commodore 64
disk companion

essential routines for commodore
disk users

david lawrence and mark england

commodore 64
disk companion

essential routines for commodore
disk users

david lawrence and mark england

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street

London WC2R 3LD

Copyright © David Lawrence and Mark England, 1984
Reprinted 1984

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

British Library Cataloguing in Publication Data
Lawrence, David, 19---

Commodore 64 disk companion.

1. Commodore 64 (Computer)

2. Data disk drives

I. Title II. England, Mark

001.64’42 QA76.8.C64

ISBN 0-946408—49—-1

Cover design by Grad Graphic Design Ltd.
Illustration by Steiner Lund.
Typeset and printed in England by Commercial Colour Press, London E7.

ii

CONTENTS

Notes on Program Listings

Introduction

1

O 00 9 O W» A W N

bt ek ek
N = O

13

Disks and Disk Drives

Setting up Your System

Saving and Loading Programs
Disk Housekeeping Commands
Pattern Matching

The Error Channel

Sequential and User Files
Program Files

Relative Files

Random Files

The Disk Directory

Machine Code Programming Commands

Changing Device Numbers

APPENDICES
A Disk Error Messages

B Additional Machine Code Commands

C DOS Support Commands

Index

Page
vii

ix

15
21
47
51
57
75
95
107
121
131
137

139
141
143
145

iii

Contents in detail

CHAPTER 1
Disks and Disk Drives
Introduction — the layout of a floppy disk — the disk drive.

CHAPTER 2
Setting up Your System

Connecting up the system — switching on the system — working with disks
— inserting and removing disks — problems while the system is running
— turning off the system.

CHAPTER 3
Saving and Loading Programs

How often should programs be saved — the SAVE and LOAD commands
with a disk drive — SAVEing and LOADing with more than one disk drive
— an easy technique to simplify saving programs — the use of VERIFY —
overwriting files with ‘@0:’ — saving what you have SAVEd.

CHAPTER 4
Disk Housekeeping Commands

Introduction — OPEN — CLOSE — PRINT # — NEW — SCRATCH —
RENAME — COPY — INITIALIZE — VALIDATE.

CHAPTER 5
Pattern Matching

What is pattern matching — patterns with ‘*> — patterns with ¢?” — comb-
ining ‘*’ and ‘?” — using pattern matching with commands.

CHAPTER 6
The Error Channel

What is the error channel — getting messages from the error channel —
using the error channel — summary of error channel.

Commodore 64 Disk Companion

CHAPTER 7
Sequential and User Files

What is a sequential file — OPENing a sequential file — printing and
retrieving data: INPUT # and GET # — GET # — detecting the end of
file — ending output or input with CLOSE — examples of the use of
sequential files — summary of user files — summary of sequential files.

CHAPTER 8
Program Files

What is a program file — the structure of a BASIC program file — using
program files for other purposes — output of program files to printer —
merging programs using program files on disk — renumbering a program
file on disk.

CHAPTER 9
Relative Files

Introduction — creating a relative file — OPENing a relative file —
specifying a position in a relative file — writing to a relative file — reading
from a file — CLOSEing a relative file — using relative files.

CHAPTER 10
Random Files

OPENing a random file — position of data in the buffer — writing data to
the buffer — writing data to disk — loading data from the disk to the
buffer — getting the data back into the 64 — marking and freeing sectors
on the disk — executing machine code from the disk — two utility pro-
grams using random files.

CHAPTER 11
The Disk Directory

The format of the directory — reading the directory — repeating a
process on multiple files.

CHAPTER 12
Machine Code Programming Commands

Reading the memory of the disk drive — writing to memory — executing
machine code in the disk drive memory.

vi

Notes on Program Listings

For the sake of clarity, control characters in the program lines which
follow have been set out as follows:

CURSOR UP [CU]
CURSOR DOWN [CD]
CURSORLEFT {CL]
CURSOR RIGHT [CR]
CLEAR SCREEN [CLR]
HOME CURSOR [HOME]
REVERSEON [RVS]
REVERSE OFF [RVO]

Colours are represented by the colour name in square brackets. Thus the
control character for yellow is:

[YEL]

vii

Introduction

The advent of inexpensive, reliable disk drives for home use represents a
revolution in what can be achieved with a microcomputer. Any computer,
no matter how large or small, comes into its own only when it is able to
access data far more quickly than can be achieved with the trusty but
tortoise-like cassette drive. Without fast mass storage, substantial pro-
grams become tiresome burdens which can take up to 15 minutes to load.
The handling of data becomes a nightmare, with its constant necessity to
rewind or change tapes and the wait while data is slowly added to memory.
In short, the best computer is only as good as the means it uses to store
data. The disk drive is far from a luxury, it is an essential component of an
effective microcomputer system.

Nowhere is this more true than in relation to the Commodore 64. The
success of the 64 as far more than a games machine or a computing toy is
based to a large extent on Commodore’s ability to produce a disk drive
which works to the highest standards and yet is within the price range of
anyone who takes their computing at all seriously.

But simply to buy a disk drive is not the solution to the problem of
enlarging the scope of the 64. Like any disk drive, the 1541 has its own way
of working, and its own habits which are neglected at its owner’s peril.
Poorly thought out working methods with a disk often mean that much of
its potential can remain unrealised. Carelessness, or lack of understand-
ing, can mean that valuable data or programs are irretrievably lost. And
yet, for all that, the 1541 is a well designed piece of equipment, full of
features that many disk drive owners can only dream about.

This book is an attempt on our part to share some of the many discover-
ies that we have made about the 1541 disk drive, the enjoyment that comes
with using it and the power that is released when it is used well.

Note on the applications of this book

This book is designed specifically for the use of Commodore 64 owners
who are working with one or more 1541 disk drives. Most of the commands
and techniques contained in the book will be applicable to the older 1540
drive or to users of the VIC 20 computer. Having said that, the material
presented here has not been tested against this equipment and occasions
will arise when facilities described here are not available. In relation to the

ix

Commodore 64 Disk Companion

VIC 20, an adjustment must be made to the speed at which the 1541 disk
drive runs using the ‘UI—’ user command, as described in the 1541 disk
manual. Users of the 1540 drive will not, according to the 1540 manual, be
able to employ the relative file techniques described in Chapter 9.

CHAPTER 1
Disks and Disk Drives

1) Introduction
2) The layout of a floppy disk
3) Thedisk drive

Section 1. Principles of magnetic disk storage

Disk storage, like tape storage, depends on the fact that a thin layer of a
ferrous metal compound is capable of being magnetised and demagne-
tised. When magnetised by proximity to a magnetic field, such compounds
have the capacity to maintain their magnetised state.

In practice, the fact that magnetism is employed is irrelevant (unless you
are in the habit of putting magnets on top of your disks). What is signifi-
cant is that, by some means or other, such ferrous compounds can record
the fact that something has happened to them — they can record informa-
tion. When spread thinly, tiny amounts of such compounds are capable of
recording the fact that an electromagnet has passed near to them, the
degree of magnetism it possessed and the direction of the current in it.
Having been magnetised, the film can be read by an electromagnet which
has no current being fed through it, since it is a property of electromagnets
that they produce an electric current when passed through a magnetic field
— even the minute field stored by a thin film of ferrous compound.

Provided, then, that an electromagnet can be made to pass over the film
sufficiently closely; and the state of the electromagnet can be changed ina
controlled manner; and provided that this can be done with sufficient
accuracy that the same position can be returned to time and time again;
then the magnetic qualities of a thin layer of a ferrous compound can be
used to store information.

In the context of a computer disk drive, the film of ferrous compound is
held on the surface of a 5% inch piece of thin, flexible plastic. The elec-
tromagnet is provided by the disk drive in the form of a tiny magnetic
recording head capable of being moved with great accuracy in a straight
line between the centre of the disk and its circumference. The movement of
the head over the film is provided by the revolving of the disk. In essence

1

Commodore 64 Disk Companion

then, a disk system consists of a revolving disk and an electromagnet which
can scan in and out across it as it moves.

The advantage of this system compared to tape is not simply the speed
with which a single block of information can be stored — some tape
systems are very fast indeed. The real power of the disk system lies in the
speed at which it can find the information or the place where it is to be
stored. A good analogy is the difference between an ordinary audio cass-
ette recorder and a long playing record. Provided that in both cases you
know where the information you want is stored, ie which track of an album
you wish to play, the disk will provide you with much faster access since
you are able to move the needle directly in towards the centre of the turnta-
ble until it is positioned correctly. Once there, another kind of movement,
ie the revolutions of the disk itself, allows you to recall what you want.
With the tape system, you have only one kind of movement available to
you and you will have no choice but to fast-wind until the correct place is
found.

2. The layout of a floppy disk

Unlike a long playing record, the disks used by the 1541 disk drive do not
come with individual tracks laid out in a permanent form. The film of
recording medium is, or should be, of a uniform consistency over the
whole of the disk’s surface. Dividing up the disk into easily identifiable
‘tracks’ for the storage and retrieval of datais a task undertaken by the disk
drive itself in a process called ‘formatting’.

The purpose of the formatting process is to mark the disk magnetically
with a series of areas called ‘sectors’, roughly three quarters of an inch
long. Sectors fall into rings which, as with long playing records, are
known as tracks, thirty-five of them in all, with the number of sectors
varying according to the distance of the track from the centre of the disk
— the further from the centre, the longer the track and the more sectors it
will contain.

This simple process is accompanied by some more subtle ones which will
enable the finely tuned disk-drive mechanism to identify its place on the
disk and move the recording head. Each sector is created with an area of
256 bytes for the storage of data but also has written into it other informa-
tion; such as the identification number of the disk, the number of the track
on which the sector falls, and the number of the sector within the track,
plus some standard data which the disk drive will later use to check that it is
properly synchronised with the disk as it turns.

Apart from the blank sectors prepared for the reception of data, an area
of the disk (track 18) is reserved for the use of the ‘directory’ or list of files
which the disk will eventually contain. When the disk is first formatted,

2

Chapter 1 Disks and Disk Drives

only the first two sectors of track 18 will be used for this purpose — other
sectors will be brought in as programs are added. Included in the direc-
tory is an area of housekeeping information known as the Block Allo-
cation Map. The purpose of the BAM is to record, for every sector on the
disk, whether that sector is available for the storage of information or if it
is occupied by part of an existing file.

The BAM is positioned in the first sector (sector zero) of track 18 and
consists of 140 bytes of disk space. This spaceis itself divided up into 35 sets
of four bytes each. The first byte of the group indicates the number of
sectors available on one of the disk’s 35 tracks. The next three bytes record
the individual state of sectors 0—7, 8— 16, and 17—23 of the corresponding
track. If sector zero of the corresponding track is available for storage, for
instance, bit zero of the value stored in the second of the four bytes will be
‘set’ (ie equal to one rather than zero). If the value of a whole byte (ie eight
bits) is zero, so that none of its bits is set, this would indicate that the eight
sectors it is recording are all in use by a current file. You may note that the
BAM makes provision for recording 24 sectors (0—23), even though there
is a maximum of 21 on the long outer tracks and less as the tracks near the
centre. The BAM overcomes this potential difficulty by registering these
non-existent tracks as unavailable when the disk is formatted.

From Table 1.1 it can be seen that if there are more than eight files on
the disk then another sector of track 18 will need to be added to the
directory. The new sector will have the same format as sector 1 shown
in the table. The last sector of the directory is indicated by the fact
that the first two bytes, which normally indicate the address of the
following sector, point to track zero, sector 255, which does not exist.

The structure of a file on the disk

Having set up the disk structure and the initial directory, the disk is now
ready for the storage of information in units which are known as ‘files’.
The two types of file which are used most often are the program file, which
is what is created when a program is SAVEd, and the sequential file, which
is created when a file is OPENed for the storage of items of data. Both these

Table 1.1: Structure of the Block Allocation Map

BYTE REMARKS

1 Holds a number indicating the number of blocks available
on this track.

2 Sectors 0—7, bit 0 represents sector 0

3 Sectors 8—15, bit 0 represents sector 8

4 Sectors 16—23, bit 0 represents sector 16

Commodore 64 Disk Companion

Table 1. 2: Structure of the Directory Track (Track 18)

Track 18, Sector 0

BYTE

0
1
2

oW

_— \D 00 1 O\ Wn

0
1
143

144161
162
163
164
165
166
167
168170

REMARKS

Track of next directory block (always track 18)

Sector of next directory block (sector 1)

A valueof 65 here indicates that the disk is formatted for
1541

Not used, normally has value 0

First byte of Block Availability Map (BAM), containing
the number of sector available on track 1

Track 1, sector 0—7 availability map

Track 1, sector 8—16 availability map

Track 1, sector 1723 availability map

Number of sectors available on track 2

Track 2, sector 0—7 availability map

Track 2, sector 8—16 availability map

Track 2, sector 17—23 availability map

Track 35, sector 17—23 availability map (this is the last
byte of the BAM)

Disk name padded with shifted spaces (CHR$(160))

First byte of the disk ID

Second byte of the disk ID

Not used, normally has value 160

Character ‘2’ indicates DOS version

Character ‘A’ indicates DOS version

Not used, normally has value 160

Not used, value indeterminate

Track 18, sector 1

BYTE
0

2-31
32

33
34-63
64

65
66—95

REMARKS

Track of next directory sector (normally 18 but 0 if end of
directory)

Sector of next directory sector (255 means the end of the
directory)

File entry 1 — for details see Chapter 11

Not used

Not used

File entry 2

Not used

Not used

File entry 3

Chapter1 Disks and Disk Drives

96 Not used
97 Not used
98—127 File entry 4
128 Not used
129 Not used
130-159 File entry 5
160 Not used
161 Not used
162—191 File entry 6
192 Not used
193 Not used
194-223 File entry 7
224 Not used
225 Not used

226-255 File entry 8

types are stored on the disk in exactly the same way, so we shall take for an
example the SAVEing of an ordinary program file.

Sequence of events in SAVEing a program file
1) The SAVE command is entered by the user and the 64 instructs the disk
drive to open a program file of that name.

2) The disk drive checks its directory to see that a file of that name does not
already exist.

3) Provided that there is no file of the same name, the disk drive records the
filename in the directory with a starting track and sector of 0,255 —iea
non-existent track.

4) Using the BAM, which is always kept in the disk drive memory, the drive
begins to search for the nearest track to the directory track, either out
towards the edge of the disk or in towards the centre, which has a free
sector (SECTORI1) and marks that sector as allocated in the BAM.,

5) Having found SECTORI, the drive records its position and then accepts
254 bytes of the program from the 64 and places them into a buffer in the
disk memory.

6) Another search is now made for the nearest free sector other than the one
discovered in step 4 (SECTOR2).

Commodore 64 Disk Companion

7) The address of SECTOR2 (discovered by step 6) is now written into the
first two bytes of the disk buffer created in step 5.

8) The whole of the contents of the buffer are now written into SECTOR1
(discovered in step 4).

9) SECTOR?2 is now regarded as SECTORI1 and the process is repeated
from step 5 until the 64 informs the disk drive to close the file, by which
time the whole of the program has been received.

10) For the final bufferful of data, the address of the next sector (the first
two bytes) is set at track zero, sector 255, to mark the end of the file.

11) The directory entry for the new file is altered to record the sector used
for the beginning of the file and the number of bytes contained in the file.

Table 1. 3 : Allocation of Sectors on a typical track

TRACK = 15

0 SEQ. F ,PRG BLOCK 2
1 EOF.F ,PRG BLOCK 2
2 LIST T&S. F ,PRG BLOCK 14
3 APRICOT. F. WOW ,SEQBLOCK 1
4 LIST T&S. F ,PRG BLOCK 12
5 SEQ ARRAYS. F ,PRG BLOCK 4
6 TEST1 ,SEQBLOCK 1
7 SCREEN SAVE ,PRG BLOCK 1
3 PROG READ ,PRGBLOCK 1
9 SCREEN ,PRGBLOCK |
10 SEQ. F ,PRG BLOCK 3
11 EOF.F ,PRG BLOCK 3
12 SEQ ARRAYS. F ,PRG BLOCK 3
13 SEQ ARRAYS. F ,PRGBLOCK 5
14 LIST T&S. F ,PRGBLOCK 13
15 SCREEN ,PRG BLOCK 3
16 LIST T&S. F ,PRGBLOCK 11
17 SCREEN ,PRG BLOCK 4
18 PROG READ ,PRG BLOCK 2
19 SCREEN ,PRG BLOCK 2
20 SEQ. F ,PRG BLOCK 4

Chapter ! Disks and Disk Drives

By the time programs have been written to the disk, removed and overwrit-
ten during the course of time, the structure of the disk will appear most
confused to the human eye, with a mishmash of sectors on each track allo-
cated to a variety of programs. Provided that nothing happens to corrupt
the directory, however, or the two bytes at the beginning of each sector
which record the position of the next sector of the file, the disk drive will
always be able to find the start of a file that it holds and read that file sector
by sector without difficulty. An indication of the kind of disk structure
that will be found on a well-used disk is given by Table 1.3, which is the
output of a program contained in Chapter 10 of this book. The table dis-
plays the contents of a single track of one of the disks used in the
development of the book.

3. The disk drive

So far, we have looked at disks and their layout but taken the activities of
the 1541 drive itself for granted. It would be wrong to conclude this chap-
ter, however, without a reminder that the 1541 is an extremely sophis-
ticated and powerful piece of equipment, driven by a 6502 microprocessor
and its own internal Disk Operating System program which is as large as
the ROM of the 64 itself. The advantage of this is that, unlike disk drives
for the majority of other personal microcomputers, the use of the 1541
drive requires no memory to be set aside by the host computer to run it.
Rather than relying on the 64 for detailed instructions as to the handling of
its affairs, the 1541 normally requires only to be informed of the name of
the task to be carried out. It will then proceed without further help on one
of the complex procedures it is capable of performing. For this reason, the
1541 is known as an ‘intelligent drive’.

CHAPTER 2
Setting up Your System

1) Connecting up the system

2) Switching on the system

3) Working with disks

4) Inserting and removing disks

5) Problems while the system is running
6) Turning off the system

1. A beginner’s guide to connecting up the system
To operate a disk system you need at least one 1541 disk drive, together
with its connecting lead, to add to your existing system. You will also
require a set of 5% inch floppy disks — these normally come in boxes of ten
but can be bought singly. It should not be forgotten that you will also
require an extra power socket from which to run the disk drive.
Assuming that your 64, its power unit and the television/monitor
which you normally use are all properly connected, and that the power is
OFF to all the equipment, follow this procedure:

1) Turn the 64 around so that the back of the machine faces you.

2) Reading from right to left, you will find two rectangular slots in both of
which may be seen the edge of the 64’s printed circuit board.

3) To the left of these two slots are two circular plug sockets. The one on the
right is a six-pin socket and is called the serial bus. It is the means by which

the 64 communicates with outside devices such as printers and disk drives.

4) If you have a printer connected to the serial bus socket, disconnect it for
the time being.

5) Plug into the serial bus socket one of the small round plugs (DIN plugs)
on the connecting lead which came with the disk drive.

6) You can now turn the 64 round so that the keyboard is again facing you.

9

Commodore 64 Disk Companion

7) Take the disk drive and place it next to the 64 so that its back is facing
you.

8) On the back of the 1541 you will find the connections shown in Figure 2.1

Figure 2.1: Back Panel of 1541 Disk Drive

ON/OFF SWITCH SERIAL BUS SOCKETS
|
oN
' j
ofE ' *
e ——
MAINS
INPUT FUSE

9) Take the other end of the connecting cable you have just plugged into the
back of the 64 and plug it into either of the sockets marked ‘SERIAL BUS’
in the illustration.

10) If you have a second disk drive, plug its connecting cable into the other
socket. (If you wish to operate more than one drive you will also have to
read Chapter 13 for advice on altering the device number of one of the
drives if the drives have not been permanently modified.) A whole series of
drives can be chained in this way if desired.

11) If you have a Commodore compatible printer, you may now connect it
to the spare serial bus socket on the last disk drive to be connected to the
system.

12) Ensure that the 1541, the Commodore 64, the TV/monitor (and the
printer if connected) are all switched off. Plug the mains connection lead

10

Chapter2 Setting up Your System

into the back of the 1541 and then connect the other end of the lead to the
mains. Switch on the mains power to the 64, TV/monitor (and printer if
connected). Do not at this stage switch on the equipment itself.

13) Turnthe 1541 around so that its front is facing you, being careful not to
snag any of the leads under the drive.

14) On the front of the 1541 you will see a small bar protruding. The bar
will be in one of two positions:

a) slightly below the slot which goes across the front of the drive or
b) slightly above it.

15) If the bar is in position a), press it in gently with your finger and allow it
to move gently upwards on its spring.

16) The disk drive door is now open. To make absolutely sure that the drive
does not contain a disk or the square of cardboard used to protect the
internal mechanism during carriage, close the door by pressing gently
down until it locks and then opening it again.

17) If a disk or the protective card is now visible, remove by sliding gently
towards you.

18) Switch the disk drive on (and the printer if connected). Both the green
and red lights on the front of the drive will come on, the drive will whirr for
a second or so, then the whirring will stop and the red light will go out. If
the red light does not go out, switch the drive off, check the connections
and repeat this step. If the red light still remains on, consult your dealer.

19) Switch on your 64. (You should see the same sequence as described
under step 18.)

20) Switch on your TV/monitor and tune it to the output of the 64.

21)You are now ready to use your Commodore 64 disk system.

2. Switching on the system once it is set up
The recommended sequence for switching on a disk system once it has been
properly set up is:

PRINTER—>DISK DRIVE=COMPUTER

11

Commodore 64 Disk Companion

3. Working with disks
Given in Figure 2.2 is the layout of a typical 5 inch floppy disk.

Figure 2.2: A 514" disk

DISK READ/WRITE SLOT

-+

TRACK 0
TRACK 18
TRACK 35

DISK
INDEX
HOLE

WRITE et
EI(()QFEEICT DIRECTION
\E] OF
INSERTION

/ /
/ /

PROTECTIVE ENVELOPE MANUFACTURERS LABEL

Such disks will serve you well if you observe a few simple rules:

1) The disk is never removed from its protective envelope. It can revolve
quite satisfactorily within the envelope and will be read through the
READ/WRITE SLOT.

2) Floppy disks, or flexi-disks, are not designed to be deliberately flopped
or flexed. If, by accident, a disk is momentarily bent slightly, it should
survive but there is no guarantee of this. There is always a slight amount of
give in the disk when inserting it into the drive or removing it — do not
worry about this, simply do not go to extremes.

3) Your disks will have been supplied with a protective sleeve which covers
most of the disk envelope and protects the READ/WRITE SLOT. When
not in use, disks should always be replaced in the sleeve. Disks should
preferably be stored upright in a plastic (ie non-magnetic) box specially
designed for the purpose. Never leave disks lying on any surface, out of
their sleeves. It is common to see disks carelessly left lying about unpro-

12

Chapter2 Setting up Your System

tected in the belief that, provided that the READ/WRITE SLOT on the
‘front’ of the disk (the side with the labels) is not touched, all will be well.
Since the 1541 actually reads the disk from the back, this is unlikely to be
true.

4) Disks should never be exposed to a magnetic field, which includes leav-
ing them on the top of the disk drive or the TV/monitor.

5) Disks should never be exposed to dampness or extremes of temperature,
which includes leaving them in direct sunlight.

6) When writing disk labels either write the label before attaching to the
disk or use a felt-tip pen which does not place pressure on the disk through
the protective envelope.

7) It should go without saying that you should never touch the READ
WRITE SLOT of the disk.

8) Cheap disks, like cheap tapes, can lead to disaster. Only you can decide
how much your programs and data are worth to you.

4. Inserting and removing disks

To place the disk in the drive, first ensure that the disk drive door is open,
then orient the disk so that the manufacturer’s label is upwards and the
READ/WRITE SLOT end of the disk is towards the 1541, Push the disk
gently into the horizontal slot on the front of the drive. If the disk catches
slightly as it is pushed home, do not attempt to force it — remove it and try
again. If you continue to have problems, check to ensure that another disk
is not caught in the drive.

Provided that no problems are encountered, the disk should be pushed
fully home until no part of it protrudes and it remains in the drive without
pressure from the fingers. Finally, close the disk drive door — the disk
drive cannot be accessed by the 64 until this has been done.

Disks are removed from the drive simply by opening the disk drive door,
when the disk will slide out approximately an inch. If the disk does not
appear, close and open the door again. Disks which are reluctant to come
out of the drive can just be reached with the fingers, though no force should
be used.

If disks continually stick in the drive, either there is a problem with the
disks (such as a label sticking out over the edge) or the driveis faulty. Never
poke inside the drive with any kind of tool to try to free a disk — especially
if the drive is connected to the mains.

13

Commodore 64 Disk Companion

Never open the door of the disk drive while the red light is on and the
drive motor is running, or damage to the disk may result. Note that some
editions of the 1541 manual incorrectly state that the disk may not be
removed while the green light is on. The green light is the disk power indica-
tor and the only way to extinguish it is to switch off the power to the drive.
On no account do this before removing the disk.

5. Problems while the system is running

Like any other complex piece of equipment, it is possible for the 1541 to
lapse momentarily from its usual high standard of reliability. It is possible,
for instance, for errors to be encountered in the reading or writing of a
program, or for some other problem to arise which prevents a disk
command being properly carried out. In this case the red drive light will
flash on and off and you should repeat the procedure which led to the error
if you are sure that the mistake is not your own —see Chapter 6.

In some circumstances, it is possible for a situation to develop where the
64 and the disk drive simply refuse to communicate with one another.
Following the recommended switching-on procedure, the solution would
be to remove the disk, to switch off the 64 and the disk drive and then to
switch them on again in the correct order.

If the 64 contains a program which you are trying to save then our experi-
ence is that removing the disk and switching off the 1541 (and any other
device connected to the serial bus, such as a printer), and then switching it
back on again will almost invariably solve the problem. It is as well to
remember that, if all else fails, the Datassette recorder may well be capable
of redeeming the situation by saving the program until the disk system can
be sorted out.

It is unlikely that the 1541 will give you many problems if you remember
that it is a precision engineered machine which, unlike the 64, has moving
parts which should not be subject to vibration, sudden shocks or excessive
heat (including direct sunlight).

6. Turning off the system

Though it seems a small point to be given a separate section, do always
check that the disk drive door is open and the drive empty before switching
off the drive. In actual fact, disks are seldom damaged by being left in the
drive when it is turned off, but it can happen.

14

CHAPTER 3
Saving and Loading Programs

1) How often should programs be saved

2) The SAVE and LOAD commands with a disk drive

3) SAVEing and LOADing with more than one disk drive
4) An easy technique to simplify saving programs

5) The use of VERIFY

6) Overwriting files with ‘@0’

7) Saving what you have SAVEd

The first use that anyone makes of a disk is to store programs. There is no
doubt that, if you enjoy computing and use your 64 more than occa-
sionally, the difference in speed with which you can access programs makes
the cost of a disk drive worthwhile compared to a cassette recorder. At the
same time, it is always surprising how little care most people take in the
keeping of programs that they have spent long periods developing, failing
to save regular updates when a program is being developed, failing to check
that a program has been properly saved, keeping only one copy of impor-
tant programs and abusing disks by leaving them around exposed to the
elements. Given below are one or two common-sense rules when it comes
to saving programs.

Section 1. How often should programs be saved

As you develop new programs, SAVE them regularly. Like any other
microcomputer, the 64 can lose programs if there is a momentary surge in
the electricity supply, or if someone kicks the plug, or even because in your
programming you manage to upset the 64’s equilibrium. How much work
you will have lost will depend on how long it has been since you last saved
your program. If a program is being entered rapidly, you should not
normally expect to enter lines for more than 15 minutes without resaving
the program. When a program is being debugged, so that relatively fewer
changes are being made, perhaps you might increase that period to half-an-
hour. It really depends on how much you are prepared to lose, but you can

15

Commodore 64 Disk Companion

depend on the fact that if you do not save programs regularly you will,
sooner or later, lose an important program that has taken a long time to
enter.

2. The SAVE and LOAD commands with a disk drive

In order to embark on a policy of SAVEing programs regularly, you need
first to know the command which will store a program on the disk drive. If
you have previously been working with a Datassette cassette recorder, then
you will have become used to the format:

SAVE “< PROGRAM NAME> "’
to SAVE a program or:
LOAD “< PROGRAM NAME> "’

when LOADIng a program back into memory.

With your disk drive installed, the situation changes slightly. While the
64 can work perfectly well with the 1541, it is designed on the assumption
that it will be used with a cassette recorder. This fact allows users of a tape
recorder to get away without specifying one very important piece of
information, namely the number of the device on which the program is to
be stored. The device number of the cassette recorder is one, and when the
instruction:

SAVE “PROGRAM”’

is entered, the 64 assumes that what is meant is:

SAVE “PROGRAM”’,1

When working with disk, the programmer cannot rely on the 64 to put this
important piece of information in, so the format of the SAVE command
will normally be:

SAVE “< PROGRAM NAME> "’ 8

and of LOAD:

LOAD “< PROGRAM NAME> "’,8

16

Chapter3 Saving and Loading Programs

3. SAVEing and LOADing with more than one disk drive
When a single disk drive is bought from the dealer, it is set up internally to
think of itself as device eight, and it will respond to any instructions
addressed to a device with that number, like the SAVE and LOAD
commands in the last section. An increasing number of people, however,
are discovering the advantages of running more than one disk drive. With
more than one drive, however, a problem arises in that the drives must
know which of them is being addressed at any one time.

To overcome this, 1541 drives are built with the ability to change their
device numbers so that a command can, for example, be issued in the form:

SAVE ‘““PROGRAM”*,9

to access one of the drives, leaving device eight completely untouched.
There are two ways in which disk drive device numbers can be changed, in
hardware and in software, that is to say you can either make a modification
to the equipment itself or you can use a program to make a temporary
change. Of the two, if you are going to be permanently using more than one
drive, the hardware solution is by far the best. It normally involves making
a small cut in a single track of the printed circuit board inside the drive.
Details of this are given in the 1541 manual but they are not very clear and,
frankly, we would recommend that when you purchase your second 1541
you do so on the understanding that the dealer will do the two minutes’
work involved. If your dealer baulks at the idea then perhaps you might
consider finding one who knows what he is doing.

