
cHl11flO~" --......
A BEGINNER'S GUIDE
By Shaffer It Shaffer Applied Research It Development

jro nlistJ iece

COMMODORE 64
COLOR GRAPHICS:

. A BEGINNER'S GUIDE .

. By:
Shaffer & Shaffer' Applied Research

. .. & Development

.8HE ~OOK~OMPANY
11223 S. HIND~ Y AVE.

LOS ANGELJ!:~. CA 90045

ACKNOWLEDGEMENTS

Special thanks are extended to Penelope Semrau for developing the instructional
concepts and graphic designs. to Jeffrey Young for creating the Commodore 64
color graphics tool kit~ and to Tamara Sullivan for writing the manuscript. This
development team was supported by Lois Augenstein. who coordinated the pro
duction of the artwork; Sandra Locke. who produced the artwork; and Andrew
Whitman. who tested and edited the manuscripL Thanks also to Kathy Planton
and Katherine Harding for typing the manuscript. All of us hope you'll enjoy
learning more about your Commodore 64.

General Editor
Robert P. Wells. Ph.D.

Editorial Assistant
Elizabeth Anders

Graphics Production
Estela Montesinos
Argelia Navarrete

ISBN 0-912003-06-5

Daniel N. Shaffer
President.
Shaffer Be Shaffer Applied
Research Be Development. Inc.

Copyright 1984 @ The Book Company. a division of Arrays, Incorporated. All
rights reserved. Printed in the United States of America~ No part of this publication
may be reproduced. stored in a retrieval system, or ~smilled, in any form or by
any means, electronic. mechanical. photocopying. recording or otherwise. without
the prior written permission of The Book Company.

Table of Contents
INTRODUCTION

What You Can Expect to Learn
Getting Ready
How to Use This Book
Introduction to High Resolution Graphics
Introduction to Your Keyboard

CHAPTER I: SETTING UP THE PROGRAM

Entering the Program
Running the Program
Breakdown of the Program
How to "SAVE" a Program
Saving on a Disk Drive
Saving on a Cassette Tape Recorder

CHAPTER 2: BEGINNING GRAPHICS
Introduction to Memory
Entering the Subroutines
Breakdown of the Subroutines
Choosing Colors for Your Picture
Entering the ZAP Routine
Drawing the Lighthouse
Breakdown of the Lighthouse Routine
Summary

CHAPTER 3: FINDING AND PLOTTING POINTS

Locating a Point
Painting the Background
Breakdown of the Paint Background Routine
Drawing the Water
Breakdown of the Water Routine
Summary

CHAPTER 4: PLOTTING LINES AND PAINTING SHAPES

Designing Foreground Images
Plotting Lines
Plotting Shapes
Painting Shapes
Outlining the Land and Waves
Painting the Land and Waves
More on Colors
Shading the Lighthouse
Finishing Up the Program
Saving a Picture on Disk or Tape
Summary

1
2
3
3
5

9
10
11
12
13
14
16

21
21
23
25
32
34
36
38
40

43

43
46
47
49
51
56

59

59
60
64
7I
82
87
91
92
94
95
98

CHAPTER 5: TEST PLOTTING AND DUPLICATING SHAPES 99
Defining a Shape with Data Lists 99
Entering Data Lists in the Program 104
Test Plotting 108
Duplicating Shapes 112
Drawing and Placing the Ship's Hull 113
Drawing the Front Sails 120
Drawing the Rear Sails 123
Drawing and Duplicating the Large Seagull 125
Drawing and Duplicating the Small Seagull 127
Design Ideas 128
Summary 131

CHAPTER 6: MAKING AND MOVING SPRITES 135
Introduction to Sprites 135
Special Features of Sprites 141
Drawing and Placing the Sun Sprite 148
Animating the Sun Sprite 165
Design Ideas 169
Summary 177

POSTSCRIPT 183
APPENDIX A: THE PROGRAMMER'S TROUBLE SHOOTING GUIDE 189
APPENDIX B: COMPLETE LISTING OF TOOLS 191
APPENDIX C: ADDITIONAL TOOLS 194
APPENDIX D: SPEEDING UP YOUR TOOLS 200
APPENDIX E: DESIGN CHARTS 205
APPENDIX F: BIBLIOGRAPHY -SUGGESTED READING LIST 207
APPENDIX G: COLOR CHARTS 209
APPENDIX H: TOOL KIT REFERENCE CARD

INTRODUCTION
Welcome to the world of computer graphics! In this book, you will learn to

navigate the Commodore 64 through an ocean of colors. With colors at your
command, you can create your very own works of artl

As you may have guessed, the picture shown in the frontispiece was produced
using the Commodore 64. The computer program that created the picture is
carefully explained step-by-step in the following chapters. After reading this book,
you will be able to make the same picture, as well as write programs to create your
own pictures on the Commodore 64. The example program and illustrations
presented in this book are written for specific use on the Commodore 64. You will
learn how to use BASIC programming to instruct the Commodore 64 in drawing
various kinds of different lines and shapes. In addition, you will learn how to use an
assortment of colors, and how to make shapes move within your pictures.

This book was designed to be read and used by people of all ages. "Computer
jargon" has been replaced with plain, everyday English wherever possible. Our
only requirement is that you have some experience with the BASIC programming
language. If words like "program," "line number," "GOTO," and "RUN" are at
all familiar sounding, you should have no problem using this book. If, instead,
these words make you break out in a cold sweat, you will need to do a little
homework. Read chapters 2 through 4 of your Commodore 64 User's Guide, spend
some time practicing,and you should be prepared to use this book.

What You Can Expect to Learn

In this book you will learn to:

-paint in a background color for any picture
-plot a point
-draw a line
-place lines exactly where you want them
-make shapes
-position a shape at any screen location
-control colors
-make and move small objects

Each of these techniques is a necessary part of drawing any picture on your
screen. Because each is so necessary, we have arranged the book in a special way.
When you finish with Chapter 6, you will have a "tool kit" containing these
graphic techniques, each as a separate "tool." This tool kit can be easily transferred
from program to program. Do you need to draw a line? No problem. Just pick up
the "draw line" tool, specify where you want the line drawn, and the job is donel
(This will be clearer when the first tool is introduced in Chapter 2.)

2

We will concentrate on teaching how a picture can be drawn on the Commodore
64. Often, knowing the why is not essential to creating the picture. Think of using
your radio. You may not care why it works, just how it works (where the switch is).
Beginning in Chapter I, any "why" that is not necessary to understand has been
separated from the rest of the text and placed in a box. These technical descriptions
can be read or passed over, as you please. Passing over the technical descriptions
will in no way keep you from learning how to create your own graphic displays.

Getting Ready

To use this book, you will need the following equipment:

1. I disk drive (with a blank diskette) or a cassette recorder for the Commodore 64
(with a blank tape);

2. A Commodore 64 keyboard;

3. A color video monitor or color TV screen; and

4. Some graph paper to work out your own designs.

Each time you sit down to work with this book you should be at your computer.
You will need a monitor (such as a TV) which is properly connected to the
Commodore. Instructions on setting up your equipment are provided in the User's
Guide that came with your Commodore. It also explains how to connect a cassette
recorder to the Commodore, if you plan to use one.

If you own a disk drive, it should be connected to the Commodore. All disk drives
come with an instruction manual on how to set them up properly. Check your
manual if you need help.

Once you have your equipment in order, do the following:

1. Turn on the disk drive, if you are using one. (Note: cassette recorders are
automatically "on" whenever they are connected to the computer.)

2. Turn on the Commodore 64.

3. Turn on the TV (or whatever monitor you are using).

Your screen should say"···· COMMODORE 64 BASIC V2 •••• " at the top.
Below this, a line describing your computer's memory will be shown. (Don't worry
if you don't know what "memory" means.) Finally, you will see "READY.",
followed on the next line by a blinking box. This blinking box is called a cursor,
and it serves as a place-marker on the screen. Each time you type a letter or symbol,
the letter or symbol will be displayed on the screen at the cursor's location. The
cursor then moves to the right one space to mark where the next typed letter or
symbol will be displayed. You will see this cursor many more times as you enter the
program that draws your ship.

How to Use This Book

Beginning in Chapter 2, the best way to use this book is to:

l. Load the previous chapter's program into the computer.
2. Read the introduction to the new chapter.
3. Type in the BASIC lines when requested in the text.
4. "RUN" the program and watch what happens on your TV
screen.
5. "LIST" the program and correct any typing errors.
6. Read the chapter pages that explain what is happening.
7 . "SAVE" your program with a new name at the end of a session
or chapter.

By following through each chapter, you will develop a better understanding of
what goes into making a computer-generated picture. We suggest that, as you read
through a chapter, you "RUN" the program several times to see how the computer
is using it to create the visual display on your TV. The chapters are arranged so that
each chapter builds upon the previous one. This allows you to start off easy, and
gradually work your way up to the final picture.

In the back of this book are several Appendices providing additional information
about Commodore 64 graphics. Included you will find a trouble-shooting guide to
help locate program ~rrors, and a recommended reading list of Commodore 64-
related writings. Chapter 6 discusses the contents of the Appendices in more detail.

Introduction to High Resolution Graphics

Most of the software products that you see today (such as computer games,
graphing programs, and educational products) make use of sophisticated colored
pictures. Computer pictues like these are made up of thousands of tiny dots of
colored light. These colored dots are called pixels. Each Commodore 64 picture is
made up of a total of 64,000 pixels. There are 320 pixels across each row, and 200
down each column. The pixels are very small and close to each other. These
thousands of pixels, viewed together, look like a solid picture when you are at a
distance from the TV.

The total number of pixels a computer uses to display a picture on the screen is
called the resolution. The quality of a computer picture varies from one computer
to another because some computers can display pictures in a resolution of 64,000
pixels, while other computers may display pictures with considerably less, say
1,600 pixels per picture.

3

4

The higher the number of pixels, the higher the resolution. This is called high
resolution. All of the graphic programs presented in this book will be displayed in
high resolution. Your high resolution screen will appear with rows and columns of
pixels similar to this:

HIGH RESOLUTION SCREEN

Pictures made on a screen using high resolution are termed high resolution
graphics. The resolution of the screen plays an important part in making pictures:
the higher the resolution, the more detail the picture can have. For example, if you
are making a circle in high resolution, your circle might look like this:

...... -.
•• •• •• • • •• • • • • • • • • • • • • : . • • • • • • • •

~ . • • • • •• •
••• • ••

••••••••

Whereas, if you were working on another computer system in low resolution,
your circle might look like this:

In low resolution, the TV screen has fewer pixels. To fill the screen with fewer
pixels, the computer has to use larger pixels. This makes objects, like circles,
appear block-like and chunky when compared to the refined, smooth look of high
resolution pictures.

Whether you are creating bar graphs for business use or a map for geography
class, you will appreciate working in high resolution graphics on your Commo
dore 64.

Introduction to Your Keyboard

If you have already used your Commodore, you probably know how some of the
special keys are used. For example, some keys allow you to change the color of the
letters and symbols that are typed.

To see how this works, let's begin by changing the typing color to yellow. To do
this, press the CTRL key (located on the left-hand side of the keyboard) and, at the
same time, press the key numbered 8 (located on the top row of the keyboard). Then
release both keys.

NOTE: Throughout this book, we will boldface the name of the keys on the
keyboard. So, for example, when we say "press CTRL," we mean press the
key marked CTRL. We do not mean to press each letter (C, T, R, and L).

To see what happened, type in your name. It should be printed in yellow. Press
the CTRL key while pressing the 3 key. Release both keys and type another
word-any word. What color are the letters now? Tryout some other colors (CTRL
6, release), and then type in some more words and characters. Adjust your TV screen
for a clear picture.

This is just one way to direct the computer in the use of colors. Another unique
color feature of the Commodore 64 is its use of the special "Commodore key" (C=).
This key produces a second set of character colors. On the lower left-hand side of the
keyboard is the key marked C=. Press both the C= key and the 5 key at the same time.

5

6

Release both keys and type in some more characters. You are now using the second
color set. Press C= 6 and type the word "commodore." Take some time and tryout
the other color options.

Below is a chart illustrating 16 different colors. To use a color in the first (upper)
set, such as red, you would press CTRL and 3. To use a second (lower) set color, like
light green, you would press C= and 6.

Character Color Chart

first set

Black White Red Cyan Purple Green Blue Yellow
[CTRL]

[1] [2] [3] [4] [5] [6] [7] [8]
[C=]

Orange Brown Light Grey I Grey 2 Light Light Grey 3
Red Green Blue

second set

Looking at your keyboard you will find a set of graphic characters on the front of
each alphabetic key. For example, on the front of the N key are the two graphic
characters: lZIon the right, and [) on the left. To display the graphic character on the
right side, hold down the SHIFT key and press the N key. The graphic character on
the left is obtained by pressing C= while pressing the N key. Try using these graphic
characters and others in different colors. Although these characters are good for
some graphic examples, they are too limited for the graphic programs presented in
this book and so we will not use them.

To clear the screen, hold down the SHIFT key and press the CLR/HOME
("clear/home") key on the upper right-hand side of the keyboard. This will clear
the screen and place the little blinking light (the cursor) in the upper left-hand
corner of the screen. This upper left-hand corner position is called the HOME
position.

Another special key that you will need to use often is the RUN/STOP key (on the
left-hand side of the keyboard). If you are running a program, as we will in the next
chapter, holding down the RUN/STOP key stops the program. This key will be
very useful to you. For instance, if a program is not doing what you expect it to do,
press the RUN/STOP key. You can then go back and check the program for typing
errors. We will remind you about this key again later, when you run your first
program.

Finally, there will be times when pressing RUN/STOP won't get you back to
your program listing. If you have entered a program wrong, and the RUN/STOP

key does not seem to help: hold down the RUN/STOP key and tap the RESTORE
key. This should get you back to your program listing. If not, a last resort is to turn
the computer off and on again. The problem with this method is that any portion
of your program that has not been saved on a diskette or tape will be "forgotten"
(erased) by the computer.

Below is a chart that reviews some of the special keys discussed so far:

Key

[CTRL] [8]

[C=] [6]

Description of Use

set the color of the typed characters to yellow

sets the color of the typed characters to light
green

[SHIFT] [N] types the graphic character shown on the bot
tom right side of the UN" key

[C=] types the graphic character shown on the bot
tom left side of the UN" key

[SHIFT] [CLR/HOME] clears screen and places cursor at home
position

[RUN/STOP] stops a program when it is running, returning
you to the text screen; anything that was dis
played on the text screen prior to running the
program will again be displayed, as well as any
syntax errors found during the execution of the
program.

[RUN/STOP] [RESTORE] stops a program when it is running, returning
you to the text screen; the text screen will be
cleared and the cursor will be placed in the
home position

These keys and others are used in the upcoming chapters to enter your program.
Before going on to Chapter I, take some time to look over your keyboard. You
should note the location of any keys you have not see before. Especially note the
location of the RETURN key, as this is one of the most often used keys.

7

8

Chapter 1

SETTING UP THE PROGRAM
Each chapter in this book covers a portion of the program needed to draw your

ship. A "program" is a list of instructions that tells the computer what to do. Each
instruction (or line) in the program is given a number. The line numbers tell the
computer the order in which it should carry out the instructions. Line numbers can
start at 0, and continue up to as high as 63999.

The instructions within each line are made up of various letters and symbols.
There are many different ways to write instructions to the computer. Each method
is called a computer language. You will be using a language called BASIC. With it,
you will learn to instruct the Commodore 64 to draw lines and shapes, change
colors, and even make objects move.

This chapter's program has two goals: (1) to establish the organization of the
final program; and (2) to completely familiarize you with "subroutines." In
general, a program can be divided into two sections: the main routine, and the
subroutines. Subroutines can be thought of as "tools" that the main routine uses to
do various tasks. Consider the tools used to plant seeds, such as a hoe, a spade, or a
shovel. Each of these tools serves a different purpose. A hoe is used for one task,
while a spade is used for another. When a tool is no longer needed, it is set back
down until needed again. In the meantime, the gardener returns to the general task
of planting seeds.

Subroutines are similar in that they are set in a specific place, and used only when
called for in the main routine. After performing their tasks, they are "set back
down" and the computer returns to the main routine. Because subroutines are used
many times, they are grouped together. This way, they are easily found the next
time one is needed.

The computer can be thought of as the gardener. It has the responsibility of
getting the main routine (the "planting of the seeds") done, using whatever tools
are available. To "pick up" a subroutine in the middle of the main routine, a
special programming code is used: GOSUB. GOSUB is always followed by a
number, such as GOSUB 20. When the computer comes across such a statement, it
knows to GO directly to a SUBroutine. The number tells the computer which line
number the subroutine begins on. The computer stops performing the main
routine instructions and begins performing the subroutine. To let the computer
know when the subroutine task has been completed, another special code is used:
RETURN. RETURN tells the computer to stop using the subroutine lines and
return to the main routine.

Where does the computer return to in the main routine? This is the beauty, and
the importance, of subroutines. Whenever the computer has completed a subrou
tine task, it returns to the exact same place it was before it went to the subroutine.

To give you an example, suppose a portion of the program read:

9

10

1100 OOSUB 2e
lle1 PRINI' "SUBROUI'INE a:MPLETED"

When the computer came across line 1100, it would immediately go to line 20 to
begin performing the subroutine there. When it came across a RETURN state
ment, it would return to the location just after GOSUB 20. This would be line 1101,
which tells the computer to print SUBROUTINE COMPLETED. The commands
GOSUB and RETURN allow you to "pick up" a subroutine tool, use it, and then
return to the same place in the main routine.

Now, how should you organize a program? Since subroutines need to be set apart
from the main routine for easy access, they are assigned their own set of line
numbers. This is usually done by setting aside 1,000 to 2,000 line numbers to be
used only by subroutines. The final program in this book will contain 23 subrou
tines. To make sure we leave enough room to enter all of them, we will set aside
1,000 line numbers to be used only by our subroutines. To make sure we leave
enough room for the main routine, the program's organization is:

(a) lines I through 999 will only be used for the subroutines;
(b) lines 1000 and up will only be used for the main routine.

This setup allows the main routine to become as large as necessary. Remember,
the main routine is responsible for the majority of the work. Thus, it usually
requires more lines of instructions.

Entering the Program

To see how this works, let's enter the first program, a simple one to start with.
This program has the computer print a message on the screen whenever one of 3
"special" keys is pressed. If any other key is pressed, the computer will do nothing.
Sound easy? It is.

Begin first by pressing CTRL and 2 at the same time. You remember what this
does. It changes the typing color to white, which is easier to see on the screen than
the normal color of blue.

Now, type the program shown below on your keyboard. Do not forget the line
numbers. They tell the computer the order the instruction lines are to be carried
out. Type the program carefully, leaving nothing out and adding nothing to it. A
slight change in the program could prevent it from working properly. We have
indented (pushed to the right) the program to make it easy to see. Do not indent the
program as you type it. Begin on the left side of your screen, type line I exactly as we
have it listed, and press RETURN. Then go on to type line number 20.

1 OO'ID 1000
20 REM::::::::::GRAPHICS
21 PRTI-n'''SUBROUI'INE G \'l)RKS It

24 RETURN
38 REM::::::::::TEXT
31 PRINr"SUBROUI'INE T mRKS"
34 RETURN
40 REM::::::::::OOLORS
41 PRINI'"SUBROUI'IUE e \DRKS"
44 REI'URN
1000 REM::::::::::::::::::::::::::
1001 REM MAIN IDurINE
1002 REM::::::::::::::::::::::::::
1100 GEl' A$
1110 IF A$ = "G" THEN <DSUB 20
1120 IF A$ = liT" THEN (})SUB 30
113~ IF A$ = "e" THEN <DSUB 40
1140 ooro 1100

Correcting Mistakes:

If you make a typing mistake before you press RETURN, press the
INST IDEL key to back up and erase characters (the INST IDEL key is on the
the top, right side of your keyboard).

If you make a mistake after you press RETURN, just re-type the whole line
(including the line number). It will look like you have two lines with the
same number, but if you type LIST and press RETURN, you will see that
the corrected line has been inserted in your program.

If you want to erase an entire line (for example, one that was given an
incorrect line number), re-type the number of the line to erase, and press
RETURN. Type LIST, press RETURN, and you will see that the line has
been erased from your program.

Look at the program. You will notice that it contains three subroutines. Each
subroutine is located in our I to 999 line number group. The main routine begins
on line number 1000. The main routine contains the GOSUB commands to use the
subroutines. The subroutines contain the RETURN commands to get back to the
main routine.

Running the Program

When you have the program typed on your screen, you can "RUN" it. RUN is a
command you type when you want the computer to use your program. This
command tells the computer to start at the lowest line number in the program (in
your program this is line I), and begin doing what the program tells it to do. Let's
try it out. Type the word RUN and press RETURN.

You will find out why this program works in a moment. For now, we will tell
you what to expect and what you should do. If your program does not work as

11

12

described below, press the RUN/STOP key. After that, type LIST and press
RETURN. Your program will again be listed on the screen, and you should check
for typing errors. Common errors include lines that were omitted, line numbers
typed wrong, quotation marks left out, small L's (1) typed instead of ones (1), and
"ohs" (0) typed instead of zeroes (0). Re-type any lines that have mistakes, and
RUN the program again.

When the program is running, the first thing you should notice is that the cursor
disappears. Nothing else changes. The computer is waiting for you to press a key.
Remember, it is looking for one of 3 special keys. Press the key numbered 5. If you
entered the program correctly, nothing will happen. Try H. Again, nothing. Now
tryT.

The computer should respond by printing "SUBROUTINE T WORKS" on the
screen. Press G and C. G, T, and C are the special keys that cause the computer to
print a message. If you recall, these are the keys you typed between quotes in your
program. Try pressing these and other keys as many times as you like. You will
quickly find that only these 3 keys provide you with a message.

What makes this work? To find out, press the RUN/STOP key to stop the
program. "READY.", along with the cursor; will reappear on the screen. To see the
program again, type LIST and press RETURN.

Breakdown of the Program

The first line in the program tells the computer to skip over the subroutines and
GOTO (go to) line 1000. If this line were omitted, we would not be able to put the
subroutines before the main routine.

Lines 1000 through 1002 are "remark" lines. "Remark" lines begin with the
word REM and are always ignored by the computer. Their function is to label or
title various sections of the program. Notice that these lines label the MAIN

, ROUTINE section of your program. REM lines are there only for you to see, and
will help you remember what the different parts of the program are for.

Next, the computer comes to line 1100, which contains GET A$. This is like
telling the computer to go get A$ and "find out" what it is. The computer looks to
the keyboard. It is looking for a single keystroke. Any key that is pressed will be
noticed by the computer and placed in the "space" called A$. Think of A$ as a
place-holder that is eventually filled with whatever letter, number, or symbol you
type on the keyboard. Once you type a key, the computer has found out what A$ is,
and so it can continue on to the next line number.

Lines 1110 through 1130 tell the computer what to do now that it knows what A$
is. These type oflines are called IF ... THEN statements. They tell the computer "IF
such and such is true, THEN do this." Line llIO says:

IF A$ = "G" '!HEN <DSUB 20

The computer reads this as "IF A$ is the letter G, THEN GO to the SUBroutine
at line 20." Lines 1120 and 1130 tell the computer what to do if A$ is Tor C. They
also direct the computer to a subroutine. If A$ is not G, T, or C, the computer just
continues to line 1140. Line 1140 directs it back to line 11 00 to get A$ again. The
next key pressed then becomes A$, and the old key that was pressed is forgotten.

Finally, let's look at the subroutines. Suppose the program is running and the
computer comes to line 1100 GET A$. You press T on the keyboard. The computer
then knows that A$ is T. Next, it goes to line 1110. Since A$ is not G, it skips the
instructions in this line and continues on again. It reaches line 1120. Since A$ is T,
it follows the instructions in this line to GO to the SUBroutine at line 30.

Line 30 is another title (REM) line, so the computer ignores it. Line 31 gives it a
PRINT instruction. It says to print "SUBROUTINE T WORKS." Whatever is in
quotes after the word PRINT will be printed on the screen. This is why your
computer printed SUBROUTINE T WORKS every time you pressed the key
marked T. Once the message is printed, the computer reads line 34. Line 34
contains the necessary RETURN command to get back to the main routine.
Knowing that the subroutine task has now been com pleted, the computer returns to
the main routine.

Remember, the computer goes back to the last place it left off. Since it had last
completed line 1120, it goes directly to line 1130. A$ is still T, so line 1130 is read
and passed over. Line 1140 tells it to GOTO line 1100, and the process is started all
over again.

It is important that you understand these common principles of BASIC. You will
use many subroutines, GOTO statements, GET statements, and PRINT state
ments in the chapters to come.

Try running your program again (type RUN and press RETURN). As you do,
read through the program's breakdown above. Note how the computer is using
your program. If you are having any problems, check the program listing for
typing errors. Correct lines by re-typing them. '

When you are through, press RUN/STOP to stop the program. Type LIST and
press RETURN to see the program again. Your final task in this chapter will be to
"save" your program.

How to "SAVE" A Program

Once a program is running properly, you should save it on your disk or cassette
tape. What does it mean to "save" a program, and why is it necessary?

When you first type a program, it is stored in the computer's "memory." The
computer's memory is a temporary storage place inside the computer that holds
any information you type. It is temporary, because as soon as the computer is
turned off, the information in memory is wiped out. This includes any program
you haved typed in. Your disk drive or cassette recorder solves this problem by

13

14

making a permanent "recording" of your programs. Each recording can be played
over and over again, as many times as you like.

There are different ways to SAVE a program, depending on whether you are
using a disk drive or cassette tape recorder. Before you actually begin saving a
program, it is a good idea to place your disk drive or cassette recorder as far away
from the TV as possible. This is because the TV can interfere with the saving
process, and your programs may not be saved correctly.

If you are using diskettes and a disk drive, then continue to read the next section,
"Saving On a Disk Drive." Those of you using a cassette tape recorder should skip
to the section entitled "Saving On a Cassette Tape Recorder."

Saving On a Disk Drive

To begin, make sure your disk drive is connected to the Commodore 64. Place a
diskette in the disk drive. To save Chapter l's program, type:

SAVE "CHAPTER 1",8

Be sure to type CHAPTER I in between quotation marks, and do not add any
extra spaces within the quotes. After you have typed this instruction line, press the
RETURN key. The RETURN key tells the computer that you are finished typing
the command.

NOTE: You will need to press RETURN after every instruction line in the
program listing and after every command. Every now and then we will
remind you about the RETURN key. Most of the time, however, you will
need to remember yourself.

The computer then begins to save the program. You will know that the computer
has saved the program when the disk drive's red "in use" light goes out.

SAVE is the command that puts your program on the diskette. This command is
always followed by the program's filename (title) in quotation marks. You may
title your programs with any special name you like, providing the name has no
more than 16 characters. After you have typed the filename, you type a comma,
followed by the number 8. 8 tells the computer you are using a disk drive (and not a
cassette recorder).

Note that each new program needs to be saved with its own filename. Two
programs cannot have the same filename. However, there will be times when you
need to erase an old program and save a new one under the old filename. An
example is when you update a program. To erase and replace a program on your
disk, type:

SAVE "@O:filename",8

where filename is the name of the old program you want to erase and replace.

Verifying it was Saved:

Whenever you save a program; you should then doublecheck and make sure it
was saved. To do this, you use another command: VERIFY. This command verifies
that the program is safely stored on the disk. To check Chapter l's program, type:

VERIFY "CHAPTER 1",8
Notice that the only difference between the SAVE command and the VERIFY

command is the first word (SAVE or VERIFY). "CHAPTER 1",8 is not changed.
The computer should respond with SEARCHING FOR CHAPTER 1 VERIFY
ING OK. If not, try entering the VERIFY command again. If you still do not get the
proper response, then the program did not get placed on the disk. LIST your
program to make sure you still have it in memory (if you don't, you will need to
re-type it) and then SA VE it again. Under most circumstances, if the computer can't
find your program, you probably made a typing mistake in either the VERIFY
command or the SAVE command.

Loading a Program off the Tape

Now that the program is stored on a disk, you can take a break. Make sure the red
"in use;' light on the disk drive is off, remove the disk, and turn the computer off.
The program will be erased from memory, but it will remain in place on the disk.

When you turn on the computer and want to put the program back into memory,
you LOAD it off the disk. The important thing to understand about loading a
program is that it is not removed from the disk and placed in memory. Instead, it is
merely duplicated in memory. Thus, loading a program places a copy of it in
memory and leaves the original copy on the disk.

LOAD is the command you use to get a specific program off of a disk. If the
computer already has a program in memory, LOADing another program will erase
the first one from memory. To use the LOAD command, type:

LOAD "CHAPTER 1",8

You may not see the program, but it is in memory. If you want to see it, you have
to LIST it. You have already used the LIST command several times. Just type LIST
and press RETURN.

Viewing the list of filenames:

If you need to look at a program, but have forgotten what you've named it, you
can have the computer list all filenames on the disk. The list of filenames is like a
table of contents; it tells you what programs are stored on the disk. A note of
warning about listing your filenames: the computer's memory will be erased and
replaced with the list of filenames. In other words, never list your filenames until
you have saved any program you are working on. Otherwise, the unsaved program
will be erased.

15

16

To see the list of filenames, type:

LOAD "$",8

It is not simple to explain why LOAD "$",8 places the filenames in memory.
Trust us, though, it does. At this point, the LIST command will list the filenames
rather than a program. Try out this command to see how it works.

Summary:

SAVE, VERIFY, LOAD, and LIST are very important commands to remember.
At the end of each chapter, you will be told to save your program. Chapter 2's
program is saved by typing: SAVE "CHAPTER 2" ,8. Chapter 3's program is saved
by typing : SAVE "CHAPTER 3" ,8. And so on. Each time you SAVE a program,
you should VERIFY that it was placed on the disk.

At the beginning of each chapter, you are instructed to LOAD the previous
chapter's program. If you need help, turn back to this section as a reminder on how
these commands work. Be especially careful to type the filenames correctly (for
example, "CHAPTER 1 "). If you were to type something like SAVE "CAHPTER
1 ",8, you could only load Chapter l' s program back into memory by misspelling
the name again (LOAD "CAHPTER 1",8).

You need to take care of your diskettes by keeping them out of the sun and away
from heat, by not bending, folding, or scratching them, and by storing them away
from the TV or any metallic object.

From now on, the procedure you should follow at the end ot each chapter is:

(1) SAVE "Chapter X",8 (replacing X with the current chapter number).
(2) Continue to the next chapter.
(3) LOAD "Chapter X",8 (replacing X with the previous chapter number).
(4) LIST the program.
(5) Begin reading the new chapter.

Since you have already saved your program, and the next section is for saving on
a cassette tape recorder, skip over it to Chapter 2.

Saving On a Cassette Tape Recorder

To "SAVE" your program permanently on cassette tape, make sure you are using
a tape that can be erased (preferably a new one). Saving your programs on tape is
just like recording music on tape. If you record a song over a previous recording, the
new song erases the previous song.

Because you can not listen to a program to see where it begins and ends on the
tape, you need a special type of cassette recorder. This recorder has a "counter" on it
to tell you where you are. The counter is located on top of the cassette player, and is
easily identified by the label COUNTER. With the help of this counter, you can

keep track of which sections of tape contain a previously recorded program. Let's
discuss how this works.

The first thing you need to do when saving a program is to rewind the tape. Next,
you set the counter to 000 by pressing the small button next to it. What this does is
establish the beginning of the tape and the beginning of the counter's numbers.
Nothing has been recorded on the tape yet, so the counter is set to display the
number 000.

You need to write down the "filename" and "beginning number" of the program
you are saving. The filename is just a title that you give the program so that the
computer can later find it easily. The beginning number is the number displayed
on the counter just before you save the program. 000 is the beginning number of the
first program saved on any tape.

As a program is being saved, the counter begins to tum. As it turns, it continually
displays a higher number. When the program has been saved, the counter number
displays the "ending number" of the program stored on the tape. You should also
write this number down on a piece of paper.

The next time you save a program, you would again start by rewinding the tape
and setting the counter to 000. After that, you would press "Fast Forward". When
the counter shows a number that is higher than the ending number of the last
program saved, press STOP. You will then know that you have passed over any
sections of tape that already contain recorded programs.

To save Chapter 1 's program, start by writing down the following column
headers on a scratch piece of paper:

PROGRAM FILENAME STARTING NUMBER ENDING NUMBER

This piece of paper will be used to write down the location of each program on the
tape. If you know where a program is located, you can avoid saving another
program on top of it. For this chapter's program, write down CHAPTER I under
"program filename," and 000 under "starting.number." You will find out the
"ending number" in a moment.

To save Chapter 1 's program, type:

SAVE "CHAPTER 1",1

Be sure to type CHAPTER 1 in between quotation marks and do not add any
extra spaces inside the quotes. After you have typed this instruction line, press the
RETURN key. The RETURN key tells the computer that you have finished typing
in the command.

NOTE: You will need to press RETURN after every instruction line in the
program listing and after every command. Every now and then we will
remind you about the RETURN key. Most of the time, however, you will
need to remember yourself.

The screen then displays a message telling you to press PLAY and RECORD.
Make sure your cassette player is as far from the TV as possible. Then, press PLAY

17

18

and RECORD on your cassette recorder at exactly the same time.

The computer will begin to save the program. As it does, your screen will be
cleared of any information. You will know that the computer has saved the
program when the text on your screen reappears. When this happens, press the
STOP button on the recorder. Look at the counter number. It will show the
ENDING NUMBER of the program, which you should write down on your
scratch paper. You now know the beginning and ending points of your CHAPTER
I program. The next time you save a program, you can be sure to save it somewhere
past the ending number of this program. Usually, the next program is saved
beginning about 10 counts higher than the last program's ending number.

SAVE is the command that puts your program on the tape. This command is
always followed by the program's filename (title) in quotation marks. You may
title your program with any special name you like, providing the name is no longer
than 16 characters. After you have typed the filename, type a comma, followed by 1.
I tells the computer you are using a cassette recorder (and not a disk drive).

Never save a revised program on top of its original version unless the original
was the last program stored on the tape. A revised program will usually be a
different length than the original. If it were longer, you might tape over part ofthe
next program on the tape. If it were shorter, part of the original would never get
taped over, and would be "tacked on" to the end of the revised program.

The best place to save a revised program is right after the last program on the
tape. On tape, you can use the same filename as many times you like, so the revised
program can have the same filename as the original. You should, however, note on
your handwritten list which one is the revised version.

Verifying it was saved:

Whenever you save a program, you should then double-check to make sure it was
saved. To do this, you use another command: VERIFY. This command verifies that
the program is safely stored on the tape. The important thing to know about
verifying a program is that the tape must be rewound to a point somewhere before
the program's starting number. To do this, rewind the tape, set the counter to 000,
and "Fast Forward" (if necessary) to a spot just a little before the program begins. If
the program begins at counter number 050, fast forward to 045. If the program
begins at 000 (as does the CHAPTER I program), do not Fast Forward at all.

To check Chapter l's program, rewind the tape, set the counter to 000, and type:

VERIFY "CHAPTER 1",1

This time, the message on your screen directs you only to press the PLAY button.
Press PLAY and your screen will again go blank. After a moment, the computer
should respond with FOUND CHAPTER 1. This lets you know that it has found
the program that you want to verify. To have the computer continue with the
verification, press the C= key. When the computer has finished verifying the
program, the cursor and text will reappear on your screen. Press STOP on your
cassette player.

If the computer could not find your program, check to make sure you rewound
the tape far enough. Try entering the VERIFY command again. If you still do not
get the proper response, then the program did not get placed on the tape. LIST your
program to make sure you still have it in memory (if you don't, you will need to
re-type it) and then go through the procedures to SAVE it again. Under most
circumstances, if the computer can't find your program, you probably did not
rewind the tape far enough, or you made a typing mistake in either the SAVE
command or the VERIFY command.

Loading a program off the tape:

Now that your program is stored on the tape, you can take a break and turn the
computer off. The program will be erased from memory, but it will remain in place
on the tape.

When you turn the computer on again and want to put the program back into
memory, you load it off the tape. There are two important things to know about
loading a program. First, loading a program does not remove it from the tape and
place it in memory. Instead, it merely duplicates the taped program in memory.
Thus, loading a program places a copy of it in memory and leaves the original copy
on the tape.

The second thing to remember is that the tape must again be rewound to a point
somewhere before the program begins. This is done in the usual manner. Rewind
the tape, set the counter to 000, and "Fast Forward" (if necessary) to a point just
before the program begins. If the program begins at 000, do not press the Fast
Forward button.

LOAD is the command you type to get a specific program off of a tape. If the
computer already has a program in memory, LOADing another program will erase
the first one from memory. To use the LOAD command, rewind your tape, set the
counter to 000, and type:

LOAD "CHAPTER 1",1

The LOAD command is very similar to the VERIFY command. When instructed
on the screen, press PLAY on your cassette recorder. After the program to load has
been found, press C= to have the computer continue with the loading process.

You may not see the program, but it is in memory. If you want to see it, you have
to LIST it. You have already used the LIST command several times. Just type LIST
and press RETURN.

Be sure to write down every program stored on your tapes, and keep your lists in a
safe place. There is no way to have the computer list all of the filenames on a tape. If
you label your tapes and handwritten lists, though, you will always know which
list goes with which tape.

19

20

Summary:

SAVE, VERIFY, LOAD, and LIST are very important commands to remember.
At the end of each chapter, you will be told to save your program. Chapter 2's
program must be saved on the tape past Chapter l's program. The filename,
beginning counter number, and ending counter number should always be written
down for each program. To save Chapter 2's program, type: SAVE "CHAPTER
2",1. Chapter 3's program is saved by typing: SAVE "CHAPTER 3",1. And so on.
Each time you SAVE a program, you should VERIFY that it was placed on the tape.
To VERIFY a program, the tape must be rewound to a point before the program
begins. This is also necessary any time you want to LOAD a program.

From now on, the procedure you should follow at the end of each chapter is:

(1) Make a note of the counter number under STARTING NUMBER.

(2) Type SAVE "CHAPTER X",l (replacing X with the current chapter
number).

(3) Make a note of the PROGRAM FILENAME (this will be the filename typed
as Chapter X in step 2 above).

(4) Make a note of the counter number after the program has been saved.

(5) Continue to the next chapter.

(6) Rewind the tape to the starting counter number of the last chapter's program.

(7) LOAD "Chapter X",l (replacing X with the previous chapter number).
(8) LIST the program.

(9) Begin reading the new chapter.

If you later forget how these commands work, refer to this section for help.

Chapter 2

BEGINNING GRAPHICS
This chapter is the first step toward actually recreating the picture of the ship.

You will use the program entered in Chapter 1, but in this chapter you will replace
the PRINT statements with actual graphic subroutines. After you change them, the
first subroutine will turn on high resolution graphics; the second subroutine will
turn off high resolution graphics; and the third subroutine will let you change the
colors displayed in high resolution graphics.

These three subroutines are the first tools in your graphics "tool kit." Notice that
each of them performs a task that is helpful when drawing any picture. After you
have entered the new subroutines and have checked to make sure they work
properly, we will discuss the new concepts they introduce. Finally, we will add
ariother tool to our tool kit. This tool, called the ZAP routine, will erase (ZAPI) the
MAIN ROUTINE in your program. The purpose of the ZAP routine is to allow
you to delete the existing main routine, so that you can begin entering a new main
routine which draws a different picture. The ZAP routine always leaves your
subroutine tools in place for use with the new picture. To illustrate this point, you
will zap your current main routine and replace it with a new one: a main routine
which draws a lighthouse.

The focus of this chapter is on the computer's memory. Each time you draw a
picture, the picture's pattern (dots and lines) and the picture's colors are stored in
the computer's memory. You will learn how to store your patterns and colors in
specific locations within memory. This is a necessary part of picture-drawing on
the Commodore 64. The next section briefly introduces how the computer's
memory works. If you are already familiar with using memory, you may want to
skip over this section.

Introduction to Memory

The computer's memory is made up of many small "boxes," each capable of
storing information, and each having its own unique number. To get a better idea
of this, think of memory like the many mailboxes that line residential streets. Each
mailbox is capable of storing information (mail), and each has its own unique
number (address). In all, your Commodore computer has over 64,000 "mailboxes"
for storing information. Each 1,000 mailboxes is called "IK" of memory. Thus,
your Commodore 64 has 64K of memory.

A mailcarrier always begins a route in the same place everyday, and proceeds to
drop letters in each mailbox in turn. If a letter has not been sent to one address, the
carrier skips over that mailbox and continues to the next one. The computer uses its
memory in a very similar manner. As soon as you turn the computer on and start
typing, the computer not only displays your typing on the screen, it also places the

21

22

letters and symbols you type into a specific set of memory boxes. This is so it can
find them again later when you run the program or list it. The computer always
starts at the same memory box to store the text you type. As you type, it places the
letters and symbols into each box it comes to. If you leave one or more empty spaces
on your screen, the computer leaves one or more memory boxes empty.

When the mailcarrier is through for the day, the letters are removed from the
mailboxes by their owners, and the next day the mailcarrier begins the route again.
This is how the computer works when you turn it off and on again. When it is
turned off, the letters you typed are removed (erased) from the memory boxes. (This
is why it is so important to save your programs on a disk or on tape.) When the
computer is turned back on again, it starts at the same beginning box and drops
your new letters, symbols, and spaces into each box it comes to.

Now, the mailcarrier can both put letters into the mailboxes and take letters out
to mail elsewhere. The computer can also put in and take out. For example, when
you type your program, the computer is busy placing each character you type into
one of its memory boxes. When you use the LIST command, the computer then
goes to each memory box, finds out which character is there, and displays it on the
screen. When it has displayed the contents of all boxes (which it can do quickly),
you see your program listed on the screen.

This is fine for typing your program lines (text). However, when you are running
a program that draws a picture, the program gives the computer the graphic codes
necessary to draw that picture. As this happens, the computer also stores the
graphic codes in its memory. These graphic codes need to be stored in memory
boxes other than those used by your text lines. How is this done? Easily. By using
the "addresses" of the computer's memory boxes, you can have the program tell the
computer where to store and retrieve your picture.

In this chapter's program, you will direct the computer to a set of memory box
addresses where you will store and retrieve your picture pattern and picture colors.
When you want to return to regular text, you direct the computer back to the
original set of memory boxes where the program text is stored.

It is important to remember that the computer can see more than one set of
memory boxes at the same time. So, when you run a program that creates a picture,
the computer looks at the boxes containing the program instructions at the same
time it looks at the boxes containing the color codes and picture patterns.

A final thing to know about memory boxes is that some boxes have special
functions and are used by the computer all of the time. For example, there is one
memory box that the computer always looks in as soon as you turn on the
computer. This memory box holds a code that means "display everything as
regular text." Thus, when you begin typing, every keystroke is displayed as text and
not graphic colors. This box can (and will in this chapter) be changed so that the
code tells the computer to display graphic colors on the screen instead.

This and several other memory box locations will be discussed in this chapter in
greater detail. You will actually use the address number of some memory boxes to

begin building your picture. Continue to think of memory as many mailboxes
having their own address number. Don't feel left out if the computer's memory is
still a vague, abstract concept. You will feel much more comfortable after you begin
using memory box addresses to instruct the computer.

