

ommodore

V-O • L -U • M • E O • N • E

H

H
Craig Chamberlain

n

n

COMPUTErPublicationsjnc©
One of the ABC Publishing Companies ^^^

Greensboro, North Carolina

Commodore 64 is a trademark of Commodore Electronics Limited

u

u

u

u

Q

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sec

tions 107 and 108 of the United States Copyright Act without the permission of the

copyright owner is unlawful. r i

Printed in the United States of America

ISBN 0-942386-40-X i j

10 987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) |_[
275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. Commodore 64 is a trademark of Commodore

Electronics Limited. j j..

Content

Foreword vii

Chapter 1: Introduction 1

What Is BASIC? 3

Why You Should Learn BASIC .3

About This Book 4

Sneak Preview 6

The Keyboard 8

Numbers, Operators, Expressions, and Precedence 10

Chapter 2: Statements 13

The PRINT Statement 15

Keywords and Statement Execution 16

The POKE Statement 17

Multiple Statements on One Line 20

Chapter 3: Variables 21

Introduction to Variables 23

Assigning Values to Numeric Variables with LET 24

Uses of Variables 26

Variable Names 27

Assigning Variables to Variables 30

Erasing Variables with CLR 32

The Optional Keyword 33

Demonstration of Sound 34

Chapter 4: Output 39

The PRINT Statement Revisited 41

Formatted PRINTing Using the Comma and Semicolon . 42

f| PRINTing Character Strings 43
Mixing Numbers and Character Strings 45

f™| Chapter 5: Functions 47
Introduction to Functions 49

Absolute Value 50

^"] Signum 51

Integer 51

Random 53

f""| Free Memory 55

n

Screen Memory 56

The PEEK Function 59

Chapter 6: Conditional Logic 61

The True/False Concept 63

The IF-THEN Statement 64

Relational Operators 68

Logical Operators 71

Binary Numbers 74

Using the Joystick 81

Chapter 7: The BASIC Program 83

Immediate Versus Deferred Mode 85

Writing a Program 86

Program Storage and Retrieval 95

Documenting a Program Using REM 104

The END Statement 106

Chapter 8: Controlling Program Execution 109

The GOTO Statement Ill

Loops 114

Game Demonstration 117

Chapter 9: Data Storage 123

Assigning Variables with READ and DATA 125

READ and DATA in Loops 128

The RESTORE Statement 130

Music Demonstration 131

Redefining the Character Set 134

Multicolor Mode 141

Chapter 10: Input 145

The Concept of Input 147 j j

The GET Statement 148 U
The INPUT Statement 150

Sound Experiment 154 | j

Chapter 11: String Variables and Functions 157

String Variables 159 j j

Concatenation and Comparisons 164 ^
String Functions 167

Type Conversion Functions 170 i |

Substring Functions 172 u
IV

LJ

H .

H

Chapter 12: Subroutines 177

The Statements GOSUB and RETURN 179

r\ Multiple Subroutines 183
Bitmapped Graphics 186

PI Chapter 13: Simplified Loops 193
The FOR and NEXT Statements 195

Introduction to Sprite Graphics 205

Defining a Sprite Shape 207

Changing Sprite Shapes w. 214

Chapter 14: Computed Execution 219

The ON Statement 221

Multiple Sprites 224

Chapter 15: Arrays 231

Using Arrays 233

The DIM Statement 236

Chapter 16. Program Development 241

Learning How to Program 243

Specification and Design 244

Implementation 246

Debugging 250

Example Program 254

Specification 254

Design 255

Implementation 257

Debugging 262

Appendices 265

A: A Beginner's Guide to Typing In Programs 267

!""| B: How to Type In Programs 269
C: Screen Location Table 271

D: Screen Color Memory Table 272

H E: Screen Color Codes 273
F: ASCII Codes 275

G: Screen Codes 279

f""j H: Commodore 64 Keycodes 281
I: The Automatic Proofreader 282

r-[Index 286

n

H

Foreword

[What can my computer do, and how do I make it do what I
want? These two questions are asked by almost every begin

ning programmer. All About the Commodore 64: Volume I gives

you the answers. This book emphasizes the powerful sound

and graphics capabilities of the Commodore 64—so you can

see and hear the results of your efforts. You'll quickly learn

how to program your computer using BASIC, a computer lan

guage composed of simple, short statements similar to English
words.

All About the Commodore 64: Volume I is your guide

through 64 BASIC. Using simple examples, this book dem

onstrates how each command controls some special feature of

your 64.

Craig Chamberlain understands what it's like to be a nov

ice programmer. Like most beginning programmers, he faced

the computer with some anxiety. So he doesn't simply tell you

the right way to use BASIC. He talks about common mistakes

you might make, what the computer does when you make

mistakes, and what you can do to correct them.

Working at your own pace, you'll soon progress from

putting a single character on the screen to creating a colorful

animated display, from playing one note to composing an

entire song on your computer.

After you're thoroughly familiar with BASIC'S techniques,

you'll learn how to design and write your own programs.

There are even examples that show you how to search out

and correct even the most subtle errors so that you can debug

!"""! your own programs.
You may consider yourself a beginner now, but with All

About the Commodore 64: Volume I, you'll quickly become an

•j experienced BASIC programmer.

^ Acknowledgments

! The author wishes to thank Harry Bratt, Glen Carbone, Mark
Davids, Chet Gonterman, Sheldon Leemon, and especially

j—| Kurt Vogel for their assistance in the development of this

t book.

vii

Chapter 1

Introduction

n

- Introduction
What Is BASIC?

I I Computers communicate using numbers. Humans don't. Deal
ing with numbers is a major problem confronting people who

use computers.

\[We are accustomed to communicating using words. But
words alone are not enough to convey information; the order

in which they are put together is also important. Words, plus

some rules about how to combine them, are what form a

language. •

Unfortunately, English is too complicated to be imple

mented on a microcomputer like the Commodore 64, but it is

possible to make a computer understand a simple language.

The trick to making a language simple is to use a small vocab

ulary, and to limit the ways in which the words can be

combined.

BASIC is a computer language which has these character

istics. BASIC, which stands for Beginners All-purpose Sym

bolic Instruction Code, was created at Dartmouth College by

John Kemeny and Thomas Kurtz about 20 years ago. The

BASIC on your Commodore 64 is known as Microsoft BASIC

Version Two.

BASIC is a sort of interpreter between your words and the

computer's numbers. If you know what you want the com

puter to do, it is rather easy to write instructions in BASIC for

the computer to follow. Using the rules of the language, the

computer interprets your instructions and performs whatever

is necessary to produce the desired results. Now the difficulty

in using a computer has been reduced to writing BASIC

instructions. That is what programming is all about, and it is

the subject of this book.

— Why You Should Learn BASIC

With all of the programs already available for the Commodore

64, why would you ever want to write any yourself? As it

"I turns out, there are many good reasons for learning BASIC.

The main reason is that learning how to program helps

you get more out of your investment. As you learn more

P] about how a computer works, you will realize its many appli

cations and see how it can help you. You will be able to modi

fy existing programs to better suit your needs. And when you

u

Introduction r j

need a program that nobody else has written, you can write it | I
yourself.

Computers are playing an increasingly larger role in our

society. Knowing how they work will make it easier for you to | [
adapt to our changing world. By learning about computers,

you are furthering your education, and you will have an ad- .._.

vantage over those people who do not keep up with progress. !_J
Finally, computers can be fun. Your Commodore 64 is a

great entertainment machine, with fast action, high-resolution

color displays, and music. If you stop and think about it,

though, every time you play a game, you me enjoying the

product of someone else's imagination. A computer can per

form math calculations, display colorful pictures, and produce

sounds, but original thinking is necessary to transform these

mechanical operations into an entertaining game.

The computer lacks an imagination. That imagination can

be supplied by a professional game programmer, or it can be

supplied by you. By learning to program, you can turn your

thoughts and ideas into reality, in ways not possible before.

So, the computer provides a means for you to express your

own creativity.

About This Book

This book has been written to give you an understanding of

programming in general, and BASIC in particular. It presents

all the essential things you need to know about BASIC so you

can start learning and programming right away. We assume

that you have never used a computer before. We also realize

that you might learn languages besides BASIC. Many of the

ideas and methods discussed in this book can be applied to

other languages.

There are three main parts to this book. The first part,

Chapters 2 through 6, presents fundamental concepts of com

puting. You will work only in what is called the immediate | j
mode of the computer, for immediate results. You don't even

have to bother with the Datassette or disk drive. The purpose

of these chapters is to build a strong foundation in preparation] j
for programming. When you move on to the second part, pro

gramming will seem to be a natural next step.

Chapters 7 through 11 contain all the essential informa-] j
tion about programming. It is possible to write many programs

u

n Introduction

' I using just the material in these five chapters.
The third part, comprising the last five chapters, covers

i—I more advanced topics/Here you will find some shortcuts that

< ! make programming even easier.
Each chapter is divided into several sections, and almost

j—i every section concludes with a summary which explores some

1 feature of the computer while showing an application of the
new material introduced in the chapter.

There are plenty of examples in each chapter, many of

which make use of the graphics and sound capabilities of the

Commodore 64. To remove as many obstacles from the learn

ing process as possible, none of the examples is of a mathe

matical nature.

This book approaches topics from a conceptual stand

point, with the reasoning that if you understand the purpose

of a procedure, you will better understand how to use it.

Here are some suggestions on how you might read this

book. You could choose to read the entire book, in order. This

might be a good strategy if you have never dealt with comput

ers before. Or, if you have some experience, you may want to

read only the summaries, referring to the main text for clarifi

cation or when you come to something new. Either way, you

will probably find that you will have a more solid understand

ing of the subject if you try the examples, not just look at

them. This book has been written so you can even read it in

bed and still get a good idea of what is happening, but noth

ing can replace actual hands-on experience. The computer

won't laugh at you if you make a mistake, and there is no

way you can permanently damage the computer by typing, so

feel free to experiment.

There are numerous program listings in this book. Each is

designed to illustrate a point. In order to make the typing in of

_ these programs easier, a special extra program has been in-

1 I eluded in the appendix called "The Automatic Proofreader,"
by Charles Brannon. Be sure to read this article before you try

to type in any of the programs. Using the Proofreader will

make program entry much easier.

You may also find it helpful to talk about some of the

topics with somebody who knows about computers. We have

tried to anticipate the most likely questions, but you are bound

to have some questions we just couldn't cover.

n

H

Introduction

u

u

Sneak Preview jj
Just so you can see what a program looks tike, here is a short

but fun program for you to try right now. Turn on your Com

modore 64, LOAD and RUN the Automatic Proofreader (if 1_J
you have not read die article Automatic Proofreader, Appen

dix I, now is the time to do so), type the word NEW, and

press the key marked RETURN. Now type each of the lines !_j
exactly as listed below, pressing RETURN atffcer every line-

If you make a typing mistake, you can easily correct it be

fore pressing RETURN. Just press the DEL key until it back

spaces to your error, then type your correction. When you are

done, type LIST and RETURN. This will display your program

on the screen so you can make sure the lines were entered

correctly. If a line is wrong, simply retype it. Plug a joystick

into port two. Type the word RUN, press RETURN, and start

drawing.

10 PRINT CHR$(147) : POKE 53280,0 : POKE 53281#0 :

S=500 : C=l :rem 181

20 DIM JS(15) : FOR K=5 TO 14 : READ JS(K) : NEXT
:rem 126

30 POKE 55296+S,C : POKE 1024+S,81 :rera 205

40 S*=S+JS(PEEK(56320) AND 15) :rem 15

50 IF S<0 THEN S=S+1000 :rem 177

60 IF S>999 THEN S=S-1000 :rem 49

70 IF (PEEK(56320) AND 16) = 0 THEN C=C+1 : IF C>1

5 THEN C=l :rem 66

80 GOTO 30 :rem 4

90 DATA 41,-39,1,0,39,-41,-1,0,40,-40 :rem 239

By moving the joystick, you can doodle in eight direc

tions. If you move off one side of the screen, the drawing

reappears on the opposite side. To change the color of the line,

press the trigger. Hold the trigger down to create a multi

colored effect.

To stop the program and set the computer back to nor- j j

mal, hold down the key marked RUN/STOP and press the LJ
RESTORE key. Type LIST and press RETURN to see the pro

gram again. You can change the plotting shape from a ball to f "<

an asterisk by changing line 30. Type this line and press !—'
RETURN.

30 POKE 55296+S,C : POKE 1024+S,42 jj

All that we did was change the number 81 to a 42. Type

LIST and press RETURN to check that line 30 was changed.

u

n Introduction

j | Start the program again by typing RUN and pressing RE

TURN. This time, asterisks will be drawn on the screen. You

might also try the number 160, for a square block.

j [Here is a complete breakdown of what is accomplished by

each line in the program.

10 PRINT CHR$(147)

i [clears the screen

POKE 53280,0 : POKE 53281,0

sets border and background colors to black

S=500:C=l

sets the drawing start position to the center of the screen,

and the color to white

20 DIM JS(15)

creates space called an array for the joystick

FOR K=5 TO 14 : READ JS(K) : NEXT

forms a loop, to put numbers into the joystick array

30 POKE 55296+S,C : POKE 1024+S,81

plots a shape and color on the screen

40 S=S+JS(PEEK(56320) AND 15)

determines a new position, according to the joystick

reading

50 IF S<0 THEN S=S+ 1000

60 IF S>999 THEN S=S-1000

corrects the position if the drawing pointer moves off the

screen

70 IF (PEEK(56320) AND 16) = 0 THEN C=C+1

changes the color if the trigger is pressed

IFC>15THENC=1

sets the color back to white if all colors have been

displayed.

80 GOTO 30

go back to line 30 and do it all over again

90 DATA 41,-39,1,0,39,-41,-1,0,40,-40

!""] numbers for joystick array

Programs are a combination of three things: input/output,

— repetition, and conditional logic. These are the main concepts

! I of the book. In the example, the input comes from the joy
stick—you send information into the computer, telling it what

p_ to do. The output is in the form of the pretty screen display.

! Every time the computer follows the instructions in lines 30-
80, only one point is plotted. The effect of motion occurs be-

,-_ cause the computer repeatedly follows the instructions in

H

u

Introduction j j

those lines. That's the repetition. The conditional logic is LJ
needed when the drawing goes off the screen, or when the

entire sequence of colors has been displayed.

Remember: This program is only a preview of what is to j j
come. The details of how it works will become clear as you

read the book. ■—-

How about one more program? This time, you can write j_J
it. The program will fill the screen with your name. Start the

program by typing a line number. The number 10 will do. The

BASIC instruction to make the computer write things on the

screen is PRINT. Since you want it to write your name, put

your name in quote marks after the PRINT. Put a semicolon at

the end of the line, and press RETURN. The line should look

something like this.

10 PRINT "CHRIS ";

We want the computer to print your name over and over

again, so the second line should be as follows:

20 GOTO 10

Now type the command LIST and press RETURN. There

is a listing of your first program. Type RUN, press RETURN,

and you will see your name in print.

The Keyboard

Most of your interaction with the computer will require using

the keyboard. Getting to know some of the special features of

the keyboard will help streamline your learning.

When you turn on the Commodore 64, you are greeted

with a message displayed in letters and numbers. These and

other symbols that can be displayed by the computer are

called characters. You will also see a flashing square, known as

the cursor. You can put your own characters on the screen by

typing on the keyboard. The space bar can be used with the

letter and number keys to type the name of the computer. [J

COMMODORE 64

Every time you press a key, the corresponding character I j

appears on the screen, at the location of the cursor. The cursor

then moves one place to the right. To type the punctuation

characters that are shown above the numbers on the digit M

keys, hold down one of the SHIFT keys while typing the digit

keys. Using SHIFT with letter keys causes graphics characters

u

H Introduction

n

to be displayed. Instead of holding down the SHIFT key all

the time, press SHIFT LOCK. Now all characters typed will

appear as if they are shifted. To release the SHIFT LOCK,

press it a second time.

After you type 40 characters, you will have filled one

p-. screen row. When the cursor is pushed off the right edge of

; 1 the screen, it will reappear at the left edge, one row lower.

This is called wraparound. Usually you will type only a few

characters on a line, and then press the RETURN key. This

makes the cursor move back to the left edge of the screen,

again one row lower.

If the computer displays the message SYNTAX ERROR

when you press RETURN, don't worry about it at this point.

Syntax refers to the grammar of the BASIC language. The

computer displays this error message when you type some

thing that does not belong in the language.

When you press RETURN without typing any characters,

it just moves down one row. Do this enough times, and the

entire screen display will move upward. This is called

scrolling, and it's the vertical counterpart for horizontal wrap

around. The screen will only scroll up. The writing which gets

pushed off the top of the screen cannot be retrieved.

Hold down the SHIFT key and press the one marked with

the Commodore symbol. The screen will change to lowercase.

Now you will have to use the SHIFT key or SHIFT LOCK to

get capital letters. To return to uppercase mode, press the

SHIFT and Commodore keys again.

You can get some additional graphics characters by hold

ing down on the Commodore key while you type the letter

keys. Typing a digit key while holding down the Commodore

key makes the cursor change color. All typing will now be in

the new color. To get more colors, hold down on the key

_ marked CTRL while typing a digit key.

R If you press CTRL and type the key marked RVS ON,
characters will appear in reverse mode, until you press CTRL

_ and type the RVS OFF key or press RETURN.

j| Some keys do not put characters on the screen. Instead,

they make the cursor move. The two cursor keys can make the

_ cursor move in all four directions. Pressed alone, the cursor

I [will move down or to the right. Hold down either the SHIFT
or Commodore key while pressing the appropriate cursor key

to move the cursor up or left.

LJ

Introduction f j

The cursor keys will automatically repeat if you hold]_J
them down for about half a second. The space bar also has

this feature.

Use the cursor keys to move the cursor into the middle of j_J
a word, and press the INST/DEL key to delete characters. To

open up a gap to insert extra characters, hold down on either

the SHIFT or Commodore key while typing INST/DEL. This j_j

key also repeats automatically.

Finally, the home position of the cursor is in the upper-left

corner of the screen. Press the CLR/HOME key to make the

cursor move to the home position. To erase every character on

the screen when you home the cursor, use SHIFT or the Com

modore key with CLR/HOME.

Numbers, Operators, Expressions, and

Precedence

When you see the READY prompt, it means the computer is

waiting for you to type something. Every time you typed a

line and pressed RETURN in the last section, you got a

SYNTAX ERROR. That meant you typed something which the

computer could not understand. Here is a line that the com

puter will understand. Type this line and press RETURN:

?6+4

The computer responded by displaying the answer, 10, on

the screen. The computer can also handle longer problems:

7345+98+4+ 7132+56

Now you see why the RETURN key is needed. It lets the

computer know when you are done typing a line. Without it,

the computer would not know whether you wanted to type

something like ?6+4 or ?6+4+2. It also gives you the chance

to correct typing mistakes before the computer starts interpret

ing the line. From now on, when we say enter a line, it means

that you should type the line and press the RETURN key. jj
The computer supports the operations of addition, sub

traction, multiplication, and division. The symbol used to indi

cate one of these operations is called an operator. In the |^J

examples, the plus sign was used for addition. Enter these

three lines to see the other operators.

?9-6 U
?3*4

712/6 n
10 w

u

n

fi Introduction

i I Because letters of the alphabet have a special meaning to

the computer, X or x cannot be msed for multiplication, so the

^ asterisk is used instead. The slash symbol is used for division.

I | Incidentally, division by zero is illegal, so if you try to make

the computer divide by zero, you will get the DIVISION BY

ZERO error.

< \ There is one other operation, exponentiation, but it will

rarely be used in this book.

?3I4

Exponentiation is used to raise a number to a power. The

above line means to multiply the nctmber 3 by itself four

times, as in 3*3*3*3.

Operators can be mixed on one line. The result is called

an expression. An expression is evaluated by the computer to

produce an answer, or value.

?2*3+4

An important thing to remember when using expressions

is that certain operators have precedence over others. Here is a

list showing the hierarchy of operators, starting with the high

est precedence. Operators which have the same precedence

are evaluated in order, left to right.

f exponentiation

*,/ multiplication, division

+,— addition, subtraction

To see precedence in action, enter this line:

?2+3*4

Because multiplication has precedence over addition, the

computer will first multiply 3 and 4, then add 2 to the result.

The correct answer to this expression is 14.

You can change the order in which an expression is eval-

j—| uated by using parentheses. Parts of an expression in paren-

' theses are always evaluated first.

?(2+3)*4

M This time, the computer will add 2 and 3, then multiply
the result by 4, and display the answer, 20.

n

H
11

H

H

n

- Statements
The PRINT Statement

I } So far you have typed several lines that started with a ques
tion mark and contained numbers and operators. Every time

^ you pressed the RETURN key, the computer responded by

! i displaying a number on the screen.

Whenever the computer displays something on the screen,

it is said to be printing to the screen. You use the question

mark to tell the computer to print to the screen.

Now we let you in on the question mark's secret identity.

Try doing some of the earlier examples again, this time using

the word PRINT in place of the question mark.

PRINT64

PRINT2+3*4

PRINT is the BASIC statement understood by the com

puter. The question mark is just a short form of that state

ment. For our purposes right now, PRINT and the question

mark mean the same thing.

Why does the PRINT statement have a shorter form?

Well, typing in a long program can be boring and time-

consuming. Also, the more you type, the more likely you are

to make errors. So, anything you can do to reduce the amount

of typing you have to do is a real plus.

PRINT requires that you press five keys, and the PRINT

statement is used often. The question mark requires only one

keystroke, and that's about as short as you can get! So feel

free to substitute the question mark for the longer form,

PRINT, as you type in the examples in this book.

Incidentally, the term print is left over from the days

before video terminals, when the computer's display device

was a printer. Nowadays we can use our television set or

f—] monitor to see the information, and PRINT has come to mean

"displaying information on the screen."

f"j Summary

• The PRINT statement instructs the computer to display in

formation on the screen. It is a frequently used statement in

!""] BASIC programming.

• The question mark is interpreted by the computer to mean

the same thing as the PRINT statement.

15

Statements

Keywords and Statement Execution jj

Now we should take a moment to notice how statements are

organized. When you type a line and press RETURN, the

computer looks at the first thing in the line to see if it recog- i|

nizes that word as a statement, or command. If so, the com

puter will do what the statement commands it to do.

Some statements require that additional information be j j

placed after the statement name. In the case of PRINT, an ex- ' '
pression is one example of this extra information.

Here is a typical PRINT statement: PRINT 5*3+9. In this

statement, PRINT is the keyword. All the words that BASIC

understands are called keywords, and all BASIC statements

must begin with a keyword.

If the computer does not recognize the first word in a line,

it will tell you so by reporting a SYNTAX ERROR. For exam

ple, if you type a line that starts with the word EXPLODE, the

computer will reply with the error message.Your Commodore

64 does not know how to explode.

The 64 also expects perfect spelling. If you make a mis

take while typing a keyword, even if you are off by just one

letter, the computer will respond with a SYNTAX ERROR. The

64 can not make an educated guess as to what you intended

to type. Therefore, PRITN64 will not work, and neither will

PRINU64. Every letter must be correct for the computer to rec

ognize the keyword.

On the other hand, you won't need to be as fussy about

spaces. The following lines are legal and will work.

PRINT 64

PRINT 64

PRINT 2 + 3* 4

The computer does not recognize spaces, and will ignore

them if they are used, provided you do not use them in the

middle of a keyword (the statement name). The computer r (

won't understand PRINT. LJ
A careful use of spacing simply makes it easier for you to

read a line. The first line shown below looks nicer than the ^ .

second one. *—'

PRINT (3+4)* (5+2)

PRINT(3+4)*(5+2) { j

16

n

P| Statements

' \ Summary

• All statements start with a keyword. Some statements re-

f—i quire more information after the keyword. Placing a number

! I or expression after the keyword PRINT tells the computer
what to print on the screen.

f—| • Keywords must be spelled correctly. Spaces cannot be insert-

; ^ ed within a keyword.

• Spaces can be placed almost anywhere else in a line. They

are used to make a line easier to read.

The POKE Statement

PRINT is used often because it is how your programs commu

nicate with the people using them. POKE is used often be

cause it lets your programs make changes in special locations

inside the 64. POKE can be used to do a wide variety of

things, so it is very powerful. For instance, you use POKE to

create color graphics and sound on your Commodore 64.

The format, or syntax, of the POKE statement is the

keyword, POKE, followed by a number (or expression), then a

comma, and finally a second number (or expression). The first

number designates a memory or hardware location in the

computer. Memory locations are used to store information

such as a program, the screen display, and system software.

Hardware locations control things like the color of the screen,

or the pitch of a music note. Each location contains a number

that ranges in value from 0 to 255. The location is said to be

changed when the value which it contains is changed to a

new value.

Your Commodore 64 has a total of 65536 of these loca

tions. Each location has a distinct number, from 0 to 65535.

This means that location 0 is the first location. This idea may

take a little getting used to, because when you count things,

P] you usually start with 1. Just remember, zero is a number, too.
And when you're counting memory locations or the values in

those locations, you begin with zero.

I""] Each location serves a different purpose. For example, lo
cation 53281 is a hardware location that controls the color of

the screen background. There are 16 colors, represented by

f"| numbers in the range 0-15. (Remember, the first color is rep
resented by 0.) If location 53281 contains a value of 6, the

n
17

u

Statements j" j

screen background is blue. That's the screen background color LJ
you see when you turn the computer on.

The color of the screen can be changed to red by putting

a value of 2 into location 53281. The POKE statement is used |_!
to do this. First you may want to change the character color to

white by holding down the CTRL key and pressing the 2 key.

This will enable you to see the characters better. Then enter: [_j

POKE 53281,2

The first number in the statement indicates the location to

be changed, and the second number tells what new value the

location should contain.

To change the screen color back to the original blue, enter

this statement:

POKE 53281,6

Notice that when the screen background changed to red,

the screen border remained light blue (represented by the value

14). The color of the screen border is controlled by locajtion

53280. Change the screen border to red with this statement:

POKE 53280,2

While we have been using only numbers in our POKE

statements, expressions can be used in place of the numbers,

so the statement shown below is an alternate way of setting

the background color to red.

POKE 53280+ 1, 6/3

You may want to experiment further and see what other

colors can be put on the screen. Keep in mind, though, that

your characters are white. So if you want to change the screen

background to white, first change your character color by

holding down CTRL and pressing the 1 key (for black). Other

wise, your characters will be the same color as the back

ground, and the screen will appear to be blank. I }

Also remember that the 64 can display only 16 different

colors, using the numbers 0-15. If you POKE locations 53280

and 53281 with a value larger than 15, you will not get any \ i

new colors. Instead, numbers beyond 15 simply repeat the

colors obtained with values from 0 to 15. POKE 53280,2 and

POKE 53280,18 both set the border color to red. ; j

If you try to POKE a location with a value outside the ""■J

range from 0 to 255, you will get an ILLEGAL QUANTITY

error. . I j

18

r

Statements

= * When you are through experimenting, set these locations

back to their initial values by holding down the RUN/STOP

|—I key and pressing the RESTORE key.

1 ' Here is a very important word of caution. The POKE
statement is very powerful, but with added power comes

r8^ added responsibility. You should not carelessly change

] unknown locations. It is not possible to physically damage

your Commodore 64 by randomly POKEing locations, but you

can accidentally force the computer to ignore your keyboard

entries, so that it appears to stop functioning completely. This

is called a system crash.

To set everything back to normal, you must turn the com

puter off and then back on. Pressing RUN/STOP and RE

STORE will reset some things, but it will not always get the

computer back on track after a stray POKE. To be safe, you

should POKE only those locations described in this book and

in other Commodore 64 literature. Crashing the computer is

really no big deal; just be thankful the damage is not

permanent.

Summary

• The Commodore 64 has 65536 memory locations. They are

numbered from 0 to 65535.

• Some locations are used to hold information for your use.

Other locations are related to the hardware. The examples

use hardware locations that control the screen border and

background colors.

• Each location contains a value from 0 to 255.

• The POKE statement is used to replace the contents of a

location with a new value.

• The syntax for the POKE statement is the keyword POKE, a

number or expression indicating which location is to be

r~j changed, a comma, and a second number or expression
which is the new value to be placed into the location.

_ • The wise programmer will avoid carelessly POKEing

H unknown locations. Although RUN/STOP and RESTORE
will reset some things like screen color, they may not undo

_ the results of stray POKE statements. The only sure way to

; i restore the system in such a situation is to turn it off and

then on again. Fortunately, crashing the computer does not

_ cause permanent damage.

19

Lj

Statements i_j

Multiple Statements on One Line %J
Now that you have given the PRINT and POKE statements a

workout, you have seen how the computer accepts a line that , t

you enter, looks for a keyword that it recognizes, and executes L_J
the statement. Thus far you have been putting only one state

ment on each line. But often you will want to put several ■- -

statements on one line. '—»

This is done using the colon (:). The purpose of the colon

is to tell the computer where one statement ends and the next

begins. Try this example to change the whole screen to a light

green color:

POKE 53280, 13 : POKE 53281, 13

Here is an example of several statements on one line:

? 64 : ? 46 : ? 55 : ? 123 : ? 1024

After you pressed the RETURN key, the computer should

have printed a column of numbers before it printed the

READY prompt.

Notice that if you type the above line using PRINT in

stead of the question mark, the line will wrap around.

PRINT 64 : PRINT 46 : PRINT 55 : PRINT 123 : PRI

NT 1024

However, the results are the same as before.

A line can be longer than one row, but it cannot be longer

than two screen rows, which is 80 characters. If you type 81

or more characters without pressing the RETURN key, the

computer will accept only the first 80 characters, and ignore

the rest of the line. When your characters reach the end of the

second row, they will wrap around to a third row, but when

you press RETURN, none of the statements on the third line

will be executed. And if the wraparound from the second to

the third line occurs in the middle of a statement, that state

ment will be incomplete, and the computer will generate a LJ-

SYNTAX ERROR. To prevent any problems, always type lines

short enough so that they do not reach to the end of the

second row. [_]

Summary

• A colon (:) is used to separate several statements on one line. ; {

• The maximum line length the computer can handle is two i, I

screen rows (80 characters). Characters that spill over into a

third row are ignored. .

20

u

n

- Variables
Introduction to Variables

H So far, we have only used numbers with PRINT and POKE

statements. And each time we wanted to change the number

we were printing or change the screen color, we retyped the

fl line. But there is an easier way to represent numbers.

While entering the demonstrations for PRINT and POKE,

did you wonder what would happen if you typed something

other than a number, such as a letter of the alphabet? Try it

right now.

PRINT A

The number 0 is printed on the screen instead of an A.

Try a couple more letters.

PRINT B : PRINT C

The same thing happens. We type a letter, and the com

puter prints a 0.

This does not mean that the computer interprets every let

ter as the number 0. Rather, the computer considers the letter

to be something called a variable, and it is the variable which

has the value of 0.

A variable consists of two things: a name and a value. It

is called a variable because its value can vary, or change. The

number 5 always has a value of 5, and PRINT 5 will always

print a 5 on the screen. But a numeric variable can have differ

ent values at different times to represent any number.

The variables that you have seen so far (A, B, and C)

have all had a value of 0. This is because you have not given

them a value, and the computer assigns a default value of 0.

The method by which a variable is given a new value is the

subject of the next section.

n
Summary

• A variable consists of a name and a value.

I • Letters of the alphabet may be used as names for variables.
• The value of a variable can be changed. This is what

I—i distinguishes a variable from a number.

• A numeric variable can have any value that is valid for a

number.

n

23

u

Variables _

Assigning Values to Numeric Variables with LJ
LET

All variables have a default value of 0, but you can change it r j

by assigning a new value. Variable assignments are done with I—I
the LET statement.

LETA= 6 jj

The syntax for the LET statement is quite different from

that for PRINT or POKE. The syntax is the keyword LET, the

variable name, an equal sign, and then a number or expres

sion. The variable name identifies which variable is being as

signed, and the number or expression specifies the new value.

When the computer executes a LET statement, the first

thing it does is look at the part of the statement to the right of

the equal sign to get a value. If there is an expression, it will

have to be evaluated. Once the computer has a value, it is as

signed to the variable specified to the left of the equal sign.

Now the variable can be used just like a regular number, as in

the PRINT statement.

PRINT A

Now we have solid proof that a variable can have a value

other than 0, and that the value can be changed by the LET

statement.

When you entered the LET statement, the computer re

sponded with the usual READY prompt. The LET statement

itself does not cause anything to be printed. The value assign

ment takes place in the computer's memory.

Assigning a value to one variable does not affect other

variables. The variable B still has its initial value of 0.

PRINT B

But we can easily change that.

LETB=4 j j

PRINT B U

Since variables are completely independent, A still has its

value of 6, even though B has been assigned in the meantime. |_j

PRINT A : PRINT B

Once a variable has been assigned a value, it doesn't J j

mean that it has to have that value forever. The value can be l—'
changed by another LET statement.

24

n

i—| Variables

PI LET A=5 : PRINT A
Once a variable has been assigned, however, it retains

nthat value until it is changed again. Also, two different vari

ables can have the same value, without creating a conflict.

LET B=5 : PRINT A : PRINT B

(I Although the value of a variable can be changed, a vari
able can have only one value at any given time.

Here are more examples:

LET A=66 : LET B=44

PRINT A+B

PRINT A-B

PRINT A/B

PRINT C

PRINT A+B-C

LET C= 10 : PRINT A+B-C

A statement like LET 5=A is illegal, because the number

5 cannot be assigned a new value. The statement LET

A+l = 2 will not work, either, because only the variable name

can be to the left of the equal sign.

Summary

• All variables have an initial, or default, value of 0.

• Variables are assigned new values with a LET statement.

• The syntax for the LET statement is the keyword LET, a

variable name, an equal sign, and a number or expression.

• During execution of a LET statement, the value to the right

of the equal sign is determined first, and then it is assigned

to the variable specified to the left of the equal sign.

• Variables can be used just like numbers.

• The LET statement does not cause anything to be printed on

|—I the screen.

• Variables are independent, so assigning a value to one vari

able does not affect the values of other variables.

I I • There is no reason why two variables can't have the same
value, even though the variables are independent.

_ • A variable keeps its value until it is assigned a new one.

I I • A variable can have only one value at a time.
• Numbers cannot be assigned new values.

n
25

H

u

Variables jj

• The computer will not print a variable name when it is in- Lj
structed to print the value of a variable.

Uses of Variables jj

So we can assign a value to a variable. But why would any

body want to do this? As it turns out, variables are very use

ful, and many programs use variables more often than they j^J

use ordinary numbers. This section presents some reasons

why.

Remember how you changed the screen color using the

POKE statement? Each time you typed the POKE statement,

you had to carefully type the correct location number. By as

signing the location number to a variable, it becomes much

easier to change the screen color, like this:

LET A=53281

POKE A,2

POKE A,6

Once you have assigned the value 53281 to the variable

A, the variable name can be typed every time in place of

53281, with less chance of making a mistake.

Clear the screen and type the following statements. After

each one, the screen will change color, and the computer will

print the READY prompt. This is similar to an earlier demon

stration, except that this time the variable A is used in place of

the 53281.

POKE A,4

POKE A,7

POKE A,8

POKE A,13

The next step is to move the cursor back to the top of the

screen, right on top of the first POKE statement. As before,

press the RETURN key four times to rapidly change the screen

color. Now that the cursor is at the bottom of the screen again, |_J
we are going to repeat the demonstration. But this time, before

you move the cursor to the top of the screen, make one small

change. While the cursor is still at the bottom, type this line: |_J

LET A=53280

Okay, now you can continue by moving the cursor to the j i

top of the screen and pressing RETURN repeatedly, just like taJ
last time.

u
26

u

n

H Variables

M Again the screen rapidly changes color, but this time it is

the border that changes, not the background.

_ This demonstrates one of the most powerful uses of vari-

M ables—changing the value of a variable can save a lot of extra

time and work. If the number 53281 had been used instead of

_ the variable A in this example, every line would have had to

M be retyped in order to make the statements change the border
color.

This section has barely touched on the uses of variables;

many more uses will become obvious to you as you program.

Variables are a very important concept in computing, not just

in BASIC. One small change to a variable can have a big

effect.

Summary

• A variable can be assigned the value of long numbers. Typ

ing becomes faster and less prone to error.

• The real power of variables lies in the fact that their values

can be changed. Reassigning one variable can save the work

of retyping several lines.

Variable Names

Only three examples of variable names have been shown thus

far. Do variable names have to be only one letter long? Can

other symbols besides letters of the alphabet be used? Just

what constitutes a legal variable name?

Here are the rules governing valid choices for variable

names.

1. A variable name can contain any number of characters.

There is no restriction on length, other than the maximum line

length (80 characters).

2. Only the first two characters are significant.

j—| 3. The first character in the name must be a letter of the

1 alphabet.

4. Any characters after the first can be letters, or the digits

pi 0 through 9.

5. Spaces can be put between the characters in a variable

name, but this is not recommended.

|—| 6. The variable name can not contain any reserved words.

A variable name always starts with a letter because the

n
27

n

u

Variables . ,

computer must distinguish between numbers and variables. If j j

the variable name started with a digit, the computer would ^—'
think that a number was being used. This means that there are

26 different characters that can be used as the first character in | j

a variable name. '—'
Variables are used so often that 26 of them would not be

enough. So a second character can be added to the variable j j

name. This second character can be one of the 26 letters of the *—'
alphabet, or it can be one of the ten digits, from 0 to 9. Such a

character is said to be alphanumeric. By combining these two

characters, you can come up with 936 different variable

names. This is many more than you will need. Examples of

legal variable names are shown here.

ABCDQXYZ

AA BC DZ DQ QD XY ZZ WM

Al B2 Cl D9 QO X7 Y3 Z4 G4 J8

Two-character names offer many possible variable names,

but these names may not be very descriptive. Given variable

names like those above, it would be hard to associate them

with something. It would be nice if whole words could be

used as variable names.

To allow this, additional alphanumeric characters can be

added onto the first two characters in a variable name. Now

you can use full words and even your own name as a variable

name. Here are a few examples.

OBJECT, THING, COMPUTER

NUMBER, AGE, TAXRATE

UNDERDOG, TWEEDLEDEE, CHRIS

There is one problem, however, when using variable

names longer than two characters. AH characters after the first

two are ignored by the computer. Only the first two characters

are said to be significant, meaning the computer uses only the

first two characters to distinguish between one variable and |_j
another. Additional characters are for cosmetic purposes only,

to help you remember what the variable represents. A variable

named TAXRATE is more quickly understood than the vari- M

able T. But be careful—names like CHRIS and CHARLIE

may appear to be different variables, but as far as the com

puter is concerned, both are the same variable. M

A common practice is to use variable names that have the

same first letter, and then use different numbers as the second

28

u

H

r-| Variables

j| character, such as XI, X2, and X3. Notice that this would not
work for longer names, such as RR1 and RR2 or SI and S10.

In an attempt to keep the examples in this book as short

jj and simple as possible, variable names are limited to two
characters. For longer programs, however, the advantages to

using longer variable names are w6rth the extra typing. If you

j[choose to use longer variable names, check for conflicts when
you use a variable name for the first time.

There is one last restriction that must be observed. The re

served words of the BASIC language must not be embedded

in a variable name. This rule will be hard to follow at first,

since you have seen only a few of the reserved BASIC words.

To help you, the computer will print SYNTAX ERROR when

ever you use a variable name that contains a reserved word.

Reserved words include keywords, names of operators, names

of functions, and predefined variables.

Here are four examples of variable names that are illegal

because they contain a reserved word.

TOTAL COST NOTE COLOR

The name TOTAL is illegal because it contains the

keyword TO. The trigonometric function COS (cosine) makes

COST illegal. NOTE and COLOR are illegal because they con

tain the operator names NOT and OR, respectively.

There are two variable names which have special mean

ing to the computer and which you may not use. The first re

served variable is ST, which reports system status information.

The other is TI, which stands for TIME. The value of variable

TI reflects the value of the clock maintained by the computer.

Because the clock is incremented every 1/60 second, the value

of TI keeps changing. TI has a value of zero when you first

turn the computer on, and it keeps increasing.

PRINT TI

H PRINT TI
PRINT TI

r-1 If you try to assign a value to ST or TI, you will get a

I I SYNTAX ERROR.
The guidelines presented here for choosing variable

P, names may seem overwhelming, but with just a little practice,

! ! you won't even have to stop and think to choose a variable
name.

n
29

u

Variables -

Summary m

• The first character in a variable name must be alphabetic.

• If a variable name contains more than one character, the

others must be alphanumeric (a letter of the alphabet or a _

digit). Spaces are also allowed, but do not count as charac

ters, so it is suggested that they not be used.

• A variable name can be any length, but only the first two j_J
characters are significant.

• It is best to choose a variable name which reflects the pur

pose and use of the variable.

• The computer will generate a SYNTAX ERROR if a variable

name contains a reserved word.

• There are two reserved variables: ST and TI. They cannot be

assigned.

Assigning Variables to Variables

Consider that variables can be used just like numbers. Now

consider that the syntax for a LET statement specifies that a

number or expression must be to the right of the equal sign.

Could a variable be used in place of the number? Could vari

ables be used in the expression? Yes.

Remember that when the computer executes a LET state

ment, it first looks to the right of the equal sign for a value. If

the computer finds a number, that is the value. If it finds a

variable, the value to be used is the value of the variable. Or if

an expression is found, the expression is evaluated to produce

a value. It doesn't matter whether the expression contains

variables or not. All that matters is that a value can be deter

mined by examining what is to the right of the equal sign.

The value having been determined, it is assigned to the

variable specified to the left of the equal sign. The whole i i

process really isn't that complicated. Just remember that the '—>
computer processes the right side, then the left.

With that in mind, the following statements should not r j

present any difficulties. LJ

LET A=3 : LET B=A+4

PRINT A : PRINT B \J

The first assignment is just like the ones you have seen

30 □

u

Variables

f"! before. The second is really no different. The computer sees
A+4 to the right of the equal sign. The value of A is 3, so the

value of A+4 is 7. The value 7 is assigned to B. This is veri-

r"j fied by printing B.
Now enter this line:

n LET A=B : PRINT A : PRINT B

Both A and B now have the same value, because the value

that B contains has also been assigned to A. Notice that if B

were now changed, A would still retain its value.

LET B=8 : PRINT A : PRINT B

Now that you have seen variable assignments involving

other variables, the following variable assignment should not

surprise you:

LETA=A+1

If you have a background in mathematics, this statement

may bother you a little bit. There is something inherently

wrong in saying that A equals itself plus something else. But

remember, this statement is not an equation: It is an assign

ment. When the computer executes this statement, it takes the

current value of A, adds 1 to it, and assigns that value to A.

Recall that a computer executes the right side of the equal

sign, then the left. To examine this more closely, enter this

line:

LETA=1 : PRINT A

Now type:

LET A=A+l

The first thing the computer does is look at the A+l.

Variable A still has a value of 1. Then A+l becomes 1 plus 1,

which is 2. Finally, the value 2 is assigned to the variable A.

m PRINT A

Whenever this statement is executed, the value of variable

A is incremented by 1. Remember this little statement, because

""I you will see it again.

Summary

ii • When the computer executes a LET statement, it follows a
two-step process. First the computer determines a value by

31

u

Variables r ,

examining the portion of the statement to the right of the | j

equal sign. Then it assigns that value to the variable sped-

fied to the left of the equal sign.

• The portion to the right of the equal sign can be an expres- j_j
sion containing one or more variables. The variables will be

treated just like numbers. This means that the value of one

variable can be assigned to another variable. I (

• Statements like LET A=A+1 are legal and in fact are very

useful, as will be seen later.

Erasing Variables with CLR

When you turn on your Commodore 64, all variables will

have the default value of 0, until changed by an assignment.

After the variables have been assigned different values, they

can all be set back to 0 by turning the computer off and back

on again.

But that's a somewhat awkward way to erase all the vari

ables, so the CLR statement is used to clear variables. Every

variable has the value of 0 once the CLR statement has been

executed. You could think of it as an instant assignment of 0

to every variable.

The syntax for CLR is simple; it consists of the keyword

CLR, and nothing else.

LET A=l : LET B=22 : LET C=333

PRINT A : PRINT B : PRINT C

CLR

PRINT A : PRINT B : PRINT C

This statement is used in situations where memory that

has been allocated for variables needs to be reclaimed for

other uses.

Every time you assign a variable for the first time, a small

amount of the computer's memory is set aside to keep track of

the variable's name and value. When variables are cleared , ,

with CLR, this memory is freed and can be used for some- LJ
thing else. CLR is used only in programs that require a lot of

memory. For our purposes at present, CLR is not very useful. , .

Summary

• A variable is cleared when it is reset to its initial value of 0. r i

• The statement CLR is used to clear all variables. Every vari- *—'
able is set to 0 by the CLR statement.

u

pi Variables

it • The syntax for CLR consists only of the keyword CLR. Un

like PRINT, POKE, or LET, no numbers are needed in the

;—< statement.

The Optional Keyword

Variables are used very often in computer programs; therefore,

ft variable assignments are needed quite often, too. We saw that
the question mark could be used as a short form for the

keyword PRINT. The shortcut in typing the keyword LET is to

leave it out. The keyword LET is optional.

A=987 : PRINT A

Until now, we have always used the keyword LET to help

emphasize the concept of statements—a keyword, sometimes

followed by extra information. Now that you have seen and

used four different statements, it is okay to reveal that the

keyword is optional for this statement.

Of course, the LET statement is the only one which has

an optional keyword. If the computer tries to execute a state

ment that does not have a keyword, it assumes that the state

ment is a variable assignment. This is called an implied LET

statement. This also eliminates the possibility of any other

statements having optional keywords. The other parts of the

variable assignment statement are still required, including the

variable name, the equal sign, and the new value.

Variable assignments without the keyword LET are no

different from those that do have the keyword. For the re

mainder of this book, all variable assignments using the LET

statement will be printed without the keyword, so you will

not have to type it. This will save you three keystrokes every

time you assign a variable, which is the whole idea behind

making the keyword for this statement optional.

n Summary
• As a shortcut, the keyword LET of the variable assignment

r^ statement does not have to be typed, it is optional.

! i • LET is the only optional keyword. All other statements
require a keyword. If no keyword is provided, the computer

l—j assumes that the statement is a LET statement.

1 • A LET statement which does not include the keyword LET is

called an implied LET statement.

n
33

u

Variables ,

• The rest of the syntax of the LET statement after the jj

keyword is still required.

• The remaining examples in this book will not use the

keyword LET. (J

34

Demonstration of Sound r -

This section explores the sounds that can be made by the LJ

Commodore 64. In the process, it will help you gain some ex

perience in the use of variable names. To start, reset the com

puter by holding down RUN/STOP and pressing RESTORE.

The screen should be cleared, and the READY prompt should

appear near the upper-left corner of the screen.

To make sounds on the Commodore 64, it is necessary to

change a lot of hardware locations, using POKE statements.

Rather than typing the location numbers again and again, let's

assign the location numbers to variables. Enter the first line,

which assigns seven variables.

MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:

CT=54276:PW=54275

There are some numbers which will be used frequently as

values in a POKE statement, so these numbers are also

assigned to variables.

T=16:S=32:P=64:N=128

Now we are all set to begin the demonstration.

The first location controls the master volume. Volume lev

els range from 0 (no volume) to 15 (maximum volume). The

variable MV represents this location, so POKE MV to set the

master volume to the maximum level.

POKE MV,15

The master volume controls only the overall loudness of a

voice, not the volume changes that occur during the duration -

of a note. When a note is played, it does not stay at full vol- I I
ume. After it reaches full volume, it begins to fade away.

Notes played on some instruments fade away faster than

others. For example, the sound from a tuba stops when the lJ
person stops blowing, but the sound from a gong continues

for quite a long time. These volume changes during the dura- -

tion of a note can be analyzed in four parts: attack, decay, sus- LJ
tain, and release.

LJ

n
Variables

n

The rate of attack controls how quickly a note reaches full

volume. After the volume peaks, it levels off. This is called the

decay, which can also be controlled to happen at a faster or

slower rate. The volume level after the decay is called the sus

tain level. From this level, the volume will fade, and the rate

at which it does so is called the release rate.

P| The duration of a note can be divided into two parts. The
first part, when the note starts, includes the attack and decay

rates and the sustain level. The second part of the note is

when it is released—when the volume starts to fade. This is

controlled by the rate of release. These changes in volume

during the duration of a note combine to form the note's

envelope.

Different musical instruments have different characteristic

envelopes. The fact that your Commodore 64 can change the

envelope of a voice is one way in which it can effectively sim

ulate various musical instruments.

The rates of attack and decay are controlled by the hard

ware location which we labeled AD. The attack and decay

rates can range from 0 to 15, with 15 being the slowest rate.

To POKE both numbers into the one location, multiply the

attack rate by 16 and add it to the decay rate. Type the next

line, but do not press RETURN.

POKE AD, 8*16+7

The sustain level ranges from 0 to 15, with 15 meaning

that the note will stay at full volume. The release rate is from

0 to 15, just like the attack and decay rates. To POKE both

values into the location, you must multiply the sustain level

by 16 and add it to the release rate. Finish typing the line so

that it looks like the one below.

POKE AD, 8*16+7 : POKE SR,12*16+9

These two POKEs set an attack rate of 8, decay rate of 7,

sustain level of 12, and release rate of 9.

Another characteristic of a note is its pitch, also called fre

quency, controlled by two locations, FL (frequency low) and

FH (frequency high). Enter this line to set the frequency.

POKE FL,0 : POKE FH,20

Just about everything has been set to play a note. The

only thing left is to choose a waveform.

35

n

n

u

Variables r j

The notes produced by different instruments have differ- J j
ent waveforms, so having a selectable waveform is another

way of simulating various musical instruments. For our first

waveform selection, we will use what is called the triangle j_j
wave, which is represented by the variable T. We will use the

variable WF to represent our waveform selection, so we assign

the value of T to WF. When you add one to the waveform and M
POKE the result into the control location, CT, the note is start

ed. You should hear a note upon entering this next line (you

may have to adjust the volume on your television set).

WF=T:POKECT,WF+1

You heard the quick attack and decay, and you still hear

the note because it is playing at the sustain level. To release

the note, enter the following line:

POKE CT,WF

Admittedly, it took a little bit of work just to make the

computer produce one note. This is not necessary every time

you want to play a note, however, because all of the settings

stay in effect until they are changed. To play the note again,

all you have to do is move the cursor up to the line which

said WF=T : POKE CT,WF+1 and press RETURN. Then, to

finish the note, just press RETURN a second time.

After you have played the note a few times, move the

cursor up to the line which set the envelope. You might

reduce the sustain level.

POKE AD, 8*16+ 7 : POKE SR, 4*16+ 9

Move the cursor back to the first line which POKEs CT,

and press RETURN. After the attack and decay, the low sus

tain level causes the note to be very quiet. Release the note,

then change the level back to 12 and make the attack and

release rates slower.

