Steve Money

COMMODORE 64

GRAPHICS
AND SOUND

Commodore 64
Graphics and Sound

Steve Money

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright © S. A. Money 1984

British Library Cataloguing in Publication Data

Money, Steve A.

Commodore 64 graphics and sound.

1. Commodore 64 (Computer)—Programming

2. Computer sound processing 3. Computer graphics
1. Title

001.64'43 QA76.8.C64

ISBN 0-246-12342-7

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham. Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Important Note
Preface

1

O 00 9 N AW N

10

Introduction

Character Graphics

High Resolution Graphics
Adding Colour

Setting Objects in Motion
Sprite Graphics

Graphs and Charts

Depth and Perspective
The Sound Generator

Making Music

Index

vi

vii

14
31
61
82
98
117
140
157
178
193

Important Note

In many program listings for the Commodore 64 computer the
cursor, reverse video and colour control codes are included in text
strings of PRINT statements. They appear on the listings as reverse
video symbols but must be entered on the keyboard by using cursor
keys or combinations of certain keys withthe CTRL or LOGO keys.
The method of keying in these codes is described in Chapters 2 and 4.
Figs. 2.2, 2.7, 4.1 and 4.2 show the listing symbols for these codes.

Control codes can also be entered using the CHR$(N) form where
N is the ASCII code number. Since the listing symbols for these
codes can sometimes be difficult to decipher in printed listings the
CHRS form has been used for most listings in this book, but some
programs in Chapter 7 do use embedded control codes in text
strings.

In Fig. 7.4 lines 41§ and 460, Fig. 7.6 line 44¢), and Fig. 7.8 lines
440 and 510, the text string is produced by using the keys

[SPACE] [CRSR UP] [CRSR LEFT]

Preface

Modern home and personal computers usually have very good
colour graphics and sound facilities, and the Commodore 64 is no
exception in this respect. The graphics display capability of this
machine is extremely good, and the sound generator is perhaps the
most versatile available.

The primary graphics mode on the Commodore 64 makes use of
character graphics, and is basically a development of the graphics
provided on the earlier Commodore PET computer. The main
difference is that the Commodore 64 has a colour display. In
Chapter 2 we take a look at some of the techniques involved in using
character graphics. To a large extent, using character graphics is like
assembling a jigsaw puzzle. Once you have sketched out a rough
outline of the picture to be produced, you simply choose suitable
symbols from the available set, and then place them on the screen to
build up the desired picture.

When the existing character set doesn’t provide the symbol you
want it is possible to create your own symbols. This is a fairly
complicated process on the Commodore 64, but you will find a full
description of how to do it in Chapter 2.

High resolution graphics (where individual dots on the screen can
be controlled) were not available on the earlier PET and VIC 20
computers, but have been provided on the Commodore 64. This
makes use of what is called the ‘bit mapped graphics’ mode. The
BASIC language of the Commodore 64 does not provide any
drawing commands for the high resolution graphics, so points and
lines have to be set up on the screen by POKEing data directly into
the graphics display memory. Some of the techniques involved in
drawing on the high resolution screen are described in Chapter 3.
However, drawing using BASIC is rather a slow process, and for
serious work in this mode programs written in machine code will
usually be required.

Chapter 4 looks at the colour capabilities of the Commodore 64,
both in the text and character graphics mode and in the high

viii Preface

resolution mode. Sixteen colours are available, and by using the
multicolour mode it is possible to produce multicoloured symbols.

For most games programs, animation of objects on the screen is
an important factor. The basic principles involved in animating
simple objects and detecting collisions are explained in Chapter 5.
An important variation of animation makes use of scrolling, where
the entire picture is moved up or down or from side to side. Typical
applications of this technique are in ‘road race’ games and those of
the Defender type, where a landscape moves across the bottom of
the screen. Scrolling requires the use of machine code routines since
BASIC is far too slow for this type of operation. Three machine code
routines are included which can be loaded and called by BASIC and
provide downward and side-to-side scrolling actions.

One very important feature of the Commodore 64 is its sprite
graphics. In Chapter 6 we look at how sprites are created, controlled
and positioned on the screen. The chapter goes on to look at
animation using sprites. For applications involving animation the
sprite graphics are far superior, and more flexible in use than
conventional character graphics.

An important application of the graphics capabilities of any
computer is graphs, charts and other similar displays. In Chapter 7
the principles of displaying gauges and meters are discussed, and the
chapter goes on to show how bar charts and scientific graphs can be
produced.

Chapter 8 introduces ‘three-dimensional’ displays with three-axis
bar charts and circular graph plots which give an illusion of depth.
The chapter goes on to look at the principles involved in producing
perspective views.

In Chapter 9 the versatile sound generator of the Commodore 64
is explored. There are many features in the special sound chip used
in this machine, and many useful hours can be spent trying out the
different possibilities. The principles of setting up sound frequencies
and waveforms are explained. The chip has a comprehensive ability
to tailor the ‘envelope’ of sounds, and the techniques involved in
producing some common sound effects are explained.

The sound chip can, of course, be persuaded to produce music,
and in Chapter 10 the basic principles of music and the techniques
for translating written music into data for playing a tune are
explained. Later in the chapter a program is developed which allows
the Commodore 64 to be used as a musical instrument that can be
played directly on the keyboard.

Steve Money

Chapter One
Introduction

One of the attractions of the modern personal or home computer is
its ability to provide highly detailed graphics displays, usually in
colour, and to produce a wide range of sounds. These facilities are,
of course, very important for one of the main uses of home
computers: playing various types of video game. The graphics
capabilities, however, are not limited to use for games. They can also
provide diagrams and displays for business and educational use. It is
also possible to turn the computer into a form of automated drawing
board, and (if a suitable printer or plotter is available) to produce
quite acceptable drawings or diagrams on paper. Finally, of course,
computer graphics displays may be used purely as an art form.

The Commodore 64 computer provides an excellent graphics
display which can produce both low and high resolution pictures in
colour. One disadvantage, however, is that the BASIC language
provided as standard on this machine has virtually no commands to
handle the high resolution graphics and sound facilities. This can
mean that programming graphics may at first seem to be a
complicated process. The techniques are not, however, all that
difficult to master.

The actual graphics displays are controlled by a special display
chip known as the VIC11 Video Interface Chip (which may also be
referred to by the chip type number 6566 or 6567), and its functions
are controlled by inserting appropriate data into its internal registers
using the BASIC POKE and PEEK instructions. This is a very
complex device, and has a total of 47 internal registers to control its
various operating modes.

Video displays

Before going on to explore the display capabilities of the

2 Commodore 64 Graphics & Sound

Commodore 64, it might be as well to look at the basic techniques
involved in producing computer displays.

All current home or personal computers make use of a television-
type display to present text and graphics outputs. In most cases a
domestic television receiver is used, and the signal from the
computer is fed into the aerial input of the TV receiver. As far as the
television set is concerned the signals from the computer appear to
be just another television channel. Usually the output of the
computer is set to an unused channel, generally channel 35, and the
TV is tuned to this using one of the spare channel selector buttons.

Passing the computer video signal through the complete
television receiver can cause some loss of sharpness on high
resolution graphics displays, especially when they are in colour. An
alternative arrangement, which can produce greatly improved
results, makes use of a television monitor unit. Here the video
signals from the computer are not converted into a broadcast-type
television signal but are fed directly to the television display circuits.
The special television monitor units usually employ much higher-
grade display tubes and circuits, which themselves allow a much
sharper and more steady picture to be produced.

In a television receiver the picture on the screen is built up by
sweeping a single dot of light across and down the screen. The dot
moves rapidly from left to right, tracing out a series of horizontal
lines across the screen. At the end of each sweep the spot moves
almost instantaneously back to the left-hand side ready to trace out
the next line. At the same time as it is moving across the screen the
dot also moves slowly down the screen, so that each successive line is
drawn just below the previous one. Every 1/25th second (1/30th
second in America and Japan) the spot traces over the complete area
of the screen.

The complete picture is traced out 25 (or 30) times per second.
This could cause a flickering effect, since the eye can just about
detect changes in a scene occurring at this rate. To avoid such
problems a system known as interlaced scanning is generally used.
In this scheme the dot is scanned down the screenin 1/50th (1/60th)
second but only traces out alternate scan lines. So on the first scan
the dot might trace out all of the odd numbered lines of the complete
picture, and on the next all the even lines, fillingin the gaps between
the lines of the first scan. The effect of this, as far as the viewer is
concerned, is to increase the flicker rate to 50 (or 60) per second,
making it undetectable; but the rate at which complete pictures are
presented is still 25 (or 30) per second.

Introduction 3

If the brightness of the spot is varied as it traces over the screen
then a picture made up of light and shaded areas is built up on the
screen each time the spot completes a scan. In a colour television
display three separate spots of light are scanned simultaneously over
the screen. One spot is red, and the others are green and blue
respectively. On the screen the three dots are kept very close together
so that, to the viewer, they appear to be a single point of light. The
red, green and blue light from the three dots is effectively combined,
so that the viewer sees a white dot if the three separate dots are lit
simultaneously. By varying the relative brightness of the red, green
and blue dots any desired colour of light may be produced at each
point as the group of dots scans over the screen.

Text displays

Much of the output from a computer will consist of printed text
displayed on the TV screen. For our computer display we can
conveniently divide the screen up into a series of small rectangular
areas, called symbol spaces, and in each of these rectangles we can
arrange to display a single text symbol. The Commodore 64 screen
display allows 25 rows of text to be displayed with 40 symbol spaces
in each row. This allows a total of 1000 text characters, or roughly
150 words of text, to be displayed on the screen at a time.

If you examine text symbols displayed on a broadcast television
picture, for instance during programme credit titles, you will see that
each symbol is actually built up from a pattern of short horizontal
lines and dots. For a computer display the symbol space on the
screen is divided up into a matrix of individual dots. If you look very
closely at the text displayed by your Commodore 64 you will see that
each letter is built up from a pattern of dots. In fact for each symbol
space the Commodore 64 uses 8 rows of dots with 8 dots in each row.
By selectively lighting some of the dots and leaving the others dark
the outline of the required text symbol can be picked out as shown in

Fig. 1.1.
In order to display text the computer needs to know the patterns

of dots for each of the symbols it will be required to display.
Typically there will be capital and lower case letters, numbers, and a
selection of punctuation and other signs. A typical character set
might contain about 96 different symbols.

The usual method of storing the dot patterns is to use a memory
chip similar to those used for the computer’s main memory. A

4 Commodore 64 Graphics & Sound

Fig. 1.1. Display of a text symbol using a dot matrix.

memory chip consists of thousands of tiny electronic cells, each of
which can be turned on or off. Each cell stores one item of data
which is called a ‘bit’. Each of these bits has two possible states which
are called ‘I’, when the cell is turned ‘on’, and ‘0’ when the cellis ‘off’.
Each cell may equally be used to indicate if a dot on the screen hasto
be lit (1) or dark (0). With 64 dots in each character pattern, and
assuming a set of 128 different characters, thena total of 8192 bits of
memory are required to store the complete set of dot patterns.
Typically the memory is arranged as groups of 8 bits, called bytes or
words, so the dot-pattern memory would have 1024 bytes which can
easily be fitted into a single memory chip.

We could, of course, use a piece of the main computer memory to
store the character dot patterns, but the problem here is that when
the computer is turned off the contents of the memory are lost. To
overcome this problem a special type of memory device is used. This
chip has the data pattern written permanently into it when it is made,
and the pattern is retained even when the power is turned off. We can
read data from the memory but cannot alter what is stored in it, so
the device is called a Read Only Memory or ROM. Whenthe ROM
is used to hold the dot patterns for producing character displays it is
generally called a ‘character generator’ ROM. The character
generator fitted to the Commodore 64 is quite complex, and it
contains the dot patterns for two complete character sets with 256
symbols in each set.

Introduction 5

The display memory

The television picture is scanned 25 (or 30) times a second to produce
a continuous display on the screen. This means that we have to trace
out the dot patterns repeatedly, so the display circuits will need rapid
access to data telling them what symbols are to be displayed. This
involves the use of some sort of memory to store the information to
be displayed. We could of course store all of the dot patterns for the
screenful of text; but this would use up a lot of memory, so it is
normal to allocate a number code, or character code, to each
character in the available set and then store just the character codes
for the text to be displayed. Since a ‘memory word’ of 8 bits can have
256 different combinations, a single memory word is sufficient to
define each text symbol to be displayed.

The Commodore 64, with its 40 X 25 screen format, can display
1000 symbols on the screen and will need 1000 words of memory to
store the character codes of the text to be displayed. This memory is,
in fact, just a section of the computer’s main memory, and is referred
to as the screen memory. At switch-on the screen memory is
automatically located at addresses 1024 to 2023, but it is possible to
move the area reserved as screen memory to other addresses if
desired.

To produce the display, the VICI1 chip reads the sequence of
character codes for a row of text as the dot scans across the screen.
Each character code is in turn used to call up a row of dots from the
corresponding character dot pattern, and the dot on the screen is
switched on and off in sympathy with the dot patterns as it sweeps
across the screen. Each row of text is scanned eight times, with a
different row of dots from the character pattern being called up for
each scan line.

The general arrangement of the text display system is shown in
Fig. 1.2.

Character graphics

In the early days of computers the only form of output available,
either on a display screen or printed on paper, was in the form of
text. However, enterprising programmers soon discovered they
could produce crude pictures, graphs and charts by using the text
symbols. Some symbols, such as the M and W, will appear darker
than others, such as 1, so by careful choice of the pattern of symbols
printed on a page a picture can be built up. If viewed from a distance
such a picture can look quite good!

6 Commodore 64 Graphics & Sound

Colour
nemory
1888 byte
RAM

fiddress Data

Screen VIC i1

meRory . Rddress Video L3 Yideo out
1888 bytes chip

Dot data

Character

generator
Syambol codes RON

Fig. 1.2. Display system for text and character graphics displays.

The next step in the development of graphics displays was the
addition of special graphics symbols to the displayable character set.
These syrabols would consist of a selection of horizontal and vertical
lines, shaded blocks and some specialised symbols such as the suit
markers for playing cards. One of the early personal computers to
use such a character set was the Commodore PET, and the
Commodore 64 provides a similar set of graphics symbols. Some
examples of these symbols are shown in Fig. 1.3.

_! -!__.-'"
i Pl

Fig. 1.3. Typical character graphics symbols on the Commodore 64.

The graphics symbols provide segments of lines which can be
assembled together to produce remarkably effective displays, and
they can be very useful in producing such things as bar charts. There
are some inherent limitations to this method of producing graphics
displays, since the special symbols can only be positioned in the
standard matrix of character spaces on the screen, and some care is
needed in designing the display layout.

Introduction 7
Mosaic graphics

With the normal text mode we can, by having the whole character
space lit or dark, produce a graphics dot pattern which is 40 dots
wide and 25 dots high. By selectively lighting the character spaces we
could produce simple patterns. This is generally referred to as low
resolution graphics. We talk of ‘resolution’ as a measure of the
fineness of detail that can be produced in the picture, and it is quoted
as the number of dots or picture elements that can be individually
controlled across and down the screen. For the Commodore 64 text
_screen, using whole character spaces as picture elements, we would
have a resolution of 40 dots across and 25 down which is usually
abbreviated to 40 X 25,

One of the variations of character graphics, which is often used on
home computers to provide low to medium resolution displays, is
called mosaic graphics. Here the symbol space is divided up into a
matrix of four or six blocks arranged in two columns. If the space is
divided into four quarters, and each can be set on or off, then the
original 40 X 25 text screen now becomes an 80 X 50 graphics
matrix. Some typical mosaic symbols are shown in Fig. 1.4. The
picture is built up in much the same way as when character graphics
symbols are used - it’s rather like assembling a jigsaw puzzle.

Fig. 1.4. Typical mosaic graphics symbols on the Commodore 64.

Using mosaic graphics symbols we can now selectively light 80
dots across the screen and 50 down the screen, which allows us to
produce low to medium resolution graphics. Thus for mosaic
graphics on the Commodore 64 the resolution would be 80 X 50.

Mosaic graphics provide greater flexibility in building up a
picture when compared with the line and shape elements of the
graphics character set. Within the limits of the 80 X 50 screen
resolution any desired pattern can be produced, although the results
will usually look rather crude compared with those that can be
achieved by careful use of character graphics. The mosaic graphics
symbols also provide a convenient method of filling in areas of
colour on the screen.

8 Commodore 64 Graphics & Sound

Programmable characters

Normally the dot patterns for all the text and graphics symbols that
can be displayed on the screen are held in a special character
generator ROM. This device, however, is just a piece of memory as
far as the computer is concerned. Therefore it should be possible for
the VIC!1 chip to display the data patterns stored in any part of the
computer’s working memory. Since we can write whatever we like
into the working memory, we can produce customised characters by
setting up the appropriate patterns of ‘I’s and ‘0°’s in the memory and
telling the VIC11 chip to use them as character dot patterns.

The Commodore 64 does in fact allow us to use the computer
memory and VICI1I chip in this way, so that any desired symbol
pattern within an 8 X 8 character matrix can be set up in memory
and displayed on the screen. When these user-defined symbols are
being used by the VICLI chip, however, the normal character
generator ROM is disabled. This means that if we want to use some
of the standard symbols as well as the custom-designed ones, the
required dot patterns have to be copied from the ROM into the main
memory, or RAM as it is generally called. Now the standard
character patterns will form part of the user-defined symbolset, and
can be displayed on the screen. During this copying process we can,
if we like, rearrange the order of the standard symbol set; or we
might select characters from both standard and alternate character
sets for use simultaneously.

The arrangement of the display system when user-defined
graphics symbols are being used is as shown in Fig. 1.5.

Bit mapped graphics

The mosaic graphics scheme effectively provides us with a matrix of
80 X 50 dots over the screen on which we can build up a pattern. The
text symbols themselves are built up from a matrix of 8 X 8 dots, and
if we could control each individual dot in every character space then
much higher resolution displays become possible. This mode of
graphics operation is available on the Commodore 64, and it is
called bit mapped or high resolution graphics.

In the case of the Commodore 64 the number of dots across the
screen will be 8 X 40 or 320 dots, since there are 40 symbol spaces
each 8 dots wide. In the vertical direction we have 25 rows of
symbols with 8 dots for each symbol, so the number of dots down the

Introduction 9

Colour
nemory
1888 byte
RAM

fiddress bata

Screen VIC i1

MEROrY ,_ Rddress Video > Video out
1898 bytes chip

Dot data

Character

= patterns
ngOl codes in RAM

Fig. 1.5. Display arrangement for user-defined text and graphics.

screen is 25 X 8 or 200. Thus for the high resolution mode the
Commodore provides a graphics resolution of 320 X 200, which will
allow quite detailed graphics displays to be produced.

In the character graphics mode an 8-bit code defines the symbol to
be displayed, and 1000 bytes of memory are used to hold these codes.
For high resolution graphics a different arrangement is required. Let
us suppose that each dot on the 320 X 200 screen can be set either ‘on’
or ‘off’. We can store the state of the dot as a single data bit which
may be either a ‘I’ or ‘0’. The screen itself contains 320 X 200 or
64000 dots altogether, so we are going to need rather a lot of memory
to store the required information. Since there are 8 bits per word we
can use each memory word to store the data for 8 adjacent dots on
the screen. As a result, a total of 8000 words of memory are required
to deal with the high resolution screen display.

To handle high resolution graphics the Commodore 64 switches
from its normal text display to a different display mode called the Bit
Mapped mode. In this mode the VIC11 video chip calls up its display
data from an 8000-word section of the RAM instead of from the
normal 1000-word screen memory area. In fact, this bit map area of
memory is simply an extension of the memory area that would
normally be used to store the dot patterns for user-defined symbols.
The change in the display mode is controlled by changing the data in

10 Commodore 64 Graphics & Sound

two of the control registers of the video display chip, as we shall see

in a later chapter. _ . ‘
One slight problem is that when the display mode is switched to

high resolution graphics the computer will no longer display text
symbols - in fact the normal text screen memory area is used for
another purpose. We can, however, mix text with graphics by
copying the required dot patterns from the character ROM into the
bit map memory at the desired position.

The arrangement of the display system when the bit map mode is
selected is shown in Fig. 1.6.

Colour
data in
Screen
RERGRY

P Y

fddress frata

VIt 11
Video —a3 Uideo out
chip

Rddress pot data

Bit amap
#enory
§888 bytes

Fig. 1.6. Display system arrangement for the bit mapped graphics mode.

Adding colour

The Commodore 64 allows the display to be presented in colour.
The screen memory used to define which symbol is displayed simply
calls up a pattern of ‘I’s and ‘0’s to represent the dots making up
the symbol. Here a ‘I’ indicates that the dot is in the foreground
colour, and a ‘0’ indicates it is the background colour. When the
Commodore 64 is turned on, the foreground colour will be set to
light blue and the background to blue. The Commodore 64 does
allow a choice of sixteen different colours, and any pair of these may
be chosen as the foreground and background colours.

Introduction 11

To allow individual symbols to be set to any colour combination,
a separate section of memory is used to hold the colour information
for each character space on the text screen. This is known as the
colour memory. It is the same size as the screen memory (1000 bytes)
and laid out in the same way relative to the text display. The colour
memory is located at a fixed position high in the memory address
range. As each symbol code is written into the screen memory, a
corresponding colour code goes into the colour memory and this
determines the colour of the displayed symbol.

The border around the main display area on the screen can also be
set to any one of the sixteen colours, and this is controlled by one of
the registers in the video chip. The background colour is also
controlled by a register in the VICI1 chip, and may be set to any of
the sixteen available colours. For more colourful results it is possible
to select another display mode which permits the use of four
different background colours.

When we come to the high resolution mode the text screen
memory is used to store the colour data. This means that the colour
of all lit dots within a text character space will be the same, so the
colour resolution is only 40 X 25,

In both high resolution and text modes we can select a
multicolour mode which allows the use of four different colours
within a symbol space. The penalty here is that the resolution is
reduced to 160 X 200 but the advantage is much greater flexibility in
the use of colour. This mode allows the production of multicoloured
text or graphics symbols when the character graphics mode is in use.

Sprite graphics

A variation on the user-defined symbol is the ‘sprite’. In some ways
this is a bit like a larger version of the symbol, but with a dot array of
24 X 21. Like user-defined symbols, the dot patterns for sprites
are held in the RAM, although not in the same area. Unlike
symbols, the sprites are not placed on the screen by using PRINT or
POKE commands, but are controlled directly by registers within the
video chip. As a result asprite can be placed anywhere on the screen.

The Commodore can handle up to eight different sprites and the
video chip can detect when two sprites overlap, which can be useful
for detecting hits and collisions in games programs. Sprites can also
be arranged so that as one sprite passes another it will blank the
other sprite, as if it were passing in front; alternatively it may be

12 Commodore 64 Graphics & Sound

blanked out by another sprite as if it had passed behind that sprite.
These features can be particularly useful when producing graphics
for arcade-style games, where several objects may be moving around
the screen at the same time.

Like the text and graphics symbols, sprites can be multi-coloured,
and can be turned on or off at will by placing appropriate data into
the registers of the video display chip. In Chapter 6 we shall take a
look at how sprites are created and controlled on the Commodore
64.

Sprites are entirely independent of the text and bit-mapped
display systems, and are controlled by the VIC11 chip itself. The dot
patterns making up a sprite are, however, stored in memory in much
the same way as the dot patterns for user-defined symbols. It is
possible to display sprites with either text or bit-mapped graphics
displays with no difficulty.

The video display chip

The key to the Commodore 64 display capabilities is the VICI1
video interface chip itself. This contains all the logic that controls the
generation of the text and graphics displays. This chip works in
parallel with the central processor chip in calling up data from the
screen or bit map memories, and dot patterns from the character
generator, and using them to produce the video signals needed to
build up the picture on the TV screen. The computer itself has to put
the required data into the screen, colour, and bit map memories, and
then leaves the VICI1 chip to get on with producing the display on
the screen. While the computer goes on executing the rest of its
program, the VICII chip steals small amounts of time from the
central processor when it needs access to the computer memory, but
this has little effect on the execution of the computer’s main program
task.

The VIC11 chip’s addressing system limits its access to the main
computer memory so that only one 16k byte bank of the main
memory is seen by the VICI1 chip at any time. Normally this will be
the section of memory from address 0 up to address 16383. It is
possible to alter the section of memory accessed by the video chip to
any one of the four possible 16k byte banks of memory available in
the 64k main memory of the computer. For most purposes it is best
to leave the VICI1 chip with its normal access to the first 16k block
of memory.

Introduction 13

Sound generation

The Commodore 64 has quite a versatile sound generating
capability. This is also controlled by a special chip called the Sound
Interface Device or SID chip, which is sometimes referred to by its
type number 6581.

The sound chip provides three independent sound generator
channels, and each of these can be controlled in frequency and
amplitude. There are also envelope generators to shape the sound,
and a filter system which allows even more complex sound
processing.

In Chapters 9 and 10 we shall explore some of the aspects of the
sound chip and see how it can be used to produce sound effects and
to play music.

Chapter Two
Character Graphics

Let us make a start by looking at the text and character graphics
display mode of the Commodore 64. As we saw in Chapter | the
basic text display mode provides 25 rows of text symbols with 40
symbols in a row, and this is the mode which will be selected when
you switch on the computer.

The data for the text display is held in a screen memory area,
which takes up 1000 words of the main computer memory. This
character memory normally occupies memory locations 1024 to
2023, but it is possible to move it to any convenient location within
the 16k memory block that is being accessed by the video display
chip.

The 1000-word memory area used for text contains one word for
each displayed symbol, and this memory word contains a character
code, with a value from 0 to 255, corresponding to the character to
be displayed on the screen. An important point to note here is that
the character code stored in the screen memory is not the same as the
ASCII character code used in a PRINT statement. The layout of the
memory is arranged so that successive characters across a text row
are stored in 40 sequential memory locations, and are followed by
the codes for the symbols in the next display row. Thus the symbol at
the top left corner of the screen has its code stored in memory
location 1024, and the one at the top right is held in memory location
1063. The layout of the screen memory is as shown in Fig. 2.1.

Placing text on the screen

The Commodore 64 has a text cursor which indicates to the
machine, and the user, where the next symbol is to be displayed on
the screen. This is normally shown as a flashing block.

We can control the position of the cursor by using various keys on

Character Graphics 15

824 1063
#6d 1183
184 1143
144 183
184 223
224 263
264 3083
384 343
344 383
384 423
424 463
464 283
384 343
344 283
384 623
624 663
664 783
84 743
744 783
784 823
824 863
864 983
984 943
944 983
984 2823

Fig. 2.1. The layout of the screen memory in the Commodore 64.

the keyboard. If you press the key in the top row marked CLR/
HOME the cursor willimmediately move to the top left corner of the
screen. This is the HOME operation. Note that the text already
being displayed on the screen is unaffected. If you hold down the
SHIFT key while you press the CLR/ HOME key a different action
occurs. Now any text that was being displayed is cleared off the
screen, and the cursor once again moves to the top left corner. This is
the CLR (screen clear) operation. A point to note here is that the
statement CLR in BASIC has a different function, and should not
be confused with screen clear.

At the bottom right of the keyboard are two adjacent keys with
arrows on them. One has arrows pointing up and down, and it
moves the cursor up and down the screen. The other has arrows
pointing left and right, and it controls left/right movement of the
cursor.

Now if you press the cursor up/down key the cursor will move
down the screen one row at a time. Pressing the left/right cursor key
moves the cursor to the right. To move the cursor up the screen the
SHIFT key must be held down while the cursor up/down key is
pressed. Similarly using the SHIFT key with the left/right cursor
key moves the cursor to the left.

At the start of a program it is useful if we clear the screen display
and place the cursor at the top left corner. This can be achieved inside
the program by using the CLR/HOME key as if it were a normal
letter key, and the result is placed between quotes after a PRINT

command as follows:

16 Commodore 64 Graphics & Sound

109 PRINT “[SHIFT CLR]”

The required control code is keyed in by using the SHIFT and CLR
keys together. Here the key names have been included between
square brackets to indicate that these are the names of the keys to be
pressed and not an ordinary text string.

If you just want to move the cursor to the top right corner, without
clearing the screen, then the CLR/ HOME key must be used by itself
as follows:

109 PRINT ‘{HOME]”

The cursor can be moved up, down, left or right by using the cursor
arrow keys, either with or without SHIFT, ina PRINT statement in
the same way.

Each of the cursor control keys does in fact produce a symbol
code, and this appears on screen between the quote symbols when
you type in the PRINT statement. This symbol will also appear in
the program listing; however, when the instruction is executed by
the computer the cursor moves, but the special symbol is not
displayed on the screen. These special symbols are important,
however, because they show that there are cursor control codes in
the character string. Thus the CLR key produces a heart-shaped
symbol and the HOME key produces an S symbol in blue on a light
blue background. The other cursor keys also produce unique
symbols and these are shown in Fig. 2.2. A point to note is that the
cursor control symbols are not written to the screen when the
program is actually run, and they do not take up any space in the
screen memory.

Each of the cursor control keys does in fact produce a particular
character code and an alternative way of placing them ina PRINT
statement is to use the form

199 PRINT CHRS$(N)

where N is a number from 0 to 255 corresponding to the ASCII code
for the cursor move that you want to execute. These ASCII code
numbers for the various cursor control actions are listed in Fig. 2.2.
Thus if you want to clear the screen you could use

IpPPRINT CHRS$(147)

To move the cursor to any desired position on the screen a series of
cursor shift codes can simply be included in the PRINT statement
before the text or graphics symbols, or even between them. It is
usually best to start off with a CLR or HOME command at the start

Character Graphics 17

of the program so that you know where the cursor is before starting
to move it.

Key Ehiftl RECIT List
ke code Bumbol
CRER D MO 17

HOME WNo 12

LR B E 147

3
n
mn
a
L
o
]
=M]E

Fig. 2.2. The keys, character codes and listing symbols for cursor control on
the Commodore 64.

Simulating PRINT AT operations

Some personal computers have a PRINT AT statement included in
their BASIC language, but in the case of the Commodore 64 this
very useful command is not available. We can, however, devise
alternative schemes which will produce the same resultsasa PRINT
AT command.

First let us see what PRINT AT does. The statement usually takes
the form

PRINT AT R,C;*Text”

where R and C are numbers which define the row and column
position on the screen where printing is to start. Sometimes R and C
may be replaced by a single number which indicates the number of
the character space starting from the top left corner and working
across each row and down the screen. Of these forms the R,C version
is probably easier to understand and use, although the version witha
single variable N is easier to implement on the Commodore 64. In
this book the R,C form of position co-ordinates will be used. The

18 Commodore 64 Graphics & Sound

range of R and C and their relationship to the display area on the
screen are shown in Fig. 2.3.

8 CoLuM 39

Fig. 2.3. Screen layout for text displays showing the row and column
numbering.

One simple approach to producing a PRINT AT operation is to
start by using HOME to place the cursor at row 0 column 0. To
select the required column, a count loop is set up running from 1 to
C, where C is the column number. On each pass through the loop, a
single CRSR RIGHT code is printed, moving the cursor one space
to the right. At the end of the loop the cursor is at the required
column. A problem occurs if the required position isin column 0. To
deal with this a test for C=0 is included before the loop and if C=0
then the loop is bypassed and the program jumps to the statement
number following the loop. A similar process is then used to set up
the required row position. This gives a routine on the following lines:

50¢ IF C=¢ THEN 530
519 FOR I=1 TO C
529 PRINT CHR$(29);:NEXT
539 IF R=0 THEN 560
540 FOR I=1 TO R
559 PRINT CHRS$(17);:NEXT
560 RETURN

Character Graphics 19

Here a subroutine has been used, and after C and R have been given
values the cursor is positioned by using GOSUBS50§.

Although the Commodore 64 doesn’t have a PRINT AT
command it does keep track of the current position of the cursor on
the screen. This information is stored in memory locations 209, 210
and 211.

The column number from 0 to 39 is held in location 211. If we
want to know the current column position of the cursor this can be
done by using

C = PEEK(211)

If we want to place the cursor at a particular column position across
the screen this can be done by POKEing the column number into
memory location 211 as follows:

POKE 211,C

where C is the column number from 0 to 39.

When we come to deal with the row number, things are a little
more complicated. Here the Commodore 64 stores the memory
address where the first character in the row will be stored in the
screen memory. Since the screen memory starts at location 1024, the
row address for the first row will be 1024, 1064 for the next row, and
so on with each row adding 40 to the address. Thus the row address
is given by

Rl = 1024 + 40*R

where R is the row number from 0 to 24. This gives a number
between 1024 and 1984, which is too big to fit into a single memory
word, so the computer uses two words (209 and 210) to store this
number. The storage in memory is in binary form, and one word
(209) represents numbers up to 256 while the second, 210, represents
the number of 256s. To find the number that goes into location 210
we take R, divide by 256, and discard the fractional part as follows:

R2 = INT(R1/256)

Now to find the remainder that has to go into location 209 we can
use the following:

R3 = R1 — 256*R2

Thus to set the cursor locations in memory we can use the following
little subroutine:

20 Commodore 64 Graphics & Sound

509 POKE211,C

510 R1 = SM + 40*R
520 R2 = INT(R1/256)
539 POKE21§,R2

540 POKE209,R1-256*R2
550 RETURN

Here the variable SM (start of screen memory) has been included in
case you have moved the position of the screen memory from its
normal address of 1024.

If we want to read the cursor position this can be done by
PEEKing the locations 209 to 211, and then calculating R and C as
follows:

C=PEEK(211)
R=(256*PEEK(210)+ PEEK(209)—1024) /49

In this calculation 1024 could be replaced by SM if the screen
memory start address was likely to be different from 1024.

Another way of setting R and C

There is a useful machine code routine in the Commodore 64
computer’s own operating system which we can use to set up the
cursor position on the screen. This accepts the row and column
numbers, and then automatically sets up the cursor position data in
locations 209 to 211.

This routine requires that we transfer data to the A, X, and Y
registers of the processor and then call the machine code subroutine
to set up the cursor position. The data is actually transferred into
three memory locations as folilows:

A register = location 780
X register = location 781
Y register = location 782

The data is transferred by simply POKEing the numbers into the
appropriate memory locations as follows:

POKE 789,0
POKE 781,R
POKE 782,C
SYS6552¢

Character Graphics 21

The SYS statement calls the machine code subroutine which starts
at memory location 65520. When the cursor has been positioned, the
BASIC program is resumed at the next line number. This routine
has the advantage that it uses R and C as direct inputs and
automatically takes care of the actual address of the screen memory.

Drawing lines

For many graphics applications we shall want to draw lines on the
screen, perhaps to separate the columns of a table of figures, or to
make up simple diagrams. This can be done by using the graphics
symbols containing line elements.

For horizontal lines there are eight basic symbols, each containing
a horizontal line across the symbol space in one of the row positions,
and these are shown in Fig. 2.4together with their ASCII and screen
memory codes. By using the appropriate symbol, and repeating it
across a text row as required, we can draw a horizontal line at any
desired position on the screen. The limitation is that the line must
start and end at the edge of one of the character columns.

ARSCII SCRN RSCII SCRN
CODE COLE CORE CODE

163 33 D =1 &4 E
1ol =3 B lez T]
loe 65 5 ll4
E 164 100@ D

Fig. 2.4. The horizontal line segment symbols and their codes.

&

oy
L

W
i
(o)}
-

Vertical lines can be handled by another set of eight graphics, each
with a line of dots running from top to bottom in one of the columns
of the symbol matrix. Here we can draw vertical lines by PRINTing
the symbols one above the other on the screen. This can be done by
adding ‘cursor left” and ‘cursor down’ control codes after each
symbo! to move the cursor to the correct position for the next

22 Commodore 64 Graphics & Sound

graphics symbol. These symbols, and their ASCII and screen codes,
are shown in Fig. 2.5.

RSCII SCRM ASCII SCRM
CoORE CODE COoE CORE
165 1@l L__ 125 95 I
116 =13 194 Ta :[
f
183 71 lz21 a9 J
o3 =] D: 167 1@<

Fig. 2.5. The vertical line segment symbols and their codes.

When we come to sloping lines, things get a little more
complicated. If you print the set of horizontal line symbols one after
another, starting with the symbol with a line at the top of the
symbols space, and with each successive line one row of dots lower,
this will give a stepped line that slopes down the screen to the right. If
you want the line to slope upwards, the symbols are simply printed
in reverse order. After eight symbols have been printed, a ‘cursor up
or down’ move is required, and then the sequence starts again to
continue the sloping line. The same basic idea can also be applied
using the vertical line segments to generate stepped lines that slope a
little to the right or left of vertical. Here cursor moves are needed
after each symbol, and an extra one is needed after every eight
symbols.

Lines can be made to slope at steeper angles by using alternate
symbols from the set of eight. Thus you might use the symbols with
the line drawn in rows 1, 3, 5 and 7. For extended lines the
cursor shift to the next row or column will need to be made after only
four symbols have been printed. The possible variations of this
technique are numerous, and it is worthwhile experimenting to see
the range of different lines that can be produced by just using the
horizontal and vertical line segment symbols.

There are two symbols to deal with diagonal lines, and these are
shown in Fig. 2.6. When drawing a line using these symbols, one or
more cursor control codes will be needed after each graphics symbol

Character Graphics 23

RSCII SCREEN SYMBOL
COLE COLE

19 7

118 75

ll& 86

Fig. 2.6. The diagonal line symbols and their codes.

to place the cursor in the correct position for the next section of line
to be printed. A third symbol gives crossed lines.

Crossing lines and junctions present something of a problem.
There are four right-angle T junctions and eight corner shape
symbols. These allow crossovers and junctions to be made at the
corners or middle of character spaces. There are also some curved
corner shapes.

The graphics symbols may be obtained from the keyboard by
holding down either the SHIFT or LOGO keys while a letter key is
pressed. The LOGO key is the one at the bottom right of the
keyboard, with the Commodore trademark printed onit. The actual
graphics symbols are printed on the front face of the key. You will
note that there are two symbols on each key. To select the right-hand
symbol use the letter key with the SHIFT key; for the left-hand
symbol use the letter key with the LOGO key.

This set of line symbols can give remarkable flexibility in building
up a diagram, but some care is needed in planning the layout of the
diagram to ensure it will fit in with the available symbols. The basic
technique involved in producing a picture on the screen is similar to
that of building up a jigsaw puzzle.

Reverse video

You will have noticed that some of the symbols displayed when you
type in a cursor control code are shown in reverse video. This means
the dots that would normally be lit are dark, and those that would
normally be dark are lit. Thus the HOME key produces an S symbol
in dark blue on a light blue background.

24 Commodore 64 Graphics & Sound

Any symbol or set of symbols can be displayed in this fashion by
using [CTRL 9] to select the RVS ON mode, where all symbols
typed in will be displayed in reverse video form. To return to the
normal display mode [CTRL @] (RVS OFF) is used. Note that it is
possible to have just one or two symbols in a string in reverse video
by just switching RVS on for the selected symbols. At the end of a
PRINT line the RVS ON mode is automatically turned off.

Reverse video is useful with the mosaic block symbols since
several patterns do not appear to be available. If you examine the
symbol pattern, however, you will see that the missing symbols can
be generated by using RVS with those that are directly available
from the keyboard. The ASCII codes and listing symbols for the
RVS ON and RVS OFF commands are shown in Fig. 2.7.

Keus Action ASCII List
used CGde E-HmbClL
CTRL @ RUS ON 18
CTRL ® RUS OFF 146 !

Fig. 2.7 . Thekeys, character codes and listing symbolsfor switchingtoand from
the inverse video symbols.

Making new characters

So far we have produced drawings and pictures or text displays by
using the character sets programmed into the character generator
ROM built into the Commodore 64. For most purposes these may
well be perfectly adequate, but there will be times when we may want
to display some special symbols that are not available in the
standard set. As an example, we might (in a mathematical program)
want to introduce Greek letters or special signs, such as the
integration and square root symbols.

For producing text displays in other languages we may require
accented letters, or in the case of Russian we might use the Cyrillic
alphabet. Once again, there is a need for some custom-designed
symbols.

In graphics we have already seen that there are some limitations in
using the standard set of graphics symbols. Here it might be usefulto
have some new graphics symbols to suit the needs of the particular

Character Graphics 25

type of diagram we want to produce. Examples here might be the
inclusion of special symbols, such as those used in electrical and
other types of engineering drawing.