Entering the Subroutines

To start, you need Chapter l's program listed on your screen. Type LIST and
press RETURN to check. If the program is not listed, use the LOAD command as
explained in Chapter 1 to have it place in memory.

The new program lines you need to type are shown below. Some of them are
entirely new, while others will be replacing lines already in Chapter 1 's program.
Type in these lines exactly as we have them shown here. (U se a scrap piece of paper
to block out the lines you are not typing as you try to enter these new lines.) Do not
change or erase any other lines in Chapter 1 's program. If you need to correct a
typing mistake, refer to Chapter 1 for help.

21 FDKE 53265,59
22 FDKE 53272,29
23 FDKE 56576,198
31 FDKE 53265,27
32 FDKE 53272,21
33 FDKE 56576,199
41 FOR I = 17408 TO 18407
42 FDKE l,C
43 NE}IT

1005 C = 14

When you have typed in these new lines, you will need to LIST your program to
check them. The new lines will be automatically inserted into Chapter 1 's program.
Unfortunately, your program is now too long to see on the screen at one time.
There is, however, a way to list chunks of your program, depending on which
sections you want to look at. For example, type LIST 1-44 and press RETURN.
You should now see lines I through 44 listed on your screen. Check them against
the program below. Common typing errors will include: typing the wrong
numbers next to each POKE; typing "ohs" (0) instead of zeroes (0), or typing small
L's (1) instead of ones (1); typing wrong line numbers and possibly erasing a line
that should stay in the program; or leaving out a line entirely. Re-type any line that
is missing or incorrect.

To check the rest of your program, type LIST lOOO - RETURN.

23

24

1 roro lOO0
2~ REM:::::::GRAPHICS
21 FOKE 53265,59
22 FOKE 53272,29
23 FOKE 56576,198
24 RETURN
30 REM:::::::TEXT
31 FOKE 53265,27
32 FOKE 53272,21
33 FOKE 56576,199
34 RETURN
4~ REM:::: -:: :COIDRS
41 FOR I = 17408 TO 18407
42 FOKE I,C
43 NE}~r
44 RETURN
1000 REM::::::::::::::::::::::
1001 MAIN IDUI'INE
1002 REM::::::::::::::::::::::
1005 C = 14
1100 GET A$
1110 IF A$ = "G" 'mEN CDSUB 20
1120 IF A$ = "'I''' 'mEN CDSUB 30
1130 IF A$ = "c" THEN GJSUB 40
1140 roro 1100

Notice that to list only a section of your program, you type:

(a) the first line number you want to see (for example, I);
(b) a dash (-);
(c) the last line number you want to see (for example, 44).

If you want to see all the lines below a certain point, you type:

(a) the first line number you want to see (for example, 1000);
(b) the dash only (-).

Both ways to list program chunks must, of course, be followed by a press of the
RETURN key.

When you think you have the program entered correctly, "RUN" it to find out.
We discuss below what should happen on your screen. If your program is not
working as it should, hold down the RUN/STOP key and tap RESTORE. LIST
your program and check each line again.

The computer should start out by removing the cursor from your screen (if not,
check line I and lines 1000-1140 in your program). Just as in the previous chapter,
the computer is waiting to GET A$. This is because you did not change that line in
your program. Pressing G, T, and C will still produce a visual response from the

computer, but the response will be different because you changed the subroutines.
Let's see what happens.

Press G. The computer automatically switches to high resolution graphics.
What your screen will display depends on which version of the Commodore 64 you
own. If your screen is displaying colors, either in what appears to be a pattern, or
just rough, jagged lines, everything is working fine. (If you do not see colors on
your screen, check line 1110 and lines 20-24 in your program.) Look closely at your
screen. You should be able to see the tiny dots of pixels we spoke of earlier.

Press C. Row-by-row your screen should be changing colors. The colors should
now be a mixture of blue and black. The blue color makes up the screen's "back
ground" color. The black color makes up the screen's "foreground" color. This
chapter will teach you a way to change the foreground and background colors. In
later chapters, you will learn how to control which pixels are background colored
and which pixels are foreground colored. (If pressing C did not change the colors
on your screen, check line 1130 and lines 40-44 of your program.)

Press C again. What happens? Hopefully, nothing. This is because the new
program has the computer change the high resolution screen to blue and black
whenever C is pressed. You have already changed this screen to blue and black by
pressing C, so pressing it again should do nothing to the screen.

Press T. This "turns off" high resolution graphics and returns the computer to
the regular text mode. You should see text on your screen now. (Check line 1120 and
lines 30-34 if this does not work.) You can't type LIST or any other command yet,
however, because the program is still running. Press G to see that this is true.

Tryout this program as long as you like. Remember, G takes you to high
resolution graphics, T takes you back to text mode, and C will change the high
resolution screen to blue and black (this takes some time, and is done regardless of
whether the screen is already blue and black). When you are ready to learn how this
program works, you will need to stop it from running. If you have pressed T and are
at the text screen, just press RUN/STOP as usual.

NOTE: If you are looking at the graphics screen, press RUN/STOP and tap
RESTORE at the same time. This is the only way to get directly back to your
program from a high resolution screen. Use the RUN/STOP RESTORE
combination as a "panic button" whenever you have problems getting back
to the text screen.

Breakdown of the Subroutines

To follow along with this discussion, list the new program lines on your screen
(type LIST 1-44 RETURN and LIST 1005 RETURN). The rest of your program
will not be listed. It is the main routine, which has a GOSUB 20 if G is pressed, a
GOSUB 30 if T is pressed, and a GOSUB 40 if C is pressed.

25

26

In order for the computer to display text or display graphics, it needs two pieces
of information. To display text, it needs to know:

(a) Where to find the text characters;
(b) Where to find the colors of those text characters.

To display graphics, it needs to know:

(a) Where to find your picture pattern;
(b) Where to find the colors that are used with the picture pattern.

Thus, each time you have the computer display text or graphics, you need to tell
it where to find this information. This is where your subroutines come into play.
We will now tell you how these subroutines work. Why they work has been
explained in three separate boxes, one for each subroutine. If you are interested in
the technical explanation of these tools, be sure to read these boxes.

The first thing to notice about these subroutines is that each contains a series of
POKE statements. POKE tells the computer to go to a specific memory box and
place a code in it. That is all it does. POKE is al ways followed by two numbers, each
separated by a comma. The first number is the "address" of the memory box to go
to. The second number is the code that is to be placed in that memory box. This
code tells the computer something to do each time you have the computer look in
that memory box. This will all be much clearer in a moment. Keep in mind,
though, that each memory box address and each code used in your subroutines are
addresses and codes that the computer knows about and understands. In other
words, you can't just make up your own memory box addresses and codes.

The first subroutine is located in lines 20 through 24. The computer will perform
this subroutine task whenever G is pressed while the program is running. Three
things take place within this subroutine. First, the computer is switched to high
resolution graphics (line 21). This is a very important part of the tool, and a very
important part of any program that is to display a picture.

The next two lines (22 and 23) tell the computer where to store and find your
picture pattern and colors. The computer has 4 major sections within its memory.
Each section is called a "bank," and each holds 16,000 memory boxes. These banks
are numbered 0, 1, 2, and 3. Bank 0 is used to store all kinds of information,
including your program text. Because Bank 0 is already storing a lot of informa
tion, it does not have very many memory boxes that are empty. To allow plenty of
room to store your picture, you should always move it to Bank 1, which has plenty
of empty memory boxes.

Line 22 tells the computer where to find your picture pattern and colors within a
bank (any bank). This tells the computer that, no matter what bank it is looking at,
it should always start at a specific place in that bank to get the picture pattern and
colors. Line 23 moves the color codes and picture patterns to Bank 1. Since line 22
tells the computer where to find your picture pattern and color codes within a bank,
and line 23 tells it which bank they are in, the computer now has all the informa
tion necessary to store and retrieve your picture. If these lines are left out of the
subroutine, you will end up with a somewhat distorted picture. This is because the

computer will have no way of knowing which boxes hold the picture patterns and
which boxes hold the colors to use.

A technical discussion of this subroutine is given in the box below. You should
read "What it Does" and "Example Use." As long as you know that this subroutine
is necessary in any program in order to display a picture on your screen (instead of
text), you do not need to read the "Technical Description."

TOOL 20 :::::::::: GRAPHICS

20 REM:::::::GRAPHICS
21 OOKE 53265,59
22 OOKE 53272,29
23 OOKE 56576,198
24 REI'URN

What it Does: This tool turns on high resolution graphics to allow
you to display your picture in graphic colors instead of symbols and
characters (text).

Example Use: To use this tool, all you need is a GOSUB 20 statement
in your program. If the sole function of your program is to draw a
picture, this GOSUB statement should be one of the first statements in
your program.

Technical Description: POKE is a BASIC command that places a
code in one of the computer's memory locations. Memory location
53265 always controls whether the computer should display graphics or
text. The code 59 that is placed in this location (POKE 53265,59) tells the
computer to display color graphics.

Memory location 53272 always controls where the computer stores
and finds the pixel patterns and colors within a bank. Placing a 29 in
memory location 53272 (POKE 53272,29) tells the computer the proper
location to store the color codes and pixel patterns within the bank. As a
consequence, the computer knows where to find them later. Caution:
Numbers other than 29 can cause the color codes to be stored in the
middle of your pixel patterns. This will cause your picture to be dis
torted, as the computer will try to use the color codes as pixel patterns as
well.

Memory location 56576 controls which "bank" the computer should
use to store and retrieve your graphic codes. The Commodore 64 has 4
available banks, each holding 16K worth of memory. Placing 198 into
memory location 56576 (POKE 56576,198) tells the computer to store
and retrieve your picture in Bank 1. Bank 0 is where it would normally
go, but this bank is storing your program lines, and thus has less unused
space.

27

28

Your next subroutine (lines 30 through 34) returns you to text mode. This is done
by reversing everything done in the graphics subroutine. Notice that the memory
locations used in this subroutine (locations 53265, 53272, and 56576) are exactly the
same as those used in the graphics subroutine. The difference is the code that you
tell the computer to put in those locations.

TOOL 30 :::::::::: TEXT

30 REM:::::::TEXT
31 OOKE 53265,27
32 OOKE 53272, 21
33 OOKE 56576,199
34 RETURN

What it Does: This tool turns off high resolution graphics and returns
you to the text mode.

Example Use: To use this tool, all you need is a GOSUB 30 statement
in your program. If the sole function of your program is to draw a
picture, this GOSUB statement should be one of the last statements in
your program. As you will later see, your main routine will be changed
so that this subroutine is only executed when the SPACE BAR is
pressed.

Technical Description: POKE is a BASIC command that places a
code in one of the computer's memory locations. Memory location
53265 always controls whether the com puter should display graphics or
text. The code 27 that is placed in this location (POKE 53265,27) tells the
computer to display text.

Memory location 53272 always controls where the computer stores
and finds the letters, symbols, and colors used to display text. The
computer always expects text information to be in one place. If you try
to tell it that your text information is located elsewhere, it will not
understand. Therefore, you must replace the appropriate code in
memory location 53272 in order to again display text. This code is 21
(POKE 53272,21).

Memory location 56576 controls which "bank" the computer should
use to store and retrieve your text. The Commodore 64 has 4 available
banks, each holding 16K worth of memory. Placing 199 into memory
location 56576 (POKE 56576,199) tells the computer to store and retrieve
text in Bank O.

Finally, we come to the subroutine at lines 40-44. This subroutine is used to
change the foreground and background colors of the entire graphics screen.

Your color codes are currently being stored in 1,000 different memory boxes.
These memory boxes each have a specific address, starting at 17408 and continuing
to 18407. Each memory box controls one block of tiny lights on your screen. If you
change the color code in memory box 17408, the first block of lights will change to a
different color. If you change the color code in memory box 17409, the second block
of lights will change to a different color. Now, if you want to change the color of all
blocks of lights on the screen, you have to put a new color code in every memory box
from 17408 to 18407. This is what this subroutine does.

Line 41 says FOR 1= 17408 TO 18407. This assigns a number to the letter "I" each
time the computer uses this line. The first time the line is used, I becomes the
number 17408, the second time it is used, I becomes 17409, the third time it becomes
17410, and so on, until I finally becomes 18407. As you can see, these numbers are
the memory locations that store your graphic color codes.

By using the POKE statement in Line 42, you can change the color code in each
of those memory locations. The colors displayed on your screen are determined by
the C in POKE I,e. If you look at line 1005, you will see that C = 14. 14 isa color code
that changes the background color to blue and the foreground color to black. At
line 43 you find the word NEXT. This tells the computer to go back and get the next
number for I and continue through the subroutine again. Thus, you have found a
very quick way of writing 1000 POKE statements (POKE 17408,14 and POKE
17409,14 and POKE 17410,14, etc).

To see how the foreground/background colors are determined, we have provided
a color chart below. (Another copy of this chart can be found in the Appendices for
quick referral.) Notice that the colors listed at the top of each column determine the
screen's background color. The colors listed down the left side of the chart deter
mine the foreground color. The numbers that are shown at the intersection of each
foreground and background color combination can be used to change the screen's
color. Find the number 14 on this chart. It is at the far right-hand side of the first
row. Just above 14 you see the background color BLU2 (meaning Blue #2). The
foreground color shown on this line is BLACK. These are the colors that were
displayed on your screen.

29

(,>0
o

Black
White
Red
Cyan
Purple
Green
Blue
Yellow
Orange
Brown
Lt. Red
Gray 1
Gray 2
Lt. Green
Lt. Blue

3

B
L

W
H

R
E

HIGH RESOLUTION COLOR CHART

C
Y
A

BACKGROUND COLORS

P
U
R

G
R

y
E

o B
R

R
E

G
R
Y

G
R

G B G

To change the program so that a different color combination is used, you would
make C equal to a different number on this chart. Suppose you want the back
ground color to be red and the foreground color to be yellow. Which number would
you make C equal to? If you picked 114, you are right. Change line 1005 so that C =
114. RUN the program again. Remember, you will need to press G to get into high
resolution graphics, and then press C in order to see the colors change.

Now that you know how to change the screen's color, you can have a lot of fun
experimenting. Be sure to change line 1005 back to 1005 C = 14 when you are done.

TOOL 40 :::::::::: COLORS

40 REM:::::: :COlDRS
41 FOR I = 17408 TO 18407
42 OOKE l,C
43 NE}IT

44 RErURN

What it Does: This tool colors in a background and foreground color
on the entire graphics screen. Line 1005 (C=14) determines which color
combination will be displayed.

Example Use: To use this tool, you need both a GOSUB 40 statement
in your main routine and a line that defines C's code (for example, 1005
C = 14). C can be set to equal any combination of foreground/back
ground colors shown on the color chart given in this chapter.

Technical Description: Each memory location from 17408 to 18407
controls the background/foreground colors of one 8 x 8 block of pixels
on your graphics screen. These blocks start at the top left-hand side of
the graphics screen, and continue left to right down through the entire
screen. The foreground and background colors of each block are deter
mined by the color code placed in each memory location from 17408 to
18407. Memory location 17408 con troIs the color of the block in the top
left corner of the screen. Memory location 17409 controls the next block
to the right of this corner. The last block on your screen (lower right
hand corner) is controlled by memory location 18407.

Line 41 increments I each time the NEXT statement in line 43 is read
by the computer. I begins at 17408 the first time line 41 is read. The
POKE statement places a corresponding color code into the memory
location specified by I's current value. C is the color code that is placed
in each memory location. By changing the value of C in line 1005, the
foreground and background colors of the graphics screen will change.

31

Choosing Colors for Your Picture

You just learned that information about colors is kept in memory locations
17408 to 18407. Keep in mind that these 1,000 locations say nothing about the image
being drawn. They only tell us about the colors that will be used in the image.

In each 8 x 8 pixel block, you can use two colors. One color is used to paint in the
background of the picture, such as blue for the sky. The second color is used to draw
the image, such as the ship or the water. Colors used as a backdrop are called
background colors. Colors used to draw images are called foreground colors
because they are used for drawing shapes in front of or on top of the background
color.

Some foreground/background color combinations produce blurred images on
the Commodore 64. For example, the color code 37 (red and green), which is
un shaded on our color chart, is a color pair that does not work particularly well
together. Whereas, the color code 54 (cyan and blue), which is shaded, will produce
a sharp, distinct picture. Depending on the type of picture you are drawing, you
may want to have a sharp image or a blurred image.

Our example of the ship on water against the blue sky is more of a real life
picture. This type of real imagery is called a "figurative" picture, because the
figures and images look like they are real. Because it is supposed to be real looking,
we chose a color combination that produces a sharp, distinct look (black against
blue.)

Another way to use colors is to create a sense of depth; that is, make some shapes
look far away, while others appear near and close. If a dark color is used for the
background, and a light color is used for .the foreground images, then the back
ground will generally appear like it is far away. Think of a space ship and planets
drawn in light colors against a dark background. The space ship and planets look
relatively closer to you than the dark background color of outer space.

Certain color combinations can also create a sharp difference between the two
colors. This difference is called "contrast," and an example of two contrasting
colors is black and white. Another contrast can be seen between purple and yellow,
or the contrast created when you use green and red. Opposite contrasting colors are
called "complements." The use of complementing colors create contrast. Some of
the pairs of complementing colors are:

Warm and Cool Complements

ORANGE

BLUE

Red and Green
Orange and Blue
Yellow and Purple

You can see in the chart above that some colors (like red, orange and yellow) are
called "warm" colors. Warm colors can be associated with things that in reality are
warm-like the sun, a sunny day, and fire. Cool colors (like green, blue and purple)
are used for objects that are usually thought of as cool or cold-like ice or cold
water. Artists use colors in a very intentional way so that the viewer feels a certain
way about the picture. The use of hot, fiery colors in a picture could result in an
intense, emotional response to the picture. The use of cool colors in a picture could
create a relaxed and calming effect.

The selection of colors for your pictures is often just as important as the images
themselves. Plan in advance how you would like the pictures to appear to the
viewer (true to life or hazy and foggy). Think about the images themselves. Should
one image appear calm and peaceful like a cool summer lake, and another hot and
firery like the setting of a red sun? Using some of the color techniques described
above, you will have more control over how a viewer feels when studying your art.

34

Entering the ZAP Subroutine
You are now going to enter the ZAP routine. This tool will be useful each time

you want to start drawing a new picture. Its only function is to erase your existing
main routine, leaving all subroutine tools in place.

Before you begin typing, a word of warning: Type this routine very carefully and
doublecheck it thoroughly I There are a great many things that can go wrong if this
routine is entered incorrectly and the program is run. Be especially careful of line 11
(A::: 256: B::: 2049: C::: 1003). Make sure you make C::: 1003, and no other number. As
you type, each line that is too long to fit across your screen will automatically
"wrap around" to the next typing line for your convenience.

1~ REM:::::::ZAPI
11 A = 256: B = 2049: C = lOO3
12 IF PEEK(B+2) + A * PEEK(B+3) >= C 'IHEN 15
13 B = PEEK (B) + A * PEEK (B+1): CN ABS(B<>~) GOTO 12: END
14 A = 256: B = PEEK(251) + A * PEEK (252)
15 IF PEEK (B+1) = ~ '!HEN END
16 PRINT CHR$(147) PEEK (B+2) + A * PEEK (B+3): ffiINT "OOTO 14"
1 7 POKE 251, B - INT (B/A) * A: IDKE 252, B/A
18 POKE 631,19: IDKE 632,13: IDKE 633,13: IDKE 198,3: END

After you have typed and doublechecked each line in this routine, you can test it.
To use this routine, you need to RUN it by itself-not your entire program.
Remember when you listed a portion of your program, starting at line 100? You can
also have the computer run portions of your program, starting at a specific line
number. You want the computer to run lines 10 through 18. If you look at line 18,
you will see that it ends with the word END. This word has the same effect as
pressing RUN/STOP.

Type RUN 10 and press RETURN. The 10 told the computer where to start
running the program. The END in line 18 will stop the computer.

The first thing that happens is that your program is cleared from the screen. In
the top left-hand corner you will see several flashing items. First, the line numbers
you are erasing will flash by (lines 1005, 1110, 1120, 1130 and 1140). Beneath this,
"GOTO 14" and "READY." will flash on and off. Finally, the cursor will be
flashing. When the computer has completed the routine, your screen will show:

1140
GOTO 14
READY.

Type LIST and press RETURN to see what happened. You should find that all
of your subroutines still remain. What will be missing is the main routine (lines
1005 and higher). Check the program lines below to make sure your ZAP routine
did not erase any of the necessary subroutine tools.

Ie REM:::::::ZAPJ
11 A = 256: B = 2049: e = l003
12 IF PEEK{B+2) + A * PEEK{B+3) >= e '!HEN 15
13 B = PEEK (B) + A * PEEK (B+l): CN ABS{B<>13) ooro 12: END
14 A = 256: B = PEEK(251) +A * PEEK (252)
15 IF PEEK{B+l) = 0 '!HEN ElID
16 PRINT aIR.${l47) PEEK (B+2) + A * PEEK (B+3): PRINT "ooro 14"
17 OOKE 251, B - !NT (B/A) * A: OOKE 252, B/A
18 OOKE 631,19: OOKE 632,13: OOKE 633,13: OOKE 198,3: END
213 REM:::::::GRAPHICS
21 OOKE 53265,59
22 OOKE 53272,29
23 OOKE 56576,198
24 RETURN
30 REM:::::::TEXT
31 OOKE 53265,27
32 OOKE 53272,21
33 OOKE 56576,199
34 RETURN
413 REM:::::: :COLORS
41 FOR I = 17408 TO 184137
42 OOKE I,e
43 NIDcr'
44 RETURN
I,*", REM::::::::::::::::::::::
1001 MAIN murINE
1002 REM::::::::::::::::::::::

If the computer did not respond as described above, or some of your subroutine
lines are now missing, check each line in the ZAP routine. Re-type any of the ZAP
routine lines that have mistakes in them. If your ZAP routine erased one or more
other subroutine lines, re-type them as well.

This tool is discussed in more detail in the tool box below. It is only important
for you to understand two things in order to use this tool. First, it is a quick and
handy way to save your tools when you want to draw a new picture. Second, line 1
tells the computer to go directly to line 1000 whenever you RUN the program. This
GOTO line is especially important now. If this line were omitted, your subroutines
would automatically be the first thing performed when the program is running.
Since the ZAP routine starts at line 10, the first thing to happen is your main
routine would be erased I

TOOL 10 :::::::::: ZAP!

1 oo:ro l000
113 REM:::::::ZAPI
11 A = 256: B = 2049: e = ~3
12 IF PEEK{B+2) + A * PEEK{B+3) >= e '!HEN 15

35

S6

13 B = PEEK (B) + A * PEEK (B+l): CN ABS(B<>e) ooro 12: END
14 A = 256: B = PEEK(251) + A * PEEK (252)
15 IF PEEK(B+l) = e '!HEN END
16 PRlNI' CHR$(147) PEEK (B+2) + A * PEEK (B+3): PRmr

"ooro 14"
17 IDKE 251, B - !NT (B/A) * A: IDKE 252, B/A
18 FUKE 631,19: IDKE 632,13: IDKE 633,13: IDKE 198,3: END

What it Does: This routine will erase all the lines of your main
routine. It will, however, leave each of your subroutine tools untouched
so that you can use them to draw a different picture.

Example Use: To use this routine in a program, you need to have a
GOTO statement positioned somewhere before the ZAP routine begins.
This is so you can run your program whenever necessary, without
having the ZAP routine used. When you do want to erase the main
routine, type RUN and the line number the ZAP routine starts on (for
example, RUN 10 RETURN).

Technical Description: This is a very unusual routine. In this section
we will explain what the routine does. How this routine works will not
be discussed in this beginner's graphics book, mainly because of the
complexity of the routine. Its value outweighed omitting it entirely
from the book, however, so it is included with only the following
general explanation of its workings.

Normally, to delete a set of lines from your program, it is necessary to
type each line number and then press RETURN. If there are many lines
to be deleted (as there will eventually be in your main routine), this
could take some time to do.

One alternative would be to have a program that prints each line
number on the screen, pausing to let you press RETURN after each one.
Even better, why not have the program press RETURN for you after
each line number is printed? If it could do all that, all you would need to
do is sit back and watch. This is exactly what happens when you use the
ZAP routine. It should be noted here that this routine is actually a small
program within your larger program. That is why it is executed by
typing RUN.

Drawing the Lighthouse

As promised, you are going to draw something on the screen before this chapter
ends. Because you have ZAPPED your main routine, a new one has to be entered. It
is shown below. Before you begin typing, look at line 5010. It contains IF A$ =" "
THEN 6000. Be sure to type a space between the quotation marks, (" ").

1100 OOSUB 20 : REM GRAPHICS
1110 C = 14: OOSUB 40: REM OOLORS
1200 REM:::::::LIGHTHOUSE
1210 POKE 18090,0: POKE 18130,17
1220 POKE 18170,17: POKE 18210,17
5000 <EI' A$
5010 IF A$ = II II THEN 6000
5020 ooro 5000
6000 msUB 30
6010 END

Check the program before you run it, especially lines 1210 and 1220. If the
numbers are correct, RUN the new program.

You should immediately see the high resolution screen. In addition, the screen
will be colored in with the blue and black foreground/background colors (even if it
already is). Finally, the lighthouse will appear. The lighthouse will be in the shape
of a rectangle standing on end. Its tip will be black, and the rest of it will be white.

If you try pressing G, T, or C, you will quickly find that they no longer do
anything to the screen. Try pressing the SPACE BAR. You are now back to your
text screen, and the program has quit running.

If you had any problems with this program, check lines 1100 through 6010 again.
If you never saw the high resolution screen, check line 1100. If the high resolution

37

38

screen never changed to blue and black, check line 1110. If you never got the
lighthouse, check lines 1210 and 1220. Finally, if you can't get back to the text
mode, press RUN/STOP and tap RESTORE at the same time. Check lines 5010
through 6010, particularly line 5010.

Breakdown of the Lighthouse Routine

Line 1100 is the first line read by the computer in your main routine. It is a GOSUB
statement that immediately sends the computer to the subroutine at line 20. This
subroutine tool turns on high resolution graphics. Notice that the computer will
no longer wait for a keypress of G. When running, it will go directly to the graphics
subroutine and immediately display the high resolution screen.

Line 1110 sets C to 14. GOSUB 40 tells the computer to use the color tool to
change the screen's foreground/background colors. Since 14 represents black
against blue, your screen is filled in with these colors.

Lines 1210 and 1220 draw the lighthouse. In order to explain this, we will use the
diagram shown below. If you have some graph paper, get it out at this time.

TOP OF SCREEN
Col. # 111111111122222222223333333333 X
o 1 234 567 8 901 2 3 4 5 6 7 8 9 0 1 234 5 6 7 8 9 0 1 234 5 6 789

Row # 0

40

80

120

160

200

240

280

320

360

400

440

480

520

560

800

640

680

720

760

800

640

880

920

960

y
COWR BLOCK # ::::: COL. # + ROW #

MEM.LOC. ::::: 17408 + COWR BLOCK #

COLOR MEMORY

To display color graphics, your screen is divided up into 1000 blocks, as shown
above. Each block contains 64 of the tiny lights (pixels) you see on the screen. The
blocks are numbered from 0 to 999, starting at the top left-hand corner and moving
right. Each row is 40 blocks across, and each column is 25 blocks down.

U sing special numbers, you can change the foreground and background colors
for each of the blocks. Thus, although each block can only display two colors, all of
the blocks do not have to be displaying the same two colors. This is how the
lighthouse was drawn. The program tells the computer to go to one of the blocks
and change its foreground color to black and its background color to black (making
the entire block of lights all white). Three other blocks are used to display the
bottom part of the lighthouse. The program has the computer display each of these
three blocks with white as both the foreground and background colors (again,
giving the blocks a solid color).

Now, how did the computer know which blocks you wanted to change to these
colors? Look at line 1210 and 1220. Notice that these statements POKE (place) color
codes (0 and 17) into memory boxes 18090, 18130, 18170 and 18210. These memory
boxes should look familiar. They are within the 17408 and 18407 memory box
range that holds all of your color codes. For your lighthouse, you changed four of
them to different colors.

By'using the chart shown above, along with some graph paper, you can easily
POKE colors into any box you want to. On your graph paper, draw a large box that
is 40 small blocks across, and 25 small blocks high. Take the time to label and
number your paper as shown on the above chart.

Think of the graph paper as your screen and locate the block or blocks on it that
you want to color differently.

Suppose you want to change the colors for the block located in the third col umn,
fourth row (see diagram below). By adding the block's column number (2) to its row
number (120), you will get the exact block number for that block (122).

Col. # TOP OF SCREEN

0(2)3456 7 890 1 23456 789 0 1 234 5
1 1 111 1 1 1 1 122 2 2 2 2

Row #0 - ~ -r-r-..
40 r---
~

r-=-: lo Iw # :U 0) + t(~L #19 (~):
C Pl ~C IR Rl .c Ie: #~(l ~2

'--

200

240

280

320

39

40

Since you know that the first block is controlled by memory location 17408, you
must add 17408 to each block number you decide to change. 122 + 17408 = 17530. To
change the colors, you use a POKE statement and a color code (for example, POKE
17530,0 would change this block to black).

Look at lines 1210 and 1220 in your program. Notice that the computer puts
(POKES) a color code into locations 18090, 18130, 18170, and 18210. These loca
tions were found using a piece of graph paper, locating the block numbers to
change, and adding 17408 to each of them.

In line 1210, the color code 0 is used with block 18090. If you look back at the
color chart, you will see that the color code 0 makes that block black against black
(or totally black). The other location in line 1210, as well as the two locations in line
1220, all have a color code of 17. The chart shows us that this produces white
foreground pixels and black background pixels (or a block that is totally white).

To testthis new idea out, try changing lines 1210 and 1220. Locate four blocks on
your graph paper and find out what number between 0 and 999 they use. Add 17408
to all four of these block numbers. Insert these numbers in the old POKE statements
(replacing 18090, 18130, 18170, and 18210). To change the colors, pick different
ones from the color chart and insert them after the comma in the POKE statements.
RUN the program to see what happens.

Remember, the formula for changing the colors in a block always requires:

POKE 17408 + Block Number,Color Code

You can either add 17408 to the Block Number yourself, or you can have the
computer do it (for example, POKE 17408+12,0).

When you are through, make sure you change the lines back to:

1210 roKE 10090,0: roKE 18130,17
1220 roKE 18170,17: roKE 18210,17

Now to the final lines in your new program, lines 5000 through 6010. Line 5000
again has the computer GET A$. When the program is running, the computer not
only displays the high resolution screen, it also sits there and calmly waits for A$.
When a key is pressed, two things can happen. Line 50 I 0 tells the computer to go to
line 6000 if the SPACE BAR is pressed. Line 5020 says to go back and GET A$ (line
5000) if anything else is pressed. Thus, the computer will continue to display your
picture and wait for A$ to be the SPACE BAR before it ever reads line 6000. When
you finally press the SPACE BAR, the computer reads line 6000, goes up to the
subroutine which takes you back to text mode, and then RETURNs. When it
returns to the main routine, it reads line. 6010, which ends the program.

Summary

Save your new program under "CHAPTER 2." (Did you remember to change
lines 1210 and 1220 back to the lighthouse? Does C=14 in line 1005?) If you've

forgotten how to save your program, refer to the appropriate section in Chapter I.

In this chapter you have learned several new things about Commodore 64
graphics. Using your graphics subroutine, you can easily get to the high resolution
screen from within any program. Using your color tool, you can change the
foreground/background colors used for the entire screen. If, instead, you only want
to change the colors in one of the screen blocks, you locate the block number on
your graph paper (it will be between 0 and 999), add 17408 to this number, and
POKE a color code into it. Finally, you have a subroutine tool which takes you back
to text mode whenever necessary.

We recommend that you take advantage of these tools each time you draw a
picture. Each of them is necessary, so there is no use in re-typing them over and over
again. Just RUN 10 (ZAP) and you're set!

Beolow are two exercises on poking colors into screen blocks. For those of you
who like a challenge, go ahead and try them. (The solution immediately follows if
you need to peek.) Don't try these exercises until Chapter 2's program is safely
stored on your disk or tape.

Exercise #1

First, change the entire screen to blue against blue. Next, locate blocks 2, 41, 42,
43,82, 121, and 123 on your graph paper. Using 7 POKE statements, change:

(a) block 2 to white against white
(b) blocks 41,42,43, and 82 to red against red
(c) blocks 121 and 123 to black against black

RUN the program to see what happens.

Solution

To change the screen to solid blue, line IIIOshouldbeC= 102: GOSUB40: REM
COLORS. To change the blocks, you can use any new line numbers you want, but
the 7 POKE statements must be in the form of:

Exercise #2

roKE 17410,17
POKE 17449,34
POKE 17450,34
POKE 17451, 34
POKE 17490,34
POKE 17529,0
POKE 17531,0

In addition to the lines you typed in Exercise #1, add lines that will change:

blocks 49,85, 86, 87, 88, 126, and 128 to brown

41

42

Solution

Again, using any new line numbers you want, the new POKE statements should
have been:

POKE 17457,153
POKE 17493,153
POKE 17494,153
POKE 17495, 153
POKE 17496,153
POKE 17534,153
POKE 17536,153

If you completed the exercises correctly, RUN the program to see a somewhat
primitive drawing of "Man and His Dog." If you had any problems, just remember
that 17408 needs to be added to each block number. This gives you the memory
location which controls the colors of that block. By poking that location with a
color code, the block will change to the desired colors.

In the next chapter, you will learn how to find and plot points (pixels).

Chapter 3

FINDING AND PLOTTING POINTS
In this chapter you will learn how to paint the blue background sky, and how to

draw in the water. To paint the sky, you could do one of two things. First, you could
use the tool at subroutine 40, making C equal to a blue against blue color code. The
problem with this approach is that you would never know which pixels are
foreground colored and which are background colored. If you were to later change
one of your blocks to different colors, those unknown foregroundlbackground
pixels would show up in a pattern. So, instead you will use a different approach
that involves a new tool. This way, you always know that each pixel in a block will
display the block's background color, unless you specify otherwise.

To paint the water, you will need to find and then plot certain points. A "point"
is just another term for a pixel on your screen. To "plot" it, you have the computer
change it to the foreground color-in your case, the color black.

There are many uses for plotting points. For the picture you are drawing, the
speckled look of the water is achieved by plotting many points very close together.
What you will see on the screen is the wholeness of the shape (the water), rather
than each of the individual points. This illusion is like the fullness of leaves on a
tree. Many people paint a tree's leaves as a whole, solid colored shape instead of
painting each individual leaf. The same thought can be applied to a beach scene.
You see the wholeness of the beach rather than each grain of sand.

On the other hand, if you were to plot your points farther apart, the viewer would
see each point as an individual shape. An example would be plotting many white
points far apart on a dark background to create the look of stars at night.

As you continue through this book, we will provide you with more design and
color techniques that you will use later to draw your own pictures. For now, you
need to learn how to pinpoint one of those 64,000 pixels on the screen so that the
computer can then plot it.

Locating A Point

Look at your screen. If you look very closely, you might be able to see the
indi vidual dots of ligh t that total 64,000 in all. Now, suppose you wanted someone
to change 5 of those dots, all in a row, to the color black. How would you go about
telling them which dots to change (without using your hands)? You would have to
say something like: "Change the 5 dots that are in the lOOth column, rows 50-54."

This is close to how you will tell the computer which pixels to plot. For exact
precision, you could count each column across the screen (there are 320 of them),
and each row down the screen (there are 200 of them). Or, instead, you could make a
good guess-within 2 columns and 2 rows. Since each column and each row is only
a difference of 1 tiny dot, you will learn how to make a good guess.

43

44

To follow along, get out your graph paper again. Draw a new box that is 40
columns (small boxes) across, and 25 rows (small boxes) down. Label this sheet of
paper "X, Y PIXEL POINTS." This sheet should remind you of your "Color
Memory" paper. It is, in fact, similar. Each memory location on the previous graph
sheet controlled the colors for one block of 64 pixels. This new sheet will also
represent those blocks of pixels. Look at a blow up of the first 8 blocks to see how
the 64 pixels are arranged:

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

.

(Note that your screen does not separate the blocks with a space.)

Each pixel on your screen can be located by the computer if you specify the
pixel's column number and row number. For example, the pixel located in the top
left corner of Block 0 (computer stuff always starts with zero) is said to be in column
0, row O. The next pixel to its right is said to be in column 1, row O. Thus, each pixel
in the first row is in row O. The first pixel in the second row is said to be in column 0,
row 1. The first pixel in the third row is said to be in column 0, row 2. Thus, each
pixel in the first column (down to the 200th row) is in column O. To plot a point, all
you have to know is the exact column number (0-319) and the exact row number
(0-199) that the pixel falls in. Sound too difficult? It is. There is an easier way.

Instead of numbering 320 columns and 200 rows on your graph paper (if that
were possible), you just number the top, left pixel in each block. To illustrate,
number across the top row and down the left column of your blocks as follows:

o

199

1<: "I TOP OF SCREEN
o 319 1111111 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 233

1 2 344 5 6 7 8 8 901 2 2 3 4 5 6 6 7 8 9 001 234 4 5 6 7 889 0 1
o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2 0 8 6 4 2

o
8
16~~4-~-+~+-~~+-~-+4-~-+~~-+~+-~~+-~~4-~-+~+-~

24
32~-+4-~-+~+-~~+-~-+~~-+~~-+~+-~~+-~-+4-~-+~+-~

40
~~-+~~-+~+-~~+-~-+~~-+~~~~+-~~+-~-+4-~-+~+-~

56
~~-+~~-+~+-~~4-~-+~~-+~~~~+-~~+-~-+4-~-+~+-~

72
OO~-+4-~-+~+-~~+-~-+~~-+~~-+~+-~~+-~-+4-~-+~+-~

88
%~-+~~-+~+-~~4-~-+~~-+~~~~+-~~+-~-+4-~-+~+-~

104
112~~+-~-+~~-+~+-~~+-~-+4-~-+4-~-+~~~~+-~-+4-~~

120
128~-+~~-+~+-~~4-~-+~~-+~+-~~+-~~+-~-+4-~-+~+-~

136
1~~-+~~-+~+-~~4-~-+~~-+~+-~~+-~~4-~-+4-~-+~+-~

152
100~-+~~-+~+-~-+4-~-+~~-+~+-~~+-~~4-~-+4-~-+~+-~

168
1ro~-+~~~~+-~~~~-+~~~~+--+~+-~~+-~~~~~~+-~

184
192~-+~~-+~+-~-+4-~-+~~-+~+-~~+-~~+-~-+4-~-+~+-~

x, Y PIXEL POINTS

Add the labels on this chart to your X, Y PIXEL POINTS graph sheet.

Now you can approximate the location of any pixel. For example, suppose you
drew a picture on this graph sheet. When done, you found that you needed to plot a
pixel that was just a little past column 80, and just a little below row 144. You
would make a close guess of maybe column 83, row 146. You would find that the
guess was probably within 2 pixels either way.

The last thing to learn about locating a pixel is that the computer will not
understand the words "column" and "row." The way your new subroutine works,
however, allows the computer to understand that X represents the column, and Y
represents the row. To have it plot a pixel in column 83, row 146, you tell it that X =
83 and Y = 146. To plot the black pixels in your picture's water, you will give the
computer a whole set of X, Y numbers to use. These X, Y number sets are called the
coordinates of a point.

45

46

Painting the Background

To get started, LOAD and LIST Chapter 2's program. Below are the new lines
you will type to paint your background color. Notice that all you need is a
subroutine tool and a GOSUB statement.

50 REM::::::: PAINI' BACKGROUND
51 FOR I = 24576 to 32575
52 FOKE 1,0
53 NEXI' I
54 RE1'URN

. 1120 CDSUB 50 : REM PAINI' BKGROUND

Type in these new lines now. Be aware that the comma in line 52 is followed by a
zero (0) and not an "oh" (0). In line 1120 you can space the colon (:) and REM
statement over as far as you like. Spacing it over makes it stand out more in your
program.

When you have checked your typing and corrected any mistakes, RUN the
program. I t will take several seconds for anything visual to happen. This is because
the compu ter is busy changing each color block to bl ue and black. It will always do
this regardless of whether the screen already is blue and black, because the program
instructs it to.

You will then see each row of blocks on your screen change to all blue. This may
not seem like much, but it accomplishes two things. First, the screen is cleared of
any "mish-mash" of colors, leaving a nice, solid background color. Second, you are
now fully aware of which pixels are foreground colored (0), and which pixels are
background colored (64,000). Later, you can change the colors used in any block
with no surprises (foreground pixels) showing up on the screen.

Press the SPACE BAR to return to your program. If you had any problems, check
the screen for "SYNTAX ERROR" or any other message. Error messages give the
first line number the computer had problems with. (You can enter a program
incorrectly and not get a message, so don't count on them every time.)

NOTE: If your program is not running properly, and pressing the SPACE
BAR does not return you to text mode, carefully type: GOSUB 30 RETURN.
You won't be able to see the typing as you type, so go slowly. This is a handy
way to use a subroutine outside of the program. You should be returned to
text mode and can check for error messages. Pressing RUN/STOP and
RESTORE returns you to text mode, but at the same time erases the text
screen.

Breakdown of the Paint Background Routine

Make sure you have lines 50-54 (LIST 50-54 RETURN) and line 1120 (LIST 1120
RETURN) on your screen. You may have noticed that this subroutine is almost
identical to the subroutine at line 40. They are both closely related. The subroutine
at line 40 gives the computer the background/foreground colors for the screen's
1000 blocks of pixels. This new subroutine tells the computer the current picture
pattern to use when displaying the background/foreground colors. The picture
pattern is determined by 8000 memory locations (24576 through 32575), each of
which controls 8 pixels. Poking a pattern code into each of these memory locations
tells the computer which pixels should be foreground colored.

Recall that each of the screen's 1000 blocks is made up of 8 rows of 8 pixels. For
each row of 8 pixels, there is one memory location that controls how many of the 8
pixels are foreground colored. Thus, although there is only one memory location
which controls the colors of each block, there are 8 memory locations which control
the picture patterns within each block. Since there are 1000 blocks, there are 8000
memory locations controlling the en tire screen's picture pattern. By poking a code
of 0 into each of these blocks, you tell the computer that none (0) of the pixels in
each row of 8 should be foreground colored (black). That leaves only the back
ground color (blue), which the computer appropriately uses.

The importance of this subroutine tool is two-fold. First, most pictures have a
background color that needs to be painted. This tool accomplishes this for you.
Second, the process of changing all foreground pixels to background pixels auto
matically clears any previous image off of the high resolution screen. Once a
foreground image is on the high resolution screen, it stays there. The only time it is
erased is when you change the foreground pixels to background pixels, or you turn
the computer off. Inserting this tool in all of your picture-drawing programs rids
you of having to turn the computer off and on again each time you want to draw a
new picture.

TOOL 50 :::::::::: PAINT BACKGROUND

50 REM::::::: PAINr s.n.CKGROUND
51 FOR I = 24576 TO 32575
52 IDKE 1,O
53 NEXI' I
54 RRI'URN

What it Does: This tool clears the high resolution screen of any
previously drawn image, while painting in your background color.

Example Use: To use this tool, all you need is a GOSUB 50 statement
in your main routine.

