

COMMODORE 64
GRAPHICS & SOUND
PROGRAMMING

COMMODORE 64
GRAPHICS & SOUND
PROGRAMMING

BY STAN KRUTE

TAB BOOKS Inc.
BLUE RIDGE SUMMIT PA 17214

To Char, Lady of Magic

FIRST EDITION

FIRST PRINTING

Copyright © 1983 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express

permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Krute, Stan.

Commodore 64 graphics and sound programming.

Includes index.

1. Computer graphics. 2. Speech processing systems.

3. Commodore 64 (Computer)—Programming. I. Title.

T385.K77 1983 001.64'43 83-4958

ISBN 0-8306-0140-6

ISBN 0-8306-0640-8 (pbk.)

Cover photograph by the Ziegler Photography Studio of Waynesboro, PA.

Contents

List of Programs viii

Preface ix

Introduction x

1 A First Look at Sprites 1
What's a Sprite? — Defining a Sprite Pattern—Your First Sprite Program—Some Play and Exploration-

More about Positioning the Sprite-A Sprite Yo-Yo-Dealing with 512 Horizontal Positions—Now for

Some Sideways Motion—A Square's Retirement—Solving Two Problems—Sprite Expansion and Expan
sion Registers—Chapter Summary—Exercises

2 More Than One Sprite 21
Simple Clones—Complex Clones—Storing More Than One Block of Sprite Pixel Data—Getting Two Very

Different Sprites—All About Your Young Couple—Moving More Than One Sprite at a Time—Chapter

Summary—Exercises

3 Some More Sprite Tricks 41
Trading Detail For Color: Sprite Multicolor Mode-More About the Multicolor Mode-Designing a Mul

ticolor Sprite—A Program to Display the Technicolor Sprites—Over and Under—Bring on the Fancy

Cartoons—Chapter Summary—Exercises

4 Character Graphics 61
Let's Play—Screen and Color Memory—Getting Characters on the Screen—Displaying all 512 Built-in

Characters—Build a Character String and Fly It—More about the Character Memory—Moving the

Character ROM into RAM-A Practical Example-A Little Modification-Designing Characters-Putting

Your Modifications Into Position—Designing a Set of Characters for Animation—The Alien Walker-

Chapter Summary—Exercises

5 Bit Mapped Graphics 81
Sixty Four Thousand Pixels—Storing the Bit Map—Turning the Bit Map Mode On and Off—A Short

Disclaimer—One Last Detail: Color—An Example of Bit Mapped Graphics—Taking a Shortcut—Locating

a Pixel's Byte and Bit—Turning Pixels On and Off—The Electronic Doodler—Chapter Summary-

Exercises

6 More Graphics Tricks 99
Sprite to Background Priority—Using Text with a Bit Mapped Display—Joysticks—Things That Go Bump

on the Screen—Multicolor Character Mode—Extended Background Character Mode—Multicolor Bit Map

Mode—Chapter Summary—Exercises

7 Starting To Make Sounds 123
Some Aspects of Sound—Brief Interlude—SID, the Sound Interface Device—General SID Register

Layout—Setting a Frequency—Setting a Waveform—Setting the Pulse Width—Setting a Voice's Volume

Variations: The ADSR Envelope—Turning a Sound on and off: Gating the Envelope Generator—The

Master Volume Control—The Frequencies of Musical Notes—Finally: A Little Music—Chapter

Summary—Exercises

8 Some Fancy Music Making 143
Reading Music—Performance Arrays: a Guide to Every Beat—A Program That Reads Music and Plays It

by the Beat—Thinking about Three Voices and Distinction—A Three Voice Example—Chapter

Summary—Exercises

9 Special Sound Effects 159
The Clock—The Gong Machine—SID Listens to Itself—Dadadum Dadadum Dadaddum Dum Dum—

Bang Bang—Now Entering the Pulser Zone—Chapter Summary—Exercises

10 Sounds + Graphics = Magic 177
Synergy—Modular Thinking—Of Blips and Bleeps (A Historical Salute)—The Pianorgan—Some

Thoughts about Sound/Image Coordination—The Final Program: Seesaw—Some Last Thoughts about

Combining Sound and Graphics—Chapter Summary—Exercises

Appendix A VIC Register Layout 199

Appendix B Screen Memory 203

Appendix C Color Memory 205

Appendix D Screen Display Codes 207

Appendix E Display Icons 211

Appendix F Color Codes 213

Appendix G Normal Sprite Coding Form 215

Appendix H Multicolor Sprite Coding Form 217

Appendix I Character Coding Form 219

Appendix J Multicolor Character Coding Form 221

Appendix K 2H x 3V Character Block Coding Form 223

Appendix L SID Register Layout 225

Appendix M Note Values 229

Appendix N ANDing and ORing 233

Index 239

List of Programs

Chapter 1
A Simple Sprite 9

A Sprite Yo-Yo 11

Sideways Sprite 13

Design a Sprite 14

A Bigger Sprite 16

Rectangular Motion 18

Color Changer 18

Growth Cycle 19

Chapter 2
Simple Clones 22

Complex Clones 29

Spritely Couple 32

Spritely Chase 34

Eight Clones 39

Clockwise Chase 40

Couples Chase 40

Chapter 3
4-Color Sprite 45

Sprite Overlap 48

Juggling Fool 54

Two 4-Color Sprites 58

Total Overlap 59

Switch Juggler 59

Chapter 4
Character ROM Display 63

Fly the Face 64

Character ROM to RAM 67

Alien Walker 75

Fly the Figure 79

Upside Down ROM 79

3 Alien Walkers 79

Chapter 5
Random Draw 85

Fast Random Draw 88

Sketch 91

Vertical Random Draw 96

Fat Sketch 96

Pencil Sketch 97

Chapter 6
Over and Under 100

Bit Mapped Text 103

Joyous Collision 108

Custom Multicolor 113

Extended Background 116

Vertical Over and Under 122

Color Bit Mapped Text 122

Weird Collision 122

Chapter 7
Minimal Siren 128

Play Some Sounds 139

Frogs from Mars 142

Roller Coaster 142

Two-Voice Sounds 142

Chapter 8
Read Music 145

Three-Part Song 151

Coventry Carol 156

Juke Box 158

Adjustable Tempo 158

Octave Mover 158

Chapter 9
Clock 160

Gong Machine 163

Mad Computer 165

Horse 167

Bam-PTwang 170

PulserZone 172

Rich Clock 174

PTwangBam 175

SonofPulser 175

Chapter 10
Bouncer 178

Pianorgan 183

Seesaw 189

Roller Bouncer 196

Rainborgan 196

More Seesaw 196

viii

Preface

I confess that I really like computers. They're

enjoyable tools. I would like to see two im

provements: lower prices and higher quality

graphics and sound.

The friendly folks at Commodore keep

giving the industry a shove in the right direc

tion. First came the VIC-20, a marvel just two

years ago. Now comes the Commodore 64. It

offers powerful graphics and sound capa

bilities, a big hunk of memory, flexible hard

ware, and a price that's giving the competitors

ulcers.

I spend a lot of time teaching people about

computers. When I work with kids, they all

want to learn how to make pictures and noises.

Since this matches my own inclinations, things

work out well. From the moment I heard

rumors about the 64,1 knew I wanted to learn

its tricks and share them with others.

For the last eight months, I've had the

pleasure of exploring graphics and sound on

the Commodore 64. This book lets you in on

some of my discoveries. It mixes computers

with art, music, logic, and puzzles. I hope it

encourages you to launch out on your own

creative journeys. The Commodore 64 is a

sturdy little vehicle for such enterprises. Use

it well, and then share the wonderment with

others.

ix

Introduction

This book is written for the advanced be

ginner/intermediate level programmer who

wants to start learning about graphics and

sound on the Commodore 64 computer. The

book covers a large subset of the machine's

abilities in these two exciting areas. The 68

programs are all written in a clear, clean

BASIC.

The only other available book that covers

the same ground is Commodore's own Com

modore 64 Programmer's Reference Guide. It's

a great book, one you'll probably want on your

bookshelf if you get hooked on this stuff. The

only drawback is that it's a bit advanced for

most people—intimidating, actually. When

you finish the volume you're holding in your

hands, you should be able to go at the Commo

dore book without a paid interpreter.

You'll need a Commodore 64 computer, a

good-quality TV set and some kind of program

storage device to use the programs in this

book. If you appreciate your eyesight, pick up a

nice computer monitor. Commodore's color

monitor is an excellent unit. For program stor

age, Commodore's tape recorder works just

fine. A disk drive is a luxury you'll want to add

to your computer system if you get serious

about programming. Commodore's 1541 drive

is low-priced and solidly built, although it does

have a tendency to heat up and get a bit weird

during very long (12+ hours) programming

sessions.

The first six chapters of this book cover

graphics. You'll learn about sprites, character

graphics, and bit mapped graphics. The Com

modore 64 makes this kind of programming

easier than any other machine currently on the

market. You can get exciting images with

programs written in BASIC, thanks to the

powerful hardware packed into the C-64.

The next three chapters cover sound

making on the Commodore 64. The 64's sound

chip is a remarkably complete three-voice

music synthesizer. Once again, you'll get re

sults from BASIC programs that would require

advanced assembly language skills on other

popular computers. Finally, in Chapter 10,

you'll learn how to bring graphics and sound

together.

I believe people learn to program by

example and by doing. This book has 63 pro

grams, over half of which are discussed ex

tensively in the text. Each chapter closes with

a brief summary and a set of exercises de

signed to clarify important points. I've in

cluded 30 programming problems for you to

tackle, with a complete set of possible solu

tions.

Some of this material can be confusing at

first. I've tried to provide lots of figures,

charts, and helpful appendices to get you out of

tight spots. I know how frustrating it can be

when a book tantalizes your interest and then

leaves you lost in a forest of impenetrable

jargon. I've also provided special coding forms

you can copy and then use to design your own

sprites and custom characters.

Even though the programs are written in

BASIC, I've made every effort to keep them

clean and modular. I spend a lot of program

ming time working with Pascal and assembly

language and have tried to bring some of the

discipline involved in these languages to the

examples. Computer people can get a bit dog

matic about languages. BASIC is simple and

quick for beginners, and you can write well in it

if you work carefully.

One style of programming I've tried to

avoid in the examples is what I call squashed

spaghetti code. That's the kind of program

ming in which every line is packed with tricks,

GOTOs, cryptic variable names, and unrelated

statements. Supposedly, such code leads to

blinding bursts of performance and speed. Hog

hooey. If you want real speed, come up with a

better algorithm, or translate parts of the pro

gram to machine language.

Enough of the preliminaries: you're about

to embark on an adventure. Breathe deeply,

stay calm, and have a ball.

HOW TO USE THIS BOOK

If you haven't used a Commodore 64 very

much, I suggest you do so now. Go through the

first few chapters of the Commodore 64 User's

Guide, which comes with the machine. It's a

good introduction to your computer's funda

mental operations. If you haven't spent much

time programming in BASIC, pick up one of the

excellent introductory books on that language

and go through it. Come on back when you've

got these preliminaries taken care of.

This book is designed for active, hands-on

learning. It's really an explorer's toolkit, com

plete with explanations of various topics, lots

of programming examples and exercises, and a

supply of useful reference materials.

The ten chapters share a similar struc

ture. Each revolves around three to six related

topics. A short introduction usually introduces

each topic. Then comes a programming exam

ple for you to run on your computer. A detailed

discussion of the example comes next, fol

lowed by suggestions for modifying the origi

nal. At the end of the chapter you'll find short

review questions and several programming

xi

exercises. Answers to the questions and pos

sible solutions to the exercises are provided.

By using the order form at the back of the

book, you can buy a disk or tape that will

relieve you of the chore of typing in the exam

ple programs; just load them from the disk and

then run them.

If you don't purchase disk or tape, you'll

need to type in the programs by hand. It's a

pretty straightforward process: Simply type in

what you see in the printed listing. The only

problem you may have is when you run into a

display icon.

Let me explain. The Commodore 64 gives

you extensive control over where and how

information gets displayed on the screen.

Among other things, you can easily move the

cursor, clear the screen, change the color of

the characters, and display them in reversed

colors. You can do these things right from the

keyboard, as covered in pages 14 through 17 of

the Commodore 64 User's Guide. More excit

ing, you can do them from inside a program.

How? You can set up a string constant

containing the display commands. Just type

them inside quotes, either in an assignment

statement or a print statement. When the

string is displayed, the display commands

work just as if they'd been typed from the

keyboard.

The problem arises when you type or list

a program that uses this technique. The dis

play commands show up in strange ways: they

are printed as reversed letters and graphics

characters. For example, clearing the screen

shows up as a reversed heart, and moving the

cursor to the left, as a reversed vertical line. I

call these display icons.

When you see one of these display icons in

a program listing, you've got to figure out

which display command it represents and

which keys to press to obtain it. The chart in

Fig. 1-1 reveals everything. It shows all the

display icons I've used in this book, the keys to

press to get them, and the commands they

represent. If you come to an assignment or

print statement with an incongruous character

showing inside quotes, refer back to this chart.

One more pointer for those of you who'll

be typing in the example programs by hand:

save each program on tape or disk before you

run it. That way, if you make a typing error that

crashes the system, you won't have to retype

the whole thing.

If the program you've just typed in doesn't

run, you'll have to search it for a typing error.

Examine any statements the computer com

plains about. Then use the 64's wondrous

screen editor to make the needed changes. If

the program still doesn't run, go over it again

line by line against the original. If worst comes

to worst, retype the lines the 64 balks at, even

if they look right. Eventually you'll get it

going.

Once a program's running, whether load

ed from a disk or tape or typed by hand, watch

it for a while. Then watch it some more, this

time referring back to the printed listing. Try

to figure out which program lines are control

ling particular pictures and sounds. Then come

on back to this book and read the detailed

discussion of the program.

Then comes the real fun: modification.

Load the program in again (you saved a work

ing version, of course). Change a print state

ment here, a loop counter there. See what

xii

COLOR ICONS

Icon

■

a

n

c

IS

Key(s) to press

CTRL-1

CTRL-2

CTRL-3

CTRL-4

CTRL-5

CTRL-6

CTRL-7

CTRL-8

What it does

Text color black

Text color white

Text color red

Text color cyan

Text color purple

Text color green

Text color blue

Text color yellow

Icon

R

E

H

II

C2
■ ■

■ ■

Key(s) to press

C* -1

C*-2

C*-3

C*-4

C*-5

C*-7

C*-8

What it does

Text color orange

Text color
brown

Text color
light red

Text color
dark gray

Text color

medium gray

Text color
light green

Text color

light blue

Text color
light gray

OTHER ICONS

Icon

id

u

fej

id

Key(s) to press

CLR/home

CFJSR

CRSR

CTRL-9

What it does

Cursor

home

Cursor
down

Cursor
right

Reverse
on

Icon

Li

0

II

■

Key(s) to press

Shift-CLR/home

Shift-CR^R

Shift-CRSR

CTRL-0

What it does

Clear
screen

Cursor
up

Cursor
left

Reverse

off

Fig. 1-1. Commodore 64 Display Icons.

happens when you rerun the program. Make

some more changes. Switch a color code, shift

a shape. Run the program again. This is an

excellent way to learn the essence of the

graphics and sound techniques.

If you want to get really good at program

ming graphics and sound, you need to spend a

lot of time at it. Come up with an exciting

image or sound; then try to write a program

from scratch that pulls it off. Push the machine

to its limits and then go beyond them.

Start writing some longer programs that

make use of a variety of graphics and sound

techniques. Try things that other people con

sider useless or impossible. Spend some time

reading any published programs you can get

your hands on. Try to figure out why the pro

grammer did something a certain way and see

if you can come up with a better way. Wander

through this book's appendices and figures,

xiii

and do the same with other books. Watch the

computer magazines for interesting articles.

Pick up on other people's ideas; then come up

with some of your own.

A couple of final thoughts: First, the

Commodore 64 starts up with an unreadable

blue-on-blue display. I immediately change

this to white on black on medium gray by

pressing CTRL-2 and typing in these two

commands:

POKE 53280,12

POKE 53281, 0

Second, if you're using the disk drive,

you'll find the disk operating commands to be a

bit clumsy. Read up in your disk operating

manual about the DOS Wedge program and use

it whenever you start a session. It will give you

disk commands that are more powerful, more

versatile, and a lot easier to type in.

XIV

Chapter 1

A First

Look at Sprites

This chapter introduces one of the Commodore

64's most powerful features: sprites. You'll

learn how to make a sprite and move it around

on the screen. You'll also learn how to change

the size and color of your sprite picture.

1.1 WHAT'S A SPRITE?

Turn on the TV set. Put your eyes six

inches from the screen. You see small dots or

rectangles of light. Television pictures are

made up of hundreds of thousands of these

little pieces.

The smallest dot a computer can put on

the TV screen is called a pixel. That's short for

picture element. A sprite is a pattern of pixels

that your Commodore 64 can move around on

the screen.

A basic sprite pattern is 24 pixels across

and 21 pixels high. Take a look at Fig. 1-1. If

you multiply the 21 rows by the 24 columns,

you find a total of 504 pixels to play with. If you

don't trust multiplication, count the boxes.

In a simple sprite pattern, you can arrange

things so that any particular pixel shows up or

is invisible. You can see an example of this in

Fig. 1-2. You can create many different pic

tures using those 504 pixels—about 2,207,

107, 920, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, of them: ample room for a

touch of creativity.

1.2 DEFINING A SPRITE PATTERN

You need a way to tell the computer which

pixels in a sprite pattern should show up and

which ones should stay invisible. This is done

with number codes and groups of eight pixels.

Commodore 64 Graphics and Sound Programming

/

2

rov

N

1

VS

f

24 columns -

21 24 504

rows x columns "~ pixels

Fig. 1-1. A basic Commodore 64 sprite pattern covers 504 pixels.

Take a look at Fig. 1-3. Each of the eight

boxes represents a pixel and has a number

above it. The number gives the pixel a value.

For example, the leftmost pixel has a value of

128. The rightmost pixel has a value of 1, and

so on.

Now take a look at Fig. 1-4. Some of the

boxes have been filled in. If you add up the

values of the filled-in boxes, you get the

number 85: 64 + 16 + 4 + 1 = 85. Figure 1-5

shows some more examples of how filled-in

pixel patterns are turned into number codes.

Examine the special sprite coding form

shown in Fig. 1-6. It has the required 24 col

umns and 21 rows. Each row is split into three

parts for number coding, each part having eight

columns. At the top of each column is that

column's number coding value. Each row will

A First Look at Sprites

Fig. 1-2. A picture made by making some of the pixels in a sprite pattern visible.

128 64 32 16 8 4 2 1

Fig. 1-3. Values used to code a group of eight pixels.

Commodore 64 Graphics and Sound Programming

Fig. 1 -4. Coding a pattern of eight pixels.

Pattern:

Code

number:

128 64 32 16 8 4 2 1

128+64+32+16+8 + 4 + 2 + 1 =255

128 64 32 16 8 4 2 1

32 + 16 + 8 + 4 = 60

128 64 32

128 + 16 + 8 + 1 = 153

128 64 32 16 8 4 2 1

(nothing) = 0

Fig. 1-5. More examples of coding eight-pixel patterns.

A First Look at Sprites

Column
number

Values

RowO

Row1

Row 2

Row 3

Row 4

Row 5

Row 6

Row7

Row 8

Row 9

Row 10

Row11

Row 12

Row ,13

Row 14

Row 15

Row 16

Row 17

0

128

1

64

2

32

3

16

4

8

5

4

6

2

7

1

8

128

9

64

10

32

11

16

12

8

13

4

14

2

15

1

16

128

17

64

18

32

19

16

20

8

21

4

22

2

23

1

Numbei

Fig. 1-6. A special sprite coding form.

turn into three code numbers, one for every

group of eight columns in that row. Since there

are 21 rows, you'll end up with 63 code num

bers. The code numbers must be put into the

Commodore 64 in the proper order: from left to

right in each row, starting with the top row and

ending with the bottom row.

Here are four steps you need to follow to

define a sprite pattern:

1. Make a copy of the sprite coding form.

2. Draw a design by filling in the boxes

representing pixels you want to show

up.

3. Figure out the 63 number codes, one

for each group of eight pixels.

4. Enter the code numbers into the com

puter in the proper order.

Figure 1-7 shows a filled-in sprite coding

form for a friendly little creature. Take a good

look, making sure you understand how I fig

ured the number codes. Skim over the last few

pages again until things make some sense.

Even the brightest computer users, using the

clearest of instructions, find that they usually

have to read things over many times.

Now it's your turn. Zip out to the nearest

Commodore 64 Graphics and Sound Programming

copying machine and make some copies of the

special sprite coding form. Then draw some

sprite designs. When you have one that you

like, figure out the 63 number codes. You'll use

these codes later in this chapter. Then take a

little refreshment break. Come on back to the

book when you're ready for some action.

1.3 YOUR FIRST SPRITE PROGRAM

You'll start out with a simple program that

displays a simple sprite. Figure 1-8 shows the

major steps of the program. Figure 1-9 pro

vides a listing of the actual program A Simple

Sprite.

Look the figures over carefully. Then

type the program in on your Commodore 64. If

you don't know how to get the graphics icons

on line 160, refer back to How To Use This

Book in the Introduction. Make sure you save

the program on tape or disk when you're done

typing. Then run it. Press any key to end the

program.

Column
number

Values

RowO

Row1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row11

Row 12

Row 13

Row 14

Row 15

Row 16

Row 17

Row 18

Row 19

Row 20

0

128

1

64

2

32

3

16

4

8

■
I
I
■

■

rn

5

4

6

2

7

1

8

128

9 110 | 11 j 12 |13|14

64 | 32 | 16 | 8 | 4 | 2

■■

TT

■ l

15

1

ifcr
■

M ■ 11

16

128

17

64

18

32

19

16

20

8

21

4

■
■
■

■
I

■
■

1■■*■

■
I
1

■■■■

22

2

23

1

Number

Codes

0

0

0

0

0

0

0

0

15

8

8

8

28

28

24

0

0

0

0

3

3

60

36

102

102

36

60

24

24

255

126

126

24

24

24

60

60

36

36

36

231

231

0

0

24

56

56

16

16

16

240

0

0

0

0

0

0

0

0

0

0

192

192

Fig. 1-7. Example of a filled-in sprite coding form.

A First Look at Sprites

C Start J

Setup

screen

feedback

Load the

sprite

data

Set up

the

sprite

controls

No

Yes

Reset the

sprite

controls

(End)

1.3.1 The Program

Examine this first simple program. The

first active section is line 1050.

1038 PRINT "LMlIlIIIlDIIIIITH I NIC I Mfi ";

This BASIC statement clears the TV screen,

drops down several screen lines, and prints the

message, THINKING. There's nothing more

nerve-wracking than a program that shows no

sight of activity while it's loading information.

The second program section, lines 1100-

1120, loads in 63 sprite data number codes.

ilOO FOR N = 896 TO 958

1110 : POKE N, 235

1120 NEXT N

To simplify this first sprite program, I de

signed the simplest visible sprite: one with

every pixel turned on. That way, all 63 codes

are the same number: 255. The loop in lines

1100-1120 places this code number in 63 con

secutive memory locations, addresses 896

through 958.

The third program section, lines 1170-

1240, is the workhorse of this program. Look

at lines 1170-1200 first:

11TO PRINT "ti";

1180 POKE 2040,14

1200 UIC = 33248

REM CLEAR SCREEN

:REM POINT TO DATA

REM GRAPHICS CHIP

Fig. 1 -8. The major steps in the program A Simple Sprite.

Line 1170 clears the screen. Line 1180 then

tells the computer that the sprite data is at

locations 896 through 958. How does it do

that?

Your Commodore can actually display 8

sprites at a time. They're numbered 0 through

7. When you tell the computer to display sprite

#0, it first goes to location 2040 to find out

where the pixel number codes for sprite #0 are

Commodore 64 Graphics and Sound Programming

located. It takes the number it finds there and

multiplies it by 64. In this case, it will multiply

14 by 64 and get 896. And that's for the sprite

data you stuffed into the machine—pretty

slick.

Line 1200 then sets up a variable named

VIC, and gives it the value 53248. Who or what

is this VIC, anyway?

1.3.2 A Little VIC-II Detour

The heart of the Commodore 64's incredi

ble graphics capabilities is a small integrated

circuit. It's officially called the 6567 Video

Interface Chip—VIC-II for short. (The first

VIC was the 6560 chip, used in the VIC-20

computer.) This hardworking gadget puts out

several kinds of pictures: the 40 column by 25

line text display, a 320 pixels wide by 200

pixels tall high resolution graphics display, and

8 sprites. If it wouldn't void the warranty,

those of us who survived the early days of

personal computer graphics would open the

box and kiss this chip.

By poking certain numbers into some of

the locations inside the VIC-II chip, you can

control it. There are 47 addressable locations

in the VIC-II chip. These locations are also

called registers. The VIC-II registers start at

memory address 53248 of the Commodore 64

and go up through address 53294. Appendix A

gives more information about the VIC-II reg

isters.

1.3.3 Back To The Program

So, line 1200 sets the variable VIC to

53248. You can then get the address of any of

the 47 VIC-II registers by adding the register

number to the value of VIC. Take a look at the

last four lines of our workhorse section:

1210 POKE UIC,170

1226 POKE UIC+1,120

1230 POKE UIC+39,13

1240 POKE UIC+21,1

:REN HORIZONTAL POS

REM UERTICAL POS

:REM COLOR IT GREEN
REM SPRITE HO ON

Register 0 controls the horizontal position of

sprite #0. Line 1210 of our program sets this

to 170, about halfway across the screen. Reg

ister 1 controls the vertical position of sprite

#0. Line 1220 sets this to 120, which is about

halfway down the screen. Register 39 of the

VIC-II chip sets the color for the pixels of

sprite #0 that you want to show up. Color 13 is

light green. Take a look at Appendix F for a list

of other available colors.

Okay, youVe put in the number codes that

tell which pixels should show up and told the

computer where the codes are. You've given

sprite #0 a horizontal and a vertical position.

YouVe also set its color. Now, you just need to

tell the VIC-II chip to display sprite #0. Line

1240 does the trick. Register 21 is used to turn

sprites on and off. By poking a 1 into it, sprite

#0 appears on the screen.

Here's the fourth module of our program:

1290 GET KPS

1300 IF KPS = 1111 THEN 1290

Line 1290 reads the computer's keyboard.

Line 1300 tests to see if any key has been

pressed. If not, the program just goes back to

Line 1290 to read the keyboard again. When a

key is finally pressed, the program moves on to

a tidy finish.

It's always a good practice to leave things

the way you found them, especially when

you're programming a computer. Lines 1350-

1380 reset the changed VIC-II registers to 0:

1330 POKE UIC+21,0

1360 POKE UIC+39,0

REM

:REM

REUERSE THE

ORDER USED TO

A First Look at Sprites

pSrl uic!e'° :r!h cohtrolsSPR"E Notice how the order of resetting the registers
is the reverse of the setting order.

1OOO

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

REM *** A SIMPLE SPRITE «**

REM *» SET UP SCREEN FEEDBACK

PRINT ''L UIHiIHiIlDIlITHI NIC I Nfi ";

REN *» LOAD THE SPRITE DATA

FOR N = 896 TO 958

: POKE N, 255
NEXT N

REM ** SET UP THE SPRITE CONTROLS

PRINT "L";
POKE 2040,14

UIC = 53248

POKE UIC,170

POKE UIC+1,120

POKE UIC+39,13

POKE UIC+21,1

:REM CLEAR SCREEN

REM POINT TO DATA

REM 6RAPHICS CHIP

REM HORIZONTAL POS

REM UERTICAL POS

REM COLOR IT GREEN

REM SPRITE ttO ON

REM «* WAIT FOR KEVPRESS TO END

GET KPS

IF KPS = 11§1 THEN 1290

REM ** RESET THE SPRITE CONTROLS

POKE UIC+21,0 :REM

POKE UIC+39,0 REM

POKE UIC+1,0 :REM

POKE UIC,0 REM

£H0

REUERSE THE

ORDER USED TO

SET THE SPRITE

CONTROLS

Fig. 1-9. Listing of the program A Simple Sprite.

Commodore 64 Graphics and Sound Programming

1.4 SOME PLAY AND EXPLORATION

One of the best ways to learn more about

sprite graphics is to play with some of the

numbers in this first program. Make a change

or two in the program, and then run it to see

what happens. Here are a few suggestions to

get you going:

Change the number code that's poked in

line 1110.

Change the horizontal and vertical posi

tion settings in lines 1210 and 1220.

Change the color code in line 1230.

1.5 MORE ABOUT POSITIONING THE SPRITE

When you position a sprite, you're really

telling the computer where the sprite's upper-

left corner should be placed. The normal Com

modore 64 display screen shows 320 hori

zontal positions and 200 vertical positions.

With the VIC-II position registers, you can put

a sprite in any one of 512 horizontal positions

and 256 vertical positions. That way, you can

H= 0

V = 50

H=0

V = 229

H=24

V = 29

H=24

V = 50

H = 172

V = 50

Visible

screen

area

H=24

V = 139

H = 172

V = 139

,H = 320

V = 29

H =320

V=50

H=320

V = 139

H = horizontal position of upper-left corner

V = vertical position of upper-left corner

H=24

V = 229

H=24

V = 250

H = 172

V = 229

H=320

V = 229

H=320

V = 250

H=344

V = 50

H = 344

V = 229

Fig. 1-10. Some important horizontal and vertical position settings for nonnal-sized sprites.

10

A First Look at Sprites

±000

1220

1231

1252

1253

1254

1255

1256

1257

1258

1259

1268

1261

1262

1300

REN

POKE

REM
:

FOR
:

NEXT
:

FOR

NEXT
:

;

**w A SPRITE VO-VO

UIC+1,80 REM VERTICAL POS

** DOWN, THEN UP

UP =

POKE

UP

UP =

POKE

UP

IF KPS =

80 TO 200

UIC+1,UP

199 TO 81 STEP -1

UIC+1,UP

"" THEN 1254

Fig. 1-11. Changes and additions that turn A Simple Sprite into the program A Sprite Yo-Yo.

have sprites move smoothly on and off the

screen.

Take a good look at Fig. 1-10. It shows the

horizontal and vertical sprite position settings

that place a sprite in some of the more extreme

screen locations. For example, vertical posi

tion settings of 29 or less keep a sprite just

above the screen viewing area. Horizontal

settings between 24 and 320 keep a sprite

completely inside the horizontal viewing area,

and so on.

1-6 A SPRITE YO-YO

Let's play a bit. Load in A Simple Sprite,

listed in Fig. 1-9, again. Then type in the lines

shown in Fig. 1-11. You're changing a few lines

and adding some totally new ones. Be sure to

use the line numbers shown. When you're

done, save and run the new program.

How did you get the sprite to move like a

yo-yo? Look at lines 1254-1256:

1254 FOR UP = 80 TO 200

1253 : POKE UIC*1,UP

1236 NEXT UP

This loop tells the computer to change the

sprite's vertical position from 80 to 200, one

step at a time. The sprite moves down the

screen. Then lines 1258-1260 change the ver

tical position from 199 to 81, again one step at a

time:

1258 FOR UP = 198 TO 81 STEP -1

1259 : POKE UIC+1,UP

1260 NEXT UP

The sprite moves up. Finally, the new version

of line 1300 tells the computer to go back to the

top of the yo-yo circuit, at line 1254, if no key

has been pressed.

1300 IF KP$ =

1.7

THEN 1254

DEALING WITH

512 HORIZONTAL POSITIONS

Sharp-eyed readers may have had a ques

tion when they read Section 1.5 and looked at

Fig. 1-10. Since you can only store numbers

between 0 and 255 when you poke information

into a memory location, how can you set a

11

Commodore 64 Graphics and Sound Programming

sprite's horizontal position to numbers larger

than 255?

The VIC-II chip solves this problem by

giving you two registers for each sprite's hori

zontal position. The second register is actually

a miniature register and can only hold either a

zero or a one. When you want a sprite to be at a

position greater than 255, you put a one in that

sprite's second horizontal register. Then the

sprite's position will be 256 plus whatever

number is in its first horizontal register. For

example, if a sprite's first horizontal register

contains the number 33, and its second hori

zontal register contains the number 1, the

sprite will be at position (256 + 33), or 289. If

the second register contains a zero, the

sprite's position is based solely on the number

in its first horizontal register, with nothing

added on. Figure 1-12 gives some examples

that showhow a sprite's horizontal position can

go from 0 through 511.

1.8 NOW FOR SOME SIDEWAYS MOTION

Consider the first program, A Simple

Sprite, which was listed in Fig. 1-9. Load it in,

again then type in the changes and additions

shown in Fig. 1-13. Save your new program,

and then run it.

Before engaging in a detailed discussion

of how the new program works, let's take a

little excursion into the world of truth.

1.8.1 Coding for True and False

When you try to move a sprite to a new

horizontal position, you first must ask if this

statement is true or false: 'The new position is

larger than 255." Depending on the answer,

If a sprite's

first horizontal

register is set

to ...

0

24

125

255

0

20

64

88

255

. . . and its

second horizontal

register is set

to ...

0

0

0

0

1

1

1

1

1

. . . then it will

be at horizon

tal position:

0

24

125

255

256

276

320

344

511

Fig. 1-12. Setting the horizontal registers for some sprite positions between 0 and 511.

12

A First Look at Sprites

1800 REN *** SIDEWAYS SPRITE

1210 POKE UIC,64 :REM HORIZONTAL POS

1220 POKE UIC+1,139 :REM UERTICAL POS

1251

1252 REM ** RIGHT. THEN LEFT

1253

1254 FOR HP = 64 TO 280 STEP 2

1255

1256

1257

1261

1262

1263

SF = (HP > 255>

POKE UIC,HP + CSF * 256>

POKE UIC+16, SF * (-!>

1258 NEXT HP

1259

1268 FOR HP = 278 TO 66 STEP -2

SF = CHP > 255>

POKE UIC, HP + (SF * 256)

POKE UIC+16, SF * (-!>

1264 NEXT HP

1265

1266 :

1300 IF KP$ = "•' THEN 1254

Fig. 1-13. Changes and additions that turn A Simple Sprite into the program Sideways Sprite.

you'll put different numbers in the sprite's Since 36 does not equal 21, the expression

horizontal position registers.

In Commodore 64 BASIC, you can ask a (36 = 21)

true-false question and give the answer a spe

cial code that stands for true or false. The code is false, and XZ will be given the value 0.

for true is -1, and the code for false is 0.

Here's an example in BASIC: 1.8.2 Back to the

Program: Move to the Right

100 LET AN = (5 > 3) Now let's see how you got the sprite to

move from side to side. Lines 1210-1220 were

Since 5 is greater than 3, the expression changed a bit:

/c ^ o\ 1218 POKE UIC,170 :REM HORIZONTAL POS

w ' 1228 POKE UIC+1,139 :REM UERTICAL POS

is true. The variable AN will be given the value This starts the sprite out at a new position.

-1. Here's another example: Now take a look at lines 1254-1258:

1234 FOR HP = 64 TO 280 STEP 2

200 LET XZ = (36 = 21) 1233 = sf = chp > 233>

Commodore 64 Graphics and Sound Programming

1236 : POKE UIC,HP + CSF * 236>

1237 : POKE UIC+16, SF * (-i>

1238 NEXT HP

Lines 1254 and 1258 set up a loop that will run

the sprite's horizontal position from 64 up

through 280, in steps of 2. Each time through

the loop, line 1255 will figure out if the new

position is greater than 255. Then, depending

on that answer, lines 1256 and 1257 will set the

new position.

For example, let's say HP has the value

125. Then line 1255 will set SF (size factor) to

0. Line 1256 will poke the sprite's first hori

zontal register with 125 + (0 x 256), which is

just plain old 125. Line 1257 will poke the

sprite's second horizontal register with -1 x

0, or 0. These are the correct pokes for a

position less than 256.

Now let's try these formulas on a position

larger than 255. Suppose HP has the value 276.

Then line 1255 will set SF to -1. Line 1256

will then poke the sprite's first horizontal reg

ister with 276 + (-1 x 256), which is 276 -

256, or 20. Line 1257 then pokes the sprite's

second horizontal register with —1 x — 1, or 1.

Once again, the formulas poked the correct

values into the horizontal position registers.

1.8.3 And Then Move to the Left

If you're not too clear on the explanation

of Lines 1254-1258, read the last two sections

over again. Then try out the formulas by hand

with some values from Fig. 1-12. Convince

yourself that they work.

Now look at lines 1260-1264:

1260 FOR HP = 270 TO 66 STEP -2

1261 : SF = (HP > 233)

1262 : POKE UIC, HP + (SF * 236)

1263 : POKE UIC+16, SF * (-1)

1264 NEXT HP

This time, our loop will take you from position

278 through to horizontal position 66, again in

steps of 2. The sprite will move to the left.

Lines 1261-1263 are exactly the same as lines

1255-1257. Poking the registers with a new

1080 REM

1105

1110

1121

1122 DATA

1123 DATA

1124 DATA

1125 DATA

1126 DATA

1127 DATA

1128 DATA

1129 DATA

1130 DATA

1131 DATA

1132 DATA

1230 POKE

*** DESI6N

READ

POKE

0,

0,

0,

0,

15,

8,

28,

24,

8,

0,

3,

SPDTA

A SPRITE »

N, SPDTA

60,

102,

36,

24,

255,

126,

24,

60,

36,

36,

231,

UIC+39,1

0,

24,

56,

16,

240,

0,

0,

0,

0,

0,

192

REM

0,

0,

0,

0,

8,

8,

28,

0,

0,

3,

COLOR

**

36,

102,

60,

24,

126,

24,

24,

60,

36,

231,

IT

0

56

16

16

0

0

0

0

0

192

WHITE

Fig. 1-14. Changes and additions that turn A Simple Sprite into the program Design a Sprite.

14

A First Look at Sprites

horizontal position is the same task, whether

you are moving to the left or to the right.

Finally, you changed line 1300 to jump

back to the beginning of the sideways motion

section of the program:

1300 IF KPS = "" THEN 1254

1.9 A SQUARE'S RETIREMENT

This simple sprite design is getting a bit

boring. Let's bring in a more interesting

character. Load in the first program from Fig.

1-9 one more time. Then type in the new lines

and changes that are listed in Fig. 1-14. When

you finish, follow the usual procedure of first

saving the program and then running it.

Gone is your little square, and in comes

the character that was drawn and coded in Fig.

1-7. Take a good look at the new sprite data

loading loop, lines 1100-1120:

1100 FOR N = 096 TO 930

1103 : READ SPDTA

1110 : POKE N, SPDTA

1120 NEXT N

Earlier you were poking each memory location

with the same value, 255. That turned all the

pixels on. Now, you're using a read statement

in line 1105 to get pixel number codes from a

series of data statements. Each code is read

into the variable SPDTA. Then the value of

SPDTA is poked into memory.

Now take a look at the eleven data state

ments. All 63 of the codes computed in Fig. 1-7

are listed. Notice the order the codes are in:

row by row, from the top to the bottom, and

from left to right within each row.

Finally, the new version of line 1230

changes the color of the sprite to white. This

helps the tiny creature show up. Due to the

imperfections of color televisions and the

Commodore 64's display circuitry, different

colors show up with varying degrees of sharp

ness against certain backgrounds. You'll have

to experiment a bit to get combinations that

please you. I usually start out with a black

background screen with white sprites and

work from there.

1.10 SOLVING TWO PROBLEMS

There are two problems with the last pro

gram. First, the sprite is too small to show all

its detail. Second, it's my design, not yours.

Let's solve the second problem. Back at

the close of Section 1.2, you drew several

sprite designs and then figured out the 63

number codes for your favorite. Now you'll use

that hard-won information.

Load in the last program, Design a Sprite.

List lines 1122-1132. Then use the Commo

dore's useful screen editor to change the pixel

codes to the ones you came up with in Section

1.2.

Now for the first problem. The VIC-II

chip lets us expand a sprite horizontally and

vertically. Details are easier to see in an ex

panded sprite. Just type in the five lines listed

in Fig. 1-15. Remember to save your new pro

gram, and then run it.

That's a pretty flashy sprite you designed.

Pat yourself on the back. Let's talk about ex

pansion for a moment.

1.11 SPRITE EXPANSION AND

EXPANSION REGISTERS

A sprite can be made to show up twice as

wide on the screen, twice as high, or both. All

15

Commodore 64 Graphics and Sound Programming

1000

1233

1236

1353

1356

REM *

POKE

POKE

POKE

POKE

hw A BIGGER

UIC+23,1 :

UIC+29,1 :

UIC+29,0

UIC+23,0

SPRITE ***

REM ENLARGE

REM ENLARGE

UERT.

HORZ.

Fig. 1-15. Changes and additions that turn Design a Sprite into the program A Bigger Sprite.

you need to do is tell VIC-II what you want in

the way of expansion.

The 30th VIC-II register, located at VIC

+ 29, handles horizontal expansion for all

eight sprites. By poking a one into this regis

ter, sprite #0 shows up twice its normal width.

If you poke a zero into this register, sprite #0

shows up with its normal width.

H=488

V = 50

H=488

V=208

H=24

V = 8

H=24

V = 50

H = 160

V = 8

H = 160

V = 50

H=296

V = 8

H=296

V = 50

Visible Screen Area

H=24

V = 129

H =

V =

H=24

V=208

H=24

V = 250

H = 160

V = 129

H =296

V = 129

horizontal position of upper-left corner

vertical position of upper-left corner

H = 160

V = 208

H=296

V = 208

H=296

V = 250

H=344

V = 50

H=344

V = 208

Fig. 1-16. Some important horizontal and vertical position settings for double-sized sprites.

16

A First Look at Sprites

The 24th VIC-II register, located at

VIC + 23, handles vertical expansion for the

eight sprites. If you poke a one into this loca

tion, sprite #0 will double in height. Poking a

zero into the register sets sprite #0 to its

normal height.

When an expanded sprite is placed on the

screen, the numbers in its horizontal and verti

cal position registers still determine the loca

tion of its upper left corner. Figure 1-16 shows

how this affects putting the sprite at some of

the important screen positions. Compare this

figure with Fig. 1-10.

In the last program, A Bigger Sprite, lines

1233 and 1236 poked ones into both expansion

registers:

1233 POKE UIC+23,1

1236 POKE UIC+29,1

:REM ENLARGE UERT.

:REN ENLARGE HORZ.

That made sprite #0 double-sized overall.

Then, at the end of the program, lines 1353 and

1356 set sprite #0 back to its usual size by

poking zeroes back in:

1333 POKE UIC+29,8

1336 POKE UIC+23,0

1.12 CHAPTER SUMMARY

You've learned quite a bit in this first

chapter. By now, you know:

* What pixels and sprites are

* How to design your own sprite and turn

the design into 63 coded numbers

* How to load sprite number codes and

set the VIC-II registers to display a

simple sprite on the screen

* How to set a sprite's position, color,

and size

* How to move a sprite sideways or up-

and-down

1.13 EXERCISES

Now it's time to get a firm hold on your

new knowledge. Go through the self-test and

write programs for the short exercises. Then

write some of your own programs that use the

chapter's ideas. Play hard, and you'll become

good at it.

1.13.1 Self Test

Answers are given in Section 1.13.3. The

numbers in parentheses tell you which chapter

section to go to for help.

1. (1.1) A sprite is a movable pattern of 504

2. (1.2) In coding a sprite pattern, you break

each of the 21 rows into three groups of

pixels.

3. (1.3) To display a sprite, you have to load in

63 number codes, then set up .

in the chip.

4. (1.5) When you position a sprite, you're

actually telling the VIC-II chip where to put

the sprite's corner.

5. (1.6) To move a sprite up or down, you just

change that sprite's position

setting.

6. (1.7) You use registers to set a

sprite's horizontal location, because there

are possible positions.

7. (1.8) In the following Commodore 64

statement, TV would be set to

10 LET TV = (17 < 5)

17

Commodore 64 Graphics and Sound Programming

8. (1.9) Rewrite line 1230 of the program De

sign a Sprite so the sprite shows up yellow.

Appendix F may help you. 1230

9. (1.11) A sprite can be expanded

or or in both directions.

1.13.2 Programming Exercises

All of these programs can be built upon

the program from Fig. 1-9, A Simple Sprite, or

if you prefer, you can program them from

scratch. Possible solutions are given in Sec

tion 1.16. Of course, anything that runs is cor

rect.

1. Have the program move the sprite in a

rectangular pattern.

2. Have the sprite change colors every

now and then.

3. Cycle the sprite through its four possi

ble sizes: normal, expanded horizon

tally, expanded vertically, and ex

panded in both directions.

1.13.3 Answers to Self Test

These are just the most obvious (to me)

answers. If you've come up with something

else, and it makes sense—great!

1. pixels

2. eight

3. registers; VIC-II

4. upper left

5. vertical

6. two; 512

7. zero

8. 1230 POKE VIC+39,7 :REM COLOR IT

YELLOW

9. horizontally; vertically (in either order)

1.13.4 Possible Solutions

to Programming Exercises

My three solutions are all based on the

program A Simple Sprite, from Fig. 1-9.

Shown here are the lines to change or add to

that program in order to solve the exercise.

1. Load in the program A Simple Sprite.

Then type in these lines:

1006

1210

1220

1241

1242
1243

1244

124S

1246

1247

1248

1249

1230

1231

1232

1233

1234

1233

1236

1237

1238

1239

1260

1261

1262

1263

1264

1263

1266

1267
1268

1269

1300

REM 4HHt RECTANGULAR MOTION
POKE UIC,82 :REH HORIZONTAL POS

POKE UIC+1,100 REM UERTICAL POS

REM ** MOUE RIGHT, DOWN, LEFT, AND

REM THEN BACK UP TO STARTING PT

REM

REM
(HORIZONTAL MOUES JUMP BV 3

TO MATCH UERTICAL SPEEDS >

FOR HP = 84 TO 261 STEP 3 REM RT.

: SF = CHP } 233)

: POKE UIC, HP + CSF * 236)

: POKE UIC+16, SF * (-1)

NEXT HP

FOR UP = 101 TO 179
: POKE UlC+i, UP

NEXT UP

REM DOWN

FOR HP = 238 TO 87 STEP -3 REM LF

: SF = CHP y 233)

: POKE UIC, HP + (SF * 236)

: POKE UIC+16, SF * (-1)

NEXT HP

FOR UP = 178 TO 100 STEP -1 :REM f
: POKE UIC+1, UP

NEXT UP

IF KP$ = "" THEN 1249

2. Load in the program A Simple Sprite.

Then type in these lines:

1000 REM *HHt COLOR CHANGER

1071 REM «* SET STARTING COLOR

1072 :

1073 OC = 13 REM START WITH GREEN

1074 :

18

A First Look at Sprites

1073 :

1230 POKE UIC+39,0C REM STARTING COLOR
1231 :

1232 REM *» CHANGE COLORS
1233 :

1234 FOR DELAY = i TO 300 : NEXT
1233 NC = OC ♦ 1 REM NEH COLOR
1236 IF NC=i6 THEN NC=8 :REM COLORS GO

UP TO 13
1237 POKE UIC+39,NC REM PUT IT IN
1230 OC = NC REM OLD COLOR
1239 :

1300 IF KPS = "" THEN 1234

3. Load in the program A Simple Sprite.

Then type in these lines:

1600 REH
1231 :

1232 REH
1233 :

I

GROHTH CYCLE ***

EXPAND HORIZONTALLY

123T

1230

1230
1260

1261
1262
1263

1264

1263
1266
1267

1268

1269
12T0

REH «» SHRINK HORIZONTALLY
REH AND EXPAND UERTICALLV

FOR DELAY = i TO 400

POKE UIC+29,8

POKE UIC+23,1

NEXT

REH «* EXPAND HORIZONTALLY
:

FOR DELAY = i TO 400 : NEXT
POKE UIC+29,1

SHR1MIC horizontally

and shrink uerticallv

NEXT

reh

1236

1273 FOR DELAY = 1 TO 400
1276 POKE UIC+29,0
1277 POKE UIC+23,0
1278 :

1279 :

iili "CM ** miT F0R rcvpRESS T0
1300 IF KP$ = "" THEN 1234

19

Chapter 2

More

Than One Sprite

This chapter shows you how to display more

than one sprite on your TV screen. You'll learn

how to use the same block of sprite data to

make many sprites, and how to alter the way

the data is shown. You'll also learn how to put

totally different sprites on the screen. Finally,

you'll learn one way to get two sprites moving

smoothly.

2.1 SIMPLE CLONES

The Commodore 64 lets you set up sev

eral sprites that use the same block of sprite

pixel codes. If you then set the sprites up at

different locations and keep them the same

size, they look like simple copies of one

another, clones.

Figure 2-1 gives a listing of the program

Simple Clones. This program will draw four

copies of one sprite design.

The sprite design is shown in Fig. 2-2.

The program is very similar to the Design A

Sprite program from Chapter 1. The main dif

ference is that here you are setting up sprite

data pointers, locations, and colors for four

sprites. Type the program in. Save it on tape or

disk, and then run it. When you're finished,

come on back for some explanations.

In Chapter 1 Section 1.3.1 you saw how

memory location 2040 is normally used to tell

VIC-II where the pixel codes for sprite #0 are

located. Memory locations 2041 through 2047

are normally used to tell VIC-II where the

pixel data codes for sprites #1 through #7 are

located. Figure 2-3 shows which memory lo

cation points to data for a particular sprite.

2.1.1 Setting Up The Four Sprites

Let's go over the important parts of the

Simple Clones program listing. Lines 1000-

21

Commodore 64 Graphics and Sound Programming

1OOO

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280
1 ?Of|

1300

1310
137(1

1330

1340

1330

1360
13711Aw 1 %M

1380

1390
1400

1410

1420

1430

1440

1430

REH

1

F

1

r

i

tEM

*** SIMPLE

»» SET

CLONES *•»

UP SCREEN FEEDBACK

»RINT "LUUIiIiUlitilllTHINKING " :

tEM

"OR

IEXT

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
;

:

REM

** LOAD THE SPRITE DATA

N = 896 TO

READ SPDTA

POKE N

N

6,

6,

13,

56,

225,

192,

192,

204,

195,

224,

63,

»» SET

PRIMT "L"
UIC

POKE

POKE

POKE

POKE

POKE

POKE
POKE

POKE

POKE

POKE

POKE

958

, SPDTA

102,

102,

255,

0,

195,

0,

60,

0,

255,

0,

255,

96,

96,

248,

28,

135,

3,

3,

31,

193,

7,

252

6, 102, 96

7, 255, 224

28, 0, 56

113, 195, 142

193, 195, 131

192, 0, 3

192, 0, 3

198, 0, 99

192, 0, 3

127, 255, 254

UP THE SPRITE CONTROLS

= 53248

2040,

2041,

2042,

2043,

14

14

14

14

UIC,98
UIC+2

UIC+4

UIC+6

UIC+1

UIC+3

UIC+5

,246
,98

,246

,95

,95

,184

REM

:REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

CLEAR SCREEN

6RAPHICS CHIP

ttO DATA POINTR

1*1 DATA POINTR

**2 DATA POINTR
*»3 DATA POINTR

**0 HORZNTL POS
*S1 HORZNTL POS
t*2 HORZNTL POS
*»3 HORZNTL POS

«0 UERTCAL POS
«1 UERTCAL POS
*»2 UERTCAL POS

22

More Than One Sprite

1460

1470

1480

1490

1300

1310

1320

1330

1340

1330

1360

1370

1300

1390

1600

1610

1620

1630

1640

1630

1660

POKE

POKE

POKE

POKE

POKE

POKE
:

:

REN *
:

UIC+7,184 :

UIC+39,1 :

UIC+40,3 :

UIC+41,3 :

UIC+42,7 :

UIC+21,13 :

Ht WAIT FOR

6ET KPS

IF KPS = "" THEN
:

:

REN *

POKE

END

Hf RESET THE

UIC+21,0

REN t*3

REN «0

REN tti

REN «2

REN **3

UERTCAL POS

IS WHITE

IS CYAN

IS GREEN

IS YELLOW

REN SPRITES 0-3 ON

A KEYPRESS TO END

1380

SPRITE! CONTROLS

Fig. 2-1. Listing of the program Simple Clones.

