

the

ommodore

V•O•L•U•M•E T-W-O

Craig Chamberlain

COMPUTErPublicationsjnc.^3
One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-45-0

10 9876543

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer^ personal computers. Commodore 64 is a trademark of Commodore

Electronics Lim/ted.

Contents

Acknowledgments vii

Foreword ix

Introduction xi

Part 1: Advanced BASIC l
Chapter 1. Numbers and Mathematics 3

Numerical Values for Conditions 3

Precision and Scientific Notation 8

Integer Variables 11

Random Number Seeding and Sequencing 15

Chapter 2. More Functions 19

Print Formatting Functions 19

Transcendental Functions 22

User-Defined Functions with the DEF Statement 26

Chapter 3. File Input/Output 37

Introduction to I/O 37

The OPEN and CLOSE Statements 38

The Printer and the CMD Statement 45

Files on Tape 50

Disk Files 58
The Modem and Other RS-232 Devices 71

Chapter 4- The End of BASIC 81

Using Commands in Programs 81

The WAIT Statement 84

Machine Language and the SYS Statement 88

Part 2: Bitmapped Graphics 95
Chapter 5. The Bitmapped Graphics Utility 97

Introduction to the Bitmapped Graphics Utility 97

The New Statements 97

Graphics Modes and Point Plotting 106

Changing Colors 110

Line Drawing 112

Area Filling 115

Multicolor Modes 119

Chapter 6, Shapedit 123

Introduction to Shape Tables 123

The Shapedit Program 130

Using Shapes in BASIC Programs 146

Rotation 150

Drawing Pen Indirection 153

Mixing Text with Bitmapped Graphics 164

Suggested Applications 166

The Technical Side 168

EXTRACT and MERGE 178

BMG Statement Index 181

Part 3: Sidplayer 183
Chapter 7. Introduction to Music and the Sidplayer 185

Electronic Music 185

The Sidplayer 186

Let the Music Play 190

Fundamentals of Music Theory 206

Chapter 8. The Editor 227

Using the Editor 249

EDIT Music 249

Special Options 255

Function Key Summary 260

Entering a Melody 260

Error Checking 262

Saving the Music 263

Loading a Song 264

What's on the Disk? 264

Using All Three Voices 264

Keyboard Note Entry 266

Complete Joystick Editing 267

Leaving the Editor: QUIT 268

Chapter 9. Making Music 271

Waveforms 271

Envelopes 282

Envelope Example 287

The Filters 290

Three Demonstrations 296

Repetition 298

Chapter 10. Sophisticated Sounds 305

Advanced Music Theory 305

Portamento and Vibrato 314

Detuning 320

Transposing 322

Synchronization 324

Ring Modulation 333

Advanced Techniques 337

Chapter 11. Music and Your BASIC Program 351

Merging Sidplayer with BASIC Programs 351

Utility Programs 364

Sidplayer Editor Command Index 375

Part 4: Sprite Control System 377
Chapter 12. Introduction to the Sprite Control System 379

Principles of Animation 379

Character Graphics 380

Bitmapped Graphics 380

Sprite Graphics 381

The Sprite Control System 381

Before You See It Work 382

On with the Show 389

Getting Fancy 393

Hi, Guy 398

Chapter 13. Defining Sprite Shapes 403

Joystick Editing 410

The Sprite Editor Commands and Features 410

Sprites and More Sprites 417

Chapter 14. Using the Control System in BASIC 419

Sophisticated 419

Variable Assignments 420

Load Machine Language Routines 420

Load Definitions . 420

Install Sprite Control System 421

Define Block 421

Assign Block to Sprite 422

Set Sprite Color 423

Set Sprite Size 423

Set Sprite Position 423

Set Sprite Direction 425

Select Wraparound or Bounce 426

Set Sprite Speed 427

Set Sprite Boundaries 428

Remove Sprite Control System 429

Review 429

Errors 430

Multiple Sprites 430

Chapter 15. SCS Advanced Features 433

Available Definition Blocks 433

Automatic Shape Changing 434

Multicolor Mode 437

Priority 437

Joystick Control 438

Chase Mode 440

Synchronized Sprite Motion 441

Enable/Disable 443

Chapter 16. Miscellaneous Topics 445

The Merge Utility 445

The Extract Utility 447

Sprite-to-Sprite Collisions 449

Sprite-to-Screen-Data Collisions 450

POKEing and PEEKing 451

Reading Definitions from DATA 451

Protecting Free Memory 452

Relocating Screen Memory 452

Relocating the Sprite Control System 456

Using the Control System with the

Bitmapped Graphics Extensions 457

Using the Sprite Control System with Sidplayer 459

Using All Three Utilities Together 460

Final Comments 462

Sprite Control System Command Index 463

Appendices 465

A. A Beginner's Guide to Typing In Programs 467

B* How to Type In Programs 469

C. Using the Machine Language Editor: MLX 471

D. The Automatic Proofreader 478

E. Program Merge Utility 482

Index 487

Acknowledgments

Over a year in development, this book represents the talents

of many people. The author wishes to thank the following

people for their assistance in designing and debugging the

programs:

Bitmapped Graphics: Sheldon Leemon, Mark Davids, Bob

Retelle, and Jerry Brady.

Sidplayer: Harry Bratt, Robert Higgins, Jerry Brady, Chuck

Lever, Bob Retelle, Steve Maggs, Sharon Aker, Marc Sugi-

yama, Mark Freitas, and Jim Ockers.

Sprite Control System: Mark Thomas, Mark Davids, and Bob

Retelle.

Special thanks are owed to Sheldon Leemon, author of Map

ping the Commodore 64, published by COMPUTE! Publications,

Inc. Sheldon wrote the BASIC interface for the bitmapped

graphics routines, and generously offered technical assistance

whenever it was needed. This book might not have been pos

sible had it not been for Sheldon's help.

Also deserving special recognition are Harry Bratt, author of

the Sidplayer Editor, and Mark Davids and Bob Retelle, for

carefully reviewing the text.

Finally, the people at COMPUTE! Publications are to be

thanked for their help and patience, which has been greatly

appreciated by the author.

vu

Foreword

Bitmap graphics...music and sound...sprites—these are some of

the most powerful features of your Commodore 64. You know

what the computer can do if you've seen high-quality

commercial software. The 64 can paint any picture, play al

most any kind of music, animate an endless variety of shapes.

Using those same techniques in your own programs, however,

isn't that simple. If you know machine language, you can do it

a bit more easily. That still may not solve the problem though,

for BASIC is often the language of convenience. And if you

know only BASIC, what can you do?

All About the Commodore 64, Volume Two is the answer. It

contains three major machine language utilities which add

new BASIC commands for bitmap graphics creation, allow you

to play the most involved music, and give you control over al

most every aspect of sprites. Each utility is supported by an

editor, as well as other secondary programs. Examples show

you precisely what can be done and how to do it.

With bitmapped graphics you can draw, fill, and color on

the bitmap screen. With shape tables, you can draw detailed

shapes. By saving them to tape or disk, you can call them in

stantly to the screen. "Shapedit," a shape editor, makes it a

snap to produce shapes. You can quickly change or copy any

thing you draw.

"Sidplayer" and its accompanying Editor allow you to

create music of your own, or type sheet music into your 64.

This editor is one of the most sophisticated available: You can

use the keyboard or joystick to add or delete notes, specify the

key, select the tempo, control volume, and number measures.

Advanced features allow you to repeat sections of a musical

piece, filter sound, and use the 64's SID chip's synchronization

and ring modulation. Almost anything that can be played,

from a symphony to a pop tune, can be reproduced on your

64. And though there are detailed explanations, you don't

even need to know how to read music to use this versatile

tool.

Sprites, those shapes you can sculpt and move across the

screen, can be easily controlled with the Sprite Control Sys

tem. With the complete package, including a sprite editor,

you'll quickly design and create countless sprites, then move

ix

them on the screen at incredible speeds. The computer will

move them for you, or you can control them with the joystick.

In a matter of minutes you can have sprites bouncing, dis

appearing, reappearing, crawling, and flying through your

own programs. Even though you may know how to program

just in BASIC, you can create impressive arcade-quality games

with the Control System.

Each of these utilities can be used separately, or in any

combination. They let you control, through your own BASIC

programs, some of the most advanced features available on

any home computer.

There's even more information in All About the Com

modore 64, Volume Two. An entire section is devoted to ad

vanced BASIC programming techniques. It picks up where

Volume One left off. You'll learn about advanced functions,

file input/output, and the little-known, but powerful, WAIT

statement.

All the programs in Volume Two are ready to type in.

Error-checking programs make typing them in easy.

If you prefer, you can purchase all the programs from

Parts 2, 3, and 4 on disk for $12.95 plus shipping by calling

toll free 1-800-334-0868.

With the information and utilities included in this book,

you can turn your 64 into the computer you've always hoped

it would become. Powerful features become convenient

enough to use. Everything is clearly documented and illus

trated, from the simplest technique to the most advanced.

With All About the Commodore 64, Volume Two, you can have a

new computer. It may look like your old 64, but it's not. It's a

machine that's opened up hundreds of new doors into per

sonal computing.

Introduction

Welcome to the second volume of COMPUTE! Books' com

prehensive series, All About the Commodore 64. The first vol

ume showed you everything you needed to write BASIC

programs on your 64. But there's more built into your com

puter than just BASIC. There's a dedicated graphics chip

which features, superior bitmapped graphics and eight sprites,

as well as a sound chip with capabilities comparable to those

in many commercial synthesizers. No other computer on the

market gives you such graphics and sound for such a low

price.

Unfortunately, these features are not easily accessible

from BASIC. Commodore 64 BASIC does not offer commands

for high-resolution plotting, for playing music, or for animat

ing sprites. These have to be done with POKE statements, but

POKEs can be unwieldy and slow. In fact, BASIC programs

which use POKEs just do not run fast enough to play three

voices simultaneously or to control eight sprites at the same

time.

One solution is to write the programs in machine lan

guage (ML), the "native" language of the Commodore 64. Ma

chine language is so fast that it can clear the bitmap screen in

a fraction of a second; it can even move sprites faster than the

screen can display them. But to use ML you must first learn how

to write it. Learning a new language can be time-consuming.

All About the Commodore 64, Volume Two offers an alter

native. It describes three major utilities, written in machine

language, which can be merged with your BASIC programs to

do fast drawing, play music, or animate sprites. You can keep

the convenience of BASIC while adding the speed of ML—all

without having to plug a special cartridge into your computer.

This book is divided into four parts. Part 1 explains ad

vanced features of BASIC; the remaining three each cover one

utility, showing how to use it and suggesting some practical

applications. The concise, but clear, approach of Volume One,

including the use of summaries at the end of each section in

Part 1, has been retained for this book. These two books

supplement each other. What you didn't find in Volume One,

you'll find here. Although you don't need Volume One to

xi

understand this book, both are necessary to completely ex

plore the capabilities of your computer.

Advanced BASIC

Part 1 picks up where All About the Commodore 64, Volume

One left off. The advanced features of BASIC are explored, de

fined, and illustrated.

Chapters 1 and 2 cover subjects such as user-defined

functions and how to simplify IF-THEN statements. Chapter 3

discusses peripherals, such as printers and modems. The ad

vanced topic of tape and disk files is presented with numerous

examples. A simple terminal program is even included for

those of you who have a modem. Finally, Chapter 4 covers

several miscellaneous items (how to call machine language

from a BASIC program, for instance).

Since the topics in this section are somewhat advanced

and may not be immediately applicable, you might want to

skip over these chapters and move to the graphics and sound

utilities first. However, there is a wealth of information in

cluded in this section—it's nice to know that it's there when

you need it.

Bitmapped Graphics

This collection of machine language routines lets you work

with high-resolution and multicolor graphics. To make them

as accessible as possible, they're written in the form of state

ments which can be added to BASIC. Even more important,

the routines don't take up a single byte of BASIC'S free

memory.

New BASIC statements like GRAPHICS and DRAW are

used to clear the bitmap screen and do high-resolution plot

ting, while others let you quickly draw lines and fill in areas.

The SHAPE statement lets you draw a complete object at any

place on the screen. There's even a program—"Shapedit"—

that helps you create a library of shapes.

Sidplayer

The SID (Sound Interface Device) chip built into your 64 is a

rather complex integrated circuit. However, "Sidplayer," the

music editing program included here, has been carefully de

signed so that everyone can use it. No particular musical

knowledge is required; in fact, it's so easy to use that you can

Xll

enter a song without knowing how to read sheet music.

As well as detailing Sidplayer's advanced features, this

section offers a discussion of the fundamentals of music

theory.

Sidplayer is capable of emulating a wide variety of in

struments, and any music you create with it can be merged

with other BASIC programs. The music will play while the

program is doing something else. Several demonstration tunes

are even provided.

Sprite Control System

How would you like to see eight sprites go whizzing across

the screen, each with a different direction, speed, shape, size,

and color? What if you could control them with one or even

two joysticks? And how about if they changed shape when

ever they changed direction?

All of these things are possible with the Sprite Control

System—and you don't need a single POKE statement! Even

better, the animation takes place independently of BASIC.

This means that sprites can move and change shape while a

BASIC program is displaying a score or generating sound

effects.

You'll find this utility especially useful for your own

projects, such as action games. Programs include a Sprite Edi

tor and plenty of demonstrations.

Each of these three utilities—Bitmapped Graphics, Sidplayer,

and the Sprite Control System—can make your Commodore

64 do impressive things. That's not all, though—you'll also

see ways to use all three together to create even more impres

sive results with your computer.

You Paid for It

All About the Commodore 64, Volume Two has something for

everyone. You'll finally be able to make use of all the special

features within your machine. They've always been there; it's

just that they haven't been easy to get to. You paid for them—

isn't it about time you used them?

xni

Parti

Advanced

BASIC

Chapter 1

Numbers and Mathematics

Numerical Values for Conditions

In All About the Commodore 64, Volume One, you saw how the

AND and OR operators work on true/false values and on

numbers. Actually, these operators work only on numbers;

true and false have corresponding numerical values. Consider

the following statement:

PRINT 5=5

Surprisingly enough, this BASIC statement will make your

computer print a minus one (—1). Another (and somewhat

clearer) way of writing this is:

PRINT (5=5)

Note that the equal sign is not assigning anything. Rather, it's

being used as a relational operator, just like the greater than

(>) and less than (<) symbols. The values to the equal sign's

left and right are compared for equality. If the two values are

equal—if the relation is true—BASIC associates a — 1 with

this condition.

However, if the values are not equal—if the relation is

false—zero is associated with such a condition. For example,

the following statement will print a zero:

PRINT 5=4

The next example shows both uses of the equal sign. The

first equal sign is being used to assign the variable A, as in a

LET statement. The second is comparing variables B and C for

equality.

A=B=C

When this statement is executed, B and C will be compared

first, and the result (0 or — 1) will then be assigned to A. Vari

ables B and C will not be changed.

The fact that true and false have numerical values can

sometimes be used to simplify IF-THEN statements. These

statements work by performing a comparison, and then using

the result to decide whether to execute the commands after

the THEN or to skip to the next line.

IF 5=5 THEN PRINT "TRUE"

Chapter 1

The condition 5=5 is evaluated. Since both values are equal,

the result is — 1, and the instruction after THEN is executed.

But look at this line:

IF 5=4 THEN PRINT "TRUE"

This time the result is 0, and the part after THEN does not

execute.

Actually, the instructions following THEN will be exe

cuted whenever the result is any nonzero'value, not just —1.

In the first line 310 below, the PRINT statement after the

THEN will execute if C has a value other than 0. Execution

will skip to the next line only when C equals 0.

310 IF C THEN PRINT "C HAS NONZERO VALUE"

This line is just a shortened form of:

310 IF C<>0 THEN PRINT "C HAS NONZERO VALUE"

Thus, whenever a conditional statement checks to see if a

value does not equal zero, the <>0 portion can be eliminated.

This has a number of applications. For instance, here are

two ways of checking for a sprite collision. (Variable SN is the

number of the sprite being checked.)

IF (PEEK(53278)AND2tSN)<>0 THEN PRINT "COLLIDED!"

IF PEEK(53278)AND2tSN THEN PRINT "COLLIDED!"

Both lines produce the same results, but the second is a little

shorter.

Not only can lines be shortened because conditions have

numerical values, but they can be eliminated altogether. Con

sider a program which has to keep incrementing a color num

ber. When the color reaches 16, it has to be set back to 1.

260 C=C+1 : IF C=16 THEN C=l

270 POKE 53280,C

Every time these lines are executed, C is incremented. The

conditional statement insures that the value of C is always

kept in the range from 1 to 15.

Lines 260 and 270 could be combined if it wasn't for the

IF-THEN statement at the end of 260. This statement makes it

Chapter 1

impossible to add other instructions to the end of the line, be

cause they may not always be executed. However, the lines

could be combined if the IF-THEN was eliminated. The

following shows how it can be done, not in two lines as

above, but in only one line.

260 C=C+1:C=C+15*(C=16):POKE 53280,0

The logic may be hard to follow, so let's run through a

short explanation. Whenever C has a value from 1 to 15, the

statement C=C+15*(C=16) does not change the variable's

value. For all these values, (C=16) is false, or 0. Since 15

times 0 is still 0, the statement effectively becomes

C=C+0; the value of C is left unchanged. But when C is 16,

(C= 16) is true, or — 1. Multiplying 15 by —1, however, gives

— 15, which when added to the value of C (16) yields 1. No

tice that an addition operation has to be used because the

value being added is negative. But the end result is subtrac

tion. The process is outlined below.

C has the value 16

C=C+15*(C=16)

C=C+15*(-1)

C=C+(-15)

C=C-15

C=16-15

C=l

The example could be compacted even more by com

bining the C=C+ 1 with the C=C+ 15*(C= 16). The follow

ing line produces the same result as the previous two

examples.

260 C=C+1+15*(C=15):POKE 53280,C

This statement behaves just like C=C+ 1 when C ranges from

1 to 14. When C is 15, however, adding 1 to it would make it

16, so the 15 is subtracted instead.

Here's a slight variation on this technique; it's taken from

the "Shapedit" program found later in the book. The variable

X represents a coordinate that must be kept in the range 0-39.

If X is larger than 39, it must be set back to 0. If it's less than

0, it must wrap around to 39.

240 IF X<0 THEN X=39

250 IF X>39 THEN X=0

Chapter 1

Instead, one line was saved by writing the code this way:

240 IF X<0 OR X>39 THEN X=-39*(X<0)

If X is less than 0, the value -39*(X<0) is 39, and the variable

is assigned the number 39. When X is greater than 39, the

value —39*(X<0) is 0, and the variable is set to 0.

One other application of this number technique is to use

it with the ON-GOTO statement. Consider the following pro

gram segment, which waits until the joystick is pushed, and

then jumps to line 300.

320 JS=PEEK(56320)AND15:IF JS=15 GOTO 320

330 GOTO 300

Having a GOTO on a line all by itself seems wasteful.

Line 330 is necessary, but anything put on the same line, after

the GOTO, would never be executed. By taking advantage of

the number trick, you can revise the lines and end up with:

320 JS=PEEK(56320)AND15:ON (JS=15)+2 GOTO 320f300

The possible values of (JS=15) are —1 and 0, which

when added to 2 give the values 1 and 2, just right for using

ON-GOTO. Here is another way of writing the line so that the

numbers after GOTO can be transposed:

320 JS=PEEK(56320)AND15:ON 1-(JS=15) GOTO 300,320

Subtracting the numbers — 1 and 0 (possible values of

(JS = 15)) from 1 gives 2 and 1, respectively.

These tricks and techniques with numerical values for

conditions are not necessarily faster, because they often re

quire the use of multiplication, a slow operation. They may

also seem to be rather complicated. However, they can be

used to reduce excessive IF-THEN and GOTO statements,

which contribute to confusing program logic. It's up to you

whether you want to use these techniques in your own pro

grams, but at least you'll be able to recognize them in other

programs.

Summary

• The values true and false have corresponding numerical val

ues, — 1 and 0.

Chapter 1

• The statement PRINT A=5 will print a -1 if A equals 5, a 0

if A does not equal 5.

• In the statement PRINT A=5, the equal sign is used as a

relational operator. The variable A is not being assigned and

will keep its previous value.

• BASIC uses the numerical values in determining whether to

execute instructions after THEN in an IF-THEN statement.

• In the statement IF A=5 THEN PRINT "TRUE", BASIC will

execute instructions after THEN if the value of (A=5) is — 1,

and will skip to the next line if the value is 0.

• Actually, BASIC will execute instructions after THEN if the

part between IF and THEN is any nonzero value. The state

ment IF A THEN PRINT means "IF A is not zero THEN

PRINT" and will print a message if A has any value other

than 0.

• The statement IF A THEN PRINT is identical to IF A<>0

THEN PRINT. Whenever <>0 appears in a condition, it can

be removed to shorten the line without affecting the logic.

• One disadvantage in using IF-THEN statements is that two

lines cannot be combined when the first one contains such a

statement. To do so would affect the program's logic. How

ever, the fact that the values true and false have numerical

values can be used to get around this problem.

• The statement C=C+1 + 15*(C= 15) will increment the vari

able C and reset it to 1 if its new value would be 16. The end

result is that C will always have a value from 1 to 15. This

statement is comparable to C=C+ 1:IF C= 16 THEN C= l,

but is shorter and can be followed by more statements.

• When a GOTO statement is found on a line by itself, it can

usually be combined with the previous line.

• If a GOTO cannot be combined because the previous state

ment is an IF-THEN, the ON-GOTO statement can be used

instead. Each of the three following examples accomplishes

the same thing.

350 JS=PEEK(56320)AND15:IF JS=15 GOTO 350

360 GOTO 300

350 JS=PEEK(56320)AND15:ON (JS=15)+2 GOTO 350,300

350 JS=PEEK(56320)AND15:ON 1-(JS=15) GOTO 300,350

Chapter 1

• The number techniques introduced in this section are mainly

used to shorten a program. They do not necessarily make the

program any simpler.

Precision and Scientific Notation

Your Commodore 64 always performs mathematical calcula

tions with a high degree of accuracy. If it tries to tell you that

2 + 2 is not 4, something is wrong with your computer. But

there's a limit to how precise an answer can be. Commodore

64 BASIC uses a maximum of nine digits in representing num

bers. If an answer needs more than nine, the least significant

digits are dropped.

Here's an example.

PRINT 1234567 + 0.9876543

The answer should be 1234567.9876543, but that takes 14

digits. The most significant digits are the ones to the left, so

only the first 9 are used. BASIC responds with the answer

1234567.99. Notice that the ninth digit is rounded up because

the tenth digit would have been 7. Numbers are rounded up if

the missing digit is greater than or equal to 5; otherwise

they're rounded down.

Because BASIC can manage only nine digits, there are

some numbers that BASIC can only approximate. The fraction

1/7 is an example. The decimal representation of 1/7 contains

a sequence of digits which repeat forever.

1/7 = 0.142857142857142857...

But if you PRINT this fraction, you'll get only the first nine

digits, the last a 3, rounded up from ...28.

PRINT 1/7

.142857143

This inability to exactly represent some numbers doesn't

apply just to numbers with too many digits. The following

program looks simple enough, but it will not work as you

might expect.

10 FOR K=l TO 10 STEP 0.01

20 PRINT K

30 NEXT K

The program starts printing the numbers correctly (1,

1.01, 1.02, and so on), but after 1.22 things begin to get

Chapter 1

strange. The number 1.22999999 appears for 1.23. This contin

ues for the rest of the program. To see why, enter the follow

ing statement.

PRINT 1.01 - 1

You'll see .0100000002. The number 0.01 is another of

those values that BASIC cannot precisely represent. This can

lead to some really frustrating problems if you're not aware of

the limitations. For instance, enter this next line.

PRINT 1.01 - .01

BASIC prints 1. But the printed number may sometimes

be slightly different from the machine's internal representation

of the number. In the next example, the part after the THEN

will not be executed.

IF 1.01 - .01 = 1 THEN PRINT "YES"

Because of the problems in computing .01, 1.01 —.01 may

print as 1 but yet not exactly equal 1.

Sometimes you can use programming and a little

mathematics to get around these problems. The example that

stepped in 0.01 increments could be rewritten like this:

10 FOR K=100 TO 1000

20 PRINT K/100

30 NEXT K

Other problems may not be as easy to solve, and will re

quire more creative solutions. The IF-THEN statement above

needs to be rewritten so that it's something like this:

N=1.01 - .01 : IF INT(N*100)=100 THEN PRINT "YES"

One other possibility must be considered. If BASIC can

handle a maximum of only nine digits, what happens when it

comes across a number which has more than nine digits to

one side of the decimal? Can BASIC process numbers such as

1,234,567,890 (1.23456789 billion)? Yes, but it has to display

them using a form of representation known as scientific

notation.

PRINT 1234567890

1.23456789E+09

Any number can be represented as a number (the mantissa)

times 10 raised to a power (the exponent). The E means times

Chapter 1

10 to the ..., so 1.23456789E+09 means 1.23456789 times 10 to

the ninth power. This is commonly written as:

1.23456789 X 109

For practical purposes, E+09 means move the decimal

point nine places to the right to get the correct value. If

1.23456789 is adjusted, 1234567890 results. (Sometimes it's

necessary to add one or more zero digits to move the decimal

point completely.)

Scientific notation is convenient when representing num

bers with a lot of digits, especially those which contain several

zeros. The numbers 10000000000 and 1000000000 look very

much the same (especially without the normal comma nota

tion), but there's a difference of 9000000000 between them.

Representing the numbers as IE+ 10 and IE+ 09 eliminates

the need to count the zeros, and reduces the chance of error.

The use of scientific notation is not confined to the

displaying of numbers, as in the following:

PRINT 1E8,1E9

100000000 1E+09

You can also express numbers in scientific notation in re

sponse to INPUT statements, include them as values in DATA

statements, and use them in most other places where numbers

are used. The absolute maximum value that BASIC can repre

sent is 1.70141183E+38. If a number exceeds this limit,

BASIC will stop and print the OVERFLOW error.

Scientific notation works in the other direction as well.

Values less than 0.01 are always represented using scientific

notation.

PRINT 0.00001089

1.089E-05

The minus sign means that the decimal point should be

moved the designated number of places to the left. It does not

mean that the number is negative.

There is no underflow error. Numbers less than

2.93873588E-39 are converted to zero.

PRINT 3.14E-40

0

10

Chapter 1

Summary

• Commodore 64 BASIC uses a maximum of nine digits to

represent any number. If a number is made up of more than

that, the nine most significant digits (leftmost digits) are

used. The remaining digits are dropped.

• When digits have to be dropped, the nine-digit number is

rounded up or down (depending on the tenth digit). If the

tenth digit is 5 or more, the number is rounded up; other

wise, it's rounded down.

• Values need not have more than nine digits for the computer

to have trouble representing them. Examples showed how

the 64 has difficulty handling the number 0.01.

• The computer's internal representation of a number may be

slightly different from the printed form. The result of 1.01 —

.01 prints as 1, but is not equal to 1 in IF-THEN comparisons.

• Sometimes it's possible to rewrite a line or lines to reduce the

problems associated with precision.

• Scientific notation can be used to represent numbers with

more than nine digits to one side of the decimal point. Any

number can be represented as a number from 0 to 9 times 10

raised to a power. The number 1234567890 is represented as

1.23456789E + 09 in scientific notation. The 1.23456789 is

called the mantissa, the E means times 10 to the ..., and the

+09 is called the exponent.

• In practical terms, E+n, where n is a number, means that the

decimal point should be moved n places to the right, with

zeros added if necessary.

• Scientific notation makes it easier to read numbers with lots

of digits and reduces the chance of error.

• If a value exceeds 1.70141183E+38, BASIC will stop with an

OVERFLOW error.

• All numbers of magnitude less than 0.01 are represented in

scientific notation. The number 0.00123 becomes 1.23E-03,

with E—03 meaning that the decimal point should be moved

to the left three places.
• Numbers less than 2.93873588E-39 are converted to 0. No

error occurs when this happens.

Integer Variables

In All About the Commodore 64, Volume One, the concept of
type was introduced. The variable type helps describe what

11

Chapter 1

kind of information is being expressed by the variable. The

types described in Volume One were numbers and character

strings. The TYPE MISMATCH error occurred whenever these

were improperly mixed, as in LET A="CHRIS".

There's a third type of variable that's not often used. An

integer variable is denoted by a percent symbol (%) after the

variable name, just as a string variable is indicated by a dollar

sign ($). Integer variables are treated like other types of vari

ables, so they can be used with such statements as PRINT, IN

PUT, READ, and so on. The difference lies in their possible

values.

The numeric variables that have been used up until now

are also known as floating-point variables. They can have frac

tional values, which are written in decimal form with digits to

the right of the decimal. Integer variables cannot.

Integer numbers include the counting numbers (1, 2, 3,

and so on), their negative counterparts (—1, — 2, —3, ...), and

0. Fractional values cannot be represented by integers.

Integer variables can have integer values ranging from

—32768 to +32767. Values outside this range cause an IL

LEGAL QUANTITY error.

LET A%=5:PRINT A% 5

N%= -3:PRINT N% -3

Q%=100000 ILLEGAL QUANTITY

If you try to assign a decimal value to an integer variable,

the value is converted to an integer before it's assigned.

A%=5.5:PRINT A% 5

N%=6.9:PRINT N% 6

This conversion uses the same process as that used by the

integer function (INT(X)). The INT function takes a decimal

value and returns the largest integer that's less than or equal

to the argument (the value within parentheses). For positive

numbers, this has the effect of dropping all digits to the right

of the decimal point. But for negative numbers, it works a little

differently.

PRINT INT(-5) -5

PRINT INK-5.4) -6

In the first example, the argument is already an integer, so

no conversion is necessary. The second example returns —6

instead of —5, because —5 is actually larger than —5.4. You

can more easily see this on a number line, as shown by Figure

12

Chapter 1

1-1. Notice that the largest integer less than —5.4 is not —5,

but -6.

Figure 1*1. A Number Line

-7-6-5-4-3-2-1 01234567

* 1 LI I I I I I I I I I I I I *

I
-5.4

Here's another example:

A%= ~3 : PRINT A% -3

N%= -3.427 : PRINT N% -4

Integer and floating-point variables can be used together,

since the variable named A% is completely different from the

variable named A. Floating-point variable A does not change

when integer variable A% is assigned, and vice versa. Integer

variables can even take the values previously assigned to

floating-point variables, although the values are converted

into integer form. The process can be reversed as well. The

next few lines illustrate all these points. Notice that the last

line (IF N=N% THEN PRINT...) shows that N and N% are

not equal.

Q=3.14159 : PI%=Q : PRINT PI% 3

R%=32 : S=R% : PRINT S 32

N=2 : N%=3 : IF N=N% THEN PRINT "YES" (nothing printed)

The only exception to using integer and floating-point

variables together is that the former can't be used as counting

variables in FOR-NEXT loops. For some strange reason, Com

modore 64 BASIC stops and displays a SYNTAX ERROR if

you try to use an integer variable in this way.

FOR K%=1 TO 10 : REM WRONG

In most computer languages, integer variables are avail

able because they take less memory and can be processed

faster. This isn't true, however, of integer variables in Com

modore 64 BASIC. All math operations are computed using

floating-point numbers, so if an integer variable is used in a

math operation, it's first converted to floating point (the ma

chine's internal representation for integer and floating-point

numbers is different). Then the operation is performed, and

13

Chapter 1

the result converted back to integer form. Look at the follow

ing example; three conversions have to be done.

LET C%=A%+B%

1. Convert A% to floating point

2. Convert B% to floating point

Perform the operation

3. Convert result to integer

Conversions take time. This means that integer variables

actually compute slower than floating-point variables. Also,

because each floating-point and integer variable take up seven

bytes of free memory, using integer variables does not save

memory.

All of this leads to a very good question. If integer vari

ables have a limited range, cannot have decimal values, com

pute slower than floating-point variables, and take just as

much memory, when would you ever want to use them? The

answer is never, unless they're being used as an array. Each

entry in an integer array takes only two bytes, compared with

five bytes per entry in a floating-point array.

DIM A(100) 101 entries * 5 + 7-byte array overhead = 512

bytes

DIM A%(100) 101 entries * 2 + 7-byte array overhead = 209

bytes

If your program is using several very large arrays and free

memory is a concern, it may be worthwhile to use integer ar

rays. Or, if you want to use a certain variable name (such as

X), but the name is already in use for a floating-point variable,

you can still use the name with an integer variable (X%). With

these exceptions, you might as well not bother to use integer

variables.

Summary

• Numeric variables used up to now are more accurately called

floating-point variables.

• Type describes what kind of information is being conveyed

by a variable. The two types of variables used thus far have

been floating-point and string variables.

• Integer numbers include the counting numbers 1, 2, 3, ...,

their negative counterparts, and 0. A fraction cannot be ex

pressed by an integer.

14

Chapter 1

• Integer variables are a third type of variable. They're distin

guished from floating-point variables by a percent sign (%)

after their name.

• Integer variables can have integer values from —32768 to

+32767. If an integer variable is assigned a value outside

this range, the ILLEGAL QUANTITY error will occur.

• When an integer variable is assigned a decimal value, the

value is first converted to an integer using the same proce

dure as that used by the INT function. For positive numbers,

this has the effect of dropping all digits to the right of the

decimal point.

• Integer and floating-point variable names are completely

separate. N and N% are two different variables, and what

happens to one will not affect the other.

• Integer variables can be used wherever floating-point vari

ables can be used, except that they cannot be used as count

ing variables of FOR-NEXT loops. A SYNTAX ERROR would

result.

• Integer variables take just as much memory as floating-point

variables and actually compute slower.

• The only practical application of the integer variable type is

for an array, the one time when integers take less memory

than floating-point numbers. Each entry in an integer array

takes two bytes, as opposed to five bytes per entry in a

floating-point array.

Random Number Seeding and Sequencing

The random function was introduced in Volume One as a

means of adding a certain amount of unpredictability to a pro

gram. RND(O) returns a decimal number between 0 and 1, and

returns a different number each time it's called. By multiplying

the value by 10 and taking the integer, a random number

from 0 to 9 can be obtained. This is useful in such applications

as games. There are some applications of random numbers,

though, where you will not want to use RND(O). Although

this function returns numbers between 0 and 1, it will return

only selected values. After a number of calls, RND(O) will re

peat some values, yet not return others, no matter how many

times the function is used. The following program line graphi

cally demonstrates this.

10 Z=RND(0)*1000:POKE 55296+Z,15:POKE 1024+Z,160:G

OTO 10

15

Chapter 1

The plotting appears random at first, but it soon begins to

form a pattern of diagonal lines. Since not all of the screen is

covered, you can easily tell that the numbers generated by

RND(O) are not very dense. In other words, there are plenty of

values missing.

Fortunately, there's a solution to this. Change the argu

ment of the RND function from 0 to 1, clear the screen, and

run the program again. This time the plotting does not form

any discernable pattern, and if you let the program run long

enough, the whole screen is eventually filled.

Commodore 64 BASIC actually supports two kinds of ran

dom functions. If the argument is 0, the computer PEEKs some

constantly changing hardware locations to construct the ran

dom number. This would be acceptable, except that the con

tents of the hardware locations do not change enough. One is

a clock/timer that normally isn't even running!

Using the RND function with a nonzero argument cal

culates a value based on a repeating series. This process forms

a very dense set of numbers, yet it's not without flaws either.

RND(l) will return the same sequence of numbers every time

you turn the computer on. Try it by first turning your com

puter off and back on. Then enter this line:

PRINT RND(1);RND(1);RND(1)

Note the three values returned. Now turn the computer

off again, then back on, and retype the line. After pressing RE

TURN, you'll see the same three values as before.

Using arguments such as 8 or 1.5 in place of 1 doesn't

make any difference. The numbers may be dense, but they

will always occur in the same order. This certainly limits the

usefulness of the RND function for applications like games.

To get a dense set of numbers that will be different every

time you turn on the computer, you have to "seed" the ran

dom number generator. This is usually done at the beginning

of a program by calling the random function with a negative

argument. For every negative argument, a different sequence is

selected. For example, every time you enter the following line,

you'll get the same results.

N=RND(-1):PRINTRND(1);RND(1);RND(1)

Try changing the seed value to —2. Though a different set

of numbers will be printed, they'll still be the same each time.

You can imagine that the computer holds a very long sequence

16

Chapter 1

of numbers, and each seed starts the random function at a dif

ferent point in the sequence.

To get truly random numbers, you need to randomly seed

the random function. Sound confusing? It's not. Instead of

using a constant negative number for the seed value at the

beginning of the program, just use a changing value, such as:

100 N=RND(-TI)

Do this only once, when the program initializes, and then

use RND(l) to get the random numbers.

This should be the perfect solution. You get a dense set of

numbers, and the set is different every time. Random numbers

produced by this technique are suitable for both games and

statistical applications.

Summary

• The random function, RND, returns a random decimal num

ber between 0 and 1.

• When RND is called with an argument of 0, the value re

turned is based on a hardware timer. However, only a few of

the possible numbers are ever returned. In other words, the

numbers are not very dense.

• Calling RND with an argument greater than 0, such as 1,

makes the function return a value based on a repeating se

ries. Values returned by RND(l) are dense. The only problem

with RND(l) is that it returns values in the same order every

time the computer is turned on.

• The random number generator can be "seeded" by calling

RND with a negative argument. For each negative number,

or seed, the values returned by RND(l) start at a different

place in the series.

• To get truly random numbers (dense and different each time

the computer is turned on), the random number generator

should be seeded with a random value as part of a program's

initialization. Using RND(—TI) should be satisfactory.

17

Chapter 2

More Functions

Print Formatting Functions

The screen on the Commodore 64 is divided into 25 rows of

40 columns each. These rows are more specifically called phys

ical lines. Another type of row is known as a logical line. You

may have noticed while editing a line in BASIC, that when

the typing wraps around to the left edge of the screen, the

rows below scroll down. This makes room for typing on a sec

ond row. Together, the two rows form one logical line.

One logical line can be up to two physical lines long,

which is why BASIC lines on the 64 cannot exceed 80 charac

ters. If the typing wraps around to a third row, a new logical

line is used.

Logical lines control the cursor movement when the RE

TURN key is pressed. Hitting RETURN moves the cursor to

the beginning of the next logical line. This means that the

cursor may move down one or two physical lines. Normally,

the cursor just moves to the next row; if it's on the first row of

a two-row logical line, however, it skips the second and goes

to the first row of the next logical line.

Logical lines also affect screen scrolling. The screen may

scroll by one or two rows. The number of rows in the logical

line currently scrolling off the screen determines how far the

screen scrolls.

The POS function returns the current horizontal position

of the cursor within a logical line. POS indicates this position

with a column number from 0 to 79. Values 0-39 correspond

to the 40 columns of the first row, while those from 40 to 79

indicate that the cursor is on the second row of a logical line.

POS requires an argument. It's a dummy argument (it

doesn't affect the value returned) and is usually set to 0.

PRINT POS(0)

PRINT "GRAPHICS'' POS(0) "SOUND"

In the first example, BASIC printed a zero—that's because

the cursor moved to column 0 when the RETURN key was

pressed to enter the line. Eight was returned in the second ex

ample because the cursor was in column 8 after printing the

word GRAPHICS.

19

Chapter 2

Once in a while you'll find a situation in which POS may

come in handy, but generally it's a relatively useless function.

Two functions which can be used more often are TAB and

SPC. Actually, they are not true functions. They do not return

values, and they can be used only in PRINT statements. TAB

and SPC are used to change the position of the cursor. Here's

an example:

PRINT TAB(20) "HOWDY"

The only thing that was printed was the word HOWDY,

but its first letter was in column 20. TAB is like a special

instruction to the PRINT statement which makes the cursor

move to a certain column. Commas in PRINT statements

allow only very limited formatting of displayed information,

because you have no choice about where the first character

appears. With TAB, however, you can select your own col

umns. Program 2-1, "Parts," shows a simple example of how

you can use TAB to format a screen display.

Program 2-1. Parts

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

10 PRINT " PART" TAB(6) "NAME" TAB(16) " QUANTITY"

:rem 126

20 FOR K=l TO 3:READ PNrN$,Q :rem 231

30 PRINT PN TAB(6) N$ TAB(16) Q :rem 62

40 NEXT :rem 163

50 DATA 33#WING NUT,5,10,BOLT,3,47,1/4 SCREW,16

:rem 85

TAB works by comparing the number in parentheses with

the current position (the value returned by POS). If the cursor

has to be moved to the right, the necessary number of spaces

are printed. TAB cannot move the cursor to the left, which

would cause overwriting of something already on the screen.

In fact, if you try to use TAB(12) when the cursor is at column

20, the cursor won't move. You can see this for yourself by

entering this PRINT statement:

PRINT TAB(20) 6 TAB(12) 4

Another use of TAB is to center or right justify text lines.

These lines center each word printed.

10 READ S$:IP S$<>"END" THEN PRINT TAB(20-LEN(S$)/

2) S$:GOTO 10

20 DATA BITMAPPED,GRAPHICS,MUSIC,SYNTHESIS,SPRITE

{SPACE}ANIMATION,END

20

Chapter 2

By changing the expression for the TAB value from

20-LEN(S$)/2 to 39-LEN(S$) the words will be right jus

tified instead.

TAB is used to absolutely position the cursor. Regardless of

where the cursor is, TAB moves it to the requested column, as

long as it's not trying to move to the left. The SPC function

works a little differently. It moves the cursor the designated

number of spaces to the right from its current position. It al

lows relative positioning of the cursor. If the cursor is at col

umn 8, for instance, SPC(IO) moves it to column 18. If it's at

column 12, SPC(IO) moves it to column 22. This is useful

when you want to print several leading spaces. A statement

starting with PRINT SPC(6) is easier to read than PRINT

", where it can be hard to count the number of

spaces. SPC can also be used to print patterns, as the example

below illustrates.

10 FOR K=l TO 9:PRINT SPC(K) MID?("COMMODORE",K,1)

:NEXT K

Remember, TAB and SPC are not true functions, and can

be used only with the PRINT statement. That means, though

it would be handy, you cannot do something like this:

10 BL$=SPC(10) : REM WRONG

Summary

• A physical line is one of the 25 rows on the screen.

• A logical line can consist of one or two contiguous rows. A

logical line becomes two rows long when typing at the right

edge of the screen wraps around to the next row at the left

edge.

• BASIC program lines are one logical line long, which is why

they cannot be longer than 80 characters.

• When RETURN is pressed, the cursor moves to the begin

ning of the next logical line.

• Logical lines also affect screen scrolling.

• The POS function returns the current position (columns

0-79) of the cursor within a logical line. Columns 40-79 in

dicate the second row of a logical line. Unfortunately, POS

has few applications.

• TAB and SPC are special kinds of functions which can be

used only in a PRINT statement. They control cursor

21

Chapter 2

positioning, more like commas and semicolons in PRINT

statements than like true functions. TAB and SPC do not re

turn values.

• TAB advances the cursor to a designated column, as long as

this does not require moving the cursor leftward. TAB allows

absolute positioning of the cursor. Its applications include

columnar printing and the centering and right justification of

text.

• SPC moves the cursor to the right a designated number of

spaces. Thus, SPC allows relative positioning of the cursor.

SPC is used to print leading spaces and patterns.

Transcendental Functions

This section presents a group of functions that are used mainly

in mathematics-oriented applications.

The SQR function returns the square root of its argument.

The square root of number N is the number that, when mul

tiplied by itself, produces N. Thus, the square root of 9 is 3,

because 3*3 is 9; the square root of 16 is 4. The square root of

12 is somewhere between 3 and 4, but the decimal representa

tion for this number continues indefinitely. With nine digits

the value can be approximated as 3.46410162. Square roots of

negative numbers are undefined, so using a negative argument

with SQR causes an ILLEGAL QUANTITY error.

Finding the square root of a number is the same as raising

the number to the power of 1/2. Square roots can also be cal

culated by using the exponentiation operator—the up-arrow

key on your Commodore 64 (T)—with the value 0.5. That's

why both the following lines produce the same result.

PRINT SQR(12)

PRINT 12T.5

The only advantages to using SQR instead of the

exponentiation operator are that SQR is easier to read, and it

executes just a little faster.

22

Chapter 2

23

Chapter 2

9

"I:-£:£.,-":' .:. ■■.

EXP and LOG are two more functions based on expo

nents. EXP takes the natural number e, a constant equal to

2.71828183, and raises it to the power specified by the argu

ment. This power cannot exceed 88.0296919, or the OVER

FLOW error occurs. Arguments less than -88.0296919 return 0.

Like the square root of 12, e is an irrational number (it

cannot be written as a fraction) and can only be approximated.

The nine-digit approximation of e is 2.71828183, which is pro

duced by EXP(l). This means that EXP can also be done using

exponentiation. Both the following statements produce the

same result.

PRINT EXP(8)

PRINT ET8 (assuming E equals 2.71828183)

. Again, EXP is a little easier to work with than exponentia

tion, but in this case it's also much faster; it can be almost

twice as fast as raising e to a power.

The LOG function is the inverse of EXP. Again, both of

the next two statements return the same value, in this case 8.

PRINT LOG(EXP(8))

PRINT EXP(LOG(8))

Note that LOG computes natural logarithms, logarithms

to the base e, instead of the base 10 often found on pocket

24

Chapter 2

calculators. Also, due to the nature of logarithms, the argu

ment must be greater than zero, or the ILLEGAL QUANTITY

error occurs.

The remaining functions have to do with trigonometry.

SIN and COS are used to calculate the sine and cosine of

an angle specified in radians. Radians are often specified in

terms of the irrational number pi, written tt, which is approxi

mately equal to 3.14159265. Since this value is frequently

used, it's available as a special keyboard character. Type

SHIFT-up-arrow to get the tt symbol.

PRINT 7T

If you prefer working with degrees instead of radians, you can

convert one to the other. To convert n degrees to radians, mul

tiply n by x/180. To convert n radians to degrees, multiply n

by 180/x.

The SIN and COS functions take the argument in radians,

subtract any extra multiples of 2* tt (or 360 degrees), calculate

the sine or cosine value, and return a decimal number from

-1 to 1.

The TAN function calculates the tangent of an angle

given in radians. The tangent of an angle is equal to the sine

of the angle divided by the cosine. Thus, TAN is not really

necessary, but it is more convenient. However, because it is a

fraction with COS in the denominator, some restrictions must

be placed on TAN's argument. The function is undefined for

the angles x/2, 3* tt/2, and all equivalent angles. These an

gles have a cosine of zero, and since tangent is sine/cosine,

this would lead to division by zero (undefined in normal

mathematics). You'll see the DIVISION BY ZERO error when

TAN is given an illegal angle.

The last function is ATN (arctangent), the inverse of TAN.

ATN returns the angle in radians which has the given tangent

as the argument. Where TAN(if/4) is 1, ATN(l) is x/4, or

0.785398163. ATN will always return values from - tt /2 to

x/2.

Other trigonometric functions can be calculated using the

transcendental functions already described. See Appendix H of

the Commodore 64 User's Guide (the manual that came with

your computer) for a listing of these derived mathematical

functions.

25

Chapter 2

Summary

• The SQR function returns the square root of its argument.

The argument must be greater than or equal to zero, or an

ILLEGAL QUANTITY error occurs. The function is used in

stead of raising a number to the power 0.5 because it's easier

to read and executes slightly faster.

• The EXP function raises the natural number e, approximately

equal to 2.71828183, to the power indicated by its argument.

If the power is greater than 88.0296919, the OVERFLOW er

ror occurs. If the power is less than -88.0296919, EXP will

return 0. EXP is used instead of exponentiation because it's

easier to read and it executes significantly faster than raising

e to a power.

• The function LOG returns the natural logarithm, the log to

the base e, of its argument. The argument must be greater

than zero to prevent the ILLEGAL QUANTITY error.

• The * symbol can be used to represent the value 3.14159265,

an approximation of the mathematical constant pi.

• The SIN and COS functions return the sine and cosine,

respectively, of the angle specified (in radians) as the argu

ment. Extra multiples of 2* ir (360 degrees) are removed

from the angle. The value returned is a decimal number from

-1 to 1.

• It's possible to convert radians to degrees, and vice versa. To

convert n degrees to radians, multiply n by t /180. To con

vert n radians to degrees, multiply n by 180/ ir.

• The TAN function returns the tangent of the angle (expressed

in radians) given by the argument. TAN is not defined for

the angles ir /2, 3* v /2, and equivalent angles. Using any of

these causes the DIVISION BY ZERO error.

• The ATN function is used to calculate the arctangent (inverse

tangent). It returns the angle in radians which has the tan

gent specified as the argument. ATN will always return val

ues from — ir/2 to ir/2.

• Formulas can be used to obtain other trigonometric functions,

such as the remaining inverses and the hyperbolics.

User-Defined Functions with the DEF Statement

Sometimes when writing a program, you may find yourself

typing the same expression again and again. Consider a pro

gram that's working with dollar and cent values which has to

26

Chapter 2

round numbers to the nearest cent several times. The process

of rounding is done by the following expression:

INT(N*100+.5)/100

Given a number N, this formula will preserve all digits to

the left of the decimal point (dollars) and the first two digits to

the right of the decimal point (cents). The remaining digits will

be dropped because they represent a value less than one cent.

However, if what's dropped is half a cent or more, the number

is rounded up. Try the short program below to check that the

formula really does work.

10 INPUT N:PRINT INT(N*100+.5)/100

20 GOTO 10

The value 1.234 becomes 1.23, but 1.235 will become 1.24.

Other computers may have a rounding process included

in their BASIC. It's usually implemented in the form of a func

tion, so that rounding a number can be as easy as saying

PRINT ROUND(N). Since Commodore 64 BASIC has no

rounding function, the formula will have to be placed in a

program wherever a number has to be rounded. If rounding

was necessary in several parts of the program, this could take

a fair amount of typing. The formula is somewhat com

plicated, and every time you enter it, you increase the chance

of error. One solution is to use a subroutine instead, some

thing like the program segment which follows.

10 INPUT NrGOSUB 60:PRINT A

20 GOTO 10

60 A=INT(N*100+.5)/l00:RETURN

For every place where a number has to be rounded, the

statement GOSUB 60 can be used. This may be a little easier

to type, and the risk of mistyping the formula is reduced be

cause it's entered only once. But this method is still awkward

to use.

The ideal solution would be to add the rounding process

to BASIC as one of the standard functions. That's where the

DEF statement comes in. DEF lets you create your own func

tions, which include arguments and are called like any other

function. The availability of user-defined functions is one of

the best features of Commodore 64 BASIC.

The syntax of the DEF statement consists of several parts:

27

Chapter 2

The keyword DEF, the function name prefix FN, the function

name, parentheses containing a variable, an equal sign, and fi

nally an expression. The restrictions which apply to variable

names apply to function names (only the first two characters

are significant, the first character must be alphabetic, and the

remaining characters are optional and must be alphanumeric).

The expression should be defined in terms of the variable in

the parentheses. This is rather complicated, so here's an

example.

10 DEF FNR(N) =INT(N*100+.5)/l00:REM DEFINES FUNCTI

ON 'R'

To call the newly defined function, the function name pre

fix FN should be followed by the function name R, with

parentheses containing an argument.

20 INPUT N:PRINT FNR(N):GOTO 20:REM CALLS FUNCTION

•R1

When FNR(N) is executed, the value of argument N is

substituted for every N in the definition. PRINT FNR(3) means

PRINT INT(3*100+ .5)/100. When you run the two-line pro

gram (lines 10 and 20 above), it gives the same results as the

previous demonstrations. But the defined function is much

more convenient.

There are several interesting things concerning the vari

able used in the function definition which you should know.

First of all, the variable in the function call does not have to

match the variable in the function definition. Line 20 could

have been written as:

20 INPUT Q:PRINT FNR(Q):GOTO 20

You don't even have to use a variable. Make sure the two-line

program from above (with either version of line 20) is loaded

and run, hit the RUN/STOP-RESTORE key combination, then

type this line in immediate mode (without a line number).

PRINT FNR(5.118)

You'll see 5.12 returned as the result.

The purpose of the variable in the definition is to show

the relationship between the argument and the expression.

The statement DEF FNR(N)=INT(N*100+.5)/100 really

28

Chapter 2

means define a function R which will take the argument, multiply

it by 100, add 0.5, take the integer portion, divide by 100, and re

turn the result as the value of the function. The variable N has

nothing to do with the definition, other than to show where

the argument is in the expression. This is necessary in case

more than one variable name appears.

10 DEF FNR(N)=INT(N*T+.5)/T

20 T=100

30 INPUT N:PRINT FNR(N):GOTO 30

The definition uses variable T, which has the value 100,

to make the function execute a little faster. When executing

function R, BASIC knows that the argument should be sub

stituted for every N in the definition, because N, not T, ap

pears as the argument.

Using a variable in a DEF statement, such as N, is a very

unusual application. Variables are not used like this in any

other aspect of BASIC. To illustrate the fact that N is indepen

dent of the defined function, here are two things you should

know:

1. The value of N is not affected by the definition or call of a

function defined in terms of N.

2. The value of N has no effect on the definition or call of a

function defined in terms of N.

To demonstrate the first point, take a look at the next

short routine. It shows how the value of N is preserved

through a function definition and call.

10 N=193 : REM ARBITRARY CHOICE

20 DEF FNR(N)=INT(N*100+.5)/l00

30 PRINT FNR(2.639)

40 PRINT N : REM WILL PRINT 193

To illustrate the second point, just try different values for

N in line 10. You'll see that function R always returns the

same value for the argument 2.639, regardless of the value of N.

You can even define a function that doesn't use its argu

ment. This line defines function G which returns a random

integer from 1 to 10.

10 DEF FNG(X)=INT(RND(1)*10)+1

The argument, indicated by X, is not used in the

29

Chapter 2

expression. This means that whenever function G is called, the

argument will not have any effect on the value returned by

the function.

You can go further and use a dummy argument, such as

0, just to satisfy the function's syntax.

20 PRINT FNG(0)

Another possibility is to use two arguments in a function.

Since the DEF statement syntax supports only one, variables

will have to be used to pass the two values. The defined func

tion in the following program ignores the argument from the

function call and accepts the variables A and B instead. The

function is named MN because it is a minimum function; it re

turns the smaller of the two arguments.

10 DEF FNMN(N)=-A*(A<B)-B*(A>=B)

20 A=3:B=4

30 PRINT FNMN(0)

When you run this, the number 3 prints. Change A so that it's

equal to or greater than B, and the number 4 will print

instead.

A=5:PRINT FNMN(O)

This program demonstrates the definition for a maximum

function, one that returns the larger of the two arguments. No

tice the three values that display. In each, the larger argument

appears.

10 DEF FNMX(N)=-A*(A>B)-B*(A<=B)

20 A=3:B=4:PRINT FNMX(0)

30 A=5:PRINT FNMX(0)

40 B=-7:PRINT FNMX(0)

As you can see, using function calls can prevent repeated

typings of an expression.

One application of user-defined functions is to calculate

low and high bytes of memory addresses. A common method

of storing data, from note information for a song to a sprite

shape definition, is to place a sequence of bytes in memory

locations. Whatever the information is, its first location is the

address of the data. Locations can range from 0 to 65535; so

can addresses.

This, however, presents a problem—there will be many

30

Chapter 2

times when you'll have to store an address in a memory loca

tion. Locations hold values (bytes) which have a range only of

0-255. Since there's no way to convert an address (0-65535)

into a byte (0-255), it's necessary to express the address in the

form of two bytes. The high byte indicates the number of mul

tiples of 256, and the low byte specifies the remainder. All

memory locations can be expressed with this two-byte format.

The table below shows some examples.

Address

0

1

2

254

255

256

257

511

512

513

1024

49152

49487

65535

Hi

0

0

0

0

0

1

1

1

2

2

4

192

193

255

Lo

0

1

2

254

255

0

1

255

0

1

0

0

79

255

To break any address into its two equivalent bytes, two func

tions are needed.

10 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*INT(N/25

6)

20 INPUT A:PRINT FNH(A);FNL(A):GOTO 20

Function H calculates the high byte and function L calculates

the low byte. Check the values in the chart by running the

program, and then enter a few of your own.

You'll find these two functions used quite often in pro

grams in other parts of this book. Usually the low and high

bytes will be POKEd into two consecutive memory locations,

such as in:

POKE 251,FNL(BA):POKE 252,FNH(BA)

By convention, the low byte is always POKEd into the

first location, and the high byte into the second. This format is

important to remember.

A third function used in later programs is one that re

constructs an address stored in low byte/high byte form.

31

Chapter 2

10 DEF FNDP(A)=PEEK(A)+256*PEEK(A+1)

The "double PEEK" function PEEKs the two locations and

returns the address they contain. If you type in and run the

line above, then enter PRINT FNDP(n), where n is the low

byte location, the function will calculate the address and dis

play it.

You may have noticed that part of the definition for func

tion L is the same as that for function H. Can one defined

function call another? Certainly. Take a look at this line.

10 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*FNH(N)

The only thing you don't want a function definition to do

is call itself. BASIC won't know how to deal with that and in

dicates its confusion by printing the OUT OF MEMORY error

if the function is called.

10 DEF FNB(X)=3+FNB(X) : REM WRONG

If there are any SYNTAX ERRORs in the expression for

the function definition, they won't be detected until the func

tion is actually called. It's also possible for an error to occur

within a defined function, such as ILLEGAL QUANTITY, DI

VISION BY ZERO, or OVERFLOW. In all these cases, when

BASIC stops and prints the error, the line number indicated is

the line of the function call, not the definition.

Another error associated with user-defined functions is

UNDEF'D FUNCTION. This happens whenever a program

tries to call a function not yet defined. The most common

causes are either forgetting to define the function or using dif

ferent names for the function definition and call.

Once a function has been defined, it doesn't have to keep

that definition. If a function name is already in use, but placed

in another DEF statement, the old definition will be replaced

with the new. This also means that it's okay for the same DEF

statement to be executed more than once. No error will occur.

Defined functions are erased by the CLR statement.

The argument in a DEF statement must be a floating-point

variable. Using a string variable or an integer variable leads to

a SYNTAX ERROR.

Finally, like the GET and INPUT statements, the DEF

statement can be executed only in a program. Attempting to

define a function in the immediate mode only causes the

ILLEGAL DIRECT error.

32

Chapter 2

Summary

• Sometimes you'll find yourself entering the same expression

again and again. Often the expression performs some process

on a value. Repeatedly typing the same expression should be

avoided, not only to eliminate extra work, but also to lessen

the chance of error.

• The ideal way to handle such an expression is to implement

it as a function. The value used by the expression could be

the argument, and the number produced by the expression

could be the value returned by the function.

• One of the best features of Commodore 64 BASIC is that it

lets you create new functions through the DEF statement.

Functions defined with DEF behave just like standard BASIC

functions. They have a name, take an argument, and return a

value.

• The syntax for the DEF statement is: DEF, the function

name prefix FN, the function name, parentheses containing a

floating-point variable for an argument, an equal sign, and

an expression.

• Function names follow the same syntax rules as variable and

array names. The first character must be alphabetic and the

remaining characters, which are optional, must be alpha

numeric. Only the first two characters are significant.

• The variable in parentheses is called the argument variable.

The expression is defined in terms of this argument variable.

Every occurrence of the argument variable name in the ex

pression is used to represent the value passed as the

argument.

• The argument variable is used only as a place holder, to

show the relationship of the argument to the expression. Any

variable name can be used, even one that does not appear

elsewhere in the program.

• The DEF statement can be used only in program mode.

• To call a defined function, use the prefix FN followed by the

function name, then parentheses containing an argument that

is passed to the function.

• When the function is called, BASIC refers to the expression

in the definition and substitutes the argument passed for ev

ery occurrence of the argument variable. BASIC then eval

uates the expression and returns the result as the function

value.

33

Chapter 2

• The value of the variable used to represent the argument is

not changed when DEF is executed or when the function is

called; the definition and call of a function are not affected

by the value of the variable.

• The argument of a call to a defined function can be a num

ber, a variable, or an expression. It does not have to be a

variable matching the argument variable in the correspond

ing DEF statement.

• The expression in the DEF statement does not have to con

tain the variable for the argument. The function can ignore

the argument, and the argument will have no effect on the

value returned. It will be a dummy argument.

• To pass more than one argument to a defined function, vari

ables have to be used. A function can ignore the normal

argument and return a value based on one or more variables.

An example here was a minimum function which took two

arguments and returned the lesser value. The definition for

this function expected the two arguments to always be in the

variables A and B.

• The expression for a definition can contain other variables,

functions, or even other defined functions.

• The only thing that a function definition may not contain is a

call to itself. That is a form of recursion, which BASIC cannot

handle, and is reflected by an OUT OF MEMORY error.

• When a call is made to a function that has not yet been de

fined, the UNDEF'D FUNCTION error occurs. Other errors,

such as SYNTAX and ILLEGAL QUANTITY, can also occur

while a function is being called. Whenever such an error oc

curs, the line number displayed is the line of the call, not of

the definition.

• A function can be redefined without an error. This means

that the definition associated with a function name can be

changed while the program is running, or the same DEF

statement can be executed more than once.

• All defined functions are erased when CLR is performed.

• The first memory location for a sequence of bytes is called

the address of the data. An address can range from 0 to

65535. An address can be expressed in a two-byte format,

each byte in the range 0-255. The high byte indicates mul

tiples of 256, the low byte the remainder, of the address.

• Being able to express an address in this form makes it pos

sible to POKE the address into memory locations.

34

Chapter 2

• When the low and high bytes of an address are POKEd into

memory locations, two very important rules must be fol

lowed: First, the locations must be contiguous. Second, the

low byte is always POKEd into the first location, and the

high byte is always POKEd into the second location.

• An address can be reconstructed after it has been broken

down into low and high bytes and POKEd into locations. To

get the original value, PEEK the second location, multiply it

by 256, and add the result to the value found in the first

location.

• A common application of defined functions is to calculate

low and high bytes, and to reconstruct addresses. In this

book, functions L and H are always used to take an address

and return the low and high byte, respectively. Function DP

will always take a location number, PEEK the location and

the one that follows, and return a reconstructed address.

35

Chapter 3

File Input/Output

Introduction to I/O

A computer is a communications device—it moves information

from one place to another. The most common example is

when the computer accepts information from a user through

the keyboard, and presents information by displaying it on a

screen. This process of communicating is referred to as

input/output, and is often abbreviated as I/O.

The keyboard and screen are not the only parts of a com

puter system that can be involved in input/output. Other

peripherals, such as a printer, tape recorder, disk drive, or

modem, can also be used to transfer information. With a

printer, you can get a permanent copy of a program listing or

program results on paper. The Datassette recorder and the

disk drive can be used to load and save programs and other

kinds of information. By using a modem and a telephone, you

can connect your computer to other similarly equipped

computers.

Collectively, the keyboard, screen, printer, Datassette, disk

drive, and modem are called devices. The transfer of infor

mation takes place between the computer and one of these de

vices. An important aspect of this information exchange is the

direction in which the information is traveling. The direction

describes whether information is being sent or being received,

and is always described from the point of view of the com

puter. If the computer is receiving information from a device,

the term input is used. When the computer is sending infor

mation to a device, it's termed output. Sometimes the terms

reading and writing are used to mean receiving and sending.

With some devices, only one direction is possible. For ex

ample, the keyboard can be used only to input information.

The keyboard is not capable of displaying information, and it

would be ridiculous to try to make the computer send infor

mation to the keyboard. On the other hand, the printer is an

output-only device. Information cannot be entered into the

computer through the printer. Devices such as the Datassette,

disk drive, and modem, however, support both input and

output.

The purpose of this chapter is to show you how BASIC

can be used to make the computer communicate with other

37

Chapter 3

devices. BASIC'S input statements are GET and INPUT, and

its output statement is PRINT. With a few modifications, these

same statements can be used with all the devices, not just the

keyboard and screen. The next section introduces a new way

to access the keyboard and screen, while the later sections

show how these methods can be applied to the other devices.

Summary

• The process of the computer communicating is called

input/output, abbreviated I/O. A typical example is when the

computer receives information from the keyboard and trans

mits information to the screen.

• Those parts of the computer system which can be used for

input or output—the keyboard, screen, printer, Datassette,

disk drive, and modem—are called devices. The transfer of

information takes place between the computer and a device.

• The direction of the transfer is described from the point of

view of the computer. When the computer accepts infor

mation from a device, the term input is used. Output applies

to information sent from the computer to a device.

• Some devices are capable of communicating in only one

direction. The keyboard can be used only to input infor

mation, for instance, and the printer can be used only to out

put information. Other devices, including the Datassette, disk

drive, and modem, can communicate in both directions.

• The rest of this chapter will show how to use variations of

GET, INPUT, and PRINT to communicate with all devices,

not just the keyboard and screen.

The OPEN and CLOSE Statements

To formally initiate communication with a device, you must

create a file which is used for the actual input/output. Creat

ing a file informs the computer that I/O is going to be per

formed. The file then acts as a sort of intermediary:

Information to be sent to the device is first sent to the file;

information coming from the device is first brought into the

file to be retrieved by BASIC. Like a program, a file is more of

a concept than a tangible reality.

For now, all that matters is that you realize a file is nec

essary in order to communicate with a device, and that the

communication is done through the file. The details of how a

38

Chapter 3

file works will become clearer as you explore its function and

use.

A file is created by the OPEN statement, which has the

following syntax:

OPEN file number, device number, command number, filename

The file number, sometimes also called the logical file number,

can range from 1 to 255. Numbers greater than 127 may have

special significance and normally should not be used. The ac

tual value is chosen by the programmer, but the most com

mon is 1. The file number will later be used by the GET,

INPUT, and PRINT statements.

Since it's possible for several devices to be active at the

same time, the file number is needed to distinguish one cur

rently active file from another. For example, a program could

print a prompt on the screen, wait for a response on the key

board, print a status message on the printer, and read in some

information from the disk. For each device that's used, a new

file must be created with a different file number. In the ex

ample above, the screen might have been opened as file 1, the

keyboard as file 2, the printer as file 3, and the disk as file 4.

The device number is needed to specify which device is

associated with the file. Each device is identified by its own

number.

Number

0

1

2

3

4

5,6,7

8

Device

Keyboard

Datassette

RS-232 (modem)

Screen

Printer

Other devices

Disk drive

As long as the file is open, the device indicated by the device

number will correspond with the file. All references to the file

will be directed to the specified device.

The command number is also called the secondary ad

dress. It's not needed when using the keyboard or screen, and

will be discussed in a later section.

The filename is needed when working with devices such

as tape or disk drive. Like the command number, the filename

will be dealt with later.

39

Chapter 3

This leaves us with the simplest form of the OPEN

statement:

OPEN file number, device number

Here's an example of how the statement would look in a

program.

10 open 1,0

This creates a file, designated as file 1, which uses device 0,

the keyboard. To input information from file 1, the INPUT

statement can now be used. However, since there might be

several files open, to various devices, the computer will need

to know from which file the input is expected. That's why the

file number must be included as part of the INPUT statement,

as shown by the next line.

INPUT# file number, variable list

In our example program, the INPUT statement would look

like:

20 INPUT#1,N

The # symbol is considered a part of the keyword, so no space

is allowed between the word INPUT and the symbol. A

comma must be used after the file number. Using a semicolon

causes a SYNTAX ERROR.

Add these two lines to lines 10 and 20 above, and run the

short program to see how this special form of INPUT works.

30 PRINT

40 PRINT "YOU TYPED" N

Notice that there's no question mark printed as a prompt.

The cursor just blinks, waiting for you to enter a number.

When you type a number and press RETURN, the program

echoes it back, as you'd expect. Now run it again, but this time

enter some letters instead of a number. Instead of getting the

REDO FROM START message, the program stops with a FILE

DATA error. If you run the program once more and type two

numbers separated by a comma, you'll not get the EXTRA IG

NORED message—instead, just the first number appears.

Also, if you examine the syntax for the new INPUT, you'll dis

cover that no optional prompt message is allowed. As you can

40

Chapter 3

see, INPUT used with a file is different from the INPUT with

which you're already familiar.

The explanation of these differences is that the plain IN

PUT is a special form of INPUT#. Because INPUT is always

used with the keyboard, features like prompt messages and er

ror handling are helpful. However, since INPUT# may be

used to fetch information from a device other than the key

board, such as a data file on tape, features like prompt mes

sages would not be appropriate or even desirable.

Let's try using the screen for output. Erase the old pro

gram by typing NEW, and enter this one.

10 OPEN 1,3 : REM 3 IS FOR SCREEN

20 PRINT#1,34

30 PRINT#1,"HAPPY BIRTHDAY"

40 PRINT#1,64,46

The # symbol is a part of the keyword, so this is one in

stance where the abbreviation for PRINT (?) cannot be used—

you must type the full word PRINT#. As with INPUT#, a

comma is needed after the file number. This first comma does

not affect spacing. Run the program to see for yourself.

There's no difference between using PRINT and PRINT#

when the file has been opened to the screen. If a program is

going to be printing information only to this device, there's no

sense in using PRINT# when the normal PRINT works just as

well. The advantage in using the file method is that by chang

ing the device number in the OPEN statement, all printing

will be directed to a different device. By simply changing the 3

in the OPEN statement to 4, the messages will be printed on

the printer instead of the screen (assuming a printer is con

nected). Use of the printer is discussed in greater detail in the

next section.

Now let's consider using two open files at the same time.

The next program uses file 1 for keyboard input, and file 2 for

screen output.

10 OPEN 1,0 : REM KEYBOARD

20 OPEN 2,3 : REM SCREEN

30 PRINT#2,"WHAT IS YOUR NAME?";

40 INPUT*1,N$

50 PRINT#2

60 FOR K=l TO 10

70 PRINT#2,N$

80 NEXT K

41

Chapter 3

Because two files are open simultaneously, different file

numbers must be used. If the second OPEN statement also

used file 1, a FILE OPEN error would occur. Use this new line

20 with the program you just ran.

20 OPEN 1,3 : REM SCREEN

The error indicates that file 1 is already in use. A number

(such as 1) cannot be used in another OPEN statement until

the file currently using that number is finished with all

input/output. At that time, the file should be closed with the

CLOSE statement, which has a very simple syntax.

CLOSE file number

The CLOSE statement formally terminates an

input/output session with a device. The file created by the

earlier OPEN no longer exists after CLOSE is executed, and

the file number is free to use in opening another file. The

following program shows how CLOSE is used.

10 OPEN 1,3 : REM SCREEN

20 PRINT#1,"WHAT IS YOUR NAME?";

30 CLOSE 1

40 OPEN 1,0 : REM KEYBOARD

50 INPUT*1,N$

60 CLOSE 1

70 OPEN 1,3 : REM SCREEN

80 PRINT#1

90 FOR K=l TO 10:PRINT#1,N$:NEXT K

If you run this, you'll not see a FILE OPEN error. That's

because the CLOSE statement closed file 1 after it was used.

At this point you may be wondering why it's even nec

essary to bother with a file at all. Instead of a file number after

PRINT* and INPUT*, why not just use the device number?

The answer lies in the fact that with some devices, other infor

mation besides a device number is needed. Input/output with

the disk or cassette requires that a filename be specified.

Entering the filename in an OPEN statement once, and then

using the corresponding file number in each subsequent

PRINT* or INPUT* statement is a lot easier than typing the

filename every time those statements are used.

Another reason is that some devices (such as the disk

drive) permit more than one file to be open at the same time.

The computer could input information from two different disk

42

Chapter 3

files. Since the device number for both these files would be 8,

just using a device number in an INPUT statement would not

be enough—the computer couldn't tell them apart. File struc

ture using OPEN and CLOSE provides an organized means of

communicating with all types of devices, and has proven to be

a good method for general input/output.

There are a few other errors which can appear when

using file input/output. You've already seen the FILE OPEN

error when you tried to open an already opened file. The FILE

NOT OPEN error occurs when you try to access a file that has

not been opened. You'll see this error when you run this next

program.

10 OPEN 1,3

20 PRINT#3 : REM FILE 3 NOT OPENED YET

The NOT OUTPUT FILE error happens when an attempt

is made to output information to a device which can only

handle input, such as the keyboard. Likewise, the NOT INPUT

FILE error occurs when a program requests input from a de

vice which is not capable of outputting information.

These kinds of errors can occur only when there is some

thing wrong with a program's logic. They should not happen

when the normal OPEN and CLOSE procedure is followed.

The only two errors which denote some other type of problem

are FILE DATA and DEVICE NOT PRESENT. The FILE DATA

error (described as BAD DATA in Commodore literature) oc

curs when INPUT# is expecting a numeric value, but a string

value is received instead. In some cases it's best to always use

string variables with INPUT#, and the VAL function to deter

mine if the value was a number. This prevents the program

from crashing due to the FILE DATA error.

A DEVICE NOT PRESENT error appears when either the

device is not connected to the computer or it's not turned on.

A program has no way of preventing this type of error, so you

just have to make sure that all peripherals are properly

hooked up and have power before running a program that

may use them.

A few more comments should be made about the CLOSE

statement. It's good practice for a program to use CLOSE

when it's finished sending or receiving information. This pro

motes good style and frees up a file for use later in the

43

Chapter 3

program. When using tape or disk files, it's absolutely nec

essary to use CLOSE to terminate I/O.

A CLOSE of all files is performed as part of a CLR. Since

CLR is part of the RUN, NEW, and LOAD commands, and

also happens automatically when a program line is changed,

any of these actions will close all open files.

Summary

• The OPEN statement is used to create a file through which

input/output will be done. A file is the programming link

between the computer and a device.

• The full syntax for the OPEN statement is the keyword

OPEN, a file number, a comma, a device number, another

comma, a command number, one more comma, and then a

filename.

• The file number, also called the logical file number, is used to

distinguish one active file from another. It's necessary be

cause there may be several different files open at the same

time.

• The file number is chosen by the programmer and may range

from 1 to 255. File numbers greater than 127 are reserved for

special purposes. File numbering usually starts at 1.

• The file number will later be used in the PRINT#, GET#,

and INPUT# statements.

• The device number is used to identify the device associated

with a file.

• A file can use only one device.

• The command number, also called the secondary address, and

the filename are optional, and are covered in a later section.

• To make the INPUT statement read from a file instead of the

keyboard, use INPUT#, the file number, a comma, and then

a variable list, as in INPUT#1,N. No space is allowed be

tween INPUT and the # symbol.

• The INPUT statement is actually a special form of INPUT#

which is always set for keyboard input.

• Features like REDO FROM START and EXTRA IGNORED

warning messages are not available with INPUT#. If IN

PUT* is expecting a numeric variable and gets characters,

BASIC stops with a FILE DATA error. There's no warning if

extra information is available. Also, INPUT* does not sup

port an optional prompt string.

44

Chapter 3

• These features are useful only when input is coming from

the keyboard. Since INPUT* may get data from another de

vice, it does not support these features.

• To make PRINT send output to a device other than the

screen, use PRINT* followed by a file number, a comma,

and then the information that is to be sent. No space is al

lowed between PRINT and #, and the ? abbreviation cannot

be used.

• PRINT* to a file which has been opened to the screen is no

different from using PRINT.

• Attempting to communicate with a file that's not been cre

ated by an OPEN causes the FILE NOT OPEN error.

Attempting to open a file using a file number that is already

in use causes the FILE OPEN error.

• When the computer is finished communicating with a device

and the file is no longer needed, use the CLOSE statement to

terminate the file. The syntax for this statement is the

keyword CLOSE, followed by the file number.

• Once a file has been closed, it can be opened again for use

with a different device.

• All files are automatically closed as part of CLR.

• The NOT OUTPUT FILE error occurs when you try to use

PRINT* with a device that cannot handle output, such as the

keyboard. The NOT INPUT FILE error occurs when you try

to use INPUT* with a device that's not capable of generating

input, such as the printer.

• The DEVICE NOT PRESENT error occurs when the com

puter tries to communicate with a peripheral that's either not

hooked up or not turned on.

The Printer and the CMD Statement

A printer is an important part of a complete computer system

because it can give you a permanent copy of information.

Sending program output to a printer is as easy as using two

statements.

10 OPEN 1,4 ; REM PRINTER

20 PRINT#1,"MUSIC FILE LISTING"

All information being output by PRINT*1 will be sent to

the printer. Of course, just plain PRINT will still print to the

screen.

45

Chapter 3

10 PRINT "TURN ON THE PRINTER"

20 PRINT "AND HIT ANY KEY"

30 GET K$:IF K$="" GOTO 30

40 OPEN 1,4 : REM PRINTER

50 PRINT#1,"MUSIC FILE LISTING"

60 PRINT "PRINTER IS WORKING"

You can also use a variable for the device number in the

OPEN statement and let the person running the program de

cide where the information will be sent. This technique is

demonstrated by the next program.

10 INPUT "OUTPUT DEVICE NUMBER";DN

20 OPEN 1,DN

30 PRINT#1,"MUSIC FILE LISTING"

The program user could enter either 4 for printer output

or 3 for the screen. Using the OPEN statement like this means

that you don't have to worry about where the printing will be

sent. You can write the program just like any other, and as

long as you use PRINT# wherever you would normally use

PRINT, it will have the ability to send output to the printer,

screen, or any other device.

There are just a few minor differences between printing

on the screen and printing on paper. One obvious difference is

that the printer will not know what to do with special CHR$

codes which move the cursor, change the current character

color, or clear the screen. Printers usually do not have

backspacing capability and cannot erase anything that's al

ready been printed.

A more subtle difference has to do with the print format

ting functions, POS and TAB. Both of these depend on the

current location of the screen cursor. The POS function returns

that value, and TAB uses it to determine how many spaces the

cursor should be moved to the right. Since the screen cursor

does not move when information is sent to the printer, these

functions will not work correctly with printer output. This is

not a major inconvenience, though, because the SPC function

will still work and can be used to simulate TAB. The comma

used for far spacing and printing in columns will also work

differently for printer output.

The combination of OPEN and PRINT# can be very

powerful. Nevertheless, there are some instances when it

would be nice to send output to the printer which is not

46

Chapter 3

program-generated. For example, it would be handy to be able

to send a program listing to the printer. A program is much

easier to read and debug when you can see it on paper, rather

than just a screen at a time. For situations like this, the CMD

statement is available.

CMD file number

The CMD statement causes all output normally sent to

the screen to be sent to the designated file. This includes out

put from normal PRINT statements, INPUT prompt messages,

disk and tape SEARCHING and LOADING messages, pro

gram listings, and even the READY, prompt. The file must, of

course, be open when CMD is executed, or a FILE NOT OPEN

error will occur. By using CMD, you can list a program on the

printer by entering only three lines in immediate mode.

OPEN 1,4

CMD1

LIST

This could also be used to print a disk directory. (Remem

ber to load the directory before opening the file because LOAD

closes all open files.) Any printing that defaults to the screen

will now be sent to the file.

The syntax for CMD allows an optional comma and string

to be placed after the file number. The string will be the first

thing sent to the file when the CMD statement is executed.

This is useful for such things as titling program listings.

LOAD "POEM"

OPEN 1,4:CMD 1/TOEM":LIST

CMD does not have to be used with just the printer. It

can be used to send normal screen output to any device, such

as the modem. Remember, CMD sends the output to a file; the

device to which the information is sent depends on how the

file was opened.

CMD stays in effect until the file is closed or an error oc

curs, in which case printing reverts back to the screen.

It's recommended that you send an empty print line before

closing a CMD file, to help the computer terminate the I/O.

OPEN 1,4:CMD 1:REM START CMD

PRINT#1:CLOSE 1:REM STOP CMD

When CMD is used in a program, in effect it changes

every PRINT into a PRINT#. This is useful when you have a

47

Chapter 3

program which uses PRINT statements, but you want the out

put to be sent to a device different from the screen.

You might wonder why PRINT# has to be used at all if

CMD is available. As it turns out, there are some reasons why

it's better to use PRINT#. The major reason applies when you

want your program to communicate with more than one de

vice. If you use CMD to send output to one device and then

switch to another, output may in some cases end up going to

both. Also, CMD can sometimes turn itself off even when the

file has not been closed.

PRINT# is more reliable and is usually the better choice.

CMD is best used in the immediate mode when you want to

do something that can't be done with PRINT#, such as listing

a program to the printer. When using CMD in a program,

make sure the program is sending output to only one device.

The remaining topics concerning the printer have to do

with special modes of operation.

The file number in OPEN should normally be in the

range 1-127. File numbers greater than 127 have a special

meaning when used with the printer, because they instruct the

computer to send a linefeed character after every carriage re

turn. The linefeed character makes the printer advance the pa

per one line. Most printers do this automatically when they

receive a carriage return. A printer which does not have this

feature will keep printing on the same line. If your printer

doesn't have the automatic linefeed feature, or if it does and

you want the printer to use double-spacing, use a file number

from 128 to 255.

If you're using a Commodore printer, the third parameter

of the OPEN statement, the command number, can be used to

select a character set. When no command is specified, the

printer assumes that the command number is 0, which means

that the uppercase and graphics character set will be used.

OPEN 1,4 : REM UPPERCASE/GRAPHICS

or

OPEN 1,4,0 : REM UPPERCASE/GRAPHICS

If you want the printer to use the uppercase/lowercase

set, use 7 as the command number.

OPEN 1,4,7 : REM UPPERCASE/LOWERCASE

Remember, this applies only to Commodore printers.

48

Chapter 3

Some printers support special operations modes. These

may allow double-width printing, underlining, bold print, dif

ferent type styles, dot graphics, and other features. They're in

voked after a file has been opened by sending control codes to

it. Control codes are sent as ASCII characters. For example,

the statement PRINT#1,CHR$(14) makes a Commodore

printer select the double-width mode, which means that

characters are expanded to twice their normal width. Printing

CHR$(15) turns the mode off. Other printers may use different

numbers, so consult your manual for more information.

Sometimes printers require an escape character, abbre

viated ESC, to be sent before the control code. The ESC code

is character 27, so you would have to use PRINT#1,CHR$(27);

CHR$(control code) to select the desired mode.

Summary

• To send program output to the printer, open a file to device 4

and use PRINT#.

• When sending output to the printer, the formatting functions

POS and TAB, and comma spacing, will not work correctly.

• To send computer-generated output (such as a program list

ing) to the printer, open a file to device 4 and use the CMD

statement. The statement's syntax is the keyword CMD, the

file number, and an optional comma and string.

• The file must already be open, or the FILE NOT OPEN error

will occur.

• If a string is included with the CMD statement, it will be sent

to the file. A typical use of this feature is to title a program

listing.

• When executed, CMD redirects all output that normally de

faults to the screen to go to the file instead. This includes

output from PRINT, as well as messages generated by the

computer, such as the READY, prompt.

• CMD has no effect on printing sent to a file by PRINT*,

even if the device associated with the file is the screen.

• When CMD is being used with a device other than the key

board or screen, it's a good practice to send an empty print

line to the file before closing it.

• CMD stays in effect until the file is closed or an error occurs.

In either case, printing reverts back to the screen.

• It's best to use CMD only in situations where PRINT#

49

Chapter 3

cannot be used, for it's not always reliable. This is especially

true when the program uses multiple devices.

• File numbers greater than 127 make the computer send a

linefeed after every carriage return. This is necessary if your

printer does not automatically advance the paper. If your

printer does, use a file number from 128 to 255 for double-

spacing.

• When using a Commodore printer, the third parameter of the

OPEN statement, the command number, can be used to se

lect a character set. Use 0 for the uppercase/graphics set,

which is the default set. Use 7 to switch to the uppercase/

lowercase character set.

• Some printers support special modes of operation, such as

double-width printing. These modes are enabled by sending

control codes to the printer, either by printing a string or by

using the CHR$ function. Sometimes a control code may

have to be preceded by the ESC (escape) character,

CHR$(27).

Files on Tape

Thus far you've probably used the Datassette only for storing

and retrieving programs. This storage and retrieval is nec

essary because the computer can hold only one program in

memory at a time—anything in memory is erased when the

computer is turned off. It's much easier to load a program

than it is to retype it every time you want to use it!

When a program is saved to tape, it's stored as a file

consisting of program lines. That doesn't mean tape files can

contain only program lines. They can contain other infor

mation, such as numbers and character strings, just as easily.

Just as a program is lost when the computer is turned off, so is

the data maintained by that program. You may want a pro

gram to save this data to tape for future reference.

An example is a word processing program which saves a

document on tape for later changes and reprinting. Or a game

might maintain a high-score file that would have to be peri

odically updated. A mailing list program is of little value if it

can't save the names and addresses on tape or disk. A long

and complex adventure game may have an option to stop play

and continue later, in which case the current character status

would have to be saved. These are all excellent applications of

data files on tape.

50

Chapter 3

The Datassette differs from other devices such as the key

board and printer, since it can be used for both input and out

put. However, the Datassette can handle only one direction at

a time, because the user controls the pressing of the RECORD

button. So the direction has to be specified by the program

when the file is opened. Another aspect of tape I/O is that

filenames can be used. Both of these things can be handled by

the OPEN statement.

OPEN file number, device number, command number, filename

This is the complete syntax of OPEN. The file number can

range from 1 to 127. The device number for the Datassette is

1, which is the default value if none is specified. The com

mand number tells the direction.

Number Command

0 Input (read from Datassette)

1 Output (write to Datassette)

If no command number is given, the computer opens the file

for input.

Finally, a filename, up to 16 characters long, can be speci

fied. As when saving a program, a filename does not have to

be specified. However, if none is given when opening a file for

output, none can be specified when the file is later opened for

input.

Here's an example of a file being opened for tape output.

OPEN 1,1,1,"TAPE FILE"

The file can later be opened for input by the following

statement.

OPEN 1,1,0/TAPE FILE"

Let's examine just how the information is stored and re

trieved. The following program creates a tape file containing

two items of information.

10 REM GAME HI SCORE DEMONSTRATION

20 N$="CHRIS":SC=12345

30 OPEN 1,1,1,"HI SCORE":REM TAPE OUTPUT

40 PRINT*1,N$:REM NAME

50 PRINT#1,SC:REM SCORE

60 CLOSE 1

70 END

51

Chapter 3

When this program ends, a new file exists on tape. You

can't load it as a program, but its contents can be retrieved by

a program like this:

10 REM GAME HI SCORE DEMONSTRATION

20 OPEN 1,1,0,"HI SCORE":REM TAPE INPUT

30 INPUT#1,N$,SC:REM NAME AND SCORE

40 CLOSE 1

50 PRINT N$ " HAD A HIGH SCORE OF" SC

60 END

This is a rather simple example, but even so, it dem

onstrates a couple of important things. First, notice that the

program which created the tape file used two PRINT# state

ments, instead of only one followed by a variable list. To

understand why, let's consider exactly what's stored on the

tape when PRINT# is used.

The first PRINT# writes the character string "CHRIS" to

the file. Then, because there is no comma or semicolon at the

end of the statement, a carriage return is written to the file. A

carriage return is character 13, or CHR$(13). The second

PRINT* writes the number 12345 to the file. Because BASIC

prints positive numbers with one leading space and one trail

ing space, a total of seven characters will be written. The

CHR$(13) for the second PRINT# would be the last character.

The resulting file could be represented like this:

CHRISCHR$(13)(space)12345(space)CHR$(13)

Think of what happens when you use PRINT to print two

values. The statement PRINT N$,SC will print the name

CHRIS, then print a few spaces because of the comma, print

the number 12345, and finally print the ending CHR$(13).

Only one carriage return has been printed, but a lot of extra

spaces have been inserted. This kind of file could be repre

sented as follows:

CHRIS(several spaces)(another space)12345(space)CHR$(13)

Now think of what happens when INPUT is used to get

two values. The statement INPUT N$,SC waits for the charac

ters to be entered, then waits for either a comma or a carriage

return, and finally waits for a number. (Remember that if you

type only one value and press RETURN, the computer will

print a ?? prompt and wait for the second value.) The same is

true for PRINT* and INPUT*. The statement INPUT#1,N$,SC

52

Chapter 3

expects either a comma or a CHR$(13) between the two val

ues. The problem is that when the two values are printed with

PRINT#1,N$,SC there won't be a comma or carriage return

between the two values, just a whole lot of spaces. Here's

what will happen:

1. INPUT#1,N$,SC will read all the characters up to the first

CHR$(13) or comma. This means that N$ would be as

signed the value "CHRIS 12345."

2. INPUT*1,N$,SC will then try to read a number to assign to

SC. But since there's nothing more in the file, BASIC will

stop with an error.

The description of the problem may be long, but the solu

tion is simple. Either avoid using a variable list after PRINT#

or put a CHR$(13) between each item. Each of the examples

below sends the same characters to the file.

PRINT#1,N$:PRINT#1,SC (original example)

PRINT#1,N$;CHR$(13);SC

or

PRINT#1,N$ CHR$(13) SC

If you have a long list, it may be easier to assign the

CHR$(13) to a string and use the string between each item,

like this:

CR$=CHR$(13):PRINT#1,N$ CR$ SC CR$ A$ CR$ B$ CR$ C

These values can be retrieved by INPUT#1,N$,SC,A$,B$,C

without any trouble.

The preceding examples have illustrated one other im

portant point. The program reading the file must know how

many values are to be read. An error such as STRING TOO

LONG will occur when a program tries to read more data than

is contained in a file. Furthermore, the program must know

the order in which the values were written. If the first pro

gram had written the values with PRINT#1,SC:PRINT#1,N$

and the second program read them with INPUT#1,N$,SC (the

variables are switched), there would definitely be a problem.

The INPUT# would read the digits and assign " 12345 " to

N$, and then stop with a FILE DATA error when it tried to

read a number for SC and found characters instead.

In some cases, such as a game which keeps track of the

top ten scores, the number of items never changes. However,

53

Chapter 3

other files, like those maintained by a telephone directory pro

gram, may change size. How to know when to stop requesting

input will be dealt with first.

There are three methods you can use to avoid running off

the end of a file. One is to have the first item in the file, a

number, indicate how many values follow. The example pro

grams below use this technique. The first writes the names

and scores to tape, while the second reads them from tape and

displays them on the screen. Type in the first and run it; then

enter the second and run it. (You need to rewind the tape to

the beginning of the first file before pressing PLAY.)

100 OPEN 1,1,1, "HI SCORES11

110 PRINT#1,3:REM ITEM COUNT

120 PRINT*1,"BOB" CHR$(13) 14000

130 PRINT#1,"KEVIN" CHR$(13) 12000

140 PRINT#1,"ERIC" CHR$(13) 11000

150 CLOSE 1

160 END

100 OPEN 1,1,0,"HI SCORES"

110 INPUT#1,N:REM ITEM COUNT

120 FOR K=l TO N

130 INPUT#1,N$,SC

140 PRINT N$,SC

150 NEXT K

160 CLOSE 1

170 END

(These programs only demonstrate the method, and are not in

tended to be practical applications.)

In some cases, a program may not know how many val

ues will eventually be printed when the file is opened. Since

no length number can be printed at the beginning of the file,

the program must have another way to detect the file's end.

This is similar to the problem of indicating the end of values

read from DATA statements. You can use the same trick here

as you would with READ and DATA—a flag. This write-and-

read example uses END as a flag. Enter the first and run it;

then type in and run the second.

54

Chapter 3

100 OPEN 1,1,1,"HI SCORES"

110 PRINT#1,"MARK" CHR$(13) 504

120 PRINT#1,"JEAN" CHR$(13) 915

130 PRINT#1,"MARYBETH" CHR$(13) 412

140 PRINT#1,"KEN" CHR$(13) 755

150 PRINT*1,"END" CHR$(13) 0

160 CLOSE 1

170 END

100 OPEN 1,1,0,"HI SCORES"

110 INPUT#1,N$,SC

120 IF N$o"END" THEN PRINT N$,SC:GOTO 110

130 CLOSE 1

140 END

The third method is to have the program monitor the

value of ST, a reserved variable which holds status infor

mation. ST usually holds zero, but may contain another value

when an error occurs or something important has happened.

Bit 6 of ST will be set when the end of a file has been

reached. The value associated with bit 6 is 64, so when a pro

gram sees that ST has the value 64 (or any nonzero value), it

can stop requesting input. Take a look at this example for the

technique's application. Enter and run these short programs as

you did with the previous write/read samples.

100 OPEN 1,1,1,"HI SCORES"

110 PRINT#1,"MATTHEW" CHR$(13) 9

120 PRINT#1,"ANDREA" CHR$(13) 10

130 PRINT#1,"TODD" CHR$(13) 9

140 PRINT#1,"JEFFREY" CHR$(13) 8

150 CLOSE 1

160 END

100 OPEN 1,1,0,"HI SCORES"

110 INPUT#1,N$,SC

120 PRINT N$,SC

130 IF ST=0 GOTO 110

140 CLOSE 1

150 END

Notice that the end-of-file check was done before the

printing in the previous method, but is done after the printing

here.

Getting the correct values into the correct variables is

simply a matter of taking care when writing the program.

55

Chapter 3

Make sure that the variables in the PRINT# and INPUT#

statements line up. The only thing that can cause trouble is

when a null string is printed by PRINT*. The INPUT* state

ment will skip past a null string and read the next value

instead.

For instance, the second program stops with an error at

line 130.

100 N1$=IIGAILII:N3$="MAXII:REM MISSING N2$

110 OPEN 1,1,1,"TAPE FILE"

120 PRINT#1,N1$

130 PRINT#1,N2$

140 PRINT#1,N3$

150 CLOSE 1

160 END

100 OPEN 1,1,0,"TAPE FILE"

110 INPUT*1,N1$:PRINT Nl?

120 INPUT#1,N2$:PRINT N2$

130 INPUT*1,N3$:PRINT N3$

140 CLOSE 1

150 END

The program stopped because the null string was ig

nored—thus, N2$ was assigned the value intended for N3$.

When INPUT* went looking for N3$, the file was empty. To

avoid this potential pitfall, never print a null string. If you

want INPUT* to retrieve a null string, have PRINT* print a

space. INPUT* will not ignore the space, but when assigning

the string variable, it will skip past all leading spaces. The ef

fect is that the variable is assigned a null string.

An advanced feature of tape files is to use a command

number of 2 in the OPEN statement. This has the same effect

as using command 1, and prepares the file for output. The dif

ference is that when the file is closed, it will be specially

marked to indicate that it's the last file on the tape. This guar

antees that when searching for a tape file, the computer will

not look past the last file. Instead, the computer stops with a

DEVICE NOT PRESENT error, which is equivalent to FILE

NOT FOUND on the disk drive.

The direction of a tape file cannot be changed as long as

it's open. If a tape file is opened for input and PRINT* is

used, the NOT OUTPUT FILE error occurs. Likewise, the NOT

56

Chapter 3

INPUT FILE error appears when INPUT* is used with a file

that has been opened for output.

Before ending this section, it would be a good idea to

stress the importance of using CLOSE. This statement is not so

important when working with the keyboard or screen, but it's

required when using tape or disk files. The Datassette can read

only one file at a time. If a tape file opened for input is not

closed, no other files can be opened until CLOSE is executed.

Much worse is when a CLOSE is accidentally omitted for

a tape file that has been used for output. It's possible that

some of the data will not be sent if the CLOSE is not per

formed. The file will be incomplete and the data lost—a pro

gram which later opens the file for input will be able to read

only the first part, and may even crash because of an error.

In other words, a program should always perform CLOSE

when communication with a tape file is completed.

Summary

• A tape file is not limited to storing only the lines of a pro

gram. Tape files can also contain data, in the form of num

bers and strings, which can be used by a program.

• The Datassette can be used for both input and output, but

can handle only one direction at a time. The direction (input

or output) must be specified when the file is opened.

• Opening a tape file uses the full syntax of the OPEN state

ment: OPEN file number, device number, command number,

filename.

• The device number for the Datassette is 1.

• A command number of 0 opens the file for input; 1 opens

the file for output. Using 2 also opens the file for output, but

marks the file as the last on the tape when it's closed. The

command number is optional—by default, the file will be

opened for input.

• A filename is optional but recommended. If none is specified

when the file is created, none can later be used when the file

is opened for reading.

• It's a good idea not to use a variable list after PRINT#. Com

mas in PRINT statements are used to format the screen dis

play into columns, which is not necessary with tape files.

Instead, output the items one at a time so that a carriage re

turn will be printed after each. If you do use a variable list,

print a CHR$(13) between each item.

57

Chapter 3

• It is acceptable to use a variable list with INPUT#.

• A program should input variables in the same order they

were written.

• The FILE DATA error occurs when a program tries to read

character data into a numeric variable.

• If a program is expecting a string variable and a number is

read instead, the string representation of the number, like

that produced by the STR$ function, will be assigned to the

variable.

• An error such as STRING TOO LONG appears when a pro

gram tries to read more information from a file than was

written in the first place.

• There are three methods to avoid reading more data than ex

ists in a file. One way is to use the first number to indicate

how many items are in the file. This number can then be

used to control a loop which reads the data.

• The other two methods work by detecting the end of the file

while it's read. One way, often used with READ and DATA

statements, is to use a flag, such as the word END or the

number —999, as the last item written to the file.

• The third method is to stop when bit 6 of the status variable

(ST) is set. ST has a value of 64 when the end of the file is

reached, and has other nonzero values when I/O errors

occur.

• INPUT# ignores null strings. If it reads a null string, it goes

to the next item. To print a string so that it will be read as a

null, print a single space.

• It's very important that CLOSE be executed when the com

puter is finished communicating with a tape file. An output

file may not be written completely if this is not done.

• Only one file can be opened to the Datassette at a time.

Once a file has been opened, its direction (input or output)

cannot be changed.

• If a file is opened for input and PRINT# is used, the NOT

OUTPUT FILE error occurs. If a file is opened for output and

INPUT* is used, the NOT INPUT FILE error will occur.

Disk FUes

The type of file just described for cassette is often referred to

as a sequential file, one in which the information can be read

back only in the order it was written. It's not possible to re

read just one item in the file; you have to use OPEN again

58

Chapter 3

and start at the beginning. With a sequential file it's also not

possible to skip some items to read one later on. If a file has

just been opened and you want to read only its last item, you

have to read past all the other items first.

Sequential files are the simplest and most commonly used

type of file. They are well-suited to the Datassette, because the

computer cannot control the REWIND and RFWD buttons.

The nature of tape means that the Datassette can handle only

sequential files.

But sequential files can also be used with the disk drive.

There are a couple of differences in the OPEN statement, but

otherwise the procedure is the same.

OPEN file number, device number, secondary address, string

Any file number from 1 to 127 is acceptable. The device

number for the disk drive is usually 8, although it can be

changed to 9 when a second drive is used. The command

number, also called the secondary address, serves a different

purpose when using disk files. It will be explained in a mo

ment. For now, just use 2. The string is required, and indicates

the filename, type of file, and direction. The filename can be

up to 16 characters, and is sometimes followed by the type of

file (indicated by an S representing sequential) and perhaps a

letter R or W, reading or writing. Commas are necessary to

separate the filename, the type, and the direction. You must

specify the type of file if you're writing to the disk—if you're

only reading the file, you can omit the S designation. If no

direction is indicated, the computer will open the file for read

ing. Here are some examples.

OPEN 1,8,2,"DOODLE,R" : REM READING, NO TYPE NEEDED

OPEN 1,8,2,"POEM,S,W" : REM WRITING, TYPE SPECIFIED

OPEN 1,8,2,"GAME" : REM READING ASSUMED

With minor changes, the high-score demonstration from

the "Files on Tape" section can be used with a disk file. Type

in both programs below. Load and run the first (make sure

there's a disk in the drive). This creates a sequential file on

disk. Now load and run the second. It reads the file from disk

and displays the items on the screen.

100 OPEN 1,8,2,"HI SCORES,S,W"

110 PRINT#1,"KEVIN" CHR$(13) 80

120 PRINT#1,"CHRISTINE" CHR$(13) 90

130 PRINT#1,"ALISDAIR" CHR$(13) 91

59

Chapter 3

140 PRINT#1,"LISA" CHR$(13) 87

150 CLOSE 1

160 END

100 OPEN 1,8,2,"HI SCORES"

110 INPUT#1,N$,SC

120 PRINT N$,SC

130 IF ST=0 GOTO 110

140 CLOSE 1

150 END

Examine the directory of the disk you just used. You'll no

tice that beside the filename HI SCORES is a three-letter code,

normally PRG for a program file, but now SEQ. This is to re

mind you that it's a sequential file, contains data, and should

not be loaded as a program.

The method of reading and writing a sequential file is

pretty much the same for both tape and disk. A major dif

ference between these two devices, though, is in the number

of files that can be open at one time. While the Datassette can

read or write only one file at a time, the disk drive can handle

several files simultaneously. Files 1 and 2 could be open for

reading, while file 3 would be open for writing. The only

restriction when using multiple disk files is that each file must

have a different secondary address. Secondary address num

bers can range from 2 to 14.

100 REM PAYROLL PROGRAM

110 OPEN 1,8,2,"EMPLOYEES,R"

120 OPEN 2,8,3,"HOURS,R"

130 OPEN 3,8,4,"PAYCHECKS,S,W"

This program might read an employee's name and Social

Security number from the first file, get the hours and wage

information from the second, do whatever processing is nec

essary, and then send the results to the third. This last file

would be used later to print paychecks. The example may not

be practical, but it does illustrate how several disk files can be

managed. Most applications don't require as many files open

at the same time.

Another capability of the disk drive is that it can allow

two open files to read from the same disk file.

100 OPEN 1,8,2,"WEATHER DATA"

60

Chapter 3

(later in the program, when file 1 may still be open)

650 OPEN 2,8,3,"WEATHER DATA"

This will not work when a disk file is written. Once a disk

file has been opened for output, it cannot be opened by a dif

ferent file number for either input or output until it's closed.

A complication when using multiple files is that the status

variable (ST) must serve for all files. ST always reflects the sta

tus of the most recently accessed file. This means that if a pro

gram reads from file 1, then from file 2, ST indicates the status

of file 2—file l's status information is lost. The solution is to

assign ST to a temporary variable before accessing file 2. This

variable can then be used to determine the first file's status.

This next program illustrates the procedure.

100 REM READ ONE FILE TO ANOTHER

110 OPEN 1,8,2,"SOURCE,R"

120 OPEN 2,8,3,"DESTINATION,S,W"

130 INPUT#1,S$

140 A=ST

150 PRINT#2,S$

160 IF A=0 GOTO 130:REM BASED ON FILE 1 STATUS

170 CLOSE 1

180 CLOSE 2

190 END

There's another problem that you'll encounter when a

disk file must be periodically updated. A file which maintains

high scores, for instance, may be read when a game is finished

to compare the current score against the high score. If the

player did well and the high score file has to be modified, the

old file has to be erased and a new one written using the same

filename. This poses no problem with tape files since the tape

can be positioned to start at the beginning of the old file. The

disk drive, however, won't let you write a file with a filename

already in use. A different solution must be found.

Secondary addresses from 2 to 14 are available for normal

disk file handling. Addresses 0 and 1 are reserved for LOAD

and SAVE format files. The number 15 is used to send com

mands to the disk drive. One of these commands is called

Scratch, and informs the drive that it should erase a file on

the disk. For example, the file "POEM" could be erased by

entering this line in immediate mode.

OPEN W5:PRINT#l,"S0:POEM":CLOSE 1

61

Chapter 3

This is one case where no string has to be included as

part of the OPEN statement. The secondary address (15) in

dicates that the command channel will be referenced, so no

filename or type of file is needed. The command is sent as a

one-letter code, followed by a zero for the drive number, a

colon, and then the filename. You can also scratch files with

this procedure from within a program.

If a program is going to open a disk file for output, and

there's a chance the filename may already exist, the program

should first send the Scratch command. (No error occurs if an

attempt to scratch a nonexistent file is made.) Here's an ex

ample of scratching a file before writing a revised version of it

to disk.

100 OPEN 1,8,15

110 PRINT#1,MS0:HI SCORES"

120 CLOSE 1

130 OPEN 1,8,2,"HI SCORES,S,W"

140 REM CONTINUE WITH REST OF PROGRAM

Perhaps you've used the at (@) character to save and re

place a file. Assuming there's a file on disk named GAME, the

statement SAVE "@0:GAME",8 scratches the old file GAME,

then saves the current BASIC program using that filename.

This replaces the file on the disk with the one in memory.

Do not use the @ character. This feature may not always

work correctly. In some cases, the disk drive may even tamper

with other files on the disk. Even though using the @ charac

ter to save and replace may seem very convenient, my advice

is to avoid it. Use the Scratch (SO:) method instead.

Other useful disk drive commands are New, Rename,

and Validate. New is used to format a disk and clear its direc

tory. The full format of the command is "NO:diskname, identi

fication", where the disk name is up to 16 characters and the

disk identification 2 characters long. Make sure that no two

disks are given the same disk identification. This precaution

insures that there's no confusion between the source and

destination disks when copying files from one to the other.

If the identification is omitted, all the files will be erased

and the new disk name will be used, but the disk will not be

reformatted. This can come in handy when you want to use

the disk for a new project, but it's already been formatted.

Formatting really needs to be done just once. Skipping the

62

Chapter 3

process saves time. Take a look at the following lines; they

show how to format a disk, as well as how to create a new

directory only.

OPEN 1,8,15

PRINT#l,"N0:GAMES,01" (format disk and create new directory)

or

PRINT#1,"NO:GAMES" (create new directory only)

CLOSE 1

Rename lets you change the name of a file without

disturbing its contents. Here's the proper syntax:

PRINT#l,"RO:/iew; filename = old filename?'

This example shows how a file named DOODLE can be

renamed as POEM (assuming the OPEN has already been

executed).

PRINT#l,"R0:POEM=DOODLE"

When using Rename, make sure the new filename is not

already in use on the disk.

Validate is used to recalculate the number of free blocks

on a disk. If some blocks have been allocated for files, but

have not been used, they'll be made available after the Vali

date command is sent. This command also deletes any files

which were never properly closed. Such files are marked in

the directory with an asterisk (*) before the three-letter file

type. Validate does not alter any properly closed files. If you

validate periodically, you may be able to get a few more free

blocks, letting you squeeze more on the disk.

The secondary address of 15 refers to the command chan

nel when PRINT# is used. INPUT* can be used with this

channel to get error messages. However, BASIC reports only a

few I/O error messages, such as FILE NOT FOUND and DE

VICE NOT PRESENT. When an error occurs, the disk drive

can provide more information if you run the following short

program.

10 OPEN 1,8,15

20 INPUT#1,A,B$,C,D

30 CLOSE 1

40 PRINT A;B$;C;D

Normally, the message 0 OK 0 0 will appear, indicating all is

well.

If you tried to save a program using a filename already in

63

Chapter 3

use, BASIC would not print an error message, but the drive

light would flash. Run the above program, and you'll see the

message 63 FILE EXISTS 0 0. Error number 63 tells you that

an attempt was made to create a new disk file with an existing

filename. Other error numbers and their descriptions can be

found in the disk drive user's manual.

(The status numbers returned in variables C and D are for

advanced applications, and can be ignored.)

There are a couple of differences between normal disk

files (which use secondary addresses 2-14) and a file opened

to the command/error channel (secondary address of 15). No

direction is specified when the file is opened, and it's possible

to use both PRINT* and INPUT# without having to close and

reopen the file.

The other difference is that when the command/error

channel is closed, the disk drive closes all the other disk files

as well. BASIC may think that the files are still open, but an

error will occur when the program tries to read from them.

Thus, if a program is going to use the command/error channel

while other disk files are open, it's best to open the channel

during initialization and leave it open until the program ends.

Many people set aside file 15 for this purpose.

Sometimes it would be handy if a program could read the

disk directory. This is easy to do, but several things must be

done differently. First, the OPEN statement should use "$0:"

(or just "$") as the filename. Also, because of the structure of

the directory file, INPUT# cannot be used. The file has to be

read a character at a time. Fortunately, this can be done by the

GET# statement.

GET#'s syntax is the keyword GET#, followed by a file

number, a comma, and then a variable list. Something like

GET#1,A$ retrieves the next character from the file and as

signs it to A$. Only string variables should be used with

GET# to avoid the FILE DATA error.

The following demonstration shows how to read a

sequential file character by character.

10 OPEN 1,8,2,"HI SCORES"

20 GET*1,A$:PRINT A$;:IF ST=0 GOTO 20

30 CLOSE 1

The directory file contains characters for block lengths

and filenames. The first two characters in the file can be ig-

64

Chapter 3

nored. The first line in the file is the directory header, giving

the disk name, identification, and DOS (Disk Operating Sys

tem) version. Several lines follow, one for each entry. Again,

the first two characters of each line can be ignored. The next

two form the low-byte and high-byte number which indicates

the file's block length. A few spaces precede the opening

quotation mark, which begins the filename. After the filename

and the closing quotation mark, there are several more spaces

and then the three-letter file type. Each line ends with a

CHR$(0), interpreted by GET# as a null string. This format re

peats for each line in the directory. The block length for the

last line shows the number of free blocks on the disk, with the

filename BLOCKS FREE.

The end of the directory file is detected by checking ST

after reading the block length. This program illustrates how

it's done.

Program 3*1. Directory Reader

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

10 OPEN 1,8,0,"$":GET#1,S$,S$:rem 204

20 GET#1,S$,S$,L$,H$:IF ST THEN CLOSE 1:END

:rem 103

30 PRINT ASC(L$+CHR$(0))+256*ASC(H$+CHR$(0));

:rem 163

40 GET#1,S$:IF S$>M" THEN PRINT S$;:GOTO 40:rem 66

50 PRINT:GOTO 20 :rem 199

The directory file can only be read and cannot be opened for

output.

A handy trick with reading the directory is to put a

filename after the $0:, as in "$0:POEM". This makes the disk

drive search the directory for the filename POEM and list it if

it's on the disk. If there's no file named POEM, there'll be no

directory lines read after the header. This is useful when you

want a program to check if a file already exists. If the directory

is opened with the filename after the $0: and no filename lines

are read, the file isn't on the disk.

A variation on this technique is to use wild cards in the

filename. If you use a question mark (?) as one of the charac

ters in the filename, the disk drive will ignore that character

position when searching for filenames. Let's say a disk con

tains the following files.

65

Chapter 3

DOODLE

GAME1PLAYER

GAME2PLAYER

POEM

GMINUET

AMINUET

SONATA1

SONATA22

SONATINA1

SONATINA3

DMINUET

Using the string "SOiTMINUET" would read only the three

minuet files, since the ? forces the disk to ignore the G, A, and

D characters in the files. If you used the string

"$O:GAME?PLAYER", both GAME1PLAYER and

GAME2PLAYER would be read. If necessary, several question

marks can be used in the same filename.

A second wild card is the asterisk (*). While the question

mark can take the place of only one character, the asterisk can

be substituted for several. An asterisk at the end of a filename

makes the disk drive search for all filenames which begin with

the letters up to the asterisk. All characters at the position of

the asterisk and after are ignored.

In the example directory, if "$0:SON*" were used as the

filename, all files starting with the letters SON would be re

turned in the directory, four altogether. With "$0:SONATA*",

only the filenames SONATA1 and SONATA22 would be read.

A combination of the ? and * wild card characters can be

used in the same filename.

When loading a program or opening a file for reading,

wild cards within the filename make the computer access the

first file on the disk which matches. This can come in handy if

you can't remember or don't want to type the full name of a

program. LOAD "PROG*",8, for instance, loads the first

filename on the disk which has PROG as its first four

characters.

Wild cards can be very powerful if you choose filenames

to accommodate them. Just be careful that the filenames ref

erenced with wild cards are the ones you wanted. This is

especially true when using wild cards with the Scratch com

mand. It's quite easy to erase too many files—more filenames

may fit the wild card pattern than expected. In fact, it may be

66

Chapter 3

best to avoid using wild cards with Scratch. At least check

which files will be scratched beforehand by reading the direc

tory with the wild card pattern.

As you've seen, sequential files are identified in the direc

tory by the letters SEQ. The disk drive also supports another

three-letter code, USR, for the same type of file. A USR file is

handled just like a sequential file; the only difference is in the

directory listing. Since some system utilities such as the Editor

use SEQ files, you may want to use the USR type in your pro

grams to help distinguish program data files from system files.

The full syntax for the string in the disk OPEN statement

is:

filename, optional type, optional mode

The type can be SEQ, USR, PRG, or REL. These last two

types will be discussed in a moment. If no type is specified,

the default SEQ is used. (Remember that the type is not op

tional if you're writing. It must be included.) The mode tells

the direction, and can be Read or Write. Default is Read.

Both the type and mode permit single-letter abbreviations;

the type can be designated by S, U, P, or R, and the mode can

be R or W. A file identified by the letters USR in the directory

could be opened for output with:

OPEN 1,8,2,"HIGH SCORES,U,W"

From there, the handling would be just as if the file were of

the type SEQ.

File type PRG is reserved for programs stored and re

trieved using the SAVE and LOAD commands. It's possible to

open these files and read them, but the reading has to be done

one character at a time. Another problem is that due to the

way the program is stored, the file may contain several non

printing characters. The best way to examine a program file is

to print the ASCII value of each character with something like

this routine.

10 OPEN 1,8,2,"PROGRAM,P":REM DEFAULTS TO READING

20 GET#1,S$

30 PRINT ASC(S$+CHR$(0))

40 IF ST=0 GOTO 20

50 CLOSE 1

The +CHR$(0) in the ASC function (line 30 above) is

needed because the file may contain several CHR$(0) charac

ters. A CHR$(0) is interpreted by GET# as a null string, which

67

Chapter 3

when used as the argument of the ASC function makes BASIC

stop with an error. This can be averted by appending a

CHR$(0) to the argument. If the string does contain characters,

the extra CHR$(0) at the end won't affect the ASC function

because ASC looks only at the first character. If the string is

null, it becomes CHR$(0), which makes ASC return the 0, the

correct value.

Reading a PRG file is useful only for advanced applica

tions, such as programs which search for all variable names in

a program, renumber a program, or compact a program by

removing extra spaces and combining lines.

The one remaining type of file supported by the disk

drive is the REL, or relative, file. Unlike a sequential file, this

type of file makes it possible to back up to an earlier part of

the file without having to use OPEN again, and to skip past

items in the file without reading or writing them. A relative

file is also known as a random access file because the reading

or writing of items can be done arbitrarily, without having to

follow any order.

Such a file structure is useful when a file contains several

entries, only a few of which may have to be changed at any

time. If it's necessary to read an account for a customer near

the end of the file, and update the account of a customer near

the beginning, these read and write operations can be per

formed quickly without disturbing the rest. REL files make it

easy to handle large amounts of information. In fact, it's pos

sible for a REL file to contain more data than could be held in

memory at one time.

Unfortunately, Commodore 64 BASIC does not directly

support relative files; it's a very complicated subject, far be

yond even the nature of these discussions of advanced BASIC.

Summary

• In a sequential file, data must be read in the same order as it

was written. It's not possible for reading to back up or skip

ahead.

• With a few changes to the OPEN statement, sequential files

can be used with disks. The syntax to open a disk file is

OPEN file number, device number, secondary address, string.

• File numbers should range from 1 to 127. The device number

for the disk drive is usually 8, but can be 9. Secondary ad-

68

Chapter 3

dresses 0 and 1 are reserved for use by the LOAD and SAVE

commands. The numbers 2-14 are used for data files. Each

open file must have a different secondary address. A second

ary address of 15 is used to access the command and error

channel of the disk drive.

• The string consists of a filename, a file type, and a direction.

The filename is required and can be up to 16 characters. The

file type is optional when reading, mandatory when writing.

File type can be SEQ, USR, PRG, or REL (abbreviated as S,

U, P, and R, respectively). If no file type is specified, SEQ is

assumed. The direction is optional, and can be reading or

writing (or R or W). If no direction is given, the file is

opened for reading.

• Unlike the Datassette, several different files can be opened to

the disk drive simultaneously. Some can be set for input,

others for output.

• Two or more files can be opened for input from the same

disk file at the same time. However, once a disk file has been

opened for output, it cannot be read or written by any other

file until it is closed.

• The disk drive command and error channel is accessed by

opening a file with a secondary address of 15 and no string,

as in OPEN 1,8,15. No filename or direction has to be

specified.

• While the file is open, PRINT# can be used to send com

mands to the drive, and INPUT* can be used to get status

information. Unlike normal disk files, the file does not have

to be closed and reopened to switch between input and

output.

• The Scratch command is used to erase one or more files on a

disk. The command string is "^.filename". The S represents

the Scratch command, the 0 is the drive number, and the

filename indicates which file is to be erased. // the filename

contains wild card characters, more than one file may be erased.

• Do not use the @ character in the filename of an OPEN or

SAVE to replace and save a file on a disk. This feature is not

reliable and can damage the contents of a disk.

• The New command is used to format a disk and clear the

directory. The command string is "NO:diskname,id".

• The Rename command is used to change the name of a file.

The command string is "R0:new filename=old filename". The

contents of the file are not altered in any way.

69

Chapter 3

Validate is used to make previously allocated blocks not used

by files available on the disk. Files that were never properly

closed (indicated by an asterisk before the file type) will be

erased. Properly closed files will be left alone. After the disk

has been validated, there may be a few more free blocks.

BASIC reports only the errors FILE NOT FOUND and

DEVICE NOT PRESENT, and sometimes doesn't report an

error at all. A flashing light on the disk drive may be the

only clue that an error has occurred. More specific error

messages are available from the disk drive. Assuming that

file 1 has been opened to the error channel, the statement

INPUT#1,A,B$,C,D will read the error number into A, the

error message into B$, and other values for advanced

applications into C and D. When no error has occurred, the

error channel will return the values 0, OK, 0, 0.

• The GET# statement is used to input single characters from a

file. The syntax is the keyword GET#, the file number, a

comma, and a variable list. Only string variables should be

used with GET#.

• The directory can be read by a program by using OPEN with

the filename "SO:" and no file type or direction. The format

of the directory file requires that it be read one character at a

time, using GET#.

► The directory file will contain all the filenames on the disk

when the string used with OPEN is $0:. To make the disk

drive search for a specific filename in the directory, put the

filename at the end of the string, as in "$0:DOODLE". The

corresponding filename line will be read if the file exists. If

not, the directory file will contain only the disk header and

free blocks lines.

> The wild card characters (? and *) can be used in the

filename after $0: to list all filenames which match a certain

pattern.

• When wild cards are used with LOAD or OPEN for input,

the computer will access the first file on the disk that has a

filename matching the wild card pattern.

• The file type USR is identical to the file type SEQ. The dif

ferent name can be useful to help distinguish between

sequential files used for different purposes.

• The file type PRG is used for LOAD and SAVE type files,

including BASIC and machine language programs. In ad-

70

Chapter 3

vanced applications, a PRG file can be read or written one

character at a time.

• Another type of file is the relative file, identified as REL. In a

relative file, reading or writing can jump back or ahead. No

particular order must be followed. Relative files, although

supported by the disk drive, are not supported by Com

modore 64 BASIC.

The Modem and Other RS-232 Devices

RS-232 refers to an agreement among manufacturers of elec

tronic equipment (Electronic Industries Association) which de

fines how devices communicate. Its specifications include such

things as power levels, which connector pins serve which

functions, and so on. This insures that products from different

manufacturers will be more or less compatible. Like ASCII, it's

one of the few standards in the computer industry.

The RS-232 standard applies to serial communication. The

usual method of transfer is parallel communication, in which

information is sent a byte at a time. All eight bits of each byte

are sent simultaneously. In serial communication, however,

information is sent a bit at a time. To send a full byte, the

eight bits have to be sent separately, one after another. De

vices which communicate serially include modems and some

printers.

A modem converts bits into tones which can be sent over

telephone lines to another computer. The receiving computer

must also be connected to a modem, which then converts the

. tones back into bits. The general term for this is telecommuni

cations. The process of changing bits into tones is called

modulation, and the process of converting the tones back into

bits is called demodulation. In fact, the word modem is derived

from the words MOdulate and DEModulate.

In telecommunications, transmit is often used to mean

send. The modem is different from most other devices because

it can both transmit and receive information at the same time.

But a computer can handle only one character at a time. If a

character comes in while the computer is busy sending an

other, the computer must remember that incoming character

and deal with it later. It's also possible for the computer to

output characters faster than the modem can transmit them.

To avoid losing incoming characters or to hold outgoing

characters until the modem can take them, a buffer has to be

71

Chapter 3

used. A buffer is a temporary holding place for characters.

When using the modem, the computer needs two buffers, one

for input and another for output.

To better understand the concept of a buffer, let's consider

an example using an input buffer. Characters received are first

stored in the input buffer, in the order in which they are re

ceived. Every time GET# executes, it retrieves the next charac

ter from the buffer. If the buffer is empty, GET# returns with

the null string. The process could be illustrated like this:

Figure 3-1. Buffer

Modem «■£► Input —■► Get#

Buffer

Print# » Output ' P Modem

Buffer

The following steps show how the method might work in

practice.

1. The buffer starts out empty.

2. The modem receives an M character and places it in the

buffer.

M

3. The GET* statement retrieves the first character from the

buffer (M). The buffer is emptied.

4. The modem receives the character A and places it in the

buffer.

A

5. The modem receives another letter, R, before the computer

has retrieved the previous character. That's okay, since the

R can be placed in the buffer after the A.

AR

6. GET# draws off the first character in the buffer (A). The jR

is now the first character in the buffer.

R

72

Chapter 3

7. GET# gets the R and the buffer is once again empty.

8. GET# tries to get another character, but since the buffer is

now empty, GET# returns a null string. The program

keeps looping until it gets something other than a null

string.

9. The modem eventually receives a letter K and puts it in

the buffer.

K

10. The next time GET# executes, it returns with K instead of

a null string. The buffer is empty.

Two important observations should be made. The modem

received the characters in the order M-A-R-K, and the pro

gram (with GET#) retrieved the characters in that order. Even

though the computer wasn't always able to retrieve each

character as it came in, the buffer insured that no characters

were lost.

The output buffer works in much the same way. Charac

ters sent by PRINT* are held in the buffer until the modem is

ready to transmit them.

Here's the syntax for the OPEN statement when used

with an RS-232 device.

OPEN file number, device number, secondary address, string

File numbers can range from 1 to 127. Numbers from

128 to 255 cause the computer to send a linefeed (CHR$(10))

after every carriage return. The linefeed character is required

for printers which do not automatically advance the paper.

The dievice number for an RS-232 device is 2. The secondary

address is not used and should be 0. The string can be one or

two characters. The first character is a control value, and the

second is an optional command value.

The control character sets the number of stop bits, the

word length, and the baud rate. Remember that each character

is sent as a sequence of bits. Stop bits help the receiving

modem detect the end of each character. The Commodore 64

can support either one or two stop bits, depending on the

value of bit 7 in the control character.

73

Chapter 3

Bit 7 Value Effect

0 0 1 stop bit

1 128 2 stop bits

The word length determines how many bits are transmit

ted for each character, and can range from five to eight bits.

Bits 6 and 5 of the control character establish the word length.

For most purposes, eight bits will be just fine. When commu

nicating with some modems or printers, especially older ones,

fewer bits may be required. The device owner's manual should

tell you if less than eight bits are to be used.

Bits 6 5 Value Effect

8-bit word

7-bit word

6-bit word

5-bit word

The baud rate determines how quickly the bits are

transmitted. The most common rate is 300 baud (roughly 300

bits per second), which is equivalent to about 30 characters

per second. Faster baud rates (600 or 1200, for instance) re

quire higher quality circuitry and make devices which are

capable of such rates more expensive. Older printers and

modems may even operate at 110 baud. Bits 3 through 0 of

the control character should be set according to the baud rate

of the device.

0

0

1

1

0

1

0

1

0

32

64

96

Bits 3

0

0

0

0

0

0

0

1

2

0

0

0

1

1

1

1

0

1

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

Value

1

2

3

4

5

6

7

8

Effect

50

75

110

134.5

150

300

600

1200

baud

baud

baud

baud

baud

baud

baud

baud

Here's the formula for calculating the value of the control

character. Place the bit values from the tables above in the

appropriate places in the formula.

Control character = CHR$(stop bits + word length + baud rate)

A typical setting is one stop bit, eight-bit word length, and 300

baud.

Control character = CHR$(0 + 0 + 6) = CHR$(6)

74

0

0

0

0

0

1

0

1

1

0

32

96

Chapter 3

The result would be used in the OPEN statement like this:

OPEN l/2/0,CHR$(6)

The command character sets the parity, duplex, and

handshaking. Parity is used to check for errors in transmission.

If there's considerable static on the telephone line, a bit may

be accidentally switched in value, resulting in garbled commu

nications. Parity checking can detect an error like this. When

parity checking is selected, it can be odd or even. The correct

setting depends on the setting of the device at the other end of

the link. Bits 7 through 5 control the parity.

Bits 7 6 5 Value Effect

No parity

Odd parity

Even parity

When using a word length of eight bits, parity checking is not
available—no parity should be selected.

Duplex determines whether both modems can transmit at

the same time or if they have to take turns. The usual value is

full duplex. The other setting, half duplex, is rarely used.

Again, this setting depends on the receiving modem. If half

duplex is desired, bit 4 of the command character should be

set (to 1). In most cases, especially with newer modems, full

duplex is available, so bit 4 should be clear, or 0.

Bit 4 Value Effect

0 0 Full duplex

1 16 Half duplex

Handshaking refers to how the transmitting and receiving

devices recognize and establish communication between each

other. Handshaking is controlled by bit 0, which for most

applications should be clear, or 0.

As you can see, the command character is not as im

portant as the control character. If the sum of the command

values is zero, the command character does not have to be

used. If a different value is needed, the command character is

concatenated to the control character.

This next OPEN statement shows how that's done to se

lect half duplex (bit value of 16).

Command character = CHR$(16)

OPEN l,2,0,CHR$(6)+CHR$(16): REM SELECT HALF DUPLEX

75

Chapter 3

When the OPEN statement is executed, it creates input

and output buffers of 256 bytes each. This allotment of 512

bytes comes from free memory. It forces an automatic CLR,

which erases all previous variables and closes all other open

files. Thus, if a program is going to use an RS-232 device, the

OPEN should come before any variable assignments, array

dimensions, function definitions, or other OPEN statements.

The 512 bytes are restored when the RS-232 file is closed.

CLOSE causes another CLR, so the CLOSE should be the last

thing in the program.

The variable ST has a different meaning when used with

an RS-232 device. The last three bits are set to indicate errors.

Bit Value (set) Error when bit set

0 1 Parity error

1 2 Framing error

2 4 Receiver buffer overflowed

A parity error occurs when a bit has been switched in

value, probably due to a bad connection. Don't bother to

check this bit when using a word length of eight bits.

IF ST AND1 THEN parity error

(Note: Due to a quirk in BASIC, there must be a space be

tween ST and AND.)

A framing error also indicates a problem in receiving a

character.

IF ST AND2 THEN framing error

The buffer OVERFLOW error occurs when the input

buffer is full (contains 256 bytes) and another character is re

ceived before the program retrieves a character. This can hap

pen when the program handling the input and output is too

slow for the baud rate used. A BASIC program can run only

so fast. If the program has to do a lot of processing and a fast

baud rate such as 600 or 1200 is used, this error may occur.

The solution is to write the program in machine language.

IF ST AND4 THEN buffer overflowed

Another point about the ST variable is that it can be read

only once after an input/output statement. After it's read, it's

automatically set to zero. If you need to read it more than

once, assign it to a temporary variable.

RS-232 communication may seem complicated in its

description, but it can be very easy to implement. To show just

76

Chapter 3

how easy it is, take a look at Program 3-2, "Modem.".It's a

simple program which makes your computer and modem act

as a terminal, allowing you to communicate with another com

puter, perhaps one running a bulletin board system. The pro

gram is set for 300 baud and cannot handle faster rates. To use

this program, you must have a modem connected to your

Commodore 64 (and another computer with a modem to re

ceive your transmission).

After typing in and running Program 3-2, make sure your

modem is properly connected. Access the receiving computer

as you would normally, by dialing its telephone number. Al

though the program establishes full duplex, you can switch

your modem to half duplex (if it has that feature) to see what

you type on the screen.

Program 3*2. Modem

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

10 OPEN 1,2,0,CHR$(6):POKE 56577,0 :rem 5

20 DIM T%(255),R%(255):FOR K^=l TO 255 :T%(K)=K:R% (K
)=K:NEXT srem 112

30 FOR K=65 TO 90:T%(K)=K+32:R%(K)=K+128:NEXT:FOR

{SPACE}K=97 TO 122:R%(K)=K-32:NEXT :rem 245

40 FOR K=193 TO 218:T%(K)=K-128:NEXT:T%(20)=127:R%

(127)=20:PRINT "{CLR}{n}m :rem 234

50 GET A$:IF A$>"" THEN PRINT*1,CHR$(T%(ASC(A$)));

:rem 122

60 GET#1,A$:IF A$>"M THEN PRINT CHR$(R%(ASC(A$)));

:rem 121

70 GOTO 50 :rem 5

A few comments about this program might be helpful.

Lowercase is obtained by using the second character set. Un

fortunately, this means that some character translation has to

be done to convert between ASCII codes and character set

numbers. The translation process works like this:

Receive Print on screen as

0-64

65-90

91-96

97-122

123-126

127

0-64 (punctuation)

193-218 (uppercase)

91-96

65-90 (lowercase)

123-126

148 (backspace)

77

Chapter 3

Keyboard Transmit

0-64 0-64 (punctuation)

65-90 97-122 (lowercase)

91-96 91-96

148 127 (backspace)

193-218 65-90 (uppercase)

The fastest way to translate is with arrays. Arrays T% and

R% have been set up for this purpose (line 20 in Program 3-2).

There are a couple of restrictions in using an RS-232 de

vice. First, only one such device can be used at a time. Sec

ond, an RS-232 device should not be used while another

peripheral, such as the Datassette or disk drive, is in use.

The last topic concerns receiving a CHR$(0). If the

modem receives a CHR$(0), it stores it in the buffer properly,

but the GET# statement interprets it as a null string. This

means a null string can indicate either that the input buffer is

empty or that the character is a zero character. To determine

which, check bit 3 of ST after the GET# is executed. If the bit

is set (has a value of 8), the input buffer is empty. If the bit is

clear (value of 0), the character is a CHR$(0).

IF ST AND8 THEN input buffer is empty

IF (ST AND8) = 0 THEN it's a CHR$(0)

The CHR$(0) normally is not used in ASCII communica

tion and can just be ignored. It's important, though, in such

activities as transferring a program file by modem, in which

case every character is important.

Summary

• RS-232, like ASCII, is one of the few standards in the com

puter industry. It specifies how computers and devices

communicate.

• The RS-232 convention applies to serial communication,

where bits of a byte are sent one at a time. Parallel commu

nication, the other method of data transmission, transfers all

eight bits at the same time.

• The modem is used to convert bits into tones that can be car

ried by telephone lines to another computer which converts

the tones back into bits. This process is called modulation

and demodulation.

• The modem can transmit and receive at the same time. No

direction has to be specified as part of the OPEN statement.

78

Chapter 3

• A buffer is a temporary character-holding place. An input

buffer insures that no incoming characters will be lost if

some come in too fast for the computer to process. An output

buffer holds characters until the modem is ready to transmit

them.

• The syntax for OPEN to open an RS-232 file is the standard

OPEN file number, device number, secondary address, string.

• File numbers from 1 to 127 are most frequently used. File

numbers from 128 to 255 can be used with a serial printer

which needs linefeed characters. The device number for an

RS-232 device is 2. The secondary address is not used and

should be set to 0. The string is one or two characters. The

first character is a control character which sets the number of

stop bits, the word length, and the baud rate. The second

character is optional and is rarely used. It sets the parity, du

plex, and handshaking.

• When an RS-232 OPEN is executed, 512 bytes are taken

from free memory and are used for buffers. If there are not

512 bytes available, the end of the program is overwritten.

• The OPEN performs a CLR, which erases all variables, ar

rays, and defined functions, and closes all open files. An

OPEN to an RS-232 device should be done as part of the

program's initialization, before the assignments, dimensions,

definitions, and OPENs. A CLR is also performed when a file

to an RS-232 device is closed.

• Only one file to an RS-232 device can be open at any time.

Communication with other devices is not allowed when an

RS-232 file is open.

• With RS-232 communication, the status variable, ST, in

dicates errors.

• Translation is required to convert between ASCII and Com

modore 64 character codes.

79

Chapter 4

The End of BASIC

Using Commands in Programs

Normally, commands such as RUN, NEW, LIST, CONT,

LOAD, and SAVE are used only in the immediate mode, with

out line numbers. But commands can also be used in pro

grams, some with better results than others.

RUN. The RUN command can be used to make a program

automatically rerun when it's done. Just place RUN where the

END statement would normally go. RUN first performs a CLR,

erasing all variables, arrays, and defined functions before start

ing execution at the program's first line. If a line number is

placed after RUN, execution begins with that line.

NEW. Another way to end a program is to use NEW. The

NEW command both ends a program and erases it. (This isn't

recommended when you're still debugging a program, for

you'll have to continually reload it.)

LIST. The LIST command is not very useful in a program.

When executed, all or some of the program lines will be listed,

depending on the optional line number range after the

keyword. Execution then ends. If there are statements after the

command, they won't be executed.

CONT. When used in the program mode, the CONT

command puts BASIC in an infinite loop, and no processing is

done. To break out of the loop, press the RUN/STOP key.

CONT is best used only in the immediate mode.

LOAD. Using LOAD in program mode is somewhat com

plicated, so let's first examine what happens when programs

are saved and loaded. A BASIC program is stored in memory

as a sequence of bytes. The address of the program is usually

2049, but it can be different for nonstandard system configura

tions (such as those with special device handlers). Whatever

the address, the SAVE command will start at that address and

send the bytes which form the program to the disk or tape

file. When LOAD is executed, the bytes in the file are read into

memory starting at the address of BASIC memory.

LOAD'S full syntax is:

LOAD, a filename (optional for tape), a device number (optional),

and a secondary address (optional).

81

Chapter 4

If no device number is given, device 1 (the Datassette) is

assumed. If no secondary address is given, the default of zero

is used.

A secondary address of 0 means that a relocating LOAD

should be performed. The program will be loaded starting at

the current address of BASIC'S free memory. This insures that

a file which was saved at one address can be loaded when

BASIC memory starts at a different address. Relocating

LOADs are used mainly when loading BASIC programs. The

BASIC program that is loaded replaces the one currently in

memory.

Another type of program is one written in machine lan

guage. In most cases, a machine language cannot be relocated.

It must be loaded at the same address from which it was

saved. A secondary address of 1 tells the computer to ignore

the current address of BASIC memory and to use the address

which was used for saving the file. Keep in mind that

nonrelocating LOADs are most often used when loading ma

chine language programs.

Here are the secondary addresses used with LOAD and

their effects:

Secondary

Address Effect

0 Relocating LOAD

1 Nonrelocating LOAD

Let's take a look at what happens with LOAD in program

mode. When executed, the command loads the requested pro

gram and performs a RUN. This is handy since it makes it

possible to run a series of programs, one after another. This is

called chaining.

There's one important difference between the normal

RUN command and what's automatically performed after a

LOAD, however. The automatic RUN after a LOAD does not

include a CLR. None of the variables, arrays, and functions

are erased. This doesn't mean that their values are preserved.

All function definitions are overwritten when the new pro

gram is loaded. Calling a defined function when no

corresponding DEF has been executed will not cause an

UNDEF'D FUNCTION error, but it will probably force some

sort of error because the definition is no longer intact. Nu

meric variables and arrays will be preserved if the new pro

gram is shorter than the old one; however, string variables

82

Chapter 4

may or may not be preserved, depending on how they were

assigned.

It would be nice if it were possible to pass variables be

tween chained BASIC programs, but there are so many restric

tions that in most cases it isn't worth the trouble. Just have the

chained programs start with a CLR statement and there

shouldn't be any problems.

The problem of passing variables doesn't apply when

LOAD is used with a machine language program. In these

situations, the original program is not replaced, so the vari

ables, arrays, and function definitions should not be disturbed.

This is often used when a BASIC program loads and executes

a machine language routine or program. In the lines below,

the SYS statement, introduced in a later section, starts the

execution of the machine language.

10 IF A=0 THEN A=1:LOAD "EDIT.C64",8,1:REM LOADS M

ACHINE CODE

20 SYS 49152:REM EXECUTES MACHINE CODE

Since you started the program with the normal RUN com

mand, the variable A is 0, and the condition is true. Variable

A is set to 1, and the machine language program is loaded

from disk. After the LOAD is complete, BASIC automatically

does another RUN, this time without clearing the variables.

Variable A keeps the value of 1, so this second time the sec

tion after the THEN is not executed. Execution falls through to

line 20, the SYS statement, which starts the machine language

program.

SAVE. Last but not least, the SAVE command, when

used in a program, saves the current BASIC program to tape

or disk. This could be useful if you want a program to make a

copy of itself when it runs.

Summary

• RUN can be used as a substitute for the END statement to

make a program rerun when it ends.

• NEW, when used in a program, ends and erases the

program.

• If LIST is included in a program, execution stops after the

LIST is executed, even if there are lines yet unexecuted.

• CONT causes BASIC processing to enter an infinite loop

83

Chapter 4

which can be stopped by pressing the RUN/STOP key.

• The full syntax for LOAD is: LOAD filename, device number,

secondary address.

• The secondary address should be 0 for a relocating LOAD,

which indicates that the program will start loading at the

current address of BASIC memory, replacing the program al

ready in memory. Zero is the default secondary address.

• Relocating LOADs are usually used with BASIC programs.

• The secondary address should be 1 for a nonrelocating

LOAD. The program will be loaded at the same address from

which it was saved. This usually leaves the current BASIC

program intact.

• Nonrelocating LOADs are most often used for machine lan

guage programs.

• When LOAD executes in a program, the LOAD is performed

and BASIC goes to the first line of the current BASIC pro

gram. This is like performing a RUN without a CLR.

• All variables, arrays, and function definitions are preserved

during a nonrelocating LOAD. This fact can be used to make

a BASIC program load and begin executing a machine lan

guage program.

• After a relocating LOAD, BASIC starts to execute the pro

gram which replaced the one in memory. String variables, ar

rays, and function definitions will still exist but their values

will be incorrect because they were overwritten by the new

program. Numeric variables will be preserved only if the

new program is shorter than the old one. In most cases, it's

best to simply have the new program start with a CLR.

• The process of having one program load and run another is

called chaining. Commodore 64 BASIC allows any number of

programs to be chained.

• A SAVE used in a program makes the program copy itself to

tape or disk. Execution will continue with the first statement

after the command SAVE.

The WAIT Statement

The WAIT statement is an advanced topic because it uses bi

nary values and, compared with other statements, is seldom

used. But WAIT does have a few applications and can help

you tighten a program by saving lines.

WAIT makes BASIC stop all processing until a designated

bit has a specified value.

84

Chapter 4

As an example, let's use location 56320, the second joy

stick port. Bits 0-3 of this location report the direction of the

joystick; bit 4 reflects the status of the joystick button. To

monitor a specific bit, you can use the AND operator and the

number which corresponds with the bit. The chart below gives

the values associated with each bit.

Bit

0

1

2

3

4

5

6

7

Value

1

2

4

8

16

32

64

128

The following line shows the relationship between bit 4

and the joystick button. Note: Plug a joystick into port 2.

10 PRINT PEEK(56320)AND16:GOTO 10

Normally, 26 is printed, which means that the bit is set.

When the button is pressed, the bit is cleared, meaning a 0 is

printed. The WAIT statement uses this process to decide when

to halt execution, as well as when to continue. Make sure the

above program line is still in memory, and enter this line in

immediate mode:

WAIT 56320,16

It seems as if nothing happened. That's because the state

ment told BASIC to wait until bit 4 (value of 16) in location

56320 was set. Since you weren't pressing the joystick button

when you entered the statement, the bit was already set, and

no WAIT was executed.

Enter WAIT 56320,16 again, but this time press down on

the button before hitting RETURN. The cursor will disappear,

and nothing will be printed. In fact, BASIC will be concentrat

ing so hard on waiting for bit 4 to become set that it will not

notice if you press RUN/STOP. Now release the button. The

READY, prompt will appear and BASIC will be functioning as

normal.

The 16 in the last example is a bit mask which tells WAIT

to freeze execution until bit 4 goes from clear to set.

Sometimes, however, you might want to reverse the

85

Chapter 4

condition and have the WAIT statement delay BASIC until a

selected bit goes from set to clear. Consider the following pro

gram, which waits until the button is pressed (bit 4 is cleared)

and then prints a message.

10 IF PEEK(56320)AND16 GOTO 10:REM LOOP WHILE NOT

{SPACE}PRESSED
20 PRINT "FIRE I"

To make WAIT halt execution until a bit is cleared, you

need to add another bit mask to the statement. In the line be

low, the first 16 indicates that bit 4 of location 56320 is to be

monitored; the second 16 says that the condition to be fulfilled

is that the bit must go from set to clear, instead of the normal

change from clear to set.

10 WAIT 56320,16,16:PRINT "FIRE I"

This does the same thing as the two-line program above,

but in only one line.

Now let's extend the example so that it waits repeatedly

for the joystick button to be pressed.

10 WAIT 56320,16,16:PRINT "FIRE1";:REM NOTE THE SE

MICOLON

20 GOTO 10

When you run this program, you'll quickly notice a prob

lem. Each press of the button is detected more than once. This

problem, called bounce, can also happen with the keyboard.

Sometimes you hit one key, but it's actually read more than

once. To eliminate the bounce, make the program wait for the

button to be released before relooping. Just substitute this line

20 for that above.

