT IHPUT

12832360 SUM=0 CH=E RIGHT=8: RESTORE TT#="06
R

12848 Ch=t

12656 READ A$:IF AF="STOR" THEM GOTO 126
12060 FRINT " selneanaleeTamae

1287 FOR LIME=1 TO 3:FRINT CF;MEAT PRI
MT "TTTTI

12686 IF LEMCAE1335 THEM FRIMT "STRIMG T
00 LOMG" : 5TOR

1206 PRINT "B iR$FRINT "0&@; FOR I=1
T LEHCRE

12183 GET T#:IF T#="" THEM 12108

12116 IF T$="7" OR T$="®" OR T#="N' OR T
F="W" OF T#=CHR$C13) THEM GOTO 12109
12126 IF I=1 THEH TI$=TT#

12130 SUM=SUM+L FRINT T#:" W

12148 IF THIPMIDFCAF, 1,13 THEM FRINT "<l
B GOTO 12168

12158 RIGHT=RIGHT+1:HEST 1:PRINT "S'":CH=
CHHLEMCRS D TT$=T14

12166 PRINT "M ; STRE(INT (RIGHT/SUMH 10
BE/1G

12176 PRIMT STRECIMTCEUMSCTL/AEGEE0 5/ 108
JODPE "

12186 IMPUT "MORE (W M2 ;0%

12190 POKE 728,18 FOKE 781,21 POKE 782,9:

5

127

The Working Commodore 64

S EESZ PREINMT OF
12208 IF GFIUHY THEM 12858
el EMD
This module prints out a line of text to be copied, then accepts key by
key input, keeping track of time, success rate and indicating errors.

Commentary

Line 12050: Text to be copied is stored in DATA statements at the end
of the program. These DATA statements should be terminated with a
line reading simply STOP, as in the example lines given, which causes
the program to begin READing again.

Lines 12060—12090: These lines use the string of spaces (C3) to clear the
area where text is to be printed, print the text and move the print
position down to accept input on the line beneath.

Line 12110: Cursor move arrows are not accepted as an input.

Line 12120: The program keeps track of the time taken to input the text,
but timing commences only after the first letter of each line is input and
is suspended between lines. The total time taken so far is stored in TTS$,
to which TI3 (see last program) is set at the beginning of each line.

Lines 12130—12150: The last letter input is printed. If it is wrong it is
indicated by an error and the print position is returned to that point.
Total number of keys pressed and the number correct are recorded.

Lines 12160—12180: On finishing the line the percentage success rate is
displayed. The system variable TI, which stores the same value as TIS$,
but expressed in 60ths of a second, is used to calculate the number of
characters per second input. The seemingly convoluted formula ensures
that two decimal places are normally printed.

Line 12190: This line demonstrates an alternative method of dictating
the position at which the next character is to be printed. To use this
method, zero must be POKEd into location 780, the row position into
781 and the column into 782. Calling the ROM routine at 65520 then
moves the print position to that point. This method can be used to
replace strings using cursor control characters. Here it is simply used to
dictate that the MORE. prompt is overprinted with a line of spaces if
the program is continuing.

128

Chapter 5 Home Education

Testing Module 5.3.2

This module cannot be tested until some DATA is entered for the
program to READ. Enter another module at 13000, consisting of the
text you wish to practise on, terminate it with a DATA line reading
STOP and then run the program. You should be faced with the first line
of text stored as DATA and be tested as described in the commentary.

EXAMPLE OF PRACTICE TEXT

GER I o o 0 0 o o
1@ REM DRTH FOR TEZTS
I DATA "RAEDFE LET RZDF CLET AZDFE S LE

XA RN

Lo Cal £33

DATA "ASDF :LKJ ASDF LEJ ASDF LK

G DATA "R AD ADD ADDS: ASK LAD ALL F

—

i
ol
T
A

DATH "A AL ADD ADDS: ASE LRD ALL F

a3t

[¥ R B Sy i I S gy S

L_ml
HYE THTR "R AT ADD ADDS: AZE LAD ALL F
L
1A

ARG TRTA STOR

{:

Summary

This is a program which can only really work for you if you use it
seriously. One way of making the best use of it is to get hold of a book
of typing exercises and use that as the basis of the data you enter. Given
the effort you will find it an effective tool in improving your touch
typing.

Going further

Correct technique in typing depends upon using the right finger for the
key. Drawing upon a typing tutor it should be a simple matter to colour
the keys on the key board to give an indication of which finger should
be used. At the very least it would be good practice in using the colour
characteristics within a string.

129

CHAPTER 6

High Micro-Finance

Despite the jokes about £1 million gas bills, one thing that computers do
superbly well is to handle financial information. It is not only the fact that
they are able to store and process the data so much more quickly than a
human being, it is as much to do with their ability to present the facts in
clear, understandable ways. In this chapter you will find three home
finance programs that use both the 64’s calculating abilities and its flexible
screen handling to take some of the mystery out of money.

6.1 BANKER

Our first program is Banker, a simple tool which is designed to allow you to
keep up with the state of your bank account before the dreaded envelope
from the bank drops onto the doormat. The program deals with payments
and receipts, regular payments and one-off items, producing a neatly
formatted statement for any month you care to specify. In the course of the
program you will begin to tackle some of the problems of setting out
numeric data in a comprehensible form on the screen.

Banker: Table of Variables

A(99,1) Storage of payment amounts and day of payment.

A$(99,1) Storage of payment names and months in which payment
is to be made.

CD Flag indicating whether payment is credit or debit.

CRS$ Separator for data files.

IN Initialisation flag.

M Month number minus 1.

MM Temporary variable used in formatting payment
amounts.

MM$ Used to contain the formatted payment amount.

MOS$ Storage of names of months.

PA Number of payments stored.

RS Temporary string storing months in which payment is to
be made.

S Temporary storage for day of payment in month
specified.

131

The Working Commodore 64
SUM Used to cumulate amounts for running total in statement.
MODULE 6.1.1

L 1REE FE U e o s o e s o e
118 RFEM MERLU

116z FFH+¢++#¢++¢*#+#¢++#$*###$ﬁ#¥ﬁ##ﬁ
POKE 53221, 7 FRIMT "TItkEnaRRRNBNR]
mlll?’-‘iE-HHFEF' "

11848 PRIMT "AEOCOMMARNTES AVATLARLE: "
11858 PRINT "M]'HFH FRYMEHNTS"

11HhH FEIMT "M Z3ERAMIMEASTELETE FPAYMEM

_i —t
- ".'|
- ..a.
il
—
it

:-Ls—l-'l"ll—*!——ﬂr—-i—'-:—'-a‘_e

FRIMT "H A0FRINT ZTHTEMEMT®
FRIHT "X 49TATH FILES"

PREIMT "X SAIHITIMLISEY

AR PRINT “H faamTOR"

BOTHFUT “REmWHICH DO YOL BEOUTIRE: "2
AIHT P

law IF Z=5 0F Z=g OF IH=1 THEH 11146
128 FRIMT " HerERehmEpERRER 0T THITIALT
DL CFOR I=1 TO 2880 MEST GOTO 11888
11148 IF PACE QR (2002 AMD 20330 THEM 1
1 1RE

111560 PREIMNT "ofaeeleiekdBmpmes xRy, MO DATH
YET. Y CFORE I=1 TO Z008 HMEXT GOTD 11066
11tel O 2 GOSUER 120689, 146866, 19660, 15366
12083, 11126

11178 GOTO 11886

11186 PRIMT IIeeeesinlele e N e
BaBAMEER"

11136 PRINT "rhEbEhRERnNmgC OSED FOR BLEE
THESGY
L1280 FHD

[e]
T 0
P s i

i

=

Foed fued

a

—

3

e 8]

X =
m

A standard menu module.

MODULE 6.1.2 |
LZEIRE EEIMHEEEE SRR R R R k¥
el FEM WHEIHEBLES

12828 EEMEEEEEEEEAEEEEEEREEEEEEE R ER R K
12848 CLEIM=1:'DIM RECZ2. 10, A3, 1 AVE,
]_ A 4":4"-.4

1 2056 RESTORE

132

Chapter 6 High Micro-Finance

12686 = !

12ayE DI MOECLLy:FOR T=@ TO {1:READ AF:
PCHEC T =g HERT CRE=CHREEC 1D

Lz DATA JAMUREY FEERUAREY MARCH., AFRIL..
MY JUHE JULY RLIGUET SEFTEMBEER DD TORER
T2B28 TRTH KMOYEMEER . DECEMBER.

12188 GoTO 11aam

Initialises variables and then places month names into MOS$.

MODULE 6.1.3

A [E P e R R e

FEM EMTER MEW ITEMZ

A0 REMS RS R R R R
A FRINT “CldeidcnkhebRbbmbnsngcl 1 TENMS

13340 PRINT " 13CREDIT':FRINT " 23DERI
Tll

13650 THPUT "MEWHICH DO yOU REGUIRE: ";CD
ETecno

13EE0A THPUT "SERAME OF FRYMEMT ;0%
13878 IMFUT "MRMOUMT "0

13E86 THPUT "EMOMTHE (E.G. B1E4E71083: "R
£ FRINT ""HPDERBENENRENENRRNNNERDL
1ZEEE FOR I=1 TO LEMORE) STEF Z:LET M=y
LeMIDECRE, 12101

13186 IF Mx=@ AMD M{=11 THEM GOTO 13130
12118 FRIMTFRINT “TIMVALTT MOMTH THRUT

T

1312E FOR J=1 TO 280 HEAT (GO0TO 13686
13120 FRIMNT MO$CMI; 0" HERT (PRINT

13148 IMFUT "MDAY OF PRYMEMT:";S

13158 IHMFUT “BIFSRRE THESE CORRECT (Y/H):
ITEIIF TE=R" THEH PRINTT"; :GOTO 13066
13166 PA=PA+1 FOR J=FA-1 TO @ STEF -1
13178 IF SCRACT. 10 THEH FOR K=8 TO 1:FA$0]
#1EIERECT, KD AT+ L K =AT K HERT K,
1531038 J=J+1 AT, 1 ="8300 HHZEEHHH"

13196 FOR I=1 TO LEM(RE) STEF 2:M=VALIMI
DFCRE. 1. 250

IZEE FAECT, 10=LEFTECASOT, 10, Me1 04" 1 4RIG
HTCACT, 10, 1217 HEH

13210 ASCT, B=0E ACT, @i=0 [T, 1)=5

13226 IF CI=1 THEM AT, BY=ACT. @01
132368 RETURN

133

The Working Commodore 64

The purpose of this module is to allow the input of payment names and
the associated data.

Commentary

Lines 13080—13130: The months in which a payment is made can vary
between one for a one-off payment and 12 for a regular standing order.
Months are input in the form of a string of two digit numbers which are
read and checked, then the month names are printed on the screen as a
check. This simple method of entry allows a high degree of flexibility
without complex programming.

Line 13170: Payments are stored in a single array according to their date
of payment. Insertion is accomplished by simply scanning the file from
the highest day value.

Lines 13180—13200: These lines set up a month indicator consisting of
12 zeros. The months specified are then scanned and the corresponding
positions in the indicator are set to 1.

Lines 13220: Payments and receipts are both input as positive sums. If a
debit is specified by the variable CD, the amount is multiplied by minus
one.

MODULE 6.1.4

iy

P Tl e e e S
FEM EXAMIMESTELETE ITEMS

T T 0 A A
FOR I=@ TO PA-1:FRIMT "%

FRIMT "MPAYMEMT : " iA$CT. @5

FRIMT "ARMOLMNT " ACT . @8

4608 FRIMT "AMOMTHS: "0 FOR J=1 T0O 12
146878 IF MIDECRAECT. 10, T, 10="1" THEM FRIHM
T MOFCTI~10i"A"

14656 HEAT J:PRIMT

14@2a PREIMT "BDAY OF PAYMEMT:":ACT. 12
141?ﬁ PEIMT eleer@COMMANDE OM FUMCTION K
EoERUPRIMT "M - HEXMT ITEM™:

llllH FEIMT "M2 - QUIT": FEIMT "M - TELE
TE ITEM"

141268 PEIWNT "ERMHICH DO Y0OU RECLIIRE: *#"
141720 GET Q% 1IF Q#="" THEM 141324

14148 TF ASCORE 148 THEM 14178

14158 FOR J=1 TO PH-1FOR K= TO 1:RFCT,

o s
O Lo 03 [= 032
[y R B B RO ey

T S A W]
N
P e vyl

r‘l

134

Chapter 6 High Micro-Finance

KosmAECT+HL, K2 ACT Ki=RCT+ 1 K HERT kLT
l41el PR=PA-1 RETLIRH

14178 IF RASCORE=12% THEM HEXT I
14188 RETUEN

A simple user-search module which prints out payments and the months
in which they are to be made and allows deletion using three of the
function keys to input commands.