POKE AD,12*16+ 7 : POKE SR,12*16+ 12 LJ
After you have experimented with the envelope a little,

start the note playing again, but this time do not let it release. \ |

While the constant tone is playing, move the cursor up to the L~'
line which set the frequency locations. Change the value

POKEd into FH to a 30, and press RETURN. You should hear j

the pitch get a little higher. Try different values, from 2 to w

255, for lower and higher frequencies. The smaller the number,

Li
36

! |

U

Variables

the lower the frequency. (Values of 0 and 1 are almost

inaudible.)

Set the value in FH back to 20, listen to the tone, and

then notice the change in pitch when you change the value to

21. Now change the value in FL from 0 to 1: You will not be

able to hear any difference. But when you change the value to

40, you will hear a slight increase in pitch. A value of 80 again

causes only a small change in the frequency. Also try values

of 120 and 240.

Location FL, frequency low, is like a fine-tuning control for

the frequency. Frequency high changes the frequency by bigger

intervals. The names frequency low and frequency high are a

little misleading, because they do not mean that one location

is used for low pitches, and the other for high pitches. Think

of a car odometer displaying a number like 10753. The lower

digits (the ones to the right) change as you travel a short dis

tance. The higher digits represent bigger numbers, and do not

change as often. The highest digit, 1, will change to 2 only

after the odometer reaches 19999.

The terms low and high apply in the same way to the fre

quency locations. If you now set FL back to 0 and FH to one

greater, there will be just a small change in pitch.

POKE FL,0 : POKE FH,22

To change the waveform, change the assignment of WF

from T to S, for the sawtooth wave, and press RETURN. Be

cause the note had already been started, the attack and decay

will not happen again, but you will hear a difference in the

tone due to the changed waveform. Now press RETURN the

second time to release the note. To better hear the difference

in waveforms, keep alternating between the values T and S for

WF at different frequency levels. Notice that because you used

the variable WF, you have to change only one line every time

you change the waveform. The value in WF affects both lines

which POKE to the control location, CT.

Another waveform is called the pulse wave, which we

have labeled P. Type the variable name P in the place where

T and S have been used, and press RETURN. This time, you

won't hear anything, because one other location must be set

n before the pulse wave can be used. The width of the pulse

wave can be varied to make the wave square or rectangular.

Values in the range from 0 to 15 correspond to different

n
37

n

n

Variables

degrees of rectangles, with a value of 8 creating a perfect

square wave.

At a free spot on the screen, POKE location PW (pulse

width) with a value of 8, and you will hear the tone. Change

the width for different effects, but keep the waveform as P.

Location PW affects only the pulse wave, and will have no ef

fect when other waveforms are used.

POKE PW,8

To make a note play with only one keypress, first set the

attack rate to 0, and then combine the two lines which POKE

the control location.

POKE AD, 0*16+7 : POKE SR,12*16+9

WF=P:POKE CT,WF+1 : POKE CT,WF

You can play the note several times by moving the cursor

back up to this line and pressing RETURN. Just let the volume

fade completely before you try to start the note again.

The sound that you hear when a television station goes

off the air is called white noise, because it is the combination

of all frequencies, just as white light is the combination of all

colors. Many percussion instruments, like a snare drum, gener

ate a white noise sound. The last waveform is called noise,

which has been labeled N. Change WF to N and press

RETURN for an example of white noise.

LJ

u

LJ

38 L-'

i i
U

']

n

n

n Output
The PRINT Statement Revisited

I—; PRINT is one of the most useful and versatile output state-

1 ■ ments in the BASIC language. In this chapter, we will explore

some of the more powerful ways the PRINT statement can be

f—» used, such as screen formatting and displaying messages.

Thus far, we have used PRINT to display numbers on the

screen one line at the time. You have noticed that after you

PRINT a value, the cursor automatically moves to the leftmost

column on the next screen row.

This is just like what happens when you type a line and

press the RETURN key. You could say that the computer

prints a RETURN at the end of the line. This is a simple exam

ple of how you can use PRINT to format the screen, or place

your output characters where you want them.

You can use this same general idea to print blank lines.

The syntax for PRINT allows the keyword to stand alone.

When the computer executes a PRINT that is not followed by

anything, it will move the cursor back to the left edge if it isn't

already there, and then move it down one row. This prints a

blank line on the screen:

PRINT 6 : PRINT : PRINT 4

The statement PRINT without an operand is used to sepa

rate blocks of printed information on the screen. By moving

the cursor to the bottom of the screen using repeated

RETURNS, you can use 25 empty PRINT statements to clear

the screen, although it would be much faster to simply hold

down the SHIFT key and press the HOME key.

Summary

p-j • PRINT is a versatile statement used to output information to

' ! the screen.

• If a value is placed after the keyword, it will be printed be-

|—| ginning at the place on the screen currently pointed to by

; ' the cursor.
• After a PRINT statement is executed, the computer prints a

|—j RETURN, which moves the cursor back to the left edge and

down one row.

• If no value is specified after the PRINT keyword, the auto-

!"""] matic RETURN leaves a blank line on the screen.

41

u

Output I i

Formatted PRINTing Using the Comma and —

Semicolon

We have learned that we can use the automatic RETURN built j j

into the PRINT statement to skip to the next line, and to leave ^
a blank line between values printed on the screen. There will

be occasions when you want to print more than one number ; j

on the same row, with spaces between the numbers instead of '—'

between the lines. You can achieve this by using just one

PRINT statement followed by several numbers separated by

commas. When printed, the numbers are shown separated by

spaces. Take a moment to try these examples.

PRINT 41276, 987

? 64, 46, 55

PRINT 1,2,3,4,5,6,7,8,9

In the last example, you'll notice that there are too many

numbers to fit on one line. The wraparound feature introduced

in the first chapter also applies to printing done by the com

puter. When the computer runs out of room on one row, it

will continue the printing on the next row, starting back at the

left edge.

You will also see that the numbers on the lower lines

appear right below the numbers on the first line. The comma

can be used with the PRINT statement to make the computer

print information in columns.

The comma makes the PRINT statement more versatile by

allowing several numbers to be printed at once, in ordered

columns.

Sometimes you may want to print several numbers on

one line, but you won't want them to be spaced so far apart.

To accommodate this need, the semicolon (;) can be used in

place of the comma. Numbers separated by semicolons in a

PRINT statement will be printed closer together on the same -,

line. Lj

PRINT 41276; 987

PRINT 64; 46; 55 j j

PRINT 1; 2; 3; 4; 5; 6; 7; 8; 9 ^

With the closer spacing provided by semicolons, wrap

around will not occur as often. You can also mix semicolons j_j

with commas. ^

PRINT 64; 46, 55; 20 n

LJ

42

u

Output

' I Here is one more feature of using commas and semi
colons. If a PRINT statement ends with either of these two

pI symbols, the computer will not print the RETURN after the

(- other information. The cursor will remain in place, and will

not move until more printing to the screen is done. In this

p| way, several PRINT statements can display information on the

! > same row.

PRINT 64; 46, : PRINT 55; 20

Notice that when the computer prints a message such as

the READY prompt, the effect of the comma or semicolon is

lost.

Summary

• To print more than one value on a line, separate the items to

be printed with a comma or semicolon.

• A semicolon is used for close spacing, and a comma is used

for far spacing.

• The far spacing of the comma can be used to print numbers

in columns.

• If output exceeds the length of one line, printing will wrap

around to the next line.

• If a PRINT statement ends with a comma or semicolon, the

computer will not print the RETURN, and the cursor will not

move.

PRINTing Character Strings

So far we have used the PRINT statement only to print num

bers on the screen. What if we wanted to print something like

a message or a name?

PRINT CHRIS

pj As we have learned, the computer interprets CHRIS as

the variable CH, and prints the value of CH. To make the

computer print text verbatim, without trying to interpret words

n as variables, a special symbol must be used in the PRINT

1 statement. This special symbol is the double quote mark, ob
tained by pressing a SHIFTed 2 key. This symbol is used to

[""I indicate the beginning and end of text in a PRINT statement.

To print a word or name, enclose it in quote marks.

_, PRINT "CHRIS"

H
43

u

Output I I

i
Voilal Finally, the computer has printed something other L-J

than a number. When the computer sees a quote mark in a

PRINT statement, it copies all succeeding characters directly to i j

the screen until it encounters a second quote mark. A group of ^
characters like this is called a character string. The quote marks

are called delimiters because they indicate the beginning and

end of the character string. Remember to type the closing U
quote mark.

PRINT "CHRIS" : PRINT 64

The printed text does not have to be just one word. A full

name can be printed.

PRINT "CHRIS MAKEPEACE"

Or the computer can print a whole sentence.

PRINT "THE COMMODORE 64 FEATURES SOUND AND

COLOR GRAPHICS"

As with numbers, printing of text will wrap around, but it

does not automatically split a sentence only at a space. The

computer will split a word at any point. To make sure that

long sentences do not cross the right edge of the screen, use

several PRINT statements.

PRINT "THE COMMODORE 64 FEATURES" : PRINT

"SOUND AND COLOR GRAPHICS"

Professionally written software never splits sentences at

any place other than at a space.

Since the computer does not care which characters are

printed, you can print a character string of digits.

PRINT "1234567890"

Take a moment to experiment with printing character

strings. You will discover that the editing keys do not work

when you are typing a line that contains a character string. j >
After you type an opening quote mark, the only editing key "^
that still works is DELete. All the others cause characters to be

printed. Try this with CTRL and a number. In the next line, 1 j

press CTRL-4 right after you type the opening quote mark.

PRINT "COMMODORE 64"

The color change did not take place until the character LJ
string was printed. This trick can also be used with other keys,

U
44

U

Output

such as those which control reverse video and cursor move

ment. Type the line again, but before you type 64, type a cou

ple of cursor downs. When the string is printed, the 64 will

appear two rows below the rest of the line. This editing fea

ture is called quote mode editing, and is canceled when you

type the second quote mark.

The only thing that you cannot put in a character string is

the double quote mark. (A method for getting around this

problem is given in a later chapter.)

Go ahead now—give the PRINT statement a workout!

Summary

• A character string is a sequence of characters.

• A character string can be printed by the PRINT statement if

it is enclosed by double quote marks.

• The quote marks are needed so the computer can distinguish

between a word of text and a variable name.

• Printed text will wrap around, possibly causing a word to be

split.

• Multiple PRINT statements can be used to prevent the split

ting of words. It adds a professional touch to a program if a

sentence is split only at a space.

Mixing Numbers and Character Strings

You can print numeric values and character strings with one

PRINT statement. It is just as simple as this:

MEM=32000 : PRINT "THERE ARE" MEM "BYTES FREE"

This statement prints a message like the one that appears

when you turn the computer on. The computer knows that

MEM is a variable in the PRINT statement because it is not

n enclosed by quote marks. Only the words THERE ARE and

BYTES FREE are character strings.

When necessary, commas and semicolons can also be

r-| used between numbers and character strings.

! NUMBER=6 : ? "TWICE" NUMBER "IS"; : NUMBER=
NUMBER*2 : PRINT NUMBER

fj The output is only one line long, and appears as though
only one PRINT statement was used. Two PRINT statements

_ were actually used, but the semicolon was used to cancel the

H
45

Output

normal carriage return. The above example is simple, but it "—*

would be simplified even further by using only one PRINT

statement. |~]

NUMBER=6 : ? "TWICE" NUMBER "IS" NUMBER*2 ^

Although numbers and character strings can be used to- :

gether in PRINT statements, there are some limits on how LJ
they can be used. You cannot use character strings in place of

numbers for math operations.

PRINT "CHRIS"+7

PRINT 124-"1"

Neither of these statements will work. The computer gen

erates a TYPE MISMATCH error, which means it has detected

an attempt to mix unlike things incorrectly. The things being

mixed incorrectly are numbers and character strings. "CHRIS"

is a character string. It is of the type character string. A type

identifies kinds of values. The character string "CHRIS" does

not have a numeric value. Character strings are not one of the

types which can be mixed in math operations.

Summary

• One PRINT statement can print both numbers and character

strings.

• Commas and semicolons can be used regardless of whether

numbers are mixed with character strings.

• The word type refers to the quality of a value that deter

mines what sort of information is being represented. The two

types that have been introduced thus far are numbers and

character strings.

• Attempts to use the arithmetic operators with character

strings cause the computer to generate a TYPE MISMATCH

error.

I >

LJ

M

46

n

n

- Functions
Introduction to Functions

[""] Functions belong in a class all by themselves. They are not
statements, they are not operators, and they are not variables.

Functions are used to produce values which can be used by

[""I statements, such as the value to PRINT on the screen or POKE
into a location. You cannot use a function by itself; it must be

used as if it were a number in a statement. The correct termi

nology is to say that a function is called by a statement.

Functions are like variables in that they have names, but

functions are not assigned values. A function is a process; it

must be given a value in order to produce a second value. The

function is said to return a value.

This chapter introduces six functions which you will be

using later in your programs. Even though functions may

seem to deal only with arithmetic, you will learn that they are

important tools for developing good programming logic.

In mathematics, a function is often written using the nota

tion Y=F(X). The F stands for function, the X is the value giv

en to the function to work on, and the Y is the result. This is a

good example of the input/output concept; a value goes in, it

is processed, and a value comes out. Different functions pro

cess numbers in different ways.

Functions in BASIC work in a similar way. Here are three

examples showing how functions are used.

V=RND(34)

PRINT SGN(Y-YO)

POKE 53280,ABS(C)

The arithmetic operators (+ — * /) require two or more

values to produce a result. A function performs a process on

only one value, but because this process can be broken down

i—I to a lot of operations, a function is much more complicated

' ■ than an operator.
The names of BASIC functions consist of at least three let-

r-| ters. A function's name is immediately followed by a pair of

' ' parentheses containing a value which can be a number, a vari
able, or an expression. This value in parentheses is the input

p-| value, or argument, for the function. No spaces are allowed in

the function name or between the name and the opening

parenthesis.

r—] Although they are used with only moderate frequency,

49

u

Functions

functions have a wide range of uses. The functions introduced '—'
in the next few sections are easy to understand, and they'll be

used in later chapters. , .

Summary

• A function does not have a value. Rather, a function is a .

process which produces a value. The value produced by the I I
function can then be used like a number. When a function

produces a value, it is said to return the value.

• A function is not executed. Rather, it is called by a

statement.

• A BASIC function has a name which is made up of at least

three letters of the alphabet.

• The function name is followed by a pair of parentheses.

There can be no spaces in the function name.

• The parentheses enclose the input value, or argument, for the

function. A function uses only one argument.

Absolute Value

The absolute value function is a common function in mathe

matics, usually written as two vertical bars enclosing a num

ber. The absolute value of a number is the number's value

without the sign.

A number contains two parts: an absolute value, and a

sign (plus or minus). The absolute value function removes the

sign from a number. If the argument is positive, the value is

returned unchanged as the function value. If the argument is

negative, it is negated first, making it positive, and then the

value is returned. The absolute value function always returns a

positive value.

In BASIC, the absolute value function is named ABS.

PRINT ABS(5) , |

This example prints the absolute value of 5. Since this ^—'
value is already positive, the number will not be changed, and

the value 5 will be returned. j j

PRINT ABS(-5)

Here, the negative 5 is converted to a positive value. The (,

computer prints a 5 on the screen again. lj

PRINT ABS(O)

u
50

U

H

|—| Functions

H
1 This one is easy. Zero can never be negative. The com

puter prints 0.

p Try a few other numbers of your own until you are confi-

' dent that you understand the absolute value function. As you
will see soon, many other functions and statements cannot

n accept negative numbers, so you will use the absolute value

function to insure that values are positive.

Signum

This function also has to do with the sign of a number. Also

called the sign function, signum returns one of three different

values. If the argument is 0, the signum function returns a 0. If

the argument is greater than 0 (positive), a value of 1 is

returned, and arguments less than 0 (negative) cause signum

to return a —1. Here are some examples.

PRINT SGN(O)

PRINT SGN (6)

PRINT SGN (-4)

Although this function is not used as much as many others,

one valuable use of signum is to determine an object's direc

tion of movement. Let's say that the variables XI and X2

record the position of an object on the number line. The vari

able XI is the old position, and X2 is the new position. The

value SGN(X2—XI) tells which direction the object moved to

get from the old position to the new position. If the function

returns a 1, the object must have moved to the right. A —1 in

dicates movement to the left. A value of 0 indicates that the

object did not move.

Integer

An integer number is one which has no fractional portion—it

has no digits to the right of the decimal point. The numbers 0,

p 1, 2, 3, and so on, along with their negative counterparts, con-

' ' stitute the integer numbers. The BASIC integer function,
named INT, takes a value and returns the nearest integer that

P is less than or equal to the given value.

! PRINT INT(5)

The number 5 is already an integer, so it is not changed.

PRINT INT(4.6)

The number 4.6 is not an integer. The integer portion is 4,

n

n

51

u

Functions |

and the decimal portion is 0.6. The first integer that is less I—I
than 4.6 is 4.

It may seem that the integer function merely chops off, or , .

truncates, all the digits to the right of the decimal point. But LJ
when we apply the function to a negative number that is not

an integer, the value returned will be the greatest integer less i j

than the given negative value. This is different from simply I—I
removing the decimal portion.

PRINT INT(-5)

PRINT INT(- 6.4)

In the first case, the negative 5 was already an integer, so

^the computer printed that value unchanged. In the second

case, however, the first integer that is less than —6.4 is not

— 6. On the number line, —6 is greater than —6.4. The correct

answer, —7, was printed by the computer.

The integer function will never return a value larger than

its argument.

The value returned by a function can be used just like any

other number. Therefore, it should be possible to use the val

ue of one function as the argument for another. This is called

nesting the functions.

PRINT ABS(INT(5))

PRINT INT(ABS(6.4))

PRINT ABS(INT(-5))

PRINT INT(ABS(-6.4))

Notice that two pairs of parentheses are needed. There

must be just as many opening parentheses as closing paren

theses, or a SYNTAX ERROR will be generated.

The order in which functions are nested affects the value

returned. Functions inside a nest are processed first, then used

as arguments for the functions on the outside. In the next ex

ample, the order of processing is integer, signum, and then M

absolute value.

PRINT ABS(SGN(INT(- 4.6)))

One use for the integer function is to determine whether a I—I
number is odd or even. An even number can be divided by 2

and leave no remainder, or decimal portion. The number 6, . ;

when divided by 2, gives 3 with no remainder. Dividing 7 by I—I
2 gives the noninteger answer 3.5. Examine the following line

to see how the integer function is used to remove the integer , ,

52

LJ

n

n
Functions

n

n

■ portion of a number, leaving only tKe decimal portion.

NUMBER=6

PRINT NUMBER/2 - INT(NUMBER/2)

If the computer prints a 0, there is no remainder, and

NUMBER is even. Otherwise, NUMBER is odd. The next

chapter will show you how to make the computer print the

words EVEN or ODD, depending on the result.

Another use for the INT function is to take a large num

ber and break it down into smaller parts. The frequency num

ber for middle C is 4389, but that is too large a value to POKE

into one location (the maximum value is 255). You can use the

integer function to divide the number into the low and high

frequency parts, each of which is less than 256.

F=4389 : FL=54272 : FH=54273

POKE FL,F-256*INT(F/256) : POKE FH,INT(F/256)

A 37 is POKEd into location FL, and a 17 is POKEd into

location FH. These are the low and high frequency numbers

for middle C, which you would hear playing if all the other

POKEs for sound had been executed. To reconstruct the fre

quency number, multiply 17 by 256 and add 37. The result is

4389.

Random

This function is very different from the others in the way that

the argument affects the output value. The random function

returns a decimal value between 0 and 1. The value returned,

however, is different every time the function is called, even

when the same argument is used.

The random function, RND, is used to add an element of

chance to a program. It might be used in a game, to determine

which player moves first, or in scientific experiments. A study

pi of growth patterns could require a random number to simulate

' ' a different reproduction count for every generation. A random
number might be used to choose a winning lottery ticket. The

P random function has a wide variety of applications. To see

1 ' how it works, have the computer execute the following state
ment several times.

P| PRINT RND(O)

The usefulness of this function is hampered by only one

_- thing—the values it generates are decimal numbers between

53

H

u

Functions , >

0 and 1. It would be much more convenient if the function '—'
could generate random integers in a range of something like 0

to 9. This is easily done. Look at the first digit to the right of Pi

the decimal point in each of the random numbers printed in '—'
the last example. That digit itself is a random number, and it

has values ranging from 0 to 9. Multiplying a number by 10 is M

like moving the decimal point one place to the right. If you '—'
multiply the random decimal number by 10, the digit just

mentioned appears to the left of the decimal point in tike product.
By taking the integer of this value, we have our random num

ber from 0 to 9.

PRINT INT(RND(0)*10)

Repeat this line several times until you are satisfied that it

does indeed work.

Perhaps you're in a situation where you don't want 0 to

be one of the possible random numbers. Let's make another

modification so that the range is all integers from 1 to 9. We

can change the statement to read PRINT INT(RND(0)*10)+l,

but the range is now 1 to 10 instead of 0 to 9. The lower limit

(1) is what you want, but the upper limit (10) is too high. That

is easily corrected by changing from multiplication by 10 to

multiplication by 9. Now our statement will print random

integers from 1 to 9, inclusive.

PRINT INT(RND(0)*9)+l

The random function can be made to generate random

integers in any positive range according to the formula

INT(RND(0)*(B-A+l))+A. Replace A with the lower limit of

the range, and B with the upper limit. Note that these limits

are inclusive. If you want random numbers in the range from

34 to 36, use values of 34 and 36 for A and B, respectively.

The statement below will print only the numbers 34, 35, and

36. (The number 3 comes from B—A+l.) [J

PRINT INT(RND(0)*3)+34

You may have noticed that we've always used 0 as the ar- P

gument for the random function. The numbers produced by '-J
RND(0) are not completely random and form certain patterns,

but they are suitable for use in programs like games. The ex- P

amples in this book will use only RND(0). ^J

D
54 _

U

n

pi Functions

Free Memory

This function is used to determine how much memory is avail-

[—| able for use by BASIC. Your Commodore 64 gets its name
from the fact that it has 64K of memory. K, a computer term

for measuring groups of memory units, is similar in use to the

H word dozen, which stands for 12 units. One K is used to indi

cate 1024 units. The computer has 64*1024, or 65536, units of

memory. This is why the POKE locations are limited to the

range 0 to 65535. (Remember that we count memory units be

ginning with zero.)

Some of these locations are reserved for the special com

puter chips that handle graphics, sound, and other operations.

More locations are reserved for the system software, including

the BASIC language which accounts for 8K of the locations.

After all of these reserved areas are provided for, there are

about 38K memory locations remaining. This memory is called

free memory, which means it can be used to hold program

information.

As a program gets longer and longer, more of this free

memory is used up. The free memory function, FRE, is used to

determine just how much memory remains. Type the follow

ing line to see how the function works.

PRINT FRE(O)

If the number printed is negative, a small adjustment

must be made to get the correct value.

PRINT FRE(0)+65536

When you turn on your Commodore 64, a message is dis

played which reads something like 38911 BASIC BYTES

FREE. A byte is another name for one memory unit, so you

could say that the computer has 64K bytes of memory, and

about 38K bytes which can be used for a BASIC program.

jl These bytes are used for things like program lines and vari
ables. A variable takes up seven bytes of free memory. To ver-

ify this, choose a new variable name, one that you haven't yet

| I given a value. Print the amount of free memory, assign a value
to the variable for the first time, and print the free memory

byte count again.

R PRINT FRE(0)+65536 : WQ=1 : PRINT FRE(0)+65536
The difference in the numbers is seven, the number of

n
55

u

Functions

bytes needed to hold the name and value of a variable. If you LJ
clear the variables, the free memory will be almost equal to

the amount displayed by the power-up message. (.

CLR : PRINT FRE(0)+65536 ^
The free memory function is different from the previous

ones in that the argument has absolutely no effect on the value |_J
returned. Such an argument is called a dummy argument. You

can use any number you want.

If you ever get the OUT OF MEMORY error, see how

many bytes are free by using this function. Always remember

that when the result is negative, you must add 65536 to the

result to get the correct answer.

Screen Memory

Let's take a little time to learn how the computer displays in

formation on the screen. You have seen that there are a lot of

characters, and that each character can be displayed in one of

16 colors. The screen consists of 25 rows of 40 columns each,

for a total of 1000 positions at which characters can be dis

played. That's a lot of information. To keep track of that much

information, some of the computer memory has to be used.

Therefore, 1000 memory locations have been reserved just for

displaying characters. The memory locations are reserved in

locations 1024-2023.

You can use these locations to display characters on the

screen without typing them in. First press RUN/STOP and

RESTORE to reset the screen. The cursor should appear right

under the READY prompt. Now, without moving the cursor,

enter this line:

POKE 1104,81

The letter P of the POKE statement should have changed

to the ball character. , ;

POKE 1105,82 ^
This time a horizontal bar appears, covering up the letter

0. The addresses being used in the POKE statements are with- LJ

in the range of 1024 to 2023, which means you are POKEing

characters directly onto the screen. Location 1024 corresponds

to the upper-left corner of the screen, 1025 to the character | j
immediately to its right, and so on. Forty locations past 1024

is at the left edge of the screen again, one row lower. The

56

u

H

PI Functions

number 1104 is 1024 plus 80, which is the leftmost character,

two rows down. That's where the letter P was, so that's why it

PI was changed.
Remember that the number after the address in a POKE

statement must be an integer from 0 to 255. There is a differ-

r"| ent character for each number, so you can put a total of 256
different characters on the screen. Experiment a little by

POKEing various numbers into location 1106, one at a time.

Do not let the screen scroll; keep moving the cursor back up

to the same line to change the POKE value.

We still haven't discovered how to set the color for each

character. There are another thousand locations, starting at

55296, that are always used only for specifying color. Each lo

cation in this color memory corresponds to one location in the

screen memory. The address in color memory for two rows

down is 55296+ 80 or 55376, so POKEing that location with

an 8 will change the color of the ball to orange.

POKE 55376,8

Change the colors of some more characters by entering

the following lines:

POKE 55377,4

POKE 55378,3

If you experiment a little more, you will notice that if you

use POKE to change the color of a screen position which con

tains the blank character, you will not see the color change.

There has to be something displayed at a position in order for

the color to show. Also, if you use POKE to change a blank

character to something else, the character seems not to appear.

This is because the color at that position is blue, the same as

the background. (This is not true for older 64s, which will de-

_ fault to white.)

H POKE 1144,81
Nothing should appear. But you will see the ball when

P| you change the background color.

POKE 53281,1

r—| It is a good practice to always set the color for a position

I whenever you POKE a new character to the position.
You may have noticed that regardless of the color in

f—| which a character is printed, the background color is always

n

Functions

the same. All characters have the same background color. The

graphics chip inside your Commodore 64 supports another

display mode which lets you use one of four background col

ors with each character. This display mode is called extended

background color mode. To see how it works, follow this

sequence of instructions.

1. Press RUN/STOP and RESTORE.

2. Type the word COMMODORE, but do not press RETURN

yet.

3. Press the SHIFT LOCK in.

4. Type COMMODORE again. This time the graphics symbols

will appear.

5. Press RETURN.

6. Release the SHIFT LOCK.

7. Press CTRL and RVS ON.

8. Type COMMODORE. It should appear in the reversed char

acters.

9. Press the SHIFT LOCK in again.

10. Type COMMODORE one last time.

11. Press RETURN.

12. Release the SHIFT LOCK.

Now enter the statement POKE 53265,91. You should see

the word COMMODORE displayed four times, each time on a

different background color.

The first background color is the one we have been using

all along, and can be changed by using POKE with the ad

dress 53281. To change the other background colors, enter

these lines.

POKE 53282,4

POKE 53283,7

POKE 53284,13

Just think—a character can be printed in any of 16 col- |_J
ors, and on any of four background colors. That's a lot of color

combinations! The only disadvantage to using the extended

background color mode is that instead of printing 256 charac- | |
ters, you can now print only 64. But those 64 characters

include the alphabet, so this should not be a serious restric- .

tion. Take the time now to experiment with this new display j j

mode. When you want to return to the normal mode, just

POKE 53265 with the value 27.

LJ

U

H

Functions

n
The PEEK Function

nThe POKE statement replaces the value already in a designated

location with a new value from 0 to 255. The old value that

had been in the location is lost when POKE is used. But some-

pi times it is useful to know what value is in a location before

' > the POKE statement changes it. This is the purpose of the

PEEK function. PEEK is often used with POKE.

The PEEK function works in the same way as the five

arithmetic functions introduced. With PEEK, the argument in

parentheses is the location number that is to be examined. The

function returns whatever value is in the designated location.

Thus, PEEK returns integer numbers 0-255, inclusive.

Press RUN/STOP and RESTORE, then type this line:

? PEEK(1064)

Location 1064 is the first character in the second row on

the screen, where the R of the READY prompt is printed. The

value returned by the function, 18, represents R, which is the

eighteenth letter of the alphabet. Try this next line:

?PEEK(1065),PEEK(1066),PEEK(1067),PEEK(1068)

The numbers printed—5, 1, 4, and 25—match the numbers

that would be POKEd to put the characters E, A, D, and Y on

the screen. PEEK can be used to determine the character at

any position on the screen.

In a later chapter, we will return to the PEEK function

and learn how to use it to examine hardware locations. But

hardware locations sometimes behave in unusual ways, and a

special trick must be used when PEEKing them in order for

the correct value to be returned. For now, let it suffice that

PEEK should be used only with memory locations.

n

n

n

n

!—f 59

H

n

n Conditional
Logicn
The True/False Concept

P| Before we begin programming, we must examine a fundamen

tal concept in computing, conditional logic. Conditional logic

is what transforms your Commodore 64 from a calculator into

a decision-making machine.

Humans are capable of making complex decisions, involv

ing all sorts of variables. Your computer, on the other hand, is

capable of making only the simplest decision. It can decide

only whether a statement is true or false.

This may have you wondering just how you translate a

question from English into a form the computer will under

stand and answer. The computer only understands numbers.

How do you ask a question using numbers?

The answer to this dilemma is to pose the question as a

true/false mathematical phrase which can be understood by

both the computer and the programmer.

Here is an example of such a mathematical phrase:

2 + 2=4.

When the computer sees a phrase like 2 + 2 = 4, first it

examines the equal sign. This equal sign does not mean the

same thing as the equal sign of the LET statement. In that

usage, the equal sign means "be assigned the value," as in

LET A=5. In the phrase 2+2=4, no value is being assigned.

The equal sign in this phrase is being used in an entirely dif

ferent way—as a relational operator.

When the computer sees the equal sign, it checks to see if

the two values are equal. If they are, the phrase is true. Other

wise, the phrase must be false. Notice that almost true is not

(—j an option. The computer cannot examine the phrase

2 + 2=4.0001 and decide that it is close to the correct answer.

You are already familiar with true/false conditional logic.

|—| Consider the sentence "If there are some tickets left, we will

1 go see the movie." Seeing the movie depends on the availabil

ity of tickets. Examine the phrase "there are some tickets left."

J—I If tickets are available, the phrase is true, and you will see the

movie. On the other hand, when all the tickets have been

sold, if someone said to you, "There are some tickets left,"

J—] that would be a false statement.

_ 63

u

Conditional Logic M

u
The conditional logic in the sentence becomes obvious if

you reword it to read, "We will go to the movie on the condi- ^

tion that there are some tickets left." LJ

The computer uses conditional logic by analyzing a math

ematical phrase. If the phrase is true, a designated statement is - -

executed. If it is false, the statement is not executed. The next j i
section shows how to implement this logic on the computer.

Summary

• The computer is capable of making very simple decisions,

based on whether a phrase is true or false.

• The computer decides things by analyzing conditional math

ematical phrases, such as 2 + 2 = 4.

• The condition in a mathematical phrase is based on a rela

tionship between numbers in the phrase. The relationship

being checked is established by a relational operator.

• The equal sign can be used as a relational operator. In this

use, it is not assigning values to variables.

• Conditional logic is used by the computer to decide whether

or not a designated statement should be executed.

The IF-THEN Statement

The syntax for the IF-THEN statement is the keyword IF, a

conditional expression, the keyword THEN, and a statement.

Notice that this statement contains two keywords, while the

previous statements we examined required only one. The con

ditional expression appears between the two keywords, and is

a mathematical phrase like the 2+2=4 shown earlier. The

statement after the keyword THEN can be any statement, such

as PRINT, POKE, or LET.

The IF-THEN statement can be used in several ways, so

let's see it in action before we examine it further. r]

IF 2+2=5 THEN PRINT "COMMODORE 64" ^
Not much action, was there? The condition was false, so

the statement after the THEN, in this case a PRINT, was not LJ
executed. Notice that a conditional expression having the value

false does not cause an error to be printed. The computer sim- r

ply does nothing, and responds with the READY prompt. LJ
Now change the condition so that it is true, causing the

PRINT statement to be executed. -

IF 2+3=5 THEN PRINT "COMMODORE 64" U

LJ

H

1 I

Conditional Logic

n
The execution of the IF-THEN statement works like this.

__ The first thing the computer sees is the keyword IF. Having

I f found IF, it searches for the keyword THEN. The computer
needs these two keywords to delimit the conditional expres-

m sion which is between them. Once THEN is found, the condi-

i i tional expression is analyzed to see whether it has a value of
true or false. If the condition is true, the statement to the right

of the THEN keyword is immediately executed. If the condi

tion is false, no action is taken.

Of course, the conditional expression 2+3=5 is always

true, which defeats the purpose of an IF-THEN statement.

Since the condition is always true, the PRINT is always exe

cuted, and there is no need for the IF-THEN logic. The condi

tional expression of an IF-THEN statement usually includes

values that can change, such as variables.

The next example shows how conditional logic might be

used in a more realistic situation. To begin, we assign some

arbitrary value to the variable C, which we will use to mean

color.

C = 9

Here is the conditional statement, which you should now

type.

IF SGN(C)= 1 THEN POKE 53280,C

The border color was changed, because SGN(9) is 1. Now

we assign another arbitrary value to C. This time the value

happens to be negative.

C=-4

Now type the conditional statement again.

IF SGN(C)= 1 THEN POKE 53280,C

The border color was not changed. The idea behind this

conditional statement was to execute the POKE to change the

border color only if the color value was greater than 0. Re-

member: Trying to POKE a location with a negative value

causes an ILLEGAL QUANTITY error. The IF-THEN state

ment was designed to prevent that from happening. In the last

example, the border color was not changed because the POKE

value was negative, and the signum of a negative number is

— 1, making the condition false. There is one small flaw in the

conditional phrase, though. It will not allow the border to be

65

LJ

Conditional Logic M

LJ
set to color 0, even though 0 is a legal POKE value. The sig-

num of 0 is 0, making the condition false. We can rewrite the

conditional statement so that it will POKE the border color to j_j
0 or any positive integer, yet still exclude negative values.

IF C=ABS(C) THEN POKE 53280,C ■ f

The next example simulates the tossing of a coin. The ;—'

computer will print the word HEAD or TAIL to indicate the

result of the toss. The random function is rigged so that it will

produce only two different values, 0 and 1, which are used to

mean head and tail, respectively. Clear the screen first. Then,

as you type these lines, leave several blank lines between

them.

FLIP=INT(RND(0)*2)

IF FLIP=0 THEN PRINT "HEAD"

IF FLIP=1 THEN PRINT "TAIL"

Because there is a separate conditional statement for each

possible value of C, either HEAD or TAIL will always be

printed, but it is impossible for both words to be printed in

one flip. Move the cursor back to the top, and have the com

puter execute these statements several times. Remember to

erase the leftover word from the previous time.

The coin toss demonstration uses conditional logic to ar

rive at one of two possible results. In this next example, we

use the signum function to select one of three choices, involv

ing the direction of an object's movement. Assign values of

your own choice to the variables XI and X2. Variable XI is the

old position of the object, and X2 is the new position. One of

the three following conditional statements will be executed, to

print the appropriate message.

IF SGN(X2-X1)= 1 THEN PRINT "MOVING TO THE

RIGHT" | j

IF SGN(X2-X1)= -1 THEN PRINT "MOVING TO THE LJ
LEFT"

IF SGN(X2-X1)=O THEN PRINT "NOT MOVING" \ ;

Incidentally, when there are a lot of conditional state

ments all dependent on the same value, like SGN(X2—XI),

you can assign the value to a variable once, and then use the [J
variable in the conditional expression, to save yourself some

typing.

D=SGN(X2-X1) LJ

66

u

n

H Conditional Logic

IF D=l THEN PRINT "MOVING TO THE RIGHT"

IF D= -1 THEN PRINT "MOVING TO THE LEFT"

IF D=0 THEN PRINT "NOT MOVING"

In order to make the computer do several things if a con

dition is true, multiple statements can be placed after the

keyword THEN. One use might be to change both the border

and background colors simultaneously.

IF C=ABC(C) THEN POKE 53280,C : POKE 53281,C

If the conditional expression has a value of false, the com

puter never makes it past the keyword THEN, and the POKE

statements are not executed.

You can even combine conditional statements. Before typ

ing this line, assign arbitrary values to the variables A and B.

IF A=ABS(A) THEN IF B=ABS(B) THEN POKE 53280,A :

POKE 53281,B

This line is designed to individually set the border and

background colors only if both values are legal.

It is a common mistake to omit the second keyword of the

IF-THEN statement. This next line will generate a SYNTAX

ERROR.

IF 2+2=4 PRINT "COMMODORE 64"

The IF and THEN keywords work together. When you

use one, you must use the other. Just remember: If you have

an IF, then you must have a THEN.

The only exception to this IF-THEN rule is when you are

using the GOTO statement after the THEN.

We'll discuss more about GOTO in chapter 8.

F] Summary

• Conditional logic is implemented on the computer by means

of the IF-THEN statement.

PI • The syntax for the IF-THEN statement is the keyword IF, a
conditional expression, a second keyword THEN, and a

_ statement.

' i • The conditional expression can be any mathematical phrase.

• Any statement may be placed after the THEN, even another

I—] IF-THEN statement.

n

LJ

Conditional Logic jj

u
• The statement after the THEN is executed if the conditional

expression is true. If it is false, nothing happens. All of the

statements on the rest of the line are ignored. No error mes- j j
sage is printed.

• A missing THEN keyword causes a SYNTAX ERROR (see , .

GOTO exception above). LJ
• The IF-THEN statement controls the execution of statements

within a line.

Relational Operators

The decision-making capability of your Commodore 64 would

be severely limited if conditions were restricted to analyzing

equality alone. To return to our movie ticket analogy, let's

change the condition to "If the price of a ticket is under $2,

we will go see a movie." It is impossible to write a mathemati

cal phrase equivalent to this condition using only the equal

sign.

Thus far we have considered conditions to be true only

when something has equaled something else, but it is possible

for unequal conditions to be true. To illustrate this, look at the

phrase 3 = 2. The phrase is false, of course. But the comparison

needn't stop there. In order for the two values to be unequal,

one must be larger than the other. By expanding our relational

operators to include cases in which a value is less than or

greater than another value, we can make a decision in our lat

est movie ticket problem.

These two new relational operations, < (less than) and >

(greater than) are used in much the same way as the equal

sign. The phrase "the price of a ticket is under $2" can be re

worded as "the price of a ticket is less than $2." Now assign a

value to the variable TP, which we will use to mean "ticket

price."
t i

TP = 1 LJ

With the new relational operator < (less than), the re

worded phrase can be written as a conditional expression. j j

IF TP<2 THEN PRINT "WE WILL SEE THE MOVIE"

Now the price goes up to $4. ,

TP=4 ^
Execute the conditional statement again, and the message

will not be printed. [j

68

L1

H

P] Conditional Logic

n

Even if you have the price of a ticket, the law may pro-

hibit persons 17 years old and under from seeing an R-rated

| (movie unless they are accompanied by an adult. Persons over
17 don't have to worry.

AGE= 19

IF AGE>17 THEN PRINT "YOU CAN SEE THE MOVIE

ALONE"

We can make our conditional logic even more flexible by

combining relational operators. Go back to the example where

the condition was true if the ticket price was under $2.

IF TP<2 THEN PRINT "WE WILL SEE THE MOVIE"

Notice that the condition is false if the price is exactly $2.

Let's say that we will see the movie "if the ticket price is $2 or

less." Written mathematically, the condition is that the ticket

price must be less than or equal to $2.

IF TP<=2 THEN PRINT "WE WILL SEE THE MOVIE"

In the last example, the PRINT statement will be executed

if TP is less than 2 or if it is equal to 2. The order of the oper

ators does not affect the meaning of the condition. They can

be combined in the opposite order with the same result.

IF TP=<2 THEN PRINT "WE WILL SEE THE MOVIE"

Usually the greater-than and less-than signs are put in

front of the equal sign, giving the orders <= and >= .

We introduced conditional logic by showing how a condi

tion could be true if one numeric value was equal to another

numeric value. Now we reverse that situation and let the value

of the conditional expression be true if the values are not

equal.

_ IF CoABS(C) THEN PRINT "BAD POKE VALUE"

1 If one numeric value is less than another, or greater than
the other, the two values are anything but equal. The relation

j""| <> means not equal, and is often used to cover all remaining

possibilities after a check for equality. In the following exam

ple, the variable MC stands for "movie count" and tells how

[—1 many movies will be shown.

1 IF MC=2 THEN PRINT "DOUBLE FEATURE"
IF MC<>2 THEN PRINT "NOT A DOUBLE FEATURE"

' ! In a previous example we checked whether a number was

— 69

Conditional Logic LJ

u
even or odd. The number was divided by 2 because all even

numbers are evenly divisible by 2, and odd numbers are not. ,

This could be extended to check if a number is a multiple of 3. LJ
When a number is divided by 3 and the remainder is 0, the

number is a multiple of 3. } f

A remainder other than 0 means that the number is not a i '

multiple of 3. The problem is that this time there are more

than two possible remainders, so you can't check for a remain

der of either 0 or 1. The remainder can be 0< 1, or 2 (the result

will show a decimal portion of .333333333 or .666666667).

Fortunately, both of these values can be handled by using the

not-equal relation. Assign an arbitrary value to the variable N.

IF N/3=INT(N/3) THEN PRINT "THE NUMBER " N " IS A

MULTIPLE OF THREE"

IF N/3oINT(N/3) THEN PRINT "THE NUMBER " N " IS

NOT A MULTIPLE OF THREE"

Here is a list of relational operators:

SYMBOL MEANING

= equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

<> not equal

For the symbols < and >, if you have trouble remember

ing which is which, here is a phrase to help. Just think of the

symbol as an alligator's open jaw, and remember that "the

alligator always eats the bigger number."

Summary

• Two numbers can be either equal or unequal. When they are | \
unequal, one of them must be larger than the other.

• The relational operators < (less than) and > (greater than) . ,

work just like the equal sign, except that they are used U
in cases of inequality.

• Relational operators can be combined, as in <= and >= . ■> ,

The combination <> means not equal <—>

• The advantage of these new operators is that they can check

for conditions which cannot be expressed using only the | j

equal sign. They increase the flexibility of conditional logic.

70

H

fl Conditional Logic

n
Logical Operators

j—I So far, we have examined two types of operators. Arithmetic

' ! operators are used to do things like add and multiply numbers
and variables. The computer uses relational operators to evalu-

—^ ate conditional expressions. We now introduce the third type,

! I the logical operators AND, OR, and NOT, which further
expand the computer's ability to evaluate conditional

expressions.

The first two logical operators, AND and OR, play a

major role in conditional logic and are the main topic of this

section. The third operator, NOT, is seldom used and is

dealt with last.

In our movie ticket examples, we identified two condi

tions for tickets that determined whether you would go see a

movie. In one example, you would go to the movie if tickets

were available. In the second example, we assumed that tick

ets were available, but you would go only if the ticket price

was less than $2.

By using the logical operators, you can evaluate two or

more conditions in a single IF-THEN statement. The AND op

erator requires that both conditions be true. This time, tickets

must be available for not more than $2, or you won't go to the

movies.

Here is an example of the AND operator. The variable TA

represents the number of tickets available, and TP represents

the price of each ticket.

IF TA>0 AND TP<= 2 THEN PRINT "MOVIES, HERE WE

COME!"

The PRINT statement will be executed only if TA is great

er than 0 and TP is less than or equal to 2 as well.

The AND operator is often used to determine if a number

r~j is in a specified range. The following example changes the
border color only if the POKE value is from 0 to 15, the range

for 16 different colors.

R IF C> = 0 AND C<= 15 THEN POKE 53280,C
You can link a lot of conditions together using multiple

r"> AND operators. Let's modify the last example so it also checks

; that the POKE value is an integer.

IF C>= 0 AND C<= 15 AND C=INT(C) THEN POKE

R 53280,C

71

u

Conditional Logic j |

LJ

Here is a detailed look at how the AND operator works.

The AND is placed between two conditional expressions. The

conditional expressions, plus the AND operator, are treated as [_j

one conditional expression. The true/false value of the big ex

pression depends on the values of the two smaller conditional

expressions. This truth table shows all possible outcomes: i ',

First Second Result

Condition Condition

True True True

True False False

False True False

False False False

When the AND operator is used, all of the smaller condi

tions must be true in order for the final value to be true. Con

versely, the big expression is false if just one of the smaller

conditional expressions is false. This also applies to cases

when several conditional expressions are linked by several

AND operators. .

The logical operator OR works differently.

IF C=5 OR C=13 THEN PRINT "THE COLOR IS GREEN"

With the OR operator, all it takes is for one of the condi

tional expressions to be true, and the whole expression is true.

Here's the truth table for the OR operator.

First Second Result

Condition Condition

True True True

True False True

False True True

False False False

Like AND, the OR operator can be used to link several

conditional expressions. j_J

IF C= ll OR C=12 OR C=15 THEN PRINT "GRAY TONE"

The operators AND or OR can be mixed in the same ex- j j

pression, although the logic may get to be a little confusing.

The following statement allows only the colors cyan, purple,

green, and brown to be accepted as POKE values for changing J i

the border color.

IF C>=3 AND C<=5 OR C=9 THEN POKE 53280,C

72

H

n Conditional Logic

H
The last operator to be introduced is the rarely used NOT

operator. Unlike AND and OR, which are binary operators

P) (they operate on two values), NOT is a unary operator (it op
erates on only one value). This operator changes a value to

the opposite value. It causes a true value to become false and

H] a false value to become true. Whereas the PRINT statement
will be executed in the first example, it won't be executed in

the second one:

IF 2+2=4 THEN PRINT "COMMODORE 64"

IF NOT 2+2=4 THEN PRINT "COMMODORE 64"

This can be used in cases like

IF NOT C=ABS(C) THEN PRINT "BAD POKE VALUE"

However, we have already seen the preceding example

written without the NOT operator.

IF CoABS(C) THEN PRINT "BAD POKE VALUE"

Because everything that the NOT operator does can be

accomplished by rewriting a conditional expression, NOT is

the least frequently used logical operator. You will rarely see

this operator except in advanced applications, which are be

yond the scope of this book.

One other common mistake is shown in the line below.

IF C=5 OR 13 THEN PRINT "GREEN"

This one is tricky because everything sounds okay if you

read the line out loud. But according to IF-THEN syntax, the

13 should be replaced with C=13 in order to have the state

ment print GREEN if C equals either 5 or 13. As the line is

written, OR is performing an operation on two numbers (an

advanced application discussed in the next section).

Always keep the order of precedence in mind when using

f) the various operators. Generally, arithmetic operators have

precedence over relational operators, which have precedence

over logical operators. Here is a list showing the order of

ri precedence for all operators in the BASIC language.

Remember that parentheses can be used to change the order

of evaluation.

Operators

f
—

V

Names

exponentiation

negation

multiplication and divisionP"]

_ 73

Conditional Logic

+/

NOT

AND

OR

addition and subtraction

relational

logical

logical

logical

Summary

• Unlike arithmetic and relational operators, which operate on

numbers, the logical operators AND, OR, and NOT operate

on the values true and false.

• The operators AND or OR are called binary operators be

cause they operate on two values. When you place AND or

OR between two conditional expressions, the operator and

expressions form one big expression.

• When using AND, the value of this big expression is true

only when both of the smaller expressions are true. All it

takes is one false value to make the whole expression false.

• When using OR, the value of the big expression is false only

when both of the smaller expressions are false. All it takes is

one true value to make the whole expression true.

• The NOT operator is called a unary operator because it op

erates on only one value. This operator takes a true/false

value and changes it to the opposite value.

• Logical operators have the lowest precedence of all the

operators.

Binary Numbers

In order to use the graphics features of the Commodore 64,

you should have an understanding of the binary number sys

tem. This section presents the information you will need to {

perform high-resolution plotting and sprite animation. It will LJ

also give you some insight into why conditional logic is based

on the values true and false. This section is not intended to be .

a full treatment of binary numbers; it contains background LJ
information. Also, rest assured that you can still use the rest

of the book even if you don't understand this section. v

No matter what numbering system is used, the quantities LJ

represented by numbers always stay the same. For example,

the number 4, which we write as 4, was written IV by the .■ ,

Romans. U

LJ

n

P Conditional Logic

n

The binary number system is simply a different way of

p*| representing numbers. One difference is that there are only

two digits in a binary number, 0 and 1 (instead of the ten we

are used to, 0-9, in the decimal system).

n Binary Decimal

1 0 0
1 1

There is no numeral 2 in binary numbers, just as there is

no single numeral for 10 in decimal numbers. To express the

value 10 in decimal, a second digit must be used.

8

9

10

When the second digit is added, the first one starts back

at 0, and starts building up to 9 again.

11

12

The same trick is used with binary numbers, except that

another digit must be added after every use of the numeral 1,

not 9.

H

n

Binary

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Note that the symbol 10, which means ten in the decimal
(I system, is 2 in the binary system.

n 75

u

Conditional Logic _J

u
Each digit in a binary number is called a bit. If a bit has

the value 0, it is clear. If the bit has a value of 1, it is set. The

largest number that can be represented using only four bits is U
15.

Eight bits form a byte. Here are some examples of bytes. It

is a common practice to show the full eight bits, even though i_j
the number may be small enough that not all of them are

needed.

Binary

00000000

00000001

00000010

00000011

00000100

ooooim

oiiiim
10000000

10000001

10000010

miiiio
11111111

Decimal

0

1

2

3

4

15

127

128

129

130

254

255

A byte can have any value from 0 to 255. Hardware and

memory locations consist of eight bits, which is why attempt

ing to POKE a value outside the range 0 to 255 produces the

ILLEGAL QUANTITY error.

For convenience, the eight columns of a byte are num

bered, from 0 to 7. Bit 0 is the rightmost bit, and bit 7 is the

leftmost bit. In the number 00100001, bits 0 and 5 are set.

76543210 Bit Numbers U
00100001 Byte

Those bytes which have a bit set in only one column re- j i

quire special attention. ^

Binary Decimal

oooooooi i ; i

00000010 2 ^
00000100 4

00001000 8 \J

u

00010000

00100000

01000000

10000000

16

32

64

128

n

F] Conditional Logic

n

n

n Although each bit by itself can be either 0 or 1, it can

have a much larger value within the context of a byte. Bit 7

corresponds to the value 128. This provides an easy way to

convert a binary number to decimal, by adding the values for

the bits which are set. The example shows how to find the

decimal equivalent for the number 01100101.