Fig. 2-2. A simple sprite design, ripe for cloning.

23

Commodore 64 Graphics and Sound Programming

Memory

location

Points to
pixel data

for sprite
number—►

2040

0

2041

1

2042

2

2043

3

2044

4

2045

5

2046

6

2047

7

Fig. 2-3. Memory locations for pointers to sprite data.

1310 should look familiar by now. Feedback is

put on the screen; pixel is loaded into mem

ory locations 896-958; the screen is cleared;

and the variable VIC is set up with the starting

address of the VIC-II chip.

Lines 1330-1360 are the first sign of

something new:

1330 POKE 2040,14

1340 POKE 2041,14

1330 POKE 2042,14

1360 POKE 2043,14

:REN HO DATA POINTR

:REN 1*1 DATA POINTR

:REM 1*2 DATA POINTR

-REM U3 DATA POINTR

You'll be displaying four sprites in this pro

gram. Each sprite will be getting its data from

the 63 memory locations starting at location

(14 x 64), or 896.

Lines 1380-1460 then give each sprite a

horizontal and vertical screen position:

1300

1390

1400

1410

1430

1440

1430

1460

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

UIC90

UIC+2,246

UIC+4,90

UIC+6,246

UIC+1,93

UIC+3,93

UIC+3,194

UIC+7,104

REM MO

REM 4*1

REM H2

REM 413

REM MO

REM 111

REM 112

REM 113

HORZNTL

HORZNTL

HORZNTL

HORZNTL

UERTCAL

UERTCAL

UERTCAL

UERTCAL

POS

POS

POS

POS

POS

POS

POS

POS

Location VIC (53248) is the first horizontal

position register for sprite #0, and VIC+1

(53249) is sprite #0's vertical position regis

ter. The next fourteen VIC-II registers follow

the same pattern for the other seven sprites.

VIC+2 (53250) is the first horizontal position

register for sprite #1, and VIC+3 (53251) is

that sprite's vertical position register. This

goes on up through location VIC+15 (53263),

which is the vertical position register for sprite

#7. Appendix A gives you all the details.

Curious readers are wondering: what

about a second horizontal register for each

sprite? If you refer to Section 1.7, you will be

reminded that each sprite's second horizontal

register is actually a miniature register, capa

ble only of holding a one or a zero. Eight of

these miniature registers fit into one memory

location. That's location VIC+16 (53264).

You'll learn more about these miniature reg

isters later in this section.

2.1.2 Handing Out Colors

and Turning the Sprites On

Lines 1480-1510 give each sprite a color:

1400 POKE UIC+39,1

1490 POKE UIC+40,3

1300 POKE UIC+41,3

1310 POKE UIC+42,7

REM »O IS WHITE

REN 111 IS CYAN

REM 112 IS GREEN

REM 113 IS YELLOW

As you may have guessed, the registers that

24

More Than One Sprite

control the color of each sprite are found in

eight consecutive VIC-II locations: VIC+39

(53287) through VIC+ 46 (53294). Again,

refer to Appendix A for more detail about the

VIC-II registers and to Appendix F for a chart

of color codes.

Finally, you come to a moment of truth.

Line 1530 turns on four sprites: #0, #1, #2,

and #3:

1330 POKE UIC+21,13 :REM SPRITES 0-3 ON

But what does 15 have to do with 4, or 0, 1, 2,

and 3? You'll have to take a short dive into the

world of bits and bytes to explain this little

mystery. I'll keep it as painless as possible.

2.1.3 Bits and Bytes

Remember when you learned to turn pixel

designs into number codes? You took the in

formation in groups of eight dots. Why eight,

and not nine, or ten, or 24?

The chip that does the Commodore 64's

thinking can only handle one number at a time,

and that number can't be too large. In fact, it

has to be between 0 and 255. Also, the number

has to be represented using only the digits 0

and 1.

It turns out that a group of eight l's and O's

can represent any number between 0 and 255.

This brand of number nuttiness is known as

base 2, or the binary number system. And each

binary digit, be it a 1 or a 0, is known as a bit.

A group of eight bits is known as a byte.

Each of the Commodore's many memory loca

tions, including the VIC-II registers, can store

one byte, or eight bits. Figures 2-4 and 2-5

give you some bits and bytes to look at.

Many of the VIC-II memory locations can

control functions for eight sprites. They do this

by assigning one of that location's eight bits to

each sprite. Thus, each bit can be thought of as

being a miniature register that controls one

sprite.

The register at location VIC+21 (53269)

is a master control switch for the eight sprites.

Any particular sprite may be turned on or off by

fiddling with this location. Each bit is a minia

ture register that turns one sprite on or off.

The eight bits in a byte are numbered 0

through 7. At location VIC+21, bit 0 controls

'sprite #0, bit 1 controls sprite #1, and so on.

To turn on a particular sprite, you just need to

put a 1 into its corresponding bit at VIC+21.

To turn a sprite off, you put a 0 into its bit at

VIC+21.

To get the four sprites numbered 0

through 3 to show up, you've got to poke

VIC+21 (the on/off register) with a number

that will have l's in bits 0, 1, 2, and 3, and 0s in

the other four bit positions. Sounds tough.

Actually, you can use the same chart you used

to code a group of eight pixels.

Figure 2-6 shows a byte with its 8 bits

numbered 0-7. Each bit is also given a bit

value. You first put l's in the bit positions of

This is a byte (8 bits)

1010 1100

This is

a bit.

So is

this.

Fig. 2-4. One byte is made up of 8 bits.

25

Commodore 64 Graphics and Sound Programming

This normal

number —*

Turns into this

binary byte-*

255

11111111

240

11110000

128

10000000

127

01111111

60

00111100

15

00001111

1

00000001

0

00000000

Fig. 2-5. Binary bytes, composed of eight bits, can represent normal (base 10) values between 0 and 255.

the sprites you want on, and O's where you

want sprites off. Then, by adding the values of

the bits that contain l's, you get the number

you need to poke into memory to obtain the

correct pattern of l's and O's.

Figure 2-7 shows some examples of this.

Let's look at the one that applies to the Simple

Clones program. You want to turn on sprites

0-3, so you need to store l's in bits 0-3. You

add the bit values for those bits—8 + 4 + 2 +

1—and get 15. Your brain may ache a bit, but

the mystery of 15 is solved.

2.1.4 Wrap It Up

The rest of Simple Clones should be

familiar. Lines 1580-1590 wait for a keypress.

When one is detected, line 1640 resets the

sprite controls. Here a little secret pops out:

not every sprite control needs to be reset.

Which controls do you need to reset?

Well, the on/off register, at location VIC+21,

should be set to 0 so all of the sprites disap

pear. If you've expanded any sprite horizon

tally or vertically, the sprite expansion regis

ters at VIC+23 and VIC+29 should be put back

to 0. That way, you won't be surprised by

sprites stretched in unexpected ways.

2.2 COMPLEX CLONES

Even though they use the same pixel data,

the four sprites in the last program aren't

exactly alike. Each appears on the screen in a

different color. You can make them look even

less alike by expanding them in different ways.

Bit

value

Any 8-

bit byte

Bit

number

128

1

or

0

7

64

1

or

0

6

32

1

or

0

5

16

1

or

0

4

8

1

or

0

3

4

1

or

0

2

2

1

or

0

1

1

1

or

0

0

Fig. 2-6. A byte with its 8 bits numbered 0 - 7. Each bit is shown with its place value.

26

More Than One Sprite

Sprites

on

-

0

0,1

0-3

0,2,

4,6

0-7

Sprites

off

0-7

1-7

2-7

4-7

1,3,

5,7

-

Register byte

(each bit controls sprite with

Bit

value

Bit

number

Bv

Bn

Bv

Bn

Bv

Bn

Bv

Bn

Bv

Bn

128

0

7

128

0

7

128

0

7

128

0

7

128

0

7

128

1

7

64

0

6

64

0

6

64

0

6

64

0

6

64

1

6

64

1

6

32

0

5

32

0

5

32

0

5

32

0

5

32

0

5

32

1

5

16

0

4

16

0

4

16

0

4

16

0

4

16

1

4

16

1

4

8

0

3

8

0

3

8

0

3

8

1

3

8

0

3

8

1

3

the

4

0

2

4

0

2

4

0

2

4

1

2

4

1

2

4

1

2

same #)

2

0

1

1

0

0

2

0

1

1

1

0

2

1

1

1

1

0

2

1

1

1

1

0

2

0

1

1

1

0

2

1

1

1

1

0

Number

to poke

0

1-

1

1+2 =

Q
o

1+2+4+8=

15

1+4+16+

64-

85

1+2+4+8+

16+32+64

+128=

255

Fig. 2-7. In these examples, a byte-sized register uses its eight bits to turn sprites on or off. In each case the individual bits are

set by poking the values in the right-hand column.

27

Commodore 64 Graphics and Sound Programming

Bit

value "*"

Bit -►

Bit

number

128

0

7

64

0

6

32

0

5

16

0

4

8

1

3

4

1

2

8+4

2

0

1

= 12

1

0

0

Fig. 2-8. Poking the value 12 into the horizontal expansion register set bits 2 and 3 to 1, causing sprites 2 and 3 to expand

horizontally.

As you learned in Section 1.11, location

VIC+29 handles horizontal expansion for all

eight sprites. Each bit in the byte stored there

controls horizontal expansion for one sprite. If

you want sprites #2 and #3 to be expanded

horizontally, bits 2 and 3 must be set to 1.

Using the bit values shown in Fig. 2-6, you can

find the number to poke into the register:

8 + 4, or 12. See Fig. 2-8.

The register at VIC+23 handles vertical

expansion for all eight sprites in a similar way.

If you want sprite #1 and sprite #3 to ex

panded vertically, for example, you need to set

bits 1 and 3 of that register to 1. Adding the bit

values, you find the number to poke into

VIC+23: 8 + 2, or 10. See Fig. 2-9.

Let's use this new know-how to change

the Simple Clones program. Load it into the

computer, and then type in the lines listed in

Fig. 2-10 to turn it into the program Complex

Clones. Save the new program on tape or disk,

and then run it.

Bit

value

Bit -►

Bit +

number

128

0

7

64

0

6

32

0

5

16

0

4

8

1

3

4

0

2

8+2

2

1

1

= 10

1

0

0

Fig. 2-9. Poking the value 10 into the vertical expansion register sets bits 1 and 3 to 1, causing sprites 1 and 3 to expand
vertically.

28

More Than One Sprite

1OOO

1460

1410

1440

1460

1522

1524

1526

1642

1644

REM *

POKE

POKE

POKE

POKE

POKE

POKE
:

POKE

POKE

<-*» COMPLEX

UIC+4,06

UIC+6,234

UIC+3,85

UIC+7,174

UIC+23,10

UIC+29,12

UIC+23,0

UIC+29,0

CLONES

:REM

:REN

:REM

REM

REM

REM

t*2

1*3

1*1

4*3

*tl

**2

MXft

HORZNTL POS

HORZNTL POS

UERTCAL POS

UERTCAL POS

& **3 TALL

& *»3 WIDE

Fig. 2-10. Changes and additions that turn the program Simple Clones into the program Complex Clones.

Voila! You now have four sprites on the

screen, all based on the same block of pixel

data, and each one looks very different from

the others. It was done quite simply. The new

versions of lines 1400, 1410, 1440, and 1460

move the sprites around a little bit. Then lines

1522 and 1524 institute the sprite expansions

used as examples up above:

1322 POKE UIC+23,10 REM HI ft H3 TALL

1324 POKE UIC+29,12 REM 1*2 ft 413 HIDE

Sprite #0 stays normal-sized. Sprite #1 gets

taller. Sprite #2 gets wider. Sprite #3 is ex

panded in both directions. When a keypress

signals the end of the program. Lines 1642 and

1644 set the expansion registers back to 0.

2.3 STORING MORE THAN ONE

BLOCK OF SPRITE PIXEL DATA

In many cases, you'll want to have sprites

that look very different from one another. In

order to do this, you need to load a block of

pixel data for each different sprite image.

Where should you put the 63 numbers for each

one?

If you're using three or fewer different

sprite images, you can put the data in these

three areas: memory locations 832-894, 896-

958, and 960-1022. These areas ofmemory are

used with the Commodore's tape recorder, so

they're pretty safe when you're inside a pro

gram. The sprite data pointers at 2040-2047

must contain the starting address of the pixel

data block divided by 64; so, for these three

areas, the pointers would contain 13, 14, or 15

respectively.

If you're using more than three blocks of

pixel data, use memory locations starting at

12288. Figure 2-11 gives the locations, along

with the pointer number used for each area.

More exotic locations are available to ad

vanced programmers who are willing to play

around with the Commodore 64's memory

map, but that's information for another book.

2.4 GETTING TWO

VERY DIFFERENT SPRITES

Imagine a program that will put two differ

ent sprite images on the screen. How will it

differ from a program like Design a Sprite,

from Chapter 1?

First, it must load in two blocks of pixel

data. Then, it has to set the pointers at 2040

and 2041 to point to the two areas filled with

29

Commodore 64 Graphics and Sound Programming

pixel data. Third, it must set up the VIC-II

registers to position, color, and size each

sprite. Finally, it has to turn both sprites on.

Figure 2-12 shows two new sprite de

signs. Figure 2-13 is a listing of the program

Spritely Couple, which puts them on the

screen—such a sweet young couple. Type the

program in, then save and run it. Fool around

with it, changing parts of the images and reg

ister settings; then come on back for a brief

explanation of its workings.

2.5 ALL ABOUT YOUR YOUNG COUPLE

Nothing in the listing of Spritely Couple

should surprise you. Let's go over some of the

details. Line 1050 cleans the screen and sets

up for feedback. Then two loops load in the two

blocks of sprite pixel data. The first set of 63

numbers is put into locations 896-958. Line

1140 signals that the first block is set by put

ting a period next to the word THINKING.

The second set of 63 numbers is put into loca

tions 960-1022. Then line 1200 signals the end

of that process with another period. The pixel

data was figured using a copy of the coding

form from Fig. 1-6.

The program then sets the data pointers

and VIC-II registers. I decided to make both

sprites double-sized since they were so de

tailed. It's tough to see the detail at normal

size. Line 1660 turns on sprites #0 and #1 by

putting l's into bits 0 and 1 ofVIC+21. Go back

to Section 2.1.3. if you're not certain why 3

was the value poked in.

Lines 1700-1710 wait for our usual key

press to close up shop. Then lines 1770-1790

reset the on/off and expansion registers—very

straightforward stuff.

2.6 MOVING MORE THAN

ONE SPRITE AT A TIME

There are many different techniques you

can use to get several sprites in motion. Some

are easy to program; some are difficult. Some

use lots of the machine's memory; some use

very little. Some can only provide simple

paths, while others can provide very complex

ones. Some give motion that is fast and

smooth, while others give slow and jerky re

sults. Some are very straightforward; others

are tricky and difficult to understand. There is

only room for one example in this chapter; so

I've chosen one that's not too tough and yet

gives a nice result.

You're going to take the two sprites from

the program Spritely Couple and let them

63-byte

area of

memory—^

Set

pointer —»

to

12288

12350

192

12352

12414

193

12416

12478

194

12480

12542

195

12544

12606

196

12608

12670

197

12672

12734

198

12736

12798

199

Fig. 2-11. Areas to store sprite data, along with the appropriate pointer values.

30

More Than One Sprite

Fig. 2-12. Two new sprite designs are used in the program Spritely Couple.

31

0

9

9

9

9

9

9

9

9

9

9

9

9

26T

92T

92T

92T

9

9

9

X3V8<

3N9

X3V9<

3N9

'*■£
'92

'92
'29
'12T
'£1
'12T
'9
'12T

'29

'6TT
'92
'92
'9£T
'96T
'9£T
'££2
'9
'29
'29

133JM

'9
'9
'9
'9
'9
'9
'9
'9
'9

'9

'9
'9
'9
'T
'9
'9
'9
'9
'9
'9

0N2H3H:

133JH3V--

1STW33:

9

'9
'9
'9
'92T
'9
'9
'9
'9
'9

'9

9

'9
'9
'26T
'92T
'82T
'92T
'92T
'9
'9
'9

'6TT'
'92'
'92'
'29'
'££2'
'66'
'£6'
'12T'
'£6'
'29'

'92'

'6TT'
>£'
'92'
'9*T'
'96T'
'9£T'
'96T'
'££2'
'92'
'29'
'92'

*

viads'n

229T

viads

91996

€

VlOdS'N

9£6

viads

91969

9

9

9

9

9

9

9

9

9

9

9

9

9

9

T

9

9

9

9

9

9

9

•

viva
viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

'..INiad

N1X3N

3X9d:

avsa:
m

m

=naoj

'..miad

3;

ai

N1X3N

I9d

13a
=nao.

VIVO31I*dS3H1aV91

-II

aavaa

HHH

9NI3

33J

INIHlEQiixtiaaaat]nil

N33&3Sdf»13S

31dfl93A131iadS*

»»U3]

.1NI*«

**1432

J

I

1

1
»

hhcM3a

99»T

9£»T
OffT

8£^T

92^T

OTfT

99»T

96£T

99£T
O1CT

99£T

9££T

9^£T

9££T

92£T

9T£T

99£T

962T

992T

912T

992T

9£2T

OfZT

9£2T

922T

9T2T

992T

96TT

99TT

91TT

99TT

9£TT

9fTT

9£TT

92TT

9TTT

99TT

969T

999T
919T

999T

9£9T

9t»9T

9£9T

929T

9T9T

999T

6u|UJLUBj6oJdpunospuesojijdBJO^gejopooiaiOQ

More Than One Sprite

1470
1 jIBB
1480

1490

1300
1.3x0

1S20

1S30

1340

1330

1360

1370

1300

1390

1600

1610

1620

1630

1640
1630

1660

1670

1680

1690

1700

1710

1720

1730

1730

1760

1770

1780

1790

1800

1810

REN *

PRINT

UIC =

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE
:

:

REH *

hc SET UP THE SPRITE CONTROLS

r "L";
: 33248

2040,14

2041,13

UIC,124

UIC+2,173

UIC+1,130

UIC+3,130

UIC+39,3

UIC+40,7

UIC+23,3

UIC+29,3

UIC+21,3

«» WAIT FOR

GET KP$

:REH

:REH

:REH

:REH

:REH

:REH

:REH

:REH

REH

:REH

:REH

:REH

:REH

CLEAR SCREEN

GRAPHICS CHIP

ttO DATA POINTR

Ml DATA POINTR

4tO HORIZONTAL

•tl HORIZONTAL

HO UERTICAL

1*1 UERTICAL

*Q IS CYAN

ill IS YELLOW

BOTH SPRITES

DOUBLE-SIZED

TURN BOTH ON

KEYPRESS TO END

IF KP$ = "" THEM 1710

REH *

POKE

POKE

POKE

END

f* RESET THE SPRITE CONTROLS

UIC+21,0

UIC+29,0
UIC+23,0

-REH

:REH

:REH

SPRITES OFF

AND SIZES
BACK TO NORHAL

Fig. 2-13. Listing of the program Spritely Couple.

chase one another around the screen. You'll

program this motion by making changes and

additions to Spritely Couple. So load it into

your machine, and type in the lines listed in

Fig. 2-14. Save and run the resulting program.

2.6.1 Thinking about the Path

In this program, the two sprites race in a

square path that's centered on the screen. The

path is 100 pixels wide and 100 pixels high. So

the corners of the path will be 50 pixels away

from the center of the screen, both horizontally

and vertically. To center a double-sized sprite

on the screen, its horizontal position should be

160 and its vertical position should be 129 (see

Fig. 1-16). To find the corner positions, just

33

Commodore 64 Graphics and Sound Programming

1OOO

1SS0

1S60

1370

isoo

1662

1664

1666
1667

1668

1670

1672

1674

1676

1678

1680

1682

1684

1686

1688

1690

1692

1694

1696

1698

1700

1702

1704

1706

1708

1710

1712

1714

1716

1718

1720

1722

1724

1726

1728

1730

1732

1734

1736

1738

1740

1742

1744

REM «** SPRITELV CHASE «**

POKE UIC110 REM *#8 HORIZONTAL

POKE UIC+2,210 REM ill HORIZONTAL
POKE UIC+1,79 :REM «0 VERTICAL

POKE UIC+3,179 REM HI VERTICAL

REH ** INITIALIZE SPRITE NOTION

DO = 1 : Dl = -1

REM MOUE VERTICALLY

FOR MOUE = 1 TO 100

POKE UlC+i, PEEKCUIC+1) + DO

POKE UIC+3, PEEKCUIC+3) + Dl

6ET KPS

IF KPS = "" THEN 1690

MOUE = 100 : KEVPRESS = -1

NEXT MOUE

REM ** IF KEV PRESSED, FINISH UP

IF KEVPRESS THEN 1730

REM ** MOUE HORIZONTALLY

FOR MOUE = 1 TO 100

POKE UIC, PEEKCUIC) + DO

POKE UIC+2, PEEKCUIC+2) + Dl

GET KP$

IF KPS = "" THEN 1722

MOUE = 100 : KEVPRESS = -1

NEXT MOUE

REM ** IF KEV PRESSED, FINISH UP

IF KEVPRESS THEN 1730

REM *» REUERSE MOTION AND REPEAT

DO = -DO : Dl = -Dl

GOTO 1678

34

More Than One Sprite

1746

1748

Fig. 2-14. Changes and additions that turn the program Spritely Oouple into the program Spritely Chase.

add and subtract 50 from the centering posi

tion. Figure 2-15 shows the resulting corner

positions.

Start sprite #0 in the upper left corner,

and sprite #1 in the lower right corner. Sprite

#0 has to move down, right, up, and then left.

Sprite #1 has to move up, left, down, and then

right. Take a look at Fig. 2-16. It shows four

views of the two sprites as they move about the job a lot easier.

path. View 1 shows the starting positions. The

arrows indicate the direction each sprite is

moving in. Notice that when one sprite moves

vertically, the other also moves vertically, but

in the opposite direction. When one moves

horizontally, the other also moves horizon

tally, but again in the opposite direction. This

symmetry of motion makes your programming

Visible

H = 110

V = 79

r "

1 H1 V
L_

H = 110

V = 179

Screen Area

H=210

V = 79

1

= 160 1

= 129 '

H=210

V=79

Fig. 2-15. Corner positions that are reached by a sprite following a square path. Each side of the square path is 100 pixels long;

the square is centered on the screen.

35

Commodore 64 Graphics and Sound Programming

1

Sprite

#0 I
•

I Sprite

#1

C
M1 1 1 1 Sprite #0♦--■Sprite #1 I 1 1

3

Sprite

1

1

Sprite

#0

4

1 4
Sprite

#0

1 1

1 I

Sprite

#1

I

Fig. 2-16. Four pictures of two sprites as they move around the square path.

2.6.2 Establishing Sprite

Positions and Motions

Lines 1550-1580 set the initial sprite

positions:

1350 POKE UIC,11O REM 1*0 HORIZONTAL

1360 POKE UIC+2,210 REM HI HORIZONTAL

1370 POKE UIC+1,79 REM BO UERTICAL

1300 POKE UIC+3,179 REM 1*1 UERTICAL

As mentioned above, sprite #0 starts in the

upper left corner of the path, and sprite #1

starts in the lower right corner.

The program uses two variables to pro

duce the sprite's motions. DO does the chore

for sprite #0, and Dl does it for sprite #1. Line

1668 gives these two variables their starting

values:

1660 DO Dl -1

You'll be adding the values of these motion

variables to the sprites' position registers.

Let's think this out a bit.

If you add positive numbers to a sprite's

vertical position, the number gets larger, and

the sprite will move down the screen. Adding

negative numbers will cause the vertical posi

tions to have a smaller value, and the sprite

36

More Than One Sprite

will move up the screen. Horizontal position

ing works in a similar way. Adding positive

numbers to the horizontal position will move a

sprite to the right, and adding negative num

bers will move it to the left.

Lines 1678-1690 take care of all vertical

path motions for both sprites:

1678 FOR

1680

1682

1684

1686

1688

1688 NEXT

I10UE = 1 TO

POKE UIC+1,

POKE UIC+3,

6ET KP$

IF KPS = ""

108

PEEKCUIC+1) +

PEEKCUIC+3) +

THEN 1688

NOUE = 108 : KEYPRESS

MOUE

D8

Dl

= -1

Lines 1678 and 1690 set up a loop that will

be carried out 100 times. That's because each

side of the path is 100 pixels long, and you'll be

moving one pixel each time you pass through

the loop. Each time through, line 1680 will add

the value of sprite #0's motion variable to that

sprite's vertical position register. Similarly,

line 1682 adds the value of sprite #l's motion

variable to its vertical position.

Lines 1686-1688 represent an improve

ment over our previous moving sprite pro

grams. Now you can check for a keypress after

each sprite move, rather than waiting for a

whole cycle to end. Line 1686 scans the

keyboard. If a key hasn't been pressed, line

1688 is skipped, and the loop merrily goes

about its business. If a key has been pressed,

two things occur: the value of the loop-

counting variable MOVE is jumped up to 100,

and the variable KEYPRESS is set to -1. Set

ting MOVE to 100 will force a quick loop exit

when line 1690 is hit. This is a clean way to

leave a loop in a hurry. KEYPRESS is set to -1

because -1 represents TRUE. Refer back to

Section 1.8 if this seems odd.

Line 1700 will either send us on to the

horizontal motion loop or the end of the pro

gram based on the value of KEYPRESS:

1700 IF KEYPRESS THEN 1TSO

If KEYPRESS contains a 0, representing false,

no key has been pressed, and the program goes

on to the horizontal loop. But if KEYPRESS

contains a -1, then a key has been pressed.

KEYPRESS will be interpreted as true, and

the program will go to the clean-up-shop-and-

end segment that starts at line 1750.

By the way, these true/false tests are

known as Boolean tests, and you can call

KEYPRESS a Boolean variable. It's always a

bit of fun to know some jargon.

Lines 1710-1722 form a loop that takes

care of horizontal path motion:

1710 FOR MOUE = 1 TO 100

1712 : POKE UIC, PEEKCUIO + DO

1714 : POKE UIC+2, PEEKCUIC+2) + Dl

1716 : GET KP$

1710 : IF KPS ■ "" THEN 1722

1720 : MOUE = 100 : KEYPRESS = -1

1722 NEXT MOUE

This loop is almost exactly the same as the one

for vertical motion. The only difference is that

now the program will add the motion values to

the horizontal position registers.

Line 1732 again tests to see if a key was

pressed during the preceding loop:

1732 IF KEYPRESS THEN 1TSO

If a key has been pressed, the program will

jump to line 1750 and end itself. If one hasn't

been pressed, it's time to change directions.

37

Commodore 64 Graphics and Sound Programming

2.6.3 A Cheap Path

Trick: Changing Directions

Consider sprite #0 in this program. To

complete one trip around the square path, it

must go down, then right, then up, and then

left. Or think of it another way: vertical mo

tion, horizontal motion, vertical motion, and

horizontal motion. You've covered two loops

that took care of the first vertical and hori

zontal motions. Now you need another pair of

these loops—or do you?

You don't. You can just switch the direc

tion of sprite #0's motion, and then go back to

the same two horizontal and vertical loops.

The original value of the motion variable DO

was 1. If you multiply it by -1, it becomes -1.

Now the vertical loop will send sprite #0 up,

and the horizontal loop will send it to the left.

Similarly, you can reverse the direction of

sprite #l's motion. Its original motion value

was -1; multiplying that by -1 gives a motion

value of 1. It will now go down in the vertical

loop, and to the right in the horizontal loop,

which is just what you want it to do. Once both

motions are reversed, you must leap back up to

line 1678 and go through the motion loops

again.

Lines 1742-1744 are the ones that pull off

this reversal:

1742 DO = -DO :

1744 GOTO 1670

Dl -Dl

One last bit of thinking: the next time the

program gets to line 1742, the motions will

again be reversed. This will set them back to

their original values, which is perfect, because

at that point each sprite will be back in its

original position: #0 in the upper left corner of

the path and #1 in the lower right corner of the

path.

Okay, now it's your turn. Spend some

time playing around with Spritely Chase. Can

you get a triangular path? Or move four sprites

around the square? Or have the sprites spiral in

to the center of the screen, and then spiral out

again? Remember to think first, and write pro

gram lines afterward.

2.7 CHAPTER SUMMARY

In this chapter you've seen a few

techniques for dealing with more than one

sprite at a time. You've learned:

* How to put several sprites on the

screen, using the same 63 bytes of pixel

data for each one

* About bits and bytes, and how they're

used in some of the VIC-II registers to

control individual sprites

* About storing more than one block of

sprite data, and how to set the sprite

pointers at 2040-2047

* One of the ways to get more than one

sprite moving in an interesting pattern

* About using Boolean variables to

quickly leave a program from deep in

side a loop

2.8 EXERCISES

In the next chapter you'll discover more

sprite magic. In the meantime, here are some

exercises to sharpen your skills.

2.8.1 Self Test

Answers are given in Section 2.8.3. The

numbers in parentheses tell you which section

of the chapter to go to for help.

38

More Than One Sprite

1. (2.1) Memory location 2045 usually

serves as a sprite data pointer for sprite #

2. (2.1.3) A group of eight bits is known as a

3. (2.1.3) A byte can represent decimal num

bers between 0 and

4. (2.1.3) If you want sprites #2, #4, and #7

to appear, you just poke the decimal

number into location

VIC+21.

5. (2.2) If you want sprites #0, #3, and #4 to

be expanded vertically, you poke the

number into location

VIC+23.

6. (2.3) If you're using eight blocks of sprite

data, a good area of memory to store them

starts at location

7. (2.6.1) To set a double-sized sprite half

way down the screen, its vertical position

register should be set to

8. (2.6.2) As a sprite's horizontal position

gets larger, it moves towards the

side of the screen.

9. (2.6.2) Variables that take on values rep

resenting true or false are known as

variables.

10. (2.6.3) To get a variable's value to switch

back and forth from -1 to 1, we just re

peatedly multiply the variable by

2.8.2 Programming Exercises

1

that the sweet young couple moves in a

clockwise direction.

3. Change the program Spritely Chase so

that two females chase two males

around the square.

2.8.3 Answers to the Self Test

Again, these arejust my favorite answers.

Other answers that you can justify to yourself

are fine.

1. 5

2. byte

3. 255

4. 148

5. 25

6. 12288

7. 129

8. right

9. Boolean

10. -1

2.8.4 Possible Solutions

to Programming Exercises

These solutions are based on adding or

changing lines in the programs mentioned in

the exercises. Remember, any solution that

completes the task is fine.

1. Load in the program Simple Clones.

Then type in these lines:

Change the program Simple Clones so 1362 P0ICE 2©44,±4
that four more clones appear, one in "64 poke 2045!i4

. r , 1366 POKE 2046, JL4

each corner of the screen. ±368 poke 2047,14

2. Change the program Spritely Chase so ±4±4 poke uic*±6?m

1000 REH *k» EI6HT CLONES ***

REN «4 DATA POINTR

REN US DATA POINTR

REN «6 DATA POINTR

REN «7 DATA POINTR

REN «4 HORZNTL POS

REN US HORZNTL POS

39

Commodore 64 Graphics and Sound Programming

1416

1418

1419

1462

1464

1466

1468

1512

1514

1516

1518

1530

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

UIC+12,24

UIC+14,64

UIC+16,168

UIC+9,50

UIC+11,58

UIC+13,229

UIC+15,229

UIC+43,7

UIC+44,3

UIC+45,3

UIC+46,1

UIC+21,255

REN «6 HORZNTL POS

REN **7 HORZNTL POS

REN 5&7 USE 2ND HR
REN *»4 UERTCAL POS

REN US UERTCAL POS

REN U6 UERTCAL POS

REN H7 UERTCAL POS

REN t*4 IS VELLOM

REN »5 IS 6REEN

REN 116 IS CVAN

REN t*7 IS WHITE

REN SPRITES 0-7 ON

3. Load in the program Spritely Chase.

Then type in these lines:

2. Load in the program Spritely Chase.

Then type in these lines:

1000 REN «** CLOCKWISE CHASE ***

1674 REN «« NOUE HORIZONTALLY

1680 : POKE UIC, PEEKCUIC) + DO

1682 : POKE UIC+2, PEEKCUIC+2) + Dl

1706 REN *« NOUE UERTICALLV

1712 : POKE UIC+1, PEEKCUIC+1) + DO
1714 : POKE UIC+3, PEEKCUIC+3) ♦ Dl

1000

1530
1533

1536

1563

1566

1568

1583

1586

1613

1616

1630

1648

1668

1674

1681

1683

1786

1713

1715

REN «** COUPLES CHASE

POKE 2841,14 :REN HI DATA POINTR
REN »2 DATA POINTR

REN 83 DATA POINTR

REN U2 HORIZONTAL

REN 83 HORIZONTAL

POKE 2042,15

POKE 2843,15

POKE UIC+4,118

POKE UIC+6,218

POKE UIC+3,179

POKE UIC+7,79

POKE UIC+41,1

POKE UIC+42,5

POKE UIC+23,15

POKE UIC+29,15

POKE UIC+21,15

:REN H2 UERTICAL

:REN «3 UERTICAL

:REN H2 IS WHITE

:REN H3 IS 6REEN

:REN ALL 4 SPRITES

:REN DOUBLE-SIZED

:REN TURN ALL 4 ON

REN ** NOUE ONE SIDE OF PATH

: POKE UIC+4, PEEKCUIC+4) + D8

: POKE UIC+6, PEEK(UIC+6> + Dl

REN ** NOUE ANOTHER SIDE OF PATH

POKE UIC+3, PEEKCUIC+5) + Dl

: POKE UIC+7, PEEK<UIC+7) + D8

40

Chapter 3

Some More

Sprite Tricks

Would you like to display some sprites that

have more than one color? This chapter will

show you how. You'll also learn about sliding

sprites over and under one another. Finally,

you'll use a set of sprite images to create some

funny animation. Along the way, you'll pick up

some more experience with bits, bytes, and

spritely motion.

3.1 TRADING DETAIL FOR

COLOR: SPRITE MULTICOLOR MODE

First, a little review. A normal sprite de

sign is defined by storing 63 bytes of pixel

information in the computer's memory. Each

byte contains eight bits, and each bit turns one

pixel on or off. Since 63 times 8 is 504, you're

able to define sprites that contain 504 pixels.

If a pixel's bit is set to 1, that pixel will

show up in the color you set in the sprite's

color register. If a pixel's bit is set to 0, that

pixel will show up as the color of the screen; in

other words, it won't really show up at all.

Since normally there's just one bit to play

with, a pixel has two choices: show up, or be

invisible. However, Commodore has given us

an alternative: the multicolor sprite mode. In

this mode, you can use two bits to pick a color.

The two bits are called a bit pair.

Two bits can hold four possible bit pat

terns, as shown in Fig. 3-1. And that means

you can pick any one of four colors for the two

dots set by a bit pair. Of course, both dots will

have the same color. It's best to think of the

two dots as one double-wide pixel. This brings

up a tradeoff you must make: in multicolor

sprite mode, each byte sets the colors for four

double-wide pixels. So each row of the sprite

image will have 12 double-wide pixels instead

of 24 normally-sized pixels. The sprite will

have more color, but less horizontal detail.

41

Commodore 64 Graphics and Sound Programming

Fig. 3-1. Two bits can hold four possible bit patterns.

Let's go over that one more time. Since

two bits will be needed to choose a color, each

byte will only be able to control four double-

wide pixels. See Fig. 3-2. With three bytes per

row of the sprite design, that means the sprite

will be 12 double-wide pixels across. It will

show up the same size as a normal sprite, but

with less horizontal detail. Since you still use

63 bytes to define the sprite design, it'll be

composed of 252 double-wide pixels (63 x 4).

3.2 MORE ABOUT THE MULTICOLOR MODE

What colors will show up when you dis

play a multicolor sprite? If the bit pair is 00, the

double wide-pixel will be given the screen's

color. By the way, the screen color is con

trolled by the number in the register at

VIC+33 (53281). If the bit pair is 01, the color

will come from sprite multicolor register #0 at

VIC+37. If the bit pair is 10, the pixel will get

its color from the sprite's regular color regis

ter. Remember, each sprite has its own color

register in one of the locations VIC+39

through VIC+46. And if the bit pair is 11, the

color will come from sprite multicolor register

#1 at VIC+38. Figure 3-3 summarizes this.

The VIC-II chip

uses 8 bits """"*

to set up 8

normal pixels *

The VIC-II chip

uses 4 bit pairs *

to set up 4 ^

Hm ihlp-widp nivpl^

1
1

■■

1 ! 1

■■

1

■

1

Normal sprite

°

Multicolor sprite

0 0

■

1

»*• * * ***•*.*♦

°
0

i

o ! o

Fig. 3-2. In a multicolor sprite, each bit pair controls the color of one double-wide pixel.

42

Some More Sprite Tricks

Bit

pair

00

01

10

1 1

Description

Screen color

Sprite multicolor register #0

Sprite color register

Sprite multicolor register #1

Location

Vic+33 (53281)

VIC+37 (53285)

One of registers VIC+39 - VIC+46

(53287-53294)

VIC+38 (53286)

Fig. 3-3.

Column
number

Values

RowO

Row1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

Row 15

Row 16

Row 17

Row 18

Row 19

Row 20

In a multicolor sprite

0

128 | 64

1

1—

1

1

1

I

1

1

32 | 16

I

J

I

__

|

Transparent

screen color

4

8

|

I

I

0

each bit pair gets its color from

2

I

I

I

2

1

3

I—

I

—I"

1

1

" \

_|

I——

I—

4

1281 64

—|—

1

1

—1—
I
1
1

1

1

1

|
1

1

1

1

Multicolor

register #0

5

32 j 16

1
1

1
i

1

i

oji

a particular VIC register.

6

8 j 4

1

—1—

1
1

1

1

7

i

i

—i—

i

j

i

i

i

i

i

i

j

Sprite

color

8

128J64

1

1

—r

1

1

1
1

i

1
i

l

I

1

1

—r~

i

i
i

i
i

i

i

1 |0

9

32J16

—1

_

—

1

1

1

10

8 j 4

—1

1

1

1

1

1
1

1

[
1

1
1

1

1

1
I

1

1

1
1

Multicolor

register #1

11

TjT

i

1

l

1

1
1
i

i

i

i
i

i

i

I

I

1

i

i

i

I

1 j 1

r

c

Yumbe

axles

r

Fig. 3-4. A special coding form for multicolor sprites.

43

Commodore 64 Graphics and Sound Programming

And how do you tell the Commodore 64

that a particular sprite should be displayed in

the multicolor mode? The register at VIC+28

is a sprite multicolor selector. Each bit con

trols one sprite, in the usual relationship: bit

#0 controls sprite #1, and so forth. By setting

a sprite's bit at VIC+28 to 1, you switch that

sprite over to multicolor mode. Setting the bit

to 0 puts the sprite back to normal mode.

3.3 DESIGNING A MULTICOLOR SPRITE

There may be a few of you who can design

a multicolor sprite in your head. The rest of us

need some help. Figure 3-4 is a sprite mul

ticolor coding form. It's very similar to the

regular sprite coding form of Fig. 1-6. There

are still 21 rows, values over each bit position,

and three columns for number codes over on

the right. However, there are only 12 columns,

since our pixels are double wide.

How do you use this form? Refer to Fig.

3-5, which shows a filled in multicolor coding

form, as I describe the steps. First, fill in the

color-key boxes at the bottom of the form.

Column
number

Values

RowO

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

Row 15

Row 16

Row 17

Row 18

Row 19

Row 20

C

128

)

64

\

1

32 | 16

I

I

|

|

|

I

I

I

2

8 I 4

I

r~
IllllHIHIII

11

:

2

3

1

4

1281 64

flltllllHIIIMIIII
II |||||

5

32li6

1
111
it

Illllllll ! Illllll
11 Illllllll

III
Iliiiiiiii
i

^4

iilllllllll
I Illlll || III I Ilil IINI
Illllllll i

I
I

ji

1

1

1

Transparent

screen color

•4.

. j

; Dili

0 j 0

WWMM

i

►'.;: "••

1

It:'

■-:>

r.|"{;"-,-;|

hH
HH

jiii

6

8 (4

7

2 1 1

8

128'64

IIIIIIIIIIPIIIIUNIIUIII

ilil
Jllll 1

llllillllilplllpll
Illllllll] II

I \ iiiiiiil
ill—

1- 1 .-]'

i: "-..I;-',

1

1

1

Multicolor

register *o

0 1

III III

I

I

!
1

1

i l ■

*V{:::'
| .f .

\ \"

m
H
hi

9

32l 16

*■■: ■.

.I..'

10

8

mm*

4

nnllllllBllnlllllllllll

'imip jimniiiniiiiiiiuii

Blllllllllln

|

11111

!

! IIIIIIIIHIII
Sprite

color

110

11

2 1

I

I
1

I

•

I

I
I
j

I
1

I [Jill !
I

1
1

1

1

Multicolor

register #1

j

J

1

I
1

[TTT

Number

1

1

1

0

0

62

62

48

16

20

20

16

0

0

1

1

85

85

20

20

85

20

65

85

60

60

170

170

170

170

130

130

195

195

65

65

65

64

64

64

64

64

64

64

64

0

0

188

188

12

4

20

20

4

0

0

64

64

Fig. 3-5. Example of a filled-in multicolor sprite coding form.

44

Some More Sprite Tricks

1000 REM *

1010 :

1020 :

1030 1

1040 :

1050 f

1060 :

1070 :

1080 1

1090 :

1100 f

1110 :

1120

1130 1

1140

tEM *

»RINT

tEM «

OR N

«* 4-COLOR SPRITE *«*

* SET UP SCREEN FEEDBACK

"LUXlIlXlIlXlXlIriTti INKING " :

» LOAD THE

= 896 TO

READ SPDTA

SPRITE DATA

958

: POKE N, SPDTA

IEXT

1150 DATA

1160 DATA

1170 DATA

1180 DATA

1190 DATA

1200 DATA

1210 DATA

1220 DATA

1230 DATA

1240 DATA

1250 DATA

1260

1270

1280 REM «

1290

1300 PRINT

1310 POKE

1320 UIC =

1330

1340 POKE

1350 POKE

1360

1370 POKE

1380 POKE

1390

1400 POKE

1410 POKE

1420 POKE

1430 POKE

1440 POKE

1450

N

1, 85,

1, 20,

1, 85,

1, 65,

0, 60,

62, 170,

48, 170,

20, 130,

16, 195,

0, 65,

1, 65,

64,

64,

64,

64,

0,

188,

12,
28,

4,

0,

64

1, 85, 64

1, 20, 64

1, 20, 64

1, 85, 64

0, 60, 0

62, 170, 188

16, 170, 4

20, 130, 20

0, 195, 0

1, 65, 64

* SET UP THE SPRITE CONTROLS

2040,14

53248

UIC,160

UIC+1,129

UIC+23,1

UIC+29,1

UIC+28,1

UIC+33,0

UIC+37,7

UIC+39,5
UIC+38,6

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

POINT TO DATA

GRAPHICS CHIP

HORIZONTAL POS

UERTICAL POS

EXPAND UERTCAL

EXPAND HORZTAL

MULTICOLOR HO

BKGRND BLACK

MCR ttO VELLOM

SPR **0 GREEN

MCR 411 BLUE

45

Commodore 64 Graphics and Sound Programming

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

POKE

REN

GET

UIC+21,1 :

«* WAIT FOR

KP$

IF KP$ = 1>11 THEM
;

;

REM

POKE

POKE

POKE

POKE
:

END

*• RESET THE

UIC+21,0 :

UIC+28,0 :

UIC+29,0 :

UIC+23,0 :

REM SPRITE **0 ON

KEYPRESS

1510

SPRITE CONTROLS

REM SPRITE OFF

REM MULTICOLOR OFF

REM HORZ EXPND OFF

REM UERT EXPND OFF

Fig. 3-6. Listing of the program 4-Color Sprite.

Give each of the four possible colors a different

shade. It's usually simplest to let the screen

color be represented by white.

Then fill in the double-wide pixel boxes

with a design. Use the shades you've set up in

the color-key boxes. When you've got some

thing you like, it's time to fill in with l's; don't

bother with the O's. Using the color-key boxes

at the bottom as a guide, fill in all the bit

positions that should have a 1 in them. You may

find it easier to do all the pixels for one color

before going on to the next color.

Finally, it's time to add up the bit values.

For each byte, add all the values of the bits

containing a 1. This step is no different than

other bit value adding you've done. The sum

goes in the appropriate number code box on the

right side of the form.

Take another good look at Fig. 3-5. Make

sure you understand how I got the 63 number

codes. Then make some copies of the mul

ticolor coding form and come up with your own

design. You'll get to use it in the next section.

3.4 A PROGRAM TO DISPLAY

YOUR TECHNICOLOR SPRITES

Figure 3-6 is a listing of the program 4-

Color Sprite. The program puts the character

designed in Fig. 3-5 onto the screen. A key

press ends the program.

This program is very much like our earlier

sprite display programs. The big difference

comes in Lines 1400-1440:

1400 POKE UIC+20,1
1410 POKE UIC+33,0

1420 POKE UIC+37,7

1430 POKE UIC+39,5

1440 POKE UIC+30,6

REM MULTICOLOR »0

REM BKGRND BLACK

REM NCR «0 YELLOW

REM SPR HO GREEN

REM NCR HI BLUE

Line 1400 sets the sprite multicolor selection

register so that sprite #0 will be displayed in

multicolor mode. Lines 1410-1440 then set up

the four colors that will be used: black, chosen

by bit pair 00; yellow, chosen by bit pair 01;

green, chosen by bit pair 10; and blue, chosen

by bit pair 11.

46

Some More Sprite Tricks

There is one other difference: at the end

of the program, you must reset the multicolor

selection register:

1380 POKE UIC+28,0 :REN MULTICOLOR OFF

A sprite designed for normal display looks

pretty strange if it's shown in multicolor mode.

If you're wondering how strange, go back to

some of our earlier programs and insert lines

like 1400-1440 to turn on multicolor mode.

Type in the program 4-Color Sprite if you

haven't done so already. Save it, and then run

it. Fool around with the color choices in lines

1410-1440 to see if you can come up with a

more pleasing combination.

When you're done with that experimenta

tion, it's time to try out your coding. Replace

the pixel data in lines 1150-1250 of 4-Color

Sprite with the number codes you came up with

in the last section. Then rerun the program.

How does it look? It may take some tinkering

to get the result you had in mind.

3.5 OVER AND UNDER

When a sprite travels around the screen,

it may cover part of an area used by another

sprite. When that happens, a fixed sprite-to-

sprite priority determines which sprite shows

up in front of the other. Sprite #0 has the

highest priority, and sprite #7 has the lowest.

Thus, if sprite #0 shares part of the display

with sprite #7, sprite #0 will show up in front

of sprite #7. Likewise, sprite #4 has priority

over sprite #5. Figure 3-7 summarizes these

priorities.

If one sprite is in front of another, it's

possible to see parts of the sprite behind it.

Those parts of the higher priority sprite that

Sprite #7

Sprite #6 |

Sprite #5

Sprite #4

Sprite #3

Sprite #2

Sprite #1

Sprite #0

Fig. 3-7. When sprites meet, the highest priority goes to

sprites with the lowest numbers, and they show up in front of

higher-numbered sprites.

are transparent, that is, the pixels that are set

to the screencolor, will act like a window.

You'll be able to see parts of the lower priority

sprite through this window.

Figure 3-8 is a listing of the program

Sprite Overlap. Type it into your computer;

save it; then run it. Watch it for a while.

Sprite Overlap puts four similar sprites on

the screen and then sets up a never-ending

(until you press a key) square dance. Notice

how the transparent parts of sprites #1 and #0

let you see parts of the sprites that they're

passing over.

This program has two interesting fea

tures, besides giving a demonstration of how

sprites overlap. The first is the way the sprite

shapes are defined. The second is the way the

square dance is set up.

47

Commodore 64 Graphics and Sound Programming

1OOO

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

REN *
;

:

REH *
i

PRINT
;

:

»» SPRITE

» SET UP

OUERLAP IC X M*

SCREEN FEEDBACK

"LVZlUIlIlIlUIlIllSrTTING IIP":

REM ** LOAD THE SPRITE
:

FOR N = 832 TO

: POKE N, 60

NEXT
;

;

REM *

PRINT

UIC =

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE
z

POKE

POKE

POKE

POKE
:

POKE

POKE

POKE
:

I

REN *

REN

N

» SET UP

"Li"
53248

2040,13

2041,13

2042,13

2043,13

UIC,226

UIC+2,94

UIC+4,144

UIC+6,176

UIC+1,140

UIC+3,118

UIC+5,190

UIC+7,68

UIC+39,7

UIC+40,5

UIC+41,3

UIC+42,1

UIC+23,15

UIC+29,15

UIC+21,15

» SET UP

894

DATA

THE SPRITE CONTROLS

:REN

REM

REM

REM

:REN
REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

:REN

■ REN

CLEAR SCREEN

GRAPHICS CHIP

tto

**i

1*2

t*3

ttQ

«i

**2

t»3

**o

4*1

**2

**3

«0

**i

**2

**3

ALl

DATA POINTR

DATA POINTR

DATA POINTR

DATA POINTR

HORZNTL POS

HORZNTL POS

HORZNTL POS

HORZNTL POS

UERTCAL POS

UERTCAL POS

UERTCAL POS

UERTCAL POS

IS YELLOW

IS GREEN

IS CYAN

IS WHITE

. SPRITES

DOUBLE-SIZED

SPRITES 0-3 ON

N0UIN6 RE6ISTERS

AND INITIAL NOUES

48

Some More Sprite Tricks

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1728

1730

1748

1738

1760

1778

1788

1798

1888

1818

1828

1838

1848

1858

1868

1878

1888

1898

1988

1918

1928

1938

1948

HRC8) = UIC

MR<2> = UIC+5

MU<0> = -1

MU<2> = -1

MRC1> = UIC+2

MR<3> = UIC+7

IIU(l) = 1

MU<3) = 1

DF = -1 :REN -i:INWARD, 8:OUTWARD

REM ** MOUE THE SPRITES

FOR COUNT = 1 TO 288

SPRNUM = INT<CC0UNT-l)/38)

IF DF THEN SPRNUM = 3 - SPRNUM

REG = MR<SPRNUM)

MOUE = MUCSPRNUM)
POKE REG, PEEK<REG> + MOUE

GET KP$

IF KP$ = "" THEN 1690

COUNT = 288 : KEYPRESS = -1
NEXT C8UNT

REM »» IF KEY PRESSED, FINISH UP

IF KEYPRESS THEN 1988

REM ** PAUSE, THEN REUERSE
REM MOVEMENTS AND REPEAT

F8R DELAY = 1 T8 488 : NEXT DELAY
FOR SPRNUM = 0 TO 3

: MU(SPRNUM) = -1 * MUCSPNUM)

NEXT SPRNUM

DF = -1 - DF

GOTO 1600

REM ** FINISH UP BY RESETTING

POKE UIC+21,0

POKE UIC+29,0

POKE UIC+23,0

END

Fig. 3-8. Listing of the program Sprite Overlap.