Testing Modules 6.1.1—6.1.4

You should now be able to input payments and the months in which
they are to be made and to scan through them, deleting as you wish.

MODULE 6.1.5

T ICHEA o F IV o ol el o o o o e o e

Tl FEM DRTAR FILES

TERATEA 1T o 0 0 0 o o ol e o

la@zE FRINT "POSITION TEFE. THEHM SRETLIREH

WU TMRPUTTCHUTOMATIL MOTOR STORY " 0E

16848 POKE 192, 7 FOEE 1.3%

156568 PRIMT “EPLHlE RECORDER IH CORRECT

MODE . " D THEFUT "THEM PRESS SRETURHSE: " 0F

T FOKE 192, 7 ROEE .29

1EEVE FREIMT "WAFLUMCTIONS AVATLABLE " PRI

BT YED SAYE DATAY CPREIHT "ME2LOAD DARTAY

1= THFUT "eER(NICH DO Yol REGUTRE "0

DG GOTO 1el8d, 14158

16658 RETURH

11868 FORE 11* BeFOE I=1 TO S006:HEST

Tadld OFEM 1.1, 2 "ERHEKERY

1126 PEIMTHL. PH

1138 FOR I=@ TO FA-1PRINT#L,AFCI. B0 CF

FAFCI LI, CREACT B CREACT 1 T HEST

1al4d CLOSEL RETUREN

16156 OPEM 1.1.8, "BERAMEER"

Tl ad THPUTH#L. PR

16178 FOR I=B TH FH=-1 THFUTHL RECT . B0, HE
DAHCT B RCT L HEXT

CLOSEL

GOTO 11W6E6

A standard data-file module.

i

1

el

Oy iy
SuRry g ol
Ea iy

-
LS u]

135

http:pETI.JF.ti

The Working Commodore 64

MODULE 6.1.6

REM# SR S e R R Rk ok
REM FORMAT MOMHEY
PEH***##*#*****#######ﬁ*ﬁ#ﬁ#####ﬁ

M$ T'IIfl:l.%"r TPE‘HN'-QJLFH'—TPﬁ [RIR R

e

i

.,_
Y]
3o

X3

el el ol ol o
=g = =g g
P,

;__..

IR Rt It KA Y]

[I X
Lo 3

17838 FOR FF=1 TO 7 IF MIDECMEFF, 102310
" THEM FEETUREH

17868 ME=LEFTFME, FF-13+" "+RIGHTEME, 7
FELHMEAT FF

This short module is a simple method of achieving a standardised
format for the amounts of money that are to be printed by the next
module.

Commentary

Line 17030: This module is called up from a variety of places in the next
module of the program and works on values drawn from different
variables. In order to achieve this, the value to be formatted must first
be stored in the variable MM. The first step of the formatting process is,
assuming that the amount will not exceed £9999.99p, that 10000.001 is
added to the amount. This gives a standardised length of nine characters
(including the decimal point), of which the first and last characters are
redundant.

Lines 17040: The value is now converted to a string and stripped of its
first and last character (the 1s). Note that when converting a number to
a string using the STRS$ function, a space is automatically added to the
front so that the second character of the number will actually be in
position 3 in the string.

Lines 17050—17060: In this particular program we do not require
leading zeros, so this routine scans the string converting any leading
zeros to spaces. The result is a string which is invariably seven
characters long, including two decimal places. Such strings can be
printed in columns in the confidence that the positions of their decimal
points will always coincide.

MODULE 6.1.7

1588 FEH###+++*#*#*###*#***##*#¥¢+¥¥¥F
15905 REM COMPILE STATEMEHT
15816 PEM+*#+##+#++##+#####¥+¥###*##+**

136

Chapter 6 High Micro-Finance

15620 FRIMT "rAEEeRRNRERERREEETATEMEHTE

L=

1338 INFUT "SHUMBEE OF MOMTH FOFE STRTEM
ERT

15848 IF =1 THEM 15826

158568 FOR Gi=1 T0 G- 1 FOR I=8 T0O PA-1:IF
MIDECAFCT, 10,01, L1 THEM 15870
15066 SUM=SUM+HCT . B

1587E HEsT T.01

158280 PRIMT "TITdeRNEpRRNRRES" (10FC0-10
12828 FREIMT "HNnERMENRRRERRRNDRNNERRERR]

MIITEMamITOTHL MY

15188 PRIMT "BBALANCE CAFYRRRRERRNRRRERRR]
1] L

19118 IF SUM<d THEM PREINT "&

15128 LET MM=HBSCSUMY GOSUR 178668 FREINT

Rik:2

15138 FOR I=@ TO FR-1

15148 IF MIDECHFCT. 1.0 A1 THEM 1352
21

15158 LET MM=ACT, 12 G0SUE 17888 FPRINT "m
TAMIDECME, _ngi FEIMT "minmi";

15168 IF ACL. @@ THEM PRIMT "m";

153178 FRIMT AECT.

13126 FRINT ""ERRNRERSNRNNDENDRDNERRN

MM=AREZCACT A0 GOSUER 17VARE PRINT M.
13126 SUM=SUM+AC T A2 FREINT "aem"; : IF SUM
w8 THEM FREIMT W&

1320d MM=HEZCS0M - GOSUE 17080 FRINT ME
1oe1e GET AF: IF FE="" THEM 135216

1328 ME=T I IHFUT "@ERETURHS TO COMTIMUE

-l'.
I..‘-

15258 RETURH

This module produces neatly formatted monthly statements—the whole
point of the program.

Commentary

Lines 15030—-15070: The month indicators of all the payments stored
are scanned to see if any payments have been made under the headings
for months prior to the statement. Such payments are cumulated to
provide a balance of the account at the beginning of the specified
month.

137

http:Illii~.JI

The Working Commodore 64

Lines 15100—15120: The balance is printed, making use of the previous
module to format it. Note how easily a negative balance can be
indicated by printing the red control character.

Lines 15130—15220: The file of payments is now scanned for those
which apply to the current month. Each time a relevant payment is
found, the day is printed on the left hand side of the screen, using the
format module to standardise the printing, but cutting off the added
decimal points. Then the payment name is printed, then the amount,
with the red control character added if a debit is referred to. Finally, the
payment is added to the variable SUM and the current balance is printed
next to the amount of the payment, again in red if the balance is
negative. The 64’s flexible cursor control makes the construction of
such tables a matter of ease-if it doesn’t look right, simply add one
more or less cursor moves until it does.

Line 15210: Payments are printed one at a time, the next payment
awaiting the pressing of any key. This prevents payments scrolling off
the top of the screen before they can be examined.

Testing Modules 6.1.6—6.1.7

If you have saved some data you should now be able to load it back into
the 64 and call up a monthly statement, with the amounts and payment
titles neatly formatted in columns. If the formatting of the monthly
statement is correct then the program is ready for use.

Summary

This straightforward program raises some interesting questions about
the degree of sophistication required to make a program useful.
Inputting the months in the form of a string is, in many ways, rather
crude compared to specifying whether the payment is to be made
monthly, quarterly or annually and leaving it to the program to insert
the payment in the relevant months. Such an added facility would be
easily possible but it would increase the program length and reduce the
flexibility inherent in specifying months in a straightforward way, which
allows even irregular months to be entered. When designing your own
programs you will need to be constantly aware ot this tension between
what it is worth doing automatically and what it is worth leaving to the
user—the answer may well vary from user to user but complexity for the
sake of it can be costly in terms of memory and can actually reduce the
usefulness of a program.

138

Chapter 6 High Micro-Finance

Going further

1) The deletion module is extremely crude in that it only allows the user
to page through the entries one by one. Why not add a facility to specify
a positive or negative jump, using one of the previous programs as an
example.

2) Another improvement would be to add a binary search module to
replace the present scan from the end of the file when inserting items.

3) The month indicators use a whole 12 bytes for each payment. Using
what you have learned about AND and OR, you should be able to store
and retrieve the same information from 2 bytes (ic one element in an
integer array).

6.2 ACCOUNTANT

This program won’t actually cook the books for you but it will make
them very much easier to keep and will present them in an orderly
format whenever you wish, with provision for single items, main
headings and sub-headings in the printing of the actual accounts.

Accountant; Table of variables

A$(1,99) Main file of names of payments.

A(1,99) Main file of amounts of payments.

C$ Line of spaces used in clearing text.

Cc) Array storing number of items on credit/debit side of
accounts.

CD Indicator of whether item is a credit or debit.

CR$ Data file separator.

GR Used to record the number of items under a single main
heading.

HHS Temporary storage of main heading name in user search
module.

IN Initialisation indicator.

M$ String in which formatted money amount is stored.

MM Temporary variable used in formatting money.

PL Place in file for insertion of new sub-heading.

SS Temporary variable used to cumulate items under a main
heading.

TT Used to cumulate items in accounts.

MODULE 6.2.1

11eld BEM MEMU

11836 POEE 22221, 7 PRINT "TIMERRRNERRRE]

139

The Working Commodore 64

BREECCOUMTAR T
11646 PRINT "AFRCOMMANDS AYAILRELE
118958 FEINT " AR 13 IHFUT HEW HERDIHGS"

11@aesd FPRIWNT "M 23CHAMGESTDELETE ITEMZ®
11ava FEINT "8 Z20FRIWNT ACCOUHTSZY

11a2a FRIMT "8 430ATH FILES"

116828 PEINT "M S)IHITIALISE ACCOUMTES!
111aa PRINT "H &)STOF

11118 THPUT "MEERIJHICH DO YO REGUIRE: " 2
CPEIMT "0

111z2a IF Z<1 OR 234 OR IM=1 THEM 11146
11128 FRIMT "IIeeeereseepnmes®iOT IHITI
HLI=ED™ FHF‘ I=1 Tf'l ZAAE HEST CGOTO 11386
1114a IF 274 AL 258 THEM GOIZUE 13006 FR
IHMT o

11158 O 2 U.’IJB Ta8E, 1 7EERE, 129608, 208

» 1ZBEE 111""’1 =R GEOTH 11868

111e8

11178 PR GRS LI IG R L] A L g LT E
ACCOLMTAMTE"

111268 PRIMT “MermabRRRBRRESFEOGEAM TERMIH
HTED" - EMII

Standard menu module.

MODULE 6.2.2

LZB08 FEMEEEEEE G g e e e
laeld REM IMITIALISE

2@zl CLECSDIM AFCL, 380, [0L, 230 CRE=CHRE
132

128468 CF="

"

12058 Th=1: GOTO 11066
Initialisation module.

MODULE 6.2.3

IHE REMEEEEER SRR R R
419 REM CREDIT OF DEBIT?

DI REMERRFEE R R AR SR
3030 PRINT " Mesesss s s RN RS RNRRNL S CRET

Chapter 6 High Micro-Finance

ITrrRRNEDNRRL »DEETIT"
12848 ITHPUT "sPENNFERERERENRIHICH DO YO
FEGUTRE " CTH CTi=CT-1 C RETURH

Before the input of any item the user is asked to specify whether the
item is a credit or debit.

MODULE 6.2.4

T4EEE FEEMEEEEEEEE SRR R R R R R
14018 FEM IMPUT HERDIMGES

14328 EEMEEEEEEEEEEREEEE R EE R SRR R
14628 FRIWT "TT'EeRNRERRRRREREEL TTEMS:
LU IR CD=E THEM FRIMT "CREEDITY

]4J4H IF Ch=1 THEW FEIWMT "DEBIT"

llfﬁﬂ FRIMT "#ERI% THE ITEM: " :FRIMNT "Eid
1M SIMGLE ITEMY

11363 FEINT "B 20/ MAIW HERDIMG" :PRIMT
"SR SUE-HERDIHGY

14@?@ FREIMT "H IMFUT @7 IF YU WISH T
pLuIT

ladze THFUT "rEPLERSE SFECIFY " TYPE
tdize O TYFE GOTO 15088, 156866, 18866
14168 RETURM

When inputting an item the user is asked to specify whether it is a main
heading,a sub-heading or a single item. When the accounts are printed,
main headings have no sums placed against them, sub-headings are
placed underneath their respective main headings and a sub-total
printed for the group, and single items stand alone with a sum against
them.