To change the device number of a disk drive with a program is not diffi-
cult (see Chapter 13), but it can become tiresome, since it has to be done
every time the drive is switched on. Even so, if you are merely borrowing a
friend’s drive for the day, the software solution is a better one than ripping
his drive to pieces.

4. An easy technique to simplify saving programs

To make saving a program easier and to encourage yourself to do it, it is a
good idea to build a program saving facility into each program you
develop, along the following lines:

1 GOTO 3

2 SAVE "@B:PROGRAM NAME" ,8 : VERIFY
"PROGRAM NAME" ,8 : STOP

3 REM

17

Commodore 64 Disk Companion

Including such a routine in a program has the virtue that you are unlikely to
save the program under the wrong name due a typing error, it can be saved
simply by entering GOTO 2: as an added bonus, it means that all your
programs can be started with a uniform GOTO 1 if you do not wish to use
RUN and wipe out any stored variables.

Two features of this routine need some explanation, the command
VERIFY and the modifier ‘@0:’ at the beginning of the program name.

5. The use of VERIFY

One of the main reasons for building the SAVE routine into the program as
shown is that it can then be combined with VERIFY. The purpose of
VERIFY is to check that a program stored on a specified device is the same
in every respect as the program currently in memory, ie that a program has
been correctly SAVEd. The format of verify is:

VERIFY “< PROGRAM NAME> "’,< DEVICE>

where PROGRAM NAME is the name of a program stored on the device.
Note that it is not important that the name of the program on the disk is the
same as the name that you have allocated to the program in memory. The
name of the program is stored on the disk’s directory but not with the
program itself, and no name is stored in the memory of the 64 for the
current program. All you are doing is giving the disk drive the information
to find a particular file.

Unlike the cassette recorder, the disk drive requires no work from the
user when VERIFY is employed. In the little SAVE routine in the previous
section, the drive will automatically search out the program which has been
SAVEd without the user intervening.

6. Overwriting files with ‘@02’

In one respect the disk drive is a little less easy to use than the Datassette
recorder. When you wish to store a program for a second time on tape, all
that you have to do is rewind the tape and issue the SAVE command — the
previous program will be overwritten. Not so with the disk drive, for it is
specifically designed to prevent you from making the mistake of acciden-
tally overwriting a file by unwittingly SAVEing another of the same name.
This is fine in most circumstances but when successive versions of a pro-
gram are SAVEd it can become a little tiresome. The Disk Operating
System (DOS) provides a facility to overcome this problem in the form of

18

Chapter3 Saving and Loading Programs

the modifier ‘@0:’ attached to the front of the name of a file (whether a
program file or any of the other kinds described later — with the exception
of relative files).

When the DOS comes across a filename which begins with ‘@0’: it
immediately scans the current disk to see whether there is a program with
the same name as the specified filename less the ‘@0:’. If there is not, then
the program is stored normally. If there is a program of the same name, the
program being SAVEd replaces it on the disk — the previous version will
not be recoverable since it is overwritten.

A note of caution has to be sounded over the use of ‘@0:’, due to the fact
that the routine which runs the-facility has a ‘bug’. On disks which are
becoming full, you will sometimes find that the use of ‘@0:’ will success-
fully store the file named, but will corrupt other files on the disk. The
reason for this is that ‘@0:” seems, under some circumstances, to fail to
register in the Block Allocation Map (BAM) the correct picture of the
sectors on the disk which it has used or which it has freed, so that subse-
quent files are SAVEd in places they should not be.

There several solutions to this problem:

1) Include a VALIDATE command (see Chapter 4) in line 2 of the little
SAVE routine earlier in this chapter. This reconstructs the BAM and en-
sures that there will be no corruption, the only drawback being that it can
take longer to VALIDATE than it does to format a disk.

2) Start off by calling the program something like TESTO1 and, each time
youSAVEit, LIST line 2 and change the number on the end of the program
name. This is perfectly simple but it does take up a lot of disk space while a
program is being developed.

3) Ignore the bug — it will very seldom, if ever, affect you.

4) Best of all, use RENAME and SCRATCH, two housekeeping
commands described in Chapter 4 to create a much more stylish and secure
method of SAVEing programs and other types of file.

7. Saving what you have SAVEd

The process of keeping a valuable program safe does not end once you have
stored it on a single disk. Disks can be damaged or accidentally corrupted
in some way. If a program is worth keeping, then you should a/ways have a
second copy of it stored somewhere safely away from where you normally
keep your disks.

19

Commodore 64 Disk Companion

In addition, don’t neglect the relative safety and reliability of
tape for backup copies of important material. A serious disk drive fault
can be extremely frustrating if your only copies of the required program
are on disk. If experience is anything to go by, most people starting out
with a disk drive will ignore this advice, at least until the first occasion on
which they totally lose a program on which they have been working for
weeks.

20

CHAPTER 4
Disk Housekeeping Commands

1) Introduction
2) OPEN

3) CLOSE

4) PRINT#

5) NEW

6) SCRATCH
7) RENAME

8) COPY

9) INITIALIZE
10) VALIDATE

1: Introduction

We have already seen that, on the simplest level, the disk drive can be used
for the fast storage and retrieval of programs. When using it in this way,
the user has no control over the disk or its contents other than to save or
load a program. Effective use of the disk drive, even if only for the storage
of programs, involves being able to communicate with the disk drive and
using that communication to exercise some control over how items are
stored on the disk. In this chapter, we consider a series of commands which
relate not so much to the way the disk drive accepts information from the
64 for storage, but to the manner in which disk files of all types are handled
once they are stored on a disk.

Communicating with the disk drive — a simple analogy

Probably the best way to understand some of the problems involved in
communication between the 64 and the disk drive is to imagine a situation
in which you set out to communicate with someone else using a bank of 15
black telephones and an unlimited supply of note-pads. Your job is to store
information for the person at the other end of the phones and to send it
back when they want it. The information that is going to be stored is quite
complex, for example the prices of shares and commodities on the stock
market. The information comes in many different varieties and, of course,

21

Commodore 64 Disk Companion

some of it has to go from you to the other person and some of has to come
to you. On top of all that, the different types of information that will be
zipping backwards and forwards need to be stored in different places
according to their type. How are you going to handle all of this?

Well, one way would be to assign each different type of informationto a
different phone and to keep a separate pad by each phone. If phone
number 4 rings you will then know that, when the voice at the other end of
the line says ‘567’, that this is the current price of gold and you note it down
on the pad next to the phone, which is labelled ‘GOLD”’. If the message had
come through on phone 3, it would have meant the price of a particular
security and it would have been noted on a different pad. Equally, if phone
8 were to ring you would know that what was expected was for you to
simply say the last price of silver — the person at the other end would know
exactly what was meant because phone number 8 was being used.

In later chapters we shall spend some considerable time examining
exactly how the disk drive can be persuaded to store information and then
to surrender it again on request in a way that corresponds to our imaginary
phone system. For the moment, we need to note two requirements of the
phone system which we have not yet discussed but which are vital to its
proper use.

Firstly, at some time before any information is exchanged, there needs to
be an understanding as to which line will be used for what. In other words,
how do you know that the pad labelled ‘GOLD? is to be kept next to phone
number 4. Clearly, the person at the other end of the line has to ze// you that
that is what number 4 will be used for. He can’t tell you by using any of the
15 normal phones because you are being deliberately simple-minded and
refuse to answer any of the phones until you know what kind of informa-
tion they are to be used for. To overcome this, you are provided with one
extra phone, this time a red one. Whenever the red phone rings you answer
it immediately and you expect to hear something like:

‘Take the pad labelled GOLD away from phone number 4 and store it
somewhere safe. Replace it with the pad labelled XYZ Corporation
shares.’

or

‘Phone number 4 will not be used until further notice, store the GOLD pad
away.’

or

‘Place the SILVER pad next to phone number 5, which is not currently in
use.’

22

Chapter4 Disk Housekeeping Commands

Whenever you get such an instruction down the red phone, you obey it
instantly, and the result is that you always know exactly which phone is
being used for what.

The second extra requirement we have not yet discussed relates to the
storage of the note-pads themselves. We said before, in setting up the
example, that you had an unlimited supply of pads. While that is true, you
have a problem in that you only have room safely to store a limited
number, say 144. The person at the other end of the line places great value
on the information contained within the pads and knows that you have
limited storage space. From time to time, therefore, he gives you instruc-
tions as to how to handle your stock of pads. To accomplish this, he first
calls you on the red phone and says: ‘The next message on phone number
15 will be an instruction to do something with one or more pads.’ If he
knows what he is doing, then shortly afterwards phone number 15 will ring
and you will hear a message such as:

‘We don’t need the silver prices any more, you can erase everything con-
tained in the SILVER pad and remove the label from it.’

or

‘I want to keep yesterday’s gold prices separate from today’s, so relabel the
GOLD pad as GOLDI and start a fresh pad called GOLD2.’

or

‘I’'m getting a little worried about the amount of valuable information
stored in these pads, please make copies of all of them.’

Now all of this may seem trivial in the extreme, but if you take the trouble
to understand it you will be well on the way to understanding the way in
which the 64 and the 1541 work together. In the sections which follow, we
shall take a first look at the use of the OPEN command, which corresponds
to the use of the red phone in the example. We also examine a series of other
commands which carry out ‘housekeeping’ on disk files, the kind of
instructions which are equivalent, in the phone example, to the instruc-
tions received on phone number 15.

Section 2: OPEN

FUNCTION: OPEN allocates a unique file number to a unique channel,
allowing information to be sent to that file and received by the disk drive
(or vice versa). In addition, OPEN is used to specify filenames and the use
to which a file is to be put.

23

Commodore 64 Disk Companion

When a program is SAVEd or LOADed, the Commodore 64’s BASIC
interpreter performs a series of operations which are hidden from the user.
The most important of these actions, apart from actually putting the
correct data on to the disk or getting it back, is to open a channel of
communication with the disk drive, the equivalent of the use of the red
phone in the example above. In the case of SAVEing, for example, the disk
drive must be made aware that data is coming and told what to do with that
data. In the case of LOAD and SAVE, this process of opening a channel is
performed automatically, without the user having to do anything other
than enter the correct keyword.

If the 1541 were only capable of storing and retrieving programs, then all
that would need to be done would be to switch it between SAVE and LOAD
mode. In fact, and we shall go into this in much more detail later on, the
1541 is capable of accepting a wide variety of different types of informa-
tion for storage as well as programs. In addition, it is capable of listening to
instructions or commands, and of recognising that these are nof items to be
stored in some way. It is capable of accepting whole series of items of data
to be stored, and of storing each of those items in a different place accord-
ing the instructions of the programmer. It is capable of accepting a piece of
data for storage, then answering a request to retrieve another piece of data
from somewhere else, and then going back to the place where the first item
was stored to add some more. In other words, the 1541 can accomplish all
the tasks achieved by the 15 phones described above.

Like the phone system, the 64 and the 1541 are capable of communicat-
ing along several different ‘lines’ (the precise number will vary according
the types of file being used). The areas on the disk drive in which informa-
tion can be stored are known as files, and they correspond to the note-pads
in our example. When sending or retrieving information, there may be
different lines used for communication, known as ‘file numbers’, each of
which must correspond with a different file. They are not physically sepa-
rate wires between the two devices, simply numbers which allow the 64 to
specify which file on the disk information is to be taken from or placed
into.

To send information to the 1541, or to retrieve it, all that needs first to be
done is to specify, using the OPEN command, the following items of
information:

1) The number to be assigned to the file (the number of the phone).

2) The fact that this is meant to be used for communication between the 64
and the 1541 rather than between the 64 and some other device such as the
cassette recorder or printer.

24

Chapter4 Disk Housekeeping Commands

3) Whether the file is to be used to store information or as a source of
information, or whether what is going to be communicated is housekeep-
ing information.

In some cases, though not for the purposes of this chapter, an extra piece of
information will be necessary, namely:

4) The name of the file (note-pad) on the disk to be assigned to the specified
file number.

For the moment, we are interested only in the uses of OPEN in allowing us
to use the housekeeping commands illustrated in the phone example. There
are many other uses for the OPEN command and they will be examined in
later chapters, but for the purposes of this chapter the format of the OPEN
command will be:

OPEN< FILE NUMBER> ,< DEV>,15 eg OPEN 15,8,15

1) FILE NUMBER — used to indicate a number in the range 1—127.
Normally, for these housekeeping tasks, programmers stick to one
file number that they will always recognise as being for that purpose. The
reason that this can be a good idea is that the housekeeping instructions are
very powerful and can result in loss of information on the disk if mistakes
are made in the housckeeping mode. Since, as you will see below, the final
figure of the OPEN command when going into housekeeping mode is
always 15, many programmers prefer always to use a file number of 15 for
housekeeping and not to use that file number for anything else.

2) DEV — a number which indicates to the 64 which device it is going to be
communicating with. It will normally be eight when talking to the disk
drive but can have other values, as indicated in Chapter 13.

3) 15, the final number — called a ‘secondary address’, or ‘channel’. In the
case of all the different devices, a number in this position is used to indicate
to the specified device that any data which follows is to be treated in a
special way. Thinking back to the phone example, you will remember that
before any housekeeping information was communicated, you were told
that a particular phone was going to be used for that purpose. In the format
of the OPEN command, a secondary address of 15 contains the message
‘whatever is sent to this particular file, until further notice, should be
treated as housekeeping information’.

You will see in later chapters that what we are calling ‘housekeeping
mode’ in this chapter is in fact much more than that. Channel 15 is known

25

Commodore 64 Disk Companion

technically as the ‘error channel’ and it puts us directly in touch with the
complex program which is built into and runs the 1541 and allows many
otherwise impossible tasks to be accomplished. You will also see that there
is much more to the OPEN command but, for the moment:

OPEN 15,8,15

will suffice to get us into housekeeping mode and explain the commands
that go with it.

Summary of OPEN
1) Information cannot be sent to, or retrieved from the 1541 unless a fileis
first OPENed.

2) In OPENing a file, the file number, the device number, the channel
number must always be specified. For some purposes, the filename, file
type and whether the file is for reading or writing must be specified. The
last three specifiers are covered in other chapters.

3) The file number will be in the range 1-127.

4) The device number will normally be 8 if you have one drive only but may
vary if other drives are being used.

5) The channel number will be in the range 2—14 for most uses and 15
when the file is being opened to the error channel.

6) The format for OPEN is:

OPEN< FILENUMBER> ,< DEVICE> ,< CHANNEL NUMBER>

3. CLOSE

FUNCTION: CLOSE acts to put a terminator on the end of a disk file and
to write its start address and length to the disk directory.

In the phone example, you may remember that one type of instruction
which might be given over the red phone was to stop using a particular
note-pad, or indeed a particular phone, until further notice. This instruc-
tion has its parallel in the CLOSE command, which tells the disk drive that
there is no further use for a file at the present time, so it can be safely and
tidily stored away somewhere on the disk. In subsequent chapters, as with

26

Chapter4 Disk Housekeeping Commands

OPEN, we shall see that CLOSE is used in a wide variety of circumstances.
For the moment, however, we are interested in the ‘housekeeping mode’
and will limit ourselves to what we need to know to deal with that.
Example procedure to illustrate the need for CLOSE

1) Switch on the 64 and the disk drive and place a disk in the drive.

2) Type:

OPEN 15,8,15l RETURN]

3) Type:

OPEN 15,8,15S[RETURN]

4) You should see the error message:

?FILE OPEN ERROR

5) Type:

CLOSE15[RETURN]

6) Type:

OPEN 15,8,15[RETURN]

7) This time, no error message is generated.

8) If you’re tidy-minded, you’ll now type CLOSE15[RETURN] for a
second time.

The meaning of all this is quite simple. Once you have told the system that a
particular file number is assigned to a particular purpose, it remains
assigned to that purpose until you free it. The first OPEN command
assigned file number 15 to the error channel on the disk drive and it can
only be available for another assignment when the first has been ended.
This is the function of the CLOSE command. It is good practice always to
close a file that you are not using for a time but especially important in the
case of the error channel because of the power of the commands associated
with it. Once the file is closed, there is no danger that you will inadvertently

27

Commodore 64 Disk Companion

send an instruction to it. Remember then, when you have used one of the
housekeeping commands described in this chapter, always close the error
channel before going on.

There is much more to be said about the way to OPEN and CLOSE the
error channel, but most of it would add little to your understanding of the
housekeeping commands in this chapter. One note of caution needs to be
sounded, however, if you intend to use the housekeeping commands in
your programs before going on to read the separate chapter on the error
channel. Closing the error channel results in all the files to the disk drive
being closed at the disk drive end of the system without the 64 being aware
of the fact. If you are using other files to store information, either close
them first before opening the error channel or open the error channel
before all the other files and close it after them.

Summary of close
1) File numbers which have been allocated to files by the use OPEN
remain unavailable for other use until those files are CLOSEd.

2) Files which are not properly CLOSEd when communication between
the 64 and 1541 is ended will not be properly recorded on the disk and
their contents will be lost.

3) CLOSEing the error channel results in all current files being closed at
the disk end of the system though the 64 will still regard the files as open.

4) The format for CLOSE is:

CLOSE< FILE NUMBER>

4. PRINT #

FUNCTION: PRINT# sends information in the form of string or
numeric variables to a specified file.

So far in this chapter, all that we have learned to do is to OPEN and
CLOSE a particular file, not how to actually do anything with it. In this
section we take a first look at how information can be sent to the disk drive
for storage in a file. Once again, for the purposes of the current chapter, we
are interested only in how, once the error channel is open, we can send
housekeeping instructions to the 1541. Later chapters will deal more exten-
sively with the use of PRINT .

28

Chapter4 Disk Housekeeping Commands

Example procedure to illustrate the use of PRINT #
1) Enter the following short program and RUN it:

1@ PRINT "[CLS1"
20 OPEN 1,3

3@ PRINT#1,"THIS IS OUTPUT TO A FILE"
4@ CLOSE1

The result should be that the words specified in line 30 are printed on the
screen — so what has happened? PRINT # is a way of outputting informa-
tion to a file, and in this case a file with a number of 1 was opened to device
3, which is the screen itself. The file having been opened, PRINT # accom-
plished the task of sending the specified characters to the specified device.

In the sections which follow, PRINT # will be employed to send down
the open error channel a message telling the DOS which housekeeping
operation is to be carried out.

One note of caution on the use of PRINT # (and the parallel commands
INPUT # and GET# which you will find in later chapters). Many 64
owners have become skilled at entering BASIC keywords in shortened
form (eg L followed by SHIFT/I for list) and seldom use any other
method. It needs to be remembered that none of these commands can be
entered by using the abbreviation for the normal keyword and then adding
‘#’ on the end. Entering ‘? 4’ into a program line will result in a listing
which will show ‘PRINT #’ at the correct position in the line but will pro-
duce a syntax error every time the line is executed. The correct abbre-
viations for the three commands which contain # is:

PRINT # — P SHIFT/R
INPUT # — I SHIFT/N

GET # — no abbreviation

Summary of PRINT #
1) PRINT 3# is used to send information to a file.

2) The correct abbreviation for PRINT # IS not ‘? #° but ‘P SHIFT/R".

3) In the context of sending housekeeping commands to the 1541, the
format of the PRINT # statement is:

PRINT #< FILE NUMBER> ,< COMMAND STRING>

29

Commodore 64 Disk Companion

4) The maximum length of the command string which may be sent along
the error channel appears to be 41 characters for the 1541 and not the 58
characters specified in the manual.

5) PRINT # has a wide variety of other uses which are discussed in other
chapters.

Avoiding the use of PRINT # in housekeeping commands
Those who have some experience of the use of the disk drive will already
know that there is a shorter method of sending commands than the use of
PRINT #, and that is to include the ‘command string’ (eg the words in
quotes in line 30 of the example program earlier in this chapter), as part of
the OPEN command eg:

OPEN 15,8,15,

followed by

PRINT # 15, “COMMAND”’
would become

OPEN 15,8,15,“COMMAND”’.

This can only be done in the case of messages addressed to the error channel
and examples of its use are given in the summary for each command. In
general we have chosen to illustrate the use of the commands by the use of
PRINT #, however, since this uncomplicated format distracts less from
the main focus of attention, which should be the command itself.

5. NEW

FUNCTION: To set up a floppy disk ready for the reception of data, a
process which is known as formatting. The disk is divided into tracks
and sectors, and a directory of contents and Block Allocation Map created.
A less drastic form of NEW changes the title of the disk without erasing its
current information.

In the description of the nature of a floppy disk in Chapter 1, we have
already seen that a diskette needs to be prepared before it can be used for
the storage of programs or data. The 1541 is equipped to carry out this
process in one of two ways:

30

Chapter4 Disk Housekeeping Commands

1) Erasing whatever is on the the disk and reformatting it from scratch, or

2) If the disk has been previously formatted, it is possible to clear the direct-
ory of the disk without actually reformatting. Files subsequently stored on
the disk will simply overwrite the programs on it, since these have become
invisible to the 1541 with the clearing the directory. The advantage of this
second method is that it takes far less time than a full reformatting of a disk
as if there were nothing already on it.

It should be stressed that in either of the above cases, any data contained on
the disk will be lost. In the case of method one, the situationisirretrievable,
since the data has been physically erased by the disk drive’s magnetic
heads. If method two has been employed, it may be possible to read the lost
data directly from the disk by bypassing the directory, though this is
unlikely to be easy. The moral of this is that you should always be
extremely careful when formatting a disk. If in any doubt, first examine
the directory of the disk to make absolutely sure that it does not contain
material you wish to keep.

Having said something about the dangers, the best way to understand
the procedure for formatting a disk is to do it.

Explanatory procedure for the use of NEW
1) Turn on the 64 and the disk drive.

2) Choose a new, unformatted disk or one which contains nothing you
want to keep and place it in the disk drive.

3) Type:

OPEN 15,8,15 [RETURN]
PRINT#15, "NEWD: TEST,@1" [RETURN]

4) Wait until the red light on the 1541 goes out, during which time the disk
drive will click and whirr.

5) Type:

CLOSE1S [RETURNI
LOAD "#",8 [RETURNI
LIST [RETURN]

31

Commodore 64 Disk Companion

6) You should now see the following displayed on the screen (though the
heading will be in inverse characters):

@ "TEST * @81 2A
664 BLOCKS FREE.

7) Type:

OPEN 15,8,15 [RETURN]
PRINT#15, "NEW@: TEST2" [RETURN]

8) Wait until the red light goes out on the disk.
9) Type:

LOAD "$",8 [RETURNI]
LIST

10) You should now see the following displayed on the screen:

8 "TEST2 " @1 2A
664 BLOCKS FREE.

What you have done is to format the disk twice, once completely from
scratch and a second time by simply altering the name and clearing the
directory (not that there was anything in the directory anyway). You will
have noticed that the second form was considerably faster than the first.

Format of the ‘NEW’ command

Examining the steps given above, it can quickly be seen that the two
commands which have accomplished the formatting and reformatting of
the disk are:

1) PRINT #15,NEWO:TEST1,01”’

and

2) PRINT # 15, “NEWO:TEST2”’

and the explanation of them is as follows:

32

Chapter 4 Disk Housekeeping Commands

a) NEW: the command itself. All the housekeeping commands begin with
the command keyword itself, or an abbreviation of it. In the case of
NEW, the abbreviation is ‘N’, so that the command could have been
expressed as:

PRINT #15,“N0:TEST1,01”

b) ‘02’ :asinthechapter on SAVEing and LOADing, this specifies the disk
drive on which the operation is to be carried out and will normally be
Zero.

¢) TEST1 (or TEST2): the name to be given to the disk. The sole use of the
name is to identify the disk when the directory is printed out.

d) “01’: the identification number or ID of the disk. This can be any two
alphanumeric characters, ie anything from 00 to ZZ. Two purposes are
served by the ID. Firstly, it allows a series of disks to be given the same
title but distinguished by means of their ID. Secondly, the ID is written
into every block on the disk when it is formatted and is used by the disk
drive when it picks up a block as a check to see whether the disk has been
changed since the last time the drive was accessed. This not a very
effective check, since most people tend to number all their disks ‘01’
anyway. If a disk is replaced with another of the same ID, it is possible
that the disk drive will continue to work on the basis of the directory of
the previous disk and not realise that a change has been made. This may
not be so important when LOADing files but can be disastrous when
saving programs or data since existing information can be overwritten.
The way around the problem is to initialise the drive every time you
change disks (see INITIALIZE command later in this chapter).

You will note that in the second example of the NEW command, no ID was
specified. In this case, the disk is left as it was originally formatted and only
the title and directory changed. The avoidance of the need to place the
timing markers and block markers all over the diskette, together with the
ID on every block, accounts for the difference in time between the two
methods.

Summary of NEW
1) NEW is essential in all cases where a freshly bought disk is to be used for

the first time.

2) In the case of disks which have been previously formatted, the form of
NEW which does not specify a new ID saves time.

KX

Commodore 64 Disk Companion

3) NEW effectively destroys all the existing data on a diskette and so needs
to be used with caution.

4) The format for NEW can be any of the following:

PRINT #15,“NEWO0:< FILENAME> ,< ID> "’ — total reformat of
disk

PRINT #15,N0:< FILENAME> ,< ID>*’ — as above but abbrevi-
ated keyword

PRINT # 15, NEWO0:< FILENAME> > — disk renamed and dir-
ectory cleared

PRINT # 15, NO:< FILENAME> *> — as above but abbreviated key-
word

5) Using the condensed form of OPEN, a typical format might be:
OPEN 15,8,15,““N0O:TEST1,01”’

6. SCRATCH

FUNCTION: SCRATCH removes a disk from the file by marking it in the
directory as a scratched file. SCRATCHed files remain a part of the con-
tents of the disk but the space they take up is made available to subsequent
files and will be overwritten if further files are opened and written to.

Effective use of the disk drive involves regular decisions as to what files you
will keep on your disks and what you will discard. Disks are not expensive
but their cost can quickly mount up if they are crammed with early versions
of programs and with data which is never going to be used again. In addi-
tion, disks which contain large quantities of material which is never likely
to be used again make the task of finding the right program much more
difficult. What is usually needed is a development disk for each of the
projects you are working on at the moment, each containing a lot of half-
finished material which you will probably not want to keep in the long term.
Once the development stage is over, you should be aiming to keep disks
which contain only useful material and, preferably, disks devoted to a
single application so that you know exactly which disk to reach for to
accomplish a particular task.

To achieve the goal of a library of disks containing what you want rather
than what happens to be there, you need not only to be able to store files on
a disk, you need to be able to delete them as well, and this is what the
command SCRATCH allows you to do.

34

Chapter4 Disk Housekeeping Commands

Example procedure to illustrate the use of SCRATCH

1) Ensure that the 64 and disk drive are both on and that the disk TEST2,
which you formatted in the previous section, is properly inserted in the
drive.

2) Enter the following one line program:
i@ REM THIS IS A TEST PROGRAM
3) Type:

SAVE "TEST1",8 C[RETURN]
SAVE “"TEST2",8 [RETURNI

4) When SAVEing is finished, type:

LOAD “s$",8 [RETURNI]
LIST C[RETURNI]

5) You should now see displayed:

@ "TEST2 * @1 2A
1 "TEST1" PRG
1 *TEST2" PRG

662 BLOCKS FREE.

6) Type:

OPEN 15,8,15 [RETURNI]
PRINT#15, "SCRATCH®@: TEST1" [RETURN1
CLOSE15S [RETURNI

7) Type:

LOAD "#",8 [RETURN]
LIST [RETURNI

8) You should now see displayed:

@ "TEST2 * 01 2A
1 IITESTZ" PRG
663 BLOCKS FREE.

35

Commodore 64 Disk Companion

What has happened is that, of the two files you placed on the disk, TEST1
and TEST2, one of them, TEST1, has been deleted and the space it took up
onthe disk freed for other use. After the warnings about the use of NEW, it
goes without saying that SCRATCH too needs to be treated with caution,
since it isall too easy to mistake the names of files and to end up deleting the
wrong one. If in doubt, examine the contents of a file before deleting it.

In the following chapter, on ‘pattern matching’, you will find that
SCRATCH can be made to work on more than one file at a time on the
basis of similarities in the filenames. There is no difference in principle in
this use and it will be left until a fuller explanation of pattern matching can
be given.

Summary of SCRATCH

1) The housekeeping command SCRATCH removes a named file from
the disk in the drive.

2) SCRATCH is an essential command for the proper management of your
disk library, to avoid valuable space being taken up by unwanted
material.

3) SCRATCH needs to be used with caution, since SCRATCHed files are
not normally recoverable.

4) The format for SCRATCH is as follows:
PRINT #15,“SCRATCHO:< FILENAME> ”’
or
PRINT #15,S0:< FILENAME> *’
5) Using the condensed form of OPEN, the format is:
OPEN 15,8,15,*‘S0:< FILENAME>

6) Provided that they have not been overwritten, SCRATCHed files may
be recovered by the use of the program UNSCRATCH given in Chapter
10.

7. RENAME

FUNCTION: RENAME changes the name of a file on disk, provided that
the new name to be allocated to the file is not already present in the direct-
ory. The contents of the file are not altered in any way.

36

Chapter4 Disk Housekeeping Commands

The purpose of the RENAME command is to allow you to change the
name of a file which is on disk without in any way altering the rest of the
contents. Few people make much use of RENAME since they see very little
reason to make regular changes in the names of files. This is a pity, for
RENAME in combination with SCRATCH is a powerful tool in the
effective management of disk files.

The format for RENAME is:

RENAMEQ:< NEWFILENAME> =0:< OLDFILENAME>

and its use will be illustrated below.

Example procedure to illustrate the use of RENAME

1) Ensure that the 64 and disk drive are both on and that the disk drive
contains the disk TEST2 which you formatted earlier. The contents of
TEST?2 should be the single program TEST2 which was SAVEd during the
testing of the SCRATCH command.