128 64 32 16 8 4 2 1 Value

0 110 0 10 1 Byte

64+32 4 + 1 =101 Decimal

Sometimes different things are controlled by the various

bits in a hardware location. Location 53265 controls, among

other things, the extended background color mode. Normally

this location contains the value 27, or 00011011. To invoke

the extended background color mode, we POKE 53265 with a

91, or 01011011. The extended mode is in effect only when bit

6 is set. Bit 6 corresponds to the number 64, so 64 was added

to 27 to get the POKE value, 91.

The other bits in location 53265 control other features.

One problem in POKEing the value 91 is that the other bits in

location 53265 may change, so 53265 will not always contain

a 27. One solution would be to PEEK 53265, add the number

64, and POKE the result back into 53265.

POKE 53265,PEEK(53265)+ 64

Unfortunately, this method also has a drawback. What if

the statement is executed when bit 6 is already set? The value

pi at 53265 will already include the 64, so adding another 64

would bring the total to 128, which corresponds with bit 7.

You should avoid this method, because it can cause you to

|—| accidentally set the wrong bit.

1 The solution to our dilemma lies with the operators AND,
OR, and NOT. These are logical operators when used with

f| true and false values, and they can also be used on bytes.

These three operators are used to set and clear the individual

bits in a byte.

|—I The OR operator works on bits in much the same way

n

Conditional Logic

that it works on true and false values. Just think of 0 as corre

sponding to false, and 1 as corresponding to true. When you

OR two bits, the result will be set if either of the two bits is j I

set.

110 0

OR1 OR0 OR1 OR0 U

1110

When you OR one byte with another, the operation is

done for each bit column.

Binary Decimal

00011011 27

OR 01000000 OR 64

01011011 91

Because 1 OR 1 is 1, it does not matter if bit 6 is already

set when you OR the value in location 53265 with 64.

Binary Decimal

01011011 91

OR 01000000 OR 64

01011011 91

The best way to invoke the extended background color

mode is to use the following statement:

POKE 53265,PEEK(53265) OR 64

We have seen that the OR operation can be used to set a

bit in a byte without affecting the other bits. To clear a bit, use

the AND operation. With AND, the result will be set only if

both bits are set.

110 0 ||

AND 1 AND 0 AND 1 AND 0 ^

10 0 0 \J

Using AND to turn off the extended background color

mode is not as easy as turning it on, however. Look what hap

pens if you AND the contents of location 53265 with 64. | |

U

78

U

H

H Conditional Logic

n.
Binary Decimal

01011011 91

H AND 01000000 AND 64

01000000 64

' ' Instead of turning off the extended mode, we turned off
everything else! Bit 6 is the only one which survives, because

it is the only one which is set in the second byte. All the other

bits are forced to 0. Although this does not turn off the ex

tended mode, it does provide a way for a program to check if

the mode is on. a

IF (PEEK(53265) AND 64) = 64 THEN PRINT "EXTENDED

MODE IS ON"

IF (PEEK(53265) AND 64) = 0 THEN PRINT "EXTENDED

MODE IS OFF"

To turn off the extended mode, a little trick must be used.

The secret is to AND the value in location 53265 with a byte

which has every bit set except bit 6.

Binary Decimal

01011011 91

AND 10111111 AND 191

00011011 27

The second byte is called a mask, because it lets only cer

tain bits show through. All bits other than bit 6 retain their

value; bit 6 is forced to 0. The best way to turn off the extend

ed background color mode is to use the following statement.

POKE 53265,PEEK(53265) AND 191

The Commodore 64 supports 16 colors, so four bits are

n needed to represent a color number. The locations for the bor

der and background colors use only bits 0 through 3. Bits 4

through 7 are always set, which is why you cannot use the

nPEEK function to determine the color number. If you PEEK lo

cation 53281 when the background is dark blue, you get the

value 246 (11110110), when it should be 6 (00000110). This

nwill happen even if you previously POKEd 53281 with a 6.

Those unused four bits are getting in the way, so let's get rid

of them.

n

79

Conditional Logic

Binary Decimal

11110110 246

AND 00001111 AND 15

00000110 6

Here is the BASIC statement that should be used to print

the color number.

PRINT PEEK(53281) AND 15

The operations AND and OR work on every bit, so a

mask can have more than one bit set. This masking technique

should also be used when PEEKing color memory, which

starts at 55296.

Finally, the NOT operator can be used with numbers, but

it is not used as often as AND and OR. Being a unary opera

tor, NOT requires only one operand.

NOT 0 NOT 1 NOT 01000110

1 0 10111001

The NOT operator flips every bit in the number. Every bit

that was set is cleared, and every bit that was clear is set.

Summary

• Binary numbers consist only of the digits 0 and 1.

• The binary system does not allow the number 2 to be repre

sented in a single digit, just as the decimal system does not

allow the value 10 to be represented by a single digit. To

write larger values, multiple digits must be used.

• A bit is a binary digit. A bit is clear if it is 0, and set if it is 1.

• A byte is a number made up of eight bits. The values 0

through 255 can be represented by one byte. It is impossible i j

for a byte to represent values outside this range. I—'
• The eight bits in a byte are numbered from 0 to 7, with the

rightmost bit being numbered 0. I i

• By itself, a bit can only be 0 or 1. In relation to the other bits

in a byte, however, a bit can have much larger values.

• It is an easy matter to convert a binary number to decimal. | j
Given the binary number, look at only those bits which are

set. Add the values that correspond to each of these bits. The

sum is the decimal equivalent of the binary number. j j

u

H

n Conditional Logic

n
• The operators AND, OR, and NOT are used with numbers

nto set and clear individual bits in a byte.

• When using these operators on numbers, the value false is

replaced by the value 0, and the value true is replaced by the

pi value 1.

' ' • To set a bit in a byte without affecting the other bits, use the
OR operator. OR sets the bit in the result if either of the bits

in the two numbers is set.

• The AND operator sets the bit in the result only if both bits

in the two numbers are set.

• To clear one or more bits in a byte, AND the byte with

another byte which has all bits set except tKose which are to

be cleared. Such a byte is called a mask.

• Whenever you PEEK a hardware color or color memory

location, AND the value with 15 to eliminate the unused

bits. This applies only to color locations.

• The NOT operator takes one number and flips each bit to

the opposite value.

Using the Joystick

The joystick has four cardinal directions, four diagonal direc

tions, a center position, and a trigger. A hardware location

keeps track of which direction the stick is pointing to, and

whether the trigger is being pressed. Port 2 is easier to use in

BASIC than port 1, so we will always assume that the joystick

is plugged into port 2. The hardware location for port 2 is

56320.

Bits 0 through 3 contain the direction information. The

other bits in the location may be set, so eliminate them using

the AND operator. Enter the following line several times while

pushing the stick in different directions.

Fl PRINT PEEK(56320) AND 15
Here is a table showing the numbers for each direction.

H Binary

1110

1101

1011

0111

1010

0110

Decimal

14

13

11

7

10

6

Direction

up

down

left

right

up left

up right

n

n

n 81

BIT

0

1

2

3

VALUE

1.

2

4

8

u

Conditional Logic [J

0
1001 9 down left

0101 5 downright

1111 15 no direction (center) [_J

To find out if the stick is being pushed in a specific direc

tion, such as left, use a line like the one below. I .

IF (PEEK(56320) AND 15) = 11 THEN PRINT "STICK ^
PUSHED LEFT"

If you examine the bit patterns, you will notice that each

bit corresponds to a main direction.

DIRECTION

up

down

left

right

Normally, when the stick is not being pushed in any

direction, all four bits are set. A bit is cleared only when the

stick is pushed in that direction. Diagonals are obtained by

pushing in both a horizontal and a vertical direction. To check

if the stick is being pushed left, use this line.

IF (PEEK(56320) AND 4) = 0 THEN PRINT "STICK PUSHED

LEFT"

The trigger information is kept in bit 4, which has the value

16. This bit is clear if the trigger is being pressed, and set if it

is released. The following line will print a message only when

the trigger is pressed.

IF (PEEK(56320) AND 16) = 0 THEN PRINT "TRIGGER IS

PRESSED"

After we have covered a few more of the basics, you will

write a game program that shows how the joystick can be

used to make objects move on the screen. | |

U

LJ

U

82

u

Chapter 7

The BASIC
Program

n

H

n The BASIC
- Program

Immediate Versus Deferred Mode

PI This is it—the chapter you've been waiting for! In the next

few pages you will discover what a program is, how it works,

how to create and edit one, how to execute it, and how to

store it on cassette or disk for later retrieval.

Up until now, you have typed in a new line every time

you wanted to make the computer do something. As soon as

you pressed the RETURN key, the computer executed the line

and printed the READY prompt. This is called the immediate

mode, or direct mode, of the computer; the line is executed

immediately after you type it and press RETURN.

To make the computer rapidly execute several lines in a

sequence, you had to clear the screen, type each line in its

proper place on the screen, move the cursor back to the top

line, and repeatedly press the RETURN key.

This last method of executing lines is very similar to writ

ing and executing a program. After all, that's basically what a

program is—a sequence of lines containing one or more

BASIC statements which are executed in a certain order. But

there are some important differences.

In the immediate mode, every time you want to execute

the sequence, you have to position the cursor again, and press

all those RETURNS again. And if you clear the screen, every

thing you typed is lost. However, a program is not executed as

you type it in. It is put into a special place in the computer's

memory, where it resides until you instruct the computer to

execute it. Clearing the screen does not erase the program

from its place in memory. You can call it back to the screen as

f[many times as you want without retyping it.

1 This means that you can add to it and edit it until you are

satisfied, and then tell the computer to execute it. While the

|—I computer is executing a program, it is said to be operating in

the deferred mode, also called the program mode.

When you type a line, you must let the computer know

fj whether to execute it immediately, or place it in memory as a

program line. And once you have specified that a line is to be

included in the program, you must tell the computer where to

(—1 insert the line. Is it the first line, or third, or last?

85

LJ

The BASIC Program U

G
Both these tasks are accomplished by the same thing—a

line number. If you type a line that starts with a number, it j ,

will be placed in memory as one of the lines of a program. LJ
The line number determines the position of each line in the

program. ;-,

The next section gives more information about line num- <—1
bers, shows you how to build a program, and introduces three

commands to help you manage the program.

Summary

• When a line is executed as soon as it is typed, the computer

is operating in the immediate or direct mode.

• When the computer executes a program, it is said to be

operating in the deferred or program mode.

• If a number is placed at the beginning of a line, the com

puter will not execute it immediately, but instead will place

it in computer memory as a program line. A program is a se

quence of numbered lines.

• The position of a line in a program is determined by the

value of the number at the beginning of the line.

Writing a Program

Turn your Commodore 64 off and back on, and enter the fol

lowing line:

10 ? "COMMODORE 64"

Nothing happened. Not even a READY prompt was dis

played. The cursor moved to the next line when you pressed

the RETURN key, and that was it. The line was not executed

because it was placed in memory as a program line. To see

that it is now part of a program, type this command. i ,

LIST ^
The computer printed the line that you had typed before,

including the line number. The line number 10 does not mean | |
that this line is the tenth one in the program. Right now, line

10 is the first, and in fact the only, line in the program.

Now add another line to the program. 1 |

20 ? "I AM A FRIENDLY COMPUTER"

Follow this with another LIST command. j (

u

n

n The BASIC Program

n
LIST

PI The computer lists both program lines on the screen,

1 printing line 10 first, and then line 20. The computer did not

print any blank lines for the missing line numbers, such as 11,

[—[12, and so on. The computer arranges lines in the same way

' ' you arrange a list of names, in alphabetical order. When you
alphabetize Adam, Carrie, and Zelda, you don't leave blank

spaces for missing names or letters.

You instruct the computer to execute this short program

by typing the RUN command.

RUN

Both program lines were executed, in the correct order,

and then the computer printed the READY prompt. Do it

again.

RUN

This is one of the advantages to using a program—you

type the lines only once, but you can execute them again and

again.

Although they look like statements, LIST and RUN are

classified as commands. Commands are used in the immediate

mode to manage a program, and are not usually included in a

program. The command LIST instructs the computer to print

on the screen every line that is currently in the program. Lines

are listed by order of increasing line numbers. The command

RUN instructs the computer to execute the program, starting at

the first line. While a program is in the process of being exe

cuted, it is said to be running. Execution ends when the last

line has been executed, after which the READY prompt is

printed.

We are going to add a third line to the program, but this

P| time we want it to be placed between the first two. This is
accomplished by using a line number between 10 and 20.

Enter the following line, then LIST and RUN the program.

PI 15 POKE 53280, INT(RND(0)*16)
Now you see why we didn't use the line numbers 1 and

pi 2. It would have been impossible to put a line between them,

I because line numbers have to be integers. The number 1.5 is
not a legal line.

r-j Line numbers are used only when you enter a line in the

,_ 87

LJ

The BASIC Program jj

program, to indicate where in the program the line should be

placed. They are ignored while the program is being executed.

Therefore, to make editing easier, many people choose to start M

line numbering at 100 and increment by 10. This leaves plenty

of room to insert lines at a later time. Line numbers can range

from 0 to 63999. The only problem with using larger numbers { j

is that more digits require more typing. In this book, the longer u~"'

examples will start at 100, but the shorter ones will start at 10

for your typing convenience.

Program lines are always placed in memory exactly as

you type them, including spacing, with two exceptions. If you

type a line and use the question mark in place of PRINT, the

question mark will be converted to PRINT before the line is

placed in memory. This shows up when you use LIST. Lines

10 and 20 of the current program were first typed using the

question mark, but the keyword PRINT is displayed when the

lines are listed. The second exception is that extra spaces

placed between the line number and the first statement are

ignored. These are called leading spaces. Only one leading

space is printed when the line is listed.

After you enter a line, you may need to correct a mistake

or add a new statement. You can change a line by retyping

the line, using the same line number and the new statements.

The next example changes line 10 so that the digits "64" are

spelled in the long fashion.

10 ?"COMMODORE SIXTY-FOUR"

Use LIST and RUN to confirm that the line has been

changed. The old line 10 no longer exists, having been

replaced by the new line 10.

Note that although there does not have to be a line for

every line number, no two lines can have the same line

number. ,--

By using the screen editor and cursor control keys, you Lj

can make changes without retyping the whole line. LIST the

program and then move the cursor to the line that is to be , .

changed. Use the editing keys to INSerT or DELete some char- LJ
acters in the line. When you are done, press the RETURN key

while the cursor is still on the changed line. The computer j-;

stores the line in memory, just as if you had typed the whole Lj
line.

Give this a try by using the editing keys to change line 10 -{-~

U

88

LJ

The BASIC Program

back to its original state. Position the cursor on top of the S in

SIXTY, type the digits 6 and 4, and then hold down on the

P] SPACE bar until all the other characters have been erased.

1 ' Press the RETURN key. The changes will not be made unless

you press this key. When you LIST the program, it will show

]—| line 10 restored to its original state.

' Now let's say that we want to get rid of line 10 altogether.
To delete a line, move the cursor to a blank line, type the

number of the line you want to delete, and press RETURN.

Don't type anything after the line number; just press

RETURN.

10

When you use LIST, you will see that line 10 is no longer

part of the program. If, however, a listing of the line is still

somewhere on the screen, all you have to do is move the

cursor to that line and press RETURN. The computer thinks

that you just typed the whole line, and it will again be a part

of the program, which can be verified by using LIST. Please

note that a line may be displayed on the screen even though it

is not part of the program.

There will be times when you want to move a line from

one place in the program to another. To do this, you can

delete the line (type the old line number and press RETURN)

and then enter the same line, but using the new line number.

Let's move line 15 of our current program to line 30. Enter the

following lines

15

30 POKE 53280,INT(RND(0)*16)

Confirm that the change was made by listing the

program.

There is a better way to move a line from one place to an-

P] other in a program: using the screen editor keys. We'll do this
to move line 20 to line 45. First list the program. Next, move

the cursor so that it is on top of the 2 in line 20. All you have

P] to do now is type the number 45 and press RETURN. List the
program again. You will see the new line numbered 45, but

you will also see the old line 20. By typing the line number 45

P| on top of the 20, all we did was add a new line, numbered 45,
to the program.

To delete a line, you have to type the line number with

89

The BASIC Program

nothing after it, and then press RETURN. Therefore, even

when moving a program line using the editing keys, a two-

step process is necessary. First you copy the old line to a new

line, then you delete the old line.

Here is one .other word of caution about editing lines.

Whether you are changing a line, or moving it to a new place, r

you must remember to press RETURN while the cursor is still ^—

on that line; otherwise, the changes will not be made.

Our example program has been thoroughly garbled by all

our experiments, so let's write a new program. Before we can

do that, the old program has to be erased. This could be done

by deleting each line in the program, but that's a slow process,

especially if the program contains a lot of lines. Fortunately,

there is a faster way to erase a program.

Just as the statement CLR erases all variables, the com

mand NEW deletes every line in a program. LIST the current

program, type NEW, and then LIST the program again, to get

a before and after picture of what the command NEW does.

LIST

NEW

LIST

The entire program is gone. As you can see, NEW is a

rather destructive command, and you should exercise caution

when using it.

Now you are all set to enter this next program:

10 PRINT N

20 N=64

30 PRINT N

RUN the program. The computer should print a 0, then a

64, then the READY prompt when it is done executing the

program. Variables still retain their values after a program has

ended. Use PRINT in the immediate mode to print the value | j

for N. *-*

PRINT N

The variable N still has the value 64. RUN the program a LJ
second time. The variable N started out with the value zero

again. This is because the RUN command makes the computer ,- ,

first do a CLR before starting program execution. An automatic LJ
CLR is also performed every time you modify the program.

Right now the variable N has the value 64. If you delete line {~ -{
i j

90

u

The BASIC Program

10 and then PRINT the value of N, you will see that N has

been cleared.

PRINT N

10

PRINT N

The NEW command also clears all variables when it

erases a program.

Add the following line to the current program, typing the

line exactly as it's printed here.

40 IF N=64 PRINT "COMMODORE 64"

This time when you run the program, a SYNTAX ERROR

is generated. The error message also says IN 40, so you know

in which line the error occurred. Examine line 40. You will

notice that there is a missing THEN keyword. The point of

this demonstration is that errors in a program line are not de

tected when the line is entered. Errors are detected only when

a line is executed. A program will stop executing as soon as an

error occurs. Fix line 40 by inserting the THEN keyword in the

appropriate place. Then add the following lines to the

program:

40 IF N=64 THEN PRINT "COMMODORE 64"

10 PRINT "COLOR GRAPHICS"

50 PRINT "SOUND SYNTHESIS"

Let's conclude this section by looking at the syntax for the

three new commands LIST, RUN, and NEW.

The LIST command causes every line in the program to

be printed in order on the screen. The printing scrolls up the

screen so quickly that you can't read a program while it is

being listed. Sometimes, when you are listing a long program,

it would be nice to slow down the listing, so you can look for

na specific thing, such as a variable name. By holding down the

CTRL key while program lines are being listed, you can cause

a pause after each line is printed. This still isn't slow enough

|—i to read every line, but it is handy for scanning program lines.

' ! Try it with the current program. Remember that this is most
useful for longer programs with more lines than will fit on the

P-1 screen at once.

i I Another problem with longer programs is that sometimes
you may only want to look at one line near the end of the

n
91

The BASIC Program

program. When you use LIST, you have to wait for all the ear

lier lines to be listed first. To avoid this, you can use LIST to

display specific lines in a program. Try it to look at line 20.

LIST 20

Or you can request that a range of line numbers be listed.

LIST 20-30 L
Use the minus sign as a dash between the first and last

line numbers to be listed. All lines in the specified range will

be printed on the screen.

For even more flexibility, you can use the dash with only

one line number. If you type a line number and then a dash,

the requested line will be listed, along with all lines that come

after it, to the end of the program. If you type a dash and then

a line number, the computer will print all lines up to and

including the requested line. This is especially helpful when

you don't remember the line numbers for the first or last lines

in the program.

LIST 20-

LIST -30

Because of the way Commodore 64 BASIC handles line

numbers, if you try to list only line 0, the computer will list

every line in the program, as if you had typed just plain LIST.

LIST0

The RUN command clears all variables, and then executes

the program starting at the first line. As with LIST, you can

put a line number after the command RUN, to start execution

at a line other than the first. You cannot, however, use a line

number range. Once a program has started execution, it will

stop when it reaches the end of the program, or when an error

occurs. Type the following line to see how RUN works with a

line number: j j

RUN 40

The NEW command clears all variables and erases the r »

current program. If you print the free memory after a NEW, '—I
the byte count will almost match the byte count printed when

you first turned the computer on. No line numbers can be i •

used with this command. 1—I

LJ
92

i j

u

n

The BASIC Program

Summary

• When a program line is placed in memory for deferred exe

cution, the cursor moves to the next line, but no READY

prompt is printed.

• The LIST command is used to print every line currently in

the program.

• Line numbers must be integers in the range from 0 to 63999.

Any other numbers cause the SYNTAX ERROR to be

printed.

• The line number is used only to indicate the position in the

program in which a line is to be placed. A line numbered 10

is not necessarily the tenth line in a program.

• The computer ignores unused line numbers.

• Using a large line number increment makes it easier to insert

lines between the existing ones in a program. It is a good

practice to increment by at least 10.

• The RUN command is used to execute a program. Execution

starts at the first line and ends when there are no more lines.

• While a program is being executed, it is said to be running.

• One of the advantages of a program is that lines typed once

can be executed several times.

• Commands are used to help manage a program. They are

used in the immediate mode, but are not usually included

in a program.

• A program line is placed in memory exactly as it was typed,

except when abbreviations or leading spaces are used. The

question mark is converted to the keyword PRINT before the

line is stored in memory. Only one leading space is put after

the line number, no matter how many were typed when the

line was entered.

• A program line can be changed by typing the same line

number and new statements. The RETURN key must be

pressed to enter the line.

• A program line also can be changed by using the editing

keys to move the cursor to a listing of the line to be

changed so that the INSerT and DELete keys may be used to

modify the line. After the changes have been made, the

RETURN key must be pressed while the cursor is still on

the line.

93

The BASIC Program

• A line is deleted by typing only the line number and press

ing RETURN.

• To retrieve a line that has been deleted, the line must be re- [_

typed unless a listing of the line is still on the screen. In that

case, the cursor can be moved on top of the line, and the

RETURN key pressed. The line will again be part of the J_j

program.

• Even though a line may appear on the screen, it is not nec

essarily a part of the program.

• To move a line from one place in the program to another,

type the line using the new line number, and delete the old

line.

• A line can also be moved by using the editing keys, list the

line, position the cursor on top of the line number, type the

new line number, and press RETURN. You must still delete

the old line, though.

• A fast way to erase a program is to use the NEW command,

which deletes every line in the program, and clears all vari

ables at the same time.

• Variables retain their values after a program has stopped

executing.

• Variables are cleared as soon as the program is modified in

any way.

• The RUN command also automatically clears all variables

before program execution starts.

• Errors in a program line are detected only when the line is

executed, not when the line is entered and placed in

memory.

• If an error occurs while a program is running, execution

stops immediately. The error message is printed, along with

an indication of which line contains the error. j

• Holding down the CTRL key while a program is listing will »—'
cause the lines to scroll more slowly.

• The LIST command can be used to list a specific line, by } j

typing the line number after the keyword. ' '

• A line number range can be specified after LIST. A dash

must be placed between the starting and ending line j_j

numbers.

• Using LIST with a line number followed by a dash causes

the listing to start at the line number and continue to the [_J

94

i ■

u

The BASIC Program

end of the program. Using LIST with a dash followed by a

line number causes the listing to start at the first line in the

program and continue to the specified line number.

• The RUN command usually starts executing a program at

the first line. To start execution at a line other than the first,

that line number must be specified after the keyword RUN.

A line number range may not be used with this command.

Program Storage and Retrieval

Programs can get to be very long. While it is convenient to be

able to execute the whole program just by typing RUN, it is

not so convenient if you have to type in a program every time

you want to use it. As soon as you type NEW or turn the

computer off, the program is gone for good. Since you will

often want to change from one program to another, or turn

the computer off, it is important that you be able to store pro

grams on floppy disk or cassette tape. These are two examples

of storage media used to keep permanent copies of programs.

Once a program has been stored on tape or disk, you can turn

the computer off or use a different program, and retrieve your

stored program anytime you want to use it.

The two commands used to store and retrieve programs

are SAVE and LOAD.

First we will see how to SAVE a program to tape or disk.

Type NEW, enter the following program, and RUN it so you

are satisfied that it works correctly. Then follow one of the

procedures described below, depending on whether you are

using tape or disk.

Poem

Please read the article called "Automatic Proofreader," Appen

dix I, before typing in any of the programs in this book. Do

not type in the rem statement at the end of the program lines.

For example, do not type :rem 240 from line 10.

10

15

20

30

40

50

60

70

80

90

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

"SILVER BOX"

"BY EDWARD CHU" : PRINT

"A SMALL SILVER BOX"

"WITH MOUTHS FLAMING RED,"

"SITS ON MY SHELF"

"DEVOURING BREAD." : PRINT

"I FED HIM SOME SLICES"

"TWO AT A TIME,"

"AND HE HANDS THEM BACK."

"BLACK."

zrem 240

:rem 48

:rem 171

:rem 85

:rem 45

:rem 60

:rem 36

:rem 99

rrem 116

:rem 197

95

The BASIC Program

If you are storing programs on cassette tape, here is the

procedure to use:

1. Rewind the tape to the beginning by pressing the

REWIND key on the Datassette. Press STOP when the tape is

rewound completely.

2. Type the command SAVE "POEM7' and press I
RETURN. "~

3. The computer will respond with the message PRESS

RECORD & PLAY ON TAPE. This is your cue to simulta

neously press the RECORD and PLAY keys on your

Datassette. On some models of the Datassette, the PLAY key

will automatically be pressed when you press RECORD.

4. As soon as you press RECORD and PLAY on the

Datassette, the computer will print the message OK, followed

by the message SAVING POEM. You will not be able to see

these messages, however, because the screen background color

will be changed to match the border color. This is called screen

blanking.

5. The tape will start to move. During this time the com

puter is taking a copy of the program in memory and storing it

on the tape.

6. When the computer is done, it will print the READY

prompt, and restore the screen.

7. The tape will have stopped moving, and you can press

STOP on the Datassette.

Here is the equivalent procedure for using a disk drive.

1. Insert a properly formatted disk into the disk drive.

Read the disk drive user's manual for instructions on how to

format a disk.

2. Type the command SAVE "POEM",8 and press

RETURN. The number 8 is called a device number. If you do

not type the device number, the computer will try to save the

program on tape. [j
3. The computer will print the message SAVING POEM.

4. The disk drive will be activated, and the computer will

take a copy of the program currently in memory and store it [J

on the disk.

5. Upon completion of the SAVE operation, the computer

will print the READY prompt, and the disk drive will automat

ically stop.

Remember that the SAVE command only stores a copy of

U
96

U

i i

n

The BASIC Program

the program on the tape or disk. The program is still in mem

ory after you use the SAVE command, as can be verified by

entering the command LIST.

Now you have a copy of the program safely stored on

tape or disk for future reference. At this point you are free to

type NEW, or even turn the computer off. If you are using

disk, be sure to remove your disk from the drive before you

turn your computer off.

To retrieve the program, use the LOAD command. Again,

this procedure differs slightly for tape and disk.

If you are using cassette tape, follow these steps:

1. Rewind the tape back to the beginning.

2. Type the command LOAD "POEM" and press

RETURN.

3. The computer will respond with the message PRESS

PLAY ON TAPE. Be sure to press only the PLAY button this

time. Do not press RECORD.

The computer will then print the messages OK and

SEARCHING FOR POEM on the screen, but you won't be

able to see them because once again the screen will be

blanked.

5. The tape will start moving as the computer searches for

the program.

6. When the computer finds the program, it will stop the

tape, print the message FOUND POEM, and restore the screen

so you can see the message.

7. After about ten seconds, the computer will print the

message LOADING. (On some 64s, you must first press the

key labeled with the Commodore logo.) The screen will be

blanked again, and the tape will start to move, as the com

puter copies the program from tape into memory.

8. When the program is done loading, the READY prompt

will be printed, the screen will be restored, and the tape will

stop moving. You may want to press the STOP key on the

Datassette.

Here are the steps for loading a program on disk.

1. Type the command LOAD "POEM",8 and press

RETURN.

2. The computer will print the message SEARCHING

FOR POEM.

3. The disk drive will be activated. When the program has

97

u

The BASIC Program M

LJ
been found, the computer will print LOADING.

4. The disk drive will stop, the READY prompt will be

printed, and the program will be in memory. [J

To see that the program is indeed back in memory, use *"""'
the commands LIST or RUN. Every line of the program

should be back, exactly as it was saved. Once a program has ! |

been saved, it can be loaded again and again.

There is one other thing you should be aware of concern

ing the LOAD command. When you load a program from tape

or disk, it replaces the one currently in memory. Enter the fol

lowing lines.

NEW

18 PRINT "USE A MICROWAVE INSTEAD"

Now continue with the appropriate loading procedure.

Once the program has been loaded, you will see that line 18

no longer exists. Always be careful that you do not inadver

tently erase a program in memory by loading a new one.

This brings up another important topic: storing multiple

programs on tape or disk. To store a second program on a

tape, start the tape at the position where it stopped when you

saved the first program. Type the SAVE command again, but

this time use a different filename. When programs are stored

on tape or disk, they are called files. The character string after

the SAVE command is the name of the file. Filenames can be

up to 16 characters long, and they should be chosen so that

they describe the program being saved. If the second program

saved was the demonstration in the first chapter, a good

filename would be DOODLE.

Let's say that you have saved two programs to tape,

named POEM and DOODLE, and want to load the second

one. Rewind the tape, enter the command LOAD

"DOODLE", and follow the normal loading procedure. The »

first program to be found will be POEM, but the computer <—'
will skip this program. Only when it reaches the file named

DOODLE will a program be loaded. Many programs can be j j

stored on one tape in this way. The Datassette also has a Lj
tape counter which can be used to help you find programs.

The advantages of using a disk drive include greater s j

speed and simplified loading and saving, but perhaps the big- *—J

gest advantage is the ease with which multiple programs can

be handled. To save a second program to a disk, just use the ," ;

98

u

n

P| The BASIC Program

1

SAVE command with a different filename. There are no posi

tioning problems, as there are with tape. However, you still

j] use the same device number, 8. The computer will save the
second program to the drive. You can later load either pro

gram, by typing LOAD, the desired filename, and the device

j| number.
Sometimes you may want to load a program, make some

changes, and save the updated version in place of the old one.

When using tape, however, updating can be a dangerous prac

tice. Updated programs are often longer than their original

versions. If you save an updated program at the same position

on the tape as the old copy, you take the risk of erasing the

beginning of the next program. You will get the LOAD error if

you try to load a program ruined in this way. The best policy:

Never save a program on top of an old one. Always save a

program at an unused portion of the tape, after the other

programs.

The disk drive will not let you save a program in the

place of another one. Before the computer saves a program to

disk, it checks the disk directory to see if the filename already

exists. If so, the red light on the drive will start to flash. Once

you have used a specific filename to save a program to disk,

you can load from that filename repeatedly, but you cannot

save to that filename again. (See the user manual for informa

tion about using "(5)0" to get around this.)

There are a few other errors that can occur when you're

working with tape or disk. The device number for the disk

drive is 8. If you do not specify a device number, the com

puter uses a default number of 1, which is for the Datassette.

Other numbers like 3 do not correspond to valid devices for

saving and loading, and attempting to use them will cause the

ILLEGAL DEVICE NUMBER error. If you try to access the

fj disk drive when it is not connected to the computer, you will
get the DEVICE NOT PRESENT error. The FILE NOT

FOUND error occurs when you try to load a file from disk

! | using a filename that does not exist. Whenever an error occurs

on the disk drive, the red light will flash.

You can cancel a SAVE or LOAD command by pressing

J j the RUN/STOP key. The operation will be aborted, and the

error message BREAK will be printed.

Loading and saving are called input/output operations.

fj Remember that input and output are always described from

— 99

The BASIC Program

the viewpoint of the computer. Loading a program means that

some information coming from outside the computer (in this

case a tape or disk) will be brought into the computer. When

you save a program, information in the computer is being sent

outside the computer. Loading is an input operation, and sav

ing is an output operation. In computer terminology, the word |]

read is often used in place of the word input. Likewise, the *■—*

word write is a common substitute for output. Therefore, when

your Commodore 64 is loading a program, it is reading from

the tape or disk, and when it is saving a program, it is writing

to the tape or disk.

Although cassette tapes and floppy disks are reliable stor

age media, they are by no means indestructible, and you

should exercise care in handling them. Both types of media

work on the principle of magnetism, and information stored

on a tape or disk will be lost if the media is placed near a

magnet or source of radiation, such as a television set or sun

light. They should not be exposed to extreme temperature and

should not be directly touched. The outer shell of the cassette

and the square envelope of the disk serve as protection for the

sensitive media inside, but they are not enough to guard

against magnetic or radiation forces. In addition, a disk should

be removed from the drive before turning the drive off or on.

You should acquaint yourself with the other care sugges

tions described in the user's manual for the Datassette or disk

drive. Following a few simple commonsense rules can help

prevent the loss of important programs.

Even when utmost caution is used, it is still possible for

information stored on a tape or disk to be incorrect. The

Datassette and disk drive are mechanical devices, and thus are

subject to such problems as static and changing motor speed.

There is no way you can prevent errors caused by mechanical

problems, but you can double-check that your program was j j

written correctly by using the VERIFY command. *—'
After you save a program, you can use the VERIFY com

mand to reread the program on tape or disk to see if it matches j ;

the program in memory. If there is any discrepancy, the com- —'

puter will report an error.

Let's say that you just saved a program to tape, and want \)

to make sure that the copy of the tape was written correctly. *—*

Rewind the tape to the beginning of the program, type the

command VERIFY, and press RETURN. Just as for the LOAD j]

100

U

The BASIC Program

command, you will be prompted to PRESS PLAY ON TAPE.

The computer will print OK and SEARCHING, and blank the

|—[screen. When the program is found, the FOUND message will

1 be displayed. After ten seconds the message VERIFYING will
be printed, and the screen will be blanked again (some 64s

r"l require that you press the Commodore key).

' ' The next time the screen is restored, one of two messages

will have been printed. Either you will see the message OK,

which indicates that the program on tape matches the pro

gram in memory perfectly, or you will see a VERIFY ERROR,

which means that there is a difference between the tape copy
and the program in memory, and the save was bad. In the

event of a bad save, you should try saving the program again.

The procedure is virtually the same when using a disk.

The LOAD and VERIFY commands work much the same

way. In fact, there are only two significant differences: With

VERIFY, the program in memory is not erased, and the pro

gram on tape or disk is not loaded into memory.

To find out the names of all the files on a disk, the LOAD

command can be used with the filename "$". Enter the fol

lowing command.

LOAD "$",8

The computer will load into memory the name of every

program on the disk. To see the names, use the command

LIST.

LIST

The list of filenames is called a directory of the disk. Just

like a telephone directory lists names and phone numbers, the

disk directory contains the name and other information about

each file.

This is a somewhat unusual application of the LOAD

[j command, but it still erases the program currently in memory.
Always be careful when you request a disk directory. Be sure

that the program in memory has been properly saved.

! | The Datassette does not support a directory for cassette

filenames.

wmmt The rest of this section discusses shortcuts for use with

!"""; saving and loading programs on tape. The first thing you may
have noticed is that the ten-second delay between searching

and loading can be rather long. All the computer is doing dur-

n ing this time is letting you see that it has found a program and

101

LJ

The BASIC Program

!

is loading. You can shorten the waiting period by pressing the <—'

Commodore key. As soon as this key is pressed, the computer

will start loading the program. The SPACE bar, CTRL, and | ;

left-arrow keys do the same thing. l_>

Although filenames are required for disk files, they are

optional when using tapes. You can type just LOAD and press

RETURN, and the computer will load the next program it w

finds on the tape. If you use SAVE with no filename, the pro

gram will be saved on tape, but the only way to retrieve such

a file is to use LOAD without a filename.

The LOAD command is more frequently used than SAVE

or VERIFY. The last shortcut is an easier way to load and run

a program. Just press the Commodore and RUN/STOP keys

together, and the command LOAD will be automatically

entered (but with no filename). The PRESS PLAY ON TAPE

prompt will appear, and you are all set to start loading a pro

gram. As soon as the program is loaded, the command RUN

will be entered, and the program will start executing. The key

combination of SHIFT and RUN/STOP will accomplish the

same thing.

Summary

• Programs can be stored on cassette tape or floppy disks with

the SAVE command, and retrieved later by using the LOAD

command.

• The SAVE command stores a copy of the program in mem

ory onto tape or disk. The program is still in memory after

a SAVE command is used.

• The syntax for SAVE is the keyword SAVE followed by a

character string which is called a filename. When saving to

the disk drive, a comma and device number of 8 (a second

drive would be device number 9) must be put after the

character string. j \

• The LOAD command copies a program from tape or disk

back into the computer's memory. Any program that was { ,

already in memory is erased when the new program is lJ

loaded.

• The syntax for LOAD is the keyword LOAD, the filename, v

and a comma and device number of 8 if the disk drive is Lj

being used.

102

U

The BASIC Program

• A filename can be up to 16 characters, all of which are

significant.

• Multiple programs can be stored on tape or disk by using

different filenames. When saving a program to tape, position

the tape right at the end of the last program on the tape. The

disk drive automatically determines where on the disk the

program will be stored.

• It is a dangerous practice to save a revised program to tape

on top of an earlier version, because the next program on

the tape may be overwritten.

• The disk drive will not normally let you save a program

with a filename that is already in use.

• The ILLEGAL DEVICE NUMBER error means that an

attempt was made to use a device which does not support

loading or saving. The only device numbers normally used

are 1 (cassette) and 8 (disk). If a device number is not speci

fied after a filename, the computer assumes that the cassette

is to be used.

• The DEVICE NOT PRESENT error occurs when a referenced

device does not respond to the computer, because it is either

not hooked up or not turned on.

• If you try to load a disk file using a filename that does not

exist, you will get the FILE NOT FOUND error.

• When errors occur on the disk drive, the red light flashes.

• Storage and retrieval commands can be aborted by pressing

the RUN/STOP key.

• LOADing is an input operation, and SAVEing is an output

operation.

• The terms read and write are often used to mean input and

output.

p—j • Care should be exercised in handling cassette tapes and flop

py disks. They should not be exposed to radiation, magnets,

temperature changes, or fingers.

• The VERIFY command is used to read a program on tape or

disk and check if it matches the program in memory. If

it doesn't, the VERIFY ERROR message is printed.

• The main difference between the LOAD and VERIFY com

mands is that with VERIFY, the program in memory is not

touched. It is only compared against the program on the tape

or disk.

103

i

The BASIC Program

• A disk directory is a list of filenames. To get a directory, use L^
the LOAD command with the filename "$", then use LIST.

This works only for disk files. I i

• The ten-second delay between the searching and loading of

a tape file can be shortened by pressing the SPACE bar, left

arrow, CTRL, or Commodore key. ^ j

• Filenames are optional for tape files. Using LOAD with no

filename will make the computer load the next program

found on the tape. Files saved without a filename can be

retrieved only by using LOAD without a filename.

• To have the computer automatically load and run the next

program found on a tape, press the RUN/STOP key with

either the Commodore or SHIFT key.

Documenting a Program Using REM

When you type a statement like POKE 53280,14 into a pro

gram, you may know exactly what it means and what it does

at the time. But after running a program for a week, you may

decide to modify it. Will you still remember the function of

every statement in your program a week after you type it in?

As you write longer and more complex programs, you will

need to leave notes to yourself, to remind you of what vari

ables mean, and where special sequences begin and end.

BASIC provides a special statement for this purpose.

The REM statement lets you embed remarks right in the

program. Your remarks do not appear when the program is

loaded or executed, only when it is listed. They might provide

commentary about a program, telling how the program was

written and how it works, or they might contain notes to

yourself, marking lines that you want to revise later.

Here is an example of how remarks might be used.

10 REM RANDOM COLOR PROGRAM :rem 157 ;]

20 REM CRAIG CHAMBERLAIN :rem 194 U
30 POKE 53280, INT(RND(0)*16) : REM CHANGE BORDER

{SPACE}COLOR :rem 243

40 POKE 53281, INT(RND(0)*16) : REM CHANGE BACKGRO | i
UND COLOR :rem 23

The syntax for the REM statement is the keyword REM, v .

optionally followed by any kind of information. The example LJ

shows many ways in which the REM statement can be put to

use. REM is often used to provide general information, like the s
i 1

104

The BASIC Program

name of a program, the author's name, and the date the pro

gram was written. For longer programs, a program version

number may also be given. For programs that are to be dis

tributed to others, the author may want to put in an address

or telephone number. And if the program is protected by

copyright, this is one place where the copyright notice should

be displayed.

Lines 10 and 20 use REM to identify the title and author

of the program. The text after the REM is optional. A line with

only a REM on it can be used to separate parts of a program.

Longer programs are often divided into several sections, and a

REM statement can be used before each section to describe the

purpose of that particular section.

A REM statement does not have to take a whole line. You

can put a REM after a few other statements on the same line.

The only requirement is that the REM be the last statement on

the line. REM statements used in this way usually explain a

particularly tricky line of the program, or draw attention to a

key part in the processing. The REM statements in lines 30

and 40 are simplistic, but they do explain what is happening

on those lines.

If the computer encounters a REM statement in a line

while executing a program, it ignores the rest of the line and

moves on to the next line. That is why a REM statement has

to be the last thing on each line. In the next example, the sec

ond POKE statement will never be executed.

10 POKE 53280,0 : REM BORDER : POKE 53281,0 : REM

BACKGROUND

The computer stops executing the line as soon as it

reaches the first REM statement. If a line starts with a REM,

the whole line will be ignored.

p—< The listings in this book use another type of rem state-

1 ment. The rems at the end of each program line which are
written in lowercase letters should not be typed. The lower-

r-i case rem statements are not part of the program, but rather a

< ' tool to help you enter programs correctly (see Appendix I for
more information).

! ' Summary
• The REM statement lets you embed messages in a program

p| listing.

105

The BASIC Program

• These messages are called comments or remarks because

they are often short descriptive phrases which explain some

thing about the program. [

• The syntax for a REM statement is the keyword REM U"J
optionally followed by additional text.

• The computer stops executing a line as soon as it comes to a M

REM statement.

• REM statements can be placed at the beginning of a line or

after other statements. The REM statement should be the last

statement on a line.

• REM statements are often used as the first lines of a pro

gram to state the program title, identify the author, and

give the version number of the program.

• Empty REM statements are used to put blank lines in a pro

gram listing.

• REM statements can be used as a title before each section,

giving pertinent information about that section.

• REM statements used after other statements on a line often

highlight critical parts of a program, or parts which require

special attention before they can be understood.

• In a broad sense, remarks are used to document a program,

presenting information that would be helpful to a

programmer.

The END Statement

When you enter the RUN command, the computer stops oper

ating in the immediate mode and starts working in the

deferred mode. It sequentially executes every line in the pro

gram and returns to the immediate mode only when an error

occurs, or when the last line of the program has been execut

ed. As a formality, there is an optional statement, END, that

can be used to terminate program execution. \ j

10 REM DEMONSTRATION OF END STATEMENT :rem 77

20 REM TOASTER POEM :rem 153

30 PRINT "SILVER BOX" :rem 242 L I
40 PRINT "BY EDWARD CHU" :rem 103 ~*
50 END :rem 60

The syntax for the END statement is the keyword END [J
alone.

Whenever the computer encounters an END statement, it

LJ
106

LJ

n

— The BASIC Program

stops executing the current program and returns to the imme

diate mode. To see that it really does stop program execution,

|—| move the END statement to line 35, and run the program

1 again.

Admittedly, there is not much to be gained by putting an

j—I END statement as the last line of a program, since the pro-

' gram will end anyway. And putting an END statement in the

middle of a program doesn't seem to make much sense, either.

But the END statement does have its uses.

10 REM SECOND DEMO OF END STATEMENT :rem 71

20 REM :rem 70

30 N=2 :rem 32

40 IF N<0 OR N>15 THEN PRINT "ERROR! NUMBER OUT OF

RANGE!" : END :rem 224

50 POKE 53280,N :rem 16

60 POKE 53281,N :rem 18

In the above example, the END statement is used to ter

minate program execution early if the value of variable N is

out of the range of 16 colors. If not, the program continues.

Of course, there would never be any reason to place state

ments after an END statement on the same line. As soon as

the computer reaches the END statement, execution stops, and

the computer will never get to the other statements.

Summary

• The END statement causes the computer to stop executing a

program, and return to the immediate mode.

• The syntax for the END statement consists only of the

keyword END.

• A program automatically ends after the last line has been

executed, so there is no real need to put an END as the last

line. Using END in this way is a formality, not a necessity.

i I • END can be placed on a line by itself, or after other state
ments on a line. This is often done in conjunction with the

n IF-THEN statement. It is sometimes desirable for a program

to end early, such as when a potential error has been detected.

• Statements placed after an END statement on the same line

p| will never be executed.

n
107

n

Chapter 8

Controlling

Program
Execution

H

H

n Controlling
n Program

- Execution
The GOTO Statement

You have seen that when the computer runs a program, it exe

cutes the first line, then the second, and so on until there are

no more lines, or the END statement is encountered. The lines

are executed sequentially, according to the line numbers.

Remember when we introduced conditional logic? We

showed how the IF-THEN statement provided control over the

execution of statements on one line. Now, with a program, we

could use something to provide control over the execution of

program lines. This is available with the GOTO statement.

Enter and run the following program. (Be sure to first type

NEW if there is an old program in memory. Future examples

will not include a reminder.)

10

20

30

40

50

60

70

80

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOTO

PRINT

"CO"

"COMM"

"COMMOD"

"COMMODOR"

"COMMODORE"

"COMMODORE 64"

10

"A FRIENDLY COMPUTER"

:rem 196

:rem 95

:rem 243

:rem 149

:rem 219

:rem 70

:rem 1

:rem 70

The computer not only executes the lines in the program, but

it keeps on executing them. When the computer sees the state

ment GOTO 10 on line 70, it ignores anything after line 70,

and continues execution by going back to the first statement of

|—I line 10. This will go on forever, and line 80 never gets

executed.

The GOTO statement alters the flow of execution from

H the normal course. When GOTO is used to make the computer

execute a bunch of lines several times, the lines form a loop. A
loop which continues forever, like the one in the example, is

pi called an infinite loop.

! Since the computer executes statements so quickly, it can

be difficult to see exactly what the computer is doing when it

pi is caught in an infinite loop. To slow down the scrolling, press

111

Controlling Program Execution

the CTRL key, just as you did to make the computer list pro

grams more slowly. At least now you can see what is being

printed on the screen. The printing will return to normal

speed as soon as you release,, the CTRL key.

A program isn't of much use if it's stuck in an infinite

loop. To stop the computer when it's in an infinite loop, or at

any time it's executing a program, press the RUN/STOP key.

The computer will immediately stop executing the program,

and will print the message BREAK IN followed by a line num

ber. The line number indicates which line was being executed

when the RUN/STOP key was pressed. The computer will

now be in the immediate mode.

The GOTO statement does not have to make the com

puter repeat some lines. It can also be used to make execution

skip ahead in the program.

10 C=INT(RND(0)*16) :rem 19

20 PRINT "THE NUMBER" C "IS "; :rem 59

30 IF C/2 = INT(C/2) THEN PRINT "EVEN" : GOTO 50

:rem 185

40 PRINT "ODD" :rem 12

50 POKE 53280, C :rem 5

In this example, the GOTO in line 30 is used to bypass line

40. If the number is even, the GOTO 50 will be executed. The

only other possibility is that the number is odd, and line 40

handles that. If there were a lot of lines between 30 and 50,

the GOTO 50 would skip around all of them.

With just a couple of changes to the program, you can

make the computer rapidly change the background and border

colors for a psychedelic effect.

30 IF C/2 = INT(C/2) THEN PRINT "EVEN" : POKE 5328

1, C : GOTO 10 :rem 144

60 GOTO 10 :rem 0 , .

The syntax for the GOTO statement consists of the keyword

GOTO followed by a line number. This is one case where a

variable, expression, or function cannot be used. Only a line [_j

number is acceptable.

You can also spell GOTO with a space between GO and

TO. This is the only keyword in which this is allowed. This is [_
done to maintain compatibility with other versions of BASIC

which spell the keyword with a space. The GO TO statement

works just like GOTO. J_J

112

u

n

r- Controlling Program Execution

n

n

Because the GOTO statement is used to move program

execution forward or backward to a different line, we say that

f—| the GOTO statement makes BASIC jump to a new line.

1 ' GOTO can jump only to the beginning of a line. If the

computer has to GOTO a line which contains many state

ments, execution will start at the first statement. Also, GOTO

should always be the last statement on a line because, just like

the END statement, anything after the GOTO will never be

executed.

The most common error people make with GOTO is

attempting to GOTO a line which is not in the program. When

the computer tries to execute the statement GOTO 15 and

there is no line 15 in the program, the error message

UNDEFD STATEMENT will be printed. This is the com

puter's way of telling you that line 15 does not exist. Another

way to get this error is to use a variable in place of the line

number or to forget the line number altogether in the GOTO

statement. In this case the computer will assume a line num

ber of 0. If a line 0 exists, the program will jump there; if it

doesn't exist, you'll get the error message.

Summary

• The GOTO statement changes the order in which program

lines are executed.

• Normally, after the computer executes one line, it will exe

cute the next one in the sequence. The GOTO statement

causes execution to jump to a different line.

• GOTO can move execution forward or backward in the

program.

• When GOTO is used to skip backward so that lines can be

executed again, the lines that are repeated form a loop.

j—] If these lines are executed continuously, without ever

1 ' stopping, the loop is called an infinite loop.
• If your program enters an infinite loop, execution can be

|—I aborted at any time by pressing the RUN/STOP key.

• The GOTO statement makes the computer jump to the

beginning of the new line. Execution starts with the first

[""] statement on the line.

• You should not put statements after a GOTO on the same

line, because they will never be executed.

I

113

n

Li

Controlling Program Execution . -,

• The syntax for this statement is the keyword GOTO and a

line number. A number must be used; variables and

expressions are not valid. j i

• An alternate spelling for the name of the GOTO statement is

GO TO.

• If an attempt is made to GOTO a line which is not in the j_J
program, or if a variable is used instead of a line number,

the UNDEFD STATEMENT error will occur, which means

that the referenced line is undefined.

Loops

Enter and run the following one-line program.

10 GOTO 10 :rem 251

You might call this the ultimate infinite loop. It certainly

doesn't accomplish very much. All it does is prevent the

READY prompt from ever being printed. Loops like this have

only a few uses, and even infinite loops like the one in the

last section are not too useful. Repetition is an essential part of

programming, but the problem with using GOTO to form

loops is that the loops are endless. To solve the problem of

infinite looping, loops are often used with conditional logic.

The IF-THEN and GOTO statements are a powerful combina

tion. The next program shows how these statements are used

together.