If, instead of taking the character dot patterns from the character
generator ROM, we could persuade the VICII chip to use dot
patterns from the RAM area of memory, then we could write in our
own dot patterns to define the shapes of the displayed symbols. In
fact this facility for producing user-defined text and graphics
symbols is provided on the Commodore 64.

The character generator ROM is actually located at addresses
starting at 53248 in the memory address map of the computer. As far
as the VICI1 chip is concerned, however, the ROM appears to be
located at addresses 4096 to 6143 in memory. This is because the
video chip only looks at a 16k byte block of memory at any time. If
the alternative (lower case) character set is in use then the ROM
appears at locations 6144 to 8191. In fact there is also a section of
RAM at this address, but it is disabled when the video chip calls up
dot patterns for a symbol, and the data is read from the ROM
instead. The address that the VIC11 chip looks at for its dot pattern
data can, however, be altered, and if this is done the dot patterns will
actually be read from the RAM itself. The address looked at is
controlled by one of the registers in the video chip, so by changing
the data in this register we can pick up our own set of symbol dot
patterns for display on the screen.

The character data address register in the video chip isat memory
location 53272, and the lower four data bits of the word are used to
select a 2k block of memory where the video chip will read data for
its symbol patterns. The number we feed into this register is from 0
to 14, and is always even. In fact, this number is simply the number
of 1k bytes to the start of the character pattern memory, and will be
either 0, 2, 4, 6, 8, 10, 12 or 14. Note that the video chip only looks at
one 16k bank of memory at a time, so there is no need for addresses
higher than 16k.

If we select blocks 4 or 6, the normal ROM will be used. Block 0
must be avoided, since this part of the memory is used by the
computer itself to store system variables, and if overwritten will
cause complete chaos. Similarly, block 2 should be avoided, since
this is where the BASIC program starts. The safest place to start is at
12k (12288), and this can be done by POKEing 12 into location
53272. A point to watch is that the upper four bits of this register in
the VIC chip control the location of the screen memory, so you do
not want to disturb them. The solution is to use the following

26 Commodore 64 Graphics & Sound

command:
POKE 53272, (PEEK(53272)ANDI5)OR A

where A is the dot pattern start address in k bytes. Here the AND
operation sets all the lower four bits at 0 without affecting the upper
four bits. Then the OR operation sets the lower four bits to their new
value, again without affecting the upper four bits.

Copying the ROM character set

If we simply shift the location of the dot pattern memory being used
by the video chip, and then PRINT characters to the screen, the
result will be random patterns of dots. This is because the area of
RAM that we have defined as the character generator contains
random data: we haven’t programmed any data into it. Now for
most programs we shall still want to use some of the standard
symbol set, so the first thing we need to do is to copy the character
dot pattern data from the character generator ROM into the area of
RAM we are going to use as a character generator.

Normally if we tried PEEKing the addresses at which the ROM
appears to the VIC chip we would simply get the contents of the
RAM at these addresses. This is because the ROM is normally
disabled unless the VIC chip is addressing it. To switch on the
ROM so the CPU can read data from it we need to change a data bit
in location 1 of the memory.

An important point, however, is that memory address locations 0
and | in the Commodore 64 do in fact call up two registers in the
CPU itself. These registers are used in interrupt operations such as
the one involved in scanning the keyboard. To avoid problems it is
advisable to disable the keyboard and other interrupts while you are
copying data from the character generator ROM. This can be done
by using

300 POKE 56334, PEEK(56334) AND 254

With the interrupt system disabled we can now use register | to
switch on the character generator ROM. This is done by resetting bit
2 of the word, which has a value of 4, by using the POKE operation

319 POKE I,PEEK(1) AND 251

When the ROM is enabled, it will appear to the CPU at addresses
from 53248 to 57343, and all we need to do at this stage is set up a

Character Graphics 27

simple loop operation to copy data words from the ROM addresses
into the area of RAM we are going to use for our user-defined
symbols. This can be done as follows:

320 FORJ=¢TO4¢95
330 POKEJ+ 12288, PEEK(53248+1J)
349 NEXT

After copying the dot data the ROM can be disabled by using
350 POKE 1,PEEK(1)OR 4

and then the interrupts reactivated by using
369 POKE 56334,PEEK(56334) OR 1

At this stage we now have all the standard dot patterns in memory,
starting at location 12288, and if we now switch the character
memory address of the VIC11 chip to 12288 by using

37¢ POKE 73272, (PEEK(53272)AND24¢)OR 12

then the computer will appear to behave normally as we type in data
or PRINT characters to the screen.

Like the other text characters, each of the user-defined symbols
has eight rows with eight dots in each row, and each dot may be
either ‘on’ or ‘off’. In the computer, each memory word has eight
bits, each of which may be set as a 1 (on) or a 0 (off), so it is
convenient to store one row of dots from the character pattern into
one memory word. The eight rows of dots making up the character
are then stored in eight successive memory words. If we want to
create a new symbol then the new dot pattern must be written into a
set of eight memory locations in the user-defined graphics area of the
memory, replacing one of the standard dot patterns that we have just
copied from ROM.

Of course we may just want to rearrange the existing set of
symbols, and this can be done by copying the required dot patterns
from the ROM into the RAM at a different position in the code
table. We could also mix symbols from the two sets that are
available in the ROM. The second set of symbols is located at
addresses 2048 higher in the ROM, that is from 55296 upward.

Programming a new symbol

The first step in creating a new symbol is to work out the dot pattern

28 Commodore 64 Graphics & Sound

that is needed to build up the symbol. This can easily be done by
drawing a grid with eight rows of squares and eight squares in each
row, as shown in Fig. 2.8. Squares are then shaded in to pick out the
shape of the desired symbol.

128 64 32 16 8 4 2 i DATA BIT PRTTERN DECTMAL
g1111111 127
gg1088¢81 33
69618888 i6
sgassiens 8
peBl1avaesn 16
gai1esasl 33
¢11i1i1111 127
sgeeapan g

Fig. 2.8. Dot matrix and data coding for a user-defined symbol.

Once the dot pattern has been worked out, the next step is to work
out the numbers that have to be stored in the memory. Figure 2.8
shows the layout of a typical user-defined graphics character. Here the
pattern is of the Greek letter sigma. In the diagram, the black dots
are in the foreground colour and will be represented by ‘I’s in the
computer word, while the remaining dots are in background colour
and will be ‘0’s. Each data bit in the word has a numerical value
starting with 1 for the right-hand end bit, and working up in the
sequence 2, 4, 8, 16 and so on for successive bits as we move to the
left through the data word. The actual value of each bit is shown at
the top of the diagram.

To find the decimal number that has to be fed into the computer,
we can simply add together the numerical values for all the bits in the
word that are set at ‘1’. This gives a number in the range 0 to 255.

To set up the dot pattern in memory we now have to write the
sequence of eight numbers into eight successive memory locations,
and this can easily be done by using a series of POKE commands as
follows:

590 FOR K = ¢ TO 7
519 POKE A+K,D(K)
520 NEXT K

where A is the starting address in the computer memory for the dot

Character Graphics 29

pattern of the character we are creating, and D is an array of eight
numbers representing the dot pattern.

All we have to do now is put the data words into the right place in
memory. The first step here is to decide what screen code you want
the new symbol to have. Let us say that this is some variable C. Now
we have to pick up the memory address C*8 words up from the start
of the character RAM area, and we write our eight data words into
the next eight successive memory locations. Suppose we wanted to
replace the standard character ‘C’. This has a screen code of 3, so the
dot data words would go into memory starting at location
12288+(3*8) = 12312, and going up to location 12319.

108 FEM CREATIHG A MEW SYMBOL

185 REM SELECT UFFER CRSE SYMBOLS
i@ PRIMT CHRE$C1420

115 EEM PROTECT HEW CHRRRCTER MEMORY
120 POKESZ, 48 POKESE, 48

130 UG=12286: CG=93248

135 REM TURM OFF KETRORRD IMTERRUFT
148 POKESES. CTEE34IANDEES

145 REM EMABLE CHARACTER ROM

1 POKELPEEK L 3AMDER

REM COFY CHRRACTER SET

FORK=8 TC 2047

UG+ PEEK CCGHE

n
x

= O

=

X

HEXT

REM TISABLE CHRRACTER ROM
FOKEL . PEEKC 1 30RY

REM RESTORE KEYBORRL IMTERFRUFPT
FORESEE34, PEEK CS8334 500

REM SELECT USER GRAPHICS RAM
FOKESR2TE, (PEEK (S32720AMI240 +12
CC=1

REM LDAD HWEW SYMBOL 0T PSTTERM
FOR J=3 70 7

FERD A POKE UG+S#00+T. A

HEXT

DATH 127.33.16,8.16.33, 127. 0
FRINT CHR$C1470

FOR HM=£4 TO 26

FRIMY CHRE® (M

Liren
MEXT

=)

NE NS LR

i

RS RS s Bl W e L |

i

51

3T DD s iy
[A

=y =

T D P2 P2 TR) o) Ju I o 4t pes b b i s pea

PN B SRR I O)

2) ‘I‘:J [LY]
TR D Ty Gy

(R RNy

1

Fig. 2.9. Program demonstrating copying of the character set and creation of
a user-defined symbol.

30 Commodore 64 Graphics & Sound

In Fig. 2.8 the dot pattern for the Greek letter sigma is shown and
alongside it are the required data words that will represent the dot
pattern in RAM. The program listed in Fig. 2.9 demonstrates how
this new character can be set up in the user graphics area and used on
the display screen.

In line 119 the upper case character set is selected. This is the
normal symbol set with the graphics symbols. In line 120 the
character RAM area of memory is protected from BASIC by
altering the top address available to BASIC programs. Lines 140
and 15¢ turn off keyboard interrupts and enable the character
generator ROM so that we can copy its dot patterns. The complete
set of character dot patterns is then copied into the user-defined
character RAM area of memory. Next the ROM is disabled and the
interrupt restored.

Line 210 now selects the user graphics RAM dot patterns for use
by the display. The new pattern for the sigma symbol is then POKEd
into the character RAM in place of the dot pattern for the A symbol.
Finally the screen is cleared and the set of letter symbols is printed
ont. You will notice that the A is now displayed as a sigma. When the
program completes, the word READY will also contain the sigma
symbol instead of an A and in fact all As will be displayed as sigmas
while the user graphics RAM is selected. The new dot pattern will
remain in the user-defined graphics set as long as the computer
remains switched on. Of course you can define as many new symbols
as you like, and use them to replace any of the existing symbols in the
standard character set.

Chapter Three
High Resolution

Graphics

So far the pictures on the screen have been produced by printing
patterns of graphics symbols. As we have seen, there are limitations
in using the standard set of graphics symbols, but these can often be
overcome by creating user-defined symbols. The lack of flexibility of
character graphics becomes important when we want to draw shapes
such as circles. Much greater flexilibity in drawing shapes is possible
by making use of the high resolution bit-mapped graphics mode
provided on the Commodore 64. This gives a screen resolution of
320 by 200 dots and permits the state of each dot to be individually
controlled.

One penalty that has to be paid for this extra flexibility is loss of
memory space: the bit map display mode uses up an 8000-word area
of memory compared with only 1000 words for the character
graphics mode. With some 30k of memory available, this need not
be a serious problem. Another and perhaps more significant
disadvantage is that the normal PRINT command no longer
produces a text display when bit-mapped graphics are selected. As a
result, the combination of text and graphics on the high resolution
displays becomes a more complex operation than it is with the
simple character graphics display.

Memory allocation

When the bit map graphics mode of the Commodore 64 is selected it
uses an 8000-word section of memory, which starts at the same
address as the user graphics memory. As with the user-defined
graphics memory, the start address of the memory used in the bit
map mode has to be set up in the VIC11 chip. Here the start address
must be chosen to avoid conflict with memory used by the processor
itself, or by the BASIC interpreter. One possible start address for the

32 Commodore 64 Graphics & Sound

bit mapped display memory is at a point 8k (8192) bytes up fromthe
start of memory.

The choice of memory position is rather more limited than for the
user-defined symbol set, because now we have to fit in an 8000-word
block of memory which must fall within the 16k bank of memory
being accessed by the VICI1I chip. If you set the bit map at an
address between 8k and 16k then part of the map will fall outside this
16k block, and will not be displayed. The section of memory used for
the bit map mode is governed by register 24 in the VIC11 chip. This
is in fact the same register that specified the start of the user-defined
character patterns in memory, and the start address may be set in
steps of 2k bytes at a time.

To set the bit map memory to the required position we need to
POKE a new number into register 24 of the video chip, which is at
memory address 53272. This register has only 3 bits (bits 1, 2and 3)
allocated for setting the bit map address; the remaining bits control
other functions. A point to note is that the least significant bit of the
register is not used; this is why the selected memory start address
increases in steps of 2k bytes. At switch-on the bit map address bits
are usually set at 0. To avoid altering the other bits in the register it is
best to PEEK the contents, then add in the memory address bits and
POKE the result back into the register. This can be done by using

POKES53272,PEEK(53272) OR MS

where MS is the bit map start address in kilobytes. So to place the bit
map at address 8192 (8k), MS would have the value 8. If the address
in the register might have altered from 0, perhaps because you have
been using custom symbols, then it is as well to AND the result of the
PEEK with 240 before adding in the bit map address. This will set
the lower four bits of the register to 0.
It is a good idea to protect the bit map area of memory from
BASIC. This can be done by the following two POKE operations:
POKE 52, 32
POKE 56, 32
These may be included as the first instructions of your BASIC
program, or they may be carried out directly by just typing them in
without line numbers. The data to be POKEd into locations 52 and
56 will be the top address you want BASIC to use in kilobytes,
multiplied by 4. If the number POKEd into these locations is 32,
BASIC will ‘think’ that the top of the available memory is at 8192,
which will leave you about 6000 bytes of memory for your BASIC
program and its variables.

High Resolution Graphics 33

Setting the bit map mode

Once you have placed the display memory in an appropriate
position, the next step in achieving bit-mapped high-resolution
graphics is to select the bit map mode. This is done by setting a
control bit in register 17 of the video display chip. This register is
located at memory address 53265, and the particular bit we need to
set is bit 5, which has a numerical value of 32.

The control register which governs the bit map mode also controls
other functions within the video display chip, so we want to alter the
state of bit 5 without altering any of the other bits in the register. To
discover what is already in the register we can use PEEK(53265). If
we want to set bit 5, the simplest approach is to OR the contents of
the register with the number 32. For the number 32 the only bit
which is at | will be bit 5, and this is the only bit that will be affected
by the OR function. So to select the bit map mode we can use the
statement

POKE 53265,PEEK(53265) OR 32

If we want to switch off the bit-mapped display mode and return to
normal text displays then we need to reset bit 5 of the control register
to 0. This can be done by using the AND function. In this case the
contents of the register are ANDed with a mask pattern word where
all bits except bit 5 are set at ‘I’. This pattern is produced by the
number 25532, or 223, and the required statement becomes

POKE 53265,PEEK(53265) AND 223

This is how the mode would be switched during a program. Another
and perhaps easier way of restoring the normal display mode after
the program has stopped is to hold down the RUN/STOP key and
press the RESTORE key. If you want to switch back and forthin a
program, however, the POKE commands must be used.

Clearing the screen

When the bit map mode has been selected the normal ‘screen clear’
function of the text mode no longer operates, so a different
technique for clearing the display has to be used. Remember that in
the bit map mode the state of the individual bits in the words of the
display memory determines whether the dots are turned on or not.
To clear the screen we simply have to set all the words in the bit map

34 Commodore 64 Graphics & Sound

memory to zero. This can be done in BASIC by using a simple loop
which POKEs zero successively into each location of the bit map
display memory. This might be done as follows:

169 BM = 8192

119 FOR N=BM TO BM+8p¢¢
126 POKE N.§

139 NEXT

Here the loop starts at the start address of the bit map (BM) and
steps through the next 8000 memory locations placing 0 into each
one.

When you have cleared the display memory there will still be a
random selection of coloured blocks on the screen. This is because
when the bit map mode is selected the text display screen memory is
used to control the colour of the dots on the bit-mapped screen. We
shall be looking at colour more closely in the next chapter. For the
moment we shall set the background colour to blue and the
foreground colour to white. To do this we simply have to POKE the
number 22 into every location of the text screen memory.

Setting individual dots

To draw effectively on the high resolution screen the first thing we
need to be able to do is to set individual dots ‘on’ or ‘off” as required.
To do this we need to POKE a 1 into the appropriate bit of one of the
words in the display memory. The problem here is to convert from a
set of X and Y co-ordinates to a word address and a bit patternto go
into that word.

It is convenient to arrange the X and Y co-ordinate system as
shown in Fig. 3.1. Here the value of X increases from 0 at the left
edge of the screen to 319 at the right edge; Y starts at 0 at the top of
the screen and increases to 199 at the bottom of the screen.

The bit map memory is arranged in what seems at first to be a
rather strange layout. One might expect the words to be allocated
along each row of dots on the screen, with each word representing
eight successive dots along the line. In fact, the memory is arranged
so that the eight rows of each character space are stored successively
in memory, and these sets of eight rows of dots are taken in sequence
across the screen as shown in Fig. 3.2,

The lines across the screen are effectively stacked in sets of 8, so
that after the first 8 lines have been stored the next memory location

High Resolution Graphics 35

X=8 X=319
Y=g ¥=8

=3 ¥=219
¥=199 ¥=199

Fig. 3.7.Layout of the X and Y co-ordinates on the bit map screen.

is at the start of the next block of 8 lines. This arrangement is in fact
the same as that used for the user-defined graphics patterns. There
are some advantages to this arrangement when text has to be added
to a bit-mapped picture, as we shall see later.

hvted bvted bytelé ... byte304 byte3lz
bytel bvte bytel7 byte3e5 byte313
Lyte? byteie¢ bytelB byte3os byte3lqg
bytel byteil bytel? byvte3d7 byte3iS
Gyted bytell byteZd byte3dd byte3ls
bytel bytel3 bytell byte3o? byte3l7
bytss byteld byteZZ byte3le byte318
byte7 bytel3 bytel23 byte3ll byte3il?
bytailZ0 byteXZ8 byte3Z46 bytedt?4 bytes3I2
bytel3Zl bytel2? byte337 byteé&2S bytes33
LytsZl2 byte3Z@ byte338 byted2d byvtestIs

Fig. 3.2. Layout of the bit map screen data in the computer memory.

Let us start with the X direction. Each successive word across a
single line is spaced 8 locations on from the last, so we can find part
of the address by dividing X by 8 and taking the integer value. Each
group of 8 scan lines is equivalent to a row of text symbols, and the
next step is to find out which row we are in. This can be done by
simply dividing Y by 8 and then taking the integer to remove any
fractional parts. Now in each row there are 8 scan lines with a total of

36 Commodore 64 Graphics & Sound

40 X 8 or 320 individual words. So the second block of 8 lines starts
320 memory locations from the start of memory. If we multiply the
row number by 320 this gives the start address for the block of 320
memory locations that we want to access. The nextstep is to find out
which scan line of the set of 8 the dot to be set is in. Thisis related to
the Y position, and must be a number from 0 to 7. For this we can
simply take the lowest part of the Y value by using Y AND 7, which
selects out the three least signficant bits (value 0 to 7) of the Y
number.

Assembling these steps together to find the particular word to be
altered we get the equation

P=BM+320*INT(Y/8)+8*INT(X/8)+(Y AND 7)

where BM is the start address of the bit map memory, and P is the
address of the location we need to alter.

The next step is to set the required bit in the word. The bit number
is obtained by taking the three least significant bits of the X number,
which tells us which of the 8 bits is to be set. This is done by simply
ANDing X with 7. Now in the display memory word each bit has a
value which is 2 raised to a power from 0 to 7 according to the bit
position in the word. So bit 0 (the right-hand one) has a value of 1
(29), the next bit is 2 (21), and so on to the left-hand bit which has the
value 128 (27). The value of X, however, runs from O to 7, moving left
to right through the word, so to set the required bit we have to
calculate 21(7—(X AND 7)). The result of this calculation is ORed
with the existing contents of the memory location at address P, and
then the result is POKEd back into that memory location.

This process of setting a dot may seem rather complex, butin fact
boils down to a simple three-line subroutine. Now all we have to do
to plot a pointis to set X and Y to the co-ordinates of the point on the
screen, and then call the subroutine to light up the required dot. To
reset a dot to its ‘off> state we need to AND the contents of the
required memory location with 255-DV, where DV is the value of
the data bit representing the dot we want to reset.

The program listed in Fig. 3.3 sets up the bit map mode, clears the
screen, and then plots a series of randomly-positioned dots all over
the screen. The dot setting subroutine starts at line 2¢§. A point to
note here is that the screen clearing operation takes several seconds,
during which time nothing much will appear to happen.

High Resolution Graphics 37

188 REM HI-RES RAMDOM DOTS

185 REM CLERR BIT MAP RRER

118 MS=8132

12@ PRIMT"SETTING UP"

138 FOR M=MS TO MS+3008:POKE M, @ HEXT
135 REM MOYE BIT MAP RDDRESS

140 FOKETS3272, PEEK(S3272) OR 8

145 REM SELECT BIT MAF MODE

1568 POKE 53283,PEEK(S3263) OR 32

153 REM SET COLOURS

168 FOR I=1024T02023:FOKE 1,22:HEXT
178 GOTOl68Y

155 REM DOT SET ROUTIME

200 P=MS+320%INT(Y/Bi+3¥ INT (K80 + (WANDT)
gle POKE P,PFEEK(PY OR(2MT~(H AND 7ru0
228 FETURN

995 REM MRIM PROGRAM

jged FOR M=1 TO 200

101@ Y=200%RHD(B)

1028 X=320%IND8

163@ GOSUB200

1948 MEXT

1@5@ EMD

Fig. 3.3. Simple BASIC program to select the bit map mode and plot random
dots.

Machine code screen clear

Waiting for the computer to clear the screen using a BASIC
program is a rather tedious business, as you will just have
discovered. The solution is to use a machine code routine to perform
this task, and to call it from BASIC whenever the bit map screen
needs to be cleared.

Figure 3.4 shows the list of assembly language instructions for a
short machine code routine which will clear the bit map screen. The
machine code itself is set up in the computer by using a short piece of
BASIC program to POKE the data representing the machine code
into the computer memory. This is shown in Fig. 3.5. Here we have
placed the machine code in an area of memory starting at location
49152 by using a loop to read the required data numbers and POKE
them into successive memory locations. This area of memory is
above that used by BASIC, so it will not be overwritten by your

38 Commodore 64 Graphics & Sound

START LD& #O Start address
T8 251
i DA 2 in 25172
STa 282
LDX 2 No. of blocks
Bl OCK LDY #a
BYTE LDA #He
5Ta 251,Y Set byte to @
DEY Next byte
BNE BYTE End of block?
INC 252 ipdate address
DEX to next block
BENE BLOCK A1l done?
RTS Return

Fig. 3.4. Machine code program to clear the bit map screen.

108 REM BIT MAF CLERR M/C ROUTIME

165 REM CLERRS 200Q@ BYTES FROM 2152 UF
11@ REM CRLL USING 5Y545132

128 T=R:FOR H=43132 TO 43176

130 RERD A:FOKE W.R:T=T+M:HEXT

142 RERDR:IF TR THEM PRINTVERRDR":EMD
108 PRINTLOADED K"

166 DATA 16€9,8,138,251, 165,532,133, 252
178 DATA 162,32, 160,8,169.8, 145, 251
182 DATA 136,208,231,220,252, 202, 288
128 DATA 245,936, 3887

Fig. 3.5. BASIC program to load machine code screen clear routine.

BASIC programs or their data and variables. Once the data has been
POKEd into the memory the machine code routine will remain
available all the time the machine remains switched on. Typing
NEW doesn’t affect the machine code area, so you could use this
short BASIC program to load the screen clear routine at the start of
a computing session, then type NEW and load the BASIC programs
that will use the routine.

Be very careful in entering the DATA items: an error here can
cause unpredictable results when the machine code routine is
executed, and will probably cause the computer to become totally
locked-up. A simple checking routine has been built into the
program which should pick up most data entry errors. This check
adds up all of the DATA items and compares the result with a final
check DATA word. If the results match, the message ‘LOADED

High Resolution Graphics 39

OK’ is printed, but if a mismatch occurs the message ‘DATA
ERROR’ is printed. This simple check is not totally infallible, since
two errors in succession could cancel one another and give the
correct check answer, but the machine code will still be in error.

188 REM RAMDOM BIT MAPPED DOTS
183 REM SET BIT MAP ADDRESS TO 8192
118 BH=8152
128 POKES3Z72.PEEK(E3272)0RE
25 REM SELECT BIT MAFP MODE
138 POKES3265. PEEK (33265 0R32
1353 REM SET COLOURS
148 FOR I=1824TN2023:FOKEL, 22 HEXT
145 REM USE CLEAR ROUTIME AT 42152
158 5Y548152
16@ GOTO1068
155 REM DOT SETTIMG SUBRDOUTIME
208 P=RM+320%INT (Y Q) +BRINT 4 R0+ YAMDT
218 POKE P.FPEEKIPIOR(Z M7= XAMDT 2)
228 RETURM
335 FEM MAIM PROGRAM
1889 FOR M=1 TO 208
1019 X=320%RND{@)
1020 Y=2004RMD(G)
1838 GOsUBZea
1046 HEXT
1852 EMD

Fig. 3.6. Random bit-mapped dots program using machine code screen clear
routine.

The machine code screen clear operation is called from a BASIC
program by using the instruction SYS49152 as a BASIC statement.
In the program shown in Fig. 3.6 the screen is set to bit map mode,
then cleared, and then the random dots are plotted as before. This
time the process repeats 20 times, and you will notice that the screen
clears almost instantly.

Drawing lines

Now that we can plot individual points on the screen, the next step is
to draw lines. Suppose we want to draw a horizontal line across the
screen from a point X1,Y to another point X2,Y. Since the line is
horizontal, all the points along it will have the same Y value. To

40 Commodore 64 Graphics & Sound

draw the line on the screen we have to set all the dots along the line
from point X1 to point X2 to the lit or ‘I’ state. This can easily be
done by using a simple loop operation where the X value is stepped
from X1 to X2 and a dot is set at each step as follows:

3¢ FOR X = X1 TO X2

319 P=320*INT(Y/8)+8*INT(X/8)+(YAND?)
320 B=21(7-(XAND?))

339 POKE BM+P,PEEK(BM+P) OR B

340 NEXT

Here it is assumed that the bit map mode has been set up and values
have been given to X1, X2 and Y earlier in the program.

Drawing vertical lines on the screen follows a similar procedure to
the drawing of horizontal lines, except that now the X co-ordinate of
the points remains constant and the Y co-ordinate is stepped from
Y1 at oneend of the line to Y2 at the other, with a point being plotted
at each step.

A general line-drawing routine should be able to draw lines at an
angle as well as horizontal and vertical lines. This requires a more
complex routine, since both X and Y co-ordinates now have to be
changed as the line is drawn.

If the line is to be a diagonal one, at 45 degrees, the X and Y
changes are equal, and the direction of the line will simply be
determined by the signs of the stepsin X and Y. Thus if both Xand Y
increase by one for each successive dot the line is drawn diagonally
downward and to the right. If X decreases by oneand Y increases by
one the line is drawn down and to the left. If Y decreases by one at
each step then the line will be drawn up the screen and to left or right
according to whether X decreases or increases.

If the line is not at 45 degrees then the steps in X and Y will be
different from one another. The technique here is to choose the
larger co-ordinate change from one end of the line to the other and
make that the total number of steps to be plotted. Now some steps
will need to be made diagonally, while between them there will be
vertical or horizontal steps according to which direction has the
greater change in position.

Let us consider an example. Suppose we want to draw a line
from point X1,Y1 = 50,50 to point X2,Y2= 150,80. First we check
whether X or Y has the largest change in value. In this case it is X
which changes by 100 while Y changes by only 30. So here we make
the total number of steps equal to 100.

In the program this can be done by using an IF statement to

High Resolution Graphics 41

compare ABS(X2—X1) with ABS(Y—Y). The absolute values must
be used since either X2—X1 or Y2-Y1 may be negative, and this
would give the wrong answers. We are only interested here in the size
of the difference in the X and Y co-ordinates of the line.

If X2 islarger than X1 the line is drawn from left to right, whereas
if X2 were smaller than X1 the line would extend to the left and the X
value would have to be reduced by one for each successive dot. The
direction in which the steps have to be plotted is governed by the
signs of the (X2—X1) and (Y2-Y1) differences, and these are
determined by using SGN(X2—X1) and SGN(Y2—-Y1). The results
are held as variables SX and SY, which wiil have values of —1, 0 or
+1.

To draw the line we shall now plot a total of 100 dots along the
line. Since the change in Y is only 30 there will be 30 diagonal steps,
and the remaining 70 steps are in the X direction only. To give a
smooth line the diagonal steps must be spread out evenly along the
line.

To do this we set up a running total ND which is initially set to the
integer value of half the larger of the X or Y differences. In this case

ND = INT(NX)/2 = 50

Now we set up a loop running from 1 to NX, in this case. If NY were
greater it would determine the size of the count. On each pass
through the loop the lower of the two differences (NY) is added to
ND, and the result is compared to the larger difference (NX).
Normally a horizontal or vertical step is made, but when the new
total becomes larger (i.e. here ND>NX) a diagonal step is made.
After the diagonal step the larger difference, in this case NX, is
subtracted from ND. In the example, ND starts at 50 and weadd NY
(30) giving 80. This is less than NX, so the first step is horizontal. On
the next pass ND becomes 110, so we make a diagonal step and
reduce ND by NX to make it 10. The next three steps are horizontal,
with ND at 40, 70 and 100, then another diagonal step is made, and
so on along the line,

We can now produce a general line drawing routine as shown in
Fig. 3.7. The program shown draws a series of lines of random
length and with random angles all over the screen. The line drawing
subroutine starts at line 3¢ and this calls a dot-setting routine at
line 209. Now when the line is drawn it will have a stepped
appearance depending upon its angle relative to the horizontal or
vertical axis.

42 Commodore 64 Graphics & Sound

102 REM RANDOM HIGH RES LIMES

183 REM SET BIT MAP RDDRESS TN 8152
i1@ BM=8132

128 PDFESSE?: PEEK(ZR3272)0RE

{23 REM SELECT BIT MAF MODE

138 POKET3265, PEEK(S326500R32

35 REM SET COLOURS

140 FOR I=1@247T02023:POKET. 22 HEXT
145 REM USE CLERR ROUTIME AT 43132
15@ &4549152

168 GOTOlaee

195 REM DOT SETTIMG SUBROUTIME

200 P=BM+3Z0%INT (7 /31 +8¥INT (X80 +{YANDT)
219 POKE P.PEEK(PIORCZM T~ (RAMDT 20
228 RETURM

295 REM LIME DRAWIMG SUBROUTIME
308 SH=S0NC(REZ~K1) :SY=80MIY2~Y1)
310 MNEX=ABS{xZ-K1) MY=RBS(Y2-Y1)
328 K=¥1:Y=Y1:G0SUBZGQ
356 IF MY>Me THEN3SE

348 MD=INTINA 22
350 FORK=1TO My HD=HD+HY

IF HDCHA THEM H=X+8¥:GOTOGEA
MIO=HO-MX : H=k+ 8K Y=Y+8Y
GOSUB28a: MEXT : GOTO448
MD=IHT (MY A2
PG FOR K=1 TO MY :HD=HD+NX
IF MDCHY THEH Y=Y+8Y: GOTO430
428 HD=HD-MY m=K+8K Y=Y +3Y
43@ GDSUBZ@B HEXT

448 RETURHM
993 REM MAIM PROGRAM

1902 FOR MN=1 TO {5

1018 ¥1=3Z04RNDCA) Y1=200%RMD Q>
1020 X2=320%RHDCAY Y2=200%RMHDC@)
1938 GOSUR30a

1048 MHEXT

1858 END

Fig. 3.7. General purpose line drawing routine for use with the bit map
graphics mode.

(22
k]

$a) a2 3D 0
= LD D)
AS AN i R LR

Ia
-
[es]

Screen edge limiting

In the line drawing program of Fig. 3.7 the values of X1, X2, Y1 and

High Resolution Graphics 43

Y2 are calculated so that they are within the limits 0 to 319 (for X)
and 0 to 199 (for Y). In some programs where the line length and
position are being calculated by the program it is possible that one or
both ends of the line will fall outside the permitted range of values
for X and Y, so we need some scheme which can deal with this

situation. '
If X or Y were negative, or greater than the screen limits, the data

for the points would be written into computer memory which is
outside that allocated to the high resolution screen, and this could
have disastrous effects on the program. In a computer program,
however, it may be that the values calculated for the end point of a
line are outside the screen area, so we need to build into our
subroutine some checks for the screen edge. This can be done in the
dot plotting subroutine by testing the values of X and Y before
trying to plot the dot.

The simplest approach is to arrange that if X<{0 or X>>319the dot
plotting operation is skipped altogether and the subroutine returns
to the main program. A second test for Y<0 or Y>>199 also causes
the dot plotting operation to be skipped. These two tests are placed
at the start of the dot plotting subroutine. This scheme effectively
clips off any part of the line that goes off the screen, and the new
subroutine becomes

209 TIF X< OR X>319 THEN 250

210 IF Y<¢ OR Y>199 THEN 250

220 P=320*INT(Y/8)+8*INT (X/8)+(YAND?)
23¢ B=21(7-(XAND?))

240 POKE BM+P,PEEK(BM+P)OR B

250 RETURN

Here BM is the start address of the bit map memory, and B is the
value of the bit that has to be set to light the particular dot being
plotted.

Screen wraparound

An alternative approach to dealing with off-screen points is to apply
screen wraparound. This treats the screen as if it were a sheet of
paper wrapped around a cylinder so that the left and right edges of
the paper touch. Now if we draw a line which runs off the right edge
of the paper it continues by running in from the left edge of the
paper. Thus on our screen a point moving off the right edge of the

44 Commodore 64 Graphics & Sound

screen will reappear at the left edge of the screen. A line running off
the right side of the screen would have its off-screen segment drawn
at the left of the screen. We can also apply vertical wraparound so
that a line running off the bottom of the screen continues to be
drawn running down from the top of the screen.

This wraparound effect can be achieved by successively adding or
subtracting 320 to or from X until X falls within the screen limits.
Similarly Y is changed by 200 at a time, until the Y value is on the
screen. Of course if there are a lot of points off the screen this can be
a slow process. The dot plotting routine could now be .

200 IF X<¢ THEN X=X+320:GOTO20¢

219 IF X>319 THEN X=X—320:GOTO21§
220 IF Y<¢ THEN Y=Y+209:GOTO 220

230 IF Y>199 THEN Y=Y—20$:GOTO23¢
240 P=320*INT(Y/8)+8*INT(X/8)+(YAND?)
25¢ B=21(7—(X AND 7))

260 POKE BM+P,PEEK(BM+P) OR B

27¢ RETURN

Here if X<<0then 320 is added to X to bring X into the correct range,
and the test is repeated in case X is still negative. If X>319 then 3201is
subtracted from X and the test is repeated. A similar series of tests is
carried out on the Y values, and then the dot is set. Fig. 3.10shows a
program where the dot subroutine is arranged to give wraparound.

Drawing simple figures

So far we have looked at plotting dots and drawing lines, but for
many purposes we may want to draw complete figures such as
triangles, rectangles, polygons and circles. A sketching program
could be used, but it is usually more convenient to let the computer
draw the figures itself. We shall now look at some of the techniques
involved in drawing shapes on the screen.

To draw a triangle the simplest approach is to draw three straight
lines linking the corners of the triangle. A rectangle can also be
drawn by working out the X,Y co-ordinates for each of its four
corners, and then drawing four lines which link the points together
to form the sides of the rectangle.

The program iisted in Fig. 3.8 draws a series of random-shaped
triangles around the screen. Here the corner co-ordinates of the
triangles are set up as variables XA,YA, XB,YB and XC,YC, and

160
185
1@
128

2%

136
133
148
145
1568
168
193
208
214
22@
295
el
318
320
328
348
250
368

o
IS

g4
394
400
418
420
430
44@
95

- o e

1020
1985
1816
1829
1230
1835
1040
1858
1868
1670

High Resolution Graphics

REM RAMIOM TRIAMGLES
REM SET BIT MAF ADDRESS TO 8152
BM=8192
POKESS272. PEEK(S3272)
REM SELECT RIT MAP MO
FOKES3265, PEEK(S3265
REM SET COLOURS
FOR I=1824T02Q23:POKEL, 22 HEXKT
REM USE CLERR ROUTIME AT 49152
549152
GOTO1680
REM DOT SETTIMG SUBROUTIME
P=RM+320%THT (Y AR5+ IMT (XAR0+ (YRHDT)
POKE P.PEEK(P2ORCZMT-{ARMITF 20
RETURM
REM LIME DRAWIMG SUBROUTIME
SH=SGH K210 SY=8CGHYe~Y 1)
MeE=RBSHa~¥K1) HY=ABS(Y2-Y1)
r=rliY=Y1:GOSUR200
IF NY>My THEM39@
HD=THT(HX 23
FORK=1T0 Mx:MHD=MD+HY
IF MDIMR THEM W=$+2¥:GOTO380
HD=MD~My M= 485K Y=Y +8Y
GOSUR20Q HEXT : GOTO448
MD=IMT(HYA 23
FOR K=1 TO NY:MD=ND+MX
IF MD<HY THEM Y=Y+5Y:GOT043@
MI=HD~HY H=k4G Y=+ S
GOSUB20@: MEXT
RETURNM
REM MRIM PROGRAM
FOR M=1 TO 5
REM SELECT CORMER POIMTS
HA=320¥RND (D) - YR=200#RHD Q>
“B=320%RMHD A YB=200%RHD G
AC=320%RMD (@) : YO=200%RNDR)
REM DRAW TRIAHGLE
“i=MAYI=YRK2=KER Y2=YB: GOSURZ6E
Al=HB Y =YE K2=Ki Y2=Y T GOSUR384
Al=RC Y=Y d2=KRA Y2="YR GOSLUBIR0
HEXT

0R8
IE
R

2
el

1a8a END

Fig. 3.8. Random triangle drawing program.

45

46 Commodore 64 Graphics & Sound

then lines are drawn linking these points. This program needs the
machine code clear routine loaded into memory before it is used.

Drawing rectangles

We could draw a rectangle in the same way as a triangle by
specifying the corner points and linking them with lines, but there is
a simpler approach which can be used. Rectangles have a width W
and a height H, and knowing these and the X,Y position of one
corner we can let the computer calculate the X,Y co-ordinates for
the other corners and draw in the lines. The values for the other
corners are shown in Fig. 3.9.

X.¥ W X+Ml, ¥
H
X,¥V+H X+M,¥+H

Fig. 3.9. Diagram showing drawing co-ordinates for a rectangle based on
width and height.