20 WAIT 56320,16:GOTO 10

In fact, the whole program could be written in one line:

10 WAIT 56320,16,16:PRINT "FIRE I";:WAIT 56320,16 :G

OTO 10

If the WAIT statement was not available, this program

would have had to be written in three or four lines, depending

on whether the ON-GOTO technique was used. Notice that in

both the programs below the RUN/STOP key operates, unlike

when you use the WAIT statement.

86

Chapter 4

10 IF PEEK(56320)AND16 GOTO 10

20 PRINT "FIRE I";

30 IF (PEEK(56320)AND16)=0 GOTO 30

40 GOTO 10

or

10 IF PEEK(56320)AND16 GOTO 10

20 PRINT "FIRE!";

30 ON (PEEK(56320)AND16)/16+1 GOTO 30,10

WAIT can even monitor several bits at a time. Location

198 counts the number of keypresses (0-10) in the keyboard

buffer. It takes four bits to represent a number in that range,

so bits 0-3 have to be watched. The value 0 indicates that the

buffer is empty, so when the first four bits in location 198 are

all clear, no key has been pressed. To make a program wait

until a key is pressed, you can use the standard method:

10 GET K$:IF K$="" GOTO 10

20 PRINT "GOT A KEY"

Or you can use WAIT to stop program execution until location

198 contains a nonzero value (when any bit from 0 to 3 is set).

With WAIT, the program would look like:

10 WAIT 198,15:GET K$:PRINT "GOT A KEY"

The value 15 was calculated from 1+2+4+ 8, the values

associated with bits 0-3.

Another common application for WAIT is to wait until the

PLAY button on the Datassette is pressed. Bit 4 of location 1

goes from set to clear when a button on the Datassette is

pressed.

10 PRINT PEEK(1)AND16:GOTO 10

Type in and run this program. You'll see 16 appear on the

screen when the PLAY button is not pressed, 0 when it is.

When a program opens a tape file, the computer prints

the message PRESS PLAY ON TAPE. However, the message

does not appear if the PLAY button is already pressed. The

computer just proceeds with the open processing. If you don't

want the prompt message, perhaps because it might disrupt

your screen display, put a WAIT statement before the OPEN.

It would look like this:

10 WAIT 1,16,16:OPEN 1,1,0,"TAPE FILE"

87

Chapter 4

The file TAPE FILE is still opened, but the prompt fails to

appear.

Summary

• The WAIT statement makes BASIC halt execution until se

lected bits in a designated location are set or cleared.

• The syntax is WAIT, location number, comma, mask, and op

tional comma and mask.

• The bit set in the first mask tells which bit is to be mon

itored. For instance, if BASIC is to monitor bit 4, then 16

(that bit's value) would be used as the mask number.

• The second bit mask tells whether BASIC is to wait for the

selected bit to go from clear to set, or from set to clear. If

there is no second bit mask, BASIC will wait until the bit

goes from clear to set. To reverse the condition, the value

associated with the bit should be used for the second bit

mask.

• More than one bit can be monitored in the same location. To

make BASIC monitor both bits 4 and 5, the associated values

of 16 and 32 would be added and used as the first mask

number. BASIC would then wait until either bit 4 or bit 5

went from clear to set.

• The second bit mask can also be used with several bits. The

statement WAIT 1,16+32,16 makes BASIC wait until either

bit 4 of location 1 goes from set to clear, or bit 5 goes from

clear to set.

• While BASIC is waiting, it does not check the RUN/STOP

key, so RUN/STOP-RESTORE has to be used to stop

execution.

• Here are several example applications of WAIT: Halt execu

tion until the joystick button is pressed or released; force a

program to wait until the PLAY button on the Datassette is

pressed so that no PRESS PLAY ON TAPE message appears;

and freeze a program until a key is pressed.

Machine Language and the SYS Statement

The SYS statement is used to execute machine language

routines and programs. In order to understand what this

means, let's take a moment to explain machine language.

Inside your Commodore 64, there are several computer

chips. One of them, the VIC chip, handles the video display.

88

Chapter 4

Another, the SID, is in charge of audio output. These are sup

port chips, and give the Commodore 64 its excellent sound

and graphics capabilities. But they don't give the 64 any

computing ability. That's what the CPU (Central Processing

Unit), the heart of the computer, does. It's the CPU which

really runs the show, doing everything from reading the key

board to processing all calculations and decisions and telling

the VIC chip what to display on the screen. Even if the VIC

and SID chips were not working, the computer could still run

programs. You just wouldn't see or hear any output. The com

puter could not function, however, if there were no CPU.

All computers, from micros to mainframes, must have a

CPU. Some even have more than one. In microcomputers, the

CPU is called a microprocessor. The type of microprocessor

used in the Commodore 64 is the 6510, which is practically

identical to the 6502 found in many other home computers.

Some other popular microprocessors are the Z80 and the 8088.

Machine language is the native language of the

microprocessor. It's quite different from BASIC. Just as a

BASIC program contains statements, a machine language pro

gram consists of instructions which are executed by the

microprocessor. The difference is that each instruction can do

only a very small task, so many are necessary to get anything

done. It takes several instructions just to add two numbers to

gether. However, machine language instructions can be exe

cuted very quickly. It's quite common for a machine language

program to run a hundred times faster than a comparable

BASIC program. A BASIC program is not machine language

and cannot be directly executed by the microprocessor. Rather,

the BASIC language itself is one huge machine language pro

gram. It's a collection of machine language routines, one for

each operation, function, statement, and command in BASIC.

For instance, there's a routine to add two numbers, a routine

which calculates the absolute value of a number, and a routine

to print something on the screen. There are also routines to

find the value associated with a variable, search for a line

number, check syntax, and so on, and so on.

When BASIC is told to run a program, it looks at the first

statement, executes the necessary machine language routines

to process the statement, and then moves on to the next state

ment. Thus, a BASIC program is really a kind of data file. It

cannot stand on its own, but instead is treated as data for a

89

Chapter 4

machine language program called BASIC. The end result may

appear to the user as though BASIC statements have comput

ing power, but the real processing is being done in machine

language.

The process of reading data from a program file and selec

tively executing some routines is called interpreting. The inter

preting process is what makes BASIC programs run slower

than equivalent machine language programs. It takes time to

read statements, look up values for variables, search for pro

gram lines, and check for correct syntax. An alternative is to

convert a BASIC program to machine language with a process

known as compiling. After a program has been written, it's

compiled before it's executed. Compiled programs are actual

machine language programs that can stand on their own, pro

grams which don't need BASIC. This can significantly increase

the speed of the program. However, program development is

less interactive, because every time the program is changed in

even the smallest way, it has to be recompiled.

The BASIC language, whether its programs are inter

preted or compiled, is called a high-level language because

each statement is rather general and can do a lot. If you think

about it, the PRINT statement is extremely versatile. It can

print numbers and characters, call functions and operations,

and control cursor positioning. Machine language, on the

other hand, is a low-level language, because each instruction is

limited and specific. Most people without computer experience

learn BASIC first. However, if you want to tap the full poten

tial of your computer and want to know what computing is

really about, machine language is the way to go.

The SYS statement instructs BASIC to stop executing and

to transfer control to a machine language routine which starts

at a specified address. Thus, SYS is to a machine language

program what RUN is to a BASIC program. If you're using a

machine language routine published in a book or magazine,

the address will be given in the article or documentation. Care

must be taken that the address is correct, because if the

microprocessor is told to execute machine language instruc

tions at memory locations where there are no instructions, it

will "hang" and the computer will crash. This does no perma

nent damage to the computer, but it does mean that you'll

have to turn the computer off and back on again to regain

control. Anything in memory will be lost.

90

Chapter 4

To demonstrate the speed of machine language and to

show how the SYS statement is used, the doodling program

from All About the Commodore 64, Volume One has been rewrit

ten in machine language. Here's the original BASIC program.

Plug a joystick into port 2. Push the joystick to draw in all

eight directions, and press the button to change the color.

Program 4*1. BASIC Doodle

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

10 PRINT CHR$(147):POKE 53280,0:POKE 53281,0:S=500

:C=1 :rem 181

20 DIM JS(15):F0R K=5 TO 14:READ JS(K):NEXT

:rem 126

30 POKE 55296+S,C:POKE 1024+S,81 :rem 205

40 S=S+JS(PEEK(56320) AND 15) :rem 15

50 IF S<0 THEN S=S+1000 :rem 177

60 IF S>999 THEN S=S-1000 :rem 49

70 IF (PEEK(56320) AND 16)=0 THEN C=C+1:IF C>15 TH

EN C=l :rem 66

80 GOTO 30 :rem 4

90 DATA 41,-39,1,0,39,-41,-1,0,40,-40 :rem 239

Now, let's try the machine language version. The instruc

tions have been stored as numbers in DATA statements, which

is the most convenient form for short programs or routines.

The instructions are read and POKEd into free memory, and

then SYS is used to begin executing the code. Just lightly tap

the joystick left or right at first, so you can see that the draw

ing is done a pixel at a time. You'll notice that the machine

language version is so fast that even if you just lightly hit the

joystick, most of the screen fills up.

Program 4-2* Machine Language Doodle

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

300 FOR K=4096 TO 4290:READ P:POKE K,P:NEXT

:rem 150

310 SYS 4096 :rem 102

320 END :rem 108

800 DATA 169,147,32,210,255,169,0,141,32,208,141,3

3,208,169,244,141,193,16,169 :rem 9

801 DATA 1,141,194,16,169,1,141,192,16,169,0,24,10

9,193,16,133,251,169,216,109 srem 3

802 DATA 194,16,133,252,173,192,16,160,0,145,251,1

69,0,24,109,193,16,133,251 :rem 155

91

Chapter 4

803 DATA 169,4,109,194,16,133,252,169,81,145,251,1

73,0,220,41,15,170,189,165 :rem 171

804 DATA 16,24,109,193,16,141,193,16,189,176,16,10

9,194,16,141,194,16,173,194 :rem 237

805 DATA 16,16,17,173,193,16,24,105,232,141,193,16

,173,194,16,105,3,141,194,16 :rem 1

806 DATA 169,231,205,193,16,169,3,237,194,16,176,1

7,173,193,16,56,233,232,141 :rem 234

807 DATA 193,16,173,194,16,233,3,141,194,16,173,0,

220,41,16,208,15,238,192,16 :rem 210

808 DATA 169,15,205,192,16,176,5,169,1,141,192,16,

76,28,16,41,217,1,0,39,215 :rem 169

809 DATA 255,0,40,216,0,0,255,0,0,0,255,255,0,0,25

5,0,0,0,0 :rem 28

BASIC always checks for the RUN/STOP key before it

processes each statement. Since BASIC is not in control,

RUN/STOP won't work, and you'll have to use the

RUN/STOP-RESTORE combination to halt the program.

It's possible to pass information between BASIC and ma

chine language programs. In many of the programs later in

this book, you'll see a line like the following:

120 SA=780:SX=781:SY=782:SP=783

Locations 780-783 can be POKEd before a SYS call. This

area of memory is called the Register Storage Area and is used

to store the values held by the Accumulator, the X register, the

Y register, and the status register. The Register Storage Area is

used by the BASIC SYS command to load each of the registers

from the corresponding storage address. The values POKEd

can then be used by the machine language routine. That's

what this next line does.

130 POKE SA,1:POKE SX,8:POKE SY,0:SYS 65466

When the machine language routine ends and control is

returned to the BASIC interpreter, any new values held by the

registers are stored in the appropriate memory locations. Pro

gram execution will continue with the first statement after

SYS. This may be a PEEK to one of the locations to get infor

mation inserted by the machine language program or routine.

140 SYS 65493:IF PEEK(SP)AND1 GOTO 700

These variable names (SA, SX, SY, and SP) are used

consistently in the later programs.

There's one other feature of BASIC related to machine

92

Chapter 4

language. The USR function is an alternative method of

executing machine language, and allows one floating-point

value to be passed back and forth. However, this technique is

less convenient than SYS, so it's not used very often. Calling

the USR function without some special setup results in an IL

LEGAL QUANTITY error.

The USR function is not related in any way to the USR disk

file type.

Summary

• Of all the parts of a computer, the one that provides the real

"brains" is the CPU, or central processing unit. In micro

computers, the CPU is called a microprocessor. The Com

modore 64's microprocessor is the 6510, which for all

practical purposes is identical to the 6502.

• Machine language is the language of the microprocessor. Ma

chine language consists of instructions (rather than state

ments) which are directly executed by the microprocessor.

• Each machine language instruction is very simple and limited

in what it can accomplish. But though it takes a number of

them to get anything done, each instruction can be executed

very quickly.

• The BASIC language on the Commodore 64 is one large ma

chine language program.

• A BASIC program is not machine language and cannot be di

rectly executed by the microprocessor. Rather, it's treated as

data read by the BASIC interpreter program.

• The process of BASIC reading statements and executing the

appropriate machine language routines is called interpreting.

Interpreted BASIC programs are relatively slow because

things like syntax checking are done as the program is

running.

• A BASIC program can be compiled into machine language,

which can then be directly executed by the microprocessor.

The advantage of compiling is that things like syntax check

ing are done as part of the compiling step, so the program

runs much faster. The disadvantage is that a program has to

be recompiled every time it's changed.

• BASIC is a high-level language because each statement can

do a lot. Machine language is a low-level language.

• The SYS statement is used to start the execution of machine

93

Chapter 4

language at a specified address. If the address is wrong, the

computer may crash.

• Information from a BASIC program can be made available to

the machine language code by POKEing the information into

locations 780 through 783 before the SYS is executed.

• If the machine language program ends and returns control to

BASIC, execution will continue with the first statement after

the SYS.

• Locations 780 to 783 can be PEEKed when the machine lan

guage program is finished to get values returned.

• The USR function offers a means of executing machine lan

guage and passing one floating-point value back and forth,

but in most cases it's less convenient to use than SYS.

94

Fart 2

Bitmapped

Graphics

Chapter 5

The Bitmapped Graphics

Utility

Introduction to the Bitmapped Graphics Utility

Bitmapped graphics lets you cover the whole screen with

graphics. There are no size limitations as there are with re

defined characters and sprites. When redefining a character,

you are confined to working in an 8 X 8 grid. Even with

sprites, the 24 X 21 grid restricts the size of an object. But

with bitmapped graphics, the whole screen is one big grid.

You can control any point on the screen. You can draw lines

to create things like line graphs and three-dimensional pic

tures. Or you can fill in areas to create pie charts or back

ground scenes.

The Commodore 64's bitmapped graphics capabilities are

very good, but difficult to use from BASIC. As a result,

bitmapped graphics is often the most overlooked and under

used feature of the computer.

Since the goal of this book is to help you get the most out

of your computer, the first major utility is designed to open up

the world of bitmapped graphics. The utility consists of a

collection of machine language routines which make bitmapped

graphics easier to use. The routines can plot points, draw

lines, fill in areas, and draw whole shapes. Because the

routines are written in machine language, they're fast. That

leaves only one problem—how will the routines be called by a

BASIC program?

One method would be to use the SYS statement. A slightly

more elaborate method, and the one used for this utility, is to

add new statements to BASIC. This method is a good choice

because it offers the speed of machine language and the con

venience of BASIC.

The New Statements

The new statements work just like standard BASIC statements.

They can be used in program lines, they can be listed, and

they can cause errors if their syntax is wrong or their values

are out of range. A program containing these new statements

97

Chapter 5

can be saved to tape or disk just like any other program.

Besides these statements, we've added a new function and

a new command. Here's a list of the additions to BASIC:

Statements

GRAPHICS

CLS

FILL

SHAPE

Function

LOOK

Command

KILL

DRAW

MODE

LFILL

PEN

SETPEN

TEXT

RFILL

To install the BASIC extensions, two files must be created.

One file contains the machine language routines which per

form all the graphics work. The other is a BASIC program that

loads the machine language file and merges it with BASIC, ac

tually adding the new statements.

First, enter and save either Program 5-1 (for disk) or Pro

gram 5-2 (for tape) to disk or tape. Make sure you use the

filename BMGLOADER.

Next, type in the machine language file (Program 5-3),

using the "Machine Language Editor: MLX" program found in

Appendix C, and save it using the filename BMG.OBJ. If

you're using tape, be sure to save the file immediately after

the "BMGLOADER" program.

(Please read the article in Appendix C before typing in

Program 5-3. You'll need to use MLX to enter other files in

this book, so be sure to save a copy. If you have a copy of

MLX from another COMPUTE! publication and you're using

tape, change line 763 of your copy so that it matches line 763

as listed in this book. Tape users who have a copy of MLX

which does not have a line 763 must use the version of MLX

from this book.)

After loading and running MLX, you'll be asked for two

prompts. Respond to these with:

Starting address: 51200

Ending address: 53245

Save this file as BMG.OBJ

Once you have these two files on disk or tape, you're

ready to start using bitmapped graphics. Load and run the

BMGLOADER program, which in turn loads and executes the

98

Chapter 5

machine language file. After the BASIC extensions are in

stalled, the READY, prompt will appear.

For a short demonstration of what the new graphics state

ments can do, enter and run Program 5-4. It draws a rectan

gular kaleidoscope. To stop the drawing, press the RUN/STOP

key. To reset the screen to text mode, hit RESTORE while

holding down RUN/STOP.

One very important word of caution: The bitmapped

graphics extensions require memory from 50176 to 53247

(hexadecimal $C400 to $CFFF). The extensions cannot be used

in conjunction with any other utility which uses these same

memory locations, including the popular DOS wedge. Remove

all such utilities before loading the bitmapped graphics exten

sions. The easiest way to do this is to turn the computer off

and back on.

The bitmapped graphics extensions stay in effect until the

computer is turned off, so there's no need to run the

BMGLOADER program more than once as long as the com

puter is on. The next time you turn on the computer, though,

you will have to run the BMGLOADER program before using

any graphics statements. Programs containing graphics state

ments will not list properly and will not work if the BMGLOADER

program has not been run earlier.

If you're finished using the bitmapped graphics BASIC

extensions and want to use another utility that requires the

same memory locations, use the KILL command. This removes

the extensions and frees up the memory. The graphics state

ments can later be reinstalled by running BMGLOADER again.

All the program examples in this chapter and in Chapter 6

require that the BASIC extensions be active when the programs

are typed in, run, or loaded. This is extremely important You

must run BMGLOADER each time you turn on your computer

and after the KILL command is used if you wish to use any

program containing the BASIC extensions.

Program 5*1. BMGLOADER Disk Version

10 IF A THEN SYS 52506:NEW

20 A=1:LOAD "BMG.OBJ",8,1

99

o
P
r
o
g
r
a
m

5
-
2
.
B
M
G
L
O
A
D
E
R
T
a
p
e
V
e
r
s
i
o
n

1
0

I
F
A

T
H
E
N

S
Y
S

5
2
5
0
6
:
N
E
W

2
0

A
=
1
:
L
O
A
D

"
B
M
G
.
O
B
J
"
,
1
,
1

P
r
o
g
r
a
m

5
-
3
*
B
M
G
.
O
B
J

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

5
1
2
0
0

5
1
2
0
6

5
1
2
1
2

5
1
2
1
8

5
1
2
2
4

5
1
2
3
0

5
1
2
3
6

5
1
2
4
2

5
1
2
4
8

5
1
2
5
4

5
1
2
6
0

5
1
2
6
6

5
1
2
7
2

5
1
2
7
8

5
1
2
8
4

5
1
2
9
0

5
1
2
9
6

5
1
3
0
2

5
1
3
0
8

5
1
3
1
4

5
1
3
2
0

5
1
3
2
6

:
0
7
2
,

:
0
1
0
,

:
0
0
9
,

:
0
0
2
,

:
2
2
1
,

:
0
1
3
,

:
1
0
4
,

:
2
0
8
,

:
1
6
2
,

:
1
9
3
,

:
1
9
5
,

:
0
1
6
,

:
2
0
4
,

:
2
4
7
,

:
0
7
4
,

:
0
0
4
,

:
0
0
7
,

:
2
3
9
,

:
0
0
5
,

:
1
4
0
,

:
1
5
7
,

1
7
3
,
2
5
2
,

1
7
3
,
2
5
3
,

0
0
2
,
0
1
0
,

2
2
1
,
0
0
9
,

1
7
3
,
0
0
0
,

2
5
0
,
2
0
4
,

1
4
1
,
0
2
4
,

0
0
9
,
0
3
2
,

0
0
1
,
1
4
2
,

2
0
4
,
1
5
7
,

2
0
4
,
1
5
7
,

2
4
1
,
1
6
2
,

1
5
7
,
0
0
9
,

1
0
4
,
1
4
1
,

1
6
8
,
1
8
9
,

2
0
5
,
1
8
5
,

2
0
5
,
1
7
3
,

1
6
2
,
0
0
1
,

0
0
9
,
0
1
6
,

0
2
2
,
2
0
8
,

0
0
6
,
2
0
5
,

0
2
1
,
2
0
5
,

2
0
4
,
0
1
0
,

2
0
4
,
1
4
4
,

0
1
0
,
0
7
2
,

0
0
3
,
1
4
1
,

2
2
1
,
0
4
1
,

1
4
1
,
0
0
0
,

2
0
8
,
1
7
3
,

1
4
1
,
0
1
7
,

2
5
5
,
2
0
4
,

2
5
0
,
2
5
5
,

2
5
4
,
2
5
5
,

0
0
2
,
1
8
9
,

2
0
5
,
2
0
2
,

2
5
4
,
2
0
4
,

2
0
0
,
2
0
4
,

2
0
8
,
2
0
4
,

0
2
2
,
2
0
8
,

1
6
0
,
2
5
5
,

1
6
2
,
0
0
3
,

1
4
2
,
0
0
3
,

1
6
2
,
0
0
3
,

2
0
2
,
0
1
6
,

0
1
0
,
2
0
9

0
0
2
,
0
2
4

1
7
3
,
0
3
2

0
0
2
,
1
4
0

2
5
2
,
1
6
4

2
2
1
,
0
9
1

0
1
7
,
1
9
1

2
0
8
,
1
4
5

1
8
9
,
2
3
3

1
8
9
,
0
2
2

2
0
2
,
0
4
7

1
9
7
,
1
0
5

0
1
6
,
0
9
7

1
7
0
,
1
7
4

1
4
1
,
0
3
6

1
4
1
,
0
1
3

0
4
1
,
2
4
0

1
4
4
,
0
3
9

2
0
0
,
2
4
7

2
0
5
,
0
6
7

1
3
8
,
0
0
6

2
4
9
,
2
0
8

5
1
3
3
2

5
1
3
3
8

5
1
3
4
4

5
1
3
5
0

5
1
3
5
6

5
1
3
6
2

5
1
3
6
8

5
1
3
7
4

5
1
3
8
0

5
1
3
8
6

5
1
3
9
2

5
1
3
9
8

5
1
4
0
4

5
1
4
1
0

5
1
4
1
6

5
1
4
2
2

5
1
4
2
8

5
1
4
3
4

5
1
4
4
0

5
1
4
4
6

5
1
4
5
2

5
1
4
5
8

5
1
4
6
4

5
1
4
7
0

5
1
4
7
6

5
1
4
8
2

5
1
4
8
8

5
1
4
9
4

5
1
5
0
0

5
1
5
0
6

5
1
5
1
2

:
0
9
6
,
0
7
2

:
1
6
5
,
0
0
1

:
1
6
9
,
2
0
0

:
0
0
8
,
0
7
2

1
0
0
3
,
1
6
5

:
0
0
1
,
1
0
4

:
0
6
4
,
1
6
9

:
2
0
4
,
1
3
3

:
0
7
5
,
1
6
2

:
1
5
7
,
0
1
5

:
1
6
8
,
1
6
2

:
1
6
0
,
0
6
4

:
1
4
1
,
0
3
3

:
1
3
4
,
0
7
6

:
2
0
0
,
1
6
0

:
2
0
8
,
2
5
1

:
2
0
8
,
2
5
1

:
2
4
6
,
0
9
6

:
0
3
2
,
2
4
0

:
0
0
9
,
0
0
3

:
0
0
0
,
2
2
1

:
2
2
1
,
0
7
6

:
1
4
2
,
0
0
0

:
0
4
2
,
1
4
1

:
2
0
5
,
1
3
8

:
2
0
5
,
1
4
1

:
1
7
0
,
1
8
9

:
2
0
2
,
2
0
8

:
0
1
0
,
1
4
1

:
2
0
5
,
0
2
9

:
2
0
5
,
1
6
9

,
1
3
8
,

,
0
0
9
,

.
0
7
2
,

,
0
7
2
,

,
1
6
8
,

,
0
0
0
,

,
0
7
6
,

,
0
0
2
,

,
2
0
5
,

,
0
3
1
,

,
0
3
2
,

,
2
0
8
,

,
1
6
2
,

,
2
3
2
,

,
0
9
6
,

,
2
3
0
,

,
1
7
3
,

,
2
3
7
,

,
1
4
1
,

,
0
0
9
,

,
1
2
9
,

,
2
0
5
,

,
0
0
2
,

,
0
4
8
,

,
2
5
5
,

,
0
0
8
,

,
0
0
4
,

,
0
0
8
,

,
2
1
2
,

,
0
0
0
,

0
7
2
,
1
5
2

0
0
2
,
1
3
3

1
6
9
,
1
5
7

0
7
2
,
1
0
8

0
4
1
,
2
5
3

1
0
4
,
1
7
0

0
7
2
,
1
7
3

1
6
9
,
0
0
0

1
5
7
,
0
0
0

2
0
2
,
0
1
6

0
3
2
,
2
2
5

2
1
9
,
2
0
0

1
7
4
,
2
5
3

0
0
3
,
0
3
2

1
3
6
,
1
4
5

1
4
5
,
0
7
5

0
7
6
,
2
0
2

0
1
7
,
2
0
8

1
7
3
,
0
0
2

0
0
2
,
2
2
1

0
0
3
,
1
4
1

2
5
5
,
1
6
9

1
7
0
,
1
6
9

2
0
5
,
1
4
0

0
3
5
,
0
4
5

2
0
4
,
2
4
0

2
0
5
,
0
4
1

0
1
0
,
0
1
0

2
0
5
,
1
7
3

2
0
4
,
1
4
1

1
3
3
,
0
8
2

,
0
7
2
,
2
2
2

,
0
0
1
,
1
9
3

,
0
7
2
,
2
1
5

,
0
2
0
,
2
4
6

,
1
3
3
,
2
4
0

,
1
0
4
,
0
4
5

,
2
5
2
,
1
3
0

,
1
3
3
,
1
2
1

,
2
0
5
,
0
1
3

,
2
4
7
,
0
0
4

,
2
0
0
,
2
4
2

,
1
0
4
,
2
0
9

,
2
0
4
,
1
9
3

,
2
2
5
,
0
7
4

,
0
7
5
,
1
4
0

,
2
0
0
,
1
7
3

,
2
0
8
,
1
2
3

,
0
4
1
,
2
4
7

,
2
2
1
,
1
2
1

,
1
7
3
,
0
2
7

,
0
0
0
,
1
1
4

,
1
2
8
,
2
1
2

,
0
0
0
,
1
8
2

,
0
0
1
,
0
3
3

,
0
0
3
,
2
3
8

,
0
2
2
,
0
6
9

,
0
1
5
,
1
4
8

,
0
1
0
,
2
2
6

,
0
0
6
,
0
7
5

,
0
0
5
,
0
7
8

,
1
7
3
,
0
5
0

Chapter 5

CM

CO

rH

in

ts
CM

CM

ts

rH

rH

in

CM

CM

in

rH

in

CM

r>

ts

CM

rH

ts

CO

ts

00

s
rH

in

CM

VD
rH

ts

in vd
ts
CM

CO

rH

00
ts
CM

VD
in

G»

00
!"•«•

ts

r>

ON

rH

r>

ts

ts

CO

CO

rH

in

in

CM

CO

ts

ts

in

VD
rH

H

in

ts

CM

in

ts

ts

in

G>

in

in

CM

CO

G>

tS rH

r^ in

rH rH

in oo

cm ts

r* in

po G)

G> G>

cm r*

H G>

oo r-
t^ CO

G><3

G>

rH

00
CO

rH

in

CM

VD
rH

VD
CO

rH

rH

G>

CO

VD
ts

ts

CM

CM

G>

ts

CM

VD

G»

00
CO

ts

ts
rH

ts

in

ts

CO

CO

rH

in
!«•«,

ts

rH

ts

rH

^t*
CM

G>

VD

ts

00
CO

ts

CO

ts

rH

G>

VD

ts

in

VD
rH

in
f>.

ts

rH

00
G>

in

VD

•H

VD

ts

CO

CO

rH

G)
ts

ts

G>

fX

ts

VD
ts
rH

ts
00
ts

in

VD
rH

00
ts
CM

CO

rH

co VD
ts

ts

CM

CM

VD

G>

in

VD
rH

rs»

G>

CO

CO

rH

VD
rH

CM

ON
ts

CM CM

CO

rH

ts

CO

rH

ts

<*
5$*

rH

<tf
CM

ts

in

ts

CM

in

ts

fx

rH

VD

IS

CO

CO

rH

ts
CM

ts

in

ts

CM

00
ts
G>

CO

rH

G>

ts

CM

ON

CM

CM

CM

rH

ts
TO

CO

CO

rH

in

00
ts

in

VD
rH

in

ts

rH

CM

in

iH

j^

r>»

is

00
CO

ts

VD
00
ts

CO

CO

rH

ts

in

ts
CM

rH

ts

CO

CM

rH

Gr
G>

in

ts

rH

in

in

CM CM

VD
in

rH

ts

CO

ts

in

ts

ts

VD
CO

rH

rH

ts
ts

CO

CM

VD

ts

CO

CO

rH

ts

ts
G>
G>

CO

CM

VD
in

ts

G>

rH

ts

r^

ts

in

VD
H

oo in
CO

rH

8
ts

G>

CO

CO

rH

Q

r^

[^

ts

CO

CO

rH

in

ts

CM

CM
ts

ts

r>

CO

CM

CM

ON

00
G>

CM

ts

in

TO

ON

CO CM
rH

00

G>

CM
CO

rH

ts
ts
ts

CM

CM
in

rH

in

rH

ts

rH

CM

CO

CO

•H

fSk

ts

ON

CM

CM

CM

in

rH

in
fx

ts

I CO

I CO

•• •• ••

^rHrHrHrHrHiHrHrHrHrHfHrHfHrHrHrHrHrHrHiHfHrHrHrHrHrHrHrHrHrH
mmmmmmmmmmininininminininininininininininininininin

rH

in

CM

CO

rH

ON

ts

CO

CO

rH

in

ts

CM

CM

ts
TO
ts

CO

rH

ON

rH

ts

00
ts
CM

<?
f>.

ts

rH

m
ts
CM

CM

G>
ts

CO
(**

rH

ts
00
ts

CO

CO

rH

G>

TO
Of)
ts

VD
TO
ts

CO

CM

ts

5
rH

rH

00
ts

CM

G>
fNk

rH

rH

ts
CM

in

ts

rH

ts

ts
H

ts

ON

G>

VD
G>
ts

vd in

ts

rH

00
ts

ts

CM

<S

G>
ts

CM

00
CO

ts

§
ts

CO

CO

rH

ts
in

CM

00
ts

CM

ts

CO

CO

rH

rH

ts
G>

rH

ts

00
IS

in

VD

rH

rH

G>
CM

ts

00
ts

ts

rH

TO
CM

ON

TO

in in

VD
rH

VD
IS

ts

ts

CM

VD

VD
TO
ts

VD

rH

ts

rH

^*
ts

GJ

rH

VD
ON

ts

rH

ts

G>

rH

rH

in

G>

CO

CO

rH

ts
rH

ts

ts
rH

ts

ts
rH

ts

rH

VD

ts

CO

CO

rH

<t

ts

<?
r>»

GJ

ts

rH

CO

CO

rH

VD

IS

rH

TO
rH

<*
CM

ts

ts

ts

G)
TO

rH

TO

ts
00
ts

ON

VD
ts

00
CO

rH

rH

in

r-

ts

CO

CO

•H

in

Q

rH

G>
rH

ts
00
ts

iH

CM

in

CM

on

ts
rH

VD

TO

rH

TO
rH

rH

00
ts

rH

CO

CO
rH

§
m

vd
rH

VD

TO

CO

CO

rH

rH

ts
TO

CO

CO

rH

^
TO
CM

rH

in

CM

in

^*
ts

ts

<?
TO

ON

ts
rH

r>

IS
G>

rH

ts

ts

00
ts

TO

<*
VD
rH

<*
TO
CM

in

rH

CM

in

00
rH

00
VD
H

CM

CO

CO

rH

CM

ts

VD
rH

ts

VD
00
ts

ts
<*
CM

CM

ts

ts

CM

ON

CM

in vd

ts

rH

IS
TO
ts

ts

VD

rH

ts

ts

CO
PO

G)

rH

CO

ts

TO

in

^*
ts

rH

ts

ts

<?
CO

rH

in

00
ts

TO

r^

p«*

CO

CO

rH

in

in

CM

CO

ts

VD
ON

ts

TO

ts
VD

00
f>»

IS

CO

CO

in

ts
CM

CM

rH

ts

rH

in

is
CM

CM

rH

ts

in

ts
CM

in
[••»

is

px.

rH

CM

rH

TO

TO

CM

ts

G)
rH

in

VD
rH

<*
CO

ts

ts

ts
ts

TO

ON

ts
rH

CM

ts

VD
CO

rH

rH

TO
ts

ts

ON

ts
rH

CM

in

rH

in

ts

CM

TO
G)
ts

rH

rH

n v ui rj vw > / *' n n v « w w y w U' u' v u' ui ui in i^ r* vy ui ui v^j %jj vy ui

G)CMCMrHG)rHCMG)(SG)CMCMrHG)G)G)rHCMG>«HCMG)G)OrHCMtSG}CMG)CM

OD^GJVOCMOO^GivDCMOO^GJVOCMOO^GJVOCMOO^tGiVOCMCO^tGJVDCMOO
HCMCOc0^^invDVDr^t^OOONONG)G«rHCMCMCOC05tininvDvDI^OOOOONON

ininininininintninininmLninvDvDvDvDvDvDvDvDvDvDvDvDvDvDvDvDvD

in

101

Chapter 5

& go oo vo co
CM|?> Jo co rH ®

,
2
0
5
,

,
1
3
4
,

,
2
3
2
.

H<S>O)
,
0
8
2

,
1
7
4

,
2
5
4 rHrHrH

:
0
9
6

:
1
3
4

:
1
0
2

,
2
4
0
,

0
0
1

r
0
4
1
,

,
1
0
0

r
1
3
4

:
2
0
4

r
0
0
3
.

2
0
8

r
2
0
5
,

,
0
0
0

r
2
3
8

:
0
3
1

,
2
0
1
,

0
6
1

,
0
3
2
,

,
2
0
5

r
0
0
2

:
2
3
8

11

ISrH
r
0
8
6
,

r
l
0
1
.

,
1
6
5

,
1
6
5 CMIS

:
1
4
4
,

:
2
4
0

r
2
0
5
,

r
l
3
3
.

G>rH
r
l
4
1
,

r
2
2
9
,

si rHG)
:
2
0
5
,

:
1
6
9
,

,
0
0
3
,

2
0
8

,
2
0
5
,

,
0
0
0
,

,
1
7
3

:
1
0
0
,

r
2
0
5
.

0
0
0

,
2
0
6
,

,
2
0
5
,

,
0
0
2

:
2
0
6
,

r
l
6
5
.

2
4
0

,
1
4
4
,

,
2
0
1
,

,
0
6
1

:
0
3
2
,

r
l
0
2
,

r
l
5
8
.

,
2
0
5
,

r
0
2
4
,

Sg
>

•HIS
:
1
0
1
,

1
1
4
1
,

r
0
2
5
,

r
0
1
8
,

,
0
2
0
,

r
l
0
5
,

,
2
0
8
.

,
0
0
0
,

,
2
0
5
,

,
2
0
5
,

2
0
5
,

1
3
3
,

rHrHrHrHIS
:
1
3
3
4

:
2
0
5
,

:
2
0
5
,

:
2
0
5
,

:
1
7
3
,

r
2
5
5
,

,
0
1
5
,

0
0
3
,

2
0
5
,

:
1
1
0
,

:
1
3
6
|

r
l
4
1
.

0
1
6
,

,
1
0
9
,

1
5
2

:
2
0
5
,

,
0
7
4
,

0
8
8
,

1
4
4
,

r
0
2
4
,

2
0
5

:
0
1
6
,

,
0
1
7
,

1
0
9
,

r
0
7
3
,

0
0
2

:
1
7
6
,

r
l
4
4
,

0
0
7
,

2
0
5
,

1
0
7
,

:
2
0
5
,

:
0
7
4
,

0
0
1
,

,
2
4
2
,

1
8
9
,

:
1
7
0
,

1
4
1
,

0
1
5
,

,
1
0
9
,

0
2
4
,

:
1
3
6
,

2
0
5
,

1
0
9
,

,
1
5
2
,

2
0
5
1

:
0
1
5
,

2
0
4
,

1
8
9
,

,
2
0
5
,

0
1
6
,

:
1
4
1
,

CMCMCMCMCMCMCMCMCMCMCMCM<NCMCMCMCM<NCMCMCMCMCMCMCMCMCMCMCMCMCM
intnininininininininininininininininmininininininininmininin

in

G>
is

CO
^*
TO

VO
CO

rH

ON

00
TO

00
ON

rH

TO

CM

CO

TO

CN

rH

TO
TO

TO

CM

in

TO

in

TO

CM

CO

rH

TO
TO
TO

TO
VO
i^

•H

G)
TO

CN

VO
r-\

r^

in

vo
rH

VO
["•*

IS

f>

ON

rH

in

TO

in

vo
rH

rH

COON
TO TO

cm in

is r*
CM Q

vo m

rH VO
IS rH

5t <?

•H IS

is r*

G* Gl

co in

CO VO
CN rH

r- to

G»CM

TO

CM

VO
ON

IS

r>

IS)

IS

CO

CM

CO

TO

G>

VO

rH

CO

CO

rH

in

G>

rH

00
rH

rH

ON

CN

CO

rH

<4*

G)

CO

in

rH

TO
rH

TO

G>
G)
TO

in

G)

in

00
rH

TO
ON

TO
TO
TO

r^

®

in

00
rH

CM

TO

TO
IS

in
r>.

IS

vo
in

TO

<*
TO

rH

TO
TO
TO

1^

TO

r-

TO

in

00
rH

CM

ON

TO

CO

CO

rH

co in

in

rH

CM

^*
TO

rs.

TO

in

CM

CM

CM

TO

CO

ON

TO

CO

CO

rH

r^

TO
TO
TO

in

TO

CO

CO

rH

in
f>»

GJ

in in

00
rH

p^

r*

TO TO

m

CM

TO
TO
TO

CM

vo
in

TO

in on

is

in

(S

IS

CO

CO

rH

VO
ON

IS

CO

CO

rH

TO
TO

IS

r^

ts

in

00
H

in

ON

G)

CO
ON

TO

CO

rH

r>

ON

G>

CO

CO

rH

r^

r«K

TO

in

^*
CM

CO

O>
TO

in

vo

TO
TO
TO

CM

vo
rH

ON
ON

TO

CM

CO

in

00
rH

ON

ON

TO

^
VO
rH

CM

CO

CM

CM

TO

00

TO

TO

TO
TO

1^

00
TO

rH

CM

rH

<3«

CN

TO

in

TO
CM

TO
TO
TO

00
TO

G>

CO
IS
CM

CM

in

rH

in

TO

CM

TO
G>
TO

CO

in

rH

rH

rH

ON

00
TO

rH

TO
rH

in

TO
CM

CM

TO
TO

CO

rH

rH

rH

<tf
CM

G>

CM
ON

TO

in

vo
rH

in

G)
CM

CN

TO

TO

rH

rH

CO

ON

00
rH

00
ON ON

TO

in

vo
rH

CM

ON

TO

CO

CO
•H

<tf
ON

TO

TO

VO
VO
rH

CO
ON

TO

CO

CO

rH

in

H

00

rH

rH

^*
CM

TO

in

IS
CM

VO IS
ON

G>
IS
TO

CO
f>.

rH

CO
IS
TO

CO
TO
CN

CO
CO

rH

in

TO

CM

TO
TO

TO

CM

5)
TO

r-i

rH

ON

CO
G>

rH

IS
rH

in

TO
CM

CM

IS
TO

CM

rH

TO

VO

rH

rH

IS
CM

r*v

in

TO

CM
CO

TO

IS
ON

TO

00
ON

rH

ON

TO
TO

00
TO
CM

VO
00
TO

in in

TO

CM

VO
rH

<*

rH

^
CM

rH

ON

TO

00
ON

rH

00

H

00
TO

CM

G»vOCM(X)^QvOCMCJ0^G»VOCN00^S>VOCNC0'5tlSvOCN00^tlSvOCN00'<tlS
c^c^GiiSrHCMCM<^co^ininvovor^cooooNONG>rHrHCMcMco^t^ininvor*'
OOOOONONO^C^C^C^ONC^ONC^ONC^ON0NONONONG)G}G)ISG)G)ISG)ISGtG)Gt
.HrHrHrHrHrHrHfHrHrHrHrHrHfHrHiHrHrHrHCMCMCMCMCMCMCMCMCNCMCMCM

mmmmmmmmmmmmmmmmmmmmmininininininininmin

102

Chapter 5

! rH CO TO I

co ro co in

Is* TO S) CO
TO CM TO CM

^^^^^^^^^inininininininininininininininininvovovoovo
CMCMCMCMCMCMCMCMCMCMCM CM CM CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM
ininininininmin

rH

TO

rH

rH

in

TO
CM

r*

rH

IS

ON

TO
rH

^
CM

TO

to

*t
CM

TO

rH

^P
IS

TO
rH

CO
VO
rH

in

TO
CM

CO

r-

rH

CO

iH

IS

TO

CM

TO

rH

TO

in

rH

TO

rH

TO

m

TO
TO

VO

rH

TO

in

TO
CM

m
TO
TO

in

rH

in

TO
CM

in in

TO
CM

m

CM

TO TO

CM

TO

H

rH

rH

CM

TO

ON

00
rH

^f

TO

in

TO
CM

VO
rH

TO

CO

rH

CO
TO
TO

CM

CO

TO

in

TO
CM

in

rH

TO

rH

in

TO
CM

r*

r—1

TO
TO
TO

TO
VO
rH

r^

CO

TO

VO

rH

rH

TO
CM

TO
CO

CM

CM

TO
TO

CO

TO
CM

in

TO
rH

TO
CO

CM

in

TO
rH

rH

TO

CO

CO

rH

^1*
<*
rH

TO

VO
TO
rH

•<*
rH

TO

CO

vo
rH

rH

TO

CM

in

rH

rH

TO

TO
CM

TO

<*

rH

TO

VO
rH

TO

in on

TO

rH

t^

TO

CM

TO
TO

CM

VO
rH

CM

CO

TO

TO
TO

VO
ON
TO

^
CM

TO

VO
VO
TO

rH

TO

rH

rH

CM

•<*

rH

in

TO
CM

in

CM

TO

rH

^
rH

00
CM

rH

VO

TO

CO

rH

VO

TO

TO
•^
CM

TO
t^

rH

^

TO

CM

rH

TO

rH

«*
rH

^f
TO
CM

rH

rH

CM

ON
CM

TO

in

TO
CM

VO
rH

TO

CO

rH

TO
r^

rH

VO
ON

rH

rH

in

TO
CM

in

TO
CM

in

rH

TO

rH

00
CO

rH

<fr

TO

in

5)
CM

CM

TO
CM

ON
rH

rH

CM

CO

TO

in

TO
CM

r*

rH

TO

CM

■H

ON

CO
rH

rH

rH

TO

00
TO
CM

VO
ON

TO

ON

rH

<*
rH

CM

TO
CM

in

TO
CM

00
rH

TO

in

rH

in

TO
CM

in

rH

TO

CO
rH

TO

ON

00
rH

in

vo
rH

**
rH

1^

CM

VO
rH

TO

VO
rH

TO

CM

TO
CM

in

TO
CM

in

rH

TO

r-

m

rH

in

TO
CM

in

TO
CM

in

rH

6)

1^

in

rH

in

rH

rH

r-

CM

00
VO
rH

VO

rH

H

Q
in

CM

VO
iH

TO

CM

TO
CM

VO
(S
TO

TO
rH

TO

CO

rH

TO

TO
TO
CM

CO

CO

rH

TO
TO
CM

ON

TO
TO

ON

TO
TO

00
TO
TO

00
TO
TO

CO

§
TO
TO
TO

(S
TO

CO

TO
TO

rH

TO
TO

TO
TO
TO

rH

rH

<S>

rH

rH

TO

CO

CM

CM

rH

ON
rH

CM
rH

in

CO

vo

in

CM

CO

in

CM

rH

in in

CM

TO
r^

rH

CM

CM

in on

CO
TO

CO

CM

0tTOO

VOvOr^COOOONONTOrHrHCMCMCO^^ininvOf^r^OOCOONTOTOHrHCMCOCO^
CMCMCMCMCMCNCMCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO^^rt^t^^^1^
CM

in

103

Chapter 5

iHiHCOin&CMvOCMrHCM&^VOOOrHCOCOGtCOVOr^CTt^CMOO'HCMCMON'tCO
Hcoi^GtGtcovocM^^^^r^co^GtincMGcrknvont^G^Gvococoo

GiVOCMCO^GtVOCMCO^GlVOCMOO^GtVOCMGO^GiVOCMCO^tGiVOCMGO^Gt
cMCMcoco^innvovot^ooooc^c^GHCMcMco^^nftcooOG

OOOOOOOOCX)OOCCCC7CCCC^CC^CC^C5)
CMro
in

CM

VO

CM

CO

ON

G»

VO
Gt
CM

00
in

rH

in

ft
CM

00
Gt
CM

Gt

in

H
rH

CM
CO

Gt

VO
Gt
CM

00

rH

m

CO

CM

CM

CO

Gt

rH

Gt
on in

rH

VO

CM

00

rH

CM

CM
CO

Gt

Gt
Gt
Gt

rH

r>

CM

CM

CO

Gt

VO
Gt

Gt

VO
Gt
Gt

CM

CO

Gt

in

Gt
CM CM

CM
CO CM

CM CM

CM

rH

CO

CO
rH

CM

CO

Gt

rH

CM

CM

Gt

rH

VO Gt
rH

VO

Gt

00
VO
rH

in

in

Gt

CM

00
CO

rH

CO

00
rH

00
in

rH

VO CM

rH

rH

Gt
CM

CO

Gt

ON

rH

CM

on

VO
rH

CM

CO

Gt

VO

Gt

CO

Gt

VO

rH

00
Gt
Gt

rH

Gt
Gt
Gt

VO

Gt

in

Gt
CM

rH

On
rH

CM

CO

Gt

Gt
Gt
CM

CM

Gt
00
Gt

VO

Gt

in

Gt
CM

rH

ON
rH

CM
CO

Gt

Gt
Gt
CM

Gt

CO

00
rH

CO
in
rH

CM

CO

Gt

in

Gt
Gt

Gt

CM

Gt
Gt
CM

Gt

rH

rH

VO

Gt

Gt
Gt
Gt

ON

VO

^*
Gt

00
CO

rH

rH

Gt
rH

Gt

00
Gt
CM

!*••

Gt

iH

CM

Gt

in

vo
rH

Gt
Gt
CM

rH

Gt
CM

Gt

VO
VO
rH

00
CO

H

VO
Gt
CM

CM

CO

CM

CM

H

CM

CM

Gt

VO
I**

Gt

in

rH

00
G)
Gt

VO

Gt

VO
ON

Gt

Gt

<?

CN

Gt
^*
CM

Gt
Gt
Gt

rH

CM

rH

CM

CO

Gt

00

rH

H

rH

Gt

rH

«* Gt
CM

VO

G*

Gi

CM

G*

CM

^«

VO
H

rH

G?
CM

Gt

Gt
VO
rH

<tf

^*
Gt

Gt
Gt
Gt

Gt
VO
iH

CO

00
rH

rH

CO

Gt
Gt

Gt
VO

-

<tf
^*
Gt

rH

Gt
^*
CM

*t
VO
rH

rH

Gt
CM

CM VO
Gt
Gt

Gt
VO
rH

Gt

Gt
CM

rH

CO

CM

Gt

rH

Gt

CM

CO

CM

CM

-

CO

00
rH

in

CO

CM

CM

CO

Gt

Gt
CM

Gt

rH

in

CM

CM

CO

G?

^

Gt
CM

in

in

CM

f>.

rH

VO
Gt
CM

CM

00
Gt
Gt

CM
CO

G»

in

Gt
CM

r>

CM

CM

CM

CO

Gt

in

Gt
CM

Gt

Gt
Gt
Gt

rH

CM

rH

CM

CO

Gt

CO

Gt
CM

VO

rH

rH

Gt
CM

CM

,»,

On

rH

00
Gt
CM

«*
VO
rH

rH

Gt
CM

^

ON

H

Gt

CM

rH

CO

00
rH

in

CO

CM

CM

CO

Gt

Gt
Gt
Gt

in

rH

rH

CM
CO

Gt

G)

VO
CO

CM

Gt
Gt
Gt

CM

VO
rH

VO
G>
CM

CM
CO

CM

CM

H

(N

r>.

CM

CM

CM

CO

Gt

Gt
rH

Gt

00

Gt
CM

VO
Gt
CM

rH

CO

CM

CM

Gt

rH

VO

rH

CM

Gt
CM

ON
rH

rH

CM

CO

Gt

in

Gt
CM

Gt

00
CO

rH

in

Gt
CM

in

^*
CM

CM

CO

Gt

rH

CM
CM

rH

CM

ON

CM

Gt

in

Gt
CM

VO
Gt
Gt

CO

rH

VO
Gt
Gt

Gt

CM

104

Chapter 5

CMvooovocMincMONin
OOinvOCOCOHCMiHVO
HHHHHBIHNISI

eg

ta

in

rH

00

H

<a
CM

VO
CM

CM

CM

CO

in

rH

fH

CM

CO

IS

CO

iH

6)

CO

VO
r^

IS

CO

IS
6)

00
5)
CM

VO
co ro
rH

IS
IS
IS

ON

VO
H

CM

rH

<a
CM

5)
IS
IS

00

rH

r^

CM

VO
CM

CM

CM

CM

<S

00

CM

CM

CM
rH

in

CO VO
5)

in

is

CM

VO
H

rH

CM

CD
IS

H

CM

r^

G)

vo
ON

<s

CM

CM

rH

00
O\
rH

CO

CM

H

CO
ON
H

GO
00
rH

CM

CO

G)

CM

G)

CM

in

rH

CM

ts

CO
CO

rH

CO

CM

in

in

CM

in

*t
in

CM

m

rH

VO

is

<*
cm in
CM CM

CM

CO

<S

vo

CM

vo

IS

vo

ONONQfHHCMCMCOTt
HrHCMCMCMCMCMCMCM

COCOcoCOfOCOcOCOcO
ininminininininin

VOCMCMVOfHKj'rHVOCOCOONOOfHlSVOSiCOCMlSHCOCMininrHVOCM^^inin

ScoiSinQvoiSinr^rocooB>coHooincM^BJCMisisoor^voiS^r^ooB>

QQQQQISSOlSliaiSlOSHSlSSlHHHHHHHH

cococococococococococococorocococococorocorocococococococococo

inininininininininmininininininininininin'inininininininininin

105

Chapter 5

Program 5*4. BMG Demonstration

10 GRAPHICS 6:POKE 53280,0:FOR 1=1 TO 12:FOR J=12

{SPACE}TO 0 STEP -1:K=I+J

20 SETPEN 1,RND(0)*16:DRAW 6+K,J,l TO 6+K,24-J:DRA

W 32-K,J TO 32-K,24-J

30 DRAW 7+J,25-K TO 31-J,25-K:DRAW 7+J,K-l TO 31-J

,K-1:NEXT:NEXT:GOTO 10

Graphics Modes and Point Plotting

There are two major problems when using bitmapped graphics

from BASIC—clearing the bitmap screen takes too long, and

plotting of individual points is too slow.

To clear the screen in BASIC, the 8000 memory locations

for the bitmap have to be POKEd to zero. Plotting in BASIC is

slow because it involves some very complicated calculations.

To solve the first problem, the GRAPHICS statement is

available.

GRAPHICS mode number

This statement turns on the bitmapping mode of the VIC-II

chip, clears the bitmap screen, and sets the background to

black. The purpose of the mode number will be explained in a

moment.

The screen is now all set for high-resolution plotting. That

is done by the DRAW statement.

DRAW X coordinate, Y coordinate

Plotting is done by using the standard coordinate system

of X and Y coordinates. The columns (the X coordinate) are

numbered from 0 to 319, starting at the left edge of the screen.

The rows (the Y coordinate) are numbered from 0 to 199. Un

like standard mathematics, the numbering of rows starts at the

top and works down. The point is plotted where the column

and row intersect. Take a look at Figure 5-1 for an illustration

of this coordinate system.

The position 0,0 is at the intersection of the first column

and the first row, which is the upper-left corner of the screen.

This particular position is of special importance and is called

the home position.

106

Chapter 5

Figure 5*1. Bitmap Coordinate System

A Home (0,0)

199
-►319

To see the GRAPHICS and DRAW statements in action,

enter and run the program below.

10 GRAPHICS 0

20 DRAW 5,5

30 DRAW 35,5

40 DRAW 35,20

50 DRAW 5,20

60 GOTO 60

Four points are plotted, at the four corners of a rectangle.

The infinite loop at line 60 is needed to prevent the program

from ending. The screen automatically reverts back to text

mode when the READY, prompt is printed. Since the screen

switches to the text mode whenever READY, appears, the

graphics statements cannot be used in the immediate mode.

Graphics statements should be used only in a program.

As shown by the example, the DRAW statement is a fast

and convenient way to plot points. The two major problems of

using bitmapped graphics from BASIC have now been solved.

Unfortunately, the previous program reveals a new prob

lem. The points are very small. To make the points more vis

ible, they have to be made larger. That's where the mode

number comes in. The term resolution is used to describe how

many points are displayed on a bitmap screen. The more

107

Chapter 5

points that are displayed, the higher the resolution and the

smaller each point is.

Mode 0, used in the demonstration above, supports the

highest resolution (320 X 200 points). Mode 2 cuts that

resolution in half in each direction (only 160 X 100 points),

but each point is four times the size as before. Change the

mode number in the demonstration from 0 to 2, and run it

again to see this effect.

There are a total of four different resolutions available.

Here's a list showing the number of columns and rows in each

mode.

MODE

0

2

4

6

RESOLUTION

320 X 200

160 X 100

80 X 50

40 X 25

There are four other modes, numbered 1, 3, 5, and 7,

which are reserved for special purposes. These will be ex

plained later. Using a mode number outside the range 0-7 will

result in an ILLEGAL QUANTITY error.

The following program may not be very exciting, but it

does show how plotting with the DRAW statement is much

faster than using the old method of POKEing data to create

something on the bitmap screen.

10 GRAPHICS 4

20 DRAW RND(1)*80,RND(1)*50:GOTO 20

These next two examples use trigonometric functions to

draw a sine curve and a circle. Change the values for RX and

RY in the second program to make the circle into an oval.

10 GRAPHICS 0

20 FOR X=0 TO 319

30 DRAW X,100+20*SIN(X/l0)

40 NEXT X

10 GRAPHICS 0

20 RX=55:RY=40

30 FOR A=0 TO 2*t_ STEP t/180
40 DRAW 160+RX*COS(A),100+RY*SIN(A)

50 NEXT A

108

Chapter 5

If you make the values for RX and RY too large, the co

ordinates for plotting will be off the screen. The program will

stop, the screen will change back to text mode, and an IL

LEGAL QUANTITY error message will be printed. This error

indicates that the coordinates used in a DRAW statement are

out of range for the current graphics mode. For example, try

ing to plot a point at —1,-1 causes this error.

A useful analogy to help understand bitmapped graphics

is to imagine that the drawing is done by a pen. The co

ordinates position the pen on the screen, and the DRAW state

ment tells the pen to press down and make a dot. The color of

the ink is light green. A pen with a fine point draws thin lines

and is used for detailed drawing; this is similar to a high-

resolution screen mode. A dull point creates broad strokes

which cover more area, something similar to low-resolution

modes.

In modes 0, 2, 4, and 6, there are actually two pens avail

able. Pen 1 is used for plotting. It's the default pen and has

been used in all the previous examples. Pen 0 is used for

unplotting. This erases points plotted by pen 1. When a point

is erased, the color of the background shows through.

The DRAW statement supports an optional third number

that's used to change the current pen number.

DRAW X coordinate, Y coordinate, pen number

When the GRAPHICS statement is used to switch from

text to graphics mode, the current pen number is set to 1. The

statement DRAW 5,6,1 is thus the same as DRAW 5,6. Both

statements plot a point at position 5,6. To erase the point, just

use pen 0. DRAW 5,6,0 erases the previously drawn point.

Once you've switched to pen 0, all future drawing is done

with that pen, at least until you change it back to pen 1.

The following program plots three points, waits for a

keypress, erases the points, waits for another keypress, and

then plots one more point. Type it in and try it out.

100 GRAPHICS 4

110 DRAW 3,4:REM DEFAULTS TO PEN 1

120 DRAW 7,9

130 DRAW 4,20

140 WAIT 198,15:GET K$:REM WAIT FOR KEYPRESS

150 DRAW 3,4,0:REM NOW IN PEN 0

160 DRAW 7f9:REM STILL PEN 0

109

Chapter 5

170 DRAW 4,20

180 WAIT 198,15:GET K$

190 DRAW 5,11,1:REM BACK TO PEN 1

200 GOTO 200

The classic example of plotting and erasing is the bounc

ing ball program. A point is plotted at one position, then it's

erased and plotted at an adjacent position. The direction of

travel is reversed whenever the ball hits the edge of the

screen. This next example does just that.

10 graphics 4

20 X=INT(RND(1)*78)+1:Y=INT(RND(1)*48)+1:DX=1:DY=1

30 DRAW X,Y,0:X=X+DX:Y=Y+DY:DRAW X,Y,l

40 IF X=0 OR X=79 THEN DX=-DX

50 IF Y=0 OR Y=49 THEN DY=-DY

60 GOTO 30

Changing Colors

Thus far, plotting has always been done in light green (color

13). With a normal pen, you can change the color by replacing

the ink with a different refill. Likewise, the color associated

with a graphics drawing pen can be changed to any of the 16

colors available on the Commodore 64. The format for altering

colors is:

SETPEN pen number, color number

When using modes 0, 2, 4, and 6, only pen 1 should be

used with SETPEN. The color number can range from 0 to 15.

(Refer to the Commodore 64 User's Guide for the color values.)

Of course, if the pen is changed to color 0 (black), the plotting

won't be visible because it then matches the background color.

The next program is a modified version of the bouncing

ball program. The points are never erased, so the ball leaves a

trail. Pressing any key makes the program restart with a dif

ferent color for pen 1.

10 graphics 4

20 X=INT(RND(1)*78)+1:Y=INT(RND(1)*48)+1:DX=1:DY=1
30 SETPEN 1,RND(1)*15+1

40 X=X+DX:Y=Y+DY:DRAW X,Y

50 IF X=0 OR X=79 THEN DX=-DX

60 IF Y=0 OR Y=49 THEN DY=-DY

70 GET K$:IF K$=IIM GOTO 40

80 GOTO 10

110

Chapter 5

Because of the GRAPHICS statement, the program clears

the screen before using a new color for pen 1. Pen 1 can be

used to draw in more than one color on the same screen, pro

vided that points plotted in different colors are separated from

one another. For example, let's say that some points are plot

ted while pen 1 has the color red, then SETPEN is used to

change the pen color to blue. Points plotted now will be

drawn in blue, and the earlier points will retain their red color.

However, if some blue points are plotted too close to the red

points, the color of the latter will be affected. Try changing the

GOTO 10 in the previous program to GOTO 30.

Every time you press a key, the drawing continues as

before, but a different color is used. All appears as it should,

except at those places where two different colored lines cross

each other. You'll see that sometimes the color of one line

interferes with the color of the other. That's the restriction in

using modes 0, 2, and 4. Drawing can be done in 16 different

colors on the same screen, but colors have to be kept apart

from each other. The problem doesn't occur in mode 6.

Pen 0 should not be used with the SETPEN statement.

Remember, pen 0 is used for erasing, not for plotting, so the

idea of an ink color doesn't apply. The only color associated

with pen 0 is the background color, which is set to black

(color 0) by the GRAPHICS statement when the screen is

cleared. To clear the screen and set the background to a dif

ferent color, use the CLS statement.

CLS color number

When CLS is executed, the screen clears and the back

ground is set to the specified color. The current graphics

mode, however, stays the same. The statement CLS 2, for in

stance, clears the bitmap and sets the background to red with

out affecting the current resolution.

10 GRAPHICS 4

20 CLS 2

30 FOR K=5 TO 40

40 DRAW K,K

50 NEXT K

60 GOTO 60

The number after the keyword CLS is optional. If no

number is specified, zero is assumed, so CLS alone sets the

background to black.

Ill

Chapter 5

You can even change the graphics mode from within a

program, mixing modes on the screen. The MODE statement

format is:

MODE mode number

This changes the graphics mode without clearing the screen.

You can then draw in one resolution, change the mode, and

continue drawing in another resolution.

10 GRAPHICS 6:FOR X=l TO 36 STEP 6:Y=RND(1)*21:GOS

UB 60:NEXT

20 MODE 4:FOR Y=l TO 46 STEP 3:X=RND(1)*76:GOSUB 6

0:NEXT

30 MODE 2:FOR K=l TO 32:X=RND(1)*156:Y=RND(1)*96:G

OSUB 60:NEXT

40 WAIT 198,15:GET K$:GOTO 10

60 DRAW X+1,Y+1:DRAW X,Y:DRAW X+2,Y:DRAW X+2,Y+2:D

RAW X,Y+2:RETURN

The MODE statement cannot be used in place of the

GRAPHICS statement. MODE depends on the GRAPHICS

statement having been executed beforehand. Statements like

DRAW, CLS, and MODE should be used only when the

screen is already in a graphics mode. The only graphics state

ment that should be used when the screen is in the text mode

is GRAPHICS.

To make the screen go back to text mode while a program

is running, use the TEXT statement.

TEXT

When executed, TEXT turns off the bitmap mode, sets the

border and background colors to their default values, and

clears the screen. After the screen has been changed to the

text mode by TEXT, it can be returned to the graphics mode

by the GRAPHICS statement.

Line Drawing

Given a starting point and an ending point, the DRAW state

ment draws a straight line by plotting all the points between

them. All you have to do is use the keyword TO.

10 graphics 2

20 DRAW 10,10 TO 70,40

30 GOTO 30

In the example above, the starting point is 10,10 and the

112

Chapter 5

destination point is 70,40. The DRAW statement first plots a

point at 10,10. The drawing then continues in the direction of

the point 70,40, and stops when that point is reached. The ef

fect is one of moving the pen to the new position without ever

lifting it off the screen.

Depending on the angle at which the line is drawn, the

line may appear slightly jagged. (Try 50,40 as the destination

point.) With some angles, the computer can only approximate

a straight line. When the line is not vertical or horizontal or

does not fall on a perfect diagonal, a jagged appearance re

sults. Change the graphics mode to 4 and run the program

one more time to get a better look at what's happening.

In extreme cases, a line may appear to be drawn in long

segments. The line in the next example is broken into three

parts because there's only one row between the two endpoints.

10 GRAPHICS 4

20 DRAW 10,10 TO 60,12

30 GOTO 30

Using a higher resolution often helps to minimize the

problem.

The next program draws lines at all sorts of angles, then

erases them for a shooting star effect.

10 GRAPHICS 0:POKE 53280,0:SETPEN 1,1

20 X1=RND(1)*320:Y1=RND(1)*200

30 X2=RND(1)*320:Y2=RND(1)*200

40 DRAW X1,Y1,1 TO X2,Y2

50 DRAW X1,Y1,0 TO X2,Y2

60 GOTO 20

You cannot change the current drawing pen when drawing

a line this way. The point after the keyword TO consists only

of the X and Y coordinates. A third number for the drawing

pen is not allowed. Remember, once the pen is placed on the

screen by DRAW, it stays on the screen while it draws a line.

On the other hand, a nice feature of the DRAW statement

is that destination points can be chained together. A statement

like DRAW X,Y TO X1,Y1 TO X2,Y2 is perfectly legal. The

statement draws a line from X,Y to X1,Y1, and then draws a

line from X1,Y1 to X2,Y2. Try this:

10 GRAPHICS 6

20 DRAW 10,10 TO 30,10 TO 30,20 TO 10,20 TO 10,10

113

Chapter 5

30 GOTO 30

Here's another demonstration. This program uses trigo

nometry to create a picture.

10 GRAPHICS 0:POKE 53280,0:SETPEN 1,15:CX=160:CY=l

00

20 FOR A=0 TO t/2 STEP J7180:Y=65*SIN(5*A)*SIN(A) :

X=150*SIN(AJ*COS(A)
30 DRAW X+CX,Y+CY TO CX,CY TO CX-X,Y+CY:NEXT

40 FOR A=15*t/36 TO t/2 STEP J./90 :Y=-30*COS (4*A)*S
IN(A):X=40*COS(2*A)*COS(A)

50 DRAW X+CX,Y+CY TO CX,CY TO CX-X,Y+CY:NEXT

60 DRAW CX-30,CY-70 TO CX,CY-30 TO CX+30,CY-70

70 GOTO 70

When DRAW is used with a destination point, the starting

point is optional. If a point has already been plotted at X,Y,

the statement DRAW TO X1,Y1 will draw from X,Y to X1,Y1.

In effect, the last position of the pen has been remembered.

This allows chaining of more destination points than can fit on

one BASIC line.

10 GRAPHICS 2

20 DRAW 80,10 TO 111,82 TO 30,38

30 DRAWTO 130,38 TO 49,82 TO 80,10

40 GOTO 40

The pen position is remembered after the DRAW state

ment has been executed. That's how the DRAW statement on

line 30 can pick up the drawing where the DRAW of line 20

left off. Notice that when the starting point is omitted, it's okay

to contract the keywords DRAW and TO to form DRAWTO.

Another application of DRAWTO is to use it in a loop.

The same DRAWTO statement can be used to draw a long

chain of lines when it's executed repeatedly.

100 PRINT CHR$(147);CHR$(155):POKE 53280,0:POKE 53

281,0

110 PRINT "SPIRALS":PRINT "BY CRAIG CHAMBERLAIN":P

RINT

200 X=0.085:Y=0.105:M=1000:N=t7l80:R=360:DIM S(R),

C(R)
210 FOR K=0 TO 90:A=M*SIN(K*N):B=A*X:C=A*Y:S(K)=B:

S(180-K)=B

220 S(180+K)=-B:S(R-K)=-B:C(270+K)=C:C(90+K)=-C:C(

90-K)=C:C(270-K)=-C:NEXT

230 X=160:Y=100:K=RND(-RND(0)):M=0:N=0:H=100

114

Chapter 5

300 GRAPHICS 0:A=H*RND(1):B=H*RND(1):SETPEN 1,RND(

1)*15+1:DRAW X,Y

320 FOR K=l TO 180:N=N+A:IF N>R THEN N=N-R

330 M=M+B:IF M>R THEN M=M-R

340 O=S(N)/H:DRAWTO C(M)*O+160,S(M)*O+H:NEXT

360 FOR K=l TO 1000:NEXT:GOTO 300

Remember, the pen color cannot be changed while the

drawing pen is drawing lines. In the following program, the

effect of the SETPEN statement is not seen until DRAW is

used to plot a starting point.

10 GRAPHICS 6

20 DRAW 10,10 TO 20,20:REM DISPLAYED IN DEFAULT LI

GHT GREEN

30 SETPEN 1,8

40 DRAWTO 30#10:REM STILL IN GREEN

50 DRAW 30,5 TO 10,5:REM NOW IN ORANGE

60 GOTO 60

Whenever the screen is cleared with a CLS, the pen is set

to the home position (0,0). If DRAWTO is used after CLS and

no previous point has been plotted, the drawing will start

from the home position.

Area Filling

The next logical step after plotting points to draw a line is to

plot points that fill in an area. That is done by the statement

FILL.

The syntax for the FILL statement works the same as

DRAW'S.

FILL X coordinate, Y coordinate

In fact, FILL X,Y plots one point at X,Y, just like DRAW

X,Y. The difference is when a destination point is used. The

statement FILL X,Y TO XI,Yl, after plotting an initial point at

X,Y, starts drawing a line to X1,Y1. But as each point of the

line is plotted, all points on the same row, to the left and right

of the line, are also plotted.

10 GRAPHICS 6

20 DRAW 10,10 TO 30,10 TO 30,20 TO 10,20 TO 10,10

30 FILL 20,10 TO 20,20

40 GOTO 40

With FILL, the drawing pen behaves more like a paint

brush that takes a swipe to the left and right on each row

115

Chapter 5

that's filled. The brush fills in the background and stops when

it comes to a point that's already been plotted. This is why the

fill stayed inside the rectangle; the brush stopped when it hit

the left or right side of the shape.

FILL is normally used to fill in an area that's been out

lined by DRAW. If nothing has been previously drawn to stop

a fill, the filling continues until it reaches the edge of the

screen. There it stops, without causing a range error. Remove

line 20 of the previous example and run it again to see this

happen.

Notice that the fill does not begin at the starting point.

Rather, it begins on the next row.

The FILL statement is handy because it can cover large

areas quickly. FILL can also be used to erase a large area.

There's an optional third number after the X and Y co

ordinates for the destination point in a FILL statement. This

number identifies the drawing pen that's to be covered up

when the fill is performed. When no pen number is given, pen

0 is assumed. Since pen 0 corresponds to the background, this

means that the area to be filled in is the background, and the

filling should stop as soon as it hits anything else (pen 1 or

the screen edge). Here are some examples.

FILL X,Y,1 TO XI,Yl

or

FILL X,Y,1 TO X1,Y1,O

Both of these statements indicate that pen 1 should be used to

fill in the background.

However, this statement specifies that pen 0 should be

used to erase all points plotted in pen 1.

FILL X,Y,0 TO X1,Y1,1

Keep in mind the fact that the pen number in a destina

tion point has a different meaning than the pen number for a

starting point. In a starting point, the pen number is used to

change the current pen, to determine whether the pen will be

used for drawing (pen 1) or for erasing (pen 0). If the number

is omitted, the current pen is used.

The pen number in the destination point specifies which

points are to be covered up by the fill. If no number is given,

116

Chapter 5

it's assumed that the background is to be filled in. For a

demonstration, the following program draws several concen

tric ovals, fills them, and then erases them.

300 GRAPHICS 0:POKE 53280,0

305 FOR R=90 TO 10 STEP -10:READ A(R/10):SETPEN 1,

A(R/10)

310 A=160:B=100:PH=0:Y=0:X=R

320 IY=PH+Y+Y+1:XY=IY-X-X+1

330 DRAW A+X,B+Y:DRAW A-X,B+Y

340 DRAW A+X,B-Y:DRAW A-X,B-Y

350 DRAW A+Y,B+X:DRAW A-Y,B+X

360 DRAW A+Y,B-X:DRAW A-Y,B-X

370 PH=IY:Y=Y+1:IF ABS(XY)<ABS(IY) THEN PH=XY:X=X-
1

380 IF X>=Y GOTO 320

390 NEXT R

400 FOR R=10 TO 90 STEP 10:SETPEN 1,A(R/10)

410 FILL A,B-R,1 TO A,B+R,0:FILL A,B+R+1,0 TO A,B-
R-1,1:NEXT R

420 END

800 DATA 5,8,4,6,2,7,14,13,1

The DRAW and FILL statements are closely related. When

the FILL statement fills in an area, it is still drawing a line.

The filling is done just to each side of the line.

Filling can be limited, however, to only one side of the

line. The statements LFILL and RFILL work like FILL except

that they fill only to the left or the right. In some applications,

they can be more convenient than using FILL. The next pro

gram shows an easier way to fill in a box.

10 graphics 6

20 DRAW 10,20 TO 10,10 TO 30,10

30 LFILLTO 30,20

40 GOTO 40

As a final demonstration of line drawing and area filling,

here's an example which uses the DRAW, FILL, LFILL, and

RFILL statements to draw the flags of various nations. (Since

"Flags" is a longer program than the previous examples,

we've included rem statements at the end of each line. Don't

type in these rems; they're used with "The Automatic Proof

reader." Refer to the Automatic Proofreader article in Appen

dix D, and have a copy of the Proofreader program saved and

loaded before entering the following.)

117

Chapter 5

Program 5*5. Flags

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " FLAGS OF NATIONS":PRIN

T " BY BOB RETELLE":PRINT :rem 130

110 FOR K=l TO 7:READ S$:PRINT " " S$:NEXT:PRINT

:rem 155

120 PRINT " PRESS ANY KEY":PRINT " TO DISPLAY THE

{SPACEjNEXT FLAG":GOSUB 600 :rem 16

300 REM SWEDEN : rem 61

302 GRAPHICS 0:CLS 7:POKE 53280,0:SETPEN 1,14

:rem 251

304 LFILL 0,76 TO 90,76 TO 90,0:RFILL 319,76 TO 15

0,76 TO 150,0 :rem 48

306 LFILL 0,122 TO 90,122 TO 90,199:RFILL 319,122

{SPACE}TO 150,122 TO 150,199 :rem 184

308 GOSUB 600 irem 177

310 REM FRANCE irem 39

312 CLS 1:SETPEN 1,6:LFILL 0,0 TO 106,0 TO 106,199

:rem 29

314 SETPEN 1,2:RFILL 319,0 TO 213,0 TO 213,199:GOS

UB 600 :rem 143

320 REM HUNGARY :rem 151

322 CLS 1:SETPEN 1,2:LFILL 0,66 TO 319,66 TO 319,0

:rem 43

324 SETPEN 1,5:LFILL 0,134 TO 319,134 TO 319,199:G

OSUB 600 :rem 254

330 REM CZECHOSLOVAKIA :rem 144

332 CLS 6:SETPEN 1,1:RFILL 319,95 TO 140,95 TO 0,0

:rem 50

334 SETPEN 1,2:RFILL 319,96 TO 140,96 TO 0,199:GOS

UB 600 :rem 168

340 REM SWITZERLAND :rem 210

342 CLS 2:SETPEN 1,1:DRAW 80,88 TO 80,112 :rem 123

344 DRAW 180,166 TO 180,113:DRAW 240,112 TO 240,88

:DRAW 180,87 TO 180,32 :rem 36

346 RFILLTO 140,32 TO 140,87:FILLTO 140,112:RFILLT

O 140,166:GOSUB 600 :rem 15

350 REM JAPAN : rem 230

352 CLS 1:SETPEN 1,2:CX=160:CY=100:RX=80:RY=60:DRA
W CX+RX-1,CY srem 161

354 FOR A=0 TO 2*t_ STEP _t/30:DRAWTO CX+RX*COS (A) ,C
Y+RY*SIN(A):NEXT srem 213

356 FILL CX,CY-RY TO CX,CY+RY-1:GOSUB 600 :rem 138
360 REM GREAT BRITAIN srem 249

362 CLS 1:SETPEN 1,2:DRAW 136,0 TO 136,88:DRAW 136
,112 TO 136,199 srem 75

364 LFILLTO 184,199 TO 184,112:FILLTO 184,88:LFILL
TO 184,0 :rem 165

118

Chapter 5

370 DRAW 319, 3 TO 216,80 TO 200,80 :RFILLTO 307,0

:rem 169

372 DRAW 319,196 TO 216,120 TO 200,120:RFILLTO 307

,199 :rem 225

374 DRAW 0,196 TO 104,120 TO 120,120:LFILLTO 12,19

9 :rem 54

376 DRAW 0,3 TO 104,80 TO 120,80:LFILLTO 12,0

:rem 2

380 SETPEN 1,6:DRAW 200,0 TO 200,60:LFILLTO 280,0:

RFILL 319,20 TO 240,80 :rem 11

382 RFILL 319,179 TO 240,120:DRAW 200,199 TO 200,1

40:LFILLTO 280,199 :rem 240

384 DRAW 120,199 TO 120,140:RFILLTO 40,199:LFILL 0

,180 TO 80,120 :rem 27

386 LFILL 0,20 TO 80,80:DRAW 120,0 TO 120,60:RFILL

TO 40,0:GOSUB 600:END :rem 7

600 WAIT 198,15:GET K$:RETURN :rem 162

800 DATA SWEDEN,FRANCE,HUNGARY,CZECHOSLOVAK!A,SWIT

ZERLAND,JAPAN,GREAT BRITAIN :rem 160

Multicolor Modes

What happens when two lines of different colors cross each

other? This presents a problem. In modes 0, 2, and 4, when

pen 1 is used to plot points in several colors, if the points in

one color come too close to the points in another color, the

colors interfere with each other. The following program illus

trates this problem.

10 GRAPHICS 4

20 DRAW 25,5:D=15

30 FOR Y=10 TO 40 STEP 5

40 DRAWTO 40+D,Y

50 D=-D:NEXT

60 SETPEN 1,2:DRAW 43,5 TO 43,40

70 GOTO 70

The cause of the problem is that no matter which bitmap

resolution is used, the color resolution is always 40 X 25. The

bitmap portion of the screen may allow 320 X 200 points, but

the color portion is always divided into 40 X 25 "color

squares." Each color square is the same size as a text charac

ter, and all the points in a square have to share the same

color. If the first color square on the screen is red, then all

points plotted in that area will appear red. Points drawn in the

next color square could have a different color, but again they

119

Chapter 5

would all have to be the same color. This next program gives

a better view of what actually happens when two colors come

too close to each other.

10 GRAPHICS 4

20 DRAW 20,40 TO 20,10 TO 60,10:LFILLTO 60,40

30 SETPEN 1,2:DRAW 19,5 TO 59,45

40 GOTO 40

The parts of the line outside the box appear in the correct

resolution. Inside the box, though, you get a perfect picture of

the color squares. As the points forming the line were plotted,

the color squares for those points were changed to red, the

new pen color. The problem is that the color squares were also

used by other points not in the line, and those points changed

to red as well.

To help get around this limitation, the VIC-II chip sup

ports a multicolor bitmap mode. This mode allows three colors

in each color square, not just one. Now, when three points are

plotted in the same color square, each can have a different

color.

The multicolor mode has been implemented in the BASIC

extensions as graphics modes 1, 3, 5, and 7. They are prac

tically the same as modes 0, 2, 4, and 6, except that there are

now three drawing pens (pens 1, 2, and 3) for plotting, not

just one. You can use pen 1 to draw a line in one color, then

use pen 2 to draw a line with a different color crossing the

first line. There will be no conflict at the intersection.

10 GRAPHICS 5

20 DRAW 25,5:D=15

30 FOR Y=10 TO 40 STEP 5

40 DRAWTO 40+D,Y

50 D=-D:NEXT

60 SETPEN 2,2:DRAW 43,5,2 TO 43,40

70 "GOTO 70

The program with the line passing through the box has

been modified to use all three drawing pens.

10 GRAPHICS 5

20 DRAW 20,40 TO 20,10 TO 60,10:LFILLTO 60,40

30 SETPEN 2,2:DRAW 19,5,2 TO 59,45

40 GOTO 40

120

0

2

4

6

320

160

80

40

X

X

X

X

200

100

50

25

1

3

5

7

Chapter 5

As shown by the last example, the default colors for pens

2 and 3 are light red (color 10) and blue (color 6), respectively.

These colors were chosen because they have different lumi

nance values, so they'll appear as different shades of gray on a

black-and-white television. Pen l's default remains light green

(color 13).

The colors for pens 1, 2, and 3 are set back to the default

values every time the GRAPHICS statement is executed.

The multicolor modes 1, 3, 5, and 7 are identical in

resolution to modes 0, 2, 4, and 6, with one exception. The

VIC-II chip does not support a horizontal resolution of 320

points in multicolor mode. Therefore, mode 1 has a resolution

of 200 points vertically, but only 160 across.

Mode Resolution Mode Resolution

160 X 200

160 X 100

80 X 50

40 X 25

It's not possible to mix normal and multicolor modes on

the same screen. The MODE statement can be used to switch

to any mode, but it's recommended that you switch only

among modes 0, 2, 4, and 6, or modes 1, 3, 5, and 7. If you

cross between a normal mode and a multicolor mode, the pic

ture will appear to be distorted.

Since modes 3, 5, and 7 can do everything that modes 2,

4, and 6 can do, with the added convenience of two more

drawing pens, you might wonder why modes 2, 4, and 6 are

even needed. The fact that normal and multicolor modes can

not be mixed explains why the multicolor modes are not used

exclusively. For most applications, the convenience of three

drawing pens makes the multicolor modes preferable. How

ever, if you want to use the highest resolution, 320 X 200, the

multicolor modes cannot be used. If you want to mix other

resolutions with the 320 X 200 mode, you need to use modes
2, 4, and 6.

Multicolor modes are used when you need up to three

colors next to each other. The following program, which draws

some three-dimensional cubes, could not be written in a nor

mal graphics mode.

10 GRAPHICS 1:POKE 53280,0

20 FOR X=8 TO 140 STEP 30:FOR Y=20 TO 170 STEP 37:

121

Chapter 5

A=INT(RND(0)*15)+1

30 B=INT(RND(0)*15)+1:IF B=A GOTO 30

40 C=INT(RND(0)*15)+1:IF C=A OR C=B GOTO 40

50 SETPEN 1,A:DRAW X,Y,1 TO X,Y+20 TO X+15,Y+20:LF

ILLTO X+l5,Y:SETPEN 2,B

60 DRAW X+16,Y-1,2 TO X+21,Y-ll:LFILL X+21,Y-9 TO

{SPACE}X+21,Y+9 TO X+16,Y+19

70 SETPEN 3,C:DRAW X+20,Y-11,3 TO X+5,Y-ll:RFILLTO

80 NEXT:NEXT:WAIT 198,15:GET K$:GOTO 10

This program demonstrates drawing and filling in three

drawing pens. One other possibility yet to be considered is

filling in an area that has already been filled by another pen.

If an area has been filled using pen 1 and you want to fill the

inside of the area using pen 2, the optional third number after

the destination point in the FILL statement has to be used.

The following program draws some concentric diamond

shapes to show how the pen number is used.

10 GRAPHICS 3

20 DRAW 80,0 TO 159,49 TO 80,99:RFILLTO 0,49 TO 79

,1

30 DRAW 80,20,2 TO 139,49 TO 80,79:RFILLTO 20,49,1

TO 80,20,1

40 DRAW 80,30,3 TO 119,49 TO 80,69:RFILLTO 40,49,2

TO 80,30,2

50 DRAW 80,45,0 TO 99,49 TO 80,54:RFILLTO 60,49,3

{SPACEjTO 80,45,3

60 GOTO 60

The first diamond is drawn normally. No third number is

used in the destination points because it's the background

that's being filled. On the second diamond, the drawing pen is

changed to pen 2. Because this diamond is drawn inside the

first one, the destination points in the RFILL statement in

dicate that points plotted in pen 1 are to be covered by the

filling. Notice that the third number has to be used in both

destination points. For the third diamond, pen 3 is used, and

the filling covers up pen 2. The last diamond is drawn by

erasing part of the previous diamond. Points plotted in pen 3

are erased by pen 0.

One other difference between the multicolor modes and

the normal modes is that in multicolor modes, the background

color can be changed by POKEing location 53281. This allows

you to change the background color without clearing the

screen.

122

Chapter 6

Shapedit

Introduction to Shape Tables

Statements like GRAPHICS and DRAW certainly make

bitmapped graphics easy to use. In fact, bitmapped graphics

would hardly even be feasible without them. These statements

become less convenient, however, when they're used to draw

detailed shapes. Drawing a rectangle or a box is easy enough,

but drawing something like the outline of a person may re

quire much more complicated plotting. It can take a lot of

work to get all the coordinates in DRAW statements set prop

erly. Also, the speed advantage of the machine language

diminishes when several statements have to be executed.

The best way to handle shape drawing is to use a graph

ics utility commonly known as a shape table. A shape table is a

sequence of instructions which tell the drawing pen where to

plot points. Each instruction moves the pen one position, such

as up, down, left, or right. After the pen moves to the new po

sition, a point is plotted. Several instructions in the proper or

der can make the drawing pen trace a path to draw a shape.

To complete the collection of machine language graphics

routines, we've provided a routine which uses shape tables to

draw. Instructions in this implementation can move the pen in

eight directions and plot points using pens 0 to 3. There are

also advanced instructions to change the pen color, move the

pen to another place on the screen, draw lines, fill areas, and

so on.

The SHAPE statement is used to draw a shape. The syn

tax for this statement is:

SHAPE address, X coordinate, Y coordinate

A shape table is stored as bytes in memory. The first

number after the keyword SHAPE is the address of the shape

table. The X and Y coordinates are the starting position of the

pen. When the SHAPE statement is executed, the pen starts at

the designated position and moves according to the instruc

tions in the shape table.

The significance of this is that a single BASIC statement

can draw an entire shape. And because only one statement is

involved, the drawing of individual points is done much

faster. By using the SHAPE statement, you can do things with

123

Chapter 6

bitmapped graphics that otherwise cannot be done.

Let's take a look at just what the SHAPE statement can

do. The following demonstrations illustrate just some of the

things SHAPE is capable of. Remember that "BMG.OB]" (Pro

gram 5-3) must first be loaded into memory. Use the loader pro

gram (Program 5-1 for disk, or Program 5-2 for tape) to load

up the BMG BASIC extensions program.

The three example programs have many lines in common.

To reduce typing, enter Program 6-1 and save it using the

filename SHP.BAS.

These lines do not form a program and will not work

properly if you try to run them. Rather, they are subroutines

which must be contained in every program that uses shapes,

whether those programs are demonstrations from this book or

programs you later write yourself. The lines have been num

bered starting at 56500 so that they'll be out of the way of

normal program lines.

Program 6*1. SHRBAS

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

56500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+M.SHP":GOSUB 59000 :rem 50

56510 POKE SA,0:POKE SX,LA-256*INT (LA/256) .-POKE SY

, INT (LA/256) : rem 76

56520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 42

56530 NS=PEEK(LA):DIM AS(NS):LA=LA+1 :rem 107

56540 FOR K=0 TO NS:AS(K)=LA+2:LA=LA+2+PEEK(LA)+25

6*PEEK(LA+1):NEXT:RETURN :rem 120

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

Now that you've created the "SHP.BAS" file, you're

ready to enter the demonstrations. As you type in each ex

ample program, start with the SHP.BAS file already in mem

ory. In other words, instead of typing NEW before entering

each program, enter LOAD"SHP.BAS",8 for disk, or

LOAD"SHP.BAS" for tape. Then begin typing the lines in the

124

Chapter 6

demonstration program. The result merges the SHP.BAS lines

with those from the demonstration file to create a complete

program.

One more thing must be done before a demonstration will

work. Shape tables are stored as data files on tape or disk. Use

the "MLX" program from Appendix C (this is the same pro

gram you used to create BMG.OBJ in Chapter 5) to enter the

shape file which corresponds with the demonstration program.

If you're using tape, save the shape file immediately after the

demonstration program.

All demonstration programs as listed are set for use with

the disk drive. To make a demonstration work with the

Datassette, change the assignment of variable DN (the device

number) from 8 to 1 in line 110.

Program 6-2 is the first demonstration. Merge it with the

SHP.BAS (Program 6-1) and save the program with the

filename MUNCHKINS.

Program 6*2. MUNCHKINS

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " MUNCHKINS":PRINT " BY

{SPACEjCRAIG CHAMBERLAIN":PRINT irem 176
110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="MUNCHKIN":LA=PEEK(49)+256*PEEK(50)+1000:GO

SUB 56500:REM LOAD SHAPES :rem 55

300 GRAPHICS 3:POKE 53280,0 :rem 222

310 M=AS(0):SHAPE M,110,10:SHAPE M,70,20:SHAPE M,4

0,35 :rem 171

320 MODE 1:SHAPE M,30,35:SHAPE M,110,65:SHAPE M,35

,125 :rem 163

330 MODE 5:SHAPE M,45,25 :rem 16

340 WAIT 198,15:GET K$:rem 137

350 GRAPHICS 7:SHAPE M,15,3 :rem 9

360 WAIT 198,15:GET K$:rem 139

370 END :rem 113

Program 6-3 is the shape file for the "MUNCHKINS"

program. Save this file using the filename MUNCHKIN.SHP.

All shape files (shape filenames always end with .SHP) must

be entered and saved using the MLX program found in

Appendix C. Each of these files requires a starting and ending

address, as well as a filename, when prompted by MLX. Be

sure to read the accompanying article in Appendix C before

going on.

125

Chapter 6

Program 6-3. MUNCHKIN.SHP

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix G

Starting Address: 49152

Ending Address: 49295

Filename: MUNCHKIN.SHP

49152 :000,139,000,087,083,083,136

49158 :083,083,083,083,099,115,040

49164 :115,099,115,067,115,115,126

49170 :115,115,091,115,115,115,172

49176 :107,083,083,083,083,083,034

49182 :083,083,083,083,083,083,016

49188 :067,067,083,099,099,075,014

49194 :083,107,083,083,091,115,092

49200 :115,115,115,115,115,115,226

49206 :115,115,115,115,115,115,232

49212 :115,115,115,115,039,163,210

49218 :063,171,163,171,171,171,208

49224 :171,179,179,191,083,083,190

49230 :083,119,211,063,227,235,248

49236 :227,235,227,235,235,235,198

49242 :243,191,083,083,083,103,108

49248 :147,063,163,163,171,163,198

49254 :163,171,163,155,155,191,076

49260 :083,083,083,135,211,063,254

49266 :227,219,227,235,227,219,188

49272 .-219,227,227,235,191,083,022

49278 :083,083,083,071,147,063,144

49284 :163,163,163,155,155,155,062

49290 :163,155,155,255,013,013,124

This first demonstration uses several SHAPE statements

to draw the same shape at different positions and in different

resolutions. Notice that the legs of the Munchkin shape consist

of many points that would require a lot of DRAW statements

if a shape table wasn't used. Also notice that the shapes are

drawn very quickly.

In the second demonstration, the illusion of more than

four shapes is created by drawing the shapes with different

color combinations. Type in and save Program 6-4 using the

filename BROTHERHOOD (don't forget to first load SHP.BAS

before typing what you see below). You'll also need to enter

(with MLX) the shape file (Program 6-5).

126

Chapter 6

Program 6*4. BROTHERHOOD

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " BROTHERHOOD":PRINT " B

Y MARK DAVIDS":PRINT :rem 170

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="FAMILY":LA=PEEK(49)+256*PEEK(50)+1000:GOSU

B 56500:REM LOAD SHAPES :rem 156

300 GRAPHICS 3:POKE 53280,11:POKE 53281,12 :rem 11

310 FOR K=20 TO 80 STEP 30:GOSUB 600:SHAPE AS(4*RN

D(0)),10,K :rem 182

320 FOR J=l TO 10:GOSUB 600:SHAPE AS(4*RND(0)):NEX

T J,K :rem 21

330 WAIT 198,15:GET K$:CLS 12:GOTO 310 :rem 14

600 N=3*RND(0):SETPEN 1,9+N:SETPEN 3,7*RND(0)+1:ON

N GOTO 620,630 :rem 64

610 SETPEN 2,7*INT(2*RND(0)):RETURN :rem 60

620 N=INT(3*RND(0)):SETPEN 2,-7*(N=l)-9*(N=2):RETU

RN :rem 219

630 SETPEN 2,0:RETURN :rem 16

Program 6-5. FAMILY.SHP

To enter this program, you must use "The Machine Language Editor (MIX)/' a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49445

Filename: FAMILY.SHP

49152 :003,070,000,083,115,139,154

49158 :139,131,139,131,147,022,203

49164 :031,163,155,163,155,099,010

49170 :083,008,179,033,031,000,096

49176 :001,115,115,123,067,083,016

49182 :083,083,099,115,115,123,136

49188 :179,139,147,147,147,155,182

49194 :016,002,021,179,029,095,128

49200 :227,018,031,061,031,163,067

49206 :179,195,049,031,012,195,203

49212 :013,095,227,037,031,155,106

49218 :179,203,033,031,030,017,047

49224 :255,046,000,083,091,091,126

49230 :155,147,147,147,147,075,128

49236 :075,075,016,021,067,123,205

49242 :083,083,067,115,115,179,220

49248 :139,147,147,155,012,021,205

49254 :155,147,147,227,243,243,240

49260 :227,211,211,227,227,099,030

49266 :051,115,195,195,022,049,229

49272 :255,103,000,083,083,067,199

127

Chapter 6

49278 :067,083,067,083,067,211,192
49284 :083,067,091,067,075,067,070

49290 :115,115,115,099,083,083,236
49296 :075,131,179,179,179,171,034
49302 :163,163,147,014,017,163,049
49308 :163,163,179,227,083,099,046
49314 :083,099,083,099,099,083,196
49320 :012,025,227,243,243,243,137

49326 :227,211,211,211,219,243,216
49332 :243,243,243,243,227,211,054

49338 :211,211,211,211,219,243,212
49344 :243,243,243,243,243,243,114

49350 :227,211,211,211,211,211,200
49356 :211,211,227,024,031,018,158
49362 :099,029,031,163,179,179,122
49368 :179,006,067,115,115,025,211
49374 :095,026,025,255,061,000,172
49380 :083,219,211,203,203,211,078

49386 :067,123,083,083,067,115,004
49392 :115,179,139,147,147,155,098
49398 :000,013,227,219,219,211,111
49404 :075,008,243,243,243,227,011
49410 :211,211,211,243,243,243,084

49416 :243,219,211,211,163,179,210
49422 :179,163,147,147,163,163,208

49428 :163,163,227,051,243,131,230
49434 :131,131,131,147,018,033,105
49440 2 255,013,013,013,013,013,096

The final demonstration draws a background scene and
then uses fast shape-table plotting to make some tulips grow.
As before, make sure both the following programs are on the
same disk. If you're using tape, place the shape file (Program
6-7), immediately after Program 6-6. Remember to place the
lines from SHP.BAS, Program 6-1, in memory before starting
to type Program 6-6.

Program 6-6. TULIPS

For error-free program entry, be sure to use "The Automatic Proofreader/'Appendix D.

100 PRINT CHR$(147):PRINT " TULIPS":PRINT " BY MAR
K DAVIDS":PRINT :rem 75

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133
120 P$="TULIPS":LA=PEEK(49)+256*PEEK(50)+1000:GOSU

B 56500:REM LOAD SHAPES :rem 187

200 DIM X(14),Y(14),TX(14),TY(14) :rem 210
210 FOR C=l TO 14:TX(C)=10*C+INT(5*RND(0)):TY(C)=7

0+INT(10*RND(0)):NEXT :rem 210

128

Chapter 6

220 FOR C=l TO 14:R=C+INT((15-C)*RND(0)):X(C)=TX(R

):Y(C)=TY(R) :rem 195

230 TX(R)=TX(C):TY(R)=TY(C):NEXT :rem 226

300 GRAPHICS l.-POKE 53280,6: SETPEN 1,14:LFILL 0,90

TO 159,90 TO 159,0 :rem 148

310 SETPEN 2,9:DRAW 0,75,2 TO 50,35 TO 100,60 TO 1

20,40 TO 159,70 :rem 133

320 FILL 0,90 TO 50,90,1 TO 50,36,1:FILL 120,61 TO

120,41,1 :rem 32

330 MODE 5:SETPEN 1,5:DRAW 0,22,1 TO 79,22:rem 179

340 MODE 3:FOR C=l TO 75:DRAW 150*RND(0),43:NEXT

:rem 105

400 FOR K=0 TO 9:FOR C=l TO 14:SHAPE AS(K),X(C),Y(

C):NEXT:NEXT :rem 231

410 WAIT 198,15:GET K$:rem 135

420 END :rem 109

Program 6*7. TULIPS.SHP

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49283

Filename: TULIPS.SHP

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

:010,

:067,

:067,

:008,

:099,

:067,

:006,

:255,

:075,

:004,

:000,

:067,

:008,

:083,

:067,

:255,

:147,

:024,

:255,

:139,

:001,

007,000

091,099

123,067

000,067

091,083

004,009

017,067

014,000

107,018

017,067

067,008

014,025

000,081

083,099

089,119

016,000

179,147

097,179

015,000

163,163

155,139

000,255

,067,

,255,

,075,

,033,

,255,

,075,

,067,

,067,

,001,
,067,

,017,

,067,

,067,

,255,

,187,

,119,

,147,

,147,

,067,

,131,

,163,

,013,

115,075,018

006,000,012

091,255,178

099,067,036

013,000,053

115,099,143

006,021,220

008,017,147

083,115,191

255,011,219

067,115,078

067,255,049

115,067,154

007,000,093

147,147,072

000,105,073

026,109,083

179,179,139

004,105,042

131,155,208

163,255,110

013,013,165

129

Chapter 6

The Shapedit Program

Now that you've seen a small sampling of what the SHAPE

statement can do, you ought to try creating a few shapes of

your own. Youll be glad to know that making a shape is as

easy as using a joystick. "Shapedit," Program 6-8, simplifies

the task of defining a shape table. This program makes it easy

to create and edit up to 100 shapes in any graphics mode. It

also has options to save shape files to tape or disk. Shapedit

has been carefully designed to make shape creation as simple

as possible.

Shapedit uses graphics statements, so be sure that

the BASIC extensions have been installed-(by running

"BMGLOADER") before you enter, save, load, or run the

program.

It's set to use the disk drive. Again, to make it work with

the Datassette, change the statement DN=8 in the first line to

DN=1.

Save the program using the filename SHAPEDIT before

you run it. This is a wise precaution whenever you run a pro

gram for the first time, in case the computer crashes due to a

typing mistake.

Plug a joystick into port 2 and type RUN. The program

takes a moment to initialize and then displays a black screen

with a five-line text window at the bottom. The first line re

ports status information, including the current drawing pen,

the current origin, and the current pen position. The next four

rows have items which are accessible by moving the joystick.

Items are selected by pressing the joystick button. The screen

above the text window is graphics mode 7.

Program 6-8. Shapedit

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

This program requires that BMG.OBJ (Program 5-3) be loaded into your computer before it

is entered, saved, loaded, or run.

100 DN=8:X=0:Y=0:XX=0:YY=0:JS=56320:SA=780:SX=781:

SY=782:SP=783:GOTO 800 :rem 82

110 POKE 214,19 :PRINT:F$=STR$(X) .-PRINT TAB(31) RIG

HT$(F$#LEN(F$)-1) ", "; :rem 219

120 F$=STR$(Y):PRINT RIGHT$(F$,LEN(F$)-l) LEFT$(BL

$,39-POS(0)):K=FRE(0):RETURN :rem 13
130 SYS 49345:T1=MX(MD):T2=MY(MD) :rem 164
140 SYS 49391,X,Y:GOSUB 110 :rem 243

130

Chapter 6

150 N=PEEK(JS)AND15:IF N=15 THEN ON ((PEEK(JS)AND1

6)=0)+2 GOTO 185,150 :rem 69

160 X=X+JX(N):IF X<0 OR X>T1 THEN X=-T1*(X<0)
:rem 238

170 Y=Y+JY(N):IF Y<0 OR Y>T2 THEN Y=-T2*(Y<0)

:rem 248

180 GOTO 140 :rem 103

185 WAIT JS,16:RETURN :rem 29

190 POKE 214,20+(CN AND3):PRINT:PRINT TAB(U(CN/4))
CHR$(N) CN$(CN);:RETURN :rem 221

200 N=146:GOSUB 190:IF PF=0 GOTO 230 rrem 166

210 PF=0:X=XX:Y=YY:GOSUB 130:XX=X:YY=Y:POKE 53269,

0:GOSUB 740:POKE 198,0 :rem 112

220 GOSUB 650:IF PEEK(SP)AND1ORFNDP(52495)>MX(MD)O

RPEEK(52497)>MY(MD) GOTO 790 :rem 62

230 POKE 52479,DP:IF DP THEN POKE 53280,PEEK(52488

+DP):GOTO 240 rrem 193

235 POKE 53280,CL :rem 134

240 X=FNDP(52495):Y=PEEK(52497):GOSUB 110 :rem 74

245 SYS 49466:N=PEEK(SA):IF N=255 THEN POKE 53269,

0:GET F$:GOTO 260 :rem 184

250 POKE AS+SL-1,N:POKE AS+SL,255:SL=SL+1:FM=FM-1:

IF FM>0 GOTO 230 : rem 47

255 F$=MMEMORY FULL":GOTO 795 :rem 171

260 IF F$<>CHR$(136) GOTO 275 :rem 206

265 DP=DP+1:DP=DPANDPEEK(52483) .-POKE 214,19 :PRINT:

PRINT TAB(5) CHR$(48+DP) :rem 74

270 GOTO 230 :rem 103

275 IF F$<>CHR$(133) GOTO 330 :rem 201

280 IF SL=1 GOTO 245 :rem 10

285 SL=SL-1:FM=FM+1:POKE AS+SL-1,255:CLS CL:IF SL>

1 GOTO 220 :rem 173

290 PF=1:GOTO 320 srem 167

300 POKE AS+SL-1,N:POKE AS+SL,255:SL=SL+1:FM=FM-1:
IF FM<1 GOTO 255 srem 49

310 IF CN=12 GOTO 521 srem 37

320 N=146:GOSUB 190 srem 15

330 CN=8:N=18:GOSUB 190 :K=FRE(0) .-WAIT JS, 16

:rem 221

350 POKE 198,0:K=PEEK(JS)AND15:IF K<>15 THEN N=146
:GOSUB 190:GOTO 380 srem 126

360 IF PEEK(JS)AND16 GOTO 350 srem 70
365 WAIT JS,16:IF PF AND (CN=2 OR CN=9 OR CN=10 OR

CN>11) GOTO 350 srem 161

370 ON CN+1 GOTO 400,410,440,450,460,470,480,350,2
00,500,510,490,520 srem 33

375 N=U(CN-8):ON CN-12 GOTO 530,540,550:GOTO 560
• rent ^\ Pi

380 CN=CN+4*JX(K)+JY(K):IF JY(K)=-1 AND (Cn'aND3)=
3 THEN CN=CN+4 :rein 230

131

Chapter 6

385 IF JY(K)=1 AND (CN AND3)=0 THEN CN=CN-4

:rem 243

390 CN=CN-20*(CN<0)+20*(CN>19):IF CN=7 GOTO 380

:rem 229

395 N=18:GOSUB 190:FOR K=l TO 50:NEXT:GOTO 350

:rem 79

400 GOSUB 770:IF F$="" THEN GOSUB 760:GOTO 320

:rem 186

401 POKE 53269,0:PF=1:GOSUB 670:POKE SA,1:POKE SX,

DN:POKE SY,0:SYS 65466 :rem 159

402 F$=F$+".SHP":GOSUB 600:POKE SA,0:POKE SX,FNL(B

A):POKE SY,FNH(BA) :rem 189

403 POKE 648,188:POKE 214,19:PRINT :rem 146

404 SYS 65493:N=(PEEK(SP)ANDl)*PEEK(SA):POKE 648,1

92:PRINT :rem 163

405 GOSUB 760:CLS CL:SYS 49152:IF N THEN GOSUB 730

:GOTO 420 :rem 8

406 NS=PEEK(BA):AS=BA+1:FOR K=0 TO NS:SL%(K)=FNDP(

AS):AS=AS+2+SL%(K):NEXT :rem 92

407 FM=MT-AS:IF FM<0 THEN GOSUB 730:F$="NOT ENOUGH

MEMORY":GOTO 795 :rem 171

408 SN=0:POKE 214,20:PRINT:PRINT TAB(15) "0 ":GOSU

B 630:GOTO 320 :rem 35

410 IF NS=0 AND SL=l GOTO 350 :rem 227

411 GOSUB 770:IF F$=I1M THEN GOSUB 760:GOTO 320

:rem 188

412 GOSUB 640:POKE BA,NS:AS=BA+1:FOR K=0 TO NS:POK

E AS,FNL(SL%(K)) :rem 43

413 POKE AS+1,FNH(SL%(K)):AS=AS+2+SL%(K):NEXT:POKE

53269,0:GOSUB 670 :rem 149

414 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=F$

+",SHP":GOSUB 600 :rem 99

415 POKE SA,251:POKE 251,FNL(BA):POKE 252,FNH(BA)

:rem 224

416 POKE SX,FNL(AS):POKE SY,FNH(AS):POKE 648,188:P

OKE 214,19:PRINT :rem 157

417 SYS 65496:N=(PEEK(SP)AND1)*PEEK(SA):POKE 648,1

92:PRINT :rem 170

418 GOSUB 760:SYS 49152:GOSUB 630:IF N=0 GOTO 320

:rem 157

420 IF N=4 THEN F$="FILE NOT FOUND":GOTO 795
:rem 163

422 IF N=5 THEN F$="DEVICE NOT PRESENT":GOTO 795
:rem 219

424 F$=STR$(ST):GOTO 795 :rem 110

440 SL%(SN)=SL:H=NS:GOSUB 660:IF FM<SL%(N) THEN F$

="NOT ENOUGH MEMORY":GOTO 795 :rem 157

442 S=BA+3:IF N=0 GOTO 445 :rem 101

443 IF N<=SN THEN FOR K=0 TO N-l:S=S+SL%(K)+2:NEXT

:GOTO 445 :rem 61

132

Chapter 6

444 S=MT+2:F0R K=N TO NS:S=S-2-SL%(K):NEXT:rem 231

445 L=SL%(N):D=AS+SL-1:GOSUB 620:SL=SL+L-1:FM=FM-L

+1:POKE 53269,0:GOSUB 650 :rem 113

446 IF PEEK(SP)AND1 OR FNDP(52495)>MX(MD) OR PEEK(

52497)>MY(MD) GOTO 790 :rem 243

447 X=FNDP(52495):Y=PEEK(52497):GOSUB 110:GOTO 320

:rem 91

450 GOSUB 780:IF K$o"Y" GOTO 320 :rem 213

455 GOSUB 670:PQKE 648,4:POKE 51578,200:POKE SX,23

7:POKE SY,246:SYS 49888:END :rem 111

460 SL%(SN)=SL:L=0:H=NS:N=SN:IF FM>2 AND SL%(NS)>1

AND H<MX THEN H=NS+1 :rem 86

462 GOSUB 720:PF=1:IF N=SN GOTO 320 :rem 182

464 T1=N:N=146:GOSUB 190:GOSUB 640 :rem 182

466 SN=T1:IF SN>NS THEN NS=SN:SL%(SN)=1:FM=FM-3:PO

KE AS+SL+AB+2,255 :rem 239

468 GOSUB 630:GOTO 330 :rem 196

470 N=CL:L=0:H=14:GOSUB 720:CL=N:CLS CL:POKE 53269

,0:PF=1 :rem 42

475 POKE 53287,-(CL<>l):GOTO 320 :rem 196

480 N=MD:L=0:H=7:GOSUB 720:MD=N:MODE MD:IF XX>MX(M

D) THEN XX=MX(MD) :rem 27

482 IF YY>MY(MD) THEN YY=MY(MD) irem 75

484 DP=DPANDPEEK(52483):X=XX:Y=YY:GOSUB 760:POKE 5

2479,DP:PF=1:GOTO 320 :rem 38

490 GOSUB 780:IF K$<>"Y" GOTO 320 :rem 217

492 FM=FM+SL-1:SL=1:POKE AS,255:CLS CL:PF=1:IF SN<

NS OR NS=0 GOTO 320 :rem 227

494 NS=NS-1:FM=FM+3:SN=NS:POKE 214,20:PRINT:PRINT

{SPACE}TAB(14) SN "{LEFT} ":GOSUB 630 :rem 176
496 GOTO 320 :rem 113

500 H=15:GOSUB 660:POKE 52505,N+128:N=16*N+7:GOTO

{ SPACE J.300 :rem 140

510 H=3:GOSUB 660:POKE 52492,0:IF N THEN POKE 5249

2,PEEK(52486)ORPEEK(52435+N) :rem 40
515 N=N*64+15:GOTO 300 :rem 159

520 TX=X:TY=Y:GOSUB 130:TX=X-TX:TY=Y-TY :rem 78

521 IF TX=0 GOTO 524 :rem 20

522 N=ABS(TX):IF N>64 THEN N=64 :rem 218

523 T1=TX:TX=SGN(TX)*(ABS(TX)-N):N=(N-1)*4-2*(Tl>0
):GOTO 300 :rem 204

524 IF TY=0 THEN POKE 52495,FNL(X) .-POKE 52496,FNH(
X):POKE 52497, Y.-GOTO 320 :rem 133

525 N=ABS(TY):IF N>32 THEN N=32 :rem 212

526 T1=TY:TY=SGN(TY)*(ABS(TY)-N):N=(N-1)*8-4*(T1>0
)+l:GOTO 300 :rem 53

530 POKE 52498,FNL(X):POKE 52499,FNH(X):POKE 52500
,Y:GOTO 300 .rem 159

540 X=FNDP(52498):Y=PEEK(52500):GOTO 555 :rem 7
550 X=0:Y=0 :rem 95

133

Chapter 6

555 SYS 49391,X,Y:POKE 52495,FNL(X):POKE 52496,FNH

(X):POKE 52497,Y:GOTO 300 :rem 251

560 POKE SA,20-CN AND3:POKE SX,FNL(X):POKE SP,FNH(

X):POKE SY,Y :rem 208

565 SYS 51831:GOTO 300 :rem 167

600 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 240

610 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 158

620 POKE 251,FNL(S):POKE 252,FNH(S):POKE 253,FNL(D

):POKE 254,FNH(D) :rem 2

625 POKE SX,FNL(L):POKE SY,FNH(L):SYS 49777:RETURN

:rem 63

630 SL=SL%(SN):AS=BA+3:IF SN THEN FOR K=0 TO SN-1:

AS=AS+SL%(K)+2:NEXT :rem 241

632 AB=0:IF SN=NS THEN RETURN :rem 226

634 FOR K=SN+1 TO NS:AB=AB+SL%(K)+2:NEXT:S=AS+SL:L

=AB:D=MT-L:GOTO 620 :rem 121

640 SL%(SN)=SL:IF AB=0 THEN RETURN :rem 244

645 L=AB:S=MT-L:D=AS+SL:GOTO 620 :rem 179

650 POKE 52493,FNL(AS):POKE 52494,FNH(AS):POKE 524

95,FNL(XX):POKE 52496,FNH(XX) :rem 27

652 POKE 52497,YY:POKE SA,0:POKE 52489,13:POKE 524

90,10:POKE 52491,6 :rem 221

654 SYS 52166:RETURN :rem 188

660 N=146:GOSUB 190:CN=7:N=18:GOSUB 190:PRINT "

{OFF} 0 ";:N=0:L=0:GOTO 720 :rem 211

670 POKE 49321,0:FOR K=l TO 100:NEXT:SYS 49322:RET

URN :rem 9

720 K=PEEK(JS)AND15:IF K<>15 THEN N=N+JX(K):GOTO 7

26 :rem 228

722 IF PEEK(JS)AND16 GOTO 720 :rem 73

724 RETURN :rem 125

726 IF N<L THEN N=H :rem 6

727 IF N>H THEN N=L :rem 9

728 POKE 214,20+(CN AND3):PRINT:PRINT TAB(14) N "

{LEFT} "; :rem 141

729 FOR K=l TO 50:NEXT:GOTO 720 :rem 207

730 NS=0:SN=0:AS=BA+3:SL=1:POKE AS,255:FM=MT-AS:AB

=0 :rem 126

732 POKE 214,20:PRINT:PRINT TAB(15) "0 ":RETURN

:rem 154

740 POKE 214,19:PRINT:F$=STR$(XX):PRINT TAB(14) RI

GHT$(F$,LEN(F$)-1) ","; :rem 61

742 F$=STR$(YY):PRINT RIGHT$(F$,LEN(F$)-1) LEFT$(B

L$,22-POS(0));:RETURN :rem 131

750 POKE 214,19:PRINT:PRINT BL$:POKE 214,19:PRINT:

RETURN :rem 175

760 POKE 214,19:PRINT::PRINT " PEN:" CHR$(48+DP) "

ORIGIN:":GOSUB 740 :rem 58

134

Chapter 6

762 PRINT "POSITION:":GOTO 110 :rem 36

770 GOSUB 750:PRINT TAB(9) "FILENAME? ";:F$=""

: rem 6

772 K=FRE(0):WAIT 198,15:GET K$:IF K$<" " OR K$>"Z

11 OR LEN(F$) =12 GOTO 776 : rem 14

774 F$=F$+K$:PRINT K$;:GOTO 772 :rem 209

776 IF K$=CHR$(20) AND F$>"" THEN PRINT "{LEFT}
{LEFT}";:F$=LEFT$(F$,LEN(F$)-1):GOTO 772

jrem 233

778 IF K$<>CHR$(13) GOTO 772 irem 173

779 RETURN :rem 135

780 GOSUB 750:PRINT TAB(15) "CONFIRM?" :rem 161

785 WAIT 198,15:GET K$:ON (K$=JIY" OR K$="N")+2 GOT

O 760,785 :rem 233

790 PF=1:F$="OUT OF RANGE" :rem 195

795 GOSUB 750:PRINT TAB(9) "ERROR: " F$:WAIT 198,1

5:GET K$:GOSUB 760:GOTO 320 :rem 230

800 POKE 648,192:PRINT "{CLR}":POKE 648,4:PRINT "

{CLR}":POKE 53280,0:POKE 53281,0 :rem 103

805 PRINT " g81SHAPEDIT":PRINT " BY CRAIG CHAMBERL

AIN":POKE 648,192:REM VI.0 :rem 83

810 MX=99:DIM U(ll),CN$(19),JX(15),JY(15),MX(7),MY

(7),SL%(MX):N=146 :rem 169

815 FOR K=0 TO 11:READ U(K):NEXT:FOR CN=0 TO 19:RE

AD CN$(CN):GOSUB 190:NEXT :rem 232

820 FOR K=5 TO 14:READ JX(K),JY(K):NEXT:FOR K=0 TO

7:READ MX(K),MY(K):NEXT :rem 239

825 FOR K=49152 TO 49901:READ N:POKE K,N:NEXT:DEF

{SPACE}FNDP(N)=PEEK(N)+256*PEEK(N+1) :rem 235

830 DEF FNL(N)=N-256*INT(N/256):DEF FNH(N)=INT(N/2

56):DP=1:CL=0:MD=7:PF=1 :rem 196

835 BL$="{39 SPACES}":GOSUB 760 :rem 42

840 POKE 214,21:PRINT:PRINT TAB(14) CL:PRINT TAB(1
4) MD:PRINT TAB(14) 0; :rem 63

845 BA=FNDP(49)+500:MT=FNDP(51)-500:GOSUB 730:POKE

56334#PEEK(56334)AND254 :rem 151

850 POKE 1,PEEK(1)AND251:S=53248:D=S:L=2048:GOSUB

{SPACE}620:POKE 1,PEEK(1)OR4 :rem 62

855 POKE 56334,PEEK(56334)OR1:POKE 657,128:POKE 50

168,254 .-POKE 51192,254 :rem 135

860 POKE 53287,1:POKE 53271,0:POKE 53277,0:POKE SX

,233:POKE SY,194:SYS 49888 :rem 204

865 GRAPHICS 7:SYS 49152:POKE 51578,160:GOTO 330
:rem 168

900 DATA 1,9,19,28,34,63,191,127,31,223,159,95

:rem 226

910 DATA LOAD,SAVE,APPEND,QUIT,SHAPE,CLS,MODE,S/F/

A,EDIT,SETPEN :rem 47
920 DATA FILLPEN,ERASE,MOVE,RMEM,RSET,HOME,DRAW,FI

LL,LFILL,RFILL :rem 203

135

Chapter 6

930 DATA 1,1,1,-1,1,0,0,0,-1,1,-1,-1,-1,0,0,0,0,1,

0,-1 :rem 212

940 DATA 319,159,159,159,159,79,159,79,79,39,79,39

,39,19,39,19 :rem 71

950 DATA 169,127,141,13,220,173,20,3,141,167,192,1

73,21,3,141,168,192,169,59 :rem 168

951 DATA 141,17,208,32,36,192,169,209,141,169,192,

169,1,141,26,208,96,169,251 : rem 240

952 DATA 141,18,208,169,106,141,20,3,169,192,141,2

1,3,169,133,141,254,255,169 :rem 217

953 DATA 200,141,255,255,96,72,138,72,152,72,173,2

5,208,141,25,208,162,11,202 :rem 211

954 DATA 208,253,162,27,160,4,173,22,208,41,239,23

4,142,17,208,140,24,208,141 :rem 206

955 DATA 22,208,32,36,192,104,168,104,170,104,64,1

73 , 25 , 208,141, 25 , 208,169, 59 : rem 222

956 DATA 141,17,208,169,24,141,24,208,173,254,204,

74,173,22,208,41,239,144,2 :rem 168

957 DATA 9,16,141,22,208,173,169,192,240,23,141,18

,208,169,67,141,20,3,169,192 :rem 22

958 DATA 141,21,3,169,62,141,254,255,169,192,141,2

55,255,76,0,0,0,169,0,141,26 :rem 6

959 DATA 208,173,167,192,141,20,3,173,168,192,141,

21,3,169,129,141,13,220,96 :rem 174

960 DATA 169,128,133,251,169,255,133,252,169,0,160

,64,136,145,251,208,251,174 :rem 230

961 DATA 254,204,189,32,194,188,40,194,136,136,136
,145,251,208,249,96,162,2,181 :rem 88

962 DATA 251,157,110,194,202,16,248,48,18,32,253,1
74,32,138,173,32,247,183,132 :rem 17

963 DATA 251,133,252,32,241,183,134,253,165,252,13
3,254,165,251,174,254,204,240 :rem 56

964 DATA 9,188,47,194,10,136,208,252,38,254,24,105
,24,141,0,208,165,254,105,0 :rem 215

965 DATA 141,16,208,165,253,224,2,144,7,188,53,194
,10,136,208,252,105,50,141 :rem 163

966 DATA 1,208,169,1,141,21,208,96,169,255,141,31,
194,165,198,240,3,169,255,96 :rem 39

967 DATA 173,0,220,41,15,174,31,194,16,19,162,7,22
1,61,194,240,5,202,16,248,48 :rem 3

968 DATA 227,32,236,193,176,222,144,43,188,69,194,
132,254,162,3,221,77,194,240 •rem 39

969 DATA 9,70,254,70,254,202,16,244,48,50,165,254,
41,3,240,44,170,189,80,194 :rem 182

970 DATA 24,109,31,194,41,7,170,32,236,193,176,28,
142,31,194,32,227,192,173,0 :rem 217

971 DATA 220,41,16,240,22,165,162,41,7,208,250,173
,0,220,41,15,201,15,208,234 :rem 177

972 DATA 173,0,220,41,16,208,142,174,255,204,173,2
5,205,16,8,41,15,141,25,205 :rem 193

136

Chapter 6

973 DATA 157,8,205,172,112,194,140,17,205,173,111,

194,141,16,205,74,138,174,110 :rem 54

974 DATA 194,142,15,205,32,8,201,169,0,141,21,208,

173,255,204,10,10,10,13,31 :rem 127

975 DATA 194,10,10,10,9,3,96,160,0,189,86,194,16,1

,136,24,109,15,205,133,251 :rem 158

976 DATA 152,109,16,205,133,252,189,84,194,24,109,

17,205,133,253,172,254,204 :rem 179

977 DATA 208,4,165,252,240,7,165,251,217,94,194,17

6,5,165,253,217,102,194,96 :rem 197

978 DATA 0,128,192,192,192,240,240,255,255,3,3,6,6

,12,12,24,24,1,1,1,2,2,3,3 :rem 122

979 DATA 1,1,2,2,3,3,14,6,7,5,13,9,11,10,120,52,39

,19,210,193,141,76,7,11,13 :rem 118

980 DATA 14,1,4,255,255,255,0,1,1,1,0,255,255,255,

64,160,160,160,80,80,40,40 :rem 131

981 DATA 160,160,80,80,40,40,20,20,0,0,0,142,222,1

94,140,223,194,165,253,56,229 :rem 25

982 DATA 251,170,165,254,229,252,236,222,194,237,2

23,194,144,35,160,0,174,223 :rem 225

983 DATA 194,240,14,177,251,145,253,200,208,249,23

0,252,230,254,202,208,242,174 :rem 57

984 DATA 222,194,240,8,177,251,145,253,200,202,208

,248,96,173,223,194,168,101 :rem 230

985 DATA 252,133,252,152,24,101,254,133,254,172,22

2,194,240,9,136,177,251,145 :rem 218

986 DATA 253,192,0,208,247,174,223,194,240,16,198,

252,198,254,136,177,251,145 :rem 251

987 DATA 253,192,0,208,247,202,208,240,96,0,0,120,

142,40,3,140,41,3,88,96,169 :rem 207

988 DATA 255,201,127,96 :rem 127

Once you have Shapedit entered, saved, and run, you can

begin experimenting with it. To help you familiarize yourself

with the program, take time to read through the following

explanations, trying out each feature.

EDIT. To begin, press the joystick button while on EDIT.

A white cursor appears, indicating you're in the positioning

mode. The purpose of this mode is to establish the origin.

Move the cursor by pushing the joystick. If you go past a

screen boundary, the cursor wraps around to the other side.

Once you've moved the cursor to the place where you

want the shape to start, press the button. The cursor dis

appears, and the border changes to match the color of the cur

rent drawing pen. You're now in the editing mode. The cursor

reappears as soon as you push the stick in any direction. By

pushing the stick in different directions, you can move the

137

Chapter 6

cursor to any of the eight positions around the origin. Press

and release the button to actually plot a point. The point

changes to the current drawing-pen color, and the cursor again

vanishes.

This procedure of pushing the joystick and pressing the

button is repeated for each point. The next time you push the

stick, the cursor hovers around the most recently plotted

point. Several points can be plotted to draw a shape.

An alternative method of drawing is to hold the trigger

down while pushing the stick. This allows the drawing of a

chain of points and is faster than point-by-point plotting. The

program won't let you draw out of bounds while in the

editing mode. Instead of wrapping around, the cursor just

stops at the screen edge.

To change the drawing pen, press the f7 key. The border

and display pen number change to reflect the color of the new

pen. Plotting is now done with pen 2. Press (7 again to change

to pen 3. The next time you press f7, pen 0 is selected. Pen 0

is used for erasing.

If you make a mistake while plotting and you want to de

lete the last point, press fl. The screen clears and the shape is

redrawn without the last point. To fix a mistake earlier in the

shape, it's necessary to delete all the subsequent points in or

der to back up to the mistake.

Each point that's plotted in the editing mode is one

instruction in the shape table. The more points in a shape, the

more instructions in the corresponding table. This im

plementation also supports some special instructions, acces

sible from the menu, for things like line drawing and area

filling.

To leave the editing mode and return to the menu, press

any key other than f1 or f7. The cursor disappears, and the

word EDIT is highlighted. Now that you're in the menu, any

item can be selected with the joystick.

SETPEN. Move to the item marked SETPEN and press

the joystick button. The prompt jumps to the item marked

S/F/A, which stands for SETPEN/FILLPEN/APPEND. These

three items are not followed by numbers, so they use S/F/A

when a number has to be entered.

Push the stick left or right to change the number after

S/F/A. SETPEN supports the standard color numbers from 0

to 15. When you've chosen the color you want, press the but-

138

Chapter 6

ton. If you want to change the pen color to yellow (color 7),

for instance, keep pushing the joystick until 7 appears, then

press the button. The instruction is added to the shape table,

and the prompt jumps back to EDIT.

Return to the editing mode by pressing the button when

EDIT is highlighted. The program bypasses the positioning

mode and goes right to the editing mode, using the same ori

gin as before. Editing continues from the last point. Use f7 to

change the current pen to the one which will have the new

color, and plot a point. The point appears in the new color

and the border color changes to match the current drawing

pen.

As with the SETPEN statement, the SETPEN instruction

must be used with a drawing pen other than pen 0. The only

color associated with pen 0 is the color of the background.

CLS. If you want to change the background color, use

the CLS command. Return to the menu, move to CLS, and

press the button. The number after CLS is the current back

ground color number, and can be changed by pushing the

stick left or right. Press the button when you've chosen the

new color. The screen will clear, and the background is set to

the new color. As an example, the background color can be

changed to red by changing the number after CLS to 2 and

pressing the button.

The program does not let you change the background

color to 15. That's the color used for text; using that color as

the background would make the text disappear. CLS is a com

mand used for editing purposes only, and is not an instruction

that can be included in a shape table.

Now that the screen has been cleared, press the button

while on EDIT. This time there is a positioning mode, and the

cursor appears at the old origin. If you don't want to change

the origin, just press the joystick button again. The shape is

redrawn, and editing continues from the last point.

The CLS command has another application. Perhaps

you're editing a shape, but can't complete it because it would

go out of bounds. What you need to do is change the origin to

allow more room for the drawing. Move to the CLS command

and press the button twice to clear the screen without chang

ing the background color. Now press the button on EDIT.

You'll be in the positioning mode, and the cursor will appear

at the old origin. Move the cursor to the new origin by

139

Chapter 6

pushing the stick, and then press the button. The shape is re:

drawn, starting at the new position, and you're back in the

editing mode.

Care must be taken when choosing a new origin, because

having the origin too close to a screen edge can make the

shape drawing go out of bounds. This can happen when you

press the button to go from the positioning mode to the

editing mode. If this happens, the message ERROR: OUT OF

RANGE shows in the top line of the text window, and the

program waits until you acknowledge the error by pressing

any key. The next time you select EDIT, be sure to use a dif

ferent origin.

MODE. Sometimes you may find that the screen is sim

ply not big enough to draw a particular shape, and a higher

resolution is needed. Use the MODE command to change the

current graphics mode. As a demonstration, change the mode

from 7 to 5, and go back to EDIT. Like clearing the screen,

changing the mode causes a positioning mode. The cursor ap

pears at the same coordinates as before, but it's smaller and

displays in a different position on the screen because of the

new resolution.

Once you choose the origin and press the button, the

shape is drawn. However, since MODE does not clear the

screen, the shape is drawn on top of the old one in the lower

resolution. In other words, the MODE command lets you see

the same shape in different resolutions. Sometimes you may

want to clear the screen by using CLS to get rid of old shapes.

Be aware that if you draw a shape in a high-resolution

mode, it may not fit on the screen in a low-resolution mode

and may cause the OUT OF RANGE error. Also, all points

drawn by the same drawing pen must have the same color

within the same color square. This is not a concern in modes 6

and 7, because the points are the same size as the color

squares. However, it can be a problem in the other modes.

Furthermore, the problem may not be detected until you

switch to a higher resolution mode.

If you're creating a shape that will be drawn in a high

resolution, it's more convenient to do the editing in a low-

resolution mode. Just periodically change to a higher resolu
tion to check for color-square conflicts.

When you switch between normal and multicolor modes,

140

Chapter 6

old shapes on the screen will not be displayed correctly. You

may want to use CLS to clear the screen.

ERASE. If you've been following the examples, the cur

rent shape may be getting rather long and cluttered. To erase

the shape altogether, use the ERASE command. When you

press the button on ERASE, the message CONFIRM? asks you

to verify that you want to erase the entire shape. Since a

shape cannot be retrieved once it's been erased, this prompt

prevents accidental erasing of a drawing. Press the Y key to

erase the shape, or the N key to cancel the command. If you

press Y, the screen clears and the shape table becomes empty.

MOVE. Shapes often develop a snakelike appearance be

cause of the restriction that each point must be adjacent to the

previous one. To break the chain of points, use the MOVE

instruction. This changes the pen position by adding offsets to

the current X and Y coordinates. It has the effect of lifting the

drawing pen and setting it down at another position on the

screen.

Select MOVE. The cursor appears, and you're now in a

type of positioning mode. Using the joystick, move the cursor

to the new pen position. Press the joystick button to set this

position; the next time EDIT is chosen, the cursor hovers

around that location. This is called relative positioning. The po

sition of the pen after it's moved is dependent on the old po

sition. If the shape is drawn starting at a different origin, the

pen still moves to the same place, relative to the rest of the

shape.

DRAW. With the MOVE instruction, it's possible to use

line drawing and area filling. After displacing the cursor by

MOVE, choose the DRAW instruction. A line is drawn from

the most recently plotted point to the current position, and the

DRAW instruction is added to the shape table. This is cer

tainly preferable to plotting individual points in a straight line

because each point requires an instruction. Not only would

that take more time to do with Shapedit, but the shape table

itself would grow tremendously.

FILL, LFILL, and RFILL. Instead of selecting DRAW for

line drawing, you can choose FILL, LFILL, or RFILL for area

filling. As the line is drawn from the last point to the current

position, filling is done to the left and/or right of the line.

FILLPEN. The fill instructions cause the background to be

filled in. If you want to fill on top of an area already filled,

141

Chapter 6

you must first use the FILLPEN instruction. This instruction

specifies the number of the pen that's to be covered up by the

fill. It's comparable to the optional third number in the

destination point of a FILL statement.

Let's say that you want to fill the background using pen

1, then fill inside that area using pen 2. The cover-up pen

number is reset to zero (for the background) at the beginning

of a shape, so the FILLPEN instruction does not have to be

used for the first fill. Before the second fill instruction is added

to the shape table, however, the instruction FILLPEN 1 should

be selected. The following fill instruction covers up points

drawn with pen 1, and stops only when any other pen is

encountered.

Once the cover-up pen number is changed by FILLPEN, it

stays in effect for the rest of the shape unless changed by an

other FILLPEN instruction.

HOME. Absolute positioning is done by using the HOME

instruction. This instruction moves the pen to the upper-left

corner of the screen, known as the home position. The pre

vious position of the pen has no effect on the instruction; the

pen will always be at 0,0 after the HOME instruction has been

selected.

You can absolutely position the pen at any place on the

screen by using the HOME and MOVE instructions together.

After the pen has been moved to 0,0 by the HOME instruc

tion, use MOVE to move the pen to the desired position. Since

the movement will be done relative to a constant position, the

pen will always move to the same position, regardless of the

shape's origin.

RMEM and RSET (REMEMBER and RESET). This

method of moving the pen position is useful when you want

to repeatedly move the pen back to the same position. The

first time that the pen is at this particular position, choose the

RMEM instruction. Although nothing will appear to happen,

the computer will remember the current position as a ref

erence point for later. Continue editing the shape. When you

want to make the pen jump back to the reference point estab

lished by the earlier RMEM, choose the RSET instruction.

Once a reference point has been established by RMEM,

the pen can be reset to that position as often as necessary.

There is no limit to the number of times that RSET can be

used. However, the computer can remember only one ref-

142

Chapter 6

erence point at a time. If RMEM is selected again, the new po

sition will be remembered, and the old one forgotten.

The default reference point is the home position. If RSET

is selected and RMEM has not been used earlier in the shape,

the pen moves to 0,0.

SHAPE. As you can see, the Shapedit program has many

instructions and commands to help you create a detailed,

colorful shape. But sometimes a single shape is not enough.

An application may need to use several different shapes. This

command lets you edit multiple shapes. It should not be con

fused with the BASIC statement SHAPE which is used to

draw shapes.

Assuming that shape 0 has already been defined, here's

how you would create a second shape. Press the button on the

item marked SHAPE, push the stick to change the current

shape number from 0 to 1, and press the button again. Now

press the button on EDIT. Because you're editing a new shape,

you'll have to establish an origin, so you'll be placed in the

positioning mode. Push the stick to move the cursor to the

starting position and press the button one more time. You're

now set to start defining shape 1.

Changing the shape number does not clear the screen,

which is why shape 0 is still displayed, even though you're

editing shape 1. If you want to get rid of the image of the old

shape, use the CLS command to clear the screen. Sometimes,

however, it can be convenient to see one shape while editing

another.

You can stop editing shape 1 and return to shape 0 at any

time by using the SHAPE command again. Since the shapes

are independent, shape 0 still has its own definition. Editing

one shape has no effect on the other. Even if you use the

ERASE command to erase one shape, the other remains intact.

The SHAPE command lets you create more than two

shapes, provided that you create them one at a time. When

you first run the Shapedit program, the SHAPE command

only lets you edit shape 0. But as soon as the shape table for

shape 0 contains at least one instruction, SHAPE allows access

to shape 1. Likewise, the SHAPE command does not let you

edit shape 2 until shape 1 has been defined.

Shapedit can handle a maximum of 100 shapes, though

it's doubtful that you'll ever need that many.

APPEND. Multiple shapes are useful by themselves, but

143

Chapter 6

one other possibility you'll find use for is to combine them to

create new shapes. The APPEND command can be used to

add one shape to another.

To demonstrate how APPEND works, assume you're

editing shape 3 and the shape you want to append is shape 5.

Move to the item marked APPEND and press the button.

You're prompted for a shape number. Push the joystick left or

right, stop when the number 5 appears, and press the button

again. The program examines the definition of shape 5 and

adds it to the end of shape 3. Shape 3 now contains the

instructions for shape 3 plus the instructions for shape 5. The

screen is updated to show shape 5 starting where shape 3

ends.

Shape 3 is the shape being edited, so it's the only shape

changed. Shape 5 still retains its previous definition. The AP

PEND command simply added a copy of shape 5 to the end of

shape 3; it did not merge the two shapes into one.

SAVE. In order to use shapes in a BASIC program, they

have to be stored in a file. Use the SAVE command to write a

copy of a shape file to tape or disk.

When you press the joystick button while on SAVE,

you're prompted for a filename. Enter a filename, from 1 to 12

characters long, and press RETURN. The text window blanks,

the shape file is saved to tape or disk (depending on what DN

is set to in line 100), and the screen is restored.

The .SHP extension is automatically added to the

filename by the Shapedit program, and should not be entered.

To cancel the SAVE command, press the RETURN key without

typing in a filename.

If you're using tape, the standard prompt message will not

appear on the screen. You'll have to remember to press both

the PLAY and RECORD buttons on the Datassette.

If you're using disk, be sure that the filename you selected

is not already in use. The program will not report an error if

the filename already exists, but the drive light will flash. The

program, however, will report the DEVICE NOT PRESENT er

ror if the disk drive is not connected or not turned on.

LOAD. At a later time you may want to revise some

shapes in a file or add some new ones. Or you may wish to

examine the shapes used in the demonstration programs. Use

the LOAD command to retrieve a set of shapes. Like the

144

Chapter 6

SAVE command, the LOAD command needs a filename. After

you enter the filename, the program erases the shapes cur

rently in memory and loads the new file. Again, if you're

using tape, no prompt message appears. Be sure to press only

the PLAY button on the Datassette.

If you're using disk and the requested file does not exist,

you'll see the FILE NOT FOUND error.

QUIT. When you're finished editing and have saved the

145

Chapter 6

shapes, you can exit the program by using the QUIT com

mand. Press the button on QUIT and type Y to end the pro

gram. Type N if you accidentally chose the QUIT command.

The next time you run Shapedit, be sure that the BASIC

extensions have been installed.

Using Shapes in BASIC Programs

The SHAPE statement makes it easy to draw shapes in a

BASIC program. But before a program can use this statement,

some preparation is necessary.

First of all you need to have all the lines which make up

Program 6-1, SHP.BAS, included in your program. Keep the

line numbers as listed in Program 6-1.

Take a look at the previous shape demonstration pro

grams. You'll find that they all start by assigning the variables

DN, SA, SX, SY, and SP. These variables are used by the

BASIC subroutine at line 56500 which loads the shape file

from tape or disk. Every program which uses shape tables

must assign these five variables:

DN =

DN =

SA =

SX =

SY =

SP =

8

1

780

781

782

783

(disk)

(tape)

After these variables have been assigned, the LOAD ad

dress for the shape file must be calculated and assigned to the

variable LA. The shape file is loaded at the beginning of

BASIC free memory. This address can be found by PEEKing

location 49 and adding that value to 256 times the value

found in location 50.

BASIC uses free memory whenever a variable is assigned

for the first time and whenever an array is dimensioned.

Therefore, the calculation of the LOAD address should be

done only after most of the variables have been assigned and

after all arrays have been dimensioned. As a precaution, an

extra 1000 bytes should be added to the LOAD address in case

there are a few more variables assigned later. Here's the state

ment you can use to assign LA.

LA=PEEK(49)+256*PEEK(50)+1000

146

Chapter 6

Next, assign the name of the shape file to the variable F$.

The string should consist only of the main part of the filename

and should not include the .SHP extension.

n="filename"

To complete the preparation, call the subroutine at line

56500.

GOSUB 56500

The subroutine loads the shape file into memory and then

determines how many shapes have been loaded. The number

of the last shape is assigned to the variable NS. For example,

if the file contained four shapes, numbered 0 to 3, the variable

NS would be assigned the value 3.

The subroutine then dimensions an array named AS, using

the value of NS. A loop from 0 to NS is executed to store the

address of each shape in the array. Once that's been done, the

subroutine ends and returns to the main program.

The program is now ready to use the SHAPE statement.

Remember that this statement needs the address of the shape

that you want to display. The address can be found by using

the corresponding shape number as the subscript of the array

AS. The numbers used for the X and Y coordinates depend on

where you want to display the shape and are comparable to

the origin used in the Shapedit program.

SHAPE AS(shape number), X coordinate, Y coordinate

The following two lines select graphics mode 5 and draw

shape 0 at position 40,30.

GRAPHICS 5

SHAPE AS(0),40,30

Any of the shapes in the file can be drawn by changing

the subscript of AS. Just make sure that the subscript never ex

ceeds the value of NS or the program will stop with a BAD

SUBSCRIPT error.

Another restriction is that a program can load only one

shape file. If you attempt to load a second set of shapes, you'll

get a REDIM'D ARRAY error, because array AS has already

been dimensioned. A shape file merging utility is provided

later so that you can combine two or more shape files into

one file.

One last restriction is that, if possible, you should avoid

assigning string variables once the shapes have been loaded.

147

Chapter 6

Every assignment to a string variable uses a small amount of

free memory. After several strings have been assigned, BASIC

may use the same free memory that's used to store the shape

tables. If it's necessary to assign strings, periodically call the

FRE function. This function reorganizes the free memory used

by strings so that the shape tables will be left alone.

The first demonstration program showed that you can

draw the same shape at different positions on the screen. You

can also change the graphics mode to display the shape in dif

ferent resolutions.

Another technique, demonstrated by the second program,

is to use the SETPEN statement before drawing a shape. The

same shape can be drawn in different color combinations. To

use this technique, the definition of the shape cannot contain

any SETPEN instructions. If the shape table does contain

SETPEN instructions, they'll override any SETPEN statements

executed before SHAPE.

The coordinates in a SHAPE statement do not have to be

constant numbers; they can be variables. An interesting effect

is created by using the SHAPE statement in a loop. Save Pro

gram 6-9, using the filename TOWERS, and the shape file,

Program 6-10, using the filename TOWER.SHP.

Remember that BMG.OBJ must be in memory before entering

Program 6-9. Also load SHP.BAS (Program 6-1) before typing in

Program 6-9.

Program 6-9, TOWERS

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

100 PRINT CHR$ (147):PRINT " TOWER GRAPHS" :PRINT "

{SPACE}BY CRAIG CHAMBERLAIN":PRINT :rem 86

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="TOWER":LA=PEEK(49)+256*PEEK(50)+1000:GOSUB
56500:REM LOAD SHAPES :rem 107

300 GRAPHICS l.-POKE 53280,0:SETPEN 1,1:S=AS(0)

:rem 82

310 FOR X=20 TO 100 STEP 40 : rem 70

320 READ C,H:SETPEN 2,C :rem 18

330 FOR Y=130 TO H STEP -lrSHAPE S,X,Y:NEXT Y,X

:rem 137

340 WAIT 198,15:GET K$:rem 137

350 END :rem 111

800 DATA 10,50,5,40,14,30 :rem 181

148

Chapter 6

Program 6-10. TOWER.SHP

To enter this program, you must use "The Machine Language Editor (MIX)/' a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49259

Filename: TOWER.SHP

49152 :000,100,000,083,075,075,07 7

49158 :075,075,075,075,075,075,200

49164 :075,091,091,091,091,091,030

49170 :091,091,091,091,091f091,052

49176 :091,091,091,091,091,107,074

49182 :107,107,107,107,107,107,160

49188 :107,107,123,123,123,123,230

49194 :123,123,123,123,123,123,012

49200 :123,123,123,123,123,131,026

49206 :139,139,139,139,139,139,120

49212 :139,075,155,155,155,155,126

49218 :155,155,155,155,155,155,228

49224 :155,155,155,155,155,099,178

49230 :163,171,171,171,171,171,072

49236 :171,171,115,179,187,187,070

49242 :187,187,187,187,187,187,188

49248 :187,187,187,187,187,187,194

49254 :255,013,013,013,013,013,166

The syntax for the SHAPE statement also allows that no

coordinates need to be specified.

SHAPE address of shape

The coordinates are optional. A SHAPE statement without

coordinates starts drawing a shape at the position where the

most recent shape ended. That's how the figures in the second

demonstration were drawn one after another. The position

was established by the first shape of each row. The remaining

shapes in each row were drawn by using SHAPE with no

coordinates.