2) Type:

OPEN 15,8,15 [RETURNI
PRINT#15, "RENAME®: TEST1=0: TEST2" L[RETURNI]
CLOSELS [RETURNI]

3) Type:

LOAD "$",8 L[RETURNI]
LIST CRETURNI

4) You should see:
@ “TESTZ2 " @1 2A
1 "TEST1" PRG

&63 BLOCKS FREE.

5) Type:

LOAD “TEST1",8 L[RETURNI
LIST C[RETURNI

37

Commodore 64 Disk Companion

6) You should see:

18 REM THIS IS A TEST PROGRAM

What has happened is that a disk containing a program called TEST2 now
contains one called TEST1, though the contents of the file have not been
altered. This is interesting though it hardly seems very significant, but
RENAME has much more important uses.

Example proceduré illustrating the creation of backup files
with SCRATCH and RENAME

1) Enter this short program:

1 6O7TO 1@

2 SAVE "TEMPORARY",8 : VERIFY *"TEMPORARY" ,8
3 OPEN 15,8,15

4 PRINT#15,"SCRATCH@: TEST1.BAK"

S PRINT#15, "RENAME®: TEST1.BAK=0: TEST1"

6 PRINT#15, "RENAME®: TEST1=0: TEMPORARY"

7 CLOSE 15

1@ REM THIS IS VERSION 1

2) Start the program with RUN 2 and wait until the word READY is printed
and the flashing cursor returns.

3) Type:

LOAD "$",8 [RETURN]
LIST C[RETURNI]

4) You should see from the directory that there are two files, TEST1 and
TESTI1. BAK

5) Type:

LOAD "TEST1",8 CRETURNI]
and change line 10 to read:

18 REM THIS IS VERSION 2

38

Chapter4 Disk Housekeeping Commands
6) Start the program with RUN 2 and wait until the flashing cursor returns.
7) Type:

LOAD "$",8 [RETURN]
LIST [RETURNI]

8) You should see from the directory that there are still two files called
TEST1 and TEST1. BAK, but that TEST1. BAK is now first.

9) Type:

LOAD "TEST1.BAK",8 [RETURN]
LIST [RETURN]

and you will find that what is loaded is version 1 of the program.
10) Type:

LOAD "TEST1",B8 [RETURN]
LIST [RETURNI

and you will find that what is loaded is version 2 of the program.

What has happened here, if you follow the little program through, is that
the program to be saved is first recorded on the disk under the name
TEMPORARY. If you are going to use this particular technique then it is
important that the filename TEMPORARY should only ever be used as the
initial name under which a current program is stored. It can, of course, be
used for the same purpose with all the programs you want to save, since it
will only exist on the disk for a few moments anyway.

Having saved TEMPORARY, the program then scans the disk for a
program called FILENAME. BAK (in our case TEST1. BAK) and deletes
it. If the program is not present, as it will not be the first and second time
something is saved by this method, no problems are caused, the instruction
is simply ignored.

The third step is to rename the program FILENAME (in our case
TEST1)as FILENAME. BAK, where ¢. BAK’ is short for ‘backup’. Thus,
as opposed to the method of saving updated versions of a program
described in Chapter 3, the existing version of the program being worked
on is not erased, it is simply renamed.

Finally, the file TEMPORARY is renamed as FILENAME (in our case
TEST1) and the process is complete. The latest version of the program is

39

Commodore 64 Disk Companion

now called FILENAME and the latest of all the previous versions is called
FILENAME. BAK. The only thing to watch out for here is that adding the
‘. BAK’ marker to the end of the filename means that the maximum length
of the filename to begin with is reduced from 16 characters to 12.

The advantage of this is that if you do, by some mistake, corrupt a pro-
gram and then save it, you have one previous copy. A second advantage is
that the bug associated with the ‘@0:’ facility is avoided by the method —
nothing is overprinted in this method. In addition, the disk drive, like any
other piece of equipment, can go wrong. It can sometimes corrupt a file as
it is being saved, or perhaps a surge in the electricity supply may lead to the
SAVEing process being interrupted and, what is worse, the 64 itself losing
the program. In that case, you are usually left with a corrupted program on
the disk and no program in the 64 to reSAVE — in other words a disaster.
Using the procedure given above, the situation could be easily remedied
since at no time is there only one version of the program on the disk to be
corrupted — there should always be one version left intact.

Summary of RENAME
1) The function of RENAME is to give a new filename to a file on disk
without otherwise altering the contents of the disk.

2) RENAME, in conjunction with SCRATCH, provides powerful facil-
ities for creating backup files of material which would otherwise be
overwritten.

3) RENAME has some of the limitations of SAVE, ie it will not create a
file if one of the same name already exists.

4) The format for RENAME is:

PRINT # 15,“RENAMEQ0:< NEWFILENAME> = 0:< OLDFILE
NAME> >

or
" PRINT #15,“R0:< NEWFILENAME> = 0:< OLDFILENAME>
5) The format for RENAME using the condensed form of OPEN is:

OPEN 15,8,15,*R0:< NEWFILENAME> =0:< OLDFILE
NAME> ">

40

Chapter4 Disk Housekeeping Commands

8. COPY

FUNCTION: COPY duplicates an existing file under a different name — it
differs from RENAME in that the original file is still present. COPY can
also be used to add one file on to the end of another.

The purpose of COPY is to duplicate any file on the disk currently in use
with another file with a different name but the same contents. Note that
this differs from RENAME in that the original version of the file is still
present on the disk. The main use of COPY on the 1541 is to create backup
copies of a file on the same disk. COPY is, frankly, far less useful on a
single drive like the 1541 than it would be on a dual drive such as the 4040 or
8050. With a dual drive, files can be copied between the two drives so that
backups can be made on a separate disk.

Concatenation of files

One extra facility which COPY provides is the ability to ‘concatenate’ files
on disk. The effect of this is to take two to four files and to combine them
‘nose to tail’ into one new file — once again the originals are left
unchanged. You may notice that in the disk manual supplied with the 1541
this facility is mentioned but no use is suggested for it. At least part of the
reason for this is that that there are hardly any uses for concatenation. In
the later chapter on sequential files we show how data files can be run
together usefully. Program files which are concatenated will load but only
the first program will be available to the user, the rest will simply clutter up
the memory. The reason for this is that each program file begins with two
bytes which tell the 64 where the program is to be loaded into memory and
ends with two zeros which signify the end of the file. In their proper places
these markers are essential, but locked up in the middle of the new concate-
nated file they make it impossible for the 64 to see the whole of the concate-
nated program which has been loaded into memory.

Example procedure to illustrate the uses of COPY
1) Ensure that the disk drive and 64 are on and the TEST2 disk is properly
inserted.

2) Type:

OPEN 15,8,15 [RETURN]

PRINT#15,"CO: TEST2=0: TEST1" [RETURN]
CLOSE1S [RETURNI

41

Commodore 64 Disk Companion
3) Type:

LOAD "$*,8 [RETURN]
LIST [RETURNI

4) You should see from the directory that the programs TEST1 and
TEST1. BAK have been joined by TEST?2.

5) Type:

OPEN 15,8,15 [RETURNI
PRINT#15,"CO: TEST3=0: TEST1,8: TEST2" [RETURN]

CLOSE1S [RETURN]

6) Type:

LOAD "%",8 [RETURNI
LIST C[RETURN]

7) You should see from the directory that another program has been added,
namely TEST3, and that this new program is two blocks long.

What has happened here is that file TEST1 has been duplicated under the
name TEST?2, giving two files on the disk. These two files have then been
concatenated into another called TEST3. You can, if you wish, LOAD the
program TEST3 into memory. You will find that, even though the pro-
gram appears to be twice as large on disk, it appears to be the same as the
previous TEST1 program we examined under the RENAME section. In
fact, a duplicate of the program is lost somewhere in the memory of the 64,
accounting for the increased size on the disk.

Summary of COPY
1) The function of COPY is to duplicate a file under a different name but
with the same contents.

2) COPY can also be used to concatenate two to four files together though
this is of limited use (see Chapter 7).

3) The format of COPY when use to duplicate a file is:

PRINT # 15,“COPY0:< SECONDFILENAME> = 0:< FIRSTFILE
NAME>”

42

Chapter 4 Disk Housekeeping Commands

or

PRINT #15,C0:< SECONDFILENAME> =0:< FIRSTFILE
NAME> *’

4) The format for COPY when used to concatenate files is:

PRINT #15,“COPY0:< NAME4> =0:< NAME1> ,0:< NAME2>
,0:< NAME3> "

or

PRINT #15,C0:< NAME4> =0:< NAME1> ,0:< NAME2>
,0:< NAME3>"

and it is important to remember that the command string sent along the
error channel may not exceed 41 characters.

5) Using the condensed form of OPEN, the two formats are:

OPEN15,8,15,°“C0:< SECONDFILENAME> = 0:< FIRSTFILE
NAME>

or

OPEN15,8,15,C0:< NAME4> = 0:< NAME1> ,0:< NAME2> ,0:
<NAME3>"’

9, Initialize

FUNCTION: INITIALIZE forces the disk drive to re-read the Block Allo-
cation Map from the disk into its memory and thus ensures that the drive is
working on the most up-to-date version of the BAM available. This over-
comes problems which may occur during the use of VALIDATE or when a
disk is changed for another which may have the same identification
number (disk ID).

In the general introduction to the working of the disk drive, we noted that
the DOS uses a map of the disk called the Block Allocation Map, BAM,
when reading or writing data. At times, as we saw in the chapter on SAVE-
ing, it is possible for the disk drive to become confused as to the correct
state of the BAM and to write data on to disk sectors which are already
occupied, corrupting existing files.

This confusion arises because the physical copy of the BAM which is
kept on the disk is only updated when a file is CLOSEd. When the disk

43

Commodore 64 Disk Companion

drive is switched on and a disk first accessed, the disk drive takes the BAM
into its own memory. Changes which occur, such as the writing of datatoa
file, are registered in the version of the BAM which exists in the disk drive
memory but not in the physical copy of the BAM (until a file is closed, as
mentioned). In a small number of cases it is possible that a disk error of
some kind may lead to the BAM in memory becoming corrupted so that the
drive will be working with an incorrect picture of the disk. This can happen
particularly with the VALIDATE command but will also happen if the
disk is changed for another with the same ID (see NEW). In this case the
disk drive will continue to work on the basis of the BAM from the first disk
until a file is CLOSEd, by which time it will probably be too late.

The function of INITIALIZE is to force the disk drive to re-read the
BAM from the disk, thus overcoming the problem of the corrupted BAM
in memory. INITIALIZE should be used whenever a problem is
encountered during the use of VALIDATE (see next section) or whenever
disks are changed and you are not absolutely sure that the disk IDs are
different. Use of INITIALIZE will produce no visible changes in the disk,
the only demonstration that the command is functioning correctly is that
you do not end up with corrupted disks so often.

Summary of INITIALIZE

1) The function of INITIALIZE is to ensure that the Block Allocation
Map on which the disk drive is working is an accurate reflection of the
current state of the disk.

2) INITIALIZE should be used whenever problems are encountered in the
execution of a VALIDATE command or when a disk is replaced with
another that may have the same ID number.

3) The format for INITIALIZE is:
PRINT #15,“INITIALIZE”
or
PRINT #15,“1”
5) Using the condensed form of OPEN the format is:

OPEN 15,8,15,“F”

10. VALIDATE

FUNCTION: VALIDATE reconstructs the Block Allocation Map on the
basis of what is actually stored on the disk. Sectors incorrectly allocated or

44

Chapter4 Disk Housekeeping Commands

tied up in files which have been deleted or which have not been properly
CLOSEd, are freed for use.

The function of VALIDATE is to tidy up a disk and free space for storage
of data. The reason that this is necessary is that various housekeeping
commands, such as SCRATCH and the ‘@0:’ facility for overwriting
existing files, do not always delete all the blocks on the disk which are
associated with the file that is being SCRATCHed or overwritten. Since
files are constantly being SCRATCHed or overwritten on a working disk,
the situation may eventually arise where alarge proportion of the blocks on
the disk are allocated according to the BAM but are performing no useful
function.

What VALIDATE does is to trace through each file on the disk, block by
block from start to finish. When it comes across blocks which do not fall
into the correct structure of the file or which are allocated to files which no
longer exist on the disk, it de-allocates those blocks and records in the
BAM that they are free. The result of the process is a BAM which has been
totally reconstructed on the basis of what is actually on the disk. It is not
possible, with a fresh disk such as our TESTO01 disk, to demonstrate the use
of VALIDATE, but if you would like to apply it to a disk which you have
used extensively, especially for large programs, the number of blocks freed
for use can sometimes be quite dramatic.

One powerful use of VALIDATE is to overcome the limitations of the
‘@0:’ facility which were mentioned in Chapter 3. The problem with ‘@0:’
is that it does not always appear to register accurately in the BAM the
sectors which it has freed in scratching a previous version, or the blocks
used in storing the new version of a file. This does not prevent the proper
storage of the current file but means that future files may be stored accord-
ing to an incorrect BAM, with all the drastic consequences that that
implies. This problem can be overcome if VALIDATE is used immediately
following the SAVEing of a file using ‘@0:’ but, frankly, the time taken by
VALIDATE means that a far more practical method of overwriting a file is
to use the ‘SCRATCH and RENAME’ technique described under the
section on RENAME.

Summary of VALIDATE
1) The function of VALIDATE is to free blocks on the disk which are
improperly allocated.

2) The format of VALIDATE is:

PRINT #15,“VALIDATE”

45

Commodore 64 Disk Companion
or
PRINT #15,V”

3) Using the condensed form of OPEN, the format is:
OPEN 15,8,15,Vv”

4) If you are making use of random files (see Chapter 10), VALIDATE
must be used with caution since it will probably delete them.

46

CHAPTERS5
Pattern Matching

1) What is pattern matching

2) Patterns with “*’

3) Patterns with 2’

4) Combining *’ and ?’

5) Using pattern matching with commands

1. What is pattern matching

The SCRATCH command described in the last chapter, together with
LOAD and VERIFY, can be increased in flexibility by the use of a simple
technique known as pattern matching.

In essence, pattern matching is like setting up a kind of stencil which will
be applied to the names of files on the disk. The stencil will have some
letters cut out of it so that what is on the paper below can be seen, while in
other places it will hide the paper. If the stencil reads
‘PROG— — — — — — —~ ’, (where the dashes represent character positions
that cannot be seen through) and the stencil is then moved over a block of
text with letters of the same size as those cut out, if there are any words with
the letters ‘PROG’ in them, those four letters will be plainly seen through
the stencil, others will be meaningless jumbles. Pattern matching applies
the same technique to the names of files in the directory of the disk drive,
allowing the user to specify a pattern or stencil and to carry out an opera-
tion on all the files that fit it.

2: Patterns with ‘*’

The simplest form of pattern to understand is a pattern involving the use of
the asterisk, ‘*’. Whenever an asterisk is found at the end of a file name, the
DOS understands that the user does not care what character or characters
follow the position occupied by the asterisk, provided that there is at least
one more character. Given below is an example of a pattern using ‘*’ and
the filenames that would agree with it:

PATTERN ACCEPTABLE UNACCEPTABLE
NAMES NAMES

SMITH* SMITHSON, SMIT,SMITH,
SMITHERS, SMYTHE

47

Commodore 64 Disk Companion

3. Patterns with ‘?’

The other character that may be employed in creating a pattern is the ques-
tion mark, ‘?°. When a question mark is encountered, the DOS interprets it
as meaning, ‘there must be a single character in this position but it does not
matter what it is’. Multiple question marks can be used to map an area of
specific size within a name where the actual characters do not matter. As
opposed to ‘*’, the question mark can be embedded in a pattern or can start
one for that matter.

PATTERN ACCEPTABLE UNACCEPTABLE
SM??H SMITH,SMYTH, SMITHSON,SMIT,
SMASH SMART

4. Combining ‘*’ and ‘?’

The two pattern specifiers can be combined to produce a wide variety of
effects, but they do need to be used with caution since it is sometimes diffi-
cult to see immediately what the result of a particular combination will be
— with unfortunate results if the pattern applies a SCRATCH command
to the wrong file:

PATTERN ACCEPTABLE UNACCEPTABLE
SM77* SMITH,SMART, SMI,SMIT
SMITHERS
21T* SMITH,SMITHERS SMART,SMIT
717M7* SMITH,SMITHERS, SIMS,SMART,SMIT
PRICE

5. Using pattern matching with commands
Pattern matching techniques can be used with the SCRATCH, LOAD and
VERIFY commands by including the pattern matching symbols within the
quotes as if they were a normal part of the file name.

For instance:

“S0:T*”

as a message down the error channel would SCRATCH every file beginn-
ing with ‘T’, while

“g:**?

would SCRATCH every file.
In the case of LOAD and VERIFY, the pattern will be used to find the

48

Chapter5 Pattern Matching

first matching pattern in the disk directory (not the last matching file used
as the manual states). This can considerably shorten the process of loading
programs if this has to be done frequently. LOAD ““*”* will load the first
file on the directory, a technique used on many commercial disks.

49

CHAPTER 6
The Error Channel

1) What is the error channel

2) Getting messages from the error channel
3) Using the error channel

4) Summary of error channel

Several times in previous chapters we have made use of what we have
referred to as the error channel, the term applied in the 1541 manual to a
file opened with a secondary address, or channel, of 15. In fact, what we
have been using this particular channel for so far has been the conveying of
instructions from the 64 to the DOS. In this chapter, we look more closely
at the way in which the 1541 is capable of informing the 64 of problems
which may arise during the handling of files.

1. What is the error channel
Problems can be encountered with the disk drive at all levels of use. On the
straightforward level of SAVEing and LOADing, a direct command to
perform an operation can result in a flashing red light indicating that for
some reason the command cannot be carried out. This is frustrating
enough but other errors can be far worse. We shall see in Chapters 7 to 10
that for the storage of data, rather than simply program files, control over
the disk by the program running in the 64 is essential. While, with proper
preparation, this control can be expected to run smoothly for the vast
majority of the time, there will inevitably be occasions when faulty disks, a
momentary problem with the 1541 or deficient programming will lead to
problems in the storage or retrieval of data. Such a situation is seldom
disastrous provided that the program controlling the disk drive is aware
that something is wrong and capable of either taking some action or at least
informing the operator that something needs to be done. If, however,
the program continues unaware of the problem with the disk drive, valua-
ble data can be lost or corrupted beyond repair.

Fortunately, the 1541 provides a more-than-adequate means of discover-
ing the nature of any problems with disk handling, in the form of the error

51

Commodore 64 Disk Companion

channel. Not only can this direct line to the 1541 DOS be used for convey-
ing instructions, it is capable of generating more than 50 separate error
messages covering the kind of problems that occur, and sending them in
such a way that either the 64 or the operator can remedy the situation.
These error messages are provided in the form of four separate items of
information which the 1541 DOS has ready to send down the error channel
every time the disk is accessed. In most cases, these items of information
are not sent, since the error channel is not open — they are, however,
always available and can be used to significantly increase the security and
effectiveness of disk-handling procedures.

2. Getting messages from the error channel
For a simple illustration of the use of the error channel, follow the steps
given below.

Explanatory procedure for reading the error channel
1) Enter the following short program:

1@ OPEN 15,8,15
2@ INPUT#15,A,B$,C,D
3@ PRINT A,B$,C,D

4@ CLOSE 15

5@ END

2) Ensure that the disk drive is empty and then switch it off.

3) Switch the disk drive on again.

4) RUN the program. You should see:

73 CBM DOS V2. 6 1541 0 0
5) Still without a disk in the drive, enter:

SAVE ““T”’,8] RETURN]

6) RUN the program. You should see:

74 ~ DRIVENOTREADY 0 0

52

Chapter6 The Error Channel

What has happened here is that you have communicated directly with the
internal processor of the 1541 and allowed it to tell you exactly what the
problem is that prevents you from carrying out the command specified.
Four items of information are supplied — in the order: number, string,
number, number — and their meaning is as follows:

1) The error number: despite the fact that a verbal message is supplied, the
error number should not be ignored. The error messages themselves fall
into groups, all having the same verbal message. In these cases the only way
to distinguish between the possible causes of the error message is to look up
the specific error number for further information. Details of the meaning
of the error numbers are provided in an appendix to the 1541 Disk Drive
Manual.

2) The error message: this two or three word message is a general indication
of the problem encountered (see ‘the error number’, above).

3) First number: the track of the disk on which the problem has been
encountered. If the command last entered was SCRATCH, and no prob-
lem has been encountered in carrying it out, the error number will be one
and the number in the ‘track’ position will indicate the number of files
scratched.

4) Second number: the sector within the track within which the problem
has been encountered. In the two example cases given above, the zeros in
positions 3) and 4) indicate that the problem is not one on the disk itself but
with the drive. In most cases, the track and sector information gives very
little extra help in identifying what has gone wrong. This is not always the
case, however. If a READ or WRITE error is indicated on track 18, sector
0, it is likely that you are trying to use an unformatted disk — track 18 is
where the disk directory normally resides. When using random access files
(see Chapter 10), the track and sector information can be vital in identify-
ing an error, since the very nature of such files is that they access individual
sectors under program control.

Note: Though it is possible to open the error channel in direct mode (ie
an instruction without a line number), it is not possible to obtain the error
message from the error channel in direct mode since INPUT # (like
INPUT) will generate an ILLEGAL DIRECT ERROR message. Error
channel information can only be obtained by instructions contained in
program lines.

53

Commodore 64 Disk Companion

3. Using the error channel
The five-line test program given above is an example of the way in which
the messages generated by the error channel can be displayed by the main
system. Many programmers, when developing a program which makes use
of the disk drive, tag these lines on to their program as a separate routine at
theend. Inthe event that a disk error develops whose nature is not obvious,
the program can be stopped and GOTO < error routine line> entered. This
is a useful technique but clearly is not going to be satisfactory when the
program is finished and working. What is needed is a method of accessing
the error channel while a program is running, so that action can be taken by
the program itself or, at the very least, the operator informed of the nature
of the problem.

Given below is a short subroutine which can be written into a program to
open the error channel and read the messages it provides.

Subroutine to access error channel under program control

SODD REMEE3%33 33635 3 3369 36 3 3696 636336 3 3636909 36 3636 3656

5810 REM DISC ERROR STATUS

SO20 REM® 33636565 363 336 36363 336303336 36 3 95 6 36 39636 3 3360 %

5038 INPUT#15,EN,EM$,ET,ES

S504@ IF EN=73 THEN 5030

5058 IF EN<20 THEN RETURN

S@06@ PRINT "L[CLRICCDICCDILCDILCD] *¥¥#x
363633636336 36363639 636 3 3 36 3696 36 36 3696236 30 0 36

5078 PRINT "CCDILCD] DISC ER

ROR"

5080 PRINT “CCDICCD] ERROR -" EN " "
EM$

509@ PRINT “LCD1] AT TRACK -" ET "

AND SECTOR -"ES

51808 PRINY “LCD1LCD] PROGRAM

EXECUTION TERMINATED"

5110 PRINT “"[CDICCDILCDI 3335393 33 36 34 %
P30 3036362633093 30 9 3636 36 36 3 3 9 3 30 11

5120 CLOSE 15

5138 5YS 65511

514@ END

Explanation of error channel subroutine

The main points of the subroutine should be clear on first examination.
The subroutine works on the assumption that the error channel has been
opened when the program was first initialised with a command such as:

54

Chapter6 The Error Channel

100 OPEN 15,8,15

If no errors are encountered during the course of program execution, the
program should make provision for CLOSEing the error channel. Once
again, it needs to be remembered that the error channel should be closed
after all other disk files have been finished with, since closing the error
channel results in the closure of all files at the disk end of the system.

Provided that the error channel has been opened, the subroutine can be
called from a data file module whenever a file is opened or, if extreme
security is required, every time an item is written to or read from a file,
though this latter technique will slow down the execution of the file opera-
tion. In most cases, calling the subroutine will have no visible effect what-
soever, since the message received along the error channel will be
‘0,0K,0,0’, indicating that all is well. When the error channel does notify
that a problem has arisen, the subroutine will immediately print out the
error message from the 1541. This is followed by CLOSE15, which closes
all files at the disk end of the system, and SYS 65511, a call to the routine in
the kernal which closes all files from within the 64. Finally, the subroutine
terminates program execution.

It should be stressed that the approach adopted in the subroutine is only
one of many. It is perfectly possible to set up the subroutine so that for
certain error messages it merely displays the error for a time, then returns
execution to the file module of the program or to the main menu from
which the file module was called. In the case of a program which allows the
user to specify a file name for data to be saved, you might wish to avoid the
overwriting of existing files. In this case, the data-saving module of the
program would allow the filename to be specified, attempt to open the file
then call up the subroutine which would receive thé message ‘63,FILE
EXISTS,0,0’ along the error channel. This would be displayed for the
operator as an indication that the data had not been saved and execution
would return to the main program where the operator would have the
option to save the file under another name. In other cases, for example
when complex data is being written from one file to another, failure to
open one of the files might very well be a reason to stop the program
immediately before corrupt data was generated.

4. Summary of the error channel

1) The error channel, ie a file opened to the disk drive with a secondary
address of 15, is a convenient way of discovering the nature of any prob-
lems which are occurring during disk handling.

2) Error messages are generated by the 1541 DOS in the form of a group of
four items in the order: NUMBER1, STRING, NUMBER2, NUMBER3.

55

Commodore 64 Disk Companion

NUMBERU refers to the error number, allowing the precise nature of the
error to be ascertained from the disk drive manual. STRING provides a
shorthand description of the type of error in words. NUMBER2 and
NUMBERS3 refer to the track and sector in which the error was
encountered or to the number of files scratched if the last command to the
disk was SCRATCH and the error number is one eg °‘1,FILES
SCRATCHED,2,0’, showing that two files have been scratched.

3) Error messages can only be obtained from the error channel by a pro-
gram line, they cannot be accessed in direct mode.

4) CLOSEing the file opened to the error channel closes all disk files at the
disk end of the system. In general, if the error channel is to be accessed
during the course of a program, it is better to open the file at the beginning
of the program and to close it at the end.

56

CHAPTER 7
Sequential and User Files

1) What is a sequential file

2) OPENing a sequential file

3) Printing and retrieving data — INPUT % and GET
4) GET#

5) Detecting the end of file

6) Ending output or input with CLOSE

7) Examples of the use of sequential files

In this chapter we examine some of the techniques for storing and retriev-
ing data under program control. Such techniques are an essential part of
programs which need to store quantities of information for future use or
which require more memory than is available within the 64 at one time. In
effect, the proper use of the 1541 for the storage of data provides the 64
with an enormous extension of its memory, and memory that will not be
cleared when the system is switched off.

This chapter is intended to refer to two types of file ideally suited for this
purpose, sequential and user files. The only differences between these
two types are that one is opened with the specifier ‘S’ while the other
employs the specifier ‘U’, and that sequential files appear in the disk direct-
ory with the type ‘SEQ’ attached to their name while user files are labelled
‘USR’. Throughout this chapter, all references to sequential files may also
be read as applying to user files provided that the ‘S’ specifier, where
present, is replaced with a ‘U’. A parallel summary for user files is included
at the end of the chapter, for ease of reference.

1. What is a sequential file

In essence, a sequential file is no more than a straightforward list of items,
strings or numbers or a mixture of both, kept on the disk in the order in
which they were stored. Items are stored in the form of individual bytes,
character for character. No distinction is made within the file itself
between string characters and characters stored as numeric variables, and

57

Commodore 64 Disk Companion

the layout of the characters within the file will be determined solely by the
order in which they were stored and the punctuation used when they are
printed to the file. Information kept within the file can normally only be
accessed in the order in which it was stored. The disk drive works on an
internal pointer which is set to the beginning of the file when it is OPENed.
When items are reloaded from the file, the internal pointer is updated to
indicate the track, sector and position within the sector of the next char-
acter of the file.
To use a sequential file, all that is necessary is to:

1) Open the file for storage or retrieval.
2) Print items to the file, or retrieve them from it, in the correct order.

3) Close the file.

2. OPENing a sequential file
We have already examined, in the chapter on housekeeping commands,
some of the uses of the OPEN command, the command which corresponds
in our phone analogy to the use of the red phone to issue instructions about
the use of the different lines of communication.

To OPEN a sequential file, five pieces of information are needed:

1) The file number that is to be allocated to the particular usage. This
number will be unique to the file specified in the OPEN command for as
long as the file is in use. The permissible range for a file number in normal
circumstances is 1 to 127.

2) The device number of the disk drive, which is normally 8 but can be set
from 4 to 31 if multiple disks are being used.

3) The channel number or secondary address, which for a sequential file
can be in the range 2—14. Unlike the cassette system there are no special
rules as to the secondary address for reading or writing data. No two files
can use the same secondary address at the same time, however.

4) The name of the file to be accessed, which must be a sequential file.

5) Whether the file is to be used for the storage or retrieval of information.
The same file cannot be OPENed for storage and retrieval at the same time.

Having determined all these items, the format of the OPEN command
for a sequential file is as follows:

58

Chapter7 Sequential and User Files

OPEN< FILE NUMBER> ,< DEVICE> ,< CHANNEL>, ‘““< FILE
NAME> ,S[,R or ,W]”’

Of these, FILE NUMBER, DEVICE, CHANNEL and FILENAME
should be clear from the explanation given above. The ¢,S’ attached to the
filename indicates that the file type is sequential. This is then followed by
an option specifying whether the file is for storage of data, ‘{,W’ which
stands for ‘write file’, or for retrieval of data, ¢,R’ which stands for ‘read
file’. If this specifier is omitted entirely, the disk drive will assume that the
file being opened is for reading only. Examples of the OPEN command
would include:

OPEN 1,8,2,DATASTORE,S,W’’ data can be written to the file
‘DATASTORE’

OPEN 1,8,2,DATASTORE,S,R’’ data can be read from the file
‘DATASTORE’

OPEN 1,8,2,“DATASTORE,S”’ exactly the same as the previous format

3. Printing and retrieving data — PRINT # and INPUT #
Storage and retrieval of items of data on a disk are accomplished by two
special commands, PRINT # and INPUT #. The PRINT # command
places one or more items on the disk, the INPUT # command is the reverse
and loads one or more items from the disk. In this section we shall provide a
variety of examples of the two commands and the way in which they
interact.