49

Commodore 64 Graphics and Sound Programming

3.5.1 Loops That Generate Sprites

Lines 1100-1120 build up the block of

sprite pixel data for Sprite Overlap:

1180 FOR N - 832 TO 894

1118 : POKE It, 68

1128 NEXT N

You may remember that you used a similar

technique in your first program, A Simple

Sprite. In that case, though, you poked the

number 255, which turned on every pixel in the

sprite. In this case, you chose a number, 60,

that turns on the middle four pixels of every

group of eight. See Fig. 3-9. With three such

patterns in each row, you end up with a sprite

design made up of three vertical stripes.

You can make a lot of fascinating patterns

by changing this loop around. Try typing in

these two new lines:

1188 FOR N = 832 TO 894 STEP 2

1118 : POKE N, 2SS : POKE N+l, 8

Run the new version of the program. Try not to

hypnotize yourself. It's an interesting puzzle to

see how many complex sprites you can design

just through the clever use of loops.

3.5.2 Ruminations Upon A Square Dance

At the start of the motion in Sprite Over

lap, the four sprites are in the positions shown

in Fig. 3-10. One at a time, the sprites will

move towards the center of the screen. When

all are gathered there, they'll pause and then

go back to their original positions, again one at

a time. After another brief pause, the motion

will repeat itself.

Whenever you think about programming

motion, it's useful to look for similarities and

repetitive patterns. These patterns can sim

plify your programming. In this case, each

sprite has to follow the same course of action:

move inwards, and then move outwards. You

can use a program segment that handles these

motions for one sprite and then just change the

sprite it works with. If you set up your motion

variables as arrays, it will be easy to switch

sprites: just vary the array subscripts in the

motion segment.

There's another useful simplification to

be made. Inwards and outwards motion will

only differ in the direction a sprite travels. All

you need to do is reverse the direction of a

sprite's motion between repetitions of the mo

tion segment. Thus the same program seg

ment will be able to move all four sprites

both inwards and outwards. Only the details

need to be worked out (famous last words of

many programmers).

128 64 32 16

32 + 16 -

8

h 8 H

4

m
h 4

2 1

= 60

Fig. 3-9. Poking the number 60 as sprite data turns on the middle four pixels in each group of eight.

50

Some More Sprite Tricks

Sprite

#1

Sprite

#3

Sprite

#2

Sprite

#0

Fig. 3-10. Initial positions of the four sprites in Sprite Overlap,

with arrows indicating the direction they'll first move in.

3.5.3 Setting Up Registers and Motions

Since any one sprite will only be moved

vertically or horizontally, only one position

register will be needed to move that sprite.

Lines 1490-1500 set up the four registers that

will be used for sprite moves:

1490 MRC8) = UIC : MR<1)

HRC2) = UIC+3 : MRC3>

UIC+2

U1C+7

signments, refer again to Fig. 3-10. The ar

rows indicate the direction of each sprite's

initial motion. For example, sprite #3 will

start out moving downwards. Each time it

moves, its vertical position should increase,

and that's what the move assigned to sprite #3

by line 1530 will do. When it comes time for

sprite #3 to reverse its motion, you'll just

multiply the value of MV(3) by -1. Then the

sprite's vertical position will decrease by 1

each time, and it will move upwards.

You have one more item to consider: the

order in which the sprites will move. When the

motion is inwards, you want the order of

moves to be #3, #2, #1, #0. When the sprites

move outwards, you want to move #0 first,

followed by #1, #2, and #3. The order will

just reverse itself. Line 1550 sets up a variable

that will keep track of inwards and outwards,

so you get the correct order of sprite motions:

1330 DF = -1 :REN -i INWARD, 8:OUTWARD

3.5.4 The All-Purpose Motion Loop

Lines 1600-1690 move the sprites:

Take another look at Fig. 3-10. Sprites #0 and

#1 will be moving horizontally, and sprites #2

and #3 will be moving vertically. I used this

information to figure out which position regis

ters to use.

Lines 1520-1530 give each sprite an initial ±698 next count

1688 FOR COUNT = i TO 288

1618 : SPRNUM = INTC<C0UNT-l)/50)
1628

1638

1648

1658

1668

1678

1688

IF DF THEN SPRNUN = 3 - SPRNUM

RE6 = MR(SPRNUN)

HOME = MU<SPRNUM)

POKE REG, PEEKCRE6) + MOUE

6ET KP$

IF KPS = "■■ THEN 1698

COUNT = 288 : KEVPRESS = -1

move:

1328 MUC8) = -1 : MUC1)

1538 MUC2) = -1 : MUC3)

1

1

The value of this move variable will be added

to a sprite's current position to give it a new

position. To check the logic behind these as-

Lines 1600 and 1690 set up a loop that will be

carried out 200 times, unless a keypress inter

rupts to end the program. Each sprite will

move 50 times, 1 pixel at a time, and there are

4 sprites to move. 4 x 50 gives you 200.

Lines 1610 and 1620 figure out which

51

Commodore 64 Graphics and Sound Programming

sprite should be moved, and store its number

in the variable SPRNUM. If the sprites are

moving inwards, DF will have the value -1.

SPRNUM will take on the values 3, 2, 1, and

then 0 as the loop progresses. If the sprites are

moving outwards, DF will have the value 0.

Now SPRNUM will take on the values 0, 1, 2,

and then 3, just as you want.

Line 1630 picks the position register to

adjust, based on SPRNUM, and line 1640

selects the sprite's move. Line 1650 does the

actual work, taking the old position of the

selected sprite and adding the appropriate

move.

Line 1660 checks for any pressed keys. If

there are any, line 1670 sets up a quick exit

from the program. Take another look at Sec

tion 2.6.2 if you forget how this works.

If the sprites have just moved inwards,

you want to set them to go outwards. And if

theyVe gone outwards, you want to get them

ready to go inwards again. Lines 1810-1850

prepare for the next round of the dance:

1810 FOR SPRNUM = O TO 3
1820 : MUCSPRNUM) = -1

1830 NEXT SPRNUM

1840 DF = -1 - DF

1850 GOTO 1600

MIKSPNUM)

First, each sprite's move is reversed by multi

plying it by —1. Then the inward/outward

variable is switched around in line 1840. If it

was set to -1, it becomes 0, and if it was set to

0, it becomes -1. Then line 1850 sends the

program back to the main dance loop, starting

at line 1600. The program will run, with the

sprites moving in and then out, until a key is

pressed or the plug is pulled.

Here's a great opportunity to dive right in

and play with motion loops. Make some

changes to Sprite Overlap so you get other

sprite dances. Here are some ideas if your

imagination is out to lunch:

Get two sprites to move at a time.

Get the sprites to move to new starting

positions when they move outwards.

Have the sprites cover each other com

pletely when they overlap.

3.6 BRING ON THE FANCY CARTOONS

Animation is a great form of magic. By

quickly showing a series of still pictures, you

can create the illusion of motion and life. So

far, our sprites have had very limited anima

tion. An image moves around the screen, but it

doesn't change its form. It's like a cheap Satur

day morning cartoon show.

Now you're going to try some fuller ani

mation, where the image itself changes. This

is easy to do with sprites. You start by loading

several sprite images. Then, you set up a loop

that cycles a sprite's data pointer through the

images.

3.6.1 Developing the Images

Let's set up one of these animation cycles.

Figure 3-11 shows three images of a juggler.

Notice how the action progresses from image

to image and how the last image leads back to

the first. Setting up a cycle of images takes

some tinkering. I'll usually come up with a

preliminary set of images and then run a pro

gram to display them. Next, I fool around with

the data until I get the effect I want. Ideas for

additions and changes to the animation pop up,

52

Some More Sprite Tricks

Fig. 3-11. The three sprite images used to animate a juggler in the program Juggling Fool.

get tried out, and then are kept or discarded.

The images in Fig. 3-11 are the end result of

such a process.

Once the images are developed, you can

use the animation cycle in many different pro

grams. After a while, you can develop a whole

library of these animated image sets.

Now it's your turn. Using the sprite cod

ing forms, develop a preliminary set of three

images that form an animation cycle. The ac-

53

Commodore 64 Graphics and Sound Programming

tion in each image should lead to the next, and

the last should lead to the first. If you're short

on ideas, here are some suggestions for simple

cycles: • a bouncing ball • an eye that opens

• a line that grows and shrinks • a face that

smiles • a star that twinkles • a blizzard. Fig

ure out the number codes for each image.

You'll use them in Section 3.6.3.

1OOO

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1358

1360

1370

1380

REM *** JU6GLIN6 FOOL ***
:

REM **

PRINT
z

z

REM »»
:

FOR N

SET UP SCREEN FEEDBACK

"LHUXiIiXiUXiIllSETT IN6 UP" :

LOAD THE SPRITE DATA

= 832 TO

READ

: IF

SPDTA

SPDTA =

PRINT "

: POKE

NEXT N

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

0,

1,
0,
4,

0,

15,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

13,

0,

0,

0,

0,

0,

1023

-1 THEN
■ I .

• #

N, SPDTA

16,

0,

0,

120,

120,

255,

60,

61,

36,

36,

162,

8,

0,

0,

60,

60,

255,

61,

190,

36,

36,

96,

0,

128,

0,

16,

0,

16,

176,

0,

0,

0,

0,

0,

0,

0,

0,

16,

0,

240,

6,

6,

0,

0,

GOTO

0,

0,

0,

0,

12,

0,

4,

0,

0,

0,

-1

0,

0,

4,

0,

8,

15,

0,

0,

0,

0,

-1

1140

0,

0,

120,

126,

24,

61,

24,

60,

36,

36,

64,

0,

60,

60,

24,

61,

24,

60,

36,

38,

0

0

0

0

0

128

240

0

0

0

0

64

8

8

8

48

0

8

0

0

54

Some More Sprite Tricks

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1828

1830

1840

1850

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
;

:

0, 32

0, 0

0, 0

0, 60

8, 60

0, 255

13, 60

0, 60

0, 36

0, 36

0, 96

REM ** SET UP

PRINT

UIC =

POKE

POKE

POKE

POKE

POKE

POKE

POKE
:

:

53248

2040,13

UIC,160

0,

0,

, 32,

0,

0,

, 152,

0,

0,

0,

0,

0,

0, 2, 0

2, 0, 0

0, 60, 0

0, 60, 0

0, 24, 16

1, 188, 248

15, 24, 64

0, 60, 0

0, 36, 0

0, 38, 0

-1

THE SPRITE CONTROLS

REM

:REM

:REM

REM

UIC+1,129 :REM

UIC+39,1

UIC+23,1

UIC+29,1

UIC+21,1

REM *« JUG6LE

IMAGE = PEEK

IF IMAGE = 16

POKE

:REM

REM

:REM
REM

<2040>

THEN]

2040, IMAGE

FOR DELAV = 1
;

;

REN *
:

TO 30

* GET KEYPRESS

GET KP$

CLEAR SCREEN

GRAPHICS CHIP

ttO DATA POINTR

ttO HORZNTL POS

WO UERTCAL POS

t*0 IS WHITE

SPRITE ttQ IS

DOUBLE-SIZED

SPRITE ttO ON

+ 1

[MAGE = 13

: NEXT DELAY

TO END

IF KPS = 11" THEN 1690
z

POKE

POKE

POKE

END

UIC+21,0

UIC+29,0

UIC+23,0

Fig. 3-12. Listing of the program Juggling Fool.

55

Commodore 64 Graphics and Sound Programming

3.6.2 The Juggling Fool the value 13; the initial image will be the one

Figure 3-12 is a listing of the program stored at memory locations 832-894.

Juggling Fool. It displays the images shown in

Fig. 3-11. Let's do a brief analysis of some of

its features.

Lines 1100-1130 load in the sprite defini

tion data. Line 1120 is an interesting trick:

1120 IF SPDTA

PRINT

-1 THEN

."; : GOTO 1140

Sprite definitions fill 63 memory locations. But

they're stored at intervals of 64 memory loca

tions (check back to Section 2.3 and Fig. 2-11).

If you're filling memory blocks that follow one

another, you can keep the loading loop simple

by just adding a 64th byte of dummy data to the

data lists. That way, the data for all the sprite

images can be loaded consecutively. And, if

you choose the dummy byte to be a value that

normally won't come up, you can recognize it

and print out some loading feedback. In this

program, the dummy value is -1; when it is

read, the program will add a period (.) to the

screen feedback display. The period tells us

another image block has been read into mem

ory.

The three sprite image data blocks are in

memory locations 832-894, 896-958, and 960-

1022. Dividing the starting address of each

block by 64, you get sprite pointer values of 13,

14, and 15, respectively. The program will

perform its animation by continually changing

the pointer value for sprite #0, which is set at

location 2040. The value will go from 13 to 14

to 15 and then back to 13 for another cycle.

Lines 1580-1640 set up initial values for

the sprite controls. There is nothing new here.

The data pointer for sprite #0 starts out with

Lines 1690-1710 switch images:

1690 IMAGE = PEEK (2840) + 1

1700 IF IMAGE = 16 THEN IMAGE = 13

1710 POKE 2040, IMAGE

Line 1690 takes the current pointer value and

adds 1 to it. If the new value is 16, Line 1700

sets it back to 13. Then line 1710 inserts the

new value into the pointer location. Thus, the

pointer will do what we want, going from 13 to

14 to 15 and then back to 13 again.

Line 1730 is a simple delay loop. By

changing the length of the delay, the juggler

will juggle at different rates of speed. And

finally, lines 1780-1790 check for a keypress. If

no key has been pressed, the program jumps

back to line 1690 to display the next image. If

there has been a keypress, the program cleans

up the sprite settings and ends.

3.6.3 Now It's Your Turn

Pull out the coding sheets you created at

the end of Section 3.6.1. Use the number codes

to replace the data in lines 1160-1500 of Jug

gling Fool. Then run the new program. How

does it look? Play with the program until you

get an animation cycle you like. Change the

timing, the data, and the order the images are

shown in. You'll learn a lot about animation by

such exploration.

3.7 CHAPTER SUMMARY

Let's recap what you've learned in this

chapter:

56

Some More Sprite Tricks

* How to set up the VIC-II registers so a

sprite is displayed in four colors

* How to design such a multicolor sprite

* What happens when sprites overlap one

another

* More about setting up motions for many

sprites

* How to set up an animation cycle by

shifting a sprite's data pointer from one

image block to another

Using a book this size, you can only begin

to study sprite graphics techniques. Advanced

knowledge will only come when you sit down

and play with sprites for a while. In the next

two chapters, you'll look at two other types of

Commodore 64 picture magic: character and

bit-mapped graphics.

3.8 EXERCISES

3.8.1 Self Test

Answers are supplied in Section 3.8.3.

The numbers in parentheses tell you which

chapter section to go to for help.

1. (3.1) In sprite multicolor mode, using two

bits lets a double-wide pixel take on one of

possible colors.

2. (3.1) Since sprites in multicolor mode are

only 12 double-wide pixels across, we say

that they have less resolution.

3. (3.2) If you poke the value 15 into the sprite

multicolor selection register at VIC + 28,

which sprites will be displayed in mul

ticolor mode?

4. (3.5) When sprites cross paths, sprite #

has display priority over all the

other sprites.

5. (3.5.1) In the program Sprite Overlap, de

scribe the sprites that result if you type in

these three lines:

1186 FOR N = 832 TO 884 STEP 3
1185 : POKE N, 225
1118 : POKE N+i, 185

1115 : POKE N+2, 135

6. (3.5.4) Take a look at lines 1610-1620 of

Sprite Overlap. If COUNT has the value

120, and DF has the value 0, what will lines

1610 and 1620 set SPRNUM to?

7. (3.6.2) How many periods (.) will get

printed next to the words SETTING UP as

the sprite data is loaded during the program

Juggling Fool?

8. (3.6.2) What happens to the juggler in

Juggling Fool if you change the delay time in

line 1730 from 30 to 100?

3.8.2 Programming Exercises

1. Change the program 4-Color Sprite so

that a second sprite, based on the same

sprite data, is also displayed in mul

ticolor mode.

2. Change the program Sprite Overlap so

that the four sprites overlap com

pletely at the center of the screen.

3. Change the program Juggling Fool so

that the juggler juggles in a clockwise

direction for a while, then switches to

counter-clockwise, then goes back to

clockwise, and so forth.

57

Commodore 64 Graphics and Sound Programming

Fig. 3-13, Sprite that results from typing the changes to Sprite Overlap mentioned in Self Test, item 5.

3.8.3 Answers to Self Test

1. four

2. horizontal

3. #0, #1, #2, and #3

4. 0

5. each sprite will be made up of four vertical

stripes - see Fig. 3-13

6. SPRNUM will be set to 2

7. three periods

8. the juggling will slow down

3.8.4 Possible Solutions

To Programming Exercises

These solutions are based on adding

and/or changing lines in the original programs.

1. Load in the program 4-Color Sprite.

Then type in these lines:

1000 REN «*» TWO 4-COLOR SPRITES

1315 POKE 2041.14 : REH SPRITE 111 PMTR
1353 POKE UIC+2,160 :REM SPRITE «1 HP
1356 POKE UIC+3,69 : REN SPRITE ##1 UP
1370 POKE UIC+23,3 :REN EXPAND UERTCAL

58

Some More Sprite Tricks

1380 POKE UIC+29,3 :REM EXPAND HORZTAL 1310 POKE UIC+3,129 -REN 111 UERTCAL POS

1400 POKE UIC+28,3 :REM MULTICOLOR O&i 1320 POKE UIC+5,179 :REN 112 UERTCAL POS

1435 POKE UIC+40,2 :REM SPR HI RED 1330 POKE UIC+7,79 :REM H3 UERTCAL POS

1460 POKE UIC+21,3 REM SPRITE O&l ON

3. Load in the program Juggling Fool.
2. Load in the program Sprite Overlap. Then type in these Hnes.

Then type m these lines:
1000 REM *** SWITCH JUGGLER

1655 JUGDIR = 1 REM CLOCKUISE JUGL

1000 REM *HH» TOTAL OUERLAP *** 1690 IMAGE = PEEK (2040) + JUGDIR

1250 POKE UIC210 REM HO HORZNTL POS 1T05 IF IMAGE = 12 THEN IMAGE = 15
1260 POKE UIC+2,110 :REM 111 HORZNTL POS 1712 :

1270 POKE UIC+4,160 :REM H2 HORZNTL POS 1715 COUNT = COUNT + 1

1200 POKE UIC+6,160 :REM 113 HORZNTL POS 1718 IF INT (COUNT/27) = COUNT/27 THEN

1300 POKE UIC+1,129 REM MO UERTCAL POS JUGDIR = -JUGDIR : COUNT = 0

59

Chapter 4

Character Graphics

The Commodore 64 has some powerful text

display capabilities. In this chapter, you'll

explore some of them. You'll learn about the

built-in character sets and get to poke about in

the screen and color memories. You'll build up

strings of graphics characters and fly them

around the screen. You'll learn how to modify

the built-in character sets, and finally, you'll

see how to design a character set for use in

animation.

4.1 LET'S PLAY

It's time to do a little keyboard explora

tion. Sit down at your Commodore 64. Type in

this command:

POKE 650, 128

In case you hadn't known, sticking a number

greater than 127 into memory location 650

makes all the keys repeat when they're held

down long enough. Repeating keys are fun to

draw with. To go back to the normal situation,

where only a few keys repeat, put a 0 into the

same location.

Now, clear the screen. Pretend your TV

screen is a blank artist's canvas. Using the

various graphics characters, type some pretty

designs. A few keys will come in especially

handy: shift, the Commodore logo key, CTRL

(control), the color keys, the RVS (reverse)

ON and RVS OFF keys, and the cursor control

keys. There are 512 different characters built

into the Commodore 64's permanent memory;

you can get some interesting designs with this

simple drawing technique. Figure 4-1 is a

screen printout of one such design.

4.2 SCREEN AND COLOR MEMORY

The 64 normally displays 25 text lines,

61

Commodore 64 Graphics and Sound Programming

MINIMUM

tttttttttttttttttttt

& & t t. & &
Fig. 4-1. Printout of a picture drawn on the screen by typing some of the Commodore 64's 512 built-in characters.

each containing 40 characters. That gives 1000

screen locations. Codes that determine which

character is shown at a location are stored in

what's called screen memory. The 64's won

derful flexibility lets you move this screen

memory around if you want to. Normally, it

occupies the thousand memory locations

1024-2023.

There's a second block of 1000 memory

locations that control the color for each screen

location. This area of memory, called color

memory, occupies memory locations 55296-

56295. This color memory is a bit stunted;

each location can only hold four bits, which

limits it to integers from 0 to 15. Since there

are only 16 possible colors, this is okay.

So each location on the text screen nor

mally has two memory locations associated

with it. One, in screen memory, determines

which one of 256 characters will show up. The

second, in color memory, determines the color

the character will take on. Appendices B and C

map out the screen and color memory areas.

4.3 GETTING CHARACTERS ON THE SCREEN

The VIC-II chip controls the display of

screen characters. It scans the screen memory

locations many times each second. These lo

cations contain values between 0 and 255.

Based on the values found there, VIC goes to

the section of memory where patterns for

drawing all the different characters are stored.

It uses those patterns and the information in

the color memory locations to send the correct

electrical signals to the TV set.

The Commodore 64 has patterns for two

complete character sets stored in a part of its

permanent memory. Each set contains the

patterns for 256 characters. The device the

sets are stored in is called a character genera-

62

tor ROM. Let's take a look at all of these built-

in characters.

4.4 DISPLAYING ALL 512

BUILT-IN CHARACTERS

Figure 4-2 is a listing of the program

Character Graphics

Character ROM Display. Type it in, save it,

and then run it. When the display starts, the

first 256 characters appear. To see the second

256, just press the shift and Commodore logo

keys at the same time. They operate as a tog

gle switch between the two character sets.

1080

1010

1020

1030

1040

1050

1060

1070

1000

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

REN *** CHAR RON DISPLAY ***

REN ** CLEAR SCREEN AND

REN SET UP CONSTANTS

PRINT "Li"

SCRNAP = 1024

COLNAP = 55296

REN «* THE BIG DISPLAY LOOP

FOR POCODE = 0 TO 255

ROM = INT (POCODE / 20)

CLN = POCODE - <20 * ROW)

EUROM = (ROW/2 = INT (ROW/2:

CLN = (CLN * 2> - EUROM

ROM = ROM * 2

SPOT = (ROM * 40> + CLN

POKE SCRNAP + SPOT, POCODE

POKE COLNAP + SPOT, 1

NEXT POCODE

REN ** GET KEYPRESS TO END

GET KPS

IF KPS = "" THEN 1310

PRINT "L";
END

Fig. 4-2. Listing of the program Character ROM Display.

63

Commodore 64 Graphics and Sound Programming

The operation of the program is simple in

principle, but a bit complex in execution. You

just want to poke each of the values between 0

and 255 into a screen memory location. That's

the purpose of the loop in lines 1140-1260. The

complexities come in when you figure the lo-

cations to poke to get a pleasing display. That's

what all of the nuttiness in lines 1150-1220

does. Lines 1240-1250 do the poking work:

124e

±2se

P0KE SCRMflP

poke colmap

SP0T

spot, i

1000 REM *** FLV THE FACE **»
1010 :
1020 :
1030 REM ** BUILD THE STRING
1040 :
1050 FS<1> =
1060 FS<2> =
1070
1080
1090
1100
1110
1120
1130

O O

1140
1150
1160 FOR N = 1 TO 7
1170 : F$ = FS + FS<N>
1180 NEXT N
1190 FS = FS + U7S
1200 :

+ DIL9S

122C
123(
124d
1250
1260
1270
1280
1290
130(i
131(1
132(i
133(1
1340
135d
136C
1370

8(
90

400

10
2(i
3d
4(

1460
1470

REM ** START OUT TIDV AT MIDSCREEN

REM «* WAIT FOR ft KEVPRESS

POKE 650,128 :REM ALL KEVS REPEAT

IF KP$ = "" THEM 1310

REM «» DECIPHER KEVPRESS

IF KP$ = "T
IF KP$ = "C
IF KP$ = "I
IF KPS = "I
IF KPS = "
GOTO 1310

PRINT KPS
GOTO 1250

THI
THI
THI
THI

TH
RE

N 1440
H 1440
~H 1440
:H 1440
EH 1500
II NO MATCH

REM UP
REM DOWN
REM RIGHT
REM LEFT

REM SPACE

REM MOUE CURSOR
REM PRINT FACE

64

Character Graphics

1480
1490 :
1500 PRINT
1510 END

REM «* SPACE ENDS IT

REM CLEAN UP

Fig. 4-3. Listing of the program Fly the Face.

Besides putting a character code into screen

memory, you put the value 1 into the corre

sponding color memory location. That way,

the character will show up in color 1, white.

You should create some variations on this

program. Have it print characters in different

colors, or have the characters displayed in dif

ferent locations.

4.5 BUILD A CHARACTER

STRING AND FLY IT

Figure 4-3 is a listing of the program Fly

the Face. The program demonstrates a way to

build moving pictures out of characters. Type

the program in and run it. Pressing one of the

cursor motion keys (up, down, left, or right)

will move the smiling face, and pressing the

spacebar will end the program.

By the way, there's a reason the lines in

this program listing are closer together than

usual. They're spaced the way they appear on

the TV screen, so you can see how the graphics

characters go together to form the face.

4.5.1 Building the String

The first part of the program builds a spe

cial string. This string, named F$, contains

blank spaces, graphics characters, and cursor

movement commands. When this string is

printed, the smiling face will show up on the

screen just as it looks in the listing.

Lines 1050-1140 set up the pieces that'll

go into F$. Lines 1160-1190 put them to

gether:

1160

1170

1180

1190

FOR

:

NEXT

F$ =

N =

F$ =

N

FS

1 TO 7

F$ + F$<N>

+ UTS

+ D1L9S

After each graphics piece comes a cursor-

movement piece. Some characters get print

ed, and then the cursor moves down a line and

back to the left. Line 1190 adds a final cursor-

movement piece to get the cursor back up to its

starting position.

4.5.2 Flying the String

Line 1240 clears the screen, and then puts

the cursor near the middle. Line 1250 draws

the face string you built up:

1230 PRINT FS; REM PRINT FACE

Finally, the program enters the flying

phase. Line 1300 sets the keyboard for auto-

repeat. Then lines 1310-1320 wait for a key

press. When there is one, it's stored in KP$.

Lines 1370-1420 decipher KP$:

13T0 IF KPS = "O" THEN 1440 :REM UP

1300 IF KP$ = "W" THEN 1440 REM DOWN

1390 IF KPS = Mfej" THEN 1440 REM RIGHT

1400 IF KPS = "11" THEN 1440 REM LEFT

1410 IF KPS = " " THEN 1300 REM SPACE

1420 GOTO 1310 REM NO NATCH

If the keypress is one of the four cursor moves,

65

Commodore 64 Graphics and Sound Programming

up, down, left, or right, the program jumps to

line 1440. If the spacebar was pressed, the

program jumps to line 1500 to end itself. If the

key pressed was not one of the above, the

programjust loops back to read the keyboard at

line 1310.

What happens if one of the cursor motion

keys was pressed?

1446 PRINT KP$

1436 GOTO 1256

:REB1 NOUE CURSOR

:REM PRINT FACE

You just print the keypress, which moves the

cursor. Then the program jumps back to line

1250, prints the face in its new position, and

goes on to get another keypress.

4.5.3 Carrying Your Own Eraser

You may be wondering why the flying face

was drawn surrounded by a ring of spaces. This

is what I call the carry-your-own eraser tech

nique. The face can only move one position at a

time. You don't bother to erase the old face

when you move it to a new position. When the

face is drawn in a new position, it covers up

most of the old face. The outer ring of spaces

covers up any remaining parts. If you wanted

the face to move two positions at a time, the

ring of spaces would have to be two spaces

wide.

If you didn't use this technique, you'd

have to completely erase the face at its old

position before drawing the new face. That

would eat up precious time. In animation,

you're always trying to move and draw objects

as quickly as possible.

4.5.4 Flying Your Own Face

It's time to apply some of the knowledge

you picked up playing with the keyboard in

Section 4.1. Change lines 1050-1190 so a dif

ferent image flies around the screen. If you

want to get especially fancy, imbed some col

or-setting characters in your string. Try add

ing some other functions chosen by keypress

es. For fun, create an image that's not sur

rounded by a ring of self-erasing spaces.

4.6 MORE ABOUT THE

CHARACTER MEMORY

When you crank up your Commodore 64,

it gets its character patterns from the built-in

character generator ROM. A ROM is a mem

ory device that can only be read from. The

character patterns are put into it when it's

manufactured. You can't put new information

into a ROM.

However, you can tell the VIC-II chip to

get its patterns from other areas of memory.

Those areas can be RAM memory, which can

be written to and read from. So you can insert

your own character patterns for the VIC chip to

use.

The VIC-II chip looks at 16K, 16384

bytes, of memory at a time. A complete set of

patterns for 256 characters takes up 2K, 2048

bytes, of memory. Thus, there are eight possi

ble locations for the 2K character memory

block in a 16K bank.

Bits 1, 2, and 3 of the register located at

VIC+24 (53272) tell VIC where to find the

character patterns. When the machine is first

turned on, it looks at the 2K block that begins

at location 4096 and finds the first 256 patterns

stored in the character generator ROM. If you

press the shift key and the Commodore logo

key together, new values get stored in VIC+

66

Character Graphics

24. VIC now looks at the 2K block of character

patterns that begin at location 6144 and dis

plays characters from the second set of 256

characters stored in the ROM.

If you want to use other characters, you

need to fill a 2K block of RAM with the patterns

and then set the pointers in bits 1, 2, and 3 of

VIC+24. The pattern for each character uses

up eight bytes; it's a large job to figure out

patterns for a full set of 256 characters. There

is a shortcut, however.

In many cases, you only want to change a

few character patterns. So you can copy a set of

patterns from the character generator ROM

into RAM memory and then just change a few

of them.

4.7 MOVING THE

CHARACTER ROM INTO RAM

There are a few complications involved in

moving the patterns from the character ROM

into RAM. First, the character ROM is a bit of

a trickster. It spends a lot of time appearing to

be at different memory locations. Now it's at

one place, now it's at another. You need to tie

it down to one area long enough to copy its con

tents.

That brings up the second complication.

When you manage to tie the ROM down, it

lands in the memory area normally used by the

Commodore's input/output devices. With the

ROM brought into memory, the computer can't

communicate with the outside world. If it tries

to do some I/O (input/output) operation, it'll

go to never-never land.

Now there's one I/O operation that your

Commodore tries to do 60 times each second:

scan the keyboard. You'll need to turn that

operation off while you transfer ROM to RAM.

It's like clamping arteries shut during an oper

ation.

1888

1618

1828

1838

1848

1856

1866

1878

1888

1698

1188

1116

1126

1136

1148

1158

1168

1178

1188

1198

REM *
;

2

REM *

PRINT
;

:

REM *
:

POKE

«* CHAR

* SET UP

RGN TO RAM *«*

FEEDBACK

"LDXiXlXlUXlXllllMQU ING":

* SET UP FOR TRANSFER

56334, PEEK (56334) AND 254

REM *H* KEYSCAN INTERRUPT OFF

POKE

REM *

ROM =

RAN =
;

1, PEEK

* BRING

53248 :

12288 :

(1)

ROM

REM

REM

AND 251

INTO MEMORY

START OF CHAR ROM

WHERE IT'LL GO TO

67

Commodore 64 Graphics and Sound Programming

1208 REN

1210

1228 1

1238

1248

1258

1268

1278

1288

1298

1308

1318

1328 :

1338 1

1348 :

1338 :

1360 I

1370 :

"OR

IEX7

JEM

1380 POKE

1390 POKE

1400 :

1418 UIC

1428 PTR

1430 P7R

1440 POKE

1430 :

«* TRANSFER, MITH FEEDBACK

CHAR = 0 TO.233

SR = ROM + (CHAR * 8)

DS = RAM + (CHAR * 8)

FOR BYTE = 0 TO 7

POKE DS + BYTE,

PEEK (SR + BVTE>

NEXT BYTE

POKE 1, PEEK(1> OR 4

PRINT ".";

POKE 1, PEEK(l) AND 231

CHAR

** CLEAN UP

1, PEEK (1) OR 4

36334, PEEK (56334) OR 1

= 33248 : CPTR = UIC+24

= PEEK (CPTR) AND 241

= PTR OR 12

CPTR, PTR

1460 PRIN7 : PRIN7 "DONE."

1470 END

Fig. 4-4. Listing of the program Character ROM to RAM.

4.8 A PRACTICAL EXAMPLE

Figure 4-4 is a listing of the program

Character ROM to RAM. Let's see how it

handles the transfer. Line 1100 turns off the

keyboard scanning:

iiOO POKE 56334, PEEK (56334) AND 254

This statement puts a 0 into bit 0 of location

56334, and leaves the other bits alone. That

stops the keyboard scanning operation. Refer

to Appendix N for more information about the

workings of the AND statement.

Line 1130 ties the ROM down in memory

so you can copy it:

1136 POKE 1, PEEK <1> AND 251

This statement puts a 0 into bit 2 of location 1,

again leaving the other bits untouched. That bit

is a switch that causes the character ROM to be

brought solidly into memory. In the process,

the I/O functions of the machine are put aside.

Again, more curious readers can turn to Ap

pendix N for details of how ANDing works.

Lines 1220-1330 transfer the first set of

68

Character Graphics

256 character patterns from the ROM to RAM.

That's 2048 bytes. It takes a while, so the

program gives some feedback as the transfer

progresses. The block is transferred in 256

pieces, eight bytes at a time. Line 1270 per

forms the actual transfer:

1278 POKE DS + BYTE,

PEEK CSR + BYTE)

It peeks at a ROM memory location and then

pokes the value it finds there into a RAM

memory location.

After each group of eight bytes is trans

ferred, the program prints a period (.) on the

screen. To do that, it's necessary to bring the

I/O functions back for a moment:

±308 :

1310 :

1320 :

POKE 1,

PRINT "

POKE 1,

PEEK<1>

PEEKC1)

OR 4

AND 251

Line 1300 puts a 1 into bit 2 of memory

location 1. That switches I/O functions back

in. Appendix N also goes into the workings of

OR statements. Line 1310 prints the period.

Then line 1320 switches I/O back out and the

character ROM back in.

When all 2048 bytes have been copied to

RAM memory, line 1380 brings I/O back in for

keeps. Line 1390 restarts the keyboard scan by

putting a 1 into bit 0 of memory location 56334.

Finally, lines 1410-1440 tell VIC-II to start

using the newly-established RAM memory lo

cations for character patterns:

1410 UIC = 53240 : CPTR = UIC+24

1420 PTR = PEEK (CPTR) AND 241

1430 PTR = PTR OR 12

1440 POKE CPTR, PTR

These lines may seem a bit cryptic. Let's look

into how they work.

Three bits of the register at VIC+24 con

trol the location of the character patterns: bits

1, 2, and 3. Bit 0 of that register does nothing.

When you want to change the location of the

character patterns, you first clear bits 1, 2, and

3, and then set them to new values.

Line 1420 clears the three bits in question

with an ANDing operation. It sets bits 1, 2, and

3 to 0, leaving the other bits unscathed. Then

line 1430 sets the bits to new values with an

ORing operation.

Blocks of memory containing character

patterns must begin at memory locations that

are multiples of 2048. In this case, the patterns

start at 12288, which is 6 x 2048. When you

want to point VIC at a character pattern block,

you divide the starting address by 1024 and

then use that number to set the bits at VIC+24.

12288 divided by 1024 is 12, so that's the

number you use to set the bits.

4.9 A LITTLE MODIFICATION

If you haven't done so already, enter and

run the program Character ROM to RAM.

Nothing seems to happen when the program

ends. Press the shift and Commodore logo

keys to switch to the second character set-

surprise!

You only moved one set of character pat

terns to RAM. When you switch sets, VIC

looks at the next 2K block of RAM for patterns.

Since you didn't put patterns into that block,

the letters come up as random blotches. Press

the shift and Commodore logo keys to get back

to the first set.

Let's do some pattern changing. Type in

these commands, one by one, and watch how

the word READY changes on your screen:

69

Commodore 64 Graphics and Sound Programming

POKE

POKE

POKE

POKE

POKE

POKE

POKE

POKE

12296.

12297,

12298,

12299,

12300,

12301,

12302,

12303,

238

204

204

252

204

216

112

0

You've changed the pattern used by VIC to put

the letter A on the screen. Whenever the code

for A appears in screen memory, VIC will use

this new pattern to draw the letter.

This command will tell VIC to use the

patterns in the built-in character ROM again:

POKE 53272, 21

Type it in, and watch your A's return to nor

mal. To get them wacky again, use this

shortcut command that tells VIC to use the

patterns you put into RAM starting at location

12288:

POKE 53272, 29

Bit

number

Bit

value

ByteO

Byte 1

Byte 2

Byte 3

Byte 4

Byte5

Byte 6

Byte 7

7

128

6

64

5

32

4

16

3

8

2

4

1

2

0

1

Number

codes

Fig. 4-5. A coding form you can use to design characters.

70

Character Graphics

Bit

number

Bit

value

ByteO

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

7

128

6

64

5

32

4

16

3

8

■■

ziiz

2

4

1

2

0

1

Number

codes

24

60

102

126

102

102

102

0

Fig. 4-6. Example of a filled-in character coding form.

4.10 DESIGNING CHARACTERS

Figure 4-5 is a coding form you can use to

design a character. It's very similar to the

coding forms you used with sprites. Eight

bytes are used to code a character. Each byte

codes the pixel pattern for a row of the charac

ter. Each bit in a byte represents a pixel. In any

row, the bit values of the pixels to show up

are added together to get a number code.

Figures 4-6 and 4-7 are examples that

show this coding form in use. In Fig. 4-6, a

normal letter A is coded. Figure 4-7 gives

codes for an elaborate upside-down A. These

codes are the numbers you poked in Section

4.9.

Make some copies of the form in Fig. 4-5.

Then design an upside-down version of the

letter E. You'll use it in the next section.

71

Commodore 64 Graphics and Sound Programming

Bit

number

Bit

value

7

128

6

64

5

32

4

16

3

8

2

4

1

2

0

1

Number

codes

Fig. 4-7. Another example of a filled-in character coding form

4.11 PUTTING YOUR

MODIFICATIONS INTO POSITION

Appendix D is a list of screen display

codes. These are the numbers that are poked

into screen memory to tell VIC which charac

ter pattern to look up. For example, the screen

display code for@ is 0, and the screen display

code for A is 1.

Each character pattern uses eight bytes.

The patterns are stored in the order of the

display codes. First come the eightbytes for@,

then the eight bytes for A, and so on. To find

the memory location of the first byte of a

character's eight pattern bytes, just multiply

the character's display code by 8 and add the

result to the start of the character memory

block.

Here's an example. In the program

72

ez

u,6ji|sjapaieupeaju.;pueapj/wsjepejeipo/vust\e\j{\pu6euoumbjpajnjeajoi

Commodore 64 Graphics and Sound Programming

Fig. 4-9. The alien drawn in four positions on 2-by-3 grids, with letters ripe for replacement shown beside each image.

Character ROM to RAM, you moved character

memory to a 2K block starting at 12288. To

find the first pattern byte for the letter A, you

multiply its display code by 8 and add the result

to 12288. 1 x 8 is 8, and 12288 + 8 is 12296.

So memory locations 12296-12303 (8 bytes)

hold the patterns for A. If you look back at

Section 4.9, you see that those are the eight

locations you poked to change the looks of A.

Let's try this out again. The display code

for E is 5. 5 x 8 is 40, and 12288 + 40 is

12328. Run Character ROM to RAM and then

poke the eight memory locations beginning at

12328 with the upside-down E codes that you

figured out in the last section. Watch the ready

prompt as you make each poke.

4-12 DESIGNING A SET

OF CHARACTERS FOR ANIMATION

You've seen how to change text charac

ters. This gives you the ability to develop all

kinds of symbols for games, business applica

tions, foreign languages, and practical jokes.

Let's see how you can develop some charac

ters that'll help you pull off some slick anima

tion.

Why would you use characters for anima

tion, when sprites are so easy to use? There

are a number of situations where custom

character animation has some uses. In some

cases, all eight sprites may already be in use.

Also, character animation allows some types of

color variation without losing horizontal reso

lution. Finally, you have more leeway in terms

of shape and size, since you can put almost any

combination of characters together into an

image.

Figure 4-8 shows an alien creature drawn

on a grid that's two characters wide and three

characters high. Along the top, values are

shown for each bit position. Along the sides,

number codes for the byte rows have been

figured. For example, the codes for the

character used in the lower right corner of the

design are 192,128,128,128,128,0,0, and 224.

Figure 4-9 shows our alien in four posi

tions. Each position is drawn on a 2-character

by 3-character grid. Beside each image is a

clue to the technique you'll use to get this alien

onto the TV screen. You'll insert number

codes developed from the images in place of

letters A - X. Then you'll just print strings

74

sIC
DIC
O

6

1aL
J

-
J

C3ZL
J

-
1

C1EL
J

D
C

G
O
O
H

cfi.

C
O

o2
*

C
J
col
j

l
j
L
.

flL

HL
J

C
O1EL
J

mmi
n

m
m

Moa_
j

S■
j

s3M■
■

■zfi*
■
A

1
H
b

o
o
o
o

c
g
c
o
*
m

O
O
O
O
O
O

cCaL
J
ZHZcL
JIEL
J

•
i

i
i
A
/

i
i

i
i

i
i
y
[

•
•

O
O
O
O

c
o
r
-
c
o

o
o

o
o
o
o

H
H
H
H

C
O*c<
J

r
-

+
l
j

H
O

L
J
>

C
M
O
C

*
O
L
.
C
0
+

C
M
O

Z

O
H

II
m

II
H
H
L
J
O
H

#
h
€
O

II
>
L
J
C
L

C
M

t
t
t
t
C
O

H
f
i
C

€
t
t

II
Z
O

C
J
1
^

L
J
C
O
Q
C

C
O

o
o
o
o
o

O
H
C
M
C
O
*

C
J

flQ

L
J

L
J

i
.

H
t
a
i

O
E

L
.

L
J

Z
t
t

%

OflL

C
O

•
-

u
:

o
c
a
"

0
.

h
t
t

h
-
Z
<
C

D
C
►
*
Z

L
J
f
l
t
f
C
J

Z
fi.

HXL
J

O
O
O
O

i
n
c
o
H

c
o

C
M

C
D

H

C
M

-h
*

C
O
C
O

C
O

C
M
H

C
M

-©"con
C
M
G

-
-

C
O
H
C
M
*

C
M
*
C
O
C
M

C
O

%
*

%

-
c
g
r
-
c
o

C
O
I
D
-
*

*C
M

i
M

oGGC
M
H

-
C
D

i
n
c
j

M
M

*
%

C
O
C
M
C
M

-
f
-
C
O

0
)
0

-
e
g

*
*
*

*
-
H
c
g
e
g

0
)
*
C
O
C
M

-
e
g
*

-
c
o

-
-
e
g

C
O
C
O
C
O
C
O

H
*
C
0
H

C
C
C
C

h
h
h
h

€
€
€
€

u
u
u
u

-
C
J

C
O
H

H
O
D

O
H

%
-

H
C
M

%
0
)

C
C

h
h

C
C

(
9
O

O
O
O
O
O
O
O

0
)
O
H
C
M
C
O
*
I
O

C
O

G
G
O

'I
%H

G
*

%
c
m
o

e
g
e
g

C
O
H

C
M
C
B
O

C
M
*

%
*

%
C
M

c
o
-
h

e
g
e
g
c
o

-
e
g

%
c
m
c
d

%

e
g
i
n
r
-
-
h
g

e
o
e
g

-
c
o
-
*

C
O
G
H

^
O
O
C
O

C
O
*

-
*
H

^
H
*
N
G

■*
0
)

-.CM
%
*
*

*
o

-
e
g

-
e
g

-
*

C
O
1
0
C
O

-
G
H
*
C
M
H
G

-
o
c
o
e
g
*
c
g

0
)
*
C
O
C
O
C
M
H

*
H

-
H

%
-

%
%
C
J

^
C
M
*

G
O
C
0
*
H
C
M

C
C
C
C
C
C

h
h
h
h
h
h

c
c
c
c
c
c

/
■

/
>

^
B

^
»

/
*

J
>

"
u
a
a
a

£
a
u

•

C
M

o
-
e
g

O
*
C
M

h
e
g

-

c
m

-
c
o
e
g
c
o

C
O
*

%
%
C
M

C
M
C
M

«
s
*
%
H

c
o
n
c
g

-
c
o

%

C
)

%
%
C
M
H

*
C
O
G
*

%
-
0
3

0
)
H

-
m
e
g
c
o

-
c
o
*

-
-
c
o

*
c
o

-
c
g
(
o

-
C
M
H
C
O
C
O
V
O
*

•^
^
C
O
H

%
C
M

A
J
M

-
f
c
*
S
J

a.

*
%
c
o

^
^
*

O
G

-
C
O
*

-
-
-
C
M
O

-
C
M

O
O
C
O
H
C
O
C
O

C
C
C
C
C
C

C
C
C
C
C
C

'
O
O
O
O
O
O
"

o
o
o
o
o
o
o
o
c
f
i
f
i
f
i
f
i
c
e

0
*
m
(
A
*
-
t
t
f
n
e

H
C
g
c
g
N
C
M
C
M
C
M
C
g
C
M
C
M
C
M
C
O
C
O
C
O
C
O
n
C
O
C
O
C
^
C
O
n
*

C
O

o
*

-
^

o

O
C
M

C
M

C
M
O

C
O
C
M
H

C
O
H

H
C
O

%

C
M
*

^
*
C
O
C
O

C
O

-
C
O
C
J
0
)

-
-
e
g

-
e
g

-
t
o

c
g
m
r
-

-
e
g
o

C
O
C
M

-
C
O
0
)

-
%

-
e
g
*
h

e
g

C
O
O
H

^
^
C
O

C
O
*
-
*
©

-

0
)

%
C
M

*
C
M
C
O

*
o

-
e
g

-
-

-
*
c
o
n
©
c
g

0
)
H
*
C
M
C
O
C
O

-
©
c
o

e
g
e
g
c
o

0
)
*

C
O
C
O

-
0
)

%
-
C
M

-
-
*

O
O
t
t
*
C
M
C
0

C
C
C
C
C
C

h
h
h
h
h
h

C
C
C
C
C
C

O
O
O
O
O
O

O
O
O
O
G
O

H
C
M
0
0
*
1
0

C
O

*
*
*
*
*
*

Commodore 64 Graphics and Sound Programming

1470

i486

1490

1300

1310

1320

1330

1340

1330

1360

1370

1380

1390

1600

1610

1620

1630

1640

1630

1660

1670

1680

1690

1700

1710

1720

1730

1740

1730

1760

1770
1780

1790

1800

1810

1820

1830

1840

1830

REM ** SET UP IMAGE STRINGS

I MAGES (8) = >aAB|M]CD|||!]EF||EX]"

IMAGESCl) = "GHIIItilJIIIfflCLIlEX?'

II1AGE$<2) = "IINIIItiOPIIIQQRIlEX]"
IMAGES*3> =

REM «* CLEAN SCREEN, CENTER, AND

REN CHANGE THE CHAR DATA PNTRS

PRINT "L-iinilPUUMlMinilllDl":

print "tmimmmiiiii";

UIC = 33248

POKE <UIC+24>,29

REM WALK

FOR N = 0 TO 3

PRINT IMAGESCN);
FOR DLV = 1 TO 70

GET KPS

IF KPS = "" THEN 1730

KEV = -1 : N b 3

NEXT N

IF (NOT KEV> THEN 1690

REM «* CLEAN UP SHOP

PRINT "L";

POKE CUIC+24),21

END

NEXT DLV

Fig. 4-10. Listing of the program Alien Walker.

made from those letters in combination with

some cursor moves, as you did in Fly the Face.

Rather than printing 2-by-3 blocks of the real

letters, VIC will show 2-by-3 blocks that por

tray our alien walker.

4.13 THE ALIEN WALKER

The program Alien Walker is listed in Fig.

4-10. Let's look at some of its features. You've

76

Character Graphics

got four images, each one composed of six

redefined character patterns. With eight bytes

per pattern, that gives us 24 x 8, or 192, bytes

of data to load in. Lines 1100-1180 do the

loading:

iiOO BASE

1118 FOR

1120

1130

1140

1150

1160

1170

1180 NEXT

= 12 * 1024

CHAR = 1

FOR BYTE

READ

SPOT

POKE

TO 24

= 0 TO

INFO

= BASE

7

+ <CHAR * 8>

+ BYTE

SPOT,]

NEXT BYTE

PRINT ".•

CHAR

■.

[NFO

REM FEEDBACK

Line 1100 sets the base of our character mem

ory at the same convenient location used pre

viously, 12288. Lines 1110 and 1180 set up a

loop that will run from character code 1, which

stands for A, through character code 24, which

stands for X. An inner loop, set up in lines 1120

and 1160, reads in the eight bytes of data for

each character and then pokes them into the

proper position. Line 1140 figures the proper

position by using a formula similar to that used

in Section 4.11.

Lines 1200 through 1460 contain pattern

codes based on the images from Fig. 4-9. Each

line of data contains the codes for one new

character definition.

Lines 1510-1540 set up four image

strings. Each one is composed of six of our new

characters, combined with the cursor moves

necessary to display the six characters in a

2-by-3-block. If you don't recognize the

graphics icons that represent the various cur

sor moves in the strings, refer back to the

Introduction. Notice that the cursor commands

are used in such a way that, after the pieces of

the image are drawn, the cursor ends up where

it started.

Lines 1600-1610 clear the screen and

move the cursor to midscreen. Then Line 1640

tells VIC-II to start getting its character pat

terns from the 2K block starting at 12288. The

line uses the same shortcut seen at the end of

Section 4.9. As long as you don't move the

location of screen memory, which is coded in

bits 4, 5, 6, and 7 of VIC+24, you can use the

following formula to set VIC+24 to point at a

new character memory block: divide the new

starting address by 1024, add that number to

17, and poke it in.

The loop in lines 1690-1750 simply prints

the image strings in succession, with a pause

between image changes. Lines 1730-1740 are

our familiar keypress test. If a key is pressed,

the program will end by clearing the screen and

resetting the character memory pointer at

VIC+24 to point to the built-in character

generator ROM.

4.14 CHAPTER SUMMARY

Here are some of the topics that have

been covered in this chapter:

* The Commodore 64's ability to display

512 built-in characters

* The 1000 screen locations, 1000 bytes

of screen memory, and 1000 bytes of

color memory

* Poking character codes and colors into

screen and color memory

* Putting characters and cursor move

ments together into strings that can be

moved around the screen

77

Commodore 64 Graphics and Sound Programming

* How VIC-II knows where to look for

character patterns

* Moving the character ROM patterns

into RAM memory

* Designing and installing modifications

to the built-in character sets

* Designing and installing a set of

characters to be used in an animation

cycle

You've been able to scratch the surface of

the Commodore 64's wide range of character

display abilities. Playful experimentation will

help you learn more.

4.15 EXERCISES

4.15.1 Self Test

Answers will be found in Section 4.15.3.

1. (4.1) There are different

characters built into the Commodore 64's

character generator ROM.

2. (4.2) The Commodore 64 normally displays

text lines, each with

characters, which gives

screen locations.

3. (4.3) The 64 has complete

character sets in ROM.

4. (4.4) Pressing the shift and Commodore

logo keys at the same time switches you

between the

5. (4.5.3) Why is the face in Fly the Face

drawn surrounded by a ring of spaces?

6. (4.6) Bits 1, 2, and 3 of the register located

at VIC+24 tell VIC the location of

7. (4.7) What are two complications involved

in copying the contents of the character

generator ROM to RAM?

