

COMMODORE

GRAPHICS AND SOUND
PROGRAMMING

2ND EDITION

."

, .~,

,~ .. ' ~ .'.~~' '. ". -

.... -

~ t . I

COMMODORE

GRAPHICS AND SOUND
PROGRAMMING

2ND EDITION

STAN KRUTE

ITABI TAB BOOKS Inc.
Blue Ridge Summit, PA 17214

To Char, Lady of Magic

SECOND EDITION

FIRST PRINTING

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Copyright © 1983, 1986 by TAB BOOKS Inc.

Library of Congress Cataloging in Publication Data

Krute, Stan.
Commodore 641128 graphics and sound programming.

Rev. ed. of: Commodore 64 graphics & sound
programming. 1st ed. c1983.

Includes index.
1. Computer graphics. 2. Speech processing

systems. 3. Commodore 64 (Computer)-Programming.
4. Commodore 128 (Computer)-Programming. I. Krute,

Stan. Commodore 64 graphics & sound programming.
II. Title. III. Title: Commodore sixty-fourl

one hundred twenty-eight graphics and sound programming.
T385.Kn 1985 006.6765 85-14694

ISBN 0-8306-0440-5
ISBN 0-8306-0340-9 (pbk.)

Contents

List of Programs

Preface to Second Edition

Introduction

1 A First Look at Sprites
What's a Sprite?-Defining a Sprite Pattern-Your First Sprite Program-Some Play and Exploration
More about Positioning the Sprite-A Sprite Yo-Yo-Dealing with 512 Horizontal Positions-Now for
Some Sideways Motion-A Square's Retirement-Solving Two Problems-Sprite Expansion and Ex·
pansion Registers- Chapter Summary-Exercises

2 More Than One Sprite
Simple Clones-Complex Clones-Storing More Than One Block of Sprite Pixel Data-Getting Two
Very Different Sprites-All about Your Young Couple-Moving More Than One Sprite at a Time
Chapter Summary-Exercises

3 Some More Sprite Tricks
Trading Detail For Color: Sprite Multlcolor Mode-More About the Multicolor Mode-Designing a
Multicolor Sprite-A Program to Display Your Technicolor Sprites-Over and Under-Bring on the
Fancy Cartoons-Chapter Summary-Exercises

4 Character Graphics
Let's Play-Screen and Color Memory-Getting Characters on the Screen-Displaying All 512 Built·
in Characters-Build a Character String and Fly It-More about the Character Memory-Moving the
Character ROM into RAM-A Practical Example-A Little Modification-Designing Characters-Putting
Your Modifications Into Position-Designing a Set of Characters for Animation-The Alien Walker
Chapter Summary-Exercises

viii

ix

xi

1

21

41

61

5 Bit-Mapped Graphics
Sixty Four Thousand Pixels-Storing the Bit Map-Turning the Bit Map Mode On and Off-A Short
Disclalmer-One Last Detail: Color-An Example of Bit-Mapped Graphics--Taking a Shortcut-Locating
a Pixel's Byte and Bit-Turning Pixels On and Off-The Electronic Doodler-Chapter Summary
Exercises

6 More Graphics Tricks
Sprite-to-Background Priority-Using Text with a Bit-Mapped Display--Joysticks-Things That Go
Bump on the Screen-Multicolor Character Mode-Extended Background Character Mode-Multicolor
Bit Map Mode-Chapter Summary-Exercises

80

98

7 Starting To Make Sounds 119
Some Aspects of Sound-Brief Interlude-SID, the Sound Interface Device-General SID Register
Layout-Setting a Frequency-Setting a Waveform-Setting the Pulse Width-Setting a Voice's Vol-
ume Variations: The ADSR Envelope-Turning a Sound On and Off: Gating the Envelope Generator-
The Master Volume Control-The Frequencies of Musical Notes-Finally: A Little Music-Chapter
Summary-Exercises

8 Some Fancy Music Making 139
Reading Music-Performance Arrays: a Guide to Every Beat-A Program That Reads Music and Plays
It by the Beat-Thinking about Three Voices and Distinction-A Three Voice Example-Chapter
Summary-Exercises

9 Special Sound Effects 157
The Clock-The Gong Machine-SID Listens to Itself-Dadadum Dadadum Dadaddum Dum Dum
Bang Bang-Now Entering the Pulser Zone-Chapter Summary-Exercises

10 Sounds + Graphics = Magic 175
Synergy-Modular Thinking-Of Blips and Beeps (A Historical Salute)-The Pianorgan-Some
Thoughts about Sound/Image Coordination-The Rnal Program: Seesaw-Some Last Thoughts about
Combining Sound and Graphlcs-Chapter Summary-Exercises

Appendix A VIC Register Layout 196

Appendix B Screen Memory 200

Appendix C Color Memory 202

Appendix 0 Screen Display Codes 204

Appendix E Display Icon 208

Appendix F Color Codes 210

Appendix G Normal Sprite Coding Form 211

Appendix H Multlcolor Sprite Coding Form 213

Appendix I Character Coding Form 215

Appendix J Multicolor Character Coding Form 217

Appendix K 2H x 3V Character Block Coding Form 219

Appendix L SID Register Layout 221

Appendix M Note Values 224

Appendix N ANDing and ORing 227

Appendix 0 Assembly Language Code for Bit Map Clearing 230

Appendix P Assembly Language Version of Seesaw 232

Index 250

List of Programs
Chapter 1 Alien Walker Three-Part Song

A Simple Sprite Fly the Figure Coventry Carol

A Sprite Yo-Yo Upside Down ROM Juke Box
Sideways Sprite 3 Alien Walkers Adjustable Tempo
Design a Sprite Octave Mover

A Bigger Sprite Chapter 5
Chapter 9 Rectangular Motion Random Draw

Color Changer Fast Random Draw Clock
Growth Cycle Sketch Gong Machine

Vertical Random Draw Mad Computer
Chapter 2 Fat Sketch Horse

Simple Clones
Pencil Sketch Bam-P'Twang

Pulser Zone
Complex Clones Chapter 6 Rich Clock
Spritely Couple

Over and Under P'Twang Bam
Spritely Chase
Eight Clones Bit Mapped Text Son of Pulser

Clockwise Chase Joyous ColliSion
Chapter 10

Couples Chase Custom Multicolor
Extended Background Bouncer

Chapter 3
Vertical Over and Under Pianorgan
Color Bit Mapped Text Seesaw

4-Color Sprite Weird Collision Roller Bouncer
Sprite Overiap

Chapter 7
Rainborgan

Juggling Fool More Seesaw
Two +Color Sprites Minimal Siren

Appendix 0 Total Overlap Play Some Sounds
Switch Juggler Frogs from Mars Clear Bit Map.S

Roller Coaster
Chapter 4 Two-Voice Sounds Appendix P

Character ROM Display
Chapter 8 Seesaw.S

Fly the Face
Character ROM to RAM Read Music

viii

Okay. It's three years since Commodore in
troduced the 64. The little brown machine's
got legs. Low price, semi-open architecture,
three great chips (the 6510, VIC, and SID), and
some nice software have made it a classic.
Nothing like an underdog triumphant.

Commodore continues as the computer in
dustry's price/performance leader. 64s are sell
ing for under $100. The 128-a great little
machine, folks, no matter what the snobs may
say-is under $300. And the Amiga ... I
haven't seen graphics and sound hardware like
that in any system at any price. The company's
philosophy is to churn out computing engines
for the masses. The energy released by that
broad distribution of applied cybernetics is ex
citing.

I still spend time helping folks get friendly
with computers. Everyone likes it when the
machines produce interesting pictures and
sounds. This book is for those of you who want

Preface to
Second Edition

to learn how to control those two goodies. It
introduces the basics of graphics and sound
programming on the Commodore 64. The pro
grams will also work on a Commodore 128
that's running in 64 mode. This book does
NOT show you how to use the new graphics
and sound commands that Commodore's added
to the 128.

Mer a couple of flops, Commodore's
finally given the 64 a worthy successor. The
128 can emulate the 64, or run in a more
powerful native mode. It boasts a Z-80
coprocessor, a powerful CP/M system, a nice
BASIC interpreter, an 80 column text display,
and a disk drive that can really move data. The
programs in this book have all been tested on
a 128 running in the 64 mode. You'll find more
on the 128 in the Introduction.

I've gotten letters from a number of
readers, and I've tried to respond to their re
quests in this new edition. Program listings

ix

have been printed at a much higher resolution.
There are a couple of assembly language
listings in the Appendices. Changes to the text
aim at increased clarity, as do revisions to the
figures and charts. Keep those cards and let
ters coming; bug reports are especially
welcome.

A few acknowledgments are in order.
Bruce Hammond and Scott Blum, resident teen
wizards of Starpoint Software, provided ma
chinery and insight. Dan Weston and Leslie
Kay of Nerdworks supplied added motivation.
Larry Jackel, Ray Collins, and Kevin Burton
of TAB sold lots of copies of the first edition

x

and showed remarkable patience with a
slowpoke author on this second edition. My
parents, as always, were helpful in in
numerable ways. And the Gookie Clan kept
things warm.

Vision and hearing are two of the widest
channels into the human heart and mind.
That's why I'm particular to machines that
excel in stimulating those two senses. They
open up worlds of possibility to creative artists.
Commodore's 64 and 128 are sturdy vehicles
for your journeys. Use them well, and share
the wonderment with others.

This book is for the advanced beginner/in
termediate level programmer who wants to
start learning about graphics and sound effects
on the Commodore 64 and 128 computers. The
book covers a large subset of the two
machines' abilities in these areas. The 68 pro
grams are all written in a clean BASIC 2.0
dialect. They'll run as is on all64s and on 128s
used in the 64 mode.

ABOUT THE 128
A few words about the 128: it uses the

same sound and video chips as the 64. That's
why it does such a perfect imitation of a 64.
All the programs in this book work on a 128
running in 64 mode. When the machine is in
its 128 mode, it uses the same chips, but has
a set of built-in ROM routines that help you
manipulate the graphics and sound hardware.
Those built-in routines, part of the 128's
BASIC 7.0 language, simplify many common

Introduction

graphics and sound operations. Subtle changes
to the graphics and sound environment occur
when you bump your 128 from one mode to
another. That's why programs written for the
64 don't work consistently in 128 mode. The
basic elements of graphics and sound program
ming are the same on both machines, but the
little details can vary.

Two more things for 128 users: first, I
recommend that you do all program develop
ment work in 128 mode and only go to 64 mode
to run them. Why? Because 128 mode gives
you better disk commands and program editing
facilities. Second, a stylistic note: to help fight
word inflation, I'll sometimes refer to the gen
tle reader's computer as a 64. I figure owners
of the 128 don't mind a little mental exercise;
it tones the blood.

WHAT YOU'LL NEED
You should pick up a copy of Com-

xi

modore's Programmer's Reference Guide for
your machine, be it 64 or 128. They're ex
cellent books. My copies are heavily tabbed,
highlighted, and dog-eared. The only drawback
to these books is the level of some of the ma
terial. It's a bit advanced-even intimidating
to some people. When you finish the volume
you're holding in your hand, you should be able
to go at the Commodore tomes without an in
terpreter.

You'll need a Commodore 64 or 128 com
puter, a good-quality TV set or monitor, and
some kind of program storage device. If you
appreciate your eyesight, pick up a nice com
puter monitor. Commodore's color units (1701,
1702, and 1902) are all excellent. For program
storage, Commodore's tape recorder works
just fine. A disk drive is a luxury at first, a
necessity if you get serious about this stuff.
Commodore's 1541 and 1571 drives work well,
the '71 better than the '41. Third parties also
sell nice mass storage devices; look in the
magazines for the latest gear.

PRELIMINARY BOOK SCAN
The first six chapters of this book cover

graphics. You'll meet the VIC chip and see how
it handles sprites, characters, and bit maps.
Thanks to VIC, you can get reasonable
graphics with programs written in BASIC 2.0.
Simon's BASIC for the 64 and BASIC 7.0 on
the 128 make the job even easier. But I want
to show you how to work with the BASIC com
mands common to both machines and that
restricts us to BASIC 2.0. Well-done assembly
language, of course, offers the utmost in con
trol and performance. Check out Appendices
o and P for a taste.

The next three chapters cover sound mak
ing on the 64 and 128. The SID sound chip is

xii

a remarkably complete three-voice music syn
thesizer. Once again, BASIC 2.0 delivers
results that would demand assembly language
on other popular (Apple) computers. Finally,
in Chapter 10, you'll learn a bit about bring
ing graphics and sound together.

We learn to program by example and by
practice. This book has 68 BASIC program
ming examples, over half of which are dis
cussed extensively in the text. Each chapter
closes with a brief summary and a set of exer
cises designed to clarify important points. For
practice, I've included 30 programming prob
lems, complete with a set of possible solutions.

AIDS FOR THE CONFUSED

Some of this material can confuse begin
ners. I've provided figures, charts, and appen
dices to help you through the tight spots. I've
also provided special coding forms to help you
design sprites and custom characters. After a
while, though, design-by-coding-form gets
tedious; you'll want a good graphics editor. 128
owners are lucky; their machine comes with
a built-in sprite editor.

Though the programs are written in
BASIC 2.0, I've made every effort to keep
them clean and modular. I spend a lot of time
programming in C, Pascal, and assembly
language, and I tend to bring a common struc
tured approach to any language. Computer folk
can get religious when the discussion comes
around to languages. I tend towards a
polytheistic view. BASIC is simple, allows
quick development, and scoots out of the way
when asked.

One style of programming I try to avoid
is what I call squashed spaghetti code. You
know it when you see it. It's the kind of pro
gramming in which every line overflows with

tricks of syntax, inexplicable GOTOs, cryptic
variable names, and dangling statements. Ac
cording to its adherents, such code leads to
blinding bursts of performance. Hog swill. If
you want performance, come up with a better
algorithm, or translate parts of the code to
assembly language.

CHECK THAT FOUNDATION
If you haven't used your 64 or 128 very

much, do so now. Go through the first few
chapters of the user's guide that came with the
machine. It's a good introduction to your com
puter's fundamental operations. If you haven't
spent much time programming in BASI~, pick
up one of the excellent introductory program
ming books that introduce that language on
your machine, and go through all the examples.
Come on back when you've done all that.

BOOK NAVIGATION
You're back. Good. This book is designed

for active, hands-on learning. If you don't do
the programming, you don't learn very much.
I've tried to give you an explorer's toolkit, what
I would have liked when I started working on
these machines: simple explanations of the
various topics, numerous examples, solved ex
ercises, and a supply of useful figures and ap
pendices.

The ten chapters share a similar structure.
Each revolves around three to six related
topics. Each topic starts with a short overview.
Then comes a programming example to run
on your computer. A detailed discussion of the
example comes next, followed by suggestions
for modifying the original. At the end of the
chapter there are several short review ques
tions and programming exercises. Answers to

the questions and possible solutions to the ex
ercises are provided.

GETTING A PROGRAM LOADED IN
By using the order form at the back of the

book, you can buy a disk that will relieve you
of the chore of typing in the example programs.
Just load them from the disk, study the listings,
and run them.

If you don't purchase the disk, you'll need
to type in the programs by hand. It's a pretty
straightforward process; simply type in what
you see in the printed listing. The only prob
lem you may have is when you run into a
display icon.

Let me explain. The Commodore 64 and
128 give you extensive control over the display
of character-based information. Among other
things, you can easily move the cursor, clear
the screen, change the color of the characters,
and display them in reversed form. You can
do these things right from the keyboard, as
shown in the User's Guide Commodore packs
with each machine. You can also do them from
within a program.

How? You just set up a string constant that
contains the display commands. Type them in
side quotes, either in an assignment statement
or a print statement. When that statement
runs, the display commands will work just as
if they'd been typed from the keyboard. You'll
see examples of this throughout this book.

The problems arise when you type or list
a program that uses this technique. The display
commands show up in strange ways. They're
printed as reversed character images; for ex
ample, clearing the screen shows up as a
reversed heart. Moving the cursor to the left
shows as a reversed vertica1line. I call these
unexpected images display icons.

xiii

COLOR ICONS
Icon Key(s) to press What it does

• CTRL-1 Text color black

l!I CTRL-2 Text color white

[J CTRL-3 Text color red

~ CTRL-4 Text color cyan

• CTRL-5 Text color purple

n CTRL-6 Text color green

C CTRL-7 Text color blue

m CTRL-8 Text color yellow

OTHER
Icon Key(s) to press What it does

m CLR/home Cursor
home

II) CRSR 1 Cursor
down

1I - Cursor
CRSR --+ right

l.:I CTRL-9 Reverse
on

Fig. 1-1. Commodore display icons.

When you see one of these display icons
in a program listing, you've got to figure out
which command it represents and which keys
to press to obtain it. The chart in Fig. 1-1
reveals everything. It shows all the display
icons I've used in this book, the keys to press
to get them, and the commands they represent.
If you come to an assignment or print state
ment with an incongruous character showing
inside quotes, refer back to this chart. There's
another copy of the chart in the back of the
book as Appendix E.

One more pointer for those of you who'll
be typing in the example programs by hand:
save each program on tape or disk before you

xiv

Icon Key(s) to press What it does

C C. -1 Text color orange

r. Cil -2 Text color
brown .-. Cil - 3 Text color .. light red

m Cil -4 Text color
dark gray

6 Cil - 5
Text color
medium gray

II Cil -6 Text color
light green

C Cil -7 Text color
light blue

•• Cil -8 Text color
•• light gray

ICONS
Icon Key(s) to press What it does

~ Shift-CLR/home Clear
screen

C Shift-CRSR 1 Cursor
up

II
....-- Cursor

Shift-CRSR ---. left

• CTRL-O Reverse - off

run it. That way, if you make a typing error
that crashes the system, you won't have to
retype the whole thing.

GETTING A PROGRAM TO RUN
If you've loaded a program from tape or

disk, and it doesn't run, try loading it a sec
ond time. If it still doesn't work, you'll have
to track down the error. If you've typed the
program in, and it doesn't run, you'll face the
same chore. Carefully examine any statements
the computer complains about. Then use the
screen editor to make the necessary changes.
If the program still blows up, go over it line

by line against the original. Sometimes it helps
to retype the lines the computer balks at, even
if they look right. Invisible garbage can sneak
in. Eventually you'll get it going.

LEARNING FROM THE PROGRAM
Once a program's running, whether loaded

from a disk or tape or typed by hand, watch
it for a while. Then watch it some more, this
time referring back to the printed listing. Try
to figure out which program lines are control
ling particular pictures and sounds. Then come
on back to the book and read the detailed
discussion of the program.

Then comes my favorite part: program
modification. Load the program in again (you
saved a working version, of course). Change
a print statement here, a loop counter there,
a formula somewhere else. See what happens
when you rerun the program. Make some more
changes. Switch a color code; shift a shape.
Run the program again. You want to develop
an intuitive feel for the connection between
your commands and the computer's actions.

IN QUEST OF THE HACK
If you want to get really good at graphics

and sound programming, you'll need to spend
some time at it. Come up with outrageous
ideas; then write programs that make them
happen. Push the machine beyond its supposed
limits. Start writing longer programs that use

a variety of graphics and sound techniques.
Pay special attention to things other people
consider useless or impossible. Read any
published programs you can get your hands on.
Try to figure out why the programmer did
something a certain way. Then see if you can
come up with a better way. Daydream about
communication. Wander through this book's
figures and appendices, and do the same with
other books. Watch the computer magazines
for interesting articles. Pick up on other peo
ple's ideas; then come up with your own.

Finally, remember, you're doing this
because it's fun. Learn to stop when it's not.

FINAL NOTES

First, the Commodore 64 starts up with an
unreadable blue-on-blue display. I immediately
change this to white on black on medium gray
by pressing CTRL-2 and typing in these two
commands:

POKE 53260,12

POKE 53261,0

Next, if you're using a 64, disk commands
can be clumsy. Read up in your disk operating
manual about the DOS Wedge program, and
use it whenever you start a session. It will give
you disk commands that are more versatile and
easier to type in.

xv

.".:

Chapter 1

A First
Look at Sprites

This chapter introduces one of the Commodore
128 and 64's most powerful features: sprites.
You'll learn how to make a sprite and move
it around on the screen. You'll also learn how
to change the size and color of your sprite
picture.

1.1 WHAT'S A SPRITE?
Tum on the TV set. Put your eyes six

inches from the screen. You see small dots or
rectangles of light. Television pictures are
made up of hundreds of thousands of these lit
tle pieces.

The smallest dot a computer can put on
the TV screen is called a pixel. That's short
for picture element. A sprite is. a pattern of
pixels that your Commodore computer can
move around on the screen.

A basic sprite pattern is 24 pixels across
and 21 pixels high. Take a look at Fig. 1-1. If

you multiply the 21 rows by the 24 columns,
you find a total of 504 pixels to play with. If
you don't trust multiplication, count the boxes.

In a simple sprite pattern, you can arrange
things so that any particular pixel shows up
or is invisible. You can see an example of this
in Fig. 1-2. You can create many different pic
tures using those 504 pixels-about 2,207, 107,
920,000,000,000,000,000,000,000,000,
000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000 of them: ample room for a touch
of creativity.

1.2 DEFINING A SPRITE PATTERN

You need a way to tell the computer which
pixels in a sprite pattern should show up and
which ones should stay invisible. This is done

1

Commodore 64/128 Graphics and Sound Programming

EE-----.............. -- 24 columns -------~)

21

rOws~~~~~_;~_+_+_+_+_r_r~~~~~~~~T_~

21
rows x

24
columns

504
- pixels

Fig. 1·1. A basic Commodore-64 sprite pattern covers 504 pixels.

with number codes and groups of eight pixels.
Take a look at Fig. 1·3. Each of the eight

boxes represents a pixel and has a number
above it. The number gives the pixel a value.
For example, the leftmost pixel has a value of
128. The rightmost pixel has a value of 1, and
so on.

Now take a look at Fig. 1-4. Some of the
boxes have been filled in. If you add up the
values of the filled-in boxes, you get the
number 85: 64 + 16 + 4 + 1 = 85. Figure 1-5

2

shows some more examples of how filled-in
pixel patterns are turned into number codes.

Examine the special sprite coding form
shown in Fig. 1-6. It has the required 24.col
umns and 21 rows. Each row is split into three
parts for ·number coding, each part having
eight columns. At the top of each column is
that column's number coding value. Each row
will turn into three code numbers, one for
every group of eight columns in that row. Since
there are 21 rows, you'll end up with 63 code

A First look at Sprites

Fig. 1·2. A picture made by making some of the pixels in a sprite pattern visible.

numbers. The code numbers must be put into
the Commodore 64 in the proper order: from
left to right in each row, starting with the top

128 64 32 16

Fig. 1·3. Values used to code a group of eight pixels.

row and ending with the bottom row.
Here are four steps you need to follow to

define a sprite pattern:

8 4 2 1

3

Commodore 64/128 Graphics and Sound Programming

128 64 32 16 8 4 2 1

64 + 16 + 4 + 1 = 85

Fig. 1-4. Coding a pattern of eight pixels.

Code
Pattern: number:

r---~r----'r---~-----'-----,----~----~----~

128 64 32 16 8 4 2 1

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

128 64 2 1

32 + 16 + 8 + 4 =60

128 64 32 4 2 1

128 + 16 + 8 + 1 = 153

128 64 32 16 8 4 2 1

(nothing) = 0

Fig. 1·5. More examples of coding eight·pixel patterns.

4

Column
0 1 2 3 4 5 8 7 • • 10 11 12 number

Valuee 28 84 32 18 8 4 2 1 128 84 32 18

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row.

Row 9

Row 10

Row 11

Row 12

Row,1;t

Row 14

Row 15

Row 16

Row 17

Fig. 1-6. A special sprite coding form.

1. Make a copy of the sprite coding fonn.
2. Draw a design by filling in the boxes

representing pixels you want to show
up.

3. Figure out the 63 number codes, one
for each group of eight pixels.

4. Enter the code numbers into the com
puter in the proper order.

Figure 1-7 shows a filled-in sprite coding
form for a friendly little creature. Take a good
look, making sure you understand how I
figured the number codes. Skim over the last
few pages again until things make some sense.
Even the brightest computer users, using the
clearest of instructions, find that they usually

•

A First Look at Sprites

13 14 15 1. 17 1. 1. 20 21 22 23 NumbIr

4 2 1 128 84 32 18 • 4 2 1 ~

have to read things over many times.
Now it's your turn. Zip out to the nearest

copying machine and make some copies of the
special sprite coding form. Then draw some
sprite designs. When you have one that you
like, figure out the 63 number codes. You'll
use these codes later in this chapter. Then take
a little refreshment break. Come on back to
the book when you're ready for some action.

1.3 YOUR FIRST SPRITE PROGRAM
Y ou'Il start out with a simple program that

displays a simple sprite. Figure 1-8 shows the
major steps of the program. Figure 1-9 pro
vides a listing of the actual program A Simple
Sprite.

5

Commodore 64/128 Graphics and Sound Programming

Fig. 1-7. Example of a filled-in sprite coding form.

Look the figures over carefully. Then type
the program in on your Commodore 64 or 128.
If you don't know how to get the graphics icons
on line 160, refer back to the Introduction.
Make sure you save the program on tape or
disk when you're done typing. Then run it.
Press any key to end the program.

1.31 The Program

Examine this first simple program. The
first active section is line 1050.

6

1. 8 5 8 P R I NT "l"lIl!l!l!l!l!l!l!!T H I N ICI N G ".

This BASIC statement clears the TV screen,
drop down several screen lines, and prints the
message, THINKING. There's nothing more
nerve-wracking than a program that shows no
sight of activity while it's loading information.

The second program section, lines
1100-1120, loads in 63 sprite data number
codes.

1.1.88 rOR N : 896 TO 958
1.1.18: POKE N. 255
1.1.;'!8 NEXT N

Set up
screen
feedback

Load the
sprite
data

Reset the
sprite
controls

No

Fig. 1-8. The major steps in the program A Simple Sprite.

A First Look at Sprites

To simplify this first sprite program, I designed
the simplest visible sprite: one with every pixel
turned on. That way, all 63 codes are the same
number: 255. The loop in lines 1100-1120
places this code number in 63 consecutive
memory locations, addresses 896 through 958.

The third program section, lines
1170-1240, is the workhorse of this program.
Look at lines 1170-1200 first:

1170 PRINT "~";
1180 POKE 2040,14
1200 UIC = 53248

:REM CLEAR SCREEN
:REM POINT TO DATA
:REM GRAPHICS CHIP

Line 1170 clears the screen. Line 1180 then
tells the computer that the sprite data is at loca
tions 896 through 958. How does it do that?

Your Commodore can actually display 8
sprites at a time. They're numbered 0 through
7. When you tell the computer to display sprite
#0, it first goes to location 2040 to find out
where the pixel number codes for sprite #0 are
located. It takes the number it finds there and
multiplies it by 64. In this case, it will multiply
14 by 64 and get 896. And that's the address
for the sprite data you stuffed into the
machine-pretty slick.

Line 1200 then sets up a variable named
VIC, and gives it the value 53248. Who or what
is this VIC, anyway?

1.3.2 A Little VIC-II Detour

The heart of the Commodore 64's incredi
ble graphics capabilities is a small integrated
circuit. It's officially called the 6567 Video In
terface Chip-VIC-II for short. (The first VIC
was the 6560 chip, used in the VIC-20 com
puter.) This hardworking gadget puts out
several kinds of pictures: the 40 column by 25
line text display, a 320 pixels wide by 200
pixels tall high resolution graphics display, and
8 sprites. If it wouldn't void the warranty,

7

Commodore 64/128 Graphics and Sound Programming

1000 REM *** A SIMPLE SPRITE ***
1010 :

· · REM ** SET UP SCREEN FEEDBACK
1020
1030
1040
1050
1060
1070 :

• · P R I NT II [JpIpIpJpJpJplplplT H INK I N Gil;
• ·

1080 REM ** LOAD THE SPRITE DATA
1090 :
1100 FOR N = 896 TO 958
1110: POKE N, 255
1120 NEXT N
1130 :

• · REM ** SET UP THE SPRITE CONTROLS
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260 :

• · PRINT II~II;

POKE 2040,14
• · VIC = 53248
POKE VIC,170
POKE VIC+l,120
POKE VIC+39,13
POKE VIC+21,1

:REM CLEAR SCREEN
:REM POINT TO DATA

:REM
:REM
:REM
:REM
:REM

GRAPHICS CHIP
HORIZONTAL POS
VERTICAL POS
COLOR IT GREEN
SPRITE ~0 ON

1270 REM ** WAIT FOR KEYPRESS TO END
1280 :
1290 GET KP$
1300 IF KP$ - 1111 THEN 1290

• •
REM ** RESET THE SPRITE CONTROLS

1310 :
1320
1330
1340
135121
1360
1370
1380
1390
1400

· •
POKE
POKE
POKE
POKE
• · END

VIC+21.0 :REM
VIC+39,0 :REM
VIC+l,0 :REM
VIC,0 :REM

REVERSE THE
ORDER USED TO
SET THE SPRITE
CONTROLS

Fig. 1·9. Listing of the program A Simple Sprite.

8

those of us who survived the early days of per
sonal computer graphics would open the box
and kiss this chip.

By poking certain numbers into some of
the locations inside the VIC-II chip, you can
control it. There are 47 addressable locations
in the VIC-II chip. These locations are also
called registers. The VIC-II registers start at
memory address 53248 of the Commodore 64
and go up through address 53294. Appendix
A gives more information about the VIC-II
registers.

1.3.3 Back To The Program
So, line 1200 sets the variable VIC to

53248. You can then get the address of any
of the 47 VIC-II registers by adding the regis
ter number to the value of VIC. Take a look
at the last four lines of our workhorse section:

1218 POKE UIC.IT8 :RE" HORIZONTAL POS
1228 POKE UIC+l.128 :RE" UERTICAL POS
1238 POKE UIC+39.13 :RE" COLOR IT GREEN
1248 POKE UIC+21.1 :RE" SPRITE M8 ON

Register 0 controls the horizontal position of
sprite #0. Line 1210 of our program sets this
to 170, about halfway across the screen. Reg
ister 1 controls the vertical position of sprite
#0. Line 1220 sets this to 120, which is about
halfway down the screen. Register 39 of the
VIC-II chip sets the color for the pixels of sprite
#0 that you want to show up. Color 13 is light
green. Take a look at Appendix F for a list of
other available colors.

Okay, you've put in the number codes that
tell which pixels should show up and told the
computer where the codes are. You've given
sprite #0 a horizontal and a vertical position.
You've also set its color. Now, you just need
to tell the VIC-II chip to display sprite #0. Line
1240 does the trick. Register 21 is used to turn

A First Look at Sprites

sprites on and off. By poking a 1 into it, sprite
#0 appears on the screen.

Here's the fourth module of our program:

1298 GET KP$
1388 IF KP$ '" THEN 1298

Line 1290 reads the computer's keyboard.
Line 1300 tests to see if any key has been
pressed. If not, the program just goes back to
Line 1290 to read the keyboard again. When
a key is finally pressed, the program moves
on to a qdy finish.

It's always a good practice to leave things
the way you found them, especially when
you're programming a computer. Lines
1350-1380 reset the changed VIC-II registers
to 0:

1358 POKE UIC+21.8 :RE" REUERSE THE
1368 POKE UIC+39.8 :RE" ORDER USED TO
13T8 POKE UIC+l.8 :RE" SET THE SPRITE
1388 POKEUIC.8 :RE" CONTROLS

Notice how the order of resetting the register
is the reverse of the setting order.

1.4 SOME PLAY AND EXPLORATION
One of the best ways to learn more about

sprite graphics is to play with some of the
numbers in this first program. Make a change
or two in the program, and then run it to see
what happens. Here are a few suggestions to
get you going:

Change the number code that's poked in
line 1110.

Change the horizontal and vertical position
settings in line 1210 and 1220.

Change the color code in line 1230.

1.5 MORE ABOUT
POSITIONING THE SPRITE

When you position a sprite, you're really

9

Commodore 64/128 Graphics and Sound Programming

telling the computer where the sprite's upper
left comer should be placed. The normal Com
modore 64 display screen shows 320 horizon
tal positions and 200 vertical positions. With
the VIC-II position registers, you can put a
sprite in anyone of 512 horizontal positions
and 256 vertical positions. That way, you can
have sprites move smoothly on and off the
screen.

completely inside the horizontal viewing area,
and so on.

1-6 A SPRITE YO-YO

Take a good look at Fig. 1-10. It shows the
horizontal and vertical sprite position settings
that place a sprite in some of the more extreme
screen locations. For example, horizontal posi
tion settings between 24 and 320 keep a sprite

Let's playa bit. Load in A Simple Sprite,
listed in Fig. 1-9, again. Then type in the lines
shown in Fig. 1-11. You're changing a few lines
and adding some totally new ones. Be sure to
use the line numbers shown. When you're
done, save and run the new program.

How did you get the sprite to move like
a yo-yo? Look at lines 1254-1256:
~254 FOR UP ; 88 TO 288
~255: POKE UIC+~.UP
~256 NEXT UP

H =24 H =320
V =29 V-29

H 0 H -24 H = 172 H =320 H =344
V =50 V=50 V =50 V =50 V=50

Visible
screen
area

H =24 I H = 1721 H =320
V = 139 V = 139 V = 139

H = horizontal position of upper-left corner
V = vertical position of upper-left corner

H =0 H =24 H = 172 H =320 H =344
V =229 V =229 V =229 V -229 V -229

H 24 H =320
V =250 V =250

Fig. 1-10. Some important horizontal and vertical position settings for normal-sized sprites.

10

A First Look at Sprites

1000 REM *** A SPRITE YO-YO
1220 POKE VIC+1,80 :REM VERTICAL POS
1251 • •
1252 REM ** DOWN, THEN UP
1253
1254 FOR VP = 80 TO 200
1255 POKE VIC+1,VP
1256 NEXT VP
1257
1258 FOR VP = 199 TO 81 STEP -1
1259 POKE VIC+1,VP
1260 NEXT VP
1261
1262 · •
1300 IF KP$ = 1111 THEN 1254

Fig. 1-11. Changes and additions that turn A Simple Sprite into the program A Sprite Yo-Yo.

This loop tells the computer to change the
sprite's vertical position from 80 to 200, one
step at a time. The· sprite moves down the
screen. Then lines 1258-1260 change the ver
tical position from 199 to 81, again one step
at a time:

1298 FOR UP = 199 TO 81 STEP -1
1299: POKE UIC+l.UP
1268 NEXT UP

The sprite moves up. Finally, the new version
of line 1300 tells the computer to go back to
the top of the yo-yo circuit, at line 1254, if no
key has been pressed.

1388 IF KP$ = THEN 1254

1.7 DEALING WITH 512
HORIZONTAL POSITIONS

Sharp-eyed readers may have had a ques
tion when they read Section 1.5 and looked at
Fig. 1·10. Since you can only store numbers
between 0 and 255 when you poke informa-

tion into a memory location, how can you set
a sprite's horizontal position to numbers larger
than 255?

The VIC-II chip solves this problem by
giving you two registers for each sprite's
horizontal position. The second register is ac
tually a miniature register and can only hold
either a zero or a one. When you want a sprite
to be at a position greater than 255, you put
a one in that sprite's second horizontal regis
ter. Then the sprite's position will be 256 plus
whatever number is in its first horizontal reg
ister. For example, if a sprite's first horizon
tal register contains the number 33, and its
second horizontal register contains the number
1, the sprite will be at position (256 + 33), or
289. If the second register contains a zero, the
sprite's position is based solely on the number
in its first horizontal register, with nothing
added on. Figure 1-12 gives some examples
that show how a sprite's horizontal position can
go from 0 through 511.

11

Commodore 64/128 Graphics and Sound Programming

If a sprite I s ... and its . . . then it will
first horizontal second horizontal be at horizon-
register is set register is set tal position:
to ... to ...

0 0 0
24 0 24

125 0 125
255 0 255

0 1 256

20 1 276
64 1 320
88 1 344

255 1 511

Fig. 1-12. Setting the horizontal registers for some sprite positions between 0 and 511.

1.8 NOW FOR SOME
SIDEWAYS MOTION

Consider the first program, A Simple
Sprite, which was listed in Fig. 1-9. Load it in
again, then type in the changes and additions
shown in Fig. 1-13. Save your new program,
and then run it.

Before engaging in a detailed discussion
of how the new program works, let's take a
little excursion into the world of truth.

1.8.1 Coding for True and False
When you try to move a sprite to a new

horizontal position, you first must ask if this
statement is true or false: "The new position
is larger than 255." Depending on the answer,
you'll put different numbers in the sprite's
horizontal position registers.

In Commodore 64 BASIC, you can ask a
true-false question and give the answer a
special code that stands for true or false. The

12

code for true if -1, and the code for false is
O. Here's an example in BASIC:

100 LET AN = (5 > 3)

Since 5 is greater than 3, the expression

(5 > 3)

is true. The variable AN will be given the value
-1. Here's another example:

200 LET XZ = (36 = 21)

Since 36 does not equa121, the expression

(36 = 21)

is false, and XZ will be given the value O.

1.8.2 Back to the
Program: Move to the Right

Now let's see how you got the sprite to

move from side to side. Lines 1210-1220 were
changed a bit:

~2~8 POKE UIC.~18 :REM HORIZONTAL POS
~228 POKE UIC+~.~39 :REM UERTICAL POS

This starts the sprite out at a new position.
Now take a look at a lines 1254-1258:

~2~4 FOR HP ; 64 TO 288 STEP 2
~2~~: SF; (HP) 25~)

~2~6: POKE UIC.HP + (SF * 256)
~2~1: POKE UIC+~6. SF * (-~)
~2~8 NEXT HP

Lines 1254 and 1258 set up a loop that will run
the sprite's horizontal position from 64 up
through 280, in steps of 2. Each time through
the loop, line 1255 will figure out if the new
position is greater than 255. Then, depending
on that answer, lines 1256 and 1257 will set

A First Look at Sprites

the new position.
For example, let's say HP has the value

125. Then line 1255 will set SF (size factor)
to O. Line 1256 will poke the sprite's first
horizontal register with 125 + (0 x 256),
which is just plain old 125. Line 1257 will poke
the sprite's second horizontal register with -1
x 0, or O. These are the correct pokes for a
position less than 256.

Now let's try these formulas on a position
larger than 255. Suppose HP has the value 276.
Then line 1255 will set SF to - 1. Line 1256
will then poke the sprite's first horizontal reg
ister with 276 + (- 1 x 256), which is 276 -
256, or 20. Line 1257 then pokes the sprite's
second horizontal register with - 1 x - 1, or
1. Once again, the formulas poked the correct
values into the horizontal position registers.

1000
1210
1220
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1300

REM *** SIDEWAYS SPRITE
POKE VIC,64 :REM HORIZONTAL POS
POKE VIC+1,139 :REM VERTICAL POS

REM ** RIGHT, THEN LEFT

FOR HP = 64 TO 280 STEP 2
SF = (HP > 255)
POKE VIC,HP + (SF * 256)
POKE VIC+16, SF * (-1)

NEXT HP

FOR HP = 278 TO 66 STEP -2
SF = (HP > 255)
POKE VIC, HP + (SF * 256)

: POKE VIC+16, SF * (-1)
NEXT HP

. .
IF KP$ = 1111 THEN 1254

Rg. 1·13. Changes and additions that turn A Simple Sprite into the program Sideways Sprite.

13

Commodore 64/128 Graphics and Sound Programming

1.8.3 And Then Move to the Left
If you're not too clear on the explanation

of Lines 1254-1258, read the last two sections
over again. Then try out the formulas by hand
with some values form Fig. 1-12. Convince
yourself that they work.

Now look at lines 1260-1264:

1268 FOR HP = 278 TO 66 STEP -2
1261: SF = (HP) 255)
1262: POKE UIC. HP + (SF * 256)
1263: POKE UIC+16. SF * (-1)
1264 NEXT HP

This time, our loop will take you from posi
tion 278 through to horizontal position 66,
again in steps of 2. The sprite will move to the
left. Lines 1261-1263 are exactly the same as
lines 1255-1257. Poking the registers with a
new horizontal position is the same task,
whether you are moving to the left or to the
right.

Finally, you changed line 1300 to jump
back to the beginning of the sideways motion

section of the program:

1388 IF KP$ = THEN 1254

1.9 A SQUARE'S RETIREMENT
This simple sprite design is getting a bit

boring. Let's bring in a more interesting
character. Load in the first program from Fig.
1-9 one more time. Then type in the new lines
and changes that are listed in Fig. 1-14. Whel4:
you finish, follow the usual procedure of first·
saving the program and then running it.

Gone is your little square, and in comes the
character that was drawn and coded in Fig. 1-7.
Take a good look at the new sprite data loading
loop, lines 1100-1120:

1188 FOR N = 896 TO 958
1185: READ SPDTA
1118: POKE N. SPDTA
1128 NEXT N

Earlier you were poking each memory location
with the same value, 255, That turned all the
pixels on. Now, you're using a READ state-

1000 REM *** DESIGN A SPRITE *** 1105 • READ SPDTA •
1110 • POKE N, SPDTA •
1121 · •
1122 DATA 0, 6O, 0, 0, 36, ° 1123 DATA 0, 102, 24, 0, 102, 56
1124 DATA 0, 36, 56, 0, 6O, 16
1125 DATA 0, 24, 16, 0, 24, 16
1126 DATA 15, 255, 240, 8, 126, 0
1127 DATA 8, 126, 0, 8, 24, ° 1128 DATA 28, 24, 0, 28, 24, ° 1129 DATA 24, 6O, 0, 0, 6O, ° 113O DATA 0, 36, 0, 0, 36, ° 1131 DATA 0, 36, 0, 3 , 231, 192
1132 DATA 3, 231, 192
1230 POKE VIC+39,l :REM COLOR IT WHITE

Fig. 1-14. Changes and additions that turn A Simple Sprite into the program Design a Sprite.

14

,

A First Look at Sprites

1000 REM *** A BIGGER SPRITE ***
1233 POKE VIC+23,1 :REM ENLARGE VERT.
1236 POKE VIC+29,1 :REM ENLARGE HORZ.
1353 POKE VIC+29,0
1356 POKE VIC+23,0

Fig. 1-15. Changes and additions that turn Design a Sprite into the program A Bigger Sprite.

ment in line 1105 to get pixel number codes
from a series of data statements. Each code
is read into the variable SPDT A. Then the
value of SPDTA is poked into memory.

Now take a look at the eleven data
statements. All 63 of the codes computed in
Fig. 1-7 are listed. Notice the order the codes
are in: row by row, from the top to the bot
tom, and from left to right within each row.

Finally, the new version of line 1230
changes the color of the sprite to white. This
helps the tiny creature show up. Due to the im
perfections of color televisions and the Com
modore 64's display circuitry, different colors
show up with varying degrees of sharpness
against certain backgrounds. You'll have to ex
periment a bit to get combinations that please
you. I usually start out with black background
screen with white sprites and work from there.

1.10 SOLVING TWO PROBLEMS

There are two problems with the last pro
gram. First, the sprite is too small to show all
its detail. Second, it's my design, not yours.

Let's solve the second problem. Back at
the close of Section 1.2, you drew several sprite
designs and then figured out the 63 number
codes for your favorite. Now you'll use that
hard-won information.

Load in the last program, Design a Sprite.
List lines 1122-1132. Then use the Com
modore's useful screen editor to change the

pixel .codes to the ones you came up with in
Secti~n 1.2.

Now for the first problem. The VIC-II chip
lets us expand a sprite horizontally and ver
tically. Details are easier to see in an expanded
sprite. Just type in the five lines listed in Fig.
1-15. Remember to save your new program,
and then run it.

That's a pretty flashy sprite you designed.
Pat yourself on the back. Let's talk about ex
pansion for a moment.

1.11 SPRITE EXPANSION AND
EXPANSION REGISTERS

A sprite can be made to show up twice as
wide on the screen, twice as high, or both. All
you need to do is tell VIC-II what you want
in the way of expansion.

The 30th VIC-II register, located at VIC
+ 29, handles horizontal expansion for all eight
sprites. By poking a one into this register,
sprite #0 shows up twice its normal width. If
you poke a zero into this register, sprite #0
shows up with its normal width.

The 24th VIC-II register, located at VIC
+ 23, handles vertical expansion for the eight
sprites. If you poke a one into this location,
sprite #0 will double in height. Poking a zero
into the register sets sprite #0 to its normal
height.

When an expanded sprite is placed on the
screen, the numbers in its horizontal and ver-

15

Commodore 64/128 Graphics and Sound Programming

H =24 H = 160 H =296
V=8 V=8 V =8

H =488 H =24 H = 160 H =296 H =344
V=50 V =50 V=50 V=50 V =50

Visible Screen Area

H =24 §] H =296
V = 129 V = 129 V = 129

H = horizontal position of upper-left corner
V = vertical position of upper-left corner

H =488 H =24 H = 160 H =296 H =344
V =208 V =208 V =208 V = 208 V = 208

H =24 H =296
V =250 V =250

Fig. 1-16. Some important horizontal and vertical position settings for double-sized sprites.

tical position registers still detennine the loca
tion of its upper left comer. Figure 1-16 shows
how this affects putting the sprite at some of
the important screen positions. Compare this
figure with Fig. 1-10.

In the last program, A Bigger Sprite, lines
1233 and 1236 poked ones into both expansion
registers.

~233 POKE UIC+23.~ :REM ENLARGE UERT.
~236 POKE UIC+29.~ :REM ENLARGE HORZ.

That made sprite #0 double-sized overall.
Then, at the end of the program, lines 1353
and 1356 set sprite #0 back to its usual size

16

by poking zeroes back in:

~353 POKE UIC+29.8
~356 POKE UIC+23.8

1.12 CHAPTER SUMMARY
You've learned quite a bit in this first

chapter. By now, you know:

* What pixels and sprites are
* How to design your own sprite and turn

the design into 63 coded numbers
* How to load sprite number codes and

set the VIC-II registers to display a sim-

pIe sprite on the screen
* How to set a sprite's position, color, and

size
* How to move a sprite sideways or up

and-down

1.13 EXERCISES
Now it's time to get a firm hold on your

new knowledge. Go through the self-test and
write programs for the short exercises. Then
write some of your own programs that use the
chapter's ideas. Play hard, and you'll become
good at it.

1.13.1 Self Test
Answers are given in Section 1.13.3. The

numbers in parentheses tell you which chapter
section to go to for help.

1. (1.1) A sprite is a movable pattern of 504

2. (1.2) In coding a sprite pattern, you break
each of the 21 rows into three groups of
_______ pixels.

3. (1.3) To display a sprite, you have to
load in 63 number codes, then set up
____ in the chip.

4. (1.5) When you position a sprite, you're
actually telling the VIC-II chip where to
put the sprite's
comer.

5. (1.6) To move a sprite up or down, you just
change that sprite's ______ _
position setting.

6. (1.7) You use registers to set
a sprite's horizontal location, because
there are possible positions.

7. (1.8) In the following Commodore 64 state-
ment, TV would be set to ___ _

A First Look at Sprites

10 LET TV = (17 < 5)

8. (1.9) Rewrite line 1230 of the program
Design a Sprite so the sprite shows up
yellow. Appendix F may help you. 1230

9. (1.11) A sprite can be expanded
or or in both

directions. .

1.13.2 Programming Exercises
All of these programs can be built upon the

program from Fig. 1-9, A Simple Sprite, or if
you prefer, you can program them from
scratch. Possible solutions are given in Section
1.16. Of course, anything that runs is correct.

1. Have the program move the sprite in
a rectangular pattern.

2. Have the sprite change colors every
now and then.

3. Cycle the sprite through its four possi
ble sizes: normal, expanded horizon
tally, expanded vertically, and
expanded in both directions.

Answers to Self Test
These are just the most obvious (to me)

answers. If you've come up with something
else, and it makes sense-great!

1. pixels
2. eight
3. registers; VIC-II
4. upper left
5. vertical
6. two; 512
7. zero

17

Commodore 64/128 Graphics and Sound Programming

8. 1230 POKE VIC + 39,7 :REM COLOR
IT YELLOW

1. Load in the program A Simple Sprite.
Then type in the lines shown in Fig.
1-17. 9. horizontally; vertically (in either order)

1.13.4 Possible Solutions to
Programming Exercises

2. Load in the program A Simple Sprite.
Then type in the lines shown in Fig.
1-18.

My three solutions are all based on the pro
gram A Simple Sprite, from Fig. 1-9. Shown
here are the lines to change or add to that pro
gram in order to solve the exercise.

3. Load in the program A Simple Sprite.
Then type in the lines shown in Fig.
1-19.

18

REM *** RECTANGULAR MOTION *** 1000
1210
1220
1241
1242 :

POKE VIC,82 :REM HORIZONTAL POS
POKE VIC+1,100 :REM VERTICAL POS

1243 REM ** MOVE RIGHT, DOWN, LEFT, AND
1244 REM THEN BACK UP TO STARTING PT
1245 :
1245 REM
1247 REM
1248 :

(HORIZONTAL MOVES JUMP BY 3

1249 FOR HP =
1250 SF =
1251 POKE
1252: POKE
1253 NEXT HP
1254 :

TO MATCH VERTICAL SPEEDS)

84 TO 251 STEP 3 :REM RT.
(HP > 255)
VIC, HP + (SF * 255)
VIC+15. SF * (-1)

1255 FOR VP = 101 TO 179
1255: POKE VIC+1, VP
1257 NEXT VP

:REM DOWN

1258 :
1259 FOR HP =
1250 SF =
1251 POKE
1252: POKE
1253 NEXT HP
1254 :

258 TO 87 STEP -3 :REM LF
(HP > 255)
VIC, HP + (SF * 255)
VIC+15. SF * (-1)

1255 FOR VP = 178 TO 100 STEP -1 :REM t
1255: POKE VIC+1, VP
1257 NEXT VP
1258 :

I
A First Look at Sprites

1269 :
1300 IF KP$ = 1111 THEN 1249

Fig. 1-17. A possible solution to programming exercise 1.

1000
1071
1072
1073
1074
1075
1230
1251
1252
1253
1254
1255
1256

REM *** COLOR CHANGER ***
REM ** SET STARTING COLOR · · crc = 13

· ·
:REM START WITH GREEN

POKE VIC+39,OC :REM STARTING COLOR
· •
REM ** CHANGE COLORS · · FOR DELAY = 1 TO 500 : NEXT
NC = OC + 1
IF NC=16 THEN NC=0

:REM NEW COLOR
:REM COLORS GO

1257 POKE VIC+39,NC
UP TO 15

:REM PUT IT IN
:REM OLD COLOR 1258 OC = NC

1259 :
1300 IF KP$ = 1111 THEN 1254

Fig. 1-18. A possible solution to programming exercise 2.

1000 REM *** GROWTH CYCLE *** 1251 · · 1252 REM ** EXPAND HORIZONTALLY
1253 :
1254 FOR DELAY = 1 TO 400 . NEXT .
1255 POKE VIC+29,1
1256
1257 · · 1258 REM ** SHRINK HORIZONTALLY
1259 REM AND EXPAND VERTICALLY
1260 · · 1261 FOR DELAY = 1 TO 400 : NEXT
1262 POKE VIC+29,0
1263 POKE VIC+23,1

19

Commodore 64/128 Graphics and Sound Programming

1284
1285
1288
1281
1288
1289
121121
1211
1212
1213
1214
1215
1218
1211
1218
1219
128121
1281
13121121

• •
REM ** EXPAND HORIZONTALLY
• •
FOR DELAY = 1 TO 4121121 : NEXT
POKE VIC+29,1

• •
REM ** SHRINK HORIZONTALLY
REM AND SHRINK VERTICALLY
· •
FOR DELAY = 1 TO 4121121 : NEXT
POKE VIC+29,0
POKE VIC+23,12I

• · REM ** WAIT FOR KEYPRESS TO END
• •
IF KP$ - 1111 THEN 1254

Fig. 1-19. A possible solution to programming exercise 3.

20

Chapter 2

More Than
One Sprite

This chapter shows you how to display more
than one sprite on your TV screen. You'll learn
how to use the same block of sprite data to
make many sprites, and how to alter the way
the data is shown. You'll also learn how to put
totally different sprites on the screen. Finally,
you'Ulearn one way to get two sprites mov
ing smoothly.

2.1 SIMPLE CLONES
The Commodore 64 lets you set up several

sprites that use the same block of sprite pixel
codes. If you then set the sprites up at different
locations and keep them the same size, they
look like simple copies of one another, clones.

Figure 2-1 gives a listing of the program
Simple Clones. This program will draw four
copies of one sprite design.

The sprite design is shown in Fig. 2-2. The
program is very similar to the Design A Sprite

program from Chapter 1. The main difference
is that here you are setting up sprite data
pointers, locations, and colors for four sprites.
Type the program in. Save it on tape or disk,
and then run it. When you're finished, come
on back for some explanations.

In Chapter 1 Section 1.3.1 you saw how
memory location 2040 is normally used to tell
VIC-II where the pixel codes for sprite #0 are
located. Memory locations 2041 through 2047
are normally used to tell VIC-IT where the pixel
data codes for sprites #1 through #7 are
located. Figure 2-3 shows which memory loca
tion points to data for a particular sprite.

2.1.1 Setting Up The Four Sprites
Let's go over the important parts of the

Simple Clones program listing. Lines
1000-1310 should look familiar by now. Feed
back is put on the screen; sprite data is loaded

21

Commodore 641128 Graphics and Sound Programming

22

1000 REM *** SIMPLE CLONES ***
1010 :
1020 :
1030 REM ** SET UP SCREEN FEEDBACK
1040 :
1050 PRINT IIl'JpIpDDDIpIpDlTHINKING II j

1060 :
1070 :
1080 REM ** LOAD THE SPRITE DATA
1090 :
1100 FOR N = 896 TO 958
1110: READ SPDTA
1120: POKE N, SPDTA
1130 NEXT N
1140 :
1150 DATA
1160 DATA
1170 DATA
1180 DATA
1190 DATA
1200 DATA
1210 DATA
1220 DATA
1230 DATA
1240 DATA
1250 DATA
1260 :
1270 • •

6,
6,

15,
56,

225,
192,
192,
204,
195,
224,

63,

102,
102,
255,

0,
195,

0,
61,

0,
255,

I,
255,

96,
96,

241,
28,

135,
3,
3,

51,
195,

7,
252

6,
7,

28,
113,
193,
192,
192,
198,
192,
127,

112,
255,

I,
195,
195,

I,
I,
0,
0,

255,

96
224

56
142
131

3
3

99
3

254

1280 REM ** SET UP THE SPRITE CONTROLS
1290
1301
1310
1320
1331
1340
1351
1361
1370
1380
1390
1400
1410
1420
1430

• •
PRINT IIW" :REM CLEAR SCREEN

:REM GRAPHICS CHIP VIC = 53248
• •
POKE
POKE
POKE
POKE
• •
POKE
POKE
POKE
POKE
· ·

2040,14
2041,14
2142,14
2143,14

:REM #1 DATA POINTR
:REM #1 DATA POINTR
:REM #2 DATA POINTR
:REM #3 DATA POINTR

VIC,98 :REM #0 HORZNTL POS
VIC+2,246 :REM #1 HORZNTL POS
VIC+4,98 :REM #2 HORZNTL POS
VIC+6,246 :REM #3 HORZNTL POS

POKE VIC+1,95 :REM #0 VERT CAL POS

More Than One Sprite

1440 POKE VIC+3,95 :REM :1=1=1 VERTCAL POS
1450 POKE VIC+5,184 :REM :1=1=2 VERT CAL POS
1460 POKE VIC+7,184 :REM :1=1=3 VERTCAL POS
1470 · · 1480 POKE VIC+39,1 :REM :1=1=0 IS WHITE
1490 POKE VIC+40,3 :REM :1=1=1 IS CYAN
1500 POKE VIC+41,5 :REM :1=1=2 IS GREEN
1510 POKE VIC+42,7 :REM :1=1=3 IS YELLOW
1520 • · 1530 POKE VIC+21,15 :REM SPRITES 0-3 ON
1540 · · 1550 · · 1560 REM ** WAIT FOR A KEYPRESS TO END
1570 · · 1580 GET KP$
1590 IF KP$ - 1111 THEN 1580
1600 · •
1610 · · 1620 REM ** RESET THE SPRITE CONTROLS
1630 • · 1640 POKE VIC+21,0
1650 · · 1660 END

Fig. 2-1. Listing of the program Simple Clones.

Fig. 2-2. A simple sprite deSign, ripe for
cloning.

23

Commodore 64/128 Graphics and Sound Programming

Memory
location 2040 2041 2042
~

Points to
pixel data 0 1 2
for sprite
number-+

Fig. 2-3. Memory locations for pointers to sprite data.

memory locations 896-958; the screen is
cleared; and the variable VIC is set up with
the starting address of the VIC-II chip.

Lines 1330-1360 are the first sign of
something new:

1338 POKE 2848.14
1348 POKE 2841.14
13~8 POKE 2842.14
1368 POKE 2843.14

:RE" M8 DATA POINTR
:RE" Ml DATA POINTR
:RE" M2 DATA POINTR
:RE" M3 DATA POINTR

You'll be displaying four sprites in this pro
gram. Each sprite will be getting its data from
the 63 memory locations starting at location
(14 x 64), or 896.

Lines 1380-1460 then give each sprite a
horizontal and vertical screen position:

1388 POKE UIC.98
1398 POKE UIC+2.246
1488 POKE UIC+4.98
1418 POKE UIC+6.246
1438 POKE UIC+l.95
1448 POKE UIC+3.95
14~8 POKE UIC+5.184
1468 POKE UIC+T.184

:RE" M8 HORZNTL POS
:RE" Ml HORZNTL POS
:RE" M2 HORZNTL POS
:RE" M3 HORZNTL POS
:RE" M8 UERTCAL POS
:RE" Ml UERTCAL POS
:RE" M2 UERTCAL POS
:RE" M3 UERTCAL POS

Location VIC (53248) is the first horizontal
position register for sprite #0, and VIC + 1
(53249) is sprite #O's vertical position register.
The next fourteen VIC-II registers follow the
same pattern for the other seven sprites.
VIC + 2 (53250) is the first horizontal position

24

2043 2044 2045 2046 2047

3 4 5 6 7

register for sprite #1, and VIC + 3 (53251) is
that sprite's vertical position register. This
goes on up through location VIC + 15 (53263),
which is the vertical position register for sprite
#7. Appendix A gives you all the details.

Curious readers are wondering: what about
a second horizontal register for each sprite? If
you refer to Section 1.7, you will be reminded
that each sprite's second horizontal register is
actually a miniature register, capable only of
holding a one or a zero. Eight of these
miniature registers fit into one memory loca
tion. That's location VIC + 16 (53264). You'll
learn more about these miniature registers
later in this section.

2.1.2 Handing Out Colors
and Turning the Sprites On

Lines 1480-1510 give each sprite a color:

1488 POKE UIC+39.1 :RE" Me IS WHITE
1498 POKE UIC+48.3 :RE" Ml IS CYAN
1~88 POKE UIC+41.~ :RE" M2 IS GREEN
1~18 POKE UIC+42.T :RE" M3 IS YELLOW

As you may have guessed, the registers that
control the color of each sprite are found in
eight consecutive VIC-II locations: VIC+39
(53287) through VIC + 46 (53294). Again, refer
to Appendix A for more detail about the VIC-

II registers and to Appendix F for a chart of
color codes.

Finally, you come to a moment of truth.
Line 1530 turns on four sprites: #0, #1, #2, and
#3:

1~38 POKE UIC+21,1~ :REH SPRITES 8-3 ON

But what does 15 have to do with 4, or 0, 1,
2, and 3? You'll have to take a short dive into
the world of bits and bytes to explain this lit
tle mystery. I'll keep it as painless as possible.

2.1.3 Bits and Bytes
Remember when you learned to turn pixel

designs into number codes? You took the in
formation in groups of eight dots. Why eight,
and not nine, ten, or 24?

The chip that does the thinking for your
64 or 128 can only handle one number at a
time, and that number can't be too large. In
fact, it has to be between 0 and 255. Also, the
number has to be represented using only the
digits 0 and 1.

It turns out that a group of eight l' s and
O's can represent any number between 0 and
255. This brand of number nuttiness is known
as base 2, or the binary number system. And
each binary digit, be it a 1 or a 0, is known as
a bit.

A group of eight bits is known as a byte.
Each of the Commodore's many memory loca
tions, including the VIC-II registers, can store

This normal
255 240 128 number.-.