Format of PRINT # and INPUT #

The format of the two commands is:
PRINT # < FILE NUMBER> ,LIST OF VARIABLES

and

INPUT #< FILE NUMBER> , LIST OF VARIABLES

Punctuation with PRINT # and INPUT #
Of the two commands, INPUT # is the easier to deal with, since its use
will simply depend on the way in which items have been previously stored

59

Commodore 64 Disk Companion

on the disk using PRINT #. The punctuation for a list of variables
attached to an INPUT # statement is invariably a comma between each of
the items to be input, as with the normal INPUT command in BASIC.

Apart from the fact that there is a special command to accomplish it,
printing to a file is little different from the normal printing to the screen
itself. The way the data is stored on the disk will depend upon the order in
which it is printed, the punctuation (or lack of it) used when printing items
and the presence or absence of carriage return characters.

As an example of the kind of problems that have to be dealt with, enter
and RUN the following short program:

1@ PRINT “ABC" "DEF";"GHI","JKL";
2@ PRINT "MNOD";CHR$(13); "PGR"

What you will see on the screen is the following:
ABCDEFGHI JKLMNO
PQR

Examining the two line program and what it prints out, we can see that,
where two items are printed consecutively without punctuation, the second
is run on from the first without a gap. The same thing happens, not sur-
prisingly, when a semicolon is inserted between two items, regardless of
whether the second item is part of a second PRINT statement. Printing a
comma spaces out the two items with cursor right characters (not spaces)
though this is not visible on the screen. Finally, printing the carriage return
character (code 13) results in items being printed on a new line, ie as
completely separate from what went before. These are all useful features
when outputting to the screen, but unless they are watched they can create
problems when printing data to a sequential file.

To see the effects of different punctuations, enter and RUN the follow-
ing program (with the disk drive on and the TEST disk inserted).

PRINT # punctuation test program

1@ A% = "AAA" : B$ = "BBB" : C$ = "CCC"
: A=100 : B = 200 : C = 300

20 R$ = CHR$(13)

1380 REMSE %333 3336 333 I I 36 3 33 336 3 3 3363 3636 %
1810 OPEN 1,8,10,"SERTEST,S,W"

1020 PRINT#1,ASBCS

60

Chapter7 Sequential and User Files

1030 PRINT#1,A$;B$;C$
1048 PRINT#1,A$,B$,C$
1050 PRINT#1,ARBSRS$CS
1060 PRINT#1,A$ R$ B$ R$ C$
1070 PRINT#1,A$;R$;B$;R$;CS
1080 PRINT#1,A$,R$,B$
1090 PRINT#1,A;B;C
110@ PRINT#1,A,B,C
111@ PRINT#1,AR$,BR$,C
1120 PRINT#1,A R$ B R$ C
1130 PRINT#1,A:R$ B;R$ C
114@ CLOSE 1
2000 REMEEE 3363 363 336 363 36 3 3 36 36 3 336 36363 96 363 36 3
2010 OPEN 1,8,4,"SEGTEST"
20208 INPUT#1,A$: PRINT ">" A$ "¢
2030 INPUTH#1,A$: PRINT "“>" A% "<
2040 INPUTH#1,A$: PRINT ">" A$ "<
2050 INPUT#1,A$,B$,C$: PRINT ">" A$
ll< >ll Bs Il< >I' C$ II{ (1]
2060 INPUT#1,A$,B$,C$: PRINT ">" A$
Il< >II B$ Il{ >ll C$ II{ [1]
2078 INPUT#1,A$,B$,C$: PRINT ">" A$
“< >l! B$ ll< >II C$ ll{ "
2080 INPUTH#1,A$,B$: PRINT ">" AF “<>"
B$ (1] { L]
2090 INPUT#1,A
2100 INPUT#1,A

PRINT “>" A "<"

PRINT ">" A "<

2110 INPUT#1,A : PRINT ">" A “<"

2120 INPUT#1,A : PRINT ">" A "<*

2130 INPUT#1,A,B,C : PRINT ">" A "<>"
B ll{}ll C ll<ll

214@ CLOSE 1

Output from the PRINT # punctuation test

>*AAABBBLCCL

>AAABBBLCCCK

*AAA BBB cecel
>AAAL >BBB< >LCCL

>AAAL >BBBL >CCCL

*AAA< >BBBL >CCC<

>AARA <>BBB<

> 108200300 <

61

Commodore 64 Disk Companion

> 100200300 <

> 3@@ <

> 308 <

> 100 <> 200 <> 308 <

Explanation of output of PRINT # program

Examining the output of the program will give you a very good idea of
some of the pitfalls involved in storing and retrieving data in sequential
files. Each line of the table corresponds to what is printed on to the file by
one of the PRINT # lines in the first half of the program, and each actual
string that is stored and retrieved is marked by a ‘>’ at the beginning and a
‘<. In the second half of the program, each INPUT # line is designed to
pick up exactly what was printed by one PRINT # line, though why they
correspond sometimes takes some thinking about:

Lines 1020 and 2020: Since there is no punctuation, the three strings are
stored as one.

Lines 1030 and 2030: The semicolons achieve the same result as before.

Lines 1040 and 2040: The commas again result in a single string, but this
time the elements are separated by spaces.

Lines 1050 and 2050: Separating the items to be printed with the carriage
return character (CHR$(13)) ensures that they are stored as separate items.

Lines 1060 and 2060; 1070 and 2070: Provided that the carriage return
character is included, separating the items with spaces or semicolons
makes no difference to the results in 1050/2050.

Lines 1080 and 2080: Using the carriage return character but separating the
items with commas ensures that the items are stored separately, but A$ is
stored as A$ plus the padding added by the comma before the carriage
return which terminates the string. Note that the final item, B$, does not
have padding added to the front by the comma following the carriage
return character (R$). The spaces created by this comma were stored on the
disk but the 64’s operating system invariably strips leading spaces from a
string on INPUT.

Lines 1090 and 2090: Numeric values are treated no differently from
strings when it comes to the effects of semicolons — the same effect would

be observed for spaces or no punctuation at all.

62

Chapter7 Sequential and User Files

Lines 1100 and 2100: Interestingly enough, using commas with numeric
values produces the same effect on retrieval as the previous line. Spaces
were, however, taken up on the disk itself.

Lines 1110 and 2110: The result displayed in this line merits careful con-
sideration because it illustrates an important feature of disk storage, ie that
the disk does not store empty strings. The two non-existent strings ARS and
BR$ are specified in the print statement before the numeric variable C.
However, when we use INPUT # to pick up a numeric variable which we
call A, instead of a type mismatch error indicating that we have tried to
input a number when the next item was in fact a string, we find that there is
no record of AR$ and BRS on the disk.

Lines 1120 and 2120: Separating the numeric values properly from the
carriage returns with spaces makes no difference since spaces are not
accepted by the ROM routine which analyses the line for the BASIC inter-
preter. The result is the same as the previous line.

Lines 1130 and 2130: These lines show that properly separated numeric
items are printed separately on the disk. Note that the separation can either
be by punctuation of some kind or, in the case of strings, by the ‘$’ sign
which terminates the variable name.

Other rules for PRINT # and INPUT #

1) There is no connection between the names under which items are stored
and the names under which they are retrieved. An item stored as, for
example, A$ may be input again under any valid string variable name.

2) Items printed as numeric variables may always be re-input as strings.
Items stored as strings may be capable of recall as numeric values pro-
vided that the string is a valid numeric format, eg ‘1234’

3) The longest string which can be PRINTed to the disk is the maximum
string length of 255 characters.

4) The longest string which can be INPUT from the disk is 88 characters.
Strings longer than this need to be accessed by the use of GET # (see next
section).

5) Empty strings are not stored on disk. The disk does not keep any record
of the way in which items are broken down or of the names associated with

63

Commodore 64 Disk Companion

items — these are all supplied by the BASIC system of the 64. Sending an
empty string to the disk results in no characters being sent and no char-
acters being stored.

6) String variables may be printed to the disk with leading spaces but on
re-input the leading spaces are stripped by the 64. This characteristic can be
used to good advantage to overcome the limitation of point 5 above. If it is
important to save an empty string variable in a sequence of variables, it can
be made equal to a single space. It will be properly stored and may be
reloaded, when it will become once again an empty string.

7) Several characters in the character set which may be saved to disk cannot
be successfully reloaded with INPUT 3 . These include the characters with
the following ASCII codes:

0/ 13 / 32 (when in the form of a leading space) / 34 / 44 / 58

This limitation makes it next to impossible to store material such as
machine code or numeric data in the form of strings to be recalled with
INPUT #. In general, any character which can be visibly printed, plus the
colour and cursor control characters (ie all the characters normally usable
in one way or another to print to the screen), can be printed and then
retrieved using INPUT #.

4. GET #

Just as PRINT and INPUT have a parallel command for use with the disk
drive, the normal BASIC command GET, which accepts a single character
from the keyboard without the use of RETURN, has a disk equivalent in
GET # . The function of GET # is to pick up the next single character from
the disk at the point indicated by the drive’s internal pointer. Having
picked up the character, the pointer is incremented by one. As with GET,
single digit numbers can be retrieved by the use of GET #, though there is
no advantage to this compared to INPUT # and asignificant disadvantage
in that an instruction to GET # a numeric variable will produce a syntax
error if a non-numeric character is encountered. In general, GET #, like
GET, is used for the input of characters which will be treated as string
variables.

The advantages of GET # are that it is capable of accepting characters
from the disk which would be rejected by the normal INPUT 3# instruction
except for CHR$(0) and that strings may be input from the disk which
exceed the limit of 88 characters. The following program demonstrates
some of the differences between INPUT # and GET #.

64

Chapter7 Sequential and User Files

GET # demonstration program

1® OPEN 8,8,15,"S@:GET TEST" : CLOSE 8
1800 RE M#E 3% 9% 3 36 3% 3 9 3 96 3 3 36 3636 3636 3693 36 I I3 363 3 66 %%
1@1@ OPEN 1,8,2,"GET TEST,S,W"
1020 PRINT#1," AAA"

1030 PRINT#1,"AAAL3*SHIFT XIBBB" :

REM THREE CLUB SYMBOLS

104@ PRINT#1,"AAA: BBB"

1050 PRINT#1,"123"

1060 PRINT#1,123

1070 A% = "AARA" : A$ = AS+AS : AS
AS+AS : A% = AS+AT : A$ = AS+AS : AS =
AS+HAS

1080 PRINT#1,A$

1890 CLOSE 1

2000 REM#******************************
2005 PRINT “[CDIRETRIEVAL WITH GET#LCD1"
2@1@ OPEN 1,8,2,"GET TEST,S"

2020 A% = "

2030 GET#1,T# : IF T$<>CHR$(13) THEN

A% = A$+TS : GOTO 2030

2040 PRINT ">" A$ "<"

2050 A% = "

2060 GET#1,T$: IF T$<{>CHR$(13) THEN

A$ = A$+TS$: GOTO 2060

2@07@ PRINT ">" A% "<"

2080 A$ = "

2090 GET#1,T$: IF T$<>CHR$(13) THEN

A$ = A$+T$: GOTO 2090

218@ PRINT ">" A$ """

2110 GET#1,A : PRINT ">" A "<"

2120 GET#1,A : PRINT ">" A <"

2130 GET#1,A : PRINT ">" A "<" :
GET#1,A$

2140 GET#1,A$: GETH#1,A : PRINT ">" A
ngn : INPUTH1,A$

2158 A% = "

2160 GET#1,T$: IF T$<>CHR$(13) THEN

A$ = A$+T$: GOTO 2160

217@ PRINT ">" A$ "<"

218@ CLOSE 1

3000 REM#******************************

{1

3005 PRINT "CCDIRETRIEVAL WITH INPUTH#LCD1"

Commodore 64 Disk Companion

3810 OPEN 1,8,2,"GET TEST,S5"

3020 INPUT#1,A%$: PRINT “>" A% "<
3038 INPUT#1,A%$: PRINT ">" A% "¢
3040 INPUT#1,A$: PRINT "“>" Af$ """
3050 INPUT#1,A : PRINT ">" A *<*
3060 INPUT#1,A = PRINT ">" A """
3870 INPUT#1,A%$: PRINT “>" A% "¢
3080 CLOSE 1

J@90 END

Table of output from GET # test program

> AARAL
“ARALI*SHIFT X1BBB<
>AAA: BBB<

> 1«

> 2 <

>3«

> 1 <
>AAAAAAARAAAAANAAAARAAALAAAAAAAAAAARAAAAA
ARAARAAAARAAAAAAAAAAAAAAANAAAAAAAAAAAAAAA

ARARAAAARAAAAAAAAAAAAAAABAAAAAAAAARAAAAAA
AAAAAAAAAL

>AAAL

*AAAL3*SHIFT X1BBB<
>AAAL

> 123 £
> 123 £

After this point, the program will stop with a STRING TOO LONG
ERROR IN 2070 error message. You should enter CLOSE1[RETURN] to

close the file.

Explanation of output of GET # test program

The purpose of the program is to illustrate some of the features of GET #
and the differences between GET # and INPUT # . This is best done by
commenting, as with the previous program Punctuation Test, on the paral-

lel sets of lines for each individual PRINT #, INPUT # and GET #.

Lines 1020; 2020—2040; 3020: The first thing to note is the relative complex-
ity of recovering an item by the use of GET #, requiring two program lines

66

Chapter 7 Sequential and User Files

compared to the one simple instruction for INPUT #. The function of the
GET # lines is to continue picking up characters from the disk and adding
them to an originally empty A$ until such time as a carriage return char-
acter (CHR$(13)) is encountered. The difference in the result which is pro-
duced is that GET # accepts the leading spaces which were printed as part
of AS.

Lines 1030; 2050—2070; 3030: No problems are encountered by either
method in retrieving normal graphics characters.

Lines 1040; 2080—2100; 3040: No problems are encountered by GET #,
but INPUT # will not accept that part of the string which falls after the
colon (the same would be true for a comma).

Lines 1050; 2110—2130; 3050 : The numeric value A is successfully read by
INPUT #, despite the fact that it was stored as a string variable — another
illustration of the fact that no distinction is made on the disk itself. When it
comes to retrieval with GET # , however, each character of the string must
be picked up individually, even though it is being treated asa number. Note
the GET # 1, A$ onthe end of the third line (2130). This must be includedto
take account of the carriage return character at the end of the string on the
disk.

Lines 1060; 2140; 3060 : Where an item is stored to the disk as a numeric
value, there is no difference from the previous method where it was stored
as a string. INPUT # will retrieve the number in one operation, while
GET # picks up only one character of the number at a time.

Lines 1070—1080; 2150—2170; 3070 : The PRINT # section of the pro-
gram creates a string 128 characters long and prints it to the disk. GET #
successfully retrieves the string but INPUT # generates a STRING TOO
LONG error since the string is longer than 88 characters.

GET# and the storage of numbers in strings

One further usage of GET # should be briefly mentioned since it can be of
importance in reducing the amount of space devoted on the disk to the
storage of numeric data and is often used to reduce the amount of memory
taken up by numeric variables. Single byte values, that is numbers in the
range 0—255, can easily be stored in the form of string characters, with each
character of the string representing a single value in the range 0255,
according to the ASCII code of the character. Values which require more
than one byte can be represented by multiple characters.

67

Commodore 64 Disk Companion

As mentioned already, GET # has the advantage over INPUT 3# that it
can accept a wider range of characters from the disk, the only exception
being CHR$(0). When numbers are stored in the form of strings, the inabi-
lity to cope with CHR$(0) is clearly a major disadvantage. A line such as the
following will overcome the problem:

100 GET#1, T$: T$=LEFT$(T$+CHR$(0),1)

Aseach character is obtained from the disk, CHR$(0) is added to it to form,
in most cases, a two-character string. The leftmost character of this string
is then taken to be the character obtained from the disk. In the majority of
cases, this leads to no alteration whatsoever in what is obtained from the
disk. Inthe case of CHR$(0), however, GET # fails to pick up anything but
a null, or empty, string. When CHR$(0) is added to this and the leftmost
character extracted, the result is clearly the CHR$(0) which was added to
the empty string. The result is that when GET # picks up an empty string
from the disk, indicating that CHR #(0) was on the disk, the result
obtained is CHR$(0). The use of this technique is illustrated more fully in
the example program at the end of this chapter.

5. Detecting the end of file

When retrieving data which has been stored on disk, it is clearly necessary
to know when the end of the data has been reached. One method, and us-
ually the most desirable in programming terms, is to know how much data
there is before you begin to use it: the second is to let the disk drive tell you
when you are in danger of reading off the end of the file.

Program to test for end of file

1@ OPEN 8,8,15,"S0:END OF FILE" : CLOSE 8
1000 REME %% 3336363636 33636 3 3 3 363689 6 3656 83 369646 565
1212 OPEN 1,8,2,"END OF FILE,S,W"

1820 ITEMS = 20 : PRINT#1,1TEMS

1830 FOR I = @ TO ITEMS-1

1048 PRINT#1,1

1850 NEXT I

186@ CLOSE 1§

2000 REM#****#*************************
2018 PRINT “L[CDI1LCDIUSING NUMBER OF DATA
ITEMSICDILCD1"

2020 OPEN 1,8,2,"END OF FILE,S"

2030 INPUT#1,ITEMS

68

Chapter7 Sequential and User Files

2040 FOR I = @ TO ITEMS-1

2050 INPUT#1,X : PRINT X 5 “/" ;

2060 NEXT

2@7@ CLOSE 1

2080 PRINT

000 REM#******************************
3@1@ PRINT "[CDI1CLCDIUSING STATUSLCDILCDI"
3020 OPEN 1,8,2,"END OF FILE,S"

Z@30 INPUT#1,ITEMS

3P40 INPUT#1,X : SS = ST : PRINT X ;3 "/" 3
3@50 IF SS<>&64 THEN 3040

3068 CLOSE 1

3@7@ PRINT

The first module of the program prints the number 20 to the file and then
prints a series of twenty numbers. The loop used to print the values begins
at zero and continues to the value of ITEMS—1, since in most cases the
values to be printed would be being taken from an array (eg
PRINT # 1,ARRAY(I)) and 20 items would take up positions 0—19 in the
array.

The second module works by first reading the value of ITEMS back into
that variable and then reading the specified number of items from the disk.
In a working program, the values would normally be read back into an
array, eg INPUT # 1, ARRAY(D).

The third module works by using INPUT # to pick up the items and,
after each item is retrieved, sampling the value of the system variable ST. If
the value of ST, which is supplied by the disk drive, equals 64, the item just
input is the last in the file. In general it is better to test ST immediately after
INPUT # (or GET #)to ensure that its value is not changed by some other
operation before it is sampled. Note that, in this third module, the value of
ITEMS has to be bypassed by the use of INPUT #. Normally, if the
method employing ST were being used, ITEMS would not have been
printed to the disk in the first place.

Employing ST to detect the end of a file, rather than a program-created
variable, becomes essential if use is made of the COPY housekeeping
command to concatenate sequential files. Sequential files can be success-
fully tagged on to the end of each other using COPY, and the file produced
can be read normally. Clearly, it is not desirable to have a variable such as
ITEMS stuck in the middle of such a file, so in such cases there is little
choice but to use the ST method of detecting the end of file.

6. Ending output or input with CLOSE
When output or input has ended it is important to CLOSE the file.

69

Commodore 64 Disk Companion

Whether the file is for output or input, leaving it open ties up the file
number associated with it and any attempt to open another file with that
number will resultin a FILE OPEN error message. More importantly, if an
output file is not closed immediately, there is a chance that the program
will terminate, perhaps through an error in the BASIC program, with the
file still open. In this case, the file is marked in the disk directory as being
unclosed and when the disk is next VALIDATE(the file will be scratched.

To check whether you have any unclosed files on a disk, simply load the
directory and examine the file type for each file. Any files which have not
been correctly closed will have their file type preceded by an asterisk (*). It
is unlikely that a file in this condition will be capable of recovery.

7. Examples of the use of sequential files

In this section, we give some examples of the way in which a sequential file
may be employed to store various types of data. Using the methods
illustrated in the program below, you should find little difficulty in using
sequential files to store the data for a normal applications program.

Sequential file test program

1@ OPEN 8,8,15,"S@: TEST FILE" : CLOSE 8
1008 REMEEW NN RN 3-3636 33693935596 3 36 3 36 36 3696 3 3 %
1810 REM INITIALISE THE ARRAYS

1020 CLR

1830 R¥ = CHR$(13)

124@ DIM ARRAY$(108) ,ARRAY (100)

1858 A% = "

1860 FOR I = @ TO 100

1878 IF I/5=INT(1/5) THEN A% = A$+"A"
1080 ARRAY$(I) = A%

1890 NEXT 1

1100 FOR I = @ TO 100

1110 ARRAY (I} = I

1120 NEXT 1

1130 NUMBERSs = "9876543210123456789"
1140 CODE$ = v

1150 FOR I = @ TO 100

1160 CODE$ = CODE$+CHR$ (1)

1170 NEXT I
1188 V1 = 1111
119@ vz = 222

70

1200
1210
1228
1230
1240
2aea
2010
2020
2030
2040
2050
20460
2a7e
2080
2090
2100
2110
2120
2138
3000
o102
30820
030
3040
3050
3asa
Iava
3080
3090
3100
3110
3120
3138
3140
3150
3168
3170
4000
4@10
4020
4030
4040
ERVS
450

Chapter7 Sequential and User Files

V3 = 33

VB$ = "BBBB"
VC# = "CCcCcCcccc
vD$ = "DDD"

ITEMS = 101
REM#******************************
OPEN 1,8,2,"TEST FILE,S,W"
PRINT#1, ITEMS; R$;V1;R$; VBS

FOR I = @ TO ITEMS—-1

PRINT#1 ,ARRAY$ (1)

NEXT I

PRINT#1,V2;R$;VC$

FOR I = @ TO ITEMS-1
PRINT#1,ARRAY (1)

NEXT I

PRINT#1 ,NUMBERS

PRINT#1,CODES$

PRINT#1,V3;R$;VD$

CLOSE 1
REM#******************************
OPEN 1,8,2,"TEST FILE,S"
INPUT#1,ITEMS,V1,VB$

FOR I = @ TO ITEMS—1

INPUT#1 ,ARRAYS (1)

NEXT I

INPUT#1,V2,VC$

FOR I = @ TO ITEMS-1

INFUT#1 ,ARRAY (I)

NEXT I

INPUT#1 ,NUMBERS$

CODE$ = "=

FOR I = @ TO ITEMS-1

GET#1,T$: T$ = LEFT$(T$+CHR$ (@) ,1)
CODE$ = CODE$+T$

NEXT

INPUT#1,V3,VD$

CLOSE 1
REM#******************************
FOR I = @ TO ITEMS—1

PRINT "3>" ARRAY$(I) "<

NEXT

INPUT"[CDIPRESS [RVS ONIRETURN
OFF1 TO CONTINUE ";T$

PRINT

71

Commodore 64 Disk Companion

4068 FOR I = ITEMS—-1 TO @ STEP -1
4@7@ PRINT ARRAY (I) "/" 3

4088 NEXT

40790 PRINT

4100 INPUT"LCDIPRESS [RVS ONIRETURN
[RVS OFF1 TO CONTINUE ";7T%#

4118 PRINT

4120 FOR I = 1 TO LEN(CODE#%)

4138 PRINT ASC(MID$(CODE#,I,1)) "“/" 3
4140 NEXT I

4150 PRINT

4160 INPUT"LCDIPRESS [RVS ONIRETURN
[RVS OFF] TO CONTINUE "“;7T#%

4178 PRINT
4188 PRINT "NUMBER$ = " NUMBER%
419@ PRINT "V1 =" Vi

420@ PRINT "V2Z =" V2
4218 PRINT "V3 =" V3

4220 PRINT "VB$ = " VB%
4230 PRINT "VC$ = " VC#
4240 PRINT "VD$ = " VD%

4250 END

Explanation of sequential file test program

The purpose of the program is to print a variety of data to the disk from
arrays such as those which might be used in a program, then to retrieve that
data from disk and replace it into arrays.

The first module, lines 1000— 1240, set up the arrays. ARRAYS contains
101 strings which consist of increasing numbers of As — the number of As
increasing by one for every five strings stored. ARRAY contains the
numbers 0—101 in ascending order. The string NUMBERS contains the
characters ‘9876543210123456789’. The string CODES contains 101 char-
acters whose ASCII values are 0— 100. The purpose of CODES$ is to demon-
strate the technique of storing single-byte numbers in strings, a method
which is extremely economical in terms of memory. Each character of
CODES$ will be important, not so much as a character, but because its
ASCII value represents a value which must be stored. In addition there are
seven other variables whose values can be observed in lines 1180—1240,
including ITEMS, whose value of 101 reflects the number of data items
which are to be stored in each of the arrays. The value of ITEMS would
normally be determined by the program itself as new items of data were
added or deleted.

72

Chapter7 Sequential and User Files

The second module, lines 2000—2130, prints the contents of the arrays and
variables to the disk.

The most complex of the modules is clearly module three, lines 3000—
3170. The purpose of this module is, using techniques outlined in this
chapter, to recover the data from the disk and store it back into the various
arrays.

The fourth module, lines 4000 onwards, has the simple purpose of printing

the retrieved data to the screen to demonstrate the success of the
procedure.

Summary of user files

1) User files are an essential tool for serious programming which will
almost invariably involve the need to store more or less complex data
from one run of the program to another.

2) User files must be OPENed with a command such as:
OPEN 1,8,2,““USERFILE,U,W”’
which includes the specification of:
a) aunique file number
b) the device number (normally 8)

¢) the unique channel number (2—14)

d) the name of the file, including the termination ¢,U’ to indicate that it
is user.

¢) whether the file is for output or input (, W’ or ,R’).
3) Datais placed into User files by the use of the PRINT # statement.

4) Datais retrieved from user files using either the INPUT # or the GET #
statement.

5) User files must be CLOSEd when no further use is to be made of them,
otherwise they risk being invalidated on the disk and the data they con-
tain lost.

73

Commodore 64 Disk Companion

Summary of sequential files
1) Sequential files are an essential tool for serious programming which will
almost invariably involve the need to store more or less complex data
from one run of the program to another.
2) Sequential files must be OPENed with a command such as:
OPEN 1,8,2,SEQFILE,S,W”’
which includes the specification of:
a) a unique file number
b) the device number (normally 8)

¢) the unique channel number (2—14)

d) the name of the file, including the termination ¢,S’ to indicate that it
is sequential

e) whether the file is for output or input (‘*,W’ or ‘,R’).

3) Data is placed into sequential files by the use of the PRINT #
statement.

4) Data is retrieved from sequential files using either the INPUT # or the
GET # statement.

5) Sequential files must be CLOSEd when no further use is to be made of

them, otherwise they risk being invalidated on the disk and the data they
contain lost.

74

CHAPTER 8
Program Files

1) What is a program file

2) The structure of a BASIC program file

3) Using program files for other purposes

4) Output of program files to printer

5) Merging programs using program files on disk
6) Renumbering a program file on disk

When the directory of a disk is displayed it is likely that it will contain files
of at least two types, sequential and program. So far, we have talked about
the simple process of LOADing and SAVEing and have analysed sequen-
tial files in some detail. There are, however, many extremely useful opera-
tions that can be carried out on program files apart from LOAD and
SAVE, but, before they can be understood, there needs to be some expla-
nation of the nature of a program file as it is stored on disk.

What are the main differences between these two important file types,
the program and sequential? The answer is quite simple: the difference
between ‘PRG’ files and ‘SEQ’ files is simply that one is called ‘PRG’ and
the other is called ‘SEQ’. Try the following experiment:

1) Enter this single line program:

1@ REM THIS IS A "SERUENTIAL PROGRAM"!
2) Type:

SAVE "SEOPROG,S5",8 [RETURN]

3) Examine the directory of the disk and you will find that there is a file on
the disk called SEQPROG, and that it is a sequential file.

4) Type:

NEW [RETURNI]

75

Commodore 64 Disk Companion

to clear the test program out of memory.

5) Type:

LOAD "SERPROG,S",B [RETURNI

6) LIST the program and you will find that you have just successfully
LOADed a program which is stored on disk as a sequential file.

1. What is a program file

We have already clearly demonstrated that a program can be saved in the
form of a sequential file? The question then arises, what is a program file?
The simple answer is that ‘PRG’, the indicator of a program file on the
disk, is a flag used by the 64 not by the disk drive itself, and indicates to the
64 that this is a file in which it would normally expect to find a program
stored. When told to SAVE a program, unless another type of file is
specified, the 64 sets up a ‘PRG’ file: it then writes the current start address
of BASIC and the contents of the program memory, byte by byte, into that
file, though the file itself is no different from a sequential file, except that it
has been given the special designation ‘PRG’. Similarly, when the 64 is
instructed to LOAD a program, unless it is told otherwise, it searches for a
program file with the specified name and loads its contents back into pro-
gram memory.

To sum up then, a program file is a sequential file containing the con-
tents of BASIC memory and having a special designation ‘PRG’ which
indicates the type of file the BASIC interpreter defaults to on LOADing
and SAVEing.

2. The structure of a BASIC program file
Not surprisingly, program files reflect the structure of programs, and so to
understand their structure we have first to say something about the way
programs are stored in memory.

BASIC programs normally occupy an area of memory beginning at
address 2049. Each line of the program is represented, in order, and con-
tains four distinct sections:

1) Two bytes known as ‘link bytes’. These record the address of the start of
the next line of program, ie the byte following the end of the current line.

2) Two bytes which record the line number.

76

Chapter8 Program Files

3) An indeterminate number of bytes representing the text of the line.
4) One byte containing the value zero, which indicates the end of the line.