47

48

Technical Description: Memory locations 24576 through 32575 con
trol the foreground/background pixel pattern for each byte of pixels on
your screen. A byte, as used here, is one row of 8 pixels in a block of
pixels. The first 8 memory locations (24576-24583) control the 8 bytes of
pixels in the top left block on your screen. The next 8 locations control
the 8 bytes of pixels in the second block on the first row. Each set of 8
memory locations controls 8 bytes in each block, across each row of
blocks, down through the screen.

The diagram below shows a portion of the top left blocks on your
screen. In each block, the memory locations controlling the pixel pat
tern for each byte is given. Again, a byte is a row of 8 pixels within a
block. Notice that the memory locations do not start at the top left and
then continue down the entire column. Instead, they continue down one
block, and then move to the top of the next block in that row of blocks.

8 x 8 PIXEL BLOCK

1 1 1 1 1 1 1 1 1 122 2 2 2 2
0 1 2 345 6 7 8 9 0 123 4 5 6 7 8 9 0 1 2 3 4 5

0 4 7~ 4 8 4 9
1 4~7 4 8 4 9
2 4~7~ 4 8:; 4 9
3 4~n 4 8 4 9
4 4~8~ 4 8 4 9
5 4p8 4 8 4 9
6 4~8~ 4 9 4 9
7 4~8~ 4 9 4 9
8 4 1 ~ 4 2 4 3
9 4~1 4 2 4 3

10 ~4p1 4 2 4 3
11 4p1 4 2 4 3
12 4 1 4 2 4 3
13 4 2 4 2 4 3
14 4 2 4 2 4 3
15 4 2 4 3 4 3~
16

17

TOP, LEFT CORNER OF SCREEN

To change the pixel pattern within a byte, you POKE a code into the
memory location which controls the pattern for that byte. This code
tells the computer exactly which pixels are to be foreground colored.
The code is determined by adding up powers of 2. Each pixel in a
particular byte is assigned a power of 2, beginning with the right-most
pixel and moving left, as shown below:

Byte of
Pixels: 1000 0 0 0001

Which is
the same as: 1128 64 32 16 8 4 2 1 I

Select the pixels you want foreground colored, add up their assigned
numbers, and POKE the resulting number into the appropriate
memory location. This subroutine POKEs a 0 into each memory loca
tion, meaning 0 (no) pixels should be foreground colored in any of the
8000 bytes.

Note that these powers of 2 (128, 64, 32 ... 1) do not change from pixel to
pixel. As long as you POKE the correct memory location, the computer
does not need different powers of 2 for each byte of pixels.

As an example, suppose you wanted the first pixel, and every other
pixel in the top left byte changed to the foreground color. The POKE
statement would be: POKE 24576,85.

Drawing the Water
To draw the water, you will need to type several new lines. The new lines to type

for the subroutine are:

~ REM:::::: :FIND A IDINI'
61 HOW = INT(Y/8)
62 COL = INT(X/8)
63 LINE = Y AND 7
64 BIT = 7 - (X AND 7)
65 BYTE = 24576 + RCM*320 + COL*8 + LINE
66 CBYTE = 17408 + RCM * 40 + COL
67 RETURN
70 REM:::::::PLOT A IDINI'
71 (])SUB 60
72 IDKE BYTE,PEEK(BYTE) OR 2 t BIT
73 IDKE rnYTE, C
74 REI'URN

49

50

Carefully type the lines shown above. Line 72 contains a "t" character. This key
is located directly to the left of the RESTORE key. When you have typed these lines
correctly, continue by typing the new main routine lines shown below (they are
separated from the subroutine lines to give your eyes a break):

1300 REM:::::::WATER
1310 FOR Y = 176 TO 199
1320 FOR X = 0 TO 319
1330 IF RND(I) < .3 THEN GOSUB 70
1340 NE)IT X: NE)IT Y

RUN this program to see this chapter's finished product. The lighthouse will be
erased from the screen as the computer fills in the background color (this will take
awhile). Next, the lighthouse will be drawn again as the computer comes to those
program lines. Finally, you will begin to slowly see the water plotted near the
bottom of your screen. For each row of pixels, the computer changes about 113 of
them to black. This gives the visual effect of the shadows created by the blue waves.

From now on, you will need to be patient with your Commodore 64 as it plots the
points necessary to draw your picture. When the water is complete, take a moment
to look at your screen. It's beginning to look like a picture!

RUN the program again if you like. When you are through, be sure to press the
SPACE BAR to return to your program listing.

Breakdown of the Water Routine

List lines 1300-1340 on your screen. In addition, have your "X,Y PIXEL
POINTS" graph sheet on hand.

Line 13lO tells the computer that the Y (row) locations to plot begin at 176 and
continue through 199. Looking at our graph sheet, you will see that this involves
the bottom three rows of blocks on the screen. This area was pre-determined by our
artist.

Line 1320 tells the computer that the X (column) locations to plot begin at Oand
continue through 319. This is the entire width of each row. Thus, the water fills the
bottom three blocks across the entire width of the screen.

As the computer reads this section of the program, it first comes to line 13lO. It
begins by setting Y equal to 176. Next, it comes to line 1320 and sets X equal to O.
This gives the computer the first X, Y coordinates to use in plotting (0,176).

Line 1330 says IF RND(1) <.3 THEN GOSUB 70. Whenever the computer reads
a RND(I) statement, it internally generates a random number between 0 and 1 (not
including 0 or 1). This results in some fractional number like .539, .686, .311, etc.
Line 1330 tells the computer to generate the random number and IF it is less than
«).3 THEN GO to the SUBroutine at line 70 (which will plot the X, Y point found
in lines 13lO and 1320). Statistically, the random number will be less than.3 about
113 of the time. Thus, about 113 of the time the computer goes to the subroutine at
line 70 and plots the X,Y point it found in lines 13lO and 1320. If the random
number is greater than .3, the computer does not plot the point. In either event, the
computer plots or doesn't plot, and then continues to line 1340.

Line 1340 first says to get the NEXT X. This sends the computer back to line
1320, where X is then changed to its next value (1). Y is still 176, so the two
coordinates now are 1,176. Again, line 1330 is read and the point 1,176 is plotted
(changed to black) if the random number generated this time is less than .3.

The NEXT Y statement is never read until all of the X's are used up by the NEXT
X statement in line 1340. This keeps Y stable, while every possible X (0-319) is
plotted 113 of the time. The result is that the points in row 176 are plotted first.

When X finally becomes 319, and the point is plotted (or not), the NEXT Y
statement is read. This takes the computer back to line 1310, where Y is set to 177.
The computer comes to line 1320, sets X back to 0, and begins with the first
coordinate of the next row (0,177). X again increases from 0 to 319 while Y remains
stable at 177.

51

52

What you have here is a "FOR .. NEXT statement" within a "FOR .. NEXT
statement." Y stays at one value until all of the X values have been processed. Then
Y changes to its next value, and all X values are again processed. As each new
coordinate is established, line 1330 determines if the subroutine tools are used to
plot it. Again, the plotting will occur randomly because you are using a random
number as the determining factor. Because the random number needs to be less
than .3 in order for the point to be plotted, only 1/3 of the X,Y coordinates ever
actually get plotted.

Now let's see what happens when the random number is less than .3 and the
computer is sent to the subroutine at line 70. List lines 60-74 on your screen.

Curiously, even though the main routine sends the computer to line 70, line 71
immediately sends the computer to line 60. This is because the computer always
needs to find the point on the screen before it can plot it. The subroutine beginning
on line 60 is a tool that finds the point on the screen. You may still wonder why line
1330 doesn't just say GOSUB 60 if that is where the computer needs to go first. The
reason the program is written like this is to make sure you never forget to "find the
point" before you try to "plot the point." Back up to the subroutine at line 60.

The first thing the computer needs to know is the general location of the pixel to
plot. To do this, the screen is divided up into the imaginary 40 x 25 blocks as shown
on your graph paper. Given a Y coordinate, line 61 will figure out which row of
blocks the pixel is in. Given an X coordinate, line 62 will figure out which column
of blocks the pixel is in. This narrows down the location considerably-from
64,000 pixels to only one out of 64 pixels. The subroutine still hasn't determined
which of these 64 pixels is to be plotted, however. Line 63 will figure out which row
in the block the pixel falls into. Line 64 will figure out which column in the block
the pixel falls into. Line 65 sorts the information found in lines 61 through 63 to
come up with the exact block and row within that block that the pixel is located in.

Line 66 has a separate purpose from locating the point on the screen. This line
will determine the memory location which controls the 2 colors of the block the
point is located in. It stores the number of this memory location in a place-holder
called CBYTE. You will see the importance of this step in a moment.

Once all of this is done, the computer can then RETURN to the subroutine at
line 70 to actually plot the point. Line 72 plots the point. Line 73 POKES CBYTE
with C (POKE CBYTE,C). So, if you ever change the value of C before plotting a
point, this line will POKE the new color code into the appropriate memory
location. This will change the block's background color, as well as the color of the
newly plotted point. Keep in mind that any other pixels which were previously
plotted in that block will also change to the new foreground color.

TOOL 60 :::::::::: FIND A POINT

60 REM:::::: : FIND A IDINI'
61 ROW = INT(Y!8)
62 COL = INT(X!8)
63 LINE = Y AND 7
64 BIT = 7 - (X AND 7)
65 BYTE = 24576 + ROW*320 + COL*8 + LINE
66 CBYTE = 17408 + ROW * 40 + COL
67 RETURN

What it Does: This tool enables the computer to locate any point on
the screen in order to plot it (see Tool 70.)

Example Use: To use this tool, the main routine must specify the X
(column) and Y (row) locations of the point to find. For example:

1310 Y = 100
1320 X = 10

In addition, you will need a GOSUB 60 statement within your pro
gram. Usually, GOSUB 60 will appear in the PLOT A POINT tool,
which requires the point to be found before it can be plotted (see Tool
70).

Technical Description: In this chapter we discussed how the program
takes X, Y coordinates and carefully narrows down where that point is
located. Now you can follow through the technical discussion step-by
step.

61 ROW = INT(Y /8)
Y can range between 0-199. The computer groups these pixel rows into
groups of 8. This means there will be a total of 25 block rows (200/8 =
25). Y /8 will yield a number between 0 and 24, with a remainder between
o and 7 . We are not interested in the remainder right now, so the BASIC
statement "INT" ("integer") removes the remainder and leaves the
whole number. This is stored in the variable called "ROW" until
needed later.

62 COL = INT(X/8)
X can range between 0-319. The computer groups these pixel columns
into groups of 8. That means there will be a total of 40 block columns
(320/8 = 40). X/8 produces a number between 0 and 39, with a remainder
between 0 and 7. This remainder is discarded by the use of INT
(integer), and the final whole number is stored in the variable called
"COL" until needed later. Now the location is narrowed down toone 8
x 8 block of pixels.

53

54

63 LINE = Y AND 7 Line
61 discarded the remainder gotten by Y /S. However, this remainder is
very important because it tells us in which line to find the pixel within
the S x S block. Line 63 uses a technique called "Boolean Logic" to
retrieve the remainder discarded earlier. This number will be between 0
and 7, and will be the block row (0-7) that the pixel to find is in. Now the
location has been narrowed down to I particular S-pixel row.

64 BIT = 7 -(X AND 7)
In line 62 you threw awa;y the remainder from X/So This remainder tells
us which pixel column within the S pixel row the pixel to plot is in.
Again using Boolean Logic, this remainder is retrieved. The remainder
will be between 0 and 7, and will be the pixel column needed. There is a
slight problem, however, that you didn't have before. You see the pixels
numbered like this:

o 1 2 3 4 5 6 7
00000000

The computer thinks the pixels are numbered like this:

765 4 321 0
00000000

This is not a big problem, however, because line 64 subtracts the
column number (0-7) from 7, and all the pixels are then numbered the
way the computer likes them. The program now has everything it needs
to know in order to plot the point. This information, though, is scat
tered in four different variables: ROW, COL, LINE and BIT.

65 BYTE = 24576 + 'ROW·320 + COL·S + LINE.
This line combines the ROW, COL and LINE variables that the pixel is
located in, and adds the beginning memory location (24576) to this
total. The result is the byte that controls the pixel pattern at your X,Y
coordinate. BIT still contains the pixel number within the byte, which
the subroutine at 70 needs to plot the pixel on the screen.

66 CBYTE = 1 740S + ROW • 40 + COL.
This line is an added bonus the computer gets from the variables ROW
and COL. By adding the beginning color memory location (1740S) to
these variables, CBYTE will contain the color memory location that
controls the colors for the pixel to plot. Don't forget that it also controls
the colors for the other 63 pixels in the block being plotted in.

TOOL 70 :::::::::: PLOT A POINT

70 REM:::::::PLOT A POINT
71 OOSUB 60
72 roKE BYTE, PEEK(BYTE) OR 2 t BIT
73 roKE CBYTE, C
74 REI'URN

What it Does: This tool plots the point or points specified by the X, Y
coordinates in the main routine. In addition, this tool POKEs the
memory location controlling the colors of the blocks being plotted in.
The memory locations are poked with "C", which is a variable holding
a color code value.

Example Use: To use this tool, the main routine must specify the X
(column) and Y (row) locations of the point to plot. For example:

1310 Y = 180
1320 X = 10

In addition, you will need to "find the point" before itcan be plotted.
This can be handled by a GOSUB 60 statement before your GOSUB 70
statement, or a GOSUB 60 statement within the plotting tool (as we
have done here). Finally,"C" should be set to any new color code
necessary for the block being plotted in (for example, line 1305 could
have been inserted with C = 94, had we wanted the water to be plotted
green against blue).

Technical Description: Line 71 uses the subroutine at line 60 to con
vert your X, Y coordinates into terms the computer can understand. On
RETURN from GOSUB 60, BYTE contains the byte number that
controls the pixel's pattern, and BIT holds the pixel number control
ling the pixel. CBYTE contains the memory location that controls the
colors for the 8 x 8 block that the pixel is in.

72 POKE BYTE, PEEK(BYTE) or 2tBIT
Line 72 plots the pixel found in Tool 60.

You could POKE BIT into BYTE to plot the pixel. Unfortunately,
doing this will cause any other pixels controlled by that byte to be
changed to the background color. The way to get around this is to first
look (PEEK) to see which pixels within that byte are already foreground
colored. PEEK(BYTE) does this for you. The next step is to "OR"
PEEK(BYTE) with BIT. Look at an example to help follow along.

Suppose the "x"'s in the pixel pattern below are foreground pixels
within a byte:

Pixel #: 76543210
Pixel pattern: xooooxoo

55

56

The computer stores this information using 1 's and O's:

Pixel #:
Pixel pattern:

76543210
10000100

The "x" below is the pixel we want to change to the foreground color:

Pixel #: 76543210
Pixel pattern: ooooxooo

The computer stores this as:

Pixel #: 76543210
Pixel pattern: 00001000

The first thing to do is to look at the #0 pixels. If either one of them has
a pixel pattern of 1 (meaning foreground colored), then the resulting
pixel #0 will have a pixel pattern of 1. This comparison is done for all
pixels (#0-#7), until the final pixel pattern is arrived at:

Pixel #:
Original pattern:
Pixel to change:
Final pattern:

76543210
10000100
00001000
10001100

Fortunately, you don't have to go through this process each time you
want to plot a point. PEEK(BYTE) OR 2tBIT does this for you.

73 POKE CBYTE,C
Line 73 simply changes the color block containing the plotted pixel to
the color code in variable C. (Don't forget that 63 other pixels are
affected whenever C's value is changed.)

Summary

In this chapter you have learned enough information to actually draw any
picture. You can paint the background color (memory locations 24576-32575), and
can find and plot any points on the screen. To save time, you can have the computer
randomly plot points (if random plotting creates the effect desired). To plot a
specific point, you can specify the X (column) and Y (row) locations ofthe point. In
addition, you now know that adding a new program line that changes C's value
will change the colors of the block or blocks being plotted in.

Three important things to remember about plotting are:

(1) X always represents the column location; Y always represents the row
location.

(2) Once a point is plotted (changed to the foreground color), you can only get it
back to the background color by changing the program and running it again.
There is a subroutine which will "unplot" points, but we are not introduc
ing it in this book.

(3) You should never try to plot a point using negative (-) X, Y coordinates. You
should never try to plot a point greater than 319 for X or greater than 199 for
y.

The next chapter will show you how to save even more time. Instead of finding
and plotting each point in a line, you will learn how to plot a line by using only two
of its coordinates.

Below are two exercises that use the new information taught in this chapter.
Before you try them, be sure to first save this chapter's program under "CHAPTER
3" .

Exercise #1

Change line 1310 so that only the bottom row of blocks is painted in with the
water. Change line 1320 so that only the first 20 columns of blocks is painted in
with water. Change line 1330 so that your pixels are plotted 70% of the time instead
of 30% of the time.

Solution

To have anI y the bottom row of blocks plotted, line 1310 should say FO R Y = 192
TO 199. If you look at your graph sheet, you will see that 192 is the first Y
coordinate of the last row of blocks.

To have the water stop before the 21st column of blocks, line 1320 should say
FOR X = 0 TO 159. Looking at your graph sheet, you will see that the 21st block
column has a beginning X coordinate of 160. To stop the water before that point,
the next lowest X coordinate of 159 is used.

To have the points plotted 70% (.7) of the time, line 1330 should say IF RND(l) <
.7 THEN GOSUB 70.

Exercise #2

This exercise is a little harder, but it produces a nice picture for those of you who
can tackle it. Be aware that it will take the computer 30-45 minutes to run through
the entire program after you have inserted the exercise lines. If you don't have that
much time, wait to try this exercise later.

Begin by loading Chapter 3' s program back into memory, and then deleting lines
1210 and 1220 (this saves you the headache of plotting around your lighthouse).
Next, make C in line 1110 equal to the color code representing a light blue (BLU2)
foreground against a black background.

57

58

Finally, enter 5 new programming lines (1350,1360,1370,1380 and 1390) which
do the following:

Change C's color code again, this time to a white foreground and a black
background.

Set Y and X so that they will eventually form the coordinates for all pixels
above your water.

Plot the points every 100 times (.01) instead of every 40 (.4) times.

Again, this is not an easy one. After you try it, RUN the program. As the program
is running, you may want to take a nap, watch TV, or visit a friend. In 30-45
minutes, return to your Commodore to see the surprise!

Solution

Line 1110 should have C = 224. The new lines to add are as follows:

1350 C = 16
1360 FOR Y = 0 ro 175
l370 Pal X = 0 ro 319
1380 IF RID(I) < .01 '!HEN <DSUB 70
1390 NIDcr' X: NIDcr' Y

Leaving lines 1300-1340 untouched, your water will be drawn in at the bottom of
your screen. However, because C was changed in line 1110, the water will be mainly
black-because black is now the background color.

Line 1350 again changes C, this time to white against black. As each new point is
plotted, line 73 POKE's C's color code into the memory location controlling the
colors of the block that the point is plotted in.

Your water begins in row 176. To keep from plotting new points in your water,
line 1360 has Y stop at 175. Line 1370 keeps X at 0 through 319.

Line 1380 has the X, Y coordinates plotted 11100 of the time instead of every 113.

Chapter 4

PLOTTING LINES AND
PAINTING SHAPES

So far, you have learned how to;

-turn on high resolution graphics
-change the color codes for each block on the screen
-turn all of the screen's pixels to their background color
-plot specific points anywhere on the screen
-plot random points anywhere on the screen
-change the colors of a block being plotted in
-return to text mode at any time
-ZAP the main routine to draw a new picture

That's quite an accomplishment! Using your subroutine tools, you have even
created part of a picture-the sky, a lighthouse, and an open sea. But what about
that lighthouse? In a true-to-life situation, the lighthouse would never be
suspended in air. In this chapter, you will correct this situation. Using a PLOT A
LINE tool, you will draw the outline of some land and waves. Using a PAINT A
SHAPE tool, you will paint in the colors for the land and waves. Before beginning,
let's first discuss some principles of designing foreground images for your
Commodore 64.

Designing Foreground Images

Whenever you want to paint a picture on your Commodore 64, you should
always sketch the picture on graph paper first. Draw your large box that is 40 small
blocks across and 25 small blocks high. Sketch your picture within this large box.
Next, using highlighting pens or colored pencils, shade in the colors to be used in
the picture. It is important that you do not use heavy markers, as they will cover up
the small graph blocks. Finally, look at each block in the picture and check for any
which shows more than two colors. Remember, each block can have one
foreground color and one background color. If any of the blocks show more than
two colors, you will need to adjust the picture in some way. This can be done by
moving a figure up, down, right or left; redrawing a small portion of a figure; or
deciding to use fewer colors in that area of your picture.

Another consideration is that two foreground colors cannot share the same
block. To paint foreground shapes, every pixel in the shape is plotted. Plotting a
pixel changes it to the foreground color of the block the pixel is located in. Now,
suppose you have two images (or two colors within one image) which need to be
plotted side-by-side. If those foreground colors fall within the same block, there is
no way they can both be plotted. You would have to paint that block by itself-as if

59

60

it were a whole shape. In the main routine, you would make C = to the two colors
needed for that block (e.g., C = 94). Then, only the portion of the block which used
the foreground color would be painted (plotted). This will become clear when you
draw your own pictures later.

Once you have a finished, usable sketch, you can use the subroutine tools to enter
high resolution graphics, change the screen's colors, and paint the background
color of your picture. At that point, you will be ready to begin plotting points, lines
and shapes.

Plotting Lines

In Chapter 3 you learned that to plot a single point, you have to identify its X,Y
coordinates in the main routine. For example, the X, Y coordinates of the pixel in
the top right corner of your screen are 319,0. When points are identified by an X, Y
notation, the X coordinate is always given before the Y coordinate (X, V). It would
be incorrect to identify the top right pixel as 0,319. This would be read as the point
in column (X) 0, row (Y) 319. Looking at your X, Y PIXEL POINTS sheet, you will
see that there is no Y coordinate of 319. Keep this idea of "X before V"~ in mind as we
discuss plotting lines.

To plot lines, all you need to know is the starting point of the line (Xl,Yl), and
the ending point of the line (X2, Y2). For example, suppose you wanted to draw a
line from point 10,20 to point 50,70. This line is easily handled by a PLOT A LINE
tool and a main routine line stating that Xl = 10: YI =20: X2=50: Y2=70. The I 's and
2's are very important. They tell the computer which X coordinate goes with which
Y coordinate to form the starting or ending point of the line.

When the computer draws the line, it always begins at the XI, YI point and plots
it (turns it to the foreground color). Next, it very quickly determines the shortest,
straightest route to the X2, Y2 point. In many cases, this route will not be a truly
straight line. To see why, let's blow up an 8 x 8 pixel block and look at a line plotted
through it:

XI,YI point -> --cxx:x:xx:>
~
oooo--<X>
00000o-- <- X2, Y2 point

(the o's are background pixels, and the
-'s are the plotted, foreground pixels

Because there was no straight path from point XI,YI to point X2,Y2, this line
had to be plotted in a zig-zag pattern. The pattern used was "plot two, down a pixel,
over a pixel; plot two, down a pixel, over a pixel, etc." The PLOT A LINE tool will
figure out the necessary pattern and plot the line for you.

To learn more about plotting linex, load Chapter 3's program into the compu
ter's memory. Run the ZAP routine (type RUN 10 and press RETURN) so you can
enter a practice program. Now, type the PLOT A LINE tool as shown below:

00 REM:::::::PLCYr A LINE
81 DX = X2 - Xl: IJIl = Y2 - Yl
82 L = ABS(DX): IF ABS(DY) > L 'lHEN L = ABS(DY)
83 IF L > 0 'lHEN XI = DX/L: YI = DY/L
84X=Xl+.5: Y=Yl+.5
85 FOR I = 0 TO L
86 CDSUB 70 : REM PlDI' FOINI'
87 X = X + XI: Y = Y + YI
88 NEXl' I
89 Rffi'URN

Look over the lines you just typed. As always, carefully compare your typed lines
to those shown above. When a program doesn't work properly, it is often difficult
to determine if the problem lies in the main routine or in a subroutine. Taking the
extra time to go over each line now can save you a headache or two down the road.

To start out simple, you will plot a line from the top, left corner of the screen
down to the bottom, right corner of the screen. This diagonal line will be easy to
see, and it will be easy to determine if you've plotted it off course. As mentioned
above, plotting a line involves an XI,YI coordinate, and an X2,Y2 coordinate.
U sing your X, Y PIXEL POINTS graph sheet, see if you can figure out the
coordinates necessary to plot this diagonal line. You will find that XI,YI should be
0,0 (Xl=O,YI=O) and X2,Y2 should be 319,199 (X2=3l9,Y2=199). Type the main
routine lines shown below, noting how these coordinates have been used:

1100 <DSUB 20 REM GRAPHICS
1110 C = 1: CDSUB 40: REM mLORS
1120 CDSUB 50 REM PAINI' BKGROUND
2100 REM::::::::LINE TEST
2110 Xl = 0: Yl = 0
2120 X2 = 319: Y2 = 199: CDSUB 80
2150 END

Before running this program, check lines 2110 and 2120. Be sure that the X's (Xl
and X2) are 0 and 319. Be sure the V's (YI and Y2) are 0 and 199. Plotting an X
coordinate outside ofthe 0-319 range, or plotting a Y coordinate outside ofthe 0-199
range, could cause you problems. By "problems," we mean the computer could
stop operating. You would then have to turn it off and on again to clear its memory
of the badly plotted point. This, of course, also clears your program from memory.
If you want to memorize any of this book's material, memorize the X, Y coordinate
ranges.

R UN the new program.

61

62

When the program starts, all background pixels will change to white. Next, all
foreground pixels will be changed to background pixels (making them white also).
Finally, your diagonal line will be plotted from the top, left corner to the bottom,
right corner. Watch the zig-zag pattern which appears as the line is plotted. There is
no straight path from point 0,0 to point 319,199. Isn't it nice, though, that the
subroutine figures out the straightest, quickest path for you?

A con seq uence of changing the screen's colors in line 1110 is that you now have a
light blue border surrounding the high resolution picture area. You may not have
known it, but this border has always been on your screen. It surrounds the high
resolution picture area, but is not a part of it. In fact, there is no way you can draw
on it or get rid of it. The border has not shown up in the past because your screen's
background color has always been light blue also. Thus, the picture area and the
border blended together to appear as one solid screen. You can change the color of
this border by poking a color code into memory location 53280. Note, however, that
the background color of the color code is used on the border, and the foreground
color is ignored.

Watch as the computer plots the large diagonal line from the top, right corner of
the white box to the bottom, right corner. If the line is being plotted anywhere else,
or if the line is not being plotted at all (wait a few minutes to be sure), press
RUN ISTOP and tap RESTORE at the same time. Check to make sure that C = 1 in
line 1110. Sometimes, you can accidentally make the screen's foreground and
background color the same. This would mean that even though the computer is
plotting your line, it won't be visible on the screen. For example, had you typed C =
17 in line 1110, it would have appeared as though the line never got plotted. This is
because 17 is a color code representing white against white. Plotting a white line on
a white background color makes everything blend together. The line would not
stand out against the background color of the screen.

Make sure your program is running properly before continuing. If the main
routine lines are correct, but you did not get a plotted line, check the subroutine at
line 80. This subroutine has to be entered correctly before you can go on to the next
practice session.

When everything checks out, and the diagonal line has been plotted, press
RUN ISTOP and tap RESTORE. Look at your main routine. Line 1100 turns on
the high resolution screen so you can see the line being drawn. Line 1110 paints in
the foreground/background colors on the screen (black against white). Line 1120
changes all the pixels to the background color of white. (You've seen these lines
before.)

Line 2110 gives the starting coordinate for the line (0,0). Line 2120 gives the
ending coordinate for the line (319,199) and also sends the computer to the PLOT A
LINE tool. Once you have given thecomputerthe Xl,Yl and X2,Y2 coordinates of
a line to be plotted, all you have to do is send it to the new tool. Line 2150 "ends" the
program. This line is necessary only if you want the computer to stop processing
the program at a certain line number. If there are no other line numbers below the
END statement. the END statement is not necessary. Right now, there are no other

line numbers below the END statement. You will be adding some more in a
moment, though, and the purpose of this END statement will then be explained.

For your next practice, we will tell you where to plot two lines. You will figure
out the main routine lines necessary to plot them. Ready? Change lines 2110 and
2120 to plot a line across the very top row of your screen. In addition, add lines 2130
and 2140 to plot a line down the far, right edge of your screen. Make sure you do not
try to plot these lines outside of the 0-319 range for X's, and 0-199 range for Y's.

When you think you have it right, run the program again. The two lines should
be plotted in black across the top and down the right side of the screen. Use
RUN/STOP and RESTORE to leave high resolution if you are having any
problems. If the computer "freezes" up on you, and RUN/STOP RESTORE does
not help, you probably plotted outside of the X and Y ranges. The only solution is
to turn the computer off and on, load Chapter 3 's program, and re-enter the PLOT
A LINE tool and main routine lines.

If the lines were plotted correctl y, you correctly entered the new program lines as:

2110 Xl =
2120 X2 =
2130 Xl =
2140 X2 =

0: Yl = 0
319: Y2 =
319: Yl =
319: Y2 =

0: (l)SUB 80
o
199: <DSUB 80

Remember that after each new set of Xl, Y I and X2, Y2 coordinates, a GOSUB 80
must be inserted to have the line plotted. Since you needed to plot two lines, you
needed two GOSUB 80 statements.

Line 2110 says that Xl = 0 and Yl = O. This is point 0,0, or the top, left pixel on
your screen. Line 2120 says that X2 = 319 and Y2 = O. This is the top, right pixel on
the screen. The GOSUB 80 causes a line to be plotted between these two pixel
points. Lines 2130 and 2140 plot the line between the top, right corner and the
bottom, right corner. Plotting lines is really that simple.

Notice that in lines 2120 and2130, the X,Y coordinates stayed the same. The only
difference is that in line 2120, you were using X2,Y2, and in line 2130, you were
using XI,YI. In the next practice session, you will learn how to use the same
coordinate more than once, without re-typing it.

Take some time now to plot your own lines. Begin by drawing a line on your X, Y
PIXEL POINTS sheet. At one end of the line (it doesn't matter which end), write
down the X and Y locations of that starting point (XI=?,Yl=?). At the other end,
write down the X and Y locations of the ending point (X2=?, Y2=?). Enter these new
coordinates in the LINE TEST routine, keeping within the X and Y ranges. RUN
the program again. Compare the new line on your screen to the line you drew on
the graph sheet.

63

64

Plotting Shapes

When several lines are drawn which connect together, you arrive at an outline
shape. For example, connecting 3 lines together to form a triangle could be the
outline shape for a roof on a house. Once this outline is plotted, the entire area
inside the shape can be painted black or white to finish the roof. An outline shape is
not necessarily the outline of an entire image or a whole picture. Instead, it outlines
the outer edges of each color area to be painted. The importance of an outline shape
is that it must be drawn (plotted) first, before the inside area can be painted. Having
mastered the PLOT A. LINE tool, you can easily draw outline shapes.

Take a triangle. A triangle is made up of three connecting lines. These lines form
an outline. To plot the lines, the computer needs to know two coordinates for each
line-the beginning coordinate and the ending coordinate. Let's plot the outline
triangle sketched on the graph sheet below.

0

199

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

1< 0)1

o 319

1 111 1 1 1 1 1 1 1 1 2
12344 5 6 7 8 8 901 2 2 3 4 5 6 6 7 8 9 0 X

086 4 2 0 8 6 4 2 0 8 642 0 8 6 4 2 0 8 6 420

88 4(]

1\
/ \

/ ~
""'"

h / \ " 'v ·
, IA

y

One way to plot the lines in this outline shape would be:

(Don't type these program lines)

31eB REM:::::::SHAPE TEST
31H~ Xl = 72: Yl = 71
3120 X2 = 88: Y2 = 40: <DSUB 00
3130 Xl = 88: Yl = 40
3140 X2 = 103: Y2 = 71: <DSUB 00
3150 Xl = 103: Yl = 71
3160 X2 = 72: Y2 = 71: <DSUB 00

This would work, but look how often you use a previous coordinate to draw the
next line. A shorter way to accomplish the same thing is:

31eB REM:::::::SHAPE TEST
3110 Xl = 72: Y1 = 71
3120 X2 = 88: Y2 = 40: <DSUB 80
3130 Xl = 103: Y1 = 71: GOSUB 80
3140 X2 = 72: Y2 = 71: <DSUB 00

This second method requires only 5 program lines instead of 8, but how does it
work?

When the computer is sent to the PLOT A LINE tool, it always plots a line
between the last XI, YI coordinate it was given and the last X2, Y2 coordinate it was
given. It doesn't matter if one of those coordinates has already been used in the past.

Looking at the lines above, lines 3110 and 3120 plot the first line:

o
8

16

24

0 32

40

48

56

64

72

80

199
88

Y

1<
o

1 1
123 4 4 567 8 8 9 0 1

o 8 6 4 208 6 4 2 0 8 6 4 2

}2 8~
, 2= 40

'Ij , (. T< ~gJ

III ~L FV,

~
II ,

) I 7~

, 1= 71
(r ~gJ ar III n 3

0)1
319

111
223
086

ar 1 n

1 ~)

11111112
4 5 6 6 789 0 X
4 2 0 8 6 4 2 0

65

66

When the computer reaches line 3130, it sees that only the Xl,Yl coordinates
have changed. It goes to the PLOT A LINE tool and plots from the new Xl,Yl
coordinate (103,71) to the old X2,Y2 coordinate (88,40):

o

199

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

1< >1

o 319

1 1 1 1 1 1 1 1 1 1 1 1 2
123 4 4 5 6 7 8 890 1 2 2 3 4 5 6 6 7 8 9 0 X o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0

T ." , ~ ~
l~ I1lI ~~ ~ IV: ~m rn e

j~ ~
1"',1, ~

1/ , ,\
J ~

II 1\ ~ e~1v

? 1= 1~3
I-L'

fll ~ f"S lGJ ~ ~,

y

Line 3140 changes X2 and Y2. Using the last Xl,YI coordinate given in the
program (l03,71) and the new X2,Y2 coordinate in the program (72,71), the final
line is plotted:

0

199

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

1< >1

o 319

111 1 1 1 1 1 1 1 112
1 2 3 4 4 5 678 8 9 0 1 2 234 566 7 8 9 0 X

086 4 2 0 8 6 4 2 0 8 6 4 2 0 864 2 0 864 2 0

11\
V ,

I ~
~; ~'l~ II ,

~~ ~=ll 1'l
y~ =='i~ Lrl 1= 1 P okn m IiI e

(Pr pg a* ~iIlje In RI,
0
u. ''''1'

y

As long as the computer has an XI,YI and an X2,Y2 pair, it will plot a line. The
line will be plotted from the last Xl,YI point given, to the last X2,Y2 point given
(provided, of course, that you follow this with GOSUB 80).

Type lines 3100 through 3140, as previously listed here. Add line 1130 GOTO
3100 (this has the computer by-pass the LINE EST when the program is running).
R UN the program. Notice that the triangle is not drawn in one continuous motion.
This is because each line is plotted/TOm point Xl,YI to point X2,Y2. Look back at
the diagrams on this triangle to see these X, Y locations.

When the triangle is finished, stop the program and return to the program
listing. Try changing the main routine to plot the right (~) triangle shown below.

67

68

The solution is discussed in the next paragraph, but try it on your own first. RUN
your solution to see how it worked.

0

199

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

1< >1

o 319

1111111111112
1 2 344 5 6 7 8 8 9 0 1 2 2 3 4 566 7 8 9 0 X

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 642 0

7~ ,4~

\
[\

" In rl r\ 1 ,.,
" , ~' IV, I~

y

To make the right triangle, only line 3120 needed to be changed. It should now
have 3120 X2 = 72: Y2 = 40. This adjustment changes the ending point of the first
plotted line, and the beginning point of the second plotted line. Look at the three
diagrams below to see how this worked:

0

199

0

199

1<: ::>1
o 319

1 1 1 1 1 1 1 111 1 1 2
1 2 3 4 4 5 6 7 8 890 1 223 4 5 6 6 7 8 9 0 X

o 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0
o
8

16

24

32

40

48

56

64

72

80

88

96

Y

o
8

16

24

32

40

48

56

64

72

80

88

96

Y

Ix ='2 (I>n ~gJ ar 1 n
Y =L 0 r51 0

~l 1=7 r Po ram Iii e
In Fl .j l' ')

1<: ::>1
o 319

1 1 1 1 1 1 1 1 1 1 1 1 2
1 2 344 5 6 7 8 8 901 2 2 3 456 6 789 0 X

o 8 6 4 2 0 8 642 0 8 642 0 8 6 4 2 0 8 6 420

"alt

~ 7
2 4~ (r< gllar 1 nc

1\ , 3 ~21)

~ J\
r\ \
~ r~e ~

1 1 3
1 7 (r(lgt an 1 nt

:1 [31~)

69

70

o
8

16

24

0 32

40

48

56

64

72

80

199 88

96

104

112

120

Y

1< >1

o 319

1 1 1 1 1 1 1 1 1 1 112
123 4 4 5 6 7 8 890 1 223 4 5 6 6 7 8 9 0 X

o 8 6 4 2 0 8 6 420 8 6 4 2 0 8 6 4 208 6 420

r\
1\

1\
!'I e, \. las

~ I={ ~

-"' ... "'
{l ~TC 1111' lTl lihe (h. inf

~~4 I») 131 ~

Keep these new program lines in your main routine. The next section deals with
painting shapes, and you will use this triangle as the first shape to be painted.

To practice drawing shapes on your own, change line 1130 to GOTO 4100.
Beginning at line 4100, enter the new program lines for your new shapes. If a line
gets plotted incorrectly in a shape, take the following steps:

(I) List the program on your screen;

(2) Begin at the GOSUB 80 statement which caused the incorrect line to be
plotted;

(3) Backtrack through your program, writing down the last Xl, Yl, X2, and Y2
coordinates given before this GOSUB 80;

(4) Compare these coordinates (Xl,Yl and X2,Y2) to the coordinates your graph
sheet shows for the line.

To practice drawing a single line instead, delete line 1130 entirely. This causes
the computer to go directly to the LINE TEST routine when you type RUN. The
END statement in line 2150 stops the computer from going through the SHAPE
TEST routine again. The use of END and GOTO statements provides an easy way
to test certain portions of your program without re-running the program in its
entirety.

Painting Shapes

Painting shapes is one of the more rewarding parts of computer graphics. As
colors are painted in, your picture will become more life-like, as well as more
attractive, to anyone viewing it. Type the PAINT A SHAPE tool shown below.

90 REM::::: :,: PAIN!' A SHAPE
91 ~ = ~ + ABS(PC=0): FUR X = X0 'IO X0 + W: FL$ = "F": PR = 0
92 FOR YC = Y0 TO Y0 + H: Y = YC: enSUB 60
93 CN ABS((PEEK(BYTE) AND 21' BIT) <> 0) GaI'O 97: IF PR=0 'IllEN 96
94 PR = 0: IF FL$ = "F" 'IllEN Yl = YC: FL$ = "T": CD'IO 96
95 CDSUB 99: FL$ = "F"
96 NEXT YC: CD'IO 98
97 PR = 1: NEXT YC: IF FL$ = "T" '1liEN' CDSUB 99
98 NEXT X: RETURN
99 FOR Y = Y1 'IO YC -1: CN ABS(RND(l) < pc) GOSUB 70: NEXT Y: RETURN

To use this new tool, you need a GOSUB 90 statement. Before GOSUB 90,
though, you also need main routine lines which contain the following:

(1) The first X column your shape falls in (XO=?).

(2) The first Y row your shape falls in (YO=?).

(3) The width of your shape (W=?). Note: The width starts at O. So, if your shape
takes up 8 pixel columns, then W=7. You will later find that a O-based width is
easier to figure out than the true width.

(4) The height of your shape (H=?). Note: The height startsatO. So, if your shape
takes up 10 pixel rows, the H=9. You will later find that a O-based height is
easier to figure out than the true height.

(5) The percentage of pixels you want painted within the shape (PC=?). Note:
This percentage is expressed in a fraction. Thus, make PC=.9 to randomly
paint 90% of the shape; make PC=.6 to randomly paint 60% of the shape; and
make PC=l to paint 100% of the shape. All unpainted pixels will be back
ground colored.

Let's see how this would work with your right triangle:

71

72

o
8

16

24

0 32

40

48

56

64

72

80

199
88

96

104

112

Y

1< >1
o 319

11 111111112
1 2 3 4 4 5 6 7 8 890 1 2 2 3 4 5 6 6 789 0 X

o 8 6 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 0 8 6 4 2 0

~c =7g
fi st C(lumI u e)

" 0= 40 172, 40
fiJ st ro ~ ~

uset ~) r\ l:l = iglh€ t Y- 0\ ve t

~ o t =, 11- 10: :3]

'7 '"; ~
IIV .., , ,

W= ~i~ ht st ~- o "Ie t~
pr vv -.11 ~-I'~ -0).

(I) The first column your triangle uses is 72. Thus, XO=72.

(2) The first row your triangle uses is 40. Thus, YO=40.

(3) To determine the width, subtract the lowest X coordinate the shape uses from
the highest X coordinate the shape uses. In your triangle, this is 103 - 72, or
W=31.

(4) To determine the height of your shape, subtract the lowest Y coordinate the
shape uses from the highest Y coordinate the shape uses. In your triangle, this
is 71 - 40, or H=31.

(5) We will have PC=I so that the triangle is completely painted in.

Type the program lines below that will paint your outline shape:

4100 REM:::::::PAINI' SHAPE 'lEST
4110 X0 = 72: Y0 = 40
4120 W = 31: H = 31
4130 :oc = 1: msUB 90

That's all it takes. Before running the program, change the color the triangle will
be plotted in. The best way to do this is to change C before the outline of the triangle
is plotted. Add line 3000 C = 33 (this is red plotted on white). Changing C at line
3000 ensures that every pixel plotted from line 3000 on will be plotted in the new
foreground color. Finally, add line 1130 GOTO 3000 so that this new color is used
by the computer. RUN the program.

Wait while the screen is cleared and changed to white background pixels. (This
will take a few moments.) Next, the triangle will be outlined in red. Finally, the
entire shape is painted in. Watch carefully how the triangle is painted. Starting at
the triangle's first row (YO=40) and first column (XO=72), the computer plots down
the column within the outline shape. When this column is completed, the next
column (73) is plotted from top to bottom within the outline. This process is
continued down each column, across the shape.

If your triangle is not being painted properly, stop the program and check the
new program lines. The problem will probably be in the PAINT A SHAPE tool, so
give particular attention to those lines.

It is very important to understand how the PAINT A SHAPE subroutine works,
primarily because it cannot properly paint every shape of every kind. Read the rest
of this section carefully, or you could be in for some unpleasant surprises when you
later try to paint your own shapes.