10 A=TIME :rem 14

20 PRINT "STARTING" :rem 159

30 IF TIME-A < 60 THEN GOTO 30 :rem 252

40 PRINT "TIME'S UP!" :rem 164

This example uses the reserved variable, TI or TIME,

which counts in sixtieths of a second, to make the computer

wait one second. The program notes the time when it starts,

and stores this value in A. Notice that the value of TI keeps [_J
increasing. As long as the difference betwen TI and A is less

than 60, execution keeps looping at line 30. Execution falls out

of the loop when the expression TI — A is greater than or LJ
equal to 60. Add this line to the program to see that the delay

is one second.

50 GOTO 10 :rem 255 Li

By using a value of 600 instead of 60, you create a ten-second

delay. [J

114

U

n

P| Controlling Program Execution

n
In the example above, we used the variable TI to let the

computer count automatically. You can also use the IF-THEN

P] GOTO combination to have your program count things other
than time.

_ 10 A=A+1 :rem 124

(I 20 PRINT A :rem 48
30 GOTO 10 :rem 253

When you run this program, the computer prints a col

umn of numbers, starting with 1 and increasing forever. Every

time the loop is executed, the value of A increases by one. The

loop is infinite, but at least you can tell how many times the

loop has been executed, just by looking at the value of A.

Now, add one more step, and you can make the program do

the counting itself.

30 IF A<5 THEN GOTO 10 :rem 109

Introducing the conditional logic based on the counting vari

able A means that the loop can be executed a specific number

of times—in this case, five. Loops controlled by a counting

variable normally do something other than print the counting

variable. Here we replace line 20 with another PRINT

statement:

20 PRINT "COMMODORE 64" :rem 66

Having the computer print its name instead of the value in the

counting variable is not a big change, but it does demonstrate

that you can place any statements inside the loop and cause

them to be executed any number of times. You change the

number of executions by changing the value compared to A in

IF A<5 THEN GOTO 10.

Now that we have the means to execute a loop a certain

number of times, let's have the loop do something different

j I every time it is executed. The next example uses the variable F
not only to control how many times a loop is executed, but

also to change the pitch of a note that is played. This time,

!j however, F is changed by 4 instead of 1. The variable A is

again used in a delay loop.

ft 10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT

1 ! =542762F=4 :rem 148
20 POKE MV,15 : POKE AD,15 : POKE SR,168 : POKE FL

P« ,0 :rem 118

; I 30 POKE FH,F : PRINT F :rem 159

115

LJ

Controlling Program Execution I

40 POKE CT,17 : A=TI : REM START NOTE :rem 245 ^
50 IF TI-A < 60 THEN GOTO 50 : REM WAIT ONE SECOND

:rem 95 ■,—

60 POKE CT,16 : A=TI : REM RELEASE NOTE :rem 105 [_
70 IF TI-A < 15 THEN GOTO 70 : REM WAIT A QUARTER

{SPACE}OF A SECOND :rem 188 _
80 F=F+4 : REM INCREASE FREQUENCY :rem 170 | j

90 IF F<=120 THEN GOTO 30 :rem 21 <—J

As with many other frequently used statements in BASIC,

there are a couple of shortcuts that can make loops easier to

use. Both shortcuts involve the syntax of the IF-THEN state

ment. When combined with a GOTO statement, the whole

thing looks like:

IF conditional expression THEN GOTO line number

The idea is to find some way to shorten the line. This may

seem difficult because every part of the line is necessary.

However, in this case the keyword GOTO is optional. The

reasoning is that the only thing which should ever come after

the THEN is a keyword for a statement (or a variable name

for an implied LET statement), so if a number is found there,

it is assumed to be a line number, and the GOTO statement is

implied. You can write the above line as:

IF conditional expression THEN line number

This is not a great savings in terms of typing, but it does sim

plify the line a little, and simplicity is a key to good

programming.

An alternative shortcut is to make the THEN optional

instead of the GOTO, giving you:

IF conditional expression GOTO line number

Since this method requires just as much typing as the first

one, the distinction between the two shortcuts is merely one

of personal taste. It all depends on whether you prefer to | |
emphasize the THEN or the GOTO when the two are used

together. To see the shortcuts in use, change lines 50 and 70

in the example. The program will work just as before. j_j

50 IF TI-A < 60 THEN 50 :rem 53

70 IF TI-A < 15 GOTO 70 :rem 67 r~j

Note that the second shortcut is the only case when the con

ditional expression after an IF is followed by anything other

than a THEN. jj

116

U

H

— Controlling Program Execution

n
Summary

• To avoid the problem of GOTO forming an infinite loop,

r^ conditional logic must be used. The combination of IF-THEN

' with GOTO is one way to achieve this.

• A variable can be used in a LET statement such as A=A+1

P] to count how many times a loop is executed. A variable used

[in this manner is called a counting variable.

• By basing conditional logic on a counting variable, you can

have a program control exactly how many times the loop is

executed.

• Sometimes the value of a counting variable is used within a

loop, so that something is done differently every time a loop

is executed.

• Because it is used so often, there are two short forms to the

IF-THEN and GOTO combination. The first is to make the

GOTO optional, and the second is to make the THEN

optional.

Game Demonstration

As a demonstration of how to use all the concepts introduced

thus far, here is a simple game program called "Hurkle" (ori

gin unknown). The object is to fire missiles to hit a falling

Hurkle before it crashes on the ground. You get ten chances,

and you cannot fire a new missile until the last one has

moved off the screen. Type in the program and try it.

110 S=1024:C=55296:T=0:HX=0:HS=0:PX=0:MS=0:DH=0:JS

=0:PT=56320:R=40:HC=1 :rem 186

120 B=32:H=81:P=98:M=30:SC=0 :rem 59

200 HX=INT(RND(0)*38)+1:HS=HX:DH=SGN(RND(0)-0.5):P

X=20:MS=-1:MH=1 :rem 71

210 PRINT II{CLR}":T=56256 :rem 202

220 POKE T,3:T=T+1:IF T<56296 GOTO 220 :rem 35

M 230 POKE 1984+PX,P:POKE 53280,0 :rem 176

300 MH=MH-1:IF MH>0 GOTO 340 :rem 244

305 MH=4:T=HS:HS=HS+R+DH:HX=HX+DH:IF HX=0 OR HX=39

f—| THEN DH=-DH :rem 196

! ! 310 IF HS>959 GOTO 500 :rem 113
320 IF PEEK(S+HS)=M GOTO 400 :rem 10

330 POKE C+HS,8:POKE S+HS,H:POKE S+T,B :rem 209

["""I 340 IF MS<0 GOTO 370 :rem 5
350 T=MS:MS=MS-R:IF MS<0 THEN POKE S+T,B:GOTO 370

:rem 127

|—| 360 IF PEEK(S+MS)=H GOTO 400 :rem 14

117

LJ

Controlling Program Execution

J I

365 POKE C+MS,13:POKE S+MS,M:POKE S+T,B :rem 20 LJ

370 JS=PEEK(PT):IF (JS AND 16)=16 OR MS>=0 GOTO 38

0 :rem 227

375 MS=920+PX:POKE C+MS,13:POKE S+MS,M :rem 241 I I

380 T=PX:IF (JS AND 4)=0 AND PX>0 THEN PX=PX-l L-J
:rem 2

385 IF (JS AND 8)=0 AND PX<39 THEN PX=PX+l:rem 208 ,—

390 IF PXOT THEN POKE 1984+PX,P:P0KE 1984+T,B J_J
:rem 80

395 GOTO 300 :rem 109

400 POKE S+T,B:SC=SC+1:T=65 :rem 56

410 POKE S+HS,T:POKE C+HS,T:T=T+1:IF T<120 GOTO 41

0 :rem 132

500 HC=HC+1:IF HC<=10 GOTO 200 :rem 61

510 PRINT "YOU GOT" SC "OUT OF 10 HURKLES" :rem 52

520 IF SC=0 THEN PRINT "BETTER LUCK NEXT TIME"

:rem 140

530 IF SC=10 THEN PRINT "YOU ARE AN ACE HURKLE HUN

TERI" :rem 74

Now that you have played the game a few times, let's take it

apart and see how it works.

Here are the variables used in the program. The numbers

in parentheses tell the possible values of each variable. Some

variables are assigned once and never change; others have a

range of values.

S (1024) beginning of screen memory

C (55296) beginning of color memory

HS (0 to 999) Hurkle screen position—offset from top

of screen

MS (—40 to 999) missile screen position; negative value

means no missile on screen

T (0 to 999) temporary; holds old position of Hurkle,

missile, or player

HX (0 to 39) Hurkle horizontal (X axis) position

PX (0 to 39) player (base) horizontal position i j

DH (-1, 0, 1) direction of Hurkle (-1 for left, 1 for LJ
right, 0 for straight down)

MH (0 to 4) move Hurkle delay; counter to move Hurkle r i

once for every four player moves LJ
HC (1 to 11) Hurkle count, number of Hurkles that

have fallen i j

SC (0 to 10) score—number of Hurkles that have been I—'
hit

PT (56320) hardware location for port 2 i j

118

U

n

n

n

n

n

JS
R

B

H

P

M

Controlling Program Execution

(0 to 255) joystick information; contents of port 2

(40) row offset—number of bytes per row; add to or

subtract from position for vertical movement

(32) blank; POKE value to erase screen image

(81) POKE value for Hurkle

(98) POKE value for player

(30) POKE value for missile

The following description shows the logic used in the

program.

Program

110 program initialization (setup); executed only once per run

200 setup before Hurkle starts falling

300 main loop to move Hurkle, missile, player, and check for

collision

300-330 process Hurkle movement

340-365 process missile movement

370-375 fire missile

380-395 player movement

400 handles a Hurkle hit

500 prepares for next Hurkle, or ends game if last one

Lines

110-120 establish initial values for variables

200 HX=INT(RND(0)*38)+l : HS=HX

start Hurkle at random position at top of screen

DH=SGN(RND(0)- 0.5)

randomly choose Hurkle falling direction to the left, right,

or straight down

PX=20

set player's base at middle of bottom row

MS=-1

PI indicate that no missile has been fired

! MH=1
prepare to move Hurkle first time through main loop

n 210 PRINT "{CLR}"

clear the screen

T=56256

I""] point to color memory for bottom screen row

1 220 POKE T,3 :T=T+1 : IF T<56296 GOTO 220
put the player color at each position of the bottom row

n
119

u

Controlling Program Execution --

230 POKE 1984+PX,P U
POKE the player base onto the screen

POKE 53280,0 , j

set border color to black Lj
300MH=MH-l

decrement the Hurkle movement counter —

IF MH>0 GOTO 340 U
if still not time to move Hurkle, skip past Hurkle

movement lines

305 MH=4

reset Hurkle to not move until another four times

through main loop

T=HS

remember current Hurkle position

HS=HS+R+DH

position the Hurkle down one row, and to the left or right

HX=HX+DH

update the horizontal position of the Hurkle

IF HX=0 OR HX=39 THEN DH= -DH

if the Hurkle is at either side of the screen, change to

opposite direction

310 IF HS>959 GOTO 500

if Hurkle's new position is somewhere in the bottom

screen row, Hurkle has crashed

320 IF PEEK(S+HS)=M GOTO 400

if there is already a missile at the screen position where

the Hurkle is going to move, the Hurkle is hit

330 POKE C+HS,8 : POKE S+HS,H

okay to move Hurkle, so POKE color and screen memory

for new position

POKE S+T,B

erase old position so Hurkle leaves no trail

340 IF MS<0 GOTO 370

if there is no missile on the screen, skip the code to move LJ
the missile

350T=MS

remember the old position for the missile LJ

MS=MS-R

change the missile position to one row higher r

IF MS<0 THEN POKE S+T,B : GOTO 370 U

if new position is off the screen, erase the current missile

and bypass remaining code

120

LJ

Controlling Program Execution

! ! 360IFPEEK(S+MS)=HGOTO400
if there is a Hurkle where the missile is going to move,

PI the Hurkle has been hit

1 ! 365 POKE C+MS,13 : POKE S+MS,M
move missile to new position

r| POKE S+T,B

erase old missile image

370JS=PEEK(PT)

get the current joystick information

IF QS AND 16)=16 OR MS>=0 GOTO 380

if the trigger is not being pressed, or a missile is still on

the screen, skip around the code to fire a missile

375 MS=920+PX

missile starting position is at same horizontal position as

player, but one row higher

POKE C+MS,13 : POKE S+MS,M

POKE missile onto screen

380 T=PX

remember the old position of the player base

IF (JS AND 4)=0 AND PX>0 THEN PX=PX-l

if the stick is being pushed left, and the player base is not

already at the left edge of the screen, new player position

is one position to left

385 IF (JS AND 8)=0 AND PX<39 THEN PX=PX+1

if stick is being pushed right, and the player is not at right

edge of screen, player position is changed one position to

right

390 IF PXoT THEN POKE 1984+PX,P : POKE 1984+T.B

if the player position has been changed by line 380 or

385, update the screen by POKEing new position and

erasing old

395 GOTO 300

["""[end of main loop

400 POKE S+T,B

erase either Hurkle or missile

update score to show another Hurkle hit

T=65

prepare for explosion

410 POKE S+HS/T : POKE C+HS/T

rapidly change character and color for explosion effect

T=T+1 : IF T<120 GOTO 410

repeat for characters 65 to 119

121

Controlling Program Execution

500HC=HC+l

increment Hurkle count to show one more Hurkle has

crashed or been hit s -,•

IFHC<= 10GOTO200 L-i

if more Hurkles left, go prepare for main loop again

510 PRINT "YOU GOT" SC "OUT OF 10 HURKLES" —j

display score LJ
520-530 print special messages

Here are some important notes about the program. The

program is organized into three main parts: initialization, main

loop, and termination. The main loop lets three objects move

independently, and repeats indefinitely until the Hurkle

crashes or is hit. Program execution moves from the explosion-

handling sequence right into the section which starts another

Hurkle. This is the basic structure of many programs, and is

suitable for other games.

The easiest way to make an object move is to POKE the

number for a blank into its current position, calculate the

movement, and POKE the character into the new position.

Unfortunately, objects moved in this manner seem to blink

because for a fraction of a second between the two POKEs,

there is no object displayed. For a better visual effect, this pro

gram always POKEs the character to the new position first,

and then erases the character at the old position. This

requires that the variable T be used to keep track of the old

position when the new position is calculated.

Another technique that makes the movement look better

is to always POKE the color value before POKEing the screen

value. POKEing the character first means that there will be a

fraction of a second when the character is displayed in the

wrong color. If the color is POKEd first, it will not appear until

there is a character at the screen position, so there's no flash

of a wrong color. M

One of the best ways to gain experience in programming

is to modify existing programs. You could change the charac-

ters used for the objects by changing the assignments to H, P, I

and M in line 120. A slightly more difficult task would be to

change the color for each object. To see the Hurkle leave a

trail, delete the statement POKE S+T,B in line 330. The game f"j
can be made more difficult by assigning a smaller number to ^
MH in line 305. Finally, for a real workout, try adding sound

effects to the game. j^j

122

u

Chapter 9

Data

Storage

Data Storage
Assigning Variables with READ and DATA

Up until now we have used only the LET statement to assign

values to variables. You may recall how we had to assign a lot

of hardware addresses to variables for use in sound

•"""] demonstrations. This entailed one LET statement after another.
Another way to do this would be to use the statements READ

and DATA.

The READ statement tells which variables are to be

assigned values. The DATA statement contains the values to

be assigned. These two statements work together to assign

values to variables. Here is an example of how a variable

could be assigned using LET.

10 MV=54296 :rem 75

Using READ and DATA, two statements would be required.

10 READ MV :rem 32

20 DATA 54296 :rem 134

The READ tells the computer that the variable MV is to be

assigned. The computer scans the whole program, starting at

the first line, until it comes to a DATA statement. The value

after the keyword DATA is assigned to the variable specified

by READ.

The DATA statement does not have to be after the READ.

The example would work just the same if it were rewritten

with the DATA statement before the READ.

10 DATA 54296 :rem 133

20 READ MV :rem 33

By itself, a DATA statement does nothing. When the computer

comes across a DATA statement in the course of executing a

program, it ignores the statement, just as it ignores a REM

fi statement. Unlike REM, however, other statements can be put
after a DATA statement on the same line.

The advantage to using READ and DATA instead of LET

j| is that several variables can be assigned with one READ state
ment. This is because READ can be followed by a variable list,

a bunch of variable names separated by commas. The next

I | line shows the assignment of six variables using LET.

10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT
j—| =54276 :rem 163

125

Data Storage

Using READ and DATA, the assignment is again accom-

plished with two statements.

10 READ MV,AD,SR,FL,FH,CT :rem 221 M
20 DATA 54296,54277,54278,54272,54273,54276

:rem 134 __

Here is what happens. When the computer finds the READ II

statement, it looks at the first variable name after the keyword

READ. Then it looks at the first number following the

keyword DATA in the DATA statement. This value is assigned

to the specified variable. If there are more variables indicated

by the READ statement, the second variable is assigned the

second value in the DATA statement, and so on. The whole

process keeps repeating, until all of the variables have been

assigned. Each time, the next number in the DATA statement

is used.

A single READ statement does not have to be followed by

as many variable names as there are numbers in the DATA

statement. There can be several READ statements in a pro

gram, with each one assigning just a few variables. Values

which are not read the first time that a READ is executed

might get read the second time.

10

20

30

READ

DATA

READ

A,

If
c,

B

2,

D

:

3

:

PRINT

,4

PRINT

A :

C :

PRINT

PRINT

B

D

:rem

:rem

:rem

61

202

71

Only the first two numbers of the DATA are read by line 10.

But the computer remembers at which point reading stopped.

The next time a READ is executed, the computer picks up

where it left off in the DATA statement. In the above example,

variables C and D get assigned the values 3 and 4.

There can also be several DATA statements in one pro

gram. When more than one is used, the first one in the pro

gram gets priority. Adding this line to the example program

will completely change the values assigned to A, B, C, and D. LJ

15 DATA 7,8,9,10 :rem 13

Because this line is numbered 15, these data values will be LJ
read before those in line 20. But when all of the values of line

15 have been read, the DATA statement of that line is no r _

longer of any use, and future data will be read from line 20. j_J
When you add the following line to the program, the variable

E should be assigned the value 1.

LJ
126

u

n

n Data Storage

40 READ E : PRINT E :rem 209

^ It is okay for a program to end without all of the data having

; I been read. No error message will be printed.

In this example, the data values 2, 3, and 4.are left unread

when the program ends.

sl On the other hand, if a program tries to read more values
than are available in DATA statements, there is a definite
problem.

10 READ A : PRINT A :rem 198

20 READ B : PRINT B :rem 201

30 READ C : PRINT C :rem 204

40 DATA 6,4 :rem 20

All of the data values have been read after line 20 is executed.

When the READ in line 30 attempts to assign the variable C,

an OUT OF DATA error message is printed.

When reading numeric data, no variable names or

expressions are allowed in DATA statements. Only numbers

can be used, and they must be separated by commas. A line

like DATA 2+3 will produce a SYNTAX ERROR and report

the line number of the DATA statement. If the computer reads

two commas with no number in between, it assumes the num

ber 0.

Summary

• The READ and DATA statements offer an alternative

method for assigning values to variables.

• The syntax for the READ statement is the keyword READ

followed by a list of variable names, called a variable list.

Each variable name would be to the left of the equal sign if

a LET statement were used. When more than one variable

P* name is used in a READ statement, the variable names are

, i separated by commas.

• The syntax for the DATA statement is the keyword DATA

•—I followed by one or more numbers. If several numbers are

i I used, they are separated by commas. Two consecutive com
mas are read as the number 0. Only constant values can

r^ be used; variables or expressions cannot be placed in DATA

! statements.

• The READ statement is the one that does all the action. The

|—j variables are assigned when the READ is executed. The

127

u

Data Storage , •,

Lj

DATA statement just supplies values for READ. The com- '—•

puter ignores the DATA statement unless a READ statement

is being executed. For that reason, DATA statements are » ,

often placed at the end of a program, out of the way of LJ
other statements.

• The first value in a DATA statement is the first one that is j i

assigned to a variable. The computer remembers which ■—'
values in a DATA statement have already been read. If more

than one READ statement is executed, the second READ will

start with the next value not yet read.

• If there is more than one DATA statement, reading will start

with the one which has the lowest line number. Once all of

the values in that statement have been read, future values

will be read from the next DATA statement.

• An attempt to assign more values than are available in

DATA statements will result in the OUT OF DATA error.

READ and DATA in Loops

The ability to quickly assign values to different variables is

handy, but this is not the most important use of READ and

DATA. The real power of these statements becomes evident

when they are used to assign different values to the same vari

able, one value after another. This is done in a loop.

10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT

=54276 :rem 163

20 POKE MV,15:POKE AD,0:POKE SR,168 :rem 233

30 READ F :rem 197

40 POKE FL,F-256*INT(F/256) : POKE FH,INT(F/256)

:rem 74

50 POKE CT,33 : A=TI : POKE CT,32 :rem 163

60 IF TI-A < 30 GOTO 60 :rem 62

70 GOTO 30 :rem 3

90 DATA 1607,2025,2145,1804,2408,2145,2025,1804

:rem 23) ,

Here is a case where READ is being used to do something

which could never be done with LET. The program plays

notes with different frequencies for a musical bass line. An |_j
equivalent program that did not use READ and DATA would

be considerably longer, and a loop could not be used.

There is a problem with this program, though. Because it j j

uses GOTO to create an infinite loop, an error occurs when

the program runs out of data. This is a sloppy way of ending a

LJ
128

U

Data Storage

program. We can avoid the error by using conditional logic

to check when the last data value has been used. A simple

f—j change to line 70 will do.

70 IF F<>1804 GOTO 30 :rera 31

PI With this change, the program should loop back to line 30

1 s every time except the last time, when the program will end
normally. Try it.

Even though the OUT OF DATA error never occurs in the

modified program, there is still a problem. The program ends

prematurely, after playing only four notes. This is because the

last data value is the same as the fourth one. The way the pro

gram is written, it will end after the first 1804, and never get

to the last one. In solving the problem of running out of data,

we have created a new one: not using all of the data. The idea

of using IF-THEN to end the loop is a good one; the problem

is in the value being checked. The solution is to use a value

that is called a flag as the last number in the DATA statement.

Make the following changes to the program:

30 READ F : IF F=-999 THEN END :rem 239

70 GOTO 30 :rem 3

90 DATA 1607,2025,2145,1804,2408,2145,2025,1804,-9

99 :rem 27

The value —999 is never used in the POKE statement. Its only

purpose is to indicate when all of the data has been read.

Unlikely values are often used as flags; in the example, —999

would never be used as a POKE value. By using the technique

of flag data values, we've resolved the problems of using

READ and DATA in loops.

Summary

—_ • The real advantage of using READ to assign variables is that

M it can be used in a loop to assign different values to the same
variable. The LET statement cannot do this.

.—I • Using infinite loops does create the problem of running out

i i of data, though, so conditional logic must be used to deter
mine when there is no more data to be read.

—i • The best technique for finding the end of data is to use a

flag value. This is an out-of-range value that would normally

not be used as data. As soon as the program reads this

p| value, the loop is done.

129

u

Data Storage , ;
LJ

| i

The RESTORE Statement —

Once all values in all DATA statements have been read, trying

to read any more causes the OUT OF DATA error. So if you jj
want a program to read the same sequence of numbers more

than once, you need a way to reset the pointer to the first

DATA statement, as if the program had just started running. ; j

That is the purpose of the RESTORE statement. RESTORE *—'
causes the next READ statement to take the first value of the

first DATA statement in the program, and further reading will

continue from that point. Make the following change to the

demonstration program from the last section:

30 READ F : IF F=-999 THEN RESTORE : GOTO 30

:rem 18

Now the bass line repeats forever, with no OUT OF DATA

error.

All the data in a program does not have to be read before

RESTORE is used. RESTORE will reset the data pointer back

to the first value in the program no matter how much data has

been read.

The statement CLR automatically performs a RESTORE,

and so does the command RUN. By itself, RESTORE is not a

frequently used statement.

y

• The RESTORE statement resets the data pointer so that

reading will start from the first value in the first DATA

statement of the program. This makes it possible to use

READ in an infinite loop without getting an OUT OF DATA

error.

• It does not matter how much data has already been read

when RESTORE is used. The data pointer will always be

restored to the initial state when the program started [j
running.

• The CLR statement automatically performs a RESTORE.

Because the RUN command does a CLR before starting pro- lj

gram execution, RUN also performs a RESTORE.

• The RESTORE statement is used only with READ and , -

DATA, and even then it's not used very often. LJ

130

u

n

n Data Storage

Music Demonstration

To demonstrate one application of READ and DATA in loops,

I | here are some short tunes for your listening pleasure. The first

listing is the main playing program. Enter this short program

and save it using the filename "PLAYER". Then, for each

\\ tune, load the player, enter the appropriate DATA statements,
and type RUN to hear the music.

Player

100 PRINT "MUSIC PLAYER" : PRINT :rem 119

110 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:C

T=54276:PW=54275 :rem 249

120 READ T1,T2,E1,E2,WF : POKE MV,15 :rem 146

130 POKE AD,El : POKE SR,E2 : REM ENVELOPE :rem 23

140 IF WF=64 THEN READ W : POKE PW,W : REM PULSE W

IDTH :rem 196

150 READ F : IF F<0 THEN END :rem 121

160 A=TI : IF F>0 THEN POKE FL,F AND 255 : POKE FH

,F/256 : POKE CT,WF+1 :rem 90

170 IF TI-A < Tl GOTO 170 irem 196

180 POKE CT,WF : A=TI :rem 125

190 IF TI-A < T2 GOTO 190 :rem 201

200 GOTO 150 :rem 97

London Data

300 DATA 20,3,85,172,64,8 : REM LONDONDERRY AIR

:rem 17

310 DATA 0,4143,4389,4927,5530,0,0,4927,5530,7382,

6577,5530,4927,4389,3691,0 :rem 231

320 DATA 0,4389,5530,5859,6577,0,0,7382,6577,5530,

4389,5530,4927,0,0,0 :rem 177

330 DATA 0,4143,4389,4927,5530,0,0,4927,5530,7382,

6577,5530,4927,4389,3691,3288 :rem 142

340 DATA 3691,4143,4389,4927,5530,0,0,5859,5530,49

27,4389,4927,4389,0,3288,0 :rem 248

350 DATA 2195,6577,7382,8286,8779,0,0,8286,8286,73

82,6577,5530,6577,5530,4389,0 :rem 179

360 DATA 0,6577,7382,8286,8779,0,0,8286,8286,7382,

6577,5530,4927,0,0,0 :rem 203

370 DATA 0,6577,7382,6577,11060,0,0,9854,9854,8779

,7382,8779,6577,5530,4389,0 :rem 74

380 DATA 0,4143,4389,4927,5530,0,0,5859,5530,4927,

4389,4927,4389,0,3288,0 :rem 89

390 DATA 2195,0,0,0,-1 :rem 37

131

Data Storage . i

Lj

Early Data U
300 DATA 14,4,148,194,16 : REM EARLY ONE MORNING

:rem 47 j]

310 DATA 8779,0,8779,8779,8779,11060,13153,13153,1 LJ
4764,11718,9854,8779 :rem 241

320 DATA 8286,9854,6577,0,8779,0,8779,8779,8779,11

060,13153,13153 :rem 236 ^ j
330 DATA 14764,11718,9854,8286,8779,0,0,0,9854,0,1 ^

1060,11718 :rem 193

340 DATA 13153,11060,8779,0,9854,0,11060,11718,131

53,11060,8779,0 :rem 161

350 DATA 8779,11060,13153,17557,16572,14764,13153,

11718 :rem 205

360 DATA 11060,9854,8779,8286,8779,0,0,0,-1

:rem 105

Bass Data

300 DATA 10,2,38,168,32 : REM CLASSIC BASE LINE

:rem 194

310 DATA 1465,0,0,0,1845,0,0,1955,2071,2195,0,2195

,0,0,0,0 :rem 4

320 DATA 1465,1845,1955,2071,2195,1644,1097,2195,1

465,1845,1955,2071 :rem 85

330 DATA 2195,2195,0,0,2195,0,0,2195,0,2195,2463,2

195 :rem 57

340 DATA 732,0,923,0,1097,0,1232,0,1465,0,1232,0,1

097,0,923,0 :rem 159

350 DATA 978,0,732,0,978,0,1097,0,1232,0,1465,0,12

32,0,1097,0 :rem 180

360 DATA 0,1465,1383,1465,1097,1232,1097,1232,1465

,0,1305,0,1232,0,1097,0 :rem 10

370 DATA 1465,1465,1383,1465,1097,1232,1097,1232,1

465,1305,0,0,1232,1163,0,0 :rem 165

380 DATA 1097,1097,0,1097,0,1097,0,1097,1097,0,0,1

644,2195,0,0,691 :rem 191

390 DATA 732,0,923,0,978,0,1036,0,1097,1232,1383,0

,1465,0,0,0,-1 :rem 56

jj

Mozart Data ^
300 DATA 10,2,85,168,64,2 :rem 196

310 DATA 4927,0,0,3691,4927,0,0,3691,4927,3691,492 M

7,6207,7382,0,0,0 :rem 6

320 DATA 6577,0,0,5530,6577,0,0,5530,6577,5530,465

0,5530,3691,0,0,0 :rem 244 ; j

330 DATA 4927,0,4927,0,0,6207,5530,4927,4927,4650, *—'

4650,0,0,5530,6577,4650 irem 59

340 DATA 5530,4927,4927,0,0,6207,5530,4927,4927,46

50,4650,0,0,5530,6577,4650 :rem 217 [J

132

Data Storage

350 DATA 4927,4927,4927,4650,4927,4927,6207,5530,6

207,6207,7382,6577,7382,0,0,0 :rem 142

360 DATA 4143,0,0,5530,4927,4650,4143,4650,4927,0,

6207,0,4927 :rem 215

370 DATA -1 :rem 18

Yankee Data

300 DATA{2 SPACES}8,1,20,166,16 : REM YANKEE DOODL
E :rem 190

310 DATA 13153,13153,14764,16572,13153,16572,14764

,9854 :rem 201

320 DATA 13153,13153,14764,16572,13153,0,12415,0

:rem 66

330 DATA 13153,13153,14764,16572,17557,16572,14764

,13153 :rem 250

340 DATA 12415,9854,11060,12415,13153,0,13153,0

:rem 11

350 DATA 11060,12415,11060,9854,11060,12415,13153,

0 :rem 207

360 DATA 9854,11060,9854,8779,8286,0,9854,0

:rem 132

370 DATA 11060,12415,11060,9854,11060,12415,13153,

11060 :rem 153

380 DATA 9854,13153,12415,14764,13153,0,13153,0,-1

:rem 167

Susannah Data

300 DATA 15,3,20,169,32 : REM OH SUSANNAH :rem 115

310 DATA 0,0,2930,3288,3691,4389,4389,4927,4389,36

91,2930,3288 :rem 60

320 DATA 3691,3691,3288,2930,3288,0,2930,3288,3691

,4389,4389,4927 :rem 221

330 DATA 4389,3691,2930,3288,3691,3691,3288,3288,2

930,0,0,0 :rem 144

340 DATA 3910,0,3910,0,4927,4927,0,4927,4389,4389,

3691,2930 :rem 146

350 DATA 3288,0,2930,3288,3691,4389,4389,4927,4389

,3691,2930,3288 :rem 229

360 DATA 3691,3691,3288,3288,2930,0,0,0,-1 :rem 31

Knock Data

300 DATA 4,4,0,192,128 : REM THE END :rem 2

310 DATA 3288,0,0,2463,2195,2463,2765,0,0,2463,0,0

,0,0,0,3104,0,0,3288,0,0,-1 :rem 156

133

u

Data Storage , j

The tunes have been stored in a spedal format. The first —'
DATA statement sets various parameters that stay in effect for

the whole song. The remaining DATA statements control the ;)

individual notes. L-'

The tempo of a piece of music determines how quickly

the notes are played. In our simple player program, the tempo \)

is controlled by the duration of each note. The variable Tl s—'

tells how many sixtieths of a second should be placed between

the attack and release of a note. Variable f2 indicates how
many sixtieths of a second come between the release of the

note and the attack of the next note. The values for Tl and T2

are the first two numbers in the first DATA statement. Making

these values larger or smaller will decrease or increase the

tempo.

The next two values in the first DATA statement are read

into the variables El and E2, which control the envelope.

These variables correspond to the locations AD (attack and

decay) and SR (sustain and release). Remember that each

parameter has a range from 0 to 15, and the first one of each

pair must be multiplied by 16. An attack rate of 2 with a

decay rate of 3 means that the third number in the DATA

statement would be 2*16+3, which equals 35.

The last number is for the waveform; it can be 16, 32, 64,

or 128. If it is 64, which designates the pulse wave, an addi

tional number will be read, to specify the pulse width.

The remaining DATA statements contain note informa

tion. There is one frequency number for each note. Notice

how the AND operator is used in line 160 to separate the fre

quency number into low and high bytes. This method is sim

pler than using the integer function, but because the AND

operator works only on numbers up to 32767, the frequency

range is not as great.

A frequency number of 0 indicates a rest. A rest has the j (

duration of a normal note, but no tone is produced. Negative w

numbers flag the end of a tune.

Redefining the Character Set U
When you look at the numbers 24, 60, 102, 126, 102, 102,

102, and 0, they do not seem to have any special meaning.

Even when you represent them in binary form (00011000, LJ

00111100, 01100110, 01111110, 01100110, 01100110,

01100110, and 00000000), there does not seem to be any

1 >

134

H

H Data Storage

n

significance to them. But if you look at them stacked vertically,

you will notice that these numbers are indeed special.

00011000

00111100

01100110

01111110

01100110

01100110

01100110

00000000

m

pa

n

H

r

The bit patterns of these numbers form the letter A. Where a

bit is set, the character color shows. Where a bit is clear, the

background color shows through. The eight rows of bytes and

eight columns of bits create an 8 by 8 matrix which is suf

ficient to define the image for any character. Each character

that can be displayed on the screen has its own set of eight

numbers. Collectively, these character definitions form what is

called a character set. By changing the numbers for a character,

you can change its shape to create an entirely different image.

This section shows you how to redefine the characters in a

character set.

To set up a character set in memory so that it can be

changed, you must follow a certain procedure. To illustrate

that procedure, enter this program, SAVE it to disk or tape,

LIST it, and then RUN it. If you RUN the program a second

time, it will appear as if nothing is happening. This is because

the character set has already been moved during the first run.

If you wish to see the characters change a second time, turn

off your computer then turn it back on and reLOAD the

program.

Moveset

10 POKE 56,48 : CLR : REM RESERVE MEMORY :rem 193

20 POKE 53272,(PEEK(53272)AND240)OR12 : REM SELECT

CHARACTER SET :rem 78

30 POKE 56334,PEEK(56334)AND254 : REM DISABLE KEYB

OARD :rem 15

135

Data Storage

40 POKE 1,PEEK(1)AND251 : REM ACCESS STANDARD CHAR ~"

ACTERS :rem 3

50 K=0 : REM START AT BEGINNING OF NEW CHARACTER S i]

ET :rem 231 LJ

60 POKE 12288+K,PEEK(53248+K) : K=K+1 : IF K<512 G

OTO 60 :rem 30

70 POKE 1/PEEK(1)OR4 : POKE 56334,PEEK(56334)OR1 : t J

END * :rem 103 ^—'

At first, all of the characters on the screen will be changed to

very unusual shapes. Then, one by one, each character will be

defined, until the first 64 characters have been moved into

memory starting at location 12288. Since the cursor is not one

of these characters, it is not properly defined, but this will not

affect the operation of the computer. Also, the amount of free

memory has been greatly reduced, which can be verified by

using the free memory function. Advanced methods beyond

the scope of this book let you get around this limitation.

To redefine a single character, such as the letter A, you

must first locate its set of eight bytes. The location of the

defining bytes for a character is determined by the screen

POKE value for the character. The first eight bytes define

character 0, the next eight bytes define character 1, and so on.

Since the letter A appears on the screen when you POKE

screen memory with the value 1, the definition for this charac

ter must be stored in the second set of eight bytes, from loca

tions 12288+ 8 to 12288+ 15. Enter the following two lines to

turn the letter A upside down.

POKE 12296,102:POKE 12297, 102:POKE 12298,102:POKE

12299,126

POKE 12300,102:POKE 12301,60:POKE 12302,24

Only the letter A was inverted; none of the other characters

was affected. Now, wherever an A appears on the screen, it is .

upside down. Try POKEing some other values into these loca- LJ
tions to see how the eight bytes correspond with the character

definition. L

With a few modifications to the original program, you can _!

invert all of the characters.

Invertset U
10 POKE 56,48 : CLR : REM RESERVE MEMORY :rem 193

20 POKE 53272,(PEEK(53272)AND240)OR12 : REM SELECT .

CHARACTER SET :rem 78 LJ

136

u

n

n

n

n

n

n

Data Storage

30 POKE 56334,PEEK(56334)AND254 : REM DISABLE KEYB

OARD :rem 15

|—1 40 POKE 1,PEEK(1)AND251 : REM ACCESS STANDARD CHAR

1 ' ACTERS :rem 3
50 K=0 : REM START AT BEGINNING OF NEW CHARACTER S

ET :rem 231

j] 60 J=0 :rem 29
70 POKE 12288+K+J,PEEK(53248+7+K-J) : J=J+1 : IF J

<8 GOTO 70 :rem 11

80 K=K+8 : IF K<512 GOTO 60 :rem 37

90 POKE 1,PEEK(1)OR4 : POKE 56334,PEEK(56334)OR1 :

END :rem 105

Of course, it is very difficult to read anything that is

upside down on the screen. The fastest way to restore the

character set is to press RUN/STOP and RESTORE, but you

will have to run the set-moving program again before redefin

ing any more characters.

There are many practical applications for redefined

characters. The first use is to create stylized lettering. It adds a

nice touch to a program when instructions and scores are

printed in something other than the normal characters. Here

are two examples of different lettering styles. The first pro

gram gives the letters a fancy look, and the second gives the

appearance of scanner-readable printing (also known as com

puter type), such as is found on the lower-left margin of

checks.

Fancyset

10 POKE 56,48 : CLR : REM RESERVE MEMORY :rem 193

20 POKE 53272,(PEEK(53272)AND240)OR12 : REM SELECT

CHARACTER SET :rem 78

30 K=12288 :rem 240

40 READ P : POKE K,P : K=K+1 : IF K<12800 GOTO 40

:rem 81

50 END :rem 60

800 DATA 0,60,102,110,110,96,62,0,0,24,60,102,102,

126,102,0,0,252,102,124 :rem 187

801 DATA 102,102,252,0,0,62,102,96,96,102,60,0,0,2

52,102,102,102,102,252,0,0 :rem 82

802 DATA 254,98,120,96,98,254,0,0,254,98,120,96,96

,240,0,0,124,196,192,222,204 :rem 16

803 DATA 124,0,0,102,102,126,102,102,102,0,0,126,2

4,24,24,24,255,0,0,30,12,12 :rem 118

804 DATA 12,204,120,0,0,247,108,120,120,108,246,3,

0,240,96,96,96,98,254,0,0,198 :rem 35

n

Data Storage

u

805 DATA 238,254,214,198,198,0,0,231,118,126,110,1 ^—»
02,231,0,0,60,102,102,102,102 :rem 4

806 DATA 60,0,0,252,102,102,124,96,240,0,0,60,102, ,

102,102,108,54,1,0,252,102 :rem 87 LJ

807 DATA 102,124,108,246,3,0,62,96,60,6,6,124,0,0,

255,153,24,24,24,60,0,0,102 :rem 163

808 DATA 102,102,102,102,60,0,0,102,102,102,60,60, I I

24,0,0,198,198,214,254,238 :rem 110 L-1
809 DATA 198,0,0,231,102,60,60,102,231,0,0,231,98,

52,24,24,60,0,0,254,140,24 :rem 109

810 DATA 48,98,254,0,0,30,24,24,24,24,30,0,0,64,96

,48,24,12,6,0,0,120,24,24,24 :rem 210

811 DATA 24,120,0,0,16,56,108,198,0,0,0,0,0,0,0,0,

0,255,0,0,0,0,0,0,0,0,0,0,24 :rem 124

812 DATA 24,24,24,0,24,0,0,102,102,102,0,0,0,0,0,1

02,255,102,102,255,102,0,24 :rem 104

813 DATA 62,96,60,6,124,24,0,0,102,108,24,48,102,7

0,0,28,54,28,56,111,102,59 :rem 134

814 DATA 0,56,56,24,48,0,0,0,0,12,24,24,24,24,24,2

4,12,48,24,24,24,24,24,24,48 :rem 213

815 DATA 0,102,60,255,60,102,0,0,0,24,24,126,24,24

,0,0,0,0,0,0,0,24,24,48,0,0 :rem 107

816 DATA 0,126,0,0,0,0,0,0,0,0,0,24,24,0,0,6,12,24

,48,96,64,0,0,60,102,110,118 :rem 159

817 DATA 102,60,0,0,24,56,24,24,24,60,0,0,60,102,1

2,48,98,126,0,0,126,76,24,12 :rem 209

818 DATA 102,60,0,0,12,28,60,108,126,12,0,0,126,98

,124,6,102,60,0,0,60,96,124 :rem 160

819 DATA 102,102,60,0,0,126,70,12,24,48,48,0,0,60,

102,60,102,102,60,0,0,60,102 :rem 181

820 DATA 62,6,12,56,0,0,0,24,24,0,24,24,0,0,0,24,2

4,0,24,24,48,6,12,24,48,24,12 :rem 232

821 DATA 6,0,0,0,126,0,0,126,0,0,96,48,24,12,24,48

,96,0,0,60,102,12,24,0,24,0 :rem 134

Computerset

10 POKE 56,48 : CLR : REM RESERVE MEMORY :rem 193 ,

20 POKE 53272,(PEEK(53272)AND240)OR12 : REM SELECT LJ
CHARACTER SET «rem 78

30 K=12288 srem 240

40 READ P : POKE K,P : K=K+1 : IF K< 12800 GOTO 40 M
:rem 81

50 END :rem 60

800 DATA 127,99,111,111,111,96,127,0,63,51,51,127, , .

115,115,115,0,126,102,102 :rem 75 LJ
801 DATA 127,103,103,127,0,127,103,103,96,99,99,12

7,0,126,102,102,119,119,119 :rem 198

138

U

n

p Data Storage

n

n

n

802 DATA 127,0,127,96,96,127,112,112,127,0,127,96,

96,127,112,112,112,0,127,99 :rem 208

803 DATA 96,111,103,103,127,0,115,115,115,127,115,

115,115,0,127,28,28,28,28,28 :rem 237

804 DATA 127,0,12,12,12,14,14,110,126,0,102,102,10

8,127,103,103,103,0,48,48,48 :rem 199

805 DATA 112,112,112,126,0,103,127,127,119,103,103

,103,0,103,119,127,111,103 :rem 103

806 DATA 103,103,0,127,99,99,103,103,103,127,0,127

,99,99,127,112,112,112,0,127 :rem 246

807 DATA 99,99,103,103,103,127,7,126,102,102,127,1

19,119,119,0,127,96,127,3,115 :rem 53

808 DATA 115,127,0,127,28,28,28,28,28,28,0,103,103

,103,103.103,103.127,0,103 :rem 123

809 DATA 103,103,103,111,62,28,0,103,103,103,111,1

27,127,103,0,115,115,115,62 :rem 152

810 DATA 103,103,103,0,103,103,103,127,28,28,28,0,

127,102,108,24,55,103,127,0 : rein 155

811 DATA 30,24,24,24,24,24,30,0,64,96,48,24,12,6,3

,0,120,24,24,24,24,24,120,0 :rem 151

812 DATA 0,8,28,54,99,0,0,0,0,0,0,0,0,0,255,0,0,0,

0,0,0,0,0,0,56,56,24,24,0,24 :rem 146

813 DATA 24,0,238,238,68,68,0,0,0,0,102,255,102,10

2,255,102,0,0,24,62,96,60,6 :rem 167

814 DATA 124,24,0,0,102,108,24,48,102,70,0,28,54,2

8,56,111,102,59,0,24,24,24 :rem 118

815 DATA 0,0,0,0,0,30,24,24,56,56,56,62,0,120,24,2

4,28,28,28,124,0,0,102,60,255 :rem 249

816 DATA 60,102,0,0,0,24,24,126,24,24,0,0,0,0,0,0,

0,24,24,48,0,0,0,126,0,0,0 :rem 44

817 DATA 0,0,0,0,0,0,24,24,0,3,6,12,24,48,96,64,0,

127,99,99,99,99,99,127,0,56 :rem 210

818 DATA 24,24,24,62,62,62,0,127,3,3,127,96,96,127

,0,126,6,6,127,7,7,127,0,112 irem 246

819 DATA 112,112,112,119,127,7,0,127,96,96,127,3,3

,127,0,124,108,96,127,99,99 :rem 227

820 DATA 127,0,127,3,3,31,24,24,24,0,62,54,54,127,

119,119,127,0,127,99,99,127 :rem 204

H 821 DATA 7,7,7,0,60,60,60,0,60,60,60,0,60,60,60,0,
1 ' 60,60,24,48,6,12,24,48,24,12 :rem 206

822 DATA 6,0,0,126,0,0,126,0,0,0,96,48,24,12,24,48

,—| ,96,0,127,99,3,31,28,0,28,0 :rem 166

Again, these programs redefine only the first 64 characters, so

—I characters such as the graphics symbols and reverse characters
will not be defined.

You may want to go beyond the variations of characters

_ and create new ones. This would be done to accommodate
H

139

Data Storage

some alphabets which use letters and symbols not in the nor

mal character set. You might redefine some of the less com

monly used punctuation marks or graphics symbols to get the

additional characters.

You may also choose to completely forget about letters

and other symbols, and define some entirely new shapes.

Consider the Hurkle game, in which the ball character was

used for the falling Hurkle. A character could be easily

redefined to have arms or legs. Just draw the shape on an 8 by

8 grid, add up the bit values, and use the results in POKE

statements. See the section on binary numbers for more

detailed information. Also, there is a binary-to-decimal conver

sion program on page 78 of the Commodore 64 User's Guide.

The example given here shows how to redefine the letter A so

that it is a funny face. Remember to run the program above

that moves the character set, before entering the POKE

statements.

!'■ ■ -1

' -.1

1 "^

1 ■ Vd

i- ^
¥;•■'"

: 4

m

: \

""• V;"-'

11000011 128+ 64+ 2+ 1 = 195

01100110 64+32+4+2= 102

11111111 =255

11011011 128+64+16+8+2+1=219

11100111 128+64+32+4+2+1=231

11000011 128+64+2+1 = 195

01111110 64+32+16+8+4+2= 126

00000000 =0

POKE 12296,195:POKE 12297,102:POKE 12298,255:POKE

12299,219

POKE 12300,231:POKE 12301,195:POKE 12302,126:POKE

12303,0

After you've entered these two lines, the letter A will have

been changed to a little face character. You may have to

change the screen colors to get the best effect.

There is one precaution you should take when creating

the image for a new character. In the definition for the funny

face, the bits in each row are organized so that no single bit is

by itself. The bits occur in groups, with at least two bits in

each group. This is to avoid a phenomenon called chroma

noise, which happens when one bit is displayed without any

140

u

u

u

u

u

n

j—j Data Storage

n
horizontally adjacent bits. For an example of chroma noise,

consider the bit pattern 01010101, which is decimal 85.

H POKE 12288,85:POKE 12289,85:POKE 12290,85:POKE
12291,85

POKE 12292,85:POKE 12293,85:POKE 12294,85:POKE

H 12295,85

The result is a square character which alternates between two

colors, depending on the column in which it is printed. It is

best to avoid this effect by always using bit groups at least

two bits wide in each row. The problem does not occur

vertically.

Sometimes an 8 by 8 matrix is not large enough to repre

sent a desired shape, so two or more characters must be used.

The following lines redefine the letters A and B to look like a

ship.

POKE 12296,12:POKE 12297,12:POKE 12298,12:POKE

12299,12

POKE 12300,255:POKE 12301,127:POKE 12302,63:POKE

12303,15

POKE 12304,192:POKE 12305,192:POKE 12306,192:POKE

12307,220

POKE 12308,255:POKE 12309,254:POKE 12310,253:POKE

12311,240

Multiple redefined characters are often used to create back

ground scenes, such as different types of terrains.

Multicolor Mode

Now that you know how to redefine a character set, there is

one last feature of character graphics to be introduced. Nor

mally, a character image can be only one color, with the back-

n ground color showing through gaps in the image.

The extended background color mode gives you three

additional background colors, but you are still limited to only

none color for every character image. It is possible to get more

than one color, though, by playing with the chroma noise

effect. RUN the character set redefining program (Moveset

f—I without line 5) from the last section before entering the

n

following lines.

POKE 12296,85:POKE 12297/85:POKE 12298,85:POKE

12299,85

141

u

Data Storage i >

POKE 12300,170:POKE 12301,170:POKE 12302,170:POKE

12303,170

The numbers 85 and 170 have bit patterns 01010101 and jj
10101010. The top half of what used to be the letter A should

now be one color, and the bottom half should be another

color. Unfortunately, this method is not very useful, because j j
the colors are very weak and change with the position of the

character on the screen. Therefore, the graphics chip supports

another special mode, called multicolor mode, which lets each

character contain up to three image colors, not just one. Most

importantly, you have full control over each color.

Clear the screen, make sure the cursor is the normal light

blue color (press Commodore-7 if not), fill about half of the

top row with the redefined letter A, and then move the cursor

down one row. Now turn on the multicolor mode with the

following statement:

POKE 53270,PEEK(53270)OR16

Set the cursor color to white and enter these two lines (be

careful; you will be entering these lines without being able to

see the characters on the screen):

POKE 53282,13

POKE 53283,7

Now you can change the individual colors within the same

character. Locations 53282 and 53283 are for background col

ors 1 and 2, respectively. The full range of colors, 0 to 15, can

be POKEd into these locations.

As in the normal mode, the bit patterns determine which

parts of the character display which colors, but since there are

now multiple colors, the bit patterns must be interpreted a lit

tle differently. The key is to separate the bits into pairs. A byte

can be divided into four pairs of bits. Each bit-pair indicates j ,

which color is displayed for that point. LJ

Bit Pattern Color

00 background color 0 (location 53281) I I

01 background color 1 (location 53282) ^
10 background color 2 (location 53283)

11 color memory (locations 55296 to 56295) jj

Enter the following lines to make the character for letter A dis

play all four colors.

142

u

n

n Data Storage

n
POKE 12296,0:POKE 12297,0

POKE 12298,85:POKE 12299,85

H POKE 12300,170:POKE 12301,170
POKE 12302,255:POKE 12303,255

n Because bit-pairs are used, each byte can hold information for

only four points instead of the usual eight. To compensate for

the reduced number of points, each point is twice the normal

width, so multicolor mode characters appear to be the same

size as normal characters.