More Than One Sprite

This is a byte (8 bits)

This is
a bit.

~_--,A __
r- \
10101100

! f
So is
this.

Fig. 2-4. One byte is made up of 8 bits.

one byte, or eight bits. Figures 2-4 and 2-5 give
you some bits and bytes to look at.

Many of the VIC-II memory locations can
control functions for eight sprites. They do this
by assigning one of that location's eight bits
to each sprite. Thus, each bit can be thought
of as being a miniature register that controls
one sprite.

The register at location VIC + 21 (53269)
is a master control switch for the eight sprites.
Any particular sprite may be turned on or off
by fiddling with this location. Each bit is a
miniature register that turns one sprite on or
off.

The eight bits in a byte are numbered 0
through 7. At location VIC + 21, bit 0 controls
sprite #0, bit 1 controls sprite #1, and so on.
To turn on a particular sprite, you just need
to put a 1 into its corresponding bit at VIC + 21.

127 60 15 1 0

Turns into this
~1111111 11110000 10000000 01111111 00111100 00001111 00000001 00000000

binary byte ...

Fig. 2-5. Binary bytes, composed of eight bits, can represent normal (base 10) values between 0 and 255.

25

Commodore 64/128 Graphics and Sound Programming

To turn a sprite off, you put a 0 into its bit at
VIC + 21.

To get the four sprites numbered 0
through 3 to show up, you've got to poke
VIC + 21 (the on/off register) with a number
that will have l's in bits 0, 1,2, and 3, and Os
in the other four bit positions. Sounds tough.
Actually, you can use the same chart you used
to code a group of eight pixels.

Figure 2-6 shows a byte with its 8 bits
numbered 0-7. Each bit is also given a bit
value. You first put l's in the bit positions of
the sprites you want on, and O's where you
want sprites off. Then, by adding the values
of the bits that contain l's, you get the number
you need to poke into memory to obtain the
correct pattern of l's and O's.

Figure 2-7 shows some examples of this.
Let's look at the one that applies to the Sim
ple Clones program. You want to turn on
sprites 0-3, so you need to store l's in bits 0-3.
You add the bit values for those bits-8 + 4
+ 2 + 1-and get 15. Your brain may ache
a bit, but the mystery of 15 is solved.

2.1.4 Wrap It Up
The rest of Simple Clones should be famil-

Bit ...
value

128 64 32

Any 8-
bit byte

1 1 1
or or or
0 0 0

Bit
number

.... 7 6 5

iar. Lines 1580-1590 wait for a keypress. When
one is detected, line 1640 resets the sprite con
trols. Here a little secret pops out: not every
sprite control needs to be reset.

Which controls do you need to reset? Well,
the on/off register, at location VIC + 21, should
be set to 0 so all of the sprites disappear. If
you've expanded any sprite horizontally or ver
tically, the sprite expansion registers at
VIC + 23 and VIC + 29 should be put back to
o. That way, you won't be surprised by sprites
stretched in unexpected ways.

2.2 COMPLEX CLONES
Even though they use the same pixel data,

the four sprites in the last program aren't ex
actly alike. Each appears on the screen in a dif
ferent color. You can make them look even less
alike by expanding them in different ways.

As you learned in Section 1.11, location
VIC + 29 handles horizontal expansion for all
eight sprites. Each bit in the byte stored there
controls horizontal expansion for one sprite.
If you want sprites #2 and #3 to be expanded
horizontally, bits 2 and 3 must be set to 1.
Using the bit values shown in Fig. 2-6, you can
find the number to poke into the register: 8 +

16 8 4 2 1

1 1 1 1 1
or or or or or
0 0 0 0 0

4 3 2 1 0

Fig. 2-6. A byte with Its 8 bits numbered 0 - 7. Each bit is shown with its place value.

26

More Than One Sprite

Sprites Sprites Register byte Number
on off (each bit controls sprite with the same #) to poke

Bit
value 128 64 32 16 8 4 2 1

- 0-7 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0 0
number

Bv 128 64 32 16 8 4 2 1

0 1-7 0 0 0 0 0 0 0 1 1=
1

Bn 7 6 5 4 3 2 1 0

Bv 128 64 32 16 8 4 2 1 1+2=
0,1 2-7 0 0 0 0 0 0 1 1

6
3

Bn 7 5 4 3 2 1 0

Bv 128 64 32 16 8 4 2 1 1+2+4+8=

0-3 4-7 0 0 0 0 1 1 1 1

Bn 7 6 5 4 3 2 1 0
15

Bv 128 64 32 16 8 4 2 1 1+4+16+
0,2, 1,3, 0 1 0 1 0 1 0 1 64=
4,6 5,7

Bn 7 6 ,5 4 3 2 1 0 85

Bv 128 64 32 16 8 4 2 1 1+2+4+8+
16+32+64

0-7 - 1 1 1 1 1 1 1 1 +128=

Bn 7 6 5 4 3 2 1 0 255

Fig. 2-7. In these examples, a byte-sized register uses its eight bits to turn sprites on or off. In each case the individual
bits are set by poking the values in the right-hand column.

27

Commodore 64/128 Graphics and Sound Programming

Bit
value ~

128 64 32 16 8 4 2 1

Bit ... 0 0 0 0 1 1 0 0

Bit
number

~ 7 6 5 4 3 2 1 0

8 + 4 = 12

Fig. 2·8. Poking the value 12 into the horizontal expansion register sets bits 2 and 3 to 1, causing sprites 2 and 3 to ex·
pand horizontally.

4, or 12. See Fig. 2-8.
The register at VIC + 23 handles vertical

expansion of all eight sprites in a similar way.
If you want sprite #1 and sprite #3 to expand
vertically, for example, you need to set bits 1
and 3 of that register to 1. Adding the bit
values, you find the number to poke into
VIC + 23: 8 + 2, or 10. See Fig. 2·9.

Let's use this new know-how to change the
Simple Clones program. Load it into the com-

Bit
value .. 128 64 32

Bit .. 0 0 0

Bit ..
number

7 6 5

puter, and then type in the lines listed in Fig.
2·10 to tum it into the program Complex
Clones. Save the new program on tape or disk,
and then run it.

Voila! You now have four sprites on the
screen, all based on the same block of pixel
data, and each one looks very different from
the others. It was done quite simply. The new
versions of lines 1400, 1410, 1440, and 1460
move the sprites around a little bit. Then lines

16 8 4 2 1

0 1 0 1 0

4 3 2 1 0

8 + 2 = 10

Fig. 2·9. Poking the value 10 into the vertical expansion register sets bits 1 and 3 to 1, causing sprites 1 and 3 to expand
vertically.

28

More Than One Sprite

1111 REM *** COMPLEX CLONES *** 1410 POKE VIC+4,86 REM :1=1:2 HORZNTL POS
1410 POKE VIC+6,234 REM :1=1:3 HORZNTL POS
1440 POKE VIC+3,85 REM :1=1:1 VERTCAL POS
1460 POKE VIC+7,174 REM :1=1:3 VERTCAL POS
1522 POKE VIC+23,10 REM :1=1:1 & :1=1:3 TALL
1524 POKE VIC+29,12 REM ++2 & ++3 HIDE
1526 • •
1642 POKE VIC+23,1
1644 POKE VIC+29,1

Fig. 2·10. Changes and additions that turn the program Simple Clones Into the program Complex Clones.

1522 and 1524 institute the sprite expansions
used as examples up above:

1522 POKE UIC+23,18 :RE" 81 & 83 TALL
1524 POKE UIC+29,12 :RE" 82 & 83 WIDE

Sprite #0 stays normal·sized. Sprite #1 gets
taller. Sprite #2 gets wider. Sprite #3 is ex
panded in both directions. When a keypress
. signals the end of the program, lines 1642 and
1644 set the expansion registers back to O.

2.3 STORING MORE THAN ONE
BLOCK OF SPRITE PIXEL DATA

In many cases, you'll want to have sprites
that look very different from one another. In
order to do this, you need to load a block of

63-byte 12288 12352 12416

area of - - -
memory---. 12350 12414 12478

Set
pointer--. 192 193 194
to

pixel data for each different sprite image.
Where should you put the 63 numbers for each
one?

If you're using three or fewer different
sprite images, you can put the data in these
three areas: memory locations 832·894,
896-958, and 960-1022. These areas of memo
ory are used with the Commodore's tape
recorder, so they're pretty save when you're
inside a program. The sprite data pointers at
2040·2047 must contain the starting address
of the pixel data block divided by 64; so, for
these three areas, the pointers would contain
13, 14, or 15 respectively.

If you're using more than three blocks of
pixel data, use memory locations starting at
12288. Figure 2-11 gives the locations, along

12480 12544 12608 12672 12736
- - - - -

12542 12606 12670 12734 12798

195 196 197 198 199

Fig. 2·11. Areas to store sprite data, along with the appropriate pointer values.

29

Commodore 64/128 Graphics and Sound Programming

with the pointer number used for each area.
More exotic locations are available to advanced
programmers who are willing to play around
with the Commodore 64's memory map, but
that's information for another book.

2.4 GETTING TWO
VERY DIFFERENT SPRITES

Imagine a program that will put two dif
ferent sprite images on the screen. How will
it differ from a program like Design a Sprite,
from Chapter I?

First, it must load in two blocks of pixel
data. Then, it has to set the pointers at 2040
and 2041 to point to the two areas filled with
pixel data. Third, it must set up the VIC-II
registers to position, color, and size each sprite.
Finally, it has to turn both sprites on.

Figure 2-12 shows two new sprite designs.
Figure 2-13 is a listing of the program Spritely
Couple, which puts them on the screen-such
a sweet young couple. Type the program in,
then save and run it. Fool around with it,
changing parts of the images and register set
tings; then come on back for a brief explana
tion of its workings.

2.5 ALL ABOUT YOUR
YOUNG COUPLE

Nothing in the listing of Spritely Couple
should surprise you. Let's go over some of the
details. Line 1050 cleans the screen and sets
up for feedback. Then two loops load in the
two blocks of sprite pixel data. The first set
of 63 numbers is put into locations 896-958.
Line 1140 signals that the first block is set by
putting a period next to the word THINKING.
The second set of 63 numbers is put into loca
tions 960-1022. Then line 1200 signals the end
of that process with another period. The pixel

30

data was figured using a copy of the coding
form from Fig. 1-6.

The program then sets the data pointers
and VIC-II registers. I decided to make both
sprites double-sized since they were so
detailed. It's tough to see the detail at normal
size. Line 1660 turns on sprites #0 and #1 by
putting l's into bits 0 and 1 of VIC + 21. Go
back to Section 2.1.3. if you're not certain why
3 was the value poked in.

Lines 1700-1710 wait for our usual
keypress to close up shop. Then lines
1770-1790 reset the on/off and expansion
registers-very straightforward stuff.

2.6 MOVING MORE THAN
ONE SPRITE AT A TIME

There are many different techniques you
can use to get several sprites in motion. Some
are easy to program; some are difficult. Some
use lots of the machine's memory; some use
very little. Some can only provide simple paths,
while others can provide very complex ones.
Some give motion that is fast and smooth,
while others give slow and jerky results. Some
are very straightforward; others are tricky and
difficult to understand. There is only room for
one example in this chapter; so I've chosen one
that's not too tough and yet gives a nice result.

You're going to take the two sprites from
the program Spritely Couple and let them
chase one another around the screen. You'll
program this motion by making changes and
additions to Spritely Couple. So load it into
your machine, and type in the lines listed in
Fig. 2-14. Save and run the resulting program.

2.6.1 Thinking about the Path
In this program, the two sprites race in a

square path that's centered on the screen. The

More Than One Sprite

Fig. 2·12. Two new sprite designs are used in the program Spritely Couple.

31

Commodore 64/128 Graphics and Sound Programming

1000 REM *** SPRITELY COUPLE ***
1010 • •
1020 • · 1030 REM ** SET UP SCREEN FEEDBACK
1040 • · 1050 PRINT II [JpDDDDDDDlT H INK I N G II • ,
1060 · · 1070 • · 1080 REM ** LOAD THE SPRITE DATA
1090 · · 1100 FOR N = 896 TO 958 :REM 1ST ONE
1110 READ SPDTA
1120 · POKE N, SPDTA · 1130 NEXT N
1140 PRINT II .. . :REM FEEDBACK • ,
1150 · · 1160 FOR N = 960 TO 1022 :REM 2ND ONE
1170 • READ SPDTA · 1180 • POKE N, SPDTA •
1190 NEXT N
1200 PRINT II II • :REM FEEDBACK ,
1210 · •
1220 DATA 0, 28, 0, 0, 62, 0
1230 DATA 0, 62, 0, 0, 62, 0
1240 DATA 0, 28, 0, 0, 8, 0
1250 DATA 0, 255, 128, 0, 255, 128
1260 DATA 0, 190, 128, 0, 156, 128
1270 DATA 0, 136, 128, 0, 190, 128
1280 DATA 0, 190, 128, 1, 156, 192
1290 DATA 1 , 148, 192, 0, 20, 0
1300 DATA 0, 20, 0, 0, 20, 0
1310 DATA 0, 54, 0, 0, 119, 0
1320 DATA 0, 119, 0
1330 · •
1340 DATA 0, 28, 0, 0, 62, fa
1350 DATA 0, 62, 0, 0, 127, 0
1360 DATA 0, 93, 0, 0, 8, 0
1370 DATA 0, 127, 0, 0, 127, 0
1380 DATA 0, 93, 0, 0, 73, 0
1390 DATA 0, 93, 0, 0, 127, 0
1400 DATA 0, 255, 128, 0, 62, 0
1410 DATA 0, 62, 0, 0, 20, 0
1420 DATA 0, 20, 0, 0, 20, 0
1430 DATA 0, 20, 0, 0, 54, 0

32

More Than One Sprite

1440 DATA
1450 :
1480 :

0, 119, o

1470 REM ** SET UP THE SPRITE CONTROLS
1480 :
1490 PRINT 1I~lIj
1500 VIC = 53Z48
1510 :
15Z0 POKE Z040,14
1530 POKE Z041,15

:REM CLEAR SCREEN
:REM GRAPHICS CHIP

:REM ~0 DATA POINTR
:REM ~1 DATA POINTR

1540 :
1550 POKE
1580 POKE
1570 POKE
1580 POKE
1590 :

VIC,lZ4 :REM ~0 HORIZONTAL
VIC+Z,173 :REM ~1 HORIZONTAL
VIC+l,150 :REM ~0 VERTICAL
VIC+3,150 :REM ~1 VERTICAL

1800 POKE VIC+39,3
1810 POKE VIC+40,7
18Z0 :
1830 POKE VIC+Z3,3
1840 POKE VIC+Z9,3
1850 :
1880 POKE VIC+Zl,3
1870 :
1880 :

:REM ~0 IS CYAN
:REM ~1 IS YELLOW

:REM BOTH SPRITES
:REM DOUBLE-SIZED

:REM TURN BOTH ON

1890 REM ** WAIT FOR KEYPRESS TO END
1700 :
1710 GET KP$
17Z0 IF KP$ - 1111 THEN 1710

• •
REM ** RESET THE SPRITE CONTROLS

1730 :
1740
1750
1760
1770
1780
1790
1800
1810

:
POKE VIC+Zl,0
POKE VIC+Z9,0
POKE VIC+Z3,0
• •
END

Fig. 2-13. Listing of the program Spritely Couple.

:REM SPRITES OFF
:REM AND SIZES
:REM BACK TO NORMAL

path is 100 pixels wide and 100 pixels high.
So the comers of the path will be 50 pixels
away from the center of the screen, both
horizontally and vertically. To center a double-

sized sprite on the screen, its horizontal posi
tion should be 160 and its vertical position
should be 129 (see Fig. 1-16). To find the cor
ner positions, just add and subtract 50 from

33

Commodore 64/128 Graphics and Sound Programming

34

1000 REM *** SPRITELY CHASE
1550 POKE VIC,110 :REM ~0
1560 POKE VIC+2,210 :REM ~1
1570 POKE VIC+1,79 :REM ~0
1580 POKE VIC+3,179 :REM ~1
1662 :
1664 :

*** HORIZONTAL
HORIZONTAL
VERTICAL
VERTICAL

1SSS REM ** INITIALIZE SPRITE MOTION
1667 :
1668 00 = 1 : 01 = -1
1670 :
1672 :
1674 REM ** MOVE VERTICALLY
1676 :
1678 FOR MOVE = 1 TO 100
1680 POKE VIC+1, PEEK(VIC+1) + 00
1682 POKE VIC+3, PEEK(VIC+3) + 01
1684 GET KP$
1686: IF KP$ = 1111 THEN 1690
1688 : MOVE = 100 : KEYPRESS = -1
1690 NEXT MOVE
1692 :
1694 :
1696 REM ** IF KEY PRESSED, FINISH UP
1698 :
1700 IF KEYPRESS THEN 1750
1702 :
1704 :
1706 REM ** MOVE HORIZONTALLY
1708 :
1710 FOR MOVE = 1 TO 100
1712: POKE VIC, PEEK(VIC) + 00
1714: POKE VIC+2, PEEK(VIC+2) + 01
1716: GET KP$
1718: IF KP$ = 1111 THEN 1722
1720 : MOVE = 100 : KEYPRESS = -1
1722 NEXT MOVE
1724 :
1726 :
1728 REM ** IF KEY PRESSED, FINISH UP
1730 :
1732 IF KEYPRESS THEN 1750
1734 :
1736 :

More Than One Sprite

1738 REM ** REVERSE MOTION AND REPEAT
1740 :
1742 00 = -00 : 01 = -01
1744 GOT a 1678
1746 :
1748

Fig. 2-14. Changes and additions that tum the program Sprltely Couple into the program Sprltely Chase.

the centering position. Figure 2-15 shows the
resulting comer positions.

Start sprite #0 in the upper left comer, and
sprite #1 in the lower right comer. Sprite #0
has to move down, right, up, and then left.
Sprite #1 has to move up, left, down, and then
right. Take a look at Fig. 2-16. It shows four
views of the two sprites as they move about

~
~

I H = 210 I V =79

r---,
I H = 160 I

V = 129 L __J

~
~

I H = 210 I V =79

Fig. 2-15. Comer positions that are reached by a sprite follow
ing a square path. Each side of the square path Is 100 pixels
long; the square Is centered on the screen.

the path. View 1 shows the starting positions.
The arrows indicate the direction each sprite
is moving in. Notice that when one sprite
moves vertically, the other also moves ver
tically, but in the opposite direction. When one
moves horizontally, the other also moves
horizontally, but again in the opposite direc
tion. This symmetry of motion makes your pr0-

gramming job a lot easier.

2.6.2 Establishing Sprite
Positions and Motions

Lines 1550-1580 set the initial sprite
positions:

1558 POKE UIC.118 :RE" Me HORIZONTAL
1568 POKE UIC+2.218 :RE".1 HORIZONTAL
1578 POKE UIC+l.79 :RE" Me UERTICAL
1588 POKE UIC+3.179 :RE".1 UERTICAL

As mentioned above, sprite #0 starts in the
upper left comer of the path, and sprite #1
starts in the lower right comer.

The program uses two variables to pro
duce the sprite's motions. DO does the chore
for sprite #0, and D1 does it for sprite #1. Line
1668 gives these two variables their starting
values:

1668 D8 ; 1 : Dl ; -1

You'll be adding the values of these motion
variables to the sprites' position registers. Let's
think this out a bit.

35

Commodore 64/128 Graphics and Sound Programming

1 2

3 4

I s:tel . #1 - - - - -I
I

:- ----\ ~g~te 1

~
:-----'~
I I

~ :
~----

----1 Sprite I I #0
I 1
I I
~ ____ I
~~

Fig. 2-16. Four pictures of two sprites as they move around the square path.

If you add positive numbers to a sprite's
vertical position, the number gets larger, and
the sprite will move down the screen. Adding
negative numbers will cause the vertical posi
tions to have a smaller value, and the sprite
will move up the screen. Horizontal position
ing works in a similar way. Adding positive
numbers to the horizontal position will move
a sprite to the right, and adding negative
numbers will move it to the left.

Lines 1678-1690 take care of all vertical
path motions for both sprites:

1678 FOR "OUE : 1 TO 188
1688 POKE UIC+l. PEEK(UIC+l) + D8

36

1682 POKE UIC+3. PEEK(UIC+3) + Dl
1684: GET KP$
1686: IF KP$: THEN 1698
1688 : "DUE : 188 : KEYPRESS : -1
1698 NEXT "DUE

Lines 1678 and 1690 set up a loop that will
be carried out 100 times. That's because each
side of the path is 100 pixels long, and you'll
be moving one pixel each time you pass
through the loop. Each time through, line 1680
will add the value of sprite #O's motion variable
to that sprite's vertical position register.
Similarly, line 1682 adds the value of sprite
#l's motion variable to its vertical position.

Lines 1686-1688 represent an improve-

ment over our previous moving sprite pro
grams. Now you can check for a keypress after
each sprite move, rather than waiting for a
whole cycle to end. Line 1686 scans the
keyboard. If a key hasn't been pressed, line
1688 is skipped, and the loop merrily goes
about its business. If a key has been pressed,
two things occur: the value of the loop-counting
variable MOVE is jumped up to 100, and the
variable KEYPRESS is set to - 1. Setting
MOVE to 100 will force a quick loop exit when
line 1690 is hit. This is a clean way to leave
a loop in a hurry. KEYPRESS is set to - 1
because - 1 represents true. Refer back to Sec
tion 1.8 if this seems odd.

Line 1700 will either send us on to the
horizontal motion loop or the end of the pro
gram based on the value of KEYPRESS:

1788 Ir KEYPRESS THEN 17~8

If KEYPRESS contains a 0, representing false,
no key has been pressed, and the program goes
on to the horizontal loop. But if KEYPRESS
contains a -1, then a key has been pressed,
KEYPRESS will be interpreted as true, and
the program will go to the clean-up-shop-and
end segment that starts at line 1750.

By the way, these true/false tests are
known as Boolean tests, and you can call
KEYPRESS a Boolean varlable. It's always a
bit of fun to know some jargon.

Lines 1710-1722 form a loop that takes
care of horizontal path motion:

1718 FOR MOUE: 1 TO 188
1712 POKE UIC. PEEK(UIC) + D8
1714 POKE UIC+2. PEEK(UIC+2) + Dl
1716: GET KP$
1718: IF KP$: THEN 1722
1728 : "OUE : 188 : KEYPRESS: -1
1722 NEXT "OUE

This loop is almost exactly the same as the one

More Than One Sprite

for vertical motion. The only difference is that
now the program will add the motion values
to the horizontal position registers.

Line 1732 again tests to see if a key was
pressed during the preceding loop:

1732 Ir KEYPRESS THEN 17~8

If a key has been pressed, the program will
jump to line 1750 and end itself. If one hasn't
been pressed, it's time to change directions.

2.6.3 A Cheap Path
Trick: Changing Directions

Consider sprite #0 in this program. To
complete one trip around the square path, it
must go down, then right, then up, and then
left. Or think of it another way: vertical mo
tion, horizontal motion, vertical motion, and
horizontal motion. You've covered two loops
that took care of the first vertical and horizon
tal motions. Now you need another pair of
these loops-or do you?

You don't. You can just switch the direc
tion of sprite #O's motion, and then go back
to the same two horizontal and vertical loops.
The original value of the motion variable DO
was 1. If you multiply it by -1, it becomes -1.
Now the vertical loop will send sprite #0 up,
and the horizontal loop will send it to the left.
Similarly, you can reverse the direction of
sprite #l's motion. Its original motion value
was -1; multiplying that by -1 gives a mo
tion value of 1. It will now go down in the ver
tical loop, and to the right in the horizontal
loop, which is just what you want it to do. Once
both motions are reversed, you must leap back
up to line 1678 and go through the motion loops
again.

Lines 1742-1744 are the ones that pull off
this reversal:

37

Commodore 64/128 Graphics and Sound Programming

~742 DO ~ -DO : D~ = -D~
~744 GOTO !GT8

One last bit of thinking: the next time the pro
gram gets to line 1742, the motions will again
be reversed. This will set them back to their
original values, which is perfect, because at
that point each sprite will be back in its original
position: #0 in the upper left comer of the path
and #1 in the lower right comer of the path.

Okay, now it's your turn. Spend some time
playing around with Spritely Chase. Can you
get a triangular path? Or move four sprites
around the square? Or have the sprites spiral
in the center of the screen, and then spiral out
again? Remember to think first, and write pro
gram lines afterward.

2.7 CHAPTER SUMMARY
In this chapter you've seen a few techni

ques for dealing with more than one sprite at
a time. You've learned:

* How to put several sprites on the screen,
using the same 63 bytes of pixel data for
each one

* About bits and bytes, and how they're
used in some of the VIC-II registers to
control individual sprites

* About storing more than one block of
sprite data, and how to set the sprite
pointers at 2040-2047

* One of the ways to get more than one
sprite moving in an interesting pattern

* About using Boolean variables to
quickly leave a program from deep in
side a loop.

2.8 EXERCISES
In the next chapter you'll discover more

sprite magic. In the meantime, here are some

38

exercises to sharpen your skills.

2.8.1 Self Test
Answers are given in Section 2.8.3. The

numbers in parentheses tell you which section
of the chapter to go to for help.

1. (2.1) Memory location 2045 usually
serves as a sprite data pointer for sprite
#_------,

2. (2.1.3) A group of eight bits is known as
a ______ _

3. (2.1.3) A byte can represent decimal
numbers between 0 and ___ _

4. (2.1.3) If you want sprites #2, #4, and #7
to appear, you just poke the decimal
number into loca
tion VIC + 21.

5. (2.2) If you want sprites #0, #3, and #4 to
be expanded vertically, you poke the
number into loca
tion VIC + 23.

6. (2.3) If you're using eight blocks of sprite
data, a good area of memory to store them
starts at location _______ _

7. (2.6.1) To set a double-sized sprite halfway
down the screen, its vertical position reg-
ister should be set to ___ _

8. (2.6.2) As a sprite's horizontal position
gets larger, it moves towards the
________ side of the screen.

9. (2.6.2) Variables that take on values
representing true or false are known as
________ variables.

10. (2.6.3) To get a variable's value to switch
back and forth from - 1 to 1, we just
repeatedly multiply the variable by

2.8.2 Programming Exercises
1. Change the program Simple Clones so

More Than One Sprite

that four more clones appear, one in
each comer of the screen.

7. 129
8. right

2. Change the program Spritely Chase so
that the sweet young couple moves in
a clockwise direction.

9. Boolean
10. -1

3. Change the program Sprite1y Chase so
that two females chase two males
around the square.

2.8.4 Possible Solutions
to Programming Exercises

These solutions are based on adding or
changing lines in the programs mentioned in
the exercises. Remember, any solution that
completes the task is fine.

2.8.3 Answers to the Self Test
Again, these are just my favorite answers.

Other answers that you can justify to yourself
are fine.

1. Load in the program Simple Clones.
Then type in the lines shown in Fig.
2-17.

1. 5
2. byte
3.255
4. 148
5.25
6. 12288

1000
136Z
1364
1366
1368
141Z
1414
1416
1418
1419
146Z
1464
1466
1468
151Z
1514
1516
1518
1530

2. Load in the program Spritely Chase.
Then type in the lines shown in Fig.
2-18.

3. Load in the program Spritely Chase.
Then type in the lines shown in Fig.
2-19.

CLONES *** REM *** EIGHT
POKE Z044,14
POKE 2045,14
POKE 2046,14
POKE Z041,14
POKE VIC+8,Z4
POKE VIC+10,64
POKE VIC+1Z,Z4
POKE VIC+14,64
POKE VIC+16,160
POKE VIC+9,50
POKE VIC+ll,50
POKE VIC+13,ZZ9
POKE VIC+15,ZZ9
POKE VIC+43,1
POKE VIC+44,5
POKE VIC+45,3
POKE VIC+46,l
POKE VIC+Zl,Z55

REM ~4 DATA POINTR
REM ~5 DATA POINTR
REM ~6 DATA POINTR
REM ~1 DATA POINTR
REM ~4 HORZNTL POS
REM ~5 HORZNTL POS
REM ~6 HORZNTL POS
REM ~1 HORZNTL POS
REM 5&1 USE 2ND HR
REM ~4 VERTCAL POS
REM ~5 VERT CAL POS
REM ~6 VERTCAL POS
REM ~1 VERTCAL POS
REM ~4 IS YELLOW
REM ~5 IS GREEN
REM ~6 IS CYAN
REM ~1 IS WHITE
REM SPRITES 0-7 ON

Fig. 2-17. A possible solution to programming exercise 1.

39

Commodore 64/128 Graphics and Sound Programming

1000 REM *** CLOCKWISE CHASE ***
1814 REM ** MOVE HORIZONTALLY
1880 • POKE VIC, PEEK(VIC) + 00 · 1682 • POKE VIC+2, PEEK(VIC+2) + 01 •
1106 REM ** MOVE VERTICALLY
1112 • POKE VIC+1. PEEK(VIC+1) + 00 •
1114 • POKE VIC+3, PEEK(VIC+3) + 01 •

Fig. 2-18. A possible solution to programming exercise 2.

1000
1530
1533
1536
1563
1566
1568
1583
1586
1613
1616
1630
1640
1660
1614
1681
1683
1106
1113
1115

REM *** COUPLES CHASE ***
POKE 2041,14 :REM #1 DATA POINTR
POKE 2042,15 :REM #2 DATA POINTR
POKE 2043,15 :REM #3 DATA POINTR
POKE VIC+4,110 :REM #2 HORIZONTAL
POKE VIC+6,210 IREM *3 HORIZONTAL
• · POKE VIC+5,119 REM #2 VERTICAL
POKE VIC+1,19 REM #3 VERTICAL
POKE VIC+41,1 REM #2 IS WHITE
POKE VIC+42,5 REM #3 IS GREEN
POKE VIC+23.15 REM ALL 4 SPRITES
POKE VIC+29.15 REM DOUBLE-SIZED
POKE VIC+21,15 REM TURN ALL 4 ON
REM ** MOVE ONE SIDE OF PATH
: POKE VIC+4. PEEK(VIC+4) + 00
: POKE VIC+6. PEEK(VIC+6) + 01
REM ** MOVE ANOTHER SIDE OF PATH
: POKE VIC+5, PEEK(VIC+5) + 01
: POKE VIC+1. PEEK(VIC+1) + 00

Fig. 2-19. A possible solution to programming exercise 3.

40

Chapter 3

Some More
Sprite Tricks

W ouId you like to display some sprites that
have more than one color? This chapter will
show you how. You'll also learn about sliding
sprites over and under one another. Finally,
you'll use a set of sprite images to create some
funny animation. Along the way, you'll pick
up some more experience with bits, bytes, and
spritely motion.

3.1 TRADING DETAIL
FOR COLOR: SPRITE
MUL TICOLOR MODE

First, a little review. A normal sprite
design is defined by storing 63 bytes of pixel
information in the computer's memory. Each
byte contains eight bits, and each bit turns one
pixel on or off. Since 63 times 8 is 504, you're
able to define sprites that contain 504 pixels.

If a pixel's bit is set to 1, that pixel will
show up in the color you set in the sprite's color

register. If a pixel's bit is set to 0, that pixel
will show up as the color of the screen; in other
words, it won't really show up at all.

Since normally there's just one bit to play
with, a pixel has two choices: show up, or be
invisible. However, Commodore has given us
an alternative: the muIticolor sprite mode. In
this mode, you can use two bits to pick a color.
The two bits are called a bit pair.

Two bits can hold four possible bit pat
terns, as shown in Fig. 3-1. And that means
you can pick anyone of four colors for the two
dots set by a bit pair. Of course, both dots will
have the same color. It's best to think of the
two dots as one double-wide pixel. This brings
up a tradeoff you must make: in muIticolor
sprite mode, each byte sets the colors for four
double-wide pixels. So each row of the sprite
image will have 12 double-wide pixels instead
of 24 normally-sized pixels. The sprite will
have more color, but less horizontal detail.

41

Commodore 64/128 Graphics and Sound Programming

1 1 1

I

I
I
I

o

Fig. 3-1. Two bits can hold four possible bit patterns.

Let's go over that one more time_ Since
two bits will be needed to choose a color, each
byte will only be able to control four double
wide pixels. See Fig. 3-2. With three bytes per
row of the sprite design, that means the sprite
will be 12 double-wide pixels across. It will
show up the same size as a normal sprite, but
with less horizontal detail. Since you still use
63 bytes to define the sprite design, it'll be
composed of 252 double-wide pixels (63 x 4).

3.2 MORE ABOUT THE
MUL TICOLOR MODE

What colors will show up when you display

The VIC-II chip
uses 8 bits ~

to set up 8
normal pixels ---.

The VIC-II chip
uses 4 bit pairs ----.

to set up4 ~
double-wide pixels

o I 1

I
o

I
I

o

a multicolor sprite? If the bit pair is 00, the dou
ble wide-pixel will be given the screen's color.
By the way, the screen color is controlled by
the number in the register at VIC + 33 (53281).
If the bit pair is 01, the color will come from
sprite multicolor register #0 at VIC + 37. If the
bit pair is 10, the pixel will get its color from
the sprite's regular color register. Remember,
each sprite has its own color register in one
of the locations VIC + 39 through VIC + 46.
And if the bit pair is 11, the color will come
from sprite multicolor register #1 at VIC + 38.
Figure 3-3 summarizes this.

And how do you tell the Commodore 64

Normal sprite

o o o o

Multicolor sprite

o o o o

Fig. 3-2. In a multicolor sprite, each bit pair controls the color of one double-wide pixel.

42

Some More Sprite Tricks

Bit Description Location pair

00 Screen color VIC+33 (53281)

01 Sprite multicolor register #0 VIC+37 (53285)

10 Sprite color register One of registers VIC+39 - VIC+46
(53287-53294)

1 1 Sprite multicolor register # 1 VIC+38 (53286)

Fig. 3-3. In a multicolor sprite, each bit pair gets its color from a particular VIC register.

that a particular sprite should be displayed in
the multicolor mode? The register at VIC + 28
is a sprite multicolor selector. Each bit controls
one sprite, in the usual relationship: bit #0 con
trols sprite #1, and so forth. By setting a
sprite's bit at VIC+28 to 1, you switch that
sprite over to multicolor mode. Setting the bit
to 0 puts the sprite back to normal mode.

3.3 DESIGNING A
MUL TICOLOR SPRITE

There may be a few of you who can design
a multicolor sprite in your head. The rest of
us need some help. Figure 3-4 is a sprite
multicolor coding form. It's very similar to the
regular sprite coding form of Fig. 1-6. There
are still 21 rows, values over each bit position,
and three columns for number codes over on
the right. However, there are only 12 columns,
since our pixels are double wide.

How do you use this form? Refer to Fig.
3-5, which shows a filled in multicolor coding
form, as I describe the steps. First, fill in the
color-key boxes at the bottom of the form. Give

each of the four possible colors a different
shade. It's usually simplest to let the screen
color be represented by white.

Then fill in the double-wide pixel boxes
with a design. Use the shades you've set up
in the color-key boxes. When you've got
something you like, it's time to fill in with l's;
don't bother with the O's. Using the color-key
boxes at the bottom as a guide, fill in all the
bit positions that should have a 1 in them. You
may find it easier to do all the pixels for one
color before going on to the next color.

Finally, it's time to add up the bit values.
For each byte, add all the values of the bits
containing a 1. This step is no different than
other bit value adding you've done. The sum
goes in the appropriate number code box on
the right side of the form.

Take another good look at Fig. 3-5. Make
sure you understand how I got the 63 number
codes. Then make some copies of the
multicolor coding form and come up with your
own design. You'll get to use it in the next
section.

43

Commodore 64/128 Graphics and Sound Programming

C;olumn
numDer 0 1 2 3 4 S

Values 128164 32 116 8 I 4 2 I 1 128 164 32 116

Row 0 I I T I I I

Row 1 1 I I I I
Row 2 I I I I I

Row 3 I I I I I
I

Row 4 I I I I I
RowS 1 I -+-

I
I r;. --.

Row6 I 1 1 I
Row 7 I I 1"

1 I
Row 8 I I I I I

Row 9 1 I I
I I I

Row 10 r I I I I

Rowll I I I I I I
Row 12 I I I I I
Row 13 1

I I I
I I

Row 14 1 T T I
Row IS 1 I I 1 I I
Row 16 : I T 1 1 I
Row 17 I I

I : I

Row 18 I i I 1 I I

Row 19 ~ I 1 I I I
Row 20 I : : I : : I

Transparenl ~
screen color C=:J MullicolOr ~

regiSler frO C=:J
Fig. 3-4. A special coding form for multicolor sprites.

3.4 A PROGRAM TO DISPLAY
YOUR TECHNICOLOR SPRITES

Figure 3-6 is a listing of the program
4-Color Sprite. The program puts the character
designed in Fig. 3-5 onto the screen. A
keypress ends the program.

This program is very much like our earlier
sprite display programs. The big difference
comes in Lines 1400-1440:

1400 POKE UIC+28,1
1410 POKE UIC+33,0
1420 POKE UIC+37,7
1430 POKE UIC+39.5
1440 POKE UIC+38,6

:REM MULTICOLOR MO
:REM BKGRND BLACK
:REM MCR MO YELLOW
:REM SPR MO GREEN
:REM MCR Mt BLUE

Line 1400 sets the sprite multicolor selection

44

6 7 8 9 10 11 Number

8 14 2 : 1 128164 32 116 81 4 2 I 1 codes

I I i I I i
I I I I I I
1 T T 1 I I
I T

I I I I
I

I I I I I
I I I I I I

1 I I 1 1 I

I I
T I I

I
I

I

1

1

I
I

I

i
I

I

I I
I i
i I

I i
I I

1 1
I I
I I

1
I

I I
I l
I I
I I
I

Sprile~
color c::J

I

I
I

1
I

:
I
I
I

I
I

I
I
I

I I

I

I I

I I
I I
I I
I 1
I I
I I

1 I

I I

I I

: I
I

Muhicolor ~
regisler frl CJ

register so that sprite #0 will be displayed in
multicolor mode. Lines 1410-1440 then set up
the four colors that will be used: black, cho
sen by bit pair 00; yellow, chosen by bit pair
01; green, chosen by bit pair 10; and blue, cho
sen by bit pair 11.

There is one other difference: at the end
of the program, you must reset the multicolor
selection register:

1580 POKE UIC+28.0 :REM MULTICOLOR orr

A sprite designed for normal display looks
pretty strange if it's shown in multicolor mode.
If you're wondering how strange, go back to

Some More Sprite Tricks

Tran"par"nf@!J mUlfitDIDr ~. 1
Str .. n (DIDr c=J Rlgls,"r all~

mullitDIDr ~
Rlgisler al"

Fig. 3-5. Example of a fllled·in multicolor sprite coding form.

1121121121
11211121
11212121
11213121
11214121
11215121
11218121
11217121
11218121
11219121
11121121
111121
112121

REM *** 4-COLOR SPRITE ***
· · REM ** SET UP SCREEN FEEDBACK
· · P R I NT 11 UfIPIPIPlpIPDIP1T H INK I NOli ;
:
· · REM ** LOAD THE SPRITE DATA

FOR N = 898 TO 958
: READ SPDTA

POKE N. SPDTA

45

Commodore 64/128 Graphics and Sound Programming

46

113121 NEXT N
114121 :
115121 DATA
116121 DATA
117121 DATA
118121 DATA
119121 DATA
12121121 DATA
121121 DATA
122121 DATA
123121 DATA
124121 DATA
125121 DATA
128121 :
127121 :

1 ,
1 ,
1 ,
1 ,
0,

62,
48,
2121,
16,

121,
1 ,

85,
2121,
85,
65,
6121,

170,
17121,
13121,
195,
85,
65,

64,
64,
64,
64,

121,
188,

12,
2121,

4,
121,

64

1 ,
1 ,
1 ,
1,
121,

62,
16,
2121,

121,
1,

85,
2121,
2121,
85,
6121,

17121,
17121,
13121,
195,

85,

64
64
64
64

121
188

4
2121

121
84

128121 REM ** SET UP THE SPRITE CONTROLS
129121 :
130121 PRINT 1IL:;lIj
131m POKE 212140,14
132121 VIC = 53248
133121 :

:REM POINT TO DATA
:REM GRAPHICS CHIP

134m POKE VIC,16121 :REM HORIZONTAL P~S
135121 POKE VIC+1,129 :REM VERTICAL POS
138121 :
137121 POKE VIC+23,1
138121 POKE VIC+29,1
139121 :
140121 POKE
141121 POKE
1420 POKE
143m POKE
144121 POKE
145121 :

VIC+28,1
VIC+33,0
VIC+37,7
VIC+39,5
VIC+38,6

1460 POKE VIC+21,1
147121 :
1480 :

:REM EXPAND VERT CAL
:REM EXPAND HORZTAL

:REM
:REM
:REM
:REM
:REM

MULTICOLOR ++121
BKGRND BLACK
MCR ++121 YELLOH
SPR ++121 GREEN
MeR ++1 BLUE

:REM SPRITE ++121 ON

1490 REM ** HAlT FOR KEYPRESS
15121121 :
1510 GET KP$
1520 IF KP$ - 1111

1530 :
• •

THEN 1510

1540
1550
1560
157121
1580

REM ** RESET THE SPRITE CONTROLS
• •
POKE VIC+21,12I
POKE VIC+28,12I

:REM SPRITE OFF
:REM MULTICOLOR OFF

Some More Sprite Tricks

1590 POKE VIC+29,0
1800 POKE VIC+23,0
1810 :

:REM HORZ EXPND OFF
:REM VERT EXPND OFF

1820 END

Fig. 3-6. Listing of the program 4-Color Sprite.

some of our earlier programs and insert lines
like 1400-1440 to tum on multicolor mode.

Type in the program 4-Color Sprite if you
haven't done so already. Save it, and then run
it. Fool around with the color choices in lines
1410-1440 to see if you can come up with a
more pleasing combination.

When you're done with that experimenta
tion, it's time to try out your coding. Replace
the pixel data in lines 1150-1250 of 4-Color
Sprite with the number codes you came up
with in the last section. Then rerun the pro
gram. How does it look? It may take some
tinkering to get the result you had in mind.

3.5 OVER AND UNDER
When a sprite travels around the screen,

it may cover part of an area used by another
sprite. When that happens, a fixed sprite-to
sprite priority determines which sprite shows
up in front of the other. Sprite #0 has the
highest priority, and sprite #7 has the lowest.
Thus, if sprite #0 shares part of the display
with sprite #7, sprite #0 will show up in front
of sprite #7. Likewise, sprite #4 has priority
over sprite #5. Figure 3-7 summarizes these
priorities.

If one sprite is in front of another, it's
possible to see parts of the sprite behind it.
Those parts of the higher priority sprite that
are transparent, that is, the pixels that are set
to the screencolor, will act like a window.
You'll be able to see parts of the lower priority

sprite through this window.
Figure 3-8 is a listing of the program Sprite

Overlap. Type it into your computer; save it;
then run it. Watch it for a while.

Sprite Overlap puts four similar sprites on
the screen and then sets up a never-ending
(until you press a key) square dance. Notice
how the transparent parts of sprites #1 and #0
let you see parts of the sprites that they're
passing over.

This program has two interesting features,
besides giving a demonstration of how sprites

Sprite ;'7
Sprite ;'61

Sprite ;'5 1
- Sprite ;'4 I
- Sprite ;'31

- Sprite;'2 I
.... Sprite;'1 J

- Sprite ;'0
-

--
Ag. 3-7. When sprites meet, the highest priority goes to
sprites with the lowest numbers, and they show up in front
of higher-numbered sprites.

47

Commodore 64/128 Graphics and Sound Programming

48

REM *** SPRITE OVERLAP *** 1000
1010
1020 :
1030 REM ** SET UP SCREEN FEEDBACK
1040 :
1050 PR I NT 1I~1p1p1p1p1P1P1P1SET T I NG UP II ;

1060 :
1010
1080
1090
1100
1110
1120
1130
1140
1150
1160
1110
1180
1190
1200
1210
1220
1230
1240
1250
1260
1210
1280
1290
1300
1318
1320
1330
1340
1350
1360
1310
1380
1390
1400
1410
1420
1430

· · REM ** LOAD THE SPRITE DATA
• •
FOR N = 832 TO 894
: POKE N, 60
NEXT N

• •
REM ** SET UP THE SPRITE CONTROLS
• · PRINT II~II :REM CLEAR SCREEN

:REM GRAPHICS CHIP VIC = 53248
• · POKE
POKE
POKE
POKE
• · POKE
POKE
POKE
POKE
• •
POKE
POKE
POKE
POKE
• •
POKE
POKE
POKE
POKE
• •

2040,13
2041,13
2042,13
2043,13

:REM H0 DATA POINTR
:REM Hl DATA POINTR
:REM H2 DATA POINTR
:REM H3 DATA POINTR

VIC,226 :REM H0 HORZNTL POS
VIC+2,94 :REM Hl HORZNTL POS
VIC+4,144 :REM H2 HORZNTL POS
VIC+6,116 :REM H3 HORZNTL POS

VIC+l,140 :REM H0 VERTCAL POS
VIC+3,118 :REM Hl VERT CAL POS
VIC+5,190 :REM H2 VERTCAL POS
VIC+1,6B :REM H3 VERT CAL POS

VIC+39,1
VIC+40,5
VIC+41,3
VIC+42,1

:REM H0 IS YELLOW
:REM Hl IS GREEN
:REM H2 IS CYAN
:REM H3 IS WHITE

POKE VIC+23,15 :REM ALL SPRITES
POKE VIC+29,15 :REM DOUBLE-SIZED
• · POKE VIC+21,15 :REM SPRITES 0-3 ON

Some More Sprite Tricks

144121 :
• •
REM ** SET UP MOVING REGISTERS

145121
146121
147121
148121
149121
15121121
151121
152121
153121
154121 :

REM AND INITIAL MOVES
• •
MRCI2I) = VIC • MR(1) = VIC+2 •
MR(2) = VIC+5 • MR(3) = VIC+7 •
• · MVCI2I) = -1 · MV(1) = 1 •
MV(2) = -1 • MV(3) = 1 •

155121 OF = -1 :REM -1:INHARO, 12I:0UTHARO
156m :

• •
REM ** MOVE THE SPRITES

157m
158m
159m
16121121
161m
162m
163m
164m
165m
166m
167m
168m
169m
17121121
171m :

• •
FOR COUNT = 1 TO 2121121

SPRNUM = INT(CCOUNT-1)/5121)
IF OF THEN SPRNUM = 3 - SPRNUM
REG = MRCSPRNUM)
MOVE = MVCSPRNUM)
POKE REG, PEEKCREG) + MOVE
GET KPS
IF KPS = 1111 THEN 169m

COUNT = 200 : KEYPRESS = -1
NEXT COUNT

172m REM ** IF KEY PRESSED, FINISH UP
173m :
174m IF KEYPRESS THEN 19121121
175m :
1760 :
177121 REM ** PAUSE, THEN REVERSE
178m REM MOVEMENTS AND REPEAT
179m :
18121121 FOR DELAY = 1 TO 4121121 : NEXT DELAY
181m FOR SPRNUM = 121 TO 3
182121: MVCSPRNUM) = -1 * MVCSPNUM)
183m NEXT SPRNUM
184121 OF = -1 - OF
1850 GOTO 16121121
186m :
187m
188m · •

REM ** FINISH UP BY RESETTING

49

Commodore 64/128 Graphics and Sound Programming

1890 :
1900 POKE VIC+Z1,0
1910 POKE VIC+Z9,0
19Z0 POKE VIC+Z3,0
1930 :
.1940 END

Fig. 3-8. listing of the program Sprite Overlap.

overlap. The first is the way the sprite shapes
are defined. The second is the way the square
dance is set up.

3.5.1 Loops That Generate Sprites
Lines 1100-1120 build up the block of

sprite pixel data for Sprite Overlap:

1188 rOR N = 832 TO 894
1118: POKE N. 68
1128 NEXT N

You may remember that you used a similar
technique in your first program. A Simple
Sprite. In that case, though, you poked the
number 255, which turned on every pixel in
the sprite. In this case, you chose a number,
60, that turns on the middle four pixels of every
group of eight. See Fig. 3-9. With three such
patterns in each row, you end up with a sprite
design made up of three vertical stripes.

128 64 32 16

You can make a lot of fascinating patterns
by changing this loop around. Try typing in
these two new lines:

1188 rOR N = 832 TO 894 STEP 2
1118: POKE N. 255 : POKE N+l. 8

Run the new version of the program. Try not
to hypnotize yourself. It's an interesting puz
zle to see how many complex sprites you can
design just through the clever use of loops.

3.5.2 Ruminations Upon
A Square Dance

At the start of the motion in Sprite
Overlap, the four sprites are in the positions
shown in Fig. 3-10. One at a time, the sprites
will move towards the center of the screen.
When all are gathered there, they'll pause, and
then go back to their original positions, again
one at a time. After another brief pause, the

8 4 2 1

I I· I
32 + 16 + 8 + 4 =60

Fig. 3-9. Poking the number 60 as sprite data turns on the middle four pixels in each group of eight.

50

I SP; I #3

~~
~~

~~ Sprite
#2

Fig. 3-10. InHiai positions ofthe four sprites in Sprite Overlap,
with arrows indicating the direction they'll first move in.

motion will repeat itself.
Whenever you think about programming

motion, it's useful to look for similarities and
repetitive patterns. These patterns can
simplify your programming. In this case, each
sprite has to follow the same course of action:
move inwards, and then move outwards. You
can use a program segment that handles these
motions for one sprite and then just change the
sprite it works with. If you set up your motion
variables as arrays, it will be easy to switch
sprites: just vary the array subscripts in the
motion segment.

There's another useful simplification to be
made. Inwards and outwards motion will only
differ in the direction a sprite travels. All you
need to do is reverse the direction of a sprite's
motion between repetitions of the motion seg
ment. Thus the same program segment will
be able to move all four sprites both inwards
and outwards. Only the details need to be
worked out (famous last words of many pro
grammers).

Some More Sprite Tricks

3.5.3 Setting Up
Registers and Motions

Since anyone sprite will only be moved
vertically or horizontally, only one position reg
ister will be needed to move that sprite. Lines
1490-1500 set up the four registers that will
be used for sprite moves:

1498 MR(8) : UIC : MR(1) : UIC+2
1588 MR(2) : UIC+5 : MR(3) : UIC+1

Take another look at Fig. 3-10. Sprites #0 and
#1 will be moving horizontally, and sprites #2
and #3 will be moving vertically. I used this
information to figure out which position reg
isters to use.

Lines 1520-1530 give each sprite an initial
move:

1528 MU(8) : -1 MU(1): 1
1538 MU(2) : -1 MU(3): 1

The value of this move variable will be added
to a sprite's current position to give it a new
position. To check the logic behind these
assignments, refer again to Fig. 3-10. The ar
rows indicate the direction of each sprite's in
itial motion. For example, sprite #3 will start
out moving downwards. Each time it moves,
its vertical position should increase, and that's
what the move assigned to sprite #3 by line
1530 will do. When it comes time for sprite
#3 to reverse its motion, you'll just multiply
the value of MV(3) by -1. Then the sprite's
vertical position will decrease by 1 each time,
and it will move upwards.

You have one more item to consider: the
order in which the sprites will move. When the
motion is inwards, you want the order of moves
to be #3, #2, #1, #0. When the sprites move
outwards, you want to move #0 first, followed
by #1, #2, and #3. The order will just reverse

51

Commodore 641128 Graphics and Sound Programming

itself. Line 1550 sets up a variable that will
keep track of inwards and outwards, so you
get the correct order of sprite motions:

1558 DF ~ -1 :RE" -1: INWARD. 8:0UTWARD

3.5.4 The AII·Purpose Motion Loop

Lines 1600-1690 move the sprites:

1688 FOR COUNT ~ 1 TO 288
1618: SPRNU" ~ INTCCCOUNT-l)/58)
1628 IF DF THEN SPRNU" ~ 3 - SPRNU"
1638 REG ~ ~CSPRNU")
1648 ~UE ~ "UCSPRNU")
1658 POKE REG. PEEKCREG) + ~UE
1668 GET KP$
1678 IF KP$ ~ THEN 1698
1688 : COUNT ~ 288 : KEYPRESS ~ -1
1698 NEXT COUNT

Lines 1600 and 1690 set up a loop that will be
carried out 200 times, unless a keypress inter
rupts to end the program. Each sprite will
move 50 times, 1 pixel at a time, and there are
4 sprites to move. 4 x 50 gives you 200.

Lines 1610 and 1620 figure out which
sprite should be moved, and store its number
in the variable SPRNUM. If the sprites are
moving inwards, DF will have the value -1.
SPRNUM will take on the values 3, 2, 1, and
then 0 as the loop progresses. If the sprites are
moving outwards, DF will have the value O.
Now SPRNUM will take on the values 0, 1,
2, and then 3, just as you want.

Line 1630 picks the position register to ad
just, based on SPRNUM, and line 1640 selects
the sprite's move. Line 1650 does the actual
work, taking the old position of the selected
sprite and adding the appropriate move.

Line 1660 checks for any pressed keys. If
there are any, line 1670 sets up a quick exit
from the program. Take another look at Sec
tion 2.6.2 if you forget how this works.

If the sprites have just moved inwards, you
want to set them to go outwards. And if they've

52

gone outwards, you want to get them ready
to go inwards again. Lines 1810-1850 prepare
for the next round of the dance:

1818 FOR SPRNU" ~ 8 TO 3
1828: HU(SPRNU") ~ -1 • HU(SPNUH)
1838 NEXT SPRNU"
1848 DF ~ -1 - DF
1858 GOTO 1688

First, each sprite's move is reversed by
multiplying it by -1. Then the inward/outward
variable is switched around in line 1840. If it
was set to -1, it becomes 0, and if it was set
to 0, it becomes -1. Then line 1850 sends the
program back to the main dance loop, start
ing at line 1600. The program will run, with
the sprites moving in and then out, until a key
is pressed or the plug is pulled.

Here's a great opportunity to dive right in
and play with motion loops. Make some
changes to Sprite Overlap so you get other
sprite dances. Here are some ideas if your im
agination is out to lunch:

Get two sprites to move at a time.
Get the sprites to move to new starting

positions when they move outwards.
Have the sprites cover each other com

pletely when they overlap.

3.6 BRING ON THE
FANCY CARTOONS

Animation is a great form of magic. By
quickly showing a series of still pictures, you
can create the illusion of motion and life. So
far, our sprites have had very limited anima
tion. An image moves around the screen, but
it doesn't change its form. It's like a cheap
Saturday morning cartoon show.

Now you're going to try some fuller anima
tion, where the image itself changes. This is
easy to do with sprites. You start by loading
several sprite images. Then, you set up a loop

I

Some More Sprite Tricks

Fig. 3-11. The three sprite images used to animate a juggler in the program Juggling Fool.

that cycles a sprite's data pointer through the
images.

3.6.1 Developing the Images
Let's set up one of these animation cycles.

Figure 3-11 shows three images of a juggler.

Notice how the action progresses from image
to image and how the last image leads back
to the first. Setting up a cycle of images takes
some tinkering. I'll usually come up with a
preliminary set of images and then run a pro
gram to display them. Next, I fool around with

53

Commodore 64/128 Graphics and Sound Programming

the data until I get the effect I want. Ideas for
additions and changes to the animation pop up,
get tried out, and then are kept or discarded.
The images in Fig. 3-11 are the end result of
such a process.

Once the images are'developed, you can
use the animation cycle in many different pro
grams. Mer a while, you can develop a whole
library of these animated image sets.

Now it's your turn. Using the sprite coding
forms, develop a preliminary set of three im
ages that form an animation cycle. The action
in each image should lead to the next, and the

last should lead to the first. If you're short on
ideas, here are some suggestions for simple
cycles: • a bouncing ball • an eye that opens
• a line that grows and shrinks • a face that
smiles • a star that twinkles • a blizzard.
Figure out the number codes for each image.
y ou'U use them in Section 3.6.3.

3.6.2 The Juggling Fool
Figure 3-12 is a listing of the program Jug

gling Fool. It displays the images shown in Fig.
3-11. Let's do a brief analysis of some of its
features.

1121121121 REM *** JUGGLING FOOL ***
112110
1020 • · 1030 REM ** SET UP SCREEN FEEDBACK
1040 • •
1050 PRINT 1\ LlPIpIpIpIpIpIpIpJS E TTl N G UP 1\ ;

1060 · · 1070 · •
1080 REM ** LOAD THE SPRITE DATA
1090 • •
1100 FOR N = 832 TO 1023
1110 • READ SPDTA · 1120 • IF SPDTA = -1 THEN •

PRINT 1\ 1\ • • GOTO 1140 . , .
1130 • POKE N, SPDTA •
1140 NEXT N
1150 • •
1160 DATA 0, 16, 0, 0, 0, 0
1170 DATA 1 , 0, 128, 0, 0, 0
1180 DATA 0, 0, 0, 0, 120, 0
1190 DATA 4, 120, 16, 0, 120, 0
1200 DATA 0, 120, 0, 12, 24, 0
1210 DATA 15, 255, 16, 0, 61, 128
1220 DATA 121, 6121, 176, 4, 24, 24121
1230 DATA 0, 61, 0, 0, 60, 0
1240 DATA 0, 36, 0, 0, 36, 121
1250 DATA 0, 36, 0, 0, 36, 0
1260 DATA 121, 102, 0, -1
1270 • ·

54

Some More Sprite Tricks

lZ80 DATA
lZ90 DATA
1300 DATA
1310 DATA
13Z0 DATA
1330 DATA
1340 DATA
1350 DATA
1360 DATA
1310 DATA
1380 DATA
1390 :
1400 DATA
1410 DATA
14Z0 DATA
1430 DATA
1440 DATA
1450 DATA
1460 DATA
1410 DATA
1480 DATA
1490 DATA
1500 DATA
1510 :
15Z0 :

0.
0.
0,
0,
0.

13.
0.
0.
0.
0.
0.

0.
0.
0.
0.
8.
0.

13.
0.
0.
0.
0.

8.
0.
0.

60.
60.

255,
61,

190,
36.
36,
96,

3Z.
0.
0,

60,
60.

Z55,
60,
S0,
3S,
3S,
9S.

0,
0.
0.
0.

lS.
0.

Z40,
0,
0.
0,
0,

0,
0.

3Z,
0,
0,

15Z,
0,
0,
0,
0,
0,

0,
0.
4.
0.
8.

15.
0.
0,
0,
0,

-1

0,
2,
0,
0,
0,
1 ,

15.
0,
0,
0.

-1

S4.
0,

S0.
S0.
Z4,
Sl.
Z4.
S0.
3S.
38,

2,
0,

S0,
60,
24.

188,
24,
60,
36,
38.

o
S4
o
o
o

48
o
o
o
o

o
o
o
o

16
248

64
o
o
o

1530 REM ** SET UP THE SPRITE CONTROLS
1540 :
1550 PRINT II~II
1560 VIC = 53Z48
1510 :
1580 POKE
1590 POKE
1600 POKE
1610 POKE
16Z0 POKE
1630 POKE
1640 POKE
1650 :
1660 :

Z040.13
VIC.1S0
VIC+l.1Z9
VIC+39.1
VIC+Z3.1
VIC+Z9.1
VIC+Zl.l

1610 REM ** JUGGLE
1680 :

:REM CLEAR SCREEN
:REM GRAPHICS CHIP

REM ~0 DATA POINTR
REM ~0 HORZNTL POS
REM ~0 VERTCAL POS
REM ~0 IS WHITE
REM SPRITE ~0 IS
REM DOUBLE-SIZED
REM SPRITE ~0 ON

1690 IMAGE = PEEK (Z040) + 1
1100 IF IMAGE = 16 THEN IMAGE = 13
1110 POKE Z040, IMAGE
l1Z0 :

55

Commodore 64/128 Graphics and Sound Programming

1130 FOR DELAY = 1 TO 30 • NEXT DELAY •
1140 • •
1150 • · 1160 REM ** GET KEYPRESS TO END
1170 • · 1180 GET KP$
1190 IF KP$ = 1111 THEN
1800 • · 1810 POKE VIC+21,0
1820 POKE: "'IC+29,0
1830 POK·E VIC+23,0
1840 I
1850 END

Fig. 3-12. Listing of the program Juggling Fool.