Drawing shapes with the SHAPE statement is really very

simple. Just follow the procedure you've seen. An easy way to

get started is to take one of the demonstration programs and

modify it to suit your own needs. Change the filename as

signed to F$ and write new lines to display the shapes.

149

Chapter 6

Rotation

The plotting process used by shape tables is fairly straight

forward. Each instruction moves the pen to one of eight ad

jacent positions and plots a point. These directions are

numbered, starting at 0 for up, and moving clockwise around

an imaginary circle. Thus, 1 is up and to the right, 2 is right

only, and so on, up to 7, which indicates up and to the left.

The directional numbers are illustrated by Figure 6-1. Each

instruction consists of a direction number from 0 to 7, and a

pen number from 0 to 3.

Figure 6*1. Directional Numbers

What if every time an instruction was processed, a con

stant number was added to the direction number? How would

this affect the display? Well, with a constant of 2, the direction

0 (up) would become 2, which is to the right. The direction 2

(right) would be converted into 4, which is down. And the

direction 7 would become direction 9, but since there is no

direction 9, it would wrap around to direction 1.

Consider that the eight directions could also be treated

like angles, with a measure of 45 degrees between each. Thus,

if a constant of 2 was added to each angle as a shape was

drawn, it would appear to be rotated by 90 degrees. The shape

would still start at the same position on the screen and be the

same size; it would just look as if it had been spun around at

a right angle.

For added flexibility in shape drawing, the syntax of the

SHAPE statement supports an optional rotation number. This

150

Chapter 6

number ranges from 0 to 7 and must always be the last num

ber in the statement.

SHAPE address, angle number

SHAPE address, X coordinate, Y coordinate, angle number

The following chart shows the effects of the different angle

numbers.

Number Angle of Rotation

0 0 degrees (no rotation)

1 45 degrees

2 90 degrees

3 135 degrees

4 180 degrees

5 225 degrees

6 270 degrees

7 315 degrees

Rotation is done clockwise. When no angle number is

given, the value 0 is assumed, and the shape is not rotated.

Negative angle numbers are not allowed, but comparable pos

itive numbers can always be used. For example, rotating a

shape by 270 degrees is the same as rotating it by —90

degrees.

The following demonstration, Program 6-11, takes the

Munchkin shape and draws it at every angle. Remember that

BMG.OBJ must be in memory and Program 6-1, SHP.BAS,

should first be loaded so that it becomes part of "TWIST."

Program 6-3, MUNCHKIN.SHP, must also be on the same

disk. (If you're using tape, make sure that MUNCHKIN.SHP is

saved immediately after Program 6-11. Since you already have

Program 6-3 on tape from the earlier example, just resave it,

using MLX, to this new area on the tape. Refer to Appendix C

for information on using MLX to copy tape files.)

Program 6-11. TWIST

For error-free program entry, be sure to use 'The Automatic Proofreader/' Appendix D.

100 PRINT CHR$(147):PRINT " MUNCHKIN TWIST":PRINT

{SPACE}" BY CRAIG CHAMBERLAIN":PRINT :rem 248

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="MUNCHKIN":LA=PEEK(49)+256*PEEK(50)+1000:GO

SUB 56500:REM LOAD SHAPES :rem 55

300 GRAPHICS 1:POKE 53280,0 :rem 220

310 FOR A=0 TO 7 :rem 3

320 SHAPE AS(0),80+20*COS(A*t74),100+30*SIN(A*J74)
,A :rem 83

151

Chapter 6

330 NEXT A :rem 22

340 WAIT 198,15:GET K$:rem 137

350 END :rem 111

When you run this program, you'll notice that the shape

deteriorates when it's rotated to one of the diagonal angles.

That's why these four angles are not frequently used. But the

four main angles (0, 90, 180, and 270 degrees) can be useful,

often in some surprising ways. The next program rotates a

small shape to draw a continuous border around the screen.

Type in Program 6-12, "BRAID," after loading SHP.BAS

so that the latter becomes part of Program 6-12. Then use

MLX to enter Program 6-13. Be sure to use the filename

BRAID.SHP for this.

Program 6-12. BRAID

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " BRAID":PRINT " BY CRAI

G CHAMBERLAIN":PRINT :rera 98

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="BRAID":LA=PEEK(49)+256*PEEK(50)+1000:GOSUB

56500:REM LOAD SHAPES :rem 60

300 GRAPHICS 2:S=AS(0) :rem 245

310 SHAPE S,20,15 :rem 120

320 FOR K=l TO 11:SHAPE S,0:NEXT :rem 13

330 FOR K=l TO 7:SHAPE S,2:NEXT :rem 229

340 FOR K=l TO 12:SHAPE S,4:NEXT :rem 20

350 FOR K=l TO 7:SHAPE S,6:NEXT :rem 235

360 SHAPE S,70,50 :rem 129

370 WAIT 198,15:GET K$:rem 140

380 END :rem 114

Program 6-13. BRAID.SHP

To enter this program, you must use "The Machine Language Editor (MLX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49205

Filename: BRAID.SHP

49152 :000,051,000,083,083,083,044

49158 :083,083,083,083,083,067,232

49164 :067,067,067,067,067,11s,206

49170 :115,115,115,099,099,083,132

49176 :083,099,099,115,115,115,138

49182 :115,067,067,067,067,067,224

49188 :067,083,083,083,083,083,006

152

Chapter 6

49194 :083,083,083,099,099,099,076

49200 :099,099,099,099,099,255,030

Rotation will not work correctly with shapes that contain

a MOVE instruction. This instruction does not take into ac

count the rotation angle when it moves the drawing pen. For

instance, if a MOVE instruction moves the pen up a certain

number of positions, it moves the pen up that many positions

even if the shape is drawn upside down. Since MOVE is used

with DRAW, FILL, LFILL, and RFILL, these instructions can

not be used either.

RMEM and RSET do work with rotation, so DRAW can be

used if the pen is moved by RSET instead of MOVE. Unfortu

nately, this method does not work with any of the fill instruc

tions. These always fill to the left and/or right, no matter how

the shape is rotated.

Drawing Pen Indirection

Each shape table instruction contains direction and drawing

pen information for one point. You've just seen how

experimenting with the direction number can produce some

interesting and useful effects. What about the drawing pen

number?

Indeed, something special can be done with the drawing

pen number. You know that the SHAPE statement can quickly

draw shapes. It can quickly undraw shapes too, by using the

PEN statement, which has a format of:

PEN pen number, pen number

This statement indirects drawing done by the first pen

number so that the drawing is actually done by the second

pen number. For instance, the statement PEN 1,2 means that

all shape table instructions using pen 1 will instead be drawn

by pen 2. The term indirection is used because of this extra

step in determining the pen number. The pen number in the

instruction indirectly determines the pen number used for

plotting.

Consider what would happen if the three drawing pens

were set to 0 before a shape was drawn. Every point in the

shape would be drawn with pen 0, the erasing pen. What does

this get you? It means that you can draw a shape at any po

sition on the screen, and then by setting the pens to 0 and

drawing the shape at the same position, you can erase that

153

Chapter 6

shape without disturbing anything else on the screen. Run

Program 6-14 for a demonstration.

Again, insure that the bitmapped graphics BASIC exten

sions are enabled, and SHP.BAS in memory before typing any

of the following listing. You also need to have MUNCHKIN.SHP

on the same disk, or if you're using tape, immediately after

Program 6-14.

Program 6-14. ANTIMUNCH

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " ANTIMUNCH":PRINT " BY

{SPACE}CRAIG CHAMBERLAIN":PRINT :rem 167

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="MUNCHKIN":LA=PEEK(49)+256*PEEK(50)+1000:GO

SUB 56500:REM LOAD SHAPES :rem 55

300 GRAPHICS 1:S=AS(0) :rem 244

310 FOR X=15 TO 135 STEP 30 :rem 81

320 FOR Y=10 TO 180 STEP 20 :rem 77

330 SHAPE S,X,Y :rem 99

340 NEXT:NEXT :rem 79

400 PEN 1,0:PEN 2,0:PEN 3,0 :rem 91

410 FOR X=15 TO 135 STEP 30 :rem 82

420 FOR Y=10 TO 180 STEP 20 :rem 78

430 SHAPE S,X,Y :rem 100

440 NEXT:NEXT :rem 80

450 END :rem 112

Applications of the PEN statement are not limited to just

erasing shapes, however. Remember the demonstration of the

rising tower graphs? The towers had to be separated to avoid

problems with color squares. By using indirection, the program

could have drawn the towers in overlapping pairs. To see this

illustrated, check that Program 6-10, "TOWER.SHP," is on the

same disk; save it right after Program 6-15 if you have a

Datassette. As always, the bitmapped graphics BASIC exten

sions must be operating, and SHP.BAS should be in memory

before you start typing.

Program 6-15- TOWER II

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " TOWERS II":PRINT " BY

{SPACE}CRAIG CHAMBERLAIN":PRINT :rem 118

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="TOWER":LA=PEEK(49)+256*PEEK(50)+1000:GOSUB

56500:REM LOAD SHAPES :rem 107

154

Chapter 6

300 GRAPHICS 1:POKE 53280,0:SETPEN 1,1:S=AS(0)
:rem 82

310 FOR X=20 TO 100 STEP 40 :rem 70

320 READ C,H:SETPEN 2,C :rem 18

330 FOR Y=130 TO H STEP -1:SHAPE S,X,Y:NEXT Y#X

:rem 137

340 PEN 2,3 :rem 11

350 FOR X=30 TO 110 STEP 40 :rem 76

360 READ C,H:SETPEN 3,C :rem 23

370 FOR Y=150 TO H STEP -1:SHAPE S,X,Y:NEXT YfX

:rem 143

380 WAIT 198,15:GET K$:rem 141

390 END :rem 115

800 DATA 10,50,5,40,14,30 :rem 181

810 DATA 6,90,4,80,8,70 :rem 105

Here's another program which makes extensive use of the

PEN statement. The program draws a weather map, complete

with suns and clouds. Indirection is used to create the effect of

flashing thunderbolts and falling rain. Start with SHP.BAS in

memory.

Program 6*16. WEATHER

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " MICHIGAN LOWER PENINSU

LA" :rem 143

105 PRINT " WEATHER MAP DEMONSTRATION":PRINT " BY

{SPACE}MARK DAVIDS":PRINT :rem 143

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="WEATHER":LA=PEEK(49)+256*PEEK(50)+1000:GOS

UB 56500:REM LOAD SHAPES :rem 234

200 GRAPHICS 1:SETPEN 3,9:POKE 53280,0:REM DRAW MI

CHIGAN LOWER PENINSULA :rem 64

205 DRAW 25,195,3 TO 35,169 TO 37,151 TO 39,127 TO

35,109 TO 33,87 TO 36,69 :rem 238

210 DRAWTO 44,39 TO 46,54 TO 48,54 TO 50,39 TO 61,

34 TO 59,28 TO 64,21 TO 67,17 :rem 206

215 DRAWTO 79,23 TO 91,33 TO 99,44 TO 105,50 TO 10

7,57 TO 102,55 TO 106,62 :rem 233

220 DRAWTO 108,84 TO 103,101 TO 95,109 TO 88,121 T

O 86,131 TO 90,139 TO 95,138 :rem 181

225 DRAWTO 97,134 TO 100,127 TO 106,120 TO 112,116

TO 112,118 TO 119,139 :rem 144

230 DRAWTO 121,164 TO 118,166 TO 115,174 TO 107,19

9 TO 65,199 TO 65,195 :rem 137

235 DRAWTO 25,195:DRAW 104,55 TO 105,55:DRAW 106,5

6 :rem 149

155

Chapter 6

240 FILL 44,42 TO 43,54:FILL 110,117 TO 110,139:FI

LL 67,18 TO 66,199 :rem 77

250 DIM X(6),Y(6),T(6):FOR K=l TO 6:READ X(K),Y(K)
:NEXT :rem 250

300 FOR DAY=0 TO 6:MODE 3:SETPEN 1,7:SHAPE AS(5+DA

Y),36,7:SHAPE AS(12):MODE 1 :rem 22

310 FOR P=l TO 6:C=INT(5*RND(0))+1:T(P)=C:ON C GOS

UB 330,340,350,360,370 :rem 25

320 NEXT:SETPEN 1,12:GOTO 400 :rem 164

330 REM CLOUD :rem 241

335 SETPEN 1,1:SHAPE AS(0),X(P),Y(P):RETURN:rem 29

340 REM CLOUD AND SUN :rem 187

345 SETPEN 1,12:SETPEN 2,7:SHAPE AS(0),X(P),Y(P):S

HAPE AS(1),X(P),Y(P):RETURN :rem 250

350 REM CLOUD AND RAIN : rem 240

355 SETPEN 1,12:SHAPE AS (0) ,X(P), Y(P) :SHAPE AS(2),

X(P),Y(P) :RETURN : rem 94

360 REM CLOUD AND LIGHTNING :rem 107

365 SETPEN 1,0:SETPEN 2,7:SHAPE AS(0),X(P),Y(P):SH

APE AS(3),X(P),Y(P):RETURN :rem 203

370 REM SUNNY :rem 27

375 SETPEN 1,7:SHAPE AS(4),X(P),Y(P):RETURN:rem 43

400 FOR T=l TO 32:FOR Q=l TO 6 :rem 254

410 IF T(Q)=3 AND T/4=INT(T/4) THEN:PEN 1,3:SHAPE

{SPACE}AS(2),X(Q),Y(Q) :rem 47

420 IF T(Q)=3 AND T/4>INT(T/4) THEN:PEN 1,1:SHAPE

(SPACE}AS(2),X(Q),Y(Q) :rem 47

430 IF T(Q)=4 AND T/5=INT(T/5) THEN:PEN 2,3:SHAPE

(SPACE}AS(3),X(Q),Y(Q) :rem 54

440 IF T(Q)=4 AND T/5>INT(T/5) THEN:PEN 2,2:SHAPE

{SPACE}AS(3),X(Q),Y(Q) :rem 55
450 NEXT:NEXT :rem 81

500 MODE 3:PEN 1,0:SHAPE AS(5+DAY),36,7:SHAPE AS(1

2):MODE 1 :rem 224

510 PEN 1,3:PEN 2,3 :rem 183

520 FOR Q=l TO 6:FOR T=0 TO 4:SHAPE AS(T),X(Q),Y(Q

):NEXT:NEXT :rem 242

530 NEXT DAY:GOTO 300 :rem 187

800 DATA 60,44,38,81,88,74,55,120,37,169,95,159

:rem 39

156

P
r
o
g
r
a
m
6
-
1
7
.
W
E
A
T
H
E
R
.
S
H
P

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
0
8
1

F
i
l
e
n
a
m
e
:
W
E
A
T
H
E
R
.
S
H
P

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

:
0
1
2

:
0
6
7

:
1
2
3

:
0
8
3

:
0
3
1

:
0
3
1

:
0
5
3

:
0
3
6

,
0
5
4
,

,
0
5
6
,

:
0
1
0

:
0
1
7

:
1
4
7

:
1
7
9

:
1
4
7

:
2
5
5

:
0
9
9

:
0
8
3

:
0
6
7

:
0
0
4

:
0
0
0

:
1
7
9

:
1
4
7

,
0
2
4
,

,
0
6
7
,

,
0
6
7
,

,
0
8
3
,

,
0
3
1
,

,
1
1
5
,

,
0
3
1
,

,
1
4
7
,

,
1
4
7
,

,
1
3
9
,

,
1
8
7
,

,
0
3
2
,

,
0
8
3
,

,
0
6
7
,

,
0
2
9
,

,
1
1
5
,

,
0
9
9
,

,
0
4
2
,

,
1
6
3
,

,
1
4
7
,

0
0
0
,
0
8
3

0
3
1
,
0
6
7

0
3
1
,
0
7
5

0
0
5
,
0
0
2

0
1
8
,
0
3
1

0
8
3
,
0
8
3

0
5
4
,
0
3
1

0
9
1
,
0
1
8

1
1
5
,
0
2
2

2
5
5
,
0
2
6

1
4
7
,
1
7
9

1
3
9
,
1
7
9

1
4
7
,
1
4
7

1
7
9
,
1
7
9

0
0
0
,
0
0
6

0
6
7
,
0
0
6

0
0
6
,
0
8
3

1
0
7
,
0
9
9

0
9
9
,
1
1
5

1
1
5
,
0
6
7

0
2
1
,
1
7
9

1
7
9
,
1
6
3

1
4
7
,
1
6
3

,
0
5
9
,
0
3
1
,
2
3
8

,
0
5
8
,
0
3
1
,
0
6
0

,
0
8
3
,
0
8
3
,
1
6
7

,
1
1
5
,
0
2
0
,
0
1
1

,
0
6
7
,
0
1
2
,
2
5
0

,
0
8
3
,
0
1
2
,
1
3
3

,
1
0
7
,
0
0
8
,
1
1
6

,
0
3
1
,
1
0
7
,
1
0
0

,
0
0
1
,
0
8
3
,
2
4
3

,
0
0
0
,
0
2
6
,
1
4
6

,
1
8
7
,
1
4
7
,
1
1
6

,
1
7
9
,
1
7
9
,
0
1
2

,
1
7
9
,
1
4
7
,
2
4
2

,
1
7
1
,
1
6
3
,
0
8
0

,
0
3
7
,
0
9
1
,
2
4
9

,
0
8
3
,
0
9
9
,
0
1
5

,
0
9
9
,
0
8
3
,
0
0
5

,
1
1
5
,
0
6
7
,
0
7
4

,
0
6
7
,
0
0
4
,
0
0
0

,
2
5
5
,
0
2
6
,
0
2
3

,
1
7
9
,
1
5
5
,
1
8
4

,
1
7
9
,
1
6
3
,
1
2
8

,
1
7
9
,
1
6
3
,
0
5
4

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

:
1
7
9

:
1
7
9

:
0
8
3

:
0
0
1

:
0
6
7

:
0
8
3

:
0
6
7

:
1
4
9

:
0
6
7

:
0
6
1

:
0
9
9

:
0
0
0

:
1
0
7

:
0
9
9

:
0
8
3

:
0
0
0

:
0
3
1

:
0
9
9

:
0
8
3

:
0
1
0

:
0
3
1

:
0
3
1

:
0
6
7

:
0
9
1

:
0
0
0

:
0
3
1

:
0
3
1

,
1
6
3
,

,
1
6
3
,

,
0
8
3
,

,
0
8
3
,

,
0
9
1
,

,
0
7
5
,

,
0
7
5
,

,
0
1
2
,

,
0
3
1
,

,
1
2
3
,

,
0
8
3
,

,
0
0
4
,

,
0
9
1
,

,
0
4
9
,

,
0
9
9
,

,
0
9
9
,

,
0
6
7
,

,
0
3
4
,

,
0
1
7
,

,
0
7
5
,

,
0
9
9
,

,
0
3
3
,

,
0
3
1
,

,
0
0
2
,

,
0
1
8
,

,
0
3
7
,

,
0
6
7
,

,
1
2
3
,

,
0
3
4
,

,
0
1
0
,

,
0
3
7
,

1
7
9
,
1
6
3

2
5
5
,
0
9
0

0
9
9
,
1
1
5

0
9
9
,
0
9
9

0
6
7
,
1
2
3

1
1
5
,
1
1
5

0
6
7
,
0
7
5

0
0
9
,
0
0
1

0
0
4
,
0
8
9

0
6
7
,
1
2
3

0
8
3
,
0
8
3

0
1
3
,
0
9
9

0
9
9
,
0
1
2

1
1
5
,
0
9
9

0
0
6
,
0
7
3

0
9
9
,
0
8
3

0
6
7
,
0
6
7

0
6
3
,
0
0
6

0
3
1
,
0
0
8

0
1
0
,
0
3
1

0
0
2
,
0
0
5

0
3
1
,
0
8
3

0
3
3
,
0
3
1

0
6
3
,
0
0
2

0
3
7
,
0
3
1

0
3
1
,
0
0
8

0
3
7
,
0
3
1

0
1
4
,
0
2
9

0
6
3
,
0
0
2

0
2
1
,
0
3
1

0
3
1
,
1
1
5

,
1
7
9
,

,
0
0
0
,

,
1
1
5
,

,
0
9
9
,

,
0
8
3
,

,
0
6
7
,

,
0
6
7
,

,
0
9
9
,

,
0
0
2
,

,
0
6
7
,

,
0
9
9
,

,
0
9
9
,

,
0
9
9
,

,
1
0
7
,

,
0
9
9
,

,
0
8
3
,

,
2
5
5
,

,
0
8
3
,

,
0
3
1
,

,
0
0
2
,

,
0
6
3
,

,
0
3
7
,

,
0
8
3
,

,
0
8
3
,

,
0
3
3
,

,
0
1
7
,

,
0
0
2
,

,
2
5
5
,

,
0
8
3
,

,
0
1
0
,

,
0
3
3
,

1
6
3
,
1
4
0

0
8
3
,
1
4
6

0
1
4
,
1
4
7

0
8
3
,
1
0
8

0
6
7
,
1
4
8

0
8
3
,
2
2
6

0
7
5
,
1
0
4

0
3
1
,
1
4
3

1
1
5
,
0
6
4

0
2
6
,
1
5
3

1
1
5
,
2
1
0

0
9
1
,
1
1
3

0
9
9
,
1
9
7

0
9
9
,
1
7
3

0
6
7
,
1
6
1

0
8
3
,
0
0
6

0
6
4
,
0
6
9

0
1
0
,
1
8
0

0
6
7
,
1
7
5

0
1
3
,
2
4
2

0
0
2
,
0
1
6

0
3
1
,
0
5
0

0
3
7
,
2
3
9

0
3
3
,
2
3
4

0
3
1
,
2
0
7

0
3
1
,
0
1
5

0
2
5
,
0
1
1

0
7
3
,
1
1
7

0
3
3
,
0
0
9

0
1
7
,
1
7
6

0
3
1
,
0
8
4

O
N

Chapter 6

3S5sgiSisiS

58 S SSS 2 S15 S S S8 S i'5 3 i S 28 2 S3 8 a ■ S i 3

J'J'rHint^rHcnin^Qr^fni^o^coror-rocNrHrororHininro^iGirj oo rH

SsSSissqgfisasssssgsssssgsssgsss
oo

oo

TO rH

5S
TO oo

cocoSSSSSSvo^i^r-t^i^r-r^i^^i^i^r^r-r-r-r-oocooooooooo coco

355$555555555555555555555555555

rH

00

G)

n\

TO
TO

*f
TO
TO

rH

00

TO

CO

rH

TO

*f
TO
TO

in r*-

r** co

CM rH

TO CO

TOTO

co g>

VO rH

TOG!

cm in

CM l^

i-i r-i

CO CO

TOTO

r^r^
CO rH

TOTO

TO
rH

TO

r-i

CO

TO

in

CM

TO

rH

CO

CO

TO
TO

rH

CO

TO

CO

TO

m

TO

<N

TO
TO

rH

CO

TO

rH

fN

G>

CO

CO

TO

CO

TO

CO

r-i

TO

^

CO

G>

CO

CO

G>

CO

00

TO

CM

TO
TO

rH

CO

TO

^

CO

TO

in

r-i

r-i

rH

CO

TO

CO

CO

TO

rH

CO

TO

CO

TO

r^

VO

G>

VO

TO

rH

CO

G>

^

rH

TO

00
TO
TO

TO

CO

CM

rH

CJN

TO

in

CM

TO

CM

TO
TO

rH

CO

CO

VO

TO

CM

CM

TO

TO
TO
TO

TO

TO

in

in

CM

ON

CM

TO

CO

TO

CO

CO

G>

rH

CO

TO

CO

CO

TO

CO

CO

rH

CO

G>

CO
rH

TO

in

r-i

r-i

CO

CO

TO

TO
TO G>

TO
r-i

TO

rH

CO

TO

co

CO

TO

co

00
TO

CM

TO
TO

CO

TO

CO

TO

CM

TO
TO

rH

CO

G>

TO
rH

TO

r-i

CO

TO

r^

CO

TO

CO

00

TO

t-i

CO

TO

CM

TO
TO

r-i

CO

TO

r^

CO

TO

CO

CO
TO

rH

CO

TO

CO

CO

TO

CO
rH

TO

rH

CO

TO

CO

CO

TO

CO

00

TO

CM

TO
TO

CO

VO

TO

VO
TO

r-i

CO

TO

CO

G>
TO

in

rH

rH

co

rH

G>

rH

CO

TO

CO

VO

TO

CM

TO
TO

rH

CO

TO

<3*
rH

G>

rH

CO

TO

ON

CM

TO

r-i

CO

TO

r^

r-i

TO

rH

CO

TO

TO
rH

TO

CO

00

TO

VO

TO
TO

G>
rH

TO

in

TO

in

rH

r-i

r^

VO

CM

G>
G>

CJN

ON

G)

ON

ON

TO

CO

rH

TO TO

rH

co

TO

00
TO
G>

CM

TO
TO

rH

CO

G>

CM

G)

CO

VO

G>

TO
G>
G>

rH

CO

rH

in

in

CM

in

G)

G>

rH

CO

G>

r^

CO

G>

co

CO
G)

rH

CO

TO

CO

CO

TO

CO

CO
TO

rH

CO

G>

CO

r-i

TO

VO
TO
TO

rH

CO

TO

ON

G)
TO

VO
TO
TO

CO
TO
5)

r-i

CO

TO

r^

CO

TO

CO

00

TO

rH

CO

TO

CO

CO

TO

CO

vO
TO

CO

rH

G>

CO
rH

TO

[^

TO
rH

rH

CO

TO

rH

G)

r-i

CO

G)

CO
r-i

G)

r-i

CO

G)

CO

CO

G>

CO

CO
G>

CM

G)
TO

ON
CM

G)

r^

vo

G)

r-i

CO

G>

CO
TO
TO

in

rH

r-i

CO

rH

TO

CM

TO
TO

CO

VO
TO

CM

G>
TO

rH

CO

TO

<?
rH

rH

CO

TO

TO
rH

ca

rH

CO

TO

CO

CO

TO

CO

VO

TO G>

r-i

CO

TO

CO

CO
TO

t-i

CO

TO

t-i

CM

TO

CO
TO
TO

r-i

CO

TO

CO

rH

TO

VO
G>
TO

VOCMCO^GIVOCMOO^TOVDCMCO^GJVOCMCO^TOVOCMCO^TOVOCMOO^TOVO
OC^TOTOHCOO^^inOVOl^t^COONONOTOHCMCMCOCO^inin

158

CJ
F1

4
9
8
4
8

4
9
8
5
4

4
9
8
6
0

4
9
8
6
6

4
9
8
7
2

4
9
8
7
8

4
9
8
8
4

4
9
8
9
0

4
9
8
9
6

4
9
9
0
2

4
9
9
0
8

4
9
9
1
4

4
9
9
2
0

4
9
9
2
6

4
9
9
3
2

4
9
9
3
8

4
9
9
4
4

4
9
9
5
0

4
9
9
5
6

4
9
9
6
2

4
9
9
6
8

4
9
9
7
4

4
9
9
8
0

4
9
9
8
6

4
9
9
9
2

4
9
9
9
8

5
0
0
0
4

5
0
0
1
0

5
0
0
1
6

5
0
0
2
2

5
0
0
2
8

:
0
0
8

:
0
6
3

:
0
3
1

:
0
2
5

:
0
0
5

:
0
6
3

:
0
6
7

:
0
3
1

:
0
0
5

:
0
0
6

:
0
0
8

:
0
3
1

:
0
0
5

:
0
0
6

:
0
.
8
3

:
0
1
2

:
0
8
3

:
0
8
3

:
0
0
4

:
0
3
7

:
0
8
3

:
0
3
1

:
0
0
2

:
0
3
7

:
0
3
1

:
0
3
1

:
0
7
6

:
0
3
3

:
0
3
1

:
0
0
9

:
0
2
9

,
0
0
2
,

,
0
3
7
,

,
0
0
2
,

,
0
2
5
,

,
0
0
4
,

,
2
5
5
,

,
0
8
3
,

,
0
3
1
,

,
0
0
2
,

,
0
6
3
,

,
0
0
9
,

,
0
2
9
,

,
0
0
1
,

,
0
8
3
,

,
0
3
3
,

,
0
3
3
,

,
0
6
3
,

,
0
3
7
,

,
0
8
3
,

,
0
8
3
,

,
0
3
1
,

,
0
1
0
,

,
1
1
5
,

,
0
0
0
,

,
0
3
1
,

,
0
0
8
,

,
0
3
1
,

,
0
3
1
,

0
6
7
,
0
2
9

0
8
3
,
0
3
3

0
3
1
,
0
8
3

0
1
0
,
0
8
3

1
1
5
,
0
9
1

0
8
3
,
0
1
8

0
3
1
,
0
0
4

0
9
9
,
0
2
1

1
0
4
,
0
0
0

0
1
0
,
0
3
1

0
6
7
,
1
1
5

0
1
3
,
0
9
9

0
0
2
,
0
8
3

0
3
1
,
0
8
3

0
3
1
,
0
8
3

0
9
9
,
0
2
1

0
1
0
,
0
0
5

0
3
1
,
0
8
3

1
1
5
,
0
1
8

0
0
2
,
0
8
3

0
3
1
,
0
1
0

0
3
7
,
0
3
1

0
3
3
,
0
3
1

0
8
3
,
0
0
8

0
8
3
,
0
9
9

0
9
1
,
0
1
0

0
6
3
,
0
0
2

0
1
0
,
0
3
1

0
2
1
,
0
3
1

0
0
8
,
0
1
7

0
1
8
,
0
6
3

,
0
3
1
,

,
0
3
1
,

,
0
0
8
,

,
0
9
9
,

,
0
1
0
,

,
0
3
1
,

,
0
3
1
,

,
0
3
1
,

,
0
1
0
,

,
0
1
7
,

,
0
7
5
,

,
0
9
9
,

,
0
1
7
,

,
1
0
7
,

,
0
1
7
,

,
0
3
1
,

,
0
6
3
,

,
0
3
7
,

,
0
3
1
,

,
0
3
3
,

,
0
3
1
,

,
0
0
2
,

,
0
1
4
,

,
1
1
5
,

,
0
0
4
,

,
0
0
5
,

,
0
8
3
,

,
0
0
6
,

,
0
8
3
,

,
0
3
1
,

,
0
0
2
,

0
1
8
,
1
1
2

0
1
4
,
1
6
0

1
1
5
,
2
4
5

0
0
4
,
1
9
8

0
0
5
,
2
0
9

0
0
8
,
1
6
3

0
1
8
,
1
4
0

0
1
0
,
1
6
6

0
6
3
,
1
5
7

0
3
1
,
1
6
0

0
1
0
,
0
3
8

0
0
2
,
2
4
0

0
3
1
,
2
0
1

0
8
3
,
0
6
9

0
3
1
,
0
3
0

0
0
1
,
1
8
3

0
1
0
,
0
2
2

0
3
1
,
0
7
2

0
0
2
,
2
3
9

0
3
1
,
0
3
5

0
3
3
,
0
1
7

0
6
3
,
0
4
5

0
3
1
,
2
5
4

0
2
5
,
1
0
9

0
0
5
,
0
4
8

2
5
5
,
0
7
3

0
6
3
,
1
1
5

0
1
3
,
2
1
4

0
0
6
,
0
2
0

1
0
7
,
0
4
9

0
8
3
,
0
7
8

5
0
0
3
4

5
0
0
4
0

5
0
0
4
6

5
0
0
5
2

5
0
0
5
8

5
0
0
6
4

5
0
0
7
0

5
0
0
7
6

:
0
1
7
,

:
1
0
7
,

:
0
1
7
,

:
0
3
1
,

:
0
6
3
,

:
0
6
7
,

:
0
8
3
,

:
0
6
7
,

0
3
1
,
0
0
6
,
0
0
9

0
8
3
,
0
8
3
,
0
2
9

0
3
1
,
0
1
2
,
0
0
1

0
0
1
,
0
8
3
,
0
8
3

0
1
0
,
0
8
3
,
0
1
7

0
6
7
,
1
1
5
,
0
9
9

0
2
1
,
0
3
1
,
0
1
7

0
8
3
,
0
9
9
,
0
0
2

,
0
3
1
,

,
0
3
1
,

,
0
9
9
,

,
0
1
0
,

,
0
3
1
,

,
0
0
6
,

,
0
8
3
,

,
0
2
9
,

0
8
3
,
0
3
5

0
8
3
,
0
2
4

0
2
1
,
0
5
1

0
0
5
,
0
8
9

1
1
5
,
2
0
1

0
0
5
,
2
4
7

0
6
7
,
1
9
6

2
5
5
,
1
7
9

P
r
o
g
r
a
m
6
-
1
8
.
C
H
S
E
T
A
.
S
H
P

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
4
4
7

F
i
l
e
n
a
m
e
:
C
H
S
E
T
A
.
S
H
P

4
9
1
5
2

:
0
5
8
,
0
0
3
,
0
0
0
,
0
6
3
,
0
2
2
,
2
5
5
,
1
4
5

4
9
1
5
8

:
0
1
3
,
0
0
0
,
0
0
6
,
0
8
3
,
0
0
1
,
0
6
7
,
1
7
6

4
9
1
6
4

:
0
1
7
,
0
3
1
,
0
8
3
,
0
2
1
,
0
3
1
,
0
0
5
,
2
0
0

4
9
1
7
0

:
0
9
9
,
0
0
6
,
2
5
5
,
0
1
8
,
0
0
0
,
0
0
6
,
1
4
6

4
9
1
7
6

:
0
0
9
,
0
6
7
,
0
6
7
,
0
6
7
,
0
8
3
,
0
9
9
,
1
6
0

4
9
1
8
2

:
0
9
9
,
0
0
2
,
0
8
3
,
0
6
7
,
0
6
7
,
0
8
3
,
1
7
5

4
9
1
8
8

:
0
9
9
,
0
9
9
,
0
0
2
,
0
2
1
,
2
5
5
,
0
2
5
,
0
2
5

4
9
1
9
4

:
0
0
0
,
0
6
7
,
0
2
6
,
0
3
1
,
1
0
7
,
0
3
3
,
0
5
0

4
9
2
0
0

:
0
3
1
,
1
1
5
,
0
3
7
,
0
3
1
,
0
1
2
,
0
2
5
,
0
4
3

4
9
2
0
6

:
0
6
3
,
0
6
7
,
0
3
7
,
0
3
1
,
0
8
3
,
0
3
3
,
1
1
2

4
9
2
1
2

J
0
3
1
,
1
9
1
,
1
1
5
,
0
2
6
,
0
3
1
,
0
0
2
,
2
0
0

4
9
2
1
8

:
0
2
9
,
2
5
5
,
0
2
2
,
0
0
0
,
0
0
2
,
0
7
5
,
1
9
3

4
9
2
2
4

:
0
1
4
,
0
3
1
,
0
6
7
,
0
8
3
,
1
2
3
,
0
0
8
,
1
4
2

C
D

O
S

Chapter 6

i>G*Hi/)i^©coincMiJ^c*QrHnij^c*ii^incoina)OOM
VOG)COG)CMG)CX)r^G)rHCMG>C^00rHCMi>fH00infHGfCOG)rHG>COCM>>G)CO

G>G>G>G)G)G*G)G>G)rHG>G>rHG>rHG>G>rHG>CMG>G>G>GJG>G>GlG>G>lSG>

cocococMinrH^^GJiHcoii^fHfHi^cMCMinii^i^i^inc^inc^c^c^a
CJ0rHCOCMr^COfHG>G)GJCJ0CMCOCOCMCM®i>r^ni^iHG)CMC^ONG)rHQCO^H

G)&GrGfG<G)G>fHG>G>G)G)G)G)<SG)G>G>G)G>G>fHG)G>G}G>G)G}G)G>G}

VOinGJrHVO^rHONi^^li^iriCn^GJinCOrHlJ^CMCMfHVOinCOfHrHC^CO^
Ql/^QCOG>rOCOG)rHG)i^i/>fHrHrHfHVOCOfHCMGif^G)in00ONCOONvO«HC0

OCMG)G}G)G)G)G)G}G)G)CMG}G)G)fHG)G)fHG)G)G)G)CMG)G)G)GiG)G}G)

S>VOCMC^G>^^^intHl^inCOG)rHC^GiG)i^fHCOCOCOG)in»H00CMG»inrH

G»G)CMCMG)^rHG>li^COQQO)rHCOC^G)fHVOrOVO<^aDrHr^COgrHgr-CO

G)G>G)G)G>G}G»G)CMG}fHGfG)G)G^G}G)G)G)G>G)G)QG)G)G}QG)G)G)G)

r^c^c^cM^GJcOfHfHCX)rHGiCMi^rHfHrHC^invoG)^^^cMr^inrHinfHON
G»C^<X)rHCMrHCMCOCMrHCOfHG>VOCMCOCMONrHrHG>G)COCOfS'HrHCOCMCOCM

G)G)G)G)G)G}iHG)G)G}G)G}G>G)G)G)G)G)fHG}G)rHG>G}G)G)fHG)G)G}G)

U^COCMinir>HrHrHG>COinrHnG><X)00ii^^t^li^G)rHrH
I^CX)G>fHli^COCOCMfHCX)CMCOvOrHlSG)ina)VOi>CMCOCMCMvDCniSfHinrHON

CMGrG)rHCMG»G)G)G)G)G)G)G)G)G)G)CMG}G)G)G>G>G)G)G)G)G)G}CMG}<S

G»tG>rH^rcx)c^cx)cx)iHG»inin(^iH^G»c^cMcorHi>ON^vocMfH
CMG»CMCMCMrHG>HfHfHrHCMHiHCMfHrHCMG>CMfHG>fHHfHGifHrH

cocA^c^cocoii^ir»i>Hi>i^r^incMcoiHu^GiininiHi/>covo®
(X)CMC^C^CX>C0^HG)HOnH(SC0ONG0G0

CM
CM G) G)rH

GOO

GJVO
co oo

O

160

Chapter 6

cn ,hto rH hhg>cn.h,hg>cng>cn.h.hcncncncn!hcn£

cn i

G> I

COvOQfHCOC^CNVOOOrOiHinvOvOiHCNI^GJ^VOror^OOtNGJrHCNCN

rHTOCNCNrHTOG>G)G>G)r-frHGJrHrHrHrHCNCNrHCNrHCNrHG>CNG*G)CNCNrH

ON TO

ON TO

TO
rH

G>

rH

en

TO

^
TO
TO

rH

en

G>

r^
rH

TO

G>

TO
CN

G>

m

in

CN

in

TO

CN

TO

ON

ON

TO

ID

CN

G>

*t
rH

G>

en

CO

TO

vo
TO

G>

cn

vo

TO

cn

vo

TO

rH

ON

G>

rH

en

TO

ON

CN

G>

CN

rH

TO

^

G>

f-\

en

TO

CN

CN

TO

rH

en

G>

CN

in

rH

rH

cn

cn

TO

TO
rH

G>

CN

TO
G>

en

vo
TO

TO
TO
G>

ON

CN

G>

in

in

CN

^

cn

TO

rH

en

TO

en

en

G)

TO

in

G>
G)

VO

TO

in

G>

in

rH

in

rH

r-\

en

cn

TO

en

TO

TO
rH

G>

in

G>

cn

CN

rH

^

VO
5)

cn

00
TO

rH

TO
TO

vo

TO
G)

cn

00
TO

en

00
TO

in

TO
TO

CN

TO
TO

in

rH

rH

CN

rH

G>

cn

vo

G>

TO
G>
TO

CN

CN

TO

in

in

CN

rH

CN

TO

TO
rH

G>

en

00
TO

^

vo
G>

cn

00
GJ

cn

CO
G)

cn

00

TO

VO
TO
TO

in on

rH

r-i

ON

ON

G>

rH

cn

TO

00
TO
G>

rH

cn

G>

in

CN

G>

ON

G>

ON

ON

G>

(^

vo
G>

rH

cn

TO

rH

TO

rH

ON

G>

cn

vo

TO

G)
TO
TO

^,

rH

TO

in

in

CN

cn

rH

G>

CN

TO
G>

rH

G>

in

vo
G>

cn

00
G>

cn

00
G>

vo

TO

ON
CN

TO

TO
rH

G>

in

rH

rH

f>.

VO

G)

cn

00
TO

[^

vo

TO

cn

CO
TO

VO
G>
G>

cn

vo
G)

G)
G)
TO

VO
rH

G)

in

in

CN

rH

G>
G)

in

rH

rH

r^

VO

Gt

in

G>

cn

00

G)

TO

ON
CN

G)

TO
rH

TO

in
?-{

rH

rs.

VO
G)

cn

00
TO

r^

vo

G)

cn

00

TO

rH

G>

cn

vo

G)

G>
G)
TO

00
rH

rH

cn

G>

r^

rH

G)

G>
rH

TO

rH

cn

GJ

r^

rH

G> TO

in

in

CN

00
G>
TO

rH cn

CM* VO
G)

G)
rH

G)

rH

en

TO

rH

CN

00

G)
TO

cn

00
G)

G)

G)
G)
G>

CN

rH

TO

in

m

CN

CN

TO

rH

cn

G>

vo

TO

ON

TO

G>

rH

cn

TO

00
rH

G)

in

r^

G)

CN

G)
G>

ON

rH

TO

in

in

CN

ON

CN

G>

CN

CN

G>

rH

cn

G>

vo
rH

G)

r^

rH

TO

G>
rH

GJ

cn

00

G>

CN

G>

cn

vo

G)

G)
G>
Q

cn

00
G>

rH

en

Q

rH

G*

CN

Q
GJ

CN

rH

G>

rH

cn

G)

rH

cn

G>

rH

CN

G>

00
G)

TO
rH

G>

cn

vo
G)

G>
G)

G) G)

rH

cn

G>

rH

CN

G)

G)
rH

G)

cn

CN

in

in

CN

<t
rH

G>

ON

&}
Q

VO

vo

rH

&)
G)

cn

U)
G)

cn

CO
G)

161

Chapter 6

m

G>

CM

TO

CO

vo
G>

G»
G>
G>

r-i

CM

G>

in

in

CM
••

en

G>

r-i

en

G>

G>
r-i

G>

in

G>

r-i

CO

G>

r*
rH

5>

G>
r-i

G>

rH

co

G>

in

CM

is

en

G>

00
G)
G>

r-i

CO

G>

in

in

CM

m

G>
G>

CM

G>
G>

rH

CO

G>

rH

CM

G>

en

CO
G>

CO

00
G>

CM

G>

CO

VO
G>

CO

vo

G>

G>
G>
G>

r-i

CM

in
r-i

rH

r-i

ON

G>

rH

CO

G>

<t
rH

G>

iH

CO

G>

CO

CO

G>

vo
G>

rH

CO

G>

CO
TO
G>

ON

ON

IS

in

r-i

r-i

r-i

ON

G>

CO

CM

G>

in

m

CM

CO
r-i

G>

r-i

en

G>

ON

CM

G>

r^

vo

G>

r-i

en

G>

r*

rH

G)

in

G>

CM

G>
G>

CO

vo
g>

G>
G>
G>

co ro in

cm co in

•H G» CM

rH G) CM

CO rH G>
G> G> G>

Is- rH ON

ro ro ON

<s *s <s

rH in in

CO CM G)
G) TO G>

G) in rH

r-i r-i en

G> rH G>

in r^ co

1^ G> rH

(SHS)

CO
(O

G>

CO

00
G>

CM

TO

G>

co

VO

G>

TO
TO
TO

in

CM

TO

CO

00
TO

r-i

en

TO

r^

CO

TO

r-i

en

TO

rH

TO

r-i

en

TO

CO

CO
TO

TO
r-i

TO

rH

CO

TO

in

CM

TO

in

r-i

r-i

00
TO
TO

rH

ON

TO

in

r-i

r-i

r-i

en

TO

in

TO
TO

TO

TO

ON

ON

TO

CO

vo
TO

TO

TO
TO

rH

CM

TO

in

in

CM

m

TO
TO

TO
rH

TO

r-i

en

TO

r^
r-i

TO

rH

CO

TO

TO
r-i

TO

CO

CO
TO

VO
TO
TO

TO
r-i

TO

in

TO

in

r-i

rH

1^

VO
TO

t~i

en

TO

00
TO
TO

CM

TO
TO

ON

ON

TO

ON

ON

TO

CO

r-i

TO

CM

TO
TO

rH

CO

TO

TO
r-i

TO

CO

vo
TO

TO
TO
TO

VO
r-i

TO

in

in

CM

in

TO
TO

rH

CO

TO

c^
CO

TO

CO

CO
TO

t-i

en

TO

CO

CM

§
r-i

CM

TO
TO

CO

en vo
TO

CO
r-i

TO

TO

TO
TO
TO

in r-

r-i

r-i

en

CO CO

TO

CO

00
TO

TO

TO
TO

r-i

TO

in

in

CM

r>-

CO

TO

en

TO

CO

TO

CO

00
TO

r-i

en

TO

CO

CO

TO

CO

00
TO

r^

CO

TO

CO

CO
TO

rH

CO

TO

CO

CO

TO

r-i

en

TO

TO

rH

TO

CO

vo
TO

TO
TO
TO

CM

CM

TO

in

in

CM

CM

TO
TO

r-i

en

TO

CO

00
TO

r-i

en

TO

r-i

TO

r^

vo
TO

rH

TO

TO

vo
TO
TO

r-i

en

TO

in

CM

TO

rH

CO

TO

TO
rH

TO

r-i

en

TO

ON

CM
TO

in

r^

r*

en

rH

TO

TO
TO

TO

r-i

en

TO

r-i

CM

TO

CO

CO
TO

CO

vo
TO

TO
TO
TO

VO
CM

TO

in

in

CM

r-i

TO

in

r-i

r-i

OvOCMOO^tTOvOCMOO^tTOvOCMOO^tGlVOCMOO^tTOvOCMCO^GJVOCMOO^G)
VOVOl^I^(X)ONONGJG>rHCMCMCOCO5tininVOVOt^0000ONONG)rHrHCMCMCO^t
HrHrH'HrHrHrHCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCOCOCOCOCOCOCO

to to tototototototototo
in

OOt^VOt^VOVOVOt^COCMinrHCMrOrHCOCDrH^VOVDOOCMCOC^rHr^COrHCMVD

CM

TO
Q

CO

VO

TO

TO
TO

TO

CM

CM

TO

in

in

CM

00
r-i

TO

r-i

en

TO

rH

TO

in

TO

r-i

en

TO

r>

rH

TO

in

TO

rH

CO

TO

<?
r-i

TO

r-l

CO

TO

ON

CM

TO

ON
ON

TO

CM
rH

TO

TO
rH

TO

in

r-i

in

r-i

r-i

in

P*»

TO

in

r-i

r-i

t^

vo
TO

CM

TO

TO

CO

vo

TO

TO
TO
TO

r-i

CM

TO

in

in

CM

CO

t-4

G>

r-i

CO

TO

r>

CO

<S

CO

00
TO

r-i

en

TO

CO

CO

TO

CO

CO
TO

t^

CO

TO

CO

00

TO

ON

TO
TO

CO

CO
TO

CO

00

TO

r>

r-i

TO

CO

TO

CM

TO
TO

r-i

en

TO

CO

CO

TO

CO

00
TO

rH

CO

TO

CO

00
TO

CM

TO

TO

CO

vo
TO

TO
TO

TO

TO
CM

TO

in

in

CM

r-i

en

G>

in

CM

TO

i^

vo
TO

00
TO
TO

H

CO

TO

00
rH

TO

ON

ON

TO

^
TO

TO

r-i

en

TO

CO
r-i

TO

r-i

en

TO

TO
TO

in

rH

TO

in

ON

ON

TO

ro

in oo
CM

in

TO
TO

TO
r-i

TO

r-i

CO

TO

r-i

CM

TO

TO

in

TO

CM

TO

G>

CO

VO

TO

TO
G)
TO

ON

CM

TO

CO

00
TO

rH

CO

TO

CO

CO

TO

r-i

CO

TO

TO
rH

TO

TO

TO
TO

VO
CM

TO

in

in

CM

in

TO
TO

CM

TO

TO

,_,

CO

TO

CO

00
TO

rH

CO

G>

CO

CO

TO

CO

CO
TO

CM

TO
TO

CO

vo
TO

TO

TO

CO

00
TO

CO

CO

TO

vo
TO

TO

r-i

CO

TO

CO

TO

rH

CO

TO

r-i

TO

TO
r-i

TO

ON

ON

TO

rH

CO

TO

CO

rH

TO

rH

ON

TO

r-i

ON

TO

1^

vo
TO

CO

CM

rH

in

rH

r-i

r^

CO

TO

CM

TO
TO

CO

vo
TO

TO
TO
TO

CM

rH

TO

in

in

CM

CM

TO
TO

rH

CO

TO

r-

co

TO

CO

00
TO

rH

CO

TO

CO

CO

TO

CO

GO
TO

TO

TO
TO

vo

CM

TO

in

in

CM

CM

TO

r-i

CO

TO

TO
rH

TO

TO
rH

TO

r-i

en

TO

CO

CO

CO

r-i

en

TO

rH

TO TO

CO

00

TO

CM

TO

TO

CO

vo

TO

TO
rH

TO

rH

CO

TO

rH

CM

TO

CO

r-i

TO

TO

TO

r-i

rH

CO

TO

,^

CO

r-i

CO CO

TO

CO

CO

G>

in

r-i

r-i

rH

CO

TO

TO

ON

TO

IS)
TO

r-i

en

TO

CN

TO
TO

CO

VO

TO

TO
TO

TO

P^

CM

TO

in

in

CM

CM

<N

TO

r-i

CO

TO

r*.

ro

TO

m

rH

TO

•H

CO

G>

CO

ro

TO

ro

m

TO

00
TO
TO

rH

ro

TO

p^

ro

TO

in
r-i

rH

r-i

en

TO

ro

ro

TO

r-i

en

TO

p^

ro

TO

^

vo
TO

^

TO

rH

ro

TO

r-i

TO

CTN

CM

TO

^

r-i

TO

ro

CM

r-i

r-i

HN

TO

in

CM

TO

CM

TO

^ac ^« >df >•*« >J< ^m >M >d(>^< \d(\A{ \« \^{ Sd* \M VM

ininininmininininininininininin

162

Chapter 6

oOrHr^ojHCNOOincsroicNjtsrroo
HISHHHHISIHHISHSIISISHNN

163

Chapter 6

Because the graphics statements may not be positioned

immediately after the keyword THEN, a colon must be placed

between the THEN and the graphics statement. This was nec

essary in the weather map program. Line 410 is one example.

There's one limitation with the PEN statement: It does not

affect the FILLPEN value. Shapes which contain a fill instruc

tion may not work properly with indirection.

When you've finished using indirection and you want to

return to normal shape drawing, the values set by the PEN

statement should be restored. Drawing pen indirection is can

celed whenever the GRAPHICS or MODE statement is

executed.

The PEN statement works only with shape table drawing,

and has no effect on the other graphics statements like DRAW

and FILL.

Mixing Text with Bitmapped Graphics

The normal method of displaying information on the screen is

to use text. Letters, digits, and other symbols are combined to

form words and numbers.

An alternative means of displaying information is to use

graphics. Characteristics like color, size, shape, and position

can all be used to express information, without the viewer

having to know a specific language. Graphics is a method of

communication that should not be overlooked.

You may have noticed that the weather map demonstra

tion used text along with graphics. The program used letters to

display the day of the week. By themselves, the methods of

text and graphics each have their own advantages. When used

together, they open up an almost endless number of new

possibilities.

To make it easy to mix text with bitmapped graphics,

we've provided a shape file containing definitions for the most

commonly used characters (Program 6-18). The shapes include

letters, digits, and punctuation symbols. Save this file using

the filename CHSETA.SHP.

Also add the following lines to the SHP.BAS file:

56600 SHAPE AS(1)-3,X,Y:IF S$="H THEN RETURN

56610 FOR 1=1 TO LEN(S$):SHAPE AS(ASC(MID$(S$,I))-
32):NEXT:RETURN

164

Chapter 6

These revised SHP.BAS lines (and the remainder of SHP.BAS, of

course) must be included in all programs which use text on the

bitmap screen.

You're now ready to use text in a program. Printing text

on the bitmap screen is easy when you follow three simple

steps.

1. Assign the string that you want to print on the screen to the

variable S$.

300 GRAPHICS 2

310 S$="HAPPY BIRTHDAY"

2. Choose the position of the first character in the string, and

assign the coordinates to the variables X and Y.

320 X=4:Y=8

3. Finally, call the subroutine at line 56600.

330 GOSUB 56600

This subroutine sequentially draws the shapes that corre

spond to the characters in the string. If the string contains

characters not in the shape file, or if the writing goes out of

range, the program stops with an error.

Changing the resolution changes the size of the letters.

The following program writes messages in four different

resolutions. In order to type in and run this demonstration,

you need to have the BASIC extensions installed, the

CHSETA.SHP file on the same disk or saved on tape immedi

ately after Program 6-19, and the revised SHP.BAS in

memory.

Program 6-19. CHDEMO1

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

100 PRINT CHR$(147):PRINT " CHDEMO1":PRINT " BY CR

AIG CHAMBERLAIN":PRINT :rem 225

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$="CHSETA":LA=PEEK(49)+256*PEEK(50)+1000:GOSU
B 56500:REM LOAD SHAPES :rem 146

300 GRAPHICS 0:POKE 53280,0 :rem 219

310 S$="MODE ZERO":X=14:Y=10:GOSUB 56600 :rem 17

320 MODE 2:S$="MODE TWO":X=6:Y=12:GOSUB 56600

:rem 48

165

Chapter 6

330 MODE 4:S$="MODE FOUR":X=2:Y=13:GOSUB 56600

:rem 114

340 MODE 6:S$="MODE":X=0:GOSUB 56600 :rem 3

350 S$="SIX":Y=20:GOSUB 56600 :rem 113

360 WAIT 198,15:GET K$:rem 139

370 END :rem 113

The characters are drawn in pen 1. To write text in a dif

ferent drawing pen, use the PEN statement.

This next program uses multicolor mode to draw the same

message in two different pens. The second message is drawn

one position down and one position to the right to create a

shadowed lettering effect. This example requires the shape file

(CHSETA.SHP) on disk or tape; you also need the revised

SHP.BAS in memory before beginning to type it in.

Program 6-20. CHDEMO2

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " CHDEMO2":PRINT " BY CR

AIG CHAMBERLAIN11:PRINT :rem 226

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 F$=IICHSETA":LA=PEEK(49)+256*PEEK(50)+1000:GOSU

B 56500:REM LOAD SHAPES

300 GRAPHICS 3:POKE 53280,0:S$="COMMODORE

310 FOR Y=30 TO 70 STEP 20

320 READ C:SETPEN 1,C:GOSUB 56600:NEXT

330 X=31:PEN 1,2

340 FOR Y=31 TO 71 STEP 20

350 READ C:SETPEN 2,C:GOSUB 56600:NEXT

360 WAIT 198,15:GET K$

370 END

800 DATA 2,6,5,10,14,13

:rem 146

64":X=30

srem 81

:rem 28

:rem 209

:rem 59

:rem 33

srem 213

:rem 139

:rem 113

:rem 85

The character shapes can be used with other shapes in the

same program. When using Shapedit, start by loading the

CHSETA.SHP file into memory. Then add the new shapes to

the file.

Suggested Applications

Redefined (custom) characters. A popular way to draw

shapes is to use redefined characters, but this method has

some drawbacks. The major restriction is that character defi

nitions must fit within an 8 X 8 grid. To create a shape larger

than 8X8 points, several characters must be used. Another

166

Chapter 6

limitation concerns positioning. A character must be placed at

one of the 40 X 25 positions on the screen.

Bitmapped graphics shapes have many advantages over

shapes drawn by redefined characters. There's no size restric

tion, so a shape drawn by the SHAPE statement can be any

size. This gives you the freedom to do some interesting things.

For instance, the letters in the character-set shape file were de

signed for proportional printing. Some letters, such as W, are

wider than other letters, such as L If you added lowercase let

ters to the file, true descenders could be supported. This

means that the tails on letters (g, for example) could extend

below the other characters.

Shapes drawn with the SHAPE statement are also more

convenient to use than those created with redefined charac

ters. The Shapedit program simplifies the task of defining a

shape. Storing shapes in memory is less complicated because

you don't have to reserve memory for a character set. Finally,

an entire shape can be drawn by just one statement.

Sprites. Another type of graphics supported by the VIC-II

chip is sprite graphics. Sprites are used mainly for animation.

A sprite image can be moved to any position on the screen by

just a few POKE statements. This is one application where it's

just not practical to use bitmapped graphics shapes. Moving a

shape requires erasing it and redrawing it at the new position.

Although the plotting done by the SHAPE statement is fast,

it's not fast enough to do this effectively.

Animation, however, isn't restricted just to motion across

the screen. It can also mean "changing in shape." The

demonstration programs showed how the SHAPE statement

can be used to make flowers grow or thunderbolts flash. And

sprites do have several limitations. They have to be defined

within a 24 X 21 grid, they can have only three colors (maxi

mum), and there can be only eight of them on the screen at

one time. In applications where motion is not required,

bitmapped graphics shapes may be worth consideration.

Another possibility is to combine sprites with bitmapped

graphics. Remember that sprites are completely independent

of anything else displayed on the screen. Using sprites and

bitmapped graphics on the same screen might allow you to do

things which couldn't be done using sprites or bitmapped

graphics alone.

167

Chapter 6

General applications. Shapes have distinguishing

characteristics, like size, color, and position. They can be full

(filled in) or empty (outlined). Their edges can be smooth or

pointed. If you have several shapes, they can be used in

counting exercises. Shapes have hundreds of applications in

educational software. Concepts such as larger/smaller, above/

below, inside/outside, open/closed, rightside up/upside

down, and alike/different can easily be presented.

Games offer many opportunities to use shapes as well.

Board games often use several objects which could be drawn

with bitmapped graphics shapes. Another type of game is the

role-playing adventure game. Graphics statements like DRAW

and FILL could be used to draw detailed background scenes.

The SHAPE statement could then be used to draw the objects

being carried by each player.

Cave dwellers drew pictures on cave walls long before

words were ever written. Pictures and shapes have a power of

communication that should not be ignored. A lot of creative

thought and time was invested in the design and implementa

tion of the shape table utility. Now it's your turn.

The Technical Side

A bitmap requires 8K of RAM, which is a significant amount

of memory. In order to retain as much free memory for BASIC

as possible, the bitmapped graphics routines were designed to

use the 8K of RAM underneath the Kernal ROM. This area of

memory behaves a little differently from normal RAM because

ROM and RAM locations exist at the same addresses. If a loca

tion in this area is POKEd, the value will be stored in RAM,

but if the location is PEEKed, the value will come from ROM.

The nature of this memory means that it's not suitable for use

by BASIC. It's ideal, however, for things like bitmaps.

Unfortunately, a few complications may arise when this

area of memory is used. Since the PEEK function cannot be

used to look at RAM locations, there's no way for a program

to examine the memory used by the bitmap. Using sprites is a

little different, because placing the bitmap under the Kernal

requires switching the VIC-II chip from the normal bank 0 to

bank 3. Also, the RAM under the Kernal may be needed by

other utilities, such as disk drive handlers.

As an answer to the first problem, the LOOK function is

available.

168

Chapter 6

LOOK(X coordinate, Y coordinate)

This function returns the pen value found at the specified

position. For example, if position 5,6 has been plotted with

pen 1, the statement PRINT LOOK(5,6) prints the number 1. If

the position has not been plotted and displays only the back

ground, the function will return the number 0.

Here's a program that randomly draws a maze. The pro

gram uses the LOOK function to decide where to draw the

paths. Make sure that the bitmapped graphics extensions are

enabled before typing in the following program.

Program 6-21. MAZE

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

100 REM MAZE DRAWING DEMONSTRATION :rem 149

110 REM BY CRAIG CHAMBERLAIN :rem 141

200 GRAPHICS 6:POKE 53280,0:SETPEN 1,15:DRAW 2,22

{SPACE}TO 2,2:LFILLTO 36,22 TO 36#2 :rem 188

210 DIM DX(3),DY(3):FOR K=0 TO 3:READ DX(K),DY(K):
NEXT :rem 245

220 T=2:H=17:V=10:X=3:DEF FNRY(Y)=3+INT(RND(1)*V)*

T:Y=FNRY(0):DRAW X,Y,0 :rern 12

300 FOR K=l TO H*V-1 :rem 252

310 IF LOOK(X+T,Y) GOTO 370 :rem 216

320 IF LOOK(X,Y+T) GOTO 370 :rem 217

330 IF LOOK(X-T,Y) GOTO 370 :rem 220

340 IF LOOK(X,Y-T) GOTO 370 :rem 221

350 X=3+INT(RND(1)*H)*T:Y=FNRY(0):IF LOOK(X,Y) GOT

O 350 :rem 170

360 GOTO 310 :rem 102

370 D=RND(1)*4:IF LOOK(X+DX(D),Y+DY(D))=0 GOTO 370

:rem 4

380 DRAW X,Y:X=X+DX(D):Y=Y+DY(D):DRAWTO X,Y:NEXT:D

RAW 2,FNRY(0):DRAW 36,FNRY(0) :rem 83

390 WAIT 198,15:GET K$:END :rem 159

800 DATA 2,0,0,2,-2,0,0,-2 :rem 200

It's important to note that the LOOK function returns only

the pen number of the designated point and ignores the asso

ciated color. In Program 6-22, even though the barriers are

drawn in different colors, they're all detected by the LOOK

function as points drawn with pen 1. As with Program 6-21,

all you need to do before typing it in and running it is to in

sure that the BASIC extensions are operating.

169

Chapter 6

Program 6-22. PINBALL

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

10 GRAPHICS 6:POKE 53280,0:SETPEN 1,15:DRAW 0,0 TO

39,0 TO 39,24 TO 0,24 TO 0,0 :rem 15

20 FOR K=l TO 30:X=RND(1)*38+1:Y=RND(1)*23+1:SETPE

N 1,9*RND(1)+2:DRAW X,Y:NEXT :rem 153

30 MODE 4:DX=1:DY=1:SETPEN 1,1 :rem 220

40 X=INT(RND(1)*80):Y=INT(RND(1)*50):IF LOOK(X,Y)

{SPACE}GOTO 40 :rem 247
50 DRAW X,Y,0:X=X+DX:Y=Y+DY:DRAW X,Y,l :rem 77

60 IF LOOK(X,Y+DY) THEN DY=-DY :rem 243

70 IF LOOK(X+DX,Y) THEN DX=-DX :rem 241

80 IF LOOK(X+DX,Y+DY) THEN DX=-DX:DY=-DY :rem 152
90 GOTO 50 :rem 7

In modes 0, 2, 4, and 6, the LOOK function returns only

the values 0 or 1, because these modes only support an eras

ing pen and one drawing pen. The multicolor modes support

three drawing pens, so in modes 1, 3, 5, and 7, the LOOK

function can return values from 0 to 3. In any mode, the IL

LEGAL QUANTITY error will occur if the position is out of

range.

Be aware that the LOOK function changes the current pen

position, which can affect line drawing and area filling. For in

stance, let's say that you plot a point at 3,4 and then look at

position 8,7. If the statement DRAWTO 5,6 were now exe

cuted, the line would be drawn from the position 8,7, rather

than from the last plotted point at 3,4.

Switching the VIC-II chip to bank 3 affects the sprite

pointers and the available definition blocks. The address of the

sprite pointers can be calculated with the following formula:

Sprite pointer address = Screen memory address + 1016

The screen normally starts at address 1024. Adding 1024

and 1016 gives 2040, the first of the eight sprite pointers.

When the GRAPHICS statement turns on the bitmapped

graphics mode, the screen is moved to start at 50176. The sum

of 50176 plus 1016 is 51192, so locations 51192 through

51199 act as the sprite pointers when bitmapped graphics is

used. (See Chapters 12-16 for more information on sprites.)

Bank 3 does not contain much extra memory for sprite

definition blocks. Blocks 0-15 are available in normal RAM,

and blocks 253 and 254 are available in RAM under the

Kernal (you can POKE blocks 253 and 254 but you cannot

170

Chapter 6

PEEK them). These are the only blocks available from BASIC

when using the bitmapped graphics routines.

To calculate the beginning address of a definition block in

bank 3, use this formula:

Block address = 49152 + 64 * Block number

For most applications, 18 definition blocks should be suf

ficient. If you need more, you'll have to relocate the bitmap.

It's also necessary to move the bitmap when the RAM under

the Kernal is needed by another utility. Relocating the bitmap

is as easy as four POKE statements. The difficulty lies in

choosing where you want to relocate the bitmap.

The memory on the Commodore 64 is divided into four

banks of 16K each. A bitmap requires 8K, or half a bank, so it

would seem that there is a total of eight different places in

memory where a bitmap can be placed. Actually, three of

these places are not available, either because they conflict with

character-set images, or they are needed by the system.

Besides the 8K for the bitmap, IK for screen memory

must also be allotted. Screen memory is used to provide color

information in the bitmap mode. Since the VIC-II chip can ac

cess only one bank at a time, the screen memory must be

placed somewhere in the other half of the bank that contains

the bitmap. Depending on which bank is being used, there

may be from one to eight different places to put the screen

memory.

Bank Address

0

0

1

2

2

3

3

0

8192

16384

24576

32768

40960

49152

57344

Supports

Bitmap?

No

Yes

Yes

Yes

No

Yes

No

Yes

Possible Locations for

Screen Memory

1024, 2048, 3072

24576, 25600, 26624, 27648,

28672, 29696, 30720, 31744

16384, 17408, 18432, 19456,

20480, 21504, 22528, 23552

32768, 33792, 34816, 35840

49152, 50176

In bank 3, the bitmap may be placed only in the second

half of the bank, starting at location 57344. The screen can be

placed either at address 49152 or at address 50176. The de

fault arrangement of the bitmapped graphics routines is to put

171

Chapter 6

the bitmap at 57344 and screen memory at 50176. As dis

cussed earlier, this arrangement allows only 18 sprite defi

nition blocks, but it does let you use the full 38K of BASIC

free memory.

Bank 2 supports a bitmap only in the second half of the

bank, at location 40960, which is under the BASIC ROM.

There are four possible places to put the screen memory. All

four are in the area of memory used by BASIC, so using bank

2 means that the amount of free memory will be reduced. The

maximum amount of free memory can be obtained by placing

screen memory at address 35840, which allows 33K of BASIC

free memory. Unfortunately, this arrangement allows only

three sprite definition blocks, blocks 253-255. By moving

screen memory lower, to 32768, you can also use blocks

16-63.

There are no restrictions when using bank 1 for

bitmapped graphics. Either half of the bank can support a

bitmap, and a full eight positions are available for placing

screen memory. The only problem with using this bank is that

it uses a lot of BASIC free memory. A maximum of 21K free

can be obtained by starting the bitmap at location 24576 and

screen memory at address 23552. Sprite definition blocks

0-111 can be used in this configuration, but it further reduces

the amount of free memory available for BASIC.

Since it limits BASIC free memory to only 6K, bank 0

should be used only as a last resort. Screen memory should be

placed at location 1024, which is where it normally resides in

the text mode. The other two places are right where the

BASIC program is stored. Another problem with using bank 0

is that there's hardly any room for sprite definition blocks. To

make bank 0 a little more useful, move the start of BASIC

memory up to 16384 so that it comes after the bitmap. This al

lows 24K free. Enter the following line in the immediate mode

to move the bottom of BASIC memory up to 16384.

POKE 44,64:POKE 64*256,0:NEW

This line should be entered immediately after you turn the

computer on, but before you load any programs.

Once you've chosen the new locations for the bitmap and

the screen memory (keeping in mind the fact that they must

be in the same bank), you're all set to begin the relocation.

Four POKE statements are all that's required. The first value to

POKE specifies which bank is being used.

172

Chapter 6

POKE 52474,3-n (where n is the bank number, 0-3)

The next POKE selects a mask value for ROM/RAM

flipping.

POKE 52475,253 (for bank 3)

or

POKE 52475,254 (for bank 2)

or

POKE 52475,255 (for bank 1 or 0)

The location of the bitmap is determined by the third

POKE value.

POKE 52476,address of bitmap divided by 256

The last POKE specifies the location of screen memory.

POKE 52477,address of screen memory divided by 256

Let's take a look at an example. Assume that you want to

relocate the bitmap to bank 2. The bitmap will start at location

40960 and screen memory at address 35840. Here are the four

POKE statements that would be executed.

POKE 52474,3-2 or POKE 52474,1

POKE 52475,254 POKE 52475,254

POKE 52476,40960/256 POKE 52476,160

POKE 52477,35840/256 POKE 52477,140

Be sure that these POKE statements are executed after the

BMG.OBJ file has been loaded by the BMGLOADER program.

The preceding POKE statements relocate the bitmap and

screen memory, but they do not inform BASIC of the change.

To protect your program and to make sure that it runs cor

rectly, it's a good idea to lower the top of free memory. Deter

mine the lowest address used by the graphics (whether it's the

screen memory location or the bitmap), and use that value in

the following line.

POKE 56,address divided by 25&CLR

If you're relocating to bank 2 and the lowest address used

for graphics is that of the screen memory at location 35840,

the line would look like this:

POKE 56,140:CLR

It's not necessary to lower the top of memory when

you're using bank 0 and you've moved the bottom of BASIC

memory up.

173

Chapter 6

NMI interrupts don't work reliably when using a bitmap

in bank 3. Since the modem uses NMI interrupts, the bitmap

must be relocated to a bank other than 3 if a program is to re

ceive characters from the modem while it's drawing

bitmapped graphics.

One last item having to do with relocation is a revised

formula for calculating the address of a sprite definition block.

The formula has been updated to work for all banks.

Block address = Bank address + 64 * Block number

Bank

0

1

2

3

Address

0

16384

32768

49152

The bitmapped graphics routines use memory from loca

tion 51200 to 53247. They also share several zero page loca

tions with BASIC, but do not use locations 2 or 251-254.

These bitmapped graphics extensions to BASIC may not

work if other extensions have been installed. The bitmapped

graphics routines are accessible by BASIC statements for

convenience, but if you want, you can call the routines directly

by using POKE and SYS statements. Instead of running the

BMGLOADER program, enter the following lines to load the

graphics routines.

LOAD "BMG.OBJ",8,1 (disk)

NEW

or

LOAD "BMG.OBJ",1,1 (tape)

NEW

Include this next line at the beginning of every program

which uses bitmapped graphics.

SA=780:SX=781:SY=782:SP=783:POKE SP,0

You're now set to use bitmapped graphics. The following

is a list of all the graphics statements and their equivalents

using POKE and SYS.

174

Chapter 6

P0l|Eand§^
GRAPHICS N SYS 51369

JPOKESA,N ;

DRAW X,Y,P POKE SA,P
pop sx,xanp255

-'-:,.-"-.4-w-' -\ ^PpIpySP^jpC^rfSgW1^ -
- "l* XV*"- /<■• '-''^^ PQKE'B^Y^^" ' :~>*K<V^ f

; SYS 51464
IF PEEiC(SB)ANpi:THEN

CLS C POKE SA,C
SYS 51371

MODE N . ^ POKE 5A^N "
s!> y> '?r>j\ >;fV"': /i,:!"S^S Sl280; -;v -':<'~ ^ ?*:- ■ -:<;
TEXt SYS 51436
DRAWTOX.Y POKESA.0

•' . - -S-'-v * . :. JPOKE-S)gXANDi55v;;y
' -' s'1 -:>" ": , :-" s3pOKE SW^X^^iSiS^v v'^ ',
s *- ^ " v< >-^ \poKl:Sl§Y^ '*'' ''<■"'.'***'*' ''

J5YS 51831
rj . ff PEEKJiBA^PlraEN

PlLtTO^X#Y/F ^":~^OKS"sJC3Vv"v ' ^f^T^^r.

POKE S^<X>=25Sh

- " j /." PJJKE 52492^9 ' <Vv~"-"

' or '-'<■-%_ '

■ ?OKE 5?4?2^85

POKE 52492,255

.V';:/=.v swslam •,.•; r-i;. •".
/f^ -': ^^\^IF;PEEK(SB)i^IJ;l<THEN.

RFILLTO X/%F POICE SA/1* :1
POKE SX,XA3SfD25§

POKE SP^OC^«25fi)

POKESXt
POKE 52492,0

Clear screen

Set mode number

graphic*
Set pen number

X coordinate low byte

} X coordinate high byte

Ycdordinaife
Plot point

Out o(range error

Set background color

Clear with color

Set{mode number

Change mode

Switch to text mode

Set for line draw

, X coordin^lelow byte

-Xioordinate high byte

Y coordinate

Perform draw/fill

Range error

Setforftiilip
X coordinate low byte

X coordinate high byte

Y coordinate

background)

IfF^lin modes 0,2, 4 6

If F«l in modes 1, 3, 5, 7

IfF-3
Perform draw/fill
Range error

S¥t for right fill
X coordinate low byte

X coordinate high byte

Y coordinate

#F-0 (fill over
background)

175

Chapter 6

:v>or

POKE 5249^171;
or *

LFILLTO X^f POKE SA,2 Set for teft S|l

or\ rA
POKE 52492,85

POKE 524*2470
or - t'

SHAPE A,X/Y,R POKE
52493,A-256*INT(A/256) Shape address low by

POKE 52496>r|X>=256),
POKE52497/Y Y coordinate

POKE SA,R

SYS 52166: <

PENA^B POKE S250i±hM
LOOK(X,Y) *OKE SX^X^TO255

POKE SP/-(SX>-256) X coow&Bigl
POKE SY,Y Y coordtoVtc
SYS 51462 j Look at position

% <$s <**"

Ven number'«« PEEK(SA)

176

Chapter 6

All the POKE statements listed for each graphics state

ment are required, and none should be omitted. For example,

even though the pen number is optional in the DRAW state

ment, it must be specified by POKE SA,pen number when

using the equivalent POKE and SYS statements.

The only exceptions to this rule have to do with the

SHAPE statement. The X and Y coordinates do not have to be

set. If you don't POKE the locations for the coordinates, the

shape will be drawn starting at the end of the previous shape.

Also, if the shape address has been set previously and you

want to draw the same shape again, the address does not have

to be set a second time.

Some interesting applications are possible if you eliminate

the SYS 51369 in the code equivalent to the GRAPHICS state

ment. Not performing this SYS call means that the screen will

not be cleared. This allows you to switch from bitmap mode to

text and back to bitmap without losing the bitmap picture. By

using relocation, together with the code equivalent to graphics

statements, you can draw on two different bitmaps and flip

between them. Program 6-23 shows how. (Make sure that the

bitmapped graphics BASIC extensions are enabled before typ

ing in this next program.)

Program 6*23. MODERNART

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 GOSUB 610:GRAPHICS 4:P0KE 53280,0:SA=780:REM F

IRST SCREEN :rem 62

110 SETPEN 1,5:LFILL 0,40 TO 40,0 :rem 195

120 SETPEN 1,4:DRAW 0,45 TO 60,0:LFILL 0,49 TO 20,

49 TO 79,10 TO 79,0 :rem 168

130 SETPEN 1,8:RFILL 79,20 TO 50,49 :rem 74

200 GOSUB 620:REM POINT TO SECOND SCREEN BUT DO NO

T DISPLAY :rem 246

210 SYS 51369:REM CLEAR SECOND SCREEN :rem 155

220 SETPEN 1,6:LFILL 0,0 TO 10,0 TO 20,49:SETPEN 1

,7:DRAW 40,0 TO 30,49 :rem 145

230 SETPEN 1,7:DRAW 40,0 TO 30,49:DRAWTO 40,49:LFI

LLTO 50,0 :rem 216

240 SETPEN 1,2:RFILL 79,0 TO 60,0 TO 70,49:rem 123

250 GOSUB 600:REM WAIT FOR KEYPRESS :rem 93

260 POKE SA,4:SYS 51200:REM NOW DISPLAY SECOND SCR

EEN :rem 144

270 GOSUB 600 irem 175

300 GOSUB 610:REM FIRST SCREEN :rem 16

310 POKE SA,4:SYS 51200:GOSUB 600 :rem 56

177

Chapter 6

320 GOSUB 620.-REM SECOND SCREEN : rem 71

330 POKE SA,4:SYS 51200:GOSUB 600 :rem 58

340 K=FRE(0):GOTO 300 :rem 131

600 WAIT 198,15:GET K$:RETURN :rem 162

610 POKE 52474,0:POKE 52475,253:POKE 52476,224:POK

E 52477,196:RETURN :rem 235

620 POKE 52474,2:POKE 52475,255:POKE 52476,96:POKE

52477,92:RETURN :rem 146

Stop this program only when it's displaying the screen

with the green, purple, and orange colors, or the bitmap will

remain in lower memory.

When using two or more bitmap screens, only one of the

screens can be in multicolor mode. Modes 1, 3, 5, and 7 use

color memory starting at location 55296. This memory cannot

be shared by different screens. Since this is also used by the

text mode, you should not switch from text mode to a multi

color mode without first clearing the screen. Do this only with

mode 0, 2, 4, or 6.

When using the POKE statement equivalent to SETPEN,

the value for A must be in the range 1-3. The value for A in

the POKE statement equivalent to PEN must be in the range

0-3.

When using the bitmapped graphics routines without add

ing statements to BASIC, the screen will not automatically re

vert back to the text mode when the READY, prompt is

printed or an error occurs.

EXTRACT and MERGE

These last two programs are convenient utilities you can use to

pull apart and put together various shape files. Both are easy

to use and fairly self-explanatory. If you're using tape, make

sure that the DN=8 is changed to DN=1 in line 110 of both

programs.

"EXTRACT," Program 6-24, is used to extract a group of

shapes from a shape file. When you run the program, it asks

you for the name of the file from which the shapes will be ex

tracted. Do not include the .SHP extension as part of the

filename. The program loads the file and tells you how many

shapes the file contains. You can then specify which shapes

are to be extracted by entering the numbers for the first and

last shapes. Finally, the program requests a filename for saving

the extracted shapes. All the shapes in the specified range will

178

Chapter 6

be saved. The original shape file, however, retains all the

shapes. They are only extracted.

Program 6-24- EXTRACT

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SHAPE FILE EXTRACTION

{SPACE}UTILITY" :rem 221
105 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 69

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*FNH(N):

LA=PEEK(49)+256*PEEK(50)+1000 :rem 146

300 F$="":INPUT " LOAD FILENAME" ;F$:IF F$=M" OR LE

N(F$)>12 GOTO 300 :rem 238

310 PRINT:GOSUB 56500:PRINT " LOADED SHAPES 0 TO"

{SPACE}NS:PRINT :rem 142

400 FS=-1:INPUT " NUMBER OF FIRST SHAPE";FS:IF FS<

0 OR FS>NS GOTO 400 :rem 181

410 LS=-1:INPUT " NUMBER OF LAST{2 SPACES}SHAPE";L

S:IF LS<FS OR LS>NS GOTO 410 :rem 228

420 PRINT :rem 35

500 F$="":INPUT " SAVE FILENAME"; F$: IF F$= M" OR LE

N(F$)>12 GOTO 500 :rem 1

510 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=F$

+".SHP":GOSUB 59000 :rem 200

520 A=AS(FS)-3:POKE A,LS-FS:POKE SA,251:POKE 251,F

NL(A):POKE 252,FNH(A) :rem 42

530 B=AS(LS):B=B+PEEK(B-2)+256*PEEK(B-l):POKE SX,F
NL(B):POKE SY,FNH(B) :rem 67

540 PRINT:SYS 65496:IF PEEK(SP)AND1 GOTO 59100

:rem 139

550 PRINT " SAVED" B-A "BYTES":END jrem 106

56500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+".SHP":GOSUB 59000 :rem 50

56510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 76
56520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 irem 42

56530 NS=PEEK(LA):DIM AS(NS):LA=LA+1 :rem 107

56540 FOR K=0 TO NS:AS(K)=LA+2:LA=LA+2+PEEK(LA)+25

6*PEEK(LA+1):NEXT:RETURN :rem 120
59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$) :POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

179

Chapter 6

"MERGE," Program 6-25, is used to combine shape files.

You can load a shape file and append other shape files to cre

ate one larger file. The program asks for a filename, loads the

file, and reports the number of shapes loaded. It then requests

the name of the file to be appended. The shapes from that file

will be placed after the shapes in the first file. This can be

done several times to merge several files together. When you

don't want to append any more files, press the RETURN key

in response to the filename prompt. The program asks for a

filename to save the file just created.

By loading a file and appending nothing, the MERGE pro

gram can be used to copy a shape file from one tape to an

other tape, or one disk to another disk.

Program 6-25. MERGE

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SHAPE FILE MERGE UTILI

TYM :rem 76

105 PRINT " BY CRAIG CHAMBERLAIN":PRINT srem 69

110 DN=8:SA=780:SX=781:SY=782:SP=783:BA=PEEK(49)+2

56*PEEK(50)+1000 :rem 27

300 F$="":INPUT " LOAD FILENAME";F$:IF LEN(F$)>12

{SPACE}GOTO 300 :rem 98

310 IF F$="" THEN END :rem 20

320 LA=BA:GOSUB 630:NA=PEEK(BA):PRINT " LOADED SHA

PES 0 TO" NA srem 14

400 BB=PEEK(SX)+256*PEEK(SY)-1:PRINT :rem 175

410 F$="":INPUT " APPEND FILENAME";F$:IF LEN(F$)>1

2 GOTO 410 :rem 254

420 IF F$=IIM THEN PRINT:GOTO 500 :rem 212

430 LA=BB:GOSUB 630 :NB=PEEK(BB) .-PRINT " APPENDED S

HAPES" NA+1 "TO" NA+NB+1 :rem 193

440 POKE BB,255:NA=NA+NB+1:IF NA<256 GOTO 400

:rem 189

450 PRINT:PRINT " ERROR: TOO MANY SHAPES":END

:rem 241

500 F$="":INPUT " SAVE FILENAME";F$:IF F$="" OR LE

N(F$)>12 GOTO 500 :rem 1

510 GOSUB 600:POKE SA,251:POKE 2 51,BA-256*INT(BA/2
56):POKE 252,INT(BA/256) :rem 85

520 POKE BA,NA:BB=BB+1:POKE SX,BB-256*INT(BB/256):

POKE SY,INT(BB/256) :rem 240

530 SYS 65496:IF PEEK(SP)AND1 GOTO 700 :rem 91

540 PRINT " SAVED" BB-BA "BYTES":END :rem 237

600 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".SHP" :rem 215

180

Chapter 6

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

620 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 159

630 GOSUB 600:POKE SA,0:POKE SX,LA-256*INT(LA/256)
:POKE SY,INT(LA/256) :rem 52

640 SYS 65493:IF PEEK(SP)AND1 GOTO 700 :rem 90

650 RETURN :rem 123

700 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRINT

"FILE NOT FOUND":END :rem 96

710 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 188

720 PRINT ST:END :rem 222

BMG Statement Index

Bitmapped Graphics Utility

Statements

CLS 111

DRAW 106, 109

DRAWTO 114

FILL 115-16

GRAPHICS 106, 107

LFILL 117

MODE 112

PEN 153-54, 164

RFILL 117

SETPEN 110

SHAPE 123, 149

TEXT 112

Function

LOOK 168-70

Command

KILL 99

181

Part 3

Sidplayer

Chapter 7

Introduction to Music and

the Sidplayer

Of all the special chips in the Commodore 64, none is more

devoted to one specific purpose than the SID chip. This chip,

more formally known as the Sound Interface Device, is solely

responsible for producing music and sound effects. It has

many features for controlling sound, and has been described

as a complete synthesizer on a chip. The only problem is that

the SID chip is very complicated. As a result, it's not fully

understood by most people, and often not fully used.

Enter "Sidplayer," a music playing and editing utility for

the Commodore 64. This music system is designed to make it

easy to use the SID chip so that you can realize its full poten

tial. Using Sidplayer, you can make your Commodore 64 pro

duce music of extremely high quality.

To fully appreciate the capabilities of Sidplayer, it's first

necessary to have an understanding of how electronic music

works.

Electronic Music

When your ear hears a sound, it is actually detecting vibra

tions. The rate of vibration is called the frequency and deter

mines the pitch of a sound. In a musical instrument, a metal

string, reed, stretched membrane, or air in a tube is what

vibrates. The player usually has a method for changing the

pitch.

But sounds are not so simple. There are many different

kinds of vibrations. When viewed with an oscilloscope, vibra

tions have another characteristic, called waveform. Square, tri

angle, and sawtooth are common waveforms. The waveform

helps distinguish the sound produced by one instrument, such

as a flute, from the sound produced by another instrument,

such as a violin.

There's just one more essential characteristic remaining—

volume. As a string is plucked or air is blown, the volume

changes over a short period of time. This pattern of changing

volume levels is called an envelope, and is usually divided into

four parts called the attack, decay, sustain, and release. In the

185

Chapter 7

first three parts, the volume rises to a peak level and then falls

to a sustain level. When the note is released, the volume fades

away to silence.

The frequency, waveform, and envelope are all essential

parts of a note. A sequence of notes creates music. Electronic

music is merely a method of producing these qualities of

sound by electronic means. A device which does this is called

a synthesizer. Theoretically, it's possible for a synthesizer to

imitate any musical instrument or to produce sounds never

heard before.

The Sidplayer

The SID chip contains three oscillators. Each oscillator acts as

one "voice" and can produce a tone in a range of eight oc

taves, using one of four basic waveforms. The tone is passed

through an envelope generator which regulates the volume of

that voice. All three voices are then combined into one audio

signal, which is controlled by the master volume and sent to

the television or monitor speaker.

Figure 7*1. Producing Electronic Sounds

Master

Volume

Control

Envelope Generator

Tone Oscillator/

Waveform Generator

1 1

Envelope Generator

Tone Oscillator/

Waveform Generator

Envelope Generator

Tone Oscillator/

Waveform Generator

Voice 1 Voice 2 Voice 3

186

Chapter 7

Figure 7-1 is a simplified description of the actual design

of the SID chip, but it does serve our purposes for the mo

ment. Advanced features not mentioned include a filter and

options for synchronization and ring modulation.

Sidplayer fully supports all of the features built into the

SID chip. As many as three voices can be played at the same

time, each with its own pitch, waveform, and envelope. Sid

player also supports the filter and all of the related filter con

trols, plus the synchronization and ring-modulation options.

To further extend the power of the SID chip, there are

additional features provided by software control, such as vi

brato, portamento, transposing, automatic filtering, and much

more.

The most important thing, however, is not that Sidplayer

has all these features, but that it makes them so easy to use.

The music system includes a carefully designed editing pro

gram which lets you edit all three voices. Notes can be en

tered from keyboard or by joystick and are played as they are

entered for immediate feedback. Special commands are avail

able to select things like waveform and envelope settings.

Finally, all music created with Sidplayer can be merged

with your own BASIC programs. The music will even play

while the program is running. This opens up many possibil

ities, including animated screen displays that change in time

with the music.

Some demonstration songs have been provided so that

you can hear just what Sidplayer can do. First, however, you'll

need to enter two programs. Disk users should enter and save

Program 7-1; tape users, Program 7-2. Use the filename

PLAYER.

Program 7-3 is a machine language listing that requires

the "Machine Language Editor: MLX" program found in

Appendix C (this is the same program used to enter

"BMG.OBJ" in Chapter 5). Note the starting and ending ad

dresses listed before the program listing. Use these as your re

sponses to MLX's prompts. Program 7-3 should be saved

using the filename SID.OBJ. If you're using tape, be sure to

save the file on the same tape, right after Program 7-2, and

note the number on the tape counter where SID.OBJ begins.

Tape users who use an MLX program from another COM

PUTE! publication must be sure to change line 763 to match

187

Chapter 7

the listing in this book. (Tape users who have a copy of MLX

which does not have a line 763 must use the version of MLX

from this book.)

Program 7-1. PLAYER (Disk)

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER":PRINT " BY

{SPACEjCRAIG CHAMBERLAIN":PRINT :rem 173

110 PRINT " TUNING INSTRUMENTS...":PRINT :rem 245

120 DN=8:SA=780:SX=781:SY=782:SP=783:POKE SA,1:POK

E SX,DN:POKE SY,1:SYS 65466 :rem 104

130 F$="SID.OBJII:GOSUB 600:POKE SA,0:SYS 65493:IF

{SPACE}PEEK(SP)ANDl GOTO 710 :rem 12

140 SS=49152:HK=49435:PL=49458:DP=49629:LA=PEEK(49

)+256*PEEK(50)+100:DR=LA :rem 212

150 FOR K=LA TO LA+90:READ P:POKE K,P:NEXT:LA=LA+9

l:HI=INT(LA/256):LO=LA-256*HI :rem 140

160 GOTO 510 :rem 102

300 K=FRE(0):F$="":INPUT " YOUR REQUEST";F$:IF LEN

(F$)>12 GOTO 300 :rem 153

310 IF F$="" GOTO 500 :rem 220

320 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".MUS":GOSUB 600 :rem 48

330 POKE SA#0:POKE SX,LO:POKE SY,HI:SYS 65493:IF P

EEK(SP)AND1 GOTO 700 :rem 92

400 SYS HK:POKE SX,LO:POKE SY,HI:SYS PL:K=PEEK(SX)

+256*PEEK(SY):F$=" " :rem 196

410 P=PEEK(K):K=K+1:IF P AND P<>13 THEN F$=F$+CHR$

(P):GOTO 410 :rem 123

420 PRINT F$:IF P THEN F$=" ":GOTO 410 :rem 200

430 WAIT 56320,16:POKE 198,0:POKE SS,7 :rem 56

440 IF PEEK(198) THEN POKE 198,0:POKE SS,0 :rem 6

450 IF PEEK(SS)AND7 GOTO 440 :rem 31

460 POKE 54276,0:POKE 54283#0:POKE 54290,0:SYS DP:

GOTO 300 :rem 148

500 PRINT CHR$(147):PRINT " SIDPLAYER":PRINT " BY

{SPACEjCRAIG CHAMBERLAIN":PRINT :rem 177

510 FOR K=l TO 4:POKE 580+K,ASC(MID$(".MUS",K)):NE
XT :rem 131

520 OPEN 1,8,0,"$":GET #1,S$,S$:PRINT " ";:TB=1:K=

0 :rem 120

530 SYS DR:TB=TB+13:PRINT TAB(TB);:IF TB=40 THEN T

B=l:PRINT " "; :rem 152

540 IF ST=0 THEN K=K+l:GOTO 530 :rem 165

550 PRINT:CLOSE 1:SYS 65484:IF K=0 THEN PRINT:PRIN

T " NO MUSIC FILES ON DISK" :rem 237

560 PRINT:GOTO 300 :rem 46

600 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):
NEXT :rem 240

188

Chapter 7

610 POKE SA,LEN(F$):POKE SX#73:POKE SY,2:SYS 65469

:RETURN :rem 158

700 IF PEEK(SA)=4 THEN PRINT " I DON'T KNOW THAT S

ONG":PRINT:GOTO 300 :rem 186

710 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRINT

"FILE NOT FOUND":END :rem 97

720 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 189

730 PRINT ST.-END :rem 223

800 DATA 162,1,32,198,255,32,207,255,32,207,255,32

,207,255,133,251,32,207,255 :rem 206

801 DATA 133,252,32,207,255,164,144,208,62,201,34,

208,245,160,0,32,207,255,201 :rem 238

802 DATA 34,240,6,153,73,2,200,208,243,132,253,32,

207,255,168,208,250,164,253 :rem 200

803 DATA 192,5,144,200,162,3,185,72,2,221,69,2,208

,190,136,202,16,244,132,253 :rem 195

804 DATA 160,0,185,73,2,32,210,255,200,196,253,208

,245,96 :rem 247

Program 7-2. PLAYER (Tape)

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER":PRINT " BY

{SPACE}CRAIG CHAMBERLAIN":PRINT :rem 173
110 PRINT " TUNING INSTRUMENTS...":PRINT :rem 245

120 DN=1:SA=780:SX=781:SY=782:SP=783:POKE SA,1:POK

E SX,DN:POKE SY,1:SYS 65466 :rem 97

130 F$="SID-OBJ":GOSUB 600:POKE SA,0:SYS 65493:IF

{SPACE}PEEK(SP)ANDl GOTO 700 :rem 11

140 SS=49152:HK=49435:PL=49458:DP=49629 :rem 202

150 LA=PEEK(49)+256*PEEK(50)+100:HI=INT(LA/256):LO

=LA-256*HI :rem 141

300 K=FRE(0):F$=M":INPUT " YOUR REQUEST";F$:IF LEN

(F$)>12 GOTO 300 :rem 153

310 IF F$="" THEN PRINT:ON F+l GOTO 300,400

:rem 207

320 PRINT:F=1:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 6

5466:F$=F$+".MUS":GOSUB 600 :rem 30

330 POKE SA,0:POKE SX,LO:POKE SY,HI:SYS 65493:IF P

EEK(SP)AND1 GOTO 700 :rem 92

400 SYS HK:POKE SX,LO:POKE SY,HI:SYS PL:K=PEEK(SX)

+256*PEEK(SY):F$=" " :reml96

410 P=PEEK(K):K=K+1:IF P AND P<>13 THEN F$=F$+CHR$

(P):GOTO 410 :rem 123

420 PRINT F$:IF P THEN F$=" ":GOTO 410 :rem 200

430 WAIT 56320,16:POKE 198,0:POKE SS,7 :rem 56

440 IF PEEK(198) THEN POKE 198,0:POKE SS,0 :rem 6

450 IF PEEK(SS)AND7 GOTO 440 :rem 31

189

Chapter 7

460 POKE 54276,0:POKE 54283,0:POKE 54290,0:SYS DP:

GOTO 300 :rem 148

600 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 240

610 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 158

700 PRINT " ERROR11 ST:END :rem 170

Let the Music Play

You may want to enter any or all of the three demonstration

songs which follow Program 7-3. The first, Program 7-4, is

"Bach's Two-Part Invention in A Minor." This is the theme

music used by Commodore in their television ads. Save the

file using the filename COMMODORE.MUS. The .MUS exten

sion is used to identify all music files. Use the starting and

ending addresses noted before this listing, as well as the next

two programs, as your responses to MLX's queries.

Program 7-5 is the "March of the Wooden Soldiers." Save

this file with the filename WSOLDIER.MUS. The final

demonstration, Program 7-6, is an original composition written

using the Sidplayer Editor. The filename for this file is

ETAL.MUS.

When you run "PLAYER" (whether tape or disk), it dis

plays the message TUNING INSTRUMENTS while it initial

izes and loads the SID.OBJ file. If you're using disk, the

program also lists a directory of all music files on the disk in

three columns. In response to the prompt YOUR REQUEST?,

you should type the name of the song you want to play. Do

not include the MUS extension. The song loads, the full title

and credit information print, and the song starts playing. It

will go something like this:

YOUR REQUEST? COMMODORE

TWO PART INVENTION #13

J.S. BACH

COURTESY CRAIG CHAMBERLAIN

When the song is finished, you'll be prompted for another

selection. You can enter another song name to load and play

another tune.

If you're using disk and the requested file is not on the

disk in the drive, PLAYER tells you that it doesn't know that

song, and asks for a new selection.

190

Chapter 7

If you press only RETURN in response to the song name

prompt and are using tape, the last song will be replayed. If

you're using disk, PLAYER prints a new directory. This is use

ful if the old directory has scrolled off the screen or if you

want to switch disks.

To make a song stop playing before its end, hit any key.

PLAYER cancels the current song and prompts you for a new

selection. To end the program, press RUN/STOP-RESTORE.

The demonstration tunes cover a variety of music, from

classical to modern. Enjoy listening to the music produced by

Sidplayer.

Program 7-3. SID.OBJ

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

Starting Address: 49349

Ending Address: 51118

Filename: SID.OBJ

49349 :076,086,194,076,015,197,073

49355 :236,193,000,0000213,192,013
49361 :213,192,213,192,096,001,092

49367 :002,004,000,007,014,001,243

49373 :000,255,000,002,004,005,231

49379 :007,009,011,030,024,139,191

49385 :126,250,006,172,243,230,236

49391 :143,248,046,134,142,150,078

49397 :159,168,179,189,200,212,072

49403 :225,238,253,140,120,100,047

49409 :080,060,040,020,000,000,201

49415 :002,003,005,007,008,010,042

49421 :012,013 ,015 ,017 ,018,000,088

49427 :224,000,004,008,012,249,004

49433 :000,245,120,162,002,189,231

49439 :019,003,157,204,192,189,027

49445 :202,192,157,019,003,202,044

49451 :208,241,142,000,192,088,146

49457 :096,169,000,141,000,192,135

49463 :134,251,132,252,160,196,156

49469 :153,000,192,136,208,250,232

49475 :141,023,212,141,021,212,049

49481 :141,022,212,169,008,141,254

49487 :029,192,141,024,212,169,078

49493 :144,141,030,192,169,012,005

49499 :141,031,192,169,212,133,201

49505 :254,162,002,169,001,157,074

49511 :033,192,169,004,157,039,185

191

Chapter 7

G>

CO

CO

rH

CN

ON
r-i

r>

H

CN

ON

CD
rH

<S

G>
G>
G)

G}
VO
rH

CN

ON

rH

in

G)
G)

in on

CN

G>

G>

CN

00
rH

rH

in
CN

G>

G}
IS
CN

CN
ON

rH

00
G>
G>

ON

00

rH

in

CN

in

rH

G)

G>
vp
rH

CN

O»
rH

G>
CN

rH

ON

00

rH

in

CN

in

rH

rH

G>
CN

CN

VO
rH

G>

CN

G)
CN

rH

in

in

rH

G)
G>

r-i

G)

r^

CN

r-i

r-i

z
CN

ON

G>
G>
G>

CO
[s.

rH

r-i

00
G)
r-i

CN

ON
rH

G>
G)
G>

rH

00
G)
G>

ON

VO
r-i

rH

ON

00
rH

CN

ON
rH

f^

G>
CN

00
G>

CN

ON

r-i

in

G>
CN

r-i

CO

CO

G>

CN

CN

CN

rH

in

CN

CO

CO

CN

ON

r-i

f^

rH

CN

CN

CN

ON
r-i

VO
CO

G>

ON

00
t-i

ON

G)

G>

CN

CN

ON
r-i

Gt

ON

CO

G>

ON

00
r-i

<tf
iH

Q

00
G)
CN

00
CO

CN

00

G)

rH

VO
Q

G)

<?
^1*
rH

CN

ON
r-i

CO

CO

G)

r-i

CN

CN

CN

ON

rH

CN

CN

ON

rH

G)
CN

rH

t^

in

r-i

CN
ON

^

r-i

G>

ON

00
rH

r-i

G)
r-i

G>

VO
00
G>

G>

CN

CN

ON

CN

G>

ON

00
r-i

G>

in

CN
r-i

ON

^
G)

VO

r-i

CN

ON

in

G>
G)

ON

00
r-i

rH

00
VO
rH

CN

ON

rH

in

G)
G>

in

CN

ON

•H

m

G)

rH

CN

ON

r-i

00
^*
G>

in

CN

rH

CN

ON

00
G>
G>

ON

00
rH

rH

rH

CN

CN

CN

in

rH

CN

G)

CN

ON

00
G>

in

rH

G)

CN
ON

rH

r-

00
G)

CO

in

CN

G>

CN

ON

rH

^
00
G)

CN

r^

in

rH

CN

ON
r-i

*$
CO
G>

ON

CO

r-i

in

G)

r-i

CN

in

r-i

CN

ON

r-i

^

00
G)

ON

00

CN

ON
rH

in

is
G)

CN

CN

^
G>

in
r-i

G)
G)

ON

vo

CN
ON

r-i

00
G)
G>

rH

r**

r-i

rH

G>
^

CN

rH

CO

G>

CN

G>

CN
ON

rH

CN

CN

ON

rH

in

G>
G)

r^

in

rH

CN

ON

in

^*
G>

CO

in

CN

G>

CN

ON

rH

00

G>

CO

in

CN

CN

ON

00
G>
G)

ON

00
rH

CN

CN

ON
r-i

<?
00

G>

CN

ON

rH

r>

00
G> G)

ON ON

00
r-i

CN

ON

00
G>
G)

j^

in

rH

00
rH

CN

ON

in

G>

rH

CM

CN

rH

rH

in

G)
CN

VO

rH

CN
ON

00
G>
G)

CO

in

CN

G)

VO
ON

G)

G)
^*
CN

CN

ON

rH

rH

in

G>

ON

00
rH

rH

Gt
rH

G)

00
G)
CN

CN

ON

rH

in

G)

CN

CN

CN

G)

G2

G>
VO
G)

ON

CN

G>

CN

ON

rH

(^

in

G)

ON

G) 00
G>

G)
VO
rH

rH

ON

G>

cooNinrHt^coc^iniHt^coONinrHi^cooNinrHr^coc^iniHr^cooNinrHf>co
G»G)fHCNCNcoco^ininvovor^oooooNONG>rHrHCNCNco^5tininvor^r^oo
t^r*r^t^i^i^r^t^r^r^r^r^r^f^r^t^r*oooooooooooococooocooooocooo

rH

CM

ON

rH

rH

rH

rH

r^

in

rH

G)
G)

ON

VO
rH

CN

CN

CN
ON

rH

00
CO

rH

r>

in

rH

CO

ON

rH

G>
CN

G)

ON

ON 00
rH rH

CN

ON

vo
rH

CO

G>

ON

VO
rH

CO

in in

CN

CO

CO

rH

CN

ON

rH

r>

rH

CN

ON

00
rH

CN

in

^*
rH

CN

G>
G>

G)
VO
rH

G>
G>
G>

CN

ON

ON

G)

in

rH

CN

ON

rH

rH

G)

r^

in

-

00
G>
G)

CN

in

"^
rH

G)
G)
CN

CO

in

CN

in

rH

G)

CN

CN

CN

CN

ON

rH

»>

rH

G)

in

rH

<?
VO
G)

ON

VO
rH

co

on in
rH CN

rH

Gt
CN

G)

r^

in

rH

CN

CO

G)

ON

VO
rH

CO

in

CN

in

rH

G>

in

CN

ON

VO
rH

CO

in

CN

in

rH

G>
G)
CN

CN

ON
rH

rH

CO

in

CN

in

rH

s>

G>
CM

CN
ON

rH

CO

CN

G)

r>

in

rH

CN

CN

G)

rH

in

CN

in

vo
rH

CO
rH

VO
rH

G)

CN

G)
CN

G>

G)
G)
G)

ON

VO
rH

CO

in

CN

CO

CO

rH

VO

G>
G)

in

G>
rH

CN

in

CN

CO

CO

rH

CN

in

CN

rH

G)
rH

00
VO
rH

G>

rH

rH

CN

ON

rH

CN
CO

rH

in

rH

CN

ON

rH

VO
CN

rH

r^

in

rH

CN

in

rH

CN
ON

rH

CO

CN

rH

in

rH

co

in
CN

in

vo
rH

G)

CO

CO

rH

rH

in

CN

CO

rH

rH

^t
CN

G>

CN

ON

rH

ON
CN

rH

rH

rH

in

CN

CO

rH

rH

G>
G>
CN

*t
in

CN

in

vo
rH

CO

in

CN

G)

CN

CN

00
G)
CN

CO

G)
G)

^

CN

CN

CN

rH

CO
f^

rH

G)
CN

rH

VO
ON

G)

00
VO
rH

rH

CO

r>

rH

CO

G>
G)

G)
CN

G)

rH

^*
rH

CO CN

co in

CN

G>
G>
CN

CN

VO
vo
rH

ON

rH

in

G*
CN

rH

00
00
G>

rH

Gt
G>
G)

CO CO

G>
G)

rH

f>»

rH

G)
CN CN

G>

rH

rH

CN

ON

H

VO
G)
CN

CN

CO

rH

G)

CO

rH

VO
ON

G>

rH

00
VO
rH

00
CN

rH

ON

§
r^

00
G)

00

G)

CN

ON

rH

CN

G)
^
rH

VO
rH

CN

in

00
G)

rH

CN

in

CN

CO

CO

rH

CN

rH

CN

G>ON

CN

1^

vo

CN

G>ON

G)

rH
^*

G)

rH

G>

rH

CN
ON

rH

G>
G)
G)

CO
f>»

rH

G)
G)
G)

CN

VO
rH

00
00
G)

rH

CN

rH

CO

rH

G)

G)
^
CN

CN

ON

rH

*?
rH

CN

rH

G)

CO

rH

CN

ON

rH

1^.

ON

rH

CN
CO

G)

CN
ON

rH

CN

VO CO

G) Q

rH

G)
in

G)

00
G>
CN

G)
CN

rH

rH
^i

G)

CN

ON
rH

G)
G)
G)

rH IS

CN CN

G>
CN

G)
CO

CN

00
G>
CN

ON

rH

*?
rH

CN

rH

VO
ts

CO CN

G)ON

G)

^*
CN

CN

CN

CO

CN

rH

G)
IS

G)

CO

rH

HCN^^nnvotroocx)CGJG»rHrHCNcocotTtinvovorccooON
mmmmmmmmmmmmmmvovovovovovovovovovovovovovovovovo
ONONONONOOnoOnc^OOOONOONOONOONOONONOONOONOOno

192

Chapter 7

oiocOrHin^vovo^trHinvoG>!tcMrinoN^rHrcovocMincor*ONrHiH
G>G>G>rHGJCMCMrHrHrHrHrHQiHCMrHGjCMGrrHG)rHrHrHGifHCMrHrHCMCM

r
!
6
8
,

2
5
3

r
l
7
7
,

2
5
5

:
1
3
3
,

r
1
3
3
,

0
0
2

r
l
0
5
,

r
0
2
4

2
5
3

:
1
6
5
,

,
2
5
4
,

1
6
5

r
l
9
2
,

,
1
2
3

1
5
7 CO in CM

,
1
2
6
,

1
5
7

,
2
5
4
,

,
1
3
3

0
0
0

:
1
0
5
,

,
2
0
8
,

0
0
3

,
0
4
1
,

,
2
5
5

1
6
5

:
1
9
2
,

,
0
0
5
,

1
5
7

,
1
9
2
,

,
0
8
4

1
8
9

:
2
1
0
,

,
0
0
8
,

1
5
7

,
1
9
2
,

,
0
8
7

1
8
9

1
9
2

,
0
0
2
,

,
1
5
7

1
5
2
,

:
1
9
2
,

:
1
9
2
,

r
0
7
2
.

1
2
5
,

,
0
7
4
,

,
0
7
4

0
7
4
,

:
0
5
6
,

,
1
9
2
,

0
4
1
,

,
1
5
2
,

,
2
5
3

1
3
3
,

:
1
9
2
,

,
2
1
9
,

1
8
5
,

,
1
6
8
,

,
0
4
2

0
4
2
,

:
0
1
0
,

,
1
9
2
,

0
0
2
,

,
1
8
9
,

,
2
5
4
,

1
3
3
,

:
1
9
2
,

,
0
0
2
,

2
0
8
,

,
1
0
4
,

,
2
4
0
,

0
0
7
,

:
0
4
1
,

,
1
9
2
,

'
2
2
2

,
1
8
5
,

,
1
6
8
,

1
4
6
,

:
2
4
0
,

,
1
9
2
,

0
7
5
,

,
1
2
5
,

,
0
2
4

,
2
3
0
,

0
1
2
,

r
l
0
5
,

,
0
2
4
,

^fin ing> cmts
:
1
0
1
,

:
0
1
6
,

2
3
3
,

0
0
4
,

r
l
4
4
.

,
0
1
2
,

2
0
1
,

CO in CM
1
6
8
,

1
9
2
,

2
5
4
,

,
1
3
3
,

2
5
3
,

1
9
8
,

2
4
2
,

1
8
5
,

0
7
2
,

2
5
5
,

:
0
1
2
,

:
1
6
5
,

1
6
4
,

1
9
2
,

2
3
0
,

1
8
5
,

2
5
5
,

:
1
3
3
,

2
5
5
,

0
7
0
,

1
2
5
,

0
2
4
,

0
0
6
,

2
5
0
,

0
4
8
,

0
1
6
,

:
1
0
6
,

1
6
5
,

1
9
2
,

0
8
4
,

1
5
7
,

1
9
2
,

:
0
7
8
,

0
8
7
,

1
5
7
,

1
9
2
,

0
8
1
,

1
2
5
,

:
2
5
5
,

0
2
8
,

0
4
1
,

2
5
5
,

1
3
3
,

1
0
4
,

:
1
9
2
,

0
2
9
,

1
9
2
,

0
4
5
,

1
8
9
,

1
8
2
,

:
2
4
0
,

0
0
5
,

1
8
9
,

0
2
2
,

2
4
0
,

1
9
2
,

:
0
4
8
,

0
0
8
,

1
8
9
,

1
9
2
,

0
8
4
,

2
2
1
,

2
5
4
,

1
6
9
,

1
9
2
,

0
8
7
,

2
5
3
,

:
1
9
2
,

0
1
7
,

1
4
4
,

1
9
2
,

0
4
2
,

1
5
7
,

:
1
0
6
,

1
8
9
,

1
9
2
,

0
4
2
,

1
5
7
,

0
8
7
,

:
2
4
0
,

inrHicoc^inrHtcooNinrHrco^inrHrcooNinrHr^cooNinrHr^cocTkin
r^cocooNONGirHrHCMCMco^^ininvor^r^ooooONG)G)rHrHCMcoco^^tin
G>G)G)G>G>.HiHrHrH,HiHrHrHrHrHiHiHrHrHrHrHCMCMCMCMCMCMCMCMCMCM
tStStStStStStStSlSlStStStSlStStStStStStStStStStStStStSlStStStS
ininmininininmin

is

CM

ON

rH

ON

VO

ON

00
r-i

^

CM

m

CM

ts

CM

ON

•H

in

is

in

rH

CM

ON

rH

CO

vo

rH

VO

VO
ts

ON

CM

in

ts

r-i

in

co in
r-i

tS

rH

ts

CM

ON

r-i

r-i

in

ts

CM

CO

ts

<?
is

r-i

r-i

VO
rH

00

CM

CM

ON

tH

r-i

in

in

r-i

ts

CM

ON

fH

<?

ts

in

rH

CM

in on

ts

in

rH

CM

ON

r-i

CO

vo
is

rH

•H

in

ts

CO

in

CM

VO
in

is

CM

rH

G>

VO
rH

IS

G>
G)
G>

•H

ts
CM

CM

ON

rH

r-i

in

r-i

CM

ON

rH

(^

in

G>

in

CM

iH

^
CM

IS

iH

S)

VO
ts

in

rH

<3*
ts
rH

00
CM VO
r-i

CM

in

rH

CM

ts

CM

ON

rH

rH

CM

ON

iH

VO
ts

in

rH

r-i

in

CM

rH

in

CO

G>

CM

CM

ts
ts

*t
«^*

rH

ts

CM

in

rH

CM

ON

iH

in

ts

Q

j^

in

•H

CM

ON

r-i

ts

CM

ON

rH

CO
ts
ts

(^

in

rH

CM

ON

iH

CO
ts

ts

CM

ts

CO

CM

ts

CM

CM

ON
r-i

ts
ON

ts

CM

CM
ON

rH

rH

rH

ts

in

rH

CM

ON

rH

rH

rH

ts

rH

CO

ON

ts

ON

CO
rH

rH

in

CM

in

rH

CM

ts
ts

CM

rH

ts

in

rH

CM

ON
rH

^
iH

G>

in

CM

rH

ts

ts
ts

G>

ts

VO
rH

rH

in

CM

in

r-i

ts

G>
CM

ts

vo
■H

ts

CO

rH

CM

ON

rH

VO
CM

ts ts

ts

CM

CM

ON

rH

in

ts

■H

ON

ts
rH

rf

CM

G)

ts
ts
CM

ts

CM

ON

r-i

VO
CM

ts

rH

rH

r-

ts
ts

rH

ts

CM

ts

vo
ts
r-i

ts
rH

CM

r-i

CM

M

CM

IS

ts

CM

ts

CO

ON

rH

CO
rH

ts

r-i

CM

iH

^

CM

ts

ts

CM

ON

rH

(^

CM

ts

rH
^»

rH

CM

CM
ON

rH

r>

ts
CM

CO
G>
r-i

CM CM

ON

rH

CM

ts

r-i

CM

CM

r-i

a\

CO
rH

CO

in

CM

CO

CO

rH

CM

ON

rH

CO

CM CM
ts rH

VO
ts

ts

CO
ts
CM

in

CM

CO

CO

rH

CM
ON

r-i

ts

CM

ON

rH

ts
G>
CM

CM

CO

ts

CM

ON

rH

ON

ts
CM

CM

CM
ON

r-f

^

rH

CM

rH

VO
ts

CM
ON

rH

ts

ts
ts

rH

CO

in

CM

t^

rH

ts
ts

ts

ts

vo
rH

CM

CM

193

Chapter 7

inrHt^B>ON5fONi^B)rHcornrororoBJONinONvotinroinB>vo»HinS»voON

HHH|aHHHSBl(MHHHHHHHHHHHHHHSISHSHSHS»iaiSl

in

^^^^^tttinnn

eiiS5iissi5nsisis5>is5>isiS5>iSB>Siis5>isisisisisisisisis<s
ininininininininininuSininininininininininininininininininin

cMON on vo ONincMrHisinoNcorHCMCMrHONON
incN^B>rHCOinr^'5trHinB)ONH^lincMrH
r-TlS ISCMCMtSrHlSCMCMrHCMlSiHlSCMCMrH

ON

00
rH

CM

ON

iH

in

S
r>

in

rH

CNJ

ON
rH

3

ON ON

00
rH

CM

ON

rH

00
&

in

•H

CM

ON

rH

00
is

00
rH

VO
VO
Q

00
IS
CM

IS
rH

IS

CM

ON
rH

VO
CO

VO
ON

5>

ON

00
rH

ON
rH

&

IS

CM

CM

ON

rH

&
ON

CM

&

IS
VO
rH

CM

ON

rH

rH

rH

in

rH

in

H

CM

ON

rH

ON

ON

5)

ON

00
rH

rH

in

CM

cm in

ON

rH rH

ON

00
rH

rH

in
CM

in

rH

is
CM

CM

ON
rH

<*
rH

&

CO

in

CM

VO
rH

in

H

&
<*
CM

CM

ON

rH

CM

5)
rH

in

CM

<*
VO
rH

CM

ON

rH

in

CM

rH

CM
rH

<*
CM

rH

CM

IS

CO

ON

rH

VO
IS

&

rH

CM

rH

^
CM

H

is

is
<*
CM

CM

ON
rH

CM
ON

rH

t^

CM

IS

rH

rH

in cm

rH

ON

rH

ON 00

00
rH

00

IS

5)
rH

ON

00
rH

rH

rH

ts
<s

is

ON

VO
rH

CM

rH

CM

CM

CM

IS

H

<*
rH

in

vo
rH

CM
rH

CM

rH

in

in

CM

CO

CO

rH

CM

CM CO

<S

rH

<t
rH

CM

ON

rH

VO
CM

IS

IS

rH

<*
<S

00

VO
rH

in

in

CM

CM
ON

rH

VO
CO

<s

in

rH

vo
is

rH

<S

CM

in

rH

00
VO
rH

t^

(S

is

00
CM

<S

rH

(S

CM

in

rH

00
CM

IS

is

CM

VO
CO

rH

CM
ON

rH

rH

CO

IS

CO

rH

VO
in

is

H

S)
IS

00
<s
CM

CM

ON

rH

<S
CO

<S

CO

rH

r^ co
in co

<S rH

vo in
r- in
rH CM

VO <tf

(S VO
rH rH

VO tS
is in
SJ CM

<S00
^ (S
CM CM

VO VO
CO CO

rH rH

in

ts

VO

r-\

<**

IS

t^

IS

(S

CM

in

in

CM

CO

CO

IS

in

rH

vo

rH

in

in

CM

rH

<S
rH

IS
rH

<s

IS
rH

(S

CM

ON

rH

rH

rH

rH

ON

00
rH

CM

ON

rH

r-

rH

rH

ON

CM
IS

<s
rH

ts

CM

ON
iH

**
H

rH

ON
CM
5)

VO
in

IS

CM
ON

rH

r-

rH

IS

r^

in

rH

IS
rH

IS

00
IS
CM

IS
IS

H

«•
IS

CM

ON

H

CM

IS
IS

CM ON
ON

rH

00
rH

rH

IS

ON

00
rH

CM
ON

rH

VO
CO

IS

VO
CM

rH

CO

IS
IS

CM

ON
rH

IS
CM

rH

in

rH

IS
IS
IS

in

IS
rH

CM
ON

rH

IS

VO
rH

IS

ON

VO
rH

CM
ON

rH

ON

IS
CM

00
IS
rH

VO
ON

IS

CM

ON

rH

IS
IS
IS

rH

rH

<tf
CM

IS

ON

VO
rH

Hr-coONinfHt^cooNiniHt^coONinrHr^cooNinfHr^cooNinfHr^cooNinfH
VOVOr^C^00ONONlSISrHCMCMC0C0^*ininVOVOr^0000ONONISrHrHCMCMC0^

CMCMCMCMCMCMCMCOCO^COCOCOCOCOCOCOCOCOCOCOCOCOCO^t^t^^^tTt^t
IS) ^S) IS) ^Sj ^S) ^n IS) ^S) (S) ^S) ^S) *S^ ts^ *S^ ^S) ^S^ IS) ^S} ^S) ^Si ^S) ^S) IS) ^S) ^^d ^S) IS) ^S) l!Q IS) P&

inminminininininininin

194

Chapter 7

GiOOG*G>^C^rHONG*ONVO^CNCNCNG>COtnG*5tCNiHCOCNCO^inG)COCOG>
G>G>rHG>CNG>G>rHtSrHrHG>CNCNrHCNCNGlCNrHrHCNCNCNG>CNrHrHrHCNGl

0
2
9
,

0
7
7
,

0
1
5
,

0
4
1
,

1
9
2
,

:
0
2
9
,

0
2
4
,

1
4
1
,

1
9
2
,

0
2
9
,

1
4
1
,

:
1
9
2
,

0
9
5
,

1
7
6
,

0
7
4
,

0
7
4
,

0
9
6
,

:
2
1
2
,

2
4
0
,

1
3
6
,

0
2
3
,

2
4
0
,

1
6
8
,

:
0
7
4
,

2
4
0
,

1
3
6
,

0
5
7
,

2
4
0
,

1
3
6
,

:
0
4
5
,

0
2
9
,

1
7
3
,

0
6
3
,

2
4
0
,

1
3
6
,

:
0
6
0
,

0
0
9
,

0
9
8
,

1
4
4
,

1
2
7
,

0
4
1
,

:
1
9
2
,

1
9
2
,

0
2
9
,

1
7
2
,

0
9
4
,

1
7
6
,

:
1
2
8
,

0
1
5
,

0
4
1
,

1
5
2
,

2
0
0
,

0
0
7
,

:
1
7
6
,

0
1
5
,

0
4
1
,

1
5
2
,

0
9
6
,

0
0
7
,

:
2
0
8
,

1
9
2
,

0
2
9
,

1
4
0
,

,
1
3
6
,

0
0
7
,

:
2
4
0
,

2
1
4
,

1
8
9
,

0
9
6
,

,
2
1
2
,

0
2
4
,

:
1
4
0
,

1
9
2
,

0
2
8
,

0
4
5
,

,
2
5
5
,

0
7
3
,

:
1
9
2
,

1
7
6
,

1
9
2
,

2
1
4
,

,
0
2
9
,

0
2
6
,

:
1
4
4
,

,
1
9
2
,

1
1
4
,

1
5
7
,

,
0
4
2
,

,
1
5
2
,

:
0
2
1
,

,
1
9
2
,

1
1
7
,

1
5
7
,

,
0
4
2
,

1
5
2
,

:
0
9
6
,

,
2
4
7
,

0
4
1
,

1
9
2
,

,
0
2
8
,

,
1
7
3
,

:
0
9
6
,

,
0
2
8
,

1
4
1
,

0
0
8
,

,
0
0
9
,

0
0
2
,

:
1
4
4
,

,
0
7
4
,

0
9
6
,

2
1
2
,

,
0
2
3
,

,
1
4
1
,

:
1
9
2
,

,
2
0
8
,

0
0
8
,

1
7
6
,

,
0
7
4
,

,
0
3
0
,

:
1
7
6
,

,
1
9
2
,

1
1
1
,

1
5
7
,

,
0
0
8
,

,
1
6
9
,

:
0
0
2
,

,
0
7
7
,

0
1
0
,

0
1
0
,

,
0
1
0
,

,
0
1
0
,

:
0
9
6
,

,
0
2
9
,

0
7
7
,

1
1
2
,

r
0
4
1
,

,
1
9
2
,

:
0
2
9
,

,
0
2
4
,

1
4
1
,

1
9
2
,

r
0
2
9
,

,
1
4
1

:
1
9
2
,

,
0
2
1
,

2
0
8
,

1
6
8
,

r
0
7
4
,

,
0
9
6

:
2
1
2
,

r
2
2
2
.

0
0
5
,

2
4
0
,

r
l
9
2
,

r
1
3
5

:
1
8
9
,

r
l
2
9
,

1
8
9

,
0
1
0
,

r
2
4
0
,

r
1
9
2

:
1
3
5
,

r
l
9
2
,

1
3
2

1
8
9
,

r
2
5
3
,

r
1
3
3

:
1
9
2
,

r
0
3
2
,

2
0
8

,
1
3
6
,

r
0
9
6
,

r
2
5
4

r
l
9
3
,

0
2
0

,
2
2
1
,

r
l
9
2
,

r
1
3
8

r
l
6
8
,

1
9
2

,
1
3
8
,

,
2
2
2
,

,
0
1
8

:
2
4
0

c^inrHt^cooNiniHr^coONinrHr^cooNinrHr*cooNinrHr^cooNinrHr^cooN

rHCNcoco^^invovor^r^ooONONG)G>rHCNCNcoco^ininvovor^cocooNON
oocooocooocooocococooooooocoononononononononononononono>ononon

in

rH

CO

ON

rH

*$
CN

G>

rH

CN

rH

§
rH

<S>

CN

rH

*t

G)

G>

G)
rH

CN

ON

rH

CN

G>

r>

in

rH

G>

i^

in

rH

CO

ON

rH

in

CN
IS

rH

CN

rH

*#
CN

^

G>

Gl

CO
G)

rH

*$»

vo
ON

G>

CN

ON

rH

in

G>

rH

in

G>

in

rH

G>

rH

CN

ON

rH

00

G>

r>

in

rH

rH

CN
ON

IS

VO

•-*

G>

G>
rH

VO
ON

G>

CN

ON

rH

G>

in

G>

VO

rH

<?
f>.

G>

G>

VO

rH

G>

rH

G)
rH

VO
G>
G>

00
IS

CN

IS

CN

G>
VO
rH

<*
f>

G>

G>

CO

CO

•H

in

rH

G>

G>
VO
rH

G>
rH

G)

IS

rH

G>

G)
rH

G)

CN

rH

rH

<a

vo

rH

in

G)
G)

VO
rH

CN

in

rH

in

in

CN

rH

in

rH

in

in

CN

in

G>
IS

CN

ON

rH

IS

CN

IS

rH

VO

5>

rH

VO

G)

VO
ON

<S

rH

in

CN

in

^*
rH

CN

ON

rH

IS
CN

G)

rH

CO

CN

G*

in

rH

in

in

CN

in

G>
G>

CN

ON

rH

CO

CN

G)

CN

<t

G)

VO
ON

G)

rH

in

CN

in

rH

G)

CN

CN

ON

rH

CM

CO

CO

rH

CN

CO
G)

VO

rH

<?

G>

^

IS

VO

rH

<s

rH

CN

G)

rH

CN

CM

CN

ON

rH

00
CO

rH

ON

00
rH

in

in

CN

rH

CN

ON

rH

00
CO

rH

<?
in

CM

vo
vo

G)

G)

CM

CO

ON

rH

G>

CN

ON

rH

rH

rH

CO

in

rH

CO

in

CN

in

vo
rH

CO
VO
rH

rH

*?
VO
rH

CN

ON

rH

CO

in

rH

CO

in

rH

<?
in

CN

in

vo

rH

rH

CN

G)

IS

CM

CM

ON

rH

rH

rH

co

CO

rH

CN

ON

rH

in

VO
rH

in

CO CO
rH

in

00
rH

in

in

CM

rH

in

CN

CO

CO

-

rH

VO

rH

*?

is

G)

IS

VO

rH

VO
ON

IS

CO

in

CN

G>

in

vo
rH

CO

in

rH

CO

in

CM

in

vo
rH

00
VO
rH

CM

in

G)

rH

CN

ON

rH

rH

00
rH

CO

in

rH

<3*

G)

CO

ON

rH

rH

CM

G>

rH

CM

CM

CN

in on

CN

in

vo
rH

CM

ON

rH

rH

00
CO

H

ON

CO
rH

IS

00
VO
rH

CN

ON

rH

00
CO

rH

*$
in

CN

CO

rH

G>

<S
<^»

CN

G)

VO
ON

G)

CN
ON

rH

CO

in

rH

CO

in

rH

G)
IS

G>

ON

VO
rH

CN

rH

*&
rH

G>

G>

ON

VO
rH

*f

IS

00

&

ON

vo
rH

rH

IS

rH

<S

IS

rH

G>

G)
rH

G)

VO
ON

G)

CM

ON

rH

IS
G>
IS

rH

G>

CN

rH

*&
G)

CN
ON

rH

CO
CN

G>

(>>.

G)

G)
rH

CM

G>

r^

G)
rH

rH

CM

ON

rH

00
CM

r^

G)

^^1 ^M ^A« VjT ^df ^dl *-JT iJT ^dl Vj! CXI ^^1 t^J ^9J CX| ^^|

ininininmininininininininminin

195

v
O
O

5
1
0
0
5

5
1
0
1
1

5
1
0
1
7

5
1
0
2
3

5
1
0
2
9

5
1
0
3
5

5
1
0
4
1

5
1
0
4
7

5
1
0
5
3

5
1
0
5
9

5
1
0
6
5

5
1
0
7
1

5
1
0
7
7

5
1
0
8
3

5
1
0
8
9

5
1
0
9
5

5
1
1
0
1

5
1
1
0
7

5
1
1
1
3

:
1
3
6

:
1
3
3

:
2
5
3

:
1
9
2

:
2
1
4

:
1
5
2

:
0
9
6

:
1
9
2

:
1
9
8

:
1
9
9

:
2
5
2

:
1
9
3

:
0
0
0

:
2
0
8

:
2
0
2

:
2
5
1

:
0
9
6

,
2
5
4
,

,
0
9
6
,

,
0
9
6
,

,
1
9
2
,

,
1
4
5
,

,
1
4
2
,

,
1
3
8
,

,
1
9
2
,

,
1
9
2
,

,
2
0
1
,

,
2
0
2
,

,
1
6
9
,

,
1
3
3
,

,
1
7
7
,

,
2
4
9
,

,
2
0
8
,

,
2
0
0
,

,
1
3
0
,

1
5
3
,
1
9
2
,

1
8
5
,
1
4
1
,

1
6
9
,
0
3
2
,

1
7
3
,
0
0
0
,

1
4
1
,
0
0
0
,

2
5
1
,
2
0
0
,

2
0
3
,
1
9
2
,

0
2
4
,
1
0
5
,

1
5
2
,
1
0
5
,

1
3
8
,
0
2
4
,

1
9
2
,
1
5
2
,

1
9
2
,
1
3
4
,

2
3
6
,
1
3
3
,

2
5
4
,
1
6
2
,

2
5
3
,
1
4
5
,

2
3
0
,
2
5
2
,

2
4
2
,
1
7
7
,

1
9
2
,
1
1
8
,

1
2
8
,
1
2
8
,

2
4
0
,
0
0
7
,
2
0
6

1
9
2
,
1
3
3
,
0
8
1

1
4
1
,
0
0
0
,
2
5
2

1
9
2
,
0
9
3
,
0
5
7

1
9
2
,
1
3
6
,
1
9
2

1
4
5
,
2
5
1
,
2
1
1

1
4
0
,
2
0
4
,
0
5
0

1
0
6
,
1
4
1
,
0
4
1

0
0
0
,
1
4
1
,
1
2
9

1
0
5
,
0
3
5
,
0
4
0

1
0
5
,
0
0
3
,
1
4
7

2
5
1
,
1
3
2
,
1
5
5

2
5
3
,
1
6
9
,
0
6
5

0
0
5
,
1
6
0
,
0
2
2

2
5
1
,
2
0
0
,
1
4
7

2
3
0
,
2
5
4
,
0
3
8

2
5
3
,
1
4
5
,
1
0
4

2
0
8
,
2
4
7
,
0
9
9

1
2
8
,
1
3
0
,
1
4
1

P
r
o
g
r
a
m

7
*
4
-
C
O
M
M
O
D
O
R
E
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
8
4
9

F
i
l
e
n
a
m
e
:
C
O
M
M
O
D
O
R
E
.
M
U
S

4
9
1
5
2

:
0
8
4
,
0
0
3
,
0
4
2
,
0
0
0
,
2
2
4
,
0
0
2
,
0
9
9

4
9
1
5
8

:
0
0
1
,
0
3
9
,
0
0
1
,
0
0
6
,
0
0
6
,
1
6
0
,
2
1
9

4
9
1
6
4

:
0
0
1
,
2
3
6
,
0
3
0
,
0
0
1
,
0
2
4
,
0
0
0
,
0
4
8

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

:
0
3
8
,
0
0
1
,

:
0
2
4
,
1
4
5
,

:
0
2
4
,
1
5
9
,

:
0
2
0
,
1
4
5
,

:
0
2
0
,
1
4
7
,

:
0
2
4
,
1
5
8
,

:
0
2
4
,
1
5
8
,

:
0
2
4
,
1
5
5
,

:
0
3
8
,
0
1
4
,

:
0
1
6
,
0
0
0
,

:
0
3
8
,
0
0
1
,

:
0
2
4
,
1
4
7
,

:
0
2
4
,
1
5
5
,

:
0
2
0
,
1
5
6
,

:
0
8
4
,
1
4
8
,

:
0
2
4
,
1
4
8
,

:
0
2
4
,
1
5
9
,

:
0
2
4
,
1
5
9
,

:
0
3
8
,
0
1
4
,

:
0
2
0
,
1
4
5
,

:
0
3
8
,
0
0
7
,

:
0
2
4
,
1
4
5
,

:
0
3
8
,
0
1
4
,

:
0
3
8
,
0
0
7
,

:
0
2
4
,
1
5
9
,

:
0
3
8
,
0
1
4
,

:
0
3
0
,
0
0
6
,

:
0
3
8
,
0
0
1
,

:
0
2
4
,
1
5
8
,

:
0
2
0
,
1
5
9
,

:
0
1
6
,
0
0
0
,

0
2
4
,
1
5
5

0
2
4
,
1
5
9

0
2
4
,
1
4
6

0
2
0
,
1
4
7

0
3
0
,
0
0
2

0
3
8
,
0
0
1

0
2
4
,
1
4
5

0
2
4
,
1
5
9

0
2
0
,
1
4
5

0
3
0
,
0
0
3

0
2
4
,
1
4
7

0
2
4
,
1
5
8

0
2
4
,
1
5
7

0
2
0
,
1
5
8

0
3
0
,
0
0
4

0
3
8
,
0
0
1

0
2
4
,
1
4
6

0
2
4
,
1
5
4

0
2
0
,
1
5
5

0
8
4
,
1
4
7

0
2
4
,
1
4
7

0
2
4
,
1
5
8

0
2
0
,
1
5
6

0
2
4
,
1
4
6

0
2
4
,
1
5
7

0
2
0
,
1
5
5

0
3
8
,
0
0
7

0
2
4
,
1
5
8

0
3
8
,
0
1
4

0
2
0
,
1
4
5

0
0
1
,
0
4
7

,
0
2
4
,

,
0
2
4
,

,
0
3
8
,

,
0
2
0
,

,
0
3
8
,

,
0
2
4
,

,
0
2
4
,

,
0
2
4
,

,
0
2
0
,

,
0
2
4
,

,
0
2
4
,

,
0
2
4
,

,
0
3
8
,

,
0
2
0
,

,
0
3
8
,

,
0
2
4
,

,
0
2
4
,

,
0
2
4
,

,
0
2
0
,

,
0
3
0
,

,
0
3
8
,

,
0
2
4
,

,
0
8
4
,

,
0
3
8
,

,
0
2
4
,

,
0
8
4
,

,
0
2
4
,

,
0
2
4
,

,
0
2
0
,

,
0
2
0
,

,
0
3
0
,

1
5
8
,
1
6
2

1
5
5
,
0
4
3

0
1
4
,
1
7
9

0
9
3
,
2
2
5

0
0
6
,
0
2
9

1
5
5
,
1
9
2

1
5
9
,
0
7
6

1
4
6
,
0
8
0

1
5
8
,
2
0
5

0
0
0
,
1
4
5

1
4
5
,
2
0
1

1
4
5
,
0
9
4

0
1
4
,
2
4
6

1
4
6
,
1
0
4

0
0
7
,
1
5
7

1
4
6
,
2
3
3

1
5
7
,
1
3
6

1
5
6
,
1
4
9

1
5
7
,
0
1
8

0
0
5
,
0
5
1

0
0
1
,
1
3
7

1
4
5
,
1
5
2

1
4
6
,
0
9
6

0
0
1
,
1
5
4

1
5
9
,
1
9
7

1
4
5
,
1
1
2

1
4
5
,
1
6
8

1
5
6
,
0
6
9

1
5
4
,
0
8
2

0
0
0
,
0
4
4

0
0
7
,
0
4
3

Chapter 7

ts

00

rH

CM

G>

CO

CM G> CM

CM CM

00 CO
G) G)

rH

,000,

G>

,039,
CM

,002,
G>

,149,024

rH

,081,024

CM

CM

,147,024rl49,

rH

,158,024,147,

G>

,015,030'000'
<* Gc
CM CM

G>G>

G>

,006,001,047,,001,

CM

CM

,148,024,150,,024,

CM

,159,024,148,,024,

CM

,146,024,148,,024,,146,
,146,
CM

G,

,157,024,146,,024,,159,:024

G>

,016,030,000,,020,,000,:024

G>

,006,001,047,,001,,000,:024

G>

,147,024,149,

G>

,158,024'LPT'
CM CM

G> G>

,147,:024 ,145,:024

CM

,145,024r082,,024,,145,
CM

CM

,092,024,145,,024,,158,:024 ,017,030,000,,020,,000,:024

rH

,006,001,047,,001,,000,

G)

,146,,024,148,,024,,146,:024 :024

is

,093,024,146,,024,,159,:024

is

,159,024,146,

IS

,155,024rl59,
CM CM
G) G)

,159,:024 ,093,:024
IS

G>
G.
IS

G>

in

rH

CM CM

G)

rH
|*»»

G*

rH

G)
IS

VO

IS

rH

G»
G>

G>

in

rH

CM

G>

rH

G>

CO
CO

G>

CM

(^

in

tH

<*
CM

G>

VO

fH

CM

G>

^

rH

^
CN

G>

rH

rH

G>

CO
CO

G>

CO

fH

CM

G)

VO

rH

^
CM

CM

ON

in
rH

G)
CM

G)

ON

H

IS
CM

^<

rH

G>
CM

G>

CM

vo
G>
G>

00
CO

IS

00
G>
G>

G)
CO

Gi

ON

rH

o
CM

fH

in

rH

CM

G)

rH

G)
IS

00
CO

G>

in

rH

CM

G>

CM G>

VO CO

rH

CM

G>

t^.

^J*
rH

^
CM

G>

in

rH

CM

G)

^*
rH

^
CM

G)

VO

fH

CM

(^

in

rH

CM

G>

rH rH

in on
^»

rH

G>
CM

G)

,>

rH

G)
CM

IS

rH

G)

00
CO

IS

G)

IS
CO

^

rH

rH

G)
in

CM

Gl

j^

CO

rH

CM CM

<S

ON

rH

G)
CM

IS

G^

•H

G)

00
CO

<s

G)

in

rH

^*
CM

Gr
in

fH

CM

J^

rH

CM

G>

(S

in

^*
rH

CM

G)

00
in

fH

CM

G>

(^

tH

^*
CM

G)

IS

00
G)

G)
CM

VO

rH

Gr
CM

G,

^

rH

G)

00
CO

G)

rH

IS
rH

IS

G>
CO

is

r>

CO

rH

Gc
CM

G)

G>
in

rH

IS
CM

G)

rH

ON

rH

CM

G>

fH

in

rH

CN

IS

rH

G)
G)

CO
CO

G)

G)

ON

in

fH

CM

G)

ON
5^«

rH

CM

<S

VO

rH

CM

G>

G)

ON

in

fH

rH

^t

rH

IS
CM CM

G)

in

rH

CN

VO

rH

<?
CM

G)

in

rH

G)

H

rH

rH

Gc

O
CO

Gc

rH

in

rH

G)
CM CM

IS

<t
rH

IS

CO
CO

Gc

Gc

ON

rH

Gc
CM

IS

rH

CO
Gc

^
CM

G)

in

rH

CM

Gc

rH

G)

Gc

00
CO

G)

CM

ON

in

rH

<3*
CN

G>

^
CO
G)

^
CM

Gc

CM

CO
G)

<tf
CM

G)

CM

CO
in

rH

CM

G)

CM

ON

Gc

CM

G>

CM

CO
G)

CN

G>

rH

G)
Gc

CO
CO

G)

in

rH

Gc
CM

Gc

^
rH

G)

CO
CO

iH

(^

^*
rH

^

CM

Gc

ON

^*
H

^
CM

Gc

ON

H

^

00

CM

CM

rH

Gc

G)
CO

Gc

(^

^3*
rH

CM

Gc

in

rH

CM

G)

rH

G)
G)

CO
CO

G>

00
in

rH

Gc
CN

Gc

fH

Gc

CO
CO

Gc

rH

rH

Gc
G)

00
CO

Gc

^f
CO
G)

^

CN

Gr

CO
Gc

^

CO
Gc

rH

VO

rH

CN

Gc

ON

in

H

<t
CM

Gc

VO

rH

CM

G)

rH

G)
G)

00
CO

G.

r>

m

H

G>
CM
G<

rH

G)

CO
CO

197

Chapter 7

SI ts i-i G) G>

VO VO

rfH

m in

CM

151,

G>

150,,024,

is

159,
rH

093,,024, ,024,
vo m

G>

158,024,145,

G> G)

on in
in in

024,158, 024,158,,024,

rH

166,,016,155,,024,

CM

079,001,047,,001,

G)

002,
rH

050,,001, ,010,010,,166, 014,,166,051,

CM

135,,001,r000,010,002,:001,

(—i

0021,001,094,,166,059,:001,

G>

156,,166,002,,001,190,:166,

G>

002,,001,012,,166,002,:001,

rH

079,,001,002,,001,010:166,

CN

005,,118,071,,001,160:006,

Gt

010,r038,001,r030,300:134,

G>

166,,016,
rH

163,,024,
CM VO
G) VO

,038,174 ,024,101:020, :020,

CM

167,,024,
CM fH

^ CO
in in

,024, ,020,
co r-
in vo
rH fH

,024,166,:024, ,024,163, 010,,038,002,:024, :030,

rH

163,r020,101r020,166:020,
rH

00
rH

TO
CO

TO
TO

TO
CM

TO

G>

rH

VO
G>
<S

rH

G>

r^

G>

rH

TO
G>

TO
TO

TO

in

rH

CM

m
in

tH

CM

in
in

rH

rH

ON

in

rH

CM

G)

in

in

rH

*t
CM

ON

in

rH

CM

in

rH

TO
CM

G>

TO
rH

G>

TO

in

in

rH

TO
CM

CO

ON

rH

00
in

rH

CM

G>

in

ts
G) G>

00 G>
CO

VO

rH

CM

00
in

rH

00
CO

ON

rH

TO

CM

r>

rH

<?
CM

G>

in

^*
rH

CM

CM

TO
IS

rH

in

rH

CM

IS

00
in

rH

CM

G>

in

rH

G>

in

rH

CM

G>

00
in

*?
CM

G>

CM

ON

TO

G)

00
in

iH

CM

G>

CM

ON

G>

^

CM

IS

00
in

rH

TO

ON

in

rH

CM

rH

in

TO
ts

00
CO

IS G>

in

rH

CM

GJ

G>

G>
CM

G!