Atthe end of the program, following the zero terminating the final line, are
two more bytes containing the value zero which act as a marker for the
BASIC interpreter.

When it comes to storing a program on disk, the format is almost exactly
the same as the format in memory. The single exception is that, since it is
possible for a BASIC program to start almost anywhere in memory, the
disk file commences with two bytes which record where the start of the
particular program lay when it was SAVEd. Given below is a program
which reads a program file on disk as if it were an ordinary sequential file.
At the present time it is set up to read its own program file, so must be
entered, SAVEd, and then allowed to read the disk on which it is SAVEd.

Program reader

1@ OPEN 8,8,8,"PROG READ"

15 GET#8,T$: GET#8,T$

20 GET#B8,T$: GETH#8,T$

3@ IF T$="" THEN 110

40 GETH#8,T$: T = ASC(T$+CHR$ (D))

SO GET#8,T$: T = ASC(T$+CHRS$ (D)) *256+T
6@ PRINT T " "

80 GET#8,T$: IF T$>"Z" THEN T$ = "["+
MID$ (STR$ (ASC(T$)) ,2)+"1"

9@ IF T$<>"" THEN PRINT T$; : GOTO 80
95 PRINT

100 GOTO 2@

11@ CLOSE 8

120 END

Explanation of program reader
Line 15: Obtain the first two bytes of the file — nothing is done with them.

Lines 20—30: Pick up a pair of link bytes. If the second of them, which
should be the high byte, is zero then the end of the file must have been
reached.

Lines 40—60: Pick up and print the line number.

Lines 80—90: The bytes which make up the line are picked up and printed

71

Commodore 64 Disk Companion

one by one. Some of them will be single-byte tokens for keywords and will
not be printable. These are represented by their ASCII value in square
brackets.

Output of program reader

1@ [1591 8,8,8,"PROG READ"

15 [16114#8,T$: [1611#8,T$

20 [1611#8,T$: [16114#8,T$

30 [139] T$C1781"" [167]1 110

40 [1611#8,T$: T [178]1 [1981(T$[1701C
1991(2))

SB@ [1611#8,T$: T [178] [1981(T$L17@1C

1991(@))C172125601701T
&8 [1531 T " “;

8@ [161188,T$: [139]1 T$L1771"Z" [167]
T# [178] "[9131"C1701L2021(L196]1(L1981(T
£$)),2)1781*931"

9@ [1391 T$UL1791C1771"" [1671 L1531 T#%
s = [137]1 80

25 [153]

10@ [137]1 20

11@ [160] B

1208 [1283]

The reason for giving the output of the program is not in order to analyse it
in great detail, but merely to illustrate roughly the structure of a program
file. The values contained in square brackets are the ASCII codes of
‘tokens’, the single-character shortened forms of the BASIC keywords
which the program contained. Apart from these tokens, you can see that
the rest of the content of the program is stored in a very straightforward
format, much as you would expect to see it on the screen.

3. Using program files for other purposes

Just as sequential files can be used for the purposes of storing programs, so
program files can be used for other purposes. It is perfectly possibletousea
program file for the storage of data by using a command like:

OPEN 1,8,2,““DATASTORE,P,W”’
and the data retrieved with:

78

Chapter8 Program Files
OPEN 1,8,2,“DATASTORE,P,R”’

Having opened the file correctly, it may be manipulated in all the ways
described in the chapter on sequential files.

A more common use of program files, however, is to save areas of
memory holding material such as machine code programs or the screen
display. This is a fast method of storing and retrieving data compared with
the laborious process of printing and inputting item by item from disk.
Given below is a short routine taken from a working program which saves
the contents of screen memory to disk as a program file.

Routine to save memory as a program file

14040 IF A=1 THEN END

14858 FOR I=0 TO 3 : AL(IY=PEEK (43+1)
: NEXT

14060 POKE 43,8 : POKE 44,4 : POKE 45,

@ : POKE 46,8

14878 SAVE "SCREEN" .8

14080 POKE 43,A%Z (@) : POKE 44,A%Z(1) :
POKE 45,A%Z(2) : POKE 46,A%L(3)

14090 PRINT "L[CLR1"

15008 FOR I = 55296 TO 56319 : POKE I,1
: NEXT

15085 A = 1

15310 LOAD "SCREEN",8,1

Leave the program listing on the screen and RUN the program (with a disk
in the drive). The disk drive should now start up, and the screen memory is
saved to the disk. The screen should then clear and the program listing
reappear in white. Finally the program will end with the cursor flashing
near the top of the screen.

Explanation of routine:

Lines 14050—14060: The registers which record the start and end of the
BASIC program area are first recorded, then altered so that they indicate
the start and finish of the area of memory to be SAVEd — in this case the
screen memory.

Line 14070: A simple SAVE instruction now suffices to store the specified
area of memory to disk as if it were a program.

79

Commodore 64 Disk Companion

Line 14080: The original values of the registers recorded in 14050 are
replaced so that the system knows where the BASIC program really is.
Note that this cannot be done with a loop since the system will be confused
as to the location in memory of the value of the loop variable by the tempo-
rary alteration to the end of BASIC — which is where variables begin.
Using an array to store the values creates no problems since we have not
altered the register which indicates the position of the start of arrays in
memory.

Lines 14090—15000: The screen is now cleared. Since we have not chosen to
save the contents of the colour memory along with the screen, the value 1 is
POKEd into all 1024 bytes of colour memory, specifying that any char-
acters in screen memory will appear white. If this were not done, the
reloaded screen would not be visible.

Line 15010: The program file containing the screen is now LOADed. The
only difference between the instruction and a normal LOAD is that a
secondary address of one is tagged on to the end. The effect of this is to tell
the system to reload the program file into exactly the same area of memory
as that from which it was taken. Note that, since the program file is
reloaded under program control and not from an instruction in direct
mode, the start and end of BASIC pointers are not changed to reflect the
position and size of what is being reloaded. In other words, though a pro-
gram called SCREEN is being LOADed, the system continues to regard the
program which called for the LOADing of SCREEN as the operative
program.

Lines 14040 and 15005: These two lines appear not to fit easily into the
development of the program as outlined above. When program files are
LOADed under program control, the 64 automatically re-RUNs the
BASIC program, although without clearing the variables. Rather than be
caught in an endless loop, the variable A is set to one when the screen has
been reloaded and the value of this variable is used as a flag to inform the
system that there is no need to RUN the program again. If the routine were
embedded in alarger program, line 14040 would normally return execution
to the point after SCREEN had been reloaded rather than simple ENDing.

Although SAVEing the screen can be a neat and useful procedure, the
ability to SAVE areas of memory is probably more often employed to store
machine code programs on to disk for fast access.

4. Output of program files to printer
Once the nature of program files is understood, it becomes possible to use

80

Chapter8 Program Files

and manipulate them in a variety of useful ways — often with far greater
ease than could be achieved with a program in memory. One example of
this is the formatting of a program for a printed listing. There is no doubt
that the kind of ‘square brackets format’ adopted for the programs in this
and many other Commodore programming books, where control char-
acters are represented by short mnemonics in square brackets rather than
by inverse graphics characters, is far clearer to read. It is possible to attach
aroutine to a program in memory to list it in this format, but much simpler
to adopt the method used in the program given below of reading the pro-
gram from the disk and listing from that source.

Square brackets listing program

18 GOTD 146000

SOOD REME 33300 3 36553696963 3 330 363969696 33636 36 3
5810 REM DISC ERROR STATUS

SO20 REM¥EE I 33336363636 36 3633636269696 6 3 3636 26 4 %
5038 INPUT#15,EN,EM$,ET,ES

5848 IF EN=73 THEN 5030

5858 IF EN<28 THEN RETURN

5068 PRINT "[CLRICCDICCDILCDILCDI *%¥¥%*
3636 3636 36 363636 30 300 30 3 363 2636369636 969 36 -6 626 29 ¢

5@7@ PRINT "CLCDILCD] DISC
ERROR"

5880 PRINT "LCD1LCD1] ERROR -" EN
n 11 EM$

5879@ PRINT "LCD1] AT TRACK -" ET "
AND SECTOR -—-"ES

51080 PRINT "LCDILCDI] PROGRAMME

EXECUTION TERMINATED"

5110 PRINT "LCDICCDILCDI 39333835 3 3 3 3 3 3 3 %
3336 I I I I I I I I3

5120 CLOSE 15

5138 CLR

914G END

13000 REMSENIEIH I H I3 I3 3 I 336 3 36 I3 3 336963 3%
13010 REM LIST DISC FILE INITIALISATION
13020 REM¥*EEIH I 333363 3 I3 36 I3 3 3636 36 33 3363 ¥
1303Q DIM C#(285,1)

13040 FOR I = @ 7O 255 : C#(1,@8) = CHR#
(I) = C$(I,1) = CHR#$(I) : NEXT

13050 AD = 41118 : T1 = 128

13060 T4 = "¢

81

Commodore 64 Disk Companion

13078 T = PEEEK(AD) : AD = AD+1

13080 T$ = T$+CHR#$(T AND 127)

13098 IF T<128 THEN 13870

13100 C$(T1,0) = T#% : T1 = Ti+1

13110 IF PEEK(AD) THEN 13060

13120 RESTORE

13138 READ T% : IF T$<>"FOR LIST" THEN
13132

13148 READ T

13150 IF T<@ THEN RETURN

13160 READ T4 : C#$(T,1) = "["+T$+"1"
1317@ GOTO 13140

1 4B REME % 33 3 3 3 3 36 3 3 36 3 3 3 3 3 3 336 I 33 3636 36 3 - 3%
140108 DATA "FOR LIST"

140238 REM®E 333 33 3 3 33 36 36 3 36 36 3 36 36 3 3363 96 3 9 3636 %
140838 DATA S,WHT,17,CD,1i8,RVS,19,HOME
1484@ DATA 26,DEL ,28,RED,27,CR,30,6RN
14058 DATA 31,BLU,129,0RANGE,133,F1
14068 DATA 134,F3,135,FS5,136,F7,137,F2
140878 DATA 138,F4,139,F6,140,F8,144,BLK
14@80 DATA 145,CU,146,RV0,147 ,CLR

14098 DATA 148,INST,149,BROWN,150,LT. RED
i41@0® DATA 151,6GREY 1,152,GREY 2

14118 DATA 153,LT. G6RN,154,LT. BLU
14128 DATA 155,6REY 3,156,PUR,157,CL
14138 DATA 158,YEL,159,CYN

14148 DATA -1

1530@ REM# R 35 3 3303633 3363 96 36 3 3 3 3 3633 396 9 3 3%
15810 REM DO LIST

15SA20 RE MR 333 333363 3 3 3636 36 3 6 363636 36 6 36 356 5 3 %
15038 OPEN 3,DEV,3,NR$: GOSUB 5000
15848 OPEN 4,4

15050 GET#I,T+ : GETH#3I,T#

15060 GETH#3,T$: GETH3I,T#

15878 QU = @

15080 IF T#="" THEN CLOSE 3 : CLOSE 4
t RETURN

15098 GET#3,T% : T = ASC(T$+CHR$(B))
15100 GET#3,T# : T = ASC(T$+CHR$(@))

#256+T

15118 PRINT#4 ,MID$(STR$(T),2) " " 3

15120 GET#3,T#
15130 IF T4=CHR#%(34) THEN QU = 1-8QU
1514@ IF T#<>"" THEN PRINT#4,C#% (ASC

82

Chapter8 Program Files

(T$),0U) ; : GOTO 15120

15150 PRINT#4

15160 GOTO 15060

16000 REMS K I3 363636 36 3 3 3 I 3 336 I 3 3336363 %%
16010 REM INPUT DATA FOR LIST

16@20 REM®E I3 W3 3 W33 3 3 36 3 3 3336 569 3 33632 % %
16030 GOSUB 13000

16@4@ INPUT "DEVICE NUMBER ? S8LCLILCL]
[CL1";DEV

16050 OPEN 15,DEV,1S

1606@ INPUT "FILE TO BE PRINTED ";NR$
16878 GOSUB 15000

16080 INPUT "ANY MORE FILES (Y/N) ? N
[CLILCLICCLI"; T#

16090 IF T$="N" THEN CLOSE 15 : END
16100 IF T$<>"Y" THEN PRINT "L[CUILCU]
[CUl* : GOTO 16080

16110 GOTO 16060

Explanation of square brackets listing program

Lines 16000—16110: The purpose of this module is to allow the user to
specify the device number of the disk on which the program is stored, the
name of the file, and to open the error channel to that device. When output
of the program to the printer has ended, the user has the option of specify-
ing another file to be listed.

Lines 13000—14140: The first of these two modules initialises the program,
largely using data drawn from the second module.

Lines 13030—13040: The first step is to set up a 256-line array, each line
having two elements. To begin with, both of the elements are set equal to
the character which has an ASCII value equal to the line number in the
array (0—255).

Line 13050: AD is the address of the start in memory of the table of BASIC
keywords. T1 is set to 128, the value of the first character in the character
set used as a token for a BASIC keyword in a program file.

Lines 13060—13090: Characters are PEEKed from the BASIC keyword
table and added to a temporary string until a character with a value greater
than 127 is encountered. In the keyword table itself, the end of each key-
word is marked by the final character having its value ANDed with 128.

83

Commodore 64 Disk Companion

Line 13100: Starting at line 128 of the array, just as the keyword tokens
start at CHR$(128), the keyword is stored in element zero of the relevant
line of C$.

Line 13110: The process continues until a byte containing the value zero is
found, marking the end of the keyword table.

Lines 13120—13130: The beginning of the DATA module is marked with a
data statement reading DATA FOR LIST. These lines read and discard
any data up to that point. In this particular program there are no DATA
statements before line 13130, but the two modules are meant to be relocata-
ble in a larger program if you so desire.

Lines 13140—13170: The mnemonics for the various control characters
which the program is designed to reformat are read from the DATA
statements and placed into element 1 of the relevant line of the array C$. By
the time the module has finished its work, the zero elements of C$ will
contain keywords which correspond to the ASCII value of any character
used as a token and the ‘1’ elements will contain the square bracket repre-
sentations of any characters used to represent control characters. The
reason that the two types have to be kept in two different halves of the array
is that the same characters can serve different purposes according to
whether or not they are enclosed in quotes. Thus CHR$(137) will represent
the F2 key if it falls within a string and GOTO if does not.

Lines 15000—15160: This module performs the task of reading the pro-
gram line by line from the disk and printing it out. It is similar in structure
to the PROG READ program given in the second section of this chapter.

Lines 15030—15040: A file is opened to the specified device under the
specified program name. A second file is opened to the printer to receive
the output.

Line 15050: The first two bytes of the file, which record the start address of
the program in BASIC, are read and discarded.

Lines 15060 — 15080: These lines pick up what should be the link bytes at
the beginning of the line and check that they are not in fact the end of file
markers. The variable QU is used to record whether the characters being
picked up are within quotes — it is set to zero at the beginning of the line.

Lines 15090—15100: The two bytes containing the line number are picked
up from the disk and the line number printed.

84

Chapter8 Program Files

Lines 15120—-15140: The characters of the line are picked up from the disk
one by one. If the character picked up is a quotation mark, the value of QU
is toggled between zero and one. For other characters, the contents of one
or other side of a line in the array C$ is printed, depending on the value of
QU. Most of the characters in C$ will be normal printing or graphics char-
acters but others, as we have seen, have been replaced with keywords or
square brackets representations to correspond with characters which are
used as keyword tokens or control characters.

Lines 5000—5140: The disk status routine we examined earlier.

Using the program

To make use of the program, first LOAD it into memory. Ensure that the
disk drive is on and that it holds the disk containing the program you wish
to list. The printer must be on. Run the program and respond to the
prompts for device number and program name. The list of the square
brackets mnemonics with which the program replaces control characters is
given in the Notes on Program Listings, at the beginning of this book.

5. Merging programs using program files on disk

The ability to merge programs, loading them both into memory at the same
time in such a way that they become one, is extremely useful, but not
something that is built into the Commodore 64. The program given below
uses the ability to read program files sequentially to merge two BASIC
program files to form a third which consists of the lines from both
programs. In the event that there are lines with the same number in both
files, the lines contained in the first file specified will be overwritten by
those contained in the second.

Program to merge two BASIC program files

18 GOTO 7000
S@AAG RE M 3336333636 36 3636 3 636 6 36 I 36 33636 39 3 I3 3363 3

5@1@ REM DISC ERROR STATUS

S5@20 REMIE3 33363 3 3 3 36363 363 3 3 3 3 3 36 W 9 3 36 336 3 934 3¢
5@3@ INPUT#15,EN,EM$,ET,ES

5040 IF EN=73 THEN S030

S@5@ IF EN<2@ THEN RETURN

5060 PRINT "[CLRICCDICCDILCDICCDI *x%%%#

85

Commodore 64 Disk Companion

636 I I I I I W eI W I I W36 H I I I W I W NI

5@7@ PRINT “"L[CDI1LCD] DISC
ERROR"

2888 PRINT "L[CDILCD1 ERROR —" EN
[} L1 EM$

S09@ PRINT "LCD1 AT TRACK -" ET
* AND SECTOR —-"ES

S510@ PRINT "LCDICCD1] PROGRAMME

EXECUTION TERMINATED"

S511@ PRINT “"L[CDILCDITCDI %3353 %3 3 %3 3% 3% % 5
3696 96 3636 36 I W 3369036 I3 696 396N 1

9128 CLOSE 15

5130 CLR

5148 END

7ODA REME 53 3 3 3 3 3 3-3-36 3 5056 3 303636 396 336 36 336 3 96 36 %
7818 REM MERGE 2 PROGRAMME FILES

A28 REMM I 3333333336 3 I3 333636 3 3 332 3636
7038 INPUT "INPUT FILE 1 NAME";N1%

7848 INPUT "INPUT FILE 2 NAME";NZ#

7850 INPUT "OUTPUT FILE NAME";N3%

7868 INPUT "DEVICE NUMBER 7 BLCLILCL]
LCLI*;DEV : OPEN 15,DEV,135

7870 PRINT "MERGING " Ni% " WITH " N2% "
788@ PRINT "TO MAKE " N3%

7098 GOSUB 8000

7100 CLOSE 19

7118 END

SOBD REMAEIE I 3693636 39636 3693363636936 3 23636 363 39 %
8018 REM MERGE 2 PROGRAMME FILES

BAZQ REM¥® 33633 396 3 336 3 3 36336 90 36 3696 363636 95 96 3 9 363 9 4 %
8030 L3F = "' : L4%F = "

8048 OPEN 3,DEV,3,N1$% : GOSUB 5000

8850 OPEN 4,DEV,4,N24¢ : GOSUB 5000

@868 OPEN S5,DEV,5,N3%+" ,P,W" : GOSUB S000
8070 FI = 3

ge80 T = "¢

82890 GOSUB 10000: GOSUB 10@8@: PRINT#S,T# ;
8100 FI = 4 : GOSUB 10000: GOSUB 10000
8110 GOSUB 11000

8120 GOSUB 12000
8130 IF L3<=L4 THEN 8160
8140 IF LEN(LA%$)>2 THEN PRINT#5,L4%;

8150 GOTO B812@
8160 IF LEN(L3%)>2 THEN PRINT#5,L3%;

86

Chapter8 Program Files

8170 IF L3=L4 AND L3<65536 THEN 8110

8180 GOSUB 11000

819@ IF L3<>65536 OR L4<>65536 THEN 8130

8200 PRINT#5,CHR$ (@) CHR$(®) ;

821@ CLOSE 3

822@ CLOSE 4

8230 CLOSE S

8240 RETURN

SOABB REMEEN 5% 33 3 96 3 3 33 3 3 I I I I I3 36 I 36 56 I 36 3 66 %

9910 REM READ LINE INTO T$,LINE NO IN T

Q20 REMM®ENE %I 33963936336 396 336 03636336336 I 30 I 3 3¢ %

9030 T$ = *©

9049 GOSUB 1000@: GOSUB 10000

9850 IF T1$=CHR$ (@) THEN 9100

9060 GOSUB 10@00@: T = ASC(T1$)

9070 GOSUB 1000@: T = ASC(T1%$)%256+T

9080 GOSUB 10000

9898 IF T1$<>CHR$(@) THEN 9080

910@ RETURN

103038 REMSI I3 33 3333 3 333 3 3 333963636 3693 3 *
1001@ REM READ A SINGLE CHR FORM DISC
130208 REM¥* %303 I 3363 3 33 I I 3636 3 W36 3636 3 36 363 36363
10030 GETH#FI,T1$

10840 T1$ = LEFT$(T1$+CHR$ (@) ,1)

10050 T$ = T$+T1$

10060 RETURN

1 130@ REMIEE33 33636 I I3 2636 36 36 I8 36 36 36 I 36 36 3 36 353 3 3 3 3 3
1101® REM READ LINE FROM FILE 3

11320 REME I I I3 I 3636 W I I 36 36 36 36 36 36 36 36 36 36 3 36 33
11830 IF LEN(L3$)=2 THEN L3 = 45536 : GOTO
11080

11040 FI = 3

11050 GOSUB 9000

11060 L3$ = T$

11878 L3 =T

11080 RETURN

12800 RE M %% 3 3 3 3% 9 36 36 536 3 36 36 I I 36363 - I 336 3 3 3¢
1201@ REM READ LINE FROM FILE 4

12020 RE M3 %3 36 36 3 3 36 36 3 3 3636 3 3 36 6 36 3 336 363 96 6 3636 3 ¢
12030 IF LEN(L4$)=2 THEN L4 = 65536 : GOTO
12080

12040 FI = 4

12050 GOSUB 9000

12060 L4$ = T$

87

Commodore 64 Disk Companion

i287@ L4 =T
12080 RETURN

Explanation of merge program

Lines 7000—7110: This module allows the user to specify the names of the
programs to be employed in the merge and the name of the program file to
be produced.

Lines 10000-10080: This module, which services others within the pro-
gram, uses GET # to read a single byte from a file whose number is
specified in the variable FI. The character contained in the byte is added to
a temporary string, T$, for use by other modules.

Lines 9000—9100: This module is exactly equivalent to those we have
examined previously in this chapter which print out the contents of a pro-
gram line. For an explanation of the method see the second section of this
chapter.

Lines 11000—11080 and 12000—12080: These two subroutines store the
lines obtained by the previous modules in separate variables for the two
files, together with the line numbers reached. If the line length left in the
variable L4$ or 1.3$ is two, then on a previous examination of the relevant
file the end of file marker has been detected. In that case, no further
reading is done from the file.

Lines 8000—8240: The control module, which allocates work amongst the
remainder of the program.

Lines 8040—8060: The two files to be merged are opened. The output file is
opened with the suffix ¢,P,W’ in order that material can be written to it.

Lines 8070—8090: The two bytes which record the start position in memory
of program 1 are read from file 3 and written to the new program file. The
merged program will therefore have the same start address as program 1.

Line 8100: The start address of program 2 is read and discarded.

Lines 8110—8180: This section picks up lines from the two program files
and examines them to see which line number comes first, then prints that
line to the output file and picks up another from the file which supplied the
line which has just been printed. If the two lines have the same number, it is

88

Chapter 8 Program Files

the line from program 2 which is printed and the corresponding line from
program 1 is discarded. In every case, lines are only printed if the variables
L3$, L3, L4$ and L4 do not indicate that the end of file has been reached in
the relevant program.

Lines 8190—8230: When the end of file has been reached in both programs,
two zeros are added to the end of the output file and all the files closed.

Using the merge program

Once the program is in memory, the disk drive must contain a disk holding
both the programs to be merged and with sufficient free space to allow the
creation of the merged program. On RUNning the program, the user is
required to specify the name of the first and second program to be merged,
together with the name of the merged file which is to be created. It should
be stressed that, in the case of lines with the same number, the lines taken
from the second file named will overwrite the lines from the first file.

6. Renumbering a program file on disk

The ability to renumber a program is a useful addition to the armoury of a
programmer who wishes his or her programs to be attractively laid out and
easy to read. The program presented in this section accomplishes renum-
bering of a program file on disk, once again using the ability to read from
one file into another to accomplish the task.

Renumber program

1000 REM# 636333 3 3383 33 5 36363 3 3 36 36 3 3 96 3 3 3696 96 96 3%
1010 REM RENUMBER ANY DISC FILE

1020 REMM 3336336 33 3 3633 3236 3 396 363 3 3 3696 36963 36 % %
1030 DEFFNHI(X) = INT(X/256) : DEFFNLO
(X)) = X~FNHI(X)*256

1040 INPUT "FILE TO BE RENUMBERED ":NR$
1050 NW$ = "TEMPORARY"

1060 INPUT "DEVICE NUMBER ? S8CCLIECCL3ICLCLI]
II;DEV

1070 N$ = CHR%$ (0)

1080 INPUT "START AT LINE 7?2 10LCLILCL]
[CLILCLY":SL

1090 INPUT "STEP ? 10LCLICCLICCLICCLI]

89

Commodore 64 Disk Companion

" ;Sp
1100 LMAX = 2500 : DIM LN(LMRX, 1)
1110 OPEN 15,DEV, 15 : PRINT “{CLR1I"
1 BOSUB 5000
1120 PRINT#lS,"SO:TEMPDRﬁRY" : 6OSUBR S000
1130 60O0SUB 2000
1140 GOSUB 3000
1150 PRINT#15, "S0:"+NR$ BOSURBR S000
1160 PRINT#iS,"RO="+NR$+"=O=TEMPDRQRY"
: 60SUB 5000
1170 CLOSE 15
1180 GOSUB 4000
1190 END
2000 REM#******************************
2010 REM PASS 1
2020 REEMAE I 3656 3 3696 3636 3630 36 36 36 3696 36 36 363696 36 3 36 3636 36 36 3%
2030 PTR = 0 = NL = SL
2040 OPEN 3,DEV,3,NR$ @ GOSUB S000
2050 GET#3,T¢ : BET#3,T$
2060 GETH#3,T$: BET#3I,T$
2070 1IF T$="" THEN CLOSE 3 = RETURN
2080 GET#H#3,T$: T = ASC (T$+CHR$ (0))
2090 GET#3,T$: T = ASC (T$+CHRS(0)) #256+T
2100 PRINT " rHOME] CCD1 LCD1 LCDI LCD] [CD]
[CDI CCDILCCDI CCDICALCULATING NEW LINE
NUMBER FOR™ T " "
2110 GETH#3, TS
2120 IF T$=CHR$(143) THEN GETH#3, T ¢
IF T$= "#" THEN NL = INT (1+NL71000) #1000
2130 IF T$O"™ THEN 2110
2140 LN(PTR,1) = NL
2150 LN(PTR,0) =T
2160 NL = NL+SP
2170 IF NLYE3Z999 THEN T¢ = "GSTEP TO0O
BIG™ : GOTO 6000
2180 PTR = PTR+1
2190 IF PTR(=LLMAX THEN 2060
2200 T$ = *"TOO MANY LINES TO RENUMBER"
2210 6OTO 6000
2220 RETURN
ZOOO0 REMHMIE 996363 363636 36 336 363096 3 326 36 3636 36303t 336 3 33 %
3010 REM PRASS 2
ZO20 REM® % 35 363836 5303 3309 36 369 3 363 330 36 633 338 %

90

Chapter8 Program Files

3030 OPEN 3,DEV, 3,NR$: GOSUB 5000
3040 OPEN 4,DEV, 4, NW$+" P W" : BOSUB S000
3050 GETH#3, T$:PRINT#4, LEFTS(T$+Ns$, 1) 3
tBET#3, T$:PRINT#4, LEFT$ (T$+N$, 1)

3060 FOR J = 0 TO PTR-1

3070 QU = ©

3080 GET#3, T$:PRINTH4, LEFT$(T$+NS$, 1) 3
:BETH#3, T$:PRINT#4, LEFTS (T$+N$, 1) =

3090 GET#3, T$

3100 GET#3,T$

3110 PRINT "[HOME][CD1CCD]CCD1LCD3 LCD]
[CD1 CCDI CCD1 £CD1 LCD3 LCDI [CD1 LCD] [CD]
RENUMBERING LINE "MID$(STR$(LN(J,0))

+II “, 2' 6) ;
3120 PRINT " AS" LEFT$ (STR$ (ABS (LN
(JF,1)))+" " 6)

3130 T = ABS(LN(J, 1))

3140 PRINT#4,CHR$ (FNLO(T)) CHR$ (FNHI
() '

3150 GET#3, T$

3160 IF T$=CHR$(34) THEN QU
3170 PRINT#4, LEFTS (T$+N$, 1)
3180 IF(T$=CHR$(137)0RT$=CHR$ (141)0RTS$
=CHR$ (167)0RT$=CHR$ (138)) ANDNOTQUTHEN3 240
3190 IF T$O""™ THEN 3150

3200 NEXT J

3210 PRINT#4,N$ N$

3220 CLOSE 3 : CLOSE 4

3230 RETURN

3240 GET#3,T$ @ IF T$=" " THEN PRINT#4,
T$:; = GOTO 3240

3250 IF T$("0" DR T$>"9" THEN I170

3260 Ti$ = Ts

3270 GETH#3, T¢

3280 IF T$=" ™ THEN 3270

3290 IF T$)="0" AND T$(="9" THEN Ti$ =
Ti$+T$ = GOTO 3270

II00 T = VAL(T1S)

3310 T1 = -1

3320 FOR I = 0 TO PTR-1

3330 IF LN(I,O0)=T THEN T1 = I

3340 NEXT

3350 Tis = “27722"

3360 IF T1)>0 THEN T1$ = MID$(STR$ (LN

NOT QU

“e }

91

Commodore 64 Disk Companion

(T1,1)),2) : GOTO 3380

3370 LN(J, 1) = -ABS(LN(J, 1))

I3080 PRINT#4,T1%

3390 IF T$="," THEN FPRINT#4,T$; @ GOTO0
3240

34800 PRINT#4 LEFTH(TH+NS$, 1)

3410 GOTO 3190

4000 REM -3 3% 36 353 33 36 3633 3363 3636 36 33 3 -3 3 36366 3% %

4010 REM UNDEFINED LINES

40320 REM® 33 % 36336 36 335 H-30- 3 339 36 3 36 36 336 3 36 233 4 % %

4030 PRINT " (CCLRICCDILCDIUNDEFINED LINE
NUMBERS IN THE FOLLOWING"

4040 PRINT "{CD] RENUMBERED
LINESICD1"

4050 UL = 0

4060 FOR I = O TO PTR-1

4070 IF LN(I,1) <O THEN PRINT -LN(I,1) ,
: UL = UL+l

4080 NEXT

4090 IF UL=0 THEN PRINT SPC(17) "NONE"

4100 PRINT "(CDILCCDILCD1I"

4110 RETURN

SOO00 REMEHE I 3 363 336 336 3363 333 9 336 36396 I 3 3 3636 96 33 %

5010 REM DISC ERROR STATUS

SO20 REM* 636 %363 36336 9633 3303 3 I 3 3 F 3 33 3 36 I3 % 3%

SO30 INPUT#15,EN,EMS$S, ET,ES

5040 IF EN=73 THEN 5030

5050 IF EN(20 THEN RETURN

5060 PRINT "[CLRILCDI[CDICCDILCDI 3¥#¥x
3 36 36-J 36 I I 6 I 6 IEIE I 363 39696336 36303696 36 I 36 6

S070 PRINT "LCDIICD] DiIsC
ERROR"

5080 PRINT “LCDILCD] ERROR —" EN
n L1 EH$

5090 PRINT "(CD] AT TRACK -" ET "
AND SECTOR -"ES

5100 PRINT "({CD1LCD] PROGRAMME

EXECUTION TERMINATED*"

5110 PRINT “L[CDILCD]CCDI %3%%3%3%%EEEHH%%XR
T W T2 I3 I I IR NN

5120 CLOSE 15

5130 CLR

5140 END

92

Chapter8 Program Files

OO0 REM$E 65 336 3 3396 353 335 3 3536 3 596 36 35 -3 9 36 9 3%

6010 REM PROGRAMME ERROR
GO20 REM® I3 36 33096 3 336 3 33 96 305 3696 36 3 336 303636 3365

6030 PRINT "[L[CLRILCDILCDICCDILCD] *%¥#¥%%
P 3-36 -5 I 3 36396 363536 363696 -5 36 I3 36 3636 30 36 2

6040 PRINT "LCD1ILCDICCD] FATAL
PROGRAMME ERROR"
6050 PRINT "ECDICCD1LCD] ERROR - " T%

6060 GOTO 5100

Explanation of renumber program
Lines 1000—1190: The control module which allows the user to specify the
file to be renumbered and allocates work amongst the rest of the program.