Lines 1100-1130 load in the sprite defini
tion data. Line 1120 is an interesting trick:

~~28: IF SPDTA = -~ THEN
PRINT II ."; : GOTO ~~48

Sprite definitions fill 63 memory locations. But
they're stored at intervals of 64 memory loca
tions (check back to Section 2.3 and Fig. 2-11).
If you're filling memory blocks that follow one
another, you can keep the loading loop simple
by just adding a 64th byte of dummy data to
the data lists. That way, the data for all the
sprite images can be loaded consecutively.
And, if you choose the dummy byte to be a
value that normally won't come up, you can
recognize it and print out some loading feed
back. In this program, the dummy value is -1;
when it is read, the program will add a period
(.) to the screen feedback display. The period
tells us another image block has been read into
memory.

The three sprite image data blocks are in
memory locations 832-894, 896-958, and
960-1022. Dividing the starting address of each
block by 64, you get sprite pointer values of

56

1690

13, 14, and 15, respectively. The program will
perform its animation by continually changing
the pointer value for sprite #0, which is set at
location 2040. The value will go from 13 to 14
to 15 and then back to 13 for another cycle.

Lines 1580-1640 set up initial values for
the sprite controls. There is nothing new here.
The data pointer for sprite #0 starts out with
the value 13; the initial image will be the one
stored at memory locations 832-894.

Lines 1690-1710 switch images:

~698 I~GE = PEEK (2848) + ~

~T88 IF I~GE = ~6 THEN I~GE = ~3
~T~8 POKE 2848. I~GE

Line 1690 takes the current pointer value and
adds 1 to it. If the new value is 16, Line 1700
sets it back to 13. Then line 1710 inserts the
new value into the pointer location. Thus, the
pointer will do what we want, going from 13
to 14 to 15 and then back to 13 again.

Line 1730 is a simple delay loop. By chang
ing the length of the delay, the juggler will jug
gle at different rates of speed. And finally, lines
1780-1790 check for a keypress. If no key has

been pressed, the program jumps back to line
1690 to display the next image. If there has
been a keypress, the program cleans up the
sprite settings and ends.

3.6.3 Now It's Your Turn
Pull out the coding sheets you created at

the end of Section 3.6.1. Use the number codes
to replace the data in lines 1160-1500 of Jug
gling Fool. Then run the new program. How
does it look? Play with the program until you
get an animation cycle you like. Change the
timing, the data, and the order the images are
shown in. You'll learn a lot about animation
by such exploration.

3.7 CHAPTER SUMMARY
Let's recap what you've learned in this

chapter:

* How to set up the VIC-II registers so
a sprite is displayed in four colors

* How to design such a multicolor sprite
* What happens when sprites overlap

one another
* More about setting up motions for many

sprites
* How to set up an animation cycle by

shifting a sprite's data pointer from one
image block to another

Using a book this size, you can only begin
to study sprite graphics techniques. Advanced
knowledge will only come when you sit down
and play with sprites for a while. In the next
two chapters, you'll look at two other types of
Commodore 64 picture magic: character and
bit-mapped graphics.

Some More Sprite Tricks

3.8 EXERCISES

3.8.1 Self Test
Answers are supplied in Section 3.8.3. The

numbers in parentheses tell you which chapter
section to go to for help.

1. (3.1) In sprite multicolor mode, using two
bits lets a double-wide pixel take on one
of possible colors.

2. (3.1) Since sprites in multicolor mode are
only 12 double-wide pixels across, we say
that they have less ______ _
resolution.

3. (3.2) If you poke the value 15 into the
sprite multicolor selection register at VIC
+ 28, which sprites will be displayed in
multicolor mode?

4. (3.5) When sprites cross paths, sprite #
____ has display priority over all
the other sprites.

5. (3.5.1) In the program Sprite Overlap,
describe the sprites that result if you type
in these lines:

~188 FOR N ; 832 TO 894 STEP 3
~~83: POKE N. 223
~~~8: POKE N+~. ~93 
~~~3: POKE N+2. ~33 

6. (3.5.4) Take a look at lines 1610-1620 of
Sprite Overlap. If COUNT has the value
120, and DF has the value 0, what will
lines 1610 and 1620 set SPRNUM to?

7. (3.6.2) How many periods (.) will get
printed next to the words SETTING UP
as the sprite data is loaded during the pro
gram Juggling Fool?

8. (3.6.2) What happens to the juggler in Jug
gling Fool if you change the delay time in
line 1730 from 30 to 100?

57

Commodore 64/128 Graphics and Sound Programming

3.8.2 Programming Exercises
1. Change the program 4-Color Sprite so

that a second sprite, based on the
same sprite data, is also displayed in
multicolor mode.

2. Change the program Sprite Overlap so
that the four sprites overlap com
pletely at the center of the screen.

3. Change the program Juggling Fool so
that the juggler juggles in a clockwise
direction for a while, then switches to

counter-clockwise, then goes back to
clockwise, and so forth.

3.8.3 Answers to Self Test
1. four
2. horizontal
3. #0, #1, #2, and #3
4. 0
5. each sprite will be made up of four ver

tical stripes - see Fig. 3-13
6. SPRNUM will be set to 2

Fig. 3-13. Sprite that results from typing the changes to Sprite Overlap mentioned in Self Test. item 5.

58

Some More Sprite Tricks

7. three periods
8. the juggling will slow down.

Then type in the lines shown in Fig.
3-14.

3.8.4 Possible Solutions
2. Load in the program Sprite Overlap.

To Programming Exercises
Then type in the lines shown in Fig.
3-15.

These solutions are based on adding and/or
changing lines in the original programs. 3. Load in the program Juggling Fool.

1. Load in the program 4-Color Sprite.
Then type in the lines shown in Fig.
3-16.

1000 REM *** THO 4-COLOR SPRITES ***
1315 POKE 2041.14 REM SPRITE #1 PNTR
1353 POKE VIC+2.180 REM SPRITE #1 HP
1358 POKE VIC+3,89 REM SPRITE #1 VP
1370 POKE VIC+23,3 REM EXPAND VERTCAL
1380 POKE VIC+29.3 REM EXPAND HORZTAL
1400 POKE VIC+28.3 REM MULTICOLOR 0&1
1435 POKE VIC+40.2 REM SPR #1 RED
1480 POKE VIC+21,3 REM SPRITE 0&1 ON

Fig. 3-14. A possible solution to programming exercise 1.

1000 REM *** TOTAL OVERLAP ***
1250 POKE VIC.210 REM #0 HORZNTL POS
1280 POKE VIC+2,110 REM #1 HORZNTL POS
1270 POKE VIC+4,180 REM #2 HORZNTL POS
1280 POKE VIC+8,180 REM #3 HORZNTL POS
1300 POKE VIC+1,129 REM #0 VERTCAL POS
1310 POKE VIC+3,129 REM #1 VERTCAL POS
1320 POKE VIC+5.179 REM #2 VERTCAL POS
1330 POKE VIC+7,79 REM #3 VERTCAL POS

Fig. 3-15. A possible solution to programming exercise 2.

1000 REM *** SHITCH JUGGLER ***
1855 JUGDIR = 1 :REM CLOCKHISE JUGL
1890 IMAGE = PEEK (2040) + JUGDIR
1705 IF IMAGE = 12 THEN IMAGE = 15

59

Commodore 64/128 Graphics and Sound Programming

171Z :
1715 COUNT = COUNT + 1
1718 IF INT (COUNT/Z7) = COUNT/Z7 THEN

JUGDIR = -JUGDIR : COUNT = 0

Fig. 3-16. A possible solution to programming exercise 3.

60

Chapter 4

Character Graphics

The Commodore 64 and 128 have some power
ful text display capabilities. In this chapter,
you'll explore some of them. Y ou'lliearn about
the built-in character sets and get to poke about
in the screen and color memories. You'll build
up strings of graphics characters and fly them
around the screen. Y ou'lliearn how to modify
the built-in character sets, and finally, you'll
see how to design a character set for use in
animation.

4.1 LET'S PLAY
It's time to do a little keyboard explora

tion. Sit down at your computer. Type in this
command:

POKE 658. 128

In case you hadn't known, sticking a number
greater than 127 into memory location 650
makes all the keys repeat when they're held

down long enough. Repeating keys are fun to
draw with. To go back to the normal situation,
where only a few keys repeat, put a 0 into the
same location.

Now, clear the screen. Pretend your TV
screen is a blank artist's canvas. Using the
various graphics characters, type some pretty
designs. A few keys wID come in especially
handy: shift, the Commodore logo key, CTRL
(control), the color keys, the RVS (reverse) ON
and RVS OFF keys, and the cursor control
keys. There are 512 different characters built
into the Commodore 64's permanent memory;
you can get some interesting designs with this
simple drawing technique. Figure 4-1 is a
screen printout of one such design.

4.2 SCREEN AND COLOR MEMORY
The 64 normally displays 25 text lines,

each containing 40 characters. That gives 1000

61

Commodore 64/128 Graphics and Sound Programming

eo
e
e

I
...

1.1.1.1.1.1.t1.t1.t1.1.1.tttt1.1.

~ 0.' ~ 0. .. 0.
•••••••••••••••••••••••••••••••••••••••

... rI' ""'.""' ""'.""' ••••• "'"

Fig. 4-1. Printout of a picture drawn on the screen by typing some of the Commodore 64's 512 built-in characters.

screen locations. Codes that determine which
character is shown at a location are stored in
what's called screen memory. The 64's
wonderful flexibility lets you move this screen
memory around if you want to. Normally, it
occupies the thousand memory locations
1024-2023.

There's a second block of 1000 memory
locations that control the color for each screen
location. This area of memory, called color
memory, occupies memory locations
55296-56295. This color memory is a bit
stunted; each location can only hold four bits,
which limits it to integers from 0 to 15. Since
there are only 16 possible colors, this is okay.

So each location on the text screen nor
mally has two memory locations associated
with it. One, in screen memory, determines
which one of 256 characters will show up. The
second, in color memory, determines the color
the character will take on. Appendices Band

62

C map out the screen and color memory areas.

4.3 GETTING
CHARACTERS ON THE SCREEN

The VIC-II chip controls the display of
screen characters. It scans the screen mem
ory locations many times each second. These
locations contain values between 0 and 255.
Based on the values found there, VIC goes to
the section of memory where patterns for
drawing all the different characters are stored.
It uses those patterns and the information in
the color memory locations to send the correct
electrical signals to the TV set.

The Commodore 64 has patterns for two
complete character sets stored in a part of its
permanent memory. Each set contains the pat
terns for 256 characters. The device the sets
are stored in is called a character generator
ROM. Let's take a look at all of these built-in
characters.

Character Graphics

4.4 DISPLAYING ALL 512
BUILT-IN CHARACTERS

Figure 4-2 is a listing of the program
Character ROM Display. Type it in, save it,

and then run it. When the display starts, the
first 256 characters appear. To see the second
256, just press the shift and Commodore logo
keys at the same time. They operate as a tog-

1000 REM *** CHAR ROM DISPLAY ***
1010 :
1020 :
1030 REM ** CLEAR SCREEN AND
1040 REM SET UP CONSTANTS
1050 :
1060 PRINT 11[.111
1070 :
1080 SCRMAP = 1024
1090 COlMAP = 55296

• •
REM ** THE BIG DISPLAY lOOP

1100 :
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

• •
FOR POCODE = 0 TO 255

ROW = INT (POCODE / 20)
ClM = POCODE - (20 * ROW)

EVROW = (ROW/2 = INT(ROW/2
ClM = (ClM * 2) - EVROW
ROW = ROW * 2

SPOT = (ROW * 40) + ClM

1240 POKE SCRMAP + SPOT, POCODE
1250 POKE COlMAP + SPOT, 1
1260 NEXT POCODE
1270 :
1280
1290
1300
1310
1320
1330
1340
1350

• •
REM ** GET KEYPRESS TO END
• •
GET KP$
IF KP$ = 1111 THEN 1310
• • PRINT 11[.111;
END

Fig. 4-2. Listing of the program Character ROM Display.

63

Commodore 64/128 Graphics and Sound Programming

gle switch between the two character sets.
The operation of the program is simple in

principle, but a bit complex in execution. You
just want to poke each of the values between
o and 255 into a screen memory location.
That's the purpose of the loop in lines
1140-1260. The complexities come in when
you figure the locations to poke to get a pleas
ing display. That's what all of the nutti'1ess in
lines 1150-1220 does. Lines 1240-1250 do the
poking work:

1248: POKE SCRHAP + SPOT. POCODE
1258: POKE COLHAP + SPOT. 1

Besides putting a character code into screen
memory, you put the value 1 into the cor
responding color memory location. That way,
the character will show up in color 1, white.

You should create some variations on this
program. Have it print characters in different
colors, or have the characters displayed in dif
ferent locations.

4.5 BUILD A CHARACTER
STRING AND FLY IT

Figure 4-3 is a listing of the program Fly
the Face. The program demonstrates a way
to build moving pictures out of characters.
Type the program in and run it. Pressing one
of the cursor motion keys (up, down, left, or
right) will move the smiling face, and press
ing the spacebar will end the program.

By the way, there's a reason the lines in
this program listing are closer together than
usual. They're spaced the way they appear on
the TV screen, so you can see how the graphics
characters go together to form the face.

4.5.1 Building the String
The first part of the program builds a

special string. This string, named F$, contains
blank spaces, graphics characters, and cursor
movement commands. When this string is
printed, the smiling face will show up on the

1000
1010
1020
1030
1040
1050
1080
1070
1080
1090
1100
1110
1120
1130
1140
1150
1180
1170
1180
1190
1200

REM *** FLY THE FACE ***

64

• • · •
REM ** BUILD THE STRING · · F$(1) = II II

~!~~~ ~ :: ~.o ::
F$ (5) = II '--' II

F$ (8) - II II

F$(7) - II

• •

II

B;~9$;;[ilt""~ ••• I"
• · FOR N = 1 TO 7
: F$ = F$ + F$(N) + 01l9$
NEXT N
F$ = F$ + U7$
• ·

Character Graphics

1210
1220
1230
1240
1250
1260
1Z70
1Z80
1290
1300
1310
13Z0
1330
1340
1350
1360
1370
1380
1390
1400
1410
14Z0
1430
1440
1450
1460
1470
1480
1490
1500
1510

• · REM ** START OUT TIDY AT MIDSCREEN

· •
REM ** WAIT FOR A KEYPRESS
• · POKE 650,128 :REM ALL KEYS REPEAT
GET KP$
IF KP$ = 1111 THEN 1310
• · · · REM ** DECIPHER KEYPRESS · · IF KP$ = II~II THEN 1440 :REM UP
IF KP$ = lIe ll THEN 1440 :REM DOWN
IF KP$ = II II THEN 1440 :REM RIGHT
IF KP$ = II II THEN 1440 :REM LEFT
IF KP$ = II II THEN 1500 :REM SPACE
GOTO 1310 :REM NO MATCH
• •
PRINT KP$; :REM MOVE CURSOR
GOTO 1Z50 :REM PRINT FACE · · · · REM ** SPACE ENDS IT · • PRINT 1Il'~II. END .., :REM CLEAN UP

Fig. 4-3. Listing of the program Fly the Face.

screen just as it looks in the listing. 4.5.2 Flying the String
Lines 1050-1140 set up the pieces that'll

go into F$. Lines 1160-1190 put them together:
Line 1240 clears the screen, and then puts

the cursor near the middle. Line 1250 draws
the face string you built up:

1168 FOR N : 1 TO 1
1118: F$: F$ + F$(N) + Dll9$
1188 NEXT N
1198 F$: F$ + U1$

Mter each graphics piece comes a cursor
movement piece. Some characters get printed,
and then the cursor moves down a line and
back to the left. Line 1190 adds a final cursor
movement piece to get the cursor back up to
its starting position.

1258 PRINT F$; :REM PRINT FACE

Finally, the program enters the flying
phase. Line 1300 sets the keyboard for auto
repeat. Then lines 1310-1320 wait for a
keypress. When there is one, it's stored in
KP$.

Lines 1370-1420 decipher KP$:

1318 IF KP$: "0" THEN J.448 :REM UP
1388 IF KP$: "til" THEN 1448 :REM DOWN

65

Commodore 641128 Graphics and Sound Programming

1398 IF' ICP$:; "U" THEN 1448 :RE" RIGHT
1488 IF' ICP$:; " .. " THEN 1448 :RE" LEF'T
1418 IF' ICP$:; " " THEN 1588 :RE" SPACE
1428 GOTO 1318 :RE" NO "ATCH

If the keypress is one of the four cursor moves,
up, down, left, or right, the program jumps to
line 1440. If the spacebar was pressed, the pro
gram jumps to line 1500 to end itseH. If the
key pressed was not one of the above, the pro
gram just loops back to read the keyboard at
line 1310.

What happens if one of the cursor motion
keys was pressed?

1448 PRINT ICP$; :RE" ~UE CURSOR
1458 GOTO 1258 :RE" PRINT F'ACE

You just print the keypress, which moves the
cursor. Then the program jumps back to line
1250, prints the face in its new position, and
goes on to get another keypress.

4.5.3 Carrying Your Own Eraser
You may be wondering why the flying face

was drawn surrounded by a ring of spaces.
This is what I call the carry-your-own-eraser
technique. The face can only move one posi
tion at a time. You don't bother to erase the
old face when you move it to a new position.
When the face is drawn in a new position, it
covers up most of the old face. The outer ring
of spaces covers up any remaining parts. If you
~anted the face to move two positions at a
time, the ring of spaces would have to be two
spaces wide.

If you didn't use this technique, you'd have
to completely erase the face at its old position
before drawing the new face. That would eat
up precious time. In animation, you're always
trying to move and draw objects as quickly as
possible.

66

4.5.4 Flying Your Own Face
It's time to apply some of the knowledge

you picked up playing with the keyboard in
Section 4.1. Change lines 1050-1190 so a dif
ferent image flies around the screen. If you
want to get especially fancy, imbed some color
setting characters in your string. Try adding
some other functions chosen by keypresses.
For fun, create an image that's not surrounded
by a ring of seH-erasing spaces.

4.6 MORE ABOUT THE
CHARACTER MEMORY

When you crank up your Commodore 64,
it gets its character patterns from the built-in
character generator ROM. A ROM is a mem
ory device that can only be read from. The
character patterns are put into it when it's
manufactured. You can't put new information
into a ROM.

However, you can tell the VIC-II chip to
get its patterns from other areas of memory.
Those areas can be RAM memory, which can
be written to and read from. So you can insert
your own character patterns for the VIC chip
to use.

The VIC-II chip looks at 16K, 16384 bytes,
of memory at a time. A complete set of pat
terns for 256 characters takes up 2K, 2048
bytes, of memory. Thus, there are eight possi
ble locations for the 2K character memory
block in a 16K bank.

Bits 1, 2, and 3 of the register located at
VIC + 24 (53272) tell VIC where to find the
character patterns. When the machine is first
turned on, it looks at the 2K block that begins
at location 4096 and finds the first 256 patterns
stored in the character generator ROM. If you
press the shift key and the Commodore logo

key together, new values get stored in VIC
+ 24. VIC now looks at the 2K block of
character patterns that begin at location 6144
and displays characters from the second set of
256 characters stored in the ROM.

If you want to use other characters, you
need to fill a 2K block of RAM with the pat
terns and then set the pointers in bits 1, 2, and
3 of VIC + 24. The pattern for each character
uses up eight bytes; it's a large job to figure
out patterns for a full set of 256 characters.
There is a shortcut, however.

In many cases, you only want to change
a few character patterns. So you can copy a
set of patterns from the character generator
ROM into RAM memory and then just change
a few of them.

4.7 MOVING THE
CHARACTER ROM INTO RAM

There are a few complications involved in
moving the patterns from the character ROM
into RAM. First, the character ROM is a bit
of a trickster. It spends a lot of time appear
ing to be at different memory locations. Now
it's at one place, now it's at another . You need

Character Graphics

to tie it down to one area long enough to copy
its contents.

That brings up the second complication.
When you manage to tie the ROM down, it
lands in the memory area normally used by the
Commodore's input/output devices. With the
ROM brought into memory, the computer
can't communicate with the outside world. If
if tries to do some 110 (input/output) operation,
it'll go to never-never land.

Now there's one 110 operation that your
Commodore tries to do 60 times each second:
scan the keyboard. You'll need to turn that
operation off while you transfer ROM to RAM.
It's like clamping arteries shut during an
operation.

4.8 A PRACTICAL EXAMPLE
Figure 4-4 is a listing of the program

Character ROM to RAM. Let's see how it
handles the transfer. Line 1100 turns off the
keyboard scanning:

1188 POKE 56334, PEEK (56334) AND 254

This statement puts a 0 into bit 0 of location

REM *** CHAR ROM TO RAM *** 1000
112110
11212121 :
1030 REM ** SET UP FEEDBACK
11214121 :
105121 P R I NT IIrJplplplplplplplplMO V I N Gil;
1080 :
11217121 :
1080 REM ** SET UP FOR TRANSFER
112190 :
1100 POKE 58334, PEEK (58334) AND 254
111121 REM ** KEYSCAN INTERRUPT OFF
1120 :

67

Commodore 64/128 Graphics and Sound Programming

1130
1140
1150
1160
1170
1180
1190 :

POKE 1, PEEK (1) AND 251
REM ** BRING ROM INTO MEMORY
• •
ROM = 53248 :REM START OF CHAR ROM
RAM = 12288 :REM WHERE IT'LL GO TO

1200 REM ** TRANSFER, WITH FEEDBACK
1210 :
1220 FOR CHAR = 0 TO 255
1230: SR = ROM + (CHAR * 8)
1240: OS = RAM + (CHAR * 8)
1250 :
1260 :
1270 :

1280 :
1290 :

FOR BYTE = 0 TO 7
POKE OS + BYTE,

PEEK (SR + BYTE)
NEXT BYTE

1300: POKE 1, PEEK(l) OR 4
1310: PRINT 11.11;
1320: POKE 1, PEEK(l) AND 251
1330 NEXT CHAR
1340 :
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

• •
REM ** CLEAN UP
• •
POKE 1, PEEK (1) OR 4
POKE 56334, PEEK (56334) OR 1
• •
VIC = 53248 : CPTR = VIC+24
PTR = PEEK (CPTR) AND 241
PTR = PTR OR 12
POKE CPTR. PTR
• •
PRINT: PRINT IIDONE.II
END

Fig. 4-4. Listing of the program Character ROM to RAM.

56334, and leaves the other bits alone. That
stops the keyboard scanning operation. Refer
to Appendix N for more information about the
workings of the AND statement.

Line 1130 ties the ROM down in memory
so you can copy it:

68

1138 POKE 1. PEEK (1) AND 251

This statement puts a 0 into bit 2 of location
1, again leaving the other bits untouched. That
bit is a switch that causes the character ROM
to be brought solidly into memory. In the pro-

cess, the 1/0 functions of the machine are put
aside. Again, more curious readers can turn
to Appendix N for details of how ANDing
works.

Lines 1220-1330 transfer the first set of
256 character patterns from the ROM to RAM.
That's 2048 bytes. It takes a while, so the pro
gram gives some feedback as the transfer pro
gresses. The block is transferred in 256 pieces,
eight bytes at a time. Line 1270 performs the
actual transfer:
1218 : POKE DS + BYTE.

PEEK CSR + BYTE)

It peeks at a ROM memory location and then
pokes the value it finds there into a RAM mem
ory location.

Mter each group of eight bytes is trans
ferred, the program prints a period (.) on the
screen. To do that, it's necessary to bring the
1/0 functions back for a moment:
1388 POKE 1. PEEK(l) OR 4
1318: PRINT ;
1328: POKE 1. PEEK(1) AND 251

Line 1300 puts a 1 into bit 2 of memory
location 1. That switches 110 functions back
in. Appendix N also goes into the workings of
OR statements. Line 1310 prints the period.
Then line 1320 switches 1/0 back out and the
character ROM back in.

When all 2048 bytes have been copied to
RAM memory, line 1380 brings 1/0 back in
for keeps. Line 1390 restarts the keyboard
scan by putting a 1 into bit 0 of memory loca
tion 56334. Finally, lines 1410-1440 tell VIC
II to start using the newly-established RAM
memory locations for character patterns:

1418 UIC = 53248 : CPTR = UIC+24
1428 PTR = PEEK CCPTR) AND 241
1438 PTR = PTR OR 12
1448 POKE CPTR. PTR

These lines may seem a bit cryptic. Let's look

Character Graphics

into how they work.
Three bits of the register at VIC + 24 con

trol the location of the character patterns: bits
1, 2, and 3. Bit 0 of that register does nothing.
When you want to change the location of the
character patterns, you first clear bits 1, 2, and
3, and then set them to new values.

Line 1420 clears the three bits in question
with an ANDing operation. It sets bit 1, 2, and
3 to 0, leaving the other bits unscathed. Then
line 1430 sets the bits to new values with an
ORing operation.

Blocks of memory containing character
patterns must begin at memory locations that
are multiples of 2048. In this case, the patterns
start at 12288, which is 6 x 2048. When you
want to point VIC at a character pattern block,
you divide the starting address by 1024 and
then use that number to set the bits at VIC
+ 24. 12288 divided by 1024 is 12, so that's
the number you use to set the bits.

4.9 A LITTLE MODIFICATION
If you haven't done so already, enter and

run the program Character ROM to RAM.
Nothing seems to happen when the program
ends. Press the shift and Commodore logo keys
to switch to the second character set-surprise!

You only moved one set of character pat
terns to RAM. When you switch sets, VIC
looks at the next 2K block of RAM for pat
terns. Since you didn't put patterns into that
block, the letters come up as random blotches.
Press the shift and Commodore logo keys to
get back to the first set.

Let's do some pattern changing. Type in
these commands, one by one, and watch how
the word READY changes on your screen:

POKE 12296. 238
POKE 12291. 284
POKE 12298. 284

69

Commodore 64/128 Graphics and Sound Programming

POKE 12299. 252
POKE 12388. 284
POKE 12381. 216
POKE 12382. 112
POKE 12383. 8

You've changed the pattern used by VIC to put
the letter A on the screen. Whenever the code
for A appears in screen memory, VIC will use
this new pattern to draw the letter.

This command will tell VIC to use the pat
terns in the built-in character ROM again:

POKE 53272. 21

Bit
number 7 6 5 4

Bit
value 128 64' 32 16

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Fig. 4-5. A coding form you can use to design characters.

70

Type it in, and watch your A's return to nor
mal. To get them wacky again, use this short
cut command that tells VIC to use the patterns
you put into RAM starting at location 12288:

POKE 53272. 29

4.10 DESIGNING CHARACTERS
Figure 4-5 is a coding form you can use

to design a character. It's very similar to the
coding forms you used with sprites. Eight
bytes are used to code a character. Each byte

3 2 1 0 Number

8 4 2 1
codes

r 7 6 5 4

128 64 32 16

3 2 1

8 4 2

0

1

Character Graphics

Number
codes

Byte 0

Byte 1

1111 . 1111
II II

24

60

Byte 2 1111 102

Byte 3 126

Byte 4

Byte 5

Byte 6

1111
1111
1111

102

102

102

Byte 7

Fig. 4-6. Example of a filled-in character coding form.

codes the pixel pattern for a row of the char
acter. Each bit in a byte represents a pixel. In
any row, the bit values of the pixels to show
up are added together to get a number code.

Figures 4-6 and 4-7 are examples that
show this coding form in use. In Fig. 4-6, a nor
mal letter A is coded. Figure 4-7 gives codes
for an elaborate upside-down A. These codes
are the numbers you poked in Section 4.9.

Make some copies of the form in Fig. 4-5.
Then design an upside-down version of the let
ter E. You'll use it in the next section.

o

4.11 PUTTING YOUR
MODIFICATIONS INTO POSITION

Appendix D is a list of screen display
codes. These are the numbers that are poked
into screen memory to tell VIC which character
pattern to look up. For example, the screen
display code for @ is 0, and the screen display
code for A is 1.

Each character pattern uses eight bytes.
The patterns are stored in the order of the
display codes. First come the eight bytes for

71

Commodore 641128 Graphics and Sound Programming

7 6 5 4 3 2 1 0 Number

1
codes

Byte 0 238

Byte 1 204

Byte 2 204

Byte 3 252

Byte 4 204

Byte 5 216

Byte 6 112

Byte 7 0

Fig. 4-7. Another example of a filled-in character coding form.

@, then the eight bytes for A, and so on. To
find the memory location of the first byte of
a character's eight pattern bytes, just multiply
the character's display code by 8 and add the
result to the start of the character memory
block.

Here's an example. In the program Char
acter ROM to RAM, you moved character
memory to a 2K block starting at 12288. To
find the first pattern byte for the letter A, you
multiply its display code by 8 and add the re
sult to 12288. 1 x 8 is 8, and 12288 + 8 is

72

12296. So memory locations 12296 - 12303
(8 bytes) hold the patterns for A. If you look
back at Section 4.9, you see that those are the
eight locations you poked to change the looks
of A.

Let's try this out again. The display code
for E is 5. 5 x 8 is 40, and 12288 + 40 is
12328. Run Character ROM to RAM and then
poke the eight memory locations beginning at
12328 with the upside-down E codes that you
figured out in the last section. Watch the ready
prompt as you make each poke.

Character Graphics

198 48

99 24
49 140
63 252
32 4
32 100
32 103
32 4
33 132
48 252
24 24
12 48
7 224
3 192
2 64
3 192
1 192
1 128
0 128
1 128
3 128
7 0

15 0
7 224

Fig. 4-8. An alien creature drawn on a grid that's two characters wide and three characters high.

4-12 DESIGNING A SET OF acters. This gives you the ability to develop
CHARACTERS FOR ANIMATION all kinds of symbols for games, business ap

You've seen how to change text char- plications, foreign languages, and practical

73

Commodore 641128 Graphics and Sound Programming

jokes. Let's see how you can develop some
characters that'll help you pull off some slick
animation.

Why would you use characters for anima
tion, when sprites are so easy to use? There
are a number of situations where custom
character animation has some uses. In some
cases, all eight sprites may already be in use.
Also, character animation allows some types
of color variation without losing horizontal
resolution. Finally, you have more leeway in
terms of shape and size, since you can put al
most any combination of characters together
into an image.

Figure 4-8 shows an alien creature drawn
on a grid that's two characters wide and three
characters high. Along the top, values are
shown for each bit position. Along the sides,
number codes for the byte rows have been
figured. For example, the codes for the
character used in the lower right comer of the
design are 192, 128, 128, 128, 128, 0, 0, and
224.

Figure 4-9 shows our alien in four posi
tions. Each position is drawn on a 2-character
by 3-character grid. Beside each image is a clue
to the technique you'll use to get this alien onto

AB
CD
EF

GH

I J
KL

the TV screen. You'll insert the number codes
developed from the images in place of letters
A-X. Then you'll just print strings made from
those letters in combination with some cursor
moves, as you did in Fly the Face. Rather than
printing 2-by-3 blocks of the real letters, VIC
will show 2-by-3 blocks that portray our alien
walker.

4.13 THE ALIEN WALKER
The program Alien Walker is listed in Fig.

4-10. Let's look at some ofits features. You've
got four images, each one composed of six
redefined character patterns. With eight bytes
per pattern, that gives us 24 x 8, or 192, bytes
of data to load in. Lines 1100-1180 do the
loading:

1188 BASE = 12 * 1824
1118 FOR CHAR = 1 TO 24
1128 FOR BYTE = 8 TO 7
1138 READ INFO
1148 SPOT = BASE + (CHAR * 8)

+ BYTE
11~8 POKE SPOT, INFO
1168 NEXT BYTE
1178 PRINT :REM FEEDBACK
1188 NEXT CHAR

Line 1100 sets the base of our character mem-

MNIIIIIlI
OP
QR

ST
UV
wx

Fig. 4-9. The alien drawn in four positions on 2-by-3 grids, with letters ripe for replacement shown beneath each image.

74

Character Graphics

REM *** ALIEN WALKER *** 1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140 :

• •
REM ** SET UP FEEDBACK DISPLAY · •
P R I NT" l"JplplplplplplplplplplL 0 A DIN G" ;
• · • •
REM ** READ IN THE NEW CHAR DATA
• · BASE = 12 * 1024
FOR CHAR = 1 TO 24
: FOR BYTE = 0 TO 7

READ INFO
SPOT = BASE + (CHAR * 8)

+ BYTE
1150 : POKE SPOT, INFO
1160: NEXT BYTE
1170: PRINT II.";
1180 NEXT CHAR

:REM FEEDBACK

1190 :
1200 BLANK = 32
1210 SPOT = BASE + (BLANK * 8)
1220 FOR BYTE = 0 TO 7
1230: POKE SPOT + BYTE, 0
1240 NEXT BYTE
1250 :
1260 DATA
1270 DATA
1280 DATA
1290 DATA
1300 DATA
1310 DATA
1320 :
1330 DATA

DATA
DATA
DATA
DATA
DATA

1340
1350
1360
1370
1380
1390 • ·

198,99,49,63,32,32,32,32
48,24,140,252,4,100,103,4
33,48,24,12,7,3,2,3
132,252,24,48,224,192,64,192
1,1,O,1,3,7,15,7
192,128,128,128,128,O,O,224

O,49,49,49,63,32,32,32
0,140,140,140,252,4,100,103
32,33,48,24,12,7,7,4
4,132,252,24,48,224,224,48
12,24,16,48,98,192,192,120
24,12,8,24,16,48,82,O

1400 DATA O,O,12,24,49,63,32,32
1410
1420

DATA O,O,99,198,140,252,4,100
DATA 32,32,33,48,24,12,7,3

75

Commodore 64/128 Graphics and Sound Programming

76

1430 DATA 103,4,132,252,24,48,224,224
1440 DATA 6,4,12,56,224,128,128,224
1450 DATA 32,48,24,8,8,8,9,15
1460 :
1470 DATA
1480 DATA
1490 DATA
1500 DATA
1510 DATA
1520 DATA
1530 :
1540 :

0,49,49,49,63,32,32,32
0,140,140,140,252,4,100,103
32,33,48,24,12,7,3,2
4,132,252,24,48,224,192,64
2,2,2,30,240,192,96,32
64,96,32,32,32,96,64,120

1550 REM ** SET UP IMAGE STRINGS
1560 :
1570 IMAGES{0} =
1580 IMAGES{1} =
1590 IMAGES{2} =
1600 IMAGE${3} =

• ·

II A BII.C DIII!IE Fllm"
II G HII.JI JIII!IK Lllm"
II MNII.O PII.o,Rllm ll
II S TII.U VII.wXllm ll

REM ** CLEAN SCREEN, CENTER, AND

1610 :
1620
1630
1640
1650
1660
1670
1680

REM CHANGE THE CHAR DATA PNTRS
• · P R I NT IIrRIp.,Ip.,.,""IpIp"Ip"Ip)II;
PRINT 11 •••••••••••••••• 111 ;

· · 1690 VIC = 53248
1700 POKE {VIC+24},29

• •
REM ** WALK

1710 :
1720
1730
1740
1750
1760
1770
1780 :
1790 :
1800 :

• · FOR N = 0 TO 3
PRINT IMAGE${N};
FOR DLY = 1 TO 70 : NEXT DLY
GET KPS
IF KP$ = 1111 THEN 1810

KEY = -1 : N = 3
1810 NEXT N
1820 :
1830 IF {NOT KEY} THEN 1750
1840 :
1850
1860
1870

• · REM ** CLEAN UP SHOP

1880 PRINT "~";
1890 POKE (VIC+Z4),Z1
1900 :
1910 END

Fig. 4-10. Listing of the program Allen Walker.

ory at the same convenient location used
previously, 12288. Lines 1110 and 1180 set up
a loop that will run from character code 1,
which stands for A, through character code 24,
which stands for X. An inner loop, set up in
lines 1120 and 1160, reads in the eight bytes
of data for each character and then pokes them
into the proper position. Line 1140 figures the
proper position by using a formula similar to
that used in Section 4.11.

Lines 1200 through 1240 make sure that
there's a bit pattern available for spaces. This
code wasn't needed in earlier versions of the
64, but later models (and the 128) require it.

Lines 1260 through 1520 contain pattern
codes based on the images from Fig. 4-9. Each
line of data contains the codes for one new
character definition.

Lines 1570 through 1600 set up four image
strings. Each one is composed of six of our new
characters, combined with the cursor moves
necessary to display the six characters in a
2-by-3 block. If you don't recognize the
graphics icons that represent the various cur
sor moves in the strings, refer back to the In
troduction. Notice that the cursor commands
are used in such a way that, after the pieces
of the image are drawn, the cursor ends up
where it started.

Lines 1660 through 1670 clear the screen
and move the cursor to midscreen. Then Line
1700 tells VIC-II to start getting its character
patterns from the 2K block starting at 12288.
The line uses the same shortcut seen at the

Character Graphics

end of Section 4.9. As long as you don't move
the location of screen memory, which is coded
in bits 4, 5, 6, and 7 of VIC + 24, you can use
the following formula to set VIC + 24 to point
at a new character memory block: divide the
new starting address by 1024, add that number
to 17, and poke it in.

The loop in lines 1750 through 1810 sim
ply prints the image strings in succession, with
a pause between image changes. Lines 1790
and 1800 are our familiar keypress test. If a
key is pressed, the program will end by clear
ing the screen and resetting the character
memory pOinter at VIC + 24 to point to the
built-in character generator ROM.

4.14 CHAPTER SUMMARY
Here are some of the topics that have been

covered in this chapter:

* The Commodore 64's ability to display
512 built-in characters.

* The 1000 screen locations, 1000 bytes
of screen memory, and 1000 bytes of
color memory

* Poking character codes and colors into
screen and color memory

* Putting characters and cursor
movements together into strings that
can be moved around the screen

* How VIC-II knows where to look for
character patterns

* Moving the character ROM patterns
into RAM memory

77

Commodore 64/128 Graphics and Sound Programming

* Designing and installing modifications
to the built-in character sets

* Designing and installing a set of
characters to be used in an animation
cycle

You've been able to scratch the surface of
your Commodore's wide range of character
display abilities. Playful experimentation will
help you learn more.

4.15 EXERCISES

4.15.1 Self Test
Answers will be found in Section 4.15.3.

1. (4.1) There are
different characters built into the Com
modore 64's character generator ROM.

2. (4.2) The Commodore 64 normally
displays text lines,
each with characters, which
gives screen locations.

3. (4.3) The 64 has ______ _
complete character sets in ROM.

4. (4.4) Pressing the shift and Commodore
logo keys at the same time switches you
between the _______ _

5. (4.5.3) Why is the face in Fly the Face
drawn surrounded by a ring of spaces?

6. (4.6) Bits 1, 2, and 3 of the register located
at VIC + 24 tell VIC the location of

7. (4.7) What are two complications involved
in copying the contents of the character
generator ROM to RAM?

8. (4.10) What would a character pattern look
like if its eight number codes were all 255?

78

4.15.2 Programming Exercises
1. Change the program Fly the Face so

another design flies around the screen.
2. Change the program Character ROM

to RAM so the characters come out
upside-down.

3. Change the program Alien Walker so
that three aliens, all alike, are walk
ing across the screen.

4.15.3 Answers to Self Test
1. 512
2. 25; 40; 1000
3. two
4. two character sets
5. so it'll erase any traces of itself as it moves
6. the character patterns
7. (1) the ROM floats around at different

memory addresses
(2) when it's tied down, input/output
operations are disabled

8. a solid square

4.15.4 Possible Solutions to
Programming Exercises

These solutions are based on adding or
changing lines in the programs mentioned in
the exercises.

1. Load in the program Fly the Face.
Then type in the lines shown in Fig.
4-11.

2. Load in the program Char ROM to
RAM. Then type in the lines shown
in Fig. 4-12.

3. Load in the program Alien Walker.
Then type in the lines shown in Fig.
4-13.

1121121121 REM *** FLY THE FIGURE *** 11218121 F$(2) = .. 0 ..
11217121 F$(3) = .. X

..
108121 F$(4) =
11219121 F$(5) = .. II

11121121 F$(8) = II II

Fig. 4-11. A possible solution to programming exercise 1.

1121121121 REM *** UPSIDE-DOWN ROM *** 127121 : POKE OS + (7 - BYTE)!
PEEK (SR + BYTE)

Fig. 4-12. A possible solution to programming exercise 2.

11210121 REM *** 3 ALIEN WALKERS ***
1870 PR I NT 11' ••••••••••• '11 j
1781: PRINT 11, •••• ,11;
1782: PRINT IMAGE$(N);
1783: PRINT "' ••••• 11;
1784: PRINT IMAGE$(N);
1785: PR I NT "1 ••••••••••• 1";
1788 :
177121: FOR DLY = 1 TO 80 : NEXT DLY

Fig. 4-13. A possible solution to programming exercise 3.

Character Graphics

79

Chapter 5

Bit-Mapped
Graphics

So far, you've explored two aspects of Com
modore 641128 graphics: sprites and
characters. Both these graphics entities let you
play with collections of pixels. Is there a way
to draw large, detailed pictures by controlling
individual pixels? You bet. It's called bit
mapped graphics.

In this chapter, you'll learn how to set up
bit map mode. You'll turn individual pixels on
and off, and see how to set their color. I'll give
you a machine-language routine that will speed
up one tedious aspect of bit mapping. Finally,
you'll build a simple electronic doodling pro
gram.

5.1 SIXTY FOUR THOUSAND PIXELS
Time to do a little arithmetic. Consider the

Commodore 64's text display. There are 25
lines, each with 40 characters. Each character
is 8 pixels wide, and 8 pixels high. That gives

80

8 x 40, or 320, pixels across the screen and
8 x 25, or 200, pixels from top to bottom. 320
pixels across the screen multiplied by 200 from
top to bottom gives a grand total of 64,000
pixels.

In bit map mode, you control each one of
these pixels with a bit. That's where the name
bit mapping comes from. Since there are 8 bits
stored in a byte, you can divide 64,000 by 8
and find you need 8,000 bytes to control a
screen filled with 64,000 pixels. Those 8,000
bytes form the bit map. Where can you store
such a large bit map?

5.2 STORING THE BIT MAP
Back in Section 4.6, I mentioned that the

VIC-II graphics chip looks at 16K of memory
at a time. 8000 bytes is almost 8K, or half of
a 16K block of memory. An 8000-byte bit map
can live in either the first or second half of the

current VIC-II 16K bank.
When you're working with BASIC, VIC

normally looks at the 16K memory block from
locations 0 through 16383. The first few thou
sand memory locations in that block are vital
real estate for BASIC; it won't give them up
easily. So the bit map goes in the second half
of the block, starting at memory location 8192.
Bit 3 of the register of VIC + 24 (memory loca
tion 53272) controls the location of the bit map.
If there's a 0 stored there, it goes in the first
half of the current 16K VIC-II bank. Storing
a 1 at bit 3 of VIC + 24 puts the bit map in the
second half of the 16K bank, which is what is
normally done when using a bit map from
BASIC.

This BASIC command will store a 0 at bit
3 of VIC + 24 (53272):

POKE ~3272. PEEK(~3272) AND 247

And this command will store a 1 at that
position:

POKE ~3272. PEEKCS3272) OR 8

5.3 TURNING THE BIT MAP
MODE ON AND OFF

Bit 5 of the register at VIC + 17 (memory
location 53265) controls bit map mode. Stor
ing a 1 at that location turns bit map mode on
and storing a 0 turns it off. Here's the BASIC
command to turn bit mapping on:

POKE ~326S. PEEKC~326S) OR 32

And here's the command that turns it off,
bringing back a normal text display:

POKE ~326~. PEEKCS326~) AID 223

5.4 A SHORT DISCLAIMER
BASIC is a fine computer language, with

Bit-Mapped Graphics

advantages and disadvantages. Programs can
be put together and debugged fairly quickly,
but they run slowly when compared to pro
grams in many other languages. Of course, in
many applications, BASIC's speed problems
aren't noticeable, and its ease of use is a
welcome relief.

The speed problem shows up in programs
where there's a lot of fairly repetitive activities.
Bit-mapped graphics, where 64,000 bits are
waiting for instructions, is one of the areas
where BASIC's lethargy shows.

How can you speed up bit-mapped pro
grams written in BASIC? One technique is in
telligent program design. For example, many
calculations can be done just once, with the
results stored in data tables, rather than being
repeated over and over. Skills you pick up try
ing to apply intelligent design techniques carry
over to other computer languages.

Another technique, yet one I'm not too
fond of, involves squashing code together, with
as many statements on a line as space permits.
I find that the time savings from this technique
are minimal, and the problems of debugging
such programs are depressing.

A third alternative involves taking critical
operations and coding them in machine
language. Short of rewriting an entire program
in machine language, this technique leads to
some of the biggest time savings possible.
You'll see an example of it later in this chapter.

5.5 ONE LAST DETAIL: COLOR
Before we get to an example program,

there's one last detail to discuss: color. How
does VIC-II decide on a color for each of the
64,000 pixels?

With normal bit-mapped graphics, pixels
in each 8-by-8-pixel section of the screen, an

81

Commodore 64/128 Graphics and Sound Programming

(U pper nibble)
4 bits = 1 nibble

(Lower nibble)
4 bits = 1 nibble

""-----------:~~ ----- ./ 8 bits = 1 byte -------

Fig. 5-1. The relationships between bits, bytes, and nibbles.

Some typical
nibbles

Bitva~:~ ~ I : T ~ I : I
Bit va::~ : I : I : I : I

Bitva~I:~ ~ I : I : I : I

~tva:~ ~ I : I : I : I
Fig. 5-2. Some typical nibbles, with the corresponding base 10 values.

82

Their decimal
values

1 = 1

4+1 = 5

8+4 = 12

8+4+2+1 = 15

area the size of a character, have a choice of
two colors. The fact that these areas are the
same size as a character in text display mode
leads to a clever storage idea. The two color
codes for each 8-by-8 area are stored in the
1,000 locations of screen memory. That's the
same area used in text display mode to hold
screen display codes.

Computer people like cute names. 8 bits
is known as a byte, and 4 bits is called a nib-

Bit-Mapped Graphics

ble. See Fig. 5-1. A nibble can store values be
tween 0 and 15. See Fig. 5-2. In bit map mode,
the upper 4 bits, or nibble, of each screen mem
ory location hold the color code for any bit set
to 1 in the 8-by-8-bit area controlled by that
memory location. The lower nibble of the
screen memory location holds the color code
for bits set to O. Take a look at Fig. 5-3 for
an example. There's a little formula to help you
figure out what number to poke into this screen

Value of Value of

A byte of screen
memory holding
two color codes
for an 8-by-8 area
of the bit-map

The 8-by-8 area
of the bit-map
whose color is set
by the above
byte

upper nibble lower nibble
is 2 is 1

,~--""'v \, v----\

.10101110101010111

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 1 1 1 1 1 1 0

0 0 1 1 1 1 0 0

Fig. 5-3. An example an 8-by-8-blt area of the bit map whose color is controlled by a byte of screen memory. The value
In the byte's upper nibble codes the color for bits In the map set to 1, while the value In the lower nibble codes for bits
In the map set to O.

83

Commodore 64/128 Graphics and Sound Programming

memory for a given pair of colors: take the
color code for the 1 bits, multiply it by 16, and
then add the color code for the 0 bits. For ex
ample, if you wanted 1 bits to come out red
(color code 2), and 0 bits to come out black
(color code 0), you would calculate that (2 x
16) + 0 = 32, and you'd poke into screen
memory.

5.6 AN EXAMPLE OF
BIT-MAPPED GRAPHICS

So much for your preliminary dose of bit
mapping theory. It's time for some action.
Type in the program listed in Fig. 5-4, Ran
dom Draw. Save it to tape or disk and then run

it. Watch it for a couple of minutes, and then
let it run unattended for 5 or 10 minutes. Take
a last good look, and press the spacebar to end
it.

5.6.1 Setting Up for
the Bit Map Mode

Let's examine the program, and see if you
can understand what you saw happen on the
screen. Line 1100 uses the command discussed
in Section 5.2 to locate the bit map at mem
ory locations 8192-16191. Line 1110 then turns
on bit mapping with the command shown in
Section 5.3. The screen display changes im
mediately . You see a screen that combines

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

REM *** RANDOM DRAW ***

84

REM ** SET UP FOR BIT-MAP MODE
· · VIC = 53248
BASE = 8192 :REM BIT MAP START
BLOC = VIC+24 :REM LOCATES BIT MAP
BSET = VIC+17 :REM TURNS ON BMM
· · POKE BLOC, PEEK(BLOC) OR 8
POKE BSET, PEEK{BSET) OR 32

· •
REM** CLEAR THE BIT MAP
• · FOR SPOT = BASE TO BASE + 7999
: POKE SPOT, 0
NEXT SPOT

· · REM ** SEED THE RANDOM FUNCTION
REM WITH A RANDOM NUMBER
· · DUMMY = RND (-RND{0»

Bit-Mapped Graphics

1Z80 :
1Z70 REM ** SET BIT MAP COLORS
1Z80 REM AT RANDOM
1Z90 :
1300 FOR SPOT = 10Z4 TO Z0Z3
1310: POKE SPOT, INT (RND(1) * Z58)
13Z0 NEXT SPOT
1330 :
1340
1350
1380
1370
1380
1390
1400
1410

• •
REM ** DRAW AT RANDOM UNTIL
REM A KEYPRESS INTERRUPTS
• •
SPOT = INT (RND(1) * 8(00) +
PATTERN = INT (RND(1) * Z58)
POKE SPOT, PATTERN
• •

1420 GET KP$
1430 IF KP$ = 1111 THEN 1380
1440 :
1450
1480
1470
1480
1490
1580
1510

• •
REM ** CLEAN UP HOUSE
• •
POKE BSET, PEEK(BSET) AND ZZ3
POKE BLOC, Z1
• •
END

Fig. 5-4. Listing of the program Random Draw.

BASE

5.6.2 Clearing the Bit Map blotchy colored squares with red and black ran
dom confetti. VIC-II is now interpreting mem
ory locations 8192-16191 as a bit map con
taining pixel display information. Since you
haven't put any particular patterns in that area
of memory, the screen shows seemingly ran
dom groups of dots and lines; blotches and con
fetti. The screen memory, still filled with text
character display codes, is being interpreted
as pixel color information. Where no characters
were showing, the code for a space, 32, was
stored. This number puts red and black pixels
in the corresponding 8-by-8 areas. Where
characters were showing, the variety of codes
produces a variety of color combinations.

Lines 1160-1180 go about clearing up the
bit map by setting all bit map memory loca
tions to 0:

1168 FOR SPOT = BASE TO BASE + T999
IIT8: POKE SPOT. 8
1188 NEXT SPOT

With all the bits set to 0, all the pixels in each
8-by-8 area will be displayed in the color coded
in the lower nibble of that area's byte of screen
memory. With just one color displayed in each
8-by-8 area, the blotches and confetti disappear
... slowly, because BASIC has to poke O's into
8000 memory locations.

85

Commodore 64/128 Graphics and Sound Programming

5.6.3 Setting Colors at Random
Commodore BASIC has a nice random

number function. The strange code in line 1240
takes a number from the computer's system
clock and then uses it to seed the random
number generator. That helps ensure different
random numbers each time the program is run.

Lines 1300-1320 fill the screen memory
area with random values between 0 and 255:

1311 FOR SPOT = 1124 TO 2123
1318: POICE SPOT. liT CRIDCl) • 258)
1321 IEXT SPOT

The screen quickly fills with a variety of col
ored blocks. That's because a variety of values
are now filling the lower nibbles of the color
information area. Line 1310 is a nice spot to
stop and experiment with different color-de
termining formulas. Try this one, for example:

This is a pretty way to learn about numbers
and functions.

5.6.4 Drawing Random
Patterns at Random Spots

Lines 1380-1400 continue this program's
random tendencies:

1381 SPOT = liT CRID(1) • 8111) + BASE
1391 PATTERI = liT CRID(1) • 258)
1411 PO ICE SPOT. PATTERI

Line 1380 picks a spot in the bit map at ran
dom. Then line 1390 picks a bit pattern at ran
dom. Line 1400 pokes the pattern into the spot.
This drawing process is repeated until a key
is pressed and the program ends. Line 1480
turns off bit map mode, and line 149 resets
VIC + 24 to point to the built-in character set.

86

This is done because of the dual personality
possessed by bit 3 of VIC + 24. When bit map
mode's in effect, it controls the location of the
bit map; in text mode, it's one of the three bits
that locate the character patterns.

Lines 1380-1400 are another great spot for
experimentation. There are some interesting
patterns you can produce by changing the for
mu1as in those lines. Mer you've played for
a while, combine these changes with changes
in other parts of the program. Just think, if they
ever make large enough TV sets, you can enter
the animated wallpaper field.

5.7 TAKING A SHORTCUT
Clearing the bit map is one of the most bor

ing sections of Random Draw. There aren't
any ways to substantially speed the process so
long as you're using BASIC. There's no escap
ing the need to poke values into all 8,000 bit
map locations.

This is a job for ... (dum de dum) ... MA
CHINE LANGUAGE! Machine language is
what your Commodore 64 reaIly understands
well; BASIC is slow because each line has to
be translated into machine language. Figure
5-5 lists changes and additions you can make
to Random Draw that give it a speedy machine
language subroutine to clear the bit map. Just
load Random Draw, type in the new lines, save
the new version, and then run it. Whoosh! You
can see why hot programmers eventually turn
to machine language whenever real speed's
needed. If you're interested in the assembly
language code behind this machine language
routine, turn to Appendix 0 at the back of the
book.

A brief explanation of the new lines: lines
1146-1156 poke the machine language
subroutine into a portion of memory that most

Bit-Mapped Graphics

1000 REM *** FAST RANDOM DRAW ***
1140 REM ** LOAD FAST M/L BIT MAP CLEA
1143 :
1146 FOR N = 21248 TO 21273
1150: READ MLDTA
1153: POKE N, MLDTA
1156 NEXT N
1160 :
1163 DATA
1166 DATA
1170 DATA
1173 DATA
1176 DATA
1180 :
1183 :

169,
133,
152,
202,
244,

0, 133, 251, 169, 32
252, 162, 32, 160, 0
145, 251, 200, 208, 251
240, 4, 230, 252, 208
96

1186 REM ** CLEAR THE BIT MAP
1190 :
1193 SYS 21248
1196 :

Fig. 5-5. Changes and additions that tum Random Draw Into Fast Random Draw.

H =0
Horizontal

H =319 · ·
--1 · V=Ol·· .. ~,.. --......... """'.

Vertical

V = 199.1. ... ~ ... ______ ~
Fig. 5-6. You can give each pixel on the bit map a horizontal position from 0 through 319 and a vertical position from
o through 199.

87

Commodore 64/128 Graphics and Sound Programming

BASIC programs won't bump into. Lines 1163-
1176 contain the 26 bytes of data that make
up the little whizzer. Finally, line 1193 calls
the newly installed machine language sub
routine into action with a SYS command. It's
like jumping to a BASIC subroutine. When the
machine language routine finishes, it pops con
trol back to BASIC, and BASIC just carries
on with the next statement.

You can use this routine in any bit map
program that uses locations 8192-16191 as the
bit map area. If you want to clear a bit map
that starts at another area, just divide the start
ing address of the bit map by 256 and type the
new value in place of the 32 at the end of line
1163.

5.8 LOCATING A
PIXEL '8 BYTE AND BIT

Let's learn how to gain more control over
individual pixels in bit map mode. You need
to find a way to locate the byte and bit that
control an individual pixel.

First, you need a model of the screen
display. Take a look at Fig. 5-6. Each pixel has
a horizontal position, H, with values from 0
through 319. Each pixel also has a vertical posi
tion, V, with values from 0 through 199. For
example, a pixel in the upper left comer has
H = 0 and V = O. A pixel in the lower right
comer has H = 319 and V = 199.

It would be wonderful if the bytes in the
bit map had a simple correspondence to Fig.
5-6. Unfortunately, that's not the case. The
bytes in the bit map correspond to the screen
in a pattern that suggests bit mapping's close
kinship to text display.

Take a look at Fig. 5-7. It shows how the
bit map bytes are set up. Groups of 8 con
secutive bytes form a block the size of a

88

character. Similar to the text screen, these
8-byte-high areas are arranged in 40 columns
and 25 rows. Trying to determine which bit
of which byte controls a pixel, given that
pixel's horizontal and vertical position, looks
like an arduous task.

It's actually not too tough. If you go slowly,
and keep referring back to Figs. 5-6 and 5-7,
the following formula derivations may make
sense. Remember, Hand V refer to a pixel's
horizontal and vertical positions respectively.

Let's start with vertical information. Since
a row is 8 vertical positions high, this formula
gives us the row a pixel's in:

RON '" IIiTCU/8)

There are 320 bytes per row, so a row's off
set in bytes from the base of the bit map is:

RBF '" RON • 328

The AND function is a convenient way of
finding remainders when you're dividing by a
power of 2: Simply AND the original number
with the divisor minus 1. Finding the re
mainder of the vertical position divided by 8
will tell you which of the 8 lines in a row you
want:

LIIiE = CU RID 7)

You can combine these results and form a total
vertical byte offset for your pixel:

UBF '" IIiTCU/8) • 328 + CU RID T)

Now you need to work with the pixel's
horizontal position. There are 8 horizontal posi
tions per column, so the column can be figured
this way:

COLU~ '" IIiTCH/8)

Notice how there's a jump of 8 bytes as you

Bit-Mapped Graphics

Column 0 Column 1 Column 2 Column 39
,....J\-.... ,--A-.... ,---A-.... ,---A-....

" Byte 0 Byte 8 Byte 16 Byte 312
Byte 1 Byte 9 Byte 17 Byte 313

Row <
Byte 2 Byte 10 Byte 18 Byte 314
Byte 3 Byte 11 Byte 19 Byte 315

0 Byte 4 Byte 12 Byte 20 • • • Byte 316
Byte 5 Byte 13 Byte 21 Byte 317
Byte 6 Byte 14 Byte 22 Byte 318

" Byte 7 Byte 15 Byte 23 Byte 319

.-
Byte 320 Byte 328 Byte 336 Byte 632
Byte 321 Byte 329 Byte 337 Byte 633

Row< Byte 322 Byte 330 Byte 338 Byte 634
1 Byte 323 Byte 331 Byte 339 • • • Byte 635

Byte 324 Byte 332 Byte 340 Byte 636
Byte 325 Byte 333 Byte 341 Byte 637
Byte 326 Byte 334 Byte 342 Byte 638 ... Byte 327 Byte 335 Byte 343 Byte 639

• • • • • • • • • • • •

" Byte 7680 Byte 7688 Byte 7696 Byte 7992
Byte 7681 Byte 7689 Byte 7697 Byte 7993

Row Byte 7682 Byte 7690 Byte 7698 Byte 7994
24 < Byte 7683 Byte 7691 Byte 7699 Byte 7995

Byte 7684 Byte 7692 Byte 7700 • • • Byte 7996
Byte 7685 Byte 7693 Byte 7701 Byte 7997

"
Byte 7686 Byte 7694 Byte 7702 Byte 7998
Byte 7687 Byte 7695 Byte 7703 Byte 7999

Fig. 5-7. How the bit map bytes are set up. Notice the close relationship to the Commodore 64's text display.

move from column to column. Now figure your
total horizontal byte offset factor:

HBF = IMTCH/8) • 8

Now you can add the vertical and horizontal

byte offsets to the start of the bit map to get
to your target byte:

BYTE = BASE + UBF + HBF

You've got the byte. You need to find the

89

Commodore 64/128 Graphics and Sound Programming

bit. There are 8 pixels to a column. You need
to know how many pixels are left after you've
gone through all the full columns. Again, you
use an AND operation to find a remainder:

PXL ; (H AIID T)

Since bits in a byte are numbered from right
to left, and your horizontal pixel positions go
from left to right, you have to adjust this with
a little reversal operation:

BIT ; T - (H AIID T)

So now you've got formulas to find a bit
mapped pixel's byte and bit. Let's do some
thing with them.

5.9 TURNING PIXELS ON AND OFF
Once you've found a pixel's byte and bit

with the formulas developed in Section 5.S, the

REM *** SKETCH *** 1000
1010
1020 :

following statement will set the bit to 1:

POKE BYTE. PEEK(BYTE) OR (2tBIT)

Remember, that will tell the pixel to take on
the color whose code is in the upper nibble of
a byte of screen memory.

This command will set a pixel's bit to 0:

POKE BYTE. PEEK(BYTE) AIID (2~~ - 2tBIT)

The pixel will then take on the color whose
code is in the lower nibble of the appropriate
screen memory byte.

5.10 THE ELECTRONIC DOODLER
Now that you can turn individual pixels on

and off, let's play with an electronic doodling
program. Figure 5-S is a listing of the program
Sketch. Type it in, save it, and then run it.