G>
CO

IS

00
on in

G) rH

CM

ON

in

rH

CM

G>

CM

G)
TO

00
CO

TO

CO

ON

rH

CO

ON

G>

<?
CM

G)

ON
in

rH

<?
CM

G>

VO

rH

rH

VO
in

rH

CM

G)

in

rH

CM

IS

ON

in

rH

rH

*t
in

rH

<3*
CM

VO
in

CM

Gi

CO

ON

TO

CM

VO
in

rH

CM

G)

r^

vo
rH

CM

TO

VO
in

rH

G>

rH

CM

G>

G)
CO

is

in

rH

CM

G)

in

in

rH

rH

CM

G>
G)

00
CO

G)

CO

in

rH

CM

TO

in

TO
Gr

CM

in

in

CM

G)

00
in

rH

CM

TO

in

in

rH

CM

VO
VO
rH

<tf
CM

TO

in

in

rH

CM

IS

CO

in

rH

CO

in

rH

<3*
CM

IS

G)
ON

G,

^

CM

G)

CO

in

rH

rH

IS

TO
rH

^
CM

G)

CO

in

rH

CM

is

vo
vo
rH

CM

VO
VO
rH

<3*
CM

IS

j^

VO
rH

CM

CO

in

rH

rH

rH

G)
rH

G)
CM

<a

IS

rH

TO

00
CO

G>

CM

CM

G)

rH

in

in

rH

G)
CM

CO

ON

IS

CM

TO

ON

in

rH

CM

in

in

rH

CM

G)

^
G>
G)

00
CO

IS

G)
G>
G)

CM

ON

in

rH

CN

IS

VO

rH

<tf
CM

TO

in on

rH

CM

G)

00
in

rH

in

tH

CM

G)

in

in

rH

00
in

rH

CM

IS

in
^*

rH

CN

ts

CO

CM

G)

^^tst^t^GJTOOO^t^^^t^^^^^^^OO^t^^^^tGJQ^^^Gi
CMCMCNCMCMCMCOCOCMCMCMCMCMCMCMCMCMCMCMCOCMCMCMCMCMCOCMCMCMCMCO

G)G}QG)QG)G)G)G)G)G)G}G)G>G>G)G}G)G)G>G)G)G)G}G}G<TOG)TOG}G)

198

Chapter 7

B|HiaHHiaHSllSlH|SHHHHlSlHlSHHlSlHH5|ISlHHHHHH

<nCNCOCNC^<nC^CN|CNlCN^^^CgCNCnCVlcnCNIC^<^CNC^Ojn(NCDCJCNJCN

HlSllSlHHHHHHHHrllSlHHHrllSlrlHHBlHrllSlHHiaSrlH

SjmvOr-iininvovosjvOQvovDi^r^vpvor^vos>r^Ovo®ininiHvominvo

QHHSHHHHISHISHHHHHHHHISIHISHISHHISHHHH

HHHSlHlSlHHHHHlSHH5liaHHHHHHHH ^ H ® -H *S H rH

199

Chapter 7

Gl

Gl
CM

Gl

G)
CO

Gl

Gl
Gl

*■'
CM

Gl

CO
ON

G)

^
CM

Gl

Gl

rH

Gl
rH

G)
CM

Gl

CO

VO

G>
CM

Gl

G)
rH

Gl

CO
CO

Gl

CM

CO

vo
rH

Gl
CM

Gl

rH

Gl

Gl
CM

G)

^

VO
rH

Gl
CM

Gl

CM

rH
J"N,

rH

Gl
CM

Gl

ON

Gl

Gl
CM

Gl

in
!«■>*

rH

Gl

Gl

rH

Gl
CM

Gl

5>

CO
CO

Gl

rH

CM

Gl

Gl
CM CO

Gl Gl

Gl

rH

VO
rH

Gl
CM

Gl

CO

vo

Gl
CM

G>

rH

VO
rH

Gl
CM

Gl

CM

VO

Gl
rH

Gl
CM

Gl

rH

VO

Gl
CM

Gl

<?
r-

rH

Gl
CM

Gl

rH

Gl
Gl
Gl

<tf
CM

Gl

CM

CM

Gl
CO

Gl

G>
Gl
Gl

Gl
CM

Gl

rH

rH

Gl
rH

<*
CM

Gl

t^

VO

CM

Gl

CM

Gl
Gl

CO
CO

Gl

Gl

r^

VO
rH

<?
CM

Gl

CM

VO

^
CM

Gl

CO

vo
rH

<*
CM

Gl

CM

VO
CO

rH

rH

G>
Gl

CM

VD

*•
CM

Gl

rH

Gl
rH

rf

CM

G>

rH

CO

VO
rH

G)
CM

Gl

rH

VO

Gl
CM

Gl

Gl
rH

Gl

00
CO

Gl

rH

CO

CM

Gl

Gl
CO

Gl

CO

VO

Gl
CM

Gl

ON

G>
rH

G)
CM

Gl

Gl

in

rH

Gl
CM

Gl

Gl
Gl

G>
CM

rH

G>
CM

Gl

VO
VO
rH

Gl
CM

G5

rH

VO

G)
CM

Gl

rH

G>
rH

Gl
CM

G>

Gl

*t
CM

Gl

Gl
CO

Gl

rH

CO

Gl
CM

Gl

CM

VO
rH

Gl
CM

Gl

Gl

CM

VO
rH

Gl
CM

Gl

<?
VO

G)
CM

Gl

rH

Gl
rH

Gl
CM

G>

Gl

[«•»

rH

G)
CM

Gl

ON

Gl

Gl
CM

Gl

in

rH

Gl
CM

Gl

Gl

in

CM

Gl

Gl
CO

Gl

rH

Gl
CM

Gl

Gl

rH

Gl
CM

Gl

Gl

rH

rH

Gl
CM

Gl

VO
G)

G>
CM

G)

CM
[*«»

rH

Gl
CM

Gl

CN

<t
f^

rH

CM

rH

G)

^

Gl
Gl

00
CO

Gl

CO

vo
rH

Gl
CM

Gl

H

r^

CO
Gl

<?
00
G)

ON

Gl

rH

Gl
G)

Gl
Gl
Gl

VO
rH

Gl

Gl

00
IS

CM

00
Gl

in

vo
Gl

G>
CO
Gl

CM

CO

Gl

ON

r-

Gl

Gl

CO

Gl

ON

VO
Gl

vo

00
Gl

00

Gl

CO

Gl

CM

CO

Gl

CM

in

CO

G>

CM

CO

Gl

CO

G)

ON

Gl

CO

Gl

CO
G>

rH

CO

CO
Gl

VO

Gl

<t

Gl

CO

rH

Gl

rH

in

Gl

ON
^i

Gl

CM

CM

G)

r>.

vo
Gl

in

vo

Gl

vo
vo

Gl

CM
CO

Gl

vo

Gl

Gl

<?
CO

Gl

CM

00
Gl Gl

CM

00
Gl

in

00
Gl

ON
r«>»

rs.

vo

Gl

CM

CO

Gl

ON

00

Gl Gl

r^

VO
Gl

CO

rH

Gl

CO

00
Gl

ON

VO
Gl

Gl

CM

Gl

1^

VO
Gl

CM

CO

Gl

rH

G>

CO

Gl

in

vo
Gl

Gl

vo

Gl

CM

00
Gl

ON

VO
Gl

VO
VO

Gl

Gl

in

vo
Gl

1—1

Gl
Gl
Gl

ro

rH

Gl

ro

rH

Gl

00
r-

Gl

ro
r>.

Gl

in

vo
Gl

rH

VO
rH

*t
CM

rH

in

rH

CM

Gl Gl

in

in

rH

CM

Gl

CM

Gl
Gl

00
CO

Gl

CO

vo
rH

CM

Gl

in

vo
rH

CM

IS

CM

rH

Gl

Gl
CO

Gl

in

rH

CM

Gl

CO

rH

<tf
CM

Gl

CM

CO

vo
rH

Gl
CM

Gl

rH

rH

Gl
CM

Gl

G)
rH

Gl

00
CO

Gl

rH

fX

ON

Gl

Gl
CM

Gl

rH

CO

CM

Gl
CM

Gl

in

vo
rH

Gl
CM

G)

rH

CM

Gl
Gl

00
CO

Gl

Gl
G>
Gl

CM

Gl

Gl
Gl
Gl

Gl
CM

Gl

rH

in

in

rH

CM

Gl

VO
in

rH

CM

Gl

in

rH

CM

Gl

Gl

<?
in

•H

Gl
CM

Gl

Gl
rH

Gl

00
CO

Gl

in
rH

Gl

Gl
CO

Gl

rH

Gl
co

CM

Gl

Gl

Gl
Gl
Gl

CM CM

Gl

<?
VO
rH

G)
CM

Gl

Gl
Gl
Gl

Gl
CM

Gl Gl

CM

VO
rH

Gl
CM

Gl

in
t**»

rH

Gl
CM

Gl

CM

in

in

rH

CM

Gl

vo
in

rH

CM

Gl

CM

Gl
Gl

00
CO

Gl

rH

Gl
rH

G)

00
CO

Gl

VO
rH

Gl

Gl
CO

Gl

in

rH

<fr
CM

Gl

rH

CO

VO
rH

Gl
CM

Gl

rH

VO
rH

Gl
CM

Gl

CO

in

rH

Gl
CM

Gl

rH

G)
G>
Gl

Gl
CM

Gl

<?

rH

Gl
CM

Gl

Gl
Gl
rH

Gl
CM

Gl

rH

in

in

rH

<?
CM

G)

CM

Gl
GJ

00
CO

Gl

Gl
Gl
IS

<?
CM

Gl

rH

r>.

rH

Gl

5)
CO

Gl

ON

CO

Gl

<t
CM

Gl

Gl
ON

Gl

^
CM

Gl

Gl

in
!*•«.

rH

rH

ON

Gl
rH

Gl G>
CM

Gl

r^

vo
rH

Gl
CM

Gl

Gl
rH

Gl

CO
CO

Gl

CM

Gl

<?
VO
rH

IS
CM

Gl

CM

VO
rH

Gl
CM

Gl

CM

CM

Gl
Gl

CO
CO

Gl

Gl

G)

CM

Gl

G)
Gl
Gl

Gl
CM

Gl

rH

j^

VO
rH

CM

Gl

CO

in

rH

CM

Gl

in

rH

CM

Gl

rH

CO

in

rH

Gl
CM

G>

G)
rH

Gl

CO
CO

Gl

00
rH

Gl

Gl
CO

Gl

rH

CO

vo
rH

Gl
CM

Gl

rH

Gl
rH

Gl
CM

Gl

VO
VO
rH

Gl
CM

Gl

rH

CM

Gl
Gl

00
CO

Gl

VO
vo
rH

CM

Gl

in

Gl
Gl

00
CO

Gl

CM

CO

in

rH

CM

CM

r^

VO
rH

CM

Gl Gl

VO
VO
rH

<4*
CM

Gl

CO

vo
rH

CM

Gl

CO

VO
rH

<3*
CM

Gl

r>

VO
•H

CM

in

Gl
Gl

00

Gl

in

in

rH

<?
CO CM

Gl

ON

rH

Gl

Gl
CO

Gl

<t

Gl

CM

Gl
Gl

00
CO

G)

CO

in in

rH

CM CM

Gl Gl

rH

CM

Gl

CM

CO

in

rH

<*

CM

CO

in

rH

<?
CM CM

Gl

in

Gl

vo
in vo
rH

CM

Gl

00
in

rH

*t
CM

s>

rH

<t
CM

Gl

in

in

rH

<t
CM

Gl

rH

CO

in

rH

rf

CM

G)

VO
VO
rH

CM

Gl

Gl
Gl
rH

«tf
CN

Gl

CM

VO
VO
rH

<?
CM

G)

Gl
rH

<*
CM

Gl

VO
VO
rH

CM

Gl

inininininmininininininininininininininininin

200

P
r
o
g
r
a
m

7
-
5
.
W
S
O
L
D
I
E
R
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
"

a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
4
6
5

F
i
l
e
n
a
m
e
:
W
S
O
L
D
I
E
R
.
M
U
S

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

n
>

4
9
2
7
8

2
4
9
2
8
4

:
2
4
8
,

1
0
0
6
,

:
0
0
1
,

:
0
3
8
,

:
0
5
4
,

:
0
0
4
,

:
0
0
4
,

:
0
0
4
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
4
,

:
0
2
0
,

:
0
2
4
,

:
0
2
0
,

:
0
2
4
,

:
0
2
0
,

:
0
2
4
,

0
0
1
,
0
8
4
,

1
2
8
,
0
0
1
,

0
0
0
,
0
0
1
,

0
0
1
,
1
6
6
,

0
0
2
,
0
0
4
,

0
0
0
,
0
0
4
,

0
0
0
,
0
0
4
,

0
0
0
,
0
0
8
,

0
0
0
,
0
0
1
,

0
0
1
,
0
2
4
,

1
5
5
,
0
2
0
,

0
0
2
,
0
2
4
,

1
5
6
,
0
2
0
,

0
0
3
,
0
2
4
,

1
5
5
,
0
2
0
,

0
0
4
,
0
2
0
,

0
9
2
,
0
2
4
,

1
5
4
,
0
3
0
,

1
5
7
,
0
2
0
,

1
5
7
,
0
3
0
,

1
5
7
,
0
2
0
,

1
5
9
,
0
3
0
,

1
5
9
,
0
2
0
,

0
0
1
,
1
1
6

0
3
9
,
0
0
1

2
4
4
,
0
0
1

0
1
0
,
0
2
2

0
0
0
,
0
0
4

0
0
0
,
0
0
4

0
0
0
,
0
0
4

0
0
0
,
0
1
2

0
1
5
,
0
0
1

1
5
7
,
0
2
4

1
5
7
,
0
2
0

1
5
7
,
0
2
4

1
5
7
,
0
2
0

1
5
7
,
0
2
4

1
5
7
,
0
2
0

1
5
8
,
0
2
4

0
9
1
,
0
2
4

0
0
5
,
0
2
4

1
5
5
,
0
2
0

0
0
6
,
0
2
4

1
5
4
,
0
2
0

0
0
7
,
0
2
4

1
5
8
,
0
2
0

,
0
0
1
,
1
9
5

,
0
2
8
,
2
0
9

,
0
7
2
,
0
7
5

,
0
0
5
,
0
0
4

,
0
0
0
,
0
8
8

,
0
0
0
,
0
4
2

,
0
0
0
,
0
4
8

,
0
0
0
,
0
6
6

,
0
2
2
,
1
0
7

,
1
5
7
,
1
9
1

,
1
5
7
,
0
7
7

,
1
5
7
,
2
0
4

,
1
5
7
,
0
9
0

,
1
5
7
,
2
1
7

,
1
5
9
,
1
0
3

,
1
5
7
,
2
2
7

,
1
5
5
,
2
5
0

,
1
5
7
,
2
3
6

,
1
5
7
,
1
2
9

,
1
5
7
,
2
5
2

,
1
5
9
,
1
4
2

,
1
5
9
,
0
1
3

,
0
0
0
,
0
0
1

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

:
0
2
0

:
0
2
0

:
0
0
1

:
0
2
4

:
0
2
0

:
0
2
4

:
0
2
4

:
0
2
4

:
0
2
4

:
0
2
4

:
0
2
0

:
0
2
4

:
0
2
0

:
0
2
4

:
0
2
4

:
0
2
4

:
0
2
0

:
0
2
0

:
0
2
0

:
0
3
0

:
0
2
0

:
0
2
0

:
0
2
0

:
0
3
0

:
0
2
0

:
0
2
4

:
0
2
0

:
0
2
4

:
0
2
0

:
0
2
0

:
0
0
1

,
1
5
4
,
0
2
0
,
0
0
0
,
0
2
0
,
1
5
7
,
2
5
3

,
1
5
7
,
0
2
0
,
1
5
7
,
0
0
1
,
0
4
7
,
0
3
4

,
0
1
8
,
0
3
0
,
0
0
8
,
0
2
4
,
1
5
7
,
1
3
2

,
1
5
7
,
0
2
0
,
1
5
8
,
0
2
0
,
1
5
8
,
1
8
1

,
1
5
8
,
0
2
0
,
1
5
8
,
0
2
4
,
1
5
8
,
1
8
8

,
1
5
7
,
0
2
4
,
1
5
6
,
0
2
4
,
1
5
5
,
1
9
6

,
1
5
4
,
0
3
0
,
0
0
9
,
0
2
4
,
1
5
5
,
0
5
8

,
1
5
6
,
0
2
4
,
1
5
7
,
0
2
0
,
1
5
8
,
2
0
7

,
1
5
6
,
0
2
4
,
1
5
8
,
0
2
0
,
1
5
7
,
2
1
3

,
1
5
5
,
0
2
4
,
1
5
7
,
0
2
0
,
1
5
6
,
2
1
6

,
1
5
5
,
0
2
0
,
1
5
4
,
0
3
0
,
0
1
0
,
0
7
5

,
1
5
7
,
0
2
4
,
1
5
7
,
0
2
0
,
1
5
7
,
2
3
1

,
1
5
7
,
0
2
0
,
1
5
7
,
0
2
0
,
1
5
7
,
2
2
9

,
1
5
7
,
0
2
4
,
1
5
6
,
0
2
4
,
1
5
5
,
2
4
4

,
1
5
4
,
0
2
4
,
1
5
3
,
0
3
0
,
0
1
1
,
1
0
6

,
1
5
4
,
0
2
4
,
1
5
5
,
0
2
4
,
1
5
6
,
2
5
3

,
1
5
7
,
0
2
4
,
1
5
5
,
0
2
4
,
1
5
7
,
0
0
3

,
1
5
6
,
0
2
4
,
1
5
4
,
0
2
4
,
1
5
6
,
0
0
6

,
1
5
5
,
0
2
0
,
1
5
4
,
0
2
0
,
1
5
3
,
0
0
0

,
0
1
2
,
0
2
4
,
1
5
3
,
0
2
4
,
1
5
3
,
1
3
6

,
1
5
3
,
0
2
4
,
1
5
3
,
0
2
4
,
1
5
3
,
0
1
7

,
1
5
3
,
0
2
4
,
1
5
3
,
0
2
4
,
1
5
3
,
0
2
3

,
1
5
3
,
0
2
0
,
1
5
4
,
0
2
0
,
1
5
3
,
0
2
2

,
0
1
3
,
0
2
4
,
1
6
5
,
0
2
4
,
1
6
5
,
1
8
5

,
1
6
5
,
0
2
0
,
0
9
2
,
0
2
0
,
1
5
7
,
2
4
4

,
1
6
5
,
0
2
4
,
1
6
5
,
0
2
0
,
1
6
5
,
0
8
3

,
0
9
2
,
0
2
0
,
1
5
7
,
0
2
4
,
1
6
5
,
0
0
4

,
1
6
5
,
0
2
0
,
1
6
5
,
0
2
0
,
0
9
2
,
0
1
8

,
1
5
7
,
0
2
0
,
0
9
2
,
0
2
0
,
1
5
7
,
0
0
4

,
1
5
7
,
0
2
0
,
1
5
7
,
0
3
0
,
0
1
4
,
1
9
8

,
0
1
8
,
0
3
0
,
0
1
5
,
0
0
1
,
0
3
8
,
1
6
5

n i

Chapter 7

0&

rH rH tH Is* rH

,HOTCM^Gc^Gc^^^^GcGc^GcrH^QvOrHtfGcGc^*Tt^GfGcG)Gc
GcCOCMGcCMGcCMGcCMcmcmcmcocmcmGcCMcmiH-GcCMcmcmcmcmcmcmcmcococm

GcGjGcGcGJGcGcGcGcGcGc

GcGcGcGrCNG«CMGcCMCMCMCMinCMCMCOGrCMCNGcGrCMCMCMCMCMCMCMGcGrCM
GcGrGrGrGcGrGrGcGcGcGcGcGcGcGcGiGcGcGcGiGcGcGcGcGc G) G< Gl G) Gl Gl

ON Si GUS coh

G)QGiG>inrH
5B

rHrHVO'tf^Gr^Gc^^^Gc'HrHGciHGc^tGcGcGc'tfGc^Gc^t^frTj'GfGc^
G)®voir>G«CMGrCMG«CMCMCMGrGrCMG«cocMCMCMCOCMCMCMco cm cm cm cm co cm

GcGrfHtS^GrGrGcGJGrGcGcGcGcGrGrGcGcGcGcGcGcfccGcGc G) G) G> G) Gl G>

in

tH

Gr
CM

G)

r>

in

rH

CM

(^

in

rH

CM

Gc

in

rH

<*
CM

G>

in

tH

G)
CM

Gc

in

^*
rH

Gr
CM

G,

ON

in

rH

G>
CM

ON

in

tH

5)

CM

Gt

in

^*
rH

CM

Gc

in

rH

CM

G)

VO
fH

G>

Gr
CO

ON

in

rH

Gc
CM

G>

in

rH

G>
CM

Gc

in

H

G>
CM

Gc

t^

in

rH

^*
CM

Gc

r-
in

rH

<?
CM

Gc

in

rH

Gc
CM

G<

in

iH

Gc
CM

Gc

in

in

rH

CM

Gc

rH

ON

^

CM

Gc

<N

ON

G>

■^
CM

Gc

in

rH

<j

CM

G>

1^

rH

Gc

Gc
CO

G)

<tf
in

rH

Gc
CM

Gc

in

^*
rH

Gc
CM

Gr

in

^*
rH

Gr
CM

Gr

(^

in

rH

CM

Gr

in

fH

G>

00
rH

Gr

G>
CO

in

rH

Gc
CM

G>

00
in

fH

Gr
CM

Gr

^
ON

Gr

Gr

ON

in

fH

Gc
Gr

ON

fH

Gr

Gr
CO

Gc

00
in

rH

Gc
CM

G>

00
in

rH

Gr
CM

Gc

in

rH

^

Gr
Gr

ON

in

rH

<?
IS>

Gc

00
in

rH

Gr
Gr

ON

in

•H

Gr
CM

Gr

Gr
Gr
Gc

Q
CM

Gc

in

rH

Gc
CM

G<

in

^*
rH

Gr
CM

Gr

in

rH

Gr
CM

Gc

Gr
G>
Gr

Gc
CM

G)

in

H

G)
Gc

G)
CM

G<

Gc
CO

G>

in

^*
rH

Gc
CM

Gc

00
in

rH

Gc
CM

G)

^r
ON

G>

^
G)
Gr

ON

in

rH

<t
Gr
G)

rH

CM

G>

Gr
CO

G)

CO
in

rH

Gr
CM

Gr

00
in

rH

Gr
CM

Gc

in

^*
fH

G)
Gc

ON

in

rH

<?

G«

00
in

rH

G>
Gr

ON

^*
tH

<?
G)
Gc

Gc
G>
Gc

G)
CM

G)

ON

tH

Gr
CM

rH

Gr
G)

00

rH

^
G)
G)

^

00
G)

^

Gr
Gr

rH

CO
Gr

<t
G«
Gr

VO
^*
rH

<tf

G)

CM

00
Gr

^

Gr
Gc

ON

Gc

^

G)
Gc

ON
in

fH

G>
Q

in

rH

CM

ON

G)

^
Gr
Gr

in

rH

G)

Gc
ON

Gr

^
G)
G)

in

in

rH

Gr
GcG)

CO
in

rH

Gc

VO
in

rH

Gr

CO

in

rH

<?
G3
Gr

ON

VO
VO
rH

<?
G)
Gc

CM

00 Gr
Gr

G)

Gr

in

rH

^*
IS

rH

G)
Gc

j^

ON

in

rH

Gr
CM

G)

Gr

G)
Gc

G>
CM

Gc

in

VO VO
rH

Kr

GcGc

•H

Gr
CM

G)

in

rH

<?
Gr
Gc

in

rH

Gc
CM

Gc

in in

^*
rH

Gr
CM

Gc

G)
G)
Gc

P5
CM

Gc

^*
rH

^

G)
Gc

in

•H

Gc

ON

Gc

rH

§
Gc
(S
G)

^

G)
Gc

ON

G)

rH

Gc G)

VOCMOO^GcVOCMOO^tGcVOCMOO^tGcVOCMCO^tGcVOCMCO^GJVOCMOO^GJVO

202

Chapter 7

0
,
1 TO TO TO CM TO TO TO TO CM. rH TO IS TO TO CO TO

rH TO TO CO TO *tf in TO rH TO in rH is rH TO
3
,
0 in rH TO CM TO TO TO ^ CM TO TO TO TO CM TO

CM TO IS TO CO TO in VO rH TO CM IS TO TO CNJ
in «-• TO CM TO TO TO TO ^ CM TO TO TO IS ^ CM TO

CO TO IS TO CO IS in vo rH TO CM TO TO to TO CM TO
CO in rH IS CM TO IS is TO CM IS G> G) IS ^ CM IS

IS G) G> CO G) in vo rH & CM IS G) G) G) TO CM TO
0
.
1

T
O

TO
TO CM TO in vo rH TO CM TO TO TO TO TO CM TO

T
O

T
O CMCM TO in TO TO CO TO CM VO TO CM TO

TO CO in rH TO CM TO TO TO TO ^ CM TO
T
O

VO TO TO TO CO TO in vo rH TO CM TO
0
,
1

in vo •H TO CM TO TO TO TO ^ CM TO
T
O

TO

TO CO TO 1^ VO TO CM TO
TO CM TO TO TO TO *t CM TO

5
,
0

T
O

CM TO CM VO rH TO CM TO
T
O

TO TO TO TO CM TO
T
O

in TO rH TO TO
0
,
0

T
O

TO

^P CM TO<? CM TO
0
,
0

C
M

TO
0
,
0

T
O

0
,
0

0
,
0

0
,
0

0
,
2

0
,
2

inminin

c^G>rvOrHrcocococoooincMCNrHcoG>cocMGico^rvo^tinoocMG)rHCM
•HCMG)rHG)rHG)CM CM rH HMS)MSlMHlSlH(S}(S)ISHHS)S)HlSHHH

COCOCOCOG)GiGJCOCOCMCMinvOCOCOGlC0VOrHCOrHincOCOCOiHCMCMGiG)Gl
ininHinisissiinin^^HHiniriSHCNfMinfiHninnMsusOG

CMCMCOCNCMCMCMCMCMGlGlCOCOCMCMCMCOG)COG>COG)CMG)CMG)GlinG)G)G)
G) G) G) G) Gl G) Gi G> G) G) G)G)G)G)G)G)G)OG)G)G)G) G) G)G)G)G)GiG)G)G}

203

O
5
0
2
2
0

:
0
2
0
,
0
0
0
,
0
2
0
,
0
0
0
,
0
2
0
,
1
6
5
,
0
1
3

5
0
2
2
6

:
0
2
0
,
0
0
0
,
0
2
0
,
0
0
0
,
0
3
0
,
0
1
7
,
1
3
7

5
0
2
3
2

:
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
0
6
8

5
0
2
3
8

:
0
2
0
,
1
6
5
,
0
2
0
,
0
0
0
,
0
2
0
,
0
0
0
,
0
3
1

5
0
2
4
4

:
0
3
0
,
0
1
8
,
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
1
2
4

5
0
2
5
0

:
0
0
4
,
0
0
0
,
0
2
0
,
1
6
4
,
0
2
0
,
0
0
0
,
0
2
6

5
0
2
5
6

:
0
2
0
,
0
0
0
,
0
3
0
,
0
1
9
,
0
0
4
,
0
0
0
,
1
5
3

5
0
2
6
2

:
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
0
2
0
,
1
6
5
,
0
2
3

5
0
2
6
8

:
0
2
0
,
0
0
0
,
0
2
0
,
1
6
5
,
0
2
0
,
0
0
0
,
0
6
1

5
0
2
7
4

:
0
2
0
,
1
5
3
,
0
2
0
,
0
0
0
,
0
2
0
,
0
0
0
,
0
5
5

5
0
2
8
0

:
0
3
0
,
0
2
0
,
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
1
6
2

5
0
2
8
6

:
0
0
4
,
0
0
0
,
0
2
0
,
1
6
4
,
0
2
0
,
0
0
0
,
0
6
2

5
0
2
9
2

:
0
2
0
,
0
0
0
,
0
3
0
,
0
2
1
,
0
0
4
,
0
0
0
,
1
9
1

5
0
2
9
8

:
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
0
2
0
,
1
6
5
,
0
5
9

5
0
3
0
4

:
0
2
0
,
0
0
0
,
0
3
8
,
0
0
0
,
0
0
4
,
1
7
3
,
1
0
7

5
0
3
1
0

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
5
3

5
0
3
1
6

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
5
9

5
0
3
2
2

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
6
5

5
0
3
2
8

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
7
1

5
0
3
3
4

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
7
7

5
0
3
4
0

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
8
3

5
0
3
4
6

:
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
0
0
4
,
1
7
3
,
1
8
9

5
0
3
5
2

:
0
3
8
,
0
0
1
,
0
2
0
,
1
6
1
,
0
2
0
,
0
0
0
,
1
6
0

5
0
3
5
8

:
0
2
0
,
1
6
5
,
0
2
0
,
0
0
0
,
0
2
0
,
1
6
1
,
0
5
6

5
0
3
6
4

:
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
0
0
4
,
0
0
0
,
2
0
0

5
0
3
7
0

:
0
2
0
,
1
6
9
,
0
0
1
,
0
7
9
,
0
7
7
,
0
6
5
,
0
9
3

5
0
3
7
6

:
0
8
2
,
0
6
7
,
0
7
2
,
0
3
2
,
0
7
9
,
0
7
0
,
0
9
0

5
0
3
8
2

:
0
3
2
,
0
8
4
,
0
7
2
,
0
6
9
,
0
3
2
,
0
8
7
,
0
7
0

5
0
3
8
8

:
0
7
9
,
0
7
9
,
0
6
8
,
0
6
9
,
0
7
8
,
0
3
2
,
1
0
5

5
0
3
9
4

:
0
8
3
,
0
7
9
,
0
7
6
,
0
6
8
,
0
7
3
,
0
6
9
,
1
5
4

5
0
4
0
0

:
0
8
2
,
0
8
3
,
0
1
3
,
0
6
6
,
0
8
9
,
0
3
2
,
0
7
7

5
0
4
0
6

5
0
4
1
2

5
0
4
1
8

5
0
4
2
4

5
0
4
3
0

5
0
4
3
6

5
0
4
4
2

5
0
4
4
8

5
0
4
5
4

5
0
4
6
0

:
0
7
4
,

:
0
1
3
,

:
0
3
2
,

:
0
3
2
,

:
0
6
9
,

:
0
7
3
,

:
0
8
5
,

:
0
3
2
,

:
0
8
4
,

:
0
7
3
,

0
6
9
,
0
8
3

0
7
0
,
0
7
3

0
8
4
,
0
8
5

0
6
5
,
0
7
8

0
8
2
,
0
6
7

0
7
9
,
0
7
8

0
8
2
,
0
8
4

0
8
2
,
0
7
9

0
3
2
,
0
7
2

0
7
8
,
0
8
3

,
0
8
3
,

,
0
7
0
,

,
0
6
6
,

,
0
6
8
,

,
0
8
5
,

,
0
1
3
,

,
0
6
9
,

,
0
6
6
,

,
0
7
3
,

,
0
1
3
,

0
6
9
,
0
7
6
,
1
7
2

0
6
9
,
0
4
4
,
0
6
3

0
6
5
,
0
4
4
,
1
0
6

0
3
2
,
0
8
0
,
0
9
1

0
8
3
,
0
8
3
,
2
1
1

0
6
7
,
0
7
9
,
1
3
7

0
8
3
,
0
8
9
,
2
4
6

0
6
9
,
0
8
2
,
1
7
0

0
7
1
,
0
7
1
,
1
6
9

0
0
0
,
2
5
3
,
0
1
6

P
r
o
g
r
a
m

7
*
6
.
E
T
A
L
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
7
9
3

F
i
l
e
n
a
m
e
:
E
T
A
L
.
M
U
S

4
9
1
5
2

:
2
4
8
,
0
0
0
,
2
4
4
,
0
0
0
,
1
1
6
,
0
0
0
,
0
9
6

4
9
1
5
8

:
0
6
6
,
0
0
0
,
0
8
6
,
0
2
5
,
0
0
1
,
0
1
2
,
1
9
6

4
9
1
6
4

:
0
0
1
,
1
4
4
,
0
0
1
,
1
3
2
,
0
0
1
,
0
0
8
,
0
4
3

4
9
1
7
0

1
0
3
0
,
0
0
1
,
0
0
1
,
1
0
2
,
0
5
4
,
0
0
3
,
2
0
9

4
9
1
7
6

:
0
2
4
,
2
3
9
,
0
2
4
,
1
6
1
,
0
2
4
,
1
6
2
,
1
4
6

4
9
1
8
2

:
0
2
0
,
2
2
7
,
0
5
2
,
1
6
2
,
0
2
4
,
1
7
4
,
1
7
7

4
9
1
8
8

:
0
2
4
,
2
3
9
,
0
2
4
,
1
6
1
,
0
2
0
,
1
6
2
,
1
5
4

4
9
1
9
4

:
0
2
0
,
1
6
1
,
0
2
0
,
1
7
4
,
0
5
2
,
1
7
2
,
1
2
9

4
9
2
0
0

:
0
3
0
,
0
0
2
,
0
2
4
,
2
3
9
,
0
2
4
,
1
6
1
,
0
1
6

4
9
2
0
6

:
0
2
4
,
1
6
2
,
0
2
0
,
2
2
7
,
0
5
2
,
1
6
2
,
1
8
9

4
9
2
1
2

:
0
2
4
,
1
7
4
,
0
2
4
,
2
3
9
,
0
2
4
,
1
6
1
,
1
9
4

4
9
2
1
8

:
0
2
0
,
2
3
9
,
0
2
0
,
1
7
4
,
0
2
0
,
2
3
9
,
0
1
0

Chapter 7

,
0
3
9
,

0
0
1
,

1
3
2
,

0
5
0
,

0
0
2
,

:
1
3
4
,

,
0
0
0
,

0
0
8
,

0
0
0
,

0
0
8
,

0
0
6
,

:
0
0
1
,

,
1
5
4
,

,
0
0
0
,

0
0
1
,

0
0
0
,

:
0
1
2
,

1
4
9
,

1
4
9
,

1
5
8
,

,
0
2
4
,

1
5
7
,

0
0
0
,

1
4
6
,

:
0
2
0
,

,
0
2
4
,

1
4
9
,

0
8
0
,

1
5
7
,

:
0
0
0
,

,
0
0
0
,

1
4
8
,

0
5
2
,

1
5
6
,

:
0
0
0
,

1
4
5
,

,
0
2
4
,

1
5
3
,

0
0
0
,

1
5
0
,

:
0
2
0
,

1
5
4
,

0
0
0
,

1
4
6

§
0
2
4
,

1
5
4
,

:
0
0
0
,

,
0
0
1
,

0
3
0
,

1
4
6
,

0
2
4
,

1
4
6
,

:
0
8
0
,

,
1
5
7
,

,
0
0
0
,

1
4
6
,

0
2
0
,

1
5
4
,

:
0
0
0
,

,
1
4
9
,

,
0
8
0
,

1
5
7
,

0
0
0
,

1
4
9
,

:
0
2
4
,

1
4
8
,

0
2
4
,

1
5
6
,

0
0
0
,

1
4
9
,

:
0
2
4
,

1
5
6
,

,
0
0
0
,

1
4
9
,

0
2
4
,

1
5
7
,

:
0
0
0
,

1
5
4
,

0
0
0
,

0
4
7
,

0
0
1
,

1
4
8
,

:
0
2
4
,

2
2
3
,

,
0
2
4
,

2
3
1
,

,
0
0
0
,

1
4
6
,

1
5
4
,

,
0
0
0
,

2
1
1
,

,
0
2
4
,

2
1
9
,

:
0
2
0
,

:
0
0
0
,

,
0
1
8
,

,
0
0
1
.

1
4
6
,

,
0
2
4
,

1
4
6
,

:
0
8
0
,

,
1
5
4
,

,
0
0
0
,

1
4
6
,

,
0
2
0
,

1
5
4
,

:
0
0
0
,

2
2
3
,

,
0
2
4
,

2
3
1
,

,
0
0
0
,

1
4
6
,

:
0
2
4
,

,
1
4
6
,

,
0
2
4
,

1
4
6
,

,
0
8
0
,

1
5
4
,

:
0
0
0
,

,
1
3
5
,

,
0
0
1
i

,
0
3
0
,

0
4
7
,

:
0
0
1
,

,
0
0
2
,

,
0
5
4
,

,
0
8
6
,

:
0
0
2
,

r
l
3
8
.

,
0
8
0
,

1
3
8
,

,
0
2
4
,

1
4
9
,

:
0
2
0
,

,
1
4
0
,

,
0
2
0
,

1
3
7
,

,
0
5
2
,

1
3
8
,

:
0
2
4
,

r
l
3
8
,

r
0
2
4
,

1
3
8
,

,
0
8
0
,

1
3
7
,

:
0
2
0
,

,
1
3
8
,

,
0
8
0
,

1
3
8
,

,
0
2
4
,

1
4
9
,

:
0
2
0
,

,
1
4
0
,

,
0
2
0
,

1
4
1
,

,
0
5
2
,

1
3
8
,

:
0
2
4
,

r
l
4
1
.

r
0
2
4
,

1
4
1

,
0
8
0
,

1
4
2

:
0
2
0
,

r
0
7
6
.

r
0
1
6

0
4
7

,
0
0
1
,

0
1
5
,

:
0
0
1
,

,
0
0
0
,

r
0
8
6

1
7
6
,

,
0
6
6
,

2
1
2
,

:
0
0
1
,

r
0
0
0
.

,
1
3
4

0
0
0

r
H
8
,

1
7
9

:
1
6
6
,

VO

CM

rH

G>
G>

in

rH

G)

rH

G)
G>

CO
fx

rH

CM

in

G>

CO

rH

CM

G)

^

rH

CM

G>

ON

CO

CM

*t
CN

5>

5t

rH

*t
CM

G)

G>
fx

rH

CM

in

G>

ON

CO

CM

o

CM

ON

VO
pH

G)
CM

G>

CM
F^

■"■

CM

CO

rH

CM

G>

CO

rH

CM

in

G>

G)

pH

G)
CM

(S

CM

pH

G>
CM

G)

CO

rH

CN

fx

rH

Tt

CM

ON
CO

CN

*t
CN

G>

in

CO

CM

<*
CN

G>

G>
fx

rH

CN

in

G>

ON

CO

CN

G>
CM

CM

rH

G>
CM

o

ON

VO
rH

^
CM

G>

G>

p-i

GJ

rH

G>
CM

G)

rx.

G>

rH

ON

VO
rH

G>
CM CN

G> G>

G)

H

G)

CM

CN

rH

G)
G)

pH

00
rH

CM

in

G)

CM
ON

rH

rH

i
rH

00
pH

CM

in

G)

rH

G)
CM

CO

G>
G)

CO

G)

^*
^*

•-<

^

G)
G)

CN

VO
rH

VO
rH

G>

rH

rH

CM

G>

rH

«t
CN

G>

CM

G)
G)

in

G)

CO

00
rH

CM
in

G)

G)

rH

G>
CM

G)

CO
[*••

rH

CM

ON

VO
rH

*t
CM

G)

^«

CM

CM

G)

CM

00
rH

CM

G)

H

00
H

G)
CM

G)

CO

rH

CM

G)

CN

rH

*f
CM

CO

rH

Tt*
CN

G>

rH

rH

CM

G>

pH

CN

G>
VO
rH

rH

G>
G)

CO

rH

rH

§
G>

00 00
rH

CN

in

G)

rH

G*
CM

G)

rH

VO
pH

G)

ON

VO
pH

VO
rH

CO

pH

CM

rH

pH

CN

CM

CO

00
p-l

CM

cn in

O

rH

CM

G)

G>

G)

rH

&
CM

G>

ON

VO
pH

CM

G)

CN

pH

CM

G)

Gt

rH

<*?
CN

G>

CO

rH

VO
rH

G)

CO

rH

G>
CM

CO CO

rH

VO
rH

CM

rH

G>
CM

G)

rH

G>
CM

CO
fX

rH

^

CN

G)

CO

rH

^*
CM

G)

CO

rH

<4*
CN

G)

CO
fX

rH

CM

S)

G>

pH

VO
p-l

G>

rH

VO
rH

G)

in

pH

G)

H

G)
Gt

G) G)

rH H

CM CM

G)G)

G) G)

pH rH

<t ^*
CN CM

G) G)

O G)

pH rH

CM CM

CN

§
to
CO

G>

rH

CM

G)

rH

CN

G)

CO

H

CM
m

G)

CO

rH

Tf

00
G)

00
ON

pH

G>

VO
CM

m
rH

rH

on
H

rH

rH

5)

ON

G)

rH

G)

Chapter 7

49596 :054,002,030,003,052,141,214

49602 :020,138,020,141,024,138,163

49608 :052,140,020,137,052,149,238

49614 :052,141,020,138,052,141,238

49620 :024,140,024,141,052,142,223

49626 :052,140,052,141,020,138,249

49632 :052,141,052,207,020,142,070

49638 :052,140,008,141,001,015,075

49644 :008,076 ,001,114,001,079,003

49650 :001,134,166,108,001,039,179

49656 :001,059,019,176,001,002,250

49662 :001,051,001,071,003,000,125

49668 :166,012,030,002,054,002,014

49674 :020,154,048,231,080,166,197

49680 :024,166,020,164,080,162,120

49686 :024,162,020,162,048,239,165

49692 :052,227,016,161,080,162 , 214

49698 :024,162,001,015,001,047,028

49704 :016 ,174,166 ,179 ,086,000,149

49710 :001,212,066,176,054,002,045

49716 :030,003,052,151,020,149,201

49722 :052,146,016,150,024,149,083

49728 :052,159,052,151,020,149,135

49734 :020,146,024,159,052,145,104

49740 :020,148,052,150,052,151,137

49746 :020,149,052,146,052,156,145

49752 :020,153,052,158,008,159,126

49758 :001,015,008,158,001,130,151

49764 :001,079 ,034,069,084,032,143

49770 :065,076,034,013,066,089,193

49776 :032,072,065,082,082,089,022

49782 :032,066,082,065,084,084,019

49788 :013,013,013,000,020,153 ,080

Fundamentals of Music Theory

Sidplayer is a lot more than just a music playing program. It's

also a complete system for entering and editing music. The

Player is accompanied by an Editor which is so easy to use

that you don't even have to know how to read sheet music.

You may want to skip this section for now and come back to

it later. This section offers the rudiments of elementary music

theory—it presents the fundamental concepts that will help

you get started.

Notation. If a piece is good, the melody will stick in your

mind, and you may find yourself humming the tune long after

it's finished playing. Sometimes a song can be so good you

206

Chapter 7

can't get it out of your mind. By hearing the song, you've

learned it and can play it yourself. Songs such as those sung

in native American ceremonies have been passed from genera

tion to generation in just this way. As songs get longer and

more complex, however, this method of communicating a

song becomes less reliable. This is when it's necessary to make

a permanent copy of the song on paper, which is the purpose

of sheet music. Today, orchestras can faithfully reproduce the

great symphonies of Beethoven. These symphonies have sur

vived for nearly two centuries only because they were written

down.

To express music on paper, a special form of notation has

been developed. This notation is capable of describing every

facet of a piece of music, from the order in which to play the

notes to specifics, such as the style in which they are to be

played.

Each group of five horizontal lines is called a staff. At the

left edge of each staff is a clef symbol. The clef symbol for the

top staff indicates that the staff is a treble clef. The bottom

staff uses a different clef symbol and is called a bass clef. To

gether, the two staves form a grand staff, which is most often

used for displaying notes. Figure 7-2 illustrates a grand staff.

Figure 7-2. Grand Staff

allegro

In the following text, the different characteristics of notes

are introduced one at a time. As each characteristic is dis

cussed, the method for expressing it in notation is also shown.

Admittedly, music theory is an extremely complicated subject.

What follows is only a simplified explanation of the essential

concepts and isn't intended as a complete treatment. Once you

understand what's presented here, however, you should be

able to read a simple piece of sheet music.

207

Chapter 7

Pitch. When an object is vibrating, its vibrations pass

through the air and are detected by your ear as sound. Fre

quency is the measure of the number of vibrations per unit of

time. The most common method of specifying a frequency is

in terms of vibrations per second. Such a measurement is in

dicated by the unit hertz, abbreviated Hz.

The frequency of a sound is interpreted by your ear as a

pitch. Faster rates of vibration produce higher pitches. Usually,

the smaller an instrument, the higher the pitch it can produce.

A piccolo can produce a very high pitch, whereas a tuba pro

duces a very low pitch.

Although a wide range of frequencies can be detected by

the human ear, only frequencies occurring at specific intervals

are commonly used in music. Let's start with one of these

pitches and label it G This pitch has a frequency of 261.63 Hz,

or 261.63 vibrations per second. The sequence of pitches

continues, with pitches at the following intervals being named

D, E, F, G, A, and B.

B 493.88 Hz

A 440.00 Hz

G 392.00 Hz

F 349.23 Hz

E 329.63 Hz

D 293.66 Hz

C 261.63 Hz (Start here)

When you listen to the sequence of pitches in order, they

form what's called a scale, but the scale will seem incomplete.

One final note, after the B, is needed to complete the scale.

This note happens to be another C, related to the earlier C,

but at a higher pitch. (The actual mathematical relationship is

that the new C occurs at 523.25 Hz, exactly twice the fre

quency of the first.) It doesn't stop here, though. There's an

other D after the new C, and a second E after the new D, and

so on. In fact, the scale repeats several times, both above and

below the original C.

D 1174.70 Hz

C 1046.50 Hz

B 987.77 Hz

A 880.00 Hz

G 783.99 Hz

F 698.46 Hz

E 659.26 Hz

208

Chapter 7

D

C

B

A

G

F

E

D

C

B

A

G

F

E

D

C

B

587.33

523.25

493.88

440.00

392.00

349.23

329.63

293.66

261.63

246.94

220.00

196.00

174.61

164.81

146.83

130.81

123.47

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz (Original C)

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

The scale repeats with each C. By examining one se

quence, from one C to the next, you can see that it consists of

eight pitches. Collectively, these eight pitches are called an oc

tave. To distinguish this set of pitches from the next, the first

set is said to occur one octave lower than the second.

Just as the different pitches in an octave are labeled, so
are the different octaves. However, instead of using a (letter of

the alphabet, a number is used. The piano key for the| original

C is found at about the middle of the keyboard. This]C is

called middle C, and begins octave 4. Other octaves are num

bered relative to the octave containing middle C. The octave

immediately above octave 4 is octave 5. The octaves which are

of the most use musically are octaves 1 to 7.

In music notation, the pitch value of a note is represented

by its vertical position when drawn on a staff. Thus, C5 (C of

the fifth octave) is indicated by placing the note between the

second and third lines of the treble staff. The next higher

pitch, D5, is indicated by placing the note above the position
for C5, except that this time the note is placed on the line. The

positions for all notes alternate between being on a staff line

or between staff lines, for the entire grand staff. See Figure 7-3

for an illustration. |

209

Chapter 7

1

d-

9

0

—01-

?—

0-

Q

U

CQ

CJ

u.

UJ

Q

U

CQ

- o

u.

UU

Q

U

CQ

Chapter 7

One special case is middle C. The staff line for C4 is

placed halfway between the treble and bass staves. The

pitches around middle C must take this variation into account.

The separation of the two staves creates some space used for

messages and special symbols which give additional infor

mation to the performer.

Another special situation is when a note is so high or low

in pitch that it goes off the grand staff. In such instances, addi

tional staff lines, called leger lines (see Figure 7-4), are added.

The pitch of notes drawn on leger lines is still determined in

the normal way, by counting staff lines and seeing whether

the note is placed on or between lines.

Figure 7*4. Leger Lines

ED

By using the grand staff and leger lines, eight octaves (octaves

0-7) can be displayed.

Sharps and flats. Eight octaves, each containing 7 dif

ferent pitches, would seem to make a total of 56 pitches. Ac

tually, there are some intermediate pitches between some of

these notes. These are called sharps and flats.

C

B

A-sharp B-flat

A

G-sharp A-flat

G

F-sharp G-flat

F

E

D-sharp E-flat

D

C-sharp D-flat

C

211

Chapter 7

A note is sharp if its pitch is a half step above normal. A

note is flat if the pitch is a half step below the normal pitch.

Notes that are not sharp or flat are said to be natural Figure

7-5 shows some of the natural notes on the piano keyboard.

Figure 7*5* Piano Keyboard

B C D E f\c\A

Two important observations should be made. First, every

sharp note is equivalent to a flat note. C-sharp and D-flat both

denote the same pitch. The difference lies in the viewpoint,

whether the intermediate pitch is a half step above C or a half

step below D.

Thus far, we've been using the words sharp and flat for

accidental pitches. Another way to indicate that a note is

sharp or flat is to use a special symbol. The symbol for a sharp

note looks like a slanted pound sign (fl), while the symbol for

a flat note looks something like a lowercase letter B (b). The

natural symbol is normally not used in front of natural notes.

To show that a note on the grand staff is a sharp or flat

note, the appropriate accidental symbol is placed just before

the note. The C-sharp and B-flat notes in Figure 7-6 are sig

nified with these symbols. Sharps and flats indicated in this

way last only one measure.

Figure 7*6. Accidentals

C C-sharp D B-flat A

i i 1 i

212

Chapter 7

Including the sharps and flats, one octave consists of 12

different pitches. With eight octaves, the total is now 96 dif

ferent pitches. Most songs use only notes that come from this

palette of 96 pitches.

Key signatures. Just because there are 96 pitches avail

able, does that mean that each one will be used in a song? No,

a song may not play in every octave, nor every note within a

particular octave. Perhaps it uses just a subset of the 12

pitches within one octave. The selection of notes is determined

by the key in which the music is written.

The topic of pitch was introduced by starting with a C

scale. This is a sequence of notes, starting on C, that continues

for one octave. Let's examine the relationship of these notes to

the 12 in the entire octave. If the distance between each of the

12 pitches is called a half step, the sequence of notes forming

the C scale is determined by the following steps: whole,

whole, half, whole, wljole, whole, half—where a whole step

equals two half steps.

C

B

a*/bI>
A

G«/Ab
G

/

F

E

/

D

Now apply that sequence of steps again, but this time start the

scale at note A.

A

Gil
f8
E

D

cl
B

A (Start here)

213

Chapter 7

This scale contains three sharp notes, as opposed to the

earlier scale which contained none. The sharp notes replaced

their natural counterparts. This scale is said to be written in

the key of A. A song written in the key of A will normally use

only this set of pitches in each octave. This means that we're

back to a situation where we have to deal with only seven

pitches per octave.

You can start a scale on any note, and for every starting

note, there is a different combination of sharp or flat notes

used. Here's another example, this time using flats:

A

G

F

E\>
D

C

Bl> (Start here)

This is the key of B-flat. The notes were determined by

using the sequence of half and whole steps given earlier. The

key of B-flat contains two flat notes, B-flat and E-flat. The

notes B-natural and E-natural will not normally be used by a

song written in the key of B-flat.

Table 7-1 is a complete listing of all the major keys. The

keys with less than five sharps or flats are the ones used most

often.

Table 7

Kej

c

G

D

A

E

B

Fit
CD

F

Bb
Eb
Ab
Db
Gb
Cb

-1.

' Notes

C

G

D

A

E

B

Fit

clt

F

Bb
Eb
Ab

Db
Gb
cb

D

A

E

B

Ftt
C»
Git
D«t

G

C

F

Bb
Eb
Ab
Db

Keys

E

B

Fit

C»
Ftf
Dtt
A#
E«

A

D

G

C

F

Bb
Eb

F

C

G

D

A

E

B

Fit

Bb
Eb
Ab
D

Gb
cb
Fb

G

D

A

E

B

Ftt
CD

G«

C

F.

Bb
Eb
Ab
Db
Gb

A

E

B

Fit
CJ!
G«
Dtt
Alt

D

G

C

F

Bb
Eb
Ab

B

Fit

C»
Git
D«
Alt
E#

Bit

E

A

D

G

C

F

Bb

C

G

D

A

E

B

F#
clt

F

Bb
Eb
Ab
Db
Gb
Cb

Sharps/Flats

0

lit
2lt
3D

4*
5»
6fl

n

lb
2b
3b
4b
5b
6b
7b

(Fit)
(Ftt,C«)

(F»,Ctt,Gtt)

(FJ, Cfl, G(t, Dtf)

(F||,cS,Gil,D|i,A||)
(F^C^G^D^A^EU)

(F^Ctf/GH.Djf, AU,E#,B

(Bb) '
(Bb,Eb)
(Bb,Eb,Ab)
(Bb,EkAb,Db)
(Bb,Eb,Al>,Db,Gb)
(Bb,Eb,Ab,Db,Gb,Cb)
(BkEb/Ab^b.GkCb.F

214

Chapter 7

If you study Table 7-1 carefully, you'll notice some pat

terns. For example, each key which contains sharp notes con

tains Ftt. The key of G has Fit as its only sharp note. The key
of D keeps the FU but adds Ctt. Each successive key adds one

more sharp note, while retaining all the other sharp notes

from before. This pattern works in the same way for keys

containing flat notes, starting with the note B^.
Most of time you can determine the key in which a piece

of music is written by counting the number of sharp or flat

symbols near the clef symbols on the grand staff. If no sharp

or flat symbols appear there, the music is written in the key of

C. If one sharp symbol is displayed, the piece is written in the

key of G. Two sharp symbols mean that the key of D is to be

used, and so on. Likewise, one flat symbol indicates the key of

F, two indicate the key of B-flat, on up to seven flat symbols,

which indicate the key of C-flat.

Just as the number of sharp or flat symbols is important,

so is their position. The sharp symbol for Ff is always placed
on the line that designates note F. Furthermore, when a sharp

symbol is put next to the clef symbol, it has the effect of auto

matically placing a sharp symbol in front of every note on that

line. A sharp symbol on line F means that all notes placed on

the grand staff in F positions are to be played as F-sharps. Of

course, the same is true when flats are used. A flat symbol

placed near the clef on the line for B means that all B notes

should be played as B-flats.

Sharp and flat symbols placed after a clef symbol is called

a key signature. The use of a key signature saves a lot of work

when writing music, because it's no longer necessary to write

a sharp or flat symbol in front of every note that needs one.

Figure 7-7 contains some examples of key signatures.

Since all keys that contain sharps contain Fft, all of these keys

have a sharp symbol at the F position. Each successive key

adds a sharp symbol at a new position while retaining all the

old ones. Also notice that a sharp or flat on one line affects

not only the notes on that line, but the corresponding notes in

the octaves above and below as well.

215

Chapter 7

Figure 7*7. Key Signatures

Key of C i Key of G

C D E F

| Key of D .

= fti) =

C D E F)l Ctf D E Ftf

Mt| ,1 J J ag.J J J J iyi J J J J

Key of A Key of E

VJJJJ ^

Key of F

A B Clt Dlt E Fit G« F G A

W J J J J ^ ')., -1 r| J J

Key of Bl> Key of E\>y

JP.> J J J J J.>. , | J J :jL»J , I J

D C

t'J J JJ

Key of Ab

216

Chapter 7

Duration. The vertical position of a note on the grand

staff determines its pitch. The horizontal direction of the staff

indicates time. A sequence of notes is played in order from left

to right, just as text is read from left to right. By putting the

pitches together in a pleasing order, you'll create a melody,

the basis for a song.

Pitch, however, is only one major characteristic of a note.

Another important quality of a note is its duration. In a song,

notes are not always played at the rate of one note every beat.

Sometimes a note may be played for two beats. Other times,

two notes might be played within the span of one beat, mean

ing that each note is half a beat long. Thus, every note on the

staff is going to have to specify not only its pitch, but also its

duration in terms of beats.

The duration of a note is indicated by its shape. The stan

dard note you've been using thus far is formally called a quar

ter note, and is drawn with a stem and a filled-in oval at the

bottom. If we assume a quarter note plays for a duration of

one beat, then twice that length, two beats, is indicated by a

half note, which looks like a quarter note except that the oval

is not filled in. Twice the length of a half note is a whole note,

which plays for four beats and looks like a half note without

a stem.

In the other direction, for durations less than one beat,

the symbol for a quarter note is used, but flags are added at

the top of the stem. An eighth note plays for half a beat and

has one flag. A sixteenth note has two flags. Four sixteenth

notes are equal in duration to one quarter note. Thirty-second

and sixty-fourth notes do exist, but they're not used very

often. Figure 7-8 shows these notes, and how they're written.

Take a moment to look over it.

Figure 7-8. Duration

4 beats Whole Note o 1/2 beat Eighth note

2 beats Half note J 1/4 beat Sixteenth note J

1 beat Quarter note J 1/8 beat Thirty-second note J

217

Chapter 7

The following combinations are all equivalent in duration

to one whole note.

One convention in displaying durations less than one beat

is to combine notes of equal duration in sets. Two eighth notes

can be drawn by extending the flag from the first one to the

top of the stem of the second one. This can also be done with

sixteenth notes, except that two lines connect the tops of the

stems, because sixteenth notes have two flags.

Notes of different durations can be combined. The notes

shown on the left are the same as those shown on the right.

Notes can even be drawn upside down. This is done only

when the notes would appear near the top of a staff. The oval

portion of the note stays in the same place, so the pitch is not

affected. Drawing a note upside down does not affect its dura

tion either.

218

Chapter 7

Dotted notes. With just a few different durations, it's pos

sible to create a variety of different rhythms. But there are still

some durations that cannot be expressed using only the notes

you've seen so far. For example, how do you show that a note

should be played for three beats? Situations like this require

the use of dotted notes.

When a dot is placed after a note, it means that the note

should be played for one and a half times the normal dura

tion. Given a dotted half note, the half note portion is two

beats, and half of that is one beat, for a total of three. A dot

ted whole note plays for six beats (four beats for the whole

note and two beats for the dot). And a dotted quarter note?

That plays for one and a half beats.

Using the dot, here are some more note combinations

which total four beats.

Notice that the dot always appears to the right of the

note. If you see a dot placed above or below a note, it has a

different meaning and does not affect the note's duration.

These dot placements are explained a bit later.

Measures. A song is just a long sequence of notes of dif

ferent pitches and durations. To make it easier to deal with

pitches, they're separated into groups called octaves. Likewise,

to make it easier to work with a sequence of notes, the notes

are often divided into groups called measures, with each mea

sure consisting of the same number of beats. A common num

ber of beats per measure is four.

In sheet music, a measure is formed by placing a vertical

line called a bar between each group of notes on the staff.

first measure second measure

219

Chapter 7

Measures are used mainly for organization and reference.

It's much easier to refer to a note as being the second note in

the twenty-third measure than it is to refer to the one hundred

forty-seventh note.

Each measure must have the same total duration. Since

this total duration is often four beats, or one whole note, you

can see why the note for one beat is called a quarter note.

Tempo. You've seen that the length of a note is expressed

in beats, and that notes can be organized into groups called

measures, which all have the same number of beats. The ques

tion is, how long is a beat?

A beat is a unit of time. The shorter the amount of time

for each beat, the faster they'll occur. If the time is longer, the

beats won't occur as often.

The rate at which the beats occur is called the tempo. The

faster the tempo, the more quickly the notes are played. At a

slower tempo, each beat lasts for a longer amount of time. An

other way to look at it is to say that for a fixed amount of

time, such as one minute, there will be more beats at a fast

tempo than there will be at a slow tempo.

The relationships of quarter notes to half notes and other

notes still hold; a half note will always be twice as long as a

quarter note. It's just the actual time lengths that change.

The standard method of measuring a tempo is to specify

the beats per minute. An average tempo is about 100 beats per

minute. A tempo of 60 means that there will be 1 beat every

second, which is rather slow. A tempo of 150 is more than 2

beats every second, which is relatively fast.

The tempo is a very important part of a song. A beautiful

melody can be ruined if it's played too fast or too slow. There

fore, sheet music usually indicates the proper tempo. At the

top of the sheet music you should find the letters MM., fol

lowed by a number. This number indicates the beats per

minute, and defines the tempo that should be used in playing

the song.

M.M. 100

220

Chapter 7

Another way to show the tempo is to replace the M.M.

with a quarter note and an equal sign. The quarter note is

used because it represents one beat. Either way works just as

well.

J =100

Using a number for the tempo is convenient because it

can be used when setting a metronome. But there's another

method of specifying the tempo. Often you'll see words such

as adagio or allegro on sheet music. What do they mean? Just

like numbers, they specify tempo. Here's a list of most of the

tempo terminology, in order from slowest to fastest:

lento

grave

largo

adagio

andante

andantino

moderato

allegretto

allegro

vivace

presto

prestissimo

These values

molto Very

meno Less

piu More

Very slow

Slow, solemn

Broad

Leisurely

Walking

A little faster walk

Moderate

Rather fast

Fast

Lively

Very fast

As fast as possible

may be modified by one of the following words:

The tempo notation moderato indicates medium speed,

which roughly corresponds to M.M. 100.

Rests. Pitch and duration are the two most important

parts of a note. There's something similar to a note, however,

which has only duration and no pitch. It's called a rest. For

the specified amount of time, no tone is produced.

There's a different rest symbol for each duration. Because

the idea of pitch does not apply, the vertical position of a rest

does not matter, so it's usually placed in the middle of the

staff. A whole rest is drawn as a small block placed right below

221

Chapter 7

the second staff line. A half rest looks the same except that the

block is placed on top of the third staff line. A quarter rest is a

symbol that defies description. Eighth, sixteenth, and thirty-

second rests are all drawn as slanted stems with the proper

number of flags to the left of the stem. Figure 7-9 shows the

rest symbols.

Figure 7-9. Rests

Whole rest

Half rest

Quarter rest

Eighth rest

Sixteenth rest

Thirty-second rest

7

f

Here are some combinations of notes and rests. They've

been divided into measures to show that each group has a

total duration of four beats.

J
Ties and slurs. Another special symbol is called the tie

symbol. Two notes are tied together when connected by a

symbol that looks like a curved line or arc. The tie means that

the two notes are to be played together as one long note, with

no break in volume. Thus, two quarter notes tied together will

play just like a half note.

The reason for using ties is that the effect of a tie can ex

tend across one measure or beat into another. In the following

two sequences of notes, each sequence sounds the same when

played, but the first one cannot be divided into measures.

222

Chapter 7

JJJiJJJ
The next example demonstrates the use of a tie to create a

note five beats long.

Another application of the tie symbol is to connect notes

of different pitches. In this case, the tie is called a slur and

may be used within a measure as well as between two mea

sures. Playing two quarter notes slurred together is like play

ing a half note that changes its pitch halfway through playing.

Sometimes a very long tie symbol is used over a long

stretch of notes. This produces a smooth, legato effect when

,the notes are played.

Volume. Yet another major characteristic of a note is its

volume. Some parts of a song can be emphasized if they're

played loudly. Other parts may be subdued by being played

quietly. The level of loudness or softness of a piece of music is

referred to as dynamics.

Dynamics are indicated on sheet music by letters which

appear between the two staves of the grand staff. These letters

are listed below, in order from loudest to softest.

fff (fortississimo)

ff (fortissimo)

f (forte)

mf (mezzo forte)

mp (mezzo piano)

p (piano)

pp (pianissimo)

PPP (pianississimo)

223

Chapter 7

These volume levels range from very very loud (fff) to

very very soft (ppp). Extremes such as ffff or pppp are not

used very often.

The term dynamics should not be confused with the con

cept of an envelope, which describes the changes in volume as

an individual note is played.

Multiple voices. You've seen the essential characteristics

of individual notes and how notes can be combined into

groups called measures. The music can then be sung or played

on an instrument. The next step is to have several voices or

instruments playing at the same time.

A set of notes for one singer or one instrument is gen

erally referred to as one voice. With two voices playing

simultaneously, one voice can play a melody while the other

voice plays a bass part to give a little more body to the song.

If a third voice is added, it can be used for harmony or for

percussion effects, like drums or cymbals.

Each voice is independent of the others and can play its

own notes of different pitches and durations. This brings up

only one problem; there must be a way of keeping the voices

synchronized. They should start together and end together.

Fortunately, the concept of tempo and the use of mea

sures solve this problem. The voices may be independent, but

one thing they must have in common is the tempo. The tempo

establishes a beat which all voices can follow. The notes in

each voice are divided into measures. Then, even though the

durations within a measure may differ for each voice, at least

the voices will always be on the same measure at any given

instant. Figure 7-10 shows this concept.

Figure 7-10* Multiple Voices, Example 1

first voice

i

second voice

224

Chapter 7

The horizontal direction of the grand staff corresponds to

time. Because multiple voices are synchronized according to

tempo, it's possible to represent more than one voice on just

one grand staff. Within each measure, the notes for all of the

voices are drawn. It's a rather simple matter to determine

which notes go with which voice. Usually, the topmost notes

are for the first voice, the notes below those are for the next

voice, and so on, with the bottommost notes assigned to the

last voice.

Figure 7*11. Multiple Voices, Example 2

a

Summary

• Notes are shown on a grand staff which consists of the treble

and bass staves. Each staff has its own clef symbol.

• The most important characteristics of a note are its pitch and

duration.

• Pitches occur in groups called octaves. Each octave contains

the pitches labeled C, D, E, F, G, A, and B, plus five inter

mediate pitches called sharps and flats.

1 Only some of the pitches in each octave are used, depending

on the key in which the music is written.

Pitch is indicated by the vertical position of a note on the

grand staff. The note may be drawn on a staff line or be

tween staff lines.

An accidental (a sharp or flat symbol) may be placed im

mediately before the note to indicate that the note is a sharp

or a flat.

225

Chapter 7

• A key signature is indicated by placing sharp or flat symbols

near the clef symbol.

• Durations are specified in terms of beats. Common units of

duration are whole note, half note, quarter note, and so on,

down to sixty-fourth note.

• Durations are indicated by the shapes of the notes.

• Placing a dot after the note means that its duration should be

one and a half times normal.

• Notes are organized into groups of equal total duration called

measures.

• Measures are indicated by a single vertical line, called a bar,

that crosses the staff lines.

• The rate at which the beats occur is called the tempo and is

measured in terms of beats per minute.

• The tempo is indicated by an M.M. marking at the beginning

of the music.

• A rest is similar to a note in that it plays for a certain dura

tion, but it produces no tone so it has no pitch.

• Rests are indicated by special symbols, one for each duration.

• An arc-type symbol connecting two notes is used to indicate

a tie or slur.

• The general volume level of a piece of music is specified by

dynamics.

• Dynamics are indicated by letters that appear between the

two staves.

• The notes for one singer or one instrument form one voice.

• Several voices can be represented on the same grand staff.

• When played, multiple voices stay synchronized because

they share the same tempo.

226

Chapter 8

The Editor

You've been introduced to the Sidplayer, which plays songs.

You've even seen some of the elements of music. But in order

to play your own songs or tunes, you have to create them.

That's what the "Editor" is for. It's used to enter, edit,

and debug up to three voices of a song. The program contains

features which make music editing easy. Since there are so

many features and the program can appear to be rather

intimidating the first time you use it, be assured that you'll see

exactly how each feature works.

The first step, however, is to create a working editor pro

gram. It's in two parts.

Type in Program 8-1, "EDITOR," using the "Proofreader"

from Appendix D. Save it using the filename EDITOR. If

you're using the Datassette, change the statement DN=8 in

line 1 to DN=1 before you save the program. Be sure to make

note of the starting and ending number indicated by the tape

counter.

Program 8-1. EDITOR

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

1 DN=8:G0T0 9200:REM EDITOR77 BY HARRY BRATT 10/26
/841 :rem 250

5 JV=PEEK(56320):JB=1-(JV AND 16)/16:JV=JV AND 15:

RETURN :rem 180

8 POKE CY, 3: PRINT .-POKE CX, 18-8*AC:PRINTAC$ (AC+1) :R

ETURN :rem 143

10 PRINTCHR$(19)CHR$(146)C1$;:POKE CX,25:PRINTMMEM

:"FMCHR$(157)"{6 SPACES}":RETURN :rem 5

12 POKE 54283,129:POKE 54283,32:RETURN :rem 122

19 V0=NT:V1=AC:V2=OC:V3=LN:V4=RS+2*SP:V5=TY:V6=1

:rem 47

20 H=PEEK(MM+CN):IFHAND3 THEN SP=1:RS=0:TY=0:RETUR

N :rem 196

22 SP=0:LN=7-(HAND31)/4-.5*((HAND32)=32):TY=-((HAN

D64)=64) :rem 185

24 H=PEEK(MM+CN+1):IF H=0 THEN RS=1:GOTO 28

:rem 176

26 RS=0:NT=(HAND7)-1:OC=7-(HAND56)/8:AC=(HAND192)/

64-2 :rem 58

28 RETURN :rem 74

227

Chapter 8

30 POKE CY,21:PRINTC0$:POKE CX,X*5:H=PEEK(MM+CN):I

F H AND 3 GOTO 36 : rem 70

31 IF RS THEN PRINT"(R)"Y$?:GOTO 33 :rem 204

32 PRINTC0NTCHR$(ASC(AC$)+162*(ASC(AC$)=194))OC$

Y$; :rem 201

33 PRINTLNLMTY$(TY); :rem 120

34 IF V6 THEN NT=V0:AC=V1:OC=V2:LN=V3:RS=V4AND1:SP

=(V4AND2)/2:TY=V5:V6=0 :rem 170

35 RETURN :rem 72

36 POKE 251,PEEK(MM+CN+1-(HAND2)/2):POKE 252,-((PE

EK(MM+CN)AND3)<>1):SYS 1232 :rem 43

37 PRINTS$(PEEK(252)+1)Y$CHR$(157)?:QI=ASC(MID$(S$

#PEEK(252)+l))-65 :rem 255

38 IF ABS(V(QI))<90 THEN QJ=PEEK(251):GOSUB80:GOTO

34 :rem 24

39 QJ=PEEK(MM+CN+1)+256*PEEK(251):GOSUB 80:GOTO 34

:rem 104

40 POKE 1216+SC,PK:SC=3:POKE 1219,1:PK=14:GOTO 510

:rem 56

45 GOSUB 5:IF JB=0 THEN RETURN :rem 239

47 GOSUB 5:IF JB THEN 47 :rem 15

48 JB=1:RETURN :rem 128

50 FOR K=0 TO 6:AC%(AK%(ABS(K+6*(KY<0))))=(K<ABS(K

Y))*SGN(KY):NEXT:RETURN :rem 235

60 LN$=CHR$(196+LN):LM$=CHR$(46+14*(LN=INT(LN))):R

ETURN :rem 218

65 NT$=CHR$(67+NT+7*(NT>4)):AC$=CHR$(194+AC):OC$=R

IGHT$(STR$(OC),1):RETURN :rem 64

70 K=J-INT(J/256)*256:J*=(J-K)/256:RETURN :rem 57
80 IF QI<>2 GOTO 84 :rem 226

82 IF QJAND1 THEN PRINT-(11-INT(QJ/16)+12*(QJ/2AND

7));:RETURN :rem 50

83 QJ=INT(QJ/16)+12*(7-(QJ/2AND7)):GOTO 87 :rem 86

84 IFQI=9 THEN QJ=(QJAND3584)/2+(QJAND255)+((QJAND
256)=256)*2048:GOTO 87 :rem 24

85 IF QI>10 THEN ON QI-10 GOTO 88f88,90,90,91,92

:rem 197

86 IF V(QI)<0 THEN QJ=QJ+256*(QJ>127) :rem 2

87 PRINT MID$(STR$(QJ),2+(QJ<0));:RETURN :rem 138

88 IF QJ=0 THEN PRINT"N";:RETURN :rem 170

89 PRINTFW$(QJ-1,QI-11);:RETURN :rem 179

90 PRINTNU$(QJ,QI-13); :rem 59

91 RETURN :rem 74

92 QJ=QJ-256*(QJ=0):QJ=INT(14400/QJ):GOTO 87

:rem 30

200 REM INPUT SBR :rem 237

210 A$=MM:LH=0:PRINTCHR$(164)CHR$(157)7 :rem 146

215 GET B$:IF B$=ntl GOTO 215 :rem 95

220 B=ASC(B$):IF B=13 OR B=141 THEN PRINT" ";:RETU

RN :rem 88

228

Chapter 8

230 IF B<>20 OR LH=0 GOTO 240 :rem 179

232 LH=LH-1:A$=LEFT$(A$,LH-(LH=0)) :rem 122

235 PRINTCHR$(157)"{2 SPACES}"CHR$(157)CHR$(157)CH
R$(164)CHR$(157);:IF LH=0 THEN A$=MM :rem 46

237 GOTO 215 :rem 109

240 IF LH=MX-(ASC(A$+" M)=45) GOTO 215 :rem 140

245 IF B=45 AND (FA AND 1) AND LH=0 GOTO 270

:rem 103

250 IF B>47 AND B<58 GOTO 270 :rem 161

260 IF B<32 OR B>90 OR (FA AND 2)=0 GOTO 215

:rem 80

270 A$=A$+B$:LH=LH+1:PRINTB$;:POKE 212,0:PRINTCHR$

(164)CHR$(157);rGOTO 215 :rem 215

500 REM ** MAIN JOYSTICK PART ** :rem 237

501 IF NN<0 THEN NT=0:OC=4:LN=3:RS=0:SP=0iGOTO 507

:rem 145

502 IF GK=0 GOTO 507 :rem 250

503 TN=CN:FOR X=(TN/2-3)*(TN<5) TO 7-(4-(NN-TN)/2)

*-((NN-TN)<7) :rem 173

504 CN=TN-6+2*X:GOSUB19:GOSUB60:GOSUB65:GOSUB30:NE

XT:CN=TN+2*(TN>NN) :rem 72

505 GOSUB20:CN=TN :rem 38

507 GOSUB 555:GOSUB 545 :rem 19

509 LQ=0 srem 168

510 GOSUB5:GET K$:IF K$="" THEN K$=" ":IF JV=15 AN

D JB=0 GOTO 510 :rem 83

511 IF JB OR ASC(K$)=13 GOTO 600 :rem 90

512 IF JV<>15 THEN POKE 198,0rGOTO 530 :rem 14

513 ON ABS(ASC(K$)-132) GOTO 8000,7000,4100,4000,4
050,4060 srem 119

514 K=-2*(K$=M +")-3*(K$=li£")-4*(K$="-"):IF K>0 TH
EN AC=K-3:GOTO 554 :rem 101

515 IF K$>"@" AND K$<"H" THEN NT=ASC(K$)-67rNT=NT-

7*(NT<0):RS=0:SP=0:GOTO 553 rrem 242
516 IF K$>11/11 AND K$<"811 THEN OC=VAL(K$) :RS=0:SP=0

:GOTO 553 srem 140

517 IF K$>"G" AND K$<"X" THEN K=KL%(ASC(K$)-72):IF

K>-1 THEN LN=K:GOTO 542 :rem 126

518 IF'K$="8" THEN LN=2:GOTO 542 rrem 155
519 IF K$=H," AND LN>0 AND LN<6 THEN LN=INT(LN)+.5

*(1-(LN*2)AND1):GOTO 542 :rem 162

520 IF (ASC(K$) AND 127)=20 GOTO 900 :rem 236

521 IF K$="R" THEN RS=l-RSrTY=0rGOSUB555rGOTO 510

rrem 51

522 IF K$=M/" THEN TY=l-TYrRS=0rGOSUB555rGOTO 510
:rem 25

523 IF ASC(K$)=17 OR ASC(K$)=29 THEN JV=28-ASC(K$)

:GOSUB650:JV=15 rrem 81

524 IF K$=MM" THEN LQ=1rGOTO 740 rrem 175

229

Chapter 8

525 IF ASC(K$)=221 OR ASC(K$)=219 THEN K=220-ASC(K

$):LQ=1:GOTO 725 :rem 10

526 IF ASC(K$)=147 GOTO 980 :rem 118

529 GOTO 510 :rem 111

530 IF JV>12 THEN RS=0:GOTO 550 :rem 182

535 K=.5*((JV>8)-(JV<8)):LN=LN+K:IF LN=,5 OR LN=6.

5 THEN LN=LN+K :rem 71

540 LN=LN+7.5*(LN>7)-7.5*(LN<0) :rem 161

542 GOSUB12:IF SP GOTO 554 :rem 193

543 GOSUB 545:GOTO 510 :rem 195

545 POKE CY,17:PRINT:POKE CX,21:IF SP THEN PRINTC0

$••— "SPC(2)M ":RETURN :rem 182

547 POKE CY,17:PRINT:POKE CX,21:GOSUB 60:PRINT C0$

LNLMSPC(2)LN$(LN):RETURN :rem 126

550 NT=NT+(JV=13)-(JV=14) :rem 152

552 IF NT<0 OR NT>6 THEN OC=OC-(JV=14)+(JV=13):NT=

3*(1-SGN(NT)) :rem 253

553 AC=AC%(NT):IF SP=0 THEN GOSUB 555:GOTO 510

:rem 42

554 SP=0:GOSUB555:GOSUB545:GOTO 510 :rem 104

555 F1=0:POKE CY,9:PRINTC0$:POKE CX,16:IF RS THEN

{SPACE}PRINT"(R)":GOTO 567 :rem 8
556 IF SP THEN PRINT" ":GOTO 567 :rem 110

557 IF OC>7 OR (OC=7 AND NT=6 AND AC=-1) THEN OC=7

:NT=6:AC=0 :rem 184

558 IF OC<0 OR (OC=0 AND NT=0 AND AC=l) THEN OC=0:

NT=0:AC=0 :rem 105

559 POKE 780,(l-RS)*(NT+l+8*(7-OC)+64*(AC+2)):SYS

{SPACE}1396 :rem 59
560 POKE CY,9:POKE 54276,64:GOSUB 65:PRINT:rem 190

565 POKE CX,16:PRINTC0NT" "AC$:POKE CY,14:PRINT:

POKE CX,17 :rem 2

567 POKE CY,14:PRINT:POKE CX,17:IF RS OR SP THEN P

RINT"-":GOTO 576 :rem 81

568 PRINTOC$:rem 230

576 POKE CY,19:PRINT:POKE CX,9:PRINTC3CHR(146-12

8*RS)"REST"CHR$(146); :rem 194

577 PRINT" <—SELECT—> "CHR$(146-128*TY)"TIE":IF

{SPACE}F1 THEN RETURN :rem 99
579 IF AL=AC AND RS=0 AND SP=0 THEN 582 :rern 24

580 PRINTC3$:H=AC:AC=AL:GOSUB 8:AC=H:IF RS OR SP T

HEN AL=2:RETURN :rem 187

582 AL=AC:PRINTC1$:GOSUB 8:RETURN :rem 88

600 REM ** BUTTON PRESSED ** :rem 20

605 FG=0 srem 149

610 GOSUB 5:IF JB=0 THEN 680 :rem 219

620 IF JV=15 THEN 610 :rem 48

625 FG=1:IF JV<13 GOTO 610 :rem 113

632 POKE 1216+SC#PK :rem 28

635 K=(JV=13)-(JV=14):SC=SC+K:SC=SC-K*(SC=5):SC=SC
+6*((SO6)-(SC<1)) srem 138

230

Chapter 8

640 PK=PEEK(1216+SC):POKE 1216+SC,-(SC=3 OR SC=1)
:rem 188

645 FOR K=l TO 90:NEXT:GOTO 610 :rem 206

648 GOSUB650:GOSUB45:IF JB THEN POKE 198,0:GOTO 40

:rem 104

649 GOTO 648 :rem 126

650 K=-(JV<8):IF(CN+(K=0))<0 OR(CN>NN AND K=l) OR

{SPACE}JV>11 OR IN THEN FG=1:RETURN :rem 70

651 IF K=0 THEN POKE CY,21:PRINT:POKE CX,35:PRINTZ

$(0). irem 204

652 POKE CY,21:PRINT:PRINTZ$(1-K);:X=K*7 :rem 179

656 CN=CN-2+4*K:IF CN-2=NN THEN FG=1:RETURN :rem 9

658 TN=CN:IF SQ=0 THEN GOSUB 20:GOSUB 545:GOSUB 55

5 :rem 175

660 CN=CN-6-14*(JV<8):IF CN<0 OR CN>NN GOTO 670

:rem 39

662 GOSUB19:GOSUB60:GOSUB65:GOSUB30 :rem 234

670 FG=1:CN=TN:GOSUB20:RETURN :rem 120

680 IF FG THEN ON SC GOTO 648,800,510,750,510,700

:rem 202

682 IF (FM=0 AND CN>NN) OR (LN=7 AND (TY OR RS)) G

OTO 510 :rem 164

684 IN=IN+(IN>0):POKE MM+CN,4*(7-INT(LN))-32*(LN>I

NT(LN))+64*TY :rem 137

686 POKE MM+CN+l,(l-RS)*(NT+l+8*(7-OC)+64*(AC+2)):

GOSUB 60:GOSUB 65 :rem 136

687 IF Ml THEN AC%(NT)=AC :rem 62

688 IF NN<CN THEN NN=NN+2:FM=FM-1:GOSUB10 : rem 181

689 X=3:GOSUB30:POKE 780,PEEK(MM+CN+1):SYS 1396:PO

KE CY,21:PRINT :rem 79

690 POKE 54276,64:PRINTZ$(0);:TY=0:F1=1:GOSUB576:C

N=CN+2 :rem 50

691 IF NN-CN<8 OR IN>4 GOTO 510 :rem 118

692 TN=CN:CN=CN+8:X=7:GOSUB19:GOSUB60:GOSUB65:GOSU

B30:CN=TN:GOTO 510 :rem 76

700 REM ** KEY CHANGE ** :rem 178

710 GOSUB 45:IF JB GOTO 40 :rem 115

715 IF JV>12 AND JV<15 GOTO 740 :rem 86

720 K=(JV=11)-(JV=7):IF K=0 THEN 710 :rem 139

725 KY=KY+K:KY=KY+15*(SGN(KY)*(ABS(KY)=8)):GOSUB12

:rem 25

730 POKE CY,1:PRINT:POKE CX,10:PRINTC1$ABS(KY)CHR$

(157)CHR$(193-2*(KY<0)); :rem 71

732 PRINT" (IIKY$(KY+7)1I)":GOTO 745 :rem 52

740 M1=1-M1:GOSUB12:POKE CY,1:PRINT:POKE CX,30:PRI

NTC1MID("ON OFFn,4-Ml*3,3) :rem 60

745 GOSUB 50:ON LQ+1 GOTO 710,509 :rem 240

750 REM ** ACCIDENTAL CHANGE ** :rem 150

760 RS=0:GOSUB 45:IF JB GOTO 40 :rem 196

770 K=(JV=7)-(JV=11):IF K=0 THEN 760 :rem 149

231

Chapter 8

775 AC=AC+K:AC=AC+3*(SGN(K))*(ABS(AC)=2):IF SP=0 T

HEN GOSUB 555:GOTO 760 :rem 6

780 SP=0:GOSUB 555:GOSUB 545:GOTO 760 :rem 112

800 REM ** REST <—> TIE ** :rem 24

810 GOSUB 45:IF JB GOTO 40 :rem 116

815 IF JV<>11 GOTO 825 :rem 129

820 RS=1-RS:TY=0:GOTO 840 :rem 226

825 IF JV<>7 GOTO 810 :rem 81

830 TY=1-TY:RS=0:GOTO 840 :rem 235

840 IF SP=0 THEN GOSUB 555:GOTO 40 :rem 96

845 SP=0:GOSUB555:GOSUB545:GOTO 40 :rem 57

900 REM ** INS/DEL ** :rem 19

910 K=-(ASC(K$)=20) :rem 214

920 IF CN>NN OR (FM=0 AND K=0) THEN ON SQ+l GOTO 9

70,7375 :rem 185

923 GOSUB12:IN=IN-K*2+1:IN=IN-(IN<0) :rem 124

925 IF K=0 THEN POKE CY,21:PRINT:POKE CX,35:PRINTZ

$(0); :rem 208

927 POKE CY#21:PRINT:POKE CX,15:PRINTZ$(1-K);

:rem 211

930 IF K GOTO 939 :rem 84

932 FOR 1=0 TO 2 STEP 2:J=MM+CN+I:GOSUB 70:POKE 25

1+I,K:POKE 252+1,J:NEXT I :rem 196

936 J=NN-CN+2:GOSUB 70:POKE 781,K:POKE 782,J:SYS 1

024:NN=NN+2 :rem 13

938 FM=FM-1:ON SQ+l GOTO 970,7375 :rem 23

939 IF CN=NN GOTO 950 :rem 117

940 FOR 1=0 TO 2 STEP 2:J=MM+CN+2-I:GOSUB 70:POKE

{SPACE}251+1,K:POKE 252+1,J:NEXT I :rem 34

942 J=NN-CN:GOSUB 70:POKE 781,K:POKE 782,J:SYS 102

4 :rem 161

950 NN=NN-2?FM=FM+1:IF NN-CN<8 OR IN>4 THEN ON SQ+

1 GOTO 970,7375 :rem 83

960 TN=CN:CN=CN+8:X=7:GOSUB19:GOSUB60:GOSUB65:GOSU

B30:CN=TN:ONSQ+1GOTO 970,7375 :rem 243

970 GOSUB10:GOTO 510 :rem 138

980 PRINTCHR$(19)SPC(25)C1$"CLEAR TO END?":rem 132

982 GET K$:IF K$=IMI GOTO 982 :rem 135

985 IF K$o"Y" GOTO 995 :rem 155

990 FOR K=l TO 5:POKE CY,21:PRINT:POKE CX,15:PRINT

Z$(0);:NEXT :rem 133

992 FM=FM+(NN-CN+2)/2:NN=CN-2:IN=0 :rem 220
995 GOSUB10:GOTO 510 :rem 145

4000 REM ** ENTER MEASURE ** :rem 224

4010 IF Ml THEN GOSUB 50 :rem 230

4015 MZ=MZ+1+1000*(MZ>999):J=MZ:GOSUB70 :rem 49

4020 POKE MM+CN,J*64+30:POKE MM+CN+1,K:B=1:GOTO 73

00 :rem 156
4050 K=0:GOTO 4065 :rera 195

4060 K=NN+2 :rem 75

232

Chapter 8

4065

4067

4070

4100

4105

4110

4115

4120

4125

4130

5000

5010

5040

5050

7000

7001

7002

7004

7006

7008

7110

7114

7115

7116

7120

7200

7201

7202

7205

IF IN GOTO 510

CN=K

GK=1:SYS 1802:GOSUB10:GOTO501

IF NN<2 OR IN GOTO 510

:rem 196

:rem 234

:rem 243

:rem 101

PRINTCHR$(19)SPC(25)C1$"MEASURE: {10 SPACES}1';
:POKE CX,33 :rem 170

FA=0:MX=3:GOSUB 200:IF A$="" THEN GOSUB10:GOT

O 510 :rem 29

J=VAL(A$):GOSUB 70:POKE 1394,J*64+30:POKE 139

5,K :rem 144

J=MM(VC):GOSUB 70:POKE 251,K:POKE 252, J

:rem 227

J=MM(VC)+NN:GOSUB 70:POKE 1392,K:POKE 1393,J:

SYS 1350 :rem 31

CN=PEEK(251)+256*PEEK(252)-MM(VC):GOTO 4070

:rem 148

POKE CY,3:PRINTC0$:POKE CX,10:PRINTCHR$(18)"P

RESS 'Y1 TO CONFIRM" :rem 137

GET K$:ON 1-(K$="")-2*(K$="Y") GOTO 8005,5010

,5040 :rem 155

POKE 781,237:POKE 782,246:SYS 1813:POKE 55,PE

EK(1020):POKE 56,PEEK(1021) :rem 170

POKE 53269,0:POKE 648,4:POKE 56576,PEEK(56576

)OR3:SYS 65409:CLR:END :rem 47

GOSUB 7905:POKE 53280,2:POKE 53265,19:rem 233

POKE 780,24:SYS 1596 :rem 54

POKE CY,3:PRINTC6$:POKE 53288,3:GOTO 7200

:rem 101

PRINTC2CHR(147);:P$="{19 SPACES}":REM 19 SP

ACES I :rem 177

PRINTCHR$(18)P$P$" "CHR$(lo7)CHR$(148)M "CHR$

(19); :rem 90

U1$=CHR$(18):PRINTC6$:FOR K=l TO 10:PRINTCHR$

(185);:U1$=U1$+CHR$(192):NEXT :rem 2

H=0:FOR K=l TO 10:PRINT:PRINTC2CHR(18);:J=5

-LEN(SC$(K))/2 :rem 131

PRINTLEFT$(P$,J)SC$(K)LEFT$(P$,J+.5);CHR$(146

); :rem 181
FOR J=l TO N(K):H=H+1:PRINT" "C0S(H)" ";:NE

XT:PRINT:PRINTC6$U1$;:NEXT :rem 144

PRINTCHR$(145):FOR K=l TO 10:PRINTCHR$(184);:

NEXT :rem 144

POKE CY,1:PRINTC6$:FOR K=0 TO 4:POKE CX,20:PR

INTCHR$(18)P$:NEXT:RETURN :rem 33
IF UY>9 THEN POKE 53255,0:POKE 53288,13:GOTO

{SPACE}7375 :rem 135
POKE 53288,3:POKE 53264,-((UX*40)>147)*8:POKE

53254,(108+UX*40)AND255 :rem 152
POKE 53255,59+UY*16:POKE CX,21 :rem 149

PRINT CHR$(18)SC$(UY+1);":";SS$(NN(UY)+UX+1)R
IGHT$(I$,38-POS(0)); :rem 219

233

Chapter 8

7207 G0SUB5:GETK$:K=ASC(K$+" "):IF K<>17 AND K<>29

GOTO 7209 :rem 218

7208 JV=-7*(K=29)-11*(K=17):SQ=1:GOSUB650:SO=0:POK
E CY,3:PRINTC6$:GOTO 7207 :rem 113

7209 IF (KAND127)=20 THEN SQ=ia:GOTO 900 :rem 181

7211 JV=-JV*(JV<15)-(JV=15)*(15+(K=73)+2*(K=77)+4*

(K=74)+8*(K=75)) :rem 175

7212 IF JV<15 THEN GOSUB12:GOTO 7216 :rem 242

7213 IF (JB OR K$=CHR$(13)) AND NOT (FM=0 AND CN>N

N) GOTO 7250 :rem 150

7214 IF K$<>CHR$(133) GOTO 7207 :rem 56

7215 POKE 53255,0:GK=0:GOTO 9000 :rem 211

7216 UX=UX+(JV=11)-(JV=7):UX=UX+N(UY+1)*(UX=N(UY+1

))-6*(UX<0) :rem 94

7217 UY=UY+(JV=14)-(JV=13):UY=UY+11*(UY=11)-11*(UY

<0) :rem 51

7218 IF UY>9 THEN POKE 53255,0:POKE 53288,13:GOTO

{SPACE}7350 :rem 137

7219 IF N(UY+1)<=UX THEN UX=N(UY+1)-1 :rem 81

7220 GOTO 7200 :rem 205

7250 K=ASC(MID$(S$,NN(UY)+UX+1))-65:POKE CY,1:PRIN

T:POKE CX,21:PRINTCHR$(18); :rem 80

7255 IF K>10 THEN PRINTV$(K-ll):GOTO 7265 :rem 244

7260 PRINT"(M;-(V(K)<0)*(V(K))HTOHABS(V(K))")M

:rem 185

7265 POKE CY,5:PRINT:POKE CX,21 :rem 90

7267 MX=LEN(STR$(ABS(V(K))))-1:FA=-(V(K)<0)

:rem 167

7270 PRINTCHR$(18)"ENTER:";:GOSUB 200:IF A$="" GOT

O 7001 :rem 75

7280 J=VAL(A$):IF ABS(J)>ABS(V(K)) OR (K=16 AND J<

56) GOTO 7001 :rem 40

7282 IF K=16 THEN J=INT(1800/J+.5)*8:J=-J*(J<256)

:rem 75

7283 IFK=9THENPOKEMM+CN+1,JAND255:POKE MM+CN,(JAND

1792)/8+10-16*(J<0):GOTO7300 :rem 58
7284 IF K<>2 THEN J=J-256*(J<0):GOTO 7289 :rem 163

7286 H=16*(-11*(J<0)+12*(J/12-SGN(J)*INT(ABS(J)/12

))) :rem 252
7287 J=INT(H+2*(-7*(J>=0)-SGN(J)*INT(ABS(j)/l2))-(

J<0)+.5) :rem 106
7289 IF K=6 THEN MZ=J :rem 132

7290 IF ABS(V(K))>90 GOTO 7295 :rem 49

7292 POKE MM+CN,1:POKE MM+CN+1,PEEK(1278+NN(UY)+UX

)+M(K)*J:GOTO 7300 :rem 168

7295 J1=K:IF J<0 THEN J=-J*(V(C)+1)+l :rem 163

7297 GOSUB 70:POKE MM+CN,PEEK(1278+NN(UY)+UX)+M(Jl

)*J:POKE MM+CN+1,K :rem 219

7300 IF NN<CN THEN NN=NN+2:FM=FM-1:IF B=l THEN GOS

UB10 :rem 71

234

Chapter 8

7303 IN=IN+(IN>0) :rem 185

7305 POKE CY,22:PRINT:POKE CX,16:PRINT"{4 SPACES}"
;:REM 4 SPACES :rem 223

7310 X=3:GOSUB30:POKE CY,21:PRINT:PRINTZ$(0);:CN=C

N+2 :rem 2

7315 IF NN-CN<8 OR IN>4 GOTO 7320 :rem 220

7316 TN=CN:CN=CN+8:X=7:GOSUB19:GOSUB60:GOSUB65:GOS

UB30:CN=TN :rem 115

7320 ON 1-(B=13)-2*(B=1) GOTO 7001,7215,510:rem 67

7350 POKE CX,21:PRINT"{17 SPACES}";:REM 17 SPACES

:rem 179

7355 GOSUB5:GETK$:K=0:IF K$<>"" THEN K=ASC(K$):K=K

-57*(K=17)-46*(K=29) :rem 94

7356 JV=-JV*(JV<15)-(JV=15)*(15+(K=73)+2*(K=77)+4*

(K=74)+8*(K=75)) :rem 185

7357 IF JV=7 OR JV=11 THEN SQ=1:GOSUB650:SQ=0:POKE

CY,3:PRINTC6$:GOTO 7355 :rem 73

7358 IF JV=13 OR JV=14 THEN FOR K=l TO 100*-(K$=""

):NEXT:GOSUB12:GOTO 7217 :rem 255

7360 IF K$<>"" THEN IF (ASC(K$)AND127)=20 THEN SQ=

1:GOTO 900 :rem 139

7365 IF K$=CHR$(133) GOTO 7215 :rem 1

7370 GOTO 7355 :rem 222

7375 K=SQ:SQ=0:POKE CY,3:PRINTC6$:ON 1-(K>1) GOTO

{SPACE}7355,7207 :rem 94
7500 NV(VC)=NN:CN(VC)=CN :rem 182

7510 IF VC=3OR(VC=2 AND NV(3)=-2)OR(VC=1 AND NV(2)

=-2 AND NV(3)=-2) GOTO 7530 :rem 36

7520 J=K5-NV(3)-4+(VC=l)*(NV(2)+4):GOSUB 70:POKE 2
51,K:POKE 252,J :rem 32

7525 J=MM(l)+NV(l)+4-(VC=2)*(NV(2)+4):GOSUB 70:POK
E 253,K:POKE 254,J :rem 194

7527 J=NV(3)+4-(VC=l)*(NV(2)+4):GOSUB 70.-POKE 781,
K:POKE 782,J:SYS 1024 :rem 138

7530 MM(2)=MM(l)+NV(l)+4:MM(3)=MM(2)+NV(2)+4
:rem 88

7535 GOSUB8690 :rem 43

7900 POKE 241,PEEK(241)OR128:POKE 53251,0:POKE 532

81/10 . :rem 201
7905 POKE 1140,255:POKE 1145,240:POKE 1160,K8:POKE

1165,K9:SYS 1138 :rem 84

7910 POKE 53280,10:POKE 53281,1:POKE 53249,0:POKE

{SPACE}53253,0:RETURN :rem 5
8000 IF IN GOTO 510 srem 189

8001 GOSUB 7500 :rem 21

8005 POKE 780,9:SYS 1596:POKE 53269,0:GOTO 8225

:rem 32

8010 P$=CHR$(18)+"{39 SPACES}":REM 39 SPACES

:rem 237

235

Chapter 8

8015 P1$=CHR$(162):FOR K=l TO 4:P1$=P1$+P1$:NEXT:P

1$=P1$+LEFT$(P1$,6) :rem 233

8020 P2$=CHR$(192):P2$=P2$+P2$+P2$:P2$=P2$+P2$+P2$
+P2$:rem 54

8100 PRINTCHR$(147); :rem 127

8110 FOR K=l TO 6:PRINTCHR$(150)P$:NEXT :rem 223

8120 PRINTCHR$(18)" "C7$LEFT$(P$,39) :rem 161

8130 FOR K=1TO13:PRINTCHR$(18)CHR$(150)" "C7$M "CB

$" "SPC(34)" "C7$" n:NEXT :rem 45

8140 PRINTCHR$(150)CHR$(18)" "C7$LEFT$(P$,39);

:rem 198

8141 FOR K=0 TO 960 STEP 40:POKE 55335+K,10:POKE 5

1239+K,160:NEXT :rem 223

8142 POKE CY,19:PRINT :rem 247

8145 FOR K=l TO 4:PRINT:PRINTCHR$(150)LEFT$(P$,4)C

2$LEFT$(P$,35)CHR$(150)"{2 SPACES}"; :rem 219
8146 NEXT :rem 18

8150 PRINTCHR$(19)C6$SPC(13):PRINTCHR$(18)K1$P2$K2
$:rem 184

8152 PRINTSPC(13):PRINTCHR$(18)CHR$(221)M SID PLAY
ER "CHR$(221) :rem 57

8154 PRINTSPC(13):PRINTCHR$(18)K3$P2$K4$:rem 103

8162 POKE CY,6:PRINT:POKE CX,3 :rem 40

8165 PRINTCB$LEFT$(P$,7)P1$LEFT$(P$,7) :rem 157

8170 FOR K=l TO 11:PRINTSPC(3)LEFT$(P$,7)CHR$(146)

MID$(P$,2,22)LEFT$(P$,7):NEXT :rem 171

8175 PRINTSPC(3)LEFT$(P$,7)CHR$(146)PI$LEFT$(P$,1)

:rem 76

8180 POKE CY,7:PRINTC6$:rem 99

8190 FOR K=0 TO 5:PRINTSPC(10)K+1;CHR$(157)") "M$ (

K):PRINT:NEXT:RETURN :rem 7 7

8225 GET K$:IF K$<"1" OR K$>"6" GOTO 8225 :rem 219

8230 J=ASC(K$)-48:POKE CY,5+J*2:PRINT:PRINTSPC(14)

CHR$(18)C2$M$(J-1) :rem 163

8260 ON J GOTO 8900,8500,8450,8400,8300,5000

:rem 151

8300 REM ** DIRECTORY ** :rem 12

8310 IF DN=1 GOTO 8005 :rem 97

8312 POKE 780,1:POKE 781,8:POKE 782,0:SYS 65466:PO

KE 581,36 :rem 172

8314 POKE 780,1:POKE 781,69:POKE 782,2:SYS 65469:S

YS 65472 :rem 143

8316 POKE 581,46:POKE 582,77:POKE 583,85:POKE 584,

83 :rem 26

8318 P$=CHR$(18)+"{39 SPACES}":REM 39 SPACES
irem 248

8320 POKE CY,3:PRINT:POKE CX,15:PRINTCHR$(18)C0$"D
IRECTORY:11 :rem 160

8330 POKE CY,6:PRINT:PRINTSPC(3)CBCHR(18)LEFT$(P

1$,16)CHR$(187)CHR$(172); :rem 72

236

Chapter 8

8335 PRINTLEFT$(P1$,16) :rem 56

8340 FOR K=l TO 11:PRINTSPC(3)MID$(P$,2,16)CHR$(18

)CHR$(161)CHR$(146)CHR$(161); :rem 16

8345 PRINTMID$(P$,2,16):NEXT :rem 142

8350 PRINTSPC(3)LEFT$(P1$,16)CHR$(18)CHR$(190)CHR$

(188)CHR$(146)LEFT$(P1$,16) :rem 254

8355 J=0iK=0:POKE CY#7:PRINTC0$:rem 68

8360 POKE CX,18*K+3:SYS 1710:H=PEEK(251)+256*PEEK(

252):IF ST<>0 GOTO 8376 :rem 254

8365 POKE CX,18*K+15:PRINTLEFT$("{2 SPACES}",-(H<l
00)-(H<10));H :rem 139

8373 J=J+1:IF J>10 THEN J=0:POKE CY,7:PRINT:K=1-K:

IF K=0 THEN K=-1:GOTO 8380 :rem 16

8374 GOTO 8360 :rem 224

8376 CLOSE 1:SYS 65484 :rem 195

8380 POKE 198,0:POKE CY#3:PRINT:PRINTSPC(7)CHR$(18

)C0$"PRESS ANY KEY "; :rem 143

8382 IF K<0 THEN PRINT"TO CONTINUE";:GOTO 8385

irem 169

8383 PRINT"FOR MAIN MENU";:POKE CY,19:PRINT

:rem 133

8384 PRINTTAB(12)LEFT$("{BLU}{RVS}{2 SPACES}",2-(H

<100)-(H<10))H"{LEFT} BLOCKS FREE{2 SPACES}11
:rem 97

8385 WAIT 198,15 :rem 65

8387 POKE CX,7:PRINTCHR$(150)LEFT$(P$,30) :rem 89

8390 IF K>=0 GOTO 8005 :rem 95

8395 K=0:GOTO 8330 :rem 210

8400 REM ** SAVE ** :rem 135

8402 IF NV(1)<0 AND NV(2)<0 AND NV(3)<0 GOTO 8005

:rem 194

8404 FOR 1=6 TO 2 STEP -2:J=NV(4-l/2)+4:GOSUB 70:P
OKE MM(1)-I,K :rem 150

8406 POKE MM(1)-I+1,J:NEXT :rem 222

8408 POKE CY,3:PRINT:PRINTTAB(10)CHR$(18)C0$" CHAN

GE TEXT LINES? " :rem 80

8410 WAIT 198,15:GET A$:ON l-(A$=nN")-2*(A$="Y") G

OTO 8410,8428,8414 :rem 141

8414 POKE 780,9:SYS 1596:GOSUB 8490 :rem 161

8418 MX=32:FA=2:FOR K=0 TO 3:POKE CY,20+K:PRINT:PO

KE CX,4:PRINTCHR$(18)C2$; :rem 133

8420 GOSUB200:TX$(K)=A?:NEXT :rem 161

8424 POKE 780,3:SYS 1596 :rem 13

8428 POKE CY,3:PRINT:POKE CX,6:PRINTI$;:POKE CX,17

:MX=12:FA=2:GOSUB 200 :rem 47

8429 IF A$=M" GOTO 8005 :rem 82

8430 POKE 780,1:POKE 781,DN:POKE 782,0:SYS 65466:A

$=A$+".MUS" :rem 62

8432 POKE 780,LH+4:FOR K=0 TO LH+3:POKE TP+K,ASC(M

ID$(A$,K+1)):NEXT :rem 3

237

Chapter 8

8434 J=TP:GOSUB70:POKE 781,K:POKE 782,J:SYS 65469

:rem 102

8435 J=MM(1)-6:GOSUB70:POKE 251,K:POKE 252,J:POKE

{SPACE}780,251 :rem 183

8436 J=MM(1)+NV(1)+NV(2)+NV(3)+12:POKE CY,2:rem 95

8438 FOR K=0 TO 3:IF TX$(K)=MM GOTO 8440 :rem 11

8439 FOR 1=1 TO LEN(TX$(K)):POKE J,ASC(MID$(TX$(K)

, I)):J=J+1:NEXT :rem 204

8440 POKE J,13:J=J+1:NEXT:POKE J,0:J=J+1:GOSUB 70:

POKE 781,K:POKE 782#J :rem 80

8446 GOSUB 8495:SYS 65496:POKE 648,200:PRINT:IF PE

EK(783)AND1 THEN GOSUB8600 :rem 105

8448 GOTO 8005 :rem 222

8450 REM ** LOAD ** :rem 125

8452 POKE CY,3:PRINT:POKE CX,6:PRINTI$;:POKE CX#17

:FA=2:MX=12:GOSUB 200 :rem 44

8456 IF A$="" GOTO 8005 :rem 82

8460 A$=A$+".MUS":POKE 780,1:POKE 781,DN:POKE 782,

0:SYS 65466 :rem 65

8462 POKE 780,LH+4:FOR K=0 TO LH+3:POKE TP+K,ASC(M

ID$(A$,K+1)):NEXT :rem 6

8464 J=TP:GOSUB70:POKE 781,K:POKE 782,J:SYS 65469:

POKE CY,1 :rem 203

8466 POKE 780,0:J=MM(1)-6:GOSUB70:POKE 781,K:POKE

{SPACE}782,J:GOSUB 8495:SYS 65493 :rem 59

8468 POKE 648,200:PRINT:IF PEEK(783)AND1 THEN GOSU

B8600:GOTO 8560 :rem 216

8470 FOR J=6 TO 2 STEP-2:NV(4-j/2)=PEEK(MM(1)-J)+2

56*PEEK(MM(1)-J+1)-4:NEXT :rem 153

8474 MM(2)=MM(1)+NV(1)+4:MM(3)=MM(2)+NV(2)+4:CN(1)

=0:CN(2)=0:CN(3)=0 :rem 145

8476 FOR K=0 TO 3:TX$(K)="M:NEXT:K=0:J=MM(3)+NV(3)

+4 :rem 113

8478 IF PEEK(J)=0 GOTO 8483 :rem 167

8480 IF PEEK(J)=13 THEN J=J+1:K=K+1:GOTO 8478

:rem 215

8482 TX$(K)=TX$(K)+CHR$(PEEK(J)):J=J+1:GOTO 8478

:rem 221

8483 POKE 780,9:SYS 1596 :rem 24

8484 GOSUB8490:POKE CY,20:FOR K=0 TO 3:PRINTC2$:PO

KE CX,4:PRINTCHR$(18)TX$(K); :rem 92

8485 NEXT:POKE 780,3:SYS 1596 :rem 141

8486 FM=INT((K5-MM(3)-NV(3)-2)/2)-l:IF FM>=0 GOTO

{SPACE}8005 :rem 130
8487 POKE CY,3:PRINTC0$:POKE CX,10:PRINTCHR$(18)"I

NSUFFICIENT{2 SPACES}MEMORY" :rem 26
8488 WAIT 198,255:GET K$:GOTO 8560 :rem 74

8490 POKE CY,20:FOR K=0 TO 3:PRINTC2$:POKE CX,4:PR

INT CHR$(18)RIGHT$(I$,16); :rem 81
8492 PRINT RIGHT?(I$,16);:NEXT:RETURN :rem 37

238

Chapter 8

8495 POKE 648,188:PRINT "g33":RETURN :rem 51

8500 POKE CY,3:PRINT:POKE CX,10:PRINTC0CHR(18)"

{SPACE}VOICE 1-3 (OR CLR) "; :rem 193

8505 GET A$:IF A$="" GOTO 8505 :rem 209

8507 VC=VAL(A$):IF ASC(A$)=147 GOTO 8560 :rem 126

8510 IF VC<1ORVC>3 GOTO 8005 :rem 20

8519 REM ** OH DEAR.{2 SPACESjTHIS IS IT. **
:rem 227

8520 IF VC=3OR(VC=2 AND NV(3)=-2)OR(VC=1 AND NV(2)

=-2 AND NV(3)=-2) GOTO 8540 :rem 40

8530 J=MM(VC+1):GOSUB 70:POKE 251,K:POKE 252,J

:rem 72

8535 J=K5-NV(3)-4+(VC=l)*(NV(2)+4):GOSUB 70:POKE 2

53,K:POKE 254,J :rem 43

8537 J=NV(3)+4-(VC=l)*(NV(2)+4):GOSUB 70:POKE 781,

K:POKE 782,J:SYS 1024 :rem 140

8540 MM=MM(VC):NN=NV(VC):CN=CN(VC) :rem 80

8550 POKE 53269,15:GK=1:GOTO 9000 :rem 18

8560 POKE 780,9:SYS 1596:GOSUB8490 :rem 163

8565 POKE 780,3:SYS 1596:FOR K=l TO 3:TX$(K)="H:NV

(K)=-2:CN(K)=0:NEXT:TX$(0) = IIM :rem 89

8570 MM(2)=MM(1)+2:MM(3)=MM(1)+4:GOSUB8690 :rem 72

8575 FM=INT((K5-MM(1))/2)-67:GOTO 8005 :rem 58

8600 K=PEEK(780):POKE 780,9:SYS 1596 :rem 230

8605 POKE CYf3:PRINTC0$:PRINTCHR$(18); :rem 24

8610 IF K=4 THEN POKE CX,13:PRINT"FILE NOT FOUND":

GOTO 8620 :rem 126

8612 IF K=5 THEN POKE CX,11:PRINT"DEVICE NOT PRESE

NT":GOTO 8620 :rem 180

8614 POKE CX,15:PRINT"ERROR -"ST :rem 152

8620 GET K$:IF K$="" GOTO 8620 :rem 225

8630 RETURN :rem 177

8690 FOR K=l TO 3:POKE MM(K)+NV(K)+2,1:POKE MM(K)+

NV(K)+3,79:NEXT:RETURN :rem 168
8900 REM PLAY OPTION :rem 196

8910 FOR 1=6 TO 2 STEP -2:J=NV(4-l/2)+4:GOSUB 70:P

OKE MM(1)-I,K :rem 152

8915 POKE MM(1)-I+1,J:NEXT :rem 227

8920 POKE CY,3:PRINT:POKE CX,6:PRINTCHR$(18)C0$"PL

AY VOICES:"; :rem 251

8925 B=0:FOR K=l TO 3:POKE CX,16+K*5:PRINTK;CHR$(1

57)"?"CHR$(157); :rem 140

8930 GET A$:IF A$="" GOTO 8930 :rem 213

8935 ON 1-(A$="Y")-3*(ASC(A$)=13)-2*(A$="N") GOTO
{SPACE}8930,8937,8938,8939 :rem 160

8937 B=B+2t(K-l):PRINT" ";:NEXT:GOTO 8940 :rem 88
8938 PRINTCHR$(157)CHR$(157)CHR$(150)"{3 SPACES}"C

0$;:NEXT:GOTO 8940 :rem 6

8939 POKE 198,2:POKE 631,89:POKE 632,89:GOTO 8937

:rem 155

239

Chapter 8

8940 POKE 198,0:SYS 49435:J=MM(1)-6:GOSUB 70:POKE

{SPACE}781,K:POKE 782,J:SYS 49458 :rem 236

8945 POKE 49152,B:J=0 :rem 109

8950 IF PEEK(198) THEN GET K$:J=(K$="{F7}"):POKE 4

9152,0 :rem 79

8955 IF NOT PEEK(56320)AND16 THEN POKE 56325,22-PE

EK(678):GOTO 8960 :rem 144

8956 POKE 56325,SGN(15-PEEK(56320)AND15)*(132-4*PE

EK(678))+66-PEEK(678)*2 :rem 169

8960 IF PEEK(49152)AND7 GOTO 8950 :rem 250

8970 SYS 49629:POKE 54276,0:POKE 54283,0:POKE 5429

0,0 :rem 70

8972 POKE 56325,66-PEEK(678)*2:IF PEEK(49152)=0 AN

D J=0 GOTO 8980 :rem 151

8974 FOR K=l TO 3:H=PEEK(49289+K):J=PEEK(49274+K)+

256*PEEK(49277+K)-MM(K)-2 :rem 113

8975 IF J>=-2 AND J<=NV(K)+2 GOTO 8977 :rem 219

8976 J=PEEK(49292+H)+256*PEEK(49304+H)-MM(K)-2:H=H

-1:GOTO 8975 :rem 174

8977 IF (BAND2T(K-1))=0 THEN J=CN(K) :rem 174
8978 CN(K)=J:CN(K)=CN(K)*-(CN(K)>=0):NEXT :rem 94

8980 IF PEEK(49152)=0 GOTO 8005 :rem 86

8981 POKE CX,6:PRINTCHR$(18)CHR$(150)"{28 SPACES}"
;:REM 28 :rem 119

8982 POKE CX,6:PRINTCHR$(18)C2$PE$(PEEK(49152)/8-l

)M ERROR"; :rem 117

8984 PRINTCHR$(145);:POKE CX,16:PRINT"VOICE"PEEK(4

9184)+1CHR$(157)":" :rem 242

8986 WAIT 198,255:GET A$:GOTO 8005 :rem 61

9000 POKE 53280,2:POKE 1140,127:POKE 1145,1:POKE 1

160,147:POKE 1165,4:SYS 1138 :rem 115

9002 POKE 53288,1:GOTO 9130 :rem 161

9004 PRINTCHR$(147); :rem 131

9010 P1$=C6$+CHR$(18)+CHR$(161)+C7$:rem 13

9012 P$=CHR$(162):P$=P$+P$+P$:P2$=P$+P$+P$+P$+P$:P
6$=CHR$(146) :rem 32

9014 P3$=C6$+P6$+CHR$(161):P4$=CHR$(192):P$=CHR$(2

9):P7$=CHR$(221) :rem 247

9016 P5$=P1$+" "+C0$+P$+" "+P$+" "+P6$+" "+P7$+" "

+CHR$(18) + " "+P$+" "+P$+" " :rem 162

9017 P5$=P5$+P$+C7$+" "+P6$+C6$+CHR$(161) :rem 233

9050 PRINT CHR$(146)C1$"{5 SPACES}VOICE:
{14 SPACES}MEM:" :rem 237

9051 P$=CHR$(183):P$=P$+P$:rem 108

9052 PRINT SPC(5)C7PPPP$SPC(12)P$PPPP

:rem 21

9054 POKE CX,6:PRINTC1$"KEY:";:POKE CX,22:PRINT"ME

ASURE:" :rem 234

9057 PRINT:PRINTC3?:FOR AC=-1 TO 1 STEP 2:GOSUB 8:

NEXT:PRINTC1$:AC=0:GOSUB 8 :rem 44

240

Chapter 8

9060 U1$=P4$+P4$:U1$=U1$+U1$+U1$+U1$:rem 123

9100 PRINTC0$"{6 SPACES}M{15 SPACES}"C6CHR(172)P

2CHR(187) :rem 32

9102 PRINTC0$"{6 SPACES}L{8 SPACES}NOTE:{2 SPACES}
"P1$C7$H{15 SPACES}"P3$:rem 158

9104 PRINTC0$M NO{3 SPACES}L{8 SPACES}"C6$K1$P4$P4

$P4$K2$"{2 SPACES}"P5$:rem 98

9106 PRINTC0$"gMJjPQLLLLLLLLL{3 SPACES}"C6$P7$"
{3 SPACES}"C6$P7$"{2 SPACES} "P5$:rem 109

9108 PRINTC0$"EMjJRSLLLLLLLLL{3 SPACES}"C6$K3$P4$P4

$P4$K4$"{2 SPACES}"P5$:rem 121

9109 P$=CHR$(163):P8$=P$+P$+P$+P$+P$:rem 131

9110 PRINTC0$IliM8TU"P$PPP$P8$H{l0 SPACES} "P5$

:rem 236

9111 P5$=" ■I+P7$:P5$=P5$+P5$+P5$+P5$+P5$+P5$+M ":P

9$=C7$+" "+CHR$(146) :rem 113

9112 P5$=C6$+CHR$(18)+CHR$(161)+P9$+C0$+P5$+CHR$(1

8)+P9$+C6$+CHR$(161) :rem 84

9113 PRINTC0$"iM3{5 SPACES}"P$"{7 SPACES}OCTAVE: "

P5$:rem 58

9114 PRINTC0$"gMiVWLLLLLLLLL{4 SPACES}"C6$K1$P4$K2
$"{3 SPACES}irP5$:rem 42

9116 PRINTC0$"gMgXYLLLLLLLLLU SPACES}"C6$P7$" "P7

$"{3 SPACES}"Pl$"{15 SPACES}"P3$:rem 200
9118 PRINTC0$MZMP8$"LHP8$II{4 SPACES} MC6$K3$P4$K4$ "

{3 SPACEST"CHR$Tl88)CHR$(18); :rem 120
9119 PRINTP2CHR(146)CHR$(190) :rem 224

9120 P$=P4$+P4$+P4$:P$=P$+P$+P4$:rem 156

9121 PRINTC0$"{6 SPACES}L{13 SPACES}"C6$K1$P4$P4$K

2$K1$P$K2$:rem 228

9122 PRINTC0$M{6 SPACES}L{6 SPACES}LENGTH:"C6$P7$"
{2 SPACES}"P7$P7$"{7 SPACES}MP7$:rem 207

9124 PRINT"{20 SPACES}MK3$P4$P4$K4$K3PK4$

:rem 239

9126 PRINTC3$"{9 SPACESjREST <—SELECT—> TIE"

irem 75

9128 PRINT:PRINT:PRINT"{40 SPACES}"CHR$(19):RETURN

:rem 9

9130 IF GK THEN POKE 241,PEEK(241)AND127 :rem 137

9132 POKE 780,16+GK:SYS 1596 :rem 251

9135 POKE 53250,140:POKE 53251,224:POKE 53264,0

irem 183

9140 FOR K=54272 TO 54295:POKE K,0:NEXT:K=54272

:rem 60

9150 POKEK+3,8:POKEK+5,0:POKEK+6,247:POKEK+24,10:P

OKEK+16,240:POKEK+8,120 :rem 9

9160 PRINTCHR$(19)CHR$(146)C1$;:POKE CX#11:PRINTVC

• :rem 6

9170 POKE CX,29:PRINT FM :rem 140

9180 POKE CY,1:PRINT:POKE CX,10 :rem 82

241

Chapter 8

9185 PRINTABS(KY)CHR$(157)CHR$(193-2*(KY<0))" ("KY

$(KY+7)H)"; :rem 42

9190 POKE CX,30:PRINTMID$("ON OFF",4-Ml*3,3)

:rem 197

9199 GOTO 500 :rem 170

9200 PRINT "{CLR}":PRINT " SIDPLAYER EDITOR":PRINT

11 BY HARRY BRATT":PRINT :rem 30

9210 POKE 780,1:POKE 781,DN:POKE 782,1:SYS 65466

:rem 105

9220 A$="EDITOR.OBJ":FOR K=l TO 10:POKE 584+K,ASC(

MID$(A$,K)):NEXT :rem 217

9230 POKE 780,10:POKE 781,73:POKE 782,2:SYS 65469

irem 119

9240 POKE 780,0:SYS 65493:IF PEEK(783)AND1 THEN PR

INT " ERROR":END :rem 189

40000 REM *** INITIALIZATION *** :rem 252

41000 POKE 251,DN:POKE 53280,7:POKE 53265,8:K=PEEK

(49)+256*PEEK(50)+4096 :rem 138

41010 POKE 1020,PEEK(55):POKE 1021,PEEK(56):POKE 5

5,KAND255:POKE 56,K/2 56:CLR :rem 25

41012 K5=PEEK(1020)+256*PEEK(1021) :rem 26

41013 K=0:J=0:1=0:H=0:JV=0:LN=3:CX=211:CY=214:AC=0

:SC=3:PK=14:NN=-2:NT=0:OC=4 :rem 54

41014 DIM KY$(14),S$(36),SS$(36),V(16),M(16),NV(3)

,CN(3),MM(3),PE$(5),V$(5) irem 64

41015 DIM FW$(6,1),NU$(1,1),KL%(15) :rem 235

41017 MM(l)=PEEK(55)+256*PEEK(56)+6:MM(2)=MM(l)+2:
MM(3)=MM(1)+4:DN=PEEK(251) :rem 158

41018 FM=INT((K5-MM(l))/2)-67:NV(l)=NN:NV(2)=NN:NV
(3)=NN :rem 205

41019 CN(1)=K:CN(2)=K:GN(3)=K:POKE 648,200:POKE 53
272,36:Z=PEEK(56576) :rem 101

41020 FOR TP=1024 TO 1137:READ J:POKE TP,J:NEXT:TP

=1827 :rem 126

41021 POKE 251,98:POKE 252,199:POKE 253,114:POKE 2

54,4:SYS 1030 :rem 83

41022 POKE 781,30:POKE 782,7:SYS 1813:POKE 657,128

:rem 156

41023 K8=PEEK(788):K9=PEEK(789):POKE 1213,K8:POKE
{SPACE}1214,K9 :rem 176

41024 FOR K=l TO 36:READ S$(K),SS$(K):NEXT :rem 27

41025 NN(0)=0:FOR K=l TO 10:READ SC$(K),N(K):NN(K)
=NN(K-1)+N(K):NEXT :rem 249

41026 C0$=CHR$(144):C1$=CHR$(5):C3$=CHR$(159):C6$=
CHR$(31):C7$=CHR$(158) :rem 35

41027 CB$=CHR$(154):C2$=CHR$(28) srem 156

41028 K1$=CHR$(176):K2$=CHR$(174):K3$=CHR$(173):K4
$=CHR$(189) :rem 230

41030 FOR K=0 TO 18:READ AC:AC$(0)=AC$(0)+CHR$(AC)
:NEXT:AC=0 :rem 235

242

Chapter 8

41032 FOR K=l TO 2:AC$(K)=LEFT$(AC$(0),9)+CHR$(193

+K)+RIGHT$(AC$(0),9):NEXT :rem 13

41034 FOR K=0 TO 5:READ M$(K):NEXT :rem 79

41035 IF DN=1 THEN M$(4)="(NOT AVAILABLE)":rem 245

41060 GOSUB 9004:POKE 780,5:SYS 1596:GOSUB 7004:PO

KE 780,7:SYS 1596 :rem 189

41064 GOSUB 8010:POKE 780,3:SYS 1596:POKE 53280,10

:rem 181

41070 POKE 56578,PEEK(56578)OR3:POKE 56576,(PEEK(5

6576)AND252) :rem 161

41080 POKE 251,0:POKE 252,208:POKE 253,0:POKE 254,

208:POKE 781,0:POKE 782,8 :rem 228

41085 POKE 56334,PEEK(56334)AND254:POKE 1,PEEK(1)A

ND251:SYS 1024 :rem 35

41090 FOR K=0 TO 223:READ J:POKE 53768+K,J:POKE 54

792+K,255-J:NEXT :rem 123

41095 POKE 1,PEEK(1) OR 4:POKE 56334,PEEK(56334) O

R 1 :rem 242

41122 FOR K=0 TO 7:READ LN$(K):NEXT K :rem 231

41125 FOR K=53248 TO 53254 STEP 2:POKE K,0:NEXT:PO

KE 53264,0 :rem 216

41130 POKE 52216,48:POKE 52217,49:POKE 52218,50:PO

KE 52219,49-.POKE 53276,11 :rem 194

41135 POKE 53287,7:POKE 53285,6:POKE 53289,0:POKE

{SPACE}53290,13 :rem 55
41138 POKE 53275,10:POKE 53277,10:FOR K=52224 TO 5

2415:POKE K,0:NEXT :rem 150

41140 J=52225:POKE J,85:FOR K=l TO 6:POKE J+K*3,10

5:NEXT:POKE J+21,85 :rem 27

41142 J=52288:FOR 1=0 TO 1:FOR K=0 TO 1:POKE J+K*3

+1*57,85:POKE J+K*3+1*57+1,85 :rem 146

41143 NEXT:NEXT:FOR K=6 TO 54 STEP 3:POKE J+K,106:

POKE J+K+l,169:NEXT :rem 197

41145 J=52398:POKE J,63:POKE J+3,127:POKE J+6,255:

POKE J+9,254:POKE J+12,124 :rem 110

41147 FOR I=J-30 TO J-3 STEP 3:POKE I,1:NEXT

:rem 140

41160 P$=" "+CHR$(20):P$=P$+P$+P$+P$+P$:P$=p$+CHR$
(17)+P$:Z$(0)=P$:rem 120

41162 P$=CHR$(148)+" "+CHR$(157):P$=P$+P$+P$+P$+P$

:P$=P$+CHR$(17)+P$:Z$(1)=P$:rem 208

41165 Y$=CHR$(157):Y$=Y$+Y$+Y$+CHR$(17)+M "

:rem 191

41175 FOR K=0 TO 14:READ KY$(K) :rem 99

41177 IF K<6 THEN KY$(K)=KY$(K)+MCH :rem 182
41178 IF K>12 THEN KY$(K)=KY$(Kj+^A" :rem 228
41179 NEXT K - :rem 144

41180 FOR K=0 TO 6:READ AK%(K):NEXT K :rem 221
41185 TY$(0)="{2 SPACES}":TY$(1)="+&-§" :rem 155

41196 I$=CHR$(18)+CHR$(150)+"FILENAME: "+CHR$(146)
+CHR$(161)+C0$:rem 86

243

Chapter 8

41197 I$=I$+Mtl6 SPACES}":REM 16 SPACES :rem 208

41220 S$="QFDOFPDDPLEDNEFNADADFMKENNBFHJCGNFPF"

:rem 28

41225 FOR K=0 TO 16:READ V(K),M(K):NEXT :rem 125

41230 FOR K=0 TO 5:READ V$(K):NEXT :rem 86

41235 FOR K=0 TO 6:READ FW$(K,0),FW$(K,1):NEXT

:rem 229

41237 FOR K=0 TO 1:READ NU$(K,0),NU$(K,1):NEXT

:rem 238

41240 GOSUB50:AL=2 :rem 22

41250 FOR K=0 TO 5:READ PE$(K):NEXT :rem 151

41350 FOR K=0 TO 15:KL%(K)=-l:NEXT :rem 75

41360 FOR K=0 TO 5:READ I,J:KL%(I-8)=J:NEXT

:rem 127

41370 POKE 53281,1:POKE 53265,27 :rem 145

49999 GOSUB8690:GOTO 8005 :rem 175

61100 DATA 142,112,4,140,113,4,165,253,56,229,251,

170,165,254,229,252,168,138 :rem 209

61101 DATA 205,112,4,152,237,113,4,144,35,160,0,17

4,113,4,240,14,177,251,145 :rem 128

61102 DATA 253,200,208,249,230,252,230,254,202,208

,242,174,112,4,240,8,177,251 :rem 242

61103 DATA 145,253,200,202,208,248,96,173,113,4,16

8,101,252,133,252,152,24,101 :rem 240

61104 DATA 254,133,254,172,112,4,240,9,136,177,251

,145,253,192,0,208,247,174 :rem 164

61105 DATA 113,4,240,16,198,252,198,254,136,177,25

1,145,253,192,0,208,247,202 :rem 221

61106 DATA 208,240,96,177,2 :rem 56

61150 DATA TEM,SET,UTL,UTILITY SET,VOL,SET,BMP,BUM

P :rem 34

61151 DATA HED,HEAD,TAL,TAIL,CAL,CALL,DEF,DEFINE,E

ND,END :rem 166

61152 DATA F-M,MODE,AUT,AUTO,RES,RESONANCE,FLT,THR

OUGH,F-S,SWEEP,F-C,CUTOFF :rem 91

61153 DATA F-X,EXTERNAL,ATK,ATTACK,DCY,DECAY,SUS,S

USTAIN,RLS,RELEASE srem 198

61154 DATA PNT,R POINT,WAV,SET,P-W,P WIDTH,P-S,P S

WEEP,SNC,SYNC,RNG,RING MOD :rem 7

61155 DATA VDP,VIB DEPTH,VRT,VIB RATE,POR,PORTAMEN

TO,DTN,DETUNE,TPS,TRANSPOSE :rem 76

61156 DATA MS#,MEASURE #,3-0,VOICE 3 OFF,FLG,FLAG,

HLT,HALT,AUX,AUXILIARY :rem 126

61157 DATA TEMPO,2,VOLUME,2,REPEAT,2,PHRASE,3,FILT

ER,3,FILTER,4,ENVELOPE,5 :rem 138

61158 DATA WAVEFORM,5,FREQ,5,MISC,5 :rem 91

61190 DATA 162,162,162,18,17,157,157,157,32,193,32

,146,17,157,157,157 :rem 99

61192 DATA 183,183,183 irem 73

61194 DATA PLAY MUSIC,EDIT MUSIC,LOAD MUSIC FILE,S

AVE MUSIC FILE,DISK DIRECTORY :rem 158

244

Chapter 8

61195 DATA QUIT :rem 99

61200 REM *** CHR DATA *** :rem 208

61201 DATA 108,254,108,254,108,0,0,0,96,124,108,10

8,124,12,0,0 :rem 203

61202 DATA 192,192,240,216,240,0,0,0 :rem 214

61203 DATA 30,27,30,27,30,123,248,240,30,27,30,27,

24,120,248,240 :rem 52

61204 DATA 30,27,24,24,24,120,248,240 :rem 16

61205 DATA 24,24,24,24,24,120,248,240,12,12,12,12,

12,124,204,248 :rem 43

61206 DATA 0,0,0,0,120,204,204,120,0,0,99,99,99,99

,110,0 :rem 169

61207 DATA 0,24,60,102,126,102,102,102 :rem 47

61208 DATA 255,0,0,0,255,0,0,0,0,0,0,0,255,0,0,0

:rem 243

61209 DATA 0,0,0,7,12,24,24,24,0,0,0,128,192,192,1

92,192 :rem 167

61210 DATA 255,13,15,6,255,14,27,27,255,128,0,0,25

5,0,0,0 :rem 218

61211 DATA 255,49,55,55,255,54,24,12,255,224,176,1

52,255,216,216,240 :rem 34

61212 DATA 255,0,24,25,15,0,0,0,255,96,96,192,0,0,

0,0 :rem 15

61213 DATA 255,48,96,112,255,112,0,0,255,96,51,51,

255,48,51,99 :rem 253

61214 DATA 255,0,1,3,255,28,112,0,255,192,128,0,25

5,0,0,0,3,0,0,0,0,0,0,0 :rem 184

61215 DATA 96,96,48,48,28,15,3,0,6,6,12,12,56,240,

192,0 :rem 149

61300 DATA 32ND{3 SPACES},16TH{3 SPACES},EIGHTH ,Q

UARTER,HALF{3 SPACES},WHOLE{2 SPACES](,UTILIT

Y,ABS SET :rem 175

61306 DATA C,G,D,A,E,B,F ,C ,G ,D ,A ,E ,B ,F,C

:rem 125

61310 DATA 3,0,4,1,5,2,6 :rem 130

61450 DATA 15,8,127,256,-95,256,15,16,-127,256,255

,256,999,64,16383,4,2047,32 :rem 253

61452 DATA -2047,16,4095,16,7,32,7,32,1,8,1,8,0,0,

900,256 :rem 234

61454 DATA 1=L 2=B 4=H,0=N 1=T 2=S 4=P,(0=NO / 1=

YES),(0=UP / l=DOWN) :rem 231

61456 DATA (0=YES),(56 TO 900) :rem 243

61458 DATA L,T,B,S,LB,TS,H,P,LH,TP,BH,SP,LBH,TSP,N

O,UP,YES,DWN :rem 94

61460 DATA CLOBBER,ILLEGAL DURATION,DURATION OVERF

LOW,STACK UNDERFLOW :rem 254

61462 DATA STACK OVERFLOW,UNDEFINED PHRASE CALL

:rem 164

61470 DATA 20,0,19,1,17,3,8,4,23,5,21,6 :rem 103

245

Chapter 8

Once the Editor has been saved, load the "MLX" program

from Appendix C. MLX is the same program you used to cre

ate "BMG.OBJ" and "SID.OBJ." If you already have a copy of

MLX from another COMPUTE! publication, you can use it to

enter the listings in this book. Tape users using another ver

sion of MLX must change line 763 to match the MLX listing in

this book. (Tape users who have a copy of MLX which does

not have a line 763 must use the version of MLX from this

book.)

In order to avoid retyping the same data you entered for

SID.OBJ, you'll reload the SID.OBJ file through MLX and ap

pend the additional data (actually, you'll be overwriting about

72 bytes and adding more than 650 others). Be sure to follow

these directions carefully in order to get a working copy of the

Editor.

Load and run MLX, and answer the prompts as follows:

Starting Address: 49349

Ending Address: 51736

If you're using a Datassette, insert the tape which contains

a copy of SID.OBJ, created in Chapter 7, and fast-foward past

the Sid Loader program to the beginning of SID.OBJ (you

should have earlier noted the tape counter number for the

start of this file).

If you're using disk, just insert the disk containing

SID.OBJ in your drive.

The cursor should be waiting for input on line 49349.

Press the L key while holding down the SHIFT key. When

you see the prompt for a filename, enter SID.OBJ and press

RETURN. Next, respond with T or D for tape or disk. SID.OBJ

will load into memory.

When MLX has finished loading SID.OBJ and the prompt

returns for line 49349, press the N key while holding down

the SHIFT key. You'll be asked for a new address: Enter 51041

and press RETURN.

Using the listing of Program 8-2, enter in the data as you

would any other MLX listing. When you're finished, save the

program using the filename EDITOR.OBJ. Tape users should

save the program immediately following program 8-1, EDITOR.

(The Editor uses most of the memory space from 49152 to

53247. For this reason you cannot run other utilities which use

this memory, such as the DOS wedge, when using the Editor.)

246

P
r
o
g
r
a
m

8
-
2
.
E
D
I
T
O
R
.
O
B
J

T
o

en
te
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

us
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

Ed
it

or
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.
B
e
su
re

to
re

ad

th
e
di

re
ct

io
ns

a
b
o
v
e

be
fo
re

en
te
ri
ng

th
is

p
r
o
g
r
a
m
.

5
1
0
4
1

:
0
9
6
,
1
2
0
,
1
6
9
,
1
2
7
,
1
4
1
,
0
1
3
,
2
5
1

5
1
0
4
7

:
2
2
0
,
1
6
9
,
0
0
1
,
1
4
1
,
0
2
6
,
2
0
8
,
1
0
0

5
1
0
5
3

:
1
6
9
,
0
4
9
,
1
4
1
,
0
1
8
,
2
0
8
,
1
6
9
,
0
9
5

5
1
0
5
9

:
0
2
7
,
1
4
1
,
0
1
7
,
2
0
8
,
1
6
9
,
1
4
7
,
0
5
6

5
1
0
6
5

:
1
4
1
,
0
2
0
,
0
0
3
,
1
6
9
,
0
0
4
,
1
4
1
,
0
8
7

5
1
0
7
1

:
0
2
1
,
0
0
3
,
0
8
8
,
0
9
6
,
1
7
3
,
0
2
5
,
0
2
1

5
1
0
7
7

:
2
0
8
,
1
4
1
,
0
2
5
,
2
0
8
,
0
4
1
,
0
0
1
,
2
4
5

5
1
0
8
3

:
2
4
0
,
0
2
0
,
1
7
2
,
1
9
1
,
0
0
4
,
1
8
5
,
1
8
3

5
1
0
8
9

:
1
9
2
,
0
0
4
,
1
4
1
,
0
3
3
,
2
0
8
,
1
8
5
,
1
4
0

5
1
0
9
5

:
2
0
0
,
0
0
4
,
1
4
1
,
0
1
8
,
2
0
8
,
2
0
6
,
1
6
0

5
1
1
0
1

:
1
9
1
,
0
0
4
,
0
4
8
,
0
0
6
,
1
0
4
,
1
6
8
,
1
6
6

5
1
1
0
7

:
1
0
4
,
1
7
0
,
1
0
4
,
0
6
4
,
1
6
0
,
0
0
7
,
0
0
4

5
1
1
1
3

:
1
4
0
,
1
9
1
,
0
0
4
,
0
7
6
,
0
0
0
,
0
0
0
,
0
6
8

5
1
1
1
9

:
0
0
7
,
0
0
2
,
0
1
4
,
0
0
6
,
0
0
1
,
0
0
6
,
2
1
1

5
1
1
2
5

:
0
0
2
,
0
0
2
,
0
0
2
,
0
5
0
,
2
4
6
,
2
2
2
,
1
9
3

5
1
1
3
1

:
2
0
8
,
1
0
6
,
0
8
2
,
0
7
6
,
0
6
4
,
1
6
0
,
1
1
5

5
1
1
3
7

:
2
5
5
,
2
0
0
,
1
8
5
,
0
3
4
,
0
0
5
,
1
7
0
,
0
1
8

5
1
1
4
3

:
0
4
1
,
0
0
1
,
0
6
9
,
2
5
2
,
2
0
8
,
2
4
5
,
2
4
7

5
1
1
4
9

:
1
3
8
,
0
0
9
,
0
0
1
,
1
7
0
,
0
3
7
,
2
5
1
,
0
4
3

5
1
1
5
5

:
2
1
7
,
2
5
4
,
0
0
4
,
2
0
8
,
2
3
4
,
1
3
2
,
2
3
6

5
1
1
6
1

:
2
5
2
,
1
3
8
,
0
7
3
,
2
5
5
,
0
3
7
,
2
5
1
,
1
9
9

5
1
1
6
7

:
1
3
3
,
2
5
1
,
1
3
8
,
1
6
0
,
2
5
5
,
2
0
0
,
0
8
0

5
1
1
7
3

:
0
7
4
,
1
7
6
,
2
5
2
,
0
7
0
,
2
5
1
,
1
3
6
,
1
6
4

5
1
1
7
9

:
2
0
8
,
2
5
1
,
0
9
6
,
0
0
6
,
0
2
2
,
0
1
4
,
0
6
4

5
1
1
8
5

:
0
0
3
,
0
5
4
,
0
1
5
,
0
0
2
,
0
0
6
,
0
4
7
,
1
1
2

5
1
1
9
1

:
0
2
3
,
1
5
0
,
0
1
0
,
0
1
9
,
1
0
2
,
0
1
4
,
0
5
3

5
1
1
9
7

:
0
6
7
,
0
0
4
,
0
0
0
,
1
3
2
,
0
0
8
,
0
3
8
,
2
4
6

5
1
2
0
3

5
1
2
0
9

5
1
2
1
5

5
1
2
2
1

5
1
2
2
7

5
1
2
3
3

5
1
2
3
9

5
1
2
4
5

5
1
2
5
1

5
1
2
5
7

5
1
2
6
3

5
1
2
6
9

5
1
2
7
5

5
1
2
8
1

5
1
2
8
7

5
1
2
9
3

5
1
2
9
9

5
1
3
0
5

5
1
3
1
1

5
1
3
1
7

5
1
3
2
3

5
1
3
2
9

5
1
3
3
5

5
1
3
4
1

5
1
3
4
7

5
1
3
5
3

5
1
3
5
9

5
1
3
6
5

5
1
3
7
1

5
1
3
7
7

5
1
3
8
3

:
0
0
7
,

:
1
3
4
,

:
0
7
0
,

:
2
4
6
,

:
0
3
0
,

:
2
4
6
,

:
0
3
0
,

:
2
5
5
,

:
2
5
5
,

:
2
5
1
,

:
2
0
0
,

:
0
0
5
,

:
1
0
5
,

:
2
3
0
,

:
2
2
4
,

:
2
0
8
,

:
0
0
0
,

:
0
0
3
,

:
0
0
9
,

:
1
9
8
,

:
0
0
0
,

:
1
8
5
,

:
0
0
6
,

:
0
7
4
,

:
1
0
4
,

:
1
0
2
,

:
2
4
9
,

:
0
0
4
,

:
0
7
4
,

0
0
2
,
0
8
6
,

0
0
3
,
0
1
0
,

0
7
9
,
1
8
2
,

2
5
5
,
2
5
4
,

2
5
5
,
0
1
4
,

1
3
4
,
0
1
4
,

0
1
5
,
2
5
5
,

0
0
3
,
0
1
5
,

2
5
4
,
2
5
5
,

2
0
5
,
1
1
4
,

1
7
7
,
2
5
1
,

2
4
0
,
0
2
3
,

0
0
2
,
1
3
3
,

2
5
2
,
2
0
5
,

1
6
5
,
2
5
2
,

2
1
7
,
0
9
6
,

1
7
0
,
0
1
0
,

1
6
8
,
1
3
8
,

1
6
9
,
2
5
5
,

0
0
5
,
2
0
8
,

2
5
3
,
0
1
0
,

0
2
4
,
1
2
1
,

0
1
2
,
0
0
6
,

1
3
3
,
2
5
1
,

0
7
4
,
0
7
4
,

2
0
2
,
0
4
8
,

2
5
1
,
1
0
6
,

1
4
1
,
0
0
0
,

0
0
1
,
2
1
2
,

2
1
2
,
1
8
5
,

1
6
9
,
1
6
0
,

0
5
1
,
0
3
5
,

1
6
6
,
0
3
0
,

2
5
5
,
2
5
5
,

0
1
4
,
0
1
4
,

2
4
6
,
2
5
5
,

1
3
4
,
0
1
4
,

2
4
6
,
2
4
6
,

2
5
5
,
0
6
3
,

1
6
0
,
0
0
0
,

0
0
5
,
2
0
8
,

1
3
6
,
2
0
5
,

1
6
5
,
2
5
1
,

2
5
1
,
1
4
4
,

1
1
2
,
0
0
5
,

2
0
5
,
1
1
3
,

0
0
0
,
0
0
0
,

0
4
2
,
0
4
2
,

0
4
1
,
0
0
7
,

1
4
1
,
0
0
1
,

0
9
6
,
1
3
3
,

2
0
1
,
0
0
8
,

0
0
8
,
0
0
6
,

0
7
2
,
1
8
5
,

1
3
8
,
0
4
1
,

1
3
3
,
2
5
4
,

0
0
9
,
1
9
2
,

0
2
4
,
2
0
2
,

2
1
2
,
1
6
5
,

1
6
9
,
0
6
5
,

0
4
4
,
0
0
6
,

1
4
4
,
0
0
2
,

1
1
8
,
0
4
6

0
8
3
,
1
7
9

0
1
4
,
1
0
2

2
5
4
,
0
3
4

0
3
1
,
0
9
0

2
5
5
,
0
6
2

2
5
5
,
0
6
2

2
4
6
,
1
1
4

1
7
7
,
1
2
8

0
0
9
,
0
8
1

1
1
5
,
1
2
3

0
2
4
,
0
0
9

0
0
2
,
2
0
0

2
0
8
,
0
6
9

0
0
5
,
0
2
7

0
0
0
,
1
0
2

0
4
1
,
1
4
8

2
0
8
,
1
5
8

2
0
8
,
1
2
6

2
5
3
,
1
8
5

2
3
3
,
0
0
2

1
6
8
,
2
0
0

0
2
8
,
1
1
1

0
5
6
,
2
5
4

1
7
0
,
1
5
8

0
1
5
,
2
1
1

0
1
6
,
0
9
2

2
5
1
,
1
5
9

1
4
1
,
1
3
2

1
7
0
,
0
3
0

1
6
9
,
1
3
3

1 o
o

Chapter 8

TOin^C*C*covOrHCOvOTOfHCMC**tfC0<tTO»iC0tfcoCM^vOC0'H
TOTOTO»HrHrHTOrHrHrHCMrHTOrHCMrHi-lTOCMrHCMrHCMCMTOrHTO

rH

CO

1^

rH

CM

in

CM

co

CO

r-i

VD

TO
TO

CO

i-H

CO

CO

iH

TO
TO
TO

<Tk

VO
i-H

in

CM

CO

CO

rH

VO
to
TO

TO TO

TO TO

VO
TO
TO

CM

CO

TO

CO

in

CM

co

CO

•H

rH

in

CM

CO

ro

r-i

CM

TO
TO

<T>

TO
TO

r-i

TO
TO

in

vo
r-i

TO

CM

CM

CO

CM

«t
CM

CM

TO

CM

CO

CM

CM

rH

rH

^

CM

VO

TO'CO
CM

vo
CT>

TO

on

00
TO

CM

on
CM

CM

VO

CM

rH

TO
TO

CM

VO
r-i

TO
TO
TO

TO
TO
TO

CO

TO
TO

CO

TO
TO

in

in

CM

TO
CM

CM

CO

TO

in

in

CM

on
cr>
rH

CM

CO

TO

in

in

CM

TO
CM

CM

CO

TO

in

in

CM

TO
CM

CM

CO

TO

CO

CO

i-H

in

in

CM

TO
CM

CM

CO

TO

r-i

in

CM

CO

CO

f-i

VO
i-H

in

in

CM

r*»

TO
CM

CM

CO

TO

CM

in

in

CM

00
TO
CM

^
CO

TO

rH

TO
CM

CM

VO
TO

on

TO
CM CM

1—1

TO
CM

in

in

CM

r^

TO
CM

CM

CO

CM

TO
TO

CO

r^

TO

CO

in

r-i

VO

TO
TO TO

TO TO
G>
TO

TO
VO
r-{

CM

CO

TO

CM

CO

TO

CO

in

CM

CM

CO

r-i

CO

CM

00
TO
CM

TO
TO
CM

VO
r-i

TO
in

CM

00
TO
CM

00
VO
r-i

in

in

CM

i^

TO
CM

CM

VO
r-i

TO
TO
CM

^

r-i

in

TO
TO

CM

o\
r-i

CO

in

CM

VO
TO

•H

CM

CM

CM

TO
TO

CM

TO

in

CO
i-H

CO

TO
TO

vo
r-i

TO

CM

TO
CM

VO
CO

r-i

TO

r-i

00
TO
CM

CM

TO
TO

in

00
r-i

TO
TO
TO

TO
VO
r-i

CO

in

CM

CM

CO

r-i

CM

TO
TO
CM

in

in

CM

TO
r-i

CM

CM

CO

TO

CM

TO
TO

CO

TO

vo
r-i

VO

TO

m

CM

00
TO
CM

CO

in

CM

VO
as

r-i

CO

TO
CM

CM

i-H

r-i

CO

in

r-i

as

TO

TO
vo
r-i

CM

CO

TO

CM

r-i

TO
CM

rH

VO

TO

TO
in

CM

vo
rH

TO

vo
CO
t-i

00
CO

TO

CO

TO
TO

r-i

TO

TO
**
r-i

CO

G)
TO

TO

TO

vo

TO

r*

CM

r-i

r-i

TO
CM

in

in

CM

vo
rH

VO
&
TO

TO
TO
TO

in

in

CM

TO
TO
TO

in

in

CM

TO
TO
TO

CO

in

CM
••

HHHHHHHHHHHHHHHHHHHHHHHHHHH

inminminininin

ONTOTOrH^^CM^coinONTOvDrHt^C^TOvO^vOvD^rHTOvO^TOTO^rG)
TOCMTOrHrHCMTOrHrHrHrHTOTOTOTOTOCMTOrHTOrHCMrHCMTOCMCMCMrHrHCM

iHC^CJ>^VOC^rH0000VO^VOVOC^TOC^C0^»HCMC0COC^rHvOVOCOrHi-HCOrO

^vovoininvo^TOG>cr»cMTO^tinG>incM^tTO«HrHTOoovOTOTOco^inint^
(SrHrHCMTOiHrHCMCMTOTOTOTOrHCMHiHrHTOrHrHTOrHrHTOTOrHrH'NCMrH

co*c»oo%coco.HrHCOin(nTOTOoo*TOc^
coTOTOcnininTOTOTOPfoin^incorHCM^t^^t^^r-'COvovoTOOO^^TO
rHCMCMrHCMCMCMTOTOCMTOCMCMrHiHTOrHrHTOrHrHTOrHrHrHrHTOrHrHTOTO

OOTOVO^rHCOiHCOrH^rHVDCOCM^COr^
TOTOrHinTOcoinco^tTOinTO't^tr^inrHcovoTOTO^r-inoocovovoTOTOTO
CMG)G)CMrHfHCMCMrHTOpHTOrHHrHCMrHiHrHTOTOrHTOCMrHrHrHrHTOTOTO

^H^C^TOTOC^VOr^HinTOTO^OOCOCMCO^^iH^
S^5cMrHrHCMinco^inin(ocovocorHcoTOvor^^^coinTOTO^vovoco
§^,HCMTOTOC^TOHiHCMCMCMrHrHCMrHrHiHiHrHTOTOrHCMTOTOCMpHrHTO

iHTOCNVOTO^VOCOCT>^TOVOCOVOC^inC^00CM^C^CMCX)VOCOCO^COinTOrH

3 S 5 £ 3 5 £ G> vo S to cm <* cm r- cm to cm in co oo m ro to co r- r- co in cm to
HQBjSSCMlSlSHiaQHtMHHtMHHHHHHH ^ '"1 ""I'"I'I ^. ^L ^

^^®t^TOC^r^vOCMC^rHC^CMTOCOCM^TO<y>TO
5STOTOrHCM<^r^TOvoTOrot^vovOrHTOCM^r-TOTOvovOTO^^inininro

c*inrHi^cnc*inrHr^coc*inrHt^coc*inrHr^co£
0tnOO

HHH|

248

Chapter 8

Using the Editor

To use the Editor, plug a joystick into port 2. Then load Pro

gram 8-1, EDITOR, and type RUN. The EDITOR.OBJ file auto

matically loads and the screen blanks while the program

initializes. The Editor is a graphically complex program, using

redefined characters, sprites, and raster scan interrupts, so it

takes awhile to initialize. When the program is ready, it dis

plays a main menu.