Line 1030: These two functions will be used to translate a decimal value
representing a line number into a two-byte value for storage on disk.

Lines 1110—1120: Unlike the previous program, Merge, this one will delete
the source file once it has successfully renumbered the file. During renum-
bering, the output file will be called “TEMPORARY’. These lines open the
error channel and ensure that any file with the same name is scratched.

Lines 1150—1160: These lines scratch the original file once renumbering is
complete and rename the file ‘TEMPORARY’ with the same name as the
original program file.

Lines 2000—2220: This module performs what is known as the ‘first pass’
through the program. During this process the whole of the file is examined
but no changes are made. The purpose of pass 1 is to calculate the new line
numbers which will eventually be inserted, and to check for the possibility
of certain errors which would lead to the program being corrupted when
new line numbers are actually written to the file.

Lines 2050—-2100: The familiar lines which pick up the first two bytes of the
file and discard them, then pick up, for each line in turn, the link bytes and
line number bytes. The only difference is that the lines also inform the user
which line is under consideration at the present time.

Lines 2110—2130: The line is scanned until the zero byte signifying the end
is detected. In the process, a watch is kept for CHR$(143), the single char-
acter token for REM. If this is found and is followed by ‘ #°, it is taken as
an indication that the line number of the next line should be increased to the

93

Commodore 64 Disk Companion

next highest whole thousand. You may have noticed, in the other programs
contained within this manual, that new sections of programs are neatly
renumbered to the next highest thousand. If you look closer you will also
notice that the first REM of each section is followed by ‘#’ — in other
words the other programs in this manual were renumbered using this
program.

94

CHAPTER 9
Relative Files

1) Introduction

2) Creating a relative file

3) OPENing a relative file

4) Specifying a position in a relative file
5) Writing to a relative file

6) Reading from a file

7) CLOSEing a relative file

8) Using relative files

1. Introduction

So far we have dealt only with data files which have to be read in a sequen-
tial manner, ie one item after another from the beginning of the file. While
the speed of the disk drive does help to cut down the waste of time that this
involves, the fact remains that time is wasted. Using a data file in this way is
equivalent to using an array in BASIC but having to read every element
from the beginning in order to access any specified element.

What we need, ideally, is a form of file on disk which acts in the same
way that a BASIC array does; namely allows the user to specify a position
in the file and retrieve information from that position directly. In fact such
a type of file does exist and it is called a ‘relative file’.

Having said that there is a type of file called a ‘relative file’, the
statement immediately needs to be modified. Relative files are really a
method of making two separate files work together. The first of the two
files is the one in which the actual data is stored. The structure of this file on
the disk is similar to that of a normal sequential file, though it does not
appear as such in the disk directory. In addition to this main file, however,
is another file which holds, for each item of data in the main file, the track
and sector in which the item is stored.

The method of accessing a relative file, therefore, is to specify the
number of the data item in the main file but to use the secondary ‘pointer’
file to discover where that item is on the disk and to read it directly from
that position.

95

Commodore 64 Disk Companion

2. Creating a relative file

As opposed to sequential files, which can only be OPENed for writing
once, arelative file may be OPENed time and time again, and each time it is
OPENed it is ready for both reading from and writing to the disk. This is
because, in the case of a relative file, the normal OPEN command does not
create the file. To create a relative file, a special form of the OPEN
command must be used, the format of which is as follows:

OPEN< FILENUM> < DEV> ,< CHANNEL> ,**< FILENAME> ,
L,” + CHR}(< RECLEN>)

The only surprises here, compared to what we have done before, are :
1) L. — the file type specifier for a relative file, which is the letter ‘L’.

2) RECLEN — though a relative file is in many ways like a string array
stored on disk rather than in memory, it differs from a BASIC string array
in that every element of the file has a fixed length which must be specified
when the file is first set up. RECLEN will be a value in the range 1—-254 —
the maximum length of one entry being one full sector on the disk, ie 256
bytes minus the two link bytes for the sector (see Chapter 1).

Note, in addition, that the ‘@0:’ facility for overwriting an existing file
does not function with a relative file.

3. OPENing a relative file

Provided that a relative file has previously been created using the form of
the OPEN command shown in the previous section, it must¢ subsequen-
tly be OPENed with an OPEN command in the following format:

OPEN< FILE NUMBER> ,< DEVICE> ,< CHANNEL>,
“< FILENAME>”’

Note that there is no need to include a specifier for the type of file, since the
1541 is capable of recognising a relative file when it encounters one.

4. Specifying a position in a relative file

The essence of arelative file is that the user is able to specify the position in
the file to which an item is to be written or from which one is to be read.
Before examining techniques of reading and writing to the file, it is there-
fore necessary first to explain the use of the position command, which

96

Chapter9 Relative Files

allows the number of the record within the file to be specified. The format
of the position command is as follows:

PRINT #< FILE NUMBER>, “P”’ CHR$< CHAN> CHR$<LO>
CHR$< HI> CHR$<POS>

1) FILE NUMBER — the first thing to realise is that the position command
is not something which is printed to the relative file itself, but rather a
command sent to the error channel. The file number specified is therefore
the number of a file which has been previously OPENed to the error chan-
nel in the form OPEN FILE NUMBER, DEVICE, 15.

2) “P”’ — this specifier indicates to the error channel that what is being
received is a position command.

3) CHAN — the number of the channel allocated to the relative file when it
was last OPENed.

4) LO and HI — the two values LO and HI specify the record number in
what is known as two-byte format. For any number (X), the value of these
two specifiers can be calculated as:

HI = INT(X/256)
LO = X — 256*HI

5) POS — this specifier must be added to the command to set the pointer in
the file to any character within the record indicated by LO and HI. In
normal circumstances the records will be read from the beginning and the
value of POS will be 1.

Note that, if a position command specifies a record number which is
greater than the position of the current last record, the 1541 will
immediately write sufficient blank records to the disk to bring the number
of records available up to the number specified for the new position. This
process can take some time and, rather than have it happen during the
input of data it is often advisable to set up the file to the maximum size
required when it is first created. This can be be done by specifying a posi-
tion of, for example, 1000 immediately after the file is created. The result
will be that 1000 empty records will be written to the disk and minimum
delay will be experienced when subsequently accessing records between 1
and 1000.

97

Commodore 64 Disk Companion

5. Writing to a relative file

Having informed the 1541 of the position of the record you wish to write to
in the file, it is now possible to write an item of data to that record. The
format for the PRINT # command is:

PRINT #< FILE NUMBER> ,VARIABLE LIST

1) FILE NUMBER — The file number under which the relative file was last
OPENed.

2) VARIABLE LIST — the data to be printed, either numeric or string, or
both (see punctuation below).

Punctuation when writing to a relative file

When writing items to a file, some care must taken with the punctuation
employed. As with a sequential file, the nature of the punctuation used in
printing a series of variables to a record will affect the way in which the data
is stored (see Chapter 7). Thus, printing items separated by commas to a
file will result in spaces being placed in the file between the items. The
reason that care must be taken is that the length of the record to which the
items are being written is fixed. If careless punctuation leads to the length
of the record being exceeded, the data will be truncated and a disk error
message OVERFLOW IN RECORD generated, though the program will
not stop.

Even when using only CHRS$(13) to separate items, account has to be
taken of the number of carriage return characters being used, since these
too contribute to the length of the data being printed.

Maximum economy of space is achieved by running items together with
the use of the semicolon separator or no separators at all, but this does
imply that when reading the data back from the file the program must
know exactly how long each item in a record is — the record itself will
contain no indication of where each item begins and ends.

6. Reading from a file

Provided that the position command has been used to specify which record
is to be read from, either INPUT 4 or GET # can be used to retrieve data
from the file, the format for the commands being the same as for a sequen-
tial file. The form in which data is read will depend upon the punctuation
used when storing it. If carriage returns have been placed between every
item in a record, then INPUT # may be used to pick up each item in
turn. The limitations on the use of INPUT # and GET # are the same as

98

Chapter9 Relative Files

when retrieving data from a sequential file (see Chapter 7).

In addition, it should be stressed once again that each record has a fixed
length, and, once items have been read back to a total length equal to that
of the record, a RECORD OVERFLOW disk error message will be
generated in the error channel. Reading will ot move on to the next record
until a new position command is issued.

One extra facility which INPUT # and GET # may make use of when
reading from arelative file is the ability of the position command to specify
the character in the record from which reading or writing is to take place.
Thus if a 100-character record were to contain 10items (or fields), each of 9
characters in length and terminated by a carriage return, it would be pos-
sible to pick up any of the items individually using INPUT # provided that
the character position was correctly specified in a position command.

7. CLOSEIing a relative file
The format for the CLOSE command in relation to relative files is no
different from that for sequential files, ie:

CLOSE< FILE NUMBER>

8. Using relative files

So far we have examined the commands necessary to handle relative files.
We now turn to a practical example of their use in the form of a simple
database program called Diskbase.

Diskbase program listing
1@ REM DISC BASE PROGRAMME

28 DEV = 8
3@ DIM F$(1@) ,F7(1@) ,DA$(1@)

4@ DEF FNHI(X) = INT(X/256)
5@ DEF FNLO(X) = X—INT(X/256)*256
68 PAD$ = " " : PAD$ =

PAD$+PAD¥
78 PAD$ = PAD$+PAD$: PAD$ = PAD$+PAD$
: PAD$ = LEFT$ (PAD¥,127)+PAD%$
88 GOSUB 000
98 GOSUB 10000
iea 60TO 60

99

Commodore 64 Disk Companion

10BB REMHENH3 3693 336 396 3 363096 36 36 3636336 363696 96 6963696 %%
1018 REM READ NEW DEVICE NUMBER
1@20 REM® 3335565 35396 36 36 3 36 36 36 39636 363636 9696 36 36
1@83@ PRINT "LCD1 NEW DEVICE NUMBER
?" DEV "[CLILCLICCLICCLI";
1040 IF DEV>%? THEN PRINT "“[CL1" ;
1830 INPUT T
186@ IF T<4 OR T>31 THEN PRINT "[CUICL
Cul" : GOTO 1000
1878 DEV = T
10880 RETURN
2000 REME®H33633 5 33 36 3 363 3 36 3636 35336 33963636968 3 36
2018 REM INITIALISE FILE
2020 REM¥E 2333363 3 3363 336 36 3633636 3696 363636368 3
2@30 INPUT “[CLRILCDIFILE NAME ";NAS$
2040 IF LEN(NA%)>12 OR LEN(NA$)<1 THEN
2030
2050 INPUT "[CDINUMBER OF FIELDS (1-1@)
ll.NF
?
2068 IF NF<1 OR NF>1@ THEN PRINT "([CU]
tCUlLcul" : 6070 2050
20708 FS = @
2080 FOR I = 1 TO NF
2098 PRINT "L[CDINAME FOR FIELD" I ;
2108 INPUT F#(I-1)
2118 F$(I-1) = LEFT$(F$(I-1),30)
2128 PRINT "SIZE FOR FIELD" I;

2130 INPUT F%L(I-1)
2140 FS = FS+F%(I-1)

2158 NEXT
2168 IF FS>254 THEN PRINT "TOO MANY
FIELDS OR FIELDS TO BIG" : GOTO 2050

217@ PRINT "[CLRIFILE NAME - " NAS$
2180 PRINT "[CDIFIELD NAME
SIZE"

2190 FOR I = @ TO NF-1

2200 PRINT “LCD1I"™ F$(I) SPC(30-LEN(F$
(I))) FZ(I)

2210 NEXT

2220 INPUT "LCD1IS THIS CORRECT (Y/N)
"sT®

2238 IF T$="N" THEN 2000

2240 IF T$<>"Y" THEN PRINT "[CUILCUILCU]
[CUlILCUl" : GOTO 2220

100

Chapter9 Relative Files

2250 IT = @

226@ PRINT#15,"S0: "+NA$+".D

2270 GOSUB 4000

2280 OPEN 8,DEV,8,NA$+".D,L,"+CHRS$ (FS)
2290 PRINT#15,"P" CHR$(8) CHR$(10@) CHR$
(@) CHR$ (1)

230@ INPUT#15,A,B$,C,D

2310 CLOSE 8

2320 RETURN

JTO00O REM$EHEE I IE I I I6I 3 I I W I I I I I 33 36 3 36 3 3
3010 REM READ THE CONTROL FILE

ZO20 REM¥* 3353 3 33 3 3336 3 33363 I I 3636 3 36 36 3 I 36 3 -3¢
Z@3@ INPUT "LCD] FILE NAME ";NAS$
I@40 IF LEN(NA$)>12 OR LEN(NA$)<1 THEN
3030

3050 OPEN 8,DEV,8,NA$+".C,U"

3060 FS = @

3070 INPUT#15,EN,EM$,ET,ES

3080 IF EN<19 THEN 3120

3090 PRINT "L[CD] DISC ERROR " EMS$

3100 FOR I = @ TO 2000 : NEXT : CLOSE 8

3110 GOTO 3170

3120 INPUT#8,IT,NF

3130 FOR I = @ TO NF-1

3140 INPUTH#B,F$(I) F%(I)

3150 FS = FS+F%(I)

3168 NEXT

317@ CLOSE 8

3180 RETURN

4000 RE M ® 553633636 3 3636 36 36 3 3 3 33 36 33636 3 3 I 36 3

4910 REM REWRITE THE CONTROL FILE

4020 RE M35 %3 3 3 3 36 33 336 3 I 333 36 I3 3 336 3 I 6 363 %
403@ CLOSE 8

4940 OPEN 8,DEV,8,"@d: "+NA$+".C,U,W"
4050 PRINT#8,IT

4060 PRINT#8,NF

4970 FOR I = @ TO NF—1

4880 PRINTH#8,F$ (I)

4990 PRINT#8,F%(I)

4108 NEXT

4110 CLOSE 8

4120 RETURN

S0080 REM#******************************

5010 REM READ DATA FROM DATA BASE

101

Commodore 64 Disk Companion

SOZ@ REM® 33363 36 3 36 3236 36 36 3 36 3 363636 3 36 33636 6 96 96 % 94
0830 PRINT#15,"P" CHR$(8) CHR$(FNLO(T+1)
}) CHR$(FNHI(T+1)) CHR%$(1)

5040 FOR I = @ TO NF-1

5058 DAF(I) = =»

5060 FOR J = 1 TO F%Z(I)

Sa70 GETH#8,T$

5880 T1 = ASC(T$) AND 127

o890 IF Ti<31 THEN T$ = "*

9100 DA$(I) = DAS(I)+LEFT$(T$+CHR$ (D) ,1)
5110 NEXT J,1

5120 RETURN

CODA REMEEN I3 363 936396 363 36 35 36 36 369636 36 3 3696 9 36365
6810 REM WRITE DATA TO DATA BASE

G20 REM* 9396336 33 336 336363693696 3 3696 36 3636 96 36 36 3 36 3636 %
6838 PRINT#15,"P" CHR$(8) CHR$(FNLO(T+1)
} CHR$(FNHI(T+1)) CHR$(1)

6040 T4 = "o

68050 FOR I = @ TD NF-1

6060 T$ = TH+LEFT$(DAS (1) +LEFT$ (PADS$,F%
(I)-LEN(DA%$(I))) ,F4L(I))

6070 NEXT I

6880 PRINT#8,7T%

6098 RETURN

7000 REME# 33033033 3 36596 9 36956 96 36 96 3363363 36 9636 3336
7810 REM ALTER CONTENTS OF DATA BASE
7O2D REME 336336 333 336363 3 9 3 3 993363 996 96 36965 63 ¥
7038 PRINT "L[CLR1" IT "ITEMS IN DATA
FILE [RVS1" NA$ "L[CDICLCDILCD1"

7043 INPUT "RECORD NUMBER TO ALTER 7 #
[CLILCLICCLI": TS

7850 T = VAL(T$) : IF T4="#" THEN T = IT
7868 IF T<@ OR T>IT THEN PRINT "[CUILCCU]
* : BOTO 70406

7878 PRINT

7080 FOR I = @ TO NF : DA%$(I) = "" : NEXT
7898 IF IT<>T THEN GOSUB 5000

7188 FOR I = @ TO NF-1

71180 PRINT F$(I) " 2 " DA%$(I)

712@ PRINT "L[CUl1" F$(I) " = ;

7130 INPUT T%

7140 IF LEN(T$)>F%Z(I) THEN PRINT “"[CU3]
fcui" : GOTO 7110

7158 DAS$(I) = T#%

102

Chapter9 Relative Files

7168 NEXT I

7178 PRINT "ICDILCDIADDING TO DATA BASE"
7180 G6OSUB 6000

7198 IF T=IT THEN IT = IT+1

7288 INPUT “[CDILCDIMORE ITEMS (Y/N) 2?2 Y
CCLICCLILCLI"; TS

7218 IF T$="¥Y" THEN 7000

7220 IF T$<>"N" THEN PRINT "L[CUILCUILCU]
LCul® : GOTO 72800

7238 RETURN

SABD REMM I 3336333 3 3303 3 3 336 333336 3 W36 3 96 336 336 %

88128 REM LIST DATA ITEMS

BO20 REMM 3353 36 3 3 3 3 3336 36 3 396 3 36 33 36 3 3 3 336 3 3%

8038 LN = 0

8040 PRINT "[CLR1I" IT "ITEMS IN DATA
FILE [RVS1" NA% "L[CDILCDILCD1“

8050 PRINT "RECORD NUMBER TO LIST 72" LN

8060 IFIT=OTHEN PRINT "L[CDILCDILCDILCD]
[CD] NO ITEMS IN FILE" :FOR I = @T02000
: NEXT : RETURN

8A7@ INPUT "L[CUIRECORD NUMBER TO LIST ";T

80808 IF T<® OR T>=1IT THEN B8040

8070 PRINT

81008 FOR I = @ TO NF : DAS(I) = "" : NEXT

8110 GOSUB S0

8120 FOR I = @ TO NF-1

8130 PRINT F$(I) " = " DA%$(I)

8140 NEXT 1

8150 LN = LN+1 : IF LN>=IT THEN LN=0

816@ INPUT "L[CDILCDIMORE ITEMS (Y/N) 7 YICL]
[CLICCLI"; T#

8170 IF T#$="Y" THEN B8040

8184 IF T#<>"N" THEN PRINT “[CUJLCUILCU]
[CUl1" = 6GOTO 81462

8190 RETURN

QBBA REMEE I3 3 33 33 3 3 I 336 36 36 3 I 3039636363 3636 33 %
08128 REM OFPENING MENU

QALA RE M3 36 6 33 3 363 3636 3636 36 I 3 3 3 3 I I 96 I 36 6 9 36 - 3%
9838 OPEN 15,DEV,15

040 PRINT "[CLR1"

850 PRINT SPC(12) "1541 DISC BASE"

86@ PRINT SPC(13) “IL[CDIOPENING MENU"
Q07@ PRINT SPC(8) "L[CDILCDILCDILCD11)
CREATE NEW DATA FILE"®

103

Commodore 64 Disk Companion

2080 PRINT SPC(8) “LCD12) OPEN EXISTING
DATA FILE"

098 PRINT SPC(8) "L[CD13) CHANGE DEVICE
NUMBER™"

2100 PRINT SPC(8) "[CDl4) EXIT TO BASIC
LCplLcpircpicconi”

7110 INPUT *~ COMMAND (1—-4) ? 2[CL
JICLILCLI";T®

120 €CO = VAL (T$)

?13@ IF CO<1 OR CO>4 THEN PRINT "LCU]
fCul" : GOTO 9110

7140 ON CO GOSUB 2008,3000,1000,7180
2?1508 CLOSE 15

2160 IF CO=3 OR EN>19 THEN 2000
7170 RETURN

2188 PRINT "L[CLR1"

2198 CLOSE 15

9208 END

10000 REMEE 23633 36 333 36 3 3 33 3 3336 3 8 3 36 3 496 36 W9
18010 REM MAIN MENU

10@23 REM® 33653 3 3 3 3 336 3303 33 36303636 36336 36 336 36 93
10838 OPEN 15,DEV,15

i@a4@ OPEN 8,DEV,8,NAs+".D"

10858 PRINT "LCLRI1*"

18868 PRINT SPC(12) "1541 DISC BASE"
12078 PRINT SPC(15) "L[CDIMAIN MENU"
18088 PRINT SPC(8) "LCDILCDICLCDILCDI1l)
ADD/EDIT DATA ITEMS*®

10820 PRINT SPC(8) "ICD1Z2) LIST EXISTING
DATA ITEMS"

121082 PRINT SPC(8) "ICD13) RETURN TO
OPENING MENULCDILCDILCDICCDI"

12118 INPUT * COMMAND (1-3) 7 2LCL1]
[CLILCLI"; T

12120 T = VAL(TH)

18138 IF T<1 OR T>3 THEN PRINT "L[CUILCU]
* 3 B60TO 10110

19148 IF T=3 THEN 10180

10150 ON T GOSUB 7080,8000

12160 CLOSE 8

10178 GOTO 19040

121880 GOSUB 4000

12198 CLOSE 15

10288 RETURN

104

Chapter 9 Relative Files

Explanation of Diskbase
Lines 9000—9200: The opening menu of the program.

Lines 10000—10200: The main menu encountered once the user has opened
a file.

Lines 2000—2320: This section allows the user to specify the shape of the
file to be created, ie the number of fields which each record will contain,
their names and their length. The only interesting part from the point of
view of relative files themselves is lines 2260—2320, which scratch any
existing file of the same name, open the relative file, in line 2280, and issue
a position command for record 100, ie one hundred blank records are writ-
ten to the disk.

Lines 4000—4120: A second file, this time a user file, is employed to store
the details of the field names, sizes and so forth. When the main data file
which has been created is accessed in future, the program will first of all
read the details of fields from the user file so that it can allocate the correct
names and lengths to the fields within each record.

Lines 3000—3180: As mentioned under the previous section, when the pro-
gram accesses an existing data file, it reads back the field names and sizes
from a user file before beginning to recall data. This is the first program
section called if the user specifies that an existing data file is to be read. The
filename s specified by the user and the information read from the user file
inlines 3120—3170. The user file itself will have the same name as the data
file except that its name will terminatein ‘. ¢’, standing for ‘control’, rather
than ‘. d’, standing for ‘data’. Thus if the user specifies a file name of
‘DATASTORE’, the control file will be called DATASTORE. C and the
data file DATASTORE. D.

Lines 5000—5120: This program section reads a single record from the data
file. The number of the record to be read is specified elsewhere in the pro-
gram and is contained in the variable T. The two functions, FNLO and
FNHI, which were set up at the very beginning of the program, calculate
the low and high byte of the two-byte number representing the number of
the record. The lines from 5060 to 5110 use GET # to read the items back
one by one from the record, including checks that control or null char-
acters on the disk do not disrupt the working of the program. As each item
is retrieved from the record it is stored in the array DAS.

Lines 8000—8190: These lines allow the user to specify the number of a
record to be recalled and then call up the module at line 5000 to retrieve the
data.

105

Commodore 64 Disk Companion

Lines 6000—6090: These lines issue a position command for a record
specified by the user and then write to that record the items which have
been entered by the module at line 7010.

Lines 7000—7230: This section allows the user to specify a record number.
The data currently held at that point is first retreived and the user then has
the option to re-enter the existing items or to change them. The items
finally entered by the user are then written to the file using the module at
line 6000.

The program is not immensely sophisticated but is a sound basic example
of what can be achieved with a relative file in terms of speed of access for
both reading and writing data. It would make a good basis for further
developments in the use of such files.

106

CHAPTER 10
Random Files

1} OPENing a random file

2) Position of data in the buffer

3) Writing data to the buffer

4) Writing data to disk

5) Loading data from the disk to the buffer
6) Getting the data back into the 64

7) Marking and freeing sectors on the disk
8) Executing machine code from the disk
9) Two utility programs using random files

So far, we have dealt only with files where the main work in reading and
writing is done by the sophisticated and massive Disk Operating System
program. We have specified the data to be stored, and perhaps even the
position which it is to occupy in a file, but it is the DOS which has managed
the disk space, searching out the best storage space and recording the
complex pattern of sectors which go to make up the file in the Block Allo-
cation Map. There is, however, one type of file available which allows the
user to bypass at least some of the DOS functions and to decide where and
how data is to be stored on the disk. Such files are known as ‘random files’.

Random files are not included amongst the facilities available on the
1541 for any particular reason, it is simply that they are the basic file type
which is used by the DOS in creating the files which we have examined so
far. As a type, random files are probably the least useful form of file but,
even so, simply because they are so crude in their structure and manage-
ment they can often find applications where the user needs to access the
disk in unexpected ways.

It is possible, using random files, to simulate any of the file types that we
have considered. The end result of such efforts, however, is hardly likely to
be as polished as what Commodore have already provided in the DOS, so
the considerable programming involved would hardly be worth the effort.
In this chapter we examine only the basics of working with a random file
but we do show how the commands used to control such files can be put to
one or two unusual uses.

107

Commodore 64 Disk Companion

1: OPENing a random file

Using random access has two aspects, the communication of data and the
issuing of instructions. Data sent to a random file is not automatically
written on to the disk, for instance, until a separate command is issued
through the error channel specifying where and how the data is to be
stored. When a random file is OPENed, therefore, what is being opened is
not a direct path from the 64 to the disk itself but a path from the 64 to an
area of memory within the disk drive known as a buffer, capable of
holding up to 256 bytes of data. Since the disk drive has more than one
buffer available for this purpose, the OPEN command for a random file
needs to specify not only the file number, device and channel to be used,
but which buffer is to be used.

The format of the OPEN command for random files is:

OPEN< FILE NUMBER> ,< DEVICE> ,< CHANNEL> ,*‘ #
[< BUFFER>]”

1) # — the ‘3#° symbol replacing the more usual filename at this point is
the indication to the disk drive that the file to be OPENed is a random file.

2) BUFFER — the value BUFFER can be used to specify which of the disk
drive’s six buffers is to be associated with the file number. The numbers of
the buffers are 0 to 5, but of these at least two are likely to be in use by the
disk drive at any one time, even before you open files which will use up
further buffers. Because of the uncertainty as to which buffers are availa-
ble at any one time, the optional BUFFER value is hardly ever used. When
it is omitted, the disk drive allocates a free buffer (if one is available) to the
file. It is of no relevance to the programmer which buffer is used, unless a
particular buffer is going to be used for the execution of machine code
programs in the DOS RAM.

2. Position of data in the buffer

Having allocated a buffer to the file, the next task (whether the intention is
to write data from the 64 to the buffer or to read data from the buffer to
the 64) is to inform the drive at what point in the buffer to set a special
pointer known, unsurprisingly, as the buffer pointer. Subsequent calls
to read from or write to the buffer will be executed from the position indi-
cated by the buffer pointer and not necessarily from the start of the buffer.

The format for the buffer pointer command is:

108

Chapter 10 Random Files
PRINT #< FILE NUMBER> ,“B-P:”’< CHANNEL> ,< CHAR>

1) FILE NUMBER — like all the random access commands, this is an
instruction sent along the error channel, so the file number is that of a
previously opened file to channel 15.

2) B-P: — this is the abbreviated form of the command ‘BUFFER-
POINTER:’ — the full form is accepted but is a little unwieldy.

3) CHANNEL — the CHANNEL specified will be the one previously allo-
cated in an OPEN command to the random file to be acted upon.

4) CHAR — the number of the byte within the buffer from which a subse-
quent read or write process will take place; will be in the range 0—255.