A dot-sized pen will appear in the center

1030 REM ** INITIAL SET-UP
1040 :

90

1050 PR I NT II~II; : REM CLEAR SCREEN
1060 POKE 650, 128 :REM ALL KEYS REPEAT
1070 :
1080 BASE = 8192
1090 VIC = 53248
1100 BLOC = VIC+24
1110 BSET = VIC+17
1120
1130 :

:REM
:REM
:REM
:REM

BIT MAP START
GRAPHICS CHIP
SETS BASE
SETS BMM

1140 REM ** LOAD SPEEDY M/L CLEAR
1150 :
1160 FOR N = 21248 TO 21273
1170: READ MLDTA
1180 POKE N, MLDTA
1190 NEXT N
1200 :

Bit-Mapped Graphics

1Z10 DATA
1ZZ0 DATA
1Z30 DATA
1Z40 DATA
1Z50 DATA
1Z60 :
1Z70 • •

169,
133,
15Z,
Z0Z,
Z44,

0, 133, Z51, 169, 3Z
Z5Z, 16Z, 3Z, 160, 0
145, Z51, Z00, Z08, Z51
Z40, 4, Z30, Z5Z, Z08
96

1Z80 REM ** SET FOR BIT-MAP MODE, CLEAR
1Z90
1300
1310
13Z0
1330

REM BIT MAP, SET COLOR COMBO
• •
POKE BLOC, PEEK(BLOC) OR 8
POKE BSET, PEEK(BSET) OR 3Z
• •

1340 SYS Z1Z48
1350 :

:REM M/L BIT MAP CLEAR

1360 FOR HUEMAP = 10Z4 TO Z0Z3
1370: POKE HUEMAP, 3
1380 NEXT HUEMAP
1390 :
1400 :
1410 REM ** INITIALIZE H AND V
14Z0 :
1430 H = 160 : V = 100
1440 :
1450 :
1460 REM ** DRAW THE DOT AT H,V
1470 :
1480 VBF = INT (V/8) * 3Z0 +
1490 HBF = INT (H/8) * 8
1500 BIT = 7 - (H AND 7)
1510 BYTE = BASE + VBF + HBF
15Z0 POKE BYTE, PEEK(BYTE) OR
1530 :
1540 :

(V AND 7)

(ZtBIT)

1550 REM ** GET KEYPRESS COMMAND
1560 :
1570 GET KP$
1580 IF KP$ -

· •

THEN 1570

REM ** DEAL WITH KEYPRESS

1590 :
1600
1610
16Z0
1630
1640

• · IF KP$ = THEN 1850
IF KP$ = "s" THEN SYS Z1Z48 :

GOTO 1430
1650 :

91

Commodore 641128 Graphics and Sound Programming

1660 IF KP$ = II WII THEN V=V-l
1670 IF KP$ = IIEII THEN H=H+l • V=V-l •
1680 IF KP$ = 110 11 THEN H=H+l
1690 IF KP$ IIC II THEN H=H+l V=V+l
1700 IF KP$ IIXII THEN V=V+l
1710 IF KP$ = IIZII THEN H=H-l V=V+l
1720 IF KP$ = II All THEN H=H-l
1730 IF KP$ = "Q II THEN H=H-l • V=V-l •
1740 • •
1150 IF V < 0 THEN V = 0
1760 IF V > 199 THEN V = 199
1710 IF H < 0 THEN H = 0
1180 IF H > 319 THEN H = 319
1190 • •
1800 GOTO 1480
1810 • •
1820 • · 1830 REM ** WRAP IT UP
1840 • •
1850 POKE BSET, PEEK(BSET) AND 223
1860 POKE BLOC, 21
1810 • •
1880 PRINT II~" j

1890 • •
1900 END

Fig. 5-8. Listing of the program Sketch.

of the screen. You can move the pen in any
of the eight compass directions by pressing W,
E, D, C, X, Z, A, or Q. Figure 5-9 shows the
layout of these keys, and the direction each one
will send the pen. Pressing the S key erases
your drawing and places the pen back in the
center of the screen-there's no need to turn
your TV set upside down and shake it.

When you finish playing, press the
spacebar to stop the program. Then settle
down for a little explanation of how it works.

5.10.1 Setting Up the Sketch Pad
Lines 1000-1340 should look pretty famil

iar. You clear the screen and then set the

92

keyboard so all the keys will repeat when held
down long enough. Lines 1160-1190 load the
fast machine language routine to clear the bit
map. Then lines 1310-1340 set up bit map
ping and use the machine language clearing
routine.

Lines 1360-1380 fill screen memory with
a color scheme for the bit map. Bits set to 0
will be cyan, and bits set to 1 will be black.
Since line 1340 filled the bit map with O's, the
screen turns cyan.

You'll store the pen's current horizontal
and vertical positions in the variables Hand
V. Line 1430 sets these variables so the pen
is centered on the screen. Whenever the S key

gets pressed, the program will pop back up to
this line.

5.10.2 Drawing
Lines 1480-1520 use the formulas devel

oped in Sections 5.8 and 5.9 to turn on the bit
corresponding to the current pen position. Put
ting a 1 in that bit causes the pixel at the pen
position to turn black.

5.10.3 Getting and Following Orders
Lines 1570-1580 wait for the sketcher to

press a key. Then lines 1630-1800 figure out
what to do with the keypress. A space sends

Bit-Mapped Graphics

the program to line 1850, where it cleans up
shop and ends. Pressing S clears the bit map
and then puts the pen back in the center by
jumping back to line 1430.

Lines 1660-1730 change the pen's position
if one of the eight movement keys has been
pressed. Referring to Figs. 5-6 and 5-9 should
help you understand these lines.

Lines 1750-1780 check to make sure the
pen doesn't fall off the screen. If a keypress
tries to push the pen off, these four lines pull
it back on. Finally, line 1800 loops on back to
draw the pen's dot on the screen.

Notice that any keys not included in the
program's command set will be ignored. Also,

/'

!
Fig. 5-9. Layout of the control keys used In Sketch, and the direction each one will send the pen.

93

Commodore 641128 Graphics and Sound Programming

the clean structure of this section makes it easy
to add new commands.

Lines 1850-1900 are a straightforward end
to the program. They reset the display to text
mode, and clear the screen. It's the same way
you ended Random Draw.

Take some time to play with Sketch. See
what interesting features you can add to it.

5.11 CHAPTER SUMMARY
This chapter has introduced some of the

techniques of bit-mapped graphics. More
specifically, you should now know:

* How to represent 64,000 screen pixels
in an 8,000-byte bit map

* Where you usually store the bit map
when working in BASIC, and how to tell
VIC-II the location.

* How to turn bit map mode on and off
via the register at VIC + 17

* Why really fast bit-mapped graphics
work requires the use of machine
language routines

* How the screen memory is used to pro
vide color information for pixels in bit
mapped mode

* Some of the ways random numbers can
be used to create bit-mapped designs

* How to find the byte and bit t4a,t con
trol an individual pixel in bit map mode

* How to set an individual pixel to either
of the two colors available in its block

At this point, you've been introduced to
the Commodore's three main graphics ca
pabilities: sprites, character graphics, and bit
mapping. In the next chapter, you'll look at
some odds and ends from your Commodore's
set of graphics tricks.

94

5.12 EXERCISES

5.12.1 Self Test
Answers can be found in Section 5.12.3

1. (5.1) Bit-mapping lets you control
________ screen pixels with
an -byte bit-map.

2. (5.2) When using BASIC, the bit-map is
usually located in the half of
the first 16K of memory.

3. (5.3) Bit 5 of the register at ___ _
(memory location 53265) turns bit-map
mode on and off.

4. (5.4) Why are machine language routines
often used with bit-mapped graphics?

5. (5.5) In bit-map mode, the two nibbles of
a byte of screen memory are used to

6. (5.6.3) Which lines of Random Draw set
the colors for the bit-map?

7. (5.7) The com-
mand lets you jump to a machine language
subroutine from BASIC.

8. (5.8) The relationship between bytes in ~e
bit map and pixels on the screen IS

9. (5.9) Setting a bit in the bit map to 1 gives
the related pixel the color that's in the
________ nibble of a byte in
screen memory.

10. (5.10) What would happen to the program
Sketch if line 1640 jumped to line 1480
rather than to line 1430?

5.12.2 Programming Exercises
1. Change the program Random Draw so

it draws colored vertical lines at ran
dom on a black screen.

2. Change Sketch so that it makes lines
that are twice as wide. Warning: the
program will probably run slowly.
This is a case where a new program
design and/or machine language
routine would be warranted after you
get the slow version running.

3. This one may seem tough, but it's
really not too bad. You can use sprites
with bit-map mode. Design a sprite
that looks like a pen, pencil, or brush.
Then change the program Sketch so
it looks as if your sprite is drawing the
lines.

5.12.3 Answers to Self Test
Answers may vary, especially with ques

tions #4 and #8.

1. 64,000; 8,000
2. Second
3. VIC+17
4. Speed

Bit-Mapped Graphics

5. Set colors for an 8-by-8 pixel area of the
screen display

6. Lines 1300-1320
7. SYS
8. Arcane and strange, yet often useful
9. Upper

10. When drawing was erased, the pen would
start up where it left off, rather than at
the center of the screen

5.12.4 Possible Solutions to
Programming exercises

Once again, these solutions are based on
adding or changing lines in the programs men
tioned in the exercises.

1. Load in the program Random Draw.
Then type in the lines shown in Fig.
5-10.

2. Load in the program Sketch. Then
type in the lines shown in Fig. 5-11.

3. Load in the program Sketch. Then
type in the lines shown in Fig. 5-12.

1000
1310
1380
1385
1390
1395
1400
1405

REM *** VERTICAL RANDOM DRAW ***
: POKE SPOT, INT (RND(1)*16) * 16
SPOT = INT(RND(1)*1000) * 8 + BASE
PATTERN = 56
• •
FOR BYTE = 0 TO 7
: POKE SPOT + BYTE, PATTERN
NEXT BYTE

Fig. 5-10. A possible solution to programming exercise 1.

1000 REM
1473 FOR
1476 :
1480 :

*** FAT SKETCH ***
X = H TO (H + 1)
FOR Y = V TO (V + 1)
RHLN = INT (Y/8) * 3Z0 +

(Y AND 7)

95

Commodore 64/128 Graphics and Sound Programming

COL = INT (X/8) * 8
BIT = 7 - (X AND 7)

1490 :
1500 :
1510 :
1520 :

BYTE = BASE + RWLN + COL
POKE BYTE, PEEK(BYTE) OR

1523: NEXT Y
1526 NEXT X
1760 IF V > 198 THEN V = 198
1780 IF H > 318 THEN H = 318
1800 GOTO 1473

(2tBIT)

Fig. 5-11. A possible solution to programming exercise 2.

1000 REM *** PENCIL SKETCH *** 1251 • · 1252 • · 1253 REM ** LOAD THE SPRITE DATA
1254 • · 1255 FOR N = 896 TO 958
1256 • READ SPDTA · 1257 • POKE N, SPDTA •
1258 NEXT N
1259 • · 1260 DATA 0, 1 , 224, 0, 3, 48
1261 DATA 0, 6, 24, 0, 12, 12
1262 DATA 0, 24, 6, 0, 48, 2
1263 DATA 0, 96, 6, 0, 192, 12
1264 DATA 1 , 128, 24, 3, 0, 48
1265 DATA 6, 0, 96, 7, 0, 192
1266 DATA 13, 129, 128, 24, 195, 0
1267 DATA 16, 102, 0, 16, 60, 0
1268 DATA 48, 48, 0, 56, 240, 0
1269 DATA 127, 128, 0, 120, 0, 0
1270 DATA 192, 0, 0
1271 · •
1272 • · 1391 • •
1392 REM ** SET THE SPRITE CONTROLS
1393 • · 1394 POKE 2040, 14 :REM SET #0'S PNTR
1395 POKE VIC+39, 0 :REM PAINT IT BLACK
1396 POKE VIC+29, 1 :REM EXPAND HORZNTL
1397 POKE VIC+23, 1 :REM EXPAND VERT CAL
1398 POKE VIC, 184 :REM INIT HORZ POS

96

Bit-Mapped Graphics

1399 POKE VIC+1,109 :REM INIT VERT POS
1400 POKE VIC+21,1 :REM SPRITE **0 ON
1401 · •
1402 • •
1531 REM ** MOVE THE SPRITE
1532 • •
1533 SH = H + 24 • SV = V + 9 .
1534 RS = (SH > 255)
1535 POKE VIC, SH + (RS * 256)
1536 POKE VIC+16, -RS
1537 POKE VIC+1, SV
1538 • · 1539 • · 1871 POKE VIC+21, 0 :REM SPRITE **0 OFF
1872 POKE VIC+23, 0 :REM EXPANSION OFF
1873 POKE VIC+29, 0

Fig. 5-12. A possible solution to programming exercise 3.

97

•••••••••••••••• •• ••• ••• •• •• ••• ••• •• •• ••• ••• •• •• • • •• •••••••••• •• •• •••••• • • •• •••••••••• •• •• •••• • ••••• •• •••• •• ••• •••••• • •• ••••• • •••• •••••• •••••• •••••• •••••• •••

• ••••• •• •••••• •• •••••• •• • ••••
Chapter 6

••• ••••• •••••• ••••• ••••••• • •••• . . •••..•.....
•• •••••• • ••

•••••••••••••••• •• ••• ••• •• •• ••• ••• II

More
Graphics Tricks

•• ••• ••• •• •• •• •• •••••••••• •• •• •••••• • • •• •••••••••• •• •••• • ••• •• • •••
•• •• •• ••• • ••••• ••••• ••••• ••••• ••••

•••
•••••
••••

This chapter will be a little different from the
previous five. I'll touch lightly on a larger
number of graphics features. The program
discussions will be slimmed down so more
topics can be covered.

Here are the areas you'll be looking at:
sliding sprites over and under background
graphics, putting text onto a bit-mapped
display, flying a sprite with a joystick, de
tecting collisions between sprites and other
graphics objects, two more color modes. for
character graphics, and multicolor bit map
ping. There's lots to deal with, so let's dive
right in ...

6.1 SPRITE-TO
BACKGROUND PRIORITY

Back in Chapter 3, Section 3.5, sprite-to
sprite display priorities were discussed. When
two or more sprites overlap on the screen,

98

••• ••••••• • • •• ••••••• • •• • • •••••••••••

•
•••••••• • ••• •••••••• •

sprites with lower numbers have higher display
priorities. For example, sprite #3 will appear
in front of sprite #5.

There is a register at VIC + 27 (memory
location 53275) that controls sprite-to
background priorities. Background means any
display that's not part of a sprite: characters
and bit-mapped images. Each sprite has a bit
allocated to it in the register at VIC + 27. Bit
o controls sprite #0; bit 1 controls sprite #1,
and so on.

If a sprite's bit is set to 1, that sprite has
lower priority than any background it runs into.
The sprite will appear to go behind the
background. If a sprite's bit is set to 0, the
sprite has higher priority than the background.
It will pass in front of the background.

Take a look at Fig. 6-1. It shows one set
ting of the sprite-to-background control reg
ister. To set sprites to background priorities,
start by putting 1 's in the bit positions that cor-

More Graphics Tricks

Bit
value"

Bit
number"

Value stored at VIC+27=128+16+8+1 =153

128 64 32 16 8 4 2

7 6 5 4 3 2 1

1 0 0 1 1 0 0

1

0

1

Sprites #1, #2, #5, & #6 will appear in front of background images.
Sprites #0, #3, #4, & #7 will appear behind background images.

Fig. 6-1. This setting of the sprite-to-background control register means that sprites #1, #2, #5, and #6 will appear in front
of background images, while the other sprites will appear behind background images.

respond to sprites you want to have lower
priorities. Then add up the bit values of those
bits, and poke the resulting number into
VIC+27.

Figure 6-2 is a listing of the program Over
and Under. It uses changing priorities to show
a sprite orbitting a block of text. Type it in,
save it, and then run it. Pressing the spacebar

1000 REM *** OVER AND UNDER ***
1010 :
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

· · REM ** DRAW THE CENTRAL SHAPE

PR I NT II~II; : REM CLEAR AND CENTER
PR I NT 11 •••••••••••••••• '11;
P R I NT II ,lplplplplplplplp) I I ;

PRINT 11 ... 11;

FOR N = 1 TO
PRINT II~

NEXT N
PRINT II!!III;

· ·

:REM DRAW IT IN CYAN
6

!M111 •••• , 11 j

:REM BACK TO WHITE

REM ** SET UP THE SPRITE
• · FOR N = 832 TO 894 :REM LOAD DATA

POKE N, 255

99

Commodore 641128 Graphics and Sound Programming

1200 NEXT N
1210 :
1220 VIC = 53248
1230 POKE VIC+33, 0
1240 POKE 2040, 13
1250 POKE VIC+39, 12
1280 POKE VIC, 104
1270 POKE VIC+1, 138
1280 POKE VIC+21, 1

• •

REM GRAFIX CHIP
REM BLACK BKGRND
REM ~0 DATA PNTR
REM ~0 MOM GRAY
REM ~0 HORZ POS
REM ~0 VERT POS
REM SPRITE ~0 ON

REM ** FLY THE SPRITE

1290 :
1300
1310
1320
1330
1340
1350
1380
1370
1380
1390
1400
1410
1420

• •
DR = 1 :REM SPRITE PATH DIRECTION
PR = 0 :REM SPRITE/BKGRNO PRIORITY
• •
FOR MOVE = 1 TO 138 :REM FLY IT
: POKE VIC, PEEK(VIC) + DR
: GET KP$
: IF KP$ = 1111 THEN 1410
: MOVE = 138 : BYEBYE = -1
NEXT MOVE
:

1430 IF BYEBYE THEN 1540 :REM DONE?
1440 :
1450 DR =
1480 PR =
1470 :

-DR
1 - PR

:REM CHANGE DIRECTION
:REM CHANGE PRIORITY

1480 POKE VIC+27,PR
1490 GOTO 1380

:REM POKE PRIORITY
:REM MORE FLYING

1500 :
1510
1520
1530
1540
1550
1580
1570
1580

• •
REM ** CLEAN UP AND END
• •
POKE VIC+21, 0 :REM SPRITE OFF
POKE VIC+Z7, 0 :REM RESET PRIORITY
PRINT "~"; :REM CLEAR SCREEN
• •
END

Fig. 6-2. Listing of the program Over and Under.

will end the program.
As mentioned at the outset, this chapter

will have shortened program explanations.

100

That way, more topics and programs will fit.
Let's take a brief look at Over and Under.

The first module draws a large square,

using reversed cyan spaces and cursor motion
commands. The next module sets up a simple
medium gray sprite.

Next comes the main program module.
Lines 1360-1410 move the sprite to the right
or the left, depending on the current value of
a direction variable, DR. A keypress during the
motion ends the program by setting the flag
BYEBYE to true.

After a set of moves, the direction and
sprite-to-background priority are changed. It's
amazing how the simple priority switch can
change our perception of the sprite's motion.
It looks as if the sprite is orbitting the central
square, rather than just moving from side to
side.

6.2 USING TEXT WITH A
BIT-MAPPED DISPLAY

Back in the last chapter, in Section 5.8, you
got to see the strange way bytes in a bit map
correspond to the screen display. The set-up
doesn't make much sense when you're trying
to draw lines. It does come in handy when you
want to add text characters to bit-mapped ma
terial. Let's do a little review to see why.

In bit-mapped mode, eight consecutive
bytes of memory control an area on the screen
eight pixels wide and eight pixels high. Each
byte controls a row of this image block: the
first byte controls the topmost row, the sec
ond byte the next row down, and so on.

Character information is stored in the same
format. Eight consecutive bytes of memory
form a character that's eight pixels wide and
eight pixels high. The first byte controls the
topmost row of the character, the second byte
the next row down, and so on. Patterns for 512
characters are provided in the built-in character
ROM, and you can also design your own.

In order to place a character on a bit-

More Graphics Tricks

mapped screen, you just transfer its eight bytes
to an eight byte section of the bit map. Figure
6-3 is a listing of a program that does just that.
The imaginatively named Bit-Mapped Text
takes character patterns from the built-in ROM
and puts them onto a bit-mapped display. Let's
take a brief look at it.

The first section of the program initializes
a number of constants and variables. It also
sets the keyboard up so all keys will repeat.
The next section, lines 1170-1180, switches the
display over to bit-mapped mode.

The next two segments create a Jackson
Pollack painting. Lines 1230-1250 set the
colors for the bit map. Colors for 0 bits are cho
sen at random, while all bits set to 1 will be
black. Then lines 1300-1320 fill the bit -map
itself with random values.

Lines 1370-1380 wait for a keypress. If the
key pressed is a space, the program jumps to
its last module and ends. Lines 1400-1410
make sure the key is a letter, number, or punc
tuation mark.

The next program module figures out the
display code for the pressed key. Then the
built-in character ROM is brought into mem
ory. Lines 1590-1610 copy the eight character
pattern bytes into the bit map, and then the
character ROM is let go. The next section up
dates the cursor variable, which keeps track
of our position in the bit map, and then loops
back to get another keypress. So much for ex
planation. If you haven't done so already, type
the program in, save it, run it, and experiment
with it. .

6.3 JOYSTICKS
You can plug two standard video game

joysticks into your Commodore 64. Let's see
how you can get at the information that comes
from a joystick. They you'll use that informa-

101

Commodore 64/128 Graphics and Sound Programming

102

1000 REM *** BIT MAPPED TEXT ***
1010 :
1020 :
1030 REM ** INITIALIZE VARIOUS STUFF
1040 :
1050 PRINT "~";
1060 POKE 650, 128
1010 ROM = 53248
1080 BASE = 8192
1090 CURSR = BASE
1100 VIC = 53248
1110 BLOC = VIC+24
1120 BSET = VIC+11
1130 :
1140 :

:REM
:REM
:REM
:REM
:REM
:REM
:REM
:REM

CLEAR SCREEN
ALL KEYS REPEAT
CHARACTER ROM
BIT MAP BASE
BIT MAP CURSOR
GRAFIX CHIP
LOCATES BM
SETS BMM

1150 REM ** TURN ON BIT MAP MODE
1160 :
1110 POKE BLOC, PEEK(BLOC) OR 8
1180 POKE BSET, PEEK(BSET) OR 32
1190 :
1200 :
1210 REM ** SET BIT MAP COLORS RANDOMLY
1220 :
1230 FOR SL = 1024 TO 2023
1240: POKE SL, INT(RND(1) * 15) + 1
1250 NEXT SL
1260 :
1210
1280
1290
1300
1310
1320
1330
1340
1350

• · REM ** FILL BIT MAP WITH GARBAGE
· · FOR BMLOC = BASE TO BASE + 1999
: POKE BMLOC, INT(RND(1) * 256)
NEXT BMLOC

• •
REM ** GET A LETTER, NUMBER, OR

PUNCTUATION MARK
1360 :
1310 GET KP$
1380 IF KP$ = 1111 THEN 1310
1390 IF KPS = II II THEN 1790
1400 IF ASC(KP$) < 32 THEN 1310
1410 IF ASC(KPS) > 95 THEN 1370
1420 :

More Graphics Tricks

1430 :
1440 REM ** FIGURE OUT THE DISPLAY CODE
1450 :
1460 ADJFAC = (ASC{KPS) > 63)
1470 DSCODE = ASC{KPS) + (ADJFAC * 64)
1480 SA = ROM + (DSCODE * 8)
1490 :
1500 :
1510 REM ** BRING CHAR ROM INTO MEMORY
1520 :
1530 POKE 56334. PEEK(56334) AND 254
1540 POKE 1. PEEK(1) AND 251

· · REM ** CHAR PATTERNS TO BIT MAP

1550 :
1560
1570
1580
1590
1600

• · FOR BYTE = 0 TO 7
: POKE CURSR + BYTE.

PEEK (SA + BYTE)
1610 NEXT BYTE
1620 :
1630 :
1640 REM ** LET CHAR ROM GO
1650 :
1660 POKE 1. PEEK(1) OR 4
1670 POKE 56334. PEEK(56334) OR 1
1680 :

· · 1690
1700
1710
1720
1730

REM ** ADJUST CURSOR AND LOOP BACK

1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

• · CURSR = CURSR + 8
IF CURSR = BASE + 8000 THEN

CURSR =
GOTO 1370
• •
• · REM ** BACK TO TEXT DISPLAY &
• •
POKE BSET. PEEK{BSET) AND 223
POKE BLOC. 21
• •
PRINT "~";
END

Fig. 6-3. Listing of the program Bit-Mapped Text.

BASE

END

103

Commodore 64/128 Graphics and Sound Programming

tion to fly a sprite.
A joystick has four direction switches,

which you can label with compass directions
as shown in Fig. 6-4. At any time, none, one
or two switches may be activated. For exam
ple, if you push the joystick north, switch 0 is
activated. If you push it southwest, switches
1 and 2 are activated. If you don't push it at
all, no switches are activated. There's also a
fifth switch on the joystick, and it's used as
a fire button.

Each switch is connected to a bit in a
special input/output location in the computer.
The five switches of the joystick plugged into
control port 1 are connected to the lower five
bits of the input/output register at memory

location 56321. Likewise, the five switches of
the joystick plugged into control port 2 are con
nected to the lower five bits of the input/out
put register at memory location 56320. See
Fig. 6-5.

By the way, these input/output locations
are also used by the computer's operating
system to scan the keyboard. Because of some
complications caused by this keyboard scan
ning, strange things can happen with a joystick
plugged into control port 1. So, if you're just
using one joystick, plug into control port 2.

You can tell what's happening to a joystick
by reading the data from the corresponding
input/output register. When a switch is not ac
tivated, the corresponding bit will be set to 1.

North

West

Switch #2

Switch #0
-I __ r-

South

Switch#1

Fig. 6-4. A joystick and its five switches, as seen from above with limited x-ray vision.

104

East

Switch #3

..
'.

Bit value

Bit number

128

7

64 32

6 5

More Graphics Tricks

16 8 4 2 1

4 3 2 1 0

Switch #4 Switch #3 Switch #2 Switch #1 Switch #0

- - - - - - - -
Fire East West South North

button

Bits 5, 6, 7 used for other purposes

Fig. 6-5. How the five Joystick switches connect to the lower five bits of the Input/output register at memory location 56321.

When the switch is activated, the bit will be
set to O. For example, if you push the joystick
to the east, it will activate switch 3, so bit 3
of the input/output byte will be set to O. If you
press the fire button, that activates switch 5,
so bit 5 will be set to O. Figure 6-6 gives some
more examples of this.

1 1

I I I 1 I 1

0 1

0 1

I

By using the AND function, you can isolate
the bits you're interested in checking. Based
on the results, you can figure out new values
for a sprite's position and move it around the
screen. Programmers are always looking for
the quickest, cleverest way to read a joystick.
Just remember, no matter how weird the

1 1 o

0 I 0 1

0 1 1

1 1 1

Joystick pushed
north

Joystick pushed
southwest

Joystick pushed
west

& fire button
pressed

Fire button
pressed

Fig. 6-6. Examples of what the lower five bits of memory location 56321 look like when the Joystick is manipulated in
various ways.

105

Commodore 64/128 Graphics and Sound Programming

joystick-reading code looks, it's just trying to
translate the bit values into joystick status in
formation. In the next section, a program that
uses one of these quick and clever techniques
will be discussed. But first, you'll take a short
course in collision detection.

6.4 THINGS THAT GO
BUMP ON THE SCREEN

It's useful to know when objects collide
with one another on the screen. With previous
small computers, this wasn't easy. The Com
modore 64 has special built-in hardware to
detect collisions.

Sprite-to-sprite collisions are recorded in
a register at VIC + 30 (memory location 53278).
Each bit of the register corresponds to a sprite.
Any sprite involved in a collision gets its bit
to set to 1. For example, if sprite #2 bumps
into sprite #7, bits 2 and 7 of VIC + 30 will be
set to 1. The bits will stay until you read
information from the register with a peek
statement.

Sprite-to-data collisions are recorded in a
register at VIC + 31 (memory location 53279).
Data means parts of characters or bit-mapped
images. Again, each bit of the register cor
responds to a sprite, and that bit is set to 1 if
its sprite is in a collision. For example, it sprite
#5 bumps into parts of a character, bit 5 of
VIC + 31 will be set to 1. The bits stay set until
the contents of the register are read.

Figure 6-7 lists the program Joyous Colli
sion. It gives examples of joystick reading and
sprite-to-sprite collision detection. Type it in,
save it, and then run it. Two sprites will ap
pear, as shown in Fig. 6-8. Use a joystick
plugged into control port 2 to fly the face into
the weather vane. Notice what happens when
they collide. Pressing the fire button will end
the program.

106

Let's review this program. Lines
1050-1090 load the data for both sprites. Lines
1380-1540 then set the necessary VIC registers
and turn both sprites on.

Now comes the program's main segment.
Line 1590 reads the value of the input/output
location at 56320. Remember, that's the reg
ister that talks to the joystick plugged into con
trol port 2. Line 1600 uses an ANDing
operation to see if the fire button's been
pressed. If it has, the program exits via the
cleanup routine that begins at line 1870.

Lines 1610 and 1620 take the value of loca
tion 56320 and figure out the net horizontal and
vertical motion. They do it with a quick, tricky
technique. ANDing isolates individual bits cor
responding to individual switches in the joy
stick. The SGN function returns values of 0
or 1, depending on whether the expression in
parentheses comes out to be 0 or greater than
O. Depending on how the joystick is moved,
HD will be given one of the values -1,0, or
1. The same goes for VD, the variable that
holds values for vertical motion. These motion
values are then used to update sprite no's
position.

Line 1700 then checks the sprite-to-sprite
collision register. If the sprites aren't bump
ing into one another, the program loops back
to reset the original sprite colors and look at
the joystick again. If there is a collision, lines
1750-1800 change the sprites' colors before
going back to read the joystick.

6.5 MUL TICOLOR
CHARACTER MODE

Back in Chapter 3, Sections 3.1 through
3.4, you learned how to create multicolor
sprites. By trading off a little horizontal resolu
tion, you were able to get more colors into a

More Graphics Tricks

1121121121 REM *** JOYOUS COLLISION ***
11211121 • · 11212121 • · 11213121 REM ** LOAD THE SPRITE DATA
11214121 • •
11215121 PRINT II~II

11218121 FOR N = 832 TO 958
11211121 READ SPDTA
11218121 · POKE N, SPDTA · 11219121 NEXT N
11121121 • · 111121 DATA 121, 255, 121, 1 , 129, 128
112121 DATA 3, 121, 192, 3, 121, 192
113121 DATA 3, 121, 192, 8, 11212, 98
114121 DATA 8121, 11212, 8121, 98, 121, 8
115121 DATA 192, 121, 3, 192, 11212, 3
118121 DATA 198, 8121, 99, 99, 121, 198
117121 DATA 113, 129, 142, 28, 195, 58
118121 DATA 12, 195, 48, 12, 11212, 48
1190 DATA 8, 80, 98, 8, 0, 98
121210 DATA 3, 129, 192, 121, 195, 0
1210 DATA 121, 128, 0, 121
122121 · •
1230 DATA 121, 121, 121, 121, 18, 121
1240 DATA 0, 58, 121, 0, 84, m
125121 DATA 121, 18, 121, 2, 18, 128
128121 DATA 1 , 17, 121, 0, 148, 121
127121 DATA 18, 84, '18, 32, 58, 8
1280 DATA 127, 255, 252, 32, 58, 8
129121 DATA 18, 84, 18, 121, 148, 121
13121121 DATA 1 , 17, 121, 2, 18, 128
1310 DATA 0, 18, 0, 0, 84, 0
1320 DATA 0, 58, 121, 121, 18, 121
1330 DATA 0, 0, 121
1340 • •
135121 • •
138121 REM ** SET SPRITES UP AND TURN ON
131121 · · -
138121 VIC = 53248 :REM GRAPHICS CHIP
139121 POKE VIC+33,12I :REM BKGROUND BLACK
14121121 · •
1410 POKE 21214121,13 :REM MI2I DATA POINTR
14Z121 POKE 212141,14 :REM M1 DATA POINTR
1430 · ·

107

Commodore 64/128 Graphics and Sound Programming

108

1440 POKE VIC,120 :REM #0 HORIZONTAL
1450 POKE VIC+2,160 :REM #1 HORIZONTAL
1460 POKE VIC+l,138 :REM #1 VERTICAL
1470 POKE VIC+3,126 :REM #1 VERTICAL
1480 :
1490 POKE
1500 POKE
1510 POKE
1520 POKE
1530 :

VIC+39,3
VIC+40,7
VIC+29,2
VIC+23,2

1540 POKE VIC+21,3
1550 :
1560 :

:REM #121 IS CYAN
:REM #1 IS YELLOW
:REM ONLY #1 IS
:REM DOUBLE-SIZED

:REM TURN BOTH ON

1570 REM ** FLY SPRITE #121
1580 :
1590 JR
161210 IF
1610 HD
1620 VD
1630 :

= PEEK (56320) :REM CTRL PORT 2
(JR AND 16) = 121 THEN 1870 = SGN(JR AND 4) - SGN(JR AND 8) = SGN(JR AND 1) - SGN(JR AND 2)

1640 POKE VIC, PEEK(VIC) + HD
1650 POKE VIC+l, PEEK(VIC+l) + VD
1660 :
1670 :
1680 REM ** IF NO COLLISIONS LOOP BACK
1690 :
1700 IF PEEK(VIC+3B) = 0 THEN 149121
1710 :

• • 1720
1730 REM ** COLLISION : #1 GOES WHITE

AND #0 VIBRATES RAINBOWS
1740 :
175121 POKE VIC+40, 1
176m :
1770 HUE = PEEK(VIC+39)
1780 HUE = HUE + 1
1790 IF HUE = 8 THEN HUE
1800 POKE VIC+39, HUE
1810 :
1820 GOTO 159121
1830 :

• ·

AND 15

= 1

184121
185121
1860
187121

REM ** CLEAN UP AND END · · POKE VIC+21,121

1880 POKE VIC+29,0
1890 POKE VIC+23,0
1900 :
1910 END

Fig. 6-7. Listing of the program Joyous Collision.

sprite design.
There's also a multicolor mode for

character displays. Again, you trade off a lit
tle horizontal resolution for a wider range of
colors. You can use this multicolor mode with
either the built-in ROM characters or
characters you design from scratch.

As with multicolor sprites, multicolor
characters use two bits to choose a color. Thus,
four double-wide pixels will make up each row
of the character. You may remember that two
bits can take on four possible values: 00, 01,
10, and 11. That lets you use four colors in a
multicolor character.

Setting bit 4 of the register at VIC + 22
(memory location 53270) to 1 turns on multi
color character mode. Resetting the same bit
to 0 turns it off. To add even more control (and
complication), each location on the screen has
the option of going with multicolor mode or
not. If a screen location's corresponding color
map location has bit 3 set to 1, the character
will show up in multicolor mode. If bit 3 of
color memory is set to 0, the character will
show up in its normal (two color) fashion.

Fig. 6-8. Initial image shown by the program Joyous Collision.

More Graphics Tricks

Confusing? Here's another way to look at
it. Assume that you've turned on multicolor
character mode by setting bit 4 of VIC + 22 to
1. If you put a number from 0-7 in a color mem
ory location, the corresponding screen location
will show its character normally. But, if you
put a number from 8-15 into the color mem
ory location, the character will show up in
multicolor mode.

Next detail: if multicolor character mode
is on, and a character's color memory location
is set to a number from 8-15, where do the four
colors come from? If the bit pair is 00, the color
comes from the value stored at VIC + 33, the
screen color register, also called background
register O. If the bit pair is 01, the color comes
from VIC + 34, background register 1. If the
bit pair is 10, the color comes from VIC + 35,
background register 2. Finally, if the bit pair
is 11, the color comes from the lower 3 bits
of the character's color memory location.

If you stop and think for a moment, you'll
realize that all characters displayed in
multicolor mode will share three colors. Pok
ing new values into the three background
registers will quickly change a whole screen
of multicolor characters.

You can use multicolor mode with the
built-in characters, but the results aren't very
interesting. It's more fun to design your own
multicolor characters. Figure 6-9 is a coding
form you can use for this task. Figure 6-10 is
an example of how this form can be used. I
recommend using colored markers to represent

109

Commodore 64/128 Graphics and Sound Programming

Bit
~ value

128

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

o o

Background
#0 color

(screen color)

I
I
I 64
I

• I

•
I

I

I

I
I
I
I
I
I
I
I

I
~
I

I

I

I

I

• I 32 I 16
I

I
I

•
I

I
--'-

· I

•
•
I

I

• •
I
I
I

-.L
I
I
I

I ·

o 1

Background
#1 color

I
I

8 I
I

I
I

I
I

I
I

I

I

I
I

I
a
I

I

I

I
4 2 I

I

I
I

I
1
I
I
I

I

I
I

I
I
I
I
I

1 o

Background
#2 color

1
NumDer
cod:s

1 1

Lower 3
bits of color

memory
color

Fig. 6-9. A coding form you can use to design multicolor characters.

the four colors, but in a black-and-white book,
I have to resort to shading.

Figure 6-11 lists a program that dem
onstrates multicolor characters. Type it in,
save it, and then run it. Pressing any of the
keys 1, 2, 3, or 4 will change one of the four
colors used in the display. Holding one of those
keys down will cause continuous color change.
Notice how quickly the picture shifts when a

110

new value is poked into one of the background
registers.

Playing around with this program will
teach you a lot about multicolor character
mode. The program is pretty simple. The first
segment loads in two custom character pat
terns and the pattern for a space. Then the
screen clears; VIC is set to point to the new
character set; and the multicolor mode comes

More Graphics Tricks

on. Lines 1360-1440 print two lines full of the
new characters.

Now comes the workhorse section. The
program gets a keypress. It it's a space, the
program ends. If it's a 1, 2, 3, or 4, the ap
propriate color storage location(s) is (are)
changed. Then the program loops back for an
other keypress.

One technique you might make note of:
when reading a color from memory, an AND
operation is used to screen out unwanted bits.
This happens in lines 1640 and 1720.

6.6 EXTENDED BACK-
GROUND CHARACTER MODE

There is one more way you can display

Bit
value •

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

ByteS

Byte 6

Byte 7

o

128 64
I •
9 ~
I

o

b .~

•
I

32 I 16
. . '. . .' ..

". l' . I • ,0: .
• II •••• •

.' .
. 1', . 0"
.' .

.1'. . ·0'.

o 0

I I

8 : 4 2 I 1
I ,

::1:·.:·.··0···. =1~~
• '. 1 .' • •
•. '.1.' • ".

. 1'.' . 0 '. -_'1-+--1~ , ., . ' . ,-
'. '1 .. 1" 0 :, -1~11-
.. " I " ',_ -+-- 1-

, -'1-'-1'-o : 0 --t--

• • • t
-1 -1- ' ·1'·· .. 0" ,. 1 :. I' : 0 ' .
- --..-. - ., .. ':. .":... I '. . :',

• I I • P I 1
'. '. ". I' • '.

-1~1-: '1,':,'0,· . 1. :".0"
- -r-- -.- ,,', . -,'.'

I

o 0
I
I . 1 1 o

. . . .
. .. '. ...

Background
#0 color

(screen color)

Background
#1 color

Background
#2 color

Fig. 6-10. An example showing how the multicolor character coding form can be used.

Number
codes
~

107

107

107

67

193

233

233

233

1 1

Lower 3
bits of color

memory
color

111

Commodore 64/128 Graphics and Sound Programming

112

REM *** CUSTOM MULTICOLOR *** 1000
1010
1020 :
1030 REM ** LOAD IN NEW A, B, & SPACE
1040 :
1050 CBASE = 12288 :REM NEW CHARS START
1060 :
1070 FOR CHAR = 1 TO 2
1080 FOR BYTE = 0 TO 7
1090 SPOT = CBASE + CHAR*8 + BYTE
1100 : READ CDTA
1110 : POKE SPOT, CDTA
1120: NEXT BYTE
1130 NEXT CHAR
1140 :
1150 FOR BYTE = 0 TO 7
1160: SPOT = CBASE + 32*8 + BYTE
1170: POKE SPOT, 0
1180 NEXT BYTE
1190 :
1200 DATA
1210 DATA
1220 DATA
1230 DATA
1240 :

101, 101, 101, S 1
67,101,101,107

233, 233, 233, 193
193, 233, 233, 233

1250
1260

1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

• · REM ** CLEAR SCREEN, BRING IN NEW
CHAR SET, TURN MULTICOLOR ON

• · PRINT II~";
VIC = 53248
POKE VIC+24,
POKE VIC+22,
• •
• ·

:REM CLEAR SCREEN
:REM GRAFIX CHIP

29 :REM NEW SET IN
PEEK(VIC+22) OR 16

REM ** SET UP DISPLAY · · PR I NT "(PIPIPIPIP''''IPIPIP)"; : REM DOWN 10
PR I NT " ••••••• '"; : REM OVER 7
PRINT 1Ir:"; :REM START WITH COLOR 9
· · FOR N = 1 TO 26
: PRINT "AB";
: IF N <> 13 THEN 1440

More Graphics Tricks

1430 : PRINT:PRINT:PRINT
1440 NEXT N
1450 :
1460 :
1470 REM ** PLAY BUTTON PUSH
1480 :
1490 COLMAP = 55296

11 ••••••• 111 j

1500 BG = COLMAP + (10 * 40) + 7
1510 POKE 650, 128 :REM ALL KEYS REPEAT
1520 :
1530 GET KP$
1540 IF KP$ = 1111 THEN 1530
1550 IF KP$ = II II THEN 1830
1560 :
1570 BKREG = 0
1580 IF KP$ = 11111
1590 IF KP$ = 11211
1600 IF KP$ = 113 11
1610 IF KP$ = 11411
1620 IF BKREG = 0
1630 :

THEN
THEN
THEN
THEN
THEN

BKREG
BKREG
BKREG
GOSUB
1530

1640 HUE = (PEEK(BKREG) AND
1650 IF HUE = 16 THEN HUE =
1660 POKE BKREG, HUE
1670 GOTO 1530
1680 :

· •

= VIC+33 = VIC+34 = VIC+35
1720

15) + 1
o

1690
1700 REM ** SUBROUTINE TO CHANGE ALL

LETTERS' COLOR MAP COLORS
1710 :
1720 HUE = (PEEK(BG) AND 15) + 1
1730 IF HUE> 15 THEN HUE = 8
1740 :
1750 FOR SPOT = SG TO (SG + 10S)
1760: POKE SPOT, HUE
1770 NEXT SPOT
1780 RETURN
1790 :

· · 1800
1810
1820
1830
1840
1850
1860

REM ** CLEAN UP AND END
• •
PRINT II~II;
POKE VIC+22,
POKE VIC+24,
PRINT 11.11

PEEK(VIC+22} AND 239
21

:REM WHITE TEXT

113

Commodore 64/128· Graphics and Sound Programming

1810 POKE VIC+33,0 :REM ON BLACK BKGRND
1880 :
1890 END

Fig. 6-11. Listing of the program Custom Multicolor.

characters: extended background mode. In this
mode, you can use anyone of the 16 colors for
a character's background. As usual, the char
acter itself can take on any of the 16 colors.

There are four memory locations used with
extended background mode: background reg
isters 0-3, located at VIC + 33, VIC + 34,
VIC+35, and VIC+36 respectively. That's
memory locations 53281 through 53284. Each
of these locations can be set to anyone of the
16 colors.

As you've seen, getting more colorful
displays usually means cutting down on some
thing else. Extended background mode is no
exception. Only 64 different characters can be
displayed, rather than 256. This is because bits
6 and 7 of each character code are used to se
lect one of the four background registers. That
leaves just six bits to code the character, and
the laws of binary arithmetic say that six bits
produce 64 different values.

Let's look at some practical details. Put
ting a 1 into bit 6 of memory location 53265,
VIC + 17, turns on extended color mode. Plac
ing a 0 into the same bit position turns the
mode off. The character's color is stored in
color memory, as in the normal character
mode. The character code is stored in screen
memory, also as usual. However, only the first
64 character patterns are used. If the first two
bits of a character code are 00, the background
color comes from background register 0, at
VIC + 33. If the first two bits of the code are
01,10, or 11, the background color comes from
background register 1, 2, or 3, respectively.

114

For example: if extended background color
mode is in effect, poking a 5 into a screen mem
ory location will put an E on the screen. The
character's background color will come from
background register 0, at VIC + 33. Since that
register sets the background color for the
whole screen, the E will appear quite ordinary.
Poking a 69 into a screen memory location will
also put an E on the screen, but the character's
8-by-8 area will fill with a background color
based on the contents of VIC + 34. Likewise,
poking a 133 will produce an E with local
background color based on the contents of
VIC + 35. Poking 197 into screen memory will
produce an E with a background color based
on the contents of VIC + 36.

Figure 6-12 lists the program Extended
Background, which gives a demonstration of
this mode. Type it in, save it, and then run it.
Each column of dashes shares the same
background register. Pressing one of the keys
1-4 will change the contents of one of the
background registers. Pressing 5 will change
the color of the character itself. Once again,
if you really want to understand a new mode,
spend some time modifying the program.

Here's a brief explanation of Extended
Background: lines 1050-1070 clear the screen
and turn on extended background mode. Lines
1120-1250 set up four columns of the same
character, a dash (display code 45). However,
each column differs in bits 6 and 7, so the col
umns of dashes will lock to different registers
for background colors.

The next section is another big keyboard

More Graphics Tricks

1000 REM *** EXTENDED BACKGROUND ***
1010 :

· · REM ** TURN ON EXTENDED BKGRD MODE
10Z0
1030
1040
1050
1060
1010
1080
1090 :

• •
PRINT II~II;

VIC = 53Z48
POKE VIC+l',

:REM CLEAR SCREEN
:REM GRAFIX CHIP

PEEKCVIC+l1) OR 64
• •

1100 REM ** SET UP DISPLAY
1110 :
llZ0 SCREEN = 10Z4
1130 COLMAP = 55Z96
1140 SS = SCREEN + C10
1150 CS = COLMAP + C10
1160 :
1110 HUE = PEEKCCS) + 1

* 40) * 40)

1180 IF HUE = 16 THEN HUE = 0
1190 :
lZ00 FOR RW = 0 TO 3
lZ10 :FOR N = 0 TO 3

+ 16
+ 16

lZZ0 : POKE SS + RH*40 + N*Z, 45 + 64*
lZ30 : POKE CS + RH*40 + N*Z, HUE
lZ40 : NEXT N
lZ50 NEXT RW

• •
REM ** PLAY BUTTON PUSH
• •
POKE 650, lZ8 :REM ALL KEYS REPEl

lZ60 :
lZ10
lZ80
lZ90
1300
1310
13Z0
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440

• •
GET KP$
IF KP$ = 1111 THEN 13Z0
iF KP$ = II II THEN 1520
• •
BKREG = 0
IF KP$ =
IF KP$ =
IF KP$ =
IF KP$ =
IF KP$ =
IF BKREG
• •

11111 THEN BKREG
IIZII THEN BKREG
113 11 THEN BKREG
11411 THEN BKREG
115 11 THEN 1170
= 0 THEN 1320

= VIC+33
= VIC+34
= VIC+35
= VIC+36

HUE = CPEEKCBKREG) AND 15) + 1

115

Commodore 64/128 Graphics and Sound Programming

1450 IF HUE = 16 THEN HUE = 0
1460 POKE BKREG, HUE
1470 GOTO 1320
1480 :

• • 1490
1500
1510
1520
1530
1540
1550
1560
1570

REM ** CLEAN UP AND END

PRINT II~II;
POKE VIC+17, PEEK(VIC+17) AND 191
PRINT 11111" :REM WHITE TEXT
POKE VIC+33,0 :REM ON BLACK BKGRND
• •
END

Fig. 6·12. Listing of the program Extended Background.

polling loop. A space ends things, the numbers
1-5 change colors as noted above, and anything
else is ignored. Finally, the last module cleans
things up by turning extended background
mode off, clearing the screen, and setting the
character color to white.

6.7 MUL TICOLOR BIT MAP MODE
There is one last Commodore 64 display

option: multicolor bit-mapped mode. As you
may have guessed, this graphic mode lets you
use 4 colors in an 8-by-8 block of the bit-map
display . You've probably also guessed the cost:
horizontal resolution cut in half.

How do you set this mode up? First, you
put a 1 into bit 5 of VIC + 17 to turn on bit
mapped mode. Then you tell VIC where the
8K bit map is located by setting bit 3 of
VIC + 24. In most cases, that bit will be set to
1. So far, these are just the steps you used to
set up standard bit-mapping. Finally, you set
bit 4 of VIC + 22 to 1, which turns on multicolor
mode.

The correspondence between bytes in the
bit map and the dots on the screen display is

116

the same as in standard bit-mapped mode.
However, two bits are used to choose a color
for a double-wide pixel. As you've learned, two
bits can code 4 values. Depending on the value
of a bit pair, color information for a given
8-by-8 area can come from one of four loca
tions.

If the bit pair is 00, color comes from
background register 0 at VIC + 33. That's the
screen background color. If the bit pair is 01,
color comes from the upper nibble of the cor
responding screen memory location. If the bit
pair is 10, color comes from the lower nibble
of the same byte of screen memory. And if the
bit pair is 11, color comes from the correspond
ing color memory location.

To return to a standard text display from
this mode, just reverse the setup steps. That
is, put a 0 into bit 5 of VIC + 17, put a 0 into
bit 4 of VIC + 22, and reset VIC + 24 with the
value 21.

6.8 CHAPTER SUMMARY
Whew, this has been a packed chapter. I

wanted to wrap up a number of loose ends
before going on to the next major topic: sounds.

Here's an overview of what's been covered:

• Moving sprites in front of and behind
other images by setting sprite-to
background priorities

• Placing characters on a bit-mapped
display by transferring eight bytes from
character memory

• Reading a joystick by looking at the
lower five bits of memory locations
56320 and 56321

• Using joystick information to move a
sprite around

• Detecting collisions between sprites and
between sprites and other images

• Displaying characters in multicolor
mode, where four colors can be used in
each character

• Displaying characters in extended
background mode, where all 16 colors
are available for local background duty

• Setting up multicolor bit-map mode,
where 4 colors can be used in each
8-by-8 block of the bit map, although
horizontal resolution gets cut in half

6.9 EXERCISES

6.9.1 Self Test
Answers are in Self Test Section 6.9.3.

1. (6.1) Which sprites will move behind
background image if the value 85 is poked
into the register at VIC + 27?

2. (6.2) Give an instance when the strange
layout of bytes in the bit map comes in
handy.

3. (6.3) Which direction is the joystick being
pushed if the input/output register at
56321 holds the value 26?

More Graphics Tricks

4. (6.4) If the sprite-to-sprite collision regis
ter contains the value 170, which sprites
have collided?

5. (6.5) Setting bit ____ of the regis-
ter at VIC + 22 to turns on
multicolor character mode.

6. (6.6) In extended background mode, bits
and of a

character's display code select one of
four background registers.

7. (6.7) Which 3 bits need to be dealt with
to set up multicolor bit-map mode?

6.9.2 Programming Exercises
These should be quick and easy to code.

Possible solutions are shown in Section 6.9.4.

1. Change the program Over and Under
so that the sprite moves in a vertical,
rather than horizontal, orbit.

2. Change the program Bit-Mapped Text
so that the text characters come out
in color, upside down, on a black back
ground. Hint: you only have to fix a
couple of lines .

. 3. Change the program Joyous Collision
so the joystick operates in reverse.
That is, moving it west moves the
sprite to the east, moving it north
moves the sprite south, and so on.

6.9.3 Answers to Self Test
1. sprites #0, #2, #4, and #6
2. when you want to put characters onto a

bit-mapped display
3. northwest
4. sprites #1, #3, #5, and #7
5.4; 1

117

Commodore 64/128 Graphics and Sound Programming

6.6; 7 Then type in the lines shown in Fig.
6-13. 7. bit 5 of VIC + 17 (53265); bit 3 of VIC + 24

(53272); bit 4 of VIC + 22 (53270) 2. Load in the program Bit-Mapped
Text. Then type in the lines shown in
Fig. 6-14.

6.9.4 Possible Solutions to
Programming Exercises

3. Load in the program Joyous Collision.
Then type in the lines shown in Fig.
6-15. 1. Load in the program Over and Under.

1000 REM *** VERTICAL OVER & UNDER ***
1260 POKE VIC, 172 :REM ~0 HORZ POS
1270 POKE VIC+l, 68 :REM ~0 VERT POS
1370: POKE VIC+l, PEEKeVIC+l) + DR

Fig. 6-13. A possible solution to programming exercise 1.

1000 REM *** COLOR BIT MAPPED TEXT ***
1240 POKE SL, (INT(RND(l) * 15) + 1}

* 16
1600: POKE CURSR + BYTE,

PEEK (SA + 7 - BYTE)

Fig. 6-14. A possible solution to programming exercise 2.

1000 REM *** WEIRD COLLISION ***
1610 HD = SGN(JR AND 8} - SGN(JR AND 4}
1620 VD = SGN(JR AND 2} - SGNeJR AND 1)

Fig. 6-15. A possible solution to programming exercise 3.

118

Chapter 7

Starting To
Make Sounds

Enough has been said about silent pictures al
ready. Let's make some noise. In this chapter,
I'll give some short, snappy lectures on the
nature of sounds. Y ou'lllearn about frequency,
amplitude, and waveforms. You'll take a good
look at SID, the powerful sound chip Com
modore has put into your computer. You'll
learn how to set some of SID's registers. I'll
talk about music and then close up with a fa
miliar melody.

7.1 SOME ASPECTS OF SOUND
Things that vibrate create sounds. The

classic beginner's sound experiment involves
a tuning fork. If you have one, give it a good
whack. Listen to it a moment, and then touch
it. Feel the vibrations? If you don't have a tun
ing fork handy, here's a neat little substitute
experiment:

Get two pieces of dental floss or string,
each about two feet long. Then take a rack out
of an oven. Attach one end of a piece of floss
to one comer of the rack, then attach the sec
ond piece to another comer. Wrap the loose
end of one piece of floss around your left index
finger, then wrap the end of the other piece
around your right index finger. You may want
to do the next step in private. Stick your
fingers in your ears. Bump the rack against
something. Watch, feel, and listen. See Fig.
7-1.

7.1.1 Waves
One complete vibration makes a wave.

Things that vibrate make lots of waves. These
waves like to travel. They travel really well
in metal and stretched pieces of floss. They
even travel in the air. When sound waves make

119

Commodore 641128 Graphics and Sound Programming

Fig. 7-1. You might want to try this noble sound experiment
In the privacy of your own room.

it to your ear, they crash into sensitive little
hairs, causing the hairs to vibrate. The vi
brating hairs are connected to nerves, which
send messages to your brain, and you hear
sounds.

7 .1.2 Frequency, or Pitch
There are a number of ways to describe

waves. One way is to count how many waves,
or cycles, occur in a given amount of time. This
count is known as the frequency of the waves.
For example, if you went to the ocean, you
could count the number of waves that occur

120

during one minute. If there were twelve waves,
you'd say that the frequency was 12 cycles per
minute.

Sound waves occur at a faster rate. You
measure the frequency of a sound in cycles per
second, also known as hertz. Something vi
brating 440 times a second will create a sound
with a frequency of 440 hertz.

What we call the pitch of a sound depends
on its frequency. Sounds with a low pitch have
low frequencies; high-pitched sounds have high
frequencies.

People can hear sounds with frequencies
between about 15 and 20,000 hertz. A piano
can create sounds with frequencies between
33 and 4186 hertz. Your C-64 computer can
create sounds with frequencies between .06
and 3995 hertz.

You can draw pictures of sound waves.
Figure 7-2 shows waves made by tuning forks.
The waves have different frequencies.

7.1.3 Amplitude:
Volume, or Loudness

You can also measure the size of a wave.
This is called amplitude. Large waves are more
powerful than small waves, as any surfer will
testify. With sound waves, amplitude
translates into volume, or loudness. The larger
the amplitude, the louder the sound.

Frequency and amplitude operate in
dependently of one another. Two sounds can
share the same pitch and have different
loudness levels. Likewise, two sounds can be
equally loud but have different pitches. Fig
ure 7-3 shows waves that have the same fre
quency but different amplitudes.

7.1.4 Waveforms
Waves can have many different shapes.

O
n

e
 c

yc
le

O

n
e

 c
yc

le

,
.
 _

_
 J
A

. _

_
 ...

...
,

I
-

,
I

I I

.0
1

se
c

1
0

0
 c

yc
le

s/
se

co
n

d

2
0

0
 c

yc
le

s/
se

co
n

d

O
ne

 c
yc

le

O
n

e
 c

yc
le

~

I
I

~

I
I

4
0

0
 c

yc
le

s/
se

co
nd

80

0
cy

cl
e

s/
se

co
n

d

.....
.

I\
)

.....
.

F
ig

.
7-

2.
 P

ic
tu

re
s

o
f

w
av

es
 m

ad
e

b
y

tu
ni

n
g

fo
rk

s
a

t
d

iff
e

re
n

t
fr

eq
ue

nc
ie

s.
 T

h
e

 w
av

es
 a

ll
ha

ve
 t

h
e

 s
a

m
e

 a
m

pl
itu

de
.

.0
1

se
c

~

I»

;l
. s· co
 c}

3:

I»
 i en

o c:

::
I

Q
.

en

i/

.....
.

I\
)

I\
)

~

:::
I
~
,
.

'*

I
"

J
7)

0

.
,
.
.
.
.
:
:
;
v

~

~
20

0
he

rt
z

~

:::
I ~
f

\
I

\
I
)

E

<

20
0

he
rt

z

CD

"0

:::
I

20
0

he
rt

z

~
f

'.t
I

\
I

~

~

F
ig

,
7-

3,
 P

ic
tu

re
s

o
f

tu
ni

ng
 f

or
k

w
av

es
 t

ha
t

ha
ve

 t
he

 s
am

e
fr

eq
ue

nc
y

bu
t

di
ff

er
en

t
am

pl
itu

de
s,

g 3 3 8- o G3
 ~ I\
)

Q
)

(j
) ~ ::J
' fi' I»

:::
I

0
. g> c:

:::
I

0
.

"t
J c8 ~ 3 S
'

ea

--I\) c.
.l

Q
)

'0

:::
l

:!
:!

C

i E

« Q
)

'0

:::
l

:!
:!

0

. E

«

\ - - ~

~

~

1
cy

cl
e

.,.
.. _

_
 .J
A

_

T
ri

an
gu

la
r

w
av

ef
or

m

1
cy

cl
e

20
0

H
z'

A

, • I 1.

01
 s

ec

,
T

im
e

R
ec

ta
ng

ul
ar

 w
av

ef
or

m

Q
)

"0

~

C
i ~

F
ig

.
7-

4.
 F

ou
r

m
or

e
w

av
ef

or
m

s:
 t

ri
an

gu
la

r,
 s

aw
to

ot
h,

 r
ec

ta
ng

ul
ar

,
an

d
co

m
pl

ex
.

1
cy

cl
e

_
_
~
A
\
o
,
 _

_
 _

I
1

I

S
aw

to
ot

h
w

av
ef

or
m

1
cy

cl
e

•
A

",
, _

_
 _

C
om

pl
ex

 w
av

ef
or

m

~ ~ s·

co
 d 3:

I»
 S g> c:

:::
l

C
o en

Commodore 64/128 Graphics and Sound Programming

The waves shown in Figs. 7-2 and 7-3, created
by tuning forks, are known as sine waves. The
waves have regular, simple shapes. A par
ticular wave shape is called a waveform.

Figure 7-4 shows four more waveforms:
a triangular wave, a sawtooth wave, a rect
angular wave, and a complex wave. Different
waveforms create sounds with different tonal
qualities, or timbres. A clarinet playing mid
dle C at a certain volume sounds different from
a piano playing the same note at the same vol
ume. The clarinet's waveforms are different
than the piano's.

Waveforms are independent of frequency
and amplitude. If you look again at Fig. 7-4,
you'll notice that I've drawn all four waves
with the same frequency and amplitude.

7.2 BRIEF INTERLUDE
Your Commodore 64 can make a lot of dif

ferent sounds. But this versatility has a price:
complexity. It'll take us a while to learn how
to set all the sound controls.

In the meantime, just to prove that the
C-64 can produce sounds, run the short pro
gram listed in Fig. 7-5. When you tire of its
haunting melody, press any key (other than the

stop key) to end it. I'll resist the temptation
to explain how this program works; once you
learn enough about SID, you'll be able to fig
ure it out on your own.