1) PLAY MUSIC

2) EDIT MUSIC

3) LOAD MUSIC FILE

4) SAVE MUSIC FILE

5) DISK DIRECTORY or

5) (NOT AVAILABLE)

6) QUIT

EDIT Music

Press the 2 key to select EDIT, and then the 1 key to choose

voice 1. The display changes to show the editing screen.

The first thing you'll notice is that it's divided into dif

ferent levels. The top level shows the current voice number

and the amount of free memory remaining. The next level dis

plays the current key signature and tells whether the measure

feature is on or off. The level below that has one of the three

accidental symbols highlighted.

The next level is the main level, where notes are selected.

The main level displays the current pitch in three different

forms: as a note on the grand staff, as a piano key, and as a

letter and octave number. The current duration is indicated by

a symbol and a word. The level below this main level is used

for entering rests and ties. The bottom level contains a box in

which entered notes appear.

In the main level, the method of using the joystick is:

1. Push the stick up or down to change the current pitch.

2. Push the stick left or right to change the current duration.

3. Press and release the joystick button to enter a note.

While you're in the main level, pushing the stick up or

down changes the pitch. The quarter note on the grand staff
moves, the next key on the piano is indicated, and the written
display changes. A full eight octaves is available by pushing
the joystick.

249

Chapter 8

Take a moment to enter a few notes. Just select a pitch

and press the joystick button. A note appears in the box in the

bottom level and then scrolls to the left. The note looks like a

quarter note, the current duration, and has the note name and

octave number written above it. As you enter more notes, each

one displays in the box—all notes scroll to the left to make

room for the next.

If you press the button without changing the pitch, the

entered note is set at the same pitch as the previous note.

To change the duration, push the stick left or right. Notice

that all durations also have a dot option, except the thirty-

second note. Now press the button. The note which shows in

the box is in the current pitch, but has a new duration.

For the moment, ignore the durations marked UTILITY

and ABS SET.

Now that you've entered a few notes, you might like to

hear your musical creation. Return to the main menu by press

ing the function key fl. Then press the 1 key for PLAY, fol

lowed by the RETURN key to play the voice. When the voice

is through, the program waits for a new selection from the

main menu.

To continue editing, press the 2 key to select EDIT and

then the 1 key to choose voice 1 again. The display switches

back to the editing screen, and the notes that you've entered

appear in the same position as before.

As notes are entered, the previous notes are scrolled to

the left. Since the bottom level can display only a few notes,

notes have to scroll off the screen. Sometimes you'll want to

scroll those notes back onto the screen to review them.

Scrolling can be done manually by using the two cursor keys.

Press the cursor key on the left (ignore the up and down

markings). All the notes scroll to the right. The note which

scrolled off the screen appears at the left edge, and the most

recently entered note moves back into the box. Every time you

press this cursor key, the notes scroll one position.

As the notes move, the current pitch and duration change

to reflect each note which appears. You can scroll as far as you

want. Scrolling stops when you come to the beginning of the

voice.

Press the cursor key on the right to scroll in the opposite

direction. Scrolling stops at the end of the voice.

250

Chapter 8

Replacing notes. It's easy to correct a mistake made while

entering notes. Use the cursor keys to scroll the notes until the

one which needs to be changed appears in the box. Select the

correct pitch and duration and press the button. The old note

is replaced with the new one. You can then scroll back to the

end of the voice and continue entering notes.

Insert. If you miss a note and need to insert one, scroll

the notes until the insertion point is reached. The note in the

box will be to the right of the inserted note. Next, press SHIFT-

INST/DEL. The note in the box and all notes to its right

scroll to the right, creating a blank in which you can enter a

note.

If necessary, you can insert several blanks. The only thing

you cannot do while blanks exist is scroll or return to main

menu. You must fill in all of them to make the voice complete

before adding new notes at the end.

Delete. To get rid of an extra note or blank, just press the

DEL key (the unSHIFTED INST/DEL key). The note or blank

in the box is deleted, and the notes to its right scroll to the left

to fill in the gap.

When deleting notes, remember that the keyboard is buff

ered for up to ten keystrokes. If you press the DEL key a sec

ond time, before the Editor is finished deleting the first note, a

second note will also be deleted.

Clear. The clear feature is used when you want to delete

all the notes from the current note to the end of the voice.

This allows you to delete several notes at once. Press SHIFT-

CLR/HOME. Since clearing can be disastrous when done acci

dentally, there's a confirmation prompt. Press the Y key to

erase the note currently in the box and all the notes to its

right, or hit the N key to cancel the clear.

By scrolling to the beginning of the voice and using

SHIFT-CLR/HOME, you can erase the entire voice.

Moving to the beginning or end of the voice. To move

to the beginning or end of a voice, use the function keys f2

and f4, respectively. Pressing SHIFT-f1 will immediately take

you to the beginning of the voice. Likewise, pressing SHIFT-f3

takes you to the end of the voice.

Accidentals. Figure 8-1 shows three symbols, called

accidentals, that are often found in sheet music.

251

Chapter 8

Figure 8*1. Accidentals

ft sharp

t|

flat

natural

When you find one of these symbols placed before a note

in the sheet music, it means that the pitch of the note should

be adjusted up or down slightly. Say, for instance, that you

find an F note with a sharp in front of it, something like

Figure 8-2.

Figure 8*2. F-sharp

D E F-sharp G or D E F-sharp G

JJ.JJ t,

This means that you should enter the note with the pitch

F-sharp instead of just a natural F. To do so, use the joystick to

move to pitch F, then press the + key (it's on the top row of

the keyboard) to select the sharp before you press the button

to enter the note.

A sharp increases the pitch of a note. The pitch F-sharp is

halfway between pitches F and G. A flat, on the other hand,

decreases a note's pitch. To make a pitch flat, press the — key

(right beside the + key). If you see a flat symbol before a

note, you must move to the pitch, hit the — key, then press

the button to enter the note.

To cancel a sharp or flat, press the English pound sign (£)

to select the natural pitch.

Key signature. Sometimes you'll find one or more sharp

or flat symbols at the left edge of the staff, next to the clef

symbol. They might look like this:

252

Chapter 8

Figure 8*3 ♦ Key Signatures

Key of D Ftt A Ctf F« Key of E-flat E\> D Ab F

i1' i ""
These symbols form the key signature. The number of

sharps or flats in the key signature determines the key in

which the music is written. As shown in Figure 8-3, the key of

D has two sharps, and the key of E-flat has three flats.

The presence of a sharp or flat in a key signature means

that all notes at that position on the staff should be treated as

if they had a sharp or flat symbol in front of them. (See Chap

ter 7 for more details on this and all other aspects of music

notation.) For example, a sharp appearing at the position for F

in a key signature means that all F notes, in all octaves, should

be entered as F-sharps.

Since having to remember which notes should have a

sharp or flat can make note entry much more difficult, the Edi

tor has a feature to help. All you have to do is tell the Editor

how many sharps or flats are in the key signature, and the

Editor automatically selects the appropriate pitches for you.

Look at the level near the top of the screen which dis

plays the number 0 and the letter C. The number tells how

many sharps or flats are in the current key, and the letter gives

the name of the key. The default key is C, which has no

sharps or flats.

Let's say that the key signature shows two sharp symbols,

at the positions for F and C. Press SHIFT-+ (plus key) twice

to select this key signature. The display changes to show two

sharps in the key of D. Now when you push the joystick, the

pitches F and C are automatically sharped.

To select a key with more sharps, press SHIFT-+ as nec

essary. To reduce the number of sharps or to select a key with

flats, press SHIFT-— (minus key). Keep pressing until the de

sired number of sharps or flats is displayed.

If the key has been set and you come across an accidental

symbol in front of a note, that accidental overrides what was

set by the key signature. You'll have to use the +, —, or £ key
to change the pitch for that note.

253

Chapter 8

Rest. A voice does not have to play notes constantly. A

rest tells a voice how long it should be silent. Rests have dura

tion but no pitch. Different rest symbols are used for different

durations. Figure 8-4 illustrates these symbols.

Figure 8*4.

Whole rest

Half rest

Quarter rest

Rests

"-"

Eighth rest

Sixteenth rest

Thirty-second rest

7

f

f

To select a rest, press the R key. The note name in the

main level alters to read (R), and the word REST in the level

below the main level displays in reverse letters. All notes now

entered will be rests.

The Editor cannot display the duration symbols for rests.

Rests of different durations can be selected by pushing the

stick left or right, but the Editor will still display the duration

symbols for normal notes.

The rest mode stays in effect until canceled. To cancel it,

either press the R key again, or push the stick up or down to

change the pitch.

Tie/slur. Two notes are tied or slurred when they're con

nected by a symbol which looks like an arc. When the symbol

joins two notes of the same pitch, it's called a tie. If the two

notes have different pitches, the symbol is called a slur. Notes

tied or slurred are played with no break in volume.

Figure 8-5. Ties and Slurs

A tie or slur is selected by pressing the / key (near the

right on the bottom row of the keyboard). The word TIE in the

level below changes to reversed letters. The next note entered

is followed by a curved symbol, indicating a tie or slur.

254

Chapter 8

Unlike the rest mode, the tie/slur mode is automatically

canceled after a note is entered. To cancel it without entering a

note, press the / key a second time.

Special Options

In addition to notes, the Editor lets you enter commands to

control things like tempo, volume, waveform, and envelope.

Since quite a variety of commands are supported, there's no

room to display the choices on the editing screen, so a sepa

rate screen is used. Press the function key f3 to switch from

the editing screen to the special option screen.

The commands are organized by headings like TEMPO

and WAVEFORM. Each command has its own three-letter

abbreviation. One of the commands is displayed inside a box,

which you can move by pushing the joystick. If the box is

moved off the end of one row or column, it wraps around to

the other side.

The window in the upper-right corner of the screen dis

plays the full name of the current command. This display

changes as the box is moved from one command to another.

To enter a command, first press the joystick button. The

window then shows the number range for the selected com

mand. All commands require that a number be entered from

the keyboard. Once a number is typed and the RETURN key is

pressed, the command is actually entered. The command

name and the number show up in the bottom row, the com

mand and the previous notes scroll to the left, and the display

returns to the editing screen. If you want to enter another

command, you have to press f3 again.

There'll be times when you'll want to enter two or more

commands—having to return to the special option screen each

time can be inconvenient. Fortunately, there's a way to enter a

command without having the display switch back to the

editing screen. After you press the button and type the num

ber, press SHIFT-RETURN instead of RETURN. The command
is entered, but the screen doesn't change.

If you accidentally press the button on the wrong com
mand, press only RETURN without typing a number. The

command is not entered, and you'll be able to choose another.

Commands can be scrolled, inserted, and deleted, just like
notes. The INST/DEL key can also be used while you're in the
special options screen.

255

Chapter 8

To return to the editing screen without entering a com

mand, press the f1 key.

We'll discuss just three commands here. The other com

mands are for advanced applications and are explained in later

chapters.

Tempo. The tempo determines how quickly the notes are

played; it is normally specified at the beginning of a song by

one of the two methods shown in Figure 8-6.

Figure 8-6. Set Tempo

M.M. 100 or J = 100

The TEM command, used to set the tempo, is usually

placed at the beginning of a voice. The number part of the

command is the desired tempo value. In the preceding ex

ample, this number was 100.

There are some restrictions regarding which tempo values

can be used. Sidplayer supports only a limited number of

tempo values, and of those, some do not permit the use of cer

tain durations. Not all tempo values support sixteenth or

thirty-second notes, or dotted whole notes. Table 8-1 shows all

the available tempo values and their restrictions.

Those tempos which do not support a sixteenth note do

not support a dotted eighth note. Likewise, those tempos

which do not support thirty-second notes do not support

dotted sixteenth notes.

Tempo values 81 and below do not support dotted whole

notes, but this is no major problem. A dotted whole note can

be simulated by tying a half note to the whole note.

When you type the number for the TEM command, the

Editor uses the closest available tempo value. For example, if

you type 160, the command TEM 163 is actually entered be

cause tempo 160 is not available.

In most cases, it doesn't matter if the exact tempo is not

available. There's little difference between M.M. 160 and M.M.

163. The only complication would be if the song used six

teenth or thirty-second notes, which are not supported in

256

Chapter 8

Table 8-1. Tempo Values and Restrictions

Tempo Restrictions

900 No thirty-second notes

600 No sixteenth or thirty-second notes

450 None

360 No sixteenth or thirty-second notes

300 No thirty-second notes

257 No sixteenth or thirty-second notes

225 None

200 No sixteenth or thirty-second notes

180 No thirty-second notes

163 No sixteenth or thirty-second notes

150 None

138 No sixteenth or thirty-second notes

128 No thirty-second notes

120 No sixteenth or thirty-second notes

112 None

105 No sixteenth or thirty-second notes

100 No thirty-second notes

94 No sixteenth or thirty-second notes

90 None

85 No sixteenth or thirty-second notes

81 No thirty-second notes

78 No sixteenth or thirty-second notes

75 None

72 No sixteenth or thirty-second notes

69 No thirty-second notes

66 No sixteenth or thirty-second notes

64 None

62 No sixteenth or thirty-second notes

60 No thirty-second notes

58 No sixteenth or thirty-second notes

56 None

MM. 163. If that was the case, the tempo value 150 would

have to be used.

If you try to use durations like sixteenth notes in a tempo

which does not support them, the Editor prints the error mes

sage ILLEGAL DURATION when the voice is played. If this

should happen, press any key to acknowledge the error, and

then change the tempo to one that does support the duration.

Sometimes a word like adagio or allegro is used in place of

a number. In these situations, you have to choose the appro

priate tempo value based on the information given in Chapter 7.

257

Chapter 8

If the sheet music does not specify any tempo at all, just

use whichever tempo sounds best to you. If you don't enter a

TEM command, M.M. 100 is used.

Volume. Like tempo, the general volume level (dynamics)

of a song is also usually indicated at its beginning. The level is

specified with the letters p for piano (soft) and / for forte

(loud).

The master volume of the SID chip can range from 0 to

15, with 15 being the loudest and 0 being off. This volume

level is set by the VOL command.

Here are the suggested volume levels for various dynam

ics markings.

Dynamic Volume

fff 12

ff 11

f 10

mf 8

mp 7

P 5

PP 4
PPP 3

It's recommended that you not use volume levels above

12, because they can cause notes to distort. If the sheet music

does not specify a volume, do not enter a VOL command. The

default volume level of 8 (mf) will then be used.

Measures. Notes are organized into groups called mea

sures. Measures help the performer keep in time with other

players and are convenient when trying to locate a particular

note in a song.

Figure 8-7. Measures

jjJJiJJJJ
first measure second measure

258

Chapter 8

To help keep your place in a voice, measure markers are

available with the MS# command. This command is entered

with a number ranging from 0 to 999.

Measures in sheet music usually are not numbered, so

you'll have to number them yourself. Start at the first measure

and write the number 1 above it. Number the next measure 2,

and so on, for the length of the song. Then, before you enter

the notes for each measure, enter the appropriate measure

marker.

Measure markers have no effect when a voice is played

and are used strictly for editing purposes. The use of measure

markers is optional but recommended, especially in longer

songs.

To enter measure numbers from the editing screen, press

the function key f7. The Editor enters the next measure

marker, using the number one greater than the previous

marker. If the last measure entered was 3, pressing (7 enters

MS# 4. This allows you to enter measure markers without go

ing to the special option screen and without typing numbers.

The usual procedure when entering a sequence of mea

sures is to go to the special option screen to set the starting

measure number, and then to use f7 to enter successive mea

sure markers.

The real advantage in using measure markers is that the

Editor can search for a specific measure marker and move to

that point in the voice. This is like moving to the beginning or

end, except that now you can quickly move to any location in

the voice.

To search for a measure, press the f5 key when in the

editing screen. The free memory display changes to a prompt

asking for a measure number. Enter the number. The Editor

searches the voice from the beginning until it finds the re

quested measure. If the measure is found, the Editor moves to

that marker. If the Editor does not find the measure before it

reaches the end of the voice, the Editor simply moves to that

position.

If you hit the f5 key accidentally and don't notice the

measure number prompt, the joystick and keyboard may seem

to be locked up. To recover, just press the RETURN key to
cancel the search.

259

Chapter 8

Function Key Summary

At this point it might be good to review the uses of the func

tion keys.

fl If in editing screen, return to main menu.

If in special options screen, return to editing screen.

£3 Go to special option screen.

f5 Search for measure.

f7 Enter next measure marker.

(2 Move to beginning of voice.

£4 Move to end of voice.

(Note: Figure 8-9 is a cut-out that you can place over the

functions keys, and is located at the end of this chapter.)

Entering a Melody

Now that you know something about how the Editor works,

how about trying to enter a short song? Just follow this step-

by-step example, and you'll have one. Use the sheet music

shown as Figure 8-8.

Figure 8-8. Blues

M.M.180

260

Chapter 8

Make sure the Editor is on your screen. Erase the entire

voice by moving to the beginning (function key f2) and using

SHIFT-CLR/HOME.

The sheet music indicates a tempo of M.M. 180. Go to the

special option screen (function key f3) and move to the TEM

command. Press the joystick button and type 180, but do not

press RETURN. Since you're going to enter a second com

mand, press SHIFT-RETURN instead. This prevents the dis

play from returning to the editing screen when the command

is entered.

No volume level is specified, so ignore setting the volume

with a VOL command. When the voice is played, the default

level of 8 will be used.

You're almost ready to enter the first measure, so move

down to the MS# command (the fastest way to get there is to

push the stick up and wrap around to the bottom), press the

button, and enter the number 1. You can press RETURN this

time, because you won't be entering any more commands.

One last thing you need to do before entering notes is set

the key. The song is written in the key of G, shown by the key

signature displaying one sharp. Select the key of G by pushing

SHIFT-+ until the key signature display indicates one sharp.

Select the quarter note duration and enter the first four

notes. They are G5, G5, D5, and E5. You've just entered the

first measure.

Press the function key (7 to enter the command MS# 2

(beginning the next measure). Type in the next four notes.

You'll notice that because of the current key, the F-sharp is

automatically selected for the last note instead of F-natural.

Measure 3 begins with a quarter rest. After you press il

for the next measure marker, press the R key to turn on the

rest mode. The rest will be entered when you press the but

ton. The rest mode will still be on, though it's canceled when

you move down to enter the note E5.

Measures 4 and 5 are pretty straightforward. Measure 6,

however, is different. The notes are eighth notes, not quarter

notes, so you'll have to change the duration. The last of these

eighth notes has a sharp symbol by it, changing the pitch for

that note from C-natural to C-sharp, so you'll have to press

the + key to select the sharp.

You may also notice that this measure plays for only two

beats, instead of the usual four beats. The fraction 2/4 shows

261

Chapter 8

a change in time signature, an advanced topic which is ex

plained later.

Measure 7 and the following measures are back in 4/4

time. Remember to change the duration back to a quarter note.

The notes in measure 8 are followed by ties, so press the

/ key to turn on the tie mode before you enter each note.

The last measure, the ninth, should be easy since it con

tains only one note. Once this note has been entered, the

voice is ready to be played.

Error Checking

Sometimes a few mistakes may be made when entering a

song. The Editor can find some, like the use of a sixteenth

note in a tempo that does not support sixteenth notes, but it

cannot find others, such as wrong pitches. Fortunately, the

Editor has some features that make it easy to track down mis

takes and correct them.

Autostop. If you're playing a voice and the Editor stops

with the ILLEGAL DURATION error, the Editor points to the

note which caused the error. This means that when you switch

to the editing screen, the notes move so that the one with the

illegal duration appears in the box.

Manual stop. Playing can also be stopped at any time by

pressing the f7 key. When you then go to the editing screen,

the note in the box will be the one playing at the moment you

hit the key. This feature can be convenient when you're play

ing a song and you hear a "bad" note.

If you press any key other than f7 while a song is playing,

the playing stops, but the Editor leaves the voice alone and

doesn't move to the note being played.

Fast forward. Another feature is a fast forward mode.

This can be useful when you're entering a long song. Perhaps

the beginning of the song plays fine, but some later parts need

work. When you choose PLAY from the main menu, playing

always starts at the beginning of the song. There's no way to

start somewhere in the middle.

With the fast forward mode, you still have to start at the

beginning, but you can make it play much faster. If you hold

the joystick button down while playing a song, the song plays

at three times the normal speed. Playing will return to normal

as soon as you release the button.

262

Chapter 8

Slow down. A slow mode is also available. If you let go

of the button and push the stick in any direction while playing

a song, it slows down to one-third normal speed. Use this fea

ture when you want to listen carefully to a sequence of com

plicated notes.

Saving the Music

Select this item from the main menu when you want to save a

music file to tape or disk. It's a good practice to save your

work frequently.

The Editor asks if you want to change the old text lines.

The text lines are displayed in the window at the bottom of

the main screen. If you've just entered a new song, there will

be no text lines, so press the Y key to enter new ones.

The text lines are used to give the title of the song, to

identify the composer, and to credit the person who entered

the song. Up to four lines of text are allowed. The standard

format for the text lines is one or two lines for the title, one

line for the composer, and one line for the acknowledgment.

Enter the lines one at a time. Each can hold up to 32

characters. If you don't need all four lines, press RETURN to

enter a blank line.

After the text lines have been entered, the Editor requests

a filename. Enter one up to 12 characters long, then press RE

TURN. Do not include the .MUS extension as part of the

filename. If you're saving to disk, be sure to choose a filename

not already in use. If you're saving to tape, note the exact

filename used and the counter number where the SAVE be

gins. The program will not prompt you to press the PLAY and

RECORD buttons.

The saving begins once the filename has been entered.

When the SAVE is completed, the Editor clears the main menu

and waits for your next instruction.

Disk drive errors such as FILE EXISTS and DISK FULL

are not reported by the Editor. Always check the red drive

light after a SAVE to make sure that it isn't flashing. The only

error that the program does report is DEVICE NOT PRESENT,

which can happen if the drive is turned off. If this error does

occur, press any key to acknowledge it, turn the drive on, and

try again. This time, however, you won't have to change the

text lines.

To cancel a SAVE, press only RETURN in response to the

filename prompt.

263

Chapter 8

Loading a Song

This main menu item is used to load a music file from tape or

disk into memory. Type the filename of the desired file

(excluding the .MUS extension), and press RETURN. Tape

users will not be prompted to press PLAY. The Editor loads

the song, replacing the one currently in memory.

Note that loading a song erases the one in memory. If you

want to preserve the song currently in memory, save it to disk

or tape before loading a new one.

If you're using disk and the requested file is not on the

disk, the Editor will report the FILE NOT FOUND error.

If you're using tape and enter an incorrect filename, or if

you position the tape past the beginning of the data, the pro

gram will fail to locate the song. If you believe you entered a

filename that is on the tape, but the program fails to find the

song, stop the tape and rewind it to a position before the

beginning of the data and press PLAY again. The only other

way to recover from an incomplete LOAD from tape is to turn

the computer off, reload the Editor, and start over.

After the song is loaded, the text lines in the window are

updated. The Editor is ready for you to select another item.

If you accidentally choose LOAD, don't type a filename

and just press RETURN. The song in memory will not be

erased.

What's on the Disk?

This prints a disk directory on the screen. The names of all

files with the .MUS extension on the disk are listed in two col

umns. Printing the directory is useful when you want to check

if a filename is already in use or if you want to see how many

blocks are free.

The Editor won't let you choose this item if you're using

the Datassette (assuming you changed DN=8 to DN=1 as

you should have).

Using All Three Voices

You've seen how to enter, edit, and debug one complete voice.

But as you know, Sidplayer can play up to three voices at the

same time. To access the other two voices, press the 2 or 3 key

after choosing EDIT from the main menu.

The voices are completely independent. Editing done on

one voice does not affect the others. For instance, you can add

264

Chapter 8

some notes to voice 2 and completely erase voice 3, but when

you return to voice 1, you'll find it unchanged.

When it comes to playing, however, the voices are not en

tirely independent. Multiple voices must share the same tempo

and master volume. The TEM and VOL commands can be

used on any voice, but they affect all three. If the tempo is set

on voice 1, voices 2 and 3 use that same tempo. It's not pos

sible for one voice to play at one tempo while another voice

plays at another. The same idea applies to the master volume.

When you choose PLAY from the main menu and press

RETURN, the Editor plays all three voices. If one of the voices

runs out of notes before the others, that voice stops but the

others continue.

It's possible to play individual voices. Instead of pressing

RETURN after choosing PLAY, press the Y or N key for each

voice. The Editor plays only those voices which were selected

by pressing the Y key.

One problem with playing individual voices involves

tempo. If the TEM command is used only on voice 1, and

voice 1 is not played, the tempo will not be set for the other

voices.

When you save or load a file, all three voices are saved or

loaded, even if some of the voices are empty.

To clear all three voices at once, press the 2 key in the

main menu to select EDIT, then press SHIFT-CLR/HOME.

Program 8-3 is an enhanced version of the blues rhythm

given earlier. Voices 2 and 3 are used to add bass and percus

sion parts. You may wish to load this song into the Editor and

examine the individual voices. Voice 1 should be identical to

the voice in the earlier demonstration. Voices 2 and 3 use ad

vanced commands explained in later chapters.

Program 8-3 ♦ BLUES

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49403

Filename: BLUES.MUS

49152 :090,000 ,054,000,072 ,000 , 216

49158 :006,080,030,001,016,149,032

49164 :016,149,016,146,016,147,246

49170 :030,002,016,149,016,149,124

49176 :016 ,149,016 ,084,030,003 ,066

265

Chapter 8

49182 :016,000,016,147,016,159,128

49188 :016,146,030,004,016,147,139

49194 :016,147,016,147,016,146,018

49200 :030,005,016,145,016,145,149

49206 :016,157,016,158,030,006,181

49212 :020,145,020,145,020,145,043

49218 :020,081,030,007,016,146,110

49224 :016,146,016,158,016,159,071

49230 :030,008,080,146,080,145,055

49236 :080 ,159 ,080 ,158,030,009 , 088

49242 :012,157,012,000,001,079,095

49248 :006,080,001,071,001,012,011

49254 :001,160,001,132,001,008,149

49260 :030,001,054,016,020,173,146

49266 :001,015,030,003,054,016,233

49272 :020,171,001,015,030,005,106

49278 :054,011,020,169,001,015,140

49284 :020,105,030,007,054,016,108

49290 :020,170,001,015,030,009,127

49296 :012 ,181,012 ,000 ,001,079 ,173

49302 :006,080,001,007,001,004,249

49308 :001,096,001,132,001,104,235

49314 :038,001,030,001,001,006,239

49320 :016,000,016,141,016,000,101

49326 :016,141,016,000,020,141,252

49332 :020,141,020,000,020,141,010

49338 :020,141,020,000,001,047,159

49344 :030,003 ,001,002 ,030,005 ,007

49350 :016,000,016,141,016,000,131

49356 :016,141,030,006,020,000,161

49362 :020,141,020,141,020,141,181

49368 :030,007 ,001,002 ,001,079 ,080

49374 :066,076,085,069,083,013,102

49380 :067,082,065,073,071,032,106

49386 :067,072,065,077,066,069,138

49392 :082,076,065,073,078,013,115

49398 :013,013,000,013,013,013,055

Keyboard Note Entry

The Editor has been designed to use the keyboard, as well as a

joystick, for note entry. If you prefer to use the keyboard, or if

you just don't have a joystick, follow these instructions.

• Press a letter key from A to G. The current note name will

change to that letter.

• To change the octave, press a digit key from 0 to 7.

• The duration can be set by pressing one of the following

keys:

266

Chapter 8

W Whole

HHalf

Q Quarter

8 Eighth (E is used for a note name)

S Sixteenth

T Thirty-second

• Press the period (.) key if you want a dotted note. Press the

key again to cancel the dot.

• Press the RETURN key to enter a note. This is like pressing

the joystick button.

• In the special options screen, use the letters 7, /, K, and M to

move the box up, left, right, or down. Press RETURN to se

lect a command.

Complete Joystick Editing

If you prefer to use only the joystick to edit, you can. Many of

the things done with the keyboard can also be done with the

joystick.

Accidentals, rests, and ties can be selected; the joystick

can also be used to change the current key and to scroll the

notes. But before any of these things can be done, you must

first change the levels.

To move from the main level to a different level, press the

joystick button and hold it down while you push the stick up

or down. The different levels of the screen are highlighted, in

order. Release the button to stop on a particular level.

Once you're in a level and have released the button, push

the stick left or right to change whatever that particular level

controls. For example, if you end up on the level which dis

plays the current key, all the keys will be shown when you

push the stick left or right. When you come to the key that

you want, press the button to return to the main level.

On the accidental level, the flat, natural, and sharp sym

bols can be selected one at a time. Wraparound is supported,

so if the current accidental is flat, pushing the stick left will

switch to sharp. Again, press the button to return to the main

level.

The level for selecting a rest or tie works a little dif

ferently. As soon as you push the stick left (for rest) or right

(for tie), that feature is selected and the Editor automatically

returns to the main level. To turn off the rest or tie mode,

move to this level and select rest or tie again.

267

Chapter 8

Move to the bottom level and push the stick left or right

to scroll the notes. Be aware that keyboard items, including the

INST/DEL key, do not work when you're in this level. Press

the button to return to the main level.

Leaving the Editor: QUIT

When you're done with the Editor, choose QUIT from the

main menu. The prompt CONFIRM? appears. Press the Y key

to return to BASIC, or press N to continue editing.

The RUN/STOP key has been disabled for your protec

tion, so you cannot press this key to stop the program. Press

ing RUN/STOP-RESTORE will not work either.

One final word of caution: Remember to save your work

before you choose QUIT.

This concludes the description of the Sidplayer Editor.

You should now be able to enter, edit, and debug a simple

piece of sheet music. Music stores and libraries offer a wide

variety of classical and contemporary sheet music that will

give you plenty of practice.

Once you feel comfortable with the Editor, you may wish

to move on to the advanced features explained in the follow

ing chapters.

268

Chapter 8

Figure 8*9. Function Key Cutout

SIDPLAYER

UNSHIFTED SHIFTED

1.

MAIN

MENU

3.

SPECIAL

OPTIONS

SCREEN

5.

MEASURE

SEARCH

7.

MEASURE

MARKER

2.

BEGINNING

OF

VOICE

4.

END

OF

VOICE

269

Chapter 9

Making Music

Waveforms

The timbre of a sound is what distinguishes a middle C played

on a saxophone from a middle C played on a cello. The main

thing that controls a sound's timbre is the type of vibration

which produces the sound. There are a few basic types of

vibrations, or waveforms. These types are named according to

their shape when viewed with an oscilloscope.

Triangle waves (Figure 9-1) produce soft, mellow tones.

The flute is an example of an instrument which produces tri

angle waves.

Figure 9*1. Triangle

Figure 9-2 shows a waveform for a bright, buzzy tone.

Brass instruments produce waves that are basically sawtooth

waves. (This is sometimes called a ramp waveform.)

Figure 9*2. Sawtooth

Figure 9-3 illustrates a square wave. This waveform

sounds rich and hollow, and can be heard from the clarinet.

271

Chapter 9

Figure 9*3. Square

(__ pulse width -|

The pulse wave alternates between high and low states.

The amount of time during one cycle that the wave is high is

called the width, or duty cycle, of the wave. Square waves have

a pulse width of 50 percent. When the width is reduced, the

wave becomes more rectangular. The waveform shown in Fig

ure 9-4 might be produced by an oboe or bassoon.

Figure 9*4. Rectangular

Pulse waves with a very narrow pulse width sound thin

and reedy. Pulse waves with widths greater than 50 percent

sound just like pulse waves with widths less than 50 percent.

For example, a pulse wave with a 40 percent width sounds the

same as a pulse wave with a 60 percent pulse width.

Figure 9*5. More Rectangular

272

Chapter 9

Another type of waveform has no definite shape because

it's completely random. It's called noise (Figure 9-6) because it

is the waveform associated with white noise, the sound you

hear when a television station goes off the air. Noise is useful

for producing percussion effects, such as snare drums.

Figure 9*6. Noise

Another useful waveform, the sine wave, unfortunately is

not supported by the SID chip.

The waveforms introduced here are just the basic types.

Actual instruments produce more complicated waveforms that

may not conform exactly to one of these types.

Setting the waveform. The special option screen in the

Editor has a row of commands which pertain to waveforms.

Three of these commands are introduced in this chapter. The

first command, labeled WAV, is used to select the waveform

for a voice.

When you press the joystick button to choose the WAV

command, the window in the upper-right corner displays

some extra information. The desired waveform has to be

specified in the form of a number, so the window shows you

the number for each waveform.

0 N Noise

1 T Triangle

2 S Sawtooth

4 P Pulse

After you type the number and press RETURN, the com

mand which appears in the box displays the letter instead of

the number.

Each of the three voices can have its own waveform.

Try changing waveforms. Load Program 8-3, "BLUES,"

from the Editor and play voice 1 with various waveforms.

Pulse width. If you choose the pulse waveform, you may

also want to use the P-W command to set the pulse width.

273

Chapter 9

The numeric range for this command is from 0 to 4095, with

2048 being a perfect square wave. Values smaller or larger

than 2048 produce rectangular waves.

As you approach the limits of 0 or 4095, the waves be

come so narrow that the volume begins to decrease. The pulse

wave is inaudible when the pulse width is set to 0 or 4095. In

most cases, only width values from 100 to 4000 are used.

Try playing a voice with different numbers for the P-W

command to hear the effects of the various widths. Just as

each voice has its own waveform, each voice also has its own

pulse width. Changing the pulse width for one voice will not

affect the others.

Pulse width sweeping. An advanced feature of Sidplayer

is that it can change the pulse width during a note. When this

feature is turned on, the pulse width starts at the specified

value, but increases or decreases for the duration of the note.

The width is then reset back to the specified value at the

beginning of the next note.

The effect of pulse width sweeping is to add a sense of

motion to the sound. A common way to use sweeping is to set

the pulse width at 2048 and have it increase slowly so that the

sweeping is barely noticeable. Another technique is to set the

pulse width at 1000 and have it increase rather quickly. You'll

hear the sound go from a rectangular wave to a square wave

as the width reaches 2048, and then back to a rectangular

wave as the width continues to increase.

The P-S command controls pulse width sweeping. Values

from 1 to 127 turn on the sweeping. The larger the value, the

faster the width increases. Values from — 1 to —127 do the

same thing, except that they cause the width to decrease. Try

10 for starters. Using the number 0 with the P-S command

turns off the sweeping.

If the pulse width is allowed to sweep past 4095, it wraps

around to 0. The same thing happens if the width is decreas

ing and sweeps past 0. When the width wraps around, the ef

fect on the tone is quite noticeable and usually isn't desirable.

In most cases the wraparound can be avoided by changing the

values for the pulse width, the sweep rate, or the direction.

One interesting use of pulse width wraparound is to set

the sweep rate at 127, the maximum value. This produces a

raspy tone.

If one note is tied to another note, the pulse width is not

274

Chapter 9

reset when the second note starts playing. The sweeping

continues with no break.

When you turn sweeping off with the command P-S 0,

the pulse width won't be reset to the specified value at the

beginning of the next note. If you want the pulse width to be

reset, use the P-W command to set the width again.

Here is a list of the default waveform settings.

WAV P

P-W 2048

P-S 0

This gives you a square wave with no sweeping. That's

the type of waveform used if none of the waveform com

mands are placed at the beginning of a voice.

Waveform demonstrations. To close this section, here are

two demonstration programs. The first one uses triangle, saw

tooth, and pulse wave settings. The second one uses only the

pulse wave, but with different pulse widths, plus the use of

sweeping.

Program 9*1. FSONATINA.MUS

To enter this program, you must use "The Machine Language Editor (MLX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 50675

Filename: FSONATINA.MUS

49152 : 238,002 , 234,001, 200,000,163

49158 :006,096,001,174,012,000,039

49164 :001,044,001,096 ,001,228,127

49170 :001,120,001,039,054,002,235

49176 :038,003,016,148,020,148,141

49182 :020,148,088,148,088,147,157

49188 :088,146,088,145,088,223,046

49194 :088,158,088,157,088,156,009

49200 :038,005,020,155,020,156,186

49206 :020,157,020,158,080,145,122

49212 :020,223,038,003,020,000,108

49218 :030,001,001,228,016,149,235

49224 :020,149,020,149,088,149,135

49230 :088,148,088,147,088,146,015

49236 :088,145 ,088 , 223 ,088,158,106

49242 :088,157,038,005,020,156,042

49248 :020,155,020,156,020,157,112

49254 :038,003,016,158,030,001,092

49260 :001,118,088,145,024,158,130

49266 :088,145,088,158,020,156,001

275

Chapter 9

0
0
0
,

0
6
6
,

0
0
5
,

0
3
0
,

:
0
1
6
,

2
1
1
,

0
2
0
,

2
1
1
,

0
2
0
,

2
1
1
,

:
0
1
6
,

1
4
5
,

0
8
8
,

1
4
6
,

1
5
7
,

0
8
8
,

1
5
8
, COCO GO00

2
1
1
,

2
2
3
,

:
0
8
8
,

:
0
8
8
,

1
5
4
,

0
2
0
,

2
1
9
,

0
8
8
,

1
5
6
,

:
0
8
8
,

1
5
4
,

0
2
0
,

2
1
9
,

0
8
8
,

1
5
4
,

0
1
6
,

2
1
9
,

0
8
8
, roro inin fHfH

:
0
8
8
,

:
0
8
8
,

0
0
0
,

1
3
0
,

0
0
6
,

0
3
0
,

0
0
0
,

:
0
1
6
,

2
1
1
,

1
4
6
,

0
2
0
,

0
0
8
,

2
1
9
,

0
8
8
,

1
5
4
,

0
2
0
,

0
8
9
,

:
0
8
6
,

:
0
8
8
,

1
5
8
,

0
8
4
,

1
5
4
,

0
2
0
,

0
8
9
,

:
0
8
8
,

2
3
1
,

1
5
3
,

0
8
4
,

0
9
2
,

:
0
8
4
,

2
3
1
,

0
2
0
,

,
1
5
3
,

0
8
8
,

1
6
6
,

:
0
8
8
,

2
3
1
,

0
1
6
,

1
5
3
,

0
8
8
,

1
6
6
,

:
0
8
8
,

1
4
5
,

1
4
5
,

,
0
2
0
,

0
0
7
,

0
3
0
,

0
0
0
,

:
0
1
6
,

,
0
2
0
,

1
4
6
,

0
8
8
,

1
5
9
,

:
0
8
8
,

1
4
5
,

,
0
2
0
,

,
1
4
6
,

,
0
8
8
,

1
5
9
,

:
0
8
8
,

2
2
3
,

2
2
3
,

,
0
8
4
,

,
1
4
7
,

,
0
8
4
,

1
4
9
,

:
0
8
4
,

,
0
8
8
,

,
1
5
7
,

,
0
8
8
,

1
5
8
,

:
0
2
0
,

2
2
3
,

,
0
8
8
,

,
1
5
7
,

,
0
8
8
,

1
5
8
,

:
0
2
0
,

0
0
0
,

,
0
8
6
,

,
0
0
8
,

,
0
3
0
,

1
5
8
,

:
0
1
2
,

1
4
6
,

,
0
8
4
,

,
1
4
8
,

,
0
8
4
,

2
2
3
,

:
0
8
4
,

1
5
8
,

,
0
8
4
,

,
1
5
7

,
0
1
2
,

1
5
8
,

:
0
8
4
,

1
5
7
,

,
0
8
4
,

,
0
8
1

,
0
8
4
,

1
4
7
,

:
0
8
4
,

1
5
6
,

,
0
8
4
,

,
0
0
0

,
0
2
0

1
5
6

:
0
1
2
,

1
4
8
,

,
0
2
0
,

,
1
5
9

,
0
8
4
,

1
4
6
,

:
0
8
4
,

1
4
8
,

,
0
8
4
,

1
4
0
,

,
0
8
4
,

1
4
6
,

:
0
8
4
,

1
3
8

:
0
2
0
,

1
5
1
,

,
0
8
4
,

,
1
3
7

,
0
8
4
,

1
3
8

:
0
8
4
,

1
3
7
,

r
0
2
0
,

,
1
5
1

,
0
8
4

1
5
0

:
0
8
4
,

1
4
9
,

,
0
0
9

,
0
3
0
,

0
0
0

:
0
2
0
,

^^•^^•^^^inininininininininininininininininvovovovovovovo
ONOnONONONOnONOnONOnOnONONONGnONONOnONOnONOnONGnONONONOnOnOnON

CO
in

rH

CM

ON

Gl

Gl
Gl

<?
G)
Gl

ON

G*

CM

CM

00
in

pH

CM

ON

Gl

VO
in

Gl
Gl

r^

in

fH

Gl
CM

IS

CM

fH

CN

rH

G>
IS

VO
in

rH

G>
CM

G>

in

fH

Q

CM

Gl

00

•H

00
00
G>

in

rH

CM

Gl

00
^*

00
00

Gl
Kl

Gl

IS
Gl

00
in

rH

G>
CM

Gl

in

^*
rH

00
00
Gl

CO
in

rH

G>
Gl

ro

CM

CN

G)
CM

G)

in

^*
rH

CM

ON

00
in

rH

IS
in

rH

G) 00
CM

Gl

ro

CM

CM

ft
CM

G*

in

tH

CN

ON

CO
Gl

00
CM

CN

rH

G>
Gl

ro

G>
Gl

Gl
ro

Gl

00

rH

00
CO
Gl

G>
in

rH

00
00

CO

rH

CN

Gl

tH

00
G>

00
CO
IS

vo

rH

Gl
CM

Gl

VO

rH

IS

CM

Gl

00

pH

CO
00
G>

p^

tH

00
00
Gl

VO

rH

00
00
Gl

Gl

pH

G>
Gl

ON

^*
fH

Gl
CM

G>

ON

^*
rH

Gl
CM

IS

ON

rH

CO
00

G>
in

r-4

00
00

CM

Gl
G>

G>
ro

Gl

fH

00

G)

00
00

G)

r^

rH

00
00
Gl

00

fH

00
00

Gl

VO

rH

00
00
G)

rH

00
Gl

00
00
G>

VO

rH

H

ON

rH

00 GO
CO
Gl

VO

rH

CO

CO
Gl

in

rH

CO
CO 00
Gl

rH

00
G)

CO 00
00 00

G>

Gl

CO

rH

00
00
Gl

G>
in

rH

CO
00
GJ

ON

rH

00
00
Gl

Gl
in

rH

00
00
G>

^*
rH

CO
00
G)

00

rH

00
00
G)

ON

<*
rH

00

00
IS

00
"^
rH

§
GS

rH

00
00
Gl

VO

*4«
rH

00

Gl

in

rH

Gl
CM

G)

ON
in

rH

Gl
CM

G)

in

rH

Gl
CM

Gl

tH

00
Gl

<tf
CM

®

in
•^

iH

^
CN

Gl

ON

in

rH

CN

G>

r^

CM

Gl

CM

00
Gl

^

CM

Gl

VO

^*
rH

^.

CM

Gl

in

tH

Gl

»H

Gl
Gi

rH

Gl

rH

Gl
Gl

CM

rH

Gl
Gl

Gl

Gl

IS

ro

rH

in

ro
rH

rH

G>
Gl

<?
G)
Gl

Gl
ro

Gl

00

rH

Gl
CM

Gl

CO
^*
i-i

Gl
CM

Gl

00
^

rH

VO
rH

Gl

VO

rH

GO
00
<S

r>

^*

f-i

00
CO
Gl

00
^*
t-i

00
00
Gl

CO
in

rH

00
CO
Gl

ro

CM

CM

00

ON
rH

CM

Gl
CM

Gl

VO
in

rH

00
GO 00
G>

in

rH

CO

Gi

r^

in

rH

CO
00 00
Gl Gl

ON

CM

G)
CM

Gl

VO
in

rH

00
00
Gl

in

-

CO
00
Gl

ON

CM

vo
t-\

Gl

VO
in

00
00
Gl

in

fH

CO
00
is

276

Chapter 9

SSSls>(a'ain<vlwH(N)<N)N(nojtNHNNNmN
TO

^<S<S®*STOG>TOTOTOTOTO

^t^«^«^^t5t^Kj«^^5t(ainoNONG>vovoinG)voinvooroG>ono

VO rHC0^5*^ O^^VO*^^VO^^VOiH

rH

CO

rH

CO CO
CO
TO

ON

rH

CO
00

CO
TO

TO
TO
TO

TO
CM

TO TO

rH

CO
CO
TO

in

rH

IS
CM

TO

ON

rH

CO
CO
TO

^

CO

rH

00
CO
TO

ON

rH

CO
CO
TO

ON

CO

rH

00
00
TO

TO
TO
TO

TO
CM

TO

r^

rH

TO
CM

TO

CO

rH

CO
CO

ON

CO

rH

CO
00
G)

j^

CO

H

CO
00
G>

TO

rH

CO

TO

CO
CO

rH

<tf

CO

TO

in

rH

TO
CM

TO

IS

TO

G>
CM

G*

,>,

CO

"-•

TO
CM

TO

^

in

CO
TO

CM

in

CM

^

TO
TO

ON

CO

TO

rH

G>
TO

<?
["»*

rH

rH

TO
TO

CO
CO

-

CO
CO
TO

in
,—1

CM

CO
CO
TO

CO
CO

rH

CO
00
TO

TO
G>
TO

TO
CM

G>

ON

rH

TO
CM

IS

in

rH

CM

00
CO
TO

m
rH

CM

CO
00
TO

ON

rH

CO
00
TO

in
r-|

CM

CO
CO
TO

TO
TO
G>

TO
CM

TO

r>

rH

TO
CM

TO

ON

rH

00
CO

TO

ON

^*

•-•

CO
00
TO

(^

rH

CO
00
TO

ON
^

rH

CO
CO
TO

TO
pH

TO

TO
CO

TO

in

^*
rH

TO
CM

TO

^

CO
CO
TO

,_,

f>»

TO

,_,

TO
TO

CM

^*

■"■•

rH

TO
TO

G>
IS

TO

TO
CM

TO

CO
CO

•-*

in

rH

CM

00 CO
CO

TO

rH

•"■

rH

TO
TO

CO
CM

CM

rH

TO
TO

00
TO

CO
CO

•"•

00
00
TO

in

rH

CM

<3*
CM

TO

TO
in

•"*

00
00

TO

ON
^

00
00
IS

TO
m

rH

CO
00
TO

ON

•■*

CO

CO
CO

CO

GO CO
TO

CO
TO

CO
CO
TO

ON

-

CO
CO
TO

TO

in

rH

CM

CO

CO

•"*

00
00
TO

CO
CO

00
00 00
TO

TO

TO

1^

in co

(H

00
00

rH

CO
CO

TO TO

ON

rH

CO
CO

TO

TO
in

<H

00
00
TO

in

rH

CM

00
CO

TO

TO
in

CO
GO
TO

ON

rH

CO
TO

GO

rH

CM

TO

(^

^*
rH

TO
CM

TO

CO

rH

TO
CM

TO

in

rH

CM

CO
CO

in

CO

rH

TO

CO

TO

TO
CO

TO

CO

•H

TO

00

•H

TO
CM

TO

TO
in

■H

TO
CM

TO

CM

CM

TO
cm in

TO TO

in

^*

•-*

TO
CM

TO

in

rH

VO

TO

VO

rH

TO
CM

TO

VO

rH

TO
CM

TO

00
<*
rH

TO
CM

TO

TO
in

rH

TO
CM

TO

TO
in

rH

TO
CM

TO

in

rH

TO
CM

TO

in

rH

vo

TO

00

rH

CM

TO

ON

rH

*t
CM

TO

rH

TO
TO

00
CO

TO

in

rH

CM

G)

VO

rH

CM

TO

^

rH

CM

TO

277

Chapter 9
1
6
4
,

1
5
3
,

0
2
0
,

1
6
3
,

0
8
4
1

1
6
4
, GO0

8
4
,

0
7
1
,

0
0
1
,

0
0
8
,

:
0
3
0
,

1
6
2
,

0
1
2
,

1
6
3
,

0
8
4
,

1
6
6
, GO

1
6
5
,

0
8
4
,

2
3
1
,

0
8
4
,

1
6
3
,

:
0
8
4
,

1
6
2
,

0
8
4
,

0
9
7
,

0
1
2
,

1
6
2
,

:
0
8
4
,

1
6
1
,

0
8
4
,

1
6
4
,

0
8
4
,

1
6
6
,

:
0
8
4
,

0
0
0
,

0
0
8
,

-
0
0
0
,

,
0
1
6
,

1
7
5
,

:
0
1
6
,

0
0
9
,

0
3
0
,

0
0
0
,

0
1
6
,

1
5
6
,

:
0
1
6
,

1
5
7
,

0
2
0
,

,
1
5
5
,

,
0
2
0
,

0
0
0
,

:
0
8
6
,

1
5
5
,

0
2
0
,

r
l
5
7
,

,
0
2
0
,

1
5
5
,

:
0
2
0
,

1
5
7
,

,
0
2
0
,

,
1
5
5
,

,
0
2
0
,

1
5
7
,

:
0
2
0
,

1
5
5
,

0
2
0
,

,
1
5
7
,

,
0
2
0
,

1
5
5
,

:
0
2
0
,

1
5
7
,

,
0
2
0
,

r
l
5
6
,

,
0
2
0
,

1
5
7
,

:
0
2
0
,

,
0
2
0
,

r
l
5
7
,

,
0
2
0
,

1
5
6
,

:
0
2
0
,

,
0
2
0
,

r
0
3
9
,

,
0
0
1

0
0
0

:
0
4
8
,

0
0
0
,

,
0
4
8
,

,
1
5
7
,

,
0
2
0
,

0
0
0

:
0
4
8
,

0
7
1
,

,
0
0
1
,

r
0
0
0
,

r
0
4
8

1
5
3
,

,
0
1
6
,

,
1
6
7
,

r
0
7
6

COCN CNVO CNfH
:
0
2
0
,

:
0
0
1
,

1
5
6
,

r
0
1
6
,

r
!
5
5

r
0
7
6

0
0
0

:
0
1
6
,

2
3
1
,

r
0
0
0
,

,
0
2
0

0
0
0

:
0
1
6
,

1
6
4
,

,
0
1
6
,

r
1
6
1

r
0
2
0

1
5
3

:
0
2
0
,

0
0
0
,

r
0
1
6
.

r
0
3
2

r
0
5
0

1
3
5

:
0
0
1
,

1
5
5
,

r
0
8
4
,

r
0
1
6

r
0
8
6

0
0
0

:
0
2
0
,

1
5
8
,

r
0
1
6
,

r
2
2
3

r
0
8
4

1
5
7

:
0
8
4
,

1
5
5
,

r
0
0
0

r
0
2
0

0
0
0

:
0
1
6
,

1
5
8
,

r
0
1
6
,

,
0
8
4

1
5
7

:
0
8
4
,

1
5
5
,

r
0
8
4
,

r
0
0
0

r
0
2
0

0
0
0

:
0
1
6
,

1
5
7
,

r
0
8
4
.

r
2
2
3

r
0
8
4

1
5
7

:
0
8
4
,

2
2
3
,

r
0
8
4
.

r
l
5
7

r
0
8
4

1
5
5

:
0
8
4
,

1
5
7
,

r
0
1
6
,

,
0
0
0

P
0
1
6

1
5
8

:
0
1
6
,

0
0
0
,

r
0
1
6
,

,
1
5
6

r
0
1
6

0
0
0

:
0
1
6
,

CNOO^GlVOMCO^tGiVOCNOO^GJVOCNCO^GlVOCNOO^GlVOCNCO^GJVOCN

GiGJrHCNCNrnco^u^invovor^ooac^ONGi^rHCNCNro^^ininvo^r^co
CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNrOCOC0<O(^C0COCOC0n<O<^r0CO

G}G)G)G}G)G)G)G)G)G)G}G)G}G)G}G}G)G) G) G)G)G)G)G)G)G}G)G)G)G}G}
in

G)HnOVOOG>^G)VOO00G)00G>
CNrHCNCNrHrHfHG)rHCNCNCNG)rHG)CNG)rHG)G>G}G}rHrHfHfHrHrHrHfHrH

•H

CO

CN

<t
CN

TO

CO

in
fH

<t
CN

TO

VO
VO
rH

CO

in

rH

^

CN

IS

VO
vo
tH

^

CN

IS

CO

in

tH

vo

vo
tH

CN

TO

CO

in

tH

^

CN

TO

rH

CO

CN

vo
rH

CN

TO

TO
IS
TO

vo
rH

TO

CO

in

rH

CO

in

rH

CN

vo
fH

CN

IS TO

CO

vo in

fH

CN

TO

CO

fH

CN

TO

in

in vo
tH tH

CN

CO

in

rH

CN

IS

in

vo
fH

<?
CN

TO

CO

in

tH

CN

CO

IS

TO

is
CO

is

CO

in

rH

^
CN

TO

VO
rH

VO
rH

VO
[*-»

G)

^
TO

rH

TO
IS

TO
TO
TO

CO

in

rH

CN

rH

G>

VO
rH

VO

TO

CO

in

rH

VO
rH

<?
GO
IS

in

TO
TO

00
CO

TO

TO
TO
TO

rH

VO
rH

VO
fH

TO

CO

-

TO
CN

TO

in

vo
fH

rH
f>.

TO

rH

TO
TO

TO
TO
TO

VO
rH

TO

CO

TO
TO

CO

in

CO

rH

rH

TO
TO

<?
TO
TO

TO
CO

TO

in

rH

TO

CN

TO
TO

<3*
in

TO

^,

tH

CN

fH

TO
TO

TO
TO
TO

CO

in

•H

<tf
CN

TO

vo
vo
rH

^
CN

TO

^
VO
fH

vo
rH

vo
rH

TO

in

rH

TO

fH

TO
TO

VO
vo
tH

tH

VO
rH

CN

TO

r^

TO

fH

TO
TO

TO
TO
TO

VO
iH

CN

TO

in

fH

<tf
CN

TO

■^t
VO
rH

in

rH

CN

TO

^*
vo
rH

^
CN

TO

fH

VO
rH

CN

TO
TO
TO

VO
rH

TO

rH

VO
tH

VO
rH

TO

<tf

VO
rH

TO
rH

CN

rH

TO
TO

TO
TO
TO

VO
VO

TO

in

TO
TO

rH

CN

TO

vo
rH

CN

TO

ON

CO

CN

vo
rH

CN

TO

ON

CO

CN

*t
CN

TO

*t
VO
rH

ON

CO

CN

VO
fH

TO

^

VO
rH

CN

TO

^

tH

CN

TO
TO
TO

TO
CO

tH

VO

TO
TO

TO
CO

TO

TO
TO
TO

<<*
vo
rH

CN

rH

TO

TO
TO
rH

VO

TO

CO

TO

CO

in

vo
iH

GO
TO

TO
TO
rH

^
00

TO

in

vo
rH

CO

in

rH

*t
00
TO

in

vo
tH

TO
CN

TO

TO
TO
rH

CO

TO
TO

TO
CO

TO

•<*
VO
rH

<?
CO

TO

rH

CO

CN

CO

ro

vo
tH

^f
cc
TO

VO
fH

<?
CO
TO

CO

VO
rH

u^u^ininu^inininininininininininininininininininij^ininininin^

278

5
0
3
8
8

5
0
3
9
4

5
0
4
0
0

5
0
4
0
6

5
0
4
1
2

5
0
4
1
8

5
0
4
2
4

5
0
4
3
0

5
0
4
3
6

5
0
4
4
2

5
0
4
4
8

5
0
4
5
4

5
0
4
6
0

5
0
4
6
6

5
0
4
7
2

5
0
4
7
8

5
0
4
8
4

5
0
4
9
0

5
0
4
9
6

5
0
5
0
2

5
0
5
0
8

5
0
5
1
4

5
0
5
2
0

5
0
5
2
6

5
0
5
3
2

5
0
5
3
8

5
0
5
4
4

5
0
5
5
0

5
0
5
5
6

5
0
5
6
2

5
0
5
6
8

:
0
1
6
,

:
0
1
6
,

:
0
1
2
,

:
0
0
1
,

:
0
0
1
,

:
0
0
8
,

:
0
0
8
,

:
0
1
2
,

:
0
0
8
,

:
0
0
8
,

:
0
0
8
,

:
0
0
8
,

:
0
0
8
,

:
0
0
1
,

:
0
1
6
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
0
1
,

:
0
2
0
,

:
0
0
8
,

:
0
5
0
,

:
0
1
6
,

:
0
1
6
,

:
1
3
0
,

:
0
1
6
,

:
0
1
6
,

:
0
1
6
,

1
5
3
,
0
1
6
,
0
0
0

0
0
0
,
0
0
1
,
0
7
9

0
0
0
,
0
0
1
,
0
4
4

2
2
8
,
0
0
1
,
1
2
0

0
3
9
,
0
5
4
,
0
0
2

0
0
0
,
0
0
8
,
0
0
0

0
0
0
,
0
0
8
,
0
0
0

1
6
3
,
0
7
6
,
1
6
4

0
0
0
,
0
0
1
,
0
7
1

0
0
0
,
0
0
8
,
0
0
0

0
0
0
,
0
0
8
,
0
0
0

0
0
0
,
0
1
2
,
0
0
0

0
0
0
,
0
0
8
,
0
0
0

0
7
1
,
0
1
2
,
0
0
0

0
0
0
,
0
0
1
,
1
3
5

1
5
3
,
0
2
0
,
0
0
0

0
0
0
,
0
2
0
,
1
5
3

1
5
3
,
0
2
0
,
0
0
0

0
0
0
,
0
2
0
,
1
5
3

1
5
4
,
0
2
0
,
0
0
0

0
0
0
,
0
2
0
,
1
5
3

0
3
9
,
0
2
0
,
1
5
3

1
5
7
,
0
4
8
,
0
0
0

0
0
0
,
0
1
2
,
0
0
0

0
3
2
,
0
7
6
,
1
6
4

0
0
0
,
0
7
6
,
2
3
1

0
0
0
,
0
0
8
,
0
0
0

0
0
0
,
0
8
6
,
0
1
6

1
5
6
,
0
1
6
,
0
0
0

0
0
0
,
0
1
6
,
1
5
6

0
0
0
,
0
1
6
,
0
0
0

,
0
4
4
,
1
6
4
,
0
9
3

,
0
0
6
,
0
9
6
,
1
6
0

,
0
0
1
,
0
9
6
,
1
2
2

,
0
3
8
,
0
0
3
,
1
0
9

,
0
0
8
,
0
0
0
,
0
8
4

,
0
0
8
,
0
0
0
,
0
1
0

,
0
7
6
,
1
6
4
,
2
4
8

,
0
1
2
,
1
6
3
,
0
7
6

,
0
0
1
,
0
1
5
,
1
0
0

,
0
0
8
,
0
0
0
,
0
3
4

,
0
0
8
,
0
0
0
,
0
4
0

,
0
1
2
,
0
0
0
,
0
5
4

,
0
0
8
,
0
0
0
,
0
5
2

,
0
1
6
,
1
6
5
,
0
4
3

,
1
3
0
,
0
0
0
,
0
6
6

,
0
2
0
,
1
5
3
,
1
5
6

,
0
2
0
,
0
0
0
,
0
0
9

,
0
2
0
,
1
5
3
,
1
6
8

,
0
2
0
,
0
0
0
,
0
2
1

,
0
2
0
,
1
5
4
,
1
8
2

,
0
4
8
,
0
0
0
,
0
6
1

,
0
4
8
,
0
0
0
,
0
8
7

,
0
0
8
,
0
0
0
,
0
6
5

,
0
0
1
,
1
3
5
,
2
5
0

,
0
1
6
,
1
6
3
,
0
8
9

,
0
1
6
,
1
6
6
,
0
9
9

,
0
0
1
,
1
3
5
,
0
1
6

,
0
1
2
,
0
0
0
,
1
0
6

,
0
1
6
,
0
0
0
,
0
7
2

,
0
1
6
,
0
0
0
,
0
7
8

,
0
1
6
,
0
0
0
,
1
8
4

,
0
0
0
,
0
1
6
,
1
5
6
,
0
1
6
,
0
0
0
,
0
9
0

,
1
5
3
,
0
1
6
,
0
0
0
,
0
1
6
,
1
6
6
,
0
0
3

,
0
0
0
,
0
1
6
,
1
4
9
,
0
1
6
,
0
0
0
,
0
9
5

,
1
7
2
,
0
1
6
,
0
0
0
,
0
0
1
,
0
7
9
,
2
1
6

,
0
7
9
,
0
7
8
,
0
6
5
,
0
8
4
,
0
7
3
,
1
1
6

,
0
6
5
,
0
3
2
,
0
7
3
,
0
7
8
,
0
3
2
,
0
1
8

,
0
1
3
,
0
7
6
,
0
4
6
,
0
3
2
,
0
8
6
,
2
4
5

,
0
7
8
,
0
3
2
,
0
6
6
,
0
6
9
,
0
6
9
,
0
5
1

,
0
7
2
,
0
7
9
,
0
8
6
,
0
6
9
,
0
7
8
,
1
4
6

,
0
6
8
,
0
6
9
,
0
7
7
,
0
7
9
,
0
7
8
,
0
6
8

,
0
8
4
,
0
8
2
,
0
6
5
,
0
8
4
,
0
6
9
,
1
5
7

,
0
3
2
,
0
8
7
,
0
6
5
,
0
8
6
,
0
6
9
,
1
1
8

,
0
7
9
,
0
8
2
,
0
7
7
,
0
8
3
,
0
1
3
,
1
0
6

,
0
7
9
,
0
8
5
,
0
8
2
,
0
8
4
,
0
6
9
,
1
7
4

,
0
8
9
,
0
3
2
,
0
7
4
,
0
6
9
,
0
8
2
,
1
4
3

,
0
8
9
,
0
3
2
,
0
6
6
,
0
8
2
,
0
6
5
,
1
3
6

,
0
8
9
,
0
1
3
,
0
0
0
,
0
0
5
,
0
7
4
,
2
3
1

P
r
o
g
r
a
m

9
*
2
,
G
S
O
N
A
T
I
N
A
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
/
'
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
8
4
1

F
i
l
e
n
a
m
e
:
G
S
O
N
A
T
I
N
A
.
M
U
S

4
9
1
5
2

:
0
1
8
,
0
0
1
,
2
3
2
,
0
0
0
,
0
9
6
,
0
0
0
,
0
9
1

4
9
1
5
8

:
0
0
6
,
0
9
6
,
0
0
1
,
0
6
4
,
0
8
6
,
0
0
3
,
0
0
6

4
9
1
6
4

.
-
0
0
1
,
2
1
4
,
0
0
1
,
0
2
2
,
0
7
6
,
1
6
5
,
2
3
5

4
9
1
7
0

:
0
8
4
,
1
6
6
,
0
8
4
,
1
6
5
,
0
8
4
,
1
6
6
,
2
5
5

4
9
1
7
6

:
0
8
4
,
1
6
7
,
0
1
6
,
1
6
5
,
0
8
4
,
1
5
7
,
1
8
5

5
0
5
7
4

5
0
5
8
0

5
0
5
8
6

5
0
5
9
2

5
0
5
9
8

5
0
6
0
4

5
0
6
1
0

5
0
6
1
6

5
0
6
2
2

5
0
6
2
8

5
0
6
3
4

5
0
6
4
0

5
0
6
4
6

5
0
6
5
2

5
0
6
5
8

5
0
6
6
4

5
0
6
7
0

:
0
1
6

:
0
1
6

:
0
1
6

:
0
4
4

:
0
8
3

:
0
7
8

:
0
7
0

:
0
6
5

:
0
8
4

:
0
1
3

:
0
8
3

:
0
8
3

:
0
7
0

:
0
6
7

:
0
8
3

:
0
8
2

:
0
6
8

1

Chapter 9

1
5
4
, CN

1
8
,
0
]

3
1
,
0

1
6
7 * GJ

1
5
4
, CN

5
4
,
0
] VO GJ

1
5
4 vo GJ

1
4
6
, CN

5
9
,
0
]

L
6
,
l G>

1
5
7 vo GJ

1
5
9
, CN

4
6
,
0
] VO GJ

1
4
6 vo G>

1
5
4
,

vo
5
4
,
0
]

L
2
,
l GJ

0
0
0 CN G>

1
5
7
,

G)
5
4
,
0
1 CN GJ

1
5
4 vo GJ

0
0
0
,

VO
4
6
,
0
] vo GJ

1
5
9 GJ GJ

1
5
7
,

vo
0
0
,
0
]

L
6
,
0 GJ

0
9
2 VO G>

1
6
5
,

vo
6
5
,
0
]

-
6
,
1 GJ

0
0
0 vo GJ

1
6
5
,

C
O

6
5
,
0
(
t

CN G>
1
6
5 CN GJ

0
9
6
,

7
9
,
0
C

,
0
0
1
,
0

0
4
7

:
0
0
1
,

0
2
0
,

1
7
5
,

r
0
0
2
,
2

0
6
4

:
0
0
1
,

0
'

1
0
0
'

2
3
0

:
0
0
1
,

0
0
0
,

7
5
,
0
^

,
0
1
6
,
1

1
6
1

:
0
7
6
,

1
0
8
,

7
3
,
0
]

,
0
7
6
,
1

1
7
4
,

:
0
7
6
,

1
6
2
,

7
3
,
0
2

,
0
2
0
,
1

0
0
0

:
0
4
4
,

1
7
3
,

5
2
,
0
2

,
0
2
0
,
1

1
7
5
,

1
6
4
,

6
2
,
0
2

,
0
2
0
,
1

1
6
4
,

:
0
2
0
,

:
0
2
0
,

1
6
1
,

,
0
2
0
,
1
1

1
7
3
,

:
0
2
0
,

1
6
1
,

,
0
2
0
,
1

1
6
3
,

:
0
2
0
,

1
7
5
,

5
1
,
0
E

,
0
2
0
,
H

1
7
4
,

:
0
2
0
,

1
7
0
,

6
2
,
0
E

,
0
8
0
,
1

1
6
1
,

:
0
8
0
,

1
7
3
,

1
0
8
,

0
8
0
,
H

1
6
5
,

:
0
8
0
,

0
0
1
,
0
'

0
0
0
,

:
0
1
6
,

1
7
0
,

3
8
,
0
2

0
2
0
,
1
(

1
7
0
,

:
0
2
0
,

1
7
3
,

7
0
,
0
2

0
2
0
,
1

1
7
3
,

:
0
2
0
,

7
4
,
0
4

0
1
6
,
1
'

1
7
0
,

:
0
2
0
,

1
7
3
,

7
0
,
0
2

0
2
0
,
1
*

1
7
3
,

:
0
2
0
,

1
7
0
f

7
4
,
0
2

0
2
0
,
1
'

1
7
0
,

:
0
2
0
,

1
7
5
,

7
0
,
0
1

0
2
0
,
r

1
7
4
,

:
0
2
0
,

0
0
0
,

7
4
,
0
1

6
,
1
'

nin

iH G> GJ GJ rH

vo m

vo vo
r^ rH

G) G> CN rH CN GJ rH GJ GJ GJ GJ GJ GJ rH GJ GJ G> GJ GJ GJ

00 00
G) GJ

rH rH rH rH

280

Chapter 9

00
rH

VO
rH

G>

»H

00
rH

VO
rH

G)

G>
G>
G>

VO
l-l

G)
••

G>
r^

rH

G>
00

G>

m

G>
00

G>

rH

00
rH

G>
00

G>
••

G)

rH

G)
G)

rH

00
rH

CO

G>
G>

co

00
rH

G>
CO
G)
••

in

VO

G>

00

co

G)

CN

CO

Gr G>

ON

r^

G>

co

00
G>

on

G>

rH

G>
G>

m

vo
G>

CO

G>

co

G>

<tf
cc
G>

vo

G>

vo
r^

co

•H

G>

rH

G>

CN

CO

G>

00
r^

G)

vo
vo

G>

CN

CO

G)

00

G>

in

vo

G>

VO
00
G>

CN

CO

G>

VO
00

G>

O>

IS

CN

G>

CO

&

ON

VO

G)

ON

VO

G>

ON

VO
G)

CO

CO
5)

in

00
G>

CO

rH

G>

CO
r^

G)

0>
vo
G)

m

CO

G)

VO

G)

in

00

G)

G)
00

00
is

00
vo
is

CO

G)

r^

en
Q G)

CN
m

is

CO

CO

CN

CO

<s>

a\
vo
G)

o>

vo

G)

<r»

vo

G>

i^

00

G)

CO

CO
<s

CN

CO

G>

CN

is

vo
G>

CO
rH

G)

iH

r^

Gl

CO

r^

G)

CO

CO
G>

CO

CO
O

ON

VO
G>

kJ*

CO

G)

CN

CO

GJ

in

CO

ON

<S

CN

CD
IS

CN

on

G>

ON

VO

CN

CO

IS

O>
on

G>

m

VO

ts

in

vo

G?

CN

CO

G)

VO
VO

G)

CN

CO

G>

ON

CO

5>
••

in

•H

CN

G)

r-\

TO
TO
&

CO

rH

G>

CJN

m

G)
••

CN

G>
G>
G)

VO
rH

G>

CO

rH

VO
rH

G>

CO
IS

rH

VO
rH

G>

CN

CO

rH

VO
iH

G>

rH

rH

VO
rH

G>

re
re

G>

vo
rH

G>

CN

CO

G>

rH

re
G)

re
G)

G>

CO

G>

G>
G)

G>

^,

^*
G>

IS

ts

rH

G>
CN

G)

CN

G>

in

G)

CO

rH

•H

re
G>

CM

<*

G)
CM

G>

rH

VO
rH

IS
CM

G>

<t

rH

G>
CN

G>

G)

CO

rH

re
CN

G>

re

rH

G>
CN

G>

in

rH

G>

rH

re
GJ

CN

G>
r-

rH

G>
CN

G)

CO

rH

IS
CN

G>

in

•h

G>
CN

Q

G>

CO

rH

Q
CN

IS

in

rH

G>
CN

G)

CO

r-

rH

g>
CN

G>

CN

G>

•H

G>
CN

G>

CM

G>
G>

in

GJ

IS

rH

G)

rH

CO

re
rH

IS

CN

G>

^

•H

G)
CM

IS

CO
G>

G)
CN

G)

CN

G>

G)
CN

G)

CN

G)
G)

^

in

GJ

in

rH

G>

rH

G)

G)

IS

CO
p-.

rH

O

CN

G>

in

rH

G>
CN

IS

CO
f^

rH

G)
CN

G>

G)

G>

rH

G>
CN

G>

G>
CO

rH

rH

IS

G>

in

rH

G>

rH

G>
G)

rH

CO

G>
rH

G)
CN

G)

<?

rH

G)
CN

CO
G>
rH

O
CN

IS

<s

rH

VO
•H

G>
CM

G)

IS
CN

G)

G)

rH

G)
CN

G)

rH

IS
G>
G)

VD
rH

G)

in

rH

VO
rH

G)

>-•

G)
CM

G)

G)

in

rH

CN

rH

G)

in

rH

VO
rH

G)

in

rH

VO
rH

IS

rH

r>

G>

rH

G)

in
[•>.

rH

CO

G)

in

rH

CN

rH

G)

CN

VO

G)

rH

G)

VO
ON

G)

VO
G>
G)

ON

G)

rH

IS

G)

IS

VO
^*

CN

•H

G>
G)

re
CN

G)

VO
CO
G>

G)
G)
CN

CN

re
G)

CN

00
G>
rH

VO

IS

co

rH

VO
f^

G)

in

G>

rH

G>
G)

CN CN

G)

rH

VO

G)

O
IS

G>

IS

CO

rH

VO
rH

G>

G)
IS

^

G)

G)

iH

VO
rH

re

G)
(*^»

VO

G)

G)

G)
G>
G)

CO
G)
G)

Q

G)
G)

CO
G)
IS

G)
IS
G)

CO
G>
G)

(S

G)
G>
G>

CO
G)
IS

r>

^*
G)

rH

G)
G)

G)
G)

CO
IS
IS

G>

Q
G)
G)

00
IS

5)

G)
G)
G)

00
IS

G>
G)

00
G>
G)

G)

G>
Q

IS

VO
rH

IS

IS

G>

G)

VO
rH

G>

G)

VO
rH

G>

pH

G)
G>
G)

CN

rH

G)

G>

rH

VO
rH

G)

IS

rH

VO
rH

G>

CN

G»
ts

G)

<?
^*

G)
r-

rH

VO
rH

GJ

G)

rH

vo
rH

G)

rH

G2
ts

in

G)

G)
in

IS

rH

G>
G)

G)
IS

G>

00
G)

«S

CO

rH

VO
rH

IS

in

rH

®

rH

IS
G)

IS

IS

00

G)
IS

281

Chapter 9

Envelopes

Dynamics describe the general volume of a song, as set by the

master volume, but do not describe the changes in volume

which occur while an individual note is playing. These

changes in volume over the course of a note are referred to as

the envelope of the note.

When a note first starts playing, the volume must increase

from no volume to the peak volume established by the

dynamics. The speed at which the volume rises is called the

attack rate.

The volume then diminishes slightly until it reaches an

intermediate volume level called the sustain level. The rate at

which the volume falls from the peak level to the sustain level

is called the decay rate.

Toward the end of a note, the note will be released and

the volume will begin to fade away, at a speed called the re

lease rate.

A good way to understand the four stages of the envelope

is to graph them as shown in Figure 9-7.

Figure 9*7- ADSR Envelope

Peak

volume \~ attack —[-decay-| sustain -4—release 1

No

volume

Time

This standard envelope is sometimes also called an ADSR

envelope, because of the attack, decay, sustain, and release

sequence.

Not all instruments have the same ADSR values. Each in

strument has its own characteristic envelope. In electronic mu

sic, the ability to control the envelope of a voice lets you more

closely approximate a particular instrument.

There are two basic types of envelopes. One type is used

for sustaining instruments. These include string instruments

which are played with a bow, and wind instruments.

282

Chapter 9

The other type is for nonsustaining instruments. String in

struments which are plucked and percussion instruments such

as drums are examples of nonsustaining instruments.

Sustaining envelopes. For an example of a sustaining en

velope, let's consider a person playing a violin. At the begin

ning of a note, the player has to dig in with the bow to start

the string vibrating. This is the attack.

Once the sound has started, the player does not have to

apply quite so much pressure to the string, and the volume is

reduced a little. This is the decay part of the envelope.

As the player continues to bow, a constant volume level is

maintained. This is the sustain level.

At the end of the note, the player stops the bow, but the

string continues to vibrate for a moment until the sound fades

away completely. The instant when the player stops the bow

is called the release, and the rate at which the volume fades

away is the release rate.

The whole process works similarly for a wind instrument,

such as a flute. The player has to blow with a little extra force

to start the air vibrating, and then eases off slightly. The air

continues to vibrate for a moment after the release, when the

player stops blowing.

Nonsustaining envelopes. Nonsustaining instruments

have completely different envelopes. The most important

characteristic of these instruments is that they are struck. The

instrument is hit or plucked once for each note. No continual

force is applied, so the volume is never sustained.

Most percussion instruments have nonsustaining en

velopes. These instruments include drums, bells, and others

like wood blocks. They usually have very fast attack rates. The

decay rate varies from one instrument to another. The sound

of a snare drum decays rather quickly, but the sound of a

gong takes a long time to decay. Since there is no sustain,

there is no sustain part to the envelope, and the envelope can

be called an ADR envelope.

Figure 9-8 shows two graphs that illustrate nonsustaining

envelopes.

Setting the envelope. The special option screen has five

commands that are used to configure the envelope.

The ATK command lets you choose one of 16 attack

rates. The rates are numbered 0-15. At rate 0 the attack takes

283

Chapter 9

Figure 9-8. ADR Envelope

Snare drum envelope Gong envelope

just a fraction of a second (two milliseconds to be precise),

while at rate 15 the attack takes eight seconds.

The DCY command is used to set the decay rate. Again,

the rates are numbered 0-15, with 0 being the fastest, but the

range is a little different. The decay takes 6 milliseconds at

rate 0, and 24 seconds at rate 15.

Use the SUS command to set the sustain level. If the sus

tain level is set to 0, the volume decays to no volume. If the

level is set at 15, the volume doesn't decay at all and stays at

the peak volume set by the master volume control. Values be

tween 0 and 15 correspond to evenly spaced volume levels

between zero and peak volume. When you're using a non-

sustaining envelope, the sustain level must be set to 0.

The RLS command sets the release rate. The rates, num

bered 0-15, are the same as those for the DCY command. If

you're using a nonsustaining envelope, the release rate should

be set to the same value as the decay rate.

The release point. The one remaining command is PNT,

which is used to set the release point. In order to understand

how to use this command, it's first necessary to know how

Sidplayer handles durations.

Sidplayer deals with note durations in terms of time units

called jiffies. One jiffy lasts about 1/60 second. Table 9-1

shows the jiffy length of each note duration in each tempo.

284

Chapter 9

Table 9-1. Tempo

32 64M.M.

900

600

450

360

300

257

225

200

180

163

150

138

128

120

112

105

100

94

90

85

81

78

75

72

69

66

64

62

60

58

56

W

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

160

168

176

184

192

200

208

216

224

232

240

248

256

H

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

104

108

112

116

120

124

128

Q
4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

E

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

S

1

_

2
-

3
-

4
—

5
—

6
—

7
—

8
—

9
—

10
—

11
-

12
—

13
-

14

-

15
-

16

The number of jiffies for a whole note is different for each

tempo. This number is repeatedly cut in half to give durations

like half note, quarter note, and so on. After a certain point,

some numbers cannot be evenly divided by two, which is why

some tempos do not support sixteenth or thirty-second notes.

The PNT command determines how many jiffies from the

end of a note the volume should be released. For an example,

let's say that the release point is set at 6 and the current

tempo is M.M. 100. A quarter note in this tempo is 36 jiffies

long. For the first 30 jiffies, the volume goes through the at

tack, decay, and sustain phases of the envelope. Then the

285

Chapter 9

voice will be released, and for the last 6 jiffies the volume falls

from the sustain level to no volume.

The range of the PNT command is 0-255, but usually

only very small values are used. Values like 3, 4, and 5 work

best. It's preferable not to set the release point too high, or

notes of short duration won't be heard. For instance, in M.M.

100, an eighth note is 18 jiffies long. If the release point was

set at 20 jiffies, an eighth note would be released as soon as it

started playing. The volume would never hav^a chance to

rise, and the note would not be heard.

For best results, always make sure)that 0ie release point is

less than the duration of the shortest dote in the song.
If you're using a nonsustaining'envelope, the PNT com

mand must be used to set the releaseypoint at 1.

Here are the default values for tMe envelope. This

configuration produces an orgai/effe :t.

ATK 2

DCY 0

SUS 15

RLS 5

PNT 4

If some d^felilt settings^are Satisfactory but others are not,
you have to c>range only the ones that need new values.

Also, reinember that ^on c#n change the envelope at any

point in a song. For e*^ph*/a voice may briefly switch to a

nonsustaining envelope nTplay a few notes and then switch

back.

Each voice can have its own envelope, but it's recom

mended that the attack rate be nearly the same for all three

voices.

Experiment with different envelopes. Load BLUES and try

different envelope settings on the first voice.

Sometimes in sheet music you may see what appears to

be a very long tie symbol spread over several notes. This sym

bol indicates that the notes are to be played smoothly, in one

breath or one bow movement. The term legato is used to de

scribe this type of effect.

A sequence of notes can be played in a legato style by

using the command PNT 0. When the release point is set to 0,

notes are never released. This saves you from having to put a

tie on each note.

286

Chapter 9

Another style of playing is called staccato, and is the op

posite of legato. A dot placed above or below a note in sheet

music means that the note should be played in a quick, light,

choppy manner.

One way to produce this effect on Sidplayer is to set the

release point as large as possible. A more reliable method is to

switch to a nonsustaining envelope.

A nonsustaining envelope is also a good choice when you

want to play a series of short, fast notes. The release point

usually has to be set very small to play these notes, and if a

sustaining envelope is used, the notes may sound too legato.

Using a nonsustaining envelope insures that the notes will be

played distinctly and will not be run together.

Envelope Example

The following song, "Theme and Variation" by Beethoven,

uses a wide variety of envelopes.

Program 9-3 ♦ Theme and Variation

To enter this program, you must use "The Machine Language Editor (MIX)/' a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49877

Filename: T&V.MUS

49152 :054,001,176 ,000,148,000,123

49158 :006,192,001,052,054,002,057

49164 :001,02 2,020,159,020,159,137

49170 :116,158,092,159,092,145,012

49176 :020,155,020,092,020,157,232

49182 :024,154,024,000,020,158,154

49188 .-024,154,024,000,020,159,161

49194 :024,154,024,000,001,047,036

49200 :020,145,020,159,016,158,054

49206 :001,018,020,092,020,155,104

49212 :016 ,154,001,008 ,001,015 , 255

49218 :001,020,001,104,054,002,248

49224 :020,146,020,146,084,146,122

49230 :024,145,024,000,120,159,038

49236 :092,158,120,159,092,145,082

49242 :084,159,020,158,020,147,166

49248 :020,147,084,147,024,146,152

49254 :024,000,120,145,092,159,130

49260 :120,145,092,146,084,145,072

49266 :024,159,024,000,001,018,084

49272 :020,145,020,158,016,157,124

287

Chapter 9

C^rHi^ONrnr^^vo^vOfHCMinra)G)CMOOrovoincX)fncoa)rHrH^ronro

G>CMQrHCMQG)fHCMrHfHfHCMG)iHG)G>fHSrHGJG>CNrHG)CMCMrHG>CMG>

1
9
2
,

0
0
6
,

0
7
9
,

0
0
1
,

0
1
5
,

:
0
0
1
,

0
3
8
,

0
0
1
,

0
0
2
,

0
5
4
,

0
5
2
,

:
0
0
1
,

1
5
5
,

0
1
6
,

0
9
0
,

0
2
0
,

1
5
4
,

:
0
8
4
,

1
6
7
,

0
2
0
,

1
5
3
,

0
0
0
,

0
2
0
,

'
3
6
0

0
2
0
,

0
2
0
,

0
0
0
,

:
0
2
0
,

0
0
0
,

:
0
2
0
,

0
4
7
,

0
0
1
,

0
0
0
,

0
2
0
,

1
5
7
, TO CM TO

0
9
2
,

0
1
6
,

1
5
7
,

0
2
0
,

1
5
8
,

:
0
2
0
,

0
8
9
,

0
2
0
,

1
5
4
,

0
2
0
,

0
3
4
,

:
0
0
1
,

0
1
5
,

0
0
1
,

0
0
8
,

0
0
1
,

1
0
0
,

:
0
1
6
,

1
5
4
,

1
5
4
,

0
1
6
,

0
0
2
,

0
5
4
,

0
8
8
,

:
0
0
1
,

0
1
6
,

1
5
4
,

,
0
1
6
,

1
5
4
,

:
0
1
6
,

1
5
4
,

0
1
6
,

1
5
4
,

,
0
1
6
,

1
5
4
,

:
0
1
6
,

1
5
5
,

0
2
0
,

0
3
4
,

0
0
1
,

1
5
4
,

:
0
1
6
,

1
5
2
,

0
0
1
,

1
6
7
,

,
0
1
6
,

0
9
2
,

:
0
2
0
,

0
2
0
,

0
0
1
,

0
0
0
,

,
0
1
2
,

0
1
5
,

:
0
0
1
,

0
0
2
,

0
5
4
,

0
7
2
,

,
0
0
1
,

2
3
6
,

:
0
0
1
,

0
0
0
,

0
1
2
,

0
0
0
,

,
0
1
6
,

1
0
2
,

:
0
0
1
,

1
5
7
,

0
8
8
,

0
0
0
,

r
0
2
0
.

0
0
0
,

:
0
1
6
,

1
5
8
,

0
8
8
,

0
0
0
,

r
0
2
0
,

0
9
2

:
0
2
4
,

0
4
7
,

,
0
0
1
,

0
0
0
,

,
0
2
4
,

1
5
7
,

1
5
7
,

0
2
4
,

0
0
0
,

,
0
2
4
,

1
5
7

:
0
2
4
,

:
0
2
4
,

0
0
0
,

0
0
0
,

,
0
2
0
,

0
9
2
,

,
0
2
4
,

0
0
0

:
0
2
4
,

,
0
2
4
,

1
5
4
,

,
0
2
4
,

0
9
8
,

:
0
0
1
,

0
1
5
,

,
0
0
1
i

1
0
0
,

,
0
1
6
,

0
8
9

:
0
2
4
,

1
5
4
,

1
5
4
,

1
5
4
,

,
0
1
6
,

0
0
2

:
0
5
4
,

1
5
4
,

r
0
2
0
,

1
5
4

:
0
2
0
,

1
5
4
,

,
0
2
0
,

1
5
4
,

r
0
1
6
,

1
5
4

:
0
1
6
,

0
9
8
,

,
0
0
1
,

1
5
4

r
0
1
6
,

1
5
4

:
0
2
0
,

0
9
2
,

,
0
2
4
,

0
0
0

r
0
2
4
,

1
5
8

:
0
2
4
,

0
7
9
,

,
0
0
1
i

0
1
5

r
0
0
1
,

1
6
7

:
0
1
6
,

0
0
2
,

r
0
5
4
,

0
5
2

r
0
0
1
,

1
9
2

:
0
0
6
,

TO

TO

TO

CN

tH

TO

in

fH

TO

rH

G>

CM

in

rH

tH

TO
TO

G>

<?
TO

rH

I
vo
CO

rH

TO

CN

TO

in

TO

CM

in

tH

tH

TO
TO

CM

CO

fH

rH

TO
G>

<tf

rH

tH

TO

iH

VO

tH

CM

TO

TO
TO
TO

CM

TO

rH

TO
TO

CO
CO

TO

rH

r^

fH

<?
CM

TO

r-t

in

tH

CM

G>

ON

tH

CM

TO

rH

r^

CO

tH

^
CN

TO

TO
in

rH

CM

TO

rH

in

rH

CN

TO

rH

CM

in

CM

r-i

TO
G>

TO
TO
G>

rH

G)
TO

TO
G)
TO

^*
CM

TO

rH

CO

in

tH

CN

TO

^

TO
TO

00
CO

TO

00
is

TO

■H

TO

r-i

r>

VO
fH

CM

CO
in

rH

CM

TO

CM

CN

ON

in

rH

CM

TO

j^

in

r-t

CM

CO
on in

TO

CM

rH

<?
CM

TO

TO

00
00
TO

tH

TO
TO

TO
CM

TO

rH

TO
TO

TO
TO
TO

^

CN

TO

CO
in

tH

CN

TO

ON

in

•H

00
CO
TO

in

rH

CM

TO

rH

in

rH

00

00
TO

in

fH

CM

TO

TO
TO
TO

CM

TO

CM

^*
G>

r-i

TO
TO

TO
TO
TO

CN

TO

ON

in

rH

■<t
CM

TO

TO

ON

in

fH

CM

TO

TO
TO
TO

CM

TO

in

•<*
rH

^

CN

TO

TO

ON

00
TO

00
00
TO

00
in

tH

CM

TO

TO
TO
TO

CM

TO

TO

CM

ON

G>

^
CM

TO

CM

00
G>

rH

G>
G>

in

rH

CM

TO

TO TO

in

r-i

vo
fH

in

in

rH

CM

TO

TO
G)
TO

<?
CM

TO

TO
TO
TO

<fr
CM

TO

CM

TO
TO

in

TO

in

rH

TO

rH

TO
IS

CN

VO

rH

^
CM

TO

r-

rH

00
00
TO

rH

CO
TO

^

CM

TO

rH

VO

fH

00
00

TO

ON

in

rH

CM

TO

TO
TO

TO

*t
CM

TO

rH

CO

CM

CM

<?
CM

G)

TO
TO
TO

CM

TO

in

^*
tH

CM

TO

TO

ON

in

fH

CM

TO

ON

in

rH

CM

TO

in

rH

00
00

G>

CM

00
in

fH

<?
CM

TO

CO

ON

TO

CM

TO

00
in

fH

"tf
CM

TO

G>

00
G>

00
00
G>

CM

00
TO

CM

TO

G>

TO
TO

^
CM

TO

TO

fH

00
TO

^

CM

G)

rH

G)
TO
TO

CM

G>

G) VO
TO
TO

CM

TO

tH

^
CM

TO

^*
iH

CM

TO

r>

^*
iH

00
00

tH

in

^*
rH

<?
CM

TO

vO

rH

00
CO
TO

ON

in

rH

CM

TO TO

fH

CO

CM

CM

^
CM

TO

ON

in

rH

CM

CM

in

^*
rH

<?
CM

TO

CM

00
TO

rH

TO
G) TO

in on

rH

in

rH

CM CM

G> TO

rH

|>

in

.—i

vo
rH

TO

00
in

rH

CM

TO

TO
G>
TO

CM

TO

288

Chapter 9

LO CO CO tS CM CM <N

r^ cm vo r^ «H on in
IS «H IS i-h •—I IS IS

CM

CO

IS

CO

CO
ts

VD

ts

00
IS

in

VO

IS

ON

IS

VD

IS

o>

VD
IS

VD

00

ts

00
r^

IS

ON

r^

ts

VD

TO

CO

rH

ts

CO

00
IS

ON

VD
ts

ON

00
ts

CO

CO

ts

ON

VD

ts

CO

ts

CM

00

IS

ON

00
ts

CM

00
ts

CM

00
ts

ON

VD
ts

ts

ON

CO

IS

CO
VD
IS

in

VD

ts

CM

CO

ts

VO

VD

IS

1—1

CM

IS

CO

rH

<*
CM

ts

ts
ts
ts

CM ON tS U"> CM CM CO
CO VO CO CO CO CO i-4

ts ts ts ts ts ts ts
•• •• •• •• •• tt ••

VD CM 00 ^t tS VD CM
CO ^f <tf IT) VD VO t^
CO CO CO 00 CO CO CO
ON ON ON ON ON ON ON

iH

VO
iH

CO

ts

in

vo
rH

VD
rH

IS

^
in

IS

rH

to
ts

CM

vO
rH

VO
rH

ts

CO

r^

rH

VO
rH

IS

CM

VD
i—1

tS
CM

ts

ts
TO

rH

ts
CM

ts

ts

TO
ts

in

VD
rH

VD
rH

ts

TO
m

ts

rH

TO
ts

in

rH

VO
rH

ts

ID

VD
rH

TO
CM

ts

VD

VO
r-\

VD
rH

ts

in

VD
r-i

IS
CM

ts

VD
VD

ts
CM

IS

00

00

ts

rH

TO
IS

in

rH

ts

TO
ts

CD

ts
IS

rH

TO
IS

VD

VD
r-i

VD

ts

VD
f^

VD
rH

ts

CM

ts
ts

^
in

ts

CO

in

rH

vo
rH

ts

CM

VO
rH

VO
rH

ts

in

VD
r-\

VO
rH

ts

in

vo
f^

VD
rH

IS

ts
ts
rH

VD

rH

ts

VD

rH

VO
rH

IS

CM

VO
rH

TO
CM

ts

rH

VO
r-A

TO
CM

ts

ts
in

ts

rH

TO
ts

in

rH

ts

rH

TO
ts

CM

in

r-^

rH

TO
ts

CO

f-\

VD
rH

VD
CO

CM

r-^

TO
ts

ts
CM

IS

rH

TO
IS

TO
IS
ts

CM

rH

is ts

CO
rH

t-i

rH

ts

CM

VO
rH

VD
rH

ts ts

CM

ts
IS

in

IS

CM

IS

rH

ts
ts

CO

in

rH

VO
rH

ts

in

rH

VO

rH

ts

in

vo
r-{

VD
rH

ts

CM

VO
r-\

VD
rH

IS

CO

rH

VD
rH

IS

ON

ts

IS
CM

IS

CO

VD

ts
CM

IS

ts

TO
ts

VD
VD
rH

ts
CM

ts

rH

rH

ts
ts

CM

VD
rH

VO
rH

ts

in

rH

ts

i—i

TO
ts

CM

VD
rH

VD
rH

ts

in

vo
rH

ts
CM

IS

VD

VD
^

VD
rH

CM

VO
rH

VO
rH

ts ts

in

VO VO
rH

VD
rH

ts

CM

ts

ts

^t
in

ts

rH

IS
CM

IS

in

VO
r-\

IS
CM

ts

ts
ts
rH

ts
CM

ts

VD
rH

VD
rH

ts

CO

in

VD
rH

IS

rH

rH

ts
ts

in

VD
rH

VD
rH

IS

ts
ts
rH

ts
CM

ts

CO

r^

rH

VD
rH

IS

CM

VD

ts
CM

ts

rH

VO
rH

ts
CM

IS

CM

r^

ts

<tf
00
ts

ON
r-

ts

rH

ts
ts

m
rH

ts

rH

ts
ts

CO

ts

in

VD

ts

CM

CO

ts

ON

VD

ts

r^

ts

ON

VD

ts

CO

ts

CM

00
ts

in

VD
ts

VD

00
ts

CM

CO

IS

CO
VD

ts

CO

rH

ts

00

ts

ON

r^

IS

CO

ts

00

ts

in

vo

ts

CO

ts

in

VD
ts

VD

CO
ts

CM

CO

ts

VD

ts

VD

ts

CM

r-

<s

00

ts

ON

VD

ts

ON

VD

ts

VD
VD

(S

CM

CO

ts

CO
VD CO

<s ts

CO

rH

ts

CO

5}

ON

VO
ts

VD
CO
IS

ON

ts

CO

CO

ts

00
r*

ts

ON

ts

h*

ts

ON

VD

IS

289

Chapter 9

The Filters

Sometimes it's not enough to set the waveform and envelope

of a voice in order to imitate the sound of a particular in

strument. It may also be necessary to control the harmonic

content of the voice by using the filter.

When an oscillator generates a tone, it produces not only

the requested pitch, but some harmonics as well. Harmonics

are frequencies related to the main pitch. The first harmonic is

the frequency of the main pitch and is also called the fun

damental frequency. The second harmonic has a frequency

twice the fundamental frequency. The frequency of the third

harmonic is three times that of the fundamental frequency,

and so on.

Because the volume of the fundamental frequency is al

ways greater than the volume of the other harmonics, the

main pitch detected by your ear is that of the fundamental fre

quency. The harmonics, however, give the tone its timbre.

Since each instrument has its own characteristic timbre,

the ability to control the harmonic content of a voice can be

helpful in emulating a particular instrument. The filter is used

to remove selected frequencies from a tone. This enables you

to emulate a whole new variety of instruments.

The SID chip's filter has three main control parameters

that must be set before the filter can be used. These param

eters are the mode, the cutoff frequency, and the resonance.

Filter mode. The filter mode determines which types of

frequencies are removed from a tone. The most commonly

used mode is the low-pass mode. This mode allows only the

frequencies below a certain frequency, called the cutoff fre

quency, to pass through the filter. Any frequencies above the

cutoff are attenuated (greatly reduced in volume) so that they

are seemingly removed from the tone.

The low-pass filter mode (illustrated by Figure 9-9) pro

duces full-bodied tones. The opposite of the low-pass mode is

the high-pass mode, in which frequencies below the cutoff are

suppressed while frequencies above the cutoff are passed

through unaltered.

The high-pass mode causes tones to sound tinny or

buzzy.

290

Figure 9*9* Low-Pass Filters

Chapter 9

High

frequencies

Cutoff

Low

frequencies

Low-pass filter

Figure 9-10. High-Pass Filters

High

frequencies

Cutoff

Low

frequencies

High-pass filter

One other filter mode is the band-pass mode. In this

mode, only the frequencies near the cutoff are passed through

the filter. All other frequencies are attenuated. The band-pass

mode produces thin, open tones.

Figure 9*11. Band-Pass Filters

High

frequencies

Cutoff

Low

frequencies

291

Chapter 9

Use the F-M command to set the filter mode. This com

mand works similarly to the WAV command. When you press

the joystick button for F-M, the window displays a number for

each filter mode.

1 L Low pass

2 B Band pass

4 H High pass

Type the number of the desired mode and press RETURN

to enter the command. The letter indicating the filter mode ap

pears as part of the command.

You can even select combinations of filter modes. Just add

the appropriate numbers together. For example, choosing 5

sets the filter for both low- and high-pass modes. This

combination is also called the band reject or notch mode.

Filter cutoff. The cutoff frequency of the filter acts as a

dividing line. In low-pass mode, for example, frequencies

above the cutoff are attenuated while frequencies below the

cutoff are passed through unaltered. But consider what hap

pens when the pitches of notes in a song fall right around the

cutoff frequency. Notes having pitches below the cutoff are

played correctly, but notes with pitches above the cutoff are

not heard.

What you need is a way to set the cutoff higher or lower.

The ideal setting is to place the cutoff right above the highest

note to be played. That way, all of the fundamental fre

quencies will be below the cutoff, so all of the notes will be

heard. Most of the harmonics will still be above the cutoff, so

they'll be removed from the tone.

The F-C command is used to set the filter cutoff. The

range of this command is 0-255, with 0 the lowest and 255

the highest. The standard practice is to start with a value be

tween 0 and 255, play the voice, and then move the cutoff up

or down as necessary.

Resonance. The effect of resonance is to produce a

sharper tone by emphasizing, or peaking, the frequencies in

the tone that are close to the cutoff. Actually, the resonance

control of the SID chip is not very effective and acts mainly as

a way to control the volume of the voice being passed through

the filter.

Use the RES command to set the resonance level. The

number for this command ranges from 0 (no resonance) to 15

(maximum resonance). In most cases the value 15 is best, but

292

Chapter 9

sometimes you may want to use a smaller value to produce a

muted effect.

Passing a voice through the filter. Once you've config

ured the filter by using the F-M, F-C, and RES commands, use

the FLT command to indicate that the voice should be passed

through the filter. This command works a little differently

from the others. Unlike the previous commands which support

a number range, the FLT command gives you a simple choice

of either yes (1) or no (0). Enter 1 to indicate that you want

the voice to be passed through the filter.

Here's an example showing how you might use the filter.

Start with the following commands.

F-M L

F-C 255

RES 15

FLT Y

Next, enter a few notes. A simple scale is sufficient. When

you play the voice, it should play normally. In low-pass mode

with the filter cutoff set at the maximum value, all frequencies

are passed through the filter.

Now, lower the cutoff by reducing the number for the F-C

command, and play the voice again. Do this a few times, each

time reducing the F-C command number by about 20 or so. The

effects of filtering should gradually become more noticeable.

To stop the filtering, enter the FLT command with the

number 0 to indicate that you don't want the voice to be

passed through the filter. You don't have to change the mode,

cutoff, or resonance settings.

FLTN

If you want the voice to be passed through the filter later

in the song, enter the FLT command with the number 1. The

earlier filter settings will still be in effect, but can be changed

if necessary.

Autofilter. Trying to find a proper setting for the filter

cutoff can often be inconvenient and time-consuming. As an

alternative to the F-C command, Sidplayer offers a special fea

ture called the autofilter mode. When the autofilter mode is

turned on, the filter cutoff is automatically set according to the

pitch of each note. Since the cutoff is calculated for each note,

all notes, high and low, produce the same filtering effect.

To turn on the autofilter mode, select the command AUT

293

Chapter 9

and enter the number 1. Do this instead of entering the F-C

command.

F-M B

AUT1

RES 15

FLT Y

You may also specify that an offset* should be added to
the cutoff. When you enter the number for the AUT com

mand, choose any number from 1 to 127 or from —1 to

— 127. Different offset values give different filtering effects.

The autofilter mode is turned off by the command AUT 0.

When using the autofilter feature, it's important that you

turn it off whenever you stop passing the voice through the

filter.

FLT N

AUT 0

Filter sweep. Just as pulse width sweeping changes the

pulse width during a note, filter sweeping lets you increase or

decrease the cutoff frequency while a note is playing.

Use the F-S command to turn on filter sweeping. The

number for this command controls the sweep rate and direc

tion, and ranges from —127 to +127. Values of 1-127 make

the cutoff sweep upward. The larger the number, the faster

the sweep. Values of —1 to —127 sweep downward. Zero

turns off the sweeping.

In most cases, the best results are obtained by using small

numbers for the sweep rate, such as values 1-10. If the cutoff

is swept too far, it will wrap around, but this is not as useful

as it is with pulse width sweeping.

Be sure to turn the filter sweeping off when you stop

passing the voice through the filter.

FLT N

F-S 0

Or if using the autofilter mode:

FLT N

AUT 0

F-S 0

Restrictions. While the SID chip has three oscillators, and

can therefore play three voices, it has only one filter. There's

not a separate filter for each voice. Figure 9-12 should help

294

Chapter 9

you understand the arrangement. The illustration is the same

as Figure 7-1 except that it has been modified to include the

filter.

As shown by Figure 9-12, any voice can be passed through

the filter, but only one voice should be routed through the fil

ter at one time. Passing two or three voices through the filter

at the same time can overpower it, causing it to produce an

unpleasant buzzy noise.

Figure 9*12. Filtering Sound

Master

Volume

Control

Tone Oscillator/

Waveform Generator

Voice 1

Tone Oscillator/

Waveform Generator

Voice 2

Tone Oscillator/

Waveform Generator

Voice 3

295

Chapter 9

The major drawback to using the filter is that there is

extreme variance in filtering effects from one computer to an

other. The same filter settings can produce completely dif

ferent results on different Commodore 64s. On some

computers, especially the older ones, a voice can be almost in

audible when it is passed through the filter, no matter what

settings are in effect. The variance lies not only in the SID

chip, but in the support circuitry as well, so there's no easy

way to fix the problem. If you have one of the earliest ver

sions of the Commodore 64, you may not be able to use the

filter.

Three Demonstrations

Three demonstration songs have been provided. In the first

one, a theme is played by a trumpet, a trombone, then a tuba.

The other two demonstrations emulate a koto and a sitar.

Program 9*4- BRASS.MUS

To enter this program, you must use "The Machine Language Editor (MLX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49307

Filename: BRASS.MUS

49152 s 072 ,000,002 ,000,002 ,000,076

49158 :006,128,001,022,001,071,235

49164 :001,055,150,020,001,250,233

49170 :001,027,102,003,001,044,196

49176 :001,000,001,252,001,072,095

49182 :038,001,001,047,001,038,156

49188 :020,153,012,156,012,164,041

49194 :020,166,048,153,020,156,093

49200 :048,158,016,156,020,156,090

49206 :008,145,008,153,001,047,160

49212 :150,010,102,000,001,076,143

49218 :166,179,001,034,150,010,094

49224 :166,181,001,034,001,079,022

49230 :001,079,001,079,083,087,152

49236 :079,082,068,032,077,079,245

49242 :084,073,070,013,066,089,229

49248 :032,087,065,071,078,069,242

49254 :082,013,084,082,085,077,013

49260 :080,069 ,084,044,032 ,084, 245

49266 :082,079,077,066,079,078,063

49272 :069,044,032,084,085 ,066 , 244

49278 :065,013,067,079,085,082,005

49284 :084,069,083,089,032,082,059

296

Chapter 9

49290 :079,066,069,082,084,032,038

49296 :072,073,071,071,073,078,070

49302 :083,013,000,151,024,147,056

Program 9-5. KOTO.MUS

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49301

Filename: KOTO.MUS

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

49248

49254

49260

49266

49272

49278

49284

49290

49296

:084,

:006,

:001,

:001,

:001,

:018,

:016,

:016,

:024,

:016,

:020,

:020,

:020,

:024,

:020,

:001,

:080,

:032,

:068,

:084,

:078,

:084,

:079,

:072,

:083,

000,002

144,001

250,001

004,001

008,038

044,086

156,016

157,020

222,020

218,030

156,020

218,020

222,024

157,024

218,020

079,001

065,078

075,079

069,077

082,065

013,067

069,083

066,069

073,071

013,013

,000,002

,055,150

,027,102

,128,001

,001,001

,010,016

,157,016

,156,024

,157,020

,002,020

,218,020

,156,020

,157,024

,222,020

,153,001

,079,074

,069,083

,084,079

,079,078

,084,073

,079,085

,089,032

,082,084

,071,073

,013,000

,000,088

,246,096

,080,217

,132,029

,135,208

,153,101

,222,107

,157,060

,156,135

,000,084

,153,135

,157,145

,156,163

,156,169

,079,063

,065,133

,069,028

,032,227

,083,050

,079,069

,082,012

,082,053

,032,032

,078,064

,078,088

Program 9-6. SITAR.MUS

To enter this program, you must use "The Machine Language Editor (MLX)/' a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49313

Filename: SITAR.MUS

49152 :104,000 ,002 ,000,002,000 ,108

49158 :001,151,150,236,001,250,027

49164 :001,027,102,020,001,020,183

49170 :001,160,001,228,001,200,097

297

Chapter 9

49176 :038,007,001,135,050,232,231

49182 :086,010,006,096,030,001,003

49188 :054,002,016,163,016,165,196

49194 :012,153,044,161,001,015,172

49200 :030,002,054,002,028,145,053

49206 :028,145,028,159,028,159,089

49212 :028,158,028,158,028,157,105

49218 :028,157,028,156,028,156,107

49224 :028,155,028,155,028,154,108

49230 :028,154,028,167,012,167,122

49236 :003,020,012,153,001,015,032

49242 :020,153,020,153,024,153,101

49248 :024,153,028,153,028,153,123

49254 :028,153,028,153,016,153,121

49260 :001,079,001,079,001,079,092

49266 :083,073,084,065,082,032,021

49272 :068,069,077,079,078,083,062

49278 :084,082,065,084,073,079,081

49284 :078,013,067,079,085,082,024

49290 :084,069,083,089,032,082,065

49296 :079,066,069,082,084,032,044

49302 :072,073,071,071,073,078,076

49308 :083,013,013,013,000,137,159

Repetition

As you listen to a song, you can sometimes hear a group of

measures played more than once. Repetition occurs often in

music, especially in contemporary songs.

The simplest form of repetition is when a group of mea

sures is repeated immediately after being played. So that the

repeated measures do not have to be written twice, special

symbols are used in sheet music to indicate when a sequence

of measures should be repeated. The symbol that marks the

beginning of a repeat consists of two vertical lines followed by

two dots (shown in Figure 9-13). The end of a repeat is

marked by a symbol that looks almost the same, except that

the dots come before the double lines, instead of after them.

When the music is played and the first repeat symbol is

reached, the playing continues as usual. Upon reaching the

end of the repeat, however, playing does not continue to the

next measure. Instead, playing jumps back to the measure

which had the beginning repeat symbol and continues from

that point. When playing comes to the end repeat mark the

second time around, it's ignored and playing continues with

the next measure.

298

Chapter 9

Figure 9*13. Repeats

_IJL

Normally, a sequence of notes is repeated only once.

There are, however, cases where a voice may repeat several

times, such as in a bass line.

Sidplayer has two commands to support repeats. The

beginning of a repeat should be marked by the command

HED, which stands for repeat head. The number for this com

mand determines how many times the sequence of notes is to

be played. In a standard repeat, the notes are repeated once,

meaning that the sequence is played a total of two times, so

you would normally type the number 2. Then you would

press RETURN to enter the command and continue entering

notes.

At the end of the repeat, enter the TAL command (repeat

tail). There's no data value for this command, so just enter the

number 0.

When the voice is played, the sequence of notes between

the HED and TAL commands plays the designated number of

times.

The number entered for the HED command must fall in

the range 0-255. The number 1 means that the sequence

should be played only once, which would seem to make the

repeat structure unnecessary. A value of 1 is used only when

you're developing a piece of music. If you keep replaying a

song to listen for bad notes at the end, you don't want to wait

for repeats earlier in the song, so use 1 at first (just remember

to change it to the correct value before you save the final ver

sion of the song).

Using 0 with HED makes the notes repeat forever. This

feature may be useful in some game applications, but should

not be used in normal music, because the song will never end.

Repeats cannot be nested. Whenever you have a HED

command, it has to be later followed by a TAL command

before another HED can be used. It's okay for a voice to con

tain several repeats; you just cannot have a repeat inside a

299

Chapter 9

repeat. Each voice can have its own repeat, however, so each

voice can repeat independently of the others.

When repeats are used properly, there should be one re

peat end for every repeat beginning. If a voice is playing and a

TAL command is encountered with no previous HED com

mand, playing will repeat forever back to the most recent

HED command. If no HED command has been used at all on

the current voice, playing will repeat forever back to the

beginning of the voice.

Phrases. Occasionally, you'll find that a repeat has a first

and a second ending. This means that one set of notes should

be played at the end of the sequence the first time through,

and a different set should be played the second time. The

simple repeat structure of the HED and TAL commands can

not handle this—in this case, you have to use phrases.

If you consider that a repeat is a loop, then a phrase is

like a subroutine. A phrase allows the same sequence of notes

to be played at different places in the music. The first time the

phrase is played, the beginning and end are remembered by

Sidplayer. This is called defining the phrase. Later in the music

when the notes have to be played again, playing can be made

to jump back to the beginning of the phrase by the use of a

single command. This is known as calling the phrase. When

the end of the phrase is reached, playing continues with the

rest of the song.

It's important to understand that there are some dif

ferences between Sidplayer phrases and BASIC subroutines. In

BASIC, a subroutine is usually put at the end of a program.

Every time the subroutine has to be executed, it's called by the

GOSUB statement. With Sidplayer, the notes and commands

that form the phrase are placed in the song at the first in

stance where the phrase must be played. After the phrase has

played once, and is thereby defined, it can be played again by

use of the phrase call.

To define a phrase, first enter the DEF command. This

command needs a number in the range 0-15. For now, just

enter the command with 0, then enter the notes which form

the phrase.

After the last note in the phrase, enter the command

END. Like the TAL command, the END command has no data

value, so it should be entered by typing the 0 and pressing

RETURN.

300

Chapter 9

When playing reaches the END command, the notes have

played once, the definition is complete, and the phrase is

ready for calling.

To call the phrase, all you have to do is enter the CAL

command with the number 0. This one command takes the

place of all the notes in the phrase.

Figure 9-14 demonstrates how phrase calling works.

Figure 9*14. Phrases

i

Begin by entering the command DEF 0, followed by the

notes up to but not including the first ending. Now enter the

END command. The notes for the first ending come next. At

this point, playing is supposed to repeat back to the begin

ning. Instead of entering all those notes again, just enter the

command CAL 0. Finally, enter the notes for the second

ending.

When the voice plays, the phrase plays the first time. The

DEF and END commands have no effect. The notes for the

first ending then play. The command CAL 0 sends playing

back to the first note after the command DEF 0 to play the

phrase again. When the END command is reached, playing

continues with the first note after the CAL 0 command.

A phrase can be called more than once. A phrase is still

defined after it has been called, so it can be called as many

times as necessary.

Phrases have many uses besides handling repeats with

different endings. In fact, phrases are so useful that quite often

1 is not enough. Don't worry—Sidplayer can remember up to

16 independent phrases. When you enter the DEF command,

the number from 0 to 15 identifies which phrase is being de

fined. That particular phrase can later be called by using the

same phrase number with the CAL command.

If, while playing a song, a CAL command tries to call a

phrase that has not been defined earlier in the music, the Edi

tor stops with the UNDEFINED PHRASE CALL error.

301

Chapter 9

The 16 phrases are shared among the three voices. For ex

ample, even though phrase 7 may be defined on voice 1, it

can also be called on voice 2 or 3. This means that playing can

temporarily jump to another voice.

This can cause a problem when you are playing individ

ual voices. For example, if you play only voices 2 and 3, and

voice 2 contains a call defined in voice 1, playing will stop

with the UNDEFINED PHRASE CALL error.

It's even possible for one phrase to call another. Phrase

calls can be nested to a limit of four levels on each voice. If

you try to exceed the limit, the Editor stops and reports the

STACK OVERFLOW error. You can also define one phrase in

side another. Be aware that a phrase definition counts as one

nesting level. The only thing a phrase definition cannot do is

call itself. If the definition of phrase 3 directly or indirectly

contains a call to phrase 3, an infinite loop results. Playing

will eventually stop with a STACK OVERFLOW error.

Phrases can be redefined. If a phrase is no longer needed,

the phrase number can be used in the DEF command of a new

phrase. This lets you use more than 16 phrases during the

course of a song.

The STACK UNDERFLOW error occurs if DEF and END

commands are not properly matched and playing comes across

an END command with no previous DEF command.

Da capo, dal segno, and coda. Repeats are not the only

kind of repetition. Other forms include da capo and dal segno.

Da capo is indicated in sheet music by the letters D.C., and

means that the playing should jump back to the beginning of

the voice and continue from there, this time ignoring all re

peats. The playing may be stopped before the end of the song

by the use of the word fine.

Dal segno, identified by the letters D.S., means that play

ing should jump to the measure marked by a special sign. This

sign looks like a slash with dots to either side, passing through

a fancy letter S. Playing continues from this point, and stops

either at the end of the song or at a fine, whichever comes

first.

There's one other symbol often encountered when da

capo or dal segno has been used. After playing has jumped

back to the beginning of the voice or to a particular measure,

you may encounter the message To Coda, followed by a coda

symbol. The coda symbol looks like a letter O with a cross

302

Chapter 9

passing through it. This means that playing is going to jump

to another place again, but this time, instead of jumping back,

the playing skips ahead. At the end of the sheet music you

should find some measures labeled as Coda, with the coda

symbol shown again. Playing jumps to the first of these mea

sures and continues to the end of the song.

Through the clever use of phrase calling, Sidplayer can

handle these advanced forms of repetition. The example

shown in Figure 9-15, though condensed and not necessarily

typical, uses repeats, dal segno, and a coda. Below is the order

in which the measures would be played.

1. The first two measures are played (the sign is ignored).

2. The next two measures are played and then repeated.

3. The following two measures are played (the coda symbol is

ignored).

4. At the D.S., playing goes back to the measure which had

the sign (the second measure) and continues from there.

5. When playing reaches the coda symbol, playing jumps to

the coda (the last two measures) and then ends.

Figure 9-15. Repeats, D.S., and Coda

to Coda Coda

"I "It" I Ifl I

Phrases are also handy if you need to frequently alternate

between two or more voice settings. A phrase can consist of

only commands and no notes. Just be careful not to make a

voice too complex. Too many commands, whether in a phrase

or not, can cause the CLOBBER error in the fast-forward play

303

Chapter 9

mode. The CLOBBER error means that processing on one

voice took too much time.

One practice to avoid is defining several phrases at the

beginning of a song, before any notes are played. This in

creases the risk of a CLOBBER error. Remember, you should

not define a phrase until the first time it's needed, and then

call it for all later times.

304

Chapter 10

Sophisticated Sounds

Advanced Music Theory

Music can be defined in many ways, but one way is to say

that it consists of change—changing pitches, changing dura

tions, and changing volumes. Chapter 7 introduced these

characteristics of music on a simple level.

This chapter reexamines these same characteristics, but

from a broader viewpoint. For example, the volume level may

not stay the same throughout a song. It may change at dif

ferent places in the music. Or the tempo might change. Even

the key may change during a song. Changes like these may

not happen in a simple piece of music, but they certainly do

occur in longer, more sophisticated works.

Now that you have some experience using the Sidplayer,

it's time to look at these more advanced aspects of music. The

purpose of this chapter is to cover all the remaining elements

of notation commonly found in sheet music. When you finish

with these descriptions and explanations, you'll be able to en

ter almost any piece of music with the Sidplayer and Editor.

Tempo changes. There are two kinds of tempo changes.

In the first kind, the tempo changes abruptly, perhaps from a

slow to a fast speed. This is most often found at the beginning

of a movement or major part of a piece of music.

In the second kind of tempo change, the tempo increases

or decreases gradually. This type of change is marked by the

words accelerando and ritardando, which respectively mean

that the tempo should start getting faster or slower. For in

stance, if the tempo is currently M.M. 100 and you see ritard,

you might change the tempo to M.M. 94, then change it to

M.M. 90 a few notes later.

When making such tempo changes, be sure that the

voices stay synchronized. Make tempo changes only at a point

in the music where all three voices are starting a new note.

Usually, the beginning of a measure is a suitable place to

change the tempo.

(Incidentally, if the tempo is ever indicated by a half

note followed by an equal sign, instead of a quarter note and

equal sign, double the tempo value when entering the TEM

command.)

305

Chapter 10

The symbol used to briefly change the tempo is called a

fermata, and looks like a narrow semicircle with a dot below it.

A fermata can be placed over a particular note or rest to ex

tend its duration. Glance at Figure 10-1 for a sample. This is

sometimes referred to as a hold.

Figure 10*1* Fermata

The easiest way to handle a fermata is to enter the

corresponding note with a longer duration than written.

Dynamics. Volume changes are the most common type of

change in music. As with tempo, the dynamics can change im

mediately or gradually. Immediate changes are indicated in

the normal way, using letter combinations such as p and ///.

Gradual changes are marked by the words crescendo and de-

crescendo, which respectively mean that the volume should

gradually increase or decrease.

Gradual volume changes can also be denoted by symbols

placed above notes, as shown in Figure 10-2.

Figure 10-2* Crescendo and Decrescendo

cresc. decresc.

Use the VOL command for abrupt volume changes, when

the master volume is to be changed by more than one level.

For gradual changes, however, you may prefer to use the BMP

command. This command is used to bump the master volume

up or down one level.

When you press the joystick button while on the BMP

command in the special option screen, the window indicates

that 0 should be entered to bump the volume up one level, or

that 1 should be entered to bump the volume down one level.

306

Chapter 10

After you press the RETURN key, the command is displayed

with the name BMP and the letters UP or DWN.

To produce the effect of a crescendo or decrescendo,

bump the volume up or down every few measures. The BMP

command is also useful in repeat loops at the end of a song,

where the volume has to fade out.

A BMP UP command does not change the master volume

if the volume is at 15, the highest level. Likewise, a BMP

DWN command has no effect if the volume is already 0.

Remember that the VOL command should be used on

only one voice. This is also true of the BMP command.

An accent mark is the symbol used to change the volume

of one note. It looks like a greater than sign (Figure 10-3).

When placed above a note, it means that the note should be

played just a little louder than the others.

Figure 10*3. Accent Mark

Since there is no volume control for individual voices, ac

cents are hard to simulate. You might set the sustain level a

little higher, or sustain the note a little longer by using a

smaller release point. Insert these changes before the note to

be accented. After the note, reset the sustain level or release

point to the previous values.

Key changes. Usually, the clef symbols are drawn at the

beginning of each staff. They're followed by sharp or flat signs

that indicate the key in which the music is to be played. These

symbols specify the key signature.

A piece of music does not have to use just one key for an

entire song. If a key signature appears somewhere in the mid

dle of the sheet music, it's indicating a change in the key. Any

previous sharps or flats are canceled, and only the sharps or

flats specified by the new key signature are to be used.

Sometimes you'll see natural signs appearing in a key sig

nature when there is a key change. These natural signs are

often used when changing keys to show that the sharps and

flats of the previous key no longer apply.

307

Chapter 10

Since key changes are not as common as tempo or vol

ume changes, they can be easy to miss when reading sheet

music. A good suggestion is to look over the music before

entering notes so that you'll be expecting a key change if there

is one.

Time signatures. At the beginning of sheet music, right

after the key signature, you'll often find a fraction such as 4/4.

The top number tells how many beats there are per measure,

and the bottom number tells how many beats there are per

whole note. Together, these two numbers define the time

signature.

Up until now you've used only what's called 4/4 time, in

which each measure contains four beats, and a whole note is

four beats long.

When using different time signatures, there may be more

or less than four beats in every measure, and a whole note

may not always be four beats long.

One of the more common time signatures is 3/4 time.

This is just like 4/4 time, except that there are only three

beats in every measure. Waltzes are always written in 3/4

time.

Changing the number of beats in a measure really does

not affect Sidplayer. As long as you follow the sheet music,

there should be no problem. The important thing is that each

measure have the same number of beats,

use the whole rest symbol as a measure rest symbol, to in

dicate a full measure of rest. For example, if a song is written

in 5/4 time and you see a whole rest, the sheet music is not

wrong. It means that the rest should last for five beats.

The five-beat rest shown in Figure 10-4 would be entered

as a whole rest and a quarter rest. In other time signatures, a

measure rest may last for a different number of beats.

Figure 10*4. Measure Rest

JJJJi JJJJe

When the bottom number is 4, a whole note plays for

four beats, so one-fourth of that duration, a quarter note, plays

for one beat. If the bottom number is 2, however, a whole

308

Chapter 10

note is only two beats long, and a half note is one beat long.

The quarter note plays for only half a beat. When the number

on the bottom is 8, a quarter note plays for two beats, and the

note for one beat is now an eighth note. The tempo stays the

same; the number of beats per minute remains unchanged. It's

the number of beats per note that's different.

Sidplayer is designed to expect a whole note to always be

four beats so that a quarter note is always one beat. There's no

way to change the number of beats for these standard dura

tions. Time signatures which have a number other than 4 on

the bottom can be used indirectly, however, by fooling

Sidplayer into thinking that a whole note is longer or shorter

than it actually is.

Consider the time signature 2/2, in which a whole note is

two beats, compared to four beats in 2/4. A whole note is

seemingly reduced to half its normal duration. This can be

achieved on Sidplayer by doubling the tempo. At faster tempo

selections, more beats per minute means that each beat takes

less time, so whole notes are shorter. Therefore, when the

tempo is M.M. 100, 2/2 time can be simulated by actually

using M.M. 200. To use a time signature where the bottom

number is 8, as in 3/8, the tempo should be cut in half, mak

ing whole notes play twice as long as normal.

There's another way to show a time signature without

using numbers. The letter C placed where the time signature

belongs indicates 4/4 time. The C stands for common time. If

the C has a vertical line passing through it, it indicates 2/2

time, also known as cut time.

One last word about time signatures—they can change

while a song is playing. Such changes are indicated by double

bars followed by a new fraction or symbol.

Accidentals. In any octave, there are 12 different pitches,

including naturals, sharps, and flats. Earlier you saw that a

song will use only 7 of these pitches, according to the current

key. Let's retract that now. Once in a while a song may have

to play a note using a pitch not in the key. The "BLUES"

piece is written in the key of G, meaning that only one note is

sharp (F-sharp), but the melody line had to play a C-sharp at

one instance.

Special exceptions like this are handled by placing an ac

cidental sign immediately before the note that is to be sharp or

flat. This accidental overrides the current key signature for that

particular pitch.

309

Chapter 10

Furthermore, the effect of the accidental sign holds true

for all following notes of the same pitch. A sharp sign placed

in front of a C affects not only that C note but any other C

notes in the same octave which may come later. The changed

accidental is not permanent, though, and is canceled at the

next measure.

An accidental sign used in this way affects only the des

ignated pitch. All other pitches remain the same.

You already know how to change a natural pitch into a

sharp or flat. What about the other direction—removing a

sharp or flat from a pitch to make it natural? This can be done

by using a natural sign. Placed in front of a note, it cancels the

sharp or flat for all following notes of the same pitch, but only

within the current measure.

A common mistake is to forget that an accidental on one

note also affects later notes of that pitch in the same measure.

To help with this problem, the Editor supports a measure

feature.

The key signature level shows whether the measure fea

ture is on or off. Press the M key to turn this feature on. Now,

whenever you enter a note with an accidental, the Editor

remembers that the accidental is in effect. If you enter more

notes and then move back to that pitch, the accidental is auto

matically selected.

Since accidentals affect only those pitches in one measure,

accidentals remembered by the Editor are cleared whenever a

measure marker is entered.

To turn off the measure feature, press the M key again (it

acts as a toggle switch). This feature can also be selected with

the joystick. Push the stick up or down while in the key sig

nature level.

There's one more possibility. Although they're not used

often, it's possible to have double sharps or double flats.

Changing a natural note into a sharp note is done by increas

ing the pitch one half step. If this is done on a note already

sharp, the pitch is bumped up another half step. The symbol

to indicate a double sharp looks something like a letter X

(shown in Figure 10-5).

310

Chapter 10

Figure 10-5. Double Sharps

B Ctf Cx=D D

Two flat signs are used to indicate a double flat.

Figure 10-6. Double Flats

b!> c bM>=a a

J J nJ J

The double sharp and double flat signs, along with the

sharp, natural, and flat signs, give a total of five different ac

cidental signs.

The Editor does not support double sharps and double

flats. When you see a note with a double sharp or flat, you

must calculate the pitch that should be entered. For example,

if you encounter a C-double-sharp, you should enter a D-

natural.

Double dots. A dot placed after a note means that the

duration should be increased by one-half. Adding a second

dot means that the value of the first dot should be increased

by one-half. Thus, a double-dotted half note is equal in dura

tion to a half note, plus a quarter note, plus an eighth note.

Double dots can be used on other durations as well.

Because double-dotted notes are very rare, they're not di

rectly supported by Sidplayer. You can simulate them, how

ever, by entering the appropriate single-dotted note and tying

it to another note of the same pitch. For example, a double-

dotted C4 half note could be simulated by entering a dotted

C4 half note tied to a C4 eighth note.

Triplets. All the durations, from whole note to thirty-

second note, are based on the number two. These durations

allow notes to be played for one, two, or four beats, half a

beat, and so on. This system works very well, except that it's

difficult to handle durations based on the number three. To

311

Chapter 10

play a note for three beats, a dotted half note can be used. But

how do you play a note for one-third of a beat? Using dots

will not help there. Instead, you need to use a new kind of

duration called a triplet.

A triplet consists of three notes played for the amount of

time normally allotted to two notes. An eighth triplet is equal

in duration to two eighth notes. Because two eighth notes

form one beat, each of the three notes in a triplet is one-third

of a beat long.

Figure 10-7. Triplets

A sixteenth triplet means that the amount of time used for

two sixteenth notes, or one eighth note, is to be divided into

three equal parts. Each of the three notes in the triplet plays

for that duration. Triplets based on other durations, such as

quarter notes, are also possible. Triplets are always written

with the number 3 above or below them.

To support the less common durations, Sidplayer has a

utility duration which can be set to last any amount of time. If

you want to play an eighth triplet, for example, all you have

to do is set the utility duration to play for the appropriate

number of jiffies, then enter the notes of the triplet using the

duration marked UTILITY. Push the joystick left or right, or

press the U key to select this duration.

The UTL command is used to set the utility duration. The

range of this command is from 0 to 255 jiffies, with 0 meaning

256. To calculate the number of jiffies for a particular dura

tion, refer to Table 9-1, "Tempo," in Chapter 9. If you want

an eighth triplet, find the jiffy count for a quarter note in the

current tempo and divide that number by 3. Enter the result

for the UTL command.

Once the utility duration has been set by the UTL com

mand on one voice, it can be used for entering notes and rests

on all three voices.

The length of the utility duration stays the same until

changed by the UTL command. Since the calculation of the

312

Chapter 10

utility duration depends on the current tempo, the utility dura

tion may have to be changed if the tempo ever changes.

Some tempos do not support the use of eighth or six

teenth triplets. In M.M. 128, for example, a quarter note plays

for 28 jiffies. The number 28 is not evenly divisible by 3, so a

different tempo has to be used.

If only a few triplets are used in the music you're translat

ing, try this. To play an eighth triplet in M.M. 128, set the

utility duration to 9 jiffies and enter the first two notes of the

triplet. Then set the utility duration to 10 jiffies and enter the

remaining note. The total duration of the three notes will be

28 jiffies.

This trick of changing the utility duration can also be used

to play sixteenth or thirty-second notes in tempos which do

not normally support them. An eighth note in M.M. 120 plays

for 15 jiffies. To play a pair of sixteenth notes in this tempo,

set the utility duration to 7 jiffies for the first note and to 8

jiffies for the second note.

The default value of the utility duration is 12 jiffies,

which is the length of an eighth triplet in M.M. 100.

Grace notes. If you see a note written a lot smaller than

all the other notes, it's a grace note. A grace note is played

very quickly, just long enough to be heard. Refer to Figure 10-

8 for an example of a grace note.

Figure 10*8. Grace Note

m
To enter a grace note, enter the preceding note with a

slightly shorter amount of time, then enter the grace note with

the remaining duration. Generally, the utility duration must be

used to do this.

In Figure 10-8, the grace note is preceded by a half note.

Let's say that the current tempo is M.M. 100, in which case a

half note plays for 72 jiffies. The grace note could be entered

by setting the utility duration to 68 jiffies and entering the half

note with the utility duration, then setting the utility duration

313

Chapter 10

to 4 jiffies and entering the grace note. The total duration of

the two notes (68 + 4 jiffies) will be correct.

There's no definite rule about how many jiffies should be

used for a grace note. The grace note in the example could

have been played for 6 jiffies, in which case the previous note

would have played for 66 jiffies.

Trills. The letters tr above a note are used to indicate a

trill (Figure 10-9). This means that the note should be played

with the pitch rapidly alternating between the designated

pitch and the next higher pitch in the current key.

Figure 10*9. Trill

tr means

i

Repeat loops can be useful in entering trills. To enter the

trill shown in the example, a pair of thirty-second notes, in the

pitches F and G, could be entered between a HED and TAL.

The loop would be repeated four times.

Portamento and Vibrato

To make the SID chip produce a pitch, a frequency number

has to be POKEd into the chip's frequency registers. The fre

quency numbers for all eight octaves can be found in Appen

dix M of the Commodore 64 User's Guide (the manual that

came with your Commodore 64). Every time a new note is

played, Sidplayer examines the pitch of the note and POKEs

the corresponding frequency number into the SID chip fre

quency registers.

The frequency numbers are rather large. For example, the

number for middle C is 4291. There's also a large gap between

frequency numbers for each half step. The number for C-sharp

is 4547, quite a jump from 4291.

All the numbers between 4291 and 4547 make the SID

chip produce pitches between C and C-sharp. Normally, these

pitches are never played. If Sidplayer plays a C followed by a

C-sharp, the frequency number changes immediately from

4291 to 4547. But if the frequency number were to run

through all the intermediate values before reaching 4547, the

314

Chapter 10

pitch would make a smooth transition from the C to the C-

sharp. The pitch would glide from one note to the other.

The effect is called glissando, or portamento in synthesizer

terminology. Gliding can be done between any two pitches,

and can go up or down. The trombone is one instrument

which does this naturally.

Sidplayer supports a portamento option for each voice. To

turn on portamento, enter the POR command with a number

greater than zero. Then, as each note is played, the pitch will

glide up or down from the previous note until it reaches the

new pitch.

The POR command number controls the glide rate. The

larger the number, the more quickly the pitch glides from one

note to the next.

An important characteristic of the rate number is that

larger rate numbers must be used for higher pitches. If you

examine the frequency numbers, you'll notice that the dif

ference between the numbers increases as the pitch increases.

To be precise, the difference doubles with each octave.

In order to get the same glide effect in each octave, the

rate should be doubled or halved as necessary. For instance, if

the glide rate is 100 when playing notes in octave 4, use a

glide rate of 200 for notes in octave 5, or a rate of 50 for notes

in octave 3.

The portamento feature can be turned off by entering the

command POR 0.

Usually, gliding is done only a few times in a song. When

done continually, the result can be rather comical, as illus

trated by Program 10-1.

The effect of vibrato is to make the pitch waver slightly.

The pitch repeatedly increases and then decreases by a small

amount as each note plays. When done properly, the slight

but steady fluctuation in pitch is barely noticeable, but it

makes a tone sound more natural and alive.

Two commands are needed to control vibrato. The VDP

command is used to set the vibrato depth. The number for this

command ranges from 0 to 255. The larger the number, the

more pronounced the vibrato effect. The most commonly used

values are 1-50. Like the glide rate, the depth number should

be doubled for each higher octave, and halved for each lower

octave.