To paint a shape, the computer begins at column XO and row YO (or point
XO, YO) established in your main routine. This pixel location tells the computer the
first column and first row that your outline shape uses. Note, however, that this
pixel point is not necessarily a part of the outline shape. For example, suppose your
right triangle were reversed, as shown below. This reversed triangle still uses the
same first column (XO=72) and the same first row (YO=40), but the point at 72,40 is
not a part of this triangle's outline. The computer uses the XO, YO point merely as a
starting position.

o
8

16

24

0 32

40

48

56

64

72

80

199
88

96

104

112

Y

IE(
o

1 1
1 234 4 5 6 7 8 8 9 0 1

o 8 6 4 2 0 8 6 4 2 0 8 642

)i 0= ~2
(lIT t (01 ~rr n

o =4(, ,,'\

>1
319

1 1
223
086

~s ~a,

'"
fi st ro ~ IJ

.L '~I"

s€ 0) ~
~

~ 1 "\'l r,.'
'''', ,L .L ,~,

1 1 1 1 1 112
45667890 X 4 2 086 420

73

-
40

41

42

43

44

45

46

47
-
48

49

50

51

52

53

54

55 -
56

57

58

59

60

61

62

63 -
64

65

66

67

68

69

70

71

y

74

The shape is painted column-by-column, starting at point XO,YO down the
length of your shape (H=31), and extending across the columns that make up the
width of your shape (W=31). However, plotting only occurs in the columns that
have at least two straight sets of outline pixels.

"Outline pixels" are the plotted, foreground pixels which make up the outline
shape. Each plotted line in the shape is made up of these outline pixels. A "straight
set" is one or more outline pixels appearing one right after the other down a
column within your shape. Look at a blow up of your triangle's outline to see what
we mean:

1 1 1 1 11111111
7 7 7 7 7 7 7 8 8 8 8 8 8 8 8

I: ~ g ~ ~ ~ ~ ~ I~~~~g~~g ~ g ~ ~ g ~ 6 1 3 4 5 6 7 8 910 1 234 5 6 7

r-
f--

Ie ~
'': V

.... ie'll tr rJ-lt
Ul~ el stit

--c '01 Itr li :?;ht
Dix el st

111"1"\
~ ~V

l.- 1'-''''' IU fU~'

" IP ~x PISt ~ Ie In !~r ~lJ ~t

Ip fx fl 1st

x

The first column in your triangle (A) has only one straight set of otline pixels,
and so it is skipped over by the subroutine. (Because columns can be skipped over
by the subroutine, it is important to plot your outlines in the same color you plan to
later paint them in with.)

Column B in the diagram has two straight sets of outline pixels. (Again, a
"straight set" can be made up of only one outline pixel.) When this happens, the
subroutine plots each pixel between the two sets.

Column C contains only one straight set of outline pixels and is thus skipped
over the subroutine.

Sometimes, a column within a shape will have more than two straight sets of
outline pixels. Look at the shape shown below for example:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 22222233 3 3 3 3 3 3 3 3
o 1 234 5 6 7 8 9 0 1 2 3 4 5 6 7 890 1 2 3 4567890 1 2 3 4 5 6 789 x

0

1

2

3

4

5 141':' ~1 ~l,r.lJ ~e ~s 10 ,U ~1~1 pi ~f~S
6 1
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

y

75

76

In the diagram above, we have pointed out a column which contains four
straight sets of outline pixels. The subroutine uses each straight set as an ON/OFF
plotting switch. When the first set is passed through, the computer starts plotting
the pixels beneath it. When the second set is passed through, the computer stops
plotting. When the third set is passed through, plotting begins again, and at the
fourth set, plotting stops. If there were no fourth set, plotting would stop at the
bottom row of the shape as determined by H=? in the main routine.

This ON/OFF plotting switch is used in every column. Even in the columns
containing two straight sets of outline pixels. The computer begins plotting
beneath the first set, and quits plotting when it reaches the second set. This is the
most important, and perhaps hardest, idea to learn about this new tool. Each
straight set of outline pixels in a column is a plotting switch.

Were we to plot and paint the above shape, the outcome would be:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 33333333
012345678 9 0 1 2 3 4 5 6 7 8 901 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 x

0 I

1

2

3 i-
4 If I." If IICI'
5 1\ j) ~ f"'l]
6 If II [..,.j.. 11" liirn~
7 ~ me)tt lirlg lob
8

9 lr'III hI-f-
lO .. ~,

1 em I\.

11 ~lP{ ~ll~g IL

12

13

14 Irrll 1--
15 loFf
16

17 I h~il(b W:1S
18 laivpT ~his ICc~U lIe
19 !urn EIIc Ittin II: t)] 19a h
20

21

22

23

24

25

26

27

28

29

30

31

y

Column A had two straight sets of outline pixels. The first set turned the plotting
on, the second turned it off. The result is an unwanted set of plotted pixels. This
occurred in the last column of the shape also.

Column B had three sets of outline pixels. The first set turned plotting on, which
was fine. However, the second set turned plotting off again, so the pixels beneath it
did not get plotted. When the third set was passed through, the bottom of the shape
had been reached. Plotting al ways stops at the bottom of the shape, regardless of the
presence or absence of an outline pixel. Thus, had we really plotted and painted
this shape, the height of the shape alone would stop the plotting. If an incorrect
height were given in the main routine, plotting would again begin after the third
set of outline pixels.

Don't be too discouraged, though, as shapes come to mind that won't work with
your new tool. Any shape can be divided up and painted in sections with the tool.
Our "I" shape outline could easily be divided up and painted as shown below:

10 1
1 1 1 1 1 1 1 1 1 1 2 2 2 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ 2 3 4 5 6 789 0 1 234 5 6 789 0 1 2 3 x

0

1

2

3

4

5

6

7

8

9

10 .tli. IP.I~ ~ain 110')
11 f ir~ ~t, u ~il~Jl
12 ts l- IP. oi ilt II' he , ~il t1lh
13 1=15 W=7
14

15

16

17

18

19

20

21

22

23

24 "

25

26

27

28

29

30

31

y

77

1 1 1 1 1 1 I~i~~~~~~!~~~~~~~~~~~~~~~~ o 1 234 567 18 9 0 1 234 5 x
0

1

2

3

4

5

6

7

8

9

10

11

12

13 [% T Il« in 13.l Il(I ~aln
14 u:~illg
15 Ii ~ 1 ~ejl~ ~t a: ~c wi ~th
16 01 r, ~ r=
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

y

78

Below is a chart showing common shapes that will work "as is" with the PAINT
A SHAPE tool. Also shown are shapes that need to be painted in sections in order
for the PAINT A SHAPE tool to work.

Outline Painted
Shape Shape

D
D
[7

0

Alternative
Way to Paint

Not necessary.

Not necessary.

Not necessary.

Not necessary.

Not necessary.

Plot & paint top half:
then plot & paint
bottom half:

Plot & paint top half:
then plot & paint
bottom half:

\J
LJ

C?r
o -

79

80

As a final comment on painting shapes, remember that this tool starts at row YO
when plotting each column. It moves down the column, and begins plotting
beneath the first straight set of outline pixels it comes to. Consider the diagram
shown below. On it, there is the shape to be painted, as well as two previously
painted shapes.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

16

19

20

21

22

23

24

25

26

27

28

29

30

31

Y

o 1
1111111112222

4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 0 1 2 3
333333333 X
1 2 3 4 5 6 789

The two previously painted shapes fall within the columns of the shape to be
painted. Their foreground pixels will be considered outline pixels by the PAINT A
SHAPE tool. As outline pixels, they turn plotting on and off in each column they
fall in. To tackle this problem, you again divide up the shape to be painted:

o 1
1 1 1111122222222223333333333 X

890 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Y

81

82

As a checklist, search your sketched pictures for:

(a) 3 colors within one block;
(b) 2 foreground colors within one block; and
(c) Straight sets of outline pixels which will start or stop plotting when painting

a shape.

Any shape can be outlined and painted using your new tools. By carefully
studying your sketched picture, you can determine ahead of time those shapes
which need to be outlined and painted in sections. When you enter the program, be
sure to use the color you plan to paint with to first outline each shape.

If you have the time, try outlining and painting some of your own shapes. This
effort will be well worth your time. Understanding how the PAINT A SHAPE tool
uses the foreground pixels in each column of each shape is an important concern in
designing your own pictures.

Outlining the Land and Waves

To add an outline of some land and waves, you need to first re-type Chapter 3's
main routine. (If you loaded Chapter 3's program, the two new subroutine tools
would be lost.)

Type RUN 10 RETURN. Wait while your practice main routine lines are erased.
Then type in Chapter 3's main routine lines as follows:

1100 (])SUB 20 :REM GRAPHICS
1110 C = 14: CDSUB 40:REM mWRS
1120 (])SUB 50 :REM PAINI' BKGROUND
1200 REM:::::::LIGHTHOUSE
1210 EOKE 10090,0: FaKE 18130, 17
1220 FaKE 18170,17: EOKE 18210,17
1300 REM:::::::\~TER
1310 FOR Y = 176 TO 199
1320 FOR X = 0 TO 319
1330 IF RID(I) < .3 'IHEN OOSUB 70
1340 NEXI' X: NEXI' Y
5000 GEl' A$
5010 IF A$ = II II THEN 6000
5020 <DID 5000
6000 CDSUB 30
6010 END

Run the program to make sure it was typed correctly. Plotting the water will take
some time, so now would be a good time to take a break. Check your screen again in
15-20 minutes. When the sky, water and lighthouse are complete, press the SPACE
BAR to return to the program listing.

Below are the outlines for the land and waves drawn on graph paper. The X, Y
coordinates for each pixel point that begins or ends a line is shown. These coordi
nates will be used in the new program to plot the outlines.

Type the lines shown below that will outline the left and right areas of land.
Compare these program lines to the X, Y coordinates shown above.

140.0 RBM:::::::LEFT ~
1410 C = 94: REM roWR = GREEN CN BLUE
1420 Xl = 0: Yl = 160
1430 X2 = 16: Y2 = 168: <DSUB 80
1440 Xl = 24: Yl = 168: G)SUB 80
1450 X2 = 40: Y2 = 175: <DSUB 80
1460 Xl = 0: Y1 = 175: <DSUB 00
1470 X2 = 0: Y2 = 160: <DSUB 80
1500 REM:::::::RlGHT LAND
1510 Xl = 240: Yl = 175
1520 X2 = 261: Y2 = 164: <DSUB 80
1530 Xl = 279: Yl = 164: <DSUB 00
1540 X2 = 309: Y2 = 152: OOSUB 00
1550 Xl = 319: n = 159: OOSUB 00
1560 X2 = 319: Y2 = 175: <DSUB 80
1570 Xl = 240: Yl = 175: <DSUB 00

83

84

Check each line and correct any errors you find. When you are ready to see the
outlines plotted, move the cursor to a free, blank line somewhere below your
program. Carefully type the following:

OOSUB 20: 'RUN 1400 RE'lURN

This is a new method of by-passing portions of your program. GOSUB 20 turns
on your high resolution screen. RUN 1400 tells the computer to start running the
program at line 1400. When you type statements without line numbers, they are
performed but not inserted in the program.

Compare what is happening on your screen to the previous diagram. The land
should be outlined in green foreground pixels, in a form similar to the diagram.

When the outline is com plete, press the SPACE BAR. If you had any problems,
check each line carefully. Look at all X and Y coordinates. Common mistakes
include reversing the X's and Y's, or typing Xl instead of X2. Correct all typing
mistakes. To try again, you will have to re-run the entire program. Line 1120
changes all foreground pixels to background pixels, which would now be necessary
if you plotted the outlines improperly.

Let's move on to the outlines for the left and right waves:

1600 REM:::::::LEFT ~VE
1610 C = 14: REM OOI.DR = BIACK CN BLUE
1620 Xl = 48: Y1 = 175
1630 X2 = 87: Y2 = 169: CDSUB 80
1640 Xl = 95: Y1 = 175: <DSUB 80
1650 X2 = 48: Y2 = 175: <DSUB 80
1700 REM:::::: : RIGHT ~VE
1710 Xl = 144: Yl = 175
1720 X2 = 183: Y2 = 169: <DSUB 80
1730 Xl = 191: Yl = 175: CDSUB 00
1740 X2 = 144: Y2 = 175: <DSUB 00

To add these outlines to your picture, move the cursor to a free line and type:

OOSUB 20: RUN 1600 RE'1URN

Flip back to the diagram showing the outline shapes. Make sure the program is
plotting your outlines correctly. When both waves are complete, press the SPACE
BAR.

Look at lines 1700 through 1740. Recall that a shape's outline is made of several
connecting lines. To plot each line, the Xl, Y I coordinate and X2, Y2 coordinate are
necessary. GOSUB 80 plots a line between the two points. To plot lines, the
computer will use the last Xl, Y I and X2, Y2 coordinates given in the program. This
allows you to re-use coordinates without re-typing them.

TOOL 80:::::::PLOT A LINE

80 REM:::::::PI.OT A LINE
81 DX = X2 - Xl: DY = Y2 - Yl
82 L = ABS(DX): IF ABS(DY) > L 'IHEN L = ABS(DY)
83 IF L > (3 '!HEN XI = DX/L: YI = DY/L
84 X = Xl + .5: Y = Y1 + .5
85 FOR I = 0 'ID L
86 <DSUB 70 : REM PI.OT romr
87 X = X + XI: Y = Y + YI
88 NEXT I
89 REl'URN

What It Does: This routine plots a "straight" line, in the foreground
color specified by C's current value, from coordinates Xl,Yl to X2,Y2.

Example Use: To plot a line, all you need is one or more main routine
lines to give the starting point (Xl,Yl) and ending point (X2,Y2) of the
line to be plotted. To have the line plotted, a GOSUB 80 is necessary. For
example:

1110 Xl = 1st X coordinate: Yl = 1st Y coordinate
1120 X2 = last X coordinate: Y2 = last Y coordinate
1130 GOSUB 80

When plotting several lines to make an outline shape, C's value
should be set to the color code that will later be used to paint the shape.
This should be done somewhere before the GOSUB 80 statement. For
example:

1100 c = 14
Technical Description: To understand how a line is drawn, imagine a

dot that travels from point Xl, YI to point X2, Y2, changing each pixel
in its path to the foreground color. To get to point X2, Y2, the dot must
first figure out the most direct pattern of motion, and the number of
times it must repeat that pattern to reach its destination. We will use
these terms "patterns" and "repetitions" to explain this subroutine.

Xl
o 1

Yl 0

1

2

Y2 3

2 3 4 5
X2

6 7

85

86

The "pattern" in the above example is: <plot>; I step right; ~ step
down. There are 8 "repetitions" of this pattern. In other words, the
pattern is performed 8 times.

Two more terms that will help explain this subroutine are "major
axis" and "minor axis." In the above example, it is farther from Xl to
X2 than it is from YI to Y2, so X is the "major axis" and Y is the "minor
axis." If the distance from YI to Y2 were greater than the distance from
Xl to X2, then Y would be the major axis.

The dot always follows a standard pattern of:

(a) <PLOT>
(b) I step along the major axis
(c) I step or less along the minor axis

To plot a line, the dot must:

(a) Decide which axis is the major axis and which is the minor;
(b) Decide how many pattern repetitions it must perform;
(c) Decide how far to move along the minor axis for each whole step

along the major axis in each repetition. (This is the only varia
ble, other than the major and minor axis, which affects the
pattern.)

81 DX = X2 - Xl: DY = Y2 - Yl

This line calculates the distance from Xl to X2 (DX), and the distance
from Y I to Y2 (DY). The larger of these two numbers becomes the major
axis, and the smaller becomes the minor axis.

82 L = ABS(DX): IF ABStDY) > L 'THEN L = ABS(DY)

This line calculates the number of pattern repetitions necessary to
complete the line. Since the dot will step once along the major axis for
each repetition, the length of the major axis can be used as the number of
repetitions. The number of repetitions is stored in the variable L. Line
82 begins by assuming X is the major axis, and therefore ABS(DX) =
"number of repetitions." It then checks to make sure it was correct in
assuming that X is the major axis. If it finds that Y is actually the major
axis, it changes the number of repetitions to equal ABS(DY).

83 IF L > 0 'THEN XI = DX/L: YI = DY/L

This line calculates the pattern the dot will be repeating to reach its
destination. First, this line checks to make sure the number of repeti
tions is greater than «) zero. If it's not, the dot won't go anywhere. It will
just plot the point at Xl ,YI and stop. Otherwise, itfigures out how far it
must move along the X axis (XI) and along the Y axis (YI) for each
repetition. Since L = either ABS(DX) or ABS(DY), then one of these

numbers (XI or VI) will be I (-1 if it is moving towards the axis). The
other number will be less than or equal to (>=) 1. By adding these
numbers (increments) to the current dot position after each plot, the dot
will move in the desired pattern.

84 X = XI + . 5: Y = YI + .5

Line 84 places the dot at the starting point of the line to be plotted.
Adding.5 to each coordinate provides a more accurate starting position.
Since the point plotting routine only uses the integer portion of the X, Y
coordinates, an X coordinate of 4.99 would become 4. By adding.5 to the
X coordinate, it becomes 5.49, or 5 by the point plotter, which is closer to
the intended value of 4.99. This process is called "rounding."

85 FOR I = 0 'ID L
86 OOSUB 70: REM PLOr A romr
87 X = X + XI: Y = Y + YI
88 NExr I

This loop does all of the work. Line 85 loops once for each pattern
repetition. Line 86 plots the point the dot is currently on. Line 87 adds
the increments which move the dot to the next position. Line 88 returns
to the start of the loop for another repetition.

89 RETURN

This line has the computer return to the main routine after the line
has been plotted.

Painting the Land and Waves

Once you have the outlines plotted, you can paint the area within the outline. To
paint the waves, enter the following program lines:

1800 REM:::::::PAmr LEFT ~VE
1810 C = 14: REM COLOR = BlACK CN BLUE
1820 X0 = 48: Y0 = 169
1830 W = 47: H = 6
1840 oc = .3: CDSUB 90
1900 REM:::::::PAINT RIGHT ~VE
1910 X0 = 144: Y0 = 169
1920 W = 47: H = 6
1930 oc = .3: OOSUB 90

87

88

Painting is done within the height and width of the shape, starting at the XO, YO
point listed in the program. The height and width of a shape is determined on a
O-based scale. Since the left wave is 48 columns across and 7 rows high, W=47 and
H=6. PC is the percent of pixels to be plotted in the shape. The water was randomly
plotted 30% (.3) of the time, and this must also be done to the waves (PC=.3). Move
the cursor to a free line and type:

OOSUB 2121: RUN 18121121 RE'1URN

Watch as each wave is randomly plotted within the outline shape. Plotting is
done column-by-column, between the straight sets of outline pixels. When the
bottom of the shape has been reached, the next column is plotted. Plotting stops
when the last column used by the shape has been completed.

After the waves are painted, press the SPACE BAR. All that remains is to paint
the land. Type the following program lines:

2000 REM::::::: PAINT IEFI' lAND
21211121 C = 94: REM cnLOR = GREEN UJ BIlJE
21212121 XI2I = 121: Y0 = 16121
21213121 W = 4B: H = 15
212140 OC = 1: CDSUB 90
2100 REM::::: : PAINT RIGHT lAND
211121 XI2I = 237: Y0 = 152
212121 ,"v = 82: H = 23
2130 OC = 1: OOSUB 90

PC is now equal to 1. This completely paints each land area with a solid color.
Type GOSUB 20: RUN 2000 RETURN.

Watch what is happening on your screen carefully. As each block is plotted in,
foreground pixels which are already present in the block are changed to green. This
is how the left-most vertical outline of the left land gets changed to green. The
subroutine itself actually ignores this column because it only contains one straight
set of outline pixels. After a short time lapse, the right land area will be painted.

Compare your screen to the picture shown below. If you are not sure why the new
main routine lines produced this portion of your picture, review the sections on
"Plotting Lines" and/or "Painting Shapes."

TOOL 90:::::::PAINT A SHAPE

90 REM:::::::PAINI' A SHAPE
91 PC=PC-+ABS(PC~): FOR X = X0 'lD X0 + W: FL$ = "F": PR = 0
92 FOR YC = Y0 'lD Y0 + H: Y = YC: CDSUB 60
93 CN ABS((PEEK(BYTE) AND 2 t BIT) <> 0) GOTO 97: IF PR~

'mEN 96
94 PR = 0: IF FL$ = "F" THEN Yl = YC: FL$ = "T": CDTO 96
95 CDSUB 99: FL$ = "F"
96 NIDIT YC: CDTO 98
97 PR = 1: NIDIT YC: IF FL$ = "T" THEN CDSUB 99
98 NIDIT X: RETURN
99 FOR Y = Y1 'lD YC -1: CN ABS(RND(l) < PC) GOSUB 70:

NIDIT Y: REI'URN

What It Does: This subroutine will fill in most outline shapes with
the foreground color specified by C's current value.

Example Use: To use this tool, you need main routine lines that give
the first column used by the shape (XO=?); the first row used by the shape
(YO=?); the height of the shape, using zero as the base number (H=?); and
the width of the shape, using zero as the base number (W=?). In addition,

89

90

you need to specify the fractional percent of pixels within the shape that
should be plotted (PC=?). This is done in the form of:

1100 XO = left-most X coordinate: YO = upper-most Y coordinate
1110 W = highest X - lowest X: H = highest Y - lowest Y
1120 PC = percent of pixels to be plotted expressed in a fraction: C =
foreground/ background color code for the shape
1130 GOSUB 90

Technical Description: This subroutine searches each column in a
specifed range, looking for columns containing 2 outline pixels. The
upper outline of the column is the "initial" point, and the lower outline
is the "terminal" point. When these two points have been found, line 99
plots the pixels between them.

In line 91, the statement PC=PC+ABS(PC=O) checks to see if PC is set
to zero. If it is, then PC is automatically set to 1. Otherwise, it is left
alone. This statement was included in case the variable PC was not set
before the subroutine was called. If you never set PC (percentage of
pixels to paint), then PC would equal zero, and 0% of the pixels in the
shape would be painted. This would cause the subroutine to appear not
to work. Adding this statement to the subroutine makes it easier to
locate the problem when PC is not set properly.

The variable FL$ keeps track of whether the initial point has been
found. FL$ = "T" means it has, FL$ = "F" means it hasn't. The variable
PR keeps track of the previous pixel. If the previous pixel was back
ground colored, then PR = O. If the previous pixel was foreground
colored, then PR = 1. The following example will show why this is
important.

o I 2 3 4 5 6 7

o

2

3

4

5

6

In column I, we want to fill in the pixels between row I and row 4.
Even though the upper part of the outline in this column is 2 pixels
high, we still want to consider it as the initial point. We can do this by
keeping track of the previous pixel. If the current pixel is 0 (background
colored), but the previous pixel was I (foreground colored), then we
know we just passed an outline. We want to wait until we pass an
outline before we process the outline. When the outline has been passed,
there are two possibilities. The first is that the outline is an initial point.
The second is that the outline is a terminal point. If the outline is an
initial point, then YI is set to the current value of Y. This will keep track
of the initial point until it can be used. The FL$ should be set to "T"
since the initial point has been found. If the outline is a terminal point,
then a GOSUB 99 will plot the pixels between YI and the current Y
coordinate. FL$ is set back to "F" to look for another initial point.

There is one special case we must also check for. If we have found a
terminal point, but reach the bottom of the shape before we pass it, then
we must still process it as if we had passed it.

Line 99 does the actual work of painting. GOSUB 70 directs the
computer to the PLOT A POINT subroutine. ON ABS(RND(I)<PC)
GOSUB 70 will plot a point the specified percent of the time.

More on Colors
Up to this poin t, we have talked abou t designing your picture wi th foreground/

background color blocks in mind. You have learned that certain color combina
tions work better together than others. Complementary colors produce a sharp
contrast, while other combinations may produce blurred images. Using certain
color combinations, you can even put emotional effects into a picture, such as
using warm colors (red, orange, yellow) for hot feelings, and cool colors (blue,
green, purple) for calm feelings. In this section, we will talk more about how colors
can be used for visual effects. The topic will be shadows and highlights.

In painting, shadows are usually made by darkening a color. The original color
is called the base color. This base color is darkened by adding a darker color to
it-like purple or black. On the Commodore 64, you don't have to bother with
mixing colors because they are already there. A shadow effect can be created by
using two similar colors, where one color is slightly darker than the base. The
darker color should, however, be related to the base color-for example, they
should both be in the same family of colors (warm or cool).

You can also put highlights into your pictures. A highlight color is almost the
same as the base color, but it is slightly lighter. Think of shining a flashlight on a
red ball. The areas where the light is reflected off the ball would be considered the
highlights, and would be light red. The highlight of a blue ball would be light
blue. The highlight of green is light green. Another name for highlights is tints,
which means to add white to the base color.

91

The use of shadows and highlights gives a picture a sense of depth. This is easily
done by painting one side of an object with a highlight or shadow color. Let's try
the shadow idea on the lighthouse. We'll assume that the left side of the lighthouse
is away from the sun, and so it should be slightly darker than the right side. To
shade this left side, we will plot three dark lines from the top of the lighthouse to the
bottom of the lighthouse.

Shading the Lighthouse

The lighthouse is located on your screen as shown in the following diagram:

136
~-+~~+-~-+~~+-~~~

137
~-+~~+-~-+~~+-~-+-+-

138
~-+~4-+-~-+~~+-~-+-+-

139

141~-+~4-+-~-+~~+-~-+-+-
142~-+~4-+-~-+~4-+-~-+~
143

144
~-+~4-+-~-+~~+-~-+~~

145
146~-+~4-+-~-+~4-+-~-+~

147
148~-+~4-+-~-+~4-+-~-+~

149
150r+-+-r+-~~-+~4-+-~-+~

151
152
153~-+-r4-~~-+~4-+-~-+~

154
155r+-+-r+-~~-+~4-+-~-+~

156
r+-+-r+-~~-+~4-+-~-+~

157
158r+-+~4-~~-+~4-+-~-+~

159

167

y

92

You want to draw three lines down the left side of this lighthouse. The coordi
nates for these lines are:

16,136 to 16,167
17,136 to 17,167
18,136 to 18,167

The program lines which will shade the lighthouse are shown below. Line 3010
changes the color code to a light grey plotted on white. Lines 3020-3040 plot the
three lines. Notice that it does not matter in what order you list Xl, YI, X2, or Y2. As
long as they are all given before GOSUB 80, a line can be plotted. Since each line
will be plotted from the same beginning row (YI=136) down to the same ending
row (Y2=167), YI and Y2 only need to be given once. Finally, line 3050 pokes the
colors grey on black in the top block of the lighthouse. Enter these new program
lines now.

3000 REM:::::::SHADE LIGHTHOUSE
3010 C = 241
3020 Xl = 16: X2 = 16: Yl = 136: Y2 = 167: OOSUB 80
3030 Xl = 17: X2 = 17: OOSUB 80
3040 Xl = 18: X2 = 18: OOSUB 80
3050 roKE 18090, 11

Type GOSUB 20: RUN 3000 RETURN. Watch as the lighthouse is shaded, as if
the sun is off the screen to the right. Now the picture really appears to be life-like.
When the shading is finished, press the SPACE BAR. You probably need a better
look at how this worked:

PROGRAM
LINE #

3020
3040
3040

START OF LINE
X1,Yl

16,136
17,136
18,136

END OF LINE
X2,Y2

16,167
17,167
18,167

In the chart above, you can easily see that neither Yl or Y2 ever change. Thus,
they only need to be included once in the program. Xl and X2 change for each line,
and so these new column locations have to be included before each GOSUB 80
statement.

Shaded and highlighted objects in a picture create a more dramatic effect because
they give objects a sense of depth, thickness, and volume. It's a good idea to tryout
the shadows and highlights on your graph sheet before entering the program. By
coloring in the shades and highlights on your graph sheet first, you can make quick
changes and learn to control the colors for a more successful design.

93

94

Finishing Up The Program

With two more chapters to go, "Finishing Up The Prograrp" might sound a bit
premature. You would probably agree, however, that the current program is getting
to be a bit cumbersome. To keep the program listing down to a managable size, this
book's final picture will be drawn with three separate programs. You are about to
finish up the first of those three.

Let's discuss how this "3-program picture" idea will work. Your picture is
currently being stored on the high resolution graphics screen. It will remain there
until you: (a) turn the computer off, or (b) run another program that erases or
changes what's on this screen. As long as Chapter 5's program does not erase or
change anything you've already drawn, anything it draws will be added to your
current picture. Thus, we can put Chapter 4's picture on the high resolution screen,
use Chapter 5's program to add more detail to the picture, and then finish it up with
Chapter 6's program.

At the beginning of Chapter 5, you will first load this chapter's picture onto the
high resolution screen. Next, you will enter Chapter 5's new main routine lines.
Finally, you will run Chapter 5's program to add a new object to your picture.

When combining pictures drawn by two or more programs, the program run last
will dominate. By this, we mean it will control any overlapping areas. For example,
suppose you run a program that draws a white house on a light blue background.
Next, you run a program that draws a red sun on a yellow background. The
combined picture would display a white house, a red sun, and a yellow background
(the background determined by the program run last).

To finish up this program and move on, there are just a couple of loose ends to tie
up. The first is the picture's border. Have you noticed that the left and right edges of
the water seem to begin and end in the middle of nowhere? This was done because
of the border surrounding the high resolution screen-it can't be drawn on. To
improve the appearance of the picture, you will plot three lines to confine it. As a
simple exercise, add program lines that will do the following:

(1) Plot a line down the left edge of the screen, stopping just above the land
(Y=159);

(2) Plot a line across the entire top row of the screen;
(3) Plot a line down the right edge of the screen, stopping just above the land

(Y=l66).

Draw these lines using green foreground pixels plotted on blue background
pixels. Begin with line 4100 REM:::::::DRAW BORDER.

The solution is shown below. You can't put border lines around the water
because that would require 3 colors (green, black and blue) in some of the color
blocks that the water uses. Knowing that only 2 colors can be used per block, the
border lines are kept above the water.

4100 REM:::::: :DRMv OORDER
4110 C = 94: REM cnLOR = GREEN CN BLUE
4120 Xl = 0: Yl = 159
4130 X2 = 0: Y2 = 0: CDSUE 80
4140 Xl = 319: Yl = 0: CDSUE 80
4150 X2 = 319: Y2 =166: CDSUB 80

Saving A Picture On Disk or Tape

In Chapters 5 and 6, you will be entering two new and independent programs.
Combining the pictures from this chapter and Chapters 5 and 6 will complete the
artwork that is covered in this book. Currently, the only way to combine the
pictures of two or more programs is to load and run each program. Having come
this far, you are painfully aware of the time this will take.

A SAVE PICTURE tool is in order, and thus supplied. This tool will save the
picture created by a program. That picture can then be easily and quickly loaded
into memory at any time. Before saving this chapter's program, carefully type the
following new tool lines:

100 REM:::::::SAVE PICTURE
101 INPUI' "ENTER FILENAME": FILE$
102 INPUI' "ENTER 8 FOR DISK, OR 1 FOR CASSETrE": IE
103 SYS 57812 FILE$ + ". PIC", DE
104 POKE 174,64: POKE 175,127: POKE 193,O: POKE 194,96
105 SYS 62954
106 SYS 57812 FILE$ + ".COL", DE
107 FaKE 174,232: FaKE 175,71: FaKE 193,O: IDKE 194,68
108 SYS 62954: END

This tool is a "routine," and is executed in almost the exact same manner as the
ZAP routine. Because it is, take the time to save Chapter 4's program now. Never
run this routine or the ZAP routine until the current form of your program is safely
stored on disk or tape.

Look over this new tool one more time. When you test this tool, the only way to
correct it and test it again is to re-run Chapter 4's program. That would take about
20 minutes of your time. Better to take an extra 5 minutes of proofreading time now.

To put this tool into action, make sure a disk is present in your disk drive. If you
are using a cassette recorder, set the counter and tape in the same manner as when
saving a program. Write down the filename "CHAPTER 4.PIC" on your list of
program names. Write down the starting counter number. Storing a picture on tape
is no different than storing a program on tape. The picture will take up space, and
should not be recorded over.

To save the picture that currently resides in memory, type RUN 100 RETURN.

95

96

The computer should respond with the prompt "ENTER FILENAME". You
are to enter the filename you want to attach to the picture. The name can be a
maximum of 12 characters in length. An important thing to understand is that the
computer will save your picture in two different files. The first file will contain the
pixel patterns that make up the picture. The second file will contain the colors that
make up the picture. Each will have a filename that begins with whatever you type
now. However, one will have". PIC" appended to the name, and the other will have
".COL" appended to the name. Enter CHAPTER 4 as the filename for this picture.

The computer now responds with "ENTER 8 FOR DISK, OR I FOR
CASSETTE". If you are using a disk drive, enter 8. Otherwise, enter 1. From this
point on, the computer will prompt you as if you were saving a program. The
prompts will be familiar, so respond to each in the usual manner.

There is no way to directly verify that the picture was stored on your disk/tape.
The only way to find out is to clear the high resolution screen and then load the
picture. Move the cursor to a free line and type:

C=14: CDSUB 40: (l)SUB 50 RE'IURN

This will clear the screen of any image, and set all color blocks to black on blue.
When the cursor reappears, you can try loading the picture. To do so, you must
load the following two files (one right after the other):

For Disk Drive Users

LOAD "CHAPTER 4.PIC",8,1
then

LOAD "CHAPTER 4.COL",8,1

For Cassette Recorder Users

LOAD "CHAPTER 4.PIC",I,1
then

LOAD "CHAPTER 4.COL",I,1

(If you are using a cassette player, be sure to rewind the tape to a point before the
picture begins.)

The above files are loaded almost the same as program files, except that a ", I"
needs to be appended to the end. This I tells the computer to replace the picture in
Bank 1 instead of Bank 0, and should be typed regardless of whether you are using a
disk drive or a cassette player.

After you enter the load command for one of these files, the computer will
respond as if you were loading a program file. Answer all prompts as you would
when loading any other file. (Occasionally, the computer may "freeze up" after
you've loaded the first picture file. When this happens, press RUN/STOP and tap
RESTORE. You should be returned to text mode, and can then load the second
picture file.) When both files have been loaded, type GOSUB 20 and press
RETURN to see the picture.

If Chapter 4's picture does not get displayed, press RUN/STOP and tap RES
TORE. LOAD Chapter 4's program. Check each line in the SAVE PICTURE
routine. Check O's and l's. Make sure you are not using oh's and small l's by
mistake. Look at the line numbers. Have any lines been omitted? Make sure you use
semi-colons (;) and colons (:) properly. When the tool is entered correctly, re-save
this chapter's program (see Chapter I for instructions on re-saving a program).
RUN the program. When the picture is restored on the high resolution screen,
RUN the SAVE PICTURE routine again.

NOTE: Loading picture files has no effect on any program listing that may be
in memory. It does, however, have effect on the high resolution screen. The
newly loaded picture will completely erase anything already on the high
resolution screen.

TOOL IOO:::::::REM SAVE PICTURE

100 REM:::::::SAVE PICTURE
un INPlJI' "ENI'ER FILENAME"; FILE$
102 INPlJI' "ENI'ER 8 FOR DISK, CR 1 FOR CASSETl'E"; rn
103 SYS 57812 FILE$ + ".PIC", rn
104 POKE 174,64: POKE 175,127: POKE 193,0:

POKE 194,96
105 SYS 62954
106 SYS 57812 FILE$ + ".COL", DE
107 POKE 174,232: POKE 175,71: POKE 193,0:

POKE 194,68
108 SYS 62954: END
What It Does: This routine will save your picture to tape or disk so

that it can be quickly restored to the high resolution screen. The picture
is saved in two files. One file contains the picture pattern, and one file
contains the color pattern.

Example Use: Type RUN 100 and press RETURN to save the picture
that currently resides in memory. You will be prompted for a filename,
which can be any name you desire (up to 12 characters in length). After
entering a filename, you will be prompted for a storage device number.
Type 8 if you are using a disk drive, or type 1 if you are using a cassette
recorder. The picture will then be saved in the same manner as when
saving a program. To load the picture back into memory, type:

LOAD "filename.PIC",8,1 (disk)
LOAD "filename.COL",8,1 or
LOAD "filename.PIC",l,l (tape)
LOAD "filename.COL",l,l

Note that filename should be replaced with the filename assigned by
you when the picture was originally saved.

Technical Description: This routine uses three pieces of the BASIC

97

98

"SAVE" command to save the picture. These pieces are used to:

(1) Get the name in quotes and the storage device number;
(2) Determine the area of memory that holds the information that is to

be saved;
(3) Save the information in the specified area.

Lines 101 through 103 collect the filename and storage device
number. SYS 57812 uses a portion of the SAVE command to store the
filename and device number entered. Line 104 determines the area of
memory that holds the pixel patterns, and line 105 saves the information
in that area. Lines 106 through 108 repeat this process to save the color
information on the disk/tape.

Summary
You have reached the first major milestone in this book. With the first program

completed, the last two chapters will take no time at all. Even if you quit reading
this book right now, your current knowledge of computer graphics is extensive
enough to:

-draw lines in any direction
-connect lines to form outline shapes
-paint any shape of any size
-use shadows and highlights to give pictures a more "true-to-life" appearance
-store and retrieve pictures to and from a disk/tape

Drawing lines and shapes is easy and fun. A line is simply a series of plotted
pixels, one right after the other. Using the PLOT A LINE tool, all you need to
know are the starting and ending points of each line.

Lines can be drawn in any direction, and can start anywhere on the screen.
Incorrectly plotting a point off the screen could cause the computer to "freeze up."
Remember that X coordinates establish the column to start in, and can range from 0
to 319. Y coordinates establish the row to start in, and can range from 0 to 199.

By connecting several lines together, you can make outlines for shapes. Making
outlines is the first step in painting shapes with colors. Outlines are painted from
top to bottom (H=?), across the width of the shape (W=?). As each column is passed
through, the straight sets of outline pixels turn plotting on and off. This idea must
be kept in mind when designing any shape which will be painted later.

Colors can create different visual effects-such as shadows (darker than the base
color) and highlights (lighter than the base color). On a graph sheet, you can
quickly estimate which color combinations work well together, and which color
blocks will be effected. Once you decide on the colors, you can change "C" to the
appropriate foreground/background color code.

Chapter 5 teaches you how to use a new tool called DRAW A SHAPE. This tool
allows you to draw a shape once, and then duplicate it anywhere and as many times
on the screen as you like. If you plan to create detailed computer graphic designs
and artwork, you will find this tool to be an invaluable addition to your tool kit.

Chapter 5

TEST PLOTTING AND
DUPLICATING SHAPES

Now that you have plotted points and lines, and have painted shapes, you are
ready to add the ship to your picture. To do this, you need to plot 68 lines. In
addition, you will place several seagulls in the picture. You'll do all of this with a
new tool called DRAW A SHAPE.

The DRAW A SHAPE tool has two very useful functions. First, it provides an
easy way to "test plot" a shape on the screen. You can plot a shape, see where it falls
in your picture, and then easily adjust the program if the shape needs to be moved
in any direction. With last chapter's PLOT A LINE tool, the only way to move a
misplotted shape was to change each X and Y coordinate for each line. This new
tool only needs one X and one Y adjustment to re-plot an entire shape in a new
location. The ship was test plotted several times before its final placement was
established. You will find that being able to "test plot" shapes can be a great
time-saver for shapes of any complexity.

The second important feature of this tool is its ability to duplicate a shape. Once
a shape has been drawn with this tool, it can be duplicated as many times as you like
anywhere on the screen. To duplicate the shape, all you need to do is specify where
you want the duplicate copy(s) to appear. Think of the programming time that can
be saved as:

-one man becomes a crowd of people
-one car becomes a traffic jam
-one building becomes a city scene
-one brick becomes an entire wall
-one flower becomes a brilliant bouquet

All of this is done by storing a written description of your shape in memory. Each
time the shape needs to be moved or copied on the screen, the computer simply
looks at the stored description.

Defining a Shape With Data Lists

The description of the shape is made up of lists stored in memory. One list
describes the shape's "endpoints," and the other list describes the shape's lines. The
first thing to do is gather the information which describes the shape to be drawn. By
sketching the shape on graph paper, these two lists can easily be compiled.

On the first list, write down all X,Y coordinates which form endpoints in the
shape. Any point which begins or ends a line in the shape is called an "endpoint."
Thus, a square shape has four endpoints, and a triangle has three endpoints. The

99

100

I
I

list of endpoints should be written down in the following form:

endpt. 0 endpt.l endpt.2 endpt.3 '" endpt. N

X
Y

Each endpoint is assigned a number, as shown at the top of each column. It does
not matter which endpoint is assigned which number. As long as you start with the
number 0, and do not skip numbers (i.e., 0, 1,2, etc.), you will have no problems.
Using a square· as an example, we suggest you make a list of each endpoint as
follows:

·The term "square" is being used lightly here. In actuality, the distance between each row
on your screen is approximately 1.234 times greater than the distance between each column.
Thus, to plot a true square there must be 1.234 times more columns in the width of the square
than rows in the height of the square.

0

(1) Sketch the shape on graph paper, noting the X,Y coordinates of each
endpoint:

o
8

16

24

32

40

48

56

64

72

80

88

1< :>1 TOP OF SCREEN
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3

123 4 4 567 8 8 9 0 1 2 2 3 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 7 889 0 1
086 4 2 0 864 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 420 8 6 420 8 6 4 2

o 319

~,p. 'v

1/\ .<1

199
96

104

112

120

128

136

144

152

160

168

176

184

192

x, Y PIXEL POINTS

0

199

(2) Assign each endpoint an identifying number (start at 0):

TOP OF SCREEN
o 319 1 1 111 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 222 3 3

1 2 3 4 4 5 6 7 8 8 9 0 1 223 4 566 7 8 9 0 0 1 2 3 4 4 5 6 7 8 8 9 0 1
o 8 6 4 2 0 8 6 4 2 0 8 8 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2

o
8

16

24

32

40
C) 12

48

56

64

72

80

88

96

104 ,
112

120

128

136

144

152

160

168

178

184

192

x, Y PIXEL POINTS

(3) On your written list, fill in the X,Y coordinates for each endpoint under the
correct column number:

endpt.O endpt. 1 endpt. 2 endpt. 3

lx 40 79 40 79
L Y 8 8 47 47

This step is very important. You must be sure to put the X,Y coordinates for
endpoint #0 in the first column; the X,Y coordinates for endpoint #1 in the second
column; and so on. The X coordinate always goes in the first row, and the Y
coordinate always goes in the second row.

That completes the information needed for the first list. This list is called your
"endpoint data." In complex shapes which have many endpoints, this list can get
long. Always double-check your shape to make sure each endpoint has been duly
recorded on the list before continuing.

101

102

You have only recorded the shape's endpoints, so another list is needed to finish
the description. This second list will give a line-by-line description of the shape,
and is set up in the following form:

line 0 line I line 2 line 3 ... Line N

I "FROM" Endpt. #

I "TO" Endpt. #

For each line in the shape you will need a column to write down its "from" and
"to" endpoints. All lines are plotted "from" one endpoint "to" another. In a shape
that has 27 lines, for example, 27 columns will be needed (numbered 0 to 26). Using
the numbers you assigned to each endpoint, one column is completed for each line
in the shape. For the square, this would be:

line 0 line I line 2 line 3

I "FROM" Endpt. # 9 I 2 3

I "TO" Endpt. # I 2 3 0

Again, it does not matter which line is assigned to column #0, or which to
column #1. As long as the columns are numbered starting with 0, and no numbers
are skipped, you will have no problems. What is important is that you use the
correct endpoint numbers, as assigned on your first list.