To draw therectangle we start by setting X1and Y1 tothe Xand Y
values for the top left corner. X2 will now be X14+H but Y2 is the
same as Y1, since the line is horizontal. We can now call the line
drawing subroutine to draw in the top side of the rectangle. Now X1
and Y1 are set equal to X2and Y2. For the right side of the rectangle
a new value of Y2 equal to YI+H is calculated, and another line
drawn. For the third side W is subtracted from X1 to give the new
value for X2, and on the final side H is subtracted from Y1 to give the
final value for Y2. This sequence is shown in the program listed in
Fig. 3.10. Here the rectangle-drawing operation is set up as a
subroutine, and random size rectangles are drawn at random points

108
182
183
118
128
123
138
135
148
145
150
168
133
200 X
Hlm

220

238

246

J D
A

I 03D 0O OX U 03 00 03 02 I IO
DWW O N A Bl P e WD)T
Dov LS B A BEANIAS A B0 By B s AV IR S B]

Bosp
[P LS
25 5

448
495
=22
518
520
530
540

High Resolution Graphics

REM RAMDOM RECTAMGLES

REM WITH SCREEM WRRPARDIUMD

REM SET BIT MRP ADDRESS TO 8192

BM=8192

FOKES3272.PEEK(53272,0R8

REM SELECT BIT MAP MODE

POKES2265, PEEK(S32¢650R32

REM SET COLOURS

FOR I=1024TOZ0232 1 POKEL. 22 MEXAT

REM USE CLERR ROUTIME RT 49152

lTh"'4Q1=""|

BOTO100A

9:M DOT PLOT WITH SCREEH WRAPAROUMD
= IHT CAY Y=THT (Y)

IF HCB THEM X=4++320:G0T021

IF #3319 THEM H=¥~328:060T0

IF ¥{8 THEN Y=Y+200:G0T0z234

IF 92199 THEM Y=Y-200:G0T0244@

P=RM+320#INT (Y AR+ 8K INT (R AR+ YANDT S

POKE P.PEEKPIQRI2M(T~CHAMDT 20

RETURH

REM LIME DRAWIMG SUBROUTIME

SH=80MNCRE~R1) SY=5GMYE~Y 1)

He=ABRS(H2~%1) tHY=RESCYa~Y10

w=e] Y=Yl GOSUR200

IF HYSHE THEM3S2

MO=TNT (Hx/2 3

FORK=1TO MK MD=ND+HY

IF HDCHE THEM #=<+8K:G0OTO3RA

HO=MD-My | Hei 4G =+ 8y

GOSUB2AA HEXT GOTO448

HO=THT (MY 22

FOR K=1 TO MY MD=HD+MX

IF MDCHY THEM Y=Y+SY:GOT0432

MO=MI~HY H=i+ G Y +3Y

GOSUBZERA HNEXT

RETURM

REM RECTANGLE SUBROUTIME

He=El+b Y2=Y 1 GOSUB308

W1=WE Y2=Y | +H: GOSUR36A

[v

26

na=pi-WiY1=Y2: G0SUE308
Ml=e2 Y2=Y1-H: GOSUBZER
RETLIRM

2% REM MAIMN PROGRAM

9
1069

FOR M=1 TO 10

47

48 Commodore 64 Graphics & Sound

1685 REM SELECT CORMER POINT

1018 X1=480%RND(B> Y 1=300%RND(A)
1020 W=30+30%RHDCAY : H=25+50%RND (A
1025 REM DRAM RECTAMGLE

183@ GOSURIAQ

1044 MEX

1858 EMD

Fig. 3.710. Program to draw random rectangles with screen wraparound.

on the screen. The dot plotting routine used in this program features
screen wraparound, so that when a rectangle is near the edge of the
screen and part of it goes over the edge the overspill will be drawn at
the other side of the screen.

Drawing circles

One figure we shall often require is the circle. There are several
methods for drawing circles. These build up the circle by plotting a
large number of individual dots, or drawing a number of short lines
to build up the circular figure. The positions of the dots or lines are
calculated using one of the mathematical formulae for a circle.

Y=50R1 (R¥RI - (X$x2]

LS

5
s
P el

Fig. 3.11. Derivation of the equations for a circle by the squares method.

Figure 3.11 shows a segment of a circle. Here point A is at the centre
of the circle while points B and C are on the circle itself. The length of
the line AB is equal to that of line AC, and is called the radius (R) of
the circle. Let us now drop a vertical line down from point C to meet

High Resolution Graphics 49

side AB at point D. This produces a right-angled triangle ACD.

To place dots at points B and C we need to know the X and Y co-
ordinates for each of those points. It is convenient to calculate these
relative to point A which will therefore have co-ordinates X and Y
both equal to 0. If we move to point B, its X co-ordinate must be
equal to R, the length of line AB. Since the line is horizontal the Y
co-ordinate must be the same as that of point A, and is therefore 0.
When we look at point C, the X value is the length of side AD, and
the Y value is equal to the length of side CD of the triangle ACD.

For a right-angled triangle the square of the length of the longest
side is the sum of the squares of the lengths of the other two sides. We
can write this down as follows:

(AC)*(AC) = (AD)*(AD) + (CD)*(CD)

Now AC = radius R while AD and CD are the X and Y co-ordinates
for point C, so putting these in our equation we get

R*R=X*X)+(Y*Y)
which can be rearranged to give us
Y*Y=(R*R)—(X* O

from which we can get Y by simply taking the square root. The
calculation for Y now becomes

Y = SQR((R * R) — (X * X))

The values of X and Y in this equation are measured with reference
to the centre point of the circle. Note that for point B the equation
for Y is still true, since in this case X=R, so the term on the right
becomes zero and therefore Y=0.

To place the circle at some particular point on the screen we shall
have to add in the X and Y co-ordinates for the point where the circle
is to be drawn. To avoid confusion we shall call these co-ordinates
XC and YC.

In order to plot all the points around the circle we need to
calculate values of Y for a series of values of X ranging from —R to
+R, and the more points we calculate the better the circle will look.

When we take the square root of a number there are in fact two
possible answers with the same numerical value, one being positive
and the other negative. For each value of X we shall have two values
for Y, and be able to plot a pair of points, one on the upper half of the
circle, and the other on the lower half. To plot the first point the
result of the square root calculation is added to the Y value for the

50 Commodore 64 Graphics & Sound

centre of the circle (YC) to give a point below the centre line of the
circle. The second point has the square root subtracted from YC,
and will lie above the centre line of the circle. This is because, on the
bit map screen, Y increases as we move down the screen.

Since we are plotting single points, and the circumference of the
circle is just over 6 times radius R, it is convenient to have a total
number of points equal to 4 times R to make up the circle.
Remember that we plot two points for each calculation, so a good
value for the number of calculations is twice the value of radius R.
This is easily achieved by taking all of the X values from X=—R to
X=+R. Thus a circle with a radius of 50 screen units would calculate
100 steps and plot a total of 200 points around the circle.

The program shown in Fig. 3.12 draws a circle of radius 50 units
with its centre point at XC=16¢, YC=100, which is roughly at the
centre of the screen. With this routine the number of calculations
depends upon the size of the circle. By changing the values of XC,

10@ REM CIRCLE DRAWIMG USIHG SRUARES
iig BM=2122
145 REM SET BIT MAF START

{30 POKESZEVE, FEEKI3ZY 2 00RS
25 REM SELECT BIT MAF MODE
130 POKESZ26S. PEERISIZETI0RIE

132 BEM CLERR SCREEM

1534 REM MEEDS MAC ROUTIMNE PT 491032
{46 SWE491{5R2

FEM SET COLOURS
FORI=1Q824T02023 POKEL, 22 1 HERT
COTOIGERe

FEM LOT FLOT ROUTIME
FaBM+A2QE IHT OV A8+ 88 IHT CH B (Y RMDT
FOREF FEEK (P OOR(Z M7~ CARMTT 3 3 0
RETLRH

REM CIRCLE ROUTIME

FOR #l=~F TO R
P1=SGR RER - H L

mEECeRl e D GOSUBZEE

Y D-9 1 COSUEZRE HEXT ' RETIIRH
FEM MAIH FROGRAM

1090 “C=1£6 YC=180 r=28

1916 SOSUEDLR

1628 EMD

Dt SRR 4By G <8

I S S B SO CONN 0O B DO B (R S SO SERE RS

Wi
“0
k]

1 Fa s g [e

TS & S O 00 0 o O S A

Fig. 3.12. Circle drawing program using squares method.

High Resolution Graphics 51

YC and R, other circles may be drawn, or you could draw a series of
random-size circles all over the screen. It will be seen that the larger
size circles take a noticeable time to draw. This is because the
computer has quite a lot of calculations to carry out. The square root
function itself is rather slow in BASIC. If we want to draw circles
faster we will need to look at other ways of calculating the points
around the circle.

You will note that at the right and left sides of the circle the first
few points tend to be rather spread out, especially on the larger
radius circles. This can be overcome by plotting more points - for
instance by increasing X by steps of 0.5 instead of 1 - but the circle
takes even longer to draw.

The trigonometric method

Instead of plotting a series of dots we can draw a series of short lines,
which when joined together will form the outline of the circle. For
the second method of drawing circles we need to get involved in
some simple trigonometry.

w2 = RECOSITHI ooima. el
Y2 = RESINITHI __/"'}
o
o !
- | \l
R . - 1
\
-,___,-" ve I‘l
-~ |
-‘"".‘ ||
.~"'f'
TH X2
= B
]

Fig. 3.13. Derivation of equation for the trigonometric method of circle
drawing.

Figure 3.13 shows a segment of the circle with two points Band C
on the circle itself and point A at the centre. The angle at point A of the
triangle is given the variable name TH which is a shortened version
of THETA, the name of the Greek letter normally used for labelling
angles. The co-ordinates X2,Y2 for point C can now be calculated
using the radius R and the angle TH.

52 Commodore 64 Graphics & Sound

To find the length of side CD the function we need to use is
SIN(TH). SIN(TH) is the ratio of the length of the side of the
triangle opposite angle TH to the length of the hypotenuse (the side
opposite the right angle), which is side AC. So in our triangle

SIN(TH) = CD/AC

We already know that AC = radius R. The length of side CD is the
Y2 value for point C, assuming that at point A the value of Y=0.
Substituting these new terms in the equation we get

SIN(TH) = Y2/R
and if we multiply both sides by R the result becomes
Y2 = R * SIN(TH)

Having found Y2 we need to find a value for side AD, which is the
X2 value for point C. Now it just happens that COS(TH) is the ratio
of the length of the adjacent side (AD) of the triangle to the length of
the hypotenuse (AC) so we get

COS(TH) = AD/AC
and substituting the values X2 and R gives
X2 = R * COS(TH)

To find the co-ordinates for the next point we apply the same
equations, but now the angle TH has a different value.

To draw the first segment of the circle we must draw a line from
point B to point C. This line starts at point B, where TH=0 and the
required values for X1,Y1 are

X1=XC+ R
Y =YC

where XC and YC are the co-ordinates for the centre of the circle.
The next step is to calculate the co-ordinates of point C, which will
be

X2 = XC + R * SIN(TH)
Y2 = YC+ R * COS(TH)

and the line BC can be drawn from X1,Y1 to X2,Y2.

For the next line segment of the circle, the values of X1and Y1 are
set equal to the values of X2 and Y2. The angle TH is then increased,
and new values are calculated for X2,Y2 using the new value for the
angle TH. This process continues until the angle TH reaches 360

High Resolution Graphics 53

degrees, when a complete circle will have been drawn.

While angles in degrees are familiar to us, the computer doesn’t
work in degrees; it uses radians instead. All we need to know here is
that there are 2*m radians in 360 degrees. The number =
(pronounced PI) is a constant whose value is approximately 3. 14,
and it is the ratio of the circumference of a circle to its diameter. We
do not need to remember the value for 7 because the Commodore 64
has a special key which allows us to insert 7 into a program
statement as required. This key is marked with the Greek letter 7 on
its front face, and must be used with the shift key held down. It
produces the number 3.14159265.

A convenient number of steps for drawing the circleis given by R,
the radius in screen units. Drawing the circle involves using a simple
loop to repeat the calculations and draw a short line segment R
times. After each segment of the circle has been drawn, the value of
the angle TH is increased by 2*7 /R radians, and the values of X1
and Y1 are updated to point to the end of the line that has just been
drawn, ready for the next drawing step.

A program to draw random-sized circles is shown in Fig. 3.14.

{R0 REM CIRCLES USIAG TRIGC METHOD
118 EM=B8132

115 REM ZET
126 F -
125 REM SELECT BIT MSP MODE

130 POKESIZE5 PEEK (SR265 1 0R 32

132 REM CLEAR SCREEH

124 REM MEEDS MAC ROUTIME AT 49132
{40 SrE49152

145 REM SET COLOURS

156 FORI=1024TO223 POKEL, 22 HEXT
162 GOTOLaED

195 REM DOT PLOT ROUTIME WIT
SEE IF H0B OR #2319 THEM 240
210 IF YR OR w199 240
SO0 PeRHel20% IHT (v 8
230 FOKEF . FEEK{PIOR Y

t

= L7
—
=
m
o)
=1
X
==
=
—1
—_
o
foy)
el
[]
—
—
-3
—
=
™

M1 SY=S0NLYE-Y 1]

eyt

e
N SChak A

= &0

3

DU AR W3 OR Y I P I L
Lo U3 == £33)

e)

54 Commodore 64 Graphics & Sound

PI=IHT MY /2 FORK= {TOMHE HD=HD+HY
IF HDCHE THEH WeR+8K: GOTOEYY
HD=HI~HK K S =Y+ 8Y
GLEUB2QE MEAT 1 GOTO4zd

HD=IHT (A2 0 FORK= 1 TOMY MT=HI
IFHDOHY THEH Y=Y43Y: 6070419
HO=HD~HY R+ 85 P=+ 57
GOEUB2RE HERT

RETURN

REM CIRCLE ROUTIME

UT=2%q /R TH=8 K=H0+R Y 1=40
FOR I=1 TO R

TH=TH+DT R2=uC+RECOSLTHD
Ye=YU+RESINGTHY - GOSUBIEQ
Klmn2 Y i=YE HERT (RETURM

935 REM MAIM PROGRAM

igl@ FOR N=1TO8

1019 XC=IMT(SREHRHD R +18

16028 YO=IHTCI7ORRMDC(D) b+18

1030 R=15+INT{L1T#RND(R

1048 GOSUERDIEE MEXKT

aaaaaa

1658 EMD

Fig. 3.14.Random circle program using the trigonometric method.

o 4 Th o
5) X S)

=2 L)

i} 3 o x
[I o N I 5

N Uy Y O S sy R
[JERY Bcn Iy RV

0N LR A B P e) G D3)) 2

L1

Fig. 3.15. Typical display of random circles.

High Resolution Graphics 55

This program gives a result similar to that shown in Fig. 3.15. The
actual circle-drawing section is written as a subroutine starting at
line 509. If several circles are to be drawn, it is best to use a
subroutine for drawing the circle, and call it from the main program
whenever it is needed. Before calling the subroutine, the values for
R, XC and YC must be set up for the required circle.

This circle-drawing program uses a dot plotting routine which clips
points at the edge of the screen. Thus any points falling outside the
screen area are not plotted at all.

The rotation method

A variation of the trigonometric method for a circle bases the
calculations upon the angle through which the radial line is rotated
at each step. In this case the new values for X2and Y2 are calculated
from the values for the previous point (X1,Y1) rather than from the
radius and the total angle.

K2=xX13CO0S(TH)
Ya=x1lsSINITHI

B
@, C tal, @)
Fig. 3.16. Equations for rotation of a point with Y1 initially at O.
If we look at Fig. 3.16 the value of Y1 is zero so that only the X1

value, which also happens to be equal to R, affects the results. Here
we get

X2 = X1 * COS(TH)
Y2 = X1 * SIN(TH)

Now consider the situation where the radial line is vertical and is
moved through angle TH. This is shown in Fig. 3.17. Here the value

56 Commodore 64 Graphics & Sound

@, L)
=]
__,:;-;-_:J:"‘_"]
[wE el ".,ﬁ
I“I
l“““
||'l.I
=I
. o
|I‘"
Wz LESINITHY ‘.\
wasy L1005 (THI ‘Fi
@, el

Fig. 3.17. Equations for rotation of a point with X1 initially at O.

of X1 is 0, and only the Y1 value affects the results. In this case the
value of X2 is negative, since the point has been shifted to the left of
the line where X1=0. Here we get the results

X2 =—Y1 * SIN(TH)
Y2 = YI * COS(TH)

If we combine these two results we can produce a general expression
for calculating X2 and Y2 for any initial values of X1 and Y1. The
two new equations are

X2 = X1* COS(TH) — YI * SIN(TH)
Y2 = X1 * SIN(TH) + YI * COS(TH)

Now the big advantage of this approach is that the value of TH is
constant, so we can work out the values of SIN(TH) and COS(TH)
before entering the co-ordinate calculation and line drawing loop.
This eliminates virtually all the trigonometric calculations, which
tend to be slow. The program for drawing a circle now becomes as
shown in the listing of Fig. 3.18. As for the trigonometric method,
this program produces random circles with edge clipping.

o]

—
Ly}

1,

-
D Iy

M
B Ly b ks

—— pen
[W)

High Resolution Graphics

138 L PEEKADIZE00R3

132 B SCREEM

154 8 Mol ROUTINE AT 431352
1 4G

145 8] 'LL RS

15@ SEZRIPOKEL 25 HERT
1

¥
]
i
-
R
S]
u—‘
6
el
._.‘

THE WITH CLIFFIMG
,Jiﬂ THEM 244

#? r? .HtH 24@

CP?GRCET% ”HﬁHHU/J!)

R E Dhﬁhi : ROUTIHE

1% '57“? P ET TR

ai@ - w1 HY=RBIIFE~Y L
Gl 1 GOSUReeR

A IF MY h THEM 3@

248 HD=INT (Y20 FORK=1TOMY MI=hHIeNY
A5@ IF HDOHY THEW He=X+eSy GOT037TE
REE BTk e DN EY

ITR GOSUBZER TIROTR4ZE

AEE MO=IH 23 F”?# = T L =T
350 IFHDIMY 'ﬁ:H w*?rﬁ7 GOT0418

4EE pD=pD-p '

419 GOSURZ9d:

423 RETURHM

495 REM CIRCLE ROUTIMNE

SEE SHESINIZHn/R) CH=COS 280 R

SlE o i R

=

o ?, 11

mad Yo=Yl ‘hx#
Sdid wimnl+Elcy

i + 1 GOsSUBZeg
TEA HlmEd~nl Y Iy Y0 HERT RETURM
3% REM MAIM PROGRAM

j08e fuh H=1TOR

1818 ACsIHT(G0*RNI(B+16

1826 r1~IHT' FORENDCBI D18

1638 R=10+IMTCIT%RMDE)

1848 GOSURSOa: HEXT

1858 EMD

Fig. 3.18. Program to draw circles using the rotation method.

57

58 Commodore 64 Graphics & Sound

Note here that although XC and YC are added in to give the co-
ordinates for the line drawing they are subtracted from X1,Y1
before calculating the new value of X2,Y2. This is important, since
the X1 value used to calculate X2 must always be measured relative
to the centre of the circle for correct results. If desired you could use
another variable for the value of X1, Y1, without the offset
component XC,YC.

Drawing polygons

If we reduce the number of steps used in the circle drawing routine,
the result will be a figure with a number of equal straight sides. Such
a figure is called a regular polygon.

To make a general polygon drawing routine we could introduce a
new parameter NS (number of sides) and then modify the program
to make the required number of drawing steps. Thus the rotation
angle TH will be given by

TH = 2*r /NS

To see how this works try running the program shown in Fig. 3.19
which draws random sized regular polygons with from three to eight
equal length sides. Figure 3.20 shows the sort of display produced by
this program.

1930 REM RAMDIM POLYGOHS

118 BM=8132

115 REM SET BIT MPP START
128 POREDZETZ. PEEN(TR27230R
25 FEM SELECT 2IT MAF MOTE
130 POKEDRZED FPEEK(RIZET0R
132 REM CLEAR SCREEH

134 REM HEEDS MAC ROUTINE AT 45i5s
14@ SY843152

145 REM SET COLOURS
178 FORI=19Z4T02023 FPOHEL. 22 HEXT

166 GOTOLGEG

155 REM DOT FLOT ROUTINE WITH CLIPFING
26 IF WCR 0OF %3319 THEM 245

218 IF Y42 OR ¥>135% THEN 249

228 F=EM+SZ0RTHT (Y 8+ INT (o B4 OrAHTT »
238 POKEP . PEEK(FIORI2 T~ RAMIT 20

4@ RETURH

.

High Resolution Graphics

295 REM LINE DRAL

3@ tm-ﬁG%ﬁhZ;H

3@ MHE=HABSVES-R

32’\1 " ”1 !S,_.!IJ "1

230 IF MYTHE THED

349 WO=IHTCHYA2)

amd IF HDCHE Tﬂt’

"\Fﬂ "“_i F-|Il b ;,-,',+ X “»—7+Qr

3760 GOSUBEBD HEXT:DOTO4E8

ZRQ MD=IMT(HYA20 FORE={TONY HI=HD+hK
390 IFHDCHY THEN Y=Y+8Y GOTO419
408 HI=MD=HY H=i *:” Wiy Y

416 GOSUBZEE HEXT

428 RETURM

4595 REM POLYGON ROUTINME

aﬁulwﬁ SINCZ¥a /NS CH=008 2dq /HE
A8 Hi=ROWi=0:FOR I=1 TO HE

g ﬁ2=mC+ SE INERSE it

S50 Y2=Y04AK L ESH4Y L H0H

o46 L“*C+ui fi=YC+Y1 GOSURZER
50 Al=H2-kG Y 1=Y2~-5C HEXT RETURN
955 REM MAIN PROCGRAM

1088 FOR N=1T03

1618 KC=INT(IGORRMHDLQ 2 +10

1529 YO=IHTI70%RMDCE) 5 +18

1838 R=25+IMT(29¥RHDIE)

1843 HS=3+IMT (SHRND(E) >

1808 GOSUBGLE0 :HEXT

1868 ENTD

Fig. 3.19. Polygon drawing program using the rotation method.

59

60 Commodore 64 Graphics & Sound

;'.\._
}(\‘\
."}-. ""‘.
- .
f/ -\.\.
¢ >
‘\\. 1'3”
\\. !.-"
", P g
\\.‘ _)_l
b= ~, 5 Y
- AN
- ; v
\. ", Ve .
s r ™~ S o
5 . Iy NS
4 Y rd LI
] / ., PR s 2
r r
2 . "\ .
A — N 7

Fig. 3.20. Typical random polygon display.

Chapter Four

Adding Colour

So far, the text and character graphics displays we have generated
on the Commodore 64 have been in light blue on a blue background,
which are the default display colours. In the bit map displays,
however, the colours were changed to white on a blue background
by POKEing numbers into the screen memory area. The computer is
in fact able to present much more colourful displays, where the
symbols may be set to any one of sixteen different colours. The
colours of the border around the display area, and of the
background, can also be set to any of the sixteen available colours.
In the bit mapped mode any pair of colours from the sixteen
available may be chosen for the drawing and background colours.

More advanced techniques allow the creation of multi-coloured
text or graphics symbols. In this chapter we shall look at the various
ways in which the colours can be controlled.

Setting text colours

Let us start by experimenting with changes in the text colour. The
computer normally starts up with the text symbols in a light blue
colour on a blue background. The colour of the displayed text can be
changed by making use of the CONTROL key (marked CTRL) at
the upper left side of the keyboard.

If you press the CTRL and 1 keys together (we shall indicate this
in the text as[CTRL 1]), you will notice that the colour of the flashing
cursor changes to black. If you now type in some text or graphics
symbols they will be displayed in black. Notice that only new
symbols are affected: the text that was already on the screen remains
unchanged. When using the CTRL key it is best to hold it down and
then press the number key. The CTRL key works in much the same
way as the SHIFT key to alter the function of other keys on the

62 Commodore 64 Graphics & Sound

keyboard, but doesn’t by itself produce any effect on the screen.
Now try using CTRL with the 2 key. This time you will see that
any new text is now displayed in white. The CTRL key can also be
used with the other number keys from 3 to 8, and each of these causes
the new text to be printed in a different colour, giving eight possible
colours for the displayed text. Figure 4.1 shows the set of colours

Co Lo Eegs ARASCIT LList
s ed Ccode Symbo L

BLack TR L 144 E]
Lihite CTRL 2 =
Red CTRL. 3 258
Cyan TR 4 159 :l
FPurp Le CTRL S 156 .

Green CTREL & 3Ia
BilLugs CTRL 7 31 N

b

Ve L Low CTRL = 158 m

Fig. 4.1. Colours produced by using the CTRL key, with their ASCIl codes and
listing symbols.

produced by using the CTRL key with the number keys from 1to 8.

There are, as we have seen, sixteen possible colours available for
text on the Commodore 64. So how do we manage to select the
remaining eight? The answer lies in the use of the Commodore Logo
key, which is at the left end of the bottom row of keys. Thisis the key
that carries the ‘C-shaped trade mark (logo) of Commodore
computers. We shall call it the LOGO key.

To select text colours the LOGO key is used with the number keys
in the same way as we used the CTRL key. Now if you press the
LOGO and 1 keys at the same time the colour of the flashing cursor
will change to orange, and all new text symbols entered will also be
orange. Like the CTRL key, the LOGO key can be used with the
numbers 1 to 8 to produce eight different text colours. The eight
colours produced by using the LOGO key are shown in Fig. 4.2.

Adding Colour 63

o Ltour Keds RSCIX List
used code Sgmbo L
Qrange LOGO 1 iz29
Braown LoGco 2 149 n
Lt red LOGo 3 15a E
Greu 1 LOGO 4 151 E
Greu 2 LOGO S 152
Lt Sreen LOGO 6 1S3 .]
.t BlLue LOGO 7 154
Lt Greyd LOGO & 1S5S

Fig. 4.2. Colours produced by using the LOGO key, with their ASCII codes and
listing symbols.

The colour memory map

As we saw in Chapter 1, a separate area of memory is set aside to
hold the colour information for each of the text symbol positions on
the screen. Within each symbol position all the lit dots will be
displayed in the foreground colour, while the unlit dots are
displayed in the background colour. If the foreground colour is
changed, then all the lit dots change to the new colour.

The colour memory occupies the 1000 memory locations from
55296 to 55319, and these correspond to the screen memory
locations 1024 to 2023. Thus the colour data for the symbol in
location 1024 is held in location 55296, and so on.

In the colour memory each location specifies the colour for a
particular symbol space on the screen. There are sixteen colours
altogether, and these can be represented by the numbers 0to 15. The
computer stores binary numbers in its memory, and the numbers 0
to 15 can be represented by a four-bit binary data word. In the
colour memory the lower four bits of the data word specify the text
colour.

If a PEEK command is used to read the contents of a colour

64 Commodore 64 Graphics & Sound

memory location, the result will be a number between 240 and 255.
This may seem odd since the numbers representing the colour only
run from 0 to 15. The reason is that the upper four bits of the colour
memory word are not used, and to the processor these four bits will
all appear to be set at ‘I’. If you want to PRINT out the colour data
for a particular symbol space, then the upper four bits need to be
masked off by using an AND operation as follows:

PRINT PEEK(N) AND 1[5

where N is the location in the colour memory. The AND operation
slices off the upper four data bits of the word to leave the colour
number from 0 to 15.

The data we have to write into the colour memory is simply a
number from 0 to 15 corresponding to the colour we want. The
colour numbers and their associated colours are shown in Fig. 4.3.
You will notice that although the colour sequence is the same, the
numbers are different from those we used with the CTRL and
LOGO keys.

For the first eight colours the number required is one less than the
number of the key used with the CTRL key. For the other eight
colours the number is seven greater than the number of the key used
with the LOGO key.

Changing colour using PRINT

In a program we put the symbols on the screen by using a PRINT
statement and enclosing the character string in quotes. We can also
insert the [CTRL n] or [LOGO n] codes into a PRINT statement in
the same way.

Try typing in the following lines:

PRINT “{CTRL3] RED TEXT”
PRINT ‘{CTRL7] YELLOW TEXT”

When you hit the return key the message RED TEXT will be printed
in red, and for the second line the message YELLOW TEXT is
printed in yellow. The LOGO key together with a number can be
inserted into a PRINT text string in the same way to switch to one of
the other eight colours.

You will now notice when the [CTRL n] 1s inserted in a PRINT
statement a strange graphics symbol appears on the screen where the
colour control code was entered, but when the command is actually

Adding Colour 65

Display Colour memory ASCII
Colour POKE code CHR+% code
Black Q 144
White i S
Red 2 28
Cvan 3 159
Furple 4 156
Gresn S 30
Blue & 31
Yellow 7 158
range 8 129
Brown k4 149
Light Red 19 150
Dark Grey 11 151
Medium Grey i2 152
Light Green 13 153
Light Blue 14 154
Light Grey 15 155

Fig. 4.3. The set of available colours and their numbers as used for colour
memory, bit map and background colour selection.

executed this symbol is not printed on the screen. The advantage of
having a symbol shown in the PRINT command line is that we can
see there is a control code in the test string. Figures 4.1 and 4.2 show
the various symbols displayed to indicate these colour control codes.

In a program, the control codes are inserted into the text stringin
much the same way. The only difference is that the statement now
has a line number at the start. When the program is LISTED, the

66 Commodore 64 Graphics & Sound

control codes will be displayed on the screen using their special
symbols. If you have a Commodore printer the graphics symbols for
these codes will also be presented on the printout.

Using CHR$ codes

All symbols and-control codes can also be represented by an ASCII
code, and this can be used in a PRINT statement by using the
CHRS$(n) form. One might have expected the codes for the colours
to run in sequence, but in fact they are scattered through the
complete set of codes between the groups of codes used for graphics
and text. The codes corresponding to the sixteen colours available
are listed in Figs. 4.1 and 4.2.

Now let us see how these colour control codes might be used.
Suppose we wanted to change the text colour to white while printing
a text string. We could use the statement

PRINT CHRS$(5);“WHITE TEXT”

and this would produce the same effect as including[CTRL 1] in the
text string. Note here that a semicolon is included after the
CHRS$(N).

If we want to make several changes of colour it is best to set up an
array variable to hold the complete set of codes. Suppose we use the
variable TC (text colour) and set it with an array dimension of 8.
Now we can set up a single loop to read in the set of colour codes. We
can arrange that the sequence of colours is the same as that of the
CTRL or LOGO sequence. Now to set a colour we merely have to set
the value in the CHRS$ term equal to TC(N) where N is the number
that would have been used with the CTRL or LOGO key. This is
shown in the following small program:

10p FOR N=1 TO 8

11p READ TC(N)

120 NEXT

130 DATA 144,5,28,159,156,30,31,158
140 PRINT CHR$(147);

159 FOR N=1 TO 8

169 PRINT CHRS(TC(N)); ****”;
170 NEXT

The other eight colours could equally well have been set up in the C
array, or you could even have all sixteen colour codes set up in the

Adding Colour 67

138 REM COLOURS USING CTRL KEY

118 DIM CCR5.CHRD

12@ FOR M=1T08

13@ RERD CCOHL, CEOHD

148 MEXT

150 DATA 144, "BLK",5."WHI".28. "RED"
16@ DATA 139, "CYN", 136&, "FUR", 3@, "GRM"
17@ DATA 31."BLU", 158, "YEL"

188 PRINT CHR$C147);

198 FOF RP=1T015

200 PRINT CHRE£C183:

21@ FOR B=1T08

228 PRINT CHR$CCC(BAL;" "

230 MEAXT :MEXT

248 PRIMT CHR$C1463

258 FOR H=1T08

268 PRINT" "iC$INI:" "

278 MEXT

280 PRINT

298 FOR M=1T08

308 PRIMT"CTRL i

316 HEXT

328 FOR N=1 TO 8:PRINT STRE(HI:" "
338 MEXT

34@ EMD

Fig. 4.4. Colour bar program using the CTRL colours.

array. You can also allocate the colours in any sequence you like,
since the colour selected by the number C(N) depends upon the data
you choose to feed into the array at the start.

The program listing of Fig. 4.4 uses the CHR$ codes to produce a
pattern of vertical coloured bars, using the eight colours produced
by the CTRL key. The display also shows the corresponding CTRL
numbers. The program listing of Fig. 4.5 produces a similar colour
bar display but this time uses the set of eight LOGO key colours.

Changing the background colour

The Commodore 64 starts up with a blue background, cyan text and
a cyan border around the display area. The background colour can
be changed to any one of the sixteen colours we can use for the text.

In most computers there is a BASIC command to set up the

68 Commodore 64 Graphics & Sound

108 REM COLOURS USIMG LOGO KEY
119 DIM CCr8h.CH(8)

128 FOR H=1T08

138 READ CCOMY . CEiMH:

148 MEXT

150 DATA 1259." QORG ", 143" BRH "
160 DATA 15@."L.RD ",151,"CGRYL "
17@ DATAR 132, "GRYZ2 ",133."L.GR "
188 DATA 154, "L.BL ".155,"GRY3 "
158 PRIMNT CHRE(1472;

208 FOR R=1T015

210 PRIMT CHR£:18%;

228 FOR B=1T08

23@ FRINT CHRECCCOBI X" i
240 MEXT :HERT

258 PRIMT CHR$(1487

266 FOR M=1T08

278 FRIMT CH{Mb:

288 MEAXT

298 PRIMT

308 FOR M=1T08

318 FRIMT"LOGD ")

328 MEAXT
3@ FOR M=1 TO B:PRIMT STRE(MI;" "
348 HEXT
358 EMD

Fig. 4.5. Colour bar program using the LOGO colours.

background colour of the display, but on the Commodore 64 this is
done by setting up a register in the VICII chip. The VICI!1 video
display chip contains several registers which are used to control the
various display modes, and also some of the colour features of the
display. Figure 4.6 shows the registers used for colour and mode
control together with their memory addresses.

Background colour is controlled by register 33 in the chip, and
this is located at memory address 53281. The number that has to be
POKEd into this register ranges from 0 to 15, and is the same as the
corresponding text colour number shown in Fig. 4.3. As an
example, if we want a red background then the instruction would be

POKE 53281,2

since 2 is the colour number for red. As with the colour memory,
only the lower four bits of the register are used, with the upper 4 bits

Adding Colour 69

Register Address Function
17 53265 Extd. Background (Bit &)
22 S32760 Multicolour mode (Bit 4}
32 S3280 Border colour
33 53281 Background colour @
=4 53282 Background colour 1
35 53283 Background colour 2
36 53284 Background colour 3

Fig. 4.6. The colour control registers of the VIC11 chip with their memory
addresses and functions.

set at ‘I’. If you PEEK the register in a program remember that you
need to AND the result with 15 to get the correct colour number.

Unlike the text colour, which can be different for each symbol
space, the background colour all over the screen will change when
the colour number in the background register of the VIC11 chip is
altered.

Setting the border colour

The border colour on the screen is controlled by register number 32
in the VIC11 chip, and this has the memory address 52380. As with
the background colour, we can change the border colour by
POKEing a number from 0 to 15 into this register. The colours
produced are the same as those produced by the background
register. The whole border area will change colour when a new
number is placed in the border control register.

70 Commodore 64 Graphics & Sound

128 REM RAHDOM COLOURED BLOCKS

119 TIM CCOl1éd

115 REM RERD COLOUR CHR$ COLE DATA
1208 FOR N=1TO1&:READ CCIND iMEXT
130 DRTA 144,5.8,159,136,30.31., 13
148 DATRA 129.145,15@,151,132.153,
145 REM CLERR SCREEM

158 PRIMT CHR$(147)

155 REM SET REVERSE WIDED OM

168 PRINT CHR$({187:

178 FOR M=1 TO 2000

175 REM POSITIOH CURSOR

182 R = IMT(24%RHDC@2)

19@ C = IMT{40¥RND<O2)

209 POKE?SQ,0:POKEYSL.R:POKEVEZ.C
218 sYs8552a

215 REM SELECT RAHDOM COLOUR

228 K=INT(16#RNDC(@I) +1

230 PRIMT CHR$CCCOKLHM ",

240 MEXT

Fig. 4.7. Program to display a pattern of random coloured blocks.

a8
154,155

Colour patterns

The program listed in Fig. 4.7 uses random values of R and C with
the direct cursor positioning routine. It PRINTSs solid blocks of
different colours in a random pattern all over the screen. Here
reverse video is used with a space symbol to produce the coloured
blocks, and colours are selected at random from the whole set of
sixteen colours and set up on the screen using the CHRS colour
codes.

Another type of pattern that can produce colourful displays
makes use of mirror imaging. A program to produce this type of
display is listed in Fig. 4.8. Here the screen s effectively divided into
four quadrants around a centre point where R=12 and C=20. A
random point is chosen in one quadrant and a coloured block is
PRINTed at that point. Next the mirror images of that point are
plotted in the other three quadrants and blocks of the same colour
are PRINTed. As the dots increase, a symmetrical pattern will
develop, similar to the pattern produced by a kaleidoscope.

Adding Colour 71

188 REM KALEIDOSCOPE PRATTERM

11@ DIM CCo1és

115 REM READ COLOUR CHR$ CODE DATA

120 FOR M=1T016:RERD COCHY tHEXT

13@ DATA 144.5.8,159,156,38,31, 158

148 DRTA 123,149.156,151.152,153, 154,135

14% REM CLEARR SCREEM

158 FRIWT CHR$C1475

155 REM SET REVERSE VIDED OM

166 PRIMT CHR¥C182:

178 FOR M=1 TO zeed

188 % = IMTC12%RMDCRQN)

198 ¥ = IMT<20%REHDDD

135 REM SELECT COLOUR

208 K=INTO1A%RHMDIQ) 1+1

218 R=12+Y:C=20+x: GOSUR40E

220 PRINT CHRE{CCOKI:" ™

230 R=12-Y:C=20+X: G0SUR400

248 PRINT CHRE$CCOOK D" "

259 R=12-Y: C=28-¥ GOSUR4649

268 PRINT CHRE(CCIKI; ™ ™

278 R=12+Y:C=28~x:G0SB40a

288 PRIMT CHR$(CCCKI ;™ M.

298 MEXT

308 EMD

295 REM CURSOR POSITION SUBROUTIME

400 POKEYRQ.0:POKE7SL.RPOKE?RZ,C
410 SYSET528 RETURM

Fig. 4.8. Program to produce kaleidoscope patterns using the mirror image

technique.

Coloured wallpaper

To demonstrate the effect of changing colour on the character
graphics display, we can now try a program which produces simple
wallpaper-style patterns in a range of colours. The program is listed
in Fig. 4.9.

In this program the computer generates a random string of five to
twenty characters, and then repeatedly prints the string until the
screen is filled with a pattern. Between each symbol in the string a
random colour code is inserted, which selects one of the first eight
colours for the following symbol. The length of the string is chosen
so that it is not a submultiple of 40. As aresult, the pattern is printed

72 Commodore 64 Graphics & Sound

8 OREM COLOURED WALLFAFER
DIM CoEs
RE T OUR COLOUR COLED
ol =

!._
Tl

s

D
RAJERY IS I

= i 0T ©

I

B RS B

D0 |

¥}

e =

R
FEM SELE
FE=REFCHREE (A 4ERH

g
o7

2

Lo

IEEE RN
i &> g oo~

=f
)
3]
o
-
L4l
E‘
5
&

Fig. 4.9. Program to produce coloured wallpaper patterns.

S5 EY

22

at a slightly shifted position on the next row of symbols, and this
produces diagonal patterns on the screen.

Each pattern is held on the screen for a few seconds by using a
simple counting loop, and then the screen is cleared and a new
pattern is drawn. The program generates a set of 50 patterns, but
would go on producing patterns almost indefinitely if the size of the
main loop using the variable J were increased.

To provide more variety in the patterns the background colour is
set to a random colour by POK Eing a number between 8 and 15 into
the address 53280. This sets up one of the second eight colours for
the background. You could, of course, set the background to any
colour between 0 and 15, which would produce more variations, and

Adding Colour 73

it would also be possible to use all sixteen colours for the graphics
symbols. Remember that you will need to dimension the array C to
16 and add the other eight data codes to the DATA statement as well
as increasing the number of items read.

Using POKEs to display symbols

Instead of using the PRINT command to write text symbols to the
screen we can adopt a different approach. You will remember that
the character codes of the symbols being displayed are held in the
screen memory, and their position in that area of memory is directly
related to their position on the screen. Thus the code for the symbol
at the top left corner position is in the first location in the screen
memory. If we write the character code of the symbol we wish to
display into the screen memory, it will be displayed on the screen.
The position of the symbol on the screen now depends upon where
we place it in the screen memory.

It is convenient to denote our symbol positions in terms of the row
R of text that the symbol is in, and its column position Cacross that
row starting from the left side of the screen. Since there are 25 rows
we can number them from 0 to 24, and this will be the range of values
for R. Similarly, with 40 characters per row the value of the column
number, C, will range from 0to 39. The layout of the screen memory
is shown in Fig. 4.10, and you will notice that memory locations are
allocated in sequence working across the rows from left to right, and
then row by row down the screen from top to bottom.

To find the required memory location in the screen memory, given
a row and column position on the screen, we can use the calculation

M = 1024 + 40*R + C

Note here that the rows are numbered starting from the top of the
screen.