7.3 SID, THE SOUND
INTERFACE DEVICE

You've been introduced to VIC-II, the
Commodore's great graphics chip. Well, get
ready to meet SID, the equally great sound
chip. SID stands for Sound Interface Device.
Commodore has put a sophisticated sound and
music synthesizer onto a single integrated cir
cuit chip. Let's go over some of SID's features.

To start with, SID actually has three sep
arate sound synthesizers. They're also called
voices. You can use anyone, any two, or all
three of these voices to create sounds.

There are a number of ways to control
each voice. To begin with, each voice has a de
vice called a tone oscillator. By setting the
proper registers, you can make the tone os
cillator produce sound waves at any frequency
between 0 and 3995 hertz. That's about the
same pitch range that pianos have.

Each voice also has a waveform generator.
You can choose one of four waveforms for a

1000 REM *** MINIMAL SIREN ***
1010 POKE 54Z96.15 :REM VOLUME ON HI
10Z0 POKE 54Z18.Z40 :REM SET SUSTAIN
1030 POKE 54Z16.33 :REM NOTE ON
1040 FOR N = 1 TO 100 :REM SIREEEN
1050: POKE 54Z13. 15 + ABS (50 - N)
1060 NEXT N
1010 GET KP$:REM MORE?
1080 IF KP$ = THEN 1040
1090 POKE 54Z16.0 :REM NOTE OFF
1100 POKE 54Z96.0 :REM VOLUME OFF

Fig. 7·5. Listing of the program Minimal Siren.

124

voice: triangle, sawtooth, pulse, or noise.
Triangular and sawtooth waves are shown in
Fig. 7-4. Pulse is just another name for the
rectangular waveform, also shown in Fig. 7-4.
The noise waveform is a random signal that
sounds like a TV set once all the stations have
signed off. It comes in really handy for sound
effects. It's also called white noise.

Finally, each voice has its own envelope
generator and amplitude modulator. These
strangely-named devices let you control the
loudness of each voice in a very precise way.
If you pluck a note on a guitar, you'll notice
that the loudness changes throughout the life
of that note. The envelope generator and
amplitude modulator let you control the loud
ness of a SID voice in a similar way.

Each SID voice uses 7 registers. SID con
tains a total of 29 registers. The other eight
registers let you control the overall loud
ness of all the voices, mix and synchronize the
voices in funny ways, filter out certain frequen
cies, add in sounds from outside sources, read
game paddles, and monitor the output of voice
#3.

So much for a brief introduction to SID.
Let's go into more detail about setting some
of its registers.

7.4 GENERAL SID
REGISTER LAYOUT

The 29 SID registers occupy memory loca
tions 54272-54300. As I did with VIC, I'll
usually refer to specific registers by their
relative position in the register set. For exam
ple, the register at 54278 will be referred to
as SID +6.

Appendix L shows the complete SID reg
ister layout. The first seven registers control
voice #1, the next seven control voice #2, and

Starting To Make Sounds

the third set of seven control voice #3. The
next four registers control filters and overall
volume. The last four registers control
miscellaneous functions.

I'll refer to the seven registers that con
trol a voice as a voice set. The three voice sets
are set up almost identically. I'll point out any
exceptions as I go along.

7.5 SETTING A FREQUENCY
The first two registers of a voice set con

trol that voice's frequency. That is, the reg
isters at SID and SID + 1 set the frequency for
voice #1, SID + 7 and SID + 8 set it for voice
#2, and SID + 14 and SID + 15 set it for voice
#3.

Two 8-bit registers give a total of 16 bits.
Values between 0 and 65535 can be rep
resented with 16 bits. So, there are 65536
possible frequency settings for each voice.

How do you figure out the values to poke
into the two frequency registers? First you do
a little conversion. You divide the frequency
in hertz by a special factor and then round it
off to the nearest whole number. That'll give
you the SID frequency setting. The special fac
tor's based on the computer's clock speed. The
factor is .0609592, give or take a millionth. For
example, say you want a frequency of 440
hertz. Rounding off 440 divided by .0609592
to the nearest whole number gives a frequency
setting of 7218.

Now you have to convert the frequency
setting into two values to poke into the fre
quency registers. Due to the complexities of
bases 2, 10, and 16, you divide the setting by
256. The integer part goes into the second fre
quency register (SID + 1, SID + 8, or SID + 15).
It's known as the high byte of the frequency

125

Commodore 64/128 Graphics and Sound Programming

setting. The remainder from the division goes
into the first frequency register (SID, SID + 7,
or SID + 14). It's known as the low byte of the
frequency setting.

Let's apply this second step to our 440
hertz tone. You got a frequency setting of
7218. Divide that by 256. The integer part of
the answer is 28; the remainder is 50. If you
want to set voice #1 so it produces a 440 hertz
sound, you poke 28 into SID + 1 and 50 into
SID.

7.6 SETTING A WAVEFORM
The upper nibble-bits 4,5,6, and 7-of

the fifth register in each voice set selects a
waveform for that voice. SID + 4 is the regis
ter used for voice #1, while SID + 11 and
SID + 18 perform the chore for voices #2 and
#3 respectively.

Setting one of these bits to 1 selects the
waveform associated with that bit. Bit 4 selects
a triangle wave; bit 5 selects a sawtooth wave;
bit 6 selects a pulse (rectangular) wave; and
bit 7 selects a white noise. See Fig. 7-6.

If you choose the pulse waveform, you
need to set one more item: the pulse width.

Bit value~

Bit number -+

128

7

""~
Noise

64

6

--.,.,
Pulse

32

5

AA< p

Saw-
tooth

Let's see how that's done.

7.7 SETTING THE PULSE WIDTH
In a rectangular, or pulse, waveform, the

amplitude is either high or low, with no in
termediate values. The percentage of a wave
cycle where the amplitude is high is known as
the pulse width. Figure 7-7 shows pulse
waveforms with four different pulse widths.

Registers 3 and 4 of a voice set control the
pulse width if the pulse waveform is selected.
What values do we poke into these two reg
isters for a given pulse width? Take the pulse
width (expressed as a percentage) and multiply
by 40.95. Round that number off, and you've
got the SID pulse width setting.

Now divide the pulse width setting by 256.
Poke the integer part of the result into the
fourth register of the voice set. Put the re
mainder into the voice set's third register.

Here's an example. Let's say you want to
set a pulse width of 75% for voice #3. 75 times
40.95 is 3071.25, which rounds off to 3071.
3071 divided by 256 gives 11, with a remainder
of 255. So you'd put the value 11 into SID + 17,
and put the value 255 into SID + 16.

16 8 4 2 1

4 3 2 1 0
AAA
PYY\

Triangle - - - -

Fig. 7-6. Bits 4, 5, 6, and 7 of a voice's fifth register are used to select that voice's waveform.

126

.....

I\
)

"'
4

'" ...
..-

Q
)

'0

::'
l

:!
::

a.

E

c
(

Q
)

-0
 .a

•

1
cy

cl
e

A

I

,
•

I
• •

I
~

I I I

--
"

T
im

e

-

P
ul

se
 w

id
th

 =
 2

5%

1
cy

cl
e

,

A
""

, _
_

 _

·
\

:
I

•
I

=a
I

I
..

~
ri

m
e

.....
..

'"
"'

-'

P
u

ls
e

 w
id

th
 =

 7
5%

F
ig

.
7-

7.
 F

ou
r

pu
ls

e
w

av
ef

or
m

s,
 e

ac
h

w
ith

 a
 d

iff
er

en
t

pu
ls

e
w

id
th

.

1
cy

cl
e

JI
'

r
-
-
-
-
A
-
-
-
-
~

•
I

•
I I

Q
)

I I
'0

I

::'
l

..
.
~

a.

T
im

e

I
,

E

«

P
u

ls
e

 w
id

th
 =

 5
0%

(s
qu

ar
e

w
a

ve
)

iI\

Q
) 2

)
=a
I

T
im

e

E

c
(

P
ul

se
 w

id
th

 =
 1

 00
%

(c

on
st

an
t

d
c

o
u

tp
u

t)

~ ::I
. s·

co
 d 3:

I»
 S ~

c:

::'
l

0
- en

Commodore 641128 Graphics and Sound Programming

7.8 SETTING A VOICE'S
VOLUME VARIATIONS:
THE ADSR ENVELOPE

Back in Section 7.3, I mentioned that each
voice has an envelope generator and amplitude
modulator. These devices give you precise con
trol over volume during a sound's lifetime. The
secret to this control is the ADSR envelope.

ADSR stands for attack decay sustain re
lease. These words define four stages of a
typical sound's life. During the first stage, the
volume goes from zero to a maximum value.
The attack rate determines how long this rise
in volume takes.

During the second stage, the volume drops
from its maximum value to a lower level. The
decay rate determines how long this drop takes.

The level that the volume drops to is called
the sustain level. It can be expressed as a per
centage of the maximum volume attained. Dur-

1 st 2nd
stage stage , " v-A-v

I
I

ing the third stage of the sound's life, volume
stays at this level.

Finally, the sound stops. The rate at which
it drops from the sustain level to zero volume
is called the release rate.

Take a good look at Fig. 7-8. It shows the
four stages of a typical sound's life. Compare
the picture to the description given above.
Take the time to understand this concept. Can
you see why the term ADSR envelope is used?

The sixth and seventh registers of each
voice set define the ADSR envelope. When a
voice is triggered, the values in these ADSR
registers control the voice's envelope gen
erator. In turn, the envelope generator controls
the amplitude modulator. The amplitude
modulator takes the waves coming from the
tone oscillator and waveform generator and ad
justs their amplitude. Figure 7-9 diagrams this
process.

3rd 4th
stage stage

" ~ I
I I

Maximum -- - - - .- volume
I level

•
CD Sustain E Sustain :::l volume (5 - - -> I level

I

I
I

I Time I Zero
volume

level

Fig. 7-8. The four stages of a typical note's life, showing the volume changes that make up the ADSR envelope.

128

Tone
oscillator
-

Registers 1 & 2

Waveform
generator

Registers 3,4, & 5

Envelope
generator

Registers 6 & 7

Amplitude .. modulator -
A~

Starting To Make Sounds

---.. To further
processing

Fig. 7-9. Information from a vOice's tone oscillator, waveform generator, and envelope generator comes together at the
amplitude modulator; the resulting signal then goes on for final SID processing.

7.8.1 Setting Attack
and Decay Rates

Values representing attack and decay rates
are stored in the sixth register of each voice
set. The attack rate value goes in the upper
nibble, and the decay rate value goes in the
lower nibble.

A nibble can store values from 0 through
15. Figure 7-10 shows how long it will take a
sound to rise from zero to peak volume for the
16 different attack rate settings. For example,
if the value of the nibble is 12, it'll take almost
a full second for the volume to rise to its peak
value.

Figure 7-11 shows rates of decay for the
16 possible nibble settings. They're shown as
the time it will take a sound to fall from peak
volume to zero volume. The time spent get
ting to a given sustain level will be based on

these rates. For example, let's set the sustain
level to 80% of peak volume, and the decay
value to 6. Using these values, it will take 20%
of .199, or about .04 seconds, for the volume
to drop from its peak to the sustain level.

Once you've picked values for the attack
and decay rates, you need to figure out the
value to poke into the register. Just multiply
the attack value by 16 and then add in the
decay value. For example, set the attack value
for voice #1 to 12 and the decay value to 6.
12 times 16 is 192, and adding 6 gives 198. So
you'd poke the value 198 into the attack/decay
register at SID + 5.

7.8.2 Setting the Sustain
Levels and Release Rate

Values representing the sustain level and
release rate are stored in the seventh register
of each voice set. The upper nibble holds the

129

Commodore 64/128 Graphics and Sound Programming

Attack Rates

Seconds to go Seconds to go

Nibble from zero Nibble from zero
value to peak value to peak

volume volume

0 .002 8 .098

1 .008 9 .244

2 .016 10 .489

3 .023 11 .782

4 .037 12 .978

5 .055 13 2.933

6 .066 14 4.889

7 .078 15 7.822

Fig. 7-10. The 16 attack rates built into SID and selected by the upper nibble of a voice's sixth register.

sustain value, and the lower nibble holds the
release rate.

Sustain levels are set at a percentage of
the peak volume. Figure 7-12 shows the
percentages for the 16 possible nibble values.
For example, setting a sustain level of 9 means
the sound will drop to 60% of its peak volume.
Setting a sustain level of 15 will hold the vol
ume at its peak value.

Release rates are shown in Fig. 7-13. This
chart is just like Fig. 7-11, which showed decay
rates. The times shown tell how long it'll take
a sound to fall from peak volume to zero vol
ume. The actual time a sound will spend fall-

130

ing from the sustain level to zero volume is
based on these rates. For example, say the sus
tain level is 50% of peak volume, and you
choose a release value of 10. Then it'll take
50% of 1.467, or .733 seconds, for the volume
to drop to zero.

Once you pick values for sustain and re
lease, just multiply the sustain value by 16 and
add the release value. That's the number to
poke into the seventh register. For example,
assume you choose a sustain value of 3 and a
release value of 11 for voice #2. 3 times 16 is
48, and adding 11 gives 59. Which is the value
to poke into the register at SID + 13.

7.9 TURNING A SOUND ON
AND OFF: GATING THE
ENVELOPE GENERATOR

The fifth register of each voice set is a
waveform controller. As you saw in Section
7.6, its upper nibble is used to select a
waveform. Bit 0 of these registers is used to
turn a sound on and off. It does this by gating,
or triggering, the voice's envelope generator.
It's called a gate bit.

Setting a gate bit to 1 tells that voice's
envelope generator to start an ADSR cycle.
The volume rises from zero to its peak value
and then falls to the sustain level. It stays there
until the gate bit is reset to O. When that hap-

Starting To Make Sounds

pens, it triggers the release action, and volume
falls to zero.

When you're writing sound programs in
BASIC, it's a good idea to combine choosing
a waveform with gating the envelope
generator. For example, poking SID + 4 with
the value 17 will select the triangle waveform
and start an ADSR cycle. Poking SID + 4 with
16 will keep the triangle waveform selected
and start the release part of the ADSR cycle.
Figure 7-14 shows poking values that'll trig
ger and release a sound.

7.10 THE MASTER VOLUME CONTROL

Let's review a bit. SID has three voices.

Decay Rates f \

Seconds to go Seconds to go
Nibble from peak Nibble from peak
value volume to value volume to

zero zero

0 .006 8 .293

1 .023 9 .733

2 .047 10 1.467

3 .070 11 2.347

4 .111 12 2.933

5 .164 13 8.800

6 .199 14 14.667

7 .235 15 23.467

Fig. 7-11. The 16 decay rates built into SID and selected by the lower nibble of a voice's sixth register.

131

Commodore 64/128 Graphics and Sound Programming

Sustain Levels h
Nibble % of peak Nibble % of peak
value volume value volume

0 0.0 8 53.3

1 6.7 9 60.0
2 13.3 10 66.7

3 20.0 11 73.3

4 26.7 12 80.0

5 33.3 13 86.7

6 40.0 14 93.3

7 46.7 15 100.0
Fig. 7-12. The 16 sustain levels built Into SID and selected by the upper nibble of a voice's seventh register.

Release Rates h
Seconds to go Seconds to go

Nibble from peak Nibble from peak

value volume to value volume to
zero zero

0 .006 8 .293

1 .023 9 .733

2 .047 10 1.467

3 .070 11 2.347

4 .111 12 2.933

5 .164 13 8.800

6 .199 14 14.667
7 .235 15 23.467

Fig. 7-13. The 16 release rates built into SID and selected by the lower nibble of a voice's seventh register.

132

Starting To Make Sounds

Poke this Poke this
Waveform value to value to

trigger release

Triangle 17 16

Sawtooth 33 32

Pulse 65 64

Noise 129 128

Fig. 7-14. Values to poke Into a voice's fifth register to trigger or release the ADSR envelope while selecting a waveform.

Each voice has its own tone oscillator and
waveform generator, which produce wave
forms at set frequencies. These signals go to
the voice's amplitude modulator, where the
volume gets modified. Each voice uses an
envelope generator to control its amplitude
modulator.

The signals from the three voices then go
to an overall volume control. This device mixes
the voices together and sets SID's overall out
put volume. Sometimes a voice will make a de
tour to a filtering device on its way to the
overall volume control, but you don't need to
think about that right now.

Bits 0-3 of the register at SID + 24 set the
overall volume. It can be set to any value be-

tween 0 and 15. A setting of 15 gives max
imum volume, while a setting of 0 leads to no
output.

That concludes this preliminary look at
SID. Let's take a quick look at musical note
frequencies and then close up with a musical
program.

7.11 THE FREQUENCIES
OF MUSICAL NOTES

Most of our culture's music is based on
scales that contain twelve notes: C, C,, D, D',
E, F, FI, G, GI, A, AI, and B. A twelve note
scale forms an octave. As you move up from
one octave to the next, the frequencies dou
ble. That is, if an A note in one octave has a

133

Commodore 64/128 Graphics and Sound Programming

frequency of 440 hertz, the A note in the next
octave up will have a frequency of 880 hertz.

As you move from one note to the next
within a scale, the frequency is the 12th root
of 2 times the previous note's frequency. That
way, after 12 notes (an octave) the frequency
doubles.

In a standard scale, known as concert
pitch, the A note in the fourth octave is set to
440 hertz. Once that value is known, all the
other frequencies can be figured.

Appendix M gives frequencies in hertz for
eight octaves of musical notes, based on con
cert pitch. It also gives the SID frequency set
ting for each note, and breaks that setting up
into a high and a low byte.

Let's say you want voice #1 to produce a
C note in the fourth octave (also known as mid
dle C). According to the chart, that note has
a frequency of 261.6 hertz. By poking 16 into
SID + 1, and 195 into SID, you can set voice
1 to produce notes at that pitch.

1000 REM *** PLAY SOME
1010 • · 1020 · •

7.12 FINALLY: A LITTLE MUSIC
Now you're ready to put your SID knowl

edge to work. Figure 7-15 lists the program
Play Some Sounds. Type it in, save it, and then
run it. It uses voice #1 to play a scale.

Let's go over the program. The first seg
ment clears the screen and sets up two
variables: SID's starting address, and the fac
tor used to convert frequencies in hertz to SID
frequency settings.

The next segment sets up attack, decay,
sustain, and release values. The notes will rise
quickly to peak volume, stay there until the
gate bit is reset, then fall quickly to zero
volume.

Next, the overall volume level is set. You
also choose a duration for each note: 1/4 sec
ond. That's how long you'll let the note go
before triggering the release stage of an ADSR
cycle.

The next segment reads frequencies from
the data statements and converts them into

SOUNDS ***

1030 REM ** SET UP SCREEN & VARIABLES
1040 • •
1050 PRINT IIL:;II ;
1080 SID = 54272
1070 CNF = .0809592
1080 • · 1090 • •
1100 REM ** SET ADSR ENVELOPE
1110 • •
1120 ATK = 0 :REM QUICK
1130 DKY = 0 :REM QUICK
1140 AD = ATK*18 + DKY :REM COMBINE
1150 POKE SID+5, AD :REM SETIT
1180 • •
1170 SST = 15 :REM TOP VOL
1180 RLS = 0 :REM SPEEDY

134

Starting To Make Sounds

1190 SR = SST*16 + RLS
1200 POKE SID+6, SR
1210 :
1220 :

:REM COMBINE
:REM SETIT

1230 REM ** SET DURATION & MASTER VOLUM
1240 :
1250 OUR = 1/4
1260 VOL = 15
1270 POKE SID+24, VOL
1280 :
1290 :

:REM IN SECONDS
:REM TOP VOLUME
:REM SET IT

1300 REM ** SET WAVEFORM & FREQUENCY
1310 :
1320 WAVFRM = 16
1330 :
1340 READ FRQ
1350 IF FRQ = 0 THEN 1590
1360 FRQ = INT(FRQ/CNF)
1370 FHI = INT (FRQ/256)
1380 FLO = FRQ - FHI*256
1390 POKE SID, FLO
1400 POKE SID+l, FHI
1410 :

:REM TRIANGLE

:REM IN HERTZ

:REM CONVERT
:REM HI-BYTE
:REM LO-BYTE
:REM SET IT

1420 DATA 261.6, 293.7, 329.6, 349.2
1430 DATA 392.0, 440.0, 493.9, 523.3, 0
1440 :
1450 :
1460 REM ** PLAY THE NOTE, THEN GO BACK
1470 :
1480 POKE SID+4, WAVFRM + 1
1490 :
1500 FOR TM = 1 TO (OUR * 700)
1510 NEXT TM
1520 :
1530 POKE SID+4, WAVFRM
1540 GOTO 1340

• •
REM ** CLEAN. UP AND END

1550 :
1560
1570
1580
1590
1600
1610

· · POKE SID+24, 0
· · END

Fig. 7-15. Listing of the program Play Some Sounds.

:REM VOLUME OFF

135

Commodore 64/128 Graphics and Sound Programming

values to poke into the frequency registers at
SID and SID + 1. Review Section 7.5 if you're
wondering where all the formulas come from.
The program will end when a frequency of 0
gets read.

You've set the ADSR envelope, overall
volume, and frequency. Now it's time to play
the note. Line 1480 pokes SID + 4 with a value
that sets the waveform and triggers the
envelope generator. Volume rises to a peak,
decays to the sustain level, and then sits there
while a delay loop marks time. Line 1530 in
itiates the release period, and volume drops to
zero. Then it's back for another note.

All right, now it's your turn. Fiddle mer
cilessly with this program. Change the frequen
cies, the ADSR envelope, the overall volume,
the waveform-anything you can trunk of.
There aren't any magic formulas to sound
making, you've just got to experiment. Try to
get an intuitive feel for various SID settings.
Have fun.

7.13 CHAPTER SUMMARY
This chapter has introduced you to sound

making on the Commodore 64. Let's see what
we've covered:

136

* Sounds, vibrations, and waves
* Frequency, amplitude, and waveforms
* SID's three voices, and the devices that

create each one: the tone oscillator,
waveform generator, envelope gen
erator, and amplitude modulator

* The general layout of SID's 29 registers
* How to set a voice's frequency, wave

form, pulse width, and ADSR envelope
* How to turn a voice on and off by gating

its envelope generator
* How to set an overall volume level

* How the frequencies of musical notes
are determined

* How to use all of this information in a
program to create sounds

SID's power and versatility make sound
production as endless a field for invention as
VIC-II does with graphics. In the next chapter,
you'll look at more programs that use SID to
make music.

7.14 EXERCISES

7.14.1 Self Test
Answers are in Section 7.14.3.

1. (7.1) Three ways to describe a sound wave
are by its , its ___ _
and its ___ _

2. (7.3) SID has separate
voices.

3. (7.4) The registers from SID + 7 through
SID + 13 control voice # ____ ,

4. (7.5) By poking SID with the value 16 and
SID + 1 with the value 39, we give voice
a frequency of hertz.

5. (7.6) Setting bit 7 of SID + 18 to 1 selects
the waveform for voice
#_------

6. (7.7) To give voice #3 a pulse width of
20%, you'd poke SID + 17 with the value
______ and SID + 16 with the
value ______ _

7. (7.8.1) If a voice's attack rate setting is 3,
it'll take seconds to go
from zero to peak volume.

8. (7.8.2) To give voice #1 a sustain level
that's 40% of its peak volume and the
Slowest available release rate, you'd poke
the value into SID

+-------

9. (7.9) Bit 0 of each voice set's fifth reg
ister is used to trigger that voice's
_____ generator.

10. (7.10) Overall SID output volume is set by
the lower four bits of the register at

11. (7.11) If a 7th octave C note has a fre
quency of 2093 hertz, an 8th octave C note
will have a frequency of hertz.

7.14.2 Programming Exercises
These are pretty open-ended: play, play,

play!

1. Change the program Minimal Siren so
it sounds like something from outer
space.

2. Change the program Play Some
Sounds so it glides up and down the
scale until you press a key.

3. Change the program Play Some
Sounds so voice #2 joins in. Have
voice #2 play sounds a few notes away
from voice #1.

7.14.3 Answers to Self Test
As usual, note that you may be able to

Starting To Make Sounds

come up with better answers.

1. frequency (pitch); amplitude (loudness or
volume); waveform (timbre)

2. three
3.2
4. 1; 10000
5. noise; 3
6. 3; 51
7 .. 023
8. 111; 6
9. envelope

10. SID + 24 (54296)
11. 4186

7.14.4 Possible Solutions
to Programming Exercises

1. Load in the program Minimal Siren.
Then type in the lines shown in Fig.
7-16.

2. Load in the program Play Some
Sounds. Then type in the lines shown
in Fig. 7-17.

3. Load in the program Play Some
Sounds. Then type in the lines shown
in Fig. 7-18.

1000 REM *** FROGS FROM MARS ***
1020 POKE 54278,184 :REM SET SUSTAIN
1030 POKE 54278,17 :REM NOTE ON
1040 FOR N = 1 TO 30 :REM FROG CITY
1050: POKE 54273, 1 + N*8
1051: POKE 54273, 1+N
1052: POKE 54273, 50 - N

Fig. 7-16. A possible solution to programming exercise 1.

137

Commodore 64/128 Graphics and Sound Programming

1000
125121
135121
143121
1433
1436
1513
1515
1517

REM *** ROLLER COASTER ***
OUR = 1/5121 :REM IN SECONDS
IF FRQ = 0 THEN RESTORE: GOTO 1340
DATA 392.121, 44121.121, 493.9, 523.3
DATA 523.3, 493.9, 440.0, 392.121
DATA 349.Z, 3Z9.6, Z93.7, Z61.6, 0
• •
GET KP$
IF KP$ <> 1111 THEN 1590 :REM END IT

Fig. 7-17. A possible solution to programming exercise 2.

112100 REM *** TWO-VOICE SOUNDS ***
1155 POKE SID+12, AD :REM SET V-2
121215 POKE SID+13, SR :REM SET V-Z
1363 VZFAC = ZtC5/1Z) :REM HARMNY?
1365 FRQCZ) = FRQ * VZFAC :REM VZ FQ
1402 FHICZ) = INTCFRQCZ)/Z56) :REM VZ
1404 FLOCZ) = FRQCZ) - FHICZ)*Z56
1406 POKE SI0+7, FLOCZ) :REM V-Z LO-F
1408 POKE SI0+8, FHICZ) :REM V-Z HI-F
1485 POKE SID+ll, WAVFRM + 1
1535 POKE SI0+l1, WAVFRM

Fig. 7-18. A possible solution to programming exercise 3.

138

Chapter 8

Some Fancy
Music Making

In the last chapter you learned about SID, the
versatile sound chip contained in the Com
modore 64 and 128. Now you'll use this knowl
edge to make some interesting music. You'll
teach the computer to read notes and store the
information in a performance array. Then
you'll play the notes through one of SID's
voices. Finally, you'll extend these techniques
to music that uses all three voices.

8.1 READING MUSIC
In the program Play Some Sounds, from

the last chapter, you specified musical notes
by their frequencies. The program used that
value to figure SID settings. Let's make things
easier by getting a program to play notes
specified by letter names, C, G" etc., and oc
tave numbers. You'll need a reference table
similar to Appendix M in our program. Then
you can have the program read a note by let-

ter and octave, look up its SID frequency set
ting in the table, and use that value to poke
the SID registers. But Appendix M is pretty
long. Who wants to do all that typing? Let's
take a shortcut.

8.1.1 Typing Shortcut:
Using a Reference Octave

In the last chapter, I mentioned that fre
quencies double as you move up an octave. For
example, an A note in the fourth octave has
a frequency of 440 hertz, which is twice the
220 hertz frequency of an A note in the third
octave.

We can use this fact. Let's make a
reference table that has the SID frequency set
tings for the twelve notes in the highest octave,
octave 7. When the program reads a note, it
will see how many octaves it is below the
highest octave. Then it will divide the

139

Commodore 64/128 Graphics and Sound Programming

reference setting by 2 for each octave of dif
ference, and round the final result to the
nearest whole number. Once you have this fre
quency setting, you'll just divide it by 256. The
integer part of the answer is the high byte of
the frequency setting, and the remainder is the
low byte.

Here's an example. Let's say the program
reads a note that's a second octave F .. That's
five octaves below the highest octave. The SID
frequency setting for a seventh F. is 48557.
Dividing that value by 2 gives you 24278.5.
Mer four more divisions, you end up with the
value 1517.4062, which rounds off to 1517.
Dividing by 256, you get 5 for the high byte
of the setting and 237 for the low byte. Check
ing with Appendix M, you see that this method
has given us the correct values. Figure 8-1

Note
Frequency

in hertz

C 2093.0

C# 2217.5
0 2349.3

OfF 2489.0

E 2637.0

F 2793.8

F# 2960.0

G 3136.0

G# 3322.4

A 3520.0

AfF 3729.3

B 3951.1

shows the letter names of the twelve notes in
the seventh octave, along with their frequen
cies in hertz and the corresponding SID fre
quency settings.

To create music you now need to specify
a note name and octave number for each note.
You can do this with strings. For example, you
can represent a fifth octave G. as

A program can use string functions to extract
the note name and octave from data stored in
this form.

8.1.2 Note Durations
In the program Play Some Sounds every

note lasted for the same amount of time. This

SID frequency
setting

34334

36377

38539

40831
43258

45831

48557

51444

54502

57743

61177

64815

Fig. 8-1. The twelve notes of the seventh octave. to be used as a reference octave.

140

gets boring. You can include a duration num
ber for each note in a program's data state
ments.

Let's take a hint from written music and
set up a standard duration, called a beat. Then
each note's duration can be given as a number
of beats. For example, you can represent an
F note in the third octave that lasts for .four
beats as a string and an integer:

F-3,4

How will the program make one note last for
two beats, and another last for three? There
are a number of ways to do this. One of the
most flexible is to use what I call performance
arrays.

8.2 PERFORMANCE ARRAYS:
A GUIDE TO EVERY BEAT

A performance array holds a SID value for
each beat of a song. A program might have a
number of different performance arrays. One
array could hold the low bytes for voice #1' s
frequency setting, and another could hold the
high bytes. A third array could hold values for
voice #l's attack/decay register.

When it comes time for the program to
play all the notes, it will simply go through a
beat loop. Each time through the loop, that
beat's various SID settings will be pulled from
the performance arrays and poked into place.
There will be a short time delay, the length
of one beat, and then the program will loop
back to deal with next beat.

A note that lasts for one beat will have one
entry in each performance array. A note with
a longer duration will have as many entries as
it has beats.

Here's an example. Let's say one of our

Some Fancy Music Making

performance arrays stores values for the high
byte of voice #1's frequency setting. If a song's
first note is a fourth octave D that lasts for
three beats, and the second note is a fifth oc
tave FI that lasts two beats, the array would
start with these five values:

HF(l) = 18
HF(2) = 18
HF(3) = 18
HF(4) = 47
HF(5) = 47

There are a number of advantages to per
formance arrays. Since all the SID values are
figured before any notes are played, notes can
follow one another smoothly, with no delays
for lengthy calculations. And since the basic
timing unit is a beat, it's easy to have different
voices play notes of different lengths, as you'll
see later in this chapter. Right now, it's time
to move from theory to practice. Let's see how
note reading and performance arrays are ac
tually used in a program.

8.3 A PROGRAM THAT
READS MUSIC AND
PLAYS IT BY THE BEAT

Figure 8-2 lists the program Read Music,
which used the ideas discussed above. Read
it over; type it in; save it; then run it. If you
want to listen to it again, without waiting for
the music to be read into the performance ar
rays, just type in this command:

GOTO 1678

By the way, the melody this program plays is·
an old English tune called "Shepherd's Hey."

8.3.1 About the Program
Let's go over this program in de~i1. Lines

141

Commodore 64/128 Graphics and Sound Programming

142

1000 REM *** READ MUSIC ***
1010 :
1020 :
1030 REM ** SET UP SCREEN & VARIABLES
1040 :
1050 PRINT "w"; :REM CLEAR SCREEN
1 06 0 P R I NT "lP1f1f1f1f1p1fJ8Ip1flR E A 0 I N Gil;
1070 :
1080 SID =
1090 :

• •

54272 :REM SOUND CHIP

1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

REM ** SET UP REFERENCE ARRAYS
• •
DIM SBN(11), NM$(11) :REM BASED ON

:REM NOTES IN
:REM HIGHEST
:REM OCTAVE

FOR N = 0 TO 11
: READ SBN(N)
: READ NM$(N)
NEXT N
• · DATA
DATA
DATA
DATA
DATA
DATA

• •

34334,
38539,
43258,
48557,
54502,
61177,

C,
D.
E.
F~,
G~.
A~.

36377. C~
40831. D~
45831. F
51444. G
57743. A
64815. B

REM ** READ IN THE MUSIC AND
STORE IT IN ARRAYS

1280 :
1290 DIM LFP(200), HFP(200)
1300 :
1310 EVENT = 1
1320 :
1330 READ NC$
1340 PRINT ".11;
1350 IF NC$ = "XXXII THEN 1670
1360 :
1370 GOSUe 2050 :REM CONVERT TO POKE ~S
1380 :
1390 READ OUR
1400 FOR N = 1 TO OUR
1410: LFP(EVENT) = LFP
1420 ,: HFP(EVENT) = HFP

Some Fancy Music Making

1430: EVENT
1440 NEXT N
1450 :
1460 GOTO 1330
1470 :
1480 :

= EVENT + 1

1490 REM ** THE MUSIC: NOTE-OCT, OUR
1500 :
1510 DATA
1520 DATA
1530 DATA
1540 DATA
1550 DATA
1560 DATA
1570 DATA
1580 DATA
1590 DATA
1600 DATA
1610 DATA
1620 DATA
1630 :
1640 :

8-4, 4,
RES, 1,
A-4, 8,
0-5, 4,
C-5, 2,
G-4, 8,
G-4, 4,
8-4, 4,
RES, 1,
C-5, 8,
C-5, 2,
G-4,10,

D-5,
8-4,
RES,
C-5,
D-5,
RES,
C-5,
G-4,
8-4,
RES,
0-5,
XXX

4, C-5, 8
4, 0-5, 4
1, 8-4, 4
4, 8-4, 2
4, A-4, 4
2, 8-4, 4
8, RES, 1
4, A-4, 8
4, 0-5, 4
1, 8-4, 2
4, A-4, 4

1650 REM ** SET ADSR, VOLUME, WAVEFORM
1660 :
1670 ATK = 0
1680 DKY = 0
1690 AD = ATK*16
1700 POKE SID+5,
1710 :
172121 SST = 15
1730 RLS = 121
174121 SR = SST*16
1750 POKE SID+6,
1760 :

:REM QUICK ATTACK
:REM QUICK DECAY

+ DKY
AD

:REM SUSTAIN LOUD
:REM QUICK RELEASE

+ RLS
SR

1770 VLM = 15 :REM MAX VOLUME
1780 POKE SID+24, VLM
179121 :
1800 WVFRM = 16

• •

:REM TRIANGLE WAVE

REM ** PLAY THE MUSIC, THEN END IT

1810 :
1820
1830
1840
1850
1860
1870
1880

• · PR I NT lI~ll;

8EATLNGTH = 10
• •
FOR N = 1 TO (EVENT - 1)

143

Commodore 64/128 Graphics and Sound Programming

1890 :
1900 :
1910 :

POKE SI0+1, HFP(N)
POKE SID, LFP(N)

1920: POKE SI0+4, WVFRM + 1 :REM ON.
1930 FOR TM = 1 TO BEATLNGTH
1940: NEXT TM
1950 NEXT N
1960 :
1970 POKE SI0+4, 0
1980 POKE SI0+24,0
1990 END
2000 :
2010 :
2020 :

:REM WAVEFORM OFF
:REM VOLUME OFF

2030 REM ** CONVERT NOTE-OCTAVE STRING
TO LO AND HI POKE CODES

2040 :
2050 IF NC$ = "RES" THEN HFP = 0

LFP = 0 :
2060 :

• •
RETURN

2070 NT$ = LEFT$(NC$, LEN(NCS) - 2)
2080 FOR REF = 0 TO 11
2090: IF NTS = NM$(REF) THEN

NT = REF : REF = 11
2100 NEXT REF
2110 • •
2120 OCT = VAL(RIGHT$(NC$,1»
2130 • •
2140 FST = 2 t (7 - OCT)
2150 FST = SBN(NT) / FST
2160 HFP = INT (FST/256)
2170 LFP = INT (FST - 256*HFP>
2180 • •
2190 RETURN

Fig. 8-2. Listing of the program Read Music.

;1050-1080 clear the screen, print a feedback
prompt, and set up SID's starting address. The
next module sets up two reference arrays. The
SBN array contains the twelve SID frequency
settings for the seventh octave, and the NM$
array contains the twelve corresponding note
names.

144

The next segment actually reads the notes
and fills the performance arrays. In this case,
you've got one performance array that'll hold
the low bytes of frequency settings, and one
that'll hold the high bytes. Line 1330 reads in
a note/octave string, and then line 1340 gives
a bit of screen feedback. Line 1350 checks for

the string that signals the end of the note/oc
tave data. If it finds it, the note reading is over,
and the program goes on to set the ADSR
envelope.

Line 1370 jumps to a subroutine that'll
take the note/octave string and figure out the
appropriate low and high bytes for a SID fre
quency setting. Let's see how the subroutine
works.

8.3.2 Decoding The
Note/Octave String

Line 2050 first checks for the special string
value RES, which stands for a rest. A rest is
a pause in the music. A silent note, really. Set
ting the SID frequency registers to 0 is one way
to create silence.

Line 2070 picks the note name out of the
string. Then lines 2080-2100 try to match the
note name with names from the reference
array NM$. When there's a match, the pro
gram stores the note's number in the variable
NT. This number will be used to pick the ap
propriate SID reference frequency out of the
array SBN.

Line 2120 picks the octave number out of
the string. Then line 2140 uses this number
to figure out what the reference frequency set
ting should be divided by. Line 2150 does the
division. Finally, lines 2160-2170 figure out the
high and low bytes that'll give this setting. The
conversion is complete, and the subroutine
returns to line 1380.

8.3.3 Filling the Performance Arrays
Now it's time to add to the performance

arrays. Remember, you've got to enter infor
mation for each beat. Line 1390 reads the
note's duration, expressed as a number of
beats. Lines 1400-1440 then use this value to

Some Fancy Music Making

control a loop that packs the two performance
arrays. The body of the loop will be executed
once for each beat of the note. Each time
through, the low and high bytes of the note's
frequency setting get stored in the arrays, and
then the beat number increases by 1.

Is this confusing? Let's look at it from an
other angle. What we're really doing is mak
ing copies of a note's settings. As many copies
as the number of beats to the note. When it
comes time to perform the piece, the program
will just grab SID settings a beat's worth at
a time.

8.3.4 The Music Itself
Lines 1510-1620 store the music itself. The

string XXX signals the end of the information.
If you want to change the song this program
plays, you just need to change these data lines.
You can take songs from books on music or
make up your own.

If you take songs from music books, you'll
have to know know to read music. It's really
not too difficult a skill to pick up. If you'd like
to read a good book on the subject, try
Henscratches and Flyspecks, by Pete Seeger,
published by G.P. Putnam's Sons. Most li
braries have it.

8.3.5 Set ADSR and Wave
form; Then Play the Tune

Lines 1670-1750 set the attack, decay, sus
tain, and release values for voice #1. Lines
1770-1780 set an overall volume level, and line
1800 sets up the waveform that'll be used. I
designed these lines so it'd be easy to go in and
make changes.

Finally, everything is ready. The curtain
rises, and the conductor readies her baton
(lines 1850-1860). The loop in lines 1880-1950

145

Commodore 64/128 Graphics and Sound Programming

plays the music, one beat at a time. Each time
through the loop, that beat's frequency settings
get poked in. Then line 1920 triggers the
amplitude modulator, which begins the ADSR
cycle.

For the sake of simplicity, I played a bit
of a trick here. The performance loop never
triggers the release part of the volume enve
lope. The notes slur together a bit. Try run
ning the program with this line added:

1945: POKE 510+4. WVFRM :REM RELEASE

Notice how notes longer than one beat get
chopped up if you trigger a release stage at the
end of each beat. Is there a way to avoid both
slurring and chopping? Yes, and you'll get to
see the technique later in this chapter.

Finally, lines 1970-1980 turn the waveform
and overall volume controls off, and the pro
gram ends.

Once again the ball's in your court. Have
this program play a different tune. Or make
it play at different speeds. See what happens
when two or more notes of the same pitch
follow one another.

If you can't read music, find a friend who
can. Or just make up notes in pleasing patterns.
Or type in the data statements shown in Fig.
8-3.

1510 DATA G-4, 4, E-4,
1520 DATA C-S, 4, 0-5,
1530 DATA 0-5, 4, 8-4,
1540 DATA B-4, 4, RES,
1550 DATA E-4, 4, G-4,
1580 DATA D-~, Z, E-5,
1570 DATA B-4, 4, C-5,

8.4 THINKING ABOUT THREE
VOICES AND DISTINCTION

There are two improvements you can
make to programs like Read Music. First, you
can get SID's two other voices into the act.
Second, you can find a way to make each note
more distinct, without slurring or choppiness.

Both of these are easily done with perfor
mance arrays. Let's look at the first improve
ment. In Read Music, you stored voice #1
frequency information for each beat of the
music. You'll just add simllar frequency infor
mation for the other two voices. You'll store
the information in two-dimensional perfor
mance arrays. They'll take on the form

ARRA YNAME (voice #, beat #)

Here are some examples of what I mean, using
the array names from Read Music:

LFP (1,20)

HFP (3,80)

HFP (2,1)

4, G-4,
Z, E-5,
Z, C-5,
1 , G-4,
4, C-5,
Z, 0-5,
4, XXX

4
Z
Z
4
4
4

holds the low byte of
voice #1's frequency
setting for the 20th beat
holds the high byte of
voice #3's frequency
setting for the 80th beat
holds the high byte of
voice #2' s frequency

Fig. 8-3. Changes to Read Music that teach it to play a different tune.

146

setting for the
first beat

Now, on to the second improvement. You
want to make each note more distinct. In Read
Music, the performance loop just triggered the
start of an ADSR cycle, and never dealt with
triggering the release stage; but adding a re
lease stage to each beat chopped things up too
much.

One thing you can do is trigger a release
stage on the last beat of a note. That is, if a
note lasts four beats, the first three beats will
each trigger the start of an ADSR cycle, and
the last beat will trigger the release stage. It's
not a totally perfect solution, but it works
pretty well. More importantly, it's surprisingly
easy to program. You just create a new per
formance array for waveform control. It'll con
tain entries for each voice for each beat. These
entries will be values to poke into each voice's
waveform control register.

Here's an example. Let's say that voice #1
starts off playing a note that lasts for three
beats. Assume you select the triangle wave
form for voice #1. Name the wave control ar
ray WVC. Then WVC(l,l) will contain the
value 17. WVC(1,2) will contain the value 17.
WVC(1,3) will contain the value 16. The values
for the note's first two beats will trigger the
start of an ADSR cycle. The value for the
note's last beat will trigger the release stage
of the cycle.

8.5 A THREE VOICE EXAMPLE
Figure 8-4 lists the program Three-Part

Song. Type it in; save it; then run it. Take
some time to compare this program with Read
Music, listed in Fig. 8-2. They're very similar.
In our discussion, I'll focus in on the dif
ferences.

8.5.1

Some Fancy Music Making

FIlling Up the
Performance Arrays

The first change shows up in line 1090.
The program sets up a waveform variable right
away; it will be used to fill the waveform con
trol performance array. Other than that, the
first two modules are the same: clear the
screen, set up for feedback, and fill the ref
erence arrays.

Now it's time to read notes and pack ar
rays. Lines 1300-1560 do the job. First, line
1300 dimensions three performance arrays.
Two will hold frequency values, and the third
will hold waveform control values.

This program segment reads notes and
packs arrays a voice at a time. The pseudo
note :xxx signals the end of one voice's notes.
The voice number then goes up by one. When
it hits 4, all three voices have been taken care
of, and the program moves on to set up the
ADSR values.

When line 1360 reads a valid note, the pro
gram jumps to the same frequency-figuring
subroutine used in the Read Music program.
This subroutine sends back values for the high
and low bytes of the frequency setting. Then
it's time to pack arrays.

If a note has a duration of just one beat,
it'll go through the packing loop in lines
1430-1480 just once. Lines 1440-1450 set the
low and high frequency bytes. Then line 1460
sets the waveform control array with a value
that'll trigger the ADSR envelope. Line 1490
sends the program back to read another note.

A note that lasts longer than one beat gets
treated differently. It will go through the loop
in lines 1430-1480 one less time than its dura
tion in beats. Thus, on all beats up to the last
one, the waveform control array will receive
a value that triggers the start of an ADSR

147

Commodore 64/128 Graphics and Sound Programming

148

100121
101121
1020
1030
1040
1050
112160
1010
1080
1090
1100
1110
1120
1130
1140
1150
1160
1110
118121
1190
1200
121121
1220
1230
1240
1250
1260
1210
1280

REM *** THREE-PART SONG ***
· · REM ** SET UP SCREEN & VARIABLES
• •
PRINT "w"; :REM CLEAR SCREEN
PR I NT IllfIpJpIpJpIpJpI. lREAD I NG II I
• •
SID = 54212 :REM SOUND CHIP
WV = 16 :REM ALL 3 SAME WAVEFORM

• •
REM ** SET UP REFERENCE ARRAYS
• •
DIM SBN(ll), NM$(ll) :REM BASED ON

:REM NOTES IN
:REM HIGHEST
:REM OCTAVE

FOR N = 0 TO 11
READ SBN(N)

: READ NM$(N)
NEXT N
• · DATA 34334, C,
DATA 38539, 0,
DATA 43258, E,
DATA 48551, F#,
DATA 54502, G#,
DATA 61111, A#,

• •

36311, C#
40831, 0#
45831, F
51444, G
51143, A
64815, B

REM ** READ IN THE MUSIC AND
STORE IT IN ARRAYS

1290 :
1300 DIM LFP(3,200), HFP(3,200),

WVC(3,200)
1310
1320 VOICE = VOICE + 1
1330 IF VOICE = 4 THEN 1890
1340 EVENT = 1
1350 :
1360 READ NC$
1310 PRINT ".11;
1380 IF Ne$ = "XXX" THEN 1320
1390 :
1400 GOSUB 2440 :REM CONVERT TO POKE #S
1410 :

Some Fancy Music Making

1420 READ DUR
1430 FOR N = 1 TO DUR-1
1440 • LFP(VOICE,EVENT) = LFP •
1450 • HFP(VOICE,EVENT) = HFP •
1460 • HVC(VOICE,EVENT) = HV + 1 •
1470 • EVENT = EVENT + 1 •
1480 NEXT N
1490 IF DUR = 1 THEN 1360
1580 • •
1510 LFP(VOICE,EVENT) = LFP
1520 HFP(VOICE,EVENT) = HFP
1530 HVC(VOICE,EVENT) = HV
1540 EVENT = EVENT + 1
1550 • •
1560 GOTO 1368
1570 • •
1580 • •
1590 REM ** THE MUSIC • NOTE-OCT, DUR •
1680 • •
1610 DATA RES, 4, A-5, 4, 8-5, 4
1620 DATA A-5, 4, RES, 4, A-5, 4
1630 DATA 8-5, 4, A-5, 4, RES, 4
1640 DATA C-6, 4, E-6, 4, C-6, 4
1650 DATA A-5, 4, A-5, 4, 8-5, 4
1660 DATA A-5, 4, XXX
1670 • •
1680 DATA RES, 4, E-5, 4, E-5, 4
1690 DATA E-5, 4, RES, 4, E-5, 4
1700 DATA E-5, 4, E-5, 4, RES, 4
1710 DATA G-5, 4, G-5, 4, 0-5, 4
1720 DATA E-5, 4, E-5, 4, E-5, 4
1730 DATA E-5, 4, XXX
1740 • •
1750 DATA C-5, 2, D-5, 2, C-5, 2
1760 DATA A-4, 2, A-4, 2, 0-4, 2
1770 DATA A-4, 4, C-5, 2, D-5, 2
1780 DATA C-5, 2, A-4, 2, A-4, 2
1790 DATA 0-4, 2, A-4, 4, C-5, 2
1800 DATA D-5, 2, E-5, 2, E-5, 2
1810 DATA E-5, 2, 0-5, 2, E-5, 2
1820 DATA D-5, 2, C-5, 2, A-4, 2
1830 DATA C-5, 2, A-4, 2, A-4, 2
1840 DATA 0-4, 2, A-4, 4, XXX
1850 • · 1860 • •
1870 REM ** SET ADSR'S FOR THE 3 VOICES

149

Commodore 641128 Graphics and Sound Programming

150

1880
1890
1900
1910
19Z0
1930
1940
1950
1980
1910
1980
1990
Z000
Z010
Z0Z0
Z030
Z040
Z050
Z080
Z010
Z080

· •
ATK = Z : OKY = 3 :REM SETTINGS
AD = ATK*16 + OKY :REM POKE VALUE
POKE SIO+5, AD :REM VOICE 1 A-O
• · ATK = Z: OKY = 3 :REM SETTINGS
AD = ATK*16 + OKY :REM POKE VALUE
POKE SIO+1Z, AD :REM VOICE Z A-O
· •
ATK = Z: OKY = 0
AD = ATK*16 + OKY
POKE SIO+19, AD
• •

:REM SETTINGS
:REM POKE VALUE

:REM VOICE 3 A-O

SST = 6 : RLS = 8 :REM SETTINGS
SR = SST*16 + RLS :REM POKE VALUE
POKE SIO+8, SR :REM VOICE 1 S-R
• · SST = lZ : RLS = 6 :REM SETTINGS
SR = SST*16 + RLS :REM POKE VALUE
POKE SIO+13, SR :REM VOICE Z S-R
• •

Z090 SST = 15 : RLS = 7 :REM SETTINGS
Z100 SR = SST*16 + RLS :REM POKE VALUE
Z110 POKE SIO+Z0, SR :REM VOICE 3 S-R
ZlZ0 :
Z130
Z140
Z150
Z180
Z110
Z180
Z190
ZZ00
ZZ10
ZZZ0
ZZ30
ZZ40
ZZ50
ZZ80
ZZ10
ZZ80
ZZ90
Z300
Z310
Z3Z0
Z330

• · REM ** PLAY THE MUSIC, THEN END IT
• •
PRINT II~II;

BEATLNGTH = 10
VLM = 15 :REM MAX VOLUME
POKE SIO+Z4, VLM
• •
FOR N = 1 TO (EVENT - 1)

POKE SIO+l, HFP(l,N)
POKE SID, LFP(l,N)
POKE SIO+8, HFP(Z,N)
POKE SIO+1, LFP(Z,N)
POKE SIO+15, HFP(3,N)
POKE SIO+14, LFP(3,N)

POKE SIO+4, HVC(l,N):REM V-l
POKE 510+11, HVC(Z,N):REM V-Z
POKE SIO+18, HVC(3,N):REM V-3

FOR TM = 1 TO BEATLNGTH

Some Fancy Music Making

Z340: NEXT TM
Z350 NEXT N
Z360 :
2370 POKE SID+24,0
2380 END
Z390 :
2400 :

• ·

:REM VOLUME OFF

2410
2420 REM ** CONVERT NOTE-OCTAVE STRING

TO LO AND HI POKE CODES
2430 :
2440 IF NC$ = "RES" THEN HFP = 0

LFP = 0
2450 :

• .
RETURN

2460 NT$ = lEFTCNC, LENCNC$) - 2)
Z470 FOR REF = 0 TO 11
2480 IF NT$ = NM$CREF) THEN

NT = REF : REF = 11
2490 NEXT REF
2500 · •
2510 OCT = VALCRIGHTCNC,1»
2520 • · 2530 FST = 2 t C7 - OCT)
2540 FST = SBNCNT) / FST
2550 HFP = INT CFST/25S)
2560 LFP = INT CFST - 256*HFP)
2570 · · 2580 RETURN

Fig. 8-4. listing of the program Three-Part Song.

envelope. Lines 1510-1540 handle the arrays
for the final beat. There's no change in how
frequency is handled. However, the waveform
control array now gets a value that will trig
~er the release stage of the ADSR envelope.

8.5.2 Setting the ADSR Envelopes

be heard as easily as high notes. That's
because of the way our ears are built. In this
program, voice #1 plays the highest notes,
voice #3 the lowest, with voice #2 in between.
Therefore I gave voice #3 the highest sustain
level, voice #1 the lowest, with voice #2 in
between.

Mer the notes are read in and the perfor
mance arrays filled, it's time to set ADSR
envelopes for each voice. The routines used
in lines 1890-2110 use the same technique
shown in the program Read Music. Here's one
hint: low notes need higher sustain levels to

8.5.3 Playing It
After a few final preparations, the program

can play the music. Lines 2160-2190 clear the
screen, set the length of a beat, and adjust the
overall volume. Then comes the performance

151

Commodore 64/128 Graphics and Sound Programming

loop. It will repeat as many times as there are
beats. Lines 2220-2270 set the frequency
registers for all three voices. Then lines
2290-2310 pick off values from the new
waveform control array and poke them into
each voice's waveform control register. The
voices operate independently; on any given
beat, two voices might trigger the start of an
ADSR envelope, and the other one might trig
ger the release stage.

lines 2010, 2050, and 2090 to lower values and
then run the program. Do you notice the chop
piness?

8.5.4 Variations

The technique of releasing a voice on its
last beat works well if there's a fairly long re
lease period. Change the release settings in

The data in Three-Part Song is based on
the English folk melody "Are You Going To
The Fair." Figure 8-5 rounds out our salute
to pre-Beatles English music. Load in Three
Part Song and then type the lines from Fig.
8-5. Now your Commodore computer will play
the song "Coventry Carol."

Three-Part Song has a lot of room for ex-

1000 REM *** COVENTRY CAROL *** 1610 DATA A-4, 4, A-4, 4, G#-4, 4
1620 DATA A-4, 8, C-S, 4, B-4, 8
1630 DATA A-4, 4, G#-4, 12, RES, 1
1640 DATA A-4, 4, B-4, 4, C-5, 4
1650 DATA 0-5, 8, B-4, 4, A-4, 20
1660 DATA RES, 1 , E-5, 4, 0-5, 8
1670 DATA C-S, 4, B-4, 8, C-S, 4
1680 DATA B-4, 8, A-4, 4, G#-4, 12
1690 DATA RES, 1 , A-4, 4, G#-4, 4
1700 DATA A-4, 4, 0-5, 4, B-4, 8
1710 DATA C#-5, 12, XXX
1715
1720 DATA C-4, 8, 0-4, 4, E-4, 8
1725 DATA E-4, 4, F-4, 8, F-4, 4
1730 DATA E-4, 12, RES, 1 , E-4, 8
1735 DATA A-4, 4, A-4, 4, F-4, 4
1740 DATA G-4, 4, E-4, 8, 0-4, 4
1745 DATA C-4, 8, RES, 1 , G-4, 4
1750 DATA A-4, 8, E-4, 4, G-4, 8
175S DATA A-4, . 4, G-4, 8, E-4, 4
1760 DATA E-4, 8, 0-4, 4, RES, 1
1765 DATA E-4, 4, F-4, 4, E-4, 4
1770 DATA F-4, 4, G-4, 8, E-4, 1Z
1775 DATA XXX
1780 • .
1785 DATA A-Z, 8, B-Z, 4, C-3, 8
1790 DATA A-Z, 4, 0-3, 8, 0-3, 4
1795 DATA E-3, 8, 0-3, 4, RES, 1

152

Some Fancy Music Making

1800 DATA C-4, 4, B-3, 4, A-3, 4
1805 DATA B-2, 8, E-3, 4, C-3, 8
1810 DATA B-2, 4, A-2, 8, RES, 1
1815 DATA C-3, 4, F-2, 8, A-2, 4
1820 DATA E-3, 8, E-3, 4, E-3, 8
1825 DATA C-3, 4, B-2, 12, RES, 1
1830 DATA C-3, 4, 0-3, 4, C-3, 4
1835 DATA B-2, 8, E-3, 4, A-2, lZ
1840 DATA XXX
1890 ATK 2 DKY 3 REM SETTINGS
1930 ATK = 2 DKY 3 REM SETTINGS
1970 ATK 2 • DKY 12) REM SETTINGS •
2010 SST = 4 RLS = 6 REM SETTINGS
2050 SST = 9 RLS = 6 REM SETTINGS
2090 SST 15 RLS 7 REM SETTINGS

Fig. 8-5. Changes to Three-Part Song that teach It to play the song "Coventry Carol".

perimentation. See if you can get the three
voices to sound like completely different in
struments. And remember, although SID can
imitate real instruments, it really shines when
you come up with sounds never heard from
wood or brass or strings.

8.6 CHAPTER SUMMARY
You've examined a couple of ways to get

interesting music out of your Commodore com
puter. Here's a summary of what you've cov
ered:

* Setting up a reference octave to help
translate note names and octave num
bers into SID frequency settings

* Using performance arrays to store SID
frequency setup information for each
beat of a piece of music

* Using performance arrays to implement
three-voice music

* Turning voices on and off with a wave
form control performance array

In the next chapter, we'll leave harmony
behind, and get SID to generate some ear
tickling sound effects.

8.7 EXERCISES

8.7.1 Self Test
Answers are in Section 8.7.3.

1. (8.1.1) If an A note in the third octave has
a frequency of 220 hertz, what's the fre
quency of a first octave A note?

2. (8.1.1) Using the string notation intro
duced in Section 8.1.2, B'-6 represents a
___ octave B sharp.

3. (8.2) A performance array can hold SID
settings for each of a
song.

4. (8.3) The program Read Music stores
______ settings for each beat
in the performance arrays LFP(200) and
HFP(200).

5. (8.4) One way to handle more than one

153

Commodore 64/128 Graphics and Sound Programming

voice at a time is to use ____ _ 8.7.3 Answers to Self Test
dimensional perfonnance arrays.

6. (8.4) You can avoid slurring and chopping
As usual, you may come up with better

answers.
by triggering the _______ _

stage on the last beat of a note. 1. 55 hertz

7. (8.5) Take a look at the program Three
Part Song. What's the smallest number of
beats a note can have and still get its re
lease stage triggered?

2. sixth
3. beat
4. frequency
5. two
6. release
7. two

8.7.2 Programming Exercises 8.7.4 Possible Solutions

154

1. Change the program Read Music so
it repeats the music if desired. It
shouldn't have to set up the perfor
mance arrays again.

2. Change the program Three-Part Song
so it lets the user adjust the speed
(tempo) the music's played at.

3. Change the program Three-Part Song
so it lets the user adjust the overall
pitch by octaves.

REM *** JUKE BOX ***
REM ** PLAY THE MUSIC

to Programming Exercises
1. Load in the program Read Music.

Then type in the lines shown in Fig.
8-6.

2. Load in the program Three-Part Song.
Then type in the lines shown in Fig.
8-7.

3. Load in the program Three-Part Song.
Then type in the lines shown in Fig.
8-8.

REM ** PLAY IT AGAIN? . .
PR I NT IIlPlP.,.,., ••••••••• IPRESS ANY II j
PRINT IIKEY WITHIN 5 II
PR I NT IIlP •••••••••• ISECONDS FOR A II j
PRINT IIREPLAY II

1000
1830
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003

TI$ = 11000000 11 :REM RESET TIME

GET KYS :REM READ KEYBOARD
IF KYS <> 1111 THEN 1770
IF VAL(TIS) < 5 THEN 2001

Some Fancy Music Making

21211214 :
21211215 PRINT II~II;

21211216 END
21211217

Fig. 8-6. A possible solution to programming exercise 1.

REM *** ADJUSTABLE TEMPO *** 1121121121
11211211
11211212 :
11211213 REM ** GET THE TEMPO
11211214 :
1121 121 5 P R I NT II [b_.,.,_.,., ••• IP RES S A KEY ";
1121121S PRINT liTO SET THE TEMPO : II

11211217 PR I NT II •••••• I(1-SLOWEST II ;

11211218 PRINT 119-o.UICKEST}rI)I ••• III;
11211219
11211121
112111
112112

112113
112114
112115
112116
112117
112118
217121

· · GET KYS
IF KY$ = '". THEN 11211121
IF ASC(KY$} < 49 OR ASC(KYS}

THEN 11211121
· · PRINT
TEMPO

III-III. K Y S. 11.11 WI, ,_

= VAL(KYS}

FOR N = 1 TO 5121121
NEXT N
BEATLNGTH = (1121 - TEMPO) t 1.7

Fig. 8-7. A possible solution to programming exercise 2.