MODULE 6.2.5

FEMBEEEEEEREEER RN R R RN

FEM SIMGLE ITEM OF MAIM HEATIIHG

FE A e e e e R A

Qe THPUT "EERIAME OF ITEM: "G$

IF TYFELE THEM IHFUT "PAMOUMT FOR
L ;|"l

THFUT "BrElS THIS CORRECT oYMl "R
i IF Fg="H" THEH 14806

15 UY“” JUHRE D TF O TYRE=Z THEM GF="#"+M]
DEons, 2

£l

N
-+

1

DL (I e R 1]

El —f T T T O

A

iE; - A B s B R Ry]

—_
cr

141

http:t��IPl.JT

The Working Commodore 64

15670 AFCCD, COoCT s=0% ACCD, COCD =0 o0
amCyCTn4+1 GOTD 148008

This module receives the input of main headings or single items.

Commentary

Line 15040: An amount is only requested if the item is not a main
heading.

Line 15060: An indicator is tagged to the beginning of the item-% for a
single item, * for a main heading. These will never be printed but will be
used by the program to identify the different types.

Line 15070: Note how the variable CD is used to specify which side of
the main arrays the name and amount will be stored.

MODULE 6.2.6

FEM SUB-HEADIMG

ALt E 2 E 2 2L R LS EELEEE RS EEE LS
IMPUT "MEIHFUT MAME OF MAIM HERDIH
TR D= LOE

634@ FOR I=@ TO COCDo-1:1F AECCD, Joi=0F
THEH 1e8&d

16836 MEST FEIMT "S0REY. MO HERADIMG OF T
HHT MHME!D" (FOR T=1 TO ZEREHEST

ledel PL=I+1: INFUT "MaHAME OF SUR-HERTIH
5 E

1e@7E THFUT "WAMOUMT FOR SUB-HEARDTHEG: " S0
laidsd TWFUT “AESERE THESE COREELT O M 0"
JREECIF REE="H" THEM GOTD 14086

1ebzE CeE="F"+0E

leled FOR I=COCDr+l TO FL+1 STEP ~1:A%0C
T I0=RmECCD, I-13 ACCT, To=ROCD, IT~10 tHERT
16118 AFCCD. FLY=0E: ACCIL FLY=0: COCTO=CoCh
s E0TD 1460608

Fry ; Tt e o
Ch T T

e}
s"_-,'} e Iy N

This module accepts the input of sub-headings.

Commentary

Lines 16030—16050: The name of the relevant main heading is requested
and checked against the headings in the file. If the main heading is not
present then an error message is generated. Note the way a loop is used

142

Chapter 6 High Micro-Finance

to conduct the search, with the program dropping out of the loop if the
item is found and the value of the loop variable I being used to
determine the point at which the sub-heading will be inserted.
Completing the loop means that the main heading is not present.

Lines 16090—16110: The sub-heading is tagged with a $ symbol and
added to the main file immediately following the relevant main heading.

Testing Modules 6.2.1—-6.2.6

You should now be able to input credit or debit items to the account and
have them properly inserted into the correct side of the main file (credit
side =0, debit side = 1). This can only be checked in direct mode.

MODULE 6.2.7

GG Bk e o o 46 0 0 06 0 00
2018 FEEM DRTH FILES
Y FEEMEEEEE R R R R
2EREA PREIMT "fERFOSTIOWN TAPE COREECTLY. T
HEH HFETURN M-t

3E4ﬂ THFUT "MOTOR WILL STOP AUTOMATICAL
Lr- JEECRFOKE 1592, 7V POEE llu-

SEEASR FPREIMT " esrsECOMMAHDS AVAILABLE : " (PRI
HT "EEH?BHUE TATAH" - PHRIMT ”MEDLUHD TIRTH"
SEEEE THPUT "MRAHICH DO YO REEGUIRE: Y 0
OH o GOTOD Z20e30, 2Aa144
2ABTA RETURH
ZEa0a FOR I=0 70 1:IF RAFCI. Qa="" THEM H¥
CLo@h=" WIHER T
cERse POKE 1,7 FOR I=1 TO 280 HEST
DETEE DR 1.1,23”HHCDuHTS”
i1l FOR I=6 TO 1 FEIMTH1.CCIIF Cola=
A THEH 2@A136
SE1ZE FOR J=@ TO COIo=-1 PRIMTHL.AECL. T2,
CEE HCT I HEST J
21 EE HE’TI CLOSE] CRETLIEH
Sl DFEM 1.1, 8, "HCCOLMTS"
SE1EE FORE I=6 TO 1:IMPUTH#1.CCIN IF CoToes=
A THEM ZEA1VE
eRloE FOR J=0 T0 COoIx—1 IHPUTH1. ARSI, Th.
HET o Ja HEST T
SR17E MEAT I CLOSEL CRETURN

A standard data-file module.

143

The Working Commodore 64

MODULE 6.2.8

21800 REMEFEEEEEEEEE R ER R
21818 EEM FORMAT MOMEY

21620 REMessR Rk
21838 MM=MM+18080., 301 ME=MNIDECSTEEMMY . 3

2140 FOR P=1 TO X

2158 IF MIDECME. P, 1r="@" THEH ME=_EFTFC
ME, P12+ "+RIGHTECME, TP HENT

1868 RETURH

This module performs the same function as the formatting module in
the last program.

MODULE 6.2.9

TP RGeS e e e
17818 REM CHEMGES HHI DELETIOMS

1TAZA FEMEFEERESEEEE RS RGN R g
178568 FOR I=A TO COCDr-~1

178488 PRIMT "TIdckpnpipRpepelCHAMGE OF DE
LLETER"

17858 IF LEFTECAFCCD, Tr. 100" THEM FRI
MT el i MIDECRECCT T a0 30,

178l IF LEFTECHECCT, ITx, 10="%" THEHM LET
HHE=MIDF CAFCCD. T, 20 ' PFRIMT

17878 IF LEFTERECCD, I, 10="%" THEHW PRIH
T "HE" HHF PRIMT"®" i MIDECAEF OO T80
1vasEe IF ACCD, Tr=m0 THEH 17188

1IVA76 PRIMT"rRRENEER RGN R" MM=RC 0T, T
2 GDEUE 218868 PRIMT ME

17168 PREIMT ' STeeieaelemr ormAHDS AVYATIRLAE
LE O FUMCTION EEYS:"

1711@ PRIMT "M F1 -~ HE®T ITEM"

FRINT "% F32 - CHAMGE AMOUHT"
FRIMNT "B F3 ~ EETURH TO MEML
FREIWNT "% F& - DELETE ITEM"

A OFRINT "AERMICH DO YO REGUIRE: *"
GET G IF QF="" THEH 17166

IF CFSCHEFC 40 THEM GUSUE 15006k

—
i

P
N S
AF It iy

- =]

T ped e b feek Teb ek et

N)
AR ERY

-}

A% I

5‘“}
=

L R N i e

i B B

F1E8 IF Q¥=CHRFC135) THEW RETURM
17123 IF Q$C3CHREC1I4Y OR LEFTECA$CCD, 1)
10="#" THEN GOTO 17248

144

Chapter 6 High Micro-Finance

ey

A THPUT "srmAMOUHT TO BE ADDET: "0
A ITHFUT "HRIE THAT COREECT oYeHa-"iR

-,

1:

,-\
-

—
L

-
[

,,..;.3:,‘1,...-..‘
=

TEEd IF REE:0HY THEM ACCDL Ta=A0CT, T+l
GOTD 1 704E
17258 PEINT "TTTIT, (FOR L=1 TO Z FREINMT
i CMESTRFREINT "TTTIT (GOTO 17280

vod4a HEAT T:RETURH
This module allows the user to page through the items on the specified
side of the accounts and to change or delete items.

Commentary

Lines 17050—17090: These conditions deal with formatting the different
types of item. If the item is not a sub-heading then the item name is
printed, its name also being stored in HHS if it is a main heading. If the
item is a sub-heading then the previously stored main heading title is
printed above it to indicate the group in which it falls. Finally, if the
item is a single item or a sub-heading then the previous module is used
to format the amount associated with it before printing.

Lines 17190-17230: If the f3 key is pressed for a single item or
sub-heading, the user has the option to change the amount associated
with an item by inputting a positive or negative number. Note the use of
C$ to clear the prompts if an error is made.

MODULE 6.2.10

B R

REEM DELETIONE

REME S E R4 R R ok

PL=I1:1IF LEFTH#CASCCTL PLY, 130 %" TH
EH HF 1GOTO LEace

126048 GR=0

186858 GR=GE+1:IF LEFT&OAFCCT, PLAGHED 1 ="
FYOTHEM GOTD 12856

1865@ FOR K=PL TO COOD-GR-1HICT, K=
L K4+GRD A CCTL K =A% CDL KAGRD T HEST

18878 COCDo=CoChr~GR: I=]~GR+1 " EETLIREH

This module accomplishes any deletions specified in the previous
module.

A A O
o0 O O
e i B i
) —

=

X

T 0
XY BRI o
gcaﬁl

l

..f L

!il

Commentary

Line 18030: PL is set equal to the value of the loop variable in the
previous module. In the case of sub-headings and single items, the

145

The Working Commodore 64

variable GR, which indicates the number of items to be deleted, is set
equal to one.

Line 18040: In the case of main headings, the variable GR is
incremented to take account of the main heading itself and all its
sub-headings, since these must be deleted along with the main heading.

Line 18060: GR is used to determine how many items will be overwritten
in the file and by how much the value in the relevant side of the array C
must be reduced.

Testing Modules 6.2.8—6.2.10

You should now be able to input data and to page through it, changing
the associated amounts or deleting items at will.

MODULE 6.2.11

1RGN FE e e e ek o s ok e
1918 FEM FEIMT RCCOUMTS

1s e T T e o e o o el e i s o s e
12638 LET FRE="CEEDIT" ' IF Cos=1 THEM FRE=
"TERITY

194 TT=0:Z5=0 FRINT "CIEpREFARE TR FA
.0

12650 FOR I=0 TO COCDs-1:TT=TT+HCD. I
19@ed PRIMT s fIF T/72=IMTOIA20 THEM PR
IHT "R

128768 IF LEFTEFCRECCD. I Lo="%" THEH FRIH
T

Laeoe IF LEFTECHFCCD, Ta, 10="%" THEHW FEIHN
T "hWed;

126198 PRIMT MIDECRECCD, I 2

12186 IF LEFTECRFCCT, T, Th="%" THEM 1315
i

12118 PRIMT ""hEmEENRENSRRRNNRRN"

191z IF LEFT#OAFCCDL T2, 10="50" THEH FRIH
TAEREERRRRER

TH1ER MM=ACCTL T GOSUE 21000 FEIMNT M$
1H148 IF LEFTH#ORFCCT, Tx, 1o="%" THEM Soh=h
HARLCDL T

12158 IF %vﬁH OF LEFTECRECCT, T+10. 1 0="g"
THEM 13212

131 a8 PRIHT "HRPEERE RN B
1] 1l

146

http:1+1.).11
http:6.2.8-6.2.10

Chapter 6 High Micro-Finance

-

12178 MM=25 GOSUB2 1886 FREIMT M$: Sh=0
12188 GET GGF: IF GhE="" THEM 12126

12128 HEST IFEINT "/MEDRRNRREEERRDRENNR]
LU L]] i

S FRTET™ ST CUT L w00 e 8 e e o e O e
1] 1
12218 MM=TT:GOZUE 21088 FREINT ME

2228 FRIMT "HEESS AMY FEY TO GUITH
208 GET GGE:IF GGE="" THEM 132328
41 FETLIEH

STOF

—

i
i

i
1]

i

-
]

[

1]

e el
0 Lt
1T

i d

i}
"]

ey]

%,
i

This module is parallel to the print statement module in the last
program.