Having found the memory location we can insert the required
screen symbol code by using a POKE command as follows:

POKE N,SC

where SC is the screen symbol code for the character to be displayed,
and should be in the form of a decimal number.

There is an important difference between POKEing a character to
the screen and PRINTing it. The Commodore 64 does not use the
normal ASCII character coding scheme when it stores data

74 Commodore 64 Graphics & Sound

representing the displayed symbols in its screen memory. For
PRINTing to the screen using the CHRS$(N) format the standard
ASCII coding is used, but for POKEing symbols to the screen a
different set of codes is used. These are Commodore 64 screen codes.
In the screen codes there are no control codes, such as for colour
setting or cursor movement, and some blocks of symbols have their
codes changed from their normal ASCII values.

The screen codes 0 to 31 correspond to ASClI codes 64t095. The
codes from 32 to 63 are the same for both ASCII and screen
memory. Codes 64 to 95 on the screen are equivalent to ASCII codes
96 to 127, and the screen codes from 96 to 127 produce the symbols
with ASCII codes from 160 to 191.

The screen codes from 128 to 255 produce reverse video versions
of the characters with screen codes from 0 to 127. Thus a space which
has a code of 32 becomes a filled-in block when screen code 160
(128+32) is used. Reverse video on the screen is obtained by
simply adding 128 to the basic screen code for the symbol. The
particular set of symbols displayed will still depend on whether the
upper or lower case symbol set has been selected. Normally upper
case is selected at switch-on, and this provides the set of character
graphics symbols.

When a PRINT command is used to put symbols on the screen the
colour memory locations for those symbols are automatically set up
to the current text colour. An important difference when POKEing
symbols to the screen is that, unlike the PRINT command, a POKE
does not set up the symbol colour. Thus POKEing a screen code into
the screen memory may not always produce a visible symbol unless
the corresponding colour memory location is set to the required
display colour code. To deal with this situation, a colour code must
be POKEd into the equivalent position in the colour memory. The
simplest way to do this is to set up two variables SM and CM to give
the start addresses of screen and colour memory areas. Normally
these would be set up as SM=1024 and CM=55296. Now if the
position in the memory P is calculated from

P=4¢*R + C
then the symbol and colour can be dealt with using
POKE SM+P,SC:POKE CM+P,CC

where SC is the symbol’s screen code, and CC is the colour code (0 to
15) for the colour you want the symbol to have.

Adding Colour 75

Extended background colour mode

In the normal text or character graphics display mode of the
Commodore 64, we have seen that changing the background colour
causes the background of all displayed symbols to change at the
same time. More colourful results would be possible if we could
select different background colours for some areas of the screen.
This can be achieved by using the Extended Background mode.

In the extended background colour mode we can set up four
different background colours, and it becomes possible to allocate
any one of the four colours as the background colour for each
individual character on the screen.

The display chip needs to know which background colour to
display in each character space, and to do this it uses two of the data
bits in the character code that is stored in the screen memory. Here a
trade-off has to be made, because normally all the bits in the screen
memory word are used to define the symbol to be displayed. In the
extended background mode, however, the upper two bits of the code
are used to define the background colour, leaving only 6 bits for the
character itself. The result is that we can only have 64 displayable
characters when the extended background is selected. These
symbols will, in fact, be the ones with codes from 0 to 63. Remember
that here we are talking about screen data codes and not ASCII
codes. The same restriction will apply if you set up a table of user-
defined symbols.

To select the extended background mode we need to set bit 6 of
register 17 of the VICII chip to ‘I, and to return to normal
operation that bit must be reset to its normal ‘0’ state. To set up the
mode we can use the command

POKE 53265,PEEK(53265)OR 64
and to reset the system to the normal character display mode we use
POKE 53265,PEEK(53265)AND 191

The PEEK is included here because register 17 also controls other
functions, so the states of the other bits should be preserved when
switching the extended background colour bit. Note that when you
switch back to the normal mode, all kinds of odd characters are
likely to be displayed, because now the bits used to select the extra
background colours become part of the character code.

Using two data bits there are four possible combinations of ‘1’ and
‘0’ states, and these will give the four alternative background

76 Commodore 64 Graphics & Sound

MS bits of Screen Background
screen code codes colour
Bit7 Bité {reg. address)
@ %) @ — &3 No.2 (53281}
<] 1 &4 - 127 Ne. 1 (53282)
1 @ 128 — 121 No.2 {(53283)
i 1 192 — 255 No.3 (53284)

Extended background colour mode is
selected by setting bit & to 17 in
register 17 {(53265) of the VIC11 chip.

Fig. 4.10. Colours selected by the most significant bit pair of the symbol code
when extended background mode is used.

colours. When both bits are at ‘0’ the normal background colour,
which is referred to as Background No 0, will appear in the symbol
space just as in a normal character display.

The other three combinations of bits call up Background No. 1,
Background No. 2 and Background No. 3 as shown in Figure 4.10.

Each of the four background colours is controlled by the contents
of a register in the VIC11 chip, and each may be set to any of the
sixteen colours by simply placing the required colour number into
the appropriate background colour register.

To set up the background colour in a character space, all we have
to do is set the corresponding combination in the two upper bits of
the screen memory word for that character position on the screen.

This is done by firstly ANDing the data already in the memory
with 63, which effectively sets the top two bits at ‘0’; then the result is
ORed with the required background colour number multiplied by
64, as shown below.

POKE M,(PEEK(M)AND63)OR(BC*64)

When you use the CHRS$(N) and PRINT operation to place
characters on the screen, remember that you can only use the
symbols with ASCII codes from 32 to 95, which correspond to
screen codes 32 to 63 and 0 to 31. Any other displayable character

Adding Colour 77

108 REM EXTEHDED BACKGROUND DEMD

1685 REM CLEAR SCREEN AND POKE SYMEOLS
{10 PRIMT CHREC147D

120 FOR I=8 T0 295

130 POKEIEZ4+1, 1 FOKESSE96+1.7

{48 MEXT

145 REM SELECT EXTENDED BACH

158 PIKESIZES

et L

:rl HIRT MG

=r
150

157 SET EXT
1&8 ”UL E':-:}:x:::»
178 FOKESZZ283, ¢

20 FORES2254.
138 EMD

COLOURS

Fig. 4.17. Demonstration of the extended background mode.

codes will produce these same symbols, but with a different
background colour.

The program listed in Fig. 4.11 demonstrates this mode. This
program starts by POKEing the complete set of 256 character
patterns on to the screenin light blue. At this point you will note that
graphics and reverse video symbols are displayed. The extended
background colours are then set up and the extended background
colour mode is selected. At this point you will note that all of the
graphics symbols disappear, and four different background colours
are presented in the four groups of 64 characters. If you want to use
extended background with graphics symbols, then the required
symbols should be set up as a user-defined character set, with screen
codes running from 0 to 63. This is easily done by copying the
required dot patterns from the ROM character generator.

Multicolour symbol mode

Another mode which can be used to produce more colourful
displays is the Multicolour mode. This allows us to choose four
different colours for the dots making up the symbol.

Once again, a trade-off has to be made in order to find somewhere
to store the extra colour information. This time the dotsin each row
of the character space are grouped in pairs, so that the character dot
matrix now becomes effectively four wide by eight high. Now the
two bits representing each of the adjacent dot pairs are used to select
the display colour for the pair of dots.

Two of the available colours are the text colour, as read from the

78 Commodore 64 Graphics & Sound

Bit pair Register
in dot Colour address
pattern

a0 Background No. © 53281

a1 Background No. 1 53282

19 Background No. 2 53283

i1 Foreground Colour RAM
Note. Only colows @ — 7 can be set in

colour RAM when this mode is used.
Fig. 4.12. Colours produced by character bit pairs in the multicolour mode.

cclour memory, and the Background No. 0 colour. This is the
normal overall screen background colour. The other two colours are
the Background No. 1 and Background No. 2 colours specified by
registers 22 (53282) and 23 (53283) in the VICI1I chip. These two
colours can be set to any of the sixteen available colours by simply
POKEing the required colour number into the registers.

The actual colours presented by a pair of dots in the symbol space
is governed by the bit state combination of the pair of bits, and is
shown in Fig. 4.12. Thus if the bits are set to the combination 01 they
will both be displayed in Background colour No. 1.

A point to note is that in this mode only the first eight colour
numbers can be used in the colour memory. Bit 3 of the colour
memory is used for control purposes when this mode is selected. The
program listed in Fig. 4.13 shows the effect on standard symbols
when the multicolour mode is selected. Generally this mode will be
used with user-defined symbols so that the dot patterns can be
selected to pick out the desired colour combinations within the
symbol space.

Multicolour bit map mode
Normally in the bit map mode we have only two colours, one for the

dots and one for the background. As for the text mode, there is a
multicolour version of the bit map display mode. This allows a

Adding Colour 79

REM DEMO OF MULTICOLOUR SYMBOLS
REM CLERR SCREEN

PRIMT CHE$:1472

REM SET GREY BRCOKGROUMD

FOKE Z3281.11
FOR I=00 7O 508 57
FOKE 1024+1,28: POk
158 HEXT

155 REM SELECT MULTICOLOUR MODE
168 POKE S3278, PEEKIZIZTEIRLE
178 FOR JI=1 10
188 FOR K=8 TO 7
183 REM SET MULTICOLOUR REGISTERS
196 POKES3282. 7T

200 POEES3283.K

[R B R W

A el ek A ek e s
Je 3 T R s S 5

E
.-‘

-~
&
e oy

e

F
ED

iy 1

+1.8a

.I\J

218 FOR T=1T0 1588 HE-T

ZER MENT

-~ @ l.IE‘.,‘T

3 REM RESTORE HMORMAL MODE

B POKE 53270, PEEK(S327@}AMDZ3
250 POKE 53281.5

Fig. 4.13. Muiticolour character mode demonstration program.

[V S T AV (0
1 B L2 L0

Bit pair Regicster
in dot Colowr address
pattern
ou Background No. @ 53281
21 Upper 4 bits Screen RAM
1o Lower 4 bits Screen RAM
i1 Lower 4 bits Colour RAM

Note. This mode is selected by setting
Bit 5 of 53265 and bit 4 of 533274.

Fig. 4.14. Colours produced by bit pair combinations in the multicolour bit-
mapped mode.

80 Commodore 64 Graphics & Sound

choice of four colours on the screen at any time. To cater for this, the
horizontal resolution is reduced to 160. The scheme here is that the
dot positions across the screen are taken in pairs, and each pair of
dot bits indicates the colour for the pair of dots.

The technique therefore works in much the same way as for
multicolour characters. Selection of the multicolour bit map mode
involves setting the multicolour mode bit (bit 4 in register 22, address
53270) and also setting the bit map mode bit (bit 5 in register 17,
address 53265). Colours are set up in the screen memory, colour
memory and background register, and appear as shown in Fig. 4.14.
and background register, and appear as shown in Fig. 4.14.

The dot plotting routine must be changed slightly to cater for the
multicolour bit map mode. This is shown in the program listing of
Fig. 4.15. Here the value of X is made even, by first dividing X by 2,
then taking the integer value to remove any fractional part, and then
multiplying by 2 to restore X to its normal range of values.

When setting the dots a colour variable Cis used with a value from
0 to 3. This is used as a multiplier when setting the dot pattern, and
effectively sets a pair of dots to the required combination. The
program shown here plots random dots in three different colours.
The normal line drawing routine can also be modified, if desired, so
that it plots only alternate dots along the X axis. The normal line
routine should still work satisfactorily with the modified dot
routine, but it will plot the same pair of dots twice as it moves in the
X direction.

Adding Colour 81

102 REM MULTICOLOUR BIT MAP DOTS

105 REM MEEDZ M/C SCREEM CLEAR ROUTIME
118 BN=8132

115 REM BIT MAF AT &

152 1M MEMORY
120 FOREDIZTE, PEEK(SO27200RR
13@ FOKES3ZED, FEEKCSR2ET0R3E
148 FOR I=1824 TO 2023 POKEL. 37 HEXT

150 SY545152
iAan E0TOlaaR

195 REM FLOT MULTICOLOR DOT

FOE mmREINT OHS20

218 P=RM+R28% THT Y A8+ IHT O/ B+ YAMTT
220 CP=C#E2 ME~CHAMTT

D3RR POKE PLPEEN(RY OF CP

zdi RETURM

1ARR FORI=BTO99% POKESSZS6+1, 7 HEXT
1865 REM SELECT MULTICOLOUR MODE
1010 POKESIZTE,. PEEKCRIZTRORLE

1628 FOR M=1 TO 2@8

1038 A=IHTO3S

148 Y THTC 153

1858 Cel+INTIS

1868 GOSUBEZRG

1878 Y="+1

1980 GOSUR2GE

10980 HEXT

1108 EHE

Fig. 4.15. Program to plot random coloured dots using the multicolour bit map
mode.

Chapter Five
Setting Objects in
Motion

For most computer games, particularly the arcade type, an
important feature is the display of moving objects on screen.
Computer displays of this type make use of the basic principles of
the cartoon film. A sequence of pictures is produced, and the
individual pictures or ‘frames’ are presented in rapid succession on
the screen. The moving object is drawn in a slightly different
position on each successive picture, and because the viewer’s eyes
retain each image for a short time after it has disappeared, successive
pictures merge together and the object appears to move smoothly
across the screen.

The television pictures producing the computer display are also
being presented in rapid succession, so if an object on the screen is
moved to a new and slightly different position on successive display
scans then the object will appear to move over the screen. To achieve
reasonably smooth movement, the changes between pictures are
made at least once every 1/10 second. If the movement steps are
small, the movement will appear to be smooth but slow. With larger
steps between successive pictures the motion becomes faster but may
tend to appear jerky.

In the simplest form of animation an object such as a ball, alien
invader or spaceship is moved from one character position to the
next either left, right, up, down or possibly diagonally. For more
realistic results, the object on the screen may need to change shape as
it moves. An example of this would be a man walking across the
screen. If the image of the man remained constant he would appear
to glide across the screen rather like an ice skater. To give the
impression of walking or running the position of the legs, and
perhaps the arms too, must be changed regularly. In effect a series of
‘snapshots’ of the action of walking are presented in rapid
succession. Most actions such as walking are repetitive, so perhaps
three or four different images may be used, and the sequence is

Setting Objects in Motion 83

simply repeated at different screen positions as the man moves
across the display. When animating an object, and particularly a
familiar real-life object, it is important to study how it moves
carefully if you want to get realistic animation.

A simple moving ball

For many games-type programs a simple object such asa ball moves
around the screen. This is fairly easy to achieve by using character
graphics on the normal text display screen. On the Commodore 64
there is a convenient symbol which displays a circle giving a good
representation of a ball. This has the display code 87, or 81 if you
want the circle filled in with text colour.

Let us start by placing the ball somewhere near the middle of the
screen, by POKEing its code into screen memory location 1524.
Remember that screen memory runs from 1024 to 2023. Remember,
too, that you need to POKE a colour number into the corresponding
position in the colour memory. A variable P may be used to keep
track of the position of the ball. It is convenient to let P run from 0O to
999 and add P as an offset to either the colour memory address (CM)
or the screen memory start address (SM). These two variables are set
to 1024 and 55296 at the start of the program.

To move the ball to the right we want to POKE it into memory
location 1525. Having POKEd the symbol into the new position we
must now erase the original symbol, otherwise we shallend up witha
trail of balls across the screen. This is easily done by POKEing 32 (a
space symbol) into location P. Now the value of P is updated by
making it equal to PN so that it still points to the current ball
position. This process is then repeated to make the ball move to the
right across the screen. This can be done by using a routine such as
the following:

500 PN=P+1

519 POKE SM+PN,87:POKE CM+PN,7
52¢ POKE SM+P,32

53 P=PN

54¢ RETURN

Here the ball colour is 7 (yellow), which shows up well on the blue
background. Each time the ball is to be moved we simply use a
GOSUBS5(§ statement in the main program. To move the ball to the

84 Commodore 64 Graphics & Sound

left we need to make PN equal to P—1 when calculating the new
position for the ball in line 509.

For vertical motion of the ball the calculations have to be a little
different. In the screen memory each row of text takes up 40 memory
locations. Now if we want to move the ball to the space immediately
below its current position, P, we shall have to add 40 to P to get the
required value for PN. Apart from this change the routine would be
the same as for moving the ball horizontally. If we want to move to
the position immediately above the current one then PN is obtained
by subtracting 40 from P. As for the sideways motion, the ball is
blanked from position P by POKEing 32 to that location before P is
updated to its new PN value, ready for the next move.

Moving diagonally is a little more complicated because we have a
combination of left-right and up-down movements. To move up to
the right we have a right move (+ 1) and an up move (—40), so P needs
to have 39 subtracted from it to get the new position. Figure 5.1
shows the change in the value of P required for making a single step
in each of the eight basic directions. This figure assumes that the ball
is at location P, which would be at the centre point of the diagram.

P-41 P—-48 P—39
-
. ;___.r"'
— =
., e
-H"«.\ -_.__.-"'
-
%'”-\ e
ra
‘-‘s._ .r""-r
e v
«.\‘ p -
- o
"_.“ _p-'-'
ha! Yl P+1
P11 >
el -’-‘. ‘.-Eq-\-.
- .
w_-"x! h ""-_
Py “*.
.-"-— .
- _;—" - .
~ e
-—" i ‘\."
- .
_,"' .,
o T
- .
__.- .
FP+39 P+48 Fr41

Fig. 5.1. Required changes to the POKE address in the screen memory for one
symbol space movement in the eight main directions of motion.

Setting Objects in Motion 85

Movement using PRINT and cursor set

Instead of POKEing the ball symbol to the screen we could, of
course, PRINT it. Here the cursor can be set directly toarow R and
column C position by using the direct cursor set routines described
in Chapter 2. To move to the right C is increased by 1, and to move
left C is reduced by 1. For an upward step the value of the row R is
reduced by 1, and tomove down, the row is increased by 1. Diagonal
motions involve combinations of these steps as shownin Fig. 5.2. In
the PRINT statement a semicolon should be included after the
string or CHRS code for the ball symbol.

R-1,C—-1 R—1.,C R-1,C+1
e s
s f."
. -
. L~
k s _’_./"
-/_-
~, - . ".d.__.r'
- -". J'.F-”'
g
R,C-1 - R,C+1
,J"-f.'. ‘L-"-k'ﬁ.
e T
e ~
,-"’j- - .
-~ "_
= RS
_j.r'- “-__‘-
R+1.C—1 R+1.,C R+1.,C+1

Fig. 5.2. Changes in R,C values needed for different directions of motion
when using PRINT.

The previously displayed ball has to be blanked out, of course.
Here the cursor is set to the current ball position and a blank space is
printed. Then the new values for R, C may be calculated and the
cursor repositioned to allow the ball to be printed.

Bouncing off the walls

If you tried moving the ball using the simple program sequence we
have just discussed problems would soon arise. Suppose we start
with the ball at the centre of the screen and then move it step by step
to the right. All will be well until the ball reaches the edge of the
screen and then, on its next step, the ball will go off the right edge
and reappear at the left side of the screen on the next line down. If
the ball is moving to the left it will reappear at the right, one line

86 Commodore 64 Graphics & Sound

higher. If the ball were to run off the top or bottom of the screen the
symbol would be POKEd into memory outside the screen memory,
and could cause the program to fail; worse still, it could lock up the
whole computer system. To avoid this state of affairs we can arrange
that when the ball reaches one of the edges of the screen this 1s
detected, and the direction of motion is reversed. This way when the
ball reaches a screen edge it is reflected back towards the middle, as if
it had bounced off a wall.

This bouncing action is fairly easy to achieve. The technique is to
draw a border around the screen using four different graphics
symbols. At the right we might use symbol 97, which has its left half
lit, while at the left we would use symbol 225, which has its right half
lit. For the top and bottom the symbols with codes 98 and 226
respectively are used. A problem occurs in the corners, and here a
solid block (code 160) is used. If this were not done the ball might
escape through the corner and result in numbers being POKEd into
memory areas outside the screen memory.

Now we can allocate two new variables, DX and DY, which give
the change in PC required for horizontal or vertical steps. Thus DY
would be 40 for moving down, and DX would be 1 for movingright.
Now PN is calculated by adding the current values for DX and DY
to PC. When we want to reverse the sideways motion we simply
invert the sign of DX by using

76¢ DX=—DX

and to reverse the up-down motion we apply the same process to
DY. When only up-down motion is required then DX is set to zero,
and for sideways motion DY is set at zero.

Having calculated PN we can detect a screen edge by PEEKing
the contents of location PN. The value we get is now compared with
the character codes for the edges of the screen. If a match is detected
with one of the right or left edge symbols the sign of DXis reversed,
and the movement of the ball symbol is skipped so the ball stays
where it is. On the next move, however, the left-right motion is
reversed, and the ball will move back away from the edge of the
screen. If the symbol detected is one of those at the top or bottom of
the screen then the sign of DY is changed, and here the up-down
motion of the ball is reversed on the next step. If a corner is detected
both DX and DY are reversed in sign.

The result is that the ball appears to bounce off the walls, and this
is demonstrated by the program listed in Fig. 5.3. In this program
the first section from line 11¢} to line 28¢) simply clears the screen and

100
11@
115
126
125
130
14@
150
160
178
120
1 56
200
210
220
230
240
243
268
280
285
290
295
300
305
318
320
330
348
435
508
505
507
510
%28
530
540
550
558
570
580
550
600

Setting Objects in Motion

REM BOUMCIMG BRLL

SM=1824 CM=05236

REM CLERR SCREEM

FRIMT""

FEM DREAW BORTER

FOR J=1 TO 3&
FOKESH+J. 98 POKECH+J . 3
HEXT

FOR J=72 TO 383 STEP 40
POKESH+J, 37 ' POKECH+T. 3
MERT

FOR J=561 TO 989
POKESM+JT, 226 POKECH+J, S
HEXT

FOR J=4@ TO 928 STEP 48
POKESM+J, 225 POKECH+J, S
HERT

REM FILL CORMERS
FOKESM, 160 POKECH. 5
FOKESH+33, 166 POKECH+33, T
POKESM+268, 150 POKECM+3€8,5
FOKESHM+339, 160 POKECH+999, 5
REM SET START POSITION
PL=280+300%RMD (@)

REM SET START DIRECTION
Dr=l:DiY=40

REM BALL MOVEMENT LOOF

FOR H=1TO 1500

GlsUBSea

HERT

ENT

REM BALL MOYE SUBROUTINE
FH=FC+IK+DY

REM CHECK FOR EDGE OF SCREEN
REM AWD APPLY BOUNCE ACTION
IF PEEK(SM+PMI{316@ THEH 53@
Dr=-Tk DY=~DY: PN=PH+D¥+DY : GOTOE 1D
IF PEEK(SM+PN3>98 THEM S50
Di=-DY: PH=PH+IV : GOTOA18

IF PEEK{SM+PHICZE7 THEN 572
L= PH=PN+DR : GOTOE10

IF PEEK{SM+PH2{>226 THEM 599
Dy=~IY : PH=PN+IY : GOTOE10

IF FEEK{SM+PHI{>22T THEM £1@
Dix=~D# | PH=PN+DX

87

88 Commodore 64 Graphics & Sound

605 REM MOYE BRLL

610 POKESM+PM, 87 : POKECH+FN. 7
€20 POKESM+PC, 32:PC=FN

€30 RETURM

Fig. 5.3. Program to demonstrate a bouncing ball animation routine.

draws in the border. The ball starts off at a random point somewhere
around the centre of the screen memory, and is initially sent off
diagonally downward and to the right. The ball movement and edge
detection are carried out in the subroutine starting at line 5¢¢.

If PRINT is used to draw the ball then the bounce can be initiated
if C=p OR 39 for the X direction reversal. Similarly if R=f OR
R=24 the up-down (Y) motion could be reversed. Here it is easier to
compare row and column values with the edges of the screen rather
than checking for a border symbol.

Thus the check and bounce operation becomes as follows:

600 IF R=24 OR R=¢ THEN DY=-DY
619 IF C=39 OR C=f THEN DX=-DX

This assumes that the movement is stepping one symbol space at a
time. For faster movement, of course, the ball could be moved two
or three spaces at a time. In this case the test needs to be altered to
detect < OR>N where N is either 24 or 39 according to whether the
row or column limit is being checked. To prevent PRINTing off the
screen, the actual PRINT step should be skipped after a limit is
detected.

Detecting collisions

In many games the ball has to be hit by a bat. In others missiles are
fired, and we need to know if they have hit their target. The basic
principle for detecting collisions or hits is the same as that used for
detecting the border in the ball routine. The new location of the
object is checked by using a PEEK command before the object itself
is moved. The contents of the location are then compared with
possible objects that could be there, and then appropriate action is
taken.

Sometimes we may want to move an object over a background
scene without erasing the background. In this case, before the
moving object symbol is POKEd into its new position the character
code at the new location PN is PEEKed and stored as a variable,

Setting Objects in Motion 89

such as CC. On the next move this code is POKEd back into its
original position again.

If PRINT is used to display the moving object, any collisions that
occur may be detected by PEEKing as described above. An
alternative approach is to keep track of the positions of all objects
that are moving on the screen and these are compared for possible
matches at each movement step. If there are several objects this can
become a complex exercise.

In general, if collisions and hits are to be detected it is probably
much easier to use sprite graphics, where the VICI1 chip does the
checking for you. We shall be exploring sprite graphics in the next
chapter.

Scrolling the screen

One method of producing movement in the screen display makes use
of an action called scrolling. 1f you are in the normal text mode, for
example while typing in a program, and the display has reached the
bottom line of the screen, you will notice that when the bottom line is
completed the whole display moves up by one line. This leaves a
blank line at the bottom of the screen ready to accept new input. This
action is known as ‘scrolling’; the effect is like a paper scroll moving
past a window represented by the screen. Each time the display is
scrolled upward the original top row of text is lost, and a new row
may be entered at the bottom.

By writing some routines to shift the data stored in the screen and
colour memories it is possible to make the display scroll down the
screen so that new data may be entered on the top line. It is also
possible to carry out sideways scrolling from left to right or vice
versa. With sideways scrolling a complete column of symbols is
moved off one side of the screen and a new column of symbols is
moved in from the opposite side.

The actual process of scrolling involves transferring the contents
of the screen memory one position to the right, left, up or down.
Suppose we want to scroll to the right. Starting with the top row of
the display the 38th character is copied into the 39th position, then
the 37th is moved to the 38th position, and so on until the whole row
has moved one space to the right. Then all the other rows are moved
in the same way. You could write a BASIC program to perform this
action by PEEKing locations in the 38th column, then POKEing the
result into column 39, and so on. You will find, however, that it takes

90 Commodore 64 Graphics & Sound

START LDY #3797 Column count
LDA #O From address
CLoorP STA 251
LDA #4 in 251/252
STA 252
LDA #1 To address
8Ta 253
LDA #4 in 253/254
STA 254
LDX #25 Row count
RLOOP LDA 251,Y Move one byte
5TA 253,Y screen memory
cLc
LbA 232 Update
ADC #2112 pointers
S5TA 252 to
€LC colour
LDA 254 memory
ADC #212
STA 254
LDA 251,Y Move colour
5TA 253,Y memory byte
SEC
LDA 282 Restore
SBC #2122 pointers
STA 252 to
SEC screen
LDA 254 memory
SBC #2212
5TA 254
cLC
LDA 25 Update
ADC #4090 pointers
STA 251 to
LDA 232 next
ADC #e row
85Ta 252
cLc
LDA 253
ADC #4090
5TA 253
LDA 254
ADC #0
STA 254
DEX
BEZ NEXTC Column done?
JMF RLOOF
NEXTC DEY
BMI DONE All done?
JMP CLOOF
DONE RTS

Fig. 5.4. Assembly code routine to scroll the screen to the right by one column
position.

Setting Objects in Motion 91

several seconds to scroll the entire screen one column to the right.
Scrolling the screen using BASIC is too slow to be of much use for
animation. To produce faster scrolling the movement of data in the
screen memory is usually carried out by machine code routines. The
Commodore 64 already has a machine code routine for scrolling the
screen up and this can automatically be brought into play by
printing to the bottom row on the screen.

128 REM SCROLL RIGHT ROUTIME

118 REM USING MACHIME COIDE

i2a REM CALL WITH S¥S43152

130 T=@

148 FOR M=49152 TO 485245

158 READ R:POKE M.A:T=T+R

158 WEXT

178 RERD C

g@ IF TPC THEM PRINTVIATA ERRDRY
178 FRIMT"LORDED OK”

fo—y

208 DATA 1Fl7!mmif-°1 @, 133,251, 185.4
218 DATA 133,252, 169,1., 133,233, 169, 4
228 DRTA 133,239, 162,25, 177,251, 145, 255
230 DATA 24, 165.252,105,212. 133, 252,24

248 DRTA 1€3.234, 185,212, 133,254, 177, 231
258 DATA 145,253,356, 165,252,233, 212,133
260 DATA 252,76, 165, 254, 232, 212, 133, 254
278 DATA 24,165,251.105,40,133, 251, 163
288 DATR 252, 103,0,133.252.24, 165, 253
2%0 DATA 105.48.,133,253, 165 2’4J1@q;@
Jed TATA 133,234,202, 24Q,3, 76,208, 192
318 DATA 186.48.3.76,2,192,96. 14210

Fig. 5.5. BASIC program to load the machine code scroll right routine.

If you want to scroll the screen sideways or downwards a machine
code routine has to be written for this function. The assembly
language program listed in Fig. 5.4 provides a machine code routine
to scroll the screen to the right. This routine in fact scrolls both the
screen memory and the colour memory at the same time. To get the
routine into the Commodore 64 the data representing the machine
code instructions is loaded into the computer memory using the
short BASIC program listed in Fig. 5.5. This machine code routine
starts at location 49152 and takes up 96 bytes of memory. It may be
called from a BASIC program by using the statement

SYS49152

92 Commodore 64 Graphics & Sound

Since the machine code is stored above the memory area used by
BASIC you can type NEW and load another BASIC program
without affecting the scrolling routine, which remains in memory
until the machine is switched off.

As usual, some care is needed when typing the DATA statements,
Any error can produce unpredictable results when the machine code
is run, and will probably cause the whole computer system to lock
up. A simple check routine has been built in which should pick up
most errors and give a warning message. This adds up all of the
DATA items and compares the result with a test total which is stored
immediately after the machine code data. If the test checks out the
computer will print ‘LOADED OK’. The check is not infallible,
since two errors may cancel one another to give the correct check
result or one of the data items with a zero value may have been
omitted, so it is as well to check the DATA statements anyway. Once
a correct version is obtained, save it on tape for future use.

igae FEM SCROLL RIGHT TEMO

1085 KEM MEEDS M/C ROUTIME LOADED
i9a7 REM IMTO MEMORY RT 49152
1918 FOR M=l TQ ld@

1228 O=H AHDLS

1832 FOR K=1T02: ufﬂ4°1 2 HERT
ig4a FOR J=0T0Q260 STEP 44

1858 POKELB24+], 42 POKETDSZI6+7.C
1268 HEXT

1878 MEAT

1g8@ EMD

Fig. 5.6. BASIC program to demonstrate the action of the scroll right routine.

The program listed in Fig. 5.6 can be used to demonstrate the
scroll right routine. It may be added to the end of the loading
program of Fig. 5.5 or loaded separately. When RUN, this program
should produce a display of vertical coloured bands of * symbols
scrolling to the right across the screen. Press RUN/STOP to stop
the program and then RUN/STOP with RESTORE to return to
normal BASIC operation. Note that when a new column of stars is
POKEd into column 0 of the screen memory a column of colour
codes must be POKEd into the colour memory as well. If you only
want to load the scroll routine, just run the program listed in Fig.

5.5.

Setting Objects in Motion 93

Scrolling to the left

For games programs such as Defender alandscape moves across the
bottom of the screen from right to left, and this effect may be
achieved by scrolling the entire screen to the left and inserting new
data at the right-hand side.

The program listed in Fig. 5.7 will load a machine code routine to
scroll the screen to the left. This routine is loaded into memory just
above the scroll right routine. The machine code starts at location
49254 and uses 96 bytes of memory. It may be called from BASIC by
using the statement

SYS49254

In this routine the symbols in column 2 of the screen are moved to
column 1, then column 3 moves to column 2, and so on across the
screen. New data may then be placed in column 39 ready to scroll
across the screen. Once again, a careful check should be made for

188 REM SCROLL LEFT
118 REM USING HACH
128 REM CALL WI
T+3

TO 49350

168 MHEST
A RERD C

186 TF T30 THEH PRINTVDSTA ERROR
196 FRINT"LORIED OK"

208 TATA 160.@, 165, 1, 133,23

218 DATA 133,252, 163,0, 133, ;

z2p TRTR 133,254, 152,25, 177

236 DATA 24,165,252, 105,212, 4
248 DRTR 155,254, 165,212, 13 251
D5 DATA 143, 253,56, 165, 3
268 DATA 252,56, 16T, 354, 54
278 DATA 24,165,251, 165, 5
280 DATA 232, 105, 8, 133 3
298 IRTA 185,40, 133, 257 g
08 DATA 13 202, 2 52
318 IATA 20 29, 240 2
228 DRTR 36 ,

Fig. 5.7. Program to load a machine code routine to scroll the screen to the
left.

94 Commodore 64 Graphics & Sound

errors in the DATA statements although a check routine is built in.
This routine can be in memory at the same time as the scroll right
routine since it is in a different section of memory. A point to noteis
that the routines are separated by a gap of several memory locations.

ipoa REM SCROLL LEFT DEMO

1618 REM M/C RQUTIME MUST BE LORDED
1020 REM AT MEMORY LOCATIOM 45254
1830 PRIMT CHR£01475

1648 L=33% D=~48: SM=1024 CM=33256
1058 FOR M=1T0 &8
1268 I=INTCTRRHING.)
i@ra IF 158 THEN &=77
jeg@ IF D<@ THEN S=78
1696 FOR J=8T0 I

{108 POKESHM+L. S POKEC
1118 SYS43254 POKESM+
112@ IF L2933 THEM L=
1130 IF L4719 THEM L=7
1148 MEWT

1150 IF 5=77 OR S=78 THEM L=L~D
1168 D=~D:MEXT

1178 EHD

Fig. 5.8. Program to demonstrate a simple moving landscape display using the
machine code scroll left routine.

The BASIC program of Fig. 5.8 produces a moving landscape
display using the machine code scroll left routine. In this program a
single symbol is POKEd into column 39 and a colour code is
POKEd into the corresponding position in the colour memory. The
screen is then scrolled left by one column and the character in
column 39 is blanked by POKEing a space (code 32) symbol in its
place. This process then repeats continuously. The position of the
symbol in column 39 is then stepped up or down for random
numbers of steps to produce the effect of hills moving past on the
landscape. Note the test to prevent the POKE from going outside the
screen memory area. Don’t forget to load the scroll routine into
memory if you want to use it in a BASIC program.

Scrolling down the screen

The third machine code routine presented here (Fig. 5.9) will scroll

Setting Objects in Motion 95

faa REM SCROLL DOWM ROUTIME
118 REM USING MACHIME CODE
120 REM CALL WITH SYS42360
138 T=@8
148 FOR M=43380 TO 42452
156 FERD A:FOKE M,A:T=T+A
168 HEXT
178 READ
188 IF T<C THEM PRIMT"DATA ERROR™:EMD
19@ FRIMT"LORDED QK"
200 DATA 165.1502.132.251 . 162, 7. 133, 292
218 DATA 159,192, 133,233, 169.7.,133, 254
220 DATA 162.24.168,353,177,251, 145,253
230 DRTR 24.163,2532,103, 212, 133,252, 24
240 DATA 165.2594,1085,212,133,254,177. 251
258 DATA 145,253,556, 165,252,233.212. 133
8 DATA 252,36, 165.254,233,212, 133,254
8 DATA 136,48.3, 76,228, 152,06, 165
@ DRTA 271,233,419, 133,251, 163,252,233
@ DATA 9,133,252, 165,253, 233,40, 123

300 DATA 253.165.254.233,@, 132,254, 282

316 DATH 246.3, 78,226, 192,96, 15511
Fig. 5.9. Program to load a machine code routine to scroll the display down the
screen.
the entire screen display down one row at a time. In this case the
routine starts with the bottom two rows of text and transfers the
symbols from the 24th row into the 25th row. Then the 23rd row is
shifted to the 24th row position and so on, working up the screen to
the top. New data may now be inserted into the top row and the
process repeated. The result on the screen is a picture that appears to
move down the screen.

This machine code routine starts at location 49360 and takes up
94 bytes of memory. It is called by using SYS49360. A data check
has been built in but it is still a good idea to check the DATA
statements for possible errors before attempting to run the machine
code routine.

This type of scrolling action is often used for road race games
where the player’s car is displayed at the bottom of the screen and
the road scrolls down the screen past the car. In simple versions the
car can be moved from side to side and the object is to stay on the
road. Collisions with the sides of the road are counted as crashes.
Sometimes, in more complex versions, cars and other objects scroll
down the screen as well as the road.

96 Commodore 64 Graphics & Sound

You could in fact load all three machine code routines into
memory at the same time to allow scrolling to the left, right or down
at will. Scrolling up would use the built-in routine if required. Each
routine is called by a SYS command, and these are as follows:

SCROLL RIGHT SYS49152
SCROLL LEFT SYS49254
SCROLL DOWN SYS4936¢

When scrolling in any direction you will need to use BASIC to set up
the new row or column that is to move on to the screen into the space
left by the scrolling action. This will probably impose a limit on how
fast the movement can be.

The 38-column and 24-row modes

The Commodore 64 has some special display modes available for
use with scro'lling animation. One has only 38 columns displayed.
One column at each side of the screen is blanked off by the VIC11
chip although there may in fact be data stored in the appropriate
positions in the screen memory. This scheme allows new data to be
written into the side column, but it will not become visible until the
data in the screen memory is scrolled.

This 38-column mode can be selected by resetting bit 3 in register
16 of the VICI! chip to a ‘0’ state. The memory address for the
register is 5327¢), and to select the required mode the following
POKE can be used:

POKES53270,PEEK(5327¢) AND 247

There will now be one blanked-off column at each side of the screen,
where new data can be POKEd without being visible until it is
scrolled on to the screen.

To get back to the normal 40-column display mode the bit in
register 16 must be set as follows:

POKES5327¢,PEEK(53270) OR 8

If you are scrolling up or down the screen a 24-row mode can be
selected. There is only one blank row in this mode, and it may be
placed either at the top or the bottom of the display as required. For
a blank line at the top the following POKE can be used:

POKES53265,PEEK(53265)AND247

Setting Objects in Motion 97

If the blank line is to be at the bottom of the screen then use
POKES53265,PEEK(53265) OR 7
To restore the normal 25-row screen display use

POKES53265,PEEK(53265) OR 8

Chapter Six
Sprite Graphics

Perhaps the most interesting graphics display feature on the
Commodore 64 is the sprite graphics capability provided by the
VDPI11 chip. As we saw in Chapter I, sprites are in some ways like
super-size user-defined symbols, since their actual dot pattern is set
up by the user. Sprite graphics, however, provide more than the
simple user-defined symbols used in character graphics, as we shall
see in this chapter.

Defining a sprite pattern

Like a user-defined character, a sprite is made up of a pattern of
dots, but instead of using an 8 X 8 dot matrix the sprite is much
bigger, and is laid out over a 24-dot wide by 21-dot high matrix. This
is shown in Fig. 6.1.

As in the case of a user-defined symbol, the data which defines the
dot pattern for the sprite is stored in the RAM part of the
Commodore 64 memory, but each sprite pattern takes up a rather
larger chunk of memory than a symbol pattern. The 24 dots across
each row in the sprite are grouped together to form three 8-bit
memory words or byres. Since there are 21 rows of dots in the sprite,
we shall need 21 X 3 or 63 bytes altogether to define the dot pattern.
In fact an extra unused byte is added to make a total of 64 bytes,
since this fits in conveniently with the binary addressing scheme used
by the computer itself.