As an added feature, you can select which characters are

to be displayed in multicolor mode. For each character, the

bits will be interpreted in the multicolor mode only if the color

memory location for that character contains a value greater

than seven. This is why we suggested that you change the

cursor to the color white. White corresponds to color 2, so all

white characters are displayed normally. This does create one

restriction, though. When multicolor mode is enabled, colors

specified by color memory are limited to the range from 0 to

7. Colors 8 to 15 select the multicolor mode for that character,

but the actual colors will be the same as those from 0 to 7. A

10 (8+2) in memory location 55296 means that the top left

character should be displayed in multicolor mode, and that the

color for bit pattern 11 should be 2. So, for every color mem

ory location, use colors from 0 to 7, and add 8 if you want the

character to be displayed in multicolor mode, using the addi

tional colors from background color locations 2 and 3.

To turn off the multicolor mode, use the following

statement:

POKE 53270,PEEK(53270)AND239

n

n

H

r—

143

n

n

n Input
— The Concept of Input

I I Input occurs when information that is outside the computer is
brought inside. Examples of input that we have observed so

nfar include typing programs into memory from the keyboard,

loading programs from disk or tape, and using a joystick to

tell a program which way to move a screen character. The

converse, output, is performed when information inside the

computer is sent outside, as when information is printed on

the screen or stored to disk or tape.

Now let's look in more detail at some ways input and

output allow you to interact with a program while it's run

ning, to provide it with information and get information in

return. A program communicates with the user via the screen,

which is an output device. You already have communicated

with a program via the joystick, but the joystick is an input

device that is very limited in its range. Very little information

can be given to the computer using the joystick. The key

board, on the other hand, can supply a lot of information. It

can generate a lot of characters, but more importantly, the

characters can be combined to form numbers and words. The

keyboard is an excellent input device.

In order to better understand the keyboard's value, we

must ask some new questions. How can a program input

information from the keyboard? And when the program gets

the information, how does it handle it? How is the informa

tion stored?

First, consider the characteristics of the incoming informa

tion. Let's say that the user is supposed to specify some

numeric value. The program has no way of knowing what that

number might be. And every time the user specifies a number,

nit could be different from the previous one. Changing values

of undetermined range is a job for variables. Variables are

used to control many aspects of a program, from setting things

nlike color and pitch to counting loops. If there is a way for a

user to change the values of some variables while a program is

running, that could have a profound effect on the program.

n The program will be more flexible, useful, and interactive.

I ! This chapter introduces two statements which allow the user
to set the values of variables while a program is running,

—- without the user having to know anything about BASIC.

_ 147

Input

The GET Statement

The GET statement provides a means for directly transferring

a keystroke to a variable. If you press any digit from 0 to 9

and then use GET, that value, from 0 to 9, will be assigned to

a designated variable. Give it a try.

10 GET A :rem 130 v_.

20 PRINT A; "{2 SPACES}11; :rem 234

30 GOTO 10 :rem 253

As you pressed the number keys, the corresponding numbers

were printed on the screen by line 20. But most of the screen

was filled with the value 0. This is because a keypress can be

fetched by the GET statement only once. Because the com

puter operates so quickly, it is impossible to type fast enough

to press a key every time GET is executed, so most of the time

the variable is assigned the default value of 0.

Try pressing a nonnumeric key, such as the letter A,

while this program is running. The program will stop with a

SYNTAX ERROR. You cannot specify a variable or non-

numeric key using this form of GET; only a numeral is accept

able. For example, if you know that the program contains the

variable B, and that B has a value of 6, typing B on the key

board will not cause the variable indicated by GET to be

assigned the value 6. Remember, the GET statement is sup

posed to be used without the user having to know anything

about the program.

The syntax for GET is the keyword GET followed by a

variable list. Unfortunately, the computer works so quickly

that trying to get a single keypress hardly works, let alone try

ing to get several. With the way that GET is set up, the user

can specify only a value from 0 to 9, which is a rather small

range.

The Commodore 64 keyboard has a temporary storage j j

area, called a buffer, which can partially solve the problem of *—'
getting several keys. You can type on the keyboard at any

time, even when the computer does not need keyboard input. j j

The computer will remember the keystrokes, although they ^—'
will not show on the screen. The keystroke information is

temporarily put in the buffer. When the GET statement is later j j

executed, it will fetch the keys stored in the buffer before u

using new keys typed at the keyboard. The following

u

148

U

n

P] Input

n
demonstration program waits ten seconds while you type digit

keys.

I i 10 A=TI :rem 124
20 IF TI-A < 600 GOTO 20 :rem 105

_ 30 GET KEY :rem 44

j[40 PRINT KEY :rem 218
50 K=K+1 : IF K<12 GOTO 30 :rem 227

The computer can remember up to ten keystrokes, and the

order in which they were pressed. Keys pressed after the

buffer is full are forgotten.

The keyboard buffer makes it easier to get multiple keys.

Unfortunately, it still does not solve the problem of being able

to get values other than the numbers 0 through 9.

Another problem with the above program is that if some

body else were to run it, there would be no indication that

something was supposed to be typed on the keyboard. Rather

than staying in an infinite loop, the program should inform

the user that input is needed from the keyboard. Add this line

to the program:

15 PRINT "PLEASE TYPE SOME DIGITS" :rem 43

From a user's standpoint, being instructed what to do is at

least better than typing RUN and watching the computer

"play dead." A good program always keeps the user informed

about what is happening, and prints some sort of prompt

when keyboard input is needed.

Unlike the other statements that have been introduced

thus far, GET can only be used in a program. If you try to use

the GET statement in the immediate mode, the ILLEGAL

DIRECT error will be printed.

n

n

H

H

Summary

• The syntax for the GET statement is the keyword GET and a

variable list.

• When GET is executed, the computer checks whether a key

has been pressed. If so, the value of that key is assigned to

the indicated variable. This is repeated for each variable in

the list.

• If no key has been pressed, the variable is assigned the

value 0.

149

u

Input r i

• In the above examples, pressing a key other than one of the

number keys causes a SYNTAX ERROR. GET cannot be used

to assign the value of one variable to another; only constant fl

numbers will work. •—J
• The keyboard has a buffer which can store up to ten key

strokes in the order they were entered. Keys are ignored if j j

pressed after the buffer is full. '

• It is good practice to have a program print a prompting mes

sage when keyboard input is needed.

• The GET statement can only be used in the program mode;

an ILLEGAL DIRECT error will be generated if it is used in

the immediate mode.

The INPUT Statement

The INPUT statement is simpler and safer to use than GET.

The main problem with the GET statement is that it can input

only one key at a time; INPUT lets the user enter a complete

number.

10

20

30

40

REM COLOR CHANGE PROGRAM

INPUT A

PRINT "BORDER COLOR ="; A

POKE 53280,A

:rem 130

:rem 51

:rem 42

:rem 2

When you run this program, the first thing you notice is that a

question mark is printed. The INPUT statement automatically

prints a question mark to let you know that the computer is

waiting for your input.

Every time you type a key, it appears on the screen. If

you make a mistake, you can press the DEL key to correct it.

When you are through typing digits, press the RETURN key.

Up until this point, everything has been done by the INPUT

statement. Only when RETURN is pressed does the program

continue to line 30. INPUT is a very powerful statement.

The INPUT statement also has built-in error handling. If U
you try to enter letters instead of digits in the above program,

the message REDO FROM START will be printed as soon as .

you press RETURN. This message means "something was I I
wrong—start all over again/' The question mark prompt will

appear, and you will have to try again, this time typing digits ■■- -

instead of letters. LJ

If you type nothing and just press RETURN in response

to an INPUT statement, the indicated variable will not be ■-■-

150

LJ

n

n

n

n

n

Input

assigned, but will retain its previous value. To see this, add

the following line to the program and run it a few times,

sometimes entering a number, sometimes just pressing

RETURN.

10 A=9 :rem 24

The INPUT statement supports a variable list. If you use an

INPUT to assign two variables, two numbers will have to be

entered when INPUT is executed. Our example program is

modified to input two variables.

10 A=9 : B=13 :rem 53

20 INPUT A,B :rem 161

30 PRINT "BORDER COLOR ="; A :rem 42

40 POKE 53280,A :rem 2

50 PRINT "BACKGROUND COLOR ="; B :rem 79

60 POKE 53281,B :rem 6

After you see the question mark, type two numbers, separated

by a comma, and then press RETURN. Both of the variables

will be assigned new values.

Care should be taken when the comma is used in

responses for INPUT. In typing single numbers, no comma is

necessary. If you type a number followed by a comma and

nothing else, the computer will interpret the comma as mean

ing that a second number has been typed, and upon finding

no second number, will assume the value 0. Try this with the

first example. If you type nothing but a comma and RETURN

for an INPUT, the computer will again think that two num

bers were entered. But when it finds no numbers, it will

assume the value 0 for both numbers. Try this with the second

example.

If you don't type any numbers and just press RETURN,

no new values will be assigned. But what if you type only one

j| number? Perhaps the person using the program doesn't know

that two values need to be entered when the question mark

prompt appears. If only one number is typed and RETURN is

II pressed, the computer will print another prompt, except that

this time it is two question marks. The two question marks

mean "more input is needed." The second number is entered,

| | RETURN is pressed, and the value is assigned to the second

variable. If there are even more variables in the list after

INPUT, the double question mark will again be printed and

j | the whole process repeated. If at any time a bad value is

151

LJ

Input i j

entered, and the REDO FROM START error message appears,

all of the values will have to be reentered, starting with the

first one. ^J

There is one difference in the handling of input after a

prompt of ? and ??. The first time, when just one question

mark is printed, pressing the RETURN key will cause all the jj

variables to retain their current values. But if RETURN is

pressed after a prompt of two question marks, the variable to

be assigned will be assigned the value of 0, and INPUT will

go on to the next variable in the list.

If more numbers are typed than are needed to assign all

of the variables in the variable list, the extra numbers are

ignored and a warning message of EXTRA IGNORED is

printed. Program execution will continue to the next state

ment; unlike the REDO FROM START error, this error does

not cause the statement to restart. The message is simply a

warning to let the user know that not all of the input was

needed or used.

One of the nice things about INPUT is that it automati

cally prints the question mark as a prompt. However, a ques

tion mark does not tell the user a whole lot, and it is always a

good idea to print a little more information before getting

input. The prompt should indicate two things: how many

numbers are to be entered, and what they are needed for. This

could be accomplished by adding one statement to the

program:

20 PRINT "BORDER AND BACKGROUND COLORS"; : INPUT A

,B :rem 42

Notice the semicolon at the end of the character string. Using

the semicolon here means that the question mark will be

printed at the end of the message. Try it out.

Since prompt messages are used so often with INPUT, the) j

statement syntax has been designed to accommodate a charac- L-J
ter string which will be printed before the question mark

prompt. Other than that, the INPUT statement operates just as j j

seen earlier. Try this new line 20.

20 INPUT "BORDER AND BACKGROUND COLORS"; A,B

:rem 99 [J

The program operates identically to the previous version. The

character string is just a convenience, and it is up to you when r j

152

U

p. Input

I I you want to use it. When a character string is used, it must be
followed by a semicolon. If you would like to experiment a lit-

|—] tie further with INPUT, you can save yourself from having to

I I type RUN all the time by adding one more line to the
program.

]—J 70 GOTO 20 :rem 2

The RUN/STOP key cannot be used to stop a program while

it is in the middle of an INPUT statement. In such a case,

press RUN/STOP and RESTORE.

As with the GET statement, the ILLEGAL DIRECT error

will occur if you try to use INPUT in the immediate mode.

We now see that the syntax for INPUT is the keyword

INPUT, an optional character string enclosed in quote marks

and ended with a semicolon, and then a variable list. If the

character string is used, the semicolon has to be present, or a

SYNTAX ERROR will occur.

Summary

• The syntax of the INPUT statement is the keyword INPUT,

an optional character string terminated with a semicolon,

and a variable list.

• If the character string is used, it must be in quotes, and it

must be followed by a semicolon, or a SYNTAX ERROR will

occur.

• When INPUT is executed, the character string is printed first,

if one was provided.

• The INPUT statement then prints a question mark, and

waits for the user to type one or more numbers and press

RETURN. During this time the program is executing just

the INPUT statement.

pi • The numbers entered are assigned to the variables in the

i ! variable list.
• If not enough numbers are entered, a second prompt,

r—| consisting of two question marks, is printed, and the com-

' puter waits for more numbers to be entered.

• If too many numbers are entered, a warning message that

n says EXTRA IGNORED is printed, and only the first few

values are assigned to variables. The extra numbers are not

used.

n
153

LJ

Input :-

• Including illegal characters in a line causes the error message '—'
REDO FROM START to be printed. All of the numbers have

to be typed again, no matter how many variables had j]

already been assigned. LJ
• Merely pressing RETURN in response to the ? prompt can

cels the assignment of any variables. All variables retain j |

their value. '—'

• Pressing RETURN after a ?? prompt causes the current vari

able to be assigned the value 0.

• Using two commas together can make the computer assume

a default value of 0 for one of the variables, so caution is

advised.

• The only way to abort a program while an INPUT statement

is being executed is to press RUN/STOP and RESTORE.

• The INPUT statement can be used only in the program

mode, not in the immediate mode.

Sound Experiment

Here is a demonstration program that serves two purposes.

The program shows you how to use GET and INPUT, and it

makes it easy for you to explore the many envelope and

waveform combinations that can be produced by the Com

modore 64.

Sound Demonstration

100 PRINT "SOUND DEMONSTRATION" : PRINT :rem 153

110 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:C

T=54276:PW=54275 :rem 249

120 POKE MV,15 : PRINT "SELECT A WAVEFORM":rem 106

130 PRINT "1 TRIANGLE" : PRINT "2 SAWTOOTH" : PRIN

T "3 PULSE" : PRINT "4 NOISE" :rem 38

140 GET K : IF K<1 OR K>4 GOTO 140 :rem 109

150 PRINT : WF=2tK*8 : IF WF<>64 GOTO 190 :rem 145

160 PRINT "SELECT PULSE WIDTH (KEY 1-8)" :rem 1] j

170 GET K : IF K<1 OR K>8 GOTO 170 :rem 119 L—J
180 PRINT : POKE PW,K :rem 173

190 PRINT "ENTER ATTACK RATE (" A ")"; : INPUT A :

IF A<0 OR A>15 GOTO 190 :rem 184 [J
200 PRINT "ENTER DECAY RATE (" D ")"; : INPUT D :

{SPACE}IF D<0 OR D>15 GOTO 200 :rem 98

210 PRINT "ENTER SUSTAIN LEVEL (" S ")"; : INPUT S j j

: IF S<0 OR S>15 GOTO 210 :rem 173 L->
220 PRINT "ENTER RELEASE RATE (" R ")"; : INPUT R

{SPACE}: IF R<0 OR R>15 GOTO 220 :rem 57 . -

LJ

154

LJ

n

n

P Input

1 ' 230 POKE AD,A*16+D : POKE SR,S*16+R : RESTORE
:rem 175

P- 240 READ F : IF F<0 THEN PRINT : GOTO 120 :rem 53

| [250 POKE FL,F-256*INT(F/256) : POKE FH,F/256 : POK
E CT,WF+1 : T=TI :rem 206

260 IF TI-T<30 GOTO 260 :rem 181

270 POKE CT,WF : T=TI :rem 144

280 IF TI-TO0 GOTO 280 :rem 185

290 GOTO 240 :rem 106

300 DATA 268,337,401,536,675,803,1072,1351,1607,21

45,2703,3215,4291 :rem 255

310 DATA 5407,6430,8583,10814,12860,17167,21629,25

721,34334,-1 :rem 24

When you run this program, you will see a numbered list of

the four waveforms. After you have chosen which waveform

you want, just press the appropriate number key. The GET

statement is being used here, so no RETURN is needed. If you

select the pulse waveform, you will also be asked to press one

of the keys from 1 through 8 to set the pulse width. Again, all

you have to do is press the number key.

After the waveform is all set, you need to enter values for

the envelope. The valid numbers range from 0 to 15, and you

must press RETURN after each number. The INPUT statement

is being used to enter these values.

At this point, all of the parameters have been specified,

and the computer will start playing notes that span eight

octaves. When it is done, you can go through the waveform

and envelope selection process all over again. However, for

each of the four envelope parameters, the last value will

appear in parentheses, and you can choose that by pressing

RETURN without typing any numbers. Remember, INPUT

does not assign the variable if you only press RETURN.

This is not a major program, but it is much better than

p| entering a lot of POKE statements in the immediate mode.

1 ' Often a simple little program like this one can help you learn

more about the special features of your Commodore 64.

n

nf I

155

Chapter 11

Variables
and

Functions

n

n

n String Variables
- and Functions

String Variables

P"} The INPUT statement made keyboard input a lot easier, but
the way we have used it so far restricts input to numbers. You

will often want to have a user enter alphabetic information

while a program is running. You have seen that an attempt to

type letters in response to INPUT generates the REDO FROM

START error. This happened because the INPUT statement

tried to assign the character string to the indicated variable

and found a type mismatch, as in a statement such as LET

A= "CHRIS".

What we need is a whole new kind of variable which can

have a character string as its value, so we can assign values

like GHRIS and COMMODORE instead of 963 or 46.735.

This new kind of variable is called a string variable. A

string variable can be assigned by the LET, READ, and INPUT

statements. String variables can be printed just like character

strings, and can be used almost anywhere we have already

used a character string between quotes. There are also some

functions for use just with strings.

There are many differences between numeric variables

and string variables, starting with their names. To distinguish

a string variable from a numeric variable, the names of string

variables end with a $. Just as with a numeric variable, the

variable name can be any length, but only the first two

characters are significant. This means that variable names like

CHRIS$ and CHARLIES both refer to the same string variable,

CH$. But numeric and string variables are completely sepa

rate, so it is possible to use the variables A and A$ at the

[""] same time, without conflict. The example shows string vari
ables in use.

n

n
t i

n
159

n

10

20

30

40

50

60

70

80

C$="COMMODORE 64

PRINT

Q$="A'

PRINT

C=999

PRINT

c$

11 : R$=MFRIENDLY

Q$;R$,S$

C;C$

M$="PUNCTUATION 111)(

PRINT X$;M$

11 : S$="COMPUTER

:rem 54

:rem 86

:rem

:rem

:rem

:rem

:rem

167

186

144

216

254

:rem 29

String Variables and Functions

Remember that with character strings, the closing quote mark *—'
is optional if it is the last thing on the line. This is demon

strated in the assignment of C$ in line 10. j j

Numeric variables have a default value of 0 until they are '—'
assigned a new value. With string variables, the default value

is not a character; it is the absence of any characters. This is j j

called a null string, and is written "". A null string contains no '—'

characters between the quote marks. If you try to print a null

string, nothing will be printed, which is why nothing was

printed for the unassigned X$ in line 80 of the example. All

string variables in a program have a null value until they are

assigned a new value. Also, any string variable can be

assigned a null value, as in LET A$="". The CLR statement

assigns the null string to all string variables when it sets all

numeric variables to 0.

A string variable can be assigned character strings that

look like numbers. For example, you can LET C$ = "64".

When you PRINT C$, it will appear as if a number had been

printed. But remember, this is a string variable. Its value is of

the type character string. The value of a numeric variable is of

the type number. Two very different types are involved here,

and although they can sometimes be used together, as in

PRINT, there are restrictions. The assignment C="64" or

C = C$ causes the TYPE MISMATCH error to be printed,

because the values to the left and right of the equal sign must

be of the same type.

Now that string variables have been introduced, we can

be more specific about the definition of a variable. In general,

variables have three characteristics: a name, a value, and a

type.

The GET statement is much more useful now that we

have string variables. If GET is used to input a string variable,

any key can be pressed without causing a SYNTAX ERROR. If \ j

no key has been pressed, the null string is assigned to the LJ
indicated variable. GET with strings is often used to get the

answer to a simple question. j j

10 PRINT "DO YOU WANT TO CHANGE THE BORDER COLOR?"
:rem 162

20 GET A$: IF A$="" GOTO 20 :rem 241 j ;

30 IF A$="N" THEN PRINT "NO" :END :rem 212 *—'

40 IF A$<>"Y" GOTO 20 :rem 10

50 PRINT "YES" :rem 39 . .

U
160

n

[—j

String Variables and Functions

60 INPUT "WHAT IS THE COLOR NUMBER";C :rem 177

70 POKE 53280,C :rem 7

! ! The program stays in an infinite loop at line 20 if no key is

pressed. In lines 30 and 40, the string variable A$ is compared

— to character strings using the relational operators = and <>.

! \ The program is designed to print full responses of YES or NO
only when the keys Y or N are pressed. Nothing will be

printed if a different key is pressed.

The GET statement will assign only one character to a

string variable. To input strings longer than one character, use

the INPUT statement.

10 PRINT "PLEASE ENTER YOUR NAME" :rem 218

20 INPUT N$:rem 100

30 PRINT N$?" "; :rem 28

40 GOTO 30 :rem 0

String variables and the INPUT statement form a very power

ful combination in programming. Now it is possible to use the

full range of the keyboard for getting information from a user.

Just as with numeric variables, if the user presses

RETURN in response to the ? prompt without typing anything

else, the indicated string variable is not assigned a new value.

Pressing RETURN for the ?? prompt causes the string variable

to be assigned the null string.

You do not have to type quote marks when responding to

the input of a string variable. Quote marks are needed only

when the string being entered contains a comma or colon, and

since INPUT ignores leading spaces, quote marks are also

needed to input a string of spaces.

String variables can be used with READ and DATA. Just

put character strings in the DATA statements, separated by

commas, and include string variables in the variable list for

r-i READ.
f

10 READ C$:rem 228

20 PRINT C$:rem 86

r-j 30 IF C$<>"BLACK" GOTO 10 :rem 14

! ! 40 DATA RED,YELLOW,BLUE,GREEN,BLACK :rem 219

READ can only work with constant numbers and character

H] strings; you cannot put variable names in a DATA statement.

The quote marks are normally used to distinguish between a

variable name and a character string. Since variable names

should never appear in a DATA statement, the quote marks

161

n

String Variables and Functions

around character strings in DATA statements are optional. The l—1
only thing to watch out for when not using the quote marks is

that spaces between the character string and the separating l .

comma are included as part of the character string assigned to Lj
the variable being read. Leading spaces, however, are ignored.

Quote marks also have to be used when a character string to ; ,

be read contains a comma or colon. LJ

40 DATA RED,YELLOW,"BLUE,GREEN",BLACK :rem 31

If the computer executes a READ statement to assign a string

variable, and the DATA consists of two commas used

together, the variable will be assigned the null string.

Character strings are often mixed with numbers in DATA

statements. The example program has been rewritten to show

one application.

10 READ C$,C :rem 83

20 PRINT C$: POKE 53280,C : A=TI :rem 133

30 IF TI-A < 60 GOTO 30 :rem 59

40 IF C$<>"BLACK" GOTO 10 :rem 15

50 DATA RED,2,YELLOW,7,BLUE,6,GREEN,5,BLACK,0

:rem 188

If you try to read a string into a numeric variable, a SYNTAX

ERROR will appear with the error line of the DATA state

ment, not the READ statement.

String variables can be used almost everywhere a charac

ter string can be used. You can use strings for filenames, as in

F$ = //DEMO// : LOAD F$. The only exception to this is that a

string variable cannot replace the prompt string in an INPUT

statement. The following example will not work as intended.

10 P$="WHAT IS YOUR FAVORITE COLOR" :rem 84

20 INPUT P$;C$:rem 8

The computer thinks that the variable P$ is to be assigned.

Then, because only a comma can be used to separate variable |_j
names in a variable list, the semicolon will cause a SYNTAX

error. Two correct methods are as follows.
i i

10 P$="WHAT IS YOUR FAVORITE COLOR" :rem 84 LJ
20 PRINT P$; : INPUT C$:rem 207

10 INPUT "WHAT IS YOUR FAVORITE COLOR"; C$:rem 213 j_j

Finally, there is one reserved string variable. The variable

TIMES, or just plain TI$, is always six characters long. The j ■

162

U

n

— String Variables and Functions

' first two characters are the hour, in 24-hour time (also called
military notation), the next two are the minute, and the last

ft two tell the second.
i i

10 PRINT TI$: GOTO 10 :rem 131

- The only way to set the time is to assign a character string of

y i six characters, all of them digits, to the variable TI$. The state

ment below sets the time to 3 hours, 58 minutes, and 9

seconds.

TI$ = "035809

Summary

• Commodore 64 BASIC supports a second kind of variable

besides the numeric variable used exclusively in previous

chapters. The new kind of variable is called a string variable.

• The two kinds of variables are used to contain different

types of values. A numeric variable has a value of the type

number. A string variable has a value of the type character

string.

• To distinguish between the two types of variables, string

variable names end with a $ symbol. Otherwise, all the other

rules about variable names apply, including the rule about

two significant characters.

• Variable names used for numeric variables have no effect on

names used for string variables. The numeric variable C and

the string variable C$ are entirely different things.

• A null string is a string which consists of no characters.

• The default value for all string variables is the null string.

• The CLR statement sets all string variables to the null string.

• Both types of variables can be used in the same variable list

for PRINT, GET, INPUT, and READ. However, the TYPE

f—| MISMATCH error will be printed if an attempt is made to

! • incorrectly mix the two types. In any variable assignment,
the value being assigned must be of the same type as the

|—■» variable name to which it is assigned.

• In general, the three distinguishing characteristics of a vari

able are its name, value, and type.

r"] • The availability of string variables makes the GET statement

much more useful. GET will assign the indicated string vari

able the null value if no key is pressed. Otherwise, a single

["") character will be assigned, according to the key pressed.

163

u

String Variables and Functions ,
* l

\ i

• The INPUT statement is used to input strings longer than —^
one character.

• Pressing RETURN only in response to an input prompt of ? 1 |

does not change the value of the variable being assigned. But """J

entering nothing for ?? causes all unassigned string variables

in the variable list to be assigned the null string. \ 4

• String variables can also be included in the variable list for

READ.

• The quote marks that delimit a character string are optional

when used in DATA statements. The only time that they

have to be used is when the string includes a comma or

colon as one of its characters.

• The occurrence of two consecutive commas in a DATA state

ment will be read as a null string.

• String variables can be used in any place where character

strings are used, except for the prompt string of an INPUT

statement.

• The only reserved string variable is TIME$. The only way to

change the time is to assign a string of digits to TI$.

Concatenation and Comparisons

Because the value of a string variable is a character string

rather than a number, you would not expect some operators to

work with strings. For instance, how could you divide one

character string by another? But we have seen that some

operators can be used, such as = and <>. This section shows

which operators can be used with string variables, and what

they do.

The five arithmetic operators—addition, subtraction, mul

tiplication, division, and exponentiation—obviously work only

with numbers, as implied by the name arithmetic. There is a

string operation, however, which behaves like addition and is [_j
represented by the plus sign. This operation, called concatena

tion, is used to combine character strings.

10

20

30

A$="HAPPY" i

C$=A$+B$

PRINT C$

: B$="BIRTHDAY" :rem

:rem

:rem

65

252

87

The variable C$ is 13 characters long, and the whole character u-f
string HAPPYBIRTHDAY is printed to the screen. The first

five characters are the string HAPPY, and the remaining eight \\

164

n

— String Variables and Functions

1 V are BIRTHDAY. When A$ and B$ were concatenated, the

characters in B$ were added right on the end of A$. No spaces

p-) were added where the strings were joined. Adding one string

! .' to the end of another is called appending. Concatenation is
used to append one string to another.

r-> Note that A$ and B$ are not affected by the operation

_J and still have the same values.
Concatenation always combines strings in left-to-right

order. Make the following change to the example and run it

again:

20 C$=B$+A$:rem 252

This time the string BIRTHDAY is in front of HAPPY, because

of the order of the variables in line 20.

The example could also have been written without using

a third string variable. Change these two lines and RUN the

program one more time:

20 A$=B$+A$:rem 250

30 PRINT A$:rem 85

You can use concatenation several times, if necessary.

10 M1$="A " i M2$="FRIENDLY " : M3$="COMPUTER"

:rem 78

20 PRINT Ml$+M2$+M3$:rem 46

Remember, concatenation is a different operation from addi

tion, even though the two operations use the same sign.

Values to be concatenated are placed together end to end, not

added to produce a sum. When the computer sees the plus

sign, it examines the values to the left and right to determine

whether addition or concatenation is called for. The values on

each side of + must always be of the same type, or the TYPE

MISMATCH error will occur.

^—t There is a limit to how long a string can be. A string vari-

! able cannot contain more than 255 characters, or the STRING

TOO LONG error will be printed. To cause this error, try the

j—? next program.

10 Q$="l" :rem 120

20 PRINT Q$:rem 100

ps 30 Q$=Q$+Q$:rem 42

! ! 40 GOTO 20 :rem 255

In most cases, you will not need to use strings that even begin

H
165

n

String Variables and Functions

to approach a length of 255 characters, so this limit should be

of little concern.

We have already seen that relational operators can be

used with strings, in checking for equality or inequality. The

question is, how does the concept of less than or greater than

apply to strings? Maybe the length has something to do with s

it. U

10 X$="AARDVARK" : Y$="ZOO" :rem 218

20 IF X$<Y$ THEN PRINT "LESS THAN" :rem 136

30 IP X$=Y$ THEN PRINT "EQUAL" :rem 160

40 IF X$>Y$ THEN PRINT "GREATER THAN" :rem 95

When you run this program, you may be surprised to find that

X$ is less than Y$, even though X$ has more characters. The

variable X$ is less than Y$ because the letter A comes before

the letter Z in the alphabet. Relational operators can be used

to alphabetize character strings, following the same rules used

in dictionaries. Checking always starts with the first character

of each string. If the first characters are equal, checking contin

ues with the second character of each string. This may con

tinue for as many characters as needed, until two are found

which are not equal. Thus, the string ALICE would be greater

than the string ALEXANDER because I is greater than E.

String length becomes a factor only when one string starts

with the same characters as another string. When comparing

AL and ALEX, it is impossible to compare the third characters

because AL has no third character. In such a case, the longer

string is greater. And the null string is always less than a

string of any length.

The combinations of relational operators can also be used,

so <= and >= are valid. All six relational operators can be

used with strings, just so long as the types are not mixed.

The next example shows how relational operators can be

used for range checking on characters, and how concatenation | ,

can build a long string variable. The program asks you to type ^
anything on the keyboard, but it will let you enter only letters

of the alphabet or the space. I j

10 PRINT "WHAT IS YOUR NAME?" :rem 177

20 GET A$:IF A$="" GOTO 20 :rem 241

30 IF A$>="A" AND A$<="Z" OR A$=" " THEN N$=N$+A$ \ J
{SPACE}: PRINT N$:rem 70 —'

40 GOTO 20 :rem 255

166

String Variables and Functions

When AND, OR, and NOT are used as logical operators, they

operate on values of true or false instead of numbers. Likewise,

they cannot operate on character strings, although they can be

used in expressions which contain character strings, like line

30 of the example. Using AND and OR to clear and set bits

applies only to numbers, not to character strings.

Summary

• The arithmetic operators cannot be used with character

strings, but the plus sign, which indicates addition when used

with numbers, means concatenate when used with strings.

• When two strings are concatenated, the second string is

appended to the end of the first one, in left-to-right order,

forming a longer string.

• The maximum length for a string is 255 characters. Attempt

ing to make a character string longer than this limit causes

the STRING TOO LONG error to be printed.

• All of the relational operators can be used with strings,

including combinations such as <= .

• The conditions less than and greater than depend on the

alphabetical ordering of the characters in the strings. A

comparison is made on the first character of each string. If

the first characters are equal, checking will continue to sub

sequent characters until two are found which are not equal.

• If one string runs out of characters before unequal characters

are found, the longer string is greater.

• The null string is always less than any other string.

• None of the logical operators can be used directly with

character strings.

• With any operator, the two operands must be of the same

type, or the TYPE MISMATCH error will occur.
i—I

' ' String Functions
String variables open up many new possibilities in program-

i—| ming, but they also present some problems. For instance, it

' would be handy to be able to count the number of characters
in a string. To handle situations like this, there are several

|—| functions that are specifically for use with strings. Like the

' arithmetic functions introduced earlier, these functions have a

three-letter name and require one argument, but sometimes

i—j the argument may be a string instead of a number. And some-

167

n

String Variables and Functions

times the value returned by these functions is a string. This

section examines three of these functions.

The first string function is called LEN. The argument must

be a string, and the value returned is always a number. The

LEN function returns the length of the string used as the

argument.

10 PRINT "PLEASE CHOOSE A NEW PASSWORD11 :rem 75

20 INPUT P$: IF LEN(P$)<4 THEN PRINT "PASSWORD IS

TOO SHORT" : GOTO 20 :rem 169

30 PRINT "GOOD -THE PASSWORD IS" LEN(P$) "LETTERS

{SPACE}LONG" :rem 181

The length of a string is simply the number of characters in

the string. The null string contains no characters, so the LEN

of a null string would be 0. The maximum string length is 255,

so LEN can never return a value greater than 255. Using a

number instead of a string for the argument causes the TYPE

MISMATCH error.

This function is often used together with other string

functions. Examples of using LEN to control loops are given in

the later sections of this chapter.

As you know, computers work with numbers. Everything,

including characters, must be translated into a number before

it can be processed by the computer. For that reason, every

character has an ASCII code. ASCII stands for American Stan

dard Code for Information Interchange. It is an agreement

among the manufacturers of computer equipment concerning

which numbers correspond to which characters. For example,

the ASCII code for the letter A is 65. Whenever the computer

has to do something with the letter A, it is internally dealing

with the number 65.

ASCII provides some compatibility between computers,

making possible things like telecommunications between dif

ferent kinds of computers. Even if you are not working with , ,

telecommunications, ASCII can make it easier to work with LJ
characters.

The ASC function returns the ASCII value of the first , ,

character in a string. That means that like LEN, the argument LJ
has to be a string, and the value returned is always a number.

PRINT ASCC'ALPHABET") i j

The above example printed the number 65. The ASC function

looks at only the first character of the string. If the string

LJ
168

LJ

n

String Variables and Functions

n

n

n

n

contains other characters, they are ignored. The range of values

that can be returned by ASC is from 0 to 255.

One precaution is necessary when using this function.

The null string contains no characters, so there is no way to

determine an ASCII value. Using a null string as the argument

for the ASC function produces the ILLEGAL QUANTITY

error.

10 GET A$: IF A$="M GOTO 10 :rem 239

20 PRINT ASC(A$) : GOTO 10 :rem 80

Try typing the various keys on the keyboard. You will see that

each key which prints a character has an ASCII value. Next,

try pressing the special function keys. These keys have ASCII

values, too. Now you know how a program can determine if

the special function keys have been pressed. This also applies

to other special keys like the screen clear and cursor move

ment keys.

The last function is a little different from the first two.

Unlike LEN and ASC, which require strings as arguments,

CHR$ needs a number, specifically an ASCII number. Also,

CHR$ returns a string, not a number. This is indicated by the

$ at the end of the function name. The CHR$ function takes

an ASCII value and returns the corresponding character. Thus,

CHR$(65) can be used just like the character string A. It could

even be concatenated to another string. One use for the CHR$

function is to generate the double quote character, which is

otherwise impossible to put in a character string. The ASCII

code for the double quote is 34.

PRINT "CHRIS SAID, //;CHR$(34);//WOW!//;CHR$(34)

The CHR$ function can be used to print any character.

10 K=32 :rem 78

20 PRINT CHR$(K);M "; :rem 70

|—i 30 K=K+1 : IF K<147 GOTO 20 :rem 25

CHR$ is often an easier way to print special characters, which

are difficult to put between quote marks. Notice that the

[""] READY prompt and cursor are in black. This was done by
character 144, one of the color-changing control codes. The

program stopped just short of character 147, which is the code

["""I to clear the screen. By using all of the color-changing character
codes, a colorful demonstration program can be written.

H
169

u

String Variables and Functions

10 REM RAINBOW :rem 87 LJ
20 PRINT CHR$(147) : REM CLEAR SCREEN :rem 34

30 READ C : IP C=-999 THEN END :rem 233

40 PRINT CHR$(C),"{4 SPACES}COMMODORE 64M :rem 5 j

50 GOTO 30 :rem 1 L-J
60 DATA 5,28,30,31,129,144,149,150,151 :rem 70

70 DATA 152,153,154,155,156,158,159,-999 :rem 204 r ,

One line appears to be missing because it is in the same color

as the background.

Summary

• Several functions are available for use with character strings.

The three functions introduced in this section are LEN, ASC,

and CHR$.

• The LEN and ASC functions require a string for an argu

ment and return a number. This is reversed for CHR$, which

needs a number for an argument and returns a string. The

presence of the $ at the end of the function name indicates

that the function returns a character string.

• The LEN function is used to count the number of characters

in a string. The range of this function is 0 to 255, with 0

being the length of the null string.

• The ASC function returns the ASCII code for the first

character in a string. The string must not be the null string,

or the ILLEGAL QUANTITY error will be printed. ASC is

often used to check input characters. The special function

keys have ASCII codes which can be detected by this

function.

• The CHR$ function takes an ASCII code and returns a string

one character long, the character of the given ASCII code. A

common use for this function is to print the double quote

character. It also simplifies the printing of special control

codes, such as those for screen clearing and color changing. i .

Type Conversion Functions

Thus far, every attempt to mix numbers and character strings !i

in the same operation has been greeted by the TYPE MIS

MATCH error. Nevertheless, there will be occasions when a

string consisting of digit characters must be used like a num- M

ber, or when a number must be treated as if it were a string.

To do this, you must convert the value in question from one

U
170

LJ

n

n

n

n

String Variables and Functions

type to the other. There are two directions for conversion, so

there are two functions that perform the conversions. The

VAL function is used to convert a character string to the type

number, and the function STR$ is used to convert a number to

the type character string.

The VAL function returns the numeric value of a charac

ter string. Given a string, VAL first skips past any leading

spaces. Next, VAL looks at the remaining characters in the

string, stopping only when it comes to the end of the string, or

when a nonnumeric character is found. The numeric value of

the string number is then returned by VAL.

10 N$=M{3 SPACES}37 DEGREES CELSIUS" :rem 213

20 PRINT "THE TEMPERATURE IS"; 100-VAL(N$);

:rem 216

30 PRINT "DEGREES BELOW THE BOILING POINT" :rem 27

The computer printed a 63 on the screen. The characters

which have to do with numbers are the plus and minus signs,

the period (decimal point), and of course the ten digits.

VAL returns 0 for the null string or strings which do not

start with any characters used with numbers.

PRINT VAL("CHRIS")

The STR$ function takes any number and returns the charac

ter string representation of that number. Unlike CHR$, which

returns only a single character, STR$ may return several

characters.

10 INPUT "WHAT IS YOUR FAVORITE NUMBER";N :rem 6

20 PRINT "THE NUMBER" N "HAS" LEN(STR$(N))-l "DIGI

T(S)" :rem 238

The character string may contain any of the characters related

to numbers, which were listed above. The characters in a

string produced by STR$ are always identical to the characters

that would appear on the screen if the number were printed.

The first character is reserved for the sign of the number,

which is why the number 1 was subtracted from the length in

the example. The sign character will be a minus sign if the

number is negative; otherwise, it will be a space.

n

n

n

n
171

H

u

String Variables and Functions

u

Summary LJ

• The VAL and STR$ functions are used to convert a value

from one type to the other, to avoid the TYPE MISMATCH j -j

error. lj

• The VAL function takes a string, interprets the characters

which are related to numbers, and returns a value. j ,

• VAL ignores any leading spaces. •—'
• The interpretation uses all characters in the string, starting at

the beginning, until the end of the string is reached, or a

character is found which is not related to numbers.

• The only characters which are related to numbers are the ten

digits, the plus and minus signs, and the period.

• The null string and strings which start with a nonnumeric

character cause VAL to.return a value of 0.

• The STR$ function takes a number and produces its charac

ter representation. This representation includes all the

characters that would be used if the number were printed.

If the number is positive, the string will start with a space.

Substring Functions

Concatenation can be used to put strings together, but there is

no operation to take strings apart. Sometimes, however, it is

handy to look at selected characters in a string—just a part of

the string, not the whole string. So Commodore 64 BASIC

has three functions designed to work with parts of character

strings. A sequence of characters contained in a string is called

a substring, which explains the name substring functions.

The substring functions, LEFT$, RIGHTS, and MID$, are

inconsistent with the other functions we have used so far.

First, not all of the names of these functions are exactly three

characters long. Also, these functions have more than one

argument. Further, the arguments used in these functions are

not of the same type. Obviously, the substring functions are [J
going to require careful examination.

The LEFTS function returns the leftmost characters of a

string. To do this it needs two arguments; the first is the [J
string, and the second is the number which tells how many

characters, starting with the first character in the string, are to

be returned. Run this program: [_j

10 K=K+1 : PRINT LEFT?("COMMODORE 64",K) : IF K<12

GOTO 10 :rem 14 ■>- ■.

172

u

— String Variables and Functions

n
The first string printed is C, the next is CO, and so on, ending

with the full COMMODORE 64. The RIGHT$ works in a simi-

[""] lar way, but using the rightmost characters. Add this line to
the program:

_ 20 K=K-1 : PRINT RIGHT?("COMMODORE 64",K) : IF K>1

I I GOTO 20 :rem 53

A 0 for the second argument causes LEFT$ and RIGHT$ to

return the null string. You can also use a number greater than

the length of the first argument, but no additional characters

beyond the length of the string will be printed. The only way

that the length number can cause an error is if it is greater

than 255, an ILLEGAL QUANTITY.

Using LEFT$ and RIGHTS, we can now split one string

into two parts.

10 C?="HAPPYBIRTHDAY" :rem 34

20 A$=LEFT$(C$,5) :rem 108

30 B$=RIGHT$(C$,8) :rem 196

40 PRINT A?,B? :rem 232

These functions let a program examine one or more characters

in a string, starting at either end. But they still do not let you

look at any individual character in the middle of the string.

One clever way of accomplishing this objective is to use a

combination of LEFTS and RIGHTS. To print only the sixth

character in C$, try this line:

50 PRINT LEFT?(RIGHT?(C?,8),l) :rem 173

The letter B was printed. This method works, but it is cumber

some. It would be nice if there was an easier way to work

with a character in the middle of a string. That's where the

MID$ function comes in. The first argument identifies a string.

The second indicates which character of the string is at the

j~| beginning of the substring. And the third—yes, third—

1 argument tells how many characters are in the substring.

PRINT MID$("COMMODORE 64",3,2)

! I The substring MM was printed, because the two characters
starting at three characters into the string are MM. Actually,

the third argument of MID$ is optional, and if it is omitted,

the substring will continue to the end of the string.

PRINT MID$("COMMODORE 64",3)

This time, the substring is MMODORE 64. The MID$ function

173

n

u

String Variables and Functions ,

is so versatile it can be used to do everything done by LEFTS '—'
and RIGHTS, but the use of the arguments is slightly different,

so LEFTS and RIGHTS are a little more convenient in some \~j

cases. I—'
Here is a demonstration which will print the ASCII code

for every character in a string you enter. pi

10 INPUT "WHAT IS THE STRING"; S$:rem 111

20 IF S$="" GOTO 10 :rem 131

30 K=K+1 : PRINT MID$(S$,K,1);ASC(MID$(S$,K))

:rem 147

40 IF K<LEN(S$) GOTO 30 :rem 189

Because the ASC function uses only the first character in a

string or substring, the third argument was not needed in the

second use of MID$.

Remember that the MID$ function can only return a

character string; it cannot be used to directly change a charac

ter string. Line 20 of the next example is illegal and will gen

erate a SYNTAX ERROR.

10

20

30

C$="HAPPYBIRTHDAY"

MID$(C$,6,1)=MC" :

PRINT C$

REM WRONG1

:rem

:rem

:rem

34

103

87

The intention was to change the letter B in C$ to the letter C.

The only way to change a character in a string is to take the

string apart and put it back together again.

20 C$=LEFT$(C$,5) +"Cfl+RIGHT$(C$,7) :rem 8

The substring functions come in handy surprisingly often.

By letting you work with any part of a string, they make string

handling more flexible and let you do things that otherwise

couldn't be done. Just be careful not to make string

expressions too complicated. If you nest too many string func

tions, you will get the FORMULA TOO COMPLEX error. , ,

Summary

• A part of a string, consisting of contiguous characters in the j " i

string, is called a substring. '—'
• The substring functions differ from other functions in that

their names are not always three characters long, and they I J

take multiple arguments of different types.

• The LEFTS and RIGHTS functions need a string for the first

u
174

U

n

n

String Variables and Functions

argument, and a number for the second argument. The

substring returned is the leftmost or rightmost characters

in the string. The length of the substring is determined by

the second argument.

• LEFT$ and RIGHTS can be used to split a character string

into two parts, thereby reversing the process of

concatenation.

• Changing a character in a string requires using LEFTS and

RIGHTS with concatenation.

• The MID$ function needs at least two arguments. The sec

ond argument tells how far into the string the substring

starts. The optional third argument specifies the length of

the substring. If the third argument is not provided, the

substring continues to the end of the string.

• These functions may return the null string as the substring.

They will not return a string longer than the original string.

• Nesting of too many string functions results in the FOR

MULA TOO COMPLEX error.

n
175

n

Chapter 12

Subroutines

n

n

n Subroutines
The Statements GOSUB and RETURN

[™] As you begin to write longer programs, you will often come
across instances of duplicated lines, where the same sequence

of statements occurs at more than one place in the program.

M 10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT
=54276:PW=54275 :rem 200

20 POKE MV,15:POKE AD,85:POKE SR,168:POKE FL,0:POK

E ?W,8 :rem 241

30 POKE FH,RND(0)*80+2 : POKE PW,RND(0)*8+l

:rem 255

40 POKE CT,65 : K=50 :rem 232

50 K=K-1 : IF K>0 GOTO 50 : REM DELAY :rem 67

60 POKE CT,64 : K=50 :rem 233

70 K=K-1 : IF K>0 GOTO 70 :rem 186

80 GOTO 30 :rem 4

Notice that lines 50 and 70 are almost identical, and that both

start with the same value for K. Since this example is a short

program, typing the same statements twice does not seem

redundant. However, in another program, the duplicated sec

tion could be longer, or it might be duplicated more than

once. In such a case, it seems wasteful to repeat the same lines

several times. For situations just like this, use a subroutine. A

subroutine is a sequence of statements that occurs once in a

program, but which can be executed at different places. Here

is a listing of the example program, revised to use a

subroutine:

10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT

=54276:PW=54275 :rem 200

20 POKE MV,15:POKE AD,85:POKE SR,168:POKE FL,0:POK

E PW,8 :rem 241

30 POKE FH,RND(0)*80+2 : POKE PW,RND(0)*8+1

:rem 255

:rem 226

:rem 226

:rem 2

:rem 84

:rem 188

:rem 73

n

n

H

40

50

60

70

80

90

POKE

POKE

GOTO

K=50

K=K-1

CT,

CT,

30

L:IF

RETURN

65 :

64 :

K>0

GOSUB

GOSUB

GOTO

70

70

80

I—I The subroutine consists of lines 70, 80, and 90. The main pro

gram is from lines 10 to 60. When the computer executes the

GOSUB statement on line 40, execution jumps to line 70. Line

70 is called the entry point of the subroutine. After the computer

179

U

Subroutines | -,

is done with the delay loop, the RETURN statement sends LJ
execution back to the main program. Execution continues with

the first statement after the GOSUB, which in this case is ^ .

POKE CT,64. Lines 70-90 get executed a second time when lJ
the GOSUB on line 50 is executed.

The GOSUB statement means go to subroutine. The act of j

temporarily diverting execution to a subroutine is referred to <—>

as calling the subroutine. A subroutine can be called any num

ber of times in the course of a program. So that the computer

knows where the subroutine begins, the keyword GOSUB

must be followed by a line number. The line number must be

a constant; no expressions or variables are allowed. Also, if a

program tries to GOSUB to a line which does not exist, the

UNDEF'D STATEMENT error message will be printed.

A subroutine is like a miniature program, except that its

last statement is RETURN, not END. When executed, the

RETURN statement causes execution to pick up where it left

off in the main program. Execution jumps to the first state

ment after the most recent GOSUB. RETURN is like a GOTO

statement, but there is no line number. The place to jump

back to has already been determined by the previous GOSUB.

Another difference is that RETURN can jump into the middle

of a line, whereas GOTO must always jump to the beginning

of a line. This means that you can put statements on the same

line after a GOSUB. The statements in lines 40-60 could have

been written on one line.

40 POKE CT,65 : GOSUB 70 : POKE CT,64 : GOSUB 70 :

GOTO 30 :rem 111

50 :rem 101

60 :rem 102

Even though a subroutine may be called several times in

a program, it does not have to do the same thing every time it

is called. A common technique is to have the subroutine use a I i

variable. The variable is assigned just before the subroutine is

called.

40 POKE CT,65 : K=100 : GOSUB 80 :rem 54 LJ
50 POKE CT,64 : K=50 : GOSUB 80 :rem 10

60 GOTO 30 :rem 2

One other technique is to have multiple entry points for a J
subroutine. Let's say that the example program calls the sub

routine often, and that it usually needs K to start at 50. The .----,

<-—J

180

LJ

n

_ Subroutines

n

n

n

H

n

assignment of K is in the first line of the subroutine, and the

subroutine is entered at that point. But for the few occasions

when the subroutine must be executed with a different value

for K, the entry point is one line later.

50 POKE CT,64 : GOSUB 70 :rem 226

Here is a more elaborate example. This is the main program.

100 PRINT "PLEASE NAME A BORDER COLOR" :rem 187

110 A=53280 : GOSUB 150 :rem 98

120 PRINT "PLEASE NAME A BACKGROUND COLOR":rem 223

130 A=53281 : GOSUB 150 :rem 101

This is the subroutine.

150 INPUT C$: IF C$="" GOTO 150 :rem 13

160 IF C$="RED" THEN POKE A,2 : GOTO 200 :rem 235

170 IF C$="YELLOW" THEN POKE A,7 : GOTO 200

:rem 242

180 IF C$="GREEN" THEN POKE A,5 : GOTO 200:rem 134

190 PRINT "I DO NOT KNOW THE COLOR " C$:GOTO 150

:rem 71

200 RETURN :rem 114

When you run this program, the computer will ask you to

name a color. Red, yellow, and green are the only colors that

will be recognized. When you enter the color name, the border

will change to that color. The procedure will be repeated for

the background. Then, another prompt will appear. This time,

when you enter a color name, you will get a RETURN WITH

OUT GOSUB error. A quick look at the program shows why.

The execution of the main program has accidentally fallen into

the subroutine. The problem can be remedied by placing an

END statement at line 140.

140 END :rem 108

This is an example of when the END statement is necessary,

but is not the last statement in a program. Like DATA state

ments, subroutines are usually put at the end of a program,

out of the way of the main program. Forgetting to use END to

prevent main program execution from running into a sub

routine is a common programming mistake.

The RETURN statement depends on the fact that a

GOSUB has been executed before it. The RETURN WITHOUT

GOSUB error indicates that a RETURN has been encountered

without a matching GOSUB. It is possible, though, to have

n
181

H

u

Subroutines

more RETURN statements in a program than GOSUB state- LJ
ments. Just make sure that for every GOSUB executed, exactly

one RETURN is executed. The example program can be sim- y]

plified a little bit by replacing every GOTO 200 with a LJ

RETURN. Line 200 is no longer needed.