That completes the second list needed by the DRAW A SHAPE tool. This second
list is your "line data." Let's see how the computer can use these lists to draw or
re-draw any shape. In the example of our square, the endpoint data list gives all the
endpoints of the shape:

o
8

16

24

32
0 40

48

56

64

72

80

88
199

96

104

IE :>1 TOP OF SCREEN
o 319 1 1 1 1 1 1 1 1 1 1 1 122 2 2 2 2 2 2 2 2 2 2 2 3 3

1234456 7 8 8 9 0 1 2 2 3 4 5 6 6 7 8 900 1 2 3 4 4 5 6 7 8 890 1
o 8 6 4 2 0 864 2 0 8 6 4 2 0 8 6 4 208 642 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2

, 1

19

x, Y PIXEL POINTS

This empty "connect-the-dots" board is easily filled in by looking at the line data
list:

0

199

o
8

16

24

32

40

4B

56

64

72

BO

88

96

104

112

120

128

136

144

152

160

188

176

184

192

i'«-----------"'I)I TOP OF SCREEN
o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3

1 2 3 4 4 5 6 7 8 8 9 0 1 2 2 3 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 7 B 8 901
o 8 6 4 2 0 8 642 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 0 864 2

~.l~.

I
LNI ~ l~l'E

I
~ I ')

I~'

x, Y PIXEL POINTS

What would happen if we changed the line data list to contain the following:

line 0 line I line 2 line 3

I "FROM" Endpt. # 0 1 3 2

I "TO" Endpt. # I 3 2 0

Even though the endpoint data list remained the same, the line data list describes
the following shape:

103

104

o
8

16

24

32
0 40

48

56

64

72

80

88
199

96

104

112

120

128

136

144

152

160

168

176

184

192

IE >1 TOP OF SCREEN
o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3

1 2 3 4 4 5 6 7 8 8 901 2 2 3 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 7 8 8 9 0 1
o 8 6 4 2 086 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 086 4 2

In
11:'1'"

IV, /11

1\ V
'J.

LN ~I-.. II I\~ 1-- LN
I~ ./ \ ..

I~'

x, Y PIXEL POINTS

Once you have gathered the two data lists, you are on your way. When you store
them in your Commodore 64's memory, the shape can be plotted, moved, and
duplicated, simply by having the computer look at the lists.

The next step is to enter these lists into your program. (NOTE: Lists such as these
are called "arrays." In an attempt not to confuse you, we will continue to refer to
them as lists.)

Entering Data Lists In the Program

The first list to enter in the program is the endpoint data list. To start, you must
tell the computer the size of this list. Tljis is done by entering a DIM statement that
gives the number of rows and columns the list has. The endpoint data list for the
square had 2 rows and 4 columns. To tell the computer these dimensions, a main
routine line containing the following is needed:

1100 DIM E%(1,3)

I

NOTE: During this discussion, do not type any program lines. Typing
begins in the next section, "Test Plotting."

A DIM statement does several things. First, it assigns a name to the list. We have
chosen the name "E" for the Endpoints data list. The "%" tells the computer that
the list will be used to store whole number (integers). It is important to remember
that the DRAW A SHAPE tool expects you to use E% when storing your endpoints
data list.

The numbers in parentheses (1,3) are called subscripts, and they establish the
number of rows and columns the list will use. The first number gives the number of
rows in the list. This is a zero-based number, so a 1 means the list uses 2 rows. The
second number gives the number of columns in the list. This is also a zero-based
number, so a 3 means the list uses 4 columns.

Given the size of your list, the computer sets aside enough memory space (no
more and no less) to hold the data. If you say your list only uses 10 columns and then
you try to use 11, you will get a "BAD SUBSCRIPT ERROR."

It's okay, however, to say the list is longer than it really is. In fact, it's usually a
good idea to have the computer set aside more memory space than your list actually
uses. The E% list will never use more than two rows (one for X coordinates and one
for Y coordinates), so the row dimension can be left at 1. However, the number of
columns needed will depend on the number of endpoints in your shape. We suggest
that you create E% with 100 columns, which will be sufficient for almost all shapes.
To give E% this size, the program should read:

1100 DIM E%(1,99)

Once this line is entered into the program, you have an empty E% list that needs
to be filled with endpoint data. Let's compare the empty list in memory to the
handwritten endpoint list from earlier in the chapter:

Empty E% List In Memory

Column 0 Column 1 Column 2 Column 3 ... Column 100

Row 0

1 Row I

Written Endpoint Data List

endpt. 0 endpt.l endpt. 2 endpt.3

X 40 79 40 79
Y 8 8 47 47

You need a way to copy your list directly into memory. Each "position" in
memory can be filled with a data item by using the correct Row # and Column #.
For example, the first position in E% is Row 0, Column O. This is written as E%(O,O).

105

106

The next position down is Row I, Column O. This is written as E%(I,O). (Note that
the Row notation always comes before the Column notation.) For the square data,
we would like:

40 put in position (0,0)
8 put in position (1,0)

79 put in position (0,1)
8 put in position (1,1)

40 put in position (0,2)
47 put in position (1,2)
79 put in position (0,3)
47 put in position (1,3)

This would fill the empty E% list as follows:

Column 0 Column I Column 2

I RowO 40 79 40
I Row I 8 8 47

Column 3 ... Column 100

79
47

Look carefully at the charts above to see how the data and positions are being
used here. If you do not understand why 40 has been placed in position (0,0), or
what position (0,0) is, you will not get the full benefit of this chapter's tool. Study
the charts hard. It might help to look back at the original square, with its coordi
nates and endpoint numbers shown.

To place each endpoint data item in the proper E% positions, a FOR/NEXT
loop and a DATA statement are entered:

1110 FOR I = 0 'IO 3
1120 READ E%(0,I), E%(I,I)
1130 NE}cr' I
1140 ~~ 40, 8, 79, 8, 40, 47, 79, 47

Line 1110 begins the loop, setting I to O. Thus, line 1120 starts by READing:

E%(0, 0) ,E%(1, 0)

These are the two positions in Column 0 of E%. Endpoint #0 data needs to be
placed in these positions, so they are the first two coordinates given in line 1140.
Each time the loop is gone through, the next two data items in line 1140 are placed
in the list. Because I begins at 0 and continues up to 3, the loop is processed four
times. Each time it is processed, line 1120 changes to specify another column in the
list: E%(0,1),E%(l,I);E%(0,2),E%(1,2); etc. For each pass through the loop, another
coordinate pairs is read from the DATA statement and placed in a column.

Several important things to remember about this FOR/NEXT loop and DATA
statement are:

(I) The loop (FOR I = 0 TO?) must be set to be processed the correct number of

times. If there are 20 items on the DATA statement, the loop must read FOR I
= 0 to 9. (Remember: The loop reads two data items at a time.) You can get
incomplete and unexpected shapes if this loop is not set correctly.

(2) The READ statementfills the list with DATA, two data itemsata time (one X
coordinate and one Y coordinate). It does this using the variable "I" to
specify each column position in the list. As long as you do not change this
READ statement in any of your programs, it will always fill the E% list.

(3) To enter the DA T A statement, copy the endpoint da ta list of your shape. Copy
the coordinates column-by-column, starting with endpoint #0. The X coor
dinate of each endpoint should always be entered before the Y coordinate.
This is how it was done for the square:

end.0 end. 1 end. 2 end. 3
x, Y, X, Y, X, Y, X, Y

~ ~ ~ 79," 47"' 1140 m'm 40, 8, 79, 8, 40, 47,

Since the endpoints are numbered from 0 to 3, the loop is set accordingly:

1110 FOR I = 0 'ID 3

That's all there is to creating an E% list. Putting the line data list in memory is
just as easy. Let's look at that list again:

line 0 line 1 line 2 line 3

l "FROM" Endpt. # 0 1 2 3

l "TO" Endpt. # 1 2 3 0

The size (dimension) and name of this list must be entered in the program. The
new tool expects this list to be called L% (for Line data). Can you figure out the
minimum DIM statement that would work for this list? The list needs 2 rows and at
least 4 columns, so the smallest dimensions we would enter would be:

1200 DTIM L%(1,3)

To leave plenty of room for other shapes of varying sizes, this list will be given
100 columns:

1200 DTIM L%(I,99)

Storing the line data in L% is done with the following main routine lines:

1210 FOR I = 0 'ID 3
1220 READ L%(0,I), L%(I,I)
1230 NE}IT I
1240 mTA 0, 1, 1, 2, 2, 3, 3, 0

107

108

These lines have the computer store your line data in the L% list. The loop is set
to process once for each "from" and "to" set of data items-no more and no less. If
your handwritten list contains line #0 through line # 12, then the loop must be set at
FOR I = 0 TO 12.

Line 1220 fills L% with the data items in line 1240. Each time the loop is
processed, line 1220 reads two data items from the DATA statement. (Note: If a
DATA statement ever has an uneven number of data items, something is wrong.)
The data items are placed column-by-column in the L% list.

Line 1240 must be a copy of your line data list, set up in this form:

line 0
Fran,To,

~
1240 mTA 0, 1,

line 1
Fran,To,

~ 1, 2,

line 2
Fran,To,

~
2, 3,

line 3
Fran,'Ib

~
Of course, all of the program line numbers are arbitrary. You may use any

program lines available in whatever program you work with. It is how you set up
the program lines that is so important.

Enough reading. You need to put all of this into practice to fully understand any
of it.

Test Plotting

To start, you will enter the DRAW A SHAPE tool and then test plot a shape.
Since the new tool uses the PLOT A POINT and PLOT A LINE tools, load
Chapter 4's program into memory. List lines 1000 through 1400 on your screen.

The first three lines in the main routine are necessary to see the shape you plot.
The rest of the main routine, though, is of no use right now. A quick adjustment to
the ZAP routine will keep lines 1100, 1110 and 1120 from being zapped when you
RUN 10. List lines 10 and 11.

These are the first two lines in the ZAP routine. Line 11 reads:

11 A = 256: B = 2049: C = l003

The "C = 1003" specifies where to start zapping lines. Carefully re-type this line
as follows:

11 A = 256: B = 2049: C = 1200

This minor change leaves all lines before line 1200 untouched by the ZAP
routine. Type RUN 10 and press RETURN.

Wait as the main routine is zapped, and then list your program to check for tools.
(There should be several.) Also, check to see if the main routine contains only lines
1100, 1I10, and 1I20. If anything is amiss, re-Ioad Chapter 4's program and try
again. When everything is in order, type the DRAW A SHAPE tool below:

110 REM:::::::DRN~ A SHAPE
III FOR J = 0 'TO NL
112 El = L%(0,J): E2 = L%(l,J)
113 Xl=E%(0,El) + X0: Yl=E%(l,El) + Y0
114 X2=E%(0,E2) + X0: Y2=E%(1,E2) + Y0
115 OOSUB 80
116 NIDcr' J
117 RETURN

Re-check each line before continuing. To make sure you entered all lines cor
rectly, you need to draw a shape. Let's try this triangle:

(80,8)

(72,39) (103,39)

To gather the two data lists, assign a number to each endpoint:

o

2~-----l.

You can then easily fill in the data lists:

endpt.O endpt. 1 endpt.2

X 88 103 72
y 8 39 39

(coordinates of each endpoint in the shape)

line 0 line 1

"FROM" Endpt. # 0 1
"TO" Endpt. # 1 2

(lines made "from" one endpoint "to" another,
using endpoint numbers assigned above)

line 2

2
0

109

llO

To enter these lists into the program, a DIM statement is needed. Type the
following:

1200 DIM E%(1,99), L%(1,99)

Notice that you can give the dimensions for both lists in the same program line.
For each one, you have created 2 rows and 100 columns (1,99). To fill E% with the
correct endpoint coordinates, type:

1300 REM:::::: :TRIANGlE ENDroINI'S
1310 FOR I = 0 ro 2
1320 READ E%(0,I), E%(I,I)
1330 NE)IT I
1340 ~~ 88, 8, 103, 39, 72, 39

The endpoints range from #0 to #2, so the loop is set from 0 TO 2. The DATA
items from the endpoint list are typed in line 1340, starting with the X and Y
coordinates of endpoint #0. Line 1320 READS the data items into the appropriate
list positions.

Type the following to create the line data list:

1400 REM::::::: TRIAN3LE LINES
1410 FOR I = 0 ro 2
1420 READ L%(0,I), L%(I,I)
1430 NEXT I
1440 ~TA 0, 1, 1, 2, 2, 0

The loop is set to process 3 times again. (Note: The E% and L% loops will
frequently need to be different lengths.) Line 1420 has the computer READ data
items into the L% list. The data items appear in line 1440, starting with the "from"
and "to" endpoints of line #0.

To have the DRAW A SHAPE tool look at these lists, type:

1500 REM:::::::DRAW TRIANGLE
1510 C = 14
1520 NL=2: X0=0: Y0=0
1530 ensUB 110

Line 1520 is crucial to test plotting a shap. It will be explained after you test the
program. RUN it now.

Wait as the screen is changed to black on blue, and all pixels are set to the
background color. After a moment, the triangle should be plotted near the top,
left-hand corner. When it has been plotted (or if you run into problems), press
RUN/STOP and tap RESTORE.

If lines were plotted, but not in a triangular pattern, check the DATA statements
for both E% and L %. If you can, ask someone else to read the program lines from this
book as you check your screen. Check line 1520, making sure NL is equal to 2, and
XO and YO are equal to O. Check the FOR/NEXT loops to be sure they are processed
from 0 TO 2. If the main routine is correct, plow through the subroutine. Don't
continue until you get the triangle plotted correctly.

List lines 1500 through 1530 on your screen. Line 1510 sets the color code to black
against blue. The screen already was black on blue, but specifying C is a good habit
to get into.

Line 1520 is of primary interest. First, it sets the value of NL. NL is a variable
(place-holder) for the number of lines the shape to be drawn has. This is a O-based
number, and thus a 3-sided triangle is drawn with NL set equal to 2. The NL
variable is used in subroutine 110, and so it must be set each time the subroutine is
called. To make it easy on yourself, look at the last line # on your handwritten line
list. Set NL equal to that line number.

Line 1520 also contains what are known as "offset values." These XO and YO
values will allow you to test plot and move your shape. Very simply, the value you
enter for XO will be added to all X coordinates in your endpoint data list. This will
adjust the shape so that it is plotted to the right or to the left of its original screen
location. For example, suppose you used this tool to plot a straight line from
endpoint 3,3 to endpoint 20,50. If you make XO equal 5 (XO=5), the computer will
add 5 to each X coordinate before the line is plotted. If, instead, you want to move
the line left 5 columns, XO would have to equal -5. This is because you need 5
subtracted from each X coordinate to move the line left. Remember this rule:

-XO moves the shape left; +XO moves the shape right

Changing YO moves the shape up or down. If a line were plotted from 8,3 to
25,50, and you felt it should be moved down two rows, you would make YO=2. This
adds 2 to each Y coordinate, plotting the line from 8,5 to 25,52 (two rows down on
the screen). For YO, the rule is:

- YO moves the shape up; + YO moves the shape down

Let's test plot the triangle by moving it 32 columns right and 32 rows down.
Type:

1520 NL=2: X0=32: Y0=32

RUN the program again. After the screen is cleared, the triangle should be
plotted in its new location (over and down).

It is important to keep the X and Y coordinate ranges in mind when setting the
XO and YO values. Wherever you move your shape, all of its points must remain
within theses ranges. If your original shape has an X coordinate of 10, and you
decide to move the shape to the left 12 columns (XO=-12), you will cause yourself
problems. The original X coordinate of 10, when added to -12, becomes -2. This, of
course, is outside the X coordinate range. This is not allowed.

III

112

Finally, remember to set the values of NL, XO and YO each time you draw a shape
with the DRAW A SHAPE tool. This is important. XO and YO can be set to 0 (which
does not move the shape in any direction), but they should be set. This is because as
soon as you set these variables and call the DRAW A SHAPE tool, the variables stay
set until you specifically change them again. If your program uses this tool to draw
more than one shape, all of the shapes will be drawn according to the most recent
values assigned to NL, XO and YO.

Duplicating Shapes

Understanding how to duplicate a shape will be very simple. All you need are
new offset values, a new color code (if desired), and GOSUB llO statements (onefor
each copy of the shape you want).

List your main routine on the screen to review what you've done so far. Briefly:

-line 1200 reserves space in memory for the two lists
-lines 1300-1340 fill E% with a description of the triangle's endpoints
-lines 1400-1440 fill L% with a description of the triangle's lines
-lines 1500-1530 give the number of lines in the shape, set the offset values, keep

the color code at 14, and call the DRAW A SHAPE subroutine

The description of the triangle will remain in E% and L% until you fill the lists
with another shape's description. By typing new offset values and calling the
subroutine again, the shape can be duplicated as many times as you like. To see
what we mean, add the following lines to your program:

1540 NL=2: X0 = 16: Y0 = 16
1550 CDSUB 110
1560 NL=2: X0 = 8: Y0 = 8
1570 CDSUB 110

RUN the program to see what happens. It will take a few moments, but you will
end up with three triangles-one for each GOSUB 110 statement in the program.
Each triangle is plotted at an offset location relative to the original triangle
described in E% and L%. The original triangle is not plotted on your screen. It is
important to remember that offset values do not offset a shape from the last copy of
that shape that was plotted. Instead, offset values offset a shape from the shape
stored in E% and L%. This will be an easy thing to forget.

As long as you have a shape stored in E% and L%, Tool 110 can draw it. The NL
variable must be set equal to the number of lines in the shape, based on a O-based
scale. Offset values can be used to move the shape or duplicate it anywhere on the
screen. To move the shape, set XO equal to the number of columns right (+) orleft (-)
the shape is to be moved. Set YO equal to the number of rows down (+) or up (-) the
shape is to be moved. Then RUN the program again.

To duplicate a shape, you need a GOSUB 110 statement for each copy of the
shape desired. XO and YO must be changed before each GOSUB to indicate where
each new copy is to be placed. Set NL equal to the last line # in the shape.

You should spend some time practicing with this new tool. Try moving the
triangle around, and duplicating it across the screen. Enter new program lines that
will fill E% and L% with a new shape. Program lines can be no longer than 2 screen
lines (80 characters) in length, so DATA statements often have to be broken up into
more than one progam line. This is fine, as long as each line starts with the word
DATA.

If you store a new shape in E% and L% using new program lines, change XO and
YO back to O. Otherwise, the new shape will be plotted 16 rows and columns off (16
is currently the last value given for XO and YO).

The rest of the chapter shows you how to plot the ship and seagulls using the
DRAW A SHAPE tool. Because the ship is comprised of 68 plotted lines, you will
learn a lot about this new tool before the end of this chapter. It is a good idea to try
plotting the ship before using this tool for any serious work on your own.

Drawing and Placing the Ship's Hull

You need to do three things to get ready for this chapter's program. First you need
to load Chapter 4's picture into memory. This involves LOADing "CHAPTER
4.PIC", and LOADing "CHAPTER 4.COL". Each LOAD command should end
with an addition of ",1". Refer to the last chapter if you need help on loading these
files.

When you think the picture has been loaded properly, type GOSUB 20 and press
RETURN. You should find the land, water, waves, sky, and lighthouse in place.
Do not continue until you actually see this on the screen. Press RUN/STOP and
tap RESTORE to get back to text mode.

You need to run the ZAP routine to get ready for Chapter 5's program. Before
running it, change line II to the following:

11 A=256: B=2049: C=1003

Now, type RUN 10 and press RETURN. Wait while the main routine is removed
from the program. Next, add the following program lines to allow you to enter and
exit high resolution graphics:

1010 OOSUB 20: REM GRAPHICS
5000 GET A$
5010 IF 1\$ = " " 'IHEN 6000
5020 OOTO 5000
6000 OOSUB 30
6010 END

113

114

You will notice that we did not add a GOSUB 40 and GOSUB 50 statement to this
program. These tools clear the high resolution screen of any image it may contain.
Because you want Chapter 4's picture to stay on the screen, these GOSUB state
ments are intentionally left out.

N ow you are ready to draw the hull of the ship. Start by typing the DIM statement
for the E% and L% lists:

1020 DIM E%(1,99), L%(1,99)

Follow this with the FOR/NEXT loop to read and place the hull's endpoints
into E%:

1100 REM::::::SHIP ENDPOINTS
1110 FOR I = 0 TO 16
1120 READ E%(0,I),E%(1,I)
1130 NIDIT I

Before typing the DATA statements below, notice how they are neatly organized.
All the commas from one DATA statement to the next are carefully lined up. This
may seem a bit picky, but this arrangement helps locate typing errors. By keeping
your DATA statements equal in length (all having the same number of data items),
and keeping each data item lined up with those above it, it is easy to see if you added
or left out a number. Try typing these DATA statements just as we have them listed
here:

1140 DP..TA 114, 108, 93, 125, 89, 125
1150 DP..TA 93, 135, 84, 150, 78, 150
1160 DA.TA 56, 132, 54, 135, 92, 127
1170 DA.TA 90, 130, 18, 144, 17, 141
1180 DP..TA 4, 144, 7, 150, 6, 149
1190 DP..TA 88, 132, 92, 137

Check over your typing before continuing. A group of data statements, one right
after the other, is called a "data block." The data block above provides the end
points for the hull of the ship. These were found by plotting the hull on graph
paper and marking down the coordinates of each endpoint.

You now need to type in the "from" and "to" dataofthe L% list. Type these lines:

1200 REM::::::::SHIP LINES
1210 FOR I = 0 to 13
1220 READ L%(0,I), L%(l,I)
1230 :tiIIDcr' I
1240 DATA
1250 DATA
1260 mTA
1270 DP..TA

0, I, 0, 2, 1, 3, 1, 5
2, 6, 3, 4, 3, 9, 6, 7
8,10, 9,14,10,11,11,12

12,13,15,16

Check over your DATA statements before continuing. Make sure line 1210 makes
a loop from 0 to 13.

In addition to specifying the endpoints and lines for the ship, XO and YO need to
be set to place the ship appropriately on the screen. Finally, a GOSUB statement
which calls the subroutine is required. Type these lines:

1300 REM::::::::DRMv SHIP
1310 C = 14
1320 NL=13: X0=114: Y0=26
1330 CDSUB 110

This completes the information needed for the hull. Check each line carefully
before running the program. If you can, have someone go over the DATA state
ments line-by-line with you. When ready, RUN the program. The hull should be
plotted as shown below:

The hull will be centered on top of the water. If it gets plotted in the wrong place,
check the XO and YO offset values in the program. If only some lines are plotted in
the wrong place, or if a line was not plotted at all, check the endpoints data block in
lines 1140-1180. There should be a total of 34 numbers in this block. Finally, check

115

116

the line data entered for L%. You will have to re-load Chapter 4's picture before
running a corrected program.

When the program is working properly, list lines 1020 through 1320. Now that
you have used your new tool, you are ready to learn more about READ statements
a.nd FOR/NEXT loops. Understanding their "ins and outs" can save you from
much bewilderment if your skillfully designed works of art ever become mish-mash
on the screen.

READ causes the computer to put data into a specified list. If the statement says
"READ L% ... ", data is placed into the L% list. If the statement says "READ E% ... ",
data is placed in the E% list. How does the computer know what data to read and
when to quit reading it? This may sound like an elementary question, but "read"
on ...

When the computer comes to a READ statement, it will begin placing the first
unused data item it finds into the specified list. Thus, you may have a READ
statement at line 35400 that reads a DATA statement at line 1. The computer quits
reading data items when the loop containing the READ statement has been
processed the specified number of times. If the computer runs out of data items to
read before the loop has been completed, an "OUT OF DATA" error will occur and
the program will stop.

In other words, when a program is running, a READ statement reads data items
from DATA statements. As each data item is read and placed in a data list, it is
"checked off" by the computer. This keeps it from being read more than once. This
is why it is important to make your loops exact. For example, if you make the loop
that reads E% data too long, data items meant for the L% list will be read into the E%
list-regardless of the fact that they are not grouped with the E% DATA statements.
Then, when the L% list gets filled, those first few data items will have already been
"checked off" and will not be a part of the L% list. The L% list will come up short,
an "OUT OF DATA" error will occur, and the program will stop.

READ statements will simply read DATA statements from the lowest line
number up to the highest line number. How the DATA statements are grouped,
where they are located, or what section they appear under has no bearing on how
they are read. As each item is read and placed in a list, it is checked off-never to be
read during the same program execution again. This is all key in making sure your
loops are set right.

Look at the ship's endpoint data block again:

1140 mTA 114, 108, 93, 125, 89, 125
1150 mTA 93, 135, 84, 150, 78, 150
1160 mTA 56, 132, 54, 135, 92, 127
1170 mTA 90, 130, 18, 144, 7, 141
1100 mTA 4, 144, 7, 150, 6, 149
1190 mTA 88, 132, 92, 137

In program line 1140, 114 is the X coordinate and 108 is the Y coordinate for
endpoint #0 of the ship. Endpoint #1 is 93,125 (X,Y). Endpoint #2 is 89,125.
Program line 1150 starts with Endpoint#3's coordinates. Uyou count up all of the
coordinate pairs, you will find that there are 17 of them. Thus, the I loop is set from
o to 16.

Compare the endpoints given in the above DATA statements to the following
illustration of the ship's endpoints plotted on a graph sheet. The endpoints are
shown as they were originally plotted when the ship was designed. After several test
plots, the ship was offset by changing XO and YO in line 1310.

o

199

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

160

168

176

184

19 2

:>1 TOP OF SCREEN
o 319 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3

o 8

1

1 234 4 5 6 788 901 2 234 5 6 6 7 8 9 0 0 1 234 4 5 678 8 9 0 1
6 2 086 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 2 0 864 2 0 8 6 4 2 4

0

2 •
R 9 ~t

11
10 :":

• 4 1
13

x, Y PIXEL POINTS
In the program, the line data loop is set to be processed 14 times (0-13) for the 14

lines in the ship. Each time through this loop, a set of "from" and "to" points are
READ from the DATA statements and put in the L% list.

Calling the DRAW A SHAPE tool with a GOSUB 110 statement draws or
duplicates the shape.

117

118

TOOL IlO:::::::DRA W A SHAPE

110 RIM:::::: :DRAH A SHAPE
III FOR J = 0 'ill NL
112 El = L%(0,J): E2 = L%(I,J)
113 Xl=E%(0,El) + X0: Yl=E%(I,El) + Y0
114 X2=E%(0,E2) + X0: Y2=E%(I,E2) + Y0
115 OOSUB 80
116 m:xr J
117 RETURN

What it Does: This tool draws the shape described in lists E% and L%.
It places the shape (or duplicates it) at the offset location given in
variables XO and YO.

Example Use:

(I) Draw your shape on graph paper.

(2) Number all the endpoints in your shape, starting with endpoint
#0.

(3) Make a list (E%) of the X,Y coordinates that form each endpoint:

x
Y

endptO

55
3

E%
endpt 1

60
10

endpt 2 ...

(4) Make a list (L%) which gives the "FROM" and "TO" data needed
to describe the ship's lines:

L%
line 0 line 1 line 2 ...

"FRO M Endpt. # 11----;::,3--1---..,,1---+-----:2:-----1
"TO" Endpt. #. 2 3 6

(5) Type a DIM statement to reserve space for the E% and L% lists:

1020 DIM E%(I,#),L%(l#)
where # is the maximum number of columns each list will need

(6) Fill E% with the endpoint data using the following format:

IIlO FOR I = 0 TO #
where# is the total number of endpoints in the shape being drawn,
including endpoint #0

1120 READ E%(l,l),E%(l,I)

1130 NEXT I

1140 DATA X,Y,X,Y
where X, Yare replaced with the coordinates of each endpoint, starting
with endpoint #0

(7) Fill L% with the line data using the following format:

1210 FOR I = 0 TO #
where # is the total number of lines to be drawn, including line #0

1220 READ L%(O,I),L%(l,I)

1230 NEXT I

1240 DATA from,to,from,to
where "from,to" are replaced with the endpoint #'s for each line,
starting with line #0

(8) Set the values of NL, XO and YO:

1310 NL=E: XO=F: YO=G: GOSUB 110
E should be the last line # on your handwritten line data list; F is
how many columns right the shape is to be move; G is how many
rows down the shape is to be moved

Technical Description:

To DRAW A SHAPE, a loop is used:

101 FOR J = 0 TO NL

NL is the number of lines in the shape (O-based), and this loop will be
performed once for each line. The first time through the loop, a line will
be drawn between the points represented by the first entry in the L% list:

L%(0,0),L%(1,0)

The second time through the loop, the second entry in the L% list is
used:

L%{0,l),L%{1,1)

Remember that L%(OJ) and L%(I,J) are the 2 endpoints that determine
the line (where J is replaced with a number by the loop). These end
points were previously stored in the E% list by the main routine.

102 El = L%{0,J) : E2 = L%{l,J)

This line retrieves the endpoint #'s of the first two endpoints of the
current line to be drawn.

102 Xl = E%{0, E1) + X0 : Yl = E%{ 1,El) + Y0

This line looks at E% to find out the actual X, Y coordinates of the first
endpoint in the line, and then adds the offset values to it.

119

120

103 X2 = E%(0,E2) + X0 : Y2 = E%(1,E2) + Y0

This line looks at E% to find the actual X, Y coordinates of the second
endpoint in the line being drawn. The offset values are added to this
endpoint also.

This is all the information necessary to draw a line with the line
drawing routine at line 80.

104 ensUB 80
105 NIDIT J

This is the bottom of the loop.

106 RETURN

Line 106 tells the computer to return to the main routine.

Drawing the Front Sails

You will now be able to work more quickly because you have already learned
most of this chapter's material. The front sails are plotted in the same manner at the
hull of the ship. Type in these DATA statements for the endpoints of the sail:

1400 REM:::::::FRONT SZUL mnFOlNI'S
1410 FOR I = " TO 42
1420 READ E%(0,I),E%(1,I)
1430 NIDIT I
1449.J DA.TA 96, 7, 91, 28, 92, 29
1450 DA.TA 86, 17,105, 29, 78, 22
1460 DA.~ 108, 38, 75, 30, 69, 39
1470 DA.~ 67, 38,112, 62,111, 54
1480 DA.TA 108, 60, 86, 48, 88, 50
1490 DA.~ 85, 51, 88, 52, 66, 40
1500 DA.TA 122, 72, 62, 54, 42, 75
1510 DA.~ 39, 72,117,105,113,103
1520 DA.TA 122, 90, 76, 89, 81, 90
1530 DA.~ 75, 94, 79, 96, 60, 88
1540 DA.TA 115,111, 60,109, 57,120
1550 DA.~ 55,119, 81,126, 93,130
1560 DA.TA 115,135,110,134,117,126
1570 DA.TA 70,123, 76,124, 68,129
1580 DA.TA 74,128

Now, enter the program lines that will connect these endpoints to form the
proper lines:

1600 REM::::::: FRONT SA.IL LINES
1610 FOR I = 0 'ID 27
1620 READ L%(0,I},L%(I,I}
1630 NE)IT I
1640 ~~ 0, I, 0, 2, 3, 4, 5, 6
1650 ~~ 5, 7, 6,11, 7, 8, 9,10
1660 ~~ 11,12,13,15,14,16,17,18
1670 ~TA 17,19,18,24,19,20,21,22
1680 ~TA 23,24,25,27,26,28,29,30
1690 ~TA 29,31,30,38,31,32,33,34
1695 ~TA 35,36,37,38,39,41,40,42

Finally, set the color code and offset values, and then call the subroutine tool:

1700 REM:::::::DRAW FRONT SAIL
1710 C = 14
1720 NL=42: X0=114: Y0=26
1730 ensUB 110

You have probably found out how easy it is to make mistakes in DATA state
ments. (Unfortunately, it is not quite as easy to find them.) If a program does not
run properly, and it contains a long list of DATA statements, you usually know
where to look to find the errors.

When running this program, you want the computer to start at line 1400 so you
don't have to wait for the hull to be re-drawn. Unfortunately, typing RUN 1400
won't work with DATA statements. Why? Because a READ statement (like that in
line 1420) will start reading the first un-read data item in the program. This occurs
in line 1140 of your program. This DATA statement will be the first one read when
the program is run, regardless of which line number the RUN statement sends the
computer to.

There is a way around this problem, though. By changing line 1330 to a REM
statement (temporarily), the hull shape is stored in E% and L% but never plotted.
Then lines 1400 through 1695 erase the hull from E% and L%, replacing it with the
front sail descriptions. The front sails get plotted by line 1730. Change line 1330 as
follows: •

1330 REM: :<DSUB 110 REIDRN

121

122

RUN the program. The front sails should be plotted as shown in the following
illustration:

.If you are having any problems, go over the following checklist to locate errors:

Has the high resolution screen "frozen," plotting no part of the sails?

-When this happens, carefully type GOSUB 30 RETURN. You will not see
your typing on the screen as you type, but you should be returned to text
mode. Lookfor an error message (e.g., "OUT OF DATA ERROR", "BAD
SUBSCRIPT ERROR", "SYNTAX ERROR", etc.)

Are the front sail lines being plotted, but in what appears to be random locations?

-Check to see if the loop in line 1210 is processing too many times, and thus
reading some of the data items in line 1440 (line 1210 should have FOR I = 0
TO 13).

-Check the loop in line 1410(FOR I =0 TO 42). Make sure itis not processing
too many times and reading too many data items into E%.

-Check the line data in lines 1640-1695. Omitting or adding an extra data
item here will produce a messed up picture from that point on.

Was only one line plotted off course?

-Check the endpoints data block (lines 1440 through 1580). One number has
probably been entered incorrectly.

Was only one line plotted?

-Check to make sure you set NL correctly before GOSUB 110.

Were extra lines added to your picture?

-Check to make sure you set NL correctly before GOSUB 110.

Were the front sails formed, but plotted too far right or left?

-Check the offset values in line 1720. XO should be set to 14, and YO should be
set to 26.

Color problems?

-Check line 171 O.

If any program lines were entered incorrectly, you need to:

(1) correct them;
(2) reload Chapter 4's picture; and
(3) re-run Chapter 5's program.

When the program is running properly, and the picture is displaying the hull
and front sails of the ship, press the SPACE BAR to return to text mode.

Drawing the Rear Sails

Carefully type the endpoint data for the rear sails below:

1000 REM::::::: REAR SA.IL FNDPOINTS
1810 FOR I = 0 'IO 4e
1820 READ E%(0,I}, E%(l,I}
1830 NEXT I
1840 IlA.TA
1850 IlA.TA
1860 IlA.TA
1870 IlA.TA
1880 IlA.TA
1890 mTA
1900 IlA.TA
1910 mTA
1920 IlA.TA
1930 IlA.TA
1940 mTA
1950 IlA.TA
1960 IlA.TA
1970 IlA.TA

78, 12,
80, 20,
60, 18,
69, 39,
39, 45,
99, 59,
37, 48,
13, 80,

100, 99,
24,105,
15, 81,
49,114,
54,115,
12,105,

75, 20, 73, 15
61, 13, 78, 22
48, 25, 44, 22
52, 30, 50, 38
37, 44, 60, 56
99, 55, 59, 57
33, 69, 20, 84
60,102,102,106
28, 87, 30, 96
21,102, 58,116
25,141, 41,111
33,140, 42,138
39,139, 48,137
63,127

123

124

Before adding more lines, check over your typing. Then, put in the line data by
typing:

2000 REM::::::: REAR SlUL LINES
2010 FOR I = 0 'ID 25
2020 READ L%(0,I),L%(I,I)
2030 NEXT I
2040 ~TA 0, 1, 2, 3, 4, 5, 4, 6
2050 ~~ 6, 7, 8, 9, 9,10,10,11
2060 ~~ 11,12,13,14,15,16,17,18
2070 ~TA 18,19,19,20,21,22,23,24
2080 ~TA 25,26,26,27,28,29,30,31
2090 ~~ 31,32,33,34,33,35,36,37
2095 ~TA 36,38,39,40
2100 REM::::::: DRAW REAR SP.IL
2110 C = 14
2120 NL=25: X0=114: Y0=26
2130 OOSUB 110

Look over your typing. When you are satisfied that it has been entered correctly,
change line 1730 to a REM statement so the program won't re-plot the front sails.
Type:

1730 REM:: (l)SUB 110 REJ.URN

RUN the program. It will take a few moments to draw the sails, so sit back and
relax. The program should display a picture that looks like this:

If you are having any problems, look back at the checklist previously given.

Drawing and Duplicating the Large Seagull

In this section, you will use Tool llO's duplicating ability to place three large
seagulls in the sky. The next section uses the same technique to place two small
seagulls in the sky. Using different sizes for the birds adds variety to the design and
also creates the sense that the smaller birds are farther back in space than the larger
ones.

Type these program lines to display the large seagulls:

2200 REM::::::: LRG SEAGULL ENDPI'S
2210 FOR I = 0 ro 6
2220 READ E%(0,I),E%(I,I)
2230 NEXT I
2240 ~TA 0, 6,10, 0,13, 2,14
2250 ~TA 6,15, 2,18, 0,28, 6
2300 REM::::::: LRG SEAGULL LINES
2310 FOR I = 0 ro 5
2320 READ L%(0,I),L%(I,I)
2330 NEXT I
2340 ~TA 0, 1, 1, 2, 2, 3, 3, 4
2350 ~TA 4, 5, 5, 6
2400 REM::::::: DRAW IRG SEAGUlJ.S
2410 C = 30: REM mWR = WHITE eN BIlJE
2420 NL=5: X0=114: Y0=26: m8UB 110
2430 NL=5: X0=33: Y0=151: CDSUB 110
2440 NL=5: X0=80: Y0=50: CDSUB 110

After checking and correcting any errors, change program line 2130 to a REM
statement as follows:

2130 REM: :OOSUB 110 RE'IURN

125

126

Then RUN the program. Your picture should display the three large seagulls as
illustrated below:

Return to text mode by pressing the SPACE BAR. LIST lines 2200-2430. Notice
that the endpoint and line data are only entered once for all three birds. To draw the
same bird three times, new offset values are entered, each time followed by a
GOSUB 110.

Before continuing, change lines 2420, 2430 and 2440 to REM statements. They
will then read:

2420 REM NL=5: X0=114: Y0=26: GOSUB 110
2430 REM NL=5: X0=33: Y0=151: GOSUB 110
2435 REM NL=5: X0=80: Y0=50: GOSUB 110

Drawing and Duplicating the Small Seagull

The small seagulls will be drawn in the same manner as the large seagulls,
refilling the E% and L% lists. Type these lines:

2500 REM:::::::SM SEAGUlL ElID?I'S
2510 FOR I = 0 TO 5
2520 READ E%(0,I),E%(1,I)
2530 NEXT I
2540 DA~ 0,8,5,5,8,6,7,8,9,4,16,0
2600 REM:::::::SM SEAGULL LINES
2610 FOR r = 0 TO 3
2620 READ L%(0,r),L%(1,I)
2630 NEXT I
2640 DA~ 0, 1, 1, 2, 3, 4, 4, 5
2700 REM::::::: DRAW 91 SFAGlJI.l.S
2710 NL=3: X0=261: Y0=10: GOSUB 110
2720 NL=3: X0=275: Y0=50: GOSUB 110

Check your typing and R UN the program. By adding the two small seagulls, you
have completed this chapter's program. Check that your screen looks like this:

127

Before saving this program, go back and remove all the REMs inserted in the
GOSUB 110 statements. Leave the GOSUB 110 statements, just delete the word
REM. The lines that you will need to change are:

1~~0

17~0

21~0

2420
2HO
2440

When done, SAVE this program under the filename "CHAPTER 5". When it is
safely stored on disk/ tape, save the picture under "CHAPTER 5" (see Chapter 4 for
details on saving pictures).

128

Design Ideas

With your new tool, many complex designs can be easily programmed into the
picture. This section deals with some new design techniques that work especially
well with the DRAW A SHAPE tool. Following this section you will find this
chapter's Summary and two exercises.

A shape, like the one shown below, has height (from lowest Y to highest Y) and
width (from lowest X to highest X). Height and width are called "dimensions." If
these are the only dimensions that a shape has, it is called a two-dimensional shape.
Shapes drawn on the Commodore 64 are two-dimensional.

Height

()

Width

Shapes can have a third dimension of "depth." Shapes having depth are said to
be three-dimensional. We live in a world of three-dimensional shapes. There is
nothing tangible that does not have height, width, and depth. Pictures that lack the
third dimension of depth are deprived of the realism most artists are trying to
portray. There is, however, a way to create the illusion of three dimensions. This is
done by duplicating a shape, and then connecting a few lines. Take the simple, flat
square shown below. It can be made to appear three-dimensional (~-D) by duplicat
ing a copy of it up and over to the right, and then connecting the corners of each
copy:

2-D 3-D

Height

Height

~ Depth

Width Width
) () (

Look closely at the 3-D cube and you'll see that it is made with two squares. These
two squares are identical and have been drawn with the same E% and L% lists.

You could also make a triangle look 3-D by using offset values:

A similar procedure could be used to draw this shape:

In the shape above, the front rectangle is larger than the back rectangle. This
change in proportion is truer to life, as all objects look smaller the farther away they
are. (NOTE: The DRAW A SHAPE tool can not reduce a shape. You must draw
both the large shape and then the small shape to produce this proportional
picture.)

Shapes that are higher on the screen also appear to be further back in space. You
could use this design idea for making a forest of trees, where two different sized trees
are duplicated across the screen:

129

130

In this example, the trees in the upper row are smaller than the trees in the lower
row. Alternating size and location creates an even greater sense of depth.

Interesting designs are made by using different types of shapes, different place
ments, and different colors. This variety enhances a picture's appearance. Tree
shapes could be made more interesting by adding more detail. A tree drawn with
more detail might resemble the pine tree in this example.

With the DRAW A SHAPE tool you can quickly create a forest of pine trees. This
tool is also useful for making design patterns like a brick wall. A brick wall is made
of rectangles which are repeated to create a pattern. The following pattern was
made using two different sized bricks:

01 101
1 101 10 1
01 101 1 0
1 101 10
01 101 I

Some interesting designs and colorful patterns can be made by repeating shapes.
With different colors, sizes, and placements of a rectangular shape, you could
design a modern city full of buildings. With a circle shape you could design an

outerspace scene of planets. With an assortment of shapes you could make a
bouquet of flowers.

As you can see, the DRAW A SHAPE tool is great for making all sorts of patterns,
shapes, and designs. By practicing and exploring, you should be able to discover
and create all kinds of interesting and varied designs.

Summary

Take a bowl (Pun intended.) These last two chapters have been the most difficult
yet. Having reached this point, you are probably anxious to begin transferring your
own ideas onto the screen. Hold off on any major work, though, until you've gone
through this book's last chapter-you'll be glad you did.

The DRAW A SHAPE tool was this chapter's addition to your tool kit. Even
though you know how to use it, you may be tempted to view this tool as more
trouble than it's worth. After all, the PLOT A LINE tool can draw shapes, and it's
an easier tool to use. Right? Not always. Depending on the shape being drawn and
how many times it appears in the picture, the DRAW A SHAPE tool could save you
a great deal of time and energy. If you set this tool aside as an "extra", you will
forfeit the use of two very practical functions: test plotting and shape duplication.