Defining a sprite pattern involves much the same process as
defining a text or graphics symbol, except that it is on a larger scale.
We can start by laying out a grid of 24 X 21 squares as shown in Fig.
6.1. Each row 1s now divided into three sections, with eight squares
in each, so that effectively the whole matrix is split up into three
eight-dot wide columns. Each of the eight dots across a column has a

Sprite Graphics 99

Byte 1 Byte 2 Byte 3 bATA

e ot
0 1T KR G D BT 00 e 3 101 D

[

Fig. 6.7. Layout of the dot matrix for a sprite showing the data values for a
typical sprite pattern.

numerical value from 1 to 128, just like the dots in a symbol matrix.
Working from left to right the sequence of values for the dots is 128,
64, 32, 16, 8, 4, 2 and 1.

The dots in a standard sprite, like those in a text symbol, can be
either ‘on’ (1) or ‘off’ (0). In the case of a symbol the ‘0’ dots are
displayed in the background, but for a sprite the ‘0’ dots are treated
as if they were transparent, so that whatever is already on the screen
at that point will be displayed. At this stage all the squares
corresponding to lit dots can be shaded in and are treated as ‘1’s.
Now we can take each group of eight dots in the top row and add
together the numerical value of all the dots at ‘I’ to give a value for
the memory byte. Working from left to right the three bytes for the
top row of dots in the sprite are stored in successive memory
locations. The remaining bytes making up the sprite definition are
then stored in groups of three, working down row by row from the
top to the bottom of the sprite, and they will occupy the next 60
memory locations to give a total of 63 memory locations for the
sprite. The 64th memory location can either be set to 0 or ignored,
according to which is more convenient in the program. If you are
setting up three or four different sprite patterns it may be more
convenient to include the 64th byte as a zero in the data array so that
the whole set of data for all the sprites can be read into memory in a
single read loop.

100 Commodore 64 Graphics & Sound

Figure 6.1 shows the dot patterns for an alien invader figure, and
alongside are shown the data values required for the 63 bytes of data
that define the dot pattern for the sprite.

Locating the sprite definitions

We have said that the sprite pattern definitions are stored in
memory, but now we must consider where they go and how we tell
the VICI1 chip where to find them.

As far as the position in memory is concerned, the sprite data can
be placed anywhere within the 16k byte bank of memory that is
being seen by the video chip. Normally this will be bank 0, which
starts at location 0 at the bottom of memory and goes up to memory
location 16383. In this area, as we have already seen, there are some
sections which are used by the computer itself, while others are
reserved for the screen display and the character generator ROM,
The BASIC program is also stored in this area, starting at location
2048.

For a small number of sprites it is possible to use the cassette
buffer area which runs from location 828 to 1019. Of course, if you
use this area of memory you will not be able to use the cassette tape
while working with the sprites since the cassette data will overwrite
your sprite patterns. This piece of memory is 192 bytes long and
gives enough space for three sprite patterns. If you need more space
for sprite dot patterns then a convenient place is at 12k (12288),
provided you have not already used it for user-defined characters or
the bit map memory.

There are 64 bytes in each sprite definition block, so it is
convenient to divide the memory up into 64-byte blocks and number
these 0, 1, 2 etc starting from location 0 of the memory. Block
number 13 will have an address of 832 (13 X 64) which is four bytes
after the start of the tape buffer area. Fortunately the four bytes
following the tape buffer area are not used, so we can still get 192
bytes for sprite definitions starting from location 832 in memory.
Three sprite dot patterns can now be located in blocks 13, 14and 15
of the memory.

Wherever the sprite data pattern is located, the video chip will
need to know where to find it, and this is achieved by a series of sprite
pointers. These are single bytes located at memory positions 2040 to
2047, just above the screen memory area. One byte is used for each
sprite as shown in Fig. 6.2. Each sprite pointer can have a value from

Sprite Graphics 101

Memory Foints to
Address dot data for
2040 Sprite @
2a41 Sprite 1
2042 Sprite 2
2043 Sprite 3
2044 Sprite 4
2845 Sprite 5
26446 Sprite &
2647 Sprite 7

Fig. 6.2. The sprite pointer locations in computer memory.

0 to 255, and if we use this to denote which 64-byte block of memory
contains the dot pattern then we can locate the sprite pattern
anywhere within 256 X 64 or 16k bytes of memory — which just
happens to be the section of memory that can be seen by the video
chip. Soif we want to have the dot pattern for sprite 0 located at, say,
12288 (block number 192), the number 192 would be placed into the
sprite 0 pointer at location 2040 in memory. Now when the video
chip wants the dot pattern for sprite 0 it will read the 192 from the
pointer at location 2040 and then pick up the dot data starting from
location 12288 (192X 64) in memory. If we changed the pointer data
to 14, then the dot data would be picked up starting from location
896 (14 X 64) and so on.

There are eight independent sprites, and they can all have
different dot patterns. Of course, you can have two or more sprites
with the same pattern. For example, if the memory pointers for, say,
sprites 1 and 4 are the same, then the two sprites will have the same
dot pattern. You could, in theory, have up to 256 different sprite
patterns stored in the memory at the same time, and select up to
eight of these at a time for the sprites that are displayed on screen. To
change the shape of a sprite all you need do is change the number in
its pointer location to point to a different block in memory where the
new dot pattern is stored.

In the program listed in Fig. 6.3, the data for the invader figure has

102 Commodore 64 Graphics & Sound

108 REM SPRITE GEMERATION RMD COMTROL

105 REM CLERR SCREEH

11@ PRIMT CHRE(1470 "SPRITE COMTROL DEMO"
115 REM WIC CHIP STRRT RIUDRESS

128 WC=533458

25 REM SET SPRITE

136 FORI=GTOF POKEZD ﬂ-+I;
135 REM RERD SPRITE DRTAH
142 FOR M= TO &2

153 READ R POKESIZ+H.A

1668 MEXT

165 REM TURH QM SFRITE 2

170 POKEWCAZ1. 255

175 KEM SET SFRITE @ 7O YELLOW

8 POREVC+32.7

5 REM SET SPRITE Q #.¥ FOSITION
8 POKENVC. 1T@: PHFE”F+1 106
&

111)
D)
"T‘l —
-
m
b]

7 REM TURM SPRITE { OH
POKENC+2 L PEEKOVCH+ZLIORE

285 REM SET gPQITE 1 TQ PURFLE

218 FOKEVC+4@, 4

215 REM FOSITIOH SPRITE 1

228 POKEWC+2, 155:POKEVCHE, 55

223 REM SET SPRITE 2 OW AMD CYAM

238 POKENC+21, PEEK(VC+2100R4

248 POKEVC+41,5

250 POKEVC+H4, 5@ POKEVC

255 REM SET SPRITE 2 7

268 POKENCHEZ. 9

265 REM SET UF SFRITE 23

278 FOKEYC+21, PEEK(WC+2150RE

238 FOKEWC+4Z.3

290 POKEYC+E, 200 POKEVCH+7, 128

253 REM SET HPR;TE 3 TG DOUBLE HEIGHT

08 POKEVC+25.8

318 FOR T=1T02808:NEXT

313 REM SET SPRITE 1 7O IOUBLE SIZE

328 POKEVC+EG.PEEK(WC+2300RZ

330 POKEWC+ZS, PEEMIWC+2200RE

348 FOR T=1T010008 HEXT

350 POKE WC+23,@:POKEVC+23,.0

368 FOR T=1T0200@:NEXT

365 REM SWITCH OFF SPRITES &. 1 AMD 3

7@ POKEVC+21.2

380 FOR T=1T0208@ HEXT

iza
JUELE

+5,
0 WITTH

Sprite Graphics 103

383 REM SMITCH OFF ALL SPRITES
398 POKEVC+21.8@

40@ EMD

435 REM SPRITE DATA

S08 DATA @.102.0.1.235,12¢8

51@ DATA 153.833. 24@-q + 233,248
52@ DATA €3,235.252,63,60. 252
§32 DATH 63.68.252.63,255,252
548 DATA 31,253,248,15.259,240
o952 DATH 2.8, 192.6.0.96

568 DATA 12.0.48,24.0.24

570 DRTR 48,8.12.96.8.6

580 DATA 192.9.3.9.0.0

59@ DATH 9.0.0.0,0.8
6@a TATR 8.4,

Fig. 6.3. Program demonstrating the creation of a sprite, X,Y positioning,
colour selection, sprite priority and expansion in X and Y directions.

[V IRAN R]
=

been read in and set up in block 13, and it will be used for four
different sprites. In fact all eight sprite pointers are set to 13 in line

130.

Turning sprites on and off

Most of the operations for controlling sprites are governed by a
bank of 34 registers in the VIC11 chip. In fact most of the registers in
this chip are involved in the control of sprites. The sprite control
registers and their functions are shown in Fig. 6.4.

Even when a sprite pattern definition has been set up in the
memory, and the sprite pointer has been set up to tell the VIC11 chip
where the dot pattern data is, the sprite will not appear on the screen.
This is because the sprite needs to be ‘turned on’, and this action is
controlled by register 21 in the video chip, which is at memory
address 53269.

Register 21 actually controls all eight sprites, with one data bit
being allocated to each sprite as shown in Fig. 6.5. Setting the
appropriate bit at ‘1" will cause the associated sprite to be switched
on, and it will appear on the screen. Resetting the bit to ‘0’ turns the
sprite off again. Suppose we want to turn on sprite No. 1, which is
controlled by bit 1 of the register. This bit has a numerical value of 2,
so we simply have to POKE a 2 into location 53269. We have to be
careful here since some of the other bits may already be set up for the

104 Commodore 64 Graphics & Sound

Register Address Function

SPRITE X,Y POSITION
Q 53248 Sprite @ X position
i 53249 Sprite @ Y position
2 53250 Sprite 1 X position
3 53251 Sprite 1 Y position
4 53252 Sprite 2 X position
5 53253 Sprite 2 Y position
& 53254 Sprite 3 X position
7 23255 Sprite 3 Y position
a 53256 Sprite 4 X position
2 53257 Sprite 4 Y position
19 53258 Sprite 5 X position
11 53259 Sprite S Y position
12 53260 Sprite 6 X position
i3 53261 Sprite 6 Y position
i4 S3262 Sprite 7 X position
15 93263 Sprite 7 Y position

SPRITE CONTROL REGS.
{1 bit per sprite see
Fig 6.5 for layout)

16 532464 X position MS bit

21 S3269 Enable sprite

23 93271 Y {(height) expansion
27 93275 Sprite-data priority
28 593276 Set multicolour mode
29 3277 X (width) expansion
30 53278 Sprite—-sprite contact
31 53279 Sprite—data contact

SPRITE COLOUR CONTROL

37 53285 Multicolour No. ©
A8 53286 Multicolour No. 1
39 53287 Sprite © colour
40 53288 Sprite 1 colour
41 53289 Sprite 2 colour
42 53290 Sprite 3 colour
43 53291 Sprite 4 colour
44 53292 Sprite S colour
45 53293 Sprite 6 colour
46 53294 Sprite 7 colour

Fig. 6.4. The sprite registers of the VIC11 chip, their functions and memory
locations.

Sprite Graphics 105

Bit 128 &4 32 16 8 4 2 1
Ualue

Sprite | Sprite | Sprite | Sprite | Sprite | Sprite | Sprite ! Sprite
7 6 3 4 3 2 1 8

Bit Neo. 7 & 3 4 1 2 1 L]

Fig. 6.5. Allocation of the sprite control bits in registers 16,21, 23, 27, 28, 29,
30 and 31 of the VIC11 chip

other sprites, so we want to leave those as they are. The required
POKE command therefore includes a PEEK at the existing state of
the register; then the bit that is to be set is ORed with the existing
data, which is then POKEd back into the register as follows:

409 POKES53269,PEEK(53269)OR2

In fact there is no need to work out the numerical value for the bit: it
is simply 2 raised to the power N, where N is the sprite number from
0 to 7. Thus the POKE command becomes

499 POKES53269,PEEK(53269)OR(21SN)

where SN is the sprite number. If we want to turn off the control bit
for a sprite then we need to use an AND expression which assumes
all bits are set at ‘1’ except the one we want to set at ‘0. This is done
by subtracting 21SN from 255 as follows:

409 POKE53269,PEEK(53269)AND(255-2t SN)

You can of course turn two or more sprites on or off at a time: just
use the appropriate pattern of bits to make up the number with
which the current contents of the register are ORed and ANDed.

Sprite positioning

Having turned on a sprite, we want to be able to place it in some
desired position on screen. Unlike the text symbols we do not POKE
the sprite to the screen. The sprite position is actually controlled by a
bank of registers in the video chip. These are registers 0 to 16, which
are at addresses 53248 to 53264.

For a sprite, the X position across the screen can range from 0 to
511 and the Y position from 0 to 255. The Y direction is quite

106 Commodore 64 Graphics & Sound

straightforward, since a single byte can represent the numbers from
0 to 255. For the X direction, however, we need 9 data bits to define
the X location. This is dealt with by using two data words, one with
all eight bits used and the second with just the most significant (9th)
bit.

Each sprite is allocated a pair of registers for its Y location and the
lower 8 bits of its X location. The most significant X bit for all eight
sprites is placed in register number 16 (53264) where one data bit is
allocated to each sprite as shown in Fig. 6.5. Positioning a sprite on
the screen involves POK Eing the required X and Y address data into
the corresponding VICI11 sprite position registers.

8.8 311,8

Sprite location area

24,58 344,58

Display area

24,258 344,258

8,255 311,253
Fig. 6.6. Relationship between the sprite X,Y grid and the display screen area.

The position of the sprite on the screen is always measured relative
to the top left corner dot in the sprite matrix. When a sprite is
positioned at X,Y=0,0 it will actually be off the display area of the
screen. This is shown in Fig. 6.6, where the display screen area is
shown relative to the sprite position grid. To place a sprite at the top
left corner of the screen, its X and Y position will need to be X=24
and Y=50. When X is increased to 344, the sprite will be just off the
right edge of the screen.

To set up Xand Y forany sprite is fairly straightforward. Suppose
we set a variable VC=53248, which is the start of the video chip

Sprite Graphics 107

addresses in memory. The X and Y registers are in pairs, so that for
sprite 0 they are at VC (X) and VC+1(Y), for sprite 1 they become
VC+2 (X) and VC+3 (Y), and so on. To select the registers,
therefore, the X register will be

VC + 2*SN
and the Y register will be
VC + 2*SN + 1

For convenience, however, the register addresses are listed in Fig.
6.4. The register containing the most significant bits for the X values
of all eight sl;rites is always 53264. Here you will need to carry out an
OR or an AND operation, in the same way as we did for the register
which turns sprites on and off.

To deal with the X addressing we can use the following
arrangement:

609 XM=255-21SN

619 POKEVC+16,(PEEK(VC+16)AND XM
620 IF X<256 THEN 650

630 X=X—256

640 POKE VC+16,PEEK(VC+16)OR 21SN
650 POKE VC+2*SN,X

660 POKE VC+2*SB+1,Y

Here the most significant X bit for the sprite we want to position is
initially set to ‘0’ in lines 60 and 610. This is done by setting up a
variable XM, where all bits are ‘1’ except the bit we are using. This
bit has a value 2°" where SN is the sprite number. By subtracting
this value from 255 (all bits set to 1) we get the required value for
XM. Variable XM is then ANDed with the current contents of
register 16 (line 610} to reset the bit for sprite SN without affecting
those of the other sprites.

In line 620 X is tested, and if it is lower than 256 the program goes
to line 650, and the X and Y numbers are simply stored into the
sprite position registers. If X is greater than 255 then a ‘I’ is POKEd
into the most significant X position and 256 is subtracted from X
before the X and Y values are written to the position registers. The
required registers are selected using the Sprite number SN to
calculate the offset from the start of the video chip addresses (VC).

Remember, however, that the sprite position is still measured
from the top left corner of the sprite dot matrix. If you have
produced a small sprite pattern at the centre of the dot matrix then

108 Commodore 64 Graphics & Sound

you will need to allow for the offset within the dot matrix if you want
to position, say, the centre of your sprite image. This might be dealt
with by subtracting 12 from X and 10 from Y before positioning the
sprite. This will place the centre of the sprite at the required X,Y
position on the screen.

In the program of Fig. 6.3 the four sprites are set up at four
different positions on the screen in lines 199, 220, 25¢ and 299.

Colouring the sprite

So far we have told the video chip what pattern of dots to use for the
sprite, and where to place it on the screen; but we also need to tell it
what colour the sprite should be.

Like the text and graphics symbols a sprite may be displayed in
any one of sixteen colours, but these are controlled by data in a series
of registers in the video chip rather than by the colour memory.

The registers that control sprite colour are numbers 39to 46 inthe
VIC11 chip, and they have addresses 53287 to 53294. One register is
allocated to each sprite as shown in Fig. 6.4. As in the case of the
colour memory, these registers use only the lower four bits to give
the sixteen possible colours. The colour numbers are exactly the
same as those POKEd into the colour memory when we set up
character colours. If you PEEK one of the sprite colour registers,
however, you will actually get a number between 240 and 255,
because the upper four bits of the data are all set permanently at ‘I’
This can be overcome by ANDing the result of the PEEK with 15to
give the actual colour number from 0 to 15.

The dots in the sprite pattern that are set at ‘0’ (off) will act as if
they were transparent, and in their place will be displayed whatever
colour is already set up at that spot on the screen. If the sprite is over
an area of background, the dots are in background colour, If the
sprite is over some graphics symbols, then parts of the symbols will
show through the sprite as if it had holes in it.

Setting up the colour for a sprite is quite straightforward, since all
we have to do is POKE the required colour number into the colour
register for that particular sprite. So if we want sprite number 1 to be
green, we would need to POKE the number 5 (green) into register 39
of the VIC11 chip, which is at memory location 53288, as follows:

55 POKE 53288,5

Sprite Graphics 109

In the program of Fig. 6.3 the sprites are set to different colours, and
this is done in lines 180, 219, 24 and 290.

Multicoloured sprites

In the normal mode, all the lit dots in the sprite pattern will have the
colour specified by that sprite’s colour register. As with the graphics
symbols, we can select a multicolour mode which allows us to
specify any one of four different colours at different parts of the
sprite. In a multicolour sprite the dots are dealt with in pairs, so that
effectively the sprite becomes only 12 dots wide; each pair of dots
across the sprite will have the same colour. The actual colour is
determined by the combination of the pair of bits.

If the pair of bits are both ‘0’ then the result is a transparent
colour, exactly as for a normal sprite. When the combination is ‘10’,
with the first bit of the pair at ‘I°, the normal sprite colour applies to
both dots. Note that this is different from the arrangement for
multicolour characters, where a ‘11’ combination produces the
normal symbol colour.

The other two combinations of dot states in the pair of dots, ‘01’
and °‘II’, produce two new colours which are called Sprite
Multicolour #1 and #2. These two colours are defined by numbers in
registers 37 and 38 of the VIC 11 chip, at addresses 53286 and 53287

Bit pair Hegister
ir dot Colour addrescs
pattern
O Transparent
@l Multicolour MNo.® =3280
ig SBprite colour 53287-%4
11 Multicolour No.tl 532846

m

de is selescted by setting
te bit

Mote. Thi ele
- n register 3327546,

spr

e

ot s

Fig. 6.7. Bit patterns and associated colour selection for multicolour mode
sprites.

110 Commodore 64 Graphics & Sound

respectively. Once again, we can choose any of the sixteen colours
for these two registers. An important difference here is that these
two colours will apply to all sprites which have been set in the
multicolour mode. The four-bit combinations and the colours they
produce in a multicolour sprite are shown in Fig. 6.7.

When we select the multicolour mode with text or graphics
characters then all the characters on the screen are displayed in the
multicolour mode. With the sprites we have much more flexibility,
since each individual sprite may be set for either normal or
multicolour display mode at will. This is controlled by register 28 of
the VICI11 chip, at address 53276. In this register one data bit is
allocated to each sprite, starting with sprite 0 at the right-hand end
and working up to sprite 7 at the left-hand (most significant) end.
This works in the same way as the register that turns the sprites on
and off. When a data bit is at ‘0’ the corresponding sprite will be in
normal mode, and if the bit is set at ‘1’ the sprite switches to
multicolour mode.

Stretching a sprite

One rather neat facility provided by the VIC11 sprite graphics is that
we can easily double the width or height of a sprite. This is dealt with
by two registers, one controlling the expansion in the X direction
and the other controlling Y expansion. They are register 29 (53277)
for X, and 23 (53271) for Y expansion. As with the multicolour
mode, each bit in these registers controls one sprite, and if it is at ‘0’
the sprite is displayed at the normal size. Setting the bit to ‘I’ will
cause the sprite to double in size in the X or Y direction. If the
expansion bit for a sprite is set at ‘1’ in both X and Y registers, the
sprite expands to double size in both directions. Using this facility
we can stretch sprites horizontally or vertically or make them twice
as big all round.

In the program of Fig. 6.3 sprite | has been set up with Y
expansion and sprite 2 has X expansion. Sprite 3 has both Xand Y
expansion bits set, and is therefore displayed twice full size.

Sprite priority

With graphics symbols, if we place one symbol on top of another it
simply replaces that symbol on the screen. The sprites work in a

Sprite Graphics 111

different way. Each sprite is given a priority, with the highest level
going to sprite 0 and the level decreasing in sequence down to the
lowest, which is sprite 7. If two sprites overlap on the screen, the
sprite with the higher priority will overlay the other sprite. However,
where the dots of the higher priority sprite are set at ‘0’ the lower
priority sprite will show through. Normally sprites have priority
over text or bit map data, but register 27 may be used to change this
for individual sprites. If the sprite bit in this register is set at ‘1’ then
the sprite will appear to be behind the text or bit map data. Note that
all sprites have priority over the background colour. Sprites are,
however, masked by the screen edge, and will disappear as they
move into the border region.

If you want a sprite to appear in front of another sprite, you must
give it a higher priority by arranging that its sprite number is lower
than that of the other sprite. Conversely, if you want the sprite to
appear behind another then it should be given a higher sprite
number. This can be seen in the display produced by the program
listed in Fig. 6.3, where the double size sprite 3 is partially masked by
sprite 0, and therefore appears to be behind sprite 0.

The use of sprite priority becomes important when several sprites
are being animated, as in a game, and where some sprites must
appear to pass in front of or behind others on the screen.

Animation using sprites

Animating an object such as a ball, rocket, bomb or racing car
follows the same basic principles when using sprites as were involved
when animating graphics symbols. With sprites we can position the
sprite by using X,Y co-ordinates, and the directions produced will be
the same as for asymbol with R, C co-ordinates; R becomes Y, and C
becomes X. In the program listed in Fig. 6.8 two invader figures
move from opposite sides of the screen to meet in the middle. Here
the X value for the right-hand sprite starts at 255, which is about
two-thirds of the way across the screen from the left.

Movement with sprites can be very much smoother than with
symbols because X and Y can change by just one dot position at a
time. In the case of the X co-ordinates, which can vary from 0to 511,
account has to be taken of the most significant X bit when POK Eing
the X values into the sprite position registers. One way of doing this
is to test X to see if it is greater than 255. If not, then the X value is

112 Commodore 64 Graphics & Sound

POKEd into the sprite X register and a ‘0’ is POKEd into the
appropriate bit of register 16. If X>>255 then X—256 is POKEd into
the sprite X register, and a ‘I’ is POKEd into the sprite bit of register
16. The program of Fig. 6.8 could be modified so that the right-hand
sprite starts off from X=300, which will place part of the sprite off
the right edge of the screen. In this case the most significant bit of X
will have to be taken into account in setting the sprite position.

For more rapid motion the steps of X and Y position may be made
greater than 1, but eventually the motion will tend to appear jerky if
the steps are made too large.

Sprite collision detection

We saw in the last chapter that for games and similar applications
involving animation there is a need to detect collisions between
different objects, or between an object and the screen boundary.
This normally involves either PEEKing the screen (to see what is
already there before moving the object) or comparing the positions
of two objects to see if they are about to reach the same position on
the screen.

When we use sprite graphics, however, the detection of collisions
between sprites is handled by the VICI1 chip itself. Register 30 is
used to note collisions between sprites. Here each sprite is allocated
one data bit. If two sprites overlap so that one of the lit dots in one
sprite occupies the same position as a lit dot in the other sprite then
two bits will be set to ‘1" in the collision register. These will be the bits
corresponding to the two sprites that have overlapped.

Reading the collision register by PEEKing its contents will reset
all the bits to ‘0’ again. Thus after the register has been read, the
information regarding collisions will be lost unless you immediately
save it as another variable by using a statement such as

509 CD = PEEK (53278)

Now it is possible to carry out a series of tests on the collision state
CD to determine which sprites collided and to decide what action to
take.

Suppose we want to check if sprite | has collided with another
sprite. We can AND CD with the bit value for sprite 1, which is 2.
This effectively blanks off all the other bits. Then we can check to see
if the result is 2, which would indicate that the sprite [collision bit is
set. This gives a statement as follows:

Sprite Graphics 113

519 IF (CD AND 2) = 2 THEN ‘Action’

where ‘Action’ is whatever you want to do when a collision occurs.

There may, of course, be collisions between the sprite and symbols
on the text screen. For instance, the symbols on the text screen might
represent, say, the sides of a road, and the sprite is your racing car.
Here the sprite-to-sprite collision register will not be affected, but
the VIC11 chip caters for this situation by having another register
(number 31) which detects collisions between sprites and either text
or bit map graphics data. Thus if sprite 1 passes over a graphics
symbol on the text screen, its bit will be set in register 31 of the
VICI1 chip.

Once again reading the sprite-to-data collision register will reset
all the bits to ‘0’, so you need to save the contents as a variable so you
can process the collision bits to see which sprite or sprites was
involved in the collision.

For a bouncing ball using sprites the detection of the screen edge is
best done by using simple comparison of the sprite X and Y registers
with the edges of the screen, based on the sprite positioning co-
ordinates. Remember that the sprite X,Y grid extends outside the
screen area, and you must also allow for the width and height of the
sprite; its position co-ordinates refer to its top left corner.

Animation involving shape changes

For many animated displays we shall want not only to move the
sprite around the screen, but to have it change shape as it moves. A
simple example of this is the invader figure from a typical computer
game. As the invader moves across the screen, his legs move as well.
This is a very simple movement: in one position the legs are spread
apart, and in the next the feet are tucked in and the knees bent.

Figure 6.8 shows a listing of a program which demonstrates this
type of action. Here three different sprite patterns have been set up in
the memory at blocks 13, 14 and 15. Two of these are for the invader
figure; one has the legs spread apart, and the other has them bent.

Four different sprites are defined for the invader figures. Two of
these (sprites 0 and 1) are for the invader at the left of the screen, and
sprites 2 and 3 are used for the invader at the right of the screen. The
left-hand sprites are set to cyan colour, and those for the right-hand
invader to the purple colour. Sprites 0 and 2 have the dot pattern
with the legs apart, while sprites 1 and 3 have the legs bent.

114 Commodore 64 Graphics & Sound

108 REM SPRITE MOVEMEMT AMD COLLIZIONS
185 REM CLERR SCREEM

118 PRINT CHR£C147)

119 REM VIC CHIP START ADIRESS
128 WC=53248

125 REM SET SPRITE POIMTERS
128 POKE2@84@, 13 FPOKEZ041. 14
148 POKE2B42. 13 POKEZR43. 14
158 POKEZB44, 15

55 RERD SPRITE ILRTA

168 FOR H=2 TO 191

179 RERD R:POKERIZ+M.A

198 MEXT

185 REM SET ¥ POSITIONMS

199 POKE WC+1, 150 POKEYC+Z. 158
08 POKE ”P+° 150 POKENCHT . 150
205 FEEM ZET SPRITE COLOURS

21@ PﬂPEWF+3? 4 FOKENC+48.
220 POKEVC+41, 3 POKEVC+4E,
238 POMEVC+43, 7 POKEVC+2L,
248 FOR M=1 TO 10

278 FOR #=@ TO 13@ STEF 8
255 REM MQVE SPRITES @ AND 2
c8 POKENVC. ¥ POKEVCH4, 2351

5 REM CHECK FOR COLLISION

@ CR=PEEK{VC+320

@ IF CD<@ THEM 3Pa

5 REM DISPLAY SFRITES @ BMD 2
@

a

153 (0 -ﬁ-

POKEYC+21.5

FOR T=1 TO 28@:HEXT

REM MOVE SPRITES 1 AHD 3
POKEYC+2, W4 : POKEYCHG, 251~
REM CHECK FOR COLLISION

220 CD=PEEK (YC+38)

330 IF CDCY@ THEM 378

335 REM DISFLAY SPRITES 1 AMD 3
240 POKEYC+21, 10

350 FOR T=1 TD 200:MHEXT

368 HEXT ¥

365 REM DISFLAY EXPLOSION SPRITE 4
A7@ POKEVCHE, ¥ :POKEWC+3, 130

28@ POKEYCH23, 16: POKEVC+29, 16
390 POKEVC+21.16

400 FOR T=1 TO 100@:NEXT

418 POKEYC+21,@: CD=PEEK (YC+3Q)

[V IRV PR IR CO I (NIR O IR (I CO IR (0
D |

[Fs VS]
-
L8 W]

Sprite Graphics 115

420 FOR T=1T0500 HEXT
430 MEXT H
448 EMD

TA5 REM SPRITE @ AMD 2 LATA
faR TATA £.182.8,1.255, 128

218 DATR 15,295,240, 31,255, 548
828 DATA 83,255,202, 63,566,252
838 TATH &£3,68,2582,63,255,252
842 DRTA 31,255,248, 15,255, 240
858 DATA 3.2.192.5.8,9¢

[68 DATA 12.0.48.24.6,24

27TA DATR 42,0, 12.95,8.5

A28 DRATA 122.0.3.0.8.8

g9 DATA 2.0.0.6.0.6

anf DATA 8.0.8,4a

205 REM SFRITE | AMD 2 DRTA
210 IATA 8,182.8,1. 255, 128

QEE' DTQ 1 '--: bk lu:_°1"" a1 |:T3;:~_‘13
QRE DATR 632,255,252, 62,680,252
240 DATH £3.50, 252, 83,255,252
958 DATA 21.255.248. 15,255,246
asg IRTA 3:99192;6,9396

a7E DATA 12,8, 48.24,0,24

288 DATA l?JD;4E-6,Ba96

230 DATR 3.8.1%2.6.8.6

1008 DATA A,0.6,8.6.6

ia1a DATH 9.8 @J@

1215 REM SPRITE

l
1028 DATA 9&»24:1
1838 DATR 24,24, 48, 25
1@48 DATA £.24.192,3.25.128
1853 DATA 1,155.0.0,255.0
1958 DATA 0.102.2.255,231.255
ia7a DRTA 9.182.8.9.235.9
1930 DATR 1,155.9.3.25, 123
1998 DATA £.24.192,12.24,%5
1180 DRTR 24.24.48.48.24.24
1112 DATAR 96.24,12,0.8.8
1128 DRTA 6.9.8.8

Fig. 6.8 Program to demonstrate sprite animation with shape changes and
collision detection.

3

116 Commodore 64 Graphics & Sound

The process of animation consists of alternately switching on
sprites 0 and 2 or sprites 1 and 3 while making an X movement
between each step. As each invader moves across the screen his legs
bend and straighten.

The collision register is also checked at each step, and when a
collision is detected the program jumps out of the animation loop.
At this point the invader sprites are turned off, and an explosion
sprite displayed in double size is superimposed where the invaders
were. In a game this would, of course, be accompanied by explosion
sounds.

In this program five sprites were used to show how several sprites
might be handled. But the shape change animation can be achieved
using just two sprites for the invaders. These have to be separate
sprites because they are at different points on the screen. To carry
out the shape change, however, we need only alter the sprite pointers
so that they point to the second dot pattern. Thus (on one step)
memory locations 2040 and 2041 will both contain the number 13,
and on the next step they will be changed to point to the dot pattern at
block 14. Since the VIC11 chip now reads the alternate dot pattern
to display the sprite, the shape change is instantaneous. After the
collision, sprite 1 can be turned off and the pointer for sprite 0 in
location 2040 is changed to 15 to point to the explosion effect. Now,
of course, the scale expansion must be applied to sprite 0 to produce
the required explosion effect.

For more complex animation, such as a little man walking across
the screen, four or five different sprite shapes might be used. Firstly
the action of taking a step is broken down into four or five stages,
and a ‘snapshot drawing’ is made of the figure at each stage through
the action of taking the step. These pictures of the man are then set
up as separate sprite dot patterns. In the animation sequence the
series of dot patterns is used in sequence, and the sprite is moved in
the X direction a small amount each time. At the end of the step the
whole process is repeated for the next step and so on. This can take
some effort; for realistic results the action of the figure has got to be
just right, and include movement of the body and arms as wellas leg
movement.

Chapter Seven

Graphs and Charts

Any computer can readily carry out lots of calculations or
measurements and end up by printing out or displaying enormous
arrays of numbers. This presents problems for the average computer
user, who has to make some sense of this mass of output data. One
technique for dealing with a mass of numbers is to present them as a
list or table. Unfortunately this may not always be particularly
helpful when we come to interpret the results.

When examining a list or table of results the computer user is
generally more interested in the way the results are changing than in
the precise numbers. Often we shall be interested in seeing the trend
of changes in the results, since this may enable us to make a rough
prediction of the way things will change in the immediate future. In a
set of production results from a factory it is more interesting to see
whether output is rising or falling than to consider the exact output
figures for each week.

When producing displays such as gauges or meters we could, of
course, simply print up the numerical value of the quantity being
measured. An example of this form of readout is a digital watch or
clock. Although the digital clock provides a very accurate readout,
the old familiar clock face with two or three hands provides a
readout which is much easier to use for telling the time when we are
not interested in time to the nearest second. Here the position of the
hands, even if we cannot read the figures on the dial, gives us a
reasonably accurate sense of time at a glance; most people have to
think for a moment when reading a digital display to convert the
reading into something they understand. We tend to think of time in
terms of ‘a quarter to three’ rather than 14.45.

When we come to displaying computer results it is often better to
use a graphics display orachart than a table of figures. Such a graph
or chart usually shows each result either as a line of varying length or

118 Commodore 64 Graphics & Sound

perhaps as a dot whose height above some reference line is
proportional to the quantity being displayed.

A simple meter display

When the computer is used to monitor or simulate some technical
activity we shall often need to display gauges or meters which will
show readings of, for instance, temperature, pressure, voltage and so
on.

With the Commodore 64 it is fairly easy to create a meter display
where a pointer moves along a calibrated scale in sympathy with
changes in the quantity being measured. As with a clock, we can
judge the state of a reading merely by looking at the pointer’s
position along this scale. '

Figure 7.1 lists a program for drawing a simple meter display. Here
the scale is horizontal, which makes the display easy to produce. The
program selects random voltage readings from 0 to 100 volts and
places the pointer at the nearest S V point on the scale. Three
subroutines are used to perform the various operations required.

Line 11§ clears the screen using CHR$(147), which is equivalent
to CLR/HOME. The program then jumps to the subroutine at 20§
which draws the scale. In this routine the first step is to position the
cursor, and this is achieved by the subroutine starting at line 30¢.
This uses a machine code routine in the Commodore 64 ROM and is
described in Chapter 2.

With the cursor positioned at the left end of the scale a simple
PRINT is used to draw the scale. The PRINT string in line 210 uses
the symbols produced by the keys [SHIFT O], [LOGO G] and
[SHIFT PjJ. The cursor is then moved down one row, and the scale
calibration is printed. Finally, on the next line down, the legend
‘VOLTS’ is printed.

An integer value of voltage V with 5 V steps is generated in line
13¢ and then in line 140 a subroutine is called to draw the pointer.
The first step is to erase the previous pointer position at C1. On the
first reading there is no pointer to erase but CI is set at 10, the zero
point of the scale.

The pointer can move only one character space at a time, and
from our scale each character space represents 5 volts. A value V1is
calculated, which is the integer of V/5, and this gives the number of
spaces to the right of zero where the pointer should be. The column
position C is calculated by adding 19 (the columnfor V) to V1, and

Graphs and Charts 119

iluw%FHu*ﬂ

REM TI"’IE DELAY FOR WIENING
G Dl TOLO0RHENT -I-ntv:T

[RFR 214

:Un UU

P T
ki UL tot

FOSITION CURSOR TO R.C
rurLrGh O FORETSL LR FOKETRE
Sons RETURN

i urﬂw quh:nr C'LF.M

!‘
)

T Meld FOIMTER POSITION

S

FEW Dﬁﬂ I {TER
FRIMT" ™

F=2d: = 1” S0SUBEEE
FRINT® !
R= 9@ Tﬁ S

5 REM FRINT YOLTRG
G rnlfT”” = "IETR
200 RETURM

=

X

XY,

[E SN S CUN L A N X
0~ O L7 B P

BN N
£) &0
oSS

Fig. 7.7. Program to produce horizontal meter display.

the cursor is then placed in position and the pointer printed. To
avoid ending up with a series of pointers along the scale the previous
" pointer position is erased by printing a space over it in line 41¢). The
pointer itself uses the graphics symbol produced by [LOGO G].

120 Commodore 64 Graphics & Sound

As a guide, the value of V is printed out below the gauge and a
time delay is built into the main program loop to allow the scale to be
read for each new voltage.

Vertical meter display

It is common to find gauges and meters where the scale is vertical
instead of horizontal. Figure 7.2 shows a program to produce such a
display. The technique used is similar to but a little more
complicated than that used for the horizontal meter.

The scale is drawn using two loops, one giving the four main
sections of the scale and the other dealing with individual steps in
each section. The () graduation is drawn first, using [LOGO X].
Then four [SHIFT B] symbols are printed, one above the other.
Here R is decremented and the cursor repositioned after each
PRINT. Next the scale calibration and graduation mark are drawn.
The mark is[LOGO W]. On the final step, the[LOGO W] symbol s
overprinted with a[LOGO S] symbol to give the proper termination
at the top of the scale.

The pointer is positioned by moving it up by V1 spaces from the
zero position by resetting the cursor row position in line 43¢. In this
program each symbol space represents 2V, but a refinement allows
the cursor to be positioned in 1V steps. In line 459 V1 is checked to
see if it is odd or even. If V1is even a line is drawn across the middle
of the space using a[SHIFT *] symbol, but if V1 is odd the line is
placed at the top of the character space by printing a [LOGO T]
symbol.

This technique of providing half-division steps by choosing a
different symbol for the pointer can also be applied to a horizontal
meter display. The idea could be extended further to give four or
even eight possible positions of the pointer in the symbol space by
adding further tests and choosing appropriate symbols. In this
program the pointer is displayed in yellow, with the colour being
switched on and off in lines 440 and 480. Lines 499 and 5¢¢ use a
[HOME] command at the start of the text string to move the cursor
to the top left of the screen.

Thermometer display

Another popular style of gauge uses a variable length strip to

Graphs and Charts 121

188 REM WERTICAL METER DISPLAY

185 REM CLERR SCREEM AMD DRAW SCALE
118 PREIMT CHR$C1473:G0SUEZE0

120 Ri=22

138 FOR U=BTD4@

135 REM DRRAW FOIMTER

148 GOSUB400

143 REM TIME DELAY FOR WIEMING

158 FOR D=1T01600 HEXT :HEXT

158 EMD

135 REM DRAK SCALE

208 R=22:C=14:G0SUR302

218 FRINT " @ 4¢;

228 FOR I=1 70 4

232 FOR J={ TQ 4:R=R~1:GOSUB300Q

248 PRIMT® P THERT

258 R=R~1:G0SUR30Q

26l PRINT STRECI1@KIN" 4" (HEXT
278 C=C+5:GOSUR3GR: PRIMT A "

280 R=12:C=8:G0SUB30Q: PRINT"WVOLTS"™;
298 RETURM

295 FEM PDQITLHH CURSOR T
308 POKET39.8 FOKETSL.R:P
31@ SYSe3532@:RETURN

33T REM DRAW POIMTER SUBROUTIME

408 R=R1:C=20:GOSUR3CH

4095 REM ERASE LAST READING

418 FRIMT" v;

428 V1=INT VS22

438 R=22-Y1:GOSUB30G:Ri=R

448 PRIMT CHR$(158);

458 IF Y/2=INTONA2) THEM 476

468 FRIMT"™"; (GOTO438

47@ PRIMT"~";

488 PRINT CHR$:(1545;

485 REM PRINT VOLTAGE AT TOP OF SCREEM
498 PRIWNT"H u

S08 PRINT"S W = ", STR$Y,

518 RETURN

520 RETURM

QR
QKETEE.C

o

Fig. 7.2. Program to produce vertical meter display.

indicate the variable being measures. A familiar example is the
everyday mercury thermometer. In the thermometer, the length of -

122 Commodore 64 Graphics & Sound

the mercury column is directly proportional to the temperature
being measured. We can represent the mercury column on the
Commodore 64 by drawing a simple horizontal bar whose length is
also proportional to the measurement it represents.