Commentary

Line 19060: To ensure that it is clear which sum goes with which
amount, items and their associated amounts are printed alternately in
black and green.

Line 19070: A clear line is left before a main heading is printed.

Line 19080: Sub-headings are inset two spaces.

Lines 19100—19140: For sub-headings and single items, the item name
and the associated amount are printed. Sub-heading amounts are
printed in a separate column and the total of sub-items under a main
heading is cumulated in SS.

Lines 19150—19170: At the end of a group of sub-headings the total for
the group is printed.

Line 19180: Once again items are printed one at a time, with the next
item awaiting the pressing of any Kkey.

Lines 19200—19210: The total for the relevant side of the accounts is
printed.

147

The Working Commodore 64

Testing Module 6.2.11

Having input some data, you should now be able to display either side
of the accounts. Note that only one side at a time can be displayed.

Summary

By now you should be becoming familiar with the techniques involved
in adding and deleting items without disturbing the overall order of the
file. You will also have learned something of the sheer fiddliness of
displaying even simple figures on the screen in well formatted form. It is
worth reviewing some of the methods used here before continuing
because in the next program we shall be dealing with and displaying
data of much greater complexity than anything encountered so far.

Going further

1) One useful added facility would be the ability to print the balance
between the two sides of the account when either side is displayed.

2) As in the previous program, if you are going to store large numbers
of items you will want to change the present user search module, which
can only page through the items one by one. Be careful in doing this
however, since the module must be able to detect the main headings as it
passes through the file, especially for the purposes of deleting. Simply
jumping through the file without regard for this need could result in
disaster.

6.3 BUDGET

We now turn our attention to the most complex and difficult program
you will encounter in this book. Budget is a powerful and flexible
financial aid which enables the user to plan finances over a 12 month
period and to examine the consequences of ‘what ...if” decisions about
income and expenditure. Intelligently used, it can provide some
surprising insights into a family’s finances over the year to come, quite
apart from illustrating some of the problems of working with large
bodies of numeric data. The arrays used by the program store some 800
different numeric values.

Budget: Table of variables

BA(1,11) Cash balance for each month.

BD(1,11) Balance of budgeted payments over actual payments.
C1(1,11) Main income.

C2(1,11) Supplementary income.

CU

148

Chapter 6 High Micro-Finance

Temporary variable used in calculating cumulative
surplus/deficit.

FO$ Cursor control string used in formatting table.

H Indicator showing which side of arrays is to be
addressed.

I1 Variable used to ensure proper handling of 12 month
periods which pass beyond end of calendar year.

M1 Temporary variable for month to start table display.

M2 Temporary variable recording change of current month.

MM Current month number.

MO(1,29) Average monthly payment for each payment heading.

MO$(11) Month names.

MY Temporary variable used in formatting money figure.

MYS$ String storing formatted money figure.

N(1) Number of items on both sides of arrays.

PA(1,29,11) Amounts associated with payment headings.

PAS(1,29) Names of payment headings.

PP Temporary variable used to indicate position of item to
be changed in array.

PT(,11) Monthly totals of expenditure.

RS Data-file separator.

T(1) Temporary variable used to calculate total amount set
aside in average budget allowance.

TT Temporary variable used to calculate total payments for
items included in average budget calculation.

Y Month number of end of year.

MODULE 6.3.1

S1BEE REMEERSEREks SR

21818 EEM DHTH FILES

Wb

420 PEH*+*+#++#+*+#F#++++#*##¢+*¥¥¥*+

@aE FREIMT "ﬂPDTIrIﬂH THFE CORRECTLY. T
WL TLIR N

21848 THFUT "mMOTOR WMILL I"Tl'lF’ RUTOMAT ICAL.
LAy "og FOKE 1927 POEKE 1.

3R FEINT "R OMMAMDS H”HILHBLE5"

Ak FRIMT "R 12SAVE DATAYCPREIMT " 2300
AD DATA"

16070 IMFUT "mWHICH DO yvOu RECUIRE: "
H £ hUTU 216826, 21138 RETURN

POKE 1,7 FOF I=1 TO ZB@6:HEST

CFEM 1.1, 1 "BUDGET" - FREINTH#L, 1M, B,
H=E TO 1 PRIMTH#1.MOH

ORI LY

)
=

g I
e
—.."'

S

i,

o g
—
X Enx

T O T

]
AR

‘1.-

149

The Working Commodore 64

21188 FOR I=8 TO 11 FREIMTH1.C1OH. I0. RE. O
A0H T HERT 1

21118 FOR I=@ TO MOH)-1:IF PAFCH, ITx="" T
HEM PHECH, I =" "

211EE PRIMTH#L,FAECH, T2 FOR J=0 TO 11:FEI
PTHLPACH, D00 HEST T, T.H: CLOSEL RETUREH

21138 OFEM 1.1, RUDGET" | THPUT#1 . MM, P F
OF M= TO 1 IHPUTH#L HoHD

21146 FOR T=@ TO 11:IMPUT#1.010H, T2 CE0H
STHTHERT T

21158 FOR I=3 TO MiH>I-1

S11EE THPLITHL PASOH, 10 FOR T=6 TO 11:IHF
WT#L.PACH, T, T2 HEKT J.1

21178 GOSUE 14086 HEXT H:CLOSEL RETLUEH

The complexity of this data-file module should convince you of the need
to save data at regular intervals to tide you over the errors which are
inevitable in entering a complex program such as this one.

MODULE 6.3.2

11EEE EEMAR R EEE S SRR R R
11a1e BEEM MEML

1189268 REMSs st ok ks ok g R g n e
Tiecs PORE 532281, 13 PRINT ' TI"ahREbRaRREREE
HHOME BUDGET®

118240 FEIWMT "EREFUNMCTIONS AWAILABLE:
}%ﬁﬁﬁ FEINT " §12DISFLAY FMOMTHLY AMALYST
11668 PRINT " 22CHAMGES"

1187a PRINT " Z23HEW BUDGET HEADIMGE"
11626 PRINT " 42DELETE BUDGET HEADIMG®
él@?@ PRIMT " SHEESET HYFOTHETICHL FIGUR
o

1118 PRIWT " E2RESET MOMTH"

11118 PRIMT " FaDRTHR FILESY

11126 FRIMT " 22IMITIALIZE"

11138 PRIMT " S3sTOR"

11148 THRUT "MRRJHICH DO YOU BEQUIRE: ", 2
PRINT "'+ IF 245 THEHN 11148

111568 0OM Z2-4 GOSUR 1508a, 17R88 . 216886, 128
AR, 11156 G0TO 11808

1116 FREIMT " aEEIelefalelsIaleleed] EEAL DATAY PR
IMT "Z3HYFOTHETICAL DATE

Chapter 6 High Micro-Finance

1178 IHFUT "EWIHICH DO YO RECUTEE "M T
A OF HXE THEM 11178
O FRINT O CH=H-~1 0 2 GOSUE 135080,

G, 1EERE, ZR8EE G0TO llﬁum

111’5‘D FRIMT " UIeselelesinieeph N Rn e sHOME B
UDGET TEREMIMATED" EHD

1117
F H
1118

A standard menu module with the addition of the facility to define
whether the real or hypothetical side of the arrays is being addressed. The
distinction between these two will be explained later.

MODULE 6.3.3

X T 0
SE1E REM IMITIALISE
R R o e e
LR
AODIM FRECL, 29 MO0, 250 PHOL 25,110
AR U A =) 1R AP N I 1 A PR A RIS == B A B

3 TIM CEC131135E$=CHR$i133
DATA JAHUERY FERRUARY ., MARCH, APRIL.
. HHE JUL S FUGLES TquPTFHPFF
H?H HTR OCTORER HOVEMEBER DECEMBER
SESE TP MOFO11 0 REESTORE FOR I=0 TO 11:
ERD MOFCT) HEST

G THRUT "seARE YO LOADIMG FREOM TAPE

CeoMD U iOETF GF=TYR THEM GOTO 1 1B@e
12188 IHPUT “MEIHFUT HUMBER OF CLURREMT M
COMTH: 5 MM © MR- et 1

12116 ﬁl”l'_,.HB' 180 GOSLRE 16008 GOTO1 1 EhE

Initialisation module.

MODULE 6.3.4

120068 PEM$sEsageiegiiip i ghsfikkkk ek
12@1e FEM IHCOME

12828 REMiedsk g gp o ok e o
12E28 FRIMT "TIERIMFUT MAIH THCOME "% FOL
Lt

126048 FOR I=MM 7O Y I1=I:'1F 11211 THEM I
I=11~12

18258 FRIMT MOFCI10:" 0" DIMNPFUT "THRNEREER]
"

AELOH, T HERT 1

151

http:CiO!:;I.JB

The Working Commodore 64
189a8 PRINT "TIa0THER AMTICIFATED IHCOME:

1ERTE FOR Is=MM TO % Ii=I:IF T1x11 THEHW I
l=T1-12 :

1ER5EA PRINT MOFCTLs " " IMPUT "THeERERRN]
FRREE G C20H, T THERT 1

1Ea2a GOSUE 1486@: RETLIREH

This module accepts input of income under the headings of main income
and supplementary income.

Commentary

Line 18040: Whereas data is stored in the arrays in the order
January-December, the 12 month period which the program is capable of
covering can begin in any calendar month. Accordingly, the variable I1 is
used to ensure that when the twelfth month is completed, the loop moves
on to address the first month of the calendar year.

Line 18050: Note the way in which the variable H is used to determine
which side of the arrays is addressed.

Testing Modules 6.3.2—6.3.4

By inserting temporary RETURNS at 14000 and 16000, you should now be
able to input income data for the 12 months from your chosen starting
month. For the moment, stick to inputting to the real side of the
arrays—all will be made clear later.

MODULE 6.3.5

AT A A A e N
EEM IMFUT OF PHYMEMTS

FAE T e e b e e e e e
FEIMT "CranENppdRRaIibeElT OF BILLE

=%

&

.,...
L

e P

Iy Iy Oy Ty
B ELy R YR LN
B R ve

16848 PRIMT"GFRECEDIE HAME OF ITEM WITH A
%7 TF YO, "D0 MOT WAMT IT BUDGETED. ™
1R@5E PEINT "IN 72287 TO GIITHY

1e@ed ITMPUT "HFHERDIMG FOR BILL: " o IF

HE="Z70" THEH GOSUE 148288 RETURMH

1EATE MOHY=HuHI+]

16688 IF MHOH =38 THEM HOHI=232:PRINT "HO

MORE EOOM" (FOR I=1 TO ZOAE HEXT: RETURH
1ae28 PAFIHHOH)~10=0% PRINT "M&EFAYMEHTS
UMDER " iite; " me

152

Chapter 6 High Micro-Finance

1E10A FOR T=MM TO % T1=T:IF I1>x11 THEH I
1=[1~-12

1118 PRIMT MOFCIL2 IMFUT "ThRReaaNER"
JFHCH HOH =1, T1 0 i HEST I

16120 GOTO 16606

This module accepts the input of bill headings and associated amounts.

Commentary

Line 16040: The program has the facility to calculate an average monthly
figure which will cover the yearly total of payments under any payment
headings. Preceding the payment name with a * excludes the particular
payment from this process—ie it is treated as a one-off item.

Line 16070: The variable H is used to increment one or other side of the 2
element array N, which records the number of payments stored on each
side of the array.

Lines 16090—16110: Having specified the payment title, input is requested
for each of the 12 months in the period covered.

Testing Module 6.3.5

You should now be able to input a number of bills and find them stored in
the zero side of arrays PA$ and PA—again sticking to the real side of the
arrays. The temporary RETURN at 14000 should be retained for this test.

MODULE 6.3.6

LA FRE I e e A
14619 REM UFDATE BUDGET

14828 FEMS kR or g b e e ok ok
PAEEE T oM =8

14@ai FOR I=G TO MoHb-1 Bl=@:IF LEFT#IFH

FoH, Toha1o="%" THEM 146G

14@3e FOR J=@ TO 11:BU=sBU+PROH, T, T8 HERT
SO Ta=BLU L2 T O =T CHA+MOCH T

14858 MEST 1

14ﬂ BT T=E Cl= FORE T=MM T Y Tl=1+12%0]
AL FToH, T vl

11UQ@ FOR J=8 TO MCHp=1 FTOH, 13 0=FTH, 11

SRPACH T DL HEST T TT=TT+PTOH, T10

14658 FOR J=0 T MHHI-1IF LEFTFIPAEH.T

da =% THEM TT=TT-PROM. T 110 tHEST J
1418 BOOH, T1 =T OO T~ 0-TT DO 0L

153

The Working Commodore 64

CH, T2 0H, T1a-PTOH, T1 0 T BROHL T1 =01
14118 MEST T REETURM

This module performs all the calculations necessary for the construction
of the table of figures we are working towards.