315

2
P
r
o
g
r
a
m

1
0
*
1
.
A
L
B
U
M
L
E
A
F
.
M
U
S

^
To

en
te

r
th
is

pr
og
ra
m,

yo
u
mu
st

us
e
"T
he

Ma
ch
in
e
La
ng
ua
ge

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
1
5
9

F
i
l
e
n
a
m
e
:
A
L
B
U
M
L
E
A
F
.
M
U
S

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

:
0
8
0
,

:
0
0
1
,

:
0
1
5
,

:
0
5
2
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
5
2
,

:
0
2
4
,

:
0
3
0
,

:
0
1
6
,

:
0
2
0
,

:
0
0
1
,

:
0
2
0
,

:
0
2
0
,

:
0
5
4
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

0
0
1
,
0
6
8

1
1
0
,
0
0
1

1
3
2
,
0
3
0

1
4
7
,
0
2
4

0
8
4
,
0
3
0

1
5
1
,
0
1
6

0
8
4
,
0
2
0

0
0
4
,
0
2
0

1
5
5
,
0
2
0

1
4
7
,
0
2
4

0
8
5
,
0
2
4

0
0
6
,
0
2
0

1
4
7
,
0
3
0

0
8
4
,
0
2
0

0
4
7
,
0
1
6

1
5
9
,
0
0
1

1
3
9
,
0
2
0

0
0
2
,
0
0
1

1
5
7
,
0
2
0

0
0
9
,
0
2
0

0
0
0
,
0
2
0

0
0
0
,
0
2
0

0
9
2
,
0
S
0

.
0
1
2
,

,
0
8
4
,

,
0
0
2
,

,
1
4
7
,

,
0
8
4
,

,
1
4
7
,

,
1
5
9
,

,
0
8
4
,

,
1
4
9
,

,
1
5
1
,

,
0
0
7
,

,
1
5
9
,

,
1
4
7
,

,
0
0
2
,

,
0
0
0
,

,
1
4
2
,

,
0
0
0
,

,
0
0
0
,

,
1
5
7
,

,
0
9
2
,

,
0
1
1
,

0
2
2
,
0
0
1
,
1
7
3

0
2
0
,
1
5
9
,
0
5
3

0
0
1
,
0
0
6
,
1
9
7

0
2
0
,
1
4
9
,
2
3
8

0
2
0
,
1
5
1
,
0
7
5

0
3
0
,
0
0
3
,
1
4
1

0
1
6
,
1
5
9
,
1
6
3

0
2
0
,
1
4
7
,
1
5
4

0
3
0
,
0
0
5
,
1
8
1

0
2
4
,
1
5
0
,
0
2
3

0
2
4
,
0
8
4
,
1
9
4

0
2
0
,
1
5
1
,
1
8
8

0
2
0
,
0
8
4
,
1
2
0

0
2
0
,
1
5
1
,
0
2
0

0
2
0
,
1
3
9
,
1
9
8

0
1
6
,
1
4
7
,
1
7
9

0
3
0
,
0
0
8
,
0
5
7

0
2
0
,
0
0
0
,
0
6
5

0
2
0
,
1
5
7
,
2
2
6

0
2
0
,
1
5
7
,
0
9
4

0
3
0
,
0
1
0
,
1
0
1

0
2
0
,
1
4
6
,
1
6
8

0
2
0
,
0
0
0
,
0
4
9

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

:
0
2
0
,
0
9
2

:
0
3
0
,
0
1
2

:
0
2
0
,
0
0
0

:
0
2
0
,
0
0
0

:
0
2
0
,
1
5
7

:
0
2
0
,
0
9
2

:
0
3
0
,
0
1
5

:
0
2
0
,
0
9
2

:
0
0
1
,
1
1
0

:
0
2
0
,
0
0
0

:
0
2
0
,
0
0
0

:
0
2
0
,
1
5
7

:
0
2
0
,
0
9
2

:
0
3
0
,
0
1
9

:
0
2
0
,
1
5
9

:
0
2
0
,
0
0
0

:
0
2
0
,
1
5
5

:
0
2
0
,
1
5
5

:
0
3
0
,
0
2
2

:
0
2
0
,
1
0
2

:
0
1
6
,
1
6
7

:
0
5
2
,
1
4
7

:
0
2
0
,
0
8
4

:
0
2
0
,
1
5
1

:
0
2
0
,
0
8
4

:
0
3
0
f
0
2
7

:
0
2
0
,
1
5
5

:
0
5
2
,
1
4
7

:
0
2
4
,
0
8
5

:
0
3
0
,
0
2
9

:
0
1
6
,
1
4
7

,
0
2
0
,
1
4
6
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
1
5
7
,
0
3
0
,

,
0
2
0
,
1
5
7
,
0
2
0
,

,
0
3
0
,
0
1
4
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
0
9
2
,
0
3
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
1
5
7
,
0
3
0
,

,
0
2
0
,
1
5
7
,
0
2
0
,

,
0
3
0
,
0
1
8
,
0
2
0
,

,
0
2
0
,
1
4
6
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
0
9
0
,
0
3
0
,

,
0
2
0
,
1
5
5
,
0
2
0
,

,
0
3
0
,
0
2
1
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
2
0
,

,
0
2
0
,
0
0
0
,
0
1
6
,

,
0
3
0
,
0
2
3
,
0
2
0
,

,
0
2
0
,
1
5
9
,
0
3
0
,

,
0
2
4
,
0
8
4
,
0
2
0
,

,
0
3
0
,
0
2
5
,
0
2
0
,

,
0
1
6
,
1
4
7
,
0
3
0
,

,
0
2
0
,
0
8
4
,
0
1
6
,

,
0
2
0
,
1
4
7
,
0
2
0
,

,
0
2
0
,
1
5
9
,
0
3
0
,

,
0
2
4
,
0
8
4
,
0
2
4
,

,
0
2
4
,
1
4
9
,
0
2
4
,

,
0
2
0
,
1
5
1
,
0
2
0
,

,
0
3
0
,
0
3
0
,
0
2
0
,

0
9
2
,
0
1
6

1
5
7
,
1
2
7

0
1
3
,
1
3
4

0
0
0
,
1
1
7

0
0
0
,
1
4
7

0
9
2
,
1
5
6

0
9
2
,
0
9
5

0
1
6
,
1
9
4

1
5
7
,
2
3
8

0
1
7
,
1
8
0

0
0
0
,
1
5
9

0
0
0
,
1
9
3

0
9
2
,
0
8
8

0
9
0
,
1
3
9

0
2
0
,
0
4
9

0
0
0
,
1
8
7

0
0
0
,
2
2
4

1
5
5
,
0
9
8

1
6
6
,
2
4
4

0
0
0
,
1
9
1

0
2
4
,
1
6
2

1
4
9
,
2
2
8

1
5
1
,
0
8
8

0
2
6
,
1
5
4

1
5
9
,
1
5
3

1
4
7
,
1
6
7

0
2
8
,
1
9
4

1
5
0
,
0
1
3

0
8
4
,
1
8
4

1
5
1
,
2
0
1

0
8
4
,
1
3
3

Chapter 10
1
6
2
,

0
2
0
,

0
9
7
,

0
2
4
,

1
6
2
, ••

1
0
0
,

0
2
0
,

0
1
7
,

0
3
0
,

1
6
3
,

:
0
2
0
,

1
6
7
,

0
2
0
,

1
6
6
,

1
6
5
,

:
0
2
0
,

1
6
6
,

0
8
4
,

1
6
7
,

0
1
8
,

:
0
3
0
,

1
6
5
,

CM
0
1
9
,

0
3
0
,

1
6
6
,

:
0
1
6
,

0
2
0
,

0
3
0
,

1
0
0
,

0
1
6
,

1
0
0
,

:
0
8
4
,

1
7
5
,

0
2
0
,

1
1
0
,

0
2
4
,

1
7
5
,

:
0
5
2
,

0
9
8
,

0
2
0
,

0
2
1
,

0
3
0
,

0
9
7
,

:
0
2
0
,

1
6
5
,

0
2
0
,

1
0
0
,

1
6
3
,

:
0
2
0
,

0
2
0
,

,
0
3
0
,

rHrH TOTO TOrH II
0
0
0
,

r
0
2
0
,

0
9
8
,

,
0
2
0
,

1
6
3

,

1
5
7
,

,
0
2
0
,

,
1
6
3
,

,
0
2
0
,

0
2
4
, TO

0
2
5
,

,
1
5
8
,

1
6
3
,

:
0
2
0
,

1
6
3
,

,
0
2
0
,

,
1
5
7

,
0
2
0
,

,
1
6
3
,

:
0
2
0
,

1
6
3
,

,
0
2
0
,

,
0
2
6

,
0
3
0
,

,
1
5
7

:
0
2
0
,

1
5
8
,

1
5
7
,

r
0
2
0
,

r
0
2
0
,

T
O
T
O

»HTO
:
0
2
0
,

:
0
3
0
,

0
2
8
,

r
l
5
7

r
0
2
0

,
1
6
3

:
0
2
0
,

1
6
3
,

r
0
2
0
,

r
l
5
7

r
0
2
0

,
1
6
3

1
6
3
,

r
0
2
0
,

r
0
2
9

,
0
3
0

,
1
5
8

:
0
2
0

1
5
7
,

r
1
6
3

r
0
2
0

r
l
5
7

:
0
2
0

1
5
8
,

r
0
2
0
,

r
1
6
3

r
0
2
0

,
0
3
0

:
0
3
0

0
3
1
,

r
0
3
0
,

r
1
5
8

r
0
2
0

r
1
6
3

:
0
2
0

1
7
1
,

r
l
5
7

r
0
2
0

r
1
6
3

:
0
2
0

0
7
9
,

,
0
0
1
,

r
0
1
5

r
0
0
1

0
0
0
'

:
0
2
0

0
0
1
,

,
0
0
0

r
0
2
0

r
1
2
7

1
6
7
,

,
0
2
0
,

,
0
0
0

,
0
2
0

0
0
2
,

,
0
8
9

,
0
2
0

0
0
0
i

0
0
0
,

,
0
2
0
,

r
1
6
7

r
0
0
0

,
0
2
0
,

,
0
0
3

,
0
3
0

r
1
6
7

:
0
2
0

CMCO^TOVOCMCO^TOvOCMCO^TOvOCNCO^tTOvOCMOO^tTOvOCMCO ^t TO VO CM
vovor^cocooNONTOrHrHCMCMfO^'^inLnvor^r^ooooONTOTOrHrH cm co co ^

vovovovovovovor^r^r^r^r^t^r^r^r^i^r^t^r^r^r^r^oooooooo oo co co co
C^OnONO>ONONOnc^ON^OnOnONONONOnONONONO>OnOnON(JNONOnO> On ON C\ ON

TO

rH

in

rH

TO
CM

ON

in

rH

TO
CM

<?
CO

TO
CM

TO

CM

ON

CO

rH

TO
CM

TO

•H

VO
rH

rH

CO

TO

TO
CO

TO

rH

CJN

TO

rH

TO

in

rH

TO

rH

TO
TO

TO
TO

TO
CM

TO

rH

CO

VO
rH

TO

TO

CM
CO

•H

in

rH

TO

TO
TO
TO

TO
CM

TO

rH

CO

VO
rH

TO
CM

TO

CM

rH

CO
in

•H

TO
CM

TO

CO

TO VO
TO

<?
in

rH

TO
CM

TO TO

rH

TO
TO

TO

in

rH

TO
CO CM
TO TO

CM

in

rH

TO
CM

TO

CO

VO
•H

TO
CM

TO

CM

TO
TO

TO
CO

TO

CM

CO

TO
TO

TO
CO

TO

in

rH

TO
CM

TO

CO

VO
rH

TO
CM

TO

rH

CO

VO
rH

TO
CM

TO

CO
in

rH

TO
CM

TO

CO

VO
rH

TO
CM

TO

CO

VO
rH

TO
CM

TO

<?
TO
TO

TO
CO

TO

CO
in

rH

TO
CM

TO

rH

r-

in

rH

TO
CM

TO

CO

vo
rH

TO
CM

in

rH

TO
CM

TO

TO

in

rH

TO
CM

TO

CO

vo
rH

TO
CM

in

TO
TO

TO
CO

TO

TO

VO

TO

TO
CO

TO

00
in

rH

TO
CM

TO

CO

VO
rH

TO
CM

TO

rH

CO

VO
rH

TO
CN

TO

in

rH

TO
CM

CO

vo
rH

TO
CM

TO

TO

CO

vo
rH

TO
CM

TO

TO
TO

TO
CO

r>

in

rH

TO
CM

TO

rH

CO
in

rH

TO
CM

TO

CO

vo
rH

TO
CM

TO

CO
in

rH

TO
CM

TO

rH

in

rH

TO
CM

TO

in

TO

TO

rH

in

rH

TO

rH

TO

TO
TO
TO

TO
CO CM

TO

rH

rH

TO
CM

TO

TO

rH

rH

TO
CM

TO

CM

CM

VO
rH

CM
in

TO

CM

TO
TO

in

TO

CO
TO

TO
CO

TO

rH

CO

VO
rH

TO
CM

TO

CM

VO
rH

TO
CM

TO

(^

ON

TO

<tf
CM

TO

TO

in

VO
rH

TO
CM

TO

TO
TO
rH

TO
CM

ON

TO
TO

TO
CO

TO

TO

TO
•H

TO

TO
CO

TO

r>

VO
rH

TO
CM

TO

VO
VO
rH

TO
CM

TO

TO

VO

VO
rH

VO
rH

TO

VO

VO
rH

<?
CO
TO

f^

VO
rH

TO
CM

TO

rH

vo
VO
rH

<*
00

TO

r>

vo
rH

TO
CM

TO

rH

rH

TO

TO
CO

TO

rH

CM

VO
rH

CM

in

TO

CM

rH

TO

TO
CO

TO

vo

VO
rH

VO
rH

TO

rH

CO

VO
rH

TO
CM

®.

CM

VO
rH

TO
CM

TO

ON

TO

^

CN

TO

TO

in

VO
rH

TO
CN

TO

TO
TO
rH

TO
CM

TO

rH

TO

TO
CO

TO

rH

rH

TO

TO
CO

TO

t>

VO
rH

TO
CM

TO

vO

VO
rH

TO
CM

TO

CN

<?
in

iH

TO
CM

TO

CM

TO
rH

TO
CM

TO

rv.

VO
rH

TO
CM

TO

rH

CO

in

rH

VO
rH

TO

in

rH

TO

TO
CO

TO

CO

in

rH

TO
CM

TO

rH

VO
rH

TO

TO
CO

TO

VO

VO
rH

TO
CM

TO

r^

VO
rH

TO
CM

TO

317

Chapter 10

S3

S3
S3

S3

S3
CM

G>

t>

VO
rH

S3

rH

S3

G3

S3

G3

!>

VO

•-*

S3

CM CM

S3

t^.

CM

S3

S3

CM CO

GJ

S3

S3

S3

CM

S3

S3

VO
r-i

S3
CM

S3

S3

S3

(9
S3

S3
CM

S3

1^

VO

■-*

S3
CM

S3

rH

VO
rH

S3
CM

S3

S3
S3

S3

S3

G3

ON

CM

S3

S3
CO

G3

ON
00
G3

S3
CM CM

S3

00
CM

S3

S3

CO

S3

S3

S3
S3

S3

S3
CM

S3

rH

S3
S3
S3

S3
CM

S3

r^

VO
rH

S3
CM

S3

G3
S3

S3

S3

CM

S3

rH

S3
S3

S3

S3
CM

S3

S3

CO

S3

S3
CO

S3

1^

VO
r-\

S3
CM

S3

G3

j^

VO
rH

S3
CM

G)

S3
S3
S3

S3
CM

S3

VO
rH

S3

CM

rH

vo
rH

S3
CM

S3

S3
S3

S3

S3

CM

S3

iH

CO

S3

S3
CO

S3

rH

in

rH

S3

,_,

S3
S3

S3
S3
S3

S3

CM

S3

CO

vo
rH

S3
CM

S3

G3

in

CO
S3

VO

S3

CO

rH

S3

S3
vo r*
S3

vo

S3

in

vo

S3

in

vo
S3

ON

vo
S3 S3

ON

[•»»

vo

S3 S3

rH

S3

S3 S3

rH

00
VO
S3

CM

00
S3

in

vo
S3

vo

00
S3

CO
vo

S3

ON

VO
S3

G3

rH

S3

ON

VO
S3

CO

S3

CN

S3

CM

CO

S3

CO

00
S3

ON

VO
G>

CO

00 00
S3

rH

S3

CM

CO

S3

S3

in

CO
S3

CO

rH

S3

rH

S3

in

vo
S3

00
S3

CM

00
S3

ON

S3

S3

CO
S3

S3

r^.

rH

CO

VO CO
S3

CO

rH

S3

ON

S3

**
00
S3

00

S3

ON

VO

G3

G3

ON

VO
S3

<?
00
S3

CM

00
S3

in

00
S3

ON

S3

S3

CN

CO

S3

VO
VO

S3

ON
f>.

S3

VO
VO

S3

CM

CO

S3

ON

00
S3

rH

VO

S3

VO

S3

ON

VO
S3

<?
00
Q

ON

VO
S3

CM

CO
S3

CM

<?
VO

*>
CM

S3

ON

CO

CM

S3

S3

S3

CO

rH

S3

ON

VO
S3

co^^ininvot^i^oocoONGiGirHrHCMfoco^^frin
G)G)G)G)G}G}G)G)G)G>G}rHrHiHrHrHrHrHrHrHrH

G) S3 S3 G) G) S3 G) S3 G) G) G5 S3 S3 S3 G) S3 S3 S3 G) S3 GJ
inininmininininininininininininininininin

,
1
6
7
, G3 CM G3

'
0
0
0 S3 CM G3

,
1
6
7
4

,
1
6
7
, S3 CM S3 S3 CM S3

,
0
0
4
!

,
0
0
5
, S3 CO S3

,
1
6
7
, G3 CM S3

,
0
0
0
,

,
0
0
0
, S3 CM S3

,
1
6
7
, S3 CM S3

,
0
0
0
!

0
0
0
, S3 CM S3 S3 CO S3

.
0
8
9
,

,
1
6
7
, S3 CN S3 S3 CM S3

,
1
6
7
,

,
1
6
7
, S3 CN S3 S3 CM S3

,
0
0
7
,

,
0
7
5
, S3 CO S3

,
1
6
7
, S3 CM S3

,
0
0
0
,

,
0
0
0
, VO rH S3

,
1
6
7
, S3 CM S3

,
0
0
0
,

,
0
0
2
, in S3 S3 CO S3

,
0
1
5
,

,
1
7
3
, VO rH S3 S3 CO S3

,
1
7
3
,

,
0
0
0
, S3 CM S3

r
0
1
0
. <S CO

,
0
0
0
,

,
1
5
3
, S3 CM,

1
5
3
, S3 CN G3S3 S3 CM G3

,
1
5
3
,

'
0
0
0
' S3 CM S3

,
0
1
1
,

0
1
2
, G3 CO S3

,
1
5
3
, S3 CM S3

,
0
0
0
,

,
1
7
3
, VO rH S3

,
0
1
3
, S3 CO,

0
0
0
, S3 CM S3

,
0
1
4
, G3 CO S3S3

,
1
7
3
,

,
0
0
0
,

,
1
5
5
, S3 CM G3

,
0
0
0
, S3 CM S3

,
1
5
5
,

,
0
0
0
, G> CM S3 VO rH S3

,
0
1
5
,

1
7
3
, VO r^ S3

,
0
1
6
, S3 CO S3

,
1
6
2
,

0
0
0
, vo rH S3

,
1
7
3
, VO rH S3

,
0
1
7
,

1
5
3
, S3 CM G> S3 CM G3

,
0
1
8
,

0
1
9
, S3 CO S3

,
1
5
3
, S3 CM S3

,
0
0
0
,

,
0
0
0
, S3 CM G3

,
1
5
3
, S3 CM S3

,
0
0
0
,

1
7
1
, VO S3

0
2
0
, S3 CO S3

,
1
5
3
,

0
0
0
, vo S3

,
1
7
1
4 vo rH S3

,
0
2
l
!

0
2
3
, S3 CO S3

,
1
6
1
, CM iH S3

,
0
2
2
,

0
0
0
, S3 CM S3

,
0
2
4
, S3 CO S3

,
1
7
5
,

1 S3 CN S3 S3 CM S3
,
1
6
7
,

1
6
7
, S3 CN S3

'
0
0
0
' S3 CM S3

,
0
2
5
,

0
2
6
, S3 CO S3

,
1
6
7
, S3 CM S3

,
0
0
0
!

S3S3S3S3S3S3S3S3S3rHVDV£)S3S3S3VDvDS3OS3S3S3S3S3S3S3S3CNS3S3S3
CMCOCMCMCMCMrOCMCMQr^rHCMCOCMr^rHCMCOCMCOCOCMCMCMfOCOrHCMCOCM
S3S3S3S3S3S3S3S3G3G3 G3 G3 S3S3S3S3S3S3S3S3S3S3G3S3G3S3G)S3G)S3G3

318

P
r
o
g
r
a
m

1
0
-
2
.
K
.
C
.
O
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
4
6
9

F
i
l
e
n
a
m
e
:
K
.
C
.
O
.
M
U
S

,
0
0
0
,
0
4
0
,
0
0
0
,
0
0
2
,
0
0
0
,
0
0
6

,
1
4
2
,
1
1
8
,
0
1
2
,
1
3
4
,
0
0
3
,
1
6
0

,
0
4
4
,
0
0
1
,
0
7
2
,
0
3
8
,
0
0
1
,
1
6
9

,
0
7
1
,
0
0
1
,
0
0
6
,
0
4
8
,
0
0
0
,
1
4
5

,
1
5
3
,
0
2
4
,
2
1
9
,
0
4
8
,
1
5
7
,
2
0
1

,
1
5
6
,
0
2
4
,
2
1
9
,
0
8
8
,
1
5
6
,
2
4
9

,
1
5
3
,
0
8
4
,
1
5
3
,
0
3
8
,
2
5
5
,
0
3
9

,
2
1
6
,
0
4
4
,
1
5
3
,
0
3
8
,
0
0
1
,
2
3
9

,
0
7
2
,
0
4
8
,
0
0
0
,
0
8
8
,
1
5
3
,
1
5
4

,
2
1
9
,
0
4
8
,
1
5
7
,
0
8
8
,
1
5
6
,
2
3
4

,
2
1
9
,
0
4
8
,
1
5
6
,
0
8
8
,
1
5
7
,
2
4
0

,
1
5
6
,
0
4
8
,
2
3
1
,
0
2
0
,
1
5
4
,
1
8
7

,
0
4
7
,
0
8
0
,
1
5
3
,
1
0
8
,
1
5
3
,
1
0
2

,
2
5
5
,
0
0
1
,
2
1
6
,
0
0
8
,
1
5
3
,
2
3
7

,
0
0
1
,
0
0
1
,
0
7
2
,
1
6
6
,
0
9
7
,
2
0
3

,
0
0
2
,
1
6
6
,
0
1
4
,
0
8
0
,
1
6
5
,
0
0
6

,
1
5
3
,
0
3
8
,
2
5
5
,
0
0
1
,
2
0
0
,
0
5
5

,
1
5
3
,
0
3
8
,
0
0
1
,
0
0
1
,
0
7
2
,
1
2
3

,
0
3
9
,
0
2
2
,
0
1
3
,
0
0
4
,
1
4
7
,
0
7
8

,
0
2
6
,
0
6
8
,
1
4
5
,
0
3
8
,
2
5
5
,
1
5
6

,
0
7
2
,
0
0
1
,
2
0
0
,
0
4
4
,
1
4
5
,
1
0
8

,
0
0
1
,
0
0
1
,
0
7
2
,
0
3
0
,
0
0
2
,
0
1
4

,
0
0
0
,
0
8
8
,
2
1
5
,
0
2
4
,
1
5
0
,
1
4
5

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

:
2
2
0

:
0
0
1

:
0
0
1

:
0
0
1

:
0
8
8

:
0
8
8

:
0
8
8

:
0
0
1

:
0
0
1

:
0
2
4

:
0
2
4

:
0
2
4

:
0
0
1

:
0
3
8

:
0
3
8

:
0
0
1

:
0
8
0

:
0
1
2

:
0
0
1

:
0
2
2

:
0
3
8

:
0
3
8

:
0
4
8

4
9
2
9
0

:
0
4
8
,
1
4
9
,
0
2
0
,
2
1
5
,
0
2
0
,
1
5
0
,
2
2
8

4
9
2
9
6

:
0
8
4
,
1
4
8
,
0
3
8
,
2
5
5
,
0
0
1
,
2
0
0
,
1
0
2

4
9
3
0
2

:
0
4
4
,
1
4
8
,
0
0
1
,
0
7
2
,
0
3
8
,
0
0
1
,
1
9
8

4
9
3
0
8

:
0
4
8
,
0
0
0
,
0
8
8
,
1
4
9
,
0
2
4
,
1
4
8
,
1
0
1

4
9
3
1
4

:
0
4
8
,
2
1
1
,
0
2
0
,
1
4
9
,
0
2
0
,
1
4
8
,
2
4
6

4
9
3
2
0

:
0
8
4
,
1
4
6
,
0
0
1
,
2
0
0
,
0
3
8
,
2
5
5
,
1
2
4

4
9
3
2
6

:
0
4
4
,
1
4
6
,
0
3
8
,
0
0
1
,
0
0
1
,
0
7
2
,
2
2
0

4
9
3
3
-
2

:
0
4
8
,
0
0
0
,
0
8
8
,
2
1
1
,
0
2
4
,
1
4
6
,
1
8
5

4
9
3
3
8

-
.
0
4
8
,
1
4
5
,
0
2
0
,
2
1
1
,
0
1
6
,
1
5
8
,
0
1
6

4
9
3
4
4

:
0
8
4
,
1
4
8
,
0
0
1
,
2
0
0
,
0
3
8
,
2
5
5
,
1
5
0

4
9
3
5
0

:
0
7
6
,
1
4
8
,
0
2
0
,
1
4
8
,
0
0
1
,
0
7
2
,
1
5
1

4
9
3
5
6

:
0
3
8
,
0
0
1
,
0
2
2
,
0
1
3
,
0
0
4
,
1
4
2
,
1
6
8

4
9
3
6
2

.
-
0
0
1
,
0
9
4
,
0
2
2
,
0
2
6
,
0
6
8
,
1
4
0
,
0
4
9

4
9
3
6
8

:
0
3
8
,
2
5
5
,
0
0
1
,
2
0
0
,
0
0
8
,
1
4
0
,
0
9
0

4
9
3
7
4

:
0
1
6
,
0
0
0
,
0
0
1
,
0
7
9
,
0
0
1
,
0
3
9
,
1
0
2

4
9
3
8
0

:
0
0
1
,
0
6
8
,
0
5
4
,
0
0
2
,
0
0
8
,
1
6
9
,
0
1
8

4
9
3
8
6

:
0
0
1
,
0
2
0
,
0
0
8
,
1
7
2
,
0
0
8
,
1
6
9
,
1
0
0

4
9
3
9
2

:
0
0
8
,
2
4
7
,
0
7
2
,
1
6
9
,
0
0
8
,
1
6
9
,
1
4
5

4
9
3
9
8

:
1
6
6
,
1
2
6
,
0
0
1
,
0
1
5
,
0
3
0
,
0
0
2
,
0
7
4

4
9
4
0
4

:
0
0
8
,
1
7
3
,
0
0
8
,
1
7
2
,
0
0
8
,
2
3
5
,
0
8
8

4
9
4
1
0

.
-
0
0
8
,
1
7
0
,
0
0
8
,
1
6
9
,
0
0
8
,
1
7
2
,
0
2
5

4
9
4
1
6

:
0
0
1
,
0
7
9
,
0
0
1
,
0
7
9
,
0
7
5
,
0
4
6
,
0
3
3

4
9
4
2
2

:
0
6
7
,
0
4
6
,
0
7
9
,
0
4
6
,
0
1
3
,
0
8
6
,
0
9
5

4
9
4
2
8

:
0
7
3
,
0
6
6
,
0
8
2
,
0
6
5
,
0
8
4
,
0
7
9
,
2
1
3

4
9
4
3
4

:
0
3
2
,
0
6
8
,
0
6
9
,
0
7
7
,
0
7
9
,
0
7
8
,
1
7
3

4
9
4
4
0

:
0
8
3
,
0
8
4
,
0
8
2
,
0
6
5
,
0
8
4
,
0
7
3

,
2
4
7

4
9
4
4
6

:
0
7
9
,
0
7
8
,
0
1
3
,
0
6
6
,
0
8
9
,
0
3
2
,
1
3
9

4
9
4
5
2

:
0
7
2
,
0
6
5
,
0
8
2
,
0
8
2
,
0
8
9
,
0
3
2
,
2
1
0

4
9
4
5
8

:
0
6
6
,
0
8
2
,
0
6
5
,
0
8
4
,
0
8
4
,
0
1
3
,
1
8
8

4
9
4
6
4

:
0
1
3
,
0
0
0
,
0
2
0
,
1
5
1
,
0
2
0
,
1
5
1
,
1
5
5

Chapter 10

The VRT command specifies the vibrato rate, or how

quickly the tone alternates between increasing and decreasing

pitches. The number ranges from 0 to 255, with 0 meaning

256. Smaller rate numbers produce faster vibrato rates. The

values 1-4 are used most often.

There are no default vibrato settings, so the first time you

want to turn vibrato on, both commands should be entered.

To turn vibrato off, use the command VDP 0. You don't

have to do anything to the rate when you turn vibrato off. To

turn vibrato back on, just enter the VDP command again. The

previous rate remains in effect until a new rate is specified by

another VRT command.

Program 10-2 demonstrates a brief, but pleasant example

of how vibrato can add a nice touch to a song.

Detuning

The DTN command is used to detune a voice. Detuning is

accomplished by adding a constant number, specified by the

DTN command, to the frequency number of each note played.

Detuning a single voice is not very useful. All it does is

make the voice play slightly out of tune. When used with two

voices, however, with both voices playing the same notes but

one slightly detuned, the result is a "chorus" effect. This effect

was used in the "COMMODORE" demonstration song and

has some interesting applications.

What's the easiest way to make two voices play the exact

same notes? The answer is to use phrases. A phrase defined

on voice 1 can be called simultaneously on voice 2 or 3. You

don't have to wait for playing to reach the END command

before calling the phrase; the phrase is available as soon as

Sidplayer has processed the DEF command.

This means that you can define the phrase on voice 1 and

call it on voice 2 after having set the detune value.

Voice 1: DEF 0 Play Notes END

Voice 2: DTN 50 CAL 0

Either voice can be detuned. The DTN command can be

put either before the DEF 0 or before the CAL 0. Just make

sure that the DTN command is not included in the phrase

definition. You don't want both voices detuned.

When entering the DTN command, use a number from 1

to 2047 to tune the voice a little sharp. The larger the value,

320

Chapter 10

the more the voice will be detuned. Values around 50 work

best. Enter a number from —2047 to —1 to tune the voice flat.

For most applications, the direction makes no difference.

As with the glide rate and vibrato depth, larger values

have to be used for higher pitches.

Enter the DTN 0 to turn the detuning off.

The only drawback to detuning is that it takes two voices,

so only one voice is left free. The effect can sometimes be

worth it, though. Program 10-3 is a demonstration of just how

realistic a sound can be created with your Commodore 64.

Program 10-3. PIPERS.MUS

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 49481

Filename: PIPERS.MUS

49152 :176,000,020,000,020,000, 216

49158 :010,070,001,006,001,135,229

49164 :002 ,200,038,001,006,192 ,195

49170 :030,001,092,165,003,100,153

49176 :112,157,003,000,092,092,224

49182 :112,157,092,092,112,157,240

49188 :092 ,092 ,112,157,001,047 ,025

49194 :001,022,030,002,020,157,018

49200 :024,155,020,158,028,159,080

49206 :024,145,020,157,024,155,067

49212 :020,155,028,154,024,153,082

49218 :001,047,001,038,030,003,186

49224 :020,157,024,155,020,158,094

49230 :028,159,024,145,020,157,099

49236 :028,155,024,153 ,020,154,106

49242 :024,153,001,047,030,004,093

49248 :001,018,001,054,030,005 ,205

49254 :020,154,024,155,020,156,119

49260 :028,157,024,158,020,157,140

49266 :028,155,024,153,020,154,136

49272 :024,153,001,047,030,006,125

49278 :001,070,020,145,024,157,031

49284 :020,145,024,158,020,145,132

49290 :024,157,024,155,024,154,164

49296 :024,153 ,001,047 ,030,007,150

49302 :001,086,020,145,024,157,071

49308 :020,145,024,158,024,157,172

49314 :024,155,024,153,020,154,180

49320 :024,153,001,047,030,008,175

321

Chapter 10

49326 :001,066,030,009,001,050,075

49332 :001,079,166,065,001,002,238

49338 :008,157,008,157,008,157,169

49344 :008,157,008,157,008,157,175

49350 :008,157,001,079,001,002,190

49356 :001,018,001,034,001,018,021

49362 :001,050,001,066,001,082,155

49368 :001,066,001,050,001,079,158

49374 :084,072,069,032,082,069,118

49380 :068,067,079,065,084,083,162

49386 :032,065,082,069,032,067,069

49392 :079,077,073,078,071,033,139

49398 :033,033,013,066,065,071,015

49404 :080,073,080,069,032,068,142

49410 :069,077,079,078,083,084,216

49416 :082,065,084,073,079,078,213

49422 :013,085,083,069,083,032,123

49428 :068,069,084,085,078,073,221

49434 :078,071,032,065,078,068,162

49440 :032,084,082,065,078,083,200

49446 :080,079,083,073,084,073,254

49452 :079,078,013 ,067 ,079,085 ,189

49458 :082,084,069,083,089,032,233

49464 :082,079,066,069,082,084,006

49470 :032,072,073,071,071,073,198

49476 :078,083,013,000,020,151,157

Transposing

Detuning works by adjusting the pitch of each note so that it's

slightly sharp or flat. Transposing also changes the pitch of

each note, but in quite a different way.

When a voice is transposed, the pitch of each note is

shifted up or down a designated number of half steps. For ex

ample, if a voice is being transposed up one half step, all

notes entered as C play as C-sharps, all C-sharps play as D,

every D plays as D-sharp, and so on. If the voice is being

transposed down one half step, D notes play as C-sharps, C

sharps as C-naturals, C-naturals become B-naturals, and so on.

You can check these alterations by tracing the transposing

using Table 10-1.

322

Chapter 10

Table 1(M, Transposing

C

B

A»/Bb
A

Gft/Ak
G

F

E

D

C#/Db
C

Transposing can be done by more than 1 half step. In a

voice being transposed up by 7 half steps, for example, a note

entered as C will play using the pitch for G. Since there are 12

half steps in an octave, transposing up or down by 12 half

steps makes a voice play an octave higher or lower.

The TPS command is used to specify the number of half

steps a voice should be transposed. Enter this command with

a number in the range 1-95 to transpose a voice up by 1 to 95

half steps. Enter —1 to —95 to transpose the voice down. En

ter 0 to turn transposing off.

Transposing applies to all notes equally, so unlike some of

the previous commands, the value does not need to be

changed for higher or lower pitches.

There are many useful applications for the TPS command.

For instance, you may sometimes see a dashed line appearing

above or below a sequence of notes.

Figure 10-10. Octave Offset

Sva r

i
The dashed line, along with the message 8va or 8vaba,

means that the notes should be played one octave higher or

lower than written. This is done because writing the notes

323

Chapter 10

with the correct pitches would require too many leger lines,

and the notes would be difficult to read.

The easiest way to handle an octave offset is to enter the

notes as written, and then insert a TPS 12 or TPS -12 com

mand at the beginning of the offset.

An interesting effect is created by having two voices play

the same note, while one of the voices is transposed up one or

two octaves. This produces a rich, warm tone. The effect was

used in the COMMODORE demonstration song. Another

possibility is to use transposing with detuning. While one

voice plays a series of notes, the other plays the same notes,

but is detuned and transposed up one or two octaves. Pro

grams 10-4 and 10-5 use the technique to imitate a calliope

and an accordion.

Synchronization

In the previous section, it was mentioned that a rich, warm

tone can be created when two voices play the same notes and

the second voice is transposed up by 12 or 24 half steps. But if

you try this technique with the second voice transposed up by

other numbers of half steps, like 6, 11, or 13, the resulting

tone sounds less than desirable.

The reason that the pleasant tone is produced only when

the second voice is transposed up an octave or two is because

the voices become synchronized. Remember that the fre

quency of a note is doubled when it's played an octave higher.

When two voices play the same notes, one an octave higher,

the direct relationship between the frequencies causes the

tones to be synchronized.

The tone produced by two synchronized voices sounds

rich and warm because it contains more harmonics than usual.

The second voice augments the harmonics of the first one.

This method of adding harmonics to a tone is called additive

synthesis. (Filtering is called subtractive synthesis because the

filter removes harmonics from a tone.)

Synchronization occurs naturally at intervals of 12 half

steps, but it can be made to occur at any half-step interval if

the synchronization mode of the SID chip is turned on. The

advantage to using the synchronization mode is that different

half-step intervals produce different harmonic patterns.

Synchronization, therefore, lets you produce many new types

of tones.

The SNC command is used to control the synchronization

324

Chapter 10

mode. Enter 1 (yes) to turn the mode on.

A specific procedure must be followed in order to syn

chronize two voices. Let's say that you want to synchronize

voices 1 and 2. First, define voice 1 to be a phrase. On voice 2

you should enter the SNC YES command and the TPS com

mand. Choose any number of half steps, such as 8. Then call

the phrase that was defined on voice 1.

DEF on voice 1

SNC on voice 2

TPS on voice 2

CAL on voice 2

Play the two voices several times, each time transposing

voice 2 by a different number of half steps, to hear the various

types of tones that can be created. Each waveform produces

different effects when synchronized, so you might also try

changing the waveform.

Both voices should have the same envelope, but they do

not have to have the same waveform. For example, you might

use a square wave on voice 1 and a triangle wave on voice 2.

To synchronize voices 1 and 3, use this procedure:

SNC on voice 1

TPS on voice 1

DEF on voice 1

CAL on voice 3

Use this procedure to synchronize voices 2 and 3:

DEF on voice 2

SNC on voice 3

TPS on voice 3

CAL on voice 3

It's very important that you use only these procedures.

Synchronization will not work correctly if the SNC or TPS

commands are used on the wrong voice. Also, only positive

transpose values should be used. Negative values do not seem

to be very useful.

When you want to stop using the synchronization mode

and return to normal playing, enter the SNC command with

the value 0 (no) to turn the mode off. Do this on the voice

which earlier turned the mode on. You may also want to enter

a TPS 0 command to cancel the transposing.

Program 10-6 uses different half-step intervals and dif

ferent waveforms to demonstrate some of the effects possible

with synchronization.

325

N O
N

P
r
o
g
r
a
m

1
0
-
4
.
C
A
L
L
I
O
P
E
.
M
U
S

T
o

e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x
G

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
4
8
1

F
i
l
e
n
a
m
e
:
C
A
L
L
I
O
P
E
.
M
U
S

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

:
1
4
6
,

:
1
6
6
,

:
0
0
1
,

:
0
4
8
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
4
4
,

:
0
2
0
,

:
0
1
2
,

:
0
3
0
,

:
0
2
0
,

:
0
2
0
,

:
0
4
8
,

:
0
2
0
,

:
0
2
0
,

0
0
0
,
1
0
6
,

0
1
0
,
0
1
0
,

1
3
5
,
1
3
0
,

1
9
2
,
0
0
1
,

1
5
5
,
0
2
0
,

1
5
7
,
0
1
2
,

1
4
5
,
0
3
0
,

1
4
5
,
0
2
0
,

1
5
5
,
0
2
0
,

0
0
3
,
0
4
8
,

1
5
6
,
0
2
0
,

0
9
4
,
0
2
0
,

1
4
5
,
0
2
0
,

1
5
9
,
0
2
0
,

1
5
5
,
0
3
0
,

0
9
0
,
0
2
0
,

1
4
5
,
0
2
0
,

0
0
9
,
0
2
0
,

1
5
9
,
0
2
0
,

1
5
7
,
0
4
4
,

1
5
8
,
0
2
0
,

1
4
5
,
0
1
2
,

1
4
7
,
0
3
0
,

0
0
0
,
0
0
4
,

0
7
0
,
0
0
1
,

0
0
0
,
0
0
1
,

2
3
6
,
0
3
0
,

0
9
0
,
0
2
0
,

1
4
5
,
0
2
0
,

0
0
2
,
0
2
0
,

1
5
9
,
0
2
0
,

1
5
7
,
0
4
4
,

1
5
6
,
0
2
0
,

1
5
8
,
0
1
2
,

1
5
9
,
0
3
0
,

1
5
9
,
0
2
0
,

1
5
6
,
0
2
0
,

0
0
5
,
0
4
8
,

1
5
5
,
0
2
0
,

1
5
9
,
0
2
0
,

1
4
6
,
0
2
0
,

1
4
5
,
0
2
0
,

1
5
8
,
0
3
0
,

1
5
8
,
0
2
0
,

1
5
7
,
0
2
0
,

0
1
1
,
0
2
0
,

0
0
0
,
0
0
0

2
4
6
,
2
5
3

0
0
4
,
0
2
7

0
0
1
,
2
2
3

1
5
5
,
0
0
0

1
5
9
,
0
3
1

1
4
6
,
1
4
3

1
4
5
,
0
3
9

1
5
8
,
0
9
0

1
5
5
,
2
1
0

1
5
9
,
0
7
3

0
0
4
,
1
3
7

0
9
4
,
0
1
8

1
5
9
,
1
0
0

1
5
5
,
0
0
9

1
5
7
,
0
4
0

1
4
5
,
0
8
5

1
4
5
,
2
1
6

1
5
5
,
1
1
5

0
1
0
,
0
2
1

1
5
9
,
1
7
1

1
4
8
,
1
1
6

1
4
6
,
2
5
0

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

4
9
4
7
6

:
0
2
0
,

:
0
2
0
,

:
0
0
1
,

:
0
0
1
,

S
0
2
0
,

:
0
2
0
,

:
0
3
0
,

:
0
2
0
,

:
0
2
0
,

:
0
0
1
,

:
0
0
1
,

:
0
2
0
,

:
0
2
0
,

:
0
3
0
,

:
0
3
0
,

:
0
3
0
,

:
0
3
0
,

:
0
2
0
,

:
0
2
0
,

:
0
2
0
,

:
0
0
1
,

:
0
7
6
,

:
0
3
2
,

:
0
8
3
,

:
0
7
9
,

:
0
8
2
,

:
0
3
2
,

:
0
7
8
,

:
0
8
4
,

:
0
6
5
,

:
0
8
3
,

:
0
7
1
,

1
4
5
,
0
2
0
,

1
5
9
,
0
2
0
,

0
7
9
,
0
0
1
,

0
0
6
,
0
2
0
,

1
5
3
,
0
2
0
,

1
5
3
,
0
0
1
,

0
0
2
,
0
0
1
,

1
6
4
,
0
2
0
,

1
7
2
,
0
2
0
,

0
4
7
,
0
3
0
,

0
1
8
,
0
3
0
,

1
6
5
,
0
2
0
,

1
6
5
,
0
2
0
,

0
0
5
,
0
0
1
,

0
0
6
,
0
0
1
,

0
0
7
,
0
0
1
,

0
0
8
,
0
2
0
,

1
6
5
,
0
2
0
,

1
6
5
,
0
2
0
,

1
6
5
,
0
4
8
,

2
4
2
,
0
0
1
,

0
7
6
,
0
7
3
,

0
6
8
,
0
6
9
,

0
8
4
,
0
8
2
,

0
7
8
,
0
1
3
,

0
7
9
,
0
6
6
,

0
7
2
,
0
7
3
,

0
8
3
,
0
1
3
,

0
6
7
,
0
7
2
,

0
8
4
,
0
3
2
,

0
8
3
,
0
3
2
,

0
4
6
,
0
4
6
,

1
5
9
,
0
2
0

1
4
6
,
0
4
4

0
3
9
,
0
3
0

1
6
5
,
0
2
0

1
7
3
,
0
2
0

0
4
7
,
0
0
1

0
0
2
,
0
0
1

1
6
6
,
0
2
0

1
6
6
,
0
2
0

0
0
3
,
0
0
1

0
0
4
,
0
0
1

1
5
3
,
0
2
0

1
6
6
,
0
2
0

0
0
2
,
0
0
1

0
0
2
,
0
0
1

0
1
8
,
0
0
1

1
6
2
,
0
2
0

1
6
2
,
0
2
0

1
6
1
,
0
2
0

1
5
3
,
0
0
1

0
7
9
,
0
6
7

0
7
9
,
0
8
0

0
7
7
,
0
7
9

0
6
5
,
0
8
4

0
6
6
,
0
8
9

0
6
9
,
0
8
2

0
7
1
,
0
7
1

0
1
3
,
0
6
7

0
3
2
,
0
8
4

0
6
6
,
0
8
2

0
8
2
,
0
7
3

0
4
6
,
0
1
3

,
1
5
8
,
1
4
8

,
1
4
5
,
1
6
6

,
0
0
1
,
0
4
5

,
1
5
3
,
0
0
9

,
1
5
3
,
1
8
9

,
0
0
2
,
1
3
6

,
0
2
2
,
2
3
2

,
1
6
6
,
2
2
4

,
1
6
6
,
2
3
8

,
0
1
8
,
0
3
6

,
0
1
8
,
0
1
4

,
1
5
3
,
2
2
3

,
1
6
7
,
0
0
0

,
0
0
2
,
0
0
1

,
0
1
8
,
0
2
4

,
0
0
2
,
0
3
1

,
1
6
5
,
1
2
7

,
1
6
5
,
0
2
4

,
1
6
3
,
0
2
7

,
0
7
9
,
2
0
6

,
0
6
5
,
2
0
1

,
0
6
9
,
2
0
5

,
0
7
8
,
1
6
1

,
0
7
3
,
2
3
5

,
0
3
2
,
1
2
7

,
0
8
4
,
2
3
8

,
0
7
3
,
1
7
4

,
0
6
5
,
1
0
7

,
0
7
2
,
2
0
5

,
0
6
5
,
1
9
4

,
0
7
8
,
2
3
7

,
0
0
0
,
0
3
4

C
O

h
o

P
r
o
g
r
a
m

1
0
-
5
-
B
I
S
T
R
O
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
'
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
/
'
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
5
2
3

F
i
l
e
n
a
m
e
:
B
I
S
T
R
O
.
M
U
S

4
9
1
5
2

:
0
2
0
,
0
0
1
,
0
1
0
,
0
0
0
,
0
0
8
,
0
0
0
,
0
3
9

4
9
1
5
8

:
0
0
1
,
0
7
1
,
0
1
0
,
0
7
0
,
0
0
1
,
0
0
6
,
1
6
5

4
9
1
6
4

:
0
0
6
,
1
2
8
,
0
2
2
,
0
0
2
,
0
3
0
,
0
0
1
,
2
0
1

4
9
1
7
0

:
0
2
0
,
1
5
3
,
0
2
0
,
1
5
6
,
0
2
0
,
1
5
7
,
0
3
2

4
9
1
7
6

:
0
1
6
,
2
2
2
,
0
2
0
,
2
2
3
,
0
2
0
,
1
4
5
,
1
5
8

4
9
1
8
2

:
0
2
0
,
2
2
3
,
0
2
0
,
2
2
2
,
0
2
0
,
1
5
7
,
1
8
0

4
9
1
8
8

:
0
2
0
,
1
5
6
,
0
2
0
,
2
1
9
,
0
4
8
,
0
8
9
,
0
7
6

4
9
1
9
4

:
0
6
8
,
1
5
4
,
0
6
8
,
1
5
5
,
0
6
8
,
1
5
6
,
1
9
9

4
9
2
0
0

:
0
6
8
,
1
5
7
,
0
6
8
,
1
5
8
,
0
6
8
,
1
5
9
,
2
1
4

4
9
2
0
6

:
0
8
4
,
1
4
5
,
0
1
6
,
1
4
5
,
1
0
8
,
2
2
3
,
0
0
7

4
9
2
1
2

:
0
2
0
,
2
2
3
,
0
3
0
,
0
0
2
,
0
2
0
,
1
5
3
,
2
5
2

4
9
2
1
8

:
0
2
0
,
1
5
5
,
0
2
0
,
1
5
6
,
0
1
6
,
1
5
7
,
0
7
8

4
9
2
2
4

:
0
2
0
,
2
2
2
,
0
2
0
,
2
2
3
,
0
2
0
,
2
1
0
,
0
1
9

4
9
2
3
0

:
0
2
2
,
0
0
5
,
0
6
8
,
1
4
5
,
0
6
8
,
2
1
0
,
0
8
4

4
9
2
3
6

:
0
2
2
,
0
0
6
,
0
0
4
,
1
4
5
,
0
2
0
,
2
2
3
,
2
4
8

4
9
2
4
2

:
0
2
0
,
2
2
2
,
0
2
0
,
1
5
7
,
1
0
8
,
1
5
6
,
0
0
5

4
9
2
4
8

:
0
2
0
,
1
5
6
,
0
5
2
,
0
0
0
,
0
0
1
,
0
4
7
,
1
1
6

4
9
2
5
4

:
0
0
1
,
0
0
2
,
0
0
1
,
0
2
2
,
0
3
0
,
0
0
3
,
1
6
1

4
9
2
6
0

:
0
2
0
,
1
5
6
,
0
2
0
,
1
5
7
,
0
2
0
,
1
5
8
,
1
2
7

4
9
2
6
6

:
0
1
6
,
1
4
5
,
0
2
0
,
1
5
8
,
0
1
6
,
1
4
5
,
1
0
2

4
9
2
7
2

:
0
2
0
,
1
5
8
,
0
4
8
,
1
4
5
,
0
3
0
,
0
0
4
,
0
1
3

4
9
2
7
8

:
0
2
0
,
1
5
8
,
0
2
0
,
1
4
5
,
0
2
0
,
1
5
8
,
1
3
5

4
9
2
8
4

:
0
2
0
,
1
4
6
,
0
1
6
,
1
4
5
,
0
2
0
,
1
4
6
,
1
1
3

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

:
0
2
0
,
1
4
5
,

:
0
3
0
,
0
0
5
,

:
0
2
0
,
1
4
9
,

:
0
2
0
,
1
4
6
,

:
0
4
8
,
1
4
7
,

:
0
2
0
,
1
4
5
,

:
0
2
0
,
1
5
5
,

:
0
2
2
,
0
0
2
,

:
0
6
8
,
2
2
3
,

:
0
6
8
,
1
4
7
,

:
0
5
2
,
1
4
8
,

:
0
2
0
,
0
8
2
,

:
0
8
0
,
1
4
6
,

:
0
2
0
,
1
4
9
,

:
0
1
6
,
1
4
5
,

:
0
4
8
,
1
5
8
,

:
0
2
0
,
1
4
6
,

:
0
1
6
,
1
4
5
,

:
0
4
8
,
1
4
5
,

:
0
2
0
,
1
5
8
,

:
0
8
0
,
1
5
6
,

:
0
9
2
,
2
2
3
,

:
0
9
2
,
1
4
7
,

:
0
1
6
,
1
4
8
,

:
1
6
6
,
1
7
9
,

:
0
0
1
,
0
1
8
,

:
0
0
1
,
0
0
2
,

:
0
8
0
,
0
7
3
,

:
0
3
2
,
0
7
0
,

:
0
6
5
,
0
7
3
,

:
0
6
5
,
0
6
7
,

0
2
0
,
1
5
8
,
0
4
4
,

0
2
0
,
1
4
7
,
0
2
0
,

0
2
0
,
1
4
8
,
0
1
6
,

0
2
0
,
1
4
7
,
0
2
0
,

0
3
0
,
0
0
6
,
0
2
0
,

0
2
0
,
1
4
6
,
0
1
6
,

1
1
2
,
1
5
6
,
0
8
4
,

0
6
8
,
1
5
7
,
0
6
8
,

0
6
8
,
1
4
5
,
0
6
8
,

0
6
8
,
1
4
8
,
0
6
8
,

0
3
0
,
0
0
7
,
0
2
0
,

0
1
6
,
1
4
6
,
0
2
0
,

0
4
8
,
1
4
6
,
0
2
0
,

0
2
0
,
1
4
8
,
0
2
0
,

0
2
0
,
1
5
6
,
0
8
0
,

0
3
0
,
0
0
8
,
0
2
0
,

0
2
0
,
1
4
5
,
0
2
0
,

0
2
0
,
1
5
7
,
0
8
0
,

0
3
0
,
0
0
9
,
0
2
0
,

0
1
6
,
2
2
3
,
0
2
0
,

0
9
2
,
1
5
7
,
0
9
2
,

0
9
2
,
1
4
5
,
0
9
2
,

0
9
2
,
1
4
8
,
0
9
2
,

0
0
1
,
0
4
7
,
0
0
1
,

0
0
1
,
0
0
2
,
0
0
1
,

0
0
1
,
0
7
9
,
0
0
1
,

0
0
1
,
0
1
8
,
0
0
1
,

0
6
9
,
0
6
7
,
0
6
9
,

0
8
2
,
0
6
5
,
0
7
8
,

0
8
3
,
0
6
9
,
0
8
3
,

0
6
7
,
0
7
9
,
0
8
2
,

2
2
3
,
2
3
6

1
4
8
,
0
0
2

1
4
7
,
1
3
8

1
4
8
,
1
4
5

0
9
4
,
2
5
1

1
4
5
,
1
4
8

1
5
6
,
0
8
9

1
5
8
,
1
4
3

1
4
6
,
1
3
6

1
4
8
,
0
7
1

1
4
8
,
0
9
1

2
2
3
,
1
9
9

1
4
7
,
0
2
9

1
4
6
,
2
0
7

1
5
8
,
0
2
9

1
5
9
,
1
3
9

1
5
8
,
2
3
1

1
4
5
,
0
3
5

1
5
7
,
1
4
3

1
5
5
,
0
7
6

1
5
8
,
2
2
5

1
4
6
,
0
3
0

1
4
8
,
2
2
1

0
7
9
,
0
5
6

0
0
2
,
1
2
1

0
0
2
,
1
3
4

0
7
9
,
1
4
0

0
8
3
,
2
2
9

0
6
7
,
1
8
8

0
1
3
,
1
8
6

0
6
8
,
2
3
4

I

4
9
4
7
6

4
9
4
8
2

4
9
4
8
8

4
9
4
9
4

4
9
5
0
0

4
9
5
0
6

4
9
5
1
2

4
9
5
1
8

:
0
7
3
,

:
0
7
7
,

:
0
6
5
,

:
0
6
7
,

:
0
8
3
,

:
0
6
9
,

:
0
7
1
,

:
0
1
3
,

0
6
5
,
0
7
8
,

0
7
9
,
0
7
8
,

0
8
4
,
0
7
3
,

0
7
9
,
0
8
5
,

0
8
9
,
0
3
2
,

0
8
2
,
0
8
4
,

0
7
1
,
0
7
3
,

0
0
0
,
0
2
0
,

0
3
2
,
0
6
8

0
8
3
,
0
8
4

0
7
9
,
0
7
8

0
8
2
,
0
8
4

0
8
2
,
0
7
9

0
3
2
,
0
7
2

0
7
8
,
0
8
3

1
5
7
,
0
3
0

,
0
6
9
,
1
9
7

,
0
8
2
,
0
4
5

,
0
1
3
,
2
1
6

,
0
6
9
,
0
4
0

,
0
6
6
,
0
1
1

,
0
7
3
,
2
5
4

,
0
1
3
,
2
3
7

,
0
0
3
,
0
7
7

P
r
o
g
r
a
m

1
0
-
6
.
T
P
I
#
1
4
-
M
U
S

T
o

e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
"

a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
5
0
8
2
5

F
i
l
e
n
a
m
e
:
T
P
I
#
1
4
.
M
U
S

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

:
0
4
0
,

:
0
0
1
,

:
0
0
1
,

:
0
3
0
,

:
0
8
8
,

:
0
8
4
,

:
0
8
4
,

:
0
2
0
,

:
0
8
8
,

:
0
8
4
,

:
0
8
4
,

:
0
8
8
,

:
0
8
8
,

0
0
3
,
0
6
0

0
0
6
,
0
0
6

2
0
8
,
0
0
1

0
0
1
,
0
2
0

1
4
5
,
0
8
8

2
2
3
,
0
8
4

2
1
5
,
0
8
4

1
4
6
,
0
8
8

1
4
6
,
0
8
8

2
2
3
,
0
8
4

2
2
2
,
0
3
0

2
1
9
,
0
8
8

1
5
6
,
0
8
4

,
0
0
0
,

,
1
1
2
,

,
2
2
8
,

,
0
0
0
,

,
1
4
6
,

,
1
4
8
,

,
1
4
8
,

,
1
4
8
,

,
2
1
1
,

,
1
4
6
,

,
0
0
3
,

,
1
5
6
,

,
2
1
9
,

2
2
6
,
0
0
2
,
0
7
5

0
0
1
,
0
0
4
,
1
3
6

0
0
1
,
1
6
8
,
1
0
7

0
8
8
,
2
2
3
,
1
2
4

0
8
8
,
1
4
5
,
2
1
2

0
8
4
,
1
4
6
,
0
3
1

0
3
0
,
0
0
2
,
0
8
7

0
8
8
,
2
1
1
,
2
3
1

0
8
4
,
1
4
8
,
0
4
5

0
8
4
,
1
5
6
,
0
6
3

0
2
0
,
1
5
7
,
0
6
4

0
8
8
,
1
5
7
,
0
9
4

0
8
4
,
2
2
3
,
1
5
8

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

:
0
8
4
,

:
0
3
0
,

:
0
8
8
,

:
0
8
4
,

:
0
8
4
,

:
0
2
0
,

:
0
8
8
,

:
0
8
4
,

:
0
8
4
,

:
0
8
8
,

:
0
8
8
,

:
0
8
4
,

:
0
3
0
,

:
0
2
0
,

:
0
8
8
,

:
0
8
8
,

:
0
1
6
,

:
0
0
1
,

:
0
8
8
,

:
0
2
0
,

:
0
1
6
,

:
0
0
1
,

:
0
8
8
,

:
0
3
0
,

:
0
8
8
,

:
0
2
0
,

:
0
0
1
,

:
0
0
1
,

:
0
0
1
,

:
0
1
6
,

:
0
3
0
,

1
5
7
,
0
8
4
,

0
0
4
,
0
2
0
,

2
2
2
,
0
8
8
,

2
2
3
,
0
8
4
,

1
5
3
,
0
8
4
,

1
6
6
,
0
8
8
,

2
1
9
,
0
8
8
,

1
5
8
,
0
8
4
,

1
5
8
,
0
3
0
,

1
5
6
,
0
8
8
,

1
.
5
7
,
0
8
4
,

1
5
8
,
0
8
4
,

0
0
7
,
0
1
6
,

0
0
0
,
0
0
1
,

1
4
9
,
0
8
8
,

1
4
8
,
0
2
0
,

1
4
5
,
0
1
6
,

0
4
7
,
0
0
1
,

2
1
1
,
0
8
8
,

1
4
8
,
0
3
0
,

0
0
0
,
0
2
0
,

0
0
6
,
0
8
8
,

1
4
5
,
0
8
8
,

0
1
0
,
0
2
0
,

2
2
3
,
0
8
8
,

1
4
5
,
0
1
6
,

0
4
7
,
0
3
0
,

0
7
1
,
0
0
1
,

2
0
0
,
0
3
8
,

1
5
6
,
0
1
6
,

0
1
2
,
0
1
2
,

2
1
1
,
0
8
4

1
5
7
,
0
8
8

1
5
7
,
0
8
8

2
1
9
,
0
8
4

2
1
9
,
0
3
0

1
5
3
,
0
8
8

1
5
4
,
0
8
4

1
5
6
,
0
8
4

0
0
6
,
0
2
0

1
5
7
,
0
8
8

1
5
6
,
0
8
4

1
4
8
,
0
8
4

1
4
6
,
0
1
6

0
4
7
,
0
0
1

1
4
8
,
0
8
8

1
4
9
,
0
3
0

0
0
0
,
0
2
0

0
0
6
,
0
8
8

1
4
6
,
0
8
8

0
0
9
,
0
1
6

0
0
0
,
0
0
1

2
1
1
,
0
8
8

1
4
6
,
0
2
0

1
5
8
,
0
8
8

1
5
8
,
0
8
8

1
5
6
,
0
1
6

0
1
1
,
0
0
1

1
9
2
,
0
0
1

0
0
1
,
0
1
6

1
5
8
,
0
1
6

1
4
8
,
0
1
2

,
2
2
3
,
1
5
3

,
2
2
3
,
0
9
4

,
2
2
2
,
1
8
7

,
1
5
7
,
1
7
9

,
0
0
5
,
1
6
5

,
1
5
4
,
0
0
9

,
1
5
3
,
1
3
2

,
1
4
5
,
0
6
3

,
2
1
1
,
1
2
3

,
1
5
8
,
0
9
9

,
1
4
5
,
0
8
4

,
1
4
5
,
0
7
9

,
0
0
0
,
1
0
9

,
0
0
6
,
2
3
1

,
2
1
1
,
1
6
6

,
0
0
8
,
0
9
9

,
0
0
0
,
1
1
5

,
1
4
8
,
2
1
5

,
2
1
1
,
2
5
0

,
2
2
3
,
1
2
6

,
0
4
7
,
0
2
6

,
1
4
6
,
2
3
2

,
2
1
1
,
1
4
0

,
1
4
5
,
1
5
5

,
2
2
3
,
0
6
6

,
0
0
0
,
0
6
9

,
0
0
6
,
0
7
4

,
1
3
2
,
1
2
6

,
1
4
8
,
1
3
8

,
1
4
5
,
2
4
7

,
0
0
0
,
2
1
6

I

Chapter 10
1
5
4
,
1

,
0
8
8
,

1
5
3

,
0
8
8
,

9
0
0
'

:
0
0
1

1
5
3
,
1

r
0
2
0
.

1
5
4

,
0
8
8
,

r
2
1
9 00 CO TO

1
4
5
,
2

,
0
8
0
,

1
4
5

r
0
8
4
.

r
0
2
4 G> CO G>

1
5
6
,
1

,
0
8
8
,

1
5
8

r
0
2
0
,

r
2
2
3

:
0
8
4

1
5
7
,
1

,
0
8
8
,

1
5
8

,
0
8
8
,

r
l
5
7 00 00 IS

1
4
8
,
1

r
0
8
4
,

0
2
5

,
0
3
0
,

,
1
5
6

:
0
2
0
,

1
4
6
,
1

r
0
2
0
,

2
1
1

,
0
8
4
,

r
1
4
8 G> 00 S>

1
4
6
,
2

,
0
8
8
,

1
4
5

,
0
8
8
,

,
2
2
3
,

:
0
8
8

0
2
6
,
0

2
1
4
,
1

,
0
3
0
,

,
0
8
4
,

,
0
2
0
,

,
1
4
5
,

:
0
8
8
,

2
1
5

,
0
8
0
,

,
2
1
5
,

:
0
8
4
,

2
1
4
,
0

,
0
8
8
,

2
1
5

2
1
5
,
0

,
0
2
0
,

2
1
4
,

,
0
8
8
,

,
0
8
8
,

,
1
4
9
,

:
0
2
0
,

,
1
4
9
,

:
0
8
8
,

1
4
9
,
0

,
0
8
8
,

2
1
1
,

,
0
2
0
,

,
0
2
7
,

:
0
3
0
,

1
4
8
,
0

2
1
1

,
0
8
8
,

,
1
4
8
,

:
0
8
8
,

2
1
1
,
1

,
0
8
8
,

1
4
6
,
2

,
0
8
8
,

,
0
2
0
,

,
1
4
9
, IS CM 55
,
0
8
8
,

,
1
4
6
,

:
0
8
8
,

1
5
8
,
2

,
0
2
0
,

,
0
3
0
,

,
2
1
1
,

IS CM g>
2
1
1
,
0

,
0
8
8
,

1
4
6
,

0
8
8
,

,
1
4
5
,

:
0
8
8
,

1
4
8
,
1

,
0
2
0
,

1
4
5
,

0
2
0
,

1
4
6
,

:
0
8
8
,

1
5
6
,
0

,
0
8
8
,

1
5
7
,

0
8
8
,

2
2
2
,

:
0
8
8
,

0
2
9
,
0

1
4
5
,
0

0
8
8
,

0
2
0
,

0
8
8
,

0
0

00 TOG>
2
2
3
,
0

0
2
0
,

0
8
8
,

1
4
6
,

:
0
8
8
,

1
5
6
,
0

0
8
8
,

0
8
8
,

2
1
1
,

1
5
7
,
0

0
2
0
,

1
5
8
,
0

0
8
8
,

0
8
8
,

2
1
9
,

2
2
3
,
1

0
8
8
,

0
3
0
,

:
0
3
0
4

2
2
3
,

:
0
8
8
,

1
5
6
,
1

0
8
8
,

0
2
0
,

1
5
8
,

:
0
2
0
,

2
1
9
,
1

0
8
8
,

0
8
8
,

2
1
9
,

:
0
8
8
,

2
1
9
,
0

0
2
0
,

0
3
0
,

1
5
6
,

:
0
2
0
,

2
2
3
,
1

0
8
8
,

0
8
8
,

1
5
7
,

:
0
8
8
,

c\

IS

rH

G>

TO

G>

VO
tH

G>

CO

tH

G>

CO

CM

CM

VO
fH

G)

VO
in

•H

VO
rH

G>

VO
G>
IS

CO

rH

CN

rH

IS

<?
rH

G>

TO
CO

G>

VO

rH

G>
IS

vo
rH

G>

in

rH

IS

G>
CO

S)

IS
S>
G>

^'

in

rH

VO
rH

G>

VO
TO
G>

rH

G>
G>

[^

TO

VO
tH

G>

TO
CO

TO

in

rH

VO
rH

G>

CO

CN

CN

^
G>

rH

TO

G>
IS
G>

CN

rH

G)

j^

^*
rH

G>
S3

G>
CN

TO

VO
G>
G>

rH

G)
G>

^

rH

G>

CM

in

rH

rH

TO
G>

CM

in

CM

rH

G>
IS

ON

CO

G>

^'

in

rH

00

VO
in

rH

CO 00
IS

VO
in

rH

00
00

G)

<t
G>
G>

G»

l^

in

tH

00
00
5)

CO
in

rH

CO

tH

CO
is

00
in

tH

*$

00
S3

in

rH

S3

in

fH

S3

CN

S3

CO
fH

S3

S3
CO

S3

in

rH

in
^»

rH

00
00
S3

vo

tH

CO
00
S3

tH

tH

CM

CO
in
rH

CO
S3

rH

rH

CN

^

00
S3

VO

rH

VO

^*
rH

00
S3

rH

CN

CM

<fr
CO
S3

in

rH

VO

rH

S3
00
S3

CO

CN

CN

VO
rH

S3

ON

rH

S3

S3

CM

S3

S3
CO

IS

in

rH

SJ

00
S3

CO

CM

CM

CN

CN

CN

S3
GO
S3

CO

rH

S3

CO
TO

CN

CN

CM

in

rH

S3

CM

S3

rH

CM

S3

S3

CO

S3

VO
m

rH

CO

in
rH

CO
CO
S3

VO
S3

S3

H

G>

in

iH

00
00
S3

ON

tH

CN

CO
CO

S3 S3

(^

^*
S3

<?
in

tH

ON
rH

CM

^

CO
S3

r>

in

tH

CO
S3

CO

in

rH

CN

CM

S3

S3
CO

S3

r>.

in

rH

CO
S3

in

^*
rH

VO
S3
TO

tH

G)
S3

r>

^*
S3

tH

§
VO

^*
fH

VO
in

rH

CO
00
S3

r>

in

rH

00
00
S3

CM

CN

CM

in

rH

<?
00
S3

CM

CM

CM

in
rH

<?

CO
S3

r>

vo
rH

*t

00 00
S3

r>

in

fH

S3

VO
in

fH

vo
S3

S3

rH

S3
S3

CO

CM

S3

S3

CO

S3

(^

^*

S3

S3

S3
S3

S3

CM

CN

CO

CM

S3
in

S3 S3

S3
S3

S3

VO
rH

S3

ON

rH

CM

in

CO

rH

rH

IS
IS

!>

ISrHVOCMrHVOCMlSrH00C0^^0000^ISlSVOlSrHC0^KjG)00C0^rHVOrH

COlSfHrHQrHrHCOISCO00a)a)CX)00O0COCDfH00IS0000C0CM0000C0ISrHlS
ISISISISISIStStSISIStSISISQIStSISISIStStSISIStSlStStSIStSIStS

inininininininininifiinin

329

Chapter 10

rHvOfHVOr-ivOvOvOVOrHOOvOSiQvOC^vOvOCS^OOOOVOISOOvOOOOSOOS)
SiOSlOiaOVOOSlianfOrOHHHHHHMCOHNCOHNCONCOn

vOvOCS^OOOOVOISOOvOOOOSOO
HHHHMCOHNCOHNCONCO

VO
r

00 IS IS Q 00 00
COOOaOO

^t^tCO^t^lSOOOtCOOOvDCOCOVOOOOOQOOQQCOrHvO
COOOOOCOOOCMCOCOCOOOOOrHOOCOiHOOOOC^COC^rjggVO

H(NH

03CX)OOvOrHrHGO^^(SOO®^CO(X)^^CO^BiCO®®00®COOOgg'HvO
OOOOOOrHOQOO COCOCMCOrOCOOOOOOOOOCOOOCOCOWCOOOCjCOpOglgg^

(ncn^^mvovor*r*ooc*c*®®«Hc>ioicocn^ininvovo
oooooococooooooooooocoooononono>ononc^ononononon

330

Chapter 10

ir>iHt^r^rHCMvoi^^tONr^cy»fHrHvoisiscovor^incNicor^'«tcM on *t in on iH
iSrocN^CMcncMCOcnrnroroiscoc^iniscovOfHrHinvoiSiSis mininvo^
CMCMCMCMCNlSrHrHiHSJiHlSlSrHlSCMlSrHISISrHCMlSCMfHiH ^ IS IS IS rH

rH

CO

CM

IS
CM

IS

IS

^*
VO

CO
CO
IS

in

CM VO
IS

IS
CO

IS

CM

VO
•H

^
CO
IS

rH

00

CM

VO

^
CO

IS

IS
CO

CM

•<*
CO CO
IS

IS
CO

CM

CO
CO
IS

IS

in

vo
rH

00
CO
IS

CM

VO

^F
00
IS

on

CO

CM

^
CO
IS

^f
VO
rH

^
CO
IS

in

VO

IS
CO

IS

CM
CM

IS
CO

IS

rH

CM VO
CM

VO
rH

IS

rH

<N

IS

IS
CO

IS

rH

IS
CO
IS

t^

CM

CM

IS
on
IS

in

IS
CO
IS

CM

VO
rH

IS
CO
IS

in

t^

rH

VO
rH

IS

rH

VO

IS
CM

IS

CO

CM

IS

<S
CO

IS

CO

rH

IS
CO
IS

ON

VO

CO
00

IS

CM

rH

IS
IS

CM

CO

rH

IS
in

IS

IS

CO
CO
IS

in

CO

CM

CO
en
IS

IS

rH

CO
CO
IS

rH

vo

IS
CO
IS

rH

VO
rH

^
CO
IS

ON
VO
rH

IS
CM

IS

<*

IS
CM

ts

CM

IS

IS
CO

IS

ON
CO

CM

^
GO
IS

*t
r>

CO
CO

IS

CO

rH

CO
CO
IS

CM

rH

CO
CO

IS

VO

CO

in

CM

IS

IS
CO

IS IS

CM

rH

IS
CM

IS

CO

r^

rH

CO
CO
IS

CM

CM

^
CO
IS

H

VO
rH

00
CO
IS

ON
CO

CM

CO
CO
IS

CM

VO VO
rH

IS
CO
IS

rH

IS
CM

IS

ON
CO

CM

IS
CM

IS

H

vo
rH

CO
CO
IS

CM

VO
rH

CO
CO

IS

IS
CO

CM

<tf
CO
IS

rH

CO

CM

r*.

CM

CM

CO
CO

IS

in

vo
rH

IS IS
00
IS

rH

ro

CM

<tf
CO
IS

CM

IS

VO
CM

IS

IS
CO

IS

VO
rH

00
CO
IS

m

vo
•H

CO
CO
IS

^t
VO
rH

CO
CO
IS

ON

rH

CM

IS
CO
IS

ON

rH

CM

<tf
CO

IS

1^

CM

CM

IS
CM

IS

CO

in

rH

IS
CM

IS

t^-

CM

IS

IS
CO

IS

*t
in

rH

^t
CO

IS

CO

in

rH

00
CO
IS

<tf
in

rH

CO
CO

IS

ON

rH

CM

CO
CO
IS

VO
VO
rH

IS
CM

IS

ON

rH

CM

IS
CM

IS

in

rH

CO
CO
IS

VO
VO
rH

CO
CO

IS

rH

CO

CM

CO

CO
IS

CO

in

rH

CO
CO
IS

CO
CM

IS

IS
CO

IS

CO

in

H

IS
CM

IS

iH

CO

CM

00
CO
IS

rH
ro

CM

CO
no

IS

vo
vo
r^

CO
CO
IS

«t
VO
r-i

IS
CM

IS

VO
VO
rH

ro
CM

IS

rH

CO

CM

CO
CO
IS

CO

in

rH

CO
CO
IS

1^

CM

CM

00
CO

IS

^
VO
^\

VO
rH

CM

IS

r>

CM

CM

CO CO
CO
IS

«tf
in

IS
CM

IS

CO
IS

CM

VO
rH

CO
CO
IS

in

VO
^A

CO
CO

IS

r<
CM

CM

IS)
CM

IS

ON

CM

IS

IS
co

IS

^ininvor^r^cocooNisiSrHrHCMcoco^^invovot^r^cooNON

cocooococococoroco^^^^^^^^^Tt*t*t^t«^<tf«aw
istsiststsisisistsistststsiststsiststststststststsis
in

cmco^isvo
isis>hcmcm

in in in in in

isisoisis
in mininin

co^inincocMinvoisvoisisoNCMCocMONcorrcocykONCOinoovooooH

HrHlSCMCMISCMISBilSrHrHlSISrHrHHlSrHlSHlSISISlSISrHCMlSCMCM

0
0
0
,

'
0
3
0

1
7
2
,

0
1
6
,

iHrHrH ISCOCO CNCOCO ISISIS •HISH ill
1
6
4
,

1
5
3
,

0
1
1
,

1
6
5
, iIII1

6
6
,

0
8
4
,

1
5
3
,

0
8
4
,

1
6
4
, i0

1
2
,

2
3
1
, ISCO COCO ISIS

1
5
3
,

0
8
4
,

1
5
6
,

:
0
8
4
,

1
5
3
,

1
6
6
, 11

5
3
,

0
8
4
,

2
3
1
,

1
6
6
, 11

6
1
,

0
8
4
,

1
6
6
,

0
8
4
,

1
6
4
,

:
0
8
4
,

1
6
2
,

0
2
0
,

,
0
1
3
,

0
3
0
,

2
2
7
,

:
0
8
4
,

1
6
2
,

0
8
8
,

1
6
1
,

'
8
8
0

2
3
9
,

:
0
8
8
,

1
6
4
,

0
8
4
,

,
2
3
9
,

0
8
4
,

1
6
4
,

0
8
4
,

,
2
3
1
,

0
8
4
, VOVO rHrH

:
0
8
4
4

,
1
6
4
,

'
8
8
0

,
1
6
2
,

0
2
0
,

,
0
1
4
,

:
0
3
0
,

,
2
2
7
,

,
1
6
2
,

r
8
8
0

,
2
2
7
,

:
0
8
8
,

,
1
6
2
,

,
0
8
4
,

,
2
3
9
,

0
8
4

,
1
6
4
,

:
0
8
4
,

,
0
1
5
,

,
0
3
0
,

,
2
3
9
,

,
0
8
4
,

,
1
7
3
,

:
0
8
4
,

,
1
7
4
,

,
1
7
3
,

,
1
7
1
,

:
0
2
0
,

,
1
7
3
,

,
0
8
4
,

r
l
7
4
,

8
8
0
'

,
2
3
9
,

:
0
8
8
,

,
1
6
5
,

,
0
8
4
,

r
1
6
1
,

,
0
8
4

,
1
6
3
,

:
0
8
4
,

,
2
3
1
,

r
0
1
6
,

r
0
3
0

,
1
6
3
,

:
0
8
4

,
1
6
3
,

8
8
0
'

r
1
6
2

8
8
0
l

r
l
6
1
,

:
0
8
8

,
1
6
5
,

,
0
8
4

r
1
6
1

,
0
8
4

r
1
6
2

:
0
8
8

,
1
6
5
,

r
0
8
4

r
1
5
3

,
0
8
4

r
1
6
3

:
0
8
4

r
2
1
2
.

r
0
0
1

r
1
6
6

,
0
1
6

r
0
1
7 COr

l
6
4
,

0
8
0
'

r
1
6
6

0
8
0
'

r
1
5
3

:
0
8
0

r
l
6
6
.

0
8
0
'

r
2
2
9

r
0
1
6

f
0
1
8

:
0
3
0

r
0
1
9
.

P
0
3
0

,
1
6
2

0
8
0
'

r
2
2
9

:
0
8
0

r
l
7
4
,

,
1
7
3

8
8
0
'

,
1
6
5 CN

r
l
7
3
.

,
0
8
4 rH

8
8
0
'

,
2
3
9

:
0
8
8

r
l
6
5
,

r
0
8
4 CN

r
0
8
4

,
1
6
2 CO

331

Chapter 10

G)

ON

ro

CM

CO
CO
G>

,_,

vo
rH

00
CO
is

<?

•H

G>
CM

g>

rH

rH

vo

<tf
CO
IS

ON

ro

CM

CO
CO
IS

<3*

rH

CO
CO
G>

G)

ON

VO

<*
00
G>

rH

00

CM
!>«.

rH

CO

rH

G>

G>
CM

G>

00
ro

G>

G>
ro

G>

in

ro

CM

00
G>

rH

CM

VO

00
00
G>

rH

VO
rH

00
00
G>

ON

ro

CM

CO
CO
G>

CM

VO

VO
rH

G>

ON

ro

CM

G>
CM

rH

VO
rH

00
CO

GJ

ON

ro

CM

CO
G>
G>

ON

ro

G>

GJ
ro

G>

CM
f^

rH

VO
rH

IS

G>

t>

00
G)

CO

ON

G>

rH

§
G>
G>

00

G>

CM

00

CM

CO
G>

in

vo
G>

G)

CO

CM

ro

G>

ON

G>

CM

CO

ON

GJ

VO

00

00

«s

ro
[>»

G>

CM

ro

GJ

CM

in

ro

G>

CM

ro

IS

00

G>

ON

G>

ro

G>

00
G>

rH

ro

00
G>

vo

ts

g>

ro

rH

G>

CM

in

GJ

ON

G>

H

CM

G)

VO

G>

in

VO
<s

vo
vo
is

CM

ro

G>

VO

G>

G>

^,

00
G)

CM

00
G>

G>

ON

CM

00
G)

in cm

00
IS

ON

G)

r^

VO
<s

ro

rH

G>

ro

IS

ON

00
IS

ro

00
G>

ON

vo

G>

G)

CM

CM

ro

G)

^
00
IS

CM

00
G>

ON

VO
IS

VO
VO
IS

G)

ro

00
G)

00

G>

ro

IS

rH

G)

rH

G)

ro

is

CM

CM

ON

rH

0s
CM

IS

(^

is

G)

G>
IS

ro

rH

G>

ro

rH

G)

G)G)G)G))G))
ininininininininininininmininininin

VO

vo
rH

CO
CO
G>

rH

ro

CM

CO
CO

vo

vo
rH

CO
CO
G)

CM

CM

CO
00
IS

ro

in

rH

is

CM

G>

in

vo

is

CM

G>

CM

VO
rH

00
00

rH

VO
rH

00
00
G>

CM

VO
rH

CO
00

CM

VO
rH

G)
CM

G>

G)
ro

G>

G)
ro

G)

l^

CM

CM

G)
CM

G)

VO
VO

rH

00
00
G)

in

vo
rH

CO
00
IS

vo
rH

CO
CO

1—1

ro

CM

G>
CM

G)

^

VO
rH

G>
CM

G>

in

vo
rH

00
CO

G>

ON

ro

CM

CO
00

rH

VO
rH

CO
00
IS

CM

VO
rH

00
00
IS

rH

CO

G)

G)
ro

G)

CM

VO
rH

G)
CM

IS

rH

VO
rH

00

CO
G>

<*
VO
rH

CO
CO
G)

^

CM

CM

00
00
G>

rH

VO
rH

G>
CM

G)

r*

CM

CM

G>
CM

G)

<*
VO
rH

00
00
IS

in

VO
rH

00

00
G)

ON

ro

CM

00
00

rH

VO
rH

CO
00
IS

VO
VO
rH

G>
CM

IS

rH

VO
rH

IS

CM

G>

ON

ro

CM

CO
00
G)

<?

rH

00

00
G>

rH
r^

G>

rH

G>
IS

ON

ro

CM

O
CM

G)

CM

ro

G)

G)
ro

G)

«t
in

rH

00
00
G)

ro

in

CO
00
G>

rH

ro

CM

CO
00

G>

VO
in

rH

<?
00
is

rH

ro

CM

vo
in

rH

00

G>

ro

CM

CM

<*

CO CO
is

ro

in

rH

CO
00

G)

in

rH

^

00
IS

vo
in

rH

CO
00

in

rH

G)
CM

IS

ro

ro

G>

G)
ro

G)

ON

rH

CM

00

in

rH

00 CO
is

<?
in

rH

00
00
G>

ON

rH

CM

CO
CO
G)

G)

rH

ro

CM

<?
CO
G)

vo
in

rH

00
G>

ro

G)

G)
ro

G>

G)
ro

CM

^

CO
G>

VO
rH

^

CO
G)

vo
rH

CO
00
G)

!>

CM

CM

00
00
G)

CM

CM

^
CO

G)

^

VO
rH

00
00
G>

in in

vo
rH

CM

VO
rH

00
CO
G>

ON

rH

CM

<?
00
G>

in

VO
rH

^

00
G>

rH

ro

CM

^
00
IS

in

vo
rH

IS
CM

G)

in

ro

G>

G)
ro

®

rH

ro

CM

^

00
IS

in

vo
rH

00
00
G>

G>
ro

r^

CM

CM

<t
00
G>

rH

ro

CM CM

00
CO
G>

rH

^

CO
G)

G)
ro ro

CM CM

CO
00

CO
00

G) G>

CM

VO
rH

<3<
00
G)

ON

ro

CM

^

00

in

vo
rH

00
G)

CM

r-

rH

00
00

G>

rH

vo
rH

G)
CM

IS

VO
ro

G>

IS
ro

G>

ro

rH

CO
CO
Gi

iH

CO
CO
G)

ro

rH

00
CO
G>

rH

CO
G>

rH

vo
rH

00
G>

CM

rH

^

CO

G)

ro

IS

G)
ro

G)

rH

VO
pH

^

CO
G)

(^

CM
CM

00

^novoO00CCG)H(N^^vorC0G)G)
mmmmmmmmmmmmvovovovDvovovovovovovovovovovovor^t^r*

G)G)G<G)G)G)G}G)G}G)G}G}G}G}G}G}G)G)G)G)G)G}G}G}G)G}G)G}G}G)G)
LninLnininininininininininu^uiinininininininininininintnininin

332

Chapter 10

Ring Modulation

A ring modulator takes two frequencies and produces two new

frequencies in their place. The new frequencies are the sum'

and difference of the originals. For example, if a ring modu

lator is given frequencies of 200 and 300 Hz, it will produce

the frequencies of 100 and 500 Hz, but not 200 or 300 Hz.

Sometimes it can be hard to discern the pitch of a ring-

modulated tone. The two frequencies may be interpreted by

your ear as a single pitch, but the frequency corresponding to

that pitch is not one of the two produced by the ring modula

tion, so it does not really exist.

Ring-modulated tones are useful for creating percussion

effects. Bells, chimes, steel drums, and various instruments

made of metal, wood, or glass can be approximated.

When used simultaneously with synchronization, a whole

new set of tone colors (timbres) is available.

To use ring modulation, a definite procedure must be fol

lowed. Two voices must play the same sequence of notes, just

like when using the synchronization mode. With ring modula

tion, however, only voices 1 and 3 can be used.

Voice 1 is used to supply the waveform and envelope of

the ring-modulated tone, plus one of the two frequencies

needed for the process. The first thing voice 1 should do is se

lect the triangle waveform. This waveform must be used in or

der for ring modulation to work.

Since ring-modulated tones are used mainly for percus

sion effects, a nonsustaining envelope should be selected.

Finally, enter the command RNG with the value for Yes

to turn ring modulation on. Voice 1 is now ready to start play

ing notes. These notes should be put in a phrase definition so

that they can be called by voice 3.

Voice 3 is used only to supply the second frequency

needed for ring modulation, so the waveform and envelope of

voice 3 do not have to be set. In fact, it's best to turn off the

output from this voice completely, by using the 3-O (3 OFF)

command. Enter this command with the value for Yes at the

beginning of voice 3. The frequencies of notes played by voice

3 are still used in the ring-modulation process, but the output

from voice 3 itself is not heard. Voice 3 can now call the

phrase defined in voice 1.

Here's an example sequence of commands that could be

entered to use ring modulation.

333

Chapter 10

Voice 1

WAV T

ATK 0

DCY 9

SUS 0

RLS 9

PNT 1

RNG Y

DEF

Voice 3

3-0 Y

CAL

As with synchronization, different tone types can be pro

duced by using the TPS command. With ring modulation,

however, transposing one voice can cause the resulting pitch

to be out of tune, so it's often necessary to transpose the other

voice as well to bring the pitch back in tune.

Table 10-2 is a chart ordered by increasing half-step inter

vals. For each interval, the appropriate transpose values for

voices 1 and 3 are given.

Table 10-2. Transpose Values for Use with Ring Modulation

Halfstep

Offset

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3
r\

-1

VI

TPS

7

7

7
—

6

6

6

-

0
—

2

4

2

7

10

0

2

—

-

V3

TPS

-13

-12

-11

—

-10

-9

-8

-

-12

—

-8

-5

o

0

4

-5

-2
—

-

—

Highest

Note

E7

E7

E7

F7

F7

F7

B7

A7

G7

A7

E7

C(t7

B7

A7

334

Chapter 10

0

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0

-1

—

-

0

-5

4

0

—

4
—

0
—

-4

-5

0

-5

1

0
—

_

-2

4

0
-

0

1

0
—

-5

0

-5

1

0

0

0

0

0

0

0

0

0
—

-

4

0

10

7

—

4

14

—

12
—

10

10

16

12

19

19
—

_

20

27

24

-

26

28

28
_

25

31

27

34

34

35

36

37

38

39

40

B7

B7

G7

B7

C87

E7

G7

A6

B6

C87

Ctt7

G6

B6

E6

E6

Eb6

G«5

B5

A5

G5

G5

Bl>5
E5

Gtt5

C«5

C»5

C5

B4

Bb4
A4

Gtt4

G4

The transpose values for some of these intervals are close

approximations and don't produce a distinct pitch, which is

why they're best used for percussion effects. Those intervals

335

Chapter 10

for which no satisfactory transpose values could be found

have been marked with a dash (-).

When the transpose value for a voice is 0, no TPS com

mand has to be entered for that voice.

The rightmost column tells you the highest note that can

be played using the given transpose values. For example,

when the 9 half-step interval is used, only notes up to G7

should be used. Notes above G7 won't play properly.

You can transpose the tone up or down one or more oc

taves by adding a multiple of 12 half steps to each transpose

value. Let's say that you are using the 26 half-step interval, in

which the transpose values are 0 and 26. Adding —12 half

steps gives the transpose values —12 and 14.

Be aware that the effect of ring modulation may vary

from one octave to another. Notes played in one octave may

sound quite different when played with the same half-step

interval in a different octave.

By now you might be wondering just what ring-modulated

tones sound like. Program 10-7 is a demonstration that uses

the 26 half-step interval.

Only a few of the half-step intervals listed in Table 10-2

produce very pleasant or useful sounds. Too often, the sound

produced by one interval includes an undesirable high-pitched

tone. But if you pass the ring-modulated tone through the fil

ter, with the filter mode set to low pass, the squeal can be

eliminated. Most of the intervals listed in the table then be

come useful.

Use the filter on voice 1 only. Here are some example

settings.

F-M L

AUT 1

RES 15

FLT Y

Try using different filter modes, including combinations.

Also try different cutoff settings on the AUT command. The

resonance value set by the RES command can be adjusted to

take some of the "bite" out of a tone.

Since there are so many variable factors, some experi

mentation will be needed. This can be worthwhile, however,

because you'll discover some timbres that you've never heard

336

Chapter 10

before from the SID chip. Some intervals to try are the inter

vals with —7, 28, and 38 half steps.

One remaining possibility is to use synchronization and

ring modulation at the same time. This technique yields yet

another set of timbres.

To use both modes simultaneously, follow this procedure.

Voice 1

WAV T

SNC Y

RNG Y

TPS

DEF

Voice 3

3-OY

CAL

The triangle waveform is still required, but now any en

velope can be used. Also, every half-step interval produces a

usable tone, so you can disregard Table 10-2. The transposing

always stays in tune, so it has to be done only on voice 1. As

with synchronization, however, negative transpose values are

not very useful.

To turn ring modulation off, enter the command RNG N

on voice 1. Enter the command 3-O N on voice 3 to reenable

the output of that voice. The command TPS 0 should be en

tered on those voices that were being transposed. If you were

also using the filter, enter the commands FLT N and AUT 0

on voice 1. Or, if you were using synchronization, enter the

command SNC N on voice 1.

Whether used alone, with the filter, or with synchroniza

tion, the ring-modulation feature of the SID chip can produce

some very interesting sounds. Program 10-8 is just one more

example of the techniques.

Advanced Techniques

This section explores some new uses for the commands in

troduced in the previous chapters. The techniques suggested

here should give you an idea of just what's possible with

Sidplayer.

Waveform. Probably the most overlooked waveform is

the noise waveform. Although this waveform does not have a

definite pitch quality, its character does change as the pitch is

337

Chapter 10

changed. High pitches produce a hissing sound, whereas low

pitches create more of a rumble.

An interesting use of the noise waveform is to play white-

noise notes with different pitches to create a repeating percus

sion line. The sequence of notes should use short durations

and should repeat every one or two measures. With just a little

effort, you can create a fancy rhythm that adds a nice touch to

a song.

The character of the noise waveform can be altered signif

icantly by passing it through the filter. Try this with the filter

set for the high-pass mode.

As for the other three waveforms, one possibility is to use

two waveforms at the same time on the same voice, with the

objective of creating new types of sounds. Unfortunately, only

the combination of triangle and pulse waves is audible.

To select the triangle and pulse wave combination, enter

the WAV command with the number 5 (1 for triangle plus 4

for pulse). This waveform sounds a lot like the pulse wave

with the pulse width set to about 200, but with more of a

buzz.

When a voice is playing with the triangle/pulse combina

tion, the pulse width acts as a volume control for the voice.

Setting the pulse width above 2048 makes the voice inaudible;

smaller values make the voice sound louder.

Envelope. Thus far, you've concentrated on emulating

conventional instruments. A synthesizer, however, is capable

of producing any kind of sound, natural or unnatural.

One way to make a voice sound unnatural is to use a

backward envelope, as shown in Figure 10-11. Such an en

velope has a slow attack rate and a very fast release rate.

Figure 10*11. Backward Envelope

338

C
O

P
r
o
g
r
a
m

1
0
-
7
.
H
O
L
S
T
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
/
'
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
4
1
5

F
i
l
e
n
a
m
e
:
H
O
L
S
T
.
M
U
S

4
9
1
5
2

:
1
5
2
,
0
0
0
,
0
0
2
,
0
0
0
,
0
1
6
,
0
0
0
,
1
7
0

4
9
1
5
8

:
0
0
1
,
0
4
3
,
0
0
1
,
0
3
9
,
1
6
6
,
0
4
4
,
0
4
4

4
9
1
6
4

:
0
0
1
,
0
0
4
,
0
0
1
,
1
4
4
,
0
0
1
,
1
3
2
,
0
3
9

4
9
1
7
0

:
0
0
1
,
1
5
2
,
0
3
8
,
0
0
1
,
0
2
0
,
0
0
0
,
2
3
0

4
9
1
7
6

:
0
0
1
,
0
2
2
,
0
2
0
,
1
5
7
,
0
2
0
,
2
2
3
,
2
1
1

4
9
1
8
2

:
0
1
6
,
1
4
5
,
0
2
0
,
1
4
5
,
0
2
0
,
2
1
1
,
0
7
5

4
9
1
8
8

:
0
5
2
,
1
4
6
,
0
2
4
,
2
2
3
,
0
2
0
,
2
1
1
,
2
0
0

4
9
1
9
4

:
0
2
0
,
1
4
8
,
0
1
6
,
2
1
1
,
0
1
6
,
1
4
6
,
0
8
7

4
9
2
0
0

:
0
2
0
,
1
4
5
,
0
2
0
,
1
4
6
,
0
1
6
,
1
4
5
,
0
2
8

4
9
2
0
6

;
0
1
6
,
2
2
3
,
0
1
2
,
1
5
7
,
0
2
0
,
1
5
7
,
1
2
7

4
9
2
1
2

:
0
2
0
,
2
2
3
,
0
1
6
,
1
4
5
,
0
2
0
,
1
4
5
,
1
1
7

4
9
2
1
8

:
0
2
0
,
2
1
1
,
0
5
2
,
1
4
6
,
0
2
4
,
2
2
3
,
2
3
0

4
9
2
2
4

:
0
2
0
,
2
1
1
,
0
2
0
,
1
4
8
,
0
1
6
,
1
4
9
,
1
2
4

4
9
2
3
0

:
0
1
6
,
1
4
9
,
0
2
0
,
1
4
9
,
0
2
0
,
1
4
8
,
0
6
8

4
9
2
3
6

:
0
1
6
,
2
1
1
,
0
1
6
,
1
4
8
,
0
1
2
,
2
1
1
,
1
8
6

4
9
2
4
2

:
0
0
1
,
0
4
7
,
0
0
1
,
0
3
8
,
0
2
0
,
2
1
5
,
1
5
6

4
9
2
4
8

:
0
2
0
,
1
4
9
,
0
1
6
,
1
4
8
,
0
1
6
,
1
4
8
,
0
8
1

4
9
2
5
4

:
0
2
0
,
2
1
1
,
0
2
0
,
1
4
9
,
0
1
6
,
1
4
8
,
1
5
4

4
9
2
6
0

:
0
1
6
,
2
2
3
,
0
2
0
,
2
1
5
,
0
2
0
,
1
4
9
,
2
3
9

4
9
2
6
6

:
0
1
6
,
1
4
8
,
0
1
6
,
1
4
8
,
0
2
0
,
1
4
9
,
0
9
9

4
9
2
7
2

:
0
2
0
,
2
1
5
,
0
1
2
,
1
3
7
,
0
2
0
,
1
3
7
,
1
4
9

4
9
2
7
8

:
0
2
0
,
1
3
8
,
0
1
6
,
2
0
3
,
0
1
6
,
1
3
8
,
1
4
5

4
9
2
8
4

:
0
1
6
,
1
3
7
,
0
1
6
,
2
1
5
,
0
1
6
,
2
0
3
,
2
2
3

4
9
2
9
0

4
9
2
9
6

4
9
3
0
2

4
9
3
0
8

4
9
3
1
4

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

:
0
1
6
,

:
0
1
6
,

:
0
0
1
,

:
0
0
1
,

:
1
6
6
,

:
0
0
1
,

:
0
0
1
,

:
0
6
9
,

:
0
3
2
,

:
0
8
5
,

:
0
3
2
,

:
0
6
9
,

:
0
3
2
,

:
0
8
0
,

:
0
8
3
,

:
0
7
1
,

:
0
6
9
,

:
0
8
4
,

:
0
8
4
,

:
0
6
5
,

:
0
8
2
,

1
4
9
,
0
2
0
,

1
4
8
,
0
1
6
,

0
4
7
,
1
6
6
,

0
7
9
,
0
0
1
,

1
7
9
,
0
2
0
,

0
3
4
,
1
6
6
,

0
7
9
,
0
8
4
,

0
3
2
,
0
7
0
,

0
8
4
,
0
7
2
,

0
8
0
,
0
7
3
,

0
7
7
,
0
7
9
,

0
7
8
,
0
8
4
,

0
3
4
,
0
8
4
,

0
7
6
,
0
6
5
,

0
3
4
,
0
1
3
,

0
8
5
,
0
8
3
,

0
3
2
,
0
7
2
,

0
1
3
,
0
6
7
,

0
6
9
,
0
8
3
,

0
8
2
,
0
8
2
,

0
6
5
,
0
8
4
,

1
4
8
,
0
2
0

1
4
9
,
0
1
2

0
4
2
,
0
0
1

0
7
9
,
0
0
1

0
0
0
,
0
0
1

0
1
4
,
0
0
1

0
7
2
,
0
6
9

0
8
2
,
0
7
9

0
6
9
,
0
3
2

0
8
4
,
0
6
9

0
8
6
,
0
6
9

0
1
3
,
0
7
9

0
7
2
,
0
6
9

0
7
8
,
0
6
9

0
6
6
,
0
8
9

0
8
4
,
0
6
5

0
7
9
,
0
7
6

0
7
9
,
0
8
5

0
8
9
,
0
3
2

0
8
9
,
0
3
2

0
8
4
,
0
1
3

,
2
1
1
,
1
9
0

,
2
.
1
5
,
1
8
8

,
0
1
8
,
1
6
9

,
0
9
1
,
1
5
2

,
0
1
8
,
0
3
4

,
0
1
8
,
1
4
6

,
0
7
7
,
0
4
4

,
0
7
7
,
0
7
7

,
0
7
4
,
0
3
7

,
0
8
2
,
1
5
3

,
0
7
7
,
1
0
6

,
0
7
0
,
0
8
5

,
0
3
2
,
0
2
1

,
0
8
4
,
1
5
6

,
0
3
2
,
0
2
7

,
0
8
6
,
1
9
0

,
0
8
3
,
1
3
3

,
0
8
2
,
1
3
8

,
0
7
2
,
1
6
3

,
0
6
6
,
1
5
6

,
0
0
0
,
0
7
4

w
P
r
o
g
r
a
m

1
0
-
8
.
P
R
O
M
E
N
A
D
E
.
M
U
S

°
To

en
te

r
th
is

pr
og
ra
m,

y
o
u
m
u
s
t

us
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
L
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x
C

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
6
2
5

F
i
l
e
n
a
m
e
:
P
R
O
M
E
N
A
D
E
.
M
U
S

4
9
1
5
2

:
0
9
0
,
0
0
1
,
0
0
2
,
0
0
0
,
0
1
8
,
0
0
0
,
1
1
1

4
9
1
5
8

:
1
6
6
,
0
7
8
,
0
0
1
,
0
5
9
,
0
0
1
,
0
4
3
,
0
9
8

4
9
1
6
4

:
0
0
1
,
0
5
5
,
1
5
0
,
2
5
1
,
0
0
1
,
2
5
0
,
2
0
8

4
9
1
7
0

:
0
0
1
,
0
2
7
,
0
0
1
,
0
0
6
,
0
0
1
,
0
3
9
,
0
9
3

4
9
1
7
6

:
0
0
1
,
0
2
8
,
0
0
1
,
0
8
0
,
0
0
1
,
2
1
2
,
0
9
1

4
9
1
8
2

:
0
0
1
,
1
5
2
,
0
3
8
,
0
0
6
,
0
0
1
,
0
4
7
,
0
1
9

4
9
1
8
8

:
0
3
0
,
0
0
1
,
0
0
1
,
0
2
2
,
0
1
6
,
1
5
7
,
0
0
7

4
9
1
9
4

:
0
1
6
,
1
5
6
,
0
1
6
,
2
2
3
,
0
2
0
,
1
4
5
,
1
0
6

4
9
2
0
0

:
0
3
8
,
0
0
5
,
0
2
0
,
1
4
8
,
0
3
8
,
0
0
1
,
0
4
2

4
9
2
0
6

:
0
1
6
,
1
4
6
,
0
3
0
,
0
0
2
,
0
2
0
,
1
4
5
,
1
5
7

4
9
2
1
2

:
0
3
8
,
0
0
5
,
0
2
0
,
1
4
8
,
0
3
8
,
0
0
1
,
0
5
4

4
9
2
1
8

:
0
1
6
,
1
4
6
,
0
1
6
,
2
2
3
,
0
1
6
,
1
4
5
,
1
1
6

4
9
2
2
4

:
0
1
6
,
1
5
7
,
0
1
6
,
1
5
6
,
0
0
1
,
0
4
7
,
2
0
9

4
9
2
3
0

:
0
3
0
,
1
0
5
,
0
0
1
,
1
3
4
,
0
0
1
,
0
0
4
,
0
9
7

4
9
2
3
6

:
0
0
1
,
1
7
6
,
0
0
1
,
1
3
2
,
0
3
8
,
0
0
1
,
1
7
7

4
9
2
4
2

:
0
0
1
,
0
4
7
,
0
0
1
,
0
5
1
,
1
6
6
,
1
7
9
,
0
2
3

4
9
2
4
8

:
0
0
1
,
0
1
8
,
0
0
1
,
1
5
0
,
0
0
1
,
0
0
2
,
0
1
3

4
9
2
5
4

:
0
0
1
,
0
4
7
,
0
3
0
,
0
0
5
,
0
0
1
,
0
5
9
,
2
4
5

4
9
2
6
0

:
1
6
6
,
0
9
2
,
0
0
1
,
2
4
6
,
0
0
1
,
0
3
8
,
1
4
0

4
9
2
6
6

:
0
1
6
,
1
5
6
,
0
1
6
,
1
5
7
,
0
1
6
,
1
5
4
,
1
1
7

4
9
2
7
2

:
0
2
0
,
1
5
6
,
0
2
0
,
1
5
7
,
0
0
1
,
0
4
7
,
0
0
9

4
9
2
7
8

:
0
0
1
,
1
1
8
,
0
1
6
,
1
5
3
,
0
3
0
,
0
0
6
,
1
9
4

4
9
2
8
4

:
0
2
0
,
1
5
7
,
0
2
0
,
1
5
8
,
0
1
6
,
1
5
6
,
1
4
7

4
9
2
9
0

:
0
0
1
,
0
4
7
,
0
0
1
,
1
3
0
,
0
1
6
,
1
4
8
,
2
2
5

4
9
2
9
6

:
0
1
6
,
1
4
6
,
0
2
0
,
1
4
5
,
0
2
0
,
2
2
3
,
2
0
2

4
9
3
0
2

:
0
1
6
,
1
5
6
,
0
3
0
,
0
0
7
,
0
0
1
,
0
5
1
,
1
5
5

4
9
3
0
8

:
1
6
6
,
1
7
9
,
0
0
1
,
0
3
4
,
0
1
6
,
2
1
9
,
0
0
3

4
9
3
1
4

:
0
3
0
,
0
0
8
,
0
2
0
,
2
2
3
,
0
2
0
,
1
4
5
,
0
9
6

4
9
3
2
0

:
0
1
6
,
2
2
2
,
0
1
6
,
2
1
4
,
0
1
6
,
1
4
8
,
0
3
2

4
9
3
2
6

:
0
2
0
,
2
1
1
,
0
2
0
,
2
1
0
,
0
1
6
,
2
2
2
,
1
0
5

4
9
3
3
2

:
0
3
0
,
0
0
9
,
0
0
1
,
2
4
6
,
0
1
6
,
2
2
2
,
1
9
2

4
9
3
3
8

:
0
1
6
,
2
2
3
,
0
1
6
,
2
2
2
,
0
2
0
,
2
2
3
,
1
3
8

4
9
3
4
4

:
0
2
0
,
1
4
5
,
0
2
0
,
2
1
1
,
0
2
0
,
2
2
3
,
0
6
3

4
9
3
5
0

:
0
1
6
,
2
2
2
,
0
3
0
,
0
1
0
,
0
2
0
,
2
1
0
,
1
9
4

4
9
3
5
6

:
0
2
0
,
2
1
1
,
0
2
0
,
1
4
8
,
0
2
0
,
2
1
4
,
0
6
9

4
9
3
6
2

:
0
2
0
,
2
1
3
,
0
2
0
,
1
4
8
,
0
2
0
,
2
1
1
,
0
7
4

4
9
3
6
8

:
0
2
0
,
2
1
3
,
0
2
0
,
1
4
8
,
0
2
0
,
2
1
0
,
0
7
9

4
9
3
7
4

:
0
1
6
,
2
1
1
,
0
0
1
,
0
4
7
,
0
0
1
,
0
4
7
,
0
3
3

4
9
3
8
0

:
0
3
0
,
0
1
1
,
0
0
1
,
0
5
9
,
1
6
6
,
0
9
7
,
0
8
0

4
9
3
8
6

:
0
0
1
,
2
4
6
,
0
1
6
,
2
2
3
,
0
1
6
,
1
4
5
,
1
1
3

4
9
3
9
2

:
0
1
6
,
2
2
3
,
0
2
0
,
2
1
1
,
0
2
0
,
1
4
8
,
1
1
0

4
9
3
9
8

:
0
2
0
,
1
4
9
,
0
2
0
,
1
4
6
,
0
1
6
,
1
4
5
,
2
3
0

4
9
4
0
4

:
0
2
0
,
1
4
8
,
0
2
0
,
1
4
9
,
0
2
0
,
1
5
0
,
2
4
7

4
9
4
1
0

:
0
2
0
,
1
3
7
,
0
2
0
,
2
1
5
,
0
2
0
,
1
5
0
,
0
5
2

4
9
4
1
6

:
0
2
0
,
1
4
9
,
0
2
0
,
2
1
5
,
0
2
0
,
1
5
0
,
0
7
0

4
9
4
2
2

:
0
2
0
,
1
4
8
,
0
1
6
,
1
4
9
,
0
2
0
,
1
5
0
,
0
0
5

4
9
4
2
8

:
0
2
0
,
1
4
7
,
0
1
6
,
1
4
8
,
0
1
6
,
1
5
0
,
0
0
5

4
9
4
3
4

:
0
1
6
,
1
4
6
,
0
3
0
,
0
1
2
,
0
0
1
,
0
4
7
,
0
2
2

4
9
4
4
0

:
0
0
1
,
0
5
1
,
0
0
1
,
2
4
6
,
0
1
6
,
1
5
0
,
2
4
1

4
9
4
4
6

:
0
1
6
,
1
4
6
,
0
2
0
,
1
4
8
,
0
2
0
,
1
4
5
,
0
2
1

4
9
4
5
2

:
0
1
6
,
1
4
6
,
0
1
6
,
1
4
5
,
0
1
6
,
1
5
8
,
0
2
9

4
9
4
5
8

:
0
1
6
,
1
4
5
,
0
1
6
,
1
4
8
,
0
2
0
,
2
1
1
,
0
9
4

4
9
4
6
4

:
0
2
0
,
1
4
6
,
0
2
0
,
1
4
5
,
0
2
0
,
2
2
3
,
1
1
8

4
9
4
7
0

:
0
2
0
,
1
4
5
,
0
2
0
,
1
5
8
,
0
3
0
,
0
1
3
,
1
9
2

Chapter 10

incCiHCO^oovoONcocMONror^cMCMrovoONinroincMCMfOvo
^•^rH^i^rHCMr^oocnvorHvorocnr^vovooooooococorHin

rH f^ CM rH 6) IS 6) IS IS IS 6) IS IS IS IS IS IS 6) IS IS IS IS IS IS rH

VOlSvOVOHrHVOrHONI^r^^'COrOOOVOrOOOr^rHONONON^OO
rHCMHiHtstsvo&vor^t^cor^oor^vOrHvor^r^r^oooooooo
IS 6) IS IS IS IS ^^ IS IS IS 6) IS IS IS IS IS IS IS IS 5) IS IS IS IS IS

VOrHONCDON(X)CMCMr^CTkONON(SC^inrOCOONCMCMr^COCM'^00
^•rH^^r^rH^^r^i^r^vooovovor^r^r^cooovoooooooin
CMCMrHrHtSISCMCMlSISISIStSISISISISISISIStSISISISrH

rHVOVOOOrHrHrHrHONCMCMCOCMCMCMCMONr^ONONCOONCMiniS
ISHrH00ISISISlSvO0000VOrO00COr>r^t^vO(^rHVO00VOCM
IS IS IS IS IS IS 6) IS Qd IS IS IS IS IS IS IS IS 6) IS IS IS IS IS IS IS

r^coin^rHrHCMCMCMiSisinisin^toococM^cooN^incMco
5tCMrHrHiHCT>^^r^I^CDVOr^C000C0l^r0C0C0C000vO00CM
IS CM CM CM CM IS CM CM IS IS IS IS IS IS 6) IS IS IS IS IS IS IS IS IS CM

iHVOISOMHH^tOOOtn^OnCMS
QrHCMrHrHisisisoococor-r^covovocooooooor^oor^vois
IS IS

VOCMOO^ISvOCMOO^ISvOCMOO^tlSVOCMOO^flSvOCMOO^IS

r<»cooNtaisHco^»tnoorr>cooNOisiSCM

341

Chapter 10

If you've ever heard a recording of a song played back

ward, you've heard the backward envelope. This type of en

velope is not characteristic of any normal instrument.

A major drawback to the SID chip is that there's no mas

ter volume control for each voice. To some extent, the sustain

level can be used as a voice volume control. Select sustain lev

els less than 15 to make a voice a little quieter. You may also

want to adjust the decay rate so that the volume does not

drop from the peak to the sustain level too rapidly.

One other technique is to experiment with the attack rate

and release point so that each note is released before the vol

ume hits the peak level (before the attack phase is complete).

In order for this to work, the release rate must be set so that

each note fades to complete silence before the next note be

gins. As you might guess, this isn't an easy technique to use.

Filter. Pin 5 of the monitor jack can be used to send an

audio signal to the SID chip. This input signal is mixed with

the output from the three voices before being sent to the mas

ter volume control.

If you want to pass the external audio signal through the

filter, use the F-X command. This command works just like

the FLT command, and accepts a yes/no data value.

Since using an external audio input is an advanced

application of the SID chip, you'll rarely use the F-X

command.

Portamento. When the portamento feature is turned on,

the pitch glides from one note to the next. The starting pitch

of the glide is the pitch of the previous note, and the ending

pitch is the pitch of the new note. For example, if a G note is

played after a C, the pitch will start at C and end at G.

The absolute set pitch command can be used to change the

starting pitch of a glide. In the earlier example, a command to

absolutely set the pitch at E could have been placed between

the notes C and G. When the G was then played, the pitch

would have glided from E to G, instead of from C to G.

Unlike the other commands, the absolute set pitch com

mand is entered from the editing screen. To absolutely set the

pitch, select the name, accidental, and octave of the pitch,

change the duration so that it reads ABS SET, and press the

joystick button.

Although this command is entered like a note, it is still a

command because it has no duration. The command is entered

342

Chapter 10

like a note because the editing screen offers a convenient

method of specifying a pitch.

One application of this command is to create pitch-

bending effects. To bend the pitch of a note, turn portamento

on, set the pitch one half step below the pitch of the note,

play the note, and turn portamento off. Another application is

discussed later, in the section on synchronization.

The absolute set pitch command has no effect on playing

when the portamento feature is turned off.

Vibrato. An advanced technique to use with vibrato is to

change the depth of the vibrato during a note.

Let's say that a voice is playing a whole note. Break the

whole note into four quarter notes. Enter the first quarter note

with a tie, and follow it with a VDP command to set the vi

brato depth. Do this again for the next two quarter notes, each

time using a larger depth value. Enter the last quarter note

without a tie.

When played, the tied quarter notes sound like a whole

note, and the different VDP commands make the vibrato effect

deepen gradually. The result is a more natural vibrato effect.

Remember to reset the vibrato depth for the next note.

Detuning. Sidplayer can play a note using any frequency,

including frequencies between the normal half steps. Just

choose a note with a pitch near the desired frequency, and use

the DTN command to set a frequency offset value. Refer to

Appendix M of the Commodore 64 User's Guide to find the fre

quency number for each pitch.

As an example, let's say that you want to play a note with

a frequency of 500 Hz. Use the following formula to calculate

the corresponding frequency number.

Frequency number = Frequency/0.06097

The frequency number for 500 Hz is 500/0.06097, or

8201. The pitch with the closest frequency is B4, which has

the frequency number 8101. Therefore, to play a note at 500

Hz, all you have to do is enter the command DTN 100 fol

lowed by the note B4.

Transposing. By using the TPS command, it's possible to

play notes in a ninth octave. If you play notes in octave 0 after

entering the command TPS —12, the notes will actually play

in octave —1.

It's very hard to hear the pitch of notes in octave 0, and

343

Chapter 10

even harder to hear notes in octave — I, so this technique is

probably useful only for creating special effects.

Unfortunately, this technique won't work with notes

above octave 7. If a note is transposed into octave 8, it's still

played in octave 7.

One other possibility is to play a phrase in different keys

by entering the TPS command with the correct number of half

steps before each phrase call.

Synchronization. When two voices are synchronized by

the sync mode, a rather unusual effect can be created by using

portamento on the voice which adds the harmonics.

One technique is to enter an absolute set pitch command

before each note. The command should set the pitch one oc

tave below the pitch of the following note so that the pitch

glides up one full octave when the note is played. This tech

nique was used in the song "ETAL" in Chapter 7.

Future expansion. The AUX command is reserved for

possible future expansion. At present, this command is ig

nored by Sidplayer.

Uncommon instruments. Sidplayer can emulate in

struments which are no longer commonly used. Program 10-9,

for example, imitates instruments that were popular in the late

Renaissance period.

Sound effects. Sidplayer can be used to produce sound

effects as well as music. Program 10-10 demonstrates white

noise to produce an explosion.

Phonetics. Certain combinations of frequencies are asso

ciated with different vowel sounds, as demonstrated in Pro

gram 10-11.

More than three voices. The most serious limitation of

the SID chip is that it supports only three voices. Many classi

cal music pieces can be played with three voices, but most of

today's songs need at least four.

Sometimes when a song has to play four notes, one of the

notes can be eliminated without significantly affecting the mu

sic. When a note in the bass clef is also played a couple of oc

taves higher in the treble clef, the treble clef note can be

dropped. If the treble clef contains notes which do not seem to

be part of the melody, try deleting them. When it's not ob

vious which note should be dropped, experiment.

344

C
J
1

P
r
o
g
r
a
m

1
0
-
9
-
C
O
U
R
A
N
T
E
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
/
'
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
6
7
9

F
i
l
e
n
a
m
e
:
C
O
U
R
A
N
T
E
.
M
U
S

4
9
1
5
2

:
1
9
0
,
0
0
0
,
0
9
0

,
0
0
0
,
1
3
2
,
0
0
0
,
1
5
6

4
9
1
5
8

:
0
0
6
,
1
2
8
,
0
0
1
,
0
3
9
,
0
0
1
,
0
2
8
,
2
0
9

4
9
1
6
4

:
0
0
1
,
0
0
0
,
0
0
1
,
2
4
4
,
0
0
1
,
0
7
2
,
0
7
5

4
9
1
7
0

:
0
3
8
,
0
0
1
,
1
6
6
,
0
1
0
,
0
3
0
,
0
0
1
,
0
0
8

4
9
1
7
6

:
0
2
4
,
1
5
5
,
0
2
4
,
1
5
6
,
0
2
0
,
1
5
7
,
0
4
8

4
9
1
8
2

:
0
2
0
,
1
5
7
,
0
5
2
,
1
5
7
,
0
2
4
,
1
5
6
,
0
8
4

4
9
1
8
8

:
0
2
0
,
1
5
5
,
0
1
6
,
1
5
3
,
0
3
0
,
0
0
2
,
1
5
6

4
9
1
9
4

:
0
2
4
,
1
5
6
,
0
2
4
,
1
5
7
,
0
2
0
,
1
5
8
,
0
6
9

4
9
2
0
0

:
0
2
0
,
1
5
6
,
0
2
0
,
1
5
6
,
0
2
4
,
1
5
5
,
0
6
7

4
9
2
0
6

:
0
2
4
,
1
5
6
,
0
2
0
,
1
5
7
,
0
2
0
,
1
5
5
,
0
7
4

4
9
2
1
2

:
0
2
0
,
1
5
5
,
0
3
0
,
0
0
3
,
0
2
0
,
1
5
5
,
1
8
7

4
9
2
1
8

:
0
2
0
,
1
5
4
,
0
2
0
,
1
5
4
,
0
2
0
,
1
5
4
,
0
7
6

4
9
2
2
4

:
0
2
4
,
1
5
3
,
0
2
4
,
1
5
4
,
0
2
0
,
1
5
5
,
0
9
0

4
9
2
3
0

:
0
2
0
,
1
5
3
,
0
2
0
,
1
5
3
,
0
3
0
,
0
0
4
,
2
0
2

4
9
2
3
6

:
0
2
4
,
1
5
5
,
0
2
4
,
1
5
6
,
0
2
4
,
1
5
7
,
1
1
2

4
9
2
4
2

:
0
2
4
,
1
5
8
,
0
2
4
,
1
5
7
,
0
2
4
,
1
5
8
,
1
2
3

4
9
2
4
8

:
0
2
4
,
1
5
7
,
0
2
4
,
1
5
8
,
0
2
4
,
1
5
7
,
1
2
8

4
9
2
5
4

:
0
2
4
,
1
5
6
,
0
2
0
,
1
5
5
,
0
2
0
,
1
5
3
,
1
1
8

4
9
2
6
0

:
0
2
0
,
1
5
3
,
0
3
0
,
0
0
5
,
0
2
4
,
1
5
6
,
2
4
0

4
9
2
6
6

:
0
2
4
,
1
5
7
,
0
2
0
,
1
5
8
,
0
2
0
,
1
5
6
,
1
3
7

4
9
2
7
2

:
0
2
0
,
1
5
6
,
0
2
4
,
1
5
5
,
0
2
4
,
1
5
6
,
1
4
3

4
9
2
7
8

:
0
2
0
,
1
5
7
,
0
2
0
,
1
5
5
,
0
2
0
,
1
5
5
,
1
4
1

4
9
2
8
4

:
0
3
0
,
0
0
6
,
0
2
0
,
1
5
5
,
0
2
0
,
1
5
4
,
0
0
5

4
9
2
9
0

:
0
2
0
,
1
5
4
,
0
2
0
,
1
5
4
,
0
2
4
,
1
5
3
,
1
5
1

4
9
2
9
6

:
0
2
4
,
1
5
4
,
0
2
0
,
1
5
5
,
0
2
0
,
1
5
3
,
1
5
8

4
9
3
0
2

:
0
2
0
,
1
5
3
,
0
3
0
,
0
0
7
,
0
2
4
,
1
6
7
,
0
3
9

4
9
3
0
8

:
0
2
4
,
1
5
3
,
0
2
0
,
1
5
4
,
0
2
0
,
1
5
4
,
1
6
9

4
9
3
1
4

:
0
5
2
,
1
5
4
,
0
2
4
,
1
5
3
,
0
2
0
,
1
6
7
,
2
2
0

4
9
3
2
0

:
0
1
6
,
1
6
5
,
0
3
0
,
0
0
8
,
0
2
0
,
1
5
4
,
0
4
9

4
9
3
2
6

:
0
2
0
,
1
6
7
,
0
1
6
,
1
6
5
,
0
2
0
,
1
5
7
,
2
0
7

4
9
3
3
2

:
0
2
0
,
1
5
5
,
0
2
4
,
1
5
4
,
0
2
4
,
1
5
3
,
1
9
8

4
9
3
3
8

:
0
2
0
,
1
6
5
,
0
3
0
,
0
0
9
,
0
2
0
,
1
6
7
,
0
8
5

4
9
3
4
4

:
0
2
0
,
1
5
3
,
0
0
1
,
0
7
9
,
0
0
6
,
1
2
8
,
0
6
7

4
9
3
5
0

:
0
0
1
,
1
3
5
,
0
0
2
,
1
0
0
,
0
0
1
,
0
0
4
,
1
8
5

4
9
3
5
6

:
0
0
1
,
0
0
0
,
0
0
1
,
1
8
8
,
0
0
1
,
0
7
2
,
2
1
1

4
9
3
6
2

:
0
3
8
,
0
0
1
,
1
6
6
,
1
7
9
,
0
3
0
,
0
0
1
,
1
1
3

4
9
3
6
8

:
0
2
0
,
0
0
0
,
0
1
2
,
1
6
5
,
1
1
2
,
1
6
1
,
1
7
4

4
9
3
7
4

:
0
3
0
,
0
0
2
,
0
2
0
,
1
6
1
,
0
1
2
,
1
7
2
,
1
0
7

4
9
3
8
0

:
1
1
2
,
1
6
1
,
0
3
0
,
0
0
3
,
0
2
0
,
1
6
1
,
2
0
3

4
9
3
8
6

:
0
1
2
,
1
6
5
,
1
1
2
,
1
6
1
,
0
3
0
,
0
0
4
,
2
0
6

4
9
3
9
2

.
-
0
2
0
,
1
6
1
,
0
1
2
,
1
6
5
,
1
1
2
,
1
6
1
,
1
0
3

4
9
3
9
8

:
0
3
0
,
0
0
5
,
0
2
0
,
1
6
1
,
0
1
2
,
1
7
2
,
1
3
4

4
9
4
0
4

:
1
1
2
,
1
6
1
,
0
3
0
,
0
0
6
,
0
2
0
,
1
6
1
,
2
3
0

4
9
4
1
0

:
0
1
2
,
1
6
5
,
1
1
2
,
1
6
1
,
0
3
0
,
0
0
7
,
2
3
3

4
9
4
1
6

:
0
2
0
,
1
6
1
,
0
1
2
,
1
7
3
,
1
1
2
,
1
7
3
,
1
4
7

4
9
4
2
2

:
0
3
0
,
0
0
8
,
0
7
6
,
1
7
3
,
0
2
0
,
1
7
3
,
2
3
8

4
9
4
2
8

:
0
1
6
,
1
6
1
,
0
2
0
,
1
7
3
,
0
3
0
,
0
0
9
,
1
7
3

4
9
4
3
4

:
0
1
2
,
1
6
1
,
0
0
1
,
0
7
9
,
0
0
6
,
1
2
8
,
1
5
7

4
9
4
4
0

:
0
0
1
,
0
3
9
,
0
0
1
,
0
0
4
,
0
0
1
,
0
8
0
,
1
5
8

4
9
4
4
6

:
0
0
1
,
1
3
2
,
0
0
1
,
0
0
8
,
0
3
8
,
0
0
1
,
2
1
9

4
9
4
5
2

:
1
6
6
,
1
8
1
,
0
3
0
,
0
0
1
,
0
0
1
,
0
7
0
,
2
3
7

4
9
4
5
8

:
0
5
4
,
0
0
2
,
0
2
0
,
0
0
0
,
0
2
0
,
1
3
7
,
0
2
7

4
9
4
6
4

:
0
2
0
,
0
0
0
,
0
2
0
,
1
3
7
,
0
2
4
,
1
3
7
,
1
3
8

4
9
4
7
0

:
0
2
4
,
1
3
7
,
0
2
0
,
1
3
7
,
0
2
0
,
1
3
7
,
0
2
5

£
4
9
4
7
6

:
0
2
0
,
1
3
7
,
0
0
1
,
0
1
5
,
0
3
0
,
0
0
3
,
0
1
8

o
n

4
9
4
8
2

:
0
2
0
,
0
0
0
,
0
2
0
,
1
3
7
,
0
2
4
,
1
3
7
,
1
5
6

4
9
4
8
8

:
0
2
4
,
1
3
7
,
0
2
0
,
1
3
7
,
0
2
4
,
1
3
7
,
0
4
7

4
9
4
9
4

:
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
5
7

4
9
5
0
0

.
-
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
2
0
,
1
3
7
,
0
5
9

4
9
5
0
6

:
0
0
1
,
0
4
7
,
0
3
0
,
0
0
4
,
0
0
1
,
0
6
6
,
2
4
7

4
9
5
1
2

:
0
3
0
,
0
0
7
,
0
2
0
,
0
0
0
,
0
2
0
,
1
3
7
,
0
6
2

4
9
5
1
8

:
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
2
0
,
1
3
7
,
0
7
7

4
9
5
2
4

:
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
2
0
,
1
3
7
,
0
8
3

4
9
5
3
0

:
0
2
0
,
1
3
7
,
0
2
0
,
1
3
7
,
0
3
0
,
0
0
8
,
2
1
8

4
9
5
3
6

:
0
2
0
,
1
3
7
,
0
2
0
,
1
3
7
,
0
1
6
,
1
3
7
,
0
8
3

4
9
5
4
2

:
0
2
0
,
1
3
7
,
0
2
0
,
1
3
7
,
0
2
4
,
1
3
7
,
0
9
7

4
9
5
4
8

:
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
0
2
4
,
1
3
7
,
1
1
1

4
9
5
5
4

:
0
3
0
,
0
0
9
,
0
2
0
,
1
3
7
,
0
2
0
,
1
3
7
,
2
4
3

4
9
5
6
0

:
0
2
8
,
1
3
7
,
0
2
8
,
1
3
7
,
0
2
8
,
1
3
7
,
1
3
5

4
9
5
6
6

:
0
2
4
,
1
3
7
,
0
0
1
,
0
7
9
,
0
6
7
,
0
7
9
,
0
3
3

4
9
5
7
2

:
0
8
5
,
0
8
2
,
0
6
5
,
0
7
8
,
0
8
4
,
0
6
9
,
1
1
5

4
9
5
7
8

:
0
3
2
,
0
7
0
,
0
8
2
,
0
7
9
,
0
7
7
,
0
3
2
,
0
3
0

4
9
5
8
4

:
0
3
4
,
0
8
4
,
0
6
9
,
0
8
2
,
0
8
0
,
0
8
3
,
0
9
6

4
9
5
9
0

:
0
7
3
,
0
6
7
,
0
7
9
,
0
8
2
,
0
6
9
,
0
3
4
,
0
7
4

4
9
5
9
6

:
0
1
3
,
0
7
7
,
0
7
3
,
0
6
7
,
0
7
2
,
0
6
5
,
0
4
3

4
9
6
0
2

:
0
6
9
,
0
7
6
,
0
3
2
,
0
8
0
,
0
8
2
,
0
6
5
,
0
8
6

4
9
6
0
8

:
0
6
9
,
0
8
4
,
0
7
9
,
0
8
2
,
0
7
3
,
0
8
5
,
1
6
0

4
9
6
1
4

:
0
8
3
,
0
3
2
,
0
4
0
,
0
4
9
,
0
5
3
,
0
5
5
,
0
0
6

4
9
6
2
0

:
0
4
9
,
0
4
5
,
0
4
9
,
0
5
4
,
0
5
0
,
0
4
9
,
2
5
2

4
9
6
2
6

:
0
4
1
,
0
1
3
,
0
8
0
,
0
7
3
,
0
8
0
,
0
6
9
,
0
6
2

4
9
6
3
2

:
0
4
4
,
0
3
2
,
0
8
2
,
0
6
9
,
0
7
1
,
0
6
5
,
0
7
5

4
9
6
3
8

:
0
7
6
,
0
4
4
,
0
3
2
,
0
6
5
,
0
7
8
,
0
6
8
,
0
8
1

4
9
6
4
4

:
0
3
2
,
0
8
4
,
0
6
5
,
0
6
6
,
0
7
9
,
0
8
2
,
1
3
2

4
9
6
5
0

:
0
1
3
,
0
6
5
,
0
8
2
,
0
8
2
,
0
6
5
,
0
7
8
,
1
1
5

4
9
6
5
6

:
0
7
1
,
0
6
9
,
0
6
8
,
0
3
2
,
0
6
6
,
0
8
9
,
1
3
1

4
9
6
6
2

:
0
3
2
,
0
8
2
,
0
7
9
,
0
6
6
,
0
6
9
,
0
8
2
,
1
5
2

4
9
6
6
8

:
0
8
4
,
0
3
2
,
0
7
2
,
0
7
3
,
0
7
1
,
0
7
1
,
1
5
1

4
9
6
7
4

:
0
7
3
,
0
7
8
,
0
8
3
,
0
1
3
,
0
0
0
,
1
4
9
,
1
5
0

P
r
o
g
r
a
m

1
0
-
1
0
-
J
O
K
E
.
M
U
S

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
'
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
2
9
5

F
i
l
e
n
a
m
e
:
J
O
K
E
.
M
U
S

1

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

:
0
7
4
,

:
0
0
1
,

:
0
5
4
,

:
0
2
4
,

:
0
2
0
,

:
0
2
0
,

:
0
0
1
,

:
0
2
0
,

:
0
1
2
,

:
0
2
0
,

:
0
0
1
,

:
0
0
1
,

:
0
3
8
,

:
0
0
1
,

:
0
0
1
,

:
1
6
6
,

:
0
5
4
,

:
0
4
4
,

:
0
0
1
,

0
0
0
,
0
1
6
,

0
7
8
,
0
3
8
,

0
0
2
,
0
0
1
,

1
5
4
,
0
5
2
,

1
5
3
,
0
2
0
,

1
5
7
,
0
2
0
,

0
4
7
,
0
2
0
,

0
0
0
,
0
2
0
,

0
0
0
,
0
0
1
,

1
4
5
,
0
2
0
,

0
2
2
,
0
0
7
,

0
0
4
,
0
0
1
,

0
0
1
,
0
0
0
,

0
7
9
,
0
5
4
,

0
1
5
,
0
4
4
,

1
7
9
,
0
0
1
,

0
0
5
,
0
0
8
,

0
0
0
,
0
2
0
,

0
1
8
,
0
0
1
,

0
0
0
,
0
1
6

0
0
5
,
0
5
0

0
2
2
,
0
2
4

1
5
3
,
0
2
4

1
5
3
,
0
2
0

1
5
6
,
0
2
0

0
8
1
,
0
2
0

1
5
9
,
0
2
0

0
1
5
,
0
0
1

1
4
5
,
0
0
1

0
4
4
,
0
0
1

1
6
0
,
0
0
1

1
6
9
,
0
4
4

0
0
5
,
0
0
8

0
0
0
,
0
2
0

0
1
8
,
0
0
1

0
0
0
,
0
0
1

0
0
0
,
1
6
6

0
7
9
,
0
6
5

,
0
0
0
,
1
0
6

,
0
3
2
,
2
1
0

,
1
5
5
,
0
1
4

,
1
5
4
,
0
6
7

,
1
5
5
,
0
3
3

,
1
5
8
,
0
4
9

,
0
8
1
,
0
3
0

,
1
5
9
,
1
6
4

,
0
1
8
,
0
9
5

,
2
5
4
,
1
2
7

,
0
0
7
,
1
4
2

,
1
3
2
,
1
0
9

,
1
6
1
,
2
2
9

,
0
0
0
,
2
2
5

,
0
0
0
,
1
6
4

,
0
7
9
,
0
2
2

,
0
1
5
,
1
7
9

,
1
8
1
,
0
0
1

,
0
3
2
,
0
4
8

4
9
2
6
6

:
0
7
6
,
0
7
3
,
0
8
4
,
0
8
4
,
0
7
6
,
0
6
9
,
0
6
4

4
9
2
7
2

:
0
3
2
,
0
7
4
,
0
7
9
,
0
7
5
,
0
6
9
,
0
1
3
,
2
0
6

4
9
2
7
8

:
0
7
0
,
0
8
2
,
0
7
9
,
0
7
7
,
0
3
2
,
0
6
5
,
0
1
9

4
9
2
8
4

:
0
3
2
,
0
6
7
,
0
6
5
,
0
8
2
,
0
8
4
,
0
7
9
,
0
2
9

4
9
2
9
0

:
0
7
9
,
0
7
8
,
0
1
3
,
0
1
3
,
0
1
3
,
0
0
0
,
0
7
8

P
r
o
g
r
a
m

1
0
-
1
1
.
Y
O
Y
.
M
U
S

T
o

e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t
u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

S
t
a
r
t
i
n
g
A
d
d
r
e
s
s
:
4
9
1
5
2

E
n
d
i
n
g
A
d
d
r
e
s
s
:
4
9
2
9
5

F
i
l
e
n
a
m
e
:
Y
O
Y
.
M
U
S

4
9
1
5
2

4
9
1
5
8

4
9
1
6
4

4
9
1
7
0

4
9
1
7
6

4
9
1
8
2

4
9
1
8
8

4
9
1
9
4

4
9
2
0
0

4
9
2
0
6

4
9
2
1
2

4
9
2
1
8

4
9
2
2
4

4
9
2
3
0

4
9
2
3
6

:
0
5
4
,
0
0
0

:
0
0
6
,
1
2
8

:
0
1
0
,
0
7
0

:
0
3
1
,
0
0
8

:
0
0
1
,
0
4
7

:
0
5
2
,
0
8
5

:
0
5
2
,
0
0
0

:
1
6
6
,
0
6
2

:
0
0
1
,
0
0
2

:
1
6
6
,
0
1
4

:
0
0
1
,
0
7
9

:
0
5
2
,
1
5
3

:
0
5
2
,
0
0
0

:
0
5
2
,
1
5
3

:
0
5
2
,
2
1
9

,
0
0
2
,

,
0
0
1
,

,
0
5
4
,

,
0
0
0
,

,
0
0
1
,

,
0
0
1
,

,
0
0
1
,

,
0
0
1
,

,
1
6
6
,

,
0
0
1
,

,
0
0
1
,

,
0
5
2
,

,
0
5
2
,

,
0
5
2
,

,
0
5
2
,

0
0
0
,
0
3
2

0
3
9
,
0
0
1

0
0
2
,
0
0
1

0
9
3
,
0
5
2

0
2
2
,
0
0
0

0
4
7
,
0
0
1

0
1
5
,
0
0
1

0
0
2
,
1
6
6

1
4
5
,
0
0
1

0
0
2
,
0
0
1

0
3
9
,
0
5
4

1
5
3
,
0
5
2

1
5
3
,
0
5
2

0
0
0
,
0
5
2

2
3
0
,
0
5
2

,
0
0
0
,
0
8
8

,
0
5
9
,
2
4
0

,
0
0
6
,
1
5
5

,
0
6
6
,
0
1
2

,
0
7
4
,
1
6
9

0
0
2
,
2
1
8

,
0
0
2
,
1
0
7

,
1
1
3
,
0
4
0

,
0
1
8
,
1
2
5

,
0
7
9
,
0
6
1

,
0
0
3
,
2
3
7

,
1
5
3
,
1
6
9

,
1
5
3
,
0
2
2

1
5
3
,
0
2
8

2
3
1
,
1
5
2

4
9
2
4
2

4
9
2
4
8

4
9
2
5
4

4
9
2
6
0

4
9
2
6
6

4
9
2
7
2

4
9
2
7
8

4
9
2
8
4

4
9
2
9
0

:
0
5
2
,

:
0
8
9
,

:
0
7
2
,

:
0
8
9
,

:
0
7
2
,

:
0
8
9
,

:
0
8
7
,

:
0
3
2
,

:
0
1
3
,

1
5
3
,
0
0
1

0
3
2
,
0
7
9

0
8
9
,
0
6
3

0
3
2
,
0
7
9

0
8
9
,
0
6
3

0
3
2
,
0
8
7

0
7
2
,
0
8
9

0
8
7
,
0
7
2

0
0
0
,
0
1
3

,
0
7
9
,

,
0
7
2
,

,
0
1
3
,

,
0
7
2
,

,
0
1
3
,

,
0
7
2
,

,
0
3
2
,

,
0
8
9
,

,
0
1
3
,

0
8
7
,
0
7
2
,
0
2
2

0
3
2
,
0
8
7
,
2
3
1

0
8
7
,
0
7
2
,
2
4
2

0
3
2
,
0
8
7
,
2
4
3

0
8
7
,
0
7
2
,
2
5
4

0
8
9
,
0
3
2
,
0
0
9

0
7
9
,
0
7
2
,
0
4
5

0
6
3
,
0
1
3
,
2
3
2

0
1
3
,
0
0
0
,
1
9
0

Chapter 10

Contemporary sheet music is often written with two treble

staves and one bass staff. The top treble staff usually has just

the notes for the melody, and the other one has the melody

notes plus extra notes for chords. If you enter the top treble

staff and the bass staff, you'll still have one voice free for

percussion effects.

A clever technique is to have one voice play both a bass

part and percussion part. Bass notes can be played on each

beat, and percussion effects, such as snare drum strikes, can be

played on the off beat. To make this as easy as possible, de

fine a phrase which selects a nonsustaining envelope with the

noise waveform, plays a note, and then resets the envelope

and waveform. To enter the voice, just enter bass notes sepa

rated by phrase calls.

Instrument parameters. Table 10-3 lists suggested values

for emulating different instruments. Filter values may have to

be adjusted for your particular computer. This list is by no

means complete; many other instrument settings are possible

and can be found by experimentation.

348

T
a
b
l
e

1
0
*
3
.
S
i
d
p
l
a
y
e
r
I
n
s
t
r
u
m
e
n
t
P
a
r
a
m
e
t
e
r
s

D
E
F
A
U
L
T

V
I
O
L
I
N

C
E
L
L
O

B
A
S
S

(
p
l
u
c
k
)

H
A
R
P

B
A
N
J
O

M
A
N
D
O
L
I
N

B
A
Z
O
O
K
I

L
U
T
E

K
O
T
O

S
I
T
A
R

F
L
U
T
E

P
I
C
C
O
L
O

R
E
C
O
R
D
E
R
—
A
L
T
O

C
L
A
R
I
N
E
T

O
B
O
E

B
A
S
S
O
O
N

B
A
G
P
I
P
E

H
A
R
M
O
N
I
C
A

A
C
C
O
R
D
I
O
N

S
H
A
W
M

T
R
U
M
P
E
T

T
R
O
M
B
O
N
E

T
U
B
A

H
A
R
P
S
I
C
H
O
R
D

4
'

H
A
R
P
S
I
C
H
O
R
D

8'

O
R
G
A
N
:
F
L
U
T
E

O
R
G
A
N
:
P
R
I
N
C
I
P
A
L

O
R
G
A
N
:
R
E
E
D

O
R
G
A
N
:
T
R
U
M
P
E
T

C
A
L
L
I
O
P
E

F
I
N
G
E
R
D
R
U
M

B
E
L
L
S

U
>

C
H
I
M
E
S

5
5

W
O
O
D
B
L
O
C
K

A
T
K

2 0 5 1 0 1 1 1 0 0 2 3 3 3 3 7 7 2 5 2 2 5 9 9 0 0 3 3 3 3 0 0 0 0 0

D
C
Y 0 0 0

1
0 9 8 8

1
0 8 8

1
0 0 0 0 0 0 8 0 0 0 2 0 0 0

1
2

1
2 0 2 0 0

1
2 9

1
0

1
0 2

S
U
S

1
5

1
2 0 0 0 0 0 0 0

1
2

1
4

1
4

1
4

1
4

1
5

1
4

1
5 8

1
5

1
4

1
5

1
5

1
5 8 8

1
4

1
0

1
4

1
5

1
3 0 0 0 0

R
L
S 5 4

1
0 0 0 0 0 0 0

1
2 4 4 4 2 4 5 4 4 2 4 4 4 9 9 4 4 4 4 5 0

1
0

1
0

»
N
T

4 4 4 1 1 1 1 1 1 1 7 1 1 1 1 1 1 4 4 1 1 1 1 8 8 1 1 1 1 4 1 1

1
6

W
A
V

P P P P T P P P T P P T T T P P P P P S P S S S P P T P P S P T T P T

P
-
W

2
0
4
8

8
0
0

2
0
4
8

1
8
0
0

1
0
0

5
0
0

1
0
0
0

3
0
0

1
0
0

2
0
4
8

7
0
0

7
0
0

2
0
0

2
0
4
8

1
0
0

1
0
0

3
0
0

2
0
4
8

2
0
0

2
0
4
8

2
0
4
8

P
-
S 0 1
0

F
-
M L L
B

B H H L L H B B B L L L

A
U
T 0

-
1
0

-
1

3

-
2
0

-
2
0

-
4
0

-
1
0

-
2
0

-
2
0

-
2
0 5

2
0 1

1
0

R
E
S 0 9

1
5

1
2

1
2

1
2

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

F
L
T

N Y Y Y Y Y Y Y Y Y Y Y Y Y Y

F
-
S

0

5 5

2
0 5 1

F
-
C

S
N
C

N

R
N
G

N

Y

V
D
P 0

3
0

2
0 2
0

V
R
T

0 2 2 2

T
P
S 0 1
2

-
1
2

-
1
2

1
9

—
1
2 1
2

7
,
1
6

D
T
N

7
0
/
U

7
0
/
U 7
0

7
0

Chapter 11

Music and Your BASIC

Program

Merging Sidplayer with BASIC Programs

Run Sidplayer, and while it's playing a song, press the

RUN/STOP key. The music still plays, even though the pro

gram has stopped. Now type LIST. The music continues as the

program is listed on the screen. Enter a few more statements,

such as POKEs to change the screen colors, and then enter the

CONT command to make Sidplayer resume. Perhaps not the

most exciting demonstration you've seen, but it does illustrate

something important.

Sidplayer has been designed so that it can play music

while BASIC executes commands, statements, or even a whole

program. Every 1/60 second, BASIC processing is temporarily

set aside and Sidplayer is allowed to process the music. When

the music processing is done, BASIC resumes. Since this hap

pens 60 times a second, the continual interruption of BASIC is

too fast to be noticeable. BASIC and the Sidplayer appear to

be executing simultaneously.

Although this technique causes BASIC processing to run a

little slower than normal, it does make it easy to add music to

games, adventures, or educational programs. And that can en

hance your own BASIC programs.

Load and play procedure. To demonstrate how to merge

Sidplayer with a BASIC program, let's begin with a simplified

Player program. The Player listed in Program 11-1 contains

only the statements necessary to load and play a song, and

can be readily merged with another program.

Program 11*1. SID.BAS

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

100 PRINT CHR$ (147):PRINT " SIDPLAYER" :PRINT " BY

{SPACE}CRAIG CHAMBERLAIN":PRINT :rem 173
120 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 134

130 GOSUB 57000:REM LOAD SIDPLAYER :rem 251

200 F$="COMMODORE":LA=PEEK(49)+256*PEEK(50)+1000:G

OSUB 57500:REM LOAD SONG :rem 242

210 SYS HK:REM HOOK (INSTALL) :rem 220

220 POKE SX,LO:POKE SY,HI:SYS PL:REM SET FOR PLAYI

NG :rem 225

351

Chapter 11

230 K=PEEK(SX)+256*PEEK(SY):REM GET ADDRESS OF TEX

T LINES :rem 171

240 IF PEEK(K) THEN PRINT CHR$(PEEK(K));:K=K+1:GOT

O 240:REM PRINT UNTIL CHR$(0) :rem 27

250 POKE SS,7:REM START MUSIC :rem 252

260 IF PEEK(SS)AND7 GOTO 260:REM STILL PLAYING

:rem 216

270 SYS DP:REM DROP (REMOVE) :rem 158

280 END :rem 113

57000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

"SID.OBJ":GOSUB 59000 :rem 106

57010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 126

57020 SS=49152:HK=49435:PL=49458:DP=49629:RETURN

:rem 77

57100 GOSUB 57000:POKE SX,LA-256*INT(LA/256):POKE

{SPACE}SY,INT(LA/256):SYS 51042 :rem 218

57110 LA=LA+1398:RETURN :rem 111

57500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+".MUSM:GOSUB 59000 :rem 61

57510 HI=INT(LA/256):LO=LA-256*HI :rem 137

57520 POKE SA,0:POKE SX,LO:POKE SY,HI:SYS 65493:IF

PEEK(SP)AND1 GOTO 59100 :rem 49

57530 LA=PEEK(SX)+256*PEEK(SY):RETURN :rem 29

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX, 73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: "; : IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

When adding this to your own program, all of the lines

before line 57000 can be renumbered to start at any place in

the program. The lines starting at 57000, however, must not

be renumbered.