To make sense of a thermometer reading we need some sort of
scale. On a real thermometer the scale may be a set of graduation
marks etched into the glass of the thermometer tube, or the marks
may be made on the frame alongside the glass tube. Onthe computer
display it is more convenient to draw the scale alongside the
measurement column, and we can draw this in much the same way as
for a meter type display.

The horizontal bar type display is easiest to produce, since the bar
itself is just a series of space symbols displayed in reverse video. The
program listed in Fig. 7.3 produces a display of this type. In this
program the bar drawing step is preceded by an erasure of the
previous reading. This is done by printing spaces over the whole
length of the bar. The reading is also checked for T1=§. If this is
detected, a single line at the left of the scale is drawn to indicate a
zero reading.

The scaling is arranged so that each character space represents 5
degrees F. To find the number of character blocks required for the
bar, T1 is calculated as the integer of T/S. More precision can be
achieved by the technique used in the last program, which checks
for a half symbol space step at the end of the bar. If a half step is
required, then a symbol with the left halflit is added to the end of the
bar.

Vertical bar type displays

Normally we expect to see thermometers, and many other gauges of
the bar type, mounted with the bar running vertically. This form of
bar display can readily be produced on the Commodore 64, but
involves a slightly more complex routine for producing the bar and
the scale. A program for drawing this type of displayis shown in Fig.
7.4.

The main difference here is that after each symbol making up the
bar has been printed on the screen we need to move the cursor up one
space and then left one space to place it in the correct position for
printing the next section of the bar. This is done in lines 410 and 46§
where the space is followed by [CRSR U] and [CRSR L].

The scale drawing step is similar to that used for the vertical

Pt i ek Jed b fek

ke jmd ped

oo e B) G IR e 0D
3 S A 0D RS oA O

fte
)

—
-

ER.

195

[B S S B R Y

[y B W

STV U N (R OO IR (0 I8 (N LB 38 Y
0 g N e 0 T e

Ly JL¥ Y]

i I8

da B e D3 00 00 DD
Sy e

Sl s
s B Ay o B B I B s Py)

=,

=y O Lo R
DR TR S D

DB TR Rk B, B N0 T B U C RN R RN R (R 2N

[R I Y N (VI v B v I Y s IS
Da B S I sos BEAY S SRR B

Graphs and Charts

REM HORIZOWTAL BRR GRUGE

REM CLEAR SCREEM AMD DRAW SCALE
FRIMT CHREC147 GOSURIOGE

FOR M=17050

FEM SELECT TEMPERATURE
T=DdIMT L ORERNDE AT

REM PRODUCE EFAR DISPLAY

REM TIME DELAY FOR W1
FOR D=iT010@0: MEXT HEXT
EMD

REM DRAM SCALE
R=14:C=10:GOSUEIE0A
PRIMT CHRE$(152:
FRIMT' ! ! } P
R=15:0=10: GOSUR3R0

FRINT"® 25 58 7% ip@v
R=la:C=10:G0SUE30

PRIMT" DEG Fo

FRIMT CHREFCID45:;

FETURH

REM FOSITION CURSOR TG R.T
ROKETZQ, B PORETSL. RIPOKETSRZ.C
SHEEDDER RETURM

REM DRAW BRE SUBROQUTIME
R=1Z2:C=18:G0SUR3GE

REM ERASE LAST RERDIMG

FOR K=1TOZBFRIMT" U HEWT

Ti=IMT (T S0

R=1g C=10:G0SURRGT

IF T1=8 THEW PRINTY ¥ GOTOS00
FRIMNT CHREC1RY:

FOR E=1 TO Ti

PRIMTY ",

HEST

FRIMNT CHREC146 .

REM FRIMT TEMPERRTURE RERDIMS
E=20:C=15 GOSUR206

PRIMT i
R=280=15:G0SURz0A

FRINT CHRE 154

PRIMT"T = " STR$(Ty

RETLRH

Fig. 7.3. Program to produce horizontal moving bar display.

123

124 Commodore 64 Graphics & Sound

it
2
AN

478
FRINTY 7B HENT

108 REM YERTICRL BRRE GRUGE
105 FEN CLERR SCREEN FHD TRFMW SCALE
-~ THT PLipE - .
liu PRIMT CHREC147
GOFDOR V=ATO48
Fei TREAW FOIMTER
i SOEURARR
1ET REN “’“E D FOR WIEWIMG
148 T HE
150
195
R 7]
Bk i ect sl
&l :
Z2u I
pin] N
-~ T
e 3o 4
EaE 1
ZED PRIMT N
gra C ;'?: --ﬁEIHT“_ i
280 R=l 0 FRINT " WOL TS
250 RETUR
255 REM POD CURSOR T0 RO
3R PORETSA, FETSLL R FORETSZ. O
318 SYSESEED R
385 R R
A F‘ N :
405 REM ER
4 fadu tn B
did FUR I=
el L3 e TRIT
L L
GOSURS
PRIMT OH A CHREF IO
I (R v

Foy
o1 =)
<3
o
A D T R
a2l
e
il

THEH 522

-+

i

=

—

i

:;_

2 i

H o e

N T

510 PRINT"S o
G20 PRIMT"S® W = "JSTRECV S
538 RETURM

Fig. 7.4. Program to produce vertical thermometer display.

meter, but different symbols are used so the graduation steps occur
at the bottom of character spaces rather than in the middle. This fits

Graphs and Charts 125

in more conveniently with drawing the bar, since the latter is built up
from reverse video character spaces.

In this program a check is made for half steps, and a half-filled
symbol is added to the top of the bar as required in lines 480 and 49.
This could be extended to provide quarter or eighth size steps if
desired, by adding further tests and printing different symbols at the
top of the bar.

Bar charts

While the ‘thermometer’ display is useful to show the current state of
some measurement, a more useful arrangement is to show how the
situation has varied over a period of time. We could perhaps
measure the temperature at noon on each day of the week. A display
showing this information can easily be arranged by drawing the
thermometer displays for the days of the week alongside one
another. For this display only the variable length bar is drawn for
each day, and a single scale is included at the left-hand side. To
improve visibility, the bars may be drawn with a gap between
adjacent bars. This type of display is sometimes referred to as a
histogram but is more commonly called a bar chart.

Bar charts are not normally intended to give particularly accurate
displays: their main application is to show the general trend of the
variable being displayed. They are frequently used in business to
show the trend in sales over a year, or perhaps the stock level,
number of orders or income over a period. It is very easy to see the
trend of the results on such a chart.

A useful enhancement of the bar chart is to arrange for the colour
of the bar to be changed if its level goes above, or perhaps below,
some predetermined limit. This can provide an easily-recognised
warning that a situation is becoming dangerous or needs attention.
In such cases either the whole bar changes colour or the part above
the limit line might change colour.

The Commodore 64 character graphics can be used to draw a bar
chart. Although the resolution is relatively coarse, the resultant
display can be quite effective for this type of chart.

Horizontal bar charts

The easiest type of bar chart for use on the Commodore 64 is one

126 Commodore 64 Graphics & Sound

REM HORIZOMTAL BRR CHART

DIM DFECT2.TC7D

REM RERD IM DRTRA

FOR I=1707:RERD D10, TCI3 HEXT
DRTA "SUY, 25, "MO", 4&, "TU", S0, "HE"
DRTA 5@, "TH", 7@, "FR", 88, "SR", 30
REM DRAW SCRLES

FRIMT CHR$(1475 :GOSUE 268

FEM TIRAW BARS

FORM=1 TO 7:R=2%H+1: GOSUB48E: MEXT
REM FRIMT LEGEND

GOSUER 600

EMD

FEM DRAW SCARLES
R=17:C=10:G0SUBETH

FRINT" T I ! "
F=18:0G0sUR358

FRIMNT"® 23 58 73 1ag"
R=19:GOSURISE

JRTAL SN OO Y I (O L)
[Wor R B oo A v B s BN

D T LR e G I e A0 0) Oy Oy 1

P Py FO I Il o0 IO I3 [b b et et 3ot b ed bed bbbk b e A Ml
o0 BN SV B B B T B T s B)

PRIMT" IEG F

‘=

FOR R=18 T3 2 STEP -1
286 GOSURZSA:PRIMT® ") ‘MEAT
298 C=5 R=@

3PE FOR H=1 TO 7:R=2%M+1

31@ GOSURRSQ:PRINT D$CH) i HERT

328 RETURHM

345 REM POSITIOM CURSOR TO RE.C

350 POKETSR.@:POKEYR1,R:POKE?SZ.C
6@ SYSES5E0 RETURN

335 REM DRAW BAR SUBROUTIHE

480 Ti=INT{TOMIAS2

418 PRINT CHRE$C1560:

428 C=18:GOSUBR50

438 IF Ti=8 THEH PRIWT" ";:GOTOSER
448 PRIMT CHR$(18;

4508 FOR K=1 TO T1:PRINT" "i:HEXT
468 PRIMT CHR$C1465;

478 PRIMT CHR$C1543;

480 RETURM

595 REM PRIMT LEGEND

AR R=21:C=12:'GOSUR354
18 PRINT"DRILY TEMPERATURES"
20 RETIRH

Fig. 7.5. Program to draw simple bar chart with horizontal bars.

Graphs and Charts 127

where the bars are horizontal and run across the screen from left to
right.

The bar itself is created by printing reversed space symbols, which
cause each symbol space in the bar to be filled with text colour. The
length of the bar is selected by the number of space symbols printed.
This is basically the same technique as that used for the bar gauge.
For slightly better accuracy we could use the half-filled character
block as the last symbol in the bar to provide an extra half size step
when required.

Figure 7.5 lists a program to draw a bar chart of daily
temperatures. A scale is included up the left-hand side which shows
the days of the week, and another scale along the bottom shows the
temperature reading. In this case the temperature data is read in as
an array. The program could be rearranged so that the temperatures
are input from the keyboard.

Vertical bar charts

Although the horizontal bar chart is easy to produce on the
Commodore 64, the more common form of bar chart has its bars
running vertically. Charts of this type can be produced on the
Commodore 64, but they require a slightly more complex program.

Figure 7.6 gives a listing for a program to draw a bar chart with
vertical bars built up by using graphics symbols. In this program a
separate bar is drawn for each day of the week and each bar is drawn
using the same technique as for the mercury column in the vertical
bar gauge program. The data in this programis read into an array so
that the drawing of the bars can use a common drawing loop. It
could easily be arranged that the temperature data is typed in from
the keyboard by using an INPUT statement instead of READ to set
up the temperature values.

The display produced on the screen is similar to Fig. 7.7. By
altering the scales and legends this program can readily be adapted
to display any desired variable on the chart.

Multiple bar charts
When two different variables are to be displayed on the same chart

the bars are drawn in pairs so that they become interleaved. To
provide a clearer distinction between the sets of bars a different

128 Commodore 64 Graphics & Sound

198 REM YERTICAL BAR CHRRT

118 DIM DEC7H. T

115 REM RERD IM DRATA

128 FOR I=1TOQ7:RERD D$CI2,T0I0 HERT
138 DATA "SU". 18, "MO", 18, "TU" ., 24, "HE"
148 DATA 28."TH". 16, "FR". 24, "6R" 12
145 REM CLERR SCREEM DRAW SCALES

158 FRIMT CHR$C1475:GOSUE 20@

15% FEM DREAW BARS

1668 FOR MN=1TO7:C=3%H+18: GOSUR4EA MEXT
{163 REM PRIMT LEGEHMD

178 GOSUBR &2a

128 EMD

195 REM SCALES SUBRQOUTIME

288 R=18:C=5:G0SURI5A

210 PRIMT" @ J";

228 FOR I=1 TO 2

23@ FOR J=1 TO 4:R=R-1:G0OSUR3SE
248 PRIMT" i THEXT

254 F=R-1:GOSUR35E

268 FRINT STREFCIOKID; " J"0 (MEXT
270 C=C+0 GOSURREA:PRINT - ")

288 R=19:C=11:G0SUR3SE

296 PRIMT" 8
308 R=20:C=12:GOSUR3SE

218 FOR I=1TO7PRIMT D&CIx:" " :MEXT
320 RETURM

347 REM POSITIOW CURSOR TO R.C
358 POKE?SR.0:POKETSL,R:POKETSZ.C
6@ SYSEIE20 RETURM

335 FEM DRAW BAR SUBROUTIME

400 R=12:G05UBR35@

418 Ti=IMT(T(MA 20

428 IF Ti=0 THEH 4£8

438 PRIMT CHR$(18)CHR$(1SED

448 FOR I=1 TO T1:PRINT" TBI"; ‘MEXT
458 FRIMT CHR&C145%;

468 PRIMT CHR$(1543;

47@ RETURM

525 REM PRIMT LEGEND

&8@ R=11:'C=1'GOSUR3SA

£10 FRIMT"DEG C"i

R2@ R=22:(=12:G0SUB35A

&40 PRIMT"DRILY TEMPERATURES™:
658 RETURH

Fig. 7.6. Program to draw a conventional vertical bar chart.

Graphs and Charts 129

=8
DEG C
@
SUJ MO TIU WE TH FR 38R
DRILY TEMPERRTURES

Fig. 7.7. Display produced by program listed in Fig. 7.6.

colour may be used for each set of bars. Three or perhaps four
graphs could be interleaved in this way if desired. Some bars could
be drawn as open boxes, but with different coloured outlines. A
typical application for a multiple bar chart might show the income
and expenditure on a single chart. It might be useful to show the
predicted income and expenditure as well, to see how the actual
values compare with predicted trends.

Multiple bar charts with horizontal bars are quite easily produced
using a technique similar to that for a simple horizontal bar chart.
The bars for the second quantity being displayed are interleaved
between those of the first set of data. Two different colours may be
used for the two sets of bars so that they can easily be picked out on
the chart.

An example of a multiple bar chart with vertical bars is shown in
the program listed in Fig. 7.8. This shows the maximum and
minimum temperatures for the seven days of a week. In this case one
set of bars is drawn in purple and the others are in the yellow colour.

You could have three or four interleaved sets of bars, each in a
different colour. On such a chart a legend may be included to show
what each set of bars represents.

130 Commodore 64 Graphics & Sound

108 REM MULTIFLE BAR CHART

118 DIM DEC7a . THO? L TLETD

115 REM RERD IM DATA

1260 FORI=1TOT READ DECID, THOI D TLOIS THERXT
128 DATA "SU".14.1@,"MO". 16,12

142 DARTA "T". 24,20, "WE", 28, 1&, "TH"
158 DRTA 16,14, "FR", 14, 18."3R", 15,8
155 REM CLERR SCREEM DRAM SCALES
168 PRIMT CHR£C1473:G05UER 260

165 REM DRAM BARS

178 FOR MW=1T07:GOSUR4Q@: NERXT

173 REM PRINT LEGEMD

188 GOSUR &@a

196 EMD

195 REM SCALES SURROUTIME

208 R=12:0=5 G05UBR3%E

218 PRIMT" @ i

228 FOR I=1 TQ 3

258 FOR J=1 TO 4:R=R~1:GOSUR3SQ
248 FPRIMT" ProoHERT

208 R=R-~1:GOSUBITE

260 FRIMT STRFCID#I:" ") HEWT
278 C=0+3:G0SUR3SA: PRINT "w "

g8 R=13:C=11:GOSUE25A

FRIMT" "
R=20:C=12: GOSURATA

FOR I=1TO7: PRIMT D$CId:" " HERT
RETURHM

REM POSITION CURSOR TO R.C
POKE7TSR, @ FOKETS1.RIPOKETR2, C
SWSETE2E RETURM

REM DRRW EBRR SUBROUTIHE
C=53+3%M R=18:G0SUB250
TI=INTCTLOMS A20

IF Ti=8 THEM 460

PRIMT CHREC1Q)CHRECISES;

£ T o= T30 T L e) e 1S LD O

P e 00 G0 G} OO 02 0 U O T
LI Y B A A R R R A B B S B B]

446 FOR I=1 TO T1:PRIMT" "W HEHT
458 PRIMT CHR$(1483;
458 C=C+1: GOSUB3SE

AT T1=IMTOTHOHY A2

4230 IF T1=0 THEM T3@

490 PRIMT CHRE£:C1E8)CHREC1S8:

i@ FOR I=1 TO TL:PRIMT® 7BI"; HEKT
520 PRIMT CHREC(1463:;

5238 PRIMT CHREC154%:

Graphs and Charts 131

548 RETURH

593 REM FRINT LEGEMD

&8@ R=11:C=1:G08IIR3%0

616 PRINT"DEG C";

620 R=22:C=12:GOSUB350

&4@ PRINT"DRILY TEMPERATURES";
658 RETURH

Fig. 7.8. Program to draw a multiple bar chart.

Scientific graphs

Although the bar chart is well suited for business use, when we come
to scientific or mathematical graph-plotting a slightly different
arrangement is used. Here the graph is required to give a more
accurate display of results.

The layout is similar to that of a bar chart, with the results of the
calculation or experiment plotted vertically on the screen and the
measurement steps horizontally. In this case, however, the value of
Y is simply shown as a dot at a point equivalent to the top of the bar
on a bar chart. Sometimes, to make the point easier to see, a small +
sign, triangle or circle may be used as a marker instead.

In a bar chart the variables are normally positive, but in a
scientific graph the variables X and Y may be either positive or
negative. To cater for this, the X and Y axes are drawn as shown in
Fig. 7.10. Positive values of X are drawn to the right of the vertical Y
axis, and negative values of X to the left. Similarly, positive values of
Y are drawn above the X axis, and negative values below. When
there are no negative values for X, the left-hand half of the graph is
not drawn, so the Y axis appears at the left side of the diagram.
Similarly, if there are no negative values of Y only the upper part of
the graph, above the X axis, would be drawn. Sometimes only a
quarter of the complete graph need be drawn to display all the points
required. The advantage of drawing only part of the complete X,Y
axis system is that the required part of the chart can be expanded to
fill the screen, thus giving better resolution.

This type of graph can be produced using character graphics, by
using, say, an asterisk or diamond symbol to indicate the plotted
points; but better results are obtained by using the higher resolution
of the bit map graphics mode, so this is the approach we shall adopt.

To see how this type of graph is produced, let us take as an
example the equation Y = SIN(X) and plot the value of Y for values

132 Commodore 64 Graphics & Sound

of X ranging from —1§ to +1§. The value of SIN(X) will always lie
between the limits —1 and +1 for all values of X. To produce a
reasonable size graph we shall need to multiply the resultant Y
values by a scaling factor YS. A convenient size is produced by
setting YS = 60 at the start of the program. A second multiplier, XS,
is used to scale the X values. In this case XS is set at 10 to give a
graph which is a total of 200 units wide on the screen. The values for
XS and YS are chosen to give the largest graph that will fit on the
screen, based on the expected range of values of X and Y to be
plotted.

The first step in constructing the graph is to produce the X and Y
axis lines and scales. The centre point of the axes where X=§ and
Y=0 is defined by two variables XC and YC. These are set at 160
and 10¢ respectively, to place the graph in the centre of the screen
area. You could, of course, choose other values for XC,YC to place

the graph in a different position if desired.
To draw the X axis we start by setting X1 = XC—10*XS and

Y1=YC. These values give the starting co-ordinates for drawing the
X-axis line across the screen. The end of the line (X2,Y2) is set four
units down the screen in the Y direction (YC+4) and a short
graduation line is drawn. Next, a loop is used to draw alternately a
horizontal line XS units long and a vertical mark four units high,
and this is done 20 times to give the X axis and scale.

The Y axis and its scale marks are drawn in a similar fashion. In
this case a new variable YA has been introduced, which is the
number of screen units between scale marks on the Y axis, and is set
equal to YS/ 10 since there are 10 divisions in the Y scale. The Y axis
is drawn down the screen from a point YI=YC—1*YA. The
process of drawing the X and Y axes is dealt with as a subroutine
starting at line 50§, although it could equally well be included as a
sequence of instructions in the main program if desired.

Having drawn the axes, the next step is to plot the graph itself.
Here the calculations are carried out in a loop with the angle (XP)
being stepped in increments of §.¢5 from — 19 to +10. Note that the
units of XP will be radians in this calculation. The X co-ordinate for
each point to be plotted is calculated from

X = XC + INT(XS * XP)
and the Y co-ordinate is given by,
Y = YC — INT(YS*SIN(XP))

Note the minus sign here, which is required because the Y co-

Graphs and Charts 133

REM SIME GRAFH PLOT
REM SET BIT MAF RDDRESS TO 8132

2 PM=8192

POKES3272, PEEK(S3272)0RS
REM SELECT BIT MAP MODE

) POKES326%5, PEEK(532650R32

REM SET COLOURS

FOR I=1024T0Z023:POKEL. 22 :HEXT
REM USE CLEAR ROUTINE AT 43152
SY849152

E0TO1086

5 REM DOT PLOT WITH SCREEN WRAPAROUMD

HEINTOAD Y=THT (Y

IF ©{8 THEM ¥=x+320:G0T0Z21Q

IF #2319 THEM #=X~320:G0T0220
IF 948 THEN Y=Y+208:60T0230

IF %2123 THEM Y=Y-200:G0T0240
F=RM+320% INT (Y /B4R INT (X 80+ (YANDT
POKE P, FEEK(PIORC2MT~CHANDT)
RETIRN

REM LIME DRAWING ROUTIME
SHEEENCAZ-H1) P EY=CGHY2~Y L
Mx=ABS(X2~X1) ‘HY=RBS(Y2~Y 1)
me=rl Y=Y GOSUBZAE

2 IF MYZHY THEW 390

HO=IMT (X235

FOR K=1 TQ Hi:HD=HD+MY

IF MDZHX THEM K=X+5%:G0T0250
MD=HDI~HY : K=K+ER Y=y +8Y
GOSUB2R8 ' HEXT : GOT044@
MD=INT (MY 23

FOR K=1 TO MY :MD=ND+M¥

IF NOKNY THEM Y=Y+5Y:(G0T0430
HD=MD-NY : R=H+8H =" +8Y
GOSURZQ8 MEXT

T RETURH

REM RXIS DRAKWING ROUTIME
Al=KC~-HEH10 Y 1=V

V2=l 144 K2=K1 GOSUR20a

FOR S=1T028@
n2=r1+KE Y2=YC GOSUR300
Y2=Y2+4 H1=X2 GOSUR3GD

NEXT

#K1=xC YR=INT(YS/18) ' Y1=YC-YA%1Q
K2=¥1-4:2=Y1:GOSUR3GA

134 Commodore 64 Graphics & Sound

588 FOR 5=1T028

598 Y2=Y1+YA:¥2=K(C ' GOSUR36A
608 X2=¥2-4:Y1=Y2:GOSUR3A0

618 MEXT

628 RETURN

99% REM MRIM PROGRAM »
1002 KC=160:YC=100:X5=10:Y5=€Q
1805 REM DRAW AXES AMD SCALES
1819 GOSUR30Q

1815 REM DRAW SIME CURYE

1822 FOR XP=~10 TO 1@ STEP 0.05
1030 Y=YC~INT(YS#SIN(XP))

1849 K=XC+INT(XS¥XP)

18358 GOSUBRZ@a

1860 NEXT

1@ra END

Fig. 7.9. Program to plot a sine graph with axes and scales.

Fig. 7.10. Display produced by program listed in Fig. 7.9.

ordinates of the screen increase as we move down the screen whereas
the conventions of the graph require that Y should increase as we
move up the screen.

The program listing is given in Fig. 7.9, and the result produced on

Graphs and Charts 135

the screen is similar to that shown in Fig. 7.10. In this program the
display colours are white on a blue background. If you want to use
different colours, the number POKEd into the screen memory in line
149 must be altered.

Joining the points

In order to obtain a reasonable picture of the curve produced by the
sine function a large number of values must be plotted so that the
points are closely spaced. If there were fewer values for X and Y the
points would tend to be spread apart, giving a less clear impression
of the function shape.

Sometimes we may wish to find the probable value for Y at a value
of X that was not included in the points used for the graph. By using
a technique known as interpolation we can obtain an approximate
value for such an intermediate point on the curve.

The simplest technique for interpolation is to join successive
points on the curve with straight lines. This is generally known as
linear interpolation. We can in fact join the points with a straight
line as the graph is plotted. This gives a curve that is easier to follow
when the number of points available is limited. Some care is needed
when using interpolation, because if too few points are used the
straight line interpolation technique can become wildly inaccurate.

To join the points, the graph plotting routine is altered. Instead of
setting a single dot for each point, the line drawing subroutine is
used to draw a short line from one point to the next. Variables X1
and Y1 are used to specify the start of the line and X2,Y?2 are used for
the end of the line. After each line is drawn, X1 and Y1 are updated
to equal the co-ordinates X2,Y2 and new values are chosen for
X2,Y2 which will be the co-ordinates of the next point on the graph.
Note that before entering the plotting loop the values X1and Y1 are
set up for the first point on the graph where XP=—1¢.

This variation of the graph plot program using linear interpolation
to join the dots is shown in Fig. 7.11. In this program a cosine curve
is plotted. This has the same shape as a sine curve but is shifted in
position along the X axis, as shown in Fig. 7.12.

Adding text in the bit map mode

In the cosine graph drawing program an additional feature is that a

136 Commodore 64 Graphics & Sound

180 REM COSIME GRAPH WITH LIMKEL POIMTS
185 REM SET BIT MAF ADDRESE TO 8192

112 BM=81%2

128 POKES327Z. PEEK(S3Z7220RE

27 REM SELECT BIT MAP MODE

130 POKES3265. PEEK(G3265:0RRE

135 REM SET COLOURS

148 FOR I=1024T02823 ' POKEL.Z2 MNERXT

145 REM USE CLERR ROUTIME AT 45172

158 SYE45152

1e@ GOTO1E608

195 REM DOT PLOT WITH SCREEN WRAPRROLMD
200 K=INT O W=INT ()

218 IF %48 THEM X=X+320:060T021@
220 IF X315 THEM X=x~3208:G0T0zZ2@

238 IF Y48 THEHW Y=Y+2@@:G0T0230
248 IF ¥>19% THEM Y=Y-20@:'GOTOZ240
250 P=EM+I20%IHT (Y20 +8RINT A8+ OYANDT
260 FOKE P.PEEKCFIORIZMT~CHRAMDT 2
278 RETURH

255 REM LIME DRRWIMG ROUTINE

300 SM=S0HCK2-H1) SY=S6HYE-Y 1

310 HA=ABS(HZ~¥10 HY=RBS(YZ~-Y1)

328 W=riY=Y1:GOSUBZEO

330 IF HY-MH THEM 329

HD=THT (Ml 2y

FOR k=1 TO Me:HO=HD+HY

IF MIKHMY THEM X=X+2¥:G0T0526
MO=HD~HY K=+ G Y=Y+ 8l
GOSURZO0: HEXT : GOTO4449
HIO=THT (MY /25

FOR K=1 TO HY:HD=HD+HYK

IF MD<HY THEM Y=Y+8Y GOTQ430
HD=HD~MY K=r+ 50 Y=Y +E8Y

GOELB20@ NEXT

RETURH

REM AXIS TRAWIMG ROUTIME
wl=KC-XE%18:¥Y1=YC

Wa=\Y1+4Hz=K1 GOSUR3ea

528 FOR S=1T024

538 X2=M1+KSY2=Y0 GOSUBZ00

T40 Ye=YZ+d 1 kl=K2 GOSURS00

558 MEWT

SEE W1=KDYR=INT(YSAL1@) (Yi=YC~-YR#1a
S7@ X2=x1-4:42=Y1:G0SUR300

S D) 0 3D

P
]

D o B A0 S 00 [e 3D 00~ U B
RS NS R

AR 3= B B o B By 0 G 0D 0 G2

1@za
138
104@
1a5a
1@va
1875
1882
1856
1iaa
t11e
112@
1138
1148
1158
1158
1178
118@
1128
1280
iz1e
1228

Graphs and Charts 137

FOR S=1T0280
Ya=Y1+YA K2=¥C G0SUB30a
Hne=n2~4 1 Y1=Y2 GOSUR3@8
HEXT

RETURH

A wC=160:4YC=100:H3=10:YE=60
% REM DRAM AXES AMD SCALES

GOSUBRSHA

REM TRAN COSINE CURVE
Hl=Wl-1 DR W =D~ THT (Y SRS~ 180)
FOR #P=~18 TO 18 STEP 0.4
Y2=C~THT (YSHCOSCHP Y)
HEmALHINT CHEREP)

GOSUBRAR Hl=K2 Y1sY2

MEWT

FEM PRIMT LEGEMD Y=COS(H)
FOKESAIRY, PEEK (SE334RMNTIZS4
POKEL. PEEK L 2RMDES]
F=l:0=146 00=53248
F=RM+320%R+0%C

FOR H=1T0&

READ A:CP=CG+E%A

FOR J=0T07
FOKE(P+J) , PEEK{CF+T

HE®T

P=pP+3

HE=T

FOKE 1.PEEK{120R4
POKESES24, PEEKCSEIR490R 4
DATA 25.&1.3,15,1%,40, 24, 41
EHT

Fig. 7.11. Program to draw a cosine curve using linked points and including a
text heading on the bit map screen.

text legend ‘Y=COS(X) has been inserted into the high resolution
picture at the top of the screen. This uses a technique which may be
useful in other programs where text is to be combined with bit-
mapped graphics.

As soon as the bit map display mode is selected the normal
PRINT function no longer operates, because the text screen
memory is now being used to store colour information for the bit-
mapped picture. You will notice that at the end of the program

138 Commodore 64 Graphics & Sound

Y=C0S (X))

JA B L
/ \'. ;'l "K \
A 'UJ \v“l' \/

Fig. 7.12. Display produced by the program listed in Fig. 7.11.

execution a short row of coloured blocks appears to the left of the
picture. This is in fact the word ‘READY’, which has been written
into the screen memory but is being interpreted by the VIC11 chip as
a set of colour codes for the bit map screen.

Adding text to the bit map display involves copying the dot
patterns of the required symbols from the character generator ROM
into the appropriate positions in the bit map memory. This is a
similar operation to that used to create a new character set. The
rather odd layout of the bit map memory now becomes an
advantage, since the layout of the bit pattern words in the bit map
memory is the same as that of the dot patterns in the character
generator ROM. To copy a symbol we simply have to copy the eight
successive data words of the dot pattern from the ROM into eight
successive words in the bit map memory.

The first step is to choose the desired symbol dot pattern. In the
ROM the symbols are stored in screen code order. The @ symbol is
number 0, A is number 1 and so on. To find the start address of a dot
pattern we simply multiply the screen code of the required letter or
other character by eight and add this to the start address of the ROM
(53248).

The next step is to work out the position in the bit map memory
where the data must be placed. We can start with a row and

Graphs and Charts 139

column position based on the normal 25-row by 40-column text
screen layout. To find the address in the bit map memory the row
number is multiplied by 320 and added to the column number
multiplied by eight, then the result is added to the start address of the
bit map memory.

To set up the text symbol we have to copyits dot pattern from the
character generator into the bit map memory. First the keyboard
interrupt timer is turned off and the ROM enabled. At this point the
character pattern is selected and eight successive words are PEEKed
from the character ROM and POKEd into successive locations in
the bit map memory. This is repeated for all the symbols to be
transferred. After the dot patterns for all the symbols have been
copied, the ROM is enabled and the interrupt timer turned on
again,

It is convenient to set up the required text as a data array of screen
codes which are read in and processed one at a time. In this case a
single string of symbols is transferred. You could, of course, transfer
several strings of symbols and place them at different points on the
screen if desired by altering the row and column numbers used to
select the address in the bit map before each new set of symbols is
transferred.

Chapter Eight
Depth and Perspective

The graphs and charts we have drawn so far have had just two
variables, X and Y, which were plotted horizontally and vertically
on the screen. In the real world there are many situations where three
variables are involved. The third variable is usually given the name
Z. An example of this would be a display showing the height of
various points in a small area of land. In this case the X and Y co-
ordinates would be used to define the location of a particular point
in the area, and might represent, say, length and width, or perhaps
the north-south and east-west position. In this case the third term, Z,
is the height of the land surface at the point X,Y. Here the value of Z
depends upon both X and Y, since a change ineither X or Y takes us
to another point on the land surface with a different value for Z.

Drawing a three-axis graph requires slightly different techniques
from those needed for a two-axis graph, since we have to find a way
of fitting in the Z axis. If X and Y are plotted as usual on the screen,
the Z ordinates should theoretically be plotted out from the surface
of the screen. This is obviously impractical, so we need to consider
other arrangements.

Suppose we were building a cardboard model of the three-axis
plot. The first step would be to plot a series of graphs of Zagainst X.
Once the graphs had been plotted, the next step might be to stand the -
graphs one behind the other. How can this be done on our display
screen?

One solution might be to draw them so that the graph for each
new value of Y is displaced to the left and up on the screen. This
helps to separate the individual graphs for the different values of Y.
In effect we have tilted the Y axis so that it becomes a sloping line
which runs upwards and to the left of the X,Y,Z origin point, where
X, Y and Z are all zero. The next step is to tilt the X axis so that it
now slopes up to the right of the origin point. The Z axis can now be
drawn vertically up the screen in the same way that the Y axis is
drawn on a two-axis graph or chart.

Depth and Perspective 141

Fig. 8.1. Layout of the X, Y and Z axes of a three-axis graph or chart.

The usual arrangement for displaying a three-axis plot is to draw
both the X and Y axes at about 30 degrees to the horizontal axis of
the screen, with the Z axis vertical as shown in Fig. 8.1. Now as X
increases the plotted point moves upwards and to the right,and as Y
increases the plotted point moves upwards and to the left. Finally Z
displaces the point vertically on the screen.

Drawing a three-axis graph or chart is not readily achieved by
using the character graphics mode of the Commodore 64, so for this
type of display we need to make use of the high resolution and
drawing flexibility that is available in the bit-mapped mode.

Three-axis bar charts

One type of display that looks impressive in a three-axis version is a
bar chart. The first step in constructing such a chart is to choose an
origin point where the values of X, Y and Z are all at zero. This point
determines where the bar chart is positioned on the screen, and also
acts as a reference point around which the plot will be constructed.
The next step might be to draw a grid showing the X and Y co-
ordinates in the plane where Z = 0.

To draw the X axis at about 30 degrees to the horizontal there will
be changes in both X and Y screen co-ordinates as we move along
the X axis. The Y movement required is half the X movement, so our
screen co-ordinates for points along the X axis (Y and Z both= ()
will be

X1 = XC + XP
Yl = YC - XP/2

142 Commodore 64 Graphics & Sound

where XP is the X co-ordinate along the X axis. When X and Z are
both at 0 the line representing the Y axis goes up and to the left.
Since the movement is to the left of the origin point (XC,YC) this
means that the screen X co-ordinates for points along the Y axis
must be less than XC. To get the 30-degree angle to the left the
change in screen X position is mage negative, and equals the Y value
on the graph. To get the upward slope, the screen Y position changes
by half as much, and the change is subtracted from YC so that the
line moves upwards. The screen co-ordinates here become

X1 = XC—- YP
Y1 = YC- YP/2

where YP is the Y co-ordinate along the Y axis on the graph being
plotted.

For any other point on the Z= 0 plane then the position of X1,Y!1
will be produced by combining the two results we obtained above to
give

X1 = XC+ XP— YP
YI = YC - XP/2~- YP/2

The Z term is plotted vertically, so it will only affect the screen Y
value of a point on the chart. Since we are going to draw a vertical
line to represent the Z ordinate we need to know the co-ordinates for
the top of the line. Now the X value is the same as X1 and for the new
Y value Z is simply subtracted from Y so the values for co-ordinates
X2,Y2 become

X2=X1=XC+ XP—-YP
Y2=Y1-Z=YC—-XP/2—-YP/2~-Z

The Z ordinates can now be produced by drawing lines starting at
X1,Y1 and running to point X2,Y2 using a bit map line drawing
subroutine,

A three-axis bar chart produced in this way would have a simple
vertical line for each Z ordinate, and would look like a bed of nails.
The chart can be made to look more attractive by turning the simple
vertical line into a bar aligned along, say, the X axis. This involves
drawing another Z ordinate of the same height but at a different
position along the X axis. The top and bottom of these two ordinates
are then joined with short lines, and the area within the bar is filled
with colour.

The program of Fig. 8.2 produces a three-axis chart with wide
bars aligned along the X axis. Variables XC and YC give the

16@
185
118
120

3
Letd

Depth and Perspective

REM 3 RH
REM SET
BM=R192
POKETR27E, PEEK D327 200RS

IS CHART WITH WIDE BARS
BIT MAP RDDRERS TO 81572

25 REM SELECT RIT MAP MODE

134
135
144
145
156
iEE
135
200
'ﬁim
228
2ap
248
‘\4#‘

N
|
4

(I
Ty o
DR el

=1 Lt

)
._“
2}

N

L o0
h S

A 02 0 a0 G2 W) 0 O L2 P DD

[Sa I N SR, B CRR O T U B Y

5 WAy Ay s B X R I R e

398

POKETI26T, PEEK (F3ZE0)0R32
REM ZET COLOURS

FOR I=1024TQ2023:POKEL. 22 HEXT
REM USE CLERR ROUTIME AT 42152
SYG49152
GOTOL 888

REM DOT FLOT ROUTIME
MeTHT D Y =TT (Y
IF ¥<a 0OR ¥»31% THEM 2
IF ¥o@ OR Y199 THEM 2
FaBM+320# THT Y AR +8RINT
IF ER=1 THENZYA
REM SET DOT
P POKE PLPEEKCPIORCEMT~CHAMDT 32
GOTOZ88
EEM ERAZE DOT
POKEP . PEEK (P YAMDC 2O~ M7= (MANDIT 2 2)
RETURHM
REM LIME DRAMIMG ROUTIME
Fr=SOM KR~ 0 BY=B0H (Y~ 1
Hz=ﬂBh'¢?~*1x MY =ARR (Y~

=¢] W=V]GOSUB2e0
IF MY MY THEW 3452
MI=THTCHYA20
FOR K=1 TO H¥:HD=HD+NY
IF MIDCHE THEMN X=x¢+8¢: 6070328
MO=RT~ME =S Y=Y+
GOSUB28E : HEXT ' GOTO440
HO=IMT MY /20
FOR K=1 TO HY:HD=MI+Nx

CI.‘JOJ
P EJ'B

W+ OPAMIT Y

A IF HDCHY THEW Y=Y+SY:G0TO43Q
1 MO=NII-HY © Hma 8 Y=Y+ 8

GOSUBZGE - MEXT

RETURM

3 REM TRRM RXES

FOR %P=@ T0 100 STEF 20
R1=KOHR Y 1=Y0-1P 2
¥2=11-100: Y2=71~50 GOSUB2AD

) NEXT

143

144 Commodore 64 Graphics & Sound

S4@ FOR YP=G TO %@ STEP 15

58 nl=xC-YP:Yi=Yl-YP/2

GEQ K2=k1+110:Y2=Y1-55: G0SLR30Q
a7e HEXT

588 RETURM

595 REM DRAW BAR ROUTIME

AR FOR M=0 TO Z-1 STEP 2

618 Ri=KC+KP-7P 1Y 1=YC~KF/2-YP/ 2-H
G20 H2=xl+KAY2=Y1~YR: GOSURGER
€28 MEXT

€37 REM ERASE BAR OUTLIME

648 ER=1

S50 ¥1=KC+AP~YP+AR Y 1=YC~-KR/2-YP/2~YR
658 ¥e=¥1:Y2=Y1-Z-1:GREUR3Ga

BT K1=K2 H2=K~-HR Y 1=Y2 Y2=Y2+YR
£38 GOSUB300

3R Mi=HZ Y 1=Y2:Y2=Y2+Z+1 GOSUB300
700 ER=8

712 RETURH

2395 REM MAIM PROGRAM

1008 XC=160:YC=180:ER=0

1819 XA=10:K¥B=8:YA=5:YB=4

1815 REM DRAW AXES

1820 GOSURSQS

1830 FOR »P=108 TO @ STEP -2
1248 FOR YP=%3@ TO @ STEP -~15

1030 Z=INT((4+24005CKPA2Q0 % YPA10+10 0
1855 REM DRRM BARS

1878 HEXT

1888 HEXT

12%@ END

Fig. 8.2. Program to produce a three-axis bar chart with bars aligned along the
X axis.

position of the origin of the graph, where X, Y and Z values are all 0.
Since variables X and Y are used by the dot plotting routine, new
variables XP and YP have been used for the co-ordinates of the bars.
Variables XA and YA determine the width of the bars. To draw the
bar, a series of short lines is drawn along the direction of the X axis
but stacked one above the other to build up the bar. The total
number of lines is equal to Z/2. Here only the alternate lines were
drawn in to save time. Line 60¢ could be changed by deleting STEP
2 so that all lines up the bar are drawn to give a solidly-filled bar.