Commentary

Lines 14040—14060: Monthly average budget figures are calculated and
stored in the array MO. The cumulative total for these figures is stored in
the array T. The process is not carried out for payment headings
commencing with a *.

Line 14070: Note the use of the logical condition (I> 11) to calculate the
value of I1. If I is less than or equal to 11 then this condition will have a
value of zero and will make no difference to the value of I1. When I is
greater than 11 the condition will take on the value minus one and can be
used to reset I1.

Line 14080: The total of all the bills to be paid in a particular month are
cumulated in the relevant line of the array PT. TT is used to hold the
cumulative total of these monthly totals.

Line 14090: From TT are now subtracted the amounts associated with any
items that are not to be included in the average budget calculations. TT
now contains the cumulative total of items which are included in the
average budget calculation.

Line 141000: The balance of the budgeted figure over actual payments is
now stored in the array BD by multiplying the average monthly payment
by the number of months and subtracting the actual payments on
budgeted items up to the relevant month. The balance of the two forms of
income over the total actual payments for the month is stored in the array
BA.

Testing Module 6.3.6

1t is difficult to fully test this module until the module which displays the
table lias been entered, but it is a good idea to enter some data since this
will call up the module and check the syntax for you. If you are confident
that the module is functioning correctly, then it is a good idea to save the
data you have input on tape.

154

Chapter 6 High Micro-Finance
MODULE 6.3.7

SZEERE REM#EEEEEEEEFEEEEEEREEEERE RN
22818 REM FUHCTIOHAL SUBRCUTIMES

22RZR BEM#ERREr e R R
SEEEE MY=THTORBSOMY »+ 1086080 MYE=MIDE ZTE
FOM B0 IF MY E=20008 THEMH MY$="##44"
Z2e90 RETURH

A formatting routine which returns a four digit number with leading zeros
in necessary. If the figure being processed is greater than £9999 it is
displayed as ‘## # # to show that it is outside the range that can be
accurately displayed by the program. The program calculations are
unaffected by this.

MODULE 6.3.8

FEM# Rk E R E R R R
FEM DIZFLAY FIGLREESD
HAZE PEMESEEEEEREE R R R R
A FRIMT "I RRNERRERREREA A O S HEE T
: A THFUT"HLUMEER OF MOMTH TO STHRET "M
1 IF M1<1 OF PM1211 THEM 12848
120858 Mi=M1-1°1F MA~-M1-12%CM15MM-1 2574 TH
L Nl |l T AU N
12968 FRINT ""llfliu

1E6ver FEIMT" B ﬁ§1UHTH "

Tagsa FORI=M1 -TO M1+3:FRINT "EEEE i LEFTS
CICEC T+ 20T 10030

1326 HEST JFRINT " BB e

15168 PRIMT "
. R

18 FOR I=8 TO HeHY-1:IF 14315 THEM 13

131
146
TalzeE IHMPUT "HERETURNSE TO CLEAR ZCEEEM A
MDD COMTIMUE "G FREIMT el
13125 FOR J=1 TO 24
13138 PREIMT "

COMERT JIFREIMT U sielst
12146 PRINT " WES"LEFTEFHECH. T2, 123 FE
IMT ""HekbbRNRRERNNED
13158 FOR I=M1 TO MI+Z2:FRIMT “EBE" 0 MyY=]1
MTCFACH, T, J+12%0T0511 00 2 GOELE 22824

155

The Working Commodore 64

13166 PREIMT MY$; cHEST T PREINT "EEEE"
13178 Mhs=THTOMOCH, T2 GOBUE 22838 PRIMT
H?$ HEnT I

313 L ARETURN®E T DTEPLAY

HHHLHLI"f“ 22

13286 PREIMNT" . FOR I=1 TO 2@ PRINT "
H

1218 MEXT IORESTORE:FOR J=1 TO 1&:READ

FIF CHEST FRINT " sieepE"

13228 DATA TOTAL . BUDGET . BUDGET BAL.. «MATH

ITHCOME ., =SUPP. THEOME, TOTHL THCOME

28 DFTH CHEH BALAMCE . CUM. BPALAMCE

Fadn FOR I=1 TO ©:EEAD AF PREIMT " &R

- ~"wmmmwmmmlnummwmw

ZETE OFOR I=M1 TO M1+3:11= I+ 20T 0 PR

THT " iearer"

13226 PREIMT FOE: "B MY=FTOH, T13 PRIMT

"Mt IF MY THEH FREIMT "'

12258 GOSUE 22830 FREIMT MYE PRIMT

1'%HH FEIMT FﬂT UREET S MYSTOHY CRRIMT "R
SIF MY THEM PEINT "

13316 GOSUE 22030 PRIMT MY$:PRIMT

133 EOFRIMT FOF; “BE" . MY=BDOH, 110 PRIMT
i Ir H? 5 THFH PPIHT "ﬂ”‘

) RERNC 7

13544 FFIHT FDﬂ ”E"“'iﬂmeIiH;II}ZPEIHT
‘@' IF MYl THEW PRIWT "R

A0 GOSUE 22830 PRINT MY$:FEINT

1mJ:: PRIMT FOE; "REE" D MY=C20H, T1 PRINT
mt IR MY4E THEH PEIHT pL

lbﬁTH GOSUE 22838 FRINT MYs PRIMT
Laaae FRINT TD$E”EﬁWJ1MV*MW+ClﬁH;Il?*1@B
A8 FRIMT e IF MY<R THEW PRIMT “@";

1339 GOTUE 22038 PEIMT 17 FPRIMT

1Adue PR IMT FOF: " s fY=mY-PTOH, T1 - 1006
A FEIMT | TF MYCR THEW PRIMT @)
12418 GOSUR 22830 FRINT MY$: PRIMT

12428 PRINT FOZ: "B MY=BACH, 112 PRINT
|t TF MYCR THEM PRIMT "ee)

156

http:1IU~l).Ii

Chapter 6 High Micro-Finance

13428 GOSUE 22828 PREIMT MY$:PEINT

132448 FOE=FOf+"INNRE]" - HEST 1

12458 THPUT "@D0 YOu WISH 70 REWIEM FIGU
RES WD N I0E

12488 IF OF="%" THEM 136860

12478 RETURM

In the last program we noted that display modules are often the most
complex of a program whose task is to present a table of data, and this one
is certainly no exception. Having said that, it should be noted that beneath
the superficial complexity this is a relatively simple module which picks up
figures which have already been calculated and places them on the screen.
It looks complex only because of the sheer number of figures which are to
be displayed.

Commentary

Lines 13040—13050: The table displays the figures for four months from
the month specified by the user. However, running over the end of the
current 12 month period would make a nonsense of the table so, if a figure
less than four months from the end of the period is input, the start month
is reset.

Lines 13060—13100: The heading of the table is printed, consisting of the
first three letters of the relevant months and a heading for the ‘average
budget’ column.

Lines 13100—13170: Payment names are obtained from the array PA$
and printed in the left-hand column. Following the name, the figures for
the four months and the average budget figure for the item are printed
across the screen, separated by graphics characters into columns, with the
previous module being used to format the amounts with leading zeros if
necessary. Fifteen lines are printed, with provision to clear the screen and
print another 15 if that is not sufficient. The program can handle up to 30
payment headings.

Lines 13210—13240: The titles for the figures given in the second part of
the table are read from the DATA statements and printed down the left
hand side of the screen—the table heading remaining undisturbed (the
budget column heading is now redundant but is not erased).

Lines 13260—13440: Despite its length, a simple routine which, using the
string FO$ to determine the position of the column, prints the relevant
figures for each month down the screen opposite their headings. At the
end of each month’s column, five cursor right characters are added to FO$

157

The Working Commodore 64

and the process is repeated in a fresh column for the next month. Note the
use of the red and black control characters to show whether an item is
positive or negative. Note also, in Lines 13380 and 13400, the temporary
variable MY, from the formatting module, is used to add a figure to one
previously printed. To do this the 10000 which was added in the
formatting process must first be subtracted.

Testing Modules 6.3.7—6.3.8

If you have some data stored you should now be able to display it on the

screen. To check the table (apart from the fact that it is properly displayed)

you must understand what the various figures mean:

TOTAL This is the total of all payments to be made in the month.

BUDGET The same for each month, this is the average sum that
will have to be set aside in order to cover all the
non-excluded bills in the 12 month period. An average
budget will not necessarily cover all the payments up to
any particular month (eg if all the payments were made in
the first month). This figure records whether the amount
set aside in the average budget is ahead or behind the
actual payments it is meant to cover. At the end of the 12
month period it will be zero.

MAIN INCOME/SUPP. INCOME/TOTAL INCOME
These are self explanatory.

CASH

BALANCE The difference between income and outgoings for the
relevant month.

CUM.

BALANCE The difference between total income and total payments
since the beginning of the 12 month period.

Note that there will be small discrepancies since only integer figures are
displayed, while the actual calculations are performed on the full figures.
Thus the monthly budget for a payment of £47 will be displayed as £3 but
this will not affect the proper calculation of the total monthly budget.

MODULE 6.3.9

LOTICIGIR D o o o o sl o o o e o el o

17818 FEM CHAMHGES

I e T e o o A e e

1 1 PR TR 0 O e e B R O S A H PG
ES"

Toads FRINT "ARCOMMAMDS AVHTLABLE D"

Chapter 6 High Micro-Finance

12058 PRIMT " &l 2CHAMGE BUDGET HERD
128l PEINT " Z0CHAMGE MATH THYOME™
TREVR FRIMT " 20CHRMGE ADDTTIONAL ITHCOME
1FREE THRUT “RRWHICH DO wOu RERUIRE: " G0

—_

o
SO G GUISUE 19186, 191 9@, 191wl

19890 GOSUE 14088 RETURM

12188 IMPUT "EFSAME OF RBUGET HEAD TO BE
CHAMGET : " LE

12118 FOR I=0 TO MoHI-1IF O PRECH. T
THEM 12176
i
1

S1E8 PR=1:G0TD 12144
H21Ee MEST THPREINT "MITEM HOT FOURDY :FOR
T=1 T 280l HEST TEETUEH
15146 PRIHT CTIEN S ERECH, PR CPETHT "EERIHFL
T HEW AMOURT OF “#%° TO LEFVE:¥"
1138 FOR T=pM 7O Y I1=I+128%0]%110
19168 PRINMT MOFCT12 PRINT "THhkivhse R
FUAPHOHL PR Il“i ITHPFLT %
lilﬁﬁ Ir R THEW PAOCH, PP T i=YAL CRE

151808 MEXT 1:RETURH

13156 IF O0=2 THEH PRINT "TREMATH IMCOME
19266 IF O0=3 THEM FRIMT "IRSADDITIOHAL
THCOME :

15265 FRIMT " (% LERVES UNCHAMGED "

19218 FOR I=MM TO % I1=I+12%0Ix110
]?3 O PRIMT MOFCTL0FEINT ""HENERBRRERRE]

1250 IR Get=2 THEM FRIMT CLoH I15:

15248 IF Q=2 THEW FRIMT CZH.I10;

1HAZER IWMPUT &% IF QFECHU#Y AND GR=2 THEH
CIOH, T1a=WRL O

Togedy TR GEC#" AND Gf=d THEM C20H. T1h=
WHL LI

18278 HEST I RETURH

If a change to an item already entered is required this module which allows
the user to specify whether the item to be changed is a payment heading,
main or supplementary income. The relevant figures are then displayed
and the user can either confirm each figure by entering a * or entering a
new value.