3. Writing data to the buffer
To write data to the buffer, the ordinary PRINT # command is used in the
format:

PRINT #< FILE NUMBER> ,VARIABLE LIST

where FILE NUMBER is the number allocated to the random file when it
was OPENed.

Since the buffer is strictly limited to 256 bytes (0—255), random files are
like relative files in that, if more data is written than can be held in the
buffer, the extra data will be lost.

4. Writing data to disk

Data written into the buffer will be lost when the disk drive is switched off
unless something further is done with it. Accordingly there are two
commands which can be used to write the contents of a buffer to the disk.
The first command, ‘BLOCK-WRITE.’, is used to write the part of the
buffer’s contents between byte 0 and the position of the buffer pointer to
the disk. (Note: Although only part of the buffer may be written, the whole
of the sector into which the data is placed is changed). The second
command is called ‘U2:” and is used to write the whole of the contents of
the buffer to a specified track and sector. Since there is seldom much need
to write only a part of the buffer to the disk, the ‘U2:’> form of the
command is the one more commonly used for random files.

The format of the two commands is:

109

Commodore 64 Disk Companion

PRINT #< FILE NUMBER> ,*“B-W:’< CHANNEL> ,< DRIVE>,
< TRACK> < SECTOR>

or

PRINT #< FILE NUMBER> ,*U2:”’< CHANNEL> ,< DRIVE>,
< TRACK> ,< SECTOR>

1) FILE NUMBER — the number of the file previously opened to the error
channel.

2) “B-W:*’ — the full form ‘BLOCK-WRITE?:’ is also accepted.

3) CHANNEL — the number of the channel allocated to the random file in
the OPEN command.

4) DRIVE — always zero when using the 1541.

5) ILLEGAL TRACK AND SECTOR error message — generated in the
error channel if a non-existent part of the disk is specified.

6) ““U2:”’ — an alternative form, ‘UB:’, is also acceptable.

Note: Since the safeguards in the DOS are being bypassed by the use of
random files, there is no protection against overwriting important data,
including the directory, with these commands.

5. Loading data from the disk to the buffer

Parallel to the two write commands in the last section are the two
commands ‘B-R:’ and ‘U1:’, which allow a track and sector to be specified
and read from the disk into the buffer. The format of the two commands is
a mirror image of the format of the two write commands, ie:

PRINT # < FILE NUMBER> ,“B-R:”’< CHANNEL> , < DRIVE>,
< TRACK> < SECTOR>

or

PRINT #< FILE NUMBER> ,“‘U1:”’< CHANNEL> ,< DRIVE>,
< TRACK> , < SECTOR>

1) “B-R:”’ — the full form ‘BLOCK-READ:’ is acceptable.

110

Chapter 10 Random Files

2) ““U1:”’ — the alternative form ‘UA:’ is acceptable.

6. Getting the data back into the 64

Once the required data has been retrieved from the disk and placed in the
buffer, it is a simple matter to load it back into the 64 by means of the
command INPUT # and GET #. The buffer pointer command can be
used to determine where in the buffer the GET # or INPUT # will begin,
but other than that the process is no different from that for any other type
of file.

The format for INPUT # and GET # will be:

INPUT #< FILE NUMBER> ,VARIABLE LIST
or
GET #< FILE NUMBER>, VARIABLE LIST

where FILE NUMBER is the number allocated to the random file.

7. Marking and freeing sectors on the disk .
One problem remains to be solved. When data is written to the disk in the
form of a random file, the use of the sectors for the purposes of the file is
not recorded in the Block Allocation Map. There is, therefore, a danger
that the DOS, working on the basis of the BAM, will simply overwrite the
sectors allocated to the random file. The solution to this lies in the
command ‘BLOCK-ALLOCATE?:’ (and its opposite ‘BLOCK-FREE:’).
The function of ‘B-A.:’ isto register in the BAM the fact that a sector isin
use. Once registered, the DOS will not overwrite it with any incoming
material. ‘B-F:’ performs the opposite function, of registering in the BAM
that a sector which was previously marked as being in use is now free. The
format for the two commands is:

PRINT # < FILE NUMBER> ,“‘B-A:”’< DRIVE> ,< TRACK>,
< SECTOR>

and

PRINT #< FILE NUMBER> ,‘B-F:”’< DRIVE>",< TRACK>,
<SECTOR>

Infact, ‘BLOCK-ALLOCATE:’ is normally used before a sector is written
to. Printing the command to the error channel results in the error message

111

Commodore 64 Disk Companion

NO BLOCK coming back down the error channel if the sector is already
allocated to a file. Along with the error message text, the track and sector
figures represent the next highest sector which is free — no scan is done for
free space in tracks and sectors with numbers lower than the one you
specified. It is for this reason that random files often start on track 1, sector
0, so that they can use the facilities afforded by ‘BLOCK-ALLOCATE:’ to
the full.

8. Executing machine code from the disk
One further block command remains, though seldom used. This is
‘BLOCK-EXECUTE?:’, and it has the format:

PRINT #< FILE NUMBER> ,‘‘B-E:”’< DRIVE> ,< TRACK>,
< SECTOR>

Its effect is to load the specified sector into the buffer and thentorunit asa
machine code program within the disk drive, ie the program affects the
6502 chip which controls the 1541, not the 6510 chip which is the CPU of
the 64. Running the disk drive from a machine code program in this way is a
task which should be approached with caution since loss of data or damage
to the mechanism itself can result from improper control of the drive.

9. Two utility programs using random files

In this section, we present two interesting disk utilities which make use of
the power of random files. The first of the two programs is called UN-
SCRATCH and its purpose is to reverse the effects of the SCRATCH
command. The sector program LIST TRACK AND SECTOR, lists out the
contents of a disk on the screen, giving the allocation of every sector, track

by track.

Listing of program UNSCRATCH

10 GOTO 27000
27800 REMM I3 I 33 333 3 33 36 I3 3 3336 3333 333 %

27818 REM UNSCRATCH DISC FILE
27020 REM®EEIH 33396 336363 36363630 336969 3 3 9363636936

27@3@ INPUT "DEVICE NUMBER ? 8ICLILCLI]

[CL1";DEV
2704@ OPEN 8,DEV,8,"#"
27@5@ OPEN 15,DEV,15

112

Chapter 10 Random Files

27060 N$# = CHR# (@)

27878 5% = CHR$(168)+CHR%$ (16@)
27080 5% = S$+5¥% : 5% = S$+G¢
27890 S¥ = S$+5%

27108 INPUT "SCRATCHED FILE NAME ";NAS$

27110 INPUT "SCRATCHED FILE TYPE ";TYS$

27120 G0OSUB 300809

27138 IF CO THEN 27150

2714@ PRINT "FILE " NA$ " 1S NOT RECOVE

RABLE" : GOTO 27180

27158 IF T>128 THEN 27180

27168 PRINT "FIILLE CAN BE RECOVERED BUT
FILE TYPE *

27178 PRINT TY$% * IS UNAVAILABLE"

2718@ PRINT#15,"va"

27198 CLOSE 8 : CLOSE 15

27200 END

28000 RE MR I W33 33 W33 369 9 36 3 I 96 36 36 36 5 X 36 3% %

28010 REM SEARCH FOR SCRATCHED FILE

Z2B0AZ20 REMH 3330366 3 36 3 36 3 30 36 9 36 3 36 303 3 336 3 36 36 96 36 % %

28030 CO = @

280480 NT = 18 : NS = @

28050 GOSUB 29000

28060 F1 = 0@

28070 PRINT#15,"B-P: "8,FI*32+42

28080 GET#8,T+#

28898 T = ASC(T$+N$) AND 127

28100 IF T<>@ THEN 28178

28110 GET#8,T% : GET#8,Ts$

28128 Ti$ = "¢

28130 FOR I = @ 70O 15

28140 GETHH,T$: TiF = TIS$+LEFTS(T$+N$F,1)

28158 NEXT .

28160 IF LEFT#(NA$+S$,16)=T1$ THEN CO=—1
: GOTO 28190

2817@ IF FI<7 THEN FI = FI+1 : GOTO 280870

28180 IF NT<>@8 THEN 28050

28198 RETURN

29000 REMMH 3363 3 3365 8333 3 363 3 33336336 33636 3696 %

29818 REM READ NEXT TRACK AND SECTOR

29020 REM® 3633 333 33336 396 3 3 3 36 36 36 36 3636 36 36 36 3

29038 TR = NT : § = NS

29040 PRINT#15,"U1:"8;0@;TR:S

29050 PRINT#15,"B-P:"8;0

113

Commodore 64 Disk Companion

29060 GETH#8,T$:
290870 GET#8,T# : NS
29@80 RETURN

JD000 REMHI I3 3333 3 3 369 33 3636 5 366 9 26 3 3636 3 36 %
30@1@ REM DO UNSCRATCH

JSAAB2@ REM* 3633 36 3 3 3633 3 36 336 3636336 36 36 3 336 36 36 % %
30038 GOSUB 28000

30348 IF NOT CO THEN 32140

30050 PRINT#15,"B-P: "83;FI*#32+42

30060 T = 0

30078 IF TY$="SER@" THEN T=1

30080 IF TY$="PRG" THEN T=2

30098 IF TY$="USR" THEN T=3

30108 IF TY$="REL" THEN T=4

301186 T = T+128

30120 PRINT#8,CHR$(T) ;

38130 PRINT#15,"U2:"8;0; TR; S

30140 RETURN

ASC (T$+N$)
ASC (TH+N$)

Explanation of UNSCRATCH program

Lines 27000—27200: This section allows the user to specify the name of the
file which has been scratched and the file type to be allocated to it when it is
reinstated. At the end of the module the VALIDATE command is used,
after the rest of the program has reinstated the file in the directory, to
update the BAM, which has registered the sectors once used by the file as
free. Note: This program cannot reinstate a file once other material has
been written to the disk on the sectors which were originally used by the file
which was SCRATCHed, or if the directory entry has been overwritten.

Lines 29000-29080: These lines pick up the current sector from the direct-
ory track and store the pointers to the next track and sector in the variables
NT and NS. Each time this module is called, the next sector will be picked
up into the buffer using ‘Ul:” and the track and sector pointers updated to
the following sector.

Lines 28000—28190: The function of this module is to search through the
directory track for deleted files and to compare the names of any found
with the name of the file to be UNSCRATCHed. This is done by reading a
sector of the directory into the buffer using the module at line 29000, then
moving the buffer pointer through the buffer in 32-byte steps — a single

114

Chapter 10 Random Files

entry in the directory is 30 bytes long with two spare bytes between each
entry. At each step, the first byte of the entry is tested to see whether it is
zero or 128, the sign of a SCRATCHed file. If a scratched file is found, its
name is extracted from the buffer and compared with the name of the
specified program. If they match, the variable CO is set to minus one; if
not, the search through the directory continues until the end of directory
marker is found.

Lines 30000-30140: If the flag CO indicates that the correct file has been
found, then the number corresponding to the file type under which it is to
be UNSCRATCHed is printed to the first character of the directory entry
in the buffer and the buffer is then rewritten to the disk, effectively
changing the status of the file in the directory. If the file type specified is
invalid, the program notifies the user of this fact and gives the file the type
‘DEL’, or ‘deleted’. It will appear in the directory and can be unscratched
under a valid file type.

Listing of program LIST TRACK AND SECTORS

21000 REM3E N 33633 33 36 336 339636363636 336 33 36 9 336 336
21010 REM LIST TRACK AND SECTOR ON DISC
21020 REM® 3333 33 3 3 563636 36 3 336 36 3 36 I 336 96 6 336 96 3%
21030 DIM D#(35,20) ,DI$(144) ,TY$(3)
21048 TY$(@) = "“SEQ"

21850 TY$(1) = "PRG"
21060 TY$(2) = "USR"
21870 TY$(3) = "REL"

21888 INFUT “DEVICE NUMBER ? S8ICLILCLI]

CCLI1";DEV

210890 OPEN 15,DEV,15

21100 OPEN 8,DEV,8,"#"

21110 PRINT "[CLRICCDILCDILCDILCDILCD]
READING DISC*®

21120 GOSUB 24000

21138 CLOSE 8 : CLOSE 15

211490 GOSUB 26000

211580 END

22000 REMIEE I3 39 365 3336 3 3363636 36 3 3 3 36 3 I 3633

22018 DATA "FOR TRACK AND SECTOR SIZE®

22020 REM¥® X333 33 3633 3 36 363 36 3636 3 36 36 3 3 36 369639 %

22038 DATA 1,17,20,18,24,18,25,30,17,31

115

Commodore 64 Disk Companion

1 35,16

23000 REMHEEEI3 3 3 336 333 363633 33 36 3 36363 3 396 3 36 3

23010 REM READ FILE STARTING AT TR & S

23020 REMMEHI636936-36 36 333 3636 363 363 3636 36 3 36 36 3 363 36 338 3¢
23830 BL. = 1

23049 DF(TR,S) = N&+" BLOCK"+STR#(BL)
23050 BL. = BL+1

23060 PRINT#15,"Ul:"8;@8; TR;S

23078 PRINT#15,"B-P: "8;0

23080 GET#8,T¥# : TR = ASC{(T$+CHR#%(@®))
23090 GETH#8,T# : S = ASC(T#+CHR%$(8))
231008 IF TR>@ THEN 23040

23118 RETURN

24000 RE MM %3343 33 I3 I -3 3 3 I 3336 I 363 336 33 3%
24010 REM READ ALL OF DISC

248020 REM¥M 33333 533 333 39 56 3 3 3336 36 3 3636 93 3 %
24030 RESTORE

24048 READ T# : IF T$<>"FOR TRACK AND
SECTOR SIZE" THEN 21070

24850 FOR I = 1 TO 4

240460 READ T1,T2,51

2478 FOR TR = T1 TO T2

24080 FOR S = @ TO S1

2409@ D$(TR,S) = "UNUSED"
24100 NEXT S,TR,I
24110 REM ————————— READ BAM ——————————

24120 PRINT#15,"U1:"8;0;18;0

241308 PRINT#15,"B-P:"8;34

24140 Ti$ = "¢

24158 FOR I = @ TO 143 : GETHB,T$:
Ti$ = TIS+HLEFT$(T$+CHR$ (@) ,1) = NEXT

24160 T = 0

24170 RESTORE

24188 READ T$: IF T#<>"FOR TRACK AND
SECTOR SIZE" THEN 24180

24190 FOR I= 1 TO 4

24200 READ T1,T2,51

2421@ FOR TR = T1 TO TZ

24220 FOR § = @0 TO S1

24238 T = TR*32+5-24

24248 T3 = INT(T/8)+1

24250 T4 = 27 (T—(T3-1)*8)

24260 T = ASC(MID$(T1%,T3,1))

24278 IF (T4 AND T) = @ THEN D#%(TR,S5)

116

Chapter 10 Random Files

= "RANDOM FILE"
24280 NEXT 5,TR,I

24298 REM ————- READ DIRECTORY —————————=
24308 N$ = "DIRECTORY"
24310 TR = 18 : S = 0

243280 GOSUB 23200

24338 REM —— READ FILES ON DIRECTORY ——-
24340 GOSUB 25000

24358 IF DP<{1 THEN RETURN

24360 FOR I = 1 TO DP

24378 T = ASC(DIF(I))

243808 IF T<129 OR T>132 THEN 24430

24398 TR = ASC(MID$(DI%$(1),2,1))

24408 S = ASC(MID$(DI$(I),3,1))

244180 N$¥ = MID$(DIS$(I) ,4,16)+" ,"+TYS$(T
-12%9)

24420 GOSUB 23000
24430 NEXT I

24440 RETURN

25000 RE M3 36 36 3 36 36 3 363 3636 36 36 96 36 6 3 36 36 3 36 3 36 33 3 36 %
2501@ REM READ DIR. INTO DIS$

29@208 RE MM 363 35 3 3 33636 36 3 3 36 36 36 36 36 36 3 36 3 3 3 3 3 96 3%
25038 DP = -1 : NT = 18 : NS = @

25840 TR = NT : S = NS

25050 PRINT#15,"Ui:" B8;@;TR;S

25060 PRINT#15,"B-P:" 8;0

25070 GET#8,T$: NT = ASC(T$+CHR$(@))
25080 GETH#8,T$: NS = ASC(T$+CHR$(@))
25098 IF TR=18 AND S=0 THEN 25040

25100 PRINT#15,"B-P:" 8;0

2511@ FOR I = @ TO 7

25120 GET#B,T$: GETH#8,T$

25130 DP = DP+1

25140 DI$(DP) = “*

25150 FOR J = @ TO 29

25160 GET#8,T$

25170 DI$(DP) = DI$(DP)+LEFT$ (T$+CHR$
(@, 1)

25188 NEXT J,I

25198 IF TR>@ THEN 25040

25200 RETURN

26000 REM**********“******************
26@1@ REM DISPLAY TRACK AND SECTOR
26020 REM******************************

117

Commodore 64 Disk Companion

26030 TR = 1 : S =0
26840 PRINT "[CLR1"
26050 PRINT "[HOMEITRACK = [CLILCL]
[CLICCLI"TR" "
26040 RESTORE
26078 READ T$: IF T$<>"FOR TRACK AND
SECTOR SIZE" THEN 26070
26088 READ T1,T2,S1
26098 IF TR>T2 THEN 26080
26100 FOR S = @ TO Si
261108 PRINT LEFT$(STR$(S)+"
u’e) :
26120 PRINT LEFT$(D$(TR,S)+"
",31)
26125 REM 4@ SPACES IN PRECEDING LINE
26130 NEXT
26148 FOR T = S§1 TO 20
26158 PRINT
" : REM 38 SPACES
26160 NEXT T
26178 PRINT "F1 = NEXT,F3 = LAST,FS5 =
NEW,F7 = EXIT";
26180 GET T$
26190 T = ASC(T$+CHR$ (@))-132
26200 IF T<1 OR T>4 THEN 26180
26210 ON T GOTD 26220,26260,26290,26410
26228 TR = TR+1
26230 IF TR>35 THEN TR = 1
26248 PRINT “"[HOMEILCDICCDICLCDILCDICLCD]
{CDICCDICCDICCDILCDILCDILCDICCDILCD]
{CDICCDICCDICCDILCDICCDICCDILCDILED
26250 GOTO 26050
26260 TR = TR—1
2627@ IF TR<1 THEN TR = 35
262680 GOTOD 26240
26290 PRINT "[HOMEITRACK =
[HOMEITRACK = " ;
26300 Ti$ = "
26310 GET T$: IF T$<>CHR$(28) AND T$<>
CHR$(13) AND (T$<"@" OR T$>"9") THEN 26310
26328 IF T$<>CHR$(13) THEN 26360
26330 T=VAL(T1$)
26348 IF T>=1 AND T<=35 THEN TR = T :

118

Chapter 10 Random Files

GOTO 26240
26350 GOTO 26290
26368 IF T$=CHR$(20) AND T1%$<>"" THEN T1
¥ = LEFT$(T1i$,LEN(T1%$)-1) : GOTO 26390
2637@ IF LEN(T1%)>=2 THEN 26310
26380 Ti¥% = T1$+T#
26398 PRINT “fCL1" T#% " ";
26400 GOTO 26310
264108 PRINT "[CLR1"
26420 RETURN

Explanation of LIST TRACK AND SECTOR

Lines 21000—21150: This module sets up the arrays the program will use to
store the contents of each sector on the disk and the entries in the directory,
then sets up the file to the error channel and a random file to the specified
device.

Lines 23000-23110: This module is sent two items of information each
time it is called — the name of a file and the address on the disk of the first
sector of that file. The purpose of the module is to use the track and sector
pointers at the beginning of each sector to trace through the file on the disk.
As it does so, it marks the corresponding element in the array D$ with the
name of the file to which the sector is allocated and the number of the
sector within the file.

Lines 24000—-24100: Based on the data statement at line 22030, the array
DS is filled with the word ‘UNUSED?’ in positions corresponding to the
track and sector numbers which exist on the disk. Thus, D$(1,0) to D$(1,20)
are initially marked unused since there are 21 sectors in track 1. Lines of D$
which correspond to tracks further in will have fewer elements used.

Lines 24110—24280: Having marked all possible sectors as unused in the
array, the second section of the module reads track 18, sector 0, into the
buffer and then copies the BAM into a string variable, T1$. Based on the
track and sector figures from line 22030, lines 24210—24280 examine every
bit of the bytes within T1$ which record the allocation of sectors. For every
bit which is reset (zero), the mark of an allocated sector, the appropriate
element of the array D$ is changed to read RANDOM FILE. Later parts of
the program will rewrite most of these entries on the basis of information
contained in the directory but any entry which the BAM showed to be
allocated and which does not belong to a directory file will remain flagged
as part of a random file.

119

Commodore 64 Disk Companion

Lines 24290—24320: These lines call up the module at line 23000 to trace
through the sectors which make up the directory and mark the position of
each in the array D$.

Lines 24330—24440: After calling up the module at line 25000, which reads
every directory entry into the array DI$, these lines send the information
about the start of each file to the module at line 23000, which traces the file
through, sector by sector, again marking the name of the file in the relevant
_ element of the array D$.

Lines 25000—25200: This module reads the contents of the directory into
the array DIS$. For each entry, the two spare bytes are read and discarded
(line 25120) and then 30 bytes, the length of a directory entry, are read into
DIS$: then the counter DP is incremented. The process continues until the
track pointer at the beginning of a directory sector is found to be zero,
indicating the end of the directory. A fuller explanation is contained in
Chapter 11.

Lines 26000—26420: This is the display module which lists the contents of a
single track to the screen and allows the user to specify a track for display.

Note: Due to the extensive use of string arrays, the program pauses

noticeably from time to time while the string tidying function known as
‘garbage collection’ is carried out by the 64.

120

CHAPTER 11
The Disk Directory

1) The format of the directory
2) Reading the directory
3) Repeating a process on multiple files

In the first chapter of this book, we included a brief description of the disk
directory. Since then we have taken the function of the directory, in allow-
ing the user to examine the contents of a disk and in allowing the Disk
Operating System to find specified files on the disk, rather for granted. In
this chapter we shall take a brief look at the directory, its layout and the
way in which it may be directly accessed by the user.

1. The format of the directory

In Table 1.2 (page 4) the overall layout of the tracks which make up the
directory is given. Examining the table shows that the directory is held on
track 18 of the disk, beginning at sector 0. The first sector of the directory is
given over to the Block Allocation Map, but the remainder of track 18 is
reserved for the details of individual files on the disk. The second section of
Table 1. 2 shows how each of these sectors is capable of holding the details
of eight files. Given that there are 17 sectors on track 18 of the disk, simple
arithmetic shows that the maximum number of files which the disk can
hold, regardless of how much space is free, is 16*8, or 144.

Within the overall structure of the directory, the format of the entry for
a single file is given in Table 11.1.

In fact, most of this table will be familiar from previous chapters. The
file types, stored in byte 0 of the entry, we have made use of in the UN-
SCRATCH program in Chapter 10, where file types were altered to rein-
state files which were registered in the directory as having been deleted.

The first track and sector bytes, and the filename itself, were used by the
LIST TRACK AND SECTOR program to trace through the sectors allo-
cated to each particular file and then to display the name of the relevant file
against each sector on the disk. In normal use, the purpose of these bytes is

121

Commodore 64 Disk Companion

to allow the DOS to search through the directory for a specified filename
and then to find the beginning of a file which it has been instructed to
access.

Table 11. 1: Format of a Single Directory Entry

BYTE REMARK
0 Type of file in use
0 = Unused or DELeted file
1 = Unclosed SEQuential file
2 = Unclosed PRoGram file
3 = Unclosed USeR file
4 = Unclosed RELative file
128 = Closed DELeted file
129 = Closed SEQuential file
130 = Closed PRoGram file
131 = Closed USeR file
132 = Closed RELative file
1 Track of first block in file
2 Sector of first block in file
3-18 File name padded with shifted spaces
(CHR$(160))
19 Relative files — Track of first side
sector of file
Other file types — Not used
20 Relative files — Sector of first side
sector of file
Other file types — Not used
21 Relative files — Length of record
Other file types — Not used
22-25 Not used
2627 Only used when disk is SAVEing or
OPENing a file with ‘@0:’
28-29 Number of blocks in this file

In Chapter 9 we saw how relative files are in fact made up of two quite
separate sections, one containing the data and the other recording where
the sectors holding the data are on the disk. The table shows that the start
address of this second part of a relative file is held in bytes 19 and 20, while
the fixed length of each record in a relative file is held in byte 21.

Bytes 26 and 27 are new to us, but their use is quite simple. When a file is
SAVEd or OPENed using the ‘@0:’ modifier to specify that any previous

122

Chapter 11 The Disk Directory

file of the same name and type is to be overwritten, these bytes serve the
purpose of holding the starting track and sector until the new file has been
created.

Finally, when the directory is displayed for the user, the size of each file
in terms of the sectors used is given with it, and this figure is stored in bytes
28 and 29 of the file entry.

Inall, each individual file entry in the directory takes up 30 bytes (0-29).
In order to space the eight possible entries regularly within the 256 bytes of
the sector, two extra bytes are added to the end of the first seven entries.
These bytes contain no useful information, their purpose is solely to allow
the DOS to scan along the directory in steps of 32 bytes.

2. Reading the directory

There are two main ways in which the directory may be read:

1) By loading it into memory with the command LOAD ¢‘$’,< DEV>,
where DEV is the device number of the particular drive. When loaded in
this way, the directory is treated in much the same manner as a program file,
and any program presently in memory is lost. Loading is possible because
the ‘8’ indicates to the DOS that it has to translate the directory as it is on the
disk into program file format, treating each entry as if it were a program
line, supplying the zero bytes to finish lines and space for link bytes. In
other words, the format supplied to the 64 when the LOAD ““$’’ command
is entered is entirely different to the format of the directory on the disk itself.

2) By reading the directory from the disk under program control. The
‘DOS support’ software provided free with later 1541s provides a neat
means to accomplish this and print the contents of the directory to the
screen without interference to the current program (see Appendix C). It is,
however, quite possible to read the directory from BASIC and an example
of this is shown in the LIST TRACK AND SECTOR program in Chapter
10. Given below are two short programs which will load the contents of the
directory into an array, the first by reading the directory file much as a
program file would be read (see Chapter 8), and the second reading the disk
more directly.

Program to read the directory into an array from file ‘$’

12 DIM DI$#(15@) : DEV = 8
20 GOSUB 19000

3@ FOR I = @ TO DP-1

48 PRINT CHR$(34) DI$(I)
S8 NEXT

123

Commodore 64 Disk Companion

68 END

1000 REMS 1363633 36 36 363636 3 36 336 36 96 33630 36 3 36 36 36 3 6 3%
191@ REM READ 1541 DIRECTORY

10238 REM* 83563 3 333 I 333696 3 I 3 3 I I 963633363 %
1030 DF = 0

1848 OPEN 8,DEV,0,"$"

1850 GETH#B,T$: GETH#B,T#

1860 GETH#B,T# : GET#B,T# : IF T#$=""

THEN CLOSE 8 : RETURN

1070 GET#8,T# : GETH#8,T#%

1080 GETH#8,T#

1898 IF T#<>CHR#%(34) AND T#%<{>"" THEN
1080

1100 IF T$="" THEN 1068

1110 T1% = ¥

1120 GET#8,T#

1130 IF T#<>"" THEN T1% = T1$+T# :
GOTO 1120
1140 DIS$(DP) = T1% : DP = DP+1

1158 GDTO 1860

Explanation of reading into array from file ‘$’ program

If you have read Chapter 8, on the use of program files, you should have
little difficulty in recognising the techniques being used here. The DOS
supplies the directory in the form of a program file, with every filename
built into a separate line and the whole thing properly structured with link
bytes and so forth. There is no point in trying to compare what is being read
by the GET # statements with the contents of the table at the beginning of
the chapter, since there is almost no relation between the two. What is
being read here is not the directory itself but the translated version of the
directory supplied by the DOS.

Program to read directory directly from disk into an array

1@ OPEN 15,8,15 : OPEN 8,8,8,"#"
20 DIM DI$(15@)

30 GOSUB 1000

492 FOR I = @ TO DP

S8 T = ASC(DI$(I)) : IF T>=129 AND T
<=13@ THEN PRINT MID$(DI$(I),4,16)

124

Chapter 11 The Disk Directory

6@ NEXT

7@ CLOSE 8 : CLOSE 15

8@ END

1000 REM#*****************************
101® REM READ DIR. INTO DIs$

10820 REH******************************
1030 DP = -1 : NT = 18 : NS = @

1840 TR = NT : S = NS

1058 PRINT#15,"U1:" B;@;TR;S

1260 PRINT#15,"B-P:" 8;0

1070 GET#8,T$: NT = ASC(T$+CHR$ (@))
1080 GET#8,T$: NS = ASC(T$+CHR$ (@))
1090 IF TR=18 AND S=0 THEN 1040

1100 PRINT#15,"B-P:* 8;0

1110 FOR I = @ TO 7

1120 GET#8,T$: GET#8,T$

1138 DP = DP+1

1140 DIS(DP) = "*

1150 FOR J = @ TO 29

1160 GETH#B,TS

1170 DI$(DP) = DI$(DP)+LEFT$ (T$+CHR$
(@) ,1)

1180 NEXT J,1

1199 IF NT>@ THEN 1040

1200 RETURN

Explanation of reading into array from disk program

Lines 10—80: This section controls the execution of the program. Its three
main functions are to open the error channel and call for the allocation of a
disk memory buffer, to call up the next module, and then to print out
selected files from the array DIS$.

Lines 1000—1200: We have come across these lines before in the LIST
TRACK AND SECTOR program in Chapter 10. Their overall function is
to read the contents of the directory into the array DIS.

Lines 1050—-1060: The contents of a single sector are read into the buffer
and the buffer pointer set to the beginning of the buffer. The first sector to
be read will be track 18, sector 0.

Lines 1070—1090: The first two bytes of the sector, which are pointers, are
obtained and stored in the two variables NT and NS, standing for Next
Track and Next Sector. On the first pass through the module, the sector

125

Commodore 64 Disk Companion

picked up will be the BAM, so the program immediately moves on to the
next sector.