8. (4.10) What would a character pattern look

like if its eight number codes were all 255?

4.15.2 Programming Exercises

1. Change the program Fly the Face so

another design flies around the screen.

2. Change the program Character ROM

to RAM so the characters come out

upside-down.

3. Change the program Alien Walker so

that three aliens, all alike, are walking

across the screen.

4.15.3 Answers to Self Test

1. 512

2. 25; 40; 1000

3. two

4. two character sets

5. so it'll erase any traces of itself as it moves

6. the character patterns

7. (1) the ROM floats around at different

memory addresses

(2) when it's tied down, input/output oper

ations are disabled

8. a solid square

4.15.4 Possible Solutions

to Programming Exercises

These solutions are based on adding or

changing lines in the programs mentioned in

the exercises.

78

Character Graphics

1. Load in the program Fly the Face. 3. Load in the program Alien Walker.

Then type in these lines: Then type in these lines:

iSI
ill

nan'.
FLV THE FIGURE *** 1OOO REM *** 3 ALIEN WALKERS ***

A " 1610 print "iummmi":

2. Load in the program Char ROM to

RAM. Then type in these lines: 1716

1701 : PRINT

1702 : PRINT INAGESCN);
1703

1704

1705

PRINT "1111111"
PRINT IMAGESCN);

PRINT "IIIIIIIIBIIII";

FOR DLV = 1 TO 60 : NEXT DLV

1000 REN ««* UPSIDE-DOWN RON

1270 : POKE DS + <7 - BVTE>,

PEEK CSR + BYTE)

79

Chapter 5

Bit

Mapped Graphics

1

=

1

\jm\

rPWii m i

" 1 ii 1 r

i

i

1 1 1 ■ ■ 111 1Ml 1 ■ ■ 1 1 1 1

HEEu

So far, you've explored two aspects of Com

modore 64 graphics: sprites and characters.

Both these graphics entities let you play with

collections of pixels. Is there a way to draw

large, detailed pictures by controlling indi

vidual pixels? You bet. It's called bit mapped

graphics.

In this chapter, you'll learn how to set up

bit map mode. You'll turn individual pixels on

and off, and see how to set their color. I'll give

you a machine-language routine that will speed

up one tedious aspect of bit mapping. Finally,

you'll build a simple electronic doodling pro

gram.

5.1 SIXTY FOUR THOUSAND PIXELS

Time to do a little arithmetic. Consider

the Commodore 64's text display. There are 25

lines, each with 40 characters. Each character

is 8 pixels wide, and 8 pixels high. That gives

8 x 40, or 320, pixels across the screen and

8 x 25, or 200, pixels from top to bottom. 320

pixels across the screen multiplied by 200 from

top to bottom gives a grand total of 64,000

pixels.

In bit map mode, you control each one of

these pixels with a bit. That's where the name

bit mapping comes from. Since there are 8 bits

stored in a byte, you can divide 64,000 by 8 and

find you need 8,000 bytes to control a screen

filled with 64,000 pixels. Those 8,000 bytes

form the bit map. Where can you store such a

large bit map?

5.2 STORING THE BIT MAP

Back in Section 4.6, I mentioned that the

VIC-II graphics chip looks at 16K of memory at

a time. 8000 bytes is almost 8K, or half of a

81

Commodore 64 Graphics and Sound Programming

16K block of memory. An 8000-byte bit map

can live in either the first or second half of the

current VIC-II 16K bank.

When you're working with BASIC, VIC

normally looks at the 16K memory block from

locations 0 through 16383. The first few

thousand memory locations in that block are

vital real estate for BASIC; it won't give them

up easily. So the bit map goes in the second half

of the block, starting at memory location 8192.

Bit 3 of the register at VIC+24 (memory loca

tion 53272) controls the location of the bit map.

If there's a 0 stored there, it goes in the first

half of the current 16K VIC-II bank. Storing a 1

at bit 3 of VIC+24 puts the bit map in the

second half of the 16K bank, which is what is

normally done when using a bit map from

BASIC.

This BASIC command will store a 0 at bit

3 of VIC+24 (53272):

POKE 33272, PEEK<33272> AND 247

And this command will store a 1 at that

position:

POKE 33272, PEEKC33272) OR 8

5.3 TURNING BIT MAP MODE ON AND OFF

Bit 5 of the register at VIC+17 (memory

location 53265) controls bit map mode. Storing

a 1 at that location turns bit map mode on and

storing a 0 turns it off. Here's the BASIC com

mand to turn bit mapping on:

POKE 33263, PEEK<53263> OR 32

And here's the command that turns it off,

bringing back a normal text display:

POKE 33263, PEEKC33263) AND 223

5.4 A SHORT DISCLAIMER

BASIC is a fine computer language, with

advantages and disadvantages. Programs can

be put together and debugged fairly quickly,

but they run slowly when compared to pro

grams in many other languages. Of course, in

many applications, BASIC'S speed problems

aren't noticeable, and its ease of use is a wel

come relief.

The speed problem shows up in programs

where there's a lot of fairly repetitive ac

tivities. Bit mapped graphics, where 64,000

bits are waiting for instructions, is one of the

areas where BASIC'S lethargy shows.

How can you speed up bit mapped pro

grams written in BASIC? The best technique

is intelligent program design. For example,

many calculations can be done just once, with

the results stored in data tables, rather than

being repeated over and over. Skills you pick

up trying to apply intelligent design techniques

carry over to other computer languages.

A popular technique, yet one I'm not too

fond of, involves squashing code together,

with as many statements on a line as space

permits. I find that the time savings from this

technique are minimal, and the problems of

debugging such programs are depressing.

A third alternative involves taking critical

operations and coding them in machine lan

guage. Short of rewriting an entire program in

machine language, this technique leads to

some of the biggest time savings possible.

You'll see an example of it later in this chapter.

5.5 ONE LAST DETAIL: COLOR

Before we get to an example program,

82

Bit Mapped Graphics

(Upper nibble)

4 bits = 1 nibble

* ^V.

1 0 0

^ -

1

"N
8 bits =

1

^ ■
= 1 byte

(Lower

4 bits =

>

1

■

nibble)

1 nibble

s—-^
0 0

^

Fig. 5-1. The relationships between bits, bytes, and nibbles.

Bit value*

Bit*

Bit value*

Bit*

Bit value*

Bit*

Bit value*

Bit*

8

0

8

0

8

1

8

1

Some typical

nibbles

4

0

4

1

4

1

4

1

0

1

1

2

0

1

1

2

0

1

0

2

1

1

1

Their decimal

values

1 -1

4+1 -5

8+4 - 12

8+4+2+1 - 15

Fig. 5-2. Some typical nibbles, with the corresponding base 10 values.

83

Commodore 64 Graphics and Sound Programming

there's one last detail to discuss: color. How

does VIC-II decide on a color for each of the

64,000 pixels?

With normal bit mapped graphics, pixels

in each 8-by-8-pixel section of the screen, an

area the size of a character, have a choice of

two colors. The fact that these areas are the

same size as a character in text display mode

leads to a clever storage idea. The two color

codes for each 8-by-8 area are stored in the

1,000 locations of screen memory. That's the

same area used in text display mode to hold

screen display codes.

Computer people like cute names. 8 bits

is known as a byte, and 4 bits is called a nibble.

See Fig. 5-1. A nibble can store values be

tween 0 and 15. See Fig. 5-2. In bit map mode,

the upper 4 bits, or nibble, of each screen

A byte of screen

memory holding

two color codes

for an 8-by-8 area

of the bit-map

The 8-by-8 area

of the bit-map

whose color is set

by the above

byte

Value of

upper nibble

is 2

Value of

lower nibble

is 1

A/

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

1

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

1

0

0

Fig. 5-3. An example of an 8-by-8-bit area of the bit map whose color is controlled by a byte of screen memory. The value in the
byte's upper nibble codes the color for bits in the map set to 1, while the value in the lower nibble codes for bits in the map set to
0.

84

Bit Mapped Graphics

memory location hold the color code for any bit

set to 1 in the 8-by-8-bit area controlled by that

memory location. The lower nibble of the

screen memory location holds the color code

for bits set to 0. Take a look at Fig. 5-3 for an

example. There's a little formula to help you

figure out what number to poke into this screen

memory for a given pair of colors: take the

color code for the 1 bits, multiply it by 16, and

then add the color code for the 0 bits. For

example, if you wanted 1 bits to come out red

(color code 2), and 0 bits to come out black

(color code 0), you would calculate that

(2 x 16) + 0 = 32, and you'd poke into

screen memory.

5.6 AN EXAMPLE OF

BIT MAPPED GRAPHICS

So much for your preliminary dose of bit

mapping theory. It's time for some action.

Type in the program listed in Fig. 5-4, Random

Draw. Save it to tape or disk and then run it.

Watch it for a couple of minutes, and then let it

run unattended for 5 or 10 minutes. Take a last

good look, and press the spacebar to end it.

5.6.1 Setting Up for the Bit Map Mode

Let's examine the program, and see if you

can understand what you saw happen on the

screen. Line 1100 uses the command dis-

lOOO REM

1010 :

1020 :

1030 REM

1040 :

1030 UIC

1060 BASE

1070 BLOC

1000 BSET

1090 :

1100 POKE

1110 POKE

1120 :

1130 :

1140 1

1130 :

1160 f

1170

1180 1

1190

1200

tEM

'OR

IEXT

1210 REM

1220 REM

1230

*** RANDOM DRAM **»

** SE7 UP FOR BIT-MAP MODE

= 33248

= 8192 :REM BIT MAP START
= UIC+24 :REM LOCATES BIT MAP

= UIC+17 REM TURNS ON BMM

BLOC, PEEK(BLOC) OR 8

BSET, PEEKCBSET> OR 32

** CLEAR THE BIT MAP

SPOT = BASE TO BASE + 7999

POKE SPOT, 0

SPOT

«* SEED THE RANDOM FUNCTION

WITH A RANDOM NUMBER

1240 DUMMY = RND <-RNDCO>)

1250

1260

85

Commodore 64 Graphics and Sound Programming

the new version, and then run it. Whoosh! You

can see why hot programmers eventually turn

to machine language whenever real speed's

needed.

A brief explanation of the new lines: lines

1146-1156 poke the machine language sub

routine into a portion of memory that most

BASIC programs won't bump into. Lines 1163-

1176 contain the 26 bytes of data that make up

the little whizzer. Finally, line 1193 calls the

newly installed machine language subroutine

into action with a SYS command. It's like jump

ing to a BASIC subroutine. When the machine

language routine finishes, it pops control back

to BASIC, and BASIC just carries on with the

next statement.

You can use this routine in any bit map

program that uses locations 8192-16191 as the

bit map area. If you want to clear a bit map that

starts at another area, just divide the starting

address of the bit map by 256 and type the new

value in place of the 32 at the end of line 1163.

5.8 LOCATING A PIXEL'S BYTE AND BIT

Let's learn how to gain more control over

individual pixels in bit map mode. You need to

find a way to locate the byte and bit that control

an individual pixel.

First, you need a model of the screen

display. Take a look at Fig. 5-6. Each pixel has

a horizontal position, H, with values from 0

through 319. Each pixel also has a vertical

1800

1140

1143

1146

1130

1133

1136

1160

1163

1166

1170

1173

1176

1180

1183

1186

1198

1193

1196

REM

HEM

FOR

:

:

NEXT

DATA

DATA

DATA

DATA

DATA

:

;

REM

:

svs

« FAST RANDOM DRAM ***

** LOAD FAST M/L BIT MAP CLEftK

N = 21240 TO 21273

READ MLDTA

POKE N, MLDTA

N

169, 0, 133, 251, 169, 32

133, 232, 162, 32, 160, 0

132, 143, 231, 200, 208, 251

202, 240, 4, 230, 252, 208

244, 96

*» CLEAR THE BIT MAP

21240

Fig. 5-5. Changes and additions that turn Random Draw into Fast Random Draw.

88

Bit Mapped Graphics

H=0
Horizontal

H =319

—►!

= o-

Vertical

= 199..T....\

Fig. 5-6. You can give each pixel on the bit map a horizontal position from 0 through 319 and a vertical position from 0 through

199.

position, V, with values from 0 through 199.

For example, a pixel in the upper left corner

has H = 0 and V = 0. A pixel in the lower

right corner has H = 319 and V = 199.

It would be wonderful if the bytes in the

bit map had a simple correspondence to Fig.

5-6. Unfortunately, that's not the case. The

bytes in the bit map correspond to the screen in

a pattern that suggests bit mapping's close

kinship to text display.

Take a look at Fig. 5-7. It shows how the

bit map bytes are set up. Groups of 8 consecu

tive bytes form a block the size of a character.

Similar to the text screen, these 8-byte-high

areas are arranged in 40 columns and 25 rows.

Trying to determine which bit of which byte

controls a pixel, given that pixel's horizontal

and vertical position, looks like an arduous

task.

It's actually not too tough. If you go

slowly, and keep referring back to Figs. 5-6

and 5-7, the following formula derivations may

make sense. Remember, H and V refer to a

pixel's horizontal and vertical positions re

spectively.

Let's start with vertical information.

Since a row is 8 vertical positions high, this

formula gives us the row a pixel's in:

ROM = INTCU/8)

There are 320 bytes per row, so a row's offset

in bytes from the base of the bit map is:

RBF = RON * 320

The AND function is a convenient way of

finding remainders when you're dividing by a

power of 2: Simply AND the original number

with the divisor minus 1. Finding the remain

der of the vertical position divided by 8 will tell

you which of the 8 lines in a row you want:

LINE CU AND T)

You can combine these results and form a total

vertical byte offset for your pixel:

89

Commodore 64 Graphics and Sound Programming

ubf = intcu/8) * 32a ♦ <u and 7> positions per column, so the column can be

figured this way:
Now you need to work with the pixel's

horizontal position. There are 8 horizontal coluhn ■■ int<h/8>

Row

Row

-olumn 0

ByteO

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 320

Byte 321

Byte 322

Byte 323

Byte 324

Byte 325

Byte 326

Byte 327

Column 1

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

8

9

10

11

12

13

14

15

328

329

330

331

332

333

334

335

Column 2

A

Byte 16

Byte 17

Byte 18

Byte 19

Byte 20

Byte 21

Byte 22

Byte 23

Byte 336

Byte 337

Byte 338

Byte 339

Byte 340

Byte 341

Byte 342

Byte 343

Row

24 <

Byte 7680

Byte 7681

Byte 7682

Byte 7683

Byte 7684

Byte 7685

Byte 7686

^ Byte 7687

Byte 7688

Byte 7689

Byte 7690

Byte 7691

Byte 7692

Byte 7693

Byte 7694

Byte 7695

Byte 7696

Byte 7697

Byte 7698

Byte 7699

Byte 7700

Byte 7701

Byte 7702

Byte 7703

Column 39

Byte 312

Byte 313

Byte 314

Byte 315

Byte 316

Byte 317

Byte 318

Byte 319

Byte 632

Byte 633

Byte 634

Byte 635

Byte 636

Byte 637

Byte 638

Byte 639

Byte 7992

Byte 7993

Byte 7994

Byte 7995

Byte 7996

Byte 7997

Byte 7998

Byte 7999

Fig. 5-7. How the bit map bytes are set up. Notice the close relationship to the Commodore 64's text display.

90

Notice how there's a jump of 8 bytes as you

move from column to column. Now figure your

total horizontal byte offset factor:

HBF INTCH/B) * 8

Now you can add the vertical and horizontal

byte offsets to the start of the bit map to get to

your target byte:

BYTE = BASE + UBF + HBF

You've got the byte. You need to find the

bit. There are 8 pixels to a column. You need to

know how many pixels are left after you've

gone through all the full columns. Again, you

use an AND operation to find a remainder:

PXL = <H AND 7>

Since bits in a byte are numbered from right to

left, and your horizontal pixel positions go

from left to right, you have to adjust this with a

little reversal operation:

BIT = 7 - <H AND 7)

So now you've got formulas to find a bit mapped

pixel's byte and bit. Let's do something with

them.

Bit Mapped Graphics

5.9 TURNING PIXELS ON AND OFF

Once you've found a pixel's byte and bit

with the formulas developed in Section 5.8, the

following statement will set the bit to 1:

POKE BYTE, PEEKCBYTE> OR <2fBIT>

Remember, that will tell the pixel to take on

the color whose code is in the upper nibble of a

byte of screen memory.

This command will set a pixel's bit to 0:

POKE BYTE, PEEKCBYTE> AND C2SS - 2fBI7>

The pixel will then take on the color whose

code is in the lower nibble of the appropriate

screen memory byte.

5.10 THE ELECTRONIC DOODLER

Now that you can turn individual pixels on

and off, let's play with an electronic doodling

program. Figure 5-8 is a listing of the program

Sketch. Type it in, save it, and then run it.

A dot-sized pen will appear in the center

of the screen. You can move the pen in any of

1060

1010

1020

1030

1040

lose

1060

1070

1080

1090
1100

1110

1120

1130

REH *

rem *
:

PRINT

POKE

BASE

UIC =

BLOC

BSET
z

** SKETCH

* INITIAL

690, 128

= 8192

33248
= UIC+24

= UIC+17

SET-UP

:REH
:REH

:REM

:REH

:REH

:REH

CLEAR SCREEN
ALL KEVS REPEAT

BIT MAP START

GRAPHICS CHIP

SETS BASE
SETS BMM

91

Commodore 64 Graphics and Sound Programming

1148

use

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1330

1360

1370

1380

1390
1400

1410
1420

1430

1440

1430

1460

1470

1480

1490

1300

1310

1320

1330

1340

1330

1368

1370

1388

1398

1608

1618

REM *» LOAD SPEEDY H/L CLEAR

FOR N = 21248 TO 21273
: READ MLDTA

: POKE N, MLDTA
NEXT N

DATA 169, 0, 133, 231, 169, 32

DATA 133, 232, 162, 32, 160, 0

DATA 132, 143, 231, 200, 208, 231

DATA 282, 248, 4, 238, 232, 288
DATA 244, 96

REM ** SET FOR BIT-MAP MODE, CLEAR

REM BIT MAP, SET COLOR COMBO

POKE BLOC, PEEK<BLOC> OR 8

POKE BSET, PEEKCBSET) OR 32

SYS 21248 :REM M/L BIT MAP CLEAR

F8R HUEMAP = 1824 TO 2023

POKE HUEMAP, 3

NEXT HUEMAP

REM «* INITIALIZE H AND U

H = 160 : U = 100

REM ** DRAU THE DOT AT H,U

UBF = INT CU/8) * 328 + CU AND 7)

HBF = INT <H/8> * 8

BIT ~ 7 - (H AND 7)

BYTE = BASE + UBF + HBF

POKE BYTE, PEEKCBYTE> OR (2fBIT)

REM 6ET KEYPRESS COMMAND

6ET KP$

IF KP$ ■ "" THEN 1378

REM «* DEAL WITH KEYPRESS

92

Bit Mapped Graphics

1628

1638

1648

J SKA
1638

1666
1676

1688

1698

1788

1718

1728

1736

1748

1738

1768
1778
1786

1796

1888

1816

1826

1838

1848

1836

1866

1878

1888

1899

1988

:

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF
:

IF

IF

IF

IF
:

KPS

KP$

KP$

KP$

KP$
KP$

KP$

KP$

KP$

KP$

U <

u y

H <

H >

= " " THEN

= "9" THEN

= "U" THEN

= "E" THEN

■ "D" THEN

■ "C" THEN

■ "X" THEN

■ "Z" THEN

= "A" THEN

■ "Q" THEN

8 THEN U

199 THEN U

8 THEN H
319 THEN H

60T0 1488
■

:

REM *»
:

WRAP IT UP

1838

SVS 21248 :

60T0 1430

H=H+i

H=H+i

H=H+i

H=H-i :

H=H-i

H=H-i :

= 8

= 199

= 9

= 319

U=U-1

: U=U-1

: U=U+i

U=U+1

: U=U+1

: U—U~l

POKE BSET, PEEK<B8ET> AND 223
POKE BLOC, 21

PRINT '
:

END

•L";

Fig. 5-8. Listing of the program Sketch.

the eight compass directions by pressing W, E,

D, C, X, Z, A, or Q. Figure 5-9 shows the

layout of these keys, and the direction each one

will send the pen. Pressing the S key erases

your drawing and places the pen back in the

center of the screen—there's no need to turn

your TV set upside down and shake it.

When you finish playing, press the

spacebar to stop the program. Then settle

down for a little explanation of how it works.

5.10.1 Setting Up the Sketch Pad

Lines 1000-1340 should look pretty

familiar. You clear the screen and then set the

keyboard so all the keys will repeat when held

down long enough. Lines 1160-1190 load the

fast machine language routine to clear the bit

map. Then lines 1310-1340 set up bit mapping

and use the machine language clearing routine.

Lines 1360-1380 fill screen memory with

a color scheme for the bit map. Bits set to 0 will

93

Commodore 64 Graphics and Sound Programming

be cyan, and bits set to 1 will be black. Since

line 1340 filled the bit map with O's, the screen

turns cyan.

You'll store the pen's current horizontal

and vertical positions in the variables H and V.

Line 1430 sets these variables so the pen is

centered on the screen. Whenever the S key

gets pressed, the program will pop back up to

this line.

5.10.2 Drawing

Lines 1480-1520 use the formulas de

veloped in Sections 5.8 and 5.9 to turn on the

bit corresponding to the current pen position.

Putting a 1 in that bit causes the pixel at the

pen position to turn black.

5.10.3 Getting and Following Orders

Lines 1570-1580 wait for the sketcher to

press a key. Then lines 1630-1800 figure out

what to do with the keypress. A space sends

the program to line 1850, where it cleans up

shop and ends. Pressing S clears the bit map

and then puts the pen back in the center by

jumping back to line 1430.

Lines 1660-1730 change the pen's posi

ng. 5-9. Layout of the control keys used in Sketch, and the direction each one will send the pen.

94

Bit Mapped Graphics

tion if one of the eight movement keys has been

pressed. Referring to Figs. 5-6 and 5-9 should

help you understand these lines.

Lines 1750-1780 check to make sure the

pen doesn't fall off the screen. If a keypress

tries to push the pen off, these four lines pull it

back on. Finally, line 1800 loops on back to

draw the pen's dot on the screen.

Notice that any keys not included in the

program's command set will be ignored. Also,

the clean structure of this section makes it

easy to add new commands.

Lines 1850-1900 are a straightforward

end to the program. They reset the display to

text mode, and clear the screen. It's the same

way you ended Random Draw.

Take some time to play with Sketch. See

what interesting features you can add to it.

5.11 CHAPTER SUMMARY

This chapter has introduced some of the

techniques of bit mapped graphics. More

specifically, you should now know:

* How to represent 64,000 screen pixels

in an 8,000-byte bit map

* Where you usually store the bit map

when working in BASIC, and how to tell

VIC-II the location

* How to turn bit map mode on and off via

the register at VIC+17

* Why really fast bit mapped graphics

work often requires the use of machine

language routines

* How the screen memory is used to pro

vide color information for pixels in bit

mapped mode

* Some of the ways random numbers can

be used to create bit mapped designs

* How to find the byte and bit that control

an individual pixel in bit map mode

* How to set an individual pixel to either

of the two colors available in its block

At this point, you've been introduced to

the Commodore's three main graphics

capabilities: sprites, character graphics, and

bit mapping. In the next chapter, you'll look at

some odds and ends from the Commodore 64's

set of graphics tricks.

5.12 EXERCISES

5.12.1 Self Test

Answers can be found in Section 5.12.3

1. (5.1) Bit mapping lets you control

screen pixels with an

-byte bit map.

2. (5.2) When using BASIC, the bit map is

usually located in the half of

the first 16K of memory.

3. (5.3) Bit 5 of the register at

(memory location 53265) turns bit map

mode on and off.

4. (5.4) Why are machine language routines

often used with bit mapped graphics?

5. (5.5) In bit map mode, the two nibbles of a

byte of screen memory are used to

6. (5.6.3) Which lines of Random Draw set

the colors for the bit map?

7. (5.7) The command lets you

jump to a machine language subroutine

from BASIC.

8. (5.8) The relationship between bytes in

95

Commodore 64 Graphics and Sound Programming

the bit map and pixels on the screen is 4.

5.

9. (5.9) Setting a bit in the bit map to 1 gives

the related pixel the color that's in the 6.

nibble of a byte in screen 7.

memory. 8.

10. (5.10) What would happen to the program 9.

Sketch if line 1640 jumped to line 1480 10.

rather than to line 1430?

5.12.2 Programming Exercises

1. Change the program Random Draw so

it draws colored vertical lines at ran

dom on a black screen.

2. Change Sketch so that it makes lines

that are twice as wide. Warning: the

program will probably run slowly.

This is a case where a new program

design and/or machine language rou

tines would be warranted after you get

the slow version running.

3. This one may seem tough, but it's re

ally not too bad. You can use sprites

with bit map mode. Design a sprite

that looks like a pen, pencil, or brush.

Then change the program Sketch so it

looks as if your sprite is drawing the

lines.

5.12.3 Answers to Self Test

Answers may vary, especially with ques

tions #4 and #8.

1. 64,000; 8,000

2. Second

3. VIC+17

Speed

Set colors for an 8-by-8 pixel area of the

screen display

Lines 1300-1320

SYS

Arcane and strange, yet often useful

Upper

When a drawing was erased, the pen

would start up where it left off, rather than

at the center of the screen

5.12.4 Possible Solutions

to Programming Exercises

Once again, these solutions are based on

adding or changing lines in the programs men

tioned in the exercises.

1. Load in the program Random Draw.

Then type in these lines:

leee reh *** uertical random drah «m«

1310 : POKE SPOT, INT CRNDC1>*16> * 16
1380 SPOT = INT<RND<l>*ieeO) * 8 ♦ BASE
138S PATTERN = 36

1396 :

1393 FOR BYTE = 6 TO 7

1466 : POKE SPOT + BYTE, PATTERN
1463 NEXT BYTE

2. Load in the program Sketch. Then

type in these lines:

1668 REN *«* FAT SKETCH

1473 FOR X a H TO <H ♦ j

1476

1480 :

1496

1386

1316

1328 :

1323 :

: FOR

: UBF

HBF

: BIT

BYTE

POKE

NEXT

1326 NEXT X

V = U

= INT

= INT

= 7 -

TO <U +

CY/8> *

<X/8> *

1>

326 +

CY AND 7)

8

<X AND 7)

= BASE + UBF

BYTE,

V

♦ HBF

, PEEKCBYTE> 6R

<2fBIT)

96

Bit Mapped Graphics

1T68]

1T88 1

IF U >

IF H >

188 THEN

318 THEN

1888 60T0 14T3

3. Load

type

1688 REH «*

1291

1292

1293 1

1294 ■

1299 1

1296 :

129T :

1298 1

1298 :

IEH ««

B0R N

u ■-

H -

= 138

= 318

in the program Sketch.

in these lines:

• PENCIL

LOAD THE

■ 886 T6

READ SPDTA

SKETCH ***

SPRITE DATA

898

POKE N, SPDTA

IEXT N

1268 DATA

1261 DATA

1262 DATA

1263 DATA

1264 DATA

1269 DATA

1266 DATA

126T DATA

1268 DATA

1268 DATA 1

6, 1,

6,

6,

6,

iJ

6,

13,

16,

48

2t!

6,

, 24,

, 86,

, 128,

6,

, 129,

, 182,

, 48,

, 128,

224,

24,

6,

6,

24,

86,

128,

6,

8,

6,

6,

8,

6,

6,

3,

T,

, 24,

, 16,

, 96,

> 126,

3*
12,

48,

182,

6,

8,

189,

68,

248,

8,

Then

48

12

2

12

48

182

6

6

6

6

12T6

12T1

12T2

1381

1382

1383

1384

1393

1336

1397

1338

1333

1488

1481

1482

1931

1932

1933

1334

1S3S

1936

1S3T

1338

1339

18T1

18T2

18T3

DATA
:

:

REH *

PDKE

POKE

POKE

POKE

POKE

POKE

POKE
:

:

REH *
i

SH =

RS =

POKE

POKE

POKE
;

:

POKE

POKE

POKE

182,

*» SET

2648,

UIC+39

UIC+29

UIC+23

0,

THE

14

, 8

, 1

, 1

UIC, 184

UIC+1,

UIC+21

H» MOUE

H + 24

CSH >

188

,1

THE

8

SPRITE CONTROLS

:REH

:REH

:REH

:REH

:REH

:REH

:REH

SET *8'S PNTR

PAINT IT BLACK

EXPAND HDRZNTL

EXPAND UERTCAL

INIT H6RZ POS

INIT UERT POS

SPRITE MO 6N

SPRITE

: SM = I

239>

UIC, SH +

UIC+16

UIC+1,

UIC+21

UIC+23

UIC+29

<RS *

, -RS

su

, 8

, 8

, 8

: REf

:REf

1 + 9

t 236 >

1 SPRITE H8 OFF

1 EXPANSION OFF

97

Chapter 6

More

Graphics Tricks

This chapter will be a little different from the

previous five. I'll touch lightly on a larger

number of graphics features. The program dis

cussions will be slimmed down so more topics

can be covered.

Here are the areas you'll be looking at:

sliding sprites over and under background

graphics, putting text onto a bit mapped dis

play, flying a sprite with a joystick, detecting

collisions between sprites and other graphics

objects, two more color modes for character

graphics, and multicolor bit mapping. There's

lots to deal with, so let's dive right in ...

6.1 SPRITE TO BACKGROUND PRIORITY

Back in Chapter 3, Section 3.5 sprite to

sprite display priorities were discussed. When

two or more sprites overlap on the screen,

sprites with lower numbers have higher dis

play priorities. For example, sprite #3 will

appear in front of sprite #5.

There is a register at VIC+27 (memory

location 53275) that controls sprite to

background priorities. Background means any

display that's not part of a sprite: characters

and bit mapped images. Each sprite has a bit

allocated to it in the register at VIC+27. Bit 0

controls sprite #0; bit 1 controls sprite #1,

and so on.

If a sprite's bit is set to 1, that sprite has

lower priority than any background it runs into.

The sprite will appear to go behind the

background. If a sprite's bit is set to 0, the

sprite has higher priority than the background.

It will pass in front of the background.

Take a look at Fig. 6-1. It shows one

setting of the sprite to background control

register. To set sprites to background priori-

99

Commodore 64 Graphics and Sound Programming

Value stored at VIC+27=128+16+8+1 =153

Bit

value"*
Bit

number

128

7

1

64

6

0

32

5

0

16

4

1

8

3

1

4

2

0

2

1

0

1

0

1

Sprites #1, #2, #5, & #6 will appear in front of background images.

Sprites #0, #3, #4, & #7 will appear behind background images.

Fig. 6-1. This setting of the sprite-to-background control register means that sprites #1, #2, #5, and #6 will appear in front of

background images, while the other sprites will appear behind background images.

ties, start by putting Ts in the bit positions VIC+27.

that correspond to sprites you want to have Figure 6-2 is a listing of the program Over

lower priorities. Then add up the bit values of and Under. It uses changing priorities to show

those bits, and poke the resulting number into a sprite orbitting a block of text. Type it in,

1000

1010

1020

1030

1040

1030

1060

1070

1080

1090

1100

1110

1120

1130

1140

1130

1160

1170

REN *
;

;

REN *

PRINT

PRINT

PRINT

PRINT

FOR N

k* OUER AND UNDER ***

» DRAM THE CENTRAL SHAPE

"L"; :REN
"1MMMMM

"nnnnnnnnni":

■V'i -REM

= 1 TO 6

: PRINT "Id

NEXT

PRINT
:

;

REN *
-

N

"B"; :REN

* SET UP THE

CLEAR AND CENTER
•■Mill11:

DRAU IT IN CYAN

annum";

BACK TO WHITE

SPRITE

100

KH

jepunpueJ9AQoiej6ojdamJO6uj)sn2-9

aN3
z

N3333SBV313W33:-..H..IN13d
AlI30I3d13S33M33=9'12+3Ift

JJO31I3dSM33=9'TZ+3ID

QN3ONVdnNV313*»

9NIA1J330WM33:99£T

AlI30I3d3X9dM33:3d'lZ+3Ift

AlI30I3d39NVH3W33=3d-T

N0U333I039NVH3M33=3Q-

33IOd

3)IOd

M33
1

2

9199

3X9d

=3d

=30

t3N901*13*•9*£TN3H13A93A8JI

31)914

T-=3A83A9-9£T-3ftOH

OTt-TN3H1...i=$dXJI

Sd)l139

ilQ+C3Ifl>X33d'31<k33l9d
11A1JM33:9£T91T■3(I9H

AlI30I3daN39)ia/31iadSM33:9

NO113331<1HlVd31I3dSM33:T

31I3dS3H1A1J**

N99ft31I3dSM33:T'T2+3Ift
SOd133ft9ttM33:9£T'T+3Ift
S9d280H8»U3&:*>9T'31A
AM39UaU01*M33:2T'6£+3Ift

31NdVIVOOt*W33:£T'Of82
0N892I9X3V19U3H:9'££+3Ift

■tillmiJimnLI^H*Ok7CC"~

N

fiSZ'N33l9d
VIVOaV91M33=^68912£8=N

1X31

30.

1

1

=3d

=30

1433

•

i

3X0d

3X9d

33l9d

33l9d

3X9d

3)t0d

31ft

1X3N

30.J

88CT

91ST

09CT

9SST

9*£T

9££T

82CT

9TST

99ST

06fT

99frT

09»-T

9CfrT

9£?T
ef^T
QQPT

98£T

99£T

91£T

99£T

9££T
Of£T

9££T

OZ£T

OT£T

99£T

862T

082T

91ZT

092T

OCZT

8f2T

9£ZT

022T

0T2T

882T

06TT

98TT

s>)oui

Commodore 64 Graphics and Sound Programming

save it, and then run it. Pressing the spacebar

will end the program.

As mentioned at the outset, this chapter

will have shortened program explanations.

That way, more topics and programs will fit.

Let's take a brief look at Over and Under.

The first module draws a large square,

using reversed cyan spaces and cursor motion

commands. The next module sets up a simple

medium gray sprite.

Next comes the main program module.

Lines 1360-1410 move the sprite to the right or

the left, depending on the current value of a

direction variable, DR. A keypress during the

motion ends the program by setting the flag

BYEBYE to True.

After a set of moves, the direction and

sprite to background priority are changed. It's

amazing how the simple priority switch can

change our perception of the sprite's motion. It

looks as if the sprite is orbitting the central

square, rather than just moving from side to

side.

6.2 USING TEXT WITH

A BIT MAPPED DISPLAY

Back in the last chapter, in Section 5.8,

you got to see the strange way bytes in a bit

map correspond to the screen display. The set

up doesn't make much sense when you're try

ing to draw lines. It does come in handy when

you want to add text characters to bit mapped

material. Let's do a little review to see why.

In bit mapped mode, eight consecutive

bytes of memory control an area on the screen

eight pixels wide and eight pixels high. Each

byte controls a row of this image block: the

first byte controls the topmost row, the second

byte the next row down, and so on.

Character information is stored in the

same format. Eight consecutive bytes of mem

ory form a character that's eight pixels wide

and eight pixels high. The first byte controls

the topmost row of the character, the second

byte the next row down, and so on. Patterns for

512 characters are provided in the built-in

character ROM, and you can also design your

own.

In order to place a character on a bit

mapped screen, you just transfer its eight

bytes to an eight byte section of the bit map.

Figure 6-3 is a listing of a program that does

just that. The imaginatively named Bit Mapped

Text takes character patterns from the built-in

ROM and puts them onto a bit-mapped display.

Let's take a brief look at it.

The first section of the program initializes

a number of constants and variables. It also

sets the keyboard up so all keys will repeat.

The next section, lines 1170-1180, switches

the display over to bit map mode.

The next two segments create a Jackson

Pollack painting. Lines 1230-1250 set the col

ors for the bit map. Colors for 0 bits are chosen

at random, while all bits set to 1 will be black.

Then lines 1300-1320 fill the bit map itself with

random values.

Lines 1370-1380 wait for a keypress. If

the key pressed is a space, the program jumps

to its last module and ends. Lines 1400-1410

make sure the key is a letter, number, or

punctuation mark.

The next program module figures out the

display code for the pressed key. Then the

built-in character ROM is brought into mem-

102

More Graphics Tricks

1OOO REH ««* BIT MAPPED TEXT «**

1010 :

1020 :

1030 REN *» INITIALIZE UARIOUS STUFF

1040 :

1030 PRINT "U"; :REN CLEAR SCREEN

1060 POKE 630, 120 :REH ALL KEVS REPEAT
1670 ROM = 33248 :REM CHARACTER ROM

1000 BASE = 0192 :REM BIT MAP BASE

1090 CURSR = BASE :REM BIT MAP CURSOR

1100 UIC = 33249 :REM GRAFIX CHIP
1110 BLOC = UIC+24 :REM LOCATES BM

1120 BSET = UIC+1T :REM SETS BMM

1130 :

1140 :

1130 REM «» TURN ON BIT MAP MODE

1160 :

1170 POKE BLOC, PEEKCBLOC) OR 6

1160 POKE BSET, PEEK(BSET) OR 32

1190 :

1200 :

1210 REM *» SET BIT MAP COLORS RANDOMLY

1220 :

1230 FOR SL = 1024 TO 2023

1240 : POKE SL, INTCRNDC1) * 13) + 1

1250 NEXT SL

1260 :

1270 :

1200 REM ** FILL BIT MAP WITH GARBAGE

1290 :

1300 FOR BMLOC = BASE TO BASE + 7999

1310 : POKE BMLOC, INTCRNDC1) * 236>

1320 NEXT BMLOC

1330 :

1340 :

1330 REM «* GET A LETTER, NUMBER, OR

PUNCTUATION MARK
1360 :

1370 GET KP$

1390 IF KPS = '"• THEN 13T0

1390 IF KPS = " " THEN 1790
1400 IF ASC<KP$> < 32 THEN 1370
1410 IF ASCCKPS) > 93 THEN 1370
1420 :

103

Commodore 64 Graphics and Sound Programming

1430 :

1440 REN ** FI6URE OUT THE DISPLAY CODE
1430 :

1460 ADJFAC = CASCCKPS) > 63)
1470 DSCODE = ASCCKPS) + CADJFAC « 64)
1400 SA = RON + CDSCODE » 8)
1490 :
1300 :

1310 REN «* BRIN6 CHAR RON INTO MEMORY
1320 :

1330 POKE 36334, PEEKC36334) AND 234
1340 POKE 1, PEEKCD AND 231
1330 :

1360 :

1370 REN *» CHAR PATTERNS TO BIT NAP
1300 :

1390 FOR BYTE = 0 TO 7

1600 : POKE CURSR ♦ BYTE,

PEEK CSA + BYTE)
1610 NEXT BYTE

1620 :
1630 :

1640 REN ** LET CHAR RON 60

1630 :
1660 POKE 1, PEEKCD OR 4
1670 POKE 36334, PEEKC36334) OR 1

1600 :
1690 :

1700 REN «• ADJUST CURSOR AND LOOP BACK
1710 :

1720 CURSR = CURSR +8

1730 IF CURSR = BASE + 8000 THEN

CURSR = BASE
1740 60T0 1370
1730 :

1768 :

1770 REN ** BACK TO TEXT DISPLAY & END
1788 :

1798 POKE BSET, PEEKCBSET) AND 223

1880 POKE BLOC, 21
1818 :

1828 PRINT "L";
1838 END

Fig. 6-3. Listing of the program Bit Mapped Text.

104

ory. Lines 1590-1610 copy the eight character

pattern bytes into the bit map, and then the

character ROM is let go. The next section

updates the cursor variable, which keeps track

of our position in the bit map, and then loops

back to get another keypress. So much for

explanation. If you haven't done so already,

type the program in, save it, run it, and ex

periment with it.

6.3 JOYSTICKS

You can plug two standard video gamejoy

sticks into your Commodore 64. Let's see how

you can get at the information that comes

More Graphics Tricks

from a joystick. Then you'll use that informa

tion to fly a sprite.

A joystick has four direction switches,

which you can label with compass directions as

shown in Fig. 6-4. At any time, none, one, or

two switches may be activated. For example, if

you push the joystick north, switch 0 is acti

vated. If you push it southwest, switches 1 and

2 are activated. If you don't push it at all, no

switches are activated. There's also a fifth

switch on the joystick, and it's used as a fire

button.

Each switch is connected to a bit in a

special input/output location in the computer.

Fire

button

North I

Switch #0

Switch #4

West ■

Switch #2 _

East

Switch #3

Switch#1

Fig. 6-4. A joystick and its five switches, as seen from above with limited x-ray vision.

105

Commodore 64 Graphics and Sound Programming

Bit value-*

Bit number-*

128

7

64

6

—

32

5

16

4

Switch #4

Rre

button

8

3

Switch #3

East

4

2

Switch #2

West

2

1

Switch #1

South

1

0

Switch #0

North

Bits 5, 6, 7 used for other purposes

Fig. 6-5. How the five joystick switches connect to the lower five bits of the input/output register at memory location 56321 or

56320.

late the bits you're interested in checking.

Based on the results, you can figure out new

values for a sprite's position and move it

around the screen. Programmers are always

looking for the quickest, cleverest way to read

a joystick. Just remember, no matter how

weird the joystick-reading code looks, it's just

trying to translate the bit values into horizontal

and vertical movement information. In the next

section, a program that uses one of these quick

and clever techniques will be discussed. But

first, you'll take a short course in collision

detection.

6.4 THINGS THAT GO

BUMP ON THE SCREEN

It's useful to know when objects collide

The five switches of the joystick plugged into

control port 1 are connected to the lower five

bits of the input/output register at memory

location 56321. Likewise, the five switches of

the joystick plugged into control port 2 are con

nected to the lower five bits of the input/out

put register at memory location 56320. See

Fig. 6-5.

By the way, these input/output locations

are also used by the computer's operating

system to scan the keyboard. Because of some

complications caused by this keyboard scan

ning, strange things can happen with a joystick

plugged into control port 1. So, if you're just

using one joystick, plug it into control port 2.

You can tell what's happening to ajoystick

by reading the data from the corresponding

input/output register. When a switch is not with one another on the screen. With previous

activated, the corresponding bit will be set to

1. When the switch is activated, the bit will be

set to 0. For example, if you push the joystick

to the east, it will activate switch 3, so bit 3 of

the input/output byte will be set to 0. If you

press the fire button, that activates switch 5,

small computers, this wasn't easy. The Com

modore 64 has special built-in hardware to

detect collisions.

Sprite to sprite collisions are recorded in

a register at VIC+30 (memory location

53278). Each bit of the register corresponds to

so bit 5 will be set to 0. Figure 6-6 gives some a sprite. Any sprite involved in a collision gets

more examples of this. its bit set to 1. For example, if sprite #2 bumps

By using the AND function, you can iso- into sprite #7, bits 2 and 7 of VIC+30 will be

106

set to 1. The bits will stay set until you read

information from the register with a peek

statement.

Sprite to data collisions are recorded in a

register at VIC+31 (memory location 53279).

Data means parts of characters or bit mapped

images. Again, each bit of the register corre

sponds to a sprite, and that bit is set to 1 if its

sprite is in a collision. For example, if sprite

#5 bumps into parts of a character, bit 5 of

VIC+31 will be set to 1. The bits stay set until

the contents of the register are read.

Figure 6-7 lists the program Joyous Colli

sion. It gives examples of joystick reading and

sprite to sprite collision detection. Type it in,

save it, and then run it. Two sprites will ap-

More Graphics Tricks

pear, as shown in Fig. 6-8. Use a joystick

plugged into control port 2 to fly the face into

the weather vane. Notice what happens when

they collide. Pressing the fire button will end

the program.

Let's review this program. Lines 1050-

1090 load the data for both sprites. Lines

1380-1540 then set the necessary VIC regis

ters and turn both sprites on.

Now comes the program's main segment.

Line 1590 reads the value of the input/output

location at 56320. Remember, that's the reg

ister that talks to the joystick plugged into

control port 2. Line 1600 uses an ANDing op

eration to see if the fire button's been pressed.

If it has, the program exits via the cleanup

— — —
1

— — —
1

— — —
0

— — — 0

1

1

1

1

1

0

0

1

1

0

1

1

0

1

1

1

Joystick pushed

north

Joystick pushed

southwest

Joystick pushed

west

& fire button

pressed

Fire button

pressed

Fig. 6-6. Examples of what the lower five bits of memory location 56321 look like when an attached joystick is manipulated in

various ways.

107

80L

ainiodviva

aiNiodviva

X3V18

dIH3

aNnaa

83IHd

Til

811

8318

va9

noNamaNvdn

9

9
8ZT

9

9

9

9

8ZT

9

9

9

96

8*

9£

96T

£

9

96

Z6T

8ZT

'9T'
'PQ*
'9T'
'9frT*
'9£'
'9£'
'8*-T'
'9T'
'►8'
'9T'

'£6T'
'8
'Z8T'
'£6T'
'8
'Z8T'
'8
'Z8T'
'8
'6ZT'

viva

8

8

Z

8

ZZ

Zt

8

Z

8

8

8

8
8

ZT

8Z

66

Z6T

96
8

£

T

i*i3a:

143a:

143a:

U3a=

8311

8

'8
'9
'9
'9T
'ZSZ
'9T
'9
'9
'9
'9

'9
'Z6T
'96
'SP
'ZPt
'66
'£
'99
'Z6T
'Z6T
'9

PI

£T

9'£
8

Ead8

'8
'9fi
'9T
'IT
'♦■8
'fiCZ
't*8
'IT
'9T
'9S
'8

'92T
'62T
'89
'£6T
'62T
'89
'8
'Z8T
'8
'8
'£££

viads'

9S6

viad

'JP2Z
'8*82

C+3Ift

^Z££—

135»»

'8
'8
'8
'T
'9T
'1ZT
'9T
'T
'8
'8
'8

'8
'£
'9
'2T
'£TT
'86T
'Z6T
'89
'£
'£
'8

N

N33IOd

812£8=N

33l8d

3)l9d

3X0d
OKft

H39I
•

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva
z

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva

viva
l

1X3N
z

z

SHOJ

..H..INIad

3iiad83Hiaval**

N0ISI1103snoAor

z

143a
•

z

H3a

8Z*T
BTfT

86£T

89£T

81£T
89£T

9££T

9££T

9Z£T

9T£T

99€T
Q62T

98ZT

81ZT

88ZT

8£2T

QPZJ

8£ZT

OZZJ

8TZT

88ZT

86TT

88TT

82.TT

89TT

OSTT

8*TT

8£TT

8ZTT

8TTT

88TT

868T

888T

82.8T

898T

8£8T

OfOT

8£8T

8Z8T

8T8T

888T

6u!LULuej6oJdpunospubsomdejgt^9eJopotuaiOQ

More Graphics Tricks

1430 :

1440 POKE UIC120 REM «0 HORIZONTAL
1430 POKE UIC+2,160 REM «i HORIZONTAL
1460 POKE UIC+1,130 REM 111 UERTICAL
14T0 POKE UIC+3,126 REM 111 UERTICAL
1400 :

1490 POKE UIC+39,3 :REM HO IS CYAN
1300 POKE UIC+48,7 :REN 111 IS VELLOU
1310 POKE UIC+29,2 :REN ONLV 111 IS
1320 POKE UIC+23,2 REM DOUBLE-SIZED
1330 :

1340 POKE UIC+21,3 REM TURN BOTH ON
1330 :

1360 :

1370 REN *» FLV SPRITE HO
1300 :

1390 JR = PEEK (36320> REM CTRL PORT 2
1600 IF <JR AND 16> = 0 THEN 1070
1610 HD = SGN<JR AND 4) - SGNCJR AND 8>

1620 UD = SGNCJR AND 1) - SGNCJR AND 2>
1630 :

1640 POKE UIC, PEEKCUIO + HD
1630 POKE UIC+1, PEEK<UIC+1> + UD
1660 :

1670 :

1600 REM » IF NO COLLISIONS LOOP BACK
1690 :

1700 IF PEEK<UIC+30> = 0 THEN 1490
1710 :

1720 :

1730 REN ** COLLISION ■: 111 GOES WHITE

AND HO UIBRATES RAINBOWS
1740 :

1730 POKE UIC+40, 1
1760 :

1770 HUE = PEEKCUIC+39> AND 13
1700 HUE = HUE + 1

1790 IF HUE = 0 THEN HUE = 1

1000 POKE UIC+39, HUE
1010 :

1020 GOTO 1390
1030 :

1040 :

1030 REN *» CLEAN UP AND END

109

Commodore 64 Graphics and Sound Programming

I860

1870

1880

1890

1900

1910

Z

POKE

POKE

POKE

END

UIC+21,

UIC+29,

UIC+23,

0

0

0

Fig. 6-7. Listing of the program Joyous Collision.

routine that begins at line 1870.

Lines 1610 and 1620 take the value of

location 56320 and figure out the net horizontal

and vertical motion. They do it with a quick,

tricky technique. ANDing isolates individual

bits corresponding to individual switches in

the joystick. The SGN function returns values

of 0 or 1, depending on whether the expression

in parentheses comes out to be 0 or greater

than 0. Depending on how the joystick is

moved, HD will be given one of the values -1,

0, or 1. The same goes for VD, the variable

that holds values for vertical motion. These

motion values are then used to update sprite

#0's position.

Line 1700 then checks the sprite to sprite

collision register. If the sprites aren't bumping

Fig. 6-8. Initial image shown by the program Joyous Collision.

into one another, the program loops back to

reset the original sprite colors and look at the

joystick again. If there is a collision, lines

1750-1800 change the sprites' colors before

going back to read the joystick.

6.5 MULTICOLOR CHARACTER MODE

Back in Chapter 3, Sections 3.1 through

3.4, you learned how to create multicolor

sprites. By trading off a little horizontal reso

lution, you were able to get more colors into a

sprite design.

There's also a multicolor mode for

character displays. Again, you trade off a little

horizontal resolution for a wider range of col

ors. You can use this multicolor mode with

either the built-in ROM characters or charac

ters you design from scratch.

As with multicolor sprites, multicolor

characters use two bits to choose a color.

Thus, four double-wide pixels will make up

each row of the character. You may remember

that two bits can take on four possible values:

00,01,10, and 11. That lets you use four colors

in a multicolor character.

Setting bit 4 of the register at VIC+22

(memory location 53270) to 1 turns on mul

ticolor character mode. Resetting the same bit

to 0 turns it off. To add even more control (and

•complication), each location on the screen has

the option of going with multicolor mode or

110

not. If a screen location's corresponding color

map location has bit 3 set to 1, the character

will show up in multicolor mode. If bit 3 of

color memory is set to 0, the character will

show up in its normal (two color) fashion.

Confusing? Here's another way to look at.

Assume that you've turned on multicolor

character mode by setting bit 4 ofVIC+22 to 1.

More Graphics Tricks

If you put a number from 0-7 in a color memory

location, the corresponding screen location

will show its character normally. But, if you

put a number from 8-15 into the color memory

location, the character will show up in mul

ticolor mode.

Next detail: if multicolor character mode

is on, and a character's color memory location

Bit ^

value

ByteO

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

i

128 64

:

32 ; 16 8 ! 4
1

2 j 1
i

I

1

1

1

;

i

i

i

!

Number

codes

1 i 0

Background

#0 color

(screen color)

Background

#1 color

Background

#2 color

Lower 3

bits of color

memory

color

Fig. 6-9. A coding form you can use to design multicolor characters.