Important things to remember about using your new tool are:

(l)The I loop must beset to process thecorrectnumberoftimes. For the E% list, I
should process from 0 TO the last endpoint # in the list. For an L% list, I
should process from 0 TO the last line # in the list.

(2) Data items in DATA statements are "checked off" when read into a list. Be
sure none are read prematurely by an incorrect I loop.

(3) To call the subroutine, XO, YO and NL must be set.

Complete details on using this tool are provided in the DRAW A SHAPE
technical box. Refer to that box whenever necessary.

ChCJ.pter 6 concludes this book, with complete instructions on creating and
controlling "sprites." A sprite is any small object or shape designed to move around
the screen. This capability provides animation to your picture, and is an enjoyable
finale for your graphic lessons.

Below are two example exercises to test your skill with the DRAW A SHAPE
tool. Try each one before moving on to Chapter 6.

Exercise I

RUN the ZAP routine (type RUN 10 RETURN). Now, enter these program lines
to dear your screen and set it up for plotting:

131

132

1010 OOSUB 20 : REM GRAPHICS
1020 C=14: GJSUB 40: REM cnLORS
1030 OOSUB 50 : REM PAINr BKGD

Your first exercise is to enter the program lines necessary to draw the shape
below. Draw it using the DRAW A SHAPE tool and E% and L% lists. The X,Y
coordinates are given, as well as the endpoint numbers and line numbers. Start at
program line number 1100, and set all offset values to O.

(35,80)

(10,105) (60,105) ° 2

(10,130) ----.... (60,130) 4 ~----43

COORDINATES ENDPOINT #'S

Solution I

Exercise 2

1100 DIM E%(1, 99), L%(l,99)
1200 REM:::::ID.JSE ENDroINTS
1210 FOR I = 0 'ID 4
1220 READ E%(0,I),E%(1,I)
1230 NEXT I
1240 mTA 10,105, 35, 00, 60,105
1250 mTA 60,130, 10,130
1260 REM:::::HOUSE LINES
1270 FOR I = 0 'ID 4
12se READ L%(0,I),L%(1,I)
1290 NEXT I
1300 mTA 0,1,1,2,2,3,3,4,4,0
1310 REM:::::DRAW HOUSE
1320 C=14
1330 NL=4: X0=0: Y0=0
1340 OOSUB lUI

4

3
LINE #'S

2

Make your house look 3-dimensional by plotting a duplicate copy 25 columns
right and 10 rows above the original. Then, connect the corner endpoints of each as
shown below:

HINT: The lines which will connect the endpoints between each copy are drawn
most easily with the PLOT A LINE tool. To figure out the X, Y coordinates of the
endpoints on the duplicate copy, add 25 to each X of the original copy, and
substract 10 from each Y of the original copy.

Solution 2

1410 NL=4: X0=25:Y0=-10:GOSUB 110
1420 REM::::::DRNW LrNES
1430 Xl=10:Y1=130
1440 X2=35:Y2=120:GOSUB 80
1450 Xl=10:Y1=105
1460 X2=35:Y2=95:GOSUB 80
1470 Xl=35:Y1=80
1400 X2=60:Y2=70:GOSUB 80
1490 Xl=60:Y1=105
1400 X2=85: Y2=95: GOSUB 80
1410 Xl=G0:Y1=130
1420 X2=85:Y2=120:GOSUB 80

133

134

Chapter 6

MAKING AND MOVING SPRITES
This chapter will teach you about about sprite graphics-one of the most

exciting and easy-to-use graphic techniques yet. Sprites are small plotted objects or
cartoon-like figures that can be moved around on the screen. They are exciting
because they add animation to your picture. They are easy to create and manipulate
because almost all of the work is handled by GOSUB statements. This chapter takes
you step-by-step through the process of making and moving a sun sprite across the
blue sky in your picture.

To get started, the high resolution screen should display the ship, sails, land,
water, waves, seagulls and lighthouse. If you see this display on the screen, then
skip to the next paragraph. Otherwise, LOAD the picture pattern from Chapter 5
("CHAPTER 5.PIC") and the picture colors from Chapter 5 ("CHAPTER
5.COL"). Then, LOAD the program from Chapter 5 ("CHAPTER 5"). To see the
picture, type: GOSUB 20 and press RETURN. To get back to text mode, press the
RUN/STOP and tap RESTORE. Continue to the next paragraph only after
Chapter 5's picture is properly displayed on the high resolution screen.

If you have the Commodore 64 Programmer's Reference Guide or the User's
Guide, then you have probably read the chapter covering sprites. In these books, a
hot air balloon sprite is moved on the screen by running the corresponding BASIC
program. In the next section, you will find out not only what a sprite is and how to
make one, but, also, all of the exciting features of sprites.

Introduction to Sprites

What is a Sprite?

A sprite is like one of the little moving figures on a video arcade screen. It is a small
shape that can be moved on the screen to create a cartoon-like picture of animation.
"Animation" means that the picture shows movement. The versatility of sprites
makes them different from any other shape you have previously plotted.

Think of a sprite as a small cut-out figure which can be moved around the screen
independently of any other figure already in the picture. It can move up, down,
right, left, and diagonally. It can move behind other objects or in front of them. It
can fade off or onto the screen. It can even move into a color block with no adverse
affect on that portion of your picture. Each sprite is a separate, individual image
which acts independently of any other plotted shape, line, point, or even other
sprite.

You can design, paint, enlarge, and move your sprites. In this chapter, you will
be moving a yellow sun sprite across the sky in your picture. All the special features

135

136

of sprites will be covered in detail. The next section discusses the various stages in
designing a sprite. If you have worked with the hot air balloon sprite in the User's
Guide, you will see that the sun sprite is made in the same way.

Designing a Sprite

Designing a sprite is similar to drawing and designing your main picture. It is
done on a grid (graph sheet), where each little square represents one pixel. Sprites
must be designed within a block of 504 pixels. This block of pixels, called a "Sprite
Design Grid," is 24 pixels wide and 21 pixels high (24 x 21 = 504 pixels). The sprite's
image-what it will look like-is defined inside this grid. Let's take a look at one
such grid already shaded for our sun sprite.

ROW #

SPRITE DESIGN GRID

(TOP)

DATA STATEMENTS

A sprite is originally designed on a Sprite Design Grid. (The Appendix contains
a blank Sprite Design Grid to make copies of when designing your own sprites.)
The first step in designing a sprite is to lightly pencil sketch an outline of it on the
Sprite Design Grid. Make sure that the grid pattern shows through your sketch.
Then, lightly shade the squares inside the sprite sketch. It's easiest to outline the
shape first, and then shade in the squares. Two important rules to keep in mind
when designing a sprite are:

(1) Each square on the grid represents one pixel on your screen, so your design
should not cut through any squares. If your sprite's design falls into a square,
shade in the entire square.

(2) A sprite can be only one color. The sun sprite, for example, will be solid
yellow.

-Once the sprite has been sketched and shaded, DATA statements that describe the
sprite should be gathered. This is the only part to making and moving sprites that
will take much concentration at all. Pay careful attention to the next few
paragraphs.

Look at the top of the Sprite Design Grid as illustrated below. This grid is
divided up vertically (up and down) into three sections. These sections are labeled
A, Band C. Each section contains 8 pixel columns. For each section, the columns
are numbered: 128,64,32, 16,8,4,2 and 1.

SPRITE DESIGN GRID
(TOP)

A B C
1 1 1
2 6 3 1 2 6 3 1 2 6 3 1
8 4 2 6 8 421 8 4 2 6 8 421 8 4 2 6 8 421

These numbers are the key to gathering the necessary data statements. Each
number shows the value assigned to each shaded pixel in its column. Thus, each
shaded pixel in thefirstcolumn hasa value of 128. Look back to the sun design. For
the first column this would involve the pixels in rows 8 through 12. Each of these
five pixels has a value of 128. Each shaded pixel in the second column has a value of
64. The shaded pixels in the third column each have a value of 32. And so on. Notice
our emphasis on each shaded pixel-we are not talking about an entire column
having a value of 128 or 64 or 32 or whatever. Also notice our emphasis on shaded
pixels. If a square (pixel) is not shaded, it has a value of zero (0) because it is not a
part of the sprite. You will not be able to understand anything else about sprites if
you don't understand the values associated with each pixel in your design.

For each row in the grid, you must compute three totals using these values. First,
you must total the values for the 8 squares in section A. Next, you must total the
values for the 8 squares in section B. Finally, you must total the values for the 8

137

138

squares in section C. These three totals are written to the right of each row, under
SUM OF A, SUM OF B and SUM OF C.

These "sums" are your data. Each horizontal row in the grid is equal to three
separate pieces of data that the computer can read. The computer will know how to
define the sprite from these data sums. Instead of figuring out 504 different
numbers for the 504 individual pixels, you only have to determine 63 numbers (21
rows x 3 data sums = 63). Later, these data sums are typed into the program as data
statements.

Using the design for the sun sprite, let's see how the 63 data sums were found.

ROW #

SPRITE DESIGN GRID

(TOP)

DATA STATEMENTS

First, it helps to line up a piece of paper along the row you are summing. Each
row is numbered on the left side of the grid, from row 0 to row 20. Again, for each
row there will be 3 sums-SUM OF A pixels, SUM OF B pixels, and SUM OF C
pixels. Each sum is the sum of only the shaded pixels in sections A, B or C. Looking
at these three sections in row 0, you can see that all three are blank. A blank section
is unshaded. The sum for any blank section is zero (0). On the right side of the grid
are 3 areas called SUM OF A, SUM OF B and SUM of C:

DATA STATEMENTS

SUM SUM SUM
BASIC DATA OF OF OF
LINE # A B C
1610 DATA 0 0 0 , ,

DATA , ,
DATA , ,
DATA , ,
DATA , ,

On the same row as the pixels just added (row 0), you would write down a zero (0)
as the total for each section.

Sliding the paper down a row, the values for the next row are summed. Again you
find that all three sections in this row for the sun sprite are blank. Thus, a 0 is noted
as the sum for A, Band C at the end of row I.

Moving down to row 2, you will see that there are now some shaded squares to
sum up. The first shaded square is in the last column of section A. This column has
a number I at the top. Since there are no other shaded pixels in section A, the SUM
OF A for this row is l. This is noted at the end of the row, under SUM OF A. Look at
section B for row 2. In section B, all of the pixels are shaded. The sum of B for row 2
is the result of adding all the numbers listed at the top of each column: 128 + 64 + 16
+ 8 + 4 + 2 + I, which is 255. Anytime a section within a row has all 8 pixels shaded,
the sum of that section for that row will be 255. At the end of row 2, under SUM OF
B, the number 255 is written down. This same procedure is followed for section C of
row 2. You will see that the only shaded pixel in section C of row 2 has a value of
128. Under SUM OF C for row 2, the number 128 is written.

This straightforward and easy data collection method is used for each sum of
each row, down through the grid. A blank area always has a sum of zero, and an
entirely shaded area always has a sum of 255.

It's important that each sum is added correctly and written by the appropriate
row. When you later enter the program to draw the sprite, these sums will be typed
as data statements and will tell the computer exactly how the sprite should look.

In your Commodore 64 User's Guide you will notice that the data for the balloon
sprite is derived in the same way. Following is an example illustrating the balloon
and its data:

139

140

ROW #

SPRITE DESIGN GRID

(TOP)

DATA STATEMENTS

Note the un shaded pixels inside the balloon. These un shaded pixels will display
portions of the main picture as the balloon travels across the screen. These pixels
are like "windows" in which you can see the underneath images. Through them,
you can see other shapes within the picture, other sprites (if you have more in the
picture), and the background color. This see-through effect is a truly unique
feature of sprites.

At anyone time you can have up to eight sprites in the same picture. Each sprite
is independent of anything else in the picture, including other sprites. Each sprite
can be a different shape, and so there can be up to eight different sets of data. Sprites
can also be the same shape, in which case the same data statements are used.

In order for the computer to keep track of the sprites in your picture, each one is
labeled. This label is called a sprite pointer and is a number from 0 to 7. The sprite
pointer "points" to the place in memory where its sprite's data is stored. Our
program reserves eight special locations in memory for storing sprite data.

Once a sprite is defined, it can be colored with one of the sixteen available sprite
colors. It can also be enlarged, erased and re-positioned, erased entirely, and even
guided around the screen. There can be up to eight sprites on the screen at one time,
each of which can be a different shape, size, and color.

Special Features of Sprites
Sprites have several features which are available only to them. This list of

features includes:

-define sprite
-turn on/turn off
-x expand/X unexpand
- Y expand/Y unexpand
-combined X and Y expand
-sprite priority over a sprite
-sprite priority over a shape/shape priority over a sprite
-sprite color
-place sprite at X, Y screen location
-move sprite from Xl,Yl to X2,Y2

Although this list needs some explaining, you get the idea of how much control
you have over sprites. These features come in packages called (what else?) subrou
tine tools. In fact, you will be adding 12 more tools to your tool kit before this
chapter is over. Don't worry. The tools are very short, and will save you a great deal
of repetitious work that might otherwise be required without them. A complete
discussion of each sprite feature follows.

Define Sprite
To create a sprite, you must first define what it looks like. This is done by

entering data statements describing, row-by-row, which pixels should be painted
in order to form the sprite. The data statements are read and stored in memory.

Turn On/Turn Off
Once a sprite is defined, it must be "turned on." This feature turns on the

appearance of a sprite. Note that a sprite must be placed on the screen (see "Place
Sprite At X, Y") in order to see it once it is on. Thus, there are three steps to viewing
a sprite: defining it, turning it on, and placing it on the screen. To make a sprite
disappear from the picture, you would use the "turn off" feature. Turning a sprite
on and off is like flipping a light switch. Some interesting visual effects like
flashing and blinking can be achieved by alternating between these features.

X Expand/ X Unexpand
The "X expand" feature doubles the width of the sprite. This is done by

duplicating each column in the sprite. The duplicate columns are then alternated
with the originals to produce the wider sprite. To understand this better, look at the
two diagrams below. The first one shows a sprite in its original form as designed on
the sprite grid. The second diagram shows how the columns are duplicated on the
screen. (The lightly shaded columns are only shaded as such to point them out as
the duplicates. When expanding a sprite, all pixels are plotted in the exact same
color.) Notice how the original sprite below does not use the first 2 columns of the
sprite grid. When the sprite is made wider, those first 2 columns (even though
empty) are duplicated along with the others.

141

SPRITE DESIGN GRID DATA STATEMENTS

(TOP)

ROW #

A B C
SUM I SUM I SUM i 6 3 1 631 ~631 BASIC DATA OF OF OF

4 2 6 4268421 4268421 LINE # ABC
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

16

19
2(1

I~ : ~ ~ 8 4 2 1 ~:n8421 I~ ~ ~ ~ 8 4 2 1
8 8 Is

142

o

~H-++-+-H

:H-+-+-+
4

H-+-+-+-
5

H-+-+-+-
6
7 H-+-+-+-+-f-

16
H-+-+-+-+-~-+-+-+-+-~-+-r+-~-+-+-+-+-~-+-r+-~-+-+-+-+-~-+-+-+-+1

17
~~~-++-~~+-~~~-++~~~-+-t-~~~-+-t-~~~r++-~ 

18 
19H-+-+--t-+-H-+-+--t-+-H-++-+-~-+-+--t-+-H-++-+-~-+-+--t-+-H-+-+--t-~ 

20 
21~~~-++-~-r+-H~~-++H~~-+-t-H~~-++~~~-++-~ 

22 
H-+-+-+-+-~-+-+-+-+-~-+-r+-~-+-+-+-+-~-+-+-+-~-+-+-+-+-~-+-+-+-+1 

23 

y 

The "X unexpand" feature removes all the duplicate columns, and thus returns 
the sprite to its original size. X expand is useful in adding variety to a picture that 
contains otherwise identical sprites. 



144 

Y Expand/ Y Un expand 
When "expanded" in V's direction, a sprite's height doubles in size. Each row of 

pixels in the sprite is duplicated. Taking the X expanded sprite in the last diagram; 
a Y expand would result in: 

2H -++-+1f-

11 
1-++-t---t''''I''''' 

16~-+4-+-~-+4-~~~+-~-+4-+-~-++-~-+4-+-~-++-~~~+-~-+1 
17~-+4-+-~-++-~~~+-~-+4-+-~-++-~-+4-+-~-++-~~~+-~-+1 
1B~-+4-+-~-++-~~~+-~-+4-+-~-++-+1-+4-+-~-r+-~~-r+-+1-+1 
19 
~~-r+-+1-+-r+-~-+4-+-~-r+-+1-+-r+-~-r+-+1-+-r+-T1-+4-+-~~ 

21 
~~+-~-+-r+-~-+-r+-~~+-~-+-r+-~~+-~-+-r+-~-+-r+-~-+, 

~~~+-~-+~+-~-+4-+-~-++-~-+~+-~-++-~~~+-~-+4-~~-+1 
23

y

x

The "Y unexpand" feature removes the duplicated rows, and thus changes a Y
expanded sprite back to its original height.

Combined X and Y Expand
By combining X expand and Y expand, a sprite will double in both width and

height. The sprite would resume its original size when both the X unexpand and
the Y unexpand features are selected.

Sprite Priority Over a Sprite
A sprite can be made to appear in front of another sprite in a picture. For

example, when two moving sprites cross paths, one will appear to pass in front of

the other. This sprite, the one passing in front, is said to have greater screen
"priority" than the other. Priority determines the order in which the sprites will
stack up visually on the screen. This priority is determined by each sprite's number.
The sprite having the lower number will always have priority over a sprite with a
higher number. For example, Sprite 0 has top priority and will always appear in
front of other sprites on the screen. Sprite 4 has priority over Sprites 5 -7. Sprite 7 has
no priority in relation to the other sprites.

Overlapping is particularly successful when the front sprite is defined with an
opening or window. Through this window the sprite behind can be seen. Sprite
priority should be considered when developing your animation designs, and before
you enter the program.

Sprite Priority Over a Shape/Shape Priority Over a Sprite
If you use the "Sprite Priority Over a Shape" feature for the sun sprite, then the

sun will appear in front of all other shapes in the picture. As the sun moves across
the sky, it would appear to pass in fron t of the shi p and seagulls. This type of sprite
priority determines whether a sprite is displayed in front of or behind other plotted
shapes. It is an effective feature when used with a sprite that has a "window" in it.
As the sprite moves, you will see other shapes and the background color through
this hole. If you use the "Shape Priority Over a Sprite" feature, then the sprite
would appear behind any other plotted object on the screen.

NOTE: A sprite always has priority over the background colors of the screen.
When in or passing through a color block, the sprite will always show up in
place of any background pixels it comes across.

Sprite Color
The "Sprite Color" paints a sprite with a solid color. It paints the shaded pixels

in the Sprite Design Grid which were changed to data numbers. All pixels in the
sprite will be displayed in the same color.

A color code should be individually assigned for each sprite, even if all eight
sprites are the same color. (If a sprite is not assigned a color in the program, it will
automatically be assigned the color black.) There are sixteen sprite colors and color
codes (0 through 15):

o black
1 white
2 red
3 cyan

4 purple
5 green
6 blue
7 yellow

8 orange
9 brown
10 lite red
11 dark grey

12 medium grey
13 lite green
14 lite blue
15 lite grey

Each sprite's color is independent of any other color block in the picture. It will
not influence or change the colors used to plot points, lines or shapes. A sprite can
only change the color of a pixel if it passes over it, and has priority over it.

Place Sprite At X,Y
Once you define and "turn on"a sprite, you must place it on the screen. A sprite

can be placed anywhere on the screen. In fact, sprites can even be placed partially or
fully off of the screen.

145

146

To place a sprite, you specify the screen location for the top, left square on the
sprite grid-even if this square is not used by your sprite. This top, left square on
the grid is called the sprite's origin. Recall that your data statements will describe
all 504 squares on this grid. If you correctly place the origin on the screen, the
computer can easily place the rest of the squares in relation to it.

To position the origin, an X and a Y value are given in the program. This
produces an X,Y coordinate, which is where the origin gets positioned on the
screen. X defines the horizontal placement of the origin, and Y defines its vertical
placement. Think of a sprite as a piece of paper being pulled around by its origin
pixel.

When the origin is re-positioned, the image of the sprite is moved accordingly.
Following is an example of two sun sprites placed on the screen. The boxes around
each represent the "invisible" grid the sprite was drawn on. The small dot in each
box represents the origin square. The sprite in the top, left-hand screen corner has
its origin positioned at 0,0. The second sprite has been centered in the screen. To do
this, its origin has been placed at position 148,90.

20

90
100

110

199

160
23 148 172 319

~~--~

148 172
160

90
100

110

Think of this as if the whole sprite grid will be placed on the screen. The grid will
be pulled and moved whenever you re-position the origin square.

Move Sprite From Xl,Yl to X2,Y2
You can move a sprite vertically, horizontally and diagonally across the screen.

This means you keep the sprite on the screen at all times, but move it from one
location to the next. Its path of movement is like a straight line. To move a sprite,
you specify an Xl,Yllocation and an X2,Y2 location. The sprite's origin is then
positioned at the XI,YI location,and it moves in a straight path to the X2,Y2
location. As it does, the rest of the sprite follows. For example, the sun sprite could
start where XI=O and YI=lO, and travel across to where X2=319 and Y2=10. As
shown below, it's the sprite's origin that is moved along the linear path .

• XI,YI

Sprites can travel in any direction-from left to right, right to left, top to bottom,
bottom to the top, and diagonally. The sprite moves in a straight line between the
starting (XI,YI) and ending (X2,Y2) points specified.

When moving a sprite, you can control its speed of movement-how fast it
travels. This is not exactly in miles per hour, but sprites can move at a pretty good
clip. The rate of speed is expressed numerically by assigning a value to "SD." This
value tells the computer how many pixels to skip between each sprite placement. As
the sprite moves across the screen, it is actually being erased and re-drawn elsewhere
many times over. If SD is set to 10, the computer erases and re-draws the sprite every
10 pixels. When trying out different speeds, be careful. The higher the speed, the
more jerky the sprite's movement appears.

With this method of movement, two sprites can not be moved at the same time.
To move two sprites concurrently, you would l"\.ave to alternate between them,

147

148

creating a loop that erases and then places each one a little bit farther over each
time.

In the next section you will have the opportunity to tryout these special sprite
features. With some practice, you will soon be designing all kinds of interesting
animations on your Commodore.

Drawing and Placing the Sun Sprite

With Chapter 5's picture on the high resolution screen, and Chapter 5's program
in memory, run the ZAP routine. Type RUN 10 and press RETURN. When the
letters stop flashing, type:

1010 OOSUB 20
6000 <m' A$
6010 IF A$ = '!HEN 6030
6020 <DID 6000
6030 OOSUB 30
6{1J4{1J END

As in the last chapter, you will be entering this program in sections. After you
have typed a section, check your typing for errors. Each section is one step in the
process of making and moving the sun sprite. Along the way, suggestions for
experimenting with the various sprite features will be made. Try these and any
others you might think of as you go along.

Begin by typing the following main routine lines:

1100 REM:::::::SUN SPRITE
1110 SP = 0:GOSUB 120
1120 OOSUB 130
1130 OOSUB 150
1140 OOSUB 170
1150 OOSUB 200
1160 C = 7:GOSUB 210
1170 X = 232:Y = 10
1180 OOSUB 220

The next section contains this sprite's data statements, as shown earlier on the
Sprite Design Grid. When you type this section, use three places and a comma for
each number listed. For example, you should type the first line as "DAT A
ssO,ssO,ssO" (where "s" is a press of the SPACE BAR). This method will line up the
commas in neat columns. This ordering of the data will help when you check for
errors later. Type this section now:

25~~ REM::::::::SUN SPRITE ~TA
251~ ~TA ~, ~, ~

2520 ~T.A ~, 0, ~

2530 ~T.A 1,255,128
2540 ~TA 7,255,224
255~ ~TA 15,255,240
2560 ~TA 31,255,248
257~ ~TA 63,255,252
25~ ~TA 127,255,254
2590 ~T.A 255,255,255
2600 ~T.A 255,255,255
2610 ~T.A 255,255,255
262~ ~T.A 255,255,255
263~ ~T.A 255,255,255
2640 ~T.A 127,255,254
2650 ~TA 63,255,252
2660 ~~ 31,255,248
2670 ~TA 15,255,24~

2680 ~~ 7,255,224
2690 ~T.A 1,255,128
300e ~T.A 0, 0, 0
3~1~ ~~ 0, 0, 0

Check each typed section for errors. In each of the 21 data statements, there
should be three numbers. If you missed a number in one line, the line should
appear shorter than the others. If you added a number in one line, the line should
appear longer than the others. Correct any mistakes, and then type in the first new
subroutine:

120 REM:::::::DEFINE SPRITE SP
121 FOR I = 0 TO 62
122 READ A
123 POKE 16384 + 64*SP + I,A
124 NIDcr' I
125 POKE 18424 + SP,SP
126 RETURN

Look over each line. Correct any errors. Rub your eyes a bit, and then continue by
typing:

130 REM:::TURN CN SPRITE SP
131 POKE 53269, PEEK(53269) OR 2tsP
132 RETURN
140 REM::: TURN <FF SPRITE SP
141 POKE 53269,PEEK(53269)AND(255-2tsP)
142 RETURN

149

150

150 REM::::::X EXPAND SPRITE SP
151 toKE 53277, PEEK(53277) OR 21'sP
152 RETURN
160 REM::::::X UNEXPAND SPRITE SP
161 toKE 53277,PEEK(53277)AND(255-2tSP)
162 RETURN

Take another small break, and again check your typing. When you're ready,
type:

170 REM::::::Y EXPAND SPRITE SP
171 toKE 53271, PEEK(53271) OR 21'SP
172 RETURN
180 REM::::::Y lNEXPAND SPRITE SP
181 toKE 53271,PEEK(53271)AND(255-2tsP)
182 RETURN
190 REM:: SPRITE SP PRIORITY OVER SHAPE
191 toKE 53275,PEEK(53275)AND(255-21'SP)
192 RETURN
200 REM: : SHAPE PRIORITY OVER SPRITE SP
201 toKE 53275,PEEK(53275) OR 2tsp
202 RETURN
210 REM:::: SRI' SPRITE SP 'TO OOI.DR C
211 FaKE 53287 + SP,C
212 RETURN

You are at the home stretch. As soon as you've double checked through line 212,
type these subroutine tools:

220 REM: :PIACE SPRITE SP AT X, Y
221 XX = X + 24:YY = Y + 50:Z% = XX/256
222 V = XX - Z%*256:W = 53248 + SP*2
223 WW = 53264
224 PR = ABS«PEEK(WW) AND 2tSP)<>0)
225 W = PEEK(WW) AND (255-2tSP) OR (ztsp*Z%)
226 IF PR<>Z% THEN <DSUB 140
227 FaKE W, V: toKE Wil, W: <DSUB 130
228 FaKE 53249 + SP*2,YY
229 RETURN

Take one last look at your typing before running this program. Whenever there's
this much typing, errors are bound to spring up. After you are finished checking,
RUN the program.

If the program is running properly, the yellow sun sprite will appear on the
upper right side of the screen:

Look over the image of your sprite. Is it in the same place as ours? It should be a
solid yellow color. If you are having any problems, check the following:

If the sprite never appeared:

- check lines 1110 through 1120, which define and turn on the sprite
- check lines 1170 and 1180, which place the sprite on the screen
- check the subroutines in lines 120 through 132

If the sprite was misshapen:

- check your data statements in lines 2510 through 3010 - check the loop in
line 121

- check lines 1130 and 1140, which expand the sprite's width and height
- check the subroutines in lines 150-152 and 170-172

If the sprite is the wrong color:

- check line 1160, which sets the color code and calls a tool
- check the subroutine in lines 210-212

You do not have to re-Ioad Chapter 5's picture before running a corrected
program. As long as line 1110 has SP=O, and lines 1170-1180 give this sprite's screen
position, Sprite 0 will be will be relocated according to the corrected program.

When you see that the program is running correctly, stop it by pressing the
SPACE BAR. Then, list lines 1100 and 1110.

151

152

1100 REM::::::::SUN SPRITE
1110 SP = 0:GOSUB 120

Line 1110 actually does three things. First, it states that until SP's value is
changed, all program lines dealing with sprites will only affect Sprite O. The sprite
subroutines always affect the sprite whose number is the same as SP's current value.

Second, by giving this sprite the number 0, the sun sprite is given priority over all
future sprites placed in this picture. Again, you can have up to eight different
sprites in a picture, providing each is given a different number (from 0 to 7).

Finally, GOSUB 120 defines Sprite 0 in memory. To do this, tool 120 READs a set
of data statements. It begins reading data statements at the first un-read data item in
the program. The READ loop is set to read 63 data items, so you must be sure to

include all 63 items in your program. LIST lines 120-126. In the following tool box,
the subroutine for defining a sprite is explained.

TOOL 120:::::::DEFINE SPRITE

120 REM::::::DEFINE SPRITE SP
121 FOR I = 0 'ID 62
122 READ A
123 FaKE 16384 + 64*SP + I,A
124 NE}IT I
125 POKE 18424 + SP,SP
126 RETURN

What It Does: This tool defines the shape for the sprite. It reads the
sprite data and stores the image in the computer's memory. It does not
place the sprite on your screen (see Tool 220 for placing sprites).

Example Use: To define a sprite, you must take the following steps:

(1) Draw the sprite on the "Sprite Design Grid."
(2) Add up three sums (A,B,C) for the shaded pixels in each row of the

grid.
(3) There should be three numbers (data sums) in each of the 21 rows.

In the main routine, type in these data numbers as data statements.
(4) In the main routine, type a statement to identify the sprite with a

number (0-7). Follow this with GOSUB 120. For example: 11l0SP
= O:GOSUB 120

Technical Description: Sprite data is stored at the very beginning of
Bank 1. Each sprite requires 64 bytes of memory to store its picture
definition. Since there are 8 sprites, 512 free bytes of memory are
required (64 x 8 = 512). Since there are 512bytes at the very beginning of
Bank 1, this is a good place to store the sprite data.

121 FOR I = 0 'It) 62
122 READ A
123 POKE 16384 + 64*SP + I,A
124 NIDIT I

These lines will first read the sprite data from your data statements.
Second, they will store the data in the proper memory location for the
specified sprite. Line 123 calculates the proper memory location for
each sprite. "16384" is the first memory location in Bank 1. "64+SP"
will cause the data to be stored in the proper 64 bytes for that sprite (SP).
"I" will be increased for each loop to place the sprite data in consecutive
memory locations.

125 POKE 18424 + SP,SP
LineI25 sets up a pointer which points to the sprite data that was just

read in. Each set of sprite data is stored in a block. The first 64 bytes in
Bank I is Block O. The second 64 bytes is Block I.

Each sprite has its own block:

Sprite 0 -> Block 0
Sprite I -> Block I
Sprite 2 -> Block 2
(etc.)

Line 125 assigns each sprite its own block.

LIST line 1120. This line uses Tool 130 to "turn on" the sprite. This turns the
sprite on in memory. To see it on the screen, it must also be placed with an X,Y
coordinate. Once the sprite is located on the screen, the "turn on" and "turn off"
tools will work as switches for viewing/erasing the sprite on the screen. When a
sprite is "turned off," it disappears. You can have up to 8 sprites available for a
picture. There will be times when some are "turned on" or "off" depending on
your animation design. LIST lines 130-132.

TOOL 130:::::::TUR.N ON SPR.ITE

130 REM:::TURN CN SPRITE SP
131 POKE 53269, PEEK (53269) OR 2'tgP
132 RETURN

What It Does: This tool "turns on'! a sprite in memory.

Example Use: After the sprite is defined using Tool 120, Tool 130
turns it on. If the s pri te has been placed on the screen, turning it on will
make it show up. To use this tool, make sure SP is equal to the sprite
number to turn on, and then enter a GOSUB 130 statement.

Technical Description: First, let's define a new term: register. Most

153

154

memory locations are simply storage areas for numbers. A register is a
special memory location which performs a special function. The
number which is stored in a register can cause very dramatic results. For
example, the subroutines at lines 20 and 30 turn on and off high
resolution graphics. The memory locations used by those subroutines
are examples of registers.

The subroutine lines from 120 to 202 will change some register
numbers to manipulate sprites. Some registers affect only one sprite.
Other registers affect all eight sprites. The color subroutine at line 200
controls the color for each sprite. This is an example of a subroutine
where each sprite has its own register. The subroutines from 120 to 202
are examples of registers which affect all eight sprites. To understand
this, let's look at a register. Each register has eight "bits" which are
numbered 0-7 from right to left.

7 6 5 4 3 2 1

Each one of the eight possible sprites is given a bit to control it. Sprite
o gets bit 0, Sprite I gets bit 1, and soon. Each bit can contain either a Oor
a 1. This setup works great for certain sprite features which have only
two possible states, such as on or off, and expanded or unexpanded.
Either state is determined by the value of the bit.

Register 53269 determines which sprites the computer should cur
rently be working with. A bit flipped to I means the features and
placement of the corresponding sprite are in effect. All 53269 bits
flipped to 0 tell the computer not to display or compile those associate
sprites. To change the sprite bits, we need a command that tells the
computer something like:

CHANGE BIT 5 IN REGISTER 53269 TO 0
or

CHANGE BIT 3 IN REGISTER 53269 TO I

Unfortunately, there is no such command. We can, however, simulate
these lines with real BASIC statements.

POKE REGISTER #, PEEK (REGISTER #) OR 2tBIT

(BIT = 0 'ID 7)

Using Form #1 above, we can turn the specified bit to a 1, while
leaving all other bits alone.

POKE REGISTER #, PEEK (REGISTER #) AND (255 - mIT)

Using Form #2 above, we can turn the specified bit to a 0, while
leaving all other bits alone.

The subroutines from 130 to 202 each contain a BASIC statement
similar to one of the BASIC forms above, depending upon the desired
state of the register. Notice that the program lines use "SP" (abbrevia
tion for sprite) instead of "BIT," since they are the same (Sprite 0 = Bit 0,
Sprite I = Bit I, etc.)

The opposite of "turning on" a sprite is turning it "off," which makes it vanish
from the viewing screen. LIST lines 140-142. Tool 140 will erase a sprite as easy as
you turn one on. All that is needed is the sprite to erase (SP=?) and a GOSUB 140
statement. This tool is described in the following tool box.

TOOL 140:::::::TURN OFF SPRITE

140 REM:::TURN OFF SPRITE SP
141 POKE 53269,PEEK(53269) AND (255 - 21'sP)
142 RETURN

What It Does: This tool removes ("turns off") a sprite from the screen.

Example Use: To use this tool, you need to specify the sprite to turn
off by setting SP to the correct sprite number (0-7). This should be
followed by a GOSUB 140 statement.

Technical Description: This subroutine uses the second form of the
statements introduced in the "turn on sprite" tool box. If you are not
familiar with the material in that tool box, please review it before
proceeding.

This subroutine sets a bit to O. Doing this to the appropriate register
and correct bit will turn the specified sprite off. This is the opposite of
the previous subroutine, where the bit was set to I to turn on the sprite.
The statement to turn the bit off is in this form:

FORE REGISTER #,PEEK(REGISTER #) AND (255 - 21'sP)

Recall that SP is the bit/sprite number to be switched off (0-7).

Notice that the register used in this subroutine and in the previous
subroutine is the same: 53269. Register 53269 has the special function of
turning sprites "on" and "off."

Since Tool 130 turns on a sprite, and tool 140 turns off a sprite, you can create a
flashing sprite by alternating the use of these tools with the same sprite. The sprite
will appear, disappear, appear, and disappear in rapid succession. This technique
could be applied to images of fire, or the flaming exhaust behind a rocket ship. It
could also be used for a blinking red stop light or for twinkling stars in a night
scene.

155

IS6

List program lines 1130 and ISO-IS2. On line 1130 the GOSUB ISO uses Tool ISO
to enlarge the width of the sun sprite. This tool has doubled the size of the sun in the
direction of X.

TOOL 150:::::::X EXPAND SPRITE

150 REM::::::X EXPAND SPRITE SP
151 IDKE 53277,PEEK(53277) OR 21'sP
152 RETURN

What It Does: This tool enlarges a sprite's width to twice its size.

Example Use: To use this tool, you must be sure SP is set equal to the
sprite number of the sprite to enlarge (SP=?). Follow this with a GOSUB
ISO statement.

Technical Description: This subroutine uses register S3277. This
register controls the expansion and contraction of a sprite's width. Each
sprite can either be normal size, or expanded in the X direction. If the bit
in this register is equal to 0, then the corresponding sprite will be
normal width. If the bit is equal to 1, then the sprite's width will be
expanded.

This tool uses Form #1 to turn bits to ones. This will immediately
expand that specified sprite in the X direction. A sprite does not need to
be on when you expand it.

Each sprite's size is individually controlled. To expand a sprite, you need to
specify the correct sprite, and then call Tool ISO. To change a sprite back to its
original size, you need to "unexpand" it. This is easily done by setting SP to the
correct sprite number, and then inserting a GOSUB 160 statement in the program.
Tryout the "X Unexpand" feature by changing line 1130 as follows:

1130 OOSUB 160 RRIURN

Run the program with this change. The sprite should appear at half its previous
width because it's "unexpanded." It will be tall and narrow.

TOOL 160:::::::X UNEXPAND SPRITE

160 REM::::::X utn:KPAND SPRITE SP
161 FOKE 53277,PEEK(53277) AND (255 - 2tSp)
162 RETURN

What It Does: This tool changes an expanded or enlarged sprite back

to its original width. This tool will not affect a sprite which was not
previously expanded with Tool ISO.

Example Use: To use this tool, you need to set SP equal to the sprite
number to expand, and then insert a GOSUB 160 statement.

Technical Description: This subroutine is the opposite of the X
expand subroutine (Tool ISO). It uses Form #2 of the statements intro
duced in the "TURN ON SPRITE SP" technical description. In regis
ter 53277, turning a bit to 0 will restore the sprite specified by SP's
current value to its normal width.

Press the SPACE BAR to return to regular text. List lines 1140 and 170-172 on
your screen. The GOSUB 170 statement in line 1140 expanded the sun sprite
vertically (up and down). The sun is twice its normal (designed) height because this
tool was used. The "Y Expand" tool duplicates each row of pixels in the sprite, so
the sprite becomes twice as tall.

TOOL 170:::::::Y EXPAND SPRITE

170 REM::::::Y EXPAl~ SPRITE SP
171 POKE 53271, PEEK(53271) OR 2tSP
172 REI'URN

What It Does: When this tool is used, a sprite's height doubles in size.
This is done by duplicating each row olpixels in the spri te, starting with
the top row. Nothing occurs when this tool is used on a sprite that is
already expanded in the direction of Y.

Example Use: To use this tool, you must set SP equal to the sprite
number that is to be made taller. Then, insert a GOSUB 170 in the main
routine.

Technical Description: This tool is identical to the "X EXPAND
SPRITE" tool, except register 53271 controls height. This subroutine
flips the appropriate bit ("SP"), which causes the computer to double
the sprite's height by duplicating each of its rows.

Sprites can have a "normal" height as defined by the original data, or an
expanded height using Tool 170. You can choose to use both X and Y expand
features, just one expand feature, or neither at all.

To return a sprite to its original height, Tool 180 is used. To unexpand the
height of the sun, change line 1140 to:

1140 COSUB 180

157

158

RUN the program.

The sun should now be displayed at its original height as defined in the data
statements. Read the technical discussion below for more information on this
sprite feature.

TOOL 180:::::::Y UNEXPAND SPRITE SP

180 REM:::::: Y UNEXPAND SPRITE SP
181 roKE 53271,PEEK(53271) AND (255 - ztsP)
182 RETURN

What It Does: The use of the "Y Unexpand" tool changes the height
of a "Y expanded" sprite back to its original size as defined in the data
statements. Nothing happens when this tool is used for a sprite that is
already set to its original height.

Example Use: To use this tool, you will need to set SP equal to the
appropriate sprite number (0-7), and then type a GOSUB 180 statement
into the main routine.

Technical Description: This tool is identical to the "X UNEXPAND
SPRITE," except that register 53271 controls a sprite's height. This tool
flips the appropriate bit ("SP"), which has the computer display the
sprite at its original height.

Return to text mode and list lines 1150 and 200-202. Line 1150 calls Tool 200.
This tool gives the foreground pixels of any shape priority over the sprite specified
by SP's current value. Again, a sprite always has priority over background pixels.
This means that when the sun is placed at the same location as a shape, the shape
will appear in front of the sun. In your picture, the seagull was displayed in front of
the sun.

Let's place the sun down by the water to see how the priority works there. Place
the sun at X = 232, Y = 166 by typing this line:

1170 X=232: Y=166

Run the program with this change. The sun should now appear behind the land,
and intermixed with the water. This is because only foreground pixels have
priority over the sprite. The water is made up of 70% background pixels, which the
sprite has priority over. Return to text mode and move the sprite one more time:

1170 X=207: Y=166
Run the program and it will look like the sun is setting over the water. The water

appears to reflect the image of the sun, as you might see it when watching a sunset.
This is a nice effect, which you can include in other pictures.

You can give shapes priority over one, many or no sprites. To give shapes
priority over a sprite, you must specify the sprite (SP=?), and then call this tool with
a GOSUB 200 statement.

TOOL 200:::::::SHAPE PRIORITY OVER SPRITE

200 REM SHAPE PRIORITY OVER SPRITE SP
201 roKE 53275,PEEK(53275) OR 2tSP
202 RETURN

What It Does: This tool gives priority to the shapes over a specified
sprite (SP=?). When a sprite and any shape are placed at the same
location, the sprite will not show up wherever the shape's foreground
pixels fall.

Example Use: To use this tool, you will need to set SP equal to the
number of the sprite in question. Then type a GOSUB 200 statement in
your main routine.

Technical Description: Register 53275 controls sprite/shape priority.
If a bit is set to 1, then the corresponding sprite will appear to move
behind shapes drawn on the screen (such as the ship or the land). If the
bit is set to 0, then the corresponding sprite will move in front of those
shapes. (Again, "shape" refers to foreground pixels.)

To have a sprite appear behind shapes, you must use Form #1 of the
statements introduced in the "TURN ON SPRITE" technical box.

Press the SPACE BAR. Let's give the sun priority over shapes, and then move it
back over the land. To do this, type the following:

1150 msUB 190
1170 x=232: Y=166

With this change, RUN the program. This time, the sun should appear in front
of the water and land. The sun has priority over the shapes when Tool 190 is called.
If this sprite had a hole in it, then the shapes underneath could be seen through its
"window." Let's put a window in the sun by changing its description in the data
statements. Press the SPACE BAR to return to text mode.

To put a narrow horizontal hole in the sun, you will change some of the data
items in lines 2590 through 2630. These lines define the middle area of the sun
sprite. List these lines on your screen. Currently, all the data items in these lines
should be 255, because all of the corresponding pixels on the sprite grid were
shaded. Change these lines to:

2590 CA.'I'A 255,
2600 mTA 255,
2610 rnTA 255,
2620 mTA 255,
2630 mTA 255,

0,255
0,255
0,255
0,255
0,255

159

160

In each line, the zero represents blank spaces in the sprite. These unused pixels
can be thought of as "transparent," because they will show the shapes underneath
the sprite. RUN the program.

You will see both the land and water through this window. Tool 190 can create
some exciting visual effects with sprites-especially when the sprite is animated.
(You will animate the sun shortly.)