Depth and Perspective 145

Fig. 8.3. Typical display produced by program listed in Fig. 8.2.

This program will take longer to draw the chart and will produce
results similar to that shown in Fig. 8.3.

In this program the bars at the rear of the graph are drawn first
and then the drawing progresses toward the front. With solid bars
being drawn where a bar in front overlaps one at the back it will
mask it off. To separate the bars that overlap, the outline of each bar
is erased after that bar has been drawn.

Here you will see that the bit mode dot plotting routine has been
extended. If the variable ER is at) the dots are plotted in the normal
way. When ER=1 this is tested in the dot plotting routine and a
jump is made to line 27(). Here instead of using an OR function to set
the dot an AND function is used to reset the dot to the 0 or ‘off state.

Producing solid bars

A further development is to draw the bars so that they appear to be
solid. In effect, one side of the bar is aligned along the X axis and
another aligned with the Y axis for each Z ordinate. A diamond-
shaped top is drawu to complete the bar. One side of the bar may
then be filled with colour as desired.

The program listing shown in Fig. 8.4 produces an example of this

146 Commodore 64 Graphics & Sound

188 REM 3 AXIS CHART WITH SOLID BARS
185 REM SET BIT MAP ADDRESS TO 2192
118 BM=3192

126 POKESR272. PEEKCS327220RE

125 REM SELECT RIT MAP MODE

130 POKES3265, PEEK(S32650R32

135 REM SET COLQURS

148 FOR I=1@824T02823:POKEL, 22 ' MERT
14% REM USE CLEARR ROUTIHE AT 49152
150 2Y843152

1E8 SOTO1260

195 REM DOT PLOT ROUTIME
20E R=IMT R Y=INTOY)
216 IF A48 OR %>319 THEN 288
228 IF Y48 OR Y199 THEM 28

236 P=BM+320% IMT(YA80+8%INT (H 80+ (WYANDT
248 IF ER=1 THEM27@

245 REM SET DOT

258 FOKE PLPEEKCPIORCZTT-{SAMDT > 32

260 GOTO284

265 EEM ERRZE DOT

278 FOKER PEEK (PIRMDLZE8-2 1 P MAMTIT 2 0 2
286 RETURH

295 REM LINE DRAWING ROUTIME

308 SH=GGNHM2~H1) SY=080MYZ~Y 1

@ HE=ABS(EZ-H15 (HY=ABS(Y2~1

328 m=rliv=Y1G0SURZR0

336 IF HY>Me THEM 39@

348 HD=IMTHKA 20

A58 FOR K=1 TO Hx:HD=HD+HY

368 IF HDCME THEM W=p+5:: GOT0RE0

378 HD=MD~MA dm=p B2 Y=Y+ By

2860 GOSURZEE HEXT:G0TO448

A MD=INT(HY/22

20 FOR K=1 TO HY:MD=MD+NX

418 IF HDCHY THEM Y=Y+5Y:G0T043@

426 HI=HO-NY Hei+Gr Y=Y +8Y

438 GOSUBZAR HEKT

448 RETURM

493 REM DRAL AXES

588 FOR “P=@ TO {88 STEFP 2@

S10 W1=bl4nP Y 1=YC~KP 2

H20 ¥2=X1-16@:Y2=Y1~5Q:G0SUR30G

530 MEWT

46 FOR YP=@ TO 98 STEP 15

821
830
844
850
864
995
1aaa
181a
182a
1a3a
10848
1654
1068
1678
1638
1834
Fig. 8.4

Depth and Perspective

Al=RC-YP Y1=YC-YP/2
Ke=¥i+11Q:¥2=Y1-55: GOSUR30A
MEXT

RETURHM

REM DRAW BAR ROUTIME
FOR H=R TQ 2-1 STEP 2
H1=KCHHP~YR Y =Y C=HP 2= P/ 2~H
WY 14KA Y2=Y 1 ~YA GOSUR28
HEXT :

REM ERASE SIDE OF BAR

FOR Hs@ TD Z~1
HUZHDHRP =P Y =YD-P /2~ YR 2~H
K=K 1-HR:Y2=Y1-YR:ER=1: GASUE20M
HEXT : ER=0

M1 =HCHIP =P Y =Y O-HP /2P,
W= 1~WE Y2sY1~YE GOSUB30S
K1=H2: ¥ 1=¥2: ¥2=Y2~2: GOSUR30R
H1=K2 HE=HD+NB Y1=YZ
W2=y2+YE : GOSLEA00

H1=H2 W 1=W2 ¢2=Y247 GOSURI00
REM ERASE TOPF OF BAR

FOR M= TO WB-1
HI=KC+UP~YP~H ¥ | =Y C=Z~ (HP+YPHH /2
M2=H1+3A 1 2= ~YA ER=1 : GOSUR3E0
MEXT : ER=0

REM DRAW TOP OF BAR
KI=HCHRP YR YO~ P 2~YF /22
M2=H 1 +KA 2=y] ~YA: GOSUB200
K1=H2 M2SH2-4B Y 1=y2
Y2=r2-YE: (OSURA0A

RISHR HI=HR~HRA Y 1SY2 Y224 YR
GOSUR300

K1=H2 U2SHR+NR Y=Y 2=y 24 R
GOSUB30G
RETURM

REM MAIM FROGRAM
#O=160:YC=180: ER=0

HA=10 NB=8:YA=5: yB=dq
BOSUBSeE

FOR ¥P=10@ T0 0 STEP -20

FOR ¥P=30 TO @ STEF -15

Z=INT (24008 CHPA200 vk YPA1B+1 0
GOSUBCOE

HEXT

HEXT

EMD

Program to produce three-axis bar chart with solid bars.

147

148 Commodore 64 Graphics & Sound

type of display and the result on the screen is similar to that shown in
Fig. 8.5. In the program the front face of the bar is drawn first and
filled. Next the side of the bar along the Y axis is erased by setting
ER=1 and drawing a series of short parallel lines one above the
other across the bar. This erases any parts of other bars that lie
behind the one being drawn and might otherwise show through the
bar. The outline of the side of the bar is then drawn. Finally the
diamond-shaped top of the bar is erased by drawing lines across it
with ER set at 1, and then its outline is drawn in. Here the bars are
filled by drawing alternate lines to save time. For better results you
could fill the whole of the X face of the bars to get results similar to
those shown in Fig. 8.5.

Fig. 8 5. Typical display produced by program listed in Fig. 8.4.

Circular three-axis plots

A rather interesting variation of three-axis plotting is the circular
three-axis plotr which can produce some rather attractive patterns.

In this version of the three-axis graph the XY plane of the chart is
made elliptical so that the resultant plot is displayed on the screen as
a sort of ridged disc viewed from an angle with elliptical ridges
produced by the Z ordinates.

Depth and Perspective 149

The technique of plotting this type of graph makes use of the
quadratic method for drawing a circle to produce the X,Y axes. The
X scale is set at perhaps two or three times the Y scale to produce an
elliptical figure on the screen. Z values are simply added to the
calculated Y co-ordinates, and points are plotted at the tops of the Z
ordinates. The program of Fig. 8.6 gives an examples of this type of
plot. The function to be plotted is set up by using a Define Function
(DEF FN) statement in line 1$20. The actual function used here will
determine the contour shape of the display, and you could
experiment with a variety of functions.

The loop starting at line 13@ scans across the X axis from X =
—109 to X =-+10¢. Then, in line 1$5@, an inner loop which scans the

19@ REM CIRCULAR 3~D PLOT

185 REM MHEEDE MAC SCREEM CLEAR ROUTIME
118 BM=81352

128 POKESR272,PEEK(I327230RS

130 POKESI26T. FEEK (3265 00R32

140 FORI=1024TO2023:POKEL. 22 HEXT

158 SYS45132

ié@ GOTOloeq

135 REM DOT PLOTTING ROUTIME

208 K=IMTOKI Y=IHNT(Y)

218 IF »<@ OR X319 THEM 294

228 IF Y0 OR 9219% THEM 25@

238 P=BM+320%INT (YR +Q¥INT (K Q0+ YANDIT
248 FOKE PLPEEK(PIORZ M T—{XAMDT 3
258 RETURM

595 REM MAIH PROGRAM

1008 K=q/2000

181@ M=1/50R(Z:

16820 TEF FH ACZ)=10%C05 KK XPRLF+YPRYF)
1038 FOR XP=-18@ TO 160

1048 Y1=TKINT(SORC {QBEG~HF¥LP: 50

1650 FOR YP=Y1 TO -¥1 STEP -3

1868 Z=FH RCSORCPHXP+YPRYF)) ~MEYP

i@ve IF YP=¥1 THEM 12%@

1880 IF 2421 THEM 111@

1890 X=1e@+uP Y=108~INT(Z/2) - GOSUB280
1ige Z1=2

1118 MEART YP

1120 HEXT ¥R

Fig. 8.6. Program to produce a circular three-axis plot.

150 Commodore 64 Graphics & Sound

Y axis of the plotis started. Here the limit value Y1is based upon the
value of X with the characteristic circle equation in line 194§, and
this gives the elliptical shape to the plot. Inside these loops the Z
value is calculated using function FN A and the corresponding point
is plotted using the bit map plot routine.

A typical display appears as in Fig. 8.7. Note that this type of
display takes quite a long time to generate because of the large
number of points and the relatively complex calculations for each
point.

Fig. 8.7. Typical display of a circular three-axis plot.
Perspective drawings

To create the illusion of depth an artist uses a technique known as
perspective. Artists discovered many centuries ago that as an object is
moved further away from the viewer it appears to get smaller, and as
it moves closer it seems to get bigger. They also found that by
applying this idea to drawings and paintings they could produce a
much more realistic picture. This technique is known as perspective
drawing and over the years mathematicians have evolved formulae
that allow us to calculate the shape and size objects should be
drawn to give a correct perspective view. This technique can be
applied in computer graphics to produce pseudo-three-dimensional
displays on the screen.

Depth and Perspective 151

To see how perspective works, imagine you are standing on a flat
plain, with a road in front of you that stretches away to the horizon.
Although the sides of the road are actually parallel, the road will
appear to get narrower as it approaches the horizon. The cars and
trucks travelling along the road also appear to get smaller as they
move away from your position towards the horizon. In fact, the
optical image they produce does get smaller as they move away. If
we apply this basic rule to our pictures on the screen we can also
produce an illusion of depth, despite the fact that our display is
really a flat screen.

Firstly we need to decide on some system of co-ordinates by which
we can measure the positions of points on the objects being viewed
and the corresponding points needed to produce the screen image.
We shall assume that the X axis runs across from left to right as
usual. The Z axis is normally the vertical direction, as we had it in
our three axis graphs. This leaves the Y axis, and the best
arrangement is to have the Y axis along the direction of view.

If you looked at the road across the desert from actual road level
(that is with your eye at the road surface) the view would be rather
uninspiring, because every point on the road and the desert would lie
along a single line through the X axis. In order to see the road
properly we need to be located above it.

Figure 8.8 shows a side view of the situation where we are viewing
the road from an altitude Z. In order to project the image on our flat
screen we shall assume that we are looking through a window at
distance D.

Suppose we take a point on the road at distance Y1. This will

Eye Screen
v

Y = Z # D/Y1

Road

Fig. 8.8. Projection of a distant point on aroadto a point on the display screen.

162 Commodore 64 Graphics & Sound

appear to be below the horizon line on the screen by anamount SY.
We have assumed here that the horizon is effectively at eye level,
which it will be if we are looking along a line parallel to the Y axis.
Now the small triangle between the screen and eye is of the same
shape as the large triangle passing through point Y1. This means
that the sides of the two triangles have the same proportions, so we
can say that

SY/D=7Z/Y1
and rearranging this we get
SY = Z*D/Yl

Now you will note that the size of the image on the screen is inversely
proportional to the distance YI. If we took another point on the
road at a different distance, Y2, then it would produce a different
line length on the screen, giving a new value for SY of

SY = Z*D/Y2

Now suppose there were a series of equal length lines drawn along
the centre line of the road. Each line will produce a short vertical line
on the screen, and as the point on the road gets farther away the
image produced on the screen by each line gets shorter.

If we drew a similar view of the road looking down on it we would
find that the same basic formula applies for the SX image size on the
screen, which represents the road width. As Y1 becomes greater the
width of the image on the screen decreases according to the formula

SX = W*D/YI

where W is the width of the road.

Vertical objects alongside the road will also produce images that
follow this general rule of being inversely proportional to distance
Y.

Let us start with the road. Suppose we place the horizon halfway
up the screen at position Y=99. If we draw lines from the bottom
two corners of the screen to a point halfway across the horizon line
we have a road.

Suppose the road is 25 feet wide, and we are viewing a 14-inch TV
screen from, say, a distance of 4 feet. The TV screen will be 1 foot
wide and this is equal to SX. D will be 4, and X will be 25. Now

SX = D*X/Y = 4*25)Y = |

Depth and Perspective 153

therefore
Y = 4*25 or 100 feet

The scaling factor for the X direction in our screen drawing can now
be worked out. There are 320 units of X across the screen on the
Commodore 64 and when Y=100 the road fills the screen width, so
SX must be 320. If we rewrite our equation with a multiplier XS we
get

SX=XSXX/Y

and inserting our calculated values we get the following
320 = XS X 25/100

now extracting the XS term we get
XS =320X 100 / 25 = 1280

To calculate values of SX we would use the equation
SX=1280 X X/Y

We can apply a similar process to calculate the Y scale factor,
assuming that our viewpoint is at a height of 10 feet, and that for a
distance of 100 feet the point plotted is at the bottom of the screen.
We shall assume that the horizon line is at a point 100 units up from
the bottom of the screen. From this

SY=YS X 10/100 = 100

and
YS = 1000

so to calculate the Y points on the screen we would use
SY = 1000*Z/Y

To plot a point on the road itself, Z=10, and the actual Y value for
use in the drawing instruction will be 99+SY, since as we get closer
the point moves down the screen. If there is a vertical pole then to
plot the top of the pole we subtract the height of the pole from 10 to
obtain the value for Z. Thus a 10-foot high pole will always produce
a Y value which lines up with the horizon, since we are actually
looking along a line 10 feet above the road. If the pole is higher than
10 feet the value of SY is negative, and the top of the pole goes above
the centre line of the screen.

To draw a perspective view of a road with, say, trees alongside,

154 Commodore 64 Graphics & Sound

you will need to set up values of height for the tree trunk and the top
of the tree, and also the width of the tree. Knowing the distance of
each tree from the viewer, its X,Y co-ordinates for the base, top and
side points can be calculated using

SX = 160 + 1280 X X/Y
SY = 99 + 1000 X (10-Z)/Y

where SX and SY are the screen drawing co-ordinates, X is the
distance measured from the centre of the road with positive values to
the right, and Zis the height of the object. Y is the distance measured
from the viewing position. Once the co-ordinates are known the tree
can be drawn by making it up from a small set of lines. The road
markings are dealt with in a similar fashion, except that here Z will
be 0.

In the program, X1,Y1,X2 and Y2 are used by the line drawing
routine, and so are SX and SY, so some new variables have been
introduced to avoid conflict between the various parts of the
program. Here YR is used for the distance from the viewer to an
object being drawn. For the road markings W is used for actual
width, and L for actual length. W1 and W2 are used as the screen
widths of the near and far ends of a displayed road marking, and YA
and YB are used for the Y screen ordinates for the two ends of aroad
marking.

For drawing the trees, TR is the height of the trunk, TTis the total
height of the tree, and TW is the width of the branches at the bottom
of the tree. The trees themselves are very simplified images
consisting of a triangular area for the branches and a vertical line for
the trunk.

Figure 8.9 shows a program listing to draw a perspective view of a
road, and Fig. 8.10 shows the result on the screen.

190 REM PERSFECTIVE VIEW OF A ROAD
185 REM ZET EIT MAP ADDRESS TO 8192
116 BM=813%2

120 FOKES3272, PEEK(S327250R8

25 KEM SELECT BIT MAP MODE

138 POKES32¢3, FEEK (D32ETH0RE2

135 REM SET COLOURE

140 FOR I=1024T0Z023:POKET. 22 MEXT

145 REM USE CLERR ROUTIME AT 431752

158 SYe49152

168 GATnlaaa

195 REM DOT PLOT WITH SCREEM MWRAPAROUMD

200
210
220
230
240
250
260
276
295

@A

[

)

~] i € B G [

X EEA VIR RS B By BN R |

L G a3 O D) U2 LD D) 2

Depth and Perspective

¥EIMTOR) Y =THT O

IF %<8 THEM X=X+328:G07T021@

IF ¥>31%9 THEM ¥=X¥-328:60T0228
IF Y40 THEM Y=Y+2008: G0T0236

IF #»193 THEM Y=Y-20@ G0TO240
P=RM+320% THT (Y /B +8KINT (480 + (YRMHDT
POKE FL.PEEK(FIORCZTIT~CHANDIT D2
RETLIRM

REM LIME DRAWIMG ROUTIME
Su=S0MIR2~K 1) 1 SY=8GNY2~Y 12
HE=ABS (K2-41 0 (HY=RBS(Y2-Y1)
K=rl Y=Y GOSUR2eE

IF MY:H< THEM 39@

HD=THT (HA /20

FOR K=1 T0O WA HD=HD+HY

IF MOCHN THEM ¥=x+8¥:G0TO384
WI=HDI~H H=r+SE Y=Y +5Y
(GOSUBZEA HEXT 1 GOTO44Q
HD=IHT (MY 25

FOR K=1 TO MY HD=HD+HYX

A IF MDCHY THEM Y=Y+SY:GOTO43@

MD=HTI-HY : K=K +8K Y=Y+5Y
GOSUB202: HEXT

RETURH

REM DRRW TREE SUBRQUTIME
®i=KAMZ=NA Y =R

Yo=Yk GOSUB300
wa=rA+Kld: Yi=Y2 GOSUR30Q

] K1=K2 1 H2=KA~AW GOSUR3a

-l Rt

W1=2: ¥2=KA 1 Y2=YC GOSUBA00

W1mHE Y 1=Y2 K2=HRIN Y2=YE GNSUR38
RETURH
REM MAIM PROGRAM
¥1=160:%2=0:Y1=99:¥2=199 : GOSUR300
%2=319:605UB3080

¥5=1260 Y5=1000: W=1 : =50

S REM DRAW ROAD MARKIMGS

FOR YR=180 TO 2000 STEF 100
W1=INT(<SHb YR
W2=THT XSk (YR+LD

YR=9%+INT (YS#10- YR
YR=93+INT(YSK18/(YR+L))
¥1=168~U1 : ¥2=160+W1
Y1=YA:Y2=YR GOSUB30R
K1=K2:YW2=YR: ¥2=16@+WN2: GOSUBR300

155

156 Commodore 64 Graphics & Sound

111@
112@
1130
1140
1145
1150
1168
117@
118@
1150
1200
1210
1220
1230

Fig. 8.9. Program to draw a perspective view of a road.

One problem with this type of perspective drawing is that it tends
to be very slow using BASIC plotting and drawing routines in the bit
map mode. Better results could, of course, be achieved by using
machine code routines for dot plotting and line drawing, but the
writing of such routines is not a particularly simple task.

Perspective views can be produced using character graphics by
firstly sketching the perspective view and then assembling it in
jigsaw fashion using character graphics symbols or even user-

®1=X2 1 Y1=Y2 K2=160~W2 GOSUBIAA
®1=K2: Y2=YA: ¥2=160~W] : GOSUB30@
HEXT

TR=5:TT=20: Th=3

REM DRAW TREES

FOR YR=15@ TO 120@ STEP 13@
YRA=95+INT(YSH1Q/YR)

YBR=99+ IHT(YSH{18-TRI/YRD
YC=29+INT(YSH{18-TT) /YR
KT=IHT(XS#12.5/YR)

¥U=INT (XS¥TWA YR
#A=160+XT : GOSURSAQ
¥A=16@-XT:GOSUBS@0

NEXT

defined symbols.

Fig. 810. Display produced by the program listed in Fig. 8.9.

Chapter Nine
The Sound Generator

So far our Commodore 64 computer has remained silent, although it
is in fact capable of generating a wide variety of sounds. These
sounds are produced by a special chip within the machine called the
6581 Sound Interface Device or ‘SID’ chip.

Many of the home computers currently available use a small
loudspeaker mounted within the computer case to produce sound
output. While this type of loudspeaker is adequate for producing
simple ‘beep’ sounds it is rather unsatisfactory if more complex
sound effects or music are to be produced. The technique adopted by
Commodore is to take the sound signals generated by the computer
system and add them to the television output signal, in the same way
that sound is added to a broadcast television programme. As a
result, the sound signals pass through the sound section of the
television receiver and are reproduced by the loudspeaker in the TV
set. This provides several advantages. Firstly the volume and quality
of the sound signals are determined by the television receiver, and
the results will invariably be better than those that can be achieved
by a speaker built into the computer. Another advantage is that the
sound comes from the same position as the picture, which is more
realistic when games programs are being used.

The sound generator used in the Commodore is a very
comprehensive one, allowing three independent sound channels and
providing full control of the characteristics of the sounds produced
by each of the channels. This allows the computer to produce a wide
range of sound effects and quite impressive musical performance.
One drawback, however, is that there are no special BASIC
commands to handle the operation of the sound generator, and this
has to be achieved by POKEing numbers into the internal registers
of the chip. At first glance this may seem rather a complicated
process, but it is actually fairly straightforward once the functions of
the various registers are understood.

168 Commodore 64 Graphics & Sound

The nature of sound

The sounds that we hear are produced by rapid changes in the air
pressure against a membrane, known as the eardrum, within our
ears. These pressure changes are converted into nerve impulses
which, when they reach the brain, produce the sensation that we
recognise as sound.

The sound waves themselves can be likened to the ripples produced
on a pond when a stone is thrown into it. When the stone enters the
water it starts off a series of circular ripples or waves which travel
outwards across the surface of the water. If we took a sectional view
through the waves they would look similar to those shown in Fig.
9.1. The crests, or tops, of the waves are equally spaced, and the
distance between them is known as the period while the height of the
wave is called its amplitude. In this case the waves have a shape
which is similar to a sine curve, and they are known as sinusoidal
waves.

fisplitude , '\ ; \

1 cycle

Fig. 9.1. A pure note sound wave showing the cycle and amplitude.

A further characteristic of waves is their frequency, which is a
measure of the number of complete cycles of the wave that occurata
given point on the pond during a period of one second. The
frequency may therefore be quoted in cycles per second. In the case
of sound and electrical waves a special name is given to the units of
frequency, and this is herrz (Hz). In effect hertz and cycles per
second mean the same thing, so a wave having a frequency of 50
cycles per second can also be referred to as a wave of frequency
50 Hz.

In the case of waves on the water the wave shape is produced by
changes in the height of the water as the wave travels across the

The Sound Generator 159

pond. In practice the water itself does not move across the pond but
is merely displaced up or down as the wave passes by. In the case of
sound the wave is transmitted as a change in the air pressure, so that
rings of air around the sound source are alternately compressed and
expanded as the wave radiates outward. Period, frequency and
amplitude still have the same meaning, though. For sound signals,
however, the amplitude of the sound is usually referred to as the
volume and the frequency may be referred to as the pitch of the
sound.

The human ear responds only to a limited range of sound
frequencies with the lower end typically at frequencies of 30to 50 Hz
and the highest audible frequencies from about 10000 to 15000 Hz
(10 kHz to 15kHz). Most of oursound communication, for instance
in speech, uses basic frequencies in the range 300 to 3000 Hz, which
is the typical frequency range handled by a public telephone system.
In music the basic musical notes normally range in frequency from
about 50 to 4000 Hz. The higher frequencies may be present in a
sound and add character to it as we shall see in a moment. The
Commodore 64 sound generator can produce basic sound
frequencies in the range 0 to about 4000 Hz.

The sound generator

All the sounds produced by the Commodore 64 are generated by a
special chip known as the 6581 Sound Interface Device or SID chip.
This is a very complex chip, but from the point of view of
programming it appears as a set of 29 registers, each of which
occupies one memory location (as far as the Commodore 64 is
concerned). By using PEEK and POKE commands we can
manipulate the contents of these registers just as if they were part of
the main computer memory. You may wonder what happens to the
actual computer memory at the addresses occupied by the sound
chip: the answer is that the computer memory is disabled whenever
that particular group of addresses is called, so there is no interaction
between the sound chip and the main memory.

The sound chip registers occupy the memory addresses from
54272 to 54300. Of the 29 registers seven are allocated to each of the
sound channels, thus allowing independent control of each channel.
Four registers provide a common control of volume, and allow
control of various sound filter characteristics. The remaining four
permit signals from the sound generators to be read and used as

160 Commodore 64 Graphics & Sound

control signals. Thus the output from one sound channel may be
used to control the characteristics of another sound channel to
produceconuﬂexsoundeﬂbcm.Theaddrmmesandfuncﬁonsofthe
various registers are shown in Fig. 9.2.

Register Address Function

@ S4272 Ch.1 Frequency FL

1 S4273 Ch.1 Frequency FH

2 54274 Ch.1 Pulse width PUWL
3 54273 Ch.1l Pulse width PWH
4 54276 Ch.1 Control

b} 54277 Ch.1 Attack/decay

') 54278 Ch.1 Sustain/release
7 S4279 Ch.2 Fregquency FL

8 5427280 Ch.Z Frequency FH

7 54281 Ch.2 Pulse width PHL
i@ 54282 Ch.2 Fulse width PUWH
i1 542873 Ch.2 Control

12 S4284 Ch.2 aAttack/decay

1= 54285 Ch.2 Sustain/release
14 4284 Ch.3 Freqguency FL

15 54287 Ch.3 Frequency FH

14 54288 Ch.3 Pulse width PUL
17 54289 Ch.3 Pulse width PUWH
ig 54296 Ch.3 Control

ig 4271 Ch.3 Attack/decay

25 54292 Ch.3 Sustainfrelease
21 S4F93 Filter freguency low
22 54294 Filter freguency high
23 S4295 Filter control
24 S429&6 Ch.3 mute/Volume
25 S4277 Fotentiometer X
2é 54298 Potentiometer Y
27 54299 Output sig. Ch.3
28 S4300 Envelope sig. Ch.3

Fig. 9.2. The set of control registers in the SID sound chip with their memory
addresses and functions

The Sound Generator 161

Selecting the frequency

One of the important characteristics of sound is its frequency or
pitch. In the sound generator chip this is controlled by POKEing a
number into registers 0 and 1 of the desired sound channel. For the
moment let us assume we are going to use sound channel 1. The
registers controlling frequency for channel 1 are in fact registers 0
and 1 of the sound chip, and correspond to memory locations 54272
and 54273 respectively. To save having to work out actual addresses
all the time it is convenient to set a variable SD equal to 54272. Now
the address of register 0 is simply SD, and that of register 1 becomes
SD+1.

The frequency is selected as a 16-bit number ranging from 0 to
65535, and this gives a corresponding output frequency which
ranges from 0 to just under 4 kHz. The actual frequency is related to
the number by a simple mathematical formula, as follows:

F = 0.06097 * FN Hz.

where F is the output frequency in Hz and FN is the decimal value of
the 16-bit number placed in registers 0 and 1 for the sound channel in
use. Thus a number of 10000 gives a frequency

F = 0.06097 * 10000 = 609.7 Hz.

Usually we shall want to calculate the number FN that is required to
set a specific frequency F. In this case the equation can be rearranged
to give the number that has to be set up in the registers. The equation
now becomes

FN = F/0.06097
Thus for a 1000 Hz tone we need
FN = 1000/.06097

which gives the number 16402 to be written into the registers.

To insert the number into the sound chip we need to split the 16-
bit number into two 8-bit numbers and then POKE one into each
register. Let us start by taking the more éignificant part of the
number (the upper 8 bits). This can be found by dividing the number
by 256 and then chopping off the fractional part using the INT
function, as follows:

FH = INT(FN)

where FH is the upper 8-bit part of the number. This can be inserted

162 Commodore 64 Graphics & Sound

into register 1 by using
POKE SD+1,FH

To get the lower 8 bits of the number (FL) we can simply subtract
FH*256 from FN and poke it into register 0 as follows:

POKE SD,FN—-FH*256

To see how this works, and to demonstrate the range of frequencies
available, try running the program listed in Fig. 9.3.

108 REM. RRMGE 0QF SOUMD FREQUEHMCIES
195 REM FROM SOUMD CHIP
11Q SD=54272
115 REM CLERR SID REGISTERS
120 FOR M=5DTO SD+24:POKEM, @ HEXT
125 REM SET WOLUME AT MAY
130 POKESD+24,15
135 REM SET SUSTARIN LEVEL
140 POKESD+5, 3 POKESD+5, 248
145 REM TURM ON SOQUMD
15@ POKESD+4,17
16@ FOR F=23& TO &50@@ STEF 128
165 REM SELECT FREGUENCY
17@ FH=INT(F/256) ' FL=F-236%FH
175 REM SET FREGUEMCY
186 POKESD.FL POKESD+1.FH
185 REM TOME DURRTIOM DELRY LOOF
190 FOR T=1T70100:HEXT
200 NEXT
218 POKESD+4, 16
220 END
Fig. 9.3. Program to demonstrate the range of frequencies produced by the
sound generator.

In this program line 120 is a loop to set the internal registers of the
sound generator to zero. Note that only 25 of the 29 registers are
reset since the last four (registers 26 to 29) are read-only types, and
cannot be written into.

Lines 130 to 150 set up some of the other registers within the chip
to ensure that we do in fact get sound output. We shall be looking at
the operation of these registers a little later.

The tone generation loop starting at line 16@ increases the value of
F from 256 to 65090 in steps of 128, and for each value of F the
corresponding values for FL and FH are calculated and POKEd

The Sound Generator 163

into registers 0 and 1. A simple counting loop is then used to give a

time delay, and then the loop repeats with the next frequency.
When the program is run a range of tones rising in frequency from

a low-pitched buzz to a fairly high-pitched note will be produced.

Volume control

Register 24 in the sound chip controls the volume of sound
produced. Only the four lower bits of the register are used for this
purpose, giving sixteen different levels of volume. The control is
common to all three sound channels.

For most purposes the upper four bits of this register will be set at
zero, so generally, for setting the volume, it is sufficient to POKE a
number from 0 to 15 into this register.

The effect of varying the volume is demonstrated by the program
listed in Fig. 9.4. Here a sequence of tone frequencies is set up by

182 REM DEMO OF S0UND YOLUME COMTROL
118 DIM FLCBY, FHOBY

115 REM RERD TOME FREQUEHMCY DRTA
1z@ FOR M=1 TO &:READ FLOMY, FHOMY THEXT
138 DRATA 1353,16.205.18,31,21.5%6.22
148 DATA 3@, 25.4%,28, 165,531,135, 33
158 3D=34272

155 REM CLERR SID REGISTERS

168 FOR I=50 TO SD+24:POKE 1.8@:HEXT
{65 REM SET VOLUME LEWEL

170 FOR W=1 TO 13:FOKESD+24.Y

175 REM SET SUSTAIM LEWEL

180 FOKESD+3, 2 POKESD+G, 16#Y

196 FOR J={ TO &

135 REM SET FREQUENCY

20@ POKESD,FLCJI) (POKESD+L.FHOTD

285 REM SOUMD TOME

218 POKESD+4,33

220 FOR T=1 TO 25@:HEXT

225 REM GEMERATE SILENT PRUSE

238 POKESD+4,32

248 FOR T=1 TO S@:NEXT

258 MEXT

268 FOR T=1 TO S@6:HEKT

278 MEWT

Fig. 9.4. Program demonstrating effect of volume setting.

164 Commodore 64 Graphics & Sound

reading in the values for FH and FL down a data statement. In fact
these were chosen to give a musical scale, but any other frequencies
would do equally well to demonstrate the effect of volume. Line 18¢
is important, as we shall see later, since it causes the volume level to
be maintained while the tone is being generated. Line 21§ turns on
the sound output, and line 23¢) turns it off so the individual tones are
separated by a short period of silence.

Different wave shapes

A sine wave produces a pure tone of just one frequency. In practice it
is rather difficult to produce a pure sine wave with electronic
circuits, and it is much easier to generate a square wave where the
signal is switched on for one half of the cycle and off for the other
half. The square wave, if analysed, turns out to be a combination of a
basic sine wave plus a number of smaller amplitude harmonic
signals. These harmonics have frequencies which are multiples of the
basic or fundamental note frequency. Thus the second harmonic has
twice the frequency, the third harmonic three times the frequency,
and so on. The effect of adding these harmonics is to produce a
richer sound then the pure tone.

The Commodore 64 can produce three basic waveshapes:
triangular, sawtooth and square wave. These are shown in Fig. 9.5.

R = -

- - s Y
N Ny VAN
. e "~ - " /- ~,
Triangle e ~. - ~

Sawtooth ' T T

Square wave

Fig. 9.5. Diagram showing the three basic waveforms produced by the sound
chip.

The one we have used in the frequency demonstration is the
triangular wave, which is perhaps the closest to the pure sinusoidal
waveform. The different output waveforms are selected by the

The Sound Generator 165

control register for each sound channel, which is register 4 of each
group (SD+4, SD+11 and SD+18).

In the frequency demonstration program the sound is turned on in
line 150 by setting bits 0 and 4 of the control register for sound
channel 1. Here bit 0 controls whether sound is produced or not, and
bit 4 selects the triangular output waveform. To set bit 4 we POKE in
the number 16 (17 when bit 0 is also to be set at ‘I"). If instead of
setting bit 4 of the control register for the selected sound channel we
set bit 5, and leave bit 4at 0, a different output waveform is produced
by the sound generator. Bit 5 is selected by POKEing 32 into the
register (33 if bit 0 is also to be set ‘on’). Now the waveform is a
sawtooth which rises linearly through the cycle period and then falls
rapidly to zero at the end of the cycle. This waveform produces a
different sound quality which is richer in harmonics than the
triangular wave. The fundamental frequency of the sound is,
however, unaffected.

We can select the third basic waveform by setting bit 6 instead of
bit 5. This means that we need to POKE 65 into register4 to turn on
the sound, and POKE in 64 to stop the sound. The waveform
produced by this action is a square waveform where the signal is

108 REM DEMO OF DIFFEREMT WAYEFORMS
118 DIM FL{8Y.FHI8)

120 FORI=1TOG:READ FL{I,FHII (HEXT
138 DATA 197,16€,209,18,31.21.96.22
140 DATA 38,23,49,28.165,31,135.33
130 SD=34272

160 FORI=8D TO SD+24:POKEL. @ MEXT
170 POKESD+24, 15 :POKESD+3, 8

182 FOKESD+3,37:POKESD+E, 240

190 W=1¢&

200 FOR WS=1 TO 3

218 FOR J=1 TO 8

220 POKESDLFLOTS (POKESD+1, FHC(T:
2273 REM SELECT QUTPUT MWAVEFORM

238 POKESD+4, W+1

240 FOR T=1 TO 30@:HEXT

250 POKESD+4. 4

260 FOR T=1 TO SQ:HEXT

270 NEMT

280 L=lLi%2

298 HEXT

Fig. 9.6. Program showing tone quality produced by the different waveforms.

166 Commodore 64 Graphics & Sound

switched on for one half-cycle and off for the other half-cycle. The
result is a louder and much brighter sound, with lots of harmonics.
For correct operation of the square wave we also need to POKE the
number 8 into register 3 of the sound channel to set up the pulse
width. We shall look more closely at this in a moment.

The short program listed in Fig. 9.6 demonstrates the different
sound quality produced by the triangular, sawtooth and square
waves.

Pulse width variation

When we produced the square wave output in the program of Fig.
9.6 the ‘on’ and ‘off> periods of the wave were set equal, and each
covered one half of the wave cycle. In the Commodore 64 we can in
fact control the ratio of the ‘on’ time relative to the ‘off” time to give a
wide variety of different wave shapes.. Thisis shown in Fig. 9.7. Each

PH = 1824
PW = 2848
Pl = 3872

Fig. 9.7. Diagram showing waveforms with different pulse widths.

of these wave shapes will in fact produce a different quality of sound.

The pulse width — the part of the cycle where the output signal is
high - can be varied from zero up to the full cycle period by altering
the number contained in registers 2 and 3 of the sound channel in
use.

Only 12 of the 16 bits in registers 2 and 3 are actually used to set
the pulse width. The upper four bits of register 3 are not used. The
result is that pulse width is given by a 12-bit binary number which
can have a value from 0to 4095. For an equal on-off square wave the

The Sound Generator 167

value for pulse width should be 2048. This is achieved by setting
register 3 to a value of 8 and register 2 to zero.

To see how the variation of pulse width affects the tone quality,
try running the program listed in Fig. 9.8. In this program a series of
tones is played, and after each sequence the pulse width is increased
to give a different tone quality. Altering the pulse width alters the
mixture of harmonics in the output sound. The shorter pulses givea
rather raspy sort of sound, and longer pulse widths tend to give a
hollow sound. These pulse waveforms are similar to those produced
by many woodwind instruments.

188 REM DEMO QF EFFECT OF FULSE WIDTH

{12 DIM FLOSI.FHORY

115 REM READ TOME FREQUEMCY DRTH

128 FOR H=1 TO S:READ FLOMY FHOHD (HEXT

130 DRTA 195, 14,209,18,31. 21,96, 22

148 DATA 38,25,492,28. 165,531,135, 33

150 S3D=04272

155 REM CLERR SID REGISTERS

168 FOR I=5D TO SD+24:POKE 1.6 MEXT

185 REM SET WOLUME

178 POKESDH24, 15

7S REM SET ATTACK DECAY SUSTAIM LEVELS

188 POKESDHS, B4 POKESDHS, 24@

158 FOR FU=B TO 9

280 FRIMT "PULSE MIDTH = ", 15#(21F0

218 FOR J=1 TO &

215 FEM SET FREQUEHCY

228 POKESDLFLOT FOKESD+L L FHO T

225 REM SET PULSE WIDTH

238 P=1G#C21FWY PORESD+S . THT (P 206

748 POKESD+Z, P-206% IHT(P-256 0

245 REM S0UHD TOME

258 POKESD+4, A5

268 FOR T=1 T0O 20@:HEXT

285 FEM GEMERATE SILEMT PALSE

278 POKESD+4, &4

288 FOR T=1 TO S@:HERT

258 MEXT

308 FOR T=1 TO S00: HERT

318 HEXT
Fig. 9.8. Program showing the effect on tone quality of varying the puise width
of a square wave.

168 Commodore 64 Graphics & Sound

Noise generation

So far the waveforms we have produced from the sound channel
have had a regular cyclic variation. We could, however, produce a
signal where the instantaneous level of the signal varies randomly
with time. This is known as noise, and if the variations are truly
random the result is what is known as ‘white noise’. If we play the
noise through a speaker the result is a harsh hissing sound similar to
that produced by a television receiver when it is not tuned in to a
station.

The Commodore 64 can produce a noise signal if we set bit 7 of the
control register and leave bits 4, 5and 6 at the Ostate. This is done by
POKEing 128 or 129 into register 4 of the selected sound channel.
The actual noise signal produced by the Commodore 64 is not truly
random but will repeat its pattern at intervals, and this produces
what is known as ‘coloured noise’ since it does repeat from time to
time. The quality of the noise is also governed by the frequency set
up in registers 0 and 1.