The program begins with the standard assignments for

using tape or disk I/O and assigns values to variables to be

used with SYS (line 120).

DN=8:SA=780:SX=781:SY=782:SP=783

Change the statement DN=8 to DN=1 if you are using the

Datassette.

The next step is to load the Sidplayer machine language

into memory (line 130 of Program 11-1).

GOSUB 57000

352

Chapter 11

This subroutine loads the "SID.OBJ" file, and also assigns the

variables SS, HK, PL, and DP. These four variables are used

later in the program. If you're using tape, be sure to position

the tape to the spot where SID.OBJ begins. Disk users must

have the proper disk in the drive.

Before you can load a song into memory, the music file

name and the LOAD address must be set. Assign the name of

the music file to the variable F$ (line 200). Do not include the

.MUS extension as part of the filename.

F$="COMMODORE"

Now calculate the LOAD address (line 200).

LA=PEEK(49)+256*PEEK(50)+1000

The LOAD address is the address of free memory, plus

1000 bytes for a safety margin. This is the address in memory

where the music file will be stored.

Call the subroutine at line 57500 to actually load the song

(line 200). Again, be sure the proper disk is in the drive or that

the tape is positioned properly. If you assigned F$ as above for a

demonstration, make sure that the "COMMODORE.MUS" file

is on that disk or tape.

GOSUB 57500

Besides loading the requested music file, the subroutine at

57500 also assigns the variables LO and HI to be the low and

high bytes of the LOAD address. These variables are used

later in the program.

At this point, everything has been loaded into memory.

There's still a little bit of preparation which must be done

before the playing can begin.

SYSHK

This statement (line 210) calls the Sidplayer HOOK rou

tine, which installs Sidplayer as part of the normal interrupt

processing that's done every 1/60 second.

POKE SX,LO:POKE SY,ffl:SYS PL

The PLAY (SYS PL) routine tells Sidplayer where the

song begins in memory, and sets all the default values, such

as tempo and volume. It also returns the address of the text

lines in locations SX and SY. It's not necessary to print the text

lines in order to play the song, so the next two program lines

(lines 230 and 240) are optional. If you do want to print the

text lines, the program should start displaying characters at the

returned address and stop when it reaches a CHR$(0).

Chapter 11

The song is now ready to start playing. The following

statement makes the playing begin (line 250).

POKE SS,7

Location SS is the Sidplayer status value. The last three

bits of this location control voice processing.

Voice SSBit POKE Value

1 0 1

2 1 2

3 2 4

When a bit is set, the corresponding voice plays. Playing

for that voice stops when the bit is cleared, or set to 0. An in

dividual voice can be played by POKEing location SS with the

value 1, 2, or 4. To play all three voices, POKE SS with

1+2+4, or 7.

Playing continues as long as the three bits are set. Playing

can be stopped at any time by POKEing SS with a 0. The bits

are automatically cleared by Sidplayer when it reaches the end

of the song or if an error occurs.

Program 11-1 simply loops until the three bits in SS are

cleared when the end of the song is reached, but anything can

be done during this time. The program could draw pictures on

the screen, change the colors, or move sprites.

After a song is done, it can be replayed if you like. Just

call the PLAY routine and set the three status bits again. Use

this line:

POKE SX,LO:POKE SY,HI:SYS PL:POKE SS,7:REM REPLAY

When playing is finished, call the DROP routine to re

move Sidplayer from the interrupt processing.

SYSDP

The DROP routine undoes everything done by the HOOK

routine and restores the interrupt processing to normal.

You must be careful in using the HOOK and DROP

routines. Do not call the HOOK routine if Sidplayer is already

installed. Also, do not call the DROP routine if Sidplayer has

already been removed or has not yet been installed. The cor

rect order is HOOK, PLAY, then DROP. Calling these routines

in the wrong order can cause the computer to crash.

While a song is playing, BASIC is free to execute any

statements and do any processing you wish. The only restric

tions concern using string variables and tape or disk I/O. If

354

Chapter 11

string variables are assigned frequently, the program should

periodically call the free memory function, as in K=FRE(0), to

reorganize free memory. Otherwise, the string data may inter

fere with the free memory used for storing the song.

The processing that's done every 1/60 second is handled

differently when the computer is communicating with the

Datassette or disk drive. Therefore, tape or disk files should

not be accessed while a song is playing.

The flag command. Sometimes it would be convenient if

a BASIC program could determine which part of a song

Sidplayer is currently playing. Such information would be

helpful in synchronizing screen displays to the music. What's

needed is a method of communication between Sidplayer and

the BASIC program.

The BASIC program can control Sidplayer by setting or

clearing the three status bits in location SS. For communica

tion from Sidplayer to the BASIC program, the FLG command

is available. This command is entered in the Editor with a

number from 0 to 255. When playing reaches the command,

Sidplayer POKEs the number into location SS+1, the flag

location. The BASIC program can monitor this location to

watch for specific values and change the screen accordingly.

Several FLG commands may be used in a song. The gen

eral procedure is to wait for the value in the flag location to

change, update the screen, wait for the next value, and so on.

To detect a change in the flag location, a few different meth

ods can be used.

The first is to wait for a specific value to be POKEd into

the flag location, as in:

400 IF PEEK(SS+1)<>2 GOTO 400

This method requires a direct correspondence between the

flag values in the music and the values being checked in the

program. Usually, the flag commands will use incrementing

numbers, so the BASIC program would first watch for the

value 1, then for the value 2, and so on.

Another method is to disregard the value in the flag loca

tion and just wait for it to change. This can be done in two

ways.

400 P=PEEK(SS+ 1)

410 IF PEEK(SS+1)=P GOTO 410

or

355

Chapter 11

400 POKE SS+1,0

410 IF PEEK(SS+l)=0 GOTO 410

The advantage of this method is that you don't have to

remember the exact flag values used in the music.

One other method is to use the WAIT statement:

400 WAIT SS+1,1:REM WAIT FOR ODD NUMBER

or

400 WAIT SS+1,1,1:REM WAIT FOR EVEN NUMBER

The advantage of using the WAIT statement is that you

don't have to use a whole program line. Other statements can

be placed after the WAIT. (Refer to Chapter 4 for more details

on WAIT.) The only drawback is that the flag values must

alternate between even and odd numbers.

To show how to merge music with a BASIC program and

how to use the FLG command, we've provided a demonstra

tion program. Actually two programs—the first, Program 11-3,

is a BASIC program which uses colorful screen displays and

sprites while the music plays. Enter Program 11-3 first, es

pecially if you're using tape.

The other part of the demonstration is a music file, listed

as Program 11-2. It must be entered with MLX and saved as

SCIPIO.MUS. This song contains FLG commands on voice 1.

Since Program 11-3, "SIDDEMO," must first load

SID.OBJ and then SCIPIO.MUS, tape users must position the

tape to the start of SID.OBJ before running the program. The

subroutine beginning at line 900 was included so the program

will prompt tape users to advance the tape to SCIPIO.MUS

once SID.OBJ is loaded. If you use a disk drive, just make sure

SIDDEMO, SCIPIO.MUS, and SID.OBJ are all on the same

disk.

Remember to change line 120 to DN=1 if you have a

Datassette.

Program 11-2. SCIPIO.MUS

To enter this program, you must use "The Machine Language Editor (MLX)," a program

found in Appendix C.

Starting Address: 49152

Ending Address: 50051

Filename: SCIPIO.MUS

49152 :054,001,004,001,008,001,069

49158 :006,112,001,136,038,008,051

356

Chapter 11

49164 :001,006,030,001,116,154,064

49170 :024,155,030,002,070,001,044

49176 :001,252,012,092,070,002,197

49182 :012,158,030,003,070,003,050

49188 :044,146,001,228,070,004,017

49194 :080,155,030,004,116,092,007

49 200 :088,15 7,116,158,088,159,046

49206 :080,158,116,157,088,092,233

49212 :030,005,044,155,001,047,086

49218 :001,022,080,158,030,006,107

49224 :070,005,116,159,088,081,079

49230 :080,146,080,081,080,159,192

49236 :030,007,076,158,012,157,012

49242 :001,047,030,008,116,092,128

49248 :088,155,116,154,088,157,086

49254 :080,092,116,155,088,154,019

49260 :030,009,044,154,001,094,184

49266 :080,084,030,010,070,000,132

49272 :080,147,080,146,084,081,226

49278 :084,146,080,147,030,011,112

49284 :076,158,012,157,030,012,065

49290 :080,092,084,157,084,092,215

49296 :080,155,080,154,030,013,144

49302 :044,158,080,147,030,014,111

49308 :116,159,088,158,116,159,184

49314 :088,081,080,159,080,158,040

49320 :030,015,044,159,080,081,065

49326 z 030,016,080,146,084,081,099

49332 :084,159,080,081,116,159,091

49338 :088,158,030,017,044,158,169

49344 :016,157,030,018,001,003,161

49350 :070,001,116,092,088,155,208

49356 :116,092,024,157,016,092,189

49362 :016,155,030,019,001,003,178

49368 :012,157,012,092,030,020,027

49374 :001,003,016,159,016,158,063

49380 ;016,157,016,092,030,021,048

49386 :001,003,044,155,001,174,100

49392 :016,158,030,022,070,000,024

49398 :116,159,088,081,016,146,084

49404 :016,081,016,159,030,023,065

49410 :012,158,012,157,030,024,139

49416 :116,092,088,155,116,154,217

49422 :088,157,080,092,116,155,190

49428 :088,154,030,025,044,154,003

49434 :001,142,001,002,001,003,176

49440 :001,018,001,174,116,092,178

49446 :088,155,006,128,116,154,173

49452 :088,157,080,092,006,160,115

49458 :116,155,088,154,044,154,249

357

Chapter 11

49464 :016,000,001,079,006,112,014

49470 :001,136,038,008,001,038,028

49476 :030,001,016,000,030,002,147

49482 :001,252,012,154,012,155,148

49488 .-030,003,044,092,001,228,222

49494 :080,089,030,004,080,154,011

49500 :080,089,080,154,116,155,254

49506 :088,154,030,005,044,089,252

49512 :080,089,030,006,116,154,067

49518 :088,155,116,092,088,157,038

49524 :080,158,080,089,030,007,048

49530 :016,154,012,154,016,089,051

49536 :001,047,030,008,016,166,140

49542 :016,167,016,154,016,165,156

49548 :030,009,044,100,080,158,049

49554 :030,010,076,158,012,158,078

49560 :030,011,016,154,012,154,017

49566 :016,089,030,012,016,154,219

49572 :016,000,016,000,016,000,212

49578 :030,013,080,089,080,154,104

49584 :016,155,080,081,030,014,040

49590 :080,092,080,155,080,092,249

49596 :080,092,030,015,080,093,066

49602 :080,090,016,155,080,155,002

49608 :030,016,012,15 8,016,158,073

49614 :052,093,024,000,030,017,166

49620 :080,089,080,154,016,155,018

49626 :016,089,030,018,012,089,216

4963 2 :012,089,030,019,012,154,028

49638 :016,154,016,089,030,020,043

49644 :012,154,016,089,016,154,165

49650 :030,021,044,089,016,089,019

49656 :030,022,116,154,088,155,045

49662 :116,092,024,157,016,158,049

49668 :016,089,030,023,016,154,076

49674 :012,154,016,089,030,024,079

49680 :052,154,024,000,052,167,209

49686 :024,000,080,154,052,089,165
49692 :024,000,030,02 5,044,100,251

49698 :001,034,030,022,052,154,071

49704 :024,000,052,167,024,000,051

49710 :080,154,052,089,024,000,189

49716 :030,023,016,100,016,000,237
49722 :016,000,016,000,001,079,170

49728 :006,112,001,136,038,008,109
49734 :001,054,030,001,016,000,172

49740 :030,002,012,162,012,097,135

49746 :030,003,044,175,016,174,012

49752 :030,004,016,162,016,163,223

49758 :016,100,016,165,030,005,170

358

Chapter 11

49764 :016,166,016,163,016,174,139

49770 :016,100,030,006,016,175,193

49776 5 016,167,016,166,016,165,146

49782 :030,007,012,100,016,163,190

49788 :016,166,001,047,030,008,136

49794 :016,162,016,165,016,166,159

49800 :016,174,030,009,016,162,031

49806 :016,174,016,170,080,154,240

49812 :030,010,080,089,080,167,092

49818 :080,166,080,165,030,011,174

49824 :076,100,016,163,016,166,185

49830 :030,012,080,162,080,162,180

49836 :080,097 ,080,175 ,030,013 ,135

49842 :080,174,080,175,016,097,032

49848 :080,174,030,014,080,162,212

49854 :080,097,080,162,080,175,096

49860 :030,015,080,163,080,100,152

49866 :016,101,080,166,030,016,099

49872 :080,100,080,162,080,163,105

49878 :080,171,030,017,080,174,254

49884 :080,175,016,097,016,174,010

49890 :030,018,116,162,088,097,225

49896 :116,162,024,163,016,162,107

49902 :016,097,030,019,012,175,075

49908 :012,174,030,020,016,165,149

49914 :016,100,016,163,016,162,211

49920 :030,021,016,166,016,163,156

49926 :016,174,016,J00,030,022,108

49932 :016,175,016,167,016,166,056

49938 :016,165,030,023,012,100,108

49944 :016,163,016,166,030,024,183

49950 :016,162,016,173,016,174,075

49956 :016,174,030,025,016,162,203

49962 :016,174,016,170,001,050,213

49968 .-016,162,016,173,016,174,093

49974 :016,174,070,001,016,162,237

49980 :070,002,016,174,070,003,139

49986 :016,170,016,000,001,079,092

49992 :077,065,082,067,072,032,211

49998 :070,082,079,077,032,034,196

50004 :083,067,073,080,073,079,027

50010 :034,013,071,046,070,046,114

50016 :032,072,065,078,068,069,224

50022 :076,013,067,079,085,082,248

50028 :084,069,083,089,032,072,025

50034 :065,082,082,089,032,066,018

50040 :082,065,084,084,013,013,205

50046 :000,162,016,164,030,002,244

359

Chapter 11

Program 11-3. SIDDEMO

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER DEMONSTRATIO

N" :rem 171

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 134

130 CY=214:DIM C$(15):FOR K=0 TO 15:READ P:C$(K)=C

HR$(P):NEXT :rem 83

140 GOSUB 57000:F$="SCIPIO":GOSUB 900:LA=PEEK(49)+
256*PEEK(50)+1000:GOSUB 57500 :rem 171

150 SYS HK:POKE SX,LO:POKE SY,HI:SYS PL :rem 170

200 PRINT CHR$(147):POKE 53280,0:POKE 53281,0
:rem 156

210 FOR K=832 TO 894:READ P:POKE K,P:NEXT :rem 54

220 FOR K=0 TO 7:POKE 2040+K,13:READ C:POKE 53287+

K,C :rem 50

230 POKE 53248+K*2,(34+K*40)AND255:POKE 53249+K*2,

70+RND(0)*20:NEXT :rem 93

240 POKE 53264,192:POKE 53271,0:POKE 53277,0

:rem 37

250 FOR K=l TO 3:POKE CY,3:PRINT:PRINT TAB(5) C$(K

) "PRESENTING..." :rem 44

260 FOR J=l TO 20:NEXT J,K:FOR K=l TO 750:NEXT

:rem 8

270 FOR K=0 TO 3:POKE CY,3:PRINT:PRINT TAB(5) C$(3

-K) "PRESENTING..." :rem 141

280 FOR J=l TO 20:NEXT J,K:FOR K=l TO 300:NEXT:POK

E SS,7:FL=SS+1 :rem 126

300 FOR K=l TO 3:POKE CY,6:PRINT :rem 55

310 IF PEEK(FL)<>K GOTO 310 :rem 189

320 PRINT TAB(10) C$(K) "SIDPLAYER":NEXT:WAIT FL,1

,1:PRINT:PRINT :rem 97

330 WAIT FL,1:PRINT TAB(10) "A COMPLETE":PRINT TAB

(10) "MUSIC SYSTEM" :rem 226

340 PRINT TAB(10) "FOR THE COMMODORE 64" :rem 200

400 WAIT FL,1,1:PRINT CHR$(147):POKE 53269,255:POK

E CY,8:PRINT :rem 52

410 PRINT "FEATURES:":PRINT:PRINT "JOYSTICK OR KEY

BOARD NOTE ENTRY":PRINT :rem 194

415 PRINT "SUPPORTS ANY TIME SIGNATURE":PRINT

:rem 139

420 PRINT "MEASURE EDITING":PRINT:PRINT "TRANSPOSI

NG BY HALF STEPS":PRINT :rem 179

430 PRINT "EASY INSERT/DELETE/REPLACE EDITING":PRI

NT :rem 71

440 PRINT "SIMPLE ENOUGH FOR A NOVICE TO USE":PRIN

T :rem 60

450 POKE 53249+INT(RND(0)*8)*2,70+RND(0)*20:IF PEE

K(FL)=0 GOTO 450 :rem 24

360

Chapter 11

500 POKE 53269,0:PRINT CHR$(147):PRINT:PRINT:PRINT

"PLUS..." :rem 69

510 FOR K=5 TO 13 STEP 2:READ S$:POKE CY,K:PRINT:P

RINT TAB(10) S$:rem 134

520 POKE CY,K:PRINT:PRINT TAB(10);:FOR J=l TO 10:P

RINT CHR$(20); :rem 190

530 FOR 1=1 TO 20:NEXT I,J,K:PRINT:PRINT:PRINT

:rem 63

540 WAIT FL,1,1:PRINT "AND BEST OF ALL,":PRINT "MU

SIC CREATED BY SIDPLAYER" :rem 140

550 PRINT "CAN BE MERGED WITH":PRINT "YOUR BASIC P

ROGRAMS":WAIT FL,1 :rem 57

600 PRINT CHR$(147):POKE CY,10:PRINT:PRINT " SIDPL

AYER";:WAIT FL,1,1 :rem 24

610 PRINT TAB(15) "SIDPLAYER";:WAIT FL,1:PRINT TAB

(30) "SIDPLAYER":WAIT FL,1,1 :rem 58

630 PRINT CHR$(147):FOR K=l TO 23:PRINT C$(RND(0)*

12+4) " SIDPLAYER" :rem 183

640 FOR J=l TO 30:NEXT J,K :rem 121

650 FOR K=22 TO 0 STEP -1:POKE CY,K:PRINT :rem 30

660 PRINT TAB(15) C$(RND(0)*12+4) "SIDPLAYER":FOR

{SPACE}J=1 TO 30:NEXT J,K :rem 202

670 POKE CY,0:PRINT:FOR K=1 TO 23:PRINT C$(RND(0)*

12+4) TAB(30) "SIDPLAYER" :rem 185

680 FOR J=l TO 30:NEXT J,K :rem 125

690 IF PEEK(FL)<>1 GOTO 690 :rem 185

700 PRINT CHR$(147):POKE CY,16:PRINT:PRINT TAB(25)

C$(3) "THAT'S":WAIT FL,1,1 :rem 92

710 PRINT TAB(27) "ALL,":WAIT FL,1:PRINT TAB(25) "

FOLKS I" :rem 151

720 IF PEEK(SS)AND7 GOTO 720 :rem 32

730 SYS DP .-PRINT CHR$(147) CHR$ (154); .-POKE 53280,1

4:POKE 53281,6tEND :rem 228

800 DATA 144,151,152,155,5,28,30,31,129,149,150,15

3,154,156,158,159 :rem 235

810 DATA 0,3,192,0,3,224,0,3,240,0,3,120,0,3,56,0,

3,28,0,3,12,0,3,0,0,3,0 :rem 155

820 DATA 0,3,0,7,227,0,31,251,0,63,255,0,127,255,0

,127,255,0,127,254,0 :rem 75

830 DATA 63,252,0,31,248,0,7,224,0,0,0,0,0,0,0

:rem 160

840 DATA 10,7,4,13,5,3,8,15 :rem 32

850 DATA "ENVELOPES AND WAVEFORMS","REPEATS AND PH

RASES" :rem 166

860 DATA "AUTOMATIC FILTER MODE","GLISSANDO AND VI

BRATO" :rem 140

870 DATA "MANY OTHER FEATURES" :rem 19

900 IF DN=8 THEN RETURN :rem 62

910 PRINT "POSITION TAPE TO THE BEGINNING OF":PRIN

T F$; " THEN PRESS RETURN" :rem 0

361

Chapter 11

920 WAIT 198,15:GET K$:RETURN :rem 167

57000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS65466:F$=M

SID.OBJ":GOSUB 59000 :rem 106

57010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 126

57020 SS=49152:HK=49435:PL=49458:DP=49629:RETURN

:rem 77

57100 GOSUB 57000:POKE SX,LA-256*INT(LA/256):POKE

{SPACE}SY,INT(LA/256):SYS 51042 :rem 218

57110 LA=LA+1398:RETURN :rem 111

57500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466 :F$=

F$+".MUS":GOSUB 59000 :rem 61

57510 HI=INT(LA/256):LO=LA-256*HI :rem 137

57520 POKE SA,0:POKE SX,LO:POKE SY,HI:SYS 65493:IF

PEEK(SP)AND1 GOTO 59100 :rem 49

57530 LA=PEEK(SX)+256*PEEK(SY):RETURN :rem 29

59000 FOR K=l TO LEN(F$):POKE 584+K#ASC(MID?(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

The halt command. With the FLG command, the BASIC

program waits until Sidplayer reaches a certain point in the

music. An alternative is to have the playing stop and wait un

til the program is ready for the music to continue. This is pos

sible with the HLT command.

HLT is used to stop the playing on a particular voice.

When processed, this command clears the corresponding sta

tus bit and sets the frequency to 0 to reduce the background

noise of the SID chip. To make the playing continue, the

BASIC program can simply set the status bit again.

Multiple songs. Once a song is through playing, it's a

simple matter to load and play another song. Just assign the

name of the new song to F$, recalculate the LOAD address

and assign it to LA, and call the subroutine at 57500. To play

the song, follow the standard HOOK, PLAY, and DROP

procedure.

Another possibility is to hold more than one song in

memory at the same time. The only limit to the number of

songs that can be stored in memory simultaneously is the

amount of free memory available. When the subroutine at

362

Chapter 11

57500 loads a song, it changes the value of LA to the address

of the first free byte after the song, which is the address where

the next song should be loaded. This makes it easy to load

one song after another.

Load the first song in the usual way.

F$="SONG1":LA=PEEK(49)+256*PEEK(50)+1000:GOSUB 57500

Remember the values of LO and HI for later use.

L1=LO:H1=HI

To load the second song, assign the new filename to F$,

but don't change the value of LA. Call the subroutine at

57500, and remember the new values of LO and HI.

F$="SONG2":GOSUB 57500:L2=LO:H2=HI

This procedure can be repeated as many times as nec

essary. To play one of the songs, just POKE the appropriate

low and high byte values into locations SX and SY before call

ing the PLAY routine.

400 SYS HK:REM INSTALL SIDPLAYER

410 POKE SX,L1:POKE SY,H1:SYS PL:POKE SS,7:REM START

SONG1

420 IF PEEK(SS)AND7 GOTO 420:REM WAIT UNTIL SONG1

ENDS

430 POKE SX,L2:POKE SY,H2:SYS PL:POKE SS,7:REM PLAY

SONG2

440 IF PEEK(SS)AND7 GOTO 440.REM WAIT UNTIL SONG2

ENDS

450 SYS DP:REM REMOVE SIDPLAYER

Compatibility. Sidplayer uses memory from location

49152 to location 51199, and zero page addresses 251 through

255. Sidplayer should be compatible with other utilities, such

as machine language routines for bitmapped graphics drawing

or sprite animation, as long as they don't use these memory

locations.

Since the bitmapped graphics routines published in this

book use some of the same memory as Sidplayer, there would

seem to be a problem. Fortunately, it's possible to relocate a

portion of Sidplayer to free memory so that there's no conflict.

To load and relocate the Sidplayer machine language, cal

culate the LOAD address, assign it to the variable LA, and call

the subroutine at 57100. Do this instead of calling the sub

routine at 57000.

363

Chapter 11

200 LA=PEEK(49)+256*PEEK(50)+1000:GOSUB 57100

The subroutine loads SID.OBJ into memory, then moves a

portion of it to the specified address in free memory. After the

relocation, only memory from 49152 to 49663 is used by

Sidplayer.

The subroutine at 57100 also sets LA to the address of the

first free byte after the Sidplayer code. Therefore, the LOAD

address should not be changed when the song is loaded.

210 F$="SONG":GOSUB 57500

The song is now ready to be played.

If you're using bitmapped graphics shapes, the procedure

is just a little more complicated. The normal procedure to load

a shape file is to assign the name of the shape file to F$, cal

culate the LOAD address and assign it to LA, and call the rou

tine at 56500. When using shapes with Sidplayer, the same

procedure should be used, except that the value of LA should

not be changed.

220 F$="SHAPES":GOSUB 56500

Utility Programs

Here are four utility programs to help with song debugging

and music file management. Although they may look similar

to those utilities offered in the bitmapped graphics and sprite

sections of this book, they are for use only with Sidplayer mu

sic files.

Each program, as listed, is set to work with the disk drive.

To make a program work with tape, find the statement DN=8

near the beginning of the program and change it to DN=1.

Lister. The bottom level of the editing screen can display

only a few notes at a time. Sometimes it would be helpful to

see more notes at one time. This would make it easier to

search for a particular note or command, such as a phrase

definition, and would also make it easier to find mistakes,

such as a measure with the wrong number of beats.

"Lister," Program 11-4, is used to list the notes and com

mands of the three voices in a music file. Although the notes

are not displayed in the grand staff format, the program does

let you see one or two full measures at a time when the listing

is shown on the screen. The listing can also be sent to a

printer for permanent reference.

364

Chapter 11

Tape users should remember to change DN=8 to DN=1 in

line 820 when entering the program.

Program 11*4» Lister

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER MUSIC FILE L

ISTER" :rem 56

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT:GOTO 800

srem 76

300 K=LA+6+FNDP(LA)+FNDP(LA+2)+FNDP(LA+4):S$=" "

:rem 138

310 J=PEEK(K):K=K+1:IF J AND J<>13 THEN S$=S$+CHR$

(J):GOTO 310 :rem 123

320 PRINT#1,S$:IF J THEN S$= " ":GOTO 310 :rem 90

330 B=LA+6:IF SV>1 THEN B=B+FNDP(LA)sIF SV=3 THEN

{SPACE}B=B+FNDP(LA+2) :rem 101

332 FOR V=SV-1 TO 2:PRINT#1," VOICE";V+1:MD=0

:rem 20

335 T(l)=12sN=144:FOR J=2 TO 7:T(J)=N:N=N/2:NEXT

srem 196

340 FOR K=B TO B+FNDP(LA+2*V)-2 STEP 2:N=FRE(0)

:rem 43

350 N=PEEK(K):N2=PEEK(K+1):J=12:ON N AND 3 GOTO 50

0,530,690 :rem 164

400 T=N2 AND 7:S$="{5 SPACES}"+MID$("RCDEFGAB",T+1

,1)+" " :rem 117

410 IF T=0 THEN S$=S$+"{4 SPACES}":GOTO 430
:rem 184

420 S$=S$+MID$("S F",N2/64,l)+STR$(NOT N2/8 AND 7)
+" " :rem 164

430 T=N/4 AND 7:IF T=0 THEN PRINT*1,S$;"ABS"sGOTO

{SPACE}480 :rem 132

440 S$=S$+MID$("UWHQEST",T,1):IF N AND 32 THEN S$=

S$+" D":GOTO 460 :rem 248

450 S$=S$+"{2 SPACES}" :rem 51

460 IF N AND 64 THEN S$=S$+" T" srem 209

470 PRINT#1,S$:MD=MD+T(T):IF N AND 32 THEN MD=MD+T

(T+l) srem 57

480 NEXT K:B=B+FNDP(LA+2*V):PRINT#1,"{5 SPACES}MEA

SURE DURATIONS";MDsPRINT#1sNEXT V srem 34

490 CLOSE lsEND srem 85

500 N=N2:IF (N AND 15)=7 THEN T=INT(N/32)*3+lsON (

(N AND 16)=0)+2 GOTO 570,575 srem 185

510 J=1:IF (N AND 7)=3 THEN T=INT(N/16)sPRINT#l,"

{5 SPACES}";CN$(28+T);sGOTO 580 srem 16

530 IF (N AND AM(J))<>CM(J) THEN J=J+lsGOTO 530

srem 206

540 PRINT#1,"{5 SPACES}";CN$(J);sIF J<7 THEN PRINT

#1,(N i\ND NOT AM(J))/16; srem 207

365

Chapter 11

550 IF J<10 THEN PRINT#1:GOTO 480 :rem 47

560 ON J-9 GOTO 600,600,610,620,630,640,650,650,65

0,660,660 :rem 112

565 ON J-20 GOTO 650,650,660,680,650,675,670

:rem 161

570 PRINT#1,"{5 SPACES}WAVEFORM ";MID$("N

{2 SPACES}T{2 SPACES}S{2 SPACES}TS P{2 SPACES}

TP SP TSP",T,3):GOTO 480 :rem 58

575 PRINT#1,"{5 SPACES}FILTER MODE ";MID$("OFFL
{2 SPACES}B{2 SPACES}LB H{2 SPACES}LH BH LBH",

T, 3) .-GOTO 480 : rem 204

580 IF T THEN PRINT#1,MID$(" NO YES",l+(N/8 AND 1)

*3,4):GOTO 480 :rem 59

585 PRINT#1,MID$(" UP{2 SPACES}DOWN",((N AND 8)=0)

*4+5,5):GOTO 480 :rem 225

600 PRINT#l,N/8 AND 15:GOTO 480 :rem 160

610 PRINT#1,N2+16*(N AND 240):GOTO 480 :rem 247

620 T=N2+8*(N AND 224):IF N AND 16 THEN T=T-2048

:rem 160

625 PRINT#1,T:GOTO 480 :rem 13

630 IF N2=0 THEN N2=256 :rem 158

635 PRINT#1,INT(14400/N2):FOR J=2 TO 7:T(J)=N2:N2=
N2/2:NEXT:GOTO 480 :rem 137

640 T(1)=N2 :rem 45
650 PRINT#1,N2:GOTO 480 :rem 55

660 PRINT#1,N2+256*(N2>127):GOTO 480 :rem 211

670 PRINT#1,MD:PRINT#1,N2+4*(N AND 192):MD=0:GOTO

{SPACE}480 :rem 224
675 PRINT#1,8*N2:GOTO 480 :rem 160

680 IF N2 AND 1 THEN PRLNT#1,-(11-INT(N2/16)+12*(N

2/2 AND 7)) .-GOTO 480 : rem 79

685 PRINT#l,INT(N2/l6)+12*(7-(N2/2 AND 7)):GOTO 48

0 :rem 186
690 PRINT#1,"{5 SPACES}PORTAMENTO";N2+64*(N AND 25

2):GOTO 480 .rem 141

800 DV=3:PRINT "{2 SPACES}OUTPUT DEVICE ("DVM)";:I
NPUT DV:IF DV<1 GOTO 800 :rem 189

805 OPEN 1,DV :rem 198

810 INPUT "{7 SPACES}MUSIC FILENAME";S$:IF S$="" O
R LEN(S$)>12 GOTO 810 :rem 93

815 SV=1:PRINT " STARTING VOICE ("SV")";:INPUT SV

:rem 142

816 IF SV<1 OR SV>3 OR SVOINT(SV) GOTO 815

:rem 127

820 K=0 s J=0:T=0:B=0:MD=0:SA=780:SX=781:SY=782:SP=7
83:DN=8 .rem 140

825 DEF FN DP(K)=PEEK(K)+256*PEEK(K+1) srem 63
830 DIM CN$(33),AM(27),CM(27):FOR K=l TO 33:READ C

N$(K):NEXT .rem 206

366

Chapter 11

840 FOR K=l TO 27:READ AM(K),CM(K):NEXT:LA=PEEK(49

)+256*PEEK(50)+1000 :rem 57

850 POKE SA,2:POKE SX,DN:POKE SY,0:SYS 65466

:rem 69

860 S$=S$+M.MUS":FOR K=l TO LEN(S$):POKE 584+K,ASC

(MID$(S$,K)):NEXT :rem 9

865 POKE SA,LEN(S$):POKE SX,73:POKE SY,2:SYS 65469

:rem 157

870 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY,L

A/256:SYS 65493 :rem 242

875 PRINT:IF (PEEK(SP)AND1)=0 GOTO 300 :rem 161

880 PRINT " ERROR:11; :T=PEEK(SA) :IF T=4 THEN PRINT

{SPACE}"FILE NOT FOUND":GOTO 490 :rem 112

882 IF T=5 THEN PRINT "DEVICE NOT PRESENT":GOTO 49

0 :rem 201

885 PRINT ST:GOTO 490 :rem 233

900 DATA DECAY RATE,RELEASE RATE,CALL PHRASE/DEFIN

E PHRASE,RESONANCE :rem 13

902 DATA MASTER VOLUME,REPEAT TAIL,PHRASE END,HALT

,ATTACK RATE,SUSTAIN LEVEL :rem 102

910 DATA PULSE WIDTH,DETUNE ,TEMPO,UTILITY DURATIO

N,RELEASE POINT :rem 220

912 DATA REPEAT HEAD,FLAG,PULSE WIDTH SWEEP ,"FILT

ER CUTOFF SWEEP " :rem 9

914 DATA VIBRATO DEPTH,VIBRATO RATE,AUTOFILTER ,TR

ANSPOSE ,AUXILIARY :rem 173

916 DATA FILTER CUTOFF,"MEASURE DURATION:":rem 105

920 DATA BUMP VOLUME,FILTER,RING MODULATION,SYNC M

ODE,EXTERNAL FILTER,3OFF :rem 40

930 DATA 15,0,15,8,15,2,15,6,15,10,15,14 :rem 148

932 DATA 255,15,255,47,255,79 :rem 169

934 DATA 135,4,135,132 :rem 58

940 DATA 15,2,15,10,255,6,255,22,255,38,255,54,255

,70,255,86,255,102 :rem 28

942 DATA 255,118,255,134,255,150,255,166,255,182,3

1,14,63,30 :rem 150

Once run, the program first asks for an output device

number. Enter 3 for the screen, or 4 for the printer. For now,

just press the RETURN key to choose 3, the default value dis

played in parentheses.

The next prompt asks for the name of the file to be listed.

As always, do not include the .MUS extension as part of the

filename. A good song to examine for purposes of explanation

is COMMODORE.MUS, Program 7-4.

Lister then requests a starting voice number. Usually a

listing begins with voice 1, but sometimes you may want to

367

Chapter 11

skip voice 1 or voice 2. Enter the number of the first voice you

want to list, or just press the RETURN key to start at voice 1.

The program loads the requested file and begins the listing.

Each note is listed by its name, accidental, octave number,

and duration.

C S 4 Q (C sharp, octave 4, quarter note)

The first letter specifies the note name, and can be a letter

A through G or the letter R for rest. If the note is sharp or flat,

S or F is displayed after the note name. The octave number,

0-7, comes next, followed by a letter for the duration. The

duration can be W, H, Q, E, S, T, or U. Respectively, these let

ters stand for whole, half, quarter, eighth, sixteenth, and

thirty-second notes. U represents the utility duration.

If the note is dotted, a D shows after the duration. If the

note is tied, the note listing ends with a T.

C S 4 Q D T (C sharp, octave 4, quarter note, dotted, and tied)

Commands are listed with their full names. If a command

has a data value, such as a number or yes/no indication, the

value is placed after the command name.

TEMPO 90

WAVEFORM T

Measure numbers are displayed at the left edge of the list

ing, separate from the notes and commands. This makes it

easy to find a particular measure. At the end of each measure,

the total jiffy count for that measure is printed. This number is

affected by the tempo and the time signature. For example,

COMMODORE.MUS is written in 4/4 time and is played in

M.M. 90. If you refer to Table 9-1, four beats at tempo 90 give

a total of 160 jiffies. That's why the measure duration for each

measure in COMMODORE.MUS is 160 jiffies.

If you're listing a song and one of the measures has a dif

ferent jiffy count from the others, it could be an indication that

the measure doesn't have the correct total number of beats.

Either a duration is wrong, a note is missing, or there's an ex

tra note.

The measure duration feature won't work properly when

repeats or phrases are used. Also, the total number of jiffies

for a measure may change from one voice to another if the

TEM command is not used on each voice.

368

Chapter 11

If the listing goes by too fast, you can make the screen

scroll slower by pressing the CTRL key. If that's still too fast,

or if you want to stop the listing, just hit the RUN/STOP key.

Enter CONT to make the listing continue.

To send the listing to the printer, enter 4 in response to

the OUTPUT DEVICE prompt. Make sure that the printer is

connected and turned on.

If you have an RS-232 printer instead of a parallel printer,

you may have to change the OPEN statement in line 805 of

the Lister.

Merge. The Editor has a limited amount of memory avail

able for editing a song. Some songs may be just too long for it

to handle. The solution is to edit the song in sections, and

then merge the sections together.

"Merge," Program 11-5, is used to combine two or more

music files into one larger file. This file can then be played by

the Player. Another use of Merge is to copy a music file from

one tape to another tape or from one disk to another disk. The

program can also be used to transfer a song from tape to disk.

Tape users must change line 120 so that DN=1.

Program 11-5. Merge

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER MUSIC FILE M

ERGE UTILITY" :rem 9

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783:TA=0:TB=0:DIM

LA(3),LB(3) :rem 98

130 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*INT(N/2
56) :rem 206

140 DEF FNDP(N)=PEEK(N)+256*PEEK(N+1) :rem 62

150 FOR K=49152 TO 49313:READ N:POKE K,N:NEXT:MB=4

9152:BG=49263 :rem 15

160 S=0:D=0:L=0:BA=FNDP(49)+100:MT=FNDP(51)-100

:rem 134

300 F$="":INPUT " LOAD FILENAME";F$:IF LEN(F$)>12

{SPACE}GOTO 300 :rem 98

310 GOSUB 600:POKE SA,0:POKE SX,FNL(BA):POKE SY,FN

H(BA) :rem 232

320 SYS 65493:IF PEEK(SP)AND1 GOTO 700 :rem 85

330 FOR V=l TO 3:LA(V)=FNDP(BA+2*V-2):TA=TA+LA(V):

NEXT:A=FNDP(SX) :rem 79

400 F$="n:INPUT " APPEND FILENAME";F$:IF LEN(F$)>1

2 GOTO 400 :rem 252

410 PRINT:IF F$="" GOTO 500 :rem 164

369

Chapter 11

420 F$=F$+".MUSM:OPEN 1,DN,0,F$:GET#1,L$,H$:rem 40

430 FOR V=l TO 3:GET#1,L$,H$:LB(V)=ASC(L$+CHR$(0))

+256*ASC(H$+CHR$(0)) :rem 222

435 TA=TA+LB(V)-2:NEXT :rem 59

440 IF TA>MT-BA THEN PRINT " ERROR: NOT ENOUGH MEM

ORY":CLOSE 1:END irem 145

450 A=BA+6:S=A+LA(1):L=LA(2)+LA(3)-2:D=MT-L:GOSUB

{SPACE}630:A=A+LA(1)-2:S=A:L=LB(1) :rem 70

460 GOSUB 660:A=A+L:L=LA(2)-2:S=MT-LA(3)-L:D=A:GOS

UB 630:A=A+L:S=A:L=LB(2) :rem 24

470 GOSUB 660:A=A+L:L=LA(3)-2:S=MT-L:D=A:GOSUB 630

:A=A+L:S=A:L=LB(3):GOSUB 660 :rem 51

480 A=A+L:IF ST GOTO 520 irem 18

490 K=FRE(0):GET#1,F$:IF F$<>IM1 THEN POKE A,ASC(F$

):A=A+1:GOTO 490 :rem 58

495 CLOSE 1:POKE A,0:A=A+1:FOR V=l TO 3:LA(V)=LA(V

)+LB(V)-2:NEXT:GOTO 400 :rem 125

500 FOR V=l TO 3:POKE BA+2*V-2,FNL(LA(V)):POKE BA+

2*V-1,FNH(LA(V))iNEXT :rem 252

510 F$="":INPUT " SAVE FILENAME";F$iIF F$="" OR LE

N(F$)>12 GOTO 510 :rem 3

520 GOSUB 600:POKE SA,251iPOKE 251,FNL(BA)iPOKE 25

2,FNH(BA) :rem 45

530 POKE SX,FNL(A):POKE SY,FNH(A)iSYS 65496:IF PEE

K(SP)AND1 GOTO 700 :rem 188

540 PRINT " SAVED" A-BA "BYTES":END irem 170

600 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".MUS" :rem 225

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

620 POKE SA,LEN(F$):POKE SX,73iPOKE SY,2:SYS 65469

:RETURN :rem 159

630 POKE 251,FNL(S)iPOKE 252,FNH(S):POKE 253,FNL(D

):POKE 254,FNH(D) :rem 3

640 POKE SX,FNL(L):POKE SY,FNH(L):SYS MB:RETURN

:rem 185

660 POKE 251,FNL(S)iPOKE 252,FNH(S)iPOKE 253,FNL(L
):POKE 254,FNH(L) :rem 22

670 SYS BG:IF PEEK(SP)AND1 THEN CLOSE 1:GOTO 700

:rem 235

680 RETURN .rem 126

700 PRINT " ERROR":END srem 3

800 DATA 142,109,192,140,110,192,165,253,56,229,25
1,170,165,254,229,252,236,109 irem 62

801 DATA 192,237,110,192,144,35,160,0,174,110,192,
240,14,177,251,145,253,200 :rem 143

802 DATA 208,249,230,252,230,254,202,208,242,174,1
09,192,240,8,177,251,145,253 :rem 8

803 DATA 200,202,208,248,96,173,110,192,168,101,25
2,133,252,152,24,101,254,133 irem 243

370

Chapter 11

804 DATA 254,172,109,192,240,9,136,177,251,145,253

,192,0,208,247,174,110,192 :rem 174

805 DATA 240,16,198,252,198,254,136,177,251,145,25

3,192,0,208,247,202,208,240 :rem 228

806 DATA 96,0,0,162,1,32,198,255,176,43,165,251,16

8,101,253,133,253,165,252,101 :rem 52

807 DATA 254,133,254,169,0,133,251,32,207,255,176,

21,145,251,200,208,2,230,252 :rem 246

808 DATA 196,253,208,240,165,252,197,254,208,234,3

2,204,255,24,96 :rem 156

The program begins by asking for a file to load. After you

enter the filename and the song is loaded, the program re

quests the name of the file to be appended to the first file.

When you enter this second filename, the program reads each

voice in the file and adds it to the end of each voice in the

first song.

The program then asks for the name of another file to be

appended. You can append as many files as you like. When

you don't want to append any more files, just press RETURN.

The program finally asks for a filename to use in saving the

composite file.

To copy a music file from one tape to another tape or

from one disk to another disk, use Merge to load the file you

want to move, do not append any other files, and then save

the file to the new tape or disk. This is more convenient than

using the Editor to copy files.

With a slight modification, the Merge program can be

used to transfer a music file from tape to disk. Change the

DN=8 in line 120 to DN=1, and insert the statement DN=8

at the beginning of line 520, right before the GOSUB 600.

Now when you load a music file, it will come from the

Datassette, but when you save the file again, it will go to the

disk drive.

Extract. "Extract," Program 11-6, loads a music file, asks

for starting and ending measure numbers, extracts the mea

sures in the specified range, and saves them as a new file. The

original file retains all its measures. Extract does not remove

measures from the original—it only pulls out specified mea

sures and places them in a new file. (Change DN to equal 1 in

line 120 if you are using tape.)

371

Chapter 11

Program 11-6. Extract

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER":PRINT " MUS

IC FILE EXTRACTION UTILITY" :rem 165

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783:DIM LN(3)

:rem 184

130 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*INT(N/2

56) :rem 206

140 DEF FNDP(N)=PEEK(N)+256*PEEK(N+1):BA=FNDP(49)+

500:PT=BA+6:DP=PT :rem 140

300 F$="":INPUT " LOAD FILENAME";F$:IF F$="" OR LE

N(F$)>12 GOTO 300 :rem 238

310 GOSUB 600:POKE SA,0:POKE SX,FNL(BA):POKE SY,FN

H(BA) :rem 232

320 SYS 65493:IF PEEK(SP)AND1 GOTO 700 :rem 85

330 FOR V=l TO 3:LN(V)=FNDP(BA+2*V-2):NEXT:rem 128

350 SM=-1:INPUT " STARTING MEASURE";SM:IF SM<-1 OR

SM>1023 GOTO 350 :rem 83

360 EM=0:INPUT "{3 SPACES}ENDING MEASURE";EM:IF EM

<0 OR EM>1023 GOTO 360 :rem 10

370 PRINT:SL=SM AND255:SH=(SM/4 AND192)+30:EL=EM A

ND255:EH=(EM/4 AND192)+30 :rem 255

400 FOR V=l TO 3:PRINT " PROCESSING VOICE";V:DB=DP

:MP=PT+LN(V):IF SM<0 GOTO 450 :rem 128

410 IF PEEK(PT)=SH THEN IF PEEK(PT+1)=SL GOTO 450

:rem 248

420 PT=PT+2:IF PT<MP GOTO 410 :rem 140

430 PRINT " ERROR:STARTING MEASURE NOT FOUND":END

:rem 40

450 P=PEEK(PT):Q=PEEK(PT+1):IF P=EH THEN IF Q=EL G

OTO 480 :rem 19

460 POKE DP,P:POKE DP+1,Q:DP=DP+2:PT=PT+2:IF PT<MP

GOTO 450 :rem 223

470 PRINT " NOTE:RAN TO END OF VOICE":GOTO 490

:rem 82

480 POKE DP,1:POKE DP+1,79:DP=DP+2 :rem 173

490 POKE BA+2 *V-2,FNL(DP-DB):POKE BA+2 *V-1,FNH(DP-

DB):PT=MP:NEXT:PRINT :rem 238

500 P=PEEK(PT):PT=PT+1:POKE DP,P:DP=DP+1:IF P GOTO

500 :rem 178

510 F$="":INPUT " SAVE FILENAME" ;F$:IF F$="" OR LE

N(F$)>12 GOTO 510 :rem 3

520 GOSUB 600:POKE SA#251:POKE 251,FNL(BA):POKE 25

2,FNH(BA) irem 45

530 POKE SX,FNL(DP):POKE SY,FNH(DP):SYS 65496:IF P

EEK(SP)AND1 GOTO 700 :rem 98

540 CLR:END :rem 139

372

Chapter 11

600 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".MUS" zrem 225

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

620 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 159

700 PRINT " ERROR":END :rem 3

When you run the program, the first prompt asks for the

name of the file to load. After you enter the filename, the pro

gram loads the song.

The program requests a starting measure number. Type

the number of the first measure that should be extracted. If

you want the extraction to start at the beginning of the file in

stead of at a later measure, just press RETURN.

When prompted for the ending measure number, type the

number of the measure at which the extraction should stop.

For example, if you want to extract measures 26 through 50

inclusive, the ending measure should be 51. Press RETURN by

itself if you want the extraction to go to the end of the voice.

The program displays the message PROCESSING VOICE

1 while it searches for the starting measure marker. If the

measure marker is not found in the voice, the program stops

with the message ERROR:STARTING MEASURE NOT

FOUND.

Having found the starting measure marker, the program

continues to search until it comes to the ending measure

marker or the end of the voice. If the searching reaches the

end of the voice, the program prints the warning NOTE:RAN

TO END OF VOICE.

The program repeats this procedure for voices 2 and 3.

Finally, the program asks for the filename to use in saving

the new music file.

One use of the Extract program is to break a large music

file into parts. Another application is to copy a sequence of

notes in a song to the end of the song. For example, a song

may repeat a chorus, but the chorus might be played a little

differently the second time. Repeats or phrases cannot be used

if there are minor changes when the notes are repeated. In

stead of entering all the notes in the chorus again, just extract

the notes which form the chorus, use Merge to merge them to

the end of the song, and make the necessary changes.

373

Chapter 11

Cross File Merge. The last utility, Program 11-7, is a

cross file merger. This program lets you construct a new music

file from the voices of different music files. Voice 1 of the new

file can come from one file, voice 2 can come from another

file, and voice 3 can come from yet another. (Tape users need

to change DN=8 in line 120 to DN=1.)

Program 11*7. Cross File Merge

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SIDPLAYER CROSS FILE M

ERGE UTILITY" :rem 18

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783:TA=0:TB=0:DIM

LA(3),LB(3):Z$=CHR$(0) :rem 217

130 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*INT(N/2

56) :rem 206

140 DEF FNDP(N)=PEEK(N)+256*PEEK(N+1):BA=FNDP(49)+

100:A=BA+6 :rem 118

300 FOR V=l TO 3 :rem 20

310 F$="":PRINT " FILE FOR VOICE";V;:INPUT F$:IF F

$="" OR LEN(F$)>12 GOTO 310 :rem 100

320 VN=0:INPUT "{2 SPACES}USE WHICH VOICE ";VN:IF

{SPACE}VN<>INT(VN) OR VN<1 OR VN>3 GOTO 320

:rem 102

330 F$=F$+".MUS":OPEN 1,DN,0,F$:GET#l,L$,H$:PRINT

:rem 239

340 FOR K=l TO 3:GET#1,L$,H$:LB(K)=ASC(L$+Z$)+256*

ASC(H$+Z$):NEXT :rem 57

350 FOR K=l TO 3:FOR J=l TO LB(K)/2:N=FRE(0):GET#l

,L$,H$:rem 218

360 IF K=VN THEN POKE A,ASC(L$+Z$):POKE A+1,ASC(H$

+Z$):A=A+2 :rem 37

370 NEXT:NEXT:LA(V)=LB(VN):CLOSE 1:NEXT:POKE A,0:A

=A+1 irem 53

500 FOR V=l TO 3:POKE BA+2*V-2,FNL(LA(V)):POKE BA+

2*V-1,FNH(LA(V)):NEXT :rem 252

510 F$="":INPUT " SAVE FILENAME";F$:IF F$= "" OR LE

N(F$)>12 GOTO 510 :rem 3

520 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=F$

+".MUS" :rem 27

530 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NE'XT :rem 242
540 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:rem 134

550 POKE SA#251:POKE 251fFNL(BA):POKE 252,FNH(BA)

:rem 224

374

Chapter 11

560 POKE SX,FNL(A):POKE SY,FNH(A):SYS 65496:IF PEE

K(SP)AND1 GOTO 700 :rem 191

570 CLR:END :rem 142

700 PRINT " ERROR":END :rem 3

The program begins by constructing voice 1. It asks for

the name of the file which contains the voice to be used for

voice 1. The program then asks which of the three voices in

that file is to be used. For instance, if the first voice of the file

being created is to come from voice 3 of the song

COMMODORE.MUS, here's how you would respond:

FILE FOR VOICE 1 ? COMMODORE

USE WHICH VOICE ? 3

The program loads the requested voice from the specified

file. This may take a while. The procedure is then repeated for

voices 2 and 3.

After all the voices have been loaded, the program re

quires one more filename to use when saving the new file.

The "Cross File Merge" program can be used to change

the order of the voices in a file. This is sometimes necessary if

you start a song and later decide to use the synchronization

mode or ring modulation. As an example, let's say that you

want to switch voices 2 and 3 in the song "MINUET." Here's

how you would reply to the program prompts:

FILE FOR VOICE 1 ? MINUET

USE WHICH VOICE ? 1

FILE FOR VOICE 2 ? MINUET

USE WHICH VOICE ? 3

FILE FOR VOICE 3 ? MINUET

USE WHICH VOICE ? 2

If you're using disk, remember to choose a filename other

than MINUET when saving the new file to avoid the FILE EX

ISTS error.

Sidplayer Editor Command Index

SYS Calls

DP (DROP routine) 354

HK (HOOK routine) 353

PL (PLAY routine) 353-54

375

Chapter 11

Sidplayer Editor commands

ABS SET (absolute set pitch)

ATK (attack rate)

AUT (autofilter mode)

BMP (bump the master vol

ume)

CAL (call a phrase)

DCY (decay rate)

DEF (define a phrase)

DTN (detune a voice)

END (end definition of a

phrase)

F-C (filter cutoff)

FLG (flag location)

FLT (voice pass through filter)

F-M (filter mode)

F-S (filter sweep)

HED (repeat head)

HLT (halt a voice)

MS# (measures)

N (key signature level)

PNT (release point)

POR (controls glide rate)

P-S (pulse width sweeping)

P-W (pulse width)

RES (resonance level)

RLS (release rate)

RNG (ring modulation)

SNC (synchronization mode)

SUS (sustain level)

TAL (repeat tail)

TEM (tempo)

TPS (transpose a voice)

UTL (utility duration)

VDP (vibrato depth)

VOL (volume)

VRT (vibrato rate)

WAV (waveform)

342-43

283-84

293-94

306-307

301-302

284

300-301

320

300-301

292

355-56

293

290, 292

294

299-300

362

258-59

310

284-87

315

274-75

273-74

292-93

284

333-37

324-25

284

299-300

256-58

323

312-13

315

258

320

273

376

Part 4

Control

System

Chapter 12

Introduction to the Sprite

So far, you've seen utilities that let you access the Commodore

64's excellent bitmapping and sound capabilities. There's one

more area to cover. One of the most widely used features of

your computer is sprites, the movable object blocks of the 64.

Games especially make wide use of sprites.

This last part of this book deals with sprites and sprite

animation. In the pages which follow, you'll see how easy it

can be to define a sprite and make it move across the screen.

Just as you were provided with utilities to help you use

the bitmap screen and create sophisticated sound, so you'll

have a Sprite Editor at your disposal. The Editor lets you use

the joystick to create sprite definitions. You'll also find several

machine language routines you can use to make it easier to

move the sprites you create. You'll be able to get up to eight

sprites moving at the same time, each with its own shape,

color, size, direction, and speed. Best of all, you'll be able to

do all of this from a BASIC program, without using a single

POKE!

Before you see how to define and animate sprites, how

ever, it's important to understand the basic characteristics of

animation, and the advantages of sprite graphics over charac

ter and bitmapped graphics.

Principles of Animation

There are two ways in which an object can be animated. The

object can change its position or it can change its appearance.

Motion, which occurs when the position of an object is

changing, is probably the more common type of animation.

Two important characteristics of a moving object are its direc

tion and its speed.

But an object can be animated even when it's not moving,

simply by changing its appearance in some way. This can be

done by altering the shape of the object, but it can also be

done by changing its color or size.

To create effective animation on the Commodore 64, you

379

Chapter 12

need a graphics system in which an object's position or

appearance can be changed quickly and easily.

Character Graphics

There are many reasons why it's preferable not to use charac

ter graphics for animation. New character shapes can be cre

ated by redefining the character set, but each character is

always limited to an 8 X 8 grid. This size is often too small to

be useful.

Another problem is in motion. A character can be moved

to another place on the screen by just a couple of POKE state

ments, but the positioning is limited to 40 columns X 25

rows, so motion appears jerky.

Bigger shapes can be created by using several characters,

but motion is then more difficult because each character

comprising the large figure has to be moved.

Thus, for many applications, character graphics are simply

unsuitable for animation.

Bitmapped Graphics

With bitmapped graphics, there are no size or positioning

restrictions. A shape of any size can be drawn, starting at any

of 64,000 (320 X 200) positions. Sometimes these shapes can

be redrawn fast enough so that they appear to change shape.

(Refer back to the shape demonstrations in Part 2 for a few

examples.)

The only drawback to using bitmapped graphics is that

motion is impossible in BASIC. Moving an object means eras

ing each point in the shape and replotting it at an adjacent po

sition. Bitmapped graphics shapes usually contain too many

points to be erased and redrawn quickly. If a shape is moved

like this, it moves very slowly, with considerable flicker.

These problems are magnified when you want the shape

to move without disturbing other things already on the screen.

For instance, you may want to make a figure walk in front of

a building. As the points in the figure are plotted in new po

sitions, they may be placed in the same positions as points

used to display the building. Those points must be restored

after the figure has walked past. Motion is not as simple as

just plotting and erasing points. For each point, the original

contents must be remembered before the position is plotted so

that the contents can later be restored.

380

Chapter 12

Although bitmapped graphics has many applications (just

some of which you saw in Part 2), animation is not one of

them.

Sprite Graphics

This graphics system combines the best features of character

and bitmapped graphics. A sprite is a super character, because

it can be defined on a grid of 24 X 21 points, about the size

of eight characters. This size is large enough to create detailed

shapes. Positioning is allowed on any of the 320 X 200

points, so a sprite can be placed anywhere on the screen. It

also means sprite motion is smooth.

The best feature, however, is that the sprite definition is

stored in memory separate from screen memory. This means

you can use sprites at the same time as character graphics or

bitmapped graphics. Also, the screen memory is not changed

when the sprite is moved, so the background does not have to

be restored.

The fact that a sprite is completely independent of the

screen greatly simplifies its display and movement. Only three

POKE statements are needed to move a whole sprite. Just one

changes its shape, size, or color.

If this were all the Commodore 64 did, it would be an ex

cellent system. What makes it even better is that the 64 sup

ports up to eight sprites. Each sprite can have its own shape,

color, size, and position. Other features, such as multicolor

mode and priority, will be discussed later.

The Sprite Control System

Sprites are well suited for animation, but there are a couple of

problems. One is that it's difficult to create a sprite definition.

The other is that the three POKE statements required to po

sition a sprite are rather complicated and take time to execute.

BASIC programs run too slowly to make a sprite move very

quickly. And making eight sprites move at once is simply not

feasible in BASIC.

That's where the Sprite Control System comes in. The

Control System consists of a group of programs and machine

language routines which make sprite animation easier than

you ever thought possible.

Sprite Editor. The first part of the Control System is a

Sprite Editor. Using the joystick, you plot points on a 24 X 21

381

Chapter 12

grid to define a shape. A variety of editing features are avail

able to scroll the shape, flip it to create a mirror image, turn it

upside down, and so on. If necessary, over 100 shapes can be

defined. The definitions can be saved as a disk or tape file, or

can be converted into DATA statements and merged with a

BASIC program. You'll never have to do any calculations or

work with bits and bytes.

Machine language routines. The second part of the Con

trol System is a set of machine language routines. These

routines can be called from BASIC to make a sprite change its

shape, color, size, or position. The routines can also make a

sprite move in a given direction at a specified speed. There are

even advanced features to make a sprite move under joystick

control or change shape automatically whenever it changes

direction. All of this is done without a single POKE statement.

Before You See It Work

There are three impressive demonstration programs included

here, but before you can enter them, you have to prepare two

other files. Type in the following lines and save them with the

filename SCS.BAS. It's important that you use this filename.

We'll be referring to this filename throughout the next few

chapters.

Program 12-1. SCS.BAS

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

58000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

MSCS.OBJ":GOSUB 59000 :rem 116

58010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 127

58020 IN=49664:RE=49667:RL=49670:RS=49673:DF=49676

:BL=49679:CO=49682:WI=49685 :rem 172

58030 HE=49688:PO=49691:DI=49694:WR=49697:BO=49700

:MO=49703:LB=49706:RB=49709 :rem 148

58040 TB=49712:BB=49715:FR=49718:UN=49721:PR=49724

:MU=49727:EN=49730:JS=49733 srem 14^
58050 AU=49736:CH=49739:RETURN :rem 14

58100 GOSUB 58000:SYS 51123,LA:LA=LA+1191:RETURN

:rem 11

58400 POKE 49749,LA-256*INT(LA/256):POKE 49750,INT
(LA/256) :rem 182

58410 READ J:POKE 49751#J:FOR K=0 TO J:READ J:POKE

LA,J:LA=LA+1 :rem 16

58420 IF J THEN FOR LA=LA TO LA+J-1:READ I:POKE LA

#ItNEXT LA :rem 92

382

Chapter 12

58430 NEXT K:RETURN :rem 168

58500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+".DEF":GOSUB 59000 :rem 24

58510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 78

58520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 44

58530 LA=LA+1:POKE 49749,LA-256*INT(LA/256):POKE 4
9750,INT(LA/256) :rem 167

58540 POKE 49751,PEEK(LA-1):LA=PEEK(SX)+256*PEEK(S

Y):RETURN :rem 31

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: M;:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

These lines do not form a complete program. Rather,

they're subroutines which must be included in every program

that uses the Sprite Control System.

The next file contains the machine language routines used

to display sprites and make them move. As with all the com

plete machine language programs in this book, you have to

use "The Machine Language Editor: MLX," found in Appendix

C, to type it in. Be sure to read the accompanying article if

you haven't already. If you have a copy of MLX from another

COMPUTE! publication, you can use it to enter the listings in

this book. However, if you use tape and have another version

of MLX, you must change line 763 to match what's listed in

this book. (Tape users who have a copy of MLX which does

not have a line 763 must use this book's version of MLX.)

Once you've loaded and run MLX, you'll be asked to

make two responses. Here are the numbers you should enter:

Starting Address: 49664

Ending Address: 51199

Filename: SCS.OBJ

Begin typing in Program 12-2. Follow the instructions in

Appendix C if you enter the program in more than one sitting.

When you're finished, save this file using the filename

SCS.OBJ. If you're saving to tape, put it on a cassette all by it

self so that you can easily find it when you need it. A bit later,

you'll have to load it into memory to see the demonstration.

383

<g
P
r
o
g
r
a
m

1
2
-
2
.
S
C
S
.
O
B
J

T
o
e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
L
X
)
,
"
a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C
.

4
9
6
6
4

4
9
6
7
0

4
9
6
7
6

4
9
6
8
2

4
9
6
8
8

4
9
6
9
4

4
9
7
0
0

4
9
7
0
6

4
9
7
1
2

4
9
7
1
8

4
9
7
2
4

4
9
7
3
0

4
9
7
3
6

4
9
7
4
2

4
9
7
4
8

4
9
7
5
4

4
9
7
6
0

4
9
7
6
6

4
9
7
7
2

4
9
7
7
8

4
9
7
8
4

4
9
7
9
0

4
9
7
9
6

4
9
8
0
2

4
9
8
0
8

4
9
8
1
4

4
9
8
2
0

:
0
7
6
,
0
1
2
,

:
0
7
6
,
1
0
0
,

:
0
7
6
,
2
1
0
,

:
0
7
6
,
0
7
3
,

:
0
7
6
,
1
0
0
,

:
0
7
6
,
0
0
7
,

:
0
7
6
,
0
6
4
,

:
0
7
6
,
0
8
5
,

:
0
7
6
,
1
1
9
,

:
0
7
6
,
1
8
8
,

:
0
7
6
,
1
0
3
,

:
0
7
6
,
1
0
9
,

:
0
7
6
,
1
4
6
,

:
0
7
6
,
1
7
3
,

:
0
0
0
,
0
0
0
,

:
0
0
0
,
0
0
0
,

:
0
0
0
,
0
0
1
,

:
0
3
2
,
0
6
4
,

:
2
4
7
,
2
3
9
,

:
0
0
9
,
0
0
8
,

-
.
0
0
5
,
0
0
1
,

:
0
0
4
,
0
0
8
,

:
0
0
6
,
0
1
0
,

:
0
0
0
,
0
0
2
,

:
1
9
4
,
1
8
6
,

:
2
2
4
,
0
0
8
,

:
0
9
6
,
0
7
6
,

1
9
5
,
0
7
6

1
9
9
,
0
7
6

1
9
5
,
0
7
6

1
9
6
,
0
7
6

1
9
6
,
0
7
6

1
9
7
,
0
7
6

1
9
7
,
0
7
6

1
9
7
,
0
7
6

1
9
7
,
0
7
6

1
9
6
,
0
7
6

1
9
6
,
0
7
6

1
9
6
,
0
7
6

1
9
7
,
0
7
6

1
9
7
,
0
0
0

0
0
0
,
0
0
0

0
0
0
,
0
0
0

0
0
2
,
0
0
4

1
2
8
,
2
5
4

2
2
3
,
1
9
1

0
1
0
,
0
0
2

0
1
2
,
0
0
0

0
0
1
,
0
0
2

0
0
2
,
0
0
4

0
0
6
,
0
0
7

1
9
4
,
0
3
2

1
7
6
,
0
0
3

0
7
2
,
1
7
8

,
1
7
7
,

,
1
5
7
,

,
0
5
2
,

,
0
9
7
,

,
1
3
4
,

,
0
6
1
,

,
0
2
5
,

,
0
8
8
,

,
1
2
2
,

,
2
0
0
,

,
1
0
6
,

,
2
1
0
,

,
2
5
3
,

,
0
0
0
,

,
0
0
0
,

,
0
0
0
,

,
0
0
8
,

,
2
5
3
,

,
1
2
7
,

,
0
0
6
,

,
0
0
3
,

,
0
0
5
,

,
0
0
2
,

,
0
0
8
,

,
2
4
1
,

,
1
3
4
,

,
0
3
2
,

1
9
5
,
2
1
9

1
9
9
,
0
4
5

1
9
6
,
0
4
9

1
9
6
,
2
2
0

1
9
6
,
0
3
4

1
9
7
,
1
3
2

1
9
7
,
1
5
9

1
9
7
,
2
4
9

1
9
7
,
0
6
7

1
9
6
,
2
1
8

1
9
6
,
0
4
5

1
9
6
,
1
6
1

1
9
6
,
2
4
8

0
0
7
,
0
1
9

0
0
0
,
0
8
4

0
0
0
,
0
9
0

0
1
6
,
1
2
7

2
5
1
,
0
6
0

0
0
0
,
1
1
1

0
0
4
,
1
5
3

0
1
5
,
1
5
6

0
0
9
,
1
5
5

0
0
8
,
1
6
4

1
8
7
,
0
9
2

1
8
3
,
1
5
0

0
0
2
,
1
8
5

1
4
7
,
2
4
5

4
9
8
2
6

:
1
9
4
,
0
3
2
,
2
4
1
,
1
8
3
,
1
3
8
,
1
6
6
,
0
9
2

4
9
8
3
2

:
0
0
2
,
0
9
6
,
0
3
2
,
2
5
3
,
1
7
4
,
0
3
2
,
2
4
5

4
9
8
3
8

:
1
3
8
,
1
7
3
,
0
3
2
,
1
5
5
,
1
8
8
,
1
6
5
,
0
0
1

4
9
8
4
4

:
1
0
1
,
1
6
4
,
1
0
0
,
1
6
6
,
0
0
2
,
0
9
6
,
0
4
1

4
9
8
5
0

:
0
6
4
,
1
6
9
,
0
1
5
,
1
4
1
,
0
2
5
,
2
0
8
,
0
4
0

4
9
8
5
6

:
1
7
3
,
0
8
9
,
1
9
4
,
0
4
8
,
0
0
7
,
1
6
9
,
1
0
4

4
9
8
6
2

:
0
0
0
,
1
4
1
,
0
8
8
,
1
9
4
,
2
4
0
,
0
6
1
,
1
5
4

4
9
8
6
8

:
0
8
8
,
2
1
6
,
1
7
3
,
0
0
1
,
2
2
0
,
0
7
3
,
2
0
7

4
9
8
7
4

:
0
3
1
,
1
4
1
,
0
9
0
,
1
9
4
,
1
7
3
,
0
0
0
,
0
7
1

4
9
8
8
0

:
2
2
0
,
0
7
3
,
0
3
1
,
1
4
1
,
0
9
1
,
1
9
4
,
1
9
8

4
9
8
8
6

:
1
7
4
,
0
9
2
,
1
9
4
,
2
4
0
,
0
1
4
,
1
7
3
,
0
8
5

4
9
8
9
2

:
0
3
0
,
2
0
8
,
1
4
1
,
0
9
3
,
1
9
4
,
1
7
3
,
0
4
3

4
9
8
9
8

:
0
3
1
,
2
0
8
,
1
4
1
,
0
9
4
,
1
9
4
,
1
6
2
,
0
4
0

4
9
9
0
4

:
0
0
0
,
1
7
3
,
0
8
8
,
1
9
4
,
0
6
1
,
0
9
7
,
0
8
5

4
9
9
1
0

:
1
9
4
,
2
4
0
,
0
0
6
,
1
4
2
,
0
8
9
,
1
9
4
,
0
8
7

4
9
9
1
6

:
0
3
2
,
0
7
8
,
1
9
4
,
2
3
2
,
2
2
4
,
0
0
8
,
2
5
2

4
9
9
2
2

:
2
0
8
,
2
3
7
,
1
6
9
,
2
5
5
,
1
4
1
,
0
8
9
,
0
7
7

4
9
9
2
8

:
1
9
4
,
1
0
8
,
0
8
1
,
1
9
4
,
1
6
9
,
1
9
4
,
1
8
0

4
9
9
3
4

:
2
0
5
,
0
2
1
,
0
0
3
,
2
0
8
,
0
0
1
,
0
9
6
,
0
3
6

4
9
9
4
0

:
1
6
9
,
0
0
0
,
1
4
1
,
0
2
1
,
2
0
8
,
1
4
1
,
1
8
8

4
9
9
4
6

:
0
2
3
,
2
0
8
,
1
4
1
,
0
2
7
,
2
0
8
,
1
4
1
,
0
0
6

4
9
9
5
2

:
0
2
8
,
2
0
8
,
1
4
1
,
0
2
9
,
2
0
8
,
1
4
1
,
0
1
9

4
9
9
5
8

:
0
1
6
,
2
0
8
,
1
6
0
,
0
1
6
,
1
6
9
,
0
5
0
,
1
4
5

4
9
9
6
4

:
1
3
6
,
1
5
3
,
0
0
0
,
2
0
8
,
1
6
9
,
0
2
4
,
2
2
2

4
9
9
7
0

:
1
3
6
,
1
5
3
,
0
0
0
,
2
0
8
,
2
0
8
,
2
4
2
,
2
2
9

4
9
9
7
6

:
1
6
2
,
0
0
7
,
1
8
9
,
2
2
4
,
2
3
6
,
1
5
7
,
0
0
7

4
9
9
8
2

:
0
3
9
,
2
0
8
,
1
6
9
,
0
0
0
,
1
5
7
,
0
6
0
,
1
8
3

4
9
9
8
8

:
0
0
3
,
1
5
7
,
0
6
8
,
0
0
3
,
1
5
7
,
1
1
6
,
0
6
0

4
9
9
9
4

:
0
0
3
,
1
6
9
,
0
1
7
,
1
5
7
,
0
7
6
,
0
0
3
,
2
4
3

5
0
0
0
0

:
1
6
9
,
0
1
2
,
1
5
7
,
0
8
4
,
0
0
3
,
1
6
9
,
1
6
2

5
0
0
0
6

:
1
5
9
,
1
5
7
,
0
9
2
,
0
0
3
,
1
6
9
,
0
5
0
,
2
0
4

O

Chapter 12

CO^QvOCNCD^'SVOCJCO^'avOCJCXJ^SJVOCNCO

inininioin

385

Chapter 12

SJ
SJ
r-i

CO

in

<<*
SJ
rH

CO
VO
rH

SJ

CO

VO
rH

ON

SJ

VO
rH

CN

CO

SJ

vO
CN ON

SJ

rH

SJ
rH

S)

CO

GJ
SJ

rH

^*
SJ

CN

in

vo
CO

rH

vo

CO

rH

[^

rH

SJ

SJ

CN

CO

GJ
SJ

VO
r-i

(^

in

r-i

CO
CN

r-i

ON

SJ
SJ

SJ
SJ

CO

SJ

SJ

«tf
CN

m

r-i

<?
ON

r-i

CO

VO
r-i

CN

CO

SJ

ON

CO
r-i

vO
ON

Q

CO

GJ
SJ

VO
r-i

r-i

t^

in

r-i

VO
ON

GJ

CN

VO

rH

in

vo
rH

in

SJ
SJ

VO
r-i

GJ

CO

GJ
S)

vo

SJ

CO

SJ
SJ

SJ

VO

SJ

ON

CO
r-i

in

CN

VO

rH

s>

r-

rH

rH

S3

CN

CO

SJ
SJ

r-i

^
SJ

rH

m

CM

CO

CO

r-i

SJ
ON

SJ

in

CO
rH

CO

VO
r-i

CO

CO

s>

rH

S>

in

rH

GJ

SJ

CM

CO
VD

rH

in

rH

G>

rH

SJ

ON

rH

VO

SJ
SJ

GJ

CN

SJ
SJ

r-i

GJ

r-i

in

CN

in

vo
r-i

CO

ON

SJ

CO

S)
CN

CO

in

CN

-

SJ

r-i

*&
GJ

r-i

in

CN

in

vo
r-i

CO

SJ

CO

SJ
CN

CN CN
in

r-i

in

r-i

00

GJ

S)

CM

CN

in

r-i

CO

SJ

00

GJ
CN

CO

Sj
sj

CO

VO
rH

r-

SJ

cc
CM

GJ

r-i

SJ

rH

in

CN

in

vo
rH

in

CO
r-i

CN

in

CN

CO

CO

r-i

CO

SJ
CN

SJ

SJ
SJ

in

CO
rH

S3

CN

in

rH

CO

m

CM

CO

CO

•-*

CO
SJ
CN

rH

SJ
SJ

(^

ON

SJ

r^.

in

SJ

CO
S>
CN

VO
rH

SJ

CO

rH

CO
VO
rH

CN

in

CN

CN

SJ
r-i

VO
in

SJ

•H

sj

Sj

SJ

CN

<?
ON

rH

CO

CO

r-i

SJ
SJ
SJ

ON

VO

CO
vo
r-i

SJ
r-i

SJ

CO
CO

rH

ON

GJ

r-i

VO

SJ

CO

SJ
CN

VO
rH

SJ

CO

r-i

in

CN

SJ
SJ

in

00
r-i

VO
in

SJ

rH

SJ

SJ

SJ

CN

ON

rH

GJ

SJ

GJ

CN

CN

in

CN

r^

ON

rH

VO

r-i

CO

SJ
CN

CO

CO

r-i

SJ
r-i

SJ

rH

SJ
SJ

VO

r-i

SJ
GJ

ON

VO
rH

CO

in

CM

r-

rH

CC

CN

rH

GJ
Sj

in

CO
r-i

in

CN

r-i

GJ

GJ

VO

r-i

r-i

SJ
SJ

ON

VO
rH

00
GJ
SJ

SJ

CN

in

CM

m

vo
r-i

*?

SJ

in

CN

in

Rj
S3

SJ
r-i

SJ

CO

VO
r-i

ft)
r-i

GJ

CO
CO

rH

CO

G;

SJ

CO

vo

SJ

r^

in

rH

r-i

^t*
GJ

,_,

S>

CN

CO

SJ

CO

VO

SJ

ON

CO
rH

VO

SJ

ON

CO
rH

^

Sj

CN

vo

SJ

SJ

CN

CO

SJ
SJ

S)VOCNO)^SJVOCNCX)^SJVOCNCO^SJVOCNC0^SJVOCN00^tSJVOCNC0^Sj
r^I^COODC^OSJrHrHCNCOCO^^U^VOVOr--r^COONONSJS}rHCNCNCOCO^in
inLninininvovovovovovovovovovovcvovovovovovor^r^^r^r^r^r^r^r^

inininintninininininininininu^inuoinininininininininininininin

CO

vO
rH

«tf
ON

rH

G5

VO
r-i

CN

CO

vo
ON

(S

^
ON
rH

CO r-i

in cn

GJ

vo

r-i

CO

(S

r-i

(S
CN

CN

CN

&

G>

CN

r-i

CN

CO

ea

g:-
CN

GJ

CO

CO

rH

r-i

G)
GJ

ON

s>
GJ

ON

rH

GJ

rH

CN

CO

GJ

rH

rH

ts

GJ

CN

GJ
C*J
GJ

GJ
CN

GJ

in

GJ
GJ

G?
rH

GJ

GJ
rH

GJ

CO

GJ
GJ

rH

G)

GJ

vO

GJ

ON

CO
rH

CN

GJ

VO

VO
r-i

GJ
CN

GJ

CO

CO

r-i

in

r-(

GJ
CN

GJ

in

GJ
GJ

CN

CN

rH

^
GJ

CO

GJ
GJ

ON

r-i

GJ
vO
rH

CN

CO

GJ

VO
ON

G>

CO

GJ
GJ

GJ
VO

G)

CO

GJ
CN

CN

G>

CN

GJ

VO
in

GJ

GJ
GJ

r-i

G>

ON

GJ
GJ

rH

GJ
CN

<tf
ON

rH

GJ
vO
rH

CN

CO

GJ

rH

CO

CN

ON

r-i

CO

r-i

rH

in

CO
r-i

00
VO
r-i

CO
GJ
G)

VO

rH

CN

GJ

VO

G)

VO
ON

G)

CO

GJ
GJ

CO
VO

GJ

in

rH

GJ
GJ

r-i

GJ

^
ON

r-i

GJ
VO
rH

CN

CO

G)

CO

r-i

CN

CO

GJ

GJ
CN

GJ

CO

CO

rH

GJ
rH

GJ

GJ
rH

GJ

GJ
rH

GJ

GJ
CN

G)

in

G3
GJ

[**•

G>
GJ

rH

GJ

ON

rH

CO

VO
rH

SJ

GJ
GJ

rH

CN

rH

CN

CO

Si

CO

GJ
GJ

VO
r-

GJ

r^

in

•H

s>
CO

GJ

ON

r-i

CO

vo
r-\

CN

CO

GJ

GJ
rH

GJ

GJ

CN

CO

G>
G>

VO

SJ

vO
CN

r-J

SJ

CO

SJ
SJ

vo

SJ

CO
CN

r-i

ON

VO
r-i

*t
<f
SJ

vO

SJ

ON

VO
r-i

VO
ON

SJ

SJ

ON

rH

SJ
VO
r-i

CN

CO

SJ

G>
CN

SJ

CO

CO

rH

r-i

ro

VO

SJ

r-i

SJ

CO

G)

Si

SJ
VO

SJ

ON

cc
rH

co

SJ

SJ

F3

VO

S)

in

rH

S>
CN

Si

in

SJ
SJ

CN

GJ

SJ

no

SJ

(T.

VO

r-i

^f

SJ

SJ

ON

VO

rH

VO
C7N

SJ

CN

CO

SJ

■st1
ON

rH

r-i

CN

CO

Gl

GJ
CN

S)

CO

CO

rH

CN

SJ

CM

GJ

in

rH

CM

SJ

ON

r-i

Ps)
1^

r-i

VO

G>
r-^

*t

i—I

^r

SJ

cs>

SJ

in

SJ
rH

CN

in

r-i

ro
VO

rH

Fs)
CN

SJ

r-i

I—1

^f
C\l

SJ

CO

CO

r-i

CM

1^

G>

vo
r-i

VO
ON

SJ

CO

IS)

GJ

*t
m

SJ

CO

in

rH

l^J
rH

CM

SJ

CO

CO

rH

m

SJ

CTN

rH

SJ

SJ

^t
CTN

rH

r^

r-i

CN

CO

SJ

hn

rH

r^

r-i

CN

CO

SJ

CM

SJ

m

CO

1—1

CM

SJ

to

SJ

in

rH

<5t
CM

SJ

cooco^^^^^^^^rr^^^^^^^^tininLninininininininin
sjsjsjsjsjsjsisjgjsjsjsjgjsjsjsisjgjsjsjsjGjsjsjsjsjsjsjsjsjsj
ininininininininininininu^inininininininininLninininininininin

386

Chapter 12

CN

VO
rH

GJ

CO

rH

in

CN

GJ

GJ

00
GJ
CN

GJ
GJ
GJ

CN

CO

G>
GJ

<?
^*
rH

<*
ON

rH

in

GJ
rH

rH

VO
GJ

00
19

CN

rH

00
G)
CN

vo
rH

GJ

rH

^*
rH

<?
ON

rH

r-

ON

GJ

ON
CN

GJ

rH

rH

GJ

00

GJ

G)

CN

CO

GJ
GJ

VO
rH

rH

ON

00
rH

GJ GJ

on in

00
rH

VO
G>

CO*1
vo
rH

rH

in

CN

CO

CO

rH

**

GJ

t>

GJ
GJ

H

r>

GJ
GJ

CO
GJ
CN

CO

GJ
GJ

CO
VO
GJ

CN

in

CO
rH

rH
^

G>

CO
GJ
CN

^

ON

rH

^

CO

rH

in

CO
rH

GJ

00
VO
GJ

ON

00
rH

G)
rH

GJ

00
GJ
CN

^

ON
r-i

CN

CN
rH

GJ

r>

^*
GJ

00
GJ
CN

CO
in

CN

<t

rH

*f

GJ

CO

GJ
GJ

G)

GJ

CN

CO

GJ
GJ

00
VO
GJ

rH

vO
GJ

in

rH

GJ

ON

vo
rH

G)

ON

rH

VO
CN

rH

r>

iH

CN

f>.

GJ
G>

GJ

CN

00

GJ

00

CN

VO
r-i

GJ

VO
CO

rH

in

VO GJ
rH

GJ

GJ

GJ

GJ

CN

r-i

CO
GJ
CN

CN

GJ
GJ

rH

GJ
CN

iH

in

CN

in

vo
r-i

CO
CN

GJ

r-i

in

CN
rH

<?
CN

GJ

CN

in

r-i

vo
CO

r-i

VO
CO

rH

CN

GJ
GJ

G)

CO

CO

rH

CO
^*
CN

ON

VO
rH

CN

IS

CO

ts

GJ

<*
CN

rH

rH

CN

in

CN

CO

CO
r-i

<?
ON

r-i

CO

00
GJ

CO

rH

r-i

m

CN

CN

vo
ON

GJ

rH

in

CN

in

r-i

<*
GJ
r-i

00
VO

r-i

r-i

r-i

CO

GJ
IS

ON

GJ
GJ

rH

CN

CN

CN

G>
HO

CO CO

CO r*

rH rH

r-i

00
CO

rH

CO

00
r-i

r-i

CN

CN
CO

G>

r-i

CN

CN

CN
GJ

G>

GJ

CO

GJ
GJ

in

GJ
rH

<?
CN

GJ

CN

G)
GJ

VO
CO
rH

rH

3

r-i

r-i

rH

rH

CN

ON

rH

H

^*
GJ

*t
ON

iH

CO

CO
GJ

r-i

r-i

GJ

CO

GJ

CN

G>

CN

GJ

GJ
r-i

GJ

<t
ON

rH

<*
00
GJ

CN

CO

GJ

rH

GJ

r-i

CN

CN

GJ
GJ
GJ

r*.

GJ

CO

GJ
GJ

GJ

r-i

CN

CN

GJ
GJ
GJ

rH

3
r-i

r-i

CN

CN

GJ

i

r-

GJ

GJ

00
GJ
CN

CN

G>

r^

GJ

GJ
r-i

GJ

GJ
r-i

GJ

CO
CO

rH

r-i

r-i

r-i

CO
GJ
CN

^
CN

GJ

r^

GJ

SJ

^*
CN

r-i

GJ

t-i

*&
r-i

r$

GJ
G)

ON

VO
rH

VO
ON

GJ

CO
GJ
CN

<*
CN

GJ

r-i

GJ
G>
GJ

ON

CO
r-i

CN

GJ
GJ

CN

vo
r-i

CN

GJ
GJ

VO
CO

•H

GJ

rH

CN

CN

Gl

GJ
GJ

in

r-i

GJ

ON

r-i

r-i

cn in
r-i

vo

IS

<4*

CN

CO VO

GJ
G>

ON

GJ
GJ

H
CN

CN

rH

GJ

CN

GJ
CN

CN

GJ
CN

CN

CO

CO

rH

ON
rH

G>

H

CN

CO

GJ

in
in

CN

CN

ON

GJ
in

CO^GJVOCNCJO^GJvOCNCn^GJVOCNOOTj'GJVOCNCO^GJVOCNCO^GJVOCN
^invovor^t^cDC^ONGJGjrHCNCNcoco^ininvovor^cocooNONGJrHrHCN
0N0N0N0N0N0N0N0N0NG}GJGJGJGJGjG>GjGJGJGJGJG>C9GJGJGJrHrHiHiH
Sl5HaS»IS)SHSlBlB»HHHHHHHHHHHHHHHHHHHHH
in

in

m
r-i

CM

m

(N

ro

ro

r-i

IS)
GJ

rH

GJ

ro

TO
GJ

CM

IT,

CN

ON

OJ

CM

r^

rH

GJ

r-i

m

to
CM

r-i

TO
G>

m

vo
r-i

ro

ts

vO

r-i

ro

TO

GJ

TO
TO
r-i

r-i

OJ

CM

on

(-H

ON

CO
r-i

<T

t—i

GJ

vO
r-i

GJ

TO

G)

r-i

in

CM

CM

CM

CM

in

CM

r-i

TO
r-i

ON

CM

GJ

<tf

r-i

CO

TO

G>

IS ^
CM <fr

IS r-i

GJ CM

CN GJ

CM 00
CM ^f

GJG)

rf GJ
^* r-i

r-i GJ

CO r-i

G) in

G) cm

CO in

GJ VO
rH r-i

ro

O

G>

ro

r^

GJ

ro

TO

G)

cn

VO

GJ

ON

CO
r-i

VO
r-i

G)

00
r-i

VO

TO

GJ

00

TO
CM

ro

TO
GJ

m

VO

GJ

r»

in

r-i

CO
r-i

on

is
OJ

r-i

TO

S>

ro

in

rH

ro

GJ
IS

TO
TO
r-i

VO

vO

G>

TO

^
CM

CM

r-i

GJ

rH

G>

ro

TO
GJ

on

VO

GJ

GJ

GJ

ro

GJ

VO
r*

GJ

ON

CO
rH

TO

GJ
GJ

in

cc
r-i

CM

in

OJ

ro

ro

r-i

is
G>

r-i

IS

00

G>
OJ

VO
r-i

GJ

ro

r^

r-i

ro

in

CM

ro

ro

r-i

CO
GJ
OJ

ON

vO

^

OJ

IS
is

<s

CM

ON

r-i

ON

GJ

r-i

VO

G>

ro

SJ

CO
vO

5)

ON

CC
r-i

in

CM

ro

ro

r-i

r-i

GJ
G>

r-i

ro

in

CM

in

vo
r-i

GJ

GJ

^

GJ

in

vo
r-i

ro

in

CM

ro*

ro

r-i

CM

in

CM

ON
CM

CM

rH

ro

GJ

<t
r^

G>

^
in

CM

ro

ro

rH

GJ
G)
GJ

ro

ro

CM

^
in

OJ

ro

GJ
GJ

<tf
CO

GJ

r-i

CM

CM

VO

GJ
r-i

ro

in

CM

in

vo
r-i

VO
r-i

GJ

GJ
r-i

G>

r-i

in

CM

in

vo
r-i

r-i

VO
GJ

VO

r-i

cn

*f
<s

rH

ro

GJ
GJ

CM

ON

G)

ON

CO
rH

ro

ro

GJ

ro

in

CM

ro

ro

r-J

CM

in

CM

GJ

^

GJ
r^

GJ

GJ

CM

^f
in

CM

ro

ro

rH

GJ
GJ
GJ

in

GJ
rH

in

CM

in

vo
rH

CM

ON

GJ

rH

CM

CM

VO

G>
rH

ro

in

CM

in

vo
rH

GJ

in

vo
r-i

00
CM

<s

GJ

CM

ts
ro

GJ

r-i

CO

G)
GJ

CM
*Hi

<S

r-i

CM

r-i

GJ

00

GJ

IS
rH

GJ

r-i

in

CM

in

r-i

CM

r-i

G>

ro

GJ

ro

ts

GJ

CO
VO

G)

ON

CO
rH

CO
(S

ON

oc
r-i

CM

ro

GJ

CO

GJ
CM

ro

GJ
GJ

CO

VO

IS

GJ
GJ

ON

VO
r-i

ro

in

CM

ro

ro

r-i

GJ
r-i

C£

ro

GJ
GJ

ro

in

r-i

ro

in

CM

in

vo
r-i

in

CM

ro

ro

r-i

CM

gjgjgjgjgjgjgjgjgjgjgjgjgjgjgjgjqgjgjgjgjgjgjgjgjgjgjgjgjgjq
in

387

Chapter 12

ininminininininmininin

388

Chapter 12

Once you have this program on disk or tape, you can

easily make copies of it to place on other disks or tapes. This

will be necessary when you begin to write your own programs

which make use of "SCS.OBJ" (the Sprite Control System, ex

plained in more detail in Chapters 14 and 15).

Here's how you can create copies. First of all, load and

run MLX. When you see the beginning and ending address

prompts, enter 49664 and 51199, respectively. Press the SHIFT

and L keys at the same time (this is MLX's Load feature).

You'll be asked for a filename. Enter SCS.OBJ and press RE

TURN. Another prompt appears, asking you whether you're

using disk or tape. Make sure the disk or tape containing

SCS.OBJ is in the drive or Datassette, then press D or T. The

program loads into memory. You'll know it's completed when

you see the DONE message. Press the SHIFT and S (Save)

keys at the same time, then enter the filename SCS.OBJ.

Check that the disk or tape you want SCS.OBJ to be copied to

is in the drive or recorder before hitting D or T. When the

DONE message appears again, you know that the machine

language file has been successfully copied to the new disk or

tape.

You can use this same procedure to make copies of

"SID.OBJ," "BMG.OBJ," "EDITOR.OBJ," or any machine lan

guage program which requires MLX for its entry. Of course,

the beginning and ending addresses, as well as the filenames,

will change.

On with the Show

Each of these three examples is composed of several parts.

You need all of them in order to make the Sprite Control Sys

tem operate as it should. SCS.OBJ, the program you just typed

in, displays the sprites and makes them move. You also need

a BASIC program (which contains all the lines from Program

12-1, "SCS.BAS") and another machine language file that cre

ates the sprite shapes or definitions.

If you're using disk, just make sure all three components

are on the same disk. If you're using tape, however, you have

to save the programs in a specific order.

Save the BASIC program first, then the machine language

definition file. Since SCS.OBJ, Program 12-2, is on a tape by

itself already, all you'll have to do is follow the prompts on

the screen, changing tapes after loading the BASIC program

389

Chapter 12

and before loading the definition file.

You're now ready to enter the first example program. No

tice that much of this program is a repetition of what you en

tered for Program 12-1, SCS.BAS. When you type in Program

12-3, you can save time by first loading Program 12-1 into

memory, then adding the additional lines. Once SCS.BAS is in

memory, just type in all the lines you see up to line 58000.

Save this program using the filename DEMO#1. (If you're

using the Datassette, change the DN=8 in line 120 to

DN=1.)

Program 12-3. DEMO#1

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 POKE 53280,12:POKE 53281,0:PRINT "{CLR}{DOWN}
g53 SPRITE CONTROL SYSTEM DEMO #1" :rem 182

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783:REM DN=1 FOR

{SPACE}TAPE :rem 181

125 F$="SCS.OBJ":GOSUB 900 :rem 200

130 GOSUB 58000:REM LOAD CONTROL SYSTEM :rem 85

140 F$=nBUNNY":LA=16384:GOSUB 900:GOSUB 58500:REM

{SPACE}LOAD DEFINITIONS :rem 159

300 SYS IN:REM INSTALL :rem 94

310 SYS DF,255,0:REM DEFINE BLOCK 255 WITH DEFINIT

ION 0 :rem 102

320 FOR SN=0 TO 7:REM LOOP WITH SPRITE NUMBER

:rem 152

330 SYS PO,SN,150,90:REM SET POSITION (SAME FOR AL

L SPRITES) :rem 56

340 SYS DI,SN,INT(SN/2)*2+l:REM SET DIRECTION (DIF

FERENT FOR EACH SPRITE) :rem 116

350 SYS MO,SN,SN/2+l,(SN+l)/2+l:REM SET SPEED (DIF

FERENT FOR EACH SPRITE) :rem 243

360 SYS BO,SN,1:REM TURN ON BOUNCE :rem 19

370 SYS BL,SN,255:REM ASSIGN BLOCK 255 TO SPRITE (

AND ENABLE) :rem 235

380 NEXT SN :rem 123

390 GET K$:IF K$=IIH GOTO 390:REM WAIT FOR KEYPRESS

:rem 41

400 SYS RE:REM REMOVE :rem 22

410 END :rem 108

800 REM DEFINITION DATA (USED IN LATER DEMONSTRATI

ON) :rem 247

801 DATA 0,63,12,0,48,15,129,240,12,195,48,12,102,

48,7,102,224,3,231,192,0,195 :rem 229

802 DATA 0,1,255,128,3,24,192,7,255,224,12,60,48,1

5,0,240,7,255,224,0,255,0,28 :rem 230

390

Chapter 12

803 DATA 60,56,7,60,224,1,255,128,48,126,12,124,60

,62,127,60,254,255,255,255 :rem 163

900 IF DN=8 THEN RETURN : rem 62

910 PRINT "POSITION TAPE TO THE BEGINNING OF":PRIN

T F$;M AND PRESS RETURN" :rem 164

920 WAIT 198,15:GET K$:RETURN :rem 167

58000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

"SCS.OBJ":GOSUB 59000 :rem 116

58010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 127

58020 IN=49664:RE=49667:RL=49670:RS=49673:DF=49676

:BL=49679:CO=49682:WI=49685 :rem 172

58030 HE=49688:PO=49691:DI=49694:WR=49697:BO=49700

:MO=49703:LB=49706:RB=49709 :rem 148

58040 TB=49712:BB=49715:FR=49718:UN=49721:PR=49724

:MU=49727:EN=\49730:JS=49733 :rem 149

58050 AU=49736:CH=49739:RETURN :rem 14

58100 GOSUB 58000:SYS 51123,LA:LA=LA+1191:RETURN

:rem 11

58400 POKE 49749,LA-256*INT(LA/256):POKE 49750,INT

(LA/256) :rem 182

58410 READ J:POKE 49751,J:FOR K=0 TO J:READ J:POKE
LA,J:LA=LA+1 :rem 16

58420 IF J THEN FOR LA=LA TO LA+J-1:READ I:POKE LA

,I:NEXT LA :rem 92

58430 NEXT K:RETURN :rem 168

58500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+".DEF":GOSUB 59000 :rem 24

58510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 78

58520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 44

58530 LA=LA+1:POKE 49749,LA-256*INT(LA/256):POKE 4

9750,INT(LA/256) :rem 167

58540 POKE 49751,PEEK(LA-1):LA=PEEK(SX)+256*PEEK(S

Y):RETURN :rem 31

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA);PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

irem 36

59120 PRINT ST:END :rem 70

391

Chapter 12

Now type in and save the sprite definition file. It's in ma

chine language, so you'll need MLX to enter it. These are the

responses you need to give:

Starting Address: 49152

Ending Address: 49217

Filename: BUNNY.DEF

Make sure the filename is BUNNY.DEF, or the "DEMO#1"

program will not be able to load it properly. If you're using

disk, place this on the same disk as the previous two pro

grams. If you're using tape, make sure BUNNY.DEF follows

DEMO#1.

Program 12-4. BUNNY.DEF

To enter this program, you must use "The Machine language Editor (MLX)," a program

found in Appendix C.

49152 :000,063,012,000,048,015,138

49158 :129,240,012,195,048,012,130
49164 :102,048,007,102,224,003,242

49170 :231,192,000,195,000,001,125

49176 :255,128,003,024,192,007,121

49182 :255,224,012,060,048,015,132

49188 :000,240,007,255,224,000,250

49194 :255,000,028,060,056,007,192

49200 :060,224,001,255,128,048,252

49206 :126,012,124,060,062,127,053

49212 :060,254,255,255,255,013,128

Load and run DEMO#1. If you're using disk, the SCS.OBJ

and BUNNY.DEF files are automatically loaded. All eight

sprites then appear on the screen.

However, if you're using the Datassette, you'll have to do

some tape switching. Once DEMO#1 is run, you'll see the

prompt POSITION TAPE TO THE BEGINNING OF SCS.OBJ

AND PRESS RETURN. Take the tape containing DEMO#1 out

of the Datassette and insert the tape you made earlier which

has SCS.OBJ on it. (Make sure this second tape is rewound to

the beginning of the SCS.OBJ file.) Press RETURN, then the

PLAY button on the recorder. The machine language file will

load. Once it's finished, you'll see another prompt, this time

POSITION TAPE TO THE BEGINNING OF BUNNY AND

PRESS RETURN. Insert the first tape (don't rewind it—leave it

where it ended after loading DEMO#1). Press RETURN, and

then PLAY. The machine language sprite definition file now

loads. When that's completed, you'll see the eight sprites

392

Chapter 12

bouncing around the screen.

The sprites all have the same shape, but each sprite has a

different color, direction, and speed. Also notice that when

ever a sprite hits the screen edge, it rebounds.

While the program is running, press the RUN/STOP key.

The sprites continue to move! Type LIST, and watch the bun

nies go bouncing over the program listing. This illustrates that

the Sprite Control System can animate sprites while BASIC is

doing something else. A program can handle things like print

ing a score and generating sound effects while the Control

System is moving the sprites.

Enter the command CONT to make the program resume

execution, then press any key to end the program and turn off

the sprites.

Getting Fancy

The second example demonstrates some of the more advanced

features of the Sprite Control System. Enter the following pro

gram and save it with the filename DEMO#2. Again, if you're

using tape, change line 120 so that DN=1.

Program 12*5. DEMO#2

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 POKE 53280,0:POKE 53281,12:PRINT n{CLR}{DOWN}
{BLK} SPRITE CONTROL SYSTEM DEMO #2" :rem 175

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

120 DN=8:SA=780:SX=781:SY=782:SP=783:REM DN=1 FOR

{SPACE}TAPE :rem 181

125 F$=MSCS.OBJM:GOSUB 900 :rem 200

130 GOSUB 58000:REM LOAD CONTROL SYSTEM :rem 85

140 F$=MGOBBLERM:LA=16384:GOSUB 900:GOSUB 58500:RE

M LOAD DEFINITIONS :rem 16

300 SYS IN:REM INSTALL :rem 94

310 FOR K=0 TO 11:SYS DF,244+K,K:NEXT:REM DEFINE B

LOCKS 244 TO 255 :rem 135

320 SYS CO,0,7:REM SET COLOR TO YELLOW :rem 237

330 SYS JS,0,2:REM SELECT JOYSTICK 2 :rem 108

340 SYS MO,0,3,2:REM SET MOTION (SPEED) :rem 237

350 SYS WR,0,1:REM TURN ON WRAPAROUND :rem 0

360 SYS PO,0,80,80:REM POSITION SPRITE :rem 37

370 SYS BL,0,252:REM ASSIGN BLOCK 252 TO SPRITE 0

{SPACE}(AND ENABLE) :rem 164

380 SYS AU,0,9,244:REM AUTOSHAPE 8 DIRECTIONS PLUS

CENTERING, BASE BLOCK = 244 :rem 23

390 SYS CO,1,2,1,0:REM COLORS RED, BLACK, AND WHIT

E :rem 117

393

Chapter 12

400 SYS MU,1,1:REM TURN ON MULTICOLOR :rem 253

410 SYS PO,1,240,120:REM POSITION SPRITE :rem 123

420 SYS MO,1,1,1:REM SET MOTION (SPEED) :rem 234
430 SYS CH,1,0:REM HAVE SPRITE 1 CHASE SPRITE 0

:rem 143

440 SYS BL,1,254:K=20:REM ASSIGN BLOCK 254 TO SPRI

TE 1 (AND ENABLE) :rem 204

450 IF PEEK(53278) GOTO 510:REM COLLIDED :rem 212

460 K=K-1:IF K GOTO 450:REM LOOP 20 TIMES OR UNTIL

COLLISION :rem 198

470 SYS BL,1,255:K=20:REM ASSIGN BLOCK 255 TO SPRI

TE 1 :rem 6

480 IF PEEK(53278) GOTO 510:REM COLLIDED :rem 215

490 K=K-1:IF K GOTO 480:REM LOOP 20 TIMES OR UNTIL

COLLISION :rem 204

500 GOTO 440:REM CONTINUE ALTERNATING BETWEEN TWO

{SPACE}SHAPES :rem 234

510 SYS EN,1,0:REM DISABLE SPRITE 1 :rem 251
520 SYS JS,0,0:SYS DI,0,0:REM STOP MOVING SPRITE 0

:rem 164

530 SYS AU,0,0:SYS BL,0,253:REM TURN AUTOSHAPE OFF

, DISPLAY FROWN FACE :rem 151

540 FOR K=l TO 999:NEXT:REM DELAY LOOP :rem 199

550 SYS RE:REM REMOVE :rem 28

560 END :rem 114

900 IF DN=8 THEN RETURN :rem 62

910 PRINT "POSITION TAPE TO THE BEGINNING OFM:PRIN

T F$;" AND PRESS RETURN" :rem 164

920 WAIT 198,15:GET K$:RETURN :rem 167

58000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

11 SCS^OBJ11: GOSUB 59000 :rem 116

58010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 127

58020 IN=49664:RE=49667:RL=49670:RS=49673:DF=49676

:BL=49679:CO=49682:WI=49685 :rem 172

58030 HE=49688:PO=49691:DI=49694:WR=49697:BO=49700

:MO=49703:LB=49706:RB=49709 :rem 148

58040 TB=49712:BB=49715:FR=49718:UN=49721:PR=49724

:MU=49727:EN=49730:JS=49733 :rem 149

58050 AU=49736:CH=49739:RETURN :rem 14

58100 GOSUB 58000:SYS 51123,LA:LA=LA+1191:RETURN

:rem 11

58400 POKE 49749,LA-256*INT(LA/256):POKE 49750,INT

(LA/256) :rem 182
58410 READ J:POKE 49751,J:FOR K=0 TO J:READ J:POKE

LA,J:LA=LA+1 :rem 16

58420 IF J THEN FOR LA=LA TO LA+J-1:READ I:POKE LA

,I:NEXT LA :rem 92

58430 NEXT K:RETURN :rem 168

58500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+M.DEF":GOSUB 59000 :rem 24

394

Chapter 12

58510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 78

58520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 44

58530 LA=LA+1:POKE 49749,LA-256*INT(LA/256):POKE 4

9750,INT(LA/256) :rem 167

58540 POKE 49751,PEEK(LA-1):LA=PEEK(SX)+256*PEEK(S

Y):RETURN :rem 31

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

) :NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

You'll also need to type in and save the file containing

the definitions used by the "DEMO#2" program. That's this

next program, which is in machine language. The starting and

ending addresses you'll need for MLX are:

Starting Address: 49152

Ending Address: 49829

Filename: GOBBLER.DEF

Save it with the filename GOBBLER.DEF immediately after

the DEMO#2 program if you're using tape.

If you've got a Datassette, the procedure for loading the

three sections is the same as that for the DEMO#1 program.

Refer to the explanation if you've forgotten the process.

Before you run DEMO#2, plug a joystick into port 2. Be

ready to move the joystick as soon as you see the sprites.

The motion of the first sprite, the one with the smiling

face, is controlled by the joystick. If you move this sprite past

the edge of the screen, it wraps around to the other side. Also

notice that this sprite changes shape when you change direc

tions. There's a different shape for each of the eight directions,

plus a shape for when the sprite is stationary.

The second sprite alternates between two shapes and

chases the first sprite. The program ends when the second

sprite catches the first.

While all the action is taking place, the BASIC program is

doing only two things. It's alternating the second sprite be

tween the two shapes, and it's watching for when the two

sprites collide.

395

C
O

O
N

P
r
o
g
r
a
m

1
2
-
6
.
G
O
B
B
L
E
R
.
D
E
F

T
o

e
n
t
e
r

th
is

p
r
o
g
r
a
m
,
y
o
u
m
u
s
t

u
s
e
"
T
h
e
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e

E
d
i
t
o
r
(
M
I
X
)
,
"

a
p
r
o
g
r
a
m
f
o
u
n
d

in
A
p
p
e
n
d
i
x

C.

4
9
1
5
2

:
0
1
1
,
0
5
4
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
6
5

4
9
1
5
8

:
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
1
,
0
0
7

4
9
1
6
4

:
2
5
5
,
1
2
8
,
0
0
7
,
2
5
5
,
2
2
4
,
0
1
5
,
1
2
8

4
9
1
7
0

:
2
5
5
,
2
4
0
,
0
3
1
,
1
5
9
,
2
4
8
,
0
6
3
,
2
4
6

4
9
1
7
6

:
0
1
5
,
2
5
2
,
0
6
3
,
1
5
9
,
2
5
2
,
1
2
7
,
1
2
4

4
9
1
8
2

:
2
5
5
,
2
5
4
,
0
3
1
,
2
5
5
,
2
5
4
,
0
0
7
,
0
6
2

4
9
1
8
8

:
2
5
5
,
2
5
4
,
0
0
1
,
2
5
5
,
2
5
2
,
0
0
0
,
0
2
9

4
9
1
9
4

:
1
2
7
,
2
5
2
,
0
6
3
,
2
5
5
,
2
4
8
,
0
3
1
,
2
5
0

4
9
2
0
0

:
2
5
5
,
2
4
0
,
0
0
7
,
2
5
5
,
2
2
4
,
0
0
1
,
0
0
6

4
9
2
0
6

:
2
5
5
,
1
2
8
,
0
5
4
,
0
0
0
,
0
0
0
,
0
0
0
,
2
3
5

4
9
2
1
2

:
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
6
0

4
9
2
1
8

:
0
0
1
,
2
5
5
,
1
2
8
,
0
0
7
,
2
5
5
,
2
2
4
,
1
6
8

4
9
2
2
4

:
0
1
5
,
2
5
5
,
2
4
0
,
0
3
1
,
2
4
9
,
2
4
8
,
0
8
6

4
9
2
3
0

:
0
6
3
,
2
4
0
,
2
5
2
,
0
6
3
,
2
4
9
,
2
5
2
,
1
7
3

4
9
2
3
6

:
1
2
7
,
2
5
5
,
2
5
4
,
1
2
7
,
2
5
5
,
2
4
8
,
0
7
0

4
9
2
4
2

:
1
2
7
,
2
5
5
,
2
2
4
,
0
6
3
,
2
5
5
,
1
2
8
,
1
1
8

4
9
2
4
8

:
0
6
3

,
2
5
4
,
0
0
0
,
0
3
1
,
2
5
5
,
2
5
2
,
1
8
3

4
9
2
5
4

:
0
1
5
,
2
5
5
,
2
4
8
,
0
0
7
,
2
5
5
,
2
2
4
,
0
8
2

4
9
2
6
0

:
0
0
1
,
2
5
5
,
1
2
8
,
0
5
4
,
0
0
0
,
0
0
0
,
0
3
4

4
9
2
6
6

:
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
1
1
4

4
9
2
7
2

:
0
0
0
,
0
0
3
,
0
0
7
,
1
2
8
,
0
0
7
,
0
1
5
,
0
2
4

4
9
2
7
8

:
2
2
4
,
0
1
5
,
0
1
5
,
2
4
0
,
0
3
1
,
0
3
1
,
1
7
0

4
9
2
8
4

:
2
4
8
,
0
6
3
,
0
3
1
,
2
5
2
,
0
6
3
,
0
6
3
,
0
8
4

4
9
2
9
0

.
-
2
5
2
,
1
2
7
,
0
6
3
,
1
9
0
,
1
2
7
,
1
2
7
,
0
0
0

4
9
2
9
6

:
0
3
0
,
1
2
7
,
2
5
5
,
0
3
0
,
0
6
3
,
2
5
5
,
1
3
6

4
9
3
0
2

:
1
8
8
,
0
6
3
,
2
5
5
,
2
5
2
,
0
3
1
,
2
5
5
,
1
7
0

4
9
3
0
8

:
2
4
8
,
0
1
5
,
2
5
5
,
2
4
0
,
0
0
7
,
2
5
5
,
1
5
2

4
9
3
1
4

:
2
2
4
,
0
0
1
,
2
5
5
,
1
2
8
,
0
5
4
,
0
0
0
,
0
5
6

4
9
3
2
0

4
9
3
2
6

4
9
3
3
2

4
9
3
3
8

4
9
3
4
4

4
9
3
5
0

4
9
3
5
6

4
9
3
6
2

4
9
3
6
8

4
9
3
7
4

4
9
3
8
0

4
9
3
8
6

4
9
3
9
2

4
9
3
9
8

4
9
4
0
4

4
9
4
1
0

4
9
4
1
6

4
9
4
2
2

4
9
4
2
8

4
9
4
3
4

4
9
4
4
0

4
9
4
4
6

4
9
4
5
2

4
9
4
5
8

4
9
4
6
4

4
9
4
7
0

4
9
4
7
6

4
9
4
8
2

4
9
4
8
8

4
9
4
9
4

4
9
5
0
0

:
0
0
0

1
0
0
0

:
2
5
5

:
2
5
5

:
2
5
5

:
2
5
4

:
2
5
2

:
2
4
8

:
2
4
0

:
0
0
0

:
0
0
0

:
0
0
7

:
0
0
7

:
0
0
3

:
1
2
0

:
0
6
2

:
0
3
1

:
0
0
7

:
0
5
4

:
0
0
0

:
1
2
8

:
2
2
4

:
1
9
2

:
1
4
2

:
0
6
2

:
2
5
2

:
2
4
0

:
1
2
8

:
0
0
0

:
2
5
5

:
2
5
5

,
0
0
0
,

,
0
0
0
,

.
2
2
4
,

.
2
4
8
,

.
2
5
2
,

.
2
5
4
,

.
2
5
2
,

.
2
4
8
,

.
2
2
4
,

,
0
0
0
,

,
0
0
0
,

.
2
5
5
,

.
2
5
5
,

.
2
5
2
,

.
2
5
2
,

.
2
5
5
,

.
2
5
5
,

.
2
5
5
,

,
0
0
0
,

,
0
0
0
,

.
0
0
7
,

.
0
3
1
,

.
0
6
3
,

.
1
2
7
,

,
0
6
3
,

.
0
3
1
,

.
0
0
7
,

.
0
5
4
,

,
0
0
0
,

.
1
2
8
,

.
2
4
0
,

0
0
0
,
0
0
0
,
0
0
0

0
0
1
,
2
5
5
,
1
2
8

0
1
5
,
2
5
5
,
2
4
0

0
6
3
,
2
5
5
,
2
5
2

1
2
0
,
2
5
5
,
2
5
4

1
2
5
,
2
5
2
,
2
5
4

0
6
3
,
2
4
8
,
2
5
2

0
1
5
,
2
4
0
,
2
4
0

0
0
1
,
2
2
4
,
1
9
2

0
0
0
,
0
0
0
,
0
0
0

0
0
0
,
0
0
1
,
2
5
5

2
2
4
,
0
0
7
,
2
5
5

2
4
8
,
0
0
3
,
2
5
5

2
5
2
,
1
1
3
,
2
4
8

2
5
4
,
1
2
4
,
2
5
5

2
5
2
,
0
6
3
,
2
5
5

2
4
8
,
0
1
5
,
2
5
5

2
2
4
,
0
0
1
,
2
5
5

0
0
0
,
0
0
0
,
0
0
0

0
0
0
,
0
0
0
A
0
0
1

2
5
5
,
2
2
4
,
0
1
5

2
5
5
,
2
2
4
,
0
6
3

0
6
3
,
1
9
2
,
1
2
6

0
6
3
,
0
3
0
,
1
2
7

2
5
5
,
1
2
4
,
0
6
3

2
5
5
,
2
4
8
,
0
1
5

2
5
5
,
2
2
4
,
0
0
1

0
0
0
,
0
0
0
,
0
0
0

0
0
0
,
0
0
0
,
0
0
0

0
0
7
,
2
5
5
,
2
2
4

0
3
1
,
2
5
5
,
2
4
8

,
0
0
0
,
1
6
8

,
0
0
7
,
0
5
3

,
0
3
1
,
1
7
6

,
0
6
1
,
0
4
0

,
1
2
0
,
1
6
8

,
0
6
3
,
1
2
0

,
0
3
1
,
0
2
2

,
0
0
7
,
1
8
4

,
0
5
4
,
1
2
7

,
0
0
0
,
2
2
2

,
1
2
8
,
1
0
0

,
2
4
0
,
1
9
8

,
2
5
2
,
2
3
6

,
1
2
6
,
2
1
6

,
2
5
4
,
2
3
1

,
2
5
2
,
1
1
7

,
2
4
0
,
0
2
8

,
1
2
8
,
1
1
6

,
0
0
0
,
0
7
4

,
2
5
5
,
0
2
6

,
2
5
5
,
1
4
8

,
2
5
5
,
0
6
6

,
0
3
1
,
1
9
9

,
2
5
5
,
0
2
6

,
2
5
5
,
1
1
0

,
2
5
5
,
0
9
4

,
2
5
5
,
0
2
6

,
0
0
0
,
0
0
0

,
0
0
1
,
0
8
1

,
0
1
5
,
2
0
2

,
0
6
3
,
1
6
0

Chapter 12

VOCMOOCOOOOOGirHCM^tCMCMOOOOvOOO^VOr^GS^OOOO

0
0
7
,

2
4
0
,

0
6
0
,

0
1
5
,

2
4
8
,

:
0
0
0
,

0
6
3
,

1
2
8
,

2
5
5
,

0
0
1
,

2
2
4
, in in CM ••

1
6
0
,

1
7
0
,

0
1
0
,

1
2
8
,

1
7
0
,

:
0
0
2
,

1
0
6
,

1
0
5
,

1
6
9
,

1
6
8
,

1
7
0
,

:
0
4
2
,

1
0
6
,

1
0
7
,

1
7
1
,

1
0
6
,

1
0
7
,

1
7
1
,

1
0
6
,

1
0
6
,

1
0
5
,

:
1
6
9
,

1
0
7
,

:
1
7
1
,

1
7
0
,

1
7
0
,

1
7
0
,

1
7
0
,

1
7
0
,

:
1
7
0
,

1
7
0
,

1
0
5
,

1
7
0
,

1
7
0
,

1
7
0
,

:
1
7
0
,

1
7
0
,

1
7
0
,

1
7
0
,

1
7
0
,

1
5
0
,

:
1
7
0
,

1
6
8
,

,
1
7
0
,

0
4
2
,

1
6
8
,

1
7
0
,

:
0
4
2
,

1
6
0
,

,
0
0
0
,

0
1
0
,

1
6
0
,

0
0
0
,

:
0
1
0
,

1
6
0
,

,
1
2
8
,

0
4
2
,

1
6
0
,

0
0
0
,

:
0
1
0
,

1
7
0
,

,
0
0
2
,

0
6
2
,

1
6
8
,

0
0
2
,

:
0
0
0
,

1
7
0
,

,
0
4
2
,

1
6
0
,

1
7
0
,

0
1
0
,

:
1
2
8
,

1
0
5
,

,
1
6
9
,

1
0
6
,

1
0
5
,

1
6
9
,

:
1
6
8
,

2
3
3
,

,
1
6
9
,

2
3
4
,

2
3
3
,

1
6
9
,

:
1
0
6
,

1
7
0
,

,
1
7
0
,

2
3
4

2
3
3
,

1
6
9
,

:
2
3
4
,

1
7
0
,

,
1
7
0
,

1
7
0

1
7
0
,

1
7
0
,

:
1
7
0
,

1
5
0
,

r
l
7
0
.

1
7
0

1
0
5
,

1
7
0
,

:
1
7
0
,

1
7
0
,

r
0
4
2
.

1
7
0

1
7
0
,

1
7
0
,

:
1
7
0
,

0
0
0
,

r
0
1
0
,

1
6
8

1
7
0
,

0
4
2
,

:
1
6
8
,

0
0
0
,

r
0
1
0
,
1
2
8
,

r
0
4
2
,

0
0
0

,
0
1
0
,

:
1
6
0
,

0
1
0
,

:
1
6
0
,

vovor^rr^rrrtrrttrrrtrcooocococo
OnONOnOnONONOnONONONONONONONONONONONONONOnOnon

CM

CM

in

CM

in

rH

TO

CO

vo

CM
in

CM

ON

in

H

CM

rH

in

CM

in

in

CM

CM

in

CM

CTN

in

rH

TO
vo

G>

CM

in

CM

rH

CO

G*

CO

VO

G>

in

CM

in

in

CM

TO
TO
G>

on

CM

r-

CN

rH

TO
TO
G>

CM

in

CM

CO

rH

TO

<tf
CM

CM

in

in

CM

rH

G<

TO

CM

in

in

CM

TO

TO
TO
G>

G>

TO
TO
G>

Gr
G>

TO

TO G>

in

G)

on
CM

rH

in

in

CM

G)

TO
G>

Gr
TO
G)

Gr
TO
G>

CM

CM

in

in

CM

G>
G>

on
CM

rH

in

m

CM

rH

TO
G>

00

CM

in

in

CM

rH

CO

Gr

TO

CM

in

in

CM

in

rH

G.

CM

in

CM

Gr

CM

CO

vo

CM

in

CM

ON

in

CM

in

in

CM

CN

rH

in

CM

ON

CM CM

co

vo
G)

CM

H

CM

in

CM

00

CM

CO

VO
Gr

in

CN

m

in
CM

CM

rH

G>
G>

in

CN

rH

CO

(a

5)

vo
G>

CM
in

CM

CO

VO
G>

00
CM

in

in

CM

CO

G>
Gr

TO
Gr
g>

m

in

CM

in

rH

Gr

G>
Gr
G>

G>
G)
G>

<tf
in

Gr

00
CM

rH

Gr
TO
Gr

Gr
Gr
TO

G)
Gr
Gr

Gr

G>

in G)
in G)
CNGr

rH

Gr
Gr

G)
Gr

in vo
in

CM

G>
Gr

00
CM

rH

in
in

CM

Gr
Gr

Gr
G>
Gr

CM

rH

G>
CO

Gr

G>

CM

in

in

CM

in

rH

Gr

CM

CM

VO
CM

rH

CM

VO

Gr

G)
VO
G>

G)
VO
Gr

G)
VO
Gr

G)
CM

H

in

ON

rH

r>

CM

rH

in

CM

rH

CO

in

in

CM

in

Gr

VO
G)
CM

H

CO

CM CM

r>

CM

rH

<*
CM

rH

in

rH

rH

in

CM

Gr

Gr

G)
CO

Gr

Gr
VO
G)

Gr
Gr
G)

Gr
VO

VO
in

fH

in

in

CM

Gr
Gi

G)
^*
CM

ON

CN

rH

in

tH

Gr

Gr
CM

H

G)
Gr
Gr

in

Gr

00
CM

rH

in

in

CM

rH

Gr
Gr

<t
CN

CM

Gr
G)
G)

Gr
Gr
G)

Gr
Gr
G)

Gr
G)
Gr

Gr
Gr
G)

G)
G)
TO

G>
Gr

00
CM

rH

in

in

CM

H

Gr
(a

G)
G)

Gr
G)
G>

G)
CO

Gr

CM

CN

VO
G>

^
CM

rH

in vo
in

CM

in

rH

Gr

<tf
CM

CM

in

in

CM

CM

rH

CN

VO
<a

Gr
CM

rH

VO
CM

rH

r>

CM

rH

in

CM

rH

CO

CN

r>

CM
rH

CM

rH

vo
CM

rH

CO

VO

Gr

in

CM

ON

rH

CM

r>

CN
rH

in

CN

in

on
rH

rH

CO

(a

CM

in

CM

ON

CM

rH

CO

VO
Gr

CM

in

CM

in

in

CM

VOCM<X)^GivOCM00^G.VOCM00^tG)VOCM00^G)VOCM00^GJVOCMC0^fG)VO
Q^rHc>)coco^(^|invovor^i>>oooNONG)G)rHCMCMcoco^ininvovot^oooo
inininfr>intnintnininininininininvovovovovovovovovovovovovovovo
ONONONONONOnONOnONOnONOnONONOnOnONOnONOnOnonOnonOnonONOnONOnON

397

Chapter 12

Hi, Guy

This final program demonstrates a few other features of the

Sprite Control System. Enter Program 12-7 and save it with

the filename DEMO#3. Remember to change the value of DN

in line 120 to 1 if you're using the Datassette.

Program 12-7. DEMO#3

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 POKE 53280,12:POKE 53281,0:PRINT "{CLR}{DOWN}
B51 SPRITE CONTROL SYSTEM DEMO #3M :rem 184

110 PRINT " BY MARK THOMAS":PRINT :rem 188

115 PRINT:FOR K=l TO 17:PRINT M{6 SPACES}{RVS}
{4 SPACES}{OFF}{7 SPACES}{RVS}{5 SPACES}{OFF}

{7 SPACES}{RVS}{4 SPACES}"iNEXT :rem 231
120 DN=8:SA=780:SX=781:SY=782:SP=783:REM DN=1 FOR

{SPACE}TAPE :rem 181
125 F$=MSCS.OBJH:GOSUB 900 :rem 200

130 GOSUB 58000:REM LOAD CONTROL SYSTEM :rem 85

140 F$=lfGUYlf:LA=16384: GOSUB 900:GOSUB 58500:REM LO

AD DEFINITIONS :rem 8

300 SYS IN:REM INSTALL :rem 94

310 SYS DF,254,0:SYS DF,255,1:REM DEFINE BLOCKS

:rem 175

320 SYS FR,1+2+4+8:REM FREEZE FIRST FOUR SPRITES

:rem 117

330 REM SET FIRST PERSON :rem 197

340 SYS CO,0,3,7,10:SYS CO,1,13:REM SET COLORS

:rem 103

350 FOR SN=0 TO 1 jrem 97

360 SYS MU,SN,1:REM TURN ON MULTICOLOR MODE

srem 151

370 SYS WI,SN,1:SYS HE,SN,1:REM SET DOUBLE WIDTH A

ND HEIGHT srem 36

380 SYS PO,SN,84,40+SN*42:REM SET POSITION :rem 9
390 SYS JS,SN,2,3:REM SET JOYSTICK 2 CONTROL, 4 DI

RECTIONS, MOMENTUM srem 129

400 SYS MO,SN, 1,1:REM SET SPEED srem 49

410 SYS WR,SN,1:REM TURN ON WRAPAROUND :rem 110

420 SYS RB,SN, 319-48 :SYS TB, SN,SN*42 :SYS BB,SN,199

-73+42*SN:REM SET BOUNDARIES :rem 147
430 NEXT SN :rem 119

440 REM SET SECOND PERSON :rem 251

450 SYS CO,2,4:SYS CO,3,6:REM SET COLORS :rem 80
460 FOR SN=2 TO 3 srem 103

465 SYS PR,SN,1:REM SET PRIORITY BEHIND SCREEN DAT

A :rem 122

398

Chapter 12

470 SYS MU,SN,1:REM TURN ON MULTICOLOR MODE

:rem 153

480 SYS WI,SN,1:SYS HE,SN,1:REM SET DOUBLE WIDTH A

ND HEIGHT :rem 38

490 SYS PO,SN,180,102+(SN-2)*42:REM SET POSITION

:rem 23

500 SYS JSfSN,l,3:REM SET JOYSTICK 1 CONTROL, 4 DI

RECTIONS, MOMENTUM :rem 120

510 SYS MO,SN,1,1:REM SET SPEED :rem 51

520 SYS BO,SN,1:REM TURN ON BOUNCE :rem 17

530 SYS RB,SN,319-48:REM SET BOUNDARIES :rem 80

535 SYS TB,SN,(SN-2)*42:SYS BB,SN,199-73+42*(SN-2)

:REM SET BOUNDARIES :rem 254

540 NEXT SN :rem 121

550 SYS BL,0,254:SYS BL,1,255:SYS BL,2,254:SYS BL,

3,255:REM MAKE SPRITES APPEAR :rem 47

560 SYS UN,1+2+4+8:REM UNFREEZE SPRITES :rem 101

570 IF (PEEK(56320)AND16) AND (PEEK(56321)AND16) G
OTO 570:REM WAIT FOR TRIGGER :rem 36

580 SYS RE:REMOVE SPRITE CONTROL SYSTEM :rem 24

585 POKE 198,0:REM CLEAR KEY BUFFER :rem 247

590 END :rem 117

900 IF DN=8 THEN RETURN :rem 62

910 PRINT "{CLR}{DOWN}POSITION TAPE TO THE BEGINNI
NG OF11:PRINT F$; " AND PRESS RETURN" :rem 72

915 PRINT:FOR K=l TO 17:PRINT M{6 SPACES}{RVS}

{4 SPACES}{OFF}{7 SPACES}{RVS}{5 SPACES}{OFF}
{7 SPACES}{RVS}{4 SPACES}":NEXT :rem 239

920 WAIT 198,15:GET K$:RETURN :rem 167

58000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

MSCS.OBJM:GOSUB 59000 :rem 116

58010 POKE SA,0:SYS 65493:IF PEEK(SP)ANDl GOTO 591

00 :rem 127

58020 IN=49664:RE=49667:RL=49670:RS=49673:DF=49676

:BL=49679:CO=49682:WI=49685 :rem 172

58030 HE=49688:PO=49691:DI=49694:WR=49697:BO=49700

:MO=49703:LB=49706:RB=49709 srem 148

58040 TB=49712:BB=49715:FR=49718:UN=49721:PR=49724
:MU=49727:EN=49730:JS=49733 :rem 149

58050 AU=49736:CH=49739:RETURN :rem 14

58100 GOSUB 58000:SYS 51123,LA:LA=LA+1191:RETURN

:rem 11

58400 POKE 49749,LA-256*INT(LA/256):POKE 49750,INT
(LA/256) :rem 182

58410 READ J:POKE 49751,J:FOR K=0 TO J:READ J:POKE

LA,J:LA=LA+1 :rem 16

58420 IF J THEN FOR LA=LA TO LA+J-1:READ I:POKE LA

,I:NEXT LA :rem 92

399

Chapter 12

58430 NEXT K:RETURN :rem 168

58500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+".DEF":GOSUB 59000 :rem 24

58510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 78
58520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 44

58530 LA=LA+1:POKE 49749,LA-256*INT(LA/256):POKE 4

9750,INT(LA/256) :rem 167

58540 POKE 49751,PEEK(LA-1):LA=PEEK(SX)+256*PEEK(S

Y):RETURN :rem 31

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)

):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND":END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 36

59120 PRINT ST:END :rem 70

Type in and save the following machine language file to

tape or disk. Your responses to MLX's prompts will be:

Starting Address: 49152

Ending Address: 49265

Filename: GUY.DEF

If you have a tape drive, place this file immediately after

"DEMO#3."

Program 12-8. GUY.DEF

To enter this program, you must use "The Machine Language Editor (MIX)," a program

found in Appendix C.

49152

49158

49164

49170

49176

49182

49188

49194

49200

49206

49212

49218

49224

49230

49236

49242

:001,

:085,

:255,

:060,

:195,

:060,

:170,

:170,

:170,

:170,

:170,

:060,

:002,

:002,

:002,

:002,

063,000,085

000,001,085

064,001,255

192,003,255

000,000,255

000,002,170

160,042,170

168,040,170

040,040,170

040,040,170

040,060,170

085,060,002

170,128,002

170,128,002

130,128,002

130,128,002

,000,000,149

,064,001,242

,064,003,142

,192,000,208

,000,000,218

,128,010,144

168,042,020

040,040,158

040,040,036

040,040,042

,060,048,096

,170,128,059

,170,128,160

,170,128,166

,130,128,092

,130,128,098

400

Chapter 12

49248 :002,130,128,002,130,128,104

49254 :002,130,128,003,195,192,240

49260 :015,195,240,063,195,252,044

Loading from tape is identical to the previous two exam

ples. Make sure you have the tape with the SCS.OBJ file

handy.

A joystick plugged into port 2 controls the figure on the

left. The figure actually consists of two sprites, one above the

other. The sprites are synchronized so that they move together

to create the appearance of one large object.

Also notice that the figure doesn't stop moving when you

stop pushing the joystick. Instead, it keeps moving in the cur

rent direction. Another feature is that only four directions are

allowed. The joystick is ignored when it's pushed in a diag

onal direction.

To make the other guy move, plug the joystick into port

1. The Sprite Control System can control sprites through either

joystick port, or even both at the same time. This second fig

ure does not wrap around the screen, but simply rebounds off

the edges.

One other feature demonstrated by this program is the

foreground/background priority feature. The first figure (ini

tially on the left) moves in front of the drawing on the screen,

while the second moves behind the drawing.

Press the joystick button to end this program.

These three demonstration programs have illustrated

many of the things possible with the Sprite Control System.

But this has been only an introduction. The next chapters will

show you how to design your own sprites using the Sprite

Editor, how to use the Sprite Control System in your own

BASIC programs, how to control sprites with joysticks, how to

automatically change their shapes, even how to detect sprite-

to-sprite collisions. You've just started. But as promised, you'll

find the Control System simple to use, easy to learn, and a

tremendous aid when it comes to anything dealing with

sprites.

401

Chapter 13

Defining Sprite Shapes

You've just seen how the Sprite Control System can quickly

and easily move and animate sprites on your Commodore 64's

screen. But before you can use the Control System, you have

to have some sprites. "The Sprite Editor" is a utility which

helps you design and create sprites, without the tedious task

of plotting on graph paper, counting up bit values, or even

retyping the sprite definition into the computer. The Editor

does all this for you. With this program and a joystick, it's

easy, evenfun, to design sprite shapes.

Here's the listing for the Sprite Editor. Remember to

change DN=8 in line 110 to DN=1 if you're using tape.

Program 13-1. The Sprite Editor

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " SPRITE DEFINITION EDIT

OR":REM VI.0 :rera 161

110 PRINT " BY CRAIG CHAMBERLAIN":DN=8:SA=780:SX=7

81:SY=782:SP=783:GOTO 800 :rem 178

200 IF SN AND SN=NS AND SL=0 THEN NS=NS-l:TA=AS-l:

RETURN :rem 23

205 IF SN>NS AND SL THEN NS=SN:AS=TA+1:SL%(SN)=0:T

A=AS :rem 191

206 IF SN>NS THEN RETURN :rem 182

210 IF SL=SL%(SN) GOTO 230 :rem 130

220 SYS MV,AS+SL%(SN),TA-AS-SL%(SN),AS+SL:TA=TA-SL

%(SN)+SL:SL%(SN)=SL / :rem 224
230 SYS MV,DB,SL,AS:RETURN / :rem 142
250 PRINT "{UP}" TAB(6) N "{LEFT}{2 SPACES}":FOR K

=1 TO 30:NEXT:WAIT 56320,28,28 :rem 122

260 P=PEEK(56320):IF PAND4 GOTO 270 :rem 141

262 IF N AND N<=NS THEN N=N-1:SL=SL%(N):A=A-SL-1:S

YS 51257,A,SL,DB:GOTO 250 :rem 229

264 IF N=0 AND SL%(NS) AND NS<MX THEN N=NS+1:SL=0:

SYS 51266:GOTO 250 :rem 8

266 N=NS:SL=SL%(N):A=TA-SL:SYS 51257,A,SL,DB:GOTO

{SPACE}250 :rem 141
270 IF PAND8 GOTO 280 :rem 86

272 IF N<NS THEN N=N+1:A=A+SL+1:SL=SL%(N):SYS 5125

7,A,SL,DB:GOTO 250 :rem 130

274 IF N=NS AND SL AND NS<MX THEN N=NS+1:SL=0:SYS

{SPACE}51266:GOTO 250 :rem 99
276 N=0:SL=SL%(0):A=BA+2:SYS 51257,A,SL,DB:GOTO 25

0 :rem 126

403

Chapter 13

280 IF PAND16 GOTO 250 :rem 131

290 WAIT 56320,16:POKE 198,0:RETURN :rem 228

300 GOSUB 620:PRINT "EDITING" SN :rem 91

310 K=FRE(0):SYS 50832:SL=PEEK(SX):GET K$:rem 117

320 IF K$="E" AND (NS OR SN OR SL) GOTO 500
:rem 110

325 IF K$="C" AND (NS OR SN OR SL) GOTO 510

:rem 114

330 IF K$="{INST}" THEN A=DB+3*PEEK(50983):SYS 505

11,A,E-A,A+3,A:GOTO 310 :rem 163

335 IF K$=CHR$(20) THEN A=DB+3*PEEK(50983):SYS 505

33,A+3,E-A,A:GOTO 310 :rem 27

340 IF K$="{LEFT}" THEN SYS 50643:GOTO 310:rem 234

342 IF K$="{RIGHT}" THEN SYS 50671:GOTO 310

:rem 109

344 IF K$="{UP}" THEN SYS 50549:GOTO 310 :rem 231

346 IF K$="{DOWN}" THEN SYS 50568:GOTO 310:rem 106

350 IF K$="F" THEN SYS 50699:GOTO 310 :rem 159

355 IF K$="I" THEN SYS 50587:GOTO 310 :rem 163

360 IF K$="{F1}" THEN POKE 50371,170:GOTO 310

:rem 198

362 IF K$="{F3}" THEN POKE 50371,85:GOTO 310

:rem 158

364 IF K$="{F5}" THEN POKE 507371,255:GOTO 310
:rem 208

370 IF K$o"{F2}" GOTO 373 : rem 181

371 GOSUB 640:IF N>=0 THEN POKE 53288,N:POKE 50373

+PEEK(50370),N:SYS 50735 :rem 27

372 GOTO 300 :rem 104

373 IF K$o"{F4}" GOTO 376 :rem 188

374 GOSUB 640:IF N>=0 THEN POKE 53285,N:POKE 50374

-PEEK(50370),N:SYS 50735 :rem 30

375 GOTO 300 :rem 107

376 IF K$o"{F6}" GOTO 380 :rem 187

377 GOSUB 640:IF N>=0 THEN POKE 53286,N:POKE 50375

,N:SYS 50735 :rem 129

378 GOTO 300 :rem 110

380 IF K$o"{F8}" GOTO 390 :rem 184

381 GOSUB 640:IF N>=0 THEN POKE 53282,N :rem 84

382 GOTO 300 :rem 105

390 IF K$="M" THEN SYS 51179:GOTO 310 :rem 164

400 IF K$="W" THEN POKE 53277 ,NOTPEEK(53277)AND2 :G

OTO 310 :rem 119

405 IF K$="H" THEN POKE 53271,NOTPEEK(53271)AND2:G

OTO 310 :rem 97

410 IF K$o"{CLR}" GOTO 420 : rem 179

412 GOSUB 620:PRINT "ERASE?":GOSUB 630:IF K$="Y" T

HEN SYS 51266 :rem 0

414 GOTO 300 :rem 101

420 IF K$="L" GOTO 520 :rem 49

404

Chapter 13

430 IF K$="S" AND (NS OR SN OR SL) GOTO 530

:rem 129

440 IF K$="D" AND (NS OR SN OR SL) GOTO 540

:rem 116

450 IF K$o"Q" GOTO 310 : rem 115

452 GOSUB 620:PRINT "QUIT?":GOSUB 630:IF K$="N" GO

TO 300 :rem 102

454 POKE 648,4:SYS 51386:END :rem 31

500 GOSUB 200:IF TA>MT THEN F$="MEMORY FULL":GOTO

{SPACE}710 :rem 21

505 GOSUB 620:PRINT "EDIT":N=SN:A=AS:GOSUB 250:SN=

N:AS=A:GOTO 300 :rem 158

510 GOSUB 200:GOSUB 620:PRINT "COPY":N=SN:A=AS:GOS

UB 250:GOTO 300 :rem 73

520 GOSUB 620:PRINT "LOAD:";:F$="":GOSUB 670:IF F$

="" GOTO 300 :rem 75

521 GOSUB 660:SYS 51266:GOSUB 600 :rem 65

522 POKE SA,0:POKE SX,FNL(BA):POKE SY,FNH(BA):POKE

214,20:GOSUB 680 :rem 131

523 SYS 65493:GOSUB 690:IF PEEK(SP)AND1 GOTO 700

:rem 179

524 IF PEEK(SX)+256*PEEK(SY)>MT THEN F$="NOT ENOUG

H MEMORY":GOTO 710 :rem 243

525 NS=PEEK(BA):A=BA+1:FOR K=0 TO NS:SL%(K)=PEEK(A

):A=A+SL%(K)+1:NEXT :rem 14

526 TA=A:SL=SL%(0):SYS 51260,AS,SL,DB:GOTO 300

:rem 133

530 GOSUB 620:PRINT "SAVE:";:F$="":GOSUB 670:IF F$

="" GOTO 300 :rem 91

531 GOSUB 200:POKE BA,NS:A=BA+1:FOR K=0 TO NS:POKE

A,SL%(K):A=A+SL%(K)+1:NEXT :rem 167

532 GOSUB 600:POKE SA,251:POKE 251,FNL(BA):POKE 25

2,FNH(BA) :rem 48

534 POKE SX,FNL(TA):POKE SY,FNH(TA):POKE 214,21:GO

SUB 680 :rem 82

535 SYS 65496:GOSUB 690-.ON (PEEK(SP)ANDl)+l GOTO 3

00,100 :rem 51

540 GOSUB 620:PRINT "LINE:";:D$="" :rem 124

541 WAIT 198,15:GET K$:IF D$="" THEN ON (K$=CHR$(1

3))+2 GOTO 300,544 :rem 175

542 IF K$=CHR$(20) THEN PRINT K$;:D$=LEFT$(D$,LEN(

D$)-1):GOTO 541 :rem 6

543 IF K$=CHR$(13) THEN N=VAL(D$):GOTO 546:rem 245

544 IF VAL(D$)>6399 OR K$<"0" OR K$>"9" OR (K$="0"

AND D$="") GOTO 541 :rem 13

545 PRINT K$;:D$=D$+K$:GOTO 541 :rem 195

546 GOSUB 200:POKE BA,NS:A=BA+1:FOR K=0 TO NS:POKE

A,SL%(K):A=A+SL%(K)+1:NEXT :rem 173

547 GOSUB 620:P=BA:A=TA :rem 79

405

Chapter 13

550 PRINT N:PRINT "{UP}{2 RIGHT}";:Q=76-LEN(STR$(N
)):D$=STR$(PEEK(P)) :rem 231

551 P=P+1:IF P=TA GOTO 554 :rem 150

552 K$=STR$(PEEK(P)):J=FRE(0) :rem 155

553 IF LEN(D$)+LEN(K$)<Q THEN D$=D$+","+MID$(K$,2)

:P=P+1:IF P<TA GOTO 552 :rem 107

554 R=A+6+LEN(D$):POKE A,FNL(R):POKE A+1,FNH(R)

:rem 156

555 POKE A+2,FNL(N):POKE A+3,FNH(N):POKE A+4,131

:rem 144

556 FOR K=l TO LEN(D$):POKE A+4+K,ASC(MID$(D$,K)):

NEXT:POKE R-1,0:A=R :rem 116

557 IF A>MT THEN F$="NOT ENOUGH MEMORY":GOTO 710

:rem 5

558 IF P<TA THEN N=N+1:GOTO 550 :rem 195

559 POKE A,0:POKE A+l,0:A=A+2 :rem 39

560 GOSUB 620:PRINT "FILE:";:F$="":GOSUB 670:IF F$

=""{2 SPACES}GOTO 300 :rem 79
561 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=F$

+".DAT":GOSUB 610 :rem 85

562 POKE SA,251:POKE 251,FNL(TA):POKE 252,FNH(TA):

POKE SX,FNL(A):POKE SY,FNH(A) :rem 104

563 POKE 214,21:GOSUB 680:SYS 65496:GOSUB 690:ON (

PEEK(SP)AND1)+1 GOTO 300,700 :rem 27

600 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=F$

+".DEF" srem 244

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

615 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469
:RETURN srem 163

620 POKE 214,22:PRINT:PRINT "{20 SPACES}":PRINT "
{UP} {2 SPACES}11; :RETURN : rem 177

630 GET K$:IF K$o"Y" AND K$o"N" GOTO 630 :rem 87

635 RETURN srem 126

640 GOSUB 620:PRINT "ENTER COLOR:"; :rem 47

641 GET K$:IF K$=CHR$(13) THEN N=-l:RETURN :rem 71
642 IF K$<"0" OR K$>"9" GOTO 641 :rem 233

643 PRINT K$;:N=ASC(K$)-48 :rem 201

644 GET K$:IF K$=CHR$(13) THEN RETURN :rem 39
645 IF K$=CHR$(20) THEN PRINT K$;:GOTO 641 :rem 2

646 IF NOl OR K$<"0" OR K$>"5" GOTO 644 :rem 134
647 PRINT K$;:N=ASC(K$)-38 :rem 204
648 GET K$:IF K$=CHR$(13) THEN RETURN :rem 43

649 IF K$=CHR$(20) THEN PRINT K$;:N=1:GOTO 644

:rem 255

650 GOTO 648 :rem 118

660 NS=0:SN=0:AS=BA+2:SL=0:SL%(0)=0:TA=AS:RETURN
:rem 201

670 K=FRE(0):WAIT 198,15:GET K$:IF K$<" " OR K$>"Z
11 OR LEN(F$)=12 GOTO 674 srem 8

406

Chapter 13

672 F$=F$+K$:PRINT K$;:GOTO 670 :rem 203

674 IF K$=CHR$(20) AND F$>lf" THEN PRINT K$;:F$=LEF

T$(F$,LEN(F$)-1):GOTO 670 :rem 212

676 IF K$<>CHR$(13) GOTO 670 :rem 167

678 RETURN :rem 133

680 POKE 648,4:PRINT "{WHT}":POKE 53269,0tRETURN

:rem 199

690 POKE 53269,3:POKE 648,192:PRINT "{HOME}fc4i":RE

TURN jrem 216

700 P=PEEK(SA):IF P=4 THEN F$="FILE NOT FOUND":GOT

O 710 :rem 106

702 IF P=5 THEN F$="DEVICE NOT PRESENT":GOTO 710

:rem 209

704 F$="ERROR"+STR$(ST) :rem 80

710 GOSUB 620:PRINT F$:WAIT 198,15:GET K$:GOTO 300

:rem 19

800 FOR K=50370 TO 51421:READ P:POKE K,P:NEXT

irem 245

810 DB=50304:MV=50376:E=50367:DEF FNH(N)=INT(N/256

):DEF FNL(N)=N-256*FNH(N) :rem 209

815 SYS 51149:SYS MV, 53248, 2048, 53248-.FOR K=53464

{SPACE}TO 53503:READ P:POKE K,P:NEXT :rem 124
820 SYS 51164:POKE 648,192:PRINT "{CLR}{WHT}{h}":S

YS 51272 :rem 82

835 FOR K=l TO 21:PRINT "{2 SPACES}{RVS}[£[£[£[

£[£[£[£[£C£C£C£[£tll:NEXT :rem 206
840 PRINT "{2 SPACESHRVS}]]]]]]]]]]]]]]]]]]]]]]]]

^E43{HOME}" :rem 64
845 FOR K=l TO 8:PRINT TAB(28) "{10 SHIFT-SPACE}":

NEXT :rem 114

848 PRINT:FOR K=l TO 12:READ F$:PRINT TAB(28) F$:N

EXT :rem 13

850 SYS 51246:SYS MV,DB,63,50176:SYS MV,DB,63,5024

0 :rem 58

860 FOR K=0 TO 18 STEP 3:READ P,Q,R:POKE 50176+K,P

:rem 183

865 POKE 50240+K,Q:POKE 50241+K,R:NEXT :rem 146

869 MX=255:DIM SL%(MX) :rem 243

870 BA=PEEK(49)+256*PEEK(50)+500:MT=PEEK(51)+256*P

EEK(52)-500:GOSUB 660 :rem 170

890 POKE 53269,3:GOTO 300 :rem 62

900 DATA 0,170,1,14,2,7,32,70,197,132,251,133,252,

32,70,197,140,68,197,141,69 :rem 203

901 DATA 197,32,70,197,132,253,133,254,165,253,56,

229,251,170,165,254,229,252 :rem 235

902 DATA 236,68,197,237,69,197,144,35,160,0,174,69

,197,240,14,177,251,145,253 :rem 253

903 DATA 200,208,249,230,252,230,254,202,208,242,1

74,68,197,240,8,177,251,145 :rem 219

407

Chapter 13

904 DATA 253,200,202,208,248,96,173,69,197,168,101

,252,133,252,152,24,101,254 :rem 218

905 DATA 133,254,172,68,197,240,8,136,177,251,145,

253,152,208,248,174,69,197 :rem 206

906 DATA 240,15,198,252,198,254,136,177,251,145,25

3,152,208,248,202,208,241,96 :rem 34

907 DATA 0,0,32,253,174,32,138,173,76,247,183,32,2

00,196,32,70,197,132,251,133 :rem 4

908 DATA 252,169,0,160,2,145,251,136,16,251,76,47,

198,169,0,162,2,157,191,196 :rem 233

909 DATA 202,16,250,32,200,196,76,47,198,162,2,189

,128,196,157,191,196,202,16 :rem 242

910 DATA 247,162,0,32,176,199,76,47,198,162,2,32,1

76,199,162,2,189,191,196,157 :rem 52

911 DATA 128,196,202,16,247,76,47,198,160,27,162,3

3,185,128,196,72,189,128,196 :rem 56

912 DATA 153,128,196,104,157,128,196,185,129,196,7

2,189,129,196,153,129,196,104 :rem 110

913 DATA 157,129,196,185,130,196,72,189,130,196,15

3,130,196,104,157,130,196,232 :rem 87

914 DATA 232,232,136,136,136,16,206,48,92,162,60,1

72,194,196,189,128,196,10,62 :rem 31

915 DATA 130,196,62,129,196,62,128,196,136,16,240,

202,202,202,16,232,48,64,162 :rem 12

916 DATA 60,172,194,196,189,130,196,74,126,128,196

,126,129,196,126,130,196,136 :rem 53

917 DATA 16,240,202,202,202,16,232,48,36,160,60,18

5,128,196,32,142,199,72,185 :rem 219

918 DATA 130,196,32,142,199,153,128,196,185,129,19

6,32,142,199,153,129,196,104 :rem 50

919 DATA 153,130,196,136,136,136,16,222,169,42,133

,97,169,216,133,98,169,2,133 :rem 36

920 DATA 99,173,194,196,56,42,133,254,169,23,133,1

00,164,99,185,128,196,133,253 :rem 95

921 DATA 162,8,165,253,37,254,168,185,196,196,164,

100,145,97,172,194,196,240,9 :rem 52

922 DATA 198,100,70,253,202,164,100,145,97,198,100

,70,253,202,208,223,198,99 :rem 174

923 DATA 165,100,16,208,165,97,24,105,40,133,97,14

4,2,230,98,165,99,24,105,6 :rem 174

924 DATA 133,99,201,65,208,182,96,32,130,199,165,1

98,240,11,162,63,189,127,196 :rem 44

925 DATA 208,3,202,208,248,96,173,0,220,73,15,41,1

5,240,6,32,40,199,32,130,199 :rem 0

926 DATA 173,0,220,41,16,208,219,173,38,199,74,74,

74,133,254,173,39,199,10,109 :rem 33

927 DATA 39,199,101,254,168,173,38,199,41,7,174,19

4,196,208,10,170,185,128,196 :rem 58

928 DATA 93,26,199,76,251,198,74,170,189,34,199,17

0,45,195,196,133,254,138,57 :rem 28

408

Chapter 13

929 DATA 128,196,197,254,208,5,89,128,196,176,8,13

8,73,255,57,128,196,5,254,153 :rem 124

930 DATA 128,196,32,47,198,32,130,199,173,0,220,41

,16,208,130,173,0,220,73,15 :rem 203

931 DATA 41,15,240,240,32,40,199,76,181,198,128,64

,32,16,8,4,2,1,192,48,12,3,0 :rem 249

932 DATA 0,172,39,199,74,144,5,136,16,2,160,20,74,

144,7,200,192,21,208,2,160,0 :rem 241

933 DATA 140,39,199,174,38,199,172,194,196,240,15,

74,144,6,202,202,16,2,162,22 :rem 23

934 DATA 74,144,20,232,208,11,74,144,5,202,16,2,16

2,23,74,144,6,232,224,24,208 :rem 240

935 DATA 1,170,142,38,199,173,38,199,10,10,10,105,

41,141,0,208,173,39,199,10,10 :rem 44

936 DATA 10,105,59,141,1,208,96,162,8,165,162,197,

162,240,252,202,208,247,96 :rem 178

937 DATA 174,194,196,208,11,162,8,10,102,253,202,2

08,250,165,253,96,162,4,10,38 :rem 57

938 DATA 254,10,102,253,70,254,102,253,202,208,243

,165,253,96,169,128,133,251 :rem 216

939 DATA 133,253,169,196,133,252,133,254,169,131,1

49,251,169,63,141,68,197,169 :rem 55

940 DATA 0,141,69,197,76,223,196,173,14,220,41,254

,141,14,220,165,1,41,251,133 :rem 249

941 DATA 1,96,165,1,9,4,133,1,173,14,220,9,1,141,1

4,220,96,173,194,196,170,73,1 :rem 42

942 DATA 141,194,196,24,105,16,168,189,42,200,141,

28,208,32,205,199,189,44,200 :rem 22

943 DATA 162,6,157,225,208,202,16,250,32,220,199,7

8,38,199,14,38,199,140,248 :rem 194

944 DATA 195,32,107,199,173,197,196,174,198,196,14

2,197,196,141,198,196,76,47 :rem 40

945 DATA 198,2,0,255,127,169,0,160,62,153,128,196,

136,16,250,96,32,46,200,32 :rem 170

946 DATA 200,196,76,47,198,32,46,200,76,47,198,120
,169,217,141,40,3,169,200,141 :rem 74

947 DATA 41, 3,88,173 , 2 , 221,9*, 3,141, 2, 221,173 ,0, 221
,41,252,141,0,221,169,4,141 :rem 176

948 DATA 24,208,169,11,141,32,208,169,1,141,33,208

,169,0,141,34,208,141,35,208 :rem 0

949 DATA 141,39,208,141,27,208,141,28,208,169,91,1

41,17,208,169,16,141,248,195 :rem 35

950 DATA 169,18,141,249,195,169,8,141,2,208,169,2,
141,23,208,141,29,208,141,16 :rem 18

951 DATA 208,169,66,141,3,208,169,14,141,40,208,16

9,2,141,37,208,169,7,141,38 :rem 227

952 DATA 208,76,107,199,120,169,237,141,40,3,169,2
46,141,41,3,88,173,2,221,9,3 :rem 16

953 DATA 141,2,221,173,0,221,9,3,141,0,221,76,129,
255,169,255,201,127,96 :rem 212

409

Chapter 13

960 DATA 0,127,127,127,127,121,121,127,0,127,127,1

27,127,127,127,127,0,255,255 :rem 5

961 DATA 255,255,255,255,255,127,127,127,127,127,1

27,127,127,127,255,255,255 :rem 196

962 DATA 255,255,255,255 :rem 175

970 DATA EDIT,COPY,LOAD,SAVE,DATA,QUIT,,FLIP,INVER

T,MULTICOLOR,WIDTH,HEIGHT :rem 241

980 DATA 254,255,254,198,192,6,198,192,6,198,192,6
,198,192,6,198,192,6,254,255 :rem 76

981 DATA 254 :rem 87

Plug a joystick into port 2 and run the program. It takes a

moment to initialize. You'll see a 24 X 21 grid on the left side

of the screen. In the upper-right corner will be a black square,

and below that a list of some of the editing commands. At the

bottom of the screen the message EDITING 0 appears, indicat

ing that you're currently editing definition number 0.