TOOL 190:::::::SPRITE PRIORITY OVER SHAPE

190 REl'1:SPRITE SP PRIORITY CNER SHAPE
191 roKE 53275, PEEK(53275) AND (255 - 2tsp)
192 RETURN

What It Does: When a sprite has priority over shapes, it is displayed
completely in front of any shape it falls on. This tool is fun to use with
sprites having holes in them, because you can see the shapes through the
hole.

Example Use: To use this tool, you will need to set SP equal to the
appropriate sprite number. Then type a GOSUB 190 statement into
your main routine.

Technical Description: This subroutine uses Form #2 to turn bits to O.
Register 53275 determines which sprites will have screen priority over
shapes. Those sprites whose bit is set to 0 will have this priority.

To continue, press the SPACE BAR. Let's look at the color tool for the sprite.
LIST lines 1160and210-212. In line 1160, the color variable "c" is set to the sprite
color code 7, which is yellow. With the second statement, GOSUB 210, the sun
sprite is painted. Using this tool, all the appropriate pixels in a sprite will be
changed to C's color. You can not paint the pixels in a sprite with different colors.
There are sixteen (0-15) sprite colors which were listed earlier in this chapter. To
change the color of a sprite, you need to give C a different color code. Tryout the
color red (2) on the sun by typing:

1160 C = 2:GOSUB 210

R UN the program again. Experiment trying out other sprite colors by changing
the color code in line 1160 and running the program again. Sprite color codes use
the same variable (C) as your shapes, so be sure to reset C's value each time you paint
a different sprite or shape.

TOOL 210:::::::SET SPRITE TO COLOR

210 REM::::: SET SPRITE SP 'ID COIDR C
211 POKE 53287 + SP,C
212 RETURN

What It Does: This tool paints a sprite with the color specified by C's
curren t val ue.

Example Use: To use this tool, first enter a program line that sets SP
equal to the correct sprite number. Then, enter a program line that sets
C to the appropriate sprite color code (0-15). Finally, call this subrou
tine with a GOSUB 210 statement.

Technical Description: This subroutine is different than the previous
sprite subroutines because each sprite has its own color register. The
number stored in a sprite's color register is determined by C's current
value, and represents one of 16 different available sprite colors.

All 8 registers are placed sequentially, so any of them can be found by
adding the sprite number (0-7) to the first register (53287).

When you are finished trying out the various colors, change the color back to
yellow (C=7 in line 1160). Next, let's place the sun in the sky with Tool 220. List
lines 1170-1180. Change the X and Y values on line 1170 to:

1170 X = 232: Y = 10

Run the program, and the sun should appear back up in the sky. Tool 220 places
the sprite's origin at the specified X and Y location. (Remember, a sprite's origin is
the top left square on the Sprite Design Grid.) This tool must be used each time you
create a new sprite. Without this placement, the sprite will not show up on the
screen. However, once you have placed a sprite, you do not need to place it again
unless you would like it moved.

A sprite has a special coordinate system that is described in the technical box
below. For most purposes, you should always place the sprite's origin within the
0-319 range for X, and 0-199 range for Y.

You may have noticed that portions of your sun sprite remain on the screen when
you return to text mode. This is because sprites are unlike any other shapes, and
have to each be erased separately by a GOSUB 140 statement. (The use of RUN/
STOP and RESTORE to return to text mode will erase all sprites from the high
resolution screen.)

Press the SPACE BAR. LIST lines 220-229.

161

162

TOOL 220:::::::PLACE SPRITE AT X,Y

220 Ril4::PLACE SPRI7E SP AT X,Y
221 XX = X + 24:YY = Y + 50:Z% = XX/256
222 V = XX - Z%*256:W = 53248 + SP*2
223 vM = 53264
224 PR = ABS«PEEK(lWl) AND 21'SP) <>0)
225 W = PEEK("~v) AND (255-21'sP) OR (21'SP*Z%)
226 IF PR<>Z% THEN OOSUB 140
227 roKE W, V: POKE {WI, W:GOSUB 130
228 roKE 53249 + SP*2,YY
229 RETURN

What It Does: This tool places the sprite's origin at a specified X,Y
screen location. The origin is the top left square on the sprite's Sprite
Design Grid. After placing the origin at the X, Y location, the computer
can place the rest of the sprite in its relative location. This tool must be
used each time a sprite is defined and turned on, or you will not be able
to see it on the screen.

Example Use: You need to first set SP equal to number of the sprite
that you wish to place on the screen. This would be followed by a main
routine line in the form of:

X=#: Y=#: GOSUB 220

In this line, # would be replaced by a number representing a screen
coordinate location. X should be a number from 0 to 319 and Y should
be a number from 0 to 199. The resulting X,Y coordinate is where the
sprite's origin will be positioned on the screen.

Technical Description: It was explained in the text how to position
sprites on the screen. It was stated that the X position should range from
o to 319 and Y should range from 0 to 199. The X, Y coordinate position
was where the upper left corner of the sprite was placed. In reality, a
sprite can be placed in areas beyond the viewing screen. Sprites can
move from 0 to 511 horizontally, and 0 to 255 vertically. However, only
the area from 24 to 343 in X, and 50 to 229 in Yare visible on the screen.
The added space surrounding the viewing screen lets the sprite move
smoothly onto one side of the screen and off of the other. This chapter
on sprites talks only about the "normal" screen parameters of 320 x 200,
as used in the previous chapters. This was done to maintain consistency
between all the chapters. In this PLACE SPRITE AT X, Y subroutine,
numbers get added to your X,Y coordinates so that the sprite's origin
(0,0) is the same as the viewing screen's origin (0,0). Line 211 does this
for you:

221 XX = X + 24: YY = Y + 50: Z% = XX/256

If you wish to use the expanded area for your sprites, you can remove
XX = X + 24: YY = Y + 50: from this line.

Once again, you will use registers to place sprites. One register con
trols the X coordinate of the sprite's position. Another controls the Y
coordinate of the sprite's position. Each sprite has its own set of X
position and Y position registers. Changing the values in these registers
will change the placement of the corresponding sprite.

Each memory location can contain a number between 0 and 255.
Since a register is just a specialized memory location, it has this same
restriction. This works out perfectly, since the Y position can range
from 0 to 255. The X position, however, presents a problem because it
can range from 0 to 51l. If that register were a little bigger, it could
handle numbers beyond 255. To solve this problem, another register is
added. Each one of the 8 sprites will use 1 bit from it. Sprite 0 gets bit 0,
Sprite 1 gets bit 1, etc. The computer will then pretend that these bits
have been added to the X position registers to make them bigger. With
this added bit, the X position register can handle numbers from 0 -511.
You cannot, however, POKE the whole number 511 into the X position
register. You must break it into two pieces. One piece will go into the
sprite's X position register, and the other piece will go into the register
that is shared with the other sprites. If the position number is less than
or equal to 255, then the bit in the shared register should be O. If the
number is greater than 255, then the bit in the shared register should be
l. Turning this bit to a I means you can subtract 256 from the actual
position and store this result in the X position register.

Z% = XX/256

On this line, the "Z% = XX/256" decides whether the bit in the shared
register should be a 0 or a 1.

222 V = XX - Z% * 256: \V = 53248 + SP*2

Line 222 subtracts 256 from the X position if the result of Z% was
equal to 1. It also finds the proper register number for the specified
sprite's X position.

223 WW = 53264

In line 223, WW is the memory location of the register which is shared
by all the sprites.

224 PR = ABS((PEEK(\'Itl) AND 21SP) <>0)
225 W = PEEK(vM) AND (255 - 2tSP) OR (2tSP*Z)

163

164

Line 224 looks at the X position of the sprite. If it is on the left of the
imaginary boundary at 255, then PR is set to O. If it is on the right of the
boundary, then PR will be set to 1. This is used to see if the boundary is
crossed.

A sprite cannot move horizontally as easily as vertically. When you try
to move the sprite past X position 255, a strange thing happens. At the
instant it crosses this imaginary border, it will momentarily appear
somewhere else on the screen. This happens every time the sprite is
moved from one side of this imaginary border (boundary) to the other.
The best solution for this problem is to switch off the sprite just before
you change the X position registers. This way you will not see the flash.

Line 225 looks at the current contents of the memory location to make
sure the other sprites controlled by this register are not disturbed. The
bit which controls the current sprite is set to 0 by the "AND (255 -2tSP)."
This technique was explained in the "TURN ON SPRITE SP" and
"TURN OFF SPRITE SP" tool boxes. The "OR (2tSP·Z)" resembles
Form #1, which turns on the bit. The bit is turned on, however, only if Z
equals I (i.e., the X position is greater than 255). Multiplying 2tSP by Z
will result in the bit being set or not.

226 IF PR<>Z% THEN CDSUB 140

In this line, Z% tells us which side of the boundary the sprite is moving
into. If Z%=O, then it will be left of the boundary (imaginary border
0-25's). If Z%= 1, then it will be right of the boundary (256-511). The
variable PR keeps track of where the sprite is currently. If the current
section is not equal to the section to be moved into, then you want to
switch off the sprite for a moment. GOSUB 140 will do this.

227 fOKE H, V: FOKE Mf, W: CDSUB 130

Line 227 changes the X position and turns the sprite back on with a
GOSUB 130.

228 fOKE 53249 + SP*2,YY

Finally, line 228 changes the Y position value to the new position.

Tryout another placement for your sprite. Change line 1170 so that X=319 and
Y=IO. RUN the program.

This time, the sprite will be placed almost completely off the screen. Only the
thin left edge of pixels will still remain. The rest of the sprite will not be visible.

Remember that the origin determines the placement of the sprite. The orgin was
placed so far right that the rest of the sprite could not be placed on the screen. In

fact, the rest of the sprite was just "forgotten" by the computer because it had no
place to put it. Press the SPACE BAR.

Tryout X=315 and Y=IO in line 1170. RUN the program. Now you will see more
of the sun's left side. Press the SPACE BAR again and tryout these values: x=o and
Y=199 on line 1170. RUN the program. The sprite will be placed off the screen.
This time, the Y coordinate caused this. The origin is placed at Y=199 (the last pixel
row on the screen).

Press the SPACE BAR. Place the sprite's origin at 0,195 (X=O and Y=195). RUN
the program and you will see the sun peeking over the border in the lower left
corner. Press the SPACE BAR. Finally, position the sprite at X=O and Y=O and
RUN the program. The sun should appear in the upper left-hand corner. The
origin is now at 0,0.

You may want to spend some time experimenting with the sprite features
introduced so far. Try expanding and unexpanding the sprite's height and width.
Change the sprite's color. Give screen priority back to the sprite. Place the sprite at
different locations, around and off the screen. When you want to continue, make
sure the sprite features are set back to:

1110 SP = 0: GOSUB 120
1120 OOSUB 130
1130 OOSUB 160
1140 OOSUB 100
1150 OOSUB 190
1160 C = 7: GOSUB 210
1170 X=0: Y=0
1100 CDSUB 220

Animating the Sun Sprite

Finally, the section you've all been waiting for-sprite animation. You will be
moving the sun across the sky, from right to left. First, change lines 1170 and 1180
to:

1170 Xl=0:Y1=10:X2=319:Y2~10:SD=5
1100 GOSUB 230: GOTO 1180

Before running this program, type in the MOVE SPRITE subroutine below. Be
sure to type Xl and YI on lines 231 and 234. On lines 233 and 237, the letter I ("eye")
should be typed after the X and Y.

230 REM: :MOVE SPRITE FRCM Xl, Y1 'ID X2, Y2
231 OX = X2 - Xl:DY = Y2 - Y1
232 L = ABS(OX):IF ABS(DY) > L '!HEN L = ABS(OY)
233 IF L > 0 '!HEN XI = OX/L:YI = OY/L
234 X = Xl + .5:Y = Y1 + .5:S0 = SO + ABS(SO = 0)

165

166

235 FOR I = 0 TO L STEP SD
236 OOSUB 220
237 X = X + XI*SD:Y = Y + YI*SD
238 NIDIT I
239 RETURN

Look over your new program lines. When you feel they have been typed correctly,
RUN the program. You should see the sun travel across the sky in a continuous
motion. Watch as it appears on the left, moves across the screen to the right, and
then disappears off the right edge. If you wait only a moment, the sun will appear
again at the left edge, and go through this movement all over again.

To stop the animation and learn more about moving sprites, press RUN/STOP
and tap RESTORE. Pressing the SPACE BAR will not return you to text mode at
this point.

1170 Xl=0: Yl=10: X2=319: Y2=10: SD=5
1180 GOSUB 230: GOTO 1180

The sun's movement starts with its origin placed at the XI,YI position (0,10).
The movement continues in a straight path to the X2,Y2 position (319,10). It is the
sprite's origin (upper left sprite grid corner) that follows the straight line from
Xl, Yl to X2, Y2. The rest of the sprite is moved relative to the origin. A sprite can be
moved horizontally, vertically or diagonally.

At the end of line 1170, SD=5 determines the speed at which the sprite will move.
The number 5 indicates how many pixels are skipped along the linear path from
Xl,YI to X2,Y2. The higherthe number, thefewer times the computer has to draw
the sprite, and the faster the sprite can be moved to its destination. Be careful,
though. Too high a number makes the movement appear jerky.

Line I 180 calls the subroutine at line 230. Tool 230 moves the last sprite pointed
to in the program (SP=?) along the path specified by the last Xl,Yl and X2,Y2
values listed in the program.

The second statement on line 1180 (GOTO 1180) moves the sprite across the
screen over and over again. When the computer comes to line 1180, it goes to Tool
230 and moves the sprite across the screen. Returning to the main routine, it is sent
back to the beginning of line 1180. Doing this, it is sent back to Tool 230, and again
moves the sprite along the last XI,Yl-X2,Y2 path listed in the program. This loop
is "endless"; that is, it will continue until you stop it outside of the program by
pressing RUN/STOP and tapping RESTORE. Pressing the SPACE BAR will not
stop the program, as the computer never gets the opportunity to read any program
lines past 1180.

TOOL 230:::::::MOVE SPRITE FROM XI,YI TO X2,Y2

230 RIN: :tllOVE SPRITE FRCM Xl, Yl 'TO X2, Y2
231 OX = X2 - Xl: DY = Y2 - Yl
232 L = ABS(OX): IF ABS(OY) > L 'llIEN L = ABS(DY)
233 IF L > 0 'IHf'.lJ XI = DX/L:YI = DY/L
234 X = Xl + .5:Y = Yl + .5:S0 = SO + Al3S(SO = 0)
235 FOR I = 0 'ill L STEP SO
236 msUB 220
237 X = X + XI*SD:Y = Y + YI*SD
238 NE)IT I
239 RETURN

What It Does: This tool will move a sprite along a straight path,
starting at XI,YI and ending at X2,Y2. The path can be diagonal,
vertical or horizontal. It is the sprite's origin that follows the path. The
speed at which the sprite travels is controlled by setting the variable SD.
We recommend that the speed be kept within 1-5.

Example Use:

(I) Set SP equal to the sprite number of the sprite to move (SP=?).

(2) Provide the starting (XI=?: YI=?) and ending (X2=?, Y2=?)
locations for the path of movement to be made by the sprite's
origin. The sprite will move in a straight line, from XI,YI to
X2,Y2. These coordinate values should be within the X and Y
coordinate ranges.

(3) Enter a number for the speed (SD=?). The higher the number, the
(aster the speed.

(4) Follow all the above with a GOSUB 230.

Technical Description: This subroutine should look familiar to you. It
is very similar to the "PLOT A LINE" subroutine. Instead of plotting a
line from XI,YI to X2,Y2, however, you want to move a sprite from
XI,YI to X2,Y2. To do this, you use the same variables but send the
computer to the PLACE A SPRITE subroutine instead of the PLOT A
POINT subroutine. For the sun sprite, this works fine. The sprite moves
slowly and smoothly across the sky. This rate of motion would not be
satisfactory, however, if the sprite were a spaceship or a race car. To
speed things up, we added a new variable: SP (speed). A speed of I is the
"normal" speed. If the speed is between 0 and 1, then the sprite will go
slower. If the speed is greater than I, then the sprite will go faster. What
is actually happening is the sprite is skipping over several pixels as the
speed increases. If the speed gets too fast, the sprite will move in a
jerking motion. At moderate speeds, however, this is not noticeable.

167

168

In line 234, SO = SO + ABS(SO = 0) makes sure that the value of SO is
not zero. A value of zero would cause problems when using this subrou
tine. If SO does equal zero, this statement will set it equal to l.

237 X = X + XI * SD : Y = Y + YI * SD

This statement is identical to the corresponding statement in the line
drawing routine, except that the X increment (XI) and the Y increment
(YI) are multiplied by the speed. This will make the sprite skip over
some of the steps as its travels, thus speeding things up.

235 FOR I = 0 TO L STEP SD

In this statement, "STEP SO" is a new addition. It causes the loop
index I to be increased by the value of SO each time it completes a loop,
instead of the usual increment of l. This accounts for the change in the
X and Y increments. This change allows the sprite to skip over some
steps, reducing the number of repetitions necessary to complete the
Journey.

Change line 1170 as follows, and run the program again:

1170 Xl=0: Yl=0: X2=319: Y2=199: S])=:10

The sun will move diagonally across and down the screen. The movement,
however, will be jagged. This is because the sun's origin is moving along the
straightest path from 0,0 to 319, 199. This path is not truly straight, because there is
no straight path from 0,0 to 319,199. When you want to move a sprite, consider
where a plotted line between your Xl,Yl and X2,Y2 points would appear. This
plotted line is the exact path your sprite's origin will follow.

Stop the program by pressing RUN/STOP and tapping RESTORE. Change
line 1170 to:

1170 Xl=160: Y1=0: X2=160: Y2=199: S])=:l

RUN the program. The sun should move from the top center screen area off the
bottom center screen area. Through the sun's hole, you will see the ship's lines.
Press RUN/STOP and RESTORE. This time, change the priority of the sprite.
Change line 1150 to:

1150 ensUB 200

Also, expand the sprite's height by changing line 1140:

1140 OOSUB 170

RUN the program. The sun's shape will be tall and thin. The sun will move from
the top center of the screen, straight down. The speed this time will be much slower
since SD= 1 instead of 5. The sun will move behind other shapes because the shapes
have been given priority. Use the RUN/STOP and RESTORE keys to stop the
program. LIST lines 1100-1190. Insert a few variations of your own in the different
program lines and then RUN the program again.

When you're finished, change lines 1110-1180 back to:

llOO Rll1::::: SUN SPRITE
1110 SP = 0: GOSUB 120
1120 OOSUB 130
1130 OOSUB 150
1140 OOSUB 170
1150 OOSUB 200
1160 C = 7: GOSUB 210
1170 Xl=0: Yl=10: X2=319: Y2=10: SD=5
1180 OOSUB 230: GOTO 1180

Also, change the data so that the sun is a solid shape. You can fill in the hole with
these lines:

2590 255, 255, 255
2600 255, 255, 255
2610 255, 255, 255
2620 255, 255, 255
2630 255, 255, 255

After you have typed in these changes, RUN the program so that the correct
picture is displayed on the high resolution screen. Press RUN/STOP and RES
TORE. SAVE the program under "CHAPTER 6". Do not continue until the
program is safely stored on your disk/tape.

This chapter's picture should not be saved. Your SAVE PICTURE routine is not
designed to save sprites, which involves different steps than normal shapes.

To display this picture again later, LOAD Chapter 5's picture, and then load and
run this chapter's program (this only takes a moment). Again, because this final
program has an "endless" loop, you must press RUN/STOP and tap RESTORE to
stop it.

Design Ideas

This section will demonstrate how sprites and sprite features can be used to your
artistic advantage. With practice and imagination, there is no limit to what you can
do with sprite animation. The ideas presented here just begin to touch the surface
of what is possible with moving sprites. Hopefully, with more time, you can

169

170

explore these ideas in your own designs.

To start, you should have already saved this chapter's program. If you have not
done this yet, do so now.

In our first example, you will make the sun appear three-dimensional with the
use of a shadow. A shadow can be created by overlapping two identically shaped
sprites. To do this, the same data statements are used to duplicate the sprite's shape.
Then, the two sprites are layered, one on top of the other. The underneath sprite is
placed slightly to the right of the top sprite, and is painted a darker color. This gives
the appearance of a sprite and its shadow.

To shadow your sun, change the following program lines:

1160 C=10: GOSUB 210
117121 X=232: Y=10
1180 GOSUB 220

This defines the regular sun sprite. Next, type in the lines below to place the
second sprite, the shadow sprite, behind the sun. Note the word "RESTORE" in
line 1500. This command is new to you and will be explained later. After typing
these lines, RUN the program.

150121 RESI'ORE
1510 SP = 1: GOSUB 120
1520 GOSUB 130
1530 GOSUB 150
154121 OOSUB 17121
1550 GOSUB 200
1560 C = 2: GOSUB 210
1570 X = 235: Y = 10
1580 GOSUB 220

Your screen will first display a light red sun. Next, the second, darker sun is
displayed behind the red one. The priority of these two sprites was determined by
their sprite numbers. Since the red sprite has a number of 0 (SP=O), it has priority
over any other sprite.

The top sun is light red, as given in line 1160 where C=lO. The underneath sun,
the shadow, is a darker red, as given on line 1560 where C=2. In this example, the
color red is the base color. A base color is the pure, unaltered color. The top sun
sprite is a tint, a light red, of the base color. A tint, as you recall, is a lighter, whiter
version of the base. Press the SPACE BAR to stop the program.

Change lines 1160 and 1560 to use other color codes, and then run the program
again. For example, making C=7 in line 1160, and C=4 in line 1560, produces a
yellow top sun and a blurry purple shadow. Colors like yellow and purple, orange
and blue, and red and green are pairs of opposite colors. In each of these pairs, one
color is from the cool color family and the other color is from the warm color
family. Press the SPACE BAR to stop the program.

Another color combination to try is making C=7 in line 1160, and C=8 in line
1560. When you run this program, the main (front) sun will be yellow, with an
orange shadow sun behind it. Colors like yellow and orange are a similar kind of
color. Both are in the warm color family. Colors which are similar are called
analogous. Analogous colors are closely related and have the same base color.
Yellow and orange both have a base color of yellow, because there is some yellow in
the color orange. Another set of analogous colors would be green and blue, which
again are very similar in appearance. Green and blue are both in the cool color
famil y, and are both of the same base color-bl ue. Press the SPACE BAR to get back
into text mode.

LIST lines 1110-1510. Both sprites have been labeled with different sprite
numbers. On line 1110, the top sun has been given number 0 (SP=O). On line 1510,
the underneath sprite has been given number I (SP=I).

Line 1500 contains the BASIC command "RESTORE." Before reaching this
command, the computer has READ the sun's data statements and has "checked off"
each data item-so they are not re-read during the program's execution. The
RESTORE command, however, instructs the computer to re-read those data state
ments to define the second sprite (Sprite I). The computer essentially forgets that
the data was already read during the program's execution. This way, the same data
can be used again to make the second sprite. You will need to remember that
RESTORE tells the computer to forget that it has read any data statements. Thus, it
will always READ the very first data statement in your program after coming across
a RESTORE command. RESTORE does not have the computer forget reading the
last set of data statements.

On line 1510, the second sprite has its shape defined with the GOSUB 120
statement. Tool 120 reads and stores the same data for Sprite I as was used for Sprite
O.

For variety, let's enter a new design to move. Exciting animations are a result of
thoughtful variations in the sprite designs.

To have a new sprite shape, you will need a new sprite data block. For this
example, you will be typing in a data block to define the kite shown in the grid
below:

171

172

ROW #

SPRITE DESIGN GRID

(TOP)

DATA STATEMENTS

At the center of this kite, a transparent "window" has been placed. Through it,
you will be able to see everything underneath the kite. To make this kite, type these
data statements into your program:

1200 REM::::: KITE SPRITE IATA
1210 DP..TA 0, S, 0
1220 DP..TA 0, 62, 0
1230 IATA 0,127, 0
1240 DP..TA 1,255,192
1250 IATA 7,227,216
1260 DP..TA 15,193,248
1270 DP..~ 63, 0,126
1280 DP..TA 127, 0,127
1290 DP..TA 63,227,254
1300 DP..TA 31,247,252
1310 DP..TA 15,255,248
1320 DP..~ 3,255,224
1330 DP..~ 1,255,192
1340 DP..TA 0,127, 0

1350 mTA 0, 62, 0
1360 mTA 0, 28, 0
1370 mTA 0, 8, 0
1380 mTA 0, 6, 0
1390 mTA 0, 1,192
1400 mTA 0, 0, 56
1410 mTA 0, 0, 7

Then, list lines 1100-1180. Convert these lines so they can be used for the kite.
Look at the program lines below and compare them to your program. In your
program, you will need to change lines 1100 and 1160. Also, C should equal 2 in
line 1160 now. Finally, delete lines 1170 and 1180.

1100 REM:::::KITE SPRITE 0
1110 SP = 0: GOSUB 120
1120 OOSUB l30
1130 CDSUB 150
1140 OOSUB 170
1150 OOSUB 200
1160 C = 2: GOSUB 210

After correcting the above section, add the following lines:

4000 SP = 0
4010 Xl = 319: Yl = 40: X2 = 0: Y2 = 0: SD = 4
4020 OOSUB 230
4030 GOTO 4010

Lines 4000-4030 give the necessary values for moving the sprite using Tool 230.
These lines were inserted after the sun's data so that the kite will move after the sun
is placed in the sky. If these statements came before line 1100, then the kite would fly
in a sunless sky.

Delete line 1500 (type 1500 and press RETURN).

Now list lines 1500-1580. These lines are for the sun sprite. Make the following
changes to them:

1500 REM::::: sun SPRITE
1510 SP = 1: GOSUB 120
1520 OOSUB l30
1530 OOSUB 150
1540 OOSUB 170
1550 CDSUB 200
1560 C = 7: GOSUB 210
1570 X = 232: Y = 10
1580 OOSUB 220

173

174

Delete lines 1590, 1600, 1610, 1620, 1630 and 1640.

Make sure that the color code in line 1560 is changed to C=7. Note that lines 1570
and 1580 are different from before. This time the sun will stay in one place. It will
not be moved in the sky. Tool 220 is the placement routine. Since you are using two
sets of data for the sprites, there was no need for the "RESTORE" on line 1500.
RUN this program.

A red kite with a triangular window in it is flying across the sky. The fluttering of
the kite is a result of the kite's diagonal path of movement. It starts from a lower
place on the right (Y=40), and moves up to a higher place on the left (Y=O). The
speed is controlled with SD=4.

Each sprite has its own data. The data defines the shape of the sprite. The hole
within the kite is made up of "transparent" or "blank" pixels. A hole like this is
referred to as the negative space in the design. The negative space in your kite is
diamond shaped, which is far more interesting than a simple square hole. When
designing your sprites, take as much time in the planning of negative space as with
positive. Make your negative spaces as interesting as possible. For example, look at
the variation of negative spaces in this illustration of a butterfly sprite:

SPRITE DESIGN GRID DATA STATEMENTS

(TOP)

ROW #

In this butterfly, the size and shape of the negative spaces are varied. This
variation creates an interesting pattern within the wings.

Press the RUN/STOP and RESTORE keys. In the next example, the kite will be
layered on top of the sun. New placement values and a GOSUB 220 statement will
do this for you. List line 4010-4030. Change lines 4010 and 4020 so they read:

4010 X = 232: Y = 15
4020 <DSUB 220

Delete line 4030 and RUN the program.

This time, the kite is placed right on top of the sun. As you can see, sprite colors
do not mix with any other color blocks. You could layer several colored sprites
together without any problems. Layering would be effective for making a stop
light. For a stop light, you would place a round red sprite on top of a square black
sprite. Then, using Tools 130 and 140, the red light could be turned on and off.
Alternating the use of these tools would create the flashing effect. Let's tryout this
flashing technique by changing a few lines in your program. Return to text mode.
Type in these lines:

R UN the program.

4030 OOSUB 140: OOSUB 130
4040 rom 4030

When you RUN it with these added lines, the red kite will be "flashing." This
flashing effect is caused by turning the sprite "off" and "on." This is done with
alternating GOSUB 140's and GOSUB 130's. The kite will continue to disappear,
appear, disappear, appear, because the program is in an endless loop.

Press RUN/STOP and tap RESTORE to stop the program. Tryout some other
color codes on lines 1160 and 1560 for these sprites. Then RUN the program again.

When ready, change some of the sun's data to make a different shape. With a few
alterations, the data would define a half moon instead of a sun.

175

176

ROW #

SPRITE DESIGN GRID

(TOP)

DATA STATEMENTS

Below is an example of the data block that would define the half moon. Change
your sun's data block to contain these data items:

2500 REM:: :MCXN mTA
2510 mom 0, 0, 0
2520 mTA 0, 0, 0
2530 mTA 1,255,128
2540 mTA 7,254, 0
2550 mTA 15,248, 0
2560 mom 31,224, 0
2570 mom 63,192, 0
2580 mom 127,128, 0
2590 mom 255, 0, 0
3000 mTA 255, 0, 0
3010 mTA 255, 0, 0
3020 mTA 255, 0, 0
3030 mom 255, 0, 0
3040 mTA 127,128, 0
3050 mTA 63,192, 0

3060 uz\TA
3070 uz\TA
3080 uz\TA
3090 uz\TA
4000 uz\TA
4010 uz\TA

31,224, 0
15,248, 0

7,254, 0
1,255,128
0, 0, 0
0, 0, 0

RUN this program to see the half moon.

Experiment by trying different shapes for your sprites. Since a sprite can be only
one color, you will find some shapes more successful than others. Also, try layering
your sprites. Layering different colored butterflys together would create one multi
colored butterfly. To do this, you would first display a solid colored butterfly on the
screen. Then, on top of that sprite, place a similar butterfly that is colored differ
ently. The butterfly on top should have some blank, negative spaces defined in it so
that the underneath colors could show through. There's no end to all the possibili
ties that you can try with sprite features.

At this point, if you want to save the "design ideas" as a program, then do so. In
the next section, all the sprite features and the procedures for moving a sprite are
reviewed. Following this summary are two final exercises. In the exercises, you will
make a cloud sprite on Chapter 6's picture.

Summary

We hope you've enjoyed discovering the colorful and exciting world of Commo
dore 64 graphics. You have gone from plotting a single point, to creating a
reasonably complex piece of graphic art work. Although not all the bases were
covered in this book, you should be much more confident the next time you set out
to program a picture of your own. Remember that your tool kit can and should be
applied to all of your pictures. In addition, try applying the color and shading tips
we've presented throughout the chapters. You might be surprised at the results.

The appendices at the end of this book provide a copy of the color chart, the spri te
grid, as well as any other grid used in presenting this book's material. You may
wan.t to make copies of these. Also included in the appendices is a programmer's
"trouble-shooting" guide to program bugs, and several additional tools that will
be of use in any picture-drawing program. Be sure to browse through these
appendices when you get the chance.

This section will briefly review the various steps involved in making a sprite.
These steps are followed with a short description about the various sprite features,
and then this book's final exercises.

The procedure used for making a sprite is:

(I) Design the sprite on the "Sprite Design Grid" by lightly sketching in an

177

178

outline of its shape. Then, shade the squares inside this outline. In designing
a sprite, consider having "holes" or blank spaces inside the sprite shape.

(2) Add up the data sums (A,B,C) for the three areas in each row of the design.
Write down these sums on the lines alongside the "Sprite Design Grid." A
blank section of 8 squares has a sum of O. An entirely shaded section of 8
squares has a sum of 255.

(3) Enter 21 data statements in the main routine that correspond to the data items
listed on the Sprite Design Grid.

(4) In the main routine of your BASIC program, type in a value (a number from 0
through 7) for this sprite. For example, SP=O means you wish to refer to Sprite
O. The priority of the sprites is determined by the sprite numbers. Sprite 0 has
priority over all other sprites. Sprite 7 has no priority.

(5) Enter a GOSUB 120 in the main routine to define the sprite's shape in
memory. Tool 120 reads and stores the data in an array (list). This step, and
step (4) above, could be typed on one line in the form of:

1110 SP=0: GOSUB 120

(6) In the main routine, type in the selected sprite features which will be applied
to this sprite. These sprite features are written as GOSUBs. Each GOSUB
calls a particular tool to manipulate a sprite. Below are several example
program lines for specifying a sprite's features. A complete review of all sprite
features immediately follows.

1120 GOSUB 130

1130 GOSUB 150

1140 GOSUB 170

1150 ensUB 200

1160 C=7: <DSUB 210

1170 X=232: Y=10

1180 GOSUB 220

("turns on" the sprite)

(X expand sprite)

(Y expand sprite)

(shape priority over a sprite)

(set color of sprite)

(X,Y placement location)

(place sprite at X,Y)

Lines 1170 and 1180 could easily be changed to move the sprite. To do this,
replace lines 1170 and 1180 with these lines:

1170 X1=0: Y1=10: X2=319: Y2=10: SD=5 (set values for

path of movement and speed)

1100 OOSUB 230: <DTO 1100 (endless loop that moves the
sprite continuously)

Summary of Sprite Features

An overview of sprite features is given below. For a more thorough discussion of
each feature, refer to the beginning of this chapter.

SP=O: GOSUB 120
This line refers to Sprite O. It also uses Tool 120 to define the sprite's shape in
memory. Note that this format should be used to define each sprite, with SP
set to a different number (0-7) each time. The sprite number determines sprite
priority over sprites. 0 is highest priority; 7 is lowest priority.

GOSUB 130
This line "turns on" a sprite. If the sprite has not been placed on the screen,
you won't be able to see it after turning it on.

GOSUB 140
This tool "turns off" a sprite so that it disappears from the screen.

GOSUB 150
The sprite's width is doubled in size with Tool 150.

GOSUB 160
This tool is used with a sprite whose width has been doubled with tool 150.
This tool will return the sprite to its normal width.

GOSUB 170
The sprite's height is doubled in size with Tool 170.

GOSUB 180
This tool is used with a sprite whose height has been doubled with tool 170.
This tool will return the sprite to its normal height.

GOSUB 190
This tool gives a sprite priority over all foreground pixels in any shape. The
sprite will be displayed in front of any shape which is placed at the same
location.

GOSUB 200
'Tool 200 allows any shape in the picture to have priority over the sprite.
When the sprite and a shape appear in the same screen location, the shape will
be in front of the sprite.

C=7: GOSUB 210
Tool 210 sets the sprite to the color determined by C's value. There are 16
different sprite colors (0-15). Each sprite can be only one color.

X=232: Y=lO: GOSUB 220
In this line, the X and Y values for positioning the sprite on the screen are
given. This X,Y pixel point determines the screen location for the sprite's
origin. The rest of the sprite is then positioned relative to the origin. Tool 220
actually places the sprite on the screen at the given X,Y values.

179

XI=O: YI=lO: X2=319: Y2=1O: SD=5
To move a sprite in a straight line, the starting and ending points for this line
are given. XI,YI are for the coordinate values for the starting point. X2,Y2 are
the coordinate values for the ending point. These values determine the path of
movement. A sprite can move in any straight direction. It is, however, the
sprite's origin that will move along the path from Xl ,YI to X2,Y2. The rest of
the sprite moves along with the origin. SD indicates the rate of speed for
moving the sprite. A higher number for SD means the sprite will travel faster.

GOSUB 230
Tool 230 uses the given XI,YI and X2,Y2 coordinate values to move the sprite
in a straight line.

Exercise #1

To start, load Chapter 5's picture, and then load this chapter's program and run
it. In this exercise, you will be creating a cloud sprite for your picture. Below is an
illustration of the cloud on the Sprite Design Grid. The data sums-A, B, C-for
each row in the sprite have been omitted.

SPRITE DESIGN GRID

(TOP)

A B c
1 1
2631 2631
8 4 2 6 842 1 B 4 2 6 8 421

DATA STATEMENTS

ROW #

180

Using a pencil, figure out and pencil-in the data items for each row in the cloud.
Then, starting on line 3200 in Chapter 6's program, type in the data statements
necessary for this sprite. Begin like this:

3200 REM:: :ClDUD SPRITE DP.TA
3210 DP.TA 0, 0, 0
3220 DP.TA 0, 0, 0

Solution #1

The data statements for the cloud sprite are as follows:

3200 DP.TA 0, 0, 0
3210 DP.TA 0, 0, 0
3220 DP.TA 0, 0, 0
3230 DP.TA 0, 0, 0
3240 DP.TA 0, 0, 0
3250 DP.TA 0, 0, 0
3260 DP.TA 0, 0, 0
3270 DP.TA 0, 0, 0
3280 DP.TA 0, 0, 0
3290 DP.TA 0, 0, 0
3300 DATA 0, 0, 0
3310 DP.TA 0, 0, 0
3320 DP.TA 0, 0, 0
3330 rn.TA 0, 0, 0
3340 DA.TA 0, 255, 0
3350 DP.TA 3, 255, 192
3360 DP.TA 7, 255, 224
3370 DP.TA 7, 255, 224
3380 DATA 15, 255, 240
3390 DATA 126, 255, 254
3400 DA.TA 255, 255, 255
3410 DATA 255, 255, 255

Exercise #2

Beginning on line 3100, type in all the program lines necessary to define the
sprite and give it the following features:

(1) priority over the sun sprite
(2) expanded width
(3) expanded height
(4) no priority over shapes
(5) a color of white (color code = 1)
(6) origin placement of 215,4

In addition, change the sun features so that it remains stationery (line 1180
should have a GOSUB 220). Put the sun's origin at 232,10.

181

Solution #2

182

1110 SP=1: GOSUB 120
1170 X=232: Y=10
1180 enSUB 220
3100 REM:::::::CLOUD SPRITE
3110 SP=0: ensUB 120
3120 ensUB 130
3130 enSUB 150
3140 GOSUB 170
3150 GOSUB 200
3160 C=1: GOSUB 210
3170 X=215: Y=4
3100 GOSUB 220

POSTSCRIPT

Now that you have acquired the tools needed to construct graphics on your
Commodore 64, you can begin to discover the excitement surrounding computer
graphics. To whet your appetite, this postscript shows three different scenes our
artist has created using this book's tool kit. The first is a city scene that effectively
uses the PLOT A LINE tool. The second illustration shows an abstract design
created with the DRAW A SHAPE tool. The final piece shows how some of the
different sprite design tools can be used to create a jungle scene.

"City Scene"

In this line drawing, the buildings appear to recede into space. As the buildings
and windows recede, they become smaller. This sense of space was created with the
use of "perspective." Perspective shows lines that seem to disappear into the
distance. The point where all the lines seem to meet and disappear is called the
"vanishing point." Notice how certain lines of the buildings, windows, and the
center street angle off towards the vanishing point. The converging lines direct our
eyes to this point.

183

184

All the lines in this picture were drawn using Tool 80 (PLOT A LINE). First, the
artist drew the picture on an X, Y PIXEL POINTS grid. All the points (X, Y
coordinates) and the sequence for connecting them were listed on scratch paper.
This list was divided into two parts: one for all the points and lines on the left side,
and one for all the points and lines on the right side.

Each list was entered as a separate program. The programs were labeled with
REM statements to identify the specific buildings. Using two programs and
numerous REM statements helped in detecting any program errors.

Finally, both programs were run to display the whole picture. The image was
then saved as one picture, using Tool 100. In creating your own designs, you can
use perspective to suggest train tracks, roads, or a row of buildings.

"Flip Box Picture"

Geometric shapes and lines were repeated throughout this "non-figurative"
composition. A non-figurative design uses geometric shapes, like squares and
octagons, rather than life-like figures (trees, people, birds). An assortment of
contrasting tones and various placements of shapes was used for variety in this
design. A compositional balance was created between the repetition of shapes and

the variety of tones used. Notice the way in which tones were applied to the shapes.
Sometimes, the shapes are completely filled in. At other times only the outlines
have been drawn. This variety in shading and the strong tonal combinations make
the overall design more interesting.

In creating the design, the artist first drew and shaded the picture on the X, Y
PIXEL POINTS grid. The shades were carefully chosen, and placed so that
different tones did not overlap in the same color block. A list of points, lines, and
offset values was made for each shape which was repeated in the design. These
repeated shapes include the top of the box, the side of the box, and the octagon
shapes. A program was then written and entered into the computer which would
display these shapes. This program used the DRAW A SHAPE tool and the PAINT
A SHAPE tool. Another program was entered to draw shapes that would not be
repeated, such as the irregular shapes along the sides of the picture. This second
program also drew in the many lines between the shapes. Tools 80, 90 and 110 were
used in this program. Afterwards, the completed picture was saved using Tool 100.

"J ungle Scene"

Several leaf motifs were repeated throughout this picture to create a jungleat
mosphere. Some areas of the jungle are darker than others. The darker areas are

185

where the leaves are placed close together so they overlap. As the number of leaves
increases within an area, the tone becomes increasingly dark and dense. In areas
where the leaves are placed further apart, the tone is much lighter. The light
background shows through where there is less intersection of leaves.

Three different leaf motifs are used. Each one has a character all its own. Take a
close look at the picture and examine each leaf separately. You will notice that each
leaf is a unique shape and size.

Within the jungle surroundings there are sprite animals: three elephants, an
ostrich, a crocodile, and a turtle. Note the use of negative space in the elephants:

ROW #

SPRITE DESIGN GRID

(TOP)

A B c
1
263 1
842 684 2 1

DATA STATEMENTS

Here, the negative space outlines the ear. The design and data items for the three
other animals are:

186

ROW #

1

SPRITE DESIGN GRID
(TOP)

ABC

263 1
8426842 1

SPRITE DESIGN GRID
(TOP)

A B C
1 1
2631 2631

DATA STATEMENTS

DATA STATEMENTS

8 4 2 6 8 4 2 1 8 4 2 6 8 4 2 1 a-=="--"--+----:=--+-'-';;-----'-----=~~____=:______j

187

SPRITE DESIGN GRID

(TOP)

A B c
1
263 1
8 4 2 6 8 4 2 1

DATA STATEMENTS

ROW #

188

The sprite animals were positioned in the picture for a feeling of three
dimensional space. For example, the elephants look further away from the ostrich.
The elephants are placed higher on the screen to give this effect.

To make the jungle, the artist designed three leaf shapes on the X, Y PIXEL
POINTS grid. The leaf data was then entered into the program in tbe form of data
statements. This data was placed in the E% and L% lists for use with the DRAW A
SHAPE tool. Numerous offset placement values (XO,YO) were used to position all
the leaves.

The sprite animals were individually designed on the Sprite Design Grid (shown
previously). Then, the sprite data and sprite features were entered into the compu
ter program. Once the program was run, the picture was saved with Tool 100. Since
this SAVE PICTURE routine can not save sprites, another program was made.
This program contained only the program lines that dealt with the sprites. To see
the picture again, the jungle picture was loaded, and then the sprite program was
loaded and run.

APPENDIX A:
THE PROGRAMMER'S TROUBLE

SHOOTING GUIDE
This appendix offers an overview of some of the more common program "bugs"

(errors). It is broken down into two sections: Preventive Measures and Common
Cures. The Preventive Measures section gives helpful hints on avoiding program
bugs. The Common Cures section is a checklist of possible cures for some common
programming errors.

This appendix is by no means a complete and absolute checklist for all possible
program problems.