1121121121
11211211
11211212
11211213
11211214
11211215
1121121S
11211217
11211218

REM *** OCTAVE MOVER ***
· · REM ** GET OCTAVE ADJUSTMENT
· · PR I NT lI[b_Q __ ••••••• IHOW MANY II;
PRINT IIOCTAVES DO YOU II
PR I NT II •••••••• IWANT TO MOVE II;
PRINT 11(121 - 3} ? II;

> 57

155

Commodore 64/128 Graphics and Sound Programming

1009 GET AOJ$
1010 IF AOJ$ = 1111 THEN 1009
1011 :
1012 IF ASC{AOJ$) < 48 OR ASC{AOJ$) > 51

THEN 1009
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

• · PRINT "~"j AOJ$j "!!!!" :REM PRINT IT
AOJ = VAL (AOJ$)
IF AOJ = 0 THEN 1027 :REM NO 2ND?
• •
PR I NT IIlpDD ••••••• IMOVE UP OR II j
PRINT IIOOWN (U/O) ? II;
GET UO$
IF UO$ = 1111 THEN 1020
• •
IF UO$ <> "U" AND UO$ <> "0 11

THEN 1020
1024 PRINT "~"; UO$; "!!" :REM PRINT IT
1025 :
1026 IF UO$ = "0" THEN AOJ = -A OJ
1027 FOR N = 1 TO 500 : NEXT N
1028 :
1029
2510
2513

2516

• •
OCT = VAL{RIGHT${NC$,1» + AOJ
IF OCT < 0 THEN OCT = OCT + 1

GOTO 2513
IF OCT > 7 THEN OCT = OCT - 1 :

GOTO 2516

Fig. 8-8. A possible solution to programming exercise 3.

156

Chapter 9

Special
Sound Effects

•••••••••••••••• •• ••• ••• •• •• ••• ••• •• •• ••• ••• •• •• •• •• •••••••••• •• •• •••••• •• •• •••••••••• •• •• •••• •••••• •• •••• •• ••• •••••• • ••
••••• • •••• ••••• • •••• ••••• •••• • ••• •••• ••••• • •• ••• ••••••• • •

In this chapter you'll get SID to produce some
interesting sound effects. You'll listen to
clocks, gongs, a SID oscillator, horses, projec
tiles, and pulsing weirdness. Along the way,
you'll think about timing, ADSR envelope
design, ring modulation, vibrato, eavesdrop
ping, linkage, rhythm, noise, and variations in
volume, frequency, and pulse width.

Keep in mind that the key to sound effects
is imaginative variation: changing volume,
waveforms, frequencies, timing, rhythms, and
so on. Of course, you've got to know what to
change and how to do it. Some of this can be
learned by playing with SID and programs like
those in this chapter. You'll also need to spend
time listening to the world around you. Train
your ears to be better sound analyzers.

9.1 THE CLOCK
Figure 9-1 shows the program Clock. Read

... •• ••••••• • •• • • ••••••••••• •••••••• • ••• •••••••• • • • ••••••••••

it, and then run it. Play around with the
numbers. See if you can get a more interesting
rhythm out of the ticking clock.

You end up changing a lot of SID's reg
isters when you work with sound effects. This
can cause complications if you forget which
registers have been set. The programs in this
chapter all begin and end by clearing SID's
registers.

Let's look at the ADSR envelope this pro
gram generates. Attack, decay, and release
rates are all set to 0, and the sustain level is
15, the maximum. The sound will quickly rise
to peak volume, quickly decay to the same
level (huh?), sit there until release is triggered,
and then quickly fall to zero. Figure 9-2 shows
a picture of the envelope.

Once the envelope and overall volume is
set, the program is ready to play a series of
ticks and tocks. First, lines 1220-1260 play the
tick. Line 1220 sets a frequency, and then line

157

Commodore 64/128 Graphics and Sound Programming

158

REM *** CLOCK *** 1121121121
11211121
11212121
11213121
11214121
11215121
112160
11217121
11218121
11219121
11121121
111121
112121
113121 :

:
REM ** CLEAR SID & PRINT PROMPT
:
SID = 54272
FOR REG = SID
: POKE REG,
NEXT REG
• · PR I NT lI~ll;

:REM SOUND CHIP
TO S10+24
121

PRINT IIPRESS SPACEBAR TO ENO II

114121 REM ** INITIALIZE SID REGISTERS
115121 :
116121 POKE SI0+6, 24121
117121 POKE SI0+24, 15
118121 :
119121 :
12121121 REM ** PLAY IT
121121 :
122121 POKE SI0+1, 8121
123121 POKE SI0+4, 17
124121 FOR T = 1 TO 3 :
125121 POKE SI0+4, 16
126121 FOR T = 1 TO 3121121
127121 :
128121 POKE SI0+1, 6121
129121 POKE SI0+4, 17
130121 FOR T = 1 TO 3 :
131121 POKE SI0+4, 16
132121 FOR T = 1 TO 3121121
133121 :
134121 GET KP$

:REM MAX SUSTAIN
:REM MAX VOLUME

END ON A KEYPRESS

:REM TICK

NEXT T

: NEXT T

:REM TOCK

NEXT T

: NEXT T

135121 IF KP$ = 1111 THEN 122121

• · REM ** CLEAN UP & END

136121 :
137121
138121
139121
14121121
1410

· · FOR REG = SID TO S10+24
POKE REG, 0

1420 NEXT REG
1430 PRINT II~II;
1440 :
1450 END

Fig. 9-1. Listing of the program Clock.

Time

Fig. 9-2. A picture of the ADSR envelope used in Clock.

Time

Special Sound Effects

1230 sets the triangle waveform and triggers
the sound. There's a short pause, with the tick
at peak volume, and then line 1250 releases
the sound. Finally, there's a relatively long
pause.

Then, it's time for lines 1280-1320 to give
you a tock. Anew, lower frequency is set.
Then the sound is triggered, held a bit, and
released. Again, there's a relatively long pause.
Line 1340 scans the keyboard; if no key's been
pressed, it's back up to line 1220 for another
tick.

The top row in Fig. 9-3 shows a few beats'
worth of volume information (not to scale)
for this program. Notice the regularity of the

Tick

Fig. 9-3. Top: A few beats' worth of volume information for Clock (not to scale). Bottom: A possible variable of Clock with
a less uniform beat.

159

Commodore 64/128 Graphics and Sound Programming

sketch. The second row shows what would
happen if the tick had a longer sustain period
and the tock came along sooner. See if you can
change Clock so it sounds more like the sec
ond row. Drawing these rough pictures gives
me a first crack at SID settings and delay loops
when I'm planning a new sound.

You need programs that can be easily
modified when you're creating sound effects.
Put in plenty of delay loops and statements that
set the SID registers. It takes a lot of fine tun
ing to produce the sounds you hear in your im
agination.

9.2 THE GONG MACHINE
You've heard SID produce a clock's ticks.

Now let's get some big, reverberating gong
noises. You'll start by looking at ring modula
tion. It's one way to link two voices together.

9.2.1 Ring Modulation
There's a fifth SID waveform option I ha

ven't mentioned yet. It's called ring modula
tion. SID can combine information from two
voices to form what's called a ring-modulated
output. This ring modulation does a great job

Bit
value
Bit

number
Bit

function

128

7

Noise

0

64

6

Pulse

0

32 16

5 4

Sawtooth Triangle

0 1

16

Fig. 9-4. Setting up a voice's fifth register for ring modulation.

160

on gongs, bells, chimes, and the like.
Here's how you get a voice to produce ring

modulated output. First, select the voice's
triangle waveform. Next, set its ring modula
tion control bit, bit 2 of the waveform control
register, to 1. Finally, set the voice's partner
to a frequency other than O.

What's a partner? When a voice is set up
for ring modulation, it mixes another voice's
frequency information with its own. Voice #1
uses voice #3 as a partner, voice #2 uses voice
#1, and voice #3 uses voice #2.

Here's an example. Let's set voice #1 up
for ring modulation. You need to set the follow
ing bits of the wave control register at SID + 4:
bit 0 to trigger the start of an ADSR envelope,
bit 2 to choose ring modulation, and bit 4 to
select the triangle waveform. Adding the
values of those bits gives you 21, so 21 is the
number to put into SID + 4. See Fig. 9-4. Then
you need to set voice #3 to a nonzero fre
quency. You can do this by setting the fre
quency register at SID + 15 to a nonzero value,
say 19. When it's time to trigger the release
stage of the ADSR envelope, you'll just place
the value 20 (bit 0 off) into SID + 4.

8 4 2 1

3 2 1 0
Ring

- modulation Sync Gate

0 1 0 1

+ 4 + 1 = 21

Special Sound Effects

9.2.2. The Program
Figure 9-5 lists the program Gong Ma

chine, which uses ring modulation to give you
nine different chime sounds. Read it over; then
type it in, save it, and run it.

Lines 1260-1310 obtain keypresses. Press
ing the spacebar ends the program. Pressing
one of the number keys 1-9 will generate a
gong sound. Any other keyboard input is
ignored.

Mer SIn is cleared and the screen's set
up, lines 1180-1190 set the ADSR envelope for
voice #1. Line 1210 sets the overall volume.

Line 1330 sets the frequency of voice #1
based on the number of the pressed key. Line
1340 does the same for voice #3. Line 1350

1000 REM *** GONG MACHINE ***
• · REM ** CLEAR SID & PRINT PROMPTS

1010 :
1020
1030
1040
1050
1060
1010
1080
1090
1100
1110
1120
1130
1140
1150 :

· · SID = 54212
FOR REG = SID
: POKE REG,
NEXT REG
· · PRINT II~II ;

:REM SOUND CHIP
TO SID+24
o

PRINT
PRINT
PRINT

IIPRESS KEYS 1-9 FOR GONGS."

IIPRESS SPACEBAR TO END.II

1160 REM ** INITIALIZE SID REGISTERS
1110 :
1180 POKE SID+5,12
1190 POKE SID+6,9
1200 :

:REM ATK=0, DKY=12
:REM SST=0, RLS=9

1210 POKE SID+24,15 :REM MAX VOLUME
1220 :
1230
1240
1250
1260
1210
1280
1290
1300
1310
1320
1330

· · REM ** PLAY IT · · GET KP$:REM SCAN KEYBOARD
IF KP$ = "II THEN 1260
IF KP$ = II II THEN 1480 :REM END IT
:
KP = VAL (KP$) :REM MUST BE 1-9
IF KP(l OR KP)9 THEN 1260
:
POKE SID+l, KP * 1.5 + KP

161

Commodore 64/128 Graphics and Sound Programming

1340 POKE SI0+15, 19 + KP
1350 POKE SI0+4, 21 :REM BONG GONG
1360 FOR T = 1 TO 100
1370 • QUAVER = T - INT(T/10)*10 · 1380 POKE SID, QUAVER * 20
1390 · GET KP$ · 1400 • IF KP$ <> 1111 THEN T = 100 •
1410 NEXT T
1420 POKE SI0+4, 20 :REM GONG GONE
1430 GOTO 1270
1440 • •
1450 • •
1460 REM ** CLEAN UP & END
1470 • •
1480 FOR REG = SID TO
1490 • POKE REG, 0 · 1500 NEXT REG
1510 PRINT II~II ;

1520 • •
1530 END

Fig. 9-5. Listing of the program Gong Machine.

then triggers the start of a ring modulated
sound.

To add emphasis to the sound, lines
1360-1410 wiggle the frequency of voice #1.
This kind of effect is known as vibrato or
tremolo. While the program's wiggling, it's
also keeping an eye on the keyboard. If a key
is pressed, it'll abort the vibrato, release the
sound, and pop back up to deal with the
keypress. If no key is pressed during the
vibrato, the gong calmly fades away, and the
program goes back to scan the keyboard.

I spent quite a while trying different for
mulas in lines 1330 and 1340. The relationship
between two voices' frequencies and the
resulting ring-modulated sound is complex.
You might want to try some formulas of your
own.

Another spot worth experimenting with is
line 1370, the vibrato formula. You can get all

162

S10+24

kinds of interesting gong variations by chang
ing this line.

9.3 SID LISTENS TO ITSELF
Ring modulation lets one voice affect an

other. But there's not as much control as you
might need in certain situations. It'd be nice
if you could eavesdrop on some of SID's out
put. The registers at SID + 27 and SID + 28 let
you do just that. They give you a more con
trolled way to link voices together.

9.3.1 The Eavesdropping Registers
SID+27 shows the output of voice #3's

oscillator. SID + 28 shows the output of voice
#3's envelope generator. You can read these
registers and then use the values to modify
other SID settings.

You've got to start up the voice #3

oscillator to get SID + 27 to show changing
values. This is done by setting a frequency and
waveform for voice #3. You won't hear voice
#3 as long as you don't trigger the ADSR
envelope. So voice #3 can oscillate away, not
making a sound, while you read its oscillations
from SID + 27.

You've got to trigger the voice #3 envelope
generator in order to have its values show up
at SID + 28. This will usually cause voice #3
to put out some sounds. If you don't want to
hear voice #3, but still want to monitor its
envelope generator, you silence it by setting
bit 7 of SID + 24 to 1. SID + 24 is the same reg
ister used to set overall volume. To set bit 7
to 1, just add 128 to your volume setting and
poke the new value in.

Special Sound Effects

9.3.2 The Mad Computer

Let's look at a program that uses these
new eavesdropping capabilities. Figure 9-6lists
the program Mad Computer. Read it, type it,
save it, and run it. Pressing any of the number
keys 1-9 will change the sound pattern. Press
ing any other key ends the program.

In this program, voice #1 makes sounds
whose frequencies are based on the oscillations
of voice #3. Line 1300 is the key. It takes a
value from SID + 27 and plugs it into one of
voice #l's frequency registers. After a brief
pause, the program looks for a keypress.

What values will be showing up at SID
+ 27? You have to consider how voice #3 is
oscillating. Since the triangle waveform is

1000 REM *** MAD COMPUTER ***
1010 :
1020 :
1030 REM ** CLEAR SID & PRINT PROMPTS
1040 :
1050 SID = 54272
1080 FOR N = SID TO
1070: POKE N,0
1080 NEXT N

"~" ;

SIO+24

1090 :
1100 PRINT
1110 PRINT
1120 PRINT
1130 PRINT
1140 :

"PRESS KEYS 1-9 TO CHANGEII

1150
1180
1170
1180
1190
1200
1210
1220
1230

"ANY OTHER KEY TO ENO II

• •
REM ** INITIALIZE SID REGISTERS
• · POKE SIO+6,240
• •
POKE SIO+15,18
POKE SIO+18,18
• •
POKE SI0+24,15

:REM V-l SST = MAX

:REM SET V-3 FRQ
:REM SET V-3 WVF

:REM SET VOLUME

163

Commodore 64/128 Graphics and Sound Programming

1240 :
1250 :
1260 REM ** PLAY IT
1210 :
1280 POKE SID+4,11
1290 :

:REM TRIG V-l ATK
:REM SET V-l FREQ

BY V-3 OSCILLATIONS
1300 POKE SID+l,

PEEK(SID+21)
1310
1320
1330
1340
1350

FOR T = 1 TO 5 :REM WAIT A BIT
NEXT T

• •
REM ** SCAN KYBD TO PLAY MORE,

CHANGE SOUND, OR END
1360 :
1310 GET KPS
1380 IF KP$ = 1111 THEN 1300 :REM MORE

• •

ASC(KPS)(49 THEN 1450
ASCtKPS»58 THEN 1450
POKE SID+15, VAL(KPS) * 1
GOTO 1300 :REM SOUND CHANGED

1390 :
1400 IF
1410 IF
1420 :
1430 :
1440
1450
1460
1410
1480
1490
1500

FOR REG = SID
: POKE REG,
NEXT REG
PRINT IIW Il ;

TO SID+24 :REM CLEAN
o :REM UP

:REM & END

• · END

Fig. 9-6. Listing of the program Mad Computer.

selected in line 1210, voice #3's output will go
from 0 to 255 and back to 0 again, ata rate
set by its frequency. The values picked up in
line 1300 will depend on this frequency and on
how often the sampling takes place.

Now, most of the time voice #1 samples
SIn + 27 at a steady rate, breaking only to de
cipher an occasional keypress. There will be
a certain pattern to the samples it picks up and
thus to the sound it makes. Pressing one of the
keys 1-9 changes voice #3's frequency. Voice

164

#1, still looking at voice #3's oscillations at a
steady rate, will start seeing different patterns
of data, and so its sound pattern will change.

There is one last interesting fact about this
program: voice #1's volume rises to its peak
level and stays there until the program ends.
Two settings accomplish this. First, the sus
tain level is set to a maximum. Second, the re
lease stage of the ADSR envelope isn't
triggered until the program ends. Figure 9-7
shows what this envelope looks like.

Attack Decay Sustain

r---A-:---

Time

Fig. 9-7. A picture of the ADSR envelope used In Mad
Computer.

9.4 DADADUM DADADUM
DADADDUM DUM DUM ...

The next program uses a number of tim
ing loops to simulate the sound of a galloping
horse. If you don't understand where this sec
tion's title comes from, just ask someone who
grew up listening to tales of the masked man
with the silver bullets.

Figure 9-8 lists the program Horse. After
you've run it, change the rhythms by fooling
with the timing formulas. Can you get the
horse to canter? Prance? Race pell-mell down
the stretch? It's all in the timing.

Let's examine the program. The first seg
ment performs the usual SID clearing and
prompt printing. The next segment sets up the
ADSR envelope for the hoofbeats. This sound
will take on a pretty classic envelope. It climbs
quickly to peak volume, decays at a moderate
rate, holds at about two-thirds of peak volume,
and then fades to zero volume at a moderate
rate. You can suggest different types of horses,

Special Sound Effects

shoes, and surfaces by changing the envelope
and waveform.

Lines 1220-1290 form an interesting seg
ment. Each time through, the program will
make slight changes to the volume and fre
quency settings. This variety makes the
hoofbeats sound a little more natural. Line
1300 sets a basic timing variable; all the other
timing will be based on the value of DLY. You
might try inserting a formula that varies DLY's
value every now and then.

Lines 1350-1570 play the hooves, one at
a time. For each hoof, voice #1 gets gated;
there's a short delay; the voice is released; then
there's a longer delay. The various delays vary
from hoof to hoof; just like snowflakes, no two
feet are exactly alike.

See if you can make it seem as if the horse
is slowly approaching the listener, passing by,
and then moving away. Here are three helpful
hints:

As sounds approach, they get louder and
the frequency goes up.

As sounds move away, they get softer and
the frequency goes down.

A little exaggeration never hurts a sound
effect.

9.5 BANG BANG
Before the days of electronic noise mak

ing, a favorite pastime was playing with rolls
of caps. These were long rolls of paper with
little explosive bumps every quarter inch or so.
They were meant for cap guns, but the guns
misfired a lot. Besides, the real fun lay in get
ting a bunch of 'em to go off at a time. So we
usually just laid a roll on the pavement and
clobbered it with a good-sized rock. We loved

165

Commodore 64/128 Graphics and Sound Programming

166

REM *** HORSE *** 1000
1010
1020 :
1030 REM ** CLEAR SID & PRINT PROMPTS
1040 :
1050 SID = 54272
1060 FOR REG = SID
1070: POKE REG,
1080 NEXT REG

:REM SOUND CHIP
TO SID+24
o

1090 :
1100 PRINT .. ~ .. ;
1110 PRINT "PRESS SPACEBAR TO STOP"
1120 :
1130
1140
1150
1160
1170
1180
1190
1200

1210
1220
1230
1240
1250
1260

1270
!280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

· •
REM ** INITIALIZE SID REGISTERS
· · POKE SID+5, 4 :REM ATK=0, DKY=4
POKE SID+S, 164 :REM SST=10, RLS=4

:
REM ** SET VOLUME, FREQUENCY,

TIMING
· · VC = 1
VLM = 12
· ·

:REM VOLUME CHANGE
:REM STARTING VOLUME

VLM = VLM + VC :REM UPDATE VOLUME
IF VLM = 15 OR VLM = 12

POKE 510+24, VLM
· •

THEN VC = -VC

FRQ = 35 - VLM :REM FRQ/VLM LINK
OLY = 17 :REM TIMING FACTOR

· · REM ** PLAY THE FOUR HOOVES
· · POKE 510+1, FRQ + 2 :REM HOOF 1
POKE 510+4,129
FOR T = 1 TO OLY*1.1 : NEXT T
POKE 510+4, 128
FOR T = 1 TO OLY * 3 NEXT T
· •
POKE 510+1, FRQ :REM HOOF 2

Special Sound Effects

1420 POKE 510+4,129
1430 FOR T = 1 TO OLY : NEXT T
1440 POKE 510+4, 128
1450 FOR T = 1 TO OLY * 1.1 : NEXT T
1460 :
1470 POKE 510+1, FRQ - 2
1480 POKE 510+4,129

:REM HOOF 3

1490 FOR T = 1 TO OLY
1500 POKE 510+4, 128
1510 FOR T = 1 TO OLY
1520 :

* 1.2: NEXT T

* 1.4 :NEXT T

1530 POKE 510+1, FRQ
1540 POKE 510+4,129

.8:

:REM HOOF 4

NEXT T 1550 FOR T = 1 TO OLY *
1560 POKE 510+4, 128
1570 FOR T = 1 TO OLY
1580 :

* 5.5 : NEXT T

• • 1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

REM ** QUIT IF KEY PRESSED
• •
GET KP$
IF KP$ = 1111 THEN 1250
• •
FOR REG = SID
: POKE REG,
NEXT REG
PRINT II~II;

TO 510+24
o

• •
END

Fig. 9-8. Listing of the program Horse.

the noise. The smell wasn't bad, either.
We'll leave it to the psychologists to fig

ure out why people enjoy explosive sounds. In
the meantime, you can use SIn to make some
blasts.

9.5.1 Thinking About the Sounds
Let's think about simulating the sound of

a gun. You've really got two sounds to deal
with. First, there's a cracking explosion, as
gunpowder ignites and launches a bullet. Then

there's the sound of the bullet zipping through
the air.

White noise comes in very handy for ex
plosions. Remember, setting bit 7 of a voice's
waveform register selects white noise. You'll
start each gunshot with a burst of white noise.
Also, explosions start out loudly and then fade
away. So you'll have to try to set up an ADSR
envelope that looks like the one shown in Fig.
9-9.

Now, for the whistling of the bullet as it
goes through the air. It takes a moment after

167

Commodore 64/128 Graphics and Sound Programming

Q)
"'0
~

;t::

a.
E «

Attack Decay
~,~ ______ ~A~ ______ ,

Time

the explosion for the bullet to pick up enough
speed to be heard. As it accelerates towards
a listener, its sound rises in pitch and volume.
As it passes and moves on away from a lis
tener, the sound drops in pitch and volume.
You'll need an ADSR envelope that gives a dis
cernible rise and fall in volume. Then you'll
need to set up some frequency setting loops
that go along with the volume changes.

9.5.2 Making the Sounds

Fig. 9-9. A picture of the ADSR envelope you'll try to set up
to simulate a gunshot.

Figure 9-10 lists the program Bam
P'Twang, which makes shooting noises. Run
it. How does it sound? You may want to add
an echo with a third voice, or adjust the tim-

168

REM *** BAM-P'TWANG *** 1000
1010
1020 :
1030 REM ** CLEAR SIO & PRINT PROMPTS
1040 :
1050 SIO = 54272 :REM SOUNO CHIP
1060 FOR REG = SIO TO S10+24
1070: POKE REG. 0
1080 NEXT REG

II~II ;
1090 :
1100 PRINT
1110 PRINT
1120 PRINT
1130 PRINT
1140 :

IIPRESS SPACEBAR FOR SOUNO."

1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

"PRESS RETURN KEY TO ENO."

• •
REM ** INITIALIZE SIO REGISTERS
• •
POKE SI0+5,10
POKE 510+1. 10
• •
POKE 510+12.89
POKE 510+13.10
· •
POKE 510+24. 15

:REM V-l ATK/OKY
:REM V-l FREQ

:REM V-2 ATK/OKY
:REM V-2 SST/RLS

:REM MAX VOLUME

Special Sound Effects

1260 • •
1210 REM ** SCAN KEYBOARD

FOR SHOT OR END
1280 • · 1290 GET KP$
1300 IF KP$ - 1111 THEN 1290
1310 IF KP$ = CHR$(13) THEN
1320 • •
1330 • · 1340 REM ** PLAY IT . VOICE .
1350 :
1360 POKE
1310 POKE
1380 REM
1390 POKE
1400 POKE
1410 :

VOICE

SI0+4,128 :REM
SIO+4,129 :REM
FOR T = 1 TO 20:
SI0+l1, 16 :REM
SIO+l1, 11 :REM

1550

1 EXPLOSION,
2 FLIGHT

RELEASE V-l
START V-l
NEXT T
RELEASE V-2
START V-2

1420 FOR FRQ = 10 TO 80 STEP 3
1430: POKE SID+8, FRQ
1440 NEXT FRQ
1450 FOR FRQ = 77 TO 5 STEP-3
1460 POKE SID+8, FRQ
1410: FOR T = 1 TO 4 : NEXT T
1480 NEXT FRQ
1490 :
1500 GOTO 1290
1510 :

• · 1520
1530
1540
1550
1560
1510
1580
1590
1600

REM ** CLEAN UP & END · •
FOR REG = SID
: POKE REG,
NEXT REG
PRINT II~II;
• · END

Fig. 9-10. Listing of the program Bam-P'Twang.

TO S10+24
o

ing, or change the frequencies. As usual, ex
perimentation will teach you a lot.

Lines 1180-1220 set two ADSR envelopes.
Voice #1 will handle the explosion, and voice
#2, the flight. Voice #1, with an attack rate of

0, will hit peak volume in 2 thousandths of a
second, and then start decaying at a much
slower 1.5 second rate. Voice #2 has an attack
rate of 5. It will take 55 thousandths of a sec
ond to reach peak volume, and then decay at

169

Commodore 64/128 Graphics and Sound Programming

a rate close to voice #l's. Run the program
with some different values defining the ADSR
envelopes. You can simulate different types of
guns and bullets.

Next, the program waits for a keypress in
lines 1290-1300. Pressing the return key will
end the program. Anything else shoots a bu1-
let. Lines 1360-1400 do the shooting.

First comes voice #1, with the explosion.
Notice how the previous explosion doesn't get
completely released until the last possible mo
ment. There's a brief pause in line 1380 so the
bullet can pick up a little speed. Then voice
#2 chimes in with the whistling flight.

Lines 1420-1480 then take voice #2's fre
quency on a roller coaster ride. Unlike Gong
Machine, this program doesn't scan the key
board while it's playing with frequencies. That
means you don't have rapid-fire capabilities.
Try changing this limitation.

White noise also comes in handy for

simu1ations of waves, wind, slamming doors,
and similar phenomena. It's particu1arly in
teresting to combine it with more musical
waveforms, as Bam-P'Twang does.

9.6 NOW ENTERING
THE PULSER ZONE

The final sound effect combines pu1se
waveforms of varying width with smooth vol
ume changes. This creates an eerie noise that
wou1d be perfect for disintegration rays or
background music in the Twilight Zone.

Figure 9-11 lists the program Pulser Zone.
As usual, read it, type it in, save it, run it, and
then make your own modifications. Come on
back to the book when you're ready for a lit
tle explanation.

Lines 1160-1190 set the frequency, ADSR
envelope, and volume. As in the program Mad
Computer, volume quickly rises to a peak and
then stays there until the program ends.

1121121121 REM *** PULSER ZONE ***
11211121 :

170

11212121 :
103121 REM ** CLEAR SID & PRINT PROMPT
11214121 :
105121 SID = 54272
1060 FOR REG = SID
11217121: POKE REG,
11218121 NEXT REG
11219121 :
11121121 PRINT II~II;

:REM SOUND CHIP
TO S10+24
121

111121 PRINT IIPRESS SPACEBAR TO ENDII
112121 :
113121 :
114121 REM ** INITIALIZE SID REGISTERS
115121 :
118121 POKE SID+1, 2121
117121 POKE SID+8, 24121
118121 :
119121 POKE SID+24, 15

:REM V-1 FREQ
:REM V-1 SST/RLS

:REM MAX VOLUME

Special Sound Effects

1200 :
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

• •
REM ** PLAY IT
• •
POKE SID+4, 65
• •
VLM = 6 : A = -3

:REM V-1 PULSE ON

IF VLM = 15 OR VLM = 6 THEN A = -A
VLM = VLM + A
POKE SID+24, VLM :REM ADJUST VOLM
• · 1310 FOR N = 8 TO 15 :REM PULSE WIDTH

1320: POKE SID+3, N :REM GROWING
1330 NEXT N
1340 :
1350 FOR N = 14 TO 9 STEP -1 :REM PULSE
1360: POKE SID+3, N :REM WIDTH
1370 NEXT N :REM SHRNK
1380 :
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530

• •
REM ** SCAN KEYBOARD
• · GET KPS
IF KPS - 1111 THEN 1270

• •
REM ** CLEAN UP & END
• · FOR REG = SID
: POKE REG,
NEXT REG
PRINT 11':';11;
• · END

TO SID+24
o

Fig. 9-11. Listing of the program Pulser Zone.

:REM NO KEY

Line 1240 selects the pulse waveform for
voice #1 and triggers the ADSR envelope. Line
1260 gives initial values for volume and vol
ume change variables.

tion of the changes in volume when those limits
are reached. Line 1280 changes the volume by
adding in the volume change. Then line 1290
pokes in the new value.

Line 1270 is the top of the main program
loop. Overall volume will move between set
tings of 6 and 15. Line 1270 switches the direc-

Lines 1310-1330 move the pulse width set
ting from 8 to 15, one step at a time. This cor
responds to pulse widths of 50% to 94%. Look

171

Commodore 64/128 Graphics and Sound Programming

back at Section 7.7 if you forget how pulse
widths are set.

Lines 1350-1370 then move the pulse
width setting back down, one step at a time.
Then, lines 1420-1430 do a quick keyboard
scan. If a key's been pressed, the program
ends. If not, it's back up to line 1270 for a new
volume setting and another sweep through the
pulse width loops.

Some changes and additions you might
make to Pulser Zone include frequency varia
tions, ring modulation, echo effects, a second
voice with pulse widths changing in opposite
patterns, and a different ADSR envelope. As
usual, imaginative experiments will teach you
a lot.

9.7 CHAPTER SUMMARY
You've played with six different sound ef

fects programs in this chapter. Here are some
highlights of what was covered:

172

* Using short bursts of triangle wave
forms to simulate a ticking clock

* Using ring modulation and frequency
changes to simulate gongs

* Using information from voice #3's os
cillator to modulate another voice's fre
quency, helping to simulate an insane
computer

* Using a variety of timing loops to sim
ulate the rhythmic sounds of a gallop
ing horse

* Mixing a noise waveform with a triangle
waveform to simulate a gunshot

* Varying pulse width and volume to
create an eerie, horror movie sound

The last three chapters have given you a

glimpse of SID's sound-making capabilities. In
Chapter 10, you'll bring SID and VIC together
in programs that combine sound and graphics.

9.8 EXERCISES

9.8.1 Self Test
Answers are in Section 9.8.3.

1. (9.1) You could slow down the ticking in
Clock by using numbers in the
delay loops of lines 1260 and 1320.

2. (9.2) voices are used to
produce ring modulation.

3. (9.3) The registers at SID + 27 and
SID + 28 let you eavesdrop on the ac-
tivitiesof __________ __

4. (9.4) In the program Horse, slight varia
tions in volume and frequency are used to
make the sound more _________ _

5. (9.5) The program Bam-P'Twang uses the
__________ waveform to simulate
exploding gunpowder.

6. (9.6) The loops in lines 1310-1370 of Pulser
Zone are used to change voice #l's

9.8.2 Programming Exercises

1. Change the program Clock so it uses
all three voices, thereby creating a
richer sound.

2. Change the program Bam-P'Twang so
the explosive sound comes after the
bullet flies through the air.

3. Change the program Pulser Zone so
that voice #l's frequency changes
along with its pulse width.

9.8.3 Answers to Self Test

1. larger
2. two
3. voice #3
4. natural
5. Noise or white noise
6. pulse width

9.8.4 Possible Solutions
to Programming Exercises

1. Load in the program Clock. Then type

Special Sound Effects

in the lines shown in Fig. 9-12.

2. Load in the program Bam-P'Twang.
Then type the lines shown in Fig.
9-13.

3. Load in the program Pulser Zone.
Then type in the lines shown in Fig.
9-14.

1121121121 REM *** RICH CLOCK ***
1163 POKE 510+13, 12m :REM V-2 55T/REL
1166 POKE 510+2121, 18m :REM V-3 55T/REL
1223 POKE 510+8, 2m
1226 POKE 510+15, 4121
1233 POKE 510+11, 17
1236 POKE 510+18, 17
1253 POKE 510+11, 18
1256 POKE 510+18, 16
1283 POKE 510+8, 15
1286 POKE 510+15, 3m
1293 POKE 510+11, 17
1296 POKE 510+18, 17
1313 POKE 510+11, 16
1316 POKE 510+18, 16

Fig. 9-12. A possible solution to programming exercise 1.

1121121121 REM *** P'TWANG-BAM *** 136m • •
137m • •
138m • •
1492 POKE 510+4,128 :REM RELEA5E V-1
1494 POKE 510+4,129 :REM START V-l
1496 REM FOR T = 1 TO 2m: NEXT T
1498 • ·

Fig. 9-13. A possible solution to programming exercise 2.

173

Commodore 64/128 Graphics and Sound Programming

REM *** 50N OF PUL5ER *** 1000
1160
1325 :
1365

POKE 510+1, 2 * N :REM V-1 FRQ
POKE 510+1, 2 * N :REM V-1 FRQ

Fig. 9·14. A possible solution to programming exercise 3.

174

Chapter 10

Sounds +
Graphics= Magic

In the first six chapters, you discovered some
of your Commodore computer's graphics
abilities. In the last three chapters, you learned
how to get it to make sounds. Now it's time
to bring graphics and sound together. I'll show
you three programs that do this. Along the
way, I'll discuss some of the design techniques
that I've found helpful with this kind of pro
gramming.

10.1 SYNERGY
Synergy is a word that comes from

biology. It describes situations where two or
more things get together and create effects
beyond what each component can do alone.
Another way to think of it is that the whole
becomes greater than the sum of the parts.

Putting pictures and sounds together in a
clever way can create some wondrous effects.
Imagine the Star Wars movies without their

excellent sound tracks. Or playing a silent ver
sion of Donkey Kong.

Good sound effects help paint pictures in
your mind. Good pictures help suggest cer
tain sounds. If the two elements are carefully
brought together, they synergize to create a
new level of illusion.

Careful programmers spend a lot of time
fine tuning sound and graphics effects. This
can be frustrating if you're working with a slop
pily designed program. On the other hand, fine
tuning a well-designed program can actually
be a lot of fun. What makes a program well
designed? One of the most important factors
is modularity.

10.2 MODULAR THINKING
The easiest job for beginning program

mers is learning the rules of a computer
language and the features of a particular com-

175

Commodore 641128 Graphics and Sound Programming

puter. The tough part is learning how to put
a large program together.

Good programmers start by thinking.
They take a complex problem and start break
ing it up into simpler pieces, or modules. Then
they break any complex modules down into
even simpler pieces. This continues until
they've got a set of simple modules that cover
every detail of the original problem. Then they
start translating their plan into specific com
puter instructions.

This approach is known as top-down struc
tured programming. It can be used with any
computer language on any computer. To most
beginners, it seems a waste of time. They want
to sit down and start writing code. It usually
takes a few experiences wrestling with a badly
structured program to see the light.

How do you learn to program this way?
Start by reading books and magazines, talk-

ing to other programmers, examining all sorts
of programs, learning more than one computer
language, and trying to pay attention to your
mistakes. Keep your mind open, alert, and
calm-and write lots of programs.

10.3 OF BLIPS AND BEEPS
(A HISTORICAL SALUTE)

About twelve years ago, the first popular
home video game appeared: Pong. Players got
to bounce a blip of light around a TV screen.
When the blip hit a wall or a simulated ping
pong paddle, there was a little beep. This
chapter's first program salutes the humble
world of blips and beeps.

Figure 10-1 lists the program Bouncer.
Type it in, save it, and then run it.

In most graphics displays, there are parts
of the picture that stay still and parts that

1000
1~10
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

REM *** BOUNCER ***

176

REM ** DRAW THE BOX & PRINT PROMPT
B X $ (1) = II ,,... __________ , II

BX$(2) = "I III
BX$(3) = 11& ' ..

PRINT "~" :REM CLEAR & DOWN
PRINT SPC(10); BX$(1) :REM TOP
FOR N = 1 TO 3 :REM SIDES

PRINT SPC{10}; BX$(2}
NEXT N
PRINT SPC(10); BX$(3) :REM BOTTOM

PRINT SPC(10); "L!JPRESS ANY ";
PRINT "KEY TO STOP"

REM ** SET UP SPRITE DATA

Sounds + Graphics = Magic

1210 :
1220 FOR N = 12288 TO 12350 :REM MOSTLY
1230: POKE N, 0 :REM BLANK
1240 NEXT N
1250 :
1260 FOR N = 12288 TO 12300 STEP 3
1270 : READ SPDTA
1280 : POKE N, SPDTA
1290 NEXT N
1300 :

:REM BALL SHAPE

1310 DATA 60, 126, 255, 126, 60
1320 :

• · REM ** SET UP VIC REGISTERS
1330
1340
1350
1360
1370
1380
1390
1400
1410 :

• •
VIC = 53248
POKE 2040, 192
POKE VIC+39, 7
POKE VIC+21, 1
• •

:REM GRAPHICS CHIP
:REM POINT TO DATA
:REM #0 IS YELLOW
:REM TURN ON #0

1420 REM ** SET UP THE SOUNDS
1430 :
1440 SID = 54272 :REM SOUND CHIP
1450 POKE SID+5, 24 :REM ATK=1, DKY=8
1460 POKE SID+24, 15 :REM MAX VOLUME
1470 :

• • 1480
1490 REM ** INITIALIZE BALL POSITION

AND MOVES
1500 :
1510 HP =
1520 HM =
1530 :
1540 :

180
4

VP = 89 :REM POSITIONS
VM = 2.5 :REM MOVES

1550 REM ** MOVE THE BALL
1560 :
1570 HP =
1580 VP =
1590 POKE
1600 POKE
1610 :
1620 • •

HP + HM
VP + VM
V I C, HP
VIC+1, VP

:REM NEW HORZ. POS
:REM NEW VERT. POS
:REM SET NEW
:REM POSITIONS

1630 REM ** CHECK FOR A KEYPRESS
1640
1650

• · GET KP$

177

Commodore 641128 Graphics and Sound Programming

1660
1670
1680
1690
1700
1710
1720
173121
174121
175121
176121
177121
178121
179121
18121121
181121
182121
1830
1840
1850
1860
187121
188121
1890
191210
1910
1920
1930
1940
1950
1960
1970
1980
1990

IF KP$ <> 1111 THEN 1950 :REM END IT

• · REM ** CHECK FOR A HIT

HH = (HP < 111 OR HP > 249)
VH = (VP < 8121 OR VP > 1(212)
· · IF (NOT HH) AND (NOT VH) THEN 157121

· · REM ** DEAL ~ITH A HIT
· · IF HH THEN HM = -HM :REM TURN ARND
IF VH THEN VM = -VM :REM TURN ARND

POKE SID+4, 16 :REM RELEASE SOUND
POKE SIO+l, RND(0)*40 + 10
POKE SID+4, 17 :REM SOUND ATTACKS
· · HUE = (PEEK(VIC+39) AND 15) + 1
IF HUE = 16 THEN HUE = 1
POKE VIC+39,HUE :R£M CHANGE COLOR
:
GOTO 1570

· ·
:REM HIT DEALT ~ITH

REM ** CLEAN UP AND GO HOME
· · POKE SID+24,0 :REM SOUND OFF
POKE VIC+21,0 :REM SPRITE OFF
PRINT II~II; :REM CLEAR SCREEN
· •
END

Fig. 10-1. Listing of the program Bouncer.

move. You can call the parts that stay still
static elements and the parts that move
dynamic elements.

In Bouncer, the box is the static element,
and the moving blip is the dynamic element.
The box is drawn with graphics characters,
and the blip is a sprite. With the Commodore's
BASIC 2.0, bit mapping and graphics char-

178

acters work well for static elements. Graphics
characters and sprites work well for dynamic
elements.

10.3.1 Setting Up the
Graphics and Sound

Let's look at Bouncer's modules. Lines
1050-1170 set up the static elements of the

screen display. Cursor control characters,
strings made up of graphics characters, and the
SPC () command are all used.

The next two modules set up the sprite.
Lines 1220-1310 load in the data for a very sim
ple sprite, shown in Fig. 10-2. Then lines
1360-1390 set up the necessary VIC registers.
Lines 1440-1460 set up the sound chip. The
program uses voice #1. Line 1450 sets values
for that voice's attack and decay rates. Line
1460 sets an overall SID volume level. Fre
quency and waveform for voice #1 will be set
whenever the blip hits a wall.

10.3.2 Getting The Blip Into Motion
The main part of the program forms a

Fig. 10-2. The simple sprite design used in Bouncer.

Sounds + Graphics = Magic

large loop. Each time through, the blip moves
on the screen. Four variables handle the blip's
motion. HP and VP keep track of its vertical
and horizontal positions on the screen. HM
contains the size and direction of horizontal
moves. VM contains the size and direction of
vertical moves.

Lines 1510-1520 initialize these four
variables. The sprite is put in the middle of the
box drawn back in lines 1050-1140, ready to
move almost twice as fast horizontally as ver
tically.

Line 1570 is the top of the main program
loop. Lines 1570-1600 figure new horizontal
and vertical positions for the blip and then poke
them into sprite #0, position registers.

179

Commodore 641128 Graphics and Sound Programming

Next, the program checks for a keypress.
Any keypress will cause a jump to the pro
gram's closing module.

Lines 1710-1720 use Boolean expressions
to see if the blip has hit one of the box's walls.
Line 1710 checks for a hit on the side walls,
line 1720 for a hit on the top or bottom walls.
If no wall has been hit, the program pops on
back to the top of the motion loop at line 1570.

10.3.3 Dealing With A Hit
The next module, lines 1790-1900, deals

with a hit by changing the blip's motion, start
ing a sound effect, and changing the blip's
color.

If the blip has hit a side wall, line 1790
reverses its horizontal motion. If it has hit a
top or bottom wall, line 1800 reverses its ver
tical motion.

Then lines 1820-1840 give us a sound ef
fect. Line 1820 releases any previous sound.
Line 1830 picks a frequency setting at random
and then pokes it into the appropriate SID reg
ister. Line 1840 then triggers the sound.

Finally, lines 1860-1880 change the blip's
color. It will cycle repeatedly through the set
of sprite colors, except black. After a hit's been
dealt with, the program jumps back to line
1570, which is the top of the motion loop.

10.3.4 Cleaning Up
The final module of Bouncer turns off the

sound and the sprite and then clears the screen
in a straightforward manner. If you wanted to
be a bit more thorough, you'd clear all the SID
and VIC registers used in the program.

10.4 THE PIANORGAN
The next program uses complex character

graphics and a speeded-up keyboard scan to

180

create an animated musical instrument. It's
listed in Fig. 10-3. Type in Pianorgan; save it;
and then run it. When you're playing the in
strument, notes will last as long as you hold
down a key.

10.4.1 Big Strings
This program uses long character strings

to quickly draw the singing keys. These strings
contain cursor control characters, display op
tion characters, graphics characters, and text
characters. Although such strings take time to
set up, they make for simple programming and
speedy displays.

Pianorgan's first few modules build sixteen
character strings to display the instrument's
singing keys. There are two strings for each
of eight keys, one with a closed mouth and one
with an open mouth.

Lines 1050-1070 set up two tabbing
strings. D$ contains a home command and 23
cursor down commands. R$ contains 40 cur
sor right commands. Using these strings in
combination with the LEFT$ function lets us
move the cursor anywhere on the screen.

Lines 1120-1210 build up eight closed
mouth strings. First, lines 1120-1140 build a
section that's common to all eight strings. Line
1150 sets a piece that'll finish off all eight
strings. Then lines 1160-1210 put together the
eight custom strings.

Line 1170 adds the pieces of D$ and R$
that'll get the cursor to the proper starting posi
tion on the screen. The eight images will share
the same vertical position. However, each one
will have a different horizontal position.

Line 1180 adds the common section built
in lines 1120-1140. Then line 1190 uses a cheap
trick to add a number to each image. The sing
ing keys have number codes, 1-8. When

Sounds + Graphics = Magic

REM *** PIANORGAN ***

• •
REM ** SET UP TABBING STRINGS
• •
0$ = "I;VIpIpIpIpIpIpIpIpIpIpIp,IIpIpIpIpIpIpIpIpIpIpJ "

R$ = " ,"
R$ = R$ + R$
• •
• •

1000
1010
10Z0
1030
1040
1050
1060
1070
1080
1090
1100
1110
llZ0
1130
1140
1150
1160
1170

REM ** SET UP CLOSED MOUTH STRINGS
• •
CM$ = II ••• g __ •••• - ••• ,11

C MS = C M$ + II - ••• I! fa !! ••• , 11

C M$ = C MS + II •••• II

FP$ = II •••• II

FOR N = 1 TO 8
: CM$(N) = LEFT$(D$,4) +

LEFTS(RS, 5*N - 4) = CM$(N) + CMS 1180: CM$(N)
1190: CM$(N)
lZ00: CM$(N)
lZ10 NEXT N

= CM$(N) + CHRS(48 + N)
= CM$(N) + FPS

• •
REM ** SET UP OPEN MOUTH STRINGS

lZZ0 :
lZ30
lZ40
lZ50
lZ60
lZ70
lZ80
lZ90
1300

• •
PMS = IlIaO
PMS = PM$
PM$ = PMS
FOR N = 1
• PMS(N) •

• PMS(N) • · PMS(N) · • PM$(N) · NEXT N

• •

0 •• 1. - .11. • .11,11
+ II!! II !! •••• II !! II

+ 11 ••• , ••• , II

TO 8
= LEFTS(DS,4) +

LEFTS(RS, 5*N - 4)
= PMS(N) + PMS
= PM$(N) + CHR$(48 +
= PMS(N) + FPS

REM ** SET UP COLOR CODES
• ·

N)
1310
13Z0
1330
1340
1350 :
1360
1370
1380
1390
1400
1410

FOR N = 1 TO 8 :REM TO COLOR KEYS
: READ HU(N)
NEXT N

181

Commodore 641128 Graphics and Sound Programming

182

14Z0 :
1430 DATA 14, 4, 3, 7, 1Z, 5, 8, 1
1440 :
1450
1460
1470
1480
1490
150121
151121
15Z121
153121
154121
1550
156121
157121
158121
159121
16121121
161121
16Z121
163121
164121
165121
166121

· · REM ** SET UP SID AND FREQUENCIES
• · SID = 54Z7Z
POKE SID+3, 4
POKE SID+5, 1121
POKE SID+6, 169
POKE SID+Z4,15
HF = 64 · •

REM
REM
REM
REM
REM
REM

SOUND CHIP
PULSE HIDTH
ATK=I2I, DKY=1121
SST=1121, RLS=9
MAX VOLUME
PULSE HVF

FOR N=1 TO 8
: READ FH{N)
: READ FL{N)

:REM SET FREQUENCY
:REM VALUES FOR
:REM 8 NOTES

NEXT N
• •
DATA
DATA
DATA
DATA

• •

8, 98, 9, 11214
1121 , 143, 11, 48
1 Z, 143, 14, Z 5
15, Z1121, 16, 195

REM ** SET SCREEN COLORS, ALL KEYS
REPEAT, & SPEED UP KBD SCAN

167121 :
168121 POKE
169121 POKE
17121121 POKE
171121 POKE
17Z0 :
1730 :

53Z8121, 121 :REM BORDER BLACK
53Z81, 121 :REM BKGROUND BLACK
65121, 1Z8 :REM ALL KEYS REPT.
563Z5, ZI2I :REM SPEEDIER SCAN

174121 REM ** PRINT 8 CLOSED MOUTHS
175121 :
1760 PRINT "~";
177121 PRINT "E!]"
1780 FOR N = 1
179121: PR I NT
1800 NEXT N
181121 PRINT "I!I"
18Z121 :
183121 :

TO 8
CM${N)

:REM CLEAR SCREEN
:REM DARK GRAY

:REM THE MOUTHS

:REM HHITE

184121 REM ** PRINT PROMPTS
185121 :

Sounds + Graphics = Magic

18S0 PRINT LEFT${D$,18); SPC(9);
1870 PRINT "PRESS KEYS ~1!!-~8!! TO PLAY"
1880 PRINT: PRINT SPC(9);
1890 PRINT "PRESS ~SPACEBAR!! TO STOP"
1900 :
1910
192121
193121
1940
195121
198121
197121
198121
1990
212100
201121
2020
2030
2040
2.05121
21218121
21217121
21218121
2090
21121121
211121
212121
213121
214121
215121
218121
2170
218121
2190
2200
2210
222121
2230
2240
225121
228121
227121

• · REM ** SCAN THE KEYBOARD · · GET KPS
IF KPS = 1111 THEN 194121
IF KPS = II II THEN 22121121
KP = VAL CKPS)
IF KP(l OR KP)8 THEN 194121

· · REM ** PLAY A NOTE · · POKE 848, HUCKP)
PRINT PMS{KP)
POKE SID+l,FH{KP)
POKE SID,FL(KP)
POKE 510+4, WF+l
:

:REM
:REM
:REM
:REM
:REM

SET CHAR HU
OPEN MOUTH
SET FREQ
SET FREQ
START SOUND

GET KPS :REM PLAY TIL KEY RELEASED
IF VALCKPS) = KP THEN 21219121
· · POKE 848, 11
PRINT CMSCKP)
POKE SID+4, WF
GOTO 195121

• •

:REM BACK TO GRAY
:REM CLOSE MOUTH
:REM END SOUND
:REM SCAN AGAIN

REM ** CLEAN UP AND GO HOME
• •
POKE 58325, 88 :REM FIX KBD SCAN
POKE 848, 1 :REM CHAR COLOR WHITE
PR I NT "~"; : REM CLEAR SCREEN
FOR REG=SID TO SID+24 :REM CLEAR
: POKE REO, 0 :REM SID
NEXT REG
• · END

Fig. 10-3. Listing of the program Pianorgan.

183

Commodore 64/128 Graphics and Sound Programming

keyboard keys 1-8 are pressed, the appropriate
single key will pop into action. The character
codes for numbers run between 48 aI).d 57. Line
1190 simply adds the value of the loop variable
N to 48 and then uses the CHR$ function to
produce the character that corresponds to the
value of N. For example, when N has the value
4, line 1190 will add on CHR$ (52), which is
a 4.

Mter the closed mouth strings are set,
lines 1260-1340 set up eight open mouth
strings. The process is similar to that in lines
1120-1210. The major differences are the
details of the image. Figure 10-4 shows the two
different singing key images, one with a closed
mouth and the other with an open mouth.

This section's final module stores eight
color codes in the array HU (). Remember, the
singing keys are numbered 1-8. Each key's
color code will be used to set the color of that
key's open mouth image.

10.4.2 Setting Up SID,
the Screen, and the Keyboard

This program uses the pulse waveform and
a carefully chosen ADSR envelope to create
sounds midway between a piano and an organ.
Lines 1480-1530 set the necessary SID reg
isters.

Lines 1550-1630 set up two arrays, FH ()
and FL (), that will hold the frequency settings
for eight notes. The values in the data
statements come from Appendix O. They'll
produce the notes C, D, E, F, G, A, and B from
the third octave, and C from the fourth octave.

Next, lines 1680 and 1690 set the screen
background and border to black. I have a def
inite preference for a black background, since
colors really sing when displayed on it. In this
program I decided to enforce my preference.

Line 1700 pulls a stunt you've used before.
When memory location 650 contains the value
128, all keys on the keyboard will repeat when

Fig. 10-4. The two singing key images: closed mouth and open mouth.

184

held down long enough.
Line 1710 pulls a new trick. One of the joys

of working with the Commodore 64 is the
measure of control you have over hardware
configuration. Normally, the Commodore 64
scans the keyboard for pressed keys 60 times
a second. In Pianorgan, you need to scan it
more often to get a more responsive instru
ment. Memory location 56325 is a register that
controls the speed of keyboard scanning. Nor
mally, it contains the value 66. By poking it
with the value 20, you can get the computer
to scan the keyboard 200 times a second. At
the end of the program, you'll set it back to
normal scan speed. If you didn't, strange things
would occur. Try it, if you've got a taste for
strangeness.

10.4.3 Set the Initial Display
The next two modules of Pianorgan are

straightforward. Lines 1760-1810 clear the
screen and then print the eight closed mouth
strings in dark gray. Then lines 1860-1890
print some instructions for playing the instru
ment. Remember, those weird-looking char
acters in lines 1770 and 1810 represent color
commands. Check back to the Introduction or
Appendix E if you've forgotten about them.

10.4.4 The Main Program
Loop of Pianorgan

Now comes Pianorgan's main program
loop. Lines 1940-1980 scan the keyboard. A
space will end the program; one of the number
keys in the range 1 to 8 will trigger a note;
anything else will be ignored.

Lines 2030-2150 playa note. This section
of the program is relatively short and simple,
thanks to all the setup work the program did

Sounds + Graphics = Magic

earlier. Line 2030 starts the process by setting
a new color. Memory location 646 is used by
the Commodore's operating system to figure
out what color to draw characters. Then line
2040 draws an open mouth image. The color
and the open mouth string correspond to the
number of the key that's been pressed. Lines
2050-2060 then set the note's frequency, and
line 2070 triggers the sound.

The ADSR envelope for Pianorgan's
sounds has a fast attack rate, a fairly slow
decay rate, and a sustain level that's about two
thirds of peak volume. The release rate's
pretty close to the attack rate. If a note is held
for a short time, it will sound like a piano note.
The longer the note's held, the more it will
sound like an organ note.

Lines 2090-2100 are the reason we
speeded up the keyboard scan. First, line 2090
gets a keypress and stores it in the variable
KP$. If a key's being held down, the value of
KP$ will match KP, the number of the note
currently being played. In that case, the pro
gram does a quick U-turn back to 2090 to read
the keyboard again. As soon as the key's let
up, line 2100's matching test will fail, and the
program will go on to end the note. With a
normal keyboard scan rate, these two lines
wouldn't work correctly; the GET procedure
takes too much time; and it would miss a lot
of key action. The speeded-up scan rate solves
the problem.

The next four lines finish off the note. Line
2120 sets the drawing color back to dark gray.
Line 2130 draws the appropriate closed mouth
image. Line 2140 releases the sound, and then
line 2150 jumps on back to line 1950 to check
for new keypresses.

10.4.5 Closing Thoughts
As mentioned in Section 10.4.3, pressing

185

Commodore 64/128 Graphics and Sound Programming

the spacebar ends Pianorgan. Lines 2200-2250
clean up shop. First, line 2200 restores the nor
mal keyboard scan rate. Line 2210 sets the
character color to white; line 2220 clears the
screen; and lines 2230-2250 play an homage
to thoroughness by resetting the first 24 SID
registers.

There are a number of things you can try
to do with this program. You might want to
add more keys to the instrument, use different
images, add more voices, change the style of
animation, or vary the keyboard action. Com
modore has put some great hardware into your
computer; with clever software, you can create
animated musical instruments never before
seen or heard.

10.5 SOME THOUGHTS ABOUT
SOUND/IMAGE COORDINATION

There is a marvelous Charlie Chaplin
movie anyone interested in sound/image coor
dination should see. It's called City Lights.
Charlie Chaplin had become an expert movie
maker during the days of silent films. He got
so good at his craft that you could almost hear
sounds in those silent films. City Lights was
one of the first films he made with sound.

The sound in that film is used sparingly,
cleverly, and to great effect. Chaplin was a
master of comic and dramatic timing; he was
able to transfer those skills to his work with
sound. Often a sound comes earlier than ex
pected, telegraphing a forthcoming action.
Sometimes it comes a bit late, increasing the
excitement of a scene. He uses sound spar
ingly, not wanting to clog the audience's taste
for it.

The coordination of sounds and images
doesn't have to be perfect. Often, subtle off
sets can add to the desired effect. Let the

186

minds of your audience do some of the work.
Artists, magicians, and master filmmakers un
derstand this. Some of the better computer pro
grammers are starting to learn the same
principles.

10.6 THE FINAL PROGRAM: SEESAW
Figure 10-5 lists our final program, See

saw. Type it in, save it, run it, and play around
with it. When you finish, come on back for
some explanation.

Two strange creatures appear, one
suspended from a sky hook, the other poised
on a seesaw. When you press the A key, for
Action, the sky hook releases its captive, who
moves with a falling whistle towards the
ground. Shelhe hits with a ringing vibration,
and the other creature gets launched into the
air. This creature also moves with a whistle,
but now the tone rises until it's cut short by
the kerchunk of the sky hook snapping shut
on the hapless beast. When the dust clears, the
two creatures have traded situations. This hap
pens every time you press A. Pressing the
spacebar ends the program.