Joystick Editing

The cursor is displayed in the grid as a small box with thick

edges. Push the joystick in any of the eight directions to move

the cursor from one grid square to another. If you move the

cursor off one side of the grid, it wraps around to the other

side.

Press the joystick button to fill a square. To fill an area or

draw a line, hold down the button while you push the joy

stick. Erasing is just as simple; move the cursor to the desired

square and press the button again. If you hold the button

down and move the cursor over filled areas, you can erase en

tire sections.

As you edit on the large grid, you'll notice that the shape

is displayed as an actual sprite in the black square at the top-

right corner of the screen. This can give you an idea of what

the sprite will look like in a BASIC program.

The remainder of this chapter explains each of the Sprite

Editor's features and commands. As you read, try them out

with a shape you've drawn on the editing grid.

The Sprite Editor Commands and Features

Flip and Invert. To flip the current definition left to right,

press the F key. This gives you a mirror image of the defi

nition. Of course, the change will not be noticeable if the defi

nition is symmetrical. Press the I key to invert the definition.

This turns the definition upside down.

410

Chapter 13

Scrolling. Use the cursor keys (along with the SHIFT key

to move up or left) to scroll the shape in any of four

directions.

Insert. Sometimes it's necessary to expand or contract a

sprite definition. To expand it, move the cursor to the row

where you want the expansion to occur and press the SHIFT

and INST/DEL keys at the same time. The row on which the

cursor is positioned, and all the rows below it, will scroll

down one row to create a gap. The bottom row will scroll off

the grid and will not be recoverable.

Delete. This contracts a sprite definition. Press the DEL

key (unSHIFTed INST/DEL) to delete the row on which the

cursor is currently positioned. All the rows below the cursor

will scroll up one row to fill in the gap.

Erase. To clear the editing grid, press SHIFT-CLR/HOME

and then hit the Y key in response to the ERASE? prompt. If

you accidentally hit SHIFT-CLR/HOME, press the N key to

cancel the clear.

Change color. You can change the color of the sprite at

any time. This color, however, does not necessarily have to be

the same color that will be used to display the sprite in

BASIC.

To change the current color, press the f2 key (SHIFT and

fl together). When the prompt ENTER COLOR: appears, type

a color number from 0 to 15. The color numbers are listed in

the Commodore 64 User's Guide. The color changes as soon as

you press the RETURN key. Notice that the color changes in

both the editing grid and in the shape box in the upper-right

corner.

If you decide not to change the color, just press the RE

TURN key without entering a number. The color will not be

changed.

You can also change the background color of the box in

the upper right. Press the f8 key (SHIFT and i7 keys) and en

ter the number of the desired color. This feature shows you

how a sprite will look on different background colors.

To set the box background back to black, press the f8 key
and enter 0.

Width and Height. Press the W key to make the sprite
shown in the upper right alternate between normal and double
width. Press the H key to alternate the sprite between normal
and double height. You can use these keys in combination to

411

Chapter 13

reduce or enlarge the sprite in either, or both, directions.

Like the color change feature, this is provided for editing

purposes only. The size chosen in the Editor has no effect on

the size used when the sprite is displayed by a BASIC

program.

Multicolor. The Sprite Editor also supports multicolor

mode editing. In multicolor mode, a sprite can display up to

three different colors, instead of just one. The only trade-off is

that the horizontal resolution of the sprite is reduced from 24

to 12 pixels across.

Press the M key to switch to multicolor mode. The grid

will change to show a grid 12 X 21. Any previous drawing

will appear as garbage, so you may also want to press SHIFT-

CLR/HOME.

Push the joystick and press the trigger as normal to fill in

the squares with the first color. To change to the second color,

press f3. All subsequent drawing is now done in the second

color. Press the f5 key to switch to the third color. When you

want to return to the first color, press the f1 key.

Key effect, fl: Draw using first color; f3: Draw using sec

ond color; f5: Draw using third color.

If you want to change one of these colors, just press

SHIFT with the corresponding function key. Recall that you

pressed f2 (SHIFT and fl) to change the first color when you

were in normal color mode. Press f4 (SHIFT-f3) or f6 (SHIFT-

f5) to change the second or third color.

Key effect. f2: Change first color; f4: Change second

color; f6: Change third color.

Changing a color does not change which color is currently

used for drawing. This means that if you're filling in squares

with the first color and then press f6 to change the third color,

the third color will change, but drawing will continue with the

first color.

Press the M key a second time to turn off the multicolor

mode. The drawing in the grid will appear distorted again.

Edit. The Sprite Editor lets you edit multiple definitions.

In fact, the program can handle up to 256 definitions, but it's

doubtful that you'll ever need that many.

The Edit feature is used to switch from one definition to

another. The program won't let you use this feature until at

least one of the squares in definition 0 has been filled. Once
definition 0 has been edited, definition 1 can be accessed.

412

Chapter 13

To switch from one definition to another, select the Edit

feature by pressing the E key. Now as you push the joystick

left or right, the grid will switch between definitions 0 and 1.

Definition 1 will be blank because it has not been edited yet.

To edit definition 1, push the stick until definition 1 appears,

press the joystick button to select that grid, and then begin

editing. The message at the bottom of the screen should now

read EDITING 1.

As soon as you've filled some of the squares in definition

1, you can press the E key and push the stick left or right to

select definition 0, 1, or 2. You can go back to definition 0,

continue editing definition 1, or create a new definition 2. Just

press the joystick button when you see the desired definition.

After definition 2 has been defined, definition 3 can be

accessed, and so on. This process of creating new definitions

one at a time can be continued for as long as necessary.

When you have a sequence of definitions, press the E key

and push the joystick left or right to cycle through them all.

This creates an animation effect. For example, you could de

fine a sequence of definitions to show a person walking. The

person's legs are in a slightly different position in each defi

nition. Pressing the E key and cycling through the definitions

will make the person appear to walk.

The number of definitions is reduced whenever the last

one is erased. For instance, if definitions 0 through 6 have

been edited, pressing the E key lets you cycle through defi

nitions 0 to 7. Definition 7 will be blank because it has not

been defined yet. But if definition 6 is erased, it will be blank,

so the Edit feature will only cycle through definitions 0 to 6.

This happens only when the last definition is erased. If

definitions 0 to 6 have been edited and you erase definition 3,

you'll still be able to access all the definitions. Definition 3
will just be blank.

One final note is that when you press the E key, the other

editing features won't work until you select a definition. If it

seems that the keyboard has locked up, it's probably because

you forgot to press the joystick button to select a definition.
Copy. Use this feature to copy a definition into the cur

rent definition space. This can be a very handy feature when
two definitions are very similar to each other. For example,
definition 0 may show a figure walking to the left. You want
definition 1 to show the same figure, only walking to the

413

Chapter 13

right. Instead of drawing definition 1 from scratch, it's a lot

easier to copy definition 0 into definition 1 and then use the F

key to flip the definition.

To use the Copy feature, make sure you're in the destina

tion definition, the one that is going to be changed. You

should see the prompt EDITING n, where n is the number of

the definition. Press the C key and push the stick left or right.

When you come to the source definition, the one you want to

copy to the destination definition, press the joystick button.

You'll now be editing the destination definition. (The source

definition has not been altered.)

Let's run through an example. You want to copy defi

nition 2 into definition 4. Definition 4 is the destination, defi

nition 2 is the source. Make sure you're currently editing

definition 4. If not, use the Edit feature to select it. Then press

the C key, push the joystick until definition 2 appears, and

press the button. Definition 4 now matches definition 2. Defi

nition 2, remember, has not been changed.

Save. The Save feature is used to store the current set of

definitions as a tape or disk file. This file can later be loaded

by a BASIC program, or retrieved for more editing by the

Editor.

To save the current definitions, press the S key and enter

a filename up to 12 characters long. You may have noticed in

Chapter 12 that the definition filenames have the extension

.DEF—don't include this in the filename. It's automatically

added by the Editor.

If you're saving the file to disk, be sure that the filename

is not already in use to avoid the FILE EXISTS error. If an er

ror does occur, the drive light will start to flash. The only error

reported by the program is the DEVICE NOT PRESENT error.

The normal PRESS PLAY & RECORD ON TAPE prompt

will not appear if you're using the Datassette, so you'll have to

remember to press both the buttons yourself. Also make sure

that the tape has been advanced to an unused area so that
you're not overwriting another program you may want intact.

If you accidentally press the S key and don't want to save

a file, just press the RETURN key without entering a filename.
When you are defining a lot of shapes, it's a good idea to

periodically save your work. There may be a power failure, or
surge, which could erase all your work currently in memory.

414

Chapter 13

Load. Use this feature to retrieve a set of definitions

stored on tape or disk by the Save feature.

Since loading a new set of definitions erases those already

in memory, you may want to save the current definitions

before using Load.

To load a definition file, press the L key and enter the de

sired filename. The requested file is loaded into memory,

replacing the current definitions. If you're using disk, the error

FILE NOT FOUND will be reported if the requested file is not

on the disk.

If you're using the Datassette, there will be no PRESS

PLAY ON TAPE prompt, so you must remember to press the

PLAY button on the Datassette. Be careful that you don't also

press the RECORD button.

If you accidentally press the L key and don't want to load

a new file, just press the RETURN key without entering a

filename. The current definitions will not be erased.

(Note: The Load feature can be used to load the definition

files used by the demonstration programs you earlier typed in

from Chapter 12.)

Errors. If you get an error while using the Sprite Editor,

such as DEVICE NOT PRESENT or FILE NOT FOUND, the

program will wait for you to press a key to acknowledge the

error. You can then continue editing, or try to load or save

again.

Data. This feature lets you save the definition information

to tape or disk in the form of DATA statements. The DATA

statements can then be merged with a BASIC program.

To create the file of DATA statements, press the D key.

The Editor will ask for a starting line number, the line number

used for the first DATA statement. Line numbers will be in

cremented by one for the succeeding DATA statements.

After you enter the starting line number and press RE

TURN, the Editor begins building the DATA statements in

memory. The line number is displayed as the line is built. This

process takes awhile.

The Sprite Editor then asks for a filename before it saves

the file. Type in a filename (up to 12 characters long). The

Editor automatically adds the extension .DAT to the filename

and saves the file to tape or disk. As with the Save feature,

you should choose a filename not already in use on your disk.

Since the prompts do not appear, remember to press both the

415

Chapter 13

PLAY and RECORD buttons if you're using the Datassette.

The file created by the Data feature is an actual program

which can be loaded in BASIC. A merge utility is provided in

Appendix E to help you append this data file with other

programs.

If the Editor reports the error NOT ENOUGH MEMORY

while it's building DATA lines, it means that the current defi

nition file is too large to be converted. Use Program 16-2, "Ex

tract" to break the file into two parts, then convert each to

DATA statements. Be aware, however, that the DATA lines

for large definition files eat up memory very quickly and are

usually not practical.

The Load feature can load only definition files stored by

the Save feature and cannot be used to load definition files

stored as DATA statements by the Data feature. Therefore,

whenever you store the definitions as a file of DATA state

ments, it's a good idea also to save the definitions with the

Save feature, in case you want to modify them later.

To cancel the Data feature, press the RETURN key instead

of entering either the starting line number or the filename.

The advantage of storing sprite definitions as data in a

program is that when the program runs, one less file has to be

loaded. Each time you ran Program 12-3, "DEMO#1," for in

stance, it had to load both "SCS.OBJ" and a definition file. If

you're using the Datassette, it can take awhile for these two

files to be found and loaded. Storing the definitions in DATA

statements in the program eliminates the need for loading the

second file.

If you choose not to use the Sprite Control System ma

chine language routines for sprite motion, you can still use the

Sprite Editor to create definitions and convert them to DATA

statements. The format used to store definitions as data is very

simple.

Here's a sample sprite definition data file. It's what you

could use in your own BASIC program to recreate the bunny

shape you saw in Chapter 12.

The first data number is the number of definitions minus

one. For example, if you have a set of four definitions, num

bered 0 to 3, the first data number will be a 3. Notice that in

Program 13-2, the first number is 0. It indicates that there's

only one definition.

416

Chapter 13

Program 13-2. Bunny Data

3000 DATA 0,63,12,0,48,15,129,240,12,195,48,12,102

,48,7,102,224,3,231,192,0,195

3001 DATA 0,1,255,128,3,24,192,7,255,224,12,60,48,

15,0,240,7,255,224,0,255,0,28

3002 DATA 60,56,7,60,224,1,255,128,48,126,12,124,6

0,62,127,60,254,255,255,255

The next number specifies the number of bytes in the first

definition. This number can range from 0, if the definition is

empty, to 63, if the definition is full. The bunny definition is

full, for it has 63 bytes. If the definition is not empty, the

following data numbers form the actual definition. If the

length is less than the full 63 bytes, the remaining bytes in the

definition block should be set to 0.

Assume that the second data number indicates the defi

nition is 43 bytes long. The next 43 numbers form the sprite

definition, and the remaining 20 bytes in the definition block

would all be set to 0.

This format, a length byte followed by 0 to 63 definition

bytes, is repeated for each definition.

Quit. When you're finished editing and have saved your

work, press the Q key and type Y in response to the QUIT?

confirmation prompt. The program ends and returns you to

BASIC. If you accidentally press the Q key and don't want to

quit the Editor yet, just press N to cancel.

Note that the RUN/STOP key has been disabled to pre

vent you from accidentally stopping the program without hav

ing a chance to save your created definitions or convert them

to DATA statements. The only way to exit the Sprite Editor is

to use the Quit command.

Sprites and More Sprites

What sprites you design with the Editor are, of course, up to

you. The Editor is only a tool. It can't design the sprites for

you, it can only make that design easier. That's the purpose of

this program, and it fills that purpose very well. You can cre

ate several sprites with the Editor in the time that it used to

take you to design just one on paper. Better yet, since the Edi

tor is so easy to use, and because it does so much for you, you

417

Chapter 13

can almost forget about the mechanics and concentrate just on

sprite design. In a matter of a few minutes, you can have a

handful of intricate sprite shapes ready to be placed in motion

or animation.

To do that, however, you need to know more about the

Sprite Control System, the machine language routines which

make it simple to move and control sprites from BASIC pro

grams. That's what Chapter 14 is all about.

418

Chapter 14

Using the Sprite Control

System in BASIC

Moving and controlling sprites in a BASIC program can be a

difficult task. Simply getting a sprite across the invisible

"seam" on the screen means POKEs and constant checking.

Even more complicated sprite movements are almost impos

sible in BASIC, especially if you're planning on having more

than one or two sprites on the screen at the same time. The

more sprites, the more time it takes for your Commodore 64

to execute the commands. In BASIC, this can slow a program

down to a crawl.

That's why you see so many programs with sprites writ

ten in machine language. Machine language gives you the

speed to move all eight sprites on the screen at once, without

slowing anything down. Unfortunately, not everyone knows

how to write machine language programs. If you're like most

people, you learned to program in BASIC. And even if you do

know machine language programming, BASIC is often the lan

guage of choice, for it's simple to write.

With the Sprite Control System, first demonstrated in

Chapter 12, you can move and control sprites with the speed

of machine language, but from the convenience of your own

BASIC program. Just like the demonstration programs in

Chapter 12, your BASIC programs, whether they're spread

sheets or arcade games, can call on the Control System.

Sophisticated

The Sprite Control System, sophisticated as it is, requires you
to follow a very specific procedure when you use it with a

BASIC program. Because of the Control System's power, this

may seem complicated at first. It can be a bit involved. But

with some practice, you'll soon find it second nature.

This procedure consists of calling two subroutines in
BASIC and using several SYS statements. To help you learn
this procedure, we'll go through it step by step in the immedi
ate mode (without using line numbers). As you become more
familiar with them, the steps will seem both simple and
logical.

419

Chapter 14

Every program that uses the Sprite Control System must

contain the lines in the "SCS.BAS" file (Program 12-1), so

before you begin, load these lines into memory with the

command:

LOAD "SCS.BAS"

Make sure you add 8 if you're using a disk. You'll now exe

cute several statements in the immediate mode, in the order

that they would actually be used in a program calling the

Sprite Control System.

Variable Assignments

The first step is to perform the standard assignments that have

been used throughout this book in preparation for SYS calls

and disk and tape file input/output (I/O). Enter the following

statement. As always, change the DN=8 to DN=1 if you're

using the Datassette.

DN=8:SA=780:SX=781:SY=782:SP=783

Load Machine Language Routines

Now that these variables have been assigned, you can load

the "SCS.OBJ" file (Program 12-2), which contains the ma

chine language routines. To do this, make sure that the pro

gram is on the disk currently in the drive or that the

Datassette contains the tape with the program. Type in the

following line. It calls the subroutine at line 58000.

GOSUB 58000

Besides loading the SCS.OBJ file, this subroutine assigns

several more variables that will be used later in SYS

statements.

Load Definitions

You also need to load a definition file. For this demonstration,

use the bunny definition from Chapter 12. To load the defi

nition file, you must assign the filename to a string variable,

specify a LOAD address, and call a subroutine.
Assign the name of the definition file to the variable F$.

Do not include the .DEF extension as part of the filename.

Assuming that you called the file BUNNY, you'd type:

F$="BUNNY"

420

Chapter 14

The LOAD address is set to be in the middle of free mem

ory with the statement:

LA=16384

Finally, call the subroutine at 58500 to load the defi

nitions with:

GOSUB 58500

You've just loaded the "BUNNY.DEF" file.

Install Sprite Control System

Next, use the following SYS statement to install the Control

System. This SYS call establishes a raster scan interrupt and

initializes sprite graphics.

SYS IN

This SYS call should be done only once, and must be

done before you use any of the Control System SYS calls de

scribed below.

In case you're wondering, the variable IN, which stands

for INstall, was assigned by the subroutine at 58000. You

could have used SYS 49664 instead, the value assigned to IN.

But it's much easier to remember variable names than the

corresponding numbers.

The only problem is that you must type the variable name

exactly. Remember that all variables have an initial value of 0.

If you make a mistake and type a variable name which has

not been assigned, the address for the SYS statement will be

interpreted as location 0, and the computer may crash. The

keyboard may lock up, and the screen may be altered.

If the computer does crash, no permanent damage has

been done. Just turn the power off and back on, and start over

from the beginning of the procedure. To avoid this inconven

ience, be careful as you're typing.

(Note: Since entering a program line clears all variables,

do not enter any program lines while working in the immedi

ate mode.)

Define Block

To make a sprite appear, you have to give it a shape. Unfortu

nately, it's not possible to directly assign one of the definitions

loaded from the definition file to a sprite. Instead, you have to

copy a definition into a definition block, and then assign the

definition block to the sprite.

421

Chapter 14

Sprite memory is divided into 64-byte sections. These sec

tions are called definition blocks and are numbered from 0 to

255. Each block can hold one definition.

To define a block with one of the definitions loaded in the

file, you'll use the following SYS statement format:

SYS Deblock number,definition number

(The SYS statement normally allows only one number after

the keyword, but the machine language routines of the Sprite

Control System have been designed so that several numbers
can be used.) j ,

Let's assume that block 2^5 is available. The BUNNY.DEF
file contains only one definition, numbered 0, so to define

block 255 with definition 0, ettter the statement:

SYSDF,255,0 //
Definition 0 has now been copied into block 255. Block

255 is ready to be assigned to a sprite.

For now, you'll be using only block 255. A more complete

discussion on which definition blocks are available is provided

in the next chapter.

The preceding SYS calls have been general system calls.

The SYS IN installs the Sprite Control System so that sprites

can be used, and SYS DF defines blocks that can be used by

all of the sprites.

Now that the general SYS calls have been issued, you can

take a look at SYS statements which pertain to an individual

sprite. Each of the following SYS statements contains a sprite

number to identify which sprite is to be affected. The letters

SN represent this Sprite Number. For purposes of demonstra

tion, you'll use only sprite 0.

Assign Block to Sprite

The following statement format assigns a block to a sprite to

give it a shape and make it appear.

SYS BL,SN,block number

You've already defined block 255, so to make sprite 0 ap

pear, enter:

SYS BLA255

The sprite should appear in the upper-left corner of the
screen. If it didn't display, you've made an error somewhere in

422

Chapter 14

the procedure. Double-check what you typed in (much of it

should still be on the screen) or begin again.

Set Sprite Color

The format to set a sprite's color is:

SYS CO,SN,color number

where color number ranges from 0 to 15. The default color of

sprite 0 is white, or color 1. Type in the following to change

sprite O's color to light red (color 10). You can find the color

numbers listed in the Commodore 64 User's Guide.

SYS CO,0,10

Set Sprite Size

One of the interesting features of sprites on the Commodore

64 is the ability to enlarge, both horizontally and vertically, a

sprite shape. To do this with the Sprite Control System, use

the following statements:

SYS WI,SN,0 to select normal width (default)

SYS WI,SN,1 to select double width

SYS HE,SN,0 to select normal height (default)

SYS HE,SN,1 to select double height

For instance, to expand sprite 0 to twice its normal width,

just type:

SYS WI,0,l

When you double the width of a sprite, the expansion al

ways occurs to the right. Doubling the height makes the sprite

expand downward. Let's expand the bunny's height as well

with this statement:

SYS HE,0,l

Set Sprite Position

Another vital part of sprite manipulation is its position. You

have a huge number of possible positions for any sprite—

62,400 to be exact. Placing a sprite at any of these locations

insures that at least part of the sprite will appear on the
screen.

To position a sprite, you'll use this format:

SYS

423

Chapter 14

where X and Y represent points on a coordinate system. This

system is the same as the one used for bitmapped graphics in

Part 2. Take a look at Figure 14-1 to see how the coordinates

are mapped out.

Figure 14-1. Sprite Position Coordinates

0,0 N

319,199

The coordinates you specify refer to the upper-left corner

of the sprite. For example, if a sprite is moved to the position

80,120, the upper-left pixel of the sprite appears at this po

sition. The rest of the definition is displayed below and to the

right of this location.

The default position of a sprite is 0,0, known as the home
position. Let's move sprite 0 out of the home position. To

move sprite 0 to the center of the screen, enter this statement.

SYS PO,0,160,100

Remember that the position refers to the upper-left corner of

the sprite. That's why the sprite may not seem to be actually

centered on the screen.

Type in this statement to move sprite 0 to the right edge

of the screen.

SYS PO/0,319-24/100

424

Chapter 14

The 24 was subtracted from the rightmost position to ac

count for the sprite width. If the X coordinate was 319, only

the leftmost edge of the sprite would be visible. But because

you earlier expanded the sprite horizontally, you still see only

part of the shape. Reduce the sprite to normal size by

entering:

SYS WI,0,0

and

SYS HE,0,0

Now the entire sprite should be visible. The rightmost edge of

the shape just fits on the screen.

This statement places sprite 0 in the lower-right corner of

the screen.

SYS PO,0,319-24,199-21

To make sure all the sprite stayed on the screen, 21 was

subtracted from the maximum Y coordinate. The numbers

which are subtracted need to be adjusted if the sprite is dis

played with double width or height.

Negative values or values greater than 319 or 199 may be

used to position a sprite so that it's partially off the screen.

When this is done, the part off the screen is covered by the

border.

SYS PO,0,-10,-10

You can even make the sprite disappear from the screen

display area altogether. This feature can be used to make a

sprite appear to vanish without actually disabling or turning

off the sprite. Try this:

SYS PCM),-10,-30

Now the bunny is completely hidden. You can bring it back

on the screen with something like:

SYS PO,0,160,100

All of the above SYS calls have dealt with a sprite's

appearance—how and where the sprite is displayed. The

following SYS calls deal with motion.

Set Sprite Direction

Moving the sprite is just as simple as placing it. The move

ment statement format is:

SYS DI,SN,direction number

425

Chapter 14

where direction number refers to one of the eight directions.

Figure 14-2 illustrates the directions and their numbers.

Figure 14-2. Sprite Direction Numbers

+- 2

Go ahead and enter this statement. Try several different

direction numbers. To make sprite 0 move up and to the left,

for instance, type:

SYS DI,0,7

You can change the direction at any time. To stop a

sprite's movement, use 0 for the direction number.

Select Wraparound or Bounce

You've already noticed that the screen edges act as boundaries

which limit a sprite's motion. When a sprite reaches one of

these boundaries, it stops moving.

You may elect instead to have the sprite wrap around to

the opposite side of the screen when it reaches a boundary. To

select the wraparound option, you'll use the following format:

SYS WR,SN,1

Thus, to select the wraparound option for sprite 0, you'd

use:

SYS WR,0,l

Sprite 0 will now move continuously, as long as the direction

set by SYS DI is a value from 1 to 8.

426

Chapter 14

The wraparound option is turned off by:

SYS WR,SN,0

Another boundary option is bounce. With this option se

lected, a sprite reverses direction whenever it hits a boundary.

This was used in Program 12-3, "DEMO#1."

Turning on the bounce option requires this format:

SYS BO,SN,1

Selecting bounce for sprite 0 just needs:

SYS BO,0,1

Bounce is turned off by:

SYS BO,SN,0

The wraparound and bounce options cannot be used at

the same time. Turning on one turns off the other.

For the next few examples, the sprite needs to continue

moving, so leave the bounce option turned on.

Set Sprite Speed

When a sprite's direction is other than 0, it appears to move

because its position is changed at regular intervals. This inter

val is called a frame and lasts 1/60 second (1/50 second on

European Commodore 64s). A value is added to either or both

of the sprite's coordinates each frame, depending on the cur

rent direction.

If this value is 1, the sprite moves one position every

frame. If the value is larger, the sprite moves several positions

each frame so that it appears to move faster. To control the

speed of a sprite, then, all you have to do is specify how far it
should be moved each frame.

To set the speed of a sprite, you'll use this format:

SYS MO,SN,delta X,delta Y

The delta values are the offsets added to the position co

ordinates each frame, and can range from 0 to 7. The larger

the delta value, the further the sprite moves in that direction
each frame, so the faster it appears to move.

The default values are 2 for delta X and 1 for delta Y. To
see sprite 0 move a little faster, enter:

SYS MO,0,3,3

A sprite can move extremely fast. Enter this statement to
see sprite 0 move at top speed.

427

Chapter 14

SYS MO,0,7,7

It's almost out of control!

A delta value of 0 prevents a sprite from moving in the

corresponding direction. Let's try it out. The next statement

sets the delta Y value at 0, so the sprite never moves verti

cally, no matter which direction number is used. All the sprite

does is bounce back and forth across the screen.

SYS MO,0,3,0

Slow the sprite down by typing:

SYS MO,0,1,1

This is pretty slow, but for some applications this speed

may still not be slow enough. To make the speed even slower,

add a ,2 to the end of the SYS MO statement. This selects the

half-speed option.

SYS MO,0,U4

When the half-speed option is in effect, a sprite moves

every other frame. For the best results, use this option only

with delta X and delta Y set to 1. Motion appears too jerky

when other delta values are used.

To return to normal speed, either remove the ,1 or change

it to 0.

SYS MO,0,14

or

SYS MO,0,1,1,0

Though it might be easier to remember the variable name

SP (for SPeed), that variable is already used for tape and disk
I/O SYS calls. The variable name MO, representing MOtion,

is used instead.

Set Sprite Boundaries

The movement boundaries are normally set at the screen

edges, but they can be changed. To modify a boundary, use

one of these SYS statement formats.

SYS Call Boundary

SYS LB,SN,X Left

SYS RB,SN,X Right

SYS TB,SN,Y Top

SYS BB,SN,Y Bottom

428

Chapter 14

X and Y refer to the normal coordinate locations. If you

wanted to move the top boundary for sprite 0 down to the

middle of the screen, for example, you could use:

SYS TB,0,100

Sprite 0 is now confined to the bottom half of the screen.

The default values for the boundaries are:

Boundary Default Values

Left 0

Right 295 (319-24)

Top 0

Bottom 178 (199-21)

As with the SYS PO statement, values are subtracted to

take into consideration a sprite's width or height. These values

may have to be adjusted in some cases. Negative boundary

values are also allowed.

Remove Sprite Control System

To turn off sprite graphics and remove the Sprite Control Sys

tem from the raster scan interrupt processing, simply enter:

SYS RE

This call undoes everything done by the SYS IN. Tape

and disk I/O will not work properly when the Sprite Control

System is installed, so you must remember to remove the sys

tem when you've finished using sprites. Once the Control Sys

tem has been removed, it can be reinstalled by using SYS IN

again.

The SYS RE should be done only after the Control Sys

tem has been installed, and should not be done a second time

unless the system is installed again.

Hitting RUN/STOP-RESTORE also removes the Sprite

Control System. If you hit this key combination, you must re

install the Control System in order for motion to work.

Review

Here's a quick review of the whole procedure. You might find
this checklist useful as a reminder once you're actually trying
to place the SYS calls in your own program.

1. Make sure the lines from the SCS.BAS file (Program 12-1)
are included as part of your BASIC program.

2. Assign variables and load the SCS.OBJ file and a definition
file.

429

Chapter 14

DN=8:SA=780:SX=781:SY=782:SP=783

GOSUB 58000

F$=/*/emime:LA==16384:GOSUB 58500

3. Install the Sprite Control System as part of regular interrupt

processing and define a block with a definition from the

definition file.

SYSIN

SYS D¥,block number,definition number

4. Use the following SYS calls, in any order, to make a sprite

appear and to set its color, size, position, direction, speed,

boundaries, and boundary options.

Appear—SYS BL,SN,block number

Color—SYS CO,SN,color number

Width—SYS VHSN,width number

Height—SYS HE,SN,height number

Position—SYS PO,SN,X,Y

Direction—SYS Dl,SN,direction number

Wraparound—SYS WR,SN,wraparound on/off

Bounce—SYS BO,SN,bounce on/off

Speed—SYS MO,SN,delta X,delta Y (,1 for half speed)

Boundaries—SYS LB,SN,X; SYS RB,SN,X; SYS TB,SN,Y; SYS

BB,SN,Y

It's suggested that you set values for color, size, and po

sition before using SYS BL to make the sprite appear.

5. Remove the Sprite Control System when you are finished

using sprites.

SYS RE

The procedure is really very simple. Only the description is

long.

Errors

Some errors in SYS calls are detected. If you forget one of the
required parameters, BASIC will report a SYNTAX ERROR.
This also occurs if you try to use SYS DF before loading a

definition file.
The ILLEGAL QUANTITY error may occur when a value

is out of range. Using a sprite number out of the range 0-7 is

one way of causing this error.

Multiple Sprites
Now that you've seen how to animate one sprite, let's see how

easy it is to animate several.

430

Chapter 14

Begin by reinstalling the Sprite Control System with:

SYSIN

The machine language routines and the definition file

should still be in memory, which is why you don't need to

load them again. In fact, block 255 should still be defined, so

you can skip ahead and assign block 255 to sprite 0 to make

the sprite appear.

SYS BL,0,255

The SYS IN resets all the default values, which is why the

sprite appeared back in the upper-left corner, normal sized,

and in white.

Set the sprite so that it moves continuously.

SYS DI,0,3:SYS BO,0,1

Though this is the first time you've put two SYS statements

on one line, remember that it's always allowed, whether

you're in program or immediate mode. Just separate the state

ments with the usual colon (:).

Now make sprite 1 appear:

SYS BL,1,255

and make it move continuously.

SYS DI,1,3:SYS BO,1,1

How about the rest?

FOR SN=2 TO 7:SYS BL,SN,255:SYS DI,SN,3:SYS BO,SN,1:NEXT

Wasn't that easy?

Take the time now to experiment with multiple sprites.

When you're done, remember to remove the Control System.

SYS RE

What you've just done in the immediate mode can also be

done in a program. It would be a good idea to go back and

look at the listing of Program 12-3, "DEMO#1." You should

now be able to understand everything that happens in the

program. You may also want to run the program several

times, changing some of the statements and adding new ones

each time. One suggestion is to change the size of the sprites.

If you do this, you will also need to change the right and bot
tom boundaries. Experiment with the Sprite Control System.
The more you play with it, the more familiar you'll become
with its powerful features and abilities.

431

Chapter 15

SCS Advanced Features

There's more to the Sprite Control System than just position

ing and moving sprites. What you saw demonstrated in Chap

ter 14 isn't all the Control System can do. Various advanced

features, including vital elements like joystick control and

automatic shape changing, are also available. As always, the

best way to learn how these features work, and how to work

them yourself, is through example. Let's take a look at the ad

vanced capabilities of the Sprite Control System.

Available Definition Blocks

A definition block must be assigned to a sprite so that it can

display a shape. As you saw both in Chapter 12 and in Chap

ter 14, all eight sprites can use the same definition block.

(Remember the bunnies?) But if you want each sprite to dis

play a different shape, each requires a different definition

block. To do this, more blocks are needed.

There are 256 definition blocks, numbered 0-255. This

would seem to be enough. The only problem is that many of

these blocks are not available. Some are located in memory

that's needed by the Commodore 64 Kernal or by BASIC.

Others are located in memory which holds the current BASIC

program. The remaining, located in BASIC free memory, are

the ones safe to use.

Since the amount of free memory changes according to

the size of the current BASIC program, the number of avail

able blocks may vary. Higher numbered blocks are usually

available, but lower numbered ones are not.

To find out exactly which are available, execute the

following line anytime after most of the variables have been

assigned and all arrays have been dimensioned.

PRINT INT((PEEK(49)+256*PEEK(50))/64)+16

This will tell you the number of the lowest block that can

be used. All blocks from this number through block 255

should be available for use.

You'll probably never run out of definition blocks. A typi

cal application may need 20, or at most 30, blocks. In Program
12-3, "DEMO#1," for instance, only one block is used, but the

program is so short that blocks 81-255 are available. Program

433

Chapter 15

12-5, //DEMO#2// is a little longer, but with blocks 96-255

available, there are still more than enough. The only time

when you should be concerned about available blocks is when

your program starts to get larger than 8K.

Just to be safe, it's a good idea to always work from the

top down. If you need only 1 block, use block 255. If you

need 5 blocks, use blocks 251-255. Or, if you need 16 blocks,

use blocks 240-255.

A quick and easy way to define several blocks at once is

to use a FOR-NEXT loop. If a definition file contains 16 defi

nitions, a line like this copies them in order to 16 blocks.

FOR K=0 TO 15:SYS DF,240+K,K:NEXT

Block 240 gets definition 0, block 241 gets definition 1, and

so on.

To assign one of these blocks to a sprite, just use the

corresponding block number in the SYS BL call (see Chapter

14 for a description of this SYS statement). Here's how you

would assign block 247 to sprite 5:

SYS BL,247,5

The block assigned to a sprite can be changed at any

time. That's often how animation is done with sprites. When

you have several blocks defined in a sequence, you can simply

cycle through them. The second sprite in Program 12-5 alter

nated between two shapes like this. A bird could be made to

fly by cycling through several sprite definition blocks, each

showing the bird with its wings in a slightly different position.

Automatic Shape Changing

When a sprite moves in different directions, it makes the

movement more realistic if the sprite displays a different shape

for each direction. The autoshape feature can do this shape

changing for you automatically.

To show how to use this feature, let's start with a sprite

that can move in all eight directions. Eight definition blocks

are needed, one for each direction. These blocks must be

consecutive, and they must be defined in a particular order.

This order is:

Block Definition

Base+0

Base+1

Base+2

Direction

Left

Right

Up

434

Chapter 15

Base+3 Down

Base+4 Up and left

Base+5 Up and right

Base+6 Down and left

Base+7 Down and right

The number of the first block being used is called the

Base, so if blocks 240-247 are being used, block 240 must con

tain the definition for left, block 241 must contain the defi

nition for right, and so on.

To turn on the autoshape feature, use the following state

ment format (in program or immediate mode).

SYS AU,SN,direction code,base block number

Direction code specifies whether two, four, or eight direc

tions are to be supported. The values 2, 4, or 8 indicate the

number. In the example above, eight directions are supported,

and the base block number is 240, so the SYS statement

would look like this:

SYS AU,SN,8,240

The sprite shape will now automatically change to reflect

the direction in which it's moving.

The autoshape feature does not always have to work with

all eight directions. Only two directions, left and right, may be

supported. The direction code for this is 2, and the order in

which the blocks must be defined is:

Block Definition Direction

Base+0 Left

Base+1 Right

To enable the autoshape feature using only these two

directions (and assuming the Base is still block definition 240),

you'd enter:

SYS AU,SN,2,240

Now, whenever the sprite moves in a leftward direction,

whether it's left, up and left, or down and left, the shape for

left displays. The shape for right appears when the sprite

moves rightward. If the sprite moves straight up or down, the

shape does not change from its previous shape.

To support only the four cardinal directions, use 4 for the

direction code and define the blocks like this:

435

Chapter 15

Block Definition

Base+0

Base+1

Base+2

Base+3

Direction

Left

Right

Up

Down

One other arrangement that's supported is two directions,

up and down. The direction code for this arrangement is 6,

and the blocks must be defined in this order:

Block Definition Direction

Base+0 Up

Base+1 Down

Each of these four arrangements supports a centering op

tion. With centering, one additional block is specified which is

displayed by the sprite only when the sprite isn't moving.

To select centering, add 1 to the direction code, and put

the centered definition in the last block. For example, to sup

port eight directions with centering, the direction code would

be 9 and block BASE+8 would hold the definition used when

the sprite stops moving.

For reference, look to the following two tables.

Direction Directions

Code

2 Horizontal directions only

4 Four cardinal directions only

6 Vertical directions only

8 All eight directions

To support no motion (centering), add 1 to the direction code.

Direction Order of Blocks

Code

2 Left, right

3 Left, right, center

4 Left, right, up, down

5 Left, right, up, down, center

6 Up, down

7 Up, down, center

8 Left, right, up, down, up left, up right, down left, down

right

9 Left, right, up, down, up left, up right, down left, down

right, center

The autoshape feature is turned off with:

SYS AU,SN,0

436

Chapter 15

Multicolor Mode

When a sprite is displayed in multicolor mode, it can consist

of three different colors. The trade-off is that the sprite's hori

zontal resolution is reduced from 24 to 12 pixels. (For help in

creating multicolored sprites, take a look at the Sprite Editor in

Chapter 13.)

To turn the multicolor mode on or off, use these

statements:

SYS MU,SN,0 Turn off multicolor mode (default)

SYS MU,SN,1 Turn on multicolor mode

The sprite's main color, the one displayed when the

multicolor mode is turned off, is used as the first of the three

colors. To set the additional colors, use the following variation

of the SYS CO format:

SYS CO,SN,first color,second color,third color

Any combination of sprites may select the multicolor

mode. When two or more are displayed in multicolor mode,

however, there's one restriction. All sprites in multicolor mode

must share the same second and third colors. If you change the

second and third colors on one sprite, those colors will change

on all the other sprites displayed in multicolor mode.

Each sprite has its own default color, the color which it

shows if it's not changed.

Sprite

0

1

2

3

4

5

6

7

Color

1 (White)

2 (Red)

3 (Cyan)

4 (Purple)

5 (Green)

6 (Blue)

7 (Yellow)

12 (Medium Gray)

When in multicolor mode, the second and third colors

also have default settings. Normally, the second color is 4

(purple) and the third colcpr is 0 (black).

Priority

Sprites are completely independent of the normal screen dis

play, and except for sharing colors in multicolor mode, they're

independent of each other. This independence is handy, be

cause it lets you use several sprites on one screen, and it lets

437

Chapter 15

you use sprites along with text or bitmapped graphics.

The only time that this causes a problem is when a sprite

is positioned at the same location as another sprite or other

screen information. What happens when two sprites are placed

so that they partially overlap? The sprites' colors don't blend

together—only one sprite is displayed in the overlapped area.

But which one?

This is where priority is important. It establishes which

sprite will appear in front of other sprites, or whether a sprite

seems to be in front of, or behind, other screen displays. Sprite

priority is fixed; lower numbered sprites always have priority

over higher numbered sprites whenever they overlap. If, for

instance, sprites 2 and 3 overlap, only sprite 2 will be dis

played in the overlapped area. In other words, sprite 2 appears

to be in front of sprite 3. Sprite 0 always seems to be in front

of all the other sprites; sprite 7 always appears behind the

others.

Priority over normal screen information, however, can be

individually set for each sprite. A sprite can be made to appear

in front of or behind text characters and bitmapped graphics.

To set this priority, use one of the following statements:

SYS PR,SN,0 Make sprite appear in front of screen data (default)

SYS PR,SN,1 Make sprite appear behind screen data

Sprites always appear in front of screen data displayed by

the multicolor mode bit pair 01, regardless of how the priority

is set. If multicolor bitmapped graphics is used (modes 1, 3, 5,

and 7 in Part 2), sprites will always appear in front of points

displayed by the bit pair 01 (those points drawn with pen 1).

Priority can be used to add the illusion of depth to a

screen for three-dimensional effects. Program 12-7,

"DEMO#3," was a good example.

Joystick Control

Up to now, the direction of a moving sprite has been set in the

immediate mode or in a program by the SYS DI call. With the

Sprite Control System, a sprite's motion can also be controlled

by a joystick. This is the general form of the statement to

switch from program control to joystick control.

SYS JS,SN,joystick port number

Thus, to make sprite 0 move under control of a joystick

plugged into port 2, you'd use:

438

Chapter 15

SYS JS,0,2

Sprite 0 now moves in the same direction that the joystick

is pushed. The sprite will not move when the joystick is not

being pushed.

Speed. When a sprite is being moved by a joystick, its

speed is still controlled by the delta values. The following

statement makes sprite 0 move very quickly whenever the joy

stick is pushed.

SYS MO,0,5,5

For slow movement, use this statement.

SYS MO,0,14

In other words, simply use the usual SYS MO call, as you

did earlier for setting sprite speed under program control.

Note that you don't have to set the speed with a SYS MO,

since the default values are 2 for delta X and 1 for delta Y.

However, if you want a different speed, do use the SYS MO.

Limiting directions. If you want a sprite to move in only

two directions, set one of the delta values to 0. In this line, the

delta Y value is 0, so sprite 0 won't move up or down even

when the joystick is pushed in those directions.

SYS MO,0,3,0

How about limiting the sprite's movement to up and

down? It's just as simple—set the delta X value to 0, as in:

SYS

(Reset the delta X value by entering SYS MO,0,2,1 before go
ing on.)

To limit a sprite's movements to just the four cardinal

directions, you can use a special option of the SYS JS call. If a
,1 is added to the end of the call, the diagonal directions of the
joystick will be ignored. This is what the format should look
like:

SYS JS,SN,joystick number,1 (Allows only four directions)

An interesting effect is to force the sprite to continue to
move, even when the joystick isn't being pushed. With the

Sprite Control System, this effect is just a matter of adding ,2
to the end of the SYS JS call. When this is used, the sprite will
keep moving in the last direction the joystick was pushed. It's
sort of a "momentum" effect.

SYS JS,SN,joystick number,! (Turn on momentum)

439

Chapter 15

Both of these options may be used at the same time. Just

add the 1 and 2 together.

SYS JS,SN,joystick number,3 (Select both four directions and

momentum)

To turn off these options, simply omit the additional value

after the joystick number, or use 0.

SYS]S,SN,joystick number

or

SYS JS,SN,joystick number,0

Port 1. You used port 2 in all the previous examples, but

port 1 can also be used. In fact, you can have one sprite con

trolled by a joystick in port 2, while another is controlled by a

joystick plugged into port 1. This feature is vital for two-player

games.

Keep in mind, however, that if you experiment with joy

stick control in the immediate mode, use only port 2. Be care

ful not to push the joystick while you're typing. The keyboard

and the joystick ports can interfere with each other, and using

both at the same time causes the wrong keys to be read.

This interference between the keyboard and joystick ports

is even worse when port 1 is used. Pushing a joystick plugged

into this port makes the computer think that keys are being

pressed. It's okay to use port 1 in a program as long as that

program doesn't require input from the keyboard. At the end

of the program, use the following POKE statement to clear the

keyboard buffer:

POKE 198,0

Back to program control. To take a sprite off joystick con

trol and return it to program control, use:

SYSJS,SN,0

The sprite will continue moving in the current direction.

For example, if the joystick is being pushed to the left when
motion returns to program control, the sprite will continue to

move to the left until its direction is changed by a SYS DI call.

Chase Mode
One more way to make a sprite move is to have it chase after

another sprite. The Sprite Control System includes a SYS call
format which allows you to do this. It looks like:

440

Chapter 15

SYS CH,SN,number of sprite to chase

To make sprite 2 chase sprite 6, for example, you could

use:

SYS CH,2,6

Sprite 2 will always move in the same direction as sprite

6, and will stop moving only when it's at the same position as

sprite 6.

If a sprite in chase mode has delta values greater than 1,

it may appear to jiggle when it stops moving. Try using dif

ferent delta values and starting positions for both sprites to

eliminate this problem.

Selecting the chase mode for a sprite turns off its program

or joystick control. To disable the chase mode and return the

sprite to program control, enter (either in program or immedi

ate mode):

SYS JS,SN,0

Synchronized Sprite Motion

Sometimes it's useful to make two or more sprites move to

gether. One application of this is to create objects made up of

more than one sprite, as was done in Program 12-7,

//DEM0#3."

The only problem with this is getting the sprites to start

moving at the same time. If two sprites are to move together,

for example, a SYS DI must be executed for each one. But after

the SYS DI is executed for the first sprite, that sprite may start

moving before the. second SYS DI can be executed.

To solve this problem, the Control System provides a

method for stopping and starting the motion of any or all

sprites, all at the same time. To freeze one or more sprites, use

the following SYS format:

SYS HR,sprite number total

To calculate the sprite number total, first decide which

sprites you want to have stopped. Look at the numbers in the

chart below which correspond to these sprites, and add the

numbers together.

441

Chapter 15

Sprite
n
u

i

2

3

4

5

6

7

Number
1
j.

2

4

8

16

32

64

128

Freezing sprites 2 and 3 requires this line:

SYS FR,4+8

or

SYS FR,12

Once the motion of these sprites is stopped, any values,

such as position, direction, and speed, can be set without the

sprites going anywhere. After the desired values have been

set, the sprites can be unfrozen with:

SYS UN,sprite number total

To unfreeze sprites 2 and 3, you'd use:

SYS UN,12

Both sprites will now start moving, with the new motion val

ues in effect.

This feature helps you get sprites traveling together, but if

you want several sprites to move side by side, a couple of

other things must be done. First, the boundaries for the dif

ferent sprites must be set differently. Let's say you want two

sprites to move together. One displays the left half of an ob

ject, the other displays the right half. Each sprite is defined as

a full 24 pixels wide. Here are the left and right boundaries

that should be used.

Left sprite

Left boundary: 0

Right boundary: 319-24-24

Right sprite

Left boundary: 0+ 24

Right boundary: 319-24

All these boundary settings do is limit the movement of

each sprite. The leftmost sprite can go all the way to the left

edge, but it can only move as far right as position 271. It's

442

Chapter 15

prevented from overlapping any of the rightmost sprite.

You must experiment to find combinations of starting po

sitions and delta values which allow the sprites to stay syn

chronized. With some delta values, for example, synchronized

sprites will be separated when they hit a boundary.

Another application of synchronized sprite motion is to

display several sprites at one position, to get an overlay effect

for color. Perhaps you want more colors than available with

multicolor mode, or you want several colors without reducing

the horizontal resolution from 24 to 12 pixels. Since the sprites

should all start at the same position, any position can be used,

and the boundaries would be the same for each sprite.

Enable/Disable

The display of a sprite can be turned off or on.

SYS EN,SN,0 Disable (default)

SYS EN,SN,1 Enable

When a sprite is disabled, it can continue to move, change

shape, and so on. It just isn't displayed.

All sprites are initially disabled. The SYS BL call enables a

sprite when it assigns a block number.

Disabling a sprite is an easy way (even easier than placing

the sprite off the screen) to make a sprite disappear. Other

than that, this SYS call has very few uses.

443

Chapter 16

Miscellaneous Topics

Although you've seen how to use the Sprite Control System,

from simple sprite movement to advanced synchronized

sprites, there's still more you can do. This chapter presents

two utility programs and gives additional tips on how to use

the Sprite Control System in your own BASIC programs.

Some of these tips, hints, and techniques are quite sophis

ticated, like relocating the Control System or relocating screen

memory. Others are much simpler, such as detecting sprite-to-

sprite collisions or protecting free memory. You'll even see

how to use all three major utilities included in this book

together.

The Merge Utility

Once in a while you may want to add the definitions in one

file to those in another. Program 16-1, "Merge," lets you com

bine two or more sprite definition files to create one larger file.

It's simple to use and can save you considerable redefining.

With Merge, you can combine as many definition files (which

you create with the Sprite Editor) as you want.

As with almost all other programs in this book, make sure

you change the DN=8 to DN=1 if you're using tape. That

variable value is assigned in line 110.

Program 16*L Merge

For error-free program entry, be sure to use "The Automatic Proofreader/' Appendix D.

100 PRINT CHR$(147):PRINT H SPRITE DEFINITION MERG

E UTILITY" jrem 123

105 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 69

110 DN=8:SA=780:SX=781:SY=782:SP=783:REM DN=1 FOR

{SPACE}TAPE :rem 180

120 DEF FNDP(N)=PEEK(N)+256*PEEK(N+1):BA=FNDP(49)+

1000 :rem 8

130 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*FNH(N)
:rem 243

300 F$="":INPUT "{YEL} LOAD FILENAME^!" ;F$:IF F$=

"" OR LEN(F$)>12 GOTO 300 :rem 38
310 LA=BA:GOSUB 630:NS=PEEK(BA):PRINT " LOADED DEF

INITIONS 0 TO" NS srem 169
400 EA=FNDP(SX):PRINT srem 66
410 F$="":INPUT "{YEL} APPEND FILENAME!7I";F$:IF L

EN(F$)>12 GOTO 410 *rem 54

445

Chapter 16

420 IF F$="" THEN PRINT:GOTO 500 :rem 212

430 LA=EA-1:P=PEEK(LA):GOSUB 630:PRINT " APPENDED

{SPACE}DEFINITIONS" NS+1 "TO"; :rem 9

440 NS=NS+PEEK(LA)+1:PRINT NS:POKE LA,P:IF NS<256

{SPACE}GOTO 400 :rem 139

450 PRINT " ERROR: TOO MANY DEFINITIONS":END

:rem 162

500 F$="":INPUT "{YEL} SAVE FILENAME!73";F$:IF F$=

"" OR LEN(F$)>12 GOTO 500 :rem 57

510 POKE BA,NS:GOSUB 600:POKE SA,251:POKE 251,FNL(

BA):POKE 252,FNH(BA) :rem 229

520 POKE SX,FNL(EA):POKE SY,FNH(EA):SYS 65496:IF P

EEK(SP)AND1 GOTO 700 :rem 69

530 PRINT " SAVED" EA-BA "BYTES":END :rem 238

600 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".DEF" :rem 187

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

620 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 159

630 GOSUB 600:POKE SA,0:POKE SX,FNL(LA):POKE SY,FN

H(LA) :rem 1

640 SYS 65493:IF PEEK(SP)AND1 GOTO 700 :rem 90

650 RETURN :rem 123

700 P=PEEK(SA):PRINT " ERROR:";:IF P=4 THEN PRINT

{SPACE}"FILE NOT FOUND":END :rem 96

710 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 188

720 PRINT ST:END :rem 222

When you run this program, it first asks for the name of a

file to load. Enter the name of the first file (you don't have to

type in the .DEF suffix placed on the end of the filename by

the Editor) and wait a few moments.

Next, you'll need to enter the name of the file to be ap

pended to the end of the file just loaded. After you type in the

name of the second file, it loads, then is added to the end of

the first file. Merge requests the name of another file to ap

pend. You can combine several if necessary.

When you're through appending files, just press RETURN

instead of entering another filename. The program asks for

one last filename—the one used to name the composite file.
After that's typed in, the merged definitions are saved to tape
or disk as a new file.

You can even use Merge as a quick and easy way to copy
a definition file from disk to disk or tape to tape. Just run

446

Chapter 16

Merge, load the file to be moved, append nothing, and save

the file out to the new disk or tape.

Merge can also be used to copy a definition file from tape

to disk or from disk to tape. To copy from tape to disk, assign

the value 1 to the variable DN in line 110, and insert the

statement DN=8 at the beginning of line 510. A file can then

be transferred by loading the file, appending nothing, and

then saving the file to disk. To copy from disk to tape, just

switch the order of the numbers so that DN=8 appears in line

110 and DN=1 in line 510.

To keep things straight, refer to the short table below for

the modifications you need to make to Merge for this kind of

file copy/transfer process.

Copy Direction Line 110 Line 510

Tape to Disk DN=1 DN=8

Disk to Tape DN=8 DN=1

The Extract Utility

Instead of merging several files together into one, Program 16-

2, "Extract," does just the opposite. It pulls a sequence of defi

nitions from a definition file. The extracted definitions are then

saved as a new file. A major use of this utility is to break a

definition file into two parts.

Make sure to change the DN=8 in line 110 to DN=1 if

you're using tape.

Program 16-2. Extract

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " DEFINITION EXTRACTION

{SPACE}UTILITY" :rem 53
105 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 69

110 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 133

120 DEF FNH(N)=INT(N/256):DEF FNL(N)=N-256*FNH(N):

LA=PEEK(49)+256*PEEK(50)+1000 :rem 146

300 F$="":INPUT " LOAD FILENAME";F$:IF F$="" OR LE

N(F$)>12 GOTO 300 :rem 238

310 GOSUB 600.-POKE SA,0:POKE SX,FNL(LA) :POKE SY,FN

H(LA) :rem 252

320 SYS 65493:IF PEEK(SP)AND1 GOTO 700 :rem 85

330 NS=PEEK(LA):PRINT " LOADED DEFINITIONS 0 TO" N

S:PRINT :rem 162

400 FD=-1:INPUT " NUMBER OF FIRST DEFINITION";FD:I

F FD<0 OR FD>NS GOTO 400 :rem 241

447

Chapter 16

410 FA=LA+1:IF FD THEN FOR K=l TO FD:FA=FA+PEEK(FA

)+l:NEXT :rem 19

420 PRINT :rem 35

450 LD=-1:INPUT M NUMBER OF LAST{2 SPACESJDEFINITI

ONM;LD:IF LD<FD OR LD>NS GOTO 450 :rem 25

460 EA=FA:FOR K=0 TO LD-FD:EA=EA+PEEK(EA)+1:NEXT:P

RINT :rem 237

500 F$="":INPUT " SAVE FILENAME11 ;F$: IF F$=IIM OR LE

N(F$)>12 GOTO 500 :rem 1

510 FA=FA-1:POKE FA,LD-FD:GOSUB 600 :rem 242

520 POKE SA,251:POKE 251,FNL(FA):POKE 252,FNH(FA)

:rem 229

530 POKE SX,FNL(EA):POKE SY#FNH(EA) :rem 73

540 SYS 65496:IF PEEK(SP)AND1 GOTO 700 :rem 92

550 PRINT " SAVED" EA-FA "BYTES":END :rem 244

600 PRINT:POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466

:F$=F$+".DEF" :rem 187

610 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)):

NEXT :rem 241

620 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 65469

:RETURN :rem 159

700 P=PEEK(SA):PRINT " ERROR:";:IF P=4 THEN PRINT

{SPACE}"FILE NOT FOUND":END :rem 96
710 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END

:rem 188

720 PRINT ST:END :rem 222

Once you run Extract, you're asked for the name of the

file which contains the definitions to be extracted. Enter the

filename and wait for the file to load.

The next two prompts ask for the numbers of the first and

last definitions in the sequence that you want to pull out of

this file. Type in the appropriate numbers.

Finally, the program requests a filename to use in saving

the extracted definitions. After you enter the filename, the pro

gram saves the specified range of definitions as a new file. The

original file has not been changed, however. The definitions

you extracted are still there.

To completely break up a definition file, then, you have

to perform two extractions. If the original file contains defi

nitions 0-5, for instance, and you want two three-definition

files, first extract definitions 0-2, save those to a new filename,

then extract definitions 3-5, saving them out under a different

name. Then, if you want, you can scratch the original file from

disk or overwrite it on tape.

448

Chapter 16

Sprite-toSprite Collisions

In games it's often necessary to know when a sprite has col

lided with another sprite or some other screen data. There's an

easy way, using a PEEK and the AND operator, to tell if a

sprite has been involved in a collision.

Location 53278 is a hardware location in the VIC-II chip.

The eight bits in this location, one for each sprite, are nor

mally clear (0). When two sprites overlap, a collision is said to

occur, and the bits in location 53278 which correspond to the

colliding sprites are set to 1. The bits remain set even after the

sprites stop overlapping. To determine if a particular sprite has

been involved in a collision, all a BASIC program has to do is

PEEK location 53278 and examine the appropriate bit.

The general procedure is to PEEK the location, assign the

value to a variable, and then use the variable with the AND

operator and sprite numbers to check individual bits. Some

thing like this:

P=PEEK(53278):IF P AND N THEN sprite was involved in

collision

The value for N, the bit value, is determined from the table

below. (This is the same table used for freezing and unfreez

ing sprites.)

Sprite Number

0

1

2

3

4

5

6

7

1

2

4

8

16

32

64

128

For example, the numbers which correspond to sprites 2

and 3 are 4 and 8, respectively.

100 P=PEEK(53278)

110 IF P AND 4 THEN sprite 2 collided

120 IF P AND 8 THEN sprite 3 collided

Actual program statements would be placed after each

THEN. In the example below, execution jumps to line 300 if

sprite 5 is involved in a collision.

100 P=PEEK(53278):IF P AND 32 THEN 300

449

Chapter 16

The bits in location 53278 are cleared after the location is

PEEKed so that new collisions can be detected. So far, the

PEEKed value has been assigned to a variable so that it can be

checked for multiple collisions. If you're going to be watching

only one sprite to see when it collides, however, you can

eliminate the variable assignment.

100 IF PEEK(53278) AND 32 THEN 300

If you don't care which sprite is involved in a collision,

and only need to detect when any sprite collision occurs, the

AND operation can also be eliminated. This is the method

used in Program 12-5, "DEMO#2."

100 IF PEEK(53278) THEN 300

It's important to understand that location 53278 tells you

only which sprites were involved in collisions. It does not tell

you which sprite collided with which. For example, if location

53278 reports that sprites 1, 2, 3, and 4 have all been involved

in collisions since the last time the location was PEEKed, sev

eral combinations of collisions are possible. Perhaps sprite 1

collided with sprite 2, and sprite 3 collided with sprite 4.

Maybe it was sprites 1 and 3 and sprites 2 and 4. Or maybe

sprites 1 and 4 collided, and sprites 2 and 3 collided. Another

possibility is that all four sprites collided with each other.

The only way to determine which sprites hit is to com

pare their positions. A method for doing this is discussed a bit

later.

Sprite-toScreen-Data Collisions

Location 53278 only reports sprite-to-sprite collisions, in

which one sprite hits one or more other sprites. To check if a

sprite has overlapped any screen data, such as characters or

bitmapped graphics, use the same technique with location 53279.

P=PEEK(53279):IF P AND N THEN sprite hit screen data

To check, for example, if sprite 6 hit a character-drawn barrier,

use a line like the following.

P=PEEK(53279):IF P AND 64 THEN 500

As with priority, the multicolor bit pair 01 is a special

exception. No collision is detected when a sprite overlaps any

thing displayed by the bit pair 01 in character or bitmapped

graphics mode.

450

Chapter 16

POKEing and PEEKing

You were earlier promised that you would be able to animate

sprites with the Control System without having to use a single

POKE statement. That promise has been kept. But you can still

use POKE statements if you want to. For instance, location

53287 holds the color for sprite 0. To change this color you

can use either of the following two statements:

SYS CO,0,color number

or

POKE 53287,color number

Both statements do the same thing. Other sprite

characteristics, such as size and position, can also be set by

POKE statements. In most cases, however, the SYS calls in the

Sprite Control System are more convenient to use.

On the other hand, it can be very useful to PEEK hard

ware locations which control sprites. This lets you determine

things like current color or position. The following statements,

for example, return the current coordinates of a sprite.

X=PEEK(53248+2*SN)+256*SGN(PEEK(53264)AND2TSN)-24

Y=PEEK(53249+2*SN)-50

Reading Definitions from DATA

As mentioned earlier, definitions can be stored as data in a

program so that you have one less file to load whenever you

run a program using sprites. The procedure is very simple.

First, use the Data feature in the Sprite Editor to convert

the definitions to DATA statements. Then use Program E-l,

"Merge Utility," found in Appendix E to merge the DATA

statements with your program.

The last step is to replace the call to the definition loading

subroutine at 58500 (line 58500 is part of "SCS.BAS," the

BASIC file you must include as part of your own program

when you want to use the Sprite Control System) with a call

to the subroutine at 58400. This subroutine reads the defi

nitions into memory instead of loading them from tape or

disk.

Before you call the subroutine at 58500, you have to spec

ify a filename and a loading address. But with the subroutine

at 58400, only the loading address has to be set. In your own

program, the line would probably look like:

451

Chapter 16

LA=16384:GOSUB 58400:REM READ DEFINITIONS

The data for the bunny shape definition is already included in

Program 12-3, "DEMO#1." To see how the subroutine at

58400 works, just modify line 140 in Program 12-3 to:

140 LA=16384:GOSUB 58400:REM READ DEFINITIONS

Run the program and you'll see the same end result. No

tice, however, that if you're using tape, you have to load only

one additional file, "SCS.OBJ," not two as you did before.

Reading definitions from DATA is especially efficient when

you have to use tape.

When using this method, be careful if the program con

tains DATA statements for other purposes.

One drawback to using this method is that DATA state

ments make a program grow quickly. For large definition files,

then, this method is impractical.

Protecting Free Memory

No matter which technique is used to load definitions, they

end up stored in free memory. This presents no problem un

less your program uses string variables. Free memory is used

when strings are assigned. If your program assigns string vari

ables, you should periodically call the free memory function to

reorganize free memory.

K=FRE(0)

Relocating Screen Memory

You'll remember that the number of the lowest definition

block available can be determined by the expression

INT((PEEK(49)+256*PEEK(50))/64)+16. If the value of this

expression is greater than 255, you have a small problem. It

means there are no definition blocks available. This can hap

pen when your BASIC program is larger than 8K.

There is a way to get around this problem. It's a bit in

volved, but by following the instructions below, you shouldn't

have any trouble.

What you'll do is use a different bank of memory for defi

nition blocks. The Commodore 64's memory is divided into

four sections, called banks. Each bank consists of 16K bytes,

which is enough for 256 definition blocks. The default bank

when you turn the computer on is bank 0. When there is no

452

Chapter 16

room in this bank for definition blocks, you can switch to

bank 1, 2, or 3 instead.

Bank Memory Locations

0 0-16383

1 16384-32767

2 32768-49151

3 49152-65535

The only difficulty with using another bank is that screen

memory must be located in the same bank used for definition

blocks. If you switch to bank 2, for example, you must move

the screen memory from bank 0 to bank 2.

Bank 2. This bank is a good choice because the RAM un

der the BASIC ROM can be used to hold sprite definitions.

This gives you 128 definition blocks, numbered from 128 to

255. Another advantage of bank 2 is that the VIC-II chip sees

an image of the character set in this bank, so you don't have

to define your own character set.

However, when you use bank 2, you'll run into some

problems finding a place for screen memory. No matter where

it's put, the top of free memory is going to have to be low

ered. To preserve as much free memory as possible, start the

screen memory at location 35840.

To relocate screen memory, use the following statement.

SYS RL,address of screen memory/256

If you want to relocate the screen memory to start at

35840, for example, you'd use:

SYS RL,35840/256

or

SYS RL,140

Do this after the call to the subroutine at 58000, but

before the Sprite Control System is installed by SYS IN.

To lower the top of free memory, POKE location 56 with

the same number used above, and then use a CLR to reset the

memory pointers. In the previous example, with the screen

memory set to start at 35840, you should enter:

POKE 56,140:CLR

Place this at the beginning of your program, before any

variables are assigned.

Since you're no longer using bank 0, you don't have to

set the LOAD address to start at the beginning of the next

453

Chapter 16

bank. Instead of using the statement LA=16384 to set the

LOAD address, use this:

LA=PEEK(49)+256*PEEK(50)+1000

The screen memory should not be placed at 35840 if

some other utilities have been installed at the top of free

memory earlier. To check if the top of free memory has al

ready been lowered, examine the value in location 56 before

you change it.

PRINT PEEK(56)

Normally, this will give you the value 160, which is fine.

If you get a number less than 144, however, you should not

start the screen at 35840. Instead, subtract 4 from this value,

AND the value with the number 252, and use the result in the

SYS RL and POKE 56 statements. For instance, if you PEEK

location 56 and receive 141 as an answer, these statements

should be used to relocate screen memory and lower the top

of free memory.

SYS RL/141-4AND252:POKE 56,141-4AND252:CLR

Don't use bank 2 if the value in location 56 is less than 132.

Bank 3. If you use bank 3, the memory under the Kernal

ROM can be used to hold definitions. This gives you blocks

128-254. You must not use block 255 in bank 3. Doing so will

make the computer crash.

Another area of memory in bank 3 that can be used to

store definitions is the RAM under the I/O chips and color

memory. This RAM cannot be easily POKEd from BASIC, so

it's rarely used. The SYS DF routine, however, banks this

RAM in when it defines a block. The result is that in bank 3,

blocks 64 through 127 are also available.

Screen memory can be placed at either location 51200 or

location 52224. Neither of these is in free memory, so the top

of free memory does not have to be lowered. This is a major

advantage of using bank 3—no free memory is used.

The only disadvantage to using bank 3 is that the VIC-II

chip does not see an image of the character ROM, so you have

to supply your own. The best place to put the character set is

in the RAM under the I/O chips, starting at location 53248. If

you do this, blocks 64 through 95 will no longer be available.

Bank 1. This offers a full 16K of RAM in the middle of

free memory. Even after subtracting IK for screen memory

454

Chapter 16

and 2K for a character set, you should still have plenty of

room for definition blocks. If you use this bank, put the screen

memory at location 29696, and a character set at 30720. Since

you're using the middle of free memory, the top of memory

does not have to be lowered.

Definition blocks up to block 207 are available. To find

the number of the lowest available block, use this statement

after the definition file has been loaded:

PRINT INT((LA-16384)/64)+16

If this number is negative, all the blocks from 0 to 207

can be used. If the number is greater than 207, don't use

bank 1.

Reset screen memory. At the end of your program, you'll

want to reset screen memory back to bank 0. This can be done

by the following SYS call.

SYSRS

Do this after the Sprite Control System has been removed.

You'll also need to use SYS RS if you have relocated the

screen memory and pressed RUN/STOP-RESTORE to remove

the Control System.

If you've changed the top of memory, you may also want

to reset it. POKE location 56 with the value that it contained

before you changed it, and then perform a CLR.

Here's a summary of the steps to take to relocate the

screen memory. Bank 2 is usually the best choice, because it

supports 128 definition blocks (blocks 128-255) and no

character set has to be defined.

To use bank 2:

• Remember the contents of location 56.

• POKE 56,140:CLR to lower the top of free memory.

• Load the SCS.OBJ and definition files.

• Use SYS RL,140 to relocate screen memory

• Use SYS IN to install the Sprite Control System, and then

proceed as usual.

• After SYS RE, use SYS RS to reset the screen.

• Restore the original contents of location 56.

When you select bank 3, blocks 64-254 can be used. The

only drawback is that no character set is supplied. If one is

needed, it should be put at location 53248, in which case only

blocks 96-254 can be used for definitions.

455

Chapter 16

To use bank 3:

• Define a character set at location 53248 if one is needed.

• Follow the standard procedure to use the Sprite Control Sys

tem, but insert the statement SYS RL,200 before SYS IN to

relocate screen memory.

• At the end of the program (after SYS RE), use SYS RS to re

set the screen.

Bank 1 supports the most blocks, from INT((LA-16384)/

64) +16 to 207, but like bank 3, it does not contain a character

set.

To use bank 1:

• Define a character set at location 30720 if one is necessary.

• Follow the standard procedure, but perform a SYS RL,116

before SYS IN.

• Use SYS RS after SYS RE at the end of the program.

Whenever any of these three banks is used, the LOAD ad

dress is no longer set as LA=16384, but is calculated by the

formula:

LA=PEEK(49)+256*PEEK(50)+1000

If the screen has been relocated to one bank and you

want to place it back in bank 0, just use SYS RL,4. Be sure

that the Sprite Control System is not installed when you do

this.

Relocating the Sprite Control System

The machine language routines for the Sprite Control System

are stored in memory from locations 49664 to 51199. The

Control System also uses locations 2 and 251-254, and mem

ory in the tape buffer. You cannot use the Sprite Control Sys

tem with another utility that uses any of this memory.

Both the Bitmapped Graphics and Sidplayer utilities use

some of this memory. In order to use the Control System with

one or more of these other utilities, then, you have to have a

way to relocate the Sprite Control System. It's possible.

Those portions of the Control System which conflict with

the other utilities can be moved to free memory. This lets you

use the Sprite Control System with the bitmapped graphics

extensions or Sidplayer. You can even use all three utilities at

the same time. (More on that in a bit.)

To relocate the Sprite Control System to free memory, as-

456

Chapter 16

sign the LOAD address and call the subroutine at 58100, in

stead of calling the subroutine at 58000. The subroutine at

58100 loads the SCS.OBJ file, moves it to free memory starting

at LA, and advances LA to point to the first byte of free mem

ory after the SCS.OBJ file. The line in your BASIC program

might look like this:

130 LA=16384:GOSUB 58100

When you load the definitions, just set the filename and

call the subroutine at 58500. Do not reassign LA. The LOAD

address should be set only once.

140 F$="BUNNY":GOSUB 58500

Using the Control System with the Bitmapped Graphics

Extensions

When using the Sprite Control System with the bitmapped

graphics extensions to BASIC, the procedure to relocate the

Control System is complicated by the fact that the bitmap is

placed in bank 3. Thus, besides relocating the Control System,

you must also relocate screen memory.

Begin with the bitmapped graphics extensions to BASIC

already installed. Then you can start placing the Control Sys

tem in memory. First, assign LA:

LA=PEEK(49)+256*PEEK(50)+1000

This is used instead of LA=16384 because screen memory

will be relocated.

Next, call the subroutine at 58100.

GOSUB 58100

Now, specify the filename of the definition file and call

the subroutine at 58500 to load the definitions.

n=filename:GOSUB 58500

The Bitmapped Graphics utility requires that screen mem

ory start at location 50176, and since 50176/256 is 196, use

the following to relocate screen memory.

SYS RL,196

You're now ready to use the graphics statements and Con

trol System SYS calls. There are, however, a few restrictions.

The first is that whenever you use the statement GRAPHICS,

457

Chapter 16

you must immediately follow it with this POKE statement:

POKE 53265/PEEK(53265)AND127

Location 53265 controls various features of the VIC-II

graphics chip, including bitmap mode. The GRAPHICS state

ment changes this location when it turns on the mode. The

only problem is that the location also controls raster scan

interrupts. Bit 7 of location 53265 must be kept clear if the ras

ter scan interrupt used by the Sprite Control System is to work

reliably. The above statement insures that bit 7 is clear.

A second restriction is that you must not use the TEXT

statement. Doing so while the Sprite Control System is in

stalled can cause the computer to crash.

The final restriction is that the RAM under the Kernal is

used to store the bitmap, so the corresponding definition

blocks are not available. You may use only blocks 64-127 and

blocks 253 and 254.

Since no character set is used in bitmapped graphics, you

don't have to worry about defining one.

If you want to draw bitmapped graphics shapes with the

SHAPE statement, merge the lines in the "SHP.BAS" file with

your program, and load the shape file before you load the

sprite definitions.

The following program lines summarize the steps you

should take to use the Bitmapped Graphics and Sprite Control

System utilities together.

200 LA=PEEK(49)+256*PEEK(50)+1000:GOSUB 58100:REM

{SPACE}LOAD AND RELOCATE SCS.OBJ
210 F$="FILENAME":GOSUB 58500:REM LOAD DEFINITIONS

220 SYS RL,196:REM RELOCATE SCREEN MEMORY

230 GRAPHICS 0:POKE 53265,PEEK(53265)AND127:REM CA

N USE ANY MODE

240 SYS IN:REM INSTALL SPRITE CONTROL SYSTEM

250 ...

"FILENAME" in line 210 should be changed to match the

definition file's name you're calling.

If you're also using bitmapped graphics shapes (the

SHAPE statement), insert the following line:

205 F$="FILENAME":GOSUB 56500:REM LOAD SHAPES

End the program in the normal way.

458

Chapter 16

560 ...

570 SYS RE:REM REMOVE SPRITE CONTROL SYSTEM

580 SYS RS:REM RESET SCREEN

590 END

Using the Sprite Control System with Sidplayer

It's much easier to use the Sprite Control System with the

Sidplayer. You should have no problems as long as you follow

this process.

Your program must contain the Sidplayer subroutine lines

starting at 57000, as well as the lines beginning at 58000 used

by the Sprite Control System. The lines from 57000 can be

found in Program 11-1, "SID.BAS."

Your BASIC program should begin by assigning the

LOAD address.

LA=16384

Load and relocate the "SID.OBJ" file with:

GOSUB 57100

Next, load the "SCS.OBJ" file. It's not necessary to re

locate the file this time.

GOSUB 58000

Now load the song and sprite definition files.

n=filename:GOS\JB 57500:REM LOAD SONG

¥$=filename:GOSUB 58500:REM LOAD DEFINITIONS

The last step is to use the SYS HK call to install Sidplayer

before you use the SYS IN call to install the Sprite Control

System. This order is important.

SYS HK:SYS IN

Proceed as normal from this point. At the end of the pro

gram, the utilities must be removed in the reverse order.

SYS RE:SYS DP

There are a few important notes about using these two

utilities together. The first is that both utilities are interrupt-

driven. Both utilities take an amount of processing time away

from BASIC, so your programs may run noticeably slower.

Using the utilities in tandem increases the chance of a

crash-causing error. If the music or sprite motion ever stops

suddenly for no apparent reason, it means that music and mo

tion processing took more than one frame. If this is ever a

459

Chapter 16

problem, try using fewer special options between notes in the

music, or reduce the number of moving sprites.

Finally, when the two utilities are used together and your

computer is operating on 50 Hz power (in Europe, for ex

ample), the tempo of the music will be slightly decreased.

Using All Three Utilities Together

If you want, you can use the Bitmapped Graphics, Sidplayer,

and Sprite Control System utilities simultaneously. To do so,

start with the bitmapped graphics extensions already installed.

Assign the LOAD address, load and relocate the SID.OBJ file,

load arid relocate the SCS.OBJ file, and then load the shape,

song, and definition files. Make sure that you use SYS HK and

SYS RL,196 before SYS IN, and be sure to clear bit 7 of loca

tion 53265 whenever you use the GRAPHICS statement. At

the end of the program, use SYS RE, SYS RS, and SYS DP, in

that order.

The following demonstration is not intended to be a typi

cal application of the three utilities, but it does show you how

to get all three going at the same time.

Program 16-3. Three at Once

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

Remember to install the bitmapped graphics extensions to BASIC before entering this

program.

100 PRINT M{CLR}{DOWN} ALL ABOUT THE COMMODORE 64:
VOLUME TWO" :rem 86

110 PRINT TAB(10) "GRAND DEMONSTRATION":PRINT

:rem 6

120 DN=8:SA=780:SX=781:SY=782:SP=783 :rem 134

200 LA=PEEK(49)+256*PEEK(50)+1000 :rem 248

210 GOSUB 57100:REM LOAD AND RELOCATE SID.OBJ

:rem 89

220 GOSUB 58100:REM LOAD AND RELOCATE SCS.OBJ

:rem 100

230 F$="COMMODORE":GOSUB 57500:REM LOAD SONG

:rem 85

240 F$="BUNNY":GOSUB 58500:REM LOAD DEFINITION

:rem 240

300 GRAPHICS 6:POKE 53265,PEEK(53265)AND127:REM TU

RN ON BITMAPPED GRAPHICS :rem 135

310 SYS HK:REM INSTALL SIDPLAYER :rem 8

320 SYS RL,196:REM RELOCATE SCREEN MEMORY :rem 4

330 SYS IN:REM INSTALL SPRITE CONTROL SYSTEM

:rem 62

460

Chapter 16

340 SYS DF,254,0:REM DEFINE BLOCK 254 WITH DEFINIT

ION 0 :rem 103

350 SYS FR,255:REM FREEZE ALL SPRITES :rem 217

360 FOR SN=0 TO 7:REM LOOP WITH SPRITE NUMBER

:rem 156

370 SYS CO,SN,1:REM SET COLOR TO WHITE :rem 2

380 SYS PO,SN,50+SN*25,20+SN*22:REM SET POSITION

:rem 91

390 SYS DI,SN,3:REM SET DIRECTION :rem 255

400 SYS MO,SN,2,2:REM SET SPEED :rem 51

410 SYS BO,SN,1:REM TURN ON BOUNCE :rem 15

420 SYS BL,SN,254:REM ASSIGN BLOCK 254 TO SPRITE (

AND ENABLE) :rem 229

430 NEXT SN :rem 119

440 POKE SX,LO:POKE SY,HI:SYS PL:POKE SS,7:REM STA

RT SONG PLAYING :rem 73

450 SYS UN,255:REM START SPRITES MOVING :rem 169

460 SETPEN 1,RND(0)*14+2:DRAW RND(0)*40,RND(0)*25

{SPACEjTO RND(0)*40,RND(0)*25 :rem 76

470 IF PEEK(SS)AND7 GOTO 460:REM DRAW LINES UNTIL

{SPACE}SONG ENDS :rem 215

480 SYS RE:REM REMOVE SPRITE CONTROL SYSTEM

:rem 251

490 SYS RS:REM RESET SCREEN :rem 162

500 SYS DP:REM REMOVE SIDPLAYER :rem 193

510 PRINT:PRINT " WOWl WHAT A SHOWl" :rem 35

520 END :rem 110

57000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

MSID.OBJM:GOSUB 59000 :rem 106

57010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591

00 :rem 126

57020 SS=49152:HK=49435:PL=49458:DP=49629:RETURN

:rem 77

57100 GOSUB 57000:POKE SX,LA-256*INT(LA/256):POKE

{SPACE}SY,INT(LA/256):SYS 51042 :rem 218

57110 LA=LA+1398:RETURN :rem 111

57500 POKE SA,1:POKE SX,DN:POKE SY,0:SYS 65466:F$=

F$+M.MUS":GOSUB 59000 :rem 61

57510 HI=INT(LA/256):LO=LA-256*HI :rem 137

57520 POKE SA,0:POKE SX,LO:POKE SY,HI:SYS 65493:IF

PEEK(SP)AND1 GOTO 59100 :rem 49

57530 LA=PEEK(SX)+256*PEEK(SY):RETURN :rem 29

58000 POKE SA,1:POKE SX,DN:POKE SY,1:SYS 65466:F$=

"SCS.OBJ":GOSUB 59000 :rem 116

58010 POKE SA,0:SYS 65493:IF PEEK(SP)AND1 GOTO 591
00 :rem 127

58020 IN=49664:RE=49667:RL=49670:RS=49673:DF=49676

:BL=49679:CO=49682:WI=49685 :rem 172

58030 HE=49688:PO=49691:DI=49694:WR=49697:BO=49700

:MO=49703:LB=49706:RB=49709 :rem 148

461

Chapter 16

58040 TB=49712:BB=49715:FR=49718:UN=49721:PR=49724

:MU=49727:EN=49730:JS=49733 :rem 149

58050 AU=49736:CH=49739:RETURN :rem 14

58100 GOSUB 58000:SYS 51123,LA:LA=LA+1191:RETURN

:rem 11

58400 POKE 49749,LA-256*INT(LA/256):POKE 49750,INT

(LA/256) :rem 182

58410 READ J:POKE 49751,J:FOR K=0 TO J:READ J:POKE

LA,J:LA=LA+1 :rem 16

58420 IF J THEN FOR LA=LA TO LA+J-1:READ I:POKE LA

#I:NEXT LA :rem 92

58430 NEXT K:RETURN :rem 168

58500 POKE SA,1:POKE SX#DN:POKE SY,0:SYS 65466:F$=

F$+".DEF":GOSUB 59000 :rem 24

58510 POKE SA,0:POKE SX,LA-256*INT(LA/256):POKE SY

,INT(LA/256) :rem 78

58520 SYS 65493:IF PEEK(SP)AND1 GOTO 59100 :rem 44

58530 LA=LA+1:POKE 49749,LA-256*INT(LA/256):POKE 4

9750,INT(LA/256) :rem 167

58540 POKE 49751,PEEK(LA-l):LA=PEEK(SX)+256*PEEK(S

Y):RETURN :rem 31

59000 FOR K=l TO LEN(F$):POKE 584+K,ASC(MID$(F$,K)
):NEXT :rem 88

59010 POKE SA,LEN(F$):POKE SX,73:POKE SY,2:SYS 654

69:RETURN :rem 6

59100 P=PEEK(SA):PRINT " ERROR: ";:IF P=4 THEN PRI

NT "FILE NOT FOUND11 :END :rem 200

59110 IF P=5 THEN PRINT "DEVICE NOT PRESENT":END
:rem 36

59120 PRINT ST:END :rem 70

When this program runs, it loads the files SID.OBJ,

SCS.OBJ, COMMODORE.MUS, and BUNNY.DEF, in that or

der. If you're using disk, all of these files must be on the same

disk. If you are using tape, the files should be stored on the

same tape in that order.

Final Comments

The Sprite Control System makes it possible to animate sprites

in ways that are otherwise not possible in BASIC. If applica

tions don't seem readily apparent, it's probably because you're

not used to having such capabilities available.

The two biggest areas of potential use are probably educa

tional programs and games. An effective use of animation can

greatly enhance educational software, and action games and

adventures are made more feasible by the Sprite Control

System.

462

Chapter 16

With the bitmapped graphics extensions to BASIC,

Sidplayer, and the Sprite Control System, you now have a

complete sound and graphics package. In fact, you have a

whole new computer. Have fun in discovering your new Com

modore 64!

Sprite Control System Command Index

Sprite Editor

Editing Commands

Change color

Copy

Data

Delete

Edit

Erase

Flip

Height

Insert

Invert

Key effect

Load

Multicolor

Quit

Save

Scrolling

Width

Sprite Control System

SYS Calls

AU (autoshape)

BB (bottom boundary)

BL (assign block)

BO (bounce)

CH (chase)

CO (color)

DF (define block)

DI (direction)

EN (enable/disable)

FR (freeze)

HE (height)

IN (install)

411

413-14

415-17

411

412-13

411

410

411-12

411

410

412

415

412

417

414

411

411-12

435

428-29

422-23

426-27

440-41

423

422

425-26

443

441-43

423

421

463

Chapter 16

JS (joystick)

LB (left boundary)

MO (speed and motion)

MU (multicolor)

PO (position)

PR (set priority)

RB (right boundary)

RE (remove)

RL (relocate screen memory)

RS (reset screen memory)

TB (top boundary)

UN (unfreeze)

WI (width)

WR (wraparound)

438-40

428-29

427-28

437

423-25

437-38

428-29

429

453-54

455

428-29

442-43

423

426-27

464

Appendix A

A Beginner's Guide to

Typing In Programs

What Is a Program?

A computer cannot perform any task by itself. Like a car with

out gas, a computer has potential, but without a program, it

isn't going anywhere. Many of the programs published in this

book are written in a computer language called BASIC. BASIC

is easy to learn and is built into all Commodore 64s.

BASIC Programs

Computers can be picky. Unlike the English language, which

is full of ambiguities, BASIC usually has only one right way of

stating something. Every letter, character, or number is signifi

cant. A common mistake is substituting the letter O for the nu

meral 0, a lowercase / for the numeral 2, or an uppercase B for

the numeral 8. Also, you must enter all punctuation, such as

colons and commas, just as it appears in the book. Spacing

can be important. To be safe, type in the listings exactly as
they appear.

Braces and Special Characters

The exception to this typing rule is when you see the braces,

such as {DOWN}. Anything within a set of braces is a special
character or characters that cannot easily be listed on a printer.

When you come across such a special statement, refer to
"How to Type In Programs" (Appendix B).

About DATA Statements

Some programs contain a section or sections of DATA state
ments. These lines provide information needed by the pro

gram. Some DATA statements contain actual programs (in

machine language), while others may contain graphics codes.
These lines are especially sensitive to errors.

If a single number in any one DATA statement is
mistyped, your machine could lock up, or crash. The keyboard
and RUN/STOP key may seem dead, and the screen may go
blank. But don't panic. No damage has been done. To regain
control, turn off your computer and then turn it back on. This

467

Appendix A

will erase whatever program was in memory, so always save a

copy of your program before you run it If your computer

crashes, you can load the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er

ror message when the program is run. The error message may

refer to the program line that READs the data. However, the

error is still in the DATA statements.

Get to Know Your Machine

You should familiarize yourself with your computer before

attempting to type in a program. Learn the statements you use

to store and retrieve programs from tape or disk. You'll want

to save a copy of your program so that you won't have to type

it in every time you want to use it. Learn to use your ma

chine's editing functions. How do you change a line if you

made a mistake? You can always retype the line, but you

should at least know how to backspace. Do you know how to

enter reverse-video, lowercase, and control characters? It's all

explained in your manual.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "The Auto

matic Proofreader" (Appendix D) before typing in any of the

programs in this book.

A Quick Review

1. Type in the program, a line at a time, in order. Press RE

TURN at the end of each line. Use backspace or the back-

arrow to correct mistakes.

2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error

when you run the program.

468

Appendix B

How to Type In Programs

Some of the programs in this book contain special control

characters (cursor controls, color keys, reverse-video, etc.). To

make it easy to know exactly what to type when entering one

of these programs into your computer, we have established

the following listing conventions.

Generally, Commodore 64 program listings will con

tain words within braces which spell out any special char

acters: {DOWN} would mean to press the cursor-down key;

{5 SPACES} would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the

SHIFT key while pressing the other key), the key would be

underlined in our listings. For example, S would mean to

type the S key while holding the SHIFT key. This would ap

pear on your screen as a heart symbol. If you find an under

lined key enclosed in braces (for example, {10 N}), you should

type the key as many times as indicated. In that case, you

would enter ten shifted N's.

If a key is enclosed in special brackets, [< >], you should

hold down the Commodore key while pressing the key inside the

special brackets. (The Commodore key is the key in the lower-

left corner of the keyboard.) Again, if the key is preceded by a

number, you should press the key as many times as necessary.

Rarely, you'll see a solitary letter of the alphabet enclosed

in braces. These characters can be entered by holding down the

CTRL key while typing the letter in the braces. For example,

{A} would indicate that you should press CTRL-A.

Quote Mode

You know that you can move the cursor around the screen with

the CRSR keys. Sometimes a programmer will want to move

the cursor under program control. That's why you see all the

{LEFT}'s, {HOME}'s, and {BLU}'s in our programs. The only
way the computer can tell the difference between direct and

programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you

are in the quote mode. If you type something and then try to

change it by moving the cursor left, you'll only get a bunch of

reverse-video lines. These are the symbols for cursor left. The

469

Appendix B

only editing key that isn't programmable is the INST/DEL key;

you can still use INST/DEL to back up and edit the line. Once

you type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into

a line. In any case, the easiest way to get out of quote mode is

to just press RETURN. You'll then be out of quote mode and

you can cursor up to the mistyped line and fix it.

In order to insure accurate entry of each program line, we

have included a checksum program. Please read "The Auto

matic Proofreader" (Appendix D) before typing in any of the

programs in this book.

Refer to the following table when entering cursor and color

control keys:

When You

Read:

{CLR}

Press: See:

When You

Read:

I1!

£43

{ F2 }

{ F3 }

{ R }

{ F5 }

{ F6 }

{ F7 }

{ F8 }

Press: See:

[commodore] [7]

[commodore] |T]

commodore! m

| commodore] [T]

[commodore] [7]

I commodore] [T]

fl

IT

f3

IT

IT

f5

f7

f7

470

Appendix C

Using the Machine

Language Editor: MLX

Charles Brannon

Remember the last time you typed in the BASIC loader for a

long machine language program? You typed in hundreds of

numbers and commas. Even then, you couldn't be sure if you

typed it in right. So you went back, proofread, tried to run

the program, crashed, went back again, proofread, corrected a

few typing errors, ran again, crashed again, rechecked your

typing . . .

Frustrating, wasn't it?

Now, "MLX" comes to the rescue. MLX makes it easy to

enter all those long machine language programs with a mini

mum of fuss. It lets you enter the numbers from a special list

that looks similar to DATA statements, and it checks your typ

ing on a line-by-line basis. It won't let you enter illegal

characters when you should be typing numbers. It won't let

you enter numbers greater than 255. It will prevent you from

entering the numbers on the wrong line. In short, MLX will

make proofreading obsolete.

Tape or Disk Copies

In addition, MLX will generate a ready-to-use tape or disk

copy of your machine language program. You can then use

the LOAD command to read the program into the computer,

just like you would with a BASIC program. Specifically, you
enter:

LOAD "program name",1,1 (for tape)

LOAD "program name",%,l (for disk)

To start the program, you need to enter a SYS command

that tranfers control from BASIC to your machine language
program. The starting SYS will always be given in the article

which presents the machine language program in MLX format.

Using MLX

Type in and save MLX (you'll want to use it in the future).
When you're ready to type in the machine language program,

471

Appendix C

run MLX. MLX will ask you for two numbers: the starting ad

dress and the ending address. Then you'll get a prompt show

ing the specified starting address; that tells you to type in the

corresponding first line of the program.

Subsequent prompts will ask you to type in subsequent

lines from the MLX listing. Each line is six numbers plus a

checksum. If you enter any of the six numbers wrong, or enter

the checksum wrong, the 64 will sound a buzzer and prompt

you to reenter the entire line. If you enter the line correctly, a

pleasant bell tone will sound and you may go on to enter the

next line.

A Special Editor

You are not using the normal 64 BASIC editor with MLX. For

example, it will accept only numbers as input. If you make a

typing error, press the INST/DEL key; the entire number is

deleted. You can press it as many times as necessary, back to

the start of the line. If you enter three-digit numbers as listed,

the computer automatically prints the comma and goes on to

accept the next number. If you enter less than three digits, you

can press either the space bar or RETURN key to advance to

the next number. The checksum automatically appears in

reverse video for emphasis.

To make it even easier to enter these numbers, MLX re

defines part of the keyboard as a numeric keypad (lines

581-584). The keypad can be used only to enter the data; you

must use the regular number keys to enter the starting and

ending addresses.

\ / v_

L) become (0

When testing it, I've found MLX to be an extremely easy
way to enter long listings. With the audio cues provided, you

don't even have to look at the screen if you're a touch-typist.

472

Appendix C

Done at Last!

When you get through typing, assuming you type your ma

chine language program all in one session, you can then save

the completed and bug-free program to tape or disk. Follow

the instructions displayed on the screen. If you get any error

messages while saving, you probably have a bad disk, a full

disk, or a typo in MIX Sorry, MLX can't check itself!

Command Control

What if you don't want to enter the whole program in one sit

ting? MLX lets you enter as much as you want, save the com

pleted portion, and then reload your work from tape or disk

when you want to continue. MLX recognizes these commands:

SHIFT-S: Save

SHIFT-L: Load

SHIFT-N: New Address

SHIFT-D: Display

Hold down SHIFT while you press the appropriate key.

You will jump out of the line you've been typing, so I recom

mend you do it at a prompt. Use the Save command to store

what you've been working on. It will write the tape or disk

file as if you've finished. Remember what address you stop

on. Then, the next time you run MLX, answer all the prompts

as you did before and insert the disk or tape containing the

stored file. When you get the entry prompt, press SHIFT-L to

reload the file into memory. You'll then use the New Address

command (SHIFT-N) to resume typing.

New Address and Display

After you press SHIFT-N, enter the address where you pre

viously stopped. The prompt will change and you can con

tinue typing. Always enter a New Address that matches up

with one of the line numbers in the special listing, or else the

checksums won't match up. You can use the Display com

mand to display a section of your typing. After you press

SHIFT-D, enter two addresses within the line number range of

the listing. You can stop the display by pressing any key.

Tricky Stuff

You can use the Save and Load commands to make copies of

the complete machine language program. Use the Load

473

Appendix C

command to reload the tape or disk, then insert a new tape or

disk and use the Save command to create a new copy.

One quirk about tapes made with the MLX Save com

mand: When you load them, the message "FOUND program"

may appear twice. The tape will load just fine, however.

Programmers will find MLX to be an interesting program

which protects the user from most typing mistakes. Some

screen formatting techniques are also used. Most interesting is

the use of ROM Kernal routines for loading and saving blocks

of memory. To use these routines, just POKE the starting ad

dress (low byte/high byte) into memory locations 251 and

252, and POKE the ending address into locations 254 and 255.

Any error code for the Save or Load can be found in location

253 (an error would be a code less than ten).

I hope you will find MLX to be a true labor-saving pro

gram. Since it has been tested by entering actual programs,

you can count on it as an aid for generating bug-free machine

language. Be sure to save MLX; it will be used for future

applications in other COMPUTE! books.

(Note: If you have a copy of MLX from another COMPUTE!

publication and you're using tape, change line 763 of your copy so

that it matches line 763 as listed below. Tape users who have a

copy of MLX which does not have a line 763 must use this ver

sion of MLX.)

The Machine Language Editor: MLX
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

10 REM LINES CHANGED FROM MLX VERSION 2.00 ARE 750

, 765 , 770 AND 860 :rem 50

20 REM LINE CHANGED FROM MLX VERSION 2,01 IS 300

:rem 147

30 REM LINE CHANGED FROM MLX VERSION 2.02 IS 763

:rem 162

100 PRINT"{CLR}g63";CHR$(142);CHR$(8);:POKE53281,1

:POKE53280,1 :rem 67

101 POKE 788,52:REM DISABLE RUN/STOP :rem 119

200 PRINT"{2 DOWN}{PUR}{BLK} MACHINE LANGUAGE EDIT

OR VERSION 2.03 {5 DOWN}11 :rem 239

210 PRINTMg53{2 UPjSTARTING ADDRESS?{8 SPACES}
{9 LEFT}11; :rem 143

215 INPUTS:F=1-F:C$=CHR$(31+119*F) :rem 166

220 IFS<256OR(S>40960ANDS<49152)ORS>53247THENGOSUB

3000:GOTO210 :rem 235

225 PRINT:PRINT:PRINT :rem 180

474

Appendix C

230 PRINT"i53{2 UPjENDING ADDRESS?{8 SPACES}

{9 LEFT}"7:INPUTE:F=1-F:C$=CHR$(31+119*F)

:rem 20

240 IFE<256OR(E>40960ANDE<49152)ORE>53247THENGOSUB

3000:GOTO230 :rem 183

250 IFE<STHENPRINTC$;"{RVS}ENDING < START
{2 SPACES}":GOSUB1000:GOTO 230 :rem 176

260 PRINT:PRINT:PRINT :rem 179

300 PRINT"{CLR}";CHR$(14):AD=S :rem 56
310 A=l:PRINTRIGHT?("0000"+MID$(STR$(AD),2),5);":"

; :rem 33

315 FORJ=ATO6 :rem 33

320 GOSUB570:IFN=-1THENJ=J+N:GOTO320 :rem 228

390 IFN=-211THEN 710 :rem 62

400 IFN=-204THEN 790 :rem 64

410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES
S";ZZ :rem 44

415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF
{SPACE}RANGE":GOSUB1000:GOTO410 :rem 225

417 IFN=-206THENAD=ZZ:PRINT:GOTO310 :rem 238

420 IF No-196 THEN 480 :rem 133

430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO";:INPUTT

:rem 234

440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"

{LEFT}, NOT MORE THAN";E:GOTO430 :rem 159
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S

TR$(I),2),5);":"; :rem 30

451 FORK=0TO5:N=PEEK(I+K):PRINTRIGHT?("00"+MID$(ST

R$(N),2),3);\"; :rem 66

460 GETA$:IFA$>""THENPRINT:PRINT:GOTO310 :rem 25
470 NEXTK:PRINTCHR$(20);:NEXTI:PRINT:PRINT:GOTO310

:rem 50

480 IFN<0 THEN PRINT:GOTO310 :rem 168

490 A(J)=N:NEXTJ :rem 199

500 CKSUM=AD-INT(AD/256)*256:FORI=1TO6:CKSUM=(CKSU
M+A(I))AND255:NEXT :rem 200

510 PRINTCHR$(18);:GOSUB570:PRINTCHR$(146);:rem 94
511 IFN=-1THENA=6:GOTO315 :rem 254

515 PRINTCHR$(20):IFN=CKSUMTHEN530 :rem 122
520 PRINT:PRINT"LINE I2NTERED WRONG : RE-ENTER":PRI

NT:GOSUB1000:GOTO310 :rem 176

530 GOSUB2000 srem 218

540 FORI=1TO6:POKEAD+I-1,A(I):NEXT:POKE54272 , 0:POK

E54273,0 srem 227

550 AD=AD+6:IF AD<E THEN 310 :rem 212

560 GOTO 710 :rem 108

570 N=0:Z=0 srem 88

580 PRINT"I£3"; srem 81

581 GETA$:IFA$=""THEN581 srem 95

475

Appendix C

582 AV=-(A$="M")-2*(A$=",")-3*(A$=".")-4*(A$="J")-

5*(A$="K")-6*(A$="L") :rem 41

583 AV=AV-7*(A$="U")-8*(A$="I")-9*(A$="O"):IFA$="H

"THENA$=M0" :rem 134

584 IFAV>0THENA$=CHR$(48+AV) :rem 134

585 PRINTCHR$(20);:A=ASC(A$):IFA=13ORA=44ORA=32THE

N670 :rem 229

590 IFA>128THENN=-A:RETURN :rem 137

600 IFA<>20 THEN 630 :rem 10

610 GOSUB690 : IFI=1ANDT=44THENN=-1: PRINT11 {OFF}

{LEFT} {LEFT}";:GOTO690 :rem 62
620 GOTO570 :rem 109

630 IFA<48ORA>57THEN580 :rem 105

640 PRINTA$;:N=N*10+A-48 :rem 106

650 IFN>255 THEN A=20:GOSUB1000:GOTO600 :rem 229

660 Z=Z+1:IFZ<3THEN580 :rem 71

670 IFZ=0THENGOSUB1000:GOTO570 :rem 114

680 PRINT11,11; : RETURN :rem 240

690 S%=PEEK(209)+256*PEEK(210)+PEEK(211) :rem 149
691 FORI=1TO3:T=PEEK(S%-I) :rem 67

695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT :rem 205

700 PRINTLEFT?("{3 LEFT}",I-1);:RETURN :rem 7

710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}" :rem 236
715 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO

CANCEL SAVE){DOWN}" :rem 106

720 F$="":INPUT"{DOWN} FILENAME";F$:IFF$=""THENPRI
NT:PRINT:GOTO310 :rem 71

730 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{OFF}ISK: (T/D)" :rem 228

740 GETA$:IFA$o"T"ANDA$o"D"THEN740 : rem 36

750 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$:OPEN15,8,
15,"S"+F$:CLOSE15 :rem 212

760 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

#ZK/256 :rem 3

762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65
469 :rem 109

763 POKE780,l:POKE781,DV:POKE782,0:SYS65466:rem 68

765 K=S:POKE254,K/256:POKE253,K-PEEK(254)*256:POKE

780,253 :rem 17

766 K=E+1:POKE782,K/256:POKE781.K-PEEK(782)*256:SY

S65496 :rem 235

770 IF(PEEK(783)AND1)OR(191ANDST)THEN780 :rem 111
775 PRINT"{DOWN}DONE.{DOWN}":GOTO310 :rem 113
780 PRINT"{DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN.

":IFDV=1THEN720 :rem 171

781 OPEN15,8,15:INPUT#15,El$,E2$:PRINTE1$;E2$:CLOS

E15:GOTO720 :rem 103

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" :rem 212

476

Appendix C

795 PRINT"{2 DOWN}(PRESS {RVS}RETURN{OFF} ALONE TO
CANCEL LOAD)11 :rent 82

800 F$=MII:INPUT"{2 DOWN} FILENAME11 ;F$: IFF$=IIMTHENP

RINT:GOTO310 :rem 144

810 PRINT:PRINT"{2 DOWN}{RVS}T{OFF}APE OR {RVS}D
{OFF}ISK: (T/d)" :rem 227

820 GETA$:IFA$o"T"ANDA$o"D"THEN820 : rem 34

830 DV=1-7*(A$="D"):IFDV=8THENF$="0:I'+F$:rem 157
840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256 :rem 2

841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469 :rem 107

845 POKE780,l:POKE781,DV:POKE782,l:SYS65466:rem 70

850 POKE780,0:SYS65493 :rem 11

860 IF(PEEK(783)AND1)OR(191ANDST)THEN870 :rem 111
865 PRINT"{DOWN}DONE•M:GOTO310 :rem 96
870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.

{DOWN}":IFDV=1THEN800 :rem 172

880 OPEN15,8,15:INPUT#15,E1$,E2$2PRINTE1$;E2$:CLOS
E15:GOTO800 :rem 102

1000 REM BUZZER :rem 135

1001 POKE54296,15:POKE54277,45:POKE54278,165

:rem 207

1002 POKE54276,33:POKE 54273,6:POKE54272,5 :rem 42

1003 FORT=1TO200:NEXT:POKE54276,32:POKE54273,0:POK
E54272,0:RETURN :rem 202

2000 REM BELL SOUND :rem 78

2001 POKE54296,15:POKE54277 , 0;POKE54278,247

:rem 152

2002 POKE 54276,17:POKE54273,40:POKE54272,0:rem 86

2003 FORT=1TO100:NEXT:POKE54276,16:RETURN :rem 57
3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOTO1000

:rem 89

477

Appendix D

The Automatic Proofreader

Charles Brannon

"The Automatic Proofreader" will help you type in program

listings without typing mistakes. It is a short error-checking

program that hides itself in memory. When activated, it lets

you know immediately after typing a line from a program list

ing if you have made a mistake. Please read these instructions

carefully before typing any programs in this book.

Preparing the Proofreader

1. Using the listing below, type in the Proofreader. Be very

careful when entering the DATA statements—don't type an

/ instead of a 1, an 0 instead of a 0, extra commas, etc.

2. Save the Proofreader on tape or disk at least twice before

running it for the first time. This is very important because

the Proofreader erases part of itself when you first type

RUN.

3. After the Proofreader is saved, type RUN. It will check itself

for typing errors in the DATA statements and warn you if

there's a mistake. Correct any errors and save the corrected

version. Keep a copy in a safe place—you'll need it again

and again, every time you enter a program from this book,

COMPUTED Gazette, or COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates

itself. You are now ready to enter a program listing. If you

press RUN/STOP-RESTORE, the Proofreader is disabled.

To reactivate it, just type SYS 886 and press RETURN.

Using the Proofreader

Many listings in this book have a checksum number appended

to the end of each line, for example, :rem 123. Don't enter this

statement when typing in a program. It is just for your infor

mation. The rem makes the number harmless if someone does

type it in. It will, however, use up memory if you enter it, and

it will confuse the Proofreader, even if you entered the rest of

the line correctly.

When you type in a line from a program listing and press

RETURN, the Proofreader displays a number at the top of

your screen. This checksum number must match the checksum

478

Appendix D

number in the printed listing. If it doesn't, it means you typed

the line differently from the way it is listed. Immediately re-

check your typing. Remember, don't type the rem statement

with the checksum number; it is published only so that you

can check it against the number which appears on your screen.

The Proofreader is not picky about spaces. It will not no

tice extra spaces or missing ones. This is for your convenience,

since spacing is generally not important. But occasionally

proper spacing is important, so be extra careful with spaces.

Due to the nature of a checksum, the Proofreader will not

catch all errors. Since 1+3 + 5 = 3 + 1+5, the Proof

reader cannot catch errors of transposition. Thus, the Proof

reader will not notice if you type GOTO 385 where you mean

GOTO 835. In fact, you could type in the line in any order

and the Proofreader wouldn't notice. The Proofreader should

help you catch most typing mistakes, but keep this in mind if

a program that checks out with the Proofreader still seems to

have errors.

There's another thing to watch out for: If you enter the

line by using abbreviations for commands, the checksum will

not match up. But there is a way to make the Proofreader

check it. After entering the line, list it. This eliminates the

abbreviations. Then move the cursor up to the line and press

RETURN. It should now match the checksum. You can check

whole groups of lines this way.

Special Tape SAVE Instructions

When you're through typing in a listing, you must disable the

Proofreader before saving the program on tape. Disable the

Proofreader by pressing RUN/STOP-RESTORE (hold down

the RUN/STOP key and sharply hit the RESTORE key). This

procedure is not necessary for disk SAVEs, but you must disable

the Proofreader this way before a tape SAVE.

Saving to tape erases the Proofreader from memory, so

you'll have to load and run it again if you want to type an

other listing. Saving to disk does not erase the Proofreader.

Hidden Perils

The Proofreader's home in memory is not a very safe haven.
Since the cassette buffer is wiped out during tape operations,

479

Appendix D

you need to disable the Proofreader with RUN/STOP-

RESTORE before you save your program. This applies only to

tape use. Disk users have nothing to worry about.

Not so for 64 owners with tape drives. What if you type

in a program in several sittings? The next day, you come to

your computer, load and run the Proofreader, then try to load

the partially completed program so you can add to it. But since

the Proofreader is trying to hide in the cassette buffer, it is

wiped out!

What you need is a way to load the Proofreader after

you've loaded the partial program. The problem is, a tape

LOAD to the buffer destroys what it's supposed to load.

If you intend to type in a program in more than one sit

ting or wish to make a safety SAVE, follow this procedure:

1. Load and run the Proofreader.

2. Disable it by pressing RUN/STOP-RESTORE.

3. Type the following three lines in direct mode (without line

numbers):

A$="PROOFREADER.T":B$="{10 SPACES}":FORX=1TO4:A$=A

$+B$:NEXTX

FORX=886TO1018:A$=A$+CHR$(PEEK(X)):NEXTX

0PEN1,1,1,A$:CLOSE1

After you enter the last line, you will be asked to press

RECORD and PLAY on your cassette recorder. Put this pro

gram at the beginning of a new tape.

You now have a new version of the Proofreader. Turn

your computer off and on, then load the program you were

working on. Put the cassette containing the Proofreader into

the tape unit and type:

OPEN1:CLOSE1

You can now start the Proofreader by typing SYS 886. To

test this, entering PRINT PEEK (886) should return the num

ber 173. If it does not, repeat the steps above, making sure

that A$ ("PROOFREADERS") contains 13 characters and that

B$ contains 10 spaces.

You can now reload the Proofreader into memory when

ever the LOAD or SAVE command destroys it, restoring your

personal typing helper.

480

Appendix D

The Automatic Proofreader

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ

A:CK=CK+A:POKEI,A:NEXT

110 IF CKO17539 THEN PRINT" {DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE

D.":NEW

886 DATA 173,036,003,201,150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003

481

Appendix E

Program Merge Utility

Craig Chamberlain

Being able to easily merge two or more programs together can

be extremely useful. In Part 3 of this book, for example, there are

a series of programs that must be merged with "SID.BAS." The

directions told you to load SID.BAS before you began entering

each of the programs. When you finished entering the program

lines, SID.BAS would be appended to the end—you could then

save the entire program. But what if you forgot to load SID.BAS

and entered all the lines? Without a merge program you might

have to retype the entire program.

That's why we've included a simple merge utility. It's easy

to use and can merge two or more programs together. Notice

that this is a true merge, not an append. This means that if one

program contains lines numbered 1, 2, 3, 7, 8, 10, and a second

contains lines 3, 4, 5, 6, 9, 11, the merged program will have

lines 1 through 11. Since both original programs have a line 3

you must be careful which program is loaded first. The last line

3 entered will be the one which appears in the merged program.

(Please note that this merge program will not work if the bit

mapped graphics extensions to BASIC are resident in memory.)

Using the Merge

Enter Program E-l, and save it before running. Use "The

Automatic Proofreader," from Appendix D, to insure that it's

entered correctly. When you run Program E-l, the following

options will be displayed on the screen:

Fl CLEAR BUFFER

F3 START ADDING TO BUFFER

F5 STOP ADDING TO BUFFER

F7 DUMP BUFFER (MERGE)

Once you see this menu, you're ready to merge. Wait for

the READY, prompt, then load the first file from disk or tape.

Once it's loaded, press f3 and the border of the screen turns

black. List the program, then press the f5 key. Now load the

file you wish to merge with the first. Once that's loaded, press

il) the two programs are now merged. Save the new program.

It's possible to merge more than two files together simply by

482

Appendix E

repeating the procedure. You must press f3 before and f5 after

listing each program (except the last program to be merged,

where only i7 is necessary).

(Note: Once you press the f3 key, you should press only

the keys necessary to list the program to the screen. Do not

press the CTRL key to slow down the listing or any other key.

Also, once you press the i7 key to merge the programs, do not

touch the keyboard while the screen scrolls.)

To see how easy the merge is to use, we've provided

three short programs that when merged together offer a short

demonstration. Individually, they will do nothing—only after

you've merged them will they work. Enter and save programs

E-2, E-3, and E-4. If you're using tape, save each program in

order on the same tape.

To merge the programs, load and run Program E-l. Then

follow these steps:

1. Load Program E-2

2. Press f3

3. List the program

4. Press f5

5. Load Program E-3

6. Press f3

7. List the program

8. Press f5

9. Load Program E-4

10. Press £7

11. Press RUN/STOP-RESTORE

12. Run the program

If the program runs correctly, you can save it just as you

would any other program. You must press RUN/STOP-

RESTORE to disable the merge before running any program.

If you wish to do several merges, simply skip steps 11 and

12 above and save your merged program. Then press fl to clear

the buffer. Now you can begin the process over again.

Program E-l. Merge Utility

For error-free program entry, be sure to use "The Automatic Proofreader," Appendix D.

100 PRINT CHR$(147):PRINT " DANDY PROGRAM MERGING

{SPACE}UTILITY":REM VI.0 :rem 223

110 PRINT " BY CRAIG CHAMBERLAIN":PRINT :rem 65

300 PRINT " Fl CLEAR BUFFER":PRINT " F3 START ADDI

NG TO BUFFER" :rem 18

483

Appendix E

310 PRINT " F5 STOP ADDING TO BUFFER11: PRINT " F7 D

UMP BUFFER (MERGE)":PRINT :rem 42

320 PRINT " RUN/STOP RESTORE TO REMOVE UTILITY":PR

INT :rem 96

330 BP=208:EP=255:PRINT " PLEASE WAIT...":PRINT

:rem 242

500 FOR K=679 TO 707:READ P:POKE K,P:NEXT:FOR K=82

8 TO 998:READ P:POKE K,P:NEXT :rem 33

510 POKE 65530,134:POKE 65531,234:POKE 252,BP:SYS

{SPACE}679 :rem 93
520 FOR K=679 TO 761:READ P:POKE K,P:NEXT:POKE 690

,BP:POKE 718,BP:POKE 749,BP :rem 148

530 POKE 733,PEEK(806):POKE 734,PEEK(807):POKE 754

,PEEK(788):POKE 755,PEEK(789) :rem 146

540 POKE 758,BP+1:POKE 759,EP:POKE 56334,PEEK(5633

4)AND254 :rem 216

550 POKE 655,167:POKE 656,2:POKE 788,223:POKE 789,

2:POKE 56334,PEEK(56334)OR1 :rem 196

560 POKE 252,BP+1:POKE 254,BP+1:NEW :rem 191

800 DATA 165,1,72,41,252,120,133,1,160,0,132,251,1

32,253,185,60,3,145,251 :rem 231

801 DATA 200,192,171,208,246,104,133,1,88,96

:rem 120

810 DATA 165,203,201,5,240,26,201,6,240,88,201,3,2

40,46,201,4,208,13,169,0,133 :rem 219

811 DATA 251,133,253,173,246,2,133,252,133,254,96,

169,2,205,39,3,240,20,162,2 : rem 198

812 DATA 189,37,3,157,220,2,189,243,2,157,37,3,202

,208,241,142,249,2,96,165,251 :rem 62

813 DATA 197,253,208,6,165,252,197,254,240,43,238,

248,2,208,21,152,160,0,145 :rem 170

814 DATA 253,230,253,208,29,230,254,165,254,205,24

7,2,208,20,169,2,44,169,14 :rem 165

815 DATA 141,249,2,173,221,2,141,38,3,173,222,2,14

1,39,3,96,166,198,236,137,2 :rem 211

816 DVTA 176,47,160r0,177,251,157,119,2,232,230,25

1.208,2,230,252,165,251,197 :rem 213

817 DATA 253,208,20,165,252,197,254,208,14,169,0,1

41,248,2,133,251,173,246,2 :rem 166

818 DATA 133,252,208,5,236,137,2,208,213,134,198,9

6 :rem 223

820 DATA 8,165,1,72,41,252,120,133,1,32,0,192,104,

133,1,40,173,249,2,141,32,208 :rem 10

821 DATA 76,72,235,72,132,2,168,165,1,72,41,252,12

0,133,1,32,77,192,104,133,1 :rem 192

822 DATA 88,173,249,2,141,32,208,164,2,104,76,202,

241,173,248,2,240,13,165,1 :rem 151

823 DATA 72,41,252,133,1,32,116,192,104,133,1,76,4

9,234,192,2,208,255,0,14 :rem 44

484

Appendix E

Program E-2. Merge Demo 1

10 REM MERGE DEMO ONE

30 PRINT M{CLR}YOU MUST MERGE THIS PROGRAM WITH ME

RGE{2 SPACES}DEMO *WO FOR IT TO WORK"

50 GOSUB 200:GOTO 70

70 REM THIS LINE WILL BE DELETED BY MERGE DEMO TWO

210 PRINT CHR$(147)

230 PRINT TAB(X) "THE MERGE WORKSi"

Program E-3. Merge Demo 2

20 REM MERGE DEMO TWO

40 PRINT "{CLRjYOU MUST MERGE THIS PROGRAM WITH ME

RGE{2 SPACES}DEMO ONE FOR IT TO WORK"

60 PRINT "THE MERGE WORKED1"

70 REM REPLACE LINE 70

80 PRINT "g73":END

200 REM SUBROUTINE

220 FOR X= 1 TO 20

240 PRINT "{YEL}";:IF X/2=INT(X/2) THEN PRINT"

{BLK}";

Program E*4. Merge Demo 3

10 REM THE MERGE IS COMPLETE

20 REM

30 REM

40 REM

250 NEXT X

260 RETURN

485

Index

ADR envelope. See envelopes,

nonsustaining

ADSR envelope. See envelopes,

sustaining

"ALBUMLEAF.MUS" 316-18

animation. See also Sprite Control System

principles of 379-80

use of bitmapped graphics 380-81

use of character graphics 380

use of sprite graphics 381

"ANTIMUNCH" 154

argument variable. See DEF statement

ATN functions 25, 26. See also transcen

dental functions

attack 185-86

attack rate 282. See also envelopes

"The Automatic Proofreader" 481

instructions for use 478-80

"BASIC Doodle" 91

"BISTRO.MUS" 327-28

bitmap, relocation of 170-74

bitmapped graphics 97, 106-22

illustration of coordinate system 107

mixing text and graphics 164-66

multicolor modes 119-22

POKE equivalents for graphics state

ments 175-77

SYS equivalents for graphics state

ments 175-77

Bitmapped Graphics Utility

command 98

command index 181

function 98, 168-70

line drawing 112-15

multicolor modes 119-22

statements 98, 106-17, 123, 149,

153-54, 164

bit mask 85, 86, 88. See also WAIT

statement

"BLUES" 265-66

"BMG Demonstration" 106

"BMGLOADER Disk Version" 99

"BMGLOADER Tape Version" 100

"BMG.OBJ" 100-05

explanation of use 98-99

instructions for making copies 389

"BRAID" 152

"BRAID.SHP" 152-53

"BRASS.MUS" 296-97

"BROTHERHOOD" 127

buffer 71-73, 79. See also

telecommunications

illustration of 72

"BUNNY.DEF" 392

instructions for use 392-93

"CALLIOPE.MUS" 326

chaining, definition of 82, 84

"CHDEMO1" 165-66

"CHDEMO2" 166

"CHSETA.SHP" 159-63

CLOSE statement 42, 43-44, 45, 57

syntax of 42, 45

CMD statement

summary of 49-50

syntax of 47

use of 47-48

coda. See repetition

command number 39, 44, 59, 61-62

with an RS-232 device 73, 79

commands, use of in programs 81-83

summary of 83-84

"COMMODORE.MUS" 196-200

conditions, numerical values for 3-6

summary of 6-8

CONT command 81

use of in program mode 81, 83-84.

See also commands, use of in

programs

conversion of mathematical formulas

23-24

COS function 25, 26. See also transcen

dental functions

"COURANTE.MUS" 345-46

"Cross File Merge" 374-75

explanation of 374-75

cutoff frequency. See SID chip, filter

controls

da capo. See repetition

dal segno. See repetition

decay 185-86

decay rate 282. See also envelopes

DEF statement 27-32

purpose of a variable 28-29

summary of 33-35

syntax of 27-28, 33

use of function calls 28-32

"DEMO#1" 390-91

instructions for use 392

"DEMO#2" 393-95

instructions for use 395

"DEMO#3" 398-400

dense. See random function

DEVICE NOT PRESENT error 43, 45, 70.

See also file input/output

device number 39, 44, 59. See also OPEN

statement, syntax of

487

with an RS-232 device 73, 79

"Directory Reader" 65

disk directory

reading of 64-67, 70

use of wild cards 65-67, 70

disk drive commands 61, 62, 63. See also

disk files

disk files 58-71. See also sequential files

program files (PRG) 67, 69, 70-71

relative files (REL) 68, 69, 71

replacement of a file 62

summary of 68-71

USR files 67, 69, 70

dotted notes. See music theory, duration

of notes

double dots. See music theory, duration

of notes

dynamics. See music theory, volume

"Editor" 226-45. See also Sidplayer

Editor

instructions for use 246

"EDITOR.OBJ" 247-48

instructions for making copies 389

eighth note. See music theory, duration

of notes

envelopes 185-86, 282-83, 333, 338,

342. See also music theory

illustration of 282, 284

nonsustaining 283

sustaining 283

"ETAL.MUS" 204-206

EXP function 24-25, 26. See also

transcendental functions

syntax of 24

exponent. See scientific notation

"EXTRACT," Bitmapped Graphics 179

explanation of 178-79

"Extract," Sidplayer Editor 372-73

explanation of 371-73

"Extract," Sprite Control System 447-48

explanation of 447

instructions for use 448

"FAMILY.SHP" 127-28

file creation 38

FILE DATA error 43, 44, 58. See also file

input/output

file input/output 37-45, 57

error messages 42, 43

filename 39

FILE NOT OPEN error 43, 45. See also

file input/output

file number 39, 44, 59. See also OPEN

statement, syntax of

range of 48, 50

with an RS-232 device 73, 79

FILE OPEN error 42, 45. See also file

input/output

filters 290-91, 342. See also music theory

illustrations of 291

"Flags" 118-19

flats. See pitch

floating-point variables 12, 13, 14, 15

frequency 185

"FSONATINA.MUS" 275-79

fundamental frequency. See filters

GET# statement 64, 70

syntax of 64, 70

"GOBBLER.DEF" 396-97

instructions for use 395

grace notes. See music theory, duration of

notes

graphics character set, use with a printer

48

'GSONATINA.MUS" 279-81

"GUY.DEF" 400-401

instructions for use 401

half note. See music theory, duration of

notes

harmonics. See filters

"HOLST.MUS" 339

IF-THEN statement 7

simplification of 3

input 37, 38, 69

statements 38

summary of statements 44-45

INPUT# statement 40-41, 44

syntax of 40, 44

I/O devices

kinds of 37, 38, 51

identification numbers 39, 42-43, 57

integer variables

computation of 13-14, 15

in FOR-NEXT loops 13, 15

range of 12, 15

summary of 14-15

syntax of 12-14, 15

use of 11-14, 15

use of with negative numbers 12-13

use of with positive numbers 12

"JOKE.MUS" 346-47

"K.C.O.MUS" 319

"KOTO.MUS" 297

LIST command. See also commands, use

of in programs

use of in program mode 81, 83

"Lister" 365-67

explanation of 364, 367-69

LOAD command. See also commands,

use of in programs

secondary address 81, 82, 84

488

syntax of 81-82, 84

use of in program mode 81, 82

LOG function. See also transcendental

functions

syntax of 24

logical lines 19, 21

machine language

explanation of 88-90

summary of 93-94

"Machine Language Doodle" 91-92

"The Machine Language Editor: MLX"

474-77

instructions for use 471-74

mantissa. See scientific notation

mathematical calculations, using BASIC

limitations of 9

precision of 8

summary of 11

"MAZE" 169

"MERGE," Bitmapped Graphics 180-81

explanation of 180

"Merge," Sidplayer Editor 369-71

explanation of 369, 371

"Merge," Sprite Control System 445-46

explanation of 445

instructions for use 446-47

"Merge Demo 1" 485

instructions for use 483

"Merge Demo 2" 485

instructions for use 483

"Merge Demo 3" 485

instructions for use 483

"Merge Utility" 483-84

explanation of 482

instructions for use 482-83

mode. See SID chip, filter controls

mode number 107-108. See also bit

mapped graphics

modem 71, 73-77, 78

baud rate 73

command character 75

control character 73, 74

duplex 75

handshaking 75

word length 73

"Modem" 77

explanation of 77-78

"MODERNART" 177-78

"Munchkins" 125

"MUNCHKIN.SHP" 126

music theory 206-25, 271-73, 282-83,

290-91, 305-49

accidentals 309-11

detuning 320-21, 343

duration of notes 217-19, 225, 226,

311-14

dynamics 306-307

illustrations of grand staff 207, 210

key 213-16, 226

key changes 307-308

measures 219-20, 226

notation 206-207

portamento 314-15, 342-43

repetition 298-99

rests 221-22, 226

ring modulation 333-37

slurs 223, 226

summary of 225-26

synchronization 324-25, 344

tempo 220-21, 226

tempo changes 305-306

ties 222-23, 226

time signatures 308-309

transposing 322-24, 343-44

trills 314

vibrato 315, 320, 343

voice 224-25, 226

volume 223-24, 226

NEW command 62-63. See also com

mands, use of in programs; disk

drive commands

syntax of 62-63, 69

use of in program mode 81, 83

noise waves 273. See also waveforms

illustration of 273

nonrelocatable LOAD 82, 84

NOT INPUT FILE error 43, 45, 56-57,

58. See also file input/output

NOT OUTPUT FILE error 43, 45, 56, 58.

See also file input/output

octave. See pitch

ON-GOTO statement

examples of 6, 7

simplified use of 6, 7

OPEN statement 39, 40-41

syntax of 39, 44, 48, 50, 51, 57, 59,

67, 68, 73

use of with a printer 46

with an RS-232 device 73, 79

output 37, 38, 69

statements 38, 41

summary of statements 44-45

OVERFLOW error. See scientific notation

parallel communication, definition of 71,78

"Parts" 20

physical lines 19, 21

"PINBALL" 170

"PIPERS.MUS" 321-22

pi symbol, location of the keyboard 25

pitch 185, 208-13, 225, 309-11, 314-15,

320, 322-25, 333-38, 342-44. See

also music theory

489

"PLAYER/' disk version 188-89

explanation of 187, 190-91

"PLAYER/7 tape version 189-90

explanation of 187, 190-91

POS function 19-20, 21.

print formatting functions 19-21

summary of 21-22

printing

to a printer 45, 46, 48

to the screen 45, 46

PRINT statement 3-4, 7, 45

PRINT# statement 41, 45, 49

syntax of 41, 45

"PROMENADE.MUS" 340-41

pulse waves 272. See also waveforms

illustration of 272

quarter note. See music theory, duration

of notes

radians 25, 26

random function (RND) 15-17

kinds of 16

summary of 17

Register Storage Area 92. See also SYS

command

relational operator 3

relative positioning. See Shapedit, fea

tures of

release 185-86

release rate 282. See also envelopes

relocatable LOAD 82, 84

RENAME command 62, 69. See also disk

drive commands

syntax of 62, 69

repetition 298-99, 302-3. See also music

theory

resolution 107-8, 109. See also bitmapped

graphics

resonance. See SID chip, filter controls

rounding function, of a number 26-27

adding it to BASIC 27

RS-232 communication. See also modems

definition of 71

summary of 78-79

RUN command, use of in program mode

81, 83. See also commands, use of in

programs.

SAVE command, use of in program

mode 83, 84. See also commands,

use of in programs,

sawtooth waves 271. See also waveforms

illustration of 271

scientific notation, explanation of 9-10,11

"SCIPIO.MUS" 356-59

SCRATCH command 61-62, 69. See also

disk files

"SCS.BAS" 382-83

"SCS.OBJ" 384-88

instructions for making copies 389

secondary address. See command number

seed value. See random function

sequential file 58-59, 60, 67, 68, 69. See

also disk Hies; tape files

reading of 59-60

writing of 59-60

serial communication, definition of 71, 78

Shapedit 130-37

combining sprites with bitmapped

graphics 167

features of 137-46

instructions for use 130

reference chart 145

use of to redefine custom characters

166-67

shape tables 123-29

plotting process 150-51

using shapes in BASIC programs

146-48

sharps. See pitch

"SHP.BAS" 124

"SID.BAS" 351-52

SID chip 185, 186-87, 344, 348

filter controls 290-96

illustration of 186

"SIDDEMO" 360-62

"SID.OBJ" 191-96

instructions for making copies 389

Sidplayer Editor

command index 375

commands 255-59, 273-75, 283-87,

290-94, 299-302, 306-307, 310,

312-13, 315, 320-21, 323, 324-25,

333, 342-44, 355-56, 362

DROP routine 354

error checking features 262-63

function key summary 260

HOOK routine 353-54

illustration of instrument parameters

349

joystick editing 267-68

keyboard note entry 266-67

merging with BASIC programs

351-63

PLAY routine 353-54

relocating of 363-64

use of with advanced music theory

305-49

using the program 249-68

SIN function 25, 26. See also transcen

dental functions

"SITAR.MUS" 297-98

sixteenth note. See music theory, duration

of notes

490

SPC function 20, 21, 22. See also print

formatting functions

sprite collision 4

Sprite Control System

autoshape features 434-36

available definition blocks 433-34

chase mode 440-41

command index 463

disabling the display of a sprite 443

enabling the display of a sprite 443

explanation of 381-82

instructions for use 389-90

joystick control of a sprite 438-40

multiple sprites 430

relocation of screen memory 452-56

relocation of Sprite Control System

456-57

setting priority of each sprite 437-38

synchronization of sprite motion

441-43

SYS calls 421-30

use of in BASIC programs 419-43,

445-63

use of multicolor mode 437

use of with Bitmapped Graphics

457-59

use of with Bitmapped Graphics and

Sidplayer Editor 460-62

use of with Sidplayer Editor 459-60

"The Sprite Editor" 403-10. See also

Sprite Control System

joystick editing 410

editing commands 410-17

explanation of 381-82

sprites 380, 381. See also Sprite Control

System

animation of multiple sprites 430

designing of 403-18

illustration of direction numbers 426

SQR function 22-23, 26. See also

transcendental functions

syntax of 23

square waves 271-72. See also waveforms

illustration of 272

string 59. See also disk files

with an RS-232 device 73, 79

STRING TOO LONG error 53, 58. See

also tape tiles, input

sustain 185-86

SYS command 88, 92, 93-94

TAB function 20-21, 22. See also print

formatting functions

use of to justify text 20-21

TAN function 25, 26. See also transcen

dental functions

tape files 50-57

advanced feature of 56

importance of CLOSE statement 57,

58

input 51, 52, 53

output 51, 53

prevention of running off the end of

a file 54-55, 58

summary of 57-58

telecommunications

definition of 71

demodulation 71, 78

explanation of 71-77

modulation 71, 78

tempo terminology. See music theory,

tempo

"Theme and Variation" 287-89

timbre. See filters

"TOWERS" 148

"TOWER.SHP" 149

"TOWER II" 154-55

"TPI#14.MUS" 328-32

transcendental functions

summary of 26

use of in mathematical-oriented

applications 22-25

triangle waves 271. See also waveforms

illustration of 271

trigonometry. See transcendental

functions

triplets. See music theory, duration of

notes

"TULIPS" 128-29

"TULIPS.SHP" 129

"TWIST" 151-52

type. See integer variables, use of

underflow error. See scientific notation

uppercase character set, use with a

printer 48

USR function 93, 94

VALIDATE command 63, 70. See also

disk drive commands

WAIT statement 84, 88. See also

Sidplayer Editor, merging with

BASIC programs

summary of 88

syntax of 88

use of in program mode 84-88

waveform 185, 333, 337-38. See also mu

sic theory

types of 271-73, 337-38

"WEATHER" 155-56

"WEATHER.SHP" 157-59

whole note. See music theory, duration of

notes

"WSOLDIER.MUS" 201-204

"YOY.MUS" 347

491

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order

directly from COMPUTEI.

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5058,

Greensboro, NC 27403.
Quantity Tltlo Price" Total

COMPUTEf's Commodore Collection, Volume 1

(66-8) $12.95

Commodore Peripherals: A User's Guide (56-6) $ 9.95

Creating Arcade Games on the
Commodore 64 (36-1) $14.95 -

Machine Language Routines for the

Commodore 64 (48-5) $14.95

Mapping the Commodore 64 (23-X) $14.95

All About the Commodore 64, Volume I (40-X) $12.95 —

COMPUTERS Commodore Collection, Volume II
(70-1) $12.95

COMPUTED First Book of VIC (07-8) $12.95

COMPUTED Second Book of VIC (16-7) $12.95

COMPUTED Third Book of VIC (43-4) $12.95

COMPUTED First Book of VIC Games (13-2) $12.95

COMPUTED Second Book of VIC Games (57-4) $12.95

Creating Arcade Games on the VIC (25-6) $12.95

Programming the VIC (52-3) $24.95

VIC Games for Kids (36-3) $ 12.95

Mapping the VIC (24-8) $14.95

The VIC and 64 Tool Kit: BASIC (32-9) $16.95

Machine Language for Beginners (11-6) $14.95

The Second Book of Machine Language (53-1) $14.95

Computing Together: A Parents & Teachers
Guide to Computing with Young Children (51-5) $12.95

BASIC Programs for Small Computers (38-8) $12.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

NC residents add 4.5% sales tax.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date

Name

Address

City State Zip
•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

454450B

If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of

COMPUTEI's Gazette for Commodore.

For Fastest Service

Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTEI's Gazette
P.O. Box 6058

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $24 One Year US Subscription

□ $45 Two Year US Subscription

□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $65 Air Mail Delivery
□ $30 International Surface Mail

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

Subscription prices subject to change at any time.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /
(Required)

The COMPUTERS Gazette subscriber list is made avaiiable to carefully screened

organizations with a product or service which may be of Interest to our readers. If you

prefer not to receive such mailings, please check this box Q

754199

To order your copy of the All About the Commodore 64,

Volume Two Disk, call our toll-free US order line: 1-800-334-

0868 (in NC call 919-275-9809) or send your prepaid order

to:

All About the Commodore 64, Volume Two Disk

COMPUTE! Publications

P.O. Box 5058

Greensboro, NC 27403

All orders must be prepaid (check, charge, or money order). NC

residents add 4.5% sales tax.

Send copies of the All About the Commodore 64, Volume

Two Disk at $12.95 per copy

Subtotal $.

Shipping & Handling: $2.00/disk# $_

Sales tax (if applicable) $_

Total payment enclosed $_

•Outside US and Canada, add $3.00 per disk for shipping and handling. All

payments must be in US funds.

□ Payment enclosed

Charge □ Visa □ MasterCard d American Express

Acct. No. Exp. Date

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

464106B