160 IF C$="RED" THEN POKE A,2 : RETURN :rem 0 j j
170 IF C$="YELLOW" THEN POKE A,7 : RETURN :rem 7 t—J

180 IF C$="GREEN" THEN POKE A,5 : RETURN :rem 155

200 :rem 146

Subroutines are a second form of repetition, with loops being

the first. Like a loop, a subroutine is a sequence of statements

which occurs once in a program, but will have been executed

many times by the time the program is done. The difference is

that every time a subroutine is entered, the sequence of state

ments is executed only once. The placement of GOSUB state

ments within a program is what controls how many times the

statements in the sequence are repeated.

Summary

• A subroutine is a sequence of statements that occurs once in

a program, but is executed from several places in the

program.

• The purpose of using a subroutine is to avoid duplicating

statement sequences in a program.

• The statements used to implement subroutines are GOSUB

(go to subroutine) and RETURN (return to main program).

• The syntax for the GOSUB statement is the keyword

GOSUB followed by a line number. The RETURN statement

consists only of the keyword RETURN.

• The GOSUB statement makes execution jump to the begin

ning of the specified line. If the specified line does not exist,

an UNDEFD STATEMENT error will occur. [J

• The main difference between GOSUB and GOTO is that

with GOSUB, the computer remembers where execution .

stopped in the main program. LJ
• Because execution eventually resumes where it left off in the

main program, statements can be placed after a GOSUB on (—

the same line. L_
• The RETURN statement causes execution to jump to the first

statement after the most recent GOSUB. This may mean r I

182

u

n

n
Subroutines

n
jumping into the middle of a line. RETURN is comparable

to the END statement of a main program.

R • RETURN should be used only when a GOSUB has been

! previously executed. If the computer encounters a RETURN
without having previously executed a matching GOSUB, the

P| place to jump back to is undefined, so a RETURN WITH-

1 OUT GOSUB error is printed.

• A subroutine can contain several RETURN statements, pro

vided that for every GOSUB executed, exactly one RETURN

is executed.

• Subroutines are usually put after the main program. An

END statement is needed to separate the main program from

the subroutine. Having a main program accidentally fall into

a subroutine is a sure way of getting the RETURN

WITHOUT GOSUB error.

• When execution is transferred to a subroutine, it is said that

the subroutine has been called.

• To make a subroutine more flexible, it can use a variable

that is assigned just before the subroutine is called.

• The entry point of a subroutine is the line to which execution

jumps when the subroutine is called. Subroutines can have

more than one entry point.

Multiple Subroutines

A program can have more than one subroutine.

100 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:C

T=54276 :rem 211

110 POKE FL,0 : POKE MV,15 :rem 77

120 PRINT "FREQUENCY (HIGH)11; : L=255 : GOSUB 210

{SPACE}: POKE FH,N : N=0 :rem 212

130 PRrNT "ATTACK RATE"; : GOSUB 200 : E=N:rem 218

140 PRINT "DECAY RATE"; : GOSUB 200 : POKE AD,16*E

f"* +N :rem 232
150 PRINT "SUSTAIN LEVEL"; : GOSUB 200 : E=N

:rem 151

— 160 PRINT "RELEASE RATE"; : GOSUB 200: POKE SR,16*

I [E+N :rem 165
170 POKE CT,129 : GOSUB 230 : PRINT "*" :rem 170

180 POKE CT,128 : GOSUB 230 : PRINT :rem 60

f—| 190 GOTO 120 :rem 102

' ! 200 L=15 :rem 129
210 INPUT N : IF N<0 OR N>L OR N<>INT(N) THEN PRIN

T "OUT OF RANGE" : GOTO 210 :rem 96

| j 220 RETURN : rem 116

183

Subroutines

230 K=300

240 K=K-1 :

250 RETURN

IF K>0 GOTO 240

:rem 176

:rem 24

:rem 119

When you run this program, you must specify a frequency

value from 0 to 255, and envelope values from 0 to 15. The

program will start the sound, using the noise waveform. An

asterisk is printed when the sound is released. After that, the

program repeats for a different sound.

This program uses two subroutines. The one starting at

line 230 is a standard delay loop. The other subroutine is used

to input and check the range of a number. It has two entry

points: line 200 for when the range is from 0 to 15, and line

210 for when the range is from 0 to some other number.

Because the two subroutines are called separately and occupy

different lines in the program, they coexist without any prob

lems. You should not get the RETURN WITHOUT GOSUB

error.

The example shows that a program can have several sub

routines, each one independent of the others. How about hav

ing two or more subroutines in effect at the same time? Can

one subroutine call another subroutine? The answer is yes,

provided that for every GOSUB executed, exactly one

RETURN is executed. When one subroutine is called from

within another, the subroutines are said to be nested.

10 REM DEMO OF NESTED SUBROUTINES

20 PRINT "MAY

30 GOSUB 50

40 PRINT "YOU!":END

■50 PRINT "THE

60 GOSUB 80

70 PRINT "WITH":RETURN

80 PRINT "FORCE"

90 PRINT "BE":RETURN

A well-known saying will be printed when you run this pro

gram. There are two subroutines in this example. The first

subroutine starts at line 50, and it calls the other one which

starts at line 80. Trace through the program to see the order in

which the statements are executed. First there is the GOSUB

in line 30, then the GOSUB of line 60, followed by the

RETURN on line 90, and the RETURN at line 70. Notice that

184

U

U

LJ

LJ

U

LJ

LJ

U

U

Subroutines

n

! I at no time have more RETURN statements been executed than
GOSUB statements. If the order of execution were GOSUB,

^ RETURN, and RETURN, the second RETURN would generate

j i the RETURN WITHOUT GOSUB error, because no

corresponding GOSUB had previously been executed. Also,

^^ once the program is finished, there have been just as many

! { RETURN statements executed as GOSUB statements.

Of course, the example is not a practical application of

nested subroutines. It is intended only to show you how nest

ing works.

Nested subroutines can often be found in larger programs.

Commodore 64 BASIC has a maximum nesting limit of 23 lev

els, and in certain circumstances this limit is even less. If a

program ever exceeds the nesting capacity of BASIC, the error

message OUT OF MEMORY will be printed, even if there are

plenty of free bytes still available. With simple programs, this

should never happen.

There is one last possibility to be considered. What if a

subroutine calls itself? This technique, called recursion, is the

third form of repetition, after loops and subroutines. Many

interesting things can be done using recursion, but it is diffi

cult to program properly, and few of our present programming

needs require that we use it. Recursion is an advanced topic

that is beyond the scope of this book. For now, just be careful

to avoid program lines like the next one, which is not only

pointless, but is also a sure way of producing the OUT OF

MEMORY error.

100 GOSUB 100 :rem 162

Summary

• Several subroutines can be used in one program.

• When one subroutine calls another subroutine, the sub-

P"] routines are nested,

• In order for nested subroutines to work without creating a

„ RETURN WITHOUT GOSUB error, exactly one RETURN

; ! must be executed for every GOSUB executed.

• The Commodore 64 cannot nest deeper than 23 levels. Nest-

_ ing beyond this limit causes the OUT OF MEMORY error.

' I • The third form of repetition, recursion, happens when a sub
routine calls itself. For our purposes, recursion is best

I—I avoided.

185

LJ

Subroutines

u

Bitmapped Graphics LJ
The only kind of graphics which we have dealt with so far has

been character graphics. In character graphics, each character \ j

has its own definition, and that one definition may appear at i—f
several places on the screen. You could even put the same

character at all 1000 screen positions. But character graphics v -

has some limitations. When you want to draw a really big I—!
object, you have to redefine a lot of characters. For drawing

long lines at different angles, there may not even be enough

characters available. Only 256 characters can be defined at any

time. With 256 characters you could create a detailed picture.

Assuming, however, that each character might need a different

definition, you could run out of characters after filling only the

top quarter of the screen.

To get around the restrictions of character graphics, your

Commodore 64 also supports bitmapped graphics. In

bitmapped graphics, each character position on the screen is

allotted eight bytes for its own definition. Every point that is

part of an 8 by 8 character matrix can be individually ref

erenced, and this is true for all 1000 positions on the screen.

Thus, instead of having 40 by 25 screen positions, there are

now 40*8=320 by 25*8=200 points which can be indepen

dently set or cleared. A total of 64,000 points should certainly

be sufficient for drawing most pictures.

Since there are 1000 screen positions, and the definition

for each position takes 8 bytes, a bitmapped graphics screen

requires 8000 bytes. The normal screen consists of only 1000

bytes, which hardly comes close. As is the case with a

redefined character set, a separate section of memory will have

to be used. In fact, you could think of this 8000-byte area as

one gigantic character set. The first eight bytes define the

character in the upper-left corner of the screen. The next eight

bytes define the character immediately to the right, and so on. ;

Also, as with character sets, it is necessary to follow a certain LJ
procedure before using bitmapped graphics. A program is pro

vided to take care of that, but first let's consider the problem ,- ,

of dealing with 64000 points. Lj
With so many individual points, we are going to need an

easy way of labeling each one so we can distinguish one from ;

another. We will number the points, using a standard LJ
coordinate system in which each point has its own horizontal

and vertical coordinates. No two points have the same

i I
186

U

n
Subroutines

combination of coordinates. The horizontal (X) coordinate can

range from 0 to 319, running from left to right. The vertical

f^ (Y) coordinate goes from 0 to 199, from top to bottom. To

specify a particular point, the X coordinate is used to denote a

column, and the Y coordinate is used to select a row. The

[—| intersection of the column and row is the desired point. The

1 s point which has coordinates 0 and 0. is in the upper-left corner

of the screen. The point with the coordinates 160 and 73

would be 160 columns over and 73 rows down. Note that

points with higher values for Y appear lower on the screen.

This is backward from normal mathematics, where Y increases

upward.

When you set one of the 64,000 bits that make up the

bitmapped screen, you are plotting a point. You can designate

a point using the X and Y coordinates, but to actually plot the

point in memory, you must find the correct byte and set the

appropriate bit. To simplify this as much as possible, a plot

ting subroutine is provided as line 900 of the demonstration

program. All you have to do to plot a point is put the

coordinate values in the variables X and Y and call the sub

routine. The point will be automatically plotted, and you don't

have to deal with any complex calculations.

One other matter to be discussed is how to set the color

for each point. Since the normal 1000 bytes for screen mem

ory are not needed in bitmapped mode, they are used to hold

color information. For each character position, the byte at the

corresponding location in normal screen memory specifies the

image and background color. This means that within each 8

by 8 matrix, all points have to be the same color, but the color

can change from character to character. Also, each character

position can have a different background color. The color

information is calculated by taking the number for the image

p-j color, multiplying it by 16, and adding the number for the

1 background color. If location 1024 contains the value 52,

which is 3*16+4, the points in that character will be in color

r-1 3, and the background will be color 4. Color memory is not

used in the standard bitmapped graphics mode.

Here is the demonstration program. It plots the seven

p-| points that form the Big Dipper.

187

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

:rem

167

115

54

243

228

243

17

24

28

35

69

116

117

u

Subroutines

u

Plotdemo LJ

100 POKE 53272,PEEK(53272)OR8:BASE=8192

110 POKE 53265,PEEK(53265)OR32 :rem hd s «

120 K=BASE :rem 54 LJ
130 POKE K,0:K=K+1:IF K<16192 GOTO 130

140 K=1024

150 POKE K,16:K=K+1:IF K<2024 GOTO 150

160 X=10:Y=10:GOSUB 900

170 X=50:Y=30:GOSUB 900

180 X=60:Y=50:GOSUB 900

190 X=90:Y=80:GOSUB 900

200 X=80:Y=120:GOSUB 900

210 X=130:Y=140:GOSUB 900

220 X=160:Y=110:GOSUB 900

230 END :rem 108

900 BY=BA+40*(YAND248)+(YAND7)+(XAND504):POKE BY,P

EEK(BY)OR21(NOTXAND7):RETURN :rem 23

The first thing the program does is inform the graphics chip

that the 8000-byte section of memory will start at location

8192. This location is called the base of the bitmapped screen.

POKE 53272,PEEK(53272) OR 8

The next POKE puts the graphics chip into the bitmapped

mode. The following POKE does this.

POKE 53265,PEEK(53265) OR 32

To turn off the bitmapped mode, use this statement:

POKE 53265,PEEK(53265) AND 223:POKE

53272,PEEK(53272) AND 247

The variable BASE is also assigned the value 8192 for future

reference.

The program then enters a loop to clear the 8000 bytes.

You can see each byte being cleared. This takes about two

minutes.

Next, the program uses a loop to set the color for the ji

image and background of each character position. The points

will be white on a black background.

Finally, the program is ready to start plotting points. j j

Seven points are plotted, after which the program ends.

Admittedly, mere plotting of points is not very exciting. It

does not give you a good example of what is possible using j j

bitmapped graphics. Here is a modified version of the

demonstration program that includes a line drawing sub

routine. Set the variables X and Y to the coordinates of the j]

188

u

i I

|—j Subroutines

first end point, set XO and YO to the coordinates of the second

end point, and call the subroutine with the statement GOSUB

910. The subroutine will plot all the points between the two

end points to draw a straight line.

You may notice that we put a REM statement in front of

line 130. Clearing the 8000 bytes takes a long time, and for

purposes of experimenting we don't have to do it every time.

Drawdemo

100 POKE 53272,PEEK(53272)OR8:BASE=8192 :rem 167

110 POKE 53265,PEEK(53265)OR32 :rem 115

120 K=BASE :rem 54

130 REM POKE K,0:K=K+1:IF K<16192 GOTO 130:rem 215

140 K=1024 :rem 228

150 POKE K,16:K=K+1:IF K<2024 GOTO 150 :rem 243

160 X=10:Y=10:GOSUB 900 :rem 17

170 X0=50:Y0=30:GOSUB 910 :rem 121

180 X0=60:Y0=50:GOSUB 910 :rem 125

190 X0=90:Y0=80:GOSUB 910 :rem 132

200 X0=80:Y0=120:GOSUB 910 :rem 166

210 X0=130:Y0=140:GOSUB 910 :rem 213

220 X0=160:Y0=110:GOSUB 910 :rem 214

230 X0=90:Y0=80:GOSUB 910 :rem 127

240 END :rem 109

900 BY=BA+40*(YAND248)+(YAND7)+(XAND504):POKE BY,P

EEK(BY)OR2t(NOTXAND7):RETURN :rem 23

910 DX=ABS(X0-X):DY=ABS(Y0-Y):SX=SGN(X0-X):SY=SGN(

Y0-Y):K=1:IF DX<DY GOTO 960 :rem 205

920 E=DY-DX/2 :rem 228

930 IF E<0 THEN E=E+DY:GOTO 950 :rem 171

940 Y=Y+SY:E=E+DY-DX :rem 245

950 X=X+SX:GOSUB 900:K=K+1:IF K<=DX GOTO 930

:rem 27

955 RETURN :rem 131

960 E=DX-DY/2 :rem 232

970 IF E<0 THEN E=E+DX:GOTO 990 :rem 178

980 X=X+SX:E=E+DX-DY :rem 246

990 Y=Y+SY:GOSUB 900:K=K+1:IF K<=DY GOTO 970

:rem 39

995 RETURN :rem 135

Now a few words about the plotting subroutines. The

variable BASE must be assigned the value 8192 in order for

the subroutine to work. The only time this value may change

is when you're using advanced graphics methods that let you

place the 8000-byte section in other places. The variables X

H
189

Subroutines i

and Y should never be allowed to contain values outside the '—'
ranges 0-319 and 0-199, respectively, or some wrong loca

tions may be inadvertently POKEd, causing the computer to j)

act in unusual ways. And if you want to erase a point, replace s—'
line 900 with the following:

UNPLOT ^
900 BY=BA+40*(YAND248)+(YAND7)+(XAND504):POKE BY,P

EEK(BY)ANDNOT2t(NOTXAND7) :rem 32

905 RETURN :rem 126

The last feature of bitmapped graphics is that it supports a

multicolor mode, similar to the one for character graphics. In

this mode, each point can be one of three colors, or contain

the background color. The three possible image colors can be

different for each character position. With all these color

possibilities, the multicolor bitmapped mode is extremely

versatile.

To achieve the multicolor effect, bit-pairs must again be

used, so the total number of points displayed horizontally is

reduced to 160, and each point is double the normal width.

The combination of the two bits determines the color used for

each point.

Bit Pattern Color

00 background color 0 (location 53281)

01 screen memory (color number times 16)

10 screen memory

11 color memory

The following demonstration program draws three lines, one

in each color. The first line is drawn by plotting every other

point, starting at the second point from the left. The next line

is drawn in the same way, except that the plotting starts in the

first column. The third line is drawn so that every point is [_j
plotted. Keep in mind the fact that the set of three colors can

be changed at each character position.

u
McDEMO

100 POKE 53272,PEEK(53272)OR8tBASE=:8192 :rem 167 j |

110 POKE 53265,PEEK(53265)OR32 : REM ENABLE BIT MA ^
PPED MODE :rem 243

115 POKE 53270,PEEK(53270)OR16 : REM ENABLE MULTIC r i

OLOR MODE :rem 102 LJ

190

U

H

p Subroutines

n

120 K=BASE :rem 54

130 POKE K,0:K=K+1:IF K<9152 GOTO 130 :rem 193

140 K=0 :rem 77

150 POKE 1024+K,208:POKE 55296+K,1:K=K+1:IF K<200

{SPACE}GOTO 150 :rem 41

160 K=0:POKE 53280,0 :rem 22

170 X=K : Y=10 ": GOSUB 900 :rem 252

180 X=K+1 : Y=12 : GOSUB 900 :rem 91

190 X=K:Y=14:GOSUB 900:X=K+1:GOSUB 900 :rem 203

200 K=K+2 : IF K<319 GOTO 170 :rem 128

210 END :rem 106

900 BY=BA+40*(YAND248)+(YAND7)+(XAND504):POKE BY,P

EEK(BY)OR2t(NOTXAND7):RETURN :rem 23

The advantage to bitmapped graphics is that it gives you

full control over every point on the screen. This makes large,

detailed pictures feasible. With the color available in multi

color mode, your Commodore 64 can display some dazzling

pictures on the screen.

n

191

Chapter 13

Simplified
Loops

n

n

Simplified

The FOR and NEXT Statements

fJ There are two kinds of loops, depending on whether it is

1 known how many times the loop will be repeated when it is

first entered. Loops can either repeat indefinitely until a cer

tain condition is true (the GET statement gets something other

than the null string), or repeat a specified number of times

(READ is used to change a color eight times). The IF-THEN

statement is great for exiting a loop of the first type, but loops

which repeat a certain number of times require a counting

variable, starting and ending values, an assignment statement

to increment the counting variable, conditional logic to check

if the loop is done, and a way to make execution jump back to

the top of the loop. These loops are really quite simple; it's

just the statements which set them up that get complicated.

Since such loops are used very often, two special statements

are available, to simplify loops which repeat a specified num

ber of times.

10 K=l :rem 26

20 PRINT "COMMODORE 64" :rem 66

30 K=K+1 : IF K<5 GOTO 20 :rem 178

10 FOR K=l TO 5 :rem 217

20 PRINT "COMMODORE 64" :rem 66

30 NEXT K :rem 237

All we want to do is print the name of our favorite com

puter five times, and both programs do so. The first program

shows how we have learned to set up loops of this type. The

second program uses the new statements, FOR and NEXT, to

j—i accomplish the same thing. The FOR statement assigns the

1 value 1 to the variable K (comparable to line 10 of the first

program). Execution continues to the following statement,

— which is a PRINT. There could be several statements here, not

1 J just one. When the computer reaches the NEXT statement, it
increments K by 1 (this is like K=K+1), and checks if the

—j new value for K is less than or equal to the number that was

I ! after the keyword TO in the FOR statement (IF K<=5). If so,
execution jumps back to the first statement after FOR (the

_ GOTO 20). This condition will be true every time through the

195

n

U

Simplified Loops ,

y

loop except the last time, when K equals 5. Adding 1 to K ^
makes it 6, which is outside the range specified by the FOR

statement. The loop is done, and execution continues with the t ,

first statement after NEXT. U
Why is it preferable to use the FOR and NEXT statements

rather than the other method? Mainly because FOR and NEXT «

are easier to use—there are only two statements instead of «#J
three, and less typing is needed. Also, it is easier to read a

loop formed with FOR and NEXT. With FOR and NEXT, the

boundaries of the loop can be quickly spotted. You must care

fully read line 30 of the first example to determine that it is

the end of a loop. If other statements inside the loop included

IF-THEN statements, they could easily be mistaken for the

loop's end. More statements after line 30 could make line 30

hard to spot. Another advantage is that the second version

could be written on one line, whereas the older version could

not. In fact, the older version can't even be done in the

immediate mode, but the newer one can.

FOR K=l TO 5 : PRINT "COMMODORE 64" : NEXT K

The NEXT statement, like RETURN, can jump into the middle

of a line.

Just by looking at the FOR statement, you can tell right

away how many times the loop will be executed. The number

before the keyword TO tells the starting value of the counting

variable, and the number after TO tells the ending value. And

it's easy to change how many times the loop is executed.

10 FOR K=l TO 15 :rem 10

The PRINT statement will now be executed 15 times. You can

also change the starting value of the variable. By starting K at

14, the loop is executed only twice.

10 FOR K=14 TO 15 :rem 62 v ,

The counting variable does not have to be used just to control

how many times the loop is executed; it can also be used

inside the loop. The next example puts all of the characters on LJ

the screen, in different colors.

10 FOR K=0 TO 255 :rem 63 j ,

20 POKE 1024+K,K : REM CHARACTER :rem 240 LJ
30 POKE 55296+KfK : REM COLOR :rem 39

40 NEXT K :rem 238

196

H

i—| Simplified Loops

The FOR and NEXT statements greatly simplify the handling

of loops. By being able to change the starting and ending

j—| values, FOR and NEXT can do anything that can be done with

the old method, with one exception. How can the loop be

made to go backward? Consider the following program.

rl 10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT
=54276 :rem 163

20 POKE MV,15:P0KE AD,0:POKE SR,240:POKE FL,0:POKE

CT,17 :rem 203

30 FOR K=0 TO 255 :rem 65

40 POKE FH,K : PRINT K :rem 170

50 NEXT K :rem 239

60 POKE CT,16 :rem 191

The program produces a tone which starts at a low pitch and

increases. Perhaps if the values before and after the keyword

TO were switched, the loop would go backward. Try it.

30 FOR K=255 TO 0 :rem 65

The loop is executed only once. To find out why, we have

to trace the steps followed by the computer. The variable K

starts at 255, is used in line 40, and gets incremented to 256

by the NEXT statement. This new value of K is certainly not

less than or equal to 0, the number after TO, so the loop is

done. The problem is that the NEXT statement still adds 1 to

the counting variable, when it needs to subtract 1. Fortunately,

there is a way to make NEXT add numbers other than 1 to the

counting variable. The FOR statement includes an optional

keyword STEP. This keyword goes at the end of the FOR

statement, and it must be followed by a value. This is the

value that is added to the counting variable every time NEXT

is executed. A value of — 1 will cause K to be decremented,

and the example will now work correctly.

ft 30 FOR K=255 TO 0 STEP -1 :rem 219

The optional STEP also lets you control the size of the

_ increment or decrement. Think of climbing a tall staircase. To

! get to the top faster, you might take two steps at a time, skip

ping every other step. Using a STEP of 2 in the example

_ means that only every other frequency number will be POKEd.

30 FOR K=0 TO 255 STEP 2 :rem 175

Notice that the variable does not have to match exactly

197

u

Simplified Loops I i

the value after the keyword TO in order for the loop to ter- —'

minate. That is because NEXT checks if the value is less than

or equal to the limit, so this loop ends after being executed \ \

with K equal to 254. The checking is reversed when a negative '—'
value is used for STEP, however, and the test is for greater

than or equal to the limit. j

Regardless of what value is used for STEP, a loop using '—'

FOR and NEXT will always be executed at least once, because

the range check on the counting variable is not done until the

NEXT statement. All of the statements in the loop will have

been executed before the first time NEXT is reached. On the

other hand, it is possible to create an infinite loop if a STEP

value of 0 is used. Of course, just a plain GOTO would

accomplish the same thing.

All of the examples shown so far have used the variable K

as a counting variable, but any numeric variable can be used.

The demonstration could be modified using J to control the

loop.

30 FOR J=0 TO 255 :rem 64

40 POKE FH,J : PRINT J :rem 168

50 NEXT J :rem 238

FOR-NEXT loops can be used in different places in a program

without confusing the computer. Add this line to the program.

55 FOR J=255 TO 0 STEP -1 : POKE FH,J : PRINT J :

{SPACE}NEXT J :rem 34

It is even possible for two loops in a program to use different

variables.

55 FOR K=255 TO 0 STEP -1 : POKE FH,K : PRINT K :

{SPACE}NEXT K :rem 38

The NEXT statement will always jump to the first statement

after the most recent FOR. However, when NEXT is executed, M

if the variable after the keyword does not match the one in

the most recent FOR statement, a NEXT WITHOUT FOR error

will occur. This means that a NEXT with the proper variable i|

name is missing.

Now the inevitable question: If several FOR-NEXT loops

can be used in the same program, can they be nested? Again, jj

the answer is yes, but only if certain restrictions are observed.

With subroutines, the GOSUB and RETURN statements had to

match, or the RETURN WITHOUT GOSUB error would occur. j j

198

L)

Simplified Loops

The same thing is true with FOR and NEXT, but it is a little

more complicated, because the matching must be done in

order. The example has been rewritten to show two loops

nested correctly.

10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT

=54276 :rem 163

20 POKE MV,15:POKE AD,0:POKE SR,240:POKE FL,0:POKE

CT,17 :rem 203

30 FOR K=0 TO 255 :rera 65

40 POKE FH,K : PRINT K :rem 170

45 FOR J=0 TO 255 : POKE FL,J : NEXT J :rem 122

50 NEXT K :rem 239

60 POKE CT,16 :rem 191

Location FL (frequency low) acts like a fine-tuning control for

the frequency. The loop controlled by J repeats 256 times to

change FL, but that entire loop is repeated another 256 times,

due to the nesting. A slight glitch in the sound is normal as

FH is changed. Note that the J loop is entirely inside the K

loop. This is the rule about nesting FOR-NEXT loops. The

order of variables in FOR statements is K followed by J, so the

order for NEXT statements must be reversed—J and then K. If

you do not follow this rule, you will get the NEXT WITHOUT

FOR error. Here is a program which uses three correctly

nested loops.

10 FOR K=l TO 10 :rem 5

20 FOR J=l TO 10 :rem 5

30 FOR 1=1 TO 10 :rem 5

40 PRINT K,J,I :rem 39

50 NEXT I :rem 237

60 NEXT J :rem 239

70 NEXT K :rem 241

Again, the order of NEXT statements is precisely opposite

f] the order of the FOR statements. The next program breaks the

! rule, and will generate ?NEXT WITHOUT FOR ERROR IN 70.

10 FOR K=l TO 10 :rem 5

H 20 FOR J=l TO 10 :rem 5
30 FOR 1=1 TO 10 :rem 5

40 PRINT K,J,I :rem 39

r-| 50 NEXT I :rem 237

' I 60 NEXT K :rem 240

70 NEXT J :rem 240

It is suggested that you avoid using the variable I as a counter

variable, because it looks too much like the number one.

199

n

u

Simplified Loops

lJ

An easy way to tell if loops are nested correctly is to draw I—I
lines connecting each pair of FOR and NEXT statements. In

the correct example above, you could draw a line from the ,- ,

end of line 10 to the end of line 70, and likewise from 20 to LJ
60, and 30 to 50. The lines will not cross in a correctly written

program. If the lines cross, you don't even have to run the j

program to know that you will get the error message. ^_i

There is one other caution about nesting. A counting vari

able used for one loop cannot be used for any other loop that

is in effect at the same time. The following program will gen

erate an error, even though the variable names are in the cor

rect order. The problem is that the variable K appears twice.

10 FOR K=l TO 10 :rem 5

20 FOR J=l TO 10 :rem 5

30 FOR K= 1 TO 10 :rem 7

40 PRINT K,J,K :rem 41

50 NEXT K :rem 239

60 NEXT J :rem 239

70 NEXT K :rem 241

This does not mean that the variable K can't be used for two

different loops in the same program. The restriction applies

only when the loops are nested. At line 30, K is already in

use, so it should not be starting another loop. The error, how

ever, will not occur until the NEXT statement on line 60 is

executed.

FOR-NEXT loops are used with great frequency in BASIC

programs, and as you might expect, there is a shortcut. All of

those NEXT statements in the earlier examples may seem to

be a little redundant, especially if they were put on the same

line.

10 FOR K=l TO 10 :rem 5 ||
20 FOR J=l TO 10 :rem 5

30 FOR 1=1 TO 10 :rem 5

40 PRINT K,J,I :rem 39 , ,

50 NEXT I : NEXT J : NEXT K :rem 116 LJ

The shortcut is to replace all of the NEXT statements with just

one NEXT, and follow it with a variable list. This is a list of all j_J
the counting variables, in the reversed order. You could

replace three statements with only one.

u
200

u

n

— Simplified Loops

n
50 NEXT I,J,K :rem 218

You can do this only when there are two or more NEXT state-

Pl ments, one right after the other, which can only happen when
nested loops are being used. If there are any statements

between one NEXT and another, do not use the shortcut.

Pj A second shortcut is to not specify a variable after the
keyword NEXT. This is sometimes done when only one loop

is being used. The following line is legal and will work:

FOR Q=l TO 10 : PRINT Q : NEXT

Notice that using this second shortcut makes it impossible to

use the first one. Omitting the variable name also makes it

harder to find mistakes in a program, because if no variable

names are used, no variable name mismatch can be detected.

The NEXT WITHOUT FOR error will only occur when more

NEXT statements are encountered than FOR statements. It is

suggested that you use this second shortcut only when a pro

gram contains just one loop.

Sometimes you will see a FOR-NEXT loop with no state

ments inside. Loops like the one below are another way of

creating a delay in a program.

FOR Q=l TO 300: NEXT

There is a maximum number of loops which can be nested at

the same time. This limit changes according to the number of

subroutines in effect and the complexity of calculations. The

absolute maximum number of levels that can be nested is

nine. Only under unusual circumstances would a program

ever have to nest deeper than eight levels. Remember, this

limit applies only to nesting; a program could have a hundred

loops, but only a few of them might be in effect

simultaneously.

The FOR and NEXT statements are designed to handle

! | only loops which repeat a designated number of times, this

number being known when the loop is first entered. Loops

^ that repeat until a condition is met should not be written with

i I FOR and NEXT, because FOR-NEXT loops must always be

allowed to go to completion. Never jump out of a loop before

^ it has finished. You can use GOSUB, but a GOTO which

| jumps out of the loop should be avoided. Prematurely jump

ing out of FOR-NEXT loops is not only bad programming

style, but it can also really confuse the computer, without the

201

u

Simplified Loops ;

problems being immediately evident. If it is necessary to jump '—'
out of a loop, write the loop using the older method, with the

assignment statements and IF-GOTO. j j

It is also not a good practice to change the value of a '—'
counting variable while it is being used in a FOR-NEXT loop.

The statements inside the loop can use its value, as was done j i

in many of the example programs, but to assign the counting *—'
variable by a LET statement or other means is not

recommended.

After a loop has finished, the counting variable retains its

last value. Remember that the last value is the one that was

out of range and caused the loop to end, so in a loop which

went from 1 to 10 stepping by 1, the last value would be il.

Stepping by 1.5, the last value would be 11.5

Summary

• There are two kinds of loops. One kind repeats indefinitely,

waiting for a condition to be met. The computer does not

know, when it first enters the loop, how many times the

loop will be executed. The other type of loop repeats a set

number of times. In this case, the computer does know

when it enters the loop how many times the loop will be

executed.

• The kind of loop which repeats a set number of times is very

simple, but to implement it in a program requires assignment

statements, conditional logic, and a way to make execution

jump to the top of a loop.

• The FOR and NEXT statements are used to simplify the han

dling of loops which repeat a specified number of times.

These two statements do all the work normally done by two

LET statements and an IF-GOTO statement.

• The syntax of the FOR statement starts with the keyword

FOR. Then comes the name of the counting variable. This jl

must be a numeric variable. String variables cannot be used.

After the variable name comes an equal sign, just as in the

LET statement, followed by a value which is the starting M

value for the loop. Next comes the keyword TO and another

value, this time the ending value for the loop. All of this

may optionally be followed by the keyword STEP and one M

more value.

u
202

U

j—i Simplified Loops

• The syntax for the NEXT statement is the keyword NEXT

and an optional variable list.

I ! • The FOR statement assigns the counting variable its initial
value, and makes the computer remember the end and step

„ values for the loop.

• The NEXT statement makes sure that if it includes a variable

name, the name matches the variable in the most recent FOR

statement. If there is a mismatch, the NEXT WITHOUT FOR

error message is printed. Otherwise, it adds the step value to

the counting variable, checks if the counting variable is still

in the range specified in the FOR statement, and if so, causes

execution to jump to the first statement after the correspond

ing FOR statement. When that loop is finished, the NEXT

statement checks for more variables in its variable list. If

there is another one, the whole procedure is repeated for

that loop. When there are no more variables, execution

proceeds to the statement after NEXT.

• There are many advantages to using FOR and NEXT to

create loops:

1. Only two statements are needed.

2. The FOR statement indicates right away how many times

the loop will repeat.

3. The boundaries of a loop defined using FOR and NEXT

are easy to spot, especially if the variable name is put

after NEXT.

4. Because the NEXT statement can jump into the middle of

a line, an entire loop can be written on just one line.

5. It is possible to perform a FOR-NEXT loop in the immedi

ate mode.

• Although the value of the counting variable should never be

_, changed while it is in the middle of a loop, the value can be

R used by other statements in the loop.

• If the STEP keyword is omitted in the FOR statement, a

|—[stepping value of 1 is assumed.

• To make the counting variable count backward, a negative

step value has to be used.

I! • When the NEXT statement checks if the value of the count
ing variable is still in range, it checks not just for equality,

203

LJ

Simplified Loops {

but also for less than. This means that the counting variable *—'
does not have to exactly match the ending value for the loop

to end. I

• With a positive step value, the NEXT statement will repeat *—'

the loop if the counting variable is less than or equal to the

loop's ending value. For a negative step value, a check for \~\

greater than or equal to is used. '—'

• All of the statements in a FOR-NEXT loop will be executed

once before the NEXT statement is ever reached. This means

that even if the starting and ending values in a FOR state

ment are wrong, as in FOR K=l TO -1 (no STEP -1), the

loop will be executed at least once.

• There is no sense in using a step value of 0, because doing

so creates an infinite loop.

• Any number of independent FOR-NEXT loops can be used

in one program.

• FOR-NEXT loops can be nested, provided that the NEXT

statements occur in exactly the opposite order of the

corresponding FOR statements.

• An easy way to tell if loops are nested correctly is to draw

lines connecting the FOR and NEXT statements. If the lines

cross, the nesting is wrong, and a NEXT WITHOUT FOR

error message is to be expected.

• The maximum number of FOR-NEXT loops which can be

nested fluctuates, but the absolute maximum is nine levels. A

program won't usually have to nest deeper than that.

• A FOR statement cannot use a counting variable that is cur

rently being used by another FOR-NEXT loop.

• The use of a variable name after NEXT is optional but

recommended, because it helps catch errors which otherwise

might go unnoticed and cause problems later in the program.

• Jumping out of an unfinished FOR-NEXT loop can create [J
problems that may not be immediately detected. Always

allow FOR-NEXT loops to go to completion. If it is necessary

to jump out of a loop, do not use FOR and NEXT. Instead, [J
use assignment statements and conditional logic.

• The counting variable retains its value after a FOR-NEXT

loop has ended. |_J

u
204

u

— Simplified Loops

i
' - Introduction to Sprite Graphics

With character and bitmapped graphics modes, both of which

r—| can use up to 16 colors, your Commodore 64 is capable of

' producing some very impressive graphics displays. You can

even do animation on your Commodore 64, with sprites, by

r-] changing sprite shapes and positions.

' * First, let's look at animation using character graphics. You
change the shape of a character by redefining the character

set, but the 8 by 8 matrix is often too small to create an object.

Several characters have to be used, and it's not always easy to

move that many characters. Even with a single character, the

positioning is restricted to the range of 40 by 25 characters.

Character movement appears jerky, as in the "Hurkle" game,

because the character jumps by 8 points. Character graphics

has some drawbacks when it comes to animation.

Bitmapped graphics can be used to create big shapes. You

can draw a shape of any size, starting at any of 320 by 200

positions. The only problem is that the drawing is too slow.

Moving an object, which requires erasing every point and

replotting it at a new position, is even slower. Animation is

virtually impossible using bitmapped graphics.

In answer to these problems, the Commodore 64 supports

sprite graphics, which combines the best features of character

and bitmapping modes. Sprite graphics makes it easy for an

object to change shape or position. Sprites are, unquestion

ably, the best graphics feature of the Commodore 64.

A sprite is like a super character because it is three charac

ters wide and almost three characters high. This solves the

size problem associated with normal character graphics. A

sprite can also be positioned to start at any of the 320 by 200

points on the screen, and only three POKE statements are

needed to change the position. This takes care of the move-

p» ment problem. Already you can see that sprites are well-suited

i I for animation.
One of the most exciting features of sprite graphics,

j—■* though, is that sprites can be used at the same time as charac-

1 I ter or bitmapped graphics. A sprite is completely independent
of the normal screen display. The sprite image appears on top

I—* of the normal characters and plotted points, as if it were

1 ! superimposed on the screen. Because the sprite is separate, no
erasing or redrawing needs to be done when the sprite is

n

205

u

Simplified Loops

moved. The display behind the sprite is undisturbed. For a i-J

demonstration of what a sprite can do, enter and run the

following program. j i

100 POKE 56,62 : CLR : REM RESERVE MEMORY :rem 237

110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ

=53264 :rem 224 j |

120 BN=248 : BL=BN*64 : REM SET BLOCK NUMBER AND S s—J

TARTING LOCATION :rem 253

130 POKE SP,BN : REM POINT TO BLOCK :rem 216

140 FOR K=BL TO BL+20 :rem 80

150 READ P : POKE K,P : NEXT K : REM READ DEFINITI

ON INTO BLOCK :rem 190

160 FOR K=BL+21 TO BL+63 :rem 231

170 POKE K,0 : NEXT K : REM CLEAR REMAINDER OF BLO

CK :rem 78

180 POKE SC,8 : REM SET SPRITE COLOR TO ORANGE

:rem 129

190 POKE SE,1 : REM ENABLE SPRITE :rem 90

200 FOR X=0 TO 290 : Y=X/2 :rem 5
210 POKE SX,24+XAND255:POKE SZ,-(X>231):POKE SY,50

+Y : REM SET POSITION :rem 134

220 NEXT X :rem 43

700 DATA 255,255,255,240,0,15,240,0,15,240,0,15,24

0,0,15,240,0,15,255,255,255 :rem 165

Let's take a look at exactly what happened in this program.

Line 100 sets aside some free memory for use with

sprites. The only drawback is that there is now less free mem

ory available to BASIC, which you will discover when you use

the free memory function.

Line 110 sets assignments for hardware locations that are

used for controlling sprites. You will need to use these loca

tions in every program that uses sprites.

A sprite definition resides in a block of 64 bytes. These

blocks are numbered from 0 to 255. In line 120, variable BN is

set to the block number that is used by the program. To cal- J j

culate the location of the block in memory, the value in BN

must be multiplied by 64. The result gives you the location

where the first byte of the sprite definition should be POKEd. | j

Location SP in line 130 is the sprite pointer, and tells the

graphics chip which block number the sprite definition is

stored in. j j

Lines 140 and 150 read the sprite definition from DATA

statements and POKE it into the block.

u
206

u

r- Simplified Loops

M

' ' The sprite definition block consists of 64 bytes. Since only
the first 21 bytes are being used, the remaining bytes are set

p to 0 by the loop in lines 160 and 170.

' ' Line 180 sets the color of the sprite. Any value from 0 to
15 can be POKEd into location SC. The color numbers are the

nsame as those used for the border and background locations.

In line 190, POKE is used to activate, or enable, the sprite.

If this POKE is not executed, the sprite image will not appear.

Line 200 begins the loop to move the sprite across the

screen. A sprite is positioned using X and Y coordinates, just

as in the bitmapped graphics mode. The point specified by the

coordinates is the upper-left corner of the sprite. For purposes

of demonstration, the Y position is calculated using X so that

the sprite will move diagonally across the screen.

The three POKE statements that position the sprite on the

screen are in line 210. The exact details of these statements are

not important; all that matters is that they work.

Line 220 is the end of the movement loop, and the end of

the program. Line 700 contains the data for the sprite

definition.

With just a couple of changes, you can make the sprite

move according to the joystick. Here are the two lines that

need to be changed.

200 JS=NOTPEEK(56320):X=X+SGN((JSAND8)-(JSAND4)):Y

=Y+SGN((JSAND2)-(JSAND1)) :rem 24

220 GOTO 200 :rem 95

Notice that the sprite can be moved off the main screen area.

The sprite will disappear behind the border. The program has

not been written, however, to let you move the sprite com

pletely off the screen. It may stop due to an ILLEGAL QUAN

TITY error or start acting in an unusual manner. You could

add some lines to the program that would use IF-THEN state-

(j ments to check the range of X and Y to make sure that the
sprite stays in bounds.

The important things shown by the program are that a

j| sprite can be easily positioned at any point on the screen, and

that it is independent of the rest of the screen, so no erasing
and replotting is necessary.

Defining a Sprite Shape

The shape used in the demonstration program was the outline

P] of a box, but any other shape could have been used instead.

207

n

Simplified Loops

Now that you have seen what a sprite can do, let's see how

the sprite shape is actually defined.

Defining a sprite is almost as easy as redefining a charac

ter. Just remember that a sprite is like a super character,

because it is three characters wide and about two and a half

characters high. Instead of working with an 8 by 8 matrix, you

now have a 24 by 21 matrix. The illustration shows how the

box image was created.

■■?;>';

!&&

£^ is

"ft* III

11

Hi &

255

240

240

240

240

240

255

0

0

0

0

0

0

0

0

0

0

0

0

0

0

255

0

0

0

0

0

255

0

0

0

0

0

0

0

0

0

0

0

0

0

0

255

15

15

15

15

15

255

0

0

0

0

0

0

0

0

0

0

0

0

0

0

The sprite color is displayed at every point where a bit is set

to 1. Where a bit is 0, the image is transparent, and the main

screen shows through. Notice how screen characters appear in

the window of the box.

The decimal numbers were calculated in the same way a

character is redefined. These numbers were then copied into

DATA statements to be read into the definition block by a

FOR-NEXT loop. In the example, only the first 21 bytes were

used, so the remaining bytes were set to 0. Since a total of 63

bytes are needed to define a sprite, byte 64 in the definition

block is not used.

If you would like to define your own sprite shape, here is

a step-by-step description of how it is done. Start with an

empty 24 by 21 grid. Above it, write the numbers 128, 64, 32,

208

U

LJ

LJ

D

i (

u

Simplified Loops

16, 8, 4, 2, and 1 in the appropriate columns. You will have to

repeat this two more times, because the sprite is three bytes

wide.

The next step is to fill in all the squares that form the sprite

image.

w

m

i
1
g
I
p

api 1 1

mm

1 EBa
Mi

1 IJKjK^Jew V \

WXSBm

n m
mm r

y

a

mm

fflmb

M

w$
P

pa

HHM
»P
_fa

IflW
mm

1

L

»

fa

1

Si

Pip

MM
BS

mm

is

ip

j

a

pi

i
m\
pi

ig

feU

^^^ 1

JHU 1 1

3d 1

ri3 1

ppp

»pll

m

1 M.

209

Simplified L©®ps

Once you are satisfied with the picture you have drawn, you I—!
are ready to convert the bit patterns to decimal numbers. For

each byte, look at only those bits which are set to one. Then ,-■■

look at the corresponding numbers at the top of the columns, L_

and add those numbers together. The sum is the decimal

equivalent for that byte. For example, the binary number ,-,

00001100 is 8+4=12 when converted to decimal. It is an easy !_[
process, but it will take a little while because you have to do it

for all 63 bytes. Here are the decimal numbers for the example

picture.

48

240

48

48

224

192

0

128

192

224

48

240

224

0

56

224

128

12

62

254

255

There should be a total of 63 numbers. Now you have to put

the numbers into DATA statements. This is done on a row-by- I i
row basis. The first three numbers in the first DATA statement

come from the top row. In the example, the first three num

bers would be 12, 0, and 48. Then you would move to the M

next row. When you run out of room in one DATA statement,

use another one. The first DATA statement for the example

would look like this. M

700 DATA 12,0,48,15,129,240,12,195,48,12,102,48,7,102,224,

3,231,192,0,195,0 —

210

D

12

15

12

12

7

3

0

1

3

7

12

15

7

0

28

7

1

48

124

127

255

0

129

195

102

102

231

195

255

24

255

60

0

255

255

60

60

255

126

60

60

255

n
Simplified Loops

1 ' All that is left is to write a program that reads the sprite data
and POKEs it into a definition block. If the loop POKEs all 64

p-] bytes in the block, however, remember to add the number 0 to

' ! the last DATA statement to avoid an OUT OF DATA error.

The demonstration program from before has been modi-

|—-j fied to display the sprite image we just created. All of the lines

I ■ below line 130 have been changed.

100 POKE 56,62 : CLR : REM RESERVE MEMORY :rem 237

110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ

=53264 :rem 224

120 BN=248 : BL=BN*64 : REM SET BLOCK NUMBER AND S

TARTING LOCATION :rem 253

130 POKE SP,BN : REM POINT TO BLOCK :rem 216

140 FOR K=BL TO BL+63 :rem 87

150 READ P : POKE K,P : NEXT K : REM READ DEFINITI

ON INTO BLOCK :rem 190

180 POKE SC,3 : REM SET SPRITE COLOR TO CYAN

:rem 235

190 POKE SEfl : REM ENABLE SPRITE :rem 90

200 JS=NOTPEEK(56320):X=X+2*SGN((JSAND8)-(JSAND4))

:Y=Y+SGN((JSAND2)-(JSAND1)) :rem 116

210 POKE SX,24+XAND255:POKE SZ,-(X>231):POKE SY,50

+Y : REM SET POSITION :rem 134

220 GOTO 200 :rem 95

700 DATA 12,0,48,15,129,240,12,195,48,12,102,48,7,

102,224,3,231,192,0,195,0 :rem 78

710 DATA 1,255,128,3,24,192,7,255,224,12,60,48,15,

0,240,7,255,192,0,255,0 :rem 246

720 DATA 28,60,56,7,60,224,1,255,128,48,126,12,124

,60,62,127,60,254,255,255,255 :rem 55

730 DATA 0 :rem 228

The significant differences between this and the earlier pro

gram are the change in shape, the new color, and the faster

movement. The color was set to cyan by changing the POKE

P* value in line 180 to 3. For the faster horizontal movement, the

I ! X offset was multiplied by 2 in line 200.
The new shape is larger than the original box, but it still

•—t doesn't cover much of the screen area. Another special feature

1 I is that a sprite can be expanded in the horizontal and vertical
directions. The expansion is controlled by two hardware loca-

— tions, so we need to assign two more variables. Change line

! I 110 of the program to contain the two variable assignments.

SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:

SZ=53264:SH=53277:SV=53271
n

211

LJ

Simplified Loops r -

Run the program again, and stop it so that the sprite image is I i
on the screen.

Location SH controls the horizontal expansion of a sprite. l-

When you enter the following line, the sprite will expand to L_

twice its normal width.

POKE SH,1 j-j

The sprite is still 24 points wide, but each point has been dou- l~j
bled in width. This means that some of the detail is lost, and

rounded parts do not appear quite so round anymore. Also

notice that the expansion occurs to the right; the left edge is at

the same place as before so that the X coordinate does not

have to change. To return the sprite to normal width, enter

this line.

POKE SH,0

The only horizontal expansion available is either normal or

double width. To double the height of the sprite, try this line.

POKE SV,1

Every point is now twice as tall as before. The expansion

occurs downward, so that the Y coordinate is still valid. The

sprite can also be expanded horizontally at the same time, for

an image that is four times the normal size. To set the height

back to normal, use this statement:

POKE SV,0

Remember that the expansion feature affects only the way the

sprite is displayed. The numbers in the definition block stay

the same, and can only be changed by POKE statements.

There is one last feature related to sprite definitions. Just

as character and bitmapped graphics support multicolor

modes, so does sprite graphics. One POKE statement is all it

takes to put a sprite into multicolor mode. However, since a

sprite is separate from character and bitmapped graphics, there M

is a special location just for sprite graphics. The following

statement turns on the multicolor mode for a sprite:

POKE 53276,1 \J

To turn off the multicolor mode, use this statement.

POKE 53276,0 fj

Simply turning on the multicolor mode is not enough to set

the extra colors. The sprite must be defined in a certain way. ~

212

LJ

H

Simplified Loops

• ' When a sprite is displayed in the multicolor mode, the bits are
interpreted in pairs. Two bits correspond to each point. This

p—i means that a sprite is now only 12 points wide, so to com-

) ' pensate for the size, each point is wider. The sprites can still
be positioned horizontally to start at any of the 320 points,

r-i though.

' ' Defining a multicolor sprite takes a little more effort
because of the way the bits are interpreted. Here is an exam

ple of a definition specifically designed for multicolor mode.

00000000 00000000 00000000

00000000 00000000 00000000

00000001 01010101 00000000

00000001 11111101 00000000

00000100 11111100 01000000

00000000 00110000 00000000

00000010 11111110 00000000

00001010 10101010 10000000

00001010 10101010 10000000

00101010 10101010 10100000

00100010 10101010 00100000

10000001 01010101 00001000

00000001 01010101 00000000

00000001 01010101 00000000

00000001 01000101 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000011 11001111 00000000

00000000 00000000 00000000

In multicolor mode, a sprite keeps its main color, and gets two

^ new ones. Those points defined with a 10-bit combination will

i I be displayed in the main color, set by location SC. Bit

combinations 01 and 11 are set by locations 53285 and 53286.

_ These are the sprite multicolor registers. Points defined by 00

I I are transparent and allow the normal screen to show through.

00 transparent

p 01 sprite multicolor 0 (location 53285)

10 sprite main color

11 sprite multicolor 1 (location 53286)

213

Simplified Loops

The example shape has been incorporated into the following I I
demonstration.