10.6.1 Setting Up Strings,
Sprites, and Sounds

Like the other programs in this chapter,
Seesaw takes quite a bit of setting up. Each
element is prepared in its own module. Lines
1050-1140 set up four hook images: an open
and a closed hook for each of the two hook
positions. Each hook image is a large string,
built up out of all the fancy characters in the
Commodore's arsenal: color changers, cursor
controls, display options, and graphics
characters. Parts common to all four hooks are
built up and then combined by lines 1110-1140

1000
1010
1020
1030
1040
1050
10S0
1070
1080
1090
1100
1110
1120
1130
1140
1150
11S0
1170
1180
1190
1200
1210
1220
1230
1240
1250
12S0
1270
1280
1290
1300
1310
1320
1330
1340
1350
13S0
1370
1380
1390
1400
1410
1420
1430

Sounds + Graphics = Magic

REM *** SEESAW ***
:
REM ** SET UP HOOK STRINGS
· · H1$ = 1Im--r--u •••• D I I

"
II

Hl$ = Hl$ + "l!1 •••••••• +- -+ ~"
H2$ = II m--r-I!I •••• 11 I I " H2$ = H2$ + "l!1 ••••••• 1-+
PL$ = "~······.· •• I" R$ = "~· •••••••••••••• I"
PH$(l,l)
PH$(1,2)
PH$(2,1)
PH$(2,2)

· ·

= PL$
= PL$
= PL$
= PL$

+ Hl$
+ H2$
+ R$ + Hl$
+ R$ + H2$

II

REM ** SET UP SEESAW STRINGS

~"

SS$(1) = "m -e ':!I"
SS$(2) = "m -e- ~II
T$ = "~~_~_.Q~~Ip~QVQQQQV"' ••••••• I"
SS$(l) = T$ + SS$(l)
SS$(2) = T$ + SS$(2)
· · · · REM ** LOAD IN SPRITE IMAGE
· · FOR N = 12288 TO 12350

READ SPDTA
· POKE N, SPDTA · NEXT N
:
DATA 0, 255, 0, 1 , 129, 128
DATA 3, 0, 192, S, 0, 9S
DATA 12, 0, 48, 24, 231, 24
DATA 48, 1S5, 12, 32, 231, 4
DATA 32, 0, 4, 32, 3S, 4
DATA 38, S0, 100, 35, 129, 19S
DATA 48, 2.31, 12, 2. 4, S0, 2.4
DATA 14, 0, 112, 3, 255, 192
DATA 0, 129, 0, 0, 129, 0
DATA 0, 129, 0, 0, 129, 0
DATA 3 , 231, 192

187

Commodore 64/128 Graphics and Sound Programming

188

1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560 :

· •
REM ** PRINT PROMPTS · · POKE 53281, 0 :REM BKGRNO BLACK
P R I NT II1'Jr DD D DDI!IJ II
P R I NT S P C (10); IIp RES S ~A~ II;
PRINT IIFOR ACTION II
PRINT
PRINT SPC(9); IIPRESS II;
PRINT IIIa.SPACEBARI!I!! TO ENO II

1570 REM ** SET UP SPRITES
1580 :
1590 VIC = 53248 :REM GRAPHICS CHIP
1600 POKE 2040, 192 :REM SPRITE 0 PNTR
1610 POKE 2041, 192 :REM SPRITE 1 PNTR
1620 :
1630 POKE
1640 POKE
1650 POKE
1660 POKE
1670 :
1680 POKE
1690 POKE
1700 POKE
1710 POKE
1720 :

VIC, 92 :REM #0 INIT HR POS
VIC+1, 77 :REM #0 INIT VR POS
VIC+2, 220 :REM #1 INIT HR PS
VIC+3, 150 :REM #1 INIT VR PS

VIC+39, 4 :REM #0 STARTS PRPL
VIC+40, 3 :REM #1 STARTS CYAN
VIC+23, 3 :REM EXPAND VERTICL
VIC+29, 3 :REM EXPAND HORIZNT

1730 POKE VIC+21, 3 :REM SPRITES 0-1 ON
1740 :
1750 :
1760 REM ** INITIALIZE SID
1770 :
1780 SID = 54272
1790 FOR REG = SID TO
1800: POKE REG, 0
1810 NEXT REG
1820 POKE SIO+24, 15

• ·

:REM SOUND CHIP
S10+24

:REM CLEAR IT

:REM MAX VOLUME

REM ** SET VOICE 1 FOR GONG

1830 :
1840
1850
1860
1870
1880

· •
POKE SIO+1, 5
POKE SI0+5, 11

:REM V-1 FREo.
:REM ATK=0, OKY=11

Sounds + Graphics = Magic

1890 POKE SIO+6, 10 :REM SST=0, RLS=10
1900 :
1910 :
1920 REM ** SET VOICE 2 FOR

WHISTLING FLIGHT
1930 :
1940 POKE SIO+12, 12 :REM ATK=0, DKY=12
1950 :

• •
REM ** SET VOICE 3 FOR HOOK CLICK

1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110 :

• · POKE SID+15, 21 :REM V-3 FREQ
POKE SID+20,192 :REM SST=12, RLS=0
• •
• · REM ** INITIALIZE HOOKS, SEESAW
• •
FH = 1
EH = 2
PRINT PH$(FH,
PRINT PHS(EH,
PRINT SSWS(1)

:REM HOOK 1 IS FULL
:REM HOOK 2 EMPTY

1) :REM PRINT HOOK 1
2) :REM PRINT HOOK 2

:REM PRINT SEESAW

2120 REM ** SCAN KEYBOARD
2130 :
2140 GET KPS
2150 IF KP$ = 1111 THEN 2140 :REM SCAN
2160 IF KP$ = IIAII THEN 2230 :REM ACTION
2170 IF KP$ = II II THEN 2980 :REM END IT
2180 GOTO 2140 :REM OTHER KEYS FILTERED
2190 :
2200 :
2210 REM ** RELEASE A SPRITE
2220 :
2230 POKE SID+18,129 :REM START CLICK
2240 PRINT PHS(FH,2) :REM HOOK OPENS
2250 FOR DL = 1 TO 40 : NEXT DL
2260 POKE SID+18, 128 :REM END CLICK
2270 POKE VIC + FH + 38, 3 :REM GO CYAN
2280 :
2290
2300
2310
2320

• · REM ** RELEASED SPRITE DROPS
• · POKE SID+8,80 :REM V-2 INIT FRQ

189

Commodore 64/128 Graphics and Sound Programming

190

2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770

POKE SI0+11,17 :REM WHISTLE ON
FOR N = 78 TO 145
: POKE VIC+(FH*2)-1, N :REM DROP
: POKE SI0+8, 158 - N :REM WISL
NEXT N
POKE SI0+11,16 :REM WHISTLE OFF
· · :
REM ** SEESAW ACTION
· · POKE SI0+4,21 :REM START GONG
PRINT SSW$(3-FH) :REM MOVE SEESAW
POKE VIC+(FH*2)-1,150 :REM MOVE
POKE VIC+(EH*2)-1,146 :REM SPRITES
POKE SI0+4,20 :REM RELEASE GONG

· · REM ** VIBRATE FALLEN SPRITE
· · HR = VIC + (FH*2) - 2
HP = PEEK (HR)
CR = VIC
FOR VB =

POKE
POKE
POKE
POKE
POKE
POKE
POKE
POKE

+ FH + 38
1 TO 5
HR, HP - 4
CR, 1
SI0+1, 6
HR, HP
CR, 2
S I 0+ 1, 4
HR, HP + 4
CR, 7
SI0+1, 5

:REM
:REM
: REM
:REM
:REM
: REM
: REM
:REM
:REM
:REM
:REM
: REM
:REM

HOR REG
HOR POS
COLR RG
6 VIBES
GO LEFT
GO WHIT
HI FREQ,
GO MIOL
GO RED
LO FREo.
GO RGHT
GO YELO
MID FRO. : POKE

NEXT VB
POKE HR, HP
POKE CR, 3

:REM RESTORE POSITION
:REM RESTORE COLOR

· · REM ** SEESAWED SPRITE RISES UP
· · POKE S10+8,80 :REM V-2 INIT FRQ
POKE S10+11,17 :REM WHISTLE ON
FOR N = 145 TO 77 STEP -1

POKE VIC+(EH*2)-1, N :REM RISE
: POKE SI0+8, 158 - N :REM WISL
NEXT N

2780
2790
2800 :

POKE SI0+ll,16
• •

Sounds + Graphics = Magic

:REM WHISTLE OFF

2810 REM ** CAPTURE A SPRITE
2820 :
2830 POKE SI0+18,129 :REM START CLICK
2840 PRINT PH${EH,l) :REM HOOK CLOSES
2850 FOR OL = 1 TO 40 : NEXT OL
2860 POKE SI0+18, 128 :REM END CLICK
2870 POKE VIC + EH + 38, 4 :REM GO PRPL
2880 :
2890 :
2900 REM ** SWITCH FH & EH, GO BACK
2910 :
2920 TEMP = FH : FH = EH : EH = TEMP
2930 GOTO 2140

• •
REM ** END IT, CLEAN UP, GO HOME

2940 :
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040

• •
POKE VIC+21,0
POKE SI0+24,0
POKE VIC+23,0
POKE VIC+29,0
PRINT "w";
• •
END

Fig. 10-5. Listing of the program Seesaw.

into the four strings.

:REM
:REM
:REM
:REM
:REM

Similar techniques are used in lines
1190-1230 to set up two seesaw images. It took
some experimentation to find the keys that
would print out line pieces that gradually rose
and fell. As with the hook images, cursor com
mands and color controls are included in the
strings; placing the seesaws in the correct
screen position becomes a snap.

The same data is used to create both
sprites. Lines 1280-1310 load the data in. The
data itself is stored in lines 1330-1430.

Lines 1480-1540 print the screen
prompts-very straightforward stuff. Then

SPRITES OFF
VOLUME OFF
VERT EXPAND OFF
HORZ EXPAND OFF
CLEAR SCREEN

lines 1590-1730 give the sprites their initial
VIC settings. Rather than try to calculate the
exact sprite positions, I started with an esti
mate and then used intelligent searching
techniques (trial and error) to home in on the
right values.

The images are set, so it's time to prepare
the sounds. SID's first voice will be used for
the gong; its second voice will provide whis
tling flights; and the third voice will create the
clunking hook effects. Lines 1780-1820 clear
the 24 important SID registers and set max
imum volume. Then lines 1870-2000 poke in
the values needed to sculpt the three sounds.

191

Commodore 64/128 Graphics and Sound Programming

Once the program gets going, two
variables will be used to keep track of the hook
and creature situation. FH will contain the
number of the hook that's holding a creature,
and EH will hold the number of the empty
hook. Hook 1 and creature 1 are on the left;
hook 2 and creature 2 are on the right.

Lines 2050-2060 initialize these variables.
Then lines 2070-2090 draw the appropriate
hook and seesaw images. The stage is now set.

10.6.2 Action Breakdown
Lines 2140-2180 form a familiar keyboard

scanning module. Keys other than A or the
spacebar are ignored. Pressing A initiates an
action cycle; pressing the spacebar ends the
program.

The action cycle breaks down into six
modules: First, the creature held in a sky hook
is released. Second, it drops down whistling.
Third, it hits the seesaw, which switches posi
tions, along with the two creatures. Fourth, the
recently-fallen creature vibrates. Fifth, the
other sprite rises up into the air, whistling.
Sixth, the rising sprite gets nabbed by its hook.

Lines 2230-2270 take care of releasing a
sprite. The sky hook noise begins, the hook
opens, there's a short delay, the noise ends;
and the sprite changes color.

Lines 2320-2380 drop the sprite. First, an
initial sound frequency gets set, and the whis
tling sound starts. Then a loop moves the sprite
down the screen, dropping the frequency as
the sprite drops. At the bottom, the whistling
stops. It has also slowly faded in volume dur
ing the trip, thanks to a carefully chosen rate
of volume decay.

Then the falling sprite reaches the seesaw,
and you're ready for the third part of the ac
tion sequence. A gong noise is initiated; the

192

seesaw tilts; the sprite moves; and the gong
noise begins a slow fadeout. All of this occurs
in lines 2430-2470.

Next, lines 2520-2670 vibrate the fallen
sprite. As the frequency of the gong shifts up
and down the scale, the sprite moves back and
forth horizontally and shifts colors. This ac
tivity is repeated several times. Then, as the
clanging gong fades away, the shaken creature
comes to rest, restored to a healthy cyan color.

Now comes the fifth module of the action
cycle. The other sprite rises into the air. Com
pare lines 2720-2780 to lines 2320-2380, which
dropped the hanging sprite creature. The two
modules are very much alike. First, voice #2
gets an initial frequency. Then the sound is
gated. The module's main loop comes next. As
the sprite moves up the screen, voice #2's fre
quency rises. Finally, at the top, the whistling
sound is released.

Now comes the sixth part of the action.
Just as a sprite was released in the first part,
now the rising sprite is captured. It all happens
in lines 2830-2870. The hook noise begins; the
hook clamps shut; there's a bit of a delay; the
hook noise ends; the sprite is drained of
freedom's color.

The action's over, and the sprites have ex
changed situations. The empty hook is now
full, the once-full hook is empty. Line 2920 up
dates the variables EH and FH to reflect those
sobering facts, and then line 2930 bounces
back to read the keyboard again.

10.6.3 Cleanup and Reflection
Lines 2980-3020 perform a standard

cleanup operation. You might choose to be
more thorough about resetting the SID and
VIC registers.

When I wrote this program, the broad

outlines of the action were implemented first.
Fine-tuning the sounds and sprite motions was
saved for last. This method of problem solv
ing worked well with Seesaw.

10.7 SOME LAST THOUGHTS
ABOUT COMBINING
SOUND AND GRAPHICS

Before I fade into the final end-of-chapter
exercises, here are some things to keep in mind
when you're combining sound and graphics:

Timing

Fine Tuning

Simplicity

Unity of Design

A very simple ef
fect can have a
solid impact when
it comes at the
right moment.
When every ele
ment fits
seamlessly into the
whole effect,
synergy is max
imized.
Remove excess
decoration. Every
sound and image
should have a clear
purpose.
The individual
elements must aid
one another.

There's a lot of sound and graphics magic
waiting inside your Commodore 64 and 128.
Start waving your wand.

10.8 CHAPTER SUMMARY
In this chapter you explored three pro

grams that mix sound and graphics. More
specifically, I explained:

Sounds + Graphics = Magic

* How to cultivate synergy, so that the
whole effect of a graphics/sound com
bination is greater than the sum of the
individual parts

* Techniques that are useful for solving
complex programming tasks

* The program Bouncer, which mixes
character and sprite graphics with sim
ple sound effects and introduces a sim
ple wall-bounding technique

* The program Pianorgan, which uses
complex character strings and a speeded
up keyboard scan to create an animated
musical instrument

* Coordinating sounds and images in sub
tle, artistic ways

* The program Seesaw, with a com
plicated set of actions involving all three
SID voices, two sprites, and complex
character strings

I hope you've enjoyed our excursions into
sound and graphics on the Commodore 64 and
128. Stay curious, keep on learning, and have
fun!

10.9 EXERCISES

10.9.1 Self Test
My favorite answers can be found in Sec

tion 10.9.3.

1. (10.1) When the whole becomes greater
than the sum of the parts, you can call it

2. (10.2) Breaking a complex programming
task down into successively simpler pieces
is known as ______ _

3. (10.3) Parts of a picture that stay still are
known as elements,

193

Commodore 64/128 Graphics and Sound Programming

and parts that move are ____ _
elements.

creatures move vertically as well as
horizontally when they hit the seesaw.

4. (10.3) The program Bouncer uses
______ expressions to check 10.9.3 Answers to Self Test
for blip/wall collisions.

5. (10.4) Speeding up the _____ _
1. synergy
2. top down structured programming

scan in Pianorgan gives us a more respon
sive musical instrument.

3. static; dynamic

6. (10.6) In Seesaw, the complex action cy-
4. Boolean
5. keyboard

cle has been brokeninto ____ _ 6. six
smaller modules.

10.9.2 Programming Exercises 10.9.4 Possible Solutions
to Programming Exercises

1. Change the program Bouncer so it
makes noises in a more regular pat
tern when the sprite bounces into
walls.

2. Change the program Pianorgan so the
heads shimmer colorfully when they
sing.

3. Change the program Seesaw so the

1. Load in the program Bouncer. Then
type in the lines shown in Fig. 10-6.

2. Load in the program Pianorgan. Then
type in the lines shown in Fig. 10-7.

3. Load in the program Seesaw. Then
type in the lines shown in Fig. 10-8.

1000
1463
1465
1468
1812
1814
1816
1818
1830

REM *** ROLLER BOUNCER *** · · FQ = 10 :REM STARTING FREQUENCY
FC = 1.3 :REM FREQ CHANGE FACTOR
FQ = FQ * FC
IF FQ > 100 THEN FC = 0.6
IF FQ < 10 THEN FC = 1.3
· •
POKE 510+1, FQ

Fig. 10-6. A possible solution to programming exercise 1.

1000 REM *** RAINBORGAN ***
1275 JM$ = PM$
1305: JM$(N) = PM$(N) + JM$
2093 POKE 646,((PEEK(646)+1)ANO 15)OR 1
2096 PRINT JM$(KP)

Fig. 10-7. A possible solution to programming exercise 2.

194

Sounds + Graphics = Magic

1000
2533
2535
2645
2740
2765

REM *** MORE SEESAW ***
VR = HR + 1
VP = PEEK (VR)
: POKE VR, VP - VB*2
FOR N = 145 TO 77 STEP -1.6

POKE VR,
VP + (N)115) * (N/3 - 38)

Fig. 10-8. A possible solution to programmli1g exercise 3.

195

Appendix A

VIC Register Layout

196

V
IC

 s
ta

rt
in

g
a

d
d

re
ss

 Is
 5

32
48

 (
$0

00
0)

I
R

eg
is

te
r n

Ui
n.-

bi.
r. -

--
]
I B

It
B

It
B

It
B

It
Bi

t
Bi

t
B

It
Bi

t
11

--ih
iS

 re
gi

st
er

D

ec
im

al

I
J-t

ex
_

_
7

6
S

4
3

2
1

0
I

co
nt

ro
ls

:
-
-
-
-
-
-
-
-
-

0
$0

0
SO

SO

SO

SO

SO

·S

O

SO

SO

8p
rit

e
11

0
!

H
7

H
6

HS

H
4

H
3

H
2

H1

H
O

ho

riz
on

ta
l p

os
it

io
n

I

1
$0

1
SO

SO

SO

SO

SO

SO

SO

SO

Sp

rit
e

11
0

!
V

7

V
6

VS

V
4

V
3

V
2

V1

VO

ve
rti

ca
l p

os
it

io
n

I

2
$0

2
81

81

81

81

81

81

81

81

S

pr
it

e
.1

I

H
7

H
6

H
5

H
4

H
3

H
2

H1

H
O

ho

riz
on

ta
l p

os
iti

on

3
$0

3
81

81

81

81

81

81

81

81

S

p
ri

te
 .

1

V
7

V

6
VS

V

4
V

3
V

2
V1

VO

ve

rti
ca

l p
os

iti
on

4
$0

4
S

2
S

2
S

2
S

2
S

2
S

2
S

2
S

2
S
p
r
i
t
e
~

H
7

H
6

H
S

H
4

H
3

H
2

H1

HO

ho
riz

on
ta

l p
os

it
io

n

S
$0

5
S

2
S

2
S

2
S

2
S

2
S

2
S

2
S

2
S

pr
it

e
~

V
7

V

6
VS

V

4
V

3
V

2
V1

YO

ve

rti
ca

l p
os

it
io

n

6
$0

6
S3

S

3
S

3
S

3
S3

S

3
S3

S3

Sp

rit
e

g
a

H

7
H

6
H

S
H

4
H

3
H

2
H1

H

O

ho
riz

on
ta

l p
os

it
io

n

7
$0

7
S

3
S

3
S3

S3

S3

S

3
S3

S3

I
~
_
g
a

i
V

7

V
6

VS

V
4

V
3

V
2

V1

YO

ve
rt

ic
al

 p
os

iti
on

8
$

0
8

S

4
S

4
S

4
S

4
S

4
S

4
S

4
S

4
S

p
ri

te
 1

M

H
7

H
6

H
5

H
4

H
3

H
2

H1

HO

ho
riz

on
ta

l p
os

it
io

n

9
$

0
9

S

4
S

4
S

4
S

4
S

4
S

4
S

4
S

4
Sp

rit
e

1M

V
7

V

6
VS

V

4
V

3
V

2
V1

VO

ve

rt
ic

al
 p

os
iti

on

S
5

S
5

S
5

S
5

S
5

S
5

S
5

S
5

S
p

ri
te

 ~

I

10

$O
A

I
H

7
H

6
HS

H

4
H

3
H

2
H1

HO

ho

riz
on

ta
l p

os
it

io
n

11

$O
B

S
5

S
5

S
5

S
5

S
5

8S

8S

S
5

8p
rit

e
.S

V

7

V
6

VS

V
4

V
3

V
2

V1

VO

ve
rti

ca
l p

os
iti

on

12

$O
C

S

6
S

6
S

6
S

6
S

6
S

6
S

6
S

6
S

p
ri

te
 "

H

7
H

6
H

S
H

4
H

3
H

2
H1

HO

ho

riz
on

ta
l p

os
it

io
n

13

$0
0

S
6

S
6

S
6

S
6

S
6

S
6

S
6

S
6

S
p

ri
te

 "

V
7

V

6
V

S
V

4
V

3
V

2
V1

VO

ve

rt
ic

al
 p

os
it

io
n

14

$O
E

87

S
6

87

87

87

87

87

87

Sp
rit

e
n

H
7

H
6

H
S

H
4

H
3

H
2

H1

HO

ho
riz

on
ta

l p
os

iti
on

1S

$O
F

87

87

87

87

87

87

87

87

S
pr

it
e
n

V
7

V

6
VS

V

4
V

3
V

2
V1

V1

ve

rt
ic

al
 p

os
iti

on

87

S
6

S
5

S
4

S3

S
2

81

SO

M
os

t s
ig

ni
fic

an
t

16

$1
0

H
8

H
8

H
8

H
8

H
8

H
8

H
8

H
8

bi
t o

f
ho

riz
on

ta
l

po
si

tio
ns

--.

~

R
as

te
r

E
xt

e
n

d
e

d

B
It

m
a

p

B
la

nk

24
 o

r 2
5

V
er

tic
al

V

er
tic

al

V
er

tic
al

M

is
ce

lla
ne

ou
s

17

$1
1

bi
t 8

co

lo
r

m
od

e
sc

re
en

ro

w
s

o
f

sc
ro

ll
sc

ro
ll

sc
ro

ll
fu

nc
tio

ns

te
xt

 m
od

e
te

xt

bi
t
2

bi
t

1
bi

t 0

--
-
-

-
-
-

~

co

CD

18

19

20

21

22

23

24

25

26

27

28

29

30

31

'-
--

--
--

--
-

$1
2

$1
3

$1
4

$1
5

$1
6

$1
7

$1
8

$1
9

$
lA

$
lS

$
lC

$
1

0

$
lE

$
lF

R
as

te
r

R
as

te
r

bi
t

7
bi

t
6

LP

LP

H
7

H
6

LP

LP

V
7

V

6

S
7

8
6

O

n
/o

ff

O
n

/o
ff

-
--

S
7

8
6

E

V

E
V

T
ex

t
T

ex
t

sc
re

en

sc
re

en

bi
t

3
bi

t
2

In
te

rr
up

t
fr

om

-
V

IC
 --

--
S

7
8

6

S
S

P

S
S

P

S
7

8

6

M
C

M

M
C

M

S
7

S

6
E

H

E
H

S
7

8
6

S

S
C

S

S
C

S
7

S

6
S

S
C

ss

e

R
as

te
r

R
as

te
r

bi
t

5
bi

t
4

LP

LP

H
5

H
4

LP

LP

V
5

V
4

S
5

S
4

O
n

/o
ff

O

n
/o

ff

R
es

et
-

M
ul

ti-
al

w
ay

s
co

lo
r

se
t

to
 0

m

od
e

S
5

S
4

E
V

E

V

T
ex

t
T

ex
t

sc
re

en

sc
re

en

bi
t

1
bi

t
0

--
--

-
-
-

8
5

S

4
S

S
P

S

S
P

8
5

S

4
M

C
M

M

C
M

S
5

54

E
H

E

H

S
5

54

S

S
C

S

8
C

S
5

5

4

S
S

C

S
S

C

R
as

te
r

R
as

te
r

R
as

te
r

R
as

te
r

R
as

te
r

bi
t

3
bi

t
2

bi
t

1
bi

t
0

re
gi

st
er

LP

LP

LP

LP

Li
gh

t
pe

n
H

3
H

2
H

1
H

O

ho
riz

on
ta

l p
os

iti
on

LP

LP

LP

LP

Li
gh

t
pe

n
V

3
V

2
V1

VO

ve

rt
ic

al
 p

os
iti

on

S
3

S
2

S
l

SO

T
ur

n
sp

rit
es

O

n
/o

ff

O
n

/o
ff

O

n
/o

ff

O
n

/O
ff

o

n
/o

ff

38
 o

r
40

 H
or

iz
on

ta
l H

O
riz

on
ta

l
H

or
iz

on
ta

l
M

is
ce

lla
ne

ou
s

co
lu

m
ns

 s
cr

ol
l

sc
ro

ll
sc

ro
ll

fu
nc

tio
ns

of

 t
ex

t
bi

t 2

bi
t 1

bi

tO

S
3

8
2

S

l
SO

E

xp
an

d
sp

rit
e

E
V

E

V

E
V

E

V

(2
x)

 v
er

tic
al

ly

C
ha

r
C

ha
r

C
ha

r
M

em
or

y
po

in
te

rs

de
fs

de

fs

de
fs

-
-

fo
r

ch
ar

ac
te

r
bi

t
2

bi
t

1
bi

t
0

di
sp

la
y.

 b
it

m
ap

.
&

 s
cr

ee
n

Li
gh

t
S

pr
ite

 t
o

S

pr
ite

 t
o

R
as

te
r

In
te

rr
up

t
pe

n
sp

rit
e

bk
gr

nd

co
un

t
re

gi
st

er

la
tc

he
d

co
lli

si
on

co

lli
si

on

m
at

ch

Li
gh

t
S

pr
ite

 t
o

S
pr

ite
 t

o
R

as
te

r
E

na
bl

e
pe

n
sp

rit
e

bk
gr

nd

co
un

t
in

te
rr

up
ts

la

tc
he

d
co

lli
si

on

co
lli

si
on

m

at
ch

S
3

S
2

S
l

SO

8p
ri

te
 t

o
ba

ck
gr

ou
nd

S

S
P

S

S
P

S

S
P

S

S
P

pr

io
rit

ie
s

S
3

S
2

S
l

SO

S
el

ec
t

m
ul

tic
ol

or

M
C

M

M
C

M

M
C

M

M
C

M

m
od

e
fo

r
sp

rit
es

5
3

S

2
S

l
SO

E

xp
an

d
sp

rit
e

E
H

E

H

E
H

E

H

(2
x)

 h
O

riz
on

ta
lly

S
3

S
2

S
l

SO

S
pr

ite
 t

o
sp

rit
e

S
S

C

S
S

C

S
S

C

S
S

C

co
lli

si
on

S
3

S
2

S
l

SO

S
pr

ite
 t

o
ba

ck
-

S
S

C

S
S

C

S
S

C

S
S

C

gr
ou

nd
 c

ol
lis

io
n

.... CO

CO

R
eg

is
te

r
nu

m
be

r

D
ec

im
al

I

H
ex

32

$2
0

3
3

$2

1

34

$2
2

3
5

$2

3

3
6

$2

4

3
7

$2

5

38

$2
6

39

$2
7

40

$2
8

41

$2
9

42

$2
A

43

$2
B

4
4

$2

C

45

$
2

0

46

$2
E

I B
it

I B
it

I
7

6

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

V
IC

 s
ta

rt
in

g
ad

dr
es

s
is

 5
32

48
 (

$
0

0
0

0
)

B
it

I B
it

I B
it

I B
it

5
4

3
2

B
or

de
r

B
or

de
r

-
-

C
3

C

2
B

kg
O

B

kg
O

-

-
C

3
C

2
B

kg
 1

B

kg
 1

-

-
C

3

C
2

-
-

B
kg

2

B
kg

2

C
3

C
2

-
-

B
k
g

3

B
kg

C

3
C

2
5

M
C

O

5
M

C
O

-

-
C

3
C

2
5

M
C

 1

5
M

C
 1

-

-
C

3
C

2

5
0

5

0

-
-

C
3

C

2
51

51

-

-
C

3
C

2
5

2

5
2

-

-
C

3

C
2

53

5
3

-

-
C

3
C

2
5

4

5
4

-

-
C

3
C

2

5
5

5

5

-
-

C
3

C
2

5
6

56

-

-
C

3
C

2
5

7

5
7

-

-
C

3

C
2

I B
it

I B
it

I r
T

hi
s

re
gi

st
er

I

1
0

co
nt

ro
ls

:

B
or

de
r

B
or

de
r

B
or

de
r

co
lo

r
C

1
C

O

B
kg

 0

B
kg

 0

B
ac

kg
ro

un
d

#
0

C

1
C

O

co
lo

r
B

kg
 1

B

kg
 1

B

ac
kg

ro
un

d
#1

C

1
C

O

co
lo

r
B

kg
2

B

kg
2

B

ac
kg

ro
un

d
#

2

C
1

C
O

co

lo
r

B
k
g

3

B
k
g

3

B
ac

kg
ro

un
d

#
3

C

1
C

O

co
lo

r
5

M
C

O

5
M

C
O

5p

ri
te

 m
ul

tic
ol

or

C
1

C
O

#

0

5
M

C
 1

5

M
C

 1

5
p

ri
te

 m
ul

tic
ol

or

C
1

C
O

#1

5
0

5

0

5p
ri

te
 #

0

C
1

C
O

co

lo
r

51

51

5p
ri

te
 #

1
C

1
C

O

co
lo

r
5

2

5
2

5p

ri
te

 #
2

C

1
C

O

co
lo

r
5

3

5
3

5p

ri
te

 #
3

C

1
C

O

co
lo

r
5

4

5
4

5p

ri
te

 #
4

C

1
C

O

co
lo

r

5
5

5

5

5p
ri

te
 #

5

C
1

C
O

co

lo
r

56

5
6

5

p
ri

te
 #

6

C
1

C
O

co

lo
r

5
7

5

7

5p
ri

te
 #

7

C
1

C
O

co

lo
r

Appendix B

Screen Memory

200

~
 ..

..
u

11
04

11
44

11

84

12
24

12
64

13
04

13

44

13
84

14
24

14
64

15
04

15
44

15
84

16
24

16

64

17
04

17
44

17
84

18
24

18
64

19

04

19
44

19
84

o l ~ ~

o

5
10

5
10

C
ol

um
n

1
5

-
-

20

15

20

C
ol

um
n

25

30

35

25

30

3
5

39

ru
;;

il

~

o
+

-1
0

6
3

5
~
1
2
6
3

1
0

f+
1

4
6

3

1
5

+
-1

6
6

3

2
0

+
-1

8
6

3

2
4
~
2
0
2
3

L
J

39

Appendix C

Color Memory

202

I\
) ~

55
37

6

55
41

6
55

45
5

55
49

6

55
53

6
55

57
6

55
61

6

55
65

6

55
69

6
55

73
6

5
5

n
6

55

81
6

55
85

6
55

89
6

55
93

6

55
97

6
56

01
6

56
05

6

56
09

6
56

13
6

56
17

6

56
21

6

56
25

6

-
n

• • • • • • • • • • • • • .. • o
5

10

L
-

o
5

10

C
o

lo
r M

e
m

o
ry

C

ol
um

n
15

20

15

20

C
ol

um
n

25

25

30

35

-
..

..
.
L

-
35

30

39
 I

'-
5

5
3

3
5

fs
+

-5
5

5
3

5

1
O~

"'
55

73
5

11 5
 +

-5
5

9
3

5

: 0
+

-5
6

1
3

5

: ~
4

'-
5

6
2

9
5

39

Appendix 0

Screen Display Codes

204

P
ok

e
S

e
t

S
et

P

ok
e

S
et

S

e
t

P
ok

e
S

et

S
et

P

ok
e

S
et

S

et

co
de

1

2
co

de

1
2

co
de

1

2
co

de

1
2

0
e

e
12

8
IY

IY

64

-

-
19

2
-- --

1
R

41

12

9
III

m

6

5

•
R

19

3
C

III

2

B

b
13

0
UJ

II

6

6

•
B

19

4
II

UJ

3

C

C

13
1

[I

fI

67

-

C

19
5
-[

lj

-
4

D

d
13

2
La

m

68

-

D

19
6

-
L

a
l

-
5

E

It

13
3

Ii

Ii
)

69

-
E

-

I
i'

19

7
•

6
F

.,

13
4

II

D

70

-
F

19

8
-II

-

7
6

9
13

5
OJ

&iJ

71

I

6
19

9
.1

UJ

!

8
H

h

13
6

W

II

72

•
H

20

0
I.

W

9

I
i

13
7

U

II

73

"
I

20
1

:I

U

10

3
j

13
8

U

IJ

74

"
3

20
2

.:
IJ

11

Ie

k

13
9

tI

[I

75

~

Ie

20
3

:.
t
il

12

L

1
14

0
II

0

76

L
L

20

4
•

II

13

"
..

14
1

Ii

I:

77

,

"
20

5

"
Ii

14

II

n

14
2

iii

m

78

/
II

20

6
ar.

li.I

15

0
0

14
3

l!l

m

79

r
0

20
7

•
l!l

16

P

P

14
4

Iii

rD

80

,

P
20

8
•

Iii

17

Q

q
14

5
II

II

81

•

Q

20
9

[]

II

18

R

r
14

6
13

iii

82

-

R

21
0

•
13

-

19

S
Ii

14

7
id

m

8

3

•
S

21
1

L4

id

~
20

T

t

14
8

U

II

84

I
T

21

2
II

U

~
-

~
-

-
-

-
-

-
-

18 C
J)

P

ok
e

S
et

S

et

P
ok

e
S

et

S
et

P

ok
e

S
et

S

et

P
ok

e
S

et

S
et

co
de

1

2_

co
de

1

2
co

de

1
2

co
de

1

2

21

U

U

14
9

UJ

m

85

,
U

21

3
r.

W

22

U

U

15
0

II

La

86

)(

U

21
4

.-. &

W

23

W

...
15

1
It

~

87

a
W

21

5
m

 I
t

24

X

X

15
2

t:i

a
88

~

X

21
6

~

t:i

25

Y

y
15

3
~

m

89

I
y

21
7

II

~

26

Z

Z

15
4

t!t

&

90

•
Z

21

8
C

t!t

27

[

[
15

5
U

U

91

+

+

21

9
••

••

••

••

,2

8
£.

£

,
15

6
g

g
92

~

~
22

0
:I

:I

29

]

]
15

7
U

U

93

I

I
22

1
II

II

30

...

...
15

8
n

n
9

4

ft
'

~

22
2

In

=t

31

.. .
.

15
9

C

C

95

~

~

22
3

~

~

32

16
0

•
•

96

22
4
•

•
3

3

•
•

16
1

II

II

97

I
I

22
5

I
I

-
-

34

I
I

I
I

16
2

II

II

98

--
22

6
- -

35

•
•

16
3

• •
•

••
•

99

-
-

22
7

•
•

ii
i

ii
i

3
6

$

$
16

4
II

II

10

0
-

-
22

8
•

•
37

X

X

16

5
.. ..

 10
1

I
I

22
9

•
•

3
8

&

&

16

6
~

~

10
2

=t

=t

23
0

§
§

39

,
,

16
7

•
•

10
3

I
I

23
1

•
•

4
0

(

(
16

8
II

II

10

4
....

....
23

2
II

II

41

)

)
16

9
II

II

10

5
,..

"
23

3
~

•

42

.. ..
 1

70

...
...

10
6

I
I

23
4'

•

•
...

...
-

P
ok

e
S

et

S
et

P

ok
e

S
et

S

e
t

P
ok

e
S

e
t

S
e

t
P

ok
e

S
e

t
S

e
t

co
de

1

2
co

de

1
2

co
de

1

2
co

d
e

1

2
43

+

+

17

1
II

II

10

7
l-

I-
23

5
I:

I:

44

~

~

17
2

•
•

10
8

•
•

23
6

•
•

45

-
-

17
3

II

II

10
9

..
..

23
7

&:

&:

46

•
•

17
4

•
•

11
0

..
..

23
8

:I

:I

47

./

./

17
5

•
•

11
1

-
23

9
•

•
-

48

8
8

17
6

bl

bl

11
2

r
r

24
0

r.
r.

49

1.

1.

17
7

U

U

11
3

.&
.

.&
.

24
1

••

••

- -
50

2

2
17

8
II

f!i

11

4
lIP

lIP

24

2
- -•• •

•
51

3

3
17

9
~

~

11
5

..
..

24
3

:1
:1

52

4
4

18
0

II!

II!

11
6

I
I

24
4

•
•

53

~

~

18
1

la

la

11
7

1
1

24
5

•
•

54

6
6

18
2

[d

[d

11
8

1
1

24
6

•
•

55

T

T

18
3

~

~

11
9

-
-

24
7

•
•

56

8
8

18
4

l!J

l!J

12
0
-

-
24

8
•

•
57

9

9
18

5
Hl

Hl

12

1

-
-

24
9

•
•

58

-
-

18
6

• •
 12

2
.J

tI

25

0
•

II

-
-

59

-
-

18
7

• •
 12

3
25

1
•

•
~

~

•
•

60

(
(

18
8

•
•

12
4

•
•

25
2

I.

I.
 '

61

-

18
9

iii

iii

12
5

..
..

25
3

:I

:I

-
-

62

:>
:>

19
0

II

II

12
6

•
•

25
4

•
•

~

.....
.

63

?
?

19
1

•
•

12
7

.. .
. 2

55

~

~

-
-

'
-
-
-
-
-

~

Appendix E

Display Icons

208

C
O

L
O

R

IC
O

II
S

Ic
on

K

ey
(s

)
to

 p
re

ss

W
h

a
t

it
do

es

Ic
on

K

ey
(s

)
to

 p
re

ss

W
ha

t
it

do
es

•
C

T
R

L-
1

T
ex

t
co

lo
r

bl
ac

k
~

c-
-1

T

ex
t

co
lo

r
or

an
ge

Ii

C
T

R
L-

2
T

ex
t

co
lo

r
w

hi
te

r:

C
E

 -
2

T

ex
t

co
lo

r
br

ow
n

g
)

C
T

R
L-

3
T

ex
t

co
lo

r
re

d
~:
4

C
::

-
3

T
ex

t
co

lo
r

lig
ht

 r
ed

....
C

T
R

L-
4

T
ex

t
co

lo
r

cy
an

m

C

E
-

4
T

ex
t

co
lo

r
da

rk
 g

ra
y

~

C
T

R
L-

5
T

ex
t c

ol
or

 p
ur

pl
e

~

C
E

-
5

T
ex

t
co

lo
r

m
ed

iu
m

 g
ra

y

0
C

T
R

L-
6

T
ex

t
co

lo
r

gr
ee

n
II

C

E
-

6
T

ex
t

co
lo

r
lig

ht
 g

re
en

=
 C

T
R

L-
7

T
ex

t c
ol

or
 b

lu
e

~

C
::

-
7

T
ex

t
co

lo
r

lig
ht

 b
lu

e

a
C

T
R

L-
8

T
ex

t
co

lo
r

ye
llo

w

••

C
E

-
8

T

ex
t

co
lo

r
••

lig

ht
 g

ra
y

~
.
-
-
-
-
-
-

O
T

H
E

R

IC
O

N
S

Ic
on

K

ey
(s

) t
o

pr
es

s
W

ha
t i

t d
oe

s
Ic

on

K
ey

(s
) t

o
pr

es
s

W
ha

t
it

do
es

~

C
L

R
/h

o
m

e

C
ur

so
r

~

S
h

if
t-

C
L

R
/h

o
m

e

C
le

a
r

ho
m

e
sc

re
en

I!J

C
R

S
R

1

C
ur

so
r

a
S

h
if

t-
C

R
S

R

1
C

ur
so

r
do

w
n

up

..
+

-
-

C
ur

so
r

II

~

C
ur

so
r

C
R

S
R

~

rig
ht

S

h
if

t-
C

R
S

R

--

-+

le
ft

Ia

C
T

R
L

-9

R
ev

er
se

•

C
TR

L-
O

R

ev
er

se

on

-
of

f

i

Appendix F

Color Codes

210

o - black
1 - white
2 - red
3 - cyan
4 - purple
5 - green
6 - blue
7 - yellow

8 - orange
9 - brown

10 - light red
11 - dark gray
12 - medium gray
13 - light green
14 - light blue
15 - light gray

Appendix G

Normal Sprite Coding Form

211

I\
)

I\
)

c,
;p

lu
m

n
0

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

1

6

17

1
8

19

20

21

2

2

2
3

N

u
m

b
e

r

I
N

u
m

b
e

r

8
1

co
d

e
s

V
al

ue
s

12
8

64

32

16

8
4

2
1

12
8

6
4

32

16

8

4
2

1
1

2
8

6

4

3
2

16

4

2

R
ow

 0

R
ow

 1

R
ow

 2

R
ow

 3

R
ow

 4

I

R
o

w
5

R
o

w
6

R
ow

 7

R
o

w
8

!

R
ow

 9

R
o

w
1

0

R
ow

11

R
ow

 1
2

R
ow

 1
3

R
ow

 1
4

R
ow

 1
5

R
ow

 1
6

R
ow

 1
7

R
ow

 1
8

R
ow

 1
9

R
ow

 2
0

Appendix H

Multicolor Sprite Coding Form

213

I\
) -..

C
ol

um
n

nu
m

be
r

V
al

ue
s

R
ow

 0

R
ow

 1

R
ow

 2

R
ow

 3

R
ow

 4

R
ow

 5

R
ow

 6

R
ow

 7

R
ow

 8

R
ow

 9

R
ow

 1
0

R
ow

 1
1

R
ow

 1
2

R
ow

 1
3

R
ow

 1
4

R
ow

 1
5

R
ow

 1
6

R
ow

 1
7

R
ow

 1
8

R
ow

 1
9

R
ow

 2
0

0
1

2

12
8
1 6

4
3

2
:

16

8
1

4

I
I

I
I

I

I
I

I
I

I
I

1
I

I
I

I
I

I
I

1
I

I
I

I
I

I
I

I
1

I
1

I

:
I

I

I
I

I

:
1

I
I

I
I

I
I

I
I

I

I
I

:
I

I
I

I
I

I

:
:

:
T

ra
ns

pa
re

nt

~

sc
re

en
 c

ol
or

c=

J

3
4

5

2
I

1
1

2
8

'6
4

32

1 1
6

I 1 1 I I I : I 1 I I 1 I I I I i I : I l

,
T

! i
I

I
I

I
:

I
I

I
I

I
I

I
I

I
I

I
I

I
:

I
-;

T

i
I

I
I

I
I

I
I

1

I
T

I

I

!
1

M
ul

tic
ol

or

~

re
gi

st
er

 *
0

 c
=

J

6

8
1

4

I I 1 I I I I 1 I I I I i : I I I I 1 : I

7
8

2
~ 1

1

2
8

!
64

I
1

1
I

:
I

1
I

I
I

I
I

l
I

I
I

I
I

I
I

I
I

I
I

I
I

I
:

I
I

I
I

I
I

:
I

1
I

!
I

I
!

S
P
r
i
t
e
~

co
lo

r
0

9
10

11

 I
3

2
1

1
6

8

I
4

2
I

1
1 : I I I I I ~ I I I I : I I ! I I I : !

I
I

:
I

I
I

1
I

I
I

I
I

I
I

I 1
I

1
1

I
I

I
I

I
I

I
:

I
I

I
I

I
:

I
:

:
I

I
I

I
I

I

M
ul

tic
ol

or

~

re
gi

st
er

 *
1

 0

N
um

be
r

co
de

s

Appendix I

Character Coding Form

215

I\
) .. 0
)

B
it

nu
m

be
r

7
6

5
4

3
2

1
0

N
um

be
r

B
it

va
lu

e
12

8
64

32

16

8

4
2

1
co

de
s

B
yt

e
0

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

B
yt

e
5

B
yt

e
6

B
yt

e
7

Appendix J

Multicolor
Character Coding Form

217

Bit
value

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

1
1
I

:

• 128

Background
#0 color
(screen color)

218

I

I
I

I
I

I

I
I ,
I
I

I
I
I

I
64 32 I 16

I ,
I
I

I

I

I

I
I

;
I

..1

Background
#1 color

8
I ,

4 2 I
I

i
I

•
;
I
I

Background
#2 color

1
1
I

I

:
I
I
I

I
I
I

:
I
I

1
Number
codes •

Lower 3
bits of color
memory
color

Appendix K

2H X 3V Character
Block Coding Form

219

~28 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

220

Appendix L

SID Register Layout

221

I\
)

I\
)

I\
)

R
eg

is
te

r
nu

m
be

r
D

ec
im

al

I
H

ex

0
$

0
0

1
$0

1

2
$0

2

3
$0

3

4
$

0
4

5
$0

5

6
$0

6

7
$0

7

8
$0

8

9
$

0
9

10

$O
A

11

$O
B

12

$O
C

13

$
0

0

I B
it

I B
it

I
7

6

F
R

7
F

R
6

F
R

15

F
R

14

P
W

7
P

W
6

-
-

N
oi

se

P
ul

se

A
T

K
3

A
T

K
2

S
S

T
3

S
S

T
2

F
R

7
F

R
6

F
R

15

F
R

14

P
W

7
P

W
6

-
-

N
oi

se

P
ul

se

A
T

K
3

A
T

K
2

S
S

T
3

S
S

T
2

1
-
.-

-
-
-

-

S
ID

 s
ta

rt
in

g
ad

dr
es

s
is

 5
42

72
 (

$
0

4
0

0
)

B
it

I B
it

I B
it

I B
it

5
4

3
2

F
R

5
F

R
4

F
R

3
F

R
2

F
R

13

F
R

12

F
R

ll

F
R

10

P
W

5
P

W
4

P
W

3
P

W
2

-
-

P
W

11

P
W

10

S
aw

-
T

ria
n-

R
in

g
to

ot
h

gu
la

r
T

es
t

m
od

A
T

K
l

A
TK

O

D
C

Y
3

D
C

Y
2

S
S

T1

S
S

TO

R
LS

3
R

LS
2

F
R

5
F

R
4

F
R

3
F

R
2

F
R

13

F
R

12

FR
11

F

R
10

P
W

5
P

W
4

P
W

3
P

W
2

-
-

P
W

11

P
W

10

S
aw

-
T

ria
n-

T
es

t
R

in
g

to
ot

h
gu

la
r

m
od

A
T

K
l

A
TK

O

D
C

Y
3

D
C

Y
2

S
S

T
l

S
S

TO

R
LS

3
R

LS
2

I B
it

I B
it

i
1

0
T

hi
s

re
gi

st
er

co

nt
ro

ls
:

F
R

l
FR

O

I
Lo

w
 b

yt
e

o
f

fr
eq

ue
nc

y

F
R

9
F

R
8

H
ig

h
by

te
 o

f
fr

eq
ue

nc
y

P
W

l
P

W
O

P
W

9
P

W
8

Lo
w

 b
yt

e
o

f
pu

ls
e

w
id

th

<

H
ig

h
ni

bb
le

0 o·

o

f
pu

ls
e

w
id

th

CD

G
at

e
an

d
w

a
ve

-
S

yn
c

G
at

e
fo

rm
 c

on
tr

ol

D
C

Y
l

D
C

Y
O

A

tt
ac

k/
de

ca
y

R
L

S
l

R
LS

O

S
u

st
a

in
/ r

el
ea

se

Lo
w

 b
yt

e
o

f
F

R
l

FR
O

fr

eq
ue

nc
y

H
ig

h
by

te
 o

f
F

R
9

F
R

8
fr

eq
ue

nc
y

P
W

l
P

W
O

L

o
w

b
yt

e
 o

f
pu

ls
e

w
id

th

H
ig

h
ni

bb
le

 o
f

<

0

P
W

9
P

W
8

pu
ls

e
w

id
th

o·

CD

J
\)

S
yn

c
G

at
e

G
at

e
an

d
w

av
e-

fo
rm

 c
on

tr
ol

D
C

Y
l

D
C

Y
O

A

tt
a

ck
/d

e
ca

y

R
L

S
l

R
LS

O

S
u

st
a

in
/ r

el
ea

se

~
-

R
eg

is
te

r
nu

m
be

r
I ~t

I B

it

I B
it

I B
it

I B
it

I B
it

I B
it

I B
it

II
T

hi
s

re
gi

st
er

I

D
ec

im
al

I

H
ex

6

5
4

3
2

1
0

co
nt

ro
ls

:

14

$O
E

F
R

7
F

R
6

F
R

5
F

R
4

F
R

3
F

R
2

F
R

l
FR

O

Lo
w

 b
yt

e
o

f
fr

eq
ue

nc
y

1
5

$O

F
F

R
15

F

R
14

F

R
13

F

R
12

F

R
ll

F
R

10

F
R

9
F

R
8

H
ig

h
by

te
 o

f
fr

eq
ue

nc
y

1
6

$1

0
P

W
7

P
W

6
P

W
5

P
W

4
P

W
3

P
W

2
P

W
l

P
W

O

Lo
w

 b
yt

e
o

f
p

u
ls

e
 w

id
th

1
7

$1

1
P

W
ll

P
W

10

P
W

9
P

W
8

H
ig

h
ni

bb
le

~

-
-

-
-

o
f

pu
ls

e
w

id
th

(;

R
in

g
CD

1
8

$1

2
N

oi
se

P

ul
se

S

aw
-

T
ria

n-
T

es
t

S
yn

c
G

at
e

G
a

te
 a

nd

Co
l

to
ot

h
gu

la
r

m
od

. w

av
ef

or
m

. c
on

tr
ol

19

$1
3

A
T

K
3

A
T

K
2

A
TK

1
A

TK
O

D

C
Y

3
D

C
Y

2
D

C
Y

1
D

C
Y

O

A
tt

ac
k/

de
ca

y

20

$1
4

S
S

T
3

S
S

T
2

S
S

T
l

S
S

TO

R
LS

3
R

LS
2

R
S

L1

R
LS

O

S
us

ta
in

/r
el

ea
se

21

$1
5

-
-

-
-

C
F

R
2

C
F

R
l

C
FR

O

Lo
w

 3
 b

its
 o

f
cu

to
ff

/
-

ce
nt

er
 fr

eq
ue

nc
y

"T
I

22

$1
6

C
F

R
10

C

F
R

9
C

F
R

8
C

F
R

7
C

F
R

6
C

F
R

5
C

F
R

4
C

F
R

3
H

ig
h

8
bi

ts
 o

f c
u

to
ff

/
m

ce

nt
er

 f
re

qu
en

cy

:::.

~
23

$1

7
R

E
S

3
R

E
S

2
R

E
S

1
R

E
S

O

F
ilt

er

F
ilt

er

F
ilt

er

F
ilt

er

R
e

so
n

a
n

ce
/

C

ex
te

rn
al

V

3
V

2
V

l
fil

te
r

3 CD

V
3

H

ig
h

B
an

d
Lo

w

24

$1
8

V
ol

um
e

V
ol

um
e

V
ol

um
e

V
ol

um
e

F
ilt

er
 m

o
d

e
l

si
le

nt

pa
ss

pa

ss

pa
ss

3

2
1

0
vo

lu
m

e

G
P

X

$1
9

G
P

X

G
P

X

G
P

X

G
P

X

G
P

X

G
P

X

G
P

X

G
am

e
pa

dd
le

 X

25

7
6

5
4

3
2

1
0

G
P

Y

G
P

Y

G
P

Y

G
P

Y

G
P

Y

G
P

Y

G
P

Y

G
P

Y

G
am

e
pa

dd
le

 Y

26

$2
0

7
6

5
4

3
2

1
0

~
V

30

V
30

V

30

V
30

V

30

V
30

CD

V

30

V
30

V

oi
ce

 3
 o

sc
ill

at
or

...

2
7

$2

1
7

6
5

4
3

2
1

0
V

3E

V
3E

V

3E

V
3E

V

3E

V
3E

V

3E

V
3E

V

oi
ce

 3
 e

nv
el

op
e

2
8

$2

2
7

6
5

4
3

2
1

0

~

Appendix M

Note Values

224

~l Note jFreqUe:) SID]Hi9h b~:l LOWV name in freq. of SID of SID
hertz setting freq. set. freq. set

0 C 16.4 269 1 13
0 CII 17.3 284 1 28
0 0 18.4 302 1 46
0 Oil 19.4 318 1 62
0 E 20.6 338 1 82
0 F 21.8 358 1 102
0 FII 23.1 379 1 123
0 G 24.5 402 1 146
0 (311 26.0 427 1 171
0 A 27.5 451 1 195
0 All 29.1 477 1 221
0 B 30.9 507 1 251

1 C 32.7 536 2 24
1 CII 34.6 568 2 56
1 0 36.7 602 2 90
1 Oil 38.9 638 2 126
1 E 41.2 676 2 164
1 F 43.7 717 2 205
1 FII 46.2 758 2 246
1 G 49.0 804 3 36
1 Gil 51.9 851 3 83
1 A 55.0 902 3 134
1 All 58.3 956 3 188
1 B 61.7 1012 3 244

2 C 65.4 1073 4 49
2 CII 69.3 1137 4 113
2 0 73.4 1204 4 180
2 Oil 77.8 1276 4 252
2 E 82.4 1352 5 72
2 F 87.3 1432 5 152
2 FII 92.5 1517 5 237
2 G 98.0 1608 6 72
2 Gil 103.8 1703 6 167
2 A 110.0 1804 7 12
2 All 116.5 1911 7 119
2 B 123.5 2026 7 234

3 C 130.8 2146 8 98
3 CII 138.6 2274 8 226
3 0 146.8 2408 9 104
3 Oil 155.6 2553 9 249
3 E 164.8 2703 10 143
3 F 174.6 2864 11 48
3 FII 185.0 3035 11 219
3 G 196.0 3215 12 143
3 Gil 207.7 3407 13 79
3 A 220.0 3609 14 25
3 All 233.1 3824 14 240
3 B 246.9 4050 15 210

225

Note Values

~
Note Frequency SiD.... H~h byle Low ~
name in setting of SID of SID

/ hertz / / freq . ./ freq. set

4 C 261.6 4291 16 195
4 C# 277.2 4547 17 195
4 D 293.7 4818 18 210
4 D# 311.1 5103 19 239
4 E 329.6 5407 21 31
4 F 349.2 5728 22 96
4 F# 370.0 6070 23 182
4 G 392.0 6431 25 31
4 G# 415.3 6813 26 157
4 A 4ftO.0 7218 28 50
4 A# 466.2 7648 29 224
4 B 493.9 8102 31 166

5 C 523.3 8584 33 136
5 C# 554.4 9095 35 135
5 D 587.3 9634 37 162
5 D# 622.3 10208 39 224
5 E 659.3 10815 42 63
5 F 698.5 11458 44 194
5 F# 740.0 12139 47 107
5 G 784.0 12861 50 61
5 G# 830.6 13625 53 57
5 A 880.0 14436 56 100
5 A# 932.3 15294 59 190
5 B 987.8 16204 63 76

6 C 1046.5 17167 67 15
6 C# 1108.7 18188 71 12
6 D 1174.7 19270 75 70

6 D# 1244.5 20415 79 191
6 E 1318.5 21629 84 125
6 F 1396.9 22915 89 131
6 F# 1480.0 24278 94 214
6 G 1568.0 25722 100 122
6 G# 1661.2 27251 106 115
6 A 1760.0 28872 112 200
6 A# 1864.7 30589 119 125
6 B 1975.5 32407 126 151

7 C 2093.0 34334 134 30
7 C# 2217.5 36377 142 25
7 D 2349.3 38539 150 139
7 D# 2489.0 40831 159 127
7 E 2637.0 43258 168 250
7 F 2793.8 45831 179 7
7 F# 2960.0 48557 189 173
7 G 3136.0 51444 200 244
7 G# 3322.4 54502 212 230
7 A 3520.0 5n43 225 143
7 A# 3729.3 611n 238 249
7 B 3951.1 64815 253 47

226

Appendix N

ANDing and ORing

ANDing and ORing are logical operations your
Commodore 64 uses to play with bits and check
on the truth of complex expressions. I'll try to
give you a brief glimpse of how they work.

First, a few conventions:

-When the computer tries to decide
whether a number is true or false, any
nonzero number is considered true.

-When the computer looks over a com
parison, and decides that the com
parison is true, it assigns it the value
- 1. A false comparison is assigned
the value O.

Here's a brief program that illustrates
these two conventions at work:

10 IF 8 THEN PRINT "8 IS TRUE"
20 IF 0 THEN PRINT "0 IS TRUE":

GOTO 40

30 PRINT "0 IS FALSE"
40 PRINT (9 = 8)
50 PRINT (9 = 9)

Running the program will give these results:

8 IS TRUE
o IS FALSE
o
-1

The Commodore 64 performs ANDing and
ORing on numbers in the range - 32768 to
+ 32767. The numbers first have any fractional
parts dropped, and then they're converted into
16-bit binary format. Here are some examples:

ORIGINAL FRACTION 16-BIT BINARY
VALUE DROPPED

-1 -1 1111111111111111
254.75 254 0000000011111110

227

ORIGINAL FRACTION 16-BIT BINARY
VALUE DROPPED

513
o

15.4

513
o
15

0000 0010 0000 0001
0000 0000 0000 0000
0000 0000 0000 1111

Note that I have inserted spaces into the
16-bit binary values just to make them easier
for humans to read.

When two numbers are ANDed together,
they're first put into this chopped-off 16-bit
binary format. Then corresponding bits are
ANDed together according to the following ar
bitrary rules:

1 1 o
AND 0

o

o
AND 1

o
AND 0 AND 1

o 1

The result is then converted back to deci
mal form. Here are some examples of ANDing:

AND
1111 1111 1111

AND dQoo 0000 0000
OOOQ OOQO 0000

AND
0000 0000 1111

AND 0000 0000 0000
0000 0000 0000

-1 decimal
0 decimal

1111 binary
0000 binary
0000 binary

0 decimal

255 decimal
15 decimal

1111 binary
1111 binary
1111 binary

15 decimal

In graphics and sound programming on the
Commodore 64, ANDing is often used to turn

228

certain bits in a register off. For example, if
you wanted to turn off bits 4, 5, 6, and 7 in
a register, you'd AND the register value with
the number 15. Take a look at the last exam
ple to see why this is so.

When two numbers are ORed together,
they're first put into the familiar chopped-off
16-bit binary format. Then corresponding bits
are ORed together according to the following
arbitrary rules:

(sound familiar?)

o
~

o

o
OR 1

1

1
ORO

1

1
OR 1

1

The result is then converted back to deci-
mal form. Here are some examples of ORing:

-1 decimal
OR 0 decimal

1111 1111 1111 1111 binary
OR 0000 0000 0000 0000 binary

1111 1111 1111 1111 binary
-1 decimal

537 decimal
OR 131 decimal

0000 0010 0001 1001 binary
OR 0000 0000 1000 0011 binary

0000 0010 1001 1011 binary
67 decimal

In graphics and sound programming on the
Commodore 64, ORing is often used to turn
certain bits in a register on. For example, if
you wanted to turn on bits 0, 1, and 7 in a reg
ister, you'd OR the register value with the
number 131. Take a look at the last example
to see why this is so.

So much for a brief look at ANDing and
~Ring. They're really quite remarkable func
tions. In fact, your Commodore computer

spends most of its time, at its deepest subcon
scious levels, ANDing and DRing away several
million times each second.

229

Appendix 0

Assembly Language
Code For Bit Map Clearing

A number of readers have written to me about
the bit-map clearing routine that first appears
in Fig. 5-5. What's going on? Well, what
follows in an assembly language listing of that
routine. It was written using the Merlin

assembler, available from Roger Wagner
Publishing. I don't have room here to teach you
about assembly language; look to magazine ar
ticles and other books for that. This listing
should be helpful to beginners in the arcane art.

230

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

------------------ program identification ---------------
* * * clear bit map.s *
* * * Clears an 8K bit map in the C-64's memory. This *
* version perches in the middle of BASIC 2.0's memory *
* area. SYS 21248 runs the routine. Developed for the *
* book Commodore 64 Graphics & Sound Programming. *
* * * Version 1.01 *
* 10:18 AM PST July 6, 1983 *
* * * Developed using Glen Bredon's Merlin assembler *
* * * IC) 1985 by Stan Krute and the Camp Creek Institute *
* * *---*

------------------------- constants ---------------------
bitMapBs = 8192 ;base address for the bit map

--------------------- page zero variables ---------------
* *

5300 A9 00
5302 85 FB
5304 A9 20
5306 85 FC

5308: A2 20

530A: AO 00

530C: 98

5300: 91 FB
530F: C8
5310: 00 FB

5312: CA
5313: FO 04

5315: E6 FC
5317: 00 F4

5319: 60

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

indrptrO = $OOFB lindirect addressing pointer

---------------------- set program origin ---------------
ORG $5300 lthat's 21248 in decimal

--------------------------- main ------------------------
* main program block

main LOA
STA
LOA
STA

(I<bitMapBS
indrptrO
(I>bitMapBs
indrPtrO+1

LOX 1132

LOY (10

TYA

linitialize the pointer
lto the start of the bit map

iX will count thru 32 pages of
imemory (32 X 256 = 8192)
iY indexes bytes on a
imemory page
iwe'll be sticking a 0 in
ieach memory location

mainLoop STA
INY
BNE

(indrPtrO),Y lstick a zero in the bit map
ianother byte cleared

mainLoop i256 bytes at a crack

OEX
BEQ mainOone

ianother page of memory done
iif we've done all 32 pages

INC indrptrO+1 inot done yet,so adjust the
BNE mainLoop ipointer & do another page

mainOone RTS ireturn from routine

--End assembly, 26 bytes, Errors: 0

231

Appendix P

Assembly Language

Version of Seesaw

Here's one I would have liked a few years
back. A real (albeit short) assembly language
application with plenty of graphics and sound
examples. The program runs exactly the same

as the program Seesaw (Fig. 10-5). So you can
do some comparison between the two
languages. It was written using the Merlin
assembler. Have fun ...