159

The Working Commodore 64

MODULE 6.3.10

SA00E EEME ke ok Rk ¥
28818 FEM DELETE BUDGET HEMD

SERZEA FEEMEERE R R R e
SEEZE THPUT "HEHAME OF BUDGET HERD TO DE

LETE " tF

THASH FOR I=6 T0 H(HI=1:1F DE=PASCH. I3 T
HEH ZB65a

28E7A WEST T:FREINT "MEITEM HOT FOUMD® F
FooT=1 TO ZBE0: HEXT J:RETUREH

20858 HOHY=HOHI~1:FOR J=1 TO HOHI -1 FAREC
Ho Ja=PRECH, J+10

SEE5R FOF E=a TO0 11:PACH, T, EI=PACH, J+1, K
PHERT KL JGOEUER 14888 RETURM

This module allows any budget heading to be deleted.
MODULE 6.3.11

A0 FEMBEEEREEE RSk ROk

H FEM REGISTER MOMTH

ESSGEE S L LRSS EREE LS EELERELS S

FEIMT "T"RREENRREREIAIFDUATE MOMTHY

A IHFUT "BRIMFLT MUMBEER OF CLUEREEMT M
SUOME IR MR OR M2212 THEM 1704

fa=re-1TF M2=MM THEM EETURM

IF MMM THEM MEZ=Mz2+12

FOR I=MM TO M2 11=I+124C1110
FEIMT "TerREENRERNESRIFDATE MOMTH?
FPEINT "MEIHPUT IM FULL HMOUMTS FOR
OMOFCTL "

17168 FORE JJ=00 TO MOB-~1:RPRINT FRECH, T2
CUSPRCE, T T a NV THRUT PARCAL TL T
17116 HEAT J

1vige THPUT "HepAIn IMCOmME: " C1e@. 110
17128 THPLUT "WeRDDITICHAL IHCOME: " C208,

I10 HEWT I

1714680 Mi=M24 128 M2 10 Y=Mr+1 1 H=0 0 GOELE
T4oaa: GOSUR 156860 RETLREH

51 i

kel

T i hx hard 1"‘1
-

o T

AL 0 T il

—

The purpose of this module is to allow for changes of month. When the
user specifies that the current month has changed then new figures are
requested for each payment heading and the income types, for each of the

160

Chapter 6 High Micro-Finance

months which have passed and are now to be tagged onto the end of the 12
month period. Thus if the old period began with May and the new one
begins with July, then the user will be requested to input figures for May
and June only, since these now become the last two months of the 12
month period.

Testing Module 6.3.11

You should now be able to change the figures for payment headings or
income, to delete payment headings and to change the period which the
program is set to cover. To test the last module you will need to insert a
temporary RETURN at line 15000.

MODULE 6.3.12

1528168 EEM SET LUP SHADOW ARERHEYS

15028 TOli=TIA
19848 FOR I=8 TO MCAL-~1:FAECL. I0=FR$CA, I

3
4
61, I a=M0cE, 10

SESE FOR J=6 TO 11:PACL, I.J0=FRCE, I,.J0:
EXT J.1

1S@EE FOR J=68 T0O 11:FTo1, Jo=PToa, T3 BDC1
S TamELCE, T2 0101, Jo=010a, I

158va BRCL ., Jo=BR.A, JH HEST JiHOL =Wl R

This simple module is one of the most important in the program. What it
does is to copy the data you have input to the real side of the arrays, into
the hypothetical side. One of the main points of this program is that you
can choose to input data to the hypothetical side of the arrays to test the
effects of a financial decision, and this will have no effect whatsoever on
the real data.

All the operations of the program can be performed on hypothetical
data and, when you are satisfied, all you have to do is to call up this
module and the data in the hypothetical side is instantly reset to the real
data. This module is automatically called up when the month is reset,
otherwise the two sides of the tables would be working on different
periods.

Testing Module 6.3.12

In fact you can now test the hypothetical sides of all the functions simply
by specifying hypothetical data when the functions are called up. Add and
subtract items from both sides, then use the table display to check that

161

The Working Commodore 64

neither side is affecting the other. Then use this module to copy the real
data into the hypothetical side. Note that the hypothetical side is empty on
first initialising the program.

If the hypothetical side functions work properly then the program is
ready for use.

Summary

This long program is powerful, properly used, although it takes practice
to get the most out of it. Taken seriously it can give you some surprising
information about the state of your finances throughout the year—when
things will be tight and when there might be a little to spread around,how
payments might be re-arranged to ensure a little more at Christmas or for
holidays, what might be the overall effect of a new commitment or of
increased income.

Remember, however, that this book is intended to set your 64 to work
for you. If you have successfully overcome the problems of debugging this
program then there is no reason why you should not go on to adapt it to
other uses which require flexible input and manipulation of data, together
with clear presentation in the form of tables and the possibilities of
running two sets of data at the same time. The program can be looked
upon as a foundation for putting your 64 and your new found confidence
to work.

Going further

1) The program might be more useful if you had the facility to copy the
hypothetical arrays into the real ones, once you decide to go ahead with
something you have assessed. This should only involve a tiny change to
one module.

2) Savings in the length of the program could result from cutting down the
number of arrays by packing the same amount of data into fewer but more
complex arrays. You might then be able to print the data with a small
number of loops.

3) If you wish to change only a single value for a payment or for income,
you have to work through all twelve payments. Try adding the facility to
jump into the middle of the period and to escape from the series when you
have completed the change you want to make.

162

CHAPTER 7

Music

One of the joys of the 64 is the way in which the quality and sheer cleverness
of the sound capabilities open up a whole new world of possibilities for
home micro- owners. In the not too distant future whole books will no
doubt be written on the uses of the 64’s Sound Interface Device (SID) chip.

The sheer complexity of the SID chip’s capabilities means that no one
program can do full justice to them and one chapter of a general work
cannot serve as more than an introduction to the almost infinite
combinations of sounds available. Having said that, however, the
program presented here is one which provides a firm foundation for future
experimentation and creation. The purpose of the program is not simply to
allow the user to input and play tunes (which it does) but to allow every part
of the SID to be directly available to the user. Most things that the SID is
capable of achieving can be done quite simply using the program as a tool.

The first thing to remember is that a normal musical note is not simply a
vibration of a certain frequency, it is in fact a combination of different
frequencies, high and low. To create a note therefore requires the input of
two separate frequencies, one high and one low. Each of the SID’s three
voices has provision for these two inputs for each note that is played. The
program must be capable of accepting notesin a way comprehensible to the
user and then translating the notes into a form usable by the SID.

Secondly, the intensity of any particular note varies in a complex way as
the note is played:

a) The first phase of the note is known as the ATTACK. This is the speed
with which the sound rises from nothing to its peak. The shorter the period
of the attack, the more twangy the quality of the note.

b) The second phase is called DECAY and during this phase the note falls
away from the original peak.

¢) After this first falling away, the note enters the SUSTAIN phase, which
determines the length of the main body of the note.

d) Lastly. the note fades away in the RELEASE phase which, like the
ATTACK, can be sharp or gradual.

Different musical instruments have different qualities of tone, quite
independent from the notes they play and the shape of those notes. These

163

The Working Commodore 64

differences depend upon the waveform of the sound produced by the
instrument.

The SID permits each of its three voices to produce any one of three
musical waveforms and another white noise waveform which is useful in
the creation of sound effects.

Of the three musical waveforms one, the pulse waveform, is itself
capable of a considerable degree of variation by changing the length of the
pulses which go to make up the waveform.

Having finally produced the desired frequency, tone and shape of note,
the SID chip allows the notes to be filtered. This means that different
frequencies within the note can be reduced in loudness, while others are left
untouched.

Music: Table of variables

FI1%/(3): Filter characteristics for the three voices.

HF%(2,

1000): High frequency values for each note in tune to be played.
IN: Initialisation pointer.

LF%(2,

1000): Low frequency values for each note in tune to be played.
R$: Separator for data files.

NL: Length of note.

NO%(1,95): High and low frequency values for the 96 notes available.
NT: Note value taken from Appendix M of user manual.

VO%(2,6): User-defined values to be POKEd into the SID chip to
determine sound characteristics of the three voices.

VS(: Address of the start of a voice in the SID,
WE%(2,

1000): Waveform values for each note to be played.
WW: Waveform value for each individual note.
MODULE 7.1.1

11818 REM MEHL

L1BZE REMssf e h b f e don ok on b don ok
118238 FOKE 53281, 15 FRIMT 700000000
(1P QIR

114y FRIMT "EWCOMMAMDS AYAILABLE "
11656 PRIMT "ME2SET WOICE"

11858 PRINT "ME)FLAY FREIEMT TUME"
11878 PRIMT "M22COMPILE TUHME"

11628 PRINMT "E42DATA FILES"

11638 PRIMT "ME2IMITIALISE"

11188 PEIMT "MerSTOF

164

Chapter 7 Music

il1e IHFHT "ERRIHICH DO YOU REGUIRE:Y:Z:

Ei‘" FHPI lTﬂ an HE T HHTH 1168

120 OM 7 GOEUER 19968, 14000, 12000, 17086
A 1114“ BOTO 116866

11]4“ FRIMT LI GLIDILI L L D] T]
AHEWEIC TERMIMATED" EMD

A standard menu module.

MODULE 7.1.2

LTEENAR REM R
12618 RFEM DRTH FORE MOTE THELE

2 FEMEREREEEEEER R RN R

1=

120728 REM HOTE FREDUEMCIES

12040 DATA Z&H, 284, 381, 218, 337,358,279, 4
A1, 425,451,477, 565

13RA5A WHTH OCT T) St I & Pl NG Tl Ry WAl N OB L R &
e BEL =282, 955 1/1 2

13066 DATA 1672, 1136, 1264, 1275, 1351, 1432

ST, 1RET . 1TEE. 15804, 1jl1»?ﬂdr

12a7iA DHTH 2145, 2275, 2408, 2551, 2785, 2284
PRCt T Rt 1rn*4UmJJmBn-3m"%.--SE

] bt DHFH] 455V 4817, 51032, 5487, 5728
S EEES SR, SR12, 217 TE4Y a1

156360 DHTH a5E2, 3@94 ?F”4 1U2Ur;1@“14 11
57, 1212359, 128808, 13825, 14435, 15224, 16202
12198 DATA 17167, 1818 ‘.1“42!5-'-l 215, 21629
=i b B -;1hrn.;5T?1-2?251J288?1,?mﬁﬂﬁ
12118 DATA 22467 ~ .
121268 DATA 243324, 26376, 28539, 4B530, 43258
L GEETR, 42596, 51445, S45E2, TVTV43. 61170
J!l' DATA =4314

The data in this table is simply a shorthand way of entering the high and
low frequency note values. Each number represents 256 times the high
frcquency note value plus the low frequency value.

MODULE 7.1.3

165

The Working Commodore 64

12E60 REMBEEEEEEEEEER AR E AR AR AR
128168 REM SET UF THELES

1226 FEMSSeESEE 0w d o o sk o s ek o
12038 CLECDIM MOHOL. 95 FOR I=0 TO 35:RE
AL MM MO8, TamTHT MM Z58 0

12048 MOHECL, I asHH-2S5E8% IHT CHMA258 0 THERT
12650 DIM Y0uC2 a0 FIno3d LFsOE, 180, HF
L K [T HFP-J,jnMH-

128768 IM=1 'RE=CHREFEC13D

T2Een GOTO 11884

The use of the main variables defined here is explained in the table of
variables.

Commentary

Lines 12030—12040: High and low frequency values for each of the 95
notes are read and decoded. They cannot be stored in single number form
in the array, since it is an integer array and can only hold numbers up to
32767. The note values are placed into NO%(0) for high and NO%(1) for
low.

Testing Module 7.1.3

After calling up this module, you should be able to read from the table high
and low frequency values approximately the same as those in Appendix M
of the User’s Manual. Note that they will not be exactly the same since the
values used here are taken from the Programmers Reference Manual
whose table differs slightly.