100 POKE 56,62 : CLR : REM RESERVE MEMORY jrera 237 | 1
110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ *—'

=53264:SH=53277:SV=53271 :rem 28

120 BN=248 : BL=BN*64 : REM SET BLOCK NUMBER AND S , -,

TARTING LOCATION :rem 253 LJ
130 POKE SP,BN : REM POINT TO BLOCK :rem 216

140 FOR K=BL TO BL+63 :rem 87

150 READ P : POKE K,P : NEXT K : REM READ DEFINITI

ON INTO BLOCK :rem 190

160 POKE 53285,7 : REM SET SPRITE MULTICOLOR ZERO

{SPACE}TO YELLOW :rem 218
165 POKE 53286,10 : REM SET SPRITE MULTICOLOR ONE

{SPACE}TO LIGHT RED :rem 35

170 POKE SC,13 : REM SET SPRITE COLOR TO LIGHT GRE

EN :rem 217

180 POKE SH,1 : REM SET TO DOUBLE WIDTH :rem 168

185 POKE SV,1 : REM SET TO DOUBLE HEIGHT :rem 244

190 POKE 53276/1 : REM TURN ON MULTICOLOR MODE

:rem 96

195 POKE SE,1 : REM ENABLE SPRITE :rem 95

200 X=200:Y=120 :rem 28

210 POKE SX,24+XAND255:POKE SZ,-(X>231):POKE SY#50

+Y : REM SET POSITION :rem 134

220 END :rem 107

700 DATA 0,0,0,0,0,0,1,85,0,1,253,0,4,252,64,0,48,

0,2,254,0,10,170,128 :rem 34

710 DATA 10,170,128,42,170,160,34,170,32,129,85,8,

1,85,0,1,85,0,1,69,0 :rem 92

720 DATA 2,138,0,2,138,0,2,138,0,2,138,0,3,207,0,0

,0,0,0 :rem 127

The one sprite contains three colors that can be independently

changed. Try some POKE statements in the immediate mode

to create various color combinations.

The process of defining a sprite shape does require some j <

effort, but the results can be well worth the time invested. You U
can create shapes and move them about the screen a whole lot

easier using sprites than if you used character or bitmapped \ \

graphics. LJ

Changing Sprite Shapes

One way to create the effect of animation is to have an object LJ
move across the screen. However, an object can be animated

even if it is not moving, by changing its shape. So far, some of —-

U
214

u

„ Simplified Loops

p

! I the example sprites have moved, but none of them has
changed shape. This section shows you how easy it is to

i—i change the shape of a sprite.

• : The multicolor shape definition from the previous section

has been modified to show a girl who is skipping rope. The

r—i definition is drawn so that the rope is passing over the girl's

head. Here is the definition.

00000001 01010101 00000000

00000100 00000000 01000000

00010001 01010101 00010000

01000001 11111101 00000100

01000100 11111100 01000100

01000000 00110000 00000100

01000010 11111110 00000100

01001010 10101010 10000100

01001010 10101010 10000100

01101010 10101010 10100100

01100010 10101010 00100100

10000001 01010101 00001000

00000001 01010101 00000000

00000001 01010101 00000000

00000001 01000101 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000010 10001010 00000000

00000011 11001111 00000000

00000000 00000000 00000000

Here is a second definition, which has the girl jumping up and

the rope passing under her feet.

00000000 00000000 00000000

00000000 01010100 00000000

00000001 11111101 00000000

00000001 11111101 00000000

00000001 00110001 00000000

00000010 11111110 00000000

00001010 10101010 10000000

00001010 10101010 10000000

00101010 10101010 10100000

00100010 10101010 00100000

10000001 01010101 00001000

215

Simplified Loops

01000001 01010101 00000100

01000001 01010101 00000100

01000001 01000101 00000100

01000010 10001010 00000100 i I
00010010 10001010 00010000 ^
00010010 10001010 00010000

00010010 10001010 00010000 i I

00010011 11001111 00010000 ^
00000100 00000000 01000000

00000001 01010101 00000000

The idea is that by altering between the two shapes, the girl

will appear to be skipping rope. The only problem is in chang

ing the sprite shape fast enough so that the picture changes

instantly. Unfortunately, reading from DATA statements and

POKEing into the definition block is not quite fast enough.

The ideal solution would be to have two definition blocks, one

for each definition, and then have the sprite alternate between

the two blocks. Another great feature of the Commodore 64 is

that it lets you use multiple definition blocks.

In the example programs, memory is reserved for not just

one or two blocks, but eight. Instead of always using block

number 248, you can use blocks from 248 to 255. The block

number that contains the sprite definition is POKEd into loca

tion SP, which points to the definition block. This means that

to make the sprite switch from one block to another, only one

POKE statement is needed.

The next demonstration program puts the two rope-

skipping definitions into blocks 248 and 249. The variable BN

holds the current block number while the shape data is

POKEd into the blocks. To alternate between the two images,

the program alternately POKEs location SP with the numbers

248 and 249. When you run the program, it will actually

appear as though the girl is skipping rope. .

100 POKE 56,62 : CLR : REM RESERVE MEMORY :rem 237

110 SP=2040:SE=53269:SC=53287:SX=53248:SY=:53249:SZ , j

=53264:SH=53277:SV=53271 :rem 28 U
120 FOR BN=248 TO 249 : BL=BN*64 : REM SET BLOCK N

UMBER AND STARTING LOCATION :rem 38

130 FOR K=BL TO BL+63 :rem 86 j I
140 READ P : POKE K,P : NEXT K,BN : REM READ DEFIN U-J

ITION INTO BLOCK :rem 121

U
216

n

n

Simplified Loops

150 POKE 53285,7 : REM SET SPRITE MULTICOLOR ZERO

{SPACE}TO YELLOW :rem 217
fl 155 POKE 53286,10 : REM SET SPRITE MULTICOLOR ONE

{SPACE}TO LIGHT RED :rem 34

160 POKE SC,13 : REM SET SPRITE COLOR TO LIGHT GRE

EN :rem 216

170 POKE SH,1 : REM SET TO DOUBLE WIDTH :rem 167

180 POKE SV,1 : REM SET TO DOUBLE HEIGHT :rem 239

190 POKE 53276,1 : REM TURN ON MULTICOLOR MODE

:rem 96

200 X=200:Y=120 :rem 28

210 POKE SX,24+XAND255:POKE SZ,-(X>231):POKE SY#50

+Y : REM SET POSITION :rem 134

220 POKE SE,1 : REM ENABLE SPRITE :rem 84

230 POKE SP,248 : FOR K=l TO 300 : NEXT :rem 186

240 POKE SP,249 : FOR K=l TO 300 : NEXT : GOTO 230

:rem 196

700 DATA 1,85,0,4,0,64,17,85,16,65,253,4,68,252,68

,64,48,4,66,254,4 :rem 236

710 DATA 74,170,132,74,170,132,106,170,164,98,170,

36,129,85,8,1,85,0 :rem 27

720 DATA 1,85,0,1,69,0,2,138,0,2,138,0,2,138,0,2,1

38,0,3,207,0,0,0,0,0 :rem 37

730 DATA 0,0,0,0,84,0,1,253,0,1,253,0,1,49,0,2,254

,0,10,170,128,10,170,128 :rem 237

740 DATA 42,170,160,34,170,32,129,85,8,65,85,4,65,

85,4,65,69,4,66,138,4 :rem 193

750 DATA 18,138,16,18,138,16,18,138,16,19,207,16,4

,0,64,1,85,0,0 :rem 72

Using advanced techniques, it is possible to reserve more than

eight definition blocks. For now, use only the blocks from 248

through 255. Also, remember that the variable BL depends on

the value of BN, and must be recalculated every time BN

changes before POKEing a definition into a new block.

Here is one more demonstration, this time of a stick figure

I""! doing jumping jacks. The program uses four blocks to create a

very smooth animation effect.

n 100 POKE 56,62:CLR:PRINT CHR$(147) :rem 143

1 110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ

=53264:SH=53277:SV=53271 :rem 28

120 POKE SC,8:POKE 53285,7:POKE 53286,0:POKE 53276

j! ,1:POKE SH,IsPOKE SV,1 :rem 249

130 FOR BN=248 TO 251:BL=BN*64:FOR K=BL TO BL+62:R

EAD P:POKE K,P:NEXT K,BN :rem 155

pi 140 POKE SX,159:POKE SY,130:POKE SP,248:POKE SE,1

I \ :rem 67

__ 217

u

Simplified Loops jj

150 FOR BN=248 TO 251:POKE SP,BN:FOR S=l TO 90:NEX

T:NEXT :rem 203

160 FOR BN=250 TO 249 STEP -1:POKE SP,BN:FOR S=l T

O 90:NEXT:NEXT :rem 102

170 GOTO 150 :rem 103

500 DATA 0,0,0,0,32,0,0,168,0,0,16,0,0,220,0,0,220

,0,3,19,0,3,19,0,3,19,0 :rem 145

510 DATA 3,19,0,0,16,0,0,220,0,0,204,0,0,204,0,0,2

04,0,0,204,0,0,204,0,0,204,0 :rem 116

520 DATA 0,204,0,0,204,0,0,204,0,0,32,0,0,168,0,0,

16,0,0,220,0,3,19,0,12,16,192 :rem 189

530 DATA 48,16,48,192,16,12,0,16,0,0,16,0,0,220,0,

0,204,0,0,204,0,0,204,0,3,3,0 :rem 201

540 DATA 3,3,0,3,3,0,12,0,192,12,0,192,12,0,192,0,

0,0,0,32,0,0,168,0,0,16,0 :rem 255

550 DATA 255,223,252,0,16,0,0,16,0,0,16,0,0,16,0,0

,16,0,0,16,0,0,220,0 :rem 18

560 DATA 0,204,0,0,204,0,3,3,0,3,3,0,12,0,192,12,0

,192,12,0,192,48,0,48,48,0,48 :rem 226

570 DATA 0,0,0,192,0,12,48,32,48,12,168,192,3,19,0

,0,220,0,0,16,0,0,16,0 :rem 147

575 DATA0,16,0,0,16,0 :rem 37

580 DATA 0,16,0,0,16,0,0,220,0,0,204,0,3,3,0,3,3,0

,12,0,192,12,0,192,48,0,48 :rem 57

590 DATA 48,0,48,192,0,12,192,0,12 :rem 126

LJ

LJ

Li

LJ
218

Chapter 14

Computed
Execution

Computed
Execution
The ON Statement

In Commodore 64 BASIC, variables and expressions can be

used just about any place a number is needed, with one

exception: line numbers. Sometimes a program has to do one

of several things, depending on the value of a variable. Say,

for example, that the variable A has possible values of 1, 2,

and 3. It would be very handy if the statement GOTO 100+A

would work. Lines 101, 102, and 103 would contain the state

ments to take the appropriate action according to the value of

A. But the computer will ignore the +A in the statement

GOTO 100+A, and we have to use a lot of IF-THEN state

ments. The next demonstration program shows how to set up

the special function keys fl, f3, f5, and i7 so that each key

changes the border to a different color.

10 PRINT "PRESS A FUNCTION KEY" :

20 GET A$: IF A$="" GOTO 20

30 IF ASC(A$)<133 OR ASC(A$)>136

41 IF ASC(A$)=133 THEN POKE BD,2

OTO 20

42 IF ASC(A$)=134 THEN POKE BD,4

{SPACE}: GOTO 20
43 IF ASC(A$)=135 THEN POKE BD,8

{SPACE}: GOTO 20
44 IF ASC(A$)=136 THEN POKE BD,5

GOTO 20

BD=53280 :rem 78

:rem 241

GOTO 10 :rem 242

: PRINT "RED" : G

:rem 82

: PRINT "PURPLE"

:rem 83

: PRINT "ORANGE"

:rem 61

: PRINT "GREEN" :

:rem 241

The ASCII codes for the function keys are consecutive. Now

we expand the program to include the keys f2, f4, f6, and f8,

which will change the background color. Besides entering

these new lines, add the statement BK=53281 to line 10, and

change the 136 in line 30 to a 140.

45 IF ASC(A$)=137 THEN POKE BK,3 : PRINT "CYAN" :

{SPACE}GOTO 20 :rem 178

46 IF ASC(A$)=138 THEN POKE BK,9 : PRINT "BROWN" :

GOTO 20 :rem 23

47 IF ASC(A$)=139 THEN POKE BK,7 : PRINT "YELLOW"

{SPACE}: GOTO 20 :rem 107

48 POKE BK,13 : PRINT "LIGHT GREEN" : GOTO 20
:rem 129

221

Computed Execration

All those IF-THEN statements seem a little redundant. Each Lj

one checks the same variable, and the value being checked

always changes by 1. This program would do the same thing —

in less space if we could use the statement LJ

GOTO 40+ASC(A$)-132, but that doesn't work. So we do

the next best thing. If you can't add a variable to a line number,

how about having a variable choose one of several line num- i_]
bers? In circumstances like these, where you have possible val

ues starting at one and increasing by one, use the ON statement.

The syntax for this statement is the keyword ON, a

numeric value (it can be an expression including variables),

the keyword GOTO, and a line number list. The order of the

line numbers is very important. If the numeric value is one,

the computer will perform a GOTO using the first line num

ber. A value of 2 causes execution to jump to the line

indicated by the second line number, and so on. Here's the

statement that should be added to the example program.

40 ON ASC(A$)-132 GOTO 41,42,43,44,45,46,47,48

:rem 2

From lines 41 to 48, every IF-THEN statement could be

removed. Here is what line 41 should look like.

41 POKE BD,2 i PRINT "RED" : GOTO 20 :rem 51

Because the ASCII codes for the special function keys start at

133, we subtract 132 to start the values at 1. Using ON-GOTO

in this program replaces eight IF-THEN statements, takes less

typing, and makes it easier to understand what the program

does.

The line numbers in the list do not have to increment by

a constant number. They could be various odd values, and do

not even have to be in increasing order. A statement like ON

A GOTO 110,130,5,77,999,3 is perfectly acceptable. Also, the , ~,

same line number may appear several times in the same list. LJ

Perhaps values of 1 and 3 both require the same processing,

so the same line number would appear in the first and third j

positions. Do be aware that consecutive commas in the line LJ
number list will be interpreted as having a 0 between them.

So you cannot try to omit certain values from the range. Using

a line number list like 110,130,,170 does not mean that execu- !
tion will skip over the ON statement if a value of 3 is used.

Rather, it will jump to line 0. ;, ,

222 "

i i

Computed Execution

' \ Because of the direct correspondence between the value
after ON and the list of line numbers, you may wonder what

|—-i happens if the value is so large that there are not enough line

! I numbers in the list. Take the statement ON A GOTO
110,130,170 for example. When this is executed, the first

—«, thing the computer does is look at the integer portion of A. If

': ! A is 1, 2, or 3, execution will jump to the respective lines. But

if A is 4 or more, the entire ON-GOTO statement will be

ignored, and execution will continue with the next statement.

This is the only time when you might put a statement after a

GOTO on the same line. The same thing will happen if A is

0—execution will skip right over the ON-GOTO. But if the

value is negative, an ILLEGAL QUANTITY error is the result.

Sometimes, if there are a lot of line numbers in the line

number list, the ON statement will not fit on one line. The

method to get around this problem is to use two ON state

ments. The first one handles the first line numbers, and the

second one takes care of all the line numbers left over. Let's

say that the possible values for A are from 1 to 8. The next

couple of lines show how ON statements can be used

together.

120 ON A GOTO 300,312,320,100,110 :rem 59

125 ON A-5 GOTO 340,350,366 :rem 55

The only way that execution will ever get to line 125 is if the

value is greater than 5. Since five line numbers were in the

first list, that number is subtracted from the value after ON in

the second statement.

Finally, the ON statement can also be used to call sub

routines. In place of the keyword GOTO, use GOSUB. Of

course, RETURN statements will have to be used to end the

subroutine call. Whichever is used, the UNDEF'D STATE-

rn MENT error will occur if a line number is used and there is no

{ ! corresponding line in the program.

p? Summary

' ! • The ON statement is used to get around the problem that

line numbers after GOTO or GOSUB cannot be expressions

•—j or variables.

• The syntax for the ON statement consists of the keyword

ON, a numeric value, the keyword GOTO or the keyword

PI GOSUB, and a list of line numbers.

223

Computed Execution ; i

• When executed, the ON statement takes the integer portion U

of the numeric value, counts that far into the line number

list, and then performs a GOTO or GOSUB to that line. :

• If the value exceeds the number of line numbers in the list, U
or if the value is 0, the statement will be ignored. Execution

will continue with the next statement, which may be on the ; ,

same line. Lj

• A negative value produces the ILLEGAL QUANTITY error.

• There are no restrictions on the line numbers in the list,

other than that no variables or expressions are allowed.

The line numbers do not have to be in increasing order or

increment by the same number, although programmers have

a tendency to use the numbers that way.

• The same line number can be used more than once in the

same list.

• Consecutive commas are counted as meaning that a line

number of 0 is intended. It is not possible to make ON work

with only selected values in a range.

• One ON statement can often replace several IF-THEN state

ments. For this reason the ON statement is considered

another form of conditional logic.

• Sometimes it is necessary to use a couple of ON statements

together, if the line number list is too long. In such a case,

the number of line numbers in the first line must be sub

tracted from the value in the second ON statement.

• Because the ON statement can perform a GOTO or GOSUB,

it will cause the UNDEFD STATEMENT error to be gen

erated when a requested line is not found.

Multiple Sprites

What could be better than having eight different definition

blocks for one sprite? Having eight sprites, of course. The

Commodore 64 can support up to eight sprites, each with its [_j
own shape, color, width, height, and position.

The sprites are numbered from 0 to 7. The previous

examples have used only sprite 0, and the POKE statements M

given earlier work only when using sprite 0 alone. Here are ^
modified versions of the statements for use with all eight

sprites. The variable SN stands for sprite number and ranges M
in value from 0 to 7. ^

U
224

Computed Execution

! I To set a sprite's definition block pointer:

POKE SP+SN, block number

r^ To set a sprite's main color:

1 - POKE SC+SN, color number

To expand a sprite to double width:

P POKE SH,PEEK(SH)OR21SN

To reduce a sprite to normal width:

POKE SH,PEEK(SH)ANDNOT2tSN

To expand a sprite to double height:

POKE SV,PEEK(SV)OR2tSN

To reduce a sprite to normal height:

POKE SV,PEEK(SV)ANDNOT2tSN

To enable (turn on) a sprite:

POKE SE,PEEK(SE)OR2tSN

To disable (turn off) a sprite:

POKE SE,PEEK(SE)AND NOT2tSN

To position a sprite:

POKE SX+SN*2,24+XAND255

POKE SZ,PEEK(SZ)AND NOT2T SNOR-(X>231)*2fSN

POKE SY+SN*2,50+Y

To see eight sprites in action, here is a demonstration

program:

100 POKE 56,62 : CLR : REM RESERVE MEMORY :rem 237

110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ

=53264:SH=53277:SV=53271 :rem 28

120 BN=248 : BL=BN*64 : REM SET BLOCK NUMBER AND S

TARTING LOCATION :rem 253

130 FOR K=BL TO BL+63 :rem 86

140 READ P : POKE K,P : NEXT K : REM READ DEFINITI

ON INTO BLOCK :rem 189

P-4 150 FOR SN=0 TO 7 :rem 101

' ! 160 POKE SP+SN,BN : REM POINT TO BLOCK :rem 167
170 READ C : POKE SC+SN,C : REM SET SPRITE COLOR

:rem 145

f—? 180 POKE SH,PEEK(SH)ANDNOT2tSN : REM SET SPRITE TO
1 v NORMAL WIDTH : rem 98

190 POKE SV#PEEK(SV)ANDNOT2tSN : REM SET SPRITE TO

^ NORMAL HEIGHT :rem 184

! ! 200 POKE SE#PEEK(SE)OR2tSN : REM ENABLE SPRITE

:rem 1

210 NEXT SN :rem 115

H
225

Computed Execution

220 SN=INT(RND(0)*8) :rem 117

230 X=10+SN*40 : Y=10+RND(0)*160 :rem 103

240 POKE SX+SN*2,24+XAND255:POKE SZ,PEEK(SZ)ANDNOT

2tSNOR-(X>231)*2tSN :rem 28

250 POKE SY+SN*2,50+Y :rem 175

260 FOR K=l TO 300 : NEXT K : GOTO 220 :rem 57

700 DATA 12,0,48,15,129,240,12,195,48,12,102,48,7,

102,224,3,231,192,0,195,0 :rem 78

710 DATA 1,255,128,3,24,192,7,255,224,12,60,48,15,

0,240,7,255,192,0,255,0 :rem 246

720 DATA 28,60,56,7,60,224,1,255,128,48,126,12,124

,60,62,127,60,254,255,255,255 :rem 55

730 DATA 0 :rem 228

740 DATA 10,7,4,13,5,3,8,15 :rem 31

The demonstration used the same definition for all eight

sprites, but each sprite can be displayed with a different shape

if you add seven more definitions. The statement POKE

SP+SN,248+SN would then be placed inside the loop based

on the variable SN.

Sprites are independent of each other, except when two or

more sprites are displayed in the multicolor mode.

To turn on the multicolor mode for a sprite:

POKE 53276,PEEK(53276)OR2tSN

To turn off the multicolor mode for a sprite:

POKE 53276,PEEK(53276)AND NOT2tSN

Each multicolor sprite has its own main color, but the two

additional colors are shared among all of the sprites. In multi

color sprites, all points defined by the bit combination 01 get

their color from location 53285, and the color specified in loca

tion 53286 will be displayed at every point defined by the bit

combination 11.

00 transparent

01 sprite multicolor 0 (location 53285)

10 sprite main color (location SC+SN)

11 sprite multicolor 1 (location 53286)

This means that up to eight girls skipping rope might be dis

played, each with a different dress color, but the hair and skin

colors would all be the same.

The ability to display several sprites poses a new ques

tion. What happens when two or more sprites are in the same

position at the same time? An overlapping of sprites is called a

collision. When two sprites collide, the lower number sprite

226

U

n

PI Computed Execution

I ' has priority, meaning that it will appear in front of sprites with
higher numbers. Sprite number 0 has priority over all other

r—i sprites, and all other sprites have priority over sprite number

1 ' 7. For a demonstration of priority, make the following changes
to the example program:

["1 180 POKE SH,PEEK(SH)0R2tSN : REM SET SPRITE TO DOU
BLE WIDTH :rem 49

190 POKE SV,PEEK(SV)OR2tSN : REM SET SPRITE TO DOU
BLE HEIGHT :rem 135

220 FOR SN=0 TO 7 :rem 99

230 X=30+SN*30 : Y=100 :rem 71

260 NEXT SN srem 120

Priority is not confined to just sprites. Usually, all of the

sprites have priority over anything else displayed on the

screen, such as characters or plotted points. It's as if there are

two screens, the one with the sprites appearing in front of the

one with the normal screen information. This priority can be

changed, though.

To make a sprite appear in front of other screen data:

POKE 53275,PEEK(53275)AND2tSN

To make a sprite appear behind other screen data:

POKE 53275,PEEK(53275)OR2tSN

The priority feature lets you create a three-dimensional effect

by giving the impression of depth to the screen.

Collisions between sprites often occur in games. Once a

collision has occurred, the program usually has to take some

special action, such as starting an explosion or changing an

object's direction of movement. Because collisions are frequent

and important events with sprites, the graphics chip keeps

track of all sprites involved in collisions. Determining whether

a sprite has hit another sprite is as simple as PEEKing a

P] location.

To detect a sprite-to-sprite collision:

_ IF (PEEK(53278)AND21 SN)<>0 THEN PRINT "SPRITE HAS

H COLLIDED"

Alternate form with reversed logic:

_ IF (PEEK(53278)AND21 SN)=0 THEN PRINT "SPRITE HAS

! I NOT COLLIDED"

The image parts of the sprites must overlap for the col-

["1 lision to be detected. Overlapping transparent sections do not

227

H

u

Computed Execution M

u
count as collisions. It does not matter if the overlapping sprite

images are the same color. Once location 53278 has been

PEEKed, another collision will not be detected until the two j_j

sprites overlap again. If the sprites continue to overlap, a col

lision will continuously be detected. Collisions can also be

detected when sprites are positioned off the main screen. It is j j
good idea to PEEK the location at the beginnning of the pro

gram, and clear any previous collisions.

By replacing the PRINT statement with other code, a pro

gram can easily detect a collision between sprites, and quickly

take the necessary action. Here is a demonstration program:

100 POKE 56,62 : CLR : REM RESERVE MEMORY rrem 237

110 SP=2040:SE=53269:SC=53287:SX=53248:SY=53249:SZ

=53264 rrem 224

120 BN=248 : BL=BN*64 : REM SET BLOCK NUMBER AND S

TARTING LOCATION :rem 253

130 POKE SP#BN : POKE SP+1,BN : REM POINT SPRITES

{SPACE}TO BLOCK :rem 38

140 FOR K=BL TO BL+62 rrem 86

150 POKE K,255 r NEXT K r REM SET EVERY BIT IN DEP

INITION rrem 144

180 POKE SC,3 r POKE SC+1,8 r REM SET SPRITE COLOR

S rrem 47

190 POKE SE,3 r REM ENABLE SPRITES ZERO AND ONE

rrem 164

200 SN=0 r X=60 r Y=60 r GOSUB 300 r REM POSITION

{SPACE}TARGET SPRITE rrem 137
210 SN=1 r X=30 r Y=30 r GOSUB 300 r REM POSITION

{SPACE}MOVING SPRITE rrem 142

220 P=PEEK(53278) r REM CLEAR ANY PREVIOUS COLLISI

ONS rrem 137

230 JS=NOTPEEK(56320)rX=X+2*SGN((JSAND8)-(JSAND4))

rY=Y+SGN((JSAND2)-(JSANDl)) rrem 119

240 GOSUB 300 rrem 169

250 IF (PEEK(53278)AND2tSN)=0 GOTO 230 rrem 53

260 PRINT"SPRITE HAS COLLIDED" rrem 92 j |

270 POKE SC+1,RND(0)*16 r GOTO{2 SPACES}270 ^
rrem 232

300 POKE SX+SN*2,24+XAND255rPOKE SY+SN*2,50+Y , ,

rrem 107 LJ
310 POKE SZ,PEEK(SZ)ANDNOT2tSNOR-(X>231)*2tSNrRETU

RN rrem 116
i j

Collisions can also occur between sprites and the normal ^
screen graphics. Here are the statements to check if a sprite

has collided with a character or plotted point. i

228

U

H

P Computed Execution

n
To detect a sprite-to-background data collision:

IF (PEEK(53279)AND2TSN)<>0 THEN PRINT "SPRITE HAS

PI HIT BACKGROUND"

Alternate form:

_ IF (PEEK(53279)AND21 SN)=0 THEN PRINT "SPRITE HAS

M NOT HIT BACKGROUND"

There is one exception to this last kind of collision. A collision

between a sprite and a multicolor bit combination of 01 is not

detected. This makes it possible to at least display something

on the screen without interfering with collision checking.

n

n

n

n

229

Chapter 15

Arrays

n Arrays
,_, Using Arrays

! ! The idea of consecutive numbers, which was the basis for the

ON statement, can be taken one step further. Often in

—- computing you will come across several different but related

I I values. For example, a program may need to keep track of the
horizontal size of each sprite. Normally this would take eight

variables. You might name them HI, H2, and H3, and so on.

But that's a lot of variables just to keep track of sprite widths,

and there is no easy way to process them. Each one must be

accessed by its own name, so they can't be accessed by a loop.

It would be most convenient if you could say FOR K=l TO 8

: PRINT HK : NEXT and have the computer print out the val

ues of HI, H2, etc., but that won't work. All you would get is

the value of variable HK printed eight times. This is a case

when we want to use one name to refer to a bunch of dif

ferent values. A normal variable can have only one value at a

time, so we need something more powerful. What we need is

an array.

An array is a group of values which have a common

name but can still be accessed individually. To specify a

particular value in an array, a number in parentheses must be

placed after the array name. Such a number is called a sub

script. Enter the following lines in the immediate mode to see

how arrays and subscripts are used.

A(l)=35

PRINT A(l)

A(2)= 28 : PRINT A(2)

A(2)=A(l)-20 : PRINT A(2)

B(7) = 73 :B(10)= 98

PRINT B(7),B(10)

[""} As with variables, only the first two characters in an array
name are significant. The characters must be followed by

parentheses containing a subscript value, which can be a num-

Fl ber, an expression, or a variable.
Because arrays and variables are different things, the

names used for arrays are totally separate from those used for

[""[variables. You can have a variable named A and an array

named A without there being any conflict. The similarity

between variables and arrays is not complete, though. If you

f"! have two arrays, named A and B, the assignment statement

233

u

Arrays r i

A=B will not copy every value from array B to array A as it '—'
does for variables. To assign the values of one array to

another, each value will have to be copied individually. | i

The advantage of an array is that it provides an easy way '—'
of dealing with a lot of values, as long as the values are

related and occur in some order. For example, we might keep j |

track of all sprite widths in an array, storing the values for *—'

sprites 0-7 in order.

Since the subscript can be a variable, arrays are perfect for

using with loops. For example, let's say that we want to copy

the six values of array B to array A.

FOR K=l TO 6 : A(K)=B(K) : NEXT

Six assignments were made in only half as many statements.

To print every value in array A is even easier.

FOR K=l TO 6 : PRINT A(K) : NEXT

Indeed, the combination of loops and arrays is powerful and is

used often.

There are several limitations placed on subscripts. First, a

subscript must be an integer number. If a noninteger value is

given, only the integer portion is used.

Unless you specify otherwise, the computer will set up a

default array to contain 11 values, with subscripts ranging

from 0 to 10. Attempts to use subscripts beyond the size of the

array, such as 17, cause the error message BAD SUBSCRIPT to

be printed. Negative values result in an ILLEGAL QUANTITY

error. Here are some examples of subscripts which would

cause these errors.

X(ll) YZ(-3) Q(1001)

When you first set up a numeric array, the default value for

every item is 0. A common way to put initial values into an

array is to include the values in DATA statements and place \ \

them into the array using a loop with a READ statement in it. t—'

The next program stores the frequencies for one octave of

notes in the arrays FL and FH. An array used in such a man- j i

ner is often called a table, and the subscript is an index. In the ^—'
program, the musical note is used as an index into the table to

get a certain frequency. ; j

10 MV=54296:AD=54277:SR=54278:FL=54272:FH=54273:CT

=54276:PW=54275 :rem 200

20 POKE MV,15:POKE AD,85:POKE SR,168:POKE PW,8 j j
. r-om 1 RA < I:rem 154

234

U

n

r^ Arrays

' 30 FOR K=0 TO 7 : READ FL(K),FH(K) : NEXT 5 PRINT
{SPACE}"PLEASE TYPE SOME NOTES :rem 209

_ 40 GET N$: IF N$=IIM GOTO 40 : rem 15

I I 50 F=ASC(N$)-65 : IF F<0 OR F>7 GOTO 40 :rem 142
60 PRINT N$: POKE FL,FL(F) : POKE FH,FH(F)

:rera 253

r-[70 POKE CT,65 : FOR K=l TO 150 : NEXT :rem 80

1 1 80 POKE CT,64 : FOR K=l TO 50 : NEXT : GOTO 40
:rem 246

90 DATA 12,7,233,7,225,8,104,9,143,10,218,11,78,13

,24,14 :rem 179

Notice how the keyboard buffer remembers keys when you

press them too quickly. To let you play one full octave, the

program supports a note H even though there is no such note

in normal music.

Arrays have one more important similarity to variables:

They can be used to store character strings.

10 INPUT flHOW MANY PLAYERS"; NP :rem 81

20 IF NP<1 OR NP>10 OR NP<>INT(NP) GOTO 10 :rem 7

30 FOR K=l TO NP :rem 68

40 PRINT "WHAT IS THE NAME OF PLAYER11; K : rem 239

50 INPUT NAME$(K) : IF NAME$ (K) = IIM GOTO 40:rem 158

60 NEXT :rem 165

70 PRINT : PRINT "THESE PEOPLE ARE PLAYING:11

:rem 99

80 FOR K=l TO NP :rem 73

90 PRINT NAME$(K) : NEXT :rem 80

The strings in an array can be treated just like normal charac

ter strings.

Summary

• An array is a group of numbers or character strings which

have a common name but can be individually accessed.

|—j • The same restrictions that apply to a variable name also

apply to array names.

• Array names are separate from variable names.

i| • To assign one array to another, each value in the array must
be copied separately.

_ • To specify one particular value in an array, a number in

I I parentheses is placed after the array name. This number

is called a subscript.

n
235

u

Arrays n

• Subscripts must be positive integer numbers. Subscript

numbering starts with 0. A negative subscript produces __

an ILLEGAL QUANTITY error. A subscript that is too large f |

produces the BAD SUBSCRIPT error. The default maximum ^
subscript is 10.

• The values in an array are usually related to each other in l_j

some way, and are ordered according to the subscripts.

The default values are the number 0 and the null string.

• The advantage of using an array is that it makes it easier to

manage a lot of values. Because subscripts can be variables,

arrays are ideal for use in loops.

The DIM Statement

If you want to set up an array to contain 11 values or less, you

don't have to do a thing; the computer will create the array

automatically. But if you need an array to handle more than

11 values, you must tell the computer the exact size of your

array. This is done with the DIM statement.

The maximum subscript number for an array is called the

dimension of the array. The default dimension for an array is

10. The DIM statement lets you dimension an array to handle

any number of values, provided that there is enough memory

for the computer to store them. After the keyword DIM comes

the array name followed by parentheses. Inside the paren

theses is the dimension value of the array. This can be a vari

able or expression, just as long as the final value is positive.

When you first run a program, no arrays are dimensioned.

If you use an array before the DIM statement, that array will

be dimensioned to the default value of 10. Then, if you later

try to dimension the array using DIM, you will get the

REDIM'D ARRAY error even though you never used DIM

before. For this reason, DIM statements are usually placed at

the beginning of a program, before values in the arrays are) j

ever accessed. Also, once an array has been dimensioned in a

program, it cannot be dimensioned a second time while the

program is running. To do so causes the REDIM'D ARRAY j i

error.

Now, let's take another look at the doodle program at the

beginning of the book. The program uses an array dimen- j "j

sioned for 15, the maximum number that can be returned by '—'
the joystick. Using the joystick number as an index into the

array, a number is obtained and added to the current screen j"~j

236

u

' ! Arrays

address to get a new position on the screen. The result is a

fast and colorful doodling program that doesn't use slow IF-

Pl THEN statements to process the joystick.
A program can have several arrays dimensioned at the

same time, using different array names. In fact, programs need

[""[to do this so often that there is a shortcut to make this easier.
The DIM statement can be followed by a list of array dimen

sions, and they can be of mixed types. The following line

shows a typical DIM statement:

100 DIM N(100),NAME$(30),CNT(K),BUFF$(K) :rem 124

The next program will take any number of words and

alphabetize them. It does so by sorting the words alphabeti

cally, using an advanced technique called a bubble sort, which

is beyond the scope of this book, but is included here so that

you can get an idea of what a program can do when arrays

are used.

100 INPUT "HOW MANY WORDS"; WC :rem 236

110 IF WC<2 GOTO 100 :rem 243

120 DIM W$(WC) :rem 211

130 FOR K=l TO WC :rem 113

140 PRINT "WHAT IS WORD NUMBER"; K :rem 193

150 INPUT W$(K) : IF W$(K)="" GOTO 150 :rem 109

160 NEXT : PRINT "PLEASE WAIT..." :rem 90

200 F=0 : FOR K=l TO WC-1 :rem 186

210 IF W$(K) <= W$(K+1) GOTO 230 :rem 243

220 W$=W$(K) : W$(K)=W$(K+1) : W$(K+1)=W$: F=l

:rem 183

230 NEXT :rem 212

240 IF F=l GOTO 200 :rem 164

250 PRINT : PRINT "IN ALPHABETICAL ORDER:":rem 214

260 FOR K=l TO WC :rem 117

270 PRINT W$(K) :rem 61

_ 280 NEXT :rem 217

n
Finally, there is one more feature about arrays that has not yet

been mentioned. All of the arrays used so far have been of

j""| one dimension: only one number for a subscript. Arrays can
have many dimensions. A two-dimensional array would be

dimensioned with a DIM statement like the one shown below.

H 100 DIM A(100,8) :rem 242

A particular value in the array would be accessed with a sub-

f""| script that consisted of two numbers.

237

LJ

Arrays T j

110 A(l,l)=64 :rem 89

You can picture such an array as being like the television -

screen. There are 25 rows of 40 characters each. Any point on lJ

the screen can be designated by a row and column number.

Likewise, any value in the array A can be specified by two j -,

numbers. To print the entire contents of a two-dimensional I_J
array, nested loops could be used.

500 FOR R=l TO 100 :rem 112

510 FOR C=l TO 8 :rem 9

520 PRINT A(R,C) :rem 119

530 NEXT C,R :rem 152

If you put only one number in the subscript for a two-

dimensional array, you will get the BAD SUBSCRIPT error.

Two-dimensional arrays are useful for representing mat

rices in higher mathematics; three-dimensional arrays are

rarely used.

Summary

• The dimension of an array is the maximum subscript number

that can be used for the array.

• When a program first starts running, or the CLR statement is

executed, all arrays are undimensioned. When an

undimensioned array is accessed for the first time, the array

is dimensioned to a default of 10.

• For those occasions when an array needs to be dimensioned

larger than 10, the DIM statement must be used.

• To save memory, an array can also be DIMensioned smaller

than 11.

• The syntax for the DIM statement is the keyword DIM fol

lowed by an array name list. Each array name in the list

must be followed by parentheses containing the dimension [_J

numbers.

• If an array is one-dimensional, only one number will be

inside the DIM statement parentheses, and only one number LJ
will be needed to form a subscript.

• A two-dimensional array requires two numbers in the DIM

statement and subscript. These arrays are often thought of LJ
in terms of rows and columns.

• Arrays of more than two dimensions are possible. r >

238

u

n

P[Arrays

n
• If a subscript contains too few or too many numbers for the

r^ dimension of an array, or if a subscript number exceeds the

1 | maximum number specified in the DIM statement, the BAD

SUBSCRIPT error will occur.

_ • The only restrictions in dimensioning an array are that the

I [computer must have enough unused memory to hold the

array, and the array must not be dimensioned already.

• Trying to DIM an array when there is insufficient memory

causes the OUT OF MEMORY error.

• Attempting to DIM an array that is already dimensioned

causes the REDIM'D ARRAY error.

n

n

n

239

Chapter 16

Program

Development

J I

J t

Program

Development
Learning How to Program

i 1 The preceding chapters have given specific information about
the various statements in BASIC. This last chapter shows you

how to put the statements together to form a program. Since

everybody has preferred methods of developing a program,

the information presented here is mainly common sense and

friendly advice.

The first step toward gaining proficiency in programming

is to learn from existing programs. Take a look at the listing of

a BASIC program with which you are familiar, and see how it

works. One of the first things to do is to identify the variables

used and figure out their purposes. Once you understand how

the variables are used, it will be relatively easy to figure out

what each line does. You will notice that the lines tend to

occur in groups, with each group handling some part of the

program.

The next thing to do is to modify the program, making a

few simple changes to make it easier to use. Change colors

and positions of objects, or printed messages. Change some

inputs so that prompts are easier to read, and so that default

values can be selected by pressing RETURN. A shoot-em-up

game could be enhanced by putting in bigger, fancier explo

sions. Also, look for areas in the program that could be sim

plified. If you see some statements duplicated often, you might

try putting them in a subroutine. Check whether any parts of

the program are not used.

Once you have a pretty good understanding of the whole

program, you are ready to start adding to it. If it's a game,

[""I perhaps a high-score or two-player option would be nice. If it
is a data management program, you might think of some use

ful operation not currently supported.

P] After having made several modifications, you may find
that the program has become so patched up and disorganized

that it ought to be rewritten. This is a good way to ease your-

fl self into programming, since you will be writing a new pro
gram, but you already know how it should work, what

variables are needed, and so on.

PJ There will come a time when you feel ready to take the

243

LJ

Program Development M

U
plunge and write your own major program from scratch. This

may seem to be a formidable undertaking, but it will be easier

if you break the process down into three major steps. The first [_j

step is to design the program, to consider all the things that

the program must do, how it will react to every possible input

from the user, what variables will be needed, and so on. You M
may think of things like loops, input, and conditional logic, ^
but keep it at a general level and do not consider any details.

The next step is to write the actual BASIC statements. If

you have a good design for the program, this step will be

rather easy. In fact, once you've acquired some experience,

this step will seem almost trivial.

The third step is to detect and fix all of the errors that

have crept into the program. Usually a program does not work

perfectly the first time, because you mistyped a line or made a

mistake in logic. These errors are called bugs, and the process

of tracking them down and eliminating them is called debug

ging the program. The result will be a program that you can

be proud of and will want to share with other people.

Since the three main steps of developing a program are so

important, they are discussed in greater detail in the following

three sections. The last section is an example program show

ing how a game was put together.

Specification and Design

This is the most important step in writing a program. With a

short program, you can get away without doing any design

work. You just sit down in front of the computer and start

typing. But with larger programs, not having a design makes

the entire task much harder. What you write will not be

organized, and it probably won't work the way you expect.

You will have a feeling of being lost, and will not be in con

trol of the program. No amount of debugging can make up for | 1

a bad design, so this step should not be overlooked if you '—'

want your efforts to be successful. The bulk of the work in

developing a program should be done in the design phase. j" i

From a theoretical standpoint, a computer is a commu- L-'
nication device. It moves information from place to place. This

is normally referred to as input and output. As it moves the j"~j

information, the computer performs some sort of process, as *—'
directed by the program. In a game, pushing a joystick makes

things happen on the screen. A word processor takes text that j 1

244

o

Program Development

was typed on the keyboard and formats it for printing on

paper. If the program manages a mailing list, it might sort a

I I large number of addresses according to zip code. A music-
composing program processes note data and controls the

appropriate hardware locations to play music. These are just a

j \ few examples of how a program processes information. Quite

often, this process is repetitive, and the steps that form the

process can be placed in a loop. Conditional logic is necessary

to have some control over the loop. Input/output, repetition,

and conditional logic are the three essential aspects of any

major program.

From a practical standpoint, a computer is a general-

purpose tool with a wide variety of applications. A particular

task for the computer represents a problem, and the program

is the solution. Before you can start writing the program, how

ever, you must fully understand the problem. For every pos

sible input by the user, you should know all of the possible

responses by the program. You will want to have a firm idea

of the things that the program will be expected to do, and the

order in which it will do them. This part of the design phase is

called the specification step, because you have to define or

specify everything about the program that is of concern to the

user.

The next step is to start considering some of the internal

workings of the program. You will also want to begin writing

things down. Now that you know what things the program is

expected to do, you can begin to think about how it will do

them. Here you establish the foundation of the program and

begin putting things in order. Make a note of the questions

that will be asked by the program, and the messages that it

will print. This is the input/output aspect of the program.

There will be places where the program has to make

|j some major decisions. Here is the conditional logic aspect of

the program. As you put these things into a logical sequence,

the program will start dividing itself into main sections. Often

f""] these main sections are defined by the major decisions. All of
the sections will probably fit into some sort of main loop,

which is where the repetitive aspect comes in. Information

[""1 obtained at the beginning of the loop is used to distribute
execution to one of several sections at the end of the loop.

Another very important step is to start declaring what

n

__ 245

u

Program Development M

I ~-
pieces of information will have to be stored in variables. Gen

erally speaking, only the major points of the program will be

considered during the design phase. The key things are to j_j

establish the basic organization of the program, including the

use of input/output, repetition, and conditional logic, and to

identify the main variables that will be used. When you are | j

done with the design phase, you will have a good idea in your

mind of how the program will work, and a good guideline on

paper of how it will be written.

Implementation

This is the step where you write all of the BASIC statements

which form a program. If you have properly designed the pro

gram, the coding should be a snap after a little experience.

Let's start by examining the structure of a typical pro

gram. You know from the design phase that your program

consists of several sections and probably has a main loop. We

will get to the main part of the program in a moment, but the

first thing to look at is the program initialization. Many pro

grams contain lines at the beginning which are executed only

once per program run. They assign initial values to variables,

clear the screen, set up screen colors, redefine a character set,

print a title message, and so on. This would be the logical

place to put DIM statements, since you want to avoid the

REDIM'D ARRAY errors. Remember that DIM supports an

array name list, so only one DIM statement should be needed.

This is also where you would put the assignments that must

be made before using sounds or sprites.

After the initialization is finished, the program is ready to

enter the main loop. The beginning of the loop gives the

information that will be used by the rest of the loop. INPUT

and READ statements would go here. Remember to print a

prompt message before every input. Once the data has been j j

fetched, IF-THEN statements can be used to perform some <—'
calculation, change a value, print a response, or other opera

tion, according to the incoming data. If there is not enough j \

room on one line, the IF-THEN statement may have to send 1—'
execution to a later part of the program. Eventually, execution

will reach the end of the loop and will jump back to the top. j i

There may be lines after the main loop, perhaps to take '—'
care of some cleanup work when the program ends. The main

program terminates with an END statement. j j

246

u

Program Development

The next thing in the overall structure is to reserve room

r^ for subroutines. If one subroutine calls another, you might

j ; want to put them next to each other.

The last part of the whole program is the DATA state-

^ ments, which are stuck at the end so that they are out of the

! \ way of the main program. The order of these statements is

important. Numbers which may be reread should be put first,

so that they can be read right after a RESTORE statement.

This is the basic structure for the average program, and is

bound to vary for individual applications. One helpful tech

nique is to structure the program parts according to line num

bers. For example, initialization could start at line 100, the

main loop at 300, subroutines at 600, and DATA statements at

800. This makes it easy for you to find your way around a

program. It is also a good practice to put REM statements at

the head of each section of code.

As for writing the statements that form the sections of the

program, this is simply a skill that must be acquired through

practice. You can use the example programs in this book as a

guide. In most cases, there is an obvious way of combining

the statements in an order that makes sense.

One of the great secrets to programming is simplicity.

Always strive to keep your programs as straightforward as

possible. If you try to impress others with mysterious, confus

ing logic that only you can figure out, you may someday get

caught in your own trap. There is a certain elegance to a pro

gram that is written in a simple, direct manner. Such programs

are usually smaller, run faster, are easier to understand and

modify, and are less prone to errors.

Here is an example of funny logic that can clutter a

program:

P-» 480 GOTO 550
j j

550 GOTO 320

p Little things like going to a GOTO statement can make pro-

1 gram logic hard to follow. It is a good idea to use the GOTO

statement sparingly, because an excessive use of GOTO can

r~| ruin the organization of a program. Here is another

demonstration of lines that are less than straightforward:

320 IF A=B GOTO 340

H 330 PRINT "MESSAGE"
340

_ 247

u

Program Development LJ

U
Don't forget about the relational operators. An alternate

method follows: , -

320 IF AoB THEN PRINT "MESSAGE" LJ
340

A simple change lets you eliminate one GOTO statement, | }

and in fact shortens the whole program by one line. Remem- ^
ber that IF-THEN is used to control the execution of one line,

and GOTO is used to control execution of several lines. The

only time you would need to use the first form in the example

is when line 330 contains something too long to be merged

with line 320. While you are first writing a program, it is

desirable to keep lines rather short, leaving room for later

additions.

Just as a program can become a tangled mess if you use

too many GOTO statements, a lot of IF-THEN statements can

seem redundant. Conditional logic is also possible with the

ON statement, and you can often replace several IF-THEN

statements with one ON statement. Or, if you find yourself

typing the same sequence of statements over and over again,

you could use a subroutine. In general, if you ever get the

feeling that "there must be a better way," there usually is.

There are some methods that you can use to make a pro

gram run faster. Programs run faster when all unnecessary

spaces are removed, and the computer can process values of

variables faster than it can process constant numbers in a line.

Therefore, the plotting subroutine could be speeded up by

replacing all constants with variables that have been assigned

the correct values. The initialization portion of the program

would contain this line:

100 P=7:Q=2:R=40:S=248:T=504 :rem 72

Here is the revised subroutine: j I

900 BY=BA+R*(YANDS)+(YANDP)+(XANDT):POKE BY,PEEK(B

Y)ORQt(NOTXANDP):RETURN :rem 198

The order in which variables are first assigned also makes a *—'
difference. If the variable X is the first variable assigned as a

program starts executing, it will be processed faster than any \ "j

other variables. I—'
Inefficient coding is magnified when it is used in a loop.

Keep unneeded operations out of loops. The following two i j

248

LJ

Program Development

lines both clear out a sprite block, but the second one will exe-

cute faster:

FOR K=0 TO 63 : POKE BL+K,0 : NEXT K

FOR K=BL TO BL+63 : POKE K,0 : NEXT K

Be on the watch for instances where FOR/NEXT loops can

replace loops using IF-GOTO. Here is a revised line-drawing

subroutine:

910 DX=ABS(X0-X) :DY=ABS(Y0-Y) :SX=SGN(X0-X) :SY=SGN(

Y0-Y):IF DX<DY GOTO 950 :rem 217

920 E=DY-DX/2:F0R K=l TO DX:IF E<0 THEN E=E+DY:GOT

O 940 :rem 69

930 Y=Y+SY:E=E+DY-DX srem 244

940 X=X+SX:GOSUB 900:NEXT K:RETURN :rem 145

950 E=DX-DY/2:F0R K=l TO DY:IF E<0 THEN E=E+DX:GOT

O 970 :rem 75

960 X=X+SX:E=E+DX-DY :rem 244

970 Y=Y+SY:GOSUB 900:NEXT KiRETURN irem 151

A final word on FOR/NEXT loops is that they will execute

faster if the FOR and NEXT statements can be put on the

same line, and although it is not a good programming practice,

NEXT:NEXT executes faster than NEXT J,K.

One other way to speed up a program is to invert its

structure. The deeper in the program a line is, the longer the

computer will take when it executes a GOTO or GOSUB to

that line. The lines which need to be executed faster should be

placed at the beginning of the program. Therefore, subroutines

which are called often might be placed before the main loop,

and initialization lines which are executed only once should be

put at the end of the program.

Line numbers which have several digits can slow down

execution. It is usually sufficient to start numbering lines at

100, rather than 1000. The shorter numbers will also require

less typing.

Finally, the IF-GOTO statement executes just a little faster

than IF-THEN with a line number.

Just as it is nice to make programs run faster, it is nice to

be able to type them in faster. For one last typing shortcut,

you should know that many BASIC keywords have abbrevi-

ations that can be typed using the SHIFT key. For example,

the computer will interpret L and SHIFT-I as the LIST com-

mand. When a line entered using abbreviations is listed, the

249

Program Development
U

full names of the keywords are printed. This creates the only

drawback to using abbreviations; it is possible to enter a line

so that it will contain more than 80 characters when it is M
listed, which makes editing difficult. Refer to the User's Guide ^
(Appendix D) for a chart showing all of the abbreviations.

With a little experience and practice, you will find it an j_j
easy matter to express a design in BASIC statements.

Debugging

Once you have completely entered your BASIC program, the

first thing you should do is save it on tape or disk. Do this

before running the program. This is a wise precaution in case

the program contains a bug which will cause the computer to

crash.

The odds are that your program will not work perfectly

the first time. Typing mistakes, missing statements, logic

errors, and false assumptions always manage to creep into a

program. In the debugging phase, you identify and fix all of

the errors that were introduced by the previous development

steps.

One of two things can happen when you run a program

that contains bugs. The program either aborts and prints an

error message, or it keeps on running but produces the wrong

results. The first situation is easiest to fix, so let's start with

that. The error messages are diagnostic in nature, so they are

your key to determining what is wrong. Here is a list of some

of the most common mistakes.

SYNTAX. Parentheses in an expression or nested functions

are not properly balanced.

Some necessary keywords are not present. Unless you are

using IF-GOTO, the IF keyword must be followed by THEN.