232

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

------------------ program identification ---------------
* *
*

SEESAW.S

* SYS 32768 starts the program. Little creatures drop
* from animated hooks, and bounce off a seesaw at the
* bottom of the screen. Appropriate sound effects
* accompany the action.
* * Version 1.08
* 5:36 PM PST
*

July 4, 1985

* Developed using Glen Bredon's Merlin assemblers &
* associated tools

* * IC) 1985 by Stan Krute and the Camp Creek Institute
*

*
*
*
*
*
* *
* *
*
* *
*
*
*
* *---*

------------------- standard constants ------------------
CHROUT $FFD2 ;kernal routine for char. output
GETIN $FFE4 ;kernal routine for char. input

pVBlack .. 0 ;a screen poke & VIC color code
pVWhite 1 ;a screen poke & VIC color code
pVRed 2 ;a screen poke & VIC color code

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

pVCyan
pVPurple
pVYeLow

VIC
hPosRgs

vPosRgs

colorRgs =
seeMeRg

vrXReg

hzXReg

border
bkgrndO

SID
V1FrqLo

V1FrqHi

V1WavGat

V1AtkDcy =
V1SstRel =
V2FrqLo

V2FrqHi

V2WavGat

V2AtkDcy

V2SstRel

V3FrqLo

V3FrqHi

V3WavGat

V3AtkDCy

V3SstRel

flltrVol

SIDSize

maxVoL
minVoL

noise
triang
ringMod
gateOn
gateoff

dataptr

spDatSiz

3
4
7

$0000
o

39

21

23

29

32
33

$D400
o

4

5

6

7

8

11

12

13

14

15

18

19

20

24

25

15
o
128
16
4
1
o
2040

63

a screen poke & VIC color code
a screen poke & VIC color code
a screen poke & VIC color code

iaddress of the C-64's video chip
iVIC register offset for
isprite horizontal positions
iVIC register offset for
isprite vertical positions
iVIC register offset for
isprite colors
iVIC register offset for
isprite visibility
iVIC register offset for
ivertical expansion settings
iVIC register offset for
ihorizontal expansion settings
iVIC register # for border color
iVIC register # for backgroundO
icolor

iaddress of the C-64's sound chip
iSID register offset for low
ibyte of voice 1 frequency
iSID register offset for high
ibyte of voice 1 frequency
iSID register offset for voice
iwaveform spec and sound gating
iSID register offset for
ivoice 1 attack/decay
iSID register offset for
ivoice 1 sustain/release
iSID register offset for low
ibyte of voice 2 frequency
iSID register offset for high
ibyte of voice 2 frequency
iSID register offset for voice 2
iwaveform spec and sound gating
iSID register offset for
ivoice 2 attack/decay
iSID register offset for
ivoice 2 sustain/release
iSID register offset for low
ibyte of voice 3 frequency
iSID register offset for high
ibyte of voice 3 frequency
iSID register offset for voice 3
iwaveform spec and sound gating
iSID register offset for
ivoice 3 attack/decay
iSID register offset for
;voice 3 sustain/release
;SID register offset for
;filtration and volume
;number of SID registers

Ito set SID's maximum volume
ito set SID's minimum volume

;SID waveform/gate register value
;SID waveform/gate register value
iSID waveform/gate register value
;SID waveform/gate register value
;SID waveform/gate register value

istarting address for set of
;sprite data pointers
;# of bytes to define a sprite

------------------ character constants ------------------
return 13 ;C-64 ASCII for a carriage return

233

234

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

home
clearScr
upCurs
downCurs
leftCurs =
riteCurs =
rvrsOn
rvrsOff
white
red
cyan
green
yellow
space
topBar
u2MidBar
u1MidBar =
midBar
d1MidBar
d2MidBar
botomBar
bullet
upTee
downTee
cross
uLCRound =
uRCRound =

19
147
145
17
157
29
18
146
5
28
159
30
158
32
183
1 q7
196
192
198
210
175
209
177
178
123
213
201

;C-64 ASCII for homing the cursor
;C-6·4 ASCII for a screen clear
;C-64 ASCII for cursor up
;C-64 ASCII for cursor down
;C-64 ASCII for cursor left
;C-64 ASCII for cursor right
;C-64 ASCII for reverse text on
;C-64 ASCII for reverse text off
;C-64 ASCII for text color white
;C-64 ASCII for text color red
;C-64 ASCII for text color cyan
;C-64 ASCII for text color green
;C-64 ASCII for text color yellow
;C-64 ASCII for a space
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element
;C-64 ASCII for a graphics element

--------------------- our constants ---------------------
LeftHook
LHRow
LHCol

riteHook =
RHRow
RHCol

SSRow
SSCol

pr1Row
pr1Col
pr2Row
pr2Col

pattern
spritDat

spTopPos =
spBtmPos =

strEnd
actinKey "

endltKey =
inPause
midPause "
reLDLNum =
capDLNum =
drpDLNum =
rizDLNum =
sSADLNum

vbrDLNum =

o
1
10

1
1
26

17
9

21
10
23
9

%11111111
12288

77

145

o
65

32

16
16
112

112

14

14

8

22

;numeric code for left hook
;row to start printing left hook
;col. to start printing left hook

;numeric code for right hook
;row to start printing right hook
;col. to start printing right hook

;row to start printing seesaw
;col. to start printing seesaw

;row to start printing 1st prompt
;col. to start printing 1st prompt
;row to start printing 2nd prompt
;col. to start printing 2nd prompt

;pattern for sprite filling
;starting address for sprite
;data buffer
;upper limit for sprite
;vertical position
;lower limit for sprite
;vertical position
;marker for the ends of strings
;key code returned when user
;wants action (the letter A)
;key code returned when user
;wants to end things (a space)
;for a pause' inner loop counter
;for a pause' middle loop counter
;for sprite release action
; pause , outer loop counter
;for sprite capture action
;pause' outer loop counter
;for sprite dropping action
; pause , outer loop counter
;for sprite rising action
; pause , outer loop counter
;for seesaw action
;pause' outer loop counter
;for vibrational action
; pause , outer loop counter

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

8000 20 OA 80 205
8003 20 26 80 206
8006 20 46 80 207
8009 60 208

209
210
211
212
213
214

800A: 20 54 80 215
8000: 20 64 80 216
8010: 20 C2 80 217
8013: 20 25 81 218
8016: 20 62 81 219

220
8019: 20 B8 81 221
801C: 20 FO 81 222
801F: 20 30 82 223
8022: 20 54 82 224

225
8025: 60 226

227
228
229
230
231
232

8026: 48 233
8027: 8A 234
8028: 48 235
8029: 98 236
802A: 48 237

238
802B: 20 E4 FF 239
802E: C9 00 240
8030: FO F9 241

242
243

8032: C9 41 244
8034: DO 06 245
8036: 20 74 82 246
8039: B8 247
803A: 50 EF 248

sSFactor = 5 la sprite vertical adjustment
lfactor for seesaw work

dropFrCn = 158 ldrop frequency base constant
riseFrCn = 158 lrise frequency base constant
vibFrHi 6 lhigh frequency for vibrating

lsprite noise
vibFrMid 4 lmiddle frequency for vibrating

lsprite noise
vibFrLo 2 llow frequency for vibrating

lsprite noise
vibes 5 lN of times sprite vibrates when

off 0
lit hits the seesaw
lfor grounding out whole registers

------------------- page zero variables -----------------
pntrO
pntr1

$00C1
$00C3

la pointer for indirect addressing
la pointer for indirect addressing

------------ global variables at end of program ---------

------------------------- main --------------------------
* main program block

main JSR setup
JSR operate
JSR cleanUp
RTS

lset up to run the program
loperate the seesaw
lclean up any loose ends
lreturn from main

------------------------ setup --------------------------
* set up to run the program

setup JSR scrnSet lset the screen
JSR prntPrmp lprint the prompts
JSR prntLCH lprint a left closed hook
JSR prntRPH lprint a right open hook
JSR prntSRzL lprint a seesaw with its

lleft side raised
JSR LdSplmg lload the sprite imaging data
JSR spConSet lset the sprite controls
JSR soundSet lset the sound effects
JSR setHooks lset which hook's empty,

lwhich hook's full
RTS lreturn from setUp

----------------------- operate -------------------------
* operate the seesaw

operate PHA
TXA
PHA
TYA
PHA

opLoop JSR GETIN
CMP NO
BEO opLoop

opTest1 CMP NactinKey
BNE opTest2
JSR action
CLV
BVC opLoop

lsave A, X, and Y registers

call the kernal's input routine
any key pressed ?
no, so go check again
yes, so run some tests

did they press the action key?
no, so try the next test
yes, so provide some action
force a branch

235

249
803C: C9 20 250 opTest2 CMP lIendItKey did they press the end-it key ?
803E: DO EB 251 BNE opLoop no, so scan the keyboard again

252 yes, so we're done with operate
253

8040: 68 254 PLA Irestore Y, X, and A registers
8041 : A8 255 TAY
8042: 68 256 PLA
8043: AA ·257 TAX
8044: 68 258 PLA

259
8045: 60 260 RTS Jreturn from operate

261
262
263 *----------------------- cleanUp -------------------------*
264
265 * clean up any loose ends
266

8046: 48 267 cleanUp PHA I save the A register
268

8047: 20 61 82 269 JSR clearSIO Iclear the SID registers
804A: 20 3E 84 270 JSR resetSpC Ireset the sprite controls
8040: A9 93 271 LOA IIclearScr Iclear the screen
804F: 20 02 FF 272 JSR CHROUT

273
8052: 68 274 PLA Ires tore the A register
8053: 60 275 RTS Ireturn from cleanUp

276
277
278 *----------------------- scrnSet ------_._-----------------*
279
280
281
282 * set the screen
283

8054: 48 284 scrnSet PHA Isave the A register
285

8055: A9 00 286 LOA IIpVBlack Iset border and background
8057: 80 20 DO 287 STA VIC+border Ito black
805A: 80 21 DO 288 STA VIC+bkgrndO

289
8050: A9 93 290 LOA IIclearScr Iclear the screen
805F: 20 02 FF 291 JSR CHROUT

292
8062: 68 293 PLA Ires tore the A register
8063: 60 294 RTS Ireturn from scrnSet

295
296
297 *---------------------- prntPrmp -------------------------*
298
299 * print prompts
300

8064: 48 301 prntPrmp PHA Isave the A and X registers
8065: 8A 302 TXA
8066: 48 303 PHA

304
8067: A2 00 305 LOX 110 lit'll index into prompt data
8069: BO BO 84 306 pPLoop LOA prRows,X Imove the cursor to the
806C: 80 C1 84 307 STA row Iprompt's starting location
806F: BO BF 84 308 LOA prCols,X
8072: 80 C2 84 309 STA column
8075: 20 7C 84 310 JSR mvCrsAbs Ithe cursor-moving function

311
8078: EO 01 312 CPX 111 I print the appropriate prompt
807A: FO 1E 313 BEQ prmpt1

314
807C 20 4C 84 315 prmptO JSR prinThis Iprint the Oth prompt
807F 05 316 OFB white
8080 50 52 45 317 ASC 'PRESS ,
8083 53 53 20
8086 12 9F 318 OFB rvrsOn,cyan
8088 41 319 ASC 'A'
8089 05 92 320 OFB white,rvrsOff

236

808B 20 46 4F 321 ASC
, FOR ACTION'

808E 52 20 41 43 54 49 4F 4E
8096 00 322 OFB strEnd
8097 B8 323 endPrO CLV ;force a jump down to increment
8098 50 1E 324 BVC btPrLup ;the index and test completion

325
809A: 20 4C 84 326 prmpt1 JSR prinThis ;print the 1st prompt
8090: 05 327 OFB white
809E: 50 52 45 328 ASC 'PRESS ,
80A1: 53 53 20
80A4: 12 9F 329 OFB rvrsOn,cyan
80A6: 53 50 41 330 ASC 'SPACEBAR'
80A9: 43 45 42 41 52
80AE: 05 92 331 OFB white , rvrsOff
80BO: 20 54 4F 332 ASC

, TO ENO'
80B3: 20 45 4E 44
80B7: 00 333 OFB strEnd

334
80B8: E8 335 btPrLup INX
80B9: EC BC 84 336 CPX numPrmps ;have we printed all prompts ?
80BC: 00 AB 337 E·NE pPLoop ino, so do more

338
80BE: 68 339 PLA ;restore the A and X registers
80BF: AA 340 TAX
80CO: 68 341 PLA

342
80C1: 60 343 RTS ;return from prntPrmp

344
345
346 *----------------------- prntLCH -------------------------*
347
348 * print left closed hook
349

80C2: 48 350 prntLCH PHA ;save the A register
351

80C3: A9 01 352 LOA NLHRow ;move the cursor to its
80C5: 80 C1 84 353 STA row ;starting row and column
80C8: A9 OA 354 LOA fiLHCol
80CA: 80 C2 84 355 STA column
80CO: 20 7C 84 356 JSR mvCrsAbs

357
8000: 20 E8 80 358 JSR prntCHK ;print closed hook

359
8003: 68 360 PLA ;restore the A register
8004: 60 361 RTS ; return from prntLCH

362
363
364 *----------------------- prntRcH -------------------------*
365
366 * print right closed hook
367

8005: 48 368 prntRCH PHA isave the A register
369

8006: A9 01 370 LOA fiRHRow ;move the cursor to its
8008: 80 C1 84 371 STA row ; starting row and column
800B: A9 1A 372 LOA fiRHCol
8000: 80 C2 84 373 STA column
80EO: 20 7C 84 374 JSR mvCrsAbs

375
80E3: 20 E8 80 376 JSR prntCHK ;print closed hook

377
80E6: 68 378 PLA ;restore the A register
80E7: 60 379 RTS ;return from prntRCH

380
381
382 *---------------~------- prntCHK -------------------------*
383
384 * print closed hook
385

80E8: 20 4C 84 386 prntCHK JSR prinThis ;print the following string
387

80EB: 9E CO B2 388 OFB yellow,midBar,downTee
80EE: CO 11 90 389 OFB midBar,downCurs,leftCurs

237

80F1 90 90 90 390 OFB leftCurs,leftCurs,leftCurs
80F4 90 1C 20 391 OFB leftCurs, red, space
80F7 05 CO B1 392 OFB uLCRound,midBar,upTee
80FA CO C9 20 393 OFB midBar, uRCRound, space
80FO 11 90 90 394 OFB downCurs,leftCurs,leftCurs
8100 90 90 90 395 OFB leftCurs,leftCurs,leftCUrs
8103 90 90 90 396 OFB leftCurs,leftCurs,leftCurs
8106 20 20 7B 397 OFB space,space,cross
8109 CO 20 CO 398 OFB midBar,space,midBar
810C 7B 20 20 399 OFB cross, space, space
810F 05 400 OFB white
8110 00 401 OFB strEnd

402
8111 : 60 403 RTS ;return from prntCHK

404
405
406 *----------------------- prntLPH -------------------------*
407
408 * print left open hook
409

8112 : 48 410 prntLPH PHA lsave the A register
411

8113: A9 01 412 LOA #LHRow lmove the curSor to its
8115: 80 C1 84 413 STA row lstarting row and column
8118: A9 OA 414 LOA f/LHCol
811A: 80 C2 84 415 STA column
8110: 20 7C 84 416 JSR mvCrsAbs

417
8120: 20 38 81 418 JSR prntPHK lprint open hook

419
8123: 68 420 PLA lrestore the A register
8124: 60 421 RTS lreturn from prntLPH

422
423
424 *----------------------- prntRPH -------------------------*
425
426 * print right open hook
427

8125: 48 428 prntRPH PHA lsave the A register
429

8126: A9 01 430 LOA flRHRow lmove the cursor to its
8128: 80 C1 84 431 STA row lstarting row and column
812B: A9 1A 432 LOA #RHCol
8120: 80 C2 84 433 STA column
8130 : 20 7C 84 434 JSR mvCrsAbs

435
8133: 20 38 81 436 JSR prntPHK lprint open hook

437
8136: 68 438 PLA lrestore the A register
8137 : 60 439 RTS lreturn from prntRPH

440
441
442 *----------------------- prntPHK -------------------------*
443
444 * print open hook
445

8138: 20 4C 84 446
447

prntPHK JSR prinThis lprint the following string

813B 9E CO B2 448 OFB yellow,midBar,downTee
813E CO 11 90 449 OFB midBar,downCurs,leftCurs
8141 90 90 90 450 OFB leftcurs,leftCurs,leftCurs
8144 90 1E 05 451 OFB leftCurs,green,uLCRound
8147 CO CO B1 452 OFB midBar,midBar,upTee
814A CO CO C9 453 OFB midBar,midBar,uRCRound
8140 11 90 90 454 OFB downCurs,leftCurs,leftCurs
8150 90 90 90 455 OFB leftCurs,leftCurs,leftCurs
8153 90 90 90 456 OFB leftCurs,leftCurs,leftCurs
8156 CO 7B 20 457 OFB midBar,cross,space
8159 20 20 20 458 OFB space,space,space
815C 20 7B CO 459 OFB space,cross,midBar
815F 05 460 OFB white
8160 00 461 OFB strEnd

462

238

8161: 60

•

8162: 48

8163: A9 11
8165: 80 C1 84
8168: A9 09
816A: 80 C2 84
8160: 20 7C 84

8170: 20 4C 84

8173: 9E B7 B7
8176: B7 C5 C5
8179: C5 C4 C4
817C: C4 CO 01
817F: CO C6 C6
8182: C6 02 02
8185: 02 AF AF
8188: AF 05
818A: 00

818B: 68
818C: 60

*

463
464
465
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497

8180: 48 498
499

818E: A9 11 500
8190: 80 C1 84 501
8193: A9 09 502
8195: 80 C2 84 503
8198: 20 7C 84 504

505
819B: 20 4C 84 506

507
819E: 9E AF AF 508
81Al: AF 02 02 509
81A4: 02 C6 C6 510
81A7: C6 CO 01 511
81AA: CO C4 C4 512
81AO: C4 C5 C5 513
81BO: C5 B7 B7 514
81B3: B7 05 515
81B5: 00 516

517
81B6: 68 518
81B7: 60 519

520
521
522
523
524
525

81B8: 48 526
81B9: 8A 527
81BA: 48 528
81BB: 98 529
81BC: 48 530

531
81BO: A2 00 532
81BF: SA 533

RTS lreturn from prntPHK

*----------------------- prntSRzL -------------------------

* print seesaw up on the left

prntSRzL PHA

LOA I/SSRow
STA row
LOA I/SSCol
STA column
JSR mvCrsAbs

JSR prinThis

lsave the A register

lmove, the cursor to it's
lstarting row and column

lprint the following string

OFB yellow,topBar,topBar
OFB topBar,u2MidBar,u2MidBar
OFB u2MidBar,ulMidBar,u1MidBar
OFB ulMidBar,midBar,bullet
OFB midBar,dlMidBar,dlMidBar
OFB d1MidBar,d2MidBar,d2MidBar
OFB d2MidBar,botomBar,botomBar
OFB botomBar,white
OFB strEnd

PLA lrestore the A register
RTS lreturn from prntSRzL

*----------------------- prntSRzR -------------------------

* print seesaw up on the right

prntsRzR PHA

LOA I/SSRow
STA row
LOA I/SSCol
STA column
JSR mvCrsAbs

JSR prinThis

lsave the A register

lmove the cursor to it's
lstarting row and column

lprint the following string

OFB yellow,botomBar,botomBar
OF8 botomBar,d2MidBar,d2MidBar
OFB d2MidBar,d1MidBar,d1MidBar
OFB d1 MidBar,midBar, bullet
OFB midBar,u1MidBar,u1MidBar
OFB u1MidBar,u2MidBar,u2MidBar
OFB u2MidBar,topBar,topBar
OFB topBar,white
OFB strEnd

PLA lrestore the A register
RTS lreturn from prntSRzR

------------------------ LdSplmg ------------------------
* load the sprite images

LdSplmg PHA
TXA
PHA
TYA
PHA

LOX I/O
LSOLpO TXA

lsave the A, X, and Y registers

lstart with sprite 0
ldouble the index for

239

240

81CO
81C1
81C2
81C5
81C7
81CA
81CC
81CF
8101
8104
8106
8107
8108

8109:
810B:
8100:
810F:
81EO:
81E2:

OA
AA
BO CB 84
85 C1
BO CF 84
85 C3
BO CC 84
85 C2
BO 00 84
85 C4
8A
4A
AA

AO 00
B1 C1
91 C3
C8
CO 3F
00 F7

81E4: E8
81E5: EC C3 84
81E8: 00 05

81EA: 68
81EB: A8
81EC: 68
81EO: AA
81EE: 68

81EF: 60

81FO: 48
81F1: 8A
81F2: 48
81F3: 98
81F4: 48

81F5: A2 00
81F7: BD 03 84
81FA: 90 F8 07
81FO: BD C9 84
8200: 90 27 00

8203: 8A
9
8204: OA
8205: A8

8206: BO C4 84
8209: 99 00 00
820C: BO C7 84
820F: 99 01 00

8212: E8
8213: EC C3 84
8216: 00 OF

8218: AO 05 84
821B: 80 17 00
821E: AD 06 84
8221: 80 10 00
8224: AD 07 84
8227: 80 15 00

822A: 68
822B: A8

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

LSOLp1

ASL laddress work
TAX
LOA sOSrcPtr,X lset pointers to the
STA pntrO lsource and target for the
LOA sOBfrPtr,X lsprite data transfer
STA pntr1
LOA sOSrcPtr+1,X
STA pntrO+1
LOA sOBfrPtr+1,X
STA pntr1+1
TXA lrestore the index by halving
LSR
TAX

LOY flO
LOA (pntrO),Y
STA (pntr1),Y
INY
CPY flspOatSiz
BNE LSDLp1

INX
CPX numSprtz
BNE LSOLpO

PLA
TAY
PLA
TAX
PLA

RTS

lit indexes the sprite data
1get a byte of sprite data
lstore it
IUP the counter
ldone yet ?
I nope, so continue

lanother sprite done
lall done?
lno, so do one more

lrestore Y, X, and A registers

lreturn from LdSplmg

------------------------ spConSet -----------------------
* set up the sprite controls

spConSet PHA lsave the A, X, and Y registers
TXA
PHA
TYA
PHA

LOX flO lset up sprite 0
sCSLoop LOA sOatPg,x lset sprite's data pointer

STA dataPtr,x
LOA spColr,x lset sprite's color
STA VIC+colorRgs,x

TXA ladjust Y-reg for position indexin

ASL lby doubling x-register
TAY

LOA hzPOSLo,X lset sprite's horizontal coord
STA VIC+hPosRgs,Y
LOA vrPos,X lset sprite's vertical coord
STA VIC+VPosRgs,Y

INX
CPX numSprtz
BNE SCSLoop

lanother sprite done
ldone all sprites yet ?
lno, so do another

LOA spVrXFac lset the sprites' vertical
STA VIC+vrXReg lexpansion factor
LOA spHzXFac lset the sprites' vertical
STA VIC+hzXReg lexpansion factor
LOA sprOn lmake sprites visible
STA VIC+seeMeRg

PLA lrestore the A, X, and Y registers
TAY

822C 68
8220 AA
822E 68

822F: 60

8230: 48

8231: 20 61 82

8234: A9 05
8236: 80 01 04
8239: A9 OB
823B: 80 05 04
823E: A9 OA
8240: 80 06 04

8243: A9 OC
8245: 80 OC 04

8248: A9 15
824A: 80 OF 04
8240: A9 CO
824F: 80 14 04

8252: 68
8253: 60

8254: 48

8255: A9 00
8257: 80 OF 84
825A: A9 01
825C: 8D EO 84

825F: 68
8260: 60

8261: 48
8262: 8A
8263: 48

8264: A9 00
8266: A2 00
8268: 9D 00 D4
826B: E8
826C: EO 19
826E: 90 F8

8270: 68
8271: AA
8272: 68

8273: 60

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

PLA
TAX
PLA

RTS ireturn from spConSet

------------------------ soundSet -----------------------
* set the sound effects

soundSet PHA isave the A register

JSR clear SID iclear the SID registers

iprepare voice 1 for gong
LDA *$05 ifrequency = 5 * 256 (1280)
STA SID+V1FrqHi
LDA *$OB iattack = 0, decay = 11
STA SID+V1AtkDcy
LDA *$OA isustain = 0, release = 10
STA SID+V1SstRel

iprep voice 2 for whistling flight
LDA *$OC iattack = 0, decay = 12
STA SID+V2AtkDcy

iprepare voice 3 for hook click
LDA *$15 ifrequency = 21 * 256 (5376)
STA SID+V3FrqHi
LDA *$CO isustain = 12, release = 0
STA SID+V3SstRel

PLA irestore the A register
RTS ireturn from soundSet

------------------------ setHooks -----------------------
* set which hook's empty, which hook's full

setHooks PHA isave the A register

LDA *LeftHook ithe left hook is full
STA fullHook
LDA 'riteHook ithe right hook is empty
STA emtyHook

PLA
RTS

irestore the A register
ireturn from setHooks

------------------------ clearSID -----------------------
* initialize the SID chip by zeroing registers

clear SID PHA
TXA
PHA

LOA '0
LDX *0

iSLOOp STA SID,X
INX
CPX *SIDSize
BCC iSLOOp

PLA
TAX
PLA

RTS

isave A and X registers

iwe'll store a bunch of zeroes
ithis'll index into the registers
Jzero a register
i up the index
idone yet ?
ino, so continue

irestore X and A registers

ireturn from initSid

241

242

8274 20 8A 82
8277 20 BO 82
827A 20 FA 82
8270 20 31 83
8280 20 BB 83
8283 20 F8 83
8286 20 2B 84
8289 60

828A: 48
828B: 8A
828C: 48

8280: A9 OF
828F: 80 18 04

8292: A9 81
8294: 80 12 04

8297: AO OF 84

829A: C9 00

829C: 00 06
829E: 20 12 81
82A1: B8
82A2: 50 03
82A4: 20 25 81

82A7: A2 70
82A9: 20 A2 84

82AC: A9 80
82AE: 80 12 04

82B1: AE OF 84
82B4: A9 03
82B6: 90 27 00

82B9: 68
82BA: AA
82BB: 68

82BC: 60

82BO: 48
82BE: 8A
82BF: 48
82CO: 98
82C1: 48

82C2: A9 50
82C4: 80 08 04
82C7: A9 11
82C9: 80 OB 04

82CC: A2 4E

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

* ________________________ action -------------------------*

* do a complete sprite/seesaw action cycle

action JSR
JSR
JSR
JSR
JSR
JSR
JSR
RTS

release
drop
seesawAc
vibrate
rise
capture
hookAdj

;release a sprite
;drop the released sprite
;perform the seesaw action
;vibrate the fallen sprite
;the other sprite rises up
;capture the risen sprite
;adjust the hook states

------------------------ release ------------------------
* release a sprite

release PHA
TXA
FHA

;save the A and X registers

actnVoL1 LOA #O+maxVoL ;set maximum volume
STA SIO+filtrVol

rLStCLk LOA #noise+gateOn ;start the hook click noise
STA SIO+V3WavGat

LOA

CMP

BNE
LfHkRlse JSR

CLV
BVC

rtHkRlse JSR

rLOeLay LOX
JSR

fullHook

#LeftHook

rtHkRlse
prntLPH

rLOeLay
prntRPH

#reLOLNum
pausABit

;get the # of the full hook
;(it's also the sprite #)
;it's either the left or the
;right hook
;branch accordingly
;print a left open hook
;force a branch
;go delay a bit
;print a right open hook

;go delay a bit

rLEnCLk LOA #noise+gateOff ;turn off hook click
STA SIO+V3WavGat

rLClrChg LOX
LOA
STA

PLA
TAX
PLA

RTS

fullHook ;the hook number is our index
#pVCyan ;load the new color code
VIC+colorRgs,X

;restore the X and A registers

;return from release

------------------------- drop --------------------------
* drop the released sprite

drop PHA
TXA
PHA
TYA
PHA

dropStWh LOA
STA
LOA
STA

dropVPos LOX

;save the A, X, and Y registers

#80 ;initialize whistle frequency
SIO+V2FrqHi
#triang+gateOn ;start the whistle noise
SIO+V2WavGat

#SpTOpPos+1 ;X keeps track of the sprite's

82CE AO OF 84
8201 OA
8202 A8
8203 8A
8204 99 01 00

8207: 8E OE 82

820A: 38
820B: A9 9E
8200: E9 00
820F: 80 08 04

82E2: A2 OE
82E4: 20 A2 84

82E7: AE OE 82
82EA: E8
82EB: EO 92
82ED: 90 OF

82EF: A9 10
82Fl: 80 OB 04

82F4: 68
82F5: A8
82F6: 68
82F7: AA
82F8: 68

82F9: 60

82FA: 48
82FB: 8A
82FC: 48

82FO: A9 15
82FF: 80 04 04

8302: AO OF 84
8305: C9 00
8307: 00 06

8309: 20 80 81

830C: B8
8300: 50 03

830F: 20 62 81

8312: OA
8313: AA
8314: A9 96
8316: 90 01 00

8319: AO EO 84
831C: OA
8310: AA
831E: A9 91
8320: 90 01 00

8323: A2 08
8325: 20 A2 84

8328: A9 14

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

droPLoop LOA
ASL
TAY
TXA
STA

dropFreq STX

SEC
LOA

dSubPar SBC
STA

vertical position
fullHook get ref # of dropped sprite

double the ref #
move it to Y
move vertical pos to A reg

VIC+vPosRgs,Y lset the dropped sprite's
lvertical position

dSubPar+l la cheap storage and subtraction
1 trick
lprepare to derive new frequency

#dropFrCn lthe drop frequency constant
#0 lminus current vertical position
SIo+V2FrqHi land set the frequency

dropoLay LOX #drpoLNum ·lgo delay a bit
JSR pausABit

dropLpBt LOX
INX
CPX
BCC

dSubPar+l 1get the vertical pos back
lanother vert position done

#spBtmPos+l ldone yet ?
dropLoop lno, so continue

dropEnWh LOA #triang+gateOff lyes, so turn off whistle
STA SIO+V2WavGat

PLA lrestore the Y, X, and A registers
TAY
PLA
TAX
PLA

RTS lreturn from drop

----------------------- seesawAc ------------------------
* perform the seesaw action

seesawAc PHA lsave the A and X registers
TXA
PHA

sSAcStG9 LOA #trian9+ringMod+9ateOn ;start the 90n9 noise
STA SIO+V1WavGat

sSAcMove LOA
CMP
BNE

sSFrmLft JSR

CLV
BVC

sSFrmRit JSR

sSFHSpAj ASL
TAX
LOA
STA

sSEHSpAj LOA
ASL
TAX
LOA
STA

fullHook
#LeftHook
sSFrmRit

prntSRzR

sSFHSpAj

prntSRzL

;move the seesaw, based on
;which hook the sprite
lhas dropped from

;dropped from left -- move seesaw
;up on the ri9ht (down on left)
;force a branch
lto adjust sprite positions

;dropped from ri9ht -- move seesaw
;up on the left (down on ri9ht)

;double the full hook sprite #
;move it to X for indexin9

#spBtmPos+sSFactor ;really bottom 'er out
VIC+VPOSR9S,X

emtyHook ;now adjust the other sprite
;via a similar indexin9 process

#SpBtmPos
VIC+VPosRgs,X

sSAcoLay LOX #sSAOLNum ;go delay a bit
JSR pausABit

sSAcEnGg LDA #triang+rin9Mod+9ateOff lend the gong noise

243

832A: 80 04 04 825 STA S,IO+V1 WavGat
826

8320: 68 827 PLA lrestore the X and A registers
832E: AA 828 TAX
832F: 68 829 PLA

830
8330: 60 831 RTS lreturn from seesawAc

832
833
834 *----------------------- vibrate -------------------------* 835
836 * vibrate the fallen sprite
837

8331 : 48 838 vibrate l'HA isave the A, X, and Y registers
8332: 8A 839 TXA
8333: 48 840 PHA
8334: 98 841 TYA
8335: 48 842 PHA

843
8336: AO PF 84 844 vibrNdex LOA fullHook 1get the dropped sprite's ref. II
8339: AA 845 TAX luse X for color indexing
833A: OA 846 ASL ldouble it for horizontal
833B: A8 847 TAY lposition indexing (Y reg)

848
833C: B9 00 00 849 vibrSHPs LOA VIC+hPosRgs,Y Iset three horz. positions
833F: 80 OA 84 850 STA vibr1 lthe current horizontal position
8342: 18 851 CLC
8343: 69 04 852 AOC 114
8345: 80 DB 84 853 STA vibr2 1 current HP plus 4
8341h 38 854 SEC
8349: E9 08 855 SBC 118
834B: 80 OC 84 856 STA vibr3 1 current HP minus 4

857
834E: A9 01 858 LOA 111 lA will count our loop
8350: 48 859 vibrLoop PHA lstore count on stack
8351 : AD OC 84 860 LOA vibr3 imove sprite to left
8354: 99 00 00 861 STA VIC+hPosRgs,Y
8357: A9 01 862 LOA I¥pVWhite lturn sprite white
8359: 90 27 00 863 STA VIC+colorRgs,X
835C: A9 06 864 LOA I¥vibFrHi lset sound to high freg.
835E: 80 01 04 865 STA SIO+V1FrgHi

866
8361: 8E 00 84 867 STX vibr4 lset X aside for a pause
8364: A2 16 868 LOX IIvbrOLNum land wait a bit
8366: 20 A2 84 869 JSR pausABit
8369: AE 00 84 870 LOX vibr4 1get our color index back

871
836C: AO OA 84 872 LOA vibr1 imove sprite to middle
836F: 99 00 00 873 STA VIC+hPosRgs,Y
8372: A9 02 874 LOA I¥pVRed 1 turn sprite red
8374: 90 27 00 875 STA VIC+colorRgs,X
8377: A9 02, 876 LOA 'vibFrLo lset sound to low freg.
8379: 80 01 04 877 STA SIO+V1FrgHi

878
837C: 8E 00 84 879 STX vibr4 lset X aside for a pause
837F: A2 16 880 LOX I¥vbrOLNum land wait a bit
8381: 20 A2 84 881 JSR pausABit
8384: AE 00 84 882 LOX vibr4 1get our color index back

883
8387: AO OB 84 884 LOA vibr2 jmove sprite to right
838A: 99 00 00 885 STA VIC+hPosRgs,Y
8380: A9 07 886 LOA 'pVYeLow lturn sprite yellow
838F: 90 27 00 887 STA VIC+colorRgs,x
8392: A9 04 888 LOA 'vibFrMid lset sound to middle freg.
8394: 80 01 04 889 STA SIO+V1FrgHi

890
8397: 8E 00 84 891 STX vibr4 lset X aside for a pause
839A: A2 16 892 LOX I¥vbrOLNum land wait a bit
839C: 20 A2 84 893 JSR pausABit
839F: AE 00 84 894 LOX vibr4 1get our color index back

895
83A2: 68 896 vibrLpTs PLA 1 te:3t for completion
83A3: 18 897 CLC

244

83A4 69 01
83A6 C9 06
83A8 90 A6

83AA: AD OA 84
83AD: 99 00 DO
83BO: A9 03
83B2: 90 27 DO

83B5: 68
83B6: A8
83B7: 68
83B8: AA
83B9: 68

83BA: 60

83BB: 48
83BC: 8A
83BO: 48
83SE: 98
83BF: 48

83CO: A9 50
83C2: 80 08 04
83C5: A9 11
83C7: 80 OB 04

83CA: A2 91

83CC: AD EO 84
83CF: OA
8300: A8
8301: 8A
8302: 99 01 DO

8305: 8E DC 83

8308: 38
8309: A9 9E
830B: E9 00
8300: 80 08 04

83EO: A2 OE
83E2: 20 A2 84

83E5: AE DC 83
83E8: CA
83E9: EO 40
83EB: BO OF

83EO: A9 10
83EF: 80 OB 04

83F2: 68
83F3: A8
83F4: 68
83F5: AA
83F6: 68

83F7: 60

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

ADC 111
CMP IIvibes+ 1
BCC vibrLoop

;we need an INA command

;do another vibe

vibrRstr LDA vibr1 ;move sprite back to middle
STA VIC+hPosRgs,Y
LOA IIpVCyan ;turn sprite back to cyan
STA VIC+colorRgs,X

PLA
TAY
PLA
TAX
PLA

RTS

;restore the Y, X, and A registers

;return from vibrate

------------------------- rise --------------------------
* the other sprite rises up

rise PHA
TXA
PHA
TYA
PHA

;save the A, X, and Y registers

riseStWh LOA 1180 ;initialize whistle frequency
STA SIO+V2FrqHi
LOA IItriang+gateOn ;start the whistle noise
STA SIO+V2WavGat

riseVPos LOX

riseLoop LDA
ASL
TAY
TXA
STA

riseFreq STX

SEC
LOA

rSubPar SBC
STA

IIspBtmPos ;X keeps track of the sprite's
;vertical position

emtyHook ;get ref II of rising sprite
;double the ref II
;move it to Y
;move vertical pos to A reg

VIC+vPosRgs,Y ;set the rising sprite's
;vertical position

rSubPar+1 ;a cheap storage and subtraction
; trick
;prepare to derive new frequency

IIriseFrCn ;the rise frequency constant
110 ;minus current vertical position
SIO+V2FrqHi land set the frequency

riseOLay LOX f#rizOLNum ;go delay a bit
JSR pausABit

riseLpBt LOX rSubPar+1
OEX
CPX IIspTopPos
BCS riseLoop

;get the vertical pos back
;another vert position done
;done yet ?
;no, so continue

riseEnWh LOA f#triang+gateOff ;yes, so turn off whistle
STA SIO+V2WavGat

PLA ;restore the Y, X, and A registers
TAY
PLA
TAX
PLA

RTS ;return from rise

----------------------- capture -------------------------
* capture the risen sprite

245

246

63F6 46
63F9 6A
63FA 46

63FB: A9 61
63FO: 60 12 04

6400: AO EO 64

6403: C9 00

6405: 00 06
6407: 20 C2 60
640A: B6
640B: 50 03
6400: 20 05 60

6410: A2 70
6412: 20 A2 64

6415: A9 60
6417: 60 12 04

641A: AE EO 64
6410: A9 04
641F: 90 27 00

6422: A9 00
6424: 60 16 04

6427: 66
6426: AA
6429: 66

642A: 60

642B: 46
842C: 6A
6420: 46

642E: AO OF 64
6431: AE EO 64
6434: 6E OF 84
6437: 60 EO 84

643A: 56
643B: AA
643C: 66

6430: 60

643E: 46

643F: A9 00
6441: 60 15 00
6444: 60 17 00
6447: 60 10 00

644A: 66
644B: 60

971
972
973
974
975
976
977
976
979
960
961
962
963
964
965
966
967
966
969
990
991
992
993
994
995
996
997
996
999
1000
1001
1002
1003
1004
1005
1006
1007
1006
1009
1010
1011
1012
1013
1014
1015
1016
1017
1016
1019
1020
1021
1022
1023
1024
1025
1026
1027
1026
1029
1030
1031
1032
1033
1034
1035
1036
1037
1036
1039
1040
1041
1042
1043

capture PHA isave the A and X registers
TXA
PHA

cpStCLk LOA gnoise+gateon istart the hook click noise
STA SIO+V3WavGat

LOA

CMP

BNE
LfHkCptr JSR

CLV
BVC

rtHkCptr JSR

cpOeLay LOX
JSR

emtyHook

gLeftHook

rtHkCptr
prntLCH

cpOeLay
prntRCH

gcapOLNum
pausABit

iget the g of the empty hook
i(it's also the sprite gl
iit's either the left or the
iright hook
ibranch accordingly
iprint a left closed hook
iforce a branch
igo delay a bit
iprint a right closed hook

igo delay a bit

cpEnCLk LOA gnoise+gateOff iturn off hook click
STA SIO+V3WavGat

cpClrChg LOX
LOA
STA

emtyHook i the hook number is our index
gpVPurple iload the new color code
VIC+colorRgs,X

actnVoL2 LOA
STA

gO+minVoL iset minimum volume
SIO+filtrVol

PLA
TAX
PLA

RTS

;restore the X and A registers

;return from capture

----------------------- hookAdj -------------------------
* adjust the hook states

hookAdj PHA
TXA
PHA

LOA fullHook
LOX emtyHook
STX full Hook
STA emtyHook

;save the A and X registers

PLA ;restore the X and A registers
TAX
PLA

RTS ;return from hookAdj

------------------------ resetSpC -----------------------
* reset the sprite controls

resetSpC PHA ;save the A register

LOA goff
STA VIC+seeMeRg ;make sprites go away
STA VIC+vrXReg land shut down expansion factors
STA VIC+hzXReg

PLA
RTS

;restore the A register
;return from resetSpC

------------------------ prinThis --------.. --------------

844C: 80 08 84
844F: 8C 09 84

8452: 68
8453: 85 C3
8455: 68
8456: 85 C4

8458: AO 01

845A: B1 C3
845C: C9 00
845E: FO 07
8460: 20 02 FF
8463: C8
8464: 18
8465: 90 F3

8467: 18
8468: 98
8469: 65 C3
846B: 85 C3
8460: AS C4
846F: 69 00
8471: 48
8472: AS C3
8474: 48

8475: AC 09 84
8478: AO 08 84

847B: 60

847C: 48
8470: 8A
847E: 48

847F: A9 13
8481: 20 02 FF

8484: AE C1 84
8487: FO 08
8489: A9 11
848B: 20 02 FF
848E: CA
848F: 00 F8

8491: AE C2 84
8494: FO 08
8496: A9 10
8498: 20 02 FF
849B: CA
849C: 00 F8

849E: 68
849F: AA
84M: 68

84A1: 60

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

* print the string that follows any jump to this subroutine
* string ends are marked by the value strEnd (typically 0)

prinThis STA prinTmp1
STY prinTmp2

pSLoop

pSOone

PLA
STA pntr1
PLA
STA pntr1 +1

LOY 1101

LDA (pntr1), Y
CMP IIstrEnd
BEQ pSOone
JSR CHROUT
INY
CLC
BCC pSLoop

CLC
TYA
ADC pntr1
STA pntr1
LOA pntr1 +1
ADC 110
PHA
LOA pntr1
PHA

LOY pri nTmp 2
LOA prinTmp1

RTS

isave the A and Y registers

lmove the return address to pntr1
ifirst the low byte
ithen the high
ipntr1 now points to one address
ishort of the start of the string
iwe want to print
iit'll count into the string

iget the next char
iis it the end-of-string char ?
lyes, so we've got it printed
iuse the built-in char print
iUP the counter
iset carry to force a branch
ialways

lnow we'll add the string length
ito get the correct return address
ithat's the low byte
ipark it for a moment
inow the high byte
iget the carry added in
ihigh byte onto the stack
iparking's over
land low byte's on the stack

irestore the A and Y registers

ireturn from prinThis

------------------------ mvCrsAbs -----------------------
* move the text cursor to an absolute screen position

mvCrsAbs PHA
TXA
PHA

LOA IIhome
JSR CHROUT

doRow LOX
BEQ

rowLoop LOA
JSR
OEX
BNE

doColumn LOX
BEQ

columLup LOA
JSR
OEX
BNE

mCAOone PLA
TAX
PLA

RTS

row
doColumn
IIdownCurs
CHROUT

rowLoop

column
mCADone
flriteCurs
CHROUT

columLup

lsave A and X registers

ihome the cursor
iwith the built-in routine

ido the row -- X does the counting
iif row=O, then go right to column
imove down a row

ione more row done
iif more to be done

ido the column -- X counts again
iif column=O, we're done
imove over one column

ione more column done
iif more to be done

irestore the A and X registers

ireturn from mvCrsAbs

------------------------ pausABit ----------------------

247

1117 * pause a bit
1118 * X comes in with the outer pause loop counter value
1119

84A2 48 1120 pausABit PHA Isave the A, X, and Y registers
84A3 8A 1121 TXA
84M 48 1122 PHA
84A5 98 1123 TYA
84A6 48 1124 PHA

1125
84A7: 8A 1126 aPOutLup TXA Isave outer loop counter
84A8: A2 10 1127 LDX IImidPause linitialize middle loop counter
84AA: AD 10 1128 aPMidLup LDY fJinPause linitialize inner loop counter
84AC: 88 1129 aPlnLup DEY Idecrement the inner counter
84AD: DO FD 1130 BNE aPlnLup luntil inner loop finishes
84AF: CA 1131 DEX Idecrement the middle counter
8480: DO F8 1132 BNE aPMidLup luntil middle loop finishes
84B2: AA 1133 TAX Iget the outer loop counter
84B3: CA 1134 DEX Idecrement the outer counter
8454: DO F1 1135 BNE aPOutLup luntil outer loop finishes

1136
84B6: 68 1137 PLA Irestore Y, X, and A registers
84B7: A8 1138 TAY
84B8: 68 1139 PLA
84B9: AA 1140 TAX
84BA: 68 1141 PLA

1142
84BB: 60 1143 RTS Ireturn from pausABit

1144
1145
1146 *---------------------- global variables -----------------*
1147

84BC: 02 1148 numPrmps DFB 2 Inumber of prompts
84BO: 15 17 1149 prRows DFB 21,23 Istarting rows for prompts
84BF: OA 09 1150 prCols DFB 10,9 Istarting columns for prompts

1151 row OS 1 Iholds row for setting cursor
1152 column DS 1 Iholds column for setting cursor
1153

84C3: 02 1154 numSprtz DFB 2 Inumber of sprites
84C4: 5C DC 1155 hzPosLo DFB 92,220 Isprite horizontal positions
84C6: 00 1156 hZPosHi DFB %00000000 Ibit 118 for sprite horz. positions
84C7: 4D 96 1157 vrPos DFB spTopPos,spBtmPos+sSFactor Isprite vertical p
ositions
84C9: 04 03 1158 spColr DFB pVPurple,pVCyan Isprite colors
84CB: E1 84 1159 sDSrcPtr DA sOData laddress of sprite O's data
84CD: E1 84 1160 DA sOData laddress of sprite 1 's data
84CF: 00 30 1161 sDBfrPtr DA 12288 IPointers to sprite
84D1: 00 30 1162 DA 12288 Idata buffer
8403: CO 1163 sDatPg DFB 12288/64 Isprite data buffer
84D4: CO 1164 DFB 12288/64 lin 64-byte units
8405: 03 1165 spVrXFac DFB %00000011 Isprite vertical expansion bits
84D6: 03 1166 spHzXFac DFB %00000011 Isprite horizontal expansion bits
8407: 03 1167 sprOn DFB %00000011 Isprite visibility bits

1168
1169 prinTmp1 DS I short-term storage
1170 prinTmp2 DS I short-term storage
1171
1172 vibr1 DS I short-term storage
1173 vibr2 DS I short-term storage
1174 vibr3 DS I short-term storage
1175 vibr4 DS I short-term storage
1176
1177 keyFlag DS Iholds result of keyboard scan
1178
1179 full Hook DS Iholds the numeric code of the
1180 I full (shut) hook
1181 emtyHook DS Iholds the numeric code of the
1182 I empty (open) hook
1183
1184
1185 *--------------------- actual sprite data ----------------*
1186

84E1 00 FF 00 1187 sOData DFB 0,255,0,1,129,128
84E4 01 81 80
84E7 03 00 CO 1188 DFB 3,0,192,6,0,96

24&

84EA 06 00 60
84ED OC 00 30 1189 DFB 12,0,48,24,231,24
84FO 18 E1 18
84F3 30 A5 OC 1190 DFB 48,165,12,32,231,4
84F6 20 E7 04
84F9 20 00 04 1191 DFB 32,0,4,32,36,4
84FC 20 24 04
84FF 26 3C 64 1192 DFB 38,60,100,35,129,196
8502 23 81 C4
8505 30 E7 OC 1193 DFB 48,231,12,24,60,24
8508 18 3C 18
850B OE 00 70 1194 DFB 14,0,112,3,255,192
850E 03 FF CO
8511 00 81 00 1195 DFB 0,129,0,0,129,0
8514 00 81 00
8517 00 81 00 1196 DFB 0,129,0,0,129,0
851A 00 81 00
851D 03 E7 CO 1197 DFB 3,231,192

--End assembly, 1312 bytes, Errors: 0

249

4
4-Color Sprite program, 45

A
addressable locations, 9
addresses

color memory, 203
screen memory, 201
VIC, 9

ADSR,145
ADSR envelope, 128
ADSR envelopes, 151
Alien Walker program, 75
amplitude, 120, 121
amplitude modulator, 125
AND function, 88, 105
AND operation, 227
animation

characters for, 73
developing images for, 53
sprite, 52

arrays
penormance, 141, 147

assembly language, 230, 232
attack rate, 128, 129

B
background, 98
Bam-P'Twang program, 168
Bigger Sprite program, 15

250

Index
binary number system, 25
bit map .

clearing, 85, 86
bit-map clearing, 230
bit-mapped display with text, 101
bit-mapped mode, 80

color in, 83
multicolor, 116

Bit-Mapped Text program, 102
bits, 25, 88
blocks of memory, 81
Boolean variable, 37
Bouncer program, 176
byte, 83
bytes, 25, 88

c
caps

sounds of, 165
changing character patterns, 67
character block coding form, 220
character coding form, 216

multicolor, 218
character design, 74
character generator ROM, 62
character memory, 66
character mode

extended background, 111
multicolor memory, 109

character patterns, 62

changing, 67
custom, 66

Character ROM Display program, 63
Character ROM to RAM program, 67
character string, 64
character string movement, 66
character strings, 180
characters

designing, 70
characters for animation, 73
chip

graphics, 7
SID,119

clearing
bit-map, 230

clearing the bit map, 85, 86
Clock program, 158
clock sounds, 157
codes

color, 25, 210
number, 2
pixel,21
screen display, 71, 205

codes for sprites, 16
coding form

character, 216
character block, 220
sprite, 2, 212

coding forms
sprite, 54

collision detection, 106
color, 9

sprite, 41
color codes, 210
color in the bit-mapped mode, 83
color keys, 61
color memory, 62
color memory addresses, 203
colors, 21

random, 86
sprite, 24

colors in the multicolor mode, 42
Commodore key, 61
Complex Clones program, 29
control key, 61
coordination

sound/image, 186
Coventry Carol program, 152
CTRL key, 61
custom character patterns, 66
Custom Multicolor program, 112

D
data

dummy, 56
sprite, 7, 14, 30
sprite pixel, 50

data pointers
sprite, 21, 24, 29

data statements, 15
decay rate, 128, 129
defining a sprite pattern, 3
dental floss, 119
design

sprite, 15, 21
unity of, 193

Design a Sprite program, 14
design of characters, 74
designing a multicolor sprite, 43
designing characters, 70
detection

collision, 106
direction of sprite movement, 37
direction switches

joystick, 104
display

graphics, 7
text, 7, 80

display codes
screen, 71

display icons, 209
display of sprites, 9
doodler

electronic, 90
drawing program, 90
dummy data, 56
durations of notes, 140

E
eavesdropping, 162
effects

sound, 157

envelope
ADSR,128

envelope generator, 125, 131
eraser, 66
exercises

programming, 94
exercises, 17,38,57,78,94,117,

136, 153, 172, 193
programming, 39, 58

expanded sprite position, 15
expansion

sprite, 15, 26
extended background character

mode, 111
Extended Background program, 115

face
flying, 64

false code, 12

F

Fast Random Draw program, 87
Fly the Face program, 64
form

sprite coding, 2
frequencies of musical notes, 133
frequency, 120

voice, 125

G
gating the envelope generator, 131
generator

envelope, 125
waveform, 124

Gong Machine program, 161
gong sounds, 160
graphics chip, 7
graphics display, 7
graphics icons, 6

H
horizontal position, 9

sprite, 11
horizontal pOSitions, 10
horizontal sprite expansion, 15
horizontal sprite pOSition, 24
horse

galloping, 165
Horse program, 166

icons
display, 209
graphics, 6

images for animation, 53
integrated circuit

VIC II, 7

J
Joyous Collision program, 107
joysticks, 101
Juggling Fool program, 54
Juke Box program, 154

keyboard,61
keypress test, 9
keys, 61

repeating, 61

language

K

L

assembly, 230, 232
machine, 86

loading sprite data, 14,30,56
location of sprite data, 7
locations

addressable, 9
memory, 25
sprite, 21, 24, 35
sprite data, 29

logical operations, 227
loops for sprite data, 50
loudness, 120

M
machine language, 86
Mad Computer program, 163
memory

character, 66
color, 62
screen, 62

memory blocks, 81
memory locations, 25
memory locations for sprites, 21, 24,

29
Minimal Siren program, 124
mode

bit-mapped, 80
multicolor, 41

modular thinking, 175
modulation

ring, 160
modulator

amplitude, 125
movement

character string, 66
sprite, 30, 51

movements
sprite, 35

moving character generator ROM to
RAM,67

multicolor bit-mapped mode, 116
multicolor character coding form,

218
multicolor character mode, 109
multicolor mode

colors in, 42
multicolor sprite

designing, 43
multicolor sprite coding form, 214
multicolor sprite mode, 41
multiple sprite data

storing, 29
multiple sprites, 21, 24, 29

251

music
reading, 139

musical note values, 225
musical notes, 133

nibble, 83
noise

white, 167

N

normal sprite coding form, 212
note durations, 140
note values, 225
note/octave string, 145
notes

musical, 133
number codes, 2
number codes for sprites, 16
number system

binary, 25

o
octave

reference, 139
operations

logical, 227
OR operation, 227
oscillator

tone, 124
output

ring-modulated, 160
oven rack, 119
Over and Under program, 99
overlap

sprite, 47, 50

p
patterns. random, 86
pattern

sprite, 1,3
patterns

character, 62
repetitive, 51

performance arrays, 141, 147
Pianorgan program, 181
pitch,12O
pixel codes

sprite, 21
pixel data

sprite, 50
pixels, 1, 16, SO, 88

transparent, 47
Play Some Sounds program, 134
pointers

sprite data, 21, 24, 29
position

expanded sprite, 15
horizontal, 11
sprite, 9

positions
screen, 10, 24

priority
sprite-ta-background, 98

252

sprite-ta-sprite, 47
program

4-Color Sprite, 45
Alien Walker, 75
Bam-P'Twang, 168
Bigger Sprite, 15
bit-map clearing, 230
Bit-Mapped Text, 102
Bouncer, 176
Character ROM Display, 63
Character ROM to RAM, 67
Clock,158
Complex Clones, 29
Coventry Carol, 152
Custom Multicolor, 112
Design a Sprite, 14
Extended Background, 115
Fast Random Draw, 87
Fly the Face, 64
Gong Machine, 161
Horse, 166
Joyous Collision, 107
Juggling Fool, 54
Juke Box, 154
Mad Computer, 163
Minimal Siren, 124
Over and Under, 99
Pianorgan, 181
Play Some Sounds, 134
Pulzer Zone, 170
Random Draw, 84
Read Music, 142
Seesaw, 187,232
Sideways Sprite, 13
Simple Clones, 22
Simple Sprite, 8
Sketch,90
Sprite Overlap, 48
Sprite Ya-Yo, 11
Spriteiy Chase, 34
spritely couple, 32
Three-Part Song, 148

programming
structured, 176

programming exercises, 17,39,58,
78,94,117,137,154,172,194

pulse width
setting, 126

Pulzer Zone program, 170

R
Random Draw program, 84
Read Music program, 142
read statement, 14
reference octave, 139
register

miniature, 25
register layout

SID, 125, 222
VIC, 197

registers
restoring, 9

sprite expansion, 15
VIC-II,9

release rate, 128, 129
repeating keys, 61
repetitive patterns, 51
restoring registers, 9
ring modulation, 160
ROM,66

character generator, 62
RVS OFF key, 61
RVS ON key, 61

S
screen display codes, 71, 205
screen memory, 62
screen memory addresses, 201
screen positions

sprite, 24
Seesaw program, 187

assembly language version, 232
selftest, 17,38,78,94, 117,136,

153, 172
self text, 193
set

voice, 125
shape

wave, 124
SID chip, 119, 124
SID register layout, 125, 222
Sideways Sprite program, 13
Simple Clones program, 22
Simple Sprite program, 8
simplicity, 193
Sketch program, 90
sound,119

turning on, 131
sound effects, 157
Sound Interface Device, 124
sound/image coordination, 186
sounds

gong, 160
sprite

multicolor,43
sprite animation, 52
sprite coding form, 2

multicolor, 214
normal,212

sprite coding forms, 54
sprite colors, 21, 24
sprite data, 7, 14

loading, 30, 56
storing, 29

sprite data pointers, 21, 24, 29
sprite design, 15
sprite expansion, 15
sprite horizontal position, 11
sprite locations, 35
sprite movement, 30, 51

direction of, 37
sprite movements, 35
sprite multicolor mode, 41

Sprite OVerlap program, 48
sprite pattem

defining, 3
sprite pixel codes, 21
sprite pixel data, 50
sprite position, 9
sprite screen positions, 24
sprite yo-yo, 10
Sprite Yo-Yo program, 11
sprite-to-background priority, 98
sprite-to-sprlte collisions, 106
sprite-to-sprlte priority, 47
Spritely Chase program, 34
Spritely Couple program, 32
sprites, 1, 16

displaying, 9
multiple, 21, 29
turning on, 25

statement
read,14

statements
data, 15

storing multiple sprite data, 29
string

character, 64
structured programming, 176
sustain level, 128, 129
switches

joystick, 104
synergy, 175
synthesizers, 124

Edited by Martlyn L. Johnson

test
Boolean, 37
self,38

text

T

bit-mapped, 102
bit-mapped display with, 101

text display, 7
thinking

modular, 175
three voice example, 147
Three-Part Song program, 148
timing, 193
tone oscillator, 124
top-down programming, 176
transparent pixels, 47
tremolo, 162
true and false, 12
true code, 12
true/false test, 37
tuning

fine, 193
tuning fork, 119
tuming a sound on, 131
tuming on sprites, 25
Twilight Zone, 170

U
unity of deSign, 193

V
values

note, 225
variable

Boolean, 37
vertical position, 9
vertical positions, 10
vertical sprite expansion, 15
vertical sprite poSition, 24
vibrato, 162
VIC II, 7
VIC register layout, 197
Video Interface Chip, 7
voice frequency, 125
voice set, 125
voices, 124, 146
volume, 120
volume control, 131
volume variations, 128

wave
sound, 119

waveform, 145
setting, 126

W

waveform generator, 124
waveforms, 120
white noise, 167
width

pulse, 126

yo-yo
sprite, 10

Y

253

Commodore 64/128 Graphics
and Sound Programming-2nd Edition

SOFTWARE
AVAILABLE

If you are intrigued with the possibilities of the programs included in Commodore 64/128 Graphics
and Sound Programming-2nd Edition (TAB Book No. 2640), you should definitely consider hav
ing the ready-ta-run disk containing the software applications. This software is guaranteed free
of manufacturer's defects. (If you have any problems, return the disk within 30 days, and we'll
send you a new one.) Not only will you save the time and effort of typing the programs, the disk
eliminates the possibility of errors that can prevent the programs from functioning. Interested?

Available on disk for Commodore 64 and 128 at $19.95 for each disk plus $1.00 shipping and
handling.

1------------------------------------. • • I I'm interested. Send me: I
I disk for Commodore 64 and 128 (6425S) I
• TAB BOOKS catalog I
• Check/Money Order enclosed for $19.95
• plus $1.00 shipping and handling for each disk ordered. •
• VISA MasterCard I
I Account No. Expires.

I Name I
• Address .•
• ~ ~ ~ I
I Signature '1
• Mail To: TAB BOOKS Inc. I
I P.O. Box 40 I
• Blue Ridge Summit, PA ' I
I 17214 I

I • I I
I (Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money orders in U.S. dollars.) I
• TAB~ I
I I L ___________________________________ ~

\
\
I

Commodore 64™ 1128 ™ Graphics and
Sound Programming-2nd Edition

Stan Krute

Completely revised and expanded
with new programs and techniques, plus details on the C-128's graphics!

Discover how to get far more from the graphics and sound capabilities
of your C-64 or C-128 than you've ever thought possible! All you need is
here in this completely revised and expanded new edition of a guidebook
that's been hailed as the best in its field!

Here's all the hands-on, learn-by-doing information you'll need to start
taking full advantage of your Commodore's exceptional graphics powers
sprite, character, and bit-mapped graphics. Plus, you'll find out how to utilize
all of your machine's advanced three-voice music synthesizer chip. Best of
all, you'll find a whole collection of new programs to demonstrate how each
concept operates on both the C-64 and the C-128!

Sample exercises plus clear, concise explanations make it easy to mas
ter each technique. Then you'll see how to combine these various concepts
using a wide range of ready-to-run programs especially designed by the au
thor to make the most of your Commodore's graphics and sound capabilities.
From here on out, you ' ll be able to use the same principles to create your
own original programs for business, household use, or game playing ap
plications!

In fact, the programs included here are alone worth far more than the
price of the book. In this new edition, Krute has included nearly 75 programs
for both the C-64 and the C-128, each one with thorough description, com
plete program listing, and summary of what the program has been designed
to accomplish. Plus there's all the expert advice and guidance you need to
get you started designing your own sprites and custom characters as well
as exciting sound programs in both 64 and 128 modes!

Stan Krute is an experienced writer, programmer, and artist who has
taught on the elementary, secondary, and junior college levels. He currently
teaches and lectures on various computer topics including sound and
graphics programming. The first edition of his Commodore 64 Graphics and
Sound Programming sold more than 35,000 copies!

ITABI TAB BOOKS Inc.
Blue Ridge Summit, Pa . 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > $14·95 ISBN 0-8306-0340-9