111

Commodore 64 Graphics and Sound Programming

Bit

value
128 • 64 32 . 16 8

Number
codes

ByteO •o:. r. .. . o 107

Bytel 1-..-0' 107

Byte 2 •o*. : .1.* .'.0 107

Byte 3 67

Byte 4

Byte 5 o. -

193

233

Byte 6 1. 233

Byte 7 233

o ! o
I

■o ! 1

Background

#0 color

(screen color)

Background

#1 color

Background

#2 color

Lower 3

bits of color

memory

color

Fig. 6-10. An example showing how the multicolor character coding form can be used.

is set to a number from 8-15, where do the four ground register 2. Finally, if the bit pair is 11,

colors come from? If the bit pair is 00, the color the color comes from the lower 3 bits of the

comes from the value stored at VIC+33, the character's color memory location,

screen color register, also called background If you stop and think for a moment, you'll

register 0. If the bit pair is 01, the color comes realize that all characters displayed in mul-

fromVIC+34, background register 1. If the bit ticolor mode will share three colors. Poking

pair is 10, the color comes from VIC+35, back- new values into the three background registers

112

will quickly change a whole screen of mul

ticolor characters.

You can use multicolor mode with the

built-in characters, but the results aren't very

interesting. It's more fun to design your own

multicolor characters. Figure 6-9 is a coding

form you can use for this task. Figure 6-10 is an

example of how this form can be used. I rec

ommend using colored markers to represent

the four colors, but in a black-and-white book, I

have to resort to shading.

More Graphics Tricks

Figure 6-11 lists a program that demon

strates multicolor characters. Type it in, save

it, and then run it. Pressing any of the keys 1,2,

3, or 4 will change one of the four colors used in

the display. Holding one of those keys down

will cause continuous color change. Notice

how quickly the picture shifts when a new val

ue is poked into one of the background regis

ters.

Playing around with this program will

teach you a lot about multicolor character

1OOO

1010

1020

1030

1040

1030

1060

1070

1000

1090

1100

1110

1120

1130

1140

1130

1160

1170
1180

1190

1200
1210

1220

1230

1240

1230

1260

1270

1200

REN **» CUSTOM MULTICOLOR «*»
•

REM «* LOAD IN HEM

DBASE = 12288 REM

FOR CHAR - 1 TO 2

: FOR BYTE = 0 TO

: SPOT = CBASE

: READ CDTA

A, B, ft SPACE

NEI4 CHARS START

7

+ CHAR*8 + BVTE

: POKE SPOT, CDTA

: NEXT BVTE

NEXT CHAR

FOR BVTE ■ 0 TO 7

: SPOT = CBASE +

: POKE SPOT, 0

NEXT BVTE

DATA 107, 107, 107,

DATA 67, 107, 107,

DATA 233, 233, 233,

DATA 193, 233, 233,

REN ** CLEAR SCREEN

CHAR SET, TURN

32*8 + BVTE

67

107

193

233

, BRIN6 IN NEW

MULTICOLOR ON

PRINT "Li"; REM CLEAR SCREEN

113

Commodore 64 Graphics and Sound Programming

1290 UIC ■ 93248 :REN GRAFIX CHIP
1300 POKE UIC+24, 29 :REN NEU SET IN
1310 POKE UIC+22, PEEK<UIC+22> OR 16

1320 :

1330 :

1340 REN *» SET UP DISPLAY

1330 :
1360 PRINT "lilinWiIiIiIiliM"; :REM DOUN 10

1376 PRINT "U1111U"; = REN OUER T
1380 PRINT "K"; :REH START WITH COLOR 9

1390 :

1400 FOR N ■ 1 TO 26

1410 : PRINT "ftB";
1420 : IF N O 13 THEN 1440

1430 : PRINT:PRINT:PRINT "fellllllJ";

1440 NEXT N
1490 :

1460 :
14T0 REN «* PLAV BUTTON PUSH

1480 :

1490 COLNAP = 99296

1900 BG = COLNAP + <10 * 40> + T

1910 POKE 690, 128 REM ALL KEYS REPEAT

1920 :

1930 GET KPS

1940 IF KPS = "" THEN 1930
1990 IF KPS ■ " " THEN 1830

I960 :

1378 BKRE6 = 0

1980 IF KPS = "1" THEN BKREG = UIC+33

1990 IF KPS = "2" THEN BKREG = UIC+34

1600 IF KPS - "3" THEN BKREG = UIC+33

1610 IF KPS = "4" THEN 60SUB 1T20

1620 IF BKRE6 = 0 THEN 1930

1630 :

1640 HUE = <PEEK<BKREG) AND 19> + 1

1690 IF HUE = 16 THEN HUE = 0

1660 POKE BKREG, HUE

16T0 GOTO 1930
1600 :

1690 :
1T00 REN «* SUBROUTINE TO CHANGE ALL

LETTERS' COLOR HAP COLORS

1710 :

114

More Graphics Tricks

1720

1730

1740

1730

1760
1770

1780

1790
1000

1010

1020

1030
1840

1030

1860

1870

1880

1090

HUE ■ CPEEKCOG) AND 13> + 1

IF HUE > 13 THEN HUE - 8
z

FOR SPOT = 86 TO CBG + 106)

: POKE SPOT, HUE

NEXT SPOT

RETURN
:

;

REN *« CLEAN UP AND END

PRINT "L"1;
POKE UIC+22, PEEKCUIC+22) AND 239

POKE UIC+24, 21

PRINT "11" :REN WHITE TEXT

POKE UIC+33,0 :REN ON BLACK BKGRND
:

END

Fig. 6-11. Listing of the program Custom Multicolor.

mode. The program is pretty simple. The first

segment loads in two custom character pat

terns and the pattern for a space. Then the

screen clears; VIC is set to point to the new

character set; and the multicolor mode comes

on. Lines 1360-1440 print two lines full of the

new characters.

Now comes the workhorse section. The

program gets a keypress. If it's a space, the

program ends. If it's a 1, 2, 3, or 4, the appro

priate color storage location(s) is (are)

changed. Then the program loops back for an

other keypress.

One technique you might make note of:

when reading a color from memory, an AND

operation is used to screen out unwanted bits.

This happens in lines 1640 and 1720.

6.6 EXTENDED BACKGROUND

CHARACTER MODE
There is one more way you can display

characters: extended background mode. In this

mode, you can use any one of the 16 colors for a

character's background. As usual, the charac

ter itself can take on any of the 16 colors.

There are four memory locations used

with extended background mode: background

registers 0-3, located at VIC+33, VIC+34,

VIC +35, and VIC+36 respectively. That's

memory locations 53281 through 53284. Each

of these locations can be set to any one of the

16 colors.

As you've seen, getting more colorful dis

plays usually means cutting down on some

thing else. Extended background mode is no

exception. Only 64 different characters can be

displayed, rather than 256. This is because bits

6 and 7 of each character code are used to

select one of the four background registers.

That leaves just six bits to code the character,

and the laws of binary arithmetic say that six

115

Commodore 64 Graphics and Sound Programming

bits produce 64 different values.

Let's look at some practical details. Put

ting a 1 into bit 6 of memory location 53265,

VIC+17, turns on extended color mode.

Placing a 0 into the same bit position turns the

mode off. The character's color is stored in

color memory, as in the normal character

mode. The character code is stored in screen

memory, also as usual. However, only the first

64 character patterns are used. If the first two

bits of a character code are 00, the background

color comes from background register 0, at

VIC+33. If the first two bits of the code are 01,

10, or 11, the background color comes from

background register 1, 2, or 3, respectively.

For example: if extended background

color mode is in effect, poking a 5 into a screen

memory location will put an E on the screen.

The character's background color will come

from background register 0, at VIC+33. Since

that register sets the background color for the

whole screen, the E will appear quite ordinary.

Poking a 69 into a screen memory lcoation will

also put an E on the screen, but the character's

8-by-8 area will fill with a background color

based on the contents of VIC+34. Likewise,

poking a 133 will produce an E with local

background color based on the contents of

VIC+35. Poking 197 into screen memory will

produce an E with a background color based on

the contents of VIC+36.

Figure 6-12 lists the program Extended

Background, which gives a demonstration of

this mode. Type it in, save it, and then run it.

Each column of dashes shares the same back

ground register. Pressing one of the keys 1-4

will change the contents of one of the back

ground registers. Pressing 5 will change the

color of the character itself. Once again, if

you really want to understand a new mode,

spend some time modifying the program.

Here's a brief explanation of Extended

Background: lines 1050-1070 clear the screen

and turn on extended background mode. Lines

1120-1250 set up four columns of the same

character, a dash (display code 45). However,

1OOO

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

REN
:

;

REH

*** EXTENDED BACKGROUND ***

k» TURN ON

PRIHT "L";
UIC

POKE
z

REM

= 53248

EXTENDED BKGRD MODE

:REN CLEAR SCREEN

:REM 6RAFIX CHIP
UIC+17, PEEKCUIC+17) OR 64

** SET UP

SCREEN = 1024

COLMAP = 55296

SS =

CS =

SCREEN +

COLMAP +

DISPLAY

(16 « 40> + 16

C1O * 40> + 16

116

More Graphics Tricks

1160

1170

1180

1190

1200

1210

1220

1230

1240

1230

1260
1270

1280

1290

1300

1310

1320
1330

1340

13S0

1360

1370

1380

1390
1400

1410

1420
1430

1440

1430

1460

1470

1480

1490

1300

1310

1320

1330

1340

1330

1360

1370

-

HUE = PEEK<CS> + 1

IF HUE = 16 THEN HUE = 0
:

FOR RM = 0 TO 3

FOR N = 0 TO 3

: POKE SS + RU»40 + N«2,

: POKE CS + RU*40 + N*2,
: NEXT N

NEXT RM
™

REM »» PLAV BUTTON PUSH

43 + 64»N

HUE

POKE 630, 128 REM ALL KEYS REPEAT

GET KPS

IF KPS ■ "" THEN 1320

IF KPS - " " THEN 1320
:

BKREG = 0

IF KPS = "1" THEN BKREG =- UIC+33

IF KPS = "2" THEN BKREG = UIC+34

IF KPS = "3" THEN BKREG =
IF KPS = "4" THEN BKREG -

IF KPS = "3" THEN 1170

IF BKREG = 0 THEN 1320
:

= UIC+33
- UIC+36

HUE = (PEEK(BKREG) AND 13> + 1

IF HUE = 16 THEN HUE = 0

POKE BKREG, HUE

GOTO 1320
;

REN «* CLEAN UP AND END
■

PRINT "L";

POKE UIC+17, PEEKCUIC+17]

PRINT "I!" REM WHITE

i AND 191

TEXT

POKE UIC+33,0 REM ON BLACK BKGRND

END

Fig. 6-12. Listing of the program Extended Background.

117

Commodore 64 Graphics and Sound Programming

each column differs in bits 6 and 7, so the

columns of dashes will look to different regis

ters for background colors.

The next section is another big keyboard

polling loop. A space ends things, the numbers

1-5 change colors as noted above, and anything

else is ignored. Finally, the last module cleans

things up by turning extended background

mode off, clearing the screen, and setting the

character color to white.

6.7 MULTICOLOR BIT MAP MODE

There is one last Commodore 64 display

option: multicolor bit map mode. As you may

have guessed, this graphic mode lets you use 4

colors in an 8-by-8 block of the bit map display.

You've probably also guessed the cost: hori

zontal resolution cut in half.

How do you set this mode up? First, you

put a 1 into bit 5 of VIC+17 to turn on bit map

mode. Then you tell VIC where the 8K bit map

is located by setting bit 3 of VIC+24. In most

cases, that bit will be set to 1. So far, these are

just the steps you used to set up standard bit

mapping. Finally, you set bit 4 of VIC+22 to 1,

which turns on multicolor mode.

The correspondence between bytes in the

bit map and the dots on the screen display is

the same as in standard bit map mode. How

ever, two bits are used to choose a color for a

double-wide pixel. As you've learned, two bits

1000

1010
1020

1030
1040
1050

I860

1070

1030
1090

1100

1110

1128
1130

1140

1150
1160
1170

1130

1190

1200

1210
1220

REM
;

'.

REM

#** COLOR]BIT

** INITIflLIZE

PRINT "Ti

POKE

ROM

BflSE

650, 128

= 53248

» 8192
CURSR = BflSE
VIC-

BLOC

BSET
'.

I

REM

POKE
POKE

REM
:

= 53248

■ VIC+24
« VIC+17

** TURN ON

: REM
: REM

:REM
:REM
■ REM

:REM
= REM

REM

BIT

MRPPED TEXT ***

VfiRIOUS STUFF

CLERR SCREEN

fiLL KEVS REPEfiT

CHRRRCTER ROM

BIT MRP BflSE
BIT MflP CURSOR

GRRFIX CHIP

LOCRTES BM
SETS BMM

MflP MODE

BLOC, PEEK<BLOC> OR 8
BSET, PEEK<BSET> OR 32

m SET BIT MRP COLORS RflNDOMLV

118

6W

0891

029T

31A31X3N0T9I
<3JLAg-I+«S>>l33d'31Ag+asanoSHOd:009T

ZOi8=31A3dOd06ST
03ST

naoxsnyaiibdauto**wsa0^st

09ST

0SSI

IS3UNU<T»l33d'I3>i0d0i»ST

ONO<K>:9£»G3d'W89S3!>IOd

:08ST

<8*3aoosa>+woa=ys

+<*d>i>3s«*saoosa
<<$dx>osy>*oydraB09w

3U00Ayidsiashjlmosanoid**wsa

H3H1S6<<$d>l>08ydl0TH
N3H128><$d)O38ydl00t»T

06ZTN3H1..„«$dXdl0681
0Z8TN3H1..,.«$d>1dl088T

*d>»1300<i8T
:098T

>iyywHouwniciNridao'aaawnN'd3ii3iy130**W3aesei

:088T

oonwa1X3N02s!

oss*a>aNauNi'ooiwa3xod:eisi
666Z+3sus013sua=ooiwaaod008t

:062T
soyaayohumduu11a11id**usa©sst

:QlZl

:092T

IS1X3N0S2T
9T*O+(ST.*a>(Md>lNI>HS3><0d:0t»2T

829201*20I■ISaOd0821

Commodore 64 Graphics and Sound Programming

1640 REM ** LET CHflR ROM GO

1650 :

1660 POKE 1, PEEK<1> OR 4
1670 POKE 56334.. PEEK < 56334) OR 1

1630 :

1690 :

1700 REM ** fiDJUST CURSOR flND LOOP BflCK
1710 :

1720 CURSR * CURSR + 8
1730 IF CURSR « BflSE + 8QQ0 THEN CURSR = BfiSE
1740 GOTO 1370

1750 :

1760 :
1770 REM *« BflCK TO TEXT DISPLflV & END

1780 •

1790 POKE BSET, PEEK(BSET) FIND 223
1800 POKE BLOC, 21
1810 :

1820 PRINT "T;

1830 END

Fig. 6-13. Multicolor Bit Mapped Mode.

can code 4 values. Depending on the value of a

bit pair, color information for a given 8-by-8

area can come from one of four locations.

If the bit pair is 00, color comes from

background register 0 at VIC+33. That's the

screen background color. If the bit pair is 01,

color comes from the upper nibble of the cor

responding screen memory location. If the bit

pair is 10, color comes from the lower nibble of

the same byte of screen memory. And if the bit

pair is 11, color comes from the corresponding

color memory location.

To return to a standard text display from

this mode, just reverse the setup steps. That

is, put a 0 into bit 5 ofVIC+17, put a 0 into bit 4

of VIC+22, and reset VIC+24 with the value

21.

6.8 CHAPTER SUMMARY

Whew, this has been a packed chapter. I

wanted to wrap up a number of loose ends

before going on to the next major topic:

sounds. Here's an overview of what's been

covered:

* Moving sprites in front of and behind

other images by setting sprite to

background priorities

* Placing characters on a bit mapped dis

play by transferring eight bytes from

character memory

* Reading a joystick by looking at the

lower five bits of memory locations

56320 and 56321

* Using joystick information to move a

sprite around

120

More Graphics Tricks

* Detecting collisions between sprites

and between sprites and other images

* Displaying characters in multicolor

mode, where four colors can be used in

each character

* Displaying characters in extended

background mode, where all 16 colors

are available for local background duty

* Setting up multicolor bit map mode,

where 4 colors can be used in each

8-by-8 block of the bit map, although

horizontal resolution gets cut in half

6.9 EXERCISES

6.9.1 Self Test

Answers are in Self Test Section 6.9.3.

1. (6.1) Which sprites will move behind back

ground images if the value 85 is poked into

the register at VIC+27?

2. (6.2) Give an instance when the strange

layout of bytes in the bit map comes in

handy.

3. (6.3) Which direction is the joystick being

pushed if the input/output register at 56321

holds the value 26?

4. (6.4) If the sprite to sprite collision register

contains the value 170, which sprites have

collided?

5. (6.5) Setting bit of the register

at VIC+22 to turns on mul

ticolor character mode.

6. (6.6) In extended background mode, bits

and of a charac

ter's display code select one of four back

ground registers.

7. (6.7) Which 3 bits need to be dealt with to

set up multicolor bit map mode?

6.9.2 Programming Exercises

These should be quick and easy to code.

Possible solutions are shown in Section6.9.4.
Question 2 will test your ability to examine

printed programs critically.

1. Change the program Over and Under

so that the sprite moves in a vertical,

rather than horizontal, orbit.

2. Study the program shown in Fig. 6-13.

It is a revision of the Bit Mapped Text

program that makes the text charac

ters come out in color, upside down,

on a black background. Identify the

lines that make these cause these

changes.

3. Change the program Joyous Collision

so the joystick operates in reverse.

That is, moving it west moves the

sprite to the east, moving it north

moves the sprite south, and so on.

6.9.3 Answers to Self Test

1. sprites #0, #2, #4, and #6

2. when you want to put characters onto a bit

mapped display

3. northwest

4. sprites #1, #3, #5, and #7

5. 4; 1

6. 6; 7

7. bit 5 of VIC+17 (53265); bit 3 of VIC+24

(53272); bit 4 of VIC+22 (53270)

6.9.4 Possible Solutions

to Programming Exercises

1. Load in the program Over and Under.

Then type in these lines:

121

Commodore 64 Graphics and Sound Programming

leee rem *** uertical ouer & under *** * 16
1260 POKE UIC, 172 :REM *»0 HORZ POS 1600 : POKE CURSR + BVTE,
1270 POKE UIC+1, 60 :REM HO UERT POS PEEK CSA + T - BVTE>

1370 : poke uic+i, peek<uic+i> + dr 3. Load in the program Joyous Collision.

2. The following lines are the ones that Then type in these lines:

caused the appropriate changes: 1000 rem »** weird collision «**
1000 REM »«* COLOR BIT HAPPED TEXT *«• 1610 HD = SONCJR AND S> - S6NCJR AND 4>
1240 : POKE SL, (INTCRND(l) » 15> + 1) 1620 UD = S6NCJR AND 2> - S6N<JR AND 1>

122

Chapter 7

Starting

To Make Sounds

Enough has been said about silent pictures

already. Let's make some noise. In this chap

ter, I'll give some short, snappy lectures on the

nature of sounds. You'll learn about frequency,

amplitude, and waveforms. You'll take a good

look at SID, the powerful sound chip Commo

dore has put into your computer. You'll learn

how to set some of SID's registers. I'll talk

about music and then close up with a familiar

melody.

7.1 SOME ASPECTS OF SOUND

Things that vibrate create sounds. The

classic beginner's sound experiment involves a

tuning fork. If you have one, give it a good

whack. Listen to it a moment, and then touch

it. Feel the vibrations? If you don't have a

tuning fork handy, here's a neat little substi

tute experiment:

Get two pieces of dental floss or string,

each about two feet long. Then take a rack out

of an oven. Attach one end of a piece of floss to

one corner of the rack, then attach the second

piece to another corner. Wrap the lose end of

one piece of floss around your left index finger,

then wrap the end of the other piece around

your right index finger. You may want to do the

next step in private. Stick your fingers in your

ears. Bump the rack against something.

Watch, feel, and listen. See Fig. 7-1.

7.1.1 Waves

One complete vibration makes a wave.

Things that vibrate make lots of waves. These

waves like to travel. They travel really well in

metal and stretched pieces of floss. They even

travel in the air. When sound waves make it to

your ear, they crash into sensitive little hairs,

123

Commodore 64 Graphics and Sound Programming

Fig. 7-1. You might want to try this noble sound experiment in

the privacy of your own room.

causing the hairs to vibrate. The vibrating

hairs are connected to nerves, which send

messages to your brain, and you hear sounds.

7.1.2 Frequency, or Pitch

There are a number of ways to describe

waves. One way is to count how many waves,

or cycles, occur in a given amount of time. This

count is known as the frequency of the waves.

For example, if you went to the ocean, you

could count the number of waves that occur

during one minute. If there were twelve

waves, you'd say that the frequency was 12

cycles per minute.

Sound waves occur at a faster rate. You

measure the frequency of a sound in cycles per

second, also known as hertz. Something vi

brating 440 times a second will create a sound

with a frequency of 440 hertz.

What we call the pitch of a sound depends

on its frequency. Sounds with a low pitch have

low frequencies; high-pitched sounds have

high frequencies.

People can hear sounds with frequencies

between about 15 and 20,000 hertz. A piano

can create sounds with frequencies between

33 and 4186 hertz. Your C-64 computer can

create sounds with frequencies between .06

and 3995 hertz.

You can draw pictures of sound waves.

Figure 7-2 shows waves made by tuning forks.

The waves have different frequencies.

7.1.3 Amplitude: Volume, or Loudness

You can also measure the size of a wave.

This is called amplitude. Large waves are more

powerful than small waves, as any surfer will

testify. With sound waves, amplitude trans

lates into volume, or loudness. The larger the

amplitude, the louder the sound.

Frequency and amplitude operate inde

pendently of one another. Two sounds can

share the same pitch and have different loud

ness levels. Likewise, two sounds can be

equally loud but have different pitches. Figure

7-3 shows waves that have the same frequency

but different amplitudes.

124

O
n
e
c
y
c
l
e

A

1
0
0
c
y
c
l
e
s
/
s
e
c
o
n
d

O
n
e
c
y
c
l
e

4
0
0
c
y
c
l
e
s
/
s
e
c
o
n
d

0
1
s
e
c

"
O

♦
t

0
1

s
e
c

O
n
e
c
y
c
l
e

0
1
s
e
c

2
0
0
c
y
c
l
e
s
/
s
e
c
o
n
d

- -

O
n
e

c
y
c
l
e

1
,

I

/1
n

/I
'A
'f
i
/1

1
[j

|/
lm

'\
J\

l
8
0
0
c
y
c
l
e
s
/
s
e
c
o
n
d

V.
O1

se
c

StartingTc>Make
r
o

e
n

Fi
g.

7-
2.

P
i
c
t
u
r
e
s
of

w
a
v
e
s
m
a
d
e
b
y
t
u
n
i
n
g
fo

rk
s
at

di
ff

er
en

t
f
r
e
q
u
e
n
c
i
e
s
.
T
h
e
w
a
v
e
s

al
l
h
a
v
e
t
h
e
s
a
m
e

a
m
p
l
i
t
u
d
e
.

T
i
m
e

2
0
0
h
e
r
t
z

.
0
1
s
e
c

.
0
1
s
e
c

Fi
g.

7
-
3
.
P
i
c
t
u
r
e
s
o
f
t
u
n
i
n
g
f
o
r
k
w
a
v
e
s

t
h
a
t
h
a
v
e
t
h
e
s
a
m
e
f
r
e
q
u
e
n
c
y
b
u
t
d
i
f
f
e
r
e
n
t
a
m
p
l
i
t
u
d
e
s
.

1
c
y
c
l
e

T
3 a I

.
0
1
s
e
c

T
r
i
a
n
g
u
l
a
r
w
a
v
e
f
o
r
m

litude Amp-

1
c
y
c
l
e

A
/ 1

20
0
Hz

;
^
S

^
/
^

Ti
me

S
a
w
t
o
o
t
h
w
a
v
e
r
f
o
r
m

1
*

1
s
e
c

1
c
y
c
l
e

A

2
0
0
H
z
A

T
i
m
e

R
e
c
t
a
n
g
u
l
a
r
w
a
v
e
f
o
r
m

1
c
y
c
l
e

.
0
1
s
e
c

C
o
m
p
l
e
x
w
a
v
e
f
o
r
m

r
o 4

Fi
g.

7
-
4
.
F
o
u
r
m
o
r
e
w
a
v
e
f
o
r
m
s
:

tr
ia

ng
ul

ar
,
s
a
w
t
o
o
t
h
,

r
e
c
t
a
n
g
u
l
a
r
,
a
n
d
c
o
m
p
l
e
x
.

Commodore 64 Graphics and Sound Programming

7.1.4 Waveforms

Waves can have many different shapes.

The waves shown in Figs. 7-2 and 7-3, created

by tuning forks, are known as sine waves. The

waves have regular, simple shapes. A particu

lar wave shape is called a waveform.

Figure 7-4 shows four more waveforms: a

triangular wave, a sawtooth wave, a rectangu

lar wave, and a complex wave. Different

waveforms create sounds with different tonal

qualities, or timbres. A clarinet playing middle

C at a certain volume sounds different from a

piano playing the same role at the same vol

ume. The clarinet's waveforms are different

than the piano's.

Waveforms are independent of frequency

and amplitude. If you look again at Fig. 7-4,

you'll notice that I've drawn all four waves with

the same frequency and amplitude.

7.2 BRIEF INTERLUDE

Your Commodore 64 can make a lot of

different sounds. But this versatility has a

price: complexity. It'll take us a while to learn

how to set all the sound controls.

In the meantime, just to prove that the

C-64 can produce sounds, run the short pro

gram listed in Fig. 7-5. When you tire of its

haunting melody, press any key (other than the

stop key) to end it. I'll resist the temptation to

explain how this program works; once you

learn enough about SID, you'll be able to figure

it out on your own.

7.3 SID, THE SOUND INTERFACE DEVICE

You've been introduced to VIC-II, the

Commodore 64's great graphics chip. Well, get

ready to meet SID, the C-64's equally great

sound chip. SID stands for Sound Interface

Device. Commodore has put a sophisticated

sound and music synthesizer onto a single in

tegrated circuit chip. Let's go over some of

SID's features.

To start with, SID actually has three

separate sound synthesizers. They're also

called voices. You can use any one, any two, or

all three of these voices to create sounds.

There are a number of ways to control

1606

1616

1620

1036

1040

1050

1060

1070

1080

1090

1100

REN

POKE

POKE

POKE

FOR

NEXT

GET

*** MINIMAL

54296,15

54278,240

54276,33

N = 1 TO 100

POKE 54273,

N

KPS

IF KP$ = "" THEN

POKE

POKE

54276,0

54296,0

SIREN

:REM

:REM

:REM

:REM

MKtt

UOLUME ON HI

SET SUSTAIN

NOTE ON

SIREEEN

15 + ABS (56 - N>

:REM

1040

:REM

:REM

MORE ?

NOTE OFF

UOLUME OFF

Fig. 7-5. Listing of the program Minimal Siren.

128

Starting To Make Sounds

each voice. To begin with, each voice has a

device called a tone oscillator. By setting the

proper registers, you can make the tone oscil

lator produce sound waves at any frequency

between 0 and 3995 hertz. That's about the

same pitch range that pianos have.

Each voice also has a waveform genera

tor. You can choose one of four waveforms for

a voice: triangle, sawtooth, pulse, or noise.

Triangular and sawtooth waves are shown in

Fig. 7-4. Pulse is just another name for the rec

tangular waveform, also shown in Fig. 7-4.

The noise waveform is a random signal that

sounds like a TV set once all the stations have

signed off. It comes in really handy for sound

effects. It's also called white noise.

Finally, each voice has its own envelope

generator and amplitude modulator. These

strangely-named devices let you control the

loudness of each voice in a very precise way. If

you pluck a note on a guitar, you'll notice that

the loudness changes throughout the life of

that note. The envelope generator and ampli

tude modulator let you control the loudness of

a SID voice in a similar way.

Each SID voice uses 7 registers. SID con

tains a total of 29 registers. The other eight

registers let you control the overall loudness

of all the voices, mix and synchronize the

voices in funny ways, filter out certain fre

quencies, add in sounds from outside sources,

read game paddles, and monitor the output of

voice #3.

So much for a brief introduction to SID.

Let's go into more detail about setting some of

its registers.

7.4 GENERAL SID REGISTER LAYOUT

The 29 SID registers occupy memory lo

cations 54272-54300. As I did with VIC, I'll

usually refer to specific registers by their rel

ative position in the register set. For example,

the register at 54278 will be referred to as SID

+6.

Appendix L shows the complete SID reg

ister layout. The first seven registers control

voice #1, the next seven control voice #2, and

the third set of seven control voice #3. The

next four registers control filters and overall

volume. The last four registers control mis

cellaneous functions.

I'll refer to the seven registers that con

trol a voice as a voice set. The three voice sets

are set up almost identically. I'll point out any

exceptions as I go along.

7.5 SETTING A FREQUENCY

The first two registers of a voice set con

trol that voice's frequency. That is, the regis

ters at SID and SID+1 set the frequency for

voice #1, SID+7 and SID+8 set it for voice

#2, and SID+14 and SID+15 set it for voice
#3.

Two 8-bit registers give a total of 16 bits.

Values between 0 and 65535 can be rep

resented with 16 bits. So, there are 65536

possible frequency settings for each voice.

How do you figure out the values to poke

into the two frequency registers? First you do

a little conversion. You divide the frequency in

hertz by a special factor and then round it off to

the nearest whole number. That'll give you the

SID frequency setting. The special factor's

based on the computer's clock speed. The fac

tor is .060952, give or take a millionth. For ex

ample, say you want a frequency of 440 hertz.

Rounding off 440 divided by .0609592 to the

129

Commodore 64 Graphics and Sound Programming

nearest whole number gives a frequency set

ting of 7218.

Now you have to convert the frequency

setting into two values to poke into the fre

quency registers. Due to the complexities of

bases 2, 10, and 16, you divide the setting by

256. The integer part goes into the second

frequency register (SID+1, SID+8, or

SID+15). It's known as the high byte of the

frequency setting. The remainder from the di

vision goes into the first frequency register

(SID, SID+7, or SID+14). It's known as the

low byte of the frequency setting.

Let's apply this second step to our 440

hertz tone. You got a frequency setting of

7218. Divide that by 256. The integer part of

the answer is 28; the remainder is 50. If you

want to set voice #1 so it produces a 440 hertz

sound, you poke 28 into SID+1 and 50 into

SID.

7.6 SETTING A WAVEFORM

The upper nibble—bits 4, 5, 6, and 7—of

the fifth register in each voice set selects a

waveform for that voice. SID+4 is the register

used for voice #1, while SID+11 and SID+18

perform the chore for voices #2 and #3 re

spectively.

Setting one of these bits to 1 selects the

waveform associated with that bit. Bit 4

selects a triangle wave; bit 5 selects a saw

tooth wave; bit 6 selects a pulse (rectangular)

wave; and bit 7 selects a white noise. See Fig.

7-6.

If you choose the pulse waveform, you

need to set one more item: the pulse width.

Let's see how that's done.

7.7 SETTING THE PULSE WIDTH

In a rectangular, or pulse, waveform, the

amplitude is either high or low, with no inter

mediate values. The percentage of a wave

cycle where the amplitude is high is known as

the pulse width. Figure 7-7 shows pulse

waveforms with four different pulse widths.

Registers 3 and 4 of a voice set control the

pulse width if the pulse waveform is selected.

What values do we poke into these two regis

ters for a given pulse width? Take the pulse

width (expressed as a percentage) and multiply

by 40.95. Round that number off, and you've

got the SID pulse width setting.

Bit value •

Bit number •

128

7

Noise

64

6

Pulse

32

5

Saw

tooth

16

4

AAA
/ V V \

Triangle

8

3

—

4

2

—

2

1

—

1

0

—

Fig. 7-6. Bits 4, 5,6, and 7 of a voice's fifth register are used to select that voice's waveform.

130

i

■
■
■
■
■
■

P
u
l
s
e
w
i
d
t
h

1
c
y
c
l
e

A T
i
m
e

=
2
5
%

1
c
y
c
l
e

T
i
m
e

P
u
l
s
e
w
i
d
t
h
=
7
5
%

0 "
D

1
c
y
c
l
e

T
i
m
e

P
u
l
s
e
w
i
d
t
h
=
5
0
%

(
s
q
u
a
r
e
w
a
v
e
)

"5
.

T
i
m
e

P
u
l
s
e
w
i
d
t
h
=
1
0
0
%

(
c
o
n
s
t
a
n
t
d
c
o
u
t
p
u
t
)

I I I

C
O

O 2 I C0
F
i
g
.
7
-
7
.
F
o
u
r
p
u
l
s
e
w
a
v
e
f
o
r
m
s
,
e
a
c
h

w
i
t
h
a
d
i
f
f
e
r
e
n
t
p
u
l
s
e
w
i
d
t
h
.

Commodore 64 Graphics and Sound Programming

Now divide the pulse width setting by

256. Poke the integer part of the result into the

fourth register of the voice set. Put the re

mainder into the voice set's third register.

Here's an example. Let's say you want to

set a pulse width of 75% for voice #3. 75 times

40.95 is 3071.25, which rounds off to 3071.

3071 divided by 256 gives 11, with a remainder

of 255. So you'd put the value 11 into SID+17,

and put the value 255 into SID+16.

7.8 SETTING A VOICE'S VOLUME

VARIATIONS: THE ADSR ENVELOPE

Back in Section 7.3,1 mentioned that each

voice has an envelope generator and amplitude

modulator. These devices give you precise

control over volume during a sound's lifetime.

The secret to this control is the ADSR en

velope.

ADSR stands for attack decay sustrain re

lease. These words define four stages of a typi

cal sound's life. During the first stage, the

volume goes from zero to a maximum value.

The attack rate determines how long this rise

in volume takes.

During the second stage, the volume

drops from its maximum value to a lower level.

The decay rate determines how long this drop

takes.

The level that the volume drops to is

called the sustain level. It can be expressed as a

percentage of the maximum volume attained.

During the third stage of the sound's life, vol

ume stays at this level.

4

i

i

i

i

i

i

i
i .

!/

1st

stage

A

>

/

I

2nd

stage

A-,

i

i X1

1 1

1

1

Time x

3rd

stage

A

_ mmm — «.

Sustain

4th

stage

I

I

!

1

1

\

i

, Maximum

i —. —» — volume

i level

Sustain
, \ic\\\ imo

level

Zero

level

Fig. 7-8. The four stages of a typical note's life, showing the volume changes that make up the ADSR envelope.

132

Finally, the note stops. The rate at which

it drops from the sustain level to zero volume

is called the release rate.

Take a good look at Fig. 7-8. It shows the

four stages of a typical note's life. Compare the

picture to the description given above. Take

the time to understand this concept. Can you

see why the term ADSR envelope is used?

The sixth and seventh registers of each

voice set define the ADSR envelope. When a

voice is triggered, the values in these ADSR

registers control the voice's envelope genera

tor. In turn, the envelope generator controls

the amplitude modulator. The amplitude mod

ulator takes the waves coming from the tone

oscillator and waveform generator and adjusts

their amplitude. Figure 7-9 diagrams this pro

cess.

Starting To Make Sounds

7.8.1 Setting Attack and Decay Rates

Values representing attack and decay

rates are stored in the sixth register of each

voice set. The attack rate value goes in the

upper nibble, and the decay rate value goes in

the lower nibble.

A nibble can store values from 0 through

15. Figure 7-10 shows how long it will take a

sound to rise from zero to peak volume for the

16 different attack rate settings. For example,

if the value of the nibble is 12, it'll take almost a

full second for the volume to rise to its peak

value.

Figure 7-11 shows rates of decay for the

16 possible nibble settings. They're shown as

the time it will take a sound to fall from peak

volume to zero volume. The time spent getting

to a given sustain level will be based on these

Tone

oscillator

Registers 1 & 2

Waveform

generator

Registers 3, 4, & 5

Envelope

generator

Registers 6 & 7

Amplitude

modulator To further

processing

Fig. 7-9. Information from a voice's tone oscillator, waveform generator, and envelope generator comes together at the

amplitude modulator; the resulting signal then goes on for final SID processing.

133

Commodore 64 Graphics and Sound Programming

Attack rates

Nibble

value

0

1

2

3

4

5

6

7

Seconds to go

from zero

to peak

volume

.002

.008

.016

.023

.037

.055

.066

.078

Nibble

value

8

9

10

11

12

13

14

15

Seconds to go

from zero

to peak

volume

.098

.244

.489

.782

.978

2.933

4.889

7.822

Fig. 7-10. The 16 attack rates built into SID and selected by the upper nibble of a voice's sixth register.

rates. For example, let's set the sustain level

to 80% of peak volume, and the decay value to

6. Using these values, it will take 20% of. 199,

or about .04 seconds, for the volume to drop

from its peak to the sustain level.

Once you've picked values for the attack

and decay rates, you need to figure out the

value to poke into the register. Just multiply

the attack value by 16and then add in the decay

value. For example, set the attack value for

voice #1 to 12 and the decay value to 6. 12

times 16 is 192, and adding 6 gives 198. So

you'd poke the value 198 into the attack/decay

register at SID+5.

7.8.2 Setting the Sustain

Levels and Release Rate

Values representing the sustain level and

release rate are stored in the seventh register

of each voice set. The upper nibble holds the

sustain value, and the lower nibble holds the

decay value.

Sustain levels are set at a percentage of

the peak volume. Figure 7-12 shows the per

centages for the 16 possible nibble values. For

example, setting a sustain level of 9 means the

sound will drop to 60% of its peak volume.

Setting a sustain level of 15 will hold the vol

ume at its peak value.

134

Decay Rates

Starting To Make Sounds

Nibble

value

0

1

2

3

4

5

6

7

Seconds to go

from peak

volume to

zero

.006

.023

.047

.070

.111

.164

.199

.235

Nibble

value

8

9

10

11

12

13

14

15

Seconds to go

from peak

volume to

zero

.293

.733

1.467

2.347

2.933

8.800

14.667

23.467

Fig. 7-11. The 16 decay rates built into SID and selected by the lower nibble of a voice's sixth register.

Sustain Levels A—^

Nibble

value

0

1

2

3

4

5

6

7

% of peak

volume

0.0

6.7

13.3

20.0

26.7

33.3

40.0

46.7

Nibble

value

8

9

10

11

12

13

14

15

% of peak

volume

53.3

60.0

66.7

73.3

80.0

86.7

93.3

100.0

Fig. 7-12. The 16 sustain levels built into SID and selected by the upper nibble of a voice's seventh register.

135

Commodore 64 Graphics and Sound Programming

Release Rates

Nibble

value

0

1

2

3

4

5

6

7

Seconds to go

from peak

volume to

zero

.006

.023

.047

.070

.111

.164

.199

.235

Nibble

value

8

9

10

11

12

13

14

15

Seconds to go

from peak

volume to

zero

.293

.733

1.467

2.347

2.933

8.800

14.667

23.467

Fig. 7-13. The 16 release rates built into SID and selected by the lower nibble of a voice's seventh register.

Release rates are shown in Fig. 7-13.

This chart is just like Fig. 7-11, which showed

decay rates. The times shown tell how long it'll

take a sound to fall from peak volume to zero

volume. The actual time a sound will spend

falling from the sustain level to zero volume is

based on these rates. For example, say the

sustain level is 50% of peak volume, and you

choose a release value of 10. Then it'll take

50% of 1.467, or .733 seconds, for the volume

to drop to zero.

Once you pick values for sustain and re

lease, just multiply the sustain value by 16 and

add the release value. That's the number to

poke into the seventh register. For example,

assume you choose a sustain value of 3 and a

release value of 11 for voice #2. 3 times 16 is

48, and adding 11 gives 59. Which is the value

to poke into the register at SID+13.

7.9 TURNING A SOUND ON AND OFF:

GATING THE ENVELOPE GENERATOR

The fifth register of each voice set is a

waveform controller. As you saw in Section

7.6, its upper nibble is used to select a

waveform. Bit 0 of these registers is used to

turn a sound on and off. It does this by gating,

or triggering, the voice's envelope generator.

It's called a gate bit.

Setting a gate bit to 1 tells that voice's

envelope generator to start an ADSR cycle.

The volume rises from zero to its peak value

and then falls to the sustain level. It stays there

until the gate bit is reset to 0. When that

136

happens, it triggers the release action, and

volume falls to zero.

When you're writing sound programs in

BASIC, it's a good idea to combine choosing a

waveform with gating the envelope generator.

For example, poking SID+4 with the value 17

will select the triangle waveform and start an

ADSR cycle. Poking SID+4 with 16 will keep

the triangle waveform selected and start the

release part of the ADSR cycle. Figure 7-14

shows poking values that'll trigger and release

a sound.

7.10 THE MASTER VOLUME CONTROL

Let's review a bit. SID has three voices.

Starting To Make Sounds

Each voice has its own tone oscillator and

waveform generator, which produce wave

forms at set frequencies. These signals go to

the voice's amplitude modulator, where the

volume gets modified. Each voice uses an en

velope generator to control its amplitude mod

ulator.

The signals from the three voices then go

to an overall volume control. This device mix

es the voices together and sets SID's overall

output volume. Sometimes a voice will make a

detour to a filtering device on its way to the

overall volume control, but you don't need to

think about that right now.

Waveform

Triangle

Sawtooth

Pulse

Noise

Poke this

value to

trigger

17

33

65

129

Poke this

value to

release

16

32

64

128

Fig. 7-14. Values to poke into a voices fifth register to trigger or release the ADSR envelope while selecting a waveform.

137

Commodore 64 Graphics and Sound Programming

Bits 0-3 of the register at SID+24 set the

overall volume. It can be set to any value be

tween 0 and 15. A setting of 15 gives maximum

yolyme, while a setting of 0 leads to no output.

That concludes this preliminary look at

SID. Let's now take a quick look at musical

note frequencies and then close up with a

musical program.

7,11 THE FREQUENCIES

OF MUSICAL NOTES

Most of our culture's music is based on

scales that contain twelve notes: C, C#, D,

D#, E, F, F#, G, G#, A, A#, andB. A twelve

note scale forms an octave. As you move up

from one octave to the next, the frequencies

double. That is, if an A note in one octave has a

frequency of 440 hertz, the A note in the next

pctave up will have a frequency of 880 hertz.

As you move from one note to the next

within a scale, the frequency is the 12th root of

2 times the previous note's frequency. That

way, after 12 notes (an octave) the frequency

doubles.

In a standard scale, known as concert

pitch, the A note in the fourth octave is set to

440 hertz. Once that value is known, all the

Other frequencies can be figured.

Appendix M gives frequencies in hertz for

lejght octaves of musical notes, based on con

cert pitch. It also gives the SID frequency

setting for each note, and breaks that setting

up into a high and a low byte.

Let's say you want voice #1 to produce a

C note in the fourth octave (also known as

jniddle C). According to the chart, that note

Has a frequency of 261.6 hertz. By poking 16

into SID+1, and 195 into SID, you can set

voice 1 to produce notes at that pitch.

7.12 FINALLY: A LITTLE MUSIC

Now you're ready to put all of our SID

knowledge to work. Figure 7-15 lists the pro

gram Play Some Sounds. Type it in, save it,

and then run it. It uses voice #1 to play a scale.

Let's go over the program. The first seg

ment clears the screen and sets up two vari

ables: SID's starting address, and the factor

used to convert frequencies in hertz to SID

frequency settings.

The next segment sets up attack, decay,

sustain, and release values. The notes will rise

quickly to peak volume, stay there until the

gate bit is reset, then fall quickly to zero vol

ume.

Next, the overall volume level is set. You

also choose a duration for each note: Va second.

That's how long you'll let the note go before

triggering the release stage of an ADSR cycle.

The next segment reads frequencies from

the data statements and converts them into

values to poke into the frequency registers at

SID and SID+1. Review Section 7.5 if you're

wondering where all the formulas come from.

The program will end when a frequency of 0

gets read.

You've set the ADSR envelope, overall

volume, and frequency. Now it's time to play

the note. Line 1480 pokes SID+4 with a value

that sets the waveform and triggers the en

velope generator. Volume rises to a peak, de

cays to the sustain level, and then sits there

while a delay loop marks time. Line 1530 initi

ates the release period, and volume drops to

zero. Then it's back for another note.

All right, now it's your turn. Fiddle mer-

138

z-e*e'sese

1113SU38:

31A8-81U38:

31A8-IHU38:

183nN03U38:

'L'ZBZ'9'T92

IHJ'T+OIS
01J'OIS

9£Z«IHJ—08J

C9SZ/08J>INI

(JN3SD8J>INI

wiwa

S*8d

33IOd
=ou

=IHJ

-08J
06CTN3H18=08JJI

Z183HNIU38:

319NVI81U38:

A3N30038J91

1113SU38

3Uni9ndOlU38

S4N03SSNIM3a

unionasisvu9

1I13SU38:

3NI8U03U38:

AaSSdSU38:

iondoiusa:

1I13SUS8:

3NI8U03US8:

3131nousa:

3131nousa:

08J<IV38
2

9T=uajnwi

uaojsnvriiss*

:ion'pz+qis
:CT

:VS1

Nonvanoiss*

as'9+ais
S18+9T*1SS

9

ST

aw'c+ais

A3I<I+9T*3I1V

9

9

3dO13nN38SQV13S*

Z6S6899'

ZIZPZ

ssiaviavn9Nssassdniss»

***SONOOS3U0SAMld**

Z

*usa
2

z

32IOdi

=ion

=ana

*usa
2

z

33IOd

=as

=sia

=iss
2

33IOd
s<|V

=A3I0

=311V
z

*U38
z

2

=JN3

=ais

iNiad

*U38
:

z

*U38

QZPJ

QQPT

06£T

08£T

8J.ST
09£T

OC£T

8t^CT
Q££T

02£T

OT£T

99CT

96ZT
082T

81ZT
092T

0C2T

orzi

0£2T

OZZf
OTZT

88ZT

86TT

88TT

81TT

Q9TT

OCTT

OfrTT

8CTT
Q2TT

8TTT

88TT

868T

888T
8J.8T

899T
OCOT

9C9T
Q20T

9T9T

999T

01

Commodore 64 Graphics and Sound Programming

1436

1446
1430

1468

1476

1486

I486

1S66

1318

1328

1338
1348

1338

1366

1378

1388

1388
1688

1618

DATA

REN

POKE

FOR

NEXT

POKE

GOTO
*

REH
:

POKE
:

END

382.0, 448.8, 483.8, 323.3, 8

** PLAY THE NOTE, THEN 60 BACK

SID+4, MAUFRM + 1

TM = ± TO <DUR * T08>

TM

SID+4, MAUFRM

1348

*» CLEAN UP AND END

SID+24, 8 :REN UOLUNE OFF

Fig. 7-15. Listing of the program Play Some Sounds.

cilessly with this program. Change the fre

quencies, the ADSR envelope, the overall vol

ume, the waveform—anything you can think

of. There aren't any magic formulas to sound

making, you've just got to experiment. Try to

get an intuitive feel for various SID settings.

Have fun.

7.13 CHAPTER SUMMARY

This chapter has introduced you to sound

making on the Commodore 64. Let's see what

we've covered:

* Sounds, vibrations, and waves

* Frequency, amplitude, and waveforms

* SID's three voices, and the devices that

create each one: the tone oscillator,

waveform generator envelope gene

rator, and amplitude modulator

* The general layout of SID's 29 registers

* How to set a voice's frequency, wave

form, pulse width, and ADSR envelope

* How to turn a voice on and off by gating

its envelope generator

* How to set an overall volume level

* How the frequencies of musical notes

are determined

* How to use all of this information in a

program to create sounds

SID's power and versatility make sound

production as endless a field for invention as

VIC-II does with graphics. In the next chapter,

you'll look at more programs that use SID to

make music.

140

Starting To Make Sounds

7.14 EXERCISES

7.14.1 Self Test

Answers are in Section 7.14.3.

1. (7.1) Three ways to describe a sound wave

are by its , its ,

and its

2. (7.3) SID has separate

voices.

3. (7.4) The registers from SID+7 through

SID+13 control voice #

4. (7.5) By poking SID with the value 16 and

SID+1 with the value 39, we give voice#

a frequency of

hertz.

5. (7.6) Setting bit 7 of SID+18 to 1 selects

the waveform for voice #

6. (7.7) To give voice #3 a pulse width of

20%, you'd poke SID+17 with the value

and SID+16 with the value

7. (7.8.1) If a voice's attack rate setting is 3,

it'll take seconds to go from

zero to peak volume.

8. (7.8.2) To give voice #1 a sustain level

that's 40% of its peak volume and the

slowest available release rate, you'd poke

the value into SID +

9. (7.9) Bit 0 of each voice set's fifth register

is used to trigger that voice's

generator.

10. (7.10) Overall SID output volume is set by

the lower four bits of the register at

11. (7.11) If a 7th octave C note has a fre

quency of 2093 hertz, an 8th octave C note

will have a frequency of

hertz.

7.14.2 Programming Exercises

These are pretty open-ended: play, play,

play!

1. Change the program Minimal Siren so

it sounds like something from outer

space.

2. Change the program Play Some

Sounds so it glides up and down the

scale until you press a key.

3. Change the program Play Some

Sounds so voice #2 joins in. Have

voice #2 play sounds a few notes away

from voice #1.

7.14.3 Answers to Self Test

As usual, note that you may be able to

come up with better answers.

1. frequency (pitch); amplitude (loudness or

volume); waveform (timbre)

2. three

3. 2

4. 1; 10000

5. noise; 3

6. 3; 51

7. .023

8. Ill; 6

9. envelope

10. SID+24 (54296)

11. 4186

141

Commodore 64 Graphics and Sound Programming

7.14.4 Possible Solutions 1350 IF FRQ = 8 THEM Restore: goto i^4O
. B ... 1430 DATA 392.6, 440.0, 493.9, 523.3

to Programming Exercises 1433 DATA 523.3, 493.9, 440.0, 392.0
1436 DATA 349.2, 329.6, 293.7, 261.6, 0

1. Load in the program Minimal Siren. ±515 get kps

Then type in these lines: 131T IF KP$ ° "il THEN 1598 :REM EHD IT

3. Load in the program Play. Some

Sounds. Then type in these lines.

1000 REN *** TMO-UOICE SOUNDS ***

1155 POKE SID+12, AD :REN SET U-2

1205 POKE SID+13, SR :REN SET U-2

1363 U2FAC = 2f(5/12) :REN HARNNV?

1365 FRQ<2> = FRQ * U2FAC :REN U2 FQ

2 TnaH in th*> nrnaram Plav 9nrrtP 1482 ™I<2> = IHT<FRQ<2>/256> : REN U2z. Load in the program Flay borne ±4M FL0C2> = FRQC2) _ FH1C2>»256

bounds. Then type in these lines: i486 poke sid+t, flo<2> :ren u-2 lo-f
1400 POKE SID+8, FHK2) : REN U-2 HI-F

1000 REN «*» ROLLER COASTER *** 1405 POKE SID+11, UAUFRN + 1

1250 DUR = 1/50 :REN IN SECONDS 1535 POKE SID+11, UAUFRN

1000

1020

1030

1040

1050

1051

1052

REN

POKE

POKE

FOR

:

:

:

*«« FROGS FRON NARS ««

54270,164

54276,17

N = 1 TO 30

POKE 54273,

POKE 54273,

POKE 54273,

:REN SET

:REN NOTE

:REN FROG

1 + N*S

i+N

50 - N

*-

SUSTAIN

ON

CITV

142

Chapter 8

Some Fancy

Music Making

In the last chapter you learned about SID, the

Commodore 64's versatile sound chip. Now

you'll use this knowledge to make some in

teresting music. You'll teach the computer to

read notes and store the information in a per

formance array. Then you'll play the notes

through one of SID's voices. Finally, you'll

extend these techniques to music that uses all

three voices.