You cannot say A=l to 10 without using the keyword FOR.

Maybe you forgot the REM keyword in front of a comment M
line. w

You tried to use a statement within a statement, as in

PRINT READ P. The correct code should be READ P : PRINT \J
P.

You pressed a nonnumeric key in response to a GET us

ing a numeric variable. j j

The prompt string in an INPUT statement can be fol

lowed only by a semicolon, not a comma.

A line number is outside the range 0 to 63999. j_J

ILLEGAL QUANTITY. The logical operators can work only

250 * ,

I f

n

Program Development

on number^ in the range -32768 to 32767.

_ The location number for POKE or PEEK is outside the

M range 0-65535.
You tried to READ a character string into a numeric

_ variable.

\] You tried to find the ASCII value of a null string.

The computed value for an ON statement is negative. Be

careful when you have to use subtraction to get the computed

value into range.

A negative number, or number greater than 32767, was

used for an array subscript.

UNDEF'D STATEMENT. The line number referenced by a

RUN command or GOTO or GOSUB statement does not exist.

OUT OF DATA. READ is used in an infinite loop, but there

is no RESTORE.

You are off by one or more in the number of data ele

ments. For example, you forgot the sixty-fourth byte in a

sprite definition.

TYPE MISMATCH. You tried to assign a character string to a

numeric variable, or a number to a string variable.

An arithmetic or logical operator has a character string as

one of its operands.

The operands for a relational operator are not of the same

type.

The argument of a function is not of the correct type.

RETURN WITHOUT GOSUB. Execution accidentally entered

a subroutine, perhaps because there is no END statement.

NEXT WITHOUT FOR. The nesting order of variables is

wrong. The order of variables used in FOR statements should

be reversed in NEXT statements.

[—! The same counting variable has been used in nested

' ' loops. This often happens when a subroutine contains a loop.

A FOR/NEXT loop has not been allowed to go to comple-

j—! tion. Never jump out of a FOR/NEXT loop before it is finished.

OUT OF MEMORY. The program is too large for the amount

of free memory. This can happen when memory is reserved

i""; for things like redefined character sets or sprites.
There are too many nested subroutines or FOR/NEXT

loops. Check whether a subroutine is calling itself, or is never

HI returning to the main program.
An array dimension is too large. Check the free memory.

_* 251

u

Program Development |_J

! I

BAD SUBSCRIPT. You forgot to dimension the array.

You tried to use a subscript larger than the dimension of

the array. LJ

REDIM'D ARRAY. You have already accessed an element in

the array, causing the computer to set the default dimension to ;]

10. ^
Once you have found the mistake, just edit the line and

run the program again. If execution aborts at another place,

you will have to repeat the above procedure.

Even when a program does not abort due to an error, it

may not be working correctly. In the worst case, the computer

may crash and not respond to the keyboard. These errors can

be much harder to find, and you will have to be a detective in

order to track them down. The biggest problem is that since

execution never stops, you have little information about the

nature of the error and where it occurs.

Therefore, the first step to take in debugging a program

that keeps running but produces the wrong results is to press

the RUN/STOP key. The message BREAK IN, followed by a

line number, will be printed. Sometimes the line number is all

you need to know to find the error. If the program stopped at

a line which should not have been executed, check the listing

to see how the program could have gotten to that point. Per

haps a GOTO or GOSUB statement with a wrong line number

is the culprit.

If the program stopped at a line that should have been

executed, you are again faced with a situation of having little

information. This is when you should use PRINT in the

immediate mode to display the values of important variables.

Just as variables are keys to figuring out someone else's pro

gram, they are keys to finding errors in your own program.

Print the value of a counting variable to see how many times > ■■;

a loop has been executed. Print the values of variables that w

should have been assigned only in the initialization section,

such as for sound or sprite locations. If you get the value 0, ♦ ,

you forgot to assign values. Or, if you get the wrong value, LJ

either the number in the initial assignment statement was

typed incorrectly, or the variable is accidentally being changed

by another part of the program. Examine all statements which LJ
assign the variable in question. The only statements which can

change the values of variables are LET, READ, GET, INPUT,

FOR, NEXT, and CLR. Also, remember that only the first two LJ

252

> ! Program Development

characters of variable names are significant.

f—i Once you have found a variable that has an unlikely

1 ' value, you are probably pretty close to finding the actual mis
take. You may want to gather some more information by run-

p-» ning and stopping the program several times. The general

strategy in debugging is to collect information, such as by

printing the values of important variables in order to narrow

down the possible causes until you have found the mistake.

Perhaps you have stopped a program but have not found

anything wrong, or maybe you have found some variables

with suspicious values and would like to see what happens to

them later in the program. In such instances you can use the

CONT command to make the program continue executing at

the exact point where it left off. Later you can stop the pro

gram again to see how the values of variables have changed.

The CONT command can be used at any time in the immedi

ate mode, provided that you have not caused an error or

changed the program in any way. If the program stopped due

to an error, or if you did so much as press RETURN while the

cursor was on a program line, you will get the CAN'T CON

TINUE error when you try to use CONT. Also, CONT can

only be used to restart program execution. The command does

not apply when you press RUN/STOP to abort a listing or

save/load operation.

After stopping and restarting a program many times, you

may discover some critical areas that require special attention.

Since program execution happens so quickly, it is hard to

press RUN/STOP when the computer is executing a particular

line. To make execution stop at a specific statement in the pro

gram, use the STOP statement. STOP works just like END,

except that it also prints the BREAK IN message with the line

— number. You can insert several STOP statements in one pro-

» * gram, and continue after every STOP with CONT. Of course,

you will want to remove all of the STOP statements when you

*—i are finished debugging the program.

■ If the STOP and CONT process seems to be taking too

long, try replacing some STOP statements with PRINT state-

>—j ments that print the values of important variables. Now you

i ! will be able to see exactly what happens as the program runs.

Generally, the kinds of mistakes which prevent a program

|—♦ from working properly are very simple in nature. A common

1 I error is to forget the STEP -1 in a FOR/NEXT loop that goes

,—> 253

u

Program Development M

u
backward. It is easy to forget the rules about precedence of

operators. A person can stare for a long time at a statement

like IF A=5 OR 6 THEN PRINT before realizing that it should M
be written IF A=5 OR A=6 THEN PRINT. Another error

which is not immediately noticeable is a disparity between

READ and DATA statements. If there are not enough numbers ; j
in DATA statements, you will get the OUT OF DATA error,

but there is no error when some DATA numbers are left

unread. A good way to detect errors like these is to use the

immediate mode. For the READ error, stop the program at

some point when all of the data should have been read. A

READ statement in the immediate mode should produce an

OUT OF DATA error, and something is wrong if it doesn't.

For the IF-THEN statement or expression with many op

erators, assign the correct values to the variables and enter the

line without a line number. Compare the actual results against

what you expected would happen. This will help you spot

logic errors sooner. The only statements that cannot be used in

the immediate mode are GET and INPUT. An immediate

mode GOTO statement is the same as a RUN command with

a line number, except that the automatic CLR is not per

formed, and all variables retain their values.

As you are working on the program, you will keep flip

ping between the writing and debugging phases. It is a good

practice to periodically save a copy of your current revision.

You should not, however, have to go back to the design

phase. If you come across some big oversights and have to

make major changes to the program, it is an indication that

you did not start with a good design.

It is difficult to prove that a program is entirely free of

bugs. Once you think you have found them all, give the pro

gram to somebody else to try. You will be surprised at how

many errors can be found when a program is tested and eval- l^J
uated by a second person.

Example Program ;

As a final demonstration, here is a game developed in the

manner described in the previous sections.

Specification U
What is the object of the game? The player must survive an

attack of menacing robots. i »

254

i ! Program Development

H
What will the screen look like? The screen will consist of

-^ red blocks representing robots, and one white ball represent-

\ ! ing the player. There will also be barriers at random places.

How will the player move? The player's movement will

—1 be controlled by the joystick.

; ; How will the robots move? Each robot will move in the

direction of the player, chasing the player across the screen.

How many robots will there be, and how quickly will

they move? Fifteen robots should be sufficient. One robot will

move per player move.

How will the player evade the robots? A robot will be

destroyed if it crashes into a barrier. The player must maneu

ver so that a barrier is in the way of the robot as it follows the

player. The player wins when all of the robots have been

destroyed.

Will the player be able to wrap around the screen? No, a

border will be drawn around the screen to prevent the player

from moving out of bounds. If the player runs into a barrier or

border, he will be destroyed.

What sound and graphics features will be used? The dif

ferent objects will be color-coded. Different sounds will corre

spond to different events. For example, there will be a small

explosion noise every time a robot is destroyed.

Design

The general structure of the program is a main loop which

repeats indefinitely. The loop ends when either the player

crashes or there are no more robots. The loop will consist of

two main sections, one for player movement and the other for

robot movement. If the player ever hits anything while mov

ing, the game will end. Every time a robot moves, two things

^ must be checked. If the robot hits the player, it is the end of

]""[the game. If the robot hits anything else, it is the end of the
robot. The program will also contain sections to set up the

screen and handle the player crash. Here is a more detailed

r) look at how the whole program will be put together.

Initialization

_^ screen setup

J clear the screen

draw border

_, plot barriers

■. I plot robots
plot starting position of player

n 255

u

Program Development _j

sj
main loop

player movement

remember current position M
calculate new position based on joystick

check if anything already at new position

if so, jump to end of game JM
otherwise, safe to move, plot new position and erase old

robot movement

remember current position

calculate new position based on position of player

check if anything already at new position

if a player already there, jump to end of game

if something else already there, robot crashes

otherwise, safe to move, plot new position and erase old

end of game

do sound and graphics effect, end

Because this is a two-dimensional game, it will be easier to

deal with the object movement on a coordinate basis. The

player and all of the robots will have their own X and Y

coordinate values. The variables X and Y will hold the player's

coordinates, and the arrays X and Y will hold the coordinates

of the robots. In order to use the "plot new position, erase old

position" method of character graphics animation, temporary

variables TX and TY will also be needed.

For fast player-movement calculations, we will use the

array method introduced in the doodling program at the

beginning of the book. However, since coordinates are being

used, two arrays, named SX and SY, will be needed. The

number returned by PEEKing the joystick location is used as

the subscript for the arrays. The array elements, 1, 0, and — 1,

are offset values to be added to the player's coordinates. Thus,

when the stick is pushed right, returning a joystick value of 7, i /

array elements SX(7) and SY(7) will contain the values 1 and

0, respectively.

To actually plot a character on the screen, an offset from M

the beginning of screen memory will have to be calculated,

using the formula X+40*Y. The multiplication by 40 is nec

essary because every screen row consists of 40 bytes. Since 1 i

this will be done rather often, the value 40 will be stored in a

variable named F. The result of X+F*Y will be kept in the

variable Z. The value Z must be added to the values S and C, j «l

256

LJ

H

PI Program Development

the base locations for screen and color memory, to derive the

_ correct POKE locations. We will continue to change a screen

I I position's color before changing its character.
The POKE values for characters and colors will be kept in

_ an assortment of variables. Variables P and PC are for the

I I player's character and color, with R and RC for the robots and
BR and BC for the barriers. The variable B will contain a 32,

which is always used to erase characters.

Implementation

Here is the overall line-numbering structure.

110 initialization

200 screen setup

300 main loop—player movement

400 main loop—robot movement

500 player crash

600 subroutines

700 data

We will start with the initialization section. This is the code

which is executed only once, when the program starts

running.

110X=0:Y=0:NR=15:DIMX(NR),Y(NR),SX(15),SY(15):

TX=0:TY=0

Variables X and Y are used frequently, so they are assigned

first for fast processing. Variable NR contains the number of

robots that the program will start with.

S = 1024:C=55296:F=40:B=32:P=81:PC= l:R=160:

8:BC = 160:BC=3

These are the variables used for the character animation

_ technique.

n 130 FOR K=5 TO 15:READ SX(K),SY(K):NEXT
The joystick never returns values less than 5, so the first ele-

r-| ments in the arrays keep their default value of 0.

140 MV=54296:AD=54277:SR=54278:FH=54273:

_ CT=54276:PW=54275
j i

These are the standard assignments for using sounds.

_. 150 POKE MV,15:POKE AD,0:POKE SR,192:POKE FH,0:

I I POKE PW,8

H

u

Program Development [J

LJ
Set to full volume, fastest attack, decay, and release, and high

sustain level. POKEing FH with a 0 turns off any previous

sound. The pulse width is set for a square wave. j j

Here is the code that sets up the screen before the game

starts.

200 PRINT CHR$(147):POKE 53280,4:POKE 53281,6:FOR U
K=0 TO 960 STEP F

210 POKE C+K,13:POKE S+K,BR:POKE C+39+K,13:POKE

S+39+K,BR:NEXT

Clear the screen, set the border to purple and the background

to blue, and do a loop to draw the vertical borders.

220 FOR K=l TO 38:POKE C+K,13:POKE S+K,BR:POKE

C+960+K,13:POKE S+ 960+K,BR:NEXT

Do the loop that draws the horizontal borders.

230FORK=1 TO 10

Start a loop which will plot ten barriers on the screen.

240 X=INT(RND(0)*38) +1:Y=INT(RND(0)*22) +1:

Z=X+F*Y:IF PEEK (S+Z)oB GOTO 240

This line chooses a random position on the screen and checks

if there is already a character there. If so, another location is

chosen. However, we will want to do the same thing when we

plot the robots and the player, so this line should be made

into a subroutine. Be sure to fix the line number in the GOTO

statement at the end of the line.

600 X=INT(RND(0)*38) +1:Y=INT(RND(0)*22) +1:

Z=X+F*Y:IF PEEK(S+Z)oB GOTO 600

610 RETURN

Now we can put some more statements on line 230.

230 FOR K=l TO 10:GOSUB 600:POKE C+Z,BC:POKE j (

S+Z,BR:NEXT u
Ten barriers will be on the screen after this line has been

executed. i i

240 FOR K=l TO NR:GOSUB 600:X(K)=X:Y(K)=Y:POKE

C+Z,RC:POKE S+Z,R:NEXT:K=1

This line not only plots the robots but also sets the initial ! |
coordinates in the arrays. We will use the variable K to keep

track of which robot is the next one to be moved, so K should

be set to start at 1. j |

258

LJ

H

PI Program Development

n
250 GOSUB 600:POKE C+Z,PC:POKE S+Z,P

This line plots the player. Variables X and Y c

er's coordinates.

260 IF (PEEK(56320)AND16)<>0 GOTO 260

This line plots the player. Variables X and Y contain the play-

I (er's coordinates.

n Execution will keep looping here until the player presses the

joystick trigger to start the game.

Now we come to the main loop, starting with the player

movement section.

300TX=X:TY=Y:JS=PEEK(56320)AND15

Remember the player's old position and get the joystick direc

tion value.

310X=X+SX(JS):Y=Y+SY(JS):Z=X+F*Y:IF

PEEK(S+Z)oB GOTO 500

Calculate the new position according to the joystick. If there is

something already there, jump to the section for a player

crash.

320 POKE FH,4*X+3*Y:POKE CT,17:POKE C+Z,PC:POKE

S+Z,P:POKE S+TX+F*TY,B

Generate a tone to indicate that the player is moving, and

change the pitch according to the position. Plot the new

position and erase the old one.

330 POKE CT,16

Stop producing the tone.

The robot movement is more complicated because only

one of the robots should move every time through the loop,

and there are more things to check at the new position.

400TX=X(K):TY=Y(K):X(K)=X(K)+ SGN(X-X(K)):

Y(K)=Y(K)+SGN(Y-Y(K)):Z=X(K)+F*Y(K)

Taking the signum of the player position minus the robot

P| position is what gives the robots the intelligence to chase the

player. If the player is to the right of the robot, SGN(X-X(K))

will return a 1 to make the robot move to the right. Other

P] player positions would return the values 0 or — 1. This works

similarly for vertical movement. All of the array references

make this line rather complex. They will probably also slow

p[down the program. With a little closer study, it becomes ev

ident that the line could be rewritten as follows.

400TX=X(K):TY=Y(K):X(K)=TX+SGN(X-TX):

H Y(K)=TY+SGN(Y-TY):Z=X(K)+ F*Y(K)

_ 259

u

Program Development U

u
This will do the same thing as the version above, only faster,

because variables can be processed faster than array elements. ,—

410 IF PEEK(S+Z)=P GOTO 500 L
If there is a player at the new position, it's the end of the

game. y

420 IF PEEK(S+Z)=B THEN POKE C+Z,RC:POKE

S+Z,R:POKE S+TX+F*TY,B:GOTO 470

If there is nothing but a blank at the new position, it is okay

to move there. Plot the new position and erase the old one,

then skip around the following code.

430 POKE FH,RND(0)*30+ 10:POKE CT,129:POKE

S+TX+F*TY,B:X(K)=X(NR):Y(K)=Y(NR)

The only way execution can reach this line is if the robot has

hit something. Start the explosion noise, erase the old po

sition, and then move the coordinates of the last robot in the

array to this position. This is done to keep the array intact.

440 POKE CT,128:NR=NR-1:IF NR>0 GOTO 470

Turn off the noise. Decrement the number of robots. This

shortens the array. If there are still some robots left, skip

ahead.

450 POKE CT,65:FOR K=10 TO 100 STEP 10:POKE

FH,K:FOR J=l TO 30:NEXT J

460 POKE FH,100-K:FOR J=l TO 30: NEXT J,K:POKE

CT,0:END

The player has survived all of the robots. Perform a loop

which plays a little victory sound effect, and then end the

program.

470 K=K+1:IF K>NR THEN K=l

This is the line to which previous lines may have jumped.

Increment the number of the current robot for the next time , ,

through the loop. If the robot just processed was the last one LJ
in the array, start at the beginning again.

480 GOTO 300 ,1

Jump back to the top of the loop. LJ

The following code displays a simple explosion when the

player crashes. M

500 POKE CT,33:FOR K=l TO 30

Prepare to generate some sounds and start a loop which will

plot 30 points. LJ

n

PI Program Development

n

510TX=X+INT(RND(0)*7)-3:TY=Y+INT(RND(0)*7)-3

|—j Select a position that is up to three characters away from the

< ' player.

520 IF TX<0 OR TX>39 OR TY<0 OR TY>24 GOTO 510

[—[If the position is out of bounds, try another one.

530 Z=TX+F*TY:POKE C+Z,RND(0)*16:POKE S+Z,42

Plot an asterisk at the calculated position.

540 POKE FH,RND(0)*50+ 10:NEXT:POKE CT,0

Choose a random pitch, loop back, and turn off the sound

when done.

550 END

We already put a subroutine at line 600. All of the joystick

offset values can fit into one DATA statement on line 700.

Here is a complete listing of the program. Type it in, be sure

to save a copy to tape or disk, and then run it.

110 X=0:Y=0:NR=15:DIM X(NR),Y(NR),SX(15),SY(15):TX

=0:TY=0 :rem 107

120 S=1024:C=55296:F=40:B=32:P=81:PC=1:R=160:RC=8:

BR=160:BC=3 :rem 206

130 FOR K=5 TO 15:READ SX(K),SY(K):NEXT :rem 203

140 MV=54296:AD=54277:SR=54278:FH=54273:CT=54276:P

W=54275 :rem 239

150 POKE MV,15:POKE AD,0:POKE SR,192:POKE FH,0:POK

E PW,8 :rem 225

200 PRINT CHR$(147):POKE 53280,4:POKE 53281,6:FOR

{SPACE}K=0 TO 960 STEP F :rem 67

210 POKE C+K,13:POKE S+K,BR:POKE C+39+K,13:POKE S+

39+K,BR:NEXT :rem 72

220 FOR K=l TO 38:POKE C+K,13:POKE S+K,BR:POKE C+9

60+K,13:POKE S+960+K,BR:NEXT :rem 151

230 FOR K=l TO 10:GOSUB 600:POKE C+Z,BC:POKE S+Z,B

j—> R:NEXT :rem 229

I ! 240 FOR K=l TO NR:GOSUB 600:X(K)=X:Y(K)=Y:POKE C+Z
,RC:POKE S+Z,R:NEXT:K=1 :rem 110

250 GOSUB 600:POKE C+Z,PC:POKE S+Z,P :rem 90

!""1 260 IF (PEEK(56320)AND16)<>0 GOTO 260 :rem 163
300 TX=X:TY=Y:JS=PEEK(56320)AND15 :rem 20

310 X=X+SX(JS):Y=Y+SY(JS):Z=X+F*Y:IF PEEK(S+Z)<>B

p. {SPACE}GOTO 500 :rem 241

i j 320 POKE FH#4*X+3*Y:POKE CT#17:POKE C+Z,PC:POKE S+

Z#P:POKE S+TX+F*TY,B :rem 159

330 POKE CT,16 :rem 239

H 400 TX=X(K):TY=Y(K):X(K)=TX+SGN(X-TX):Y(K)=TY+SGN(
1 ! Y-TY):Z=X(K)+F*Y(K) :rem 59

i— 261

LJ

Program Development [J

u
410 IF PEEK(S+Z)=P GOTO 500 :rem 205

420 IF PEEK(S+Z)=B THEN POKE C+Z,RC:POKE S+Z,R:POK

E S+TX+F*TY,B:GOTO 470 irem 239 j I
430 POKE FH,RND(0)*30+10:POKE CT,129:POKE S+TX+F*T LJ

Y,B:X(K)=X(NR):Y(K)=Y(NR) :rem 121

440 POKE CT,128:NR=NR-1:IF NR>0 GOTO 470 :rem 229 -.--,

450 POKE CT,65:FOR K=10 TO 100 STEP 10:POKE FH,K:F [J
OR J=l TO 30:NEXT J :rem 225

460 POKE FH,100-K:FOR J=l TO 30:NEXT J,K:POKE CT,0

:END :rem 18

470 K=K+1:IF K>NR THEN K=l :rem 164

480 GOTO 300 :rem 104

500 POKE CT#33:FOR K=l TO 30 :rem 205

510 TX=X+INT(RND(0)*7)-3:TY=Y+INT(RND(0)*7)-3

:rem 110

520 IF TX<0 OR TX>39 OR TY<0 OR TY>24 GOTO 510

:rem 176

530 Z=TX+F*TY:POKE C+Z,RND(0)*16:POKE S+Z,42

:rem 73

540 POKE FH,RND(0)*50+10:NEXT:POKE CT,0 :rem 215

550 END :rem 113

600 X=INT(RND(0)*38)+1:Y=INT(RND(0)*22)+1:Z=X+F*Y:

IF PEEK(S+Z)<>B GOTO 600 :rem 215

610 RETURN :rem 119

700 DATA 1,1,1,-1,1,0,0,0,-1,1,-1,-1,-1,0,0,0,0,1;

0,-1,0,0 :rem 135

Debugging

Assuming that you made no typing errors, there is only one

bug in the program. When you run it, as soon as you press the

trigger to start the game, you crash. You hear the random

noises and see the colorful characters plotted in a zone around

the player.

To get the program working correctly, we have to do

some debugging. There are only two lines which jump to line

500, the player crash. The lines in question are 310 and 410. [J

To determine which one is causing the early crash, temporar

ily delete line 500 by typing the number 500 and pressing

RETURN. This will force an UNDEFD STATEMENT error jj
and will tell us which line is trying to jump to 500. Run the

program again.

You should have gotten an UNDEFD STATEMENT error [j
in line 310. That means that our mistake is probably located

around line 310. Take a look at the whole section. The only

time line 310 will want to jump to 500 is when it finds some- j_J

262

u

H

fl Program Development

n
thing other than a blank at the new position. Since the player

never moved, it couldn't have hit a robot or barrier. But

I 1 wait—if the player didn't move, the new position is the same
as the old position. The player crashed because it ran into

itself! That's easy to fix. The joystick returns the value 15

I I when it is not being pushed in any direction. Here is a simple
addition to line 300:

300 TX=X:TY=Y:JS=PEEK(56320)AND15:IF JS = 15 GOTO

400

If the player is not moving, skip over all of the player move

ment code and move the next robot.

Restore line 500 and run the program again. You should have

a working game.

The game becomes rather easy once you get the hang of

it, but it serves as a good example of how to develop a pro

gram. You can experiment by changing the assignment to NR

or the value after TO in the FOR/NEXT loop of line 230 to

display more robots or barriers. To make the program auto

matically run again, replace every END statement with

NR=15:GOTO 200. An obvious enhancement to the game

would be to use a redefined character set.

n

263

Appendices

n

p| Appendix A

A Beginner's Guide to

n Typing In Programs

H What Is a Program?
A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. The programs published in this book are

written in a computer language called BASIC. BASIC is easy

to learn and is built into all Commodore 64s.

BASIC Programs

Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting a letter such as O for

the numeral 0, a lowercase 1 for the numeral 1, or an upper

case B for the numeral 8. Also, you must enter all punctuation

such as colons and commas just as they appear in the book.

Spacing can be important. To be safe, type in the listings

exactly as they appear.

Braces and Special Characters

The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special

character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to

Appendix B, "How to Type In Programs."

About DATA Statements

Some programs contain a section or sections of DATA state

ments. These lines provide information needed by the pro-

j| gram. Some DATA statements contain actual programs (called

machine language); others contain graphics codes. These lines

are especially sensitive to errors.

fj If a single number in any one DATA statement is
mistyped, your machine could lock up, or crash. The keyboard

and STOP key may seem dead, and the screen may go blank.

|j Don't panic—no damage is done. To regain control, you have
to turn off your computer, then turn it back on. This will erase

whatever program was in memory, so always SAVE a copy of

267

u

Appendix A j i

your program before you RUN it If your computer crashes, you

can LOAD the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an j I

error message when the program is RUN. The error message

may refer to the program line that READs the data. The error

is still in the DATA statements, though. f' j

Get to Know Your Machine

You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program, so that you won't have to

type it in every time you want to use it. Learn to use your

machine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you at

least need to know how to backspace. Do you know how to

enter reverse video, lowercase, and control characters? It's all

explained in your computer's manuals.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read the article

called 'The Automatic Proofreader" (Appendix I) before typ

ing in any of the programs in this book.

A Quick Review

1. Type in the program a line at a time, in order. Press

RETURN at the end of each line. Use the delete and cursor

keys to correct mistakes.

2. Check the line you've typed against the line in the

book. You can check the entire program again if you get an

error when you RUN the program.

U

u

LJ

0
268

u

Appendix B

How to Type In

Programs

rn To make it easy to know exactly what to type when entering

i ' one of these programs into your computer, we have estab
lished the following listing conventions.

Generally, Commodore 64 program listings will contain

words within braces which spell out any special characters:

{DOWN} would mean to press the cursor down key. {5

SPACES} would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to type

the S key while holding the SHIFT key. This would appear on

your screen as a heart symbol. If you find an underlined key

enclosed in braces (for example, {10 N}), you should type the

key as many times as indicated (in our example, you would

enter ten shifted N's).

If a key is enclosed in special brackets, [<>], you should

hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower left corner of the keyboard.) Again, if the key is pre

ceded by a number, you should press the key as many times

as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed

in braces. These characters can be entered by holding down

the CTRL key while typing the letter in the braces. For exam

ple, {A} would indicate that you should press CTRL-A.

About the quote mode: You know that you can move the

cursor around the screen with the CRSR keys. Sometimes a

f—[programmer will want to move the cursor under program con-

! trol. That's why you see all the {LEFT}'s, {HOME}'s, and
{BLU}'s in our programs. The only way the computer can tell

pj the difference between direct and programmed cursor control

' ; is the quote mode.

Once you press the quote (the double quote, SHIFT-2),

p- you are in the quote mode. If you type something and then try

1 ! to change it by moving the cursor left, you'll only get a bunch

of reverse-video lines. These are the symbols for cursor left.

r-f The only editing key that isn't programmable is the DEL key;

269

Appendix B

you can still use DEL to back up and edit the line. Once you

type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces

into a line. In any case, the easiest way to get out of quote

mode is to just press RETURN. You'll then be out of quote

mode and you can cursor up to the mistyped line and fix it.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read the article

called "The Automatic Proofreader" (Appendix I) before typ

ing in any of the programs in this book.

Use the following table when entering cursor and color

control keys:

When You

Read:

ICLR}

{HOME}

{UP}

(DOWN)

{LEFT}

{RIGHT}

{RVS}

{OFF)

{BLK}

{WHT}

{RED}

{CYN}

{PUR)

{GRN}

{BLU}

{YEL}

Press:

SHIFT

SHIFT

SHIFT

CLR/HOME

CLR/HOME

f CRSR f

••CRSR-»

♦CRSR-H

When You

See: Read:

U §13

§53

§63

173

Press: See:

commodore] I 11 m

COMMODORE

COMMODORE

COMMODORE 1 1 4

COMMODORE

COMMODORE

COMMODORE

~?\
6

a

u

a

u

Li

U

U

270

u

Appendix C

n

n
Screen Location Table

n
Row

0 1024
1064

1104

1144

1184

5 1224
1264

1304

1344

1384

10 .424
1464

1504

1544

1584

15 1624
1664

1704

1744

1784

20 1824
1864

1904

o/i 194424 1984

10 15 20

Column

25 30 35 39

n

271

Appendix D

Screen Color

Memory Table

Row

U

U

u

u

u
0 552%

55336

55376

55416

55456

5 554%
55536

55576

55616

55656

10 556%
55736

55776

55816

55856

15 558%
55936

55976

56016

56056

20 560%
56136

56176

56216

24 56256

10 15 20

Column

25 30 35 39

272

LJ

U

U

U

U

n Appendix E

n

Screen Color Codes
! Value to POKE for Each Color

Select

p! Low nybble High nybble multicolor

1 Color color value color value color value
Black 0 0 8

White 1 16 9

Red 2 32 10

Cyan 3 48 11

Purple 4 64 12

Green 5 80 13

Blue 6 96 14

Yellow 7 112 15

Orange 8 128 —

Brown 9 144 —

Light Red 10 160 —

Dark Gray 11 176 —

Medium Gray 12 192 —

Light Green 13 208 —

light Blue 14 224 —

Light Gray 15 240 —

Where to POKE Color Values for Each Mode

Bit or

Mode* bit-pair Location Color value

Regular text 0 53281 Low nybble

1 Color memory Low nybble

Multicolor 00 53281 Low nybble

text 01 53282 Low nybble

10 53283 Low nybble

J—| 11 Color memory Select multicolor

i Extended 00 53281 Low nybble

color textf 01 53282 Low nybble

!-! 10 53283 Low nybble

! ! 11 53284 Low nybble
Bitmapped 0 Screen memoryLow nybble^:

!""! 1 Screen memoryHigh nybble$

: ; Multicolor 00 53281 Low nybble
bitmapped 01 Screen memoryHigh nybbleJ

r-? 10 Screen memoryLow nybble$

' * 11 Color memory Low nybble

273

u

Appendix E <]

IJ
* For all modes, the screen border color is controlled by

POKEing location 53280 with the low nybble color value.

| In extended color mode, bits 6 and 7 of each byte of screen LJ
memory serve as the bit-pair controlling background color.

Because only bits 0-5 are available for character selection, r -.

only characters with screen codes 0-63 can be used in this Lj

mode.

J In the bitmapped modes, the high and low nybble color

values are ORed together and POKEd into the same location in

screen memory to control the colors of the corresponding cell

in the bitmap. For example, to control the colors of cell 0 of

the bitmap, OR the high and low nybble values and POKE the

result into location 0 of screen memory.

U

U

LJ

u

274

u

H Appendix F

ASCII Codes

ASCII

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

CHARACTER

WHITE

DISABLE

SHIFT COMMODORE

ENABLE

SHIFT COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE
I

#

$

%

&

(

)
*

+

—

/

0

1

ASCII

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

CHARACTER

2

3

4

5

6

7

8

9

*

/

<

>

?

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q

R

275

Appendix F

ASCII

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

HI

112

113

114

115

116

117

118

119

276

CHARACTER

S

T

U

V

w

X

Y

Z

t

B

m

s
□

a

□
□
D
S

□
□
H
□
S
D
Q

Asai

120

121

122

123

124

125

126

127

129

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

CHARACTER

a
E
B3
E
m

ORANGE

fl

f3

&

f7

f2

f4

f6

f8

SHIFTED RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

BROWN

LIGHT RED

GRAY 1

GRAY 2

LIGHT GREEN

LIGHT BLUE

GRAY 3

PURPLE

CURSOR LEFT

YELLOW

CYAN

SHIFT SPACE

r

LJ

U

U

u

u

LJ

LJ

U

Appendix F

n

n

n

ASCII

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

CHARACTER

y
□
D
D

□
a

B
CI
D3
a

u

D
C
a

□
G

□
■

B

E
H

m
B
B
□
Q
D

ASCII

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

CHARACTER

□
D
S
0

a
m

□
B
D

||

a
B

m
0

a
SPACE

H

□

B

E

277

Appendix

ASCII

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

F

CHARACTER

H
u
s
H
H
ffl
□

c
CD

n
a
y

a
H
H
H
t1

u

u

u

V

u

0-4, 6, 7, 10-12, 15, 16, 21-27, 128,

130-132, and 143 are not used.

278

U

u

u

u

n

<—• Appendix G

n

n

Screen Codes

•okn

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Uppercase and

Full Graphics Set

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

[

£

]

t

Lower- and

Uppercase

@

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q

r

s

t

u

V

w

X

y

z

[

£

]

t

POKE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Uppercase and

Full Graphics Set

4-

Lower- and

Uppercase

-space-

!

"

#

$

%

&

(

)

*

+

-

i

0

1

2

3

4

5

6

7

8

9

<

=

I

#

%

'

(

)

•

+

-

1

0

1

2

3

4

5

6

7

8

9

*

<

=

279

Appendix G

POKE

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

280

Uppercase and Lower- and

Full Graphics Set Uppercase

B
[a]

B

□

D

□

D
H

□
□

n

o
E

B
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

3 S
-space-

i i

POKE

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Uppercase and

Full Graphics Set

D
D

□

E

ffi
1.

E
a
u

□

c
LI
□
n
U
□

a
B
s

Lower- and

Uppercase

□
D
□

□

E
a

y
H
H

H

□

E
rj
n
n

m

H
H
B
B

128-255 reverse of 0-127

U

U

u

U

Appendix H

Commodore 64 Keycodes
H

Keycode

HA 10 6 19

24

27

32

35

40

43

48

51

0

57

46

49

54

45

50

53

1

47

44

55

7

2

4

5

nz, iz to 6

60

63

64

M The keycode is the number found at location 197 for the current

key being pressed. Try this one-line program:

|—| 10 PRINT PEEK (197): GOTO 10

281

Key

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

1

2

3

4

5

Keycode

10

28

20

18

14

21

26

29

33

34

37

42

36

39

38

41

62

17

13

22

30

31

9

23

25

12

56

59

8

11

16

Key

6

7

8

9

0
+

_

£

CLR/HOME

INST/DEL
4—

@
*

r
:

RETURN

/

crsrU
CRSRZ2

fl

f3

f5

f7

SPACE

RUN/STOP

NO KEY

PRESSED

u

Appendix I , ,

The Automatic u
Proofreader u

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking I I
program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. Be

very careful when entering the DATA statements—don't type

an 1 instead of a 1, an O instead of a 0, extra commas, etc.

2. SAVE the Proofreader on tape or disk at least twice

before running it for the first time. This is very important

because the Proofreader erases part of itself when you first

type RUN.

3. After the Proofreader is SAVEd, type RUN. It will

check itself for typing errors in the DATA statements and

warn you if there's a mistake. Correct any errors and SAVE

the corrected version. Keep a copy in a safe place—you'll need

it again and again, every time you enter a program from this

book, COMPUTEl's Gazette, or COMPUTE! magazine.

4. When a correct version of the Proofreader is RUN, it

activates itself. You are now ready to enter a program listing.

If you press RUN/STOP-RESTORE, the Proofreader is dis

abled. To reactivate it, just type the command SYS 886 and

press RETURN.

Using the Proofreader

All listings in this book have a checksum number appended to | j

the end of each line, for example, :rem 123. Don't enter this "—^

statement when typing in a program. It is just for your informa

tion. The rem makes the number harmless if someone does j j

type it in. It will, however, use up memory if you enter it, and '—'
it will confuse the Proofreader, even if you entered the rest of

the line correctly. j j

When you type in a line from a program listing and press ^
RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum j ,

282

u

Appendix I

number in the printed listing. If it doesn't, it means you typed

the line differently than the way it is listed. Immediately

I""! recheck your typing. Remember, don't type the rem statement

with the checksum number; it is published only so you can

check it against the number which appears on your screen.

f—| The Proofreader is not picky with spaces. It will not

notice extra spaces or missing ones. This is for your con

venience, since spacing is generally not important. But occa

sionally proper spacing is important, so be extra careful with

spaces, since the Proofreader will catch practically everything

else that can go wrong.

There's another thing to watch out for: If you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, LIST it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions

When you're done typing a listing, you must disable the

Proofreader before SAVEing the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key). This

procedure is not necessary for disk SAVEs, but you must dis

able the Proofreader this way before a tape SAVE.

SAVE to tape erases the Proofreader from memory, so

you'll have to LOAD and RUN it again if you want to type

another listing. SAVE to disk does not erase the Proofreader.

Hidden Perils

The proofreader's home in the 64 is not a very safe haven.

•—> Since the cassette buffer is wiped out during tape operations,

! ! you need to disable the Proofreader with RUN/STOP-
RESTORE before you SAVE your program. This applies only

— to tape use. Disk users have nothing to worry about.

. Not so for 64 owners with tape drives. What if you type

in a program in several sittings? The next day, you come to

—i, your computer, LOAD and RUN the Proofreader, then try to

' ! LOAD the partially completed program so you can add to it.
But since the Proofreader is trying to hide in the cassette

i—* buffer, it is wiped out!

R
283

u

Appendix I jt

LJ
What you need is a way to LOAD the Proofreader after

you've LOADed the partial program. The problem is, a tape

load to the buffer destroys what it's supposed to load. M

After you've typed in and RUN the Proofreader, enter the

following lines in direct mode (without line numbers) exactly

as shown: [\

A$="PROOFREADER.T":B$="{10 SPACES}": FOR X = 1 ^

TO 4: A$=A$+B$: NEXTX

FOR X = 886 TO 1018: A$=A$+CHR$(PEEK(X)): NEXTX

OPEN 1, 1,1,A$:CLOSE1

After you enter the last line, you will be asked to PRESS

RECORD & PLAY on your cassette recorder. Put this program

at the beginning of a new tape. This gives you a new way to

load the Proofreader. Anytime you want to bring the Proof

reader into memory without disturbing anything else, put the

cassette in the tape drive, rewind, and enter:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, PRINT PEEK (886) should return the number 173. If

it does not, repeat the steps above, making sure that A$

("PROOFREADERS") contains 13 characters and that B$ con

tains 10 spaces.

You can now reload the Proofreader into memory when

ever LOAD or SAVE destroys it, restoring your personal typ

ing helper.

Incidentally, you can protect the cassette buffer on the

Commodore 64 with POKE 178, 165. With this POKE,

the 64 will not wipe out the cassette buffer during tape

LOADs and SAVEs.

284

u

LJ

LJ

U

n

n

n

Appendix I

Automatic Proofreader

l00 PRINT"{CLR}PLEASE WAIT.•.":FORI=886TO1018:REA

A:CK=CK+A:POKEI,A:NEXT

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERR<

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVAT

D.":NEW

886 DATA 173,036,003,201,150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

285

n

Index

+ addition 10-12

+ concatenation 164

- subtraction 10-12

* multiplication 10-12

/ division 10-12

< exponentiation 11

= assignment 63-70

= equal 24-25, 63-64

< less than 68-70, 166

> greater than 68-70, 166

$ 159, 169-70

? 10-12, 15, 88, 150

abbreviations 15, 249-50

abort 99, 112

ABS function 50-51

alphanumeric 28, 30

AND operator 71-74, 77-82, 134, 167

animation 205, 214-15

append 165

argument 49

arithmetic function 49-54

ABS 50-51

INT 51-53

RND 53-54

SGN51

arithmetic operator 10-11

array 233-38

ASC function 168-69

ASCII 168

assign 24-25, 30-32, 125-29, 147-53,

195

attack 34-37

background color 17-18, 57-58, 79-80,

187

BAD SUBSCRIPT error 234, 238-39

BASIC 3-4

BASIC commands. See command

BASIC functions. See function

BASIC statements. See statement

binary number 74-82

binary operator 73

bit 76-81

bitmapped graphics 186-91

bit pair 142-43, 190, 213

blank line 41

border color 18

BREAK message 99, 112, 252

bubble sort 237

buffer 148-49

286

bug 244

byte 55, 76

call function 49

call subroutine 180

CANT CONTINUE error 253

cassette 95, 100

character 8, 135, 168

character graphics 122, 186, 205

character set 135-43

character string 44-46

CHR$ function 169

chroma noise 140-41

clear bit 76-81

clear screen 10

clear variables 32, 90-91

clock 29

CLR statement 32-33, 130

collision 226-29

colon 20

color 17-18

color graphics 17

color memory 57, 80, 187

column 42

comma 42-43, 45-46

command 87

CONT 253

LIST 6-8, 86-95

LOAD 95-102

NEW 6, 90-94

RUN 6-8, 87-95

SAVE 95-102

VERIFY 100-101, 103

comment 104-5

computed GOSUB 223

computed GOTO 221-23

concatenation 164

conditional expression 64-74

conditional logic 7-8, 63-74, 114-16,

129, 221-23, 245

constant 127, 150, 180

CONT command 253

coordinates 186-87

counting variable 115-16, 195-202

crash 19

cursor 8-10, 41, 43

Datassette 4, 96-102

DATA statement 125-27, 161-62

debugging 244, 250-54

decay 34-37

u

u

u

u

1 1
t_J

1 i

LJ

u

u

u

u

H

n

n

H

n

H

n

n

default 19, 23-25

deferred mode 85-86

definition block 206, 216

delete character 6, 10

delete line 89-90

delimiter 44

design 244-46

DEVICE NOT PRESENT error 99

device number 96, 102

dimension 236-38

DIM statement 236-38

direct mode 85-86

directory 99, 101

disk 95, 100

disk drive 4, 96-101

DIVISION BY ZERO error 11

documentation 104-5

draw line 188-89

dummy argument 56

editing 88-94

enable 207

END statement 106-7, 181

enter 10

entry point 179-81

envelope 35-37

equal sign 24-25, 63-64

erase program 98, 101

error 9, 91, 253

evaluate 11

execution 85-95, 111-16, 179-85,

195-202

exponentiation 11

expression 11

extended background color mode 58

EXTRA IGNORED message 152

false 63-74

file 98

filename 98-99, 102

FILE NOT FOUND error 99

flag 129

FORMULA TOO COMPLEX error 174

FOR statement 195-202

free memory 55-56, 92, 136, 206

FRE function 55-56

frequency 35-37

frequency low and high 37, 53, 199

function 49-59, 167-74

FRE 55-56

PEEK 59

function name 49-50, 167, 172

GET statement 148-49

GOSUB statement 179-82, 223

GOTO statement 111-13, 116, 221-23

graphics characters 8-9

hardware locations 17-19, 59, 76

hierarchy 11

home 10

IF-THEN statement 64-67, 116

ILLEGAL DEVICE NUMBER 99

ILLEGAL DIRECT error 149, 153

ILLEGAL QUANTITY error 18, 169, 173,

223, 234, 250-51

immediate mode 4, 85-86, 112, 254

implementation 244, 246-50

implied LET 33

increment 31, 195

index 234

infinite loop 111-14, 198

initialization 122, 246

input/output 7, 99-100, 147-53, 244-45

INPUT statement 150-53, 161-62

insert character 10

integer 51

INT function 51-53

joystick 6-7, 81-82, 147

jump 113, 179-80, 195-96, 198

K (kilobyte) 55

keyboard 8-10, 147

keyword 16-17, 33-34, 64, 112

language 3

leading spaces 88, 161

LEFTS function 172-74

LEN function 168

LET statement 24-25, 33

line length 20

line number 86-95, 221-23

LIST command 6-8, 86-95

LOAD command 95-102

LOAD error 99

location 17-19

logical operator 71-74, 167

AND 71-74, 77-82, 134, 167

NOT 73-74, 77, 80-81, 167

OR 71-74, 77-81, 167

loop 111-15, 128-29, 195-202, 234

lowercase 9

main loop 122, 246

main program 179-81, 246

mask 79-81

master volume 34

memory 24, 32

memory location 17, 19, 56, 59, 76

MID$ function 172-74

287

multicolor mode 142-43, 190-91, 212-14

music 131-34

nested functions 52, 174

nested loops 198-201

nested subroutines 184-85

NEW command 6, 90-94

NEXT statement 195-202

NEXT WITHOUT FOR error 198-201,

251

NOT operator 73-74, 77, 80-81, 167

null string 160-61, 166

numeric variable 159

ON statement 222-23

operator 10-11, 68-74, 164-67

OR operator 71-74, 77-81, 167

OUT OF DATA error 127, 251

OUT OF MEMORY error 56, 185, 239,

251

parentheses 11

PEEK function 59

pitch 35-37

plot 187-88

POKE statement 17-19

precedence 11, 73-74

printing 15

PRINT statement 15, 41-46

priority 227

program 6-8, 86-95

program mode 85-86

prompt 10, 149-52, 161-62

pulse wave 37-38

pulse width 37-38

question mark 10-11, 15, 88, 150

quote mark 8, 42-45, 161-62

quote mode editing 45

random number 53-54

read 100

READ statement 125-27, 161-62

recursion 185

redefined characters 134-43

REDIM'D ARRAY error 236

REDO FROM START message 150, 152

relational operator 63-64, 68-70, 166

release 34-37

remarks 104-5

REM statement 104-5

repetition 7-8, 114, 182, 245

replace line 88-89

reserved variable 29-30

reserved word 27, 29-30

RESTORE statement 130

288

retrieval 95-102

Return character 41-43

RETURN key 9-10, 88-90

RETURN statement 180-82

RETURN WITHOUT GOSUB error 181,

251

returned value 49

reserve mode 9, 45

RIGHTS function 172-74

RND function 53-54

RUN command 6-8, 87-95

running 87

SAVE command 95-102

sawtooth wave 37

screen blanking 96-97, 101

screen memory 56-58

scroll 9, 91, 111-12

semicolon 8, 42-43, 45-46, 153

set bit 76-81

SGN function 51

significant 27-28, 30

sound 17, 34-38, 154-55

spaces 42-43

specification 244-45

sprite graphics 205-17

sprite pointer 206, 216

square wave 38

ST reserved variable 29-30

statement 15-20

CLR 32-33, 130

DATA 125-27, 161-62

DIM 236-38

END 106-7, 181

FOR 195-202

GET 148-49

GOSUB 179-82, 223

GOTO 111-13, 116, 221-23

IF-THEN 64-67, 116

INPUT 150-53, 161-62

LET 24-25, 33

NEXT 195-202

ON 222-23

POKE 17-19

PRINT 15, 41-46

READ 125-27, 161-62

REM 104-5

RESTORE 130

RETURN 180-82

STOP 253

STEP 197-98

string function 167-74

ASC 168-69

CHR$ 169

LEFTS 172-74

LEN 168

u

LJ

0

LJ

LJ

U

U

U

U

LJ

n

n

n
MID$ 172-74

RIGHTS 172-74

STR$ 171

VAL 171

STRING TOO LONG error 165

string variable 159-63

STOP statement 253

storage media 95

STR$ function 171

string 44-46

string function 167-74

structure 246, 249

subroutine 179-85

subscript 233-34, 237-38

substring 172-74

sustain 34-37

syntax 9, 17

SYNTAX error 9-10, 16, 20, 29, 52, 67,

93, 127, 148, 153, 162, 174, 250

system crash 19

table 234

tape 95, 100

TI reserved variable 29-30

TI$ reserved variable 162-63

TO keyword 195-202

triangle wave 36

true 63-74

truncate 52

truth value 63-74, 78-81

type 46, 160, 170-71

TYPE MISMATCH error 46, 165, 168,

251

uppercase 9

unary operator 73

UNDEFD STATEMENT error 113, 180,

223, 251

unplot 190

VAL function 171

value 11, 23, 160

variable 23-38, 159-63

variable list 125-27, 200-201

variable name 27-30, 159

VERIFY command 100-101, 103

VERIFY error 101

volume 34-37

waveform 35-38

white noise 38

wraparound 9, 20, 42-45

write 100

X coordinate 187

Y coordinate 187

H

n

H

289

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro. NC 27403

My Computer Is:

□ Commodore64 QTI-99/4A □ Tlmex/Sinclair DVIC-20 \JPEl

□ Radio Shack Color Computer □ Apple □ Atari □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

$30 Canada
$42 Europe, Australia New Zealand/Air Delivery
$52 Middle East North Africa, Central America/Air Mail
$72 Elsewhere/Air Mail
$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card.

□ Payment Enclosed □ VISA

□ MasterCard □ American Express

Ace t. No. Expires /

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of

COMPUTERS Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406

Greensboro, NC 27403

My computer is:

□ Commodore 64 IVIC-20 □ Other.
03

□ $20 One Year US Subscription
□ $36 Two Year US Subscription
□ $54 Three Year US Subscription

Subscription rates outside the US:

□ $25 Canada
□ $45 Air Mail Delivery

□ $25 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank International Money

Order, or charge card. Your subscription will begin with the next avail

able issue. Please allow 4-6 weeks for delivery of first issue. Subscription

prices subject to change at any time.

□ Payment Enclosed

□ MasterCard

Acct. No.

□ VISA

□ American. Express

Expires

The COMPUTErs Gazette subscriber list is made (available to carefully screened organiza

tions with a product or service which may be of interest to our readers. If you prefer not to

receive such mailings, please check this box □.

H

- j COMPUTE! Books
P.O. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out order directly from COMPUTE!

For Fastest Service

Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

_ Machine Language for Beginners

_ Home Energy Applications

_ COMPUTED First Book of VIC

_ COMPUTED Second Book of VIC

_ COMPUTED First Book of VIC Games

_ COMPUTED First Book of 64

_ COMPUTED First Book of Atari

_ COMPUTED Second Book of Atari

_ COMPUTED First Book of Atari Graphics

_ COMPUTED First Book of Atari Games

.Mapping The Atari

.InsideAtari DOS

_ The Atari BASIC Sourcebook

. Programmer's Reference Guide for TI-99/4A

_ COMPUTED First Book of Tl Games

Price

$14.95*

$14.95*

$12,95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$12.95*

$14.95*

$19.95*

$12.95*

$14.95*

$12.95*

.Every Kid's First Book of Robots and Computers $ 4.95t

_ The Beginner's Guide to Buying A Personal
Computer $ 3.951

' Add $2 shipping and handling. Outside US add $5 air mail; $2
surface mail.

tlAdd $1 shipping and handling. Outside US add $5 air mail; $2
surface mail.

Please add shipping and handling for each book
ordered.

Total enclosed or to be charged.

Total

All orders must be prepaid (money order, check or charge). All

payments must be in US funds. NC residents add 4% sales tax.

□ Payment enclosed Please charge my: □ VISA □ MasterCard

□ American Express Acc't, No. Expires /

Name

Address

City State Zip

Country

Allow 4-5 weeks for delivery.