Lines 1100—1180: The buffer pointer is set back to the beginning of the
block, then the eight file entries contained in the sector are successively
read. This involves discarding the two unused leading bytes and then
obtaining the next 30 characters. The 30-character entry is then placedin a
line of the array DIS.

Lines 1190—1200: If the next track pointer indicates track 0 at this stageitis
a sign that the sector which has just been dealt with is the last in the
directory.

3. Repeating a process on multiple files

Given the flexibility of the means provided by the LOAD ¢‘$’’ method and
the DOS support facility to print the directory, there are few occasions on
which it is worth reading the directory directly. One use, however, might be
whenever an operation is to be performed on multiple files. In Chapter 5
we noted that very few commands could be used with the pattern matching
facilities that the 1541 supports. With a little bit of programming,
however, it is relatively easy to construct routines to carry out an operation
on awhole series of files which match a certain pattern, and this depends on
the ability to read and make use of the information contained in the
directory.

Program to repeat an operation on a series of files

Ip9700 GUTO 33000

F1000 REMNIII2HI0 0363636330333 303 3 3636 36 363636 6969
31218 REM READ 1541 DIRECTORY

J1020 REMMEFH 333363096 336 363 36 3696 96 336 3 36 36 36 36 3636 96 6 %
31030 DP = 0

31842 OPEN 8,DEV,0,"%"

31050 GET#8,T¢ : GET#8,TS$

31068 GET#8,7T$: GET#B,T$: IF T$=""
THEN CLOSE 8 : RETURN

31070 GET#8,7¢ : GET#8,T#

31080 GETH#8,T$

31098 IF T#{>CHR#$(34) AND T#{>""

THEN 31080

126

Chapter 11 The Disk Directory

311880 IF T#="" THEN 31040
311108 Ti$ = "

31120 GET#B,T#

31130 IF T${>"" THEN Ti1#
: GOTO 31120

31140 DI$(DP) = Ti$% : DP = DP+1

31150 GOTO 31060

I2008 REME# R 3 II63 36 9 3393636 3 363093365696 3 3363098 %
532018 REM PATTERN MATCH N$ WITH PA#
I2020 REMI NI 32905 39363 33969636 3636 3696 336 9696

32030 SAME = -1
320408 T = LEN(N%)

32050 IF LEN(PA%$)>T THEN T = LEN(PAS%)
32060 FOR I =1 TO T
32078 T1 = (MID#(PA%,1,1)=MID$(N$¢,I,1))
OR (MID#(PA%,I,1)="7?")
32080 SAME = SAME AND ((MID#(PA#$,I,1)=
"#") OR T1)
32098 IF MID$(PA$,I,1)<>"#" THEN NEXT I
32100 RETURN
Z300D REMEEN 396503 3300 3309696 6 36 36309 363636 96 36 36 36 3 6 3¢
33018 REM REPEAT FOR ALL PROGRAMMES
I3IO20 REM* X339 905 333 3363636 3536336036 356 3636 3 3 5%
I3030 DIM DI#(15@)
33840 INPUT "DEVICE NUMBER 7 8LCLILCLI1
fCLI";DEV
33850 INPUT “PATTERN 7 *[CLILCLICCL]
"; PA%
338460 GOSUB 1000
3307@ IF DP<2 THEN 33200
I308@d FOR I@ = 1 TO DP-1
33090 T4 = DI%$(IB) : T = ~1
33100 FOR Ii = 1 TO LEN(T#)
3311@ IF MID#$(T4,I11,1)=CHR%(34) THEN
T = Ii-1
33120 NEXT I1
33138 IF T<1 THEN 33190
33140 N¥ = LEFT$(T#,T)
231080 TY$S = MID#(T#,19,3)
33168 GOSUB 32000
33170 IF NOT SAME THEN 33190
33180 GOSUB XXXXX : REM THIS IS THE
ROUTINE TO BE EXECUTED
33190 NEXT 10

Ti$+T#

i

127

Commodore 64 Disk Companion

33200 END

Explanation of repeating an operation on a series of files
program

Lines 31000—31150: The module to read the filenames from the directory
using the first of the two methods illustrated in the second section of this
chapter.

Lines 32000—32100: These lines compare two strings, one of which is the
name of a file taken from the directory, the second being a string input in
the next module which is the pattern against which all the disk files are to be
matched. The pattern may be set up in the same way as described in
Chapter 5, using the “*’ and ‘?’ indicators. The only important product of
the module is the value of the variable SAME. If the filename being con-
sidered by the module matches the pattern, then the value of SAME will be
left at minus one, otherwise it will be zero when execution of the module
ends.

Lines 33000—-33200: This section is the main control module, which first
calls up the module at line 31000 to read the directory into the array DIS,
then sends successive file names to the preceding module for comparison
with the pattern input by the user. An extra facility is provided in the form
of the creation of TY$, which records the type of the file. No use is made of
this in the current program but you might like to employ it to exclude
certain file types from an operation, regardless of their name.

In actual use, there would need to be another module specifying exactly
what action was to be performed on a file which matched the pattern. This
extra section would be written as another subroutine and would be called
by the GOSUB at line 33180. Note: Since there is no valid line number at
33180, the routine cannot be run successfully in its present form — you
must first add the new section specifying the action to be performed. Given
below is an example procedure illustrating the use of the REPEAT facility.

Example procedure illustrating the use of REPEAT

1) Enter and SAVE the REPEAT program given above.

2) Take a disk which contains no important files (something may go
wrong!) or format a new disk and SAVE on it three files with different

names — the content of the files is irrelevant but the filenames should be
less than 16 characters long.

128

Chapter 11 The Disk Directory

3) LOAD the repeat facility and amend it by entering the following new or
changed lines:

iBise

Z4000
34010
74020
34030
34040
:ﬂ +
74050
34060
T4070

GOSUR Z4000

RE M %525 % 3569 3 3 3 3 3 336 % 3 33 3696 9 9 6 3 56 5% % 5 % %
REM RENAME ALl FILES

FRE %% % 5 33 36 96 36 3 3 5% 3 96 9 3 3 3% 3 3 % 363 % % ¥ %%
OFEN 15,DEV, 15

COME="RENAME®@: Z" + N¥ + "=

N#F

FPRINT#15,C0OM%

CLOSE 15

RETURN

4) SAVE the amended program under the name REPEAT2.

5) RUN the program and, when asked to enter the pattern, simply press
RETURN which enters a single asterisk indicating that any filename will be
acceptable as a match.

6) When the program terminates, load the directory and you should find
that every one of the files on the disk has a ‘Z’ at the beginning of the
filename. If so, you have successfully carried out a procedure which would
be impossible by means of normal pattern matching.

129

CHAPTER 12
Machine Code Programming Commands

1) Reading the memory of the disk drive
2) Writing to memory
3) Executing machine code in the disk drive memory

Despite the immense power and flexibility of the Disk Operating System
program which takes up 16K of ROM within the 1541, there may be occa-
sions when competent programmers wish to write their own machine code
routines to control the disk drive. It is worth stressing again that thisisnot a
decision to be taken lightly. Though it is unlikely, it is possible to damage
the disk drive by running inadequately thought-out programs since, unlike
the Commodore 64, the 1541 has moving parts which are under the control
of its 6502 microprocessor.

1. Reading the memory of the disk drive

Reading the contents of the disk drive RAM and ROM, which extend from
address $0—7FF and $C000—FFFF respectively, is made possible bytheuse
of the MEMORY-READ command. The format for this is:

PRINT # < FILE NUMBER> ,“M-R’’ CHR$(LO) CHR$(HID)
[CHR$(CHARS)]

1) FILE NUMBER — the number of a file previously opened to the error
channel.

2) “M-R”’ — the abbreviation for MEMORY-READ — the full version of
this command is not accepted. Note: The absence of a colon, ¢:’, from the
end of the command is not an error. Editions of the 1541 disk manual up to
the date of publication of this book are wrong in including the colon in the
format of the command. None of the ‘M-’ commands will be accepted by
the 1541 if a colon is appended.

3) LO and HI — calculated on the basis that, if X is the address to be read,

131

Commodore 64 Disk Companion

then HI = INT(X/256) and LO = X—256*H].

4) CHARS — the number of bytes to be read — see below on the use of
GET # to obtain the data.

The M-R command does not, by itself, read the memory. What it does,
unless the optional CHARS specifier is added, isload a single byte from the
specified location into the error channel buffer, ready for reading by the
64. If a GET # instruction is then issued, this will obtain the single byte
from the address specified. The technique given in editions of the 1541
manual up to the publication of this book, where the M-R command is
employed without the use of the CHARS specifier and then a succession of
bytes obtained by the use of GET #, does not appear to work. In our
experience, all that is obtained after the first byte is the characters of the
current error message. Thus, it would appear that, contrary to information
in the manual, either a fresh M-R command must be issued for each succes-
sive byte to be picked up from the drive memory, or the number of bytes to
be picked up must be specified, with CHR$(0) representing the maximum
of 256 bytes without the use of another M-R command. Note that,
whenever less characters are read than have been specified, the sequence
must be terminated by the use of INITIALIZE since, until this is done, the
only thing that will be obtained from the error channel is bytes of memory.

The program given below shows how the M-R command can be used to
dump out an area of the disk drive memory. Those who are familiar with
our other books will recognise that the program consists of the memory
dump routines taken from the Mastercode Assembler, adapted to read and
format the disk memory instead of the internal memory of the 64.

Program using memory-read to dump disk memory contents

17000 REMHN 12336333636 6536336 93636 36 36 36 363636 36 96 -3
17818 REM DO MEMORY DUMF

17020 REMM® 33 W 33 36 3933 3 3636 36 36 36 3 96 4336 3636 %
17838 DEV = 8

17048 OPEN 15,DEV,15

17058 DEFFNHI(X) = INT((X-INT(X/&65536)
*#655536) /296)

17868 DEFFNLO(X) = X—INT(X/25&) %2564
178078 INPUT " START ADDRESS ";T$

17080 IF LEFT$(T$,1)="%" THEN T$ = MID$
(T$,2) : GOTO 17140

17898 AD = VAL(T#)

17108 IF AD<>@ THEN 17170

132

Chapter 12 Machine Code Programming Commands

17110 FOR I = 1 TO LEN(T$) : Ti$ = MIDS$
(T$,1,1)

1712@ IF Ti1$>"9" OR Ti$<"@" THEN PRINT
"[CUILCUI" : GOTO 17870

17130 NEXT : GOTO 17240

17140 GOSUB 20000

17150 IF ERR THEN PRINT "[CUILCU1" :
GOTO 17070

17160 AD = T

17178 IF AD>65535 OR AD<@® THEN PRINT
“[CUILCUI" : GOTO 17070

171880 INPUT " OUTPUT TO PRINTER (Y/N)
2 NLCLILCLILCLI"; TS

1719@ OP = T$="Y"

1720@ IF NOT OP AND T#$<>"N" THEN PRINT
"[CUILCUI" : GOTD 17180

17210 T = 3

17220 IF OP THEN T = 4

17230 OPEN 1,7

1724@ PRINT "[CLR1"

17250 FOR I = @ TO 20

17268 GOSUB 18000

17270 PRINT#1,HES$

1728@ NEXT

17298 INPUT “C[CD1 CONTINUE (Y/N)

2 YCCLICCLICCL1";T$

17300 IF T$="Y" THEN 17240

1731@ IF T$<>»"N“ THEN PRINT "[CUILCU]
[CUl" : GOTD 1729@

17320 PRINT#15,"1@"

1733@ CLOSE 1

1734@ CLOSE 15

17358 END
1 SO0 REMIEN 43333 36 5 336 3 33 36 33 3 3 3 36 3 36 36 3333 %

1881@ REM READ 8 BYTES FROM DISC
180820 REM******************************
18030 01% = "" : 02¢% = "

18040 Ti$ = "" : T2¢% = ""

18045 PRINT#15,"M-R" CHR%$ (FNLO(AD))
CHR$ (FNHI (AD)) CHR$ (@)

1805@ FOR J = @ TO 7

18070 GET#15,T$: T$ = LEFT$(T$+CHRS$
(@) ,1)

168088 T = ASC(T$)

133

Commodore 64 Disk Companion

18089a
18100
18110
18120

THEN
18130
18140
18150
18160
18178@

605UB 19@ee

Ti$ = Ti$+RIGHT$("0B"+HE$,2)+" *
T3$ - 2] - st

IF T$>CHR$(31) AND T$<CHR%$(128)
T3% = T#

T2% = T2%+T3%

NEXT

T = AD

GOSUB 17000

HE$ = RIGHT#("@000"+HE$,4)+" "+Ti%

+ " 1] +T2$

18180
i8i9@
17000
19010
17020
19030
1040
19050
19060
19070
17@880
20020
20010
20020
20030
20e42
20850
208458
20070
20080
20892
20100

AD = AD+8

RETURN

RE M 3636 9 36 36 36 363636 3636 363636 3636 36 96 90 30 36 96 36 36-36 3636 ¢
REM CONVERT T TO HEX

REM 363636 36 3636 360636363636 36 36 36 696 9696 9636363636 36 36 36 36 ¢
HE$ - uun

Tl =T - INT(T/16)%*16

T = INT(T/16)

HE$ = CHR$(T1+48-(T1>9)%*7)+HE$

IF T>@ THEN 19040

RETURN

RE M99 3636 36 3636 536 30 36 36 96 96 36 096 36 36363636 369696 96 96 %
REM CONVERT HEX TO DECIMAL

REM¥ 363636 36 3365369636 36 36 36 6 6 36 36 36363696 36 36 36 36 36 36 96 %
T=08: ERR = 0

FOR I = 1 TO LEN(T%$)

Ti = ASC(MID$(T%,1,1))-48

IF T1>9 THEN T1 = Ti-7+(T1>22) %15
T = T#16+T1

ERR = T1>15 OR T1<® OR ERR

NEXT

RETURN

Explanation of memory dump program

Lines 17000—17350: This section of the program allows the user to specify
the start address from which memory is to be dumped out. The address
may be entered in decimal or, if preceded by ‘$’, in hexadecimal. Display of
the results of the dump is normally to the screen but output to printer can
be specified. After 20 lines of eight bytes have been displayed, the user has
theoption to continue or terminate the program. Notethat, ontermination,

134

Chapter 12 Machine Code Programming Commands

the disk drive is initialised to ensure that it is prepared for any subsequent
commands — a disk error message will be generated if no disk is present in
the drive.

Lines 19000—19080: These lines convert a number expressed in decimal to
its equivalent in hexadecimal.

Lines 20000—-20100: The converse of the above, these lines convert a
number expressed in hexadecimal to its equivalent in decimal. In addition,
the error variable ERR will be set to minus one as a flag if the hexadecimal
number input is incorrect in its format.

Lines 18000—18190: This section reads one line of eight bytes from the disk
drive memory, translates each byte into hexadecimal by calling up the
module at line 19000, then adds the string representing the hexadecimal
valueto T1$ and, if appropriate, the ASCII character with the same code to
the string T23. These are then combined into the string HES to be printed,
line by line, by the module at line 17000. The display which results gives the
hexadecimal form of eight bytes on the lefthand side of the screen and
shows clearly the presence of any meaningful groups of ASCII characters
on the righthand side.

2. Writing to memory
Data can be written to the disk drive memory in blocks of up to 34 bytes,
using the MEMORY-WRITE command, the format of which is:

PRINT # < FILE NUMBER> ,*“M-W”’ CHR$(L.O) CHR$(HI)
CHR$(CHARS)< BYTES>

1) FILE NUMBER — the file number of a file previously opened to the
error channel.

2) ““M-W’’ — the abbreviation for MEMORY-WRITE — the full form is
not accepted.

3) LO and HI — see the same values in the previous section.

4) CHARS — the number of bytes to be sent, up to 35 in all with a single
command.

5) BYTES — the bytes to be sent, either in the form CHR$(BYTE1),

135

Commodore 64 Disk Companion

CHRS$(BYTE2), etc, or in the form of a string of ASCII characters where
appropriate. Should the number of characters specified exceed those con-
tained in the string sent to the error channel, the carriage return character,
ASCII code 13, will be stored at the end of the characters being written to
memory.

Explanatory procedure to illustrate the use of M-W
1) Enter the MEMORY DUMP program given above and SAVE it.

2) With the MEMORY DUMP program in memory and a (not too impor-
tant) disk in the drive, dump out the contents of the memory beginning at
$400. Unless you have been playing around with the disk drive memory, the
contents should consist of zeros.

3) Add the following lines to the program:

21800 OPEN 15,8,15
21010 PRINT#15,"M-W" CHRS$(@) CHR$(4) CHR$
(26) "ABCDEFGHIJKLMNOPBRSTUVWXYZ"

21020 CLOSE 15

4) Type:
RUN 21000[RETURN]

5) After a momentary pause, the cursor will return, so RUN the main pro-
gram. When asked to specify an address, enter $400 again. You should see
that the letters of the alphabet have been successfully stored from $400
onwards.

3. Executing machine code in the disk drive memory

As mentioned before, machine code programs to control the 6502 chip
which runs the disk drive may be executed in the drive memory. Such pro-
grams may consist of routines from the 1541 ROM or programs written by
the user. Execution of such programs is accomplished by the MEMORY-
EXECUTE command, which has the format:

PRINT #< FILE NUMBER> , CHR$(LLO) CHR$(HI)

1) FILE NUMBER — the number of a file previously opened to the error
channel.

2) LO and HI — the start address of the machine code routine, with the two
bytes calculated as shown in the first section of this chapter.

136

CHAPTER 13
Changing Device Numbers

As mentioned in Chapter 1, the use of multiple disk drives depends upon
the ability to alter the device number of one or more drives, since drives
with the same device number will create confusion within the system. Data
sent fo a device number which is shared by two drives may well be stored
properly on both, but chaos will result from a request to two devices to
supply information to the 64. There are two methods of changing the
device number, one by making a slight modification to the circuit board of
the 1541 and the other by a single memory command. The hardware
method, we would recommend you have carried out by acompetent dealer,
but the software method can be accomplished by a command under the
following format:

PRINT #< FILE> ,“M-W”’ CHR$(119)CHR$(0) CHR$(2)
CHRS$(DEYV + 32)CHRS$(DEYV + 64)

1) FILE — the number of a file you have previously opened to the error
channel.

2) “M—-W’’ — the memory write command.

3) 119 and 0 — the address of a register in the disk memory, ie
119+256*0=119.

4) 2 — the number of bytes being written to memory.
5) DEV— is the device number you wish to assign to the disk drive.

Thus, to change the device number of a disk with device number 8 so that it
responds as device number 9, follow this procedure:

1) Ensure that any other disks with a device number of 8 are switched
off.

137

Commodore 64 Disk Companion

2) Type: ;

OPEN 15,8,15 [RETURNI]
PRINT#15,"M-W"CHR$(119) CHR$ (@) CHR% (2)CHR$
(41)CHR$(73) L[RETURN]

CLOSE 15

3) Now switch on any other drive(s).
Note that if for any reason the disk drive has to be switched off, this

process will have to be repeated as the drive will revert to its original device
number.

138

APPENDIX A

Disk Error Messages
NUMBER MESSAGE
0 No error condition current.

1

2-19
20
21
22

23

24

25

26

27

28

29

30

31

32
33

SCRATCH command has been carried out. The number
in the ‘track’ position of the error message repre-
sents the number of files scratched.

These numbers are not implemented on the 1541.

The header of the last specified sector cannot be found.

The disk drive is unable to pick up the special timing mark
placed on to each track. If this happens with more
than one disk you should have the drive checked.

The drive has been asked to read a sector which cannot be
found.

The checksum, or figure which is stored along with each
sector as a check against corruption, indicates that
data has been incorrectly retrieved.

More general message indicating that data is being picked
up from the disk in garbled form.

The data which has been written to the disk does not agree
with what should have been written.

Attempt to write to a disk which is write protected, eg has
a write protect tab stuck on.

The header of a sector does not agree with its checksum.

The disk drive cannot detect the beginning of the block
following the one being written to. The disk must
normally be reformatted.

The ID of the disk does not match the ID with which the
disk drive has been working. Disk must be INITIA-
LIZEd if it has been changed. Disk may be faulty.

The last command sent to the drive was not understood,
probably due to an invalid format.

The last command sent to the drive was not understood,
probably due to an invalid keyword.

The last command sent to the drive was too long.

An invalid file name has been employed.

139

Commodore 64 Disk Companion

34

39

50

51

52

60

61

62

63

64

65

66

67
70

71

72

73

74

140

The drive cannot detect a file name within the instruction,
often caused by omitting the colon which follows the
zero drive number specifier.

The last command sent to the drive was not understood.

The drive has been instructed to read data beyond the end
of the file.

Data to be printed to a relative file is too long for the
specified size of record within the file.

A position has been specified within a relative file which
would extend the file beyond the limits of disk
capacity.

The file which being opened for reading was previously
opened for reading and has not been properly
CLOSEd.

The disk drive is told to access a file which has not been
OPENed.

The disk drive has been asked to find a file which is not
present on the disk.

The disk drive has been instructed to create a file with the
same name as one which already exists on the disk.

The disk drive is being asked to treat a file of one type as
if it were a file of another.

The sector specified in a BLOCK-ALLOCATE command
is already allocated. The track and sector figures
indicate the next highest track and sector available.
Zero in both positions indicates that no higher track
and sector is available.

The track and sector specified in the last operation do not
exist. This may be due to programming error or may
arise out of corruption on the pointers indicating the
next sector of a file.

Indicates an illegal system track or sector.

The specific channel requested to the disk drive is not
available or there are no channels available at all.

The Block Allocation Map does not match what is
actually on the disk. The disk should be INITIA-
LIZEd, though some damage may have been done to
existing files already.

Either there are too many files on the disk to add another
to the directory, or there is no more space on the
disk.

An attempt has been made to write on a disk formatted
with a different Disk Operating System.

The drive has been accessed without a disk being present.

APPENDIX B
- Additional Machine Code Commands

In addition to the main commands specified in Chapter 12, there are a
series of additional ‘U’ commands, as follows:

U3
U4
Us
U6
U7
U8
U9
U;
Ul+
Ul-

(4@
(UD)
(UE)
(UF)
UG)
(UH)
Un

(SA)

jump to $0500

jump to $0503

jump to $0506

jump to $0509

jump to $050C

jump to $050F

jump to vector at SFFFA

power up vector

set drive to Commodore 64 speed
set drive to VIC 20 speed

Note that the main body of jump commands are spaced by three bytes each
in their destinations. This is to enable the user to create a jump table at
$0500 in the disk memory.

141

APPENDIX C
DOS Support Commands

Later 1541 drives have been supplied with a useful program under the name
name ‘DOS Support’, which allows the housekeeping commands to be
entered more easily from direct mode (without a line number). To load the
DOS Support facility into memory, use the C-64 WEDGE program
supplied on the disk of utility programs which comes with your drive. This
loads and runs a machine code program to extend the 64’s BASIC.

The commands which DOS Support makes available are as follows:

1) @< command string> or > < command string>
2) @ or >
3)/ < filename>

1) The command string referred to is any valid command along the error
channel, which is automatically opened by the DOS Support program.
Entering ‘$’ or ‘$0’ as a command results in the directory being printed to
the screen without the current program in memory being lost. While the
directory is being listed it can be paused by pressing the spacebar, and listing
recommenced by pressing any other key. Pressing RUN/STOP termi-
nates the listing.

2) This form of the commands returns the current disk error message,
removing the need to open the error channel, read it, and then close it
again.

3) Loads a file without the need for LOAD or the use of quotation marks
around the file name. The directory may be loaded by entering ‘/$’.

If you are making use of multiple disk drives and wish to use DOS Support
on a drive other than device 8, you must first load it from device 8, then
enter:

OPEN 15,< NEW DEVICE NUMBER>,15 : CLOSE 15 : SYS 52224

The start up message of the DOS Support program will be displayed and
the program will now be configured for the new device number.

It is important to remember that the DOS Support commands cannot be
used in a program; they can only be made use of in direct mode.

143

Index

1540 drive, ix

B

Backup files, 38

Backup disks, 19

Block Allocation Map, 3, 19, 43
BLOCK-ALLOCATE:, 111
BLOCK-EXECUTE:, 112
BLOCK-FREE;, 111
BLOCK-READ:, 110
BLOCK-WRITE:, 109
Buffer, 108

Buffer pointer, 108

C

Carriage return character, 62
Channel, 25, 58

CLOSE, 26, 69
Concatenation of files, 41
Connecting the drive, 9
COPY, 41

D

Detecting the end of file, 68

Device number, 17, 137

Direct mode, 53

Directory, 2, 121

Disk Operating System, 7

Disk drive memory dump
program, 132

Disk drive status, 54

Disk ID, 33

Diskbase program, 99

E
Error channel, 25, 51
Error messages, 52

F
File number, 25, 58
Formatting, 30

G
GET #, 64

I
INITIALIZE, 43

K
Kernal, 55
Keyword abbreviations, 29

L

LIST TRACK AND SECTOR
program, 115

Listing a program, 80

LOAD, 16

M

Machine code, 131
MEMORY-READ, 131
MEMORY-WRITE, 135
Merging programs, 85

N
NEW, 30
Numeric variables, 63

(0]
OPEN, 23, 96
Overwriting files with ‘@0:’, 18

P

Pattern matching, 47
PRINT #, 28
Program files, 75

145

Commodore 64 Disk Companion

Punctuation in relative files, 98 Storage of numbers in strings, 67

Punctuation with PRINT # and Strings, 63

INPUT #, 59 Structure of a BASIC program
file, 76

R

Random files, 107 T

Reading the error channel, 52 Track, 2

Relative files, 95

RENAME, 36 U

Renumbering a program, 89 Ul:, 110

Repeating a process on multiple U2:, 110

files, 126 Unsavable characters, 64
UNSCRATCH program, 112

S User files, 57

SAVE, 5, 15, 16

Saving areas of memory, 79 A\

SCRATCH, 34 VALIDATE, 19, 44

Sector, 2 VERIFY, 18

Sequential files, 57 VIC 20, ix

146

Other titles from Sunshine
SPECTRUM BOOKS

Artificial Intelligence on the Spectrum Computer

Keith & Steven Brain ISBN 0 946408 37 8 £6.95
Spectrum Adventures

Tony Bridge & Roy Carnell ISBN 0 946408 07 6 £5.95
Machine Code Sprites and Graphics for the ZX Spectrum
John Durst ISBN 0 946408 51 3 £6.95
ZX Spectrum Astronomy

Maurice Gavin ISBN 0 946408 24 6 £6.95
Spectrum Machine Code Applications

David Laine ISBN 0 946408 17 3 £6.95
The Working Spectrum

David Lawrence ISBN 0 946408 00 9 £5.95
Inside Your Spectrum

Jeff Naylor & Diane Rogers ISBN 0 946408 35 1 £6.95
Master your ZX Microdrive

Andrew Pennell ISBN 0 946408 19 X £6.95

COMMODORE 64 BOOKS

Graphic Art for the Commodore 64

Boris Allan ISBN 0 946408 15 7 £5.95
DIY Robotics and Sensors on the Commodore Computer
John Billingsley ISBN 0 946408 30 0 £6.95
Artificial Intelligence on the Commodore 64

Keith & Steven Brain ISBN 0 946408 29 7 £6.95
Machine Code Graphics and Sound for the Commodore 64
Mark England & David Lawrence ISBN 0 946408 28 9 £6.95
Commodore 64 Adventures

Mike Grace ISBN 0 946408 11 4 £5.95
Business Applications for the Commodore 64

James Hall ISBN 0 946408 12 2 £5.95
Mathematics on the Commodore 64

Czes Kosniowski ISBN 0 946408 14 9 £5.95
Advanced Programming Techniques on the Commodore 64
David Lawrence ISBN 0 946408 23 8 £5.95

147

The Working Commodore 64

David Lawrence ISBN 0 946408 02 5 £5.95
Commodore 64 Machine Code Master

David Lawrence & Mark England ISBN 0 946408 05 X £6.95
Programming for Education on the Commodore 64

John Scriven & Patrick Hall ISBN 0 946408 27 0 £5.95

ELECTRON BOOKS

Graphic Art for the Electron Computer

Boris Allan ISBN 0 946408 20 3 £5.95
Programming for Education on the Electron Computer
John Scriven & Patrick Hall ISBN 0 946408 21 1 £5.95

BBC COMPUTER BOOKS

Functional Forth for the BBC Computer

Boris Allan ISBN 0 946408 04 1 £5.95
Graphic Art for the BBC Computer

Boris Allan ISBN 0 946408 08 4 £5.95
DIY Robotics and Sensors for the BBC Computer

John Billingsley ISBN 0 946408 13 0 £6.95
Essential Maths on the BBC and Electron Computer

Czes Kosniowski ISBN 0 946408 34 3 £5.95
Programming for Education on the BBC Computer

John Scriven & Patrick Hall ISBN 0 946408 10 6 £5.95
Making Music on the BBC Computer

Ian Waugh ISBN 0 946408 26 2 £5.95

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon

Keith & Steven Brain ISBN 0 946408 06 8 £5.95
Artificial Intelligence on the Dragon Computer

Keith & Steven Brain ISBN 0 946408 33 5 £6.95
Dragon 32 Games Master

Keith & Steven Brain ISBN 0 946408 03 3 £5.95
The Working Dragon

David Lawrence ISBN 0 946408 01 7 £5.95
The Dragon Trainer

Brian Lloyd ISBN 0 946408 09 2 £5.95

148

ATARI BOOKS

Atari Adventures

Tony Bridge ISBN 0 946408 18 1 £5.95
Writing Strategy Games on your Atari Computer
John White ISBN 0 946408 22 X £5.95

GENERAL BOOKS

Home Applications on your Micro
Mike Grace ISBN 0 946408 50 5 £6.95

149

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year’s subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year’s subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-437 4343

Telex: 296275

Printed in England by Commercial Colour Press, London E7.

150