MODULE 7.1.4

15EEE FEMESRGEREFEERR R R R R R
15618 EEM WOICE SETTIMGE

TEENEEE P Y00 0 0 0
13828 IHFUT ":HEWDICE RHUMBER C1-Z2i"ive]

Fowel OF VS THEM 15038

15048 WEsS4LT7E4+ 7R~ 1l

15058 PRINT “TIinENRRRNRREREET O CE
15E0E EEMEEEEEEEEESEEEEEEXEEEEEEEEREEEE
15878 T1F="PULZE MWAF WIDTH CLOW:@-255:"
15020 PREIMT "@" T1F V0N -1020, Cg=s=""
150528 THFUT oF: IF RECE"" THEM wikmoyw-1,80
AL CEIE

1S1EE REMSESEEEEEEEREEE R R R
15118 TiF="PULSE WA’F WIDTH C(HIGH:@-150:"
159128 PRIMNT Tig:Womoy-1.32 AMD 15 0F=""

[W,
(=)
[=))

Chapter 7 Music

15138 THPUT GF:IF @33 THEM WOROY-1.30
AL CRE

15140 REMASEEEESREEEFSERRRRERAE R 4K
15150 T1#="RANDOM MOTSE WAF ©1=0H B=0FF

1!1Fﬁ FEIMT T1F: oWilsoy=-1,4% AMD 12857128

||$-....nn
]-1 @ OIHFUT B0 IF G THEM YOHOWU-1, 47
=CWOECY-1,47 FHD 1263 OR CVMALCRE #1290
151568 EEMEERkdf ik p i ek ke ek
151520 Tig="PULSE WAF Cl=0M/8=0FF>:"
15260 PRIMNT TiF: OW0R0d-1,42 AMD &43-54 0
I:.!'.i::::""
13218 IMPUT GF:IF Q" THEM WeW-1.40
SOWIECY=1, 40 AMD 158 OR VAL CDE I #ES
15220 FEM#SEffisidsipined EEres s
iﬁﬁui T1="5AWTOOTH WAF CL1=0M G=0FF2 "
15248 PRIMNT Tig; CMORO-1.40 AMDD 220736200
I,.!-f"“ n
15258 IMPUT OF:IF GEC5"" THEM WORoW-1,42
AT -1, 47 AMD 2223 OF YALLEEI#33
IEJLU PFH¥W++*¥###*#+¥*¥+#*#¢**###¥¥##¥
12278 T1E="TRIAMGLE W/F C1=0Rs@8=0FF2:"
15200 PRINT T1&0 OWDECY=-1.40 HHD 1&0/165 ¢
'I£M1l1|
15296 THPUT LFIF QE"" THEM WikoW-1.40
w1 od) AMD 2380 OF WAL CRE 1T
15788 FEMEEEEE S E GRS
15205 T1F="DISABLE THIZ YOICE ©1=YEI8=H
e
1531@ FREIMT Ti#: OWORoY-1.4% AHD 20725 (0F
1""2“ TMFUT G IF Q""" THEM WOROW-1 .40
~-vn'nv—1.4- AHD 2467 OR YALLGE)¥3

1773038 REMEREREE s edsior s hp i g aeopeion g
13548 T1g="RING MODL "+STREFCV 4" WITH"+ET
R -] -S04 (=0 E=0FF D -
1535@ FRINT Tig: OWOROY-1.40 AHD 4a/9; 0%
15366 INFUT B 1F <" THEM WOH(V-1.4>
eI -1, 40 AMD ZSED DF WAL CLIF DO #D

SATE REMARE#EEEEEEEEEEEEEEEEEERERERRE
120280 T1e="SYHCHROMISE"+STREC D+ WITH"+
STRECH~1~3H V=10 04" (1=0M/B=0FF 3

167

The Working Commodore 64

3 1 FRIMT Tig, oW0Ros-1.4 AMD 22720 (0F
]ﬁ4ﬂﬁ IMFUT GFIF EI"" THEM WOKROW~1.40
sOWOROY-1.40 AMD 2530 OR WHLOUF %2
1541ﬁ PEM####¥+++*+¥¥+++#4++¥¥**i##*+##
159426 T1$="ATTACK CYCLE ©C@-153
159428 PRIMT TiE: WOR0Y-1.52 AHD 24857160
A=
1544@ IMPUT 2 IF QFC"" THEM WOROW-1.52
mOWOROW-1,50 AMD 152 OF YALCOF #1E
15458 PEM#**+##+¥+##+#*#++##¢+*+*+###+*
194608 T1iE="DECAY CYOLE f@-1%50:"
19470 PRIMT T1&:Wkoy-1.50 HHD 15 QE="n
15458 THFUT QF:IF QFC-"" THEW WOHOY~-1.52
=OWOEOY-1, 5 AMD 2480 OF VAL CRE
15458 REH##*#####*#####ﬁ##ﬁ%#########&ﬁ
125908 T1F="SUSTAIN CYCLE <8-15
15518 PRINT T1 : W0N0-1,60 HHD 1 D Lo
l,.;...nn
155260 IHPUT GF:IF GFx"" THEM WOROW-1,60
s MOECY-1,50 FHMD 152 OR WALCOF %16
15520 REMEdkEfkidrs s Eiiiiisriiygsg
lccxﬁ Tix="RELEASE CYCOLE <@-15x:"
15550 FRIMT TI14:W08 '“~1-r' AMTE 15 Cg=1r
1556l THPUT GF: IF G- THEM WisksoW-1.62
= MM -1 080 AMD 248 OR WAL ICE
15570 REM#sskEssdssisiisiifdisiisgioks
1"“'H Tig="FILTER LOW CUTOFF (@-Fa:"
W PRIMT T1$,FIHCE AMD 7 0F=""
THPLUT QF:1F QEF"" THEM FIKC@I=0FI
AHD 2432 OF VAL CGED
REMA SR o e E e e ke
T1#="FILTER HIGH CUTOFF C@-2555:"

oy

—
mm

) W T T M ;Il Ty if
&

Exu |

B OPRIMT T1#;FINGLy; Qg=un
B OINFUT 0% IF BEC3"" THEM FIH1r=YAL

HEM*#*#########**%*#*+##*+*##*¥#*
Tl1E="FILTER REZOMAMCE (@-155:"
%#h“' FEIMT T1$,CFIXC2y FMD M4H' 1@51Q$w
15688 THPUT GEIF QFC"" THEMN FIXoZi=CF]
ey AWD 1S OF VALCOE#1E

15630 HEM**########%###%#######%###ﬁ#%*
15708 TiE="FILTER THIZS YOICE «1=YES Q=M

e i S Sl S e

N0 naanan

T
Jmmubmeu&m

0

i
L

168

Chapter 7 Music

R
15718 PRIMT T1%; CRTHCEY AMD 21— 210
e 1 SRR B T

1578 TMPUTOE TFOEY THEW FInczi=I(FIx.
20 HMD CZE5-Z M- 000 OR WHL CRE D TOY-10
15726 PEH*#*#+++*+¥#+####¥##¥###¥##¥*##
15748 IF Yo 2 THEMW 15726

15?5@ T1$=“fHT OFF WﬁILE A o1=YESSA=H0

157ed FREIMT Ti$: cFINCZY AMD 12801280 (0%

157FE IMFUT G IF Q&5 THEM FIN/Zo=(F]
auEy AMD 1272 O ”HLf“$1#1hu

IWTWH PEH#++++++#*+###++###++++*#++¥+##

1%“uﬁ T1#="HIGH-FPAZS FILTER ¢1=0MH/@=0FF2

155ﬂﬂ FREIMT T1F:(FInC3) AND A40 /54, Q="

15218 IMPUT Q% IF @%405"" THEM FINC2a=(F]
Alady AMD 1210 OR VAL CGE) #Ed

13Ez8 FEH¥++**#¥++¥¥+**¥*#++*¥++#¢##*#+
1?Q3E T1#="BRMDI-FASE FILTER «1=0M/8=0FF)

Se4B PRIMT T1g:(FINC2) AMD 320732 Q="

1
15850 IMFUT G IF 002" THEW FINC2i=(F]
Al RAMD 223y O VALCDE #RZ

15200 EREMESEEREEEEEEEREEEREEEE LR A
15878 T1F="LOW~-FPASS FILTER C1=0MH/8=0FF2:

15228 PRIMT T13, FIXKCEY AMD 163716 (GE="

5290 IMPUT 0%:IF Q%00 THEM FIN(30=(F]
w023 AMD 2393 OF VALCDEI#1E
15900 REMESSsAsskas et e R 658 AR EREa e es
15316 T13="YOLUME SETTING (#-15):"

15528 FRIMT T1$:iFIACE) AHD 15 :Gg=""
[EEEA TMPUT GF: IF GE4»"" THEM FIZ03)=FIX
(‘J: |"|[-.- "HL.F]-{:

15548 FOR I=8 TO &:IF YORoy-1, 125255 THE
M OGOTO 15978 HEXT

15556 FOR I=8 TO 2:IF FIXCI)3255 THEM GO
TO 15978 MEXT

15568 RETLRH

169

The Working Commodore 64

15978 PRIMT "SORRY! THERESZ AWM EREROR IH
YOUR THFEUT®

15220 PRIMT "FLEASE GO THREOUGH THID YOTG
E OAGHTM. "

15938 FOR I=1 TO Z00A:NERT GOTOD 15086

aly

Foy

]

LR

Though this module looks dauntingly long, it is in fact extremely simple.
Its purpose is to allow the user to address all the relevant functions in the
SID chip separately. The values are then stored in the arrays VO% and
FI% until such time as a tune is to be played.

Commentary

Lines 15030—15040: V is set equal to the voice number which the user
desires to set. The address 54272 is the start of the SID chip, with the main
parts of each voice taking 7 bytes of data, so that the start position of the
relevant voice is calculated by 15040.

Lines 15060—15130: These two routines set the pulse width if the user
wishes to use the pulse waveform. The current value of each is displayed
and is left unchanged if RETURN is pressed.

Lines 15140—15170: This routine sets the random noise waveform for the
voice. Notice that here we are addressing, not the whole of a byte in the
computer, but one bit (there are eight bits, or on-off switches, in each
byte). In order to do this we make use of the AND and OR functions. To
show whether a particular bit is set we print the value in the array ANDed
with 2 to the power of the number of the relevant bit—the bits being
numbered from 0 to 7 in increasing value from right to left. If the bit is set
(on) then the same value is returned, if it is not set then the value zero is
returned. In order to render the value returned either a zero or a one, it is
divided by 2 to the power of the bit number. To change the value of the
desired bit requires that the value of the whole byte is ANDed with
255-2[bit number.: this results in the desired bit being set to zero, and all
others being unchanged. The individual bit is now ORed with the 1 or 0
input, thus setting its value to either 0 or 1 as desired.

Line 15170: Note that though the bit we desire to set is number 7 (value
128), we actually OR the byte with 129, thus setting bit 7 and bit 0. This is
because the waveform values do not actually produce a tone unless bit 0 is
set.

Lines 15180—15290: These three routines perform the same function for
bits 6-4, the three other waveforms.

170

Chapter 7 Music

Lines 15300—15400: These two routines allow the user to modulate the
output of this voice with the waveform and note shape of another voice
with often surprising results. The other voice need not be set to actually
play, but it must have waveform and note shape values entered. The use of
these two functions will only be discovered by experimentation.

Lines 15410—15560: These four routines allow ATTACK, DECAY,
SUSTAIN and RELEASE to be set. Note that in these routines, instead of
setting individual bits, we set groups of four bits. ANDing the byte value
with 240, then ORing it with a value from 0-15, acts upon bits 0-3. ANDing
the byte with 15, then ORing it with a value (0-15)*16 acts upon bits 4-7.

Lines 15570—15680: The frequencies at which the SID’s filters operate can
be set by the user using these three routines. These values will then apply to
all voices for which filters are set.

Lines 15690—15890: The remaining sections allow the user to set the three
types of filter available either to on or off. The high pass filter passes
unchanged frequencies above the previously set value. The low pass filter
performs the same function for low frequencies. The bandpass filter
allows through a band of middle range frequencies. If all three filters are
set then the volume of the whole note will be reduced. The user has the
choice of whether any particular voice will be filtered or not.

Lines 15730—15770: In the case of voice 3 there is a special bit which allows
the output of the voice to be cut off,

Lines 15910—15930: The volume at which notes are played is set for all
voices simultaneously.

Lines 15940—15990: Since there are no error checks on the input of values
up to this point, the contents of the arrays are checked in order to
determine that there are no values greater than 255, since trying to POKE
such a value into a single byte would result in the program stopping.

Testing Module 7.1.4

It is not possible, at this point, to fully check the module, since there is no
routine to actually play a tune. However a reasonable check can be made
by carefully noting the inputs made and then, with the help of the listing,
printing out the values in the arrays VO% and FI% to check that they
correspond with what has been input. For instance, if the maximum value
is input for each prompt, with the voice being set to 1, then VO% (0,2-6)
should contain 255.