8.1 READING MUSIC

In the program Play Some Sounds, from

the last chapter, you specified musical notes by

their frequencies. The program used that value

to figure SID settings. Let's make things

easier by getting a program to play notes

specified by letter names, C, G#, etc., and

octave numbers. You'll need a reference table

similar to Appendix M in our program. Then

you can have the program read a note by letter

and octave, look up its SID frequency setting in

the table, and use that value to poke the SID

registers. But Appendix M is pretty long. Who

wants to do all that typing? Let's take a

shortcut.

8.1.1 Typing Shortcut:

Using a Reference Octave

In the last chapter, I mentioned that fre

quencies double as you move up an octave. For

example, an A note in the fourth octave has a

frequency of 440 hertz, which is twice the 220

hertz frequency of an A note in the third oc

tave.

You can use this fact. You'll make a refer

ence table that has the SID frequency settings

for the twelve notes in the highest octave,

octave 7. When the program reads a note, it

will see how many octaves it is below the

highest octave. Then it will divide the refer-

143

Commodore 64 Graphics and Sound Programming

ence setting by 2 for each octave of difference,

and round the final result to the nearest whole

number. Once you have this frequency setting,

you'll just divide it by 256. The integer part of

the answer is the high byte of the frequency

setting, and the remainder is the low byte.

Here's an example. Let's say the program

reads a note that's a second octave F#. That's

five octaves below the highest octave. The SID

frequency setting for a seventh F# is 48557.

Dividing that value by 2 gives you 24278.5.

After four more divisions, you end up with the

value 1517.4062, which rounds off to 1517.

Dividing by 256, you get 5 for the high byte of

the setting and 237 for the low byte. Checking

with Appendix M, you see that this method has

given us the correct values. Figure 8-1 shows

the letter names of the twelve notes in the

seventh octave, along with their frequencies in

hertz and the corresponding SID frequency

settings.

To create music you now need to specify a

note name and octave number for each note.

You can do this with strings. For example, you

can represent a fifth octave G# as

G#-5

A program can use string functions to extract

the note name and octave from data stored in

this form.

Note

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

Frequency

in hertz

2093.0

2217.5

2349.3

2489.0

2637.0

2793.8

2960.0

3136.0

3322.4

3520.0

3729.3

3951.1

SID frequency

setting

34334

36377

38539

40831

43258

45831

48557

51444

54502

57743

61177

64815

Fig. 8-1. The twelve notes of the seventh octave, to be used as a reference octave.

144

Some Fancy Music Making

8.1.2 Note Durations

In the program Play Some Sounds every

note lasted for the same amount of time. This

gets boring. You can include a duration number

for each note in a program's data statements.

Let's take a hint from written music and

set up a standard duration, called a beat. Then

each note's duration can be given as a number

of beats. For example, you can represent an F

note in the third octave that lasts for four beats

as a string and an integer:

F-3,4

How will the program make one note last for

two beats, and another last for three? There

are a number of ways to do this. One of the

most flexible is to use what I call performance

arrays.

8.2 PERFORMANCE ARRAYS:

A GUIDE TO EVERY BEAT

A performance array holds a SID value for

each beat of a song. A program might have a

number of different performance arrays. One

array could hold the low bytes for voice #l's

frequency setting, and another could hold the

high bytes. A third array could hold values for

voice #l's attack/decay register.

When it comes time for the program to

play all the notes, it will simply go through a

beat loop. Each time through the loop, that

beat's various SID settings will be pulled from

the performance arrays and poked into place.

ieee
1618

1020

1030

1040

1030

1060
M A?A
lu fU

1088

1098

1188
1118
1128

1138

1148
1138

1168
1178

1188

1198

1288

1218

1228

1238
1248

1238

1268

REM

:

REM

**» READ MUSIC **

«« SET UP SCREEN

PRIHT "L"; :REM

*

ft MARIABLES

CLEAR SCREEN
PRINT "tiliniilililllilUligFftDIMG";

SID
:

:

REM
:

DIM

FOR

:

NEXT
:

DATA

DATA

DATA

DATA

DATA
DATA

:

= 34272 :REM SOUND CHIP

*» SET UP REFERENCE ARRAYS

SBN<11>, HNSCii)

N - 0 TO 11
READ SBNCN)

READ NMSCN)

N

34334, C, 36377
38339, D, 40831
43238, E, 43831
40337, Fit, 31444

34302, Git, 37743
61177, All, 64813

REM DASED ON

REM NOTES IN

REM HIGHEST

:REM OCTAVE

, ctt

, DIt

, F
, 6
, A
, B

145

Commodore 64 Graphics and Sound Programming

1276 REM «* READ IN THE MUSIC AND
STORE IT IN ARRAVS

1280

1200

1300

1310

1320

1330

1340
1330

1360

1370

1300

1300
1400

1410

1420
1430

1440

1430

1466

1476

1466
1400

1300

1310

1320

1530

1340

1330

1366
1378

1388

1538

1688

1618

1628

1638

1648
1638

1666

1678

1688

1638

1788

1718

1728

1738

1748

1738
1768

DIN LFPC288), HFP<288>

EUENT = 1

READ HCS

PRINT ".";
IF NC$ = "XXX" THEN 1678

60SUB 2858 :REM CONUERT TO POKE *S

READ DUR
FOR N = 1 TO DUR

LFP<EUENT> ■ LFP
HFP(EUENT) ■ HFP
EUENT = EUENT + 1

NEXT N

GOTO 1330

REM ** THE MUSIC : NOTE-OCT, DUR

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

B-4, 4,

RES, 1,

A-4, 8,

D-3, 4,

C-5, 2,

6-4, 0,

6-4, 4,

B-4, 4,

RES, 1,

C-3, 8,

C-3, 2,

6-4,16,

D-3,

B-4,

RES,

C-5,

D-5,

RES,

C-5,

6-4,

B-4,

RES,

D-3,

XXX

4, C-3, 8

4, D-5, 4

1, B-4, 4
4, B-4, 2

4, A-4, 4
2, B-4, 4

8, RES, 1
4, A-4, 8

4, D-5, 4

1, B-4, 2
4, A-4, 4

REM «« SET ADSR, UOLUME, UAUEFORM

ATK = 0

DKV = 0

AD = ATK«16 + DKV

POKE SID+5, AD

REM QUICK ATTACK

REM QUICK DECAY

SST = 13 :REM SUSTAIN LOUD

RLS = 0 :REM QUICK RELEASE

SR = SST*±6 + RLS

POKE SID+6, SR

146

Some Fancy Music Making

1770 MLM

±780 POKE

±790 :

= 15 :REN MAX UOLUNE

SID+24, ULN

±800 UUFRM = ±6 : REN TRIANGLE NAME

±8±0 :

±820 :

±830 REN

±840 :

** PLAV THE MUSIC, THEN END IT

±850 PRINT "U";
±860 BEATLNGTH = ±0

±870 :

±880 f

±890

±900

1910

1920

1930

1940

1950 1

1960

"OR

IEXT

1970 POKE

1980 POKE

1990 END

2000

2010

2020

2030 REN

2040

2050

2060

2070 1

2080 1

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

N = 1 TO CEMENT - 1>

POKE SID+1, HFPCN)

POKE SID, LFPCN)

POKE SID+4, UUFRM + 1 :REN ON

FOR TN = 1 TO BEATLNGTH

NEXT TN

N

SID+4, 0 :REN MAUEFORM OFF

SID+24.0 :REN UOLUNE OFF

** CONUERT NOTE-OCTAUE STRING

TO LO AND HI POKE CODES

IF NCS = "RES" THEN HFP = 0 :

:

NTS

FOR

NEX1
*

DCT

FST

FST

HFP

LFP
:

LFP = 0 : RETURN

= LEFTSCNCS, LENCNCS) - 2)

REF = 0 TO 11

IF NTS = NNSCREF) THEN

NT = REF : REF = 11

" REF

= UAL<RIGHT£<NC$,1)>

= 2 t CT - OCT>
= SBN(NT> / FST

= INT <FST/256>

= INT <FST - 256*HFP>

RETURN

Fig. 8-2. Listing of the program Read Music.

147

Commodore 64 Graphics and Sound Programming

There will be a short time delay, the length of

one beat, and then the program will loop back

to deal with the next beat.

A note that lasts for one beat will have one

entry in each performance array. A note with a

longer duration will have as many entries as it

has beats.

Here's an example. Let's say one of our

performance arrays stores values for the high

byte of voice #l's frequency setting. If a song's

first note is a fourth octave D that lasts for

three beats, and the second note is a fifth oc

tave F# that lasts two beats, the array would

start with these five values:

HF(l) = 18

HF(2) = 18

HF(3) = 18

HF(4) = 47

HF(5) = 47

There are a number of advantages to per

formance arrays. Since all the SID values are

figured before any notes are played, notes can

follow one another smoothly, with no delays

for lengthy calculations. And since the basic

timing unit is a beat, it's easy to have different

voices play notes of different lengths, as you'll

see later in this chapter. Right now, it's time to

move from theory to practice. Let's see how

note reading and performance arrays are actu

ally used in a program.

8.3 A PROGRAM THAT READS MUSIC

AND PLAYS IT BY THE BEAT

Figure 8-2 lists the program Read Music,

which uses the ideas discussed above. Read it

over; type it in; save it; then run it. If you

want to listen to it again, without waiting for

the music to be read into the performance ar

rays, just type in this command:

GOTO 1670

By the way, the melody this program plays is

an old English tune called "Shepherd's Hey."

8.3.1 About the Program

Let's go over this program in detail. Lines

1050-1080 clear the screen, print a feedback

prompt, and set up SID's starting address. The

next module sets up two reference arrays. The

SBN array contains the twelve SID frequency

settings for the seventh octave, and the NM$

array contains the twelve corresponding note

names.

The next segment actually reads the

notes and fills the performance arrays. In this

case, you've got one performance array that'll

hold the low bytes of frequency settings, and

one that'll hold the high bytes. Line 1330 reads

in a note/octave string, and then line 1340

gives a bit of screen feedback. Line 1350

checks for the string that signals the end of the

note/octave data. If it finds it, the note reading

is over, and the program goes on to set the

ADSR envelope.

Line 1370 jumps to a subroutine that'll

take the note/octave string and figure out the

appropriate low and high bytes for a SID fre

quency setting. Let's see how the subroutine

works.

8.3.2 Decoding The Note/Octave String

Line 2050 first checks for the special

string value RES, which stands for a rest. A

148

Some Fancy Music Making

rest is a pause in the music. A silent note,

really. Setting the SID frequency registers to 0

is one way to create silence.

Line 2070 picks the note name out of the

string. Then lines 2080-2100 try to match the

note name with names from the reference

array NM$. When there's a match, the pro

gram stores the note's number in the variable

NT. This number will be used to pick the

appropriate SID reference frequency out of the

array SBN.

Line 2120 picks the octave number out of

the string. Then line 2140 uses this number to

figure out what the reference frequency setting

should be divided by. Line 2150 does the divi

sion. Finally, lines 2160-2170 figure out the

high and low bytes that'll give this setting. The

conversion is complete, and the subroutine

returns to line 1380.

8.3.3 Filling the Performance Arrays

Now it's time to add to the performance

arrays. Remember, you've got to enter infor

mation for each beat. Line 1390 reads the

note's duration, expressed as a number of

beats. Lines 1400-1440 then use this value to

control a loop that packs the two performance

arrays. The body of the loop will be executed

once for each beat of the note. Each time

through, the low and high bytes of the note's

frequency setting get stored in the arrays, and

then the beat number increases by 1.

Is this confusing? Let's look at it from

another angle. What we're really doing is

making copies of a note's settings. As many

copies as the number of beats to the note.

When it comes time to perform the piece, the

program will just grab SID settings a beat's

worth at a time.

8.3.4 The Music Itself

Lines 1510-1620 store the music itself.

The string XXX signals the end of the informa

tion. If you want to change the song this pro

gram plays, you just need to change these data

lines. You can take songs from books on music

or make up your own.

If you take songs from music books, you'll

have to know how to read music. It's really not

too difficult a skill to pick up. If you'd like to

read a good book on the subject, try Hen-

scratches and Flyspecks, by Pete Seeger, pub

lished by G.P. Putnam's Sons. Most libraries

have it.

8.3.5 Set ADSR and

Waveform; Then Play the Tune

Lines 1670-1750 set the attack, decay,

sustain, and release values for voice #1. Lines

1770-1780 set an overall volume level, and line

1800 sets up the waveform that'll be used. I

designed these lines so it'd be easy to go in and

make changes.

Finally, everything is ready. The curtain

rises, and the conductor readies her baton

(lines 1850-1860). The loop in lines 1880-1950

plays the music, one beat at a time. Each time

through the loop, that beat's frequency set

tings get poked in. Then line 1920 triggers the

amplitude modulator, which begins the ADSR

cycle.

For the sake of simplicity, I played a bit of

a trick here. The performance loop never trig

gers the release part of the volume envelope.

149

Commodore 64 Graphics and Sound Programming

1510

1520

153G

1540

1550

1560

1570

DATA

DATA

DATA

DATA

DATA

DATA

DATA

G-4,

C-5,

D-5,

B-4,

E-4,

D-5,

B-4,

4,

4,

4,

4,

4,

2,
4,

E-4,

D-5,

B-4,

RES,

G-4,

E-5,

C-5,

4,

2,
2,
i.
4,

2,
4,

G-4,

E-5,

C-5,

G-4,

C-5,

D-5,

XXX

4

2

2

4

4

4

Fig. 8-3. Changes to Read Music that teach it to play a different tune.

The notes slur together a bit. Try running the

program with this line added:

1943 POKE SID+4, UAUFRH :REM RELEAS

Notice how notes longer than one beat get

chopped up if you trigger a release stage at the

end of each beat. Is there a way to avoid both

slurring and chopping? Yes, and you'll get to

see the technique later in this chapter.

Finally, lines 1970-1980 turn the

waveform and overall volume controls off, and

the program ends.

Once again the ball's in your court. Have

this program play a different tune. Or make it

play at different speeds. See what happens

when two or more notes of the same pitch

follow one another.

If you can't read music, find a friend who

can. Or just make up notes in pleasing pat

terns. Or type in the data statements shown in

Fig. 8-3.

8.4 THINKING ABOUT THREE

VOICES AND DISTINCTION

There are two improvements you can

make to programs like Read Music. First, you

can get SID's two other voices into the act.

Second, you can find a way to make each note

more distinct, without slurring or choppiness.

Both of these are easily done with per

formance arrays. Let's look at the first im

provement. In Read Music, you stored voice

#1 frequency information for each beat of the

music. You'll just add similar frequency infor

mation for the other two voices. You'll store

the information in two-dimensional perfor

mance arrays. They'll take on the form

ARRAYNAME (voice #, beat #)

Here are some examples of what I mean, using

the array names from Read Music:

LFP (1,20) holds the low byte of voice

#l's frequency setting for

the 20th beat

HFP (3,80) holds the high byte of voice

#3's frequency setting for

the 80th beat

HFP (2,1) holds the high byte of voice

#2's frequency setting for the

first beat

Now, on to the second improvement. You

want to make each note more distinct. In Read

Music, the performance loop just triggered the

start of an ADSR cycle, and never dealt with

triggering the release stage; but adding a re

lease stage to each beat chopped things up too

much.

150

Some Fancy Music Making

One thing you can do is trigger a release

stage on the last beat of a note. That is, if a note

lasts four beats, the first three beats will each

trigger the start of an ADSR cycle, and the last

beat will trigger the release stage. It's not a

totally perfect solution, but it works pretty

well. More importantly, it's surprisingly easy

to program. You just create a new performance

array for waveform control. It'll contain entries

for each voice for each beat. These entries will

be values to poke into each voice's waveform

control register.

Here's an example. Let's say that voice

#1 starts off playing a note that lasts for three

beats. Assume you select the triangle wave

form for voice #1. Name the wave control ar

ray WVC. Then WVC(1,1) will contain the val

ue 17. WVC(1,2) will contain the value 17.

WVC(1,3) will contain the value 16. The val

ues for the note's first two beats will trigger

the start of an ADSR cycle. The value for the

note's last beat will trigger the release stage of

the cycle.

8.5 A THREE VOICE EXAMPLE

Figure 8-4 lists the program Three-Part

1OOO

1010

1020

1030

1040

1050

1060

1070

1000

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

REN *
Z

:

REN *

PRINT

PRINT
z

SID =

UU =
:

:

REN *
:

** THREE-PART S0N6 «*»

* SET UP SCREEN & UARIABLES

"L/1; :REN CLEAR SCREEN
"[llfUUUUUIlXlttHtCADINfi" :

54272 -REN SOUND CHIP

16 REN ALL 3 SANE MAUEFORN

* SET UP REFERENCE ARRAYS

DIN SBNC11>, NN$C11) :REN BASED ON

FOR N = 0 TO 11 :REN NOTES IN

: READ SBNCN) :REN HI6HEST

: READ NNSCtO REN OCTAUE

NEXT
:

DATA

DATA

DATA

DATA

DATA

DATA
z

:

REN *

N

34334, C, 36377, Cl*

38539, D, 40831, Dtt

43258, E, 45831, F

48557, Fl*, 51444, 6

54502, 6tt, 57743, A

61177, Att, 64815, B

t* READ IN THE NUSIC AND

STORE IT IN ARRAYS

151

Commodore 64 Graphics and Sound Programming

1300 DIM LFP(3,200), HFP<3,200),

MUC<3,200)

1310 :

1320 UOICE = UOICE + 1

1330 IF UOICE = 4 THEN 1890

1340 EUENT = 1

1350 :

1360 READ NC$

1370 PRINT ".";

1380 IF NC$ = "XXX" THEN 1320

1390 :

1400 60SUB 2440 : REM CONUERT TO POKE «S

1410 :

1420 READ DUR

1430 FOR N = i TO DUR-1

1440 : LFP<UOICE,EUENT) = LFP

1450 : HFP<UOICE,EUENT) = HFP

1460 : UUC<UOICE,EUENT) = WU + i

1470 : EUENT = EUENT + 1

1480 NEXT N

1490 IF DUR = 1 THEN 1360

1500 :

1510 LFPCUOICE,EUENT) = LFP

1520 HFP<UOICE,EUENT) = HFP

1530 UUCCUOICE,EUENT) = WU

1540 EUENT = EUENT + 1

1550 :

1560 GOTO 1360

1570 :

1580 :

1590 REM «* THE MUSIC : NOTE-OCT, DUR

1600 :

1610 DATA RES, 4, A-5, 4, B-5, 4

1620 DATA A-5, 4, RES, 4, A-5, 4

1630 DATA B-5, 4, A-5, 4, RES, 4

1640 DATA C-6, 4, E-6, 4, C-6, 4

1650 DATA A-5, 4, A-5, 4, B-5, 4

1660 DATA A-5, 4, XXX

1670 :

1680 DATA RES,

1690 DATA E-5,

1700 DATA E-5,

1710 DATA 6-5,

1720 DATA E-5,

1730 DATA E-5,

1740 :

1750 DATA C-5,

1760 DATA A-4,

1770 DATA A-4,

1780 DATA C-5,

1790 DATA 6-4,

4,

4,

4,

4,

4,

4,

2,

2,
4,

2,
2,

E-3,

RES,

E-5,

G-3,

E-3,

XXX

D-5,

A-4,

C-3,

A-4,

A-4,

4,

4,

4,

4,

4,

2,
2,

2,
2,

4,

E-5,

E-3,

RES,

G-5,

E-3,

C-5,

G-4,
D-5,

A-4,

C-5,

4

4

4

4

4

2

2

2

2

2

152

Some Fancy Music Making

±800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

DATA D-5,

DATA E-5,

DATA D-5,

DATA C-5,

DATA G-4,

2, E-5,

2, G-5,

2, C-5,

2, A-4,

2, A-4,

2, E-5,

2, E-5,

2, A-4,

2, A-4,

4, XXX

2

2

2

2

REM ** SET ADSR'S FOR THE 3 UOICES

ATK = 2 : DKV = 3

AD = ATK«16 + DKV

POKE SID+5, AD

ATK = 2 : DKV = 3

AD = ATK*16 + DKV

POKE SID+12, AD

ATK = 2: DKV = 0

AD = ATK«16 + DKV

POKE SID+19, AD

SST = 6 : RLS = 6

SR = SST*16 + RLS

POKE SID+6, SR

SST = 12 : RLS = 6

SR = SST*tl6 + RLS

POKE SID+13, SR

SST = 15 : RLS = 7

SR = SST*16 + RLS

POKE SID+20, SR

REM SETTINGS

REM POKE UALUE

REM UOICE 1 A-D

REM SETTINGS

REM POKE UALUE

REN UOICE 2 A-D

REM SETTINGS

REM POKE UALUE

REM UOICE 3 A-D

REM SETTINGS

REM POKE UALUE

REM UOICE 1 S-R

REM SETTINGS

REM POKE UALUE

REM UOICE 2 S-R

REM SETTINGS

REM POKE UALUE

REM UOICE 3 S-R

REM ** PLAV THE MUSIC, THEN END IT

PRINT "Li";
BEATLNGTH = 10

ULM = 15

POKE SID+24, ULM

REM MAX UOLUME

FOR N = 1 TO CEUENT - 1>
POKE SID+1, HFP(1,N>

POKE SID, LFP<1,N>
POKE SID+8, HFP<2,N>

POKE SID+7, LFP<2,N>

POKE SID+15, HFP<3,N>

POKE SID+14, LFP<3,N>

POKE SID+4, MUC<1,N)REM U-l
POKE SID+11, I4UC<2,N>:REM U-2

153

Commodore 64 Graphics and Sound Programming

2310

2320

2330

2340

23S0

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

;

;

;

NEXT

POKE

END
:

:

z

REM

:

POKE SID+18, UUC(3,N>:RE!1 U-3

FOR TM = 1 TO BEATLNGTH

NEXT TM

N

SID+24,0 :REM UOLUME OFF

** CONUERT NOTE-OCTAUE STRING

TO LO AND HI POKE CODES

IF NCS = "RES" THEM HFP = 8 :

:

NTS

FOR

NEXT
:

OCT

FST

FST

HFP

LFP
:

LFP = 0 : RETURN

= LEFTSCNCS, LENCNCS) - 2)

REF = 0 TO 11

IF NTS = NMSCREF) THEN

NT a REF : REF = 11

REF

= UAL<RIGHTCNC,1)>

= 2 t <7 - OCT)

= SBNCNT) • FST

= INT <FSTV256>

= INT <FST - 256«HFP)

RETURN

.Fig. 8-4. Listing of the program Three-Part Song.

Song. Type it in; save it; then run it. Take the first two modules are the same: clear the

some time to compare this program with Read screen, set up for feedback, and fill the refer-

Music, listed in Fig. 8-2. They're very similar, ence arrays.

In our discussion, I'll focus in on the differ- Now it's time to read notes and pack ar-

ences. rays. Lines 1300-1560 do the job. First, line

1300 dimensions three performance arrays.

8.5.1 Filling Up the Performance Arrays Two will hold frequency values, and the third

The first change shows up in line 1090. will hold waveform control values.

The program sets up a waveform variable right This program segment reads notes and

away; it will be used to fill the waveform packs arrays a voice at a time. The pseudo-

control performance array. Other than that, note XXX, signals the end of one voice's notes.

154

Some Fancy Music Making

The voice number then goes up by one. When

it hits 4, all three voice's have been taken care

of, and the program moves on to set up the

ADSR values.

When line 1360 reads a valid note, the

program jumps to the same frequency-figuring

subroutine used in the Read Music program.

This subroutine sends back values for the high

and low bytes of the frequency setting. Then

it's time to pack arrays.

If a note has a duration ofjust one beat, it'll

go through the packing loop in lines 1430-1480

just once. Lines 1440-1450 set the low and high

frequency bytes. Then line 1460 sets the

waveform control array with a value that'll

trigger the ADSR envelope. Line 1490 sends

the program back to read another note.

A note that lasts longer than one beat gets

treated differently. It will go through the loop

in lines 1430-1480 one less time than its dura

tion in beats. Thus, on all beats up to the last

one, the waveform control array will receive a

value that triggers the start of an ADSR en

velope. Lines 1510-1540 handle the arrays for

the final beat. There's no change in how fre

quency is handled. However, the waveform

control array now gets a value that will trigger

the release stage of the ADSR envelope.

8.5.2 Setting the ADSR Envelopes

After the notes are read in and the per

formance arrays filled, it's time to set ADSR

envelopes for each voice. The routines used in

lines 1890-2110 use the same technique shown

in the program Read Music. Here's one hint:

low notes need higher sustain levels to be

heard as easily as high notes. That's because of

the way our ears are built. In this program,

voice #1 plays the highest notes, voice #3 the

lowest, with voice #2 in between. Therefore

I gave voice #3 the highest sustain level, voice

#1 the lowest, with voice #2 in between.

8.5.3 Playing It

After a few final preparations, the pro

gram can play the music. Lines 2160-2190

clear the screen, set the length of a beat, and

adjust the overall volume. Then comes the

performance loop. It will repeat as many times

as there are beats. Lines 2220-2270 set the

frequency registers for all three voices. Then

lines 2290-2310 pick off values from the new

waveform control array and poke them into

each voice's waveform control register. The

voices operate independently; on any given

beat, two voices might trigger the start of an

ADSR envelope, and the other one might

trigger the release stage.

The technique of releasing a voice on its

last beat works well if there's a fairly long

release period. Change the release settings in

lines 2010, 2050, and 2090 to lower values and

then run the program. Do you notice the chop-

piness?

8.5.4 Variations

The data in Three-Part Song is based on

the English folk melody "Are You Going To

The Fair". Figure 8-5 rounds out our salute to

pre-Beatles English music. Load in Three-

Part Song and then type the lines from Fig. 8-5.

Now your Commodore 64 will play the song

"Coventry Carol."

Three-Part Song has a lot of room for

experimentation. See if you can get the three

voices to sound like completely different in-

155

991-

,,|OJBOAJJUeAOQ,,DUOS8l||AB|d

S9NI113S

S9NI113S

S9NI113S

S9NI113S

S9NI113S

S9NI113S

Zl'2-U
P

T

8

P

T

8

P

T

P

8

'e-3

'S3a

'e-3
'Z-U
*S3a
'e-3
'e-u
'S3a
'e-a
'e-3

Zl'
P

1
p

8
p

P

P

8
p

8

8

P

i

i

i

t

i

•

f-3

rf-3
rs3a
rf—3
rf-9
rf—9
rf—a
'p—j

rf—3
rf—J
'f-3

'f—a
'f—It9

2T'*-tt9
t«

8

'S-3
's-a

OS'*-U

T

8

P

'S-3
'S3a
'f-a

'f-ft9

toa:

M3a:

M3a:

M33:

M3a-

'f
'f

'ZT
'f

'8
'8
'f

'f
'f

'8
'f

'8
'f
'f
'8
'f

'T
'8
'p

'T
'8
'f

'f
'f
'f
'8
'f

'f
'f
'ZT'
'f
'f

*"ioa

2.=

9=

9=

8=

e=

e=

'e-3
'e-a

'z-a
'e-3
'Z-J
'z-y
'e-3
'e-a
'e-a
'e-a
'z-a

'f-9
'f—j
'f-a
'f-9
'f—3
'S3a
'f-3

'f-y
'S3a
'f-j
'f—a

XXX

's-a
*fr—U

*fr—U

'fr-8
'S-3
'*-8
'*-8
fr-f#9

'S-3
'fr-U
U3M

sia

sia

sia

Aaa

'8
'f
'p

'8
'p

'P

'8
'f
'8
'f
'8

'p

'P
'8
rp

'8
'8
'f

'f
'ZT
'f
'8

'ZT
'f

'T
'8
'f

'T
'8
'f
'f
'8
'f

I1N3

oi}|goeeji

:ST

:6

:f

:Z

:Z

:Z

XXX

'z-a
'e-3

'e-3
'e-3
'e-3
'z-a
'z-a
'f—3
'e-3
*z—y
'z-y

XXX

'f-j
'f—3
'f-3
'f-y
'f-y
'f—3
'f-9
'f-y
'f-3
'fc-3
'fr-3

'S-H3
>-U
'S3a
'♦■-8
'S-3
'S3a
's-a
'*-u
>-u
>-u
'*-u

no3**

BMi6U03

=1SS

=1SS

=1SS

=)I1U

=X1U

=X1M

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

uiua

*M3a

lied-eaim0}se6ueqog-8oy

0603

GSGZ

QTOZ

0JL6T

0£6T

068T

Ot^ST

sesT

oesT

SZ8T

028T

ST8T

0T8T

S08T

008T

S6JLT

062.T

S81T

082.T

S1AT

OUT

S91T

092.T

SSJLT

0S1T

QPll

Ot-AT

seiT

oeiT

SZ2.T

QZll

ST1T

0T2.T

OOJLT

069T

089T

02.9T

099T

0S9T

0t"9T

0£9T

0Z9T

0T9T

OOOT

6u!lulubj6ojc|punospuesojqdejo^gajopoujuJOQ

Some Fancy Music Making

struments. And remember, although SID can

imitate real instruments, it really shines when

you come up with sounds never heard from

wood or brass or strings.

8.6 CHAPTER SUMMARY

YouVe examined a couple of ways to get

interesting music out of your Commodore 64.

Here's a summary of what youVe covered:

* Setting up a reference octave to help

translate note names and octave num

bers into SID frequency settings

* Using performance arrays to store SID

frequency setup information for each

beat of a piece of music

* Using performance arrays to imple

ment three voice music

* Turning voices on and off with a wave

form control performance array

In the next chapter, we'll leave harmony

behind, and get SID to generate some ear-

tickling sound effects.

8.7 EXERCISES

8.7.1 Self Test

Answers are in Section 8.7.3.

1. (8.1.1) If an A note in the third octave has a

frequency of 220 hertz, what's the fre

quency of a first octave A note?

2. (8.1.1) Using the string notation introduced

in Section 8.1.2, B#-6 represents a

octave B sharp.

3. (8.2) A performance array can hold SID

settings for each of a song.

4. (8.3) The program Read Music stores

settings for each beat in the

performance arrays LFP(200) and HFP

(200).

5. (8.4) One way to handle more than one

voice at a time is to use -di

mensional performance arrays.

6. (8.4) You can avoid slurring and chopping

by triggering the stage on the

last beat of a note.

7. (8.5) Take a look at the program Three-Part

Song. What's the smallest number of beats

a note can have and still get its release

stage triggered?

8.7.2 Programming Exercises

1. Change the program Read Music so it

repeats the music if desired. It

shouldn't have to set up the perfor

mance arrays again.

2. Change the program Three-Part Song

so it lets the user adjust the speed

(tempo) the music's played at.

3. Change the program Three-Part Song

so it lets the user adjust the overall

pitch by octaves.

8.7.3 Answers to Self Test

As usual, you may come up with better

answers.

1. 55 hertz

2. sixth

3. beat

4. frequency

5. two

6. release

7. two

157

Commodore 64 Graphics and Sound Programming

8.7.4 Possible Solutions

to Programming Exercises

1. Load in the program Read Music.

Then type in these lines:

1013 :

1814 PRINT "13"; KY$; "■"
1015 TEMPO = UAL(KV$)

1016 :

1617 FOR N = 1 TO 590

1618 NEXT N

2178 BEATLNGTH = (10 - TEMPO) t 1.7

1008
1838

1998

1991
1992

1993

1994

1993

1996

1997

1998

1999

2886

2881

2882

2883

2864

2883

2866

2687

REH «*» JUKE B6X ««*
REN ** PLAV THE MUSIC

REN «* PLAV IT AGAIN ?

PRINT any
PRINT "KEY UITHIN 3 "

PRINT "(ElllllllllftJSEC6NDS FOR A M;
PRINT "REPLAY"

TI$ = "006006" REM RESET TINE

GET KYS REM READ KEYBOARD
IF KYS <> "" THEN 1778

IF UAL(TIS> < 3 THEN 2881

PRINT "L";
END

2. Load in the program Three-Part Song.

Then type in these lines:

1888 REN *** ADJUSTABLE TENPO
1061 :

1862 :

1863 REN «* GET THE TENPO

1084 :

1883 PRINT "LUMiimnniMIPPFfifi A KEY ";

1886 PRINT "TO SET THE TENPO : "
1067 PRINT "LHJULMJCl-SLOWEST ";

1008 PRINT "9-QUICKEST>[TllLllJ>a;

1618 GET KYS

1811 IF KYS = "" THEN 1818

1812 IF ASC(KYS) C 49 OR ASC(KYS) > 37

THEN 1016

3. Load in the program Three-Part Song.

Then type in these lines:

1688

1661
1882
1883
1864

1883
1886

1887

1888
1889

1818

1811

1612

1813
1814

1813
1816

1817

1818

1819

1628

1821

1822

1823

1824

182?
1826

1827
1828

1829

2318

2313

2316

REN OCTAUE NOUER

REN ** GET OCTAUE ADJUSTNENT

PRINT "L UH0I4 NANV
PRINT "OCTAUES DO YOU"

PRINT "WllllllJUANT TO NOUE ";
PRINT "CO - 3> ? ";
GET ADJS

IF ADJS = "" THEN 1009

IF ASC(ADJS) < 48 OR ASCCADJS) > 31
THEN 1009

PRINT "13"; ADJS; "■" :REN PRINT IT
ADJ = UAL (ADJS)
IF ADJ = 0 THEN 1027 REM NO 2ND ?

PRINT "QIOEllllllllNOUE UP OR ";
PRINT "DOWN <U/D> ? ";

GET UD$
IF UD$ = "" THEN 1020

IF UDS O "U" AND UD$ <> "D"

THEN 1020
PRINT "Id"; UDS; "■" :REN PRINT IT

IF UDS = "D" THEN ADJ = -ADJ
FOR N = 1 TO 308 : NEXT N

OCT = UALCRIGHTCNC,1>) + ADJ
IF OCT < 0 THEN OCT = OCT + 1 :

GOTO 2313
IF OCT > 7 THEN OCT = OCT - 1 :

GOTO 2316

158

Chapter 9

Special

Sound Effects

In this chapter you'll get SID to produce some

interesting sound effects. You'll listen to

clocks, gongs, a SID oscillator, horses, pro

jectiles, and pulsing weirdness. Along the

way, you'll think about timing, ADSR envelope

design, ring modulation, vibrato, eavesdrop

ping, linkage, rhythm, noise, and variations in

volume, frequency, and pulse width.

Keep in mind that the key to sound effects

is imaginative variation: changing volume,

waveforms, frequencies, timing, rhythms, and

so on. Of course, you've got to know what to

change and how to do it. Some of this can be

learned by playing with SID and programs like

those in this chapter. You'll also need to spend

time listening to the world around you. Train

your ears to be better sound analyzers.

9.1 THE CLOCK

Figure 9-1 shows the program Clock.

Read it, and then run it. Play around with the

numbers. See if you can get a more interesting

rhythm out of the ticking clock.

You end up changing a lot of SID's regis

ters when you work with sound effects. This

can cause complications if you forget which

registers have been set. The programs in this

chapter all begin and end by clearing SID's

registers.

Let's look at the ADSR envelope this pro

gram generates. Attack, decay, and release

rates are all set to 0, and the sustain level is 15,

the maximum. The sound will quickly rise to

peak volume, quickly decay to the same level

(huh?), sit there until release is triggered, and

then quickly fall to zero. Figure 9-2 shows a

picture of the envelope.

Once the envelope and overall volume is

set, the program is ready to play a series of

ticks and tocks. First, lines 1220-1260 play the

159

Commodore 64 Graphics and Sound Programming

1668

1818

1826

1836

1848
1838

1866

1876

1688

1898

1188

1118

1126

1138

1146

1138

1166

1176

1188

1196

1288

1218

1228

1238

1246

1238

1268

1278

1288

1298

1388

1318

1328

1336

1348

1338

1366

1376

1388

1398

I486

1418

1428

1438
1448

1438

REM *** CLOCK «H
:

:

REH ** CLEAR SID
•

SID = 34272

FOR RE6 = SID TO

: POKE REG, 6

NEXT RE6
:

PRINT "£";

t

ft PRINT PROMPT

:REM SOUND CHIP

SID+24

PRINT "PRESS SPACEBAR TO END"

:

REM ** INITIALIZE SID REGISTERS
•

POKE SID+6, 246

POKE SID+24, 13
:

REN «* PLAV IT ;
:

POKE SID+i, 80

POKE SID+4, IT

FOR T ■ 1 TO 3 :

POKE SID+4, 16

FOR T ■ 1 TO 300

POKE SID+i, 68

P6KE SID+4, 17
FOR T ■ 1 TO 3 :

POKE SID+4, 16
FOR T = i TO 308

6ET KPS

IF KPS ■ "" THEN
■

:REH MAX SUSTAIN
:REM MAX VOLUME

END ON A KEYPRESS

:REH TICK

NEXT T

: NEXT T

:REM TOCK

NEXT T

: NEXT T

1220

REH ** CLEAN UP ft END

FOR RE6 = SID TO
: POKE REG, 8

NEXT RE6
PRINT "U";
z

END

SID+24

Fig. 9-1. Listing of the program Clock.

160

Fig. 9-2. A picture of the ADSR envelope used in Clock.

tick. Line 1220 sets a frequency, and then line

1230 sets the triangle waveform and triggers

the sound. There's a short pause, with the tick

at peak volume, and then line 1250 releases the

sound. Finally, there's a relatively long pause.

Then, it's time for lines 1280-1320 to give

you a tock. A new, lower frequency is set.

Special Sound Effects

Then the sound is triggered, held a bit, and

released. Again, there's a relatively long

pause. Line 1340 scans the keyboard; if no

key's been pressed, it's back up to line 1220 for

another tick.

The top row in Fig. 9-3 shows a few beats'

worth of volume information (not to scale) for

this program. Notice the regularity of the

sketch. The second row shows what would

happen if the tick had a longer sustain period

and the tock came along sooner. See if you can

change Clock so it sounds more like the second

row. Drawing these rough pictures gives me a

first crack at SID settings and delay loops when

I'm planning a new sound.

You need programs that can be easily

modified when you're creating sound effects.

Put in plenty of delay loops and statements that

set the SID registers. It takes a lot of fine

tuning to produce the sounds you hear in your

imagination.

0)

CL

<

-% Tick «Tock « « Tock #-% Tick

Time

Q

Tick

n
Tock

A
Tick Tock Tick

r\ .
Time

Fig. 9-3. Top: a few beat's worth of volume information for Clock (not to scale). Bottom: A possible variation of Clock with a less

uniform beat.

161

Commodore 64 Graphics and Sound Programming

9.2 THE GONG MACHINE

You've heard SID produce a clock's ticks.

Now let's get some big, reverberating gong

noises. You'll start by looking at ring modula

tion. It's one way to link two voices together.

9.2.1 Ring Modulation

There's a fifth SID waveform option I hav

en't mentioned yet. It's called ring modulation.

SID can combine information from two voices

to form what's called a ring-modulated output.

This ring modulation does a greatjob on gongs,

bells, chimes, and the like.

Here's how you get a voice to produce

ring modulated output. First, select the voice's

triangle waveform. Next, set its ring modula

tion control bit, bit 2 of the waveform control

register, to 1. Finally, set the voice's partner

to a frequency other than 0.

What's a partner? When a voice is set up

for ring modulation, it mixes another voice's

frequency information with its own. Voice #1

uses voice #3 as a partner, voice #2 uses voice

#1, and voice #3 uses voice #2.

Here's an example. Let's set voice #1 up

for ring modulation. You need to set the fol

lowing bits of the wave control register at

SID+4: bit 0 to trigger the start of an ADSR

envelope, bit 2 to choose ring modulation, and

bit 4 to select the triangle waveform. Adding

the values of those bits gives you 21, so 21 is

the number to put into SID+4. See Fig. 9-4.

Then you need to set voice #3 to a nonzero

frequency. You can do this by setting the fre

quency register at SID+15 to a nonzero value,

say 19. When it's time to trigger the release

stage of the ADSR envelope, you'll just place

the value 20 (bit 0 off) into SID+4.

9.2.2 The Program

Figure 9-5 lists the program Gong Ma

chine, which uses ring modulation to give you

nine different chime sounds. Read it over;

then type it in, save it, and run it.

After SID is cleared and the screen's set

up, lines 1180-1190 set the ADSR envelope for

voice #1. Line 1210 sets the overall volume.

Lines 1260-1310 obtain keypresses.

Pressing the spacebar ends the program.

Pressing one of the number keys 1-9 will gen

erate a gong sound. Any other keyboard input

is ignored.

Bit

value
Bit

number

Bit

function

128

7

Noise

0

64

6

Pulse

0

32

5

Sawtooth

0

16

4

Triangle

1

16

8

3

—

0

+

4

2

Ring

modulation

1

4

2

1

Sync

0

+

1

0

Gate

1

1 =21

Fig. 9-4. Setting up a voice's fifth register for ring modulation.

162

£91

<IN3

3N099N09U3X

OQT=1N3H1

3dfiNV313**

01ZT

OZ'*+0IS
1

....<>SdXJI

$d3l139
ez*asftuno'ois3»od

8T*<OT/1>INI

9N099N08U3X-

d3l

dX+C'T

-1=a3ltVf1D

00T01T■1

tz'fr+ais

+6T'fiT+OIS
*dX'T+OIS

■M3a
:

;

0109

3*0d

1X3N
:

:

:

:

aoj

3X0d

33IOd

3X0d

89ZTN3H16<d3l30T>dHJI

6-t3aisnuW3a

110N3W3a:08*T

09ZT

sunnonxwwU3

6=Sia'O=1SSM3

ZT=AXO'O=X1VM3

sa3isi93aois

..'0N301a«83

..'S9N09aOJ6-T

*z+ois

dIH3ONnOSM3a^

sidMoadiHiads

:c$dx>nun

N3H1....=$d

=d)l
I

31JI

N3H1....=$d*JI

:SdX

11AVld**

a:ST>Z+OIS

a:6'9+QIS

a:ZT'£+OIS

3ZI1VI1INI*»

3VdSSS3ad..1

139

M3a
:

2

33IOd

33IOd

3)IOd
:

M3a

Niad

iNiad

SA33ISS3ad..INIad

'..fl..iniad

93a

0'93a3)IOd
01OIS=93a

ZLZPZ=

OISaV313**

««*3NIH3VM9N09***

1X3N

aoj

OIS
z

M3a
:

:

M3a

09*T

OCt-T

OffT

O£fT

ezpj

OT*T
00*-T

06£T

08£T

oieT

89£T

0££T

O^ST

0££T

OZ£T

OT£T
00£T

06ZT

08ZT

01ZT

09ZT

O£ZT
QPZJ

O£ZT

OZZT

OTZT

OOZT

06TT

08TT

01TT

09TT

OCTT

OSTT

OZTT

OTTT
OOTT

060T

080T

010T

090T

0£0T

Ot-OT

0£0T

OZOT

OTOT

OOOT

punos

Commodore 64 Graphics and Sound Programming

14TB

I486

1490

1S00

1310

1320
1330

FOR REG =

: POKE

NEXT REG

PRINT "L"
:

END

SID

REG,

*

TO SID+24

0

Fig. 9-5. Listing of the program Gong Machine.

Line 1330 sets the frequency of voice #1

based on the number of the pressed key. Line

1340 does the same for voice #3. Line 1350

then triggers the start of a ring modulated

sound.

To add emphasis to the sound, lines

1360-1410 wiggle the frequency of voice #1.

This kind of effect is known as vibrato or trem

olo. While the program's wiggling, it's also

keeping an eye on the keyboard. If a key is

pressed, it'll abort the vibrato, release the

sound, and pop back up to deal with the key

press. If no key is pressed during the vi

brato, the gong calmly fades away, and the pro

gram goes back to scan the keyboard.

I spent quite a while trying different for

mulas in lines 1330 and 1340. The relationship

between two voices' frequencies and the re

sulting ring-modulated sound is complex. You

might want to try some formulas of your own.

Another spot worth experimenting with is

line 1370, the vibrato formula. You can get all

kinds of interesting gong variations by chang

ing this line.

9.3 SID LISTENS TO ITSELF

Ring modulation lets one voice affect

another. But there's not as much control as you

might need in certain situations. It'd be nice if

you could eavesdrop on some of SID's output.

The registers at SID+27 and SID+28 let you

do just that. They give you a more controlled

way to link voices together.

9.3.1 The Eavesdropping Registers

SID+27 shows the output of voice #3's

oscillator. SID+28 shows the output of voice

#3's envelope generator. You can read these

registers and then use the values to modify

other SID settings.

You've got to start up the voice #3 oscil

lator to get SID+27 to show changing values.

This is done by setting a frequency and

waveform for voice #3. You won't hear voice

#3 as long as you don't trigger the ADSR

envelope. So voice #3 can oscillate away, not

making a sound, while you read its oscillations

from SID+27.

You've got to trigger the voice #3 en

velope generator in order to have its values

show up at SID+28. This will usually cause

voice #3 to put out some sounds. If you don't

want to hear voice #3, but still want to monitor

its envelope generator, you silence it by set

ting bit 7 of SID+24 to 1. SID+24 is the same

register used to set overall volume. To set bit

164

7 to 1, just add 128 to your volume setting and

poke the new value in.

9.3.2 The Mad Computer

Let's look at a program that uses these

new eavesdropping capabilities. Figure 9-6

lists the program Mad Computer. Read it, type

it, save it, and run it. Pressing any of the

number keys 1-9 will change the sound pat-

Special Sound Effects

tern. Pressing any other key ends the pro

grams.

In this program, voice #1 makes sounds

whose frequencies are based on the oscilla

tions of voice #3. Line 1300 is the key. It takes

a value from SID+27 and plugs it into one of

voice #l's frequency registers. After a brief

pause, the program looks for a keypress.

What values will be showing up at SID

1666

1816

1626

1636

1648

1658

1666

1878

1886

1896

1168

1118

1128

1138

1148

1138

1168

1176

1188

1198

1268

1218

1228

1238

1248

1258

1268

1278

1288

1298

1386

1318

1328

REH *

:

REM *
z

SID =
FOR N

*» HAD COMPUTER

* CLEAR SID

54272

ft PRINT

= SID TO SID+24

: POKE N,0

NEXT

PRINT

PRINT

PRINT

PRINT
*

:

REM *

POKE

POKE

POKE

z

POKE
:

;

REM *

POKE

POKE

F6R T

NEXT

N

"PRESS KEYS

"ANY OTHER

* INITIALIZE

SID+6,248 :

SID+15,18 :

SID+18,16 :

SID+24,13 :

* PLAY IT

SID+4,17 :
;

BY
SID+1,

1-9

KEY

SID

REM

REH

REH

REH

REH

REH

U-3

T8

PROHPTS

CHANGE"

TD END"

REGISTERS

U-l

SET

SET

SET

TRIG

SET

SST = HAX

U-3 FRQ

U-3 UUF

UOLUHE

U-l ATK

U-l FREQ
OSCILLATIONS

PEEKCSID+27)
= 1 TO 5 :

T

REM WAIT A BIT

165

Commodore 64 Graphics and Sound Programming

1330

1340

1330

1360

1370

1380
i ^«mXO«Vw

1400

1410

1420

1430

1440

14S0

1460

1470

1480

1490

1300

:

REM «* SCAN KVBD

CHANGE
z

6ET KPS

TO PLAV MORE.

SOUND, OR END

IF KP$ = "" THEN

IF ASCCKPS) <
IF ASCCKPS) >

49

37

1300 REM MORE

THEN 1430

THEN 1430

: POKE SID+1S, UAL<ICP$) * 7
: 60T0 1300

FOR RE6 = SID

: POKE REG,

NEXT REG

PRINT "L";

END

TO

0

REM SOUND CHANGED

SID+24 REM CLEAN

REM UP

REM S END

+27? You have to consider how voice #3 is os

cillating. Since the triangle waveform is se

lected in line 1210, voice #3's output will go

from 0 to 255 and back to 0 again, at a rate set

by its frequency. The values picked up in line

1300 will depend on this frequency and on how

often the sampling takes place.

Now, most of the time voice #1 samples

SID+27 at a steady rate, breaking only to de

cipher an occasional keypress. There will be a

certain pattern to the samples it picks up and

thus to the sound it makes. Pressing one of the

keys 1-9 changes voice #3's frequency. Voice

#1, still looking at voice #3's oscillations at a

steady rate, will start seeing different patterns

of data, and so its sound pattern will change.

There is one last interesting fact about

this program: voice #Ts volume rises to its

peak level and stays there until the program

ends. Two settings accomplish this. First, the

sustain level is set to a maximum. Second, the

<

Attack Decay

Time

Fig. 9-7. A picture of the ADSR envelope used in Mad Com

puter.

166

release stage of the ADSR envelope isn't

triggered until the program ends. Figure 9-7

shows what this envelope looks like.

9.4 DADADUM DADADUM

DADADDUM DUM DUM . . .

The next program uses a number of timing

loops to simulate the sound of a galloping

Special Sound Effects

horse. If you don't understand where this sec

tion's title comes from, just ask someone who

grew up listening to tales of the masked man

with the silver bullets.

Figure 9-8 lists the program Horse. After

you've run it, change the rhythms by fooling

with the timing formulas. Can you get the

horse to canter? Prance? Race pell-mell down

1000

1010

1020

1030

1040

1030

1060

10T0

1080

1090

1100

1110

1120

1130

1140

1130

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

12T0

1280

1290

1300

1310

1320

1330

REM
:

:

REM
z

SID

FOR
:

NEXT
:

*** HORSE ***

«* CLEAR SID ft PRINT PROMPTS

= 342T2 :REM SOUND CHIP

REG = SID TO SID+24

POKE REG, 0
REG

PRINT "L";
PRINT "PRESS SPACEBAR TO STOP"
:

z

REM
z

POKE

POKE
:

REM

:

UC =

ULM
z

ULM

me INITIALIZE SID REGISTERS

SID+5, 4 REM ATK-Q, DKV=4

SID+6, 164 REM SST=10, RLS=4

*» SET UOLUME, FREQUENCY,

TIMING

1 REM UOLUME CHANGE

= 12 REM STARTING UOLUME

= ULM + UC REM UPDATE UOLUME

IF ULM = 15 OR ULM = 12

POKE
:

FRQ

DLV
z

z

REM

THEN UC = -UC

SID+24, ULM

=33- ULM REM FRQ/ULM LINK

= IT REM TIMING FACTOR

me PLAY THE FOUR HOOUES

167

Commodore 64 Graphics and Sound Programming

1346
1356
1366
1376

1386

1336

1466
1418
1428

1438

1446
1436

1466

1476

1488

I486

1368

1318

1328
1338
1348
1338
1368
1378

1388

1398
1668

1616
1626

1638
1648

1638
1666

1676

1686
1696

1786

z

POKE
POKE

FOR

POKE

FOR
:

POKE

POKE

FOR

POKE

FOR

POKE

POKE

FOR

POKE

FOR
:

POKE

POKE

FOR

POKE
FOR
:

:

REM

6E7

SID+1, FRQ +

SID+4,129

2

T ■ 1 TO DLY«1.1 :
SID+4, 128

T = 1 TO DLV

SID+1, FRQ
SID+4,129

T = i TO DLV

SID+4, 128

T = 1 TO DLV

SID+1, FRQ -

SID+4,129
T = i TO DLV

SID+4, 128

T = i TO DLV

SID+1, FRQ

SID+4,129
T = 1 TO DLV

SID+4, 128

T = 1 TO DLV

» 3 :

: NEXT

* 1.1

2

» 1.2:

« 1.4

» .8:

* 3.3

:REM HOOF

NEXT T

NEXT T

REM HOOF

T

: NEXT T

REM HOOF

NEXT T

:NEXT T

REM HOOF

NEXT T

: NEXT T

** QUIT IF KEV PRESSED

KPS

IF KP$ a "" THEM

FOR

NEXT

RE6 = SID TO

POKE RE6, 0

REG
PRIMT "ti";

END

1238

SID+24

1

2

3

4

Fig. 9-8. Listing of the program Horse.

the stretch? It's all in the timing.