It may seem odd that we should want to generate noise at all, but
in fact, as we shall see in a moment, noise is an important
requirement for many types of sound effect. To get some idea of the
sounds produced when a channel is set for noise output try running
the program listed in Fig. 9.9. The lower frequencies of noise output
produce buzzing sounds which may be useful as sound effects.

188 REM DEMO 0OF MDISE QUTPUT
118 5D=54272

128 FOR I=8D TO £D+24:POKEI.,@:NEXT
13@ POKESD+24, 15: POKESD+E. 248
148 POKESD+T.34

15@ FOR N=@ TO 15

168 POKESD. &4 :FOKESDH+1.H

178 POKESD+4, 129

188 FOR T=1TO156@:HEXT

19@ POKESD+4, 128

208 FOR T=1TOS@:HEXT

21@ MEXT

Fig. 9.9. Program demonstrating noise output from channel 1.

The sound envelope

We have seen that the type of sound produced can be altered by

The Sound Generator 169

changing the shape of the sound waveform. Much more dramatic
effects on the character of the sounds produced can be achieved by
controlling the way in which the amplitude of the sound signal varies
with time. This variation with time is known as the sound envelope.
In fact we can have an amplitude envelope where the sound volume
changes with time and also a pitch envelope where the pitch or
frequency of the sound varies with time. For the moment we'll
consider the amplitude enVelope.

In our experiments so far we have simply turned on the sound,
held it for a while, and then turned it off. In real life the amplitude of
a sound does not always switch off abruptly; it tends to die away
gradually. In the same way the sound may build up slowly. Changes
in the way that the sound builds up and dies away can completely
alter the character of a sound. The Commodore 64 sound generator
allows us to control the rates at which the sound output will build up
and die away, and by carefully manipulating these rates we can
produce a wide range of interesting sound effects.

The pattern of changes in sound volume as a sound is produced
falls into four separate phases, which are known as atrack, decay,
sustain and release. These four phases are shown in Fig. 9.10. This
type of envelope control is usually referred to asan ADSR envelope
system.

§ %,
A o
F LY
§ b,
S %
Rttack Bacay Sustain Releass

Fig. 9.710. The amplitude envelope showing attack, decay, sustain and release
phases.

The attack phase governs the rate at which the sound level builds
up to the preset maximum volume level. With a fast or high rate of

170 Commodore 64 Graphics & Sound

attack the volume rises very rapidly to the set level; a slow attack rate
causes the level to build up more gradually. In the Commodore
sound generator there are sixteen different levels of attack, which
are specified in terms of the length of time that the sound will take to
build up to a maximum volume. An attack level of 0 gives virtually
instantaneous rise of volume; an attack rate of 15 allows the volume
to build up over a period of about eight seconds. The attack times for
the range of attack rates from 0 to 15 are listed in Fig. 9.11.

ATTACK RISE TIME
NUMBER millisecs
1% 2
1 8
2z 16
3 24
4 z8
5 56
& &8
7 8o
8 160
7 256

i@ 500
11 800
12 1 sec
13 3 secs
14 S secs
15 8 secs

Fig. 9.11. The attack rates available on the SID chip.

The Sound Generator 171

Once the volume reaches the preset level the attack phase ends,
and the sound generator moves on into the decay phase where the
sound level falls again to a second preset level. As with the atack
phase, the decay rate is specified by a number from 0 to 15 which
selects the length of time over which the sound dies away. Here a
decay number of 0 gives the most rapid switch-off, while 15 causes
the sound to die away gradually. The decay times are longer than the
attack times and are listed in Fig. 9.12.

DECAY /RELEASE FALL TIME
NUMBER millisecs
é &

1 24

2 48

= 72

4 114

5 168

') Z2a4

7 240

8 Fo0

? 750
ia 1.5 =secs
i1 2.4 secs
12 3 secs
13 2 secs
14 15 secs
13 24 secs

Fig. 89.72. The decay and release rates for the SID chip.

172 Commodore 64 Graphics & Sound

The third phase of the sound envelope is called the sustain phase,
and during this period the sound volume remains constant. For this
phase the computer does not specify a rate of rise or fall but merely
selects a volume level at which the sound will be held. The sustain
phase starts when the volume during the decay phase reaches the
value specified for the sustain phase. Unlike the attack and decay,
the sustain phase continues until the specified sound channel is
turned off. The values for the sustain parameter are from 0 to 15, as
for volume.

The final phase is the release, which starts when the sound channel
is turned off by resetting bit 0 in its control register. The sound now
dies away at a rate determined by the number specified for the
release rate, which is the same as that for the decay phase. The
difference is that in the release phase the volume always decays away
to zero.

The attack and decay rate parameters are combined together in a
single register which is register number 5in the group for eachsound
channel. The register has eight bits, of which the upper four are used
for the attack rate and the lower four for the decay rate. To set up
this register we simply multiply the attack rate number by 16, to
move it to the upper four bits of the word, and then add in the decay
rate number and POKE the result into the required register as
follows:

1000 AD = 16*A + D
1019 POKE SD+5,AD

or more simply
1609 POKE SD+5,(16*A+D)

where A and D are the required rates for attack and decay and are
both in the range 0 to 15.

Let us try an experiment using the short program shown in Fig.
9.13. Here the attack rate has been set at O to give a very rapid rise to
full volume, and the decay rate has been set at 11 to give a very slow
decay. In this particular case the sustain level is set at 0 so the sound
should decay away to silence rather slowly. The effect produced is
very much like a bell or chime provided that the sounds generated
are separated by enough time to allow the previous sound to die
away.

A better way of producing bell or chime sounds is to make use of
the sustain and release phases as well as attack and decay. For the
sustain number we can simply use the same number as for volume,

The Sound Generator 173

168 REM DEMO OF BELL OR CHIME EFFECT
118 DIM FLOSD FHORY

128 FORI=1TOS:RERD FLOIS. FHOLD CHENT
138 DRTA 135,33, 162, 37.62, 42,193, 44
146 DATH £0.52,3%9, 56,753,623, 15,67
158 5D=54272

168 FORI=8D TO SD+24:POKET.Q HEXT
178 POKESD+24, 15 POKESD+3, 8

180 POKESD+S, 11 FOKESD+E. 11

218 FOR J=1 TD 8

228 POKESD,FLLTY (POKESD+1 . FHI TS

225 REM SELECT OUTPUT WAVEFORM

238 FOKESDH, 65

248 FOR T=1 TO 108@:HERXT

250 FOKESD4, 64

268 FOR T=1 TO SG:HEXT

276 HEWT

Fig. 9.13. Program to show the production of bell or chime sounds.

but in this case it has to be shifted to the upper four bits of the
register, so we need to multiply it by 16 before adding in the release
rate number. Now the duration of the sound, which was governed by
a simple time delay loop, is made quite short. Here we simply have to
allow enough time for the attack phase to be completed. When the
sound is turned off, the release phase will start and the sound slowly
dies away. If the next tone is started before the release phase ends a
reverberation effect similar to that of a bell or chime is produced.

Drums and explosions

Percussive instruments, such as drums and cymbals, have similar
envelope characteristics to those of a bell or chime, since the sound is
produced by hitting the instrument. The result is that there is a very
rapid attack and a medium to slow decay or release.

When we come to a side drum or a cymbal the required sound is
produced by using noise instead of a tone for the sound waveform.
For a bass drum or an instrument such as a triangle, however, a tone
waveform might be used.

Try running the program listed in Fig. 9.14, which uses noise with
a fast attack and slow release envelope to produce sounds which
might be used for drum, gunshot or explosion effects according to
the frequency of the noise generated. Try experimenting with the

174 Commodore 64 Graphics & Sound

198 REM DEMO OF EXPLOSION EFFECTS
11@ SD=5427e

120 FOR I=8D TO SD+24:POKEI.Q:HEXT
13@ POKESD+24, 13

148 FOR D=7T013:POKESD+I, D:PRINT"D= ".D
158 FOR N=@ TO 15 STEP 3

1668 POKESD. 255 POKESD+1.H

178 POKESD+4, 129

188 FOR T=1T0150@: NEXT

196 POKESD+4.128

208 FOR T=1T0S@:HEXT

21@ NEXT

228 MEXT

Fig. 9.74. Program demonstrating percussion and explosion sounds.

values for attack, decay, release and frequency to see the range of
effects that can be produced.

The piano is a rather special case of a percussion instrument, and
requires a slightly more complex sound envelope. In this case the
attack rises to maximum volume; then the decay falls fairly rapidly
to a lower volume of about 60% maximum during the sustain
period, after which there is a slow release. Here you need to set
the sustain level to about 10 if you have volume set to 15. Try usinga
slow release and see how that affects the sound produced.

For plucked string instruments the attack is fast but the decay and
release times are not as long as for a bell or chime, so the sound dies
away fairly rapidly. These instruments may also use the reduced
sustain characteristics of a piano. This type of sound is often used for
the sound of a ball bouncing off a bat or wall in a game.

For an organ sound a moderate attack rate (say 3 or 4) is used,
with similar decay and release rates and sustain at about 75% full
volume.

Siren sounds

A type of sound effect which may be useful in a game is the siren. The
basic characteristic of this type of sound is that the frequency
changes while the sound is being produced. This effect can be
achieved by using a counting loop to change the value of the sound
frequency. This uses the same general idea as the program listed in
Fig. 9.3, except that the sound channel is turned on and left on

The Sound Generator 175

throughout the program, and the delay loop within the main
frequency change loop is removed. With this arrangement the
frequency will increase fairly rapidly through the range. If the whole
loop is set to repeat, then the frequency will sweep up through the
range then instantly fall and repeat the cycle.

There is another way of controlling the frequency of, say, channel
I as it produces its sound output. Channel 3, unlike the others, has a
facility by which its output can be read from register number 27.
This gives a number which varies in the range 0 to 255 and follows
the wave shape being generated by oscillator 3.

If we set oscillator 3 to a triangle wave, then PEEK register 27 and
add the result to the frequency number for channel 1, the channel 1
frequency will rise and fall in sympathy with the output from
channel 3. This produces a siren-like sound from channel 1 as
demonstrated by the program listed in Fig. 9.15. Try changing the

:f.t

REM SIREH TYRE SQUNMDS
SD=R4272

FOR H=S5D TO 20424 :POKEM. @ MEXT
FOKESD+24. 15
POKESDHS, 17 FOKESD+E, 244

FOR K=14 TO 255 STEP 14
PORESD+12, 17 POKESTH20, 246
FOKESTH14, K POKESD+1S, 8
FOKESD+H18, 17 FPOKESD+4, °”

FOR J=1 TO 0@

F=00@@+d 8 (PEEK (STI+ET 1 0

FH=IHT IR 25680 (FL=F~258%FH

FOKESD, FLPOKESD+1.FH

HEXT J

HERT K

POKESD+18, 1€ FOKESTI+4, 22

EHMD

Fig. 9.15. Program for producing siren sounds using the output of channel 3 to
control channel 1.

Pt et et et
£33 T

=3 I T S S X

YRS E I R YR, B ORIV IR (N I on

Ean]

N) I e (S

RS TRV N B L R N L B R T s

Lo e By S B oy A B R

(V]
ey

waveform produced by channel 3 to a sawtooth wave by altering the
number POKEd to SD+18 from 17 to 33 in line 180). This will
produce different siren-type effects. Another experiment to try is
subtracting the PEEK of register SD+27 from the frequency
number instead of adding it.

Increasing the frequency of channel 3 will alter the siren sound,
giving a vibrato or tremolo effect where the tone frequency varies

176 Commodore 64 Graphics & Sound

rapidly over a small range. This can be combined with an organ
envelope to give a vibraphone effect.

It is also possible to read out the envelope of channel 3 by
PEEKing register 28. This means that you canapply an ADSR-type
variation to the frequency of, say, channel 1 to get even more varied
effects. To see the technique here try running the program listed in
Fig. 9.16. Here the frequency of channel 1 is being altered by the

1086 REM BOME DREOF SOUMD
P18 SD=04272
{20 FOR He=5D 70 SD+2d FOKEH . O HERT
130 FOKES ﬂ+~4 1'v
148 POKESDHI, 17 POKESDHE, 244
168 POk -D«'H~'ﬂ POHESDHEER.
17e D141 PORESTH1Z. 4
188 POKESD+18, 33 FOKESD+4, 33
198 E=-FEEK(SD+2E0 1 IF E<240 THEM 12@
200 F=24600+044E
210 FH=IMTIF 25680
PGKESEJFLt'

E=PEEK ST4TR
PORKESD+18, 15
FORESD+D, 11
POKEST, 1R u

,"")_‘_"! ’I

-
=

A
i
H
o

Fig. 9.16. Bomb drop effect using channel 3 envelope to control channel 1
frequency.

envelope of channel 3 to produce a descending note which might be
used to simulate the sound of a falling bomb. At the end of the
envelope from channel 3 an explosion sound is generated by channel
1 to complete the effect. This type of frequency control might be
used to produce the so-called laser gun sounds for games.

When channel 3is used to control another channel, either by using
its output or envelope signals, we will usually want to keep the sound
from channel 3 turned off. The output must be set ‘on’ for the desired
waveform in register 18, otherwise no output will appear from
registers 27 and 28. The actual sound output from channel 3 can,
however, be switched independently by setting bit 7 of register 24.
This is the volume register, and all we have to do is add 128 to the

The Sound Generator 177

requifed volume number and POKE the result into register 24. In
the program of Fig. 9.16 this is carried out in line 13@. In the siren
program of Fig. 9.15 channel 3 was left on, since its frequency was
set very low and does not produce an effective sound. If desired, line
13¢ in this program could be made the same as in Fig. 9.16.

The possible combinations of the various waveforms, envelope
shapes and varying degrees of control of frequency via the channel 3
signals are almost limitless. Some of the possibilities have been
suggested here, but much of the fun in playing with the sound facility
will come from trying various combinations and noting interesting
effects when they occur. When you get an effect something like one
that you want, try small variations and gradually alter it until it
sounds right.

Chapter Ten
Making Music

So far we have looked at the generation of various kinds of sound
effects using the Commodore 64, but a more interesting application
of the computer is in producing music. This may be just to provide
simple jingles in a game program (to indicate victory or defeat) or it
might be extended to make the computer play a piece of music.
Another application could turn the Commodore 64 into a musical
instrument that is played by using the keyboard in much the same
way as the keyboard of a piano or organ. In order to understand how
the computer is programmed for these applications we shall need to
learn a little about the principles of music itself.

The musical scale

Sound can have an enormous number of different frequencies
within the range 30 Hz to 10000 Hz. In music, this vast range of
sounds is reduced to a series of specific frequencies which are called
tones or notes. The actual set of notes used for producing music
depends upon the cultural background of the musicians: the set of
notes used by a musician in a western country would be different
from those used in Asian or Chinese music. As a result, western
music sounds different from that of the eastern countries of Asia.
For the moment we shall consider the musical scheme used in
western countries but, of course, the principles could equally well be
applied to eastern music.

In western music there are seven named notes, referred to by the
letters A to G, and these correspond to a group of seven successive
white notes on a piano keyboard. However, the full range of notes
used in music consists of more than seven notes. For those notes
beyond the first seven in the series the letters A to G are repeated, so
that the note following the G is once again labelled A. This process

Making Music 179

continues up the range with the letters A to G being repeated for
each set of seven notes. Each group of notes running from A to G is
called an octave. This name comes from the fact that the A note in
one octave is the eighth note above the corresponding A in the
octave below. In order to distinguish a note such as B in one octave
from the B notes in other octaves a number may be written after the
note letter to show which octave the note is in.

The set of frequencies used for the musical notes is arranged so
that the frequency of the A note in one octave has approximately
twice the frequency of the A in the octave below. This two-to-one
frequency ratio also applies to other notes when they are compared
with the equivalent note in the octave below.

Each octave is actually divided up into a series of 12 intervals
called semitones. The pitch or frequency ratio between successive
semitones is the 12th root of two, or about 1.06 to 1. Five of the so
called ‘natural’ notes (A to G) are spaced two semitones, or one
complete tone, apart. With only 12semitones availablein an octave,
two pairs of notes (B,C and E,F) are spaced by only one semitone.
This may seem rather an odd scheme, but it works quite well in
practice. On a piano keyboard there are five black notes in each
octave, and these occupy the semitone positions between those
white notes that are spaced a full tone apart. Figure 10.1 shows a
section of a piano keyboard with the notes labelled. The black notes

CH# D# F# GH RE CH D

I
C 0 E F 6 A B C D E

Fig. 70.7. The layout of notes on a piano keyboard.

are referred to as ‘sharp’ notes and are indicated by placing a # sign
after the normal note letter. Thus A sharp is one semitone above
note A and would be written as A#.

Sometimes in music there will be references to ‘flat’ notes. The flat
notes are really the same as the sharps, but are simply referred to the

180 Commodore 64 Graphics & Sound

NOTE NUMBER FH FL
Cc-1 2145 8 @7
C#-1 2273 (=} 225
D—-1 2468 ? 164
D#—-1 2551 2 247
E-1 2783 10 143
F-1 2864 11 48
F#-1 3034 11 218
G-1 F215 2 143
G#—1 3406 13 78
A1 I4698 14 24
A#-—-1 3823 i4 239
B—-1 4056 15 Z21a
MIDDLE C

ceo 4291 16 195
C# o 4547 17 195
Do 4817 i8 209
D# © 5103 17 239
E o S4e7 21 31
F @ 5728 22 2?64
F# @ LBLT 23 181
G & &439 25 30
G# @ 6812 26 13536
a9 7217 Z8 45
Al © 7647 29 223
B o 8101 31 165
C1 8583 33 135
C# 1 994 35 134
D1 P64 37 162
D# 1 10207 37 223
E 1 1e814 42 &2
F 1 11457 44 193
F# 1 12139 47 167
G 1 128469 S8 &0
G# 1 13625 33 57
a1 14435 56 72
A 1 15254 59 170
B i 146263 &3 7=
cz 17167 &7 15

Fig. 10.2. Table of note frequency values and FL and FH values for the sound
generator.

next higher natural note rather than the next lower. Thus a B flat
note is one semitone below B and is exactly the same as an A sharp

Making Music 181

which is one semitone above A. Remember that B is a whole tone
above A. In music, flat notes are denoted by using a symbol like a
small letter b after the note letter.

Western musical scales are tuned relative to a standard frequency
of 440 Hz, and thisis an A note. The A note one octave lower has a
frequency of 220 Hz and the A note one octave higher is 880 Hz.
Other note frequencies are then calculated relative to these, using the
12th root of two ratio for each semitone. Another reference note in
the musical scale is called ‘Middle C’ and this is the C note in the
octave below the standard pitch A note. The frequency of middle C
is about 261 Hz. One reason for choosing middle C as a reference is
that the musical scale starting with C uses only the white keys on a
piano. A musical scale is simply a succession of notes covering an
octave. Scales starting from other notes than C follow the same
sequence of tones and semitones between successive notes, and will
contain one or more sharp notes to make the scale sound right.

To produce the musical notes on the Commodore 64 we need to
know their frequency numbers. The actual frequencies of musical
notes are not nice round figures, and in some cases it is not possible to
select the exact musical frequency on the SID chip, but the result is
close enough not to be noticed. To save you the trouble of
calculating the frequency numbers these are given in Fig. 10.2, for
the range of notes from the C below middle C to the C two octaves
above middie C. This figure also lists the FH and FL values required
for each note.

Written music
Although music could be written by using strings of letters, actual

written music uses a more graphical scheme. The notes themselves
are shown as large dots, and these are drawn on or between a set of

o | |
1 | é_‘ !
,ej) | . .i #__‘X_é_"

—o- ¢

Hote € b E F 6 ft B C b E

F 4291 4817 5487 5728 6438 7217 8181 8583 9634 18814
FH 16 18 H 22 23 28 31 33 37 42

FL 195 289 31 9% 38 49 163 135 162 62

Fig. 10.3. The treble stave showing the frequency values for the treble notes.

182 Commodore 64 Graphics & Sound

five parallel horizontal lines called a music stave. This is shown in
Fig. 10.3, where the sequence of notes from middle C up to the E in
the next higher octave is shown. Middle C s the note below the stave
which sits on its own short horizontal line. The frequency numbers
and the values for FL and FH are also given for the range of notes
shown.

The stave shown in Fig. 10.3 is known as the treble stave, and this
is indicated by the treble clef symbol at the start or left-hand side of
the stave. For notes below middle C there is another stave, called the
bass stave, and this is shown in Fig. 10.4. Here a different symbol,
known as the bass clef, appears at the start of the stave to identify it.
Again the frequency numbers and FL, FH values are given for the
notes shown.

Note L B fl 6 F E b €

F 2143 24088 2783 2864 3215 3688 4858 4291
Fi 8 9 18 i1 iz 14 13 16
FL 97 ie4 143 48 143 24 212 1935

Fig. 10.4. The bass stave and its associated frequency values.

The natural notes are placed alternately on or between the lines of
the stave, and the vertical position of the dot representing a note
defines exactly which note it is. Sharp or flat notes are shown by
placing a sharp or flat symbol before the note, as we did when writing
the notes as letters. For notes that lie above the top line of the stave,
one or more short stave lines are drawn above the top line of the
stave in the same way as for the Middle C note below the stave.

Sometimes the music may require that a note on a particular line
of the stave is always played as a sharp note. In such cases, to avoid
having a sharp sign before every note on that line, the sharp sign is
placed after the clef symbol at the start of the line of music, asshown
in Fig. 10.5. When this is done the note symbols on that line of the
stave are drawn normally, but are interpreted as sharp notes when
the music is played. The same basic principle may also be used for
flat notes by placing flat symbols after the clef symbol on the row of
the stave containing the flat note.

Making Music 183

i I . {

I » |
— b —

o

|
¢

D G C B
sharpe sharp flat

Fig. 10.5. The sharp and flat notes.

Musical timing

Although a sequence of different notes will produce a tune, much of
the character sound of music comes from the tempo and rhythm of
the sounds, as well as their pitch or frequency. Tempo is the rate at
which the tune is played; an average tempo might be about 150 beats
per minute. The rhythm is produced by a pattern of varying note
duration, and by inserting quiet pauses between some of the
successive notes making up the tune. By varying tempo and rhythm
the same sequence of note frequencies can be made to sound
completely different.

The duration of notes in music is organised on a binary system.
The basic note length is called a crorcher, and typically corresponds
to a duration of about 0.4 seconds. The crotchet is shown as a black
filled circle with a vertical tail. Usually the tail is drawn upwards at
the right side of a note, but it may also be drawn downwards at the
left side if required. Shorter notes than the crotchet are the quaver,
which has half the duration of a crotchet, the semiquaver (1/4) and
demi-semiquaver (1/8). These shorter notes are drawn like
crotchets, but have one, two, or three ticks on the tail respectively.
The minim is a longer note with twice the duration of a crotchet. It is
drawn like a crotchet, but the circle is not filled in. Finally there is the
semibreve which is four times as long as a crotchet and is shown with
no tail. These note symbols are shown in Fig. 10.6.

In the Commodore 64 the note length is determined by using a
simple counting loop to produce a delay between the time the sound
output is turned on and the time it is turned off to end the note. This
is done as follows:

220 FOR T=1TO DR:NEXT

where DR is a number that determines the length of the note. For a
crotchet, the value for DR will be 250, and the other note lengths are

184 Commodore 64 Graphics & Sound

SYHBOL HAME RATID BR
: Demi-seai-quaver 178 3

»
B Semi-quaver 174 63

o
fuaver 1s2 125

»
{rotchet 1 258

»
Minin 2 288

-
= Semibreve 4 1808

Fig. 10.6 Note symbols and duration count values used in creating music.

directly proportional to this: a quaver has a DR value of 125, and so
on. The required count durations for the various note lengths are
indicated in Fig. 10.6.

Now we can apply these new duration values together with a set of
note frequencies to produce a simple tune-generating program, as
shown in the listing of Fig. 10.7. In this program three data arrays
are used; one gives the note duration and the others are used for the
FH and FL values for each note. Alternatively you could use one
array to store duration and a second for the frequency numbers
(FN). In this case the FH and FL terms would be derived by splitting
FN into two bytes, as shown in Chapter 9.

The binary series of note durations does not always satisfy the
needs of composers and musicians so sometimes, in written music,
you may also come across notes with a dot alongside the note
symbol as shown in Fig. 10.8. These notes have the duration
increased by half. Thus a dotted crotchet would have an effective
duration loop count of 375 instead of the normal 250.

Rests and tempo control
So far in playing a tune the varying length notes have been played

one after another with perhaps a very brief pause between them as
the next note is set up. In the rhythms of actual music, however,

Making Music 185

LeE REM TAhE PLARYIMNG FROGRAM
118 Sh=04272
128 FDFH*“D TO SD+24 POKEH. & HEXT
FOKEST+24, 15
POEEST4N, 34 POKESD4G, 248
58 FORE I=1 TO 2&

2 READ ILFHLFL

G OPOKESDLFLPOKEST+L L FH
W POKESD+4, 33
0 FOR T=1 TO I:HERT

1 POKESTHY. 3 s
FOR T=1 T0 50 HENT
T RE

il
i

230 REM DURATIOM AMD HOTE DATH
248 DATA 250.31.165.125,37. 162
208 DATA 250,31, 165,250, 31, 165
268 DATA 1:)-:1-1t:lLJ- 31165
273 DATA 125,33, 135,125, 37, 162
288 TRTAR 129,33, 1&5-2qﬂ;28-4q
298 DATA 125.31.165, 125,353,135
308 DATR 125,31, 165,358, 25,50
318 OATA hiu«:1=¢uﬁ-i~S:QT; 2
328 DATA 258,31, 165,250, 31,165
330 DRTH ng-anuihh-Zﬁﬁ 31,165
348 DATA 125,33.135,125, 37, 182

Ji’ l"
L=

f

*
Ix

35@ DATA 125,33, 1235,290.28.45
369 DATA 127,31, 165,250,25. 3@

REEADY.
Fig. 10.7. A program to play a simple tune.

there are frequently deliberate silent periods between notes which
act a little like written punctuation marks to separate phrases in the
music.

These silent periods are called rests or pauses and they, too, have a
duration structure similar to that of the notes. The symbols used to
denote the rests and their duration times are shown in Fig. 10.9.

To incorporate rests into a music program we could set up a
separate array for them, but for most of the time the data in this
array would be zero. Another possibility might be to make the
frequency value zero when a rest is required. A simple test on the F
value from the tune data stream will then tell the computer what to
do. If the F value is greater than zero the note is played, butif F=0

186 Commodore 64 Graphics & Sound

SYMasL HRKE RATID R
\ Denmi-semi-quaver dotted 18 44

& -
y Semi-quaver dotted 174 94

& -
fluaver dotted 172 i88

> -
Crotchet dotted i 373

& -
Minim dotted 2 758

= -
o - Semibreve dotted 4 1548

Fig. 10.8. The dotted notes and their duration values.

el i 3

R = 31 &3 125 258 o988

Fig. 10.9. The rests and their duration values.

then the computer just counts off a period of silence equal to the note
duration specified.

Another approach to the playing of rests might be to make the
duration number negative when a rest is required. When a negative
duration value is detected by testing DR the program would turn off
the sound generator and then perform a delay using the ABS value
of the duration number.

Changing the tempo of the music is equivalent to changing the
duration of the crotchet on which the other note lengths are based.
One way of handling this might be to make the note duration
number (ND) for a crotchet equal to 1, and then the other note
lengths would have durations based on this. Now a multiplier factor
(TM) can be set up to determine the tempo of the music, and this
might be set as 250 at the start of the program. To get the duration

Making Music 187

number (DR) for the sound generating loop the note duration
number (ND) is multiplied by the tempo number (TM), so that for a
crotchet we would get

DR=NDXTM=1X250= 250
and for a quaver the sound duration would be,
DR=NDXTM=0.5X250= 125

This gives the same count durations as we had before when the
tempo number is set at 250. If the tempo multiplier is reduced, then
the whole tune will be played faster, and if the tempo number is
increased the tune will be played at a slower rate. To avoid fractions
in the note duration numbers these could be based on a demi-
semiquaver (the shortest note) having an ND value of 1, so that a
crotchet would then have a value of 8. Here the normal value for the
tempo multiplier would have to be set at 31 instead of 250.

Play the Commodore 64

So far we have produced musical tunes by setting up the sequence of
notes and their durations and then using a loop to read the note data
and generate the required sound. There is another, rather more
attractive, possibility for producing music with the Commodore 64.
Instead of feeding in prearranged music data it is possible to turn the
computer into a playable instrument, where the music is produced
by pressing keys on the keyboard in much the same way as one might
play a piano or organ.

To make the Commodore 64 keyboard act in a similar way to the
keyboard of a piano the various musical notes to be played must be
allocated to individual keys on the computer keyboard. When one of
these keys is pressed the corresponding note will be played by the
Commodore 64,

The most convenient arrangement would be to choose the keys on
the computer so that they are in roughly the same physical layout as
the black and white keys on a piano. This is done by using the middle
row of letter keys from A to ; as the white piano keys and using the
W, E, T, Y, U, O and P keys for the black piano keys. Figure 10.10
shows the keys used and their relationship to the keys on a piano
keyboard.

When we come to playing music on the computer, the first step
will be to detect which key is being pressed so that the appropriate

188 Commodore 64 Graphics & Sound

N E T ¥ U o P

R 5 D F & H T K L =

Fig. 10.70. Layout of keyboard and notes for using the Commodore 64 as a
musical instrument.

note can be produced. One way of detecting which key has been
pressed is to use the GET statement. This could be done using the
following statement:

209 GET AS$:IF A$=*" THEN 20§

Here if no key is pressed A$ is a blank string (“”), and the instruction
loops continuously. If the S key were pressed then A$ would become
a string “S” and the program would move on to the next instruction.
While GET will detect which key is pressed, it is not particularly
suited to our purpose. This is because the Commodore stores the
results of successive keypresses in an input buffer memory. This
buffer can store up to 10successive keystrokes, and each time GET is
called it will read out one of the values from the buffer. As a result
the key data that you are processing may not be for the key that is
currently being pressed but for one that was pressed a few moments
earlier.

The keys themselves are arranged in a matrix with eight rows and
eight keys in each row. The rows and columns are scanned
continuously by the computer, and when a key is detected as ‘on’ its
code number is set up in memory location 197. The code number
identifies the row and column position of the keyboard scan when a
contact was detected, and therefore identifies one particular key. If
we read the contents of location 197 they will indicate which key is
being pressed at that instant in time. If no key is being pressed, the
number in location 197 is set at 64. Now to detect a key press we can
use the statement

209 K=PEEK(197):1F K=64 THEN 200

When no key is being pressed the statement just loops back to itself

Making Music 189

KEY NUMBER KEY NUMBER
A 19 W 9
B 28 X 23
C 20 Y 25
D 18 z 12
E 14 1 56
F 21 2 59
6 26 3 8
H 29 4 11
1 33 5 16
J 34 6 19
K 37 7 24
L 42 8 27
M 36 9 32
N 39) 35
0 38 2 46
P 41 * 49
2 &2 = 53
R 17 / 55
s 13 + 40
T 22 - 43
u 30 ; 50
v 31 : 45

No key pressed gives the number &4.
Fig. 10.77. Values returned by keys to location 197 in memory.

190 Commodore 64 Graphics & Sound

since K will be 64. When a key is pressed the test fails, and the
program execution moves on to the next statement line where we
would start a piece of program to discover which key is being
pressed.

The actual number values returned in location 197 by the various
keys on the keyboard are shown in Fig. 10.11. As you will see, they
do not conform to any convenient pattern which would make key
decoding simple. To deal with this we can set up an array KV into
which the numbers corresponding to the keys we want to detect are
placed. Here it is convenient to arrange the set of key numbers in the
same order as the musical notes that we want the keys to produce.
Now when a key press is detected we can use a simple loop to

gn REM COMM USICHL IHSTRUMEMT
18 DI Kvni@ﬁﬂ!wa*Cf.’Liieb
15 REM RERD KEY AND FREGUEMDY DATH
2@ FOF M=l 70
0 ORERD RVIH: Labis i HEST
44 DRTH 18,15, 1% 7185, 13,18, 285
o DRTR 14,152 21312008836
a8 DATA 22.23.1 CRD, 38,25, 260, 156
& DATA 25,28, 29,223, 34,51, 180
& TATA I7. 33,1 3D 134,42, 37, 162
8 DRTH 41,3%,222, 42,652,008, 44,193
5 REM SET LUF SOUMD CHIF
@ ZD=53427Z
q 3

I TO S0+24: POKEM. & HEXT
Pth¢I+74 15

FOEERDD, {7 FOKESD+A, 245
xEH RERD KEYBORRD

F=FEEK (1970 [FKCA4 THEM 268
“’M STOP SOUMD GUTRUT
FOKESD+4, 32:G0TOZ4R

REM FIMND REQUIRED FREQUEMCY
268 FORJI=LTOLI8: IFK=KNMCI) THEN 288
270 HEST G0T0248

E7T REM SET FREGUEMCY
286 POKESDLFLOIY POKESD+1.FHLI:
ZET REM START SOUMD QUTFUT

230 POKESD+4, 335070248

-y o :
3T EWND

10t B e)) I e S A0 AN))

DR I B B Y A N

O O N O N O (N L N e e el el e e el il S S
0

Fig. 10.12. Program to turn the Commodore 64 into a playable musical
instrument.

Making Music 191

compare the value K with each of the values of KV in turn until a
match is found.

We can set up a second data array, F, which is of the same size as
array KV, and use it to hold the note frequency numbers for the
notes we want to produce. Now when a match occurs in the key
testing loop we can read the frequency number corresponding to the
key that has been pressed and use this to set up the sound frequency.
If you want to use the FH and FL values to set up the sound channel
frequency then two arrays (FH and FL) will be needed as well as the
KV array.

The program for converting the Commodore 64 into a musical
instrument is listed in Fig. 10.12. This allows notes from the C above
Middle C and the next octave and a quarter to be played. The timing
of the music is now directly related to the way in which the keyboard
is operated, since each note will be produced for as long as the key is
held down, just as in an electronic organ. Thus the rhythm and
tempo are governed primarily by the player.

In lines 120 and 13@ the data arrays for KV (key value), FH and
FL for the range of notes are set up from the data in lines 140 to 190.

In line 240 the keys are checked, and if no key is pressed (line 250)
the sound output is turned off and the program loops back to check
the keyboard again. When a key is detected the value of K from
location 197 is checked against KV values in a loop, and if no match
occurs the program loops back to the keyboard test again. When K
does match a KV value the program jumps out of the comparison
loop to line 28(, the required values for FH and FL are set up in the
sound chip registers, and the sound output is turned on.

This process of checking the keyboard and updating the state of
the sound chip goes on continuously. If you hold down a key the
note will continue to be produced until the key is released, just as it
would on an organ.

In the program the sawtooth waveform has been selected. You
could, of course, change the number POKEd into register 4to select
the triangular or square wave outputs as desired. Another possibility
would be to allocate three other keys, such as number keys, to
control the output waveform. These keys could be detected in the
same way as the other keys used for the notes. In this case, however,
instead of reading in frequency values the appropriate numbers
would be POKEd into register 4 to turn on the required waveform.

The range of frequencies covered might be extended by building
in an octave switching mechanism. Two or three keys might be
allocated to selecting the octave. When one of these is pressed the

192 Commodore 64 Graphics & Sound

frequency range would be shifted to the specified octave range. For
this type of scheme it may be better to work with complete frequency
numbers rather than FH and FL numbers when selecting note
frequency. The advantage here is that to move up an octave you
simply have to double the frequency number, and to move down an
octave the frequency number is divided by two. The values of FL
and FH to go in the registers are easily calculated using the
techniques described in Chapter 9.

Another possible development of the musical instrument scheme
might be to have several different envelopes programmed, so that by
selecting one of the number keys the sound envelope could be
changed to give a different type of sound. This could range from a
bell sound to organ or piano sounds. There are lots of possibilities
for development here, and much of the fun of playing with the sound
generator will be derived from experimenting with various
combinations to discover the enormous variety of sounds that can
be produced.

Index

amplitude of wave, 158
animation, 82

animation with shape changes, 113
ASCII code, 14

attack phase, 169

attack rate, 170

background colour, 1, 67, 75
ball movement, 83

bar chart, 125

bar chart with solid bars, 145
bar charts, three axis, 141
bar gauge, 120

bass clef, 182

bass stave, 182

bell sound, 172

bit map memory, 31

bit map memory layout, 35
bit map mode, 9, 31

bit map mode selection, 33
bit map screen clear, 33

bit map screen layout, 35

bit map text display, 137

bit mapped graphics, 8
border colour, 69

bouncing ball, 85

character code, 5

character generator, 4, 24
character graphics, §
character set, 3, 4

chime sound, 172

CHRS codes for colours, 66
circles by rotation method, 55
circles by squares method, 48
circles by trigonometry, 48
circular three-axis plot, 148
CLR key, 15

collision detection, 88, 112
colour ASCII codes, 65

colour code, 11, 62

colour code listing symbols, 62
colour control registers, 58
colour memory, I, 63

colour patterns, 70

copying a symbol set, 26
crotchet, 183

CTRL key, 24, 61

cursor keys, 15

cursor position, 19, 20

decay phase, 168
decay rate, 170
degrees, 53
demi-semiquaver, 183
dotted notes, 184
drum type sounds, 173

explosion effects, 173
extended background colour, 75

flat note, 179
frequency of sounds, 158, 161
frequency registers, 161

graph axes, 31

graph, interpolated, 135
graph scales, 132
graphics symbols, 6, 23
graphs, 131

high resolution graphics, 8, 31
HOME key, 14

interlaced scanning, 2
interpolation, 135

keyboard decoding, 189
keyboard interrupt, 26

194 Index

line clipping, 42

line drawing routine, 39
line symbols, 21, 22
LOGO key, 23, 62

low resolution graphics, 7

machine code screen clear, 37
meter displays, 118

minim, 183

mirror image patterns, 70
mosaic graphics, 7

movement of objects, 83
moving ball, 83

moving landscape, 93
multicolour bit map mode, 78

multicolour mode, 11, 77, 78, 109

multicolour symbols, 77
multiple bar chart, 127
musical note frequencies, 180
musical notes, 178

musical scale, 178

musical timing, 183

noise signal, 168
octave, 179

perspective views, 150

piano keyboard, 179

plotting points, 34

polygon drawing methods, 58
polygon, regular, 58

PRINT AT action, 17
programming symbols, 27
pulse width control, 166

quaver, 183

radians, 53

Read Only Memory, 4, 25
rectangles, 46

release phase, 169

release rate, 170, 172
RESTORE key, 33

rests in music, 184

reverse video, 23

ROM enable, 26

rotation equations, 55
RUN/STOP key, 33

RVS ON/OFF commands, 24

sawtooth wave, 164
screen code, 29
screen edge clipping, 42

screen memory, 5, 14
screen wraparound, 43
scroll down routine, 94
scroll left routine, 93

scroll right routine, 91
scrolling the screen, 89
semibreve, 183
semiquaver, 183

semitone, 179

setting bit map dots, 34
sharp note, 179

SHIFT key, 15, 23, 61
SID chip, 13, 154

SID registers, 160

siren effect, 174

sound envelope, 168
Sound Interface Device, 13, 154
sound pitch, 159

sound waveforms, 164
sound waves, 158

sprite animation, 111
sprite collision detection, 112
sprite colour control, 108
sprite control registers, 103
sprite definitions, 99

sprite dot matrix, 98

sprite expansion, 110
sprite graphics, 11, 98
sprite, multicolour, 109
sprite on/off control, 103
sprite pointers, 100

sprite position registers, 104
sprite priority, 110

square wave, 164

sustain level, 172

sustain phase, 169

symbol dot matrix, 3, 27
symbol space, 3

SYS command, 39

tempo, 184

text colour, 61

text cursor, 14

text display, 3, 5

text on bit map screen, 137
thermometer display, 120
three axis bar charts, 141
three axis graphs, 140
treble clef, 182

treble stave, 182

triangle drawing, 44
triangular wave, 164

user defined graphics, 8, 25, 28

Index 195

VIC chip, 1, 5, 12 wallpaper program, 71
video display, 1 wave period, 158

Video Interface Chip, 1, 5, 12 wave shapes for sound, 164
volume, 159, 163 white noise, 168

volume control register, 163 written music, 181