171

The Working Commodore 64

MODULE 7.1.5

12608 BEEM#Essdefdis ki esfhiiedsp ik egy
13818 REM SET UP TUME IH RAERAY

12620 FEMESEEdf it isikshoissising
138328 RESTORE:FOR I=8 TO 25:READ H:HEST
138408 TL=0:FO0F I=8 T 2:Wl=1

12658 READ MT.HML:IF MT=8 THEM 173144

13060 WW=Y07CT, 451 IF HTOR THEM HT==HT kL
=1

13065 HT=12%IHT CHT /LG +HT-LE#IHT S HT /167
13876 IF HLLH1 THEM 13896

13EEE HEE LWL SHONGE, HT 2 LR L L =HORe
L HT) HPACL, YLy =l L=t 412 50TO 13058
12098 FOR J=1 TO HL~1:HFR(I YLy=HORE, HT
3 ILFSCT YL =HOR L, HT D WFY (1YL a=ll
12188 YL=YL+1 HEST T

12118 HFRCT, WL mHORC B, HT 5 T LFHE T, WL =k
$HT o WFRC T WL bl =1 L=l +1

13128 IF WENCI,YL-13%<8 THEM WFRCT.VL~15=
1

121208 GOTO 13656

13148 IF WL2TL THEM TL=YWL

12156 HEXT I

1316@ RETURH

This module takes the tune specified by the user in the form of data
statements, and compiles it into a form which is playable by the SID. The
reason that this is necessary is that it allows the program to cope with
different note lengths. The actual notes played by the program are all the
same length, dictated by a timing loop. Longer notes are played by running
together a series of notes to the required length-no division between the
individual parts of the notes is discernable. Note lengths can vary from
voice to voice but obviously must be such that all the voices being used are
co-ordinated.

To set up the data for a tune, all that is necessary is to record, for each
note, its number in Appendix M of the User’s Manual, and its length. The
units in which length is recorded will depend upon the shortest note it is
desired to play. By shortening the timing loop at Line 14180 it will be
possible to play shorter notes, but this means that longer notes will haveto
be made up of more of the shorier units. The drawback to this is that each
individual unit of a note, no matter how short or long the timing loop
makes it, takes up a space in each of the arrays LF%, HF% and WF% so
that as the timing loop shortens, so the memory required to hold a tune of a
given length increases proportionately.,

172

Chapter 7 Music

Commentary

Line 13030: As the voice settings and note values are changed during the
development of the tune, it will be necessary to read the tune data several
times. Since the table of note values is placed before the actual tune data, it
is necessary to reset the DATA pointer using RESTORE and to READ
through the note table to the beginning of the tune data each time. The
DATA pointer cannot be set to any particular desired point in the
program, it can only be reset to the beginning of the data or left pointing to
the item of data following the last one read.

Line 13040: This loop will ensure that the tune data for each voice is
compiled. The variable VL is used to store the length of the tune for each
particular voice.

Line 13050: Note value and notelength (NL) are read from the tune data. If
the note value is zero, then the program takes that voice’s data to be
complete and moves on to the next.

Line 13060: The value for the waveform of the current voice is read from
the array VO%. If the note value is a minus number, then the waveform
value is reduced by 1, thus turning off bit zero of the waveform value,
which will give a silence of length NL rather than a sounded note.

Lines 13070—13080: If note length is 1, then the high frenquency and
waveform data are stored in the relevant arrays and the voice length is
increased by 1.

Lines 13090—13130: If the note length is greater than 1, then NL-1
successive spaces in the array are filled with the frequency and waveform
values. On the last unit of the note, the waveform value is reduced by 1,
thus allowing the note to fade away naturally. If no data other than 0,0 are
entered for a voice (ie you do not wish to use that voice) then it is possible
for the waveform to have a value of -1, which would stop the program if it
were attempted to POKE it in. Line 13120 checks that this does not occur.

Line 13140: The length of the tune for the current voice (VL) is compared
with TL, which contains at first zero and, subsequently, the length of the
longest voice/tune. This ensures that, when the tune is played, it does not
stop before the full content of each voice/tune is exhausted.

Testing Module 7.1.5

once again, this module cannot be fully tested uutil the tune is actually
played. However, if some tune data such as that given in Module 8 is
entered, with a waveform set for at least voice 1, calling up this module
should place the correct high and low frequency values into HF% and

LF% and the waveform values into WF%,

173

The Working Commodore 64

MODULE 7.1.6
1AGEE REM# SR E R AR
14818 EEM PLAY TLUHE

14828 REMAS g ipdp kb
146028 FOR I=S54272 TO 54286 FORE T.89:HEST
1484 FOR I=8 TO 2:WS=54272+7#]

14656 FOKE Wee2, VORCTL 20

1@ PORE ”“+‘.“H“’Ia3}

14R7E POKE WE+3,0W0HCT 50

1460d POKE ”'+G-%HM'I 2

14@20 MEST 1

14168 POKE 54233, FInc@)

14118 PORE 542594, F Ikl

14128 FOKE 59235,
141728 PORE S4236,
14148 FOR I=

14156 FOEE 542 CRL T FORE 54275, LN
C1, T iPOKE 542 Ml T
14168 FOKE 542 rﬂ;HF CEG T POKE SdEn, HRE K
(1.1 FOKE 54287 HFR(Z. I3
14178 POKE 54276, HFH&EJIJ-PUKE T PR R U e
CL T FORE SdaS WRHECZ, T

.~—-
—_

FOR TT=1 TO SRCHEAT TT.1
FUR TT=1 T ZﬁﬁiHEHT'FﬁFE AP B
FORE 54276, 1 FOKE 34285, 1 FOKE 542

H
.
™

i

L
—
XY

i,

- i -

B 5

py - D

o T A0 Q0]
s B n By JRO

=

FETLURHM

This module POKE:s the voice characteristics set in Module 4 into the SID,
then successively POKEs in the high and low frequencies, together with the
desired waveform to produce the notes that make up the tune.

Commentary

Line 14030: The SID chip is initialised by POKEing zero into each of its
locations.

Lines 14040—14090: The voice settings specified in Module 4 are POKEd
into the SID.

Lines 14100—14130: Filter setiings are shared by each voice, they are
POKEd in only once.

Lines 14140—14180: Foreach note, up to the tune length (TL), the high and
low frequency values are placed into the first two bytes of each voice

174

http:54280.HF

Chapter 7 Music

location of the SID, followed by the waveform into the fifth location of
each voice. This activates the desired note, which is played for as long as the
loop at 14180 lasts.

Line 14190: At the conclusion of the tune a slightly longer loop is used to
allow the sound to die away, then the three waveforms are set to silence.

Testing Module 7.1.6

Quite simple. If you have entered some tune data, initialised the program,
set at least one voice and then compiled the tune, you should now be able to
play your creation. The specimen data given in Module 8 plays a scale of C
with the first two voices.

MODULE 7.1.7

B REMEESEEEEER R R R R
B OREEM DATH FILES
ZE BEMESFEEEEEEEECEEPEEEEEREREEERES ey
S THPUT “"ERFOZITION THRFE THEN #SEETUE
(Bt
174 FRINT "!iﬂbBHVE"ipﬁIHT rerLOAD
17856 THPUT "EUMICH DO YO REGUIRE: "0
O & GOTO 17RTE, 17128 RETLRM
OFPER 1.1 .2 "MUS II” FRIMTH#I ., TL
FOR T=0 TO 1:FOR J=0 TO 25 PRIMTH#1
LT TN HEST J01
FOR I=@ TO Z:FOR J=0 T &' FRIMTH#1.
D JWHEST JL 1
FOR I=H TD ZPEIMTHL.FIRCT Y i HEST
FHF I=@ TO 2 FORI=ATOTL FEIMTH#1,LF
EEIHFSC L TN EEIWFEC T Ty HEATY T
"CLOZEDRETURM 4
OPEM 1,18, "MUSIC" THPUT#1 . TL
FOR I=a TO 1:F0R J=B TO 25 IMNPUTH#]
Jﬁ lI JatHEST J. 1
1 156 FOF I=6 T0O 2'FOR J=@ TO S:IHPIITHL .
WO 'I JHEST J.1
17168 FOR I=0 TD SUIHFUTHI . FIMOI Y i HEXT
17 1 FOR I=60 TO 2 FORJ=ATOTL.: IMPUTH#1.LF
WL I MR T T WO T RERTT T
R EG CLOSEL RETURM

Ry Ry
)P e 5

AR

0 B e B

b el teeh b
Fn]

—
)

u-—n5 = 331 Face i

-
!

l A A L)

—

2 in

—
—l’ -
g

b

,-n:_. 13:!

ﬂﬁﬂfﬂﬂﬂﬂ#ﬂﬂﬁ
it i

P N e e

= e 088 e
N SN R LN N ;_'_{1
=
g,

i

.l

'J

-1 T
_, :Sl i'_l

fa—y

This is a standard data-file module which allows the tune data to be stored
on tape.

175

The Working Commodore 64

MODULE 7.1.8

FE Mg b R A
REM DATA FOR WOICE 1

RE M# R A AR A A
DATA =4,2,34,2,35, 2,41, 2,42, 2,35, 1
JEE,E.4R, 148, 1.8,
REM#SEEEE SRR R R SRR R R
FREM DATA FOR WOICE 2

FE M s
DATH 2E.2,328, 2,48, 2,41, 2,43, 2,40, 4
SRR, 2.8.8

R 40 o A R A
REM DATA FOR WOICE =

R s e o
DATA #. &

P — X

80 S
L R A R Y

i

| b=k s b s
SR LTI RN s RN e RN]

i,
7%
e
Ly
N
R

i
Fac]

APy = 5 - ORI =

R

%

N
i RN

BV I I B AN Y

e

o)

e el el S U]
T IR R T

P MIRI -

i

Commentary

Lines 19000—21030: Specimen data to play a scale of C. Note that if you
wish to use a voice you must still enter 0,0 for it.

Summary

This program will only be the beginning of your adventures with the 64’s
sound capabilities. It is a workhorse which will allow you to develop your
own music, which can then be transferred to other programs, using only
the arrays in which it is stored and Module 6, which actually plays the tune.

Going further

Provided that you do not run into too many limitations of memory, there
are several ways in which this program could be extended:

1) Why not give yourself the ability to enter the waveform for each note,
rather than simply for each voice? It is simply a matter of including a third
value for each note to be played.

2) If you want to play longer tunes, why not adapt the program so that it
uses a variable length loop to dictate the length of the note,thus saving
massively on the amount of array space needed. All that would need to be
stored in the final array would be the note value and its length, the latter
being used to dictate the duration of the timing loop. Unfortunately this
can only be done for one voice, since the timing loop dictates the length of
the note for all three voices.

3)If you want longer tunes with more than one voice, what about giving the
program the capability to compile parts of a tune which can be picked up

later by a playing program which has no need for the memory consuming
DATA statements.

176

The Working Commodore 64 is based
on a collection of solid, sophisticated
programs in areas such as data storage,
finance, graphics, household
management, education and games of
skill. The programs have been designed
to make the most of the CBM 64’s
special features.

Some of the more advanced programs
include a word processor and text
editor, a music and sound synthesiser
program, a sprite editor and a program
which allows the user to enter high
resolution graphics mode. This is not
available in the standard Basic.

Each of the programs is explained in
detail, line by line. And each of the
programs is built up out of general
purpose subroutines and modules which,
once understood, can form the basis of
any other programs you need to write.

Advanced programming skills spring out
of the discussion explaining each
subroutine. The collection also leaves
you with a wide range of practical
applications programs which might
otherwise only be available on cassette.

The author, David Lawrence, is the
author of several books on home
computing and is a regular contributor
to Popular Computing Weekly.

Sunshine Books
£5.95 net

ISBN 0 946408 02 5

	The Working Commodore 64 01
	The Working Commodore 64 02
	The Working Commodore 64 03
	The Working Commodore 64 04
	The Working Commodore 64 05
	The Working Commodore 64 06
	The Working Commodore 64 07
	The Working Commodore 64 08
	The Working Commodore 64 09
	The Working Commodore 64 10