Let's examine the program. The first

segment performs the usual SID clearing and

prompt printing. The next segment sets up the

ADSR envelope for the hoofbeats. This sound

will take on a pretty classic envelope. It climbs

quickly to peak volume, decays at a moderate

rate, holds at about two-thirds of peak volume,

and then fades to zero volume at a moderate

rate. You can suggest different types of horses,

shoes, and surfaces by changing the envelope

and waveform.

Lines 1220-1290 form an interesting seg

ment. Each time through, the program will

168

Special Sound Effects

Fig. 9-9. A picture of the ADSR envelope you'll try to set up to

simulate a gunshot.

make slight changes to the volume and fre

quency settings. This variety makes the hoof-

beats sound a little more natural. Line 1300

sets a basic timing variable; all the other tim

ing will be based on the value of DLY. You

might try inserting a formula that varies DLY's

value every now and then.

Lines 1350-1570 play the hooves, one at a

time. For each hoof, voice #1 gets gated;

there's a short delay; the voice is released;

then there's a longer delay. The various delays

vary from hoof to hoof; just like snowflakes, no

two feet are exactly alike.

See if you can make it seem as if the horse

is slowly approaching the listener, passing by,

and then moving away. Here are three helpful

hints:

As sounds approach, they get louder and

the frequency goes up.

As sounds move away, they get softer and

the frequency goes down.

A little exaggeration never hurts a sound

effect.

9.5 BANG BANG

Before the days of electronic noise mak

ing, a favorite pastime was playing with rolls of

caps. These were long rolls of paper with little

explosive bumps every quarter inch or so.

They were meant for cap guns, but the guns

misfired a lot. Besides, the real fun lay in

getting a bunch of 'em to go off at a time. So we

usually just laid a roll on the pavement and

clobbered it with a good-sized rock. We loved

the noise. The smell wasn't bad, either.

We'll leave it to the psychologists to fig

ure out why people enjoy explosive sounds. In

the meantime, you can use SID to make some

blasts.

9.5.1 Thinking About the Sounds

Let's think about simulating the sound of a

gun. You've really got two sounds to deal with.

First, there's a cracking explosion, as gun

powder ignites and launches a bullet. Then

there's the sound of the bullet zipping through

the air.

White noise comes in very handy for ex

plosions. Remember, setting bit 7 of a voice's

waveform register selects white noise. You'll

start each gunshot with a burst of white noise.

Also, explosions start out loudly and then fade

away. So you'll have to try to set up an ADSR

envelope that looks like the one shown in Fig.

9-9.

Now, for the whistling of the bullet as it

goes through the air. It takes a moment after

the explosion for the bullet to pick up enough

speed to be heard. As it accelerates towards a

listener, its sound rises in pitch and volume.

As it passes and moves on away from a lis-

169

Commodore 64 Graphics and Sound Programming

tener, the sound drops in pitch and volume.

You'll need an ADSR envelope that gives a

discernible rise and fall in volume. Then you'll

need to set up some frequency setting loops

that go along with the volume changes.

9.5.2 Making the Sounds

Figure 9-10 lists the program Bam-

PTwang, which makes shooting noises. Run

it. How does it sound? You may want to add an

echo with a third voice, or adjust the timing, or

change the frequencies. As usual, experimen

tation will teach you a lot.

Lines 1180-1220 set two ADSR enve

lopes. Voice #1 will handle the explosion, and

voice #2, the flight. Voice #1, with an attack

rate of 0, will hit peak volume in 2 thousandths

of a second, and then start decaying at a much

1666

1616

1626

1638

1646

1636

1668

1878

1886

1898

1188

1118

1126

1138

1148

1158

1168

1178

1188

1196

1268

1216

1228

1238

1248

1256

1268

1278

1288

1298

1366

1316

1326

1336

REN «** BAM-P'TWANG ***

z

z

REM ** CLEAR SID & PRINT PROMPTS

SID = 54272 :REH SOUND CHIP

FOR RE6 = SID T6 SID+24

: POKE REG, 8

NEXT RE6
:

PRINT "L";
PRINT "PRESS SPACEBAR F6R SOUND."

PRINT

PRINT "PRESS RETURN KEV T6 END."
z

z

REM «* INITIALIZE SID REGISTERS

POKE SID+5,18 REM U-l ATK/DKV

POKE SID+i, 18 REM U-l FREQ
:

POKE SID+12,89 REM U-2 ATK/DKV

POKE SID+13,18 REM U-2 SST/RLS
z

POKE SID+24, 15 REM MAX U6LUME

z

REM ** SCAN KEYBOARD

F6R SHOT 6R END

GET KPS

IF KPS = ■■■' THEN 1296

IF KPS = CHR$<13) THEN 1558
;

;

170

Special Sound Effects

1346

13S6

1366

1376

1386

1398

I486

1416

1426

1436

1448

1438

1466

1476

1488

1496

1566

1318

1326

1338

1348

1336

1366

1376

1386

1398

1688

HEM «* PLAV IT :

:

POKE SID+4,128

POKE SID+4,129

UOICE 1 EXPLOSION,

UOICE 2 FLI6HT

REM RELEASE U-l

REM START U-l

REM FOR T = i TO 28: NEXT T

POKE SID+11, 16

POKE SID+li, 17
™

FOR FRQ = 16 TO

: POKE SID+8,

NEXT FRQ

F6R FRQ = 77 TO

: POKE SID+8,

: FOR T = i TO

NEXT FRQ
•

GOTO 1298

•

REM *» CLEAN UP
•

FOR RE6 = SID TO

: POKE REG, 8

NEXT RE6

PRINT "L";
*

END

REM RELEASE U-2

REM START U-2

88 STEP 3

FRQ

3 STEP -3

FRQ

4 : NEXT T

& END

SID+24

Fig. 9-10. Listing of the program Bam-PTwang.

slower 1.5 second rate. Voice #2 has an attack

rate of 5. It will take 55 thousandths of a second

to reach peak volume, and then decay at a rate

close to voice #ls. Run the program with

some different values defining the ADSR enve

lopes. You can simulate different types of guns

and bullets.

Next, the program waits for a keypress in

lines 1290-1300. Pressing the return key will

end the program. Anything else shoots a bul

let. Lines 1360-1400 do the shooting.

First comes voice #1, with the explosion.

Notice how the previous explosion doesn't get

completely released until the last possible

moment. There's a brief pause in line 1380 so

the bullet can pick up a little speed. Then voice

#2 chimes in with the whistling flight.

Lines 1420-1480 then take voice #2's fre

quency on a roller coaster ride. Unlike Gong

Machine, this program doesn't scan the key

board while it's playing with frequencies. That

means you don't have rapid-fire capabilities.

Try changing this limitation.

White noise also comes in handy for

simulations of waves, wind, slamming doors,

and similar phenomena. It's particularly in-

171

Commodore 64 Graphics and Sound Programming

teresting to combine it with more musical

waveforms, as Bam-P Twang does.

9.6 NOW ENTERING THE PULSER ZONE

waveforms of varying width with smooth vol

ume changes. This creates an eerie noise that

background music in the Twilight Zone.

Figure 9-11 lists the program, Pulser

Zone. As usual, read it, type it in, save it, run

it, and then make your own modifications.

Come on back to the book when you're ready

The final sound effect combines pulse for a little explanation.

Lines 1160-1190 set the frequency,

ADSR envelope, and volume. As in the pro-

would be perfect for disintegration rays or gram Mad Computer, volume quickly rises to a

1800

1810

1028

1838

1848

1838

1868

1878

1888

1890

1188

1118

1128

1138

1148

1158

1168

1178

1188

1198

1288

1218

1228

1238

1248

1258

1260

1270

1280

1290

1300

1310

1320

1330

1340

REM
z

REN

SID

FOR

NEXT

w PULSER ZONE *

** CLEAR

= 54272

SID

RE6 = SID TO

POKE RE6

RE6

PRINT "L";

PRINT "PRESS
:

;

REM

POKE

POKE
*

POKE
:

:

REN
:

POKE
:

ULM

, 0

S PRINT PROMPT

REM

SID+24

SOUND CHIP

SPACEBAR TO END"

** INITIALIZE SID REGISTERS

SID+1,

SID+6,

SID+24,

«» PLAV

SID+4,

= 6 : A

IF ULM = 15

ULM

POKE

FOR

NEXT

= ULM +

SID+24,

N = 8 TO

20

240

15

IT

65

a -3

REM

REM

REM

U-l FREQ

U-l SSTVRLS

MAX UOLUME

REM U-l PULSE ON

OR ULM = 6

A

ULM

15

:REM

:REM

POKE SID+3, N REM

N

THEN A = -A

ADJUST UOLM

PULSE WIDTH

GROUING

172

Special Sound Effects

1330

1360

1370

1300

1390

1400

1410

1420

1430

1440

14S0

1460

1470

1400

1490

1300

1310

1320

1330

FOR N = 14 70 9 S7EP -1
: POKE SID+3, H

NEX7 H

REM «* SCAN KEYBOARD
z

6E7 KPS

IF KPS = "" 7HEH 1270 :

:

REM *w CLEAN UP & END
:

FOR REG = SID 70 SID+24

: POKE REG, 0

NEX7 REG

PRIN7 "L";

END

REM PULSE

REM WIDTH

REM SHRNK

REM NO KEV

Fig. 9-11. Listing of the program Pulser Zone.

peak and then stays there until the program

ends.

Line 1240 selects the pulse waveform for

voice #1 and triggers the ADSR envelope.

Line 1260 gives initial values for volume and

volume change variables.

Line 1270 is the top of the main program

loop. Overall volume will move between set

tings of 6 and 15. Line 1270 switches the di

rection of the changes in volume when those

limits are reached. Line 1280 changes the vol

ume by adding in the volume change. Then line

1290 pokes in the new value.

Lines 1310-1330 move the pulse width

setting from 8 to 15, one step at a time. This

corresponds to pulse widths of 50% to 94%.

Look back at Section 7.7 if you forget how

pulse widths are set.

Lines 1350-1370 then move the pulse

width setting back down, one step at a time.

Then, lines 1420-1430 do a quick keyboard

scan. If a key's been pressed, the program

ends. If not, it's back up to line 1270 for a new

volume setting and another sweep through the

pulse width loops.

Some changes and additions you might

make to Pulser Zone include frequency varia

tions, ring modulation, echo effects, a second

voice with pulse widths changing in opposite

patterns, and a different ADSR envelope.

As usual, imaginative experiments will teach

you a lot.

9.7 CHAPTER SUMMARY

You've played with six different sound

effects programs in this chapter. Here are

some highlights of what was covered:

* Using short bursts of triangle wave

forms to simulate a ticking clock

* Using ring modulation and frequency

173

Commodore 64 Graphics and Sound Programming

changes to simulate gongs

* Using information from voice #3's os

cillator to modulate another voice's fre

quency, helping to simulate an insane

computer

* Using a variety of timing loops to

simulate the rhythmic sounds of a gal

loping horse

* Mixing a noise waveform with a tri

angle waveform to simulate a gunshot

* Varying pulse width and volume to

create an eerie, horror movie sound

The last three chapters have given you a

glimpse of SID's sound'making capabilities. In

Chapter 10, you'll bring SID and VIC together

in programs that combine sound and graphics.

9.8 EXERCISES

9.8.1 Self Test

Answers are in Section 9.8.3.

1. (9.1) You could slow down the ticking in

Clock by using numbers in the

delay loops of lines 1260 and 1320.

2. (9.2) voices are used to pro

duce ring modulation.

3. (9.3) The registers at SID+27 and SID+28

let you eavesdrop on the activities of

6. (9.6) The loops in lines 1310-1370 of Pulser

Zone are used to change voice #l's

4. (9.4) In the program Horse, slight varia

tions in volume and frequency are used to

make the sound more

5. (9.5) The program Bam-PTwang uses the

waveform to simulate exploding

gunpowder.

9.8.2 Programming Exercises

1. Change the program Clock so it uses

all three voices, thereby creating a

richer sound.

2. Change the program Bam-PTwang so

the explosive sound comes after the

bullet flies through the air.

3. Change the program Pulser Zone so

that voice #l's frequency changes

along with its pulse width.

9.8.3 Answers to Self Test

1. larger

2. two

3. voice #3

4. natural

5. noise or white noise

6. pulse width

9.8.4 Possible Solutions

to Programming Exercises

1. Load in the program Clock. Then type

in these lines:

:REM U-3 SST/REL

1008 REN *k* RICH CLOCK *«*

1163 POKE SID+13, 120 :REM U-2 SST/REL

1166 POKE SID+20, 180

1223 POKE SID+8, 28

1226 POKE SID+15, 40

1233 POKE SID+li, IT

1236 POKE SID+18, 17

1256 POKE SID+18. 16

1253 POKE SID+ll, 16

174

1283 POKE
1286 POKE
1293 POKE

1296 POKE
1313 POKE
1316 POKE

SID+8, 15

SID+15, 30
SID+11, 17

SID+18, 17
SID+il, 16

SID+18, 16

2. Load in the program Bam-PTwang.
Then type these lines:

1000 REN
1360 :

1370 :

*** P'TWANG-BAM ***

Special Sound Effects

1380 :

1492 POKE SID+4,128

tilt r?5E ?i5*f:«? «
1498 ? = ° 20

REN

HEXT T

3. Load in the program Pulser Zone.
Then type in these lines:

if!!
H»2
1363

*** S0M 0F
P0KE SID+i, 2 *
POKE SID*i. 2 •

U-l

175

Chapter 10

Sounds +

Graphics = Magic

In the first six chapters, you discovered some

of the Commodore 64's graphics abilities. In

the last three chapters, you learned how to get

it to make sounds. Now it's time to bring

graphics and sound together. I'll show you

three programs that do this. Along the way, I'll

discuss some of the design techniques that Fve

found helpful with this kind of programming.

10.1 SYNERGY

Synergy is a word that comes from biol

ogy. It describes situations where two or more

things get together and create effects beyond

what each component can do alone. Another

way to think of it is that the whole becomes

greater than the sum of the parts.

Putting pictures and sounds together in a

clever way can create some wondrous effects.

Imagine the Star Wars movies without their

excellent sound tracks. Or playing a silent ver

sion of Donkey Kong.

Good sound effects help paint pictures in

your mind. Good pictures help suggest certain

sounds. If the two elements are carefully

brought together, they synergize to create a

new level of illusion.

Careful programmers spend a lot of time

fine tuning sound and graphics effects. This can

be frustrating if you're working with a sloppily

designed program. On the other hand, fine

tuning a well-designed program can actually be

a lot of fun. What makes a program well-

designed? One of the most important factors is

modularity.

10.2 MODULAR THINKING

The easiest job for beginning program

mers is learning the rules of a computer lan-

177

Commodore 64 Graphics and Sound Programming

gauge and the features of a particular comput

er. The tough part is learning how to put a

large program together.

Good programmers start by thinking.

They take a complex problem and start break

ing it up into simpler pieces, or modules. Then

they break any complex modules down into

even simpler pieces. This continues until

they've got a set of simple modules that cover

every detail of the original problem. Then they

start translating their plan into specific com

puter instructions.

This approach is known as top-down

structured programming. It can be used with

any computer language on any computer. To

most beginners, it seems a waste of time.

They want to sit down and start writing

code. It usually takes a few experiences

wrestling with a badly structured program to

see the light.

How do you learn to program this way?

Start by reading books and magazines, talking

to other programmers, examining all sorts of

programs, learning more than one computer

language, and trying to pay attention to your

mistakes. Keep your mind open, alert, and

calm—and write lots of programs.

10.3 OF BLIPS AND BEEPS

(A HISTORICAL SALUTE)

About ten years ago, the first popular

home video game appeared: Pong. Players got

to bounce a blip of light around a TV screen.

When the blip hit a wall or a simulated ping

pong paddle, there was a little beep. This

chapter's first program salutes the humble

world of blips and beeps.

Figure 10-1 lists the program Bouncer.

Type it in, save it, and then run it.

1OOO

1010

1020

1030

1040
11)50XlfifU

i860
1 H7flXII 1 (f

1080

1090

1100

1110

1120

1130

1140

1130

1160

1170

1180

1190

1200

REN «*
:

:

REM «*
:

RXSf11Dn¥\X/

BXSC2)

PRINT

PRINT

FOR N

* BOUNCER ***

DRAM THE BOX ft

= "1

"LKIti" : REN

SPC<10>; BX$(1>

= 1 TO 3

PRINT

CLEAR
REM

:REN

: PRINT SPC(IO); BXSC2)

NEXT N

PRINT
:

PRINT

PRINT
:

:

REN *•

SPCC10); BXSC3) REM

SPC(IO); "(QPRESS ANV "

"KEY TO STOP"

SET UP SPRITE DATA

PRONPT

1"
f ■>■

ft DOUN

TOP

SIDES

BOTTOM

178

Sounds + Graphics = Magic

1210 :

1220 FOR N = 12288 TO 123S0 :REM MOSTLY
1230 : POKE N, 0 :REN BLANK

1240 NEXT N

1230 :

1260 FOR N = 12288 TO 12300 STEP 3

12T0 : READ SPDTA
1280 : POKE N, SPDTA :REM BALL SHAPE

1230 NEXT N

1300 :

1310 DATA 60, 126, 235, 126, 60

1320 :

1330 :
1340 REM «* SET UP UIC REGISTERS

1390 :
1360 UIC = 33248 REM GRAPHICS CHIP

1370 POKE 2040, 192 :REM POINT TO DATA
1380 POKE UIC+39, 7 : REM 4*0 IS YELLOW
1390 POKE UIC+21, 1 REM TURN ON **0

1400 :

1410 :
1420 REM «* SET UP THE SOUNDS

1430 :

1440 SID = 34272 REM SOUND CHIP

1430 POKE SID+3, 24 REM ATK=1, DKV=8

1460 POKE SID+24, 15 REM MAX UOLUME

1470 :

1480 :

1490 REM «* INITIALIZE BALL POSITION

AND MOUES

1300 :

1310 HP = 180 : UP = 89 :REM POSITIONS

1320 HM = 4 : UM = 2.3 :REM MOUES

1330 :

1340 :

1330 REM ** MOUE THE BALL

1360 :

1370 HP = HP + HM REM NEW HORZ. POS

1380 UP = UP + UM REM NEW UERT. POS

1390 POKE UIC, HP REM SET NEU

1600 POKE UIC+1, UP REM POSITIONS

1610 :

1620 :

1630 REM «* CHECK FOR A KEYPRESS

1640 :

1630 GET KPS

1660 IF KPS O "•■ THEN 1930 REM END IT

1670 :

179

Commodore 64 Graphics and Sound Programming

1680

1696

1700

1710

1720

1730

1740

1730

1766

1776

1786

1796

1866

1816

1826

1836

1846

1836

1866

1876

1886

1896

1988

1916

1926

1936

1948

1936

1966

1976

1988

1996

REN *

HH =

UH =
:

* CHECK FOR A HIT

<HP <

(UP <

IF (NOT HH)
:

REN «

IF HH

IF UH

POKE

POKE

POKE
:

HUE =

* DEAL

THEN

THEN

SID+4,

SID+1,

SID+4,

111 OR HP > 249>

80 OR UP > 102)

AND (NOT UH) THEN

WITH A HIT

HH = -HN :REN TURN

UH = -UH :REH TURN

16 :REH RELEASE

RND(6)*46 + 18

1370

ARND

ARND

SOUND

17 :REH SOUND ATTACKS

(PEEK(UIC+39) AND 13) +

IF HUE = 16

POKE

60T0

:

REN *
:

POKE

POKE

PRINT

END

UIC+39

1370

THEN HUE = 1

,HUE :REH CHAN6E

:REH HIT DEALT

* CLEAN UP AND 60 HONE

SID+24

UIC+21

"L";

,0 :REH SOUND OFF

,0 :REH SPRITE OFF

1

COLOR

WITH

:REH CLEAR SCREEN

Fig. 10-1. Listing of the program Bouncer.

In most graphics displays, there are parts

of the picture that stay still and parts that

move. You can call the parts that stay still

static elements and the parts that move

dynamic elements.

In Bouncer, the box is the static element,

and the moving blip is the dynamic element.

The box is drawn with graphics characters, and

the blip is a sprite. With the Commodore 64,

bit mapping and graphics characters work well

for static elements. Graphics characters and

sprites work well for dynamic elements.

10.3.1 Setting Up the Graphics and Sound

Let's look at Bouncer's modules. Lines

1050-1170 set up the static elements of the

screen display. Cursor control characters,

strings made up of graphics characters, and the

SPC() command are all used.

The next two modules set up the sprite.

180

Sounds + Graphics = Magic

Lines 1220-1310 load in the data for a very

simple sprite, shown in Fig. 10-2. Then lines

1360-1390 set up the necessary VIC registers.

Lines 1440-1460 set up the sound chip. The

program uses voice #1. Line 1450 sets values

for that voice's attack and decay rates. Line

1460 sets an overall SID volume level. Fre

quency and waveform for voice #1 will be set

whenever the blip hits a wall.

10.3.2 Getting The Blip Into Motion

The main part of the program forms a

large loop. Each time through, the blip moves

on the screen. Four variables handle the blip's

motion. HP and VP keep track of its vertical

and horizontal positions on the screen. HM

contains the size and direction of horizontal

moves. VM contains the size and direction of

vertical moves.

Lines 1510-1520 initialize these four

variables. The sprite is put in the middle of the

box drawn back in lines 1050-1140, ready to

move almost twice as fast horizontally as ver

tically.

Line 1570 is the top of the main program

loop. Lines 1570-1600 figure new horizontal

Fig. 10-2. The simple sprite design used in Bouncer.

181

Commodore 64 Graphics and Sound Programming

and vertical positions for the blip and then poke

them into sprite #0's position registers.

Next, the program checks for a keypress.

Any keypress will cause a jump to the pro

gram's closing module.

Lines 1710-1720 use Boolean expres

sions to see if the blip has hit one of the box's

walls. Line 1710 checks for a hit on the side

walls, line 1720 for a hit on the top or bottom

walls. If no wall has been hit, the program pops

on back to the top of the motion loop at line

1570.

10.3.3 Dealing With A Hit

The next module, lines 1790-1900, deals

with a hit by changing the blip's motion, start

ing a sound effect, and changing the blip's

color.

If the blip has hit a side wall, line 1790

reverses its horizontal motion. If it has hit a top

or bottom wall, line 1800 reverses its vertical

motion.

Then lines 1820-1840 gives us a sound

effect. Line 1820 releases any previous sound.

Line 1830 picks a frequency setting at random

and then pokes it into the appropriate SID

register. Line 1840 then triggers the sound.

Finally, lines 1860-1880 change the blip's

color. It will cycle repeatedly through the set

of sprite colors, except black. After a hit's been

dealt with, the program jumps back to line

1570, which is the top of the motion loop.

10.3.4 Cleaning Up

The final module of Bouncer turns off the

sound and the sprite and then clears the screen

in a straightforward manner. If you wanted to

be a bit more thorough, you'd clear all the SID

and VIC registers used in the program.

10.4 THE PIANORGAN

The next program uses complex character

graphics and a speeded-up keyboard scan to

create an animated musical instrument. It's

listed in Fig. 10-3. Type in Pianorgan; save it;

and then run it. When you're playing the in

strument, notes will last as long as you hold

down a key.

10.4.1 Big Strings

This program uses long character strings

to quickly draw the singing keys. These

strings contain cursor control characters, dis

play option characters, graphics characters,

and text characters. Although such strings take

time to set up, they make for simple program

ming and speedy displays.

Pianorgan's first few modules build six

teen character strings to display the instru

ment's singing keys. There are two strings for

each of eight keys, one with a closed mouth and

one with an open mouth.

Lines 1050-1070 set up two tabbing

strings. D$ contains a home command and 23

cursor down commands. R$ contains 40 cursor

right commands. Using these strings in combi

nation with the LEFT$ function lets us move

the cursor anywhere on the screen.

Lines 1120-1210 build up eight closed

mouth strings. First, lines 1120-1140 build a

section that's common to all eight strings. Line

1150 sets a piece that'll finish off all eight

strings. Then lines 1160-1210 put together the

eight custom strings.

Line 1170 adds the pieces of D$ and R$

that'll get the cursor to the proper starting

position on the screen. The eight images will

share the same vertical position. However,

182

C8L

U1WQ

N1X3N

T'8'£'ZT'1'C

CNX1H
SA3JI21010301W3a:801T=N30J

S3Q0380103dfl13S«*143*

<N

SdJ+CN>$Ud

+CN)$Ud

SWd+CN>SUd

N1X3N
<N)SWd

CN>$Md

<N>$Ud

OPPJ

oet-T

OZPT
OTfT

QOt-T

06£T

08CT

01ST
Q9£T

GfiST
Of£T

8CCT

OZCT

QT£T

=CN>$l4d:89CT

801T=N80J06ZT
»IIIEUIIIEiFI..+SWd=SWd08ZT

..■ElHIP)■El■..+SWd=SWd81ZT
..Him•lllfQ-IIMIO0El.a=SWd09ZT

S9NI91SHinOWN3dOdft13S»»U3U

N1X3N
$dJ+CN>$U3=(N>$M3:

(N+8t-)$*H3+(N>$M3=(M)SWO:

SWO+<N>$M3=<N>$M3:

IP-N*£'$H>$1J3~I
+(f'S<l>SlJ31=(N>$M3:

801T=NBOJ

Illlii..=$dJ
..Illfil..+$143=SW3

..IIIEiFl■ElBIIHI-..+$U3=SWO
..IHfH-IIIIUEllllil..=SW3

S9NIH1SHinOMa3S013dfl13S**M3S

$«

■•IIHn..=sa

=sa

S9NI31S9NI88V1dfl13S»»143*

NU9*0NVId

OfZT

O£ZT

ozzt

OTZT

88ZT

86TT

98TT

01TT

09TT

OSTT

OfrTT

OCTT

OZTT

8TTT

08TT

860T

880T

OA0T

090T

OfiOT

OfOT

0£0T

OZOT

OTOT

QOOT

oi6b|/\|=+spunos

Commodore 64 Graphics and Sound Programming

1430

1460

1470

1480

1490

1300

1310

1320

1330

1340

1330

1360

1370

1380

1390
1600

1610

1620

1630

1640

1630

1660

1670
1688

1690

1788

1718

1728

1738

1748

1738

1768

1778

1788

1798

1888

1818

1828

1838

1848

1838

1868

1878

1888

1898

1988

1918

1928

REM ** SE7 UP SID AND FREQUENCIES

SID = 34272

POKE SID+3, 4

POKE SID+3, 18

POKE SID+6, 169

POKE SID+24,13
MF = 64

FOR N=i 70 8

: READ FH<N)

: READ FLCN>
NEX7 N

REM SOUND CHIP

REM PULSE WIDTH

REM ATK=O, DKY=18

REM SS7=16, RLS=9

REM MAX UOLUME

REM PULSE HUF

REM SE7 FREQUENCY

REM UALUES FOR
REM 8 NOTES

DA7A 8, 98, 9, 184

DA7A 18, 143, 11, 48

DA7A 12, 143, 14, 23

DA7A 13, 218, 16, 193

REM «* SET SCREEN COLORS, ALL KEVS

REPEAT, S SPEED UP KBD SCAN

POKE 33280, 0

POKE 53281, 0

POKE 650, 128

POKE 56323, 20

REM BORDER BLACK

REM BK6R0UND BLACK

:REM ALL KEVS REPT.

REM SPEEDIER SCAN

REM PRINT 8 CLOSED MOUTHS

PRINT "L";
PRINT "B"

FOR N = 1 TO 8

: PRINT CM5CN)

NEXT N

PRINT "li"

REM CLEAR SCREEN

REM DARK 6RAV

REM THE MOUTHS

REM WHITE

REM PRINT PROMPTS

PRINT LEFT$<D$,18>; SPCC9);

PRINT "PRESS KEVS [21!-tf8« TO PLAY"
PRINT : PRINT SPC<9);

PRINT "PRESS U9SPACEBARB TO STOP"

REM SCAN THE KEYBOARD

184

Sounds + Graphics = Magic

1938

1940

1930

1960

1970

1980

1990

2000

2010

2020

2030

2040

2030

2060

2070

2080

2090

2100

2110

2120

2130

2140

2130

2160

2170

2186

2198

2200

2210

2220

2230

2240

2230

2260

2270

6ET KPS

IF KP$ = ■••• THEN 1940

IF KPS = " " THEN 2200

KP = UAL <KPS>

IF KP<1 OR KP>8 THEN 1948

REM ** PLAV A NOTE

POKE 646, HIKKP) :

PRINT PM$<KP>

POKE SID+1,FH(KP>

POKE SID,FLCKP)
POKE SID+4, MF+i

REM SET CHAR HU

REM OPEN MOUTH

REM SET FREQ

REM SET FREQ

REM START SOUND

6ET KP$ REM PLAV TIL KEV RELEASED
IF UAL<KP$> = KP THEN 2090

POKE 646, 11

PRINT CM$<KP>

POKE SID+4, MF

GOTO 1930

REM BACK TO GRAY

REM CLOSE MOUTH

REN END SOUND

REM SCAN AGAIN

REM ** CLEAN UP AND GO HOME
*

POKE 56323, 66 REM FIX KBD SCAN

POKE 646, 1 REM CHAR COLOR WHITE

PRINT "L"; REM CLEAR SCREEN

FOR REG=SID TO SID+24 REM CLEAR

: POKE REG, 0 REM SID

NEXT REG

END

Fig. 10-3. Listing of the program Pianorgan.

each one will have a different horizontal posi

tion.

Line 1180 adds the common section built

in lines 1120-1140. Then line 1190 uses a

cheap trick to add a number to each image. The

singing keys have number codes, 1-8. When

keyboard keys 1-8 are pressed, the appro

priate single key will pop into action. The

character codes for numbers run between 48

and 57. Line 1190 simply adds the value of the

loop variable N to 48 and then uses the CHR$

function to produce the character that corres

ponds to the value of N. For example, when N

has the value 4, line 1190 will add on CHR$

185

Commodore 64 Graphics and Sound Programming

Fig. 10-4. The two singing key images: closed mouth and open mouth.

(52), which is a 4.

After the closed mouth strings are set,

lines 1260-1340 set up eight open mouth

strings. The process is similar to that in lines

1120-1210. The major differences are the de

tails of the image. Figure 10-4 shows the

two different singing key images, one with a

closed mouth and the other with an open

mouth.

This section's final module stores eight

color codes in the array HU (). Remember,

the singing keys are numbered 1-8. Each key's

color code will be used to set the color of that

key's open mouth image.

10.4.2 Setting Up SID,

the Screen, and the Keyboard

This program uses the pulse waveform

and a carefully chosen ADSR envelope to

create sounds midway between a piano and an

organ. Lines 1480-1530 set the necessary SID

registers.

Lines 1550-1630 set up two arrays, FH ()

and FL (), that will hold the frequency settings

for eight notes. The values in the data state

ments come from Appendix O. They'll produce

the notes C, D, E, F, G, A, and B from the third

octave, and C from the fourth octave.

Next, lines 1680 and 1690 set the screen

background and border to black. I have a defi

nite preference for a black background, since

colors really sing when displayed on it. In this

program I decided to enforce my preference.

Line 1700 pulls a stunt you've used be

fore. When memory location 650 contains the

value 128, all keys on the keyboard will repeat

when held down long enough.

Line 1710 pulls a new trick. One of the

joys of working with the Commodore 64 is the

measure of control you have over hardware

186

Sounds + Graphics = Magic

configuration. Normally, the Commodore 64

scans the keyboard for pressed keys 60 times a

second. In Pianorgan, you need to scan it more

often to get a more responsive instrument.

Memory location 56325 is a register that con

trols the speed of keyboard scanning. Nor

mally, it contains the value 66. By poking it

with the value 20, you can get the computer to

scan the keyboard 200 times a second. At the

end of the program, you'll set it back to normal

scan speed. If you didn't, strange things would

occur. Try it, if you've got a taste for strange

ness.

10.4.3 Set the Initial Display

The next two modules of pianorj in are

straightforward. Lines 1760-1810 clear the

screen and then print the eight closed mouth

strings in dark gray. Then lines 1860-1890

print some instructions for playing the instru

ment. Remember, those weird-looking

characters in lines 1770 and 1810 represent

color commands. Check back to "How To Use

This Book" or Appendix E if you've forgotten

about them.

10.4.4 The Main Program Loop

of Pianorgan

Now comes Pianorgan's main program

loop. Lines 1940-1980 scan the keyboard. A

space will end the program; one of the number

keys in the range 1 to 8 will trigger a note;

anything else will be ignored.

Lines 2030-2150 play a note. This section

of the program is relatively short and simple,

thanks to all the setup work the program did

earlier. Line 2030 starts the process by setting

a new color. Memory location 646 is used by

the Commodore's operating system to figure

out what color to draw characters. Then line

2040 draws an open mouth image. The color

and the open mouth string correspond to the

number of the key that's been pressed. Lines

2050-2060 then set the note's frequency, and

line 2070 triggers the sound.

The ADSR envelope for Pianorgan's

sounds has a fast attack rate, a fairly slow

decay rate, and a sustain level that's about

two-thirds of peak volume. The release rate's

pretty close to the attack rate. If a note is held

for a short time, it will sound like a piano note.

The longer the note's held, the more it will

sound like an organ note.

Lines 2090-2100 are the reason we

speeded up the keyboard scan. First, line 2090

gets a keypress and stores it in the variable

KP$. If a key's being held down, the value of

KP$ will match KP, the number of the note

currently being played. In that case, the pro

gram does a quick U-turn back to 2090 to read

the keyboard again. As soon as the key's let up,

line 2100's matching test will fail, and the pro

gram will go on to end the note. With a normal

keyboard scan rate, these two lines wouldn't

work correctly; the get procedure takes too

much time, and it would miss a lot of key

action. The speeded-up scan rate solves the

problem.

The next four lines finish off the note.

Line 2120 sets the drawing color back to dark

gray. Lines 2130 draws the appropriate closed

mouth image. Line 2140 releases the sound,

and then line 2150jumps on back to line 1950 to

check for new keypresses.

10.4.5 Closing Thoughts

As mentioned in Section 10.4.3, pressing

the spacebar ends Pianorgan. Lines 2200-2250

187

Commodore 64 Graphics and Sound Programming

clean up shop. First, line 2200 restores the

normal keyboard scan rate. Line 2210 sets the

character color to white; line 2220 clears the

screen; and lines 2230-2250 play an homage to

thoroughness by resetting the first 24 SID re

gisters.

There are a number of things you can try

to do with this program. You might want to add

more keys to the instrument, use different

images, add more voices, change the style of

animation, or vary the keyboard action. Com

modore has put some great hardware into your

computer; with clever software, you can

create animated musical instruments never

before seen or heard.

10.5 SOME THOUGHTS ABOUT

SOUND/IMAGE COORDINATION

There is a marvelous Charlie Chaplin

movie anyone interested in sound/image coor

dination should see. It's called City Lights.

Charlie Chaplin had become an expert movie

maker during the days of silent films. He got so

good at his craft that you could almost hear

sounds in those silent films. City Lights was

one of the first films he made with sound.

The sound in that film is used sparingly,

cleverly, and to great effect. Chaplin was a

master of comic and dramatic timing; he was

able to transfer those skills to his work with

sound. Often a sound comes earlier than ex

pected, telegraphing a forthcoming action.

Sometimes it comes a bit late, increasing the

excitement of a scene. He uses sound spar

ingly, not wanting to clog the audience's taste

for it.

The coordination of sounds and images

doesn't have to be perfect. Often, subtle

offsets can add to the desired effect. Let the

minds of your audience do some of the work.

Artists, magicians, and master filmmakers un

derstand this. Some of the better computer

programmers are starting to learn the same

principles.

10.6 THE FINAL PROGRAM: SEESAW

Figure 10-5 lists our final program, See

saw. Type it in, save it, run it, and play around

with it. When you finish, come on back for

some explanation.

Two strange creatures appear, one sus

pended from a sky hook, the other poised on a

seesaw. When you press the A key, for Action,

the sky hook releases its captive, who moves

with a falling whistle towards the ground.

She/he hits with a ringing vibration, and the

other creature gets launched into the air. This

creature also moves with a whistle, but now

the tone rises until it's cut short by the ker

chunk of the sky hook snapping shut on the

hapless beast. When the dust clears, the two

creatures have traded situations. This happens

every time you press A. Pressing the spacebar

ends the program.

10.6.1 Setting Up Strings,

Sprites, and Sounds

Like the other programs in this chapter,

Seesaw takes quite a bit of setting up. Each

element is prepared in its own module. Lines

1050-1140 set up four hook images: an open

and a closed hook for each of the two hook

positions. Each hook image is a large string,

built up out of all the fancy characters in the

Commodore's arsenal: color changers, cursor

controls, display options, and graphics char-

188

68L

0

0

Z6T

*Z

96T

P

P

*Z

96
8ZT

..fM

..El

SldMOU

Z6T

'6ZT'0'0
'6ZT'0'0
'££Z'£-*ZTT
'09>Z'ZT
'6ZT'££'OOT
'9£'Z£'*■
'T£Z'Z£'ZT
'T£Z*PZ'UP
'0'9'Z6T
'6ZT'T'0

IdINIHd

'T£Z'£
'6ZT'0
'6ZT'0
'0>T
'T£Z'9P
'09'8£
'0'Z£
'£9T'8fr
'0'ZT
'0'£
'££Z'0

»»M3a

viva

viva

viva

viva

viva

viva

viva

viva
viva

viva

viva
:

N1X3N

ViadS'N33IOd-

O££ZT01

39VMI31IadS

CZ>S8S

viadsav3n:

88ZZT=

niavoi

+$1=

naoj
z

»*W3a
z

:

(Z>SSS

<T)SS8+SI=<T)SSS

S9NIH19I1VS33S

SZH+S*+

STH+S3+

SZH+

STH+

m=

dn13S■

Sid=CZ

$ld=<T

$ld=(Z

Sid=CT

CT>SSS
z

**U3ii
z

'Z>SHd
'Z>SHd
'T>SHd
'T>SHd

niiitmn=sid

-+HIHIIIIIQ..+SZH

+--H-.!■■■■■■■W..♦STH
ii^^^^Ellll

89NIH1S3I00Hdn139i

=SZH

=SZH

■STH

=STH
:

v^v|n|Jq

:

:

I1VS33S***M33

09»T

oet-T

OZfT

OT*T
OOfrT

06£T

08£T

01£T

09£T
0££T

OfCT

0££T

OZ£T

OT£T

80£T

06ZT

08ZT

01ZT

09ZT

OSZT

OPZT

O£ZT

OZZT
OTZT Vrwr

OOZT

06TT

08TT

01TT

09TT

OSTT

QfTT

O£TT

OZTT

OTTT
AATT

UU11

060T

080T
010T

090T

0£0T

OfQT

0£0T

OZOT

OTOT

OOOT

oj6b|/\|=somdBJQ+spunos

Commodore 64 Graphics and Sound Programming

1470

1480

1490

1300

1310

1320

1330

1340

1330

1360

1370

1380

1390

1600

1610

1620

1630

1640

1630

1660

1670

1680

1690

1700

1710

1720

1730

1740

1730

1760

1776

1780

1790

1800

1810

1820

1830

1840

1830

1860

1870

1880

1890

1900

1910

1920

1930

POKE 33281, 0 :REM BK6RND BLACK
PRINT ''L'llDDDIIIIIlIIIllHinilllllDDDIlllIi]''

PRINT SPC<10>; "PRESS UkAUB ";
PRINT "FOR ACTION"
PRINT

PRINT SPCO); "PRESS ";
PRINT "UkSPACEBARlS TO END"

REH ** SET UP SPRITES

UIC = 33248 :REM GRAPHICS CHIP
POKE 2040, 192 :REH SPRITE 0 PNTR
POKE 2041, 192 :REH SPRITE 1 PNTR

POKE UIC, 92 :

POKE UIC+1, 77 :

POKE UIC+2, 220

POKE UIC+3, 130

REM 4tO INIT HR POS

REM ttO INIT UR POS
REM til INIT HR PS

:REH HI INIT UR PS

POKE UIC+39, 4 REM **8 STARTS PRPL

POKE UIC+40, 3 :REH HI STARTS CYAN
POKE UIC+23, 3 REM EXPAND UERTICL
POKE UIC+29, 3 REM EXPAND HORIZNT

POKE UIC+21, 3 REM SPRITES 0-1 ON

REM *» INITIALIZE SID

SID = 34272 REM SOUND CHIP

FOR REG = SID TO SID+24

: POKE REG, 0 REM CLEAR IT

NEXT REG

POKE SID+24, 13 REM MAX UOLUNE

REM ** SET UOICE 1 FOR GONG

POKE SID+i, 3

POKE SID+3, 11

POKE SID+6, 10

REM U-l FREQ

REM ATK=O, DKV=11

REM SST=O, RLS=18

REM *» SET UOICE 2 FOR

WHISTLING FLIGHT

190

oC
O

5
I
I
II

1C
O

"£

MHII

OII

H£ufit

oMouoozt
t

ob
.

C
O

it

(
0

fit
au

-
f
i
t
M

b
.
HII

(
0
H

1
C
O

9
(
0

£
£
U
U

K
f
i
t

-
J
H
M
3

Z
h
A

£
J

C
O
m
U

U
C

O
0
(
0

S
>
U
U
(
0

Z
m

t
t

(
J
(
0
U
>

fit
f
i
t
M

I
k

3
L
h
O
O
U

C
h
A
U

m
Z

O
O

b
-
Z

A
3

b.
C

f
t
-
O
O
L
J

O
O
Z
H

J
U

m
O

_
_

O
(0

(
0
£
Z
Z
(
0

(
0
C
U
-
J

O
f
t
.
J
O

H
£
£

U
m
u

m
O

O
O

(
0
m
U

U
U

U
U

^
H
^

£
£
£
b
.

H
ft.

Z
J

fitfit
-
J

(
0
H
M
Z
Z
Z

U
U
U

t
t
U
-
I
O
Z

O
M
H

"
"

H
m
m
m

O
t
t
t
t
t
t
O

C
O
A
Z
U

fit
(
0

(
0

-
U
U
f
i
t
t
t
K

>
H
O

U
t
t

fli
M
m

Z
m

(
0

O
O
f
i
L
f
t
-
f
t
.

U
U

(
0
Z
H

"
I
Z

Z
Z

U
O
O

O
O
U

H
_
X
Z

U
9
3

-
3

O
Z
Z
£
£
£

O
t
t
O

m
£
£
U
U
O

H
_
_

H
I

_
O

U
U
U

O
*
M
0
)
f
i
t

fit
U
U
Z
f
i
t

m
£
£

I
£

Z
Z

£
£
B
f
i
t
t
t

fit
H
M
N
U

fi.
fitfit

"
%

fit
U
U

a
(
D

U
O

U
U

C
M

Z
(
0

0
0

fi.
fitfit

M
V
)

fit
m

U
O
t
f
i
t

O
Z
Z
H

(
0

(
0

••
••

1
0
#
H

••
H

U
N

"
.
"
N
^

CD
Z
U
U
O

C
O
O

*
Z

O
M

O
H
M

m
H
M

>
U
Z
Z

«
a
^
N
+

d
H

b
.

%
C

h
m

m
o

-
i

u
z
h
h
£

u
m
m

h
l
j

r
-
w
o

t
o

_
O

H
C

-
-
•
%

U
H

U
(
0
H
%
O
Z

(0
O
H
O

4-
+

H
3

%
D

-
-

m
Z
Z
H

:
:

fit
€

t
Z
H

»
b
.
C
O

-
H
O

f
i

%
C

M
V
)
O

H
L
U
w

Z
:
C

"
U

C
O
L
.

O
U

*
H

m
m

H
(
0

■
H

H
H
M

m
v
v
0

«
:

:
I

-
J

w
i
v
i
*
4
+

-
J

O
O
H
0
9
(
0

H
U

+
U

+
+

Z
4
*
4
*
3

O
O

U
+

4
*

+
U

+
+
H

+
U

a
(
o
a
e

m
z
z
(
o

t
o

i
i
i
i
i
i
^

t
t

a
i
i
i
a
u

f
i
t
o
a
u
u
o

(
0

M
M
M

ft.
0
-
t
O

4
*

H
M
Q
.
M
M

M
M
U
U
U
M

(
0

#
(
0
(
0

*
H
M

*
f
i
.
4
*
4
*
4
*
M

*
(
0

-
J
(
0
9

*
(
0
(
0

O
O
Z

(
0

{
j|i

h
'
^
^

*
Ufi.ft.fi.

*
H
O

*
...

_
...

Z
f
t
.
f
t
.

u
u
u

i
i
i
i
z
z
z

u
u
u
o

u
z
u
u

u
u

h
^
u

U
£

U
U

£
m
m
m

£
H

H
£

U
M
f
i
C
U
U

£
U
U
f
i
t

X
U

O
U

O
O

U
Z
Z
f
i
C
f
i
t
f
i
t

U
U
L
L
L
O

U
O

fit
O
O
O

U
O
O
O

U
O

U
fi.

••
"
f
i
t

"
f
t
.
f
i
.
"

"
f
i
t
"
b
-
U
C
L
^
f
i
.

••
"
f
i
t
•
'
(
D
h
h
h
O

••
"
t
t

"
f
t
.
f
t
.
b
b
f
t
.
f
t
.

••
"
f
i
t

"
f
i
.
f
i
.
L
b

"
••
Z
f
i
.

*•
"
f
i
t

O
G
G
O
O
G
O
O
G
O
O
G
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
G
O
O
O
O
O
O
O
O
O
O
O

t
T
l
O
(
D
H
O
(
O
O
H
M
(
O
t
r
n
(
D
H
G
G
O
H
M
r
O
^
r
i
n
i
(
0
h
-
G
O
>
O
H
M
C
O
^
r
i
n
(
D
H
G
O
r
)
O
H
M
r
O
^
i
n
(
0
H
G
(
»
G
H

e
)
(
0
0
)
0
>
0
)
0
)
O
O
O
O
O
O
O
O
O
O
H
H
H
H
H
H
H
H
H
H
M
M
M
M
M
M
M
M
M
M
C
0
(
^
f
0
(
0
(
0
(
V
)
(
0
O
(
0
O
^
^
r

H
H
H
H
H
H
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

261

09'H33HJH31IMS«*U32I0062
:068Z

:0882

Idad09M32I=f'8£+H3+31ft33IOd0182

3101130N314321:8ZT'8T+0IS33IOd0982
ia1X3N=ofoit=noaojessz

S3S0133I00H14321:<T'H3>$HdlNI2ldOf82
313113laUlS14321:62T'8T+<IIS33IOd0£8Z

:0282

31iadSV32HUdU3**U32I0T82

:0082

:0612

JJO311SIHMU32I:9T'TT+<IIS3X0d0812
N1X3N0112

1SIM04321:N-8CT'8+QIS3X0d:0912
3Sia14321:N'T-<Z*H3>+3in33IOd-0S12

T-d31S1101CfT=NaOJ0fl2

NO311SIHMM32I:IT'TT+dlS33IOd0£12
1INI2-fl14321:08'8+QIS3X0d0212

•0T12

dnS3sia3iiads03iivs33s»»W3a0012

:0692

■0892

21010332IO1S32IH32t=£'2133*0d0192
32IO1S32IM32I:dH'2IH33IOd0992

1X3N0S92

£'T+QIS33IOd0f92

013A0914321:L'21333IOd■0£9Z
1H92I091*1321:f+dH'2IH3X0d:8Z9Z
O32IJ01M32I:f'T+OIS33IOd■0T9Z
032109M32|:Z'21333IOd:009Z

laiU09U32I:dH'2IH3»0d:06S2
D32IJIHM32I:9'T+<1IS33IOd:08£Z
1IHM091*1321:T'2133X0d:01S2

1J3109W33f-dH'2IH33IOd•09£Z
ssain91*1321:£oit=anaojo££Z

92121103M32I:8£+HJ+3in=2130fS2
SOdaOHU32I:(2IH>3133d=dH0££Z

93212I0HU32I:Z-(Z«HJ>+3M=2iH8Z£Z
:OT£Z

3iiadsN3HVJ3iwaam**W3aoofiz

:06f2

:08f2

9N093SV3132IU32|:02'f+dIS33IOd01f2
S31iadSM32I:9fT'T-<Z*H3>+3in33IOd09f2

3nOM14321:Q£T'T-CZ»HJ>+3in33IOd0Sf2
I1US33S3nOMU32I:<HJ-£)SMSSlHI2ldOff2

9N0912IV1SU32I:T2'f+<IIS33IOd0£f2
:OZPZ

6ujuiuiej6ojdpunospuesojqdejof9

Sounds + Graphics = Magic

2910

2920

2930

2940

2930

2960

2970

2980

2990

3000

3010

3020

3030

3040

:

TEMP

GOTO

:

REN *

POKE

POKE

POKE

POKE

PRINT

END

= FH :

2140

* END

UIC+21

SID+24

UIC+23

UIC+29

FH

IT,

,0

,0

,0

,0

= El1 : EH = TEMP

CLEAN UP, GO HOME

:REM

:REM

:REM

:REM

:REM

SPRITES OFF

UOLUME OFF

UERT EXPAND OFF

HORZ EXPAND OFF

CLEAR SCREEN

Fig. 10-5. Listing of the program Seesaw.

characters. Parts common to all four hooks are

built up and then combined by lines 1110-1140

into the four strings.

Similar techniques are used in lines

1190-1230 to set up two seesaw images. It

took some experimentation to find the keys

that would print out line pieces that gradually

rose and fell. As with the hook images, cursor

commands and color controls are included in

the strings; placing the seesaws in the correct

screen position becomes a snap.

The same data is used to create both

sprites. Lines 1280-1310 load the data in. The

data itself is stored in lines 1330-1430.

Lines 1480-1540 print the screen prompts

—very straightforward stuff. Then lines

1590-1730 give the sprites their initial VIC

settings. Rather than try to calculate the exact

sprite positions, I started with an estimate and

then used intelligent searching techniques

(trial and error) to home in on the right

vajues.

The images are set, so it's time to prepare

the sounds. SID's first voice will be used for

the gong; its second voice will provide

whistling flights; and the third voice will

create the clunking hook effects. Lines 1780-

1820 clear the 24 important SID registers and

set maximum volume. Then lines 1870-2000

poke in the values needed to sculpt the three

sounds.

Once the program gets going, two vari

ables will be used to keep track of the hook and

creature situation. FH will contain the number

of the hook that's holding a creature, and EH

will hold the number of the empty hook. Hook 1

and creature 1 are on the left; hook 2 and

creature 2 are on the right.

Lines 2050-2060 initialize these vari

ables. Then lines 2070-2090 draw the appro

priate hook and seesaw images. The stage is

now set.

10.6.2 Action Breakdown

Lines 2140-2180 form a familiar key

board-scanning module. Keys other than A or

the spacebar are ignored. Pressing A initiates

193

Commodore 64 Graphics and Sound Programming

and action cycle; pressing the spacebar ends

the program.

The action cycle breaks down into six

modules: First, the creature held in a sky hook

is released. Second, it drops down whistling.

Third, it hits the seesaw, which switches posi

tions, along with the two creatures. Fourth,

the recently-fallen creature vibrates. Fifth, the

other sprite rises up into the air, whistling.