PREVENTIVE MEASURES

All cassette decks should be kept as far as possible from the computer, monitor,
and any other metallic object. It is also a good idea to store your cassette tapes and
floppy disks at a safe distance (5 feet or more) from the computer.

Type your programs in lower-case. It is much easier to distinguish small oh' s (0)
from zeroes (0) than it is to distinguish large oh's (0) from zeroes (0). Also, 8's are
more clearly distinguished from lower-case b's.

Re-name corrected programs on a disk rather than use the "@O" command. This
command has a bug that can sometimes, although not always, be disasterous for
your stored programs. We recommend saving corrected programs under new
names, like "CHAPTER 6.1 ", "CHAPTER 6.2" etc.

Create a complex picture in small steps. Type in a small section of the program
(about 2 handwritten pages of text), and then run it. At that time, locate and
correct any errors. The time spent locating errors can be greatly reduced by follow
ing this procedure.

Label your programs with numerous REM statements. These REMs will help
you later when you are looking for bugs in the program.

Save your program frequently. This way, if the unexpected happens (loss of
electricity), you will not lose all of your work.

Break up long, complicated programs into 2 or 3 smaller programs. Again, this
will help locate errors by isolating the problem in a smaller area of program lines.

COMMON CURES

In moments of deepest depression; when searching for a way out of that dark
abyss known as the SYNTAX ERROR hole of horror, recall these words of
wisdom: The Leading Cause of Program Death is a Typing Error. Fortunately for
all of us, programs can be brought back to life.

It is anyone's guess as to where the typing error(s) might be, so careful checking is
the only solution. Whenever a program fails, begin by returning to text mode (do
not use RUN/STOP RESTORE-instead, carefully type GOSUB 30 and press
RETURN). Look for an error message with a line number. This is the first and

189

190

most valuable clue to the problem.

If your program was typed in upper-case, you can easily switch the entire listing
to lower-case by holding down a SHIFT key and pressing C=. Oh's (0) typed for
zeroes (0), el's (1) typed for ones (1), and b's (B) typed for eights (8) are then quickly
identified.

Also, check to be sure you have given a value to all necessary variables before each
GOSUB statement. A complete listing of all variables needed for each tool can be
found in Appendix G.

If your program crashes, and your main routine disappears, you probably had a
GOSUB 10 statement (instead of, perhaps, a GOSUB 110) in the main routine. This
causes the program to erase itself during execution.

Plot a Point Problem? Check the color code (C=?) of the point to plot. Make sure
the color code represents two different colors. Check that X and Yare within their
respective ranges.

Plot a Line Problem? Check the color code (C=?) for the line to plot. Make sure
the color code represents two different colors. Check that you have an Xl, a YI, an
X2 and a Y2. Reversing I's with2'sand/orX'swith Y's is very common. If you have
several sets of these variables, backtrack from the GOSUB 80 statement to the last
Xl, YI, X2 and Y2 values. Compare these to the line you want to plot.

Paint a Shape Problem? Check that your shape doesn't need to be divided into
sections in order for this tool to paint it properly. Add 1 to your H value and 1 to
your W value, and then run the program again.

Draw a Shape Problem? Check each I loop and make sure it is set to process the
correct number of times. Check each set of data statements. Make sure each set has
an even number of data items. Look for periods (".") typed instead of commas (",")
between the data items. If you get an OUT OF DATA ERROR all data statements
in your program are suspect, and should be checked.

Sprite Problem? To see a sprite on the screen you need to assign it a sprite number
between 0 and 7 (SP=?), define it in memory (GOSUB 120), turn it on (GOSUB 130),
and place it on the screen (X=?: Y=?: GOSUB 220).

APPENDIXB:
COMPLETE LISTING OF TOOLS

1 ooro 1000
10 REM:::::::ZAPI
11 A = 256: B = 2049: C = 1003
12 IF PEEK(B+2) + A * PEEK(B+3) >= C 'IHEN 15
13 B = PEEK (B) + A * PEEK (B+l): CN ABS(B<>0) ooro 12: END
14 A = 256: B = PEEK(251) +A * PEEK (252)
15 IF PEEK(B+l) = 0 THEN END
16 PRINT aIR$(147) PEEK (B+2) + A * PEEK (B+3): PRlln' "ooro 14"
17 IDKE 251, B - INr (B/A) * A: IDKE 252, B/A
18 IDKE 631,19: IDKE 632,13: IDKE 633,13: IDKE 198,3: END
20 REM:::::::GRAPHICS
21 IDKE 53265,59
22 IDKE 53272,29
23 IDKE 56576,198
24 RETURN
30 REM:::::::TEXT
31 IDKE 53265,27
32 IDKE 53272,21
33 IDKE 56576,199
34 REI'URN
40 REM:::::: :COIDR.S
41 FOR I = 17408 TO 18407
42 IDKE I,C
43 NE}IT I
44 RETURN
50 REM::::::: PAINI' 13P.CKGROUND
51 FOR I = 24576 to 32575
52 IDKE 1,0
53 NE}IT I
54 RETURN
60 REM:::::: :FIND A IDINT
61 RCM = INr(Y/8)
62 COL = INT(X/8)
63 LINE = Y AND 7
64 BIT = 7 - (X AND 7)
65 BYTE = 24576 + RCM*320 + COL*8 + LINE
66 CBYTE = 17408 + RCW * 40 + COL
67 RETURN
70 REM:::::::PIDT A fOINI'
71 OOSUB 60
72 IDKE BYTE, PEEK(BYTE) OR 21' BIT

191

192

73 OOKE CBYTE,C
74 REmJRN
80 REM:::::::PLOT A LINE
81 DX = X2 - Xl: DY = Y2 - Y1
82 L = ABS(DX): IF ABS(DY) > L 'IHEN L = ABS(DY)
83 IF L > 0 'mEN XI = DX/L: YI = DY/L
84 X = Xl + . 5: Y = Y1 + . 5
85 FOR I = 0 'ID L
86 OOSUB 70 : REM PLOT OOINI'
87 X = X + XI: Y = Y + YI
88 NEXT I
89 REmJRN
ge REM:::::: :PAINI' A SiAPE
91 FC=PC+.ABS(PC=0): FOR X = m 'ID m + W: FL$ = "F": PR = 0
92 FOR ~ = Y0 'ID Y0 + H: Y = YC: <DSUB 60
93 rn ABS«PEEK(BYTE) AND 21' BIT) <> 0) ooro 97: IF PR=0

'!HEN 96
94 PR = 0: IF FL$ = "F" 'lHEN Y1 = YC: FL$ = "T": oo:ro 96
95 <DSUB 99: FL$ = "F"
96 NEXI' ~: oo:ro 98
97 PR = 1: ~ ~: IF FL$ = "T" '!HEN <DSUB 99
98 NE>cr' X: RETURN
99 FOR Y = Y1 'ID ~ -1: rn ABS(RND(l) < pc) GOSUB 70:

NE>cr' Y: RETURN
100 REM:::::::SAVE PICTURE
101 INPlJI' "ENTER FILENAME": FILE$
102 INPl1l' "ENTER 8 FOR DISK, OR 1 FOR CAS.SETl'E": IE
103 SYS 57812 FILE$ + ".PIC", DE
104 POKE 174,64: OOKE 175,127: OOKE 193,0: OOKE 194,96
105 SYS 62954
106 SYS 57812 FILE$ + ".COL", DE
10700KE 174,232: OOKE 175,71: OOKE 193,0: OOKE 194,68
108 SYS 62954: END
110 REM:::::::DRNW A SHAPE
III FOR J = 0 'ID NL
112 E1 = L%(0,J): E2 = L%(l,J)
113 X1=E%(0,E1) + m: Y1=E%(1,E1) + Y0
114 X2=E%(0,E2) + XB: Y2=E%(1,E2) + Y0
115 OOSUB 80
116 NEXT J
117RETURN
120 REM:::::::DEFINE SPRITE SP
121 FOR I = 0 'ID 62
122 READ A
123 OOKE 16384 + 64*SP + I,A

124 NE}IT I
125 roKE 18424 + SP, SP
126 RETURN
130 REM:::TURN CN SPRITE SP
131 roKE 53269, PEEK(53269) OR 2fsp
132 RETURN
140 REM:::TURN OFF SPRITE SP
141 roKE 53269,PEEK(53269)AND(255-2fSp)
142 RETURN
150 REM::::::X EXPAND SPRITE SP
151 roKE 53277,PEEK(53277) OR 2tSP
152 RETURN
160 REM:::::: X UNEXPAND SPRITE SP
161 roKE 53277,PEEK(53277)AND(255-2fSp)
162 RETURN
170 REM::::::Y EXPAND SPRITE SP
171 roKE 53271,PEEK(53271) OR 2tSP
172 RETURN
180 REM:::::: Y UNEXPAND SPRITE SP
181 roKE 53271,PEEK(53271)AND(255-2fSp)
182 RETURN
190 REM:: SPRITE SP PRIORITY OVER SHAPE
191 roKE 53275,PEEK(53275)AND(255-2fSP)
192 RETURN
200 REM:: SHAPE PRIORITY OVER SPRITE SP
201 roKE 53275,PEEK(53275) OR 2tSP
202 RETURN
210 REM:::: SET SPRITE SP 'ID CX>l.OR C
211 roKE 53287 + SP,C
212 RETURN
220 REM: :PIACE SPRITE SP AT X, Y
221 XX = X + 24:YY = Y + 50:Z% = XX/256
222 V =XX - Z%*256:W = 53248 + SP*2
223 WW = 53264
224 PR = ABS((PEEK(vM) AND 2fSp) <>0)
225 VV = PEEK(WW) AND (255-2fSp) OR (2fsp*Z%)
226 IF PR<>Z% THEN QJSUB 140
227 roKE W, v:roKE WiI, VV: QJSUB 130
228 roKE 53249 + SP*2, YY
229 RETURN
230 REM: :MOVE SPRITE FRCM Xl, Yl 'ID X2, Y2
231 OX = X2 - Xl:DY = Y2 - Yl
232 L = ABS(DX):IF ABS(DY) > L THEN L = ABS(DY)
233 IF L > 0 THEN XI = DX/L:YI = DY/L
234 X = Xl + .5:Y = Yl + .5:SD = SD + ABS(SD = 0)

193

194

235 FOR I = 0 'It) L STEP SD
236 <nSUB 220
237 X = X + XI*SD:Y = Y + YI*SD
238 NEXT I
239 RETURN

APPENDIX C:
ADDITIONAL TOOLS

In this book, you learned how to draw and paint shapes, like squares and
triangles, as an introduction to drawing lines and painting shapes. You saw how
these basic shapes could be used as the starting points for many familiar figures. For
example, you could use a square for a house and a triangle for its roof. This
appendix presents three other shapes which you will use frequently in your own
drawings: rectangles, polygons and circles. As with squares and triangles, these
shapes can be used in your drawings as the basic building blocks for many other
figures. Before typing these tools, load Chapter 6's program and run the ZAP
routine.

TOOL 240:::::::DRA W A RECTANGLE

The DRAW A RECTANGLE subroutine can draw any rectangle when you give
it the height, width, placement, and color of the rectangle to draw. As long as you
know the top-left corner coordinates, you will not have to figure out any other
coordinates. Type this new tool as:

240 REM::::::: DRAW A RECTANGLE
241 Xl = X0 + W: Y1 = Y0
242 X2 = X0: Y2 = TIl: GJSUB 80
243 Xl = X0: Y1 = Y0 + H: OOSUB 80
244 X2 = X0 + W: Y2 = Y0 + H: OOSUB 80
245 Xl = X0 + \i: Y1 = Y0: GJSUB 80
246 RETURN

An example program that will draw a rectangle using this tool is:

1200 REM::: RECI'ANGLE
1210 X0 = 10: Y0 = 100
1220 H = 30: W = 70
1230 C = 30: <DSUB 240

The top, left corner of the rectangle will be placed at XO, YO. The rectangle will be
the width of W (O-based width), and the height of H (O-based height). The outline of
the rectangle will be plotted in the color represented by C's current value.

TOOL 250:::::::DRA W /PAINT RECTANGLE

This subroutine will both draw and paint a rectangle, based on the same
variables discussed in Tool 240 above. Obviously, if you need to have a rectangle
plotted and painted, this is the tool to use. However, if you only want an outline of a
rectangle, use Tool 240 instead. The new subroutine lines to type are:

250 RElJI::::::: DRAW /PAINI' RECI'ANGLE
251 OOSUB 240
252 ooro 90

An example program that will draw and paint a rectangle using this tool is:

1300 REM:: PAINI' REX:TA.OOLE
1310 X0 = 50: Y0=25
1320 W = 15: H = 10
1330 C = 46: OC = 1
1340 <DSUB 250

This subroutine draws a rectangle using Tool 240, and then paints it using Tool
90. The top left corner of the rectangle will be placed at XO, YO. The rectangle will
be the width of W (O-based width), and the height of H (O-based height). It will be
painted in the color represented by C's current value. The percentage of pixels
painted within the rectangle will be in accordance with the decimal fraction
entered for PC.

TOOL 260:::::::DRAWA POLYGON

A polygon is a many-sided figure. Although technically a polygon is any figure
with 3 or more sides, the term is generally used to designate a figure with 5 or more
sides.

The following subroutine can be used to draw polygons:

260 RElJI:::::::DRAW A POLYGON
216 K = 2 *'11 /T - .0001
262 FOR J = 0 'IO 2 * 11 STEP K
263 W = R * SIN(J) * 1.2345
264 H = R * ca;(J) * SC
265 IF J = 0 '!HEN Xl = X0 + W: Yl = Y0 + H
266 X2 = X0 + W: Y2 = Y0 + H: OOSUB 80
267 Xl = X2: Yl = Y2
268 NE}IT J
269 REl'URN

195

196

Note that II fr " as shown in lines 261 and 262, can be typed. by holding down a
SHIFT key and pressing f immediately to the left of RESTORE.

If you are at all mathematically inclined, some of the equations listed above will
look suspiciously like equations dealing with circles. There's a good reason for
this. The ORA W A POLYGON subroutine actually draws a many-sided figure,
with its endpoints lying on an imaginary circle. This subroutine can be used
directly from the main routine, or it can be used indirectly from the ORA W A
CIRCLE subroutine that follows.

Example program lines that will draw a polygon using this tool are:

1400 REM:: DRAW POLYCDN
141e ~103: Y0=75
1420 R = 20: T = 5
1430 SC = 1: C = 62
1440 OOSUB 260

The ORA W A POLYGON subroutine draws a many-sided figure (5-sided in this
example), using an imaginary circle as the boundary for the endpoints. We will
describe the circle before the actual polygon.

Most of us have used a compass at some time or other to draw circles on paper.
Using a similar method, the ORA W A POLYGON tool draws an imaginary circle
on the computer monitor.

To draw a circle with a compass, you first place the compass point on the paper
where the center of the circle should be. You then spread the pencil away from the
center point, depending on the size of circle you desire, and you rotate the compass
around the central point.

Conceptually, the ORA W A POLYGON subroutine does exactly the same thing.
Given the central point of the circle, and the radius (distance from the compass
point to the pencil), the computer has all the information necessary to draw the
imaginary circle.

If you then chose 4 points on this circle to connect with straight lines, you would
have a 4-sided polygon:

If you chose 5 points to connect, you would have a 5-sided polygon:

The DRAW A POLYGON subroutine essentially does the same thing. 1£ you
define the number of sides you want (T), assign offset values to XO, YO (central point
of circle), and assign a value for the radius (R), the computer will pick its own
points along the circle and draws lines between them.

First, the "scale factor" (SC) is taken into consideration. The scale factor is the
imaginary circle's height in relation to its width. If the circle's height is 2 times its
width, the scale factor is 2, and you really have an oval. If the circle's height is ~ that
of its width, the scale factor is .5, and, again, you have an oval.

Assuming that the scale factor is equal to 1 (a perfect circle), the endpoints of the
polygon will be evenly spaced so that all sides of the polygon are equal in length. If
the scale factor is greater than 1, then the imaginary circle will be elongated, and
thus the polygon will be stretched vertically:

197

198

If the scale factor is less than 1, then the circle will be flattened, and the polygon
will be shortened vertically:

Line 261 of the subroutine calculates how far apart the endpoints should be,
given the number of sides in the polygon and the scale factor. Line 262 begins at the
bottom point in the imaginary circle. This will always be the first endpoint of the
polygon that is plotted on your screen. The program then loops in order to rotate
the "compass" around the central point at XO,YO, skipping over part of the
imaginary circle each time it loops. Each "landing" point is plotted, and becomes
an endpoint in the polygon. This loop continues until the initial endpoint at the
bottom of the circle has once again been reached.

Lines 263 and 264 convert the endpoints to X, Y coordinates for use with the
FIND A POINT and PLOT A POINT subroutines. Next, line 265 initializes the
first endpoint (XI,Yl) the first time through the loop. At that stage, there are no
connecting lines between any endpoints because only one endpoint on the circle
has been plotted (all the rest have only been found).

Line 266 calculates the next endpoint (X2, Y2), and jumps to the DRAW A LINE
tool to connect the curren t endpoin t (X2, Y2) and previous endpoint (X I, Y I). This,
of course, results in the first line of your polygon. Line 267 places the current
endpoint coordinates into variables XI and YI in preparation for the next loop.
Line 268 sends the computer back to look for the next endpoint.

TOOL 270:::::::DRA W /PAINT POLYGON

This subroutine will both draw and paint a polygon, based on the same variables
discussed in Tool 260 above. If you want to draw and paint a polygon, this is the
recommended tool. However, if you only want the outline of a polygon, use Tool
260 instead.

This tool should be typed as follows:

270 REM:::::: :DRAW/PAllIT FDLYGON
271 OOSUE 260
272 X0 = X0 - R * 1.2345
273 Y0 = Y0 - R * se
274 H = R * 2 * se
275 W = R * 2 * 1.2345
276 ooro 90

Examples of program lines which will draw and paint a polygon using this tool
are:

1500 REM:: PAINT roLYOON
151121 X0 = 5121: Y0 = 50
153121 R = 1121: T = 6
1540 SC = 1: ~ = 1: C = 78
155121 OOSUB 27121

This tool uses the DRAW A POL yeON subroutine and the PAINT A SHAPE
subroutine to draw and paint a polygon. For a complete explanation of the
variables XO, YO, R, T, and SC (as used here), see the discussion of Tool 260 above.

PC determines the percentage of pixels to paint within the polygon. I (1.00)
indicates that 100% of the pixels are to be painted. The value entered for C
determines the color of the polygon.

TOOL 280:::::::DRA W A CIRCLE

A circle is one of the hardest figures to plot on your computer. This is because
circles are actually made up of many plotted pixels, or, many short, plotted lines.
This DRAW A CIRCLE subroutine can quickly draw a 30-sided circle, using the
same variables discussed in Tool 260 above. Type this tool as:

280 REM:::::::DRNN A CIRCLE
281 T = 30
282 ooro 26121

Examples of program lines which will draw a circle using this tool are:

161210 REM::DRNN A CIRCLE
161121 X0 = 100: Y0 = l00
162121 R = 15: C = 11121
163121 SC = 1
1640 OOSUB 280

Notice that to draw a circle, you use the same variables as when drawing a
polygon-except that T is not defined in the main routine. This is because T gets
set in the subroutine (line 281). Also, when drawing a perfect circle, always set SC
equal to I. To learn more about variables XO, YO, and R, see the discussion on Tool
260 previously given in this appendix.

199

200

TOOL 290:::::::PRINT PICTURE

This final tool will print a copy of the high resolution screen to a VIC-1525
printer. If you have such a printer, type in this tool as:

290 PRINT PICI'URE
291 OPEN 1,4: BA. = 24888
292 A$=CHR$(15) + CHR$(16) + "20 " + CHR$(8)
293 FOR J = 0 'IO 44: IF (JAND7»0 '!HEN 13A.=8A-8
294 BY = BA: PRINT #1,A$:
295 Bl%=JAND7: B2%=8-Bl%: FORK= 0 'IO 199
296 T=PEEK(BY)*2 l' Bl% AND 127
297 B=INT(PEEK(BY+8)/2 ~ B2%)
298 PRINTU, rnR$ (128-+1J.'+B):
299 BY=BY+1: IF(KAND7)=7 THEN BY=BY+312
300 NE}IT K: PRINT#!: NE}IT J: CLam 1

To use this subroutine, take the following steps:

(1) Check to make sure there is a picture on the high resolution screen.

(2) Connect the printer as described in the VIC-1525 User's Manual.

(3) Check to be sure you have paper and that the printer is on.

(4) Type RUN 290 and press RETURN.

This subroutine takes advantage of the VIC-1525 printer's graphic ability. By
chopping the high resolution picture into 7 x 7 pixel chunks, this subroutine can
make the VIC-1525 print each chunk as a character. When all of the chunks are
printed, you end up with a complete picture.

APPENDIXD:
SPEEDING UP YOUR TOOLS

The subroutines in this book will be of great help each time you draw a picture
on the Commodore 64. Unfortunately, the subroutines are not always as quick as
they are useful. At times, it could take up to 20 full minutes to run a picture
drawing program. The problem lies in the fact that BASIC, the programming
language you have used throughout this book, is not the computer's "native"
language. The computer's native language is machine language. In order for the
computer to understand the programs you have entered, it has a little translator
that reads your BASIC statements, and then translates them into machine lan
guage. This can be pretty time-consuming.

To speed things up, you can modify some of the slower tools to take advantage of
machine language. This takes a considerable amount of initial typing, but will be

well worth it in the end. If you are interested, load Chapter 6's program and run the
ZAP routine (type RUN 10 and press RETURN). Begin by modifying your tools as
follows:

1 ooro 500

41 SYS 49165,C
(delete lines 42 and 43)

51 SYS 49157
(delete lines 52 and 53)

71 SYS 49321,X,Y,C
(delete lines 72 and 73)

81 SYS 49321, Xl, Y1 'IO X2, Y2, C
(delete lines 82 through 88)

91 SYS 49551,X0,Y0,W,H,C,PC
(delete lines 92 through 98)
99 Rffi'URN

You now need to type several sections of data statements. These data statements
store machine language versions of the modified tools. The first section to type is:

500 FOR I = 49152 TO 49189
501 READ A: FDKE I,A: T = T-fA
502 NEXI' I
503 IF T<>5205 THEN PRINT "ERROR nl 500-516" : STOP
504 T=0
510 REM::::::: CLEAR AND PAIN!'
511 ~TA 134, 32, 0, 0, 0,169, 0
512 ~TA 160, 96,162, 32,208, 8, 32
513 ~TA 241,183,138,160, 68,162, 4
514 ~~ 132,252,160, 0,132,251,145
515 ~~ 251,200,208,251,230,252,202
516 ~~ 208,246, 96

Now, run the program. Either nothing will happen, or you will get an error
message. If an error message occurs, check your typing and correct any mistakes. If
no error message occurs, then this section has been typed correctly, and you are
ready to move on to the next section.

Below are 6 program sections for you to type in. When you have finished typing a
section, run the program. If nothing happens, move on to the next section. If an
error message occurs, check your typing and correct all errors. Do not move on to a
new section until all errors have been corrected.

201

202

When all sections have been typed and corrected, save these modified tools under
TOOL BOX. This tool box will work in exactly the same manner as you were
taught in the book. The difference will be in its operation. Try drawing and
painting a simple shape. You'll be pleasantly surprised.

520 FOR I = 49190 TO 49263
521 RFAD A: FOKE I,A: T = T+.A.
522 NEXT I
523 IF T<>8819 THEN PRlNI'''ERROR IN 520-541" :SIDP
524 T=0
530 REM:::::::FIND A FOINT
531 ~TA 173, 62, 3, 72, 41,248,168
532 ~TA 32,162,179,169, 0,160,192
533 ~~ 32, 40,186, 32,247,183, 24
534 ~~ 173, 60, 3, 72, 41,248,101
535 ~TA 20,133,251,133,253,173, 61
536 ~TA 3,101, 21, 72, 74,102,253
537 DATA 74,102,253, 74,102,253, 24
538 DA~ 105, 68,133,254,104,105, 96
539 ~~ 133,252,104, 41, 7,170,104
540 DA~ 41, 7,101,251,144, 2,230
541 DA~ 252,133,251, 96

Stop and run the program here.

550 FOR I = 49264 TO 49367
551 RFAD A: FOKE I,A: T=TiA
552 NEXT I
553 IF T<>10943 'lHEN PRINr"ERROR IN 550-575":SIDP
554 T=0
560 REM:::::::MISC. ROUTINES
561 ~~ 162, 64, 44,162, 69, 44,162
562 ~TA 74, 44,162, 79, 44,162, 84
563 ~~ 160, 3, 76,212,187,169, 64
564 ~~ 44,169, 69, 44,169, 84,160
565 ~~ 3, 76,162,187, 32,124,192
566 ~TA 32,247,183,166, 20,164, 21
567 DA~ 142, 89, 3,140, 90, 3, 96
568 ~TA 128, 64, 32, 16, 8, 4, 2
569 DA~ 1, 32,253,174, 32,235,183
570 DA~ 142, 62, 3,166, 20,164, 21
571 ~~ 142, 60, 3,140, 61, 3,201
572 DA~ 164,240, 24, 32,241,183,142
573 DA~ 63, 3, 32, 38,192,160, 0
574 ~~ 177,251, 29,161,192,145,251
575 ~~ 173, 63, 3,145,253, 96

Stop and run the program here.

580 FOR I = 49368 'ID 49444
581 READ A: roKE I,A: ~+.A.
582 NE)IT I
583 IF T<>7925 'ffiEN PRINl'''ERROR ill 580-601" :S'roP
584 T=0
590 REM:::::::PLOT ~ 1
591 mTA
592 mTA
593 mTA
594 mTA
595 mTA
596 mTA
597 mTA
598 mTA
599 DATA
600 mTA
601 mTA

32,115, 0, 32,138,173, 32
15,188,172, 60, 3,173, 61
3, 32,145,179, 32,112,192

32, 83,184, 32,118,192, 70
102, 32,144,192, 32,241,183
138,168, 32,162,179, 32, 15
188,172, 62, 3, 32,162,179
32,115,192, 32, 83,184, 32

121,192, 70,102,169, 84,160
3, 32, 91,188, 48, 11, 32

43,188,208, 3, 76,192,192

Stop and run the program here.

610 FOR I = 49445 'ID 49550
611 READ A: roKE I,A: ~+.A.
612 NEXT I
613 IF T<>11077 THEN PRINT"ERROR ill 610-636" :S'roP
614 T=0
620 REM:::::::PLOT PART 2
621 DATA 32,144,192, 32,137,192,169
622 DATA 74,160, 3, 32, 15,187, 32
623 DATA 118,192, 32,137,192,169, 79
624 DATA 160, 3, 32, 15,187, 32,121
625 mTA 192, 32,241,183,142, 63, 3
626 mTA 32,198,192, 32,131,192,169
627 mTA 74,160, 3, 32,103,184, 32
628 mTA 43,188, 48, 52, 32,112,192
629 mTA 32,247,183,165, 20,166, 21
630 mTA 141, 60, 3,142, 61, 3, 32
631 mTA 134,192,169, 79,160, 3, 32
632 DATA 103,184, 32, 43,188, 48, 21
633 mTA 32,115,192, 32,247,183,165
634 DATA 20,141, 62, 3,206, 89, 3
635 mTA 208,191,206, 90, 3, 16,186
636 mTA 96

203

204

Stop and run the program here.

640 FOR I = 49551 TO 49658
641 READ A: roKE I,A: T=!I'~

642 NE}IT I
643 IF T<>9829 THEN PRn~"ERROR IN 640-666" :S'roP
644 T=0
650 REM:::::::PAINT A SHAPE PART 1
651 ~~ 32, 89,194,141, 60, 3,140
652 ~~ 61, 3,142, 66, 3, 32, 89
653 ~~ 194,141, 64, 3,140, 65, 3
654 ~~ 142, 67, 3, 32,241,183,142
655 ~~ 63, 3, 32,253,174, 32,138
656 ~~ 173, 32,118,192,169, 0,141
657 ~~ 72, 3,141, 73, 3,173, 66
658 ~~ 3,141, 69, 3,173, 67, 3
659 ~~ 141, 68, 3,173, 69, 3,141
660 ~~ 62, 3, 32, 38,192,160, 0
661 ~~ 177,251, 61,161,192,208, 52
662 ~~ 173, 73, 3,240, 34,169, 0
663 ~~ 141, 73, 3,173, 72, 3,208
664 ~~ 16,173, 69, 3,141, 70, 3
665 ~~ 169, 1,141, 71, 3,141, 72
666 DATA 3,208, 8

Stop and run the program here.

670 FOR I = 49659 TO 49763
671 READ A: roKE I,A: T=!I'~
672 NE}IT I
673 IF T<>11207 THEN PRINT"ERROR IN 670-695":S'roP
680 REM:::::::PAINT A SHAPE ~ 2
681 ~~ 32, 59,194,169, 0,141, 72
682 ~~ 3,238, 69, 3,238, 71, 3
683 ~~ 206, 68, 3,208,188,240, 21
684 ~~ 169, 1,141, 73, 3,238, 69
685 DA~ 3,206, 68, 3,208,173,173
686 ~~ 72, 3,240, 3, 32, 59,194
687 ~~ 238, 60, 3,208, 3,238, 61
688 ~~ 3,206, 64, 3,208,132,206
689 DATA 65, 3, 48, 3, 76,182,193
690 ~~ 96,173, 70, 3,141, 62, 3
691 ~~ 32,190,224,169, 74,160, 3
692 ~~ 32, 91,188, 16, 3, 32,198
693 ~~ 192,238, 62, 3,206, 71, 3

o

199

694 ~TA 208,233, 96, 32,253,174, 32
695 ~~ 235,183,165, 20,164, 21, 96

Stop, run the program, and you're done!

IE

APPENDIXE
DESIGN CHARTS

TOP OF SCREEN
o 319 11111 1 1 1 1 1 1 1 222 2 2 2 2 2 2 2 2 2 233

1234456 7 8 8 901 223 456 6 7 8 9 0 0 1 234 4 5 6 7 8 8 901
086420864 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 208 6 4 2 0 8 6 4 2 0 8 642

o
8r+~+-r+-r~r+-r~-+1-~~+-r+-r~r+1-~~+-r+~+-r+-r~~

16r+~+-r+-r~r+-r~-+1-~~+-r+-r~-+1-~~+-r+~+-r+-r~~

~r+~+-r+-r~r+-r~-+1-~~+-r+-r~-+1-~~+-r+~+-r+-r~~

32r+~+-r+-r~r+-r~-+1-~~+-r+-r~-+1-~~+-r+~+-r+-r~~

~r+~+-r+-r~r+-r~-+1-~~+-r+-r~-+1-~~+-r+-r+-r+-r~~

~r+-r~-+1-~-+1-~~+-r+-r~-+-r+1~+-r+-r~r+-r~-+1-+1-+1

~r+-r~-+-r+1-+1-~~+-r+-r~-+-r+1~+-r+-r~r+-r~-+1-+1-+1

~r+-r~-+-r~-+1-~~+-r+-r~-+-r+1~+-r+-r~-+-r~-+1-+1-+1

nr+-r~-+-r~-+1-~~+-r+-r~-+-r+1~+-r+-r~-+-r~-+1-+1-+1

M~~~-+4-~-+4-~~+-~~~-+4-+4-++-~~~-+4-~-+4-+4~

~~~~-+4-+4-+4-~~+-~~~-+4-+4~+-~~~-+~~-+4-+4~ 

OO~~~-+4-+4-+4-~~+-~~~-+4-+4~+-~~~-+4-~-+4-+4~ 

1~~~~-+4-+4-+4-~~+-~~~-+4-+4-++-~~~-+4-~-+4-+4~ 

112~~~-+4-+4-+4-+4~+-~~~-+4-+4~+-~~~-+4-~-+4-+4~ 

1ro~~~-+4-+4-+4-~~+-~~~-+4-+4-++-~~~-+4-~-+4-+4-+1 

1~~~~-+4-+4-+4-~~+-~~~-+4-+4-++-~~~-+~~-+4-+4~ 

136 
1«r+-r~-+-r+1-+1-+1~+-r+-r~-+-r+1~+-r+-r+'-+-r~-+1-+1-+1 

1~~~~-+4-+4-+4-~~+-~~~-+4-+4-++-~~~-+~~-+4-+4~ 

1~~~~-+4-+4-+4-~~+-~~~-+4-+4-++-~~~-+~~-+4-~~ 

168 
176r+-r~-+-r+1-+1-~~+-r+-r~-+-r~~+-r+~+-r+-r~-+-r~-+1 

1~r+-r~-+-r+1-+1-~~+-r+-r~-+-r~~+-r+~+-r+-r~-+-r~-+1 

192r+-r~-+-r+1-+1-~~+-r+-r+--+-r~~+-r+~+-r+-r~-+-r~-+1 

x, Y PIXEL POINTS 

205 



1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 x 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

y 

206 



ROW # 0 

1 
2 

3 
4 

5 

6 

7 

8 
9 

10 

1 
2 

13 
14 
15 

16 
17 

18 
19 

20 

SPRITE DESIGN GRID DATA STATEMENTS 

(TOP) 

A B C SUM I SUM I SUM 1 1 1 BASIC DATA OF OF OF 263 1 263 1 263 1 
8 4 2 6 8 421 8 4 2 6 842 1 84268421 LINE II ABC 

~TA ,---,-
~TA 

----,-
~TA ,---,-
~TA 

,---,-
~TA 

,---,-
~TA ----,-
~TA 

,--.. -
~TA 

,---,-
~TA ,---,-
~TA 

,---,-
~TA 

,---,-
~TA ,---,-
~TA 

,---,-
DlITA ,---,-
~TA ,---,-
~TA 

,---,-
~TA ,---,-
~TA ,---,-
~TA 

,---,-
~TA 

,---,-
DlITA ,---,-

163 1 842 1 16 3 1 8 4 2 1 163 1 842 1 
242 6 2 4 2 6 2 426 
8 8 8 

APPENDIXF 
BIBLIOGRAPHY -SUGGESTED 

READING LIST 

Butterfield, Jim, "Commodore 64 Video-A Guided Tour, Part I," Compute!, 
Vol. 5" No.2 (February, 1983), pp. 186-188 

Butterfield, Jim, "Commodore 64 Video-A Guided Tour, Part II," Compute!, 
Vol. 5., No 3 (March, 1983), pp. 172-177 

Butterfield, Jim, "Commodore 64 Video-A Guided Tour, Part III," Compute!, 
Vol. 5., No.4 (April, 1983), pp. 158-163 

Butterfield, Jim, "Commodore 64 Video-A Guided Tour, Part IV," Compute!, 
Vol. 5., No.6 (June, 1983), pp. 194-198 

Commodore Staff, Commodore 64 Programmer's Reference Guide, First Edi
tion, Wayne, PA: Commodore Business Machines, Inc., and Howard W. Sams Be 
C:o., Inc .. 1982 

207 



208 

Commodore Staff, Commodore 64 User's Guide, First Edition, Wayne, PA: 
Commodore Business Machines, Inc., and Howard W. Sams & Co., Inc., 1982 

Commodore Staff, VIC-1541 Single Drive Floppy Disk User's Manual, Second 
Edition, Commodore Business Machines, Inc., 1982 

Gracely, Jim, "Bit-Mapped Graphics on the Commodore 64," Commodore 
Power/Play Magazine, Vol. II, No.2 (Summer, 1983), pp. 47-49 

Hampshire, Nick, VIC Revealed, Rochelle Park, NJ: Hayden Book Co., Inc., 
1982 

Lane, John Michael, "A Sprite Editor for the Commodore 64," Creative Com
puting, Vol. 9, No.9 (September, 1983), pp. 290-293 

Myers, Roy E., Microcomputer Graphics, Reading, MA: Addison-Wesley Pub
lishing Co., 1982 

Newman, William M. and Robert F. Sproull, Principles of Interactive Computer 
Graphics, New York, NY: McGraw-Hill Book Co., 1979 

Petts, Ronald A., "A Shape Generator for the Commodore 64," Compute!, Vol. 
4., No. 11 (November, 1982), pp. 160-163 

West, Raeto Collin, Programming the PET/CBM, Greensboro, NC: Compute! 
Books, 1982 



~ o 
<0 

FOREGROU 
COLORS 

Black 
White 
Red 
Cyan 
Purple 
Green 
Blue 
Yellow 
Orange 
Brown 
Lt. Red 
Gray I 
Gray 2 
Lt. Green 
Lt. Blue 

3 

B W R 
H E 

HIGH RESOLUTION COLOR CHART 

BACKGROUND COLORS 

C P 
Y U G B Y 0 B 
A R R L E R R 

R G G G B G n E R R R L R 
0> D Y Y N U Y 

2 2 2 3 ~~ 
O~ 
~t"r1 

n Z 
~8 
>~ 
~CJ 
~ 
rJ) 



TOP OF SCREEN 
Col. # 

111111111122222222223333333333 X 
o 1 2 3 4 5 6 7 8 9 0 1 234 5 6 7 8 901 2 3 4 5 6 7 8 901 234 5 6 7 8 9 

Row#O~~+4~+-~~+4~~~1-~~+4~~~1-~~+4~+-~~+4~ 
:~~+4~+-~~+4~~~1-~~+4~~~1-~~+4~+-~~+4~ 

210 

120 
1~~~+4~+-~~+4~~~1-~-r~-r~~1-~-r~-r+-r+~~~ 

200 
2~r+~+4~~~1-~-r~-r+-r+~~-r~-r+-r+~~-r~~~~~ 

280 
320r+~~-r~~~~-r~-r+-r+~~-r~-r+-r+~~-r~-+~~~ 

~ 
~~~-r~~~~-r~-r+-r+~~-r~-r+-r+~~-r~~~~-H 

400
~~~-r~~~~-r~-r+-r+~~-r~-r+-r+~~-r~~~~-H 

~ 
~~~-r~~~~-r~-r+-r+~~-r~-r+-r+~~-r~~~~-H 

480
~~~-r~~~~-r~-r+-~~~-r~-r+-r+~~-r~~~~-H 

520 
~~~-r~~~~-r~-r+-~~~-r~-r+-r+~~-r~~~~-H 

~
6OO~~~-r~~~~-r~-r+-r+~~-r~-r+-r+~~-r~~~~-H

::~~+4~~~1-~-r~~+-~~+4~~~+-~~+4~~~1-~~
720
7~~~+4~~~1-~-r~~+-~~+4~~~+-~~+4~~~1-+4~

800
~~~+4~~~1-~~~~~~-r+4~~~~~-r+4-r~r+~+4~ 

880 
920~~+4~+-r+~+4~~~+-~-r+4~~~~~-r+4~~r+~+4~ 

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

y

COLOR BLOCK # = COL. # + ROW #

MEM. LOC. = 17408 + COLOR BLOCK #

COLOR MEMORY

~
Q,/

= :;
~

APPENDIXH
TOOL KIT REFERENCE CARD

(Under "How To Use," you will find that all variables are set equal to "#". See
back of this card for the value ranges allowed for each variable.)

TOOL # DESCRIPTION HOW TO USE

10 DELETE MAIN ROUTINE Type RUN 10 and pTess [RETURN]

20 ENTER GRAPHICS MODE GOSUB20

30 RETURN TO TEXT MODE GOSUB30

40 SET SCREEN COLORS C = #: GOSUB 40

50 PAINT BACKGROUND GOSUB50

60 FIND A POINT X=#: Y=#: GOSUB 60

.70 PLOT A POINT X=#: Y=#: C=#: GOSUB 70

80 PLOT A LINE XI=#: YI=#: X2=#: Y2=#: C=#: GOSUB 80

90 PAINT A SHAPE Xo=#: YO=#: W=#: H=#: PC=#: C=#: GOSUB 90

100 SAVE PICTURE type RUN 100 and pTess [RETURN]
enteT filename
enteT device # (8 OT 1)

110 DRAW A SHAPE fill £%(1,#): fill L%(l,#)
NL=#:C=#: XO=#: YO=#: GOSUB 110

120 DEFINE SPRITE SP enteT 63 data items in data statements
SP=#: GOSUB 120

130 TURN ON SPRITE SP SP=#: GOSUB 130

140 TURN OFF SPRITE SP SP=#: GOSUB 140

150 X EXPAND SPRITE SP SP=#: GOSUB 150

160 X UNEXPAND SPRITE SP SP=#: GOSUB 160

170 Y EXPAND SPRITE SP SP=#: GOSUB 170

180 Y UNEXPAND SPRITE SP SP=#: GOSUB 180

190 SPRITE PRIORITY OVER SHAPE SP=#: GOSUB 190 ..
200 SHAPE PRIORITY OVER SPRITE SP=#: GOSUB 200

210 SET SPRITE SP TO COLOR C C=#: SP=#: GOSUB 210

220 PLACE SPRITE SP AT X, Y X=#: Y=#: SP=#: GOSU 220

230 MOVE SPRITE FROM XI=#: YI=#: X2=#: Y2=#
XI, YI, TO X2, Y2 SP=#: GOSUB 230

VARIABLE LIST

The following variables are commonly needed by this book's subroutine tools:

Variable Description Value Range

XO X Offset of Shapes 0-319

YO Y Offset of Shapes 0-199

Xl Initial X Coordinate 0-319

Y1 Initial Y Coordinate 0-199

X2 Final X Coordinate 0-319

Y2 Final Y Coordinate 0-199

C Color Code 0-255

X X Coordinate 0-319

Y Y Coordinate 0-199

W Width of Shape 0-319

H Height of Shape 0-199

PC % of Area to Paint 0.0 - 1.0

NL # of Lines in Shape >0

E% List of endpoint data N/A

L% List of line data N/A

SP Sprite Number 0-7

SD Speed of Sprite >0

The following variable are needed by some of the additional tools provided in
Appendix C:

Variable

R

T

SC

Description Value Range

Radius of Shape 0 - 100

Number of Sides for Polygon >2

Vertical Scale for Shape . 1=Norma1, <1=Shorter
<l=Taller

cb9JJflO~J' .~-
A BEGINNER'S GUIDE

Commodore 64 Color Graphics: A Beginner's Guide is a step-by-step
guide to creating animated color graphics on your personal computer.

The easy to follow yet comprehensive instructions give you everything
you need in order to perform the computer "magic" that transforms your
blank screen into a detailed sailing scene complete with animation. In
addition, you will have developed an entire "tool kit" of graphics pro
grams. You can use this tool kit at any time to have an automatic head
start in any graphics adventures you begin on your own.

You'll learn the basics of design and programming techniques at your
own pace. The instructions show you how to save programs at the end of
every chapter, giving you a logical breakpoint for saving your work so
you can continue at a later time.

Every program that you need to enter is given to you and thoroughly
explained, to help you understand exactly what the BASIC commands
mean. You will also see many illustrations and photos that help to sim
plify programming concepts and allow you to check your progress.

Even first-time computer users will have an enjoyable time discovering
Commodore 64 graphics.

This unique format of step-by-step programming instructions, compre
hensive illustrations and photographs, and interesting programming
exercises will speed you on your voyage through the world of computer
graphics.

With Commodore 64 Color Graphics: A Beginner's Guide you will have
everything you need to begin your adventure.

cYHE ~OOK ~OMPANY
A Division o r Arra ys, Inc.