Sixth, the rising sprite gets nabbed by its hook.

Lines 2230-2270 take care of releasing a

sprite. The sky hook noise begins, the hook

opens, there's a short delay, the noise ends;

and the sprite changes color.

Lines 2320-2380 drop the sprite. First, an

initial sound frequency gets set, and the

whistling sound starts. Then a loop moves the

sprite down the screen, dropping the fre

quency as the sprite drops. At the bottom, the

whistling stops. It has also slowly faded in

volume during the trip, thanks to a carefully

chosen rate of volume decay.

Then the falling sprite reaches the

seesaw, and you're ready for the third part of

the action sequence. A gong noise is initiated;

the seesaw tilts; the sprite moves; and the

gong noise begins a slow fadeout. All of this

occurs in lines 2430-2470.

Next, lines 2520-2670 vibrate the fallen

sprite. As the frequency of the gong shifts up

and down the scale, the sprite moves back and

forth horizontally and shifts colors. This activ

ity is repeated several times. Then, as the

clanging gong fades away, the shaken creature

comes to rest, restored to a healthy cyan color.

Now comes the fifth module of the action

cycle. The other sprite rises into the air. Com

pare lines 2720-2780 to lines 2320-2380, which

dropped the hanging sprite creature. The two

modules are very much alike. First, voice #2

gets an initial frequency. Then the sound is

gated. The module's main loop comes next. As

the sprite moves up the screen, voice #2's

frequency rises. Finally, at the top, the whis

tling sound is released.

Now comes the sixth part of the action.

Just as a sprite was released in the first part,

now the rising sprite is captured. It all happens

in lines 2830-2870. The hook noise begins; the

hook clamps shut; there's a bit of a delay; the

hook noise ends; the sprite is drained of free

dom's color.

The action's over, and the sprites have

exchanged situations. The empty hook is now

full, the once-full hook is empty. Line 2920

updates the variables EH and FH to reflect

those sobering facts, and then line 2930

bounces back to read the keyboard again.

10.6.3 Cleanup and Reflection

Lines 2980-3020 perform a standard

cleanup operation. You might choose to be

more thorough about resetting the SID and

VIC registers.

When I wrote this program, the broad

outlines of the action were implemented first.

Fine-tuning the sounds and sprite motions was

saved for last. This method of problem solving

worked well with Seesaw.

10.7 SOME LAST THOUGHTS ABOUT

COMBINING SOUND AND GRAPHICS

Before I fade into the final end-of-chapter

exercises, here are some things to keep in

mind when you're combining sound and

graphics:

Timing A very simple effect

can have a solid im-

194

Sounds + Graphics = Magic

Fine Tuning

Simplicity

Unity of Design

pact when it comes at

the right moment.

When every element

fits seamlessly into

the whole effect,

synergy is maxi

mized.

Remove excess dec

oration. Every sound

and image should

have a clear purpose.

The individual ele

ments must aid one

another.

There's a lot of sound and graphics magic

waiting inside your Commodore 64. Start

waving your wand.

10.8 CHAPTER SUMMARY

In this chapter you explored three pro

grams that mix sound and graphics. More spe

cifically, I explained:

* How to cultivate synergy, so that the

whole effect of a graphics/sound com

bination is greater than the sum of the

individual parts

* Techniques that are useful for solving

complex programming tasks

* The program Bouncer, which mixes

character and sprite graphics with sim

ple sound effects and introduces a sim

ple wall-bouncing technique

* The program Pianorgan, which uses

complex character strings and a speed

ed up keyboard scan to create an ani

mated musical instrument

* Coordinating sounds and images in

subtle, artistic ways

* The program Seesaw, with a compli

cated set of actions involving all three

SID voices, two sprites, and complex

character strings

I hope you've enjoyed our excursions into

sound and graphics on the Commodore 64.

Stay curious, keep on learning, and have fun!

10.9 EXERCISES

10.9.1 Self Test

My favorite answers can be found in Sec

tion 10.9.3.

1. (10.1) When the whole becomes greater

then the sum of the parts, you can tell it

2. (10.2) Breaking a complex programming

task down into successively simpler pieces

is known as

3. (10.3) Parts of a picture that stay still are

known as elements, and parts

that move are elements.

4. (10.3) The program Bouncer uses

expressions to check for blip/wall colli

sions.

5. (10.4) Speeding up the scan in

Pianorgan gives us a more responsive

musical instrument.

6. (10.6) In Seesaw, the complex action cycle

has been broken into smaller

modules.

195

1888

1463

1465

1468

1812

1814

1816

REN *

FQ =

FC =

FQ =

IF FQ

IF FQ

18

1.

FQ
y

<

ROLLER BOUNCER

:REM STARTIN6

MM It

FREQUENCY

3 :REN FREQ CHAN6E FACTOR

* FC

188 THEN FC =

18 THEN FC =

8.6

1.3

Commodore 64 Graphics and Sound Programming

10.9.2 Programming Exercises type in these lines:

1. Change the program Bouncer so it

makes noises in a more regular pattern

when the sprite bounces into walls.

2. Change the program Pianorgan so the

heads shimmer colorfully when they

Sing. 1838 POKE SID+i, FQ

3. Change the program Seesaw so the

creatures move vertically as well as 2. Load in the program Pianorgan. Then

horizontally when they hit the seesaw. type in these lines:

10.9.3 Answers to Self Test ±6M REM _ RAIMB0RGAN _

i. synergy i303 . jmscn) = pm$<n> + jms

9 tnn Hnwn Qtmrtnr^H nmarammina 2893 P0ICE 646, C <PEEK<646>+1>AND 13>0R 1
z. top aown structurea programming 2896 print jm$<kp>

3. static; dynamic

4. Boolean 3. Load in the program Seesaw. Then

5. keyboard tyPe in these lines:
6. six

1888 REN «*» MORE SEESAU »**

10.9.4 Possible Solutions 1111 ™ Z peek <ur>
to Programming Exercises 264S : P0KE UR' up ~ UB*2io rrogramming txercises 2746 r0R M _ ±45 T0 77 STEp _± 6

n T j • tL r» ^, 2765 : POKE UR,
1. Load in the program Bouncer. Then up + <n>iis> * <n/3 - 38>

196

saojpuaddv

Appendix A

VIC Register Layout

199

R
e
g
i
s
t
e
r
n
u
m
b
e
r

D
e
c
i
m
a
l

|
H
e
x

0 1 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

$
0
0

$
0
1

$
0
2

$
0
3

$
0
4

$
0
5

$
0
6

$
0
7

$
0
8

$
0
9

$
0
A

S
O
B

$
0
C

$
0
D

$
0
E

$
0
F

$
1
0

$
1
1

Bi
t

7

S
O

H
7

S
O

M
l

S
1
H
7

S
1

M
l

S
2

H
7

S
2

M
l

S
3

H
7

S
3

M
l

S
4

H
7

S
4

M
l

S
5

H
7

S
5

M
l

S
6

H
7

S
6

M
l

S
7

H
7

S
7

M
l

S
I

H
8

R
a
s
t
e
r

bi
t
8

Bi
t

6 S
O

H
6

S
O

V
6

S
1

H
6

S
1

V
6

S
2

H
6

S
2

V
6 cococox cococo> S
4

H
6

S
4

V
6

S
5
H
6

S
5

V
6

S
6

H
6

S
6

V
6

S
6

H
6

S
7

V
6

S
6

H
8

E
x
t
e
n
d
e
d

c
o
l
o
r

e
x
t
m
o
d
e

V
I
C

s
t
a
r
t
i
n
g
a
d
d
r
e
s
s

Bi
t 5

S
O

H
5

S
O

V
5

S
1

H
5

S
1

V
5

S
2

H
5 <C0 enro
S
3

H
5

S
3

V
5

S
4

H
5

S
4

V
5

S
5

H
5

S
6
H
5

S
6

V
5

S
7

H
5

S
7

V
5

S
5

H
8

Bi
t
m
a
p

m
o
d
e

Bi
t

4 S
O

H
4

S
O

V
4

S
1

H
4

S
1

V
4

S
2

H
4

S
2

V
4

S
3

H
4

S
3

V
4

S
4

H
4

S
4

V
4

S
5

H
4

S
5

V
4

S
6

H
4

S
6

V
4

S
7

H
4

S
7

V
4

S
4

H
8

B
l
a
n
k

s
c
r
e
e
n

is
5
3
2
4
8

B
i
t

3

S
O

H
3

S
O

V
3 t-COCOXS
1

V
3

S
2

H
3

S
2

V
3

S
3

H
3

S
3

V
3

S
4

H
3

S
4

V
3

S
5
H
3

S
5

V
3

S
6

H
3 COCO

c
o
>

S
7

H
3

S
7

V
3

2
4

o
r
2
5

r
o
w
s

o
f

t
e
x
t

(
$
D
0
0
0
)

Bi
t

2 S
O

H
2

S
O

V
2

S
1

H
2 t-CVJCO>S
2

H
2 CVJCVJCO> COCMcoxS
3

V
2

S
4

H
2

S
4

V
2 incviCOXS
5
V
2

S
6

H
2 COCVJco>S
7

H
2

S
7

V
2

S
2

H
8

V
e
r
t
i
c
a
l

sc
ro

ll

bi
t
2

B
i
t 1

S
O

H
1

S
O

V
1 cox <coS
2

H
1

S
2

V
1

S
3

H
1

S
3

V
1

S
4

H
1

S
4

V
1

S
5

H
1

S
5

V
1

S
6

H
1

S
6

V
1

S
7

H
1

S
7

V
1

S
1

H
8

V
e
r
t
i
c
a
l

s
c
r
o
l
l

bi
t

1

B
i
t

0

S
O

H
O

S
O

V
O

S
1

H
O

S
1

V
O

S
2

H
O

S
2

V
O

S
3

H
O

S
3

V
O

S
4

H
O

S
4

V
O

S
5

H
O

S
5

V
O

S
6

H
O

S
6

V
O

S
7

H
O

S
7

V
1

S
O

H
8

V
e
r
t
i
c
a
l

s
c
r
o
l
l

b
i
t
O

T
h
i
s

r
e
g
i
s
t
e
r

c
o
n
t
r
o
l
s
:

S
p
r
i
t
e
#
0

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
0

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
1

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
1

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
2

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
2

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
3

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
3

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
4

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
4

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
5

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
5

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
6

h
o
r
i
z
o
n
t
a
l

p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
6

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
7

h
o
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n

S
p
r
i
t
e
#
7

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

M
o
s
t

s
i
g
n
i
f
i
c
a
n
t

bi
t
o
f
h
o
r
i
z
o
n
t
a
l

p
o
s
i
t
i
o
n
s

M
i
s
c
e
l
l
a
n
e
o
u
s

f
u
n
c
t
i
o
n
s

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

$
1
2

$
1
3

$
1
4

$
1
5

$
1
6

$
1
7

$
1
8

$
1
9

$
1
A

$
1
B

$
1
C

$
1
D

$
1
E

$
1
F

R
a
s
t
e
r

bi
t
7 L
P

H
7

L
P

V
7

S
7

O
n
/
o
f
f

S
7

E
V

T
e
x
t

s
c
r
e
e
n

bi
t
3

I
n
t
e
r
r
u
p
t

f
r
o
m

V
I
C S
7

S
B
P

S
7

M
C
M

S
7

E
H

S
7

S
S
C

S
7

S
B
C

R
a
s
t
e
r

bi
t
6 L
P

H
6

L
P

V
6

S
6

O
n
/
o
f
f

S
6

E
V

T
e
x
t

s
c
r
e
e
n

bi
t
2

S
6

S
B
P

S
6

M
C
M

S
6

S
S
C

S
6

S
B
C

R
a
s
t
e
r

bi
t
5 L
P

H
5

L
P

V
5

S
5

O
n
/
o
f
f

R
e
s
e
t
-

a
l
w
a
y
s

s
e
t
t
o
0 COLU

T
e
x
t

s
c
r
e
e
n

bi
t

1

S
5

S
B
P

S
5

M
C
M

S
5

S
S
C

S
5

S
B
C

R
a
s
t
e
r

bi
t
4

L
P

H
4

L
P

V
4

S
4

O
n
/
o
f
f

M
u
l
t
i

c
o
l
o
r

m
o
d
e

S
4

E
V

T
e
x
t

s
c
r
e
e
n

b
i
t
O

S
4

S
B
P

S
4

M
C
M

S
4

E
H

S
4

S
S
C

S
4

S
B
C

R
a
s
t
e
r

bi
t
3

L
P

H
3

L
P

V
3

S
3

O
n
/
o
f
f

3
8

o
r
4
0

c
o
l
u
m
n
s

o
f
t
e
x
t

S
3

E
V

C
h
a
r

d
e
f
s

bi
t
2

L
i
g
h
t

p
e
n

l
a
t
c
h
e
d

L
i
g
h
t

p
e
n

l
a
t
c
h
e
d

S
3

S
B
P

S
3

M
C
M

S
3

E
H

S
3

S
S
C

S
3

S
B
C

R
a
s
t
e
r

bi
t
2

L
P

H
2

L
P

V
2

S
2

O
n
/
o
f
f

H
o
r
i
z
o
n
t
a
l

sc
ro
ll

bi
t
2 S
2

E
V

C
h
a
r

d
e
f
s

bi
t

1

S
p
r
i
t
e
t
o

s
p
r
i
t
e

c
o
l
l
i
s
i
o
n

S
p
r
i
t
e

to

s
p
r
i
t
e

c
o
l
l
i
s
i
o
n

S
2

S
B
P

S
2

M
C
M

S
2

S
S
C

S
2

S
B
C

R
a
s
t
e
r

bi
t

1

L
P

H
1

L
P

V
1

S
1

O
n
/
o
f
f

H
o
r
i
z
o
n
t
a
l

sc
ro
ll

bi
t

1 COLU
C
h
a
r

d
e
f
s

b
i
t
O

S
p
r
i
t
e
t
o

b
k
g
r
n
d

c
o
l
l
i
s
i
o
n

S
p
r
i
t
e
t
o

b
k
g
r
n
d

c
o
l
l
i
s
i
o
n

S
1

S
B
P

S
1

M
C
M COLU S

1

S
S
C

S
1

S
B
C

R
a
s
t
e
r

b
i
t
O

L
P

H
O L
P

V
O

S
O

O
n
/
O
f
f

H
o
r
i
z
o
n
t
a
l

sc
ro
ll

b
i
t
O S
O

E
V

R
a
s
t
e
r

c
o
u
n
t

m
a
t
c
h

R
a
s
t
e
r

c
o
u
n
t

m
a
t
c
h

S
O

S
B
P

S
O

M
C
M

S
O

E
H

S
O

S
S
C

S
O

S
B
C

R
a
s
t
e
r

r
e
g
i
s
t
e
r

L
i
g
h
t
p
e
n

h
o
r
i
z
o
n
t
a
l

p
o
s
i
t
i
o
n

L
i
g
h
t
p
e
n

v
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n

T
u
r
n

s
p
r
i
t
e
s

o
n
/
o
f
f

M
i
s
c
e
l
l
a
n
e
o
u
s

f
u
n
c
t
i
o
n
s

E
x
p
a
n
d

s
p
r
i
t
e

(
2
x
)

ve
rt
ic

al
ly

M
e
m
o
r
y

p
o
i
n
t
e
r
s

f
o
r
c
h
a
r
a
c
t
e
r

d
i
s
p
l
a
y
,

bi
t
m
a
p
,
&

s
c
r
e
e
n

I
n
t
e
r
r
u
p
t

r
e
g
i
s
t
e
r

E
n
a
b
l
e

i
n
t
e
r
r
u
p
t
s

S
p
r
i
t
e
t
o
b
a
c
k
g
r
o
u
n
d

pr
io
ri
ti
es

S
e
l
e
c
t
m
u
l
t
i
c
o
l
o
r

m
o
d
e

f
o
r
s
p
r
i
t
e
s

E
x
p
a
n
d

s
p
r
i
t
e

(
2
x
)
h
o
r
i
z
o
n
t
a
l
l
y

S
p
r
i
t
e
t
o

sp
ri
te

c
o
l
l
i
s
i
o
n

S
p
r
i
t
e
t
o
b
a
c
k

g
r
o
u
n
d

c
o
l
l
i
s
i
o
n

r
o

R
e
g
i
s
t
e

D
e
c
i
m
a
l

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

r
n
u
m
b
e
r

H
e
x

$
2
0

$
2
1

$
2
2

$
2
3

$
2
4

$
2
5

$
2
6

$
2
7

$
2
8

$
2
9

$
2
A

$
2
B

$
2
C

$
2
D

$
2
E

Bi
t

7 - - - - - - - - - - - - - - -

Bi
t

6 - - - - - - - - - - - - - - -

V
I
C

st
ar
ti
ng

a
d
d
r
e
s
s

is
5
3
2
4
8

Bi
t

5 - - - - - - - - - - - - - - -

Bi
t

4 - - - - - - - - - - - - - - -

B
i
t 3

B
o
r
d
e
r

C
3

B
k
g
O

C
3

B
k
g

1

C
3

B
k
g
2

C
3

B
k
g
3

C
3

S
M
C
O

C
3

S
M
C
1

C
3

S
O

C
3

S
1

C
3

S
2

C
3 COCOCOO S
4

C
3

S
7

C
3

*
(
$
D
0
0
0
)

B
i
t 2

B
o
r
d
e
r

C
2

B
k
g
O

C
2

B
k
g

1

C
2

B
k
g
2

C
2

B
k
g

C
2

S
M
C
O

C
2

S
M
C
1

C
2

S
O

C
2

S
1

C
2 CMCMCOOS
3

C
2

S
4

C
2

S
5

C
2

S
6

C
2

S
7

C
2

Bi
t 1

B
o
r
d
e
r

C
1

B
k
g
O

C
1

B
k
g
1

C
1

B
k
g
2

C
1

B
k
g
3

C
1

S
M
C
O

C
1

S
M
C
1

C
1

S
O

C
1

S
1

C
1

S
2

C
1

S
3

C
1

S
4

C
1

S
5

C
1

S
6

C
1

S
7

C
1

B
i
t 0

B
o
r
d
e
r

C
O

B
k
g
O

C
O

B
k
g
1

C
O

B
k
g
2

C
O

B
k
g
3

C
O

S
M
C
O

C
O

S
M
C
1

C
O

S
O

C
O

S
1

C
O

S
2

C
O

S
3

C
O

S
4

C
O

S
5

C
O

S
6

C
O

S
7

C
O

T
h
i
s

r
e
g
i
s
t
e
r

c
o
n
t
r
o
l
s
:

B
o
r
d
e
r
c
o
l
o
r

B
a
c
k
g
r
o
u
n
d
#
0

c
o
l
o
r

B
a
c
k
g
r
o
u
n
d
#
1

c
o
l
o
r

B
a
c
k
g
r
o
u
n
d
#
2

c
o
l
o
r

B
a
c
k
g
r
o
u
n
d
#
3

c
o
l
o
r

S
p
r
i
t
e
m
u
l
t
i
c
o
l
o
r

#
0

S
p
r
i
t
e
m
u
l
t
i
c
o
l
o
r

#
1

S
p
r
i
t
e
#
0

c
o
l
o
r

S
p
r
i
t
e
#
1

c
o
l
o
r

S
p
r
i
t
e
#
2

c
o
l
o
r

S
p
r
i
t
e
#
3

c
o
l
o
r

S
p
r
i
t
e
#
4

c
o
l
o
r

S
p
r
i
t
e
#
5

c
o
l
o
r

S
p
r
i
t
e
#
6

c
o
l
o
r

S
p
r
i
t
e
#
7

c
o
l
o
r

Appendix B

Screen Memory

203

6
9

9
9

9
2
0
2

8
9
8
1
-
—
►
O
S

9
9
9
1
—
►
9
1

6
9
0
1

s
s
a
i
p
p
n

6
9

0
9

9
2

u
u
j
n
|
O
Q

0
2

9
1

0
9

0
2

91-
u
t
u
n
i
O
Q

0
101.

■
^
8
6
1
.

•17061-

■
P
Z
Q
i

■
P
Z
9
1

■
W
9
1

■
w
e

i.

-
w
e

i.

-
W
3
I
-

-
w
u

-
m
i
.

•
w
u

■
w
o

i

s
s
a
i
p
p
B

Appendix C

Color Memory

205

u
i
u
n
i
o
o

6
8

9
8

0
8

9
2

0
2

9
1

0
1

9

9
6
2
9
9

9
9
1
.
9
9
—
*

0
2

9
9
6
9
9
—
►

91.

9
8
9
9
9
-

9
9
9
9
9
—
►

0

s
s
s
j
p
p
e

0
2

01.

9
9
2
9
9

9
L
2
9
9

9
Z
I
.
9
9

9
9
1
-
9
9

9
6
0
9
9

9
9
0
9
9

9
1
.
0
9
9

9
Z
6
9
9

9
9
6
9
9

9
6
8
9
9

9
9
8
9
9

9
1
8
9
9

9
Z
Z
9
9

9
8
Z
9
9

9
6
9
9
9

-
9
9
9
9
9

9
1
9
9
9

•
9
Z
9
9
9

9
8
9
9
9

•
9
6
^
9
9

•
9
9
*
9
9

•
9
I
.
W
9

•
9
Z
8
9
9

•
9
8
8
9
9

•
9
6
2
9
9

6
8

9
8

0
8

9
2

0
2

9
1

u
u
j
n
|
O
Q

s
s
a
i
p
p
e

C
M

Appendix D

Screen Display Codes

207

803

CO

(ft

00o>CJiCO00CO

on

e

00

E

ft

fi

CO
!

CO

E=E

D

E

E

00
CO

00
CO

^1

COCO00l

ro

is

ro

o

II

EZ

ro

3

E

800

E

ro
o

i

roro
o
enCO

ro
o
ro

E

ro

8

E

CO
j

II

E

II

C

8

II

o

8

II

E

CO
CO

n

ES

II

II

I

-SP

ro

_lCO

1

ro

00

ro

60S

ft

*

*

E3

E3

—

-

■

■

±

B

B

ss

Ik

•

B

B

t

i

a

a

8

K

K

—

—

■

*

•

IE

IS

*

*

55

S

—

—

■

-

it

4ft

<ft

E

ESS

I

I

■

■

CO
CJI

8

8

Ei:

Ei:

CO
CO

I

I

■

■

■

■

E

E

1

1

1

1

8

ia

im

E

E

-

-

-

■

■

8

■

■

CO
—k

t

t

|159

n

n

r

8

->

■»

158
a

a

s

*

El

*

-

M

157 e
E

CO
CO

-

-

=

*

|156
IS

IS

CO

a

a

ro

Fl

Fl

I155
EE

E

CO

+

+

■■

■■

■■

■■

ro

N

N

154
GE

CO
o

♦

N

R

GE

ro
CJi

<

|153
E

B

S

—

<

-

E

X

X

|152
EE

ea

00
00

X

IS

E5

8

E

€

|151
El

00

o

E

a

to
ro

c

c

|150
E

a

i

c

*

E

ro

e

e

149
E

a

00
CJI

%

c

n

EPoke code
-8

->$

Poke code
rv,CO

2.

Poke code
2.

Poke
code

"a

o
P
o
k
e

c
o
d
e

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

S
e
t

1 + —

■ 0 1 2 3 4 5 6 7 8 9 : < = > ?

S
e
t

2

+ —

■ S e i 2 3 4 5 6 7 8 9 1 3 C = > ?

P
o
k
e

c
o
d
e

1
7
1

1
7
2

1
7
3

1
7
4

1
7
5

1
7
6

1
7
7

1
7
8

1
7
9

1
8
0

1
8
1

1
8
2

1
8
3

1
8
4

1
8
5

1
8
6

1
8
7

1
8
8

1
8
9

1
9
0

1
9
1

S
e
t

1 Q II B ■ S & u g Ei H y H H H 5 13

S
e
t

2 □ II a ■ B U a u ti
i

y a R 5 H

P
o
k
e

c
o
d
e

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

S
e
t

1 1- ■ 1. P J
-

T -1 1 1

1

— J ■

■

J ■

S
e
t

2 1- ■ k

m
a
m p X -
r -1 1 1

1

— • ■

■

J ■

P
o
k
e

c
o
d
e

2
3
5

2
3
6

2
3
7

2
3
8

2
3
9

2
4
0

2
4
1

2
4
2

2
4
3

2
4
4

2
4
5

2
4
6

2
4
7

2
4
8

2
4
9

2
5
0

2
5
1

2
5
2

2
5
3

2
5
4

2
5
5

S
e
t

1 i: r L n ■ ■
■

■
■

:i ■ i i ■ ■ ■ i k u j

S
e
t

2 i: r u n ■ ■
■

■
■

:
i ■ i i ■ ■ B L J J

Appendix E

Display Icons

211

r
o

C
O
L
O
R

I
C
O
N
S

I
c
o
n

■ a n c ES

K
e
y
(
s
)

t
o
p
r
e
s
s

C
T
R
L
-
1

C
T
R
L
-
2

C
T
R
L
-
3

C
T
R
L
-
4

C
T
R
L
-
5

C
T
R
L
-
6

C
T
R
L
-
7

C
T
R
L
-
8

W
h
a
t

it
d
o
e
s

T
e
x
t
c
o
l
o
r
b
l
a
c
k

T
e
x
t
c
o
l
o
r
w
h
i
t
e

T
e
x
t
c
o
l
o
r
r
e
d

T
e
x
t
c
o
l
o
r
c
y
a
n

T
e
x
t
c
o
l
o
r
p
u
r
p
l
e

T
e
x
t
c
o
l
o
r
g
r
e
e
n

T
e
x
t
c
o
l
o
r
b
l
u
e

T
e
x
t
c
o
l
o
r
y
e
l
l
o
w

I
c
o
n

r * E H II E2 ■
■

■
■

K
e
y
(
s
)

t
o
p
r
e
s
s

C
*
-
1

C
*
-
2

<
s
-
3

C
*
-
4

C
s
-
5

C
s
-
6

C
s
-
7

C
e
-
8

W
h
a
t

it
d
o
e
s

T
e
x
t
c
o
l
o
r
o
r
a
n
g
e

T
e
x
t
c
o
l
o
r

b
r
o
w
n

T
e
x
t
c
o
l
o
r

li
gh

t
r
e
d

T
e
x
t
c
o
l
o
r

d
a
r
k
g
r
a
y

T
e
x
t
c
o
l
o
r

m
e
d
i
u
m

g
r
a
y

T
e
x
t
c
o
l
o
r

li
gh

t
g
r
e
e
n

T
e
x
t
c
o
l
o
r

li
gh

t
b
l
u
e

T
e
x
t
c
o
l
o
r

li
gh

t
g
r
a
y

O
T
H
E
R

I
C
O
N
S

I
c
o
n

U3 fe
j

K
e
y
(
s
)
t
o
p
r
e
s
s

C
L
R
/
h
o
m
e

CR
SR

I

c
r
s
r

;
_

C
T
R
L
-
9

W
h
a
t

it
d
o
e
s

C
u
r
s
o
r

h
o
m
e

C
u
r
s
o
r

d
o
w
n

C
u
r
s
o
r

r
i
g
h
t

R
e
v
e
r
s
e

o
n

I
c
o
n

L D II ■

K
e
y
(
s
)
t
o
p
r
e
s
s

S
h
i
f
t
-
C
L
R
/
h
o
m
e

Sh
if

t-
CR

SR
\

S
h
i
f
t
-
C
R
S
R

^

C
T
R
L
-
0

W
h
a
t

it
d
o
e
s

C
l
e
a
r

s
c
r
e
e
n

C
u
r
s
o
r

u
p

C
u
r
s
o
r

le
ft

R
e
v
e
r
s
e

of
f

Appendix F

Color Codes

213

0 - black

1 - white

2-red

3 - cyan

4 - purple

5 - green

6 - blue

7 - yellow

8 - orange

9 - brown

10 - light red

11 - dark gray

12 - medium gray

13 - light green

14 - light blue

15 - light gray

214

Appendix G

Normal Sprite Coding Form

215

9LZ

1
R
o
w
20

1

1
Ro
w

19

|R
ow

18

|
R
o
w

17

IR
ow

16

|
R
o
w

15

|
R
o
w

14

I
R
o
w

13

I
R
o
w

12

I
R
o
w

11

I
r
o
w
I
O

1
R
o
w
9

1
R
o
w
8

1
Ro
w
7

1
R
o
w
6

1
R
o
w
5

1
R
o
w
4

|
Ro

w
3

[
R
o
w
2 I

1
R
o
w
O

1
Va
lu
es

1
2
8

200Aro1
2
8

200ro
1
2
8

I
C
o
l
u
m
n

I
N
u
m
b
e
r

oroCOen00COoroCOten
«

N
u
m
b
e
r

c
o
d
e
s

Appendix H

Multicolor Sprite Coding Form

217

r
o

o
o

C
o
l
u
m
n

n
u
m
b
e
r

V
a
l
u
e
s

R
o
w
O

R
o
w

1

R
o
w
2

R
o
w
3

R
o
w
4

R
o
w
5

R
o
w
6

R
o
w
7

R
o
w
8

R
o
w
9

R
o
w
1
0

R
o
w

1
1

R
o
w
1
2

R
o
w
1
3

R
o
w
1
4

R
o
w

1
5

R
o
w

1
6

R
o
w

1
7

R
o
w

1
8

R
o
w

1
9

R
o
w
2
0

0

12
81

64
1 1 1 i 1 I 1 1 1 1 i 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1

1

3
2

1
6

| I 1 1 1 1 1 1 | 1 1 I 1 1 1

T
r
a
n
s
p
a
r
e
n
t

s
c
r
e
e
n

c
o
l
o
r

2

8
4

I j I i I i I I I I I I 1 1 1 1 I 1 1 1 1 1 1 1

0
|
0

:

2

3 i | 1 1 |

4

12
8

J6
4

I 1 I I I I I i I i i ■ i i 1 i i 1

M
u
l
t
i
c
o
l
o
r

r
e
g
i
s
t
e
r
#
0

5

32
[1

6

■

I I I I

o
!

1

6

8
4

_
\

I

7

2
|

1

I .
.
.

S
p
r
i
t
e

c
o
l
o
r

8

12
8J

64 j i I I I I I I I i I I | I I I 1 I I I I I I

1
j
0

9

3
2
|
1
6

I 1 I j I

1
0

8
I
4

I I I I I i I I I I I I I I I I I I I I i 1 1 i J 1 ■ 1

M
u
l
t
i
c
o
l
o
r

r
e
g
i
s
t
e
r
#
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 j 1 1 1 1 1 1 1 1

1
i
1

N
u
m
b
e
r

c
o
d
e
s

Appendix I

Character Coding Form

219

022

sapoo
I

0

Z

I

V

z

8

e

91-

p

Z£

9

179

9

82V

L

/aiAg

p9lAg

S®lAg

ZQjAg

tejAg

OeiAg

9I1|BA

jeqiunu

Appendix J

Multicolor Character Coding Form

221

Bit

value *

ByteO

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

i

128 I

I

64

1

1

1

32 i 16
I

1

i

i

i

1

1

i

1
i

I

i

I

i

1

i

I

I

i

i

i

i

i

i

i

8 ! 4 2 1

[I

1

8

1

1

1

Number

codes

Background

#0 color

(screen color)

Background

#1 color

Background

#2 color

Lower 3

bits of color

memory

color

222

Appendix K

2H x 3V Character Block Coding Form

223

vzz

z891Z£z891-Z2fr9821

Appendix L

SID Register Layout

225

S
I
D

s
t
a
r
t
i
n
g
a
d
d
r
e
s
s

is
5
4
2
7
2
(
$
D
4
0
0
)

R
e
g
i
s
t
e

D
e
c
i
m
a
l

0 1 2 3 4 5 6

r
n
u
m
b
e
r

11
Bi

t

He
x

11
7

$
0
0

$
0
1

$
0
2

$
0
3

$
0
4

$
0
5

$
0
6

7 8 9

1
0

1
1

1
2

1
3

$
0
7

$
0
8

$
0
9

$
0
A

S
O
B

$
0
C

S
O
D

F
R
7

F
R
1
5

P
W
7

- N
o
i
s
e

A
T
K
3

S
S
T
3

Bi
t

6

F
R
6

F
R
1
4

P
W
6

- P
u
l
s
e

A
T
K
2

S
S
T
2

Bi
t

5

F
R
5

F
R
1
3

P
W
5

- S
a
w

t
o
o
t
h

A
T
K
1

S
S
T
1

Bi
t

4

F
R
4

F
R
1
2

P
W
4

- T
r
i
a
n

g
u
l
a
r

A
T
K
0

S
S
T
O

Bi
t

3

F
R
3

F
R
1
1

P
W
3

P
W
1
1

T
e
s
t

D
C
Y
3

R
L
S
3

Bi
t

2

F
R
2

F
R
1
0

P
W
2

P
W
1
0

R
i
n
g

m
o
d

D
C
Y
2

R
L
S
2

Bi
t

1

F
R
1

F
R
9

P
W
1

P
W
9

S
y
n
c

D
C
Y
1

R
L
S
1

Bi
t

1
1

T
h
i
s

re
gi
st

er
0

I
I

co
nt
ro
ls
:

F
R
O

F
R
8

P
W
0

P
W
8

G
a
t
e

D
C
Y
O

R
L
S
O

L
o
w

b
y
t
e
o
f

f
r
e
q
u
e
n
c
y

H
i
g
h
b
y
t
e

o
f

f
r
e
q
u
e
n
c
y

L
o
w

b
y
t
e

o
f

p
u
l
s
e
w
i
d
t
h

H
i
g
h

n
i
b
b
l
e

o
f
p
u
l
s
e
w
i
d
t
h

G
a
t
e
a
n
d
w
a
v
e

-
f
o
r
m
'
c
o
n
t
r
o
l

A
t
t
a
c
k
/
d
e
c
a
y

S
u
s
t
a
i
n
/
r
e
l
e
a
s
e

IVoice1|
F
R
7

F
R
1
5

P
W
7

- N
o
i
s
e

A
T
K
3

S
S
T
3

F
R
6

F
R
1
4

P
W
6

- P
u
l
s
e

A
T
K
2

S
S
T
2

F
R
5

F
R
1
3

P
W
5

- S
a
w

t
o
o
t
h

A
T
K
1

S
S
T
1

F
R
4

F
R
1
2

P
W
4

-
■"

T
r
i
a
n

g
u
l
a
r

A
T
K
O

S
S
T
O

F
R
3

F
R
1
1

P
W
3

P
W
1
1

T
e
s
t

D
C
Y
3

R
L
S
3

F
R
2

F
R
1
0

P
W
2

P
W
1
0

R
i
n
g

m
o
d

D
C
Y
2

R
L
S
2

F
R
1

F
R
9

P
W
1

P
W
9

S
y
n
c

D
C
Y
1

R
L
S
1

F
R
O

F
R
8

P
W
0

P
W
8

G
a
t
e

D
C
Y
O

R
L
S
O

L
o
w
b
y
t
e
o
f

f
r
e
q
u
e
n
c
y

H
i
g
h
b
y
t
e
o
f

f
r
e
q
u
e
n
c
y

L
o
w
b
y
t
e

o
f

p
u
l
s
e

w
i
d
t
h

H
i
g
h

n
i
b
b
l
e
o
f

p
u
l
s
e
w
i
d
t
h

G
a
t
e
a
n
d
w
a
v
e

f
o
r
m

c
o
n
t
r
o
l

A
t
t
a
c
k
/
d
e
c
a
y

S
u
s
t
a
i
n
/
r
e
l
e
a
s
e

Voice2|

R
e
g
i
s
t
e

D
e
c
i
m
a
l

1
4

1
5

1
6

1
7

1
8

1
9

2
0

r
n
u
m
b
e
r

H
e
x

$
0
E

$
0
F

$
1
0

$
1
1

$
1
2

$
1
3

$
1
4

B
i
t

7

F
R
7

F
R
1
5

P
W
7

-

N
o
i
s
e

A
T
K
3

S
S
T
3

Bi
t

6

F
R
6

F
R
1
4

P
W
6

-

P
u
l
s
e

A
T
K
2

S
S
T
2

Bi
t

5

F
R
5

F
R
1
3

P
W
5

-

S
a
w

t
o
o
t
h

A
T
K
1

S
S
T
1

Bi
t

4

F
R
4

F
R
1
2

P
W
4

-

T
r
i
a
n

g
u
l
a
r

A
T
K
O

S
S
T
O

Bi
t

3

F
R
3

F
R
1
1

P
W
3

P
W
1
1

T
e
s
t

D
C
Y
3

R
L
S
3

Bi
t

2

F
R
2

F
R
1
0

P
W
2

P
W
1
0

R
i
n
g

m
o
d

D
C
Y
2

R
L
S
2

B
i
t

1

F
R
1

F
R
9

P
W
1

P
W
9

S
y
n
c

D
C
Y
1

R
S
L
1

Bi
t

0

F
R
O

F
R
8

P
W
O

P
W
8

G
a
t
e

D
C
Y
O

R
L
S
O

T
h
i
s

r
e
g
i
s
t
e
r

c
o
n
t
r
o
l
s
:

L
o
w

b
y
t
e
o
f

f
r
e
q
u
e
n
c
y

H
i
g
h

b
y
t
e

of

f
r
e
q
u
e
n
c
y

L
o
w

b
y
t
e
o
f

p
u
l
s
e
w
i
d
t
h

H
i
g
h

n
i
b
b
l
e

o
f
p
u
l
s
e
w
i
d
t
h

G
a
t
e
a
n
d

w
a
v
e
f
o
r
m
,
c
o
n
t
r
o
l

A
t
t
a
c
k
/
d
e
c
a
y

S
u
s
t
a
i
n
/
r
e
l
e
a
s
e

IVoice3|
2
1

2
2

2
3

2
4

$
1
5

$
1
6

$
1
7

$
1
8

-

C
F
R
1
0

R
E
S
3

V
3

si
le

nt

-

C
F
R
9

R
E
S
2

H
i
g
h

p
a
s
s

-

C
F
R
8

R
E
S
1

B
a
n
d

p
a
s
s

-

C
F
R
7

R
E
S
O

L
o
w

p
a
s
s

-

C
F
R
6

Fi
lt
er

e
x
t
e
r
n
a
l

V
o
l
u
m
e

3

C
F
R
2

C
F
R
5

Fi
lt
er

V
3

V
o
l
u
m
e

2

C
F
R
1

C
F
R
4

F
i
l
t
e
r

V
2

V
o
l
u
m
e

1

C
F
R
O

C
F
R
3

Fi
lt
er

V
1

V
o
l
u
m
e

0

L
o
w
3

bi
ts

o
f
c
u
t
o
f
f
/

c
e
n
t
e
r
f
r
e
q
u
e
n
c
y

H
i
g
h
8

bi
ts

o
f
c
u
t
o
f
f
/

c
e
n
t
e
r
f
r
e
q
u
e
n
c
y

R
e
s
o
n
a
n
c
e
/

fi
lt
er

Fi
lt

er
m
o
d
e
/

v
o
l
u
m
e

|Filter/volume|
2
5

2
6

2
7

2
8

$
1
9

$
2
0

$
2
1

$
2
2

G
P
X

7 G
P
Y

7 V
3
0

7 V
3
E

7

G
P
X

6 G
P
Y

6 V
3
0

6 V
3
E

6

G
P
X

5 G
P
Y

5 V
3
0

5 V
3
E

5

G
P
X

4 G
P
Y

4 V
3
0

4 V
3
E

4

G
P
X

3 G
P
Y

3 V
3
0

3 V
3
E

3

G
P
X

2 G
P
Y

2 V
3
0

2 V
3
E

2

G
P
X

1 G
P
Y

1 V
3
0

1 V
3
E

1

G
P
X

0 G
P
Y

0 V
3
0

0 V
3
E

0

G
a
m
e

p
a
d
d
l
e
X

G
a
m
e

p
a
d
d
l
e
Y

V
o
i
c
e
3

o
s
c
i
l
l
a
t
o
r

V
o
i
c
e
3
e
n
v
e
l
o
p
e

|Other|

622

xjpuaddy

Octave 1 Note I Frequency! SID I High byte I
name in freq. of SID

I ^> hertz^ setting^freq. set^i

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

C

C#

D

D#

E

F

F#

G

G#
A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

16.4

17.3

18.4

19.4

20.6

21.8

23.1

24.5

26.0

27.5

29.1

30.9

32.7

34.6

36.7

38.9

41.2

43.7

46.2

49.0

51.9

55.0

58.3

61.7

65.4

69.3

73.4

77.8

82.4

87.3

92.5

98.0

103.8

110.0

116.5

123.5

130.8

138.6

146.8

155.6

164.8

174.6

185.0

196.0

207.7

220.0

233.1

246.9

269

284

302

318

338

358

379

402

427

451

477

507

536

568

602

638

676

717

758

804

851

902

956

1012

1073

1137

1204

1276

1352

1432

1517

1608

1703

1804

1911

2026

2146

2274

2408

2553

2703

2864

3035

3215

3407

3609

3824

4050

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

6

6

7

7

7

8

8

9

9

10

11

11

12

13

14

14

15

13

28

46

62

82

102

123

146

171

195

221

251

24

56

90

126

164

205

246

36

83

134

188

244

49

113

180

252

72

152

237

72

167

•12

119

234

98

226

104

249

143

48

219

143

79

25

240

210

230

Note Values

name

I Frequency I SID freq. (High byte Low byte

in setting of SID of SID
hertz J Jfreq. set.Jfreq. sety

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

261.6

277.2

293.7

311.1

329.6

349.2

370.0

392.0

415.3

440.0

466.2

493.9

523.3

554.4

587.3

622.3

659.3

698.5

740.0

784.0

830.6

880.0

932.3

987.8

1046.5

1108.7

1174.7

1244.5

1318.5

1396.9

1480.0

1568.0

1661.2

1760.0

1864.7

1975.5

2093.0

2217.5

2349.3

2489.0

2637.0

2793.8

2960.0

3136.0

3322.4

3520.0

3729.3

3951.1

4291

4547

4818

5103

5407

5728

6070

6431

6813

7218

7648

8102

8584

9095

9634

10208

10815

11458

12139

12861

13625

14436

15294

16204

17167

18188

19270

20415

21629

22915

24278

25722

27251

28872

30589

32407

34334

36377

38539

40831

43258

45831

48557

51444

54502

57743

61177

64815

16

17

18

19

21

22

23

25

26

28

29

31

33

35

37

39

42

44

47

50

53

56

59

63

67

71

75

79

84

89

94

100

106

112

119

126

134

142

150

159

168

179

189

200

212

225

238

253

195

195

210

239

31

96

182

31

157

50

224

166

136

135

162

224

63

194

107

61

57

100

190

76

15

12

70

191

125

131

214

122

115

200

125

151

30

25

139

127

250

7

173

244

230

143

249

47

231

Appendix N

ANDing and ORing

ANDing and ORing are logical operations your

Commodore 64 uses to play with bits and check

on the truth of complex expressions. I'll try to

give you a brief glimpse of how they work.

First, a few conventions:

—When the computer tries to decide

whether a number is true or false,

any nonzero number is considered

true.

—When the computer looks over a com

parison, and decides that the com

parison is true, it assigns it the value

-1. A false comparison is assigned

the value 0.

Here's a brief program that illustrates

these two conventions at work:

10 IF 8 THEN PRINT "8 IS TRUE"

20 IF 0 THEN PRINT "0 IS TRUE":

GOTO 40

30 PRINT "0 IS FALSE"

40 PRINT (9 = 8)

50 PRINT (9 = 9)

Running the program will give these results:

8 IS TRUE

0 IS FALSE

0

The Commodore 64 performs ANDing and

ORing on numbers in the range -32768 to

+32767. The numbers first have any fractional

parts dropped, and then they're converted into

16-bit binary format. Here are some examples:

233

ORIGINAL FRACTION 16-BIT BINARY

VALUE DROPPED

-1 -1 1111 1111 1111 1111

254.75 254 0000 0000 1111 1110

513 513 0000 0010 0000 0001

0 0 0000 0000 0000 0000

15.4 15 0000 0000 0000 1111

Note that I have inserted spaces into the

16-bit binary values just to make them easier

for humans to read.

When two numbers are ANDed together,

they're first put into this chopped-off 16-bit

binary format. Then corresponding bits are

ANDed together according to the following

arbitrary rules:

Commodore 64, ANDing is often used to turn

certain bits in a register off. For example, if

you wanted to turn off bits 4, 5, 6, and 7 in a

register, you'd AND the register value with

the number 15. Take a look at the last example

to see why this is so.

When two numbers are ORed together,

they're first put into the familiar chopped-off

16-bit binary format. Then corresponding bits

are ORed together according to the following

arbitrary rules:

(sound familiar?)

0

AND 0

0

AND

0

1

0

AND

1

0

0

1

AND 1

1

The result is then converted back to dec

imal form. Here are some examples of AND

ing:

AND

-1 decimal

0 decimal

1111 1111 1111 1111 binary

AND 0000 0000 0000 0000 binary

0000 0000 0000 0000 binary

0 decimal

255 decimal

AND 15 decimal

0000 0000 1111 1111 binary

AND 0000 0000 0000 1111 binary

0000 0000 0000 1111 binary

15 decimal

In graphics and sound programming on the

OR

0 0 11

_0 OR 1 OR 0 OR 1

0 1 1

The result is then converted back to dec

imal form. Here are some examples of ORing:

-1

OR 0

decimal

decimal

OR

OR

1111

0000

1111

0000

0000

0000

1111

0000

mi

0010

0000

0010

1111

0000

1111

OR

0001

1000

1001

mi

0000

1111

-1

537

131

1001

0011

1011

binary

binary

binary

decimal

decimal

decimal

binary

binary

binary

67 decimal

In graphics and sound programming on the

Commodore 64, ORing is often used to turn

certain bits in a register on. For example, if

you wanted to turn on bits 0, 1, and 7 in a

234

register, you'd OR the register value with the tions. In fact, your Commodore 64 spends

number 131. Take a look at the last example to most of its time, at its deepest subconscious

see why this is so. levels, ANDing and ORing away several mil-

So much for a brief look at ANDing and lion times each second.

ORing. They're really quite remarkable func-

235

xapui

Index

I

ADSR cycle and envelope, see SID

Amplitude, 124

Animation, 52-53, 65-66, 72-77

Auto-repeat (keyboard), 61, 65

B

Background registers, see VIC II chip

Binary number system, 25-26

Bitmap, 81-82

bit map mode on/off, 82

clearing bit map, 87-88

color in the bit mapped mode, 82-85

locating bit map, 80-81, 86

locating pixels in bit map mode,

88-91

multicolor bit map mode, 118

pixels on/off, 91

using text with a bit mapped display,

102-105

Bit mapped graphics, 81-98

Bit pair, 42-43 *

Bits, 25-28, 42, 46, 68-77, 84, 93, 99,

100, 112, 130

Boolean tests, 12-14, 37, 182

Bytes, 25-28, 46, 68-77, 84, 93

Chaplin, Charlie, 188

Character graphics, 61-79, 188, ,193

character design, 72-77

character display codes, 63-65, 72,

102, 107, 116

character generator ROM, 62-63,

67-70, 72, 77

character memory, 77

character sets, 62-65, 72-77

character strings, 65, 77, 194

coding forms, character, 70-71

color setting, character, 193

extended background character

mode, 115-116

multicolor character mode, 110-115

Collisions, see sprites

Color memory, 61-62, 65, 110-115

Colors, 61-62, 65, 193

Cursor movement, 65-66, 77, 79

Delay loops, importance in sound

programs, 161

Dynamic elements, 180

F

Frequency 124, 129-130, 172

G

Graphics icons, 6

Hertz, 124, 129

H

I

I/O control, 67-69

J

Joysticks, 105-110

Keyboard scan, 61, 65,186-188,193

Loudness, see amplitude

M

Machine language, 82, 87-88, 93

Modularity, 177-178, 194

Musical note frequencies, 138

Nibble (nybble), 84-85,134-135

Noise waveform, 128, 172-173

Octave 138, 143-144, 186

Performance arrays, 145,149, 154

Pitch, see frequency

Pixels, 1-2, 5, 41-42, 81-84, 88-93

Pixels, double-wide, 42, 110, 118
Pong, 178

239

Pulse width, 128, 130-132, 175-176,

188

Random numbers, 87

Rectangular waveform, 128

Reference octave, 143-144

Ring modulation, 164-167

Sawtooth waveform, 128

Screen memory, 62, 64, 86-87, 110-

118

SID, 128-140

ADSR cycle and envelope, 132-

136, 140, 149, 153, 155,

164

amplitude modulator, 128,134,149

attack rate setting, 134

decay rate setting, 135

envelope generator, 132, 168

frequency setting, 129-130, 150

gating the envelope generator,

136-137

overall volume control, 137

pulse width setting, 130-132

pulse width variation, 175-176

register setup, 129

release rate setting, 136

sustain level setting, 135

tone oscillator, 129, 164-167

voices, 128-129, 193

waveform generator, 129, 151

waveform setting, 130

Simplicity, 195

Sound, nature of, 123-128

Sound effects, 159-173

variation, importance of, 159

Sound/image coordination, 188

BASIC vs machine language, 82,

87,91

speed up techniques, 82

Sprites, 1-59

block of data for sprites, 30-31, 56

clones, 21-29

coding forms for sprites, 2-5, 31,

43-44, 58

collisions, sprite to data, 107

collisions, sprite to sprite, 106-110

colors of sprites, 16, 25, 41-47

data pointers, 7, 24, 29-30, 56

defining a sprite pattern, 1-5, 15,

44-46

expansion of sprites, 15-17

horizontal positioning of sprites, 8,

10-15,28,30,33,35-38

motion of sprites, 33-38, 50-52

multicolor mode, 42-47

multiple sprites, 21-32

on/off register for sprites, 8, 25

priority, sprite to background, 99-

102

priority, sprite to sprite, 47

simplest sprite pattern, 7

sprite, definition of, 1,2

vertical positioning of sprites, 8,

10-11,28,30,33,35-38

Static elements, 180

Synergy, 177

T

Text screen display, 63

Text screen display codes, 72

Timing, 194-195

Top-down structured programming,

177-178, 194

Tremolo, see vibrato

triangular waveform, 127, 128

U

Unity of design, 195

Vibrato, 164

VIC II chip, 8, 10, 24, 30, 62

background color registers, 112-

118

character memory, 66

memory range (16K blank), 66,

81-82

miniature registers, 24

resetting registers, 9, 25-26, 44

Volume, see amplitude

W

Waveforms, 128

White noise, see noise waveform

240

Commodore 64 Graphics and Sound Programming

If you are intrigued with the possibilities of the programs included in Commodore 64 Graphics and

Sound Programming. (TAB Book No. 1640), you should definitely consider having the ready-to-run

tape or disk containing the software applications. This software is guaranteed free of manufacturer's

defects. (If you have any problems, return the tape or disk within 30 days, and well send you a new

one.) Not only will you save the time and effort of typing the programs, the tape or disk eliminates the

possibility of errors that can prevent the programs from functioning. Interested?

Available on tape and on disk for the Commodore 64 at $23.95 for each tape or disk plus $1.00 each

shipping and handling.

I'm interested in ready-to-run software for Commodore 64 Graphics and Sound Program

ming. Send me:

tape for the Commodore 64 (6416S)

disk for the Commodore 64 (6417S)

TAB BOOKS catalog

. Check/Money order enclosed for $23.95 plus $1.00 shipping and handling for

each tape or disk ordered.

VISA MasterCard

Account No.

Name

Expires.

Address

City . State. Zip.

Signature

Mail To TAB BOOKS INC.

Blue Ridge Summit, PA 17214

(Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money orders in U.S. dollars.)

TAB 1640

